From 330480c811f8161f9b9a686abaaaddbd89abcf6c Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Tue, 24 Sep 2024 08:15:46 -0700 Subject: [PATCH 01/86] removing java based walk skims and replacing with already existing python-based script --- .../configs/airport.CBX/preprocessing.yaml | 19 -------- .../configs/airport.SAN/preprocessing.yaml | 19 -------- src/asim/scripts/resident/2zoneSkim.py | 6 ++- src/main/emme/toolbox/import/run4Ds.py | 5 +-- src/main/emme/toolbox/master_run.py | 18 +++----- src/main/python/datalake_exporter.py | 2 +- src/main/resources/runSandagMGRASkims.cmd | 30 +++++++++++++ src/main/resources/runSandagWalkLogsums.cmd | 45 ------------------- src/main/resources/sandag_abm.properties | 4 +- 9 files changed, 47 insertions(+), 101 deletions(-) create mode 100644 src/main/resources/runSandagMGRASkims.cmd delete mode 100644 src/main/resources/runSandagWalkLogsums.cmd diff --git a/src/asim/configs/airport.CBX/preprocessing.yaml b/src/asim/configs/airport.CBX/preprocessing.yaml index 4ef8c5abe..b596817f6 100644 --- a/src/asim/configs/airport.CBX/preprocessing.yaml +++ b/src/asim/configs/airport.CBX/preprocessing.yaml @@ -33,25 +33,6 @@ stop_frequency_expressions_output_formattable_fname: 'stop_frequency_{purpose}.c trip_purpose_probs_output_fname: trip_purpose_probs.csv trip_scheduling_probs_output_fname: trip_scheduling_probs.csv -# skims -skims: - maz_to_maz: - walk: - input_fname: microMgraEquivMinutes.csv - output_fname: maz_maz_walk.csv - rename_columns: - i: OMAZ - j: DMAZ - taz_to_taz: - periods: - - EA - - AM - - MD - - PM - - EV - input_base_fname: traffic_skims - output_base_fname: traffic_skims_processed - # Tours tours: num_enplanements: 4186500 diff --git a/src/asim/configs/airport.SAN/preprocessing.yaml b/src/asim/configs/airport.SAN/preprocessing.yaml index 4a7819ecf..cec03ed22 100644 --- a/src/asim/configs/airport.SAN/preprocessing.yaml +++ b/src/asim/configs/airport.SAN/preprocessing.yaml @@ -33,25 +33,6 @@ stop_frequency_expressions_output_formattable_fname: 'stop_frequency_{purpose}.c trip_purpose_probs_output_fname: trip_purpose_probs.csv trip_scheduling_probs_output_fname: trip_scheduling_probs.csv -# skims -skims: - maz_to_maz: - walk: - input_fname: microMgraEquivMinutes.csv - output_fname: maz_maz_walk.csv - rename_columns: - i: OMAZ - j: DMAZ - taz_to_taz: - periods: - - EA - - AM - - MD - - PM - - EV - input_base_fname: traffic_skims - output_base_fname: traffic_skims_processed - # Tours tours: num_enplanements: 14536000 diff --git a/src/asim/scripts/resident/2zoneSkim.py b/src/asim/scripts/resident/2zoneSkim.py index 6a0e1bc7a..6f16e292d 100644 --- a/src/asim/scripts/resident/2zoneSkim.py +++ b/src/asim/scripts/resident/2zoneSkim.py @@ -112,8 +112,12 @@ maz_to_maz_walk_cost["DISTWALK"] = net.shortest_path_lengths(maz_to_maz_walk_cost["OMAZ_NODE"], maz_to_maz_walk_cost["DMAZ_NODE"]) maz_to_maz_walk_cost_out = maz_to_maz_walk_cost[maz_to_maz_walk_cost["DISTWALK"] <= max_maz_maz_walk_dist_feet / 5280.0] missing_maz = pd.DataFrame(centroids[~centroids['MAZ'].isin(maz_to_maz_walk_cost_out['OMAZ'])]['MAZ']).rename(columns = {'MAZ': 'OMAZ'}).merge(maz_to_maz_cost[maz_to_maz_cost['OMAZ'] != maz_to_maz_cost['DMAZ']].sort_values('DISTWALK').groupby('OMAZ').agg({'DMAZ': 'first', 'DISTWALK': 'first'}).reset_index(), on = 'OMAZ', how = 'left') +maz_maz_walk_output = maz_to_maz_walk_cost_out[["OMAZ","DMAZ","DISTWALK"]].append(missing_maz).sort_values(['OMAZ', 'DMAZ']) +#creating fields as required by the TNC routing Java model. "actual" is walk time in minutes +maz_maz_walk_output[['i', 'j']] = maz_maz_walk_output[['OMAZ', 'DMAZ']] +maz_maz_walk_output['actual'] = maz_maz_walk_output['DISTWALK'] / walk_speed_mph * 60.0 print(f"{datetime.now().strftime('%H:%M:%S')} Write Results...") -maz_to_maz_walk_cost_out[["OMAZ","DMAZ","DISTWALK"]].append(missing_maz).sort_values(['OMAZ', 'DMAZ']).to_csv(path + '/output/skims/' + parms['mmms']["maz_maz_walk_output"], index=False) +maz_maz_walk_output.to_csv(path + '/output/skims/' + parms['mmms']["maz_maz_walk_output"], index=False) del(missing_maz) diff --git a/src/main/emme/toolbox/import/run4Ds.py b/src/main/emme/toolbox/import/run4Ds.py index c77fb68c6..fdb141f20 100644 --- a/src/main/emme/toolbox/import/run4Ds.py +++ b/src/main/emme/toolbox/import/run4Ds.py @@ -258,13 +258,12 @@ def get_density(self): mgra_landuse = mgra_landuse.merge(syn_pop, how = 'left', on = 'mgra') #all street distance equiv_min = pd.read_csv(_join(self.path, "output", self.equivmins_file)) - equiv_min['dist'] = equiv_min['actual']/60*3 print("MGRA input landuse: " + self.mgradata_file) def density_function(mgra_in): eqmn = equiv_min[equiv_min['i'] == mgra_in] - mgra_circa_int = eqmn[eqmn['dist'] < self.int_radius]['j'].unique() - mgra_circa_oth = eqmn[eqmn['dist'] < self.oth_radius]['j'].unique() + mgra_circa_int = eqmn[eqmn['DISTWALK'] < self.int_radius]['j'].unique() + mgra_circa_oth = eqmn[eqmn['DISTWALK'] < self.oth_radius]['j'].unique() totEmp = mgra_landuse[mgra_landuse.mgra.isin(mgra_circa_oth)]['emp_total'].sum() totRet = mgra_landuse[mgra_landuse.mgra.isin(mgra_circa_oth)]['emp_ret'].sum() totHH = mgra_landuse[mgra_landuse.mgra.isin(mgra_circa_oth)]['hh'].sum() diff --git a/src/main/emme/toolbox/master_run.py b/src/main/emme/toolbox/master_run.py index 976d03dac..eda8b1107 100644 --- a/src/main/emme/toolbox/master_run.py +++ b/src/main/emme/toolbox/master_run.py @@ -450,17 +450,17 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, if startFromIteration == 1: # only run the setup / init steps if starting from iteration 1 if not skipWalkLogsums: - self.run_proc("runSandagWalkLogsums.cmd", [drive, path_forward_slash], - "Walk - create AT logsums and impedances", capture_output=True) - if not skipCopyWalkImpedance: - self.copy_files(["walkMgraEquivMinutes.csv", "microMgraEquivMinutes.csv"], - input_dir, output_dir) + self.run_proc("runSandagMGRASkims.cmd", [drive, path_forward_slash], + "Create MGRA-level skims", capture_output=True) + # if not skipCopyWalkImpedance: + # self.copy_files(["walkMgraEquivMinutes.csv", "microMgraEquivMinutes.csv"], + # input_dir, output_dir) if not skip4Ds: run4Ds(path=self._path, int_radius=0.65, ref_path='visualizer_reference_path') mgraFile = 'mgra15_based_input' + str(scenarioYear) + '.csv' # Should be read in from properties? -JJF - self.complete_work(scenarioYear, input_dir, output_dir, mgraFile, "walkMgraEquivMinutes.csv") + self.complete_work(scenarioYear, input_dir, output_dir, mgraFile, "maz_maz_walk.csv") # Update rapid dwell time before importing network mode5tod = pd.read_csv(_join(input_dir,'MODE5TOD.csv')) @@ -861,10 +861,6 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, # UPLOAD DATA AND SWITCH PATHS if useLocalDrive: - # # Uncomment to get disk usage at end of run - # # Note that max disk usage occurs in resident model, not at end of run - # disk_usage = win32.Dispatch('Scripting.FileSystemObject').GetFolder(self._path).Size - # _m.logbook_write("Disk space usage: %f GB" % (disk_usage / (1024 ** 3))) file_manager("UPLOAD", main_directory, username, scenario_id, delete_local_files=not skipDeleteIntermediateFiles) self._path = main_directory @@ -1072,7 +1068,7 @@ def copy_files(self, file_names, from_dir, to_dir): def complete_work(self, scenarioYear, input_dir, output_dir, input_file, output_file): fullList = np.array(pd.read_csv(_join(input_dir, input_file))['mgra']) - workList = np.array(pd.read_csv(_join(output_dir, output_file))['i']) + workList = np.array(pd.read_csv(_join(output_dir, "skims", output_file))['i']) list_set = set(workList) unique_list = (list(list_set)) diff --git a/src/main/python/datalake_exporter.py b/src/main/python/datalake_exporter.py index 0ba4dbcba..c540eecae 100644 --- a/src/main/python/datalake_exporter.py +++ b/src/main/python/datalake_exporter.py @@ -232,7 +232,7 @@ def write_to_datalake(output_path, models, exclude, env): os.path.abspath(os.path.join(output_path, '..', 'input', 'zone_term.csv')), os.path.abspath(os.path.join(output_path, '..', 'input', 'trlink.csv')), os.path.join(output_path, 'bikeMgraLogsum.csv'), - os.path.join(output_path, 'microMgraEquivMinutes.csv'), + # os.path.join(output_path, 'microMgraEquivMinutes.csv'), os.path.join(report_path, 'walkMgrasWithin45Min_AM.csv'), os.path.join(report_path, 'walkMgrasWithin45Min_MD.csv') ] diff --git a/src/main/resources/runSandagMGRASkims.cmd b/src/main/resources/runSandagMGRASkims.cmd new file mode 100644 index 000000000..a064118b7 --- /dev/null +++ b/src/main/resources/runSandagMGRASkims.cmd @@ -0,0 +1,30 @@ +rem @echo off + +set PROJECT_DRIVE=%1 +set PROJECT_DIRECTORY=%2 + +%PROJECT_DRIVE% +cd %PROJECT_DRIVE%%PROJECT_DIRECTORY% +::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: +:: SET UP PATHS +::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: +SET ANACONDA3_DIR=%CONDA_PREFIX% +SET CONDA3_ACT=%ANACONDA3_DIR%\Scripts\activate.bat + +CALL %CONDA3_ACT% asim_baydag +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe + + +%PROJECT_DRIVE% +cd %PROJECT_DRIVE%%PROJECT_DIRECTORY% + +rem rem build walk skims +ECHO Running 2-zone skimming procedure... +%PYTHON3% src/asim/scripts/resident/2zoneSkim.py %PROJECT_DIRECTORY% || goto error + +@REM python %PROJECT_DRIVE%%PROJECT_DIRECTORY%\python\calculate_micromobility.py --properties_file %PROJECT_DRIVE%%PROJECT_DIRECTORY%\conf\sandag_abm.properties --outputs_directory %PROJECT_DRIVE%%PROJECT_DIRECTORY%\output --inputs_parent_directory %PROJECT_DRIVE%%PROJECT_DIRECTORY% + +:done +rem ### restore saved environment variable values, and change back to original current directory +set JAVA_PATH=%OLDJAVAPATH% +set PATH=%OLDPATH% diff --git a/src/main/resources/runSandagWalkLogsums.cmd b/src/main/resources/runSandagWalkLogsums.cmd deleted file mode 100644 index a2c9f95ac..000000000 --- a/src/main/resources/runSandagWalkLogsums.cmd +++ /dev/null @@ -1,45 +0,0 @@ -rem @echo off - -set PROJECT_DRIVE=%1 -set PROJECT_DIRECTORY=%2 - -%PROJECT_DRIVE% -cd %PROJECT_DRIVE%%PROJECT_DIRECTORY% -call %PROJECT_DIRECTORY%\bin\CTRampEnv.bat - -rem ### First save the JAVA_PATH environment variable so it s value can be restored at the end. -set OLDJAVAPATH=%JAVA_PATH% - -rem ### Set the directory of the jdk version desired for this model run -set JAVA_PATH=%JAVA_64_PATH% - -rem ### Name the project directory. This directory will hava data and runtime subdirectories -set RUNTIME=%PROJECT_DIRECTORY% -set CONFIG=%RUNTIME%/conf - -set JAR_LOCATION=%PROJECT_DIRECTORY%/application -set LIB_JAR_PATH=%JAR_LOCATION%\* - -rem ### Define the CLASSPATH environment variable for the classpath needed in this model run. -set CLASSPATH=%CONFIG%;%RUNTIME%;%LIB_JAR_PATH%; - -rem ### Save the name of the PATH environment variable, so it can be restored at the end of the model run. -set OLDPATH=%PATH% - -rem ### Change the PATH environment variable so that JAVA_HOME is listed first in the PATH. -rem ### Doing this ensures that the JAVA_HOME path we defined above is the on that gets used in case other java paths are in PATH. -set PATH=%JAVA_PATH%\bin;%OLDPATH% - -%PROJECT_DRIVE% -cd %PROJECT_DRIVE%%PROJECT_DIRECTORY% - -rem rem build walk skims -%JAVA_64_PATH%\bin\java -showversion -server -Xmx%MEMORY_WALKLOGSUM_MAX% -cp "%CLASSPATH%" -Dlog4j.configuration=log4j.xml -Dproject.folder=%PROJECT_DIRECTORY% org.sandag.abm.active.sandag.SandagWalkPathChoiceLogsumMatrixApplication %PROPERTIES_NAME% -if ERRORLEVEL 1 goto DONE - -python %PROJECT_DRIVE%%PROJECT_DIRECTORY%\python\calculate_micromobility.py --properties_file %PROJECT_DRIVE%%PROJECT_DIRECTORY%\conf\sandag_abm.properties --outputs_directory %PROJECT_DRIVE%%PROJECT_DIRECTORY%\output --inputs_parent_directory %PROJECT_DRIVE%%PROJECT_DIRECTORY% - -:done -rem ### restore saved environment variable values, and change back to original current directory -set JAVA_PATH=%OLDJAVAPATH% -set PATH=%OLDPATH% diff --git a/src/main/resources/sandag_abm.properties b/src/main/resources/sandag_abm.properties index 241a505f5..a9b27514e 100644 --- a/src/main/resources/sandag_abm.properties +++ b/src/main/resources/sandag_abm.properties @@ -396,7 +396,7 @@ path.choice.max.path.count = 200 btpc.alts.file = bike_path_alts.csv active.logsum.matrix.file.bike.taz = bikeTazLogsum.csv active.logsum.matrix.file.bike.mgra = bikeMgraLogsum.csv -active.logsum.matrix.file.walk.mgra = walkMgraEquivMinutes.csv +active.logsum.matrix.file.walk.mgra = skims/maz_maz_walk.csv #active.logsum.matrix.file.walk.mgratap = walkMgraTapEquivMinutes.csv active.bike.write.derived.network = true @@ -405,7 +405,7 @@ active.bike.derived.network.nodes = derivedBikeNodes.csv active.bike.derived.network.traversals = derivedBikeTraversals.csv active.assignment.file.bike = bikeAssignmentResults.csv -active.micromobility.file.walk.mgra = microMgraEquivMinutes.csv +# active.micromobility.file.walk.mgra = microMgraEquivMinutes.csv #active.micromobility.file.walk.mgratap = microMgraTapEquivMinutes.csv AtTransitConsistency.xThreshold = 1.0 From 1a2e08cccfb561aab555c1db5414ef94e6d5ffb5 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 4 Oct 2024 14:01:38 -0700 Subject: [PATCH 02/86] create intrazonal walk distances --- src/asim/scripts/resident/2zoneSkim.py | 20 ++++++++++++++++++-- 1 file changed, 18 insertions(+), 2 deletions(-) diff --git a/src/asim/scripts/resident/2zoneSkim.py b/src/asim/scripts/resident/2zoneSkim.py index 6f16e292d..6020b01de 100644 --- a/src/asim/scripts/resident/2zoneSkim.py +++ b/src/asim/scripts/resident/2zoneSkim.py @@ -116,11 +116,27 @@ #creating fields as required by the TNC routing Java model. "actual" is walk time in minutes maz_maz_walk_output[['i', 'j']] = maz_maz_walk_output[['OMAZ', 'DMAZ']] maz_maz_walk_output['actual'] = maz_maz_walk_output['DISTWALK'] / walk_speed_mph * 60.0 + +# find intrazonal distance by averaging the closest 3 zones and then half it +maz_maz_walk_output = maz_maz_walk_output.sort_values(['OMAZ', 'DISTWALK']) +maz_maz_walk_output.set_index(['OMAZ', 'DMAZ'], inplace=True) +unique_omaz = maz_maz_walk_output.index.get_level_values(0).unique() +# find the average of the closest 3 zones +means = maz_maz_walk_output.loc[(unique_omaz, slice(None)), 'DISTWALK'].groupby(level=0).head(3).groupby(level=0).mean() +intra_skims = pd.DataFrame({ + 'OMAZ': unique_omaz, + 'DMAZ': unique_omaz, + 'DISTWALK': means.values/2, + 'i': unique_omaz, + 'j': unique_omaz, + 'actual': means.values/2 +}).set_index(['OMAZ', 'DMAZ']) +maz_maz_walk_output = pd.concat([maz_maz_walk_output, intra_skims], axis=0) +# write output print(f"{datetime.now().strftime('%H:%M:%S')} Write Results...") -maz_maz_walk_output.to_csv(path + '/output/skims/' + parms['mmms']["maz_maz_walk_output"], index=False) +maz_maz_walk_output.to_csv(path + '/output/skims/' + parms['mmms']["maz_maz_walk_output"]) del(missing_maz) - # %% # MAZ-to-MAZ Bike print(f"{datetime.now().strftime('%H:%M:%S')} Build Maz To Maz Bike Table...") # same table above From 8b10e480a023dd262aba0ae569b0298e7c206de7 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 4 Oct 2024 14:02:19 -0700 Subject: [PATCH 03/86] moved 2zone skimming to the top of the model run --- src/main/resources/runSandagAbm_Preprocessing.cmd | 2 -- 1 file changed, 2 deletions(-) diff --git a/src/main/resources/runSandagAbm_Preprocessing.cmd b/src/main/resources/runSandagAbm_Preprocessing.cmd index c37b9e9e0..50be4520b 100644 --- a/src/main/resources/runSandagAbm_Preprocessing.cmd +++ b/src/main/resources/runSandagAbm_Preprocessing.cmd @@ -61,8 +61,6 @@ MD assignment CD .. if %ITERATION% equ 1 ( - ECHO Running resident model pre-processing - %PYTHON3% src/asim/scripts/resident/2zoneSkim.py %PROJECT_DIRECTORY% || goto error %PYTHON3% src/asim/scripts/resident/resident_preprocessing.py input output %SCENYEAR% %PROJECT_DIRECTORY% || goto error From 4c32e45b6e952c9b218bf8eaf980777529413baf Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Mon, 7 Oct 2024 07:13:53 -0700 Subject: [PATCH 04/86] changing walklogsum step naming and ordering in master run --- src/main/emme/toolbox/master_run.py | 8 ++------ src/main/emme/toolbox/utilities/properties.py | 18 +++++++----------- 2 files changed, 9 insertions(+), 17 deletions(-) diff --git a/src/main/emme/toolbox/master_run.py b/src/main/emme/toolbox/master_run.py index eda8b1107..e15a5b00d 100644 --- a/src/main/emme/toolbox/master_run.py +++ b/src/main/emme/toolbox/master_run.py @@ -286,14 +286,13 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, useLocalDrive = props["RunModel.useLocalDrive"] + skipMGRASkims = props["RunModel.skipMGRASkims"] skip4Ds = props["RunModel.skip4Ds"] skipInputChecker = props["RunModel.skipInputChecker"] skipInitialization = props["RunModel.skipInitialization"] deleteAllMatrices = props["RunModel.deleteAllMatrices"] skipCopyWarmupTripTables = props["RunModel.skipCopyWarmupTripTables"] skipCopyBikeLogsum = props["RunModel.skipCopyBikeLogsum"] - skipCopyWalkImpedance = props["RunModel.skipCopyWalkImpedance"] - skipWalkLogsums = props["RunModel.skipWalkLogsums"] skipBikeLogsums = props["RunModel.skipBikeLogsums"] skipBuildNetwork = props["RunModel.skipBuildNetwork"] skipHighwayAssignment = props["RunModel.skipHighwayAssignment"] @@ -449,12 +448,9 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, del(householdFile) if startFromIteration == 1: # only run the setup / init steps if starting from iteration 1 - if not skipWalkLogsums: + if not skipMGRASkims: self.run_proc("runSandagMGRASkims.cmd", [drive, path_forward_slash], "Create MGRA-level skims", capture_output=True) - # if not skipCopyWalkImpedance: - # self.copy_files(["walkMgraEquivMinutes.csv", "microMgraEquivMinutes.csv"], - # input_dir, output_dir) if not skip4Ds: run4Ds(path=self._path, int_radius=0.65, ref_path='visualizer_reference_path') diff --git a/src/main/emme/toolbox/utilities/properties.py b/src/main/emme/toolbox/utilities/properties.py index 209df83ee..2a59e1bdf 100644 --- a/src/main/emme/toolbox/utilities/properties.py +++ b/src/main/emme/toolbox/utilities/properties.py @@ -30,14 +30,13 @@ class PropertiesSetter(object): sample_rates = _m.Attribute(str) useLocalDrive = _m.Attribute(bool) + skipMGRASkims = _m.Attribute(bool) skip4Ds = _m.Attribute(bool) skipBuildNetwork = _m.Attribute(bool) skipInputChecker = _m.Attribute(bool) skipInitialization = _m.Attribute(bool) deleteAllMatrices = _m.Attribute(bool) skipCopyWarmupTripTables = _m.Attribute(bool) - skipWalkLogsums = _m.Attribute(bool) - skipCopyWalkImpedance = _m.Attribute(bool) skipBikeLogsums = _m.Attribute(bool) skipCopyBikeLogsum = _m.Attribute(bool) skipTransitConnector = _m.Attribute(bool) @@ -155,9 +154,9 @@ def _set_list_prop(self, name, value): def __init__(self): self._run_model_names = ( - "env", "useLocalDrive", "skip4Ds", "skipInputChecker", + "env", "useLocalDrive", "skipMGRASkims", "skip4Ds", "skipInputChecker", "startFromIteration", "skipInitialization", "deleteAllMatrices", "skipCopyWarmupTripTables", - "skipCopyBikeLogsum", "skipCopyWalkImpedance", "skipWalkLogsums", "skipBikeLogsums", "skipBuildNetwork", + "skipCopyBikeLogsum", "skipBikeLogsums", "skipBuildNetwork", "skipHighwayAssignment", "skipTransitSkimming", "skipTransitConnector", "skipTransponderExport", "skipScenManagement", "skipABMPreprocessing", "skipABMResident", "skipABMAirport", "skipABMXborderWait", "skipABMXborder", "skipABMVisitor", "skipMAASModel", "skipCVMEstablishmentSyn", "skipCTM", "skipTruck", "skipEI", "skipExternal", "skipTripTableCreation", "skipFinalHighwayAssignment", "skipFinalTransitAssignment", "skipVisualizer", "skipDataExport", "skipDatalake", "skipDataLoadRequest", @@ -209,14 +208,13 @@ def add_properties_interface(self, pb, disclosure=False): skip_startup_items = [ ("useLocalDrive", "Use the local drive during the model run"), + ("skipMGRASkims", "Skip MGRA skims"), ("skip4Ds", "Skip running 4Ds"), ("skipBuildNetwork", "Skip build of highway and transit network"), ("skipInputChecker", "Skip running input checker"), ("skipInitialization", "Skip matrix and transit database initialization"), ("deleteAllMatrices", "    Delete all matrices"), ("skipCopyWarmupTripTables","Skip import of warmup trip tables"), - ("skipWalkLogsums", "Skip walk logsums"), - ("skipCopyWalkImpedance", "Skip copy of walk impedance"), ("skipBikeLogsums", "Skip bike logsums"), ("skipCopyBikeLogsum", "Skip copy of bike logsum"), ] @@ -355,14 +353,13 @@ def load_properties(self): self.sample_rates = ",".join(str(x) for x in props.get("sample_rates")) self.useLocalDrive = props.get("RunModel.useLocalDrive", True) + self.skipMGRASkims = props.get("RunModel.skipMGRASkims", False) self.skip4Ds = props.get("RunModel.skip4Ds", False) self.skipBuildNetwork = props.get("RunModel.skipBuildNetwork", False) self.skipInputChecker = props.get("RunModel.skipInputChecker", False) self.skipInitialization = props.get("RunModel.skipInitialization", False) self.deleteAllMatrices = props.get("RunModel.deleteAllMatrices", False) self.skipCopyWarmupTripTables = props.get("RunModel.skipCopyWarmupTripTables", False) - self.skipWalkLogsums = props.get("RunModel.skipWalkLogsums", False) - self.skipCopyWalkImpedance = props.get("RunModel.skipCopyWalkImpedance", False) self.skipBikeLogsums = props.get("RunModel.skipBikeLogsums", False) self.skipCopyBikeLogsum = props.get("RunModel.skipCopyBikeLogsum", False) @@ -401,17 +398,16 @@ def save_properties(self): props["sample_rates"] = [float(x) for x in self.sample_rates.split(",")] props["RunModel.useLocalDrive"] = self.useLocalDrive + props["RunModel.skipMGRASkims"] = self.skipMGRASkims props["RunModel.skip4Ds"] = self.skip4Ds props["RunModel.skipBuildNetwork"] = self.skipBuildNetwork props["RunModel.skipInputChecker"] = self.skipInputChecker props["RunModel.skipInitialization"] = self.skipInitialization props["RunModel.deleteAllMatrices"] = self.deleteAllMatrices props["RunModel.skipCopyWarmupTripTables"] = self.skipCopyWarmupTripTables - props["RunModel.skipWalkLogsums"] = self.skipWalkLogsums - props["RunModel.skipCopyWalkImpedance"] = self.skipCopyWalkImpedance + props["RunModel.skipBikeLogsums"] = self.skipBikeLogsums props["RunModel.skipCopyBikeLogsum"] = self.skipCopyBikeLogsum - props["RunModel.skipHighwayAssignment"] = self.skipHighwayAssignment props["RunModel.skipTransitSkimming"] = self.skipTransitSkimming props["RunModel.skipTransitConnector"] = self.skipTransitConnector From 8406ccda9b635783c082550bb20c01269cc69fc0 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Mon, 7 Oct 2024 07:14:53 -0700 Subject: [PATCH 05/86] removing old java related lines from runSandagMGRASkims.cmd --- src/main/resources/runSandagMGRASkims.cmd | 9 +-------- 1 file changed, 1 insertion(+), 8 deletions(-) diff --git a/src/main/resources/runSandagMGRASkims.cmd b/src/main/resources/runSandagMGRASkims.cmd index a064118b7..206eba629 100644 --- a/src/main/resources/runSandagMGRASkims.cmd +++ b/src/main/resources/runSandagMGRASkims.cmd @@ -20,11 +20,4 @@ cd %PROJECT_DRIVE%%PROJECT_DIRECTORY% rem rem build walk skims ECHO Running 2-zone skimming procedure... -%PYTHON3% src/asim/scripts/resident/2zoneSkim.py %PROJECT_DIRECTORY% || goto error - -@REM python %PROJECT_DRIVE%%PROJECT_DIRECTORY%\python\calculate_micromobility.py --properties_file %PROJECT_DRIVE%%PROJECT_DIRECTORY%\conf\sandag_abm.properties --outputs_directory %PROJECT_DRIVE%%PROJECT_DIRECTORY%\output --inputs_parent_directory %PROJECT_DRIVE%%PROJECT_DIRECTORY% - -:done -rem ### restore saved environment variable values, and change back to original current directory -set JAVA_PATH=%OLDJAVAPATH% -set PATH=%OLDPATH% +%PYTHON3% src/asim/scripts/resident/2zoneSkim.py %PROJECT_DIRECTORY% || goto error \ No newline at end of file From 99e971cf86789208d95ac27aa3dc5b1bdd88a1e9 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 11 Oct 2024 13:57:50 -0700 Subject: [PATCH 06/86] fix bug by setting 'actual' to be time --- src/asim/scripts/resident/2zoneSkim.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/asim/scripts/resident/2zoneSkim.py b/src/asim/scripts/resident/2zoneSkim.py index 6020b01de..6902b0828 100644 --- a/src/asim/scripts/resident/2zoneSkim.py +++ b/src/asim/scripts/resident/2zoneSkim.py @@ -129,7 +129,7 @@ 'DISTWALK': means.values/2, 'i': unique_omaz, 'j': unique_omaz, - 'actual': means.values/2 + 'actual': (means.values/walk_speed_mph * 60.0) / 2 }).set_index(['OMAZ', 'DMAZ']) maz_maz_walk_output = pd.concat([maz_maz_walk_output, intra_skims], axis=0) # write output From 2ccbeb6cff650bda09252584d727452d30a5cdc3 Mon Sep 17 00:00:00 2001 From: Cundo Arellano <51237056+cundo92@users.noreply.github.com> Date: Thu, 17 Oct 2024 14:30:41 -0700 Subject: [PATCH 07/86] Update traffic_assignment.py Update traffic assignment so that it does not crash when attempting to add non-transponder SOV mode (s) to links coded as HOV = 4 (toll) if the network does not have any such links. --- .../toolbox/assignment/traffic_assignment.py | 20 ++++++++++++++----- 1 file changed, 15 insertions(+), 5 deletions(-) diff --git a/src/main/emme/toolbox/assignment/traffic_assignment.py b/src/main/emme/toolbox/assignment/traffic_assignment.py index 4fcfdc39d..0a9d0d5ca 100644 --- a/src/main/emme/toolbox/assignment/traffic_assignment.py +++ b/src/main/emme/toolbox/assignment/traffic_assignment.py @@ -1018,15 +1018,25 @@ def prepare_midday_generic_truck(self, scenario): #added by RSG (nagendra.dhakar@rsginc.com) for collapsed assignment classes testing #this adds non-transponder SOV mode to SR-125 links # TODO: move this to the network_import step for consistency and foward-compatibility + # Modified 10.10.24 by CAR based on suggestion from Kevin Bragg of Bentley so that it + # can handle networks that have no HOV = 4 links def change_mode_sovntp(self, scenario): modeller = _m.Modeller() + netcalc = modeller.tool( + "inro.emme.network_calculation.network_calculator") change_link_modes = modeller.tool( "inro.emme.data.network.base.change_link_modes") - with _m.logbook_trace("Preparation for sov ntp assignment"): - gen_sov_mode = 's' - sov_mode = scenario.mode(gen_sov_mode) - change_link_modes(modes=[sov_mode], action="ADD", - selection="@hov=4", scenario=scenario) + spec = { + "type": "NETWORK_CALCULATION", + "expression": "1", + "selections": {"link": "@hov=4"}} + report = netcalc(spec, scenario=scenario, full_report=True) + if report["num_evaluations"] > 0: + with _m.logbook_trace("Preparation for sov ntp assignment"): + gen_sov_mode = 's' + sov_mode = scenario.mode(gen_sov_mode) + change_link_modes(modes=[sov_mode], action="ADD", + selection="@hov=4", scenario=scenario) def report(self, period, scenario, classes): emmebank = scenario.emmebank From 78e75d80c18e4aaf35e2b084ecaa166548669f92 Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Tue, 22 Oct 2024 16:38:59 -0700 Subject: [PATCH 08/86] Removed flexible fleet wait time from travel time reporter --- src/main/python/TravelTimeReporter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 42d43a085..96f550893 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -392,7 +392,7 @@ def get_ff_time(self, nev = False): np.maximum( self.constants[flavor + "DiversionConstant"] + direct_time, self.constants[flavor + "DiversionFactor"] * direct_time - ) + self.constants[flavor + "WaitTime"], + ) self.settings["infinity"] ), self.land_use.index, @@ -483,4 +483,4 @@ def run(self): TravelTimeReporter(model_run, settings_file).run() end_time = time.time() - print("Travel time reporter run in {} seconds".format(round(end_time - start_time, 1))) \ No newline at end of file + print("Travel time reporter run in {} seconds".format(round(end_time - start_time, 1))) From bb23cc0f166a23b768cf26a899f3855743694a8a Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Tue, 22 Oct 2024 17:23:25 -0700 Subject: [PATCH 09/86] Added comma back in for np.where() call to work properly --- src/main/python/TravelTimeReporter.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 96f550893..05688e39c 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -393,7 +393,7 @@ def get_ff_time(self, nev = False): self.constants[flavor + "DiversionConstant"] + direct_time, self.constants[flavor + "DiversionFactor"] * direct_time ) - self.settings["infinity"] + self.settings["infinity"], ), self.land_use.index, self.land_use.index From ee3dda5fc5dc1a71e6a9561650a1bfc4256bac79 Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Tue, 22 Oct 2024 17:46:56 -0700 Subject: [PATCH 10/86] Moved comma to correct location --- src/main/python/TravelTimeReporter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 05688e39c..fd5767086 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -392,8 +392,8 @@ def get_ff_time(self, nev = False): np.maximum( self.constants[flavor + "DiversionConstant"] + direct_time, self.constants[flavor + "DiversionFactor"] * direct_time - ) - self.settings["infinity"], + ), + self.settings["infinity"] ), self.land_use.index, self.land_use.index From 0be169e186669ef77f452d612142ad9720bb6914 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Thu, 24 Oct 2024 11:16:11 -0700 Subject: [PATCH 11/86] Reset coef_calib_flexfleet in trip mode choice --- src/asim/configs/resident/trip_mode_choice_coefficients.csv | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/asim/configs/resident/trip_mode_choice_coefficients.csv b/src/asim/configs/resident/trip_mode_choice_coefficients.csv index 8226c31ee..10e05ad44 100644 --- a/src/asim/configs/resident/trip_mode_choice_coefficients.csv +++ b/src/asim/configs/resident/trip_mode_choice_coefficients.csv @@ -1433,4 +1433,4 @@ coef_calib_tourescooterjointtour0_ESCOOTER_disc,0.0,F coef_calib_tourescooterjointtour0_ESCOOTER_maint,0.0,F coef_calib_tourescooterjointtour1_ESCOOTER_disc,-28.0,F coef_calib_tourescooterjointtour1_ESCOOTER_maint,-28.0,F -coef_calib_flexfleet,8.5,F +coef_calib_flexfleet,0.0,F From e08056776ab4c2317925002ffc11bb9e78c5d319 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Thu, 24 Oct 2024 11:37:22 -0700 Subject: [PATCH 12/86] Added calibration coefficients for zero-auto households traveling within flexible fleet service areas --- src/asim/configs/resident/tour_mode_choice.csv | 5 ++++- src/asim/configs/resident/tour_mode_choice_coefficients.csv | 2 ++ .../resident/tour_mode_choice_coefficients_template.csv | 4 +++- 3 files changed, 9 insertions(+), 2 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index 8e464d679..b53135be4 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -394,4 +394,7 @@ util_escooter_access,escooter utility for in-vehicle time,@(microConstant + micr util_escooter_cost_inb,escooter utility for inbound cost,@((microFixedCost + microVarCost*df.escooter_time_inb)/df.cost_sensitivity),,,,,,,,,,,,,,,,,,,,,,,coef_income util_escooter_cost_out,escooter utility for outbound cost,@((microFixedCost + microVarCost*df.escooter_time_out)/df.cost_sensitivity),,,,,,,,,,,,,,,,,,,,,,,coef_income #,Calibration from on-board survey -util_calib_onboard,Calibration coefficient to match implied number of tours from on-board survey,1,,,,,,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,,,,,, \ No newline at end of file +util_calib_onboard,Calibration coefficient to match implied number of tours from on-board survey,1,,,,,,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,,,,,, +#,Flexible fleet calibration for zero-auto households +util_calib_mt_zeroautohh,Calibration coefficient for zero-auto households traveling within microtransit service area,@(df.microtransit_available & (df.auto_ownership == 0)),,,,,,,,,,,,,,,,,,,,coef_calib_mt_zeroautohh,,, +util_calib_nev_zeroautohh,Calibration coefficient for zero-auto households traveling within NEV service area,@(df.nev_available & (df.auto_ownership == 0)),,,,,,,,,,,,,,,,,,,,coef_calib_nev_zeroautohh,,, \ No newline at end of file diff --git a/src/asim/configs/resident/tour_mode_choice_coefficients.csv b/src/asim/configs/resident/tour_mode_choice_coefficients.csv index e4fbd5bce..8e9344c18 100644 --- a/src/asim/configs/resident/tour_mode_choice_coefficients.csv +++ b/src/asim/configs/resident/tour_mode_choice_coefficients.csv @@ -757,3 +757,5 @@ coef_calib_autosufficienthhin_EBIKE_school,-2.363534838614524,F coef_calib_autosufficienthhin_ESCOOTER_atwork,-4.0,F coef_calib_autosufficienthhin_EBIKE_atwork,-2.67253074,F coef_calib_onboard,-0.293475781,F +coef_calib_mt_zeroautohh,0.0,F +coef_calib_nev_zeroautohh,0.0,F \ No newline at end of file diff --git a/src/asim/configs/resident/tour_mode_choice_coefficients_template.csv b/src/asim/configs/resident/tour_mode_choice_coefficients_template.csv index 0561b2c0e..7d80ad370 100644 --- a/src/asim/configs/resident/tour_mode_choice_coefficients_template.csv +++ b/src/asim/configs/resident/tour_mode_choice_coefficients_template.csv @@ -225,4 +225,6 @@ coef_calib_zeroautohhjointtou_TNC_SINGLE,coef_zero,coef_zero,coef_zero,coef_cali coef_calib_zeroautohhjointtou_TNC_SHARED,coef_zero,coef_zero,coef_zero,coef_calib_zeroautohhjointtou_TNC_SHARED_maint,coef_calib_zeroautohhjointtou_TNC_SHARED_maint,coef_calib_zeroautohhjointtou_TNC_SHARED_maint,coef_calib_zeroautohhjointtou_TNC_SHARED_disc,coef_calib_zeroautohhjointtou_TNC_SHARED_disc,coef_calib_zeroautohhjointtou_TNC_SHARED_disc,coef_zero coef_calib_zeroautohhjointtou_EBIKE,coef_zero,coef_zero,coef_zero,coef_calib_zeroautohhjointtou_EBIKE_maint,coef_calib_zeroautohhjointtou_EBIKE_maint,coef_calib_zeroautohhjointtou_EBIKE_maint,coef_calib_zeroautohhjointtou_EBIKE_disc,coef_calib_zeroautohhjointtou_EBIKE_disc,coef_calib_zeroautohhjointtou_EBIKE_disc,coef_zero coef_calib_zeroautohhjointtou_ESCOOTER,coef_zero,coef_zero,coef_zero,coef_calib_zeroautohhjointtou_ESCOOTER_maint,coef_calib_zeroautohhjointtou_ESCOOTER_maint,coef_calib_zeroautohhjointtou_ESCOOTER_maint,coef_calib_zeroautohhjointtou_ESCOOTER_disc,coef_calib_zeroautohhjointtou_ESCOOTER_disc,coef_calib_zeroautohhjointtou_ESCOOTER_disc,coef_zero -coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard \ No newline at end of file +coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard,coef_calib_onboard +coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh,coef_calib_mt_zeroautohh +coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh,coef_calib_nev_zeroautohh \ No newline at end of file From 6cabb999bab521381a273db36e0bd52c2b78f2e0 Mon Sep 17 00:00:00 2001 From: Cundo Arellano <51237056+cundo92@users.noreply.github.com> Date: Thu, 24 Oct 2024 11:41:48 -0700 Subject: [PATCH 13/86] Add FFC attribute Incorporate FFC attribute from input network to the import network and data exporter steps. --- .../emme/toolbox/export/export_data_loader_network.py | 1 + src/main/emme/toolbox/import/import_network.py | 3 ++- src/main/python/hwyShapeExport.py | 11 ++++------- 3 files changed, 7 insertions(+), 8 deletions(-) diff --git a/src/main/emme/toolbox/export/export_data_loader_network.py b/src/main/emme/toolbox/export/export_data_loader_network.py index 651a8b9db..d3171026b 100644 --- a/src/main/emme/toolbox/export/export_data_loader_network.py +++ b/src/main/emme/toolbox/export/export_data_loader_network.py @@ -186,6 +186,7 @@ def export_traffic_attribute(self, base_scenario, export_path, traffic_emmebank, ("YR", "@year_open_traffic"), ("PROJ", "@project_code"), ("FC", "type"), + ("FFC", "@fed_type"), ("HOV", "@hov"), ("EATRUCK", "@truck_ea"), ("AMTRUCK", "@truck_am"), diff --git a/src/main/emme/toolbox/import/import_network.py b/src/main/emme/toolbox/import/import_network.py index 0362108ca..067d3b27d 100644 --- a/src/main/emme/toolbox/import/import_network.py +++ b/src/main/emme/toolbox/import/import_network.py @@ -284,7 +284,8 @@ def execute(self): ("ASPD", ("@speed_adjusted", "HWY_TWO_WAY", "EXTRA", "Adjusted link speed (miles/hr)")), ("YR", ("@year_open_traffic", "HWY_TWO_WAY", "EXTRA", "The year the link opened to traffic")), ("PROJ", ("@project_code", "HWY_TWO_WAY", "EXTRA", "Project number for use with hwyproj.xls")), - ("FC", ("type", "TWO_WAY", "STANDARD", "")), + ("FC", ("type", "TWO_WAY", "STANDARD", "Roadway functional class")), + ("FFC", ("@fed_type", "TWO_WAY", "EXTRA", "Roadway federal functional class")), ("HOV", ("@hov", "TWO_WAY", "EXTRA", "Link operation type")), ("MINMODE", ("@minmode", "TWO_WAY", "EXTRA", "Transit mode type")), ("EATRUCK", ("@truck_ea", "HWY_TWO_WAY", "EXTRA", "Early AM truck restriction code ")), diff --git a/src/main/python/hwyShapeExport.py b/src/main/python/hwyShapeExport.py index fc430bdf8..116a5c81c 100644 --- a/src/main/python/hwyShapeExport.py +++ b/src/main/python/hwyShapeExport.py @@ -15,13 +15,7 @@ def export_highway_shape(scenario_path: str) -> geopandas.GeoDataFrame: scenario_path: String location of the completed ABM scenario folder Returns: - A GeoPandas GeoDataFrame of the loaded highway network """ - - # temporary so that the sensitivity summary on data lake works - # the sensitivity summary on data lake uses IFC (from TCOV) rather than FC (from TNED) - hwy_tcad = pd.read_csv(os.path.join(scenario_path, "report", "hwyTcad.csv")) - hwy_tcad['IFC'] = hwy_tcad['FC'] - hwy_tcad.to_csv(os.path.join(scenario_path, "report", "hwyTcad.csv"), index=False) + A GeoPandas GeoDataFrame of the loaded highway network """ # read in input highway network hwy_tcad = pd.read_csv(os.path.join(scenario_path, "report", "hwyTcad.csv"), @@ -29,6 +23,7 @@ def export_highway_shape(scenario_path: str) -> geopandas.GeoDataFrame: "NM", # link name "Length", # link length in miles "FC", # initial functional class + "FFC", # federal functional class "HOV", # link operation type "EATRUCK", # truck restriction code - Early AM "AMTRUCK", # truck restriction code - AM Peak @@ -386,6 +381,7 @@ def export_highway_shape(scenario_path: str) -> geopandas.GeoDataFrame: "Length", "FC", "FC_Desc", + "FFC", "HOV", "EATRUCK", "AMTRUCK", @@ -484,6 +480,7 @@ def export_highway_shape(scenario_path: str) -> geopandas.GeoDataFrame: "Length": "len_mile", "FC": "fc", "FC_Desc": "fc_desc", + "FFC": "ffc", "HOV": "hov", "EATRUCK": "truck_ea", "AMTRUCK": "truck_am", From e1d577a20d18e57a4ac9aff4a02a6160794e9ccb Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Thu, 24 Oct 2024 11:49:18 -0700 Subject: [PATCH 14/86] Applied TNC_shared_IVTFactor to non-flexible fleet travel as those already factor in diversion --- src/asim/configs/resident/tour_mode_choice.csv | 2 +- src/asim/configs/resident/trip_mode_choice.csv | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index b53135be4..a8386ce23 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -349,7 +349,7 @@ util_TNC Single - Wait time,TNC Single - Wait time,@df.totalWaitSingleTNC * df.t util_TNC Single - Cost,TNC Single - Cost,"@((np.maximum(TNC_single_baseFare*2 + (df.s2_dist_skims_out + df.s2_dist_skims_inb) * TNC_single_costPerMile + (df.s2_time_skims_out + df.s2_time_skims_inb) * TNC_single_costPerMinute, TNC_single_costMinimum*2)*100 + df.s2_cost_skims_out + df.s2_cost_skims_inb))/df.cost_sensitivity",,,,,,,,,,,,,,,,,,,coef_income,,,, #,TNC Shared,,,,,,,,,,,,,,,,,,,,,,,, util_TNC Shared_switch,TNC Shared - switch turn-off (depends on data availability),@((~df.nev_available) & (~df.microtransit_available) & (scenarioYear==2022)),,,,,,,,,,,,,,,,,,,,-999,,, -util_TNC Shared - In-vehicle time,TNC Shared - In-vehicle time,"@(np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, (df.s3_time_skims_out + df.s3_time_skims_inb)))) * TNC_shared_IVTFactor * df.time_factor",,,,,,,,,,,,,,,,,,,,coef_ivt,,, +util_TNC Shared - In-vehicle time,TNC Shared - In-vehicle time,"@(np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, (df.s3_time_skims_out + df.s3_time_skims_inb) * TNC_shared_IVTFactor))) * df.time_factor",,,,,,,,,,,,,,,,,,,,coef_ivt,,, util_TNC Shared - Wait time,TNC Shared - Wait time,"@np.where(df.nev_available, 2*nevWaitTime, np.where(df.microtransit_available, 2*microtransitWaitTime, df.totalWaitSharedTNC)) * df.time_factor",,,,,,,,,,,,,,,,,,,,coef_wait,,, util_TNC Shared - Cost,TNC Shared - Cost,"@np.where(df.nev_available, 2*nevCost, np.where(df.microtransit_available, 2*microtransitCost, (np.maximum(TNC_shared_baseFare*2 + (df.s3_dist_skims_out + df.s3_dist_skims_inb) * TNC_shared_costPerMile + (df.s3_time_skims_out + df.s3_time_skims_inb)* TNC_shared_costPerMinute, TNC_shared_costMinimum*2)*100 + df.s3_cost_skims_out + df.s3_cost_skims_inb)))/df.cost_sensitivity",,,,,,,,,,,,,,,,,,,,coef_income,,, #,School bus,,,,,,,,,,,,,,,,,,,,,,,, diff --git a/src/asim/configs/resident/trip_mode_choice.csv b/src/asim/configs/resident/trip_mode_choice.csv index 614638834..79a67ab96 100644 --- a/src/asim/configs/resident/trip_mode_choice.csv +++ b/src/asim/configs/resident/trip_mode_choice.csv @@ -402,7 +402,7 @@ util_TNC Single - Wait time,TNC Single - Wait time,origSingleTNCWaitTime * time util_TNC Single - Cost,TNC Single - Cost,"@((np.maximum(TNC_single_baseFare + df.s2_dist_skims * TNC_single_costPerMile + df.s2_time_skims * TNC_single_costPerMinute, TNC_single_costMinimum) * 100 + df.s2_cost_skims)) / (np.maximum(df.income,1000)**df.income_exponent)",,,,,,,,,,,,,,,,,,,coef_income,,,, #,TNC Shared,,,,,,,,,,,,,,,,,,,,,,,, util_TNC Shared_switch,TNC Shared - switch turn-off (depends on data availability),@(((~df.nev_available) & (~df.microtransit_available) & (scenarioYear==2022)) | (df.RideHail_available==0)),,,,,,,,,,,,,,,,,,,,-999,,, -util_TNC Shared - In-vehicle time,TNC Shared - In-vehicle time,"@(np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims))) * TNC_shared_IVTFactor * df.time_factor",,,,,,,,,,,,,,,,,,,,coef_ivt,,, +util_TNC Shared - In-vehicle time,TNC Shared - In-vehicle time,"@(np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims * TNC_shared_IVTFactor))) * df.time_factor",,,,,,,,,,,,,,,,,,,,coef_ivt,,, util_TNC Shared - Wait time,TNC Shared - Wait time,"@np.where(df.nev_available, nevWaitTime, np.where(df.microtransit_available, microtransitWaitTime, df.origSharedTNCWaitTime)) * df.time_factor",,,,,,,,,,,,,,,,,,,,coef_wait,,, util_TNC Shared - Cost,TNC Shared - Cost,"@np.where(df.nev_available, nevCost, np.where(df.microtransit_available, microtransitCost, (np.maximum(TNC_shared_baseFare + df.s3_dist_skims * TNC_shared_costPerMile + df.s3_time_skims * TNC_shared_costPerMinute, TNC_shared_costMinimum) * 100 + df.s3_cost_skims))) / (np.maximum(df.income,1000)**df.income_exponent)",,,,,,,,,,,,,,,,,,,,coef_income,,, util_calib_flexfleet,Calibration for flexible fleets,"microtransit_available | nev_available",,,,,,,,,,,,,,,,,,,,coef_calib_flexfleet,,, From 4496685883c6b43798b83b83500fa9b8df28a029 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Thu, 24 Oct 2024 12:03:02 -0700 Subject: [PATCH 15/86] Updated trip mode choice spec for crossborder model to use same TNC shared IVT factor as defined in common\constants.yaml --- src/asim/configs/crossborder/trip_mode_choice.csv | 2 +- src/asim/configs/crossborder/trip_mode_choice.yaml | 1 - 2 files changed, 1 insertion(+), 2 deletions(-) diff --git a/src/asim/configs/crossborder/trip_mode_choice.csv b/src/asim/configs/crossborder/trip_mode_choice.csv index 119aac1ca..9758bae26 100644 --- a/src/asim/configs/crossborder/trip_mode_choice.csv +++ b/src/asim/configs/crossborder/trip_mode_choice.csv @@ -66,7 +66,7 @@ util_TNC_SINGLE_IVT,TNC Single - In-vehicle time,c_ivt * s2_time_skims,,,,,,,,,1 util_TNC_SINGLE_wait,TNC Single - Wait time,c_ivt * 1.5 * tnc_single_wait_time,,,,,,,,,1, util_TNC_SINGLE_cost,TNC Single - Cost,@c_cost * ((TNC_single_baseFare + (df.s2_dist_skims * TNC_single_costPerMile) + (df.s2_time_skims * TNC_single_costPerMinute).clip(lower=TNC_single_costMinimum)) * 100 + df.s2_cost_skims),,,,,,,,,1, util_TNC Shared_switch,TNC Shared - switch turn-off (depends on data availability),@((~df.nev_available) & (~df.microtransit_available) & (scenarioYear==2022)),,,,,,,,,,-999 -util_TNC_SHARED_IVT,TNC Shared - In-vehicle time,"@df.c_ivt * np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims)) * tnc_shared_ivt_factor",,,,,,,,,,1 +util_TNC_SHARED_IVT,TNC Shared - In-vehicle time,"@df.c_ivt * np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims)) * TNC_shared_IVTFactor",,,,,,,,,,1 util_TNC_SHARED_wait,TNC Shared - Wait time,"@df.c_ivt * 1.5 * np.where(df.nev_available, nevWaitTime, np.where(df.microtransit_available, microtransitWaitTime, df.tnc_shared_wait_time))",,,,,,,,,,1 util_TNC_SHARED_cost,TNC Shared - Cost,"@c_cost * np.where(df.nev_available, nevCost, np.where(df.microtransit_available, microtransitCost, ((TNC_shared_baseFare + (df.s3_dist_skims * TNC_shared_costPerMile) + (df.s3_time_skims * TNC_shared_costPerMinute).clip(lower=TNC_shared_costMinimum)))) * 100 + df.s3_cost_skims)",,,,,,,,,,1 #,,,,,,,,,,,, diff --git a/src/asim/configs/crossborder/trip_mode_choice.yaml b/src/asim/configs/crossborder/trip_mode_choice.yaml index 05dd949cb..1cb266738 100644 --- a/src/asim/configs/crossborder/trip_mode_choice.yaml +++ b/src/asim/configs/crossborder/trip_mode_choice.yaml @@ -39,7 +39,6 @@ CONSTANTS: time_distrib_stddev_work: 0.7 time_distrib_mean_nonwork: 1.0 time_distrib_stddev_nonwork: 0.6 - tnc_shared_ivt_factor: 1.25 tnc_single_wait_time_mean_by_density: 1: 10.3 2: 8.5 From a983c33fbd00646dc9781e34fb4fdf0eb7fcfa67 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Thu, 24 Oct 2024 12:20:18 -0700 Subject: [PATCH 16/86] Added TNC_shared_IVTFactor to calculations of timeDrive and distanceDrive --- .../write_trip_matrices_annotate_trips_preprocessor.csv | 2 +- .../write_trip_matrices_annotate_trips_preprocessor.csv | 8 ++++---- .../write_trip_matrices_annotate_trips_preprocessor.csv | 8 ++++---- .../write_trip_matrices_annotate_trips_preprocessor.csv | 8 ++++---- 4 files changed, 13 insertions(+), 13 deletions(-) diff --git a/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv b/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv index bb86b0dd6..158488da9 100644 --- a/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv +++ b/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv @@ -211,7 +211,7 @@ Description,Target,Expression #,_timeDrive,"_timeDrive + (odt_skims['HOV2_M_TIME'] + _TAXI_WAIT_TIME) * np.where((trip_mode == 'TAXI'),1,0)" #,_timeDrive,"_timeDrive + (odt_skims['HOV2_M_TIME'] + _SINGLE_TNC_WAIT_TIME) * np.where((trip_mode == 'TNC_SINGLE'),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trip_mode == 'SHARED3') & vot2),1,0)" -#,_timeDrive,"_timeDrive + (odt_skims['HOV3_M_TIME'] + _SHARED_TNC_WAIT_TIME) * np.where((trip_mode == 'TNC_SHARED'),1,0) * _TNC_SHARED_IVT_FACTOR" +#,_timeDrive,"_timeDrive + (odt_skims['HOV3_M_TIME'] + _SHARED_TNC_WAIT_TIME) * TNC_shared_IVTFactor * np.where((trip_mode == 'TNC_SHARED'),1,0) * _TNC_SHARED_IVT_FACTOR" ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_H_TIME'] * np.where(((trip_mode == 'DRIVEALONE') & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_H_TIME'] * np.where(((trip_mode == 'SHARED2') & vot3),1,0)" ,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trip_mode == 'SHARED3') & vot3),1,0)" diff --git a/src/asim/configs/crossborder/write_trip_matrices_annotate_trips_preprocessor.csv b/src/asim/configs/crossborder/write_trip_matrices_annotate_trips_preprocessor.csv index cbb3c0659..7f0876c09 100644 --- a/src/asim/configs/crossborder/write_trip_matrices_annotate_trips_preprocessor.csv +++ b/src/asim/configs/crossborder/write_trip_matrices_annotate_trips_preprocessor.csv @@ -251,11 +251,11 @@ Description,Target,Expression ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_M_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot_2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_M_TIME'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot_2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot_2),1,0)" -,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_H_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot_3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_H_TIME'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot_3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot_3),1,0)" -,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_distanceDrive,"odt_skims['SOV_NT_L_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot_1),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_L_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot_1),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_L_DIST'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot_1),1,0)" @@ -263,11 +263,11 @@ Description,Target,Expression ,_distanceDrive,"_distanceDrive + odt_skims['SOV_NT_M_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot_2),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_M_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot_2),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot_2),1,0)" -,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['SOV_NT_H_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot_3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_H_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot_3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot_3),1,0)" -,distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot_3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_costTollDrive,"odt_skims['SOV_NT_L_TOLLCOST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot_1),1,0)" ,_costTollDrive,"_costTollDrive + (odt_skims['HOV2_L_TOLLCOST'] / tour_participants) * np.where(((trips.trip_mode == 'SHARED2') & vot_1),1,0)" ,_costTollDrive,"_costTollDrive + (odt_skims['HOV3_L_TOLLCOST'] / tour_participants) * np.where(((trips.trip_mode == 'SHARED3') & vot_1),1,0)" diff --git a/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv b/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv index c799daf55..dd68f01dc 100644 --- a/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv @@ -241,12 +241,12 @@ Description,Target,Expression ,_timeDrive,"_timeDrive + odt_skims['SOV_TR_M_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ownTrp & vot2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_M_TIME'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trips.trip_mode == 'SHARED3') & vot2),1,0)" -,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trips.trip_mode == 'TNC_SHARED') & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode == 'TNC_SHARED') & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_H_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ~ownTrp & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['SOV_TR_H_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ownTrp & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_H_TIME'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trips.trip_mode == 'SHARED3') & vot3),1,0)" -,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trips.trip_mode == 'TNC_SHARED') & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode == 'TNC_SHARED') & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_distanceDrive,"odt_skims['SOV_NT_L_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ~ownTrp & vot1),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['SOV_TR_L_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ownTrp & vot1),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_L_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot1),1,0)" @@ -256,12 +256,12 @@ Description,Target,Expression ,_distanceDrive,"_distanceDrive + odt_skims['SOV_TR_M_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ownTrp & vot2),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_M_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot2),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * np.where(((trips.trip_mode == 'SHARED3') & vot2),1,0)" -,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * np.where(((trips.trip_mode == 'TNC_SHARED') & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode == 'TNC_SHARED') & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['SOV_NT_H_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ~ownTrp & vot3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['SOV_TR_H_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ownTrp & vot3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_H_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * np.where(((trips.trip_mode == 'SHARED3') & vot3),1,0)" -,distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * np.where(((trips.trip_mode == 'TNC_SHARED') & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode == 'TNC_SHARED') & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_costTollDrive,"odt_skims['SOV_NT_L_TOLLCOST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ~ownTrp & vot1),1,0)" ,_costTollDrive,"_costTollDrive + odt_skims['SOV_TR_L_TOLLCOST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & ownTrp & vot1),1,0)" ,_costTollDrive,"_costTollDrive + (odt_skims['HOV2_L_TOLLCOST'] / np.where(_is_joint,tour_participants,OCC_SHARED2)) * np.where(((trips.trip_mode == 'SHARED2') & vot1),1,0)" diff --git a/src/asim/configs/visitor/write_trip_matrices_annotate_trips_preprocessor.csv b/src/asim/configs/visitor/write_trip_matrices_annotate_trips_preprocessor.csv index 492ac38ba..5e370c41d 100644 --- a/src/asim/configs/visitor/write_trip_matrices_annotate_trips_preprocessor.csv +++ b/src/asim/configs/visitor/write_trip_matrices_annotate_trips_preprocessor.csv @@ -216,11 +216,11 @@ Description,Target,Expression ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_M_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_M_TIME'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot2),1,0)" -,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_H_TIME'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_H_TIME'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot3),1,0)" -,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_distanceDrive,"odt_skims['SOV_NT_L_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot1),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_L_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot1),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_L_DIST'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot1),1,0)" @@ -228,11 +228,11 @@ Description,Target,Expression ,_distanceDrive,"_distanceDrive + odt_skims['SOV_NT_M_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot2),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_M_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot2),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot2),1,0)" -,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,_distanceDrive,"_distanceDrive + odt_skims['HOV3_M_DIST'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot2 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['SOV_NT_H_DIST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV2_H_DIST'] * np.where(((trips.trip_mode.isin(['SHARED2','TAXI','TNC_SINGLE'])) & vot3),1,0)" ,_distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * np.where(((trips.trip_mode.isin(['SHARED3'])) & vot3),1,0)" -,distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" +,distanceDrive,"_distanceDrive + odt_skims['HOV3_H_DIST'] * TNC_shared_IVTFactor * np.where(((trips.trip_mode.isin(['TNC_SHARED'])) & vot3 & ~trips.nev_available & ~trips.microtransit_available),1,0)" ,_costTollDrive,"odt_skims['SOV_NT_L_TOLLCOST'] * np.where(((trips.trip_mode == 'DRIVEALONE') & vot1),1,0)" ,_costTollDrive,"_costTollDrive + (odt_skims['HOV2_L_TOLLCOST'] / tour_participants) * np.where(((trips.trip_mode == 'SHARED2') & vot1),1,0)" ,_costTollDrive,"_costTollDrive + (odt_skims['HOV3_L_TOLLCOST'] / tour_participants) * np.where(((trips.trip_mode == 'SHARED3') & vot1),1,0)" From 2b74de268b21220b2d35d43f804045c9aac358b6 Mon Sep 17 00:00:00 2001 From: Cundo Arellano <51237056+cundo92@users.noreply.github.com> Date: Thu, 24 Oct 2024 16:20:39 -0700 Subject: [PATCH 17/86] Link travel time for bus-streets This change assigns link transit travel times based on whether the link is a rail link or a bus-only street. --- .../toolbox/assignment/build_transit_scenario.py | 16 +++++++++------- .../toolbox/assignment/transit_assignment.py | 15 ++++++++++----- 2 files changed, 19 insertions(+), 12 deletions(-) diff --git a/src/main/emme/toolbox/assignment/build_transit_scenario.py b/src/main/emme/toolbox/assignment/build_transit_scenario.py index 82949e324..d20f81447 100644 --- a/src/main/emme/toolbox/assignment/build_transit_scenario.py +++ b/src/main/emme/toolbox/assignment/build_transit_scenario.py @@ -330,13 +330,15 @@ def __call__(self, period, base_scenario, transit_emmebank, scenario_id, scenari # (The auto_time attribute is generated from the VDF values which include reliability factor) ## also copying auto_time to ul1, so it does not get wiped when transit connectors are created. - src_attrs = [params["fixed_link_time"]] - dst_attrs = ["data2"] - if scenario.has_traffic_results and "@auto_time" in scenario.attributes("LINK"): - src_attrs.extend(["@auto_time", "@auto_time"]) - dst_attrs.extend(["auto_time", "data1"]) - values = network.get_attribute_values("LINK", src_attrs) - network.set_attribute_values("LINK", dst_attrs, values) + for link in network.links(): + if scenario.has_traffic_results and "@auto_time" in scenario.attributes("LINK"): + link["auto_time"]=link["@auto_time"] + link["data1"]=link["@auto_time"] + rail_modes = set(network.mode(m) for m in "lco") + if link.modes & rail_modes: + link["data2"]=link[params["fixed_rail_link_time"]] + else: + link["data2"]=link[params["fixed_bus_link_time"]] scenario.publish_network(network) self._node_id_tracker = None diff --git a/src/main/emme/toolbox/assignment/transit_assignment.py b/src/main/emme/toolbox/assignment/transit_assignment.py index 462332208..064a46085 100644 --- a/src/main/emme/toolbox/assignment/transit_assignment.py +++ b/src/main/emme/toolbox/assignment/transit_assignment.py @@ -267,7 +267,8 @@ def get_perception_parameters(self, period): "xfer_headway": "@headway_ea", "fare": "@fare_per_op", "in_vehicle": "@vehicle_per_op", - "fixed_link_time": "@trtime" + "fixed_rail_link_time": "@trtime", + "fixed_bus_link_time": "@time_link_ea" }, "AM": { "access" : access, @@ -280,7 +281,8 @@ def get_perception_parameters(self, period): "xfer_headway": "@headway_am", "fare": "@fare_per_pk", "in_vehicle": "@vehicle_per_pk", - "fixed_link_time": "@trtime" + "fixed_rail_link_time": "@trtime", + "fixed_bus_link_time": "@time_link_am" }, "MD": { "access" : access, @@ -293,7 +295,8 @@ def get_perception_parameters(self, period): "xfer_headway": "@headway_md", "fare": "@fare_per_op", "in_vehicle": "@vehicle_per_op", - "fixed_link_time": "@trtime" + "fixed_rail_link_time": "@trtime", + "fixed_bus_link_time": "@time_link_md" }, "PM": { "access" : access, @@ -306,7 +309,8 @@ def get_perception_parameters(self, period): "xfer_headway": "@headway_pm", "fare": "@fare_per_pk", "in_vehicle": "@vehicle_per_pk", - "fixed_link_time": "@trtime" + "fixed_rail_link_time": "@trtime", + "fixed_bus_link_time": "@time_link_pm" }, "EV": { "access" : access, @@ -319,7 +323,8 @@ def get_perception_parameters(self, period): "xfer_headway": "@headway_ev", "fare": "@fare_per_op", "in_vehicle": "@vehicle_per_op", - "fixed_link_time": "@trtime" + "fixed_rail_link_time": "@trtime", + "fixed_bus_link_time": "@time_link_ev" } } return perception_parameters[period] From 0627b67002534d0ba30ff9c90aedce2bc151b879 Mon Sep 17 00:00:00 2001 From: Cundo Arellano <51237056+cundo92@users.noreply.github.com> Date: Thu, 24 Oct 2024 16:24:37 -0700 Subject: [PATCH 18/86] Update export_data_loader_network.py For links that are split due to timed transfer virtual segments, this change sums up the link transit travel time between the 2 (two) newly created splits. --- src/main/emme/toolbox/export/export_data_loader_network.py | 1 + 1 file changed, 1 insertion(+) diff --git a/src/main/emme/toolbox/export/export_data_loader_network.py b/src/main/emme/toolbox/export/export_data_loader_network.py index d3171026b..d51877cdd 100644 --- a/src/main/emme/toolbox/export/export_data_loader_network.py +++ b/src/main/emme/toolbox/export/export_data_loader_network.py @@ -988,6 +988,7 @@ def get_xfer_link(node, timed_xfer_link, is_outgoing=True): next_seg = seg2.line.segment(seg2.number+1) for attr in segment_alights: next_seg[attr] += seg2[attr] + attr_map["transit_time"] = seg1["transit_time"] + seg2["transit_time"] network.merge_links(node, mapping) # Backup transit lines with altered routes and remove from network From 0cc951293708379a3f2bde9ac2c81296636e7bc1 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Thu, 24 Oct 2024 18:26:24 -0700 Subject: [PATCH 19/86] Add disk usage logging back to master run --- src/main/emme/toolbox/master_run.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/src/main/emme/toolbox/master_run.py b/src/main/emme/toolbox/master_run.py index 1a285a62e..9771ec91f 100644 --- a/src/main/emme/toolbox/master_run.py +++ b/src/main/emme/toolbox/master_run.py @@ -857,6 +857,10 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, # UPLOAD DATA AND SWITCH PATHS if useLocalDrive: + # # Uncomment to get disk usage at end of run + # # Note that max disk usage occurs in resident model, not at end of run + # disk_usage = win32.Dispatch('Scripting.FileSystemObject').GetFolder(self._path).Size + # _m.logbook_write("Disk space usage: %f GB" % (disk_usage / (1024 ** 3))) file_manager("UPLOAD", main_directory, username, scenario_id, delete_local_files=not skipDeleteIntermediateFiles) self._path = main_directory From 4755bbf29205bd372aeae78c6915c80758733a32 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 25 Oct 2024 08:48:53 -0700 Subject: [PATCH 20/86] updated 2zone skimming to add a function for adding missing mazs --- src/asim/scripts/resident/2zoneSkim.py | 45 ++++++++++++++++++++++++-- 1 file changed, 42 insertions(+), 3 deletions(-) diff --git a/src/asim/scripts/resident/2zoneSkim.py b/src/asim/scripts/resident/2zoneSkim.py index 6902b0828..7f940d205 100644 --- a/src/asim/scripts/resident/2zoneSkim.py +++ b/src/asim/scripts/resident/2zoneSkim.py @@ -17,6 +17,34 @@ with open(yml_path, 'r') as f: parms = yaml.safe_load(f) +def add_missing_mazs_to_skim_table(centroids, maz_to_maz_walk_cost_out, maz_to_maz_cost): + """ + Considering that we are using a maximum walk threshold for our skims here, it is possible that some MGRAs, + especially in non-urban areas, might not be within threshold distance of other MGRAs. This means that the skim table + may not have skims for all MGRAs. + + This function allows identifying those MGRAs that may be missing from + the skim table, finds the shortest distance + for them (not to themselves), and therefore creating a missig_maz df that now contains skims for those MGRAs that + otherwise did not have skim at all. + + """ + # Identify missing MAZs + missing_maz = centroids[~centroids['MAZ'].isin(maz_to_maz_walk_cost_out['OMAZ'])][['MAZ']] + missing_maz = missing_maz.rename(columns={'MAZ': 'OMAZ'}) + + # Filter and sort maz_to_maz_cost DataFrame so we have the shortest distance for each OMAZ first + filtered_maz_to_maz_cost = maz_to_maz_cost[maz_to_maz_cost['OMAZ'] != maz_to_maz_cost['DMAZ']] + sorted_maz_to_maz_cost = filtered_maz_to_maz_cost.sort_values('DISTWALK') + + # Group by 'OMAZ' and select the first (shortest dist) 'DMAZ' and 'DISTWALK' for each group + grouped_maz_to_maz_cost = sorted_maz_to_maz_cost.groupby('OMAZ').agg({'DMAZ': 'first', 'DISTWALK': 'first'}).reset_index() + + # Merge the missing MAZs with the grouped maz_to_maz_cost DataFrame + result = missing_maz.merge(grouped_maz_to_maz_cost, on='OMAZ', how='left') + + return result + print(f"{datetime.now().strftime('%H:%M:%S')} Preparing MAZ-MAZ and MAZ-Stop Connectors...") startTime = time.time() #asim_inputs = os.path.join(path, "ASIM_INPUTS") @@ -111,7 +139,7 @@ print(f"{datetime.now().strftime('%H:%M:%S')} Get Shortest Path Length...") maz_to_maz_walk_cost["DISTWALK"] = net.shortest_path_lengths(maz_to_maz_walk_cost["OMAZ_NODE"], maz_to_maz_walk_cost["DMAZ_NODE"]) maz_to_maz_walk_cost_out = maz_to_maz_walk_cost[maz_to_maz_walk_cost["DISTWALK"] <= max_maz_maz_walk_dist_feet / 5280.0] -missing_maz = pd.DataFrame(centroids[~centroids['MAZ'].isin(maz_to_maz_walk_cost_out['OMAZ'])]['MAZ']).rename(columns = {'MAZ': 'OMAZ'}).merge(maz_to_maz_cost[maz_to_maz_cost['OMAZ'] != maz_to_maz_cost['DMAZ']].sort_values('DISTWALK').groupby('OMAZ').agg({'DMAZ': 'first', 'DISTWALK': 'first'}).reset_index(), on = 'OMAZ', how = 'left') +missing_maz = add_missing_mazs_to_skim_table(centroids, maz_to_maz_walk_cost_out, maz_to_maz_cost) maz_maz_walk_output = maz_to_maz_walk_cost_out[["OMAZ","DMAZ","DISTWALK"]].append(missing_maz).sort_values(['OMAZ', 'DMAZ']) #creating fields as required by the TNC routing Java model. "actual" is walk time in minutes maz_maz_walk_output[['i', 'j']] = maz_maz_walk_output[['OMAZ', 'DMAZ']] @@ -144,7 +172,8 @@ print(f"{datetime.now().strftime('%H:%M:%S')} Get Shortest Path Length...") maz_to_maz_bike_cost["DISTBIKE"] = net.shortest_path_lengths(maz_to_maz_bike_cost["OMAZ_NODE"], maz_to_maz_bike_cost["DMAZ_NODE"]) maz_to_maz_bike_cost_out = maz_to_maz_bike_cost[maz_to_maz_bike_cost["DISTBIKE"] <= max_maz_maz_bike_dist_feet / 5280.0] -missing_maz = pd.DataFrame(centroids[~centroids['MAZ'].isin(maz_to_maz_bike_cost_out['OMAZ'])]['MAZ']).rename(columns = {'MAZ': 'OMAZ'}).merge(maz_to_maz_cost[maz_to_maz_cost['OMAZ'] != maz_to_maz_cost['DMAZ']].sort_values('DISTWALK').groupby('OMAZ').agg({'DMAZ': 'first', 'DISTWALK': 'first'}).reset_index().rename(columns = {'DISTWALK': 'DISTBIKE'}), on = 'OMAZ', how = 'left') +_missing_maz = add_missing_mazs_to_skim_table(centroids, maz_to_maz_bike_cost_out, maz_to_maz_cost) +missing_maz = _missing_maz.rename(columns = {'DISTWALK': 'DISTBIKE'}) print(f"{datetime.now().strftime('%H:%M:%S')} Write Results...") maz_to_maz_bike_cost_out[["OMAZ","DMAZ","DISTBIKE"]].append(missing_maz).sort_values(['OMAZ', 'DMAZ']).to_csv(path + '/output/skims/' + parms['mmms']["maz_maz_bike_output"], index=False) del(missing_maz) @@ -194,7 +223,17 @@ maz_to_stop_walk_cost_out_mode.loc[:, 'MODE'] = mode # in case straight line distance is less than max and actual distance is greater than max (e.g., street net), set actual distance to max maz_to_stop_walk_cost_out_mode['DISTWALK'] = maz_to_stop_walk_cost_out_mode['DISTWALK'].clip(upper=max_walk_dist) - missing_maz = pd.DataFrame(centroids[~centroids['MAZ'].isin(maz_to_stop_walk_cost_out_mode['MAZ'])]['MAZ']).merge(maz_to_stop_cost.sort_values('DISTANCE').groupby(['MAZ', 'MODE']).agg({'stop': 'first', 'DISTANCE': 'first'}).reset_index(), on = 'MAZ', how = 'left') + # peforms a similar operation as the add_missing_mazs_to_skim_table() function + missing_maz = pd.DataFrame( + centroids[~centroids["MAZ"].isin(maz_to_stop_walk_cost_out_mode["MAZ"])]["MAZ"] +).merge( + maz_to_stop_cost.sort_values("DISTANCE") + .groupby(["MAZ", "MODE"]) + .agg({"stop": "first", "DISTANCE": "first"}) + .reset_index(), + on="MAZ", + how="left", +) maz_to_stop_walk_cost = maz_to_stop_walk_cost_out_mode.append(missing_maz.rename(columns = {'DISTANCE': 'DISTWALK'})).sort_values(['MAZ', 'stop']) del(maz_to_stop_walk_cost_out_mode) del(missing_maz) From 0f0cf30c2df0a5c8832edc8581ab33a755e7b565 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 25 Oct 2024 11:53:38 -0700 Subject: [PATCH 21/86] Revert bike coefficients, move to properties file --- input/model/parametersByYears.csv | 26 ++++++++++++------------ src/main/resources/sandag_abm.properties | 23 +++++++++++---------- 2 files changed, 25 insertions(+), 24 deletions(-) diff --git a/input/model/parametersByYears.csv b/input/model/parametersByYears.csv index 567d09dcb..d60af7a71 100644 --- a/input/model/parametersByYears.csv +++ b/input/model/parametersByYears.csv @@ -1,13 +1,13 @@ -year,aoc.fuel,aoc.maintenance,aoc.truck.fuel.light,aoc.truck.fuel.medium,aoc.truck.fuel.high,aoc.truck.maintenance.light,aoc.truck.maintenance.medium,aoc.truck.maintenance.high,aoc.truck.fuel.SUT,aoc.truck.fuel.MUT,aoc.truck.maintenance.SUT,aoc.truck.maintenance.MUT,airport.SAN.enplanements,airport.SAN.connecting,airport.SAN.airportMgra,airport.CBX.enplanements,airport.CBX.connecting,airport.CBX.airportMgra,crossBorder.tours,crossBorder.sentriShare,crossBorder.readyShare,taxi.baseFare,taxi.costPerMile,taxi.costPerMinute,TNC.single.baseFare,TNC.single.costPerMile,TNC.single.costPerMinute,TNC.single.costMinimum,TNC.shared.baseFare,TNC.shared.costPerMile,TNC.shared.costPerMinute,TNC.shared.costMinimum,Mobility.AV.RemoteParkingCostPerHour,active.micromobility.variableCost,active.micromobility.fixedCost,active.microtransit.fixedCost,Mobility.AV.Share,smartSignal.factor.LC,smartSignal.factor.MA,smartSignal.factor.PA,atdm.factor,active.ebike.ownership,active.maxdist.bike.taz,active.maxdist.bike.mgra,active.bike.minutes.per.mile,active.coef.distcla0,active.coef.distcla1,active.coef.distcla2,active.coef.distcla3,active.coef.dartne2,active.coef.dwrongwy,active.coef.dcyctrac,active.coef.dbikblvd,rapid.factor.ivt,rapid.factor.wait,rapid.dwell,poe.OME.start.year,tr.veh.year,ev.rebate.lowinc.bev,ev.rebate.lowinc.pev,ev.rebate.medinc.bev,ev.rebate.medinc.pev,ev.chargers -2022,22,10.6,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,14536000,856170,11249,2093250,0,9350,101343,0.219,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,1,1,1,1,0.008,21.1,2.11,5.6872,0.81081,0.32886,0.51408,0.81081,0.99225,3.25553,0.40068,0.32414,0.95,1,0.5,2027,2029,0,0,0,0,7716 -2025,21,11.7,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,15542000,915424,11249,2195456,0,9350,119372,0.483,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,1,1,1,1,0.082,21.4,2.14,5.60748,0.79794,0.32364,0.50592,0.79794,0.9765,3.20385,0.39432,0.31899,0.95,1,0.5,2027,2029,0,0,0,0,10553 -2026,20.1,11.9,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,16012000,943107,11249,2221801,0,9350,121272,0.505,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,1,1,1,1,0.095,21.6,2.16,5.55556,0.78936,0.32016,0.50048,0.78936,0.966,3.1694,0.39008,0.31556,0.87,1,0.5,2027,2029,0,0,0,0,11714 -2029,18.5,12.3,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,17392000,1024389,11249,2301786,0,9350,126844,0.569,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,0.8,0.8,0.8,1,0.133,22.2,2.22,5.40541,0.76362,0.30972,0.48416,0.76362,0.9345,3.06605,0.37736,0.30527,0.87,0.87,0.425,2027,2029,0,0,0,0,16021 -2030,18.1,12.4,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,17878000,1053014,11249,2329408,0,9350,128588,0.591,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,0.8,0.8,0.8,1,0.146,22.4,2.24,0.75504,0.30624,0.47872,0.75504,0.924,3.0316,0.37312,0.30184,5.35714,0.87,0.87,0.425,2027,2029,0,0,0,0,17783 -2032,17.4,12.6,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,18571000,1093832,11249,2385314,0,9350,131663,0.569,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,2.03,0,0.8,0.8,0.8,0.93,0.172,22.9,2.29,5.24017,0.73359,0.29754,0.46512,0.73359,0.89775,2.94548,0.36252,0.29327,0.87,0.87,0.425,2027,2029,0,0,0,0,21912 -2035,16.9,13,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,19660000,1157974,11249,2471185,0,9350,135025,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.211,23.6,2.36,5.08475,0.70356,0.28536,0.44608,0.70356,0.861,2.8249,0.34768,0.28126,0.87,0.87,0.425,2027,2029,6750,3375,2000,1000,40000 -2035nb,16.9,13,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,19660000,1157974,11249,2471185,0,9350,135025,0.698,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,1.01,0,1,1,1,1,0.211,23.6,2.36,5.08475,0.70356,0.28536,0.44608,0.70356,0.861,2.8249,0.34768,0.28126,0.87,1,0.5,2060,2060,0,0,0,0,29968 -2040,16.2,13.7,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,19877909,1170809,11249,2619456,0,9350,139207,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.265,24.7,2.47,4.8583,0.65637,0.26622,0.41616,0.65637,0.80325,2.63543,0.32436,0.2624,0.87,0.87,0.425,2027,2029,0,0,0,0,61221 -2045,15.9,14.4,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,20098233,1183786,11249,2776623,0,9350,143214,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.32,25.5,2.55,4.70588,0.62205,0.2523,0.3944,0.62205,0.76125,2.49763,0.3074,0.24868,0.87,0.87,0.425,2027,2029,0,0,0,0,93700 -2050,16.4,15.1,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,20321000,1196907,11249,2943221,0,9350,144682,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.375,26.4,2.64,4.54545,0.58344,0.23664,0.36992,0.58344,0.714,2.3426,0.28832,0.23324,0.87,0.87,0.425,2027,2029,0,0,0,0,143410 -2050nb,16.4,15.1,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,20321000,1196907,11249,2943221,0,9350,144682,0.698,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,1.01,0,1,1,1,1,0.375,26.4,2.64,4.54545,0.58344,0.23664,0.36992,0.58344,0.714,2.3426,0.28832,0.23324,0.87,1,0.5,2060,2060,0,0,0,0,143410 +year,aoc.fuel,aoc.maintenance,aoc.truck.fuel.light,aoc.truck.fuel.medium,aoc.truck.fuel.high,aoc.truck.maintenance.light,aoc.truck.maintenance.medium,aoc.truck.maintenance.high,aoc.truck.fuel.SUT,aoc.truck.fuel.MUT,aoc.truck.maintenance.SUT,aoc.truck.maintenance.MUT,airport.SAN.enplanements,airport.SAN.connecting,airport.SAN.airportMgra,airport.CBX.enplanements,airport.CBX.connecting,airport.CBX.airportMgra,crossBorder.tours,crossBorder.sentriShare,crossBorder.readyShare,taxi.baseFare,taxi.costPerMile,taxi.costPerMinute,TNC.single.baseFare,TNC.single.costPerMile,TNC.single.costPerMinute,TNC.single.costMinimum,TNC.shared.baseFare,TNC.shared.costPerMile,TNC.shared.costPerMinute,TNC.shared.costMinimum,Mobility.AV.RemoteParkingCostPerHour,active.micromobility.variableCost,active.micromobility.fixedCost,active.microtransit.fixedCost,Mobility.AV.Share,smartSignal.factor.LC,smartSignal.factor.MA,smartSignal.factor.PA,atdm.factor,active.ebike.ownership,rapid.factor.ivt,rapid.factor.wait,rapid.dwell,poe.OME.start.year,tr.veh.year,ev.rebate.lowinc.bev,ev.rebate.lowinc.pev,ev.rebate.medinc.bev,ev.rebate.medinc.pev,ev.chargers +2022,22,10.6,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,14536000,856170,11249,2093250,0,9350,101343,0.219,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,1,1,1,1,0.008,0.95,1,0.5,2027,2029,0,0,0,0,7716 +2025,21,11.7,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,15542000,915424,11249,2195456,0,9350,119372,0.483,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,1,1,1,1,0.082,0.95,1,0.5,2027,2029,0,0,0,0,10553 +2026,20.1,11.9,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,16012000,943107,11249,2221801,0,9350,121272,0.505,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,1,1,1,1,0.095,0.87,1,0.5,2027,2029,0,0,0,0,11714 +2029,18.5,12.3,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,17392000,1024389,11249,2301786,0,9350,126844,0.569,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,0.8,0.8,0.8,1,0.133,0.87,0.87,0.425,2027,2029,0,0,0,0,16021 +2030,18.1,12.4,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,17878000,1053014,11249,2329408,0,9350,128588,0.591,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,2.03,0,0.8,0.8,0.8,1,0.146,0.87,0.87,0.425,2027,2029,0,0,0,0,17783 +2032,17.4,12.6,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,18571000,1093832,11249,2385314,0,9350,131663,0.569,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,2.03,0,0.8,0.8,0.8,0.93,0.172,0.87,0.87,0.425,2027,2029,0,0,0,0,21912 +2035,16.9,13,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,19660000,1157974,11249,2471185,0,9350,135025,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.211,0.87,0.87,0.425,2027,2029,6750,3375,2000,1000,40000 +2035nb,16.9,13,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,19660000,1157974,11249,2471185,0,9350,135025,0.698,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,1.01,0,1,1,1,1,0.211,0.87,1,0.5,2060,2060,0,0,0,0,29968 +2040,16.2,13.7,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,19877909,1170809,11249,2619456,0,9350,139207,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.265,0.87,0.87,0.425,2027,2029,0,0,0,0,61221 +2045,15.9,14.4,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,20098233,1183786,11249,2776623,0,9350,143214,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.32,0.87,0.87,0.425,2027,2029,0,0,0,0,93700 +2050,16.4,15.1,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,20321000,1196907,11249,2943221,0,9350,144682,0.698,0.322,3,3.3,0.46,4.56,0.96,0.33,9.19,2.31,0.48,0.16,4.6,0.81,0.39,1,1.01,0,0.8,0.8,0.8,0.93,0.375,0.87,0.87,0.425,2027,2029,0,0,0,0,143410 +2050nb,16.4,15.1,28.5,47.3,71.9,29,55,62,62.2,100.7,11.1,16.3,20321000,1196907,11249,2943221,0,9350,144682,0.698,0.322,3,3.3,0.46,3.31,0.96,0.33,9.19,1.66,0.48,0.16,4.6,0.81,0.39,1,1.01,0,1,1,1,1,0.375,0.87,1,0.5,2060,2060,0,0,0,0,143410 diff --git a/src/main/resources/sandag_abm.properties b/src/main/resources/sandag_abm.properties index 87ca1df45..d038e04c7 100644 --- a/src/main/resources/sandag_abm.properties +++ b/src/main/resources/sandag_abm.properties @@ -336,8 +336,6 @@ RunModel.skipTransitConnector = false RunModel.skipExternal = false,false,false SavedFrom = Emme Modeller properties writer Process ID 51972 SavedLast = Sep-07-2023 07:59:49 -active.coef.dwrongwy = ${active.coef.dwrongwy} -active.coef.dartne2 = ${active.coef.dartne2} TNC.single.baseFare = ${TNC.single.baseFare} TNC.shared.costMinimum = ${TNC.shared.costMinimum} TNC.shared.costPerMinute = ${TNC.shared.costPerMinute} @@ -349,31 +347,22 @@ active.ebike.ownership = ${active.ebike.ownership} taxi.costPerMinute = ${taxi.costPerMinute} airport.SAN.connecting = ${airport.SAN.connecting} atdm.factor = ${atdm.factor} -active.maxdist.bike.taz = ${active.maxdist.bike.taz} TNC.single.costMinimum = ${TNC.single.costMinimum} airport.CBX.connecting = ${airport.CBX.connecting} -active.coef.distcla0 = ${active.coef.distcla0} -active.coef.distcla3 = ${active.coef.distcla3} smartSignal.factor.MA = ${smartSignal.factor.MA} airport.CBX.enplanements = ${airport.CBX.enplanements} -active.maxdist.bike.mgra = ${active.maxdist.bike.mgra} TNC.single.costPerMinute = ${TNC.single.costPerMinute} Mobility.AV.Share = ${Mobility.AV.Share} -active.bike.minutes.per.mile = ${active.bike.minutes.per.mile} TNC.shared.costPerMile = ${TNC.shared.costPerMile} smartSignal.factor.PA = ${smartSignal.factor.PA} airport.SAN.airportMgra = ${airport.SAN.airportMgra} -active.coef.dbikblvd = ${active.coef.dbikblvd} crossBorder.tours = ${crossBorder.tours} crossBorder.sentriShare = ${crossBorder.sentriShare} -active.coef.dcyctrac = ${active.coef.dcyctrac} TNC.shared.baseFare = ${TNC.shared.baseFare} airport.SAN.enplanements = ${airport.SAN.enplanements} taxi.baseFare = ${taxi.baseFare} -active.coef.distcla1 = ${active.coef.distcla1} active.microtransit.fixedCost = ${active.microtransit.fixedCost} taxi.costPerMile = ${taxi.costPerMile} -active.coef.distcla2 = ${active.coef.distcla2} # ##################################################################################### @@ -476,6 +465,18 @@ active.coef.gain.walk = 0.034 active.walk.minutes.per.mile = 20 +active.maxdist.bike.taz = 20 +active.maxdist.bike.mgra = 2 +active.coef.distcla0 = 0.858 +active.coef.distcla1 = 0.348 +active.coef.distcla2 = 0.544 +active.coef.distcla3 = 0.858 +active.coef.dartne2 = 1.05 +active.coef.dwrongwy = 3.445 +active.coef.dcyctrac = 0.424 +active.coef.dbikblvd = 0.343 +active.bike.minutes.per.mile = 6 + active.micromobility.speed = 15 active.micromobility.rentalTime = 1 active.micromobility.constant = 60 From bc43df30f6a17f3fd8e1e8d8cd5dc81aa2056247 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 25 Oct 2024 12:01:28 -0700 Subject: [PATCH 22/86] Update bike minutes per mile based on bike speed --- src/asim/configs/airport.CBX/trip_mode_choice.yaml | 2 -- src/asim/configs/airport.SAN/trip_mode_choice.yaml | 2 -- src/asim/configs/common/constants.yaml | 1 - src/main/resources/sandag_abm.properties | 3 ++- 4 files changed, 2 insertions(+), 6 deletions(-) diff --git a/src/asim/configs/airport.CBX/trip_mode_choice.yaml b/src/asim/configs/airport.CBX/trip_mode_choice.yaml index d164929cc..27a2c48b3 100644 --- a/src/asim/configs/airport.CBX/trip_mode_choice.yaml +++ b/src/asim/configs/airport.CBX/trip_mode_choice.yaml @@ -105,8 +105,6 @@ CONSTANTS: shortWalk: 0.333 longWalk: 0.667 walkSpeed: 3.00 - bikeThresh: 6.00 - bikeSpeed: 12.00 parkLocation1AccessCost: 0.00 parkLocation1CostDay: 21.00 parkLocation1InVehicleTime: 0.00 diff --git a/src/asim/configs/airport.SAN/trip_mode_choice.yaml b/src/asim/configs/airport.SAN/trip_mode_choice.yaml index 03450e7a5..6583e0735 100644 --- a/src/asim/configs/airport.SAN/trip_mode_choice.yaml +++ b/src/asim/configs/airport.SAN/trip_mode_choice.yaml @@ -106,8 +106,6 @@ CONSTANTS: shortWalk: 0.333 longWalk: 0.667 walkSpeed: 3.00 - bikeThresh: 6.00 - bikeSpeed: 12.00 parkLocation1AccessCost: 0.00 parkLocation1CostDay: 39.04 parkLocation1InVehicleTime: 0.00 diff --git a/src/asim/configs/common/constants.yaml b/src/asim/configs/common/constants.yaml index ec28622a0..7753bcbea 100644 --- a/src/asim/configs/common/constants.yaml +++ b/src/asim/configs/common/constants.yaml @@ -100,7 +100,6 @@ walkThresh: 1.50 shortWalk: 0.333 longWalk: 0.667 walkSpeed: 3.00 -bikeThresh: 6.00 bikeSpeed: 7.80 ebikeSpeed: 10.00 escooterSpeed: 6.70 diff --git a/src/main/resources/sandag_abm.properties b/src/main/resources/sandag_abm.properties index d038e04c7..5105c9f4a 100644 --- a/src/main/resources/sandag_abm.properties +++ b/src/main/resources/sandag_abm.properties @@ -475,7 +475,8 @@ active.coef.dartne2 = 1.05 active.coef.dwrongwy = 3.445 active.coef.dcyctrac = 0.424 active.coef.dbikblvd = 0.343 -active.bike.minutes.per.mile = 6 +# bikeSpeed 7.80, 60/7.80 = 7.692 +active.bike.minutes.per.mile = 7.692 active.micromobility.speed = 15 active.micromobility.rentalTime = 1 From 8b53895591a927c75d2f30d0f83c301629ad2fbd Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 25 Oct 2024 12:32:34 -0700 Subject: [PATCH 23/86] Don't check access time for owned ebike trips --- src/asim/configs/resident/tour_mode_choice.csv | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index 8e464d679..a4dbe4bf2 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -382,7 +382,8 @@ util_calib_escorttour,abm2+ calibration constant,tour_type == 'escort',,,,coef_c util_one_or_more_school_escort,No SOV if on school escort tour,"@(np.where(np.isnan(df.get('num_escortees', 0)), 0 , df.get('num_escortees', 0)) >= 1)",-999,,,,,,,,,,,,,,,,,,,,,, util_two_or_more_school_escort,Can't take HOV2 if taking two children and yourself,"@(np.where(np.isnan(df.get('num_escortees', 0)), 0 , df.get('num_escortees', 0)) >= 2)",,-999,,,,,,,,,,,,,,,,,,,,, #,Micromobility (e-scooter/e-bike),,,,,,,,,,,,,,,,,,,,,,,, -util_micromobility_long_access,Shut off micromobility if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold)|(df.get('num_escortees', 0)>0))",,,,,,,,,,,,,,,,,,,,,,-999,-999 +util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0)) & (~df.ebike_owner))",,,,,,,,,,,,,,,,,,,,,,-999, +util_escooter_long_access,Shut off escooter if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0))",,,,,,,,,,,,,,,,,,,,,,,-999 util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time_inb + df.ebike_time_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_ivt, From e8e24944f29638a230ff2894a649e0952ca33690 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 25 Oct 2024 15:02:50 -0700 Subject: [PATCH 24/86] Include access time and cost for ebike owner trips in non-ebike tours. Don't check access time for ebike owner trips in ebike tours. --- .../trip_destination_annotate_trips_preprocessor.csv | 1 + src/asim/configs/resident/trip_destination_sample.csv | 2 +- src/asim/configs/resident/trip_mode_choice.csv | 7 ++++--- 3 files changed, 6 insertions(+), 4 deletions(-) diff --git a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv index b71ee58b1..1d4183e47 100644 --- a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv @@ -33,6 +33,7 @@ adding _trips to avoid conflict with the variables in the tours_merged,age_trips ,walkTour,"np.where(tour_mode == 'WALK', 1, 0)" ,bikeTour,"np.where(tour_mode == 'BIKE', 1, 0)" ,microTour,"np.where((tour_mode == 'ESCOOTER') | (tour_mode == 'EBIKE'), 1, 0)" +,ebikeTour,"np.where((tour_mode == 'EBIKE'), 1, 0)" Micromobility access Time,o_MicroAccessTime,"reindex(land_use.MicroAccessTime,df.origin)" ,max_walk_distance,max_walk_distance ,max_bike_distance,max_bike_distance diff --git a/src/asim/configs/resident/trip_destination_sample.csv b/src/asim/configs/resident/trip_destination_sample.csv index 4572aadf0..c5418c7d8 100644 --- a/src/asim/configs/resident/trip_destination_sample.csv +++ b/src/asim/configs/resident/trip_destination_sample.csv @@ -19,4 +19,4 @@ no attractions,"@size_terms.get(df.dest_taz, df.purpose) == 0",-999,-999,-999,-9 ,@df.bikeTour * (_dp_bikeL < -300),-999,-999,-999,-999,-999,-999,-999,-999,-999,-999 #,,,,,,,,,,, ,@(df.nonmotorTour==0) * (_od_DIST + _dp_DIST - _op_DIST),-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05 -,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 +,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where((~df.ebike_owner) | (~df.tourEbike),1,0))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 diff --git a/src/asim/configs/resident/trip_mode_choice.csv b/src/asim/configs/resident/trip_mode_choice.csv index 614638834..777fcae75 100644 --- a/src/asim/configs/resident/trip_mode_choice.csv +++ b/src/asim/configs/resident/trip_mode_choice.csv @@ -488,12 +488,13 @@ util_calib_tourwalkjointtour0,abm 2+ calibration,tourWalk*(jointTour==0),coef_ca util_calib_tourwalkjointtour1,abm 2+ calibration,tourWalk*(jointTour==1),coef_calib_tourwalkjointtour1_DRIVEALONE,coef_calib_tourwalkjointtour1_SHARED2,coef_calib_tourwalkjointtour1_SHARED3,0,coef_calib_tourwalkjointtour1_BIKE,coef_calib_tourwalkjointtour1_WALK_TRANSIT,coef_calib_tourwalkjointtour1_WALK_TRANSIT,coef_calib_tourwalkjointtour1_WALK_TRANSIT,coef_calib_tourwalkjointtour1_PNR_TRANSIT,coef_calib_tourwalkjointtour1_PNR_TRANSIT,coef_calib_tourwalkjointtour1_PNR_TRANSIT,coef_calib_tourwalkjointtour1_KNR_TRANSIT,coef_calib_tourwalkjointtour1_KNR_TRANSIT,coef_calib_tourwalkjointtour1_KNR_TRANSIT,coef_calib_tourwalkjointtour1_TNC_TRANSIT,coef_calib_tourwalkjointtour1_TNC_TRANSIT,coef_calib_tourwalkjointtour1_TNC_TRANSIT,coef_calib_tourwalkjointtour1_TAXI,coef_calib_tourwalkjointtour1_TNC_SINGLE,coef_calib_tourwalkjointtour1_TNC_SHARED,0,, #,Micromobility,,,,,,,,,,,,,,,,,,,,,,,, util_micromobility_long_access,Shut off micromobility if access time > threshold and not micromobility tour,@((df.MicroAccessTime > microAccessThreshold)& ~(df.tourEbike | df.tourEscooter)),,,,,,,,,,,,,,,,,,,,,,-999,-999 -util_micromobility_long_access_microTour,Decrease micromobility if access time > threshold but tour is micromobility,@((df.MicroAccessTime > microAccessThreshold) & (df.tourEbike | df.tourEscooter)),,,,,,,,,,,,,,,,,,,,,,-20,-20 +util_ebike_long_access_microTour,Decrease ebike if access time > threshold but tour is micromobility,@((df.MicroAccessTime > microAccessThreshold) & (df.tourEbike | df.tourEscooter) & ((~df.ebike_owner) | (~df.tourEbike))),,,,,,,,,,,,,,,,,,,,,,-20, +util_escooter_long_access_microTour,Decrease escooter if access time > threshold but tour is micromobility,@((df.MicroAccessTime > microAccessThreshold) & (df.tourEbike | df.tourEscooter)),,,,,,,,,,,,,,,,,,,,,,,-20 #util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, #util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time * df.time_factor),,,,,,,,,,,,,,,,,,,,,,coef_ivt, -util_ebike_access,Ebike utility for access time time,@(microConstant + ((~df.ebike_owner)&(microRentTime + df.MicroAccessTime)))*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_acctime, -util_ebike_cost_inb,Ebike utility for inbound cost,@((~df.ebike_owner) & ((microFixedCost + microVarCost*df.ebike_time)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, +util_ebike_access,Ebike utility for access time time,@(microConstant + (((~df.ebike_owner) | (~df.tourEbike))&(microRentTime + df.MicroAccessTime)))*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_acctime, +util_ebike_cost_inb,Ebike utility for inbound cost,@(((~df.ebike_owner) | (~df.tourEbike)) & ((microFixedCost + microVarCost*df.ebike_time)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, util_escooter_ivt,Escooter utility for in-vehicle time,@(df.escooter_time)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_ivt util_escooter_access,Escooter utility for access time,@(microRentTime + microConstant + df.MicroAccessTime) *df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_acctime util_escooter_cost_inb,Escooter utility for inbound cost,@(microFixedCost + microVarCost*df.escooter_time)/df.cost_sensitivity,,,,,,,,,,,,,,,,,,,,,,,coef_income \ No newline at end of file From 7f59dfeb0a3ff758ffa565766ee98846d82602cb Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 25 Oct 2024 15:04:11 -0700 Subject: [PATCH 25/86] Fix incorrect ebike tour variable name --- src/asim/configs/resident/trip_destination_sample.csv | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/asim/configs/resident/trip_destination_sample.csv b/src/asim/configs/resident/trip_destination_sample.csv index c5418c7d8..9fd195965 100644 --- a/src/asim/configs/resident/trip_destination_sample.csv +++ b/src/asim/configs/resident/trip_destination_sample.csv @@ -19,4 +19,4 @@ no attractions,"@size_terms.get(df.dest_taz, df.purpose) == 0",-999,-999,-999,-9 ,@df.bikeTour * (_dp_bikeL < -300),-999,-999,-999,-999,-999,-999,-999,-999,-999,-999 #,,,,,,,,,,, ,@(df.nonmotorTour==0) * (_od_DIST + _dp_DIST - _op_DIST),-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05 -,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where((~df.ebike_owner) | (~df.tourEbike),1,0))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 +,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where((~df.ebike_owner) | (~df.ebikeTour),1,0))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 From 8522ff40f616a5a6838f5efdbb6ff2b1e9ec42dc Mon Sep 17 00:00:00 2001 From: Bhargava Sana Date: Fri, 25 Oct 2024 15:28:30 -0700 Subject: [PATCH 26/86] Update create_scenario.cmd to create output and skims folders --- src/main/resources/create_scenario.cmd | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/main/resources/create_scenario.cmd b/src/main/resources/create_scenario.cmd index df612de24..3da53f682 100644 --- a/src/main/resources/create_scenario.cmd +++ b/src/main/resources/create_scenario.cmd @@ -24,6 +24,8 @@ md %SCENARIO_FOLDER%\%%i) rem grant full permissions to scenario folder cacls %SCENARIO_FOLDER% /t /e /g Everyone:f +mkdir %SCENARIO_FOLDER%\output\skims + rem setup model folders xcopy /Y .\common\application\"*.*" %SCENARIO_FOLDER%\application xcopy /E/Y/i .\common\application\GnuWin32\"*.*" %SCENARIO_FOLDER%\application\GnuWin32 @@ -33,7 +35,6 @@ xcopy /Y .\common\uec\"*.*" %SCENARIO_FOLDER%\uec xcopy /Y .\common\bin\"*.*" %SCENARIO_FOLDER%\bin rem xcopy /Y .\conf\%YEAR%\"*.*" %SCENARIO_FOLDER%\conf xcopy /Y .\common\conf\"*.*" %SCENARIO_FOLDER%\conf -xcopy /Y .\common\output\"*.*" %SCENARIO_FOLDER%\output xcopy /Y/s/E .\common\input\input_checker\"*.*" %SCENARIO_FOLDER%\input_checker xcopy /Y/s/E .\common\src\asim\"*.*" %SCENARIO_FOLDER%\src\asim xcopy /Y/s/E .\common\src\asim-cvm\"*.*" %SCENARIO_FOLDER%\src\asim-cvm From 8227dc8db4b0436e8b4505dd44c252db9c2e4f89 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 25 Oct 2024 16:47:32 -0700 Subject: [PATCH 27/86] Updated tour and trip mode choice calibration coefficients for flexible fleets --- src/asim/configs/resident/tour_mode_choice_coefficients.csv | 4 ++-- src/asim/configs/resident/trip_mode_choice_coefficients.csv | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice_coefficients.csv b/src/asim/configs/resident/tour_mode_choice_coefficients.csv index 8e9344c18..bd791957e 100644 --- a/src/asim/configs/resident/tour_mode_choice_coefficients.csv +++ b/src/asim/configs/resident/tour_mode_choice_coefficients.csv @@ -757,5 +757,5 @@ coef_calib_autosufficienthhin_EBIKE_school,-2.363534838614524,F coef_calib_autosufficienthhin_ESCOOTER_atwork,-4.0,F coef_calib_autosufficienthhin_EBIKE_atwork,-2.67253074,F coef_calib_onboard,-0.293475781,F -coef_calib_mt_zeroautohh,0.0,F -coef_calib_nev_zeroautohh,0.0,F \ No newline at end of file +coef_calib_mt_zeroautohh,4.825,F +coef_calib_nev_zeroautohh,4.825,F \ No newline at end of file diff --git a/src/asim/configs/resident/trip_mode_choice_coefficients.csv b/src/asim/configs/resident/trip_mode_choice_coefficients.csv index 10e05ad44..a07b7f500 100644 --- a/src/asim/configs/resident/trip_mode_choice_coefficients.csv +++ b/src/asim/configs/resident/trip_mode_choice_coefficients.csv @@ -1433,4 +1433,4 @@ coef_calib_tourescooterjointtour0_ESCOOTER_disc,0.0,F coef_calib_tourescooterjointtour0_ESCOOTER_maint,0.0,F coef_calib_tourescooterjointtour1_ESCOOTER_disc,-28.0,F coef_calib_tourescooterjointtour1_ESCOOTER_maint,-28.0,F -coef_calib_flexfleet,0.0,F +coef_calib_flexfleet,7.5,F From 80273dc35de441e07272bdc1ca94aa6ab3a3bb68 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 25 Oct 2024 17:33:27 -0700 Subject: [PATCH 28/86] Use bike logsum for micromobility --- src/asim/configs/resident/tour_mode_choice.csv | 4 ++-- ...tour_mode_choice_annotate_choosers_preprocessor.csv | 10 ++++++---- src/asim/configs/resident/trip_mode_choice.csv | 4 ++-- .../trip_mode_choice_annotate_trips_preprocessor.csv | 6 ++++-- 4 files changed, 14 insertions(+), 10 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index a4dbe4bf2..36fd7e8ee 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -386,11 +386,11 @@ util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_a util_escooter_long_access,Shut off escooter if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0))",,,,,,,,,,,,,,,,,,,,,,,-999 util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 -util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time_inb + df.ebike_time_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_ivt, +util_ebike_logsum,Ebike utility for bike logsum,(bikeLSI + bikeLSO)*ebike_time_multiplier,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum, util_ebike_access,Ebike utility for access/egress time,"@(microConstant + np.where(df.ebike_owner, 0, microRentTime + df.micro_access_inb + df.micro_access_out))*df.time_factor",,,,,,,,,,,,,,,,,,,,,,coef_acctime, util_ebike_cost_inb,Ebike utility for inbound cost,@((~df.ebike_owner)&((microFixedCost + microVarCost*df.ebike_time_inb)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, util_ebike_cost_out,Ebike utility for outbound cost,@((~df.ebike_owner)&((microFixedCost + microVarCost*df.ebike_time_out)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, -util_escooter_ivt,escooter utility for in-vehicle time,@(df.escooter_time_inb + df.escooter_time_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_ivt +util_escooter_logsum,escooter utility for bike logsum,(bikeLSI + bikeLSO)*escooter_time_multiplier,,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum util_escooter_access,escooter utility for in-vehicle time,@(microConstant + microRentTime + df.micro_access_inb + df.micro_access_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_acctime util_escooter_cost_inb,escooter utility for inbound cost,@((microFixedCost + microVarCost*df.escooter_time_inb)/df.cost_sensitivity),,,,,,,,,,,,,,,,,,,,,,,coef_income util_escooter_cost_out,escooter utility for outbound cost,@((microFixedCost + microVarCost*df.escooter_time_out)/df.cost_sensitivity),,,,,,,,,,,,,,,,,,,,,,,coef_income diff --git a/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv b/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv index 8a566f881..dfe5780e9 100644 --- a/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv +++ b/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv @@ -262,10 +262,12 @@ Determining Tour Destination,destination,df.destination if 'destination' in df.c ,tnc_prm_out_asc,"np.where((tnc_prm_out_asc > 0) & (odt_skims['KNROUT_PRM_XFERS'] > 0), 0.5 * tnc_prm_out_asc, tnc_prm_out_asc)", ,tnc_prm_inb_asc,"np.where((tnc_prm_inb_asc > 0) & (dot_skims['KNRIN_PRM_XFERS'] > 0), 0.5 * tnc_prm_inb_asc, tnc_prm_inb_asc)", # Micromobility times,,, -ebike time inbound,ebike_time_inb,bike_time_inb * bikeSpeed / ebikeSpeed, -ebike time outbound,ebike_time_out,bike_time_out * bikeSpeed / ebikeSpeed, -escooter time inbound,escooter_time_inb,bike_time_inb * bikeSpeed / escooterSpeed, -escooter time outbound,escooter_time_out,bike_time_out * bikeSpeed / escooterSpeed, +ebike time multiplier,ebike_time_multiplier,bikeSpeed / ebikeSpeed, +ebike time inbound,ebike_time_inb,bike_time_inb * ebike_time_multiplier, +ebike time outbound,ebike_time_out,bike_time_out * ebike_time_multiplier, +escooter time multiplier,escooter_time_multiplier,bikeSpeed / escooterSpeed, +escooter time inbound,escooter_time_inb,bike_time_inb * escooter_time_multiplier, +escooter time outbound,escooter_time_out,bike_time_out * escooter_time_multiplier, Micromobility access time outbound,micro_access_out,"reindex(land_use.MicroAccessTime,origin)", Micromobility access time inbound,micro_access_inb,"reindex(land_use.MicroAccessTime,destination)", ebike max distance availability,ebikeMaxDistance,(od_skims['DIST'] > ebikeMaxDist), diff --git a/src/asim/configs/resident/trip_mode_choice.csv b/src/asim/configs/resident/trip_mode_choice.csv index 777fcae75..531b7ee88 100644 --- a/src/asim/configs/resident/trip_mode_choice.csv +++ b/src/asim/configs/resident/trip_mode_choice.csv @@ -492,9 +492,9 @@ util_ebike_long_access_microTour,Decrease ebike if access time > threshold but t util_escooter_long_access_microTour,Decrease escooter if access time > threshold but tour is micromobility,@((df.MicroAccessTime > microAccessThreshold) & (df.tourEbike | df.tourEscooter)),,,,,,,,,,,,,,,,,,,,,,,-20 #util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, #util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 -util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time * df.time_factor),,,,,,,,,,,,,,,,,,,,,,coef_ivt, +util_ebike_logsum,Ebile utility for bike logsum,@df.bikeLS*ebike_time_multiplier,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum, util_ebike_access,Ebike utility for access time time,@(microConstant + (((~df.ebike_owner) | (~df.tourEbike))&(microRentTime + df.MicroAccessTime)))*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_acctime, util_ebike_cost_inb,Ebike utility for inbound cost,@(((~df.ebike_owner) | (~df.tourEbike)) & ((microFixedCost + microVarCost*df.ebike_time)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, -util_escooter_ivt,Escooter utility for in-vehicle time,@(df.escooter_time)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_ivt +util_escooter_logsum,Escooter utility for bike logsum,@df.bikeLS*escooter_time_multiplier,,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum util_escooter_access,Escooter utility for access time,@(microRentTime + microConstant + df.MicroAccessTime) *df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_acctime util_escooter_cost_inb,Escooter utility for inbound cost,@(microFixedCost + microVarCost*df.escooter_time)/df.cost_sensitivity,,,,,,,,,,,,,,,,,,,,,,,coef_income \ No newline at end of file diff --git a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv index 8aa97bb9f..3db1fd0e5 100644 --- a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv @@ -284,8 +284,10 @@ Number of school children in vehicle on trip,num_escortees,df.escort_participant ,tnc_prm_out_asc,"np.where((tnc_prm_out_asc > 0) & (odt_skims['KNROUT_PRM_XFERS'] > 0), 0.5 * tnc_prm_out_asc, tnc_prm_out_asc)" ,tnc_prm_inb_asc,"np.where((tnc_prm_inb_asc > 0) & (dot_skims['KNRIN_PRM_XFERS'] > 0), 0.5 * tnc_prm_inb_asc, tnc_prm_inb_asc)" # Micromobility times,, -ebike time,ebike_time,bike_time * bikeSpeed / ebikeSpeed -escooter time,escooter_time,bike_time * bikeSpeed / escooterSpeed +ebike time multiplier,ebike_time_multiplier,bikeSpeed / ebikeSpeed +ebike time,ebike_time,bike_time * ebike_time_multiplier +escooter time multiplier,escooter_time_multiplier,bikeSpeed / escooterSpeed +escooter time,escooter_time,bike_time * escooter_time_multiplier Micromobility access Time,MicroAccessTime,"reindex(land_use.MicroAccessTime,origin)" ebike max distance availability,ebikeMaxDistance,(od_skims['DIST'] > ebikeMaxDist) escooter max distance availability,escooterMaxDistance,(od_skims['DIST'] > escooterMaxDist) From 47e822cacba99c613f1ef6541c42fe2e820a3369 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Tue, 29 Oct 2024 09:33:17 -0700 Subject: [PATCH 29/86] fix ebike_owner in trip destination --- .../resident/trip_destination_annotate_trips_preprocessor.csv | 1 + src/asim/configs/resident/trip_destination_sample.csv | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv index 1d4183e47..e4396b67d 100644 --- a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv @@ -4,6 +4,7 @@ Description,Target,Expression ,is_joint,"reindex(tours.tour_category, df.tour_id) == 'joint'" ,tour_leg_origin,"np.where(df.outbound,reindex(tours.origin, df.tour_id), reindex(tours.destination, df.tour_id))" ,tour_leg_dest,"np.where(df.outbound,reindex(tours.destination, df.tour_id), reindex(tours.origin, df.tour_id))" +,ebike_owner_trips,"reindex(tours.ebike_owner, df.tour_id)" #,, ,_tod,"np.where(df.outbound,reindex_i(tours.start, df.tour_id),reindex_i(tours.end, df.tour_id))" ,trip_period,network_los.skim_time_period_label(_tod) diff --git a/src/asim/configs/resident/trip_destination_sample.csv b/src/asim/configs/resident/trip_destination_sample.csv index 9fd195965..f9da9ec86 100644 --- a/src/asim/configs/resident/trip_destination_sample.csv +++ b/src/asim/configs/resident/trip_destination_sample.csv @@ -19,4 +19,4 @@ no attractions,"@size_terms.get(df.dest_taz, df.purpose) == 0",-999,-999,-999,-9 ,@df.bikeTour * (_dp_bikeL < -300),-999,-999,-999,-999,-999,-999,-999,-999,-999,-999 #,,,,,,,,,,, ,@(df.nonmotorTour==0) * (_od_DIST + _dp_DIST - _op_DIST),-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05 -,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where((~df.ebike_owner) | (~df.ebikeTour),1,0))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 +,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where((~df.ebike_owner_trips) | (~df.ebikeTour),1,0))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 From d6fe458d2d223893abc20bc1bccfd7cc5cb84d25 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Tue, 29 Oct 2024 09:39:40 -0700 Subject: [PATCH 30/86] Remove rename in travel time reporter --- src/main/python/TravelTimeReporter.py | 5 ----- 1 file changed, 5 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index fd5767086..b9d07ba05 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -114,11 +114,6 @@ def read_active_skims(self): "skims", self.settings["active_skim_files"][skim_name] ) - ).rename( - columns = { - "OMAZ": "i", - "DMAZ": "j", - } ).set_index( ["i", "j"] ) From 9738a46390695b06e5cc98eb236f3f30578a6031 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Tue, 29 Oct 2024 10:22:29 -0700 Subject: [PATCH 31/86] Fix java unicode error --- src/main/python/pythonGUI/createStudyAndScenario.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/main/python/pythonGUI/createStudyAndScenario.py b/src/main/python/pythonGUI/createStudyAndScenario.py index e34f3ef36..91d6fc1ee 100644 --- a/src/main/python/pythonGUI/createStudyAndScenario.py +++ b/src/main/python/pythonGUI/createStudyAndScenario.py @@ -347,11 +347,12 @@ def select_study_years(self): #Update properties file def update_property(self, old, new): + new_updated = new.replace(r'\U', r'/U').replace(r'\u', r'/u') property_file = os.path.join(self.scenariopath.get(), 'conf', 'sandag_abm.properties') property_file = property_file.replace('\\\\', '/') with open(property_file, 'r') as file : filedata = file.read() - filedata = filedata.replace(old, new) + filedata = filedata.replace(old, new_updated) with open(property_file, 'w') as file: file.write(filedata) From bfd0ca216acaf49b83cf0ada15c3bc098b5a71e3 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Tue, 29 Oct 2024 14:49:39 -0700 Subject: [PATCH 32/86] Fix active skim columns in travel time reporter --- src/main/python/TravelTimeReporter.py | 22 +++++++++++++++------- 1 file changed, 15 insertions(+), 7 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index b9d07ba05..58aa9858b 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -107,14 +107,22 @@ def read_active_skims(self): Reads active skims into memory as data frames """ for skim_name in self.settings["active_skim_files"]: - self.skims[skim_name] = pd.read_csv( - os.path.join( - self.model_run, - "output", - "skims", - self.settings["active_skim_files"][skim_name] + active_skims = pd.read_csv( + os.path.join( + self.model_run, + "output", + "skims", + self.settings["active_skim_files"][skim_name] ) - ).set_index( + ) + if not "i" in active_skims.columns: + active_skims = active_skims.rename( + columns = { + "OMAZ": "i", + "DMAZ": "j", + } + ) + self.skims[skim_name] = active_skims.set_index( ["i", "j"] ) From e97d1b945ce75072a9e7a5caa29cd7799ceef4fc Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Tue, 29 Oct 2024 16:20:44 -0700 Subject: [PATCH 33/86] Revert bike logsum for micromobility (continue to use bike time) --- src/asim/configs/resident/tour_mode_choice.csv | 4 ++-- ...tour_mode_choice_annotate_choosers_preprocessor.csv | 10 ++++------ src/asim/configs/resident/trip_mode_choice.csv | 4 ++-- .../trip_mode_choice_annotate_trips_preprocessor.csv | 6 ++---- 4 files changed, 10 insertions(+), 14 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index 36fd7e8ee..a4dbe4bf2 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -386,11 +386,11 @@ util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_a util_escooter_long_access,Shut off escooter if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0))",,,,,,,,,,,,,,,,,,,,,,,-999 util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 -util_ebike_logsum,Ebike utility for bike logsum,(bikeLSI + bikeLSO)*ebike_time_multiplier,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum, +util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time_inb + df.ebike_time_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_ivt, util_ebike_access,Ebike utility for access/egress time,"@(microConstant + np.where(df.ebike_owner, 0, microRentTime + df.micro_access_inb + df.micro_access_out))*df.time_factor",,,,,,,,,,,,,,,,,,,,,,coef_acctime, util_ebike_cost_inb,Ebike utility for inbound cost,@((~df.ebike_owner)&((microFixedCost + microVarCost*df.ebike_time_inb)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, util_ebike_cost_out,Ebike utility for outbound cost,@((~df.ebike_owner)&((microFixedCost + microVarCost*df.ebike_time_out)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, -util_escooter_logsum,escooter utility for bike logsum,(bikeLSI + bikeLSO)*escooter_time_multiplier,,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum +util_escooter_ivt,escooter utility for in-vehicle time,@(df.escooter_time_inb + df.escooter_time_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_ivt util_escooter_access,escooter utility for in-vehicle time,@(microConstant + microRentTime + df.micro_access_inb + df.micro_access_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_acctime util_escooter_cost_inb,escooter utility for inbound cost,@((microFixedCost + microVarCost*df.escooter_time_inb)/df.cost_sensitivity),,,,,,,,,,,,,,,,,,,,,,,coef_income util_escooter_cost_out,escooter utility for outbound cost,@((microFixedCost + microVarCost*df.escooter_time_out)/df.cost_sensitivity),,,,,,,,,,,,,,,,,,,,,,,coef_income diff --git a/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv b/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv index dfe5780e9..8a566f881 100644 --- a/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv +++ b/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv @@ -262,12 +262,10 @@ Determining Tour Destination,destination,df.destination if 'destination' in df.c ,tnc_prm_out_asc,"np.where((tnc_prm_out_asc > 0) & (odt_skims['KNROUT_PRM_XFERS'] > 0), 0.5 * tnc_prm_out_asc, tnc_prm_out_asc)", ,tnc_prm_inb_asc,"np.where((tnc_prm_inb_asc > 0) & (dot_skims['KNRIN_PRM_XFERS'] > 0), 0.5 * tnc_prm_inb_asc, tnc_prm_inb_asc)", # Micromobility times,,, -ebike time multiplier,ebike_time_multiplier,bikeSpeed / ebikeSpeed, -ebike time inbound,ebike_time_inb,bike_time_inb * ebike_time_multiplier, -ebike time outbound,ebike_time_out,bike_time_out * ebike_time_multiplier, -escooter time multiplier,escooter_time_multiplier,bikeSpeed / escooterSpeed, -escooter time inbound,escooter_time_inb,bike_time_inb * escooter_time_multiplier, -escooter time outbound,escooter_time_out,bike_time_out * escooter_time_multiplier, +ebike time inbound,ebike_time_inb,bike_time_inb * bikeSpeed / ebikeSpeed, +ebike time outbound,ebike_time_out,bike_time_out * bikeSpeed / ebikeSpeed, +escooter time inbound,escooter_time_inb,bike_time_inb * bikeSpeed / escooterSpeed, +escooter time outbound,escooter_time_out,bike_time_out * bikeSpeed / escooterSpeed, Micromobility access time outbound,micro_access_out,"reindex(land_use.MicroAccessTime,origin)", Micromobility access time inbound,micro_access_inb,"reindex(land_use.MicroAccessTime,destination)", ebike max distance availability,ebikeMaxDistance,(od_skims['DIST'] > ebikeMaxDist), diff --git a/src/asim/configs/resident/trip_mode_choice.csv b/src/asim/configs/resident/trip_mode_choice.csv index 531b7ee88..777fcae75 100644 --- a/src/asim/configs/resident/trip_mode_choice.csv +++ b/src/asim/configs/resident/trip_mode_choice.csv @@ -492,9 +492,9 @@ util_ebike_long_access_microTour,Decrease ebike if access time > threshold but t util_escooter_long_access_microTour,Decrease escooter if access time > threshold but tour is micromobility,@((df.MicroAccessTime > microAccessThreshold) & (df.tourEbike | df.tourEscooter)),,,,,,,,,,,,,,,,,,,,,,,-20 #util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, #util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 -util_ebike_logsum,Ebile utility for bike logsum,@df.bikeLS*ebike_time_multiplier,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum, +util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time * df.time_factor),,,,,,,,,,,,,,,,,,,,,,coef_ivt, util_ebike_access,Ebike utility for access time time,@(microConstant + (((~df.ebike_owner) | (~df.tourEbike))&(microRentTime + df.MicroAccessTime)))*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_acctime, util_ebike_cost_inb,Ebike utility for inbound cost,@(((~df.ebike_owner) | (~df.tourEbike)) & ((microFixedCost + microVarCost*df.ebike_time)/df.cost_sensitivity)),,,,,,,,,,,,,,,,,,,,,,coef_income, -util_escooter_logsum,Escooter utility for bike logsum,@df.bikeLS*escooter_time_multiplier,,,,,,,,,,,,,,,,,,,,,,,coef_bikeLogsum +util_escooter_ivt,Escooter utility for in-vehicle time,@(df.escooter_time)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_ivt util_escooter_access,Escooter utility for access time,@(microRentTime + microConstant + df.MicroAccessTime) *df.time_factor,,,,,,,,,,,,,,,,,,,,,,,coef_acctime util_escooter_cost_inb,Escooter utility for inbound cost,@(microFixedCost + microVarCost*df.escooter_time)/df.cost_sensitivity,,,,,,,,,,,,,,,,,,,,,,,coef_income \ No newline at end of file diff --git a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv index 3db1fd0e5..8aa97bb9f 100644 --- a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv @@ -284,10 +284,8 @@ Number of school children in vehicle on trip,num_escortees,df.escort_participant ,tnc_prm_out_asc,"np.where((tnc_prm_out_asc > 0) & (odt_skims['KNROUT_PRM_XFERS'] > 0), 0.5 * tnc_prm_out_asc, tnc_prm_out_asc)" ,tnc_prm_inb_asc,"np.where((tnc_prm_inb_asc > 0) & (dot_skims['KNRIN_PRM_XFERS'] > 0), 0.5 * tnc_prm_inb_asc, tnc_prm_inb_asc)" # Micromobility times,, -ebike time multiplier,ebike_time_multiplier,bikeSpeed / ebikeSpeed -ebike time,ebike_time,bike_time * ebike_time_multiplier -escooter time multiplier,escooter_time_multiplier,bikeSpeed / escooterSpeed -escooter time,escooter_time,bike_time * escooter_time_multiplier +ebike time,ebike_time,bike_time * bikeSpeed / ebikeSpeed +escooter time,escooter_time,bike_time * bikeSpeed / escooterSpeed Micromobility access Time,MicroAccessTime,"reindex(land_use.MicroAccessTime,origin)" ebike max distance availability,ebikeMaxDistance,(od_skims['DIST'] > ebikeMaxDist) escooter max distance availability,escooterMaxDistance,(od_skims['DIST'] > escooterMaxDist) From 7ec1944e7c73ff9a0cdd32f219221f9d5c43156f Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Tue, 29 Oct 2024 17:26:56 -0700 Subject: [PATCH 34/86] Fix external zones not added to i,j columns in walk skims --- .../scripts/resident/resident_preprocessing.py | 4 ++++ src/main/python/TravelTimeReporter.py | 16 ++++++++-------- 2 files changed, 12 insertions(+), 8 deletions(-) diff --git a/src/asim/scripts/resident/resident_preprocessing.py b/src/asim/scripts/resident/resident_preprocessing.py index 727dd8b53..bff25794f 100644 --- a/src/asim/scripts/resident/resident_preprocessing.py +++ b/src/asim/scripts/resident/resident_preprocessing.py @@ -228,11 +228,15 @@ def add_external_stations_to_skim_df(self, skim_df, maz_ext_taz_xwalk, landuse, od_connections = skim_df.loc[skim_df[origin_col] == closest_maz].copy() print(f"\t origins with this internal maz {len(od_connections)}") od_connections[origin_col] = ext_maz + if "i" in skim_df.columns: + od_connections["i"] = ext_maz new_connections.append(od_connections) if dest_col is not None: do_connections = skim_df.loc[skim_df[dest_col] == closest_maz].copy() do_connections[dest_col] = ext_maz + if "j" in skim_df.columns: + do_connections["j"] = ext_maz print(f"\t destinations with this internal maz {len(do_connections)}") new_connections.append(do_connections) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 58aa9858b..efaebb78b 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -115,14 +115,14 @@ def read_active_skims(self): self.settings["active_skim_files"][skim_name] ) ) - if not "i" in active_skims.columns: - active_skims = active_skims.rename( - columns = { - "OMAZ": "i", - "DMAZ": "j", - } - ) - self.skims[skim_name] = active_skims.set_index( + if "i" in active_skims.columns: + active_skims = active_skims.drop(["i", "j"],axis=1) + self.skims[skim_name] = active_skims.rename( + columns = { + "OMAZ": "i", + "DMAZ": "j", + } + ).set_index( ["i", "j"] ) From 8918da64102f38987f565c34356e789cfef58043 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Wed, 30 Oct 2024 12:08:33 -0700 Subject: [PATCH 35/86] Fix ebike owner in trip destination sample --- .../resident/trip_destination_annotate_trips_preprocessor.csv | 2 +- src/asim/configs/resident/trip_destination_sample.csv | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv index e4396b67d..8a7c40cdc 100644 --- a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv @@ -4,13 +4,13 @@ Description,Target,Expression ,is_joint,"reindex(tours.tour_category, df.tour_id) == 'joint'" ,tour_leg_origin,"np.where(df.outbound,reindex(tours.origin, df.tour_id), reindex(tours.destination, df.tour_id))" ,tour_leg_dest,"np.where(df.outbound,reindex(tours.destination, df.tour_id), reindex(tours.origin, df.tour_id))" -,ebike_owner_trips,"reindex(tours.ebike_owner, df.tour_id)" #,, ,_tod,"np.where(df.outbound,reindex_i(tours.start, df.tour_id),reindex_i(tours.end, df.tour_id))" ,trip_period,network_los.skim_time_period_label(_tod) #,, adding _trips to avoid conflict with the variables in the tours_merged,income_trips,"reindex(households.income, df.person_id)" adding _trips to avoid conflict with the variables in the tours_merged,age_trips,"reindex(persons.age, df.person_id)" +adding _trips to avoid conflict with the variables in the tours_merged,ebike_owner_trips,"reindex(households.ebike_owner, df.person_id)" ,female,"reindex(persons.female, df.person_id)" #,age_55p,"reindex(persons.age_55_p, df.person_id)" #,age_35_54,"reindex(persons.age_35_to_54, df.person_id)" diff --git a/src/asim/configs/resident/trip_destination_sample.csv b/src/asim/configs/resident/trip_destination_sample.csv index f9da9ec86..39c21dfe3 100644 --- a/src/asim/configs/resident/trip_destination_sample.csv +++ b/src/asim/configs/resident/trip_destination_sample.csv @@ -19,4 +19,4 @@ no attractions,"@size_terms.get(df.dest_taz, df.purpose) == 0",-999,-999,-999,-9 ,@df.bikeTour * (_dp_bikeL < -300),-999,-999,-999,-999,-999,-999,-999,-999,-999,-999 #,,,,,,,,,,, ,@(df.nonmotorTour==0) * (_od_DIST + _dp_DIST - _op_DIST),-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05,-0.05 -,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where((~df.ebike_owner_trips) | (~df.ebikeTour),1,0))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 +,"@(df.microTour * (np.where(_d_microAccTime > df.microAccessThreshold,1,0) + np.where(df.o_MicroAccessTime > df.microAccessThreshold,1,0)) * np.where(df.ebike_owner_trips * df.ebikeTour,0,1))",-10,-10,-10,-10,-10,-10,-10,-10,-10,-10 From 472be96b4e0c91c7ba5ef015fa456adde0b66337 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Wed, 30 Oct 2024 14:21:42 -0700 Subject: [PATCH 36/86] Added TAZ-level active skims to travel time reporter --- src/main/python/TravelTimeReporter.py | 46 +++++++++++++++++++++++++++ 1 file changed, 46 insertions(+) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index efaebb78b..f9db00c5c 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -102,6 +102,29 @@ def read_skims(self, mode = "transit"): skims.close() + # Read bike and walk times from AM traffic skim + am_traffic_skim_file = os.path.join( + self.model_run, + "output", + "skims", + "traffic_skims_AM.omx" + ) + skims = omx.open_file(am_traffic_skim_file, "r") + for core in ["BIKE_TIME", "walkTime"]: + skim_values = np.array(skims[core.format(self.settings["time_period"])]) + skim_values = np.where( + skim_values == 0, + self.ssettings["infinity"], + skim_values + ) + self.skims[core] = self.expand_skim( + pd.DataFrame( + skim_values, + zones, + zones + ) + ) + def read_active_skims(self): """ Reads active skims into memory as data frames @@ -411,6 +434,29 @@ def get_drive_alone_time(self): dest_terminal_time = self.field2matrix("terminal_time", origin = False) self.skims["drive_alone_time"] = orig_terminal_time + self.expand_skim(self.skims["SOV_NT_L_TIME__" + self.settings["time_period"]]) + dest_terminal_time + def add_active_taz_time(self, bike = True): + """ + Adds the skim values for OD pairs not in the MAZ skim files and reads in the TAZ-level skim values. + + Parameters + ---------- + bike (bool): + If set to `True`, obtain the bike skim values. Otherwise obtain the walk skim values. + """ + if bike: + mode = "bike" + skim = "BIKE_TIME" + else: + mode = "walk" + skim = "walkTIME" + + self.skims["taz_time"] = self.unpivot_skim(skim) + self.skims[mode + "_time"] = np.where( + self.skims[mode + "_time"] == self.settings["infinity"], + self.skims["taz_time"], + self.skims[mode + "_time"] + ) + # # # # # # # # # # # # OUTPUT FUNCTIONS # # # # # # # # # # # # #==============================================================# def coalesce_results(self): From b7b713195d776ec08cdec81b003fa2b2deb5e8ba Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Wed, 30 Oct 2024 15:09:21 -0700 Subject: [PATCH 37/86] Corrected spelling of settings --- src/main/python/TravelTimeReporter.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index f9db00c5c..4628899e3 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -114,7 +114,7 @@ def read_skims(self, mode = "transit"): skim_values = np.array(skims[core.format(self.settings["time_period"])]) skim_values = np.where( skim_values == 0, - self.ssettings["infinity"], + self.settings["infinity"], skim_values ) self.skims[core] = self.expand_skim( From 2ee82038e135c0771504aa2e071b6d9f286b827b Mon Sep 17 00:00:00 2001 From: Kelvin Nguyen <77218097+kelvinnguyenn@users.noreply.github.com> Date: Thu, 31 Oct 2024 09:50:10 -0700 Subject: [PATCH 38/86] Corrected mixed party type to correct value --- .../configs/resident/joint_tour_frequency_composition.csv | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/src/asim/configs/resident/joint_tour_frequency_composition.csv b/src/asim/configs/resident/joint_tour_frequency_composition.csv index 1d22d0830..8a1bb7b5e 100644 --- a/src/asim/configs/resident/joint_tour_frequency_composition.csv +++ b/src/asim/configs/resident/joint_tour_frequency_composition.csv @@ -58,7 +58,7 @@ util_constant_for_children_party_maintenance_tour,Constant for Children Party/ M util_constant_for_children_party_eating_out_tour,Constant for Children Party/ Eating Out Tour,@(df.purpose1==7)*(df.party1==2)+(df.purpose2==7)*(df.party2==2),coef_constant_for_children_party_eating_out_tour util_constant_for_children_party_visiting_tour,Constant for Children Party/ Visiting Tour,@(df.purpose1==8)*(df.party1==2)+(df.purpose2==8)*(df.party2==2),coef_constant_for_children_party_visiting_tour util_constant_for_children_party_discretionary_tour,Constant for Children Party/ Discretionary Tour,@(df.purpose1==9)*(df.party1==2)+(df.purpose2==9)*(df.party2==2),coef_constant_for_children_party_discretionary_tour -util_constant_for_mixed_party_shopping_tour,Constant for Mixed Party/ Shopping Tour,@(df.purpose1==5)*(df.party1==2)+(df.purpose2==5)*(df.party2==2),coef_constant_for_mixed_party_shopping_tour +util_constant_for_mixed_party_shopping_tour,Constant for Mixed Party/ Shopping Tour,@(df.purpose1==5)*(df.party1==3)+(df.purpose2==5)*(df.party2==3),coef_constant_for_mixed_party_shopping_tour util_constant_for_mixed_party_maintenance_tour,Constant for Mixed Party/ Maintenance Tour,@(df.purpose1==6)*(df.party1==3)+(df.purpose2==6)*(df.party2==3),coef_constant_for_mixed_party_maintenance_tour util_constant_for_mixed_party_eating_out_tour,Constant for Mixed Party/ Eating Out Tour,@(df.purpose1==7)*(df.party1==3)+(df.purpose2==7)*(df.party2==3),coef_constant_for_mixed_party_eating_out_tour util_constant_for_mixed_party_visiting_tour,Constant for Mixed Party/ Visiting Tour,@(df.purpose1==8)*(df.party1==3)+(df.purpose2==8)*(df.party2==3),coef_constant_for_mixed_party_visiting_tour @@ -70,7 +70,7 @@ util_number_of_active_nonworkers_adult_party,Number of Active Non-workers /Adult util_number_of_active_retirees_adult_party,Number of Active Retirees /Adult Party,num_travel_active_retirees * (party1==1) + num_travel_active_retirees * (party2==1),coef_number_of_active_retirees_adult_party util_number_of_active_driving_age_school_children_children_party,Number of Active Driving Age School Children /Children Party,num_travel_active_driving_age_students * (party1==1) + num_travel_active_driving_age_students * (party2==1),coef_number_of_active_driving_age_school_children_children_party util_number_of_active_pre_driving_age_school_children_children_party,Number of Active Pre- Driving Age School Children /Children Party,num_travel_active_pre_driving_age_school_kids * (party1==2) + num_travel_active_pre_driving_age_school_kids * (party2==2),coef_number_of_active_pre_driving_age_school_children_children_party -util_number_of_active_part_time_workers_mixed_party,Number of Active Part time workers /Mixed Party,num_travel_active_part_time_workers * (party1==2) + num_travel_active_part_time_workers * (party2==2),coef_number_of_active_part_time_workers_mixed_party +util_number_of_active_part_time_workers_mixed_party,Number of Active Part time workers /Mixed Party,num_travel_active_part_time_workers * (party1==3) + num_travel_active_part_time_workers * (party2==3),coef_number_of_active_part_time_workers_mixed_party util_number_of_active_driving_age_school_children_mixed_party,Number of Active Driving Age School Children /Mixed Party,num_travel_active_driving_age_students * (party1==3) + num_travel_active_driving_age_students * (party2==3),coef_number_of_active_driving_age_school_children_mixed_party util_number_of_active_pre_driving_age_school_children_mixed_party,Number of Active Pre- Driving Age School Children /Mixed Party,num_travel_active_pre_driving_age_school_kids * (party1==3) + num_travel_active_pre_driving_age_school_kids * (party2==3),coef_number_of_active_pre_driving_age_school_children_mixed_party util_number_of_active_preschool_children_mixed_party,Number of Active Preschool Children /Mixed Party,num_travel_active_pre_school_kids * (party1==3) + num_travel_active_pre_school_kids * (party2==3),coef_number_of_active_preschool_children_mixed_party @@ -89,7 +89,7 @@ util_adjustment_for_children_party_maintenance_tour,Adjustment for Children Part util_adjustment_for_children_party_eating_out_tour,Adjustment for Children Party/ Eating Out Tour,@(df.purpose1==7)*(df.party1==2)+(df.purpose2==7)*(df.party2==2),coef_adjustment_for_children_party_eating_out_tour util_adjustment_for_children_party_visiting_tour,Adjustment for Children Party/ Visiting Tour,@(df.purpose1==8)*(df.party1==2)+(df.purpose2==8)*(df.party2==2),coef_adjustment_for_children_party_visiting_tour util_adjustment_for_children_party_discretionary_tour,Adjustment for Children Party/ Discretionary Tour,@(df.purpose1==9)*(df.party1==2)+(df.purpose2==9)*(df.party2==2),coef_adjustment_for_children_party_discretionary_tour -util_adjustment_for_mixed_party_shopping_tour,Adjustment for Mixed Party/ Shopping Tour,@(df.purpose1==5)*(df.party1==2)+(df.purpose2==5)*(df.party2==2),coef_adjustment_for_mixed_party_shopping_tour +util_adjustment_for_mixed_party_shopping_tour,Adjustment for Mixed Party/ Shopping Tour,@(df.purpose1==5)*(df.party1==3)+(df.purpose2==5)*(df.party2==3),coef_adjustment_for_mixed_party_shopping_tour util_adjustment_for_mixed_party_maintenance_tour,Adjustment for Mixed Party/ Maintenance Tour,@(df.purpose1==6)*(df.party1==3)+(df.purpose2==6)*(df.party2==3),coef_adjustment_for_mixed_party_maintenance_tour util_adjustment_for_mixed_party_eating_out_tour,Adjustment for Mixed Party/ Eating Out Tour,@(df.purpose1==7)*(df.party1==3)+(df.purpose2==7)*(df.party2==3),coef_adjustment_for_mixed_party_eating_out_tour util_adjustment_for_mixed_party_visiting_tour,Adjustment for Mixed Party/ Visiting Tour,@(df.purpose1==8)*(df.party1==3)+(df.purpose2==8)*(df.party2==3),coef_adjustment_for_mixed_party_visiting_tour From db7ca6114127a9c6036c26f6d5f27a625eb9159f Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Thu, 31 Oct 2024 13:36:14 -0700 Subject: [PATCH 39/86] Separated maz and taz skims and added call of function to add taz skims (which was made to edit the correct data frame) --- .../python/AMTravelTimeReporterConfigs.yaml | 4 +-- .../python/MDTravelTimeReporterConfigs.yaml | 4 +-- src/main/python/TravelTimeReporter.py | 29 ++++++++++++------- 3 files changed, 22 insertions(+), 15 deletions(-) diff --git a/src/main/python/AMTravelTimeReporterConfigs.yaml b/src/main/python/AMTravelTimeReporterConfigs.yaml index f4bc1dc75..6eea1377f 100644 --- a/src/main/python/AMTravelTimeReporterConfigs.yaml +++ b/src/main/python/AMTravelTimeReporterConfigs.yaml @@ -20,5 +20,5 @@ traffic_skim_matrices: # If set to True, replace values of zero with the number SOV_NT_L_TIME__{}: False active_skim_files: - walk_time: maz_maz_walk.csv - bike_time: maz_maz_bike.csv \ No newline at end of file + maz_walk_time: maz_maz_walk.csv + maz_bike_time: maz_maz_bike.csv \ No newline at end of file diff --git a/src/main/python/MDTravelTimeReporterConfigs.yaml b/src/main/python/MDTravelTimeReporterConfigs.yaml index 981bde183..6d002598e 100644 --- a/src/main/python/MDTravelTimeReporterConfigs.yaml +++ b/src/main/python/MDTravelTimeReporterConfigs.yaml @@ -20,5 +20,5 @@ traffic_skim_matrices: # If set to True, replace values of zero with the number SOV_NT_L_TIME__{}: False active_skim_files: - walk_time: maz_maz_walk.csv - bike_time: maz_maz_bike.csv \ No newline at end of file + maz_walk_time: maz_maz_walk.csv + maz_bike_time: maz_maz_bike.csv \ No newline at end of file diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 4628899e3..1d7308b54 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -110,14 +110,18 @@ def read_skims(self, mode = "transit"): "traffic_skims_AM.omx" ) skims = omx.open_file(am_traffic_skim_file, "r") - for core in ["BIKE_TIME", "walkTime"]: + active_taz_skims = { + "BIKE_TIME": "taz_bike_time", + "walkTime": "taz_walk_time" + } + for core in active_taz_skims: skim_values = np.array(skims[core.format(self.settings["time_period"])]) skim_values = np.where( skim_values == 0, self.settings["infinity"], skim_values ) - self.skims[core] = self.expand_skim( + self.skims[active_taz_skims[core]] = self.expand_skim( pd.DataFrame( skim_values, zones, @@ -445,16 +449,16 @@ def add_active_taz_time(self, bike = True): """ if bike: mode = "bike" - skim = "BIKE_TIME" + skim = "taz_bike_time" else: mode = "walk" - skim = "walkTIME" + skim = "taz_walk_time" - self.skims["taz_time"] = self.unpivot_skim(skim) - self.skims[mode + "_time"] = np.where( - self.skims[mode + "_time"] == self.settings["infinity"], - self.skims["taz_time"], - self.skims[mode + "_time"] + self.results["taz_time"] = self.unpivot_skim(skim) + self.results[mode] = np.where( + self.results[mode] == self.settings["infinity"], + self.results["taz_time"], + self.results[mode] ) # # # # # # # # # # # # OUTPUT FUNCTIONS # # # # # # # # # # # # @@ -470,8 +474,8 @@ def coalesce_results(self): self.results = pd.DataFrame( { "transit": self.unpivot_skim("total_transit_time"), - "walk": self.skims["walk_time"].query("walkTime <= @time_threshold")["walkTime"], - "bike": self.skims["bike_time"].query("BIKE_TIME <= @time_threshold")["BIKE_TIME"], + "walk": self.skims["maz_walk_time"].query("walkTime <= @time_threshold")["walkTime"], + "bike": self.skims["maz_bike_time"].query("BIKE_TIME <= @time_threshold")["BIKE_TIME"], "microtransit": self.unpivot_skim("microtransit_time"), "nev": self.unpivot_skim("nev_time"), # "drive_alone": self.unpivot_skim("drive_alone_time") @@ -480,6 +484,9 @@ def coalesce_results(self): ["i", "j"] ) + self.add_active_taz_time(bike = False) + self.add_active_taz_time(bike = True) + _ebikeMaxTime = self.constants["ebikeMaxDist"] / self.constants["ebikeSpeed"] * 60 _escooterMaxTime = self.constants["escooterMaxDist"] / self.constants["escooterSpeed"] * 60 From a7f5ed4339494a5f29696bd1f7dd6515e880b2bd Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 1 Nov 2024 08:45:51 -0700 Subject: [PATCH 40/86] Removed microtransit access to transit from travel time reporter --- src/main/python/TravelTimeReporter.py | 56 ++++++++++----------------- 1 file changed, 21 insertions(+), 35 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 1d7308b54..d58860a8c 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -301,47 +301,31 @@ def get_accegr_times(self): """ Returns transit access and egress times from every MGRA to every other MGRA """ - print("Calculating direct flexible fleet access and egress times") - microtransit_direct_access_time = self.get_microtransit_direct_accegr_time(access = True, nev = False) - microtransit_direct_egress_time = self.get_microtransit_direct_accegr_time(access = False, nev = False) - nev_direct_access_time = self.get_microtransit_direct_accegr_time(access = True, nev = True) - nev_direct_egress_time = self.get_microtransit_direct_accegr_time(access = False, nev = True) - - print("Calculating flexible fleet diverted access and egress times") - microtransit_access_time = self.get_total_microtransit_accegr_times(microtransit_direct_access_time, nev = False) - microtransit_egress_time = self.get_total_microtransit_accegr_times(microtransit_direct_egress_time, nev = False) - nev_access_time = self.get_total_microtransit_accegr_times(nev_direct_access_time, nev = True) - nev_egress_time = self.get_total_microtransit_accegr_times(nev_direct_egress_time, nev = True) - - print("Getting flexible fleet availability") - microtransit_access_available = self.field2matrix("microtransit_access_available", origin = True) - microtransit_egress_available = self.field2matrix("microtransit_egress_available", origin = False) - nev_access_available = self.field2matrix("nev_access_available", origin = True) - nev_egress_available = self.field2matrix("nev_egress_available", origin = False) + # print("Calculating direct flexible fleet access and egress times") + # microtransit_direct_access_time = self.get_microtransit_direct_accegr_time(access = True, nev = False) + # microtransit_direct_egress_time = self.get_microtransit_direct_accegr_time(access = False, nev = False) + # nev_direct_access_time = self.get_microtransit_direct_accegr_time(access = True, nev = True) + # nev_direct_egress_time = self.get_microtransit_direct_accegr_time(access = False, nev = True) + + # print("Calculating flexible fleet diverted access and egress times") + # microtransit_access_time = self.get_total_microtransit_accegr_times(microtransit_direct_access_time, nev = False) + # microtransit_egress_time = self.get_total_microtransit_accegr_times(microtransit_direct_egress_time, nev = False) + # nev_access_time = self.get_total_microtransit_accegr_times(nev_direct_access_time, nev = True) + # nev_egress_time = self.get_total_microtransit_accegr_times(nev_direct_egress_time, nev = True) + + # print("Getting flexible fleet availability") + # microtransit_access_available = self.field2matrix("microtransit_access_available", origin = True) + # microtransit_egress_available = self.field2matrix("microtransit_egress_available", origin = False) + # nev_access_available = self.field2matrix("nev_access_available", origin = True) + # nev_egress_available = self.field2matrix("nev_egress_available", origin = False) print("Getting walk access and egress times") walk_access_time = self.field2matrix("walk_accegr_time", origin = True) walk_egress_time = self.field2matrix("walk_accegr_time", origin = False) print("Calculating access and egress times") - self.skims["access_time"] = np.where( - nev_access_available, - nev_access_time, - np.where( - microtransit_access_available, - microtransit_access_time, - walk_access_time - ) - ) - self.skims["egress_time"] = np.where( - nev_egress_available, - nev_egress_time, - np.where( - microtransit_egress_available, - microtransit_egress_time, - walk_egress_time - ) - ) + self.skims["access_time"] = walk_access_time + self.skims["egress_time"] = walk_egress_time def get_transit_time(self): """ @@ -461,6 +445,8 @@ def add_active_taz_time(self, bike = True): self.results[mode] ) + del self.results["taz_time"] + # # # # # # # # # # # # OUTPUT FUNCTIONS # # # # # # # # # # # # #==============================================================# def coalesce_results(self): From 2c77dda0cd4ac9a4aa58a4559e0c8c05d5ec730b Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 1 Nov 2024 09:24:53 -0700 Subject: [PATCH 41/86] Moved addition of TAZ-level active skims to function reading active skims and changed how it was done --- src/main/python/TravelTimeReporter.py | 91 +++++++++++---------------- 1 file changed, 38 insertions(+), 53 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index d58860a8c..7675d868e 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -102,6 +102,31 @@ def read_skims(self, mode = "transit"): skims.close() + def read_active_skims(self): + """ + Reads active skims into memory as data frames + """ + # Read MAZ-level skims + for skim_name in self.settings["active_skim_files"]: + active_skims = pd.read_csv( + os.path.join( + self.model_run, + "output", + "skims", + self.settings["active_skim_files"][skim_name] + ) + ) + if "i" in active_skims.columns: + active_skims = active_skims.drop(["i", "j"],axis=1) + self.skims[skim_name] = active_skims.rename( + columns = { + "OMAZ": "i", + "DMAZ": "j", + } + ).set_index( + ["i", "j"] + ) + # Read bike and walk times from AM traffic skim am_traffic_skim_file = os.path.join( self.model_run, @@ -110,6 +135,7 @@ def read_skims(self, mode = "transit"): "traffic_skims_AM.omx" ) skims = omx.open_file(am_traffic_skim_file, "r") + zones = skims.mapping("zone_number").keys() active_taz_skims = { "BIKE_TIME": "taz_bike_time", "walkTime": "taz_walk_time" @@ -129,29 +155,16 @@ def read_skims(self, mode = "transit"): ) ) - def read_active_skims(self): - """ - Reads active skims into memory as data frames - """ - for skim_name in self.settings["active_skim_files"]: - active_skims = pd.read_csv( - os.path.join( - self.model_run, - "output", - "skims", - self.settings["active_skim_files"][skim_name] - ) - ) - if "i" in active_skims.columns: - active_skims = active_skims.drop(["i", "j"],axis=1) - self.skims[skim_name] = active_skims.rename( - columns = { - "OMAZ": "i", - "DMAZ": "j", - } - ).set_index( - ["i", "j"] - ) + # Replace TAZ-skim level values with MGRA-skim values if they are present + self.unpivot_skim("taz_bike_time") + self.unpivot_skim("taz_walk_time") + self.unpivot_skim("maz_bike_time") + self.unpivot_skim("maz_walk_time") + + self.skims["bike_time"] = self.skims["taz_bike_time"].copy() + self.skims["walk_time"] = self.skims["taz_walk_time"].copy() + self.skims["bike_time"].loc[self.skims["maz_bike_time"].index] = self.skims["maz_bike_time"] + self.skims["walk_time"].loc[self.skims["maz_walk_time"].index] = self.skims["maz_walk_time"] def init_land_use(self): """ @@ -422,31 +435,6 @@ def get_drive_alone_time(self): dest_terminal_time = self.field2matrix("terminal_time", origin = False) self.skims["drive_alone_time"] = orig_terminal_time + self.expand_skim(self.skims["SOV_NT_L_TIME__" + self.settings["time_period"]]) + dest_terminal_time - def add_active_taz_time(self, bike = True): - """ - Adds the skim values for OD pairs not in the MAZ skim files and reads in the TAZ-level skim values. - - Parameters - ---------- - bike (bool): - If set to `True`, obtain the bike skim values. Otherwise obtain the walk skim values. - """ - if bike: - mode = "bike" - skim = "taz_bike_time" - else: - mode = "walk" - skim = "taz_walk_time" - - self.results["taz_time"] = self.unpivot_skim(skim) - self.results[mode] = np.where( - self.results[mode] == self.settings["infinity"], - self.results["taz_time"], - self.results[mode] - ) - - del self.results["taz_time"] - # # # # # # # # # # # # OUTPUT FUNCTIONS # # # # # # # # # # # # #==============================================================# def coalesce_results(self): @@ -460,8 +448,8 @@ def coalesce_results(self): self.results = pd.DataFrame( { "transit": self.unpivot_skim("total_transit_time"), - "walk": self.skims["maz_walk_time"].query("walkTime <= @time_threshold")["walkTime"], - "bike": self.skims["maz_bike_time"].query("BIKE_TIME <= @time_threshold")["BIKE_TIME"], + "walk": self.skims["walk_time"], + "bike": self.skims["bike_time"], "microtransit": self.unpivot_skim("microtransit_time"), "nev": self.unpivot_skim("nev_time"), # "drive_alone": self.unpivot_skim("drive_alone_time") @@ -470,9 +458,6 @@ def coalesce_results(self): ["i", "j"] ) - self.add_active_taz_time(bike = False) - self.add_active_taz_time(bike = True) - _ebikeMaxTime = self.constants["ebikeMaxDist"] / self.constants["ebikeSpeed"] * 60 _escooterMaxTime = self.constants["escooterMaxDist"] / self.constants["escooterSpeed"] * 60 From 8e8bb31580bbffc7a9b3bcf440ce5ac0f59e7953 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 1 Nov 2024 10:13:49 -0700 Subject: [PATCH 42/86] Moved query for values under time threshold out of unpivot_skims() and into coelesce_results() --- src/main/python/TravelTimeReporter.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 7675d868e..8a4100842 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -251,13 +251,11 @@ def unpivot_skim(self, skim_name): id_vars = ["i"], var_name = "j", value_name = "time" - ).query( - "time <= @time_threshold" - ).sort_values( - ["i", "j"] + ).sort_values( + ["i", "j"] ).set_index( ["i", "j"] - )["time"] + )["time"] # # # # # # # # # # # # CALCULATOR FUNCTIONS # # # # # # # # # # # # #==================================================================# @@ -454,9 +452,11 @@ def coalesce_results(self): "nev": self.unpivot_skim("nev_time"), # "drive_alone": self.unpivot_skim("drive_alone_time") } - ).reset_index().fillna(self.settings["infinity"]).sort_values( + ).query( + "time <= @time_threshold" + ).reset_index().fillna(self.settings["infinity"]).sort_values( ["i", "j"] - ) + ) _ebikeMaxTime = self.constants["ebikeMaxDist"] / self.constants["ebikeSpeed"] * 60 _escooterMaxTime = self.constants["escooterMaxDist"] / self.constants["escooterSpeed"] * 60 From 33e11a7865b14219ad9b52a911361810fda9221a Mon Sep 17 00:00:00 2001 From: Cundo Arellano <51237056+cundo92@users.noreply.github.com> Date: Fri, 1 Nov 2024 11:17:19 -0700 Subject: [PATCH 43/86] Update network-import-tned.md First draft of the import network wiki page. --- docs/design/supply/network-import-tned.md | 112 +++++++++++++++++++++- 1 file changed, 111 insertions(+), 1 deletion(-) diff --git a/docs/design/supply/network-import-tned.md b/docs/design/supply/network-import-tned.md index 695857ee5..17581736f 100644 --- a/docs/design/supply/network-import-tned.md +++ b/docs/design/supply/network-import-tned.md @@ -1,3 +1,113 @@ # Network Import from TNED -Details of importing and processing the ETL network. \ No newline at end of file +This section describes the procedure by which the ABM3 model system imports (into Emme) network (highway and transit) files along with a general description of the different network files. + +## Network Files + +The ABM3 model system has been configured to be compatible with SANDAG's Transportation Network Editing Database (TNED) system, which is utilized to edit, maintain and generate transportation networks. The TNED network files, generated via an ETL (i.e., Extract, Tranform, Load) procedure, serve as inputs to the ABM3 model system's import network procedure and are produced in text file, shapefile, geodatabase table and geodatabase feature class geodatabase formats. There are, additionally, some non-TNED input network files which are manually maintained. + +The following are the required network files used during the Emme import network procedure: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
FileSource + Description
EMMEOutputs.gdb/TNED_HwyNetTNEDRoadway network links
EMMEOutputs.gdb/TNED_HwyNodesTNEDRoadway network nodes
EMMEOutputs.gdb/TNED_RailNetTNEDRail network links
EMMEOutputs.gdb/TNED_RailNodesTNEDRail network nodes
EMMEOutputs.gdb/TurnsTNEDTurn prohibition records
special_fares.txtManually MaintainedSpecial fares in terms of boarding and incremental in-vehicle costs
timexfer_{time_of_day}.csvManually MaintainedTimed transfer pairs of lines, by period. Where time_of_day refers to EA, AM, MD, PM, or EV.
