Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

nvalidIRError while solving large (32 equations) ODEs #326

Open
redsnic opened this issue Apr 4, 2024 · 1 comment
Open

nvalidIRError while solving large (32 equations) ODEs #326

redsnic opened this issue Apr 4, 2024 · 1 comment
Labels
question Further information is requested

Comments

@redsnic
Copy link

redsnic commented Apr 4, 2024

Hello, I have a question regarding an error that I am facing when solving systems of ODEs with more than 32 equations:

you can take a look at this other github issue especially to the last example, that I am posting here again for completeness:

using Plots, DifferentialEquations, CUDA, StaticArrays, DiffEqGPU, Symbolics, Catalyst

# works below 33, fails above
n_x = 33
@variables t
D = Differential(t)
@variables X(t)[1:n_x]

eqs = []
for i in 1:n_x
    push!(eqs, D(X[i]) ~ Num(1.0))
end

p = @SVector [1.0 for i in 1:n_x]
u0 = @SVector [1.0 for i in 1:n_x]
tspan = (0.0, 10.0)
sys = @named test = ODESystem(eqs, t)
prob = ODEProblem(sys, u0, tspan, p) # the problem must be out-of-place

# solve on CPU
sol = solve(prob, Tsit5(), saveat=0.1)
plot(sol, idxs=1:n_x)

# prepare the problem for the GPU
problem_func = (problem, i, repeat) -> remake(problem, u0=rand(n_x)) # randomize the initial condition
multi_problem = EnsembleProblem(prob; prob_func = problem_func, safetycopy = false)

# solve on GPU
solutions = solve(multi_problem, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()), trajectories=10, adaptive = true, reltol=1e-6, abstol=1e-6, saveat=0.1)

# plot the results
for s in solutions
    plot!(s, idxs=1:n_x, linestyle=:dash, legend=false)
end
plot!()

This code fails with the following error:

nvalidIRError: compiling MethodInstance for DiffEqGPU.gpu_ode_asolve_kernel(::KernelAbstractions.CompilerMetadata{KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicCheck, Nothing, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, KernelAbstractions.NDIteration.NDRange{1, KernelAbstractions.NDIteration.DynamicSize, KernelAbstractions.NDIteration.DynamicSize, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}, CartesianIndices{1, Tuple{Base.OneTo{Int64}}}}}, ::CuDeviceVector{DiffEqGPU.ImmutableODEProblem{SVector{33, Float64}, Tuple{Float64, Float64}, true, SVector{33, Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, ModelingToolkit.var"#k#503"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xae84faba, 0xca798e0c, 0x0f4ab0aa, 0xacc7e0b8, 0x5dfc199c), Nothing}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x150edf5a, 0xa4ae4349, 0xa9fcb0e2, 0x7d639c2e, 0x036b7279), Nothing}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, ModelingToolkit.var"#1269#generated_observed#513"{Bool, ODESystem, Dict{Any, Any}, Vector{SymbolicUtils.BasicSymbolic{Real}}}, Nothing, ODESystem, Nothing, Nothing}, Base.Pairs{Symbol, Union{}, Tuple{}, @NamedTuple{}}, SciMLBase.StandardODEProblem}, 1}, ::GPUTsit5, ::CuDeviceMatrix{SVector{33, Float64}, 1}, ::CuDeviceMatrix{Float64, 1}, ::Float64, ::CallbackSet{Tuple{}, Tuple{}}, ::Nothing, ::Float64, ::Float64, ::StepRangeLen{Float64, Base.TwicePrecision{Float64}, Base.TwicePrecision{Float64}, Int64}, ::Val{false}) resulted in invalid LLVM IR
Reason: unsupported call to an unknown function (call to julia.new_gc_frame)
Stacktrace:
 [1] multiple call sites
   @ unknown:0
Reason: unsupported call to an unknown function (call to julia.push_gc_frame)
Stacktrace:
 [1] multiple call sites
   @ unknown:0
Reason: unsupported call to an unknown function (call to julia.get_gc_frame_slot)
Stacktrace:
 [1] multiple call sites
   @ unknown:0
Reason: unsupported call to an unknown function (call to jl_f__apply_iterate)

Do you have an idea on why this is happening?
I am using a Titan RTX on my machine. Let me know if you need additional information.

Thank you in advance.

@redsnic redsnic added the question Further information is requested label Apr 4, 2024
@ChrisRackauckas
Copy link
Member

Updated example for MTK v9:

using Plots, DifferentialEquations, CUDA, StaticArrays, DiffEqGPU, ModelingToolkit

# works below 33, fails above
n_x = 33
@variables t
D = Differential(t)
@variables X(t)[1:n_x]

eqs = []
for i in 1:n_x
    push!(eqs, D(X[i]) ~ Num(1.0))
end

p = @SVector [1.0 for i in 1:n_x]
u0 = @SVector [1.0 for i in 1:n_x]
tspan = (0.0, 10.0)
@mtkbuild sys = ODESystem(eqs, t)
prob = ODEProblem(sys, u0, tspan) # the problem must be out-of-place

# solve on CPU
sol = solve(prob, Tsit5(), saveat=0.1)
plot(sol, idxs=1:n_x)

# prepare the problem for the GPU
problem_func = (problem, i, repeat) -> remake(problem) # randomize the initial condition
multi_problem = EnsembleProblem(prob; prob_func = problem_func, safetycopy = false)

# solve on GPU
solutions = solve(multi_problem, GPUTsit5(), EnsembleGPUKernel(CUDA.CUDABackend()), trajectories=10, adaptive = true, reltol=1e-6, abstol=1e-6, saveat=0.1)

# plot the results
for s in solutions
    plot!(s, idxs=1:n_x, linestyle=:dash, legend=false)
end
plot!()

The issue is the StaticArrays splat limit I think? @vchuravy is there a way around this?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested
Projects
None yet
Development

No branches or pull requests

2 participants