diff --git a/notebooks/horus_v1/02-horus-training-news-classifiers-wiki.ipynb b/notebooks/horus_v1/02-horus-training-news-classifiers-wiki.ipynb
index 2f2003d..dcc2dbe 100644
--- a/notebooks/horus_v1/02-horus-training-news-classifiers-wiki.ipynb
+++ b/notebooks/horus_v1/02-horus-training-news-classifiers-wiki.ipynb
@@ -20,7 +20,7 @@
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
@@ -62,7 +62,7 @@
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
@@ -78,7 +78,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 65,
"metadata": {},
"outputs": [],
"source": [
@@ -155,7 +155,7 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 66,
"metadata": {},
"outputs": [
{
@@ -232,7 +232,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 67,
"metadata": {},
"outputs": [
{
@@ -241,7 +241,7 @@
"\"\\ndf_other2 = pd.read_csv('./data/raw/dump_dbpedia_other_02.csv', sep='\\t', index_col=0)\\ndf_other3 = pd.read_csv('./data/raw/dump_dbpedia_other_03.csv', sep='\\t', index_col=0)\\ndf_other4 = pd.read_csv('./data/raw/dump_dbpedia_other_04.csv', sep='\\t', index_col=0)\\ndf_other5 = pd.read_csv('./data/raw/dump_dbpedia_other_05.csv', sep='\\t', index_col=0)\\ndf_other6 = pd.read_csv('./data/raw/dump_dbpedia_other_06.csv', sep='\\t', index_col=0)\\ndf_other7 = pd.read_csv('./data/raw/dump_dbpedia_other_07.csv', sep='\\t', index_col=0)\\ndf_other8 = pd.read_csv('./data/raw/dump_dbpedia_other_08.csv', sep='\\t', index_col=0)\\ndf_other9 = pd.read_csv('./data/raw/dump_dbpedia_other_09.csv', sep='\\t', index_col=0)\\ndf_other10 = pd.read_csv('./data/raw/dump_dbpedia_other_10.csv', sep='\\t', index_col=0)\\n\""
]
},
- "execution_count": 6,
+ "execution_count": 67,
"metadata": {},
"output_type": "execute_result"
}
@@ -305,7 +305,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 68,
"metadata": {},
"outputs": [
{
@@ -398,7 +398,7 @@
"4 Nikos Ventouras (August 31, 1899 – April 1, 19... "
]
},
- "execution_count": 7,
+ "execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
@@ -416,7 +416,7 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 69,
"metadata": {},
"outputs": [
{
@@ -429,7 +429,7 @@
"(12292, 4)\n",
"LOCATION (20000, 4)\n",
"(20000, 4)\n",
- "OTHER (20000, 4)\n",
+ "MISC (20000, 4)\n",
"(19970, 4)\n"
]
}
@@ -462,7 +462,7 @@
"#aux = [df_other0, df_other1, df_other2, df_other3, df_other4, df_other5, df_other6, df_other7, df_other8, df_other9, df_other10]\n",
"aux = [df_other0, df_other1]\n",
"df_other = pd.concat(aux)\n",
- "print('OTHER', df_other.shape)\n",
+ "print('MISC', df_other.shape)\n",
"df_other.drop_duplicates(subset =\"label\", keep = False, inplace = True) \n",
"print(df_other.shape)\n",
"df_other.to_csv('./data/processed/dump_dbpedia_other.csv', sep='\\t')"
@@ -470,7 +470,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 70,
"metadata": {},
"outputs": [],
"source": [
@@ -478,26 +478,26 @@
"df_per['category'] = 'PER'\n",
"df_org['category'] = 'ORG'\n",
"df_loc['category'] = 'LOC'\n",
- "df_other['category'] = 'OTHER'"
+ "df_other['category'] = 'MISC'"
]
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 71,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"category\n",
- "LOC 20000\n",
- "ORG 12292\n",
- "OTHER 19970\n",
- "PER 20000\n",
+ "LOC 20000\n",
+ "MISC 19970\n",
+ "ORG 12292\n",
+ "PER 20000\n",
"Name: s, dtype: int64"
]
},
- "execution_count": 10,
+ "execution_count": 71,