trrt.csvTNEDAttribute data (modes, headways) for the transit lines
trlink.csvTNEDSequence of links (routing) for the transit lines
trstop.csvTNEDStop data for the transit lines
MODE5TOD.csvManually MaintainedGlobal (per-mode) transit cost and perception attributes
vehicle_class_toll_factors.csvManually MaintainedFactors to adjust the toll cost by facility name and class
+ +## Import Network Procedure + +This section describes the main steps carried out during the Emme import network procedure. The entire process is executed by the [import_network.py](https://github.com/SANDAG/ABM/blob/ABM3_develop/src/main/emme/toolbox/import/import_network.py) script. The descriptions below are excerpts and slight adaptations from the [User Guide - SANDAG Travel Model in Emme](https://github.com/SANDAG/ABM/wiki/files/user_guide_sandag_emme.pdf) report. + +#### Create Modes + +This step creates the different combinations of traffic and transit modes that will get applied to the network links. A mode defines a group of vehicles or users which have access to the same parts of the network. Modes are used in both the traffic and transit assignments to define the available network for each class of demand. Each mode is uniquely identified by a single case-sensitive character. The modes which have access to a given link are listed on that link, and each link must allow at least one mode. + +#### Create Roadway Base Network + +This step creates the base roadway network by importing it from the EMMEOutputs.gdb/TNED_HwyNet and EMMEOutputs.gdb/TNED_HwyNodes. The nodes and links (referred to as the base network in Emme) for the traffic network are imported from the TNED_HwyNode and TNED_HwyNet geodatabase feature classes. The nodes are created first and the links connect between them. The I-node (from node, field AN) and J-node (to node, field BN) are used to associate the nodes and links and uniquely identify the link in the Emme network. Separate forward (AB) and reverse (BA) links are generated for links that have been coded as two-way. + +#### Create Turns + +This step processes the EMMEOutputs.gdb/Turns input network file to generate turn restrictions by to- and from- link ID. If the indicated link IDs do not make a valid turn (links not adjacent) an error is reported. + +#### Calculate Traffic Attributes + +This step calculates derived traffic attributes. It utilizes the vehicle_class_toll_factors.csv to adjust toll costs by facility name and class. + +#### Check Zone Access + +This step verifies that every centroid has at least one available access and egress connector. + +#### Create Rail Base Network + +This step creates the base roadway network by importing it from the EMMEOutputs.gdb/TNED_RailNet and EMMEOutputs.gdb/TNED_RailNodes. The nodes and links (referred to as the base network in Emme) for the rail network are imported from the TNED_RailNode and TNED_RailNet geodatabase feature classes. The nodes are created first and the links connect between them. The I-node (from node, field AN) and J-node (to node, field BN) are used to associate the nodes and links and uniquely identify the link in the Emme network. Separate forward (AB) and reverse (BA) links are generated for links that have been coded as two-way. + +#### Create Tranist Lines + +This step creates the transit lines by importing them from the trrt.csv, trlink.csv and trstop.csv input network files and matched to the transit base network. The mode-level attributes from MODE5TOD.csv, which vary by mode, are copied to transit line attributes and used in transit assignment. It is in this step also where the timexfer_{time_of_day}.csv files are used to explicitly set route-to-route specific transfer transit times. + +#### Calculate Transit Attributes + +The transit line and stop / segment attributes (including fares) are imported to Emme attributes. The special_fares.txt lists network-level incremental fares by boarding (line and/or stop) and in-vehicle segment. They specify additive fares based on the network elements encountered on a transit journey and are used to represent the Coaster (or other) zonal fare system. \ No newline at end of file From a462dd24fd09b2241962a6ceb04380447514fb2e Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 1 Nov 2024 11:20:03 -0700 Subject: [PATCH 44/86] Made expansion_matrix an attribute of the TravelTimeReporter class so pd.get_dummies() isn't called every time expand_skim() is --- src/main/python/TravelTimeReporter.py | 5 +++-- 1 file changed, 3 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 8a4100842..acdd431a4 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -179,6 +179,8 @@ def init_land_use(self): self.land_use["nev_egress_available"] = (self.land_use["nev"] > 0) & (self.land_use["micro_accegr_dist"] <= self.constants["nevMaxDist"]) & (self.land_use["micro_accegr_dist"] >= self.constants["maxWalkIfMTAccessAvailable"]) self.land_use["nev_accegr_time"] = 60 * self.land_use["micro_accegr_dist"] / self.constants["nevSpeed"] + self.expansion_matrix = pd.get_dummies(self.land_use["TAZ"]) # Indicates which MGRAs belong to which TAZ + # # # # # # # # # # # # UTILITY FUNCTIONS # # # # # # # # # # # # #===============================================================# def field2matrix(self, field, origin = True): @@ -222,9 +224,8 @@ def expand_skim(self, skim): expanded_skim (pandas.DataFrame): Skim matrix where the index and columns are the origins and destinations MGRAs, respectively, and the values are the impedance from each origin MGRA to the destination MGRA """ - expansion_matrix = pd.get_dummies(self.land_use["TAZ"]) # Indicates which MGRAs belong to which TAZ return pd.DataFrame( - expansion_matrix.values.dot(skim.values).dot(expansion_matrix.T.values), + self.expansion_matrix.values.dot(skim.values).dot(self.expansion_matrix.T.values), self.land_use.index, self.land_use.index ) From 305050e0e20c04c9d5101be54ce3181d84b50cd5 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 1 Nov 2024 11:21:42 -0700 Subject: [PATCH 45/86] Removed unpivoting of taz skims as they are already in that format --- src/main/python/TravelTimeReporter.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index acdd431a4..6b54f3402 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -158,8 +158,6 @@ def read_active_skims(self): # Replace TAZ-skim level values with MGRA-skim values if they are present self.unpivot_skim("taz_bike_time") self.unpivot_skim("taz_walk_time") - self.unpivot_skim("maz_bike_time") - self.unpivot_skim("maz_walk_time") self.skims["bike_time"] = self.skims["taz_bike_time"].copy() self.skims["walk_time"] = self.skims["taz_walk_time"].copy() From 259c5debe7acde716fb0f2df3575bef3bf60434d Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 1 Nov 2024 12:02:37 -0700 Subject: [PATCH 46/86] Fix household reindex in trip destination preprocessor, add ebike tour check to ebike time/cost reporting --- .../trip_destination_annotate_trips_preprocessor.csv | 5 +++-- .../configs/resident/trip_mode_choice_annotate_trips.csv | 8 +++++--- 2 files changed, 8 insertions(+), 5 deletions(-) diff --git a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv index 8a7c40cdc..6bc7269a8 100644 --- a/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_destination_annotate_trips_preprocessor.csv @@ -8,9 +8,10 @@ Description,Target,Expression ,_tod,"np.where(df.outbound,reindex_i(tours.start, df.tour_id),reindex_i(tours.end, df.tour_id))" ,trip_period,network_los.skim_time_period_label(_tod) #,, -adding _trips to avoid conflict with the variables in the tours_merged,income_trips,"reindex(households.income, df.person_id)" +adding _trips to avoid conflict with the variables in the tours_merged,income_trips,"reindex(households.income, df.household_id)" adding _trips to avoid conflict with the variables in the tours_merged,age_trips,"reindex(persons.age, df.person_id)" -adding _trips to avoid conflict with the variables in the tours_merged,ebike_owner_trips,"reindex(households.ebike_owner, df.person_id)" +,_ebike_owner_trips,"reindex(households.ebike_owner, df.household_id)" +,ebike_owner_trips,"np.where(_ebike_owner_trips,1,0)" ,female,"reindex(persons.female, df.person_id)" #,age_55p,"reindex(persons.age_55_p, df.person_id)" #,age_35_54,"reindex(persons.age_35_to_54, df.person_id)" diff --git a/src/asim/configs/resident/trip_mode_choice_annotate_trips.csv b/src/asim/configs/resident/trip_mode_choice_annotate_trips.csv index c83b8e454..87bb2bd1d 100644 --- a/src/asim/configs/resident/trip_mode_choice_annotate_trips.csv +++ b/src/asim/configs/resident/trip_mode_choice_annotate_trips.csv @@ -15,6 +15,8 @@ Description,Target,Expression Origin Terminal Time,_oTermTime,"reindex(land_use.terminal_time,df.origin)" Destination Terminal Time,_dTermTime,"reindex(land_use.terminal_time,df.destination)" ,_tour_participants,df.tour_id.map(tours.number_of_participants) +,_tour_mode,df.tour_id.map(tours.tour_mode) +,_tourEbike,(_tour_mode == 'EBIKE') ,_is_joint,(_tour_participants > 1) #,, ,_time_drive_terminal,0 @@ -136,7 +138,7 @@ Destination Terminal Time,_dTermTime,"reindex(land_use.terminal_time,df.destinat #,, ,_time_walk,0 ,_time_walk,"_time_walk + (df.trip_mode=='WALK') * od_skims['walkTime']" -,_time_walk,"_time_walk + (df.trip_mode=='EBIKE') * (~df.ebike_owner) * (microRentTime + _MicroAccessTime)" +,_time_walk,"_time_walk + (df.trip_mode=='EBIKE') * np.where(((~df.ebike_owner) | (~_tourEbike)),1,0) * (microRentTime + _MicroAccessTime)" ,_time_walk,"_time_walk + (df.trip_mode=='ESCOOTER') * (microRentTime + _MicroAccessTime)" ,_time_walk,"_time_walk + (df.trip_mode=='SCH_BUS') * 10" ,_time_walk,"_time_walk + (df.trip_mode=='WALK_LOC') * ~df.nev_local_access_available_in * ~df.microtransit_local_access_available_in * _origin_local_time" @@ -175,7 +177,7 @@ Destination Terminal Time,_dTermTime,"reindex(land_use.terminal_time,df.destinat #,, ,_distance_walk,0 ,_distance_walk,"_distance_walk + (df.trip_mode=='WALK') * od_skims['walkTime']/60 * walkSpeed" -,_distance_walk,"_distance_walk + (df.trip_mode=='EBIKE') * (~df.ebike_owner) * _MicroAccessTime/60 * walkSpeed" +,_distance_walk,"_distance_walk + (df.trip_mode=='EBIKE') * np.where(((~df.ebike_owner) | (~_tourEbike)),1,0) * _MicroAccessTime/60 * walkSpeed" ,_distance_walk,"_distance_walk + (df.trip_mode=='ESCOOTER') * _MicroAccessTime/60 * walkSpeed" ,_distance_walk,"_distance_walk + (df.trip_mode=='SCH_BUS') * 10/60 * walkSpeed" ,_distance_walk,"_distance_walk + (df.trip_mode=='WALK_LOC') * ~df.nev_local_access_available_in * ~df.microtransit_local_access_available_in * _origin_local_dist" @@ -219,7 +221,7 @@ Destination Terminal Time,_dTermTime,"reindex(land_use.terminal_time,df.destinat ,_distance_mm,"_distance_mm + df.trip_mode.isin(['EBIKE'])*od_skims['BIKE_TIME'] * (bikeSpeed/ebikeSpeed)/60 * ebikeSpeed" ,distance_mm,"_distance_mm + df.trip_mode.isin(['ESCOOTER'])*od_skims['BIKE_TIME'] * (bikeSpeed/escooterSpeed)/60 * escooterSpeed" ,_cost_fare_mm,0 -,_cost_fare_mm,"_cost_fare_mm + df.trip_mode.isin(['EBIKE'])*(~df.ebike_owner)*(microFixedCost + microVarCost*time_mm)" +,_cost_fare_mm,"_cost_fare_mm + df.trip_mode.isin(['EBIKE'])*np.where(((~df.ebike_owner) | (~_tourEbike)),1,0)*(microFixedCost + microVarCost*time_mm)" ,cost_fare_mm,"_cost_fare_mm + df.trip_mode.isin(['ESCOOTER'])*(microFixedCost + microVarCost*time_mm)" ,_distance_bike,0 ,distance_bike,"_distance_bike + df.trip_mode.isin(['BIKE'])*od_skims['BIKE_TIME']/60 * bikeSpeed" From 95bbefb6286dbb32d3c9ee01956d19ffa8f3f87e Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Fri, 1 Nov 2024 14:04:46 -0700 Subject: [PATCH 47/86] Moved time under time_threshold query back to unpivot_skims --- src/main/python/TravelTimeReporter.py | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 6b54f3402..09b48dcb7 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -250,11 +250,13 @@ def unpivot_skim(self, skim_name): id_vars = ["i"], var_name = "j", value_name = "time" - ).sort_values( - ["i", "j"] - ).set_index( + ).query( + "time <= @time_threshold" + ).sort_values( ["i", "j"] - )["time"] + ).set_index( + ["i", "j"] + )["time"] # # # # # # # # # # # # CALCULATOR FUNCTIONS # # # # # # # # # # # # #==================================================================# @@ -451,9 +453,7 @@ def coalesce_results(self): "nev": self.unpivot_skim("nev_time"), # "drive_alone": self.unpivot_skim("drive_alone_time") } - ).query( - "time <= @time_threshold" - ).reset_index().fillna(self.settings["infinity"]).sort_values( + ).reset_index().fillna(self.settings["infinity"]).sort_values( ["i", "j"] ) From 65a8e76d3ec6850628c99c411821224c78b859a9 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 1 Nov 2024 15:21:56 -0700 Subject: [PATCH 48/86] Apply shared TNC ivt factor to only non-ff trips --- src/asim/configs/crossborder/trip_mode_choice.csv | 2 +- src/asim/configs/visitor/tour_mode_choice.csv | 2 +- src/asim/configs/visitor/trip_mode_choice.csv | 2 +- 3 files changed, 3 insertions(+), 3 deletions(-) diff --git a/src/asim/configs/crossborder/trip_mode_choice.csv b/src/asim/configs/crossborder/trip_mode_choice.csv index 9758bae26..205c642b5 100644 --- a/src/asim/configs/crossborder/trip_mode_choice.csv +++ b/src/asim/configs/crossborder/trip_mode_choice.csv @@ -66,7 +66,7 @@ util_TNC_SINGLE_IVT,TNC Single - In-vehicle time,c_ivt * s2_time_skims,,,,,,,,,1 util_TNC_SINGLE_wait,TNC Single - Wait time,c_ivt * 1.5 * tnc_single_wait_time,,,,,,,,,1, util_TNC_SINGLE_cost,TNC Single - Cost,@c_cost * ((TNC_single_baseFare + (df.s2_dist_skims * TNC_single_costPerMile) + (df.s2_time_skims * TNC_single_costPerMinute).clip(lower=TNC_single_costMinimum)) * 100 + df.s2_cost_skims),,,,,,,,,1, util_TNC Shared_switch,TNC Shared - switch turn-off (depends on data availability),@((~df.nev_available) & (~df.microtransit_available) & (scenarioYear==2022)),,,,,,,,,,-999 -util_TNC_SHARED_IVT,TNC Shared - In-vehicle time,"@df.c_ivt * np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims)) * TNC_shared_IVTFactor",,,,,,,,,,1 +util_TNC_SHARED_IVT,TNC Shared - In-vehicle time,"@df.c_ivt * np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims * TNC_shared_IVTFactor))",,,,,,,,,,1 util_TNC_SHARED_wait,TNC Shared - Wait time,"@df.c_ivt * 1.5 * np.where(df.nev_available, nevWaitTime, np.where(df.microtransit_available, microtransitWaitTime, df.tnc_shared_wait_time))",,,,,,,,,,1 util_TNC_SHARED_cost,TNC Shared - Cost,"@c_cost * np.where(df.nev_available, nevCost, np.where(df.microtransit_available, microtransitCost, ((TNC_shared_baseFare + (df.s3_dist_skims * TNC_shared_costPerMile) + (df.s3_time_skims * TNC_shared_costPerMinute).clip(lower=TNC_shared_costMinimum)))) * 100 + df.s3_cost_skims)",,,,,,,,,,1 #,,,,,,,,,,,, diff --git a/src/asim/configs/visitor/tour_mode_choice.csv b/src/asim/configs/visitor/tour_mode_choice.csv index ef49ea5f0..046bf5c26 100644 --- a/src/asim/configs/visitor/tour_mode_choice.csv +++ b/src/asim/configs/visitor/tour_mode_choice.csv @@ -89,7 +89,7 @@ util_TNC Single - Wait time,TNC Single - Wait time,1.5*totalWaitSingleTNC,,,,,,, util_TNC Single - Cost,TNC Single - Cost,"@(((np.maximum(TNC_single_baseFare*2 + (df.s2_dist_skims_out + df.s2_dist_skims_inb) * TNC_single_costPerMile + (df.s2_time_skims_out + df.s2_time_skims_inb) * TNC_single_costPerMinute, TNC_shared_costMinimum*2)*100 + df.s2_cost_skims_out + df.s2_cost_skims_inb)) * df.coef_cost)",,,,,,,,,,coef_one, #,TNC Shared,,,,,,,,,,,, util_TNC Shared_switch,TNC Shared - switch turn-off (depends on data availability),@((~df.nev_available) & (~df.microtransit_available) & (scenarioYear==2022)),,,,,,,,,,,-999 -util_TNC Shared - In-vehicle time,TNC Shared - In-vehicle time,"@(np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, (df.s3_time_skims_out + df.s3_time_skims_inb)))) * TNC_shared_IVTFactor",,,,,,,,,,,coef_ivt +util_TNC Shared - In-vehicle time,TNC Shared - In-vehicle time,"@(np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, (df.s3_time_skims_out + df.s3_time_skims_inb) * TNC_shared_IVTFactor)))",,,,,,,,,,,coef_ivt util_TNC Shared - Wait time,TNC Shared - Wait time,"@1.5*np.where(df.nev_available, 2*nevWaitTime, np.where(df.microtransit_available, 2*microtransitWaitTime, df.totalWaitSharedTNC))",,,,,,,,,,,coef_ivt util_TNC Shared - Cost,TNC Shared - Cost,"@np.where(df.nev_available, 2*nevCost, np.where(df.microtransit_available, 2*microtransitCost, ((np.maximum(TNC_shared_baseFare*2 + (df.s3_dist_skims_out + df.s3_dist_skims_inb) * TNC_shared_costPerMile + (df.s3_time_skims_out + df.s3_time_skims_inb)* TNC_shared_costPerMinute, TNC_shared_costMinimum*2)))*100 + df.s3_cost_skims_out + df.s3_cost_skims_inb) * df.coef_cost)",,,,,,,,,,,coef_one Calibration work tour with auto,Work Tour with auto,is_work*autoAvailable,-0.4839,,0.8409,-0.0425,,-3,,,-0.191,-0.191,-999 diff --git a/src/asim/configs/visitor/trip_mode_choice.csv b/src/asim/configs/visitor/trip_mode_choice.csv index f6a9fe7dd..21f132ef9 100644 --- a/src/asim/configs/visitor/trip_mode_choice.csv +++ b/src/asim/configs/visitor/trip_mode_choice.csv @@ -30,7 +30,7 @@ util_TNC_SINGLE_wait,TNC Single - Wait time,1.5 * tnc_single_wait_time,,,,,,,coe util_TNC_SINGLE_cost,TNC Single - Cost,"@df.coef_cost * (np.maximum(TNC_single_baseFare + (df.s2_dist_skims * TNC_single_costPerMile) + (df.s2_time_skims * TNC_single_costPerMinute), TNC_single_costMinimum) * 100 + df.s2_cost_skims)",,,,,,,coef_one,,,, #,,,,,,,,,,,,, util_TNC Shared_switch,TNC Shared - switch turn-off (depends on data availability),@((~df.nev_available) & (~df.microtransit_available) & (scenarioYear==2022)),,,,,,,,-999,,, -util_TNC_SHARED_IVT,TNC Shared - In-vehicle time,"@np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims)) * TNC_shared_IVTFactor",,,,,,,,coef_ivt,,, +util_TNC_SHARED_IVT,TNC Shared - In-vehicle time,"@np.where(df.nev_available, df.nev_time, np.where(df.microtransit_available, df.microtransit_time, df.s3_time_skims * TNC_shared_IVTFactor))",,,,,,,,coef_ivt,,, util_TNC_SHARED_wait,TNC Shared - Wait time,"@1.5 * np.where(df.nev_available, nevWaitTime, np.where(df.microtransit_available, microtransitWaitTime, df.tnc_shared_wait_time))",,,,,,,,coef_ivt,,, util_TNC_SHARED_cost,TNC Shared - Cost,"@df.coef_cost * np.where(df.nev_available, nevCost, np.where(df.microtransit_available, microtransitCost, (np.maximum(TNC_shared_baseFare + (df.s3_dist_skims * TNC_shared_costPerMile) + (df.s3_time_skims * TNC_shared_costPerMinute), TNC_shared_costMinimum))) * 100 + df.s3_cost_skims)",,,,,,,,coef_one,,, #,,,,,,,,,,,,, From 90188e7eb2b9e5b5bc0229165099542ea7498247 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 1 Nov 2024 15:23:38 -0700 Subject: [PATCH 49/86] Remove commented out taxi/tnc time in airport write_trip_matrices --- .../write_trip_matrices_annotate_trips_preprocessor.csv | 3 --- 1 file changed, 3 deletions(-) diff --git a/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv b/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv index 158488da9..d5276e13d 100644 --- a/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv +++ b/src/asim/configs/common_airport/write_trip_matrices_annotate_trips_preprocessor.csv @@ -208,10 +208,7 @@ Description,Target,Expression ,_timeDrive,"_timeDrive + odt_skims['HOV3_L_TIME'] * np.where(((trip_mode == 'SHARED3') & vot1),1,0)" ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_M_TIME'] * np.where(((trip_mode == 'DRIVEALONE') & vot2),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_M_TIME'] * np.where(((trip_mode == 'SHARED2') & vot2),1,0)" -#,_timeDrive,"_timeDrive + (odt_skims['HOV2_M_TIME'] + _TAXI_WAIT_TIME) * np.where((trip_mode == 'TAXI'),1,0)" -#,_timeDrive,"_timeDrive + (odt_skims['HOV2_M_TIME'] + _SINGLE_TNC_WAIT_TIME) * np.where((trip_mode == 'TNC_SINGLE'),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV3_M_TIME'] * np.where(((trip_mode == 'SHARED3') & vot2),1,0)" -#,_timeDrive,"_timeDrive + (odt_skims['HOV3_M_TIME'] + _SHARED_TNC_WAIT_TIME) * TNC_shared_IVTFactor * np.where((trip_mode == 'TNC_SHARED'),1,0) * _TNC_SHARED_IVT_FACTOR" ,_timeDrive,"_timeDrive + odt_skims['SOV_NT_H_TIME'] * np.where(((trip_mode == 'DRIVEALONE') & vot3),1,0)" ,_timeDrive,"_timeDrive + odt_skims['HOV2_H_TIME'] * np.where(((trip_mode == 'SHARED2') & vot3),1,0)" ,timeDrive,"_timeDrive + odt_skims['HOV3_H_TIME'] * np.where(((trip_mode == 'SHARED3') & vot3),1,0)" From b9918faca842045d2fcce4bfff9aa8ce7efe206a Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 1 Nov 2024 16:12:30 -0700 Subject: [PATCH 50/86] Use TNC_transit access times to calculate mt/nev access times --- ..._choice_annotate_choosers_preprocessor.csv | 33 ++++++------ ...ode_choice_annotate_trips_preprocessor.csv | 54 ++++++++++--------- 2 files changed, 48 insertions(+), 39 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv b/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv index 8a566f881..33ab6927d 100644 --- a/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv +++ b/src/asim/configs/resident/tour_mode_choice_annotate_choosers_preprocessor.csv @@ -180,9 +180,12 @@ Determining Tour Destination,destination,df.destination if 'destination' in df.c ,origin_local_dist,"reindex(land_use.walk_dist_local_bus, origin)", ,origin_prm_dist,"reindex(land_use.walk_dist_premium_transit, origin)", ,origin_mix_dist,"np.minimum(origin_local_dist, origin_prm_dist)", -,origin_micro_local_dist,"reindex(land_use.micro_dist_local_bus, origin)", -,origin_micro_prm_dist,"reindex(land_use.micro_dist_premium_transit, origin)", -,origin_micro_mix_dist,"np.minimum(origin_micro_local_dist, origin_micro_prm_dist)", +,origin_micro_local_dist_tncout,"odt_skims['KNROUT_LOC_ACC']/60 * driveSpeed", +,origin_micro_local_dist_tncin,"odt_skims['KNRIN_LOC_ACC']/60 * driveSpeed", +,origin_micro_prm_dist_tncout,"odt_skims['KNROUT_PRM_ACC']/60 * driveSpeed", +,origin_micro_prm_dist_tncin,"odt_skims['KNRIN_PRM_ACC']/60 * driveSpeed", +,origin_micro_mix_dist_tncout,"odt_skims['KNROUT_MIX_ACC']/60 * driveSpeed", +,origin_micro_mix_dist_tncin,"odt_skims['KNRIN_MIX_ACC']/60 * driveSpeed", ,dest_local_dist,"reindex(land_use.walk_dist_local_bus, destination)", ,dest_prm_dist,"reindex(land_use.walk_dist_premium_transit, destination)", ,dest_mix_dist,"np.minimum(dest_local_dist, dest_prm_dist)", @@ -284,25 +287,25 @@ nev available,nev_available,(nev_orig > 0) & (nev_orig == nev_dest) & (s3_dist_s nev direct time,nev_direct_time,"np.maximum(s3_dist_skims_out/nevSpeed*60, s3_time_skims_out) + np.maximum(s3_dist_skims_inb/nevSpeed*60, s3_time_skims_inb)", nev total time,nev_time,"np.maximum(nev_direct_time + nevDiversionConstant, nevDiversionFactor*nev_direct_time)", # Microtransit and NEV access to transit,,, -microtransit access to local available,microtransit_local_access_available,(microtransit_orig>0) & (origin_micro_local_dist0) & (origin_micro_local_dist_tncout0) & (origin_micro_local_dist0) & (origin_micro_local_dist_tncout0) & (origin_micro_prm_dist0) & (origin_micro_prm_dist_tncout0) & (origin_micro_prm_dist0) & (origin_micro_prm_dist_tncout0) & (origin_micro_mix_dist0) & (origin_micro_mix_dist_tncout0) & (origin_micro_mix_dist0) & (origin_micro_mix_dist_tncout0) & (dest_micro_local_dist>maxWalkIfMTAccessAvailable) & (dest_micro_local_dist 0) & (nev_orig == nev_dest) & (s3_dist_s nev direct time,nev_direct_time,"np.maximum(s3_dist_skims/nevSpeed*60, s3_time_skims)" nev total time,nev_time,"np.maximum(nev_direct_time + nevDiversionConstant, nevDiversionFactor*nev_direct_time)" # Microtransit and NEV access to transit,, -outbound microtransit access to local available,microtransit_local_access_available_out,df.outbound & (microtransit_orig>0) & (origin_micro_local_dist0) & (micro_local_dist_tncout0) & (dest_micro_local_dist0) & (micro_local_dist_tncin0) & (origin_micro_local_dist0) & (micro_local_dist_tncout0) & (dest_micro_local_dist0) & (micro_local_dist_tncin0) & (origin_micro_prm_dist0) & (micro_prm_dist_tncout0) & (dest_micro_prm_dist0) & (micro_prm_dist_tncin0) & (origin_micro_prm_dist0) & (micro_prm_dist_tncout0) & (dest_micro_prm_dist0) & (micro_prm_dist_tncin0) & (origin_micro_mix_dist0) & (micro_mix_dist_tncout0) & (dest_micro_mix_dist0) & (micro_mix_dist_tncin0) & (origin_micro_mix_dist0) & (micro_mix_dist_tncout0) & (dest_micro_mix_dist0) & (micro_mix_dist_tncin0) & (dest_micro_local_dist>maxWalkIfMTAccessAvailable) & (dest_micro_local_dist Date: Fri, 1 Nov 2024 16:56:45 -0700 Subject: [PATCH 51/86] unpivot_skim returns unpivoted skims; it is not done in place --- src/main/python/TravelTimeReporter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 09b48dcb7..02a5717ee 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -156,8 +156,8 @@ def read_active_skims(self): ) # Replace TAZ-skim level values with MGRA-skim values if they are present - self.unpivot_skim("taz_bike_time") - self.unpivot_skim("taz_walk_time") + self.skims["taz_bike_time"] = self.unpivot_skim("taz_bike_time") + self.skims["taz_walk_time"] = self.unpivot_skim("taz_walk_time") self.skims["bike_time"] = self.skims["taz_bike_time"].copy() self.skims["walk_time"] = self.skims["taz_walk_time"].copy() From ee62c90f30285c4f11a661d1df212a64ea37cf9d Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Mon, 4 Nov 2024 08:36:06 -0800 Subject: [PATCH 52/86] Changed from assignment of maz times to taz times from vectorized to for loops --- src/main/python/TravelTimeReporter.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 02a5717ee..b5af28344 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -161,8 +161,10 @@ def read_active_skims(self): self.skims["bike_time"] = self.skims["taz_bike_time"].copy() self.skims["walk_time"] = self.skims["taz_walk_time"].copy() - self.skims["bike_time"].loc[self.skims["maz_bike_time"].index] = self.skims["maz_bike_time"] - self.skims["walk_time"].loc[self.skims["maz_walk_time"].index] = self.skims["maz_walk_time"] + for ix, row in self.skims["maz_bike_time"].iterrows(): + self.skims["bike_time"].loc[ix, "time"] = self.skims["maz_bike_time"].loc[ix, "time"] + for ix, row in self.skims["maz_walk_time"].iterrows(): + self.skims["walk_time"].loc[ix, "time"] = self.skims["maz_walk_time"].loc[ix, "time"] def init_land_use(self): """ From 75196ddf99796af812728701995d19e9e452bb1a Mon Sep 17 00:00:00 2001 From: Bhargava Sana Date: Mon, 4 Nov 2024 09:01:19 -0800 Subject: [PATCH 53/86] Fixed microtransit access dist type. This file only has 3 columns. --- ...rip_mode_choice_annotate_trips_preprocessor.csv | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv index c3678a7b2..ffd13abc7 100644 --- a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv @@ -228,12 +228,12 @@ no long walks,walkAvailable,"np.where((walk_time_skims < max_walk_time),1,0) * n ,dest_micro_local_dist,"reindex(land_use.micro_dist_local_bus, destination)" ,dest_micro_prm_dist,"reindex(land_use.micro_dist_premium_transit, destination)" ,dest_micro_mix_dist,"np.minimum(dest_micro_local_dist, dest_micro_prm_dist)" -,micro_local_dist_tncout,"odt_skims['KNROUT_LOC_ACC']/60 * driveSpeed", -,micro_local_dist_tncin,"odt_skims['KNRIN_LOC_ACC']/60 * driveSpeed", -,micro_prm_dist_tncout,"odt_skims['KNROUT_PRM_ACC']/60 * driveSpeed", -,micro_prm_dist_tncin,"odt_skims['KNRIN_PRM_ACC']/60 * driveSpeed", -,micro_mix_dist_tncout,"odt_skims['KNROUT_MIX_ACC']/60 * driveSpeed", -,micro_mix_dist_tncin,"odt_skims['KNRIN_MIX_ACC']/60 * driveSpeed", +,micro_local_dist_tncout,"odt_skims['KNROUT_LOC_ACC']/60 * driveSpeed" +,micro_local_dist_tncin,"odt_skims['KNRIN_LOC_ACC']/60 * driveSpeed" +,micro_prm_dist_tncout,"odt_skims['KNROUT_PRM_ACC']/60 * driveSpeed" +,micro_prm_dist_tncin,"odt_skims['KNRIN_PRM_ACC']/60 * driveSpeed" +,micro_mix_dist_tncout,"odt_skims['KNROUT_MIX_ACC']/60 * driveSpeed" +,micro_mix_dist_tncin,"odt_skims['KNRIN_MIX_ACC']/60 * driveSpeed" #access egress times,, ,origin_local_time,origin_local_dist * 60/walkSpeed ,origin_prm_time,origin_prm_dist * 60/walkSpeed @@ -392,4 +392,4 @@ microtransit/nev access transfer,mtnev_acc_xfer_in,microtransit_local_access_ava microtransit/nev egress transfer,mtnev_egr_xfer_out,microtransit_local_egress_available_out | microtransit_prm_egress_available_out | microtransit_mix_egress_available_out | nev_local_egress_available_out | nev_prm_egress_available_out | nev_mix_egress_available_out microtransit/nev egress transfer,mtnev_egr_xfer_in,microtransit_local_egress_available_in | microtransit_prm_egress_available_in | microtransit_mix_egress_available_in | nev_local_egress_available_in | nev_prm_egress_available_in | nev_mix_egress_available_in #,, -transit subsidi pass discount,transitSubsidyPassDiscount,"np.where(df.transit_pass_subsidy | df.transit_pass_ownership,0,1)" \ No newline at end of file +transit subsidi pass discount,transitSubsidyPassDiscount,"np.where(df.transit_pass_subsidy | df.transit_pass_ownership,0,1)" From 0851bf5b079faccf9129d463ff13f96ea93f0fbe Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Mon, 4 Nov 2024 09:20:51 -0800 Subject: [PATCH 54/86] self.skims['bike_time'] and self.skims['walk_time'] are Series, not DataFrames --- src/main/python/TravelTimeReporter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index b5af28344..308d71dd3 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -162,9 +162,9 @@ def read_active_skims(self): self.skims["bike_time"] = self.skims["taz_bike_time"].copy() self.skims["walk_time"] = self.skims["taz_walk_time"].copy() for ix, row in self.skims["maz_bike_time"].iterrows(): - self.skims["bike_time"].loc[ix, "time"] = self.skims["maz_bike_time"].loc[ix, "time"] + self.skims["bike_time"].loc[ix] = self.skims["maz_bike_time"].loc[ix, "time"] for ix, row in self.skims["maz_walk_time"].iterrows(): - self.skims["walk_time"].loc[ix, "time"] = self.skims["maz_walk_time"].loc[ix, "time"] + self.skims["walk_time"].loc[ix] = self.skims["maz_walk_time"].loc[ix, "time"] def init_land_use(self): """ From 223a9f93268cd9c67cf07e0614c3965f470d4cf9 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Mon, 4 Nov 2024 10:07:25 -0800 Subject: [PATCH 55/86] Updated with correct column names for MAZ-level active skims --- src/main/python/TravelTimeReporter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 308d71dd3..88c5d6b5c 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -162,9 +162,9 @@ def read_active_skims(self): self.skims["bike_time"] = self.skims["taz_bike_time"].copy() self.skims["walk_time"] = self.skims["taz_walk_time"].copy() for ix, row in self.skims["maz_bike_time"].iterrows(): - self.skims["bike_time"].loc[ix] = self.skims["maz_bike_time"].loc[ix, "time"] + self.skims["bike_time"].loc[ix] = self.skims["maz_bike_time"].loc[ix, "BIKE_TIME"] for ix, row in self.skims["maz_walk_time"].iterrows(): - self.skims["walk_time"].loc[ix] = self.skims["maz_walk_time"].loc[ix, "time"] + self.skims["walk_time"].loc[ix] = self.skims["maz_walk_time"].loc[ix, "walkTime"] def init_land_use(self): """ From 545e84cf4788aa6342be1534fcaa4a2877a348bf Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Mon, 4 Nov 2024 11:49:39 -0800 Subject: [PATCH 56/86] Replaced for loop in read_active_skims() with vectorized assignment and updated unpivot_skim() to give option to not filter for time to prevent KeyError --- src/main/python/TravelTimeReporter.py | 50 +++++++++++++++++++-------- 1 file changed, 36 insertions(+), 14 deletions(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index 88c5d6b5c..d0261fb1d 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -156,15 +156,22 @@ def read_active_skims(self): ) # Replace TAZ-skim level values with MGRA-skim values if they are present - self.skims["taz_bike_time"] = self.unpivot_skim("taz_bike_time") - self.skims["taz_walk_time"] = self.unpivot_skim("taz_walk_time") + self.skims["taz_bike_time"] = self.unpivot_skim("taz_bike_time", False) + self.skims["taz_walk_time"] = self.unpivot_skim("taz_walk_time", False) self.skims["bike_time"] = self.skims["taz_bike_time"].copy() self.skims["walk_time"] = self.skims["taz_walk_time"].copy() - for ix, row in self.skims["maz_bike_time"].iterrows(): - self.skims["bike_time"].loc[ix] = self.skims["maz_bike_time"].loc[ix, "BIKE_TIME"] - for ix, row in self.skims["maz_walk_time"].iterrows(): - self.skims["walk_time"].loc[ix] = self.skims["maz_walk_time"].loc[ix, "walkTime"] + self.skims["bike_time"].loc[self.skims["maz_bike_time"].index] = self.skims["maz_bike_time"]["BIKE_TIME"] + self.skims["walk_time"].loc[self.skims["maz_walk_time"].index] = self.skims["maz_walk_time"]["walkTime"] + + # Remove OD-pairs above time threshold + time_threshold = self.settings["time_threshold"] + self.skims["bike_time"] = self.skims["bike_time"].loc[ + self.skims["bike_time"] <= time_threshold + ] + self.skims["walk_time"] = self.skims["walk_time"].loc[ + self.skims["walk_time"] <= time_threshold + ] def init_land_use(self): """ @@ -230,7 +237,7 @@ def expand_skim(self, skim): self.land_use.index ) - def unpivot_skim(self, skim_name): + def unpivot_skim(self, skim_name, filter_for_time = True): """ Unpivots a skim into a series with the origin and destination as the index @@ -238,6 +245,8 @@ def unpivot_skim(self, skim_name): ---------- skim_name (str): Name of skim to unpivot + filter_for_time (bool): + If true, values will above the time threshold will be removed Returns ------- @@ -247,13 +256,26 @@ def unpivot_skim(self, skim_name): time_threshold = self.settings["time_threshold"] self.skims[skim_name].index.name = "i" - return pd.melt( - self.skims[skim_name].reset_index(), - id_vars = ["i"], - var_name = "j", - value_name = "time" - ).query( - "time <= @time_threshold" + if filter_for_time: + return pd.melt( + self.skims[skim_name].reset_index(), + id_vars = ["i"], + var_name = "j", + value_name = "time" + ).query( + "time <= @time_threshold" + ).sort_values( + ["i", "j"] + ).set_index( + ["i", "j"] + )["time"] + + else: + return pd.melt( + self.skims[skim_name].reset_index(), + id_vars = ["i"], + var_name = "j", + value_name = "time" ).sort_values( ["i", "j"] ).set_index( From 770c07fdd9b8c24033f7246d3204d3f1716b9375 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Mon, 4 Nov 2024 13:47:02 -0800 Subject: [PATCH 57/86] Disable micromobility when bike time = 0 --- src/asim/configs/resident/tour_mode_choice.csv | 4 ++-- .../resident/trip_mode_choice_annotate_trips_preprocessor.csv | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index 440b34f5a..a5818f49f 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -382,8 +382,8 @@ util_calib_escorttour,abm2+ calibration constant,tour_type == 'escort',,,,coef_c util_one_or_more_school_escort,No SOV if on school escort tour,"@(np.where(np.isnan(df.get('num_escortees', 0)), 0 , df.get('num_escortees', 0)) >= 1)",-999,,,,,,,,,,,,,,,,,,,,,, util_two_or_more_school_escort,Can't take HOV2 if taking two children and yourself,"@(np.where(np.isnan(df.get('num_escortees', 0)), 0 , df.get('num_escortees', 0)) >= 2)",,-999,,,,,,,,,,,,,,,,,,,,, #,Micromobility (e-scooter/e-bike),,,,,,,,,,,,,,,,,,,,,,,, -util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0)) & (~df.ebike_owner))",,,,,,,,,,,,,,,,,,,,,,-999, -util_escooter_long_access,Shut off escooter if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0))",,,,,,,,,,,,,,,,,,,,,,,-999 +util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0)) & (~df.ebike_owner)) | (od_skims['BIKE_TIME']<=0)",,,,,,,,,,,,,,,,,,,,,,-999, +util_escooter_long_access,Shut off escooter if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0)) | (od_skims['BIKE_TIME']<=0)",,,,,,,,,,,,,,,,,,,,,,,-999 util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 util_ebike_ivt,Ebike utility for in-vehicle time,@(df.ebike_time_inb + df.ebike_time_out)*df.time_factor,,,,,,,,,,,,,,,,,,,,,,coef_ivt, diff --git a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv index c3678a7b2..e816fb5ee 100644 --- a/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/trip_mode_choice_annotate_trips_preprocessor.csv @@ -195,8 +195,8 @@ no sov for age < min drving age,sov_available,"(age>=minimumAgeDA) * is_indiv * ,sr2_available,"np.where((tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike)|(tourEscooter)|(df.number_of_participants>2),0,1)" ,sr3_available,"np.where((tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike)|(tourEscooter)|(df.number_of_participants==2),0,1)" no long walks,walkAvailable,"np.where((walk_time_skims < max_walk_time),1,0) * np.where((tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike)|(tourEscooter),0,1)" -,Escooter_available,"np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike),0,1)" -,Ebike_available,"np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEscooter),0,1)" +,Escooter_available,"(od_skims['BIKE_TIME']>0) * np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike),0,1)" +,Ebike_available,"(od_skims['BIKE_TIME']>0) * np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourPNR)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEscooter),0,1)" ,PNR_available,"(autos>0) * (age>15) * np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourKNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike)|(tourEscooter),0,1)" ,KNR_available,"np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourPNR)|(tourTNR)|(tourMaaS)|(tourSchBus)|(tourEbike)|(tourEscooter),0,1)" ,TNR_available,"np.where((tourDA)|(tourS2)|(tourS3)|(tourWalk)|(tourBike)|(tourWTran)|(tourPNR)|(tourKNR)|(tourMaaS)|(tourSchBus)|(tourEbike)|(tourEscooter),0,1)" From 647eb7e4bac3173147f98e0117ee3f5fa7b86860 Mon Sep 17 00:00:00 2001 From: JiaXu1024 Date: Mon, 4 Nov 2024 15:20:23 -0800 Subject: [PATCH 58/86] Documentation: Transit Skimming and Assignment --- docs/design/supply/transit-skims-assign.md | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/docs/design/supply/transit-skims-assign.md b/docs/design/supply/transit-skims-assign.md index 8dd7355dd..f56ac60fe 100644 --- a/docs/design/supply/transit-skims-assign.md +++ b/docs/design/supply/transit-skims-assign.md @@ -1,3 +1,11 @@ # Transit Skimming and Assignment -Details of transit skimming and assignment. \ No newline at end of file +The transit assignment uses a headway-based approach, where the average headway between vehicle arrivals for each transit line is known, but not exact schedules. Passengers and vehicles arrive at stops randomly and passengers choose their travel itineraries considering the expected average waiting time. + +The Emme Extended transit assignment is based on the concept of optimal strategy but extended to support a number of behavioral variants. The optimal strategy is a set of rules which define sequence(s) of walking links, boarding and alighting stops which produces the minimum expected travel time (generalized cost) to a destination. At each boarding point the strategy may include multiple possible attractive transit lines with different itineraries. A transit strategy will often be a tree of options, not just a single path. A line is considered attractive if it reduces the total expected travel time by its inclusion. The demand is assigned to the attractive lines in proportion to their relative frequencies. + +The shortest "travel time" is a generalized cost formulation, including perception factors (or weights) on the different travel time components, along with fares, and other costs / perception biases such as transfer penalties which vary over the network and transit journey. + +The model has three access modes to transit (walk, park-and-ride (PNR), and kiss-and-ride (KNR)) and three transit sets (local bus only, premium transit only, and local bus and premium transit sets), for 9 total demand classes by 5 TOD. These classes are assigned by slices, one at a time, to produce the total transit passenger flows on the network. + +While there are 9 slices of demand, there are only three classes of skims: Local bus only, premium only, and all modes. The access mode does not change the assignment parameters or skims. \ No newline at end of file From 4869a4538f57c691504c20b77759deee14587013 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Mon, 4 Nov 2024 15:22:14 -0800 Subject: [PATCH 59/86] Lowered threshold in travel time reporter to 30 minutes --- src/main/python/AMTravelTimeReporterConfigs.yaml | 4 ++-- src/main/python/MDTravelTimeReporterConfigs.yaml | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/src/main/python/AMTravelTimeReporterConfigs.yaml b/src/main/python/AMTravelTimeReporterConfigs.yaml index 6eea1377f..9ce62d0c2 100644 --- a/src/main/python/AMTravelTimeReporterConfigs.yaml +++ b/src/main/python/AMTravelTimeReporterConfigs.yaml @@ -1,7 +1,7 @@ time_period: AM -time_threshold: 45 +time_threshold: 30 infinity: 999 -outfile: report\walkMgrasWithin45Min_AM.csv +outfile: report\walkMgrasWithin30Min_AM.csv transit_skim_matrices: # If set to True, replace values of zero with the number set as infinity WALK_LOC_XFERWALK__{}: False diff --git a/src/main/python/MDTravelTimeReporterConfigs.yaml b/src/main/python/MDTravelTimeReporterConfigs.yaml index 6d002598e..3cefbe986 100644 --- a/src/main/python/MDTravelTimeReporterConfigs.yaml +++ b/src/main/python/MDTravelTimeReporterConfigs.yaml @@ -1,7 +1,7 @@ time_period: MD -time_threshold: 45 +time_threshold: 30 infinity: 999 -outfile: report\walkMgrasWithin45Min_MD.csv +outfile: report\walkMgrasWithin30Min_MD.csv transit_skim_matrices: # If set to True, replace values of zero with the number set as infinity WALK_LOC_XFERWALK__{}: False From a046f1974909d15f94b5750efe6ae6e714f02a28 Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Mon, 4 Nov 2024 15:24:24 -0800 Subject: [PATCH 60/86] Updated filenames in datalake exporter to reflect change in travel time reporter outputs --- src/main/python/datalake_exporter.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/main/python/datalake_exporter.py b/src/main/python/datalake_exporter.py index 851b7fc14..436faf256 100644 --- a/src/main/python/datalake_exporter.py +++ b/src/main/python/datalake_exporter.py @@ -235,8 +235,8 @@ def write_to_datalake(output_path, models, exclude, env): os.path.abspath(os.path.join(output_path, '..', 'input', 'zone_term.csv')), os.path.abspath(os.path.join(output_path, '..', 'input', 'trlink.csv')), os.path.join(output_path, 'bikeMgraLogsum.csv'), - os.path.join(report_path, 'walkMgrasWithin45Min_AM.csv'), - os.path.join(report_path, 'walkMgrasWithin45Min_MD.csv') + os.path.join(report_path, 'walkMgrasWithin30Min_AM.csv'), + os.path.join(report_path, 'walkMgrasWithin30Min_MD.csv') ] for file in other_files: try: From 0c34db6a410cad6ac17d228906ea3266f61fd9cc Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Mon, 4 Nov 2024 16:13:24 -0800 Subject: [PATCH 61/86] Wrote initial draft of v15.2.0 release notes --- docs/release-notes.md | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/docs/release-notes.md b/docs/release-notes.md index 80e91e85f..367d2e472 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -1,5 +1,29 @@ # Release Notes +## Version 15.2.0 (November X, 2024) +Since release 15.1.0, several bug fixes and new features were added. Results of ABM3 using Version 15.2 are anticipated to be presented to the SANDAG Board of Directors in January 2025. + +### ActivitySim Version +No changes made to ActivitySim version. + +### Features +- [PR 203](https://github.com/SANDAG/ABM/pull/203): Added tracking of disk space usage +- [PR 204](https://github.com/SANDAG/ABM/pull/204), [PR 219](https://github.com/SANDAG/ABM/pull/219), & [PR 232](https://github.com/SANDAG/ABM/pull/232): Flexible fleets improvement and calibration +- [PR 206](https://github.com/SANDAG/ABM/pull/206): Reduced sensitivity of electric vehicle ownership to number of chargers +- [PR 210](https://github.com/SANDAG/ABM/pull/210): Added input network and land use paths to scenario table in Datalake +- [PR 222](https://github.com/SANDAG/ABM/pull/222): Updated version number in the property file +- [PR 223](https://github.com/SANDAG/ABM/pull/223): Updated validation to work with networks created from TNED +- [PR 226](https://github.com/SANDAG/ABM/pull/226): Included FFC attribute in Emme network for reporting + +### Bug Fixes +- [PR 212](https://github.com/SANDAG/ABM/pull/212), [PR 213](https://github.com/SANDAG/ABM/pull/213), & [PR 217](https://github.com/SANDAG/ABM/pull/217): File and configuration cleanup +- [PR 214](https://github.com/SANDAG/ABM/pull/214), [PR 216](https://github.com/SANDAG/ABM/pull/216), [PR 220](https://github.com/SANDAG/ABM/pull/220), [PR 221](https://github.com/SANDAG/ABM/pull/221), [PR 225](https://github.com/SANDAG/ABM/pull/225), [PR 228](https://github.com/SANDAG/ABM/pull/228), [PR 230](https://github.com/SANDAG/ABM/pull/230), [PR 231](https://github.com/SANDAG/ABM/pull/231), & [PR 233](https://github.com/SANDAG/ABM/pull/233): Various fixes to Travel Time Reporter +- [PR 218](https://github.com/SANDAG/ABM/pull/218): Allowed for traffic assignment to work without any tolled links +- [PR 224](https://github.com/SANDAG/ABM/pull/224): Removed Java-based walk logsum step +- [PR 227](https://github.com/SANDAG/ABM/pull/227): Fixed issue with link transit travel times +- [PR 229](https://github.com/SANDAG/ABM/pull/229): Fixed Java unicode error with filepaths containing folders starting with the letter U +- [PR 234](https://github.com/SANDAG/ABM/pull/234): Corrected mixed party type to correct value + ## Version 15.1.0 (September 4, 2024) As mentioned in the notes for Version 15.0.2, several improvements to the Commercial Vehicle Model (CVM) were made, largely due to SANDAG staff realizing that the survey used to estimate the CVM had likely overestimated the amount of commercial vehicle travel that was made on a given day in the region. New weights were estimated, and then the CVM was recalibrated to match these new weights. After doing this, it was found that modeled highway volumes were lower than observed counts, so some further adjustments were made to get them back up. Some components of the resident model were recalibrated to better match the survey, a new database started being used, a bug in the transit network was fixed, and other miscelaneous improvements were made. From d46221402f9efe7e09b3bda69f603cd039ef10de Mon Sep 17 00:00:00 2001 From: Cundo Arellano <51237056+cundo92@users.noreply.github.com> Date: Tue, 5 Nov 2024 09:24:20 -0800 Subject: [PATCH 62/86] Update network-import-tned.md - Converted HTML table to Markdown - Removed reference to ABM2+ Wiki Emme report --- docs/design/supply/network-import-tned.md | 83 ++++------------------- 1 file changed, 15 insertions(+), 68 deletions(-) diff --git a/docs/design/supply/network-import-tned.md b/docs/design/supply/network-import-tned.md index 17581736f..b4a80ec0f 100644 --- a/docs/design/supply/network-import-tned.md +++ b/docs/design/supply/network-import-tned.md @@ -8,77 +8,24 @@ The ABM3 model system has been configured to be compatible with SANDAG's Transpo The following are the required network files used during the Emme import network procedure: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
FileSource - Description
EMMEOutputs.gdb/TNED_HwyNetTNEDRoadway network links
EMMEOutputs.gdb/TNED_HwyNodesTNEDRoadway network nodes
EMMEOutputs.gdb/TNED_RailNetTNEDRail network links
EMMEOutputs.gdb/TNED_RailNodesTNEDRail network nodes
EMMEOutputs.gdb/TurnsTNEDTurn prohibition records
special_fares.txtManually MaintainedSpecial fares in terms of boarding and incremental in-vehicle costs
timexfer_{time_of_day}.csvManually MaintainedTimed transfer pairs of lines, by period. Where time_of_day refers to EA, AM, MD, PM, or EV.
trrt.csvTNEDAttribute data (modes, headways) for the transit lines
trlink.csvTNEDSequence of links (routing) for the transit lines
trstop.csvTNEDStop data for the transit lines
MODE5TOD.csvManually MaintainedGlobal (per-mode) transit cost and perception attributes
vehicle_class_toll_factors.csvManually MaintainedFactors to adjust the toll cost by facility name and class
+| **File** | **Source** | **Description** | +|--------------------------------|---------------------|----------------------------------------------------------------------------------------------| +| EMMEOutputs.gdb/TNED_HwyNet | TNED | Roadway network links | +| EMMEOutputs.gdb/TNED_HwyNodes | TNED | Roadway network nodes | +| EMMEOutputs.gdb/TNED_RailNet | TNED | Rail network links | +| EMMEOutputs.gdb/TNED_RailNodes | TNED | Rail network nodes | +| EMMEOutputs.gdb/Turns | TNED | Turn prohibition records | +| special_fares.txt | Manually Maintained | Special fares in terms of boarding and incremental in-vehicle costs | +| timexfer_{time_of_day}.csv | Manually Maintained | Timed transfer pairs of lines, by period. Where time_of_day refers to EA, AM, MD, PM, or EV. | +| trrt.csv | TNED | Attribute data (modes, headways) for the transit lines | +| trlink.csv | TNED | Sequence of links (routing) for the transit lines | +| trstop.csv | TNED | Stop data for the transit lines | +| MODE5TOD.csv | Manually Maintained | Global (per-mode) transit cost and perception attributes | +| vehicle_class_toll_factors.csv | Manually Maintained | Factors to adjust the toll cost by facility name and class | ## Import Network Procedure -This section describes the main steps carried out during the Emme import network procedure. The entire process is executed by the [import_network.py](https://github.com/SANDAG/ABM/blob/ABM3_develop/src/main/emme/toolbox/import/import_network.py) script. The descriptions below are excerpts and slight adaptations from the [User Guide - SANDAG Travel Model in Emme](https://github.com/SANDAG/ABM/wiki/files/user_guide_sandag_emme.pdf) report. +This section describes the main steps carried out during the Emme import network procedure. The entire process is executed by the [import_network.py](https://github.com/SANDAG/ABM/blob/ABM3_develop/src/main/emme/toolbox/import/import_network.py) script. #### Create Modes From 6e8e4663fc10a0ca6bf85d1b363b97be8c1422db Mon Sep 17 00:00:00 2001 From: JoeJimFlood Date: Tue, 5 Nov 2024 10:07:32 -0800 Subject: [PATCH 63/86] Removed str.format() call during read_active_skims() as it's not necessary --- src/main/python/TravelTimeReporter.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/main/python/TravelTimeReporter.py b/src/main/python/TravelTimeReporter.py index d0261fb1d..9760c32f4 100644 --- a/src/main/python/TravelTimeReporter.py +++ b/src/main/python/TravelTimeReporter.py @@ -141,7 +141,7 @@ def read_active_skims(self): "walkTime": "taz_walk_time" } for core in active_taz_skims: - skim_values = np.array(skims[core.format(self.settings["time_period"])]) + skim_values = np.array(skims[core]) skim_values = np.where( skim_values == 0, self.settings["infinity"], From 3eda1fd2e3d02791b37ac9b48b56febbe3992e1a Mon Sep 17 00:00:00 2001 From: JiaXu1024 Date: Tue, 5 Nov 2024 15:56:58 -0800 Subject: [PATCH 64/86] Documentation: update description of access modes --- docs/design/supply/transit-skims-assign.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/design/supply/transit-skims-assign.md b/docs/design/supply/transit-skims-assign.md index f56ac60fe..0821379cb 100644 --- a/docs/design/supply/transit-skims-assign.md +++ b/docs/design/supply/transit-skims-assign.md @@ -6,6 +6,6 @@ The Emme Extended transit assignment is based on the concept of optimal strategy The shortest "travel time" is a generalized cost formulation, including perception factors (or weights) on the different travel time components, along with fares, and other costs / perception biases such as transfer penalties which vary over the network and transit journey. -The model has three access modes to transit (walk, park-and-ride (PNR), and kiss-and-ride (KNR)) and three transit sets (local bus only, premium transit only, and local bus and premium transit sets), for 9 total demand classes by 5 TOD. These classes are assigned by slices, one at a time, to produce the total transit passenger flows on the network. +The model has four access modes to transit (walk, park-and-ride (PNR), kiss-and-ride (KNR), and Transportation Network Company (TNC)) and three transit sets (local bus only, premium transit only, and local bus and premium transit sets), for 12 total demand classes by 5 TOD. These classes are assigned by slices, one at a time, to produce the total transit passenger flows on the network. -While there are 9 slices of demand, there are only three classes of skims: Local bus only, premium only, and all modes. The access mode does not change the assignment parameters or skims. \ No newline at end of file +While there are 12 slices of demand, there are only three classes of skims: Local bus only, premium only, and all modes. The access mode does not change the assignment parameters or skims. \ No newline at end of file From 5f3f497cdb80564c95008a74f988134e1eab73e4 Mon Sep 17 00:00:00 2001 From: anneku Date: Tue, 5 Nov 2024 17:08:14 -0800 Subject: [PATCH 65/86] update reporting docs --- docs/design/report/report.md | 21 ++++++++++++++++++++- 1 file changed, 20 insertions(+), 1 deletion(-) diff --git a/docs/design/report/report.md b/docs/design/report/report.md index d77edebdc..3bbe9e538 100644 --- a/docs/design/report/report.md +++ b/docs/design/report/report.md @@ -1,3 +1,22 @@ # Reporting Framework -Details of reporting components. \ No newline at end of file +**Reporting Process Overview:** + +1. **ABM3 model output files are stored to data lake:** + - Model outputs are written to the data lake immediately following ABM3 model run completion. + - Output CSV files are converted to Parquet format before writing to the data lake. + - Each model run is assigned a unique scenario ID. + +2. **Data lake files are loaded to Delta tables:** + - Each output file in the data lake is loaded into its corresponding Delta table. For example, the trips output file is loaded into the trips Delta table, the persons output file is loaded into the persons Delta table, etc. + - Delta tables store the results from all model runs, organized by scenario ID. + +3. **Delta Tables are processed in Databricks:** + - Delta tables are read, transformed, and aggregated as needed to support analysis and reporting requirements. + - Once transformations are complete, the resulting data is written back to the data lake as new Delta tables or used to update existing tables. + - These new Delta tables are also organized by scenario ID, making it easier to manage and query specific versions of processed data. + +4. **Delta tables are ingested by Power BI:** + - Power BI reads the data from the Delta tables. + - Power BI report templates with various metrics of interest are automatically refreshed with new model run outputs. + - Metrics can easily be compared across different scenario IDs. From fd9905742f8b32fdf8abadff435f49aaeaaf3571 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Wed, 6 Nov 2024 13:03:47 -0800 Subject: [PATCH 66/86] Add option to skip validation --- src/main/emme/toolbox/master_run.py | 3 ++- src/main/emme/toolbox/utilities/properties.py | 6 +++++- 2 files changed, 7 insertions(+), 2 deletions(-) diff --git a/src/main/emme/toolbox/master_run.py b/src/main/emme/toolbox/master_run.py index d7188fdaa..6e2a48039 100644 --- a/src/main/emme/toolbox/master_run.py +++ b/src/main/emme/toolbox/master_run.py @@ -323,6 +323,7 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, skipFinalTransitAssignment = props["RunModel.skipFinalTransitAssignment"] skipVisualizer = props["RunModel.skipVisualizer"] skipDataExport = props["RunModel.skipDataExport"] + skipValidation = props["RunModel.skipValidation"] skipDatalake = props["RunModel.skipDatalake"] skipDataLoadRequest = props["RunModel.skipDataLoadRequest"] skipDeleteIntermediateFiles = props["RunModel.skipDeleteIntermediateFiles"] @@ -790,7 +791,7 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, "Exporting MGRA-level travel times", capture_output=True) # This validation procedure only works with base (2022) scenarios utilizing TNED networks - if scenarioYear == "2022": + if scenarioYear == "2022" and not skipValidation: self.run_proc( "runValidation.bat", [drive, path_no_drive, scenarioYear], diff --git a/src/main/emme/toolbox/utilities/properties.py b/src/main/emme/toolbox/utilities/properties.py index 2a59e1bdf..cafd842b8 100644 --- a/src/main/emme/toolbox/utilities/properties.py +++ b/src/main/emme/toolbox/utilities/properties.py @@ -91,6 +91,7 @@ class PropertiesSetter(object): skipFinalTransitAssignment = _m.Attribute(bool) skipVisualizer = _m.Attribute(bool) skipDataExport = _m.Attribute(bool) + skipValidation = _m.Attribute(bool) skipDatalake = _m.Attribute(bool) skipDataLoadRequest = _m.Attribute(bool) skipDeleteIntermediateFiles = _m.Attribute(bool) @@ -159,7 +160,7 @@ def __init__(self): "skipCopyBikeLogsum", "skipBikeLogsums", "skipBuildNetwork", "skipHighwayAssignment", "skipTransitSkimming", "skipTransitConnector", "skipTransponderExport", "skipScenManagement", "skipABMPreprocessing", "skipABMResident", "skipABMAirport", "skipABMXborderWait", "skipABMXborder", "skipABMVisitor", "skipMAASModel", "skipCVMEstablishmentSyn", "skipCTM", "skipTruck", "skipEI", "skipExternal", "skipTripTableCreation", "skipFinalHighwayAssignment", - "skipFinalTransitAssignment", "skipVisualizer", "skipDataExport", "skipDatalake", "skipDataLoadRequest", + "skipFinalTransitAssignment", "skipVisualizer", "skipDataExport", "skipValidation", "skipDatalake", "skipDataLoadRequest", "skipDeleteIntermediateFiles") self._properties = None @@ -243,6 +244,7 @@ def add_properties_interface(self, pb, disclosure=False): ("skipFinalTransitAssignment", "Skip final transit assignments"), ("skipVisualizer", "Skip running visualizer"), ("skipDataExport", "Skip data export"), + ("skipValidation", "Skip validation"), ("skipDatalake", "Skip write to datalake"), ("skipDataLoadRequest", "Skip data load request"), ("skipDeleteIntermediateFiles", "Skip delete intermediate files"), @@ -387,6 +389,7 @@ def load_properties(self): self.skipFinalTransitAssignment = props.get("RunModel.skipFinalTransitAssignment", False) self.skipVisualizer = props.get("RunModel.skipVisualizer", False) self.skipDataExport = props.get("RunModel.skipDataExport", False) + self.skipValidation = props.get("RunModel.skipValidation", False) self.skipDatalake = props.get("RunModel.skipDatalake", False) self.skipDataLoadRequest = props.get("RunModel.skipDataLoadRequest", False) self.skipDeleteIntermediateFiles = props.get("RunModel.skipDeleteIntermediateFiles", False) @@ -431,6 +434,7 @@ def save_properties(self): props["RunModel.skipFinalTransitAssignment"] = self.skipFinalTransitAssignment props["RunModel.skipVisualizer"] = self.skipVisualizer props["RunModel.skipDataExport"] = self.skipDataExport + props["RunModel.skipValidation"] = self.skipValidation props["RunModel.skipDatalake"] = self.skipDatalake props["RunModel.skipDataLoadRequest"] = self.skipDataLoadRequest props["RunModel.skipDeleteIntermediateFiles"] = self.skipDeleteIntermediateFiles From 060dc6ab256b0a681a1ab1d1e6ff0750e983cbb5 Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Wed, 6 Nov 2024 14:26:11 -0800 Subject: [PATCH 67/86] Added documentation updates to v15.2.0 release notes --- docs/release-notes.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/release-notes.md b/docs/release-notes.md index 367d2e472..eeec108df 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -14,6 +14,7 @@ No changes made to ActivitySim version. - [PR 222](https://github.com/SANDAG/ABM/pull/222): Updated version number in the property file - [PR 223](https://github.com/SANDAG/ABM/pull/223): Updated validation to work with networks created from TNED - [PR 226](https://github.com/SANDAG/ABM/pull/226): Included FFC attribute in Emme network for reporting +- [PR 215](https://github.com/SANDAG/ABM/pull/215), [PR 235](https://github.com/SANDAG/ABM/pull/235), [PR 237](https://github.com/SANDAG/ABM/pull/237), & [PR 238](https://github.com/SANDAG/ABM/pull/238): Documentation updates ### Bug Fixes - [PR 212](https://github.com/SANDAG/ABM/pull/212), [PR 213](https://github.com/SANDAG/ABM/pull/213), & [PR 217](https://github.com/SANDAG/ABM/pull/217): File and configuration cleanup From 778e851ca6e1ec825152d016151694c1c4b2ca8e Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Thu, 7 Nov 2024 10:02:21 -0800 Subject: [PATCH 68/86] Fix MAZ-Stop walk times, move max dist back to 2zoneSkim parameters --- src/asim/scripts/resident/2zoneSkim_params.yaml | 4 ++-- src/asim/scripts/scenarioManagement/scenManagement.py | 8 +------- src/main/resources/sandag_abm.properties | 2 -- 3 files changed, 3 insertions(+), 11 deletions(-) diff --git a/src/asim/scripts/resident/2zoneSkim_params.yaml b/src/asim/scripts/resident/2zoneSkim_params.yaml index 5c443b283..965019f07 100644 --- a/src/asim/scripts/resident/2zoneSkim_params.yaml +++ b/src/asim/scripts/resident/2zoneSkim_params.yaml @@ -28,8 +28,8 @@ mmms: mmms_link_len: "Shape_Leng" max_maz_maz_walk_dist_feet: 15840 max_maz_maz_bike_dist_feet: 26400 - max_maz_local_bus_stop_walk_dist_feet: 5280 # 1 mile - max_maz_premium_transit_stop_walk_dist_feet: 6336 # 1.2 miles + max_maz_local_bus_stop_walk_dist_feet: 23760 # 4.5 miles (allow microtransit) + max_maz_premium_transit_stop_walk_dist_feet: 23760 # 4.5 miles (allow microtransit) walk_speed_mph: 3.0 drive_speed_mph: 25.0 maz_maz_walk_output: "maz_maz_walk.csv" diff --git a/src/asim/scripts/scenarioManagement/scenManagement.py b/src/asim/scripts/scenarioManagement/scenManagement.py index 063c27f5e..82fd1b82b 100644 --- a/src/asim/scripts/scenarioManagement/scenManagement.py +++ b/src/asim/scripts/scenarioManagement/scenManagement.py @@ -91,10 +91,4 @@ doc['FLEET_YEAR'] = int(scenYear) doc['CONSTANTS']['scenarioYear'] = int(scenYear) doc['CONSTANTS']['CHARGERS_PER_CAP'] = int(paramByYear.loc[paramByYear.year==scenYearWithSuffix, 'ev.chargers'].values[0]) / population -util.write_yaml(_join(configs_dir, 'resident', 'vehicle_type_choice.yaml'), doc) - -sandag_abm_prop = util.load_properties(sandag_abm_prop_dir) -doc = util.open_yaml(_join(scripts_dir, 'resident', '2zoneSkim_params.yaml')) -doc['mmms']['max_maz_local_bus_stop_walk_dist_feet'] = float(sandag_abm_prop['microtransit.transit.connector.max.length'][0]) * 5280 # converting mile to feet -doc['mmms']['max_maz_premium_transit_stop_walk_dist_feet'] = float(sandag_abm_prop['microtransit.transit.connector.max.length'][1]) * 5280 # converting mile to feet -util.write_yaml(_join(scripts_dir, 'resident', '2zoneSkim_params.yaml'), doc) \ No newline at end of file +util.write_yaml(_join(configs_dir, 'resident', 'vehicle_type_choice.yaml'), doc) \ No newline at end of file diff --git a/src/main/resources/sandag_abm.properties b/src/main/resources/sandag_abm.properties index 87ca1df45..f50f9d3b3 100644 --- a/src/main/resources/sandag_abm.properties +++ b/src/main/resources/sandag_abm.properties @@ -158,8 +158,6 @@ htm.input.file = inputs_sandag_HTM_${year}.xlsx transponder.destinations = 4027,2563,2258 #traffic.sla_limit = 3 # -## maximum length of transit connectors in miles. The first value is for Local and the second is for PRM transit modes -microtransit.transit.connector.max.length = 4.5,4.5 walk.transit.connector.max.length = 0.85,1.2 pnr.transit.connector.max.length = 10,10 knr.transit.connector.max.length = 5,5 From f4e4e93985c1e5fdc84c85ff61b130aab34c1199 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Thu, 7 Nov 2024 15:08:47 -0800 Subject: [PATCH 69/86] Don't allow ebike for escort tours --- src/asim/configs/resident/tour_mode_choice.csv | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/asim/configs/resident/tour_mode_choice.csv b/src/asim/configs/resident/tour_mode_choice.csv index a5818f49f..60f87abc9 100644 --- a/src/asim/configs/resident/tour_mode_choice.csv +++ b/src/asim/configs/resident/tour_mode_choice.csv @@ -382,7 +382,7 @@ util_calib_escorttour,abm2+ calibration constant,tour_type == 'escort',,,,coef_c util_one_or_more_school_escort,No SOV if on school escort tour,"@(np.where(np.isnan(df.get('num_escortees', 0)), 0 , df.get('num_escortees', 0)) >= 1)",-999,,,,,,,,,,,,,,,,,,,,,, util_two_or_more_school_escort,Can't take HOV2 if taking two children and yourself,"@(np.where(np.isnan(df.get('num_escortees', 0)), 0 , df.get('num_escortees', 0)) >= 2)",,-999,,,,,,,,,,,,,,,,,,,,, #,Micromobility (e-scooter/e-bike),,,,,,,,,,,,,,,,,,,,,,,, -util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0)) & (~df.ebike_owner)) | (od_skims['BIKE_TIME']<=0)",,,,,,,,,,,,,,,,,,,,,,-999, +util_ebike_long_access,Shut off ebike if access time > threshold,"@(((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold)) & (~df.ebike_owner)) | (df.get('num_escortees', 0)>0) | (od_skims['BIKE_TIME']<=0)",,,,,,,,,,,,,,,,,,,,,,-999, util_escooter_long_access,Shut off escooter if access time > threshold,"@((df.micro_access_out > microAccessThreshold) | (df.micro_access_inb > microAccessThreshold) | (df.get('num_escortees', 0)>0)) | (od_skims['BIKE_TIME']<=0)",,,,,,,,,,,,,,,,,,,,,,,-999 util_micromobility_long_trip,Shut off ebike if distance > threshold,ebikeMaxDistance,,,,,,,,,,,,,,,,,,,,,,-999, util_micromobility_long_trip,Shut off escooter if distance > threshold,escooterMaxDistance,,,,,,,,,,,,,,,,,,,,,,,-999 From a3d52b9d71e930cb529fea9b992db0eaa4ade5a6 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 8 Nov 2024 08:31:07 -0800 Subject: [PATCH 70/86] Use walk distance instead of straight line for max maz-stop distance --- src/asim/scripts/resident/2zoneSkim.py | 24 +++++++++++------------- 1 file changed, 11 insertions(+), 13 deletions(-) diff --git a/src/asim/scripts/resident/2zoneSkim.py b/src/asim/scripts/resident/2zoneSkim.py index 7f940d205..f4da92f62 100644 --- a/src/asim/scripts/resident/2zoneSkim.py +++ b/src/asim/scripts/resident/2zoneSkim.py @@ -207,8 +207,8 @@ def add_missing_mazs_to_skim_table(centroids, maz_to_maz_walk_cost_out, maz_to_m print(f"{datetime.now().strftime('%H:%M:%S')} Remove Maz Stop Pairs Beyond Max Walk Distance...") -maz_to_stop_walk_cost_out = maz_to_stop_walk_cost[(maz_to_stop_walk_cost["DISTANCE"] <= max_maz_local_bus_stop_walk_dist_feet / 5280.0) & (maz_to_stop_walk_cost['MODE'] == 'L') | - (maz_to_stop_walk_cost["DISTANCE"] <= max_maz_premium_transit_stop_walk_dist_feet / 5280.0) & (maz_to_stop_walk_cost['MODE'] == 'E')].copy() +maz_to_stop_walk_cost_out = maz_to_stop_walk_cost[(maz_to_stop_walk_cost["DISTWALK"] <= max_maz_local_bus_stop_walk_dist_feet / 5280.0) & (maz_to_stop_walk_cost['MODE'] == 'L') | + (maz_to_stop_walk_cost["DISTWALK"] <= max_maz_premium_transit_stop_walk_dist_feet / 5280.0) & (maz_to_stop_walk_cost['MODE'] == 'E')].copy() maz_stop_walk0 = pd.DataFrame(centroids['MAZ']) @@ -221,19 +221,17 @@ def add_missing_mazs_to_skim_table(centroids, maz_to_maz_walk_cost_out, maz_to_m max_walk_dist = parms['mmms']['max_maz_' + output + '_stop_walk_dist_feet'] / 5280.0 maz_to_stop_walk_cost_out_mode = maz_to_stop_walk_cost_out[maz_to_stop_walk_cost_out['MODE'].str.contains(mode)].copy() maz_to_stop_walk_cost_out_mode.loc[:, 'MODE'] = mode - # in case straight line distance is less than max and actual distance is greater than max (e.g., street net), set actual distance to max - maz_to_stop_walk_cost_out_mode['DISTWALK'] = maz_to_stop_walk_cost_out_mode['DISTWALK'].clip(upper=max_walk_dist) # peforms a similar operation as the add_missing_mazs_to_skim_table() function missing_maz = pd.DataFrame( - centroids[~centroids["MAZ"].isin(maz_to_stop_walk_cost_out_mode["MAZ"])]["MAZ"] -).merge( - maz_to_stop_cost.sort_values("DISTANCE") - .groupby(["MAZ", "MODE"]) - .agg({"stop": "first", "DISTANCE": "first"}) - .reset_index(), - on="MAZ", - how="left", -) + centroids[~centroids["MAZ"].isin(maz_to_stop_walk_cost_out_mode["MAZ"])]["MAZ"] + ).merge( + maz_to_stop_cost.sort_values("DISTANCE") + .groupby(["MAZ", "MODE"]) + .agg({"stop": "first", "DISTANCE": "first"}) + .reset_index(), + on="MAZ", + how="left", + ) maz_to_stop_walk_cost = maz_to_stop_walk_cost_out_mode.append(missing_maz.rename(columns = {'DISTANCE': 'DISTWALK'})).sort_values(['MAZ', 'stop']) del(maz_to_stop_walk_cost_out_mode) del(missing_maz) From 6ffd5fb56de9d4e13d774ada04a367a6efce4054 Mon Sep 17 00:00:00 2001 From: aber-sandag Date: Fri, 8 Nov 2024 12:07:46 -0800 Subject: [PATCH 71/86] Fix inaccessible premium MAZ-stop pairs --- src/asim/scripts/resident/2zoneSkim.py | 18 +++--------------- 1 file changed, 3 insertions(+), 15 deletions(-) diff --git a/src/asim/scripts/resident/2zoneSkim.py b/src/asim/scripts/resident/2zoneSkim.py index f4da92f62..626e2f45f 100644 --- a/src/asim/scripts/resident/2zoneSkim.py +++ b/src/asim/scripts/resident/2zoneSkim.py @@ -221,26 +221,14 @@ def add_missing_mazs_to_skim_table(centroids, maz_to_maz_walk_cost_out, maz_to_m max_walk_dist = parms['mmms']['max_maz_' + output + '_stop_walk_dist_feet'] / 5280.0 maz_to_stop_walk_cost_out_mode = maz_to_stop_walk_cost_out[maz_to_stop_walk_cost_out['MODE'].str.contains(mode)].copy() maz_to_stop_walk_cost_out_mode.loc[:, 'MODE'] = mode - # peforms a similar operation as the add_missing_mazs_to_skim_table() function - missing_maz = pd.DataFrame( - centroids[~centroids["MAZ"].isin(maz_to_stop_walk_cost_out_mode["MAZ"])]["MAZ"] - ).merge( - maz_to_stop_cost.sort_values("DISTANCE") - .groupby(["MAZ", "MODE"]) - .agg({"stop": "first", "DISTANCE": "first"}) - .reset_index(), - on="MAZ", - how="left", - ) - maz_to_stop_walk_cost = maz_to_stop_walk_cost_out_mode.append(missing_maz.rename(columns = {'DISTANCE': 'DISTWALK'})).sort_values(['MAZ', 'stop']) + maz_to_stop_walk_cost = maz_to_stop_walk_cost_out_mode.sort_values(['MAZ', 'stop']) del(maz_to_stop_walk_cost_out_mode) - del(missing_maz) maz_stop_walk = maz_to_stop_walk_cost[maz_to_stop_walk_cost.MODE==mode].groupby('MAZ')['DISTWALK'].min().reset_index() maz_stop_walk.loc[maz_stop_walk['DISTWALK'] > max_walk_dist, 'DISTWALK'] = np.nan #maz_stop_walk["walk_time"] = maz_stop_walk["DISTWALK"].apply(lambda x: x / parms['mmms']['walk_speed_mph'] * 60.0) - maz_stop_walk['DISTWALK'].fillna(999999, inplace = True) maz_stop_walk.rename({'MAZ': 'maz', 'DISTWALK': 'walk_dist_' + output}, axis='columns', inplace=True) - maz_stop_walk0 = maz_stop_walk0.merge(maz_stop_walk, left_on='maz', right_on='maz') + maz_stop_walk0 = maz_stop_walk0.merge(maz_stop_walk, left_on='maz', right_on='maz', how='outer') + maz_stop_walk0['walk_dist_' + output].fillna(999999, inplace = True) maz_stop_walk0.sort_values(by=['maz'], inplace=True) print(f"{datetime.now().strftime('%H:%M:%S')} Write Results...") From 3d12c0b7b05e4f16e608012d073b67724f870a83 Mon Sep 17 00:00:00 2001 From: Mansi Sharma Date: Fri, 8 Nov 2024 12:29:52 -0800 Subject: [PATCH 72/86] Documentation: updated persons.csv --- docs/inputs.md | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/docs/inputs.md b/docs/inputs.md index 535e6b481..52c777266 100644 --- a/docs/inputs.md +++ b/docs/inputs.md @@ -343,6 +343,14 @@ The table below contains brief descriptions of the input files required to execu | grade | School grade of person:
0 = N/A (not attending school)
2 = K to grade 8
5 = Grade 9 to grade 12
6 = College undergraduate | | occen5 | Occupation:
0 = Not in universe (Under 16 years or LAST-WRK = 2)
1..997 = Legal census occupation code | | occsoc5 | Detailed occupation codes defined by the Bureau of Labor Statistics | +| indcen | Industry code.
