forked from dripdropdr/Face-heaan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheaan_utils.py
276 lines (201 loc) · 8.75 KB
/
heaan_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import piheaan as heaan
from piheaan.math import sort
from piheaan.math import approx # for piheaan math function
import os
import math
class Heaan:
def __init__(self) -> None:
# set parameter
self.params = heaan.ParameterPreset.FGb
# context has paramter information
self.context = heaan.make_context(self.params)
self.key_file_path = "./keys"
self.eval = None
self.dec = None
self.enc = None
self.sk = None
self.pk = None
self.log_slots = 15
self.num_slots = 2**self.log_slots
def heaan_initilize(self):
# log_slots is used for the number of slots per ciphertext
# It depends on the parameter used (ParameterPreset)
# The number '15' is the value for maximum number of slots,
# but you can also use a smaller number (ex. 2, 3, 5, 7 ...)
# The actual number of slots in the ciphertext is calculated as below.
heaan.make_bootstrappable(self.context) # make parameter bootstrapable
# # create and save secret keys
# self.sk = heaan.SecretKey(self.context) # create secret key
# # create and save public keys
# key_generator = heaan.KeyGenerator(self.context, self.sk) # create public key
# key_generator.gen_common_keys()
# key_generator.save(self.key_file_path+"/") # save public key
# load secret key and public key
# When a key is created, it can be used again to save a new key without creating a new one
self.sk = heaan.SecretKey(self.context, self.key_file_path+"/secretkey.bin") # load secret key
self.pk = heaan.KeyPack(self.context, self.key_file_path+"/") # load public key
self.pk.load_enc_key()
self.pk.load_mult_key()
# Create evaluators and decryptor
self.eval = heaan.HomEvaluator(self.context, self.pk) # to load piheaan basic function
self.dec = heaan.Decryptor(self.context) # for self.decrypt
self.enc = heaan.Encryptor(self.context) # for self.encrypt
ctxt1 = heaan.Ciphertext(self.context)
ctxt2 = heaan.Ciphertext(self.context)
return ctxt1, ctxt2
def encrypt(self, msg, ctxt):
self.enc.encrypt(msg, self.pk, ctxt)
def decrypt(self, msg, ctxt):
# Decrypt the ciphertext using the secret key
self.dec.decrypt(msg, self.sk, ctxt)
def similarity_calc(self, res_ctxt):
# Calculate similarity by decrypting the result ciphertext
sim = heaan.Message(self.log_slots)
self.dec.decrypt(res_ctxt, self.sk, sim)
sim_ = sum(sim)/len(sim)
return sim_
def feat_msg_generate(self, feat):
# Generate a message from the feature array
feat_list = feat.tolist()
feat_padding = feat_list + (self.num_slots-len(feat_list))*[0]
msg = heaan.Message(self.log_slots)
for i in range(self.num_slots):
msg[i] = feat_padding[i]
return msg
def cosin_sim(self, ctxt1, ctxt2):
# Perform cosine similarity computation using HEAAN
# # denominator
# ctxt1 = heaan.Ciphertext(self.context)
# ctxt1.load(ctxt_path)
# mult : Multiply the ciphertexts
ctxt3 = heaan.Ciphertext(self.context)
self.eval.mult(ctxt1, ctxt2, ctxt3)
# sigma : Perform rotation and reduction
denom_ctxt = heaan.Ciphertext(self.context)
self.eval.left_rotate_reduce(ctxt3,1,self.num_slots,denom_ctxt)
# numerator
# square : Square the ciphertexts
ctxt1_sqr = heaan.Ciphertext(self.context)
self.eval.square(ctxt1, ctxt1_sqr)
ctxt2_sqr = heaan.Ciphertext(self.context)
self.eval.square(ctxt2, ctxt2_sqr)
# sigma : Perform rotation and reduction on squared ciphertexts
ctxt1_rot = heaan.Ciphertext(self.context)
self.eval.left_rotate_reduce(ctxt1_sqr,1,self.num_slots,ctxt1_rot)
ctxt2_rot = heaan.Ciphertext(self.context)
self.eval.left_rotate_reduce(ctxt2_sqr,1,self.num_slots,ctxt2_rot)
# sqrt
## sigma output range : about 10 ~ 30
## divide by 100 and mult 10 to later result value
## input range : 2^-18 ≤ x ≤ 2
# Take square root of rotated ciphertexts
hun_msg = heaan.Message(self.log_slots)
for i in range(self.num_slots):
hun_msg[i] = 0.01
self.eval.mult(ctxt1_rot,hun_msg,ctxt1_rot)
