-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
65 lines (56 loc) · 1.91 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from torch import nn
import torch
class Model(nn.Module):
def __init__(self):
super(Model, self).__init__()
self.flatten = nn.Flatten()
self.lin1 = nn.Linear(28*28, 1024)
self.leakyrelu = nn.LeakyReLU(0.05)
self.drop = nn.Dropout(0.1)
self.batchnorm = nn.BatchNorm1d(1024)
self.lin2 = nn.Linear(1024, 1024)
def forward(self, x):
x = self.flatten(x)
x = self.lin1(x)
x = self.leakyrelu(x)
x = self.drop(x)
x = self.lin2(x)
x = self.leakyrelu(x)
x = self.drop(x)
x = self.lin2(x)
x = self.batchnorm(x)
x = self.leakyrelu(x)
return x
def train(dataloader, model, loss_fn, optimizer, device):
size = len(dataloader.dataset)
model.train()
losses = []
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
if batch % 512 == 0:
loss, current = loss.item(), (batch + 1) * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
losses.append(loss)
return losses
def test(dataloader, model, loss_fn, device):
size = len(dataloader.dataset)
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
X, y = X.to(device), y.to(device)
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
return test_loss