-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrezghi_mnist_dense.py
126 lines (98 loc) · 4.64 KB
/
rezghi_mnist_dense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os, spyker, torch, numpy
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from torch.utils.data import TensorDataset, DataLoader
from tqdm import tqdm
def dataset(root, device, batch):
device = torch.device(device.kind)
trainx, trainy, testx, testy = spyker.read_mnist(
root+'/train-images-idx3-ubyte', root+'/train-labels-idx1-ubyte',
root+ '/t10k-images-idx3-ubyte', root+ '/t10k-labels-idx1-ubyte')
trainx, trainy, testx, testy = spyker.to_torch(trainx, trainy, testx, testy)
trainx = trainx.div(255).to(torch.float32).to(device)
testx = testx.div(255).to(torch.float32).to(device)
train = DataLoader(TensorDataset(trainx, trainy), batch_size=batch)
test = DataLoader(TensorDataset(testx, testy), batch_size=batch)
return train, test
def update(config, mult, limit):
ratio = config.negative / config.positive
config.positive = min(config.positive * mult, limit)
config.negative = config.positive * ratio
def total(network, transform, dataset):
total_data, total_target = [], []
for data, target in dataset:
data = network(transform(data))
total_data.append(data.cpu())
total_target.append(target)
return torch.cat(total_data), torch.cat(total_target)
class Transform:
def __init__(self, device):
std = [0.471404521, 1.099943882, 2.042752923]
self.filters = spyker.LoG(3, std, pad=3, device=device)
def __call__(self, array):
return spyker.code(spyker.threshold(self.filters(array), .01), 15)
class Network:
def __init__(self, device):
self.count1, self.count2, self.thresh1, self.thresh2 = 0, 0, 16, 5
self.conv1 = spyker.Conv(6, 100, 5, pad=2, mean=.5, std=.02, device=device)
self.conv2 = spyker.Conv(100, 200, 3, pad=1, mean=.5, std=.02, device=device)
self.conv1.stdpconfig = [spyker.STDPConfig(.0004, -.0003)]
self.conv2.stdpconfig = [spyker.STDPConfig(.0004, -.0003)]
self.wta1 = lambda x: spyker.convwta(x, 3, 5)
self.wta2 = lambda x: spyker.convwta(x, 1, 8)
def train1(self, array):
output = spyker.inhibit(spyker.threshold(self.conv1(array), self.thresh1))
self.conv1.stdp(array, self.wta1(output), spyker.fire(output))
self.count1 += array.size(0)
if self.count1 > 2000:
self.count1 -= 2000
update(self.conv1.stdpconfig[0], 1.5, 1.5)
def train2(self, array):
array = spyker.pool(spyker.fire(self.conv1(array), self.thresh1), 2)
output = spyker.inhibit(spyker.threshold(self.conv2(array), self.thresh2))
self.conv2.stdp(array, self.wta2(output), spyker.fire(output))
self.count2 += array.size(0)
if self.count2 > 2000:
self.count2 -= 2000
update(self.conv2.stdpconfig[0], 1.5, 1.5)
def __call__(self, array):
array = spyker.pool(spyker.fire(self.conv1(array), self.thresh1), 2)
array = spyker.pool(spyker.fire(self.conv2(array), self.thresh2), 3)
return (15 - spyker.gather(array)).flatten(1)
def save(self, path):
kernel1 = spyker.to_numpy(self.conv1.kernel)
kernel2 = spyker.to_numpy(self.conv2.kernel)
numpy.savez(path, conv1_kernel=kernel1, conv2_kernel=kernel2)
def load(self, path):
data = numpy.load(path)
spyker.to_tensor(data['conv1_kernel']).to(self.conv1.kernel)
spyker.to_tensor(data['conv2_kernel']).to(self.conv2.kernel)
if __name__ == '__main__':
batch_size = 64
data_root = './MNIST/'
model_path = 'rezghi_mnist_dense.npz'
device = spyker.device('cuda' if spyker.cuda_available() else 'cpu')
network = Network(device)
transform = Transform(device)
trainset, testset = dataset(data_root, device, batch_size)
if not os.path.isfile(model_path):
print(f'Training first layer')
for data, target in tqdm(trainset):
network.train1(transform(data))
print(f'Training second layer')
for data, target in tqdm(trainset):
network.train2(transform(data))
print(f'Saving model to: {model_path}')
network.save(model_path)
print(f'Loading model from: {model_path}')
network.load(model_path)
print('Computing network outputs')
trainx, trainy = total(network, transform, trainset)
testx, testy = total(network, transform, testset)
print('Running PCA reduction')
pca = PCA(n_components=200).fit(trainx, trainy)
trainx, testx = pca.transform(trainx), pca.transform(testx)
print('Running SVM classification')
acc = SVC(C=2.4).fit(trainx, trainy).predict(testx)
acc = (torch.tensor(acc) == testy).sum() / len(testy)
print(f'Accuracy: {acc*100}')