-
Notifications
You must be signed in to change notification settings - Fork 4
/
main.py
327 lines (283 loc) · 14.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import tyro
import time
import random
import datetime
import torch
from core.options import AllConfigs
from core.gamba_models import Gamba
from accelerate import Accelerator, DistributedDataParallelKwargs
from safetensors.torch import load_file
import os
import copy
import kiui
from core.utils import CosineWarmupScheduler
import wandb
def main():
opt = tyro.cli(AllConfigs)
os.environ["WANDB__SERVICE_WAIT"] = "300"
# ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
mixed_precision=opt.mixed_precision,
gradient_accumulation_steps=opt.gradient_accumulation_steps,
# kwargs_handlers=[ddp_kwargs],
)
rebuild_model = False
# model
if opt.model_type == 'gamba':
_opt = copy.deepcopy(opt)
if opt.use_triplane and (opt.enable_triplane_epoch > 0):
_opt.use_triplane = False
rebuild_model = True
model = Gamba(_opt)
else:
raise NotImplementedError
# data
if opt.data_mode == 's3':
from core.provider_ikun import ObjaverseDataset as Dataset
else:
raise NotImplementedError
train_dataset = Dataset(opt, training=True)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
pin_memory=True,
drop_last=True,
)
test_dataset = Dataset(opt, training=False)
test_dataloader = torch.utils.data.DataLoader(
test_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=0,
pin_memory=True,
drop_last=False,
)
# optimizer
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.05, betas=(0.9, 0.95))
# scheduler (per-iteration)
total_steps = opt.num_epochs * int(len(train_dataloader) / opt.gradient_accumulation_steps)
warmup_iters = opt.warmup_epochs * int(len(train_dataloader) / opt.gradient_accumulation_steps)
scheduler = CosineWarmupScheduler(optimizer=optimizer, warmup_iters=warmup_iters, max_iters=total_steps)
# resume
start_epoch = 0
legacy_load = False
if opt.resume is not None:
if opt.resume.endswith('safetensors'):
ckpt = load_file(opt.resume, device='cpu')
legacy_load = True
elif opt.resume.endswith('pth'):
ckpt = torch.load(opt.resume, map_location='cpu')
if accelerator.is_main_process:
print(f"load checkpoint from {opt.resume}")
torch.distributed.barrier()
if rebuild_model and (ckpt['epoch'] == opt.enable_triplane_epoch - 1):
if accelerator.is_main_process:
print("enable triplane by rebuilding model")
torch.distributed.barrier()
model = Gamba(opt).train()
missing_keys, unexpected_keys = model.load_state_dict(ckpt['model'], strict=False)
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.05, betas=(0.9, 0.95))
scheduler.load_state_dict(ckpt['scheduler'])
new_scheduler = CosineWarmupScheduler(optimizer=optimizer, warmup_iters=warmup_iters, max_iters=total_steps)
for _ in range(scheduler._step_count):
new_scheduler.step()
scheduler = new_scheduler
rebuild_model = False
start_epoch = ckpt['epoch'] + 1
legacy_load = False
else:
ckpt = torch.load(opt.resume, map_location='cpu')
legacy_load = True
# tolerant load (only load matching shapes)
# model.load_state_dict(ckpt, strict=False)
if legacy_load:
state_dict = model.state_dict()
for k, v in ckpt.items():
if k in state_dict:
if state_dict[k].shape == v.shape:
state_dict[k].copy_(v)
else:
accelerator.print(f'[WARN] mismatching shape for param {k}: ckpt {v.shape} != model {state_dict[k].shape}, ignored.')
else:
accelerator.print(f'[WARN] unexpected param {k}: {v.shape}')
# accelerate
model, optimizer, train_dataloader, test_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, test_dataloader, scheduler
)
if accelerator.is_main_process:
wandb.login()
wandb.init(
project="single-gamba",
name=opt.workspace.split("/")[-1],
config=opt,
dir=opt.workspace,
)
wandb.watch(model, log_freq=500)
# loop
start_time = datetime.datetime.now()
for epoch in range(start_epoch, opt.num_epochs):
if rebuild_model and (epoch >= opt.enable_triplane_epoch):
if accelerator.is_main_process:
print("enable triplane by rebuilding model")
torch.distributed.barrier()
# first save checkpoint
if accelerator.is_main_process:
checkpoint = {
'model': model.module.state_dict(),
'optimizer': optimizer.optimizer.state_dict(),
'scheduler': scheduler.scheduler.state_dict(),
'epoch': epoch - 1
}
torch.save(checkpoint, os.path.join(opt.workspace, 'checkpoint_ep{:03d}.pth'.format(epoch - 1)))
torch.distributed.barrier()
new_model = Gamba(opt).train()
missing_keys, unexpected_keys = new_model.load_state_dict(model.module.state_dict(), strict=False)
model = new_model
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.lr, weight_decay=0.05, betas=(0.9, 0.95))
new_scheduler = CosineWarmupScheduler(optimizer=optimizer, warmup_iters=warmup_iters, max_iters=total_steps)
for _ in range(scheduler.scheduler._step_count):
new_scheduler.step()
scheduler = new_scheduler
model, optimizer, train_dataloader, test_dataloader, scheduler = accelerator.prepare(
model, optimizer, train_dataloader, test_dataloader, scheduler
)
rebuild_model = False
# train
model.train()
total_loss = 0
total_psnr = 0
total_loss_lpips = 0
wandb_gt_image = None
wandb_pred_image = None
wandb_eval_gt_image = None
wandb_eval_pred_image = None
if epoch <= 5:
train_dataloader.dataset.opt.num_views = 3
test_dataloader.dataset.opt.num_views = 3
elif (epoch > 5) and (epoch < 60):
train_dataloader.dataset.opt.num_views = 5
test_dataloader.dataset.opt.num_views = 5
else:
train_dataloader.dataset.opt.num_views = 7
test_dataloader.dataset.opt.num_views = 7
cur_iters = 0
for i, data in enumerate(train_dataloader):
cur_iters += 1
with accelerator.accumulate(model):
optimizer.zero_grad()
if opt.overfit:
step_ratio = 0.0
else:
step_ratio = (epoch + i / len(train_dataloader)) / opt.num_epochs
out = model(data, step_ratio)
loss = out['loss']
psnr = out['psnr']
accelerator.backward(loss)
# gradient clipping
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), opt.gradient_clip)
optimizer.step()
scheduler.step()
total_loss += loss.detach()
total_psnr += psnr.detach()
if 'loss_lpips' in out:
total_loss_lpips += out['loss_lpips'].detach()
if accelerator.is_main_process:
# logging
if i % 100 == 0:
mem_free, mem_total = torch.cuda.mem_get_info()
current_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
elapsed = datetime.datetime.now() - start_time
elapsed_str = str(elapsed).split('.')[0]
print(f"[{current_time} INFO] {i}/{len(train_dataloader)} | "
f"Elapsed: {elapsed_str} | "
f"Mem: {(mem_total-mem_free)/1024**3:.2f}/{mem_total/1024**3:.2f}G | "
f"LR: {scheduler.get_last_lr()[0]:.7f} | "
f"Step ratio: {step_ratio:.4f} | "
f"Loss: {loss.item():.6f}")
# save log images
if i % 200 == 0:
gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
kiui.write_image(f'{opt.workspace}/train_gt_images_{epoch}_{i}.jpg', gt_images)
# gt_alphas = data['masks_output'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# gt_alphas = gt_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, gt_alphas.shape[1] * gt_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/train_gt_alphas_{epoch}_{i}.jpg', gt_alphas)
pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
kiui.write_image(f'{opt.workspace}/train_pred_images_{epoch}_{i}.jpg', pred_images)
