-
Notifications
You must be signed in to change notification settings - Fork 0
/
Atomics.h
4427 lines (3982 loc) · 147 KB
/
Atomics.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#pragma once
// This is a MPMC Lock-free Queue. Note that this is an edit of the source code
// provided at https://github.com/cameron314/concurrentqueue/.
//
// The editor (me, TomTheFurry) have choosen to use the Boost Software License
// as provided by the original author shown at
// https://github.com/cameron314/concurrentqueue/blob/master/LICENSE.md.
//
// Therefore, the following copyright notice is copied from the above link as
// per the license agreement requires.
//
// The last edit of this file is at 14th-November-2021
// Boost Software License - Version 1.0 - August 17th, 2003
// Copyright (c) 2013-2016, Cameron Desrochers. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license(the "Software") to use, reproduce, display, distribute, execute,
// and transmit the Software, and to prepare derivative works of the Software,
// and to permit third - parties to whom the Software is furnished to do so, all
// subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer, must
// be included in all copies of the Software, in whole or in part, and all
// derivative works of the Software, unless such copies or derivative works are
// solely in the form of machine-executable object code generated by a source
// language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR
// ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#pragma once
#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
// Disable -Wconversion warnings (spuriously triggered when Traits::size_t and
// Traits::index_t are set to < 32 bits, causing integer promotion, causing
// warnings upon assigning any computed values)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wconversion"
# ifdef MCDBGQ_USE_RELACY
# pragma GCC diagnostic ignored "-Wint-to-pointer-cast"
# endif
#endif
#if defined(_MSC_VER) && (!defined(_HAS_CXX17) || !_HAS_CXX17)
// VS2019 with /W4 warns about constant conditional expressions but unless
// /std=c++17 or higher does not support `if constexpr`, so we have no choice
// but to simply disable the warning
# pragma warning(push)
# pragma warning(disable : 4127) // conditional expression is constant
#endif
#include <atomic> // Requires C++11. Sorry VS2010.
#include <cassert>
#include <cstddef> // for max_align_t
#include <cstdint>
#include <cstdlib>
#include <type_traits>
#include <algorithm>
#include <utility>
#include <limits>
#include <climits> // for CHAR_BIT
#include <array>
#include <thread> // partly for __WINPTHREADS_VERSION if on MinGW-w64 w/ POSIX threading
// Edit:
#include <concepts>
#include "AtomicMarco.h"
namespace moodycamel {
namespace details {
// TODO: Switch to <limits>
template<std::integral T> struct const_numeric_max {
static const T value =
std::numeric_limits<T>::is_signed
? (static_cast<T>(1) << (sizeof(T) * CHAR_BIT - 1))
- static_cast<T>(1)
: static_cast<T>(-1);
};
// Others (e.g. MSVC) insist it can *only* be accessed via std::
typedef std::max_align_t std_max_align_t;
// Some platforms have incorrectly set max_align_t to a type with <8
// bytes alignment even while supporting 8-byte aligned scalar values
// (*cough* 32-bit iOS). Work around this with our own union. See issue
// #64.
/* typedef union {
std_max_align_t x;
long long y;
void* z;
} max_align_t;*/
// Edit: Using static_assert() to see if this is still an issue
static_assert(alignof(std_max_align_t) >= 8, "Oh. This issue is still here.");
}
// Default traits for the ConcurrentQueue. To change some of the
// traits without re-implementing all of them, inherit from this
// struct and shadow the declarations you wish to be different;
// since the traits are used as a template type parameter, the
// shadowed declarations will be used where defined, and the defaults
// otherwise.
struct ConcurrentQueueDefaultTraits {
// General-purpose size type. std::size_t is strongly recommended.
typedef std::size_t size_t;
// The type used for the enqueue and dequeue indices. Must be at least
// as large as size_t. Should be significantly larger than the number of
// elements you expect to hold at once, especially if you have a high
// turnover rate; for example, on 32-bit x86, if you expect to have over
// a hundred million elements or pump several million elements through
// your queue in a very short space of time, using a 32-bit type *may*
// trigger a race condition. A 64-bit int type is recommended in that
// case, and in practice will prevent a race condition no matter the
// usage of the queue. Note that whether the queue is lock-free with a
// 64-int type depends on the whether std::atomic<std::uint64_t> is
// lock-free, which is platform-specific.
typedef std::size_t index_t;
// Internally, all elements are enqueued and dequeued from multi-element
// blocks; this is the smallest controllable unit. If you expect few
// elements but many producers, a smaller block size should be favoured.
