-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
33 lines (27 loc) · 918 Bytes
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import os
import torch
import numpy as np
from torchvision import transforms,utils
from torch.utils.data import Dataset,DataLoader
from PIL import Image
def default_loader(path):
return Image.open(path).convert('RGB')
class MyDataset(Dataset):
def __init__(self, txt, transform, loader=default_loader):
fh = open(txt, 'r')
imgs = []
for line in fh:
line = line.strip('\n')
line = line.rstrip()
words = line.split()
imgs.append((words[0], int(words[1])))
self.imgs = imgs
self.transform = transform
self.loader = loader
def __getitem__(self, index):
fn, label = self.imgs[index]
img = self.loader("E:\\Btech VIT\\6th Semester\\MLADL\\CP\\DataSet\\CUB_200_2011\\images//" + fn)
img = self.transform(img)
return img, label
def __len__(self):
return len(self.imgs)