-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathserver.R
527 lines (403 loc) · 19.4 KB
/
server.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
library(shiny)
library(datasets)
library(readxl)
library(ggmap)
library(ggplot2)
library(dplyr)
library(stringr)
memory.limit(30000)
df = read.csv("demographic-research.40-40/county_migration_data.csv")
crosswalk = read.csv("demographic-research.40-40/ssa_fips_state_county2017.csv")
crosswalk$county = tolower(crosswalk$county)
state_wlk = read.csv("demographic-research.40-40/states.csv")
df2 = merge(df, crosswalk, by.x = "origin", by.y = "fipscounty", all.x = TRUE)
df2$ssacounty = NULL
df2$cbsa = NULL
df2$cbsaname = NULL
df2$ssastate = NULL
colnames(df2)[which(colnames(df2)=="county")] = "origin_cty"
colnames(df2)[which(colnames(df2)=="state")] = "origin_state"
df3 = merge(df2, crosswalk, by.x = "destination", by.y = "fipscounty", all.x = TRUE)
# Removing variables for memory
rm(df2)
rm(df)
rm(crosswalk)
df3$ssacounty = NULL
df3$cbsa = NULL
df3$cbsaname = NULL
df3$ssastate = NULL
colnames(df3)[which(colnames(df3)=="county")] = "dest_cty"
colnames(df3)[which(colnames(df3)=="state")] = "dest_state"
df3$orig_state = tolower(state_wlk$State[match(df3$origin_state, state_wlk$Abbreviation)])
df3$destin_state = tolower(state_wlk$State[match(df3$dest_state, state_wlk$Abbreviation)])
counties <- map_data("county")
states <- map_data("state")
df32 = df3
colnames(df32)[which(colnames(df32) == "origin_cty")] = "subregion"
colnames(df32)[which(colnames(df32) == "orig_state")] = "region"
df_dest2 = inner_join(df32, counties, by = c("subregion" = "subregion", "region" = "region"))
rm(df32)
df_origs = df3
colnames(df_origs)[which(colnames(df_origs) == "dest_cty")] = "subregion"
colnames(df_origs)[which(colnames(df_origs) == "destin_state")] = "region"
df_origs2 = inner_join(df_origs, counties, by = c("subregion" = "subregion", "region" = "region"))
rm(df_origs)
df_dest2$cty_int = df_dest2$dest_cty
df_origs2$cty_int = df_origs2$origin_cty
df_dest2$state_int = df_dest2$destin_state
df_origs2$state_int = df_origs2$orig_state
# Net Inflows
outs = df3[match(paste(df3$destination, df3$origin), paste(df3$origin, df3$destination)),]
outs[is.na(outs)] = 0
df_outs = df3
df_outs[,3:23] = 10^(log10(df_outs[,3:23]) - log10(outs[,3:23]))
colnames(df_outs)[which(colnames(df_outs) == "origin_cty")] = "subregion"
colnames(df_outs)[which(colnames(df_outs) == "orig_state")] = "region"
df_outs2 = inner_join(df_outs, counties, by = c("subregion" = "subregion", "region" = "region"))
rm(df_outs)
rm(outs)
df_outs2$cty_int = df_outs2$dest_cty
df_outs2$state_int = df_outs2$destin_state
ditch_the_axes <- theme(
axis.text = element_blank(),
axis.line = element_blank(),
axis.ticks = element_blank(),
panel.border = element_blank(),
panel.grid = element_blank(),
axis.title = element_blank()
)
df_dest2 = df_dest2[!duplicated(df_dest2[c("region","state_int","subregion","cty_int","long","lat","group","order")]),]
df_origs2 = df_origs2[!duplicated(df_origs2[c("region","state_int","subregion","cty_int","long","lat","group","order")]),]
df_outs2 = df_outs2[!duplicated(df_outs2[c("region","state_int","subregion","cty_int","long","lat","group","order")]),]
##########
# States #
##########
df_origs_state = df3 %>%
group_by(orig_state, destin_state) %>%
summarize(X1990 = sum(X1990), X1991 = sum(X1991),
X1992 = sum(X1992), X1993 = sum(X1993),
X1994 = sum(X1994), X1995 = sum(X1995),
X1996 = sum(X1996), X1997 = sum(X1997),
X1998 = sum(X1998), X1999 = sum(X1999),
