diff --git a/docs/developer-guide/operators.md b/docs/developer-guide/operators.md index 10fe1f03f0f..78355ffa11f 100644 --- a/docs/developer-guide/operators.md +++ b/docs/developer-guide/operators.md @@ -1,168 +1,177 @@ - -* [AbsVal](#absval) -* [ArgMax](#argmax) -* [BatchNorm](#batchnorm) -* [Bias](#bias) -* [BinaryOp](#binaryop) -* [BNLL](#bnll) -* [Cast](#cast) -* [CELU](#celu) -* [Clip](#clip) -* [Concat](#concat) -* [Convolution](#convolution) -* [Convolution1D](#convolution1d) -* [Convolution3D](#convolution3d) -* [ConvolutionDepthWise](#convolutiondepthwise) -* [ConvolutionDepthWise1D](#convolutiondepthwise1d) -* [ConvolutionDepthWise3D](#convolutiondepthwise3d) -* [CopyTo](#copyto) -* [Crop](#crop) -* [CumulativeSum](#cumulativesum) -* [Deconvolution](#deconvolution) -* [Deconvolution1D](#deconvolution1d) -* [Deconvolution3D](#deconvolution3d) -* [DeconvolutionDepthWise](#deconvolutiondepthwise) -* [DeconvolutionDepthWise1D](#deconvolutiondepthwise1d) -* [DeconvolutionDepthWise3D](#deconvolutiondepthwise3d) -* [DeformableConv2D](#deformableconv2d) -* [Dequantize](#dequantize) -* [Diag](#diag) -* [Dropout](#dropout) -* [Eltwise](#eltwise) -* [ELU](#elu) -* [Embed](#embed) -* [Exp](#exp) -* [Flatten](#flatten) -* [Fold](#fold) -* [GELU](#gelu) -* [GLU](#glu) -* [Gemm](#gemm) -* [GridSample](#gridsample) -* [GroupNorm](#groupnorm) -* [GRU](#gru) -* [HardSigmoid](#hardsigmoid) -* [HardSwish](#hardswish) -* [InnerProduct](#innerproduct) -* [Input](#input) -* [InstanceNorm](#instancenorm) -* [Interp](#interp) -* [InverseSpectrogram](#inversespectrogram) -* [LayerNorm](#layernorm) -* [Log](#log) -* [LRN](#lrn) -* [LSTM](#lstm) -* [MemoryData](#memorydata) -* [Mish](#mish) -* [MultiHeadAttention](#multiheadattention) -* [MVN](#mvn) -* [Noop](#noop) -* [Normalize](#normalize) -* [Packing](#packing) -* [Padding](#padding) -* [Permute](#permute) -* [PixelShuffle](#pixelshuffle) -* [Pooling](#pooling) -* [Pooling1D](#pooling1d) -* [Pooling3D](#pooling3d) -* [Power](#power) -* [PReLU](#prelu) -* [Quantize](#quantize) -* [Reduction](#reduction) -* [ReLU](#relu) -* [Reorg](#reorg) -* [Requantize](#requantize) -* [Reshape](#reshape) -* [RMSNorm](#rmsnorm) -* [RNN](#rnn) -* [Scale](#scale) -* [SELU](#selu) -* [Shrink](#shrink) -* [ShuffleChannel](#shufflechannel) -* [Sigmoid](#sigmoid) -* [Slice](#slice) -* [Softmax](#softmax) -* [Softplus](#softplus) -* [Spectrogram](#spectrogram) -* [Split](#split) -* [Swish](#swish) -* [TanH](#tanh) -* [Threshold](#threshold) -* [Tile](#tile) -* [UnaryOp](#unaryop) -* [Unfold](#unfold) +- [AbsVal](#absval) +- [ArgMax](#argmax) +- [BatchNorm](#batchnorm) +- [Bias](#bias) +- [BinaryOp](#binaryop) +- [BNLL](#bnll) +- [Cast](#cast) +- [CELU](#celu) +- [Clip](#clip) +- [Concat](#concat) +- [Convolution](#convolution) +- [Convolution1D](#convolution1d) +- [Convolution3D](#convolution3d) +- [ConvolutionDepthWise](#convolutiondepthwise) +- [ConvolutionDepthWise1D](#convolutiondepthwise1d) +- [ConvolutionDepthWise3D](#convolutiondepthwise3d) +- [CopyTo](#copyto) +- [Crop](#crop) +- [CumulativeSum](#cumulativesum) +- [Deconvolution](#deconvolution) +- [Deconvolution1D](#deconvolution1d) +- [Deconvolution3D](#deconvolution3d) +- [DeconvolutionDepthWise](#deconvolutiondepthwise) +- [DeconvolutionDepthWise1D](#deconvolutiondepthwise1d) +- [DeconvolutionDepthWise3D](#deconvolutiondepthwise3d) +- [DeformableConv2D](#deformableconv2d) +- [Dequantize](#dequantize) +- [Diag](#diag) +- [Dropout](#dropout) +- [Eltwise](#eltwise) +- [ELU](#elu) +- [Embed](#embed) +- [Exp](#exp) +- [Flatten](#flatten) +- [Fold](#fold) +- [GELU](#gelu) +- [GLU](#glu) +- [Gemm](#gemm) +- [GridSample](#gridsample) +- [GroupNorm](#groupnorm) +- [GRU](#gru) +- [HardSigmoid](#hardsigmoid) +- [HardSwish](#hardswish) +- [InnerProduct](#innerproduct) +- [Input](#input) +- [InstanceNorm](#instancenorm) +- [Interp](#interp) +- [InverseSpectrogram](#inversespectrogram) +- [LayerNorm](#layernorm) +- [Log](#log) +- [LRN](#lrn) +- [LSTM](#lstm) +- [MemoryData](#memorydata) +- [Mish](#mish) +- [MultiHeadAttention](#multiheadattention) +- [MVN](#mvn) +- [Noop](#noop) +- [Normalize](#normalize) +- [Packing](#packing) +- [Padding](#padding) +- [Permute](#permute) +- [PixelShuffle](#pixelshuffle) +- [Pooling](#pooling) +- [Pooling1D](#pooling1d) +- [Pooling3D](#pooling3d) +- [Power](#power) +- [PReLU](#prelu) +- [Quantize](#quantize) +- [Reduction](#reduction) +- [ReLU](#relu) +- [Reorg](#reorg) +- [Requantize](#requantize) +- [Reshape](#reshape) +- [RMSNorm](#rmsnorm) +- [RNN](#rnn) +- [Scale](#scale) +- [SELU](#selu) +- [Shrink](#shrink) +- [ShuffleChannel](#shufflechannel) +- [Sigmoid](#sigmoid) +- [Slice](#slice) +- [Softmax](#softmax) +- [Softplus](#softplus) +- [Spectrogram](#spectrogram) +- [Split](#split) +- [Swish](#swish) +- [TanH](#tanh) +- [Threshold](#threshold) +- [TopK](#topk) +- [Tile](#tile) +- [UnaryOp](#unaryop) +- [Unfold](#unfold) # AbsVal + ``` y = abs(x) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # ArgMax + ``` y = argmax(x, out_max_val, topk) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | out_max_val | int | 0 | | -| 1 | topk | int | 1 | | +| param id | name | type | default | description | +| -------- | ----------- | ---- | ------- | ----------- | +| 0 | out_max_val | int | 0 | | +| 1 | topk | int | 1 | | # BatchNorm + ``` y = (x - mean) / sqrt(var + eps) * slope + bias ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | channels | int | 0 | | -| 1 | eps | float | 0.f | | +| param id | name | type | default | description | +| -------- | -------- | ----- | ------- | ----------- | +| 0 | channels | int | 0 | | +| 1 | eps | float | 0.f | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| slope_data | float | [channels] | -| mean_data | float | [channels] | -| var_data | float | [channels] | -| bias_data | float | [channels] | +| weight | type | shape | +| ---------- | ----- | ---------- | +| slope_data | float | [channels] | +| mean_data | float | [channels] | +| var_data | float | [channels] | +| bias_data | float | [channels] | # Bias + ``` y = x + bias ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | bias_data_size| int | 0 | | +| param id | name | type | default | description | +| -------- | -------------- | ---- | ------- | ----------- | +| 0 | bias_data_size | int | 0 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| bias_data | float | [channels] | +| weight | type | shape | +| --------- | ----- | ---------- | +| bias_data | float | [channels] | # BinaryOp - This operation is used for binary computation, and the calculation rule depends on the [broadcasting rule](https://github.com/Tencent/ncnn/wiki/binaryop-broadcasting). + +This operation is used for binary computation, and the calculation rule depends on the [broadcasting rule](https://github.com/Tencent/ncnn/wiki/binaryop-broadcasting). + ``` C = binaryop(A, B) ``` + if with_scalar = 1: + - one_blob_only - support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | op_type | int | 0 | Operation type as follows | -| 1 | with_scalar | int | 0 | with_scalar=0 B is a matrix, with_scalar=1 B is a scalar | -| 2 | b | float | 0.f | When B is a scalar, B = b | +| param id | name | type | default | description | +| -------- | ----------- | ----- | ------- | -------------------------------------------------------- | +| 0 | op_type | int | 0 | Operation type as follows | +| 1 | with_scalar | int | 0 | with_scalar=0 B is a matrix, with_scalar=1 B is a scalar | +| 2 | b | float | 0.f | When B is a scalar, B = b | Operation type: + - 0 = ADD - 1 = SUB - 2 = MUL @@ -177,28 +186,31 @@ Operation type: - 11 = RATAN2 # BNLL + ``` y = log(1 + e^(-x)) , x > 0 y = log(1 + e^x), x < 0 ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # Cast + ``` y = cast(x) ``` -* one_blob_only -* support_packing +- one_blob_only +- support_packing -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | type_from | int | 0 | | -| 1 | type_to | int | 0 | | +| param id | name | type | default | description | +| -------- | --------- | ---- | ------- | ----------- | +| 0 | type_from | int | 0 | | +| 1 | type_to | int | 0 | | Element type: + - 0 = auto - 1 = float32 - 2 = float16 @@ -206,293 +218,304 @@ Element type: - 4 = bfloat16 # CELU + ``` if x < 0 y = (exp(x / alpha) - 1.f) * alpha else y = x ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | alpha | float | 1.f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | alpha | float | 1.f | | # Clip + ``` y = clamp(x, min, max) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | min | float | -FLT_MAX | | -| 1 | max | float | FLT_MAX | | +| param id | name | type | default | description | +| -------- | ---- | ----- | -------- | ----------- | +| 0 | min | float | -FLT_MAX | | +| 1 | max | float | FLT_MAX | | # Concat + ``` y = concat(x0, x1, x2, ...) by axis ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | axis | int | 0 | | +| param id | name | type | default | description | +| -------- | ---- | ---- | ------- | ----------- | +| 0 | axis | int | 0 | | # Convolution + ``` x2 = pad(x, pads, pad_value) x3 = conv(x2, weight, kernel, stride, dilation) + bias y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 8 | int8_scale_term| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 18 | pad_value | float | 0.f | | -| 19 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] | -| bias_data | float | [num_output] | -| weight_data_int8_scales| float | [num_output] | -| bottom_blob_int8_scales| float | [1] | -| top_blob_int8_scales| float | [1] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 8 | int8_scale_term | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 18 | pad_value | float | 0.f | | +| 19 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------------------- | --------------- | ------------------------------------------- | +| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] | +| bias_data | float | [num_output] | +| weight_data_int8_scales | float | [num_output] | +| bottom_blob_int8_scales | float | [1] | +| top_blob_int8_scales | float | [1] | # Convolution1D + ``` x2 = pad(x, pads, pad_value) x3 = conv1d(x2, weight, kernel, stride, dilation) + bias y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 15 | pad_right | int | pad_left | | -| 18 | pad_value | float | 0.f | | -| 19 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, num_input, num_output] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | -------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 15 | pad_right | int | pad_left | | +| 18 | pad_value | float | 0.f | | +| 19 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------- | --------------- | --------------------------------- | +| weight_data | float/fp16/int8 | [kernel_w, num_input, num_output] | +| bias_data | float | [num_output] | # Convolution3D + ``` x2 = pad(x, pads, pad_value) x3 = conv3d(x2, weight, kernel, stride, dilation) + bias y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 