forked from SudeshnaPathak/Jal_Shakti_Report_Query
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
111 lines (88 loc) · 3.95 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
from langchain.chains.question_answering import load_qa_chain
import time
load_dotenv()
# genai.configure(api_key = os.getenv("GOOGLE_API_KEY"))
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
os.environ["LANGCHAIN_TRACING_V2"]=os.getenv("LANGCHAIN_TRACING_V2")
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000 , chunk_overlap =1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
# embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
embeddings = OpenAIEmbeddings()
#model = "gpt-3.5-turbo-0125"
vector_store = FAISS.from_texts(text_chunks , embedding = embeddings)
vector_store.save_local("faiss_index_openai")
return vector_store
def get_conversational_chain():
prompt_template = """
Answer the following question in a detailed manner based only on the provided context.
Think step by step before providing an answer,make sure to provide all the details
I will tip you $1000 if the user finds the answer helpful.
if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
<context>
{context}
</context>
Question: {question}"""
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0)
# model = ChatGoogleGenerativeAI(model="gemini-1.5-flash" , temeperature = 0.3)
prompt = PromptTemplate(template = prompt_template , input_variables={"context","question"})
# chain = load_qa_chain(model , chain_type="stuff" , prompt=prompt)
chain = load_qa_chain(llm , chain_type="stuff" , prompt=prompt)
return chain
def user_input(user_question):
start_time = time.time()
# embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
# embeddings = OpenAIEmbeddings()
new_db = st.session_state.get("vector_store")
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
placeholder = st.empty()
response = ""
for r in chain.stream(
{"input_documents": docs, "question": user_question},
return_only_outputs=True):
response += r["output_text"]
time.sleep(1)
placeholder.write(response)
# print(response)
# st.write("Reply: ", response["output_text"])
st.write("Time taken: ", time.time() - start_time)
def main():
st.set_page_config("Chat with multiple PDFs")
st.header("Chat with multiple PDFs using GPT💁")
user_question = st.text_input("Ask a Question from the PDF Files")
if user_question:
user_input(user_question)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
start_time = time.time()
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vector_store = get_vector_store(text_chunks)
st.session_state.vector_store = vector_store
st.success(f"Done \n Time Taken: {time.time() - start_time}" )
if __name__ == "__main__":
main()