|
| 1 | +--- |
| 2 | +title: Bayesian Estimation of Differential Equations |
| 3 | +engine: julia |
| 4 | +--- |
| 5 | + |
| 6 | +```{julia} |
| 7 | +#| echo: false |
| 8 | +#| output: false |
| 9 | +using Pkg; |
| 10 | +Pkg.instantiate(); |
| 11 | +``` |
| 12 | + |
| 13 | +::: {.callout-note collapse="true"} |
| 14 | + |
| 15 | +## This Part is from [Bayesian Differential Equations Notebook](../10-bayesian-differential-equations/) |
| 16 | + |
| 17 | +```{julia} |
| 18 | +using Turing |
| 19 | +using DifferentialEquations |
| 20 | +
|
| 21 | +# Load StatsPlots for visualizations and diagnostics. |
| 22 | +using StatsPlots |
| 23 | +
|
| 24 | +using LinearAlgebra |
| 25 | +
|
| 26 | +# Set a seed for reproducibility. |
| 27 | +using Random |
| 28 | +Random.seed!(14); |
| 29 | +``` |
| 30 | + |
| 31 | +## The Lotka-Volterra Model |
| 32 | + |
| 33 | +The Lotka–Volterra equations, also known as the predator–prey equations, are a pair of first-order nonlinear differential equations. |
| 34 | +These differential equations are frequently used to describe the dynamics of biological systems in which two species interact, one as a predator and the other as prey. |
| 35 | +The populations change through time according to the pair of equations |
| 36 | + |
| 37 | +$$ |
| 38 | +\begin{aligned} |
| 39 | +\frac{\mathrm{d}x}{\mathrm{d}t} &= (\alpha - \beta y(t))x(t), \\ |
| 40 | +\frac{\mathrm{d}y}{\mathrm{d}t} &= (\delta x(t) - \gamma)y(t) |
| 41 | +\end{aligned} |
| 42 | +$$ |
| 43 | + |
| 44 | +where $x(t)$ and $y(t)$ denote the populations of prey and predator at time $t$, respectively, and $\alpha, \beta, \gamma, \delta$ are positive parameters. |
| 45 | + |
| 46 | +We implement the Lotka-Volterra model and simulate it with parameters $\alpha = 1.5$, $\beta = 1$, $\gamma = 3$, and $\delta = 1$ and initial conditions $x(0) = y(0) = 1$. |
| 47 | + |
| 48 | +```{julia} |
| 49 | +# Define Lotka-Volterra model. |
| 50 | +function lotka_volterra(du, u, p, t) |
| 51 | + # Model parameters. |
| 52 | + α, β, γ, δ = p |
| 53 | + # Current state. |
| 54 | + x, y = u |
| 55 | +
|
| 56 | + # Evaluate differential equations. |
| 57 | + du[1] = (α - β * y) * x # prey |
| 58 | + du[2] = (δ * x - γ) * y # predator |
| 59 | +
|
| 60 | + return nothing |
| 61 | +end |
| 62 | +
|
| 63 | +# Define initial-value problem. |
| 64 | +u0 = [1.0, 1.0] |
| 65 | +p = [1.5, 1.0, 3.0, 1.0] |
| 66 | +tspan = (0.0, 10.0) |
| 67 | +prob = ODEProblem(lotka_volterra, u0, tspan, p) |
| 68 | +
|
| 69 | +# Plot simulation. |
| 70 | +plot(solve(prob, Tsit5())) |
| 71 | +``` |
| 72 | + |
| 73 | +We generate noisy observations to use for the parameter estimation tasks in this tutorial. |
| 74 | +With the [`saveat` argument](https://docs.sciml.ai/latest/basics/common_solver_opts/) we specify that the solution is stored only at `0.1` time units. |
| 75 | +To make the example more realistic we add random normally distributed noise to the simulation. |
| 76 | + |
| 77 | +```{julia} |
| 78 | +sol = solve(prob, Tsit5(); saveat=0.1) |
| 79 | +odedata = Array(sol) + 0.8 * randn(size(Array(sol))) |
| 80 | +
|
| 81 | +# Plot simulation and noisy observations. |
| 82 | +plot(sol; alpha=0.3) |
| 83 | +scatter!(sol.t, odedata'; color=[1 2], label="") |
| 84 | +``` |
| 85 | + |
| 86 | +Alternatively, we can use real-world data from Hudson’s Bay Company records (an Stan implementation with slightly different priors can be found here: https://mc-stan.org/users/documentation/case-studies/lotka-volterra-predator-prey.html). |
