-
Notifications
You must be signed in to change notification settings - Fork 0
/
_NN.py
344 lines (283 loc) · 14.4 KB
/
_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
from sklearn.preprocessing import LabelEncoder
import tensorflow as tf
import optuna
import f_score_metrics
# Read "train.csv" file
df = pd.read_csv("DataSet/train.csv")
# Splitting the 'is_fraud?' column
labels = df["is_fraud?"].copy().to_numpy()
labels = labels.astype(int)
df = df.drop("is_fraud?", axis=1)
df = df.set_index(df.columns[0])
# Delete $ symbol from amount column
df['amount'] = df['amount'].str.replace('$', '').astype(float)
# Split "zip" by units
df["zip_1"] = df["zip"] // 10000
df["zip_2"] = (df["zip"] - df["zip_1"]) // 100
df["zip_4"] = df["zip"] % 100
# Drop "zip"
df = df.drop("zip", axis=1)
# Replace NaN
df["merchant_state"] = df["merchant_state"].fillna("Online")
df = df.fillna(-1)
# Change float64 with int64
df["amount"] = round(df["amount"] * 10)
df["amount"] = df["amount"].astype("int64")
df["zip_2"] = df["zip_2"].astype("int64")
df["zip_4"] = df["zip_4"].astype("int64")
df["merchant_id"] = df["merchant_id"].astype("int64")
df["mcc"] = df["mcc"].astype("int64")
df["merchant_city"] = df["merchant_city"].astype("category")
df["merchant_state"] = df["merchant_state"].astype("category")
df["errors?"] = df["errors?"].astype("category")
df["use_chip"] = df["use_chip"].astype("category")
df["user_id"] = df["user_id"].astype("int64")
df["card_id"] = df["card_id"].astype("int64")
df["zip_1"] = df["zip_1"].astype("int64")
print(df.head(5))
# Create additional data
# User average amount
user_avg_amount = df.groupby("user_id")["amount"].mean().reset_index()
user_avg_amount['amount'] = np.round(user_avg_amount['amount'])
user_avg_amount.columns = ['user_id', 'user_avg_amount']
# Merchant average amount
merchant_avg_amount = df.groupby("merchant_id")["amount"].mean().reset_index()
merchant_avg_amount['amount'] = np.round(merchant_avg_amount['amount'])
merchant_avg_amount.columns = ["merchant_id", "merchant_avg_amount"]
# Add to Original Dataset
df = pd.merge(df, user_avg_amount, on="user_id", how="left")
df = pd.merge(df, merchant_avg_amount, on="merchant_id", how="left")
# Labeling to categorical datas
le_city = LabelEncoder()
le_city.fit(df["merchant_city"])
df["merchant_city"] = le_city.transform(df["merchant_city"])
le_state = LabelEncoder()
le_state.fit(df["merchant_state"])
df["merchant_state"] = le_state.transform(df["merchant_state"])
le_errors = LabelEncoder()
le_errors.fit(df["errors?"])
df["errors?"] = le_errors.transform(df["errors?"])
le_chip = LabelEncoder()
le_chip.fit(df["use_chip"])
df["use_chip"] = le_chip.transform(df["use_chip"])
# Print Data sample
print(f"\n{df.head(5)}\n")
print(labels[:5])
print()
print(le_errors.classes_)
print()
# Validate
print(df.dtypes)
# Split Datas for train & test
X_train, X_test, y_train, y_test = train_test_split(df, labels, test_size=0.1, random_state=1225)
# Shift to tf.data.Dataset
train_dataset = tf.data.Dataset.from_tensor_slices((dict(X_train.to_dict('list')), y_train))
test_dataset = tf.data.Dataset.from_tensor_slices((dict(X_test.to_dict("list")), y_test))
# One-hot encoding to "card_id", "zip_1"
def one_hot_encode(features):
features["card_id"] = tf.one_hot(features["card_id"], depth=10)
features["zip_1"] = tf.one_hot(features["zip_1"], depth=10)
features["use_chip"] = tf.one_hot(features["use_chip"], depth=3)
return features
train_dataset = train_dataset.map(lambda x, y: (one_hot_encode(x), y))
test_dataset = test_dataset.map(lambda x, y: (one_hot_encode(x), y))
# Change to vector
def reshape_scalars(x, y):
reshaped_x = {}
for key, value in x.items():
if len(value.shape) == 0: # 스칼라 값인 경우
reshaped_x[key] = tf.cast(tf.reshape(value, (1,)), dtype=tf.float32)
else:
reshaped_x[key] = tf.cast(value, dtype=tf.float32)
return reshaped_x, y
# Dataset 객체에 map 함수 적용
train_dataset = train_dataset.map(reshape_scalars)
test_dataset = test_dataset.map(reshape_scalars)
# print for validate
for item, label in train_dataset.take(1):
for key, value in item.items():
print(f"{key}: {value.numpy()}")
print(label)
# Count fraud or not
total_samples = len(y_train)
