-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathinference.py
59 lines (48 loc) · 2.43 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
from utils.functions import check_dir
from torchvision import utils
from networks.Gen_models import *
from torch import nn
import cv2 as cv
from torchvision import transforms
from utils.visualization import Pic_saver
initializer_whole = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((2432, 3072)),
transforms.Normalize(mean=0.5, std=0.5)
])
initializer_half = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((608, 768)),
transforms.Normalize(mean=0.5, std=0.5)
])
def main(args):
check_dir(args.Coarse_save)
check_dir(args.Fine_save)
norm_layer = nn.InstanceNorm2d
g_model_coarse = Global_Generator(input_nc=3, output_nc=1, norm_layer=norm_layer, n_downsampling=3).cuda()
g_model_fine = Local_Enhancer(input_nc=3, output_nc=1, img_sz=256,
norm_layer=norm_layer, n_downsampling=2).cuda()
g_model_fine.load_state_dict(torch.load(args.Gen_F_path))
g_model_coarse.load_state_dict(torch.load(args.Gen_C_path))
original_changer = transforms.Resize((2432, 3072))
pic_saver = Pic_saver(original_changer, Gen_C=g_model_coarse, Gen_F=g_model_fine)
up_dir = args.data_path
for i in range(4):
slo_path = f'{args.data_path}{i+1}.png'
ffa_path = f'{args.data_path}{i+1}-{i+1}.png'
slo_pic = cv.cvtColor(cv.imread(slo_path), cv.COLOR_BGR2RGB)
ffa_pic = cv.cvtColor(cv.imread(ffa_path), cv.COLOR_BGR2GRAY)
slo_pic_whole, ffa_pic_whole = initializer_whole(slo_pic).unsqueeze(0), initializer_whole(ffa_pic).unsqueeze(0)
slo_pic_half, ffa_pic_half = initializer_half(slo_pic).unsqueeze(0), initializer_half(ffa_pic).unsqueeze(0)
pic_saver.save_img([slo_pic_whole, ffa_pic_whole, slo_pic_half, ffa_pic_half], index=i+1,
Coarse_save=args.Coarse_save, Fine_save=args.Fine_save)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--Gen_C_path', type=str, default='checkpoints/g_model_coarse.pt')
parser.add_argument('--Gen_F_path', type=str, default='checkpoints/g_model_fine.pt')
parser.add_argument('--Coarse_save', type=str, default='result_save/Coarse_result/')
parser.add_argument('--Fine_save', type=str, default='result_save/Fine_result/')
parser.add_argument('--data_path', type=str, default='example_pics/')
args = parser.parse_args()
main(args)