"metadata": {},
"output_type": "execute_result"
}
@@ -511,7 +511,7 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 72,
"metadata": {},
"outputs": [],
"source": [
@@ -524,16 +524,16 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 73,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "Index(['PER', 'ORG', 'LOC', 'OTHER'], dtype='object')"
+ "Index(['PER', 'ORG', 'LOC', 'MISC'], dtype='object')"
]
},
- "execution_count": 12,
+ "execution_count": 73,
"metadata": {},
"output_type": "execute_result"
}
@@ -544,7 +544,28 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 74,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "(array([0, 0, 0, ..., 3, 3, 3]),\n",
+ " Index(['PER', 'ORG', 'LOC', 'MISC'], dtype='object'))"
+ ]
+ },
+ "execution_count": 74,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_train['category'].factorize()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
@@ -553,7 +574,7 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 76,
"metadata": {},
"outputs": [
{
@@ -599,7 +620,7 @@
" \n",
"
\n",
" 52292 | \n",
- " OTHER | \n",
+ " MISC | \n",
" 3 | \n",
"
\n",
" \n",
@@ -611,10 +632,10 @@
"0 PER 0\n",
"20000 ORG 1\n",
"32292 LOC 2\n",
- "52292 OTHER 3"
+ "52292 MISC 3"
]
},
- "execution_count": 14,
+ "execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
@@ -625,7 +646,36 @@
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 77,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "enc = category_id_df.values"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 78,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "{'PER': 0, 'ORG': 1, 'LOC': 2, 'MISC': 3}"
+ ]
+ },
+ "execution_count": 78,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "dict(enc)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 79,
"metadata": {},
"outputs": [
{
@@ -634,7 +684,7 @@
"['encoder_4MUC_cat2id_id2cat.joblib']"
]
},
- "execution_count": 15,
+ "execution_count": 79,
"metadata": {},
"output_type": "execute_result"
}
@@ -647,16 +697,16 @@
},
{
"cell_type": "code",
- "execution_count": 16,
+ "execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "{'PER': 0, 'ORG': 1, 'LOC': 2, 'OTHER': 3}"
+ "{'PER': 0, 'ORG': 1, 'LOC': 2, 'MISC': 3}"
]
},
- "execution_count": 16,
+ "execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
@@ -667,16 +717,16 @@
},
{
"cell_type": "code",
- "execution_count": 17,
+ "execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
- "{0: 'PER', 1: 'ORG', 2: 'LOC', 3: 'OTHER'}"
+ "{0: 'PER', 1: 'ORG', 2: 'LOC', 3: 'MISC'}"
]
},
- "execution_count": 17,
+ "execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
@@ -687,7 +737,7 @@
},
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 82,
"metadata": {},
"outputs": [
{
@@ -696,7 +746,7 @@
"'PER'"
]
},
- "execution_count": 18,
+ "execution_count": 82,
"metadata": {},
"output_type": "execute_result"
}
@@ -707,21 +757,128 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 83,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " s | \n",
+ " label | \n",
+ " type | \n",
+ " abstract | \n",
+ " category | \n",
+ " category_id | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 | \n",
+ " http://dbpedia.org/resource/Andreas_Ekberg | \n",
+ " Andreas Ekberg | \n",
+ " http://dbpedia.org/ontology/Person | \n",
+ " Andreas Ekberg (born 2 January 1985) is a Swed... | \n",