0 = default
9970 = NAICS2 is MIL | +| weeks | Weeks worked during past 12 months
0 .N/A (less than 16 years old/did not work during the past 12 .months)
1 .50 to 52 weeks worked during past 12 months
2 .48 to 49 weeks worked during past 12 months
3 .40 to 47 weeks worked during past 12 months
4 .27 to 39 weeks worked during past 12 month
5 .14 to 26 weeks worked during past 12 months
6 .13 weeks or less worked during past 12 months| +| hours | Hours worked per week past 12 months
0 .N/A (less than 16 years old/did not work during the past .12 months)
1..98 .1 to 98 usual hours
99 .99 or more usual hours | +| rac1p | Race:
1 = White alone
2 = Black or African American alone
3 = American Indian alone
4 = Alaska Native alone
5 = American Indian and Alaska Native tribes specified; or .American Indian or Alaska Native, not specified and no other .races
6 = Asian alone
7 = Native Hawaiian and Other Pacific Islander alone
8 = Some Other Race alone
9 =Two or More Races | +| hisp | Hispanic origin:
1 = Not Hispanic
2 = Hispanic | +| version | Synthetic population run version. Presently set to 0. | +| naics2_original_code | 2 digit North American Industry Classification System (NAICS) | +| soc2 | 2 digit Standard Occupational Classification | From d726051d73e528784e5ba5fec93bf0b64fbcd654 Mon Sep 17 00:00:00 2001 From: Mansi Sharma Date: Fri, 8 Nov 2024 13:29:19 -0800 Subject: [PATCH 73/86] Doc updates --- docs/inputs.md | 16 ++++------------ 1 file changed, 4 insertions(+), 12 deletions(-) diff --git a/docs/inputs.md b/docs/inputs.md index 52c777266..ebb7bf1e7 100644 --- a/docs/inputs.md +++ b/docs/inputs.md @@ -166,15 +166,7 @@ The table below contains brief descriptions of the input files required to execu | emp_non_ws_wfh | Non-wage and salary work from home employments | | emp_non_ws_oth | Non-wage and salary other employments | | emp_total | Total employment | -| pseudomsa | Pseudo MSA - | -| | 1: Downtown | -| | 2: Central | -| | 3: North City | -| | 4: South Suburban | -| | 5: East Suburban | -| | 6: North County West | -| | 7: North County East | -| | 8: East County | +| pseudomsa | Pseudo MSA
1: Downtown
2: Central
3: North City
4: South Suburban
5: East Suburban
6: North County West
7: North County East
8: East County | | zip09 | 2009 Zip Code | | enrollgradekto8 | Grade School K-8 enrollment | | enrollgrade9to12 | Grade School 9-12 enrollment | @@ -184,12 +176,12 @@ The table below contains brief descriptions of the input files required to execu | parkactive | Acres of Active Park | | openspaceparkpreserve | Acres of Open Park or Preserve | | beachactive | Acres of Active Beach | -| district27 | | +| district27 | Special layer reg employer shuttle service around Sorrento Valley | | milestocoast | Distance (miles) to the nearest coast | | acres | Total acres in the mgra (used in CTM) | | land_acres | Acres of land in the mgra (used in CTM) | | effective_acres | Effective acres in the mgra (used in CTM) | -| truckregiontype | | +| truckregiontype | CV model parameter | | exp_hourly | Expected hourly prking cost | | exp_daily | Expected daily prking cost | | exp_monthly | Expected monthly prking cost | @@ -335,7 +327,7 @@ The table below contains brief descriptions of the input files required to execu | pnum | Person Number | | age | Age of person | | sex | Gender of person
1 = Male
2 = Female | -| military | Military status of person:
0 = N/A Less than 17 Years Old
1 = Yes, Now on Active Duty | +| miltary | Military status of person:
0 = N/A Less than 17 Years Old
1 = Yes, Now on Active Duty | | pemploy | Employment status of person:
1 = Employed Full-Time
2 = Employed Part-Time
3 = Unemployed or Not in Labor Force
4 = Less than 16 Years Old | | pstudent | Student status of person:
1 = Pre K-12
2 = College Undergrad+Grad and Prof. School
3 = Not Attending School | | ptype | Person type:
1 = Full-time Worker
2 = Part-time Worker
3 = College Student
4 = Non-working Adult
5 = Non-working Senior
6 = Driving Age Student
7 = Non-driving Student
8 = Pre-school | From cb9b3b32fd674c571af3eec97830453c6a95320b Mon Sep 17 00:00:00 2001 From: Mansi Sharma Date: Fri, 8 Nov 2024 13:58:12 -0800 Subject: [PATCH 74/86] removed truckregiontype --- docs/inputs.md | 1 - 1 file changed, 1 deletion(-) diff --git a/docs/inputs.md b/docs/inputs.md index ebb7bf1e7..48634c13b 100644 --- a/docs/inputs.md +++ b/docs/inputs.md @@ -181,7 +181,6 @@ The table below contains brief descriptions of the input files required to execu | acres | Total acres in the mgra (used in CTM) | | land_acres | Acres of land in the mgra (used in CTM) | | effective_acres | Effective acres in the mgra (used in CTM) | -| truckregiontype | CV model parameter | | exp_hourly | Expected hourly prking cost | | exp_daily | Expected daily prking cost | | exp_monthly | Expected monthly prking cost | From 5c76d2650551537a2b8d2bd2efb9b7a58ce768a6 Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Fri, 8 Nov 2024 15:14:39 -0800 Subject: [PATCH 75/86] Updated v15.2.0 release notes with commits made on November 8, 2024 --- docs/release-notes.md | 3 +++ 1 file changed, 3 insertions(+) diff --git a/docs/release-notes.md b/docs/release-notes.md index eeec108df..fcfec2df3 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -14,6 +14,9 @@ No changes made to ActivitySim version. - [PR 222](https://github.com/SANDAG/ABM/pull/222): Updated version number in the property file - [PR 223](https://github.com/SANDAG/ABM/pull/223): Updated validation to work with networks created from TNED - [PR 226](https://github.com/SANDAG/ABM/pull/226): Included FFC attribute in Emme network for reporting +- [PR 239](https://github.com/SANDAG/ABM/pull/239): Added option to skip validation in master run +- [PR 240](https://github.com/SANDAG/ABM/pull/240), [PR 242](https://github.com/SANDAG/ABM/pull/242), & [PR 243](https://github.com/SANDAG/ABM/pull/243): Fixes to MAZ to transit stop distances and walk times +- [PR 241](https://github.com/SANDAG/ABM/pull/241): Fixes to bike logsums and micromobility mode choice - [PR 215](https://github.com/SANDAG/ABM/pull/215), [PR 235](https://github.com/SANDAG/ABM/pull/235), [PR 237](https://github.com/SANDAG/ABM/pull/237), & [PR 238](https://github.com/SANDAG/ABM/pull/238): Documentation updates ### Bug Fixes From 1a985bbd36edafc7277189e032a3b169f3d280a2 Mon Sep 17 00:00:00 2001 From: Kelvin Nguyen <77218097+kelvinnguyenn@users.noreply.github.com> Date: Tue, 12 Nov 2024 09:19:32 -0800 Subject: [PATCH 76/86] Remove unnecessary ivt settings --- src/asim/configs/airport.SAN/trip_mode_choice.yaml | 3 --- 1 file changed, 3 deletions(-) diff --git a/src/asim/configs/airport.SAN/trip_mode_choice.yaml b/src/asim/configs/airport.SAN/trip_mode_choice.yaml index 6583e0735..93e0f3dfb 100644 --- a/src/asim/configs/airport.SAN/trip_mode_choice.yaml +++ b/src/asim/configs/airport.SAN/trip_mode_choice.yaml @@ -244,9 +244,6 @@ CONSTANTS: density_index_multiplier: -5 origin_density_index_multiplier: -15 origin_density_index_max: -15 - ivt_com_multiplier: 0.80 - ivt_exp_multiplier: -0.0175 - ivt_hvy_multiplier: 0.80 cost_share_s2: 2 cost_share_s3: 3 max_walk_time: 60 From b5e36e0beb88afcf9c55023e41aadd6474e26428 Mon Sep 17 00:00:00 2001 From: Kelvin Nguyen <77218097+kelvinnguyenn@users.noreply.github.com> Date: Tue, 12 Nov 2024 09:23:56 -0800 Subject: [PATCH 77/86] Remove unnecessary ivt settings --- src/asim/configs/airport.CBX/trip_mode_choice.yaml | 3 --- 1 file changed, 3 deletions(-) diff --git a/src/asim/configs/airport.CBX/trip_mode_choice.yaml b/src/asim/configs/airport.CBX/trip_mode_choice.yaml index 27a2c48b3..9f0160d5b 100644 --- a/src/asim/configs/airport.CBX/trip_mode_choice.yaml +++ b/src/asim/configs/airport.CBX/trip_mode_choice.yaml @@ -243,9 +243,6 @@ CONSTANTS: density_index_multiplier: -5 origin_density_index_multiplier: -15 origin_density_index_max: -15 - ivt_com_multiplier: 0.80 - ivt_exp_multiplier: -0.0175 - ivt_hvy_multiplier: 0.80 cost_share_s2: 2 cost_share_s3: 3 max_walk_time: 60 From 24ab1005e4c2ba99e3a0443468004e82dd9d9b8f Mon Sep 17 00:00:00 2001 From: Michael Wehrmeyer Date: Tue, 12 Nov 2024 12:39:16 -0800 Subject: [PATCH 78/86] (wiki) introduce documentation on external aggregate models --- docs/design/demand/external.md | 41 ++++++++++++++++-- .../external_external_county_cordons.png | Bin 0 -> 181723 bytes 2 files changed, 38 insertions(+), 3 deletions(-) create mode 100644 docs/images/design/external_external_county_cordons.png diff --git a/docs/design/demand/external.md b/docs/design/demand/external.md index 48cc63a22..ef40e084c 100644 --- a/docs/design/demand/external.md +++ b/docs/design/demand/external.md @@ -1,7 +1,42 @@ # External Models +The external aggregate travel models predict characteristics of US-SD and SD-US/MX travel behavior for all non-commercial, non-visitor vehicle trips and selected transit trips. Note that non-commercial MX-SD trips are forecast in the crossborder model, and non-commercial SD-US and SD-MX trips are forecast in the resident model. -Details aggregate external models. +![](../../images/design/external_external_county_cordons.png) -## External Internal Model +## External Model Estimation of Trip Counts by Type +The total count of trips by production and attraction location was estimated in a series of steps: -## External External Model \ No newline at end of file +1. The number of crossborder trips made by Mexican residents to attractions in San Diego was previously determined. +2. The trips in the resident travel survey were expanded to estimate the total number of trips made by San Diego residents to attractions in Mexico. +3. To derive an estimate of the number of US-MX trips, the number of MX-SD (1) and SD-MX (2) trips was subtracted from the total number of border-crossings. + * The distribution of US-MX trips among external stations on the US-side of San Diego County will be assumed to be proportional to the total volume at each external station, regardless of the point of entry at the Mexican border. +4. The number of US-MX trips was then subtracted from the total number of trips in the SCAG cordon survey to arrive at an estimate of the combined total of US-US, US-SD, and SD-US trips with routes through San Diego County. +5. Finally, the actual amounts of US-US, US-SD, and SD-US trips at each external station were estimated from the remaining trips (4) according to their proportions in the successfully geocoded responses in the SCAG cordon survey. + +## External Model Design Overview +The behavioral characteristics of the different types of external trip were derived from the various data sources available as follows: + +* US-US trips: a fixed external station OD trip matrix was estimated from the SCAG cordon survey. + * */src/main/emme/toolbox/model/external_external.py* +* US-MX trips: a fixed external station OD trip matrix was estimated from the SCAG cordon survey, Customs and Border Protection vehicle counts, and Mexican resident border-crossing survey as described in the previous section. + * */src/main/emme/toolbox/model/external_external.py* +* US-SD trips: rates of vehicle trips per household for each external county were developed from the SCAG cordon survey, and the trips were distributed to locations in San Diego County according to a destination choice model estimated from the interregional survey. + * Intermediate stops and transit trips are not modeled in this segment due to the small contribution of these events to the total demand in the segment. + * */src/main/emme/toolbox/model/external_internal.py* + +### External-Internal Destination Choice Model +The external-internal destination choice model distributes the EI trips to destinations within San Diego County. The EI destination choice model explanatory variables are: + +* Distance +* The size of each sampled MGRA + +Diurnal and vehicle occupancy factors are then applied to the total daily trip tables to distribute the trips among shared ride modes and different times of day. + +### External-Internal Toll Choice Model +The trips are then split among toll and non-toll paths according to a simplified toll choice model. The toll choice model included the following explanatory variables: + +* In-vehicle-time +* Toll cost + +## Sources +information primarily taken from this SANDAG document: [link to pdf](https://www.sandag.org/-/media/SANDAG/Documents/PDF/data-and-research/applied-research-and-performance-monitoring/surveys/appendix-t-SANDAG-travel-demand-model-documentation.pdf) \ No newline at end of file diff --git a/docs/images/design/external_external_county_cordons.png b/docs/images/design/external_external_county_cordons.png new file mode 100644 index 0000000000000000000000000000000000000000..419af6a3d7742741ce2030166a2db2c2196c692c GIT binary patch literal 181723 zcmYJaby$?o_dZT{3P^{dgs8M2wS)qSlprafBGL_#%hDi7NeKc=cZW1fBi*dz(#_KB zE^K`9_5S>>-ygek&2wGP?97>S=DzPUXTRxasZmp~QQ+a>QNL1u@fHt{fCLW@zk=-c z8_$udjqbL=cYmvlukuB$s4pJkbujW2XD~yft`v z%milMI-5jALC2#Qh=)%=Bog{);9pDj??E8T|5`l!ulIIelhJ)3a@(sXX>D2Z>De5F zv;2GIn2|$7bQiW#II1mQkdwvrQcqA)6I^*Zz*(k#U-#5?Hvzt@16}Y;ws@SlkT15QIj)l-NsBhedBp+DtZGiHj*tOm@$ryCho^Tnf^$F z+>#Qv%hj5_Z~Pa3p}1F^Rqf`@wUqq8HK^zIG0uDonxmvhb!*ZSt^R;GQ6o=;ye}No zv7xSn>HQ`H-{77NrhQ)`T4!D2)EydC)yTzAPW*gtGf{tWp)|M8alV} z?KaBGKd^w=zMIkRC{s|SDF_p7^;SnOuSE4C7S}t_a8gQJY6V}CN)G(rW?S?Hm{P&7 z&yH@tx@iIKjhjaTd>#IdzOps|dPL-)KqEoyeo0M2rloYoQG#a5=- zY&mcs^zP4>88PRqgWSLDrKTR>4qWP1zz0hAhQ8w<+)e7x#Z`+R`bwJ5?{tR zyvkJrZ2qig)wz)!U6n()qCz9if1PNAg{d?V$}X5?<@d*W2KdicfRG#KR;9E@(yw@4$FeA+skX3*Ijm93j^cT#Jc&=B0Pr`|iu z&s>W7t#cLAI@(oie41~Udo3Q8bR1fGHdJyf8nzXtJg;La6Ha9}NFRGwR$>0){d~vQ z#UsB4mcud!gb;U`NVR2zZ==Jz-l3L{L!ZmEsgq^@h2zPbCFEPz6EL>?nJ{pHyut!> zxMrcN$i>bLQl`bsT9jE&Zx1o`iRsG9 zrduJWap|rr&2WSbOEQaoHL9ebWlJ3FzB4_hpmB^F!!?~xw%nnEBe197CTlqz7iP>d zuF=%6w}q5@3InFRQ=z#Kd__s{!C+f(Lp5=b&cylfM9evvG@a!r5PE*b5+pCD~sd8wZ=H zJq{Sp#4Ug@fYG*9f3FVyHs9&-iy0}L8R5}UvXD`HEEEMo?bw+$Rl8Xk&O>mmu&C`K?qiC}0FNWe?s! zU;AwXAX_8jyr=PkQYIC3FwdGg)z3FKnI~LN4l!Lx)7tJK7oBs~VE2JZ#m1f^+<`_c zV>VSR=C9gv9bJ-az&$9?E0t3-{CVn`=SdW}lb@3+_XQ&_m zE;?#lDtxB{!wC)MtMFv#myMp70^w+(Q-$R`3`YENyJKr6rB)-=%7q8EEUNDfmd`1@ zWN=Z4nAa4Yh5TR-wWOmCb^PTg2veDR#JyqH;Y{{7(ZVfl^Uc1VeLGL(&^SzH8JLR- z?tdbTTSy3gVVSqxc5}zjP+qXOpIvaVeT$bzA)er|5G4SKZ%Dd#S3`ny`QdG#Nc;bF z{^WAT+_CzF2QQS@j1mS}{nUPucMxG({sHYeuqRHtRHlKu1bdEw(FyhiliE~sfQxEb zgFM#-3E<%s_@EYqD;&FlSP9|1ZrZrC;Pn0tVKLOzB16kxf~r6#_n@UJ^A?zC@GcsH zbT{)E^~wz1XigR4!!TE2a>O0;imN(K`CATQ*mv9*)Tox=_uf2<8`2$S%6@)$hu$$N z)p>WrYi0W}^J+~MaCw=V+6Yh1BsR_PIXmZYC8|T*nxUvHz(3O-V}7~8y?=qz`~ByG zt}W>DoflSBM^7)W%(-c$;F1t(X4)Jjxh-g&+}Z8Yf9&7v_Rbdpz$Lb-8jpc+TX2(| z(sw=LYQG^DKMqU?C@cS-cWQ%4Z(aj7PY0dR(XtUb0f)a$-ve)YGaFlL_?o+vS0^|`BcB8W9zaOKJ7p2~isk$i2)f?sApjM( zE^?Ly-9Odi9C%`W7|SCSUzx!vT}phBRruSn@~89OxtY&ErtcalbU)0#${o1z;pSYp zDX&rHjl$MvDFXsJSaWLoK&BsZFDy_gEno@%*!qNn2P1244j)qsp37G&X+o@I#xM;J zf3`P^HLV}s{2tbCiQ$bi7^C43&;-x*m*|Dxv>{&9mUijuI3F3A)!aey=9jrH=zA%! z?WPKY59KkN;zQgb?ER)Z#d!novG(wcrxgix);3$?(l|M(XMqx)hHg=d9h zpfQvd*(2fC^UkmpyS@czo=n>(T^QP4oD9uk{u9{sk(65R(ZvD5NKcl>_ZPqKz~Gk$ zX54jN2iyU@X2(^%^OUaI;c_}pXI&`Q^%+f$nwBvJw9@ArjH z1;947ZyZRxQkZw=8P4V%whj$-&GCFsb8k zYHMYde2xt5LH}_U>0r$hxO%GMSE6QzG^s{61Jz0~mLHY*cGX;}k}Edza3St-+%QDv zpqm(;A($S&%iWFuj#L88m5NnZ&zLK4wuN{s$Az2r=G~i|*^T9e^(ZT1oA;4;05Mod!kJ%pm)5ro z92U{cYo_&G@&nJK{4fP{dlxN|Lt?#d-MaA>_3+ltJ7wO*V27NqkJ>K>EI%{jyAtp+ zxgKvnNv;$7-zsbP{5Q9MU95qZcMJ1_SDu(&pe47uvi~8pi*z-tH&9_?ELlhhV&g~+ zXB)N9%e(%@Fw@}Fe)CEQxMGzm^KwA3nVR(D+=_)rPhbNj%Lo~dFn<7C9PTeMA&IBX z9Cf$vkh4M&w(!e)ogDrruqN4SWoxWPtSw;i2);y^yGAPi>5l3vLK4Of?`7KM=OG(> z99|i++~n{lE&CzxHoqQ{Wo(~t+S$rxfM2#m=XdvE@n<5=&Y;tWUNq)S+oZ|j=k8b^ z`0h7N+|`j2qg=N0BElJ>8(LcEAA5NJ(* zAZ(G-Z_2-^4gCMq1F2^T?l5fSL7AFu+rfdwVg(NP;7j_MvS_x0 zQ`>c()92@>4_5&G$6K*Bc-PhKwcWJGs5L*B)ILvl9qvR(i}m!7R`^D8`En6AkQR>d zsITid^Ye3jnT1gUiL~J{EZ>8gpKJyD7)OUSjj{V~{eZJGAo*jQAYne^XUPHL)EE77Ow z6Qkhk!xJNpF9ZMBeCJwsfIX?I(KN-tCY@YwJ=raeBIu`Y#sO zlW}ICBUT8a6&~OOAgSUMU?Ef-j-C@Z$FUNg4qB|VLnR6EY(MrBVRe-2CB6v<2aJ@b z^?b3O+X2CF{==8Vc`s@)geDhVw7W0##&|{7LK!^zBw?OH7awV?n?IP~>WN^Nw4h^y z<3)D$o@8hM?1@7!k5;w&sEH$JjoA7LkHtN+pHl$j#=(-mUnF%1^hCv{`g64~ZRdql zN~G#H29g7=51P{0L~t?E+w#Npa+*P*P&L1dSPLvHY8+3%Se;^64~78+Ksg#ky!OlI*;$Z6JX3J3kNH% zS*vk8Y7{;kj)QK*zidoq)ro=2?+;RN*xo1}ll z`YRldB@S*n1rYw9LFv^thay&}Xn6=#R8)Mg_lnFoN|VoW2#%Lbe`hb19mmPV^?h>k z$M4PV=rA`kGfS6p&iXR)bFDJ*x5_K0{|u}cC>6y!^+{1kmMw+`oL3C?-51Ps?Po2m zsPKf+GU;3|FE96e!6mFNucWVT=*nLOSzq7WaN@6KcqrQ4ePWUyM#)U_fA;2>l)nFj zWCcxw{?K88Jxgstu17P)4J=>wP@jF2SjQ_p_Vn=By@XmoGoHIkDE#%6{%@N&)}-s% zu+-g&1dQd!GR1t9S=k&w4?|n=>!I+5^!O#US50 zc>@ZQwf7s|(wwgM%oVh_dZ|f+*0{_lmcSCWQ`G=%K9_jTST5{!mO3ef@Du%ijzRM< z*5(tQPPI8J*WT+%2GTe~3*aoZ;ssQl(vqfaeMf5V^niVJ+>~84d~4ba_~d`icg8Zy^t7J893359sJBhzB^{|WYIZ9iAtha|SA9%oJ{ebte2##~>#qKn zRl8-=6hytNba*dg&r}D+cTbQTaZuZ$%)-G${<5m7abvoyTYdnYT^+dh;bq_(?*fZu z&(*XMIVOaeKebodBq89 zcGK4*6UX`5zRbERWlPIE6B84OuZKnjZv}T~k;XIuni0HrA0VDcx*_dGG+<|`|0(80 z64EzRHWj%)OOwT+?LQW|v!#I=>DI2i$@0faLAX0(UeWny_ZG)(*#5TwX0pR?~G{y*i8 zr-y(mN5i4v!MIq}ltkggef!(3mKO1D_EjvttL5J-Eqv&*wA1Ld0)fEeke93Jh=};r zo-5_uWJ7b-XI0$P+--(rTp8}8LYBgKYQYz|Xl7yaa`&<4YUexSUisNYMQY>nh>R@Y zm9gVW+dTOz#U|eKo*iD)!5RkXrvR2OtulmdETw*wY~vmZuRTLFk2SncL8b+dT4e~` z9Xd@G#MT-#BAfCsb=Dd${o*i>7d(}>e}~-Y0zaMB;WA-SypOzv8IRgg-$|lXh8{Ur zJvy#gTbow)2cl6&bP1*k<5EI3aJk`=xVpa{j-cq+gewI-?cYBMLaEI zghiEr56J*9Q~;_I{{FlI5BF~F}XV2&8>Ea-ohN~>pAc30&ZF*H9P`KqiR>v_RsnzWrR0}1ERum?{vt9+Uap7 z{}Al_(IBHze=_`Mvo=bNfr8%CYm%!pKO{oq>M3ISsrzC;smBuqelNd@ z9PBf=o}co`D|9G0W-w@jcQV}Ltbr}~w%Z+`a1XaQcg0LT2Medr4Op}VdJQd!c9&03 zZ>sj;zbjgas&<(j=b|}re4EwVQxxMqrN)In76j2o`+RXeS^H7BzcZ+3foPLkl~Joa z{XXt>4Bd$vFZ(~&X}k9c4;kMcczME|2S7l|Fg$pu7?%s>#_JGLhdT6>hVb)5Uo*2z zdnN6kB3;WWKRE>11vwwZb9e5j&t9T{SvdYv0>@x2X>Pme^Bcor&^=A0$<@S|%T^SsZ>)RfK8GNVWkt50WK=Fbg^sM+_;N@g9O8;^8n zjqa{yW<}Z2sby$G3}0ZS5IotBU%zbe=X{ts>&Xe}gmF`6U0k=VbC8nJBCGLH{WmDH z3Kk#!ljBX+eE^K~#`$m$<9zqlspbtrny!(YRO(Vb8wV-lMRs(wXcW4f#C0Ppj(dCq zRPS<&Kh+>_mEKOkIzV6HP35WR{c@z)lX}&TZb}ne25rPkkVrD*YQg^Lw(HBcf0z&j8;w{%Yu|i(wpDhl$%j<_aA4STdgwP^BMF!9*0FR z%AqzB;b{3|pK%wtK*R<}FCg$hK*glB?RYl1>R<=4lvk$(Fk{a0NeQ0{p;+W?T)q~s zn6K7KQ`QPWW$`T^doU0V^Au~H>6yZtA86gQT|tW6VMFzc z=d%;Ey6V%)ZoOo36xHHtdPoKJ`)XBWr?K(|7mV z08^tE*!ts(!xbG6qyw|;Z11Pm%4d>6+0V%K%T&Uz|Gng_q!8DupPw45{oNs-F9#TL zCxL{m5mueW`QM)jn${v(?dQ(=qt8u5lqX6K0=#3)1NL6ZV=n5nzB&D^?h+J(9Vur3 zv*JmnRM?!Fx9+OFHja;yAv@Vfmca(%Vm20=F6T@=5zAf&easdTZ)=y@X>A_FW5w^d-2@WQ zu7{@MnZhK3(Y;URwu%-%O$N@~)E|>?wvTI&ky+ZnTMnK+G5tL<7&O2QS{gdBRhx+i z05E&nX3LvwX7(dXA49~ntL46(dM@o){ge4r&dA{s>@K|#mQd~QyI)E8+{Mh{f$pIM z6*4Ad0t}(}%6Eg@*20)+gt(4VgdO|Lp9`W#0tKSyr$Ac&PDS zh%#6);C`{L2bvG(&x#+w!1ob_z(4yn%hJ5FhPn1$1@Gt>A*(vT&)h^lcE2!lStC|` zJ+wjbzL}NY#>Q!8miwl-J8rQ$PcG_r#ACbwaUeAvYvc+Q6LsvJHC$)tM&uCas)+yb;?gW@Bt^_w;|Q^7^8L2}k# z2*>Y@&}Sgkc>D^sh7;vf6LNQ}Sx(piONi66olvEp=C<@#7kkqUE|Z@s>Qfv`j3$hW zG9Km84>6xz&sRvQs5K8a#k6+X`3A#Jh}F3 zgqu(%M8F`dP0&oXlY6&x)%StkM7!5Y9>UD0V61tSAk(FrT&qNjhd>ifHaw) zYyX92I+x#}XsYu7mtXm?hDnzIFFNl>bWa-}@XP zr*yheO%!j_0UTh8jk#T{+)zJ;;)9B zN2Sw>W@^cb-w&qj3lU^fEBi*9UP(a22Bnh-4Vl;^w5a|N#7jg*s$f&qgqI&kn+2PN z!r(lhKa^+CqE?d=SFpVTpmdlxA~^3?kO4~+IYD^dV;vI(hchVU+fI3twl;=Oopo6( z+3)YMCAC&DV4tI@1_sv8^2sm#pB1@}%W1r1?#nedKaKkB04rrS_tn*w?~)FWkCp1; z5iP32fjV(M z<&8|r*_Nj~?VFs(ymE{RQOUmJ;>ZYTZm%WRN-DBn-U$$Y6*<~hd^BDw zK1BiO4enN#NYY;X?(aVBzT`(z!TU0G{HqZyic7C}x3n|l1@F-gT6TaU@4EH|zYGZ3 zZ;@eZ(q7KddUq2>r9{PJN=KqjA00ReBzc}kB`AE>@zosqBJrt4H39+f6N$fK6N}jI=Q2A z*$mm?R8(BY`^fWV&@YmucO;Q0RC*`^t%f|OBH;Se>1om?7bnK+FqeqDJr@ob@hi;9 zII(iBDzENTeHU!98dumzx;CDBJ%0CW>`pcEZ=cM@MV&`~Nl{7Rtr4r*4R*5pvicDUxxO{pAMNKjVJkL5!ss1qR3u+izlIK~l zQxZ|6$>m@Zzn&4l46`D+6I^?Z900)22&{ZZC814X$OsUU)Xe|1?K|K{fF} zSe^Ye_o*BXeI6?vpDJ(!K=%MVKGG?S>j=lw8hy}#&&aO~NYixlKUSxQx}dSwPzZb| zrtJYFo?%nm>IIjgdc2fJ&PT^h`QF4Gd^_4)2nz_IIYZEHIe0w*StC18IUp-7U%PJ?a|2orGi3YNl3EqV3S_*5`3 zh$KW&DV=}NdAb#NU*3q$>wN>k!>Te)SN>&W&`74?j;tSnfa_OOt<%x&ogL!T5$CY@EMCCXs=f;b+g|ytTLr&RcZVv0r zjIj$SRGk=<;k@_yARu1x0jRI@&XVi<{5C7=^kIK|jCK zSE6pXRHe9IxtN_)*P_$S_R&?UFAkDkyj&uvPOc|&CHsR+D4lG+u5H+)SkkqibxLOK zFN4PlYNt8C*`mm1UYWwi7Ic;f<}m-nE=1n>S}|+#N8bf*HH22?AvR3dzbg$>b|C2a z7snU(oc}T7-4vF7A-t8BE0f(7v7`Yy4o23yj{;p18he?oUU4aRlKrYAQB+XbBpZ+L z6yX`0U2PP$*QW8&_GC?TD(4e$?WfCWs&P}iz9-_3gJG{4z1S@jfxJ&r-@AQNxTSCh zJ>1ypGEiI50yhzZ$O=I;%^WEx2K~XI$6Dc>6}Zj-b_t~vqM9S1<%UY}Iuj6i^KS%x z3&QRC3nlO>6DmbC$K4V*4tSi0f0JJ@^PAh4*c7J-YpWd7vmg=RisT^pHOEXbO8FrP zp8%>2<>i3i`>C5PN9%7C8n>Z9GeP0ZC9d@?zrn#>#bEF?+wK9Bffi7Dj2UmdJi=WI z%VYN60$1I+^^fxN&Eck%TkTbLwmWqTl~1kme3;59m^6Hn&*sol_vtrda~h%QAIf{<2jl|)f&HLhtQ zhKMygK=ICr3b188O6WZYt5BD`VwS5GGtKAkr_3|LS@&?eUlhY#Vs>^Pb(tt~;b#?4 zes^Lcxrc?|5IBymyx}6>AwHDy&$jUaz%9WejSXS*-vu}jJ>h$y@YaOn{QwwoFi4=r z0Y#Zn2lz3st}0@EbKao5`*w7J)IrhRh!B7vw@GvTd-{=%g5BY`9WwSE;%eGBw}Cj+ z+~%uk3CI374c{GgOLRPziAp}d)+>557tFA;$7^w2d_6$D3+F`a4hS!07cGLP#o57z z)+K7x4Wo9k&zjRH`q0_R^kr(2_2&18={Lx?WP&+A3Z(1CUDrQpR3UtA>QCBG2Qk&q z0=%Q1Tc-*eu6VnyL7C}#_af19s8B1#9>z`ee{#8;HEflha3o0h{1tC4o^KQX zGO*s|;w;eRk9hY(0QxzinY88u2k8d~{H<{AGe$R3(d=Pjkpg;q8UwB&g4I+6{j&kZ zl-t^@{*&;phMRdC8MJr0!dcU4)3Jbn^N-hYcOYDHA?&Cw67G{670*-OHSGYsr_w_- zALFJ})_klCsV$t4J3d3q_u!f*WKOW)0xibqdYj?3Y`e30r9QjdJK{7PwI(^x3uXwC zvZBnaDkg0-YIgP!li1tl0##8tTfFEB5tanFFckJA}OXV#^tM|h`Db@TSNuqO&Ac}u_t2TF) z@0o1|HIgBpGQp~76Yhh_qU+B%V5E@tWMUWUzU@{+yca#Dytjh?)HSY&?wJ}qp$L0( zuS3CHU}fKn^HFs(laGpjZcXtp_d4DhK3&S2FMleNhm+-aR^(JT?vcwKK%BW#s{Aqt z;qGzOm_Q>K-RT+0i2}#x&K{^OHy_XAF~a6MJe}-4_zZ-di2jW8T1A29eYHN*UmA-? zvve?Q3Pu5bJ528a8%fCC5%*RyA*aVBp35&VlivZe1J)J=Bz{kS z9qHZ=&#k`xve|k0z(&37T z_lAL7Z}YB{#y34I*Cug3{=>tno2Lv(3_gl2r)uUd7Zs+lcwuBZ>I&m>tS1%LNonIM zv6}#F@y#s7NW?2-=*~G#=h5@C&Y&Xa#;uOK(aUuy*Ix=}s!}9t#{dBJp2gk(@GjZ$j zM*y3XU_4|TtOtY+R500A_sa>awu;K+&e+8Ge7y4kr)$>Bdmd{Waba(HRX`k*U64Un zPv$o=hxM^Y;V2vaVSQU;O3?1C`6=V1PKgC!3BIGa-AMx!k|SAR zU+*~dm1+NcNTjKn(ZGF_s?S_|FIV$;3Y>}ZOJ{Y|e{7*IZEXK&aOERtrcjBO8Hb&M z?2?)WWOos(4E;{8EupsWTz_B3S8i!;nh)t%b@qV&6i?E(3S_61F%ZtV1U!=BUA$IR(*SunecB&aRth8fAH#&1mjd%q89X` zKh182Ww`67STla|{1k&z=b)auEko-Cze@-^zIREx# zsOP?S12_Q-d;GopfEQ$F35o1V;dHd)lv)`~7Ac!zB0cIQG7&9}y>e>5SQ3&s?cKOo zI@jLqxH+DMVo~5_cWmC3a#v$;Q@>htpi1_qfX|9|34ierk{L4I$*bSX>l5aoH~&fG z?H;(766Eik2%=W>m}#HPuQ07~0+JW{9?4zFB2&CVu~{A>AUQOy~~yq zcl;G&mWs;53V2`wqU?ZS$DBXrBBGLT7AA--+vud1|KqxOj_yD1+Ly(3B(&6}2gdaV z(1*l0j#O|RL@NDJKvstzKAaP)|N6qzw95SbRg{)=Ku$ui?8RS(xB~$0Mz)6tuWvj- zec}<1TYVM}c}H?sL!h9R0DqzQTB`kppE#a<{R?7mcg1;;(hRvGIRPnJUqE*_n<(hS# zwiuL2@jTmt=;v>e?~*Bm(y0W~iW`QU_db6OF^f~{Q6;%Qv>h>1Q>W){Jw7YV+p|f$ zcgpQ}xwBryNpZr(ak&!WO$U~z54NMzcs&8EQ;4K96ms28&%Bzu*i&NK9i`M4^O5mvPC&p2J2@)C;Z%9&eSH*(%hpLi zRYy6E)pKI$GbMTHB+t$R8DVjZ*R?8a4+69RA$I&=?2)OdA9=^`Jq(b0CwUdkQogv7 zBgpVZY4LeThh5UwU^Tu+znu>z!e@VZEZFkzg@et@)VTfL<4&D%R>DPq-{qepiKH!;w9q@e9{7`pkAZZLLZhjhd6k+~;bAGq60- z%30(7Y@7ip%wU-0;>UZ6ZU_AOO+$!O;6et8f+Wm)^^Ss*+x|Hh^`dXwB| zo2dcUM8ib(%gY-Hn~in0zZi$E+ntVwb!$ngRiDj@e7$G6N3(cby?4d7by#Ooba@>Y zgR3lPF3R7C+K;9wj{kiu%;6RNvcV}c-`x+Er~L$-&j*zdazd2HtUarEI~l2=X^wK~ zKdV+iA)dzw{j= z>T#3E2bSb4*?mzqZ>TL77!m?-H?ZRtdVv>cmkTpm-X2Pq)f0z=*UDMJ^2yMkV2b2% z%a({_G4Ju2@P;A#H@Zn9j(ZEm0Cbn(j6$I%$})Q2Q6y}6G4FGY*0f5UgpiaP#ApB5 zCiY8lO6MCN@o*8tMBOM(#@Vu`jQ2`E?L4WYb||64n28+)7hI696~W3O?bipT!vm1$+BLS* z;@Dvuf%N?`cF_;byYav(NlE{@=P%Di`_2k4DjdT1YfTK!+X5DVAq&>WI=)xgGG}J5 zlkDDwN`DqlmlUx`=mR6Z&q~82FO~k zxzuo@ZZv3dI zH;jzYqaucEwVhucKL~!P!}^4lEc$zQm9~ChNQ7{}qY_eRDTrHu;tJiVW6&`8^K8$& zkJoie%;%;3K@#WC0V$waRU2~lQvs74x3`tG<-6K2P(d?W@?627=#9)f>rn-bioVlQ z+O#_xrnLfZx86Kyp-zov)3MMj%3||Zg_!}{;q&Oo+fwjcZ_C#}PO~V7#Fc5J6ENV^ zS`r{*SW^zPku0o!!}{qocbc=T1(C+IcG3l<0NEAxR>FVa}-vIBOz#O?`%{u-jE(Z zh10c!y2o~W)Q{Ph5j|sHTx_>P`u6)3d(8kWXyv^QWh8kL;UMxd32F0#BH!4Ep)cXDMk*Hrb2t%I0=` z-~RV)pcDzN=5Q}0TiNZH`klIvTGnvVS(N3_nDJI&h0IUgzmHZAgbWVASQPhVnzq0C zj=6t_?r8n*V$G03qgqsMp<1Dk6N(D}>8pqObq3 zxCyjXlfBVtGO324-e$=kxEUJvlkHcz%uTc@aMU>O8Alm?tBiFWCdydv?v^#q7;RU6 zN$LKq>*JW9R0!}#rTMkoy>VnQa-!_uAcy4mAx+zKD~9-$;7(TG^4OaPKZ)EP4~ymJ zj}}m0r%K|=!H(^((l#`Mo-xfD4wZDwWFzAnK4(!LxK}`OV3{}&qcBrUvGH*K6j<2k zn<$v(FJ1{*gCVZgw31Xmd zXn*`pMX$YE(uY68K6g&0x>}~CWp=(%kCJ)x-C*eT!n?A1&tZf1n<+%gj`#DlZnU?7 zn4Cr4|&w;gOP@CEliCfqj?I z+Y2R_$f5DbfTX^n-UC(M7+|`X=8FcPT0|vei$wC-%)TBNQy#Tf|8A%${q<;RnXSG` zu`#**WbQ9Z0gEgz-+{jk^u+r=OPr$f!qRBV6!fbs54I1?7{;OXe;6C&>y3*Z#LXIx z;cEFpO_=H+E?o9Og5tcyy_8`uo3xq@>r-!>P;o703M?prI!~~af;RGKS!rupK@rK7 zq4yNqenZ`q^fH0pyVAiw=ldWfuWVoW*;M7S#Hpa4I&X8b#n#kVb4AJ4B7^k+Gr;wV4L1GGH@;kIvT`R11a3Oc}exVVyUo(!Q?Px zyjUgEByqkxX5P`a!a3}=7|uk(s$**YyXlnYQMzZ#?z-1=25O#-4-XzcAEpYid#hMB z;YHhaTb&*4A4}jA zk0sS%<1FNs*t~$W;kba?mfW-X?apQzWc&O;Cm3-^-sb0wz^`#vI3%i)jtp9K8H&W; zq_!Lh{rmZ0uIK)HSb?|Unm6y&*i z+_XW{Xf8iTT==B65I^mpr<+4;%7I}uCPeNsIe6n&a@Cb_6DxrMW@Z{zCH;idiaL+n^8GzN zcQNWs!nJ?O7<(;aC?Dnta*BI(fZ(@f}r}qlEPI;AP7cbdeiqq^konIR;?wCW`7>T{DO z4RP1U5}r$pKqN1>9#94N+@CVU*4>+58d3Q}UgbfvbEQ#_1F6iT!y-!Pk}g#efKpMd z;@$DH%+d!PjAM(QbDY)adcQFLn8nqhLDI7>Z1$_4wiz$SvA@e<`Sw*1)#dr8z)c43 zNzv&YAt`-*OUpXSMw_&`<;9}ya2X+J@U=K$spgD{v=P;Ne3IKM6cKzOxzB+WWAdVk zMX@uDvwy3qo&glfi)x2GpsVsG&s`gQtq~=bQ#4G>X}ixWvi-yn2Lr<9Rh;|o_;Y`U zz1M8=@zlUn2o`GNQ6p(JmbD0V!hS|1oa7GU>K{@&;({b8>R&Z(rmarNx5cUSz}*l- zR>2Po_J83olPW~}KJWa!tN-aFJt62m?`N+Bf@0;l8A>(7Ya*@XPA4-FYlsH%UEV)} z=7~D)W^b2|7L&&p8eU(zTXG#Xl@+>n1)wNHje}$>TrX1U^6uuRYBh?jm3C?wTL-#w zKj`?pN2OMg(fxeO&Mjqt^}NTIbklj|^~3V46(`Ls*>~KizY!82r(R$-uh}o_z{{Ut z1<4Fx0jtlwCEa zrsOE-WLW5q>(Y08t7N zbh&sjRcI9VK8>Am=ys7@+W&##Hy>kL{UB9Rgmk@ZK>MSl5BG{+KHp0wx@p6^5_j0- z=~jNx7oTbQu!~J^kUQ&9?VB>7d*SAR>C!WU%3s@FpmSQ!!Pb?EA}-KtDKk*}T$SlT z_vp5`(?qUc82z)mQtWJEKmOH7=l#POnL3P}@Rg0VhoTD0{qu)?>w@;lO!eZ8dO0Kv z@P>-*FFxLj0 z=F50}J)p$hG!B(Q?Ko~&C%#y{@%wpJAcPlT#`C!{++9z9TL%@;wCB>k{=k8#$E2~VHo6pq>0PMXHH*(PahO>9hT+fHNKc4IYG!-;txu5~?NNM{1ga>v+_w-VGORx4D*5+l;^p{8e!P8t zwCn4C{Oa-F-~zPy<@{yOsC4Rm3Z|2kp-*5aja*cG;niWMI|gTE7u+7 z)kLp#nxp=2*Aa*#Nw}DAPIV(KAz#1H4ryZcwA4cb$7>H;P7URPmw(qyR;tO`8sOZ4 z=i?rHiHGP=JUBj!VEkyfMrS_pic_kDf!@IGqd2gZEJuI@H;oPmEk&zFclqZV*N#=YIr|ZBqtyV zt@%!(NF1l}#JT!u8a~lkX)>U|JCNmcnC3{7TF@@891NRU$6V3wS3Q>zBZR5J{%g)q zxF#}*`t-8*L!Ih$_oWRCz%JRZnm(Q+lQkd7`V?`+`TsXP{`W)M>jHXDT-8PVoggzs zySyW}!CJ1FJ~NfjS$fFr$Kt|fVQ337SBYKMZTz|z9G+q+Lvv zFGYi|cm@HI$#0mL^{%Emy#hI%!~quc&(*qP7+WY6N>zw!lABdjyfB83^#?`Vijxq1 za6SDr*;xZSBwKQDdEb2KPNx*pPec=*f5#S)bW(Anf9eku|Ji2JDp z9fLzJMFrO3qzDoQUSUdyts1oXx&13k?E(2qII5h^w@~tWJc=zdT-I)DoZa5Tu$hEe zhT;*pnTVND3uZ_BFO0zK3Lev5c}w+V!97I$wn>9;#LA50L2Woj_I`pC__pLG0pF3; z_AKpqjAr7a_C#sW&fiFH+vzt-1kyyR4nvzo|YZL_w^F*%e?fj21&KYrQ z62~EUJ7C6VR0j@7?N6fI)n@g~3^X=q1%^>VCd283Qo((d;i$RuxW)JqwbDhT_}aDZ zb0*qUY`R5A(Z(K=nH0)?cju<3%RnrvgB9ZuLq5sOqx8kW)XJx12l?g4Eq(m4=|8X$ zEOgK#I0&iq>b*_oqv>SlcWUHIlE{Y%3hLcy;OnI;3jy&cEwGpzXH5j^vJCasdm?p5mS1*yoiT!k>ElVeZ zRISdjRUdQp_{9PVgMo&ouXxMe@V|Yk5#ZSFP{;mmG&aF}by}|*Uj=VC^`SY~ z&SBzZf5{&c99WZ!=_a1Gm4WSz)`d)2Dijv?QN2okPL%&71N4b_Y-X2JaaDB>#A?0= zOJZ6Qg8p#wa+X8k%qZ2y!Dy92|8B&*{{!KE7j)+2sVc3?7rV~@loTD!a7K5E78)u{ z#Y%ZY$!ZHZFdMjdR_SxXGip&i3Z)?cjN^huZ@pmV?mIoN{cHGzjg6|+(qilE&=I>; zcY~TI?lbao+ACXdd(-*;j_C*fY(SUbI!-~3JlL%$qtH=DJk zRT*;xRu|2gO=@0pgf=pT?Bj;RFclz;0^Nk5%}9(`>d9zrk9g~Jd3ZxFK6pwj9+h;T zv|GFVEJ8s4qHs}r3qepgeg)}@lS#W0@isiW7VKq^!d=6*aH-s`97`PUXZ!{}! z4PDNj{rJ9geBeKFm<+qvt~M*n=J~16yZWSf-zAd0(!*DcN2YF=!8JY?YJh(R!4xe{`P^4O`tb zdlKR&x3=8_KX&KuFCP8WDptojjt@KUE&LzSI?h`SEKirtsnaKzP?CSzMQ|-yHK=3D zz)HM?>Zy%GmA!#`Y}m%UxvTR-By}RU0~r(8e<58hQ0HHVA}hx-91I$6T!kKQWUX^p z73Rwn=Ew2UfYzrlIc~esnY~x|HS3KEigi8`K!Mh=$^`a@xBM3Njgz4V_O@~imQ`d+ z^+H}H&YmGeEw3!IX0iL_ zD$PzRZRI-%%p)9OGf{1HIMrk!>1}?K7$}whNYQ>j?JxQp%QeHpxE8-kS`65!4A>F% z=_RqNq$}vSG*BdQspWHO3Fa-VUzeu5b|XjDdk|e+?+Mq~mxR4Ecw=}W_2gBao{kl+ zjQJB_rQm4cj;al5v8KZ(%6E~d7xc7O{k3OJ^onxV6E1uXF>1(8)G09LgI1gu7nf?A zX82`KdF+(@{eFVK9m2^kCn2!WE#+2?9Ga?S%ZDJs`&V`NF5@FDdCXRyMj(O~GIN@H6zu#(eQCvLpeQjh zB>rr^q@*gdE;C-ryZu2_3xsjs*Um4Br&Fb_Am?~1-%S`F`dWe{np0_@#1aoTtq#5A zz@(M+sf~N-;n2Lr>7Q#3b$cT!a@e68?{(w{NP12t)jBN*q&y}`W%~ItMR%l#af5eA z4^{47=pko^pJnsRpUNluRNh(nXDg>6DD%sgrqkJcwYv4hqL})g2RJo4Z30$)12o4UsE`JP7%B)W_lX;92Cd}jznymjuqN9-lm!22SyPbIyjN-d{#$5MW|7A;fphij~`?+0sb9)OTX zSr!;x;__sa%Egwm3ey;lZAXgWhr7h)qLu7HJeX-lxx*6`DDG@`$XXm#Q5-~A4Z!iM^jQ((%N*~W=^ zh3U99CVz()j`W|DpR=Z(?FoSHjakKA_8&yZCLS?Fo!V=$up`)_UA#iy> z{IpUD>gX%hJm?5g-{_-=eq%P0^*D)r(b6GLnmLXH87vIj?URrPA1BopzI~1jT zNKsczBNiy-*pyVi9L6J>O_v-;ZQ9o=S+i;xwu+#ZU7}_{zS4FnS*a#W!*(&O%s@@A zquiFI`Y%guw^;n9Lv(4_38%nHwN(p>ajW-egxD-g${8=O`{h&=n z#G?M!ed${VjI`V6SbVOah6)KiFtj&{hw*zD*%ClO_e%D#x39xubzy?2WkZ=g5-A z0tbs}uFKG0TRWO@IC-!f4z32r!Y?Z`Gg}&?Aya0N&RTruVa-m{LaK8(9;kksu7Sns z$+MKNMo%w=Ts&9#{cjNj@1q>N8uAN-z3`|R@pwk{aEh}ZC~@UFS=^HZsS>)lpp2UXk;(nBZ2;=5+433GbxKMBy*rZQNptMRu74lPaf%BQoWg+diW> z64T$GC{34KHYyMAGsz-mGqa1|p`}Eg{%#R*n8#?;>Ke@*l@E-TgIDJQmpMT)Ib;k`w)M_eh^bpjPPyin97aY7~qv6_8I0W#srz%u|Cp zB~|C*5aNhbt@0P0?0mWz+F_x_n2N@O2_>DL<6Fkd(-_{rHs)>_3%R_yCEXwGuC_0` zo|lUw3c?1_BZ{EALq{Zn#9~}_7dBw=fVu{99As^Jrt+x%&Tse3@5;~!(5NE1CJO>g z3R`WlL;0PZYwyEk)Zj2STBSS>RN&yxlA)0Sq0b)cCSHV-?JVf=n71;4zzh@@wkv_r zEpSc2@-Sh1HGb%}$kUp>+nUz>v&HcIpWW?7!>KkK5SKLg(pbnqpa^n?bH0-+u?f|Hr9 z@Xvd!7wK)m7!rz|PLp}8zQ+#i5t?|r-@6x29_ba4(>4>vrkCjN&6j|^HuoM_S>HQ9 zXky}exEotl?idaaFy(O2f$yUaW_P!@9Y^8Fn7397UP_VJSObr_C7s;mJW|DxGMsh$ zMj=(PqP6834sa%UcLheExT#&5s)G$P4Oj07DqEKNU+#&Tz3vIkZnb%asv8Q%0B+he z0m@Jaan?cG@B*;BE?3163G+QCXOgH&sfXjcYadbxo&J(A=l^oqj7I|&S1o_c)5y&= zmdwy^EY@&L^A9q~>$==a&@VSFL)6R7x{Y9xRoJ-O| z6hp8_%o&dDW!d+v$Oj6XH_ta)&KB;-DCiNyavBo^n2NI=>-Xu(rz;9xhiFu5?c@r9 z;YC-ldAvPGsG@4Ypmx6U;OB2)n@v30n&9vm14dqh*HsWWB*agtEZb?^;RDW-7+ios z&&ApZUjM<$`Etv@s3Rpc=m+?+ss>u9{sPV+NKtYyL9tX6M|v6r^tt_R#x*G=_8`$; zFLn3Xw{gLW%&3p2&#i2cJ)|UVNY$$uZjE!^_yPpgfRd=IX<~`$5W&%8{j;;PJ0V;( z2rxsr_zD3$XtkqVL}EmViyyxp_YBQoDe}9H_30Z~!WtmoINp(ZzD z!_ZHLh((r^zs&QQMICYwYszz)6`RDE&lptiDG1B&(a0};`aE`eU94E>6=UEA{2>2f zC;*8nL@O(WRH+A>-RM}?xi7d&9)3U=D5yC6bsQBZxrILu7L2Xx^xo?X0>PkAB@V)U@D@5^GP3A3dR*R4P!aQW zmUr*RX>VzVx0SDQ^MnVGDbUl*L` z(YG_`hXKvgSKYYPjrGBWU;xT66kiV!B$fNwWM)_Xwc0TTAl1H|KAbv(N@v0xlEF)? zz640j5%MJ*#a>`HilT()IAr?E==}NKeRi=|yzIL8mmZlC3%P|Mb3sdh@ zc2*Dy%V3h)Tsj%fkz+104I>my(HQRk%~*U3+kqR1#A`gxm#11;J01Gn*I@=4yLPee zSEnTYfg@e|r!NR&4^nA8{Z*Mb_ueTt+(*k7n%2P&I_?RYmW+5tl(Zgo8!rfAS!YKz z?3Cm?f$o)9; zw5Q5}w$S72Me3qiq}ld8l7L{TJX-xaN@bvxeV`mKZ~o1wEQ2)zc5U*Ea+|^dpkTO= ztxC{sHpO#=O*Is-V^JPLNpa9fAVof?p(Q6>!?uK8l9fN#=&njCkN9^nVP;jQ=E8Ji zdogooY0tgqmgM~i90sN1pVuFxyVn!WBjxRZ4E@7Us~`W3L)XN?_?|;|ke>^T;^lxd z3F62N8$3Rqk2W0l1%${+6JWAwC?Frm_6bl2Mo?oxdhR(N7ndK?D2!&>_g`h}b>59y z7GhGM4IUwu$R;kk%y{nEY+Ylx)I~SnZnJaxgg09LyN2-}W{kH-A@sX%SNmW(-_htC zWK8jOS+*F8EWshK3{~Xf^sh4$fS}pm)YI8zp3!OlmQ@v&R%5g7-Yk4bW@ZEZB< z`I!oAygJlPVq^J}&Xq!!4HZ^4g(ZcwenO(+_Joko6O0#h;GSJXV$hh4EJMOo1bHyl zhVW^vFHPw*7jO(u)G+Tc|}=p%!mMiehG!9FL&W+1GdCu==C;{ ziAOmvs-3c&p9X0$85wzXhRmqSP<7JGNr<1kFE;cz4(y~j&*P?don6!hMAyYS|cx+jdR6U5voY<)K!UHGkHZ(dVB#NVcp3qM6de{11pi1y zLySJV--YNy;MIYq#YU=aOIxq`t%82N9o*Hk%hFQ{`G2Aifyxh--cn`1RLd-{Uu*xW z`(M2xaRH2>+ushMzA9n#43fv!5PAR;1=KF^evBG0k$vI;5&ukf5vy(J(`^?r#Z_~D7}imi%ry`qlx ze+1f5Ay8~c@!r%VuxNGDR}{1=m!$HyESfHmq^Kl~FzDvZ4GfJ`^zX47J#y_yAYAr)R;%_?rv*P=3>K1e9YQv~tnvMi77 zK3C_v>klM0h}2JtDh4%SMrbV*)+vroh=Y&$ybrZ_k&oYNBY6^0T4@mM0dxfB(ZBjK zw{cjc=p9{$gp;@56QDPzqO$)RXy_~hV#eS!z<;wP&j_u z8n3}mqA95FsBsf&vntVFZWLp&(<;*CEN+ccaJ{h9^sUr5?r9dVuZQdZK?y(hbNQsK z$|LoWLh1`Tv>4rg#Fwqu7hQ;<1orRRTs#YO8c0@ym3F>Iud?^c$oH%4E-|EQb45?t zQ~-m@`C9?PyU|q*p?apel#O@(qwXWC8&2$>RKFqMQ5m3;dx-kf+xNw;`F%CpHP1(# zbQ{#v>{;GNq%|RxOKAbPm>pnNbzKXZp3eMv#s{oV;(Vv4V{$oc`cCW-CL;@M6l84> zY(eq&i`prGsk#=EbLdL)xYAEOA6o6_l-&Kn1Ah(uVG>M??(PS_%rVM9e1Jqj?q31D zzm|XF<$9#?ewF4#0cC|}_jS{BmOkb6ec@Oo$ zhtJ1GE)XC5`HxWOZ2zl)krTm`rL~GOEeDo$2zW2B8pQz2^Gb7{8UVSZWr(tV^3j{V zg^9sUEnU6Jr^vS{__ub8iu%==#ZYAkeex>~G?+iH1{eB(4p z8=r^-)4zwOhRDi~UK{g;JWYw!^Md(Nu4l&DzP331-8j<~`~bLkteor|Bz-9XNx9CavlX09+=55VE;y3H(mxj?<8Q}9}Jah)t3t=vQybBYExB5hNQ@q z5VM)UL8b=T``u>M6624KD1<{pLn~aXP$xjwc~tyajPkcnc~mm7zsv=P4NUXyeGz(G zcLt}YHoqLFg>y_x3HWTzF2#Q{u|8d?(9%=cE0vo&d^q>=eFxkh!f|O$(gW{p$%XPA zlZHDNH8K2WJ0f1ZUnYQN^^Rbj`_h3tDWL&Ah%yd8MCQTs2wwhuU+s&8S_A;Ou~g9+ zH~hXQUT!u!)QZXb8gg-odSUKwzV}6s?73bWaF*`f3j}X&6;4O|GK|5hKdROyipCkd zX+=JguZm~_%~e|5B#8od_IM-LS?hnG?E5+NdT+Rfbj~?DRlJy+Ye#8i6*^{bg5jB3 z+$_qz5<^7OclXEt9pvw-hwz2fw4MS)0o&sv=opNxq#+e;Y$gP^`(k5efEGb(6+pfX z)#Z4VA_+8+gkYE9T4K=1Q{fjWRuL?GO6PBxOfQ!!E|<#lmRWo4LHZU;few`*lDZzz0Q)pR4$Mi23JJ7qJho4X39_KVc8eZ z^q@VJo$?pHF0(H1Yywd4(Pb`2REKbTR0DgYQ?Q5&%|2>?#>%g&4M@dd>RpBNzFS^B zc=>p5J06zuuYd<@wjl0m^;Ljvx--oJ7sCl7#{xn}z|94Z=exn@y@8!r5qPSts;TFi zLi9Eu`BMwU(y>U;%F3Go)ol8CR`g4RKrnhFM>M&Z&rdQC1wx?N$@cZ`!@ZZ)Iq>BC zM7h*Llq9Ro%E6+IUC)>B)$y`j!b*PtQxwo>t+#lZEXpONkjK8D zZz~nFwSiDdbNO8>lO`5X8ijnxq{!J2s?=iED2&I;G#k`BPn7vL>JATom(Ex&bcLEU z|9hg&aTT6kNxCyD$UP$ASIx>*SDC0yaQvnC9FV`xyx+Gm^ zsY~GDQer~o@D^z|M2gkAG+YY+IB;HaZ1<B;0O?slJo4oietd{I0WeH0OiPJ#`uJZDKilKGd*4k|EsdX7E*fQpBCk*D? zKTbtjJeF*HpLzVg-@Bq5Xd~|XgZEZ+4fcyW#e^E;rl(2kpI=7e6FcHU!?hhC%wR)% z-$~t+uFK2(`CfW<{*urFXIueDi6J+wam}n6tEj3|JudJAKdTzPz8jgGR*fputUj{M zKFNqS$b9wqXEfgbSYl~HuPU-L37HyIZJ%GJT z1GVPgX%ro`q^Z-%B*jG<;TJY0zTI+#A85-Yop zKUpYurS!haSDQgRKM%3^?ciD(Glc~tkP_=2ryu%iT0)bH0 zlXoKyZjQpe;jQt)DoH%1Y^A)_H0`5&N*4ypssc>Po=UrHzQqX@Z zwT}j-wzwy+mAACfCu|Jd8lAf}1kKiVhl=VBS&Pg3ZQesTp~~(wgS(mNqdY4v zjX3dH4<52A3V>k-uST88lC=}vC8y#((PeOM?vCi;+%`WtvE!crZN$i*(k<5!PT#f7 zVqw3jx*}=sI>Aa-r>%FrSSHiqdzQS;R|4^?ES+MeyPlx=pVueuSUx|t056ly%v~OW zm1lqRWvI0ZXUBhaxaHUorbd2$ewZQM#h&!WK zZ9+4x@m*d;PoT4)Bq^M=puRNRwVlj9tWGZ|u@+l5%}+ib8d!KCSe#lFWA)R5hb zY4qWlMOr&5gSS&`J9;S#i7G9DC$phSo262%+$AMk`mXZ_iSXL_XvM3x>$yW=SH9zD z&rZnKf{0ffG%4%`pIFH=fz~@BcP06uRZieABTl2|K{&e|33M-x^Zy^Vr<=wIO7<|5 zmPwLG%8Ln#7Yx;D7h>Lm$Yx~issefn*lI{geCtU*Diy5OB^9}fVZ=%@0rkAMbv)N| zSCKh+p3j(Y93HbF2+6iR0~|M15tylobph16AN%L~!6mhRnjy|DzxK0JU>m3*#uqVKWu8fyG@#RY zufvGZAElG1+gI=yeeNa@%S`7ZBD=Kc0lgZxr=D_xm5OmY`XAvza^tjn;yxZZ&f*)#%65?Z?t4 zW+8g?zADOy|JitNv|%k&{P3I*^i7_W1uNNE=+JA$dk=u9N-fl7W{mInbU6^d+cs~Sug62nR zvPU|J`E;l4iTmJ9s7F7et{7L^OPUO2eE$LzgO4f97<-XQtFcP^#>Ypn37?O0X~R`M z_Og8<%BPY+HSzB%-3<{6BCm|0)%VYnw=+6POr=Az3QF90s^3x;!kCD-?8jZ0GB`D* zy?>?uEo2Di=BI5sm`DST#F6lW6DM`E9pF_Q(Rh>|{$NS1KTjoEMYB2$E7jYuuW=Qf zHPCOvPXv)U2ksFcgrz`;*PBlfg462eJ9f%M7Qe>}?+&vxb8@%C_OimdpxrT~%312w z8i;ruioH+F)XuZ$dun8bdEK3~f~%Bw>ynyD>iC@f@jwFp{OqzNK>cNKY?#k88lI|p zs%B2yljDA1*AOI}_6{wyF5eW`*whr*WBQjTtLM6g+~S%0&5@Hh^ zISRYAE-{N7zbK+Nx4l@N^zHNchUj=upJ-mog@;|*ocrwkC(392t5k#%1+FmlhgPvD zQ}2d?Q=ea&l3Gk_qo85l82XLB44TQ$*K74dl(U=u-6Vf&v z#hU(YGzW7wV_$!H)x^_LCg&Y4g7TioEg^ zc_98+t8LvWdaZQr(uaV&Pk>~U5RUA|m)rv4W@(~+)2 z?V8Jlc3EX@kF-eVu|+8-GN9SALA8)}`o;ifJ>Cg`DnNHN21!}CTQqhOCmE{ig`V(- zPt7P;@7;HGbFGHhwEqU-Yhn#8kRB$^DzEcne8)+WE{sWc9gb3~O0#-y;iVxHUB+rD z9WirGP@|iu)mo0Cy3|;!jA*CB<9aNUuugprAC`)JLBy~Ia0Xu#j3ix^?&nd;q!RZh z3(1EQ13E8_mMSg*vX75)kHDax7iq4=VMpA3!#{@igf;Gn zY;_rklwIezJ(@BRtR?mMCnj|D#{{soQ7fOJZ%cf#lo`j}a(~f$$zD}(m;aS2I(jkG zcCC#8+%Gu{%PlUFBgEkU<~KW#?PBme>mk)FsEiBS0l!~TUq`=35V*pPT;_eg9c8i_ z1yNeOp`w!qG=uYx<-r~t9^-(?jd>m?@Da1X2vU>_W7dVKsX!n50XOUxJuULg-3MNt zYuf%T4@Gm8maMRcPS#tOVx*z%AXUG(zes1}A;n zURZ(xTD}l5)x^f4jBB0xSxA-9m3Qq*X8wvSK1*bO>#UrUC$-yX1oIz`Ww=v0bz2|% zN6n_gx=a~d1{N%Q>Sfb<<*KDKAaBJ^(XvUMYQ$0q9fAvqYn^t(2Xm446IQ9+k~Dp% zKLMd}5LRMVDy{m*q+|IXo>Z4OSdI^5#D=S1$#$#idQOJb4Ee71M_ArtI>BL;8*U5# z`SXNt65}m(fmLDb2avH?fDx%|t^aO(K1?POzngFNm!?JBAf#)V>2%I}ylx>~vogjcc4JY6~snvI!*cI|$qc!AKK zh+P4}rZs?;aSZ4iLGbL3|4H(Rx=Zk8D=N*P$mp(0iudQ20T8kwOY-xSIBhVWYSh%; zLLSpe3zv?|N}XP1G;_P!=ex)jcfZXl5E~s+upfDH5bmp?6&+q|``kqw8_Zkc-Ay42 zZAp4o;}qdjhz4WoF=NiI#_vCJI2>!IGr6TkxZ5nvZIe!JaVa+wXXrSRm1&K?9cXSg z2&9ky^khTFJgW#I9qUus#_3i>?yZO>O~0)FCmIBCydP{jB$XSCzO6-a6K(KTNQssZ zhP^)}M8PEd!TY{q@YXJTn=xax{(EekhEfL4X|>Tc+O4&vs)xD~%bcu8g2TMR_MI9< zo571UZMMT!N4MJ{d1F%=_HpCqL15`JW}JS));^8rMW@U1{jV)_#k524tH=BN=W*Nh zu*cy}+5|fC`|>UX6fUGPHN0EkRGOSt9Jt}E;Kl5S_|ZK~4&wxz4ELj4u=>sl)l)|)K1r>(K1ub>0h3paNa zr4E>#W%kMLcXxM{CQ_ZXU1v`6vYhnh&+C}-w5byex}yx%y;zbRoaq=z7{J(UURbMQ zO3ZkaI*JAwC511jMZ}$*oeY{22S{;nzaZ%HH)nAmA~R zhdROXlwaC6TIHJ2&P&zJ9-x3wT*Q^73yUL?3VIQ4{( zGQyYtVazKn#2OlyWKWq>7@dZCX1d%>%NwL2@L7ZfV({L8Y`rMB{{lQXn2}bk3 z3MTt!|M_5l4+0N*I(EW{*5zOk`bUHx*zj zOA7c^Pa$l8ju-Wzv!`{iqhPX96UWx-Z%D>`OS^5A-}Q~Em)CQ2RMu{>VgZa19a~qk zjpOO@DM_uhj}&SOa?ckE23ox~EiEef4-Z~3KQS0u=xiFRXj~>I;9ygL23JIrBG!jA z9`p|ijN%%?r$LmXNJx=Q1J`Fb1c&0_jwqY!Erk2ky!fypx2pm?xL&AE4Fiy6RK4c4 z*7|*Wt#%VYn-ZEP*CR;Z|D3D)Z8!QNyXUI5mh=`+oi=DljPU1CO-t*I!U&0oa*95Q82Z7BLC+sF1JFG~ zzmu{#2S`L{<(CO&ee!Qnsx8)7B zE}pu~O}4K#@45;(9kFmNY?MVZ)yQ!1X#J6^00;$CFE)1l&MA6&-yX|O{J#0~S;a0H z+41gRx5m{Qi_sn@0?YBv69qp@Ec>$O)lPGS+zbT;7lK+=D!eP*W3Ss zvhB_hUyQYZK^8wbW<13AUoEO8KzZ;84&O}fPZsUmC3;Y{BL{LF7BGXm3rxvastS$f z>`3R!b2t55FVE)gD!>xJi=5u)9+~w{P^bc3sfx5jEdE_t6ZJnOnL{~p(&@|Y^-{5` zt2{ntkJ5lb(Ptf?e-+|yeV{9Nf{0UBr@pzH<2pb4Z;uDkj_Ld4EXFGdM}Z`N1FDP5 z1*ZsCrm$Z&(gUW3&~XB@RQ2+oH9e$7ZOtwN)yYvijhmwq3h*6*O*XJfI!! zsaFPj3KFIjZ%IGWgW_Y4>~lGh8*W`)2kFZH8*O$l>@j%_udpZrBr-W0M8pNG+y^a# zu+p4fjfXC&Hojc}spf+j`_E@LbNCjoHA&me4)wJ*8|O7NG}njn-kL$W&)QZuTiq5( zjH;QVDG@QU&VNWP++6?qy)V>NeY?%4b5uV7HGZOmCaIw57t_nbZaG^s2l^B=acOOI znh1ykNm-NPAVJ-$OPWi`;qb0Qp4&F%7n{e}&ePh?yMIOT9VJQee24g8_3qNSNyH=f zCZCZUc{0<;08PYjAq~yQ3Dtud446Sy$BXNQ;VXqdFFk7b$M;M#*BVJ zc>q@XZnp;t-vby<&*tOj_1fNa!LbdJ{tqMm<)y=Lt}bV4!6dg5sRph|5PB!5JW-N% zGO$R0oz}AB)m8zlw$+LW1S$)FDA%c21*VLrvQruZ4wmNoqbF;oZoU&s?{)pg#31DM( zF?q(t_G`d?^6~(8PW-Y^YhfIcAvZUd5W-|}4_<`ZIbaKNH^>$sWfH?L_r9UC;j07q zf;pB9d@io0%9%)gd{CqYE^clfw%QBtHLKn)7sdZ>-vVEx4g+ofApwasr7b2gK^u}fd@SUf9`r=6w?4@46JS<7gqw<-0#Fhzx$JC zz?)~OEtsk(T4Jnb!N&T9^@aTB+ryI%pugcjkt8ziq$a;mu}5`R%k9pEjDrJ;Gawch zFB)yPc4n@=rAhDmP|yh=6Gxg#t@)K;q2W1pLF3SFzGx2$>; z?{Z53F2fkoA(e3Av~a^hnW0Fb5>0}O8f-qd6j#M^B_va{vSF-P(h}dpquYr@?m3*Jo+V!`glfZO-tXA2*aKWq;NL|ac`MB#n; zvsALFB~!6dg-4`z#jC)(8~_dAx3Ht;k+z@@<8K_Syxc#5h-_IR3rT$`@~NK{{%Q| zsFe{~m|cCnYfG!fbTp{v|4eL@_M1P>VFi~}&4e;V2_=6)Y^Nml9?n$xC(#V~^d~pA zSdOW6hEXa~YPH@RRx4ZyWR0!4XQ*SUM0<`sk-Y-6N>~etG@7YRf3Q{%a9CJ2w)iOW zADiaHaD?*Mj;p=z)^=`i${?(fxNja$UL0=gg}I&bRBIKf&nDQ|7KF*WsAF4-#wBU;vAr1c<016 zHmv#M8g!YMm}*hI)$%m=Y^A@jrrkZQHybT?BNL6$(C=8HC^ z@nPV;={rwx0l*e$1-=7pUvPm>OxhnSqKL%1D@Z{;NlAeQ1+z?4-t?taV(CRl2OMLl z`tGZP3EctZgbPBLzdFl?^ck#2%NBM6d}s7j2hUoqH$7)g`;4}e_*-nrfLR54%L!L{_?0t(P> zc~zCODoa($H^(Ztkf7I(Cyjs(mG{~mLCz6Zdy*^10g*U~g8vM3{6IuKxJ$psPS+)E zi}u=J>nDe|_RlG{|B5j!C<-{AtwmRNMc1cuzTrL?QJ5if|5`5jGr5RagD5vt31jQ} z)H$%2DUT30{|gH@!-?tN7!4Wd&E(LknvN+1!HYN$pwCKoh8spfsa(mNu?PbZd&ZpZ zeDrh$g6L(K-e51uHBqNRo}hz#Q!_-li9u{SU;1@vDirpTOc;9{YT}3j_WAUGjgA0f zhzA)Lq+=F%czR{Q4gsK-;+z~&v^#DY6-?sNiVG1#W4_+$=eVXh5b;OFz}Hc zQ=5y`btPg+F;Rg$mRQR-^ne#{+|3?>XcLGaiY8Il6n7&u)zO8i&*R?f=Zkal>O|Db zYqgH);?5+~RF~90YF<@meQR=3p@!997My8tioWbmf`S*YwYFQeRl+nBE0#{8={#+& z$6!q0?;xQS5a}Sm3~z~L-y^0vs}bt`mHRy)(bde%IGXxaH3#i4JMn(Swri~b>PAexCBO`ynLI&J=L#}J&Sm2q?7`qe z#ze#JI@PB)s2>s;j(9w|ng-T|;CDG7!^p$_^mKkHm-#?$c&X`9jMw;&O@etZW@333 zc~lU~KGHajlbwb*g__FJPa-35>Tn#k(*FQYL9o8Sweh5ylMSkkCGFLD?d)3|Z1YN&5;grI*gy<2n-6bMz{>PM;gipVu8C#_BoDkj36XCPzv354&F z0m@{-f(5R>{nMZRw3}MW6h8XlSsduuXP6nr<@U!L?rH%evJ_XOvr>ldg$t4 zu_889iiV>yTHwe-jRi;=@Dnv6QeTtMl$ME_IDUe*ZQbUs_x1K^&Fa+_Qkh7^jd)bW z_<-S*eT59rf&>U%lm>If8AHHtFM#pyo*_NvI1h06;gvnglqq|xQu*1>epbgGd#oF^ z|I?rTRNw#p_tn$Wgm zrM}|VKOZ2#I}r!bl>m;+u7q7t;0&c(F`Za*->Gc-;8_N_Hj!|H4R?05E6J*GrikmU zHT&eFk6Wv@SyQK$=P$EDT%RfCq$xIZmZ`C_@^UZY$Vr(L;L113IRfxsVF{JrmSaXR zAO|dBgw-G%vEL?#Hg9iJyS*#k(xCc=CO1xCkR^{T4#`By%@jxv4O-Z8o9#dXiWG?j zM!FDu3^ruCAbT9tMUqOHqR*+I4I4M;spp>7Q_nu-x)-KRn(P)dy5qLnG-dK6U3lR| zZlR}gzqE_>ZVve4K4BicU`4qQFGjVq`W#CFV~Xa!d(Q|L;P8X8p}bJ?ockq{ng7pV zL>B#FoCvD~u3x|2&0H8ie!P2@=OBTH+iKv+3d-KkreKc>#!N5(_VUXwcl8ZoP~H7O zI=M!j_13Nc0gh()t^@`jR@do0$=m%T2AxOM7=v9=sKn7F-kj?Pu%ih&#vt_e_NczD zR>eZzwSXGNwCK2bbJS+%k3agT=FXd|G0kHvWhNj@S-K5`AQ$wtyRZq9BYpCo2$X;O zwnq7?zg~tLZEhZ%VzhHeLE2h1Z5=z+n;B583EA4lCS^)=V^~YZ1X?_n5F^tE^FwZ| z1N%U*G%-XW#~26%8nZ7#5v9U0HHTtK)kM@cG@$2}Ez^DX-lwHcFV&9r9d2Qpb*onE zh3A&(^;cJD@#00g;{ET}l&MoIF(i$|`uzE#{nMN=d0i+*(6J z>gn!Ls;O`l|+G0I&|Q=K+Kx zT_|efw(Z*4*QX{cxca7M*TQE@T?#R3ik^jr+>*ye24c}Tk#H@coC!8I+G&W_s?mr5 zTl5YN4rukdb-M522X)8ox9jzlE8QS6=CGfA`k8JHdvkN6Tlw+qGtSTl-hYM0nxLnv zf;}djK(u&{=6(gEc{1mSMa3ax0SblIB^!FMfe;my`?N+8&YY8`fFvA#__Cuss1IIA zdXqb4M7gpj0oDVE_5JtX?|#$m;LG%I!Yg+iV8u<=CHTlkKH|s%_kB8nKc^dn)2NNU88mDHfU_?I87PTpdnL|_uqG) z&O7(q%KU9c%bTFI7P?<%nDEP_0P0Y7z=d!Bd$$|xC;oXK@!DZzV6zF;oJF;NgsXm_25GxzH3R8~nZX?$Z5C~ip z2tKiRg`~v(30{O@T1OfOmq|Ce`r5j<^tXXdQA3GGHSee~& zxIx^AD_~3kJ1Sm!>7{N;F7U*_`vLyz|jnrL}t7VGWQ)z40fR$nQCGH%JaS% z1#j(g6L?I`B0U2GgX-z+(X`3q)Y3B6gxtNZZ*tMX#U?BwDi$pLc4XB+*PUPvCGQ=f zLJr7wR2#3Q1(C&6_pXl>J%fo#QslIs44B zG=J7y6^vYLwfAk_yivV9-D;?-Q_kKIkH!=+2clMC+|;%bYa@6vVsSRbP6gt)KP`G+ z*}Q4i`{zjIT)K3r^K-%pCk$Wrez?A`@B_Rx@MVFL1iqYn`BJu&F(dx5NX@f)*VWbK zx)s)~TjyppK=`=ti65I8(aqq)90?!x{=nBo#xxKY!t{023qQ{9yz@>sQ1Xm3&Tz93 z@W*veKzV2Nd#lrUAn^$h;79~@7z(!`0n@S=-!!NnJ8_S6|J+?rU}O+Vb( z*=g}9Y226=g)Ls&w{B6^;>%bC$WPSbOx~c9Ej1+3RT=~+=|ot1RG;q&`0>PmaA;w2 zjxc5mQ0B#-ciwsK9{%v}1v>BBQ-uxi)`POBR+fO@l#@TFe6g(YonWSCkSYH8O_}<> ze4fFgFfu&ge~-MrC-^V{b;#FKe{K8r?QW$_worx;u*EV2g}CBpWE?oJj>G=OBS3&7 z9av&nvx9L#Zz3@`x@IMm}gR2@`be!uh7e z*10w0jS*;EYm4gY>ztxz6+x%@-Sg!>`Ai0)5mLBvi%ds$7V_4TF%Rrjkhg1FceJZJ zJ)l&RwfY(}Xw zQ%}>o-t{gmI{sL<2LAME)0Hmelrcd`yauy_>h0@QZZM;Sy9FaAIJe?3^=mXFbfJ{y7z+-z2(3^=j#M+Bu2Y75|9kSX38Xe zs3?3^X=I?`9e3Q}>K256sfiF4;*3AuPn`GX9RUIy?O+WL7W-mG5p~~VPxb%pNeoPp zS&GYX87)36FvRVO!Yj{OFqraXx#UtYuMO)rX#O#?wB*DSjVNr=39MPbCP2ZeR7leS4L$ES#hGUwGjKw*V7^AsP4Zfe(B@ixw?% z1c7?%$$@`9K!A4wSU-lYgg2QO99`2DhZX%E;O6O@P;mX}=C@d65TTI;u37r(Yg3K{ zqzAJ)X37K|cj5`^+PPCppL$ZA#=0O2@pzrx?{i@xV4SkFXCq#i85uBHNY*GEi?|ki zXF9E&{k^XHAZf&ara7(puqk{zvP5#BkT<<;0?ZUURsy;^8e-+mYo2`kN!@(&&s3YL z)yF^naUH{U(Z!tlvqMG#;_5GC)teu*xFuZ6pADo~CxP>9e_DBSrF2Hcfgy#A9ApQK zKv*S-MI*xIfhDEi2*D1e0dLfUa zg-2gBCSGPIAgn!+@XrM}I^gR*iWdb<`SF`FMlmz^m2RU|t5#{{%9XCnQRdvEF8K2H z^~qoJ=l=R=@U4HwFkqqJJ=b1)ts^8%M`T(e=e!R{Q+h(_}`~45xuM>|yURQtULvC6aV-k9X(x$j$ZvTe?v2=4-jS(Xq7Irq9 zaS9(|5z1NohVp8PCKa{wuI)SA6wRSb#)Nu7narSiExm2qwyUSBM~#gQ&gAcQ=p#0CR1*W>XEk`gdR!cwWD3>d{&7DBL%fd zyH2-4)V0=$O31XTsZQ0J@~t;=QD=mptG{2bytYEmJol^~e&k`x`;0EW@FF+$kPVgC z5-BTtkG1xP?3gVTln7hv-qMjR=A7k%crjL?p79ArJVJvxHQ0G7Y}ab*jDVCJG3f2- zackfY^z|zHHvrOm){TxPZ0L!9RUKo9dMw;;O$G7_wv0X z98lf}3I^QOunjRS_mC+)({MFznPF?ynsOW*%4qYJHf8eC_z4sB>Cb-7GIyq~zy2qB z>Z!*pG`b85PBXezj=h&~Ol7M#m(z}}P7UOSl&DK7RbTHEXwJw3M1($jW(L&QbIm49 znKZcGTI_c}_@J)4=6kyF#v8Q!mF1cCfoh=U@<{d@3kEYBc64>Aea8;B406KKmW)JI8;z-@p;6Wn4`^7$ETipsg7Hkl8LdZwj+$N;_W|Qpnyp zCQ++KdwxUPHr;Z|&-H_AuF=DfKjPLlIQ_hH^!}?ppi3^hOk>B4)t0Qa-t8Ur^$kwl zA!vtkgNlc&#b)mxEDX33b%da3q$kWQh?4q^m^kalV7~^2umB8cFx{(~NJ+KHn3@}E zHL0~llUtfK(b7Dwu2y5>DYe8>n%vN=6mqmLt-;PNwQXdYpZyoNc{61EY5%SuoQa(F;KWC)StuFyMco*P+ zQQhLl`QIL_TjBGaBllU~fPEF1(#U9O%H1n#%Cg!&zi|NK=hHvvs2K0LxZk0ACJV<6i#YVB&Eh^QX4j`(`|R(>8t~*)~?jt z1@m;7wWzMR`YK)au1ht4<~*n3`ies;S!wx#Wn2TZ2#Te=TTlsV5NAnbOC>`Iqcu@w z=<>05k8K&FsWYai&IrKH-ks_l=utEoRW?6lN7VTKoF}HxG!(Ob)I2bBL1(w`f4}O(cj~}yl=S7D@VX}AC~|D z-U*<-SAUCMUhWBR%P|HA0-{^(O7NRVuwJ9Bc+(JF` z%rhEDr(FvuWi6xh;GlZa1M2DTSJ;GQGpiZKldb?5Oqj5ieI`4ob?eq^`HB^K=+TGV z0!mwVY}ed{^L62c7we4E&d}Hi-P^tc<0B z7FNk}AQ6u#V#>PDu4T<%LvyoYsf3$qS&mU9|GW$zzTke13MwYyqfl6x?zrQQQ&Uru zoA=H@wSB=W43q=;;)#dr*0ET-*SkDmfEm+DF?p9~X+)!C6ZUTL^XJvq0vr^43&ks8 zls(rdD|Xl9I!hH(2bkXI>bLo)ivU0Pg>;n5v0T=4SwIRQkIZagY9fml(Je)t@Xm)7 zAV2^)xyp258e;x?+}rmN(B@I##vRxn;}FQAWQslA^IE%pysy`+iNEI$dn2JXA#S7d4noE0fDu00pOj!}iC%3GUCz6xE0_X1Qc` zVdOfq0T^G9DP_&K6|cp+XGgnsZrQHlU`EXi4NBBCn3OIl9!!A@ETQ`vOYB zD-WDk2%vnxT#SP-l*c*v`@5k!&Ib_p0Q&~zLp`B<07MX_4ng1?(?2V*F+KnV&pn6$ z<-|G9;}?guz=y{X+;h)8uD-CkB6W%9AP&ISi2wlt95~+b7K2}b#lK*hj+qKr23W~3 z7K>`2uh+FuBGyVy)ut4(R_EApMPJj6K_5lhr`h1Y5yc)AkD+2s_XC3iijMNH7FPW_ShxN%x4|x3*S!QKSAr)s`Y^HKp#X2Lov%0_MZX zP4jDMu?MX-Fm1A|l%qxrYV5t)blQs7^1^QSo6t>J7`5ZZxcA`5E67Ng7vcyL=YQ`3 zJd41mwaAWN5CaB|agGTY1+g!X7hdW3_>eb_v@rFQzZxSt&NBlcArs~PZ0|q7p#$ZE zqda}N;3#*>jr?au3isK3i5=klG)C@w0)RiS@To6cXXVWM?z_(oWQ1G*@84OvDx@GN z;{X8;++q+AgArhaKZ_2rE`T%An}A`Dg5K_K4VjXxt*ccsnJ{7yc2gE#G6JxE^CnH5 zK2@*2_Nsn)-@WSS?$Lm?dfVFD)z;DOhy_aT?6c0&x#ygtV;3ya^zjqan5tFU@^a@u zkMg0Sn{LQ%isW(J2m!}vC~CP{G~t@ph z;{{7oI-|HsSCt)NYlkQi)xxsu^G5ehx%2cL2T7eol${TSR z7)&dJ1;GR_Ga%@4VUGp8(6y1z<}D6Z7a$$fgMHKmrn1rEV;~v>5E1rlti*t|{SoN+ zDdz`7pgfxarO!BnGG7S0nI8j|=B&jHg~1M)UQw0bQC1-PjBJ1dh9_V?uf5}&;u?w^ zM~fe;5o1kWeDOt{c;bn}bpXHk@!@dJRL5_9>swC9v0EYo3ISvSLdg-oxBvkH1jOLr z!5~6XLOQSomHTL(ff9eiSx;)m%1Gf*Kge57B9NUgw^S1pRIWd z7MPo_B}-1y;$s)9uD;%_SDh>7HB>C9H#_836->ri+n{U~FXRet1x4PMv#{wNpc{kt z&@#tA*ZTVVlpbQ&y2=^>7Dv`FC>n{086k*Sne?{p&`|qMs})14HKLJ<#nso_s~&SS z@ptxiyVe_mwY__%dWTH$TN%cU_;h!6TbMOUTAaxX7GxSUh1y{Rseho)P2*%;gM^U{ z-d!jVUsJwDT52L(F;otFf;Sxl6a%eB);FN??h9V&cqM?cXBk{ZxihzYXJ@}1a~kL$ zv}=9J5MO&&JkIjDC@7SbCk6gkjeSHuz<$9iXkS)d7(vpgdw{w_#*}2p8x3ks(qqXzaS|7?V^)Tb&z*H?( zH|*}|a)h8ZnR0^%i}*Li-n(_XYD*!trs|XmMV$qJ?v7p~6zA1OP^jB=;$xbMKqzQyVqQ&?FxnY}cq-&m6% ziqXwAOXMDaV7hp+a!RMigc)lWuyP<^1_8?@GeEG@6#e*d!gBZ{+P5BKDrd|Hk z)zw;AF|aLLdA_Wyn9)GI%O6ZR+yDm$udqj!6^=6WzbR9W4OV89eXD&xESbGw!v;sd zAqdo6g9Leh zLw$p46G>C(jcygg!l1SEJ9eru64Qj*2Gxh63K=1Y6s%Qkam$;KW{M$}0>()Yx4035 zL@cgGEE`5F*j%aE1aZm;LBitD-P^0q?ku(!P3y&q)3>Jkz$sgjiv~bZgvA}7StwdO&KSZves<9-Q&oX$0$zMH*QLk zRoxmJn^c#mbsIU=H#TUDDe(pipWPUXgF~t@r8w3IMZGC}YtD=A{;-8@0h!XXG}ybM z44|w_sbtESu8f$qsxiN_Zh~o2M?T^va3Lg}R-qt0(`L_9vZ3C{KtT;-nw%fvR##iE zx_WDYTRO-dlgC!sER)Jv<$#a|RKjY95Xbt#k(MRoht?rhgH4+@x$SZx3s_J%dMg9| zI6?%fl>tZmF{-_%yU(qM00Ck!B4NbiNqaWx$il$Dpc@mxAWrHuX<<;O1!E!czI4B0Cdg`&*2)Q^9K%jgIRap00%3-=AY_WKXxYrt z#yDEMC_@MWgZm&J>~zRJ2+CWl+rmlOby@ig_4GRnK_brbuTgb(_iF3rP1@Pnq0XKz zZQ8zB>o=@*gAkirT9hynkz?F|Dax3ot7!3Iwn531E@Xxo2+?F*5mT@!h)ByA)f#EQ z+JM=&E>$4~hGK!P0Zhi^le^>uHiDjGwIV>NlU}Bwp_I9fKhntWyY9Nn4Mt;d8M7Bq z0Qd(!9PfNZ=RVI;M|p<94spxdWRihy4B}+4V@xeA&E}_Ug<-}5q=e@p#-d89ERY0A z3W&iWg}3+sUoWc5lsW<##xlSvnUp)-Opr!!^2sN=ddPMB^PI0|l&udlK!A5Tkh6R{ zBR5gn6ZVrBw2wjzz}t@)_~+XZd9JGJ}6J zf|UIhGKGwrx=0rQ%Odye=x|FF7l(3gkYPh@QeE9Uwe0z2diaq?^z`%3>E&0KYx#;- zwQa9gjJgWt{ zgT>V;Y|D?~u7o{+XJ`@f9*&R!1iK%Ih#8pyX!MI=g(1JW@11|v|Mqb2uf&JNsThpN zSPFK_tgB5qa=`2f#!w^^N!PW|-QDd5Ste5niw6XUGC?`<@eo!eeF5HdP+lJXobvOI z`cC;${){=mg2aGBx)T_Hc+yEHxpgn74>(^J@b5{7uMYtNypuuWhiSgd^g-V43kP8_ z0B=u=0ZG{1@dwJsq7eqByU|BYelT01ub0hqc}0_F zOx4^8lice4StAkj%@^$GMkZLG*@Dpl)+w;-C?%sL_B!5Ed4EN~p~S*95ocjwuw2$! z`hz{avi7v<>>4fq70X}NUH9CsHS5->CK}SLIkPo+@A4UY|lHfOj-3xS%SP1UF|9)4IF)4E&pg?$*XFR-8sa7tjR8m70 zZ~CI$c!MzSAzyhfTV0jo(`$Lx*hCjigT2?Txj4H}% z=RPwM)~{dhh~u0&b6g#wE>+hrKj_gv7a+hp8OTr8ib0lQ9p$^K{?V=y!=Z?po12_jf1p3DhK5?D>Qd^>4XGub)R>9m^~94;xK{bJ z*|XdLM7jaurl?rVh@BQG9~6F+seeWc-1|)Vvw|V5R|X}rUjz48$S4|S9|c@VDI){c z##d=DqwVWA>7ifTtLL6xs(Mq57hiOdF1ze9EjjrVEttPRi|5VPoSCyUdFE^_nln!k zs~`-P#Ii8d->(Tq4(f~~c04eA&;ma6+ey-GV8(b1GW-4582O z$`1nypUQ~<$H7_=-k!ZO2B2)tk2tdzR)fbMe@r`ew7Y(0KgIwh!86rlz&qaW6+y9> zQ*CX^4bU7k!c!`u^yyxKAcWiiMTkNsleN}pqv8qTVd03K7fBRKCLjif64ipKT2PI= zPMzQy<K!5gkGidslcu(Toj)Y{ipDwiJAaf=q|viDq~IVLcf<_w&(iN1Bx} z%ON|KD;|Ex9~3`k`?j_=x5yKfll)*WhVnE=W*L;b2p|zCf7WYYlO4ZJZ#mqu^7j?n zS8jjZgKd^$ZYDxpgO(@JXwvSZV9H$trDFNn^x%M+nv#k{%j@!oLXZr|TG?_F;LyRB zpQ}ez7_CfE_`d6jYm+8Ta@~1;O#=j8bvPrfN&()+@Wmb!_g=AP%^LUJK&E{+-JY(;8@o@w8@MSZ3)x36EPm#qcAe$6WN zb#}TfksGWaOT*5v)RTJQ+2^$K_1E>%i!bQaS6(qiKB(Dq=jhyv&)3Yk zv(;s-{_cSR^;v6K%!CLeb>3rJMX7D3=irfsJ<59=m4dO<16Gy3A$4BH@pL* z6|cYNF~ZOO26HrlZ-BbKYSk*&H48BS{u>z$2VpTFz_%wcC?~>FG&0l5m&JT{W)G05 zj1^$Oq1%bkTKughoHlLTphP61rp9`u^JyajO&UL;S456 zt1SU^7hp|dpelvS!x_IjU1!?d%`dp0%GunFiIjT8O*o=EaSa> z-KtF`onm4|!-eCgSvD2*&@b=T6AwM2Y=2s(oOqHhdDq37YOVGeQ>JLn^l4gf%zRyP z;YB*#?u|FaUr1-PW9v5cclT(lDfyF5JW&^(f1b`e_gtNE%4s@&!6HqYK0~Sclqvs+ zqVbsO>Kj~lMvW==AuB7!2(bHOye_G(-ahpYr4@>oS7}V9Qbuy(O851sZ!oR4ogHol z!hCC?*Bkk08aqaL)4F^pY$nBGO|CU&$)&QHw8vp67Dek~%xO&41kTt-%TJ!F1Y))>z$l|1aGh6^uJT8Ss{}Nf{+! zueU0RjAzCHGfAQ`mO?Hs&kVY|?Ol<$dl%1gj7C{o-w27th3TSWTAE$g21Q$*9vXI2 zJsIT2JbKndNTuprxGv3xJ$+OG-a0V0V9AmtT498m<+LFRtYZPFBi>|6Syhude=Wd~ zkMh^H3;s8y#~1EO(O;}wC?OB*l*>*E?5(Ir+~em+cQnHj04xSfSA-aN?CBfWPh#-S znXY)Spb+ZoYqfp*HfzP^HD%%?Q$T}mz~PKZQ}o*Mc@?1RqdE& zMXiD~HZ`iNr$?_We_7|8d$uObn693#PG@3oZfdslCeg9YyhK3lUk+P>EcE8bD_qC?nVYNj~ zoHX9@a;u(w_BkzHyhx3W_4X{n-juw(eqbQuRy#z{$BgVSCDFyiBEpzR@?+=D9?Sm< z32|c!=td}$3)Wy@90KHk0O?YI1VCzd59=PV=n@Vk1W0S3R1QB-^jHV5@IVOI-kg~V zm`nZ0YwCq30o6nS7vRVSN*yZaTkd5EQ$+?UN358;-Q?T1gA-8(F5?9Y0zWFEYL~0R z@MU|zy=TPzqY<7MtX#R$EpYTE5`%Zv;KPGMIRoM*n0mUqUCz{+;>lYpy(v|z=DG%L zS-W22$BfminKRrr$n14Me}CRu>^W2NEKAID1#2-EhK8(?R`#Z6JcIqlZ^`@=vw6uJ z(+mgML&3tTF=dvD)1MwuI-gbC6lv0wamZT0EQw5OzOlYuV;Y+3F{p&W}w760B&}K)dPg9eQjC7ptX+hHO1W1lh%f{ zo7BaE7Gu0TO3{jTDgPzW!df zK-Bfu|Hzbcqgx-J20K$mnQ5?ndz&_I-ePe;Nm%}5%S%c#ZlP?ss8PS=4f%nR=h;Mp zSq&`mm^V_8aHNfNWu28GqvqxYC6bJMk5^WkY~1Z*3M>Xk22k{r3*`ZsV;%ULZo0`0 za^)Ng5M|^ABk*J)D7zycln@HO{I!)8HO>=(;S%)c{AbRSf{Hf>&V4u@{+`3go7KN} z^LX?jAO=SO$mp~wy76PjyDgMAZP;K+xIy)%fVQsNpsC}>D{C#>ryhS?W15>aZR%84 z*`2bt)(is{34=w1aHXOVfRZ_WXS2#>GAfw@i(3o0#gui+*s*F(q?EMZwUL-w8=BNu z+n_-0RIbqS@+Uom4Xe`^_sO(_qV(k$8UkO|q8wd7kZJeEp+;GqY! zZqs@t*lK$6M2kyKv1r0=$y~@VXS_VPZ=i2bo42+Z0T{G6hSb-WR>zK=_I1*YV2U+m zN;Z}>S7)ub^2`lLL?Lf+VA^6Nsv*`+Fs06P!rByL0U{dA44Pn1xIHIk&za`d`F`!S z6>gE6=H?bx4|CaqDS;kq1(t<9twp9fGN`fKZD9FmWk8nz0}_cZ(-X^zff4TIuOD(k zcyx2H2$k=OVCG4+DcTbPuJLAFJ^z*ZjlPH%5E#D8V5l2Jfs{2?qn}Q_>V@ zsZiruo3!xTwrn=#YYNF)@U7PRoHJvFo_^{nb#-=V;ev&VyOyjeachaQR4;^p{(P2C zX2T+;DWa??#H1g)pm9FtGmY(FM}^Fp7~tSlz)vTO_-`ws%#x#(xuzTD1x#@D3{!R1)Y|D_MBj* zKvUxwH8qVfK^}Eskq5Q4arO4~soq+C^NyLTd+xc%%@~+8X|f|3+qW4Z>Fsw*Q%{;S z(cTetg9ureDQPW!gg@zKU?YHdFvZREdS&H9rYM%J7FZD&lQ3lEG+;ypD?>Ux;Nned z6u1GV21v*5ACwnC)p&=02yX%SX8b@xPY@smbPYZH@WXBzBMZ8Czxb? zdwbmA!g>>0b>mwVv%LKO+4~Q0JFn}$6JGc9a?kAry|WV}MUfJV8Yx-5OIERE$K^{I zCyyt2JV~6)Os3>{Qk*y$+woYj+p*{W6-RVh*I01H5ZB!~{&-cE1#eE;8i?*%Z1sd+oaf4kmQIdCO)oE4GWx_@+j99%M-&>VMT7A}Z@5 zBS}@K(fqm?n&P&^^xDk(3mC-2v`vhSXW2z@xlt7dOdH-5Gh&)?<*7EeXnp0nZJSu{ z?vt}TCy5)s27OEiz*PIQcIB0q+4f!AZMjskyY9Z%Jsw_p&-sv`6lzQZct70C+I9z@7`F&%oYpv8q7dkiZLK zM@+gTfR$66e%rTizdii$e%rWlgTTUoH3W)~^3y7}L{dklYy>D~r)Ts$yCx zpF}-`K@RPcPdy1pUVi!IZh_5?a!fs;Eo-U5sjr|l=+R4q0?$6p(9h!jT!s+hgm5+} z2m$hANb77m`vH&q(xo2-7*K9KdI5>O4~k-@aWUy~2?IZ~ty_1AF%3()QA-pvUR_+V ztFGGZ+ciJ3f1f}^-Bu;_H#K-siR^!nRBK$7r2Urx5a~NV9+zLz!}W1*RfzWz(pNXgD}`8 zEg+z5c>iK50mDS!pFjh45-o>73k|UiIMIWHLm8!+^6imnxGYh`|G^D6+#n!Q@x31A z<`#UA2UOrZX?eNi(*#(g504D{)B}cu5OxREn#!@+@U+-CX?c0kL52QWZ=VGLJy3wXbFEqJENd1K);Ey`N9)x@BqrlV> z`&7j;frZM6#=*J+4Uh|)h7(as2g!gaWJ_BF&g?T*lW|7@ZypWQysP78XbG@cJV zrM!Fe!Vr=ROe&L!*2AyDsl_yph@n<$s&JhbHg2?=UiB(FcKnzRq6WX_nQOJr4jw$>TZV4iw$+y`?%n%M8;T)vCU}g=`hWY@(f6 zn@V8bnmUe1AL6t&3VC>Hhwjn&qag7xkOJx;nEs77-sr&aOJDkuFF6fvmBXM+yE$Kj zYL8wxfy&cqp(^uGeF0AT|m=P6y0gT@l3W;wczlYl+H(GCzsJS{&LSX5d~ z2>=ZZ0wjZ`Gt!Qqn?idEA+#xuv`O0H*~EQ9cl+Z!T$2v%vpY^mkKY1uulxFiB+9)< zFCbA_FpXF;t_CLQSPicu#+l9*bT4DaPn@!HMUtz+6}xx4hrxZ1JmO51d2@{NXrNDN zi=lCJ1qcUBs|1}B+ImJ!Q_;nw^-L~~n`MCtF}nmtb;?Upj5ejjV>Dt^{WL7n*MU5s zW@3Mac4O5w4aLQXnZEi}ueIf+lHGB~_ie|{tu`_`YL{HH-8BYu%Um|=k~n)hBvTRK zfY!!sC(d~lKe3Y|QzwH1gO1Qo96x18j~=tB>1jK5_=sy7PywgWDkx8-QrVx~ym^bt zuk2F;qoZR28abU0IvALrTNHqpa|V!BS);L8S}40VW8Jz9?imkl!20!*)?dguC{SPX z&V_A5Hp`aJf?awMK!=XV6wT!1gr3>p4w9nP7eO5zI_28OK85)0T=#qQLQwz(VIU36 zp7sI|c*i^5;TnUFfBfUVEdwKaF<=I7jx32xj8Oi!_; zJ6c1?g_pIXkNa!a-5M#{X<*_UX?s4-uEpgZaYB3M$k<05o(X~b-EB6+KOfYyF?hjA z4KL0HE@C>MPMEaHEU60ZsIe@oVWq`{@EI^NIc|IJzt0Xm`J`QW^;Ke4gSJ|&OL~tS z_t5aY?m1rzUcTX6MAPcJ?SY2I{Ci7B8ed&ZwY6NdM5$r@!r$z|7y~GK?+VN#4Hz{%MvsI2S({&|ieamR zMt$?FKqpWKZL=9t!i@l90uxB-cvtMt^{dPjLHAI!;P(LE1q=W%b_@aUzUyvD@dMt0 zSt`kM7!{IUwhNu)4c29G|MAbV}vItj}hzStHjNXp(`i6JKm^Crd(vdw{XeX&m+Cc%p0wDy@U#ynx z#LTqabN{{e&2N3f_C2)E9@)R&4jee(PJ+-tF|EpOg@6V?0$aQ@b>(S^&|Ysy6S*XOh<*!Y6C9uC4lF@ z;gLbh^k;-p8}`87J+89ev1O~zf5j!)fL%jbf_lB(N0&}8^>cv&D!MHuU0Pwzz3!;E zQ>j|I*|BUVW@#mxmE^04ioHgsdzns1Se>JzxV384%6fioamigOuivoIrl)4@+uy!j zQu=^RN(%2E$Xl^g^A0dHfUQHMl4l3VbJChl5ax>!Aie@vqDZG492jyHKhB0q<+3_& z(>quuo6tLox-W@dzuocOJFU=Pa2L2ZMM4q;#gC6q2#}=Rjq$|z1~G$vb#=XiNYQoNAWs z;prpx3wPY*?JdItLR9go_&Z5P>MsUm4n8E@C92K~a;K7fOSu5_k> zGz|RDn&^)yQ7TP}R0U3ja%4pT_5vA|N?*NV3sc8!{n&u*+Obh(S+_s@?;o{fyJH`I z{|9VjaMmBdF8F+^e;kHGtB(my$%>k_25-qwdFO5eZuP^7w9u z!-*OrxKEO}iJ`6t5ER=DJ1X>C7#XpPFTdOlJ$b}F@rl22)&I}@%+K15H(w`4jBfy> zFteq(stphIyFI}(k#Ag7sj1VX#C-8Gs66N&5`Rsds?n-hv9cn-AjY4L+w}BF0feM$ z1wQ(FAG2F-xz(>H2XW4AwWzx!Ufc;i-k^~%+1J1IO*?qxkjAx} z?Ugs(XdA~S-NxZ;qW#dO011Z<9dhA>X$E#M1Tf%F1qWLQFKio+ku=L^nIZ@P0T2L_ z=Gmts+Hm*pypwm+?w>2Tr7zId@$YfVEw^}|fS#!j^fU(NgT%Sp9W`Op@o;w()v6?LRNZ>URb*?&z-FGVh>6ON z>=yuNV~++J4^nh$%}+s1k~f_P<3;AvSOFnU89l56fCMJlx5{!qn$Bt)5cdSYk8&MMv*^)elK zIc21F@8@_{TwYmJGJ>6oiw!`%QMdWId3)%ghn0`@mdh60Fff*5xQ4=@$)HQUec=mV@WJ`&tFLy6FT{CjJ@)8=CRG!)+uhsfVQ6Dj zi9SusQsq^Rx5d7;-F@s~`}FN!v+q3ikR7frT5+{uOT`tNo|}{Kvucy06E+l=;Gi^4 zojhT;ef6vM`Op2WuWI>~U-=cg{+erTFxT(B*H!t7*xgn*XKZ0L3|oE!0FcI64Rh;yoltCOcG~%wJC5QMkMJS2R^8+X~ZlG%w|%~^j2FMChHq3t?IY_p#kN&q-g9KIb=I`?y_UYj;nzmvqEm2 z&&9KPBA;WYN#(@BNjHVetL5;Hc1P$L5P=86h&dzeuQG1}w-ypYVn;*JpU>Ln%}g7_ z^uD96y5s#gMPlVat=8}r3Ly63;kC_>M7TU=qa?o3@qqHg93q6D19nfu5RKgyY0q>Z ztd{G#A30=7Sh`C?P$={}FrY%B_TOD8XMZp6;ojNzd-OsP11EJB20pGib`N$)aO|OQ z-F4Ub01hx<5Jn1%Kx2%_ZStLCfYu{kgpFS+Mt>du>=~70CuJ*=a`0T!=?yQ@ed?B%H&%ucrC=ZpAylykt#% zM}J{h@l%#iVBdrB@lns~J$Kz>_uYG!4Gk1r(gwlgvT5&BG&=Ice0@A2DGuX4*GR0o zBv%+<*&i0c%;`sQ@%7Nqx99RnpHg5rKzouFh@e3qIPkd8_d$EhTi#}yH*FUP$lH;_ ztW_7-5%?KWJLNn03_K{hZv?$FnT)n-_GOilDjcDgD&`K4lpg>JNFCG;fXY%w%3Ox& z38v3fo@_pq7U-jnqneI}D$3r;E8t9s`Us&%=Zm5?77do?qVIk0dtSc)13)7KGvI)G z-2>!LGIcY!a8CJfJlAi5xIX)Ls5?$KJ=5>!{Ed5zNo(Y`R{lP&5EJyj`ZM-FeJo?r z7`ALJ`|5*t+Bfd|zLn#vR!_xkdSS_yW|u6))}#bk08b z-k-LMF1d(=PZLIrjN6P2A%B5EhX6(6$C>uWH6hAtpBqdA3Rr55^DTA*#V5i3zqNLQZ z$@N06Wvi}~ZPVmBd;HNyg(RDH<)s%{Qj&TL>vfWXYs{uL{7-3t6YU zQBSBL3Awh}djQXlDOa&+E{|zus*nM z)q2rpW~S`O@h8$j)jE!@Ma^fCfIY_PiMtM2LB9=Lz6ojP(tptff7#W_24?3l)|iUc6lhu*Oo>sT{ZF-+WnOso=PoUeiv zgnw5x7Cv_9psnAq-lt_DfB{9hR$Wh_9x!;JN#EarA;1_Y^yn6ss=Pi|-(!J~N4)`D z^onVX4G+2b=7SI1XX6uNwqZ<+SY;X)b8SnyNl=k$M75P=OJJV&rwma^#>t1o4?cBM;oe`}Ytp1bXi z@86-{?(@C#pM3J5?b&<3-FxpnLb8uZQZEU~=9De~s^dT*m5Dmo;lqdQ(#tM(!`Fu& ze#8zRIczuHaFaR}u5NKoR29=N+33iyqwOVu0*n^N#&CKx@3tJ}GCicv1`7Q)r+bxh z#iu`*cEFy1_p>CCRT9xQ&MbY5wqypB@zsNcyrq=~I$|K|$=g35Q1wnP01&wCMvq=p zVxMnSH7#JCWRA7QB-42ck!8b{(#b}fxN#N!%}9O4B)KstfJha=#D z-^27xNP}|%al(Y67Zmtx0GhRBR;41 zcpqlqW~7XY;=B>%6Mz?iaS2VrjW^z4*Su`EgrosGdi03hb^qOV--GwrfrF3P6OSFT z2OoUYW+f;sEiY)?D*1N$tBq9&SSo7-oYbmKcaGVfm3!^psrxLpvCkIU%ho5}Qb^_{ zxC)>pey|_(fWZq*Yu``#aN6CroT1R6#BlKP$Bv6-G5c&PVOut>x4ZAW!>XmSU8z9~ ztpPhJqAiFE43Gv49rZTJxf3Kh9vy0}Q_-D5$D)xzcu+K!2I|?SKtzjqGyj2o30l72 zLaB(9%}Rh~w2Vg`ttBAPY~pAmFMyJfl&$-!XPf|$fkmO!;SqL1ObIY_Z2h_kyZYK! z*!JzaG!S%b|Goou^5nEV@kF$wXHftM!=Bw&?6&K#f2FfchdfT<@BG2#sef!kN zAF?AyPuMY`xP{glsfw0!%|TH8taNa^&~A>#p~K2V0Kuv2lGjMu&N~HOS{P zO0#97qa!{5VTZtAl*{IA^JaEtOo`#ML6tg>o?}TO28@6l(#+>_-mwxY>q0*7gBC8L zGw#bk<)-g-0Hv~HV5SPFdUbo{Z(uy8d9XTk_ zySP-(3P#l)&xbSpqH|6kTbZ-(KJlPEbn>uWal`dCJTWO@V!wNP9T^(bn58j6bg(3EZX9w?NXmyf=RP2_g%yvSbps#n@A zZ@k4`_lDQll~-KptIHVgo{*6B$i7GIj&I&>58nNt73WqgJCw8eSkX?z4%`1Y{73fJ z`~JedcN7-@T(N6U@cY;8+d7226kk{1sq>fL#Ed7-N}!YpjY1CexCV zhtzTVBz;xg8AxP5(6LOa&x#e+-ctW!ngR?k%WRebB62B=fgyGld@4qSt4(ab)@-mrGksWx{j>j0M1v7C-$RKo`X0T=^v!R6)4u=x@7o7H z@B!a~nfj*fhk8HFe13w7;s5M%;2vWMOqw=MdC_-6yzm>>-Om#b;&&YW0LqvYH zVT}*SK!d|P`^JqMefkc2C&o4EhG`!Jh_Iv%RXgvhtA`<)07u|9jBC6*BY+>-0GS;w zFW46!xyL?v-|hC$%n`fgo$s)fa^1fEm2cVy-|-&HuJ+kM*r{=BsM9sFB zx7n}1;@{Yt#@}K&`@!XsJz#KNh_WH5a#bEQGH+LEWE^2IIWeDANt~;ViV)r@yJX7- zai*&M`Nw|WF4?}-KK!AdR)bIaMn|a0U{W*+8WCV1kL5kwQjK<1ovI?{PKO*G9ko`c zZIyD#vg$N!P~;6;&qf=ApfYSJou&;G2J{>CsjeWV+9(xmdUn=2sjQWS8Ae7Y1q8CT zQY^VzHkF~1rmc>9Wu=R~!^p^>(qwSxXfRlDM?!;x3CjooRH`uBmViNI@JE@@*a>8b zT@)!JEdSXinfnV1^ENX-Yj@stmp%T(0kLCBwFl7IvT`>%ZYtM*U+$v+jYYS~?P z-KTK32B0DDT)*%Ozu*!L281kA!&NfU$Upe||G>t^$E>(gv5AR(2P5pKfVKep0pc_F z78$3hBPtDdkxJPpkEkmd0NIF%!K$i!vCL@0hH-swUNN3ZUf(@>Q3?A3)|kKNJ@4`D zm%Eu*81};TPcofd78qv+$vqIv9mYjq{2~s4`&=_FF{K9}z}g;d&D7MC_b2)_00GaF z^c{Z3@}B2-H=u+2!~-BefCJY30~B~C{#bDNo={d37|rRqx}@cc1^9Mhyf-mnfBm&D z*r)FMwjFFNTO}X2T`#}JPAsk11A88_D=xmwuGqfIMg|A$_~FC$h#2TEz4Zh3%Qw89 zDR|3BVqm8Yw1((f-6ku-IT~lre;c73&aMZpop&ft@Q#-56GJuN<4X)10o~(1l;TI7 zHj8Ducj-R+k9YlseYf*Hn|S?@9ZemvdOv%?m`(PLSZi;ey}tSu`!_fI?{-DvVt>Ay zdcfd35Eh?=wi+``lhWY-xbA`Ryu|fiF2_{DlC>*E%j<`WHcr~tzwo!VZ_mBh+R_g(jvxt^R!mq4UtWu&^*NTmmlc2 zd@g3kj;?qoPG|JZ`nI`Q0feO9D=ZLs4pd`R)2P>xxS5NL={M{MlK##b8$qf4aD*u* zB#{>iL&|g0fx!O#58J6zC+)3oeX9>BGcy7&de5px3Z^=?ZQE=&-~1}~$Vl3(4F)99 zOD?_iQn!1!;f5RS?Qg$T?Kfj{^CbbEoPd&s05xMQeQ|EY`t~&zAbz{9feH)+v;|FA8DG%chJD4Kzhi3o^j7b>Mz3z3d zbL|_?;?6t};}sqP>8DuhlRiLzcwre|ShBaWgiCV)bTQ|SgpC+|iZM)iYp_hYqCTrS zT)$&$X~c!_Xn@3GfWpuXXGiLe)-JEupgKlt zdC|V~*-r`yZ?$*7>zyj^q?l;Z=GBSj#1J=WfMfaI(I=izf@06f$WVxCWOJds8a|Fb z8VV`h$Ni@_JiX6f&7i2WY$j(LC)TNR3H6I>r&DRG>zRe+B^zD8!AfeR%R-(=005XR zlDKd!4AaC;v9#Q>Cl4J_pNR&LjT^VPwQmNkf|zr?j5kC!N>bZUBS&)p2te{?u*l`q zz}2YP4Y5`igB=-CIwf0NnzwW==kLP!4@rX+5a0do?e_4)`&=c7<0Y)jFWPmn?cRO0 zz)(c=S0Tj?5!uja|_$QPo2bdDt0m=iW9qbHPF8ABN{oBsu z>9a6vG>4QQo0zfuj^Buj>Yu$S=&#VZ$`)+^@4~*|TtvD*Y<)~mP1`=@^GN}fmb%;3 zH^0&*FWPR$mgj70X;DlwW#y`brgF{tS(>eUjf{<0Mq|rpJZBdVje0Ll`rxQM==Hv{ zq6UbR;&f|G&KFS!eD@E0JMC2Cibh-?N*XOR&`f!BbgA-P!?b0M=qzC`Xe?&9>BLuU z&Zh0x@B8QW-PoNrx4CGGBP-U4)l>-Yxd8U->WXt@)dygu19_eE5Qs z%Aw=c=8cTNJ^pczx`e63#9eF6h8QizJgRCnfO#>=bwbvq(y|>nbkKM88y%lenJ26) zRPG(JzhBI}=4hI>i~$`TEtAbg9v127LcD1)J2U}qg$wgnLnkjVHjYTf!y}Rec)tJy z%M>xnSy9JND6Kv*bR7Mpghn@Q*{HY$UwR1Wz$nl9TDG)|q|kJ!8fINAMr!-20K&rD zyfa%`G>kW!1|+0?&|yhpv51{SG*^$0fzh!c<-6(L4buWl+qZAFLx+y~93uNN?B0Eu z82z<&=_OYjvpWRuhJM%qutz^UA?+fWy4{H+)4+IWmmCA2{zEM7gV5XEQeS~9Z^YneB zVF-ZGeIy=%Yl7Dce{e#NqBQt@?UED`bqadtj-5O0+Us6!*IoN^+dRI`3bC{e=lboU zkxjOJaMCUt-C$R(-(puxY_y%@>uo$cU|aJ;HY%wB0ozsZQ5L8ch*?D!au1GY{xDx+jVW2?#>Z7i}m0%<+g zvIl1$uv3kb*0(`|WqsC6V{jr-uw1QR`I)?JS=wYjz2kj09v}2~byE)*yx^pgafbyF z!GtLr?qE^N+!zd!%CCqCV#r6QOemoCZ|UB;iBWsvu}563e$7=^TU!8vj;Yq-sy3Zi z!FL@Tw0<3#52s;85^mg$1byC4paGRRQwoHvIuQ&!>0qMY*zvJh$KVdNYFtdeZA~@6 z*~JArdg_!F1`D=x*A8{~bTk#A!2(Qx#V+WzB~ZZEVc^GLi|qp52C+ZLXC+1J8_5U$ z3266`Ylf&Ju#+LGdKhcDQnazL0V|B;CH=DzQpO&C?1%=Pjr#7aIvpL46%lNKJZ29( z@Q58e_@u9ZNW}9tG?cbdv1;vBQj9$-#*VfE1IVhLVFMEk4cqq3Z+=6A+oV8L%4TP$ zRhA1n&PYnC*``e!ZNtWKl}pAZRQ`hl{camUxl{!xD0ez*R^NrD2Y^-Aa}h9OQ>tjF z0vJS^M>^`60f4~y=|OMpUXOls3grmVt_a=b%8{KFVQerkm>o=u=je0%-p!b}AI^VL zh;o4WbA*w@ydlczJKy<^m)nOw{9$)y#*$9}7Q{0Eh_fYX(g_p*LI~Xy%0CefH?5oNVNRm+cH)>l^vI*u!kKNUBS9x;)ndsGA9=#|?|alvOiydP zl`x}mX;8x4T@QWV+9PF~Yc5(ctNZn=ZK|xZ*4~=^z1=@+*9~5y@}PvCN1#bH%=LV^#w+JOljFlam6L|FtuLEN6AZ?{jS?Uk137w4<1sgW3w+A2GYnNSqneEG@@L_dCK0n}Pk3%HB2Rn=;P7QijCsE~^)u0z(c*RfW2@Us5Z)+27vvyPvOJ zGp;@*tg)x=XF2btP~9Zq$!SccUsE1@Z)hLkyJ7yn_j|u*U;5IQ+-C;%7l0_Vj=%b= zzv??K(gs-_!*6I=Xos|2$`auYp$b4onTGn{eZ0R`tJu-wN9?1&|KIKIyS{JV{oWn+ z_~TF5AO7K=+NC=#vz?c0wLkl#Ke0dgvp=-&eE-{a|AP-mh$-9nx^cUBY^No%0>=;B zW8>)w%P$ES98B5zsR{e3@muWOJKtd&Vpv#2{i2(Cz~BWZN`~?Xgtj0mC4K{q;zx;x~g{Z-~np@8&aFGntCZ6(u-2%V>?|_YV$2M%)E{2#_hXN2_tktoZ z=>_GdWG7Ed*~&5wl9IMGx9kjj{W?ka>Adni;&c2NfscG1Pk}7MQ43K()xNsgP#)Nq z93!QcpO*!O3PQdxatdl;e#t83veHGZ+?W zptm)s0YI1|)wc=2L<1NNJ}M84cJ@EA&yF8IW|v-iv5k!jy{D7T@L5&hyE3u@L}igo zA?W}R8kWG(kwUZHw7J;@O9>RP4fDeMq94)7U{eui87O_j>zY5NTcSFJPIq>{*P|DL z7);M*;-P#gZzQojd-k|gcF84|ICFym(jLOIK{|zamOjCeIN{!pGXVl9C%&69V=55F z53_=)QFbqT*~`=yqfOY*u!J(}F8lLF6hE&C)v$Ktmfw!5DY}1FaK){TUWJ6UYi1`1 zr+J=m^Aq`V-?fHCGPU-^pd+qcjDpa19ovG>3K{q}}8yupPwY_rf5 z{NgYEqW$`>|GH1L{N-Q%r2_#pSd6WdDPfS>um&)R$5 z^U_w84I{h!&^T|4aG{@dTM>tFFo+qq?% z?H;<^b_{N_P30|C`A*f|Fz|Z&;I8-DhcEqrZHsNSL`C1VCXjX058mm~^COjW*wDz? zgHBj;8#Q2LZ$(f;lYHq6Z50SCCeqPE>T;IuA9OYT*u;cgC!~JhiO1}TBZqx+qq3N` zoA;}cMxF8uie(=FUoD^p%l$TPj!9pkvvzccM!L^4zI&sXJ$Zy_@(j-sz!6IeWl0QJ zAD^;%&8$(EWWQXoPCI5}qwB2DKW5cR(+%>*Mkf6koc&ZwZL5{ZPb7K6TqT3JS&!Qh0)Q1 zI$~La8}pixAAC9<;E83K*Z`b3dCYFU`9?c+>V!Rd;8AA~6rnq867dW^#M7C$r_m5d zaOY0(NK(RuGN1|V1!+=FnM}^pDVOW2Kc%5E@Es#ts#^*~W!g=l^K%U6J$hk?`h#f^ zqW+)?5n&+50M61<2vslF5Phf{1W>2lK;Xw66hJT^%8C^Rq5osF`LF)fzjFHw>^CmQ9S0+xqQ8*3?)!Ha2X_#btMZ7fZ)%$3+4Jm+w{qsBJgQ-Z1$l z`{gTt**`#pw!GQKY}7h66-L_Cwm(2Ujll~}Q7fY~yz#D;5P?Q3xzQwI zBEXCJs3LVA$x|)DJ7`u+thg{`1CoHZZryDA9^Pkl4Q5wecDXZi7(9-SFiEA6dJt0$ zM{m4J6Qw^+l%jnA6m;LcdGWgf9fWtX?8Vh=00lkRP~%#SCv9@$RyE3w75M$7O00~0t0%V^5SKh&3e1tym_MryC-em{)b&6B7Hh`=*YySQzA_w@l#F}egCNw zGdk8)UPzO8O2ifOs-&rgPg7JXHOu$&4(gSTEosyZ4^^b0j=BP!Km69CADtLX&n{Ph z8s}lIoBc;k)U z1{rfgTcd1AmkBsFW-}t({I%O8~>K4yH4<5Q^z z3|?@e00?ns`Z0-;en#mDzQkB}rz^A`9YHu+ztW|v{M?ZGlNRX)pujiiZWWN5_7rK&Hb1PNoz7fowK`-`&=0nURe zwURS&@WAf~xi17%L0n4V#E!O4>+Z0oiylKdC#p@;VRoZw@R9}qwp@-2CB zlMFau+5~$CHFKLfwP1@2%QiU3cFqG<6$nTrvo@q_fCDQX7&HJ4fQQ9}C99Nb6s!PT zRJQyM_Nf5}9jXg=i%f&nvr5d}<*>rGoKR>gQTR>)zX7_&k_jVqqAh531bnLevm z)wuQUc7t6DSKR)A<$k47(er}618s#Vg!U?kyXH)k6#-+Dk!3T6h+ar*ZARH~mAtZN zNxTrI*@853)P$iV#5^&R$i`Jf36@@uHRxQs}unSDFL}v zD;LYY(_}_yTp7{;Bw$tt1hgHXF-^iZ7gcwFBt8>KfwX({{E2o;eGzCE478Lp%nd;B zKmN!6aPSu-IV{An80Q>gu&-&5Wq=+ZANM0^gg(LXC!wC`yD+s+fBMs2CjaK&{2Mpa z9P(@qi zoHj~Zeel5t-R=N)(cA|RV29P$r;v(UNrKPE{`8OSHE(*g?Y`nlD^(Y5@BR1LfBMhA zY5(nae%C(yp`W!^UU#$o?r;9CC00|mYv)eYt?GzE6Fv0gW48U$oemgSX_f5DS}tAC zFVXMaMDg_K1t+*0Tx?Zf09LBcZC1lPD@{9lfpV7AqUzpdD-xkYu|8&$V@*Be(&FJhT9E z$SMKy9Zv{hrW2M@UP{YFcUr{0D$(jNN7H3XPZ<9psq&$-!n79*pO48AkUF8vNN$5E^&G~y7;9mL4 zo9&H8Gbt2PbU2f@d+xg7@P+a%pMVJ9dAr z-$n*U1m<#z??ap|QJf=*aAm$XU+KQ`hwDztom-glPd%VHgb9}S4kn0}CY z8iVsd6am2*u1+vU#HTfPS-$89l;6>vOGJjrd0gkR9m@>#+k%jKd!=IAM<#6h=FRrd z{s(NiykNVpyi^U5G;m-A5?mQuyk$$3 zMH`()<3nu6%})Xi&#tN zQ@%_wuTBL3Nu_f3idWv?E|oFB`qGy_?^=k#fk9ihZoN=?)eb!Vn7cnN^bh#Xi!4=S zdSZjVC7nvS<{+O-sZJyb)CH_kd4-%6GCAwd6#Tr^XbC)IY;a`IztdNbkO3XhYGCXb zF(pa9y64PEg8>o)8W7)Jo7&dzj2R3Z5d&imG*W#tKw%h(?Zn>&!9dV}z$kb>6!I00 z&zC~lsQo#TCg-Fdv<1*tzxq|T`o`D`*V*ik@TNDt$@jJA8RD_sH`d~S0_J_+@|L&w zAP!?>V;|Zu(qCWz&qX38f5Z=iInNV#mh0{i%H`~PKMVyX6o_lm=uW3Q-4HjtJMuRY z84{9r3=AnZ=E~pqzV|t^B25By3w4(R>4fX$kr3ExY>as~s#* zW@rqs-(cke&(e-V8HaSwzNWu3t}HAp*?<1c|75Qcc)R7sS6e=r^)X}9hRyB@{u|%; zhOfB#|Ni{XH3l~9r$6{U8_~F&%cnKQ(r?7a_dQ~}cJ9!)owh_W&2ZvciE~j87@Rjc z(|Nmz;)z03avY<$A@o^8U?DCho2=pHGGQYVBUY{~***8)Bjz|{+b_GqI>nl#Yk>oC zQTK|ahKC2k)t00v)sq{)`JkWyh*Z@wV3aga7!8005EA7gBERRcC6zaEv0T!Ckrty( z`kYx==o4>>12`;FG};t%`ITD5>aB{7WvetxYTSLcZO0a0f{1#4Xm~(U|A0?5thIN~ z6`hMglui=mQdwGSs57&RcHqF{?#^^b-<;65l5RpM98mDYlaFf<8?c$V8J7gVcH3=A zJ8jpz>=IjE5*W#4UF$G4eahw+X00%oQ{ud@p`MD*}N3*f&D>;UTvRU6NJ)I(T*KC>e2)oRGp9%%k)J-Wkva*k*L?$EQ|T?XrS;qQxQ>S zOcQkvRP;%H17K3JFe%D4FzfS0VGx75^V5BNzC_y~EhMbK%s7wQarAwE{KtRn%pONP z?2CZC2$C*kz_SG6q8h*R&O6;G4D~Lql36;&V2zO&=P*VFbywv+%Qr9w50k|hm1D43 z;9UfmFmYhIU??yz z%8q_ST=I^z%Qx}-i%EQ`f9>g$E(-S)PXB!RJo;}z7NLYZts2Xdwhv00s{GCd?4SC3k>hrw!_CFzL+lv-*YzgfWZYwk~zeD(pFzu#>0h8 zZeC|&Bf~ytH9x;#H(Y(K8dTES4KddahCx{UOG0s`paC)M(`)U)2OhG&`K!;`{)Zp6#~(c;<}+lMUAonmfi~(& zH^W+R-pk4ceV@v)ASpDL&kD_-um>M}*iN22B`I~*y;Dw1PM+5GxDlv;$I42@wFzwH zOkGAAfk^!qcBl+0bjmE08wQ`0Dc_8g(Os73ivlx>z)Dn)(-}i@h64K!qu7gvU z+1Xi1OyBl7-q*b5HK)s@d%)!xm?-uIFlPqpTW`J9H3V4WlMa20_hB3cfarey>4@h@ zmv3g!2XOr7|NNibn2dA)8Qc%$LthB>1weQ%?;t)5nh?r6JjZY3nZCt6ej`8JoA`0GtGX2PmNZ z5ufMLk^z2cw}H5SF6se;3yxHdV)8JqGH!V5H5(LT9p13cR@LAh*!!RjkBr&IotIie z(kNx0RHMUPvG2Gj<`Gw8@M-`lGKPq`&_D@3xKLj{xF}YKy3<()K)?|OuMk7JYuSLL{=!9La zYpi^qJoKb}|BgFs|GvjG7>wBFE$h`cBF0D^@_tsHRMa_7O-kd17_>evH z@WVb`Fs{J^Z;Dmr>&Yh%yMrZGMBv^zozA)jh-nqdM$x^qQ=SY2bZ*KkDql*BG7aSy z?uF~~L)2xcyKqfl!0N8cAC-KoZ!u8P41gn~8`=#x&w zsPDi~pwO?*exCe2My#1t5DC-ac zQPxoC2ONn@y9jj!Ab{w*+=Gb2HRXGDnomchO?wLGJi|Ll2V+OTF6o9g#c#Bk?v*7y zVDJ(qh7ER8bdQE=U@cWN#)9KQrh`L+_K>8`x%oxA=8CJtd?a;@O&CX2w z^v0Ggn=B`w(OR3Q$BSW0yq!LL{P0PeIW_Cg3~K-#8W128K-;o;o9(`Gw;TQJ(}0Vs zWwa7Ic5GE%>dO0qO-;|*_r7J>Z?C&XV`h3zV4-Zw0!wssrgbPz%77yD&6_x? z>}WU99u{JVOeb~K!wXHJ{vZY@sC&?PzQmwPTc8ba&VU%K=xIZ&9fuiXV2BlX3&E02H>Bg1h3!}on_xJvuPZ`js zLLKoOWyU@70);dwb3%ywlT3_Fp-puY*P#y(C$uH*QEz~)ZeYOg)KQ27h2yhP02aK5 zBhQf*^%kb2xaK$NHQ4_Uc!s?8fWb?cy!gbNan_U1i22s5))9lq#}bx~<1wou^uN!F zrK*jMj9XI-Z)$o*jbhcGS&}r&;K}ZQojx(&_?f{6iIRroOK;G%pRTN@9$87z*0apV zv*Y5%ZCl*XkfnD>^0+)EW^>KGaWb0_a9|E!cYS=D7hPXiyFwJm`4< zr2OJ9{-UdvX)Amy?*t4`Cf$sKG&qKLaU^ai$Dd@P47$sKa)QGB5Gb>tg$hEP{s6&Cn+A3B4!HN^B$y$?@r@MoGeNy7{C?mK*LaZZg<%$s*8pV&AM&`V(S z=j|h;Ckh=T1c(Mq=U|}XcRCXT*ucP`7;?r9^~fEnel~L=J`R)U5IeSQGaN0IRW?fk z6Pq_}6hNrkmMt3$7om6EbGMy3dCGS0zRHG2`mIuIdbuJ|lTNcylVm<5&=5(IfRJoH z7q3%YzG;)LSfMQHOK=V%4ICNqpePt=1Z1NWo_feP0rNsz4vZs;;(z% zE%sAye3RYu>YHunuI;`o6^#KaK|u0T(^EDwHfFE5k-QDr<}DlT@+&U3W5=fKjyt|5 zP;k;7edH0_yJxS1Jo0<&*ipBFu);=BM~!=1oNZK1ZkYIB2EAYA>53D zga82l^hrcPR1X~aJup1tk?-&u#)m9hM8(cD1HV5T5eG)Vz>UEpz=Cz`T(cU2`C!^A z4wlFx*E|#Q!TUr0o{snq$~k;b$QR!Wh-Rwbi(mYr`|KwUKnc46*3{D$sSo-U&yp7c z*VG&7k{RQU}tZkD3-#XDB2u(?sj*cO;ZgM`h%LE|)-$LWe%YvdiSVc2LI zbVQ0)nhUcFHa0wFecr(OY;ktZisg#`)-TC+VnWhyq2M06Fmlw;MOJ){J-A>FfqW1+ z4~?C4806?g;U3xoc5_5!j@DxRhDpVPq4!DpTJihk5^Ce5oj7sQ*g0`%DDO4}FkTw} zkwZu9i6;;0x9v7OG-25^E^!M28+q?EGc%_owP(a!F!IwN*<7`wPfpp)^omW6uXn@F zG)oQzwxT^B$Q$1V^kM2_)xWt=KsB4N@v(7x)oWg3H{Eoz+hQcyni&JcxCZ2A-F+wk z(5m&aPsI$67Oa0TXO)$@ojf(AZ|>ODS6>xb)b|&Bzx#_X-enIx{E%CcA3uIl@9+44 zk7Y7-I5RWt4pSoA0svQ}s$_Xn)Dam(&R>V5E~zgVDr#%Okt0VO6a*&te2I7PO|%oz zV{rS^KmAi5VE@rS`bTc$2Qk>uj>u1FV+4RF$8gWvzbLdd7&`+hTjrvT3BVu>rq4uS zKn~IwMtrDsVb;_m251@U6aQeRc@ zu6Mo5(_&CZ7;!81jY_H9qQyMh?@a z4%NT~7ThzKHx7<#gJw(vks2;QAeG3tEkj%l-?bQhNuU2_5J_h7TV7dKhpTl-p<=c*0j6TK^)bd`88Kqs z&j3fm->_k$egBT{TQZ)uZCiKhJCar@Yv6O6jH=~xX-V7zYn>$KO9;y=H5=?77Gup= zAwQ%#V8HhrI>>3MJ_ve?8)FJ;DQ`tLZo~-^TV6NtdWaFDz(TE2wb}U@0fU-C)#h}L zqo;N2#%*HVnA?36OC^Dsl8!4rZ8S16Y@5YYSSFemXklp*^@qVF%aY#kQ?Ioxn>X31 zsZ;*_H{N)IPbE++4p>yDXg_?X%{KKLfv`Z`O!m1D_001;)6FQtfX44g?@R;z>wo>P zol*b(@Bh9JlrTpaQBZe>0kfNUo)6uh)0oTL{{V-6- zLyyi7F^?=S4RX74lBu@?8K`bJPYCCHNWG}OB5?2TiOL16mY>=cuOlOhTZ=9y_10P!U5yR97pSOnLyn0D4=X4VfV!zQZ z9|y4G6|F!0oEJ?yKzZ<`nfAx{zyt3Bh($V!E^kwHcb}&;gcVP^qfHK&vK<_4w558j zhl9cc4>p9@>mJF@7dU;tJ9{#8=eL9M;FV zC(6%X^o&oyUK5vonToQrQHkFG8vSM@%&tM^2fzQN zWh=QXBab~|c{@ek@*N6ko!M2>@vY4QySOCzW+rMy9-pd79G$KbY~IyhjISP=iFc*K z^u{9WP;SU^{F%|b$mq+7I8&C(33PucVK3;8Ff65K*7AY&fa~KoYT6BnoQ4m{b|Y3- zap$mqI4-~GYNusW4<~&^L%FlX0W1~c#NK2V8hZh>kh&Z-Ra^X0`g^9e)*}Fs7-1t)C*vtoF*4-6XLG52R>d4e0%Zg$KY?D7e2IipoQ6#sNQo)=34Y*(HtO* zAclbvS!)&I0f}u?yC5bT((Jbzled<=x4ppEJ#r2alS0EzBn<~?n9%5S0}d~o*nNTt z&cW2hs$b;amHN(AP71ZBypQJ^iy9w%YsW=x08QbR>66S%0$1*6NA3lZNji&*a|?-d?hCv4O^N z+qNp9$=LG>E##5n_7mdasj0b2bF*+h%gp^SG|2g0HvrvFVk9a>fw=)eB1TQ}`;e}a z!2d3*=M7TSXVYC8?deHBo89#xeq48*PhG+Tx%BZD&_RFGiUR{t1=9>lm*Ejiu!)ge z!I`sVM0yV#o}>?3?A*cCr~F9HR6;i_p_&)A`iVg&z*_dm8U_5!nk5YP92xhX<9 zEM>f@M+@ZG9Z{j=h3sJg2s5=*D}vwPO;dZ&X7=*2%d%*jt8Zeg^Hn!4%4=4=5?Rxj zdIoD->`9!wIftwuaGvIq@L)q)0ulQ{5h4DH%_M(YPS;c$vM|~ag&1p3vk|Y@*p*vP zyh`<^slZcruQz{Rqty17!jlCP< z!uYH)>e+9m2EM4CaKY2?{WE9L2So?omz(NiduWfGTTI#++#8Lat3HF$N;qw$Lj4x; zA((vvokgjD!Ts0->74_d-?6YQD4H{yCvqiG$zyxgU3KIM@)4JWeFd z0Glb=xl2t(wmuKi8{T0I!Kc_bXT}If2O=MWci#Cg*#5L%qkNg6T!8^Yd|kII>5;_F z^G4_&vU~yufn-m@9OUk7g|LMNm51gRvP1egqPqsV`yU%mBA=2i&Jp{Cvb@9kkf%b( z^oGKJ6CoBu@26ynu`W)}jc+BO^=IjU59u#P!1519BvYvXQS{LvA1xJY7uCOY!Ec;pDN)? zOaMd%w9&X7cZ4q@j~8Xrs=!(n?UEW0VY}Q@X>6fq5!N<5O02fcn5rC1ofRsZl1D4v z@R9QqqU^sTi-lR!6znGOB$mFU#mx5jHxYUTD~+V3e~wu-b>tYEb7-+afOgXzN|w8^ zl1g4CUS@VSy(0alZd%&NTAy%48CTbh5v3_^xwxOyco-1;EA|una8H&(e12}NG>z`0_OL|mVY6uL85w^P;q5*jIM|p{29&$ z6FAsVzJC5}s1Y!Ph!o}@Czdn1M85IVqe|zn(kuhlDNc9`vg@}fqB%_lTFW_Xe9!{l zTvi_Xa?-~UPCgh%j0Wk!+pBw2N#wYE!Fx08n78<9 z{dSz!!K3V#K{1XVNd%`J*S$Ai7tpeYU=^-N;Rw2e)BNXaHdH*8Xn%@?BxeYRYD3Bb zC*6q^Y&NG8;IaKADMZa)Kz>;Re+j_bBklN?-A6Ei?Ea#hXNn);6|^Ux%*Z*)GVtDU zG|aCkQ=BIiZoE({iUx6??4L zzt8n6`L%nQsl*> zFh@3Cu-$<%w`GMW*_*V^X?1dZwApQmi=072#j<8k_t`bH8xh&CF*H&n+zYxX3+Y7i z&aleMaBI+AFzsL|ZLRdnf{6E4jYj(X-Iu`V=_K6A$rZI^EGXI9;^e$5ru9gTPpVlY zJ(WgIAK*wXDUtDv`1O$?i?Yw#jwyb!68E^iSu>&vPtTRTj%7c>Y%@t*OUHKKAafg% zC#3l)SKBH;bz_VI69C||2jO26y(^c8Uv0MsNZ8ndatN*n}2Gv8^Fy>fq9 z91Za)fJ1^404WpGqa>SseP6|!pu2qgI9)(92{B`m;3dz{1fzc|e)1R)HWeQzIsPev zOe3&x+{6U%gaJ7cCsV@TIFOd^`SSMGyt-vqX7c9J~iN zA?Ll-4_3q<3)80gQ(RV@406hs$~$q0cIbP!UWZG~tdpOv*Hh-J{LMX%1|b*8YE79P zG<>3*rdh3yjTUm46(3QbuPq(FCU(5W7#y=NvDgoY5Nk ziIx+$FfPtgSm#Y1^s#FvPIxf8@aB5_WM|^+zhoK(z*~>Z0jPLWZFAXN2m|TSrDW+wo8))ox5`gU zZYn=LH0!y1A_H4#iHeb2)N+VRrV#B)iJA=rRp5oY2hf;2-+CkoAqInq-`zA-t=Bz| z)_LoB;Ms~7W2ik&Y&?JLMU*$K3ObSC_Z$vy4-nm0E23mCbeyHCS2jRwkNxmgr zL0??UzdI-|<80sjr8JX?kvz^BDy^ujn&j>3G(G^iy;IF#_5|0{*6ZmgYkdP!n^i{M^-6Y)v zI~yCbSkn4{NAf|2cwdCb!(U)k1WEx8F&VhUi`!{%_j?^jeNQp?)wS!b$JbFDeZMo^ z$XX$F?a%SI3FV2W*0Czb7JVSxEwi=3=TZvY?M1s!@X~~iej>~$OI{>J^@S?|!x)5& zVrk*#-6-6$O51e#&Q{(3e&5ic&iJ3o$l$(g2bL4>iz!BTUOYwZPx%UB6DbhHd%!kS z(q9S-Zv|%DXP}TN)I+lVK^PXWa%A%6!|xS5B6<#moBWkXV!BC|7yFAS274sf`kVf9 z5#>uc_h8^94AHlpfYV2r4Jo)Ji%IJabw72-kP2OH`ixZ{#FTs85#Pe2jH5tIiRplf z$5%$p7WSo`i5?4nwgf#F3xP5Fnrim%YC93)YFX=;4Y|)f->Jk0RlnJtFPG6IL~nR0 zB0cZhryyjbL3;}6jS{PnB6@VfnM**@PvJ+XT)w8HchjtX6_B`o(NH{*8 zKhDBmoZFW1u38&4+`{JHM}lbtwKnEHmi@;69es#JBl81_xmn+%+rmc>vSc3d0j_@q}DXmQ`i=qcT81-opA(e9?L{2d!6#72ImGK^{w-_ zB_yZ-2!M%d-u}!#zHOU4qgn5BsBd4e#ZjO8AqRCLQ5FaM69>ZmMXU1F0VdGfUa*z2 z14zrIfOvgFK|DogFMZDU>WqHQ{GrczM2{(D0Mc|)V zKMjV6`95Qn;x`rxzcL|f`yFL{jq~U37DY#x0a=5eQ%fD|Kf(8RQ z>)nW*;3|TAUKE{iW_54rdF?|hR{@_p2m6{nW%#li3T>(XnCn$jYKw~dO37hFRJ}n}VR2nYi!y3@ zX(c$deWI6bzU=p?W-2GV=qIp-b*?w

