We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
There seems to be a bug if attempting to run a cross-trait GWAS with only 2 traits. It seems to be in step3, in lines 161-175, when doing:
step3
tresm <- foreach(i = 1:nrow(pairma), .combine = "rbind", .inorder = T) %dopar% CorE.ICE(pairma[i, 1], pairma[i, 2], resinfm, maSpltRw, maSpltN, cgwasenv) tresm <- signif(tresm, 7) corm <- cbind(cgwasenv$.TRAIT_NAME[pairma[,1]], cgwasenv$.TRAIT_NAME[pairma[,2]], signif(resinfm[pairma[,1], 4]-1, 7), signif(resinfm[pairma[,2], 4]-1, 7), tresm) colnames(corm) <- c("GWAS1", "GWAS2", "T1Eff", "T2Eff", "StatCor", "Psi", "EffCov", "allPi", "T1sEff", "T2sEff", "EffsCov", "sigPi")
It fails at naming the columns because the corm object does not end up with the desired number of columns.
corm
With the following changes the function works:
step3 <- function(cgwasenv) { logOutput("========== C-GWAS step 3 : GetPsi ==========\n\n", cgwasenv = cgwasenv) logOutput("Estimating background correlation for ", nrow(pairma <- t(combn(seq_len(cgwasenv$.TRAIT_NUM), 2))), " GWAS pairs ..\n", cgwasenv = cgwasenv) minsnpn = 1e5 maSpltRw = ceiling(cgwasenv$.SNP_N / minsnpn) maSpltN = floor(cgwasenv$.SNP_N / maSpltRw) * maSpltRw resinfm <- as.matrix( read.table(file.path(cgwasenv$.CGWAS_DETAIL_PATH, "SummaryGetI.txt"), header = T)[,-1]) threadNCur <- min(cgwasenv$.PARAL_NUM, nrow(pairma)) cl <- makeCluster(threadNCur) registerDoParallel(cl) # globalVariables(c('i')) i <- 1 # assign parallel control variants tresm <- foreach(i = 1:nrow(pairma), .combine = "rbind", .inorder = T) %dopar% CorE.ICE(pairma[i, 1], pairma[i, 2], resinfm, maSpltRw, maSpltN, cgwasenv) tresm <- signif(tresm, 7) if(is.null(dim(tresm))){ tresm <- matrix(tresm, 1) } corm <- cbind(cgwasenv$.TRAIT_NAME[pairma[,1]], cgwasenv$.TRAIT_NAME[pairma[,2]], signif(resinfm[pairma[,1], 4]-1, 7), signif(resinfm[pairma[,2], 4]-1, 7), tresm) colnames(corm) <- c("GWAS1", "GWAS2", "T1Eff", "T2Eff", "StatCor", "Psi", "EffCov", "allPi", "T1sEff", "T2sEff", "EffsCov", "sigPi") write.table(corm, file.path(cgwasenv$.CGWAS_DETAIL_PATH, "BCCorrelationStat.txt"), row.names = F, quote = F, sep = "\t") write.table(corm[, c(1,2,5,6,8,12), drop = FALSE], file.path(cgwasenv$.CGWAS_DETAIL_PATH, "SummaryGetPsi.txt"), row.names = F, quote = F, sep = "\t") logOutput("Summary of GetPsi written to Details/SummaryGetPsi.txt\n", cgwasenv = cgwasenv) stopCluster(cl) logOutput("\nC-GWAS step 3 completed\n", cgwasenv = cgwasenv) }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
There seems to be a bug if attempting to run a cross-trait GWAS with only 2 traits. It seems to be in
step3
, in lines 161-175, when doing:It fails at naming the columns because the
corm
object does not end up with the desired number of columns.With the following changes the function works:
The text was updated successfully, but these errors were encountered: