-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
385 lines (336 loc) · 16.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
import argparse
import logging
from pyexpat import model
import re
import sys
import tempfile
from pathlib import Path
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import wandb
from torch import optim
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, random_split
from tqdm import tqdm
import time
from utils.data_loading import BasicDataset, CarvanaDataset
from utils.dice_score import dice_loss, dice_coeff, multiclass_dice_coeff
from models import MRCNet, mtihead_Unet, resnet34, resnet50, resnet101, ResUnet, ResUnetPlusPlus, ResNet18, mtihead_ResUnet
from torchvision.models import resnet18
import torch.distributed as dist
import numpy as np
from multi_train_utils.distributed_utils import init_distributed_mode, dist, cleanup
from multi_train_utils.train_eval_utils import train_one_epoch, evaluate, undis_evaluate
import random
from utils.data_loading import LNM_Dataset
from utils.lossfunction import GeneralizedDiceLoss, WeightedCrossEntropyLoss, FocalLossV1
seed = 42
torch.manual_seed(seed) # cpu种子
# torch.cuda.manual_seed(seed) # 当前GPU的种子
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.enabled = True # 默认值
torch.backends.cudnn.benchmark = False # 默认为False
torch.backends.cudnn.deterministic = True
# dir_img = Path('/data/lsy/carvana/imgs/train/')
# dir_mask = Path('/data/lsy/carvana/masks/train_masks/')
dir_checkpoint = Path('./checkpoints/')
checkpoint_path = Path('./checkpoints/')
def train_net(net,
device,
epochs: int = 5,
batch_size: int = 4,
learning_rate: float = 1e-5,
val_percent: float = 0.1,
save_checkpoint: bool = True,
img_scale: float = 0.5,
amp: bool = False,
input_channel = 1,
seg_task: bool = True,
cls_task: bool = False,
):
# 1. Create dataset
# try:
# dataset = CarvanaDataset(dir_img, dir_mask, img_scale)
# except (AssertionError, RuntimeError):
# dataset = BasicDataset(dir_img, dir_mask, img_scale)
# 2. Split into train / validation partitions
# n_val = int(len(dataset) * val_percent)
# n_train = len(dataset) - n_val
# train_set, val_set = random_split(dataset, [n_train, n_val], generator=torch.Generator().manual_seed(0))
train_set = LNM_Dataset('dataset/train_10_12.csv',input_channel=input_channel)
val_set = LNM_Dataset('dataset/validation_10_12.csv', input_channel=input_channel, mode='val')
n_train = len(train_set)
n_val = len(val_set)
'''
posi_num = 159
nega_num = 620
all_num = 779
'''
train_weights = []
for train_sample in train_set:
if train_sample['label'] == torch.tensor(1):
train_weights.append(779/159)
else:
train_weights.append(779/620)
train_weights = torch.FloatTensor(train_weights)
train_sampler = torch.utils.data.sampler.WeightedRandomSampler(train_weights, len(train_weights))
###### 143posi 516nega
nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workers
print('Using {} dataloader workers every process'.format(nw))
# 3. Create data loaders
# , sampler=train_sampler
train_loader = DataLoader(train_set, shuffle=False, batch_size=batch_size, num_workers=nw, pin_memory=True)
val_loader = DataLoader(val_set, shuffle=False, drop_last=True, batch_size=batch_size, num_workers=nw, pin_memory=True)
# (Initialize logging)
# experiment = wandb.init(project='U-Net', resume='allow', anonymous='must')
# experiment.config.update(dict(epochs=epochs, batch_size=batch_size, learning_rate=learning_rate,
# val_percent=val_percent, save_checkpoint=save_checkpoint, img_scale=img_scale,
# amp=amp))
tb_writer = SummaryWriter()
experiment = wandb.init(project='U-Net', resume='allow', anonymous='must')
experiment.config.update(dict(epochs=epochs, batch_size=batch_size, learning_rate=learning_rate,
val_percent=val_percent, save_checkpoint=save_checkpoint, img_scale=img_scale,
amp=amp))
logging.info(f'''Starting training:
Epochs: {epochs}
Batch size: {batch_size}
Learning rate: {learning_rate}
Training size: {n_train}
Validation size: {n_val}
Checkpoints: {save_checkpoint}
Device: {device.type if hasattr(device, 'type') else device}
Images scaling: {img_scale}
Mixed Precision: {amp}
''')
# 4. Set up the optimizer, the loss, the learning rate scheduler and the loss scaling for AMP
optimizer = optim.RMSprop(net.parameters(), lr=learning_rate, weight_decay=1e-8, momentum=0.9)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'max', patience=2) # goal: maximize Dice score
grad_scaler = torch.cuda.amp.GradScaler(enabled=amp)
criterion = nn.CrossEntropyLoss(weight=torch.tensor([1., 6.]).to(device))
weightedbceloss = WeightedCrossEntropyLoss(ignore_index=-100)
GenDiceLoss = GeneralizedDiceLoss()
criterion2 = nn.CrossEntropyLoss(weight=torch.tensor([1., 4.])).to(device)
global_step = 0
best_dice = 0.0
best_masks = torch.Tensor([])
best_maskprob = torch.Tensor([])
# 5. Begin training
for epoch in range(1, epochs+1):
### train
net.train()
epoch_loss = 0
with tqdm(total=n_train, desc=f'Epoch {epoch}/{epochs}', unit='img') as pbar:
for batch in train_loader:
images = batch['image']
true_masks = batch['mask']
true_cls = batch['label']
assert images.shape[1] == net.n_channels, \
f'Network has been defined with {net.n_channels} input channels, ' \
f'but loaded images have {images.shape[1]} channels. Please check that ' \
'the images are loaded correctly.'
images = images.to(device=device, dtype=torch.float32)
true_masks = true_masks.to(device=device, dtype=torch.long)
with torch.cuda.amp.autocast(enabled=amp):
if seg_task:
masks_pred, _ = net(images)
if net.n_classes > 1:
mask_loss = criterion(masks_pred, true_masks) \
+ dice_loss(F.softmax(masks_pred, dim=1).float(),
F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),
multiclass=True)
# mask_loss = weightedbceloss(masks_pred, true_masks) \
# + dice_loss(F.softmax(masks_pred, dim=1).float(),
# F.one_hot(true_masks, net.n_classes).permute(0, 3, 1, 2).float(),
# multiclass=True)
else:
##sigmoid归一化到0-1
if net.out_sigmoid:
mask_loss = dice_loss(masks_pred.squeeze().float(), true_masks.float(), multiclass=False)
else:
mask_loss = dice_loss(torch.sigmoid(masks_pred.squeeze()).float(), true_masks.float(), multiclass=False)
else:
mask_loss = 0
if cls_task:
_, cls_pred = net(images)
cls_loss = criterion2(cls_pred, true_cls.to(device=device, dtype=torch.long))
# cls_loss = Focalloss(cls_pred, F.one_hot(true_cls).to(device=device, dtype=torch.long))
else:
cls_loss = 0
loss = mask_loss + alpha* cls_loss
loss.requires_grad_(True)
optimizer.zero_grad(set_to_none=True)
grad_scaler.scale(loss).backward()
grad_scaler.step(optimizer)
grad_scaler.update()
pbar.update(images.shape[0])
global_step += 1
epoch_loss += loss.item()
experiment.log({
'train loss': loss.item(),
'train mask loss': mask_loss.item() if seg_task else None,
'train cls loss': cls_loss.item() if cls_task else None,
'step': global_step,
'epoch': epoch
})
pbar.set_postfix(**{'loss (batch)': loss.item()})
if seg_task and cls_task:
logging.info('Train mask loss: {} cls loss: {}'.format(mask_loss.item(), cls_loss.item()))
elif seg_task and not cls_task:
logging.info('Train mask loss: {}'.format(mask_loss.item()))
elif not seg_task and cls_task:
logging.info('Train cls loss: {}'.format(cls_loss.item()))
# Evaluation round
histograms = {}
for tag, value in net.named_parameters():
tag = tag.replace('/', '.')
histograms['Weights/' + tag] = wandb.Histogram(value.data.cpu())
histograms['Gradients/' + tag] = wandb.Histogram(value.grad.data.cpu())
#####val
val_dice_score, iou, val_acc, auc, sens, spec, valid_masks, valid_maskprob = undis_evaluate(net, val_loader, device, seg_task, cls_task)
val_score = val_dice_score + val_acc
scheduler.step(val_score)
if seg_task and cls_task:
logging.info('Validation Dice score: {} iou: {} Acc: {} Auc: {} Sens: {} Spec: {}'.format(val_dice_score, iou, val_acc, auc, sens, spec))
elif seg_task and not cls_task:
logging.info('Validation Dice score: {} iou: {}'.format(val_dice_score, iou))
elif not seg_task and cls_task:
logging.info('Validation Acc: {} Auc: {} Sens: {} Spec: {}'.format(val_acc, auc, sens, spec))
experiment.log({
'learning rate': optimizer.param_groups[0]['lr'],
'val_loss': val_score,
'validation Dice': val_dice_score if seg_task else None,
'iou': iou if iou else None,
'validation acc': val_acc if cls_task else None,
'auc': auc if auc else None,
'senstivity': sens if cls_task else None,
'specificity': spec if cls_task else None,
'images': wandb.Image(images[0].cpu()),
'masks': {
'true': wandb.Image(true_masks[0].float().cpu()),
'pred': wandb.Image(masks_pred.argmax(dim=1)[0].float().cpu()),
} if seg_task else None,
'step': global_step,
'epoch': epoch,
**histograms
})
if best_dice < val_dice_score:
best_dice = val_dice_score
best_masks = valid_masks
best_maskprob = valid_maskprob
if save_checkpoint:
torch.save(net.state_dict(), 'best_dice.pth')