self.eval.mult(ctxt2_rot,hun_msg,ctxt2_rot)
ctxt1_sqrt = heaan.Ciphertext(self.context)
approx.sqrt(self.eval,ctxt1_rot,ctxt1_sqrt)
ctxt2_sqrt = heaan.Ciphertext(self.context)
approx.sqrt(self.eval,ctxt2_rot,ctxt2_sqrt)
# mult and inverse
## inverse range : 1 ≤ x ≤ 2^22 or 2^-10 ≤ x ≤ 1
num_ctxt = heaan.Ciphertext(self.context)
self.eval.mult(ctxt1_sqrt, ctxt2_sqrt, num_ctxt)
self.eval.mult(num_ctxt,1000,num_ctxt)
num_inverse = heaan.Ciphertext(self.context)
approx.inverse(self.eval,num_ctxt,num_inverse)
self.eval.mult(num_inverse,10, num_inverse)
self.eval.bootstrap(num_inverse, num_inverse)
# cosine similarity
# mult denominator & numberator^-1
res_ctxt = heaan.Ciphertext(self.context)
self.eval.mult(num_inverse,denom_ctxt,res_ctxt)
return res_ctxt
def euclidean_distance(self, ctxt1, ctxt2):
# Compute the Euclidean distance between two ciphertexts
# # sub
# ctxt1 = heaan.Ciphertext(self.context)
# ctxt1.load(ctxt_path)
ctxt3 = heaan.Ciphertext(self.context)
self.eval.sub(ctxt1, ctxt2, ctxt3)
# square
ctxt_square = heaan.Ciphertext(self.context)
self.eval.square(ctxt3, ctxt_square)
# sigma
ctxt_sig = heaan.Ciphertext(self.context)
self.eval.left_rotate_reduce(ctxt_square,1, self.num_slots, ctxt_sig)
# sqrt
## ctxt_sig is bigger than 2
## input range : 2^-18 ≤ x ≤ 2
self.eval.mult(ctxt_sig,0.01,ctxt_sig)
ctxt_sqrt = heaan.Ciphertext(self.context)
approx.sqrt(self.eval,ctxt_sig,ctxt_sqrt)
self.eval.mult(ctxt_sqrt,10,ctxt_sqrt)
return ctxt_sqrt
def manhattan_distance(self, ctxt1, ctxt2):
# Compute the Manhattan distance between two ciphertexts
small_tmp_ctxt= heaan.Ciphertext(self.context)
small_ctxt = heaan.Ciphertext(self.context)
big_tmp_ctxt = heaan.Ciphertext(self.context)
big_ctxt = heaan.Ciphertext(self.context)
abs_ctxt = heaan.Ciphertext(self.context)
res_ctxt = heaan.Ciphertext(self.context)
ctxt3 = heaan.Ciphertext(self.context)
# ctxt1 = heaan.Ciphertext(self.context)
# ctxt1.load(ctxt_path)
## if ctxt1 < ctxt2 -> 0
comp_ctxt = heaan.Ciphertext(self.context)
approx.compare(self.eval, ctxt1, ctxt2, comp_ctxt)
## discrete equal zero
## input range : |x| ≤ 54 (x : int)
discrete_ctxt = heaan.Ciphertext(self.context)
two_msg = heaan.Message(self.log_slots)
for i in range(self.num_slots):
two_msg[i] = 2
two_ctxt = heaan.Ciphertext(self.context)
self.enc.encrypt(two_msg,self.pk,two_ctxt)
comp_tmp_ctxt = heaan.Ciphertext(self.context)
self.eval.mult(two_ctxt,comp_ctxt,comp_tmp_ctxt)
approx.discrete_equal_zero(self.eval, comp_tmp_ctxt, discrete_ctxt)
# sub
self.eval.sub(ctxt1, ctxt2, ctxt3)
# small_tmp_ctxt = remain only minus values
self.eval.mult(ctxt3,discrete_ctxt,small_tmp_ctxt)
# small_ctxt = - to +
self.eval.negate(small_tmp_ctxt,small_ctxt)
one_msg = heaan.Message(self.log_slots)
for i in range(self.num_slots):
one_msg[i] = 1
one_ctxt = heaan.Ciphertext(self.context)
self.enc.encrypt(one_msg, self.pk, one_ctxt)
self.eval.sub(one_ctxt,discrete_ctxt,big_tmp_ctxt)
self.eval.mult(big_tmp_ctxt,ctxt3,big_ctxt)
self.eval.add(big_ctxt,small_ctxt,abs_ctxt)
## sigma
self.eval.left_rotate_reduce(abs_ctxt,1,self.num_slots,res_ctxt)
return res_ctxt
def compare(self, type, thres, comp_ctxt):
# Compare the similarity/distance value with a threshold
thres_list = []
thres_list.append(thres)
thres_list += (self.num_slots-len(thres_list))*[0]
thres_msg = heaan.Message(self.log_slots)
for i in range(self.num_slots):
thres_msg[i] = thres_list[i]
sub_ctxt = heaan.Ciphertext(self.context)
if type == 'cosine':
self.eval.sub(comp_ctxt,thres_msg,sub_ctxt)
elif type == 'euclidean' or 'manhattan':
thres_ctxt = heaan.Ciphertext(self.context)
self.enc.encrypt(thres_msg, self.pk, thres_ctxt)
self.eval.sub(thres_ctxt,comp_ctxt,sub_ctxt)
## cos_similarity - threshold > 0 ==> 1
sign_ctxt = heaan.Ciphertext(self.context)
approx.sign(self.eval, sub_ctxt, sign_ctxt)
res = heaan.Message(self.log_slots)
self.dec.decrypt(sign_ctxt, self.sk, res)
real = res[0].real
if -0.0001 < 1-real < 0.0001: res = 'unlock'
else: res = 'lock'
return res