-
Notifications
You must be signed in to change notification settings - Fork 1.5k
/
ExtendedEuclideanAlgorithm.cs
94 lines (80 loc) · 3.31 KB
/
ExtendedEuclideanAlgorithm.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
using System.Numerics;
namespace Algorithms.ModularArithmetic;
/// <summary>
/// Extended Euclidean algorithm: https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm.
/// </summary>
public static class ExtendedEuclideanAlgorithm
{
/// <summary>
/// Computes the greatest common divisor (Gcd) of integers a and b, also the coefficients of Bézout's identity,
/// which are integers x and y such that a*bezoutCoefficientOfA + b*bezoutCoefficientOfB = Gcd(a, b).
/// </summary>
/// <param name="a">Input number.</param>
/// <param name="b">Second input number.</param>
/// <returns>A record of ExtendedEuclideanAlgorithmResult containing the bezout coefficients of a and b as well as the Gcd(a,b).</returns>
public static ExtendedEuclideanAlgorithmResult<long> Compute(long a, long b)
{
long quotient;
long tmp;
var s = 0L;
var bezoutOfA = 1L;
var r = b;
var gcd = a;
var bezoutOfB = 0L;
while (r != 0)
{
quotient = gcd / r; // integer division
tmp = gcd;
gcd = r;
r = tmp - quotient * r;
tmp = bezoutOfA;
bezoutOfA = s;
s = tmp - quotient * s;
}
if (b != 0)
{
bezoutOfB = (gcd - bezoutOfA * a) / b; // integer division
}
return new ExtendedEuclideanAlgorithmResult<long>(bezoutOfA, bezoutOfB, gcd);
}
/// <summary>
/// Computes the greatest common divisor (Gcd) of integers a and b, also the coefficients of Bézout's identity,
/// which are integers x and y such that a*bezoutCoefficientOfA + b*bezoutCoefficientOfB = Gcd(a, b).
/// </summary>
/// <param name="a">Input number.</param>
/// <param name="b">Second input number.</param>
/// <returns>A record of ExtendedEuclideanAlgorithmResult containing the bezout coefficients of a and b as well as the Gcd(a,b).</returns>
public static ExtendedEuclideanAlgorithmResult<BigInteger> Compute(BigInteger a, BigInteger b)
{
BigInteger quotient;
BigInteger tmp;
var s = BigInteger.Zero;
var bezoutOfA = BigInteger.One;
var r = b;
var gcd = a;
var bezoutOfB = BigInteger.Zero;
while (r != 0)
{
quotient = gcd / r; // integer division
tmp = gcd;
gcd = r;
r = tmp - quotient * r;
tmp = bezoutOfA;
bezoutOfA = s;
s = tmp - quotient * s;
}
if (b != 0)
{
bezoutOfB = (gcd - bezoutOfA * a) / b; // integer division
}
return new ExtendedEuclideanAlgorithmResult<BigInteger>(bezoutOfA, bezoutOfB, gcd);
}
/// <summary>
/// The result type for the computation of the Extended Euclidean Algorithm.
/// </summary>
/// <typeparam name="T">The data type of the computation (i.e. long or BigInteger).</typeparam>
/// <param name="BezoutA">The bezout coefficient of the parameter a to the computation.</param>
/// <param name="BezoutB">The bezout coefficient of the parameter b to the computation.</param>
/// <param name="Gcd">The greatest common divisor of the parameters a and b to the computation.</param>
public record ExtendedEuclideanAlgorithmResult<T>(T BezoutA, T BezoutB, T Gcd);
}