// For few producers and/or many elements, a larger block size is
// preferred. A sane default is provided. Must be a power of 2.
static const size_t BLOCK_SIZE = 32;
// For explicit producers (i.e. when using a producer token), the block
// is checked for being empty by iterating through a list of flags, one
// per element. For large block sizes, this is too inefficient, and
// switching to an atomic counter-based approach is faster. The switch
// is made for block sizes strictly larger than this threshold.
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = 32;
// How many full blocks can be expected for a single explicit producer?
// This should reflect that number's maximum for optimal performance.
// Must be a power of 2.
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = 32;
// How many full blocks can be expected for a single implicit producer?
// This should reflect that number's maximum for optimal performance.
// Must be a power of 2.
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = 32;
// The initial size of the hash table mapping thread IDs to implicit
// producers. Note that the hash is resized every time it becomes half
// full. Must be a power of two, and either 0 or at least 1. If 0,
// implicit production (using the enqueue methods without an explicit
// producer token) is disabled.
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = 32;
// Controls the number of items that an explicit consumer (i.e. one with
// a token) must consume before it causes all consumers to rotate and
// move on to the next internal queue.
static const std::uint32_t
EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = 256;
// The maximum number of elements (inclusive) that can be enqueued to a
// sub-queue. Enqueue operations that would cause this limit to be
// surpassed will fail. Note that this limit is enforced at the block
// level (for performance reasons), i.e. it's rounded up to the nearest
// block size.
static const size_t MAX_SUBQUEUE_SIZE =
details::const_numeric_max<size_t>::value;
// The number of times to spin before sleeping when waiting on a
// semaphore. Recommended values are on the order of 1000-10000 unless
// the number of consumer threads exceeds the number of idle cores (in
// which case try 0-100). Only affects instances of the
// BlockingConcurrentQueue.
static const int MAX_SEMA_SPINS = 10000;
#ifndef MCDBGQ_USE_RELACY
// Memory allocation can be customized if needed.
// malloc should return nullptr on failure, and handle alignment like
// std::malloc.
# if defined(malloc) || defined(free)
// Gah, this is 2015, stop defining macros that break standard code
// already! Work around malloc/free being special macros:
static inline void* WORKAROUND_malloc(size_t size) {
return malloc(size);
}
static inline void WORKAROUND_free(void* ptr) { return free(ptr); }
static inline void*(malloc)(size_t size) {
return WORKAROUND_malloc(size);
}
static inline void(free)(void* ptr) { return WORKAROUND_free(ptr); }
# else
static inline void* malloc(size_t size) { return std::malloc(size); }
static inline void free(void* ptr) { return std::free(ptr); }
# endif
#else
// Debug versions when running under the Relacy race detector (ignore
// these in user code)
static inline void* malloc(size_t size) {
return rl::rl_malloc(size, $);
}
static inline void free(void* ptr) { return rl::rl_free(ptr, $); }
#endif
};
// When producing or consuming many elements, the most efficient way is to:
// 1) Use one of the bulk-operation methods of the queue with a token
// 2) Failing that, use the bulk-operation methods without a token
// 3) Failing that, create a token and use that with the single-item
// methods 4) Failing that, use the single-parameter methods of the queue
// Having said that, don't create tokens willy-nilly -- ideally there should
// be a maximum of one token per thread (of each kind).
