The dataset was imbalanced
Algos tried on both imbalanced and balanced dataset with close notice on precision,recall & f1-score
- Shallow Neural Network
- GradientBoostingClassifier
- SVM
- Logistic Regression
- RandomForest
Models tried | P | R | f-1 |
---|---|---|---|
shallow_nn on val | 0.68 | 0.78 | 0.73 |
GradientBoostingClassifier on val | 0.67 | 0.67 | 0.67 |
SVM on val(1000) | 0.66 | 0.64 | 0.65 |
Logistic on val | 0.73 | 0.53 | 0.61 |
Random forest on val | 0.81 | 0.47 | 0.60 |
SVM on val(5000) | 0.18 | 0.83 | 0.29 |
Models tried | P | R | f-1 |
---|---|---|---|
shallow_nn on val | |||
Not Fraud | 0.89 | 1.00 | 0.94 |
Fraud | 1.00 | 0.87 | 0.93 |
GradientBoostingClassifier on val | |||
Not Fraud | 0.94 | 0.92 | 0.93 |
Fraud | 0.92 | 0.94 | 0.93 |
SVM on val(1000) | |||
Not Fraud | 0.96 | 0.93 | 0.94 |
Fraud | 0.93 | 0.96 | 0.94 |
Logistic on val | |||
Fraud | 0.96 | 0.93 | 0.94 |
Not fraud | 0.93 | 0.96 | 0.94 |
Random forest on val | |||
Not Fraud | 0.99 | 0.92 | 0.95 |
Fraud | 0.98 | 0.91 | 0.95 |
I feel SVM to be best suited!!