wandb_gt_image = wandb.Image(gt_images, caption=f"train_gt_images_{epoch}_{i}")
wandb_pred_image = wandb.Image(pred_images, caption=f"train_pred_images_{epoch}_{i}")
# pred_alphas = out['alphas_pred'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# pred_alphas = pred_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, pred_alphas.shape[1] * pred_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/train_pred_alphas_{epoch}_{i}.jpg', pred_alphas)
total_loss = accelerator.gather_for_metrics(total_loss).mean()
total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
total_loss_lpips = accelerator.gather_for_metrics(total_loss_lpips).mean()
if accelerator.is_main_process:
total_loss /= len(train_dataloader)
total_psnr /= len(train_dataloader)
total_loss_lpips /= len(train_dataloader)
accelerator.print(f"[train] epoch: {epoch} loss: {total_loss.item():.6f} psnr: {total_psnr.item():.4f}")
wandb.log({"Loss/train": total_loss, "PSNR/train": total_psnr,
"Loss/loss_lpips": total_loss_lpips,
"LR/lr": scheduler.get_last_lr()[0]
}, step=epoch, commit=False)
wandb.log({"train/gt_images": wandb_gt_image, "train/pred_images": wandb_pred_image}, step=epoch, commit=False)
# save psnr file
train_psnr_log_file = os.path.join(opt.workspace, "train_psnr_log.txt")
with open(train_psnr_log_file, "a") as file:
file.write(f"Epoch: {epoch}, PSNR: {total_psnr.item():.4f}\n")
# checkpoint
if epoch % 20 == 0 or epoch == opt.num_epochs - 1:
accelerator.wait_for_everyone()
accelerator.save_model(model, opt.workspace)
accelerator.wait_for_everyone()
if accelerator.is_main_process:
checkpoint = {
'model': model.module.state_dict(),
'optimizer': optimizer.optimizer.state_dict(),
'scheduler': scheduler.scheduler.state_dict(),
'epoch': epoch
}
torch.save(checkpoint, os.path.join(opt.workspace, 'checkpoint_ep{:03d}.pth'.format(epoch)))
accelerator.wait_for_everyone()
if opt.overfit:
# skip evaluation
continue
# eval
with torch.no_grad():
model.eval()
total_psnr = 0
for i, data in enumerate(test_dataloader):
out = model(data)
psnr = out['psnr']
total_psnr += psnr.detach()
# save some images
if accelerator.is_main_process:
gt_images = data['images_output'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
gt_images = gt_images.transpose(0, 3, 1, 4, 2).reshape(-1, gt_images.shape[1] * gt_images.shape[3], 3) # [B*output_size, V*output_size, 3]
kiui.write_image(f'{opt.workspace}/eval_gt_images_{epoch}_{i}.jpg', gt_images)
pred_images = out['images_pred'].detach().cpu().numpy() # [B, V, 3, output_size, output_size]
pred_images = pred_images.transpose(0, 3, 1, 4, 2).reshape(-1, pred_images.shape[1] * pred_images.shape[3], 3)
kiui.write_image(f'{opt.workspace}/eval_pred_images_{epoch}_{i}.jpg', pred_images)
# pred_alphas = out['alphas_pred'].detach().cpu().numpy() # [B, V, 1, output_size, output_size]
# pred_alphas = pred_alphas.transpose(0, 3, 1, 4, 2).reshape(-1, pred_alphas.shape[1] * pred_alphas.shape[3], 1)
# kiui.write_image(f'{opt.workspace}/eval_pred_alphas_{epoch}_{i}.jpg', pred_alphas)
wandb_eval_gt_image = wandb.Image(gt_images, caption=f"eval_gt_images_{epoch}_{i}")
wandb_eval_pred_image = wandb.Image(pred_images, caption=f"eval_pred_images_{epoch}_{i}")
torch.cuda.empty_cache()
total_psnr = accelerator.gather_for_metrics(total_psnr).mean()
if accelerator.is_main_process:
wandb.log({"PSNR/eval": total_psnr}, step=epoch, commit=False)
wandb.log({"eval/gt_images": wandb_eval_gt_image, "eval/pred_images": wandb_eval_pred_image}, step=epoch, commit=True)
total_psnr /= len(test_dataloader)
accelerator.print(f"[eval] epoch: {epoch} psnr: {psnr:.4f}")
# save psnr file
test_psnr_log_file = os.path.join(opt.workspace, "test_psnr_log.txt")
with open(test_psnr_log_file, "a") as file:
file.write(f"Epoch: {epoch}, PSNR: {total_psnr.item():.4f}\n")
if __name__ == "__main__":
main()