struct ProducerToken;
struct ConsumerToken;
template<typename T, typename Traits> class ConcurrentQueue;
template<typename T, typename Traits> class BlockingConcurrentQueue;
class ConcurrentQueueTests;
namespace details {
struct ConcurrentQueueProducerTypelessBase {
ConcurrentQueueProducerTypelessBase* next;
std::atomic<bool> inactive;
ProducerToken* token;
ConcurrentQueueProducerTypelessBase():
next(nullptr), inactive(false), token(nullptr) {}
};
template<bool use32> struct _hash_32_or_64 {
static inline std::uint32_t hash(std::uint32_t h) {
// MurmurHash3 finalizer -- see
// https://code.google.com/p/smhasher/source/browse/trunk/MurmurHash3.cpp
// Since the thread ID is already unique, all we really want to
// do is propagate that uniqueness evenly across all the bits,
// so that we can use a subset of the bits while reducing
// collisions significantly
h ^= h >> 16;
h *= 0x85ebca6b;
h ^= h >> 13;
h *= 0xc2b2ae35;
return h ^ (h >> 16);
}
};
template<> struct _hash_32_or_64<1> {
static inline std::uint64_t hash(std::uint64_t h) {
h ^= h >> 33;
h *= 0xff51afd7ed558ccd;
h ^= h >> 33;
h *= 0xc4ceb9fe1a85ec53;
return h ^ (h >> 33);
}
};
template<std::size_t size> struct hash_32_or_64:
public _hash_32_or_64<(size > 4)> {};
static inline size_t hash_thread_id(thread_id_t id) {
static_assert(sizeof(thread_id_t) <= 8,
"Expected a platform where thread IDs are at most 64-bit values");
return static_cast<size_t>(hash_32_or_64<sizeof(
thread_id_converter<thread_id_t>::thread_id_hash_t)>::
hash(thread_id_converter<thread_id_t>::prehash(id)));
}
template<typename T> static inline bool circular_less_than(T a, T b) {
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4554)
#endif
static_assert(
std::is_integral<T>::value && !std::numeric_limits<T>::is_signed,
"circular_less_than is intended to be used only with unsigned "
"integer types");
return static_cast<T>(a - b)
> static_cast<T>(static_cast<T>(1)
<< static_cast<T>(sizeof(T) * CHAR_BIT - 1));
#ifdef _MSC_VER
# pragma warning(pop)
#endif
}
template<typename U> static inline char* align_for(char* ptr) {
const std::size_t alignment = std::alignment_of<U>::value;
return ptr
+ (alignment
- (reinterpret_cast<std::uintptr_t>(ptr) % alignment))
% alignment;
}
template<typename T> static inline T ceil_to_pow_2(T x) {
static_assert(
std::is_integral<T>::value && !std::numeric_limits<T>::is_signed,
"ceil_to_pow_2 is intended to be used only with unsigned integer "
"types");
// Adapted from
// http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2
--x;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
for (std::size_t i = 1; i < sizeof(T); i <<= 1)
{ x |= x >> (i << 3); }
++x;
return x;
}
template<typename T> static inline void swap_relaxed(
std::atomic<T>& left, std::atomic<T>& right) {
T temp = std::move(left.load(std::memory_order_relaxed));
left.store(std::move(right.load(std::memory_order_relaxed)),
std::memory_order_relaxed);
right.store(std::move(temp), std::memory_order_relaxed);
}
template<typename T> static inline T const& nomove(T const& x) {
return x;
}
template<bool Enable> struct nomove_if {
template<typename T> static inline T const& eval(T const& x) {
return x;
}
};
template<> struct nomove_if<false> {
template<typename U> static inline auto eval(U&& x)
-> decltype(std::forward<U>(x)) {
return std::forward<U>(x);
}
};
template<typename It> static inline auto deref_noexcept(
It& it) MOODYCAMEL_NOEXCEPT -> decltype(*it) {
return *it;
}
#if defined(__clang__) || !defined(__GNUC__) || __GNUC__ > 4 \
|| (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
template<typename T> struct is_trivially_destructible:
std::is_trivially_destructible<T> {};
#else
template<typename T> struct is_trivially_destructible:
std::has_trivial_destructor<T> {};
#endif
#ifdef MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED
# ifdef MCDBGQ_USE_RELACY
typedef RelacyThreadExitListener ThreadExitListener;
typedef RelacyThreadExitNotifier ThreadExitNotifier;
# else
struct ThreadExitListener {
typedef void (*callback_t)(void*);
callback_t callback;
void* userData;
ThreadExitListener*
next; // reserved for use by the ThreadExitNotifier
};
class ThreadExitNotifier
{
public:
static void subscribe(ThreadExitListener* listener) {
auto& tlsInst = instance();
listener->next = tlsInst.tail;
tlsInst.tail = listener;
}
static void unsubscribe(ThreadExitListener* listener) {
auto& tlsInst = instance();
ThreadExitListener** prev = &tlsInst.tail;
for (auto ptr = tlsInst.tail; ptr != nullptr; ptr = ptr->next)
{
if (ptr == listener)
{
*prev = ptr->next;
break;
}
prev = &ptr->next;
}
}
private:
ThreadExitNotifier(): tail(nullptr) {}
ThreadExitNotifier(
ThreadExitNotifier const&) MOODYCAMEL_DELETE_FUNCTION;
ThreadExitNotifier& operator=(
ThreadExitNotifier const&) MOODYCAMEL_DELETE_FUNCTION;
~ThreadExitNotifier() {
// This thread is about to exit, let everyone know!