X2000 = sum(X2000), X2001 = sum(X2001),
X2002 = sum(X2002), X2003 = sum(X2003),
X2004 = sum(X2004), X2005 = sum(X2005),
X2006 = sum(X2006), X2007 = sum(X2007),
X2008 = sum(X2008), X2009 = sum(X2009),
X2010 = sum(X2010))
df_origs_state = as.data.frame(df_origs_state)
df_os = df_origs_state
colnames(df_os)[which(colnames(df_os) == "orig_state")] = "region"
df_dest_os = inner_join(df_os, states, by = "region")
df_dest_os$state_int = df_dest_os$destin_state
rm(df_os)
df_os_2 = df_origs_state
colnames(df_os_2)[which(colnames(df_os_2) == "destin_state")] = "region"
df_origs_os = inner_join(df_os_2, states, by = "region")
df_origs_os$state_int = df_origs_os$orig_state
rm(df_os_2)
# Net Inflows
outs = df_origs_state[match(paste(df_origs_state$orig_state, df_origs_state$destin_state),
paste(df_origs_state$destin_state, df_origs_state$orig_state)),]
df_outs_st = df_origs_state
df_outs_st[,3:23] = 10^(-log10(df_outs_st[,3:23]) + log10(outs[,3:23]))
colnames(df_outs_st)[which(colnames(df_outs_st) == "destin_state")] = "region"
df_outs_st2 = inner_join(df_outs_st, states, by = "region")
df_outs_st2$state_int = df_outs_st2$orig_state
rm(df_origs_state)
rm(df_outs_st)
df_dest_os = df_dest_os[!duplicated(df_dest_os[c("region","state_int","long","lat","group","order")]),]
df_origs_os = df_origs_os[!duplicated(df_origs_os[c("region","state_int","long","lat","group","order")]),]
df_outs_st2 = df_outs_st2[!duplicated(df_outs_st2[c("region","state_int","long","lat","group","order")]),]
##########
# Region #
##########
df3$orig_region = state.division[match(df3$origin_state, state.abb)]
df3$destin_region = state.division[match(df3$dest_state, state.abb)]
df_origs_reg = df3 %>%
group_by(orig_state, destin_state) %>%
summarize(X1990 = sum(X1990), X1991 = sum(X1991),
X1992 = sum(X1992), X1993 = sum(X1993),
X1994 = sum(X1994), X1995 = sum(X1995),
X1996 = sum(X1996), X1997 = sum(X1997),
X1998 = sum(X1998), X1999 = sum(X1999),
X2000 = sum(X2000), X2001 = sum(X2001),
X2002 = sum(X2002), X2003 = sum(X2003),
X2004 = sum(X2004), X2005 = sum(X2005),
X2006 = sum(X2006), X2007 = sum(X2007),
X2008 = sum(X2008), X2009 = sum(X2009),
X2010 = sum(X2010),
orig_region = orig_region[1], destin_region = destin_region[1])
df_origs_match = df3 %>%
group_by(orig_region, destin_region) %>%
summarize(X1990 = sum(X1990, na.rm=T), X1991 = sum(X1991, na.rm=T),
X1992 = sum(X1992, na.rm=T), X1993 = sum(X1993, na.rm=T),
X1994 = sum(X1994, na.rm=T), X1995 = sum(X1995, na.rm=T),
X1996 = sum(X1996, na.rm=T), X1997 = sum(X1997, na.rm=T),
X1998 = sum(X1998, na.rm=T), X1999 = sum(X1999, na.rm=T),
X2000 = sum(X2000, na.rm=T), X2001 = sum(X2001, na.rm=T),
X2002 = sum(X2002, na.rm=T), X2003 = sum(X2003, na.rm=T),
X2004 = sum(X2004, na.rm=T), X2005 = sum(X2005, na.rm=T),
X2006 = sum(X2006, na.rm=T), X2007 = sum(X2007, na.rm=T),
X2008 = sum(X2008, na.rm=T), X2009 = sum(X2009, na.rm=T),
X2010 = sum(X2010, na.rm=T))
# Removing more
rm(df3)
df_origs_reg = as.data.frame(df_origs_reg)
df_origs_match = as.data.frame(df_origs_match)
df_origs_reg[,3:23] = df_origs_match[match(paste(df_origs_reg$orig_region,
df_origs_reg$destin_region),
paste(df_origs_match$orig_region,
df_origs_match$destin_region)),3:23]
rm(df_origs_match)
df_or = df_origs_reg
colnames(df_or)[which(colnames(df_or) == "orig_state")] = "region"
df_dest_or = full_join(df_or, states, by = "region")
rm(df_or)
df_dest_or$state_int = df_dest_or$destin_region
df_dest_or$state_not = df_dest_or$orig_region
df_or_2 = df_origs_reg
