-
Notifications
You must be signed in to change notification settings - Fork 1
/
hparams.py
98 lines (86 loc) · 2.82 KB
/
hparams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from text.symbols import symbols
import torch
@torch.jit.ignore()
class Hparams():
################################
# Experiment Parameters #
################################
epochs = 2000,
iters_per_checkpoint = 1000,
seed = 54734,
dynamic_loss_scaling = True,
fp16_run = True,
distributed_run = True,
dist_backend = "nccl",
dist_url = "tcp://localhost:13314",
cudnn_enabled = True,
cudnn_benchmark = False,
ignore_layers = ['embedding.weight'],
################################
# Data Parameters #
################################
load_mel_from_disk = False,
training_files = 'filelists/ljs_audio_text_train_filelist.txt',
validation_files = 'filelists/ljs_audio_text_val_filelist.txt',
text_cleaners = ['english_cleaners'],
################################
# Audio Parameters #
################################
max_wav_value = 32768.0,
sampling_rate = 22050,
filter_length = 1024,
hop_length = 256,
win_length = 1024,
n_mel_channels = 80,
mel_fmin = 0.0,
mel_fmax = 8000.0,
################################
# Model Parameters #
################################
n_symbols = len(symbols),
symbols_embedding_dim = 512,
speakers_number = 2,
# Encoder parameters
encoder_kernel_size = 1,
encoder_n_convolutions = 3,
encoder_embedding_dim = 512,
languages_number = 2,
lang_embedding_dims = 10,
speaker_embedding_dims = 32,
# languages = ["korean","english"],
bottleneck_dim = 3,
generator_dim = 16,
perfect_sampling = True,
# Decoder parameters
n_frames_per_step = 1, # currently only 1 is supported
decoder_rnn_dim = 1024,
prenet_dim = 256,
max_decoder_steps = 2000,
gate_threshold = 0.5,
p_attention_dropout = 0.1,
p_decoder_dropout = 0.1,
discriminative_embedding_dims = 32,
# Attention parameters
attention_rnn_dim = 1024,
attention_dim = 128,
# Location Layer parameters
attention_location_n_filters = 32,
attention_location_kernel_size = 31,
# Mel-post processing network parameters
postnet_embedding_dim = 512,
postnet_kernel_size = 5,
postnet_n_convolutions = 5,
################################
# Optimization Hyperparameters #
################################
use_saved_learning_rate = False,
learning_rate = 1e-3,
weight_decay = 1e-6,
grad_clip_thresh = 1.0,
batch_size = 64,
mask_padding = True # set model's padded outputs to padded values
@torch.jit.ignore()
def create_hparams(hparams=None):
"""Create model hyperparameters. Parse nondefault from given string."""
hparams = Hparams()
return hparams