assert(this == &instance()
&& "If this assert fails, you likely have a buggy "
"compiler! Change the preprocessor conditions such "
"that MOODYCAMEL_CPP11_THREAD_LOCAL_SUPPORTED is no "
"longer defined.");
for (auto ptr = tail; ptr != nullptr; ptr = ptr->next)
{ ptr->callback(ptr->userData); }
}
// Thread-local
static inline ThreadExitNotifier& instance() {
static thread_local ThreadExitNotifier notifier;
return notifier;
}
private:
ThreadExitListener* tail;
};
# endif
#endif
template<typename T> struct static_is_lock_free_num {
enum { value = 0 };
};
template<> struct static_is_lock_free_num<signed char> {
enum { value = ATOMIC_CHAR_LOCK_FREE };
};
template<> struct static_is_lock_free_num<short> {
enum { value = ATOMIC_SHORT_LOCK_FREE };
};
template<> struct static_is_lock_free_num<int> {
enum { value = ATOMIC_INT_LOCK_FREE };
};
template<> struct static_is_lock_free_num<long> {
enum { value = ATOMIC_LONG_LOCK_FREE };
};
template<> struct static_is_lock_free_num<long long> {
enum { value = ATOMIC_LLONG_LOCK_FREE };
};
template<typename T> struct static_is_lock_free:
static_is_lock_free_num<typename std::make_signed<T>::type> {};
template<> struct static_is_lock_free<bool> {
enum { value = ATOMIC_BOOL_LOCK_FREE };
};
template<typename U> struct static_is_lock_free<U*> {
enum { value = ATOMIC_POINTER_LOCK_FREE };
};
}
struct ProducerToken {
template<typename T, typename Traits>
explicit ProducerToken(ConcurrentQueue<T, Traits>& queue);
template<typename T, typename Traits>
explicit ProducerToken(BlockingConcurrentQueue<T, Traits>& queue);
ProducerToken(ProducerToken&& other) MOODYCAMEL_NOEXCEPT:
producer(other.producer) {
other.producer = nullptr;
if (producer != nullptr) { producer->token = this; }
}
inline ProducerToken& operator=(
ProducerToken&& other) MOODYCAMEL_NOEXCEPT {
swap(other);
return *this;
}
void swap(ProducerToken& other) MOODYCAMEL_NOEXCEPT {
std::swap(producer, other.producer);
if (producer != nullptr) { producer->token = this; }
if (other.producer != nullptr) { other.producer->token = &other; }
}
// A token is always valid unless:
// 1) Memory allocation failed during construction
// 2) It was moved via the move constructor
// (Note: assignment does a swap, leaving both potentially valid)
// 3) The associated queue was destroyed
// Note that if valid() returns true, that only indicates
// that the token is valid for use with a specific queue,
// but not which one; that's up to the user to track.
inline bool valid() const { return producer != nullptr; }
~ProducerToken() {
if (producer != nullptr)
{
producer->token = nullptr;
producer->inactive.store(true, std::memory_order_release);
}
}
// Disable copying and assignment
ProducerToken(ProducerToken const&) MOODYCAMEL_DELETE_FUNCTION;
ProducerToken& operator=(
ProducerToken const&) MOODYCAMEL_DELETE_FUNCTION;
private:
template<typename T, typename Traits> friend class ConcurrentQueue;
friend class ConcurrentQueueTests;
protected:
details::ConcurrentQueueProducerTypelessBase* producer;
};
struct ConsumerToken {
template<typename T, typename Traits>
explicit ConsumerToken(ConcurrentQueue<T, Traits>& q);
template<typename T, typename Traits>
explicit ConsumerToken(BlockingConcurrentQueue<T, Traits>& q);
ConsumerToken(ConsumerToken&& other) MOODYCAMEL_NOEXCEPT:
initialOffset(other.initialOffset),
lastKnownGlobalOffset(other.lastKnownGlobalOffset),
itemsConsumedFromCurrent(other.itemsConsumedFromCurrent),
currentProducer(other.currentProducer),
desiredProducer(other.desiredProducer) {}
inline ConsumerToken& operator=(
ConsumerToken&& other) MOODYCAMEL_NOEXCEPT {
swap(other);
return *this;
}
void swap(ConsumerToken& other) MOODYCAMEL_NOEXCEPT {
std::swap(initialOffset, other.initialOffset);
std::swap(lastKnownGlobalOffset, other.lastKnownGlobalOffset);
std::swap(itemsConsumedFromCurrent, other.itemsConsumedFromCurrent);
std::swap(currentProducer, other.currentProducer);
std::swap(desiredProducer, other.desiredProducer);
}
// Disable copying and assignment
ConsumerToken(ConsumerToken const&) MOODYCAMEL_DELETE_FUNCTION;
ConsumerToken& operator=(
ConsumerToken const&) MOODYCAMEL_DELETE_FUNCTION;
private:
template<typename T, typename Traits> friend class ConcurrentQueue;
friend class ConcurrentQueueTests;
private: // but shared with ConcurrentQueue
std::uint32_t initialOffset;
std::uint32_t lastKnownGlobalOffset;
std::uint32_t itemsConsumedFromCurrent;
details::ConcurrentQueueProducerTypelessBase* currentProducer;
details::ConcurrentQueueProducerTypelessBase* desiredProducer;
};
// Need to forward-declare this swap because it's in a namespace.
