forked from innoave/genevo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.rs
161 lines (143 loc) · 5.51 KB
/
main.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
//! The `monkeys` example explores the idea of the Shakespeare's monkeys also
//! known as the
//! [infinite monkey theorem](https://en.wikipedia.org/wiki/Infinite_monkey_theorem).
use genevo::{
operator::prelude::*, population::ValueEncodedGenomeBuilder, prelude::*, types::fmt::Display,
};
// const TARGET_TEXT: &str = "See how a genius creates a legend";
const TARGET_TEXT: &str = "Be not afraid of greatness! Some are great, some achieve greatness, \
and some have greatness thrust upon 'em.";
// const TARGET_TEXT: &str = "All the world's a stage, and all the men and women merely players: \
// they have their exits and their entrances; and one man in his time \
// plays many parts, his acts being seven ages.";
#[derive(Debug)]
struct Parameter {
population_size: usize,
generation_limit: u64,
num_individuals_per_parents: usize,
selection_ratio: f64,
num_crossover_points: usize,
mutation_rate: f64,
reinsertion_ratio: f64,
}
impl Default for Parameter {
fn default() -> Self {
Parameter {
population_size: (100. * (TARGET_TEXT.len() as f64).ln()) as usize,
generation_limit: 2000,
num_individuals_per_parents: 2,
selection_ratio: 0.7,
num_crossover_points: TARGET_TEXT.len() / 6,
mutation_rate: 0.05 / (TARGET_TEXT.len() as f64).ln(),
reinsertion_ratio: 0.7,
}
}
}
/// The phenotype
type Text = String;
/// The genotype
type TextGenome = Vec<u8>;
/// How do the genes of the genotype show up in the phenotype
trait AsPhenotype {
fn as_text(&self) -> Text;
}
impl AsPhenotype for TextGenome {
fn as_text(&self) -> Text {
String::from_utf8(self.to_vec()).unwrap()
}
}
/// The fitness function for `TextGenome`s.
#[derive(Clone, Debug)]
struct FitnessCalc;
impl FitnessFunction<TextGenome, usize> for FitnessCalc {
fn fitness_of(&self, genome: &TextGenome) -> usize {
let mut score = 0;
for (c, t) in genome.iter().zip(TARGET_TEXT.chars()) {
let c = *c as char;
if c == t {
score += 1;
}
}
let fraction = score as f32 / TARGET_TEXT.len() as f32;
(fraction * fraction * 100_00. + 0.5).floor() as usize
}
fn average(&self, fitness_values: &[usize]) -> usize {
fitness_values.iter().sum::<usize>() / fitness_values.len()
}
fn highest_possible_fitness(&self) -> usize {
100_00
}
fn lowest_possible_fitness(&self) -> usize {
0
}
}
fn main() {
let params = Parameter::default();
let initial_population: Population<TextGenome> = build_population()
.with_genome_builder(ValueEncodedGenomeBuilder::new(TARGET_TEXT.len(), 32, 126))
.of_size(params.population_size)
.uniform_at_random();
let mut monkeys_sim = simulate(
genetic_algorithm()
.with_evaluation(FitnessCalc)
.with_selection(MaximizeSelector::new(
params.selection_ratio,
params.num_individuals_per_parents,
))
.with_crossover(MultiPointCrossBreeder::new(params.num_crossover_points))
.with_mutation(RandomValueMutator::new(params.mutation_rate, 32, 126))
.with_reinsertion(ElitistReinserter::new(
FitnessCalc,
true,
params.reinsertion_ratio,
))
.with_initial_population(initial_population)
.build(),
)
.until(or(
FitnessLimit::new(FitnessCalc.highest_possible_fitness()),
GenerationLimit::new(params.generation_limit),
))
.build();
println!("Starting Shakespeare's Monkeys with: {:?}", params);
loop {
let result = monkeys_sim.step();
match result {
Ok(SimResult::Intermediate(step)) => {
let evaluated_population = step.result.evaluated_population;
let best_solution = step.result.best_solution;
println!(
"Step: generation: {}, average_fitness: {}, \
best fitness: {}, duration: {}, processing_time: {}",
step.iteration,
evaluated_population.average_fitness(),
best_solution.solution.fitness,
step.duration.fmt(),
step.processing_time.fmt()
);
println!(" {}", best_solution.solution.genome.as_text());
// println!("| population: [{}]", result.population.iter().map(|g| g.as_text())
// .collect::<Vec<String>>().join("], ["));
},
Ok(SimResult::Final(step, processing_time, duration, stop_reason)) => {
let best_solution = step.result.best_solution;
println!("{}", stop_reason);
println!(
"Final result after {}: generation: {}, \
best solution with fitness {} found in generation {}, processing_time: {}",
duration.fmt(),
step.iteration,
best_solution.solution.fitness,
best_solution.generation,
processing_time.fmt()
);
println!(" {}", best_solution.solution.genome.as_text());
break;
},
Err(error) => {
println!("{}", error);
break;
},
}
}
}