-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve.go
311 lines (251 loc) · 6.08 KB
/
solve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
package main
import (
"fmt"
"os"
"slices"
"math"
)
// function to return all the indexes of an element in a slice
func FindElementIndexesInSlice(slice []int, element int) []int {
Indexes := []int{}
for i, e := range slice {
if e == element {
Indexes = append(Indexes, i)
}
}
return Indexes
}
// Returns unique items in a slice
func Unique(slice []int) []int {
// create a map with all the values as key
uniqMap := make(map[int]struct{})
for _, v := range slice {
if v != 0 {
uniqMap[v] = struct{}{}
}
}
// turn the map keys into a slice
uniqSlice := make([]int, 0, len(uniqMap))
for v := range uniqMap {
uniqSlice = append(uniqSlice, v)
}
return uniqSlice
}
// get the list of possible numbers for an empty cell
func (s Sudoku) GetOptions(x int, y int) []int {
row := s.GetRow(y)
col := s.GetColumn(x)
sqa := s.GetSquare(x, y)
return Unique(slices.Concat(nil, row, col, sqa))
}
// solve a cell by getting the unique set of numbers across row col square
func (s Sudoku) SolveUnique(x int, y int) {
options := s.GetOptions(x, y)
// if only 1 cell left to complete
if len(options) == 8 {
for n := 1; n <= 9; n++ {
found := false
for _, m := range options {
if m == n {
found = true
}
}
if !found {
s.SetCell(x, y, n)
break
}
}
}
}
// complete a row by checking all other positions are blocked
func (s Sudoku) SolveRowByBlocked(y int) {
row := s.GetRow(y)
// get other possible positions in row
availableRowPositions := FindElementIndexesInSlice(row, 0)
choices := []int{}
for i := 1; i <= 9; i++ {
if !slices.Contains(Unique(row), i) {
choices = append(choices, i)
}
}
for _, choice := range choices {
unblockedPositions := []int{}
positionsBlocked := 0
for _, xPosition := range availableRowPositions {
positionBlocked := false
options := s.GetOptions(xPosition, y)
if slices.Contains(options, choice) {
positionBlocked = true
}
if positionBlocked {
positionsBlocked++
} else {
unblockedPositions = append(unblockedPositions, xPosition)
}
}
if len(unblockedPositions) == 1 {
s.SetCell(unblockedPositions[0], y, choice)
break
}
}
}
// complete a column by checking all other positions are blocked
func (s Sudoku) SolveColumnByBlocked(x int) {
col := s.GetColumn(x)
// get other possible positions in column
availableRowPositions := FindElementIndexesInSlice(col, 0)
unblockedPositions := []int{}
choices := []int{}
for i := 1; i <= 9; i++ {
if !slices.Contains(Unique(col), i) {
choices = append(choices, i)
}
}
for _, choice := range choices {
positionsBlocked := 0
for _, yPosition := range availableRowPositions {
positionBlocked := false
options := s.GetOptions(x, yPosition)
if slices.Contains(options, choice) {
positionBlocked = true
}
if positionBlocked {
positionsBlocked++
} else {
unblockedPositions = append(unblockedPositions, yPosition)
}
}
if len(unblockedPositions) == 1 {
s.SetCell(x, unblockedPositions[0], choice)
break
}
}
}
// complete a square by checking all other positions are blocked
func (s Sudoku) SolveSquareByBlocked(x int, y int) {
row := s.GetSquare(x, y)
availableSquarePositions := [][]int{}
// get other possible positions in square
for ey, row := range [][]int{
s.GetSquare(x, y)[0:3],
s.GetSquare(x, y)[3:6],
s.GetSquare(x, y)[6:9],
} {
for ex, e := range row {
// retrieve cell x, y position
cx := (3 * int(math.Floor(float64(x)/3))) + ex
cy := (3 * int(math.Floor(float64(y)/3))) + ey
if e == 0 {
availableSquarePositions = append(availableSquarePositions, []int{cx , cy})
}
}
}
choices := []int{}
for i := 1; i <= 9; i++ {
if !slices.Contains(Unique(row), i) {
choices = append(choices, i)
}
}
for _, choice := range choices {
unblockedPositions := [][]int{}
positionsBlocked := 0
for _, position := range availableSquarePositions {
positionBlocked := false
options := s.GetOptions(position[0], position[1])
if slices.Contains(options, choice) {
positionBlocked = true
}
if positionBlocked {
positionsBlocked++
} else {
unblockedPositions = append(unblockedPositions, []int{position[0], position[1]})
}
}
if len(unblockedPositions) == 1 {
s.SetCell(unblockedPositions[0][0], unblockedPositions[0][1], choice)
break
}
}
}
// returns true if a slice contains duplicate elements
func duplicateDetect(slice []int) bool {
elements := []int{}
for _, e := range slice {
if e == 0 {
continue
}
if slices.Contains(elements, e) {
fmt.Println(e)
return true
} else {
elements = append(elements, e)
}
}
return false
}
// check every box, row, col contains no duplicate numbers
func (s Sudoku) Validate() {
for x := 0; x < 9; x++ {
if duplicateDetect(s.GetColumn(x)) {
PrintSudoku(s)
fmt.Println("duplicate detected in column", x)
os.Exit(0)
}
}
for y := 0; y < 9; y++ {
if duplicateDetect(s.GetRow(y)) {
PrintSudoku(s)
fmt.Println("duplicate detected in row", y)
os.Exit(0)
}
}
for x := 0; x < 9; x += 3 {
for y := 0; y < 9; y += 3 {
if duplicateDetect(s.GetSquare(x, y)) {
PrintSudoku(s)
fmt.Println("duplicate detected in row", y)
os.Exit(0)
}
}
}
}
// main solve function
func (s Sudoku) Solve() {
cBefore := s.GetCompleted()
// loop through all cells in the 9x9 grid
for y := 0; y < 9; y++ {
// if row complete skip
if len(Unique(s.GetRow(y))) == 9 {
continue
}
s.SolveRowByBlocked(y)
}
// loop through all cells in the 9x9 grid
for y := 0; y < 9; y++ {
for x := 0; x < 9; x++ {
// if cell populated skip
if s.GetCell(x, y) != 0 {
continue
}
s.SolveUnique(x, y)
// PrintSudoku(s)
s.SolveSquareByBlocked(x, y)
}
}
for x := 0; x < 9; x++ {
// if col complete skip
if len(Unique(s.GetColumn(x))) == 9 {
continue
}
s.SolveColumnByBlocked(x)
}
s.Validate()
cAfter := s.GetCompleted()
fmt.Printf("Cells completed (%d/81)\n", cAfter)
// if we completed more numbers recur
if cBefore != cAfter {
s.Solve()
} else {
fmt.Println(s.GetName(), float32(cAfter)/float32(81)*100, "% Completed")
}
}