forked from SudeshnaPathak/Jal_Shakti_Report_Query
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chat2.py
110 lines (92 loc) · 4.18 KB
/
chat2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_openai import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.callbacks.streaming_aiter import AsyncIteratorCallbackHandler
from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain_core.prompts import ChatPromptTemplate
from dotenv import load_dotenv
from langchain.chains.question_answering import load_qa_chain
from langchain_core.output_parsers import StrOutputParser
from typing import AsyncGenerator
import time
import asyncio
load_dotenv()
# genai.configure(api_key = os.getenv("GOOGLE_API_KEY"))
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")
os.environ["LANGCHAIN_TRACING_V2"]=os.getenv("LANGCHAIN_TRACING_V2")
os.environ["LANGCHAIN_API_KEY"] = os.getenv("LANGCHAIN_API_KEY")
st.set_page_config("Chat with multiple PDFs")
st.header("Chat with multiple PDFs using GPT💁")
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000 , chunk_overlap =1000)
chunks = text_splitter.split_text(text)
return chunks
def get_vector_store(text_chunks):
# embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
embeddings = OpenAIEmbeddings()
#model = "gpt-3.5-turbo-0125"
vector_store = FAISS.from_texts(text_chunks, embedding = embeddings)
return vector_store
def get_conversational_chain():
prompt_template = """
Answer the following question in a detailed manner based only on the provided context.
Think step by step before providing an answer,make sure to provide all the details
I will tip you $1000 if the user finds the answer helpful.
if the answer is not in provided context just say, "answer is not available in the context", don't provide the wrong answer\n\n
<context>
{context}
</context>
Question: {question}"""
llm = ChatOpenAI(model="gpt-3.5-turbo-0125", temperature=0 , streaming=True, stream_usage=True)
# model = ChatGoogleGenerativeAI(model="gemini-1.5-flash" , temeperature = 0.3)
prompt = PromptTemplate(template = prompt_template , input_variables={"context","question"})
# chain = load_qa_chain(model , chain_type="stuff" , prompt=prompt)
chain = prompt | llm | StrOutputParser()
return chain
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
def user_input(user_question):
start_time = time.time()
# embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
# embeddings = OpenAIEmbeddings()
new_db = st.session_state.get("vector_store")
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
for r in chain.stream(
{"context": docs, "question": user_question},
):
yield r
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button", accept_multiple_files=True)
if st.button("Submit & Process"):
with st.spinner("Processing..."):
start_time = time.time()
raw_text = get_pdf_text(pdf_docs)
text_chunks = get_text_chunks(raw_text)
vector_store = get_vector_store(text_chunks)
st.session_state.vector_store = vector_store
st.success(f"Done \n Time Taken: {time.time() - start_time}" )
if prompt := st.chat_input("Enter your question"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
# response1 = user_input(prompt)
# response1 = next(response1)
response = st.write_stream(user_input(prompt))
st.session_state.messages.append({"role": "assistant", "content": response})