// See
// http://stackoverflow.com/questions/4492062/why-does-a-c-friend-class-need-a-forward-declaration-only-in-other-namespaces
template<typename T, typename Traits> inline void swap(
typename ConcurrentQueue<T, Traits>::ImplicitProducerKVP& a,
typename ConcurrentQueue<T, Traits>::ImplicitProducerKVP& b)
MOODYCAMEL_NOEXCEPT;
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
class ConcurrentQueue
{
public:
typedef ::moodycamel::ProducerToken producer_token_t;
typedef ::moodycamel::ConsumerToken consumer_token_t;
typedef typename Traits::index_t index_t;
typedef typename Traits::size_t size_t;
static const size_t BLOCK_SIZE =
static_cast<size_t>(Traits::BLOCK_SIZE);
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD =
static_cast<size_t>(Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD);
static const size_t EXPLICIT_INITIAL_INDEX_SIZE =
static_cast<size_t>(Traits::EXPLICIT_INITIAL_INDEX_SIZE);
static const size_t IMPLICIT_INITIAL_INDEX_SIZE =
static_cast<size_t>(Traits::IMPLICIT_INITIAL_INDEX_SIZE);
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE =
static_cast<size_t>(Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE);
static const std::uint32_t
EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE =
static_cast<std::uint32_t>(
Traits::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE);
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4307) // + integral constant overflow (that's
// what the ternary expression is for!)
# pragma warning( \
disable : 4309) // static_cast: Truncation of constant value
#endif
static const size_t MAX_SUBQUEUE_SIZE =
(details::const_numeric_max<size_t>::value
- static_cast<size_t>(Traits::MAX_SUBQUEUE_SIZE)
< BLOCK_SIZE)
? details::const_numeric_max<size_t>::value
: ((static_cast<size_t>(Traits::MAX_SUBQUEUE_SIZE)
+ (BLOCK_SIZE - 1))
/ BLOCK_SIZE * BLOCK_SIZE);
#ifdef _MSC_VER
# pragma warning(pop)
#endif
static_assert(!std::numeric_limits<size_t>::is_signed
&& std::is_integral<size_t>::value,
"Traits::size_t must be an unsigned integral type");
static_assert(!std::numeric_limits<index_t>::is_signed
&& std::is_integral<index_t>::value,
"Traits::index_t must be an unsigned integral type");
static_assert(sizeof(index_t) >= sizeof(size_t),
"Traits::index_t must be at least as wide as Traits::size_t");
static_assert((BLOCK_SIZE > 1) && !(BLOCK_SIZE & (BLOCK_SIZE - 1)),
"Traits::BLOCK_SIZE must be a power of 2 (and at least 2)");
static_assert((EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD > 1)
&& !(EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD
& (EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD - 1)),
"Traits::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD must be a power of 2 "
"(and greater than 1)");
static_assert((EXPLICIT_INITIAL_INDEX_SIZE > 1)
&& !(EXPLICIT_INITIAL_INDEX_SIZE
& (EXPLICIT_INITIAL_INDEX_SIZE - 1)),
"Traits::EXPLICIT_INITIAL_INDEX_SIZE must be a power of 2 (and "
"greater than 1)");
static_assert((IMPLICIT_INITIAL_INDEX_SIZE > 1)
&& !(IMPLICIT_INITIAL_INDEX_SIZE
& (IMPLICIT_INITIAL_INDEX_SIZE - 1)),
"Traits::IMPLICIT_INITIAL_INDEX_SIZE must be a power of 2 (and "
"greater than 1)");
static_assert((INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
|| !(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
& (INITIAL_IMPLICIT_PRODUCER_HASH_SIZE - 1)),
"Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE must be a power of 2");
static_assert(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0
|| INITIAL_IMPLICIT_PRODUCER_HASH_SIZE >= 1,
"Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE must be at least 1 (or "
"0 to disable implicit enqueueing)");
public:
// Creates a queue with at least `capacity` element slots; note that the
// actual number of elements that can be inserted without additional
// memory allocation depends on the number of producers and the block
// size (e.g. if the block size is equal to `capacity`, only a single
// block will be allocated up-front, which means only a single producer
// will be able to enqueue elements without an extra allocation --
// blocks aren't shared between producers). This method is not thread
// safe -- it is up to the user to ensure that the queue is fully
// constructed before it starts being used by other threads (this
// includes making the memory effects of construction visible, possibly
// with a memory barrier).
