-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathDataManager.py
91 lines (70 loc) · 3.33 KB
/
DataManager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import os
import sys
import math
import tarfile
class DataManager:
def __init__(self, dataset_path):
self.dataset_path = dataset_path
def extract_dataset(self, compressed_dataset_file_name, dataset_directory):
try:
# extract files to dataset folder
tar = tarfile.open(compressed_dataset_file_name, "r:gz")
tar.extractall(dataset_directory)
tar.close()
print("Files extraction was successfull ...")
except:
print("Ecxception raised: No extraction was done ...")
def make_folder(self, folder_path):
try:
os.mkdir(folder_path)
print(folder_path, "was created ...")
except:
print("Ecxception raised: ", folder_path, "could not be created ...")
def move_files(self, src, dst, group):
for fname in group:
os.rename(src + '/' + fname, dst + '/' + fname)
def get_fnames_from_dict(self, dataset_dict, f_or_m):
training_data, testing_data = [], []
for i in range(1,5):
length_data = len(dataset_dict[f_or_m +"000" + str(i)])
length_separator = math.trunc(length_data*2/3)
training_data += dataset_dict[f_or_m + "000" + str(i)][:length_separator]
testing_data += dataset_dict[f_or_m + "000" + str(i)][length_separator:]
return training_data, testing_data
def manage(self):
# read config file and get path to compressed dataset
compressed_dataset_file_name = self.dataset_path
dataset_directory = compressed_dataset_file_name.split(".")[0]
# create a folder for the data
try:
os.mkdir(dataset_directory)
except:
pass
# extract dataset
self.extract_dataset(compressed_dataset_file_name, dataset_directory)
# select females files and males files
file_names = [fname for fname in os.listdir(dataset_directory) if ("f0" in fname or "m0" in fname)]
dataset_dict = {"f0001": [], "f0002": [], "f0003": [], "f0004": [], "f0005": [],
"m0001": [], "m0002": [], "m0003": [], "m0004": [], "m0005": [], }
# fill in dictionary
for fname in file_names:
dataset_dict[fname.split('_')[0]].append(fname)
# divide and group file names
training_set, testing_set = {},{}
training_set["females"], testing_set["females"] = self.get_fnames_from_dict(dataset_dict, "f")
training_set["males" ], testing_set["males" ] = self.get_fnames_from_dict(dataset_dict, "m")
# make training and testing folders
self.make_folder("TrainingData")
self.make_folder("TestingData")
self.make_folder("TrainingData/females")
self.make_folder("TrainingData/males")
self.make_folder("TestingData/females")
self.make_folder("TestingData/males")
# move files
self.move_files(dataset_directory, "TrainingData/females", training_set["females"])
self.move_files(dataset_directory, "TrainingData/males", training_set["males"])
self.move_files(dataset_directory, "TestingData/females", testing_set["females"])
self.move_files(dataset_directory, "TestingData/males", testing_set["males"])
if __name__== "__main__":
data_manager = DataManager("SLR45.tgz")
data_manager.manage()