keH|M*itw}(BWAwq<_dSix*@wT1fJTZcu^2Q|BxcK-bgYF{8OBiQwrX z>-WvnDcmYi`T5(Hn~3N)<#O!spKYxQxr!?fkGu>_t;S3N-`($?-g4h31Aw8~pZYh+Vd zfvc^CrHN-hr3U}P9YUSGUiBfNHp=AggD|^L-=7(5wOq2`X3VXG@SAG^YRO7Vl@BYk zg5N1j?SOC+EID7}EW@7(XAfq$@lMc$QK9&yX;qC)8H_>fDvm@q}4Q7B11|{eqCbE zh;ev?0OtGX)clcjdE9a~EL>JZS*5ng6Yt28O3W0l14w#E*}T`vLh>&&`?xq^P1Q5g%k1KbqqC;_lY0VK zaAI1qIuIg`W#?O}{b=gId564jDnHdfu#_F~Gnf;OY8us)KQUqto)EW|QJ%5Ai8__D zHsm*mysG9qAXr?L+KiMhZaEBNXJ|W0rRXmN`lW0Ru3CA&{5be6#I2+Ju92Ize!`^2 zT^#r+U{B^fVsw292LP0TZ+!E5$^LfPyw}tFkkt$0LzBfWAf=&u00IbC+BD~eYJQJA zR*gh_ZYG1&3jI*{lEU+U@=SY|_9>o^@jft9REq;Nlm%btCW!XakTA!-t`ro|DmB>V zkvne9N*|_cOq%gNY?zf;Y3YJyI9o6NBf2jtNs?jGke(`6+$i|pn4guThO>q`0@pqH z{Ezm0gH&q`J`NrSJQ(ZrSaamKGa1X*>i!dvKW6DZ%#}2kthHLaUtdH0=wLf2pzExI zG;AgTg<4dDb%?t?S|%Bq3w)djGt8lE(&ud)vZ6zP1aT=MvvA1#JdG$W;#{;g<~m66 zl^#$9V#bi%w6e0*fA~1Xuq@kD@qB5_gUp+Xf|-SzHX8kvo&&Rgy}&GIzLZXrsY&ZE z+jjzFgdpzA0sIhQsacUUU#>Orq~l&}NB`$-Tt`G%{AcX?P6+vft|HR8&y?@F#oM9D z3o}3cbNbt*$;!stQ{cu4=IaxTlDZ`dyddh~2lh6>qvoNg0o<%rrLOn?NIxMiHMRjA z(~JnIq4UeLMzGT@!Zqbq{up`y|M(UU1H57L+3*U8O7moJN5G#~Ndk-&$7~#h#=6!4 z+E9#z__`)e&Z}Tmisp{cuhDn?Wa$BBinonIb^fvf+MkO}}uj(+zRkbPLrd(rES-+Eu^y!~ICMj<;$D|$~4^D-QUp?Rl*YOORL`*yoJY5Rn*t{=lZ75H_+y7P=ffd!) zKR~c8KWVN(5VL-5A*T@#+W|8c-@Fg$0*MA3hp>*b-(NX7)_R}V^&eV_^#7AGk2$Z> zsj;mI3rH`nB7$b#Xe#+NI(jN>vx2h<`REwiw#v=F-LplM4I=9`u@CJ>xjQ>2((gEY zel&!|TFm0+L&7FVT*xjR2&K$B78e||$grmu@IZ|BhMT(;9`Jtpti?~F=}>dde}fIz ze5-ANc~9(6KHxbAPfEi~L$@1Q#mm!^X4)9N$GVmcGK99spHep{LE#}x-cMM(XdSvJ zT~CfFG>ACjaoG9sdxfRFx>86L&waf^p@yL0Ep!G8CKl z<;_5(0l6ZG$JqKS0REQl{ueBP{6_rQ$!Z}>(c7y~gxg;#Q$3(s4JrnQnVUP6zg9%y zskwiY2)))aJulMuZ{r~?Gj54M* z^Y#abCv5gr(?;3bt7bwqN2p}4QKxQxuw2R9;l=BGWY}>-3Tsuns}4sqOYPBWw-BI= z=7_ouM4$+XBupo&(J*dJ-1>GyG|QCSxV_)zH6fyMNpTrU|4k?oBKh}MnDb{k_`PEl zh2=}qR^&vjHEra*ATYY*@ZJX)h9t^CP8-mTZ%zY9##(`#2GMf(U81*d``)ub0s8Qh z{iyKU2>&}-C+R1IYY>!yJMHW2MmNTP&p%-1eLr|wge{~Zlrj|D=i?!Pvj9Zzk>8#n z&k@Y(JCC~%%Q+%ynp)bbU^Mv74g>gayp{<*t!TI|--@;mKhn$MpC+O!Y)b0ll+ZkAf=r>!fRM@3*XnrVF{%2^m_8qp{sBe-CU>PD=UskUdrm$P{JKZ)1j zebju|AaeUE`N{X8wt)4iu68R$fSgb}>+9=X@0n9#CZBldM-liNF+jm^%A^>u+2#n? zt^R4r?mzss=R-Hv_NEqg>*! zdDES|zOuR5Y$@L=ulIXSW4pX42R(}z9Z3fRw0Ub~!A0!)Mv01@@M7;H9bh)1d|X_e zI$`Lu>J;~UllC`Bqq5L^hzJlxqrRZ~;b+UyZ%U=?mS%XsXh~9P6y1hD*9sf)f$(Fi zG|QzzfGElY06q6C)KsWi-1HFe24BquLD?!vaFfddxT@?|G`=|@I|6}JLpXQCEGC~3 zFsnp-=8Dh~C(rihi}qw70F-M?WYAR9ky!StX@~%apxKSq&$w}AVYvU?v>cvp$-Smv zSY4u2cnv$j7n&b&?yAz3A~_0?4TUPkEr)jfIwS<7`usM_5`5Ac@BDQa>x9sbF?mu> zu}|}&O^4QE5+!Cbe=tCTt?34R6^{&k3pR{>UDacV6=8M8b|Uk}J7ek_1gT&e^K1o$ zS-<4s&n3GCnoSBCP1NG*i{dp;%6Y?DeE1v@QnucgaiYkEGGDRej`4NU(v5J(YnF-c z5j9^c+b@T;K7RQ(g~fSC$wLSTdAp~4D`LNUZZUb{-H;D`l8}=60F|y9REgpJWPi8+ ztij;BBJ5Aq?7PCaI42YD<3T<9K>5SxS_-c^;^Brt`c42oADSZGq0`nW@Yy_nqcW#; zVmy5faFJTqKA9G!apQl?;arL<{;fVi2cp;@7H%=G;|89!2N0JJASCv&)%mmZhWySkLp9u6ggjTcU;4oy$*`eIEypD*p+sCSWF95 zX%rOAy7ZQ1rKQ;woJ*U7=L2&Uy!2&nlB|n^ECU=Xv0<#~N~hYK>}n8~V~2qqGYRaG zE_ldD$4@M5zb0Xi8CxrMNsYlbQB8^|{0L3M$YM7ygAZBfYU5mz**w6{OK9JK?Q||s z)8oHi2TkCHLJ}!K+jFG6V|yBD6UaO$WHo&DQHrnI3+f%_9wTxeZiJ`&z_wbcb*Tg& zC>Q)qP&35uhis5!*vGGAyU|zyB;WqW6i)fD$b42X&#*$ipn^yOZ2rD^5Z~-~<9K2N zz`L>J$RVZSkI)y7|MwM;!@dFIsSV7m0p`3c3aL!1%p&gQY1Vrr5S5gS}5y2BI zZ2FqLoNGB#cdJPml?LlOJ_NQh==icDfBc0P8g^%sc}byw-Kn##$St%bBzmKzp5K8&;)zj$aW>fZDqU z6;Oa#w}!1=&C2xMt)3<%yyMl7?bHhq9g3etWX1y0!=b_7S1@HXZt~zWyYR@Htvt|Y z2yRC`{ei8KyS4zb8nq7DOnii&OzQa=ToU!?8*vjF{RoGptJ73?E|et4Kj0BzD$?}) z>F%uU?da{X_s<#J7|!w{gzGd-g?ig9e#2BA9x4$($*#T*kVQ_w9`#%6^gK2BHc|1v zJH)4`KUy4pP9g~{7)dVT!JZJ2Z!lk&ME=p-eBWF;hyE2E|5J=nW8Pce`DjTav=73I z%efl3UmshuVVcEvQXd>o(J+if(RiQMUA)@qN!wm+H9^8sqx5~3i*vQpiB_Xd>78n; zP}-bHp(-5sLBnOCc4O-6HMRs0%s{O_3C_8@p)TMX=#CazbUZx}UV0TEpVAZME$6U% z_?z)lh?(|%O#=9LqOTO6macPjv^GZh%!zIAf~Sl#60b)wN1)Q7P0!;0Eru#=53v~$Jom&RpTQ47AI{W*{S)pZcQUz z>1FBTKs-EM*kozVrCsy#6?M`-TOy7NCqy{t*1G@Qn)QEerR}1jd+ZOGr*GTLjQX1h zN8WS~$aMmyjVnMxpAA1572?h=rm}W)zIp%ehaL+Rvdu?E0*{V)ZGlM#H3~s;+Z^t@qyTY1_Kj2IA0Cw55q2TN zf+4%$h8R6;dYb2C7p2C$$hwx^q-A1UV9Gdl6#MchOa4M3%vj2TqiVpH?$*}Nq56lf z$p)8+txlKRiaAJxShXGR9iLw1JOcV92r(0%9@U38A3#O;qj!eM-~(%Eo|^2r+I|@6 zGp;{^t+y8t6@-f;FK(Z&aYBZZHY4W`S*g;{0&PMwizC<$Vv=tG>a}DMCHT&q;E>5==4h#01BGvH-u5ZXG>=< z>u1YH#&<$pyJ-e~yFh6JssQA@ce5zAH~Y`HyJUxjtEItoCI6*`5TL?NK2#niZ+)lM z1`kHG`&N}F_~j$;VktvzT8#xw+4@p6Ob{fQKWx z%(P?8yhl=IRsvRTdipHuy@8lr#HY3JzU${~R#sNu$8Grl8>PxSKTiabk&gJp!|XS5 z!~5@%Ehf_*U=82NxY!oHQ;sMTw!$LETOm}5o`!=~mb@?im#J&Z?`G{Z zqf5vr(kiH%y0HOQ^89$b+v!eEh{m>uI&75kOnX0KxeXy<>7L;y%4gKe^t=ua{jroc z{1=KBWn+Ag#4$^jqAzWv+Pf9z6F%w>#`Si@^({;Z8ZF7gaRwz?I_or2zwon!d9!YR zocYUnUJ?7A7lb3|oHu4P+Wj#9?Ot|W0;26!r5y0%`Hk-<{69}ueu2)L1%neQ%Etu9 zjh?l$em@&c2~zCsyZyoUhasXpghq;=aHc$DVUcp?=kjTNu%f5Lc_vbHO zdpTcLPTB$&dmdX>k4J)4_1UsK4=$lWa6OE3FzFMoFD(3MO{@=Q1vvTpYC%F1`W5Eb zW9nk2R*nV&1VJa$mcn6Dj*(bd-?{%Bx!{&E38Bk11+cmSB->5#l9TM7^BW&A4gmh+ zqB<ALLt8g#-#i6a)Qy4P$Udq9Maa2Ls@;+8i5RB_*g()RLP+AM{qczSJ274DR0c!Zfl~FV9nf z18g1pxVvJO=|*0mKb~^V8Vroxqah|^U!#v}-bZq7*g_O{89ZX&j>)xYgsz zazn{F2#?Fy+|17)s+;j$YM5@rd&P--Z#LTm0xrp1?}dAW+lFP7;3h3_fBg~eB~8^T z)<9@#Q?;P6E;kfDcznGkuRq$PC@m3azO=gC4RdlHRNV?_x zhh>Xr{hOtbs3G%+G2BOXZ_@88EOgK*Y{|=%eB`FVA<*DXq=E5> zhDKYh)i2V@hnOpH|5oTc8OyZ6mig8<>w*c1on~LVrPgEGHDvG#4E3SyK&H30Lxt zkRfy|iPY>?zspLyPZ#Rq(WjU|ZtXP`lv(wX0Z@PL`n&%2!&6ui!<9BtIx-bDThG0D zn_#{_02A~(s8d)BQZVeohHh8Ui&KsTdKJu&g>FbMwKU3!bWXz-GRE+z5Qqz(02R-n zXVoX>o-G_@$itOg$?@yM(M?#@qyY$_WS8JeZEyiOGl34>?)xTUB}?}O1zOfL#ZE7( zoUzsOfe79KD*KbLR5Q`e-b(AFgBTDx|F%Dw>(@<9qOy)HZtUm%m|QyJm$QX*qku7302LlozC_{o+TVE7cN?N6Bx58H(kGS(d2;(Bh{qt=piA$3E^}FSc(FUYwid z^3&z}f+cIXx>xB}m_gX$5=MZ}0al|-V^=!N1U2mfbtQcCici7dW$ zdg@g3)g9#Wd`q(_q!oBeeA@ARgiYkWdpK<5nD7lLUs#x{96Osj(j38!B)LSjY({3L zYyKka0w|w@!4J3yC*t5|V(A11Q(WC8m`q~n`8k_*vvPjm*bamWu1g)2$;!#`Qu^}m zw>smeN^N0Y5lf8fbp-S@7{v2yQQthQCS(4)qHvasSLm(gWnxdKwEX42VAoLX-qJt1|t^7L*#vS&#i@e&l{ zl=OrMB!vN2`ESA~FoXeTQOTgPZo^K-fl%4BzzXd*T~-bwQ%=mTd+@0JINd3XY#|r) z8Ms6KwcE&)o(9kvBlc#gJu}XA-IG<|Q^w^mRk9nU$O=t^ev;cgZ6!?!6-Rd}6S2rI zmR8)T@pbgi2nhGHKMMIaYo{~TlWd7wrpdH;bF{epcd49L%ldBJz0Cjm?ltRW_3i1c zUhID9Y!!CH{dnZ9n`ydNQJYl^*CQRxZiGatP2s=WoALbIOb8Z}n+l%nI+I%46M5{S zc{E!Jd6_NHzC-?Xc?f?pNDWCF8e|f zSvrgzTga*KKSfQB*LT)^vIn7Zx7N2uP|`9l+IzX#4fR1Q!S0gdfu;h^7CXt4blS&yzyR=S-$F8c}Uog%i&Nph8-{D7H;E4xVX47ZT9 z1ro=$s4|g>8d6^0rcN;VlEN04ld(GsmlktlAS&|CWyU#k08(Osz&R5$C`3%kf?lD_ z(e1$ehGK#8Zg*hiJV^2{As9}sn{0v9(wzfQZGiK%}gRYug1Chn8x&3Rq0>fbt57J)Vey`27z-(DL z(h9cRiWUI1z4qTLjQ90iZL*Gs*}11W`R$+7z^)L$K?Tj|@7YY?5qi#%aeOWsr;VD= zn#S!xkYQWG-(fkJd5!n4N4gg-%8^$j`JbV$-(u0RR_lN6pGWLoeI2{qbM!DD52K45 z7^KSL;4VRON4LPr1!hj=<{31{*oowQG^qL0=u={a!s#2~kN8gM)n*Eq1}7^D2aj5h z22F@}5B+79u>Et%uVrARBW^tLioEA1GVfoRV@1H2<s*iZb{u~4Qm_ByHBdj}$|sTI%Y#YD-Mc^;I21R0)f+a+M+Br)hKA#9>Q1^<}N;C+ei+mi0XdWVmZZtw93n#NIBvyN!SPf6JbcRgaMxU1(6TE%48 zqy*L{!%Br0{0vla5FA-OxqA)a#DRHrl&=!0_E%+yXZ>6h%#>{tk#laprd>d{S!Q)PRv} z!6a8a_MMe&ykb0BhmCFZ=XQ*?B6F_X=-j6)05X|PViSeYFKOT4j_`o!1;~|iz*W|* zaPO7yt##n7_3cc2z})}HsPtUWKe78htVb@LQXmlXf9<2$z}d_OClD1Z4<=I!?l&a1 zvAgM1x&@PNchqYzb#lJLjIC^`tYT}3V6S0OddzFuEuk~Xgvv^358B)0e+$wk^;Gx` zf?pP8E}j^YL*q+0Y8zY@WKREdG6Fa3_|<7}+tH9s4h~->PWPi4YpdhehT3Z-KJF$5 z%`!rV$GO6c(x2nsCRCD)_2 zTuS|6Fc~cY`?csd&;0mDOBKqct`4 z>-<)BPX#8Q3rrj!Mckl!SlaQSwU06wYIkQ-|fqOJZM=owiml|7qhmo zu%IaO71V=W>;*IKWZxEK&&sAdPH*8NXBbtDjfK>po*gj&9~Zd#)zxR-cbkcIAd0v^V;n(1PL8 zblq>Vr>s7hC{-?|4kE~XNEFf^x!(U)#^DHPM*;xQP4Abm>(j_EC^0Kuw_rTrEv(U5 zER8BoRZas$MF;CH?_ifL+qClmC=prutF$Y1SU*)$V<+HR zF#o;6WI5#JK^2(Bxgu(+V18||kUJR|(G&jaHX27JWSOclC>tJL9o!Po;j|N+WZZ;c z`3|N&lgSe7F_qyAII7o6M(pq!-@DrPEgOD*+LoPaKyQA=H$gl zqPXWkus+Uq39iYWLIgci$UI4iw%zcfi2UpOsw^wLZ>K>hi`%MpQwMYv76mr2PQA*b)k4~o7A!}Vf$zPFrvnhntDTnNPR|cJKcG-pd<@L7qfH80yEj$MF?0E=W>B*?Ri&0mfWV5NMLP zGNxIoSR@IV>NpG~r+9D)@R-By_Gks`qOZ;a_P`jfu2;qrX_f<~dk-#)9dj#Ig(aov zXmit1IbkQb4hdKZID7R~X|Sxy{!9`jFP@=_BDw1BZifzKeesf-FSk!!+e~6T56Z-$Klf)s6$>bl zM)F?Ke(j0IRRA&p!RNvdXi)FA#E*jzSmi#zv0l_`;TG1+S03UHI&{<8v{ksY<=j^` z8=vhk3xY_DMFj03%CZP^eD=?*<|PnI8*M)_YCW*zrq1x?%AAKJ<0pKe=Tr`shssUorqIFYg=|m6mZToWi*6s{_2%LQat4Q~#sGqnP zL?<&1qE?eaOcp<0l0-L26>YaJ{&OXujFot|+@RmYz$j|g7Iybn=WIts9ezKa!gZc~S(9%2Oiy0appi0a~@GxL3pB`4}BDxv-ITLaBd zyk6=T#b6)4Oc$a#|Iy$3n-C1NUxOSr)jBK+eSCI&qSbDyr8VsU4tYiMs70`nyBIJmgB^G$7SN9yz{#Kn>K z5t09UZ)K-kuTeCV`Tr{>1HiD>lo3Aeo(aNP9aYfs#I+D<#!f~5zIOR^z?0o6wI4~t$KUihJnw^( z93~}FJi~ieU`jRjrj`&j6~xSPKKA-t9{KH9Uf;S;N@*jukM`=^sSrRz2(~%w8q=O@ zqBn&riZd|W{rj6qkvUmu>H669>6CnM0lIPz+ZavjVi49YU_J5Yp5BFt4ga*R#@$xhiBKO$~r@wpUs8q9PF{y{e0D z*2^ROy+h0FW}RZy^LLfWf43(}$mh8BdD(Eqh~C;w(8PA@J32JTS{{mwq-2~olS5(D zj{oS)54`Qi*|@pe2<)}TJ+~G&!pl2a*OH89)AEUf=F0{0!y2h$>Pt`T#M6h+SG?f} zKKvw8CKM9cVU=Lrdw#p5@=)x?umhEs#osbw(N%T%H0v80JbTtI%ia#JZifT!%e+<>d(7Ues&tjSO{?|x zn9iRt7COe`M4Hvo9}u5_lntn?2rz(%nfHtlJv1cBBXAwl+?`;uUrXb2Q6i0RD6p)z zvLBDy{2dLZEu*+GVUq|M$i%yPrhV`U^&{eAxV*lz-+sxZq(?9~%KV!}dO7z+29b;k zn*#2p!F)+6VkZ!(sU0D~WSGaJiDiq=Z%lGQyR`YcMFSo79b+Hu&GO1lyQ2>v2!wnQ zP=W2DzGgu}Bnm_Y0IY-I9yO}w8)4%FVGh%dZJ2e&Gyh6pJ_o|ge*@TNzGE@c9Q%Yr z48y%}@Mi!>z7hmN#gUJoU1*Q`G4CJ^5m#>3XYJxN>u5K>(I1Q&q|2j^XtK!zD*7>J z#*jM2+NXYxwNU17n1m&PvM6ZxmJB-aiXsFs=8`!M#$0y~i3LMG#uh!^I>sw`k}}Yy z%Jv`5Yb(8f%&X@-L2ih0!HI|Tk8UD?D?2SI@IJ1dMH70_FtlODy9rNgqRh&ZEmbabVvz)e2P3Uf#;BRI!3A?f01fX#J0dx$&thl zOhZEuA+qJi=gw>e^N~AXmRNuKh%TDC_m$s>9!$Kw zqqng1T5q>qp0~8sSp(Hi@0Z}jANl?-gV*)3_$@1Gy&s(KC(;4iKnj@eMxe7X3%#r% z^MyFSvKo=jZ=m_z%RlCc6@;hn!K80hf5Vm6zxmD?h#7qvRRW9%J-1J3`iE(cQi^zl${7D9=L_r?B{+ro|rx% zB#Ga#j6JVkMWKjRw;BC#IAb+Ol{Tueo^I3i)|bKf!MnrpaN5d6RB}s~YJ*($=~Qy& zW!#w1u~cHc*P1Bk8kiN^@q`{w=K*ZG10iU#iTOPyo-Wsq0f^cIFt>W#2`B%FK>ouT zCXp#SOR1q~he4qu(m2*pO~EoNMP?Lhk0!{yptbb}1s~pd2Q*Mhok+Rd@DLh|VXCdS zxM%f=3?LB-O_UTHb`K|CMHWb5&0nbOFk`ZYn{2dM4qgB8R)0`aqojY>AI~@2ep}+M z)@NGl+&uax@#~VE^UR3Nj{y3&Yk`ny@ zuu$38l1ZARXe@SWF(&_7-Emex2$=18DXCq_`&zwTPwTnE?R@UJUeE1*UYT+3uj&2r z!6zDh2f*kI6YB{Z7wyyH<4&*Kcx_QpK|46pSg{5X&p`crvHm9CqtItjuFQvk;{yS| z#?wcqiF76m3Kv3<&;zry$QIUcC|Rg;bes99GD3Q7kVdKvOD6D~z1{7c16 zlLrn5SyI+YFWjRlUR&04CKOw!l>od9XCRWFY1^2TXB1zU($mv#EPf4%%Zm^f1)z2b zKLO`0B&=(XCt&2^88A3*<8i2E#>Otcp1*>T1&YYUTfFC`2qXN{L=jNgSF<0ZNEh+l zStV3$-W%HNsm>9sfJCn4&Ad!L+EIf zf4~p6sQQ7E@lU%T;ohHAYG~*0hzniH&mHIIP0v-MuR|mHFXA-^qwge4d3cXgi}lOq z+D_RJ+d;>UQ_Pm1$6R@TtvE#(n0OYn8b6%pTtC6&c|qgFbV;Dn=HFoa$)Dg?v?UI4 z!HTz)BA7&+`9gWzGD4xeIUqE$at!Lih6^8uA;zSZPJOxH%BxyO71tf^TL?Ajw5oNT zR>LRP9n9UtNGv9}PFo8KtbItqa6{YDs<-d$rhFe%i}MkUF~QWJd1`|}P(URfQt6&f z#7cp(KM-2$+i7KE!`YqS;-D<^rKf$$L`0ng5$Cvr2|d4f#^1wd!!PI2%T1QurDIEt z)f(eKB%mL(=Qv&`Mj55-Z!bdDnSU85YoMvHrZf>)pl1E{JxWPTe)6hHbOrC6vUl5c z%>J+N9bRPA;r%zbT_8O&w30M569G>XaMxnXH`r_LWu{Tf4TP$EN{LjZcfU z{*zZ9TmBwE*x`yevYtlT*NZ)+Khp>G7qa z6QJl_3MUVz8A!OBfZpDNTc?Yth%D`?cWl-jjrRiva;#5=hmdn$4bC{l;z~+s zZ2lV42Q5MZ!`uV!`GH2;x@irkVR0V<27X?}B4GLn9+Eo#d~VpgH+&Jjsijx1UoVI( zRDNEpgui1HWCNq=QO6gofp$Rz3*kns@JE_MU@Y|Od{#aKWZ3>}I2RVhAER2do`$4- zDIT~bhELr4F0;P;usNMI`?r}CoY}Gxt$m9o?8x{bP5VTR)96f zalH>(rN4~9b+R*LyH&qYeb$HvDH{++G}q?nSwBfq3J#S4Fh67o3r z<$CSO^1JL6+i?J)u@=Dmrw!X>qkx>t4(o{6xY(7R2;v4{yN7DG*# z;)#_J4p&!R=!rpxkng9`$9S&^eUcdm?UJbRlqWn3Hf$4ZwN3*qxpL$15(#K{Fa+F^ znL#&OG{|r9ICQ-yi-JCb7lU7A4^qKe@!{(idA9)lysVZ=4gJtquSeq=H&1nUb zv1$6gKq^WYYlH;_4}X3FOGySIQgp_d_qLjd!msv#SUt_zMr$~!zb@(KEmqgyPmfN1 zlTTOOM$<(1r!iXk0o~nK&8;ip?#V#&Xsb{4B@-Yjek6!%ln(rd@gE#MBm{&N%Cw7y z*+f`;T-;_xy%wNPC(GX6ZNuYo!=kop*8+@zdu_b7dtwvq?_Sc(aHN)|=0)w-UnAOz z;_g?)>!#aV*-8yPV-Qe^3k+M^JWGq;;5(s;rP?D=O9QR;rHwQ|EA~IF1ry^%h&4{` zK@mije7{>+6h%QVd&yxy2x1lplvl0-jR6Q=6#EQ1Ss$wB%)^X0awl_?JahL%UYTS1 zTt0Im6$T-zK+IGT3gB{9J`pFIwFMY8Gd~`aEl9!CJ>M!3UpNQVRt9=1i+#D+^90}{n~nk+Y`+{Bia2d&`2Q-6mBLltONzCD0U zR4y9-DKGR8AaSTL%&g!oKKOvmR&(;tr;HFf(ZnGxCGU_W5oOu?A!p%zt( zCRauf@h>y&3>{lH?x1|<@wbhg{Lk?(9h`i#x}TbBTQ;=}Emt1`=Pp)0^feSXO&ffl z1?-gsTqX?P&+;1Fle4N+pdnyjnr%kF1ghJ9KTgc~&F597yyP|wvwQ!ln9zhQUb7#> zk()<$!#na7*V-vf7kC#$=YhT{1jrUMq{``uS!~>Dz*QX?zm{mX39Ve>U=Y7U_jGD9 zueMb4Up}_>^k4M`#0$Qifc}Qh3@g(uxyQJM)Nb5K+|R(f23DYQClE#vA?5M_sJs6! z@g|Y263wPeQh`LG7!GfS#VKc%p1J~{C!gDkB>l?|1Pww=mHI11Ief&Be69sTaf9Fi z#z>DPpJZGok5Y%iV*I`f#H=|%%CKeF>-LfD{=5?(^rqL0e)?VOKm4_W{5?Yicrod` zxTC)iy!P+yzP!9nz(?r1958FszH(l&IQS8!+P(%0X{BKYh_KxQW-3c zR()k3H<C5-IR1=zh0IG2~2 z#n_oS<+y$}^9q1KAc%SB>zB_o{!mzEeS98f2Fwb5-NwK3Iv^X*u!~#(`}6LKQ202p zcBw#+S#~-*NGnS^3-x`|D^UXo?MQ009z0O0vkCR2s;MdidR^V=gCty5Cru7>#^t;^ z*JfKKf!Fl+i{6KZ@nMeJ!`uYr4XZ=B$)}6%X`%a7=C#e|4Ksev%ZBIfcYlvf_u8h} zS(jEdZ5`9Jkq&kbduTq>KKgNcSB#%hh#|+^N8hkK%%;8INAvuqCl0b3fsl7o*M7Pj z%2FXzy&9E__yl8TiUCxG`U&mIRSufeQ~q+iVFH-Rp2+AN9%9ud>vO>nfb4>^mW z>7ECMZHOq^8lADt)y)0;8kvSE0@C>k;MFJcAXpXUvyl!|MAoH>c5l7&9@Hjm8|Uts`VBNRU7KfaFJTf{gkGfku=o0 z860XV1bK1JXpfNCBnbVv3-7=Y5Ndfa!oBzM9h>rty00C$u`UBPNAwf zh^U(*ic64->nJ?pW!*Sz;J=s*;3~DusbH(<|IRupUpWJnr;hgN)|L*mS+KTyUvl%x0HoBuf08CD@m_cfjhi9?HCmVah|VhBZ5 zI%G^Gn(@}m@3VI)a2%J%Av<#La_){r0Lqwcm6a?Xa{-5(YwC1s3UVY8Nu)cgX~nm2 zzXunYJ4XP(wdPV8x^|FD_=6(?vC?q?J+q+CD4P4U@noMq4aUWip3@`wXN({^NdNyy zWS#p}ioH+I%|vV}gJDo9cJv2h8)L6Nfq{zBc;KvhE|x7+apw_2tp8d>#3S6FO*JJ@ zW9lr!K z3>jb;6}yp_Pcd-G*=@1+z>Fq_;(Gz}#)LE@4RL>W_K#We7C5D{XbA>}H z3bb*IP*~+#`tY&JP1G5k>N9OEf^L-1J;>q*2#PmTZ@UHHD}1Hy^|eD|{B80sRSt<3 z1Hz*rRStt83s>2|JVg^?gK9}><=;?UU?NBm9Cb1fh2PJuiRPe=i>ws0R&i?6E5%;$ z*UvVLkn+)WQ{DRcD9`BZV2u{l1Jb(fCivyQecC6^|M+!%GymJC{ny4t4eyL;i(Z&A zLO7#TuR@Cq4ejVA1)9jV30R&RrINEv_L+xj$7vgi`PFRWnd;+Zxh-0?bIf_o9buL)t3$P;$;_>;k3R@S_rz@cIK?$R6o z@=pIrCv^-m8-+nY$pD=x-5r_I7?UOgO!Xz*AmE6a>B>@E|pDQKW=jMT~fw|w(N3S0?pt8KL{J>JDF z5igsN^#vAe_TYOl{SOcuJB31)!0{uOtlW%QemO%cCLTIs_ZTjJczY4hTi=-d5`|5A zWH1abaA!nz!ulc}59bXo89<~GQewse2Ng0m~kC@oqsD=Wvn@=L78DCzmn-Evb4k)_|K;VWOLR4|a>i!qq#!LCYVQ4uF=6 zk@#B(E?n`{X+-U4%7Qbuk9Lzn93ex}SzwoqxCRVrf*|?VdIz>c!mRK(1gZSTy%LT! zNYBH_B`k*rFyJ8Y&#QZsySa*)c18NAUq~>lUp{w3M%#Vbk68^`e?E`PVeKG4NO1z_ z2*Hl_vp)laoQ^O|SNCxXLd{0ggf)v!=bwP*2k|N$p^>M)_n4jfG6ecfhr7I4~H?r#_7Y}tLx=gSiJ;3`4q$N#f7zVcInVeZNy3F|4FJft>UL4%+ zx0vly;g20o`lGt7Evb?*3QFU3HRBhznV3NLLfYgURxc{(xfD3Sv%6>I)T~`pbmZ_E zHlOZeBC}J|aS3nM9YTVZ$j#}xU!c3DPCmh-Jm^s+tG(e!w`{&7VPe|@FuK)Vty?j; zZNvvnuP6U(Y}u&MkrX!JuFt$^OcDtO zCyL)JN}~gXBM|{%>Ia2Vpk?ubP5}NlyOl9S`r%DF(Mlew+-k5N!>i$w)ETWNFo(Nv zvME-%X5ZP7XkT){_z3gTQAA``A1ZY0v_KHt$BWUEP9E)2hS=4Az66omEA%gd&!$M{ zK?#)#ng)VTxyOizrj!epboFh3LJPp&+U|nd6^3Xnr9mS6Ic#t+XzicNX>;eOGc^Or z0fc`)WE1D8gH^KH(chYP?G((9YIoJzv~)d`B!utMYR zey;W?ueJYv{wr*0|v7Ao>DD<5=i0zt1PQ?MG>;(%Q^Q0wQcv(|Rn-NgI|}FS^qu z@7Mh4X`dY88e1n zyN_%hu~b*$N?ObtcAOpbtfpj_|B;3sY3(JQqyetAplZ7H&(o$fab0}C`M5_{t);lu zWy9-NI-vvRGJ&aT#*Xb4^`E8fP^7W{mwIzg)H-8@}35l{xL?XffM z)$*fEsbO=6BnLxW(@<$jNe^K94-J@nN4t@kGV ziB@dlpO{SA^6MxpmM^Y@MZx@8vJY%&{~*WjROdF}gJj4IcNm)Hgqu>_$jrSU1mQ4U zvFao;g*C4CW;c)v+;|C1nWTFWD@&l7PS{1yTJ!Qr`f0`U>6#V)vi0^?i>?)oRdU*8 z)1#KYIs0UT|Lv61I=D0uxr}(_S(N5P({{% zz-+$v(>y@$BYQe% zLw~&AvO%q!ps33*{0Cfi|3C%y#xWJXqXhzF?(bhPC=BTxk{TIn)SJ@C-))8T+lllR zV8?C@ec&G8IB~DhNW(=0!S$rx(t-$HeOMs|gc(nL$>j93q^=?dUaHgdj3T&>=|ow1 z4by;cy_W9<75r?R#*{Nl3&;LAVj%Al0=-BT_wtZPI{+E4G$wB8aNyj(O0yNx?Ms%3Ng{o5I%0+?5=*yR{fp>7RkG@G!#(Es^`+@q=6^e`xN5gt#u@dZvBoZJV=td|Oq=^i^$ zczN8WO-0fTZ(WXnr#SU!P!3|eYkGy+xJ+r$@`nde_SMc7eJsj}ukkNfpvZHI5&~TP zaz4XGxJZ0H?++MKE)IY7j$HhOU z?k8J2thuL~1ynuTUC(xDW{bkjz7J4P={N!x?tcoTGnTN-p^4h@J`(&zv0+amJQE9; z7=fqA@<5ZFnG6fNR^l(#`YEDO&fim!K^oaAvw=fvRfg!~*A&%l<~?Eelib_(k5a=z zkEcp+AK!h>8@A2XYoM}v@j6Ut^=f55R-^W*4H)^@*{#OMCFy^!Y_%WV%H|OgdE?@< zO-?edEi5$U@Nim`S(Z6?0Dd60Tf)P`bNRbYMf0Ub(}N+o+fl7y;s4NKov&Yi+BTy` z=j3neu>QWr22S3ds(YIw(v(&T#=2mWR&1pZCk zmqFOWxfNd&+7V8PQj9bGj+L6<9_0uY>G&(1JfrSyqL-jfq*`B0`55TPPje(#u09n%3gK+VODKKVgB5EbqA1>19kFjr#DN`oj>p)f}2X&bxkBABfZ zX>+PwvA{@q<9s<@+u(jqeYy31)%^KR-1udJQ-cGvvbOteG_*Gf!=EFbU`%Bz^G&S& zy%D218j}NIc-482=Qjo@QT>ikUqc&{pEyP)vk_#H6{4-c7az1NGoiFw9hF+`xqmTy zUkiG_hdgX7&2nd6&HOG!>!g46* zCq{XsBd1(zL+e|cUsjn>1i_xMK;@&YD~u(89G-s~ksDuDQI(*#SnUG}`!7;w-) zPn6`QtAdPdA(GMdg!2Hi}Rd?Kf}Zfm1@?$q>1iWSkj+fAHu>g@d?NIQAFsdxBB`5 zK}2)|Nv`d#Z4#{M*iN&rTa{7v2~b{W%o|guEweL9F{pFp-ckqm(Tlj)1gt+_V}{w2 zKGgiV)bz0Sx6PCoa+@-aqI2}KF$V=q?&W`J{`u|DZqV!`?A0pB_j4k(+J^DgzmM>6VcBW|>Dd`)rvxeeHq=j zhyJT@JBL--84%#ov{|qa^!dJN3En;O^%r?%;UebRww;IH>a!xoDbYYVz1 zt}*5SWt#rp&)z_YH)K_V>5+VCW{j|>A=I5$zY5kqgms9-5X0mptD%(r-SmVLsIk$w)-LIVO|DZ zd)I8%6#R#Ya`^1u(+O!y_1Ky0#t~&h4K|(sUg2w^PqFd`;g%8M)7EV2mw- z8^4+44(>}|LLU5hOAZ)S2^&%ojFz30N^cJ6<2ZA8cctg3+KUw|I<6hZMJC7*t z{F)Dka;r&RSLn*t+#>Qu>zr2iWN)Eh#lqT2wsFi(S zuI92gb{hhs(5t%Y?7?q~W37I21zZ#_J}QWj932c)Vd`<#MX26E2Iqp_Jt!QMM!k3$ z?*&Xw6(}w9P~IW9eiJPCr!`3Oi+OYDDQ*KzsMR_E5-WUe#kH5A^jO6B)uX7#7PEWJ z^=3eFY{}cD1-{4H_e1IPYHja6`4jWj2k3h|@mt=7XTWPfeZX_BQA5D{lu_ODb=y>p zY|NS+m!Um2wv-_74|6e1tp1s{NgOiXlDGgPmf^yNQtu6cY5KJ%gXJi6C5`&5%9G>}Af z7hp#%-aCMhx;V9RYU}C#^L%>{Q>U@R=X%unmH#u{->-Q(sYB)@5?k`h<8AEhD5E5ItFzGP;dp+KflMZDwiDQl3MJH zHw^1dIt_UFY|hPWI&G~t40&7n9alW+Im?bNuWA8<%20E>D#&0xBE| z%*@Ps73zF~*W=wHK#$qk>^hy8jxRqPX-;y0{4KEaoF(`M*`P;n0o2 z(>tm>_)2=6YYksb6!@%Dudk4;lsM>v1MNFCIoRvcLU+&hUS121otKqQ%K@L<(P~Y* z1%5*}DNwdsW=#G^#I~1= z7ERS&jG%a;IM6Cl8iHjM|G3(QgTlw?M(*Kw*!JEF^M8Kk%78PSX*#7rKum;F!DFH0 z^cjg(Y&MkcDQ{`m>9)@|c~O~U=&!}1(Bj7_+zn%02#v&l; z+E@(p^T$AJzlnZMaN3>{v3T9Wj>f$4WPuG@ElwS#8C?k>XcwTsRMa$=LZ1C6`!dbG zn2pEf#SeKth52dTNK9P$Kz!WxZGkP>Mf!Fm3;=RJyDdi%D&bu<8BTRrsR&*V?rDJ` z8+H!Qz!k*zm;ckhB4`LAky0<1m_E>$=meB>5MGHS@09qTiM2H9el)bDnG3OAW{Xs= z;2xWjS}UamE|tt_jHET&%!wZ}MbHiwK3jP5nCmM6C9x04lCbr{K_W;BcsgCo zqrR(+Bv>}E|MIp5bKztyqEEpix6i;Nn&O^DvG%{IJ5t-$98~Lg-{t{awcGy7lCyWDLjp!n_rcIc3`QQY49d%@HcL?FK%mNnJc2QH*DfzG1cxHC(i%Cq*bcuA69fZ7 z);|_mI7~aS4+OU%btVA#q;MeLe;TPYH2J=mByKSBpM1Xv@V=j3soi)p#Lv54iCYZ* z{Pp}1{CWTUnbiH2l(xQfQTOP%m%8+`xY2T(W~9Qd@_}3pN)~de{qMCk z0tjr+d2xpXF+ZJ8sq7^}|BL}LDaf4tLbu=j=V$7YCptPx_%Cxbs-t<-9;_eN6XoZ9 zGAq8p99EW=mq2?LW@MHvy>AE?&pW-Y*9r66mQ99QnmR zkRlhk;Of7zLYTz=YFd!&Ydch)aYcLz9-_HvoQ-S_4kX*}gcwbx6go_9x{2eTHK-!O z*FA7-?cc(_-=LO%-3@@SxFbJ)>HJyi0}*qSi4+_OIfTLn1(p6(d%N6AZ=&w&?u^@s zk89%NTb`J~l?HRYRQp2_xni0l1qi6Xf4mV>uSY9R)dmK}@Rks?Q4rUT1nQfAfbYJX zy5%+MIakI642kjsT~xUNIc$Q_kH^uxz^Ov1n4eXz zvnMQFG=y$@yvw2O<;(%(?ZbW(f8d* zcyy_KU_GBh7DtDUpeiJT^^oV+qYAX%hJl^hcybL0*gA$ebTSZQ>4%5p3E1Qk=`upGXLj~VekQ?R~M?at| zG&Pzy=$1^^4`Sl*Tm@Ib%=y^`f|?%20{1%#j1DrGVsM5hh7`v#B$z{ARjDsz+K5N2gk zy-2cxK_C;}hkbA)@EjP6P77=RqrFeA&s!aQD94y5kz9f#`u2jA6ag-UAI>=v)%=d| zN_4*)G?2ev^S(14D~MXRd@2pJ+A&u7TP+HxIKAm*V{!EB*s9$WtfFve8g1&8Nmo}u zz_L3~s${dCCD5A03ptJ6VWl8!+>y=MG0oX{=>+mPL!KTUjNR-ZBH{@+HsGN+U&iWz zvA0u(uuG#(*Gew}4s1S@n~4B(2PS`2y*k#;E>2 zvjL^kSZr|6!5@bxnSVxLX$WFDNmN`c$$73H?%xeBxJb(1D`{RXswp75%9g-i_o;ap zVQR|d`(vv^b6;{YK~>05qp1cWsck0N5%fHK@KES%d3V;cYdz;as}#Ox1O*0K4())F+A(^5Y@Nv_L9J&P?j+aBiR zZ-EMCwDB}%?qKf5W|705{|-y;zr!kA0t-eCQVQ*}SJl01;DBUnc;KWGSt-*%X{Mcd zIpASC<@kq>@(bPVHO4J1m2JsVrb0b)Nr~`i>T(30*1Q+}9ZlssRmiG@_J3qLgOn(7islSq%AI zHr^4pF39cq?UI#Safr7PThJ|#ZBz}dm>!+fZH~J8kQAt=ZUpIN$-V_PV;8siK;b5; z5P)5jHE6hpnfk9dn9L6*gN}ufp9DZ*AQ38Wg79b-BptIPliTH?Oa#1b5+19Igttpg zHlI5jKDT3&L#i-PG_#Hap7s&FLQAY+XlN@Xu4sFwnSck(-;iJjhxuwKw(v)15eJA- zV0sIsN&2%z@#%J|{^-y5prSz0rbQ`NBqf@clF9Ue!LV;P3&IOZ%_ocR39(O-kh;iF&aCiT znGENcjuHcQq8;x0c#sSsvnE}M-H}qLXb}@QBb1SphuWP?MX?kSa)@G3u9=fFlW+}U zbCnfFO8e`=mm<{xfLkRA;=d4e`Gb&`iAgiJIAnz{UJ#Z9WL1{@hT_1A<}GHoX=>pn z!9gO;(pr&oL8XD_a5%RDB+pe(JZK3w!WVLZOK^yKqmfi(5M?mA=BMI?6}zP_P@XGm zX+@06TBS*X{yI0LFVBYGdaFKmPf;^$KW28{?q-^8msg;;d;WpV?N4BOk!>eh)Op>r zes=|L^b%|^FNo^On?|ruOy!hX?$;h3HDv%M+^FAUSb-V>udI%W}fs>xv3gmLY& z+h*4|K19^#->RNYkb@u7XoDz!5ka85SetSQp2 zFT!vt`5nlPtp9WH*YGLzCdibKG<{yJ=89)f11Vjx}O&mfVxYUk4WResPKwv)gUk8Wd{6f985$<}k>SmxRqND%N5f zdVz+7gm?j^J^oLbzE!|$hUvd+CYxt$ETtNsJv~b_Q8xmc;WE@<^ zf&w80*ZkR4B#ALxYc*~>*7T)Bz6l0DCRXPUn;4O>9VU_NffZ+@^;SpDe0v)Q$w(0= zdHng>QoPg?`))8^gZ+EJh%n9_*+#ZV0A&cVy&r5QaCn~Jl2ojCb)AhE~ zIhMZbDCNATooaGxo^tczK`=UO{16y@;f__<3)9!XyK2kh(ZH;Y?!xOm8CpM&-rltjxcDAKc!mmErWWr zjD;$Nu`b#VON)y4bvZef!e9^Iy!fX4;S z`JfFxvFW+@4FFi3JyL+x8AMX?bWD4lJkZ#vl#(VG1z8&P4pR9awhARpGlw)P>5FY? zu#Ch{GxE$c{784AEWWgHSQ3Kt`G&s$A^AVX5(CHgMPZtk(!y_~V9!h+2R-k~+bH5p zMr2;0h#UH<#!DX$DkMzx?hrV2aW!pUoOi-vAWv^)2|pC~R;{>5@sRe$=$ZFF;exoP zZwN~&o!n)icmo*?57a)uARe`0rt|m$-#wkcbjeP1*UXmHDqJ``I0`TxO{K3^y`rpi&$Mm+ID#<> zR$t+Rt9>!e;`XsIgMo5RD(UU&vL<@>NheYzuDlJvuQYf!R=3ukI-n^gVywWl86mns zY_NOY&ht|`(g(`J9UN#C4>}+!>q`nzkYTRTX-jKu)NP%rS`xazCQFPH(Gwm|W?A*x zovJ6dRxU*LL(;^Fkx8JsH9-ZiYKbghbft7d^}M1YNwRR2&fYZ9*(e|(A*|hXszJcI zlm2U4e1otxT%wX4ARQ!gFGcU0J7ox>i10M{NsDQMoa=KYtE)gQgB4lx;F^lj_7``V z!g6yyr}@q*a)%4&$;7;lxYNUaFxP;8M$iiD=$`S>LL}d-T&VjJbAmfR!zOK@d7w%EJ1SB0<*X0d|X8LZ3T!wEuHJ2ufeYV6>q zNdZ$UsGImWI3%OKaL7V0B)Q&4xLN){#k`{(=A0LFGX+N-0d0(y?{^rJBi>0lXat_u z%G{i(d_?78pW=7s!oe}=9HOp;8u-6$Yj~qroGu3mSpL`=IR}dtV5&p$ssGy0-?H`_ z?<3S|C8vU_S@WAQHlR>3yGq(WCb0H5tSr*qE8W?dS)_#EN|yzG?)IAi&Lo5us; z)*P)z28LSJmdW-~EK4|;MwIv9p1k-P0VR?Xh3%w%6>*1EZ>&I@i50O)E?6k^mehNu zP$gRFw~e4i4cP^<;xgP{Rjp-FGXwA_?U-Vcn0;!cJ!#<%d}QGV7O0n;9Ky>L=Ub?a zx3A~@kn3K=@l+627zW0>k@fJ+Y&!b95U!NobvYe)vf(#{P?uw zpZm|cfZm1ngN^N)u8qf^hb05a+3y#XVbo%j10`K5c3E@Mr-g)=zputxm(lWo-}__& zcQVdQdPWUqEs3YYTKrQxJZtI{o^pOt+1UKJpSmv@w612j6$L^mA#E+5wW6U$d1?#@ zO$nmRsh5;pcB*xsj=WZN7U=@oDE=*jei~}!F({V+bBvS$$R_?cEd;C%N64Jlp z6XpT43XyNnm{`PJ=C9>%39V%Uza4PmKJMN}LbMP{uj$9@#sMKVHcR;lEO?EBJIGMj z2DUK{5vIh*Og16cJDMKfXU|#ee$8vM6HgZAj| z=ZUncfK;uhh$F-vS;rk{%@(ds8pa2>J_ubRyUDMpfP9SN33{gZdb;izdSeSy+H`?t zGU#2qdyyo4S26r`*cJS5&$AN-LX{6LfkF;i!$IeL`}^zJ<>ki2ZZB1mzJXMXWFX%P zBm9G#i)#(eU$?rpxp{FQgO&`^==*IsmSF?%erXjIm7S6l8B_Vg%?&dNU)UfS^71S7 zr1iaPZ)aqi@I2q{uCge5-FB}>&!l~OCwy1;)KT9p;OKSY#%)tk`q>}tIrCiU_^$G2 z*lzTk%64@s5u=I!>tWh@48*JFzGiaf2g5MqIvd1)R+X-EgX;ztQM66|JT`4|C?}i5 z;Ze8L;0)F1dv4I>BJT&aHLmth7E!*j_lzFWgK()Cak81U83`24fVw4%cvP1C(iu6) zGD&FzaNYEBk;6`_XCk^LU+3{^?%g$fZsRuLcvs1H5^EBZEfB4cKS;#9_I6n137lvc zR-W!ArhW)IkJ3spYO9)c-+e;#k@Tsx1&0Po@Goo=S=-_2a^UN(O&nR}H}p6J6Lka? z+g%fFr`lqAoy29+2>W@xPZqjmW-p)H@8ANr2Wl_3g3o&`&jB!Y%QfVzF!jc-Fd$$+ z5^w1eECMH+K%jAXbhj_^zOQf_`j;1o{Ps`S9{(2|0d_A8?yhGjuUCB!`w3lbCf(-f zKH<<1={VD!8(BZ++Y*=@qQ6tp+`Dum@7>(ng|A`h6D1lGu!|N=O`Pn)V-Tw$RbDD~ z>a&`YUnHYwqZyWNF^F*_1TgG5r7UcG=H6vjIL&Ab>D+k`wlD$j&qh+A+jsTxexc?C zpqGlVsqs)h6ng1k)44@Pgb`JlDeve>)O{-9Mbr);yuj#k&S_L{{`1&?e9z~7aWHk9 z6rPq5?hxYPHE4pOGGSvtwlQhb3napXm3{qmCyg}z*t-5C0vu`qhC!64rzl{qj0J*9 z_VVl8uA+UnDM6U2--NLBt%B=&ys22zy_LS)C;cs{Kxcd@eH<-;FFdV>uA#>w7Pp$~ zndcMSk_`Nw0X0Guy9prs;AR&&00$nMsmV8bT4B7Jit|+`QqOW*!BqKN&I>*|X+~Bm z0)fXykz3L#dcsW8F9W2|9a>-_ZQ%yTvvQyKMcUiRY?Arw~TYSwJ(<0W=it@0YF ztR{cRl(Ade*|pBDoCyoNzQBY-OF5rC!1nM5T8tmh^_WtNg=Ora7v}9*04Rsbq*)SpG<* z9jQp077jbk^Nk}>?vob2GnqKc4H5q=b9s4TRX|&T@_}}_c))##k2gII`t&kcb}UxI zeUVKU@;ZEc8A7}cDg&|id9zVSxleEO1J$)^E+`_8N-gyXHV4%xb!RAS#%m}~8MCgc zl|~0u+t#7MRI$*NK0|BaRh71bU(?l1oIadgSP3ndRr#Q2ykh(Oyt5LDwUFnOiG3Yq znB`EQHcB7vFg7mvXc_;OQeV|Lh4cb*1Wgsu2gh8@egUS8{_B9^sN4lo#Zx$);LA6z zAag1YCBGmI!JG^{Mb-OC&s}}uYdT4olbnGpXx+5nf5A29xTqMhqBBna4;4Y`zBR48 zQyV1;&jn|Np)g%wcE4q&64O!doOw@i)-wuI_uTug%zQ>N^IS(gr=!A==)Od8n@JMf zXY@|@8GW0MN-y`m{Hh!%EuMVxNh3<@*RMaDj_$YDq$WQPQ5mjvC0xMrVm3N-%eg{F z5YcZ9veT-7gnFB8peAx(x_|`)=f+UP`nacjTFFn=jua?~0d=9WTEsx}^QE)Y|NYow zPvMzoHsLd$`4lbUdYm}kOGR12w(UFUw%ZiN_rC82TzBoe5K90w=FOrX8y}|v^rF3^ z{j9|*dGwKoasR#dm|(X?qQs0v-7(q#?uU^33KN3Sl@VWZ?6sf(!j?;A&cb~ zEwl9%)P#RzpbxvV{Wvh%hrZzfc!ECo6ES2f1tV4ovT7|&oSgFE;+Af#Zk>yUP!!+& z&Uf(a-ktdPXFr2=D;C*`h#{uA07awo!=V5P3$0)Qi#CF)R8io)DUt%OCxFR920oIu zBuR~CBxp$~&3gFXfBSbN3;j_14M*Q5K$Dv(y6ytLKv2)hV*ZQ2 z_zT-oSlv{bIiV(W<*UNeGkT9mhzsJnHWMfnraKK&adXP%Pj>@Iq3I|&SGnmK7qn-J z-lJz`hNEi=+YQfc{+}5irHw1{=Q_PdqI8iTg(Xp1C>?g}*kN5YD&Ke9afkVH@6Al- zn$+ZHC2k$5btPQj@?thl6M<>x+@a$?SwQJW-+&~pv9v0QJ|7^HVIU#2m}1CwQJTHh)j%6GQM8)p6MqLMyPyq zEc_xP1R;{6WlI-h#fp_^Yj3dukm~cF3iwfs_%M;r${Uro55puiz6i+_t@f#@3c|Gh z=gn?KWh8@rG7031o5^5(xqy!66oo+4u>ip}t$> zpvddla?yxDz}9=Hpp;EpOF%dn!=q0;!F2u!f%-<=c>T4=7c2H%lO$NpBn6FiNt?+~ zRrd(f)TeHf>AZd=ajkoW^{sDx%gESAKl)L#Tm`%?ps6)M;I4B$Bj9p@dnSmwibPK5 zF38OUQP5|FO=|M<5V!2th`|LenzETpcoAKZDjfne(*i)-n|P~UUfN@Tc-i< zy!ngJ)>>yX7=}kPw335pXbci0OSJR{(bUvxec{?iAtK-)=t_b?5AMJJ0fOLN_`Toz zT`Fcj9(wR`5|G`t_CY;CFrA(xxkzC3niah7!KO`{toiHxw|;;i6eYMf;NE*4z_u4& zz~?^qIdslxL26V)$VULoTLna#ARNFWOYeJJ?|%CRuM{*8adv13PY^Q||dXF(5%${>b^ z`Y}SQT&ol|Ha6S10fCB^E}qpno9P(=VH&i_`Co@J_81A|>*p_o*vEKq|tLOeRST z=i68Z`Bz@ASfRXkS`$P(^qi}Tbaa7vX8aWw#Y0EUl2D71;vjJegu>TRL`d%wSWC3y zp{{AK4Yi;sebmyVYf_@}tKATlpYFRA&dj)oG>Zsr-@e_*fLcow_lqyS*t%7ma_KAz zrSSDlZd%r)CO<1t8I{zC!38d_Mht{I+BHztYeN0q1H&i|jN+oMZnVdewvBOtKE2ap z3$*@#W&*g1iu#($R?`BVO^UW{dmcM>?!ae1_bJTjX+bFm$jDBm97Pwl)e*IsQju0@ zkj_IZpWw@ghG{vgnO_Q7Qx-LD;Pjc3_`zM@Bne31BOm?*Nkt4JBcs^2_W)w?2$gUH z7A%}&#OBBM{?LHs#v9*<)vMOg($^+TG3?p98(;nE*YN32{W4aqT!P6|$p%kq=7ETg zM7SuOP2J3U!0^ZzwAVm;R~*@j7b7Gz0R++B7{F*>4k0Zx6!Bp)le0Y{lF0-bTYWfw zasa799-VVLFq9p)1(d1;w7b6hT^u}m2p;Xbpgkk}UZzV1W5c6lTD%qrBET@~>KkzJ zCF}97tKUU{PawrGBL0x&n4~e$gn#<_*RbW;=kOnX`~Sk?`SVa>+_UKn<2Z`u#(FgH zIW49X&>~7R#SP>f5n#%x`l^px&Do#%%xCca_rL$FG7vb)xnL>q6jI!3fz}0Sz=DWudoz`{ELkI<3IkR#o;%9^EYkg#!S&WB??b|l?LaMuA0>3 zXCW$Uk{U6%z~z;Qftu5`p1v$yS)D;DqTJvx{HeUP7(}ZcGqGAax4?IsulIYYJ|FgLa~zalVwJ5@Kjk2 z{5ET$E*T~ut3@GVz*#DmX*o~f{s-^E(@$^2|MP$U7b^ZH>z5aIf z_czu*ea9z0N#&nrxU}l2v_%^JnOS_JfdHO=SqB`Rz6l`D;0rL6CB zz%Y}`+k#4oWE7Qb1u=d@CGYqtPk9lq(>MtN8x?IoxIb#-w|2eqQi z>6&A$3zO+I-#2N?Mc;Dk`>}5M3KBOU!|;cPM^H!bYDm^8r)^NBx)k(b&gzQv_%b4( z)4Br>J@gQ6y6Gls$`^PGm;{vooD0+{|x`>0uW+*;ew{EpDD{XCUHds>&6{$-` z_y6G^{=vw`=Rf~>BRu*xrIEtcx!&WF62)29XMXofiJML}smU7=l_SZUNepVU65fJh zNjUwVQdJr2q&J;1ng6sFzj#BG7CTivCJ8V;DyY_`M(aw@lE4!6s|(CU4m71tkC)48 zO7^lK$+Gd=z`Y|!kKm$dqY!CgS2+XXw9niN8Kw> z%MLv%eY733@>)RSg1A7)1xq#GYh3{mg4=Gp&8`WUWI>+`PCB0Z+dZD^T%gxczZIS< zF0pXM^*2-WjKqC@rYI~m@2^?2#=1Oo6u@gni$GXT;}N9f^sJ5|BWhK+_S$Rlk&k@D z2Kw0ynd!lcFC_wL5epFswJM0%$iKqT`_#3eRsr2p>&D8JD=i)Me#KjZ3PoJ>eR{vh zgx1y2yIs=cez($9?p&Gq?QY)asOOYFB2_cP(LFb>B`(Que@omj&P~^v)I?>aHY?!* z7p1O4x@I^s0fPJ&PDc%Z`}ViLZLKYuc_8aoia}{4P<*?~OLbMu6c;ehN9mm_3QOV4 z1Yn7}4OA~gP}NHDiBEjOS{MZA?l=O8o^$Jm#O+EDS(tfG?@^11$cDa6*A#}jR^-oZ zm63ntqfoSP9JJOn5XxX29rJ zb!93C!KKC(q>6czc+_^qS{p#hL&`}0WTmSMK~C0xp-55@k!2pVrrSs)jEzq}gVBK; zEvP!{rV!byNI~%(vefn7YMBL1;QESAP3dv0U3)2&V+cuY28v+k6E4V zw)R7g*9T~go<4P&@69s){5K6I1`G^S0H8cnWmn(&U;Wiz*_Z;&KF}HkA_eA`ew4P# z^S6U2o{INNiGWjpdG5Ek{`IZrqwrozT!20|K5ETSw}HA4)McTu4VYpom@~^OzuObEdt=0)$lV3L+rNy}fK=*2-pe8>nsdXj1 z1x0}7I3=c1diswS^`|L<)~ruZCx&2(R%K=~g(5*F8BY-8wL+l4#Q{AH$a9sSBMMhQ z;s8)xU4+W5h>e?`<~2VSE?VHckIy=L9mtx}dkI!%0qZ#@q?Z<_5J;y>dEI~i{j_W^ zrSj8z1neH%bI(1PKW_nv!FpQ78k?YjjOv=u`}kZ)ebfa!``ojb*E8Sxef3U_f6(Sl z&inPBzKKU83HmLkwBk2U$3y?C#Xu*vEi+F=7D`MX4dS%Nn2k)N63`ghCn8~ILI;(DLbP|l5y3)%u- zbw4QGHT6pHiB@EK)$HTe61jgswtx z^D|HMQ&wp)Um);#QJ;t!IO=(WOEC@Q5erEuQr;MyDUP8jbh(7!5GdOVIAa1+ugNQ`y zEUZGIOoF26h8h&d@AUELo3a%a8ylL?)8p)MFTYwES#fg2`7Q_D9Z`Du`0c*xbb86@ zgl9?-on}c0$|Mu|cE8e=;c92aK$Vu5FNj23(>}|XAdwlLDq{D@DSYdR2XW`-$4Lyv zF+|`#*4v9bmA$OVWF!V}gk$cSJ)`|Pv$rC<6beCR_T(g&Rd3b$$6m6_*n z7g3yDK%E(XfwT+Y?sWmB&fmy)x`aSssBFvWJrY;3YIelZrArOeMbKQ}R-UUhLC#Nrhc;bQ11QxxAkrs-r*AoS?ATd9Kl#Z|%%67E)V1fHd(H-9DjZFJRD4A8+-F7l zT%s^DzKW+>7cPWuqnf-q@@5i)+8Bekm?+(>Ro#9ll?86O0O zUAra*iF^~ZLMD0#&=iVc?UH2%f~Aryjf(ZjJLSV^DbT2YwLEBxV{LAv)dW-Naol<5 zU1rsM?w5bv26(COJC~D^(ttxpd1^qTP1AoFQQS3iA{zB0O(nN^)6>|z!ZTrmB3ozcAW;t0cU@8zq+#5icq@Y~ZbWG=YQ@)Ht zB~-z{R0=!CPhn5`4ECq`kYc=wOvqR$4)0_U^<@v%cFw_-3m0K|vI!A&XB5+V6)Ijo zyafAfHjf=UchlN@43}MbHLkw;8XP=u7zHZ*R?UYeSx9HnHfBV56D7!t@M(m+tW{Z~ zn&$Vt?|sj}=+}Pj*DQ|83jw6gCHgJr0*3(QtuBhM;_3pQEADrkD=u))^!u|C0leZM z@SXWycbtH$d_@?vwt-p?wD6IpMoQeNk^*|Q3TVKi#wuvf3YTD%NdUg`m9NtL%cJJAN zTt1CVHiO-}cH@>?ZnK#Sg@OvTHbL^z0%AP1_JYb0Mco?5j-I5&JVu4NfpPcRbj3nJ zV;%$yQjV_UORWOv+|M|$MCuZMIT2&L`SF1%f)I~oVx~w{umdXch zgyi)F4M?_adjb7S*PeOvZJ=c)lVzHh5F)q;fHZbMV>z@R#L1H=o!FQYs=qAk{L#>P{$TbEt2qN0lT(3j+lRxB-#?;fVl9%MMp7 zMS@KRO-))OfVoGcY;1Psg+Kh@gIKa`DU$U`D{y|V(=1-mJ`5HYHswjtmMp|?8JLjM{kwaI{*EOJpqv@5(2N!S(aMO%Nl^G7MGPPRycsd>kah@%Ws&*FDZW*HL7_ z^`~cM{(d9khT(?mUUTE%#!qBRPW3<}O`>$yJ;g=W<>W`8uc?6{c65;NKP+r}60+ze(aB^zN+kkBjzE&r>f**Q~;l#mmk5&t;`# zweXFWHIC6z*9JE}l7&32@Cb&7$FOVvKCHWBgRRYwD^*D%g78%ciY#s-27*Ao(gqk7 z8CIDVe-*UY{bd^uArFiS3OrWyGJz>sOn?srG#0_*=Y0|=`XTSJDT1n3d2bHS^zOp; z{(Wej+kyzMO&&Xqd5I=0?Ci#zjxLNboe%8Wj{ueZ+O9>IA8Tb==lCMliD1kIOXjnA z96op${r!VhX%n%idrzW!YDtjOd!*bo<3xl(Yd@$ZL1Rp`5R=G)2&cwB zNZghdwNB|-5g7M9HF;;qn@J2_ER{8R%ZRXFfN!k?j?Sm*cLCUOY7Te(ob@N5);R$* z+1`R=OA{vZS@e&kY~KVwt=LM@8FgRGtC^O{NUaFOl3Yfu4pJ^!0y%O5m5hIz>>*I)tE5LWqi{F6Jj3X%Ut@x_ahf z)!H@Kxn~!i-m+OnHd&|_=}gwT3|#keBBiEyXi%R9*@=8;dX~c0oP8-TVV8hfV#L7C z)$+mreIevaQ%EM`yjMnQWEe636auuO%SGAPK#8QIz-t9RNshM+f3<{YxrBIO3gI#> zyHXfIdJ3tlBJV|_0N$(eH;D&HfdE`#*cu1ZulF)wkGe}3w=hXbF<(Ws?5Aa)M6A9A z4IN!L*w>4VwB%nnyceUz4E*shDtxfS_Y00I{s2PBW)!Hfw{P8s{d=|>A<`I+lP8Yj z=%HOWa_Eq4Ms?)y5d;5Y$Bx>ph2v!W2M_GVj-Aij7Rs^^HLl>6TW%rG(dJNI8~33x zAg50|GZrN3rqFiT64x@V$=h3$k0Jmfd1?Vrozg4`O;!EE7rtN{W~qBY%QZ_hT~g2J zSd*H(5vg@0T!114qWsZ*2AYnTOQn&B#ApeJP{@{S&xBx@`REDQ^1){86S*~SK3}My zf21GzN)DZ~JJHwIheL-CVZ-_j43S_n<+E-Dg>7Q_O-MBpoo`ih0hN>1I}p}a`P)aY zXu?r78@PPT%=1*>Gfy&y<=H!}O`0{3UCDf)XUV!3f zK~RopCPAf;$MA_WXo)1Sc=lZQX@!?)S<1H6&WPcV{8VWfm*EQrQ1yFoa^N&h4j#wq z^{cV<+2?TIkMG4Nf9X?LyK)sOd_FZ^Mp%ms@m)?czQA1F2qKMiDh&d4O=~3KNF=B5 z%(Ktqkw@>tC6}(n=_(8`K{-Cuz>RK}nF=^tYS z{eF;Eb16dwsaN{w%Uec;$1=;D)@<-r{qX5Ihg(?8R66BfGY_VVrnNSd$skI!@^xuS z;|$0$^qiN(MAIaFp#X|eFMe|1Iecr&gE&4pfKXio4apedkr0mdoEuAT9h#wPXXFG{A14uOF*c zuP5lJOF>&KJ6Y{yw*zoanV2pBL|K)`s#X>xGHb=SD$C84S6)sF`8mw%S&XjPU1!5_ z0NN?U`m2^Jw$osM__k^DCM09^Sh8ptyd@99BrljMFx<*?mxfvxNK|yxt9i7Rbb0fX zt((E8#fB_wT_ZVQ{3_PkKoUhl6Y$b1W6{>aPl1rN2{67DMC+4iqE)tFPB#|Lo`d4Z z7~0}>Sg~j!x?7qsr>P0ou3d-stXhu+4Q;6NMX~9rC$VSGZme6k3L7rD*yf-|q7hr{ zNpsaZJ7=M-t%XFP#ipt0cV}k@+S^*u*3p5Ej!ycW&1YgZ2VNGU@>EW9+NJO{-PCqr zq}0_VdCwUouQU`f&@<`KaT}0flaTQJGLZef;sqv0=joTVA;~W8s}A zwZVrqc}3Cs|0ODoe7T51xrA^cW-S4u=@iD&MdV6Z1fn5Y*$6dC7@E~A;Ee05rwocvWe5E0PMk6K`^*->2Lkyf&1_5Y*7O)xyid2khh7WiHw)3G@EtF!ErLU<3nhNP5 zum?yu!j&>&)dHHP2;Ov!)eKrId9?6aT{VlSrwlFm6qn=s1ByPMtCTCq7bh{9AHYO< zfW)XDV|0c52*&$PAbt7-%Kd|wICvP|!9iTJd?_|`^hNe>g%0#C-htCB2f5g(ovJQt0*5e%Ru!*&BSubU*)aJlg?EJ z^jiZCwMwF&sKZLDX=};kxcN{u!7*mYH%H8DfEvYLD`>0LuV4L^BYh}6cB6nqNyc}IkQ_34wO;I zjiD(KK>!6lMn!Ec6h&x(qHHOL64^%1Pa;Et)zH{r0|eFIrq0$vPHjADqO zA4)`R0HTP20BtgtCd5^cuF{&N^;y*-KUy5fQzaN?ke}XOdK8x*7?!d%Q3h}Uq?`9){_ed=$rz9L31cFe@X;Q8+=qAb@wQL5&sB+WQ)9u2u%k z+OUbBe4!DIvtlf(CKsrP3^+vlr^UUdGNz54MBvr!RFjvdV_3r^I8Kkcj^ok#B! zi9rydNEnmp3G@&4!An4n(W)&^(Mlyj2*n6`-LsG@=P^d|5GT@xeF69hL`4F2E}KC^ zeFMRpHmaHP&f8uTrzr8Yf-U~%MK~P5nKQlC_o>ZerfA)3u;c1g>+pdO+=lOb=R5e` z_rF8`WkeXiIOC&r3;O#>Qc7ib)OwH^L6w$zv^jv&qZynTEnwDyIKoLUrhHQbb=Vfh zeZwQjmPvr>S7OexJJ7KBv*^C+KO?gAqnK>C4DFZxdvtF2zcAJLA;h|GMKRcfB8{$* z^cV(4j*>JL(c0Na2)Z`08CQFM9VuK zjuOO32()H#b;_16ZmO>{K&zArq8ohPX~uR%D+x#hT<+G$BeeKs!7N{X5h4*S5e#cy zfA_nt!yR|rfoGrFguCwg9`9+VxdJ98$B-a7h$sEFZ$Yvtj^3eOJhyWfvegnvKpOWy z_zWI@>`DB~*Zv9r^N;=rzxVt96@U8=e}{V?--rjFJ&8M?9K@4Hllapg9>INwrf@p6 z6nE|@;vXL!!Im>k_}zba1W)Wbic~p^sxQlTO`)}|88PjKM-o*iO=2|NZ?h?)u`rb` z)2}>?)|N(e&FgjsVxBp{bPf{KGuVINAV1!RY&wr^&u_z`1q-ll%?8^RR~B4LODhRR z4tw|P$LPo?hK7c*ckg~2J$eG#*;1QajgC&>`0t{`B@>-=fUGV}GkJnElR{ik~0q|?LKw1$K zBg630qR@_h%Ev-Jhl%kCf?gHDKnNY3ok$VPw2MMA=*3{~8KlN0kfow2=Zd)cimMR| zC7A!reer_n_X)6Up9H(&kP`hY(qifDJ&9w-kK)>E-a~-Z%mOco2awIBu=nj{P(T8WA*@|5|U!Z0EJcfEtA?U4O z)ygH9-Q7t)QKTz%ICwgSJtrgB)>}rrYYloXUWrm;GXm{bV#g^TwhyL|CCRzvj!V$B z(1*#)NyasAQxYTmHkIfiNQMGl#y5g836-|2_IeWth1+qg_Yj`ivKiZU?8d{7Jb~|j zPy6t1!+`@wv2FV<8v~(1mR()5kjU2N--K)?XDtSrewawq zp{}kTNs<$-TX693VUmtl$>}3Wn+~7#be6 zdbDi$GTv{naSD1?13|UNgb^_&xsUn$qB!YalXs4Y6sSeX9dzofthvX=rYv8+yhaM% zVNxRoZ@TDf_$Nzv`cMDfzT#Euzu?+NFMFr7wQ#{!LDV8XRpw)b)_jQQ?Vs|ZkjtZ# z*XBHvD3K6ELw*z{#t@5yXu-xYHaLnQTD-G5<`B?kqns~Wjw^{|(b}7)iGhwfqhSo~ zY^W`SW#Kn9wPW_IIaFqvO6Q^VttnSU)HTFtP4}W#OD`WfghwBJ#FX6?S6qqPZoLhS zbxAyM&;7V!{Z%9bt5L~S(b3$F23ppMNSxoq7ioq9m1MONAb|;C-yT}$10^h5wFr@@ z2M71df1 zV1Hjf%1mQ@i)L8_0zs0YxU~>8H#K4Y!bNCoY&PJJ#^&|rkroUPk zeA6o;Ds7dYA{$bfBF7c1(6*2;lXR1{i2Ae+k?z%(~C(&DcpxCm%KD>;ZlHjBPfr{Li; z5q|(4l7`-+Cvfuk2{a_@uwd>20$R+*D`+ox86nPQLFzuxcRT%<(@9_)L8ryy6tu&j z+s|1jX3*RkB=`a93N7+I2M-;@pZ(dNIcjf|6)Zyq1h(#{O0;6u5<@Y5u%w8mF00j|BW2SMLBCMQPVt9lTo;w%@u z$fi%CrNfI$Hq_y>zkDMrP!CR>8oRj>Kfv$&&VRx0{OA9S z?|<)3lA}8O>aYG9e)IFcg|KV?(pG2xuAOT%P5MM4^uNLnJj`5i?d`D@iJBDrYQ{8q^qzCwMM`r?nk)6!G@J z=XJ`g1}^@zxEWBB3rm#I)0OHRCq1K8JFV=X!ZPnc7c1A;>0V5w@{T_ZMX@@lAMR2A z&%8E$YPVjz=J>41J5esY7K3T9QeU=Ld+AQ8xs{4lBlLMsx9h`oL=<3RcpUL$6#gVI zROv-FHjdL1N8k_p(Av_D&{Pbm;es=NJRCuhmY@{09{~c6EH(z_Euv~m^O8dFnpWad z61ZgH=Pi1xpWqP?fOx9#G6^)!5S1d*T4-o;l9n}pCr@@Uq^BYJSD%k$QHXJ{Ch}Jdm z!nS9S&z;6cKCl+I-7=R1fO*{7i1yjdSh8Y1E?Ku89qmn6xojC$E?;5;4;L+2f@|J= zB`&>m1A559V_HmxVQt>L$@+8W&zsM90EZ4AL@G6jdGqF=qoai+%x6o|hP823EY7qJ zBbClzaA?@3kZLm~XRib$6jMzJ$MWMLTk|mS#PB_2U?K!|PJhn1{L^g{)?X8aMbSWFy{=ZW-ab<6N_ZtX`+fpc)!ElxWnNCV#IRF?B(DcCSIV1LeUZQ;P2|(0pfU-?XRDZvKzK}{$Ka5+~K_KX}y%OTF1iI&R zV}AEMXVIL7Ml{pvh{i*5Pf1ps~fzf;we82Wna16DN<^o(DU&zhEsG%a#&=SFXlomtAdr?Q`aIBAY3Z1nfb3 zdncNk+RZu^kPeTI;7spnbob0bELvyR1juqzmd*l8ez~qOF8+WQD=uoIsC$ZzPvobEX!4jvMa483XaV#xf9I60Nmi+Cbw zgA8qf8eKZanKwBToj7E`IlAtwhniflBE)yJtL1r>XKuFZsM{fXNtJY=&smF_IVq^I$O;MkF0t}tuD?Afd zhij^{Q`&0s_K+Gectv3>7zb-H&@Tdqz+3#-YrE(XRJ4;|q>6O?0DgSvoA}AlcW}C6 zFV55-L11AOCrih1bmSPONC4VfXWPEKxpdZ=eYK3O*Ea8GwIKlNo1M*jrnxuYS0#;i z3HZ-n7#AYu6hYZbfK;D>#urS{x-XFsOwr;FkSWw9leWs9m+`JkB+$~(%xejPX$&C( zYKYHjL8Ax>R4@?4i4(_c&Hf%*$z#J4*tTse0iFOjRV5Jn5Q{_zu3GI7NM};mv}p@Y zojzfkCu!7uYfBsE&tHH=ix%OQTi#FLZ^OL#^LagivC%Aow8k~SZu6#1HW1I&0mu~4 z&=6smUfZ5n{qgg9=79ze-|MI>4ZxDKX?#p{l}`bCEL=rTR|HpHc@aMLv30opj@8(3 zSu3KkEONzD7#co=a%GGpq#l#w+QxViVJXXEPKCw>Vm6Q@NjnxR1%!hU19-nThNm}e z#Kd^o#uPNLUi9?LM|(#bNr9JPs*aE#lDs$;z9X8xnP56=6+~6q^Qo*gc_)d=$Fy_H z5f9eeq;sJ*)vcFxy>$2lzV~PUg!J}fz`>L7A3B2-{sfLc@+7i{kKp*W7m%MwW9jl0 zh|KOH5hiJ88P&#Pj_&6F3Qx|orn;}B8=Tey=UPqP>hfk1g9~okWm)fP22)>uKs<%u zT_Q0MZShru1a&_WksykJ6tF4n0sn9KG^d~ ztW2y%q!6Wr8AO4o6i}Cer2rAiQ$~gF6j!hcMkj#!g-S&g-D`^)Wy^Vt4xB-8atxkq z4sluAv~Y8UtP+Rm2Yd)9FTkC)Z z!AVnT>Rdb$w?T4RHzAwP)5;$v5$GWR4la=C)O{yr?8zl6l86;C|^m=nT9gtD63DwHDCvnp3x&)cHk; z)1=Sp&M0L`047F9kR6{uA)TQzsUn}xSwEvz(@RgJuz&9X?Afs!2lpSu?mc^O;J`tQ zkB(!oZ;QoD28AC+^=K(x(&3H7odsYscCjCt!>sso=DbV_Uzes z*SoL5nl)?9!r#7~7E3OV?yeq&7e_jkA(+Mubo2Q#3vrl*x=fPbx3L5V4<6*R>ulOp zS^E(%T@{8b_(hABGn1L-bn3>?><3}4t@LOWggL_BeqJ0H;&?|^k71$;r<2KmIP9au?yeW7sAf$d~E8gz&ooOD=zPZKjLWY5Oty^ zHfwDYNB9!{QwylZWa%!cE?uphz8$32mGBB8kgnK3Ll$U(g|~__U6mlBmJJQ!iAO^~ ztc+*-AIIsyA*4G-G2xliXVCf$kxUe9A)ioRJ?45AVqRoEVwHr=KMzGB{K^U{Q>$Z@?|Tqdc|67*l-E1zwSz`S-py2-+|sU6X-qNYfBo>>*+vqa|_yAXQ8WW z4i?OxXY=>9u*$-P3((N0u8Ab(bT^ZT0S`U&FcvLbLU3$ zPn!*CRl{Y=v~6*d(>lTLIe72@>PZad_blc&sth{Txs;<*?gh^3R$vy>RmxO+k%T>~ z*#N;{1hII`wpT9MS^y=?YHvX-65u;Y`}p2cl_Z7d%Hwjeie$VV?QQM+_AVSgd=%gP z?hkD2!v{b3QOxO@i>azJ^-@GcaVeLoMsTdvf@$s&1v!a3Lt`dUs7Xy;Rt&FSEGI7x zGjPa){w7&YfAYvE?t9XQqxlw;>U*&6qgP;eCWN|GSL3N;O*oNn!s*l~mR-3V*S@dL zNJcI*2|xAti)&#h@acE)VB@BEBF#R1wI*+Ic{7QDqp>a|@u(f0NaQKfk-)GP_^SZ~ zOCf~IK7@6`bSZR`eHMJlR@$a`pJ<1u>xxAUu~VM zL5LdkR<)7$e2qH(Z2W>BKECf4U6CA>!6*?WWp!(hgGO5REe$Q`nLQVa=PgE8N0%)+ zv})xVy!Smf;Hay!+i(;mRv6!>Uy)uyDbAR7r>?$17-UY@nZOX<2vS%U}8m zPMjDuD>)Ji@;wB4TbA92U?_@!b_--WXobIYy27y5KwB;E+_{_ACT*OCZKxFTlUzi3 z3^0y$49{b01<2ywzkk0KX!%uFguX-HB#agLlIZ=e6CrQ_m*)&e{vv$NN5Ydx)?>lK zHZ1JvLLyubZzaSsp)g};>zsqu_I3p5x4E?y?Tzh-g(K+V^_Ipqv^CGg?w$Mar7!*? zP8>Ul62X6PU>KornBS=p-rBUrDF^x;3_I%%xRr5crF2O`jTF@6HHiw9H~^g*4m7Di zCJ0LyL0v7D8dMy>isjviCmK-ZuPgx}(ba^++(vXRPr}dZlc^z;{5f>airEY$wFN}O z0cTfF4~YQ@x>XpV0q?7H`dB}GG=9w3tI0b~R21H}@=^-c_Vi~J@zCm5jk3z4&2=hr ztWXuL0+_Rczr1TD>dCUbr=plunTuqu0g+r1vEfGekB}auny{p885%+jm?~FkRg;BH zTc!3cy+H(l(QsN$2*@G{zhDs|&=$Tlj|q}h>lQe9>=gP=_u1M7b7plS9!;P~as-m3 zrp6{(#vRs8P%2Czo2wA)ra+EF0Iw1RgXrrmpf1sZkA3u3G&Qy0@BZ%ZF)%QJNE9}3 zP!c4#(tx%>jhe9#iNqNf0eb*mL7~1F?|a`(c;=aBFfuZ#XxVhWY({%IcriLUiD=Z1 ze6GOf0$8wMA$ITHO;SMu#`M%8i-~D|&_UMz0kC)%)5R!@&1PA!1i-?KxW2Wf$xz}n^ zla~|~6FC+w{xf~%te4`P$BFF==EtyjSv|{Q7G7Tles2X^w{Eiy&l(#@M#CAbT-Ab$ zFK)8Hip4RjBO>6|d?4qF#uwP2YU$7#DR`&K+p;S`P32Oo+C5B4Sc~_l8AaFP$ppcq zM1W%4_}j<0X|4N;M&Pp^B;r9M$Q5r9fru89iJ<@ZAd16PM9Og_v#dOa!)WZEjT^de z#qzop2p1v*P!FPsFfs%uRTniOtCA@lG}1t#84%8ibNIywU(WBg7zv>GQzMrPsWh76 zb?ENsLPZM?kr=62T^_8#kiWIevDRs@{(6F_?kOD=rmS?2*JsQ8wzjok*RJihY;i1B zNAQiKqbp|CvvzL`M?$vlfi0v&pjNYbHk-z=W5=+5{RV_dK-6O3Wq3~h`K(+`5mdGD zP@M1BvSo{nU0AfZn-)*T)6F@e`-;!uGA$^4v4ny=w;^efU0X*}TQN4Q{yM zeOP|c8qDsRV^cVXhexn|JN-QRI8L2DgSPfg)F)$Rc>S9gDIccGtIDo^%c*NY6g?}lF8K9m~on@wz2=F%R zPoWgRwilkE(NjfN%TjbV&POE|AQ^uavAQ&F|KxgHb6q_R0+u^Zfk9MQpQsD9&Wqk5 z(b3*f<@=oOSVy>=7a#n&AqMDW!bty>q!^^ai1z5HFujP909dmiG(hNQ`TegZ28@iEVqy&#g(Ak!^r0hOkEL_w zAfILaS^Q1sSY~@|^DWP~76{SLQrb;%mQ0>{awUY5eq<6QoGy%D z*U2L|db$_umJ{3?n(^elcOpB&{2o2c_)oB0t69~HSTt(O5o_b4Y*wvKKHT)aTd;7+ z3dUKjFkY6cDdh4w^!D{*)23&zea8-4m`J-*YF`5pn=;F2k$yAr7{b>4b(gy&*jd>Q7| zt-#u@E3mA76&5uvL%dp#%tW4*M<6QePG8FRvQp~koo>&Yk^&|gd%S#)P}!>1FRnW2 z%})L}Kc>o5D=C6hIF2R)cD3wOd8bKIKJ}+Oq#7`wp(2vPkvL^eC5-<_3gienDtJql zEq28Phs*kmgVmP$n&K5|IW!Y#Mlf_SW+#DIj(teKZeV_wr`l96>2t@LweE^n0)>B(xjhEE&SEWvCYVu*}icT~(5a_+5ED!xGV-c)e;=zKRJjv)% z8(%P0^dJ<_8XJDrqaw@li!K*KsKKUF8gUA9ceGN>@j!g1u0MQ`X6}5OSKnsyL6G4Vg3%9~bDJN@{pI`MAQTCRs@;X8Vt>okdEspey5^)m^QX;gNE~(}U$n=ev zr98K#1(o7Yw`eH(A_%64bk3tdjmb)J6oo|724xuw=%=b>60R~Dn2KZPSl z4;cXd`mf)C{@x6gRSW}z<47dpEU-s#*IjqvH-F=|Y!M|H-#+V((R-xaWFhk!$(v%N zg#mx~!+U6vKVi!+f9OLWz^YZNk7n$iD9sw_sj9`n!IJi)d6p2i@`4rz21PR3D#AhA_F1{T4Gj-AVQGO zr3fICWXA;rS@6St0XnNto(#FK7+`|1?30 zuD=XVKD~vO{$3*mV`DknAutm0&`LgKtp-iaaa)pA-4RMAk%0hB839>|d739F(;f_| zR2J7=cfGA9sQg~Ia3QkUteqR^y^OZfXIBDKIO7?|ojdNs-pL~fbjC3m$l!Fo5Ba(( zh68Er8aa-wrw(JnS4KFQKr|dB>7_DcT2(UzRQP^B35>RN))xpt-rcQwW2hH3O zPHP+r^^5?U&g&-$mR_0)+H~3am=E)N>acEo8x}5YLC2zcRHGI6HA<27wOV2Y;XjT0 zG4cu-O)T_I)#p71TH%|-MWjOHYVwYgw@`a5&Xdqpl zq(aTeS_@x`8)>SdL7Jzp9HJirdO-sWqgb+JsjWZogFAnS{(&)qoZl3X zwi?#*%IX$4aiWi8z*!Yg>nxOrrD~a|GT&^^1!^QC2~u+P5v*Rl+CWfX9F4|!Ej|r= zXJh?u#2516C(k{Gog;@4AQ4H_Co#8c7A8lBu;<_ojFl&GIx~tb`*z|$-x*90RLhD) zk?*G~*!Ka-&67Ir$TLJZ<*G8p_;Rr;PFIA4t}DGKMbChsg!*1rZhM+sYDajyL$%8it) z^~>^HN>C(0ic%J*_Prk(8Zd<(4%bu92T&yEo)WszG7W^iWZoW>GbOU;06{K@e3<~| zjU(x4!s%V7@$8e&qma?!A0gyYw8RPoRd0mKnP5rO)TWKBh2{j50g?#P2(tPh{|}KQ zI12k0DQ>>#D1xMnR`-aJ7CIeu?<_&kk-sInE=xqaBVvjm$(tSxBJ@?5uA155Gg6?X zj9Xjl(byQlBrWXbmU?{r_7B<8!1w(4#|HfB1I=cO28NpUsKJT?NGT?3;h`1I?BqL~ zycB7Wn}r3&q54Lq;Y0=gbK8X0n_)`Hdf^qH7Acd*EduOJEto_l!0o#B|3pa)N zEr~=F9UbkqYN7@$s#Tz|snJ?Vnwp#Jw8Ng;QnKDL6W#OnaFA^#(*%xdJ=;#-9>dz8bMEi&h)- zXn~xE9(o90_z(X9zxA8{4uAS5e~ewbb`uDFXrQ&&)D%P{=0mZXM>aocTLag{6KHFV z+1~!SQ~}+c9hlb^!M^8q;nDjZL77%!JWNGP%elR|89lSxtc5|F>;%ce)%+cchLMcL z5n+5nUXlyes7N4;Sj1_TcC9v7dAo{S?q?|q-S&*&>vcXI4SRppE==cd6)=$-NAGYSj-Eb-Lq`we(D6e!*?SUwBg2@?XE8KBhC;c3J^K%sQY!OL>pI+Y z^Lw#r)6>|o;{}8x0c$N78y~j8h0QJ6lfeNz#m6B6%2Q2k^czXgc!P8*XL0SBKcB$c zhNm}f!neQu9UMD;9Fb^{M8%1_{McuB^=+DRNdiOik|W_57@5SZ_8zRBzZ#31=b^*j zfDMb+!kg2A*?ua^EGB71n3o8B&xol9&@_8(c0F^ za+g3-vlmE88|v#>mfDOYv^KS%t)-Q}hs!^fGnB(AW?Ge*z_M2|j}P@xET18tBK+#2DQ;`o>2voSGmZ7{~sjM@SOR z;N0WAXz!;D-B1y2uA~W?)mL_f$90an{LJ+t^0lZ_hbHo`BZ=!PclVtcF4r& zSQ_<>0W`IHae8zDPafNWy#uFMUc89MVu&Q8C^EU*yID4xn$gy7$ym zPZ=@LEQg7S2^+j9QMZFy4pg=jo>~rOzDuI(wRH~O9^&Xcy0iZY#Cc#*(ofCoafqPf z(FVnm_R6Vzo<4aB`wr~ERaaj{omwW5U=0(QphhqaD}umsUsidbP8Z`=Y0=mQIr&i; z5+PN&d-mC9ZI+G7kO=R&Wk`Nss?15$B`6)JGOakfI`C(q2j5BJrlHbRx?{eokpcHdQdl!E1_kWj` zZUX=9zy3E`X#L1!Cvn3K@4;{U#&6<>cin{tAAZo{a_raR{S1X{2EW;MbaC>_?Z(( zkhZN}ycFdWDJUDoWAd{hGAC15lO<;I*%m73{qs^m~{{B$N z1}%+_j1okP&=SydX+;9mYmSFne|<&JftNQ{&n-8!&I) zB3yUPdzq&mTb2GbXZXSw zzJOILmoQI(2@(RIFN%g{l{qiAZQX_kUf75y@~1GI^kD-Do~-!EbP8LZe-@r_2=f;7 zpfMW7^A9|NYnHCSufFg7n4{exvuTt`=zIkDk%=5a@p_yh@%h?UzlLkBy#|+EcDX4t zIi-o^A)Tgt>0D_grC2VPjTEXSLBv2ZQ(?*}4E=VMq(qj#rhE$MwZ-+`y?ad|D?IsE z7lXQ1H1oqHnQA={LHN|CK4n{4yW%Qfg{keVU2)@}@M^^1LKIi8I4x+04;{vzQty4@ z_D`@3zngc-qRopyLqsxfxs&r#)Ro!P2RXDZKXFJd+agXbkj|iwn}rQ_xX^6 z*VJOL_w*<&Gp%7?Agg3X@lz^cX_`dzkZ{d&s=nt)bcX((7VFGVI3-y2dufKyEuD=e~Uw=Ig z9oWx8ehll^t;3)H*`JaWwBg_V`mb4&+aLV?@8QZTuAp+g9rxdNKZ!&DANt@2@xTA( zZ}I%|Tk(be@T-{BIm-ZI*|H@_lOX-mm%fPi-}Zine?5MD_m9xkHJeuJIR5wFei0w~ z=*Mx}hdxAN5hnl>0GK(d2tln)PSN@KGP&0xN<(!=3bcc?e2dyJrBX&~BhhoZ(^8dR zvn_&AKMGU`dHx<9A4R^LBX|ZePGE^QH_-xbN35}q7IzZS`Xs_Uh7&O~wzML`V=P%m zmq3));|)mzcy-UWH?(0^%PgEabsDEn^n|uTSFT)XR*%41qRN;f@JgYoX z&@;`=%{FU6n_6ihB()|iTeb{Wu#8@E$t5;kWB&a4rj+G>+qP|H$!TRtt)ZZ6vgQ=N zMDdg89d3Nw_txY>lWF~_|C!I)XGG<JGY#xu1MT&G2M3w zLrvb8C~cLehYlSwgFw@um9G-z-TBn@*Gvo&BnE0`4KOnW&qV@>m**M+s5$M5h?dm# z3DC8mkn`y4mKTYEjt;pnLSO-kAZQR>0D({deP{Zh#c&>Z@DW^n_0^c$(__z-3Po(E zvV8jKr}5{1{^z*ys+9z-HvG-s{BPWH^Ub*Xo_lEd{|0Wn@j7hWxY?Rz|NDRce{tQV z%W<-Iloch78{YFi{KcRBxs4qEzz1%_P48KcAKm?sRkV?jA*M$XpZ|4jKfDe@0+c{XOE~L06wT?AH(kUKrz_3vnlw? zB@%;1cq*)vOhwHY2*v!!Z&D3vQH8u)lHOt1}jgJ=%dVL^8*x@OPE+BK`Oe*Ic3Sg;hcX3w!j zIJ8jG;-!m8?!4Ch;v<_(HiQri5SVFX504Gt$)_GeKLI@w4dJP$AIIh`Pw}}jPM$c1 zox671+6bEFcktj5Jo<>5)}KSqyxF+KY|rq(uOc&>qgot>Qq)KZkHXaa1t2FS@G z*HLvq>kr7H(ls4tD!-X|E|7MeYe~7{`coLQX3ese0KHqv*{$&Ib0PsE5wTbd`}XZK z<)HLc7+qamric|^`FC4?^qkwGP?HN=G#FcXt}ZA6w#uv`Tie`%G9qJ-em@0Q} zIdsoe_S`Z*vtHEX^@|JsYGIVIpw=8WO;y)_ro`ZEi-87c@vlfQQ0svdx~Hnl_R?CE zg7@0uIOm(yFA@Xix5RCI(9sxgp=4m8SpwbNb8z4N_v7h}Ph%dL>>OI|8W6a9?;h;h zxy!Z$o;|k*-}vTt$Y{rK-FvP#3v20;rM6A*7z^>;ci)4htO#=!EXKe5>(?Tc?^y8)AHDk z?Yn5b{NyJ%(|d;HO4A(+Xe6mg)3V9(Te|1YLC@TIR6r9rb@B|xM#n8)ixw}yEw|ik zV+fkVt(c#jjrFsa;^Ns$aPgd_ST}nyHq2U#*#Q7yOm~?s2A* zKRKPtubf1`UH=lDyDd&SO4P#8LsBeDPRd(Nz#70P1*~|;igUxANe0eGVbtX9BW_s{ zAy8}50}ni4-2ppy?zHYF4cPwS4}WN_UD9Q0g4Q}4D(3sg1Wf$jC9@Ok3Vh%RU}zqsT@jF2HkQfr}J7FeB>D|2}I9Te|cj>-+u5PwvBg4?K!TAA1bH`CI=U%a&h+uYcp4SWgzbnB<_X zy~7gpp@$z~fqu$Bpqrp`#Z_0*`kaS{9(joO9>zDn^)1X_umGR9;|?4?a+K~EF1!3P z8=3ydBadR?qQwX^PT%?7_i_J&4npwl*2SX`vtihO6A)d|{Xh zmri2|f*ulsLJrkp4owLX1JHu-ks1U&NM&*u&rP7h!V@5Xb5}=Rasnw`dAYowoi#UX-FoL15Er>KSJPPf>ysWz$1@aN?eV`H0g^~sv zR;gUPIC$tNwrtr<%RGaPn>JHPZKbl(2>VUU$351+8DV@xG-at=dF8tdm{;@s;fEix zZJgitzMHXN{vx!u&9*#Uvu3TWqo5fB<3p2Z@kh~6j-#OxMT;knj$j?;MC#BPNTR6{ zM6)M?`l&DyQ;d7bk7z&xO9kwWsH<;5iUdSNNqzJJSy}B;asq$1|4x-oiqf@)+}|^= zNu&f_5Z7~ZsjB0ki@x~ji#Z_ZhR4!bgk)D<4+&#MIt{>?% z)d`Ugb#ZCno64HXo%*{~9`$bdbqB_(9J(zBZg@30e{s`LT}BItQTi<>-7r&!ydHV& zEe7=>26?{7DLB$=>O1$-EcJUT)>Pih!XRcD2|61bosY~U1|k>sbDCwi#6X+Ws6Suh z3}n%(;4NIR2%WQL5l~{Z*y?f9%{O5luPNRoTF0OM%%=$U@5V$bjgDDeBnBHWN{dtb z9IRb`G3pzd&`1!!@x3=;*+nbROn_OubO|~-XYo5dn742Ne(CnxttnjJy_8_oNXt|s zG&P~OZ@~K9Kl$lT8GD>GmUef#!ARO?cF;Rz( z)@IC})rwi2^=NI5BbO;7MN2)RRS+2_s?L(W6`I`5@irvlw5T5>KG}>pU9yV9&R{AnX%{_PhD(w|FS#oObRm+9?e-)<6qWtLG4fA}JMor!x zqWqQHGNdvxvusIJW@cVjxDs7+%aPXma0!CQ zsTTIyv}u#QTdfH$5s;fnXlwGuL}{q{ECW~R?567*AqKB$R>Jo;AI7Zi9s=9M*#bm7 zv;k|;kPjhG$u^JKbMOe}^(;hlV>5xkv5;P`C^A&JMi9=nI@n?}ETn3?mN3d%QLn;6 z9AqLW0YnfYkuU*@5AwMJ!LVF*Hv3Vb)`Bz{TF5$AQPAzj9>QpC2wC)Iv5{8gNG65G)^;>BCJ4R_ z7$hkuPn2klx7*;pBJ(o9Z%a1D5#lEjPoX)^yLX?&$k>PhrqV{6EU8;zY;XwK{!w&y z%tH5^S*Kx%VZeUA|vSxdth3# zJmjgsSf~OdvPv51qq17MG-%eZ&9$a5KAA#{<)vCF!5=E1f9NOyb%}K~srmJnfBBcK zx!x&nE=?|%2YMy#bHKKQ{8T3M{gn=jJ8Pd@pibqTp$hi-j8A9>B1fyH3@sKVpS z$>zJM^a-H6n#*M{IyA%rLRRQ=3YGbvQHbPTP26Jo(p?eGUG?v4FMn-Vqa7bbQVOg9 z6X}fo)>OU8Y!P`9gLIzOoi|{M-Q?P(qq65RMT5q8O!BFMng{JT2%90fULk zq!IC%AW6tF?6fu_qMv-ZLQC7j@N+gmO<@kG@y{jcxU4Xo|npc{>c&^D_Lh(KDH zO+jsGPGJ2d7vb{DF2VkNyYcWtkJv!Ok)b}E5Sb|zSZDs5X)+bdFf}~=CmII2}r${#F2UEXQfh_skv2y4%I&^(KWYxyGM!6 zXI?+|-b``tzmn5?q;RdgFi&;Oeb%k;GyTg+`OCjV%0gWV>iUql;pkbVk1MZMH?2Ie zPPy)t{MO{HBg!Y`x!d(6adnc8FO`?_ukzvgcgvNox#ddYUf1*PQSVXtbHh{%p!Nk3 zScx2H+N9k5_up@=2{X&!%ZVFbiOxlQXU19QFIO(z>leD{yOlp~8Yn*`Zhb!=d5v8O zBedii2*es=zz7g%>~(y%K5pyH!9$!gVoTtyGrS46S#20B0I0u4ZT93|5iK6!YCouCr8+7OOY2`faz{n?gO{)az zxBQYH^EeHpd|qqj%bWaqRAH#7^$y3cmuaENn)I$YcM3~>88?l;(6_2E>!?i93VQmA znHB73A|x(q+E*L}l9f^(l>$MTz#H{3T^Ju#mr)X_fr$|kgE*3`#0B~p9UequQ$6Y% z8{i8E5Qwp|(@h1Kj?B-JQk&nV!6m^+kQTN^;8XE1#Bo~lrE)>ZfTq?)ctTzrICK!B zwjFZ^CMPBk2?a1TFpOP0cOV`~prfrF{+I`;i2}=4(Uul2k~D1G_yp#3cVXdzg*JUO zWK%t>=sz=v`Sa#sXlM|_1b(&Bh^T5^iy+HGE}Jn+IhQS) z0!B$bR zab|fw_k8B>nes~aTshZ|`}?JydnvyXDGCh+)9Q$7Le?NMUDIGQx8=_*i|2+bf4Zjc zbe-ho{MY2IC(0u?zucqrw?x0?UM?SXeWsf!=iZwcj(g1&l`{=aRQH0)kO+ZDg7yZ{ zSTGT8Ik!x@1Ls^(*fYt13xG2T!@2LADX(*%g#zlQt>VP7V;C41w1HrOK*;Vn{(d@guO*T%M+_WshyVlPQDHewe|FC6 zm8u-$Cxymqu0LCM!N6OJ&WW8JU8mpX^f&Xj>!c_ZE`Kl_fv%iwxWjw8E~nUQOo3$P z_nuD%osZ}}db{GQg^8*J>tZ&I2m!V^QAg_Sq19i;p%ce3oE<|$dm94b2qq@RY`jQo zdn-XbfFv#YNFs+7aB1u9DxqJqN z>8>MniIrJCbA=)XNiatAtQPKKp^3(0)Mj3!N)!BMTH6t=lMp9S*=T*G0$8Q*&nqv_ zSENW~!D-5v`W`jUT;mKhOF{RP&Jy=Kqp9o|J3;il z8hog+9WF6&<$TiMwGo4#THr{qCk4$6qXik$z%yE!d#HFuXmPDry@p^EoIwm6aU=Iy zBKacVPm4=xA)RZU&F9ia}cN)v(uy zfp%jXA7e!<6;RiZM6@9Re)X8cU(R`+>n>%Z1gCK}Mu-i?4?<3lvMI*xi;@M?L{0LH_Ik6^=wOR!-6LhCls{sn3ol458i zAcn#r5*?>3L7>prNSC2v|Zy+nsvp;5lh(T_0oSC;3*?b9W)~$nwid*fzs#D>d>nd=(XT*TvS%I{3 zk^#QU@AWyrY43fJJp8=HT16ONWr2u6wMt;mXW=bX&{5ZB#6ZhhPiRVBJb-$FXn}y7 zO{WkI`U%GE2*)DUU84biTC_@O${-2AW&37rGp+5YBP4;^k0C{HPm^fud|`)G$XHzh z-E(^|JT#1!#%7zfl1^vQJJ5@V9(fq!=?Q%7mp)1|5XE!bp2vw3r*PolL0hC}jA3oK z_!2ByIL~Id6bst0O0y|^7M{RvKmBP-;~U;{BU)SPnf?J&7TOn~gJ2$FxS>eYx+W6Q zIO5?rt&SMNkr<+pB=aePU?7Y{IEkkECO+GMa45?33L~A%+Bk&v&Su6hhOd3?Yu3{6 zzW2S)M*8bq<@kIm+|OG?R+U~-$oJfHk110%>$>-3wJEn}$JT&3$CYf_U} z5|t&loVex5Enn(3P>YsY5Y$DdMU&)IJ~ggKYjcPM$e)fH>@8xTnGPbkA{3g6d2aX$ zTkf4EznB(-`nt1Y3L`)Q~DtJ;xAL+`b}KMSEiTuuYiaJdBnA;$;~Unl zKwIl9Y<+$!fqfLceZ4m2Fq=-Jxv7~IeJ(Up<*}!p!1FIWkISyS9G6~k8CI-XiAXGp z6DLmEN|xDd0f!D9#^AsZiNQiDju^5TH4FL(>L5wbj+$ZXPt$n(FON!#C>>Ra6%`eXLZyIE%!iIyO=hh~ z5s4J2DO8q^6q^*)`Bb=Hgs25YR+>nG7PL{bt`vw7TROMfK+06-l2=l!?sM-%7;%rfI%S6yGG9S$RTJ`CFaa@2rowNwM6pY5`&-q zeYOGNthg5(VxTw)p#47A9EI#&Yk-r0X&!$ zt*}HGJW7*F*)|s94?4x<=PycerJqQFW^QW0q}M|-q?VFg3BJMp2uMX(U5_%x-I(z{r?Q}o|YxUj7EY;gh&dQwk0iwKycL*K{60* z+p*J{>fd|wdoemPg1f%|eYCf>v2rg#p6T-3)~$5U<9+YH8A~o&ik-W6B3CG2{krue z0ZXuC(Ne5kwZ^tM-emhEoZ#0)uwZ_Ntwxy7XIZv1u++zU`*G^@aU|-Zw&_w+V;%B^ z3Ifn=@AnN3z*f>!gzX+E9cNV zHh{uZ#roYvZp!@DBFV$yLq{<>Hi_ZE5%l*DVrY2W7Ka+2$Y6MUf@PsffDR!T_K_U< zaI$w0Ke_)tT)bfeZn^4Wv~+f1czDpZTGkfSFYMfnjhi>ylGK-6b}9V9fDHgVar_i5 z{$Yj@Ab|^!v@~MDym@HrXvV=q`)ujfmX>xjHfduPt=2fgZ!0tGK0Nd6CMt?LEL*0< zt=cg{qNDW?qz4k=2*!tokzrh$o0{MyA@D|nC`ElJM1eu(?9cmuDaEi8pU`fg?K!PGRw85ys8}8J}4B0_nN=GChvH0!CK`^<;Eoj zE@NCStJn^e_?)YBA6l17;XAN=@-Wo>%i}9ND`Yr%oJ4OIsTjEnWsM z*__iN=|IfmX-r%|Sb8fV#Q+@K$bTOJ5lQ@3- zm^B@?HZ_y1j9}lMJ?1Zwj5D8eMgp|SR?qBtjMF4MK|fl$JK^Oq6R63oTQtboU63zCk zh_H<{p-5rdw`UoM?BB5! zBf~>zYHq{ArOV+7s414wlA9Jc(Pt+9D~an%{n^SE;l2Z}4neRZ|91u$$^&0VXLhpQ zA(FrhRpM*aLapGZy$qtUs0}EK#I*4Z9e@ASkt{SC)j&0EgyTB>c3g}u6pAqMqYN{` zu(c+FlQCM~K)Vc92~1O7DrH4VA0m+EiTyFUx@7k*|3#}hWC zQBL3zVR~w{#{!8$IyH{W6F|@U|AQ98L11-q%J2JT<{B?1Jo9f_?hjD1^H10mQ8F%e{8oNf1<8Znc z+fMGsU}_kP=gqTO8;?Hu7=HAVA7TEyIrx=dz60G|Jy@=8kDc4C1!TpF<;?#WjvhUT zEsWQe%^NX1G=P@oCYFgfD}2F}fGWQR;HoYwCsjcQMuspjI)Xx_WHWq9B-#_KKSN`~ zm@K3*M$$T=w9KSQzNeVR(dit0{o=e|1fB`X`d}qc@$q|6$MkJ#YQ(PRw_(@r-8k0Y zi~ed3PoCO~uWfk%8^=#ze|7{rjvmGs^El4Dk1^lFEY})u!_X~$jxMm5>5?OEdFG$q zdcI}2CKrxKAHS5|pNR?5)#n1R`<$-3eyzKUzg50Hk&wT$&3jNvIFsxJZHl^-rb*Tn4-B@F$ zcwjwLc!v)k!yFr9;B+6-x4HAFhp)NCKwSw%T69u0YI627qOzF^nMv%~`GQ&Hb@k0y zxNHTyZ^9S@eUAS4#EkRl4AhZ71s+;$&l1M&Py4smQiTzmef}_lL2Z1a5$OcFC@o+D zdx*dl3cb7w(?Sltgwtk0S`Jx6!?nm%;IyKk$bl9^Vy^XX^Kml)_dd)9g0mMJE+Z+|Y#j z`X()Pz-LtO)Ez^o?-R(8JOufCeO-gCN*HH2d-v@{V_iLiFXQpY9%uT*`Ldu9hq3Vq zf_SryCD0beEzRx77fK{55ll>`m?%E9v^0`v`Y|%tXL~1vS+GUu@?^$J9p?yvVLK-|+sv_DN$DFoyJaFH=MjC7b5vFo1p2W%1XKb105aU>3LCps|*m`0w zo<6o4`B(sfmL%E;{#yAl5b&a%W%t0YeR%q@Cvo|@^|<|`A4XSaCvv$ow3mX$l05d< z6BrsE#{T_#ZDTDh=ruGrgcn}e&dM0E-8IY8mVo-{t@0}$d|nd9BGS1G0?{xM4M|&c zDU-{hP%R?IdsW7-O3+pdLWTE~###XCd`0C+PK1Of{KuF`u_%RDhqceg!o`cRzxMVLE{WGNLX7xYtW**^|0#WOh7h0tMW>b-j=Ao&J52b5PD|j^*17J zSniA_VTWX9++Iqgw}mMl);FyRtCl;e2cnz03#eyU!|adY96fXt-Ltz84u|-g&nRru z*$!U59(ipo21X1TtqI-+-0>ww5NI__P+@O>{#pBicwG|~(<&qqI{-PI0TMTXUoD}X zfpdgV^XD8LA|PY0I5*6K%>veTS>-LXZCcymgN;?PpB@?8Dt#5NWZIz~*t zZFIWs{Ts({rJM!!{JwLYvs$79@jBHt?U<-RepGNrEPwY7D zYx)sfZ{Gb8Aa830DXM1AT~+97MxGbk6NSc5(vycJIW><;&32)`H@A z$_9bvcx-BJFra$s=_hf~ij_9~X=G&723OV-{K5p{e5Hs@hj!tiUC$!rsUTcO%Rb=4 zWHxOTO-p4SK6u2+>vb1jg4=JtncpK&*366|v)g04a9VTwiIcXFmsVuF{`&Xe+H0?~ zSrPlS>R8ttw6%4TNI4tM$iMpL^^KG12~1>DBnBaP!+vCoITV@pS}>|g;-+P(BP21t z5YvXHUzNo@E%OXLI^g*ks(o0 zzpa!}jCt74bLHRs?sWU@IY{pkGs zF6FJ(2~cZ+oAv_sA`50ZSH_&V3u*NN(PR@YyYgD(m_Qq!-e}`a7W8zZy|o2VhOZeR zSz6%!klzMAYK1|TY5=W3Qon{%v2hvk<|ZWCTM;5)jT1yu1a51Z=bykfOAC7{MPTDI zhPNa=QMsedy|$i>7E2-eLs@ zw(h{#nE|vmwPG(V=OdX>EW30q$qD1d{4I*egrhcXGeW|5%PsH6XFmPQ_&@%S-@vDN z)J~ACZEd*n>Z=(;54LXKZgIBOGDT3CZc;&}kU_qxmI0De()bF=076X9ppHyaAM=a= zTc#hiB&c=njfm=^wnkSgmRm24WGi3EkP8I=49Q72mc+jPlQ=msgr<&GwA3}CH4wwV zq2oAu;1Een5NVRBjr+GVeFk9L}%Qwwl!B=O$&AWsw6NwP@0B z|MqViA^+C5zGbr(1_uYHeM;33RHvOlTHx#w1&Qj3oJ%BJ@P4D>hN198xHY!TB`U8f zH0bi_lntn#Vm;hX17^qeeaP{fG0hKLxUl+19b&p)GsS$=`EqCV&}$b3`>JBC^*qYC zwyYG4l$Wd}fsQ4v#mIH%C(e`16e+Oja|`xtR7D1y%52cMBY4Sv!nw%2_0cU{ck~|Q zY=~C8m+vS~l?f=ctoiN=6KO1y!-Tr4;&B}7J&glL58%N51K7KNFB)4KZR|m{s&NV0 z0a0re#Ng%k1o`~(i&kLI-o2RQ`{E4*etvH*lcB#dCJD-Y`AK+M>(ISmJ{I>ZgrDT4 zAyJ2m<}SjO>o3LZg*`Z(8^ivAJ`nPlP?nU;5zVg-Qu#0yNuoNenX<$7f6#(VM~)sx zch5Y=uNC_bAI6~*C-`kaYc=W{?Zaql7{lo?Oct{*l7PSz!pSfaEp zWvHq<@$;YmyxsfffBt8D@rz%?*T4RCo86?1?F7iKs6Nd6?GgdQGRn+*Z$uQ1;wVyZ z=bd-rx#ym<>#yEgK%sur0P@~b$MLWK`c?exm;WAr^G|<=fB4t0P%rL>KhC%cZ0M@= zt9tK{bk=)a(UOd$&UhgfMDWE)>+{IB1HKW*ig10S`l<^A=a7ISR&p z{**Y@k8{HTUMW&n4LV2l_iI-{IkL%0$)+u85Qm&IBJ5?Hb;>XZ`|sa66`Cpm;zc$& zohH-w%uQc$@{4KZ200yPC8o~YbaInRX)MP;oD1hEA~p&}EeG&9q(uWH)$O724*>$| za4L^e1GLDQMm8|9;tbG{zYwj&DKb@4_0}b#&>S|cPqtPnM!HBM6pTbM#tIjR#0U;* zp3h_P(iOP=z3)Y~SR^@k1_ux9N061EsiB@>2QZnLH1gqRrB;|CQ|hA8*3KHZIXE$n z3ghjiU(G5=2ITDv5 zMpEOLKnasxGVT*cvH#Ek#-$1GzU(U0MPukE31R6#AyC0+G0k&+Ilntdu+HW)Ot%ur zOTfyMB>-h$Xn<)~MSXK4qKOy+(I6s;D1wahnZaJ1=sRWa9Y~GXeiQ|78U7g4+0S$q zRb%0(kQjM*)Jz`_iHj*X+5D`Hkl8`@%ZxP0kKGzB7Ph{TakWo(lv#VWw?G>})~qz1#JlbSO_h0gSm zZq%eEKSL4dx_Z|Ia&;+Od+oKha-v!jv=_rSzVQwG)nEM;zWwcQ+f-d`v?l*@A`}w$ zdFgh^YqIEHMHGe`zQ*Bg+qTV?b9cqP_j2O#P)`Ozc<9IX;ocwJi>t1<0+(NY8J>P- zBmUuE{(%Nwir`OLPVDk{D$_X42L&p`WbHHK)W+8*ujvV^;PxWDQNQR2KAN(p=2}g2 z6Ighth~9Wo3RDSX21r6w0l#xD#i@pDZMf4=7eymo9j#E>vGk@!efpL1)={a$gpx96 z*6>)e^GcO!nXXEu>|CGeheus!SO%^9t<@9tPCK9eZ3`YT<>beR33J0)5?Ot>K2wmk z{jZ{+V3=-3s(4?k^36;mhvxjW(=$3dA2G_oxJ{=X->EJirW*@=$%p~tM=(7-G(?Mb z6v@U0Xf{TMir)rUhC|2^D16lJ`i3c`7s0hka%H<^PDfMC)NYiGOb{r>C(~vv%lhx0 zHy>*+-hdZ&?7*XsJYtrrrr{L}c{RG&7R-vLu6tSds~WJu8zB;mczq*6(I`5)W}|1} zLfh;}yJZ&nPHXXCWzuv(Pbh-4x(gbUXzlDUBC>PuKBV}Lrj`b+xr7kQN2o52O2C5> z8Cu`?FnULZY!8Qyj!yelZJeadlE!EirweHu?mvxVCr_bNRKvM)OO;zq`y_;xszBSU z4tRqk$4na^UldQqts5a%Bq3p0L(qdH;}A+lj1WW{`CWAh3q$)(h|R0T#0Z$0VW_}7 zMPAPqY`qDO2F1JqQPxWF!D|Do*NlktZ;#%a|FicYy1;WyK zH{N)obuWl0XdIOGUl2)9OMU-aS8GQ5`I^UP(0LP17mmB(Ift zRB3=sjHl3$tjEVb_yK(O_D^8>k|h`!AEho~9p<0#3)DM4njOL&$1(mI#AHhQ^~q}* ze0bp02oepA&;my`n2IkA1_S6leHz=hK2HmQ5n}>s>epcQ(7ugIRNW1k^rVf5kEoAza?%FJ1<3|P0JNK6 znAZbBIs&Jrkf{G$TG7Ld3NTFV9;S1FsYa{|fHaWJrZ@6W^uWn4{ZbtCL!{u15d&q8 z@@&LaFOT=ZcKr(DIEzDBa|o z&6ET?Bt-Jd+nPlnU=a!P`8_tj~ zUPOJe4#kwFE_yMis{>n}-iVRGVXR)Z93fwb<$x@jL?J*jlFcxm_zi02-*@B?diw`) z{SDWnp-n(tz-Tdp{r$)B)S;aiCFn0CVbMH(EeHMNmZ#B2Wzy8rjFSU>w3hR@WZqK5 z3S~qI_Kgfz`K$1yZIB9j^Qv3lgndAlZp&_6VQt=nHfnB{QYy7hLyP|aJ* zz!b}aoHp_*@R{GKoIJJlbR0A(Y~ zwy1{6g8tK(jx4X7DW>q$(LLy&9L228S;&!0?>cc9yH6a!iT(i$PL5%+l*6eb$8ag@ z_S%m5Eb;{s0n%lbZIuBl!K&+8J<^D1$*EVO4La21Z7Z^#&(+y4ww5~L-ghnSnZIYA zyT4~%Q#ktV9tEN^{hTX$M(fLr(x^Fj@St@O2<+7=@buG9o72|LS}u8r#*cK0#vH6# zwF*~XeKl6BSYd+_Wn73r$aQQ3486Vm_{qHw;Nan-h7mWs_eLz4w+IE+^0I1J@%0TAvY5lnm;-xvBP77|1rUrR zuwv~xQ#$8M4D2rb*t|_8FtwPG11eHkeJ%8)FjSC>0uQEpV?%?DLpjrX3bVTBpn;XLz_hXMCk3x% zl`ZXgP`dDvT7E(dznDp34#BFJFXFk)Td-!uD%%Xn?+u__QnOhF;aCWz97z|S86F$O z>E1qc_sl_*pt^164*cl;d$I525hU80Y|Vg@$RNMt#OaeZFe%LPG0@kCah@-o)r~b> zJ!qkI+*(&>WkCf+tpa@nezgWSyXR~SnQw_NF$L<%a1s49+I{dB}8mQi3WA zbxNncM=34YFlq}MC{AEk?@(%D=vY?AitYD47YE_)Lo)X|Dwx zue|a~ySI7sX4}qL{uTbk7hi1PtT^bpNQ9mjK~Q)i3yOo{Dl1>&{+^i@Ge!5c&X2-( zzh6%0a(Yh0;L%4PwY3-A#hG+ZX`t^_>xI5ClgSu)kr*+ckrhuyvFWLe*!t{qIDX_f z$x#s>zx`u0?gFghjt)L?>L|&5yR9*Ewo8Ayj=o+Y(VvlPFC#zPcmN%9=h;9t0j(lY z()fZir*PuH9yCM(Ow@j4t3G`A_D=|TY+###^mM`~5hU*M6@`gt76_fdSPE2qrBXB6 zAnCK8`z&t0`F;46Pk)A%oR-t|;l2kSuz@He%-~z!|6wL%5?}qtub3tLt}Cy?qNPhv z7mH*2?p=8N;YTpZ#Q(L=ejLS05SyRgj18Aximr}X`2L;WXJH8AeK+1{EON(=UHI6? zZen5FhOJwjzNuSoy~Q@~Q2}jjZNvKYE198#WUo7Hn#_TNhj8@B30!mCwOF`lp-sb-xt(TRM`osnsd9d|nBJ>q%S(!$(&$u&bSNElE^*$YH;e3ewf!;ERLZ^V zr6QjOW$PkQcZUX-so*LMvKku<%ED#?8u=$apaN^cf-OI`q_F*TrnTCh74*1!$98Oe z?pd_ZQorQttI*ii!8FlIVEo<+E1dem7&8@Mstg1~O2!5e^H#8A!90TIB>v*MaU7!saEcYHnczB?`Ld5zM5bEAimNU~=gOsc z;rKy}WK#$wA~w!~w8jP~mI(H761zD~?U+~Bghmg^B#Fn|*XEPAdem zY>!QhTRN!KY?4Y#8;m8XlpcQMVLb8VldPB#+`zoQ{L)Kp_J^iR27@8w%LGuCRi&#M z06kT&O&<(a{U~P&Xbjh(IYDcNgh#VMoIIRPni=e4FrB zv8neUb{yP`{CEm^l9*yLh&YvNej<+uNu)^fMP2hzJ~asMWFEi%k=u<#ml#i3V_6co z*ff#RDCrVks;#S|Oh>-5CU0XAc+LdFnfhE#peB(Y7wBf**Yk4j073Z^36LLwsQavd zU;116RZ|Yt3ZU))g)jdufe=t@0VAz;s;SA^?bLPZDmYgJvg%&YZj2%T6B82_7lor% zU4^T02zs{&g<2z|_jO(1tOb)6Em~w@Db9+M;^@vSP*{3S8$2mK5{2P@o9-)oy-P&r zkN)V7aMMjU;nrJkweONYeY=)+)&^(lX1M(F%kiNPeaM~_eb477ao1gUVheHVH$MMc z7#tbH1H`Z*b@mtjpD&;xUT6Lud*psxebp6+#TpnkYr0o0OP8a^ufBe6(W7}4I{G%V{dwz_A z`}d-=quU6{2(8BLFKol!T|4o?+uo0Fe*ItZ+%sG7kq_UBO&d4jk%u3~_HEm+@u{cL zP*;y7ix;E5p&pTFgdgE0h@`C``1}Fu>z$?nXT@FA=zK|m#6q+*cEg(fv#?(bT`f9l zMNt=nDy;HUT_o;!389JkH$osc9hSo8ZS{>una^rL5lax%Y01t4LDtqdpfxS4Uab># zth9qnJ1u7%jl^uf0a^XlY{P$Iw*jV!3bDqm6ltXvMut((%Bt$6eGvBS*lFDomtJ1q<=XJMO@`<;#J|EEbY5eCX=y zv0?sFte?FQJ<)p1i6*gr?gFfyJ@@}>?>zt{yRI_-ue)+}&S7#+$~jAxWLdK1Buh39 zgk>>nU||XSCm0s*0=s~h#TXkf7$-T(w!oH^la)2fn$hH(yJtFw>gwvQ?*4zjTm7W= zpfDp_mIQrz-n>^Y+;`s%=X~efbI(<4JgsWyqrIhBgM$Ma86PodVyfYY`iA-yPsf!s zfXI!Ggm;k-$^!wJ%p|p7(Lz;KS846qNA%pfbs^Bo{PqO_oZ@JRr2vacu&P+-W5uDQ z%iL8)b9q&zs+37(14zT~BC4-fL!=u(K&UqkN_$v5)$7kvY-~~$v80yQ7_co`rHhuF zpmUe3ae1uLS#y@@;)N&Z%=RTZd(IO7UZTm4K0WuqS~b_yscBwYV4keS0O)b$g@mz$ zF+>44B~IcjFnDv*i}C9S1V9lGh=e}pqYXm%0UjaRO9TkmIOZ9i{@;ql5tv5X>_d4kA5>^mvY7M_35XJ@?$O#B&4$NdNrv z&kvRcEDH=z@IKzbbp$z91V9B*71^`x-Mcq{3|2Gb9xM!4BN&E2u!s01em52b-XDD{ zLlqBOPT(B5diCm%4}?G0xQ}-OFmRd#WKcE`;N~-b`)Ms*u~_fA=0oN)i`3X!tN;Cf zKB@P-^L?tXsdvAQY3rtKYHMv%)(Y_W#8mLjB3)|Y-`3*G(=i7)!Xb=tdrZ!}geZ3q zIvxUhpS86kJp)>C!kS=eWja}jJ(VbGDAE392|>gz{O`u*bN~h%QRzQ$!y&Fd)4Z5w zM}gja>&@2e->={N^Kdhe|Ni~^bn&GZ>$G#vG~gKvCj2=DvNaime@Zp6geqN64VkQJ%~U3w zS1cek_0Cr&E+Sj97}ikUTC_F({8&B=38X4As;J7kKU9U`gvRQIzz~Lv>WKp}f9^bk zg%DuS(Yz}XeC&^=2rvW?In8glHv$9j z7Oo*ou@u~X`|WzmTi&Agz3+Wmym)cgFuk98>Zt(?(ARh#jh%e3@jS#a*VvOjTXc^1 z@IKls!WZCy00tBws8KG_+#h)0f#4_g-uJ#Y01&RtojW%~R|J^w+!<$_5r!j9KmGLZ z8?XUz_@QM0vWT>JFW=1uK;YYZdV0c80@v|%i1N-g@FCAWMLOnT{*@ z&b#l?HP^gXAOFK&*NT-Vg;2Zqx>DZb%A7xcfi|pvMvp(S)&i*}FsTY_?3Z2kmLSX? ze)vHPB?~GGfwV!+JKz0|Fc$vYhV>!l{(Im1p0JL>`sdaMi^O%;y+1hPefG1T3C=7a zMD`b)f1WPC{4(8h&%NrlcDu=71P|B`y#KloF8Idp-e@Gb-;HpMYK&-^M^3p=emLM$ zGNqE>N2%uc{qm)AtmIT&j#vqv2L;pbD3xzG6B-}G3d~6_y78jPk{>|d=ml*0pq1_p%yC^%Q--Z7`;Pa7T{R83Wd%cRPh{6Y0~cPnc& z-rCx3AYf47GC>fQ{4U6^8>Nrq69p|@JWrL?86CEOO=c3h=l*+D)7+qjmIi&{8(&iQ zP`6f{wn|rBbEVF@$z>4L)|P|vRG|%=39_wLLP%K^fv<9 zlFnpj=OK+wjjFb}F*r01PK^ZrkgV^I`@L9v(%Dj&Z07!tTj(+5F$yRe2QZ-F(_SZ4 zbZ=bRuvC-jDYvOjYHVxOg4V?$eP+U7*rO(5ZhJV0#{JxI-;hQIN7PhDr>-<$2=)YT zuf8>uYTf-b{4&i*s?-!p%$cF2Niz}JB)~8P!kT9A{69I}=O+vb8G@-cA9(o5$Fynd z79Hv94OX%}+qY}uy605Hho`=w&M=SovfBeTFsDJL~ey*fMnM%U36iOJu&9iL0lXe-U6TP22 zaX)*`L);hSmI*-|r5XK($mfa`D*`CE|Ni^Kuml31;RJvI8$utU%{4ZTTUuIzpa(4A zA3%(PnNb({KJr3-8DiibtQP=)=)0nCB41ItM&E$x4PdZhNxy-Wq z#b5l-R-P8%(W9rjp3chHOvRWVt9@X zOT_hG{i;qp=_I4L)f&Ou-@@nzx7-{G`-Br$h;|NBOii}jy=@k4s( z;YakPFMTANd&zu`X-b6Z+P-ZU|$|Ev+qK z6+lePXpS@lSHJ(Fa){VJ4WRT_q8G~U_^Fi63!tF1k#qnCK8wjWym`_&v7ju?{_uTx z&(rZ@aijR8K~viMR5&K&bHaj=vGwX~WibCUguv9&ggai!zr#$9WY*88L$tu;w1XxN zn|XtTzOEh>jP@IwT7qyaPr6K;2Tb$$7!ZR$WzaUJh;-_wsjuKYkwRoRpp8XNq5 z7R~bP_^97eu5@LEwi;OGV-s3pO$WxrECtF5AR4N}?R=sz9;^j1Gk~U= z2Dgz6H5Tfv#L8YhkqUJkd`@`Z^lt*7u%{fX+q=w4ztgV2uuQY-que0S{3gU@C<8T^ z82PEFs#HsJbFdmc_v|_?al2pOZU62)di=>JT<0l&Z^^MLz!G+|^rogrke2GSLGh2Yr#F*T99uqsf4|6)t0tVnS000F3r#|(maP5O1{9q8c^cMtU zF$`~())t6N^wGw3(%|0cH}8rBZFD{&-pf7FdG3wwkDf=MGh2cDGxQMUd?Pz{*J!1_4E4S=sns{zR>_-twzhoRiA29ZMK$_oK{HcnCX~+0gEUF zV1UC{%FM$bI*z}A*-6?A7MF6SQgrwB>*P~U4W{AfBO{7Fa%KU)C}D~O7*IGReq?eb z<3!m6>6QgK#xB0q@G;2J`95_TDC&1 zbLXqvTHj+&KCQh5GI67>YHK*l4Q4iM-JzB_^9&#^43)Ki|A7#D|FqLjG%B2Hfqz7s zHg5@vo4*fm5dQcL1wl?3@!`*Z{BhHCsw5P^K>z^L>ug@tWpO?ed_4kr^DTyN>`=T z&|0tBmU=z@>{FVvc%Du>{|wDrGGB#wQModfEuOGeKBh76N2UsDt7)@Q%X zw0-*yEi&M%t!vQuL_uA-0d)-b8VC$3S)C0-1Y_l6Dl_=ay8ZF3fPm3rLAi0}M8`B1 z(zk}>V`34+rp&C|7c5Dg{|O7&31#CIJ}T3$BZstQ|6awi&injkRVJ!JITs9e!V<>* zUh2PCC~CyOCE>Knic@B`7=*{&e!@#< z=}k=tG-##}gb?QNV?Y4TeRte(M;HpgqRN;)8aU(hc>QB$XI!2=p7-n4tqV?ofCYvG zzVL-Fgt7d0z3W{%=bUq%2OYc{Ud%p{CmgfQlqWLrpqz; z=NR6CLr^}Sb03`2oR;}&s&7_Va!LbbJ-Tu4xAlLX_%rRAyIqBIM%B~Sr`;oawd3F( z75a->IcJShWq$v0a+70oJ~S|>!pC5|5Cn9|Tx@n@hEbaDK2b8UTU$Qqq?1ci-~7S; z>gg0p6*zPMQUoA~TeBxLFVCa75_l+z9Ur#_dg95asKLw$Px;}IysC}PmakZ)H7A^` zUHcAO%ggAL(^l%DOWqd1LaPOSRZXKt#)`V=EobSp)6Un5m20%p;9}vDgsm|Ysh)$U#zpwz0ewOqjI@|zI)^Mly^B? zbL|JrT;pnNY1b(RNALfc4{4qS*yq3a6}8WuqsuP8)PgYW?{K-f2mntoYRvb~qhd5@ zYrCZdm`aWP$D>mD0}{X-gv=z};9wZ8_#JL|K|nAxWaf{yi;3SSOMB|e*MmQRj}a84 zQpC{@&C(4X0S~A^coJC=K~J=JUe+P8&hd7?~boqLv=U53qzT6Ozvx2UD9Q7a6z#>$JzPmWj%kNdeq=w#%P zkiX39t*fZjnJ1pEmbzv=y7n=3b$4n0f;sBX4;UEqX|On=Ol_rNl?j82VHd@O41+Z8 ze2lw&W4uD!M#xpiszPTSDU3L6*PX%BM2wjg1;zb4oyc0iPHEpzpYGqhUbj8-xVH8l zR-eH{zrUlRs#2u{(uPX;bzgDXaq~!m&OxK2#Sm6~Lt(xC{;|(!gW3QL0z)%1ND@|V(#Hk` z=p=^>4EhN|W1;P@Fu(9eOn)HsVwLq`gkJ%`BWY$7rbM~m@N7pAg`hl`b6xo9Y=s7g zb3x!>qOY+gI6!QHOod;9;3~J)Ij&_(+mxMcc)HRwMxY?cT8WZ@cH4P5v7ALDyrN-qs(PE zHkQ|-h4VC0KB{8*xSo0JF=d=C&O0OiGmdeSPm0janOH{2vXlj$J9nAiIg-;ze_kz3 z?ICL7y${`|{MfLTEMKCQ_I8z5Boxo2G+s95q8V4-^*=nA*H~dn{awAmpMv%T;F)ro zVz>x_)`&I@cB|J)bN@s^-F*Wg7*cgjwHn

Lvv zrk&}6XAP#a^k%*%$^;prV|O;FVTXEN|vdhI9@dXcbUKNAehJf2w} z+!xgmd$fHV^APZu{2^u#AiQwW`S!bOU9QK$Az;FR= z1OWMg4}2hiis(5A0ZQ5s?QUisXa0st0`y0}f&I*FCe1t-eIseoUfDC15x)VBY0Csp zVrYQb59EtyxR>{G4|}$#tg)5=iWo{@wgVxUv64jb5h#h~1F6uiy`9Rq0iAKy znY#F*3&OKF=M7sJ4GiVNih;~|$HZFY#*g+)L^zhQMLP?oBsT;a0On|zH`4_POG_EN zQaK$L9amDX=Dnq7j18vuZV~Py1U!ld!BVEeIF=W8AR}3T&&Ku7C}j}P(9jfySPBN? zL`O`!ZgbX}M}6N&aZJPAhg4t9Is^&TswSlK_}XW6`k7~{wW=|6hKaIq0}%y{op%vj ziT6&q?d;sSJB)|dwKi#A#{nJeJg9{W7MX!9FtABlaIPiLq6Kn!MadO@wMhJ5Q zF!CGEYCO0JN`pz2;4+Lq<8=){pk34U(UNBAwWp|#BEduXQ(x@)9qMkzwTSOT=iq_g z{qA?4kMR#cK+|Uop85XQUVCj2^wclJ{gJ?gj!u`~Tx)APbna+qm0KkBD%s1kM7-{#k;hEpYo@)^0iW4G$h}jRMOUP!1TNrx53PE}^ zpN-0lwAsiPI^uYN$i3#9u`-R~1e{1|#60iWu1B zI~2kPXX(str_Jt1P4#ub&mmZd{3iZS0&w!6d;#42F=Bz>EEBY+U)GulUG0C68P7qB2Oyn?j_KMVQ;=|oc#kN(yd z>IHGiyUg3LPMVJl=0-J{EGn-KJ-hoc#oDJd5+4osz`82S>r^{lueyD;x?=vNT9sL@ zwEvEWexksjHv$GYlX26l00s;f4D}DI+Cuq>$JgrCo9|SAUyqh9Ug&pDDmOe3h86$~ zL|mJ+1gfmasM=aRQ{!ONGSltv?KP|R6)@m=JfDR4=cqRRmjH8TM)=`w$x2#ItI8~|ysp;f#IsT3WNj_<;q!WYHg z;%{YjN6uq`k;{uIo`kZVJ8!-L(r6GCtk}tHhjb#X`pF4Z?%t!PzxFllyY)8pKJuW- zw`^DAp~K2O^0>yH*{B_N-KUP7yHvZNO|iNf*H6k?zH7{#q_VtHHC44?wn5SWU~$tT zwJmMc?!CM9(8Ft0+f=Uwa~Hauj4I;}TwwvvDw9~mDr;($sj76oEwo)HS%kec-T){Q zj3p*ik;$mS?WGW((Aq5 z>lX%ThV5!*Sf+q)!)P&tTE^PsqIyG9q-{pbk>4=Ih_PcKh~{~tb)hLStqW6Xbl)rS zgIW6VC=$+W)K3KBD1QVp$204J`y!#l_0N6obHQ(bp#rpMo=1y5#eAMQ{*h^&jcdGv zGXj)}XynL*Y7f`z44tBPExcN-u_h}g$7i8? z!vTX>4CgWF%U}Fw-TeKV)MJ6}lGT}KoUYD}&Ja@aytB{tsZu0400PzmK!KaQQyABi zYwy>;-1r@xeb%{V>SnmZIW3ykZotu{Oe$^V&q&YtsHv(}VPsfS<9XE^y^T*;gGcLe z-m48ZMuvx--ekCjpda_Ov9ZwrM9}x=47Itm05vvP8JrEC>*qVLaP=H&?&=we1wI6)}`xHQk+M%s+~5A7&c(8@Q7c z#!JYz(tvH>?wu~5fgp7Idiw(?OQo|e|8m6(IW^~ts@ZcyyZ`krRczg-*!mqR-@HX9 zI_=44cdEGUkPffkYv47mh3B8H>iO*!vT=>MJyyo6LRn9Z`Q6sWhbD%UpUMYq{NyuE zo;Hmh(9)$#RBw%E${mqe6==bgmDL6pW)K$cSbT`w$gl`Y4QHw<#A=Mmbkc2)DVgqw ze)h?2+cY@kHr3p&(Ol7;vtM&+8?|`BqEL;@?LK^{BLomyvuL@h6B(CNi7^AD-13$8 zyGKUys&qL3Qr_qU^8(1i_+X4M#PB`SzbQ+OVT71X@$_b{IODa^y|eV%5&|j`z>y$> zIL~kP5m6sAf8zsiZ`8~rhkMSTa;#W%yVorg(DPQhoU^ptn)~KM)z|)ddE+z zeZ18B*?2!~oOTSzMR4OU07$?}5`8n}IP=>{hb<}_(wez26T=9RPsQ4`Yl9;upqc5O zQTS%2dOr2kQ+n*NN3?m90l)a$X(F#>}g1B3c$9|M4a8^W~E`VnBz)fZ+ASOQM_ z7=&8_MV0(Yl^v%bEl~gJlYeQ=YO%ib<$nqvzkT}_efNeNbk~hHXxt2V`EplIWtDEe z`FncchYzT)uS+MNaH0+#*rU&V=CAeO-FK_9x=yE_a;ox!y}IRJZ`2*Pd_S1$7c3_B zwJXq-UX@83&>Ygeci*M;8@Fi0+W!h`bX#2+_uO%(Haz#NhFuv8=Fia)Gxn|444dof zgYbXch!3;!j?G*3_kZ`d+Ubg|H`rLUY^gdA?$^yXeNWFlyWaV%P-{!G2KxH-!+Y=5 zefQl@L1@up3k??_fh+KJK=82QBi4hNo%l^hFav`fd^(br&ej)7^=<);116x1;8Mik z-?wXr2(mqOwZ_YGey5qB-@$AFhGwS93Ef+!vB^=5l@-(wvsPc3(z8!J6U=!l z7A`Z0D{9moe<(Mqlm+wQBR$UFNbmBpx?a8WmCpa^@W z4t95U2XA?12yjf`ozBkAa1ZD4BR~ie$cGTYk-%dg(M;h7AwW6i92?goff?n2>obLK zB!Jm-FMICg9M3~h`mY5=d4PByTXc>MO9mUq1V2J}WBp=yVW!m}`aUT7Zk~zC2dh9d zOu}`_73%?xn^@G?xE@&xAo>tN`c61$wN5;7jV{0JaxGlANF({Yn*99x-tlf-^N#oH z?4=hfQOxS#6CGNTSf(o$UZwZ1zE+o1U!G&-M{`i*$2E8R<;17JY z&WCY7;wGq`?!#gAMhdE>8E33={qUZ<)n$R((AMfgJt;)ryN7d!59`5)9?*h$78n)^ z>x{B`-Oy{BT6N+HC+Yex{F5I3;XSIdmiL42e_tn_dbSI^&f4mb8fvTc%%hL!6MytS z)ZII%lTSJ+gyjA7Uwu*s_P7H%?H?LsoO{mM7Gk^g4}bSropr{UA;j|k`P2U$g7q*y z4Jhb5cu1>PEmcExmHzp2{}|34@$-*9^st{fLk~XqkpA|wpA8m*m8({T@pS+JU5BwD zJm(3d!}p&Re))}0$NdbE3qo)}uBT~#afXrWmTjjh%_{qyzA=ptVmQ^o3f zEm+Z@Ost?xIS!;HhQ!=oHiSD`KbD_-aYRe!Ez?s^JY_*V8dgKBwjjqLwX?TJL#|U{ z*>Hvm1}sxJK@JU;oKsyVoo1vH1~2hcT4f2>Uo5SscJEM!JAXx0gBCAZrn&RxYWMy< zdTz&7O(e=Sci~)(6-G6Y8__Zg#-?ng$|uKzRl}?#ESfZB=wBE#FvwJ^+5qB>PB255 z9DNk#$sXnw^>ON-VFT{L0rA#bZw-tPrWi5*S$gdV!9*QU{x}K}j`zO%?t6ZjVoc)z z0LHxejbkC#7)xglSop|CKJvVCAiN)eN4=pvBe*!`JzPiVQLoW&jw7oP_s!g*{6P_r zApIa;e4cxvcSZNV7DV27Pn7p457EZExrYs_0YH}_0ESX%+ff=kAAy0H&-0t}+!K{e zB>d?slp#Qw;TiljaK>b~jXgdIr<`({7Fls=X>ZW(9XoZ;-S=pGte~sjdX>&O^L%Aw zg+q;6Q-6x)#M<@#v#!;J^%tpms$LZ`peeuu&5w_>2;XqP01Yjhis{_5&UWDybkp~~ zuep(0Kfy2l!iOy!%B|fM^p9Wo zytZ!JsXzI{kL&mUzu(pgt5)iJH~+v|`GhXG_(C-`HpuKrPpo}dogIht`+xKaU3=}t z`oI6@Z5zF#-~%PqnDpUVvgZ}ls$xI&HAZ0Tq?5&rJ){i-|O!C)r+ z-~Z?1!GiI%uUxO6|GA$J;V-}EZ&5(l8$ zLWv<7A`3D-E-K?U8wFs1F6_>bcB3qH4l@U4B$VS{5erU&DGTZ?8=lpi*5;Crh_&^K zntCNOS&dm3m&G!=|Dge`eQH>{I+NNnP_EO?U#;@GHa*)hs!d07+S@;-!$XI3&eaQb z*4ga_TH`8AfBvn_|ply40gs|7dQ>gNWe~ z@)dv(F-eZ;@0^bopJ7!w?nNu*984013voVT#7FZ9&PCTFn)!R?^`q~5IpW@#_aDo% z+yfo!J6Dm+QKpdA}CSov$e~p1^9&Pt#K=?RsX1mNhL@O}aX)*cygXUG(A8roZo4 zsZ`ra36uvYj|(rpMw#)N@DGEt#eJY&#c z0qhPnY;k_p`R9e$7v0@m$`^;jn16G9o!Xje)lgTh+Qu3+wAQMsp;B#go813kSW}wY z+OGPl+7L}F=5J!*ttIp4YmPOmiQJ&}ZrY%2Pd=&P1BaA5*r`LCw`u#+>lAlctXi~4 zbp{<~8*b0Qfhi@+lA5q)HEaf6na--A`h~ziZ)A#u1;lZrK|wG_`U6an*$9}dF=NB< z&{V(v^{?w6{^1|=#V>v_n5=07FinW(B8nI**Vs6Qjy}gT(ewO{?t3Mgna0fHnb&60 zi{1Bn6ZtqgFHt@rcnV(dXrUka(1(K1NB9#9gct(=1on)b0}MFNlv8{`jwaHAB0&nl ztE2M}zY&Bp?>SlkN5r|A?TG6$LB~&$qB41@dYgGZx|aNdno_t)p zb{^99-8=QnQ_t$EtKV*|dzrrU)i0~Ix?ar|sDJqvpVY~xo}v$Y;DdVT(T8=;+2?8A z{5CV0ZvEi4+g07rs^zOzJDu%etmfM5-lr2zK3!*A@D?S_oSDLyt<30|r=Qf;9ou!r zd6%fJzFN8A5k2t055q!0>s=wY-F~Mod)r%e!U-qoLBFTyN_hML2toJ0si$=N9d~Kf z32SuOWf$t(>#TFmbv{;U&?uAOObk09dft*{7SiJ?^XHF`#?)R@q3s(xwRc~aYN{LjOj2u~d`v(0U(VOloAzp`bFWT6 ze}Ue9^?Wtfk6MFgj)^-Uc_{b$++GR3RCMQJSw7BYC|tZ(LFQoWn(ym*#dx_NZTi15pfBah6qLNF}k028@(&q zjwa4gKUg5>13&n|55n*Fyyrb3dStNRtXdhO{J!JLw;QmX?x)-?C&!gCpTLSaHtM#Y zGXF3@*u8s;7A;wzILf7!oG7kKTyCq!$xPmOLkVV>sbpM_SGM@O_2d%+!~W_wzNz(_HtK3u(pB$z zrxq?=pyAOm-F5H1>T+kBzi^RGFfduR@`SKL;I6&ZY%$?BG@yL$uok3=zP3wGKmM3jtX!o9ZA&$f9}d=ykzwDH9}){;u?|9RV#sYB zH%e)Yp#=a=nY9mJ!(W0~1TB@dT2$Mtm9_0kjOMj}{brr9+`#d~^VCvTrA5`vYP9y8 z^fP89VtohN86cmvNAPQ?O;xMPz#-7fca=9h!7C8rFiGZXM<(k_FTFH4Z{cu-_R1JG zRs&{=z)T6G!xFYcokK(8d6*}b2aaLV?BOLd1v&4E-iMaQdD43+iiBzOJo}kxaZLI% zg>G~Xik^ABi1+iIP$YyR;+T!=n5PjuS6y{gaJG$1-dumV^7;2dlv6}6R$nu(&!p%) zWkoqfZ4OWiNMM!?!!(3I<~sKS5C9K=1DrW&%fvw77$Cuh?*`U0HvBqnx#gB%MPsP^ zmw)+}L;8SWhS*rBj|Kl~@PW#YhhRqoJ-r&}?Y9EUH2KjGfNdz>qeET$G=Ir_%MSwu z=bM(nLT$`Rh~)LLQkg&I6(!J34{uTP!o}(x845yca@-AS$_>hoCgM}ZBLzKaO?vyr z9s1DE{k*2!fr>&ah^E%w)*c*b zaA0a_tr^3)?ni`u7R1#rmqpHfxys9#2 zLUhE8)5C+6`-#tww#@xBu%6zY5DOoH^YK6YA0dCg{ae2lW+aT{O6JgsDQj5?#Z>(8R_4~k^ujUK zq$`!%Y0dFqnQpn`u%6q{YlKYrcWU0ev^s~jD^pRWoVx_W z6|6T9^E>?(CG!Su&u-NCfZK?3F~6ZoDQoOIH*M8@_ujA7r=O#^GFv7$EM@^N({MO%Spa$3quVInz2VcZ#_&$@SlyZct-wBe=nZ7?OU|(oEJuyN(1Z z1Or82MZsbiY5)x2^u{`?*(S7i~i1;4p<h9^$$l$Q~hsC@Z>7e-(s|shcX)8aY z%2s96+jqqL=4{o~H(IbWlY;h&b+*KlkB8oPz`*ws{VqfXEH4Xw12kk914NJrq6iKQ zuzY7RXc3?x3bDSSArx%ELM5HeC{tOjF$-Z2bm9F2~>B^P!t({Ez-FXWHqpS?EmRR_lk)$|2;amZ&!${HdL5YA!d!;&y`VL7QB7?`wXaJ8t9Md zbASJ}5Yqa>x1FqXbZiLE0k@o(&*%{+q^U~ zKB_!;-1Q%Gy%Jc2l@I?t$rQk>Lb3gwJs&-o(9vyU>#>xgv z!l988in~}0poU%dgGDtO7&O!w7*Jeq-qEB$Fv&=mM#6~xLSLc3q7mW51rv-M5CH}B zbp+Vfty@EUegHRp4)8$#100}L;mIAvv}c1Nh8r>Cmm}`w9`^91h_Q1nN^d5?$9O;2 zBfj=x_q`rOUZ9A-&g8jhsDJfWf2Cjl^h-!##ef zYO3osSvIMm;ejCQ=C#h(JOk&7>PojoSr+!H#1 zyo#ZOxL@l0`Vab%p@ioH9Kn=*(+tRQEQJrb`2Al@aRUR`Wq3tzH?mNsIrP-TQx=K{^; zMuSCyPR@GyX!FGM@97?PAzRx7P_X2z1s3^>mnU4gqao%2i#knMfUzD!NY|Ag=HXkQ z5y=kU0l*83Gtm(G`i2c0a$!2#(&ft(qpY0K5bY4BJSr9G@g^n$L?zsT%xaBh-CoKV z;}9 z-R15?Da8|Q>K#Z}VAp71qEUOhSWdZ7Q^_{f&p%12=Jo(`osqx{dX3%(`})J01}WD& z3kESHg7aabJg$mZMOa*nsirk)x2v%cZP>KI-&(Ha3zsV8c2gKL1OXf*=ryGdQd*eI zT5iq^r#$I)Syk#gbd{IyE^la}uSflTrl!O>7$O231{-PmoQEj_0w5SG4s$SFtOW=) zm?h>}rr4pC@eJ|nd5-kh=*PS-diP6FbPsjQJ^}>nVdBi1V0<1R6P-seutmS$2t`goa7-r859ojE|mo`t@0AFT~FqAf@ZH^Yq zx4c-qBy3I1jpma{D_vM#&F7LVfgg7o=>P=qL15Ke)&*iB*sI|o$7C`1{==KqvT#Ys zVh~S+D7P%4gjSPCU@;igQ;$BX?Hjl0gFp8RuV^t~iy9|qgX5J8p7WDaWkL93VkA;t z*O4P7!D>O0vnD}7(rFn=z~dc{{;H}93wASHrnwMGG0UAfMCL z7}h2jHV_Da1MMH-Yz>$A_XP{2e11&xToHZUfR3~a-WrdEe{sy;;q+Mb(cIh&-ay6q zW`#tUTL`A(@5wt)iIf?f^Ia(9HEOVetS28O=2BW<2@AxSg$j}Hm_uJ*&kB1+iX%pn z1`;m0P(H6%L2odMyWUg&Mzr>Pc{U6upd&N#6|*+alvGP)*ZY{Nvq^Ow-mlH;p3H9NedbS1C{6ewn-(i7sM(RFSsooO6!}Sxl_G|Mzwq?t2*X1(04?228>vbc6S_c zV@`*70{P*7Rn(7Z$*HYsT-~fhOTz6w@ASr0XxOKv4o6! zOZ&TrM@Mx1*S?~h8Nx?D{EM2`+@_vFkDsv+G7ubf8q{!D5z=jI;84Hn5>;9{XW5`>tY-$Sm=H6)S{@0rjT6}K=U?9pc z@Vvpn0B%?a32=pf2l?jy=-z+tG*kXSQM;pz*hfO2jdRg48|@A)pYyc4$a2k|Hi#Ue z9J!D7%^n9@1Uly<%NRucu+i3MwzY_&JVn>Svz4W1Q8vdDmLuk+D4P?LRwT_s;^q@c zGm1D)1y~t_SRPeb!b(|SAil@@<7FksWHH!wpjVZ(^ANPp{LRciyWLPgoI_ z#)W~DJMB=p01wK*&nFGdcn=nbimZi)%PL1u95+Z76ADX57qKAtTMP;YtO=91tc4z7 zov}*v8i*vE4o-PaKnWT%4aIv(GcY>NxiRqGlH{OlDcRD7C8c!tPXbPm4(a~ew8%?o z-LG$Vx`+&e%y5$WBv3} z$4!_IPe12gj(L`AQQk<0>kw%m+^{BKf<=h) z8wG-Axz65+g?3mA*kS;R&v6VKT5p!$0^aM9;0%BqT}cqd&=hdZ#E%N z08DH*-E>nJih*$cWcY<=qPmI7H%k9#irzDmUhLdYf?g>vFGn-;gn$L?A*d1N90M|G zZ77^)nC{7M`~_%_ zO!-7s@H=Yjl>1B~@AM4-0oOQY&vT_4++QpgktLLnC6Jq5N!%0fCGF#qvK}r5P{2bt zO(PAs|9DIEn1I2~Lqqs>$*s4%R`4 zp%o+i7(d5Ri@x{dV~^=eU-)O;bLVaP;azvCwmPdbPCdyQzL|%$EGz&7nSq65(!2|e z(+$}LSS(s|^Y8Mq2~}B$|Jk2>LMvP;OBT=f=TE89LfOq-8EfnS0G6vvn|UYv;#9(= zXT|`7zyypCudb;IfS|G>{rs}W2=>wZh?<)-`u_KB)+3KTtaHyhPt|qRVVtKhmRE(f z#iA=ElZl6gnIP(o<_QcaqX~FWP zTC#MBMkfq1%EsOP;u;@|t2Wc*+~h5T-5!V2y5*L=I^mRal&-drNsQ{McU`T{?s4rt zFsMu4c9GVcxJ-lQ_q%r+pk-`dRZduMOZw?1h|qM|#yW*sny!9o+pEheFJD zWdMAzX8>ef zWogAacqPIBrVj&&7$DC=k)VheJ-;K3{FNwT#5^-oP(0+#n=>?QefOltpBYKKI;ngV2heiP}f>j);!VAMGqU$3D7$=DCQXbfR<7 zee7p$(9Gu|da*Ql9~=3IzCRN7(T3p0$qy|a0DzEZ7>IU(fG6GzzY+3)0rt^!SjrBq zA1xnYk13yHhFvH(%=-v^oL~U~nE1Ib68JL#*-OzYUFUme_LU#$Hxxxw9KH`8!P+m} z!3HScvYT+}M0i!HopINz0R_-84JF+6_+HhwwCd^g&$tr$w0h-=pv`x69~?=?pi7oWXPB+5TUu==>GSA?{{_P8E5FX{@btnTrz0Zbr!nu z@}lm&@3G)~_x5*QY2;qek?zA98P2PBpvMe)o~r7q)ZN*w{T=&*+4n17{jxsz{txP{ zS6;5+!JM}5+!12jSJ&5Q$%3Wo8|qVRvRwVS0X_BD(-sVCw0!Y0r2ztF6y5#Zy8qq> zG;iTtopREt*5(;@$b}H0iDX7UxaB5y{0aT$@BB9l`ASs~s&}Li90$>QcWmDlo;zXH zQa$*T6!0*Gj026ACHRT6OV z>9Meck??STmplE4&OY-b?cBaa-}=V4bm?X9($u&cc40y%E?cQ;3(qLhF~d|fO)>52 z*r&hy@@I7Ud)}f8&pl5=5Z{A_xQRRExkrGDvWi8saA+Dc!&tDtt&DT5Mb#V~t zP0bbh>X&|~f!>%dy!d2ITH7xlt5H`+kK4^=UHsO0I`@)REnMbamoRu4?lmJKetK55 zO;t_<$HRg(PBX75_e$3@L6GR50E4=Cwf5}atFL|Q>uR0TtZUx?K3{OBbveY#;wl(e z2CJ68DHF>W3}&p|^{9L@rg^P%l^}YVnE(Y0V+?)C8w?U=2~&!gDCfBLBTVHLC}O&# z1C{EvWRi}4L!2Ys=v|!Wea8YmUP~em!)MW2&sK(EESpXLZUcC;5KbJ`cZ8wnw@K zboc!a=&5I)G?;ar8_XqK|CvmMsv7E5*V-InT_oHGk_L^$D?x+Ae}a9mIHDj-Ymrge zBJ?Qhs2(Y6uJNrL^UO?P9SK6p0YQheCS%-0H@xn;>%u)pQ&es*M^W9=KB7F(zGk+8 zs7-P%IzN+m_QkGoo@b->7rldgaSTQ2^L>B;jwzeS3c$JOetxr2Hk2#nNjW3%(bS{& zQ|>c^aJ>{odEndrqtY>140aqGP`0{C&uw^48#iop!O^+O!ooM@mI!TajXHSXpbi{7 zqE#oH9H#vRzX5AgR0);?IsjTYQ#k0zU;gr!E&LjlsmK_Gwd#P8-G@K)3nC2U!*1NW zx9`@uM!Rbtd03zLgFn>%eS1TYnFU62zy7Pgrj6^@Ys+G7EIBaZ z+rRm1J^jSvM*Vkd@q&3;y<(aE>#uxFx8M2$jabuT4TQxD=4Q~VU*m+un}Xee(hI(Ro^ix z?=>Si*;>mc=j9*&@gGC5q?>QPDU{0@r=PCB_=`U`yuLb1!@WT)3 z*6)5-!?_{XLb;YMS*&m0@U5^)LBxGR4-ipN278 z*v?x#*GM{U=A1O6uL?~1aCe8(ORFMQ>9%KZ*jrG2UA>-s;yDX~?RxinmRfTtXmGHo zMFx@g-}|WcTEHw^V(p=QLd(`vYVKmES8pa(UJ9+8aXr*EHoMNsG&+%2(Le-8TS`2j zBYzW?tI|+gQiqNl(&nw3g45TDt4<72%2*Pbp{ke#e>#>8PKPYFoEsW37|yAtqDD1Y zW~vkdgM^7kOezuzM+;@{gP|QQP+o~ydwng{3c@G zC6`>H2KVE8?!G$=`J^iWsQ55psx{bkTj@0TdiasY)N`cUTK=F89q7>7M<3B+Pd=&( zF1av-oIUrv^R;lnLbq*~1<#M=4gQQcu`n2{r41%lFI}OF&$&=*mMqf>_uo0J?wOQ2 zdb_lD@4>JNUgyDs+O~Cz)|p>1SDkeT2=avRjw~FQsVQT$Uj!b)knwBwk-%h+&_e+7 z8~%VMOyDAXE$A~u<3lsXI>0i?)Ft;qGwYQ-=|ydZJrwPux@C*n2hYr`Z;qpMW}c7U zIa7E?f*XwM*<_?fym;-Y@wPT1^?z?%{=K>Ds(; zvjyuxEnhZYmtS_F9$)*Y)~7RtDHlO~BztC5|d!trc zF#g)F{aWZSpZkZu(}NE^qK|+4x^|{Y|K6D<^=H92Deny}B$Is~t|NI3v%&l{`#*1^Ji!xo2}F@{HLE+rT2gQhkvM=>RMg>j;nOtHP`9C|ITk2RQ$8P zb;Aw%i$DK!UH{du2J_T!|MqW%F~5KMr_bws*Ic9bUh_`<#((?onroo*M}PEN`m;a# zl)n3&@92;I#~-Q74C{M0{XplKIqlxP$682Mf8gXe1sIH+=gRJ~#;S&UsH};fu z2^hS3ivh%N1T#aXyqm@YKA1+);WtcW`uB9dA#Q;)6pmR0so*l>cgUUPPGBVAcS#79 zPar(4Em%ueanuapkS;jybiZ#*|MP$TiOxO!LbWxtt16Yz!Z{0YzqPh!fN2d6^L&0{ zR1>kHzWBAzX{>Ba@4Dt{HMTVym?Ttg0WdH!q?(#Kr#IntHLjMrMt%G1PwDR4wyU9T zm8z;*^~94qw0PkfEu3F#rg|X6%xG;*sPo7=wJn&?Ti&)@3zjC8t|@42BIl1Z@F~w4 z5MZ?!(NsCkKrRPlhqcnFNf;%T5o^=_t4Y*agS$@;8tA_B>UZjrQ!dhQaWI7I9?eO_*^>!-JVc0D)u5ldcQHg;_>SI=UV)(U+r{T|YYJ zc?iZiQ>%;^BzbuyZS$v1lmVI~W53ZiZ{D&=H{5uG4qDM@vJg4_lvA~2`Eu>G0`thD zk87xJP}%ZSXtymbjjF1v)W&UF^wulhrgvQRj*vz$6in09#CQOr7=~i;r0dLp*!|Bf z!VTUxr17V{7@Um;Ky*Av7AcW764(U->2t(>Ns!#5tZ9vp%RIkzgXo}he&#;jW>COa` z5Ou(}uti!udEkCFezS*omU?2NOrpH=t!$J5L|SP1FGu8wJkHEdlvmD0Wx>XK*j|jH z@0?ihJ&I@AaSl(=QtFpQ`4@CO!H1 zQz3{0vlALxT6E2O-xJdL+Vx-6c}Bz^dhex5S2XCM2OrdFr=A+d`C-5aOs+;|4ma^Ugo7q^*zU#X9`o@UtwY^p3Y*s;8e?r~B@?M^|6{4huKpj-L?b zx7O9wDmR=9!va^l^GuH z!(zby+(L&z*t0QQLZ>5=ALr5DancOhM(K(0OvslrjwZ(Jgvm(+TbZ@v5w#j5PE8i| zsOyKZ;1;(7#&v6JD%4b8=@epa6N4dZEIL(Jo3VD$VIb9|#S0cGldMp_e^gx^y_y`0 zt1vRI!QLJXba$w>GNZPZI^}$Q-4i?X^b-fP{;31%?#S!GA8yv#r=Qk9SBII`E}eB= zgBC5RP_`N;!d}0upjeV`v+%dTA1xN#b715MQVU~$STOlpPz16-;rnZ1b=tUnV-N!8 zpMHLDD(&s*(^SFF6w8%~XO)hn)!sTsb=7rB8T3@7DqWV0A&(o2y`Zf@>|s_gJs2%a zA7;yMm~6zrLix{NlrKi41A}KD36YtMlk*W{jF>FMdn0E1MqrqHKY6A0ZT&Bn!MZcxZAILMCs4hGTG8l z0op#^=~y<9Gr!37tD*%WBIjA1h!6Ac*WHMC$93LGo3H1M0TZ!}-P#XaUXXxKzh zW&S*xGFmcaK^*}iBB2@y@~94@I))-4N;zV&K&VFoo(*js5W-kJ+B}YWSSr{@8$gHa zSOF09q!qOv#^m`9#^w38Mdq=5KaP56_N>vsF;h-)?3)Q@X=l*Pb{3@@<(qHfd-z6v zbB+5+hilRO5pgX73emmL(f2{oJu}PeKMEb&tc3l&K}*e6Rs_=wfqI&nTEePy4F(Ft zl;7_T)!p5vlTJNDznoE>%Xp{+=#BZ_WjnrZw~7fv@TexbsIM8(BUI`&-<>`+Q*-?))&(+ z{qo23wyWN*Wh+*T(72!f=P!7_LdAHk{^|3d52ou&FT2zY#f`+;DoY68eb3#huC3E) zr=4M8Hl=4QSeW`)Ro$Ymf8*=wvo`Rd4}VzO3$03QhiOM1#L!^ zscKCY3=D?G)Y{Nw%`mO)o42ScU8^%sTBB^T-W+jKjrCar+)fLDQC)D>a-DH{yDqyN z2A#0*XjemBm4R!&+kMh?TV;*0XlSGETGdw7`5Wuq2ddpq(!pxL5DXhj3vt$CR-_c(dArYo^qltIQuM}efGI}-?i`4rRQIw>WXYA^MK{}FJXZ?I;KsVH>jbx zQFGhpY9wai=xr)yjWh@cYu*l~9ydaM>)YO@_g;IQ9$vdvhuw(ZV-21FMawL( zZ@=?S-T3|QX^)XB3r3uE-g!EO2!c-cvw#0N-F)kv>hA5=Z~WHpXyuwUy6uj;HGk0( zEm^iw8#ZlGZ~vf9wm`q&;2jZMP+eVvZv2<;>0kckU$xC0>aEuH-*NSo7GPz% z-S5Be{`-UFq0)@%DEbXw0l& zSkXQl`~0ZO5C_Y#F(N*Wh1ni#lf@D-DtdR2oix@4Z#oK&N?ymg)u>3s%jBl^J4oTa6UvubWitI^D?+yIPsr_A^b z1yBl=aNDj<8+Zf(F)FhrC8n&MOjM}5x+dM}tbuCIe zt*UI5!EiMNttpoWOL|kfDSvN=8Sn!SKCIhsxm7pc^n(B-VcKYeQ9u+JJq#Si57VWu zQKs}anCr1JGZ-hrlzU;!tTX@BuYNTM2m}skMfY%yl@OmaFo*FY%p#5M^(2^nl#d7) z@I6dn#@~h5BMd{OvK6Yc=1R~k>y^TFcCv^da?_@)yvHwO!`6*Dls~A7d6n8axm}M8 zJgPmp{TeQg7;q$%HSkQACl#AO_yfuqxAwym)IrFQd4}t?+=4DxlS;ycvV=H}Hi+_# z1W-gX@1?$1uU;LFiOr9bH^P~C1O$GH1UADGX!7(wEL1p8Bh<0b5_E@a2zmrQ$FwQh z5AUb#pu|OE_Gs|DlOYTQJsLj0ImXmaI|MkAH}-4*RK6o3@FcIrYYV z=6w*qqjRJgr5o*MUW?uro#P!ZmZziBfsTG}L@#yz-#ZX06th;h2c#(HdJ(k zeC(MJEUCu#6(@^EyHy&)yz7Pr>cy;9Io&ykl-N{XrTu$4f@gG#JI|^$tDNo;HMp~} zKEjUeI}9LrXJhC@bS4BSh#m7di$KkrSEmOacse-1opS0aezrk7ckK*|E-hcNQZ-f8 z7K}r*RtrtEW;ga}(LMEi`=vT(ZpTkA=VK7_N#a>hX4EM@26R4{DnxUlGYwnt`+_^X zJ3gJ>`_TE(ik)Vdv+o1iPrTeht!!K;p0HH4F59#j?e*XOnzn4(tnRKO!7^1GDQd8f zSm9X%fC?4-JDaJ{&_JJ4nbL3m`fmlsmK!c85o7A9)Ag&!A5$Pl1}7D_R_G=hmSoNs zb84Aiq2Zwk{r%^@82lFA`|fvZPD_K^sqY^(fbo5O!-q8y%ljF(`Gl0Nu29UfAW3Ya z1P+ug7i*3a1*`#7>cYH5s^06$RAtuF7gz;pSBa7pGhxv?!}0-*k%eQoSyy9^~VA-2p^xE zvSwOv--%mTxW5*iw#8Ebc9YINPnKKpzx%OU^w0NvUITM-8fqWauG~QtddIY~W`*9d z`bxcX@s(PcTB?Krs2c|MZokM6lU3fsX`f(N0Z@<#z~KeryJiX}$|3rVV1)P{$_?Jh zb+mDK7(5T5PTS#r1V4nvAMq8=!=K=HoTCgW7mlfes7y&Wdf&?t?E=scJs0KqXd%w| zsBJ~>d^JQm(9Ejml(X}W)pxLAF;ekI&Ucm#_9 z+Fv%yxZ6Y!@S`jR=&1=(UsKcW<3wH~x5%0~l5A5wwc`>P~R25B1^)>a{w|lR?Y)uyDzH`nxC!EK; zi=*O{n}>7ZT)WK$p9i3bFUi8YIH>0KMuU(2`ob5#u1hYyNS9o6j^A%h#y9!aP{tD~ zScnwDG|173f(m}YL|IXdEmdK;Q-(hB1_EP*T{bv~i~6Ha#8q8WsqUU5y5*K11gpr0 zKXjcMn(B0+7|VL_Rsx{b5nQJ zBZ7#bt?RG9K4^!G3ICV>@?V}8QvdsZ|Lbz$1g_{F4{0rWcs&j)P2k+ z<4(hk%;GJyhlI6#0OVwOL3<~*=zrYyN4jVHK~-GXqMmF{6Jt}V&bhufCv*Zd57qOS2wbdF<~aTt?#KA0n4 zDj(R3iRXO~j%QLR-l&YZ`fu(yW_l$b1EwlgR>Gi?!4VS%MZhBVFff=|t%U>A!_YQh zWFZ=*1ryOL1Aq$N_o)!f3dchNTeY?}`aZxLKK=;_yX0|*MxSQWt`jfT<)>}M1Al3-wz?V zfBB=oq>60D!W-cj3*)$q^J419l*@{42zWMxCz?HNhG77NG*&BwJc1fQ^ml*vcVQ?3 zAi-2IfCW}IOvG5@s3YnPL5`ruVV5P30U-z~d<&RnjCBG~LBv6x$Bg}nPkbVr<5{BY z@ecCywXc0GSRd%$ICN0E_v{Yle1II& z2^j*Sj44;X5n)fh`F6ko0v|_0;_Ty;7>(NlqOcSI_ON!+$EY{TcP7m&k6D_fS4+nP z47M5=RMpmp1skk(m9$_tY6Lm!0^muG7d_K>=xhkPnGFhC0VRRV7jVwMd6n~466DnSodsB#Logh_zOQvX-)q28?%%&p^X4yBrYhrl$}5%vWEhlLP>dCwUn2q{ zgq0`#ZBDOHEYqV;tksd84xMxE*=D+c-zl;96;U|jF~;8~gMcaItsVCiH0Jj=*IV1q z)+rOKP-UuC*;tk0lg<-Xe7`5|cIr>o@W6E8GPd}-C^@RT zw%@FWvk&WFd!Gi!bHTbf>9!b4l&Lx0q{8k|)$~~j8miPY4?U*Mo1W2u&Rse@$P~nV zI^;IkKhUk*$bflb!fkqP5a_E`t$JSAQ>F-i>IoA+U=QHNhTsQ4@f`ph03YAOG3TfU zh;tlMX3;mZ&C)FWB#5qaOceT({|{5MXrMs|(_p7GoG)kuM>99#kzqRY%m!L&$TKNw z)TKu54(i)6J(FH3TAq)d-9Q|TNdx7( z0Z1hw$~}I+e+S3F@Qllb^WKhiUpg+m%SlbY_rg*0yIIJoNOaKAp9Zer&Pq`x$B4WsZ09$|aH-8hBd}UYx;fnBQks+qMQ9l3!ECmQ? z%9`}iR!NhwY4!{moOar2A#e`$gpkMCjXDBAkQdq@$DF(2h8sfM5G)9Q0kmKO>@Y;Y zY#Kb^c?XsQK*@jq@Bdw&{p@GMImXP3<{Pw$ne93eh^Y}T$FyR>clHf`RwL7n}bt}lbiIz+P#g$3U^tY%iW**Oif?0a4=-4a<`xr{73)84@J_L$0Rt)1x zW>O{7teIOZEK7{&bVKz~X>$Wd=+kh+X0#to?Fr|7x1VLsJLmX=f*JSuG=6k*PqMJ_ z@r!OwCfpb4^vAcA7FH?ko%8U=KG5{JAO)t=FO6YF&yz3C&pda0Tj^bF{6F*TjGRPe zIfG`V@uOFcpN_?15FEU`!IPe-h1dZ@xgqrr_IlrIJdqDk5qk%YXxHw|s;bVYxv^P;14F^@p|j(F zg;_`NNvN!;4D;8=@Od#nh$p>sej=X`4Azu5%{P(6I>HcCX&rU0;VY9H&4uvCwRJVt zoa@xr->0gYYHQsK!pw|#qNFAF_w?$C$DU9soz$8WPY7j*4-A?-!WUtE(M1;p0SpMj z#EjVK;wizNWSLLeT7HL!Ag?|a`1 z)(Wf!)TZXMi< zIe&|u+p<*~x9#xn1L{4}?Ka6GPDy`5(qOWvp~8Ur3O(8}v`3>=ZdVm$A#`$C(p+gG zuHqhPY1t}Wz5G2orS`<&FH%um>vFAjP18Q77lU%XN1Z1uRjh$RJw~9IZ{a&BZ#K#~ z`fez?&UUoWkG?l54`}AIvouRTDLQ^&;D(HdU<{A3SIlK-+6aL%CET)U$ff6=rx_<` z$T0qy1gOBuz_lR$_-7{UGn#yfeV7X5zZcz;j$eTwIo^FKuaSVIld}2L^ge6|f9H{F zta!yazuD&~8Fy%J+;BYmkZyRo^k2jfN*ljtoD27a|DUHH{q^I~D**!-6U#*d2qKM! z843_u5Kg2_Uo4ImtU-@zWHhf_j#U&bOnnbNAZUaHl?s~Jlr?w@;kNcB*B$-^nE4q- za1FS=i(?kbR_DtmV(RMX3#$>b6$|5G`XBYs*FUVY&pku;{O~Rv={g+7^9dNW-kS2} zP0wk=bIz>qx4ePXZ>y{93>glJS)nM;nh&S-;Q%`E&&Yjx4aigBX?EmaD z1{#N)4}3q0+HC=|Z~yL4G_3|A*@~F*BjXy$;d?WoRK|HvO=*GvI251Dh5RQoNnf+J z?J|oc<6?`h7RyEVAcZWew_XgNZf;;00NsxdE_mCI@cw2h|s~Y5MY4N z=02PRnLZ3qz)_LeJp5*80AN9%XYnF<0-yu!pY*UAV3`1Du#q3~#WBMg1P=og;0M8; z*%f>jd5H1~F-*b6Z{E#!1B#fAM_M>qGIq~&JOBvZ`2d4~fkEHjr%XlG-_aP>vd2oY z@`RJL>Vy+@;;NNewQ5C(5mGYWw}d>;Z(XRxisC=r_~4f;VREm_INS<@SpJ$J#|19SsDc?}b9Yp57p?v2j29 zsIJ&^E&>e^ac$;)=CxUxrQ;>bvgwxeGW7k2cc^v2Vh!X5tq~=HsXWXSC=l1cNO}@4 z+cA~LGt=JrB~xQW!D28?wAYe%`b4;gPE!^u2^Rzg3+t5HG{V=N0U&VHJ`5YY$obNq zO}%AQ+fCT*9V|%jwjsE+IBjruD8;Qn&>}^HOL5m0Yl{Y#0>#}aZpGapP>OqTKe?Z0 zz3(|$^C4>`|4*6B%r)2Eza94{}T z)YFPpZlheCCe$meh-)NHY~57;ALHKc5vvfxt#~PxX>^txysya`j$j4WpoU7@&2*xU0t~~G%&M#h6ytul+R#Fg7n{4$0D{{sR##OK0g(g+#m-~YT zDN&RFvHR;qsHnUV56#1W5i2>vEb{zRS1J6FS`?<8Bq=EFML#?ukT>=3qM2i@0B`w}|kVg&l45?t_* zeJ9xZ5{nWyg&A~!1ynotkfbqsMBexo-v+=h^r&G5F^N`%AJRt5{ z*gV*PNiTTrGrdq4pE+6N#ix6Dv z`FkqAC}NutK$-0GfDxrun$--~ayhMxc=tW+3o_qk7)ftQoYl^$=CXGL-1{5e+KjXc zur>UDHP+)yN4EXC837>?kUmz+nBkj_xB$ggPICXS)5?=s5nh#>vmVUrSU#Q;ms~*S z>K#MK3qQ3Jt;&J{Hz^9&6qPkqO?@)zbxPSu=R*uEsj_t?o5NXU>(+q=$;8OpUD z@2s=;6y})o374?vzP-T%9Gw(F-&*2vJJ4&Yqezh<(84U$K38?YT}HnJ_Y(UlXW?&ybQ3f^?v+EmQ7h1}J_kq-7NZ7O4W zQ{p#0@ov2aZ)VbkTnX^{l)&M&Veh!he$+h#G@Uw#wOz9M9V7?nfRY>FKRi$-rfTWc zM)o8f=*OVBCHc}&1#Q?q?auyW-^iGa5=>F3pfB7qB>D^SVvA$;Qio}Wm*t*)A4OqM zFq%$&*j%FqJ|GYRDoq@hn8=TRtzXp8cE{bz!$tk6`Gu;L=^;8_Vgqb^tBl?wOfHM9 zgiXnQC?k3xO*zOstA;7&t;#sm+O9U6(MUd+$8u5<)AYk+5A(&mx!MlphlgaZwJ}4_&tpeQZHvk{_GjT92KF%R};hF^-cQO^cw@ zz|qf+NFF`cTnPZdy5imBfn@2&mCMbdyYbnHxjPT4Ou# z4>wE#J;s(|=GB@FF=Qo$ARH3m1_uKZM!hmf0(=<=zY`Q;6Py za~ad|(&URc@LE|Vv?!c-Ea!q-g%`nO9gpM^x9#I5PwFZESvrx8r9OC5Y3TlFMv?U= zgDVCfb~o~4B=j?O)~tF!R#@9m68|3$%M9e26>&JpaKQs%Tb@a$h7mkw=}H%7AW`d> ztn=F7r&pOun?Oa%aYzm6bn)_VU0eBYeLblNBDbQZDn1x-%3?CZ{pHR($c9>TDO<7D zdK%$@$dCPYmtV1NS9{bbl!~hOM#4Cgo=;HjzTI4Zlb)W|u3SwG`V5YtR!sX~P7FWa)LJf+1qbGAjp~te$M;F( z9OmV~Q2JKDbkO{SQ9(esn98@O`?c}$N{9Q=D>tN=#IyyOQF+!~7*Vj5^n-Hm1D2{| z7m~&@Dzv{y1f=A_g8qG?jTog}RlWs~gnGXG`qTWD)WGxM-0?DHch?7i-hnw92}8er zm||>W+jD;&+prywRNgrvNc$pZ9i9L6)A6VMl1}cOm?doQJ9j5!C&2osb)V3k>WG+r zloG{^wYCUwUC?3VF}n4jgr^?pNx^!LKKWaNre~HRubNL8J{4c44pL$$yEAg`yS& zK9NvWept66!9$@c*pj0OE>2A>!iBkG4L}zi?g!+{+G`THjr>OL1p!%^7)iZEY95n`48K^?7Y!%uNjfydj*zFtsxGyvtj_ z2s8q z3tjstO8HT15k2AGKKVdVS2U7zS`#~n$7ZBLKLeYP((dK^-TGiB1tyXouUvOKP6AUY z_a4N$7i;WmW=r*RH_sM>&5`x)l-l1+>ZBTYLJ~C^%23|=weRoP!o(7nfcVu3w;2DM^sKo*o=az4 zUu114bBz9>&)FzI?$U=ugvZ1&$6elbfLiItXl$3JAphjgqh6_l)>@?7 zaGKY?PKmsJdxB=lf-M#8WNE&ICBrRfNO~5;`gsB$GZ*%UQtANcD+DmQ{zP1y;sePw zZDwvG3q<$jwl?3+@Gy2d`go0L(sx22{sLySdRgCqHQpPY{Zkd-l%AHa=gsG42Y(eR z2&|)E2M4R?cXGWbD=bl>zPm~_B`Pi`VDr?%j&FXFX7(1Vr=tM?Etf54)gx;HQ>{3! z2XY=3t9P5|rXd>^G(3@1eMoiP4`!F0!|(JZ9tfCZdBtYQI&{tF`vu_z_+~gn%S%&b zjFvdjTK#2Jx+x0Je3|1F5LIM+b_4-tw|Y4CJ6Kj-q}|w5oANH;uXR!>uA?DffAK z+2s{A)6_1r5h_t#RQC=21;NGMyD<`X zH}{`4C0Z>+N3+c;W7odzTf_ER1_mXc4(E#w4H`-cE0p9g1d~W;vMLL9{g+Hm1W>vr z&MNdumtMB2o|{y@l8`By8rn$X$PgM7BN(lN4V`_`cVTQ3=?)kN~VhDtT4@KT6rZcoLs8PoTiURA0VYeZqdE#ILEO zL6;GL8JyhEc|JeJN?+&c8YixzcPh;%#Nh~wXDQ+BN=EDbK{Rl;t8Zz!i+o0XR*H(G zTn`>v^NruwJ3N|o-OtoM{?@&>E4UV`UT|B`H$JX3G?l8*rb<~tpDV{hfY1C}0WQM| zcWP>Lu!mjM>ZhgEqAGiE`9rFRV`klu<#*dGr*i5^iEviG;**0U%@s6GE@3hUOKKW^CDze{P!ssz$n zrU?=$AO%DP?M8NR4_AIId1XCoiz3G(5BbtEd~(#fp_<__Dugy1O#vHCTPjAIi;JHT zYe1G2(&$yZa!roFiooGAMDTrONwUe7C_G+v3i$*ZC^M{L=z;z$i-Es%6ttD>s8nFk zE^l58jdde}TYD-Wx>DA8&nR*lR0n)9&|P;Y0ku$!g*flhf~Vuj9i~C9KNzm$7Y2;K2YqlD9^x^u&mE?9R~2 z&n%>|IPGK@7$kD&P=;8m)u*@2ZIr2qxg8ODOySW)6#B*>qylS#0g>N1J&L@JLE?;= zQ)ib>964{@&wO~$ei*E{S4{aFWFkM#4T(T7tN3!E)z|lO(a@TWrK1fQ%9xA{fX)#hYh97adeKsmQg8%)r zUy2h}J$}_8x-0kw8k)tA$f6(WQb)6#<;FlHgz1dxZ=e#j-4=_Ov18J5zJeKD!C@4? zehAT%O%EppEl=(CGh64wJ?_f-lvtv&%>o7P&$aB z#Ykn=2M*r~IsmmGzgahH5g`)%;^g7j#q2efft|hV(G4}9&}V`Fu-@Iw3bc`P01LA| zRljxdq86IWcl0|;Ly`O9>wFh9dCIw8RH_PQtOtqDXzSWK3{ln1jMjAM?=&Nvywu{&rgtc_Y(gs{Ot|8`<$SGU(4hBe-^KB3F+6 zJ#s!5!^fkDu|apge|EoVFvi<+kA6kSC4%O&Sh>47B?s&-A-(v$t9BHd`DfxdI*D&{ zJJ(JyZ;xR*p&my`R;9+e##P7{`e;{<{Z9$8SfJlMAC+&+n$QL-U2Yr-Co0NTC~Nte z6jsh!rfDS(Fgbi5owyq#`n(rV#99^YCqsO=BTw#t@ol2#1?YCf}g zR_s{TaH3X}J9}Xg_39Chns|T+A|cs~m4z@*_(SeVjN(FmsmYq$Crwj)|R( z4QPmlXN=0Kwfv}j%_FeV%V?lW%-p^$*p%GkXzi6l_~iU@b_^vyX2i?BJuXvjtXKeN z$`MadG>+hAH1-xvxLc*4ngNJ~EFCvU#F?k*SBuA9l|1d_i{y6g_J3SDhX#;Lwd)l? z8-2S+fBlH*h4d`@&su&VVeZn*Q9=U3zX{5^J2@zNyUB+*a;^AI8Eu$2Vwn`T|2JNhup95g&17nTy1)Fshn*z(~*i&o1gJAyV6j$GctCL;`a;QJ4~ zwh4k{vGDyQmBl7_M7vNKr-48b3OydGHOrDrIT<8FJxED+uvmkXG#w5cU-XyBZ}t(X zy{zi5^FWH%P4kyDGck7K%<#|c|6?E3y2uTkjg=@Mm`UTU>_U1q@B8j1;LTuB&j-9~ zdQ4AcU!2xi05hy7=HI&wZc?Oarp{w7{OF4}r+^%5>wYK{j-?v!TzwGco-WF`^RT`< zDw7&Qx>`3}E!DNSrd?hg%!Y@I+3x?fBoH97Y_sz_Ef;ji}vsgu;xr zriU-6%Y7Q);TSp4Ql7F4Z0@%>JP`!}=#XXWf;gp6FqQqc4&S0f>ulnn2pi1#dyTQ z@y8TBWv0tC?Peo+umlerqd4N>HaRc?Sa-08Y&Uj3ecj}FzkoOS*d%3q?1)*Vz&|dC zmZ;vpKndT*p;TKbl?xTiTpw+RP7%l7q`hT)+)NMNXc)I>GUS56RbL66v35AFpW~mq zmDFr}Eq9LC^T4K|Vg1=DEnu&L_qE#%N;NeuJn?uPoOSv3N6Y=mSEfF^K^^VlAuk$_ zHqy@t!XiZQnbeu$iZa~@EH?v#mUhmv;Im9xN`h4MAvN=Q`R)kmqDJ+utS~GKSsbKu zNDJ!FWj$yT*IQvb5^W1FzW0${s<)dZKwdXzdZH*PR|h=8%U-hVI;EO$rT9$47Jg{W zVawG{5p&jbvsIQ(oK#P`R}?w`BLVvSJCW))In++CsV4fE66@v$3F_iGm1>ekxT4xN8jGpJ5N>Y^rMPu!Y=&7-4}nSAr~bf zo*cv)On-%aj2RW&cRO5YP|CVFD0Dma^MF6N?(=$Rv?Ns+|ELH!^Y**@;5eRf^#uLv zK5btY?X~&BMw|B|$KQxrAG^F+D}iDky{y~CyXlOBNy!`uLF>M1u9)b}=d_<$zp?9H zeIq>FpD$X$_DHP9XsLZbQLbfXA4LRqCFlI%=SF*!hZ>GK1{ite4gXAkchKu`6}{I& zd|zcVs4h<5@a8<8T$hfpwJkxfWdGA6qEGK`@f?{o^W~bf?5FLEIvBuQ%&{D zBy{C_L99PKfjsntUjltF1vNOEXyxU6u`1D>-iTuW?2h_LJB3P#WSd{sV)6eQ_8U*A|UjU$X-3_PIcVUTA8;4iqiC5 ze4v%_{rnk=UHB9{Q1Q9SS@|#nTp&nMUsu1|(McGBs11@*a!O#gfog#*qsx*seZ+87 zvh*;98~UT$T<0>ge?PM+KRfxhHjkpTjz|Cc3}o+_$MMb;5|#vErVZoAon%|KT?84K@^2l}qgl*sHT?ue-o! zg2YY$(xaWNCz%X&O@^+xd;a^n2XB_agThV$l|+*`bfJofD!e@RpFix(cRUK{zH zFw#!Gc}o7E*|qtv2PJ{&O-&Sj>f)(|9~-YYUmZ5@e2+SRBr+-nG3HR7RT7IGOL!X3 z1YSj@4nF70glKsQm*Z_0LJ=PA&VH8$l5tGaKf%5DcyBYQXAm!}c8ax=Su!d@4w#brN1fpivhUpbgpF*n9{O}?QU zgkl=mNPQg_7u>uB1rukJERKPm>){iBe%=| zi^(;LNV%Wb)2l$wA(HGM?XW|)WLV=Ekk$&s;q|-a>&kFvCEmHFf!Yo5uA=V4z=zSDXav3s*{0uP89d_{nLHimQqjGq`9@TTLDjngLu`wP>r8(e zeN8RYsCziOxMg_yAz~Hbe77uF@pfd5ME#76qc%wd zxxk@EmU0wcL*0?hku*8I&zG=v00w!16hJh(BbOO1(()fFP5j4)8yuEMW=mjgW?^h> zitxIcY~rMEm|R5nD;wr{6#YxcKy;#q0W-;iV3z>%$*d$ZZ3!~`P7eUk1LpL`xcPni z$yxjJuHUO6GPzREnT{~z3HO7eR*T^kK3PZ27fdTI{VTUw0jEW4c5_}PagQi!!*p-5 zv4xah+gp6d=PxN^aiL*>gCWFy-|rVYay}4=J5|)3h6o=I zYq|YPeX+NHG~V2wHL>m&ak2e$_Uv{T>9-o~+VXfGA7BYgnH;d@5;W#CY?VZjkP|bF zuWFB4&p!Qnpmv;FzB%mlI$}qy&9^>2=b2Z()cl%S_x31jFOMSXOdo`eE{_^YnmO(5 z?JD@AMav@=XKkK7|DyPL+z+YfkyS>Ry>%~QigBQwx-lZ#TWp3;L-jWKd8tX4yIfpy zMR9gDl#Z*aTfg@<3V@bU!m3*Ur)b1g>NnN1+kEQH{ufU>XZSrywKe>JUQV|Ws(eOS!>7pqbAo}?6G zl#a_siD>wsoM&@jctg)y!~50c%?94qobUsxdqtLKUIU@p(Uvo^S=eOddCTxr_1fQ0 zCVtT%wYyfp7X*=v>@D5ZFX3axi@Cj+-(fo-k(ArUdVZKC6|ZVQ$7xjk5(iYk6AlAH zy^$iHp#%leXNtGx^NPrSlRmC9$;)?Zo&xOa`{3MXx zQ`dv`X!5S2g`eXb)#0Zf;rePedY&|r#{1FKXK>ewHBs4SnhwZm-TB8tztOr4FYMH$ zNGgOuCHMZ+NW|lyQk0Fz`SSD=Ed|B-gMF%mqg0B^%^Jp)&GC^D%D5bKc~Hf~56y1! z7m&e)D$8q(MjX1EFU7Gq^(PvonMcI*;Hj$P-~al~kQKk@k3H<+yJEZXcVR0kD7GB2 zNws1D&_O3!4KHEmk(m%3-h5}-9u-s9Or-+M(b35`sfxO_Oe|o{x&C-n5o0`*SU@tj z{+c9IqfK4k3{2Od$FS6CN8Dw-hA-4gLrMM0lutn0;lvCWA!8tfzo^$WY;3;%g^}8h zXdUF)QA*agiAc2!4CxEw_p>ulIP>3psIu?D>kx{59Hl@zg>fslA5;UEmyoo+^f=rh zmeI#(-6E1XFt0B3_F<$J_Zc^3Uag14O$z43r&A)AN)+>fRB#!_J$O)8FKB_bDpj7el#TgCBD4BV7Z>a6_f_otplM z59eSt#Ect53@$`$cu+BQivigNK9@&xh9R-3&A`Kz04PV)lJoV~aHiYy;UsxJ!PT-u zZ2sLNd54*xqm@Nx6O>qFsdUSWK)>2DD5>1|XK%^2&BA98AF`{>UEx=`?^XU{^}Z15 z!bIxx^p8ycE&7$4?zH!roW=EZnsuCYgXA64mW#E5HHL@>R-67%3ReQ#FAeOOLu~Gq z(nFx3I^Mcv>2&M(4)hS^h7#fzZ)7=L(#Sm!sy`Cam03r5B^s#1LsA40+2X9&x>D&Q z4~)i^9VF&VatfYv$pW?xEDdTrGc9?)zN}S4Sazao1_HZd}`0sx=+_cX|hz37SuKNUIVdjv( zA?gCDq|KvQR&^Ra7GJ8i*N%w#ZxTew;m99^23G_QAqM;}+}#x^8u7PX(0HMC9gsIS zKVGL4yo)rOT=Px|-}1%@06({m_%;QTv(RbEq4#@$f0(;+ylp#bJbN9Ium7+e_h?ln zWSTfzhRkg_ZZa4XZ&5{wrK|XjiuelCi!X&->&)*y+1FSGtmh|F5#t`|!}+d6)JA|IANlQzV>k zMl8QdbsH`(#hg$v;dQZXBj+8)y@7!8@>uMSMq^TFBPNIx`H;3hpK}0*pRmQB8v$$E z)hRK>88}|kmp-JK((NUEN@h``6eO0kQS8;g5Dg*n#f)Au)S2D$ig=1mOMl~wO94*{ zZtn@|#!hriJEn!;L~-!(HD<=DCL!%cx$XPNuhjIXI35If;an;C0*urK@BYfeWNkhJ z!z0Q#^~tIw2MXegOL#+2QA)mcP~|JiG(x+NuXhSf*eX)ahlmL>x8oeg8hvkGvfm&y z(&)Qaad2dLB?0J?rpx+OFV zOn>)busD;);9gTmP$S?)qPB2jKt;G;TU$MaMt(4#Mlf5Tb1ezn;sg6K#~MkP## z!-x)9OuOn64=%IT5j|`T7fm`kri9?-Sb>153UdYqJ_afOJm+o3(j?}t{&oqhF@NV6 z+dEnJcfX?1P=e=8YU9e*r{GV-#L1C6Q*&=?)n(Kc>oSZk*hJ|Gv999J?707&X^C>Kv!bc&g>?qbSd z0@YsUp>S`eU4P~*ln7K3Z>X!BF^EH8rEa~XDS{3zODgR7Hw0${EcsVsti zA#3q-=>?U2Cexz}1ri}KK}7#B{;p4R{NnvZdUx-Pbp_9OL>)DwCb%##(uuIcu@hC3 zw&s{k?EKHa`8dqgz>jO3C^Y@e6chRC*ixFfBWUW$Ifc(1uPj9^BPDjl@Hz3V#!Vyh zk9|W~VRrrkZIL#h1r1PIXDj(HKK9zC^g7)xMqTZXAuq+k&Ae11Z;0hEC>a#c9ROT7 zS+ZmQi)7B+q^fQJmmF%2#dTCb59<*6QppI*i{Zk$X6UM;6 z%V&def4g~Q3hX{zT-q$_+xq!symcwX{7Jkr{;K5YQS;{}MLI)$N zH_8gn1uuZ%nthJOx=6v|^`{08nr}$0RsO{948lpBUYRj3`_*OP5Qw0i98j+Sdbju@ zv;S!4u_bLwi>DNa)ddOtsVkkeDoakGP#*jElVNz}^1>ejvBwtt=0zgq>z`FseE6=) zFvGYa;;p;FDZPu!b9S*rjbaXCTOwA__TK~`0moazBvcOIcfRZS`GmgKiC9g<54pDX zz*oKm;iTeZ9=M^sk;|Ed);4sZbE6%>`kz{{MNYsH*$1rNd%FxY1$UJULRz8H=0*MXJmowYtTMw^&6pP>IRWBC z_;mi>Y3H=>_d09NU3fwGsBRA<$~bs^lqWLn5JMVK^?owAZx}4)V?E~ZFq8F2B-U_= z#@E2hYQ^*}RJLzFL}5ChpKUzA%x62{e?5uq<$>JNa6^O;fXbY+=bt=x)@11BJB(Vhod$~cL z;00&IcZbeJN72#opsO}a zJ#NbT#iBs(;TvmKpVlK2#>85;Y4!nk>`lved`jhB851VUNM3%vX5%6J(g>K2l#oOg z|5y4lGsH2MHGPH)=qy^PmOF_H6YAD#Jr z`O04{(dXyqt${7w#6Yya_rvHRxnrQ@=X^k*Q>G~kKyxq9{bg8`%E^+Qkk-;%H|Iv^f1D$sym(OjMVhv7hNCsS=#zma`%z7NQLd7Yvt=xwg)H*!4qJo1!G6}p4C0v`RAS@j+LpNtg zztwB+rZD~J7X)ZF@nEyw)35xqIJ0eZp=>&zUBLL&pCowGLF+C?DT+5MjEpisBJgTb z-m_;|Gx{BxeW-Lk3P3@bOMko|4>)*MH36g(F#LX2AO7Y>=DB>oB4PY)Xs3m0k=-m( zM}H}6d~DZkcvtYDDyK5qb!<&)W>kf;wDOa*&1cJkjOq?8H4hKsPbp_;R5*Vo&@b>h zoW+>Z+gU@3|2U;ssGA=KIME$@XW)Dziz>}H_W85xhSS*7Oq&SfsALs+ySVRB`&TFg7IhKQrzvF{5;Fly-U|A zq|}N-Q{l1SwJNHPS(8C1YNg%T}wGPsE0Tl8+P-t|vMk&F)fQ{ZX973d)Wr34GPRW(5{S z8)QiNIiBUJ@*^a0PCxYy-71;ykK0p60Yw4mtr{daNIzoWq;8MNg*pO7)FNZcRQP1Md{_2SAWB_hf;T7_L!@vB2y)Y!SI9LI? z&i)-Db--2t1r+k}qy12z+=p^#*n+$;f)uvPhC8@M$I(v7BT0hB`G{Fn|Ge7y=d#3l z_RvQ&NRCN;ba-*YU1nUTNS5gwv?VYGip|3<r3zdMLJ{8bef>$kW$z#xWa{v=3Y#>SlS zgFIk1IPg_e35vy6W#V&$uzG09vvsszKQ)DHqY<|@T1brLjY!Gz=YrIGP- zyjHG~*)cCW1*W7p$G9>4@qmyCoR&L1ojX!VqM2Ez+g*Q3;E+kGwNS43A?93hoM!1j zzv+}!K{-yJ@uj?9&_3$i7cWL&-yV;cBr}!C>N|2h{TM}V`C?P(5FhW$Y_V3NN+Z)R zE13QW_Eo>G-n~1;V!7&5??^zCY6=Tj&PHp84CW??=kNI>o;zl)>t&wmqKV(D$oh#o zS!W5~3ePOe!#Z(#YN?~qd)&f z<>cvOgdPPkdRy+td)q!d+oL=ZQ14sddj5F_7whR*=kS=*{#xe5KF1#61jy&bd!*#R z2W~6Q!c+25KfQp!f6nbI8l#HYFr{J9Qmj<+j%YR>1$(`#ACG^D{6FBrcjkWGQG-=w zg1BR}N(>#v z$>$vwz@Wz=e)*dK;6evh85Sjm33q3vg(wfe~Iif>Akf=BjPz_UV9jtJ=kzMf9NNuBW z&pKfu&WHmTg^9|rgCD`?Ql1pi8r&QwJw`AUCmIwSZXz~Agl`Y2UeaEbU&nd<2A}Av zDH9d#Ji5HLhC6ThjXhAnhUt$&mcTeqWNA?uuF1DMQs8c2gbSHy$9L#tw@kO`&Pxq2 zkwvD8)wDjcwD^5~D%?P3Ax5yw?@okct$${EJX@F@U{lyT4hoU=B|{L+q6MzHp>Zvl zPfNB6kK%)`c*D0(a1q8F*8g2RtQxv0cdXsTiI&XDDa}ZvlaUaTmy}n(t=UBso-@-v z8Bx#IE3oUn)}B~Y8CSz_we;!z@!=VpO`d-Xx$Zd7PkCDGU#OnfRbPzo=`yGeWqt`( zNE`1oN~yEdB-fAsW5SqSAl^;+L=aOg2jX1xUnj7Jbv$Wb`c=) zAYkg=^&eJtxZBazVV2rsrRbTepp@(4QeDQTk--ulFE6R@v#pUd1B$3Paw?Pt>;A~` z?{$78`xxj{S7G4q&VDwjVC3rO$JjaX4mxwG{z{ZHrxUHi#Pe@tG36j1?|fnNB5)HJ zE(a~t21;y#OIwHz2p%y2AuL%^)(EGyZt1{q%0B)~#|RCFSbJJMZsXhL_Rfg&%*yYZ z=WVi^KyC-6*=3T|KnngnI^`>ORGvFp!}ywj<3jOhcSdn>DgMMOcJ>ndRxQ&T+j|Bl zs*i(g?(#-|hPZ;?#4T}0v61wChcNUM&}rctnD{}CC^fXT^OstKzI6JmW(Se81a>X2 zebwAl;F}S!9;xO7-{Bt4wUFc?6RLr@Q%?80pPP&Xxp&tV#&J<&e+i8s=imZ3@ednNTbW5(z)KVaDJ)Ra%W5LG7y+DU9Rz#$g<+ zeFs|QCB?;T0c4BCLwywXLaWIV7tK{Em+VT?=@e$3CQQ(d1=1iZlW{DlU}P(=P)TJWxjD|?$!dKMUay~6C8aR&6_0&QX=g^2 zj%6CxlAB_gh@6@3j{}DLa3fYBxm{K9-q}Z$vk6`H$%)~uzRzqb-T0NR99C-;4#CAZ z|3+gOZ5c3cpi>luT?bJ~v$H4nZ4Y-SO|$LAHF>a##uEt4fivV(^ERL^pg;YHyfCB4 zp0Z)Da!T>zl<-BVR$}qHl9qPnYXsmm6M?t^J^;)KgB*3ceB;KkwzJdlQ7Wl ze>L2TBI~o~$xRAa7OX73_5mQ5E)(Kcb?`jUi0;z28i;x^+unHs=ek=5+_kdpvOpt zNdMUJ#49qxpR46Ghi>|)Ab||OPA^+KM@?O|WYVJs7$@w>)B)}TYxC)^Kim^vE_F#w;*ChgHOyxFiVqJ;>)eU#DJ5O^tG;hveqp-&qA>RlH3E0l1( z=6oy9oJtX<`;TkjMbDQoWwibXIzjQYxqL`M7WAzCGG+~T)HxEp@ZL;%qi(s|Cu(ZZ z@MS7PSI6+2Wtl=8*k$&Q(`CfxM5F5BXlteZu9q;@YPX)B9tlV~ z>EmEZ(+R<>b^NkgHDZ=&7Jshw=;-!M&fg+@=YR7bl*j1{lL zYW$-ghO6cFvvxn6y7*)UF*vE;9!5=t#-XvhwV7~9!oV{#b-Fj}4m0mnZEn7MrA|Qw z{&sT@r&fj)_0>5a1Kls&TQZ|kPk3J4;eUWjg`fPx2*-aMS!&|XKx|}dPMmx=zn|Dm zSR}pDh+ThkzeW)}{a4wXm8J97q}VibgVTNr+K1VTFuAqg%$eiW`AQgT=6t{Nm2_ZH z0y~!iHJ{$PD!HCKo3C^ZQ59Z)NiFC`$ARqbeCS{~eF!>Ob_yP!5~_ zf1oNU)SCLg!#l__sPq4RCZ<;N|2~^p_+Neg->mqbF*d~k{h#yG|2}N<{V{-Ln4Vj% SY()itdMU`M%9cx;1pgn`!H$;z literal 0 HcmV?d00001 From aebe263c961dafe111d2d3a8eb901492a5f9791b Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Thu, 14 Nov 2024 10:57:58 -0800 Subject: [PATCH 79/86] Final update of v15.2.0 release notes before release --- docs/release-notes.md | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/docs/release-notes.md b/docs/release-notes.md index fcfec2df3..ab2029920 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -1,6 +1,6 @@ # Release Notes -## Version 15.2.0 (November X, 2024) +## Version 15.2.0 (November 14, 2024) Since release 15.1.0, several bug fixes and new features were added. Results of ABM3 using Version 15.2 are anticipated to be presented to the SANDAG Board of Directors in January 2025. ### ActivitySim Version @@ -17,16 +17,17 @@ No changes made to ActivitySim version. - [PR 239](https://github.com/SANDAG/ABM/pull/239): Added option to skip validation in master run - [PR 240](https://github.com/SANDAG/ABM/pull/240), [PR 242](https://github.com/SANDAG/ABM/pull/242), & [PR 243](https://github.com/SANDAG/ABM/pull/243): Fixes to MAZ to transit stop distances and walk times - [PR 241](https://github.com/SANDAG/ABM/pull/241): Fixes to bike logsums and micromobility mode choice -- [PR 215](https://github.com/SANDAG/ABM/pull/215), [PR 235](https://github.com/SANDAG/ABM/pull/235), [PR 237](https://github.com/SANDAG/ABM/pull/237), & [PR 238](https://github.com/SANDAG/ABM/pull/238): Documentation updates +- [PR 215](https://github.com/SANDAG/ABM/pull/215), [PR 235](https://github.com/SANDAG/ABM/pull/235), [PR 237](https://github.com/SANDAG/ABM/pull/237), [PR 238](https://github.com/SANDAG/ABM/pull/238), [PR 244](https://github.com/SANDAG/ABM/pull/244), & [PR 246](https://github.com/SANDAG/ABM/pull/246): Documentation updates ### Bug Fixes -- [PR 212](https://github.com/SANDAG/ABM/pull/212), [PR 213](https://github.com/SANDAG/ABM/pull/213), & [PR 217](https://github.com/SANDAG/ABM/pull/217): File and configuration cleanup +- [PR 212](https://github.com/SANDAG/ABM/pull/212), [PR 213](https://github.com/SANDAG/ABM/pull/213), [PR 217](https://github.com/SANDAG/ABM/pull/217), & [PR 245](https://github.com/SANDAG/ABM/pull/245): File and configuration cleanup - [PR 214](https://github.com/SANDAG/ABM/pull/214), [PR 216](https://github.com/SANDAG/ABM/pull/216), [PR 220](https://github.com/SANDAG/ABM/pull/220), [PR 221](https://github.com/SANDAG/ABM/pull/221), [PR 225](https://github.com/SANDAG/ABM/pull/225), [PR 228](https://github.com/SANDAG/ABM/pull/228), [PR 230](https://github.com/SANDAG/ABM/pull/230), [PR 231](https://github.com/SANDAG/ABM/pull/231), & [PR 233](https://github.com/SANDAG/ABM/pull/233): Various fixes to Travel Time Reporter - [PR 218](https://github.com/SANDAG/ABM/pull/218): Allowed for traffic assignment to work without any tolled links - [PR 224](https://github.com/SANDAG/ABM/pull/224): Removed Java-based walk logsum step - [PR 227](https://github.com/SANDAG/ABM/pull/227): Fixed issue with link transit travel times - [PR 229](https://github.com/SANDAG/ABM/pull/229): Fixed Java unicode error with filepaths containing folders starting with the letter U - [PR 234](https://github.com/SANDAG/ABM/pull/234): Corrected mixed party type to correct value +- [PR 242](https://github.com/SANDAG/ABM/pull/242) & [PR 243](https://github.com/SANDAG/ABM/pull/243): Fix issues with MAZ to stop distances ## Version 15.1.0 (September 4, 2024) As mentioned in the notes for Version 15.0.2, several improvements to the Commercial Vehicle Model (CVM) were made, largely due to SANDAG staff realizing that the survey used to estimate the CVM had likely overestimated the amount of commercial vehicle travel that was made on a given day in the region. New weights were estimated, and then the CVM was recalibrated to match these new weights. After doing this, it was found that modeled highway volumes were lower than observed counts, so some further adjustments were made to get them back up. Some components of the resident model were recalibrated to better match the survey, a new database started being used, a bug in the transit network was fixed, and other miscelaneous improvements were made. From ff1a7dd2680e56a716b897d118c0ddc3f69312d1 Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Thu, 14 Nov 2024 11:45:27 -0800 Subject: [PATCH 80/86] Added TNC-transit skim removal to v15.2.0 release notes --- docs/release-notes.md | 1 + 1 file changed, 1 insertion(+) diff --git a/docs/release-notes.md b/docs/release-notes.md index ab2029920..b62e95f9b 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -7,6 +7,7 @@ Since release 15.1.0, several bug fixes and new features were added. Results of No changes made to ActivitySim version. ### Features +- [PR 161](https://github.com/SANDAG/ABM/pull/161): Set TNC to transit modes to use KNR to transit skims and removed TNC to transit skims - [PR 203](https://github.com/SANDAG/ABM/pull/203): Added tracking of disk space usage - [PR 204](https://github.com/SANDAG/ABM/pull/204), [PR 219](https://github.com/SANDAG/ABM/pull/219), & [PR 232](https://github.com/SANDAG/ABM/pull/232): Flexible fleets improvement and calibration - [PR 206](https://github.com/SANDAG/ABM/pull/206): Reduced sensitivity of electric vehicle ownership to number of chargers From e0ab7856ab7f0b0c5d114190e1bf03c918dec571 Mon Sep 17 00:00:00 2001 From: Joe Flood Date: Thu, 14 Nov 2024 11:52:21 -0800 Subject: [PATCH 81/86] Corrected pull request number for TNC-transit skim removal --- docs/release-notes.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/release-notes.md b/docs/release-notes.md index b62e95f9b..2cc334000 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -7,7 +7,7 @@ Since release 15.1.0, several bug fixes and new features were added. Results of No changes made to ActivitySim version. ### Features -- [PR 161](https://github.com/SANDAG/ABM/pull/161): Set TNC to transit modes to use KNR to transit skims and removed TNC to transit skims +- [PR 169](https://github.com/SANDAG/ABM/pull/169): Set TNC to transit modes to use KNR to transit skims and removed TNC to transit skims - [PR 203](https://github.com/SANDAG/ABM/pull/203): Added tracking of disk space usage - [PR 204](https://github.com/SANDAG/ABM/pull/204), [PR 219](https://github.com/SANDAG/ABM/pull/219), & [PR 232](https://github.com/SANDAG/ABM/pull/232): Flexible fleets improvement and calibration - [PR 206](https://github.com/SANDAG/ABM/pull/206): Reduced sensitivity of electric vehicle ownership to number of chargers From 3d988ab8c8a7afb6e9f13cbe8ae89fb6949277f7 Mon Sep 17 00:00:00 2001 From: Bhargava Sana Date: Thu, 14 Nov 2024 11:59:49 -0800 Subject: [PATCH 82/86] Update release-notes.md --- docs/release-notes.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/release-notes.md b/docs/release-notes.md index 2cc334000..509252661 100644 --- a/docs/release-notes.md +++ b/docs/release-notes.md @@ -1,7 +1,7 @@ # Release Notes ## Version 15.2.0 (November 14, 2024) -Since release 15.1.0, several bug fixes and new features were added. Results of ABM3 using Version 15.2 are anticipated to be presented to the SANDAG Board of Directors in January 2025. +Since release 15.1.0, several bug fixes and new features were added. Results of ABM3 using Version 15.2 are anticipated to be presented to the SANDAG Board of Directors in Spring 2025. ### ActivitySim Version No changes made to ActivitySim version. From 92a3a5c7c83354cbb402cd32350778935f33e03c Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 15 Nov 2024 06:47:27 -0800 Subject: [PATCH 83/86] updated tour mode choice calibration script --- .../tour_mode_choice/coefficient_updates.csv | 758 --- .../tour_mode_choice/scaled_targets.xlsx | Bin 17959 -> 0 bytes .../scripts/asim_calib_util.py | 2 +- .../scripts/calibrate_tour_mode_choice.ipynb | 5426 +---------------- .../scripts/settings_mp_warm_start.yaml | 2 +- 5 files changed, 39 insertions(+), 6149 deletions(-) delete mode 100644 src/asim/calibration/resident/tour_mode_choice/coefficient_updates.csv delete mode 100644 src/asim/calibration/resident/tour_mode_choice/scaled_targets.xlsx diff --git a/src/asim/calibration/resident/tour_mode_choice/coefficient_updates.csv b/src/asim/calibration/resident/tour_mode_choice/coefficient_updates.csv deleted file mode 100644 index 5a51826e3..000000000 --- a/src/asim/calibration/resident/tour_mode_choice/coefficient_updates.csv +++ /dev/null @@ -1,758 +0,0 @@ -coefficient_name,value,constrain,purpose,mode,auto_suff,model_counts,target_counts,difference,percent_diff,coef_change,new_value,converged -coef_zero,0.0,T,,,,,,,,,0.0,True -coef_one,1.0,T,,,,,,,,,1.0,True -coef_nest_root,1.0,T,,,,,,,,,1.0,True -coef_nest_AUTO,0.5,T,,,,,,,,,0.5,True -coef_nest_NONMOTORIZED,0.5,T,,,,,,,,,0.5,True -coef_nest_MICROMOBILITY,0.5,T,,,,,,,,,0.5,True -coef_nest_TRANSIT,0.5,T,,,,,,,,,0.5,True -coef_nest_RIDEHAIL,0.5,T,,,,,,,,,0.5,True -coef_nest_SCHOOL_BUS,0.5,T,,,,,,,,,0.5,True -coef_nest_TRANSIT_WALKACCESS,0.5,T,,,,,,,,,0.5,True -coef_nest_TRANSIT_PNRACCESS,0.5,T,,,,,,,,,0.5,True -coef_nest_TRANSIT_KNRACCESS,0.5,T,,,,,,,,,0.5,True -coef_nest_TRANSIT_TNCACCESS,0.5,T,,,,,,,,,0.5,True -coef_ivt_work,-0.016,F,,,,,,,,,-0.016,True -coef_ivt_univ,-0.016,F,,,,,,,,,-0.016,True -coef_ivt_school,-0.01,F,,,,,,,,,-0.01,True -coef_ivt_maint,-0.017,F,,,,,,,,,-0.017,True -coef_ivt_disc,-0.015,F,,,,,,,,,-0.015,True -coef_ivt_atwork,-0.032,F,,,,,,,,,-0.032,True -coef_rel_out_work,-0.224,F,,,,,,,,,-0.224,True -coef_rel_out_univ,-0.192,F,,,,,,,,,-0.192,True -coef_rel_out_school,-0.12,F,,,,,,,,,-0.12,True -coef_rel_out_maint,-0.204,F,,,,,,,,,-0.204,True -coef_rel_out_disc,-0.18,F,,,,,,,,,-0.18,True -coef_rel_out_atwork,-0.384,F,,,,,,,,,-0.384,True -coef_rel_inb_work,-0.192,F,,,,,,,,,-0.192,True -coef_rel_inb_univ,-0.192,F,,,,,,,,,-0.192,True -coef_rel_inb_school,-0.12,F,,,,,,,,,-0.12,True -coef_rel_inb_maint,-0.204,F,,,,,,,,,-0.204,True -coef_rel_inb_disc,-0.18,F,,,,,,,,,-0.18,True -coef_rel_inb_atwork,-0.384,F,,,,,,,,,-0.384,True -coef_income_work,-0.625,F,,,,,,,,,-0.625,True -coef_income_univ,-0.262,F,,,,,,,,,-0.262,True -coef_income_school,-0.262,F,,,,,,,,,-0.262,True -coef_income_maint,-0.262,F,,,,,,,,,-0.262,True -coef_income_disc,-0.262,F,,,,,,,,,-0.262,True -coef_income_atwork,-0.262,F,,,,,,,,,-0.262,True -coef_walktime_work,-0.0424,F,,,,,,,,,-0.0424,True -coef_walktime_univ,-0.0424,F,,,,,,,,,-0.0424,True -coef_walktime_school,-0.068,F,,,,,,,,,-0.068,True -coef_walktime_maint,-0.03995,F,,,,,,,,,-0.03995,True -coef_walktime_disc,-0.045,F,,,,,,,,,-0.045,True -coef_walktime_atwork,-0.0848,F,,,,,,,,,-0.0848,True -coef_bikels_work,0.134333061,F,,,,,,,,,0.134333061,True -coef_bikels_univ,0.134333061,F,,,,,,,,,0.134333061,True -coef_bikels_school,0.214932897,F,,,,,,,,,0.214932897,True -coef_bikels_maint,0.22,F,,,,,,,,,0.22,True -coef_bikels_disc,0.22,F,,,,,,,,,0.22,True -coef_bikels_atwork,0.23,F,,,,,,,,,0.23,True -coef_wait_work,-0.024,F,,,,,,,,,-0.024,True -coef_wait_univ,-0.024,F,,,,,,,,,-0.024,True -coef_wait_school,-0.015,F,,,,,,,,,-0.015,True -coef_wait_maint,-0.0255,F,,,,,,,,,-0.0255,True -coef_wait_disc,-0.0225,F,,,,,,,,,-0.0225,True -coef_wait_atwork,-0.048,F,,,,,,,,,-0.048,True -coef_xwalk_work,-0.04,F,,,,,,,,,-0.04,True -coef_xwalk_univ,-0.04,F,,,,,,,,,-0.04,True -coef_xwalk_school,-0.025,F,,,,,,,,,-0.025,True -coef_xwalk_maint,-0.0425,F,,,,,,,,,-0.0425,True -coef_xwalk_disc,-0.0375,F,,,,,,,,,-0.0375,True -coef_xwalk_atwork,-0.08,F,,,,,,,,,-0.08,True -coef_xwait_work,-0.032,F,,,,,,,,,-0.032,True -coef_xwait_univ,-0.032,F,,,,,,,,,-0.032,True -coef_xwait_school,-0.02,F,,,,,,,,,-0.02,True -coef_xwait_maint,-0.034,F,,,,,,,,,-0.034,True -coef_xwait_disc,-0.03,F,,,,,,,,,-0.03,True -coef_xwait_atwork,-0.064,F,,,,,,,,,-0.064,True -coef_xfer_work,-0.024,F,,,,,,,,,-0.024,True -coef_xfer_univ,-0.024,F,,,,,,,,,-0.024,True -coef_xfer_school,-0.015,F,,,,,,,,,-0.015,True -coef_xfer_maint,-0.0255,F,,,,,,,,,-0.0255,True -coef_xfer_disc,-0.0225,F,,,,,,,,,-0.0225,True -coef_xfer_atwork,-0.048,F,,,,,,,,,-0.048,True -coef_xferdrive_work,-0.032,F,,,,,,,,,-0.032,True -coef_xferdrive_univ,-0.032,F,,,,,,,,,-0.032,True -coef_xferdrive_school,-0.02,F,,,,,,,,,-0.02,True -coef_xferdrive_maint,-0.034,F,,,,,,,,,-0.034,True -coef_xferdrive_disc,-0.03,F,,,,,,,,,-0.03,True -coef_xferdrive_atwork,-0.064,F,,,,,,,,,-0.064,True -coef_acctime_work,-0.032,F,,,,,,,,,-0.032,True -coef_acctime_univ,-0.032,F,,,,,,,,,-0.032,True -coef_acctime_school,-0.02,F,,,,,,,,,-0.02,True -coef_acctime_maint,-0.034,F,,,,,,,,,-0.034,True -coef_acctime_disc,-0.03,F,,,,,,,,,-0.03,True -coef_acctime_atwork,-0.064,F,,,,,,,,,-0.064,True -coef_oMix_nmot_work,0.210144,F,,,,,,,,,0.210144,True -coef_oMix_wTran_work,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_nmot_work,0.002998,F,,,,,,,,,0.002998,True -coef_oIntDen_wTran_work,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_nmot_work,0.020707,F,,,,,,,,,0.020707,True -coef_dEmpDen_wTran_work,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_dTran_work,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr2_work,-0.21388,F,,,,,,,,,-0.21388,True -coef_age1624_sr3p_work,-1.79023,F,,,,,,,,,-1.79023,True -coef_age1624_nmot_work,0.303216,F,,,,,,,,,0.303216,True -coef_age1624_tran_work,0.794718,F,,,,,,,,,0.794718,True -coef_age4155_sr2_work,-0.30638,F,,,,,,,,,-0.30638,True -coef_age4155_sr3p_work,-0.41025,F,,,,,,,,,-0.41025,True -coef_age4155_nmot_work,-0.17752,F,,,,,,,,,-0.17752,True -coef_age4155_tran_work,-0.42301,F,,,,,,,,,-0.42301,True -coef_age5664_sr2_work,-1.02962,F,,,,,,,,,-1.02962,True -coef_age5664_sr3p_work,-0.85641,F,,,,,,,,,-0.85641,True -coef_age5664_nmot_work,-0.64534,F,,,,,,,,,-0.64534,True -coef_age5664_tran_work,-0.44991,F,,,,,,,,,-0.44991,True -coef_age65pl_sr2_work,-0.67111,F,,,,,,,,,-0.67111,True -coef_age65pl_sr3p_work,-1.43462,F,,,,,,,,,-1.43462,True -coef_age65pl_nmot_work,-1.45334,F,,,,,,,,,-1.45334,True -coef_age65pl_tran_work,-1.1231,F,,,,,,,,,-1.1231,True -coef_female_sr2_work,0.594728,F,,,,,,,,,0.594728,True -coef_female_sr3p_work,0.848064,F,,,,,,,,,0.848064,True -coef_female_tran_work,0.157786,F,,,,,,,,,0.157786,True -coef_female_nmot_work,0.0,F,,,,,,,,,0.0,True -coef_ageund16_bike_work,0.0,F,,,,,,,,,0.0,True -coef_age1624_bike_work,0.0,F,,,,,,,,,0.0,True -coef_age4155_bike_work,-0.73111,F,,,,,,,,,-0.73111,True -coef_age5664_bike_work,-0.64352,F,,,,,,,,,-0.64352,True -coef_age65pl_bike_work,-1.54867,F,,,,,,,,,-1.54867,True -coef_female_bike_work,-1.19364,F,,,,,,,,,-1.19364,True -coef_inc100plus_bike_work,0.641381,F,,,,,,,,,0.641381,True -coef_LUnorm_bike_work,0.083266,F,,,,,,,,,0.083266,True -coef_oMlCoast_bike_work,-1.42018,F,,,,,,,,,-1.42018,True -coef_oMlCoast2p_bike_work,1.335076,F,,,,,,,,,1.335076,True -coef_oMlCoast5p_bike_work,0.079563,F,,,,,,,,,0.079563,True -coef_ageund16_walk_work,2.188395,F,,,,,,,,,2.188395,True -coef_age1624_walk_work,1.430593,F,,,,,,,,,1.430593,True -coef_age4155_walk_work,-0.43207,F,,,,,,,,,-0.43207,True -coef_age5664_walk_work,-0.51999,F,,,,,,,,,-0.51999,True -coef_age65pl_walk_work,-0.83162,F,,,,,,,,,-0.83162,True -coef_female_walk_work,0.0,F,,,,,,,,,0.0,True -coef_inc60100_walk_work,-0.20839,F,,,,,,,,,-0.20839,True -coef_LUnorm_walk_work,0.009309,F,,,,,,,,,0.009309,True -coef_dEmpNorm_walk_work,0.099811,F,,,,,,,,,0.099811,True -coef_hhsize2_sr2_work,1.069642353,F,,,,,,,,,1.069642353,True -coef_hhsize2_sr3p_work,-0.467357298,F,,,,,,,,,-0.467357298,True -coef_hhsize3_sr2_work,1.58018418,F,,,,,,,,,1.58018418,True -coef_hhsize3_sr3p_work,0.654631352,F,,,,,,,,,0.654631352,True -coef_hhsize4p_sr2_work,1.688389262,F,,,,,,,,,1.688389262,True -coef_hhsize4p_sr3p_work,1.49870326,F,,,,,,,,,1.49870326,True -coef_oMix_nmot_univ,0.122315,F,,,,,,,,,0.122315,True -coef_oMix_wTran_univ,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_nmot_univ,0.009072,F,,,,,,,,,0.009072,True -coef_oIntDen_wTran_univ,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_nmot_univ,0.081786,F,,,,,,,,,0.081786,True -coef_dEmpDen_wTran_univ,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_dTran_univ,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr2_univ,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr3p_univ,0.0,F,,,,,,,,,0.0,True -coef_age1624_nmot_univ,0.0,F,,,,,,,,,0.0,True -coef_age1624_tran_univ,0.461169,F,,,,,,,,,0.461169,True -coef_age4155_sr2_univ,0.0,F,,,,,,,,,0.0,True -coef_age4155_sr3p_univ,0.0,F,,,,,,,,,0.0,True -coef_age4155_nmot_univ,0.0,F,,,,,,,,,0.0,True -coef_age4155_tran_univ,0.0,F,,,,,,,,,0.0,True -coef_age5664_sr2_univ,0.0,F,,,,,,,,,0.0,True -coef_age5664_sr3p_univ,0.0,F,,,,,,,,,0.0,True -coef_age5664_nmot_univ,0.0,F,,,,,,,,,0.0,True -coef_age5664_tran_univ,0.0,F,,,,,,,,,0.0,True -coef_age65pl_sr2_univ,0.0,F,,,,,,,,,0.0,True -coef_age65pl_sr3p_univ,0.0,F,,,,,,,,,0.0,True -coef_age65pl_nmot_univ,0.0,F,,,,,,,,,0.0,True -coef_age65pl_tran_univ,0.0,F,,,,,,,,,0.0,True -coef_female_sr2_univ,0.0,F,,,,,,,,,0.0,True -coef_female_sr3p_univ,0.0,F,,,,,,,,,0.0,True -coef_female_tran_univ,0.0,F,,,,,,,,,0.0,True -coef_female_nmot_univ,0.0,F,,,,,,,,,0.0,True -coef_ageund16_bike_univ,0.0,F,,,,,,,,,0.0,True -coef_age1624_bike_univ,0.0,F,,,,,,,,,0.0,True -coef_age4155_bike_univ,-0.73111,F,,,,,,,,,-0.73111,True -coef_age5664_bike_univ,-0.64352,F,,,,,,,,,-0.64352,True -coef_age65pl_bike_univ,-1.54867,F,,,,,,,,,-1.54867,True -coef_female_bike_univ,-1.19364,F,,,,,,,,,-1.19364,True -coef_inc100plus_bike_univ,0.641381,F,,,,,,,,,0.641381,True -coef_LUnorm_bike_univ,0.083266,F,,,,,,,,,0.083266,True -coef_oMlCoast_bike_univ,0.0,F,,,,,,,,,0.0,True -coef_oMlCoast2p_bike_univ,0.0,F,,,,,,,,,0.0,True -coef_oMlCoast5p_bike_univ,0.0,F,,,,,,,,,0.0,True -coef_ageund16_walk_univ,2.188395,F,,,,,,,,,2.188395,True -coef_age1624_walk_univ,1.430593,F,,,,,,,,,1.430593,True -coef_age4155_walk_univ,-0.43207,F,,,,,,,,,-0.43207,True -coef_age5664_walk_univ,-0.51999,F,,,,,,,,,-0.51999,True -coef_age65pl_walk_univ,-0.83162,F,,,,,,,,,-0.83162,True -coef_female_walk_univ,0.0,F,,,,,,,,,0.0,True -coef_inc60100_walk_univ,-0.20839,F,,,,,,,,,-0.20839,True -coef_LUnorm_walk_univ,0.009309,F,,,,,,,,,0.009309,True -coef_dEmpNorm_walk_univ,0.099811,F,,,,,,,,,0.099811,True -coef_hhsize2_sr2_univ,1.871179646,F,,,,,,,,,1.871179646,True -coef_hhsize2_sr3p_univ,1.871179646,F,,,,,,,,,1.871179646,True -coef_hhsize3_sr2_univ,1.871179646,F,,,,,,,,,1.871179646,True -coef_hhsize3_sr3p_univ,1.871179646,F,,,,,,,,,1.871179646,True -coef_hhsize4p_sr2_univ,2.426268851,F,,,,,,,,,2.426268851,True -coef_hhsize4p_sr3p_univ,2.426268851,F,,,,,,,,,2.426268851,True -coef_oMix_nmot_school,0.0,F,,,,,,,,,0.0,True -coef_oMix_wTran_school,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_nmot_school,0.002951,F,,,,,,,,,0.002951,True -coef_oIntDen_wTran_school,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_nmot_school,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_wTran_school,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_dTran_school,0.0,F,,,,,,,,,0.0,True -coef_age0105_schb_school,0.0,F,,,,,,,,,0.0,True -coef_age0105_nmot_school,-1.16217,F,,,,,,,,,-1.16217,True -coef_age0105_tran_school,-6.49996,F,,,,,,,,,-6.49996,True -coef_age0612_schb_school,1.448589,F,,,,,,,,,1.448589,True -coef_age0612_nmot_school,-0.57675,F,,,,,,,,,-0.57675,True -coef_age0612_tran_school,-4.5987,F,,,,,,,,,-4.5987,True -coef_age1315_schb_school,1.296494,F,,,,,,,,,1.296494,True -coef_age1315_nmot_school,0.687165,F,,,,,,,,,0.687165,True -coef_age1315_tran_school,-1.18344,F,,,,,,,,,-1.18344,True -coef_female_sr2_school,0.370191,F,,,,,,,,,0.370191,True -coef_female_sr3p_school,0.326161,F,,,,,,,,,0.326161,True -coef_female_tran_school,0.609312,F,,,,,,,,,0.609312,True -coef_female_nmot_school,0.0,F,,,,,,,,,0.0,True -coef_female_schb_school,0.0,F,,,,,,,,,0.0,True -coef_ageund16_bike_school,0.0,F,,,,,,,,,0.0,True -coef_age1624_bike_school,0.0,F,,,,,,,,,0.0,True -coef_age4155_bike_school,-1.16978,F,,,,,,,,,-1.16978,True -coef_age5664_bike_school,-1.02963,F,,,,,,,,,-1.02963,True -coef_age65pl_bike_school,-2.47787,F,,,,,,,,,-2.47787,True -coef_female_bike_school,-1.90983,F,,,,,,,,,-1.90983,True -coef_inc100plus_bike_school,1.026209,F,,,,,,,,,1.026209,True -coef_LUnorm_bike_school,0.133225,F,,,,,,,,,0.133225,True -coef_oMlCoast_bike_school,-2.27229,F,,,,,,,,,-2.27229,True -coef_oMlCoast2p_bike_school,2.136121,F,,,,,,,,,2.136121,True -coef_oMlCoast5p_bike_school,0.127301,F,,,,,,,,,0.127301,True -coef_ageund16_walk_school,3.371151,F,,,,,,,,,3.371151,True -coef_age1624_walk_school,2.126636,F,,,,,,,,,2.126636,True -coef_age4155_walk_school,-0.76078,F,,,,,,,,,-0.76078,True -coef_age5664_walk_school,-0.90034,F,,,,,,,,,-0.90034,True -coef_age65pl_walk_school,-1.38069,F,,,,,,,,,-1.38069,True -coef_female_walk_school,0.0,F,,,,,,,,,0.0,True -coef_inc60100_walk_school,-0.35622,F,,,,,,,,,-0.35622,True -coef_LUnorm_walk_school,0.701592,F,,,,,,,,,0.701592,True -coef_dEmpNorm_walk_school,0.191664,F,,,,,,,,,0.191664,True -coef_hhsize2_sr2_school,0.0,F,,,,,,,,,0.0,True -coef_hhsize2_sr3p_school,0.0,F,,,,,,,,,0.0,True -coef_hhsize3_sr2_school,0.66814,F,,,,,,,,,0.66814,True -coef_hhsize3_sr3p_school,0.66814,F,,,,,,,,,0.66814,True -coef_hhsize4p_sr2_school,0.41147,F,,,,,,,,,0.41147,True -coef_hhsize4p_sr3p_school,2.09725,F,,,,,,,,,2.09725,True -coef_oMix_nmot_maint,0.145634,F,,,,,,,,,0.145634,True -coef_oMix_wTran_maint,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_nmot_maint,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_wTran_maint,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_nmot_maint,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_wTran_maint,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_dTran_maint,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr2_maint,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr3p_maint,0.0,F,,,,,,,,,0.0,True -coef_age1624_nmot_maint,0.0,F,,,,,,,,,0.0,True -coef_age1624_tran_maint,1.621112,F,,,,,,,,,1.621112,True -coef_age4155_sr2_maint,-0.82262,F,,,,,,,,,-0.82262,True -coef_age4155_sr3p_maint,-1.93552,F,,,,,,,,,-1.93552,True -coef_age4155_nmot_maint,-1.34146,F,,,,,,,,,-1.34146,True -coef_age4155_tran_maint,-1.39312,F,,,,,,,,,-1.39312,True -coef_age5664_sr2_maint,-0.95497,F,,,,,,,,,-0.95497,True -coef_age5664_sr3p_maint,-2.16777,F,,,,,,,,,-2.16777,True -coef_age5664_nmot_maint,-1.3422,F,,,,,,,,,-1.3422,True -coef_age5664_tran_maint,-1.46184,F,,,,,,,,,-1.46184,True -coef_age65pl_sr2_maint,-1.06222,F,,,,,,,,,-1.06222,True -coef_age65pl_sr3p_maint,-2.1471,F,,,,,,,,,-2.1471,True -coef_age65pl_nmot_maint,-2.32071,F,,,,,,,,,-2.32071,True -coef_age65pl_tran_maint,-2.86495,F,,,,,,,,,-2.86495,True -coef_female_sr2_maint,0.323867,F,,,,,,,,,0.323867,True -coef_female_sr3p_maint,0.34258,F,,,,,,,,,0.34258,True -coef_female_tran_maint,0.0,F,,,,,,,,,0.0,True -coef_female_nmot_maint,0.0,F,,,,,,,,,0.0,True -coef_ageund16_bike_maint,0.0,F,,,,,,,,,0.0,True -coef_age1624_bike_maint,0.0,F,,,,,,,,,0.0,True -coef_age4155_bike_maint,-0.68811,F,,,,,,,,,-0.68811,True -coef_age5664_bike_maint,-0.60566,F,,,,,,,,,-0.60566,True -coef_age65pl_bike_maint,-1.45757,F,,,,,,,,,-1.45757,True -coef_female_bike_maint,-1.12343,F,,,,,,,,,-1.12343,True -coef_inc100plus_bike_maint,0.603652,F,,,,,,,,,0.603652,True -coef_LUnorm_bike_maint,0.078368,F,,,,,,,,,0.078368,True -coef_oMlCoast_bike_maint,-1.33664,F,,,,,,,,,-1.33664,True -coef_oMlCoast2p_bike_maint,1.256542,F,,,,,,,,,1.256542,True -coef_oMlCoast5p_bike_maint,0.074883,F,,,,,,,,,0.074883,True -coef_ageund16_walk_maint,1.98303,F,,,,,,,,,1.98303,True -coef_age1624_walk_maint,1.250962,F,,,,,,,,,1.250962,True -coef_age4155_walk_maint,-0.44752,F,,,,,,,,,-0.44752,True -coef_age5664_walk_maint,-0.52961,F,,,,,,,,,-0.52961,True -coef_age65pl_walk_maint,-0.81217,F,,,,,,,,,-0.81217,True -coef_female_walk_maint,0.0,F,,,,,,,,,0.0,True -coef_inc60100_walk_maint,-0.20954,F,,,,,,,,,-0.20954,True -coef_LUnorm_walk_maint,0.412701,F,,,,,,,,,0.412701,True -coef_dEmpNorm_walk_maint,0.112744,F,,,,,,,,,0.112744,True -coef_hhsize2_sr2_maint,0.0,F,,,,,,,,,0.0,True -coef_hhsize2_sr3p_maint,-1.679852226,F,,,,,,,,,-1.679852226,True -coef_hhsize3_sr2_maint,0.488088852,F,,,,,,,,,0.488088852,True -coef_hhsize3_sr3p_maint,-1.335043303,F,,,,,,,,,-1.335043303,True -coef_hhsize4p_sr2_maint,0.308239564,F,,,,,,,,,0.308239564,True -coef_hhsize4p_sr3p_maint,0.585684607,F,,,,,,,,,0.585684607,True -coef_oMix_nmot_disc,0.172434,F,,,,,,,,,0.172434,True -coef_oMix_wTran_disc,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_nmot_disc,0.005711,F,,,,,,,,,0.005711,True -coef_oIntDen_wTran_disc,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_nmot_disc,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_wTran_disc,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_dTran_disc,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr2_disc,-0.51961,F,,,,,,,,,-0.51961,True -coef_age1624_sr3p_disc,-1.31632,F,,,,,,,,,-1.31632,True -coef_age1624_nmot_disc,-0.5557,F,,,,,,,,,-0.5557,True -coef_age1624_tran_disc,1.063749,F,,,,,,,,,1.063749,True -coef_age4155_sr2_disc,-1.04157,F,,,,,,,,,-1.04157,True -coef_age4155_sr3p_disc,-1.21044,F,,,,,,,,,-1.21044,True -coef_age4155_nmot_disc,-1.14969,F,,,,,,,,,-1.14969,True -coef_age4155_tran_disc,-0.48434,F,,,,,,,,,-0.48434,True -coef_age5664_sr2_disc,-0.84295,F,,,,,,,,,-0.84295,True -coef_age5664_sr3p_disc,-0.96503,F,,,,,,,,,-0.96503,True -coef_age5664_nmot_disc,-0.97814,F,,,,,,,,,-0.97814,True -coef_age5664_tran_disc,-1.0845,F,,,,,,,,,-1.0845,True -coef_age65pl_sr2_disc,-0.89435,F,,,,,,,,,-0.89435,True -coef_age65pl_sr3p_disc,-1.11463,F,,,,,,,,,-1.11463,True -coef_age65pl_nmot_disc,-1.69155,F,,,,,,,,,-1.69155,True -coef_age65pl_tran_disc,-2.49829,F,,,,,,,,,-2.49829,True -coef_female_sr2_disc,0.261989,F,,,,,,,,,0.261989,True -coef_female_sr3p_disc,0.273571,F,,,,,,,,,0.273571,True -coef_female_tran_disc,-0.23309,F,,,,,,,,,-0.23309,True -coef_female_nmot_disc,0.0,F,,,,,,,,,0.0,True -coef_beachParkBikeConstant,0.7,F,,,,,,,,,0.7,True -coef_ageund16_bike_disc,0.0,F,,,,,,,,,0.0,True -coef_age1624_bike_disc,0.0,F,,,,,,,,,0.0,True -coef_age4155_bike_disc,-0.77985,F,,,,,,,,,-0.77985,True -coef_age5664_bike_disc,-0.68642,F,,,,,,,,,-0.68642,True -coef_age65pl_bike_disc,-1.65192,F,,,,,,,,,-1.65192,True -coef_female_bike_disc,-1.27322,F,,,,,,,,,-1.27322,True -coef_inc100plus_bike_disc,0.684139,F,,,,,,,,,0.684139,True -coef_LUnorm_bike_disc,0.088817,F,,,,,,,,,0.088817,True -coef_oMlCoast_bike_disc,-1.51486,F,,,,,,,,,-1.51486,True -coef_oMlCoast2p_bike_disc,1.424081,F,,,,,,,,,1.424081,True -coef_oMlCoast5p_bike_disc,0.084867,F,,,,,,,,,0.084867,True -coef_ageund16_walk_disc,2.247434,F,,,,,,,,,2.247434,True -coef_age1624_walk_disc,1.417757,F,,,,,,,,,1.417757,True -coef_age4155_walk_disc,-0.50719,F,,,,,,,,,-0.50719,True -coef_age5664_walk_disc,-0.60023,F,,,,,,,,,-0.60023,True -coef_age65pl_walk_disc,-0.92046,F,,,,,,,,,-0.92046,True -coef_female_walk_disc,0.0,F,,,,,,,,,0.0,True -coef_inc60100_walk_disc,-0.23748,F,,,,,,,,,-0.23748,True -coef_LUnorm_walk_disc,0.467728,F,,,,,,,,,0.467728,True -coef_dEmpNorm_walk_disc,0.127776,F,,,,,,,,,0.127776,True -coef_hhsize2_sr2_disc,0.352972249,F,,,,,,,,,0.352972249,True -coef_hhsize2_sr3p_disc,-0.936579922,F,,,,,,,,,-0.936579922,True -coef_hhsize3_sr2_disc,0.412665036,F,,,,,,,,,0.412665036,True -coef_hhsize3_sr3p_disc,-0.798959661,F,,,,,,,,,-0.798959661,True -coef_hhsize4p_sr2_disc,0.761157155,F,,,,,,,,,0.761157155,True -coef_hhsize4p_sr3p_disc,0.578130166,F,,,,,,,,,0.578130166,True -coef_age1624_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_age1624_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_age1624_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_age1624_tran_atwork,0.0,F,,,,,,,,,0.0,True -coef_age4155_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_age4155_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_age4155_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_age4155_tran_atwork,-1.166,F,,,,,,,,,-1.166,True -coef_age5664_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_age5664_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_age5664_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_age5664_tran_atwork,-1.263,F,,,,,,,,,-1.263,True -coef_age65pl_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_age65pl_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_age65pl_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_age65pl_tran_atwork,0.0,F,,,,,,,,,0.0,True -coef_sr_da_atwork,-0.824,F,,,,,,,,,-0.824,True -coef_sr_sr_atwork,2.435,F,,,,,,,,,2.435,True -coef_female_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_female_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_female_tran_atwork,0.0,F,,,,,,,,,0.0,True -coef_female_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_oMix_nmot_atwork,0.214,F,,,,,,,,,0.214,True -coef_oMix_wTran_atwork,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_oIntDen_wTran_atwork,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_nmot_atwork,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_wTran_atwork,0.0,F,,,,,,,,,0.0,True -coef_dEmpDen_dTran_atwork,0.0,F,,,,,,,,,0.0,True -coef_hhsize2_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_hhsize2_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_hhsize3_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_hhsize3_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_hhsize4p_sr2_atwork,0.0,F,,,,,,,,,0.0,True -coef_hhsize4p_sr3p_atwork,0.0,F,,,,,,,,,0.0,True -coef_calib_civtebikeownership_BIKE_school,1.0,F,,,,,,,,,1.0,True -coef_calib_civtebikeownership_BIKE_atwork,1.0,F,,,,,,,,,1.0,True -coef_calib_civtebikeownership_BIKE_maint,1.0,F,,,,,,,,,1.0,True -coef_calib_escorttour_WALK_maint,-1.2579,F,,,,,,,,,-1.2579,True -coef_calib_escorttour_PNR_TRANSIT_maint,-5.8388,F,,,,,,,,,-5.8388,True -coef_calib_civtebikeownership_BIKE_disc,1.0,F,,,,,,,,,1.0,True -coef_calib_probikedistrict_BIKE_maint,1.5524,F,,,,,,,,,1.5524,True -coef_calib_civtebikeownership_BIKE_univ,1.0,F,,,,,,,,,1.0,True -coef_calib_escorttour_WALK_TRANSIT_maint,-5.8388,F,,,,,,,,,-5.8388,True -coef_calib_probikedistrict_BIKE_univ,1.5524,F,,,,,,,,,1.5524,True -coef_calib_probikedistrict_BIKE_atwork,1.5524,F,,,,,,,,,1.5524,True -coef_calib_probikedistrict_BIKE_disc,1.5524,F,,,,,,,,,1.5524,True -coef_calib_escorttour_BIKE_maint,-1.2579,F,,,,,,,,,-1.2579,True -coef_calib_escorttour_TNC_TRANSIT_maint,-5.8388,F,,,,,,,,,-5.8388,True -coef_calib_probikedistrict_BIKE_work,1.5524,F,,,,,,,,,1.5524,True -coef_calib_probikedistrict_BIKE_school,1.5524,F,,,,,,,,,1.5524,True -coef_calib_escorttour_KNR_TRANSIT_maint,-5.8388,F,,,,,,,,,-5.8388,True -coef_calib_civtebikeownership_BIKE_work,1.0,F,,,,,,,,,1.0,True -coef_calib_parkingconst_WLK_TRANSIT_work,0.64,F,,,,,,,,,0.64,True -coef_calib_parkingconst_WLK_TRANSIT_univ,0.64,F,,,,,,,,,0.64,True -coef_calib_parkingconst_WLK_TRANSIT_school,0.4,F,,,,,,,,,0.4,True -coef_calib_parkingconst_WLK_TRANSIT_maint,0.765,F,,,,,,,,,0.765,True -coef_calib_parkingconst_WLK_TRANSIT_disc,0.9,F,,,,,,,,,0.9,True -coef_calib_parkingconst_WLK_TRANSIT_atwork,0.96,F,,,,,,,,,0.96,True -coef_calib_parkingconst_DRV_TRANSIT_work,1.28,F,,,,,,,,,1.28,True -coef_calib_parkingconst_DRV_TRANSIT_univ,1.28,F,,,,,,,,,1.28,True -coef_calib_parkingconst_DRV_TRANSIT_school,0.8,F,,,,,,,,,0.8,True -coef_calib_parkingconst_DRV_TRANSIT_maint,1.36,F,,,,,,,,,1.36,True -coef_calib_parkingconst_DRV_TRANSIT_disc,1.2,F,,,,,,,,,1.2,True -coef_calib_parkingconst_DRV_TRANSIT_atwork,1.92,F,,,,,,,,,1.92,True -coef_calib_distance_WALK_TRANSIT_work,-0.016,F,,,,,,,,,-0.016,True -coef_calib_distance_WALK_TRANSIT_univ,-0.016,F,,,,,,,,,-0.016,True -coef_calib_distance_WALK_TRANSIT_school,-0.01,F,,,,,,,,,-0.01,True -coef_calib_distance_WALK_TRANSIT_maint,-0.017,F,,,,,,,,,-0.017,True -coef_calib_distance_WALK_TRANSIT_disc,-0.015,F,,,,,,,,,-0.015,True -coef_calib_distance_WALK_TRANSIT_atwork,-0.032,F,,,,,,,,,-0.032,True -coef_calib_distance_PNR_TRANSIT_work,-0.016,F,,,,,,,,,-0.016,True -coef_calib_distance_PNR_TRANSIT_univ,-0.016,F,,,,,,,,,-0.016,True -coef_calib_distance_PNR_TRANSIT_school,-0.01,F,,,,,,,,,-0.01,True -coef_calib_distance_PNR_TRANSIT_maint,-0.017,F,,,,,,,,,-0.017,True -coef_calib_distance_PNR_TRANSIT_disc,-0.015,F,,,,,,,,,-0.015,True -coef_calib_distance_PNR_TRANSIT_atwork,-0.032,F,,,,,,,,,-0.032,True -coef_calib_distance_KNR_TRANSIT_work,-0.08,F,,,,,,,,,-0.08,True -coef_calib_distance_KNR_TRANSIT_univ,-0.08,F,,,,,,,,,-0.08,True -coef_calib_distance_KNR_TRANSIT_school,-0.05,F,,,,,,,,,-0.05,True -coef_calib_distance_KNR_TRANSIT_maint,-0.085,F,,,,,,,,,-0.085,True -coef_calib_distance_KNR_TRANSIT_disc,-0.075,F,,,,,,,,,-0.075,True -coef_calib_distance_KNR_TRANSIT_atwork,-0.16,F,,,,,,,,,-0.16,True -coef_calib_distance_TNC_TRANSIT_work,-0.016,F,,,,,,,,,-0.016,True -coef_calib_distance_TNC_TRANSIT_univ,-0.016,F,,,,,,,,,-0.016,True -coef_calib_distance_TNC_TRANSIT_school,-0.01,F,,,,,,,,,-0.01,True -coef_calib_distance_TNC_TRANSIT_maint,-0.017,F,,,,,,,,,-0.017,True -coef_calib_distance_TNC_TRANSIT_disc,-0.015,F,,,,,,,,,-0.015,True -coef_calib_distance_TNC_TRANSIT_atwork,-0.032,F,,,,,,,,,-0.032,True -#coef_calib_zeroautohhindivtou_DRIVEALONE_work,-0.8236,F,,,,,,,,,-0.8236,True -coef_calib_zeroautohhindivtou_SHARED2_work,-2.505255912,F,work,SHARED2,zeroautohh,175.0,188.0,13.0,6.914893617021277,,-2.505255912,True -coef_calib_zeroautohhindivtou_SHARED3_work,-4.1746,F,work,SHARED3,zeroautohh,0.0,0.0,0.0,0,,-4.1746,True -coef_calib_zeroautohhindivtou_WALK_work,-0.553414397,F,work,WALK,zeroautohh,1797.0,1797.0,0.0,0.0,,-0.553414397,True -coef_calib_zeroautohhindivtou_BIKE_work,-5.6023,F,work,BIKE,zeroautohh,16.0,0.0,-16.0,,,-5.6023,True -coef_calib_zeroautohhindivtou_WALK_TRANSIT_work,0.364691867,F,work,WALK_TRANSIT,zeroautohh,4239.0,4133.0,-106.0,2.5647229615291556,,0.364691867,True -coef_calib_zeroautohhindivtou_PNR_TRANSIT_work,-999.0,F,work,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_KNR_TRANSIT_work,0.666496122,F,work,KNR_TRANSIT,zeroautohh,267.0,262.0,-5.0,1.9083969465648856,,0.666496122,True -coef_calib_zeroautohhindivtou_TNC_TRANSIT_work,-999.0,F,work,TNC_TRANSIT,zeroautohh,0.0,13.0,13.0,,,-999.0,True -coef_calib_zeroautohhindivtou_TAXI_work,-1.9627,F,work,TAXI,zeroautohh,8.0,0.0,-8.0,,,-1.9627,True -coef_calib_zeroautohhindivtou_TNC_SINGLE_work,2.112479758,F,work,TNC_SINGLE,zeroautohh,6550.0,6437.0,-113.0,1.7554761534876495,,2.112479758,True -coef_calib_zeroautohhindivtou_TNC_SHARED_work,-3.9627,F,work,TNC_SHARED,zeroautohh,8.0,0.0,-8.0,,,-3.9627,True -coef_calib_autodeficienthhind_SHARED2_work,-2.70280219,F,work,SHARED2,autodeficienthh,8829.0,8482.0,-347.0,4.091016269747701,,-2.70280219,True -coef_calib_autodeficienthhind_SHARED3_work,-2.323413243,F,work,SHARED3,autodeficienthh,8327.0,8125.0,-202.0,2.4861538461538464,,-2.323413243,True -coef_calib_autodeficienthhind_WALK_work,-1.655602166,F,work,WALK,autodeficienthh,2016.0,2023.0,7.0,0.34602076124567477,,-1.655602166,True -coef_calib_autodeficienthhind_BIKE_work,-5.788115347,F,work,BIKE,autodeficienthh,474.0,485.0,11.0,2.268041237113402,,-5.788115347,True -coef_calib_autodeficienthhind_WALK_TRANSIT_work,-2.76181855,F,work,WALK_TRANSIT,autodeficienthh,7781.0,7736.0,-45.0,0.5816959669079628,,-2.76181855,True -coef_calib_autodeficienthhind_PNR_TRANSIT_work,-5.124417236,F,work,PNR_TRANSIT,autodeficienthh,279.0,257.0,-22.0,8.560311284046692,,-5.124417236,True -coef_calib_autodeficienthhind_KNR_TRANSIT_work,-3.970001618,F,work,KNR_TRANSIT,autodeficienthh,570.0,543.0,-27.0,4.972375690607735,,-3.970001618,True -coef_calib_autodeficienthhind_TNC_TRANSIT_work,-9.3988,F,work,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-9.3988,True -coef_calib_autodeficienthhind_TAXI_work,-9.6667,F,work,TAXI,autodeficienthh,4.0,0.0,-4.0,,,-9.6667,True -coef_calib_autodeficienthhind_TNC_SINGLE_work,-8.884488626,F,work,TNC_SINGLE,autodeficienthh,100.0,64.0,-36.0,56.25,,-8.884488626,True -coef_calib_autodeficienthhind_TNC_SHARED_work,-9.6667,F,work,TNC_SHARED,autodeficienthh,32.0,0.0,-32.0,,,-9.6667,True -coef_calib_autosufficienthhin_SHARED2_work,-2.536054537,F,work,SHARED2,autosufficienthh,25594.0,25665.0,71.0,0.27664134034677573,,-2.536054537,True -coef_calib_autosufficienthhin_SHARED3_work,-2.061827895,F,work,SHARED3,autosufficienthh,23562.0,23520.0,-42.0,0.17857142857142858,,-2.061827895,True -coef_calib_autosufficienthhin_WALK_work,-2.692542308,F,work,WALK,autosufficienthh,1538.0,1538.0,0.0,0.0,,-2.692542308,True -coef_calib_autosufficienthhin_BIKE_work,-3.341858987,F,work,BIKE,autosufficienthh,5940.0,5915.0,-25.0,0.422654268808115,,-3.341858987,True -coef_calib_autosufficienthhin_WALK_TRANSIT_work,-5.779799017,F,work,WALK_TRANSIT,autosufficienthh,622.0,625.0,3.0,0.48,,-5.779799017,True -coef_calib_autosufficienthhin_PNR_TRANSIT_work,-5.815524925,F,work,PNR_TRANSIT,autosufficienthh,530.0,539.0,9.0,1.6697588126159555,,-5.815524925,True -coef_calib_autosufficienthhin_KNR_TRANSIT_work,-4.145282722,F,work,KNR_TRANSIT,autosufficienthh,1761.0,1773.0,12.0,0.676818950930626,,-4.145282722,True -coef_calib_autosufficienthhin_TNC_TRANSIT_work,-6.465543515,F,work,TNC_TRANSIT,autosufficienthh,1614.0,1589.0,-25.0,1.5733165512901195,,-6.465543515,True -coef_calib_autosufficienthhin_TAXI_work,-7.9013,F,work,TAXI,autosufficienthh,52.0,0.0,-52.0,,,-7.9013,True -coef_calib_autosufficienthhin_TNC_SINGLE_work,-7.793168769,F,work,TNC_SINGLE,autosufficienthh,287.0,279.0,-8.0,2.867383512544803,,-7.793168769,True -coef_calib_autosufficienthhin_TNC_SHARED_work,-9.9013,F,work,TNC_SHARED,autosufficienthh,16.0,0.0,-16.0,,,-9.9013,True -#coef_calib_zeroautohhindivtou_DRIVEALONE_univ,-19.7064,F,,,,,,,,,-19.7064,True -coef_calib_zeroautohhindivtou_SHARED2_univ,-17.5741,F,univ,SHARED2,zeroautohh,0.0,0.0,0.0,0,,-17.5741,True -coef_calib_zeroautohhindivtou_SHARED3_univ,-18.7726,F,univ,SHARED3,zeroautohh,0.0,0.0,0.0,0,,-18.7726,True -coef_calib_zeroautohhindivtou_WALK_univ,-23.8833,F,univ,WALK,zeroautohh,0.0,0.0,0.0,0,,-23.8833,True -coef_calib_zeroautohhindivtou_BIKE_univ,-16.0163,F,univ,BIKE,zeroautohh,0.0,0.0,0.0,0,,-16.0163,True -coef_calib_zeroautohhindivtou_WALK_TRANSIT_univ,6.341576031,F,univ,WALK_TRANSIT,zeroautohh,6016.0,8552.0,2536.0,29.653882132834426,0.3517425870752054,6.693318618075205,False -coef_calib_zeroautohhindivtou_PNR_TRANSIT_univ,-2.743,F,univ,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-2.743,True -coef_calib_zeroautohhindivtou_KNR_TRANSIT_univ,-16.4728,F,univ,KNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-16.4728,True -coef_calib_zeroautohhindivtou_TNC_TRANSIT_univ,-999.0,F,univ,TNC_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TAXI_univ,-999.0,F,univ,TAXI,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TNC_SINGLE_univ,-999.0,F,univ,TNC_SINGLE,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TNC_SHARED_univ,-999.0,F,univ,TNC_SHARED,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_SHARED2_univ,-4.09917176,F,univ,SHARED2,autodeficienthh,323.0,418.0,95.0,22.727272727272727,,-4.09917176,True -coef_calib_autodeficienthhind_SHARED3_univ,-4.498522953,F,univ,SHARED3,autodeficienthh,155.0,127.0,-28.0,22.04724409448819,,-4.498522953,True -coef_calib_autodeficienthhind_WALK_univ,1.867582056,F,univ,WALK,autodeficienthh,3028.0,2893.0,-135.0,4.666436225371587,,1.867582056,True -coef_calib_autodeficienthhind_BIKE_univ,-7.353739618,F,univ,BIKE,autodeficienthh,72.0,64.0,-8.0,12.5,,-7.353739618,True -coef_calib_autodeficienthhind_WALK_TRANSIT_univ,-0.496556351,F,univ,WALK_TRANSIT,autodeficienthh,5689.0,5641.0,-48.0,0.8509129586952667,,-0.496556351,True -coef_calib_autodeficienthhind_PNR_TRANSIT_univ,-2.2079,F,univ,PNR_TRANSIT,autodeficienthh,48.0,0.0,-48.0,,,-2.2079,True -coef_calib_autodeficienthhind_KNR_TRANSIT_univ,-0.936565574,F,univ,KNR_TRANSIT,autodeficienthh,287.0,286.0,-1.0,0.34965034965034963,,-0.936565574,True -coef_calib_autodeficienthhind_TNC_TRANSIT_univ,-999.0,F,univ,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_TAXI_univ,-11.6732,F,univ,TAXI,autodeficienthh,0.0,0.0,0.0,0,,-11.6732,True -coef_calib_autodeficienthhind_TNC_SINGLE_univ,-2.580444587,F,univ,TNC_SINGLE,autodeficienthh,566.0,561.0,-5.0,0.8912655971479502,,-2.580444587,True -coef_calib_autodeficienthhind_TNC_SHARED_univ,-11.6732,F,univ,TNC_SHARED,autodeficienthh,0.0,0.0,0.0,0,,-11.6732,True -coef_calib_autosufficienthhin_SHARED2_univ,-2.290533723,F,univ,SHARED2,autosufficienthh,3355.0,3249.0,-106.0,3.262542320714066,,-2.290533723,True -coef_calib_autosufficienthhin_SHARED3_univ,-3.88541567,F,univ,SHARED3,autosufficienthh,171.0,217.0,46.0,21.19815668202765,,-3.88541567,True -coef_calib_autosufficienthhin_WALK_univ,1.814940512,F,univ,WALK,autosufficienthh,1227.0,1182.0,-45.0,3.807106598984772,,1.814940512,True -coef_calib_autosufficienthhin_BIKE_univ,-1.234833179,F,univ,BIKE,autosufficienthh,1486.0,1466.0,-20.0,1.364256480218281,,-1.234833179,True -coef_calib_autosufficienthhin_WALK_TRANSIT_univ,-4.553742843,F,univ,WALK_TRANSIT,autosufficienthh,48.0,38.0,-10.0,26.31578947368421,,-4.553742843,True -coef_calib_autosufficienthhin_PNR_TRANSIT_univ,-0.363147111,F,univ,PNR_TRANSIT,autosufficienthh,618.0,603.0,-15.0,2.4875621890547266,,-0.363147111,True -coef_calib_autosufficienthhin_KNR_TRANSIT_univ,-4.0489,F,univ,KNR_TRANSIT,autosufficienthh,4.0,0.0,-4.0,,,-4.0489,True -coef_calib_autosufficienthhin_TNC_TRANSIT_univ,-8.2328,F,univ,TNC_TRANSIT,autosufficienthh,4.0,0.0,-4.0,,,-8.2328,True -coef_calib_autosufficienthhin_TAXI_univ,-4.6511,F,univ,TAXI,autosufficienthh,4.0,0.0,-4.0,,,-4.6511,True -coef_calib_autosufficienthhin_TNC_SINGLE_univ,-4.6511,F,univ,TNC_SINGLE,autosufficienthh,52.0,0.0,-52.0,,,-4.6511,True -coef_calib_autosufficienthhin_TNC_SHARED_univ,-6.6511,F,univ,TNC_SHARED,autosufficienthh,0.0,0.0,0.0,0,,-6.6511,True -#coef_calib_zeroautohhindivtou_DRIVEALONE_school,-0.9723,F,,,,,,,,,-0.9723,True -coef_calib_zeroautohhindivtou_SHARED2_school,-37.0,F,school,SHARED2,zeroautohh,243.0,0.0,-243.0,,-2,-39.0,False -coef_calib_zeroautohhindivtou_SHARED3_school,20.0,F,school,SHARED3,zeroautohh,2355.0,2092.0,-263.0,12.5717017208413,-0.11842018126570458,19.881579818734295,False -coef_calib_zeroautohhindivtou_WALK_school,10.0,F,school,WALK,zeroautohh,235.0,352.0,117.0,33.23863636363637,0.4040456614539381,10.404045661453939,False -coef_calib_zeroautohhindivtou_BIKE_school,12.2159,F,school,BIKE,zeroautohh,4.0,0.0,-4.0,,,12.2159,True -coef_calib_zeroautohhindivtou_WALK_TRANSIT_school,5.095434049,F,school,WALK_TRANSIT,zeroautohh,44.0,31.0,-13.0,41.935483870967744,,5.095434049,True -coef_calib_zeroautohhindivtou_PNR_TRANSIT_school,-999.0,F,school,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_KNR_TRANSIT_school,2.9447,F,school,KNR_TRANSIT,zeroautohh,4.0,0.0,-4.0,,,2.9447,True -coef_calib_zeroautohhindivtou_TNC_TRANSIT_school,-999.0,F,school,TNC_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TAXI_school,-1029.0,F,school,TAXI,zeroautohh,135.0,0.0,-135.0,,-2,-1031.0,False -coef_calib_zeroautohhindivtou_TNC_SINGLE_school,-1029.0,F,school,TNC_SINGLE,zeroautohh,303.0,0.0,-303.0,,-2,-1031.0,False -coef_calib_zeroautohhindivtou_TNC_SHARED_school,-1001.0,F,school,TNC_SHARED,zeroautohh,0.0,0.0,0.0,0,,-1001.0,True -coef_calib_zeroautohhindivtou_SCH_BUS_school,18.11856419,F,school,SCH_BUS,zeroautohh,351.0,1230.0,879.0,71.46341463414633,1.2539832249005973,19.3725474149006,False -coef_calib_autodeficienthhind_SHARED2_school,-5.295322888,F,school,SHARED2,autodeficienthh,9729.0,10223.0,494.0,4.832241025139392,,-5.295322888,True -coef_calib_autodeficienthhind_SHARED3_school,1.237719011,F,school,SHARED3,autodeficienthh,19952.0,19813.0,-139.0,0.7015595820925655,,1.237719011,True -coef_calib_autodeficienthhind_WALK_school,0.363638571,F,school,WALK,autodeficienthh,2231.0,2260.0,29.0,1.2831858407079646,,0.363638571,True -coef_calib_autodeficienthhind_BIKE_school,2.346790252,F,school,BIKE,autodeficienthh,175.0,175.0,0.0,0.0,,2.346790252,True -coef_calib_autodeficienthhind_WALK_TRANSIT_school,-39.1291169,F,school,WALK_TRANSIT,autodeficienthh,259.0,22.0,-237.0,1077.2727272727273,-2.4657856083412217,-41.59490250834122,False -coef_calib_autodeficienthhind_PNR_TRANSIT_school,-5.9201,F,school,PNR_TRANSIT,autodeficienthh,4.0,0.0,-4.0,,,-5.9201,True -coef_calib_autodeficienthhind_KNR_TRANSIT_school,1.0441,F,school,KNR_TRANSIT,autodeficienthh,56.0,0.0,-56.0,,,1.0441,True -coef_calib_autodeficienthhind_TNC_TRANSIT_school,-999.0,F,school,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_TAXI_school,-1029.0,F,school,TAXI,autodeficienthh,223.0,0.0,-223.0,,-2,-1031.0,False -coef_calib_autodeficienthhind_TNC_SINGLE_school,-1027.0,F,school,TNC_SINGLE,autodeficienthh,243.0,0.0,-243.0,,-2,-1029.0,False -coef_calib_autodeficienthhind_TNC_SHARED_school,-1001.0,F,school,TNC_SHARED,autodeficienthh,8.0,0.0,-8.0,,,-1001.0,True -coef_calib_autodeficienthhind_SCH_BUS_school,1.185348296,F,school,SCH_BUS,autodeficienthh,2610.0,2591.0,-19.0,0.7333076032419915,,1.185348296,True -coef_calib_autosufficienthhin_SHARED2_school,-10.21596024,F,school,SHARED2,autosufficienthh,24801.0,22107.0,-2694.0,12.18618537114941,-0.11498967448567633,-10.330949914485675,False -coef_calib_autosufficienthhin_SHARED3_school,-1.462851151,F,school,SHARED3,autosufficienthh,46191.0,47591.0,1400.0,2.9417326805488435,,-1.462851151,True -coef_calib_autosufficienthhin_WALK_school,-1.024805777,F,school,WALK,autosufficienthh,3558.0,3734.0,176.0,4.713444027852169,,-1.024805777,True -coef_calib_autosufficienthhin_BIKE_school,6.19161736,F,school,BIKE,autosufficienthh,11865.0,12345.0,480.0,3.8882138517618468,,6.19161736,True -coef_calib_autosufficienthhin_WALK_TRANSIT_school,-1.925970648,F,school,WALK_TRANSIT,autosufficienthh,1127.0,1213.0,86.0,7.089859851607584,,-1.925970648,True -coef_calib_autosufficienthhin_PNR_TRANSIT_school,-10.5186,F,school,PNR_TRANSIT,autosufficienthh,24.0,0.0,-24.0,,,-10.5186,True -coef_calib_autosufficienthhin_KNR_TRANSIT_school,-4.7303,F,school,KNR_TRANSIT,autosufficienthh,48.0,0.0,-48.0,,,-4.7303,True -coef_calib_autosufficienthhin_TNC_TRANSIT_school,-1027.0,F,school,TNC_TRANSIT,autosufficienthh,120.0,0.0,-120.0,,-2,-1029.0,False -coef_calib_autosufficienthhin_TAXI_school,-999.0,F,school,TAXI,autosufficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autosufficienthhin_TNC_SINGLE_school,-1031.0,F,school,TNC_SINGLE,autosufficienthh,155.0,0.0,-155.0,,-2,-1033.0,False -coef_calib_autosufficienthhin_TNC_SHARED_school,-1001.0,F,school,TNC_SHARED,autosufficienthh,4.0,0.0,-4.0,,,-1001.0,True -coef_calib_autosufficienthhin_SCH_BUS_school,-5.29090218,F,school,SCH_BUS,autosufficienthh,295.0,298.0,3.0,1.006711409395973,,-5.29090218,True -#coef_calib_zeroautohhindivtou_DRIVEALONE_atwork,-999.0,F,,,,,,,,,-999.0,True -coef_calib_zeroautohhindivtou_SHARED2_atwork,-45.0,F,atwork,SHARED2,zeroautohh,60.0,0.0,-60.0,,,-45.0,True -coef_calib_zeroautohhindivtou_SHARED3_atwork,-45.0,F,atwork,SHARED3,zeroautohh,40.0,0.0,-40.0,,,-45.0,True -coef_calib_zeroautohhindivtou_WALK_atwork,2.766937465,F,atwork,WALK,zeroautohh,4657.0,5313.0,656.0,12.347073216638433,0.13178518346856608,2.8987226484685658,False -coef_calib_zeroautohhindivtou_BIKE_atwork,-45.0,F,atwork,BIKE,zeroautohh,36.0,0.0,-36.0,,,-45.0,True -coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork,-42.15449275,F,atwork,WALK_TRANSIT,zeroautohh,76.0,29.0,-47.0,162.06896551724137,,-42.15449275,True -coef_calib_zeroautohhindivtou_PNR_TRANSIT_atwork,-999.0,F,atwork,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_KNR_TRANSIT_atwork,-999.0,F,atwork,KNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TNC_TRANSIT_atwork,-999.0,F,atwork,TNC_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TAXI_atwork,-999.0,F,atwork,TAXI,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TNC_SINGLE_atwork,-999.0,F,atwork,TNC_SINGLE,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TNC_SHARED_atwork,-999.0,F,atwork,TNC_SHARED,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_SHARED2_atwork,-2.424228303,F,atwork,SHARED2,autodeficienthh,713.0,4645.0,3932.0,84.65016146393972,1.874065230833643,-0.5501630721663571,False -coef_calib_autodeficienthhind_SHARED3_atwork,-1.089369135,F,atwork,SHARED3,autodeficienthh,11653.0,1474.0,-10179.0,690.5698778833107,-2.0675838638239816,-3.1569529988239817,False -coef_calib_autodeficienthhind_WALK_atwork,-4.896696335,F,atwork,WALK,autodeficienthh,315.0,432.0,117.0,27.083333333333332,0.31585294941847725,-4.580843385581522,False -coef_calib_autodeficienthhind_BIKE_atwork,-14.7861067,F,atwork,BIKE,autodeficienthh,12.0,9.0,-3.0,33.33333333333333,,-14.7861067,True -coef_calib_autodeficienthhind_WALK_TRANSIT_atwork,-9.536775879,F,atwork,WALK_TRANSIT,autodeficienthh,12.0,0.0,-12.0,,,-9.536775879,True -coef_calib_autodeficienthhind_PNR_TRANSIT_atwork,-999.0,F,atwork,PNR_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_KNR_TRANSIT_atwork,-999.0,F,atwork,KNR_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_TNC_TRANSIT_atwork,-999.0,F,atwork,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_TAXI_atwork,-10.87852298,F,atwork,TAXI,autodeficienthh,4.0,0.0,-4.0,,,-10.87852298,True -coef_calib_autodeficienthhind_TNC_SINGLE_atwork,-10.87852298,F,atwork,TNC_SINGLE,autodeficienthh,28.0,0.0,-28.0,,,-10.87852298,True -coef_calib_autodeficienthhind_TNC_SHARED_atwork,-10.87852298,F,atwork,TNC_SHARED,autodeficienthh,16.0,0.0,-16.0,,,-10.87852298,True -coef_calib_autosufficienthhin_SHARED2_atwork,-1.70460029,F,atwork,SHARED2,autosufficienthh,6311.0,5337.0,-974.0,18.24995315720442,-0.16763044525029466,-1.8722307352502945,False -coef_calib_autosufficienthhin_SHARED3_atwork,-1.765085897,F,atwork,SHARED3,autosufficienthh,5737.0,6558.0,821.0,12.519060689234523,0.1337492528027224,-1.6313366441972776,False -coef_calib_autosufficienthhin_WALK_atwork,0.406698656,F,atwork,WALK,autosufficienthh,34271.0,34247.0,-24.0,0.07007913101877537,,0.406698656,True -coef_calib_autosufficienthhin_BIKE_atwork,-5.079673239,F,atwork,BIKE,autosufficienthh,7287.0,7306.0,19.0,0.26006022447303584,,-5.079673239,True -coef_calib_autosufficienthhin_WALK_TRANSIT_atwork,-7.968048166,F,atwork,WALK_TRANSIT,autosufficienthh,32.0,0.0,-32.0,,,-7.968048166,True -coef_calib_autosufficienthhin_PNR_TRANSIT_atwork,-999.0,F,atwork,PNR_TRANSIT,autosufficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autosufficienthhin_KNR_TRANSIT_atwork,-999.0,F,atwork,KNR_TRANSIT,autosufficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autosufficienthhin_TNC_TRANSIT_atwork,-999.0,F,atwork,TNC_TRANSIT,autosufficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autosufficienthhin_TAXI_atwork,-9.130948946,F,atwork,TAXI,autosufficienthh,28.0,0.0,-28.0,,,-9.130948946,True -coef_calib_autosufficienthhin_TNC_SINGLE_atwork,-11.13094895,F,atwork,TNC_SINGLE,autosufficienthh,40.0,0.0,-40.0,,,-11.13094895,True -coef_calib_autosufficienthhin_TNC_SHARED_atwork,-11.13094895,F,atwork,TNC_SHARED,autosufficienthh,52.0,0.0,-52.0,,,-11.13094895,True -#coef_calib_zeroautohhindivtou_DRIVEALONE_maint,-0.272127,F,,,,,,,,,-0.272127,True -coef_calib_zeroautohhindivtou_SHARED2_maint,-0.385196604,F,maint,SHARED2,zeroautohh,2390.0,2665.0,275.0,10.318949343339586,0.10891069167438866,-0.27628591232561134,False -coef_calib_zeroautohhindivtou_SHARED3_maint,-0.796702109,F,maint,SHARED3,zeroautohh,1020.0,705.0,-315.0,44.680851063829785,-0.36936010346604814,-1.1660622124660482,False -coef_calib_zeroautohhindivtou_WALK_maint,1.166088997,F,maint,WALK,zeroautohh,12884.0,13198.0,314.0,2.3791483558114868,,1.166088997,True -coef_calib_zeroautohhindivtou_BIKE_maint,-0.340946416,F,maint,BIKE,zeroautohh,845.0,835.0,-10.0,1.1976047904191618,,-0.340946416,True -coef_calib_zeroautohhindivtou_WALK_TRANSIT_maint,4.167081139,F,maint,WALK_TRANSIT,zeroautohh,9602.0,9907.0,305.0,3.078631270818613,,4.167081139,True -coef_calib_zeroautohhindivtou_PNR_TRANSIT_maint,-999.0,F,maint,PNR_TRANSIT,zeroautohh,0.0,97.0,97.0,,,-999.0,True -coef_calib_zeroautohhindivtou_KNR_TRANSIT_maint,6.686633489,F,maint,KNR_TRANSIT,zeroautohh,1781.0,1866.0,85.0,4.555198285101822,,6.686633489,True -coef_calib_zeroautohhindivtou_TNC_TRANSIT_maint,-999.0,F,maint,TNC_TRANSIT,zeroautohh,0.0,33.0,33.0,,,-999.0,True -coef_calib_zeroautohhindivtou_TAXI_maint,1.445114228,F,maint,TAXI,zeroautohh,1797.0,1820.0,23.0,1.2637362637362637,,1.445114228,True -coef_calib_zeroautohhindivtou_TNC_SINGLE_maint,2.099195882,F,maint,TNC_SINGLE,zeroautohh,4339.0,4417.0,78.0,1.7659044600407519,,2.099195882,True -coef_calib_zeroautohhindivtou_TNC_SHARED_maint,-3.816828,F,maint,TNC_SHARED,zeroautohh,8.0,0.0,-8.0,,,-3.816828,True -coef_calib_zeroautohhindivtou_EBIKE_maint,-1.33053075,F,maint,EBIKE,zeroautohh,514.0,526.0,12.0,2.2813688212927756,,-1.33053075,True -coef_calib_zeroautohhindivtou_ESCOOTER_maint,2.424791618,F,maint,ESCOOTER,zeroautohh,303.0,310.0,7.0,2.258064516129032,,2.424791618,True -coef_calib_autodeficienthhind_SHARED2_maint,-0.311355052,F,maint,SHARED2,autodeficienthh,111857.0,111545.0,-312.0,0.2797077412703393,,-0.311355052,True -coef_calib_autodeficienthhind_SHARED3_maint,-0.204671675,F,maint,SHARED3,autodeficienthh,103239.0,103014.0,-225.0,0.2184169142058361,,-0.204671675,True -coef_calib_autodeficienthhind_WALK_maint,-1.518234578,F,maint,WALK,autodeficienthh,39175.0,39010.0,-165.0,0.4229684696231735,,-1.518234578,True -coef_calib_autodeficienthhind_BIKE_maint,-3.799951508,F,maint,BIKE,autodeficienthh,857.0,871.0,14.0,1.6073478760045925,,-3.799951508,True -coef_calib_autodeficienthhind_WALK_TRANSIT_maint,-1.918566588,F,maint,WALK_TRANSIT,autodeficienthh,6223.0,6181.0,-42.0,0.6795016987542469,,-1.918566588,True -coef_calib_autodeficienthhind_PNR_TRANSIT_maint,-1.168882388,F,maint,PNR_TRANSIT,autodeficienthh,1203.0,999.0,-204.0,20.42042042042042,-0.18581893732612534,-1.3547013253261255,False -coef_calib_autodeficienthhind_KNR_TRANSIT_maint,-0.423810529,F,maint,KNR_TRANSIT,autodeficienthh,3000.0,3202.0,202.0,6.308557151780138,0.06516332590641317,-0.35864720309358683,False -coef_calib_autodeficienthhind_TNC_TRANSIT_maint,-5.982186239,F,maint,TNC_TRANSIT,autodeficienthh,76.0,76.0,0.0,0.0,,-5.982186239,True -coef_calib_autodeficienthhind_TAXI_maint,-3.446873878,F,maint,TAXI,autodeficienthh,4789.0,4789.0,0.0,0.0,,-3.446873878,True -coef_calib_autodeficienthhind_TNC_SINGLE_maint,-4.459512541,F,maint,TNC_SINGLE,autodeficienthh,2016.0,2012.0,-4.0,0.19880715705765406,,-4.459512541,True -coef_calib_autodeficienthhind_TNC_SHARED_maint,-8.084063,F,maint,TNC_SHARED,autodeficienthh,20.0,0.0,-20.0,,,-8.084063,True -coef_calib_autodeficienthhind_EBIKE_maint,-7.716614941,F,maint,EBIKE,autodeficienthh,24.0,21.0,-3.0,14.285714285714285,,-7.716614941,True -coef_calib_autodeficienthhind_ESCOOTER_maint,-4.0,F,maint,ESCOOTER,autodeficienthh,60.0,0.0,-60.0,,,-4.0,True -coef_calib_autosufficienthhin_SHARED2_maint,-0.01294527,F,maint,SHARED2,autosufficienthh,287932.0,287574.0,-358.0,0.12448969656505804,,-0.01294527,True -coef_calib_autosufficienthhin_SHARED3_maint,0.474229063,F,maint,SHARED3,autosufficienthh,277347.0,276843.0,-504.0,0.182052643556095,,0.474229063,True -coef_calib_autosufficienthhin_WALK_maint,-1.48298439,F,maint,WALK,autosufficienthh,66088.0,65958.0,-130.0,0.19709512113769367,,-1.48298439,True -coef_calib_autosufficienthhin_BIKE_maint,-1.864829368,F,maint,BIKE,autosufficienthh,15159.0,15130.0,-29.0,0.19167217448777266,,-1.864829368,True -coef_calib_autosufficienthhin_WALK_TRANSIT_maint,-5.844480883,F,maint,WALK_TRANSIT,autosufficienthh,259.0,254.0,-5.0,1.968503937007874,,-5.844480883,True -coef_calib_autosufficienthhin_PNR_TRANSIT_maint,-4.894496758,F,maint,PNR_TRANSIT,autosufficienthh,163.0,157.0,-6.0,3.821656050955414,,-4.894496758,True -coef_calib_autosufficienthhin_KNR_TRANSIT_maint,-4.143755229,F,maint,KNR_TRANSIT,autosufficienthh,227.0,233.0,6.0,2.575107296137339,,-4.143755229,True -coef_calib_autosufficienthhin_TNC_TRANSIT_maint,-8.81036,F,maint,TNC_TRANSIT,autosufficienthh,44.0,0.0,-44.0,,,-8.81036,True -coef_calib_autosufficienthhin_TAXI_maint,-7.779982,F,maint,TAXI,autosufficienthh,44.0,0.0,-44.0,,,-7.779982,True -coef_calib_autosufficienthhin_TNC_SINGLE_maint,-6.366232767,F,maint,TNC_SINGLE,autosufficienthh,1482.0,1481.0,-1.0,0.0675219446320054,,-6.366232767,True -coef_calib_autosufficienthhin_TNC_SHARED_maint,-9.779982,F,maint,TNC_SHARED,autosufficienthh,40.0,0.0,-40.0,,,-9.779982,True -coef_calib_autosufficienthhin_EBIKE_maint,-4.502828856,F,maint,EBIKE,autosufficienthh,1263.0,1262.0,-1.0,0.07923930269413629,,-4.502828856,True -coef_calib_autosufficienthhin_ESCOOTER_maint,-4.0,F,maint,ESCOOTER,autosufficienthh,40.0,0.0,-40.0,,,-4.0,True -#coef_calib_zeroautohhindivtou_DRIVEALONE_disc,-1.878657,F,,,,,,,,,-1.878657,True -coef_calib_zeroautohhindivtou_SHARED2_disc,0.744825545,F,disc,SHARED2,zeroautohh,1896.0,2400.0,504.0,21.0,0.23572233352106994,0.98054787852107,False -coef_calib_zeroautohhindivtou_SHARED3_disc,0.831183374,F,disc,SHARED3,zeroautohh,1131.0,288.0,-843.0,292.70833333333337,-1.3678969959801746,-0.5367136219801746,False -coef_calib_zeroautohhindivtou_WALK_disc,2.148524876,F,disc,WALK,zeroautohh,13478.0,14080.0,602.0,4.275568181818182,,2.148524876,True -coef_calib_zeroautohhindivtou_BIKE_disc,-0.496234052,F,disc,BIKE,zeroautohh,327.0,336.0,9.0,2.6785714285714284,,-0.496234052,True -coef_calib_zeroautohhindivtou_WALK_TRANSIT_disc,7.464200805,F,disc,WALK_TRANSIT,zeroautohh,9394.0,9827.0,433.0,4.406227739900275,,7.464200805,True -coef_calib_zeroautohhindivtou_PNR_TRANSIT_disc,-999.0,F,disc,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_KNR_TRANSIT_disc,6.666434935,F,disc,KNR_TRANSIT,zeroautohh,227.0,268.0,41.0,15.298507462686567,,6.666434935,True -coef_calib_zeroautohhindivtou_TNC_TRANSIT_disc,-999.0,F,disc,TNC_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhindivtou_TAXI_disc,-2.637451,F,disc,TAXI,zeroautohh,8.0,0.0,-8.0,,,-2.637451,True -coef_calib_zeroautohhindivtou_TNC_SINGLE_disc,1.061802116,F,disc,TNC_SINGLE,zeroautohh,327.0,353.0,26.0,7.365439093484419,,1.061802116,True -coef_calib_zeroautohhindivtou_TNC_SHARED_disc,-2.637451,F,disc,TNC_SHARED,zeroautohh,0.0,0.0,0.0,0,,-2.637451,True -coef_calib_zeroautohhindivtou_EBIKE_disc,-1.127440499,F,disc,EBIKE,zeroautohh,80.0,87.0,7.0,8.045977011494253,,-1.127440499,True -coef_calib_zeroautohhindivtou_ESCOOTER_disc,1.897551787,F,disc,ESCOOTER,zeroautohh,163.0,166.0,3.0,1.8072289156626504,,1.897551787,True -coef_calib_autodeficienthhind_SHARED2_disc,-0.167886293,F,disc,SHARED2,autodeficienthh,55406.0,55575.0,169.0,0.30409356725146197,,-0.167886293,True -coef_calib_autodeficienthhind_SHARED3_disc,0.23303533,F,disc,SHARED3,autodeficienthh,39554.0,39230.0,-324.0,0.8258985470303339,,0.23303533,True -coef_calib_autodeficienthhind_WALK_disc,-1.577544488,F,disc,WALK,autodeficienthh,27438.0,27316.0,-122.0,0.4466246888270611,,-1.577544488,True -coef_calib_autodeficienthhind_BIKE_disc,-2.037126579,F,disc,BIKE,autodeficienthh,7410.0,7367.0,-43.0,0.583683996199267,,-2.037126579,True -coef_calib_autodeficienthhind_WALK_TRANSIT_disc,-2.689047128,F,disc,WALK_TRANSIT,autodeficienthh,1466.0,1503.0,37.0,2.4617431803060548,,-2.689047128,True -coef_calib_autodeficienthhind_PNR_TRANSIT_disc,-4.013662,F,disc,PNR_TRANSIT,autodeficienthh,28.0,0.0,-28.0,,,-4.013662,True -coef_calib_autodeficienthhind_KNR_TRANSIT_disc,-3.286034659,F,disc,KNR_TRANSIT,autodeficienthh,40.0,35.0,-5.0,14.285714285714285,,-3.286034659,True -coef_calib_autodeficienthhind_TNC_TRANSIT_disc,-999.0,F,disc,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhind_TAXI_disc,-6.658369,F,disc,TAXI,autodeficienthh,0.0,0.0,0.0,0,,-6.658369,True -coef_calib_autodeficienthhind_TNC_SINGLE_disc,-3.328614355,F,disc,TNC_SINGLE,autodeficienthh,1737.0,1744.0,7.0,0.40137614678899086,,-3.328614355,True -coef_calib_autodeficienthhind_TNC_SHARED_disc,-6.658369,F,disc,TNC_SHARED,autodeficienthh,24.0,0.0,-24.0,,,-6.658369,True -coef_calib_autodeficienthhind_EBIKE_disc,-2.649758024,F,disc,EBIKE,autodeficienthh,765.0,796.0,31.0,3.8944723618090453,,-2.649758024,True -coef_calib_autodeficienthhind_ESCOOTER_disc,-1.233972098,F,disc,ESCOOTER,autodeficienthh,398.0,338.0,-60.0,17.75147928994083,,-1.233972098,True -coef_calib_autosufficienthhin_SHARED2_disc,-0.454190295,F,disc,SHARED2,autosufficienthh,74761.0,75208.0,447.0,0.5943516647165195,,-0.454190295,True -coef_calib_autosufficienthhin_SHARED3_disc,0.357193014,F,disc,SHARED3,autosufficienthh,93578.0,93224.0,-354.0,0.37973054149146146,,0.357193014,True -coef_calib_autosufficienthhin_WALK_disc,-0.219796306,F,disc,WALK,autosufficienthh,142534.0,142401.0,-133.0,0.09339822051811435,,-0.219796306,True -coef_calib_autosufficienthhin_BIKE_disc,-2.923757319,F,disc,BIKE,autosufficienthh,4562.0,4597.0,35.0,0.7613661083315205,,-2.923757319,True -coef_calib_autosufficienthhin_WALK_TRANSIT_disc,-3.004686125,F,disc,WALK_TRANSIT,autosufficienthh,2649.0,2653.0,4.0,0.15077271013946475,,-3.004686125,True -coef_calib_autosufficienthhin_PNR_TRANSIT_disc,-3.891756948,F,disc,PNR_TRANSIT,autosufficienthh,147.0,142.0,-5.0,3.5211267605633805,,-3.891756948,True -coef_calib_autosufficienthhin_KNR_TRANSIT_disc,-3.341971438,F,disc,KNR_TRANSIT,autosufficienthh,92.0,97.0,5.0,5.154639175257731,,-3.341971438,True -coef_calib_autosufficienthhin_TNC_TRANSIT_disc,-8.897372,F,disc,TNC_TRANSIT,autosufficienthh,24.0,0.0,-24.0,,,-8.897372,True -coef_calib_autosufficienthhin_TAXI_disc,-7.985417,F,disc,TAXI,autosufficienthh,0.0,0.0,0.0,0,,-7.985417,True -coef_calib_autosufficienthhin_TNC_SINGLE_disc,-5.408205121,F,disc,TNC_SINGLE,autosufficienthh,741.0,720.0,-21.0,2.9166666666666665,,-5.408205121,True -coef_calib_autosufficienthhin_TNC_SHARED_disc,-7.985417,F,disc,TNC_SHARED,autosufficienthh,28.0,0.0,-28.0,,,-7.985417,True -coef_calib_autosufficienthhin_EBIKE_disc,-4.669931526,F,disc,EBIKE,autosufficienthh,315.0,343.0,28.0,8.16326530612245,,-4.669931526,True -coef_calib_autosufficienthhin_ESCOOTER_disc,-3.065820784,F,disc,ESCOOTER,autosufficienthh,139.0,94.0,-45.0,47.87234042553192,,-3.065820784,True -#coef_calib_zeroautohhjointtou_DRIVEALONE_maint,-999.0,F,,,,,,,,,-999.0,True -#coef_calib_zeroautohhjointtou_SHARED2_maint,8.507773009,F,,,,,,,,,8.507773009,True -coef_calib_zeroautohhjointtou_SHARED3_maint,-33.0,F,maint,SHARED3,zeroautohh,135.0,0.0,-135.0,,-2,-35.0,False -coef_calib_zeroautohhjointtou_WALK_maint,-21.0,F,maint,WALK,zeroautohh,1307.0,576.0,-731.0,126.90972222222223,-0.8193820529283308,-21.81938205292833,False -coef_calib_zeroautohhjointtou_BIKE_maint,-999.0,F,maint,BIKE,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_WALK_TRANSIT_maint,-28.0,F,maint,WALK_TRANSIT,zeroautohh,92.0,0.0,-92.0,,,-28.0,True -coef_calib_zeroautohhjointtou_PNR_TRANSIT_maint,-999.0,F,maint,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_KNR_TRANSIT_maint,-23.0,F,maint,KNR_TRANSIT,zeroautohh,120.0,0.0,-120.0,,-2,-25.0,False -coef_calib_zeroautohhjointtou_TNC_TRANSIT_maint,-999.0,F,maint,TNC_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_TAXI_maint,-999.0502454,F,maint,TAXI,zeroautohh,0.0,0.0,0.0,0,,-999.0502454,True -coef_calib_zeroautohhjointtou_TNC_SINGLE_maint,-999.0502454,F,maint,TNC_SINGLE,zeroautohh,0.0,0.0,0.0,0,,-999.0502454,True -coef_calib_zeroautohhjointtou_TNC_SHARED_maint,-999.0502454,F,maint,TNC_SHARED,zeroautohh,0.0,0.0,0.0,0,,-999.0502454,True -coef_calib_zeroautohhjointtou_EBIKE_maint,-29.0,F,maint,EBIKE,zeroautohh,231.0,0.0,-231.0,,-2,-31.0,False -coef_calib_zeroautohhjointtou_ESCOOTER_maint,-27.0,F,maint,ESCOOTER,zeroautohh,167.0,0.0,-167.0,,-2,-29.0,False -#coef_calib_autodeficienthhjoi_SHARED2_maint,15.5330624,F,,,,,,,,,15.5330624,True -coef_calib_autodeficienthhjoi_SHARED3_maint,-30.0,F,maint,SHARED3,autodeficienthh,27785.0,43340.0,15555.0,35.89063221042916,0.4445796893763284,-29.55542031062367,False -coef_calib_autodeficienthhjoi_WALK_maint,-30.0,F,maint,WALK,autodeficienthh,22996.0,10125.0,-12871.0,127.12098765432098,-0.8203126747684416,-30.82031267476844,False -coef_calib_autodeficienthhjoi_BIKE_maint,-967.0,F,maint,BIKE,autodeficienthh,0.0,777.0,777.0,,2,-965.0,False -coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint,-31.04873217,F,maint,WALK_TRANSIT,autodeficienthh,5916.0,42.0,-5874.0,13985.714285714286,-4.947746205547322,-35.996478375547326,False -coef_calib_autodeficienthhjoi_PNR_TRANSIT_maint,-29.90392356,F,maint,PNR_TRANSIT,autodeficienthh,406.0,0.0,-406.0,,-2,-31.90392356,False -coef_calib_autodeficienthhjoi_KNR_TRANSIT_maint,-28.88159968,F,maint,KNR_TRANSIT,autodeficienthh,5637.0,0.0,-5637.0,,-2,-30.88159968,False -coef_calib_autodeficienthhjoi_TNC_TRANSIT_maint,-999.0,F,maint,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhjoi_TAXI_maint,-30.97066616,F,maint,TAXI,autodeficienthh,20287.0,0.0,-20287.0,,-2,-32.97066616,False -coef_calib_autodeficienthhjoi_TNC_SINGLE_maint,-32.97066616,F,maint,TNC_SINGLE,autodeficienthh,725.0,0.0,-725.0,,-2,-34.97066616,False -coef_calib_autodeficienthhjoi_TNC_SHARED_maint,-32.97066616,F,maint,TNC_SHARED,autodeficienthh,3000.0,0.0,-3000.0,,-2,-34.97066616,False -coef_calib_autodeficienthhjoi_EBIKE_maint,-28.38857593,F,maint,EBIKE,autodeficienthh,2928.0,45.0,-2883.0,6406.666666666666,-4.175412385310882,-32.56398831531088,False -coef_calib_autodeficienthhjoi_ESCOOTER_maint,-26.0,F,maint,ESCOOTER,autodeficienthh,3108.0,0.0,-3108.0,,-2,-28.0,False -#coef_calib_autosufficienthhjo_SHARED2_maint,4.253195896,F,,,,,,,,,4.253195896,True -coef_calib_autosufficienthhjo_SHARED3_maint,-13.0,F,maint,SHARED3,autosufficienthh,61211.0,48150.0,-13061.0,27.12564901349948,-0.24000577368519732,-13.240005773685198,False -coef_calib_autosufficienthhjo_WALK_maint,-12.0,F,maint,WALK,autosufficienthh,49665.0,42784.0,-6881.0,16.083115183246075,-0.14913625874778663,-12.149136258747786,False -coef_calib_autosufficienthhjo_BIKE_maint,-10.78060041,F,maint,BIKE,autosufficienthh,17932.0,1988.0,-15944.0,802.0120724346077,-2.199457718058811,-12.980058128058811,False -coef_calib_autosufficienthhjo_WALK_TRANSIT_maint,-16.27274185,F,maint,WALK_TRANSIT,autosufficienthh,327.0,0.0,-327.0,,-2,-18.27274185,False -coef_calib_autosufficienthhjo_PNR_TRANSIT_maint,-14.77467449,F,maint,PNR_TRANSIT,autosufficienthh,665.0,0.0,-665.0,,-2,-16.774674490000002,False -coef_calib_autosufficienthhjo_KNR_TRANSIT_maint,-14.58383844,F,maint,KNR_TRANSIT,autosufficienthh,147.0,0.0,-147.0,,-2,-16.58383844,False -coef_calib_autosufficienthhjo_TNC_TRANSIT_maint,-999.0,F,maint,TNC_TRANSIT,autosufficienthh,315.0,0.0,-315.0,,-2,-1001.0,False -coef_calib_autosufficienthhjo_TAXI_maint,-19.31393156,F,maint,TAXI,autosufficienthh,56.0,0.0,-56.0,,,-19.31393156,True -coef_calib_autosufficienthhjo_TNC_SINGLE_maint,-19.31393156,F,maint,TNC_SINGLE,autosufficienthh,179.0,0.0,-179.0,,-2,-21.31393156,False -coef_calib_autosufficienthhjo_TNC_SHARED_maint,-19.31393156,F,maint,TNC_SHARED,autosufficienthh,578.0,0.0,-578.0,,-2,-21.31393156,False -coef_calib_autosufficienthhjo_EBIKE_maint,-7.518757333,F,maint,EBIKE,autosufficienthh,10402.0,4130.0,-6272.0,151.864406779661,-0.9237206883779393,-8.442478021377939,False -coef_calib_autosufficienthhjo_ESCOOTER_maint,-8.0,F,maint,ESCOOTER,autosufficienthh,263.0,0.0,-263.0,,-2,-10.0,False -#coef_calib_zeroautohhjointtou_DRIVEALONE_disc,-999.0,F,,,,,,,,,-999.0,True -#coef_calib_zeroautohhjointtou_SHARED2_disc,8.507773009,F,,,,,,,,,8.507773009,True -coef_calib_zeroautohhjointtou_SHARED3_disc,-38.24625539,F,disc,SHARED3,zeroautohh,135.0,0.0,-135.0,,-2,-40.24625539,False -coef_calib_zeroautohhjointtou_WALK_disc,-35.0,F,disc,WALK,zeroautohh,1307.0,576.0,-731.0,126.90972222222223,-0.8193820529283308,-35.81938205292833,False -coef_calib_zeroautohhjointtou_BIKE_disc,-999.0,F,disc,BIKE,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc,-40.87568752,F,disc,WALK_TRANSIT,zeroautohh,92.0,0.0,-92.0,,,-40.87568752,True -coef_calib_zeroautohhjointtou_PNR_TRANSIT_disc,-999.0,F,disc,PNR_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_KNR_TRANSIT_disc,-27.84999945,F,disc,KNR_TRANSIT,zeroautohh,120.0,0.0,-120.0,,-2,-29.84999945,False -coef_calib_zeroautohhjointtou_TNC_TRANSIT_disc,-999.0,F,disc,TNC_TRANSIT,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_TAXI_disc,-999.0,F,disc,TAXI,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_TNC_SINGLE_disc,-999.0,F,disc,TNC_SINGLE,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_TNC_SHARED_disc,-999.0,F,disc,TNC_SHARED,zeroautohh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_zeroautohhjointtou_EBIKE_disc,-29.0,F,disc,EBIKE,zeroautohh,231.0,0.0,-231.0,,-2,-31.0,False -coef_calib_zeroautohhjointtou_ESCOOTER_disc,-27.0,F,disc,ESCOOTER,zeroautohh,167.0,0.0,-167.0,,-2,-29.0,False -#coef_calib_autodeficienthhjoi_SHARED2_disc,10.5330624,F,,,,,,,,,10.5330624,True -coef_calib_autodeficienthhjoi_SHARED3_disc,-30.0,F,disc,SHARED3,autodeficienthh,27785.0,43340.0,15555.0,35.89063221042916,0.4445796893763284,-29.55542031062367,False -coef_calib_autodeficienthhjoi_WALK_disc,-30.0,F,disc,WALK,autodeficienthh,22996.0,10125.0,-12871.0,127.12098765432098,-0.8203126747684416,-30.82031267476844,False -coef_calib_autodeficienthhjoi_BIKE_disc,-967.0,F,disc,BIKE,autodeficienthh,0.0,777.0,777.0,,2,-965.0,False -coef_calib_autodeficienthhjoi_WALK_TRANSIT_disc,-27.94370067,F,disc,WALK_TRANSIT,autodeficienthh,5916.0,42.0,-5874.0,13985.714285714286,-4.947746205547322,-32.89144687554732,False -coef_calib_autodeficienthhjoi_PNR_TRANSIT_disc,-27.1684399,F,disc,PNR_TRANSIT,autodeficienthh,406.0,0.0,-406.0,,-2,-29.1684399,False -coef_calib_autodeficienthhjoi_KNR_TRANSIT_disc,-25.12678499,F,disc,KNR_TRANSIT,autodeficienthh,5637.0,0.0,-5637.0,,-2,-27.12678499,False -coef_calib_autodeficienthhjoi_TNC_TRANSIT_disc,-999.0,F,disc,TNC_TRANSIT,autodeficienthh,0.0,0.0,0.0,0,,-999.0,True -coef_calib_autodeficienthhjoi_TAXI_disc,-28.71598351,F,disc,TAXI,autodeficienthh,20287.0,0.0,-20287.0,,-2,-30.71598351,False -coef_calib_autodeficienthhjoi_TNC_SINGLE_disc,-30.71598351,F,disc,TNC_SINGLE,autodeficienthh,725.0,0.0,-725.0,,-2,-32.71598351,False -coef_calib_autodeficienthhjoi_TNC_SHARED_disc,-30.71598351,F,disc,TNC_SHARED,autodeficienthh,3000.0,0.0,-3000.0,,-2,-32.71598351,False -coef_calib_autodeficienthhjoi_EBIKE_disc,-28.38857593,F,disc,EBIKE,autodeficienthh,2928.0,45.0,-2883.0,6406.666666666666,-4.175412385310882,-32.56398831531088,False -coef_calib_autodeficienthhjoi_ESCOOTER_disc,-26.0,F,disc,ESCOOTER,autodeficienthh,3108.0,0.0,-3108.0,,-2,-28.0,False -#coef_calib_autosufficienthhjo_SHARED2_disc,4.253195896,F,,,,,,,,,4.253195896,True -coef_calib_autosufficienthhjo_SHARED3_disc,-11.0,F,disc,SHARED3,autosufficienthh,61211.0,48150.0,-13061.0,27.12564901349948,-0.24000577368519732,-11.240005773685198,False -coef_calib_autosufficienthhjo_WALK_disc,-10.0,F,disc,WALK,autosufficienthh,49665.0,42784.0,-6881.0,16.083115183246075,-0.14913625874778663,-10.149136258747786,False -coef_calib_autosufficienthhjo_BIKE_disc,-10.58590174,F,disc,BIKE,autosufficienthh,17932.0,1988.0,-15944.0,802.0120724346077,-2.199457718058811,-12.785359458058812,False -coef_calib_autosufficienthhjo_WALK_TRANSIT_disc,-14.918341,F,disc,WALK_TRANSIT,autosufficienthh,327.0,0.0,-327.0,,-2,-16.918340999999998,False -coef_calib_autosufficienthhjo_PNR_TRANSIT_disc,-11.46037795,F,disc,PNR_TRANSIT,autosufficienthh,665.0,0.0,-665.0,,-2,-13.46037795,False -coef_calib_autosufficienthhjo_KNR_TRANSIT_disc,-20.31188559,F,disc,KNR_TRANSIT,autosufficienthh,147.0,0.0,-147.0,,-2,-22.31188559,False -coef_calib_autosufficienthhjo_TNC_TRANSIT_disc,-15.31188559,F,disc,TNC_TRANSIT,autosufficienthh,315.0,0.0,-315.0,,-2,-17.31188559,False -coef_calib_autosufficienthhjo_TAXI_disc,-16.0336306,F,disc,TAXI,autosufficienthh,56.0,0.0,-56.0,,,-16.0336306,True -coef_calib_autosufficienthhjo_TNC_SINGLE_disc,-16.0336306,F,disc,TNC_SINGLE,autosufficienthh,179.0,0.0,-179.0,,-2,-18.0336306,False -coef_calib_autosufficienthhjo_TNC_SHARED_disc,-16.0336306,F,disc,TNC_SHARED,autosufficienthh,578.0,0.0,-578.0,,-2,-18.0336306,False -coef_calib_autosufficienthhjo_EBIKE_disc,-7.518757333,F,disc,EBIKE,autosufficienthh,10402.0,4130.0,-6272.0,151.864406779661,-0.9237206883779393,-8.442478021377939,False -coef_calib_autosufficienthhjo_ESCOOTER_disc,-8.0,F,disc,ESCOOTER,autosufficienthh,263.0,0.0,-263.0,,-2,-10.0,False -coef_calib_zeroautohhindivtou_ESCOOTER_work,0.0,F,work,ESCOOTER,zeroautohh,88.0,0.0,-88.0,,,0.0,True -coef_calib_zeroautohhindivtou_EBIKE_work,-4.0,F,work,EBIKE,zeroautohh,44.0,0.0,-44.0,,,-4.0,True -coef_calib_zeroautohhindivtou_ESCOOTER_univ,-2.0,F,univ,ESCOOTER,zeroautohh,40.0,0.0,-40.0,,,-2.0,True -coef_calib_zeroautohhindivtou_EBIKE_univ,-6.0,F,univ,EBIKE,zeroautohh,4.0,0.0,-4.0,,,-6.0,True -coef_calib_zeroautohhindivtou_ESCOOTER_school,0.0,F,school,ESCOOTER,zeroautohh,16.0,0.0,-16.0,,,0.0,True -coef_calib_zeroautohhindivtou_EBIKE_school,0.0,F,school,EBIKE,zeroautohh,16.0,0.0,-16.0,,,0.0,True -coef_calib_zeroautohhindivtou_ESCOOTER_atwork,-25.0,F,atwork,ESCOOTER,zeroautohh,0.0,0.0,0.0,0,,-25.0,True -coef_calib_zeroautohhindivtou_EBIKE_atwork,-25.0,F,atwork,EBIKE,zeroautohh,56.0,0.0,-56.0,,,-25.0,True -coef_calib_autodeficienthhind_ESCOOTER_work,-2.0,F,work,ESCOOTER,autodeficienthh,76.0,0.0,-76.0,,,-2.0,True -coef_calib_autodeficienthhind_EBIKE_work,-6.0,F,work,EBIKE,autodeficienthh,56.0,0.0,-56.0,,,-6.0,True -coef_calib_autodeficienthhind_ESCOOTER_univ,0.0,F,univ,ESCOOTER,autodeficienthh,8.0,0.0,-8.0,,,0.0,True -coef_calib_autodeficienthhind_EBIKE_univ,-4.0,F,univ,EBIKE,autodeficienthh,32.0,0.0,-32.0,,,-4.0,True -coef_calib_autodeficienthhind_ESCOOTER_school,0.0,F,school,ESCOOTER,autodeficienthh,0.0,0.0,0.0,0,,0.0,True -coef_calib_autodeficienthhind_EBIKE_school,-2.0,F,school,EBIKE,autodeficienthh,12.0,0.0,-12.0,,,-2.0,True -coef_calib_autodeficienthhind_ESCOOTER_atwork,-4.0,F,atwork,ESCOOTER,autodeficienthh,20.0,0.0,-20.0,,,-4.0,True -coef_calib_autodeficienthhind_EBIKE_atwork,-8.0,F,atwork,EBIKE,autodeficienthh,36.0,0.0,-36.0,,,-8.0,True -coef_calib_autosufficienthhin_ESCOOTER_work,-4.0,F,work,ESCOOTER,autosufficienthh,16.0,0.0,-16.0,,,-4.0,True -coef_calib_autosufficienthhin_EBIKE_work,-3.257409708,F,work,EBIKE,autosufficienthh,1482.0,1487.0,5.0,0.3362474781439139,,-3.257409708,True -coef_calib_autosufficienthhin_ESCOOTER_univ,0.0,F,univ,ESCOOTER,autosufficienthh,12.0,0.0,-12.0,,,0.0,True -coef_calib_autosufficienthhin_EBIKE_univ,-4.0,F,univ,EBIKE,autosufficienthh,16.0,0.0,-16.0,,,-4.0,True -coef_calib_autosufficienthhin_ESCOOTER_school,0.0,F,school,ESCOOTER,autosufficienthh,12.0,0.0,-12.0,,,0.0,True -coef_calib_autosufficienthhin_EBIKE_school,-32.0,F,school,EBIKE,autosufficienthh,108.0,0.0,-108.0,,-2,-34.0,False -coef_calib_autosufficienthhin_ESCOOTER_atwork,-2.0,F,atwork,ESCOOTER,autosufficienthh,72.0,0.0,-72.0,,,-2.0,True -coef_calib_autosufficienthhin_EBIKE_atwork,-4.647000813,F,atwork,EBIKE,autosufficienthh,247.0,246.0,-1.0,0.40650406504065045,,-4.647000813,True diff --git a/src/asim/calibration/resident/tour_mode_choice/scaled_targets.xlsx b/src/asim/calibration/resident/tour_mode_choice/scaled_targets.xlsx deleted file mode 100644 index f2cc8c4ebec43a42c02de773de5ed56d8fbb939c..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 17959 zcmb7sWmucr(l#xH7I$}dcP|8r2X`s%?i47+-5r9v6ezT~TL@6xB{&q<;)Rc%z0cWa z@9TU&ULbi$E@oKkUNf`qnJ2T9CGT z&D_E5y}GxPxvK%Im%ZKRKrkkwifGq-(m;i&UXHc( zQ;zH%I=NNUqGFZV@v~xBiIRqb`wtJVihF7=d|F4BuoJwz*50(NgRc^Na~G;cP& zuvbrEj@M;JqKQpznAY1cN~AcZFU@P=^9FEir(n%Co)Bio9w85-J20nIMGHP}>Rr*6 zs-+66!~$0%R6K_F)cn!vF2vlnzR4LGGMtGxT_rv3w|}Q-y*Il-Q2yHrDEk7t_n(nh zcnJf8^n88qVs7Wk#`^pDbK-Y7SPt}0CxIvEJJ9b9f#KXs@)#em%F)%|Ufu@Y4p z9UalJnZ8}FaU^9pb`V&!XZ$LH(r*U@1(<6D6&Nj`GoR2=L|ciB@nJ;IuBh<9Iy_g&IDcc*h+ zks#U(N8oa#>{A044jN-k@3nhwxi&%L-~Cy`Eb`X|v$cBgJEJcrP`Jtd4oTQri1lws zTAm>xe7<_wvHgLHr=yFliKCCUJ+mt*Bc?_EOVG&{}P9AIymZ-MBdm*8# zN83RCb*bp_J~FrjHF!Ko$>iPPNYKjmzR!<-QY`mwrm{%PS0AwKcJ<(Lmm0(H(EAqk zR$j*;zN6Njx%M3PJmlG>a511xP!ncw8adOD<3xR}C>8$WLJ4a!Phfa@sO&qiksiY!V~@rx8h?>E-cs0prRK$g0|da3gpbtxd6 zH;DxY9rCWu1FXPMl6TU&GZ22`%NUUe0Cf5Ju2knB8)zlQzwMf(s&Mok-`m;wC)(c; zI%mhWbmV}6fdF2>;QxWpZ){wx%+1|g+5UCm_zhBw-%=tKU*h(C=8@RozMoz+(#B-T z>^wb$1DS&)s8x)s-nc_>Lg7EL7FzM6${GtS&$SJ1S5j+X%pt=c=hrA zdbQ(rH%uwl|JMz86-whT(00GmOD6X5VQ)_C@vPDF>H6sb{8Rz;ySN>`7yJ0(X$dSQ z`f#-Jbborg(&_gk_5}8Py1UsE6MH&e?@e=bpm{jEbv*fad%iu^`SJc}m(2h6^!|R# z|Mq4#Ow1uQSM1~6uU~0PVq(8Gm&W`*-km;{)&M)7uIxYXW3N6wKF*0j+mlb{lu|iG zA0IAi#6I$Wd^qd;_;d$&QGJypZEbb;h|vDZ81?{j?u zd4JtEbJFqav9-qi`TyU{?eabS`kr>}|NQ$=Z`^y)2RGY5&sE{h#ntCIj#-+z2BD5s zuX3(F-N@PATz*#~`}pzceWzcB=;Oh|`kep6`L<>_(l?S-fA6PXp1IHOW+}Z#dV1Ks z-<_3v%*5rZ5ECtY`WWO09GiZ+_4{yhyyOq9xSt>z^BlN?&Uf-ytO=|VBpE$iy`yE9 zGk>?YB$ssW66ZO9{X_KJj?DWiPPkM$=YncX@vO}@M8P4%^5!587jf_e=_x?$g;)=k z|I4f-u@@(v8%k#5`zj@h$$K6r3KZ_?rznQpqB*k*6lzpTT$A@O&0F4OIH;7| zQh_BK%MNvw&d4aDE$-+6jtwdF@Z9H0s%bAnfm!}-1MV&Zd0A1H_vvv zbH#3vptv^ts8*A^C|HI99^qqLcy|`Yj6u<~OVPBi0;>AQvQ^oOk8ucB#m)xifcc5&c`hbT4 z5tr>E=I6O-eOkYY4i>{e?R=WpbbP(Q79b9P$TS9z8{;{!7QdcaA-GmmuEx?H(7)F1 z94+!;**Gtlw`XD}g&CElJ^)PFdBxbf#DrvZYf!iRIySXgo*#k@OLz9gaIGPC3~+u}2*cVOpTzupih6MLv3GhFPw;70lmzwsW5KKw?a11wNsQFou_nV?ex#F>@3`zP$)g|7UwQGSQEL26wzONLNqJZ5}wd%ys>7T?gRWYI$MS%t0z zY*a|w0-t=*mx;}46A`7s3nqkhNyr;I;ivHW05VLvu$VVw<~P*6mVjR|haVEwHA966 zj!}N1)g93HCLzB!_u`%I9IUQHcI0g1x)Bvl?sM#MjcJO%1gLr~+Rb$7Ir+L@^5<&Z zCdv`N%s~+*JjtHp7i>aDd$_l45Ab7bF?yQ@?J_%shPX0YJP>VQPD)}so46L&*${V( z!qXyo?-G>!420_q!`!KgIzu%t?vGDI0(zZublW*?)JNmLWpfHS+e`xEix%Jbi4wix zhNelyzG>uKhB!Hv`NyxiT{@+jG$os8IsfDb3R=R3NLh3aoznIS1)TsSWq;8MZ-xuB zkR{5YV&tOqqvyY38VCmoixA;+M}U5%{AaSzl>YE^++5-4!a`dKSuNxQ{vavZzw|(E zX@#!`X=g=^_0}2hlNyV30udq#`Bpv*g3N6U72Gq|CPFV?w54Rp){^o*S{*l?TUUts}y`paC4 zeoaxAC7hcoHZ;)?Lbh_0an%Q0rV^^{(K!yzOWXUeE;oDQkeXqe;hQPgfSXFSC=3A&=n_b8p6!lM=9>D zFVD@X;Oia`)@x@(M#niQIdD2##+_T%g6;pkvT=(6eu;SZ%b>6(S}D%Q4!(_qwcJCX zFlupKTRP)H3U_ste1G{}QrH)H;Sa*S+m%=Z%C4TVu2#=LY$TMcyzAj`r2Yf=|7UJPv_&&I3o5Ycb#;rTZfvpO-&#uPQn~i)OdiVM^{9M!R58D1i0h?676s8Zqeu|I2`drE^sItJGTfXIQOJ#?tjYs()}hcY<9H?_k?0qk zDhB+Mt%)xh6Tib_Mk$!2tSkDg8n7?Fj&8VJBCj0g6foj+{_1(je@vebUf6}?l_e4A z3xhUl>r!%0zV7C8K0)q4L!+6?B5-rb z03D{R7b54H-Po0NCK#}BE)O};^|t3fihGcldnK+{B0np{TX26Kd8jA+YFJp}_;+N% zW`)roANadLPYKBU2BXQ#y9;j%5@huy4CZGV>j0&Km+-hj`agachsj1qARoSommqBz z`4<2v)brt*z8~>&I?)JdO0x*eoHIbv|HlD*{f?a2q%gWTbjpF1;zCCtO0@5|70LSd zkq=2`FKdMUbIL+l{o76%V?3HS`MyIk^kESNg^fit7D_;BE0eDSVDg@qRb#Ac*9pjd^iWT{g zEiMMQgko)P>4$|mODh3igVujg;ww9mm5vW$v#L|uTyCqtP|)D+A+`9-|Q63p%=(4|z0$%aPYtxT48x>X{bA zUAl`Unm2e#xt8al>jItb5{7)oHIK{ia3yc;+tjVa5=q7u%t!&!MD_n$=@~AlXD8%*1EVWwN zKlGq&E!Mc}8zH)C@af=NQ6N-DKf6Xt7YN&st#(mNZPWhV9n zigG8}Te*_UPoMe05zH=8RfGvF)2ZvT-$c^&EBxk@zbZJOf8XA)c2#Po9}(QCvl#77 zkK&kK9mFyCPkaTik_qw+NdcQFGcNdJH!YrNNVUzMo}1fMC9?w(=iHU-pHB*Nwk-%# zY4j}sFT5Cm{|-vxas7|`bVDec5}b&k=&`0fOa!N}d_>yJ=SWqYZIIK^wR?6IGuKh_ zEY}E`d&uT|C#gt|=6r@1to-{N6lOvfAiJioJp()v!nKq7JRA}c1m6o8nw4!OBYe7D zGVZHzriA;Evm#)yfP1ild$5FekdF% z7(+9~UF_wrYsVaob>|!0G=u*)8+@C*+`uKX2`Y2Ks*f^<=AsV541W*EBGA6mqIRZCV;OuvSv*hN& zFz3C=-gFSxvnl<2{~uEdIusNZ`^bGoz=%WI;AIu3- z<%s7=veWg1z40CS1c~UmT@vsJ9L$@N)}hKzYd<~-d$i)1N9rh1YI+nmm@U%5MoF={ z{%Mooh{OtaXSi&t??eYOZ5EX~*ZC9uREKXbllaW71CYda`O^k`cD>a1`ibm6OTK^3J6Ky#e-T%2Lc~eYyK5l;5BCH(!idFbBiD77`;?zU=Qfr@=Rd`fSwUk2Agh;{42jGR_@0& zC#j_LrL@MsmGax3!KW2~?zG1_YzbnSfM$%03hTL>`h@4z?Am_EG^Qj@|x_z|xZHWLu92nh_X8NI(OInVMLtl+3@X}^gy7@hIBNQ?UW^Itn<{@%I z-xN}9U;o6GV=N9wIz$wE4|YXB0GqbPb-!?I7KX#K8+8Rqs}0_@1SY#Q(a$7?tW3>e z!~sG!t3-j%@$7~vnv`t;r*kWwqMxamxVC(UKTgUaex}zufHEkCkQyL6cFf{#V7;n) zl&RS(^4SeWWFT&gY}&U^;vVZPI!jI5ax}kTgP3j-+l4m7#?<>;L*C|gt=?f`>QB2Oe|b4vjO$-ZJ3*314#K6QS9HpoVt6=kzNm#6vYRaB; zxPZR8@B-=`Ko=XM&U!VEMR1;+tszsAS$wg>pSJz;XyJOKUQ+hvY6#AC(`QX}E)usw z8IwawUtUWc^I^*vy9L{gkYvADsk?_2H6qChQ2+~IUWb4Fx|>89Z3PY~OBt+#d^uX? zMM21)Rx)%GLtzF<-=P7TCJ>pX_?NM$htTyOcc0T9pA^269ma--GoV1Md!|{UMqkk| zgF;#1y5c#kewe}k9e{WvHF*5l(T=f%~} zIfPPj*coDD68KDRvpzsVZHQ8kz(E9Lf;RpyZb`p=uP+^Ent`Pex*EVFu=Zim&gjcv zP212ZF27MJCI0cI6vk8vJcofSU$aRY^+w}h?|kX_6n`cMyOo?^GwLQy!lqQPP;oM} z%jmQtor$#E{**}4F=|E5i}ZE(Gfz8zS^3cMOcUFZ?`2dH8;iyHwT5~G2tAPxY;D+|5IWg>|{MY zoKj~942|RTOT}esDBHm-EN32oL3I}Fy0t0RHTy2SPWt_LO;$t7N?h@@QWAyBkKIhl zqN_+5S4r<0(ERShI;H@txA`X}w@|*YMCP)MA-;8t!^9BjS|41}ZtjNDH>^H=d%Vsq zY5Xg^z{aSl=eQllzrq3ZjGSs8*c)|jkp~?UmbUiq9i#0*!x|EQJgaDote%nFo=haM!w(?Z;u4rj7evum@WD|(S((P&8$Q&nplOkX!*NBn7^jw3*@*z*2 zjVK@~OIDY~(dyBlelQU!SnMi_(n8&)gDEBVguL zEv`3V?BG2x%6!@IaO*&#KN5jOSca1x>4qHaKoM8E9NN(OE3+!?A{doHjbPMS0tx4P z;0HgNt#rBLlz71H6zLn9ZK8gtpD#mmDr0qW<&SZ`MZ0flQ|YYmRkrqEaCel_IACO%g;m46>Pw)%le&;R6kM8b#r~ z;`d()E<<|#rs*8zY#Wm9i0P)hP8fUd%h)9AP2OkCW;u}AJkYvHUS8n^w(F9Wa=p4n zbZ??ME5B_vfvRJ_w##P1NmsW!xF+7MkM~J6qN)lQd-2r8yRm6QJL=mjEi_-O>LR3} zucmct2FF?@1_z5+)V3}#%~91I zY5gW>Emk|vIOYBGeKQ049aa+?DK{-5NlzYM#MBAQzE+}mK1IV18qbPNTj&vH?AHInS! zr*e`Bnlq7aYIws>ZE6;W79Nu`tHY%vz`CMG$6IF)pIW(}%aSqI)jB#H4tXZ?Ht@Etc-9<&2wn4y} zRQC_0qqQ7y&`)}AfLou`g6jh$pSRSxD5tj8j?a5?y7~>|fJmKsXqRa`ktuS>MyWj| z(n&-cMX$W|Z`x=br(qkXXd7o>6L&waa(@0zyicq1N2d#jP1qZ@Rr>Y^ip<5<8Ij^F z3PGRm*7puEJV%IX^yaLdD(J0;BuB5KjAI@rdJ5)Khjf8Um-@1#`aD9GWC+QI7*QFs zO=Xo$rJZi&p=#waI3e*>4T?>tuI9Zr{>2CB9v!?Q;yBB^@#(LHgs_8-Y6DdX3e6Yn ztuVcBjpL(;BVJU`&wM2#3VJ6*G1g_APunNrj2NM~(}wlh{j!kyt8LI#P3kv)PT%D9 zB;;I_pL}%(QlWYT$7W4@(_(|wg~&>rzA5Vq%1@N7)qmyyr^@FO-^A~=)M%4Fm(94* zAZES4rKUwh0;+3%XKmtRx3uN7(BgWZFyO~C|-a*>$#cvc95aYh2Qa)1~3BW zOKp%rHpY>_n5-GNil=HbHyr~q?Gn0brfGrCX#DnZ{6~nTtwyaOk;L}zQED=2mk(ep zMu^0&9LRjGLgdX0GE>kGKdX+ z^mBl#<=Qe4KN|dKVZepinlF!24hjelc6X-Bo68AG<{IjyHOcy{W21N1(omHAW`;su zHF+LP2HEj4*^_K2Fp*x*Mv2bs3MbK&Ocng@>@*Eu(D!Pb3ng zbn2@mqJU|zqzSL#jU&BdVB_B>$1BZ#!o1lrCyl6Ljk4Ek)gVq z)g;f05HB$mWB+`4&s4nIp%}$Oqj+iJRi)Jwu^0w!>bw7rw?o4eB;yZ zJqRV5@VxU^C%S_hm0foOI$URghr$<`0ZVf(kM#C{8FaZZm*^}GY{NRe#nQF33%&K4 zZf*0!k9!MUHr_11l+TW1w9Wac7ofF6&Yzw9d-v@LUzq@9h1&5+k??bKZ|`{1LDaqW zUZDsXAPn<56*jxl&q`L*7wm{+0-jJ56O-3p73Lv%uAK|C~6KTX0133JKrbookn zAn|Kjr!u(M_Bnw_t%`#Z#R$jq1_m!>8!V}B)>I{=Q!y_@+CxUr5eMRy@D0h5^wdtf zXVMOs2(YVk2AONjywpSdJ~Nj+G-y6%TxOZAo_3;@Nn(g};8RwBcf$;6$?%n-@wM%f zX5BH|rOLRhdD$%Lgf5mY32(PQ1)ZcS+~yB_qNEEe*n;+0ko!N}M6dt6-QuK>rKjbF zB`6upVKGa63qQAG=#O+oLd|LCDMOyraXTCmuj&@h78;Izew&}RE(k1mcJB4WsRU-b zuo;FMGYM^i>G-YpNK=sD*4PUEf8AO*)aRLA4HC61x_ z{i-VfCL-T7x>3V2rYe~kHJ0mybLVRx;;@-@f6*giG>g!1G!n>%N|?VqOG4}sCSEYyU>by0zh zh)@PEM+y%5(ZWEb;QCewPp@767y6mch#d?!qt4-kEN40R)JbD#5EZH@TAYWXHA|$3 zcg`L3UX^Rvf!Da0K^wx1H$`h&aL*cX`@J7kzn!z8`-aNPgN*!<@t{ zh)rac?QbPo^cn?=!qd<+mwKfQ(P+=&?#s`T z3-M~GwZg`I#vG?j?G!3uq70JmSr`Qy8C9}I_zG^?t$(3^{#4Z}w(l-~Urg!=5Ls|| zH>{&WD2hm>)>Hj7Np*BVqCf?){XbKL6{x4dZXTEIu8|X{59uqwZehGBSrYq*o9oHot*Cm@+ zB%N5q(Y;Pcv(YKM1V#*=N9~zLYy(cNzIZ;(`+PVQ5xat_J6hqf;3N`Kr}l6iDyeye z$})#oruV6Og~s4)fQVpsqXJxQ*Om$Rui;070xqo9gbDcHqkt@7cl*1%d7PlgpldLQ z0{Sgj(I#HIM6ToAKpf&n)zkU_K;exccALg2u>1GDnKKd`U)9sfz%h8#sEyV?p)mZa zu4pqZQ(_1VTa2Nrqt=1c_d`=PcxcOj`F+gBbM*xHJX^V&-QH;jk4;+F-Nwqshmb{V;E-lHw1+V6rS$>Q!A4NSh z8-H6-4JXT*P=Qnm98hB!P9l^{ELS37k1><87N3IJz2MvskPTPy#%* zRTj8pBz{Hl9RgK4@BP{jtoaVUMb5X=hrx#}OeA3t4H=ME_3+_caPTk3Z>tZODEK-q z=aplQzob{IfiN26Q8y!NSV@wZdMt}FImoR~J0dYs$}ESRLY3hl!m?`ewqYp$$c}tE zUTp3odhRPaLi@5Qfsqb(vsOjUV011k%JM_x`xp-F>{ASR5=P3puvcQQ^^B5J>6@W|2%X2B8n^-ldDLQf4l~Bp>HIb69@nsz$|MItqI7P# z7`&bg{wf;z2(qeJX4#%tUS4GaY{q8~&KF!)-+bM$&}FW&uiradIOvMRGkde!l*Hi2 z6dhMs3*28BG&2S9}CXDXfGDUZ0g?PWKw){Sd{sd<0 zZd7>ksiUP)+;L<(!gEVwNexaF-FJ8ZQ~w#bq+Zm@MkfNp1G6B{y4n~4wX(}D+`H=T zRE~u!JL9kPpX;B?+9M%ct*36q1B3a3Q9t;hoR5u0&#Rp)}|E)+V+uaT*rE zAotc-FC&J~xTfL$QX0Mz=-Xp*DG%o)6vlmR8ir;!Pi3N^&tv?N8w<}KU@VVf}-tJ>u~^c ztUX+=;VQ^e5*m@KV3J=?e^U3S*F=7O@Up<*wvY?dABYRSV4;Xyx67ZPpE3B;+mIr} zok?+gDfQ>!3Un-x5~RwV{tU2NRvG6blr|&SDuvNx|Cg|Q{9CH;a1U!8;iF%y**cL0 zmz*pYMtFd1A^YC}Ff>VYL_`T$IZR=m1P@V~B$rqHu_?SEV@b=_DT>OVG`Qp!JIQ43 z3AJ@BcM9}-wjpfBzX#rs`f3O@F|jysgj;Wr88Jhnn-6YP02QNXyPPX3oI?$BhSc+Q z2f}RDyn%H$U3WQTp{H1-N&mm+kD!FcP;pptx&eno;bP*WVu_R`WnBL!f}vk8-7L^~ zEWSRGdVUv4*t-oT6n!{rJ^-!A`XNfumYYhG5b^V9igZ9`}U)*}rt zGTrRV@t0CK$xZkno9|9iphMGV;e`602ob+Cd06z@8GZXvH7i}!AYJ7VGUGS0t=mAa z|;b`{-2c_%Q*o5hFdg?n4v*9mCNv2%?5^Ln@xhVXZn z@%i5)gY;l`N4uK&oJf&D(y+Ubu3MWmVIux#4qq8?VX@XGwu5|DU2NkLl+1B05E8iZ zQ?8`KtQ1HLNrj5C-lzzMaH8$Ks7JSiEvKFKH3~aS+PgirQW*SZrjW=fyHMQIt!rT& zkhSmuwuT}(o-1Vt-%yZEP2o;)J>-1pWT>G+wY>2KFp`dR6y9+7z~=%f6qZe^Hpr$y z%dqk33m5*&8fw3LIdos$20FeUl&)+^Od)H9Ow|i5dmK&M$DfwafMyD4=Al9yqwuOI zIPvvd^{n}a6-H@M-vZ8#m_k%m6V78&`=; z1eIT97GgBvHRb8^-kBfVEo$n-r0Ln!*lTFeTPyqsN2?E)1gWyHz zma50w1&*d-^U>-S!~shlQh80V?DJB_$R;D{OjbSLkC;#V()5$$f&H~(l|we_DmD=v zkMaxeZq^RODu)a8kBJyOoB3vQaQYDK5(1%mQ{LL=?BVcJ)W!i5Q`(xz9WJzl6;n9c z0^@U1$a!`}97Whc@=X?Z>jTuV7)5Ja zdDzTa-T4na-0RF6JtPs-r3ZwClJRT)p!5p}%BDsdv|c8w*wB({Mp3Yjd4FsH2&F2u zYv>DrYVLGt=k)`tT}@RYBA?w!z>Gcd&z;?nvMCp}W^q797#6wC`0ZE3`(zSGGB(2K zII!E}pvhazGG6t=6Q;CLnzGA)3xWNqAiJNcbi)!e0ib}7olv5k;VOYD!-isePf=== zT4}C}*K$eO61I?rT~67z4gMWXEH)qKwnhZ(c(z?NE22AfX>pB9R10URe90|c%2n;T zGsxxB27|ULcoz*fp!j<1l*ox9%BjJObkdx;>w&1Ym5Rj--o?^po@1QZDVRGUf@I1U z1s6A|K4cVA_tQaF1ge-pqVA{b_tV^qZ@*iAkhh%B6I8{i<7#LNG1%~+9=?!7?j6cH z4|2-w(>G3vFQYb z#t4|C%S4EPhjDp`3INWmk$_JK7rc~{#A-*nW-qYRG@Ss^u&bKY<44JdW*+qu27Mkm zmAPP0A33IL3Y}GC6yEsQ;G|3Xb?UAmJALr_TlPHinxc^Ps!VC|QnnOm58Jr}?0RSz zXXgBXv?miC?%!vLlotB1u)Umb*GsTs9OcVX2&Hfviy{qNG-)IzF!w zM9Z(5%VLN7*;%vQnYZ29gSZ<+v%ivY4kFzPW0zpj!u|%ix zMbDETev9x5w^sZbrTB`XtI*@q}8Bubys7c z{DV-`$kc5g$FQ6iAONeAO2;YS5qro)>rA)oITsbB!mHb|lbcVBP#kMnQ$K^vLUw~c zA3Gg0rIy!qa)-^R1-FN8%qx6o7}t?Fs2%p6RW1kk4PFg}#r*(e+3c~F7GGscA?^PF z0jPgUmIRZ~`%+^Gt({4xw(Woe32wNz-jgVcds8Ht$_uh&a5gk8hBU4rj6-{@-oPyn zv_820VECd)s%AA$C?ztdY+|sknZF=m?Ooi5`ctj~3@OyO9c)p)|KCx17L?kSLN+JWzhNAW=-=nUka}S;+ZE+7#Sqda%LDjB{!@+=!Fv zfda&-P94MLjXG!igCr44$PAANMcGWNbTn9qZ@CT=Iq?EEy2qy!q*m58LHsX+4Ml791Uj_L-SbIz2}_Mnt`1WSSUA$lK1Uj8 z;~92b5$(9JGirEcF~&D@J~)+OkCt)dm_DNu>mA|vNAtnvJ=;m=)A88#)6Hq;s{b9h z#^3jGrx8tTHJ$X)V^s(dOi6T*_XEZ z_C=fRlgx@2;{+|dFF#y!VN(k@gzS{CS!J$UD;3I>BwqsBaF+Sf2R9dJu8~bvZvscp zg;7s`;Q2MJ-e8KPUzF4fne!i346ON`4okR)05QMv;Nj2XD8bLZDNC;!*YXM-;Lf7u zlG_Ik`HZyh;q}75#U~U=S^YcyGM7}{&d>Poz{0@%?s$7{BXYGeb}=_ob91qFuyp<1 zAQO@_0Ssct4n0xyeLZ;}(@ekvuZ<6o4mF}zJ4r=cDU%Rd;>=cZTqwYU+n`zX{9tvT zt2dHD#;gs#zz}5wtg$)YlpJPlgMgbxEE*co8-Jw z>L40Os3B@{!txhA9>5|IYh72htT$TN-v_Y8s)<>jRd1B+kt;60fiFKMEi6)Exz`}{ z_Cx#-#gA&qH2=i{CFqB!-O-6v?DYiav3y=V4h{jMvx9IMu^g2~!khM;q_b;H5TgU^ z<4!h-Tg{Gb4Hr*+^tTciNcCgz&VhxEdD>vaU=u4;Tl(kfnXr1IR&3D+@0GCNCqvkW z#-ws+`33CXm&h3(=ku@UB@%^$fkF9miQK&H%>T7E?dq#hAa?YRY?uCTyib}DMHUN4 z+k-+R^bi|EI^M+)4x-5pNS)N2P&?0r2;tt1<8g7_?qp@KaoqM6Q46>p1W&*zo}eZ> z8DzctQJvSR1V+oHckXiQEt+V{8R6W@5Yxof81GEFetf#v|O*W~>Whx$%p<0k}7xAynl$Pufr z*b!si)s9-xifq%E=F0Y%)6-wBvln{Uy{eZ<^BV8@h()BFACjfqr{B^R5mP&7se_zc zwxcTQQzCX$p%&?@CVyELi`c;f*YDq#yVWo0jK?)83BEX4puCRdy{FUV{KoX8x3EXF zu$QVh&pvo-wc$JAgWUD~iBYN)r&Fejm31!$hb?{o#4F~7L%F}i+iB6jFwD^0MX3Py z8}j~?D%<3n&dNNoU#1kE_L_z9hp+sR%DO;g>oji?d*(Wd(B%5GNX_U3;)|EtyQ zNJlYlNfN(<>Wu7NM`J9O(D&-h&%6soAs$OJ4!YBueHrsp(IT@WW{u7HSK-0I^x;UD ze5h~Arsed9YINuWDSxt^-cdokxS$qGQrO=FsB_LPKKkE~?4GCGV*tV=Wrj8zw)LxY z!uv$YCit!N8ejiHVnLD(*~G9ArnR?ySLAMf(2K^psfd#pPM#OHP3xeSuL>!#mnUoZ z(l&^N+1t*6hoM=E9Uy{v^XBH=NcEhJqEHWagK{*Lk&mr#iKuu`a`87FOQ`874pWB1 zjRNsahGaHnZ!9hFj>@ub_?2K^m3;sRLyR!~enpmGTA6M%Kkqrr$$NQ5TxzVx!qfss%CY_0_)tE|wEIu&8PgBc8r!ih=9q%n*3 z>vDJI#>Osvc}m;8nC&~9#-vxyOzkI*HPavpWLNLQJU?HEW6Kp0e}0I5JiWZ>W&@*< zk&4|cy!Ao>2LNw2?%5t6uhcH*l1>bT?}nn&1Rt++MemR1*uK9lhW*`_7*`sX>wj^Z zD<;g@)d)wrfBGUOT#^rhvABydZ-M?cbi)oi2z?3@4)ujK%$2(KODM?LqQ_lk!Q1l{ zHw@P4{-vSpT#&K?4i8LCmOm*@@uR}ojYn6hPOR%bsk`=AWj4)e}UyO-3lGit$$T4 z?KeMyOE6(Vt0eJ!7d6Explg8#Q{PWQ!wY@mRUdyw@LSv}*a%G4b!sDx^U>HO?C7zp zwp#-9aqXjXm5!D1u}~!51;+T6ymv!J2F5Y+j+A3Q z2>>t7J^rP~#UY^z!dUd3FGZfj3gy{Q%6s*0h!(e$yHRRz(+^n|mMa0_R>L3hpSgb? zBCfojN*)l%+-PqtDat@HwKYv9DKkPw$1fIGY-m!Z2xCnSo<2dsC+5`2!wamF(U4&F zTL+|m>)e@%Hg^gfR7`%&TpwP^<9DP|duG81I#bc()6>76 z{WwkQbn|u(kK2LKw*ln%+Lx>#4i}3iP_k{DamewDz^iP%OlO8lf6r*$&^!%{lM7-| z9!ow(kY7vFoM(gO={L`o%A*;~Z{LCx8gy?rBhXF)4oUdw6*CfVmx}J4rVmG-IAKJu z65S5|(e$0D%EnFiOa)Y)*)qm66)iW6YdjgtD ze9d6@dNEN0HiY)88(onsrHx4ZwBX}CBXEOyO(U()XLlr9eA}%ua|;iY_D+j_?2X)8 zSE?dIEvx4AVl?`*0PAkT!h8u5FYeDZHF6FNe5g>+m$krGxsr)j$xDd#61CW-V|;n( zV+8)CBYB7=MmwvFtTcx|JggcrLvu8()nnoPO&R-D)BX@P3TpWrt4 zF>~?GoKP-|Ngdk~$#YuD;@U`X7p?ps>V)E{{mID+h&s;y`Aln zEc!SCq&$RamXg?TIc^Rs+X^li+SHaz4Yn{z{B@T?vhjRIK*dy626$>}DtrlGT8~Rf zc!J2AwZjZs>Sw*&V8oUMhA5>{FlaFzkYFFa8Fbj5LHiOZ`j#3todzKct}>!0&~=)J z8?n^-aI)z9i%RlP({@Kibf{0wH46X6g>dJ(6S)&jauWNSx}=SQ;*-c!L(j)kcUNRt zrN~zFs)@)+rfs&uLh1J^S5D(baAaswn7TnwX@GPFk|=AxE)&u)H8Ybr#;Yf*a5`lJ zD<*SFxrxaFI7LwltH+Z09cCY`H`&>N-xvwE!?UeQ3&6bOQnz3*$t+B8Ali4**k)6^ z>g_5zYA4yPpoCyH76)XVuGJYisk@#tyThjIu6Lx6lTE!%d9SH&N@xBqA382N^-?BJ8tBivvRh;G_{@l3yu|)jg7UwQkl(-08& zYzhB$zQjKT|9S4hUxF#mPWk^oh2fui{&_mVUwRs!&G1>z|2(VUpIZKzKL4dfpXWbX z{+&$!Q}~~`-(SMZy#G5B{HKP0rY3)B@aO+S!