-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
42 lines (35 loc) · 955 Bytes
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from dcn.modules.deform_conv import DeformConv , DeformConvPack , DeformConv_d , DeformConvPack_d
import torch
import torch.nn as nn
import numpy as np
import matplotlib
import torchvision
import D3D
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.deconv1 = DeformConvPack(
in_channels=16,
out_channels=16,
kernel_size=3,
stride=1,
padding=1,
)
self.deconv2 = DeformConvPack_d(
in_channels=16,
out_channels=16,
kernel_size=3,
stride=1,
padding=1,
dimension='HW'
)
def forward(self , x):
x = self.deconv1(x)
X = self.deconv2(x)
return x
if __name__ == '__main__':
print(D3D.deform_conv_forward)
input = torch.randn(1 , 16 , 4 , 128 , 128).cuda()
net = Net().cuda()
out = net(input)
print(out.shape)