# if save_checkpoint:
# Path(dir_checkpoint).mkdir(parents=True, exist_ok=True)
# torch.save(net.state_dict(), str(dir_checkpoint / 'checkpoint_epoch{}.pth'.format(epoch)))
# logging.info(f'Checkpoint {epoch} saved!')
savedir = 'results/'
for i in range(192):
# print(i)
img = val_set[i]['image'][0].numpy()
mask = val_set[i]['mask'].numpy()
mask = mask *255
###创建文件夹
import matplotlib.pyplot as plt
plt.imsave(savedir + 'image{}.png'.format(i), img, cmap='gray', format='png')
plt.imsave(savedir + 'gt{}.png'.format(i), mask*255, cmap='gray')
plt.imsave(savedir + 'pred{}.png'.format(i), best_masks[i]*255, cmap='gray')
plt.imsave(savedir + 'probmap{}.png'.format(i), best_maskprob[i]*255, cmap='gray')
# 删除临时缓存文件
time_str = str(time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime()))
# if os.path.exists(checkpoint_path) is True:
# os.remove(checkpoint_path)
torch.save(net.state_dict(), 'MODEL_' + time_str + '.pth')
# cleanup()
def get_args():
parser = argparse.ArgumentParser(description='Train the UNet on images and target masks')
parser.add_argument('--epochs', '-e', metavar='E', type=int, default=5, help='Number of epochs')
parser.add_argument('--batch-size', '-b', dest='batch_size', metavar='B', type=int, default=8, help='Batch size')
parser.add_argument('--learning-rate', '-l', metavar='LR', type=float, default=1e-5,
help='Learning rate', dest='lr')
parser.add_argument('--load', '-f', type=str, default=False, help='Load model from a .pth file')
parser.add_argument('--scale', '-s', type=float, default=0.5, help='Downscaling factor of the images')
parser.add_argument('--validation', '-v', dest='val', type=float, default=10.0,
help='Percent of the data that is used as validation (0-100)')
parser.add_argument('--amp', action='store_true', default=False, help='Use mixed precision')
parser.add_argument('--bilinear', action='store_true', default=False, help='Use bilinear upsampling')
parser.add_argument('--classes', '-c', type=int, default=2, help='Number of classes')
return parser.parse_args()
if __name__ == '__main__':
args = get_args()
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info(f'Using device {device}')
# Change here to adapt to your data
# n_channels=3 for RGB images
# n_classes is the number of probabilities you want to get per pixel
#####是否开启多任务
seg_task = True
cls_task = False
alpha = 0.8
####网络输入通道数
in_channels = 1
net_name = 'ResUNet'
###自定义网络
if net_name == 'Resnet18':
net = ResNet18(n_channels=in_channels, n_classes=2)
elif net_name == 'MRCNet':
net = MRCNet(n_channels=in_channels,
n_classes=args.classes,
bilinear=args.bilinear,
seg_task=seg_task,
cls_task=cls_task
)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n'
f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
elif net_name == 'ResUNet':
net = mtihead_ResUnet(n_channels=in_channels,
n_classes=args.classes,
bilinear=args.bilinear,
seg_task=seg_task,
cls_task=cls_task
)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n'
f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
# net = ResUnet(n_channels=in_channels, n_classes=2)
elif net_name == 'ResUnetPlusPlus':
net = ResUnetPlusPlus(n_channels=in_channels, n_classes=2)
elif net_name == 'UNet':
net = mtihead_Unet(n_channels=in_channels,
n_classes=args.classes,
bilinear=args.bilinear,
seg_task=seg_task,
cls_task=cls_task
)
logging.info(f'Network:\n'
f'\t{net.n_channels} input channels\n'
f'\t{net.n_classes} output channels (classes)\n'
f'\t{"Bilinear" if net.bilinear else "Transposed conv"} upscaling')
if args.load:
net.load_state_dict(torch.load(args.load, map_location=device))
logging.info(f'Model loaded from {args.load}')
net.to(device=device)
try:
train_net(net=net,
epochs=args.epochs,
batch_size=args.batch_size,
learning_rate=args.lr,
device=device,
img_scale=args.scale,
val_percent=args.val / 100,
amp=args.amp,
input_channel=in_channels,
seg_task=seg_task,
cls_task=cls_task
)
except KeyboardInterrupt:
torch.save(net.state_dict(), 'INTERRUPTED.pth')
logging.info('Saved interrupt')
raise