From 0d50b21092bb8dd4b19a2e71a5de90a31cb4612c Mon Sep 17 00:00:00 2001 From: Tiago Olivoto Date: Thu, 13 May 2021 13:16:22 -0300 Subject: [PATCH] Prepare for the 0.2.0 release --- DESCRIPTION | 3 +- NAMESPACE | 2 -- R/count_lesions.R | 84 ++++++++++++++++++++------------------------ R/count_objects.R | 61 +++++++++++++++----------------- R/leaf_area.R | 34 ++++++++---------- R/objects_rgb.R | 24 ++++++------- R/symptomatic_area.R | 47 ++++++++++--------------- R/utilities.R | 13 +++---- R/utils-pipe.R | 14 -------- R/utils_file.R | 10 +++--- R/utils_imagem.R | 22 +++++++----- man/pipe.Rd | 20 ----------- 12 files changed, 135 insertions(+), 199 deletions(-) delete mode 100644 R/utils-pipe.R delete mode 100644 man/pipe.Rd diff --git a/DESCRIPTION b/DESCRIPTION index b58a452..032fad4 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -18,8 +18,7 @@ Depends: R (>= 4.0.0) Imports: EBImage, - ggplot2, - magrittr + ggplot2 Suggests: knitr, rmarkdown diff --git a/NAMESPACE b/NAMESPACE index 6372a77..c7e6ded 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -2,7 +2,6 @@ S3method(plot,image_index) S3method(plot,objects_rgb) -export("%>%") export(cm_to_dpi) export(cm_to_pixels) export(count_lesions) @@ -45,7 +44,6 @@ importFrom(graphics,par) importFrom(graphics,points) importFrom(graphics,text) importFrom(grid,grid.raster) -importFrom(magrittr,"%>%") importFrom(parallel,clusterExport) importFrom(parallel,detectCores) importFrom(parallel,makeCluster) diff --git a/R/count_lesions.R b/R/count_lesions.R index dea1f3a..fa2c273 100644 --- a/R/count_lesions.R +++ b/R/count_lesions.R @@ -202,16 +202,14 @@ count_lesions <- function(img, ################## no background ############# if(is.null(img_background)){ sadio_sintoma <- - rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], - sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_healthy", 1, 0)) + transform(rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], + sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_healthy", 1, 0)) sadio_sintoma$CODE <- NULL usef_area <- nrow(original$df_in) - model <- - glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma) %>% - suppressWarnings() + model <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma)) # isolate plant - pred1 <- predict(model, newdata = original$df_in, type="response") %>% round(0) + pred1 <- round(predict(model, newdata = original$df_in, type="response"), 0) plant_symp <- matrix(pred1, ncol = ncol(original$R)) plant_symp <- 1 - image_correct(plant_symp, perc = 0.01) ID <- c(plant_symp == 0) @@ -282,30 +280,28 @@ count_lesions <- function(img, fundo <- image_to_mat(img_background) # separate image from background fundo_resto <- - rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], - sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,], - fundo$df_in[sample(1:nrow(fundo$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_background", 0, 1)) - modelo1 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = fundo_resto) %>% - suppressWarnings() - pred1 <- predict(modelo1, newdata = original$df_in, type="response") %>% round(0) + transform(rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], + sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,], + fundo$df_in[sample(1:nrow(fundo$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_background", 0, 1)) + modelo1 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), + data = fundo_resto)) + pred1 <- round(predict(modelo1, newdata = original$df_in, type="response"), 0) plant_background <- matrix(pred1, ncol = ncol(original$R)) plant_background <- image_correct(plant_background, perc = 0.009) plant_background[plant_background == 1] <- 2 sadio_sintoma <- - rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], - sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_healthy", 1, 0)) + transform(rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], + sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_healthy", 