colnames(df_or_2)[which(colnames(df_or_2) == "destin_state")] = "region"
df_origs_or = inner_join(df_or_2, states, by = "region")
rm(df_or_2)
df_origs_or$state_int = df_origs_or$orig_region
df_origs_or$state_not = df_origs_or$destin_region
# Net Inflows
outr = df_origs_reg[match(paste(df_origs_reg$orig_state, df_origs_reg$destin_state),
paste(df_origs_reg$destin_state, df_origs_reg$orig_state)),]
df_outr_st = df_origs_reg
df_outr_st[,3:23] = 10^(-log10(df_outr_st[,3:23]) + log10(outr[,3:23]))
rm(outr)
rm(df_origs_reg)
colnames(df_outr_st)[which(colnames(df_outr_st) == "destin_state")] = "region"
df_outr_st2 = inner_join(df_outr_st, states, by = "region")
rm(df_outr_st)
df_outr_st2$state_int = df_outr_st2$orig_region
df_outr_st2$state_not = df_outr_st2$destin_region
df_outr_st2$subregion = NULL
df_dest_or = df_dest_or[!duplicated(df_dest_or[c("region","state_int","state_not","long","lat","group","order")]),]
df_origs_or = df_origs_or[!duplicated(df_origs_or[c("region","state_int","state_not","long","lat","group","order")]),]
df_outr_st2 = df_outr_st2[!duplicated(df_outr_st2[c("region","state_int","state_not","long","lat","group","order")]),]
# Define server logic required to plot various variables against mpg
shinyServer(function(input, output, session) {
values <- reactiveValues(df_data = subset(df_origs2, cty_int == "autauga" & state_int == "alabama"),
flowing = "Outflow", exclusion = TRUE)
# State
values2 <- reactiveValues(df_data = subset(df_origs_os, state_int == "alabama"),
flowing = "Outflow", exclusion = TRUE)
# Region
values3 <- reactiveValues(df_data = subset(df_origs_or, state_int == "East South Central"),
flowing = "Outflow", exclusion = TRUE)
observeEvent(input$county, {
cat(input$county)
cat(input$state)
if(values$flowing == "Inflow"){values$df_data <- subset(df_dest2, cty_int == input$county & state_int == input$state)}
else if(values$flowing == "Outflow"){values$df_data <- subset(df_origs2, cty_int == input$county & state_int == input$state)}
else{values$df_data <- subset(df_outs2, cty_int == input$county & state_int == input$state)}
if(values$exclusion){values$df_data <- subset(values$df_data, subregion != input$county | region != input$state)}
})
# State
observeEvent(input$state2, {
cat("Bye")
if(values2$flowing == "Inflow"){values2$df_data <- subset(df_dest_os, state_int == input$state2)}
else if(values2$flowing == "Outflow"){values2$df_data <- subset(df_origs_os, state_int == input$state2)}
else{values2$df_data <- subset(df_outs_st2, state_int == input$state2)}
if(values2$exclusion){values2$df_data <- subset(values2$df_data, region != input$state2)}
})
# Region
observeEvent(input$region, {
cat("Hello")
if(values3$flowing == "Inflow"){values3$df_data <- subset(df_dest_or, state_int == input$region)}
else if(values3$flowing == "Outflow"){values3$df_data <- subset(df_origs_or, state_int == input$region)}
else{values3$df_data <- subset(df_outr_st2, state_int == input$region)}
if(values3$exclusion){values3$df_data <- subset(values3$df_data, state_not != input$region)}
})
observeEvent(input$flow, {
values$flowing <- input$flow
if(values$flowing == "Inflow"){values$df_data <- subset(df_dest2, cty_int == input$county & state_int == input$state)}
else if(values$flowing == "Outflow"){values$df_data <- subset(df_origs2, cty_int == input$county & state_int == input$state)}
else{values$df_data <- subset(df_outs2, cty_int == input$county & state_int == input$state)}
if(values$exclusion){values$df_data <- subset(values$df_data, subregion != input$county | region != input$state)}
