-
Notifications
You must be signed in to change notification settings - Fork 385
/
run.py
262 lines (221 loc) · 9.7 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
import argparse
import numpy as np
import torch
import rembg
from PIL import Image
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from einops import rearrange, repeat
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from src.utils.train_util import instantiate_from_config
from src.utils.camera_util import (
FOV_to_intrinsics,
get_zero123plus_input_cameras,
get_circular_camera_poses,
)
from src.utils.mesh_util import save_obj, save_obj_with_mtl
from src.utils.infer_util import remove_background, resize_foreground, save_video
def get_render_cameras(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False):
"""
Get the rendering camera parameters.
"""
c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation)
if is_flexicubes:
cameras = torch.linalg.inv(c2ws)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1)
else:
extrinsics = c2ws.flatten(-2)
intrinsics = FOV_to_intrinsics(30.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2)
cameras = torch.cat([extrinsics, intrinsics], dim=-1)
cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1)
return cameras
def render_frames(model, planes, render_cameras, render_size=512, chunk_size=1, is_flexicubes=False):
"""
Render frames from triplanes.
"""
frames = []
for i in tqdm(range(0, render_cameras.shape[1], chunk_size)):
if is_flexicubes:
frame = model.forward_geometry(
planes,
render_cameras[:, i:i+chunk_size],
render_size=render_size,
)['img']
else:
frame = model.forward_synthesizer(
planes,
render_cameras[:, i:i+chunk_size],
render_size=render_size,
)['images_rgb']
frames.append(frame)
frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1
return frames
###############################################################################
# Arguments.
###############################################################################
parser = argparse.ArgumentParser()
parser.add_argument('config', type=str, help='Path to config file.')
parser.add_argument('input_path', type=str, help='Path to input image or directory.')
parser.add_argument('--output_path', type=str, default='outputs/', help='Output directory.')
parser.add_argument('--diffusion_steps', type=int, default=75, help='Denoising Sampling steps.')
parser.add_argument('--seed', type=int, default=42, help='Random seed for sampling.')
parser.add_argument('--scale', type=float, default=1.0, help='Scale of generated object.')
parser.add_argument('--distance', type=float, default=4.5, help='Render distance.')
parser.add_argument('--view', type=int, default=6, choices=[4, 6], help='Number of input views.')
parser.add_argument('--no_rembg', action='store_true', help='Do not remove input background.')
parser.add_argument('--export_texmap', action='store_true', help='Export a mesh with texture map.')
parser.add_argument('--save_video', action='store_true', help='Save a circular-view video.')
args = parser.parse_args()
seed_everything(args.seed)
###############################################################################
# Stage 0: Configuration.
###############################################################################
config = OmegaConf.load(args.config)
config_name = os.path.basename(args.config).replace('.yaml', '')
model_config = config.model_config
infer_config = config.infer_config
IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False
device = torch.device('cuda')
# load diffusion model
print('Loading diffusion model ...')
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="zero123plus",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
# load custom white-background UNet
print('Loading custom white-background unet ...')
if os.path.exists(infer_config.unet_path):
unet_ckpt_path = infer_config.unet_path
else:
unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model")
state_dict = torch.load(unet_ckpt_path, map_location='cpu')
pipeline.unet.load_state_dict(state_dict, strict=True)
pipeline = pipeline.to(device)
# load reconstruction model
print('Loading reconstruction model ...')
model = instantiate_from_config(model_config)
if os.path.exists(infer_config.model_path):
model_ckpt_path = infer_config.model_path
else:
model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename=f"{config_name.replace('-', '_')}.ckpt", repo_type="model")
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
if IS_FLEXICUBES:
model.init_flexicubes_geometry(device, fovy=30.0)
model = model.eval()
# make output directories
image_path = os.path.join(args.output_path, config_name, 'images')
mesh_path = os.path.join(args.output_path, config_name, 'meshes')
video_path = os.path.join(args.output_path, config_name, 'videos')
os.makedirs(image_path, exist_ok=True)
os.makedirs(mesh_path, exist_ok=True)
os.makedirs(video_path, exist_ok=True)
# process input files
if os.path.isdir(args.input_path):
input_files = [
os.path.join(args.input_path, file)
for file in os.listdir(args.input_path)
if file.endswith('.png') or file.endswith('.jpg') or file.endswith('.webp')
]
else:
input_files = [args.input_path]
print(f'Total number of input images: {len(input_files)}')
###############################################################################
# Stage 1: Multiview generation.
###############################################################################
rembg_session = None if args.no_rembg else rembg.new_session()
outputs = []
for idx, image_file in enumerate(input_files):
name = os.path.basename(image_file).split('.')[0]
print(f'[{idx+1}/{len(input_files)}] Imagining {name} ...')
# remove background optionally
input_image = Image.open(image_file)
if not args.no_rembg:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
# sampling
output_image = pipeline(
input_image,
num_inference_steps=args.diffusion_steps,
).images[0]
output_image.save(os.path.join(image_path, f'{name}.png'))
print(f"Image saved to {os.path.join(image_path, f'{name}.png')}")
images = np.asarray(output_image, dtype=np.float32) / 255.0
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320)
outputs.append({'name': name, 'images': images})
# delete pipeline to save memory
del pipeline
###############################################################################
# Stage 2: Reconstruction.
###############################################################################
input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0*args.scale).to(device)
chunk_size = 20 if IS_FLEXICUBES else 1
for idx, sample in enumerate(outputs):
name = sample['name']
print(f'[{idx+1}/{len(outputs)}] Creating {name} ...')
images = sample['images'].unsqueeze(0).to(device)
images = v2.functional.resize(images, 320, interpolation=3, antialias=True).clamp(0, 1)
if args.view == 4:
indices = torch.tensor([0, 2, 4, 5]).long().to(device)
images = images[:, indices]
input_cameras = input_cameras[:, indices]
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
# get mesh
mesh_path_idx = os.path.join(mesh_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=args.export_texmap,
**infer_config,
)
if args.export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
# get video
if args.save_video:
video_path_idx = os.path.join(video_path, f'{name}.mp4')
render_size = infer_config.render_resolution
render_cameras = get_render_cameras(
batch_size=1,
M=120,
radius=args.distance,
elevation=20.0,
is_flexicubes=IS_FLEXICUBES,
).to(device)
frames = render_frames(
model,
planes,
render_cameras=render_cameras,
render_size=render_size,
chunk_size=chunk_size,
is_flexicubes=IS_FLEXICUBES,
)
save_video(
frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")