forked from AmokSolderer/APC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Sound.h
executable file
·294 lines (237 loc) · 8.4 KB
/
Sound.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
///////////////////////////////////////////////////////////////////////////////
// Sound //////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
/*
* Copyright (c) 2012 Arduino LLC. All right reserved.
* Audio library for Arduino Due.
*
* This file is free software; you can redistribute it and/or modify
* it under the terms of either the GNU General Public License version 2
* or the GNU Lesser General Public License version 2.1, both as
* published by the Free Software Foundation.
*/
#ifndef SOUND_INCLUDED
#define SOUND_INCLUDED
#include "Print.h"
#define UNUSED(x) (void)(x)
///////////////////////////////////////////////////////////////////////////////
typedef void (*OnTransmitEnd_CB)(void *data);
///////////////////////////////////////////////////////////////////////////////
// DAC ////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
class CDAC
{
public:
CDAC(Dacc *_dac, uint32_t _dacId, IRQn_Type _isrId) : m_dac(_dac), m_dacId(_dacId), m_isrId(_isrId), m_cb(NULL) { m_cbData = NULL; };
void begin(uint32_t period) {
// Enable clock for DAC
pmc_enable_periph_clk(m_dacId);
dacc_reset(m_dac);
// Set transfer mode to double word
dacc_set_transfer_mode(m_dac, 1);
// Power save:
// sleep mode - 0 (disabled)
// fast wakeup - 0 (disabled)
dacc_set_power_save(m_dac, 0, 0);
// DAC refresh/startup timings:
// refresh - 0x08 (1024*8 dacc clocks)
// max speed mode - 0 (disabled)
// startup time - 0x10 (1024 dacc clocks)
dacc_set_timing(m_dac, 0x08, 0, DACC_MR_STARTUP_1024);
// Flexible channel selection with tags
dacc_enable_flexible_selection(m_dac);
//dacc_set_channel_selection(m_dac, 0);
// Set up analog current
dacc_set_analog_control(m_dac,
DACC_ACR_IBCTLCH0(0x02) |
DACC_ACR_IBCTLCH1(0x02) |
DACC_ACR_IBCTLDACCORE(0x01));
// Enable output channels
dacc_enable_channel(m_dac, 0);
dacc_enable_channel(m_dac, 1);
// Configure Timer Counter to trigger DAC
// --------------------------------------
pmc_enable_periph_clk(ID_TC1);
TC_Configure(TC0, 1,
TC_CMR_TCCLKS_TIMER_CLOCK2 | // Clock at MCR/8
TC_CMR_WAVE | // Waveform mode
TC_CMR_WAVSEL_UP_RC | // Counter running up and reset when equals to RC
TC_CMR_ACPA_SET | TC_CMR_ACPC_CLEAR);
const uint32_t TC = period / 8;
TC_SetRA(TC0, 1, TC / 2);
TC_SetRC(TC0, 1, TC);
TC_Start(TC0, 1);
// Configure clock source for DAC (2 = TC0 Output Chan. 1)
dacc_set_trigger(m_dac, 2);
// Configure pins
PIO_Configure(g_APinDescription[DAC0].pPort,
g_APinDescription[DAC0].ulPinType,
g_APinDescription[DAC0].ulPin,
g_APinDescription[DAC0].ulPinConfiguration);
PIO_Configure(g_APinDescription[DAC1].pPort,
g_APinDescription[DAC1].ulPinType,
g_APinDescription[DAC1].ulPin,
g_APinDescription[DAC1].ulPinConfiguration);
// Enable interrupt controller for DAC
dacc_disable_interrupt(m_dac, 0xFFFFFFFF);
NVIC_DisableIRQ(m_isrId);
NVIC_ClearPendingIRQ(m_isrId);
NVIC_SetPriority(m_isrId, 0);
NVIC_EnableIRQ(m_isrId);
}
void end() {
TC_Stop(TC0, 1);
NVIC_DisableIRQ(m_isrId);
dacc_disable_channel(m_dac, 0);
dacc_disable_channel(m_dac, 1);
}
bool canQueue() {
return (m_dac->DACC_TNCR == 0);
}
size_t queueBuffer(const uint32_t *buffer, size_t size) {
// Try the first PDC buffer
if ((m_dac->DACC_TCR == 0) && (m_dac->DACC_TNCR == 0)) {
m_dac->DACC_TPR = (uint32_t) buffer;
m_dac->DACC_TCR = size;
m_dac->DACC_PTCR = DACC_PTCR_TXTEN;
if (m_cb)
dacc_enable_interrupt(m_dac, DACC_IER_ENDTX);
return size;
}
// Try the second PDC buffer
if (m_dac->DACC_TNCR == 0) {
m_dac->DACC_TNPR = (uint32_t) buffer;
m_dac->DACC_TNCR = size;
m_dac->DACC_PTCR = DACC_PTCR_TXTEN;
if (m_cb)
dacc_enable_interrupt(m_dac, DACC_IER_ENDTX);
return size;
}
// PDC buffers full, try again later...
