-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathquestion_type_anlaysis.py
227 lines (190 loc) · 7.34 KB
/
question_type_anlaysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from lcquad_test import Orchestrator
from parser.lc_quad import LC_QaudParser
from learning.classifier.svmclassifier import SVMClassifier
from parser.qald import Qald
from parser.lc_quad_linked import LC_Qaud_Linked
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
import sys
import numpy as np
import json
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
if __name__ == "__main__":
parser = LC_QaudParser()
classifier1 = SVMClassifier('./output/question_type_classifier/svm.model')
classifier2 = SVMClassifier('./output/double_relation_classifier/svm.model')
query_builder = Orchestrator(None, classifier1, classifier2, parser, None, auto_train=True)
print("train_question_classifier")
scores = query_builder.train_question_classifier(file_path="./data/LC-QUAD/data.json", test_size=0.8)
print(scores)
y_pred = query_builder.question_classifier.predict(query_builder.X_test)
print(accuracy_score(query_builder.y_test, y_pred))
print(classification_report(query_builder.y_test, y_pred, digits=3))
ds = LC_Qaud_Linked(path="./data/LC-QUAD/linked_test.json")
ds.load()
ds.parse()
lcquad = []
lc_y = []
for qapair in ds.qapairs:
lcquad.append(qapair.question.text)
if "COUNT(" in qapair.sparql.query:
lc_y.append(2)
elif "ASK" in qapair.sparql.query:
lc_y.append(1)
else:
lc_y.append(0)
lc_y = np.array(lc_y)
print('LIST: ', sum(lc_y==0))
print('ASK: ', sum(lc_y == 1))
print('COUNT: ', sum(lc_y == 2))
np.savetxt('lcquad_question_type.csv', lc_y, delimiter=',')
lc_pred = query_builder.question_classifier.predict(lcquad)
print('LC-QUAD question_classifier')
print(accuracy_score(lc_y, lc_pred))
print(classification_report(lc_y, lc_pred, digits=4))
classes = ['List', 'Count', 'Boolean']
cm = confusion_matrix(lc_y, lc_pred)
print('Before Normalization')
print(cm)
print('Accuracy by class: ')
c_acc = cm.diagonal() / cm.sum(axis=1)
print(c_acc)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('After Normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.savefig('confusion_matrix_lcquad.png')
q_ds = Qald(Qald.qald_7)
q_ds.load()
q_ds.parse()
qald = []
q_y = []
for qapair in q_ds.qapairs:
qald.append(qapair.question.text)
if "COUNT(" in qapair.sparql.query:
q_y.append(2)
elif "ASK" in qapair.sparql.query:
q_y.append(1)
x = ascii(qapair.sparql.query.replace('\n', ' ').replace('\t', ' '))
print(x)
else:
q_y.append(0)
q_y = np.array(q_y)
print('LIST: ', sum(q_y==0))
print('ASK: ', sum(q_y == 1))
print('COUNT: ', sum(q_y == 2))
np.savetxt('qald_question_type.csv', q_y, delimiter=',')
q_pred = query_builder.question_classifier.predict(qald)
print('QALD question_classifier')
print(accuracy_score(q_y, q_pred))
print(classification_report(q_y, q_pred, digits=4))
classes = ['List', 'Count', 'Boolean']
cm = confusion_matrix(q_y, q_pred)
print('Before Normalization')
print(cm)
print('Accuracy by class: ')
c_acc = cm.diagonal() / cm.sum(axis=1)
print(c_acc)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('After Normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.savefig('confusion_matrix_qald.png')
ds = LC_Qaud_Linked(path="./data/LC-QUAD/linked_answer.json")
ds.load()
ds.parse()
lcquad = []
lc_y = []
for qapair in ds.qapairs:
lcquad.append(qapair.question.text)
if "COUNT(" in qapair.sparql.query:
lc_y.append(2)
elif "ASK" in qapair.sparql.query:
lc_y.append(1)
else:
lc_y.append(0)
lc_y = np.array(lc_y)
print('LIST: ', sum(lc_y==0))
print('ASK: ', sum(lc_y == 1))
print('COUNT: ', sum(lc_y == 2))
np.savetxt('lcquad_question_type_all.csv', lc_y, delimiter=',')
lc_pred = query_builder.question_classifier.predict(lcquad)
print('LC-QUAD question_classifier')
print(accuracy_score(lc_y, lc_pred))
print(classification_report(lc_y, lc_pred, digits=4))
classes = ['List', 'Count', 'Boolean']
cm = confusion_matrix(lc_y, lc_pred)
print('Before Normalization')
print(cm)
print('Accuracy by class: ')
c_acc = cm.diagonal() / cm.sum(axis=1)
print(c_acc)
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('After Normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
plt.savefig('confusion_matrix_lcquad_all.png')