Skip to content

Latest commit

 

History

History
297 lines (232 loc) · 10.7 KB

README.md

File metadata and controls

297 lines (232 loc) · 10.7 KB

TaBERT: Learning Contextual Representations for Natural Language Utterances and Structured Tables

This repository contains source code for the TaBERT model, a pre-trained language model for learning joint representations of natural language utterances and (semi-)structured tables for semantic parsing. TaBERT is pre-trained on a massive corpus of 26M Web tables and their associated natural language context, and could be used as a drop-in replacement of a semantic parsers original encoder to compute representations for utterances and table schemas (columns).

Installation

First, install the conda environment tabert with supporting libraries.

bash scripts/setup_env.sh

Once the conda environment is created, install TaBERT using the following command:

conda activate tabert
pip install --editable .

Integration with HuggingFace's pytorch-transformers Library is still WIP. While all the pre-trained models were developed based on the old version of the library pytorch-pretrained-bert, they are compatible with the the latest version transformers. The conda environment will install both versions of the transformers library, and TaBERT will use pytorch-pretrained-bert by default. You could uninstall the pytorch-pretrained-bert library if you prefer using TaBERT with the latest version of transformers.

Pre-trained Models

Pre-trained models could be downloaded from this Google Drive shared folder. Please uncompress the tarball files before usage.

Pre-trained models could be downloaded from command line as follows:

pip install gdown

# TaBERT_Base_(k=1)
gdown 'https://drive.google.com/uc?id=1-pdtksj9RzC4yEqdrJQaZu4-dIEXZbM9'

# TaBERT_Base_(K=3)
gdown 'https://drive.google.com/uc?id=1NPxbGhwJF1uU9EC18YFsEZYE-IQR7ZLj'

# TaBERT_Large_(k=1)
gdown 'https://drive.google.com/uc?id=1eLJFUWnrJRo6QpROYWKXlbSOjRDDZ3yZ'

# TaBERT_Large_(K=3)
gdown 'https://drive.google.com/uc?id=17NTNIqxqYexAzaH_TgEfK42-KmjIRC-g'

Using a Pre-trained Model

To load a pre-trained model from a checkpoint file:

from table_bert import TableBertModel

model = TableBertModel.from_pretrained(
    'path/to/pretrained/model/checkpoint.bin',
)

To produce representations of natural language text and and its associated table:

from table_bert import Table, Column

table = Table(
    id='List of countries by GDP (PPP)',
    header=[
        Column('Nation', 'text', sample_value='United States'),
        Column('Gross Domestic Product', 'real', sample_value='21,439,453')
    ],
    data=[
        ['United States', '21,439,453'],
        ['China', '27,308,857'],
        ['European Union', '22,774,165'],
    ]
).tokenize(model.tokenizer)

# To visualize table in an IPython notebook:
# display(table.to_data_frame(), detokenize=True)

context = 'show me countries ranked by GDP'

# model takes batched, tokenized inputs
context_encoding, column_encoding, info_dict = model.encode(
    contexts=[model.tokenizer.tokenize(context)],
    tables=[table]
)

For the returned tuple, context_encoding and column_encoding are PyTorch tensors representing utterances and table columns, respectively. info_dict contains useful meta information (e.g., context/table masks, the original input tensors to BERT) for downstream application.

context_encoding.shape
>>> torch.Size([1, 7, 768])

column_encoding.shape
>>> torch.Size([1, 2, 768])

Use Vanilla BERT To initialize a TaBERT model from the parameters of BERT:

from table_bert import TableBertModel

model = TableBertModel.from_pretrained('bert-base-uncased')

Example Applications

TaBERT could be used as a general-purpose representation learning layer for semantic parsing tasks over database tables. Example applications could be found under the examples folder.

Extract/Preprocess Table Corpora from CommonCrawl and Wikipedia

Prerequisite

The following libraries are used for data extraction:

  • jnius
  • info.bliki.wiki
  • wikitextparser
  • Beautiful Soup 4
  • Java Wikipedia code located at contrib/wiki_extractor
    • It compiles to a .jar file using maven, which is also included in the folder
  • jdk 12+

Installation

Fist, you need to install Java JDK. Then use the following command to install necessary Python libraries.

pip install -r preprocess/requirements.txt
python -m spacy download en_core_web_sm

Training Table Corpora Extraction

CommonCrawl WDC Web Table Corpus 2015

Details of the dataset could be found at here. We used the English relational tables split, which could be downloaded at here.

The script to preprocess the data is at scripts/preprocess_commoncrawl_tables.sh. The following command pre-processes a sample of the whole WDC dataset. To preprocess the whole dataset, simply replace the input_file with the root folder of the downloaded tar ball files.

mkdir -p data/datasets
wget http://data.dws.informatik.uni-mannheim.de/webtables/2015-07/sample.gz -P data/datasets
gzip -d < data/datasets/sample.gz > data/datasets/commoncrawl.sample.jsonl

python \
    -m preprocess.common_crawl \
    --worker_num 12 \
    --input_file data/datasets/commoncrawl.sample.jsonl \
    --output_file data/preprocessed_data/common_crawl.preprocessed.jsonl

Wikipedia Tables

The script to extract Wiki tables is at scripts/extract_wiki_tables.sh. It demonstrates extracting tables from a sampled Wikipedia dump. Again, you may need the full Wikipedida dump to perform data extraction.