explicit ConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE):
producerListTail(nullptr), producerCount(0), initialBlockPoolIndex(0),
nextExplicitConsumerId(0), globalExplicitConsumerOffset(0) {
implicitProducerHashResizeInProgress.clear(
std::memory_order_relaxed);
populate_initial_implicit_producer_hash();
populate_initial_block_list(
capacity / BLOCK_SIZE
+ ((capacity & (BLOCK_SIZE - 1)) == 0 ? 0 : 1));
#ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG
// Track all the producers using a fully-resolved typed list for
// each kind; this makes it possible to debug them starting from
// the root queue object (otherwise wacky casts are needed that
// don't compile in the debugger's expression evaluator).
explicitProducers.store(nullptr, std::memory_order_relaxed);
implicitProducers.store(nullptr, std::memory_order_relaxed);
#endif
}
// Computes the correct amount of pre-allocated blocks for you based
// on the minimum number of elements you want available at any given
// time, and the maximum concurrent number of each type of producer.
ConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers,
size_t maxImplicitProducers):
producerListTail(nullptr),
producerCount(0), initialBlockPoolIndex(0), nextExplicitConsumerId(0),
globalExplicitConsumerOffset(0) {
implicitProducerHashResizeInProgress.clear(
std::memory_order_relaxed);
populate_initial_implicit_producer_hash();
size_t blocks = (((minCapacity + BLOCK_SIZE - 1) / BLOCK_SIZE) - 1)
* (maxExplicitProducers + 1)
+ 2 * (maxExplicitProducers + maxImplicitProducers);
populate_initial_block_list(blocks);
#ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG
explicitProducers.store(nullptr, std::memory_order_relaxed);
implicitProducers.store(nullptr, std::memory_order_relaxed);
#endif
}
// Note: The queue should not be accessed concurrently while it's
// being deleted. It's up to the user to synchronize this.
// This method is not thread safe.
~ConcurrentQueue() {
// Destroy producers
auto ptr = producerListTail.load(std::memory_order_relaxed);
while (ptr != nullptr)
{
auto next = ptr->next_prod();
if (ptr->token != nullptr) { ptr->token->producer = nullptr; }
destroy(ptr);
ptr = next;
}
// Destroy implicit producer hash tables
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE != 0) {
auto hash =
implicitProducerHash.load(std::memory_order_relaxed);
while (hash != nullptr)
{
auto prev = hash->prev;
if (prev != nullptr)
{ // The last hash is part of this object and was not
// allocated dynamically
for (size_t i = 0; i != hash->capacity; ++i)
{ hash->entries[i].~ImplicitProducerKVP(); }
hash->~ImplicitProducerHash();
(Traits::free)(hash);
}
hash = prev;
}
}
// Destroy global free list
auto block = freeList.head_unsafe();
while (block != nullptr)
{
auto next = block->freeListNext.load(std::memory_order_relaxed);
if (block->dynamicallyAllocated) { destroy(block); }
block = next;
}
// Destroy initial free list
destroy_array(initialBlockPool, initialBlockPoolSize);
}
// Disable copying and copy assignment
ConcurrentQueue(ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
ConcurrentQueue& operator=(
ConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
// Moving is supported, but note that it is *not* a thread-safe
// operation. Nobody can use the queue while it's being moved, and the
// memory effects of that move must be propagated to other threads
// before they can use it. Note: When a queue is moved, its tokens are
// still valid but can only be used with the destination queue (i.e.