})
# State
observeEvent(input$flow2, {
cat("Or")
values2$flowing <- input$flow2
if(values2$flowing == "Inflow"){values2$df_data <- subset(df_dest_os, state_int == input$state2)}
else if(values2$flowing == "Outflow"){values2$df_data <- subset(df_origs_os, state_int == input$state2)}
else{values2$df_data <- subset(df_outs_st2, state_int == input$state2)}
if(values2$exclusion){values2$df_data <- subset(values2$df_data, region != input$state2)}
})
# Region
observeEvent(input$flow3, {
cat("See?")
values3$flowing <- input$flow3
if(values3$flowing == "Inflow"){values3$df_data <- subset(df_dest_or, state_int == input$region)}
else if(values3$flowing == "Outflow"){values3$df_data <- subset(df_origs_or, state_int == input$region)}
else{values3$df_data <- subset(df_outr_st2, state_int == input$region)}
if(values3$exclusion){values3$df_data <- subset(values3$df_data, state_not != input$region)}
})
observeEvent(input$exclude, {
values$exclusion <- input$exclude
if(values$exclusion){values$df_data <- subset(values$df_data, subregion != input$county | region != input$state)}
else{
if(values$flowing == "Inflow"){values$df_data <- subset(df_dest2, cty_int == input$county & state_int == input$state)}
else if(values$flowing == "Outflow"){values$df_data <- subset(df_origs2, cty_int == input$county & state_int == input$state)}
else{values$df_data <- subset(df_outs2, cty_int == input$county & state_int == input$state)}
}
})
# State
observeEvent(input$exclude2, {
values2$exclusion <- input$exclude2
if(values2$exclusion){values2$df_data <- subset(values2$df_data, region != input$state2)}
else{
if(values2$flowing == "Inflow"){values2$df_data <- subset(df_dest_os, state_int == input$state2)}
else if(values2$flowing == "Outflow"){values2$df_data <- subset(df_origs_os, state_int == input$state2)}
else{values2$df_data <- subset(df_outs_st2, state_int == input$state2)}
}
})
# Region
observeEvent(input$exclude3, {
values3$exclusion <- input$exclude3
if(values3$exclusion){values3$df_data <- subset(values3$df_data, state_not != input$region)}
else{
if(values3$flowing == "Inflow"){values3$df_data <- subset(df_dest_or, state_int == input$region)}
else if(values3$flowing == "Outflow"){values3$df_data <- subset(df_origs_or, state_int == input$region)}
else{values3$df_data <- subset(df_outr_st2, state_int == input$region)}
}
})
# Compute the forumla text in a reactive expression since it is
# shared by the output$caption and output$mpgPlot expressions
formulaText <- reactive({
paste0("Migrant ", input$flow, ": ", str_to_title(input$county), " (", input$year, ")")
})
# Return the formula text for printing as a caption
output$caption <- renderText({
formulaText()
})
# States
formulaText2 <- reactive({
paste0("Migrant ", input$flow2, ": ", str_to_title(input$state2), " (", input$year2, ")")
})
# Return the formula text for printing as a caption
output$caption2 <- renderText({
formulaText2()
})
# Region
formulaText3 <- reactive({
paste0("Migrant ", input$flow3, ": ", str_to_title(input$region), " (", input$year3, ")")
})
# Return the formula text for printing as a caption
output$caption3 <- renderText({
formulaText3()
})
# Generate a plot of the requested variable against mpg and only
# include outliers if requested
#if(input$flow == "Net Inflow"){
output$map <- renderPlot({
ggplot(data = counties, mapping = aes(x = long, y = lat, group = group)) +
coord_fixed(1.3) +
geom_polygon(color = "black", fill = "gray") +
geom_polygon(data = values$df_data,
aes(fill = values$df_data[,which(colnames(values$df_data) == paste0("X", as.character(input$year)))])) +
geom_polygon(color = "black", fill = NA) +
theme_bw() +
ditch_the_axes +
scale_fill_gradientn(colours = rev(rainbow(7)), trans="log10") +
labs(fill="Number of Migrants")
})
#}
# State
output$map2 <- renderPlot({
ggplot(data = states, mapping = aes(x = long, y = lat, group = group)) +
coord_fixed(1.3) +
geom_polygon(color = "black", fill = "gray") +
geom_polygon(data = values2$df_data,
aes(fill = values2$df_data[,which(colnames(values2$df_data) == paste0("X", as.character(input$year2)))])) +
geom_polygon(color = "black", fill = NA) +
theme_bw() +
ditch_the_axes +
scale_fill_gradientn(colours = rev(rainbow(7)), trans="log10") +
labs(fill="Number of Migrants")
})
# State
output$map3 <- renderPlot({
ggplot(data = states, mapping = aes(x = long, y = lat, group = group)) +
coord_fixed(1.3) +
geom_polygon(color = "black", fill = "gray") +
geom_polygon(data = values3$df_data,
aes(fill = values3$df_data[,which(colnames(values3$df_data) == paste0("X", as.character(input$year3)))])) +
geom_polygon(color = "black", fill = NA) +
theme_bw() +
ditch_the_axes +
scale_fill_gradientn(colours = rev(rainbow(7)), trans="log10") +
labs(fill="Number of Migrants")
})
# Reactive expression to compose a data frame containing all of the values
sliderValues <- reactive({
# Compose data frame
data.frame(
Name = c("Integer"),
Value = as.character(c(input$year)),
stringsAsFactors=FALSE)
})
# States
# Reactive expression to compose a data frame containing all of the values
sliderValues2 <- reactive({
# Compose data frame
data.frame(
Name = c("Integer"),
Value = as.character(c(input$year2)),
stringsAsFactors=FALSE)
})
# Region
# Reactive expression to compose a data frame containing all of the values
sliderValues3 <- reactive({
# Compose data frame
data.frame(
Name = c("Integer"),
Value = as.character(c(input$year3)),
stringsAsFactors=FALSE)
})
# Show the values using an HTML table
output$values <- renderTable({
sliderValues()
})
# States
# Show the values using an HTML table
output$values2 <- renderTable({
sliderValues2()
})
# Region
# Show the values using an HTML table
output$values3 <- renderTable({
sliderValues3()
})
observe({
x <- input$state
# Can use character(0) to remove all choices
if (is.null(x))
x <- character(0)
# Can also set the label and select items
updateSelectInput(session, "county",
choices = setNames(list(unique(subset(counties, region == input$state)$subregion)),
"Counties"),
selected = unique(subset(counties, region == input$state)$subregion)[1]
)
})
# Help
# Return the formula text for printing as a caption
output$caption4 <- renderUI({
str1 <- "Checking \"Exclude County of Interest\" or the corresponding mark for
State and Region will gray out the selected area for which
inflows, outflows, or net inflows are desired.<br/>"
str2 <- "Note that the values for Net Inflow are log base-10 of (inflows/outflows))
while for Outflow and Inflow, it's the total number of migrations<br/>"
str3 <- "Lastly, dark grey means that there were no flows in the specified year but there were
flows in other years. Light grey means there were no flows between 1990 and 2010 between
the specified areas in the given direction.<br/>"
str4 <- "Cite: I used Matthew Hauer and James Byar's 2019 paper, \"IRS county-to-county migration data, 1990-2010\"
for the migration data, which they originally obtained from the IRS dataset."
HTML(paste(str1, str2, str3, str4, sep = '<br/>'))
})
})