Notes for Table Extraction

Extract Tables from Scraped HTML Pages Most code in preprocess.extract_wiki_data is for extracting surrounding natural language sentences around tables. If you are only interested in extracting tables (e.g., from scraped Wiki Web pages), you could just use the extract_table_from_html function. See the comments for more details.

Training Data Generation

This section documents how to generate training data for masked language modeling training from extracted and preprocessed tables.

The scripts to generate training data for our vanilla TaBERT(K=1) and vertical attention TaBERT(k=3) models are utils/generate_vanilla_tabert_training_data.py and utils/generate_vertical_tabert_training_data.py. They are heavily optimized for generating data in parallel in a distributed compute environment, but could still be used locally.

The following script assumes you have concatenated the .jsonl files obtained from running the data extraction scripts on Wikipedia and CommonCrawl corpora and saved to data/preprocessed_data/tables.jsonl

cd data/preprocessed_data
cat common_crawl.preprocessed.jsonl wiki_tables.jsonl > tables.jsonl

The following script generates training data for a vanilla TaBERT(K=1) model:

output_dir=data/train_data/vanilla_tabert
mkdir -p ${output_dir}

python -m utils.generate_vanilla_tabert_training_data \
    --output_dir ${output_dir} \
    --train_corpus data/preprocessed_data/tables.jsonl \
    --base_model_name bert-base-uncased \
    --do_lower_case \
    --epochs_to_generate 15 \
    --max_context_len 128 \
    --table_mask_strategy column \
    --context_sample_strategy concate_and_enumerate \
    --masked_column_prob 0.2 \
    --masked_context_prob 0.15 \
    --max_predictions_per_seq 200 \
    --cell_input_template 'column|type|value' \
    --column_delimiter "[SEP]"

The following script generates training data for a TaBERT(K=3) model with vertical self-attention:

output_dir=data/train_data/vertical_tabert
mkdir -p ${output_dir}

python -m utils.generate_vertical_tabert_training_data \
    --output_dir ${output_dir} \
    --train_corpus data/preprocessed_data/tables.jsonl \
    --base_model_name bert-base-uncased \
    --do_lower_case \
    --epochs_to_generate 15 \
    --max_context_len 128 \
    --table_mask_strategy column \
    --context_sample_strategy concate_and_enumerate \
    --masked_column_prob 0.2 \
    --masked_context_prob 0.15 \
    --max_predictions_per_seq 200 \
    --cell_input_template 'column|type|value' \
    --column_delimiter "[SEP]"

Parallel Data Generation The script has two additional arguments, --global_rank and --world_size. To generate training data in parallel using N processes, just fire up N processes with the same set of arguments and --world_size=N. The argument --global_rank is set to [1, 2, ..., N] for each process.

Model Training

Our models are trained on a cluster of 32GB Tesla V100 GPUs. The following script demonstrates training a vanilla TaBERT(k=1) model using a single GPU with gradient accumulation:

mkdir -p data/runs/vanilla_tabert

python train.py \
    --task vanilla \
    --data-dir data/train_data/vanilla_tabert \
    --output-dir data/runs/vanilla_tabert \
    --table-bert-extra-config '{}' \
    --train-batch-size 8 \
    --gradient-accumulation-steps 32 \
    --learning-rate 2e-5 \
    --max-epoch 10 \
    --adam-eps 1e-08 \
    --weight-decay 0.0 \
    --fp16 \
    --clip-norm 1.0 \
    --empty-cache-freq 128

The following script shows training a TaBERT(k=3) model with vertical self-attention:

mkdir -p data/runs/vertical_tabert

python train.py \
    --task vertical_attention \
    --data-dir data/train_data/vertical_tabert \
    --output-dir data/runs/vertical_tabert \
    --table-bert-extra-config '{"base_model_name": "bert-base-uncased", "num_vertical_attention_heads": 6, "num_vertical_layers": 3, "predict_cell_tokens": true}' \
    --train-batch-size 8 \
    --gradient-accumulation-steps 64 \
    --learning-rate 4e-5 \
    --max-epoch 10 \
    --adam-eps 1e-08 \
    --weight-decay 0.01 \
    --fp16 \
    --clip-norm 1.0 \
    --empty-cache-freq 128

Distributed training with multiple GPUs is similar to XLM.

Reference

If you plan to use TaBERT in your project, please consider citing our paper:

@inproceedings{yin20acl,
    title = {Ta{BERT}: Pretraining for Joint Understanding of Textual and Tabular Data},
    author = {Pengcheng Yin and Graham Neubig and Wen-tau Yih and Sebastian Riedel},
    booktitle = {Annual Conference of the Association for Computational Linguistics (ACL)},
    month = {July},
    year = {2020}
}

License

TaBERT is CC-BY-NC 4.0 licensed as of now.