forked from geodynamics/seismic_cpml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
seismic_CPML_2D_anisotropic.f90
864 lines (692 loc) · 30.6 KB
/
seismic_CPML_2D_anisotropic.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
!
! SEISMIC_CPML Version 1.1.1, November 2009.
!
! Copyright Universite de Pau et des Pays de l'Adour, CNRS and INRIA, France.
! Contributors: Dimitri Komatitsch, komatitsch aT lma DOT cnrs-mrs DOT fr
! and Roland Martin, roland DOT martin aT get DOT obs-mip DOT fr
!
! This software is a computer program whose purpose is to solve
! the two-dimensional anisotropic elastic wave equation
! using a finite-difference method with Convolutional Perfectly Matched
! Layer (C-PML) conditions.
!
! This program is free software; you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation; either version 3 of the License, or
! (at your option) any later version.
!
! This program is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along
! with this program; if not, write to the Free Software Foundation, Inc.,
! 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
!
! The full text of the license is available in file "LICENSE".
program seismic_CPML_2D_aniso
! 2D elastic finite-difference code in velocity and stress formulation
! with Convolutional-PML (C-PML) absorbing conditions for an anisotropic medium
! Dimitri Komatitsch, University of Pau, France, April 2007.
! Anisotropic implementation by Roland Martin and Dimitri Komatitsch, University of Pau, France, April 2007.
! The second-order staggered-grid formulation of Madariaga (1976) and Virieux (1986) is used:
!
! ^ y
! |
! |
!
! +-------------------+
! | |
! | |
! | |
! | |
! | v_y |
! sigma_xy +---------+ |
! | | |
! | | |
! | | |
! | | |
! | | |
! +---------+---------+ ---> x
! v_x sigma_xx
! sigma_yy
!
! The C-PML implementation is based in part on formulas given in Roden and Gedney (2000).
! If you use this code for your own research, please cite some (or all) of these
! articles:
!
! @ARTICLE{MaKoGe08,
! author = {Roland Martin and Dimitri Komatitsch and Stephen D. Gedney},
! title = {A variational formulation of a stabilized unsplit convolutional perfectly
! matched layer for the isotropic or anisotropic seismic wave equation},
! journal = {Computer Modeling in Engineering and Sciences},
! year = {2008},
! volume = {37},
! pages = {274-304},
! number = {3}}
!
! @ARTICLE{MaKoEz08,
! author = {Roland Martin and Dimitri Komatitsch and Abdela\^aziz Ezziani},
! title = {An unsplit convolutional perfectly matched layer improved at grazing
! incidence for seismic wave equation in poroelastic media},
! journal = {Geophysics},
! year = {2008},
! volume = {73},
! pages = {T51-T61},
! number = {4},
! doi = {10.1190/1.2939484}}
!
! @ARTICLE{MaKo09,
! author = {Roland Martin and Dimitri Komatitsch},
! title = {An unsplit convolutional perfectly matched layer technique improved
! at grazing incidence for the viscoelastic wave equation},
! journal = {Geophysical Journal International},
! year = {2009},
! volume = {179},
! pages = {333-344},
! number = {1},
! doi = {10.1111/j.1365-246X.2009.04278.x}}
!
! @ARTICLE{KoMa07,
! author = {Dimitri Komatitsch and Roland Martin},
! title = {An unsplit convolutional {P}erfectly {M}atched {L}ayer improved
! at grazing incidence for the seismic wave equation},
! journal = {Geophysics},
! year = {2007},
! volume = {72},
! number = {5},
! pages = {SM155-SM167},
! doi = {10.1190/1.2757586}}
!
! If you use the anisotropic implementation, please cite this article,
! in which the anisotropic parameters are described, as well:
!
! @ARTICLE{KoBaTr00,
! author = {D. Komatitsch and C. Barnes and J. Tromp},
! title = {Simulation of anisotropic wave propagation based upon a spectral element method},
! journal = {Geophysics},
! year = {2000},
! volume = {65},
! number = {4},
! pages = {1251-1260},
! doi = {10.1190/1.1444816}}
!
! The original CPML technique for Maxwell's equations is described in:
!
! @ARTICLE{RoGe00,
! author = {J. A. Roden and S. D. Gedney},
! title = {Convolution {PML} ({CPML}): {A}n Efficient {FDTD} Implementation
! of the {CFS}-{PML} for Arbitrary Media},
! journal = {Microwave and Optical Technology Letters},
! year = {2000},
! volume = {27},
! number = {5},
! pages = {334-339},
! doi = {10.1002/1098-2760(20001205)27:5 < 334::AID-MOP14>3.0.CO;2-A}}
!
! To display the 2D results as color images, use:
!
! " display image*.gif " or " gimp image*.gif "
!
! or
!
! " montage -geometry +0+3 -rotate 90 -tile 1x21 image*Vx*.gif allfiles_Vx.gif "
! " montage -geometry +0+3 -rotate 90 -tile 1x21 image*Vy*.gif allfiles_Vy.gif "
! then " display allfiles_Vx.gif " or " gimp allfiles_Vx.gif "
! then " display allfiles_Vy.gif " or " gimp allfiles_Vy.gif "
!
! IMPORTANT : all our CPML codes work fine in single precision as well (which is significantly faster).
! If you want you can thus force automatic conversion to single precision at compile time
! or change all the declarations and constants in the code from double precision to single.
implicit none
! total number of grid points in each direction of the grid
integer, parameter :: NX = 401
integer, parameter :: NY = 401
! size of a grid cell
double precision, parameter :: DELTAX = 0.0625d-2
double precision, parameter :: DELTAY = DELTAX
! flags to add PML layers to the edges of the grid
logical, parameter :: USE_PML_XMIN = .true.
logical, parameter :: USE_PML_XMAX = .true.
logical, parameter :: USE_PML_YMIN = .true.
logical, parameter :: USE_PML_YMAX = .true.
! thickness of the PML layer in grid points
integer, parameter :: NPOINTS_PML = 10
! Velocity of qP along horizontal axis = sqrt(c11/rho)
! Velocity of qP along vertical axis = sqrt(c22/rho)
! Velocity of qSV along horizontal axis = sqrt(c33/rho)
! Velocity of qSV along vertical axis = sqrt(c33/rho), same as along horizontal axis
! zinc, from Komatitsch et al. (2000)
! double precision, parameter :: c11 = 16.5d10
! double precision, parameter :: c12 = 5.d10
! double precision, parameter :: c22 = 6.2d10
! double precision, parameter :: c33 = 3.96d10
! double precision, parameter :: rho = 7100.d0
! double precision, parameter :: f0 = 170.d3
! apatite, from Komatitsch et al. (2000)
! double precision, parameter :: c11 = 16.7d10
! double precision, parameter :: c12 = 6.6d10
! double precision, parameter :: c22 = 14.d10
! double precision, parameter :: c33 = 6.63d10
! double precision, parameter :: rho = 3200.d0
! double precision, parameter :: f0 = 300.d3
! isotropic material a bit similar to apatite
! double precision, parameter :: c11 = 16.7d10
! double precision, parameter :: c12 = c11/3.d0
! double precision, parameter :: c22 = c11
! double precision, parameter :: c33 = (c11-c12)/2.d0 ! = c11/3.d0
! double precision, parameter :: rho = 3200.d0
! double precision, parameter :: f0 = 300.d3
! model I from Becache, Fauqueux and Joly, which is stable
double precision, parameter :: scale_aniso = 1.d10
double precision, parameter :: c11 = 4.d0 * scale_aniso
double precision, parameter :: c12 = 3.8d0 * scale_aniso
double precision, parameter :: c22 = 20.d0 * scale_aniso
double precision, parameter :: c33 = 2.d0 * scale_aniso
double precision, parameter :: rho = 4000.d0 ! used to be 1.
double precision, parameter :: f0 = 200.d3
! model II from Becache, Fauqueux and Joly, which is stable
! double precision, parameter :: scale_aniso = 1.d10
! double precision, parameter :: c11 = 20.d0 * scale_aniso
! double precision, parameter :: c12 = 3.8d0 * scale_aniso
! double precision, parameter :: c22 = c11
! double precision, parameter :: c33 = 2.d0 * scale_aniso
! double precision, parameter :: rho = 4000.d0 ! used to be 1.
! double precision, parameter :: f0 = 200.d3
! model III from Becache, Fauqueux and Joly, which is unstable
! double precision, parameter :: scale_aniso = 1.d10
! double precision, parameter :: c11 = 4.d0 * scale_aniso
! double precision, parameter :: c12 = 4.9d0 * scale_aniso
! double precision, parameter :: c22 = 20.d0 * scale_aniso
! double precision, parameter :: c33 = 2.d0 * scale_aniso
! double precision, parameter :: rho = 4000.d0 ! used to be 1.
! double precision, parameter :: f0 = 250.d3
! model IV from Becache, Fauqueux and Joly, which is unstable
! double precision, parameter :: scale_aniso = 1.d10
! double precision, parameter :: c11 = 4.d0 * scale_aniso
! double precision, parameter :: c12 = 7.5d0 * scale_aniso
! double precision, parameter :: c22 = 20.d0 * scale_aniso
! double precision, parameter :: c33 = 2.d0 * scale_aniso
! double precision, parameter :: rho = 4000.d0 ! used to be 1.
! double precision, parameter :: f0 = 170.d3
! total number of time steps
integer, parameter :: NSTEP = 3000
! time step in seconds
double precision, parameter :: DELTAT = 50.d-9
! parameters for the source
double precision, parameter :: t0 = 1.20d0 / f0
double precision, parameter :: factor = 1.d7
! source
integer, parameter :: ISOURCE = NX / 2
integer, parameter :: JSOURCE = NY / 2
double precision, parameter :: xsource = (ISOURCE - 1) * DELTAX
double precision, parameter :: ysource = (JSOURCE - 1) * DELTAY
! angle of source force clockwise with respect to vertical (Y) axis
double precision, parameter :: ANGLE_FORCE = 0.d0
! display information on the screen from time to time
integer, parameter :: IT_DISPLAY = 100
! value of PI
double precision, parameter :: PI = 3.141592653589793238462643d0
! conversion from degrees to radians
double precision, parameter :: DEGREES_TO_RADIANS = PI / 180.d0
! zero
double precision, parameter :: ZERO = 0.d0
! large value for maximum
double precision, parameter :: HUGEVAL = 1.d+30
! velocity threshold above which we consider that the code became unstable
double precision, parameter :: STABILITY_THRESHOLD = 1.d+25
! main arrays
double precision, dimension(NX,NY) :: vx,vy,sigmaxx,sigmayy,sigmaxy
! power to compute d0 profile
double precision, parameter :: NPOWER = 2.d0
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-11
double precision, parameter :: K_MAX_PML = 1.d0
double precision, parameter :: ALPHA_MAX_PML = 2.d0*PI*(f0/2.d0) ! from Festa and Vilotte
! arrays for the memory variables
! could declare these arrays in PML only to save a lot of memory, but proof of concept only here
double precision, dimension(NX,NY) :: &
memory_dvx_dx, &
memory_dvx_dy, &
memory_dvy_dx, &
memory_dvy_dy, &
memory_dsigmaxx_dx, &
memory_dsigmayy_dy, &
memory_dsigmaxy_dx, &
memory_dsigmaxy_dy
double precision :: &
value_dvx_dx, &
value_dvx_dy, &
value_dvy_dx, &
value_dvy_dy, &
value_dsigmaxx_dx, &
value_dsigmayy_dy, &
value_dsigmaxy_dx, &
value_dsigmaxy_dy
! 1D arrays for the damping profiles
double precision, dimension(NX) :: d_x,K_x,alpha_x,a_x,b_x,d_x_half,K_x_half,alpha_x_half,a_x_half,b_x_half
double precision, dimension(NY) :: d_y,K_y,alpha_y,a_y,b_y,d_y_half,K_y_half,alpha_y_half,a_y_half,b_y_half
double precision :: thickness_PML_x,thickness_PML_y,xoriginleft,xoriginright,yoriginbottom,yorigintop
double precision :: Rcoef,d0_x,d0_y,xval,yval,abscissa_in_PML,abscissa_normalized
! for the source
double precision :: a,t,force_x,force_y,source_term
integer :: i,j,it
double precision :: Courant_number,velocnorm
! for stability estimate
double precision :: quasi_cp_max,aniso_stability_criterion,aniso2,aniso3
!---
!--- program starts here
!---
print *
print *,'2D elastic finite-difference code in velocity and stress formulation with C-PML'
print *
! display size of the model
print *
print *,'NX = ',NX
print *,'NY = ',NY
print *
print *,'size of the model along X = ',(NX - 1) * DELTAX
print *,'size of the model along Y = ',(NY - 1) * DELTAY
print *
print *,'Total number of grid points = ',NX * NY
print *
print *,'Velocity of qP along vertical axis. . . . =',sqrt(c22/rho)
print *,'Velocity of qP along horizontal axis. . . =',sqrt(c11/rho)
print *
print *,'Velocity of qSV along vertical axis . . . =',sqrt(c33/rho)
print *,'Velocity of qSV along horizontal axis . . =',sqrt(c33/rho)
print *
! from Becache et al., INRIA report, equation 7 page 5 http://hal.inria.fr/docs/00/07/22/83/PDF/RR-4304.pdf
if (c11*c22 - c12*c12 <= 0.d0) stop 'problem in definition of orthotropic material'
! check intrinsic mathematical stability of PML model for an anisotropic material
! from E. B\'ecache, S. Fauqueux and P. Joly, Stability of Perfectly Matched Layers, group
! velocities and anisotropic waves, Journal of Computational Physics, 188(2), p. 399-433 (2003)
aniso_stability_criterion = ((c12+c33)**2 - c11*(c22-c33)) * ((c12+c33)**2 + c33*(c22-c33))
print *,'PML anisotropy stability criterion from Becache et al. 2003 = ',aniso_stability_criterion
if (aniso_stability_criterion > 0.d0 .and. (USE_PML_XMIN .or. USE_PML_XMAX .or. USE_PML_YMIN .or. USE_PML_YMAX)) &
print *,'WARNING: PML model mathematically intrinsically unstable for this anisotropic material for condition 1'
print *
aniso2 = (c12 + 2*c33)**2 - c11*c22
print *,'PML aniso2 stability criterion from Becache et al. 2003 = ',aniso2
if (aniso2 > 0.d0 .and. (USE_PML_XMIN .or. USE_PML_XMAX .or. USE_PML_YMIN .or. USE_PML_YMAX)) &
print *,'WARNING: PML model mathematically intrinsically unstable for this anisotropic material for condition 2'
print *
aniso3 = (c12 + c33)**2 - c11*c22 - c33**2
print *,'PML aniso3 stability criterion from Becache et al. 2003 = ',aniso3
if (aniso3 > 0.d0 .and. (USE_PML_XMIN .or. USE_PML_XMAX .or. USE_PML_YMIN .or. USE_PML_YMAX)) &
print *,'WARNING: PML model mathematically intrinsically unstable for this anisotropic material for condition 3'
print *
! to compute d0 below, and for stability estimate
quasi_cp_max = max(sqrt(c22/rho),sqrt(c11/rho))
!--- define profile of absorption in PML region
! thickness of the PML layer in meters
thickness_PML_x = NPOINTS_PML * DELTAX
thickness_PML_y = NPOINTS_PML * DELTAY
! reflection coefficient (INRIA report section 6.1) http://hal.inria.fr/docs/00/07/32/19/PDF/RR-3471.pdf
Rcoef = 0.001d0
! check that NPOWER is okay
if (NPOWER < 1) stop 'NPOWER must be greater than 1'
! compute d0 from INRIA report section 6.1 http://hal.inria.fr/docs/00/07/32/19/PDF/RR-3471.pdf
d0_x = - (NPOWER + 1) * quasi_cp_max * log(Rcoef) / (2.d0 * thickness_PML_x)
d0_y = - (NPOWER + 1) * quasi_cp_max * log(Rcoef) / (2.d0 * thickness_PML_y)
print *,'d0_x = ',d0_x
print *,'d0_y = ',d0_y
print *
d_x(:) = ZERO
d_x_half(:) = ZERO
K_x(:) = 1.d0
K_x_half(:) = 1.d0
alpha_x(:) = ZERO
alpha_x_half(:) = ZERO
a_x(:) = ZERO
a_x_half(:) = ZERO
d_y(:) = ZERO
d_y_half(:) = ZERO
K_y(:) = 1.d0
K_y_half(:) = 1.d0
alpha_y(:) = ZERO
alpha_y_half(:) = ZERO
a_y(:) = ZERO
a_y_half(:) = ZERO
! damping in the X direction
! origin of the PML layer (position of right edge minus thickness, in meters)
xoriginleft = thickness_PML_x
xoriginright = (NX-1)*DELTAX - thickness_PML_x
do i = 1,NX
! abscissa of current grid point along the damping profile
xval = DELTAX * dble(i-1)
!---------- left edge
if (USE_PML_XMIN) then
! define damping profile at the grid points
abscissa_in_PML = xoriginleft - xval
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_x
d_x(i) = d0_x * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_x(i) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_x(i) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
! define damping profile at half the grid points
abscissa_in_PML = xoriginleft - (xval + DELTAX/2.d0)
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_x
d_x_half(i) = d0_x * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_x_half(i) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_x_half(i) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
endif
!---------- right edge
if (USE_PML_XMAX) then
! define damping profile at the grid points
abscissa_in_PML = xval - xoriginright
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_x
d_x(i) = d0_x * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_x(i) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_x(i) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
! define damping profile at half the grid points
abscissa_in_PML = xval + DELTAX/2.d0 - xoriginright
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_x
d_x_half(i) = d0_x * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_x_half(i) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_x_half(i) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
endif
! just in case, for -5 at the end
if (alpha_x(i) < ZERO) alpha_x(i) = ZERO
if (alpha_x_half(i) < ZERO) alpha_x_half(i) = ZERO
b_x(i) = exp(- (d_x(i) / K_x(i) + alpha_x(i)) * DELTAT)
b_x_half(i) = exp(- (d_x_half(i) / K_x_half(i) + alpha_x_half(i)) * DELTAT)
! this to avoid division by zero outside the PML
if (abs(d_x(i)) > 1.d-6) a_x(i) = d_x(i) * (b_x(i) - 1.d0) / (K_x(i) * (d_x(i) + K_x(i) * alpha_x(i)))
if (abs(d_x_half(i)) > 1.d-6) a_x_half(i) = d_x_half(i) * &
(b_x_half(i) - 1.d0) / (K_x_half(i) * (d_x_half(i) + K_x_half(i) * alpha_x_half(i)))
enddo
! damping in the Y direction
! origin of the PML layer (position of right edge minus thickness, in meters)
yoriginbottom = thickness_PML_y
yorigintop = (NY-1)*DELTAY - thickness_PML_y
do j = 1,NY
! abscissa of current grid point along the damping profile
yval = DELTAY * dble(j-1)
!---------- bottom edge
if (USE_PML_YMIN) then
! define damping profile at the grid points
abscissa_in_PML = yoriginbottom - yval
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_y
d_y(j) = d0_y * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_y(j) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_y(j) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
! define damping profile at half the grid points
abscissa_in_PML = yoriginbottom - (yval + DELTAY/2.d0)
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_y
d_y_half(j) = d0_y * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_y_half(j) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_y_half(j) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
endif
!---------- top edge
if (USE_PML_YMAX) then
! define damping profile at the grid points
abscissa_in_PML = yval - yorigintop
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_y
