-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtest_edlora.py
110 lines (84 loc) · 4.39 KB
/
test_edlora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import argparse
import os
import os.path as osp
import torch
import torch.utils.checkpoint
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import DPMSolverMultistepScheduler
from diffusers.utils import check_min_version
from omegaconf import OmegaConf
from tqdm import tqdm
from mixofshow.data.prompt_dataset import PromptDataset
from mixofshow.pipelines.pipeline_edlora import EDLoRAPipeline, StableDiffusionPipeline
from mixofshow.utils.convert_edlora_to_diffusers import convert_edlora
from mixofshow.utils.util import NEGATIVE_PROMPT, compose_visualize, dict2str, pil_imwrite, set_path_logger
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version('0.18.2')
def visual_validation(accelerator, pipe, dataloader, current_iter, opt):
dataset_name = dataloader.dataset.opt['name']
pipe.unet.eval()
pipe.text_encoder.eval()
for idx, val_data in enumerate(tqdm(dataloader)):
output = pipe(
prompt=val_data['prompts'],
latents=val_data['latents'].to(dtype=torch.float16),
negative_prompt=[NEGATIVE_PROMPT] * len(val_data['prompts']),
num_inference_steps=opt['val']['sample'].get('num_inference_steps', 50),
guidance_scale=opt['val']['sample'].get('guidance_scale', 7.5),
).images
for img, prompt, indice in zip(output, val_data['prompts'], val_data['indices']):
img_name = '{prompt}---G_{guidance_scale}_S_{steps}---{indice}'.format(
prompt=prompt.replace(' ', '_'),
guidance_scale=opt['val']['sample'].get('guidance_scale', 7.5),
steps=opt['val']['sample'].get('num_inference_steps', 50),
indice=indice)
save_img_path = osp.join(opt['path']['visualization'], dataset_name, f'{current_iter}', f'{img_name}---{current_iter}.png')
pil_imwrite(img, save_img_path)
# tentative for out of GPU memory
del output
torch.cuda.empty_cache()
# Save the lora layers, final eval
accelerator.wait_for_everyone()
if opt['val'].get('compose_visualize'):
if accelerator.is_main_process:
compose_visualize(os.path.dirname(save_img_path))
def test(root_path, args):
# load config
opt = OmegaConf.to_container(OmegaConf.load(args.opt), resolve=True)
# set accelerator, mix-precision set in the environment by "accelerate config"
accelerator = Accelerator(mixed_precision=opt['mixed_precision'])
# set experiment dir
with accelerator.main_process_first():
set_path_logger(accelerator, root_path, args.opt, opt, is_train=False)
# get logger
logger = get_logger('mixofshow', log_level='INFO')
logger.info(accelerator.state, main_process_only=True)
logger.info(dict2str(opt))
# If passed along, set the training seed now.
if opt.get('manual_seed') is not None:
set_seed(opt['manual_seed'])
# Get the training dataset
valset_cfg = opt['datasets']['val_vis']
val_dataset = PromptDataset(valset_cfg)
val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=valset_cfg['batch_size_per_gpu'], shuffle=False)
enable_edlora = opt['models']['enable_edlora']
for lora_alpha in opt['val']['alpha_list']:
pipeclass = EDLoRAPipeline if enable_edlora else StableDiffusionPipeline
pipe = pipeclass.from_pretrained(opt['models']['pretrained_path'],
scheduler=DPMSolverMultistepScheduler.from_pretrained(opt['models']['pretrained_path'], subfolder='scheduler'),
torch_dtype=torch.float16).to('cuda')
pipe, new_concept_cfg = convert_edlora(pipe, torch.load(opt['path']['lora_path']), enable_edlora=enable_edlora, alpha=lora_alpha)
pipe.set_new_concept_cfg(new_concept_cfg)
# visualize embedding + LoRA weight shift
logger.info(f'Start validation sample lora({lora_alpha}):')
lora_type = 'edlora' if enable_edlora else 'lora'
visual_validation(accelerator, pipe, val_dataloader, f'validation_{lora_type}_{lora_alpha}', opt)
del pipe
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, default='options/test/EDLoRA/EDLoRA_hina_Anyv4_B4_Iter1K.yml')
args = parser.parse_args()
root_path = osp.abspath(osp.join(__file__, osp.pardir))
test(root_path, args)