forked from Mr-xn/Penetration_Testing_POC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdp_crypto.py
184 lines (123 loc) · 5.39 KB
/
rdp_crypto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import binascii
import hashlib
import rc4
import struct
class non_fips():
def __init__(self, server_ran, client_ran):
# PreMasterSecret = First192Bits(ClientRandom) + First192Bits(ServerRandom)
self.server_ran = server_ran
self.client_ran = client_ran
# PreMasterSecret
self.pms = self.client_ran[:24] + self.server_ran[:24]
# MasterSecret
self.ms = self.__get_master_secret()
# SessionKeyBlob
self.sess_key_blob = self.__get_sess_key_blob()
# MACKey128 = First128Bits(SessionKeyBlob)
# InitialClientDecryptKey128 = FinalHash(Second128Bits(SessionKeyBlob))
# InitialClientEncryptKey128 = FinalHash(Third128Bits(SessionKeyBlob))
def get_dec_key(self):
return rc4.RC4Key(self.__get_final_hash(self.sess_key_blob[16:32]))
def get_enc_key(self):
key = self.__get_final_hash(self.sess_key_blob[32:48])
return rc4.RC4Key(key), key
def get_mac_key(self):
#print('mac key')
#print(binascii.hexlify(self.sess_key_blob[:16]))
return self.sess_key_blob[:16]
# MasterSecret = PreMasterHash(0x41) + PreMasterHash(0x4242) + PreMasterHash(0x434343)
def __get_master_secret(self):
return self.__get_pm_hash(b'\x41') + self.__get_pm_hash(b'\x42'*2) + self.__get_pm_hash(b'\x43'*3)
# SessionKeyBlob = MasterHash(0x58) + MasterHash(0x5959) + MasterHash(0x5A5A5A)
def __get_sess_key_blob(self):
return self.__get_m_hash(b'\x58') + self.__get_m_hash(b'\x59'*2) + self.__get_m_hash(b'\x5a'*3)
# PreMasterHash(I) = SaltedHash(MasterSecret, I)
def __get_m_hash(self, I):
return self.__get_salted_hash(self.ms, I)
# PreMasterHash(I) = SaltedHash(PremasterSecret, I)
def __get_pm_hash(self, I):
return self.__get_salted_hash(self.pms, I)
# SaltedHash(S, I) = MD5(S + SHA(I + S + ClientRandom + ServerRandom))
def __get_salted_hash(self, S, I):
sha1Digest = hashlib.sha1()
md5Digest = hashlib.md5()
sha1Digest.update(I)
sha1Digest.update(S)
sha1Digest.update(self.client_ran)
sha1Digest.update(self.server_ran)
sha1Sig = sha1Digest.digest()
md5Digest.update(S)
md5Digest.update(sha1Sig)
return md5Digest.digest()
# FinalHash(K) = MD5(K + ClientRandom + ServerRandom)
def __get_final_hash(self, K):
md5Digest = hashlib.md5()
md5Digest.update(K)
md5Digest.update(self.client_ran)
md5Digest.update(self.server_ran)
md5Sig = md5Digest.digest()
#print('encrypt/decrypt key')
#print(binascii.hexlify(md5Sig))
return md5Sig
class rc4_crypter():
def __init__(self, non_fips):
# we are sploiting no need for decrypt as far as i've seen
self.enc_key, self.initial_key = non_fips.get_enc_key()
self.current_key = self.initial_key
self.dec_key = non_fips.get_dec_key()
self.mac_key = non_fips.get_mac_key()
self.enc_count = 0
def encrypt(self, data):
enc = rc4.crypt(self.enc_key, data)
self.increment()
return enc
def decrypt(self, data):
return rc4.crypt(self.dec_key, data)
# Pad1 = 0x36 repeated 40 times to give 320 bits
# Pad2 = 0x5C repeated 48 times to give 384 bits
#
# SHAComponent = SHA(MACKeyN + Pad1 + DataLength + Data)
# MACSignature = First64Bits(MD5(MACKeyN + Pad2 + SHAComponent))
def sign(self, data):
sha1Digest = hashlib.sha1()
md5Digest = hashlib.md5()
len_data = len(data)
len_data = struct.pack('<I', len_data)
sha1Digest.update(self.mac_key)
sha1Digest.update(b'\x36'*40)
sha1Digest.update(len_data)
sha1Digest.update(data)
sha1Sig = sha1Digest.digest()
md5Digest.update(self.mac_key)
md5Digest.update(b'\x5c'*48)
md5Digest.update(sha1Sig)
md5Sig = md5Digest.digest()
return md5Sig[:8]
def increment(self):
self.enc_count += 1
if self.enc_count == 4096:
self.update_enc_key()
self.enc_count = 0
def update_enc_key(self):
sha1Digest = hashlib.sha1()
md5Digest = hashlib.md5()
sha1Digest.update(self.initial_key)
sha1Digest.update(b"\x36" * 40)
sha1Digest.update(self.current_key)
sha1Sig = sha1Digest.digest()
md5Digest.update(self.initial_key)
md5Digest.update(b"\x5c" * 48)
md5Digest.update(sha1Sig)
tempKey128 = md5Digest.digest()
# If the key strength is 128 bits, then the temporary key (TempKey128) is used to
# reinitialize the associated RC4 substitution table. (For more information on RC4
# substitution table initialization, see [[SCHNEIER]] section 17.1.)
# S-TableEncrypt = InitRC4(TempKey128)
# RC4 is then used to encrypt TempKey128 to obtain the new 128-bit encryption key.
S_TableEncrypt = rc4.RC4Key(tempKey128)
# NewEncryptKey128 = RC4(TempKey128, S-TableEncrypt)
self.current_key = rc4.crypt(S_TableEncrypt, tempKey128)
# Finally, the associated RC4 substitution table is reinitialized with the new
# encryption key (NewEncryptKey128), which can then be used to encrypt a further 4,096 packets.
# S-Table = InitRC4(NewEncryptKey128)
self.enc_key = rc4.RC4Key(self.current_key)