d_y(j) = d0_y * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_y(j) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_y(j) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
! define damping profile at half the grid points
abscissa_in_PML = yval + DELTAY/2.d0 - yorigintop
if (abscissa_in_PML >= ZERO) then
abscissa_normalized = abscissa_in_PML / thickness_PML_y
d_y_half(j) = d0_y * abscissa_normalized**NPOWER
! from Stephen Gedney's unpublished class notes for class EE699, lecture 8, slide 8-2
K_y_half(j) = 1.d0 + (K_MAX_PML - 1.d0) * abscissa_normalized**NPOWER
alpha_y_half(j) = ALPHA_MAX_PML * (1.d0 - abscissa_normalized)
endif
endif
b_y(j) = exp(- (d_y(j) / K_y(j) + alpha_y(j)) * DELTAT)
b_y_half(j) = exp(- (d_y_half(j) / K_y_half(j) + alpha_y_half(j)) * DELTAT)
! this to avoid division by zero outside the PML
if (abs(d_y(j)) > 1.d-6) a_y(j) = d_y(j) * (b_y(j) - 1.d0) / (K_y(j) * (d_y(j) + K_y(j) * alpha_y(j)))
if (abs(d_y_half(j)) > 1.d-6) a_y_half(j) = d_y_half(j) * &
(b_y_half(j) - 1.d0) / (K_y_half(j) * (d_y_half(j) + K_y_half(j) * alpha_y_half(j)))
enddo
! print position of the source
print *,'Position of the source:'
print *
print *,'x = ',xsource
print *,'y = ',ysource
print *
! check the Courant stability condition for the explicit time scheme
! R. Courant et K. O. Friedrichs et H. Lewy (1928)
Courant_number = quasi_cp_max * DELTAT * sqrt(1.d0/DELTAX**2 + 1.d0/DELTAY**2)
print *,'Courant number is ',Courant_number
print *
if (Courant_number > 1.d0) stop 'time step is too large, simulation will be unstable'
! suppress old files (can be commented out if "call system" is missing in your compiler)
! call system('rm -f Vx_*.dat Vy_*.dat image*.pnm image*.gif')
! initialize arrays
vx(:,:) = ZERO
vy(:,:) = ZERO
sigmaxx(:,:) = ZERO
sigmayy(:,:) = ZERO
sigmaxy(:,:) = ZERO
! PML
memory_dvx_dx(:,:) = ZERO
memory_dvx_dy(:,:) = ZERO
memory_dvy_dx(:,:) = ZERO
memory_dvy_dy(:,:) = ZERO
memory_dsigmaxx_dx(:,:) = ZERO
memory_dsigmayy_dy(:,:) = ZERO
memory_dsigmaxy_dx(:,:) = ZERO
memory_dsigmaxy_dy(:,:) = ZERO
!---
!--- beginning of time loop
!---
do it = 1,NSTEP
!------------------------------------------------------------
! compute stress sigma and update memory variables for C-PML
!------------------------------------------------------------
do j = 2,NY
do i = 1,NX-1
value_dvx_dx = (vx(i+1,j) - vx(i,j)) / DELTAX
value_dvy_dy = (vy(i,j) - vy(i,j-1)) / DELTAY
memory_dvx_dx(i,j) = b_x_half(i) * memory_dvx_dx(i,j) + a_x_half(i) * value_dvx_dx
memory_dvy_dy(i,j) = b_y(j) * memory_dvy_dy(i,j) + a_y(j) * value_dvy_dy
value_dvx_dx = value_dvx_dx / K_x_half(i) + memory_dvx_dx(i,j)
value_dvy_dy = value_dvy_dy / K_y(j) + memory_dvy_dy(i,j)
sigmaxx(i,j) = sigmaxx(i,j) + (c11 * value_dvx_dx + c12 * value_dvy_dy) * DELTAT
sigmayy(i,j) = sigmayy(i,j) + (c12 * value_dvx_dx + c22 * value_dvy_dy) * DELTAT
enddo
enddo
do j = 1,NY-1
do i = 2,NX
value_dvy_dx = (vy(i,j) - vy(i-1,j)) / DELTAX
value_dvx_dy = (vx(i,j+1) - vx(i,j)) / DELTAY
memory_dvy_dx(i,j) = b_x(i) * memory_dvy_dx(i,j) + a_x(i) * value_dvy_dx
memory_dvx_dy(i,j) = b_y_half(j) * memory_dvx_dy(i,j) + a_y_half(j) * value_dvx_dy
value_dvy_dx = value_dvy_dx / K_x(i) + memory_dvy_dx(i,j)
value_dvx_dy = value_dvx_dy / K_y_half(j) + memory_dvx_dy(i,j)
sigmaxy(i,j) = sigmaxy(i,j) + c33 * (value_dvy_dx + value_dvx_dy) * DELTAT
enddo
enddo
!--------------------------------------------------------
! compute velocity and update memory variables for C-PML