+ " PER | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 1 | \n",
+ " http://dbpedia.org/resource/Danilo_Tognon | \n",
+ " Danilo Tognon | \n",
+ " http://dbpedia.org/ontology/Person | \n",
+ " The Canoeist Danilo Tognon (born October 9, 19... | \n",
+ " PER | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " http://dbpedia.org/resource/Lorine_Livington_P... | \n",
+ " Lorine Livington Pruette | \n",
+ " http://dbpedia.org/ontology/Person | \n",
+ " Lorine Livington Pruette (1896–1977) was an Am... | \n",
+ " PER | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " http://dbpedia.org/resource/Megan_Lawrence | \n",
+ " Megan Lawrence | \n",
+ " http://dbpedia.org/ontology/Person | \n",
+ " Megan Lawrence (born 1972) is an American actr... | \n",
+ " PER | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " http://dbpedia.org/resource/Nikolaos_Ventouras | \n",
+ " Nikolaos Ventouras | \n",
+ " http://dbpedia.org/ontology/Person | \n",
+ " Nikos Ventouras (August 31, 1899 – April 1, 19... | \n",
+ " PER | \n",
+ " 0 | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " s \\\n",
+ "0 http://dbpedia.org/resource/Andreas_Ekberg \n",
+ "1 http://dbpedia.org/resource/Danilo_Tognon \n",
+ "2 http://dbpedia.org/resource/Lorine_Livington_P... \n",
+ "3 http://dbpedia.org/resource/Megan_Lawrence \n",
+ "4 http://dbpedia.org/resource/Nikolaos_Ventouras \n",
+ "\n",
+ " label type \\\n",
+ "0 Andreas Ekberg http://dbpedia.org/ontology/Person \n",
+ "1 Danilo Tognon http://dbpedia.org/ontology/Person \n",
+ "2 Lorine Livington Pruette http://dbpedia.org/ontology/Person \n",
+ "3 Megan Lawrence http://dbpedia.org/ontology/Person \n",
+ "4 Nikolaos Ventouras http://dbpedia.org/ontology/Person \n",
+ "\n",
+ " abstract category category_id \n",
+ "0 Andreas Ekberg (born 2 January 1985) is a Swed... PER 0 \n",
+ "1 The Canoeist Danilo Tognon (born October 9, 19... PER 0 \n",
+ "2 Lorine Livington Pruette (1896–1977) was an Am... PER 0 \n",
+ "3 Megan Lawrence (born 1972) is an American actr... PER 0 \n",
+ "4 Nikos Ventouras (August 31, 1899 – April 1, 19... PER 0 "
+ ]
+ },
+ "execution_count": 83,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
"source": [
"df_train.head()"
]
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 84,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAGLCAYAAADTfnvnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdT0lEQVR4nO3df7TldV3v8edLEKOUC8qJRQw0qIOFZIPMQkrtkiQO9AMs40I3mYwcXcK9cm2tQltdTKNLatqljBbqBNwVIIYuJ8Vwoq5aN5DhhzCgxAEhZtYAo0NCWij2vn/sz8nNeH5xzmH2+ZzzfKy11/5+398f+73Zi3md7/f72d+dqkKSJPXraaNuQJIkzY9hLklS5wxzSZI6Z5hLktQ5w1ySpM7tOeoG5mr//fevlStXjroNSZJ2ixtvvPErVTU22bJuw3zlypVs3rx51G1IkrRbJLlvqmWeZpckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6tyMYZ7k4CR/m+SOJLcneXOrPzvJpiR3tef9Wj1JLkgynuTWJC8e2te6tv5dSdYN1Y9Kclvb5oIkeSrerCRJS9FsjswfB369qg4HjgHOTHI4cA5wbVWtAq5t8wAnAKvaYz1wIQzCHzgXeAlwNHDuxB8AbZ3XD223dv5vTZKk5WHGMK+q7VV1U5t+FPgicBBwEnBJW+0S4OQ2fRJwaQ1cB+yb5EDgVcCmqtpZVQ8Dm4C1bdk+VXVdVRVw6dC+JEnSDJ7UT6AmWQkcCVwPHFBV29uiB4AD2vRBwP1Dm21ttenqWyepT/b66xkc7XPIIYc8mdbnbeU5n9ytr7e73Xv+T4+6BWlS/r/Xt6X8+S2mz27WA+CSPBO4Cji7qh4ZXtaOqGuBe/suVXVRVa2pqjVjY5P+PrskScvOrMI8ydMZBPmfV9VHW/nBdoqc9vxQq28DDh7afEWrTVdfMUldkiTNwmxGswf4EPDFqnrv0KKNwMSI9HXAx4fqp7dR7ccAX2un468Bjk+yXxv4djxwTVv2SJJj2mudPrQvSZI0g9lcM38p8FrgtiS3tNrbgPOBK5OcAdwHnNKWXQ2cCIwD3wBeB1BVO5O8E7ihrfeOqtrZpt8EXAzsDXyqPSRJ0izMGOZV9XfAVN/7Pm6S9Qs4