forked from apple/ml-hypersim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_camera_trajectory.py
executable file
·75 lines (54 loc) · 3.15 KB
/
generate_camera_trajectory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
#
# For licensing see accompanying LICENSE.txt file.
# Copyright (C) 2020 Apple Inc. All Rights Reserved.
#
from pylab import *
import h5py
import pandas as pd
import sklearn.preprocessing
print("Begin...")
# parameters
reconstruction_roi_min = array([ -8000.0, -8000.0, 0.0 ])
reconstruction_roi_max = array([ 8000.0, 8000.0, 0.0 ])
camera_roi_min = reconstruction_roi_min + array([ -9000.0, -9000.0, 0.0 ])
camera_roi_max = reconstruction_roi_max + array([ 9000.0, 9000.0, 20000.0 ])
num_keyframes = 20
camera_frame_time_seconds = 1.0
# output
camera_keyframe_frame_indices_hdf5_file = "camera_keyframe_frame_indices.hdf5"
camera_keyframe_positions_hdf5_file = "camera_keyframe_positions.hdf5"
camera_keyframe_orientations_hdf5_file = "camera_keyframe_orientations.hdf5"
metadata_camera_csv_file = "metadata_camera.csv"
#
# Compute camera keyframe positions and orientations.
#
# Specify a keyframe at every frame.
camera_keyframe_frame_indices = arange(num_keyframes)
camera_lookat_pos = (reconstruction_roi_max + reconstruction_roi_min) / 2.0
camera_roi_extent = camera_roi_max - camera_roi_min
camera_roi_half_extent = camera_roi_extent / 2.0
camera_roi_center = (camera_roi_min + camera_roi_max) / 2.0
# The convention here is that positive z in world-space is up.
theta = linspace(0,2*np.pi,num_keyframes)
camera_keyframe_positions = c_[ cos(theta)*camera_roi_half_extent[0] + camera_roi_center[0],
sin(theta)*camera_roi_half_extent[1] + camera_roi_center[1],
ones_like(theta)*camera_roi_max[2] ]
camera_keyframe_orientations = zeros((num_keyframes,3,3))
for i in range(num_keyframes):
# The convention here is that positive z in world-space is up.
camera_position = camera_keyframe_positions[i]
camera_lookat_dir = sklearn.preprocessing.normalize(array([camera_lookat_pos - camera_position]))[0]
camera_up_axis_hint = array([0.0,0.0,1.0])
# The convention here is that the camera's positive x axis points right, the positive y
# axis points up, and the positive z axis points away from where the camera is looking.
camera_z_axis = -sklearn.preprocessing.normalize(array([camera_lookat_dir]))
camera_x_axis = -sklearn.preprocessing.normalize(cross(camera_z_axis, camera_up_axis_hint))
camera_y_axis = sklearn.preprocessing.normalize(cross(camera_z_axis, camera_x_axis))
R_world_from_cam = c_[ matrix(camera_x_axis).T, matrix(camera_y_axis).T, matrix(camera_z_axis).T ]
camera_keyframe_orientations[i] = R_world_from_cam
with h5py.File(camera_keyframe_frame_indices_hdf5_file, "w") as f: f.create_dataset("dataset", data=camera_keyframe_frame_indices)
with h5py.File(camera_keyframe_positions_hdf5_file, "w") as f: f.create_dataset("dataset", data=camera_keyframe_positions)
with h5py.File(camera_keyframe_orientations_hdf5_file, "w") as f: f.create_dataset("dataset", data=camera_keyframe_orientations)
df = pd.DataFrame(columns=["parameter_name", "parameter_value"], data={"parameter_name": ["frame_time_seconds"], "parameter_value": [camera_frame_time_seconds]})
df.to_csv(metadata_camera_csv_file, index=False)
print("Finished.")