| 87 | + |
| 88 | +::: |
| 89 | + |
| 90 | +## Inference of a Stochastic Differential Equation |
| 91 | + |
| 92 | +A [Stochastic Differential Equation (SDE)](https://diffeq.sciml.ai/stable/tutorials/sde_example/) is a differential equation that has a stochastic (noise) term in the expression of the derivatives. |
| 93 | +Here we fit a stochastic version of the Lokta-Volterra system. |
| 94 | + |
| 95 | +We use a quasi-likelihood approach in which all trajectories of a solution are compared instead of a reduction such as mean, this increases the robustness of fitting and makes the likelihood more identifiable. |
| 96 | +We use SOSRI to solve the equation. |
| 97 | + |
| 98 | +```{julia} |
| 99 | +u0 = [1.0, 1.0] |
| 100 | +tspan = (0.0, 10.0) |
| 101 | +function multiplicative_noise!(du, u, p, t) |
| 102 | + x, y = u |
| 103 | + du[1] = p[5] * x |
| 104 | + return du[2] = p[6] * y |
| 105 | +end |
| 106 | +p = [1.5, 1.0, 3.0, 1.0, 0.1, 0.1] |
| 107 | +
|
| 108 | +function lotka_volterra!(du, u, p, t) |
| 109 | + x, y = u |
| 110 | + α, β, γ, δ = p |
| 111 | + du[1] = dx = α * x - β * x * y |
| 112 | + return du[2] = dy = δ * x * y - γ * y |
| 113 | +end |
| 114 | +
|
| 115 | +prob_sde = SDEProblem(lotka_volterra!, multiplicative_noise!, u0, tspan, p) |
| 116 | +
|
| 117 | +ensembleprob = EnsembleProblem(prob_sde) |
| 118 | +data = solve(ensembleprob, SOSRI(); saveat=0.1, trajectories=1000) |
| 119 | +plot(EnsembleSummary(data)) |
| 120 | +``` |
| 121 | + |
| 122 | +```{julia} |
| 123 | +@model function fitlv_sde(data, prob) |
| 124 | + # Prior distributions. |
| 125 | + σ ~ InverseGamma(2, 3) |
| 126 | + α ~ truncated(Normal(1.3, 0.5); lower=0.5, upper=2.5) |
| 127 | + β ~ truncated(Normal(1.2, 0.25); lower=0.5, upper=2) |
| 128 | + γ ~ truncated(Normal(3.2, 0.25); lower=2.2, upper=4) |
| 129 | + δ ~ truncated(Normal(1.2, 0.25); lower=0.5, upper=2) |
| 130 | + ϕ1 ~ truncated(Normal(0.12, 0.3); lower=0.05, upper=0.25) |
| 131 | + ϕ2 ~ truncated(Normal(0.12, 0.3); lower=0.05, upper=0.25) |
| 132 | +
|
| 133 | + # Simulate stochastic Lotka-Volterra model. |
| 134 | + p = [α, β, γ, δ, ϕ1, ϕ2] |
| 135 | + predicted = solve(prob, SOSRI(); p=p, saveat=0.1) |
| 136 | +
|
| 137 | + # Early exit if simulation could not be computed successfully. |
| 138 | + if predicted.retcode !== :Success |
| 139 | + Turing.@addlogprob! -Inf |
| 140 | + return nothing |
| 141 | + end |
| 142 | +
|
| 143 | + # Observations. |
| 144 | + for i in 1:length(predicted) |
| 145 | + data[:, i] ~ MvNormal(predicted[i], σ^2 * I) |
| 146 | + end |
| 147 | +
|
| 148 | + return nothing |
| 149 | +end; |
| 150 | +``` |
| 151 | + |
| 152 | +The probabilistic nature of the SDE solution makes the likelihood function noisy which poses a challenge for NUTS since the gradient is changing with every calculation. |
| 153 | +Therefore we use NUTS with a low target acceptance rate of `0.25` and specify a set of initial parameters. |
| 154 | +SGHMC might be a more suitable algorithm to be used here. |
| 155 | + |
| 156 | +```{julia} |
| 157 | +model_sde = fitlv_sde(odedata, prob_sde) |
| 158 | +
|
| 159 | +setadbackend(:forwarddiff) |
| 160 | +chain_sde = sample( |
| 161 | + model_sde, |
| 162 | + NUTS(0.25), |
| 163 | + 5000; |
| 164 | + initial_params=[1.5, 1.3, 1.2, 2.7, 1.2, 0.12, 0.12], |
| 165 | + progress=false, |
| 166 | +) |
| 167 | +plot(chain_sde) |
| 168 | +``` |
0 commit comments