c4p9bQA2TFLfDBwxUy+SJOm7eQc4SZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdmzHMk2xI8lCSLUO1Dye5pT3uTXJLq69M8q9Dy/50aJujktyWZDzJBUnS6s9OsinJXe15v6fijUqStFTN5sj8YmDtcKGq/ktVra6q1cBVwEeHFt89sayq3jhUvxB4PbCqPSb2eQ5wbVWtAq5t85IkaZZmDPOq+iywc7Jl7ej6FODy6faR5EBgn6q6rqoKuBQ4uS0+CbikTV8yVJckSbMw32vmLwcerKq7hmqHJrk5yWeSvLzVDgK2Dq2ztdUADqiq7W36AeCAqV4syfokm5Ns3rFjxzxblyRpaZhvmJ/GE4/KtwOHVNWRwFuAy5LsM9udtaP2mmb5RVW1pqrWjI2NzbVnSZKWlD3numGSPYGfB46aqFXVY8BjbfrGJHcDhwHbgBVDm69oNYAHkxxYVdvb6fiH5tqTJEnL0XyOzH8K+FJV/cfp8yRjSfZo089lMNDtnnYa/ZEkx7Tr7KcDH2+bbQTWtel1Q3VJkjQLs/lq2uXAPwAvSLI1yRlt0al898C3nwBubV9V+wvgjVU1MXjuTcAHgXHgbuBTrX4+8MokdzH4A+H8ebwfSZKWnRlPs1fVaVPUf2WS2lUMvqo22fqbgSMmqX8VOG6mPiRJ0uS8A5wkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktS5GcM8yYYkDyXZMlR7e5JtSW5pjxOHlr01yXiSO5O8aqi+ttXGk5wzVD80yfWt/uEkey3kG5QkaambzZH5xcDaServq6rV7XE1QJLDgVOBF7Zt/iTJHkn2AN4PnAAcDpzW1gX4/bav5wMPA2fM5w1JkrTczBjmVfVZYOcs93cScEVVPVZVXwbGgaPbY7yq7qmqbwJXACclCfAK4C/a9pcAJz/J9yBJ0rI2n2vmZyW5tZ2G36/VDgLuH1pna6tNVX8O8M9V9fgu9UklWZ9kc5LNO3bsmEfrkiQtHXMN8wuB5wGrge3AHyxYR9Ooqouqak1VrRkbG9sdLylJ0qK351w2qqoHJ6aTfAD4RJvdBhw8tOqKVmOK+leBfZPs2Y7Oh9eXJEmzMKcj8yQHDs2+GpgY6b4RODXJM5IcCqwCPg/cAKxqI9f3YjBIbmNVFfC3wGva9uuAj8+lJ0mSlqsZj8yTXA4cC+yfZCtwLnBsktVAAfcCbwCoqtuTXAncATwOnFlV3277OQu4BtgD2FBVt7eX+E3giiS/C9wMfGjB3p0kScvAjGFeVadNUp4ycKvqPOC8SepXA1dPUr+HwWh3SZI0B94BTpKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS52YM8yQbkjyUZMtQ7d1JvpTk1iQfS7Jvq69M8q9JbmmPPx3a5qgktyUZT3JBkrT6s5NsSnJXe97vqXijkiQtVbM5Mr8YWLtLbRNwRFW9CPhH4K1Dy+6uqtXt8cah+oXA64FV7TGxz3OAa6tqFXBtm5ckSbM0Y5hX1WeBnbvUPl1Vj7fZ64AV0+0jyYHAPlV1XVUVcClwclt8EnBJm75kqC5JkmZhIa6Z/yrwqaH5Q5PcnOQzSV7eagcBW4fW2dpqAAdU1fY2/QBwwFQvlGR9ks1JNu/YsWMBWpckqX/zCvMkvwU8Dvx5K20HDqmqI4G3AJcl2We2+2tH7TXN8ouqak1VrRkbG5tH55IkLR17znXDJL8C/AxwXAthquox4LE2fWOSu4HDgG088VT8ilYDeDDJgVW1vZ2Of2iuPUmStBzN6cg8yVrgN4Cfq6pvDNXHkuzRpp/LYKDbPe00+iNJjmmj2E8HPt422wisa9PrhuqSJGkWZjwyT3I5cCywf5KtwLkMRq8/A9jUvmF2XRu5/hPAO5J8C/h34I1VNTF47k0MRsbvzeAa+8R19vOBK5OcAdwHnLIg70xqVp7zyVG38JS69/yfHnULkkZsxjCvqtMmKX9oinWvAq6aYtlm4IhJ6l8FjpupD0mSNDnvACdJUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOzCvMkG5I8lGTLUO3ZSTYluas979fqSXJBkvEktyZ58dA269r6dyVZN1Q/KsltbZsLkmQh36QkSUvZbI/MLwbW7lI7B7i2qlYB17Z5gBOAVe2xHrgQBuEPnAu8BDgaOHfiD4C2zuuHttv1tSRJ0hRmFeZV9Vlg5y7lk4BL2vQlwMlD9Utr4Dpg3yQHAq8CNlXVzqp6GNgErG3L9qmq66qqgEuH9iVJkmYwn2vmB1TV9jb9AHBAmz4IuH9ova2tNl196yT175JkfZLNSTbv2LFjHq1LkrR0LMgAuHZEXQuxrxle56KqWlNVa8bGxp7ql5MkqQvzCfMH2yly2vNDrb4NOHhovRWtNl19xSR1SZI0C/MJ843AxIj0dcDHh+qnt1HtxwBfa6fjrwGOT7JfG/h2PHBNW/ZIkmPaKPbTh/YlSZJmsOdsVkpyOXAssH+SrQxGpZ8PXJnkDOA+4JS2+tXAicA48A3gdQBVtTPJO4Eb2nrvqKqJQXVvYjBifm/gU+0hSZJmYVZhXlWnTbHouEnWLeDMKfazAdgwSX0zcMRsepEkSU/kHeAkSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHVuzmGe5AVJbhl6PJLk7CRvT7JtqH7i0DZvTTKe5M4krxqqr2218STnzPdNSZK0nOw51w2r6k5gNUCSPYBtwMeA1wHvq6r3DK+f5HDgVOCFwA8Af53ksLb4/cArga3ADUk2VtUdc+1NkqTlZM5hvovjgLur6r4kU61zEnBFVT0GfDnJOHB0WzZeVfcAJLmirWuYS5I0Cwt1zfxU4PKh+bOS3JpkQ5L9Wu0g4P6hdba22lT175JkfZLNSTbv2LFjgVqXJKlv8w7zJHsBPwd8pJUuBJ7H4BT8duAP5vsaE6rqoqpaU1VrxsbGFmq3kiR1bSFOs58A3FRVDwJMPAMk+QDwiTa7DTh4aLsVrcY0dUmSNIOFOM1+GkOn2JMcOLTs1cCWNr0RODXJM5IcCqwCPg/cAKxKcmg7yj+1rStJkmZhXkfmSb6PwSj0NwyV35VkNVDAvRPLqur2JFcyGNj2OHBmVX277ecs4BpgD2BDVd0+n74kSVpO5hXmVfV14Dm71F47zfrnAedNUr8auHo+vUiStFx5BzhJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ2bd5gnuTfJbUluSbK51Z6dZFOSu9rzfq2eJBckGU9ya5IXD+1nXVv/riTr5tuXJEnLxUIdmf9kVa2uqjVt/hzg2qpaBVzb5gFOAFa1x3rgQhiEP3Au8BLgaODciT8AJEnS9J6q0+wnAZe06UuAk4fql9bAdcC+SQ4EXgVsqqqdVfUwsAlY+xT1JknSkrIQYV7Ap5PcmGR9qx1QVdvb9APAAW36IOD+oW23ttpU9SdIsj7J5iSbd+zYsQCtS5LUvz0XYB8vq6ptSb4f2JTkS8MLq6qS1AK8DlV1EXARwJo1axZkn5Ik9W7eR+ZVta09PwR8jME17wfb6XPa80Nt9W3AwUObr2i1qeqSJGkG8wrzJN+X5FkT08DxwBZgIzAxIn0d8PE2vRE4vY1qPwb4Wjsdfw1wfJL92sC341tNkiTNYL6n2Q8APpZkYl+XVdVfJbkBuDLJGcB9wClt/auBE4Fx4BvA6wCqameSdwI3tPXeUVU759mbJEnLwrzCvKruAX50kvpXgeMmqRdw5hT72gBsmE8/kiQtR94BTpKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5+Yc5kkOTvK3Se5IcnuSN7f625NsS3JLe5w4tM1bk4wnuTPJq4bqa1ttPMk583tLkiQtL3vOY9vHgV+vqpuSPAu4Mcmmtux9VfWe4ZWTHA6cCrwQ+AHgr5Mc1ha/H3glsBW4IcnGqrpjHr1JkrRszDnMq2o7sL1NP5rki8BB02xyEnBFVT0GfDnJOHB0WzZeVfcAJLmirWuYS5I0CwtyzTzJSuBI4PpWOivJrUk2JNmv1Q4C7h/abGurTVWf7HXWJ9mcZPOOHTsWonVJkro37zBP8kzgKuDsqnoEuBB4HrCawZH7H8z3NSZU1UVVtaaq1oyNjS3UbiVJ6tp8rpmT5OkMgvzPq+qjAFX14NDyDwCfaLPbgIOHNl/RakxTlyRJM5jPaPYAHwK+WFXvHaofOLTaq4EtbXojcGqSZyQ5FFgFfB64AViV5NAkezEYJLdxrn1JkrTczOfI/KXAa4HbktzSam8DTkuyGijgXuANAFV1e5IrGQxsexw4s6q+DZDkLOAaYA9gQ1XdPo++JElaVuYzmv3vgEyy6OpptjkPOG+S+tXTbSdJkqbmHeAkSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOLZowT7I2yZ1JxpOcM+p+JEnqxaII8yR7AO8HTgAOB05Lcvhou5IkqQ+LIsyBo4Hxqrqnqr4JXAGcNOKeJEnqQqpq1D2Q5DXA2qr6tTb/WuAlVXXWLuutB9a32RcAd+7WRnev/YGvjLoJzYmfXd/8/Pq11D+7H6yqsckW7Lm7O5mPqroIuGjUfewOSTZX1ZpR96Enz8+ub35+/VrOn91iOc2+DTh4aH5Fq0mSpBksljC/AViV5NAkewGnAhtH3JMkSV1YFKfZq+rxJGcB1wB7ABuq6vYRtzVqy+JywhLlZ9c3P79+LdvPblEMgJMkSXO3WE6zS5KkOTLMJUnqnGEuSVLnDHNJkjpnmC8CScYmuxd9ksOTTHq3H0nSd0tyWJIPjLqP3c0wXxz+iMFtCHf1HOB/7+Ze9CQkWZHkZUPzb0nyP9vj+aPsTTNLskeS/Yfm90qyPskXR9mXZpbkRUk+nWRLkt9NcmCSq4C/Ae4YdX+7m2G+ODy/qj67a7GqPge8aAT9aPbeDew7NP8G4OtAAb8zko40K0lOBXYCtyb5TJLjgXsY/Hrjfx1pc5qNDwCXAb8A7ABuAe5m8O/p+0bZ2Cj4PfNFIMmdVfWCJ7tMo5fkpqp68dD8zVV1ZJv+XFW9fHTdaTpJtgAnV9V4khcD/wC8pqr+csStaRaS3FJVq4fm76mq546yp1FaFHeAE+NJTqyqq4eLSU5gcKSgxet7dpk/bmh6sksnWjy+WVXjAFV1U5K7DPKufE+SI4G0+ceG56vqppF1NgKG+eJwNvDJJKcAN7baGuDHgJ8ZWVeajUeTHFZV/whQVTsBkvwQ8OhIO9NMvj/JW4bm9x2er6r3jqAnzd4DwHunmC/gFbu9oxHyNPsikeQZwC8BR7TS7cBlVfVvo+tKM0myFrgAOA+YOBI4Cngb8Oaq+tSoetP0kpw73fKqcsyDumGYLyJJDgVe2GbvqCpPsXcgyRHAb/Cdz24L8O6q2jK6rqSlLclvVNW72vQvVtVHhpb9XlW9bXTd7X6G+SKQZB/ggwyO6G5hcM1nNYNT7mdU1SMjbE9zlOSQqvqnUfehySW5sqpOadO/X1W/ObTs01V1/Oi600yGB59OMhD1CfPLgV9NWxwuYPC9yFVV9QtV9fPA84DbgD8eaWeaUZIfS/KaJN/f5l+U5DLg70fcmqa3amj6lbss82ZNi1+mmJ5sfskzzBeHl1bV26vq3ycKNfAOBoPgtEgleTewgcF3XT+Z5HeBTwPX88Sw0OIz3WlJT1kufjXF9GTzS56j2Re/ZfcXZmd+Gjiyqv4tyX7A/cARVXXvaNvSLHxv+yrT04C9h77WFGDvkXam2fjRJI/QPq82TZvf9SujS57XzBeBJJcwuHPRO2voA0ny28BhVfXakTWnaU130xgtbkn+L9McwVXVT+6+bqT5McwXgTYA7kPAixkMgIPBALibGQyA+9qoetP0kvwzMHwr3p9o82FwteTnRtKYtMQl+R7gjcDzgVuBDVX1+Gi7Gh3DfBFJ8jxg4tfT7qiqu5OcXVV/OMq+NLUk/7lN7s3gGnkB48C/AlTVZ0bUmmaQ5OenW15VH91dvejJS/Jh4FvA5xjcT/++qnrzaLsaHcN8kUvyT1V1yKj70OSSPJ3BDWN+FZj4GtrBwMXA26rqWyNqTTNI8mdDsz8LDN/KtarqV3dzS3oSktxWVT/SpvcEPr/cvo42zAFwi58D4Ba3dwHPBA6tqkfhPy6bvIfBL6qdPcLeNI2qet3EdBvr8Lrp1tei8x9/KFfV48ny/qfSI/NFziPzxS3JXQwGKdYu9T2AL1WVX0/rwHK8yUjvknybwc8Nw3e+gfANvjNeZZ9R9TYKHpkvAkkeZfJRtX5FZvGrXYO8Fb+dxL+UpadIVe0x6h4WE8N8EaiqZ426B83ZHUlOr6pLh4tJfhn40oh60iwk+Uu+80f0c5NsHF7uNxHUE0+zS/OQ5CDgowxGrw//fO3ewKuratuoetP0hr6JMCm/iaCeGObSAkjyCp74i3fXjrIfzSzJxVX1K6PuQ1oIhrmkZclBb1pKvGYuabmauDf7pN9pqqqbdnM/0px5ZC5pWWrfIrmBycO8quoVu7klac48Mpe0XI0b2FoqDHNJy1r7wY7nt9nxqvq3UfYjzYWn2SUtS0mOB44DzgDuY3C6/WDgz4Df8r766snTRt2AJI3IicBzGNxX/6g2sv15wL4M7q0vdcMjc0nLkvfV11Likbmk5WrK++oz+W8lSIuWYS5pubojyem7Fr2vvnrkaXZJy5L31ddSYphLWta8r76WAsNckqTOec1ckqTOGeaSJHXOMJcEQJJjk/z4qPuQ9OQZ5pImHAs8pWGeAf/dkRaY/1NJS1yS05PcmuQLSf5Pkp9Ncn2Sm5P8dZIDkqwE3gj8jyS3JHl5krEkVyW5oT1e2vY3lmRTktuTfDDJfUn2b8vekmRLe5zdaiuT3JnkUmAL8NtJ/nCov9cned/u/u8iLSWOZpeWsCQvBD4G/HhVfSXJsxnc3eyfq6qS/Brww1X160neDvxLVb2nbXsZ8CdV9XdJDgGuqaofTvLHwLaq+l9J1gKfAsaAHwQuBo5h8KMl1wO/DDwM3NN6uC7JM4EvAD9UVd9K8v+AN1TVbbvpP4u05PgTqNLS9grgI1X1FYCq2pnkR4APJzkQ2Av48hTb/hRweJKJ+X1aEL8MeHXb318lebgtfxnwsar6OkCSjwIvBzYC91XVdW2bf0nyN8DPJPki8HSDXJofw1xafv4IeG9VbUxyLPD2KdZ7GnDMrr/vPRTuT8bXd5n/IPA2BrdN/bO57FDSd3jNXFra/gb4xSTPAWin2f8TMHGr0nVD6z4KPGto/tPAf5uYSbK6Tf49cEqrHQ/s1+qfA05O8r1Jvo/B0fvnJmuqqq5n8NvhvwRcPtc3J2nAMJeWsKq6HTgP+EySLwDvZXAk/pEkNwJfGVr9L4FXTwyAA/47sKYNnruDwQA5gN8Bjk+yBfhF4AHg0aq6icE1888zuF7+waq6eZr2rgT+vqoenmYdSbPgADhJT0qSZwDfrqrHk/wYcGFVrZ5pu0n28wngfd4LXZo/r5lLerIOAa5s3xf/JvD6J7Nxkn0ZHL1/wSCXFoZH5pIkdc5r5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUuf+P+ShOXOq8A+KAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfMAAAGCCAYAAAD0cSovAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAdFElEQVR4nO3dfbRddX3n8fen4AOtpQS5pZSQhmpsC7SNkqFYxTJSMaBTsA8OzFRSyxhdwlSmneWgs1qslhlanzpYSxdqBpilIBapmRqLKe2ofQAJihBQSkAoyQoQDYrVioLf+eP8rhzifcq9Ief+7n2/1jrr7v3dD+d7ONx87t77d85OVSFJkvr1faNuQJIkzY1hLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdW7fUTcwWwcddFAtX7581G1IkrRX3HjjjV+qqrGJlnUb5suXL2fTpk2jbkOSpL0iyT2TLfM0uyRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6ty0YZ7ksCR/m+S2JLcmeV2rH5hkY5I72s8lrZ4kFybZkuTmJM8Z2teatv4dSdYM1Y9Ockvb5sIkeSJerCRJC9FMjswfAX6nqo4AjgXOSnIEcC5wbVWtAK5t8wAnASvaYy1wEQzCHzgP+DngGOC88T8A2jqvGtpu9dxfmiRJi8O0YV5V26vqM236a8DngUOBU4BL22qXAqe26VOAy2rgOuCAJIcALwY2VtXOqnoQ2Aisbsv2r6rrqqqAy4b2JUmSprFb18yTLAeeDVwPHFxV29ui+4CD2/ShwL1Dm21ttanqWyeoS5KkGZjxLVCTPA24Cjinqh4avqxdVZWknoD+du1hLYNT9yxbtuyJfrrHWX7uR/fq8+1td1/wklG38ITxvZNGZyH//s2n370ZHZkneRKDIH9/VX24le9vp8hpPx9o9W3AYUObL221qepLJ6h/j6q6uKpWVdWqsbEJ788uSdKiM5PR7AHeB3y+qt4xtGg9MD4ifQ3wkaH6GW1U+7HAV9vp+GuAE5MsaQPfTgSuacseSnJse64zhvYlSZKmMZPT7M8DXgHckuSmVnsjcAFwZZIzgXuAl7dlG4CTgS3AN4BXAlTVziRvAW5o6725qna26dcClwD7AR9rD0mSNAPThnlV/R0w2ee+T5hg/QLOmmRf64B1E9Q3AUdN14skSfpefgOcJEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOTRvmSdYleSDJ5qHaB5Pc1B53J7mp1Zcn+dehZX82tM3RSW5JsiXJhUnS6gcm2ZjkjvZzyRPxQiVJWqhmcmR+CbB6uFBV/76qVlbVSuAq4MNDi+8cX1ZVrxmqXwS8CljRHuP7PBe4tqpWANe2eUmSNEPThnlVfRLYOdGydnT9cuDyqfaR5BBg/6q6rqoKuAw4tS0+Bbi0TV86VJckSTMw12vmxwH3V9UdQ7XDk3w2ySeSHNdqhwJbh9bZ2moAB1fV9jZ9H3DwZE+WZG2STUk27dixY46tS5K0MMw1zE/n8Ufl24FlVfVs4LeBDyTZf6Y7a0ftNcXyi6tqVVWtGhsbm23PkiQtKPvOdsMk+wK/DBw9Xquqh4GH2/SNSe4EngVsA5YObb601QDuT3JIVW1vp+MfmG1PkiQtRnM5Mv9F4AtV9d3T50nGkuzTpn+cwUC3u9pp9IeSHNuus58BfKRtth5Y06bXDNUlSdIMzOSjaZcD/wj8RJKtSc5si07jewe+vQC4uX1U7c+B11TV+OC51wLvBbYAdwIfa/ULgBcluYPBHwgXzOH1SJK06Ex7mr2qTp+k/hsT1K5i8FG1idbfBBw1Qf3LwAnT9SFJkibmN8BJktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdmzbMk6xL8kCSzUO1NyXZluSm9jh5aNkbkmxJcnuSFw/VV7faliTnDtUPT3J9q38wyZP35AuUJGmhm8mR+SXA6gnq76yqle2xASDJEcBpwJFtmz9Nsk+SfYB3AycBRwCnt3UB/rDt65nAg8CZc3lBkiQtNtOGeVV9Etg5w/2dAlxRVQ9X1ReBLcAx7bGlqu6qqm8BVwCnJAnwQuDP2/aXAqfu5muQJGlRm8s187OT3NxOwy9ptUOBe4fW2dpqk9WfDnylqh7ZpS5JkmZotmF+EfAMYCWwHXj7HutoCknWJtmUZNOOHTv2xlNKkjTvzSrMq+r+qnq0qr4DvIfBaXSAbcBhQ6subbXJ6l8GDkiy7y71yZ734qpaVVWrxsbGZtO6JEkLzqzCPMkhQ7MvA8