-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvggnet.py
82 lines (79 loc) · 3.15 KB
/
vggnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# -*- coding: utf-8 -*-
"""
Created on Thu Aug 9 20:29:02 2018
@author: servo97
"""
from keras.models import Sequential
from keras.layers.normalization import BatchNormalization
from keras.layers.convolutional import Conv2D
from keras.layers.convolutional import MaxPooling2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dropout
from keras.layers.core import Dense
from keras import backend as K
class SmallerVGGNet:
@staticmethod
def build(width,height,depth,classes):
model = Sequential()
#initialize model with "channels_last" and channel dimension itself
inputShape = (height,width,depth)
chanDim = -1
#if we are using channels_first", update input shape
if K.image_data_format() == "channels_first":
inputShape = (depth,height,width)
chanDim = 1
#1st CONV=>RELU=>POOL block
model.add(Conv2D(64,(3,3),padding = "same",
input_shape= inputShape))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size = (3,3)))
model.add(Dropout(0.15))
#2nd (CONV=>RELU)*2=>POOL block
model.add(Conv2D(128,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(128,(3,3),padding = "same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.15))
#3rd (CONV=>RELU)*2=>POOL block
model.add(Conv2D(256,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(256,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.15))
#4th (CONV=>RELU)*2=>POOL block
model.add(Conv2D(512,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(Conv2D(512,(3,3),padding="same"))
model.add(Activation("relu"))
model.add(BatchNormalization(axis=chanDim))
model.add(MaxPooling2D(pool_size=(2,2)))
# model.add(Dropout(0.15))
# #5th (CONV=>RELU)*2=>POOL block
# model.add(Conv2D(1024,(3,3),padding="same"))
# model.add(Activation("relu"))
# model.add(BatchNormalization(axis=chanDim))
# model.add(Conv2D(1024,(3,3),padding="same"))
# model.add(Activation("relu"))
# model.add(BatchNormalization(axis=chanDim))
# model.add(MaxPooling2D(pool_size=(2,2)))
# model.add(Dropout(0.15))
#1st fully connected layer =>RELU
model.add(Flatten())
model.add(Dense(2048))
model.add(Activation("relu"))
model.add(BatchNormalization())
model.add(Dropout(0.2))
#softmax classifier
model.add(Dense(classes))
model.add(Activation("softmax"))
#return architecture
return model