num_not_fraud = np.count_nonzero(y_train == 0)
num_fraud = np.count_nonzero(y_train == 1)
class_weight = {
0: total_samples / (2 * num_not_fraud),
1: total_samples / (2 * num_fraud)
}
# Build Neural Network
class Logistic_Model(tf.keras.Model):
def __init__(self, units: int, output_dim:int, output_dim_small:int, output_dim_large:int, kernel_l2_lambda: float,
activity_l2_lambda: float, activity_l2_small: float, activity_l2_big: float,
dropout_rate: float , kernel_initializer: str, dropout_small: float, dropout_big: float):
super(Logistic_Model, self).__init__()
self.units = units
self.output_dim = output_dim
self.output_dim_small = output_dim_small
self.output_dim_large = output_dim_large
self.kernel_l2_lambda = kernel_l2_lambda
self.activity_l2_lambda = activity_l2_lambda
self.dropout_rate = dropout_rate
self.kernel_initializer = kernel_initializer
self.activity_l2_small = activity_l2_small
self.activity_l2_big = activity_l2_big
self.dropout_small = dropout_small
self.dropout_big = dropout_big
self.input_user_id = tf.keras.layers.Embedding(
input_dim=2000, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_amount = tf.keras.layers.Embedding(
input_dim=20000, output_dim=self.output_dim_large, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_big), mask_zero=False)
self.input_mer_id = tf.keras.layers.Embedding(
input_dim=25076, output_dim=self.output_dim_large, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_big), mask_zero=False)
self.input_mer_ct = tf.keras.layers.Embedding(
input_dim=4400, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_mer_st = tf.keras.layers.Embedding(
input_dim=130, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_mcc = tf.keras.layers.Embedding(
input_dim=110, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_zip2 = tf.keras.layers.Embedding(
input_dim=1000, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_zip4 = tf.keras.layers.Embedding(
input_dim=100, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_user_avg = tf.keras.layers.Embedding(
input_dim=2000, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_mer_avg = tf.keras.layers.Embedding(
input_dim=2000, output_dim=self.output_dim, input_length=1, activity_regularizer=tf.keras.regularizers.l2(self.activity_l2_small), mask_zero=False)
self.input_card_id = tf.keras.layers.Dense(units=output_dim_small, activation="relu", kernel_initializer="he_normal")
self.input_use_chip = tf.keras.layers.Dense(units=output_dim_small, activation="relu", kernel_initializer="he_normal")
self.input_zip1 = tf.keras.layers.Dense(units=output_dim_small, activation="relu", kernel_initializer="he_normal")
self.hidden = tf.keras.layers.Dense(
units=self.units,
kernel_regularizer=tf.keras.regularizers.L2(self.kernel_l2_lambda),
activity_regularizer=tf.keras.regularizers.L2(self.activity_l2_lambda),
activation="relu",
kernel_initializer=self.kernel_initializer, # he_normal or he_uniform
name="hidden"
)
self.dropout = tf.keras.layers.Dropout(self.dropout_rate)
self.dropout_small_layer = tf.keras.layers.Dropout(self.dropout_small)
self.dropout_big_layer = tf.keras.layers.Dropout(self.dropout_big)
self.output_layer = tf.keras.layers.Dense(1, activation="sigmoid")
def call(self, inputs: tf.data.Dataset):
user_id_out = self.input_user_id(inputs["user_id"])
user_id_out = tf.squeeze(user_id_out, axis=1)
amount_out = self.input_amount(inputs["amount"])
amount_out = tf.squeeze(amount_out, axis=1)
mer_id_out = self.input_mer_id(inputs["merchant_id"])
mer_id_out = tf.squeeze(mer_id_out, axis=1)
mer_ct_out = self.input_mer_ct(inputs["merchant_city"])
mer_ct_out = tf.squeeze(mer_ct_out, axis=1)
mer_st_out = self.input_mer_st(inputs["merchant_state"])
mer_st_out = tf.squeeze(mer_st_out, axis=1)
mcc_out = self.input_mcc(inputs["mcc"])
mcc_out = tf.squeeze(mcc_out, axis=1)
zip2_out = self.input_zip2(inputs["zip_2"])
zip2_out = tf.squeeze(zip2_out, axis=1)
zip4_out = self.input_zip4(inputs["zip_4"])
zip4_out = tf.squeeze(zip4_out, axis=1)
user_avg_out = self.input_user_avg(inputs["user_avg_amount"])
user_avg_out = tf.squeeze(user_avg_out, axis=1)
mer_avg_out = self.input_mer_avg(inputs["merchant_avg_amount"])
mer_avg_out = tf.squeeze(mer_avg_out, axis=1)