// semantically they are moved along with the queue itself).
ConcurrentQueue(ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT:
producerListTail(
other.producerListTail.load(std::memory_order_relaxed)),
producerCount(other.producerCount.load(std::memory_order_relaxed)),
initialBlockPoolIndex(
other.initialBlockPoolIndex.load(std::memory_order_relaxed)),
initialBlockPool(other.initialBlockPool),
initialBlockPoolSize(other.initialBlockPoolSize),
freeList(std::move(other.freeList)),
nextExplicitConsumerId(
other.nextExplicitConsumerId.load(std::memory_order_relaxed)),
globalExplicitConsumerOffset(other.globalExplicitConsumerOffset.load(
std::memory_order_relaxed)) {
// Move the other one into this, and leave the other one as an empty
// queue
implicitProducerHashResizeInProgress.clear(
std::memory_order_relaxed);
populate_initial_implicit_producer_hash();
swap_implicit_producer_hashes(other);
other.producerListTail.store(nullptr, std::memory_order_relaxed);
other.producerCount.store(0, std::memory_order_relaxed);
other.nextExplicitConsumerId.store(0, std::memory_order_relaxed);
other.globalExplicitConsumerOffset.store(
0, std::memory_order_relaxed);
#ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG
explicitProducers.store(
other.explicitProducers.load(std::memory_order_relaxed),
std::memory_order_relaxed);
other.explicitProducers.store(nullptr, std::memory_order_relaxed);
implicitProducers.store(
other.implicitProducers.load(std::memory_order_relaxed),
std::memory_order_relaxed);
other.implicitProducers.store(nullptr, std::memory_order_relaxed);
#endif
other.initialBlockPoolIndex.store(0, std::memory_order_relaxed);
other.initialBlockPoolSize = 0;
other.initialBlockPool = nullptr;
reown_producers();
}
inline ConcurrentQueue& operator=(
ConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT {
return swap_internal(other);
}
// Swaps this queue's state with the other's. Not thread-safe.
// Swapping two queues does not invalidate their tokens, however
// the tokens that were created for one queue must be used with
// only the swapped queue (i.e. the tokens are tied to the
// queue's movable state, not the object itself).
inline void swap(ConcurrentQueue& other) MOODYCAMEL_NOEXCEPT {
swap_internal(other);
}
private:
ConcurrentQueue& swap_internal(ConcurrentQueue& other) {
if (this == &other) { return *this; }
details::swap_relaxed(producerListTail, other.producerListTail);
details::swap_relaxed(producerCount, other.producerCount);
details::swap_relaxed(
initialBlockPoolIndex, other.initialBlockPoolIndex);
std::swap(initialBlockPool, other.initialBlockPool);
std::swap(initialBlockPoolSize, other.initialBlockPoolSize);
freeList.swap(other.freeList);
details::swap_relaxed(
nextExplicitConsumerId, other.nextExplicitConsumerId);
details::swap_relaxed(
globalExplicitConsumerOffset, other.globalExplicitConsumerOffset);
swap_implicit_producer_hashes(other);
reown_producers();
other.reown_producers();
#ifdef MOODYCAMEL_QUEUE_INTERNAL_DEBUG
details::swap_relaxed(explicitProducers, other.explicitProducers);
details::swap_relaxed(implicitProducers, other.implicitProducers);
#endif
return *this;
}
public:
// Enqueues a single item (by copying it).
// Allocates memory if required. Only fails if memory allocation fails
// (or implicit production is disabled because
// Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, or
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Thread-safe.
inline bool enqueue(T const& item) {
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
return false;
else return inner_enqueue<CanAlloc>(item);
}
// Enqueues a single item (by moving it, if possible).
// Allocates memory if required. Only fails if memory allocation fails
// (or implicit production is disabled because
// Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, or
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Thread-safe.
inline bool enqueue(T&& item) {
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
return false;
else return inner_enqueue<CanAlloc>(std::move(item));
}
// Enqueues a single item (by copying it) using an explicit producer
// token. Allocates memory if required. Only fails if memory allocation
// fails (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be
// surpassed). Thread-safe.
inline bool enqueue(producer_token_t const& token, T const& item) {
return inner_enqueue<CanAlloc>(token, item);
}
// Enqueues a single item (by moving it, if possible) using an explicit
// producer token. Allocates memory if required. Only fails if memory
// allocation fails (or Traits::MAX_SUBQUEUE_SIZE has been defined and
// would be surpassed). Thread-safe.
inline bool enqueue(producer_token_t const& token, T&& item) {
return inner_enqueue<CanAlloc>(token, std::move(item));
}
// Enqueues several items.