17 | pad_behind | int | pad_front | | -| 18 | pad_value | float | 0.f | | -| 21 | kernel_d | int | kernel_w | | -| 22 | dilation_d | int | dilation_w | | -| 23 | stride_d | int | stride_w | | -| 24 | pad_front | int | pad_left | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input, num_output] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 17 | pad_behind | int | pad_front | | +| 18 | pad_value | float | 0.f | | +| 21 | kernel_d | int | kernel_w | | +| 22 | dilation_d | int | dilation_w | | +| 23 | stride_d | int | stride_w | | +| 24 | pad_front | int | pad_left | | + +| weight | type | shape | +| ----------- | --------------- | ----------------------------------------------------- | +| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input, num_output] | +| bias_data | float | [num_output] | # ConvolutionDepthWise + ``` x2 = pad(x, pads, pad_value) x3 = conv(x2, weight, kernel, stride, dilation, group) + bias y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 7 | group | int | 1 | | -| 8 | int8_scale_term| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 18 | pad_value | float | 0.f | | -| 19 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input / group, num_output / group, group] | -| bias_data | float | [num_output] | -| weight_data_int8_scales| float | [group] | -| bottom_blob_int8_scales| float | [1] | -| top_blob_int8_scales| float | [1] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 7 | group | int | 1 | | +| 8 | int8_scale_term | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 18 | pad_value | float | 0.f | | +| 19 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------------------- | --------------- | ------------------------------------------------------------------ | +| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input / group, num_output / group, group] | +| bias_data | float | [num_output] | +| weight_data_int8_scales | float | [group] | +| bottom_blob_int8_scales | float | [1] | +| top_blob_int8_scales | float | [1] | # ConvolutionDepthWise1D + ``` x2 = pad(x, pads, pad_value) x3 = conv1d(x2, weight, kernel, stride, dilation, group) + bias y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 7 | group | int | 1 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 15 | pad_right | int | pad_left | | -| 18 | pad_value | float | 0.f | | -| 19 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, num_input / group, num_output / group, group] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | -------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 7 | group | int | 1 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 15 | pad_right | int | pad_left | | +| 18 | pad_value | float | 0.f | | +| 19 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------- | --------------- | -------------------------------------------------------- | +| weight_data | float/fp16/int8 | [kernel_w, num_input / group, num_output / group, group] | +| bias_data | float | [num_output] | # ConvolutionDepthWise3D + ``` x2 = pad(x, pads, pad_value) x3 = conv3d(x2, weight, kernel, stride, dilation, group) + bias y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 7 | group | int | 1 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 17 | pad_behind | int | pad_front | | -| 18 | pad_value | float | 0.f | | -| 21 | kernel_d | int | kernel_w | | -| 22 | dilation_d | int | dilation_w | | -| 23 | stride_d | int | stride_w | | -| 24 | pad_front | int | pad_left | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 7 | group | int | 1 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 17 | pad_behind | int | pad_front | | +| 18 | pad_value | float | 0.f | | +| 21 | kernel_d | int | kernel_w | | +| 22 | dilation_d | int | dilation_w | | +| 23 | stride_d | int | stride_w | | +| 24 | pad_front | int | pad_left | | + +| weight | type | shape | +| ----------- | --------------- | ---------------------------------------------------------------------------- | +| weight_data | float/fp16/int8 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] | +| bias_data | float | [num_output] | # CopyTo + ``` self[offset] = src ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | woffset | int | 0 | | -| 1 | hoffset | int | 0 | | -| 13 | doffset | int | 0 | | -| 2 | coffset | int | 0 | | -| 9 | starts | array | [ ] | | -| 11 | axes | array | [ ] | | +| param id | name | type | default | description | +| -------- | ------- | ----- | ------- | ----------- | +| 0 | woffset | int | 0 | | +| 1 | hoffset | int | 0 | | +| 13 | doffset | int | 0 | | +| 2 | coffset | int | 0 | | +| 9 | starts | array | [ ] | | +| 11 | axes | array | [ ] | | # Crop + ``` y = crop(x) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | woffset | int | 0 | | -| 1 | hoffset | int | 0 | | -| 13 | doffset | int | 0 | | -| 2 | coffset | int | 0 | | -| 3 | outw | int | 0 | | -| 4 | outh | int | 0 | | -| 14 | outd | int | 0 | | -| 5 | outc | int | 0 | | -| 6 | woffset2 | int | 0 | | -| 7 | hoffset2 | int | 0 | | -| 15 | doffset2 | int | 0 | | -| 8 | coffset2 | int | 0 | | -| 9 | starts | array | [ ] | | -| 10 | ends | array | [ ] | | -| 11 | axes | array | [ ] | | +- one_blob_only + +| param id | name | type | default | description | +| -------- | -------- | ----- | ------- | ----------- | +| 0 | woffset | int | 0 | | +| 1 | hoffset | int | 0 | | +| 13 | doffset | int | 0 | | +| 2 | coffset | int | 0 | | +| 3 | outw | int | 0 | | +| 4 | outh | int | 0 | | +| 14 | outd | int | 0 | | +| 5 | outc | int | 0 | | +| 6 | woffset2 | int | 0 | | +| 7 | hoffset2 | int | 0 | | +| 15 | doffset2 | int | 0 | | +| 8 | coffset2 | int | 0 | | +| 9 | starts | array | [ ] | | +| 10 | ends | array | [ ] | | +| 11 | axes | array | [ ] | | # CumulativeSum @@ -500,408 +523,425 @@ If axis < 0, we use axis = x.dims + axis It implements https://pytorch.org/docs/stable/generated/torch.cumsum.html -* one_blob_only -* support_inplace - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | axis | int | 0 | | +- one_blob_only +- support_inplace +| param id | name | type | default | description | +| -------- | ---- | ---- | ------- | ----------- | +| 0 | axis | int | 0 | | # Deconvolution + ``` x2 = deconv(x, weight, kernel, stride, dilation) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 18 | output_pad_right| int | 0 | | -| 19 | output_pad_bottom| int | output_pad_right | | -| 20 | output_w | int | 0 | | -| 21 | output_h | int | output_w | | -| 28 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16 | [kernel_w, kernel_h, num_input, num_output] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 18 | output_pad_right | int | 0 | | +| 19 | output_pad_bottom | int | output_pad_right | | +| 20 | output_w | int | 0 | | +| 21 | output_h | int | output_w | | +| 28 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------- | ---------- | ------------------------------------------- | +| weight_data | float/fp16 | [kernel_w, kernel_h, num_input, num_output] | +| bias_data | float | [num_output] | # Deconvolution1D + ``` x2 = deconv1d(x, weight, kernel, stride, dilation) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 15 | pad_right | int | pad_left | | -| 18 | output_pad_right| int | 0 | | -| 20 | output_w | int | 0 | | -| 28 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16 | [kernel_w, num_input, num_output] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | -------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 15 | pad_right | int | pad_left | | +| 18 | output_pad_right | int | 0 | | +| 20 | output_w | int | 0 | | +| 28 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------- | ---------- | --------------------------------- | +| weight_data | float/fp16 | [kernel_w, num_input, num_output] | +| bias_data | float | [num_output] | # Deconvolution3D + ``` x2 = deconv3d(x, weight, kernel, stride, dilation) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 17 | pad_behind | int | pad_front | | -| 18 | output_pad_right| int | 0 | | -| 19 | output_pad_bottom| int | output_pad_right | | -| 20 | output_pad_behind| int | output_pad_right | | -| 21 | kernel_d | int | kernel_w | | -| 22 | dilation_d | int | dilation_w | | -| 23 | stride_d | int | stride_w | | -| 24 | pad_front | int | pad_left | | -| 25 | output_w | int | 0 | | -| 26 | output_h | int | output_w | | -| 27 | output_d | int | output_w | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input, num_output] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 17 | pad_behind | int | pad_front | | +| 18 | output_pad_right | int | 0 | | +| 19 | output_pad_bottom | int | output_pad_right | | +| 20 | output_pad_behind | int | output_pad_right | | +| 21 | kernel_d | int | kernel_w | | +| 22 | dilation_d | int | dilation_w | | +| 23 | stride_d | int | stride_w | | +| 24 | pad_front | int | pad_left | | +| 25 | output_w | int | 0 | | +| 26 | output_h | int | output_w | | +| 27 | output_d | int | output_w | | + +| weight | type | shape | +| ----------- | ---------- | ----------------------------------------------------- | +| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input, num_output] | +| bias_data | float | [num_output] | # DeconvolutionDepthWise + ``` x2 = deconv(x, weight, kernel, stride, dilation, group) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 7 | group | int | 1 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 18 | output_pad_right| int | 0 | | -| 19 | output_pad_bottom| int | output_pad_right | | -| 20 | output_w | int | 0 | | -| 21 | output_h | int | output_w | | -| 28 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16 | [kernel_w, kernel_h, num_input / group, num_output / group, group] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 7 | group | int | 1 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 18 | output_pad_right | int | 0 | | +| 19 | output_pad_bottom | int | output_pad_right | | +| 20 | output_w | int | 0 | | +| 21 | output_h | int | output_w | | +| 28 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------- | ---------- | ------------------------------------------------------------------ | +| weight_data | float/fp16 | [kernel_w, kernel_h, num_input / group, num_output / group, group] | +| bias_data | float | [num_output] | # DeconvolutionDepthWise1D + ``` x2 = deconv1d(x, weight, kernel, stride, dilation, group) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 7 | group | int | 1 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 15 | pad_right | int | pad_left | | -| 18 | output_pad_right| int | 0 | | -| 20 | output_w | int | 0 | | -| 28 | dynamic_weight| int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16 | [kernel_w, num_input / group, num_output / group, group] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | -------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 7 | group | int | 1 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 15 | pad_right | int | pad_left | | +| 18 | output_pad_right | int | 0 | | +| 20 | output_w | int | 0 | | +| 28 | dynamic_weight | int | 0 | | + +| weight | type | shape | +| ----------- | ---------- | -------------------------------------------------------- | +| weight_data | float/fp16 | [kernel_w, num_input / group, num_output / group, group] | +| bias_data | float | [num_output] | # DeconvolutionDepthWise3D + ``` x2 = deconv3d(x, weight, kernel, stride, dilation, group) + bias x3 = depad(x2, pads, pad_value) y = activation(x3, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 7 | group | int | 1 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 17 | pad_behind | int | pad_front | | -| 18 | output_pad_right| int | 0 | | -| 19 | output_pad_bottom| int | output_pad_right | | -| 20 | output_pad_behind| int | output_pad_right | | -| 21 | kernel_d | int | kernel_w | | -| 22 | dilation_d | int | dilation_w | | -| 23 | stride_d | int | stride_w | | -| 24 | pad_front | int | pad_left | | -| 25 | output_w | int | 0 | | -| 26 | output_h | int | output_w | | -| 27 | output_d | int | output_w | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] | -| bias_data | float | [num_output] | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 7 | group | int | 1 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 17 | pad_behind | int | pad_front | | +| 18 | output_pad_right | int | 0 | | +| 19 | output_pad_bottom | int | output_pad_right | | +| 20 | output_pad_behind | int | output_pad_right | | +| 21 | kernel_d | int | kernel_w | | +| 22 | dilation_d | int | dilation_w | | +| 23 | stride_d | int | stride_w | | +| 24 | pad_front | int | pad_left | | +| 25 | output_w | int | 0 | | +| 26 | output_h | int | output_w | | +| 27 | output_d | int | output_w | | + +| weight | type | shape | +| ----------- | ---------- | ---------------------------------------------------------------------------- | +| weight_data | float/fp16 | [kernel_w, kernel_h, kernel_d, num_input / group, num_output / group, group] | +| bias_data | float | [num_output] | # DeformableConv2D + ``` x2 = deformableconv2d(x, offset, mask, weight, kernel, stride, dilation) + bias y = activation(x2, act_type, act_params) ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 5 | bias_term | int | 0 | | -| 6 | weight_data_size| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] | -| bias_data | float | [num_output] | +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 5 | bias_term | int | 0 | | +| 6 | weight_data_size | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | + +| weight | type | shape | +| ----------- | --------------- | ------------------------------------------- | +| weight_data | float/fp16/int8 | [kernel_w, kernel_h, num_input, num_output] | +| bias_data | float | [num_output] | # Dequantize + ``` y = x * scale + bias ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | scale_data_size| int | 1 | | -| 1 | bias_data_size| int | 0 | | +| param id | name | type | default | description | +| -------- | --------------- | ---- | ------- | ----------- | +| 0 | scale_data_size | int | 1 | | +| 1 | bias_data_size | int | 0 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| scale_data | float | [scale_data_size] | -| bias_data | float | [bias_data_size] | +| weight | type | shape | +| ---------- | ----- | ----------------- | +| scale_data | float | [scale_data_size] | +| bias_data | float | [bias_data_size] | # Diag + ``` y = diag(x, diagonal) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | diagonal | int | 0 | | +| param id | name | type | default | description | +| -------- | -------- | ---- | ------- | ----------- | +| 0 | diagonal | int | 0 | | # Dropout + ``` y = x * scale ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | scale | float | 1.f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | scale | float | 1.f | | # Eltwise + ``` y = elementwise_op(x0, x1, ...) ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | op_type | int | 0 | | -| 1 | coeffs | array | [ ] | | +| param id | name | type | default | description | +| -------- | ------- | ----- | ------- | ----------- | +| 0 | op_type | int | 0 | | +| 1 | coeffs | array | [ ] | | Operation type: + - 0 = PROD - 1 = SUM - 2 = MAX # ELU + ``` if x < 0 y = (exp(x) - 1) * alpha else y = x ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | alpha | float | 0.1f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | alpha | float | 0.1f | | # Embed + ``` y = embedding(x) ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | input_dim | int | 0 | | -| 2 | bias_term | int | 0 | | -| 3 | weight_data_size | int | 0 | | -| 18 | int8_scale_term| int | 0 | | +| param id | name | type | default | description | +| -------- | ---------------- | ---- | ------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | input_dim | int | 0 | | +| 2 | bias_term | int | 0 | | +| 3 | weight_data_size | int | 0 | | +| 18 | int8_scale_term | int | 0 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float | [weight_data_size] | -| bias_term | float | [num_output] | -| weight_data_int8_scales| float | [1] | +| weight | type | shape | +| ----------------------- | ----- | ------------------ | +| weight_data | float | [weight_data_size] | +| bias_term | float | [num_output] | +| weight_data_int8_scales | float | [1] | # Exp + ``` if base == -1 y = exp(shift + x * scale) else y = pow(base, (shift + x * scale)) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | base | float | -1.f | | -| 1 | scale | float | 1.f | | -| 2 | shift | float | 0.f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | base | float | -1.f | | +| 1 | scale | float | 1.f | | +| 2 | shift | float | 0.f | | # Flatten + Reshape blob to 1 dimension -* one_blob_only +- one_blob_only # Fold + ``` y = fold(x) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | -| 20 | output_w | int | 0 | | -| 21 | output_h | int | output_w | | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ---------- | ---- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | +| 20 | output_w | int | 0 | | +| 21 | output_h | int | output_w | | # GELU + ``` if fast_gelu == 1 y = 0.5 * x * (1 + tanh(0.79788452 * (x + 0.044715 * x * x * x))); else y = 0.5 * x * erfc(-0.70710678 * x) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | fast_gelu | int | 0 | use approximation | +| param id | name | type | default | description | +| -------- | --------- | ---- | ------- | ----------------- | +| 0 | fast_gelu | int | 0 | use approximation | # GLU @@ -913,13 +953,14 @@ where a is the first half of the input matrix and b is the second half. axis specifies the dimension to split the input -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | axis | int | 0 | | +| param id | name | type | default | description | +| -------- | ---- | ---- | ------- | ----------- | +| 0 | axis | int | 0 | | # Gemm + ``` a = transA ? transpose(x0) : x0 b = transb ? transpose(x1) : x1 @@ -927,88 +968,91 @@ c = x2 y = (gemm(a, b) + c * beta) * alpha ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | alpha | float | 1.f | | -| 1 | beta | float | 1.f | | -| 2 | transA | int | 0 | | -| 3 | transb | int | 0 | | -| 4 | constantA | int | 0 | | -| 5 | constantB | int | 0 | | -| 6 | constantC | int | 0 | | -| 7 | constantM | int | 0 | | -| 8 | constantN | int | 0 | | -| 9 | constantK | int | 0 | | -| 10 | constant_broadcast_type_C | int | 0 | | -| 11 | output_N1M | int | 0 | | -| 12 | output_elempack | int | 0 | | -| 13 | output_elemtype | int | 0 | | -| 14 | output_transpose | int| 0 | | -| 18 | int8_scale_term | int | 0 | | -| 20 | constant_TILE_M | int | 0 | | -| 21 | constant_TILE_N | int | 0 | | -| 22 | constant_TILE_K | int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| A_data | float/fp16/int8 | [M, K] or [K, M] | -| B_data | float/fp16/int8 | [N, K] or [K, N] | -| C_data | float | [1], [M] or [N] or [1, M] or [N,1] or [N, M] | -| A_data_int8_scales| float | [M] | -| B_data_int8_scales| float | [1] | +| param id | name | type | default | description | +| -------- | ------------------------- | ----- | ------- | ----------- | +| 0 | alpha | float | 1.f | | +| 1 | beta | float | 1.f | | +| 2 | transA | int | 0 | | +| 3 | transb | int | 0 | | +| 4 | constantA | int | 0 | | +| 5 | constantB | int | 0 | | +| 6 | constantC | int | 0 | | +| 7 | constantM | int | 0 | | +| 8 | constantN | int | 0 | | +| 9 | constantK | int | 0 | | +| 10 | constant_broadcast_type_C | int | 0 | | +| 11 | output_N1M | int | 0 | | +| 12 | output_elempack | int | 0 | | +| 13 | output_elemtype | int | 0 | | +| 14 | output_transpose | int | 0 | | +| 18 | int8_scale_term | int | 0 | | +| 20 | constant_TILE_M | int | 0 | | +| 21 | constant_TILE_N | int | 0 | | +| 22 | constant_TILE_K | int | 0 | | + +| weight | type | shape | +| ------------------ | --------------- | -------------------------------------------- | +| A_data | float/fp16/int8 | [M, K] or [K, M] | +| B_data | float/fp16/int8 | [N, K] or [K, N] | +| C_data | float | [1], [M] or [N] or [1, M] or [N,1] or [N, M] | +| A_data_int8_scales | float | [M] | +| B_data_int8_scales | float | [1] | # GridSample + ``` Given an input and a flow-field grid, computes the output using input values and pixel locations from grid. -For each output location output[:, h2, w2], the size-2 vector grid[h2, w2, 2] specifies input pixel[:, h1, w1] locations x and y, +For each output location output[:, h2, w2], the size-2 vector grid[h2, w2, 2] specifies input pixel[:, h1, w1] locations x and y, which are used to interpolate the output value output[:, h2, w2] This function is often used in conjunction with affine_grid() to build Spatial Transformer Networks . ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | sample_type | int | 1 | | -| 1 | padding_mode | int | 1 | | -| 2 | align_corner | int | 0 | | -| 3 | permute_fusion| int | 0 | fuse with permute | - +| param id | name | type | default | description | +| -------- | -------------- | ---- | ------- | ----------------- | +| 0 | sample_type | int | 1 | | +| 1 | padding_mode | int | 1 | | +| 2 | align_corner | int | 0 | | +| 3 | permute_fusion | int | 0 | fuse with permute | Sample type: + - 1 = Nearest - 2 = Bilinear - 3 = Bicubic Padding mode: + - 1 = zeros - 2 = border - 3 = reflection - # GroupNorm + ``` split x along channel axis into group x0, x1 ... l2 normalize for each group x0, x1 ... y = x * gamma + beta ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | group | int | 1 | | -| 1 | channels | int | 0 | | -| 2 | eps | float | 0.001f | x = x / sqrt(var + eps) | -| 3 | affine | int | 1 | | +| param id | name | type | default | description | +| -------- | -------- | ----- | ------- | ----------------------- | +| 0 | group | int | 1 | | +| 1 | channels | int | 0 | | +| 2 | eps | float | 0.001f | x = x / sqrt(var + eps) | +| 3 | affine | int | 1 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| gamma_data | float | [channels] | -| beta_data | float | [channels] | +| weight | type | shape | +| ---------- | ----- | ---------- | +| gamma_data | float | [channels] | +| beta_data | float | [channels] | # GRU + Apply a single-layer GRU to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`. ``` @@ -1016,134 +1060,143 @@ y = gru(x) y0, hidden y1 = gru(x0, hidden x1) ``` -* one_blob_only if bidirectional +- one_blob_only if bidirectional -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | hidden size of output | -| 1 | weight_data_size| int | 0 | total size of weight matrix | -| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | +| param id | name | type | default | description | +| -------- | ---------------- | ---- | ------- | ------------------------------------- | +| 0 | num_output | int | 0 | hidden size of output | +| 1 | weight_data_size | int | 0 | total size of weight matrix | +| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_xc_data| float/fp16/int8 | [input_size, num_output * 3, num_directions] | -| bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] | -| weight_hc_data| float/fp16/int8 | [num_output, num_output * 3, num_directions] | +| weight | type | shape | +| -------------- | --------------- | -------------------------------------------- | +| weight_xc_data | float/fp16/int8 | [input_size, num_output * 3, num_directions] | +| bias_c_data | float/fp16/int8 | [num_output, 4, num_directions] | +| weight_hc_data | float/fp16/int8 | [num_output, num_output * 3, num_directions] | Direction flag: + - 0 = forward only - 1 = reverse only - 2 = bidirectional # HardSigmoid + ``` y = clamp(x * alpha + beta, 0, 1) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | alpha | float | 0.2f | | -| 1 | beta | float | 0.5f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | alpha | float | 0.2f | | +| 1 | beta | float | 0.5f | | # HardSwish + ``` y = x * clamp(x * alpha + beta, 0, 1) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | alpha | float | 0.2f | | -| 1 | beta | float | 0.5f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | alpha | float | 0.2f | | +| 1 | beta | float | 0.5f | | # InnerProduct + ``` x2 = innerproduct(x, weight) + bias y = activation(x2, act_type, act_params) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | bias_term | int | 0 | | -| 2 | weight_data_size| int | 0 | | -| 8 | int8_scale_term| int | 0 | | -| 9 | activation_type| int | 0 | | -| 10 | activation_params| array | [ ] | | +- one_blob_only -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_data | float/fp16/int8 | [num_input, num_output] | -| bias_data | float | [num_output] | -| weight_data_int8_scales| float | [num_output] | -| bottom_blob_int8_scales| float | [1] | +| param id | name | type | default | description | +| -------- | ----------------- | ----- | ------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | bias_term | int | 0 | | +| 2 | weight_data_size | int | 0 | | +| 8 | int8_scale_term | int | 0 | | +| 9 | activation_type | int | 0 | | +| 10 | activation_params | array | [ ] | | + +| weight | type | shape | +| ----------------------- | --------------- | ----------------------- | +| weight_data | float/fp16/int8 | [num_input, num_output] | +| bias_data | float | [num_output] | +| weight_data_int8_scales | float | [num_output] | +| bottom_blob_int8_scales | float | [1] | # Input + ``` y = input ``` -* support_inplace +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | w | int | 0 | | -| 1 | h | int | 0 | | -| 11 | d | int | 0 | | -| 2 | c | int | 0 | | +| param id | name | type | default | description | +| -------- | ---- | ---- | ------- | ----------- | +| 0 | w | int | 0 | | +| 1 | h | int | 0 | | +| 11 | d | int | 0 | | +| 2 | c | int | 0 | | # InstanceNorm + ``` split x along channel axis into instance x0, x1 ... l2 normalize for each channel instance x0, x1 ... y = x * gamma + beta ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | channels | int | 0 | | -| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | -| 2 | affine | int | 1 | | +| param id | name | type | default | description | +| -------- | -------- | ----- | ------- | ----------------------- | +| 0 | channels | int | 0 | | +| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | +| 2 | affine | int | 1 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| gamma_data | float | [channels] | -| beta_data | float | [channels] | +| weight | type | shape | +| ---------- | ----- | ---------- | +| gamma_data | float | [channels] | +| beta_data | float | [channels] | # Interp + ``` if dynamic_target_size == 0 y = resize(x) by fixed size or scale else y = resize(x0, size(x1)) ``` -* one_blob_only if dynamic_target_size == 0 +- one_blob_only if dynamic_target_size == 0 -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | resize_type | int | 0 | | -| 1 | height_scale | float | 1.f | | -| 2 | width_scale | float | 1.f | | -| 3 | output_height | int | 0 | | -| 4 | output_width | int | 0 | | -| 5 | dynamic_target_size| int | 0 | | -| 6 | align_corner | int | 0 | | +| param id | name | type | default | description | +| -------- | ------------------- | ----- | ------- | ----------- | +| 0 | resize_type | int | 0 | | +| 1 | height_scale | float | 1.f | | +| 2 | width_scale | float | 1.f | | +| 3 | output_height | int | 0 | | +| 4 | output_width | int | 0 | | +| 5 | dynamic_target_size | int | 0 | | +| 6 | align_corner | int | 0 | | Resize type: + - 1 = Nearest - 2 = Bilinear - 3 = Bicubic # InverseSpectrogram + ``` x1 = x as complex x1 = x1 * sqrt(norm) if normalized @@ -1155,77 +1208,82 @@ if returns == 1 return y1 real if returns == 2 return y1 imag ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | n_fft | int | 0 | | -| 1 | returns | int | 1 | | -| 2 | hoplen | int | n_fft / 4 | | -| 3 | winlen | int | n_fft | | -| 4 | window_type | int | 0 | 0=ones 1=hann 2=hamming | -| 5 | center | int | 1 | | -| 7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy | +| param id | name | type | default | description | +| -------- | ----------- | ---- | --------- | ------------------------------- | +| 0 | n_fft | int | 0 | | +| 1 | returns | int | 1 | | +| 2 | hoplen | int | n_fft / 4 | | +| 3 | winlen | int | n_fft | | +| 4 | window_type | int | 0 | 0=ones 1=hann 2=hamming | +| 5 | center | int | 1 | | +| 7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy | # LayerNorm + ``` split x along outmost axis into part x0, x1 ... l2 normalize for each part x0, x1 ... y = x * gamma + beta by elementwise ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | affine_size | int | 0 | | -| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | -| 2 | affine | int | 1 | | +| param id | name | type | default | description | +| -------- | ----------- | ----- | ------- | ----------------------- | +| 0 | affine_size | int | 0 | | +| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | +| 2 | affine | int | 1 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| gamma_data | float | [affine_size] | -| beta_data | float | [affine_size] | +| weight | type | shape | +| ---------- | ----- | ------------- | +| gamma_data | float | [affine_size] | +| beta_data | float | [affine_size] | # Log + ``` if base == -1 y = log(shift + x * scale) else y = log(shift + x * scale) / log(base) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | base | float | -1.f | | -| 1 | scale | float | 1.f | | -| 2 | shift | float | 0.f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | base | float | -1.f | | +| 1 | scale | float | 1.f | | +| 2 | shift | float | 0.f | | # LRN + ``` if region_type == ACROSS_CHANNELS square_sum = sum of channel window of local_size if region_type == WITHIN_CHANNEL square_sum = sum of spatial window of local_size y = x * pow(bias + alpha * square_sum / (local_size * local_size), -beta) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | region_type | int | 0 | | -| 1 | local_size | int | 5 | | -| 2 | alpha | float | 1.f | | -| 3 | beta | float | 0.75f | | -| 4 | bias | float | 1.f | | +| param id | name | type | default | description | +| -------- | ----------- | ----- | ------- | ----------- | +| 0 | region_type | int | 0 | | +| 1 | local_size | int | 5 | | +| 2 | alpha | float | 1.f | | +| 3 | beta | float | 0.75f | | +| 4 | bias | float | 1.f | | Region type: + - 0 = ACROSS_CHANNELS - 1 = WITHIN_CHANNEL # LSTM + Apply a single-layer LSTM to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`. ``` @@ -1233,53 +1291,57 @@ y = lstm(x) y0, hidden y1, cell y2 = lstm(x0, hidden x1, cell x2) ``` -* one_blob_only if bidirectional +- one_blob_only if bidirectional -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | output size of output | -| 1 | weight_data_size| int | 0 | total size of IFOG weight matrix | -| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | -| 3 | hidden_size | int | num_output| hidden size | +| param id | name | type | default | description | +| -------- | ---------------- | ---- | ---------- | ------------------------------------- | +| 0 | num_output | int | 0 | output size of output | +| 1 | weight_data_size | int | 0 | total size of IFOG weight matrix | +| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | +| 3 | hidden_size | int | num_output | hidden size | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_xc_data| float/fp16/int8 | [input_size, hidden_size * 4, num_directions] | -| bias_c_data | float/fp16/int8 | [hidden_size, 4, num_directions] | -| weight_hc_data| float/fp16/int8 | [num_output, hidden_size * 4, num_directions] | -| weight_hr_data| float/fp16/int8 | [hidden_size, num_output, num_directions] | +| weight | type | shape | +| -------------- | --------------- | --------------------------------------------- | +| weight_xc_data | float/fp16/int8 | [input_size, hidden_size * 4, num_directions] | +| bias_c_data | float/fp16/int8 | [hidden_size, 4, num_directions] | +| weight_hc_data | float/fp16/int8 | [num_output, hidden_size * 4, num_directions] | +| weight_hr_data | float/fp16/int8 | [hidden_size, num_output, num_directions] | Direction flag: + - 0 = forward only - 1 = reverse only - 2 = bidirectional # MemoryData + ``` y = data ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | w | int | 0 | | -| 1 | h | int | 0 | | -| 11 | d | int | 0 | | -| 2 | c | int | 0 | | -| 21 | load_type | int | 1 | 1=fp32 | +| param id | name | type | default | description | +| -------- | --------- | ---- | ------- | ----------- | +| 0 | w | int | 0 | | +| 1 | h | int | 0 | | +| 11 | d | int | 0 | | +| 2 | c | int | 0 | | +| 21 | load_type | int | 1 | 1=fp32 | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| data | float | [w, h, d, c] | +| weight | type | shape | +| ------ | ----- | ------------ | +| data | float | [w, h, d, c] | # Mish + ``` y = x * tanh(log(exp(x) + 1)) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # MultiHeadAttention + ``` split q k v into num_head part q0, k0, v0, q1, k1, v1 ... for each num_head part @@ -1294,33 +1356,34 @@ for each num_head part y = affine(out) ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | embed_dim | int | 0 | | -| 1 | num_heads | int | 1 | | -| 2 | weight_data_size| int | 0 | qdim = weight_data_size / embed_dim | -| 3 | kdim | int | embed_dim | | -| 4 | vdim | int | embed_dim | | -| 5 | attn_mask | int | 0 | | -| 6 | scale | float | 1.f / sqrt(embed_dim / num_heads) | | -| 18 | int8_scale_term | int | 0 | | - -| weight | type | shape | -| ------------- | ----- | --------------------- | -| q_weight_data | float/fp16/int8 | [embed_dim * qdim] | -| q_bias_data | float | [embed_dim] | -| k_weight_data | float/fp16/int8 | [embed_dim * kdim] | -| k_bias_data | float | [embed_dim] | -| v_weight_data | float/fp16/int8 | [embed_dim * vdim] | -| v_bias_data | float | [embed_dim] | -| out_weight_data| float/fp16/int8 | [qdim * embed_dim] | -| out_bias_data | float | [qdim] | -| q_weight_data_int8_scales| float | [embed_dim] | -| k_weight_data_int8_scales| float | [embed_dim] | -| v_weight_data_int8_scales| float | [embed_dim] | -| out_weight_data_int8_scales| float | [1] | +| param id | name | type | default | description | +| -------- | ---------------- | ----- | --------------------------------- | ----------------------------------- | +| 0 | embed_dim | int | 0 | | +| 1 | num_heads | int | 1 | | +| 2 | weight_data_size | int | 0 | qdim = weight_data_size / embed_dim | +| 3 | kdim | int | embed_dim | | +| 4 | vdim | int | embed_dim | | +| 5 | attn_mask | int | 0 | | +| 6 | scale | float | 1.f / sqrt(embed_dim / num_heads) | | +| 18 | int8_scale_term | int | 0 | | + +| weight | type | shape | +| --------------------------- | --------------- | ------------------ | +| q_weight_data | float/fp16/int8 | [embed_dim * qdim] | +| q_bias_data | float | [embed_dim] | +| k_weight_data | float/fp16/int8 | [embed_dim * kdim] | +| k_bias_data | float | [embed_dim] | +| v_weight_data | float/fp16/int8 | [embed_dim * vdim] | +| v_bias_data | float | [embed_dim] | +| out_weight_data | float/fp16/int8 | [qdim * embed_dim] | +| out_bias_data | float | [qdim] | +| q_weight_data_int8_scales | float | [embed_dim] | +| k_weight_data_int8_scales | float | [embed_dim] | +| v_weight_data_int8_scales | float | [embed_dim] | +| out_weight_data_int8_scales | float | [1] | # MVN + ``` if normalize_variance == 1 && across_channels == 1 y = (x - mean) / (sqrt(var) + eps) of whole blob if normalize_variance == 1 && across_channels == 0 y = (x - mean) / (sqrt(var) + eps) of each channel @@ -1328,20 +1391,22 @@ if normalize_variance == 0 && across_channels == 1 y = x - mean of whole bl if normalize_variance == 0 && across_channels == 0 y = x - mean of each channel ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | normalize_variance| int | 0 | | -| 1 | across_channels| int | 0 | | -| 2 | eps | float | 0.0001f | x = x / (sqrt(var) + eps) | +| param id | name | type | default | description | +| -------- | ------------------ | ----- | ------- | ------------------------- | +| 0 | normalize_variance | int | 0 | | +| 1 | across_channels | int | 0 | | +| 2 | eps | float | 0.0001f | x = x / (sqrt(var) + eps) | # Noop + ``` y = x ``` # Normalize + ``` if across_spatial == 1 && across_channel == 1 x2 = normalize(x) of whole blob if across_spatial == 1 && across_channel == 0 x2 = normalize(x) of each channel @@ -1349,79 +1414,85 @@ if across_spatial == 0 && across_channel == 1 x2 = normalize(x) of each pos y = x2 * scale ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | across_spatial| int | 0 | | -| 1 | channel_shared| int | 0 | | -| 2 | eps | float | 0.0001f | see eps mode | -| 3 | scale_data_size| int | 0 | | -| 4 | across_channel| int | 0 | | -| 9 | eps_mode | int | 0 | | +| param id | name | type | default | description | +| -------- | --------------- | ----- | ------- | ------------ | +| 0 | across_spatial | int | 0 | | +| 1 | channel_shared | int | 0 | | +| 2 | eps | float | 0.0001f | see eps mode | +| 3 | scale_data_size | int | 0 | | +| 4 | across_channel | int | 0 | | +| 9 | eps_mode | int | 0 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| scale_data | float | [scale_data_size] | +| weight | type | shape | +| ---------- | ----- | ----------------- | +| scale_data | float | [scale_data_size] | Eps Mode: -- 0 = caffe/mxnet x = x / sqrt(var + eps) -- 1 = pytorch x = x / max(sqrt(var), eps) -- 2 = tensorflow x = x / sqrt(max(var, eps)) + +- 0 = caffe/mxnet x = x / sqrt(var + eps) +- 1 = pytorch x = x / max(sqrt(var), eps) +- 2 = tensorflow x = x / sqrt(max(var, eps)) # Packing + ``` y = wrap_packing(x) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | out_elempack | int | 1 | | -| 1 | use_padding | int | 0 | | -| 2 | cast_type_from| int | 0 | | -| 3 | cast_type_to | int | 0 | | -| 4 | storage_type_from| int | 0 | | -| 5 | storage_type_to| int | 0 | | +| param id | name | type | default | description | +| -------- | ----------------- | ---- | ------- | ----------- | +| 0 | out_elempack | int | 1 | | +| 1 | use_padding | int | 0 | | +| 2 | cast_type_from | int | 0 | | +| 3 | cast_type_to | int | 0 | | +| 4 | storage_type_from | int | 0 | | +| 5 | storage_type_to | int | 0 | | # Padding + ``` y = pad(x, pads) ``` -| param id | name | type | default | description | -| --------- | ------------- | ---- | --------- | ----------------- | -| 0 | top | int | 0 | | -| 1 | bottom | int | 0 | | -| 2 | left | int | 0 | | -| 3 | right | int | 0 | | -| 4 | type | int | 0 | | -| 5 | value | float | 0 | | -| 6 | per_channel_pad_data_size| int | 0 | | -| 7 | front | int | stride_w | | -| 8 | behind | int | pad_left | | +| param id | name | type | default | description | +| -------- | ------------------------- | ----- | -------- | ----------- | +| 0 | top | int | 0 | | +| 1 | bottom | int | 0 | | +| 2 | left | int | 0 | | +| 3 | right | int | 0 | | +| 4 | type | int | 0 | | +| 5 | value | float | 0 | | +| 6 | per_channel_pad_data_size | int | 0 | | +| 7 | front | int | stride_w | | +| 8 | behind | int | pad_left | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| per_channel_pad_data| float | [per_channel_pad_data_size] | +| weight | type | shape | +| -------------------- | ----- | --------------------------- | +| per_channel_pad_data | float | [per_channel_pad_data_size] | Padding type: + - 0 = CONSTANT - 1 = REPLICATE - 2 = REFLECT # Permute + ``` y = reorder(x) ``` -| param id | name | type | default | description | -| --------- | ------------- | ---- | --------- | ----------------- | -| 0 | order_type | int | 0 | | +| param id | name | type | default | description | +| -------- | ---------- | ---- | ------- | ----------- | +| 0 | order_type | int | 0 | | Order Type: + - 0 = WH WHC WHDC - 1 = HW HWC HWDC - 2 = WCH WDHC @@ -1448,183 +1519,198 @@ Order Type: - 23 = CDHW # PixelShuffle + ``` if mode == 0 y = depth_to_space(x) where x channel order is sw-sh-outc if mode == 1 y = depth_to_space(x) where x channel order is outc-sw-sh ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ---- | --------- | ----------------- | -| 0 | upscale_factor| int | 1 | | -| 1 | mode | int | 0 | | +| param id | name | type | default | description | +| -------- | -------------- | ---- | ------- | ----------- | +| 0 | upscale_factor | int | 1 | | +| 1 | mode | int | 0 | | # Pooling + ``` x2 = pad(x, pads) x3 = pooling(x2, kernel, stride) ``` -| param id | name | type | default | description | -| --------- | --------------| ---- | --------- | ----------------- | -| 0 | pooling_type | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | stride_w | int | 1 | | -| 3 | pad_left | int | 0 | | -| 4 | global_pooling| int | 0 | | -| 5 | pad_mode | int | 0 | | -| 6 | avgpool_count_include_pad| int | 0 | | -| 7 | adaptive_pooling| int | 0 | | -| 8 | out_w | int | 0 | | -| 11 | kernel_h | int | kernel_w | | -| 12 | stride_h | int | stride_w | | -| 13 | pad_top | int | pad_left | | -| 14 | pad_right | int | pad_left | | -| 15 | pad_bottom | int | pad_top | | -| 18 | out_h | int | out_w | | +| param id | name | type | default | description | +| -------- | ------------------------- | ---- | -------- | ----------- | +| 0 | pooling_type | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | stride_w | int | 1 | | +| 3 | pad_left | int | 0 | | +| 4 | global_pooling | int | 0 | | +| 5 | pad_mode | int | 0 | | +| 6 | avgpool_count_include_pad | int | 0 | | +| 7 | adaptive_pooling | int | 0 | | +| 8 | out_w | int | 0 | | +| 11 | kernel_h | int | kernel_w | | +| 12 | stride_h | int | stride_w | | +| 13 | pad_top | int | pad_left | | +| 14 | pad_right | int | pad_left | | +| 15 | pad_bottom | int | pad_top | | +| 18 | out_h | int | out_w | | Pooling type: + - 0 = MAX - 1 = AVG Pad mode: + - 0 = full padding - 1 = valid padding - 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER - 3 = onnx padding=SAME_LOWER # Pooling1D + ``` x2 = pad(x, pads) x3 = pooling1d(x2, kernel, stride) ``` -| param id | name | type | default | description | -| --------- | --------------| ---- | --------- | ----------------- | -| 0 | pooling_type | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | stride_w | int | 1 | | -| 3 | pad_left | int | 0 | | -| 4 | global_pooling| int | 0 | | -| 5 | pad_mode | int | 0 | | -| 6 | avgpool_count_include_pad| int | 0 | | -| 7 | adaptive_pooling| int | 0 | | -| 8 | out_w | int | 0 | | -| 14 | pad_right | int | pad_left | | +| param id | name | type | default | description | +| -------- | ------------------------- | ---- | -------- | ----------- | +| 0 | pooling_type | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | stride_w | int | 1 | | +| 3 | pad_left | int | 0 | | +| 4 | global_pooling | int | 0 | | +| 5 | pad_mode | int | 0 | | +| 6 | avgpool_count_include_pad | int | 0 | | +| 7 | adaptive_pooling | int | 0 | | +| 8 | out_w | int | 0 | | +| 14 | pad_right | int | pad_left | | Pooling type: + - 0 = MAX - 1 = AVG Pad mode: + - 0 = full padding - 1 = valid padding - 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER - 3 = onnx padding=SAME_LOWER # Pooling3D + ``` x2 = pad(x, pads) x3 = pooling3d(x2, kernel, stride) ``` -| param id | name | type | default | description | -| --------- | --------------| ---- | --------- | ----------------- | -| 0 | pooling_type | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | stride_w | int | 1 | | -| 3 | pad_left | int | 0 | | -| 4 | global_pooling| int | 0 | | -| 5 | pad_mode | int | 0 | | -| 6 | avgpool_count_include_pad| int | 0 | | -| 7 | adaptive_pooling| int | 0 | | -| 8 | out_w | int | 0 | | -| 11 | kernel_h | int | kernel_w | | -| 12 | stride_h | int | stride_w | | -| 13 | pad_top | int | pad_left | | -| 14 | pad_right | int | pad_left | | -| 15 | pad_bottom | int | pad_top | | -| 16 | pad_behind | int | pad_front | | -| 18 | out_h | int | out_w | | -| 21 | kernel_d | int | kernel_w | | -| 22 | stride_d | int | stride_w | | -| 23 | pad_front | int | pad_left | | -| 28 | out_d | int | out_w | | +| param id | name | type | default | description | +| -------- | ------------------------- | ---- | --------- | ----------- | +| 0 | pooling_type | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | stride_w | int | 1 | | +| 3 | pad_left | int | 0 | | +| 4 | global_pooling | int | 0 | | +| 5 | pad_mode | int | 0 | | +| 6 | avgpool_count_include_pad | int | 0 | | +| 7 | adaptive_pooling | int | 0 | | +| 8 | out_w | int | 0 | | +| 11 | kernel_h | int | kernel_w | | +| 12 | stride_h | int | stride_w | | +| 13 | pad_top | int | pad_left | | +| 14 | pad_right | int | pad_left | | +| 15 | pad_bottom | int | pad_top | | +| 16 | pad_behind | int | pad_front | | +| 18 | out_h | int | out_w | | +| 21 | kernel_d | int | kernel_w | | +| 22 | stride_d | int | stride_w | | +| 23 | pad_front | int | pad_left | | +| 28 | out_d | int | out_w | | Pooling type: + - 0 = MAX - 1 = AVG Pad mode: + - 0 = full padding - 1 = valid padding - 2 = tensorflow padding=SAME or onnx padding=SAME_UPPER - 3 = onnx padding=SAME_LOWER # Power + ``` y = pow((shift + x * scale), power) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | power | float | 1.f | | -| 1 | scale | float | 1.f | | -| 2 | shift | float | 0.f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | power | float | 1.f | | +| 1 | scale | float | 1.f | | +| 2 | shift | float | 0.f | | # PReLU + ``` if x < 0 y = x * slope else y = x ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_slope | int | 0 | | +| param id | name | type | default | description | +| -------- | --------- | ---- | ------- | ----------- | +| 0 | num_slope | int | 0 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| slope_data | float | [num_slope] | +| weight | type | shape | +| ---------- | ----- | ----------- | +| slope_data | float | [num_slope] | # Quantize + ``` y = float2int8(x * scale) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | scale_data_size| int | 1 | | +| param id | name | type | default | description | +| -------- | --------------- | ---- | ------- | ----------- | +| 0 | scale_data_size | int | 1 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| scale_data | float | [scale_data_size] | +| weight | type | shape | +| ---------- | ----- | ----------------- | +| scale_data | float | [scale_data_size] | # Reduction + ``` y = reduce_op(x * coeff) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | operation | int | 0 | | -| 1 | reduce_all | int | 1 | | -| 2 | coeff | float | 1.f | | -| 3 | axes | array | [ ] | | -| 4 | keepdims | int | 0 | | -| 5 | fixbug0 | int | 0 | hack for bug fix, should be 1 | +| param id | name | type | default | description | +| -------- | ---------- | ----- | ------- | ----------------------------- | +| 0 | operation | int | 0 | | +| 1 | reduce_all | int | 1 | | +| 2 | coeff | float | 1.f | | +| 3 | axes | array | [ ] | | +| 4 | keepdims | int | 0 | | +| 5 | fixbug0 | int | 0 | hack for bug fix, should be 1 | Operation type: + - 0 = SUM - 1 = ASUM - 2 = SUMSQ @@ -1638,96 +1724,103 @@ Operation type: - 10 = LogSumExp # ReLU + ``` if x < 0 y = x * slope else y = x ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | slope | float | 0.f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | slope | float | 0.f | | # Reorg + ``` if mode == 0 y = space_to_depth(x) where x channel order is sw-sh-outc if mode == 1 y = space_to_depth(x) where x channel order is outc-sw-sh ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ---- | --------- | ----------------- | -| 0 | stride | int | 1 | | -| 1 | mode | int | 0 | | +| param id | name | type | default | description | +| -------- | ------ | ---- | ------- | ----------- | +| 0 | stride | int | 1 | | +| 1 | mode | int | 0 | | # Requantize + ``` x2 = x * scale_in + bias x3 = activation(x2) y = float2int8(x3 * scale_out) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | scale_in_data_size| int | 1 | | -| 1 | scale_out_data_size| int | 1 | | -| 2 | bias_data_size| int | 0 | | -| 3 | activation_type| int | 0 | | -| 4 | activation_params| int | [ ] | | +| param id | name | type | default | description | +| -------- | ------------------- | ---- | ------- | ----------- | +| 0 | scale_in_data_size | int | 1 | | +| 1 | scale_out_data_size | int | 1 | | +| 2 | bias_data_size | int | 0 | | +| 3 | activation_type | int | 0 | | +| 4 | activation_params | int | [ ] | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| scale_in_data | float | [scale_in_data_size] | -| scale_out_data| float | [scale_out_data_size] | -| bias_data | float | [bias_data_size] | +| weight | type | shape | +| -------------- | ----- | --------------------- | +| scale_in_data | float | [scale_in_data_size] | +| scale_out_data | float | [scale_out_data_size] | +| bias_data | float | [bias_data_size] | # Reshape + ``` if permute == 1 y = hwc2chw(reshape(chw2hwc(x))) else y = reshape(x) ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | w | int | -233 | | -| 1 | h | int | -233 | | -| 11 | d | int | -233 | | -| 2 | c | int | -233 | | -| 3 | permute | int | 0 | | +| param id | name | type | default | description | +| -------- | ------- | ---- | ------- | ----------- | +| 0 | w | int | -233 | | +| 1 | h | int | -233 | | +| 11 | d | int | -233 | | +| 2 | c | int | -233 | | +| 3 | permute | int | 0 | | Reshape flag: + - 0 = copy from bottom - -1 = remaining - -233 = drop this dim(default) # RMSNorm + ``` split x along outmost axis into part x0, x1 ... root mean square normalize for each part x0, x1 ... y = x * gamma by elementwise ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | affine_size | int | 0 | | -| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | -| 2 | affine | int | 1 | | +| param id | name | type | default | description | +| -------- | ----------- | ----- | ------- | ----------------------- | +| 0 | affine_size | int | 0 | | +| 1 | eps | float | 0.001f | x = x / sqrt(var + eps) | +| 2 | affine | int | 1 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| gamma_data | float | [affine_size] | +| weight | type | shape | +| ---------- | ----- | ------------- | +| gamma_data | float | [affine_size] | # RNN + Apply a single-layer RNN to a feature sequence of `T` timesteps. The input blob shape is `[w=input_size, h=T]` and the output blob shape is `[w=num_output, h=T]`. ``` @@ -1735,127 +1828,137 @@ y = rnn(x) y0, hidden y1 = rnn(x0, hidden x1) ``` -* one_blob_only if bidirectional +- one_blob_only if bidirectional -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | hidden size of output | -| 1 | weight_data_size| int | 0 | total size of weight matrix | -| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | +| param id | name | type | default | description | +| -------- | ---------------- | ---- | ------- | ------------------------------------- | +| 0 | num_output | int | 0 | hidden size of output | +| 1 | weight_data_size | int | 0 | total size of weight matrix | +| 2 | direction | int | 0 | 0=forward, 1=reverse, 2=bidirectional | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| weight_xc_data| float/fp16/int8 | [input_size, num_output, num_directions] | -| bias_c_data | float/fp16/int8 | [num_output, 1, num_directions] | -| weight_hc_data| float/fp16/int8 | [num_output, num_output, num_directions] | +| weight | type | shape | +| -------------- | --------------- | ---------------------------------------- | +| weight_xc_data | float/fp16/int8 | [input_size, num_output, num_directions] | +| bias_c_data | float/fp16/int8 | [num_output, 1, num_directions] | +| weight_hc_data | float/fp16/int8 | [num_output, num_output, num_directions] | Direction flag: + - 0 = forward only - 1 = reverse only - 2 = bidirectional # Scale + ``` if scale_data_size == -233 y = x0 * x1 else y = x * scale + bias ``` -* one_blob_only if scale_data_size != -233 -* support_inplace +- one_blob_only if scale_data_size != -233 +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | scale_data_size| int | 0 | | -| 1 | bias_term | int | 0 | | +| param id | name | type | default | description | +| -------- | --------------- | ---- | ------- | ----------- | +| 0 | scale_data_size | int | 0 | | +| 1 | bias_term | int | 0 | | -| weight | type | shape | -| ------------- | ----- | --------------------- | -| scale_data | float | [scale_data_size] | -| bias_data | float | [scale_data_size] | +| weight | type | shape | +| ---------- | ----- | ----------------- | +| scale_data | float | [scale_data_size] | +| bias_data | float | [scale_data_size] | # SELU + ``` if x < 0 y = (exp(x) - 1.f) * alpha * lambda else y = x * lambda ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | alpha | float | 1.67326324f| | -| 1 | lambda | float | 1.050700987f| | +| param id | name | type | default | description | +| -------- | ------ | ----- | ------------ | ----------- | +| 0 | alpha | float | 1.67326324f | | +| 1 | lambda | float | 1.050700987f | | # Shrink + ``` if x < -lambd y = x + bias if x > lambd y = x - bias else y = x ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | bias | float | 0.0f | | -| 1 | lambd | float | 0.5f | | +| param id | name | type | default | description | +| -------- | ----- | ----- | ------- | ----------- | +| 0 | bias | float | 0.0f | | +| 1 | lambd | float | 0.5f | | # ShuffleChannel + ``` if reverse == 0 y = shufflechannel(x) by group if reverse == 1 y = shufflechannel(x) by channel / group ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ---- | --------- | ----------------- | -| 0 | group | int | 1 | | -| 1 | reverse | int | 0 | | +| param id | name | type | default | description | +| -------- | ------- | ---- | ------- | ----------- | +| 0 | group | int | 1 | | +| 1 | reverse | int | 0 | | # Sigmoid + ``` y = 1 / (1 + exp(-x)) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # Slice + ``` split x along axis into slices, each part slice size is based on slices array ``` -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | slices | array | [ ] | | -| 1 | axis | int | 0 | | -| 2 | indices | array | [ ] | | +| param id | name | type | default | description | +| -------- | ------- | ----- | ------- | ----------- | +| 0 | slices | array | [ ] | | +| 1 | axis | int | 0 | | +| 2 | indices | array | [ ] | | # Softmax + ``` softmax(x, axis) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | axis | int | 0 | | -| 1 | fixbug0 | int | 0 | hack for bug fix, should be 1 | +| param id | name | type | default | description | +| -------- | ------- | ---- | ------- | ----------------------------- | +| 0 | axis | int | 0 | | +| 1 | fixbug0 | int | 0 | hack for bug fix, should be 1 | # Softplus + ``` y = log(exp(x) + 1) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # Spectrogram + ``` x1 = pad(x) if center y = stft(x1) @@ -1866,68 +1969,89 @@ if power == 1 return magnitude if power == 2 return square of magnitude ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | n_fft | int | 0 | | -| 1 | power | int | 0 | | -| 2 | hoplen | int | n_fft / 4 | | -| 3 | winlen | int | n_fft | | -| 4 | window_type | int | 0 | 0=ones 1=hann 2=hamming | -| 5 | center | int | 1 | | -| 6 | pad_type | int | 2 | 0=CONSTANT 1=REPLICATE 2=REFLECT | -| 