ZHuq8HTkvylCSHAyuATwM3ACvayPUnMxgkt76qCvhb4Ffb9muAj8ymJ0mSFqt9p1shyeXA8cBBSbYC5wHHJ1kJFHA38GqAqro1yZXAbcAjwFlV9Wjbz9nANcA+wLqqurU9xX8DrkjyB8BngfftsVcnSdIiMG2YV9XpE5QnDdyqOh84f4L6BmDDBPW7eOw0vSRJ2k1+A5wkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM5NG+ZJ1iV5IMnmodpbk3whyc1Jrk5yQKsvT/KvSW5qjz8b2uboJLck2ZLkwiRp9QOTbExyR/u55Il4oZIkLVQzOTK/BFi9S20jcFRV/QzwT8AbhpbdWVUr2+M1Q/WLgFcBK9pjfJ/nAtdW1Qrg2jYvSZJmaNowr6pPAjt3qX28qh5ps9cBS6faR5JDgP2r6rqqKuAy4NS2+BTg0jZ96VBdkiTNwJ64Zv6bwMeG5g9P8tkkn0hyXKsdCmwdWmdrqwEcXFXb2/R9wMF7oCdJkhaNfeeycZL/DjwCvL+VtgPLqurLSY4G/iLJkTPdX1VVkpri+dYCawGWLVs2+8YlSVpAZn1knuQ3gJcC/7GdOqeqHq6qL7fpG4E7gWcB23j8qfilrQZwfzsNP346/oHJnrOqLq6qVVW1amxsbLatS5K0oMwqzJOsBl4P/FJVfWOoPpZknzb94wwGut3VTqM/lOTYNor9DOAjbbP1wJo2vWaoLkmSZmDa0+xJLgeOBw5KshU4j8Ho9acAG9snzK5rI9dfALw5ybeB7wCvqarxwXOvZTAyfj8G19jHr7NfAFyZ5EzgHuDle+SVSVoQlp/70VG38IS6+4KXjLoFLQDThnlVnT5B+X2TrHsVcNUkyzYBR01Q/zJwwnR9SJKkifkNcJIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOjejME+yLskDSTYP1Q5MsjHJHe3nklZPkguTbElyc5LnDG2zpq1/R5I1Q/Wjk9zStrkwSfbki5QkaSGb6ZH5JcDqXWrnAtdW1Qrg2jYPcBKwoj3WAhfBIPyB84CfA44Bzhv/A6Ct86qh7XZ9LkmSNIkZhXlVfRLYuUv5FODSNn0pcOpQ/bIauA44IMkhwIuBjVW1s6oeBDYCq9uy/avquqoq4LKhfUmSpGnM5Zr5wVW1vU3fBxzcpg8F7h1ab2urTVXfOkFdkiTNwB4ZANeOqGtP7GsqSdYm2ZRk044dO57op5MkqQtzCfP72yly2s8HWn0bcNjQektbbar60gnq36OqLq6qVVW1amxsbA6tS5K0cMwlzNcD4yPS1wAfGaqf0Ua1Hwt8tZ2OvwY4McmSNvDtROCatuyhJMe2UexnDO1LkiRNY9+ZrJTkcuB44KAkWxmMSr8AuDLJmcA9wMvb6huAk4EtwDeAVwJU1c4kbwFuaOu9uarGB9W9lsGI+f2Aj7WHJEmagRmFeVWdPsmiEyZYt4CzJtnPOmDdBPVNwFEz6UWSJD2e3wAnSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzsw7zJD+R5Kahx0NJzknypiTbhuonD23zhiRbktye5MVD9dWttiXJuXN9UZIkLSb7znbDqrodWAmQZB9gG3A18ErgnVX1tuH1kxwBnAYcCfwo8NdJntUWvxt4EbAVuCHJ+qq6bba9SZK0mMw6zHdxAnBnVd2TZLJ1TgGuqKqHgS8m2QIc05Ztqaq7AJJc0dY1zCVJmoE9dc38NODyofmzk9ycZF2SJa12KHDv0DpbW22yuiRJmoE5h3mSJwO/BHyolS4CnsHgFPx24O1zfY6h51qbZFOSTTt27NhTu5UkqWt74sj8JOAzVXU/QFXdX1WPVtV3gPfw2Kn0bcBhQ9stbbXJ6t+jqi6uqlVVtWpsbGwPtC5JUv/2RJifztAp9iSHDC17GbC5Ta8HTkvylCSHAyuATwM3ACuSHN6O8k9r60qSpBmY0wC4JD/AYBT6q4fKf5RkJVDA3ePLqurWJFcyGNj2CHBWVT3a9nM2cA2wD7Cuqm6dS1+SJC0mcwrzqvo68PRdaq+YYv3zgfMnqG8ANsylF0mSFiu/AU6SpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUufmHOZJ7k5yS5KbkmxqtQOTbExyR/u5pNWT5MIkW5LcnOQ5Q/tZ09a/I8maufYlSdJisaeOzP9tVa2sqlVt/lzg2qpaAVzb5gFOAla0x1rgIhiEP3Ae8HPAMcB5438ASJKkqT1Rp9lPAS5t05cCpw7VL6uB64ADkhwCvBjYWFU7q+pBYCOw+gnqTZKkBWVPhHkBH09yY5K1rXZwVW1v0/cBB7fpQ4F7h7bd2mqT1SVJ0jT23QP7eH5VbUvyw8DGJF8YXlhVlaT2wPPQ/lhYC7Bs2bI9sUtJkro35yPzqtrWfj4AXM3gmvf97fQ57ecDbfVtwGFDmy9ttcnquz7XxVW1qqpWjY2NzbV1SZIWhDmFeZIfSPKD49PAicBmYD0wPiJ9DfCRNr0eOKONaj8W+Go7HX8NcGKSJW3g24mtJkmSpjHX0+wHA1cnGd/XB6rqr5LcAFyZ5EzgHuDlbf0NwMnAFuAbwCsBqmpnkrcAN7T13lxVO+fYmyRJi8Kcwryq7gJ+doL6l4ETJqgXcNYk+1oHrJtLP5IkLUZ+A5wkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM7NOsyTHJbkb5PcluTWJK9r9Tcl2ZbkpvY4eWibNyTZkuT2JC8eqq9utS1Jzp3bS5IkaXHZdw7bPgL8TlV9JskPAjcm2diWvbOq3ja8cpIjgNOAI4EfBf46ybPa4ncDLwK2AjckWV9Vt82hN0mSFo1Zh3lVbQe2t+mvJfk8cOgUm5wCXFFVDwNfTLIFOKYt21JVdwEkuaKta5hLkjQDe+SaeZLlwLOB61vp7CQ3J1mXZEmrHQrcO7TZ1labrD7R86xNsinJph07duyJ1iVJ6t6cwzzJ04CrgHOq6iHgIuAZwEoGR+5vn+tzjKuqi6tqVVWtGhsb21O7lSSpa3O5Zk6SJzEI8vdX1YcBqur+oeXvAf6yzW4DDhvafGmrMUVdkiRNYy6j2QO8D/h8Vb1jqH7I0GovAza36fXAaUmekuRwYAXwaeAGYEWSw5M8mcEgufWz7UuSpMVmLkfmzwNeAdyS5KZWeyNwepKVQAF3A68GqKpbk1zJYGDbI8BZVfUoQJKzgWuAfYB1VXXrHPqSJGlRmcto9r8DMsGiDVNscz5w/gT1DVNtJ0mSJuc3