In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on phi-3 models. For illustration purposes, we utilize the microsoft/Phi-3-mini-4k-instruct as a reference phi-3 model.
Note: If you want to download the Hugging Face Transformers model, please refer to here.
IPEX-LLM optimizes the Transformers model in INT4 precision at runtime, and thus no explicit conversion is needed.
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to here for more information.
In the example generate.py, we show a basic use case for a phi-3 model to predict the next N tokens using generate()
API, with IPEX-LLM INT4 optimizations.
We suggest using conda to manage the Python environment. For more information about conda installation, please refer to here.
After installing conda, create a Python environment for IPEX-LLM:
On Linux:
conda create -n llm python=3.11 # recommend to use Python 3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
pip install "transformers>=4.37.0,<4.42.3"
On Windows:
conda create -n llm python=3.11
conda activate llm
pip install --pre --upgrade ipex-llm[all]
pip install "transformers>=4.37.0,<4.42.3"
After setting up the Python environment, you could run the example by following steps.
Note: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a XB model saved in 16-bit will requires approximately 2X GB of memory for loading, and ~0.5X GB memory for further inference.
Please select the appropriate size of the phi-3 model based on the capabilities of your machine.
On client Windows machines, it is recommended to run directly with full utilization of all cores:
python ./generate.py --prompt 'What is AI?'
More information about arguments can be found in Arguments Info section. The expected output can be found in Sample Output section.
For optimal performance on server, it is recommended to set several environment variables (refer to here for more information), and run the example with all the physical cores of a single socket.
E.g. on Linux,
# set IPEX-LLM env variables
source ipex-llm-init
# e.g. for a server with 48 cores per socket
export OMP_NUM_THREADS=48
numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?'
More information about arguments can be found in Arguments Info section. The expected output can be found in Sample Output section.
In the example, several arguments can be passed to satisfy your requirements:
--repo-id-or-model-path
: str, argument defining the huggingface repo id for the phi-3 model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be'microsoft/Phi-3-mini-4k-instruct'
.--prompt
: str, argument defining the prompt to be inferred (with integrated prompt format for chat). It is default to beWhat is AI?
.--n-predict
: int, argument defining the max number of tokens to predict. It is default to be32
.
Inference time: xxxx s
-------------------- Prompt --------------------
<|user|>
What is AI?<|end|>
<|assistant|>
-------------------- Output --------------------
<s><|user|> What is AI?<|end|><|assistant|> AI, or Artificial Intelligence, refers to the simulation of human intelligence in machines that are programmed to think and learn like humans. The goal