|
1 | 1 | import pandas as pd
|
2 | 2 | import uvicorn
|
3 | 3 | from fastapi import FastAPI, Response, UploadFile
|
| 4 | +from fastapi.exception_handlers import HTTPException |
4 | 5 | from starlette.responses import JSONResponse
|
5 | 6 | from fastapi.middleware.cors import CORSMiddleware
|
6 | 7 | from mlflow_api.mlflow_client import Client
|
7 | 8 | from pydantic import BaseModel
|
8 | 9 | from mlflow_api.schemas import Models, Parameters, Metrics, Dataset, Images, Versions
|
9 | 10 | from dotenv import load_dotenv
|
| 11 | +import torch.optim as optim |
| 12 | +import torch.nn as nn |
10 | 13 |
|
11 | 14 | load_dotenv()
|
12 | 15 |
|
@@ -105,6 +108,53 @@ async def model_package(name: str):
|
105 | 108 | )
|
106 | 109 |
|
107 | 110 |
|
| 111 | +@app.get("/optimizers/{framework}") |
| 112 | +async def optimizers(framework: str): |
| 113 | + if framework not in ["torch", "keras"]: |
| 114 | + raise HTTPException(400, "Allowed frameworks: ['torch', 'keras']") |
| 115 | + |
| 116 | + if framework == "torch": |
| 117 | + opt = [op for op in dir(optim) if "_" not in op] |
| 118 | + return JSONResponse(opt) |
| 119 | + else: |
| 120 | + return JSONResponse([ |
| 121 | + "SGD", |
| 122 | + "RMSprop", |
| 123 | + "Adagrad", |
| 124 | + "Adadelta", |
| 125 | + "Adam", |
| 126 | + "Adamax", |
| 127 | + "Nadam", |
| 128 | + "Ftrl" |
| 129 | + ]) |
| 130 | + |
| 131 | + |
| 132 | +@app.get("/losses/{framework}") |
| 133 | +async def losses(framework: str): |
| 134 | + if framework not in ["torch", "keras"]: |
| 135 | + raise HTTPException(400, "Allowed frameworks: ['torch', 'keras']") |
| 136 | + |
| 137 | + if framework == "torch": |
| 138 | + return JSONResponse(["L1Loss", "MSELoss", "CrossEntropyLoss", "CTCLoss", "NLLLoss", "PoissonNLLLoss", "GaussianNLLLoss", "KLDivLoss", "BCELoss", "BCEWithLogitsLoss", "MarginRankingLoss", "HingeEmbeddingLoss", "MultiLabelMarginLoss", "HuberLoss", "SmoothL1Loss", "SoftMarginLoss", "MultiLabelSoftMarginLoss", "CosineEmbeddingLoss", "MultiMarginLoss", "TripletMarginLoss", "TripletMarginWithDistanceLoss"]) |
| 139 | + else: |
| 140 | + return JSONResponse([ |
| 141 | + "mean_squared_error", |
| 142 | + "mean_absolute_error", |
| 143 | + "mean_absolute_percentage_error", |
| 144 | + "mean_squared_logarithmic_error", |
| 145 | + "categorical_crossentropy", |
| 146 | + "sparse_categorical_crossentropy", |
| 147 | + "binary_crossentropy", |
| 148 | + "hinge", |
| 149 | + "squared_hinge", |
| 150 | + "categorical_hinge", |
| 151 | + "logcosh", |
| 152 | + "kullback_leibler_divergence", |
| 153 | + "poisson", |
| 154 | + "cosine_similarity" |
| 155 | + ]) |
| 156 | + |
| 157 | + |
108 | 158 | @app.post("/model/predict")
|
109 | 159 | async def model_predict(name: str, file: UploadFile):
|
110 | 160 | df = pd.read_csv(file.file)
|
|
0 commit comments