wEmS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ0zzCVJ6pxhLklS5wxzSZI6Z5hLktQ5w1ySpM4Z5pIkdc4wlySpc4a5JEmdM8wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXOMJckqXOGuSRJnTPMJUnqnGEuSVLnDHNJkjpnmEuS1DnDXJKkzhnmkiR1zjCXJKlzhrkkSZ2bN2GeZHWS25NsSXLuqPuRJKkX8yLMk+wDvBs4CTgCOD3JEaPtSpKkPsyLMAeOAbZU1V1V9S3gCuCUEfckSVIX5kuYHwrcOzS/tdUkSdI09h11A7sjyVpgbZv9lyS3j7KfJ9hBwJf21pPlD/fWMy0Kvnd98/3r10J/735ssgXzJcy3AYcNzS9ttcepqouBi/dWU6OUZFNVrRp1H9p9vnd98/3r12J+7+bLafYbgBVJDk/yZOA0YP2Ie5IkqQvz4si8qh5JcjZwDbAPsK6qbh1xW5IkdWFehDlAVW0ANoy6j3lkUVxOWKB87/rm+9evRfvepapG3YMkSZqD+XLNXJIkzZJhLklS5wxzSZI6Z5jPA0nGJvou+iRHJBkbRU+amSRPneg9au/pU0fRk7SYJXlWkveMuo+9zTCfH97F4JuLdvV04H/t5V60ey4Ejpug/nzgnXu5F+2GJEuTPH9o/reT/F57PHOUvWl6SX4myceTbE7yB0kOSXIV8DfAbaPub28zzOeHZ1bVJ3ctVtWngJ8ZQT+auaOr6sO7FqvqauAFI+hHM/dW4ICh+VcDXwcK+P2RdKTd8R7gA8CvADuAm4A7Gfx7uuj+kJ43nzNf5H5wimVP2mtdaDa+f4pl/rE8v/1EVf3l0Pw3qurtAEk+NaKeNHNPqapL2vTtSV5XVa8fZUOjZJjPD1uSnNy+OOe7kpwE3DWinjQzDyQ5pqo+PVxM8m8YHC1o/tp1TMMJQ9MTXfbS/PLUJM8G0uYfHp6vqs+MrLMR8Etj5oEkK4CPAv8A3NjKq4DnAi+tqn8aVW+aWpJjgCuBS3j8e3cGcFpVXT+i1jSNJNcDr9j19yvJTwKXVdUxo+lMM5Hk/zG4JDKRqqoX7sV2Rs4wnyeSPAX4D8BRrXQr8IGq+uboutJMJPlh4Cwee+82A++uqgdG15Wmk2Q1gwGM5wPjR3FHA28EXldVHxtVb9LuMsznkSSHA0e22duqylPsnWl3/TsS2GaYz39JjgJez2O/d5uBt1bV5tF1pZlI8vqq+qM2/WtV9aGhZf+jqt44uu72PsN8HkiyP/BeBkcFNzG45rOSwWnbM6vqoRG2pykk+TPgXVV1a5IfAv4ReBQ4EPivVXX5SBvUrCRZVlX/POo+NLkkn6mq5+w6PdH8YuBo2/nhQgafi1xRVb9SVb8MPAO4BfiTkXam6Rw3dLveVwL/VFU/zeAPs0U7srYXSZ6b5FfbpZLxzy5/APj7Ebem6WWS6YnmFzzDfH54XlW9qaq+M16ogTczGASn+etbQ9MvAv4CoKruG007mqkkbwXWMfic8keT/AHwceB6YMUoe9OM1CTTE80veH40bf5bdH9hduYrSV4KbAOeB5wJkGRfYL9RNqZpvQR4dlV9M8kS4F7gqKq6e7RtaYZ+NslDDP6N3K9N0+YX3VcpG+bzwz8k+T3gLTU0iCHJ7zK4Bqv569UMLpP8CHDO0BH5CQw+bqj565vjnxapqgeT3GGQ96Oq9hl1D/OJA+DmgTYA7n3AcxgMgIPBALjPMhgA99VR9SYtVEm+Agx/jfIL2nwYXOn6pZE0phlpNzJ6DfBM4GZgXVU9MtquRscwn0eSPAMYv3vabVV1Z5JzquqPR9mXJpfkXUxxfa6qfmsvtqPdkOQX2uR+DK6RF7AF+FeAqvrEiFrTDCT5IPBt4FPAScA9VfW60XY1Oob5PJfkn6tq2aj70MSSrJlqeVVdurd60e5J8iQGXxjzm8D4x9AOY/Btfm+sqm+PqDXNQJJb2idHxseofHqxfRxtmNfM5z8HwM1jhnXX/gh4GnB4VX0NvnvJ620M7qh2zgh70/S++8dWVT2SLO5/Kj0yn+c8Mp/fkqyfarnXXeevJHcAz6pd/hFMsg/whary42nzWJJHGdyyFtqIduAbPDbmYf9R9TYKHpnPA0m+xsTXXcf/B9X89VwGH2m6nMHnkxf34UFfatcgb8VHk3iUM885mv3xDPN5oKqmup+55rcfYfBlMaczuFHOR4HLh74VTvPXbUnOqKrLhotJfh34woh6kmbF0+zSHtLufHc6g+utv19VfhXvPJbkUODDDEavD9++dj/gZVW1bVS9SbvLMJfmqIX4SxgE+XJgPYPPvBoGHUjyQh5/t8JrR9mPNBuGuTQHSS5jcB/zDcAV3jpT0igY5tIcJPkOj42oHf5lWpQjaiWNhmEuSVLnvAWqJEmdM8wlSeqcYS4JgCTHJ/n5UfchafcZ5pLGHQ88oWGeAf/dkfYwf6mkBS7JGUluTvK5JP8nyb9Lcn2Szyb56yQHJ1nO4N7Q/yXJTUmOSzKW5KokN7TH89r+xpJsTHJrkvcmuSfJQW3ZbyfZ3B7ntNryJLe3j/FtBn43yR8P9feqJO/c2/9dpIXE0ezSApbkSOBq4Oer6ktJDmTwEbqvVFUl+U/AT1XV7yR5E/AvVfW2tu0HgD+tqr9Lsgy4pqp+KsmfANuq6n8mWQ18DBgDfozB7UOPZfDRvOuBXwceBO5qPVyX5GnA54CfrKpvJ/kH4NVVdcte+s8iLTh+N7u0sL0Q+FBVfQmgqnYm+Wngg0kOAZ4MfHGSbX8ROGLo1pL7tyB+PvCytr+/SvJgW/584Oqq+jpAkg8DxzH4Rrx7quq6ts2/JPkb4KVJPg88ySCX5sYwlxafdwHvqKr1SY4H3jTJet8HHFtV3xwuzvK+0V/fZf69wBsZ3NDkf89mh5Ie4zVzaWH7G+DXkjwdoJ1m/yFg/Hvj1wyt+zVg+A5+Hwf+8/hMkpVt8u+Bl7faicCSVv8UcGqS70/yAwyO3j81UVNVdT1wGIM7zV0+2xcnacAwlxawdivW84FPJPkc8A4GR+IfSnIj8KWh1f8v8LLxAXDAbwGr2uC52xgMkAP4feDEJJuBXwPuA75WVZ9hcM380wyul7+3qj47RXtXAn9fVQ9OsY6kGXAAnKTd0u4S92hVPZLkucBFVbVyuu0m2M9fAu/0LmXS3HnNXNLuWgZc2T4v/i3gVbuzcZIDGBy9f84gl/YMj8wlSeqc18wlSeqcYS5JUucMc0mSOmeYS5LUOcNckqTOGeaSJHXu/wMmSgFkI7rjewAAAABJRU5ErkJggg==\n",
"text/plain": [
"