// Allocates memory if required. Only fails if memory allocation fails
// (or implicit production is disabled because
// Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0, or
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
// Note: Use std::make_move_iterator if the elements should be moved
// instead of copied. Thread-safe.
template<typename It> bool enqueue_bulk(It itemFirst, size_t count) {
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
return false;
else return inner_enqueue_bulk<CanAlloc>(itemFirst, count);
}
// Enqueues several items using an explicit producer token.
// Allocates memory if required. Only fails if memory allocation fails
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be
// surpassed). Note: Use std::make_move_iterator if the elements should
// be moved instead of copied. Thread-safe.
template<typename It> bool enqueue_bulk(
producer_token_t const& token, It itemFirst, size_t count) {
return inner_enqueue_bulk<CanAlloc>(token, itemFirst, count);
}
// Enqueues a single item (by copying it).
// Does not allocate memory. Fails if not enough room to enqueue (or
// implicit production is disabled because
// Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0). Thread-safe.
inline bool try_enqueue(T const& item) {
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
return false;
else return inner_enqueue<CannotAlloc>(item);
}
// Enqueues a single item (by moving it, if possible).
// Does not allocate memory (except for one-time implicit producer).
// Fails if not enough room to enqueue (or implicit production is
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
// Thread-safe.
inline bool try_enqueue(T&& item) {
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
return false;
else return inner_enqueue<CannotAlloc>(std::move(item));
}
// Enqueues a single item (by copying it) using an explicit producer
// token. Does not allocate memory. Fails if not enough room to enqueue.
// Thread-safe.
inline bool try_enqueue(producer_token_t const& token, T const& item) {
return inner_enqueue<CannotAlloc>(token, item);
}
// Enqueues a single item (by moving it, if possible) using an explicit
// producer token. Does not allocate memory. Fails if not enough room to
// enqueue. Thread-safe.
inline bool try_enqueue(producer_token_t const& token, T&& item) {
return inner_enqueue<CannotAlloc>(token, std::move(item));
}
// Enqueues several items.
// Does not allocate memory (except for one-time implicit producer).
// Fails if not enough room to enqueue (or implicit production is
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
// Note: Use std::make_move_iterator if the elements should be moved
// instead of copied.
// Thread-safe.
template<typename It>
bool try_enqueue_bulk(It itemFirst, size_t count) {
MOODYCAMEL_CONSTEXPR_IF(INITIAL_IMPLICIT_PRODUCER_HASH_SIZE == 0)
return false;
else return inner_enqueue_bulk<CannotAlloc>(itemFirst, count);
}
// Enqueues several items using an explicit producer token.
// Does not allocate memory. Fails if not enough room to enqueue.
// Note: Use std::make_move_iterator if the elements should be moved
// instead of copied.
// Thread-safe.
template<typename It> bool try_enqueue_bulk(
producer_token_t const& token, It itemFirst, size_t count) {
return inner_enqueue_bulk<CannotAlloc>(token, itemFirst, count);
}
// Attempts to dequeue from the queue.
// Returns false if all producer streams appeared empty at the time they
// were checked (so, the queue is likely but not guaranteed to be
// empty). Never allocates. Thread-safe.
template<typename U> bool try_dequeue(U& item) {
// Instead of simply trying each producer in turn (which could cause
// needless contention on the first producer), we score them
// heuristically.
size_t nonEmptyCount = 0;
ProducerBase* best = nullptr;
size_t bestSize = 0;
for (auto ptr = producerListTail.load(std::memory_order_acquire);
nonEmptyCount < 3 && ptr != nullptr; ptr = ptr->next_prod())
{
auto size = ptr->size_approx();
if (size > 0)
{
if (size > bestSize)
{
bestSize = size;
best = ptr;
}
++nonEmptyCount;
}
}
// If there was at least one non-empty queue but it appears empty at
// the time we try to dequeue from it, we need to make sure every
// queue's been tried
if (nonEmptyCount > 0)
{
if ((details::likely)(best->dequeue(item))) { return true; }
for (auto ptr =
producerListTail.load(std::memory_order_acquire);
ptr != nullptr; ptr = ptr->next_prod())
{
if (ptr != best && ptr->dequeue(item)) { return true; }