1, 0)) sadio_sintoma$CODE <- NULL - modelo2 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma) %>% - suppressWarnings() + modelo2 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), + data = sadio_sintoma)) # isolate plant ID <- c(plant_background == 2) usef_area <- nrow(original$df_in[ID,]) - pred2 <- predict(modelo2, newdata = original$df_in[ID,], type="response") %>% round(0) - pred3 <- predict(modelo2, newdata = original$df_in, type="response") %>% round(0) + pred2 <- round(predict(modelo2, newdata = original$df_in[ID,], type="response"), 0) + pred3 <- round(predict(modelo2, newdata = original$df_in, type="response"), 0) pred3[!ID] <- 1 leaf_sympts <- matrix(pred3, ncol = ncol(original$R)) leaf_sympts <- 1 - image_correct(leaf_sympts, perc = 0.009) @@ -510,21 +506,21 @@ count_lesions <- function(img, dev.off() } stats <- - data.frame(area = c(n = length(shape$s.area), - min(shape$s.area), - mean(shape$s.area), - max(shape$s.area), - sd(shape$s.area), - sum(shape$s.area), - sum(shape$s.area) /usef_area * 100), - perimeter = c(NA, - min(shape$s.perimeter), - mean(shape$s.perimeter), - max(shape$s.perimeter), - sd(shape$s.perimeter), - sum(shape$s.perimeter), - NA)) %>% - transform(statistics = c("n", "min", "mean", "max", "sd", "sum", "prop")) + transform(data.frame(area = c(n = length(shape$s.area), + min(shape$s.area), + mean(shape$s.area), + max(shape$s.area), + sd(shape$s.area), + sum(shape$s.area), + sum(shape$s.area) /usef_area * 100), + perimeter = c(NA, + min(shape$s.perimeter), + mean(shape$s.perimeter), + max(shape$s.perimeter), + sd(shape$s.perimeter), + sum(shape$s.perimeter), + NA)), + statistics = c("n", "min", "mean", "max", "sd", "sum", "prop")) stats <- stats[c(3, 1, 2)] shape <- shape[,c(1:6, 8:9, 7)] colnames(shape) <- c("id", "x", "y", "area", "perimeter", "radius_mean", @@ -565,7 +561,7 @@ count_lesions <- function(img, "check_names_dir", "file_extension", "image_import", "image_binary", "watershed", "distmap", "computeFeatures.moment", "computeFeatures.shape", "colorLabels", "image_show", - "%>%", "image_to_mat", "image_correct", "bwlabel"), + "image_to_mat", "image_correct", "bwlabel"), envir=environment()) on.exit(stopCluster(clust)) if(verbose == TRUE){ @@ -598,17 +594,15 @@ count_lesions <- function(img, stats <- do.call(rbind, lapply(seq_along(results), function(i){ - results[[i]][["statistics"]] %>% - transform(id = names(results[i])) %>% - .[,c(4, 1, 2, 3)] + transform(results[[i]][["statistics"]], + id = names(results[i]))[,c(4, 1, 2, 3)] }) ) results <- do.call(rbind, lapply(seq_along(results), function(i){ - results[[i]][["results"]] %>% - transform(img = names(results[i])) %>% - .[, c(10, 1:9)] + transform(results[[i]][["results"]], + img = names(results[i]))[, c(10, 1:9)] }) ) return(list(statistics = stats, diff --git a/R/count_objects.R b/R/count_objects.R index 2843908..60fcbd4 100644 --- a/R/count_objects.R +++ b/R/count_objects.R @@ -207,13 +207,11 @@ count_objects <- function(img, foreground <- image_to_mat(foreground) background <- image_to_mat(background) back_fore <- - rbind(foreground$df_in[sample(1:nrow(foreground$df_in)),][1:nrows,], - background$df_in[sample(1:nrow(background$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "background", 0, 1)) - modelo1 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = back_fore) %>% - suppressWarnings() - pred1 <- predict(modelo1, newdata = original$df_in, type="response") %>% round(0) + transform(rbind(foreground$df_in[sample(1:nrow(foreground$df_in)),][1:nrows,], + background$df_in[sample(1:nrow(background$df_in)),][1:nrows,]), + Y = ifelse(CODE == "background", 0, 1)) + modelo1 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = back_fore)) + pred1 <- round(predict(modelo1, newdata = original$df_in, type="response"), 0) foreground_background <- matrix(pred1, ncol = ncol(original$R)) foreground_background <- image_correct(foreground_background, perc = 0.02) ID <- c(foreground_background == 1) @@ -242,7 +240,7 @@ count_objects <- function(img, parms2 <- parms[parms$object_size == object_size,] rowid <- which(sapply(as.character(parms2$resolution), function(x) { - eval(parse(text=x))})) + eval(parse(text=x))})) ext <- ifelse(is.null(extension), parms2[rowid, 3], extension) tol <- ifelse(is.null(tolerance), parms2[rowid, 4], tolerance) nmask <- watershed(distmap(img2), @@ -360,27 +358,27 @@ count_objects <- function(img, image_show(im2) text(shape[,2], shape[,3], - col = marker_col, - pch = 16, - cex = marker_size) + col = marker_col, + pch = 16, + cex = marker_size) } dev.off() } stats <- - data.frame(area = c(n = length(shape$s.area), - min(shape$s.area), - mean(shape$s.area), - max(shape$s.area), - sd(shape$s.area), - sum(shape$s.area)), - perimeter = c(NA, - min(shape$s.perimeter), - mean(shape$s.perimeter), - max(shape$s.perimeter), - sd(shape$s.perimeter), - sum(shape$s.perimeter))) %>% - transform(statistics = c("n", "min", "mean", "max", "sd", "sum")) + transform(data.frame(area = c(n = length(shape$s.area), + min(shape$s.area), + mean(shape$s.area), + max(shape$s.area), + sd(shape$s.area), + sum(shape$s.area)), + perimeter = c(NA, + min(shape$s.perimeter), + mean(shape$s.perimeter), + max(shape$s.perimeter), + sd(shape$s.perimeter), + sum(shape$s.perimeter))), + statistics = c("n", "min", "mean", "max", "sd", "sum")) stats <- stats[c(3, 1, 2)] shape <- shape[,c(1:6, 8:9, 7)] colnames(shape) <- c("id", "x", "y", "area", "perimeter", "radius_mean", @@ -424,8 +422,7 @@ count_objects <- function(img, varlist = c("names_plant", "help_count", "file_name", "check_names_dir", "file_extension", "image_import", "image_binary", "watershed", "distmap", "computeFeatures.moment", - "computeFeatures.shape", "colorLabels", "image_show", - "%>%"), + "computeFeatures.shape", "colorLabels", "image_show"), envir=environment()) on.exit(stopCluster(clust)) if(verbose == TRUE){ @@ -461,20 +458,18 @@ count_objects <- function(img, stats <- do.call(rbind, lapply(seq_along(results), function(i){ - results[[i]][["statistics"]] %>% - transform(id = names(results[i])) %>% - .[,c(4, 1, 2, 3)] + transform(results[[i]][["statistics"]], + id = names(results[i]))[,c(4, 1, 2, 3)] }) ) results <- do.call(rbind, lapply(seq_along(results), function(i){ - results[[i]][["results"]] %>% - transform(img = names(results[i])) %>% - .[, c(10, 1:9)] + transform(results[[i]][["results"]], + img = names(results[i]))[, c(10, 1:9)] }) ) - summ <- stats[stats$statistics == "n",c(1,3)] + summ <- stats[stats$statistics == "n",c(1,3)] if(verbose == TRUE){ names(summ) <- c("Image", "Objects") cat("--------------------------------------------\n") diff --git a/R/leaf_area.R b/R/leaf_area.R index 54b3e0e..80860ba 100644 --- a/R/leaf_area.R +++ b/R/leaf_area.R @@ -163,32 +163,28 @@ leaf_area <- function(img, background <- image_to_mat(img_background) # separate image from background background_resto <- - rbind(leaf$df_in[sample(1:nrow(leaf$df_in)),][1:nrows,], - template$df_in[sample(1:nrow(template$df_in)),][1:nrows,], - background$df_in[sample(1:nrow(background$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_background", 1, 0)) + transform(rbind(leaf$df_in[sample(1:nrow(leaf$df_in)),][1:nrows,], + template$df_in[sample(1:nrow(template$df_in)),][1:nrows,], + background$df_in[sample(1:nrow(background$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_background", 1, 0)) background_resto$CODE <- NULL - modelo1 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = background_resto) %>% - suppressWarnings() - pred1 <- predict(modelo1, newdata = original$df_in, type="response") %>% round(0) + modelo1 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = background_resto)) + pred1 <- round(predict(modelo1, newdata = original$df_in, type="response"), 0) plant_background <- matrix(pred1, ncol = ncol(original$R)) plant_background <- image_correct(plant_background, perc = 0.009) plant_background[plant_background == 1] <- 2 # image_show(plant_background!=2) # separate leaf from template leaf_template <- - rbind(leaf$df_in[sample(1:nrow(leaf$df_in)),][1:nrows,], - template$df_in[sample(1:nrow(template$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_leaf", 0, 1)) + transform(rbind(leaf$df_in[sample(1:nrow(leaf$df_in)),][1:nrows,], + template$df_in[sample(1:nrow(template$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_leaf", 0, 1)) background_resto$CODE <- NULL - modelo2 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = leaf_template) %>% - suppressWarnings() + modelo2 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = leaf_template)) # isolate plant ID <- c(plant_background == 0) - pred2 <- predict(modelo2, newdata = original$df_in[ID,], type="response") %>% round(0) - pred3 <- predict(modelo2, newdata = original$df_in, type="response") %>% round(0) + pred2 <- round(predict(modelo2, newdata = original$df_in[ID,], type="response"), 0) + pred3 <- round(predict(modelo2, newdata = original$df_in, type="response"), 0) leaf_template <- matrix(pred3, ncol = ncol(original$R)) leaf_template <- image_correct(leaf_template, perc = 0.009) plant_background[leaf_template == 1] <- 3 @@ -218,8 +214,8 @@ leaf_area <- function(img, shape <- rbind(shape_leaf, shape_template) shape$id <- 1:nrow(shape) shape <- - shape[, c(10, 7, 8, 1, 9, 2:6)] %>% - transform(label = paste(id, "|", round(area, text_digits), sep = "")) + transform(shape[, c(10, 7, 8, 1, 9, 2:6)], + label = paste(id, "|", round(area, text_digits), sep = "")) if(show_original == TRUE){ im2 <- img if(!is.null(col_background)){ @@ -304,7 +300,7 @@ leaf_area <- function(img, "check_names_dir", "file_extension", "image_import", "image_binary", "watershed", "distmap", "computeFeatures.moment", "computeFeatures.shape", "colorLabels", "image_show", - "%>%", "image_to_mat", "image_correct", "bwlabel"), + "image_to_mat", "image_correct", "bwlabel"), envir=environment()) on.exit(stopCluster(clust)) if(verbose == TRUE){ diff --git a/R/objects_rgb.R b/R/objects_rgb.R index f6ea3ba..9f47825 100644 --- a/R/objects_rgb.R +++ b/R/objects_rgb.R @@ -190,13 +190,11 @@ objects_rgb <- function(img, foreground <- image_to_mat(foreground) background <- image_to_mat(background) back_fore <- - rbind(foreground$df_in[sample(1:nrow(foreground$df_in)),][1:nrows,], - background$df_in[sample(1:nrow(background$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "background", 0, 1)) - modelo1 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = back_fore) %>% - suppressWarnings() - pred1 <- predict(modelo1, newdata = original$df_in, type="response") %>% round(0) + transform(rbind(foreground$df_in[sample(1:nrow(foreground$df_in)),][1:nrows,], + background$df_in[sample(1:nrow(background$df_in)),][1:nrows,]), + Y = ifelse(CODE == "background", 0, 1)) + modelo1 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = back_fore)) + pred1 <- round(predict(modelo1, newdata = original$df_in, type="response"), 0) foreground_background <- matrix(pred1, ncol = ncol(original$R)) foreground_background <- image_correct(foreground_background, perc = 0.02) ID <- c(foreground_background == 1) @@ -369,7 +367,7 @@ objects_rgb <- function(img, "check_names_dir", "file_extension", "image_import", "image_binary", "watershed", "distmap", "computeFeatures.moment", "computeFeatures.shape", "colorLabels", "image_show", - "%>%", "image_resize", "detectCores", "makeCluster", "clusterExport", + "image_resize", "detectCores", "makeCluster", "clusterExport", "stopCluster", "parLapply"), envir=environment()) on.exit(stopCluster(clust)) @@ -401,17 +399,15 @@ objects_rgb <- function(img, objects <- do.call(rbind, lapply(seq_along(results), function(i){ - results[[i]][["objects"]] %>% - transform(img = names(results[i])) %>% - .[,c(10, 1:9)] + transform(results[[i]][["objects"]], + img = names(results[i]))[,c(10, 1:9)] }) ) indexes <- do.call(rbind, lapply(seq_along(results), function(i){ - results[[i]][["indexes"]] %>% - transform(img = names(results[i])) %>% - .