-
Notifications
You must be signed in to change notification settings - Fork 0
/
VGG Net_cifar10.py
205 lines (155 loc) · 7.07 KB
/
VGG Net_cifar10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# -*- coding: utf-8 -*-
# Train CIFAR10 Dataset
import numpy as np
import matplotlib.pyplot as plt
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import Flatten
from keras.constraints import maxnorm
from keras.optimizers import SGD
from keras.layers import Activation
from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D
from keras.layers.normalization import BatchNormalization
from keras.initializers import glorot_normal
from keras.utils import np_utils
import tensorflow as tf
from keras.datasets import cifar10
import keras
from keras import regularizers
from sklearn.metrics import classification_report, confusion_matrix
import seaborn as sn
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator
# Loading the CIFAR-10 dataset
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
#Parameters
weight_decay = 0.0005
batch_size = 64
epochs = 200
data_augmentation = True
x_shape = [32,32,3]
# Define VGGNet Model
def base_model():
model = Sequential()
model.add(Conv2D(64, (3, 3), padding='same',
input_shape=x_shape,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Conv2D(64, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(128, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(256, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.4))
model.add(Conv2D(512, (3, 3), padding='same',kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten())
model.add(Dense(512,kernel_regularizer=regularizers.l2(weight_decay)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation('softmax'))
sgd = SGD(lr=0.0005, decay=0, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
return model
cnn_n = base_model()
cnn_n.summary()
cnn_n.compile(loss='categorical_crossentropy', optimizer='sgd',metrics=['accuracy'])
# Data Augmentation
datagen = ImageDataGenerator( featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=15, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# Train Network
cnn = cnn_n.fit(datagen.flow(x_train, y_train, batch_size=batch_size),steps_per_epoch=x_train.shape[0] // batch_size,
epochs=epochs, validation_data=(x_test, y_test),verbose=2)
# Plots loss and accuracy
plt.figure(0)
plt.plot(cnn.history['acc'],'r')
plt.plot(cnn.history['val_acc'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Accuracy")
plt.title("Training Accuracy vs Validation Accuracy")
plt.legend(['train','validation'])
plt.figure(1)
plt.plot(cnn.history['loss'],'r')
plt.plot(cnn.history['val_loss'],'g')
plt.xticks(np.arange(0, 11, 2.0))
plt.rcParams['figure.figsize'] = (8, 6)
plt.xlabel("Num of Epochs")
plt.ylabel("Loss")
plt.title("Training Loss vs Validation Loss")
plt.legend(['train','validation'])
plt.show()
scores = cnn_n.evaluate(x_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
# Confusion matrix
Y_pred = cnn_n.predict(x_test, verbose=2)
y_pred = np.argmax(Y_pred, axis=1)
for ix in range(10):
print(ix, confusion_matrix(np.argmax(y_test,axis=1),y_pred)[ix].sum())
cm = confusion_matrix(np.argmax(y_test,axis=1),y_pred)
print(cm)
# Visualizing of confusion matrix
df_cm = pd.DataFrame(cm, range(10),
range(10))
plt.figure(figsize = (10,7))
sn.set(font_scale=1.4)#for label size
sn.heatmap(df_cm, annot=True,annot_kws={"size": 12})# font size
plt.show()