-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcls_data_processing.py
87 lines (69 loc) · 3.17 KB
/
cls_data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch
import numpy as np
import cv2
import pydicom
from glob import glob
import threading
import os
from config import Config
def load_bone(msk, cid, t_paths, cropped_images):
n_scans = len(t_paths)
bone = []
try:
msk_b = msk[cid] > 0.2
msk_c = msk[cid] > 0.05
x = np.where(msk_b.sum(1).sum(1) > 0)[0]
y = np.where(msk_b.sum(0).sum(1) > 0)[0]
z = np.where(msk_b.sum(0).sum(0) > 0)[0]
if len(x) == 0 or len(y) == 0 or len(z) == 0:
x = np.where(msk_c.sum(1).sum(1) > 0)[0]
y = np.where(msk_c.sum(0).sum(1) > 0)[0]
z = np.where(msk_c.sum(0).sum(0) > 0)[0]
x1, x2 = max(0, x[0] - 1), min(msk.shape[1], x[-1] + 1)
y1, y2 = max(0, y[0] - 1), min(msk.shape[2], y[-1] + 1)
z1, z2 = max(0, z[0] - 1), min(msk.shape[3], z[-1] + 1)
zz1, zz2 = int(z1 / Config.msk_size *
n_scans), int(z2 / Config.msk_size * n_scans)
inds = np.linspace(zz1, zz2-1, Config.n_slice_per_c).astype(int)
inds_ = np.linspace(z1, z2-1, Config.n_slice_per_c).astype(int)
for sid, (ind, ind_) in enumerate(zip(inds, inds_)):
msk_this = msk[cid, :, :, ind_]
images = []
for i in range(-Config.n_ch//2+1, Config.n_ch//2+1):
try:
dicom = pydicom.read_file(t_paths[ind+i])
images.append(dicom.pixel_array)
except:
images.append(np.zeros((512, 512)))
data = np.stack(images, -1)
data = data - np.min(data)
data = data / (np.max(data) + 1e-4)
data = (data * 255).astype(np.uint8)
msk_this = msk_this[x1:x2, y1:y2]
xx1 = int(x1 / Config.msk_size * data.shape[0])
xx2 = int(x2 / Config.msk_size * data.shape[0])
yy1 = int(y1 / Config.msk_size * data.shape[1])
yy2 = int(y2 / Config.msk_size * data.shape[1])
data = data[xx1:xx2, yy1:yy2]
data = np.stack([cv2.resize(data[:, :, i], (Config.image_size_cls, Config.image_size_cls),
interpolation=cv2.INTER_LINEAR) for i in range(Config.n_ch)], -1)
msk_this = (msk_this * 255).astype(np.uint8)
msk_this = cv2.resize(
msk_this, (Config.image_size_cls, Config.image_size_cls), interpolation=cv2.INTER_LINEAR)
data = np.concatenate([data, msk_this[:, :, np.newaxis]], -1)
bone.append(torch.tensor(data))
except:
for sid in range(Config.n_slice_per_c):
bone.append(torch.ones(
(Config.image_size_cls, Config.image_size_cls, Config.n_ch+1)).int())
cropped_images[cid] = torch.stack(bone, 0)
def load_cropped_images(msk, image_folder, threads, cropped_images):
t_paths = sorted(glob(os.path.join(image_folder, "*")),
key=lambda x: int(x.split('/')[-1].split(".")[0]))
for cid in range(7):
threads[cid] = threading.Thread(
target=load_bone, args=(msk, cid, t_paths, cropped_images))
threads[cid].start()
for cid in range(7):
threads[cid].join()
return torch.cat(cropped_images, 0)