@@ -135,22 +135,30 @@ pred_num_PCR_pos_mat = prop_PCR_pos_mat.*nai_tests.*(nai_tests .>= 0) .+ no_neg_
135
135
# Get the posterior mean and credible intervals
136
136
pred_prop_sero_pos = get_credible_intervals (prop_sero_pos_mat)
137
137
pred_num_PCR_pos = get_credible_intervals (pred_num_PCR_pos_mat)
138
+ pred_incidence = get_credible_intervals (infection_mat)
138
139
# Compare to two-group fits
139
140
nai_fit = condensed_county_forecasts[[fit. name == " Nairobi" for fit in condensed_county_forecasts]][1 ]
140
141
sero_plt_compare = plot_pop_exposure (nai_fit,serological_data,serology_data,N_kenya);
141
142
PCR_plt_compare = plot_PCR (nai_fit,linelist_data_with_pos_neg,linelist_data);
142
143
143
144
plot! (PCR_plt_compare, 4 : (length (pred_num_PCR_pos. pred)- 3 ),
144
145
weekly_mv_av (pred_num_PCR_pos. pred),
146
+ title = " Nairobi PCR test, model comparison" ,
145
147
color = :green ,lw = 3 ,
146
148
ribbon = (weekly_mv_av (pred_num_PCR_pos. lb),weekly_mv_av (pred_num_PCR_pos. ub)),
147
149
lab = " One group model: fit and forecast" )
148
150
149
151
plot! (sero_plt_compare,pred_prop_sero_pos. pred./ nai_one_group. N,
150
- lab = " One group model fit: seroposivity" ,lw = 3 ,
152
+ title = " Nairobi population exposure, model comparison" ,
153
+ lab = " One group model fit: seroposivity" ,lw = 3 ,color = :green ,ls = :dash ,
151
154
ribbon = (pred_prop_sero_pos. lb./ nai_one_group. N,pred_prop_sero_pos. ub./ nai_one_group. N))
152
155
156
+ plot! (sero_plt_compare,cumsum (pred_incidence. pred,dims = 1 )./ nai_one_group. N,
157
+ lab = " One group model fit: Overall population exposure" ,lw = 3 ,color = :red ,ls = :dash ,
158
+ ribbon = (cumsum (pred_incidence. lb,dims = 1 )./ nai_one_group. N,cumsum (pred_incidence. ub,dims = 1 )./ nai_one_group. N )
159
+ )
153
160
161
+ savefig ()
154
162
155
163
156
164
0 commit comments