forked from manuelruder/fast-artistic-videos
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fast_artistic_video_core.lua
242 lines (206 loc) · 8.46 KB
/
fast_artistic_video_core.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
require 'torch'
require 'nn'
require 'image'
require 'fast_artistic_video.ShaveImage'
require 'fast_artistic_video.TotalVariation'
require 'fast_artistic_video.InstanceNormalization'
require 'fast_artistic_video.PerceptualCriterion'
local utils = require 'fast_artistic_video.utils'
local preprocess = require 'fast_artistic_video.preprocess'
-- local optnet = require 'optnet'
-- General style transfer algorithm with an image prior, can be used for several applications like video style transfer
-- (prior = last image warped) or 360 deg videos in cube face format (prior = neighboring cube face border), etc.
-- opt should have the following properties:
-- opt.gpu [int]
-- opt.backend [string]
-- opt.use_cudnn [bool]
-- opt.cudnn_benchmark [int]
-- opt.model_img [string]
-- opt.model_vid [string]
-- opt.create_inconsistent [bool]
-- opt.evaluate [bool]
-- opt.content_layers [int,...,int]
-- opt.style_layers [int,...,int]
-- opt.loss_network [string]
-- opt.style_image [string]
-- opt.backward [bool]
-- opt.num_frames [int]
-- opt.occlusions_min_filter [int]
-- opt.continue_with [int]
function run_fast_neural_video(opt, func_load_image, func_load_cert, func_eval, func_make_last_frame_warped, func_is_single_image, func_save_image)
local dtype, use_cudnn = utils.setup_gpu(opt.gpu, opt.backend, opt.use_cudnn == 1)
local function get_model(path)
local ok, checkpoint = pcall(function() return torch.load(path) end)
if not ok then
print('ERROR: Could not load model from ' .. path)
exit()
end
print('Model loaded.')
local model = checkpoint.model
model:evaluate()
model:type(dtype)
if use_cudnn then
require 'cudnn'
cudnn.convert(model, cudnn)
if opt.cudnn_benchmark == 0 then
cudnn.benchmark = false
cudnn.fastest = true
end
end
return model
end
local model_img = nil
local model_vid = nil
if opt.model_img ~= 'self' then
model_img = get_model(opt.model_img)
if not opt.create_inconsistent then
model_vid = get_model(opt.model_vid)
end
else
model_vid = get_model(opt.model_vid)
end
local preprocess_method = 'vgg'
local preprocess = preprocess[preprocess_method]
-- Set up the perceptual loss network
local percep_crit = nil
if opt.evaluate then
-- Parse layer strings and weights
opt.content_layers, opt.content_weights =
utils.parse_layers(opt.content_layers, opt.content_weights)
opt.style_layers, opt.style_weights =
utils.parse_layers(opt.style_layers, opt.style_weights)
local loss_net = torch.load(opt.loss_network)
local crit_args = {
cnn = loss_net,
style_layers = opt.style_layers,
style_weights = opt.style_weights,
content_layers = opt.content_layers,
content_weights = opt.content_weights,
agg_type = opt.style_target_type,
}
percep_crit = nn.PerceptualCriterion(crit_args):type(dtype)
-- Load the style image and set it
local style_image = image.load(opt.style_image, 3, 'float')
style_image = image.scale(style_image, opt.style_image_size)
local H, W = style_image:size(2), style_image:size(3)
style_image = preprocess.preprocess(style_image:view(1, 3, H, W))
percep_crit:setStyleTarget(style_image:type(dtype))
end
-- Calculates style and content loss
local function evaluate_image(content_img, stylized_img)
local H, W = content_img:size(2), content_img:size(3)
local target = {content_target=preprocess.preprocess(content_img:view(1, 3, H, W)):type(dtype)}
percep_crit:forward(preprocess.preprocess(stylized_img:view(1, 3, H, W)):type(dtype), target)
return percep_crit.total_content_loss, percep_crit.total_style_loss
end
local function generate_fill(b, c, h, w, cert)
local rndTensor = torch.rand(b, c, h, w):type(cert:type())
rndTensor = preprocess.preprocess(rndTensor)
local cert_inv = torch.mul(torch.add(cert, -1), -1)
if opt.fill_occlusions == 'vgg-mean' then
return torch.zeros(b, c, h, w):type(cert:type())
elseif opt.fill_occlusions == 'uniform-random' then