+#Q$e~SK-t^OriD)=wae{$D" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 218 coefficients adjusted\n", - "\t 550 coefficients converged\n", - "\t 207 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChXUlEQVR4nOzdeViU9f7/8dfMEJs6gRzFBTXDkNw3DEuzcGvRjDhmpqZm7svxmFKmp/QUamma5jFT0SgXtEAzy2Nq2uJXTexYmZppiluK4YK4gDDz+6MfkxOozLANzPNxXVw49zL3e/jcU/d7XnPft8FqtVoFAAAAAAAAAACAfDGWdAEAAAAAAAAAAAClCeEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKABSA1WpVRESE6tatqzlz5ji0bmJiourWravExETbtLp166p3796FXWYuKSkpunz5cpFvpzBkZ2fr2LFjt1zu7bffVt26dW/6ExERUeT1HjlypMi3AQAAANe1efNmjRgxQhEREWrQoIHuuecePffcc/riiy+KrYbMzEy98soratmypRo1aqTXXnstz2kvvvii6tatq+PHjzv0/DnH3jt27CiiV2DvVsfYr7zyiurWrauEhISbLnf8+HGFhoaqT58++d72jh07VLduXb399tv5Xqckbd++XXXr1tXdd9990z7q4sWLGjVqlJo1a6amTZsqNjZWkpSRkaFTp04VV7mSCtZXS/TW+ZXf3hpA/nmUdAEAUJpt375dJ06ckK+vr1auXKkhQ4bIZDI5/XxvvPGG/va3vxVihbmtXr1akyZN0ieffCJfX98i3VZBnTx5UoMGDVLHjh01YsSIfK3TvXt3NW/ePM955cqVK8zychkyZIjS09P1wQcfFOl2AAAA4HrS09P10ksvaf369apfv76eeOIJVa5cWadOndLq1as1ZMgQPfvss3rhhReKvJaVK1cqPj5e9913nx5++GHdddddeU6zWq1q1aqVKlas6NDzd+jQQTVr1lRwcHARvYI/5ecY++9//7vi4+P1ySefKCoq6obLrV69WlarVX//+9+LolSXkJCQIF9fX12+fFkrVqzQmDFj8lxu7ty5WrdunR599FG1atVKTZo00d69ezV8+HANHz5cTzzxRLHVXNh9tURv/VfO9NYAbo1wBQAK4KOPPtJtt92mvn37au7cudq8ebPat2/v9PN17dq1EKvL2/bt20vNN2uOHTumAwcOqGPHjvlep0mTJsXyd8zLF198oZYtW5bItgEAAFCyJkyYoPXr1ys6Olr9+/e3mzd48GD1799fixYt0p133qlu3boVaS0///yzJCk6OlqhoaGSZDur4/ppktS0aVOHnz80NNTuOYpSfo6xGzZsaDuT5vTp0woMDMxzuY8//li33367Q/1FaZKenq4NGzaoXbt22rdvnxITEzVy5Eh5enrmWjZnH5k0aZIqVKgg6Y8zQE6cOFGsNUuF31dL9NZ/5UxvDeDWuCwYADjp4sWL2rhxoxo1aqTHHntMkrR8+fISrgoAAABAcfvmm2+0bt06derUKVewIkmenp6aPHmyTCaT3n///SKv59q1a5Kk8uXL33RaWRIVFSWLxaLPPvssz/m7du3S0aNH1aVLF3l5eRVzdcXj008/1ZUrVxQeHq727dsrNTVVGzZsyHPZnP0hJ1gpKfTVAEozwhUAcNLatWt19epV3Xfffapdu7bq1q2rrVu35nkN0x07duiZZ55Rs2bNFB4ertdeey3Pb7j89bqwN7oG8vHjx1W3bl29+OKLtmlXrlzRlClT9NBDD6lRo0a65557NGjQIO3atcu2TEREhFatWiVJateunW1bL774opo2baqjR49q+PDhat68uZo1a6YhQ4bo1KlTOnHihEaOHKnmzZsrPDxco0aNUkpKil1NFotFH3zwgbp27apGjRqpRYsWeu655+y2L/15feZDhw5pwoQJuu+++9SwYUN17dpVn3zyid1yzzzzjCRpzpw5Tl0L+masVqs+/PBDPf3002rRooXq16+v1q1ba/To0UpOTs61/GeffaaePXuqefPmuueee9SnTx9t27ZN0p/XYZakb7/9Ntf1fr/88kv16dNHzZo1U6NGjdS1a1e9//77slgstmVyxvQ///mP/vnPf6phw4a699579eOPPyo7O1tz5sxRly5d1KRJE7Vo0UK9e/cu1ut2AwAA4MZWr14tSTe9x0ONGjX0ySef2I7Hcxw6dEijR4/WvffeqwYNGqhdu3aaOnWqLly4kOs5fv31V40ePVqtWrVSgwYN1LFjR7311lu6evWqpD+PKa8/5s+5/+Bfp0l59xtWq1XLly/XE088oSZNmujee+/V4MGD9dNPP9mWudE9V77++mtb39O4cWM98cQTdsfF0p/Hzp9++qnmzZunDh06qEGDBoqIiNCsWbOUlZVlt5yU9zH2Xz322GO67bbb7HqK6+WMUc4lwa5du6bY2FhFRUWpadOmatCggR544AFNmDBBqampN9yO9Edfldf9HPO694ck/fDDDxo8eLBatmyphg0bqnPnzlq0aJGys7Ptltu7d68GDx6sNm3a2PaF1157TefPn79pPTlyzk6677779NBDD0nKHVTk/F2//fZbSbLdm/LFF1/UuHHjJEnjxo2z/e0lx3u9L7/8Ug8//LAaNGigXr163bRmR/rqnPrpre3/3iXdWwPujMuCAYCTcg5cH374YUnSo48+qp9//lnx8fEaO3asbbktW7Zo2LBhqly5sgYNGiSj0aiPPvropo2BM0aPHq2tW7eqZ8+euvPOO/X7779r6dKl6tOnjz766COFhobqpZde0uLFi5WUlKRx48bprrvusq1/7do1Pf3002rZsqWio6O1e/duJSYm6vTp0/r9998VFham6Ohoff/990pISFB6eroWLlxoW3/MmDH69NNP1alTJz355JO6cOGCEhMT1bt3b82YMcN2cJ9j4MCBtr9JZmam4uLiNGbMGFWqVEnh4eHq0KGDsrKybA1Xhw4d8nUt6MuXL+vs2bO5pptMJt1+++22x1OmTFFcXJzat2+vf/7zn5KkpKQkffbZZ9q7d68+++wzGY1/fAdh9uzZ+s9//qPQ0FANHjxYnp6eWrZsmfr376933nlH9evX1xtvvKHo6GjdeeedGjx4sJo1ayZJWrRokV5//XXVqlVLAwYMkK+vrzZu3KiYmBjt2LFDb7/9tm07krRw4UKFhIRowoQJOnLkiOrVq6cpU6Zo6dKlevLJJ/XMM8/o4sWLio+P19ChQ/Xuu++qbdu2+dlFAAAAUER++OEHeXh4qHHjxjdd7q/3KElKSlL//v1lMpnUo0cPVa9eXbt379Z7772nL774QvHx8bZj4B9++EF9+/ZV+fLl1bNnT1WsWFG7d+/WvHnztG3bNr3//vuqWLGi3njjDa1cudJ2zH/77bfLaDTaTfP3979hjS+88II+/vhjtWjRQqNGjVJmZqY++OAD9erVS0uXLlW9evXyXG/p0qV69dVX1bBhQw0fPlxGo1GbNm3SuHHjtG/fPo0fP95u+RkzZshqtap79+4ym81KTEzU3LlzZTAYNHLkSAUHB9/wGDsv/v7+ateunf773//q0KFDdn/rjIwMrVu3TvXr19fdd98tSRo1apQ2bdqkyMhIPfnkk8rIyNBXX32lDz/8UCdPntSiRYtuOpb5tWnTJv3jH/9QUFCQnnvuOfn6+mrr1q16/fXX9d133+ntt9+WwWDQsWPH1KdPH1WqVEl9+/aV2WzW999/ryVLluiHH37QihUrZDAYbridQ4cO6fvvv1fTpk1VrVo1VatWTXfccYd27txp9/fI+bvOmzdPv/76q9544w2VK1dOAQEB8vT01IoVK3Ldx9LRXm/UqFH6+9//rjvuuCPPS5JdL799tURvXdy9NYB8sAIAHHbgwAFrSEiI9fHHH7dNO3r0qDUkJMQaHh5uzcjIsFqtVqvFYrFGRERYW7RoYf39999ty6alpVk7duxoDQkJsSYkJNimh4SEWHv16mV7/MILL1hDQkKsx44ds9v+sWPHrCEhIdYXXnjBarVarampqdaQkBDrK6+8Yrfc7t27rR07drSuXLnyps+ZM+2v63ft2tUaEhJiffXVV+2md+vWzRoaGmp7nZ999pk1JCTEumDBArvl0tPTrQ899JD1nnvusV6+fNlqtVqts2fPtoaEhFgHDBhgtVgstmV37txpDQkJsY4ePdo2bfv27daQkBDr7NmzrbeS87w3+nnwwQdty549e9Zar14966BBg3I9z8iRI60hISHWPXv2WK1Wq/XIkSPWu+++29qrVy/b67Vardbff//d2rx5c+sTTzxhm/bX8Tt69Ki1Xr161kceecR66dIl23SLxWIdM2aMNSQkxJqYmGi1Wv8c0yZNmljPnDljV1OTJk2szz33nN203377zdq+fXvr22+/fcu/DQAAAIpW48aNrffee69D62RnZ1s7dOhgbdCggfXgwYN281auXGkNCQmxvvjii1ar9Y/jx0cffdTatm1b67lz5/Jcdv78+bZpNzvmv9m0bdu22Y7Jrz9WP3jwoDU0NNQ6YsQIq9X657H39u3brVbrH8em9evXtw4aNMhuPYvFYh07dqw1JCTE+v3331ut1j+P8e+77z7rhQsXbMteunTJ2rx5c2vr1q3tXt9fj7Fv5ssvv7SGhIRYZ86caTf9008/tYaEhFiXLl1qtVqt1n379uXZ51itVmtUVJQ1JCTE9nfOqyd58MEH7fqLHAkJCXY93uXLl6333HOPNTIy0q6XsFqt1pkzZ1pDQkKsn376qdVqtVoXLlxo93fKMWXKFGtkZKT11KlTN33tU6dOtYaEhFjj4uJs03LGKa/X2atXL2tISMhN67danev1Ro4cedNac+S3r7Za6a2Ls7cGkH9cFgwAnJDz7ZpHH33UNq1GjRpq0qSJzp49q88//1yStG/fPh0/flxdu3ZVQECAbdkKFSqoR48ehVZP+fLlVaFCBa1bt04rV67UmTNnJEmNGzfW+vXr833DzM6dO9s9zvl20yOPPGI3vWbNmrJYLPr9998l/XFtX0nq1KmTzp49a/vJyMhQx44dde7cOe3cudPuObp06WL3zatGjRpJku05ndW/f38tXrw418+0adNsy/j7+yspKUnTp0+3WzctLU0+Pj6SZDu1/IsvvlB2drb69Olj962rgIAALVu2TG+//fYNa9mwYYOysrI0cOBA+fr62qYbDAY9//zzkpTrmtCNGzfW3/72N7tpVapU0bfffqvY2Fjb6dtVqlTRhg0bNHz48Hz/bQAAAFA0TCaT7XJW+bV3714lJyfrsccey3VGy9///nfVqlVL69evV3Z2tn7++Wf98ssvatu2rSwWi90x94MPPigvL68b3lvDERs3bpQkPffcc3bH6sHBwfroo4/0r3/9K8/1Pv/8c127dk0PP/ywzp07Z6vt3Llztp4pp0fK8eCDD8psNtse+/r6Kjg4+JaX5LqZ1q1bq2rVqlq7dq3d9FWrVsnb21tdunSRJIWGhmrXrl0aPXq03XKpqam2mgrjRuX/93//p3PnzqlTp05KT0+3G7ecHitn3KpWrSpJmjZtmrZt26bMzExJf1xmKjExUYGBgTfcTlZWltasWSOj0Wg7A0T6s1/9+OOPdeXKFadegzO9Xl6XTMtLfvtqid66JHprALfGZcEAwEHXrl3TmjVrJP1xgHX9tUrDw8O1e/duLV++XJ07d9bRo0cl/XHA9Fd16tQptJo8PT01depUjRs3ztbwhISEqHXr1urSpcsNT93/q79+qH/bbbdJkipVqmQ33cPjj/995Nwz5PDhw5Kk9u3b3/C5T5w4cdNt5QQX19+HxBl16tTRvffee8vlvLy8tGnTJm3evFlHjx7V8ePH9dtvv9kOSnPqyBnfO++8M9dzhISE3HQbOeN//SniOapUqaIKFSrkutbtX/8ukhQTE6NRo0bpjTfe0BtvvKGaNWvqvvvu06OPPqqwsLBbvlYAAAAUrcDAQB0+fFiZmZm3vAxSjpsdKxoMBtWpU0fJyck6d+6c7Xg7Pj5e8fHxeT7fX4+3nZFzbPrXsEeS6tevf8P1cuqLjo6+4TK36gekP3qCv96HxBFGo1GRkZGaO3eu/ve//6lp06Y6c+aMtm7dqs6dO9vdvN3T01OfffaZ7f4ex48f15kzZ3L1AwWR83eZMWOGZsyYkecyOX+XTp06KSoqSomJierbt6+8vb3VvHlztW3bVo8//rjdJY7/asuWLfr999/VsGFDZWRk2MbR09NTd9xxh44cOaJPP/3Udr8ZZ16DI73eX/vHvDjSV0uit75OcfXWAG6NcAUAHLRlyxbbt6ludHO+pKQkHTx40PbYarXmWqYgBzp5NRzt27fXfffdp6+//lrffPONduzYoUWLFmnx4sV66aWXbDewu5mcA7u/utm1fXPqKVeunObMmXPDZWrXrm33+Pr7jBS3a9euafjw4dqyZYsaNGigBg0aqFOnTqpXr56+/PJLvfvuu3bLSrf+G+QlZ9xvtK7FYsnVfOc1Bs2aNdPGjRu1fft2ff3119qxY4fi4+O1fPly9evXz+7miwAAACh+YWFhOnTokL777juFh4ffcLlx48bp2rVrNw0hcuT0C56enrZ/9+zZ84Yfut7oWN4ROce+jsrpT1599VUFBQXlucxf7/FQVP3AE088oXfeeUeffPKJmjZtqk8++UTZ2dl2wUJ6err69Omjn376Sc2bN1eDBg3UtWtXNWzYUHFxcbYP/R311z4tZ9xGjhyppk2b5rlOuXLlJP1x9tPkyZM1dOhQbd68Wf/3f/+npKQkbd26Ve+++67i4+PzDBakP88A+fHHH9WuXbs8l4mPj3cqXHGm1zOZTLd8Xkf66uvDE3pr1+qtAXdHuAIADso5cB00aJDtdNvrffjhh9qyZYvdweuhQ4dyLZecnHzLbeUclGZkZNhNzzk1OUd6erp+/vlnBQUFqWPHjurYsaMkaf/+/erTp4/+85//5OsA0FlBQUE6fPiwQkNDczVN+/btU0pKiu1yW67gs88+05YtWzRw4EDb5blyrFq1yu5xTnN4+PDhXAex7733ng4ePKgJEybI29s713Zymp8DBw7YbpyZ4+TJk7p06ZLt9P8bycjI0M8//6zbb79d999/v+6//35J0rFjx/Tss88qLi5Ow4cPV/ny5fPxygEAAFAUOnfurPj4eC1btuyG4cpvv/2mNWvWyGw2y8/PTzVq1JAk/fLLL7mWtVqtOnTokMqXLy+z2WwXWPz1LG2LxaL169fbnq8grj/2rVu3rt28GTNm6OrVq3rppZduuJ7ZbM5VX0pKin744YdCqS8/atSooXvuuUfr1q3ThAkT9Mknn6hWrVpq2bKlbZn3339fe/bs0aRJk/TUU0/ZrZ+fSymZTCZdunQp1/S/9mk5fxdvb+9cf5f09HR98803tjMZTpw4oaNHj6pVq1bq3bu3evfuraysLMXGxmrGjBlavny5XnjhhVzbTE1N1VdffaVy5crp9ddfz/XhvcVi0QsvvKAff/xRP/30003PQMpLUfV6jvTVEyZM0B133CGJ3trVemvA3RFtAoADzpw5o6+//lp+fn4aNmyY2rdvn+tn5MiRkqTVq1erVq1aql27ttasWWN3mvPVq1e1ZMmSW26vcuXKkv74BtL1Vq9ebff4wIEDevrppzV37ly76XXq1FGFChXsvjWT862WvL7x46xOnTpJkt566y276enp6Ro1apSGDRuW6yA2P3IOgAv7dOZz585JUq6GMTk5WevXr5f05zeY2rVrJ4PBoKVLl9pdR/v8+fNasGCBfvjhB1uwYjQa7Wrt0KGDTCaT3n33XbtrNlutVs2aNUuS9NBDD92y1u7du+vVV1+1m16jRg0FBgbKYDDwTSUAAIASFhYWpg4dOmj9+vVavHhxrvkXL17UP/7xD2VlZWn48OHy9PRUvXr1VKNGDa1ZsybXB8YJCQk6evSo7YPdBg0aqHr16lq1apXt8kg5VqxYoVGjRtk+rC6InLNi4uLi7KYfPXpU7733no4dO5bneh07dpTRaNS8efN09epVu3lTp07VsGHDtGfPHqdq+usxdn5ERUXp7NmzWr16tfbu3ZvrjI0b9QP/+9//bPezuNnlySpXrqyzZ8/aXZ4pMzNT69ats1uudevWKleunN577z3bNnPMmzdP//jHP/Tll1/aHvft21fff/+9bRkPDw81btxY0o3PBlm9erWysrLUtWtXdejQIVd/2rFjR0VFRUmSli9ffsPXJP3ZK17/9y6KXs/RvvrKlSsKDQ2lt3bB3hpwd5y5AgAOyDlwfeKJJ+Tl5ZXnMvXr11dYWJh27typtWvX6rXXXtOzzz6rbt26qWfPnipfvrwSEhJ08eLFW24vMjJS7777rl577TUdP35clSpV0ubNm3XgwAG77Tdr1kytW7dWfHy80tLS1LJlS2VnZ2v9+vU6duyY3Teccq7HunDhQrVp0+am13LNryeeeEL//e9/tWLFCh09elQRERHKysrShx9+qCNHjmjs2LE3vQHjjeTcqPCLL75QtWrV1KFDB/n5+RW43jZt2ujNN99UTEyMjh49qkqVKumXX35RQkKCLUBJS0uT9Mf1pgcOHKh3331XPXr00KOPPiqLxaKVK1fqwoULtpAkp979+/dr2bJlatGihUJCQjRq1Ci9+eabevzxx/XEE0/I19dXmzZt0vbt2/Xggw/qscceu2mtVapUUbdu3bRixQr1799fERERMhgM+uabb7Rz50716tVLvr6+Bf6bAAAAoGAmT56sCxcuaOrUqfrkk0/UsWNHVaxYUUeOHNGqVat09uxZ9ezZUz179pT0x4edr732mgYOHKhu3bqpR48eCgoK0g8//KBVq1apevXqGjNmjN2ygwYN0hNPPKGnnnpKNWvW1I8//qiEhATVrFlTQ4cOLfBraNOmjTp37qyEhASdOnVKERERSk9P19KlS+Xl5aWxY8fmud4dd9yhESNGaNasWeratasiIyNlNpu1adMmffPNN3rwwQdtQZGj8jrGvpVOnTrp1Vdf1euvvy4PDw89/vjjdvMjIiL0wQcfaMyYMXr66adVoUIF7dmzR6tWrZLJZNK1a9ds/UBeoqKilJSUpP79++vpp5+WxWJRQkJCrkDGbDbr5Zdf1rhx49SlSxd1795dlStX1vbt2/XZZ5+pUaNGevrppyVJffv21bp16zRw4EA99dRTCgoK0unTp7V8+XJVqFBBTz75ZJ61JCYmSpLtefLyzDPPaOnSpfr000/14osv3vCs95xecc2aNbJarbYeprB7PWf66m7dutFbu2BvDbg7whUAcMCqVatkMBhueuAq/XFgvHPnTsXHxyshIUHLli3T7Nmz9d5770n64xthDzzwgP7xj3/c9Hlq1qypBQsWaM6cOZo/f758fHzUpk0bLV++XI8++qjdsrNnz9aiRYtsl7ySpNDQUE2fPl1dunSxLdejRw99++23SkhI0Pbt2wvlANBkMmnevHmKi4vTxx9/rOnTp8vHx0fBwcF6++23nW6kateurX79+umjjz5STEyMgoKC1KpVqwLXGxwcrPnz52v27NmKjY2VJFWtWlW9evXSQw89pMcff1xff/217ayS0aNH684779SSJUs0c+ZM+fj4qGHDhpo2bZoaNmxoe97o6GhNnz5dkydP1uDBgxUSEqKBAwfqzjvv1HvvvWe7l0vt2rX18ssvq0ePHvk66+Tll1/WnXfeqVWrVmnGjBnKzs7WnXfeqX/961+33BcBAABQPMxms2JjY/XZZ58pMTFRy5Yt09mzZ1W+fHk1btxYPXv2tF3iNUd4eLhWrlypuXPnKiEhQenp6apWrZqeffZZDR48WGaz2bbsvffeq5UrV+qdd96xfaBcpUoVPf300xo0aFC+biKeH9OmTVOjRo300Ucf6fXXX9ftt9+uFi1a6B//+Eeuy+Reb+jQoapTp47ef/99zZ8/XxaLRTVq1FB0dLR69+6dr/tw5CWvY+xb8fLyUufOnbVs2TJFRETYzlrI0apVK82YMcPWa3l6eqpatWoaNWqU6tSpo4EDB+rrr7+2O9a/3hNPPKFLly5p2bJleuONN/S3v/1NXbt21YMPPqju3bvbLfv444+ratWqWrhwod5//31lZGSoWrVqGjJkiPr372/7olRwcLCWLFmid955R6tXr1Zqaqr8/PwUHh6uYcOG5Xm/le+//14HDx5UWFiY7rrrrhv+PWrWrKkHH3xQmzZt0scff2wL+P4qPDxcXbp00caNG/Xjjz+qRYsWql27dqH3es701d26dVOLFi3orV2stwbcncFamOeuAQCcZrVaFRoaqnvuuUfvv/9+SZcDAAAAAECpQ28NoLhwkXYAcBE5p52XK1euhCsBAAAAAKB0orcGUFy4LBgAuIB3331XP/30k6Q/ri0LAAAAAAAcQ28NoDgRrgBACUtLS1NcXJyuXbumzp07q1+/fiVdEgAAAAAApQq9NYDixj1XAAAAAAAAAAAAHMA9VwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHuP0N7a1WqywWbjtTUoxGA39/N8b4uzfG370x/u6N8S85RqNBBoOhpMtAKUPP5Pr476r7YKzdB2PtHhhn98FYly757ZvcPlyxWKw6e/ZSSZfhljw8jPL3L6e0tMvKyrKUdDkoZoy/e2P83Rvj794Y/5JVsWI5mUyEK3AMPZNr47+r7oOxdh+MtXtgnN0HY1365Ldv4rJgAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4wKOkCwDg3kwmxzJei8Uqi8VaRNUAAAAAAAAUPqPRIKPRYHuc83nIzT4X4TMQwLURrgAoEQaDQRaLVWazj0PrZWdbdP78ZQ4uAAAAAABAqWA0GuTn55tnkHKzz0X4DARwbYQrAEpEzjc2pi/dpeOnL+ZrnaDAChrTs7mMRgMHFgAAAAAAoFQwGg0ymYx8BgKUMYQrAErU8dMXdejEhZIuAwAAAAAAoEjxGQhQtnBDewAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAA4CJSU1M1duxYhYeHq2nTpho4cKAOHjxom79v3z716tVLTZo00QMPPKDY2Fi79S0Wi2bPnq02bdqocePGevbZZ5WcnFzcLwMAAAAo8whXAAAAAMBFDBkyRMeOHdOCBQv00UcfydvbW3379tWVK1d07tw59evXT3fccYcSEhI0YsQIzZo1SwkJCbb1586dq/j4eL322mtasWKFDAaDBgwYoMzMzBJ8VQAAAEDZ41HSBQAAAAAApHPnzikoKEhDhgzRXXfdJUkaOnSounbtql9++UXbtm2Tp6enJk6cKA8PDwUHBys5OVkLFixQVFSUMjMztWjRIo0dO1Zt27aVJM2cOVNt2rTRhg0b9Oijj5bkywMAAADKFM5cAQAAAAAX4O/vrxkzZtiCld9//12xsbGqUqWK6tSpo6SkJIWFhcnD48/vyIWHh+vw4cNKTU3V/v37denSJYWHh9vmm81m1atXTzt37iz21wMAAACUZZy5AgAAAAAu5l//+pdWrlwpT09PvfPOO/L19dWpU6cUEhJit1zlypUlSSdPntSpU6ckSVWrVs21zG+//VY8hQMAAABugnAFAAAAAFxMnz591L17dy1fvlzDhg3TsmXLdPXqVXl6etot5+XlJUnKyMjQlStXJCnPZS5cuFCgejw8uOiBqzKZjHa/UXYx1u6DsS57CjKW7AelH+/psotwBQAAAABcTJ06dSRJr776qnbv3q0lS5bI29s7143pMzIyJEm+vr7y9vaWJGVmZtr+nbOMj4+P07UYjQb5+5dzen0UD7PZ+TFG6cJYuw/GGhL7QVnCWJY9hCsAAAAA4AJSU1O1bds2PfzwwzKZTJIko9Go4OBgpaSkqEqVKkpJSbFbJ+dxYGCgsrKybNNq1qxpt0xoaKjTdVksVqWlXXZ6fRQtk8kos9lHaWlXlJ1tKelyUIQYa/fBWJc9OWPqDPaD0o/3dOljNvvk60wjwhUAAAAAcAEpKSl6/vnnFRAQoFatWkmSrl27pr179yoiIkJ/+9vfFB8fr+zsbFv4sm3bNtWuXVsBAQGqUKGCypcvrx07dtjClbS0NO3du1e9evUqUG1ZWXwQ4Oqysy2Mk5tgrN0HYw2J/aAsYSzLHi70BgAAAAAuIDQ0VK1bt9akSZOUlJSkAwcO6IUXXlBaWpr69u2rqKgopaena/z48Tp48KASExMVFxenQYMGSfrjXiu9evXS9OnTtWnTJu3fv1///Oc/VaVKFXXo0KGEXx0AAABQtnDmCgAAAAC4AIPBoLfeektvvvmmRo0apYsXL6pFixZaunSpqlWrJklauHChYmJiFBkZqUqVKik6OlqRkZG25xg5cqSysrI0YcIEXb16VWFhYYqNjc11k3sAAAAABUO4AgAAAAAuokKFCpo4caImTpyY5/xGjRppxYoVN1zfZDJp7NixGjt2bBFVCAAAAEDismAAAAAAAAAAAAAOIVwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAzxKuoAcO3bs0DPPPJPnvKCgIG3atEn79u1TTEyM9uzZIz8/P/Xu3Vv9+/cv5koBAAAAAAAAAIA7c5lwpWnTpvrmm2/sph04cEADBw7U4MGDde7cOfXr10/t27fXpEmTtHv3bk2aNEl+fn6KiooqoaoBAAAAAAAAAIC7cZlwxdPTU5UqVbI9vnbtmqZMmaKOHTuqW7duevfdd+Xp6amJEyfKw8NDwcHBSk5O1oIFCwhXAAAAAAAAAABAsXHZe64sXbpUv/32m8aNGydJSkpKUlhYmDw8/syDwsPDdfjwYaWmppZUmQAAAAAAAAAAwM24zJkr18vIyNC8efPUp08fVa5cWZJ06tQphYSE2C2XM+/kyZMKCAhwenseHi6bMZVpJpPR7jfci9FocHpd9pnSj/e/e2P83RvjDwAAAAAoC1wyXPn444+VkZGh3r1726ZdvXpVnp6edst5eXlJ+iOMcZbRaJC/fzmn10fBmc0+JV0CShn2mbKDsXRvjL97Y/wBAAAAAKWZS4Yrq1evVseOHeXv72+b5u3trczMTLvlckIVX19fp7dlsViVlnbZ6fXhPJPJKLPZR2lpV5SdbSnpclDMbrvNpPLlvZ1al32m9OP9794Yf/fG+Jcss9mHs4YAAAAAoBC4XLhy9uxZ/e9//9OgQYPsplepUkUpKSl203IeBwYGFmibWVk09iUpO9vCGLihgnywwz5TdjCW7o3xd2+MPwAAAACgNHO5r6199913MhgMatmypd30sLAw7dq1S9nZ2bZp27ZtU+3atQt0vxUAAAAAAAAAAABHuFy4sn//ftWoUUM+PvbX4Y6KilJ6errGjx+vgwcPKjExUXFxcbnOcAEAAAAAAAAAAChKLheu/P777/Lz88s1PSAgQAsXLtThw4cVGRmpOXPmKDo6WpGRkcVfJAAAAAAAAAAAcFsud8+ViRMn3nBeo0aNtGLFiuIrBgAAAAAAAAAA4C9c7swVAAAAAAAAAAAAV0a4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAu4vz583r55Zd1//33q1mzZurRo4eSkpJs88eNG6e6deva/dx///22+RaLRbNnz1abNm3UuHFjPfvss0pOTi6JlwIAAACUaR4lXQAAAAAA4A+jR49WamqqZsyYoYoVK2rZsmXq37+/EhMTFRwcrJ9//lmDBw9Wr169bOuYTCbbv+fOnav4+HhNmTJFgYGBmjZtmgYMGKC1a9fK09OzJF4SAAAAUCZx5goAAAAAuIDk5GRt3bpVr7zyilq0aKE777xT48ePV2BgoNauXavs7GwdPHhQDRs2VKVKlWw/FStWlCRlZmZq0aJFGjFihNq2bavQ0FDNnDlTp0+f1oYNG0r41QEAAABlC+EKAAAAALgAf39/zZ8/Xw0aNLBNMxgMslqtunDhgo4cOaKMjAwFBwfnuf7+/ft16dIlhYeH26aZzWbVq1dPO3fuLPL6AQAAAHfCZcEAAAAAwAWYzWa1bdvWbtq6det09OhRtW7dWgcOHJDBYFBcXJy++uorGY1GtW3bVqNGjVKFChV06tQpSVLVqlXtnqNy5cr67bffClSbhwffy3NVJpPR7jfKLsbafTDWZU9BxpL9oPTjPV12Ea4AAAAAgAvatWuXXnrpJbVr104RERGaPXu2jEajqlevrnnz5ik5OVmvv/66Dhw4oLi4OF25ckWSct1bxcvLSxcuXHC6DqPRIH//cgV6LSh6ZrNPSZeAYsJYuw/GGhL7QVnCWJY9hCsAAAAA4GI2btyoMWPGqHHjxpoxY4YkacSIEerbt6/MZrMkKSQkRJUqVVL37t31448/ytvbW9If917J+bckZWRkyMfH+WbeYrEqLe1yAV4NipLJZJTZ7KO0tCvKzraUdDkoQoy1+2Csy56cMXUG+0Hpx3u69DGbffJ1ppHLhSurV6/W/PnzdezYMdWsWVPDhw/Xww8/LEnat2+fYmJitGfPHvn5+al3797q379/CVcMAAAAAIVnyZIliomJUYcOHTR9+nTbmSgGg8EWrOQICQmRJJ06dcp2ObCUlBTVrFnTtkxKSopCQ0MLVFNWFh8EuLrsbAvj5CYYa/fBWENiPyhLGMuyx6Uu9Pbxxx/rpZdeUvfu3bV27Vo98sgjGj16tP73v//p3Llz6tevn+644w4lJCRoxIgRmjVrlhISEkq6bAAAAAAoFMuWLdOrr76qnj176q233rK7xNfzzz+f68tlP/74oySpTp06Cg0NVfny5bVjxw7b/LS0NO3du1ctWrQonhcAAAAAuAmXOXPFarVq1qxZ6tOnj/r06SNJGjZsmL777jt9++23+vbbb+Xp6amJEyfKw8NDwcHBSk5O1oIFCxQVFVXC1QMAAABAwRw+fFiTJ09Whw4dNGjQIKWmptrmeXt7q3PnzhoyZIjeeecdPfroozp8+LD+/e9/q3PnzgoODpYk9erVS9OnT1fFihVVvXp1TZs2TVWqVFGHDh1K6mUBAAAAZZLLhCu//vqrTpw4oS5duthNj42NlSQNGDBAYWFh8vD4s+Tw8HC9++67Sk1NVUBAQLHWCwAAAACFaf369bp27Zo2bNigDRs22M2LjIzU1KlTNWvWLM2bN0/z5s1ThQoV1KVLF40aNcq23MiRI5WVlaUJEybo6tWrCgsLU2xsbK6b3AMAAAAoGJcJV44cOSJJunz5svr376+9e/cqKChIQ4YMUUREhE6dOmW7nnCOypUrS5JOnjxJuAIAAACgVBs8eLAGDx5802U6deqkTp063XC+yWTS2LFjNXbs2MIuDwAAAMB1XCZcSU9PlyS98MILGj58uMaMGaP169dr6NChWrx4sa5evZrr21ZeXl6SpIyMjAJt28PDpW494zZMJqPdb7gXo9Hg9LrsM6Uf73/3xvi7N8YfAAAAAFAWuEy4ctttt0mS+vfvr8jISEnS3Xffrb1792rx4sXy9vZWZmam3To5oYqvr6/T2zUaDfL3L+f0+ig4s9mnpEtAKcM+U3Ywlu6N8XdvjD8AAAAAoDRzmXClSpUqkpTr0l916tTRli1bVL16daWkpNjNy3kcGBjo9HYtFqvS0i47vT6cZzIZZTb7KC3tirKzLSVdDorZbbeZVL68t1Prss+Ufrz/3Rvj794Y/5JlNvtw1hAAAAAAFAKXCVfq1auncuXK6fvvv1eLFi1s0w8cOKCaNWuqWbNmio+PV3Z2tkwmkyRp27Ztql27doHvt5KVRWNfkrKzLYyBGyrIBzvsM2UHY+neGH/3xvgDAAAAAEozl/namre3t5577jn95z//0dq1a3X06FG988472rp1q/r166eoqCilp6dr/PjxOnjwoBITExUXF6dBgwaVdOkAAAAAAAAAAMCNuMyZK5I0dOhQ+fj4aObMmTp9+rSCg4P19ttv65577pEkLVy4UDExMYqMjFSlSpUUHR1tuz8LAAAAAAAAAABAcXCpcEWS+vXrp379+uU5r1GjRlqxYkUxVwQAAAAAAAAAAPAnl7ksGAAAAAAAAAAAQGlAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYUarly6dElXr14tzKcEAAAAgFKDnggAAABwD06HK1999ZXmzp1re/z666+rZcuWatGihWJiYgqlOAAAAABwVfREAAAAgPtyKlzZvHmzBg0apI8//liSlJSUpMWLF6t69epq2rSplixZomXLlhVqoQAAAADgKuiJAAAAAPfmVLiyePFi1axZU++//74k6dNPP5XRaNTixYv1wQcf6MEHH1RCQkKhFgoAAAAAroKeCAAAAHBvToUr+/btU48ePRQYGChJ2rp1q0JCQlS9enVJUps2bfTrr78WXpUAAAAA4ELoiQAAAAD35lS4kpWVpfLly0uSTpw4oaNHj+qee+6xzbdYLPLw8CicCgEAAADAxdATAQAAAO7NqXAlKChIe/fulSStX79eBoNBbdq0sc3fvHmzgoKCCqdCAAAAAHAx9EQAAACAe3Pqq1SdOnXSO++8oxMnTujbb79VYGCgwsPDdfToUb322mvaunWrXnzxxcKuFQAAAABcAj0RAAAA4N6cCleGDh2q8+fPKyEhQVWrVlVMTIw8PDx0/vx5ffPNN3ryySfVq1evwq4VAAAAAFwCPREAAADg3pwKV4xGoyZMmKAJEybYTQ8NDdXmzZttN3UEAAAAgLKInggAAABwb07dc+WZZ57Rtm3bck339PRUYGCgNm7cqIceeqjAxQEAAACAK6InAgAAANxbvs5cuXLlis6dO2d7/O2336pDhw6qVatWrmUtFou++eYbnTx5svCqBAAAAIASRE8EAAAA4Hr5ClfS09PVuXNnXblyxTZt8uTJmjx58g3XadKkSYGLAwAAAABXQE8EAAAA4Hr5ClcqVaqkl19+WTt27JDVatXq1avVvHlz1ahRI9eyRqNRf/vb39SjR49CLxYAAAAASgI9EQAAAIDr5fuG9o8//rgef/xxSX+cAt+vXz+1a9euqOoCAAAAAJdCTwQAAAAgR77Dlet98cUXhV0HAAAAAJQa9EQAAACAe3MqXJEkq9Wq7du368yZM7JYLHkuk/OtLgAAAAAoa+iJAAAAAPflVLiSnJysAQMG6NixY3nOt1qtMhgMNBIAAAAAyiR6IgAAAMC9ORWuTJ8+XceOHVNUVJQaNmwoT0/Pwq4LAAAAAFwWPREAAADg3pwKV7Zv364ePXro5ZdfLux6AAAAAMDl0RMBAAAA7s3ozEpZWVm6++67C7sWnThxQnXr1s318+GHH0qS9u3bp169eqlJkyZ64IEHFBsbW+g1AAAAAMCtFFVPBAAAAKB0cOrMlfr16+unn35St27dCrWYn3/+WV5eXtq4caMMBoNteoUKFXTu3Dn169dP7du316RJk7R7925NmjRJfn5+ioqKKtQ6AAAAAOBmiqonAgAAAFA6OHXmysiRI/Xxxx9r/fr1slqthVbMgQMHVLt2bVWuXFmVKlWy/Xh7e2vlypXy9PTUxIkTFRwcrKioKPXt21cLFiwotO0DAAAAQH4UVU8EAAAAoHRw6syVRYsW6fbbb9eoUaPk7e0tf39/uzNNJMlgMGjjxo0OPe/PP/+sOnXq5DkvKSlJYWFh8vD4s+Tw8HC9++67Sk1NVUBAgOMvBAAAAACcUFQ9EQAAAIDSwalw5cCBAzIajapatapt2l+/reXMt7cOHDigSpUq6emnn9aRI0dUq1YtDR06VG3atNGpU6cUEhJit3zlypUlSSdPnixQuOLh4dQJPCggk8lo9xvuxWg03HqhG2CfKf14/7s3xt+9Mf4oK4qqJwIAAABQOjgVrnzxxReFXYcyMzN15MgR+fj4KDo6Wr6+vlqzZo0GDBigxYsX6+rVq/L09LRbx8vLS5KUkZHh9HaNRoP8/csVqHYUjNnsU9IloJRhnyk7GEv3xvi7N8YfpV1R9EQAAAAASg+nwpW/yszMlIeHh4xG57+B6OnpqZ07d8rDw8MWojRo0ECHDh1SbGysvL29lZmZabdOTqji6+vr9HYtFqvS0i47vT6cZzIZZTb7KC3tirKzLSVdDorZbbeZVL68t1Prss+Ufrz/3Rvj794Y/5JlNvtw1lARKYyeCAAAAEDp4XS4cv78ec2ePVuff/65zp49q9jYWN12221auHChXnjhBdWuXdvh58wrJAkJCdE333yjKlWqKCUlxW5ezuPAwEDnXsT/l5VFY1+SsrMtjIEbKsgHO+wzZQdj6d4Yf/fG+KMsKIqe6Pz585oxY4a2bNmi9PR01a1bV88//7xatGghSdq3b59iYmK0Z88e+fn5qXfv3urfv79tfYvFojlz5ujDDz9UWlqamjdvrldeeUW1atUqtNcNAAAAQHLq083z58+re/fuWrZsmXx8fGzXEr5w4YK2bNminj176tixYw495/79+9W0aVMlJSXZTd+zZ4/q1KmjsLAw7dq1S9nZ2bZ527ZtU+3atbmZPQAAAIBiVRQ9kSSNHj1a33//vWbMmKGPPvpI9evXV//+/XXo0CGdO3dO/fr10x133KGEhASNGDFCs2bNUkJCgm39uXPnKj4+Xq+99ppWrFghg8GgAQMG5LoKAAAAAICCcSpcmTNnjk6cOKHFixdrxYoVtkaiXbt2mj9/vi5fvqy5c+c69JwhISG66667NGnSJCUlJenQoUOaMmWKdu/ercGDBysqKkrp6ekaP368Dh48qMTERMXFxWnQoEHOvAQAAAAAcFpR9ETJycnaunWrXnnlFbVo0UJ33nmnxo8fr8DAQK1du1YrV66Up6enJk6cqODgYEVFRalv375asGCBpD8uTbZo0SKNGDFCbdu2VWhoqGbOnKnTp09rw4YNhf43AAAAANyZU+HKF198oSeffFKtWrWSwWCwm3f//fere/fu2rFjh2OFGI2aN2+eGjZsqFGjRikyMlLff/+9Fi9erLp16yogIEALFy7U4cOHFRkZqTlz5ig6OlqRkZHOvAQAAAAAcFpR9ET+/v6aP3++GjRoYJtmMBhktVp14cIFJSUlKSwsTB4ef17dOTw8XIcPH1Zqaqr279+vS5cuKTw83DbfbDarXr162rlzp5OvFAAAAEBenLrnSkpKikJDQ284Pzg4WMuWLXP4eStWrKjJkyffcH6jRo20YsUKh58XAAAAAApTUfREZrNZbdu2tZu2bt06HT16VK1bt9bMmTMVEhJiN79y5cqSpJMnT+rUqVOSpKpVq+Za5rfffnOoFgAAAAA351S4EhAQoBMnTtxw/oEDB+Tv7+90UQAAAADgyoqjJ9q1a5deeukltWvXThEREZoyZYo8PT3tlvHy8pIkZWRk6MqVK5KU5zIXLlwoUC0eHk5d9ADFwGQy2v1G2cVYuw/GuuwpyFiyH5R+vKfLLqfClfvvv1/x8fHq1q2bypUrZzfvu+++08qVK9W5c+dCKRAAAAAAXE1R90QbN27UmDFj1LhxY82YMUOS5O3tnevG9BkZGZIkX19feXt7S/rj3is5/85ZxsfHx+lajEaD/P3L3XpBlCiz2fkxRunCWLsPxhoS+0FZwliWPU6FK8OHD9fmzZsVGRmp5s2by2AwKD4+XnFxcfr6669Vvnx5DR06tLBrBQAAAACXUJQ90ZIlSxQTE6MOHTpo+vTptjNRqlSpopSUFLtlcx4HBgYqKyvLNq1mzZp2y9zsEma3YrFYlZZ22en1UbRMJqPMZh+lpV1RdralpMtBEWKs3QdjXfbkjKkz2A9KP97TpY/Z7JOvM42cClcCAwMVHx+vf//73/rqq69ktVq1fv16SVLz5s31yiuvKCgoyJmnBgAAAACXV1Q90bJly/Tqq6+qd+/eeumll2Q0/tnUhYWFKT4+XtnZ2TKZTJKkbdu2qXbt2goICFCFChVUvnx57dixwxaupKWlae/everVq1eBXm9WFh8EuLrsbAvj5CYYa/fBWENiPyhLGMuyx6lwRZKCgoI0f/58Xbx4UUeOHJHFYlFQUJACAgIKsz4AAAAAcEmF3RMdPnxYkydPVocOHTRo0CClpqba5nl7eysqKkoLFy7U+PHj9dxzz+mHH35QXFycJk2aJOmPe6306tVL06dPV8WKFVW9enVNmzZNVapUUYcOHQrlNQMAAAD4g9PhSo4KFSqoYcOGhVELAAAAAJQ6hdUTrV+/XteuXdOGDRu0YcMGu3mRkZGaOnWqFi5cqJiYGEVGRqpSpUqKjo5WZGSkbbmRI0cqKytLEyZM0NWrVxUWFqbY2NhcN7kHAAAAUDD5ClfGjRunp556So0bN7Y9vhWDwaDJkycXrDoAAAAAcAHF0RMNHjxYgwcPvukyjRo10ooVK24432QyaezYsRo7dmy+twsAAADAcfkKV1atWqV7773X1kisWrXqlusQrgAAAAAoK+iJAAAAAFwvX+HKpk2bVLFiRbvHAAAAAOAu6IkAAAAAXC9f4Ur16tXzfJyWlqby5cvLaDRKkn755RdVqlRJfn5+hVslAAAAAJQgeiIAAAAA1zM6u+LMmTPVpk0bHT161DZtwYIFat26tRYtWlQoxQEAAACAq6InAgAAANxXvs5c+auVK1fq3XffVfPmzeXl5WWb/vjjj+v333/XtGnTVLVqVT388MOFVigAAAAAuAp6IgAAAMC9OXXmyrJly3Tfffdp6dKlqlq1qm36vffeq0WLFqlVq1ZavHhxoRUJAAAAAK6EnggAAABwb06FK8nJyerYseMN53fo0EGHDh1yuigAAAAAcGX0RAAAAIB7cypc8fHx0ZkzZ244/9y5czKZTE4XBQAAAACujJ4IAAAAcG9OhSvNmzfXsmXL8mwmzp49q/j4eDVr1qzAxQEAAACAK6InAgAAANybUze0HzhwoJ5++mk99thj6tq1q+68804ZDAb9+uuv+uSTT3T+/HkNHTq0sGsFAAAAAJdATwQAAAC4N6fClYYNG2ru3Ll65ZVX9N5779nNq1Kliv7zn/+oUaNGhVEfAAAAALgceiIAAADAvTkVrkhSmzZt9MUXX2jv3r06fvy4srKyFBQUpPr163NtYQAAAABlHj0RAAAA4L6cDldy1KtXT/Xq1SuMWgAAAACg1KEnAgAAANxPvsKVOXPmqGPHjgoJCbE9vhWDwaBhw4YVrDoAAAAAcAH0RAAAAACul+9wpVatWjQSAAAAANwSPREAAACA6+UrXImNjdXdd99te/z+++8XWUEAAAAA4GroiQAAAABcL1/hyksvvaTRo0era9eukqSTJ0+qRYsWCgoKKtLiAAAAAMAV0BMBAAAAuJ4xPwudPXtW6enptsfjxo3T7t27i6omAAAAAHAp9EQAAAAArpevM1eqVaumuXPn6vjx4ypXrpysVqs+//xzHTly5IbrcH1hAAAAAGUFPREAAACA6+UrXBk1apReeOEFLV68WNIfTcLnn3+uzz///Ibr0EgAAAAAKCvoiQAAAABcL1/hSocOHRQeHq4jR44oMzNTffr00eDBg3XvvfcWdX0AAAAAUOLoiQAAAABcL1/hSrt27exu3litWjVVq1ZNLVu2LNLiAAAAAMAV0BMBAAAAuJ5TN7Q/efKkfHx8iqwoAAAAAHAl9EQAAAAArufUDe0lacOGDUpOTr7hOlxfGAAAAEBZQU8EAAAA4Hrc0B4AAAAAboGeCAAAAMD18hWuPPzww9y8EQAAAIDboicCAAAAcL18hSuS5O/vL39/f0lSWFiY7rnnHm7eCAAAAMBt0BMBAAAAyJHvcOV6H3zwge3fhw8f1okTJ1S/fn35+PjIaDTK09Oz0AoEAAAAAFdDTwQAAAC4N6OzK+7evVtdunTRI488ogEDBmj//v367rvv9MADD2jdunWFWSMAAAAAuBx6IgAAAMB9ORWu/PLLL+rXr59+//13PfbYY7bpPj4+ys7O1pgxY7Rz585CKxIAAAAAXAk9EQAAAODenApX3n77bfn6+mrt2rV64YUXZLVaJUlNmzbVmjVrVKlSJS1YsKBQCwUAAAAAV0FPBAAAALg3p8KVb7/9Vk899ZQCAgJkMBjs5gUGBqp79+7au3dvoRQIAAAAAK6GnggAAABwb06FK5cuXVJgYOAN599+++1KS0tzuigAAAAAcGX0RAAAAIB7cypcCQoK0o8//njD+du3b1f16tWdLgoAAAAAXBk9EQAAAODenApXOnfurFWrVunzzz+3TTMYDLJYLJo/f742bNigTp06FVqRAAAAAOBK6IkAAAAA9+bhzEoDBgzQ//3f/+kf//iHzGazDAaDXnnlFZ0/f14XLlxQaGioBg0aVNi1AgAAAIBLoCcCAAAA3JtTZ654enrqvffe0/PPP69q1arJ29tbv/32mwICAjRkyBAtW7ZMPj4+hV0rAAAAALgEeiIAAADAvTl15ook3XbbbXruuef03HPPFWY9AAAAAFAq0BMBAAAA7svpcEWS0tPT9c033+j48ePy9PRUtWrV1Lp1a3l7exdWfQAAAADgsuiJAAAAAPfkdLiyfv16vfzyy0pLS5PVapX0xw0cy5Urp3//+9965JFHCq1IAAAAAHA19EQAAACA+3IqXPn+++/1/PPPq0KFCho5cqTuuusuWSwWHThwQEuWLFF0dLSCgoLUqFGjwq4XAAAAAEocPREAAADg3pwKV9555x35+fnp448/VkBAgG16x44d1aNHD3Xt2lULFy7U7NmzC61QAAAAAHAV9EQAAACAezM6s9L//vc/de/e3a6JyBEQEKDu3btr165dBS4OAAAAAFwRPREAAADg3pwKVy5fvpxnE5GjYsWKunjxotNFAQAAAIAroycCAAAA3JtT4UpQUJC2b99+w/nbt29XtWrVnC4KAAAAAFwZPREAAADg3pwKVzp37qwNGzZozpw5yszMtE3PzMzUnDlztHHjRj3yyCOFViQAAAAAuBJ6IgAAAMC9OXVD+wEDBujLL7/UnDlztGjRItWsWVMGg0HJycm6fPmy6tWrp4EDBxZ2rQAAAADgEuiJAAAAAPfmVLji6emp999/X7Gxsfrvf/+rI0eOyGq1qmbNmurUqZP69+8vb2/vwq4VAAAAAFwCPREAAADg3pwKVyTJ29tbw4YN07BhwwqzHgAAAAAoFeiJAAAAAPfl8D1Xfvrppzynb9q0SV988UWBC8px+PBhNW3aVImJibZp+/btU69evdSkSRM98MADio2NLbTtAQAAAEB+FFdPBAAAAMB15TtcOXv2rHr16qVu3bopLS0t1/wlS5Zo2LBheuqpp3T69OkCFXXt2jWNGTNGly9ftk07d+6c+vXrpzvuuEMJCQkaMWKEZs2apYSEhAJtCwAAAADyozh7IgAAAACuLV/hyuXLl9WnTx8lJSUpLCxMV65cybVMz549de+992r37t169tlnlZGR4XRRb7/9tsqVK2c3beXKlfL09NTEiRMVHBysqKgo9e3bVwsWLHB6OwAAAACQH8XdEwEAAABwbfkKV+Li4vTLL7/o3//+t+Li4hQYGJhrmfbt2ys2NlajR4/WoUOH9MEHHzhV0M6dO7VixQq9/vrrdtNzmhgPjz9vExMeHq7Dhw8rNTXVqW0BAAAAQH4UZ08EAAAAwPXl64b269evV9u2bfXkk0/ectmBAwdqy5Yt+uyzz/Tcc885VExaWpqio6M1YcIEVa1a1W7eqVOnFBISYjetcuXKkqSTJ08qICDAoW1dz8PD4VvPoBCYTEa733AvRqPB6XXZZ0o/3v/ujfF3b4w/Sqvi6okAAAAAlA75CleSk5P1+OOP5/tJH3jgAb3zzjsOFzNx4kQ1adJEXbp0yTXv6tWr8vT0tJvm5eUlSQU63d5oNMjfv9ytF0SRMZt9SroElDLsM2UHY+neGH/3xvijtCmunggAAABA6ZCvcMVoNMrb2zvfT+rn5yeDwbFvpa9evVpJSUn65JNP8pzv7e2tzMxMu2k5oYqvr69D27qexWJVWtplp9eH80wmo8xmH6WlXVF2tqWky0Exu+02k8qXz/9/V67HPlP68f53b4y/e2P8S5bZ7MNZQ04qjp4IAAAAQOmRr3ClWrVq+vXXX/P9pAcPHszzGsQ3k5CQoNTUVD3wwAN201955RXFxsaqWrVqSklJsZuX89jRbf1VVhaNfUnKzrYwBm6oIB/ssM+UHYyle2P83Rvjj9KmOHoiAAAAAKVHvj7dbNOmjT7++GNdunTplsumpaVpzZo1atq0qUOFTJ8+XZ999plWr15t+5GkkSNHav78+QoLC9OuXbuUnZ1tW2fbtm2qXbt2ge63AgAAAAC3Uhw9EQAAAIDSI1/hylNPPaWMjAwNGjRI586du+FyqampGjZsmNLS0tSzZ0+HCgkMDFStWrXsfiQpICBA1atXV1RUlNLT0zV+/HgdPHhQiYmJiouL06BBgxzaDgAAAAA4qjh6IgAAAAClR74uC1azZk2NHz9e//rXv9SuXTs98sgjatasmSpXrqzs7GydOXNGu3bt0ueff65Lly7pxRdfVP369Qu10ICAAC1cuFAxMTGKjIxUpUqVFB0drcjIyELdDgAAAAD8lSv0RAAAAABcR77CFUnq1q2bKleurJdfflkfffSREhIS7OZbrVbVqFFD06ZNU0RERKEU9/PPP9s9btSokVasWFEozw0AAAAAjiiJnggAAACAa8p3uCJJbdu21ZYtW7R9+3Z9//33SklJkclkUmBgoFq2bKlGjRoVVZ0AAAAAUOLoiQAAAABIDoYrkmQwGNSqVSu1atWqKOoBAAAAAJdGTwQAAAAgXze0BwAAAAAAAAAAwB8IVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAH5CtcWbx4sQ4dOlTUtQAAAACAS6InAgAAAHC9fIUrs2fP1u7du22P27Vrp02bNhVVTQAAAADgUuiJAAAAAFwvX+GK0WjUtm3bdOnSJUnSiRMndOXKlSItDAAAAABcBT0RAAAAgOt55GehNm3aaO3atfr0008lSQaDQWPHjtXYsWNvuI7BYNDevXsLp0oAAAAAKEH0RAAAAACul69w5bXXXlPVqlV14MABZWZmKikpSbVr11ZAQEBR1wcAAAAAJY6eCAAAAMD18hWulC9fXi+88ILtcWhoqIYMGaIuXboUWWEAAAAA4CpKoieaO3eutm3bpg8++MA2bdy4cUpMTLRbLjAwUF999ZUkyWKxaM6cOfrwww+Vlpam5s2b65VXXlGtWrWKrE4AAADAHeUrXPmr999/X8HBwYVdCwAAAACUCkXdE7333nuaPXu2wsLC7Kb//PPPGjx4sHr16mWbZjKZbP+eO3eu4uPjNWXKFAUGBmratGkaMGCA1q5dK09PzyKrFwAAAHA3ToUrLVu2lCStXr1a69at0/Hjx+Xp6amqVavqoYce0mOPPVaoRQIAAACAKymqnuj06dMaP368du3apdq1a9vNy87O1sGDBzV06FBVqlQp17qZmZlatGiRxo4dq7Zt20qSZs6cqTZt2mjDhg169NFHnaoJAAAAQG5OhStWq1UjR47Uxo0bZbVaVaFCBVksFu3bt0+bN2/Wf//7X82dO7ewawUAAAAAl1BUPdFPP/2k22+/XWvWrNF//vMfnThxwjbvyJEjysjIuOEZM/v379elS5cUHh5um2Y2m1WvXj3t3LmTcAUAAAAoRE6FK0uWLNGGDRv02GOP6fnnn1dgYKAk6bffftNbb72lNWvWaPny5erRo0ehFgsAAAAArqCoeqKIiAhFRETkOe/AgQMyGAyKi4vTV199JaPRqLZt22rUqFGqUKGCTp06JUmqWrWq3XqVK1fWb7/95sSr/JOHh7FA66PomExGu98ouxhr98FYlz0FGUv2g9KP93TZ5VS4kpCQoJYtW+qNN96wm161alW9/vrrOnXqlBISEghXAAAAAJRJJdET/fLLLzIajapevbrmzZun5ORkvf766zpw4IDi4uJ05coVScp1bxUvLy9duHDB6e0ajQb5+5crUO0oemazT0mXgGLCWLsPxhoS+0FZwliWPU6FK4cPH9aYMWNuOL99+/aaOXOm00UBAAAAgCsriZ5oxIgR6tu3r8xmsyQpJCRElSpVUvfu3fXjjz/K29tb0h/3Xsn5tyRlZGTIx8f5Zt5isSot7XLBikeRMZmMMpt9lJZ2RdnZlpIuB0WIsXYfjHXZkzOmzmA/KP14T5c+ZrNPvs40cipc8fDw0OXLNz64vnz5sgwGgzNPDQAAAAAuryR6IoPBYAtWcoSEhEiSTp06ZbscWEpKimrWrGlbJiUlRaGhoQXadlYWHwS4uuxsC+PkJhhr98FYQ2I/KEsYy7LHqQu9NWjQQImJicrIyMg178qVK0pMTFS9evUKXBwAAAAAuKKS6Imef/559e/f327ajz/+KEmqU6eOQkNDVb58ee3YscM2Py0tTXv37lWLFi0KtRYAAADA3TkVrjz77LNKTk7W3//+d61du1b79+/X/v379cknn6hbt246evSo+vXrV9i1AgAAAIBLKImeqHPnztq6daveeecdHT16VF9++aVeeuklde7cWcHBwfL09FSvXr00ffp0bdq0Sfv379c///lPValSRR06dCjUWgAAAAB359Rlwdq2bavo6GjNmDFDY8eOtZtnNBr1z3/+UxEREYVSIAAAAAC4mpLoiR588EHNmjVL8+bN07x581ShQgV16dJFo0aNsi0zcuRIZWVlacKECbp69arCwsIUGxub6yb3AAAAAArGqXBF+uObWh06dNDGjRt19OhRWa1W1axZUx06dFCNGjUKs0YAAAAAcDlF3RNNnTo117ROnTqpU6dON1zHZDJp7NixuQIfAAAAAIXL6XBFkmrUqMHlvwAAAAC4LXoiAAAAwD05dc8VAAAAAAAAAAAAd0W4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADjAqXBl+fLlOnLkSCGXAgAAAAClAz0RAAAA4N6cClemT5+uTz75pLBrAQAAAIBSgZ4IAAAAcG9OhStGo1H+/v6FXQsAAAAAlAr0RAAAAIB7cypc6d+/v+bPn6+vv/5aFoulsGsCAAAAAJdGTwQAAAC4Nw9nVtq9e7fS09M1cOBAeXp6yt/fXyaTyW4Zg8GgjRs3FkqRAAAAAOBK6IkAAAAA9+ZUuHLgwAH5+fnJz8/PNs1qtdot89fHAAAAAFBW0BMBAAAA7s2pcOWLL74o7DoAAAAAoNSgJwIAAADcm1P3XPmrzMxMrjMMAAAAwG3REwEAAADuxelw5fz58/r3v/+t1q1bq0mTJtqxY4eSkpI0ePBgHT58uDBrBAAAAACXQ08EAAAAuC+nwpXz58+re/fuWrZsmXx8fGzXEr5w4YK2bNminj176tixY4VaKAAAAAC4CnoiAAAAwL05Fa7MmTNHJ06c0OLFi7VixQpbI9GuXTvNnz9fly9f1ty5cwu1UAAAAABwFfREAAAAgHtzKlz54osv9OSTT6pVq1YyGAx28+6//351795dO3bsKJQCAQAAAMDV0BMBAAAA7s2pcCUlJUWhoaE3nB8cHKwzZ844XRQAAAAAuDJ6IgAAAMC9ORWuBAQE6MSJEzecf+DAAfn7+ztdFAAAAAC4MnoiAAAAwL05Fa7cf//9io+P1/Hjx3PN++6777Ry5Uq1bt26wMUBAAAAgCuiJwIAAADcm4czKw0fPlybN29WZGSkmjdvLoPBoPj4eMXFxenrr79W+fLlNXTo0MKuFQAAAABcAj0RAAAA4N6cOnMlMDBQ8fHxatq0qb766itZrVatX79eW7ZsUZMmTfTBBx8oKCiosGsFAAAAAJdATwQAAAC4N6fOXJGkoKAgzZ8/XxcvXtSRI0dksVgUFBSkgICAwqwPAAAAAFwSPREAAADgvpw6c+V6WVlZslqt8vDwkJeXV2HUBAAAAAClBj0RAAAA4H6cPnPlxx9/1BtvvKFdu3bJarVKkoxGo+677z6NHz9etWrVKrQiAQAAAMDV0BMBAAAA7supcOWnn35S7969lZmZqTZt2uiOO+6QxWLRr7/+qq+//lpPPfWUVq5cqRo1ahR2vQAAAABQ4uiJAAAAAPfmVLgye/ZseXp6Kj4+XqGhoXbzdu/erX79+mnGjBmaOXNmoRQJAAAAAK6EnggAAABwb07dcyUpKUm9e/fO1URIUpMmTdSrVy9t3bq1wMUBAAAAgCuiJwIAAADcm1PhisFgkNlsvuH8oKAgZWVlOV0UAAAAALgyeiIAAADAvTkVrrRt21Yff/yxMjMz85y/bt06tW7dukCFAQAAAICroicCAAAA3Fu+7rmyc+dOu8ft2rXThAkT1LNnTw0cOFB33nmnjEajjh49qiVLluiXX37RW2+9VRT1AgAAAECxoycCAAAAcL18hSu9e/eWwWCwm2a1WvXjjz9q5MiRuaZL0jPPPKN9+/YVUpkAAAAAUHLoiQAAAABcL1/hyrBhw3I1EgAAAADgLuiJAAAAAFwvX+HKiBEjiroOSVJqaqqmTp2qr7/+WhkZGQoLC1N0dLTq1KkjSdq3b59iYmK0Z88e+fn5qXfv3urfv3+x1AYAAADAfRVXTwQAAACgdHDqhvZFZciQITp27JgWLFigjz76SN7e3urbt6+uXLmic+fOqV+/frrjjjuUkJCgESNGaNasWUpISCjpsgEAAAAAAAAAgBvJ15krf5Wenq4333xTW7Zs0enTp23XFL6ewWDQ3r178/2c586dU1BQkIYMGaK77rpLkjR06FB17dpVv/zyi7Zt2yZPT09NnDhRHh4eCg4OVnJyshYsWKCoqChnXgYAAAAAOKUoeiIAAAAApYdT4cobb7yhlStXqnLlymrSpIlMJlOBC/H399eMGTNsj3///XfFxsaqSpUqqlOnjt5++22FhYXJw+PPksPDw/Xuu+8qNTVVAQEBBa4BAAAAAPKjKHoiAAAAAKWHU+HK5s2b1b59e82ePVtGY+FfWexf//qXVq5cKU9PT73zzjvy9fXVqVOnFBISYrdc5cqVJUknT54kXAEAAABQbIq6JwIAAADg2py+LFjbtm2LrIno06ePunfvruXLl2vYsGFatmyZrl69Kk9PT7vlvLy8JEkZGRkF2p6HB81QSTCZjHa/4V6MRoPT67LPlH68/90b4+/eGH+UFUXdEwEAAABwbU6FK82aNdNPP/2kbt26FXY9kqQ6depIkl599VXt3r1bS5Yskbe3tzIzM+2WywlVfH19nd6W0WiQv38554tFgZnNPiVdAkoZ9pmyg7F0b4y/e2P8UdoVdU8EAAAAwLU5Fa6MHTtWffr0Ue3atfXII4+oUqVKBS4kNTVV27Zt08MPP2y7XrHRaFRwcLBSUlJUpUoVpaSk2K2T8zgwMNDp7VosVqWlXXa+cDjNZDLKbPZRWtoVZWdbSrocFLPbbjOpfHlvp9Zlnyn9eP+7N8bfvTH+Jcts9uGsoUJSFD0RAAAAgNLDqXClevXqqlu3rqZOnaqpU6fmuYzBYNDevXvz/ZwpKSl6/vnnFRAQoFatWkmSrl27pr179yoiIkJ/+9vfFB8fr+zsbFv4sm3bNtWuXbvA91vJyqKxL0nZ2RbGwA0V5IMd9pmyg7F0b4y/e2P8UdoVRU8EAAAAoPRwKlyJiYnRt99+q4oVK6pWrVry8HDqaeyEhoaqdevWmjRpkl577TWZzWbNmzdPaWlp6tu3r7y8vLRw4UKNHz9ezz33nH744QfFxcVp0qRJBd42AAAAADiiKHoiAAAAAKWHUx3A5s2b1a5dO82aNavQmgiDwaC33npLb775pkaNGqWLFy+qRYsWWrp0qapVqyZJWrhwoWJiYhQZGalKlSopOjpakZGRhbJ9AAAAAMivouiJAAAAAJQeTnUBmZmZeuCBBwq9iahQoYImTpyoiRMn5jm/UaNGWrFiRaFuEwAAAAAcVVQ9EQAAAIDSwambHjRt2lQ//fRTYdcCAAAAAKUCPREAAADg3pwKV55//nl9+umnWrRokU6fPq3s7OzCrgsAAAAAXBY9EQAAAODenDqH/cUXX5TRaNS0adM0bdq0PJcxGAzau3dvgYoDAAAAAFdETwQAAAC4N6fCFT8/P/n5+RVyKQAAAABQOtATAQAAAO7NqXDlgw8+KOw6AAAAAKDUoCcCAAAA3JtT91wBAAAAAAAAAABwV06duTJu3LhbLmMwGDR58mRnnh4AAAAAXBo9EQAAAODenApXVq1adcN5BoNBnp6e8vLyopEAAAAAUCbREwEAAADuzalwZdOmTbmmZWdn68yZM1q1apW2b9+uZcuWFbg4AAAAAHBF9EQAAACAe3MqXKlevXqe02vWrKnmzZtr8ODBevPNN/X6668XqDgAAAAAcEX0RAAAAIB7K5Ib2kdEROjLL78siqcGAAAAAJdHTwQAAACUbUUSrpw5c0ZXr14tiqcGAAAAAJdHTwQAAACUbU5dFuzkyZN5Tr969ar27NmjuLg41a9fv0CFAQAAAICroicCAAAA3JtT4UpERIQMBsMN5xuNRg0fPtzpogAAAADAldETAQAAAO7NqXDl8ccfz7ORMJlMqly5siIjI1WjRo0CFwcAAAAAroieCAAAAHBvToUrU6dOLew6AAAAAKDUoCcCAAAA3FuR3NAeAAAAAAAAAACgrMrXmStz5sxx6sm5xjAAAACAsoCeCAAAAMD1Cj1cuf66wzQSAAAAAMoCeiIAAAAA18tXuPL+++/fchmr1aqlS5fq888/lyS1bdu2YJUBAAAAgIugJwIAAABwvXyFKy1btrzp/JMnT+qll17Sjh07VKFCBb344ouKiooqlAIBAAAAoKTREwEAAAC4Xr7ClZuJj4/XtGnTdOnSJbVu3VoxMTEKDAwsjNoAAAAAwOXREwEAAADux+lw5dSpUxo/frz+7//+T+XKldOrr76qbt26FWZtAAAAAOCy6IkAAAAA9+VUuPLhhx/q9ddfV3p6uu69917FxMSoatWqhV0bAAAAALgkeiIAAADAvTkUrpw+fVoTJkzQN998Ix8fH02cOFFPPfVUUdUGAAAAAC6FnggAAACA5EC4smrVKk2ZMkVpaWkKDw9XTEyMqlevXpS1AQAAAIDLoCcCAAAAkCNf4crgwYP15ZdfSpIeeughPf300zp58qROnjx50/XCwsIKXiEAAAAAlDB6IgAAAADXy1e4smXLFtu/169fr/Xr1+fryfft2+dUUQAAAADgSkqiJ5o7d662bdumDz74wO75YmJitGfPHvn5+al3797q37+/bb7FYtGcOXP04YcfKi0tTc2bN9crr7yiWrVqOV0HAAAAgNzyFa4MHz68qOsAAAAAAJdV3D3Re++9p9mzZ9ud+XLu3Dn169dP7du316RJk7R7925NmjRJfn5+ioqKkvRHIBMfH68pU6YoMDBQ06ZN04ABA7R27Vp5enoW62sAAAAAyjLCFQAAAAC4heLqiU6fPq3x48dr165dql27tt28lStXytPTUxMnTpSHh4eCg4OVnJysBQsWKCoqSpmZmVq0aJHGjh2rtm3bSpJmzpypNm3aaMOGDXr00UeL5TUAAAAA7sBY0gUAAAAAAP7w008/6fbbb9eaNWvUuHFju3lJSUkKCwuTh8ef35ELDw/X4cOHlZqaqv379+vSpUsKDw+3zTebzapXr5527txZbK8BAAAAcAf5OnMFAAAAAFD0IiIiFBERkee8U6dOKSQkxG5a5cqVJUknT57UqVOnJElVq1bNtcxvv/1WoLo8PPhenqsymYx2v1F2Mdbug7EuewoyluwHpR/v6bKLcAUAAAAASoGrV6/mum+Kl5eXJCkjI0NXrlyRpDyXuXDhgtPbNRoN8vcv5/T6KB5ms09Jl4Biwli7D8YaEvtBWcJYlj2EKwAAAABQCnh7eyszM9NuWkZGhiTJ19dX3t7ekqTMzEzbv3OW8fFxvpm3WKxKS7vs9PooWiaTUWazj9LSrig721LS5aAIMdbug7Eue3LG1BnsB6Uf7+nSx2z2ydeZRoQrAAAAAFAKVKlSRSkpKXbTch4HBgYqKyvLNq1mzZp2y4SGhhZo21lZfBDg6rKzLYyTm2Cs3QdjDYn9oCxhLMseLvQGAAAAAKVAWFiYdu3apezsbNu0bdu2qXbt2goICFBoaKjKly+vHTt22OanpaVp7969atGiRUmUDAAAAJRZhCsAAAAAUApERUUpPT1d48eP18GDB5WYmKi4uDgNGjRI0h/3WunVq5emT5+uTZs2af/+/frnP/+pKlWqqEOHDiVcPQAAAFC2cFkwAAAAACgFAgICtHDhQsXExCgyMlKVKlVSdHS0IiMjbcuMHDlSWVlZmjBhgq5evaqwsDDFxsbmusk9AAAAgIIhXAEAAAAAFzR16tRc0xo1aqQVK1bccB2TyaSxY8dq7NixRVkaAAAA4Pa4LBgAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAAB3iUdAEAAAAAAAAAUFoYjQYZjYZ8L28y8f12oCwiXAEAAAAAAACAfDAaDfLz8yUwAUC4AgAAAAAAAAD5YTQaZDIZNX3pLh0/fTFf6zQLraxnHqlXxJUBKG6EKwAAAAAAAADggOOnL+rQiQv5WjaocvkirgZASeD8NQAAAAAAAAAAAAcQrgAAAAAAAAAAADjApcKV8+fP6+WXX9b999+vZs2aqUePHkpKSrLN37dvn3r16qUmTZrogQceUGxsbAlWCwAAAAAAAAAA3JFLhSujR4/W999/rxkzZuijjz5S/fr11b9/fx06dEjnzp1Tv379dMcddyghIUEjRozQrFmzlJCQUNJlAwAAAAAAAAAAN+IyN7RPTk7W1q1btXz5cjVr1kySNH78eH311Vdau3atvL295enpqYkTJ8rDw0PBwcFKTk7WggULFBUVVcLVAwAAAAAAAAAAd+EyZ674+/tr/vz5atCggW2awWCQ1WrVhQsXlJSUpLCwMHl4/JkHhYeH6/Dhw0pNTS2JkgEAAAAAAAAAgBtymTNXzGaz2rZtazdt3bp1Onr0qFq3bq2ZM2cqJCTEbn7lypUlSSdPnlRAQIDT2/bwcJmMya2YTEa733AvRqPB6XXZZ0o/3v/ujfF3b4w/AAAAAKAscJlw5a927dqll156Se3atVNERISmTJkiT09Pu2W8vLwkSRkZGU5vx2g0yN+/XIFqRcGYzT4lXQJKGfaZsoOxdG+Mv3tj/AEAAAAApZlLhisbN27UmDFj1LhxY82YMUOS5O3trczMTLvlckIVX19fp7dlsViVlnbZ+WLhNJPJKLPZR2lpV5SdbSnpclDMbrvNpPLlvZ1al32m9OP9794Yf/fG+Jcss9mHs4YAAAAAoBC4XLiyZMkSxcTEqEOHDpo+fbrtbJUqVaooJSXFbtmcx4GBgQXaZlYWjX1Jys62MAZuqCAf7LDPlB2MpXtj/N0b4w8AAAAAKM1c6mtry5Yt06uvvqqePXvqrbfesrsMWFhYmHbt2qXs7GzbtG3btql27doFut8KAAAAAAAAAACAI1wmXDl8+LAmT56sDh06aNCgQUpNTdWZM2d05swZXbx4UVFRUUpPT9f48eN18OBBJSYmKi4uToMGDSrp0gEAAAAAAAAAgBtxmcuCrV+/XteuXdOGDRu0YcMGu3mRkZGaOnWqFi5cqJiYGEVGRqpSpUqKjo5WZGRkCVUMAAAAAAAAAADckcuEK4MHD9bgwYNvukyjRo20YsWKYqoIAAAAAAAAAAAgN5e5LBgAAAAAAAAAAEBpQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAAB3iUdAEAAAAAAAAAgNxMpvx/N95iscpisRZhNQCuR7gCAAAAAAAAAC7Er4KXLBarzGaffK+TnW3R+fOXCViAYkK4AgAAAAAAAAAupLzPbTIaDZq+dJeOn754y+WDAitoTM/mMhoNhCtAMSFcAQAAAAAAAOCWjEaDjEZDvpd35DJdheH46Ys6dOJCsW4TQP4QrgAAAAAAAABwO0ajQX5+vsUemAAoGwhXAAAAAAAAALgdo9Egk8mY70tvSVKz0Mp65pF6RVwZgNKAcAUAAAAAAACA23Lk0ltBlcsXcTUASgvOeQMAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAABQipw4cUJ169bN9fPhhx9Kkvbt26devXqpSZMmeuCBBxQbG1vCFQMAAABlj0dJFwAAAAAAyL+ff/5ZXl5e2rhxowwGg216hQoVdO7cOfXr10/t27fXpEmTtHv3bk2aNEl+fn6KiooqwaoBAACAsoVwBQAAAABKkQMHDqh27dqqXLlyrnlxcXHy9PTUxIkT5eHhoeDgYCUnJ2vBggWEKwAAAEAh4rJgAAAAAFCK/Pzzz6pTp06e85KSkhQWFiYPjz+/RxceHq7Dhw8rNTW1uEoEAAAAyjzCFQAAAAAoRQ4cOKDU1FQ9/fTTuvfee9WjRw99/fXXkqRTp06pSpUqdsvnnOFy8uTJYq8VAAAAKKu4LBgAAAAAlBKZmZk6cuSIfHx8FB0dLV9fX61Zs0YDBgzQ4sWLdfXqVXl6etqt4+XlJUnKyMhwerseHnwvz1WZTEa73yi7GGv3wVgXn7L4Ny6Lr6m04z1ddhGuAAAAAEAp4enpqZ07d8rDw8MWojRo0ECHDh1SbGysvL29lZmZabdOTqji6+vr1DaNRoP8/csVrHAUObPZp6RLQDFhrN0HYw1nsN+4Lsam7CFcAQAAAIBSJK+QJCQkRN98842qVKmilJQUu3k5jwMDA53ansViVVraZafWRdEzmYwym32UlnZF2dmWki4HRYixdh+MdfHJ+VuXJew3rof3dOljNvvk60wjwhUAAAAAKCX279+vHj16aMGCBWrRooVt+p49e1SnTh3dfffdio+PV3Z2tkwmkyRp27Ztql27tgICApzeblYWHwS4uuxsC+PkJhhr98FYwxnsN66LsSl7uNAbAAAAAJQSISEhuuuuuzRp0iQlJSXp0KFDmjJlinbv3q3BgwcrKipK6enpGj9+vA4ePKjExETFxcVp0KBBJV06AAAAUKZw5goAAAAAlBJGo1Hz5s3T9OnTNWrUKKWlpalevXpavHix6tatK0lauHChYmJiFBkZqUqVKik6OlqRkZElXDkAAABQthCuAAAAAEApUrFiRU2ePPmG8xs1aqQVK1YUY0UAAACA++GyYAAAAAAAAAAAAA7gzBUAAFAiTCbHvuNhsVhlsViLqBoAAAAAAID8I1wBAADFymAwyGKxymz2cWi97GyLzp+/TMACAAAAAABKnMuGK3PnztW2bdv0wQcf2Kbt27dPMTEx2rNnj/z8/NS7d2/179+/BKsEAACOMhoNMhoNmr50l46fvpivdYICK2hMz+YyGg2EKwAAAAAAoMS5ZLjy3nvvafbs2QoLC7NNO3funPr166f27dtr0qRJ2r17tyZNmiQ/Pz9FRUWVYLUAAMAZx09f1KETF0q6DAAAAAAAAIe5VLhy+vRpjR8/Xrt27VLt2rXt5q1cuVKenp6aOHGiPDw8FBwcrOTkZC1YsIBwBQAAAAAAAAAAFBvH7iRbxH766SfdfvvtWrNmjRo3bmw3LykpSWFhYfLw+DMPCg8P1+HDh5WamlrcpQIAAAAAAAAAADflUmeuREREKCIiIs95p06dUkhIiN20ypUrS5JOnjypgICAIq8PAAAAAAAAAADApcKVm7l69ao8PT3tpnl5eUmSMjIyCvTcHh4udQKP2zCZjHa/4V6MRoPT67LPlH45Y3jbbSaHxtNiscpq5WbmpR3vf/fG//8BAAAAAGVBqQlXvL29lZmZaTctJ1Tx9fV1+nmNRoP8/csVqDYUjNnsU9IloJRhnykbLBarypf3dnidgnwwj9KP93/ZwVgCAAAAAEqzUhOuVKlSRSkpKXbTch4HBgY6/bwWi1VpaZcLVBucYzIZZTb7KC3tirKzLSVdDorZbbeZHP5gPQf7TOmXM/7Tl+7S8dMX87VOUGAFjenZnPEvA3j/uzf+/1+yzGYfzhoCAAAAgEJQasKVsLAwxcfHKzs7WyaTSZK0bds21a5du8D3W8nKorEvSdnZFsbADRXkgx32mdIvZ/yPn76oQycuOLQu41/68f6HxFgCAAAAAEq3UvO1taioKKWnp2v8+PE6ePCgEhMTFRcXp0GDBpV0aQAAAAAAAAAAwI2UmnAlICBACxcu1OHDhxUZGak5c+YoOjpakZGRJV0aAAAAAAAAAABwIy57WbCpU6fmmtaoUSOtWLGiBKoBAAAAAAAAAAD4Q6k5cwUAAAAAAAAAAMAVEK4AAAAAAAAAAPD/2rvz+Jruff/j771DgiYxVUyhgzZJCYKY66i0uEWppKfaEnWrptZ0nYpSbfVBtcjlole1DcdUYogphqNUb5Vq2jg9VNH2oIgirXlMSNbvD7+9a0uQtWVPyev5eHg8ZO31XfvzXd89rO/+rO/3C5hAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSU8HQAAwPdZrRZZrRZT+7uL2dickZtrKDfXcOlzAAAAAAAAwHuQXAEA3BWr1aJy5crIz8/7BkM6E1tOriE/k8mYnJxcnTlziQQLAAAAAABAMUFyBQBwV6xWi/z8rEr8dIcyTpwvUJmGESHq2aG2iyMzH5stLjN1Ca0cpNe6N5LVaiG5AgAAAAAAUEyQXAEAFIqME+e1/+jZAu0bGhLo4mgcFTQ2W1xm6gIAAAAAAIDix/vmcAEAAAAAAAAAAPBiJFcAAAAAAAAAAABMILkCAAAAAAAAAABgAmuuAAB8ip9fwe8LMLMvAAAAAAAAUFAkVwAAPqFcUIBycw0FB5f2dCgAAAAAAAAo5kiuAAB8QmDpkrJaLUr8dIcyTpwvUJmGESHq2aG2iyMDAAAAAABAcUNyBQDgUzJOnNf+o2cLtG9oSKCLowEAAAAAAEBxxGT0AAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAmsuQIAHmK1WmS1WkyVyc01lJtruPx5zPDzI08PAAAAAACA4oXkCgB4gNVqUblyZUwnJnJycnXmzKUCJ1iceZ6cXEN+LkzGAAAAAAAAAL6O5AoAeIDVapGfn1WJn+5QxonzBSoTWjlIr3VvJKvVYiq5YuZ5GkaEqGeH2qbispUBAAAAAAAAiguSKwDgQRknzmv/0bNe8zyhIYGm9r+xDAAAAAAAAFBckFwBAAAAAAAAgCLA7PTjzqztCuA6kisAAAAAAAAA4MPKBQUoN9dQcHBpU+XMru0K4E8kVwAAAAAAAAC4lNVqkdVqMVWGURUFF1i6pKxWi8vXdgXwJ5IrAAqF2YsksxdUd8OZCzizuOCDWe54XUq8NgEAAAB4ntVqUblyZUxPWcWoCvPctbYrAJIrAAqBsxdJ7uBMbDm5hvxM/ujNBR/McLpjwWsTAAAAgA+yWi3y87MyqgJAkUJyBcBdc+YiqWFEiHp2qO3iyMzHZouLCz640t28Z3htAgAAAPBVzoyqMHNTGiP3AbgTyRUAhcbMRVJoSKCLo3FU0NhscTGMFu7gzHuG1yYAAACA4sCZBdoZuQ/AnUiuAAAAAAAAAPAqZhdoZ+Q+AHcjuQIAAAAAAADAKzF6H4C38r7VpwEAAAAAAAAAALwYI1c8zGq1yGq1mCrD4lxA8WZmMT8z+wJwH77/AQAAAADwbSRXPMhqtahcuTKmf/xkcS6geHJmMT8A3ofvfwAAAAAAfB/JFQ+yWi3y87MWeGEuicW5gOLM7GJ+ktQwIkQ9O9R2cWQAzOD7HwAAAHAdZnsA4C4kV7wAC3MBMMPMZ0ZoSKCLowHgLL7/AQAAgMLDbA8A3I3kCgAAAAAAAFBMFZX1AJntAYC7kVwBAAAAAAAAiqGiuB4gsz0AcBeSKwAAAAAAAEAxxHqAAOA8kis+yswdBd44VBPXeevQW7NxsQAcwKKJAAAAAHyXM+sB0gcCUNyRXPExzizO5c1DNYszbx1662xcQHHFookAAAAAihP6QABwHckVH2N2cS6Ganovbx1660xcLACH4oxFEwEAAAB4C3fMREEfCACuI7nio5wZrgnv5K1tyQJwgDm8ZwAAAAB4krtnoqAPBKC4I7kCAAAAAAAA+DhmooCzzCbkWN8ZuI7kCgAAAAAAAEwxO/2UxA+y7sKIEhSUs+vnsL4zcB3JFQAAAAAAABSYs9NP8YMs4F2cWT+H9Z2BP5Fcgce5eughd9PAXcy8lt01By4ged/nrNnP5BsxXB0AAMDznJl+ih9kAe/lresBA96O5Ao8xmKxuHzoIXfTwB2cHUYLuJo7hni7a9FMhqsDAAB4H36QBQAUZyRX4DG2O51deacLd9PAHZwZRsuigXAHdwzxdteimQxXBwAAAAAA3oTkCjzOHXe6cDcN3IFFA+GtvO1z9m5e/3yeAwAAAAAAb8Ck/wAAAAAAAAAAACYwcgUAAAAAAKCIsE3BbUZursE0qgAAmERyBT6poAsnu3qBZV9g9sLaF86ZmRh9oT6ANyrOn7PO/CBhhjvPmavrIjn/Y4y3vnbM1ocfsAAA3sRqtahcuTKmv2dzcnJ15swlvp8AADCB5Ap8SrmgAOXmGgoOLu3pUHyCsxfW3or2B1yvuL/PnPnczMk15OfiBIYznP5xxWR9zP4YY7FYnHqNOXOenSpjoj78gAUA8DZWq0V+flYlfrpDGSfOF6hMaOUgvda9kaxWC99NJnCDBQCA5Ap8SmDpkrJaLQW+UGwYEaKeHWq7ITLv5MyFtTefM7PtL3l3fQBvVNw/Z81+btrq742fS3fzHVDQMs78GGP7IcKVcTlbxmx9+AELAOCtMk6c1/6jZz0dRr7M3JTgTDLCHUkPd91gYbFYVKIEMzcAgLfyueRKbm6uPvjgAy1dulTnzp1To0aN9Pbbb+u+++7zdGhwo4JeKIaGBLohGu9n5sLaF85ZUasP4I2K++es2fp78+eSM7G54wcZV8flrXUB3IE+EwBv5MwIabPJCHclPdx1g0VQUCkSJgDgxXwuuTJjxgwlJyfrvffeU+XKlTVp0iT16dNHa9askb+/v6fDAwAAAACPos/kHKb4gTe68XVp+5H9dj+2e/MP8WZHSNuSESVL+iknJ7dAz+HnZ3U66WH2eSTnbrAoSBvd2NbeOEIakNzzecP3LLydTyVXsrOzNXv2bA0fPlytW7eWJE2ZMkWtWrXSxo0b1bFjRw9HCAAAAACeQ5/JOayhBG90q9elr6+NV9CExN2sBWgm6eGuNQedfR5vHiGN4snZ17Kr10MEPMGnkiv79u3TxYsX1axZM/u24OBg1a5dW9999x0dBQAAAADFWlHsM7lr/QR33O3OHbjm29Nb19xwB3evoWkmueiOO9bdteamtz4Po1Dgre7mPePqqfS8/fPfG0cXuqv+3t42zrIYhuHdEd7gs88+06BBg7Rz506VKlXKvn3IkCG6cuWKPvroI9PHNAzPNZLFIlmtVp05n6VrBbwYD/D3U1AZ/wKXKeFn/f8Z5YId372uv6lcWX+z+0vuPWdm29+Z2Fz9GitqZbw1LneV8da43FXGW+Py5jLeGpfk/Oe5mc/NolQXZ2JzLi7Xf/87W8Yd37M3PocnrsKtVossFnOdGviWotZnkpx73RqGIbNdXbPvZ/+SVgWV8TcVmzNxFYTVavXSPl9eFou59nTmnJl9Dmefxx3c0Z9z5rVsU1yvM4v7dba3lvHWuNxVxlvjcraMM9fm3vz572xsZr8zi1r9PXUNWtDrT58auXL58mVJyjNPcEBAgM6edW4RUYvFIj8/z3YwywUFuLyM1ep9mVEbd9Tfmedw1zlzR2zuOMdFrYy3xuWuMt4al7vKeGtc3lzGW+OSnPs899b6u6MuzpTx1ricLeOO71lvvjaDbyuqfSaznOnAS869n81wNq6CKKqfK648Z554Hme46/vPGcX9OpP6e2cZb43LXWW8NS5ny7j6+82bP//NxuVMPby9/t5+DepTV1+2O6+ys7MdtmdlZal0ad+ecxQAAAAA7hZ9JgAAAMA9fCq5UrVqVUlSZmamw/bMzExVqVLFEyEBAAAAgNegzwQAAAC4h08lVyIiIhQYGKi0tDT7tnPnzmnPnj2Kjo72YGQAAAAA4Hn0mQAAAAD38Kk1V/z9/dWjRw8lJiaqQoUKql69uiZNmqQqVaqobdu2ng4PAAAAADyKPhMAAADgHj6VXJGkwYMH69q1axo9erSuXLmixo0ba9asWXkWbAQAAACA4og+EwAAAOB6FsMwDE8HAQAAAAAAAAAA4Ct8as0VAAAAAAAAAAAATyO5AgAAAAAAAAAAYALJFQAAAAAAAAAAABNIrgAAAAAAAAAAAJhAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKvEp6eroeeeQRpaWleToUuMmxY8c0bNgwtWzZUo0bN1bv3r31yy+/eDosuEhubq6mTZumVq1aqX79+nrppZd06NAhT4cFNzlz5ozeeust/eUvf1HDhg31/PPPKz093dNhwQMOHjyoBg0aaPny5Z4OBQB81uHDhzVgwABFR0crOjpa//Vf/6Xjx4877LN9+3bFxsaqXr16ateunVauXOmZYHFXCtJnoq2LnjfeeEOvv/56nu20ddFA37jomzFjhuLj4x227d27Vz169FBUVJQee+wxzZo1y0PRobCQXIHXOH/+vBISEpSbm+vpUOAm2dnZ6tu3r06ePKmPPvpICxcuVFBQkF588UWdOnXK0+HBBWbMmKHk5GSNGzdOixcvlsViUZ8+fZSdne3p0OAGw4YN086dOzV58mQtW7ZMderUUe/evbV//35PhwY3unr1ql577TVdunTJ06EAgM/KyspSr169JEmLFi3S/Pnz9fvvv6tfv34yDEOStH//fvXr10+tW7fWypUr1a1bN40aNUrbt2/3YOQwqyB9Jtq6aMnJydGECRO0bNmyPI/R1kUHfeOibc6cOZo2bZrDttOnT+s///M/df/99yslJUWDBg3S1KlTlZKS4qEoURhKeDoAwGbMmDGqUaOGjh496ulQ4Cbp6en6+eeftWXLFlWuXFmSNHHiRDVp0kSbN2/WM8884+EIUZiys7M1e/ZsDR8+XK1bt5YkTZkyRa1atdLGjRvVsWNHD0cIVzp06JC2bdumRYsWqWHDhpKu3423ZcsWrVmzRkOGDPFwhHCX6dOn65577vF0GADg03777TfVrVtXb7/9tipUqCBJ6tWrl1599VWdPn1aFSpU0Ny5cxUREWH/jn3wwQe1Z88eJSUlqXnz5p4MHyYUpM9EWxcd+/fv18iRI3XkyBFVq1Ytz+O0ddFA37joOnHihN544w3t2LFDDzzwgMNjS5Yskb+/v8aMGaMSJUqoVq1aOnTokD755BPFxcV5KGLcLUauwCusWrVK33//vUaNGuXpUOBGDz/8sD7++GN7J8HGMAydPXvWQ1HBVfbt26eLFy+qWbNm9m3BwcGqXbu2vvvuOw9GBncoX768Pv74Y0VGRtq3WSwW3u/FzHfffafFixdrwoQJng4FAHzaAw88oKlTp9oTKxkZGVq4cKHq1Kmj8uXLS7r+o/yN112S1KxZM+3YscM+ugXeryB9Jtq66Pj222/1yCOPaM2aNQoNDc3zOG1dNNA3Lrp+/PFHlS1bVqtXr1b9+vUdHktPT1fjxo1VosSfYx2aNWumgwcP6uTJk+4OFYWEkSvwuIyMDL377ruaMWMGd7IWM5UqVbLfpWEzb948ZWVlqWXLlh6KCq5imwO8atWqDttDQkJ07NgxT4QENwoODs7zfl+/fr0OHz6sRx991ENRwZ3OnTunhIQEjR49Os/nAADAeS+99JK2bdumsmXLau7cubJYLJKuX3tVqVLFYd+QkBBdvnzZProF3q8gfSbauuh4/vnnb/s4bV000DcuumJiYhQTE5PvY8ePH1dYWJjDtpCQEEnXR6RWrFjR5fGh8JFcgUtlZGTo8ccfv+XjW7ZsUUJCgrp166bo6GhlZGS4MTq42p3af+vWrapUqZL9788++0xTpkxRfHy8IiIi3BEi3Ojy5cuSJH9/f4ftAQEBjFwohnbs2KFRo0bp8ccfv+XFJ4qWMWPGKCoqSk899ZSnQwEAr2fmOnr48OEaMmSIPvzwQ/Xq1UsrV65U1apVdeXKlTzXXba/mdPfexRGn4m29g1m2zo/tHXRQN+4eMrv/RsQECDp+lpq8E0kV+BSlStX1rp16275+NKlS3Xp0iUNGjTIjVHBXe7U/jfeVbNo0SKNHTtWHTp00MiRI90RHtysVKlSkq5f9Nv+L12/iChdurSnwoIHbNq0Sa+99prq16+vyZMnezocuMHKlSuVnp6u1NRUT4cCAD7BzHX0I488Iun6fP2PPfaYUlJSNHDgQAUEBOT5sdX2N9de3qMw+ky0tW8w09a3QlsXDfSNi6dSpUrlef/akiplypTxREgoBCRX4FIlS5ZUrVq1bvn48uXLlZmZqaZNm0qSfY7QPn36qEmTJkpKSnJLnHCNO7W/TWJioj755BPFx8frjTfesE9lgKLFNuQ5MzNTNWvWtG/PzMxkpFIxsmDBAr377rtq27atEhMT89y5g6IpJSVFJ0+e1GOPPeaw/e2339asWbO0du1azwQGAF7qTtfRR48e1e7du9W+fXv7ttKlSys0NFSZmZmSrl972f5vk5mZqTJlyigoKMg1gcO0wugz0da+oaBtfTu0ddFA37h4qlKlSr7vX0l51tWC7yC5Ao+aP3++rl27Zv/7xIkTio+P17hx4+wJFxRtkyZNUlJSkhISEtS7d29PhwMXioiIUGBgoNLS0uwXkOfOndOePXvUo0cPD0cHd1i4cKHGjh2r+Ph4jRo1Slar1dMhwU0SExN15coVh23t2rXT4MGD1aFDBw9FBQC+a+/evRo8eLA2btzocF118OBBde7cWZIUHR2tb7/91qHc9u3b1bBhQ76Dfcyd+ky0dfFBWxcN9I2Lp8aNGys5OVk5OTny8/OTdP39+8ADD7Deig8juQKPql69usPftg+XypUrk7UtBtLS0pSUlKT4+Hh17txZv//+u/2xMmXK6J577vFgdChs/v7+6tGjhxITE1WhQgVVr15dkyZNUpUqVdS2bVtPhwcXO3jwoMaPH6+2bduqX79+OnnypP2xUqVKcaddEXer7/SKFSvmuRYAANzZX/7yF4WHhyshIUFvvvmmDMPQpEmTVL58ecXFxUmS4uPj1bVrVyUmJqpr16768ssvtWHDBmYH8DEF6TPR1sUHbV000DcunuLi4pSUlKQ33nhDL7/8snbt2qW5c+fqnXfe8XRouAskVwB4zJo1ayRdH8E0f/58h8cGDhzIWjxF0ODBg3Xt2jWNHj1aV65cUePGjTVr1iymhioGNmzYoKtXr2rjxo3auHGjw2Ndu3bV+++/76HIAADwPf7+/kpKStKECRPUu3dvZWdn69FHH9X777+vwMBASdLDDz+sGTNmaNKkSZo7d65CQ0M1adIkNW/e3MPRw4yC9Jlo6+KDti466BsXPxUrVlRSUpLeffddde3aVZUqVVJCQoK6du3q6dBwFyyGbZELAAAAAAAAAAAA3BETMgIAAAAAAAAAAJhAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSRXAAAAAAAAAAAATCC5AgAAAAAAAAAAYALJFQA+7YsvvtCgQYMUExOjyMhINW3aVC+//LI2b97sthiys7P19ttvq0mTJqpXr57GjRuX77bXX39d4eHhysjIMHX86dOnKzw8XGlpaS6qgaNff/3V1P7p6elKSEhQ27ZtVa9ePUVHRys+Pl4rV66UYRgO+zp7DnxVTEyMwsPDFR4erujoaElSWlqawsPD9frrr9+yXEZGhsLDwxUfH5/nsZvb5+b9XH2O3333XXud3Pm6BAAAgGvRtyp8d+pbvf322woPD1dKSspt98vIyFBERIRefPHFAj+3rd8xffr0ApcpTLY2sv3bu3evpOv9l5iYmNuWtfWjbnbo0CGHv+Pj4x32W758ucLDw7V8+fJCqEFemzZtcqiTp84tAO9RwtMBAIAzLly4oFGjRmnDhg2qU6eOYmNjFRISouPHj2vlypUaMGCAXnrpJY0YMcLlsSxZskTJyclq2bKlnnzyST388MP5bjMMQ82bN1eFChVMHb9t27aqWbOmatWq5aIa/GnAgAG6cOGC5s+ff8d9r169qvHjx2vhwoW6//771bFjR1WrVk2nTp3S2rVrNWLECG3ZskWTJk2Sn5+fy2P3VuXLl9fIkSNVsmTJuz5Wfu0zceJE3XvvvXd97ILq0qWLIiMjtXHjRm3cuNFtzwsAAADXoG/lGgXpWz3zzDNKTk5Wamqq4uLibrmf7ca1Z555xhWhutTIkSNVvnx5VatW7a6O88knn2jq1KnavXu3fVv//v3dek4iIyM1ceJEHThwQDNnznTb8wLwXiRXAPik0aNHa8OGDUpISFDv3r0dHuvfv7969+6t2bNn68EHH9Rf//pXl8by008/SZISEhIUEREhSfY7j27cJkkNGjQwffyIiAiHY7jS5s2b1aRJkwLtO2XKFC1cuFDx8fEaNWqUrNY/B0P27dtXw4cP15o1a1SzZk0NHTrURRF7vzJlyqhLly6Fcqz82qewjl1QkZGRioyM1OHDh0muAAAAFAH0rVyjIH2runXr2kfSnDhxQpUrV853v1WrVqls2bJq166dK0J1qSeeeEKhoaF3fZwtW7bo6tWrDttatmx518c1o0qVKurSpYvS0tJIrgCQxLRgAHzQ1q1btX79erVv3z7Pxb8k+fv7a/z48fLz89O8efNcHo/tAi8wMPC224qSAwcOaPbs2apbt65Gjx7tkFiRJKvVqnfeeUdBQUFavHixsrKyPBQpAAAAgFuhb+V5cXFxys3N1bp16/J9fMeOHTp8+LCeeuopBQQEuDk6AMDtkFwB4HNWrlwpSfmuR2FTo0YNpaamasWKFQ7b9+/fr2HDhqlFixaKjIzU448/rvfff19nz57Nc4wDBw5o2LBhat68uSIjI9WuXTv9z//8j65cuSLpz3UxbM/x+OOP2+devXmblP9aGIZhaNGiRYqNjVVUVJRatGih/v3768cff7Tvc6t5gb/66iv17NlTDRs2VP369RUbG5tnblnbPLtr167VzJkz1bZtW0VGRiomJkZTp07VtWvXHPaTpG+//faO89SuWrVKhmGoR48et9wnMDBQS5cu1f/93//l6QQcPXpUw4YNU5MmTRQVFaXnnntO27Zty3OMtLQ0DRgwQC1atFCdOnXUuHFjvfjii/r6668d9ouJiVG/fv2Ulpam7t27q0GDBoqOjtbAgQPzned4zZo19nPeqlUrJSYmaunSpfme59TUVD377LOKiopSgwYN1L17d7fOOy3dvn1utTbLzQpaj3Xr1um5556zt02XLl00e/Zs5ebmFm6lAAAA4HH0ra7zZN+qc+fOKlmypFJTU/N93NZGtumvrl69qlmzZikuLk4NGjRQZGSkHnvsMY0ePVonT5685fNI1/tN+a13cqu1Snbt2qX+/furSZMmqlu3rjp16qTZs2crJyfnts9T2MLDw/Xtt9/a/29bv/LmNVdupaD12LNnj/r3769WrVrZX9Pjxo3TmTNnCr1OAIoGpgUD4HN27dqlEiVKqH79+rfd7+Z5dNPT09W7d2/5+fnp+eefV/Xq1fWvf/1Lc+bM0ebNm5WcnGyfs3fXrl3q1auXAgMD1b17d1WoUEH/+te/NHPmTG3fvl3z5s1ThQoVNHHiRC1ZskTp6ekaOXKkypYtK6vV6rCtfPnyt4xxxIgRWrVqlaKjozV06FBlZ2dr/vz56tGjhz799FPVrl0733Kffvqpxo4dq7p162rgwIGyWq36/PPPNXLkSO3du1dvvPGGw/6TJ0+WYRjq1q2bgoODtXz5cs2YMUMWi0WDBw9WrVq1NHHiRCUkJOjBBx9U//791bBhw9u2gSQ1atTotm3wwAMP5Lu9f//+io6O1rBhw5SZmam5c+eqX79+WrFihR5++GFJ0saNGzV48GBFRESoT58+CgwM1M8//6xly5apT58++uyzz1S9enX7Mfft26d+/fqpc+fO6tKli/bs2aPk5GTt27dPGzZssK/7kpSUpEmTJqlOnToaOnSozp8/rwULFuQb56RJk5SUlKSWLVtq2LBhysrK0tq1azVgwACNHDlSvXr1um39C4vZ9rlZQevx2WefadiwYWrZsqWGDBkiq9Wqf/zjH5owYYJOnjyp4cOHu6iGAAAA8AT6Vp7vW5UvX16PP/64/vGPf2j//v0O5zorK0vr169XnTp19Mgjj0iShg4dqs8//1xdu3bVs88+q6ysLG3ZskVLly7Vb7/9ptmzZ9+2LQvq888/15AhQxQaGqqXX35ZZcqU0bZt2zRhwgT985//1PTp02WxWArlue5k4sSJmjlzpg4cOKCJEyeqZs2aBS5b0HocOXJEL774oipVqqRevXopODhYO3fu1IIFC7Rr1y4tXrzYbfUF4EMMAPAx9evXN1q0aGGqTE5OjtG2bVsjMjLS+Pe//+3w2JIlS4ywsDDj9ddfNwzDMHJzc42OHTsarVu3Nk6fPp3vvh9//LF924gRI4ywsDDjyJEjprZt377dCAsLM4YNG2bk5uba9/v3v/9tREREGIMGDTIMwzCmTZtmhIWFGd98841hGIZx7Ngxo06dOka/fv0cyuXm5hrDhw83wsLCjJ07dxqGYRjffPONERYWZrRs2dI4e/asfd+LFy8ajRo1Mh599FGH+oWFhRk9evS44/ns0KGDERYWZly5cuWO+97Idg5GjRrlsH3ZsmVGWFiYMX36dPu2p59+2mjZsqVx8eJFh30XLFhghIWFGbNnz7Zva9OmjREWFmasXbvWYd9Ro0YZYWFhxtatWw3DMIzjx48bkZGRRmxsrJGVlWXf79ChQ0a9evUczvPOnTuNsLAwY8yYMQ7HzM7ONuLj4406deoYx44du21927RpY7Rp08Zhm61NRowYcctyR44cybctCrLt5teZmXr07dvXiIqKMnJycuz7Xbt2zejRo4fRr18/h/I3vy4BAADge+hbeb5vZRiG8eWXXxphYWHGlClTHLavXbvWCAsLMz799FPDMAxj7969RlhYmDF27Ng8x4iLizPCwsLs59kW77Rp0+z75Nc/MQzDSElJMcLCwoyUlBTDMAzj0qVLRtOmTY2uXbs69JsMwzCmTJmSb9/rZvm1m2FcPy/5xXAjW//uRj169LjjtrupR1JSkkN727z33ntG165djePHj9u35XduARRPTAsGwOf4+fnZh1wX1J49e3To0CF17tw5z11XzzzzjO677z5t2LBBOTk5+umnn/TLL7+odevWys3N1alTp+z/2rRpo4CAgEJZyHvTpk2SpJdfftnhDphatWpp2bJlevPNN/Mt99lnn+nq1at68skndfr0aXtsp0+fVseOHe373KhNmzYKDg62/12mTBnVqlXrjsPGb8U2CsRsO9jExsY6/B0VFSVJyszMtG9bunSpVq9erTJlyti3ZWdn28/VxYsXHY5RqlQptW/f3mFb3bp1JUm///67pOvnPDs7W71795a/v799v5o1a6pz584OZdeuXStJ6tChg8Nr4Pz58+rQoYOuXr2qL774wnTd3c1MPapUqaJLly7pnXfe0Z49e2QYhvz8/DR//nwWbAQAACiC6Ft5vm8lSY8++qiqVq2qNWvWOGxfsWKFSpUqpaeeekqSFBERoR07dmjYsGEO+508edIe06VLl5yOw+brr7/W6dOn1b59e124cMGh3Tp06CBJhdJurmamHlWrVpV0fdT/9u3blZ2dLen6FHTLly9X5cqVPVMJAF6NacEA+JzKlSvr4MGDys7OdviB/HYOHz4sSfYpp25ksVj00EMP6dChQzp9+rQOHjwoSUpOTlZycnK+xzt69KiT0f/JNj/wzR0SSapTp84ty9niS0hIuOU+N8d377335tnH39/f6blyK1eurJ9++kl//PGH7rnnHtPlK1Wq5PC3bU0W2wWsJJUoUUIZGRmaMWOGDh48qIyMDGVkZNhjNgzD4Rjly5e3J31sbK8P23ohtnP34IMP5onp5naw7Xu7dWWceR2UKlVK0u0TU7Y62va9G2bqMWjQIO3du9f+2q9QoYKaNWumJ554Qu3bt1eJElw2AAAAFCX0rTzft5Ikq9Wqrl27asaMGfr+++/VoEED/f7779q2bZs6deqkoKAgh+dat26dtm3bpiNHjigjI0O///67PalUGGsl2s7L5MmTNXny5Hz3cbbdAgIC7pjQu3btWqH2hQpSj/bt2ysuLk7Lly9Xr169VKpUKTVq1EitW7fW008/rbJly951PACKHn4lAeBzGjdurP379+uf//ynmjVrdsv9Ro4cqatXr972QtnGdgHq7+9v/3/37t31xBNP5Lt/YfzIfPXqVafK2S7ax44dq9DQ0Hz3sc1vbGO1Fu5AxcaNG2vLli1KT0/Xfffdd8v9pkyZooMHD2rQoEEOna+CxPPRRx9p8uTJql69uqKjo9W0aVOFh4fr2rVreuWVV/LsX5Bj2pI3+XUcbQkeG9t5njFjhkqXLp3v8Wx3N5lhuyi/cOHCLfexLQJ64x1xzjJTj3vvvVdLlizRDz/8oC+//FLffPONNm7cqHXr1ikqKkoLFixQyZIl7zomAAAAeAf6Vp7vW9nExsbqww8/VGpqqho0aKDU1FTl5OTYF7KXrvchXnzxRf34449q1KiRIiMj1aVLF9WtW1dz587V6tWrnXrumxNDtnYbPHiwGjRokG8ZZ26yk673h86fP3/Lxw3D0Llz5wqlL2SmHn5+fho/frxeeeUVffHFF/r666+Vnp6ubdu26aOPPlJycrKptV4AFA8kVwD4nE6dOik5OVkLFy68ZQfg2LFjWr16tYKDg1WuXDnVqFFDkvTLL7/k2dcwDO3fv1+BgYEKDg52uKhu0aKFw765ubnasGGD/Xh3w/Y8Bw8eVHh4uMNjkydP1pUrVzRq1KhblgsODs4TX2Zmpnbt2lUo8d3Ok08+qalTp2rRokWKjY3Nd2G/ixcvKjk5WRcvXtRbb71l6vjHjh3TlClT1LhxY82ePdshGeJsh0GSHnjgAUnSgQMH8oxesd3VZGM7zyEhIfbpxWwOHTqkAwcOOExZVlChoaEKDAzUvn37brnPnj17JOmWi26afT7pzvUwDEO//PKLrly5onr16tkX9Lxw4YJGjBihTZs2aevWrWrTps1dxwQAAADvQN/K830rmxo1aqhp06Zav369Ro8erdTUVN13331q0qSJfZ958+Zp9+7deuedd/Tcc885lP/jjz/u+Bx+fn55pleW/pxG2cZ2XkqVKpXnvFy4cEFbt27NMxtBQUVERGjLli06cuRIvuf24MGDunz5spo2berU8W9kph5Hjx7V4cOH1bx5c8XHxys+Pl7Xrl3TrFmzNHnyZC1atEgjRoy465gAFC2suQLA5zRu3Fht27bVhg0b9Pe//z3P4+fPn9eQIUN07do1DRw4UP7+/qpdu7Zq1Kih1atXa//+/Q77p6Sk6PDhw2rXrp0kKTIyUtWrV9eKFSvsQ95tFi9erKFDhyolJeWu62G7c2vu3LkO2w8fPqw5c+boyJEj+ZZr166drFarZs6cqStXrjg89v777+vVV1/V7t27nYrJarUWaBh5jRo11KNHD/3www8aP358njJZWVkaPny4zpw5o549e+Y7dP52zpw5I8Mw9OCDDzokVi5fvqz58+dLcm69l3bt2qlEiRJasGCBQ/nMzEylpqY67Psf//EfkqTp06c73Ml19epVjRw5Uv3799eJEydMx1CiRAm1bdtWx44dy3dqhIsXL2rBggXy9/e3vyZtCto+ztTDYrFo0KBBGjBggMOdZIGBgfYO6s3TrgEAAMC30bfyfN/qRnFxcTp16pRWrlypPXv2OIxakaTTp09LUp4E0vfff6/vvvtOUt5RKDcKCQnRqVOnHKb0ys7O1vr16x32e/TRR3XPPfdozpw59ue0mTlzpoYMGaIvv/zSVN1snnzySUnS1KlT85wfwzD08ccfS7qe+LuRbcSQmXNqph4zZ85Ur169tHPnTvs+JUqUUP369SXRFwKQP0auAPBJ48eP19mzZ/X+++8rNTVV7dq1U4UKFfTrr79qxYoVOnXqlLp3767u3btLun4hNG7cOPXt21d//etf9fzzzys0NFS7du3SihUrVL16db322msO+/br10+xsbF67rnnVLNmTf3www9KSUlRzZo1852WyqxWrVqpU6dOSklJ0fHjxxUTE6MLFy7o008/VUBAgIYPH55vufvvv1+DBg3S1KlT1aVLF3Xt2lXBwcH6/PPP7SMLbv5RvqAqVqyoffv2aeHChYqOjlZYWNgt9/3b3/6mEydOaN68efrqq6/UsWNHVa5cWb/99ptWr16to0ePqm3btho6dKjpOB566CHdd999SklJUUBAgMLCwpSZmakVK1bY76q63VDyW6levboGDBig6dOn6/nnn1fHjh116dIlLVy40L7wo20UTvPmzfXMM89o2bJlevbZZ9WhQwf5+/tr9erV2rVrl1544QXVq1fPdAySNHz4cH3//fcaM2aMtm7dqmbNmql06dI6fPiwUlNTdfz4cb311lt57uQy0z42ZuoxaNAg/e1vf1O3bt0UGxursmXLat++fVq8eLEeeeSRPHd7AQAAwPfRt/J838qmffv2Gjt2rCZMmKASJUro6aefdng8JiZG8+fP12uvvaYXXnhBQUFB2r17t1asWCE/Pz9dvXpV586du+Xx4+LilJ6ert69e+uFF15Qbm6uUlJS8iRkgoOD9dZbb2nkyJF66qmn1K1bN4WEhOibb77RunXrVK9ePb3wwgtOnZeuXbtq8+bNSk1N1a+//qr27durYsWK+uOPP7R582Z9//336tKli5566imHcrYb9qZNm6YmTZoUqG9iph69evXS+vXr1bdvXz333HMKDQ3ViRMntGjRIgUFBenZZ591qr4AijaSKwB8UnBwsGbNmqV169Zp+fLlWrhwoU6dOqXAwEDVr19f3bt311/+8heHMs2aNdOSJUs0Y8YMpaSk6MKFC6pWrZpeeukl9e/f32FO1xYtWmjJkiX68MMPlZKSovPnz6tKlSp64YUX1K9fP6eHQN9s0qRJqlevnpYtW6YJEyaobNmyio6O1pAhQ+xTWOXnlVde0UMPPaR58+bp448/Vm5urmrUqKGEhATFx8c7fVdNQkKCEhMTNX78ePXv3/+2HQB/f39NmTJFHTt21NKlS7VixQplZmaqdOnSql27toYNG5bnbqOCKlmypJKSkpSYmKi1a9dqyZIlCgkJUXR0tF599VV1795dW7duderYAwcO1L333qsFCxYoMTFR5cuXV1xcnLKysvT3v//dYaTMuHHjFBUVpcWLF2v69Ony8/PT/fffr3HjxuW5i8yMihUrKiUlRfPnz9fGjRs1bdo0Xb58WZUqVVJUVJR69uypqKioPOXMtM+NClqPTp06qXTp0pozZ45mzZql8+fPq2rVqoqPj9eAAQNY0B4AAKAIom/l+b6VTUBAgDp16qSFCxcqJiZGISEhDo83b95ckydP1ieffKIPPvhA/v7+qlatmoYOHaqHHnpIffv21VdffZVnOmCb2NhYXbx4UQsXLtTEiRN17733qkuXLmrTpo26devmsO/TTz+tqlWrKikpSfPmzVNWVpaqVaumAQMGqHfv3k5NkSxdv5lt+vTpWrFihVatWqU5c+bo7NmzKleunB566CFNnjxZHTt2zFOuT58++vnnn5WUlKSdO3cW+MavgtajVq1aWrBggT788EOtXLlSJ0+eVLly5dSsWTO9+uqrrLcCIF8WwzAMTwcBAIA7XLp0STk5OQoKCsrz2JtvvqklS5bo888/v+VilmbFxMRIkjZv3lwox/Mm06dP1wcffKB58+YVynzIAAAAAIqO119/XStWrCjU/pW3SEtLU8+ePTVw4EANGjTI0+EA8CDWXAEAFBu//PKLoqOj9b//+78O28+fP68vvvhClSpVUvXq1T0UHQAAAAAAAHwF83sAAIqNyMhIhYeHa+bMmTp16pQiIiJ05swZLV++XCdPntR///d/29dcKSyXLl3SqlWrVLJkSXXo0KFQj+0Ju3fv1v79+/XTTz95OhQAAAAAXm7Tpk0qX768HnvsMZUtW9bT4dyV48ePKy0tTQcOHPB0KAC8BMkVAECx4efnpzlz5igpKUmbNm3S0qVLVbp0adWrV09jxoxxyfRWp0+fVkJCgoKCgopEcmXVqlWaN2+ep8MAAAAA4APee+89SdLKlSt9Prmye/duJSQkeDoMAF6ENVcAAAAAAAAAAABMYM0VAAAAAAAAAAAAE0iuAAAAAAAAAAAAmEByBQAAAAAAAAAAwASSKwAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMILkCAAAAAAAAAABgAskVAAAAAAAAAAAAE/4fKz0UV75f/VUAAAAASUVORK5CYII=", - "text/plain": [ - "

" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
541coef_calib_zeroautohhindivtou_SHARED3_atwork-35.9348700.00.0<NA>-35.934870True
543coef_calib_zeroautohhindivtou_BIKE_atwork-31.3905621060.00.0-2-33.390562False
540coef_calib_zeroautohhindivtou_SHARED2_atwork-30.865285327.00.0-2-32.865285False
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-30.496907124.029.0-1.452986-31.949893True
542coef_calib_zeroautohhindivtou_WALK_atwork-27.908265590.05313.02.197789-25.710476False
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
468#coef_calib_zeroautohhindivtou_DRIVEALONE_univ-19.706400NaNNaN<NA>-19.706400True
671coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint-14.8425184490.042.0-4.671938-19.514456False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-16.9706665916.00.0-2-18.970666False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-16.9706661813.00.0-2-18.970666False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -35.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -31.390562 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -30.865285 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -30.496907 \n", - "542 coef_calib_zeroautohhindivtou_WALK_atwork -27.908265 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "468 #coef_calib_zeroautohhindivtou_DRIVEALONE_univ -19.706400 \n", - "671 coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint -14.842518 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -16.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -16.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "541 0.0 0.0 -35.934870 True \n", - "543 1060.0 0.0 -2 -33.390562 False \n", - "540 327.0 0.0 -2 -32.865285 False \n", - "544 124.0 29.0 -1.452986 -31.949893 True \n", - "542 590.0 5313.0 2.197789 -25.710476 False \n", - "471 0.0 0.0 -23.883300 True \n", - "468 NaN NaN -19.706400 True \n", - "671 4490.0 42.0 -4.671938 -19.514456 False \n", - "677 5916.0 0.0 -2 -18.970666 False \n", - "676 1813.0 0.0 -2 -18.970666 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "_ = asim_calib_util.perform_tour_mode_choice_model_calibration(\n", - " asim_output_dir=output_dir, # folder containing the activitysim model output\n", - " asim_configs_dir=configs_resident_dir, # folder containing activitysim tour mode choice config files\n", - " tour_mode_choice_calib_targets_file=tour_mode_choice_calib_targets_file, # folder containing tour mode choice calibration tables\n", - " max_ASC_adjust=max_ASC_adjust, \n", - " damping_factor=damping_factor, # constant multiplied to all adjustments\n", - " adjust_when_zero_counts=adjust_when_zero_counts,\n", - " output_dir=output_dir, # location to write model calibration steps\n", - " )\n", - "tour_mc_coef_file = os.path.join(output_dir, 'tour_mode_choice_coefficients.csv') " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": false - }, - "outputs": [], - "source": [ - "# if want_to_do_initial_model_run:\n", - "# asim_calib_util.run_activitysim(\n", - "# data_dir=data_dir, # data inputs for ActivitySim\n", - "# configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", - "# configs_common_dir=configs_common_dir, # just the location of the common config, these files will be used from the original location\n", - "# run_dir=activitysim_run_dir, # ActivitySim run directory\n", - "# output_dir=output_dir, # location to store run model outputs\n", - "# settings_file=cold_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", - "# tour_mc_coef_file=tour_mc_coef_file # optional: tour_mode_choice_coefficients.csv to replace the one in configs_dir\n", - "# )\n", - " \n", - "# _ = asim_calib_util.perform_tour_mode_choice_model_calibration(\n", - "# asim_output_dir=output_dir, # folder containing the activitysim model output\n", - "# asim_configs_dir=configs_resident_dir, # folder containing activitysim tour mode choice config files\n", - "# tour_mode_choice_calib_targets_file=tour_mode_choice_calib_targets_file, # folder containing tour mode choice calibration tables\n", - "# max_ASC_adjust=max_ASC_adjust, \n", - "# damping_factor=damping_factor, # constant multiplied to all adjustments\n", - "# adjust_when_zero_counts=adjust_when_zero_counts,\n", - "# output_dir=output_dir, # location to write model calibration steps\n", - "# )\n", - "# tour_mc_coef_file = os.path.join(output_dir, 'tour_mode_choice_coefficients.csv') \n", - "# else:\n", - "# print(\"No initial model run performed.