7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy | -| 8 | onesided | int | 1 | | +| param id | name | type | default | description | +| -------- | ----------- | ---- | --------- | -------------------------------- | +| 0 | n_fft | int | 0 | | +| 1 | power | int | 0 | | +| 2 | hoplen | int | n_fft / 4 | | +| 3 | winlen | int | n_fft | | +| 4 | window_type | int | 0 | 0=ones 1=hann 2=hamming | +| 5 | center | int | 1 | | +| 6 | pad_type | int | 2 | 0=CONSTANT 1=REPLICATE 2=REFLECT | +| 7 | normalized | int | 0 | 0=no 1=n_fft 2=window-l2-energy | +| 8 | onesided | int | 1 | | # Split + ``` y0, y1 ... = x ``` # Swish + ``` y = x / (1 + exp(-x)) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # TanH + ``` y = tanh(x) ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace # Threshold + ``` if x > threshold y = 1 else y = 0 ``` -* one_blob_only -* support_inplace +- one_blob_only +- support_inplace + +| param id | name | type | default | description | +| -------- | --------- | ----- | ------- | ----------- | +| 0 | threshold | float | 0.f | | + +# TopK + +``` +y = topk(x, k, axis, largest, sorted) +``` + +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | threshold | float | 0.f | | +| param id | name | type | default | description | +| -------- | ------- | ---- | ------- | ---------------------------------- | +| 0 | k | int | 1 | number of top entries | +| 1 | axis | int | 0 | dimension along which to compute k | +| 2 | largest | int | 1 | 1 for largest, 0 for smallest | +| 3 | sorted | int | 1 | 1 to return sorted results | # Tile + ``` y = repeat tiles along axis for x ``` -* one_blob_only +- one_blob_only -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | axis | int | 0 | | -| 1 | tiles | int | 1 | | -| 2 | repeats | array | [ ] | | +| param id | name | type | default | description | +| -------- | ------- | ----- | ------- | ----------- | +| 0 | axis | int | 0 | | +| 1 | tiles | int | 1 | | +| 2 | repeats | array | [ ] | | # UnaryOp + ``` y = unaryop(x) ``` @@ -1935,11 +2059,12 @@ y = unaryop(x) - one_blob_only - support_inplace -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | op_type | int | 0 | Operation type as follows | +| param id | name | type | default | description | +| -------- | ------- | ---- | ------- | ------------------------- | +| 0 | op_type | int | 0 | Operation type as follows | Operation type: + - 0 = ABS - 1 = NEG - 2 = FLOOR @@ -1962,22 +2087,23 @@ Operation type: - 19 = TRUNC # Unfold + ``` y = unfold(x) ``` -* one_blob_only - -| param id | name | type | default | description | -| --------- | ------------- | ----- | --------- | ----------------- | -| 0 | num_output | int | 0 | | -| 1 | kernel_w | int | 0 | | -| 2 | dilation_w | int | 1 | | -| 3 | stride_w | int | 1 | | -| 4 | pad_left | int | 0 | | -| 11 | kernel_h | int | kernel_w | | -| 12 | dilation_h | int | dilation_w | | -| 13 | stride_h | int | stride_w | | -| 14 | pad_top | int | pad_left | | -| 15 | pad_right | int | pad_left | | -| 16 | pad_bottom | int | pad_top | | +- one_blob_only + +| param id | name | type | default | description | +| -------- | ---------- | ---- | ---------- | ----------- | +| 0 | num_output | int | 0 | | +| 1 | kernel_w | int | 0 | | +| 2 | dilation_w | int | 1 | | +| 3 | stride_w | int | 1 | | +| 4 | pad_left | int | 0 | | +| 11 | kernel_h | int | kernel_w | | +| 12 | dilation_h | int | dilation_w | | +| 13 | stride_h | int | stride_w | | +| 14 | pad_top | int | pad_left | | +| 15 | pad_right | int | pad_left | | +| 16 | pad_bottom | int | pad_top | | diff --git a/src/CMakeLists.txt b/src/CMakeLists.txt index c97235d97a0..49f61c8b8c2 100644 --- a/src/CMakeLists.txt +++ b/src/CMakeLists.txt @@ -169,6 +169,7 @@ ncnn_add_layer(Shrink) ncnn_add_layer(RMSNorm) ncnn_add_layer(Spectrogram) ncnn_add_layer(InverseSpectrogram) +ncnn_add_layer(TopK) if(NCNN_VULKAN) ncnn_add_shader(${CMAKE_CURRENT_SOURCE_DIR}/convert_ycbcr.comp) diff --git a/src/layer/topk.cpp b/src/layer/topk.cpp new file mode 100644 index 00000000000..f7e2aa4f297 --- /dev/null +++ b/src/layer/topk.cpp @@ -0,0 +1,420 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#include "topk.h" +#if !NCNN_SIMPLESTL +// 兼容vs编译器 +#include +#endif + +namespace ncnn { + +// auto comp = [this](const std::pair &a, const std::pair &b) +// { +// if (a.first == b.first) +// return a.second < b.second; // 值相等时按索引升序排序 +// return this->largest ? (a.first > b.first) : (a.first < b.first); +// }; + +// simplestl兼容写法 +struct TopK::CompareFunc +{ + bool largest; + CompareFunc(bool l) + : largest(l) + { + } + bool operator()(const std::pair& a, const std::pair& b) const + { + if (a.first == b.first) + return a.second < b.second; + return largest ? (a.first > b.first) : (a.first < b.first); + } +}; + +void TopK::do_sort(std::vector >& vec, int k, bool sorted) const +{ + CompareFunc comp(largest); + if (sorted) + { + std::partial_sort(vec.begin(), vec.begin() + k, vec.end(), comp); + } + else + { +#if !NCNN_SIMPLESTL + std::nth_element(vec.begin(), vec.begin() + k - 1, vec.end(), comp); + std::sort(vec.begin(), vec.begin() + k, comp); +#else + for (int i = 0; i < k; i++) + { + for (int j = vec.size() - 1; j > i; j--) + { + if (comp(vec[j], vec[j - 1])) + { + std::swap(vec[j], vec[j - 1]); + } + } + } +#endif + } +} + +TopK::TopK() +{ + // one_blob_only = true; // 仅有1个输入和1个输出 + // support_inplace = true; // 是否支持原地运算,即输入和输出共享一个blob + one_blob_only = false; // 只需要一个输入 blob + support_inplace = false; // 是否支持原地运算 +} + +int TopK::load_param(const ParamDict& pd) +{ + k = pd.get(0, 1); // [获取参数,默认值1] + axis = pd.get(1, 0); + largest = pd.get(2, 1); + sorted = pd.get(3, 1); + // printf("参数加载k=%d, axis=%d, largest=%d, sorted=%d\n", k, axis, largest, sorted); + return 0; +} + +int TopK::forward(const std::vector& bottom_blobs, std::vector& top_blobs, const Option& opt) const +{ + const Mat& bottom_blob = bottom_blobs[0]; + int dims = bottom_blob.dims; + int w = bottom_blob.w; + int h = bottom_blob.h; + int d = bottom_blob.d; + int channels = bottom_blob.c; + size_t elemsize = bottom_blob.elemsize; + + // printf("dims=%d, w=%d, h=%d, d=%d, channels=%d, elemsize=%zu\n", dims, w, h, d, channels, elemsize); + // 检查k值是否有效 + if (k <= 0 || k > w * h * channels) + { + return -1; + } + + // 创建输出Mat + Mat& top_blob_values = top_blobs[0]; // values + Mat& top_blob_indices = top_blobs[1]; // indices + + // 根据dims创建不同维度的输出 + if (dims == 1) + { + // 创建输出blob + top_blob_values.create(k, elemsize, opt.blob_allocator); + top_blob_indices.create(k, sizeof(int), opt.blob_allocator); + + const float* ptr = bottom_blob; + float* outptr = top_blob_values; + int* indices = top_blob_indices; + // 创建pair数组用于排序 + std::vector > vec(w); + for (int i = 0; i < w; i++) + { + vec[i] = std::make_pair(ptr[i], i); + } + + // 根据sorted参数选择排序方式 + do_sort(vec, k, sorted); + + // 保存结果 + for (int i = 0; i < k; i++) + { + outptr[i] = vec[i].first; + indices[i] = vec[i].second; + } + } + else if (dims == 2) + { + // 在每一行上进行TopK + if (axis == 0) + { + top_blob_values.create(w, k, elemsize, opt.blob_allocator); + top_blob_indices.create(w, k, sizeof(int), opt.blob_allocator); + + // #pragma omp parallel for + for (int j = 0; j < w; j++) // 对每列进行处理 + { + std::vector > vec(h); + // 收集当前列的所有元素 + for (int i = 0; i < h; i++) + { + vec[i] = std::make_pair(bottom_blob.row(i)[j], i); + } + + do_sort(vec, k, sorted); + + // 保存结果到对应列 + for (int i = 0; i < k; i++) + { + top_blob_values.row(i)[j] = vec[i].first; + top_blob_indices.row(i)[j] = vec[i].second; + } + } + } + // 在每一列上进行TopK ,axis=-1等价于axis=1 + else + { + top_blob_values.create(k, h, elemsize, opt.blob_allocator); + top_blob_indices.create(k, h, sizeof(int), opt.blob_allocator); + + for (int i = 0; i < h; i++) + { + const float* ptr = bottom_blob.row(i); + float* outptr = top_blob_values.row(i); + int* indices = top_blob_indices.row(i); + + std::vector > vec(w); + for (int j = 0; j < w; j++) + { + vec[j] = std::make_pair(ptr[j], j); + } + + do_sort(vec, k, sorted); + + for (int j = 0; j < k; j++) + { + outptr[j] = vec[j].first; + indices[j] = vec[j].second; + } + } + } + } + else if (dims == 3) + { + if (axis == 0) + { + // 深度方向上;w不变,高度h变为k + top_blob_values.create(w, h, k, elemsize, opt.blob_allocator); + top_blob_indices.create(w, h, k, sizeof(int), opt.blob_allocator); + // #pragma omp parallel for collapse(2) + for (int i = 0; i < h; i++) + { + for (int j = 0; j < w; j++) + { + // 收集该位置所有channel的值 + std::vector > channel_values(channels); + for (int c = 0; c < channels; c++) + { + const float* ptr = bottom_blob.channel(c); + channel_values[c] = std::make_pair(ptr[i * w + j], c); + } + + // 排序 + do_sort(channel_values, k, sorted); + + // 写回结果 + for (int c = 0; c < k; c++) + { + float* outptr = top_blob_values.channel(c); + int* indices = (int*)top_blob_indices.channel(c); + outptr[i * w + j] = channel_values[c].first; + indices[i * w + j] = channel_values[c].second; + } + } + } + } + else if (axis == 1) + { + // 子元素内部进行TopK;w不变,高度变为k + top_blob_values.create(w, k, channels, elemsize, opt.blob_allocator); + top_blob_indices.create(w, k, channels, sizeof(int), opt.blob_allocator); + for (int q = 0; q < channels; q++) + { + // 获取每个channel的行 + std::vector > row_scores(h); + for (int j = 0; j < w; j++) + { + // 每列单独处理 + for (int i = 0; i < h; i++) + { + row_scores[i] = std::make_pair(bottom_blob.channel(q).row(i)[j], i); + } + + // 找到最大行的索引 + do_sort(row_scores, k, sorted); + + // 保存该列的结果 + for (int i = 0; i < k; i++) + { + float* outptr = top_blob_values.channel(q).row(i); + int* indices = (int*)top_blob_indices.channel(q).row(i); + outptr[j] = row_scores[i].first; + indices[j] = row_scores[i].second; + } + } + } + } + else if (axis == 2 || axis == -1) + { + // 输出为k长度的向量,高度不变 + top_blob_values.create(k, h, channels, elemsize, opt.blob_allocator); + top_blob_indices.create(k, h, channels, sizeof(int), opt.blob_allocator); + for (int q = 0; q < channels; q++) + { + for (int j = 0; j < h; j++) + { + const float* ptr = bottom_blob.channel(q).row(j); + float* outptr = top_blob_values.channel(q).row(j); + int* indices = top_blob_indices.channel(q).row(j); + + std::vector > vec(w); + for (int i = 0; i < w; i++) + { + vec[i] = std::make_pair(ptr[i], i); + } + + do_sort(vec, k, sorted); + + for (int i = 0; i < k; i++) + { + outptr[i] = vec[i].first; + indices[i] = vec[i].second; + } + } + } + } + } + else if (dims == 4) + { + // 4D数据处理 + if (axis == 0) + { + // PyTorch:batch -> channel -> height -> width + // ncnn:channels -> depth -> height -> width + top_blob_values.create(w, h, k, channels, elemsize, opt.blob_allocator); + top_blob_indices.create(w, h, k, channels, sizeof(int), opt.blob_allocator); + + // 在pytorch中,假设x为torch.Size([3, 2, 6, 7]),按N维度,也就是x[0]、x[1]、x[2],对比排序,最后直接输出x[i] + // 但在ncnn中,从channels遍历后,维度d再遍历会获得2*3=6种数据。