-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
66 lines (48 loc) · 2.04 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from transformers import AutoTokenizer, AutoModelForCausalLM
class Generate:
"""Generate text from model"""
def __init__(self, tokenizer, trainer=None, model=None):
# check a trainer or a model has been passed
assert trainer is not None or model is not None
# check both a trainer and a model have not been passed
assert not (trainer is not None and model is not None)
self.tokenizer = tokenizer
self.trainer = trainer
self.model = model
# set model if trainer has been passed
if self.model is None:
self.model = self.trainer.model
def do(self, output_dir=None, prompt=None):
"""Pass a trainer or a model to generate text"""
# tokenize input ids if passed
input_ids = None
if prompt is not None:
input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
# generate output from model
sample_outputs = self.model.generate(
input_ids=input_ids,
do_sample=True,
min_length=25,
max_length=150,
top_p=0.95,
temperature=1.0,
num_return_sequences=3
)
output_string = "\n"
# add epoch information
if self.trainer is not None:
output_string += "Epoch " + str(self.trainer.state.epoch) + '\n'
# decode each sample
for sample_output in sample_outputs:
output_string += 60 * '-' + '\n'
output_string += self.tokenizer.decode(sample_output, skip_special_tokens=True) + '\n'
# print output text to screen
print(output_string)
# if output directory set, write to file
if output_dir is not None:
file_dir = output_dir + "/training_test_generated.txt"
with open(file_dir, 'a') as f:
f.write(output_string)
if __name__ == "__main__":
generate = Generate(AutoTokenizer.from_pretrained("gpt2"), model=AutoModelForCausalLM.from_pretrained("PATH_TO_MODEL"))
generate.do(prompt="Lets go ")