[, c(3, 1:2)] + transform(results[[i]][["indexes"]], + img = names(results[i]))[, c(3, 1:2)] }) ) invisible(list(objects = objects, diff --git a/R/symptomatic_area.R b/R/symptomatic_area.R index 0b6ab7b..bcfbea2 100644 --- a/R/symptomatic_area.R +++ b/R/symptomatic_area.R @@ -140,20 +140,17 @@ symptomatic_area <- function(img, ################## no background ############# if(is.null(img_background)){ sadio_sintoma <- - rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], - sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_healthy", 1, 0)) + transform(rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], + sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_healthy", 1, 0)) usef_area <- nrow(original$df_in) - model <- - glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma) %>% - suppressWarnings() + model <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma)) # isolate plant - pred1 <- predict(model, newdata = original$df_in, type="response") %>% round(0) + pred1 <- round(predict(model, newdata = original$df_in, type="response"), 0) plant_symp <- matrix(pred1, ncol = ncol(original$R)) plant_symp <- image_correct(plant_symp, perc = 0.01) ID <- c(plant_symp == 0) pix_sympt <- length(which(ID == TRUE)) - # pred2 <- predict(model, newdata = original$df_in[ID,], type="response") %>% round(0) if(show_original == TRUE){ if(is.null(col_background)){ col_background <- col2rgb("green") @@ -197,28 +194,24 @@ symptomatic_area <- function(img, fundo <- image_to_mat(img_background) # separate image from background fundo_resto <- - rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], - sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,], - fundo$df_in[sample(1:nrow(fundo$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_background", 0, 1)) - modelo1 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = fundo_resto) %>% - suppressWarnings() - pred1 <- predict(modelo1, newdata = original$df_in, type="response") %>% round(0) + transform(rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], + sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,], + fundo$df_in[sample(1:nrow(fundo$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_background", 0, 1)) + modelo1 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = fundo_resto)) + pred1 <- round(predict(modelo1, newdata = original$df_in, type="response"), 0) plant_background <- matrix(pred1, ncol = ncol(original$R)) plant_background <- image_correct(plant_background, perc = 0.009) plant_background[plant_background == 1] <- 2 sadio_sintoma <- - rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], - sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]) %>% - transform(Y = ifelse(CODE == "img_healthy", 1, 0)) - modelo2 <- - glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma) %>% - suppressWarnings() + transform(rbind(sadio$df_in[sample(1:nrow(sadio$df_in)),][1:nrows,], + sintoma$df_in[sample(1:nrow(sintoma$df_in)),][1:nrows,]), + Y = ifelse(CODE == "img_healthy", 1, 0)) + modelo2 <- suppressWarnings(glm(Y ~ R + G + B, family = binomial("logit"), data = sadio_sintoma)) # isolate plant ID <- c(plant_background == 2) usef_area <- nrow(original$df_in[ID,]) - pred3 <- predict(modelo2, newdata = original$df_in[ID,], type="response") %>% round(0) + pred3 <- round(predict(modelo2, newdata = original$df_in[ID,], type="response"), 0) pix_sympt <- length(which(pred3 == 0)) if(show_original == TRUE){ im2 <- img @@ -298,7 +291,7 @@ symptomatic_area <- function(img, "check_names_dir", "file_extension", "image_import", "image_binary", "watershed", "distmap", "computeFeatures.moment", "computeFeatures.shape", "colorLabels", "image_show", - "%>%", "image_to_mat", "image_correct", "image_export"), + "image_to_mat", "image_correct", "image_export"), envir=environment()) on.exit(stopCluster(clust)) if(verbose == TRUE){ @@ -327,10 +320,8 @@ symptomatic_area <- function(img, save_image, dir_original, dir_processed) } } - results <- - do.call(rbind, results) %>% - transform(sample = names_plant) - results <- results[c(3, 1, 2)] + results <- transform(do.call(rbind, results), + sample = names_plant)[c(3, 1, 2)] return(results) } } diff --git a/R/utilities.R b/R/utilities.R index b1e69a3..dd01d88 100644 --- a/R/utilities.R +++ b/R/utilities.R @@ -32,9 +32,7 @@ run_progress <- function(pb, digits = 0, sleep = 0){ Sys.sleep(sleep) - elapsed <- - as.numeric(difftime(Sys.time(), pb$time, units = "secs")) %>% - sec_to_hms() + elapsed <- sec_to_hms(as.numeric(difftime(Sys.time(), pb$time, units = "secs"))) temp <- switch( pb$style, list(extra = nchar(text) + nchar(pb$leftd) + nchar(pb$rightd), @@ -47,11 +45,10 @@ run_progress <- function(pb, text = paste(text, paste(pb$leftd, '%s%s', pb$rightd, sep = ""), '% s%%', elapsed)) ) step <- round(actual / pb$max * (pb$width - temp$extra)) - temp$text %>% - sprintf(strrep(pb$char, step), - strrep(' ', pb$width - step - temp$extra), - round(actual / pb$max * 100, digits = digits)) %>% - cat("\r") + cat(sprintf(temp$text, + strrep(pb$char, step), + strrep(' ', pb$width - step - temp$extra), + round(actual / pb$max * 100, digits = digits)), "\r") if(actual == pb$max){ cat("\n") } diff --git a/R/utils-pipe.R b/R/utils-pipe.R deleted file mode 100644 index fd0b1d1..0000000 --- a/R/utils-pipe.R +++ /dev/null @@ -1,14 +0,0 @@ -#' Pipe operator -#' -#' See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details. -#' -#' @name %>% -#' @rdname pipe -#' @keywords internal -#' @export -#' @importFrom magrittr %>% -#' @usage lhs \%>\% rhs -#' @param lhs A value or the magrittr placeholder. -#' @param rhs A function call using the magrittr semantics. -#' @return The result of calling `rhs(lhs)`. -NULL diff --git a/R/utils_file.R b/R/utils_file.R index d7cbabf..c8e3313 100644 --- a/R/utils_file.R +++ b/R/utils_file.R @@ -126,11 +126,11 @@ manipulate_files <- function(pattern, name <- names } else{ if(length(name) == 1){ - name <- lapply(seq_along(names), - function(i){ - paste0(name, i, collapse = "_") - }) %>% - unlist() + name <- + unlist(lapply(seq_along(names), + function(i){ + paste0(name, i, collapse = "_") + })) } else{ name <- name if(length(name) != length(names)){ diff --git a/R/utils_imagem.R b/R/utils_imagem.R index 7dc69f0..a5f5bfd 100644 --- a/R/utils_imagem.R +++ b/R/utils_imagem.R @@ -190,15 +190,17 @@ image_dimension <- function(image, message("Image processing using multiple sessions (",nworkers, "). Please wait.") } res <- + as.data.frame( do.call(rbind, - parLapply(clust, image, image_dimension, verbose = FALSE)) %>% - as.data.frame() + parLapply(clust, image, image_dimension, verbose = FALSE)) + ) res <- transform(res, image = rownames(res))[,c(3, 1, 2)] } else{ res <- + as.data.frame( do.call(rbind, - lapply(image, image_dimension, verbose = FALSE)) %>% - as.data.frame() + lapply(image, image_dimension, verbose = FALSE)) + ) res <- transform(res, image = rownames(res))[,c(3, 1, 2)] } if(verbose == TRUE){ @@ -742,11 +744,13 @@ image_index <- function(image, #'ind <- image_index(img2) #'plot(ind) plot.image_index <- function(x, facet = TRUE, ...){ - mat <- do.call(cbind, - lapply(x, function(i){ - as.vector(i)} - )) %>% - as.data.frame() + mat <- + as.data.frame( + do.call(cbind, + lapply(x, function(i){ + as.vector(i)} + )) + ) colnames(mat) <- names(x) mat$id <- rownames(mat) if(length(x) == 1){ diff --git a/man/pipe.Rd b/man/pipe.Rd deleted file mode 100644 index a648c29..0000000 --- a/man/pipe.Rd +++ /dev/null @@ -1,20 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/utils-pipe.R -\name{\%>\%} -\alias{\%>\%} -\title{Pipe operator} -\usage{ -lhs \%>\% rhs -} -\arguments{ -\item{lhs}{A value or the magrittr placeholder.} - -\item{rhs}{A function call using the magrittr semantics.} -} -\value{ -The result of calling \code{rhs(lhs)}. -} -\description{ -See \code{magrittr::\link[magrittr:pipe]{\%>\%}} for details. -} -\keyword{internal}