!--------------------------------------------------------
do j = 2,NY
do i = 2,NX
value_dsigmaxx_dx = (sigmaxx(i,j) - sigmaxx(i-1,j)) / DELTAX
value_dsigmaxy_dy = (sigmaxy(i,j) - sigmaxy(i,j-1)) / DELTAY
memory_dsigmaxx_dx(i,j) = b_x(i) * memory_dsigmaxx_dx(i,j) + a_x(i) * value_dsigmaxx_dx
memory_dsigmaxy_dy(i,j) = b_y(j) * memory_dsigmaxy_dy(i,j) + a_y(j) * value_dsigmaxy_dy
value_dsigmaxx_dx = value_dsigmaxx_dx / K_x(i) + memory_dsigmaxx_dx(i,j)
value_dsigmaxy_dy = value_dsigmaxy_dy / K_y(j) + memory_dsigmaxy_dy(i,j)
vx(i,j) = vx(i,j) + (value_dsigmaxx_dx + value_dsigmaxy_dy) * DELTAT / rho
enddo
enddo
do j = 1,NY-1
do i = 1,NX-1
value_dsigmaxy_dx = (sigmaxy(i+1,j) - sigmaxy(i,j)) / DELTAX
value_dsigmayy_dy = (sigmayy(i,j+1) - sigmayy(i,j)) / DELTAY
memory_dsigmaxy_dx(i,j) = b_x_half(i) * memory_dsigmaxy_dx(i,j) + a_x_half(i) * value_dsigmaxy_dx
memory_dsigmayy_dy(i,j) = b_y_half(j) * memory_dsigmayy_dy(i,j) + a_y_half(j) * value_dsigmayy_dy
value_dsigmaxy_dx = value_dsigmaxy_dx / K_x_half(i) + memory_dsigmaxy_dx(i,j)
value_dsigmayy_dy = value_dsigmayy_dy / K_y_half(j) + memory_dsigmayy_dy(i,j)
vy(i,j) = vy(i,j) + (value_dsigmaxy_dx + value_dsigmayy_dy) * DELTAT / rho
enddo
enddo
! add the source (force vector located at a given grid point)
a = pi*pi*f0*f0
t = dble(it-1)*DELTAT
! Gaussian
! source_term = factor * exp(-a*(t-t0)**2)
! first derivative of a Gaussian
source_term = - factor * 2.d0*a*(t-t0)*exp(-a*(t-t0)**2)
! Ricker source time function (second derivative of a Gaussian)
! source_term = factor * (1.d0 - 2.d0*a*(t-t0)**2)*exp(-a*(t-t0)**2)
force_x = sin(ANGLE_FORCE * DEGREES_TO_RADIANS) * source_term
force_y = cos(ANGLE_FORCE * DEGREES_TO_RADIANS) * source_term
! define location of the source
i = ISOURCE
j = JSOURCE
vx(i,j) = vx(i,j) + force_x * DELTAT / rho
vy(i,j) = vy(i,j) + force_y * DELTAT / rho
! Dirichlet conditions (rigid boundaries) on the edges or at the bottom of the PML layers
vx(1,:) = ZERO
vx(NX,:) = ZERO
vx(:,1) = ZERO
vx(:,NY) = ZERO
vy(1,:) = ZERO
vy(NX,:) = ZERO
vy(:,1) = ZERO
vy(:,NY) = ZERO
! output information
if (mod(it,IT_DISPLAY) == 0 .or. it == 5) then
! print maximum of norm of velocity
velocnorm = maxval(sqrt(vx**2 + vy**2))
print *,'Time step # ',it,' out of ',NSTEP
print *,'Time: ',sngl((it-1)*DELTAT),' seconds'
print *,'Max norm velocity vector V (m/s) = ',velocnorm
print *
! check stability of the code, exit if unstable
if (velocnorm > STABILITY_THRESHOLD) stop 'code became unstable and blew up'
call create_color_image(vx,NX,NY,it,ISOURCE,JSOURCE, &
NPOINTS_PML,USE_PML_XMIN,USE_PML_XMAX,USE_PML_YMIN,USE_PML_YMAX,1)
call create_color_image(vy,NX,NY,it,ISOURCE,JSOURCE, &
NPOINTS_PML,USE_PML_XMIN,USE_PML_XMAX,USE_PML_YMIN,USE_PML_YMAX,2)
endif
enddo ! end of time loop
print *
print *,'End of the simulation'
print *
end program seismic_CPML_2D_aniso
!----
!---- routine to create a color image of a given vector component
!---- the image is created in PNM format and then converted to GIF
!----
subroutine create_color_image(image_data_2D,NX,NY,it,ISOURCE,JSOURCE, &
NPOINTS_PML,USE_PML_XMIN,USE_PML_XMAX,USE_PML_YMIN,USE_PML_YMAX,field_number)
implicit none
! non linear display to enhance small amplitudes for graphics
double precision, parameter :: POWER_DISPLAY = 0.30d0
! amplitude threshold above which we draw the color point
double precision, parameter :: cutvect = 0.01d0
! use black or white background for points that are below the threshold
logical, parameter :: WHITE_BACKGROUND = .true.
! size of cross and square in pixels drawn to represent the source and the receivers
integer, parameter :: width_cross = 5, thickness_cross = 1, size_square = 3
integer NX,NY,it,field_number,ISOURCE,JSOURCE,NPOINTS_PML
logical USE_PML_XMIN,USE_PML_XMAX,USE_PML_YMIN,USE_PML_YMAX
double precision, dimension(NX,NY) :: image_data_2D
integer :: ix,iy
character(len=100) :: file_name,system_command
integer :: R, G, B
double precision :: normalized_value,max_amplitude
! open image file and create system command to convert image to more convenient format
! use the "convert" command from ImageMagick http://www.imagemagick.org
if (field_number == 1) then
write(file_name,"('image',i6.6,'_Vx.pnm')") it
write(system_command,"('convert image',i6.6,'_Vx.pnm image',i6.6,'_Vx.gif ; rm image',i6.6,'_Vx.pnm')") it,it,it
else if (field_number == 2) then
write(file_name,"('image',i6.6,'_Vy.pnm')") it
write(system_command,"('convert image',i6.6,'_Vy.pnm image',i6.6,'_Vy.gif ; rm image',i6.6,'_Vy.pnm')") it,it,it
endif
open(unit=27, file=file_name, status='unknown')
write(27,"('P3')") ! write image in PNM P3 format
write(27,*) NX,NY ! write image size
write(27,*) '255' ! maximum value of each pixel color
! compute maximum amplitude
max_amplitude = maxval(abs(image_data_2D))
! image starts in upper-left corner in PNM format
do iy=NY,1,-1
do ix=1,NX
! define data as vector component normalized to [-1:1] and rounded to nearest integer
! keeping in mind that amplitude can be negative
normalized_value = image_data_2D(ix,iy) / max_amplitude
! suppress values that are outside [-1:+1] to avoid small edge effects
if (normalized_value < -1.d0) normalized_value = -1.d0
if (normalized_value > 1.d0) normalized_value = 1.d0
! draw an orange cross to represent the source
if ((ix >= ISOURCE - width_cross .and. ix <= ISOURCE + width_cross .and. &
iy >= JSOURCE - thickness_cross .and. iy <= JSOURCE + thickness_cross) .or. &
(ix >= ISOURCE - thickness_cross .and. ix <= ISOURCE + thickness_cross .and. &
iy >= JSOURCE - width_cross .and. iy <= JSOURCE + width_cross)) then
R = 255
G = 157
B = 0
! display two-pixel-thick black frame around the image
else if (ix <= 2 .or. ix >= NX-1 .or. iy <= 2 .or. iy >= NY-1) then
R = 0
G = 0
B = 0
! display edges of the PML layers
else if ((USE_PML_XMIN .and. ix == NPOINTS_PML) .or. &
(USE_PML_XMAX .and. ix == NX - NPOINTS_PML) .or. &
(USE_PML_YMIN .and. iy == NPOINTS_PML) .or. &
(USE_PML_YMAX .and. iy == NY - NPOINTS_PML)) then
R = 255
G = 150
B = 0
! suppress all the values that are below the threshold
else if (abs(image_data_2D(ix,iy)) <= max_amplitude * cutvect) then
! use a black or white background for points that are below the threshold
if (WHITE_BACKGROUND) then
R = 255
G = 255
B = 255
else
R = 0
G = 0
B = 0
endif
! represent regular image points using red if value is positive, blue if negative
else if (normalized_value >= 0.d0) then
R = nint(255.d0*normalized_value**POWER_DISPLAY)
G = 0
B = 0
else
R = 0
G = 0
B = nint(255.d0*abs(normalized_value)**POWER_DISPLAY)
endif
! write color pixel
write(27,"(i3,' ',i3,' ',i3)") R,G,B
enddo
enddo
! close file
close(27)
! call the system to convert image to Gif (can be commented out if "call system" is missing in your compiler)
! call system(system_command)
end subroutine create_color_image