return torch.cmul(rndTensor, cert_inv)
end
end
--optimizedImgModel = false
local function run_image(img)
local time1 = os.clock()
local H, W = img:size(2), img:size(3)
local origType = img:type()
-- Downscale the image if too large
if opt.scale_factor ~= 1 then
img = image.scale(img:float(), W * opt.scale_factor, H * opt.scale_factor, 'bicubic'):type(origType)
end
local img_pre = preprocess.preprocess(img:view(1, 3, H * opt.scale_factor, W * opt.scale_factor)):type(dtype)
local img_out = nil
if model_img == nil then
-- In this case, the video model processes the frame
local input_tmp = torch.cat(img_pre, generate_fill(1, 3, H, W, torch.zeros(img_pre:size()):type(dtype)), 2)
-- Just mask everything as "uncertain" because we have no prior frame
input_tmp = torch.cat(input_tmp, torch.zeros(img_pre:size(1), 1, img_pre:size(3), img_pre:size(4)):type(dtype), 2)
img_out = model_vid:forward(input_tmp)
else
--if not optimizedImgModel then
-- local opts = {inplace=true, mode='inference', reuseBuffers=true, removeGradParams=true}
-- optnet.optimizeMemory(model_img, img_pre, opts)
-- optimizedImgModel = true
-- print("optimized img model")
--end
img_out = model_img:forward(img_pre)
end
img_out = preprocess.deprocess(img_out)[1]
if opt.scale_factor ~= 1 then
img_out = image.scale(img_out:float(), W, H, 'bicubic'):type(dtype)
end
local time2= os.clock()
print("Elapsed time for stylizing frame independently:" .. (time2 - time1))
return img_out
end
-- Process a subsequent frame
local function run_next_image(H, W, new_content_img, cert_mask, i)
local prev_warped_pre, flow_mask = func_make_last_frame_warped(opt, i, dtype, cert_mask)
local time1 = os.clock()
local prev_warped = preprocess.preprocess(prev_warped_pre:view(1, 3, H, W))
local prev_warped_masked = torch.cmul(prev_warped, cert_mask:expand(1, 3, H, W))
local new_content_img_pre = preprocess.preprocess(new_content_img:view(1, 3, H, W)):type(dtype)
local input_mask = flow_mask == nil and cert_mask or torch.cmin(cert_mask, flow_mask:view(1,1,H,W))
local input = torch.cat(new_content_img_pre, torch.add(generate_fill(1, 3, H, W, cert_mask:expand(1, 3, H, W)), prev_warped_masked), 2)
input = torch.cat(input, input_mask, 2)
local img_out = model_vid:forward(input)
local img_out = preprocess.deprocess(img_out)[1]
local time2= os.clock()
print("Elapsed time for stylizing frame:" .. (time2 - time1))
return img_out
end
local eval_numbers_tabl, eval_numbers_sum_tabl = {}, {}
local num_eval_numbers = 0
local file = nil
if opt.evaluate then
file = io.open(opt.evaluation_file, "a")
end
local start_idx = opt.backward and opt.num_frames-1 or opt.continue_with
local end_idx = opt.backward and 1 or opt.num_frames
local inc = opt.backward and -1 or 1
-- Main loop over all frames
for i=start_idx, end_idx, inc do
img = func_load_image(opt, i, dtype)
if img == nil then break end
local H, W = img:size(2), img:size(3)
local next_img_stylized
-- Process this frame
if func_is_single_image(i, opt) then
next_img_stylized = run_image(img)
else
local cert = func_load_cert(opt, i, dtype)
cert = utils.min_filter(cert, opt.occlusions_min_filter, dtype)
next_img_stylized = run_next_image(H, W, img, cert:view(1,1,H,W), i)
end
func_save_image(opt, i, next_img_stylized, dtype)
-- Evaluate style, content and temporal loss if requested
if opt.evaluate then
local numers_tabl = nil
numers_tabl, num_eval_numbers = func_eval(opt, i, evaluate_image, dtype)
for j=1,num_eval_numbers do
if eval_numbers_tabl[j] == nil then
table.insert(eval_numbers_tabl, tostring(numers_tabl[j]))
table.insert(eval_numbers_sum_tabl, numers_tabl[j])
else
eval_numbers_tabl[j] = eval_numbers_tabl[j] .. ';' .. tostring(numers_tabl[j])
eval_numbers_sum_tabl[j] = eval_numbers_sum_tabl[j] + numers_tabl[j]
end
end
end
img_stylized = next_img_stylized
end
if opt.evaluate then
for i=1,num_eval_numbers do
file:write(eval_numbers_tabl[i], "\n")
end
for i=1,num_eval_numbers do
file:write(eval_numbers_sum_tabl[i] / opt.num_frames, "\n")
end
file:close()
print("File written")
end
end