You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Hello, I have a question regarding an error that I am facing when solving systems of ODEs with more than 32 equations:
you can take a look at this other github issue especially to the last example, that I am posting here again for completeness:
using Plots, DifferentialEquations, CUDA, StaticArrays, DiffEqGPU, Symbolics, Catalyst
# works below 33, fails above
n_x =33@variables t
D =Differential(t)
@variablesX(t)[1:n_x]
eqs = []
for i in1:n_x
push!(eqs, D(X[i]) ~Num(1.0))
end
p =@SVector [1.0for i in1:n_x]
u0 =@SVector [1.0for i in1:n_x]
tspan = (0.0, 10.0)
sys =@named test =ODESystem(eqs, t)
prob =ODEProblem(sys, u0, tspan, p) # the problem must be out-of-place# solve on CPU
sol =solve(prob, Tsit5(), saveat=0.1)
plot(sol, idxs=1:n_x)
# prepare the problem for the GPU
problem_func = (problem, i, repeat) ->remake(problem, u0=rand(n_x)) # randomize the initial condition
multi_problem =EnsembleProblem(prob; prob_func = problem_func, safetycopy =false)
# solve on GPU
solutions =solve(multi_problem, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()), trajectories=10, adaptive =true, reltol=1e-6, abstol=1e-6, saveat=0.1)
# plot the resultsfor s in solutions
plot!(s, idxs=1:n_x, linestyle=:dash, legend=false)
endplot!()
This code fails with the following error:
nvalidIRError: compiling MethodInstance for DiffEqGPU.gpu_ode_asolve_kernel(::KernelAbstractions.CompilerMetadata{KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicCheck, Nothing, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}}, ::CuDeviceVector{DiffEqGPU.ImmutableODEProblem{SVector{33, Float64}, Tuple{Float64, Float64}, true, SVector{33, Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, ModelingToolkit.var"#k#503"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xae84faba, 0xca798e0c, 0x0f4ab0aa, 0xacc7e0b8, 0x5dfc199c), Nothing}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x150edf5a, 0xa4ae4349, 0xa9fcb0e2, 0x7d639c2e, 0x036b7279), Nothing}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingToolkit.var"#1269#generated_observed#513"{Bool, ODESystem, Dict{Any, Any}, Vector{SymbolicUtils.BasicSymbolic{Real}}}, Nothing, ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}, SciMLBase.StandardODEProblem}, 1}, ::GPUTsit5, ::CuDeviceMatrix{SVector{33, Float64}, 1}, ::CuDeviceMatrix{Float64, 1}, ::Float64, ::CallbackSet{Tuple{}, Tuple{}}, ::Nothing, ::Float64, ::Float64, ::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, ::Val{false}) resulted in invalid LLVM IR
Reason: unsupported call to an unknown function (call to julia.new_gc_frame)
Stacktrace:
[1] multiple call sites
@ unknown:0
Reason: unsupported call to an unknown function (call to julia.push_gc_frame)
Stacktrace:
[1] multiple call sites
@ unknown:0
Reason: unsupported call to an unknown function (call to julia.get_gc_frame_slot)
Stacktrace:
[1] multiple call sites
@ unknown:0
Reason: unsupported call to an unknown function (call to jl_f__apply_iterate)
Do you have an idea on why this is happening?
I am using a Titan RTX on my machine. Let me know if you need additional information.
Thank you in advance.
The text was updated successfully, but these errors were encountered:
using Plots, DifferentialEquations, CUDA, StaticArrays, DiffEqGPU, ModelingToolkit
# works below 33, fails above
n_x =33@variables t
D =Differential(t)
@variablesX(t)[1:n_x]
eqs = []
for i in1:n_x
push!(eqs, D(X[i]) ~Num(1.0))
end
p =@SVector [1.0for i in1:n_x]
u0 =@SVector [1.0for i in1:n_x]
tspan = (0.0, 10.0)
@mtkbuild sys =ODESystem(eqs, t)
prob =ODEProblem(sys, u0, tspan) # the problem must be out-of-place# solve on CPU
sol =solve(prob, Tsit5(), saveat=0.1)
plot(sol, idxs=1:n_x)
# prepare the problem for the GPU
problem_func = (problem, i, repeat) ->remake(problem) # randomize the initial condition
multi_problem =EnsembleProblem(prob; prob_func = problem_func, safetycopy =false)
# solve on GPU
solutions =solve(multi_problem, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()), trajectories=10, adaptive =true, reltol=1e-6, abstol=1e-6, saveat=0.1)
# plot the resultsfor s in solutions
plot!(s, idxs=1:n_x, linestyle=:dash, legend=false)
endplot!()
The issue is the StaticArrays splat limit I think? @vchuravy is there a way around this?
Hello, I have a question regarding an error that I am facing when solving systems of ODEs with more than 32 equations:
you can take a look at this other github issue especially to the last example, that I am posting here again for completeness:
This code fails with the following error:
Do you have an idea on why this is happening?
I am using a Titan RTX on my machine. Let me know if you need additional information.
Thank you in advance.
The text was updated successfully, but these errors were encountered: