-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdrive.py
221 lines (175 loc) · 6.92 KB
/
drive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import argparse
import base64
from datetime import datetime
import os
import shutil
import sys
import numpy as np
import socketio
import eventlet
import eventlet.wsgi
from PIL import Image
from flask import Flask
from io import BytesIO
from keras.models import load_model
import h5py
from keras import __version__ as keras_version
from networks.BaseNetwork import BaseNetwork
# TODO: from Filter import Filter
from model import IMAGE_WIDTH, IMAGE_HEIGHT, ROI
from DataAugmentation import DataAugmentation
# TODO: import cv2
sio = socketio.Server()
app = Flask(__name__)
model = None
prev_image_array = None
class SimplePIController:
def __init__(self, Kp, Ki):
self.Kp = Kp
self.Ki = Ki
self.set_point = 0.
self.error = 0.
self.integral = 0.
def set_desired(self, desired):
self.set_point = desired
def update(self, measurement):
# proportional error
self.error = self.set_point - measurement
# integral error
self.integral += self.error
return self.Kp * self.error + self.Ki * self.integral
controller = SimplePIController(0.1, 0.003) # org: 0.1, 0.002
set_speed = 15
controller.set_desired(set_speed)
recovery = 0 # hack to avoid vehicle standstill situations in the simulation
frame = 0
# TODO: filter = Filter()
def bar(value, range=[-1., 1.], prefix='', suffix='', limit=None):
""" Shows graph like this [-----|-----] in the console.
:param value: Value which shall be shown.
:param range: Range of graph.
:param prefix: Text shown before the graph.
:param suffix: Text shown behind the graph.
:param limit: Draws a limit bar `|` at the pos/neg limit position.
"""
bar_len = 21
r = float(range[1] - range[0])
value_pos = max(min(int(bar_len * (value + r / 2.) / r), bar_len - 1), 0)
list = ['-'] * bar_len
list[int(bar_len / 2)] = '+'
if limit is not None:
threshold_pos_0 = max(min(int(bar_len * (limit + r / 2.) / r), bar_len - 1), 0)
threshold_pos_1 = max(min(int(bar_len * (-limit + r / 2.) / r), bar_len - 1), 0)
list[threshold_pos_0] = '|'
list[threshold_pos_1] = '|'
list[value_pos] = '\033[97m∆\033[00m'
str = ''.join(list)
sys.stdout.write('{:s}[{:s}] {:s}'.format(prefix, str, suffix))
sys.stdout.flush()
@sio.on('telemetry')
def telemetry(sid, data):
if data:
# The current steering angle of the car
steering_angle = float(data["steering_angle"])
# The current throttle of the car
throttle = float(data["throttle"])
# The current speed of the car
speed = float(data["speed"])
# The current image from the center camera of the car
imgString = data["image"]
image = Image.open(BytesIO(base64.b64decode(imgString)))
image_array = np.asarray(image)
# Pre-process image and predict steering angle
input_image = BaseNetwork.preprocess_image(image_array, IMAGE_WIDTH, IMAGE_HEIGHT, ROI)
steering_angle = float(model.predict(input_image[None, :, :, :], batch_size=1))
# filter steering angle by moving average
# TODO: steering_angle = filter.moving_average(steering_angle, window_size=8)
# emergency brake to handle downhill driving
if speed > (controller.set_point + 7):
controller.set_desired(3)
info_text = '\033[91m<<<< EMERGENCY BRAKE >>>>\033[00m'
else:
controller.set_desired(set_speed)
info_text = ''
throttle = controller.update(speed)
# hack to avoid vehicle standstill in simulation
global recovery
if speed <= 0.01 and recovery > 0:
recovery = max(0, recovery - 1)
info_text += '\033[92m<<< RECOVERY MODE >>>\033[00m'
send_control(0, -1.)
else:
send_control(steering_angle, throttle)
recovery = 3
# show status
bar(steering_angle, prefix='angle: ', suffix=' {:7.2f}°'.format(steering_angle * 25.))
bar(throttle, prefix=' throttle: ', suffix=' {:5.2f}'.format(throttle))
print(' speed: {:5.2f} / {:5.2f} mph {:s}'.format(speed, controller.set_point, info_text))
# save frame
if args.image_folder != '':
global frame
timestamp = datetime.utcnow().strftime('%Y_%m_%d_%H_%M_%S_%f')[:-3]
image_filename = os.path.join(args.image_folder, timestamp)
image = Image.fromarray(DataAugmentation.draw_overlay(image_array,
frame=frame,
steering_angle=steering_angle * 25.,
speed=float(speed),
color=(0, 30, 70)))
frame += 1
image.save('{}.jpg'.format(image_filename))
# TODO: show steering angle prediction in image
# image_array = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
# cv2.imshow('Predicted steering angle', image_array)
# cv2.waitKey(1)
else:
# NOTE: DON'T EDIT THIS.
sio.emit('manual', data={}, skip_sid=True)
@sio.on('connect')
def connect(sid, environ):
print("connect ", sid)
send_control(0, 0)
def send_control(steering_angle, throttle):
sio.emit(
"steer",
data={
'steering_angle': steering_angle.__str__(),
'throttle': throttle.__str__()
},
skip_sid=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Remote Driving')
parser.add_argument(
'model',
type=str,
help='Path to model h5 file. Model should be on the same path.'
)
parser.add_argument(
'image_folder',
type=str,
nargs='?',
default='',
help='Path to image folder. This is where the images from the run will be saved.'
)
args = parser.parse_args()
# check that model Keras version is same as local Keras version
f = h5py.File(args.model, mode='r')
model_version = f.attrs.get('keras_version')
keras_version = str(keras_version).encode('utf8')
if model_version != keras_version:
print('You are using Keras version ', keras_version,
', but the model was built using ', model_version)
model = load_model(args.model)
if args.image_folder != '':
print("Creating image folder at {}".format(args.image_folder))
if not os.path.exists(args.image_folder):
os.makedirs(args.image_folder)
else:
shutil.rmtree(args.image_folder)
os.makedirs(args.image_folder)
print("RECORDING THIS RUN ...")
else:
print("NOT RECORDING THIS RUN ...")
# wrap Flask application with engineio's middleware
app = socketio.Middleware(sio, app)
# deploy as an eventlet WSGI server
eventlet.wsgi.server(eventlet.listen(('', 4567)), app)