return 0;
}
void setOnTransmitEnd_CB(OnTransmitEnd_CB _cb, void *_data) {
m_cb = _cb;
m_cbData = _data;
if (!m_cb)
dacc_disable_interrupt(m_dac, DACC_IDR_ENDTX);
}
void onService() {
uint32_t sr = m_dac->DACC_ISR;
if (sr & DACC_ISR_ENDTX) {
// There is a free slot, enqueue data
dacc_disable_interrupt(m_dac, DACC_IDR_ENDTX);
if (m_cb)
m_cb(m_cbData);
}
}
void enableInterrupts() { NVIC_EnableIRQ(m_isrId); };
void disableInterrupts() { NVIC_DisableIRQ(m_isrId); };
private:
Dacc *m_dac;
uint32_t m_dacId;
IRQn_Type m_isrId;
OnTransmitEnd_CB m_cb;
void *m_cbData;
};
///////////////////////////////////////////////////////////////////////////////
CDAC g_DAC(DACC_INTERFACE, DACC_INTERFACE_ID, DACC_ISR_ID);
void DACC_ISR_HANDLER(void) { g_DAC.onService(); }
///////////////////////////////////////////////////////////////////////////////
// ~DAC ///////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
class CSound : public Print {
public:
CSound(CDAC &_dac) : m_dac(&_dac) { bufferSize = 0; buffer = half = last = running = next = NULL; };
virtual ~CSound(void) {};
void begin (uint32_t sampleRate, uint32_t msPreBuffer);
void end ();
size_t write(uint8_t c) {
UNUSED(c);
return 0; /* not implemented */
};
size_t write(const uint16_t *data, size_t size) { return write(reinterpret_cast<const uint32_t*>(data), size/2) * 2; };
size_t write(const uint32_t *data, size_t size);
uint32_t bufferSize;
uint32_t *buffer;
uint32_t *half;
uint32_t *last;
uint32_t *volatile running;
uint32_t *volatile next;
void enqueue();
private:
static void onTransmitEnd(void *me);
//void enqueue();
uint32_t *cook(const uint32_t *buffer, size_t size);
CDAC *m_dac;
};
///////////////////////////////////////////////////////////////////////////////
void CSound::onTransmitEnd(void *_me) {
CSound *me = reinterpret_cast<CSound *> (_me);
if (me->running == me->buffer)
me->running = me->half;
else
me->running = me->buffer;
}
///////////////////////////////////////////////////////////////////////////////
void CSound::begin(uint32_t sampleRate, uint32_t msPreBuffer) {
UNUSED(msPreBuffer);
// Allocate a buffer to keep msPreBuffer milliseconds of audio
bufferSize = 128;
// if (bufferSize < 1024)
// bufferSize = 1024;
buffer = (uint32_t *) malloc(bufferSize * sizeof(uint32_t));
half = buffer + bufferSize / 2;
last = buffer + bufferSize;
// Buffering starts from the beginning
running = buffer;
next = buffer;
// Start DAC
m_dac->begin(VARIANT_MCK / sampleRate);
m_dac->setOnTransmitEnd_CB(onTransmitEnd,this);
}
///////////////////////////////////////////////////////////////////////////////
void CSound::end() {
m_dac->end();
free( buffer);
}
///////////////////////////////////////////////////////////////////////////////
//size_t CSound::write(const uint32_t *data, size_t size) {
//const uint32_t TAG = 0x10000000;
//Serial.println(size);
// size_t i;
// for (i = 0; i < size; i++) {
// *next = data[i]; //| TAG;
// next++;}
// enqueue();
//
// if (next == half || next == last) {
// enqueue();
// while (next == running)
// ;
// }
// }
//return i;
//}
///////////////////////////////////////////////////////////////////////////////
void CSound::enqueue() {
if (!m_dac->canQueue()) {
// DMA queue full
return;
}
if (next == half) {
// Enqueue the first half
m_dac->queueBuffer(buffer, bufferSize / 2);
} else {
// Enqueue the second half
m_dac->queueBuffer(half, bufferSize / 2);
next = buffer; // wrap around
}
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
CSound g_Sound(g_DAC);
#endif
///////////////////////////////////////////////////////////////////////////////
// ~Sound /////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////