Skip to content

Latest commit

 

History

History
69 lines (53 loc) · 4.25 KB

README.md

File metadata and controls

69 lines (53 loc) · 4.25 KB

Type-Based Verification of Connectivity Constraints in Lattice Surgery

Structure of the Artifact

  • src/: The directory containing source files of our type checker.
    • src/ast: The definition of expressions.
    • src/typing: The definition of types and th implementation of type inference and type checking algorithm.
    • src/ds/undo_union_find.rs: The implementation of a union find data structure which can perform undo operation.
    • src/arch_graph.rs: The definition of an architecture graph.
    • src/parser.rs: The parser for $Q_{LS}$.
    • src/main.rs: The entry point.
  • examples/: The directory contains several examples of qtile programs and architecture graphs.
    • *.qls: The source file of $Q_{LS}$.
    • *.txt: The data of architecture graphs (that is, vertices and edges).

How to Run

You can test our implementation with a docker image provided in Dockerfile. The following commands allow you to enter a shell in which our type checker (tysurgery) is activated:

$ docker bulid -t tysurgery
$ docker run --it --name tysurgery tysurgery

Then you can see the directory example that contains source files and configuration files for an architecture graph to test our implementation. For example, you can run the type checker with cx.qls, which is provided in the paper, with the architecture graph specified in graph.txt as follows:

$ cd examples
$ tysurgery cx.qls graph.txt

The expected result is:

== ARCH INFO ================================================================================
ArchGraph { loc_to_index: {"l3": NodeIndex(3), "l1": NodeIndex(1), "l2": NodeIndex(2), "l4": NodeIndex(4), "l0": NodeIndex(0), "l5": NodeIndex(5)}, loc_to_edge_index: {("l2", "l1"): EdgeIndex(1), ("l2", "l5"): EdgeIndex(4), ("l1", "l4"): EdgeIndex(3), ("l4", "l3"): EdgeIndex(5), ("l3", "l0"): EdgeIndex(2), ("l0", "l3"): EdgeIndex(2), ("l5", "l4"): EdgeIndex(6), ("l4", "l5"): EdgeIndex(6), ("l4", "l1"): EdgeIndex(3), ("l1", "l0"): EdgeIndex(0), ("l1", "l2"): EdgeIndex(1), ("l0", "l1"): EdgeIndex(0), ("l5", "l2"): EdgeIndex(4), ("l3", "l4"): EdgeIndex(5)}, g: Graph { Ty: "Undirected", node_count: 6, edge_count: 7, edges: (0, 1), (1, 2), (0, 3), (1, 4), (2, 5), (3, 4), (4, 5), node weights: {0: "l0", 1: "l1", 2: "l2", 3: "l3", 4: "l4", 5: "l5"} } }
== PROGRAM ================================================================================
Program { decls: [FuncDecl { fname: "cx", locs: ["lx", "ly", "lz"], args: [("q0", Qbit("lx")), ("q1", Qbit("ly"))], expr: Expr { kind: Init("aux", "lz", Expr { kind: Measure("a", ["aux", "q1"], Expr { kind: Seq(Expr { kind: If(Expr { kind: Var("a") }, Expr { kind: GateCall(Z, "q0") }, None) }, Expr { kind: Measure("b", ["q0", "aux"], Expr { kind: Seq(Expr { kind: If(Expr { kind: Var("b") }, Expr { kind: GateCall(X, "q1") }, None) }, Expr { kind: Measure("c", ["aux"], Expr { kind: Seq(Expr { kind: If(Expr { kind: Var("c") }, Expr { kind: GateCall(Z, "q0") }, None) }, Expr { kind: Free("aux") }) }) }) }) }) }) }) } }], expr: Expr { kind: Init("q0", "l0", Expr { kind: Init("q1", "l1", Expr { kind: Call("cx", ["l0", "l1", "l2"], ["q0", "q1"]) }) }) } }
== TYPE INFER ================================================================================
type     = Unit
commands = [Alloc("l0"), Alloc("l1"), Alloc("l2"), Merge("l2", "l1"), Branch([], []), Merge("l0", "l2"), Branch([], []), Branch([], []), Free("l2")]
== TYPE CHECK ================================================================================
SAFE

A result of our type checker contains

  • ARCH INFO: a configuration of an architecture graph specified in the second input.
  • PROGRAM: an AST of the given program.
  • TYPE INFER: the result of type inference, including a type and a command sequence.
  • TYPE CHECK: the result of connectivity checking with the command sequence obtained by type inference.

The Format of a Graph Configuration File

A configuration file for an architecture graph with $n$ vertices and $m$ edges must have the following format:

<location 1> <location 2> ... <location n>
<location 11> <location 12>
...
<location m1> <location m2>

where

  • <location i> is the name of i-th location variable.
  • <location i1> <location i2> represents that the i-th edge is {<location i1>, <location i2>}.