forked from xing89qs/CCF_Product
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_stacking.py
202 lines (165 loc) · 9.21 KB
/
model_stacking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/env python
# -- coding:utf-8 --
from xgboost import XGBRegressor
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.svm import LinearSVR
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
def dfs(l, r, feature_file, folder):
if l == r:
return pd.read_csv(folder + '/' + feature_file[l] + '.csv')
mid = (l + r) / 2
l_frame = dfs(l, mid, feature_file, folder)
r_frame = dfs(mid + 1, r, feature_file, folder)
return pd.merge(l_frame, r_frame, how='left')
def calculate(test_set):
return np.mean(
test_set[test_set.y != -1].apply(
lambda x: ((x['predictY'] - x['y']) / x['y']) ** 2,
axis=1))
def diff1(x):
if x['_3day_exists_avg'] is None:
return None
return x['_3day_exists_avg'] - x['_7day_exists_avg']
def diff2(x):
if x['_7day_avg'] is None:
return None
return x['_7day_avg'] - x['_30day_avg']
def run(feature_files, training_dates, feature_set_folder):
train_set1 = pd.concat(
[dfs(0, len(feature_files), feature_files + ['y'], 'dataset/' + date) for date in training_dates])
train_set = train_set1[train_set1.time_diff > 15]
test_set = train_set1[train_set1.time_diff <= 15]
train_set = train_set.fillna(-1, downcast='infer')
test_set = test_set.fillna(-1, downcast='infer')
train_set['y_log'] = train_set['y'].apply(lambda x: np.log(1 + x))
test_set['y_log'] = test_set['y'].apply(lambda x: np.log(1 + x))
feature_set = filter(lambda x: x not in ['y', 'time', 'province', 'market', 'name', 'type', 'y_log'],
train_set.columns)
scaler = StandardScaler()
scaler.fit(train_set[feature_set].as_matrix())
#
# # model1
# model1 = LinearRegression(normalize=True)
# model1.fit(scaler.transform(train_set[feature_set].as_matrix()), train_set['y'].as_matrix(),
# sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
# )
# print zip(feature_set, model1.coef_)
# test_set['predictY'] = model1.predict(scaler.transform(test_set[feature_set].as_matrix()))
# test_set.to_csv('result/' + feature_set_folder + '/model1_offline_stacking1.csv')
#
# # model2
# model2 = XGBRegressor(n_estimators=600, learning_rate=0.01, max_depth=6, colsample_bytree=0.7, subsample=0.7,
# colsample_bylevel=0.7)
# model2.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
# sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
# )
# test_set['predictY'] = model2.predict(test_set[feature_set].as_matrix())
# test_set.to_csv('result/' + feature_set_folder + '/model2_offline_stacking1.csv')
#
# # model3
# model3 = LinearSVR(tol=1e-7)
# model3.fit(scaler.transform(train_set[feature_set].as_matrix()), train_set['y'].as_matrix(),
# sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
# )
# test_set['predictY'] = model3.predict(scaler.transform(test_set[feature_set].as_matrix()))
# test_set.to_csv('result/' + feature_set_folder + '/model3_offline.csv')
# model4
model4 = RandomForestRegressor(n_estimators=1000, max_depth=7, max_features=0.2, max_leaf_nodes=100)
model4.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=np.array(map(lambda x: 1.0 / x / x, train_set['y'].as_matrix()))
)
test_set['predictY'] = model4.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model4_offline_stacking1.csv')
# model5
model5 = XGBRegressor(n_estimators=600, learning_rate=0.01, max_depth=6, colsample_bytree=0.7, subsample=0.7,
colsample_bylevel=0.7, seed=10000)
model5.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model5.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model5_offline_stacking1.csv')
# model5
model6 = XGBRegressor(n_estimators=600, learning_rate=0.01, max_depth=5, colsample_bytree=0.7, subsample=0.7,
colsample_bylevel=0.7)