card_id_out = self.input_card_id(inputs["card_id"])
use_chip_out = self.input_use_chip(inputs["use_chip"])
zip1_out = self.input_zip1(inputs["zip_1"])
user_id_out = self.dropout_small_layer(user_id_out)
amount_out = self.dropout_big_layer(amount_out)
mer_id_out = self.dropout_big_layer(mer_id_out)
mer_ct_out = self.dropout_small_layer(mer_ct_out)
mer_st_out = self.dropout_small_layer(mer_st_out)
mcc_out = self.dropout_small_layer(mcc_out)
zip2_out = self.dropout_small_layer(zip2_out)
zip4_out = self.dropout_small_layer(zip4_out)
user_avg_out = self.dropout_small_layer(user_avg_out)
mer_avg_out = self.dropout_small_layer(mer_avg_out)
x = tf.concat([user_id_out, card_id_out, amount_out, inputs["errors?"], mer_id_out, mer_ct_out, mer_st_out,
mcc_out, mcc_out, use_chip_out, zip1_out, zip2_out, zip4_out, user_avg_out, mer_avg_out], axis=1)
x = self.hidden(x)
x = self.dropout(x)
output = self.output_layer(x)
return output
def get_config(self):
config = super().get_config()
config.update({
'units': self.units,
'output_dim': self.output_dim,
'output_dim_small': self.output_dim_small,
'output_dim_large': self.output_dim_large,
'kernel_l2_lambda': self.kernel_l2_lambda,
'activity_l2_lambda': self.activity_l2_lambda,
"activity_l2_small": self.activity_l2_small,
"activity_l2_big": self.activity_l2_big,
'dropout_rate': self.dropout_rate,
"dropout_small": self.dropout_small,
"dropout_big": self.dropout_big,
'kernel_initializer': self.kernel_initializer
})
return config
@classmethod
def from_config(cls, config):
return cls(**config)
# Define Objective function for Optuna
def Objective(trial):
param = {
"units": trial.suggest_int("units", 16, 3000),
"output_dim": trial.suggest_int("output_dim", 1, 500),
'output_dim_small': trial.suggest_int("output_dim_small", 1, 50),
'output_dim_large': trial.suggest_int("output_dim_large", 1, 1000),
"kernel_l2_lambda": trial.suggest_float("kernel_l2_lambda", 0, 0.001),
"activity_l2_lambda": trial.suggest_float("activity_l2_lambda", 1e-4, 1, log=True),
"dropout_rate": trial.suggest_float("dropout_rate", 0.0, 0.5, step=0.05),
"kernel_initializer": "he_normal",
"lr": trial.suggest_float("learning_rate", 5e-5, 0.05, step=1e-5),
"batch_size": trial.suggest_int("batch_size", 64, 1024),
"activity_l2_small": trial.suggest_float("activity_l2_small", 1e-4, 1, log=True),
"activity_l2_big": trial.suggest_float("activity_l2_big", 1e-4, 1, log=True),
"dropout_small": trial.suggest_float("dropout_small", 0.0, 0.5, step=0.05),
"dropout_big": trial.suggest_float("dropout_big", 0.0, 0.5, step=0.05),
}
with open("nndb/nn_Hyper_2.txt", 'a') as f:
f.write(str(param) + '\n')
lr = param.pop("lr")
batch_size = param.pop("batch_size")
# try 2 times
all_scores = []
for _ in range(1):
# Build CatBoost Classifier and Training
early_stopping = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=6, restore_best_weights=True)
model = Logistic_Model(**param)
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=lr), loss='binary_crossentropy', metrics=[f_score_metrics.F1Score()])
model.fit(train_dataset.batch(batch_size),
epochs=100,
class_weight=class_weight,
validation_data=test_dataset.batch(batch_size),
callbacks=[early_stopping])
# Predict & Validate
y_pred = model.predict(test_dataset.batch(batch_size))
y_pred = (y_pred > 0.5).astype(int).flatten() # Convert probabilities to binary labels and flatten to 1D array
model_metric = f1_score(y_test, y_pred)
# Append Metric
all_scores.append(model_metric)
# Note Metric
with open("nndb/nn_Hyper_2.txt", 'a') as f:
f.write(f"F1 Score: {np.mean(all_scores)} \n\n")
return np.mean(all_scores)
# Create Optuna sampler and study object
sampler = optuna.samplers.TPESampler(n_startup_trials=20)
study = optuna.create_study(sampler=sampler,
study_name="NN_for_card_fraud_2",
direction="maximize",
storage="sqlite:///nndb/1.db",
load_if_exists=True)
study.optimize(Objective, n_trials=220, n_jobs=1)
# Print best hyper-parameter set
with open("nndb/nn_Hyper_2.txt",'a') as f:
f.write(f"Best Hyper-parameter set: \n{study.best_params}\n")
f.write(f"Best value: {study.best_value}")
print(f"Best Hyper-parameter set: \n{study.best_params}\n")
print(f"Best value: {study.best_value}")