|
8 | 8 | from sklearn.feature_extraction.text import CountVectorizer
|
9 | 9 | from sklearn.feature_extraction.text import TfidfVectorizer
|
10 | 10 | from sklearn.naive_bayes import GaussianNB
|
11 |
| -from sklearn.naive_bayes import MultinomialNB |
12 |
| -from sklearn.metrics import accuracy_score |
13 | 11 | from sklearn import svm
|
14 | 12 | csvFile=open('newfrequency300.csv', 'rt')
|
15 | 13 | csvReader=csv.reader(csvFile)
|
|
28 | 26 | x=vectorizer.fit_transform(corpus).toarray()
|
29 | 27 | result=np.append(x,y,axis=1)
|
30 | 28 | X=pandas.DataFrame(result)
|
31 |
| -#model=GaussianNB() |
32 |
| -model=MultinomialNB() |
| 29 | +model=GaussianNB() |
33 | 30 | train = X.sample(frac=0.8, random_state=1)
|
34 | 31 | test=X.drop(train.index)
|
35 | 32 | y_train=train[301]
|
36 | 33 | y_test=test[301]
|
37 |
| -print('Training model for Judging/Perception') |
38 | 34 | print(train.shape)
|
39 | 35 | print(test.shape)
|
40 | 36 | xtrain=train.drop(301,axis=1)
|
41 | 37 | xtest=test.drop(301,axis=1)
|
42 | 38 | model.fit(xtrain,y_train)
|
43 |
| -print(model) |
44 |
| -print('Accuracy : %f' % accuracy_score(y_true=xtrain[0][:66403],y_pred=xtest[0][:])) |
45 |
| -pickle.dump(model, open('BNPJFinal.txt', 'wb')) |
| 39 | +pickle.dump(model, open('BNPJFinal.sav', 'wb')) |
46 | 40 | del result
|
47 | 41 |
|
48 | 42 | y=[]
|
|
58 | 52 | x=vectorizer.fit_transform(corpus).toarray()
|
59 | 53 | result=np.append(x,y,axis=1)
|
60 | 54 | X=pandas.DataFrame(result)
|
61 |
| -#model=GaussianNB() |
62 |
| -model=MultinomialNB() |
| 55 | +model=GaussianNB() |
63 | 56 | train = X.sample(frac=0.8, random_state=1)
|
64 | 57 | test=X.drop(train.index)
|
65 | 58 | y_train=train[301]
|
66 | 59 | y_test=test[301]
|
67 |
| -print('Training model for Introversion/Extraversion') |
68 | 60 | print(train.shape)
|
69 | 61 | print(test.shape)
|
70 | 62 | xtrain=train.drop(301,axis=1)
|
71 | 63 | xtest=test.drop(301,axis=1)
|
72 | 64 | model.fit(xtrain,y_train)
|
73 |
| -print(model) |
74 |
| -print('Accuracy : %f' % accuracy_score(y_true=xtrain[0][:85570],y_pred=xtest[0][:])) |
75 |
| -pickle.dump(model, open('BNIEFinal.txt', 'wb')) |
| 65 | +pickle.dump(model, open('BNIEFinal.sav', 'wb')) |
76 | 66 | del result
|
77 | 67 |
|
78 | 68 | y=[]
|
|
88 | 78 | x=vectorizer.fit_transform(corpus).toarray()
|
89 | 79 | result=np.append(x,y,axis=1)
|
90 | 80 | X=pandas.DataFrame(result)
|
91 |
| -#model=GaussianNB() |
92 |
| -model=MultinomialNB() |
| 81 | +model=GaussianNB() |
93 | 82 | train = X.sample(frac=0.8, random_state=1)
|
94 | 83 | test=X.drop(train.index)
|
95 | 84 | y_train=train[301]
|
96 | 85 | y_test=test[301]
|
97 |
| -print('Training model for Thinking/Feeling') |
98 | 86 | print(train.shape)
|
99 | 87 | print(test.shape)
|
100 | 88 | xtrain=train.drop(301,axis=1)
|
101 | 89 | xtest=test.drop(301,axis=1)
|
102 | 90 | model.fit(xtrain,y_train)
|
103 |
| -print(model) |
104 |
| -print('Accuracy : %f' % accuracy_score(y_true=xtrain[0][:64000],y_pred=xtest[0][:])) |
105 |
| -pickle.dump(model, open('BNTFFinal.txt', 'wb')) |
| 91 | +pickle.dump(model, open('BNTFFinal.sav', 'wb')) |
106 | 92 | del result
|
107 | 93 |
|
108 | 94 | y=[]
|
|
118 | 104 | x=vectorizer.fit_transform(corpus).toarray()
|
119 | 105 | result=np.append(x,y,axis=1)
|
120 | 106 | X=pandas.DataFrame(result)
|
121 |
| -#model=GaussianNB() |
122 |
| -model=MultinomialNB() |
| 107 | +model=GaussianNB() |
123 | 108 | train = X.sample(frac=0.8, random_state=1)
|
124 | 109 | test=X.drop(train.index)
|
125 | 110 | y_train=train[301]
|
126 | 111 | y_test=test[301]
|
127 |
| -print('Training model for Sensing/iNtuition') |
128 | 112 | print(train.shape)
|
129 | 113 | print(test.shape)
|
130 | 114 | xtrain=train.drop(301,axis=1)
|
131 | 115 | xtest=test.drop(301,axis=1)
|
132 | 116 | model.fit(xtrain,y_train)
|
133 |
| -print(model) |
134 |
| -print('Accuracy : %f' % accuracy_score(y_true=xtrain[0][:47135],y_pred=xtest[0][:])) |
135 |
| -pickle.dump(model, open('BNSNFinal.txt', 'wb')) |
| 117 | +pickle.dump(model, open('BNSNFinal.sav', 'wb')) |
0 commit comments