model6.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model6.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model6_offline_stacking1.csv')
pass
def submit(feature_files, training_dates, feature_set_folder):
train_set1 = pd.concat(
[dfs(0, len(feature_files), feature_files + ['y'], 'dataset/' + date) for date in training_dates])
train_set = train_set1[train_set1.time_diff > 15]
test_set = train_set1[train_set1.time_diff <= 15]
train_set = train_set.fillna(-1, downcast='infer')
test_set = test_set.fillna(-1, downcast='infer')
train_set['y_log'] = train_set['y'].apply(lambda x: np.log(1 + x))
test_set['y_log'] = test_set['y'].apply(lambda x: np.log(1 + x))
feature_set = filter(lambda x: x not in ['y', 'time', 'province', 'market', 'name', 'type', 'y_log'],
train_set.columns)
scaler = StandardScaler()
scaler.fit(train_set[feature_set].as_matrix())
#
# model1
model1 = LinearRegression(normalize=True)
model1.fit(scaler.transform(train_set[feature_set].as_matrix()), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
print zip(feature_set, model1.coef_)
test_set['predictY'] = model1.predict(scaler.transform(test_set[feature_set].as_matrix()))
test_set.to_csv('result/' + feature_set_folder + '/model1_online_stacking1.csv')
print test_set
# model2
model2 = XGBRegressor(n_estimators=600, learning_rate=0.01, max_depth=6, colsample_bytree=0.7, subsample=0.7,
colsample_bylevel=0.7)
model2.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model2.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model2_online_stacking1.csv')
# model3
model3 = LinearSVR(tol=1e-7)
model3.fit(scaler.transform(train_set[feature_set].as_matrix()), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model3.predict(scaler.transform(test_set[feature_set].as_matrix()))
test_set.to_csv('result/' + feature_set_folder + '/model3_offline.csv')
# model4
model4 = RandomForestRegressor(n_estimators=1000, max_depth=7, max_features=0.2, max_leaf_nodes=100)
model4.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=np.array(map(lambda x: 1.0 / x / x, train_set['y'].as_matrix()))
)
test_set['predictY'] = model4.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model4_online_stacking1.csv')
# model5
model5 = XGBRegressor(n_estimators=600, learning_rate=0.01, max_depth=6, colsample_bytree=0.7, subsample=0.7,
colsample_bylevel=0.7, seed=10000)
model5.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model5.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model5_online_stacking1.csv')
# model6
model6 = XGBRegressor(n_estimators=600, learning_rate=0.01, max_depth=5, colsample_bytree=0.7, subsample=0.7,
colsample_bylevel=0.7)
model6.fit(train_set[feature_set].as_matrix(), train_set['y'].as_matrix(),
sample_weight=map(lambda x: 1.0 / x / x, train_set['y'].as_matrix())
)
test_set['predictY'] = model6.predict(test_set[feature_set].as_matrix())
test_set.to_csv('result/' + feature_set_folder + '/model6_online_stacking1.csv')
pass
# run(['v1', 'v3', 'v11'], ['2016-05-01', '2016-04-25'], 'feature_set1')
# run(['v1', 'v3', 'v11', 'v14'], ['2016-05-01', '2016-04-25'], 'feature_set9')
# submit(['v1', 'v3', 'v11', 'v14'], ['2016-06-01', '2016-05-25'], 'feature_set9')
# run(['v1', 'v2', 'v3', 'v11'], ['2016-05-01', '2016-04-25'], 'feature_set4')
# run(['v1', 'v2', 'v3', 'xxv11'], ['2016-05-01', '2016-04-25', '2016-04-20', '2016-04-15'], 'feature_set6')
# run(['v1', 'v2', 'v3', 'v10'], ['2016-05-01', '2016-04-25'], 'feature_set3')
# submit(['v1', 'v14', 'v3', 'v11'], ['2016-06-01', '2016-05-25'], 'feature_set9')
submit(['v1', 'v3', 'v11'], ['2016-06-01', '2016-05-25'], 'feature_set1')
# submit(['v1', 'v2', 'v3', 'v11', 'v14'], ['2016-06-01', '2016-05-25'], 'feature_set6')
f = pd.read_csv('result/feature_set1/model1_offline.csv')
print calculate(f)