这里就卡主了,不知道怎么处理 + // need help !!! + } + else if (axis == 1) + { + // 在channel维度上进行TopK + top_blob_values.create(w, h, d, k, elemsize, opt.blob_allocator); + top_blob_indices.create(w, h, d, k, sizeof(int), opt.blob_allocator); + + // need help !!! + } + else if (axis == 20) + { + // 在h维度上进行TopK + top_blob_values.create(w, k, d, channels, elemsize, opt.blob_allocator); + top_blob_indices.create(w, k, d, channels, sizeof(int), opt.blob_allocator); + + for (int q = 0; q < channels; q++) + { + const float* ptr = bottom_blob.channel(q); + float* outptr = top_blob_values.channel(q); + int* indices = top_blob_indices.channel(q); + + for (int z = 0; z < d; z++) + { + for (int i = 0; i < w; i++) + { + std::vector > row_scores(h); + for (int j = 0; j < h; j++) + { + int offset = (z * h + j) * w + i; + row_scores[j] = std::make_pair(ptr[offset], j); + } + + do_sort(row_scores, k, sorted); + + // 循环写入前 k 个值 + for (int kk = 0; kk < k; kk++) + { + outptr[(z * k + kk) * w + i] = row_scores[kk].first; + indices[(z * k + kk) * w + i] = row_scores[kk].second; + } + } + } + } + } + else if (axis == 2) + { + // 在h维度上进行TopK + top_blob_values.create(w, k, d, channels, elemsize, opt.blob_allocator); + top_blob_indices.create(w, k, d, channels, sizeof(int), opt.blob_allocator); + + for (int q = 0; q < channels; q++) + { + const float* ptr = bottom_blob.channel(q); + float* outptr = top_blob_values.channel(q); + int* indices = top_blob_indices.channel(q); + + for (int z = 0; z < d; z++) + { + for (int i = 0; i < w; i++) + { + std::vector > row_scores(h); + for (int j = 0; j < h; j++) + { + int offset = (z * h + j) * w + i; + row_scores[j] = std::make_pair(ptr[offset], j); + } + + do_sort(row_scores, k, sorted); + + // 写回结果 + for (int kk = 0; kk < k; kk++) + { + outptr[(z * k + kk) * w + i] = row_scores[kk].first; + indices[(z * k + kk) * w + i] = row_scores[kk].second; + } + } + } + } + } + else if (axis == 3 || axis == -1) + { + // 在w维度上进行TopK + top_blob_values.create(k, h, d, channels, elemsize, opt.blob_allocator); + top_blob_indices.create(k, h, d, channels, sizeof(int), opt.blob_allocator); + + for (int q = 0; q < channels; q++) + { + for (int z = 0; z < d; z++) + { + for (int i = 0; i < h; i++) + { + std::vector > row_values(w); + // 收集width维度数据 + for (int j = 0; j < w; j++) + { + const float* ptr = bottom_blob.channel(q).row(i * d + z); + row_values[j] = std::make_pair(ptr[j], j); + } + + do_sort(row_values, k, sorted); + + // 写回结果 + for (int j = 0; j < k; j++) + { + float* outptr = top_blob_values.channel(q).row(i * d + z); + int* indices = top_blob_indices.channel(q).row(i * d + z); + outptr[j] = row_values[j].first; + indices[j] = row_values[j].second; + } + } + } + } + } + } + return 0; +} + +} // namespace ncnn \ No newline at end of file diff --git a/src/layer/topk.h b/src/layer/topk.h new file mode 100644 index 00000000000..a75c2959e42 --- /dev/null +++ b/src/layer/topk.h @@ -0,0 +1,44 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#ifndef LAYER_TOPK_H +#define LAYER_TOPK_H + +#include "layer.h" + +namespace ncnn { + +class TopK : public Layer +{ +public: + TopK(); + + virtual int load_param(const ParamDict& pd); + + virtual int forward(const std::vector& bottom_blobs, std::vector& top_blobs, const Option& opt) const; + +public: + int k; + int axis; + int largest; + int sorted; + +private: + struct CompareFunc; // 前向声明 + void do_sort(std::vector >& vec, int k, bool sorted) const; +}; + +} // namespace ncnn + +#endif // LAYER_TOPK_H diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt index f55859e736e..254ca9aa7bb 100644 --- a/tests/CMakeLists.txt +++ b/tests/CMakeLists.txt @@ -159,6 +159,7 @@ ncnn_add_layer_test(Spectrogram) ncnn_add_layer_test(Squeeze) ncnn_add_layer_test(Swish) ncnn_add_layer_test(TanH) +ncnn_add_layer_test(TopK) ncnn_add_layer_test(Tile) ncnn_add_layer_test(UnaryOp) ncnn_add_layer_test(Unfold) diff --git a/tests/test_topk.cpp b/tests/test_topk.cpp new file mode 100644 index 00000000000..aa18baea3a2 --- /dev/null +++ b/tests/test_topk.cpp @@ -0,0 +1,80 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2020 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. + +#include "layer.h" +#include "testutil.h" + +static int test_topk(const ncnn::Mat& a, int k, int axis, int largest, int sorted) +{ + ncnn::ParamDict pd; + pd.set(0, k); // k + pd.set(1, axis); // axis + pd.set(2, largest); // largest + pd.set(3, sorted); // sorted + + std::vector weights(0); + + std::vector a0(1); + a0[0] = a; + + int ret = test_layer("TopK", pd, weights, a0, 2); + if (ret != 0) + { + fprintf(stderr, "test_topk failed a.dims=%d a=(%d %d %d) k=%d axis=%d largest=%d sorted=%d\n", a.dims, a.w, a.h, a.c, k, axis, largest, sorted); + } + + return ret; +} + +static int test_topk_0() +{ + return 0 + // || test_topk(RandomMat(3, 2, 6, 7), 1, 0, 1, 1) // axis=0暂未实现 + // || test_topk(RandomMat(3, 4, 2, 5), 2, 1, 0, 1) // axis=1暂未实现 + || test_topk(RandomMat(3, 6, 4, 2), 2, 2, 1, 0) + || test_topk(RandomMat(5, 3, 5, 3), 1, 3, 1, 1); +} + +static int test_topk_1() +{ + return 0 + || test_topk(RandomMat(2, 3, 5), 1, 0, 1, 1) + || test_topk(RandomMat(4, 2, 5), 1, 1, 0, 1) + || test_topk(RandomMat(3, 4, 2), 3, 2, 1, 0); +} + +static int test_topk_2() +{ + return 0 + || test_topk(RandomMat(8, 2), 2, 0, 1, 1) + || test_topk(RandomMat(16, 3), 5, 1, 0, 1); +} + +static int test_topk_3() +{ + return 0 + || test_topk(RandomMat(16), 5, 0, 1, 1) + || test_topk(RandomMat(32), 10, 0, 0, 1); +} + +int main() +{ + SRAND(7767517); + + return 0 + || test_topk_0() + || test_topk_1() + || test_topk_2() + || test_topk_3(); +} \ No newline at end of file diff --git a/tools/pnnx/src/CMakeLists.txt b/tools/pnnx/src/CMakeLists.txt index b1ac6f5c024..17a9ff245e9 100644 --- a/tools/pnnx/src/CMakeLists.txt +++ b/tools/pnnx/src/CMakeLists.txt @@ -590,6 +590,7 @@ set(pnnx_pass_ncnn_SRCS pass_ncnn/torch_sum.cpp pass_ncnn/torch_stft.cpp pass_ncnn/torch_t.cpp + pass_ncnn/torch_topk.cpp pass_ncnn/torch_transpose.cpp pass_ncnn/torch_unsqueeze.cpp pass_ncnn/torchaudio_F_inverse_spectrogram.cpp diff --git a/tools/pnnx/src/pass_ncnn/torch_topk.cpp b/tools/pnnx/src/pass_ncnn/torch_topk.cpp new file mode 100644 index 00000000000..fb0a0f08b02 --- /dev/null +++ b/tools/pnnx/src/pass_ncnn/torch_topk.cpp @@ -0,0 +1,69 @@ +// Tencent is pleased to support the open source community by making ncnn available. +// +// Copyright (C) 2022 THL A29 Limited, a Tencent company. All rights reserved. +// +// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +// in compliance with the License. You may obtain a copy of the License at +// +// https://opensource.org/licenses/BSD-3-Clause +// +// Unless required by applicable law or agreed to in writing, software distributed +// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +// CONDITIONS OF ANY KIND, either express or implied. See the License for the +// specific language governing permissions and limitations under the License. +#include "pass_ncnn.h" + +namespace pnnx { + +namespace ncnn { + +class torch_topk : public GraphRewriterPass +{ +public: + const char* match_pattern_graph() const + { + return R"PNNXIR(7767517 +3 2 +pnnx.Input input 0 1 input +torch.topk op_0 1 2 input out indices dim=%dim k=%k largest=%largest sorted=%sorted +pnnx.Output output 2 0 out indices +)PNNXIR"; + } + + const char* type_str() const + { + return "TopK"; + } + + const char* name_str() const + { + return "topk"; + } + + void write(Operator* op, const std::map& captured_params) const + { + int k = captured_params.at("k").i; + int dim = captured_params.at("dim").i; + int largest = captured_params.at("largest").b ? 1 : 0; + int sorted = captured_params.at("sorted").b ? 1 : 0; + + // 设置参数 + op->params["0"] = k; + op->params["1"] = dim; + op->params["2"] = largest; + op->params["3"] = sorted; + + // 未完成说明 + int input_rank = (int)op->inputs[0]->shape.size(); + if (input_rank == 4 && (dim == 0 || dim == 1)) + { + printf("error: 4D with dim = 0 or 1 is not supported yet\n"); + } + } +}; + +REGISTER_GLOBAL_PNNX_NCNN_GRAPH_REWRITER_PASS(torch_topk, 20) + +} // namespace ncnn + +} // namespace pnnx \ No newline at end of file diff --git a/tools/pnnx/tests/ncnn/CMakeLists.txt b/tools/pnnx/tests/ncnn/CMakeLists.txt index 42c3bed32e0..2e95d2ada2b 100644 --- a/tools/pnnx/tests/ncnn/CMakeLists.txt +++ b/tools/pnnx/tests/ncnn/CMakeLists.txt @@ -203,6 +203,7 @@ pnnx_ncnn_add_test(torch_square) pnnx_ncnn_add_test(torch_tan) pnnx_ncnn_add_test(torch_tanh) pnnx_ncnn_add_test(torch_trunc) +pnnx_ncnn_add_test(torch_topk) pnnx_ncnn_add_test(convnext_tiny) pnnx_ncnn_add_test(mobilenet_v2) diff --git a/tools/pnnx/tests/ncnn/test_torch_topk.py b/tools/pnnx/tests/ncnn/test_torch_topk.py new file mode 100644 index 00000000000..8bc3c68a300 --- /dev/null +++ b/tools/pnnx/tests/ncnn/test_torch_topk.py @@ -0,0 +1,94 @@ +# Tencent is pleased to support the open source community by making ncnn available. +# +# Copyright (C) 2023 THL A29 Limited, a Tencent company. All rights reserved. +# +# Licensed under the BSD 3-Clause License (the "License"); you may not use this file except +# in compliance with the License. You may obtain a copy of the License at +# +# https://opensource.org/licenses/BSD-3-Clause +# +# Unless required by applicable law or agreed to in writing, software distributed +# under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR +# CONDITIONS OF ANY KIND, either express or implied. See the License for the +# specific language governing permissions and limitations under the License. + +import torch +import torch.nn as nn +import torch.nn.functional as F + + +class Model(nn.Module): + def __init__(self): + super(Model, self).__init__() + + def forward(self, x, y, z, d): + x0, i0 = torch.topk(x, 4) + y1, i1 = torch.topk(y, k=2, dim=0, largest=True) + y2, i2 = torch.topk(y, k=2, dim=1, largest=False) + # 3D + z1, i3 = torch.topk(z, k=2, dim=0) + z1, i4 = torch.topk(z, k=3, dim=1) + z1, i5 = torch.topk(z, k=1, dim=2) + # 4D + # d0, i6 = torch.topk( + # d, + # k=2, + # dim=0, + # ) + # d1, i7 = torch.topk( + # d, + # k=2, + # dim=1, + # ) + d2, i8 = torch.topk( + d, + k=2, + dim=2, + ) + d3, i9 = torch.topk(d, k=2, dim=3, sorted=True) + # return x0, y1, y2, z1, i3, i4, i5, d0, d1, d2, d3, i6, i7, i8, i9 + return x0, y1, y2, i0, i1, i2, z1, i3, i4, i5, d2, d3, i8, i9 + + +def test(): + net = Model() + net.eval() + + torch.manual_seed(0) + x = torch.rand(36) # 1D + y = torch.rand(4, 7) # 2D + z = torch.rand(3, 4, 5) # 3D + d = torch.rand(4, 2, 6, 7) # 4D + + a = net(x, y, z, d) + + # export torchscript + mod = torch.jit.trace(net, (x, y, z, d)) + mod.save("test_torch_topk.pt") + + # torchscript to pnnx + import os + + os.system( + "../../src/pnnx test_torch_topk.pt inputshape=[36],[4,7],[3,4,5],[4,2,6,7]" + ) + + # pnnx inference + import test_torch_topk_ncnn + + b = test_torch_topk_ncnn.test_inference() + + for a0, b0 in zip(a, b): + if a0.dtype != torch.float: + a0 = a0.to(torch.int32) # i64 --> i32 + b0 = b0.view(torch.int32) # f32 --> i32 + if not torch.allclose(a0, b0, 1e-3, 1e-3): + return False + return True + + +if __name__ == "__main__": + if test(): + exit(0) + else: + exit(1)