\")\n", - "\n", - " " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Iterating" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [], - "source": [ - "# tour_mc_coef_file = os.path.join(output_dir, 'tour_mode_choice_coefficients.csv')\n", - "# tour_mc_coef_file" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "scrolled": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_1\n", - "ActivitySim run started at: 2023-09-12 22:48:37.096980\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-12 23:35:29.558125\n", - "Run Time: 2812.46 secs = 46.87433333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hU1dbH8d9MCmlAQghVmiEJvQQEVLqISLEiFhS4UhSUJqjgBS9K04sVEJAiUqRIF64ooFRRQFCahJ4QIjUkQCCBJHPeP3jnyJAE0hMm38/z8Cin7XXOnBlmzdpnb4thGIYAAAAAAAAAAAAAALjLWfM6AAAAAAAAAAAAAAAAsgMFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcADptnTpUoWEhGT4z0svvZTXoafbhAkT0jyPqlWrqnbt2mrZsqX69u2rdevW5XW4+H9//PGH+Tr16NHjjtsPGTJEISEhGjx4sMNy+zG2bt2a7TF2797dPP7u3buz/fg3S0pK0vHjx3O0jVuFhYVp1KhRateunerXr6+aNWuqWbNm6tGjh+bOnauEhIRsb/PcuXMaPHiwHnjgAdWoUUNNmjTRpk2bJEnLly/X448/rtq1a6t+/frq3r27tm3bZr4GSUlJmW735MmT5nEiIiKy63QAxcbG6ty5c9lyrLQ+53JqPwAACiJyZHLk/Ioc2RE5MjlyQWQYho4ePZpr7WX354VhGJo5c6batGmjmjVrqmHDhvr3v/9t/tvbtGnTLB0/u+7/7HL48OEUy1q2bKmQkBAtWrQoQ8fK7H6As3HN6wAA3D38/f0VGhqaYvmpU6d06tQpubu7q0aNGinWBwcH50Z42Sq1czEMQwkJCTp58qTWrFmjNWvWqEOHDho3bpwsFkseRQpJWrJkifn/W7ZsUWRkpMqVK5eHETk6deqUQwIwf/581a5dO0fa2rJli0aNGqVHHnlEAwcOzJE2bjV+/HhNnjxZNptNPj4+Kl++vNzc3HTu3Dlt3rxZmzdv1vTp0/XFF1+oevXq2dKmzWZTjx49FBYWJldXVwUFBSkxMVFly5bVjz/+qLfffluSFBAQoJIlS+ar+wFIzddff61Jkybps88+U0BAQF6HAwAA0oEcmRw5vyJH/gc5MjlyQbRnzx6NHDlSFSpU0EcffZTX4WTKzJkz9eGHH0qSypYtK19fX91zzz15HFX2O3v2rD788EP9/vvv2rhxY16HAzgVCuAA0q1Zs2Zq1qxZiuUTJkzQxIkTFRAQoPnz5+dBZNnvdudy/fp1ffbZZ5oxY4ZWrlypBg0aqFOnTrkcIezi4+O1evVqWSwWNW7cWJs3b9bChQvz1dOLS5culc1mU7NmzbRx40atXr1aQ4cOVdGiRbO9rS+//DJXe7YvWbJEX3zxhby8vDR27Fg9/PDDcnFxMdcfPXpU77zzjv788091795d33//vYoVK5bldo8fP66wsDBJ0pQpU9SkSRNz3YQJEyRJ9erV0+zZs+XqeuPrTnx8vL7//ntJMpdlRsmSJc3jlClTJtPHAW42duzYvA4BAABkEDnyDeTI+Qs5siNyZHLkgmjevHnas2ePKlSokNehZNrq1aslSe3atdMnn3xiLr98+bJq164tNze3LB2/Vq1a2XL/Z9WWLVu0atUqlSxZMs9iAJwVQ6ADQAa5u7vrrbfeUq1atSRJc+bMyeOICrYffvhBcXFxCgoK0hNPPCHpRjJ9/fr1vA3s/xmGoWXLlkmSnn76aVWsWFEJCQnmsrvdlClTJElvvfWW2rRp45DYS1JgYKAmT54sf39/xcTEaPbs2dnSbkxMjPn/DRs2THVdvXr1HJIYT09PBQYGKjAwMEttu7m5mcfJasIFAAAA3O3IkfMXcuS8RY5MjozsYb9vGzRo4LC8cOHCCgwMVPny5bN0/Oy6/wHkXxTAASCTWrVqJUk6dOiQrl69msfRFFxLly6VJDVt2lQtWrSQh4eHoqOjtXbt2jyO7Ibt27crMjJSbm5ueuCBB/Too49KkhYuXJjHkWXdpUuXdOLECUm67XB1xYoVM98ve/bsyZa2k5OTzf93d3d3WGez2VJdDgAAACDnkCPnD+TIeYccGcg+3LcAsooCOIBc8+OPP6pHjx5q1KiRatSoocaNG6tv37769ddfU90+JCREISEhDvNC3eyll15SSEiIOZSTJJ08eVIhISF68MEHdebMGfXq1Uu1atVSgwYNNGjQoGw9Hx8fH/P/r1y54tB+SEiIIiIiUt2vZcuWCgkJMZNSSdq2bZtCQkLUqVMnHT16VM8//7xq1qyp+++/35zvxr7fgQMHtGHDBj333HOqW7euGjZsqC5dumjdunVpxpqcnKxFixbppZde0n333acaNWqoefPmevPNN7V///5U90lISNDUqVP13HPP6f7771fNmjXVokULDRo0SDt37kyzrbCwML399ttq3ry5atSooYYNG6p79+768ccfU93+5mt28zVJjxMnTmjHjh2SpNatW8vb21stWrSQpHwz1KB97rVGjRqpcOHC6tChgyTp2LFj+u2331LdJzP30dKlSxUSEqLt27dLutHrPCQkREOGDHHY7+LFi5o4caKeeOIJ1a1bV7Vr19ajjz6qDz/8UGfPns3Qud3cc3z9+vW33bZv37763//+p48//thh+ZAhQxQSEpLmcHz282rZsqWkf65Nly5dzG3s18p+LPs1mDhxorlO+ud9FhISoqSkpBRthYWFafjw4WrVqpVq1qyp++67T127dtUPP/zgsN2dXp/IyEiNGDFCDz/8sGrWrKn69evrhRde0KJFixx+lLj1GsyfP18nT57U0KFD1bRpU9WoUUNNmzbVv//9b508eTLNa/v7779r0KBBatGihWrUqKFGjRrp1Vdfdfhs3bx5s0JCQlS9enVFR0enepyEhATVq1dPISEh2r17d4pzTe/7c8KECeY+d/pz63mdP39e//3vf9W2bVvVrl1bdevW1dNPP62vvvpK165dS7Otjz76SOvWrdMjjzyiGjVqqGXLlvrf//7ncG5ff/21OnXqpNDQUNWsWVOtWrXSu+++q/Dw8DTP5cCBAxo+fLgeffRRhYaGqkaNGnrggQfUs2fPFPeF9M/92rRp01SPd/P1tJ+7/fW3+9e//pXq9T5+/Lj+85//6OGHH1aNGjVUr149derUSV9//bUSEhLSPAdJioqK0vDhw9WsWTPVqFFDTZo00ZAhQ2577lnZDwAApA858g3kyI7IkVMiR/4HOfLdlyPbXbp0SVOnTlXnzp3VsGFDVa9eXfXr19dTTz2lCRMm6OLFiyn2yejnvv01tY+osHLlSoWEhOill15KcW6ZyZEjIiI0fPhwtWzZUjVr1lTr1q01adKkO44wERcXpy+++MJ8n9WpU0cdOnTQ+PHjdenSpVTPKSoqSpI0dOhQh3v+Tnl3el7/m6/V7e7/jHx22+PetGmTwsLC1L9/fz3wwAOqUaOGHnroIY0ZM0YXLlxw2CckJERDhw6VJJ05c8bh/XmrnTt36tVXX1XDhg1Vq1YtPfLII/r4448VFxeX6vZZ3Q9wBhTAAeS4xMREvf766+rXr582b94sV1dXValSRUlJSVqzZo26deumMWPGZGub169fV/fu3bV161YFBgbKYrGobNmy2dqG/Uu9h4eH/Pz8suWYFy5cUNeuXXXgwAFVrlxZ165dU8WKFR22WbJkiV555RXt379flSpVUqFChbRt2za99tprGjVqVIpjxsXFqXPnzho2bJi2b9+uwoULKyQkRJcvX9Z3332njh07aubMmQ77XL9+Xd26ddPHH3+sPXv2yNfXV0FBQYqLi9OqVavUuXNnLVq0KEVb33zzjZ566iktX75cFy9eVFBQkLy8vLRlyxb169dPgwYNSjW5yawlS5bIMAyVL1/e7F3dvn17SdKOHTt09OjRbGsrM+Li4rRmzRpJ/8QVGBioqlWrSpIWLFiQbW35+/srNDTU/NGpdOnSCg0Ndbh/Dh48qPbt22vChAk6ePCgypYtq0qVKunEiRP66quv1L59e23bti3dbXp5eSk0NFTSjULk22+/rR07dqT6GgcEBKhy5cpZfq8UKlRIoaGhCg4ONpeFhoaa55raNbDHeDvffPONOnbsqG+//VYXLlww793ffvtN/fv316effpqu+NauXav27dtr/vz5Onv2rO69914VK1ZMO3fu1LBhw9S9e3fzx8Bb/fXXX3r88ce1fPlyeXp6qkKFCjpz5owWL16sZ555RqdOnUqxzyeffKIXX3xRq1at0tWrVxUSEiKr1ar169erW7du5lMUDz74oEqXLq2kpCStWrUqzdjj4uIUGBh426cV7uTm657aH09PT0k3hi0rXLiwud/OnTvVrl07zZgxQydOnFC5cuVUpkwZ7d+/Xx9++KE6deqkc+fOpdrmjh071K9fP126dEmBgYE6e/as+T47ffq0nnzySY0dO1a7d+9WQECAgoKCdO7cOS1cuFCPPfaYOe/XzebNm6ennnpK3377raKjo1WhQgWVK1dOly9f1qZNmzJ0X9yO/b61Cw4OVmhoqPz9/c1l3333nR577DEtWLBAZ8+eVXBwsIoXL67du3dr7NixeuaZZ3T69OlUj3/w4EE98cQTWrRokby9vVWuXDlFR0dr2bJlevLJJ3XkyJFs3Q8AANwZOXL6kSNnDDnyP8iRyZHzS44sSeHh4Xrsscf08ccf688//1SxYsUUEhIiFxcX7d+/XxMnTtSzzz6b5rVIr8KFCzvkk8WKFUtxf2Q2R/7111/15JNP6ttvv1VMTIyCg4MVHx+vzz//XD169EgzpqNHj+qxxx7T+PHjdejQIZUoUUIVKlTQsWPHzKL4zZ9N9pzY/uS3/T6uUaPGHc8/va//nWTls3vTpk3q2LGj1q1bJz8/P5UuXVonT57UrFmz9NxzzzkUnm/+THJzc0vz/bls2TJ17txZW7duVenSpVWsWDGFh4ebnbLS6hSf2f0Ap2EAQBaNHz/eCA4ONlq0aJHq+vfff98IDg426tSpY6xevdpcnpSUZMydO9eoVq2aERwcbMycOdNhv+DgYCM4ONj45ZdfUj3uiy++aAQHBxvjx483l0VGRpr7NWjQwDh8+LBhGIZx7do14/Lly1k+F7vo6GijQYMGRnBwsNG7d+9U2w8PD0913xYtWhjBwcHGkiVLzGW//fabuV+rVq2M06dPG4ZhGHFxcUZCQoLDfsHBwUa3bt2M8+fPG4ZhGDabzVi4cKF5HVeuXOnQ3iuvvGIEBwcbDz74oPHbb7+Zy69du2Z89tln5jF//PFHc928efOM4OBgo3Xr1kZUVJS5PCEhwXjvvfeM4OBgo169emZshmEYGzduNEJCQozq1asbs2bNMpKSksx1W7duNe6//34jODjY+PTTTx3iu379unHkyBHjyJEjxqVLl2573W+WnJxsNGvWzAgODjY+//xzh+PZX5uRI0emuu/bb79tBAcHG4MGDXJYfqd7LqMWLFhgBAcHG7Vr1zbi4uLM5TNmzDCCg4ON6tWrG+fOnUuxX2bvI8P4533xySefOCy/fPmy0bhxYyM4ONh49tlnjRMnTpjrzp07Z94n9erVc1h3J/v37zfq1KljxhscHGyEhoYaPXv2NL788kvjzz//NJKTk9PcP63Xwm7JkiWpvidvfs/cKrXPhlv3SUxMNJfv3LnTqFKlihEcHGx89NFHDvf1kiVLzHWbN282DCPt1+fAgQNGjRo1jJCQEOPTTz91OM7+/fuN1q1bG8HBwcbgwYNTvQbBwcFGp06djGPHjpnrdu3aZdStW9cIDg42Ro0a5bDfqlWrjODgYKNq1arG119/bb7nkpKSjEmTJpnrjhw5YhiGYXz66adGcHCw8eSTT6Z6rV9++WUjODjYmDZtmrkss+/PtKxYscIIDg42qlWrZmzZssVcfvr0afN9O2zYMOPixYvmuoiICOOZZ54xgoODjRdeeMHhePbP7ODgYOO1114zrl27ZhjGjc9o+7V4/PHHjeDgYOORRx4xDhw4YO57+fJl49///rf5Xvzzzz/NdcePHzeqV69uBAcHG5MmTTKuX79urouJiTH69+9v7hcbG2uus9+vTZo0SfX8b753IiMjHdal9fnz559/mp/vw4YNc/i37K+//jLvqyeffNLhvr75vnriiSeMo0ePmusOHDhgNGzY0AgODjb69+/v0F5m9wMAAP8gRyZHNgxy5NSQI5Mj33ydClKObH8NOnXqZJw5c8ZcbrPZjGXLlpnXdO7cuQ77ZeZz3zDSvo8ymyNfvHjRaNSokREcHGwMHDjQ4d+PpUuXmvnzrbFeuXLFePjhh81/G+yf5YZhGGfPnjV69eplfrbGx8c7xJrWezqtvDujr39a939mP7vtr0VwcLDRq1cvh9d53bp1RtWqVVP9t/12vyPc/O/coEGDjJiYGHOd/feV4OBg45tvvsmW/QBnwxPgAHLU6dOnzR68I0eOVJs2bcx1Li4u6ty5s/r37y/pxlBMWe3peLMXXnhBlStXlnRjvpibh2PLDMMwFBMTo59//lkvv/yyYmNj5ebmpn79+mVHuKZXXnlFJUuWlCR5e3urUKFCDuvLlCmjL774wuzNabFY1KlTJ3Xv3l3Sjeto9+eff5rDbo0fP14NGzY017m7u6t///569tlnJUkfffSRuS4sLEzSjTnDypQpYy4vVKiQhgwZosaNG+vhhx9WbGysue6TTz6RYRgaPHiwunTpIhcXF3Pd/fffr7Fjx0qSZs6cqZiYGHOdm5ubAgMDFRgY6PA06J1s2bLF7O372GOPORzPfp+tWLEiT3sz2od2e+ihh+Tt7W0ub9++vaxWqxITE81tctq8efN09uxZFS9eXF9++aXKlStnritevLjGjx+v4OBgXb58WVOmTEn3catVq6ZFixapXr165rK4uDht3LhRH3/8sTp16qTGjRvr008/VXx8fLaeU3aZNGmSbDabHn30UQ0aNMjhPffUU0+pY8eOknTH4c0mTJig69ev68UXX9SAAQMcjlOtWjWNHz9eLi4uWrlyZapPz7q5uWnixImqVKmSuaxu3bp66qmnJEm7du1y2N7+Xv/Xv/6lrl27mu85FxcX9e7dWw8++KCSk5O1fPlySdLTTz8ti8Wi/fv3p3jy48yZM9q6datcXFz0+OOPO8SUmfdnanbs2KF33nlHkvTOO+/owQcfNNfNmDFDsbGxatmypUaOHKkiRYqY68qXL69JkybJx8dHv//+uzZu3Jjq8d9++22zh3ixYsUkST/88IMOHDigQoUKadq0aapSpYq5vY+Pj0aNGqUmTZooMTHR4QmGX375RS4uLqpevbp69+4tNzc3c52vr6/efvttSTee3jp+/HiWrsudjB8/XklJSWrcuLFGjhzp8G9Z1apVNX36dHl4eGj//v0Ow77bubq66osvvtC9995rLqtSpYq6desm6cbwcKnJ7H4AAOD2yJEzjhw5fciRM4YcOW3kyNmbI0dHR+vw4cOSbnzulyhRwlxnsVj0xBNPqEGDBpJujEqQkzKbIy9YsEAXLlxQxYoV9eGHHzr8+/Hkk0/q1VdfTbW9RYsWKSIiQtWrV9eECRPMz3LpxigIn3/+ucqWLavw8PAMDyl/q4y+/mnJ7Ge3nb+/v8aPH+/wOj/00EPmkO233rfpERgYqA8//FC+vr7msscee8z8XSWtaTgyux/gLCiAA8hRmzZtUlJSkgICAtS2bdtUt3nxxRfl5uamy5cvm/MSZYebk42MioqKSjFXbZUqVdSoUSP17t1bBw4cUOHChfXZZ585fFnMDneKu1OnTvLy8kqx/LnnnpN0Y57YY8eOSfpnzqlatWqlOcTVyy+/LOnGcHWHDh2SJHP4ncWLF2vevHkOc9S4u7trxowZGjt2rPnF9eTJkzpw4IAkx0T7Zs2aNZOfn58SEhLSnNMuI+xfjGvVqpViCDx7DJcuXUq1IJQbjh49as4Rdes1KVGihBo1aiRJWrhwoWw2W47H8/PPP0uSnnjiCRUtWjTFend3d3NOqJ9//lmGYaT72JUrV9a8efO0fPlyvf7666pbt65DwTA6OlpTpkzRY489luYwzXklPj7enGfO/kPXrQYMGKAffvjBnGswNdevX9emTZskpf0esH+OGIaR6nxwNWrUUEBAQIrl9gLk5cuXzWURERHm+9z+3r/V6NGjtW7dOg0cOFCSVK5cOd13332SlCLhW7FihWw2m5o2bZpqDFl17Ngxvf7660pMTNRLL72kzp07O6y3z8+Y1rUrXry4maCldu0CAgIcfrCys9/3LVu2THW9dCM5lqTt27eb17hz587avXu35s2bl+o+Hh4e5v/n5I9WV69eNYdcvHlOv5uVK1dOrVq1kiT99NNPKdbXqFHD4UdaO/u8Yjf/SJsd+wEAgNsjR844cuT0IUfOGHLk1JEj35CdObK/v79+++037d6922Eocrvk5GSzoJzTHVQymyPbO6J36NDB4V62e/7551M9lj3Xb9u2rUMh2c7Dw0OPPPKIpNRz/fTKzOufmuz47L7//vtTdNSSbhSjJcf7Nr0eeuihVK+fPT+/dW7xrO4HOAvXvA4AgHOzf/moWrWqrNbU+9x4eXmpUqVKOnTokI4fP64WLVpkS9tZ+YLq7u6eYm4Zq9Uqb29vlSxZUrVr11abNm2y3GM+NXeKu1atWqkuL1OmjAoXLqzLly8rPDxc9957r3n9q1evnubxKlasKB8fH8XFxen48eMKDg7WM888o8WLF+vIkSN677339P7776tq1aq6//771aRJE913331ydf3nnxB7T1ZJeu2119Js69q1a5L+uS8yKzY21iz0pPaFtF69eipXrpwiIyM1f/58Pf3001lqLzMWL14s6Uaic/OTrnaPP/64tm7dqqioKG3evFnNmjXL0XjsT6ne7l6wr7tw4YJiY2MzPBdZ1apVVbVqVfXt21fx8fHatWuXtmzZohUrVig6OlonTpxQ//790z3nUm74+++/lZiYKElp/lDn7+/vMB9zasLDw3X9+nVJ0nvvvWc+iZxae1Lq74Gbe0LfzF5sTUpKMpfZ51f08vJKM2ktXbp0imVPP/20tm/frpUrV+qNN96QxWKRdCO5l2T2pM9OFy5cUK9evRQbG6vGjRtr6NChDuuvXLmiqKgoSTeeNJg9e3aqx7Fvk9q1u7ln9c0yct8nJycrIiLC4bO/UKFC2rNnjw4dOqTIyEidOHFChw4dcoghIz+EZVRkZKR5f95uvrMaNWpo1apVqT6NntZ9Zf+RODExUUlJSQ6f6VnZDwAA3B45csaRI98ZOXLGkSOnjhw553JkDw8PnTp1Srt379aJEycUGRmpo0eP6sCBA7p69aok5Xjnj8zmyPb9goKCUt3H399fJUqU0NmzZx2W2zsRLVq0KNUO25J0/vx5SVn7HMzs63+r7Pjszsh9m153ys/T6jiR2f0AZ8EvVgByVFxcnCTdcVgge5KcncO73fyEXkYFBARo/vz52RZLRtwp7tR6Jtt5eXnp8uXLunTpkqT0X39vb2/FxcWZ19/Hx0cLFy7UV199pVWrVikiIkJ//fWX/vrrL82YMUP+/v4aMGCAOnXqJMmx92J6hvLJTG/Hm61cudJMpEaNGqVRo0alue3evXu1f//+2365z25JSUn67rvvJN3o2X2ntufPn5/jyX167oWbf6y6cuVKhpP7m3l6eurBBx/Ugw8+qP79++udd97R//73P/3555+5/nrczs1Psd48BF9G3XxP79u3L0Pb26XWizot9rgzGnObNm00cuRInTp1Stu2bVOjRo20d+9eHTlyRH5+ftn246rdtWvX1Lt3b0VGRqpy5cr67LPPUvQ+tt+b0j/J8e2kdu1S611987Ezct/brVixQpMmTVJ4eLjD9vfcc486duyob7/99o6xZtXN1yY955Dav6Fp/dB0J5ndDwAA3B45csaRI98ZOXLGkSOnjhw5Z3LkY8eO6b///a82btzoUOT28fFR/fr1dfbsWXOqhZyU2RzZ/hma2mgbdkWLFk1RALe3Fx4eniK3vlVWPgcz+/rfLobMfnZn5L5Nr7R+88ip/QBnQQEcQI6yf/G405cY+xep1L6opPV0nb13ZH6VU3Hfbrhd+xdLe0/c9F5/+/qbr7+Pj4/69eunfv36KSIiQtu2bdO2bdu0ceNGRUdHa/jw4fL19VXr1q3NL8C+vr7mcL05yT4nmJeX122/tJ89e1aGYWjBggUaOXJkjsdlt2HDBrMHa4kSJcwexLe6evWqLl++rE2bNunUqVOp9kbNrvvI29tbFy9evO29cPHiRYft7+Tdd9/Vb7/9pieffFK9e/dOczsPDw+9//77WrNmjTln8q3JfVrnmdNzot2cvMXFxZlzR2flOLt27cpy0pXe9jL6g6iHh4fatWunhQsXauXKlWrUqJHZsz2tocwyyzAMvfnmm/rzzz/l5+enKVOmpPp+9fT0NP9/5cqVqQ4Jl1np+Qy0//tz8/bLli3TkCFDJElNmjTRww8/rKCgIAUGBqpo0aJKTEy8bQE8u+7nm++jy5cvp/mUhf29m9P3HQAAyDpy5JTIkbOOHJkcObuQI2d/jhwdHa0XX3xR0dHRKlOmjDp16qRq1arp3nvv1T333COLxaJBgwbdtgCenfe9lPEc2dfXV+fOnXPopH2r1J4m9vT01OXLlzVlypRs73B/s8y+/mkdJ7c+uwHkLOYAB5Cj7PPyHDhwIM1hfOLi4sxegBUqVDCX258StPdivtWtvQrzg5uHPEst7oSEhCz37E7rCckTJ06YX/QqV64s6Z/rv3///jSPd/ToUfMLs/36R0dH6/fffzfngqlQoYI6deqkjz/+WBs3bjSHvrMnBZUqVZJ0o8fluXPn0mzr999/19GjR7M0xE5YWJg5H8/YsWO1adOmNP/Ye4yvWrXqtl/Ss5t97rWgoCBt3rw5zfhmzpwp6cawUjcX03LiPkrPvWDvlV20aNF09Wy/du2aIiIizDmdbsfHx8dMnG5OoO3vc/sQa7fK6fd5uXLlzBhuHurqZnv37tXzzz+voUOHppl03nycI0eOpNnenj17dPDgwSwnZfY5/a5evaqTJ0+mus1PP/2kl156Sf/9738dltuHO/zpp5+UnJxsDkOW3cMg/ve//9WPP/4oNzc3TZw4Mc1hyIoUKaLixYtLuv21O3jwoA4cOODwI9SdpOe+37t3ryTJYrGofPnykqQvv/xS0o35AKdPn65nn31WoaGh5tNFac3Tl93/bpUvX978weV2T03Y1938bygAAMifyJEdkSOTI5MjkyM7e468ZMkSRUdHy9fXV0uWLFHv3r3VrFkzlStXzuwMcubMmVT3ze7P/czmyPbPNPtnza2uXLliDmd/M/t+ad1L0o2nw/fu3Zul+aiz8vqnFm9ufHYDyHkUwAHkqKZNm8rV1VXnzp3T999/n+o2c+fOVVJSkjw9PdWgQQNzuT25SG0+lT179uTL5N7X19f88ppa3D///HOm5nq52dKlS1P9ocQ+HF2dOnXMXtL23pV79uxJc+ier7/+WpJUqlQphYSESJK6d++uzp07a9myZSm29/b2Vp06dSTdSEolKTAw0PxhYO7cuam2s3PnTnXu3Flt27bVn3/+mY4zTZ193jA/Pz+1bNnytts+//zzkm58Abb/EJHToqOjtXHjRkl3TpZq1qxp/lCyaNEi897Iyn2UVk96+72wfPnyVAuI169fN++hJk2a3DZuO/vccvv27TN/0EjLli1bFBsbK19fX9WuXdtcfrv3eXJysn7++ed0xZJZPj4+qlevnqR/npq41apVq7Rr1y6dPHkyzevr4+Njfn6lNYd1ZGSkXnjhBT322GP64YcfshR3YGCgypYte9u4ly1bpu3bt6dIImvXrq2goCDFxMRozpw5+vvvv1WtWrU053fLjPnz5+urr76SdGMIxvr16992++bNm0u68fmR2ufb5cuX1bVrVz3xxBOaNWtWuuOw3/c///yzIiMjU93G/nrVqVNHRYoUkSQzYU5rGEL755DkOH+X/X6+ePGioqOjU+y3du3aNGO131s3/4Dk5eWlhg0bOsR5q8jISPN90rRp0zSPDwAA8gdyZEfkyOTINyNHJkfOrPycI9vzyzJlyqT6RP2RI0fMzwD7Z4hdZj/3U8svpcznyK1bt5Z0o5NPap0Vli5dmiL2m9tbvHhxqsXipKQk9enTRx07dtSHH36YajzpkZXX/9bj5NZnt53VeqNEl1ZnEgCZRwEcQI4qXbq0OQfW8OHDHb7Q2mw2zZs3TxMmTJAk9enTx2GoLvsX7pkzZ+ro0aPm8r179+qNN97IjfAzzMPDQ9WqVZMkTZgwwaEH55YtW/T+++9nuY19+/Zp+PDh5rBXNptNc+fONZP0gQMHmtvWrVvX7OHdr18/h+F7rl+/rvHjx5u9qt966y3zC/Ljjz8uSZo4caI2bdrk0P7vv/9uJso3z8nVv39/SdLUqVM1bdo0h96pv//+u7m+Tp06atSokbkuMTFRR48e1dGjR+/YY/v69etauXKlpBtDUd1pjtqmTZuaX4AXLFhw221v5++//9bRo0dT7c16q+XLlyspKUlubm7mdbwd+w8Q586dM3sZZ+U+sg/XFBUVlaKdkiVL6vz583rllVccEp3o6Gj1799fhw4dkre3t/r27XvHuCXpwQcf1COPPCJJGjZsmEaPHp2ip+21a9e0ZMkSDRgwQNKN++Tmoc/s7/PDhw9r9uzZ5hf+ixcv6p133knXnNBZ1adPH1ksFq1YsUJTpkxx+OFk+fLlmjNnjiSpR48etz1O37595eLiolWrVmns2LEOSeGhQ4fUq1cvJSYmqmzZsurQoUOWYrZYLOrTp48kadq0aVq0aJF57ZKTkzV16lStXbtWrq6u6tatW4r97T88ff7555Kkp556KtV2MvL+tNu4caM5nGK/fv30xBNP3HGfXr16ycvLSzt37tSbb77pkJBGRUWpV69eiomJUeHChdW5c+d0xSHdmM8tJCRE165dU8+ePR2GlIuLi9Pw4cO1ZcsWubq6avDgweY6e6/4hQsXOrz/4uLiNGHCBE2dOtVcdnMSX7t2bbm5uckwDI0ZM8Zcl5iYqFmzZt122HT7e/fWz5nXX39drq6u2rJli4YPH+7wpE5YWJh69uypa9euqUqVKum61gAAIG+RI5Mj2/chR04dOTI5cmbk5xzZnl+GhYXpxx9/NJcbhqFNmzapR48e5hP/tw5xn9nPffs9det7NLM58jPPPKMKFSro9OnT6tevn0OH7zVr1ujjjz9ONY7OnTsrICBAERER6t27t0M8Fy5c0IABA3T06FG5ubnp5ZdfTvN87iSrr//NMvvZnVn2z6hLly7l6sgcQEHAHOAActzQoUN15swZ/fTTT+rfv79KlCihUqVKKTIyUjExMZKkF198UT179nTYr3fv3tq8ebPOnTunDh06qHLlyrp27ZrCw8NVrlw5Pf3002n26stLAwYMUO/evXXkyBG1atVKlStX1sWLFxUVFaWaNWsqNDTUTOIyIzg4WIsXL9bq1at177336vTp0zp37pysVquGDh2a4svXf//7X7366qv6448/1KVLF5UtW1bFihXT8ePHFRcXJxcXFw0YMEDt2rUz9+nSpYu2bt2qTZs2qWfPnipRooRKlCihmJgYM2ls2bKlnnnmGXOfdu3aKTw8XBMmTNBHH32kL7/8UhUrVtSFCxfMfSpVqqRJkyY5xHfmzBm1bdtW0o3h2tJKMiRp3bp1io2NlZS+oaisVqueffZZffLJJzp06JB27txpJg8Z8fbbb2v79u1q0KCBmeilxd7Lu3nz5umaK6tdu3b68MMPdenSJS1YsMBMljN7H1WrVk3r16/XypUrdfDgQdWvX1//+c9/VKRIEU2ZMkW9evXSH3/8odatW6ty5cpydXXV4cOHlZiYKF9fX3300Ufm0FHp8dFHH8nLy0vLly/X7NmzNXv2bJUpU0b+/v7m+/X69etyc3PToEGD9MILLzjs36xZM9WvX1+///67Ro8era+++kp+fn46duyYEhMT1bdvX/MHwJxy//33a+jQofrggw/06aef6quvvlK5cuV0+vRpc5661157zeHHrNTUq1dPI0eO1H/+8x99/fXXWrBggQIDA3XlyhVFRETIMAwVL15cM2bMuOMPU+nRsWNHHTlyRDNnztSwYcP02WefqVSpUjp58qRiY2Pl4uKiESNGpNpr/fHHH9fHH3+sq1evys3NTe3bt0+1jYy8P+0GDhyo5ORkeXh46K+//lL37t2VkJCQ6lM5Tz/9tDp27KgKFSros88+08CBA7Vq1Sr9+OOPqly5shITExUeHq6kpCR5eXlp6tSpac6DnRpXV1dNmjRJPXv21LFjx/T444+rYsWK8vb2Nocr8/Dw0HvvvefwlPrAgQPVp08fHTlyRA899JA5DFpERISuXbtmDlV34sQJh+HQixYtqu7du2vKlClatWqVNm/erHvuuUdRUVGKjY3V888/r59//jnV4e2qVaumHTt26P3339f8+fP1wgsvqGPHjqpbt65Gjx6tYcOG6dtvv9V3332nwMBAXb16VcePH5d049+FiRMnZst9BQAAch45MjkyOXLayJHJkTMrv+bIHTt21Lx58xQREaF+/fqpbNmy8vPz06lTpxQdHS03Nzc1aNBA27dvT5ErZvZzv2rVqpJuzL/epk0bVa5cWRMnTsx0juzh4aHx48erR48e2rJli5o3b66goCDFxsaa78Fz586lmC6saNGimjx5snr37q2tW7fqoYceUuXKlWWxWHT8+HFdv35drq6u+uSTT8wRNzIrK6//zTL72Z1ZISEhslqtSkhIUJs2bVSiRAnNmDEjXdMuALg9ngAHkOPc3d31xRdf6NNPP1Xjxo11/fp1HThwQJ6enmrXrp1mz56t4cOHpxg2qWrVqlq8eLE6dOigYsWK6dixY0pOTtbLL7+sZcuWKSAgII/O6PaaNm2qefPmqVWrVvLy8tKRI0dUqFAh9evXT/PmzTN79mVWly5d9Mknn6hSpUpmz99HHnlECxYsSLUXo6+vr+bMmaORI0fqvvvu0+XLl3Xw4EH5+fmpY8eOWrx4sXr16uWwj4uLi7744gu98847qlu3rhISEhQWFqb4+Hg1btxY//3vfzVp0iSHebikGwnQwoUL1aFDB/n4+CgsLEwxMTGqVq2a+vfvryVLlmSoeHUre+JcvXr1dA9F1bFjR3MO3az0cE+P3bt3m3NbpXeuKE9PT/OpzV9//dWc6y+z91HPnj31zDPPyNfXV+Hh4Tp48KC5rlq1alq1apX69OmjoKAgRUZGKjw8XJUqVdKrr76q7777Lt1Du9m5u7vrgw8+0KJFi/Tyyy+revXqun79usLCwnT69GlVqlRJ3bt313fffZfiPpNu/AAzY8YMDRgwQEFBQYqOjtbff/+t+++/X/Pnz89yL/D06tq1qxYuXKj27durUKFCOnjwoJKSktSsWTPNnDlT/fr1S9dxnn76aa1YsULPPvusAgICdPjwYZ06dUqBgYHq0aOHvvvuO7OYmh2GDBmimTNn6qGHHpJhGAoLC5OLi4vatGmjhQsXOvwAd7NixYqZw2W3bNkyWxMre6/+hIQErVu3Tlu2bNHvv/+uXbt2pfhz6tQpc79mzZrpf//7n7p166by5cvr+PHjioiIUNmyZfXCCy/ou+++U2hoaIbjueeee7RkyRK99dZbqlWrls6dO6ejR4+qdOnS6tKli1asWJHiyekWLVpo8eLFatWqlQICAnTs2DGdOnVKwcHBGjRokFasWGHem+vXr3fYd+DAgfroo49Ur149JSYm6vjx46pUqZLGjRunESNGpBnnmDFj9OCDD8rV1VXHjx83PwukG3ORr1ixQp06dVLx4sV1+PBhxcTEKDQ0VO+++64WL16c5hzrAAAg/yFHJkcmR04bOTI5clbkxxzZx8fH/FwJCgrShQsXdPjwYfn4+JgF7DFjxki68ZT4zU9JZ/Zz/4knnlCPHj0UEBCgkydP6sCBA2an9MzkyJJUpUoVLVu2TC+//LJKly6tw4cPy2azqVu3bvr666/T7MRQs2ZNrVy5Uq+99ppCQkJ08uRJHTt2TMWLF9cTTzyhJUuWmEOsZ1VmX/9b5fRn980qVKigsWPHqmLFioqNjdWpU6dSjFgBIHMsBpMLAMBdoWXLloqKitKoUaPS/YUN2WfkyJE6ceKEpk2bltehANniqaee0v79+zV16tQ79twHAAAA8hty5LxFjgxnQ44MAM6FJ8ABALgDm82m33//XZUrV87rUIBssX//fu3fv1+lS5dW48aN8zocAAAAAHcRcmQ4G3JkAHA+zAEOAMAdvP/++4qOjtZLL72U16EAmRYZGSlJOn/+vIYMGSLpxnCRLi4ueRkWAAAAgLsMOTKcATkyADg3CuAAANzBc889p379+qlYsWJ5HQqQad9//70++eQT8+/BwcF68cUX8zAiAAAAAHcjcmQ4A3JkAHBuDIEOAMAdVKlShcQed70qVaqoRIkS8vLyUqtWrfTVV1/J3d09r8MCAAAAcJchR4YzIEcGAOdmMQzDyOsgAAAAAAAAAAAAAADIKp4ABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACn4JrXAdwtDMOQzcZo8QAAAAAAR1arRRaLJa/DcArk3gAAAACA1GQk96YAnk42m6ELF67kdRgAAAAAgHymWDFvubhQAM8O5N4AAAAAgNRkJPdmCHQAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4Bde8DgAAAAAAkJLNZlNyclJeh1Hgubi4ymql7zgAAAAAOCNy7/whu3NvCuAAAAAAkI8YhqFLly4oPj4ur0PB//P09FGRIsVksVjyOhQAAAAAQDYg985/sjP3pgAOAAAAAPmIPQH38fGTu3shiq55yDAMXb9+TXFxMZKkokX98zgiAAAAAEB2IPfOP3Ii96YADgAAAAD5hM2WbCbgPj5F8jocSHJ3LyRJiouLUeHCfgyHDgAAAAB3OXLv/Ce7c28ydwAAAADIJ5KTkyX9k/ghf7C/HswLBwAAAAB3P3Lv/Ck7c28K4AAAAACQzzD0Wv7C6wEAAAAAzodcL3/JzteDAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFFzzOgAAAAAAQN45eDBMkyZ9rrCwv2SzGapWrYZ69eqj6tVrSJJ27PhNM2dO19Gjh+Xi4qoGDRqpd+++KlmylCTp++9XasyY97Ro0XcqXbqMedyOHTuobt16+ve/R0iSGjeur5df7qWtW7coMjJCzz//krp166GoqJOaPHmCdu7cIcMwVKNGTfXp01/33hsoSbp27ZpmzJiidevWKCbmgsqXr6AuXV7WQw+1zt0LBQAAAABAJpF75y6eAAcAAACAAurKlTgNGtRXRYv6atSoD/Xee2OUkBCvQYNeV1xcnH788XsNHPi6AgICNGLEaPXtO1D79+/Vq6++rJiYCxlub9asGWrevKVGjBitJk2a6/z58+rZs6siIo5r0KC39Z//jNSlS5c0YEAfxcbGyjAMvfPOm1q+fKmeffYFffDBJ6pRo5b+8593tHr1qhy4IgAAAAAAZC9y79zHE+AAAAAAUEAdP35csbEx6tjxWdWqVUeSVKFCRa1YsURxcZc1adLnql+/gd57b6y5T61adfTii89o/vy56tOnX4baq1athl58sZv59y+++FzXriXos88myd+/uCQpKKiKXnmlm/bt26NChdy1bdtWvffeGLPXecOG9yshIV5TpkzUww+3kasraS0AAAAAIP8i9859PAEOAAAAAAXUvfcGytfXT2+//YY++mistmzZJH//4urTp78SEhIUHR2t1q0fddinbNl7VL16Tf3xx+8Zbi8wsLLD33fv/kM1atQyE3BJKl68uJYsWaXGjZvq9993yGKx6P77GyspKcn88+CDzRQdfV7Hjx/N3IkDAAAAAJBLyL1z391VrgcAAAAAZBsvLy9NmjRNs2bN0Lp1a7R8+RJ5eHiodetH1aZNO0lSsWL+Kfbz9/fXwYMHM9yen18xh79funTRYe6yW126dFGGYah166aprj9//pyCgkIyHAcAAAAAALmF3Dv3UQAHAAAAgAKsfPmKGj58pJKTk3XgwH798MP3Wr58sYoXD5AkXbgQnWKf6Oho+fr6SpIsFoskyWazOWwTH3/1jm37+BRWbGxsiuU7d+5QqVKl5eNTWJ6eXpowYUqq+5ctW+6ObQAAAAAAkNfIvXMXQ6ADAAAAQAG1fv06tW/fStHR5+Xi4qIaNWpp8OAh8vEprAsXLsjf319r1qx22Ccq6qT27dujWrVqS5K8vLwlSWfOnDa3OXEiXBcvXrxj+7Vr19H+/XsUE3PBXBYbG6vBg/vpl182qU6dUMXHX5VhGKpSpZr559ixo/rqq2lKTk7OjssAAAAAAECOIffOfTwBDiDXWa0WWa2WHDu+zWbIZjNy7PgAAADOombNOkpOtmno0MF68cVu8vb21k8/rdGVK3Fq2bKVqlWrrjFj3tN//jNUbdq018WLsfrqq6kqUqSonn22sySpXr375OHhoYkTP1XPnn109epVzZx5Y5s76dTpBa1e/T+98cbr6tLlZbm7F9KcOTPl719cbdq0k49PYdWpE6ohQwapW7ceqlChog4c2K8ZM6aqYcNGZk94OD9yCAAAAAB3K3Lv3GcxDIMMLx2Sk226cOFKXocB3PWsVov8/DxltbrkWBs2W7JiYuL5AQsAANx1EhOvKzr6lPz9S8vNzT1X2jxwYL+mTZussLADSkhI0L33Buqll/6lZs1aSJI2bPhJc+Z8rWPHjsjb21sNG96vXr1eU8mSpcxj/PbbVk2ZMlEREcdVqlRp/etfvfTDD/+Tv7+//v3vEZKkxo3r61//6qnu3V9xaD8iIlyTJn2uXbt2ys3NTXXrhqpPn/4qW/YeSVJ8fLymT5+s9et/UkzMBRUvXkKtWrVWt249VKhQoVy5Rnd6XYoV85aLCwOsZYfUcm+r1SJfX68cvcbJyTbFxl4lhwAAAAAKAHJv58+9KYCnEwVwIHu4ulrl5+et46umKT76VLYf39O/tCq176mYmCtKSrLdeQcAAIB8JC+ScNwZBfDck1rubc8hvpj/i6LO3nl4v4wqW6KoXnv+QXIIAAAAoIAg986fsjP3Zgh0AHkiPvqU4s+cyOswAAAAANwlos5eVHhUTF6HAQAAAADI5+iiDgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgF17wOAAAAAAAA5I3ExETNmTNHy5YtU3h4uLy8vFSzZk117dpVTZo0SbF9w4YNFRsbm+bx9uzZo0KFCuVgxAAAAAAA3B4FcAAAAAAACiDDMDRw4ECtXbtWRYoU0QMPPKBr167pt99+0+bNmzVgwAD17t3b3D4qKkqxsbEqWbKkGjRokOoxrVYGmgMAAAAA5C0K4AAAAAAAFEALFizQ2rVrVbVqVc2cOVN+fn6SpLCwMHXu3Fmff/65WrdurcDAQEnSgQMHJElt2rTRO++8k2dxAwAAAABwO3TNBgAAAACgAFqxYoUkaciQIWbxW5KqVKmiDh06yDAMbdq0yVy+f/9+SVL16tVzN1AAAAAAADKAJ8ABAAAA4C5gtVpktVpyvV2bzZDNZuR6u8h5s2bN0vHjxxUUFJRi3dWrVyVJLi4u5jL7E+A1atTInQABAAAAIJeRezsHCuAAAAAAkM9ZrRb5+nrJxSX3B/FKTrYpNvZqphLxNWt+0JIlC3Xs2BFJUoUKldS+/eN64omnsztMZEKhQoVUpUqVFMvXrVunH374QZ6enmrdurW5fP/+/fLw8NC+ffs0bNgwHT58WBaLRaGhoerTp49q166dm+EDAAAAQLYi93Ye+bYAnpiYqDlz5mjZsmUKDw+Xl5eXatasqa5du6pJkyYptm/YsKFiY2PTPN6ePXtUqFChHIwYAAAAAHKG1WqRi4tVX8z/RVFnL+Zau2VLFNVrzz8oq9WS4SR81aoV+uyzcerXb5Dq1AmVZGjHju0aP/5jxcRc0L/+1TNngkamXLx4UcOGDdORI0d07NgxlS5dWmPHjlWpUqUkSdHR0Tp79qwk6a233lKdOnXUsGFDHTp0SBs2bNCWLVs0btw4tW3bNi9PAwAAAAAyjdzbeeTLArhhGBo4cKDWrl2rIkWK6IEHHtC1a9f022+/afPmzRowYIB69+5tbh8VFaXY2FiVLFlSDRo0SPWYVivTnQMAAAC4u0WdvajwqJi8DiNdli1brPbtH9djjz1pLitfvqLOnTurb7+dX2CT8PwqMjJSa9asMf9usVh05MgR3X///ZL+mf/bz89PkydPVt26dSXdyN9nzZqlsWPHaujQoQoNDTWL5pnl6uqYv+fW0xd58ZQHAAAAgNxns91+iHNy77zl4mJJkRdmVL4sgC9YsEBr165V1apVNXPmTPn5+UmSwsLC1LlzZ33++edq3bq1AgMDJf0zD1mbNm30zjvv5FncAAAAAIAbrFaL9u7do0uXLqlIkSLm8s6du6pt2w6SpI4dO+jRR9ure/dXzPWvv95LpUuX0b//PUK7dv2ufv1eVe/effXNN7NVqlQpeXh4qnjxAL3//lhznz17/lSfPj20YMEy3XNPOf3yy2bNmPGlwsOPKyAgQK1aPaKuXbvL3d1dn3/+sX75ZZO+/XaFuX9cXJwee+wRvf/+GDVu3CwXrk7+U6lSJW3fvl2GYWjr1q0aPXq0Ro0apbi4OPXu3VtNmjTR5s2bZRiGSpYsae5nsVjUrVs37dixQ+vWrdPixYv1+uuvZzoOq9UiPz/v7DilDCtSxDNP2gUAAACQuxISXHT+vDVFoTWvO8Vmpn0XF6v27dujq1fjHHLvrl3/pccee1yurlY98UQ7tWvXQT17vmqu7927p0qXLqN3331PO3f+rtde66XXXuunOXNmqVSp0vL09FDx4gEaPfpDc5/du//UK6+8rEWLlqtcufLasmWTpk2bYubeDz/cRv/6Vw+5u7vr00/HacuWzVqy5Dtz/7i4y2rXrrVGjvxATZumzL1tNousVquKFvWSh4dHhq/FzfJlAXzFihs/RAwZMsQsfktSlSpV1KFDB82fP1+bNm0yC+D2nujVq1fP/WABAAAAACl07txV7747VE8++ahCQ+urVq26qlevvqpWra7ChQtn6Fhbt27Rl1/OVEJCvA4fPqSPP/5AV69ekZfXjULpmjWrVbNmbd1zTzn99ttWDR8+RP36DdR99zVSVNRJffrpf3XiRIRGjvxA7ds/rkWL5mv37j9Vu3YdSdJPP62Rt7e3GjV6MLsvw13D2/ufonPbtm1VqlQpvfDCC5o6daq6dOkib29vlShRIs39W7RooXXr1mnfvn1ZisNmM3Tp0lWHZS4u1lwpTl+6FK/kZFuOtwMAAAAgb12/fk02m03JyYaSkvJPDpCcbMtwPC+80EXvvjtUHTo8kiL3LlPG2zyezeZ4roZhyDBuLLPnQVu2bE6Re1+6dNnMvVev/p9q1qyt0qXv0ZYtW/TOO2+nyL3Dw8M1cuQHatv2cS1cOF87d+4yc+8ff/xRXl7eatDg/lTPMznZkM1m08WLVxUfn5xifZEinunuJJAvC+CzZs3S8ePHFRQUlGLd1as3EmEXFxdzmf0J8Bo1auROgAAAAACA22re/CF9+eVMLV68QNu2/aZff/1FklSuXHkNHfquatWqk+5jPf/8iypXrrwk6Z57yuvTT8dp48b1evTR9kpMTNTPP69T7959JUmzZ3+l9u0f0xNPdJQklS17j9588x316/eqTp36W4GBlRUSUlU//vg/Mwn/4YdVeuSRtnJ1zZcpcp4IDQ1V+fLlFRERofDw8Dt2OA8ICJAkxcfHZ7ntvPoBKjM/NgEAAAC4+yQnZ2ye7fzMGXPv7OiYkC+z+0KFCqlKlSoplq9bt04//PCDPD091bp1a3P5/v375eHhoX379mnYsGE6fPiwLBaLQkND1adPH9WuXTs3wwcAAAAASKpatbqGDx8pwzB07NhR/frrFi1atECDB/fXwoXL0n2ce+4pb/6/p6enWrR4SGvWrNajj7bXr7/+omvXEtSyZStJ0qFDYTpwYL9Wr15l7mMYN37cCA8/rtKly6hdu8c0deokDRjwps6ePaO9e/fozTcL1nRa8fHx+vzzz3X+/HmNGzdOFkvKOfDc3d0lSUlJSVq4cKF+/fVXtW/fXq1atUqxbWRkpCRlef5vAAAAAEDGkHunlC8L4De7ePGihg0bpiNHjujYsWMqXbq0xo4daybV0dHROnv2rCTprbfeUp06ddSwYUMdOnRIGzZs0JYtWzRu3Di1bds2L08DAAAAAAqMs2fP6JtvZunFF7spIKCELBaLAgMrKzCwsho3bqYXX3xGf/65K9V9k5OTUiwrVKiQw9/btu2g/v17Kzr6vNas+V5Nm7aQt7ePpBvDur3wQhc9+mj7FMfx9y8uSXr44TaaOPEzbd26WUePHlHVqtV0772Vs3radxUPDw8tW7ZMsbGx6tSpkxo0aOCwPjIyUsePH5e7u7uCgoK0ceNGrV69WvHx8SkK4IZhmFOZNW7cONfOAQAAAAAKMnLvtOX7AnhkZKTWrFlj/t1isejIkSO6//77Jf0z/7efn58mT56sunXrSrqRgM+aNUtjx47V0KFDFRoamuWe6K6uGZ98HoCj9M7PcLe0AwAAkJ1stpRP4d6N3N0LacWKpSpRoqQ6d+7qsM4+13SxYv5ydXVTXFycuc5ms+nvv6Mcep2npk6dUJUqVVo//PA/bd36iz744GNz3b33BioiIlz33FPOXPbHHzv17bfzNXjwEHl6eqpw4cJq2rS5Nmz4WcePHzWHbLsTFxeL0+SFFotFzz77rL788kuNGDFCX3/9tTnH9+nTp/XGG28oKSlJXbt2lZeXl5588klNmzZNGzZs0LfffqtOnTpJuvGaTZgwQXv27FHlypXVpk2bvDwtAAAAACgwnDX3zg75vgBeqVIlbd++XYZhaOvWrRo9erRGjRqluLg49e7dW02aNNHmzZtlGIZKlixp7mexWNStWzft2LFD69at0+LFi/X6669nOg6r1SI/P+/sOCUAuaBIEc+8DgEAACDDEhJcdP68NUWhNa8792W0/eLFi+mll7pp6tTJunr1ih566GF5e3vr+PFj+uqr6apXr77q1aun2rVr66ef1qhly5by9y+uefPmKC7uiiyWG+dvb9fFxZqi8NyuXQfNmvWVihYtqkaNGslqvbG+S5du+ve/39bMmVP1yCOP6uzZMxo7dqRKliylkiVLmPs/9tgTevPNgZIMtWnz6G0L2zabRVarVUWLesnDwyND1yI/69Onj3bt2qUdO3bokUceUb169ZSYmKg9e/bo6tWraty4sQYPHixJKleunEaMGKFhw4Zp+PDhmjt3ripWrKiwsDBFRESoePHimjBhgtzc3PL4rAAAAACgYPD19VXnzl01deokxcXFqWXLVvLy8lZ4+HF9/fV0hYbWV+3adVWr1o3cu1mzFipWzF8LFsx1KIjfzqOPtjdz7/r1/xk5rHPnLnr33aGaMeNLPfxwG507d1YffDBKJUuWNJ8Al6R27R7TkCFvyDCkVq0eyfZrkJZ8XwC391CQpLZt26pUqVJ64YUXNHXqVHXp0kXe3t5mL/XUtGjRQuvWrdO+ffuyFIfNZujSpatZOgaAGz9e5kZx+tKleCUn23K8HQAAgOx0/fo12Ww2JScbSkpK+V2mbImiuRqPvb3kZFuq8dxO9+6vqkyZe7Ry5XItWfKtEhISVLJkKbVs+bC6dHlZSUk29ez5mi5duqSBA/vKw8NTHTo8oYceeliGceP87d/nUmu/det2mj79Sz311DOy2W70YJekpk1b6r33xmrOnK80e/ZMFS5cRA8+2ES9e/dzOEbduvVVtGhR1axZW56e3rc9v+RkQzabTRcvXlV8fHKK9UWKeOZ5J4XM8PDw0MyZMzV79mytWLFC27Ztk6urq4KCgvTUU0/pmWeekYuLi7n9008/rUqVKmnatGnatWuXjh07phIlSuill15S79695e/vn4dnAwAAAADZI69y78zo2bO37rmnnFauXK5lyxalyL0lqVev13T58iUNHtzvpty7tTln9+20adNeX301VU899YzZ8VySWrRopffek+bM+Upz537tkHvfrH79Bipa1Fc1a9ZW4cKFM32eGWUx0nN2+Uzr1q0VERGhpUuXqnr16rfdduPGjerVq5caNWqkWbNmZbrN5GSbLly4kun9Adzg6mqVn5+3/pr1vuLPnMj243uWLK9qXd9VTMyVDP9ICwAAkNcSE68rOvqU/P1Ly83N3VxutVrk6+uVJ0XW5GSbYmOvyma761LH24qPj9fjj7fR6NH/1X33Nbzttmm9LnbFinnflQXw/Ci13NueQ7zz+fcKj4rJ9jYrlvXTmP5tySEAAACAAoLcO/fkVe6d754Aj4+P1+eff67z589r3LhxslhSzoHn7n7jpJOSkrRw4UL9+uuvat++vVq1apVi28jISEnK8vzfAAAAAJBXbDZDsbFXZbXm/hzhNpvhVAn4pUuXtGvXDv388zqVLFnSYQg3AAAAAEDBRe6dffI69853BXAPDw8tW7ZMsbGx6tSpkxo0cLwgkZGROn78uNzd3RUUFKSNGzdq9erVio+PT1EANwxDK1askCQ1btw4184BAAAAALKbsyXDeSU5OUkffDBSvr5+ev/9sal2ugYAAAAAFEzk3tkjr3PvfDdGm8Vi0bPPPitJGjFihM6ePWuuO336tN544w0lJSXp+eefl5eXl5588km5u7trw4YN+vbbb81tbTabxo8frz179qhy5cpq06ZNrp8LAAAAACB/8fMrph9+2KAFC5YpOLhKXocDAAAAAIDTyevcO989AS5Jffr00a5du7Rjxw498sgjqlevnhITE7Vnzx5dvXpVjRs31uDBgyVJ5cqV04gRIzRs2DANHz5cc+fOVcWKFRUWFqaIiAgVL15cEyZMkJubWx6fFQAAAAAAAAAAAAAgJ+XLAriHh4dmzpyp2bNna8WKFdq2bZtcXV0VFBSkp556Ss8884xcXFzM7Z9++mlVqlRJ06ZN065du3Ts2DGVKFFCL730knr37i1/f/88PBsAAAAAAAAAAAAAQG7IlwVwSXJzc1P37t3VvXv3dG0fGhqqyZMn53BUAAAAAAAAAAAAAID8Kt/NAQ4AAAAAAAAAAAAAQGZQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAADuAlarRa6u1lz/Y7VaMhVvx44d1LhxfS1YMDfV9ePGjVHjxvU1Y8aXmb4mHTt2yND+Gd0eAAAAAFCwkHun3sbdlnu75mnrAAAAAIA7slot8vPzlNXqkutt22zJiomJl81mZHhfV1dXrV//k5577kWH5UlJSdq48WdZLJlL8AEAAAAAyG7k3s6DAjgAAAAA5HNWq0VWq4uOr5qm+OhTudaup39pVWrfU1arJVNJeP36DbRt2686c+a0SpYsZS7ftet3eXh4qlAhj+wMFwAAAACATCP3dh4UwAEAAADgLhEffUrxZ07kdRjpVrVqdUVEhGv9+nUOPdF/+mmNWrZ8WD//vNZctm/fHk2dOkkHDx6Qq6urGjduptdeG6AiRYpIkuLi4vTZZ+O0ZctGubq6qUuXf6Vob+/e3ZoyZaIOHPhLvr6+evDBpnr11dfk7e2T8ycLAAAAAHAK5N53f+7NHOAAAAAAgBzTokUrrV//k/n3xMREbdq0Qa1atTaX/fXXPvXt+4oqVqykKVNmauTID/XXX/v0xhuvy2azSZLefXeIDhzYrw8//FSffjpRv/yyWadP/9Mj/8iRw+rfv4/uu6+hZs2ar//8Z7QOHjyggQNfl2FkvAc9AAAAAAB3C3JvRxTAAQAAAAA5pmXLh/XXX/t05sxpSdL27b/J19dXwcFVzG0WLPhGgYFBeuONt1Wp0r0KDa2vESPGKCzsL23b9qtOnAjX9u2/aeDAt1S7dl0FBYXoP/8ZJXd3d/MY8+fPVv3696lbtx4qV668ateuoxEjRuuvv/bpjz925vp5AwAAAACQW8i9HTEEOgAAAAAgx1SpUlVlypQ1h2L7+ec1atXqEYdtjh07ovvua+SwLDCwsnx8Cuvo0cNKSIiXJFWtWs1cX6yYv8qUKWv+/eDBgzp58oQefrhJihgiIsIVGlo/O08LAAAAAIB8g9zbEQVwAAAAAECOatnyYa1f/5OefPIZbd68SdOmzXJYbxiGLJaU+xmGTa6u/6StNpvjcGouLq4O27Zu/ai6dHk5xXF8ff2yeAYAAAAAAORv5N7/YAh0AAAAAECOatmylf76a59WrVqhMmXKqkKFig7r7723snbv/tNh2eHDh3TlyhVVrHivOWTb3r27zfWXL19WVFSk+fdKlQJ1/PhR3XNPOfOPzZas8eM/0dmzp3Ps3AAAAAAAyA/Ivf9BARwAAAAAkKOCgkJ0zz3lNHXqF3roodYp1j/77As6cuSQPvnkQ4WHH9cff+zU++8PU3BwiOrXb6CyZe9Rixat9Omn/9WOHdt07NgRjRz5rhITE81jPPfcizp06KDGjRuj48ePaf/+fRoxYphOnIjQPfeUz83TBQAAAAAg15F7/4Mh0AEAAADgLuHpX/quba9ly4c1a9YMtWqVMgmvUaOWPvroc02bNkUvv9xZXl7eatKkuXr3ft0chm3YsBH64ovP9Z//vCObzabHH39KsbExNx2jpj75ZKKmT5+s7t1fkqenh0JD79Nrrw2Qu7t7tp0HAAAAAMC5kXvf/bm3xTAM486bITnZpgsXruR1GMBdz9XVKj8/b/01633FnzmR7cf3LFle1bq+q5iYK0pKsmX78QEAAHJSYuJ1RUefkr9/abm5/ZM4Wq0W+fl5ymp1yfWYbLZkxcTEp5gDrCBJ63WxK1bMWy4uDLCWHVLLve05xDuff6/wqJg09sy8imX9NKZ/W3IIAAAAoIAg986fsjP35glwAAAAAMjnbDZDMTHxslotedJ2QU7AAQAAAAAFA7m386AADgAAAAB3AZJhAAAAAAByFrm3c2CMNgAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAOQzhsF8Y/kJrwcAAAAAOB9yvfwlO18PCuAAAAAAkE+4uLhIkq5fv5bHkeBm9tfDxcU1jyMBAAAAAGQVuXf+lJ25N9k7AAAAAOQTVquLPD19FBcXI0lydy8ki8WSx1EVXIZh6Pr1a4qLi5Gnp4+sVvqQAwAAAMDdjtw7f8mJ3JsCOAAAAADkI0WKFJMkMxFH3vP09DFfFwAAAADA3Y/cO//JztybAjgAAAAA5CMWi0VFi/qrcGE/JScn5XU4BZ6LiytPfgMAAACAkyH3zl+yO/emAA4AAAAA+ZDVapXV6p7XYQAAAAAA4LTIvZ0T3dgBAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcgmteBwAgf7FaLbJaLTl2fBcX+t0AAAAAAAAAAAAgZ1AAB2CyWi3y9fWiSA0AAAAAAAAAAIC7EgVwACar1SIXF6u+mP+Los5ezJE2aoeU0bNt6uTIsQEAAAAAAAAAAFCwUQAHkELU2YsKj4rJkWOXCSiSI8cFAAAAAAAAAAAAGOcYAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJyCa14HAAAAAAAA8kZiYqLmzJmjZcuWKTw8XF5eXqpZs6a6du2qJk2apNj+/PnzmjRpkjZv3qwzZ84oICBAbdq0UZ8+feTt7Z0HZwAAAAAAgCOeAAcAAAAAoAAyDEMDBw7Uhx9+qNOnT+uBBx5Q1apV9dtvv6lHjx6aPHmyw/Znz55Vp06d9M0338jDw0PNmzeXzWbT9OnT9fzzzysuLi6PzgQAAAAAgH9QAAcAAAAAoABasGCB1q5dq6pVq2rNmjX68ssv9fXXX2vx4sXy8fHR559/rqNHj5rbjxo1SlFRUerVq5dWrlyp8ePH68cff9Sjjz6qgwcPauLEiXl4NgAAAAAA3EABHAAAAACAAmjFihWSpCFDhsjPz89cXqVKFXXo0EGGYWjTpk2SpBMnTmjt2rUqXbq0+vXrZ27r7u6ukSNHytvbWwsXLlRCQkLungQAAAAAALegAA4AAAAAQAE0a9YsrVixQvfdd1+KdVevXpUkubi4SJI2bdokm82mZs2ayc3NzWHbwoULq1GjRrp69aq2bduW84EDAAAAAHAbFMABAAAAACiAChUqpCpVqphFbrt169bphx9+kKenp1q3bi1JOnTokCQpODg41WNVrlzZYTsAAAAAAPKKa14HkJbExETNmTNHy5YtU3h4uLy8vFSzZk117dpVTZo0SbH9+fPnNWnSJG3evFlnzpxRQECA2rRpoz59+sjb2zsPzgAAAAAAgLvDxYsXNWzYMB05ckTHjh1T6dKlNXbsWJUqVUqSdO7cOUlSQEBAqvvbl58/fz53AgYAAAAAIA35sgBuGIYGDhyotWvXqkiRInrggQd07do1/fbbb9q8ebMGDBig3r17m9ufPXtWzz33nKKiohQcHKzmzZtr7969mj59ujZv3qx58+bJx8cnD88IAAAAAID8KzIyUmvWrDH/brFYdOTIEd1///2S/hkS3cPDI9X97cvt22WFq6vjYHUuLrkzeF1utQMAAAAAyFn5sgC+YMECrV27VlWrVtXMmTPl5+cnSQoLC1Pnzp31+eefq3Xr1goMDJQkjRo1SlFRUerVq5cGDRokSbp+/breeustrV69WhMnTtSQIUPy7HwAAAAAAMjPKlWqpO3bt8swDG3dulWjR4/WqFGjFBcXp969e5vDpFssllT3NwzD4b+ZZbVa5OeXN6O4FSnimSftAgAAAACyV74sgK9YsUKSNGTIELP4LUlVqlRRhw4dNH/+fG3atEmBgYE6ceKE1q5dq9KlS6tfv37mtu7u7ho5cqQ2bdqkhQsXasCAAWn2VAcAAAAAoCC7eeqwtm3bqlSpUnrhhRc0depUdenSRV5eXpKka9eupbq/fbmnZ9aKyDaboUuXHJ8id3Gx5kpx+tKleCUn23K8HQAAAABAxhUp4pnukbvyZQF81qxZOn78uIKCglKssw+nZu99vmnTJtlsNjVr1kxubm4O2xYuXFiNGjXSTz/9pG3btqlZs2Y5HzwAAAAAAHe50NBQlS9fXhEREQoPD1eJEiUk/TMX+K3uNEd4RiQl5U0ROjnZlmdtAwAAAACyT76c4KpQoUKqUqWKWeS2W7dunX744Qd5enqqdevWkqRDhw5JkoKDg1M9VuXKlR22AwAAAACgoIuPj9cHH3ygwYMHpzlsubu7uyQpKSnJzLmPHj2a6raHDx+WJIWEhORAtAAAAAAApF++LIDf7OLFi+rbt68effRRvfbaaypWrJgmT56sUqVKSbpzL3P78vPnz+dOwAAAAAAA5HMeHh5atmyZVq5cqR07dqRYHxkZqePHj8vd3V1BQUFq0qSJJGn9+vVKTk522Pby5cvatm2bvLy8VK9evVyJHwAAAACAtOTLIdBvFhkZqTVr1ph/t1gsOnLkiO6//35J/wyJntb83vbl9u2ywtU13/cXALIkvXMn3A2c6VwAAACA7GaxWPTss8/qyy+/1IgRI/T111+bw5yfPn1ab7zxhpKSktS1a1d5eXnJy8tLLVq00Pr16zVu3Di9/fbbslgsun79ut59911duXJFL7/8snx8fPL4zAAAAAAABV2+L4BXqlRJ27dvl2EY2rp1q0aPHq1Ro0YpLi5OvXv3NodJt1gsqe5vH8otrSHd0stqtcjPzztLxwCQe4oU8czrEAAAAIB8rU+fPtq1a5d27NihRx55RPXq1VNiYqL27Nmjq1evqnHjxho8eLC5/fDhw7V//37NnDlTGzduVFBQkPbu3au///5b1atX1+uvv56HZwMAAAAAwA35vgDu7f1P0blt27YqVaqUXnjhBU2dOlVdunSRl5eXJOnatWup7m9f7umZtWKYzWbo0qWsP0UO5GcuLlanKRxfuhSv5GRbXocBAACAAqBIEc+7cgQiDw8PzZw5U7Nnz9aKFSu0bds2ubq6KigoSE899ZSeeeYZs9O5JJUtW1aLFy/WhAkTtGHDBq1fv15lypTRq6++qp49ezrk7wAAAAAA5JV8XwC/VWhoqMqXL6+IiAiFh4ebQ7TZ5wK/1Z3mCM+IpCSKacDdIjnZxnsWAAAAuAM3Nzd1795d3bt3T9f2JUuW1KhRo3I4KgAAAAAAMi/fdVGPj4/XBx98oMGDB6c5bLm7u7skKSkpScHBwZKko0ePprrt4cOHJUkhISE5EC0AAAAAAAAAAAAAIL/IdwVwDw8PLVu2TCtXrtSOHTtSrI+MjNTx48fl7u6uoKAgNWnSRJK0fv16JScnO2x7+fJlbdu2TV5eXqpXr16uxA8AAAAAAAAAAAAAyBv5rgBusVj07LPPSpJGjBihs2fPmutOnz6tN954Q0lJSXr++efl5eWlsmXLqkWLFjp58qTGjRtnPjV+/fp1vfvuu7py5Yqee+45+fj45Mn5AAAAAAAAAAAAAAByR76cA7xPnz7atWuXduzYoUceeUT16tVTYmKi9uzZo6tXr6px48YaPHiwuf3w4cO1f/9+zZw5Uxs3blRQUJD27t2rv//+W9WrV9frr7+eh2cDAAAAAAAAAAAAAMgN+bIA7uHhoZkzZ2r27NlasWKFtm3bJldXVwUFBempp57SM888IxcXF3P7smXLavHixZowYYI2bNig9evXq0yZMnr11VfVs2dPeXt75+HZAACQ+6xWi6xWS44d32YzZLMZOXZ8AAAAAAAAAAAyI18WwCXJzc1N3bt3V/fu3dO1fcmSJTVq1KgcjgoAgPzParXI19dLLi45N9NJcrJNsbFXKYIDAAAAAAAAAPKVfFsABwAAmWO1WuTiYtUX839R1NmL2X78siWK6rXnH5TVaqEADgAAAAAAAADIVyiAAwDgpKLOXlR4VExehwEAAIAMYjobAAAAAMg8CuAAAAAAAAD5BNPZAAAAAEDWUAAHAAAAAADIJ5jOBgAAAACyhgI4AAAAAABAPsN0NgAAAACQOTk3nhYAAAAAAAAAAAAAALmIAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAXXvA4AAAAAAAAAucvFJWefibDZDNlsRo62AQAAAACpoQAOAAAAAABQQBQt7CHDZlORIp452o7NlqyYmHiK4AAAAAByHQVwAAAAAACAAsLbw10Wq1XHV01TfPSpHGnD07+0KrXvKavVQgEcAAAAQK6jAA4AAAAAAFDAxEefUvyZE3kdBgAAAABku5yd8AkAAAAAAAAAAAAAgFxCARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU3DN6wAAAAAAAACAnGS1WmS1WnLs+DabIZvNyLHjAwAAAEg/CuAAAAAAAABwWlarRX5+nrJaXXKsDZstWTEx8RTBAQAAgHyAAjgAAAAAAACc1o2nv110fNU0xUefyvbje/qXVqX2PWW1WiiAAwAAAPkABXAAAAAAAAA4vfjoU4o/cyKvwwAAAACQw6x5HQAAAAAAAAAAAAAAANmBAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwCm45nUAAAAAAAAgb9hsNi1atEhLly7V4cOHlZiYqDJlyqhVq1Z65ZVXVKRIEYftGzZsqNjY2DSPt2fPHhUqVCiHowYAAAAAIG0UwAEAAAAAKIBsNpv69euntWvXysPDQ7Vq1ZKXl5f27Nmj6dOna+3atZo3b56KFy8uSYqKilJsbKxKliypBg0apHpMq5WB5gAAAAAAeYsCOAAAAAAABdCSJUu0du1aVaxYUdOnT1e5cuUkSXFxcRo8eLDWr1+vUaNG6bPPPpMkHThwQJLUpk0bvfPOO3kVNgAAAAAAt0XXbAAAAAAACqAlS5ZIkoYMGWIWvyXJx8dHY8aMkcVi0bp165SQkCBJ2r9/vySpevXquR8sAAAAAADpRAEcAAAAAIACyNfXV/fee6/q1KmTYl2xYsVUtGhRJSYmKiYmRtI/T4DXqFEjN8MEAAAAACBD8u0Q6DabTYsWLdLSpUt1+PBhJSYmqkyZMmrVqpVeeeUVFSlSxGH7hg0bKjY2Ns3j7dmzR4UKFcrhqAEAAAAAuDtMmTIlzXWRkZGKjY2Vm5ubihUrJunGE+AeHh7at2+fhg0bpsOHD8tisSg0NFR9+vRR7dq1cyt0AAAAAADSlC8L4DabTf369dPatWvl4eGhWrVqycvLS3v27NH06dO1du1azZs3T8WLF5ckRUVFKTY2ViVLllSDBg1SPabVysPuAAAAAACkh33e7+bNm6tQoUKKjo7W2bNnJUlvvfWW6tSpo4YNG+rQoUPasGGDtmzZonHjxqlt27Z5GDUAAAAAAPm0AL5kyRKtXbtWFStW1PTp0825yOLi4jR48GCtX79eo0aNMhNy+zBsbdq00TvvvJNXYQMAAAAAcNebM2eOVq1aJU9PTw0cOFDSP/N/+/n5afLkyapbt64kyTAMzZo1S2PHjtXQoUMVGhqqUqVKZal9V1fHDuwuLrnToT232rmT/BJHdsgv51LQ7iEAAACgoMu3BXBJGjJkiFn8liQfHx+NGTNGDzzwgNatW6eEhAR5eHiYiXj16tXzJF4AAAAAAJzB7NmzNWbMGFksFo0ePVqBgYGSpCZNmmjz5s0yDEMlS5Y0t7dYLOrWrZt27NihdevWafHixXr99dcz3b7VapGfn3eWzyMzihTxzJN2nVlBu6YF7XwBAACA/CpfFsB9fX117733qk6dOinWFStWTEWLFlVsbKxiYmJUunRp8wnwGjVq5HKkAAAAAADc/QzD0EcffaTp06fLxcVFo0ePVrt27cz1FotFJUqUSHP/Fi1aaN26ddq3b1+W4rDZDF26dNVhmYuLNVcKi5cuxSs52Zbj7dxJbp1vbiho1zS/nC8AAADgjIoU8Uz3qEv5sgA+ZcqUNNdFRkYqNjZWbm5uKlasmKQbQ7F5eHho3759GjZsmA4fPiyLxaLQ0FD16dNHtWvXzq3QAQAAAAC4qyQkJOjNN9/UmjVr5OHhoY8//litWrXK0DECAgIkSfHx8VmOJykpbwqIycm2PGvbWRW0a1rQzhcAAADIr+66yYns8343b95chQoVUnR0tM6ePauEhAS99dZbstlsatiwoXx9fbVhwwa98MIL+v777/M2aAAAAAAA8qG4uDh169ZNa9askb+/v2bPnp1q8XvhwoUaMGCA1q1bl+pxIiMjJSnL838DAAAAAJBV+fIJ8LTMmTNHq1atkqenpwYOHChJ5vzffn5+mjx5surWrSvpxvBts2bN0tixYzV06FCFhoZmORF3db3r+gsAGZLeoSPuBs50LkBG5db9z/sMAIC7W2Jionr16qU//vhDFSpU0IwZM1SuXLlUtz1z5oxWr16t+Pj4FAVywzC0YsUKSVLjxo1zPG4AAAAAAG7nrimAz549W2PGjJHFYtHo0aMVGBgoSWrSpIk2b94swzBUsmRJc3uLxaJu3bppx44dWrdunRYvXqzXX3890+1brRb5+Xln+TwA5A5nmTMPyM94nwEAcHebOHGidu7cqYCAAM2ZM8chp77Vk08+qWnTpmnDhg369ttv1alTJ0mSzWbThAkTtGfPHlWuXFlt2rTJrfABAAAAAEhVvi+AG4ahjz76SNOnT5eLi4tGjx6tdu3amestFotKlCiR5v4tWrTQunXrtG/fvizFYbMZunTpapaOAeR3Li5WpyloXboUr+Rk5l5DwZRb72XeZwAA3FCkiOddNzLKxYsXNWvWLEmSv7+/xo0bl+a2Q4YMUbly5TRixAgNGzZMw4cP19y5c1WxYkWFhYUpIiJCxYsX14QJE+Tm5pZbpwAAAAAAQKrydQE8ISFBb775ptasWSMPDw99/PHHqc5FdjsBAQGSpPj4+CzHk5TEj/zA3SI52cZ7FshhvM8AALh77d6928yTw8LCFBYWlua2ffv2VfHixfX000+rUqVKmjZtmnbt2qVjx46pRIkSeumll9S7d2/5+/vnVvgAAAAAAKQp3xbA4+Li1KNHD/3xxx/y9/fX5MmTVbt27RTbLVy4UL/++qvat2+fanE8MjJSkrI8/zcAAAAAAM6iadOmOnjwYIb3Cw0N1eTJk3MgIgAAAAAAske+LIAnJiaqV69e+uOPP1ShQgXNmDFD5cqVS3XbM2fOaPXq1YqPj09RADcMQytWrJAkNW7cOMfjBgAAAAAAAAAAAADknXw5SdnEiRO1c+dOBQQEaM6cOWkWvyXpySeflLu7uzZs2KBvv/3WXG6z2TR+/Hjt2bNHlStXVps2bXIjdAAAAAAAAAAAAABAHsl3T4BfvHhRs2bNkiT5+/tr3LhxaW47ZMgQlStXTiNGjNCwYcM0fPhwzZ07VxUrVlRYWJgiIiJUvHhxTZgwQW5ubrl1CgAAAAAAAAAAAACAPJDvCuC7d+9WfHy8JCksLExhYWFpbtu3b18VL15cTz/9tCpVqqRp06Zp165dOnbsmEqUKKGXXnpJvXv3lr+/f26FDwAAAAAAAAAAAADII/muAN60aVMdPHgww/uFhoZq8uTJORARAAAAAAAAAAAAAOBukC/nAAcAAAAAAAAAAAAAIKMogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApuOZ1AAAAAAAAACjYrFaLrFZLjhzbxYXnPwAAAICChAI4AAAAAAAA8ozVapGvrxeFagAAAADZggI4AAAAAAAA8ozVapGLi1VfzP9FUWcvZvvxa4eU0bNt6mT7cQEAAADkTxTAAQAAAAAAkOeizl5UeFRMth+3TECRbD8mAAAAgPyLsaUAAAAAAAAAAAAAAE4hSwXw5cuXa+fOnXfc7qefftL48eOz0hQAAAAAAAUSuTcAAAAAAOmXpQL4kCFD9O23395xuxUrVmjmzJlZaQoAAAAAgAKJ3BsAAAAAgPTL0Bzgy5cvV1JSksOyiIgILV68OM194uLi9Ouvv8rNzS1zEQIAAAAAUICQe+cNF5ecmyXOZjNksxk5dnwAAAAAwD8yVADfv3+/5syZI4vFIkmyWCzavXu3du/efdv9DMPQk08+mfkoAQAAAAAoIMi9c1fRwh4ybDYVKeKZY23YbMmKiYmnCA4AAAAAuSBDBfB+/fopLi7O/PuyZctUvnx51atXL819ChUqpIoVK+r555/PfJQAAAAAABQQ5N65y9vDXRarVcdXTVN89KlsP76nf2lVat9TVquFAjgAAAAA5IIMFcALFy6ssWPHmn9ftmyZ6tSp47AMAAAAAABkHrl33oiPPqX4MyfyOgwAAAAAQBZlqAB+q7CwsOyKAwAAAAAApILcGwAAAACA9MtSAfxm0dHRio+Pl2GkPZxXuXLlsqs5AAAAAAAKHHJvAAAAAABuL8sF8K+//lrTpk3ThQsXbrudxWLRX3/9ldXmAAAAAAAocMi9AQAAAABInywVwJcuXaoPPvhAkuTu7i4/Pz+5uLhkS2AAAAAAAIDcGwAAAACAjMhSAXzu3LmyWCwaNmyYOnXqJDc3t+yKCwAAAAAAiNwbAAAAAICMyFIB/OjRo6pTp446d+6cXfEAAAAAAICbkHsDAAAAAJB+WSqAe3p6ys/PL7tiAQAAAAAAt8jJ3Ntms2nRokVaunSpDh8+rMTERJUpU0atWrXSK6+8oiJFijhsf/78eU2aNEmbN2/WmTNnFBAQoDZt2qhPnz7y9vbOkRgBAAAAAMgIa1Z2btCggfbs2aP4+PjsigcAAAAAANwkp3Jvm82mfv366d1331VYWJiqV6+uBx54QJcuXdL06dPVsWNHnT9/3tz+7Nmz6tSpk7755ht5eHioefPmstlsmj59up5//nnFxcVla3wAAAAAAGRGlgrgAwcOVHx8vN555x1dvHgxu2ICAAAAAAD/L6dy7yVLlmjt2rWqWLGiVq1apTlz5ujLL7/U2rVr1aJFC0VERGjUqFHm9qNGjVJUVJR69eqllStXavz48frxxx/16KOP6uDBg5o4cWK2xQYAAAAAQGZlaQj0BQsWqFatWvrhhx/MpLlIkSKyWCwptrVYLJo7d25WmgMAAAAAoMDJqdx7yZIlkqQhQ4aoXLly5nIfHx+NGTNGDzzwgNatW6eEhASdPXtWa9euVenSpdWvXz9zW3d3d40cOVKbNm3SwoULNWDAAHl4eGTxjAEAAAAAyLwsFcBnzZpl/n9SUpKOHDmS5rapJea3wzxkAAAAAADkXO7t6+ure++9V3Xq1EmxrlixYipatKhiY2MVExOjTZs2yWazqVmzZnJzc3PYtnDhwmrUqJF++uknbdu2Tc2aNUt3DAAAAAAAZLcsFcBnz56dXXE4sM9DtnbtWnl4eKhWrVry8vLSnj17NH36dK1du1bz5s1T8eLFJd2Yh+y5555TVFSUgoOD1bx5c+3du1fTp0/X5s2bNW/ePPn4+ORIrAAAAAAA5KScyr2nTJmS5rrIyEjFxsbKzc1NxYoV06FDhyRJwcHBqW5fuXJl/fTTTzp06BAFcAAAAABAnspSAbxBgwbZFYeDm+chmz59ujkUW1xcnAYPHqz169dr1KhR+uyzzyQ5zkM2aNAgSdL169f11ltvafXq1Zo4caKGDBmSI7ECAAAAAJCTcir3vh17vt28eXMVKlRI586dkyQFBASkur19+fnz53MlPgAAAAAA0pKlAvjNEhMTdeDAAZ06dUrFixdXvXr19Pfff6tMmTIZPhbzkAEAAAAAkFJ25t5pmTNnjlatWiVPT08NHDhQknT16lVJSjOvti+3b5cVrq5Wh7+7uFjT2PLukt7zcJbzlQreOTvLeQAAAAB3uywXwJOSkvTFF1/om2++0eXLlyVJHTp0UL169fT222/rypUr+vTTT1WhQoV0H5N5yAAAAAAA+EdO5N6pmT17tsaMGSOLxaLRo0crMDBQkuTi4iIp7TnGDcNw+G9mWa0W+fl5Z+kY+VWRIp55HUKuK2jnXNDOFwAAAMivslQAT0pK0iuvvKKtW7fK1dVVNWrU0N69e831V65c0V9//aXOnTtr+fLl5pzdd8I8ZAAAAAAA3JBTuffNDMPQRx99pOnTp8vFxUWjR49Wu3btzPVeXl6SpGvXrqW6v325p2fWCoA2m6FLlxyfIndxsTpFYfHSpXglJ9vuuJ2znK9U8M45vecLAAAAIOOKFPFM96hLWSqAf/PNN/rll1/UuHFjjRkzRiVKlFCVKlXM9fPmzdOIESO0fPlyzZgxQ2+//XZWmpPEPGQAAAAAgIIlp3PvhIQEvfnmm1qzZo08PDz08ccfq1WrVg7blChRQpLMHPxWd8rNMyIpyTkLiMnJNqc9t7QUtHMuaOcLAAAA5FdZKoAvW7ZMvr6++vzzz+XtnXKIMg8PD40cOVJbt27Vpk2bslwAz2/zkAHOxpnmK3OmcwEyKrfuf95nAADkjpzMvePi4tSjRw/98ccf8vf31+TJk1W7du0U29lHXTt69Giqxzl8+LAkKSQkJN1tAwAAAACQE7JUAA8PD1fjxo1TTcDt3NzcVKtWLf3yyy9ZaYp5yABkiDMMnwfkd7zPAADIHTmVeycmJqpXr176448/VKFCBc2YMUPlypVLddsmTZpIktavX6+hQ4eaubgkXb58Wdu2bZOXl5fq1auX7vYBAAAAAMgJWSqAu7q66tKlS3fcLjY2Vq6umWsqP89DBjgbZ5l3TWLuNRRsufVe5n0GAMANGZmHLDNyKveeOHGidu7cqYCAAM2ZM0clS5ZMc9uyZcuqRYsWWr9+vcaNG6e3335bFotF169f17vvvqsrV67o5Zdflo+PT7rbBwAAAAAgJ2SpAF61alXt3btXUVFRKlu2bKrbREZGau/evapVq1aGj888ZAAyi7nXgJzH+wwAgNyRE7n3xYsXNWvWLEmSv7+/xo0bl+a2Q4YMUfHixTV8+HDt379fM2fO1MaNGxUUFKS9e/fq77//VvXq1fX6669n/OQAAAAAAMhmWeqi/vzzzys+Pl59+vTRX3/9lWL9wYMH1bdvX12/fl0dO3bM0LHj4uLUrVs3rVmzRv7+/po9e3aK4rfEPGQAAAAAAOeWE7n37t27FR8fL0kKCwvTypUr0/xz5coVSTeeAl+8eLGeeeYZXb58WevXr5e7u7teffVVzZ49+7ZDtAMAAAAAkFuy9AR427ZttXXrVi1evFhPP/20ChcuLIvFos2bN6t58+Y6c+aMDMNQu3bt9Pjjj6f7uMxDBgAAAADADTmRezdt2lQHDx7McCwlS5bUqFGjMrwfAAAAAAC5JcuTlI0aNUqjRo1SxYoVdenSJRmGoZiYGJ0+fVqlS5fW0KFD9dFHH2XomLfOQ5ZW8Vv6Zx6ykydPaty4cTIMQ5Ic5iF77rnnmIcMAAAAAHDXyoncGwAAAAAAZ5SlJ8DtOnbsqI4dO+rcuXM6deqUbDabAgIC0pyb7HaYhwwAAAAAgJSyM/cGAAAAAMBZZUsBPCYmRocPH1aDBg0UEBAgSTpy5Ii++eYbtW7d2lyWHrfOQxYWFpbmtn379lXx4sXNecgmTJigDRs2aP369SpTpoxeffVV9ezZk3nIAAAAAAB3vezMvQEAAAAAcFZZLoB/++23GjlypIKCgrR06VJz+e7duzVy5Eh9/PHHGjVqlNq2bZuu4zEPGQAAAAAAjrI79wYAAAAAwFllaQ7wX375Re+++65cXV3VqFEjh3X16tVT9+7dZRiGBg8erN9++y1LgQIAAAAAUBCRewMAAAAAkH5ZKoBPnz5drq6umj17tt566y2HdRUrVtSbb76p2bNny2KxaNq0aVkKFAAAAACAgojcGwAAAACA9MtSAfzQoUNq2LChatasmeY2NWvWVL169fTnn39mpSkAAAAAAAokcm8AAAAAANIvSwXw+Ph4eXp63nE7X19fJSUlZaUpAAAAAAAKJHJvAAAAAADSL0sF8IoVK2rHjh2Ki4tLc5tr165p586dKl++fFaaAgAAAACgQCL3BgAAAAAg/bJUAH/sscd08eJF9evXT+fPn0+xPiYmRm+88YYuXLigDh06ZKUpAAAAAAAKJHJvAAAAAADSzzUrO3fu3Fnff/+9tm7dqubNm6tGjRoqXbq0JOn06dPav3+/rl+/rlq1aqlbt27ZES8AAAAAAAUKuTcAAAAAAOmXpQK4m5ubZs6cqU8//VRLly7Vn3/+qT///NNcX6hQIT3//PN688035e7untVYAQAAAAAocMi9AQAAAABIvywVwCXJ29tbw4YN01tvvaV9+/bp3LlzSk5OVkBAgKpXry4vL6/siBMAAAAAgAKL3BsAAAAAgPTJUgG8S5cuqlixot5//325u7srNDQ0u+ICAAAAAAAi9wYAAAAAICOyVADfs2ePrFZrdsUCAAAAAABuQe4NAAAAAED6ZSmD9vb2lmEY2RULAAAAAAC4Bbk3AAAAAADpl6UCeO/evbV9+3Z99dVXun79enbFBAAAAAAA/h+5NwAAAAAA6ZelIdAjIyNVoUIFjRs3Tp988okqVKigIkWKpDo0m8Vi0dy5c7PSHAAAAAAABQ65NwAAAAAA6ZelAvisWbPM/09KStLRo0fT3NZisWSlKQAAAAAACiRybwAAAAAA0i9LBfDZs2dnVxwAAAAAACAV5N4AAAAAAKRflgrgDRo0yK44AAAAAABAKsi9AQAAAABIvywVwG+WmJioAwcO6NSpUypevLjq1aunv//+W2XKlMmuJgAAAAAAKNDIvQEAAAAA+D/27jzO5nqP4/j7nBnM2PfsZYnRQvalpIyEwkyIKClrWaLrhlJyiUjcukS4FIoUM9YYe9nHOmWrUBj7NjRmjJk59w+Pmds0g9nO+Z3f7/d6Ph73cev3+845n2+/s71/n99yZ1lugMfHx2vy5Mn66quvdO3aNUlSq1atVKtWLQ0ePFjR0dGaOHGi7r333iwXCwAAAACAHZG9AQAAAABIH2dW/jg+Pl69evXS1KlTFRMTo4ceekgulyt5fXR0tA4cOKDOnTvrwoULWS4WAAAAAAC7IXsDAAAAAJB+WWqAf/XVV9q8ebMeffRRrV27Vt9++22K9V9//bWCgoJ04cIF/fe//81SoQAAAAAA2BHZGwAAAACA9MtSAzwkJEQFCxbUJ598ouLFi6da7+fnp5EjR6p48eL64YcfsvJUAAAAAADYEtkbAAAAAID0y1ID/Pfff1ft2rWVJ0+e247JkSOHqlWrplOnTmXlqQAAAAAAsCWyNwAAAAAA6ZelBrivr6+uXr1613FXrlyRr69vVp4KAAAAAABbInsDAAAAAJB+WWqAV61aVT/99JMiIyNvO+bEiRP66aefFBAQkJWnAgAAAADAlsjeAAAAAACkX5Ya4C+88IJiYmL0+uuv68CBA6nWHz58WP369VNcXJzatWuXlacCAAAAAMCWyN4AAAAAAKRflq6N1rJlS23ZskXfffed2rZtq3z58snhcOjHH3/UE088obNnz8rlcumZZ55RmzZtsqtmAAAAAABsg+wNAAAAAED6ZfnmYKNGjdIjjzyi//73vzp27Jgk6fLly5KkUqVK6eWXX1aXLl2y+jQAAAAAANgW2RsAAAAAgPTJcgNcktq1a6d27drp/PnzOn36tBITE1WsWDGVLl06Ox4eAAAAAADbI3sDAAAAAHB3GW6AJyQk6Ouvv1ZYWJguXLigUqVKqVWrVgoKClKxYsVUrFgxd9QJAAAAAIBtkL0BAAAAAMicDDXA4+Li1K1bN+3cuVMul0uSdOzYMW3ZskXr16/XJ5984pYi7czpdMjpdLjt8RMTXUpMdLnt8QEAAAAAGUP2BgAAAAAg8zLUAJ8/f77Cw8N1zz33qEePHipbtqx++eUXzZgxQ2FhYVq8eLHatGnjrlptx+l0qFAhfzmdPm57jsTEBF2+HEMTHAAAAAC8BNkbAAAAAIDMy1ADfOXKlfLz89O8efNUqlQpSVLjxo3VqFEjBQcHa/ny5YTwbHTr7G8fHVs2XTEXT2f74/sXKanyz/aQ0+mgAQ4AAAAAXoLsDQAAAABA5mWoAX7kyBHVrl07OYAnCQgI0IMPPqhDhw5la3G4JebiacWcPW50GQAAAAAADyB7AwAAAACQec6MDI6OjlaBAgXSXFemTBlduXIlO2oCAAAAAMC2yN4AAAAAAGRehhrg8fHx8vFJ+37UOXLk0M2bN7OlKAAAAAAA7IrsDQAAAABA5mWoAQ4AAAAAAAAAAAAAgLeiAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS/DN6B+sWbNGgYGBqZZfvnxZktJcJ0kOh0Nr1qzJ6NMBAAAAAGA7ZG8AAAAAADInww3w69ev6/r167ddHxkZmeZyh8OR0acCAAAAAMCWyN4AAAAAAGROhhrgs2fPdlcdAAAAAABAZG8AAAAAALIiQw3wunXruqsOAAAAAAAgsjcAAAAAAFnhNLoAAAAAAAAAAAAAAACyAw1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFgCDXAAAAAAAAAAAAAAgCXQAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJfgaXQAAAAAAAPAOoaGhGjx4sGbNmqWGDRumWl+vXj1duXLltn8fERGhXLlyubFCAAAAAADujAY4AAAAAABQRESERo4cedv1kZGRunLliu655x7VrVs3zTFOJxeaAwAAAAAYyzQNcI5CBwAAAADAPdatW6fBgwfrzz//vO2YgwcPSpKaN2+ut99+21OlAQAAAACQIaZogHMUOgAAAAAA2e/s2bP697//rZCQEPn5+alo0aK6cOFCmmP3798vSXrwwQc9WSIAAAAAABni9Q1wjkIHAAAAAMA9Jk6cqJCQED300EMaPXq0Ro0addsGeFL2fuihhzxZIgAAAAAAGeK1DXCOQgcAAAAAwL0qVKigsWPHqnXr1ne9ctr+/fvl5+enn3/+WcOGDdOvv/4qh8OhmjVr6vXXX1f16tU9VDUAAAAAALfntdcFnzhxohYtWqQHH3xQ33zzjSpUqHDbsRyFDgAAAABAxvXs2VNBQUF3bX5fvHhR586dU2xsrN566y0lJiaqXr16KliwoDZs2KBOnTppxYoVHqoaAAAAAIDb89ozwDkKHQAAAAAA75B05bVChQppypQpqlGjhiTJ5XLpyy+/1JgxYzR06FDVrFlTJUqUyNJz+fqm3Afg4+O1x+5nSHrnYZX5Svabs1XmAQAAAJid1zbAe/bsma5xSUehS9Jbb72lRx55RPXq1dMvv/yiDRs2aNOmTfroo4/UsmVLd5YLAAAAAIBlNWrUSD/++KNcLpfuueee5OUOh0Ndu3ZVeHi41qxZo++++059+/bN9PM4nQ4VKpQnO0r2Ovnz+xtdgsfZbc52my8AAADgrby2AZ5eRh6F7m6eOnKYI5SRxEqvBSvNBcgovj8AAEB2czgcKl68+G3XP/nkk1qzZo1+/vnnLD1PYqJLV69eT7HMx8dpicbi1asxSkhIvOs4q8xXst+c0ztfAAAAABmXP79/uvdJm74BzlHoWWeFkAn8Ha9rwP14nwEAgCTFihWTJMXExGT5seLjrdlATEhItOzcbsduc7bbfAEAAABvZfoGuJFHobubp46A5ghlJLHKUfcSr2vYG98fAAB4VkaOQjerb775Rlu3btWzzz6rpk2bplp/4sQJScryldcAAAAAAMgq0zfA74aj0O+OI5RhRbyuAffjfQYAgH2cPXtW33//vWJiYlI1wF0ulxYvXixJeuyxx4woDwAAAACAZKY/RP2bb77RgAEDtGbNmjTXcxQ6AAAAAABZExwcrJw5c2rDhg1asGBB8vLExER9+umnioiIUKVKldS8eXMDqwQAAAAAwAJngHMUOgAAAAAA7lW2bFm9//77GjZsmN59913NnTtX9913nw4dOqQ//vhDRYsW1X/+8x/lyJHD6FIBAAAAADZn+jPAOQodAAAAAAD3a9u2rb766is1adJEZ8+e1bp16xQfH6+XXnpJS5YsUYUKFYwuEQAAAAAA858BzlHoAAAAAABkjzlz5txxfc2aNTVlyhQPVQMAAAAAQMaZ/gxwiaPQAQAAAAAAAAAAAAAmOgOco9ABAAAAAAAAAAAAAHdiiTPAAQAAAAAAAAAAAACgAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEvwNboAAABgTj4+7j2OLjHRpcREl1ufAwAAAAAAAABgLTTAAQBAhhTI5ydXYqLy5/d36/MkJibo8uUYmuAAAAAAAAAAgHSjAQ4AADIkj19OOZxOHVs2XTEXT7vlOfyLlFT5Z3vI6XTQAAcAAAAAAAAApBsNcAAAkCkxF08r5uxxo8sAAAAAAAAAACAZDXAAAAAAAADAYpxOh5xOh9sePzHRxdWaAAAA4JVogAMAAAAAAAAW4nQ6VKiQv5xOH7c9R2Jigi5fjqEJDgAAAK9DAxwAAAAAAACwkFtnf/vo2LLpirl4Otsf379ISZV/toecTgcNcAAAAHgdGuAAAAAAAACABcVcPK2Ys8eNLgMAAADwKKfRBQAAAAAAAAAAAAAAkB1ogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJ8jS4AAAAAADzB6XTI6XS49TkSE11KTHS59TkAAAAAAABwezTAAQAAAFie0+lQoUL+cjp93Po8iYkJunw5hiY4AAAAAACAQWiAAwAAALC8W2d/++jYsumKuXjaLc/hX6Skyj/bQ06ngwY4AAAAAACAQWiAAwAAALCNmIunFXP2uNFlAAAAAAAAwE2cRhcAAAAAAAAAAAAAAEB2oAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAABAkhQaGqoqVapoy5Ytaa6/cOGC/vWvf+mpp55StWrVFBgYqI8++kjR0dEerhQAAAAAgLTRAM8ip9MhX1+nW/7n48PmAQAAAAB4RkREhEaOHHnb9efOndPzzz+vr776Sn5+fnriiSeUmJioGTNm6IUXXtCff/7pwWoBAAAAAEibr9EFpFdoaKgGDx6sWbNmqWHDhqnWX7hwQZ999pl+/PFHnT17VsWKFVPz5s31+uuvK0+ePG6pyel0qGDB3DSqAQAAAACmtm7dOg0ePPiOTexRo0YpMjJSPXv21D/+8Q9JUlxcnN566y19//33mjRpkoYMGeKpkgEAAAAASJMpGuDpOQq9Y8eOioyMVOXKlfXEE0/op59+0owZM/Tjjz/q66+/Vt68ebO9LqfTIR8fpybP26zIc1HZ/vjVq5RSh+aPZPvjAgAAAAAgSWfPntW///1vhYSEyM/PT0WLFtWFCxdSjTt+/LhWr16tkiVLqn///snLc+bMqZEjR+qHH37QN998owEDBsjPz8+TUwAAAAAAIAWvb4Cb4Sj0yHNR+j3ycrY/bqli+bP9MQEAAAAASDJx4kSFhITooYce0ujRozVq1Kg0G+A//PCDEhMT1bhxY+XIkSPFunz58ql+/fpau3attm/frsaNG3uqfAAAAAAAUvHaa3efPXtWQ4cO1euvv66bN2+qaNGiaY6721HoefLk0TfffKPY2FhPlQ4AAAAAgClUqFBBY8eO1bfffqsqVarcdtwvv/wiSapcuXKa6ytVqpRiHAAAAAAARvHaBvjEiRO1aNEiPfjgg/rmm29UoUKFNMel5yj069eva/v27Z4oGwAAAAAA0+jZs6eCgoLkdN5598D58+clScWKFUtzfdLytM4eBwAAAADAk7z2EuhJR6G3bt36jkE8PUehr127Vr/88guXYQMAAAC8mNPpkNPpcMtj+/h47bG/gClcv35dkm57f++k5UnjssLXN+X71Srv3/TOwyrzlew3Z2+ah6dq8aY5AwAAAEm8tgHes2fPdI3jKHQAAADA/JxOhwoWzM2OdMBL+fj4SJIcjrQPUnG5XCn+P7OcTocKFcqTpcfwVvnz+xtdgsfZbc52m69kzzkDAADA+3ltAzy9OAo966wyD2SdlV4LVpoLkFFWev1baS4A7szHxykfH6cmz9usyHNR2f741auUUofmj2T746aFzy5YUe7cuSVJN27cSHN90nJ//6w1wxITXbp6NWV+9/FxWqLJdvVqjBISEu86zirzlew35/TO1xM89d/Um+YMAAAAa8uf3z/d+1xM3wDnKPSss0LIBP6O1zVgDbyXAfuJPBel3yMvZ/vjliqWP9sf83b47IIVFS9eXNL/r8L2d3e7OltGxMdbs5mWkJBo2bndjt3mbLf5SvacMwAAALyf6RvgHIWedRytiyRWeU1LvK5hb7yXAZgRn10ws4wchW5WlStXliQdOXIkzfW//vqrJKlKlSoeqwkAAAAAgLSYvgHOUehZx9G6sCJe14A18F4GYEZ8dsGKGjVqJElav369hg4dmnw1Nkm6du2atm/frty5c6tWrVpGlQgAAAAAgCTJ9IeocxQ6AAAAAADuVbp0aT355JM6efKkPvroo+TbjMXFxem9995TdHS0OnbsqLx58xpcKQAAAADA7kx/BjhHoQMAAAAA4H7vvvuu9u/fr1mzZmnjxo26//779dNPP+nUqVN68MEH1bdvX6NLBAAAAADA/GeAcxQ6AAAAAADuV7p0aX333Xdq3769rl27pvXr1ytnzpzq3bu3Zs+erTx58hhdIgAAAAAA5j8DXOIodAAAAAAAssOcOXPuuP6ee+7RqFGjPFQNAAAAAAAZZ/ozwCWOQgcAAAAAAAAAAAAAmOgMcI5CBwAAAAAAAAAAAADciSXOAAcAAAAAAAAAAAAAgAY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACzB1+gCgL9yOh1yOh1ufY7ERJcSE11ufQ4AAAAAAIDbcff+Dx8fznkBAACAfdEAh9dwOh0qVMhfTqePW58nMTFBly/H0AQHAAAAAAAe53Q6VLBgbprUAAAAgJvQAIfXuHX0s4+OLZuumIun3fIc/kVKqvyzPeR0OmiAAwAAAAAAj3M6HfLxcWryvM2KPBfllueoXqWUOjR/xC2PDQAAAHg7GuDwOjEXTyvm7HGjywAAAAAAAHCbyHNR+j3yslseu1Sx/G55XAAAAMAMuNYSAAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBK4BzgyxOl0yOl0uOWxfXw4HgMAAAAAAAAAAABA5tEAR7o5nQ4VLJibRjUAAAAAAAAAAAAAr0QDHOnmdDrk4+PU5HmbFXkuKtsfv3qVUurQ/JFsf1wAAAAAAAAAAAAA9kADHBkWeS5Kv0dezvbHLVUsf7Y/JgAAAAAAAAAAAAD74FrWAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBF+jCwAAAAAAAOaxbt06vfbaa7dd37JlS02cONGDFQEAAAAA8H+WaoATwgEAAAAAcK8DBw5IkurUqaMSJUqkWl+jRg1PlwQAAAAAQDJLNcAJ4QAAAAAAuFdS9h42bJgCAgIMrgYAAAAAgJQs2QAnhAMAAAAA4B4HDhxQrly5VKlSJaNLAQAAAAAgFafRBWQnQjgAAAAAAO5z+fJlnT59WlWqVJGvr6WOqQcAAAAAWIRl0mpSCK9WrRohHAAAAAAAN0i68lrJkiX10Ucfae3atTp16pSKFi2qp59+Wr1791aBAgUMrhIAAAAAYGeWOQP87yG8efPmqlatmpo0aaKxY8cqKirK4AoBAAAAADC3/fv3S5JWrVqlefPm6b777lPNmjUVFRWlmTNn6vnnn9f58+cNrhIAAAAAYGeWOVX6ryE8T548qlu3rkqUKKGffvpJM2fO1Lp16zR37lwVK1bM4EoBAAAAADCngwcPSpKeeOIJjR8/Xvny5ZMkXbp0SQMHDtS2bdv07rvvaurUqZl+Dl/flMfq+/hY49j99M7DKvOV7Ddnu81XstZcAAAAYB2WaYATwjOPgIYkVvrvYqW5ABllpde/leYC4M6s9H630lyAvxs7dqzeeOMNlShRQn5+fsnLCxcurHHjxql58+Zav369Tp48qTJlymT48Z1OhwoVypOdJXuN/Pn9jS7B4+w2Z7vNV7LnnAEAAOD9LNMAJ4Rnnh3Dih3nbDdsY8AaeC8DMCM+u2BlOXPm1H333ZfmunvuuUcPPPCAdu7cqf3792cqeycmunT16vUUy3x8nJZ4X129GqOEhMS7jrPKfCX7zdlu85XSP2cAAAAgq/Ln90/3SQeWaYATwjOPgIYkbGPAGngvAzAjPrtgZhkJ4VZXtGhRSVJMTEymHyM+3prvn4SERMvO7XbsNme7zVey55wBAADg/SzTAL8bQvjt2TGs2HHOdsM2BqyB9zIAM+KzC1YVFxenESNG6PLlyxo/frxy586dasyJEyckSSVKlPB0eQAAAAAASJIscYh6XFyc3nnnHb3++uu6fv16mmMI4QAAAAAAZF7OnDm1ZcsWrV27Vj/88EOq9YcOHdKhQ4eUL18+PfLII54vEAAAAAAAWaQBTggHAAAAAMD9OnToIEn68MMPdfz48eTlFy5c0Ntvv62EhAR169ZNfn5+RpUIAAAAALA5y1wCvUOHDpo4caI+/PBDPfDAAypXrpwkQjgAAAAAANnl1VdfVXh4uDZt2qRnn31WtWvXVs6cObV9+3Zdv35dTz/9tHr27Gl0mQAAAAAAG7NMA5wQDgAAAACAe+XMmVPTpk3TV199pZCQEO3atUtOp1P333+/2rdvr3bt2snhcBhdJgAAAADAxizTACeEAwAAAADgfj4+PurSpYu6dOlidCkAAAAAAKRimQa4RAgHAAAAAAAAAAAAADtzGl0AAAAAAAAAAAAAAADZgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJ8jS4AAAArcDodcjodbnv8xESXEhNdbnt8AAAAAAAAAACsgAY4AABZ5HQ6VKiQv5xOH7c9R2Jigi5fjqEJDgAAAAAAAADAHdAABwAgi26d/e2jY8umK+bi6Wx/fP8iJVX+2R5yOh00wAEAAAAAAAAAuAMa4AAAZJOYi6cVc/a40WUAAAAAAAAAAGBbTqMLAAAAAAAAAAAAAAAgO9AABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFgCDXAAAAAAAAAAAAAAgCXQAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl+BpdAAAAAAAAAAAASMnpdMjpdLj1ORITXUpMdLn1OQAA8DQa4AAAAAAAAAAAeBGn06FChfzldPq49XkSExN0+XIMTXAAgKXQAAcAAAAAAAAAwIvcOvvbR8eWTVfMxdNueQ7/IiVV/tkecjodNMABAJZCAxy4C3dfaojLDAEAAAAAAABIS8zF04o5e9zoMgAAMBUa4MAdOJ0OFSyYWz4+Trc9R0JCoq5cuU4THAAAAAAAAAAAAMgiGuDAHTidDvn4ODV53mZFnovK9scvXbyA+rzwKJcZAgAAAAAAAAAAALIBDXAgHSLPRen3yMtGlwEAAAAAAAAAAADgDtx3XWcAAAAAAAAAAAAAADyIBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAswdfoAgAAAJBxTqdDTqfDrc+RmOhSYqLLrc8BAAAAAGblzlzm48O5awAAZBYNcABwM5pUALKb0+lQwYK53b5DJCEhUVeuXOfzBQAAAAD+xlO5DAAAZBwNcABwI6fToUKF/OV0+rj1eRITE3T5cgxNKsAmnE6HfHycmjxvsyLPRbnlOUoXL6A+Lzwqp9PBZwsAAAAA/I27c1n1KqXUofkj2f64AADYAQ1wAHCjW2d/++jYsumKuXjaLc/hX6Skyj/bw6uaVO4+650z3oFbIs9F6ffIy0aXAQAAABiOq6/BKO7KZaWK5c/2xwQAwC5ogAOAB8RcPK2Ys8eNLsMjPHHWO2e8AwAAAACScPU1AAAA/BUNcABAtnL3We/eeMY7AAAAAMA4dr36GgAAANJGAxwA4BZ2OusdAAAAAGA8cigAAIBnePttUGmAAwAAAAA8gvuzAgAAAABgbma4DSoNcAAAAACA2zmdDhUsmFs+Pk63Pk9CQqKuXLlOExwAAAAAADcww21QaYADAAAANuXtl6uCtTidDvn4ODV53mZFnotyy3OULl5AfV54lPuzAgAAAADgZt58+xka4AAAAIANmeFyVbCmyHNR+j3ystFlAAAAwAvZ8SBdO84ZANyNBjgAAABuy52XKiaEG8sMl6sCMovPLgAAAPOx40G6dpwzAHgCDXAAAACkUiCfn1yJicqf399tz0EI9w7efLkqIKP47AIAADAvOx6ka8c5A4An0AAHAABAKnn8csrhdBLCAZgKn10AAADmZ8eDdO04ZwBwJxrgAAAAuC1CuLHceS84d14iGjAan10AAAAAANgXDXAAtkdzAQDgjZxOhwoWzM13CQAAANLkzv0ZkpSY6OKKJwAAwJRogAOwNZoLAABv5XQ65OPj1OR5mxV5LirbH796lVLq0PyRbH9cAACAtHDwefZyOh0qVMhfTqeP254jMTFBly/HeFUTnKY/AABIDxrggBdwZ1Djh/ud0VwAAHi7yHNR+j3ycrY/bqli+bP9MQEAANLCwefZ71Yj2EfHlk1XzMXT2f74/kVKqvyzPeR0Orxmv5Jdm/4AACDjaIADBiqQz0+uxETlz+/vtufgh3v60FwAAAAAAMA9OPjcfWIunlbM2eNGl+ERdmz6AwCAzKEBDhgoj19OOZxOfrgDAAAAAADL4+BzZAc7Nf0BAEDm0AAHvAA/3AEAAAAAAAAAAICsowEOAAAAAAAAAAAAuMGtWzg43Pb4iYkur7oCrLvnK3nfnOF9LNcA37Fjh6ZOnaqDBw8qNjZWVapU0csvv6wWLVoYXRoAwCDu/tHl4+N022MDAAB4I7I3AAAAcHdOp0OFCvnL6fRx23MkJibo8uUYr2gIe2K+knfNGd7JUg3wpUuX6p///Kd8fX1Vr149+fj4aOvWrRowYICOHDmivn37Gl0iAHgFdzaEva0Z7HQ6VLBgbq+rCwAAwKzI3gAAAED63NoP66Njy6Yr5uLpbH98/yIlVf7ZHnI6HeluBrt737A75ytlbs52wwlhFmqAX7x4UcOGDZO/v79mz56thx9+WJJ05MgRdenSRZMmTVLTpk0VEBBgcKUAYCy7NYSdTod8fJyaPG+zIs9FueU5qlcppQ7NH3HLYwMAAHgTsjcAALATmkjILjEXTyvm7HGjy/DYvmFvma8d2W3//+1YpgH+1VdfKTY2Vj169EgO4JJUsWJFvfnmm3r77bf15ZdfasyYMQZWCQDGc3dD2FubwZHnovR75GW3PHapYvnd8rgAAADehuwNAADsgiYSrMiu+4bthBPCbrFMA3zDhg2SpKeeeirVusDAQDkcDm3cuNHDVQGA93JXQ5hmMAAAgHWRvQEAgF3QRLIPO90uMgn7hrOXu68WkZjoyvDl3u1+QphlGuC//fabJKlSpUqp1hUsWFBFixbV+fPndfHiRRUpUsTT5QEAAAAAYHpkbwAAYDd2byJZHWf6I6ucTocKFfKX0+njtudITEzQ5csx3PM8AyzRAI+KitKNGzeUJ08e5cmTJ80xxYsX1/nz53X+/HlCOAAAFuSNR1oCgNH4bER2InsDAO6EeyXbgx3PlIW1cUlwZNWtz0UfHVs2XTEXT2f74/sXKanyz/aQ0+kgf2eAw+Vymf6/1unTp/XEE0+oaNGi2rx5c5pjXnjhBe3evVvz5s1TzZo1M/wcLlfqHTsOh+R0OhX1Z6wSEhIzVfud5Mzho7y5c+lm9FW5EhOy/fEdTh/lyJNfiYmJSs+rwOzzlew3Z2+br2S/OfO6tv42luw3Z298XUu3fmw6HO7b2eJyueTOn00ZeWg7vq6T/859m9jtMvryMft7mc+uDPydG1/XDof7PxvTG8Ct/Nnl7u8gb0H2zhw+D9Mx3uRz9rb5Svabsze+rpP/zo1fD06n02u28a16PPN96C1ztuvr2hPb2S7bWPK+z+vkvzPxT1uy913Gm3y+kne+rr3pO9nKn10Z+Q6yxBngTuetI8PuNOmkHdaZ3XHtcDjk45P24xfI65epx0yvHHncexmUpP9+6WX2+Ur2m7O3zVey35x5XWc/b5uvZL85e+Pr2p3c3UTKDDu+ru3I7O9lPrus7U456Xb47DIvsnfW8Hl4d2afs7fNV7LfnL3xde1u3raNPcHb5szrOvvZbRtL3jdnOzL7e9nbXtd8dmU/b9vGkvfNOcXfZmMdhkm69FpsbOxtx8TFxUmScufO7ZGaAAAAAACwErI3AAAAAMAMLNMAz507t65du3bbIH7u3DlJUrFixTxZGgAAAAAAlkD2BgAAAACYgSUa4A6HQ5UrV5YkHTlyJNX6K1eu6MKFCypcuLCKFi3q6fIAAAAAADA9sjcAAAAAwAws0QCXpEaNGkmS1qxZk2rdmjVr5HK51LhxY0+XBQAAAACAZZC9AQAAAADezjIN8LZt28rf319ffPGFdu/enbz86NGj+ve//y2Hw6FXXnnFwAoBAAAAADA3sjcAAAAAwNs5XC6Xy+gissuCBQv07rvvysfHR/Xq1VPOnDm1detW3bhxQ//4xz/Us2dPo0sEAAAAAMDUyN4AAAAAAG9mqQa4JP3www+aPn26fv75Z/n4+KhSpUp69dVX1axZM6NLAwAAAADAEsjeAAAAAABvZbkGOAAAAAAAAAAAAADAnixzD3AAAAAAAAAAAAAAgL3RAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFgCDXAA2ebatWsZ/pvt27e7oRIAmTVp0iT98ssvRpcBAAAA4DbI3oD5kb0BAHAvGuDwuLi4OP388886dOiQ4uPjbzvu0qVLCg8P92Blnrd9+3bNmjVLX3/9tU6cOGF0OVnWpUsXXblyJV1jb9y4oVGjRumVV15xb1EAMmTSpEk6fPiw0WUA2S4wMFBr1641ugxDJCYm6vjx4ymWuVwurVixQqNGjdLHH3+sffv2GVRd9jl16pRiY2PTPf7EiRMKDQ11X0EGuHTpkrZu3aoVK1bo+++/1/bt29P92wyA9ZC9/4/sTfYGvA3ZG1ZF9iZ7/x3ZG0bxNboApF9sbKwuXbqkUqVKGV1Kps2ePVuffPKJrl+/LknKly+funfvru7du8vpTHk8xqZNmzR48GAdPHjQiFKzzeHDh/X555/r8OHDKlWqlHr16qWaNWuqf//+Wrt2rVwulyTJ19dX/fr1U69evQyuOPMOHjyoF198UV988YWKFi1623H79u3T4MGD9fvvv99xnFVdunRJR44cUZ06dYwuxSOuXbumsWPHatSoUUaX4jF228ZWEBgYqLfffluBgYFGl+IxVatW1bhx49SqVSujS/GIyMjI5N8fdrJhwwaNGDFC58+f188//yzpVih//fXXtXHjxuTfITNmzFCXLl00dOhQI8vNksDAwFSv6evXr2vkyJHq3r27KlasmGL8nj17NHToUAUFBXm40uy3atUqff7552n+bnY4HKpZs6a6d++uJ554wvPFZaOAgAA5HI4M/Y3D4dCBAwfcVBGsiuxtTmTv1Mje9splZG+YAdnb+sjeZG+yN9nbW3AGuIHSOhoqLi5OoaGhunDhQqrxYWFhpv5xEBoaqtGjR6tKlSoaOnSoevXqJT8/P02cOFGvvvqq/vzzT6NLzHY///yznn/+eW3YsEH+/v7at2+funbtqtGjR2vt2rXq1q2bQkJCNHfuXDVu3Fj//ve/9f333xtddqa9++67Onr0qDp37qzTp0+nWn/z5k19/PHH6tSpk37//Xe1adNGy5cvN6DS7FW1alUtXbo0xbLY2FhNmjRJJ0+eTDV+06ZN6tKli6fKc4uTJ09q5MiReu655/Tcc89p2LBh+uOPP1KNCwsLU8uWLbVw4UIDqsw+dtzGdmPHgJYUvmBdhw4dUp8+feRyudStWzclJiZKkubNm6cNGzaoWLFiWrBggfbs2aO33npLs2fPNvXvkLRe0zdu3FBoaKjOnTtnQEWeMWrUKA0YMECRkZEKCgrSoEGD9K9//Uvvvfee+vfvr8DAQO3fv1+vvfaaPvzwQ6PLzZI6deqodu3aGfpfrVq1jC4bXoDsTfYme5O9zYrsbf1tbDdkb1gR2ZvsTfb2zuzNGeAGSusLPzo6WkOHDtXMmTMtd3TurFmzVKdOHc2ZMyd52euvv673339fixYtUteuXfXFF18ob968BlaZvSZOnKgyZcpozpw5Kly4sK5fv65evXrpq6++UocOHTRo0KDksbVr19aLL76o//73v2rRooWBVWde586dVaBAAQ0ZMkSdO3fWF198oXLlykm6dYT64MGD9csvv6hUqVIaMWKEGjVqZHDF2SOtL/2YmBhNnjxZtWrVUpkyZQyoyn0OHjyol156SX/++af8/Pzk5+enAwcOaMWKFZo/f74qV66sa9euadiwYQoLC5OPj4969uxpdNlZYrdtfPTo0QxfBpMj7gHvM336dBUvXlyLFy9W/vz5k5d/9dVXcjgcevPNN1WtWjVJ0iuvvKIdO3Zo3rx5pv0dcjtW3uG0ZMkSzZ07V0FBQXrvvfeUO3fuNMdFR0frgw8+0JdffqkaNWro6aef9nCl2eOvOQLICLI32ZvsTfY2I7L3LVbexmRvwBrI3reQvcne3oYGuBey6gfFsWPHNGTIkBTLcubMqdGjR6tgwYKaOXOmunfvrpkzZ972A8Rs9uzZozfffFOFCxeWJOXOnVtvvPGGXnzxRT322GOpxrdo0ULjxo3zdJnZ6tlnn1W+fPk0YMAAde7cWdOnT9fatWs1depUxcfHq1OnTvrHP/6hPHnyGF2q21n1vfzpp58qNjZWH3/8sZ555hlJUkREhN58802NGjVK48ePV5cuXfT777/r4Ycf1qhRo1SlShWDq3YPq27jqVOnaurUqRn6G7NfMtOuMno5I7NbsGCBtmzZku7xDodDo0ePdmNF7hUeHq7nn38+RQA/ceKEjh49Kl9fXz311FMpxj/66KP69NNPPV0msmDevHl65JFH7np0eZ48eTR69GgdOXJE3377rWlD+M2bN5UjR44M/c2+fftUvXp1N1UEs7PqbzmyN9mb7G0NZO//s+o2JnvbB9n7zsje8HZk77vzxuxNAxwe4+/vrytXrqS57q233tL169c1f/589e7dW9OnT/dscW6SN29eXb16NcWyKlWqqHHjxvL1Tf32u3z5snLlyuWp8tymcePGmjFjhl577TU999xzcrlcuvfeezVq1CjVrl3b6PKQRREREerYsWNyAJekatWq6a233tLAgQM1cOBARUZGatCgQXr11VdT3WMQ3q9p06aW3XFyJ3YLaJI0ZcoULViwIN3jHQ6HvvzySzdW5F7h4eEZOsPC7Nv48uXLKlGiRIpl27ZtkyRVr1491Q5xPz8/3bhxw2P1Iet+++23DN3DNjAwUN98840bK3Kv5557TuPHj0/Xd1RcXJwmTpyo2bNna//+/R6oDvAeZO9byN5kb7Mje1sf2Tt9zJ7LJLL33Zh9G5O9rY/sfXvenL1pgMNj6tWrp9mzZ+upp57S/fffn2r98OHD9eeff2rZsmV69dVX1bhxYwOqzF6PPvqovvjiC9WoUUMNGjSQJOXLl0+ff/55qrH79u3TnDlzkseZXa1atTR79mx1795dly5d0r/+9S8CuEVERUUpICAg1fKHH35YCQkJOnz4sObMmaNHHnnE88UhWzRr1kytWrUyugyPs1tAk6QjR47oyJEj6R5v9qPW3377bVPf0zWjChQooEuXLqVYtmnTJjkcDj366KOpxh85ciT5zDmYw/Xr11WkSJF0jy9WrJip78l24cIFtWvXTv369VOPHj1u+5m0a9cuvf322/rjjz907733erhKwHhkb7I32dsayN7WR/ZOH7K3+ZC9yd5WQ/Y2Z/amAQ6PefPNN9WpUycFBwfrgQce0EcffZTiTeFwODRu3DjlzJlTixYt0u7duw2sNnsMGjRIERERevXVV1W7du3b3jvhpZde0q5du1S4cOEU9yYzu4CAAM2bN0+vvPKKXnvtNU2ePFn169c3uixkUXx8fJpnS/j5+UmSevbsSQCHKdktoEnSRx99ZKsdLoUKFVLp0qWNLsNjatasqRUrVqhbt27y8fHRhQsXtGHDBklS8+bNU4y9du2ali5dqnr16hlQKTIrISEhzTMbb8fHx0fx8fFurMi9li1bpqFDh2rChAnasGGDxo4dq7JlyyavT7pMbNK99rp166b+/fsbWDFgDLI32ZvsbQ1kb1gV2dv6yN5kb6she5sze9MAh8fcd999Wr58uSZPnqydO3cm/2D/K6fTqdGjR6tGjRr65JNPdPHiRQMqzT5FihTRwoULNX/+fMXFxd12nJ+fn9q1a6c33ngjQ0cSeZuhQ4emufzee+/VyZMn1atXL7Vo0SLFEUNWOIoTKT300ENGlwBkit0CGqyvR48e6tixozp06KC6detq7dq1unHjhp555hlVqFBB0q0dq3v37tXYsWN16dIlde7c2eCqs2b16tX6448/kv89NjZWDodDixcv1q5du1KM/eWXXzxdHrKoSJEimjZtmr766it99NFHatOmjYYMGaLnn39eO3bs0DvvvKMTJ06oSpUq+uCDD/hNAtsie5O9yd72wPcczIrsDashe5O9rcYq2ZsGuMGOHj2a4pIv165dkyQdPnw41RElGblMircqVKiQhg0bdtdx7du3V3BwcIoPUbPy8/NT165d7zjGKvddCwkJueP6GzduKDQ0NMUyq4TwnTt3KiEhIfnfo6OjJUmbN2/W2bNnU4y1whkWd2L2yzTdjl22cZ06dVS0aFGjywCQDR5++GFNmTJFH3zwgWbOnCkfHx+1atVKI0aMSB4zbtw4zZ49W06nU0OHDlXNmjUNrDjrwsLCFBYWlmr5339/JLHCd9bfdzzciVV2PHTu3Fn169fXu+++q+HDh2vOnDk6cuSIfH191b9/f/Xs2TNDR+fDHsjeaSN7mxPZ2/q5LD2s8DsmLXbZxmRvwDrI3v9H9r6F7O0dHC6Xy2V0EXYVEBCQ5hvf5XLdcfnBgwc9UZ7buVwunThxQleuXJEkFS5cWGXKlDG2KDez+pwjIyMz9XdmP+ozrffyXz9a01pn5vdyQECAXnvtNTVs2DDF8mvXrun111/XkCFD9OCDD6b6uzp16niqxGxnt21sRwEBAba7JJnd5hwSEqLatWunuGSTnVy+fFn+/v6pzgLcuHGj9u/fr2eeecYr79eUETt27MjU39WtWzebK/GctO4LejdW+n4KDw/X66+/rmvXrsnhcOj1119Xv379jC4LXojsbe0cmharz5ns/X9WzmVk71usvI3tyG45VLLfnMneZO/bIXubl1mzNw1wA02aNClTf9e3b99srsSzIiIiNGPGDG3evFnXr19PsS5v3rxq0qSJXnnllUx9qHgrO87ZTu529P3tBAcHZ3MlnnG7HYjS7XciSjL1F76dtvFfz4zKCDPvZJHsGdB27NihihUrmvryn4Dd2XHHgyT9+eefGjdunL777jvlypVLPXr00KpVq/TLL7+oQYMGGjVqlEqVKmV0mfAiZG/75FA7ztlO7JTLJLJ3RphxG5O9yd4AzIPsbc7sTQMcHjVz5kyNHz9eTqdTNWrU0P3336/8+fMrPj5eV65c0YEDB3Tw4EE5nU4NHjxYXbp0MbrkLLPjnNNr6tSpCgsL06JFi4wuxePi4uKUM2dOo8vIFLvuQMwos27jO+1kuRMz72SBPdzuXpl3YpVLhSJt8+fP16ZNmzL9vQZjbNiwQcOHD9fZs2dVv359jRw5UmXLltXNmzf16aefaubMmfLz89M///lPdezY0ehyAcPYMYfacc7pRfY2Xy6TyN7pZdZtTPaGVZG98Xdkb3OyQvamAQ6P2bhxo3r16qUGDRpo9OjRKlmyZJrjjh8/rhEjRmjLli2aOXOmGjRo4OFKs48d55wRw4cP14IFC0z/433SpEkZCpgREREaOnSoli9f7saqkJ3stI3/85//ZCqEm30nix0DWmZ2+jocDn355ZduqMb97Hi5qrvtVMuVK5fy5cunypUrq1mzZmrfvr2cTqcHKzSWFX6HnDp1SoULF051eb3bOXHihHbt2qWgoCD3FuYmgwYN0vLly5U7d2699dZb6tChQ6oxe/bs0eDBg3XixAnVrVtXH3zwgaUuewykhx1zqB3nnBFW+M6T7JXL7MpO25jsnX5kb3Mhe6dG9jb/7xCytzmzNw1wA9ntC/+VV17RhQsXtGjRIuXIkeOOY+Pj4xUUFKR7771XkydP9lCF2c+Oc84IK3z5Sbd+5HTr1k3//Oc/7zguPj5ekyZN0owZM5SQkGD6eadXbGysLl265NWXQ7kbtrH12TWgZZSZ52zHe2W+9NJLd1yfkJCgq1ev6vjx47p586YeffRRTZ06Vb6+vh6q0FhW+B1StWpVjRs3LsX9BK9fv66RI0eqe/fuqlixYorxS5Ys0eDBg00754CAADVq1EgjR45UiRIlbjsuNjZWH374oebPn6/cuXNr9+7dHqwS3ojsfXtWyaF2nHNGWOE7TyKX3Q3ZG2Zgtxwq2W/OZO/UyN7m/x1C9k6bt2dve7zDvFRG7mvz1yOIzBrCDxw4oK5du941jEqSr6+vWrRooSVLlnigMvex45ztqHbt2po5c6ZiYmL03nvvpTnm8OHDGjx4sA4fPqwCBQronXfe8XCV2ScwMFBvv/22AgMDk5fFxcVpxYoVeuyxx1S0aNEU48PCwkz9hS/Zbxvb0dq1a40uweMOHTpkdAkeZeYwnVlz5sxJ17jY2FjNmzdP48aN07x58+4a3uE90jqW+caNGwoNDVXr1q1ThXCzGzNmTLru8enn56f3339fTz31FN/HkET2vhOr5FA7ztmO7JbLyN7W38Z2RPa2PrL37ZG9zYvsnTZvz940wA2Uni+/yMhIjRw5Uhs2bFC+fPk0YMAA9xfmJtHR0SpevHi6x5csWVJnzpxxY0XuZ8c529HMmTPVv39/zZs3TzExMRo9enTyjjOXy6Vp06Zp8uTJiouLU8uWLTVs2DAVLlzY4KozLzIyUtevX0+xLDo6WkOHDtXMmTNThXArsNs2lqSjR49qz549atu2bfKyCxcuaNKkSdq9e7f8/f0VGBiorl27mvJ+a39nx4CGlOLi4vTbb7/Jz89PFSpUMLocj/Lz89Mrr7yiffv2KSQkhBBuAVa9yFd6AvhflS9fXu3bt3dTNTATsvedWSGH2nHOdmS3XEb2tv42lsjesB+yN9nbSsjet3hr9qYB7qUSEhI0c+ZMffbZZ4qNjdUzzzyjoUOHmvrHbXx8fIZ+qPn6+iouLs6NFbmfHedsRzlz5tTkyZM1dOhQhYSEKDY2VuPHj9fx48c1ZMgQRUREqFixYnr//ffVpEkTo8t1G6t+4Uv228bjx4/XzJkz5XK5FBwcLKfTqWvXrqlDhw46deqUChYsqNKlS+uTTz7RunXrNGfOnHSdbWNmdgxoZ8+eVUREhPz8/FSnTp103+fIm127dk3Tp0/Xnj17UhyhvXTpUo0aNUpXr16VdOuH++jRo/XII48YVKkx6tWrp82bNxtdBpAlN27c0KpVq7Ro0SLt2LFDLpdLffr0MboseDGytzVyqB3nbEd2y2W3Q/a2zjYme6dG9iZ72wHZG1ZghuxNA9wL7dy5UyNGjNCvv/6q++67T8OHD1eDBg2MLgu4q0mTJmVo/M8//+ymSjzPx8dH48aNU/78+TV37lydPHlSv/76q2JjY9W+fXsNHjxYefPmNbpMZIFdtvHq1as1Y8YMPfHEE+rSpYucTqck6bPPPlNkZKSqV6+uL774Qv7+/oqIiNBLL72kL774Qj169DC48qyzY0CLjIzUhAkTtGfPHq1bty55+bRp0/Tpp58qISFBLpdLBQoU0MiRI9WsWTMDq82a6OhodejQQUePHlWJEiUUHx8vX19fRUREaPDgwXK5XOrQoYPuv/9+hYaG6pVXXlFoaKjuvfdeo0v3GB8fHyUmJhpdRqaFhoZmaPyxY8fcUwgMsWfPHi1atEjff/+9oqOj5XK5VK5cOXXo0MHo0uDFyN4wK7K39XOZndllG5O9yd4S2ZvsbU5kb3szU/amAe5FLl++rHHjxik0NFQ5c+ZUv3791KNHD0tc3ibJzp07lZCQkK6xu3fvdnM1nmGnOWc0hEsp77FnBcOGDVPBggU1adIkOZ1Off7552rcuLHRZSEbWX0bz58/X9WrV9fUqVOTl7lcLi1ZskQOh0NvvPGG/P39JUnVqlVTmzZttHz5ctOHcDsGtIsXL6pDhw66fPmyqlWrljznH3/8URMmTJCvr6/efPNNVa5cWQsWLNCbb76pb775Rg8++KDRpWfKzJkzdfz4cf373/9W8+bNk5dPnjxZLpdLL7/8soYMGSJJateunVq3bq2pU6dqzJgxRpXscfv27VPJkiWNLiPThgwZkqHfFS6Xy3K/Q+zm7NmzWrx4sRYtWqQ//vgj+Yy4evXqqUePHnrssccMrhDeiuydktlzaBI7zZnsbf1cButvY7I32ZvsTfY2K7K3/Zg1e9MA9xLffvutxo8fr6ioKD366KMaPny4ypUrZ3RZ2W7BggVasGBBusZa5YPRTnOePXu20SV4hb59+6pQoUIaNWqUZsyYoVq1alni6GT8n5W38f79+1MF6gMHDujixYvKmzev6tWrl2Ldww8/rKVLl3qyRLewY0CbNm2aoqOj9dVXX6U4on7atGlyOBzq06dP8mvh8ccfV9u2bTV9+nT9+9//NqbgLAoLC1ObNm1SbN/o6Ojky4516tQpeXmuXLnUunVrffvttx6v0ygrV67U4sWL1b17d6NLyTQzvx+RfnFxcVqzZo0WLVqkrVu3KiEhQT4+Pqpbt65q1aqlKVOmqEuXLl4bwGE8sndqZs+hSew0Z7L3LVbOZbjFytuY7E32JnuTvc3KzO9HpJ8VsjcNcIMdPnxY77//vvbu3auiRYtqwoQJatmypdFluYUdPxjtNue6detm+G927tzphko8Kzw8PNWyypUrq3379lqwYIFefvllvfXWW8mXs0pSp04dT5WILLLTNr5+/boKFCiQYtm2bdsk3ZqPj49PinXx8fGm3nmYxI4BbcOGDWrbtm2KAH7lyhXt2rVLkvTcc88lL3c4HGrRooW+/PJLT5eZbU6ePJliO0q33tvx8fEqW7ZsquZHyZIldfHiRU+WmO2GDh16x/UJCQmKjo7Wb7/9puPHj+u+++4zdQgPDg42ugRDrF69Wn/88Ufyv8fGxsrhcGjx4sXJ7+ckv/zyi6fLy1YjRozQihUrFBUVpVy5cqlRo0Zq2rSpAgMDVahQIUVGRuqzzz4zukx4KbK3tdltzmTv/7NqLrMrO21jsjfZm+x9C9nbfMjet5C9vT970wA30NixYzVnzhwlJCToySef1IABA5Q3b16dOnXqjn9XqlQpD1WYvez4wWjHOafH6dOnFRISotDQUJ04cUIHDx40uqQseemll+4YQvbv36+uXbumWm7meR89ejRFML127ZqkWzsWfX1TfrUcOXLEo7W5g522cfHixXXixIkUyzZs2CCHw6HHH3881fiIiAjdc889nirPbewY0M6cOaPKlSunWLZ9+3YlJiaqUqVKqbZrkSJFFBUV5ckSs5XT6Ux1j62tW7dKkho2bJhq/KVLl0x/dklISEi6xpUtW1Yvv/yyXn/9ddPP+XbS+n1dsmRJy+xEDAsLS7X8dvdlM/Oc582bp9y5c6t3797q3r27ZV+vyH5kb+uz45zTg+x9i5nnTfZOyUrbmOz9f2RvsrfZf9eTvf+P7P1/Zp6zVbI3DXADzZo1K/mf169fr/Xr16fr78z4oy4zLl26pCNHjpjyKM7MsvKcb9y4obCwMC1atEjbt29PvuRcWj/qzaZPnz6m/kLLjKlTp6a4T1WSsWPHplpm9ssLSvbaxo8//rgWLlyoTp066Z577tGePXu0c+dO5ciRQ08//XSKsb/++quWL1+u559/3qBqs48dA1quXLkUExOTYtmWLVvkcDj06KOPphp/5swZ5c+f31PlZbtKlSppz5496ty5s6Rbn02rV6+Ww+FQkyZNUo1fu3atKlas6Okys9XatWvvuD5XrlzKnz+/pe55K0kLFy7Ut99+q88++0yFCxfW5cuX1aRJk1Sf4/3799drr71mUJXZw26XwA0ODtaaNWv0+eef68svv1Tt2rWTj0IvWrSo0eXBi5G978zKOfR2rDxnsre1kL2ti+z9f2TvlMje5kP2JntbjVWyNw1wA/Xt29foEjyqatWqGjdunFq1apW8LDY2VjNmzFBQUJDKlCmTYvymTZs0ePBgU+90sOOc/27v3r1atGiRvv/+e/3555+SpMKFC6tt27bq0KGDSpcubXCFWdevXz+jS/AoOwXSJHbaxq+//rrCwsLUokULVahQQb/88otcLpf69OmjwoULS7oVvsPCwjR79mzlyJFD3bp1M7jqrLNjQAsICNDWrVv18ssvS/r/vX0kqWnTpinGulwurVy5UgEBAR6vM7sEBQXpgw8+0MMPP6xHH31UCxYs0KlTp1SuXDk1atQoxdipU6dq7969GjZsmEHVZg8rfMdm1BtvvKFVq1apVKlSOnXqVPLnliS1bt1aZcuWlSQtXrxYU6ZMUbt27VSsWDGjys2yzFwCNz4+3g2VeMaYMWM0YsQIrV+/XkuXLtUPP/ygH3/8USNGjFCNGjVUs2ZN2/1GQfqQva2fQ+04578je1sP2dvayN5kb4nsTfY2L7L33ZG9jUcD3EB2C+EulyvVspiYGE2ePFm1atVKFUitwI5zlqRz584pNDRUISEh+v333+VyueTv76+GDRtqy5Yt+te//qXAwECjy0Qm2SmQ2lHRokX13XffafLkydq7d68eeOABtW3bVu3bt08eExISopkzZ6p06dL6+OOPVbJkSQMrzh52DGgdO3bUm2++qdGjR+vRRx/VwoULdfHiRT3wwAMpzoaKjY3Vhx9+qF9//dXUO1w6duyoXbt2acyYMXI4HHK5XCpQoIDGjx+ffA/B7777TtOmTdOJEydUq1YtvfDCCwZX7V4RERHas2ePnE6n6tatqypVqhhdUpYsWbJEq1atUq9evdS/f/9U900MCgpSgwYNJEmNGzfW888/r2+++cYyv8mjo6PlcrnueIbMnj179O6772rZsmUerCx75cyZU08//bSefvppXbt2TStXrtSSJUu0a9cu7dq1Sw6HQ59//rn+/PNPPf300/Lz8zO6ZHgBq7zP08uOOdSOc5bI3lZH9rY2sjfZm+xN9jYrsjfZ2yzZmwa4F4mLi9OhQ4d07tw5uVwuFS9eXAEBAcqVK5fRpblVWkHV6qw65++//16LFi3Sli1blJCQoPz586tVq1Zq1qyZGjVqpPPnz6c6stEKJk2alOG/cTgc6tOnjxuqcb8uXbrotddeS/4hYwd228YlSpTQyJEjb7u+bdu2atKkiWrWrJkcXszOjgGtZcuWOnz4sGbMmKE5c+bI5XKpTJkymjhxYvKY//73v/rss88UHR2t5s2bq02bNgZWnDUOh0Pjx49X586dtWfPHuXNm1dNmzZNcZTymTNn5HK59Nprr6lXr16WeH0fOHBAn3/+uY4cOaJy5cqpd+/eqlatmt555x0tWrQo+TeJw+HQs88+qzFjxqS6n6RZhISEqEaNGho4cOBdxybtcNu4caPpQ/iqVas0adIk/fbbb5Ju3Veuf//+evbZZ5PHXL9+XRMmTNC8efNSXXLSTIYOHaqOHTuqevXqkqR8+fKpffv2at++vc6ePatly5Zp2bJlioiI0E8//aSRI0eqZcuW+te//mVw5fA2ZG/7sOqcyd7pZ+ZcRvZOHzNvY7I32TsJ2dv8r2+yd9rI3uZklextzneYxVy4cEETJkxQWFiYoqOjU6zz9/fX008/rYEDB6p48eIGVQikz8CBA5U7d2516tRJgYGBqlOnToojwMxwWYzMsFtA27FjR4ojku3Abtv4bsx++bG02DWgDRw4UC+88IL27dunvHnzqm7dusqRI0fy+ly5cunhhx9Wq1at9NxzzxlYafapUaOGatSokea6vn37mj6Q/dWePXvUpUsX+fr6qnLlytq/f786d+6sl156SQsXLlTr1q3VvHlzXb9+XevWrdOyZctUtWpVvfrqq0aXnikHDhxQ79690z3+scce0+TJk91YkfutWLFCb775pnLlyqXHHntM/v7+2rlzp/75z38m3z/yp59+0sCBA3Xy5EmVKVNGI0aMMLrsTAsJCVHDhg2TQ/hf3XPPPerWrZu6deumI0eOaMmSJVq6dKm+/fZbrwvhMA7ZG1ZB9k4/M+cysnf6mHkb3w3Zm+xtZmRvsncSsrf5WCV70wA32N69e9WrVy9FRUWpevXqql+/vooXLy5fX1+dO3dO4eHhCg0N1bp16zRlyhTVrFnT6JKB2ypTpoxOnjypRYsW6dixY/rpp5/UtGlTlS9f3ujS3Gr27NlGlwA3s9M2Dg8Pz9Tf/fWyXWZmp4CWpESJEipRokSa61588UW9+OKLHq4I2WXy5Mm67777NHv2bBUqVEgul0tvv/22Zs2apdatW2vcuHHJY5999lldvXpVy5YtM20Ij42NVf78+VMtz5cvn6ZOnaqqVaumWJ4nTx5T35NLkubOnasiRYpo/vz5yfdYi4mJ0Wuvvab//Oc/Kl68uF599VXduHFDr7zyit544w2vvCxZdqtYsaIGDhyogQMHavfu3UaXAy9B9oaVkL1hVXbaxmRvsvdfkb3Njex9C9mb7O1taIAb6OLFi+rTp4/y5Mmjzz77TLVq1Upz3IEDBzRgwAD1799fixcvVpEiRTxcKZA+a9as0b59+7RkyRKtXLlSmzZt0oQJE1ShQgU1a9ZMDz74oNElukXdunXvOubatWtyOBx3vDcIvFd6trFVvPTSSxk+Y8ThcOjAgQNuqgjIHkOHDs3w3zgcDo0ePdoN1XjGTz/9pO7du6tQoUKSbs2nW7duCgkJ0RNPPJFqfLNmzfThhx96uMrsc8899+jUqVOplvv6+qY5399//93091E8cuSIXnrppeQALt06i7Vv37568cUXNXDgQBUpUkTjx4/XI488YlyhBqKJCYnsDeshe98e2dvcyN53RvaGGZC9yd5/R/a2B2/M3jTADTR37lxFR0enOGokLQ888IBmzZqlVq1a6euvv1a/fv08WCWQMdWrV1f16tX19ttva9OmTVq6dKnWrl2rKVOmyOFwyOFwaP369QoICFDp0qWNLjfbuFwu/fDDD/rtt99077336oknnpCvr6+2bt2qUaNG6ejRo5KkqlWr6s0339Rjjz1mcMVZs3r1av3xxx/pHm/lS5IlscqOljFjxqRr3KpVq7RhwwZJUrVq1dxYkWfYMaB16dIlw3/jcDj05ZdfuqEa9wsJCUn32L/uiDLzNr569aqKFi2aYlnSpQULFiyYaryfn59iYmI8UZpbVKtWTStWrFCfPn3uepnEuLg4rVixQo0bN/ZQde5x7do1lSlTJtXycuXKSbp1KcX58+cn74ixgp07dyohISFDfxMUFOSeYmAaZG9YEdmb7J0Wsrd5kL3Tj+xtLmTvW8jet5C9zcsK2ZsGuIHWrFmj1q1b3zGAJyldurSCg4MVFhZm6hD+9zdN0n3XNm/erLNnz6YY642XTMgMO85Zknx8fNS4cWM1btxYsbGxWr16tZYtW6bNmzfru+++06JFi1SvXj21bdtWzz77rNHlZsnVq1fVs2dP7du3Ty6XS5L08MMP691331XPnj3l7++vpk2b6vr169q3b5969eqlWbNmmfrI5tWrVyssLCzd460Qwv+6o6VcuXJ68sknLbmjJTg4+I7rIyMjNXLkSG3YsEH58+fXm2++qQ4dOnioOvexY0A7efJkusYlJibq7Nmzcrlcpr6f5KFDh+465q+v73z58mnAgAHuL8yNXC6XfH1T/txP2oZm3pa307FjR7344ov617/+pWHDhqWae5LExES99957OnfunDp27OjhKrNXYmJiinu+Jkm6n2DPnj0tFcAlacGCBVqwYEG6xiZ9bnlbCIfnkb3tkUPtOGeJ7E32TonsbR5k77sje5sT2fsWsjfZ2+yskL1pgBvo5MmTGbq3R0BAQIZ+JHijv79pkgLLjBkzUn0ZmP3LPomd5tyzZ0/Vr19fdevW1YMPPpg8Fz8/P7Vq1UqtWrXS5cuXtWLFCi1dulRbt27Vtm3bTB/CP/30Ux06dEjvvfee6tWrp8jISH3wwQd6+eWXdd9992nOnDnJR/tdunRJ7dq108yZM00dwnv16qWGDRsaXYbH2HFHy9/Fx8frv//9r6ZOnaqYmBi1bt1aQ4YMST6i1ezsGNDWrVt31zH79u3T+++/rzNnzqhMmTJ69913PVCZ5yUkJGjmzJn67LPPFBsbq2eeeUZDhw5NdQQ3vFvt2rXVrVs3/fe//9W2bdv06quvql69eipRooRcLpfOnz+v7du366uvvtKhQ4c0cOBABQQEGF22W5UqVcroErLd888/b9tLyiHzyN7WzqFJ7DRnsjfZ26rI3mRviexN9oa3I3unRvb2TjTADZQjRw7duHEj3eNjY2OVO3duN1bkXum9tI+V2G3O27Zt0w8//JB8KaratWurXr16ql+/fvKXXKFChdS5c2d17txZJ06c0PLlyw2uOuvWrVunjh076oUXXpAkVahQQe+9955effVVde7cOcWlbgoXLqznn39ec+bMMaja7FGxYkVLBcy7seOOlr/asWOHRowYoSNHjqhChQoaPny46tWrZ3RZHmPHgHbt2jV9/PHHWrBggZxOp3r16qXXX39duXLlMrq0bLdz506NGDFCv/76q+677z4NHz5cDRo0MLqsbPP3y2bGxsbK4XBo8eLF2rVrV4qxv/zyi6fLy3b//Oc/Vbp0aU2YMEHvvfdemg2P3Llz6/3337fEGTR2VLt2bbVq1croMmAyZG/rs9ucyd5kb6sie5O9yd5kb7Mie5O9rcYK2ZsGuIEqV66sjRs3pvs+IBs2bFClSpXcXJX73O3SPlZktznv3r1bBw4c0O7du7Vnzx7t3btX69evl8PhUP78+VWnTh3Vq1dP9erVU+XKlVW2bFn17t3b6LKz7Pz586pYsWKKZUnv1bSO/ipZsqSioqI8Uhuyhx13tEi3diiMHTtWS5YsUa5cufTGG2+oe/fuyZf3sQOrB7S0LF68WOPGjdPFixdVt25dDR8+PNVnnBVcvnxZ48aNU2hoqHLmzKl+/fqpR48eypkzp9GlZauwsLA0L5sZGhqa5ngznw2XpFOnTgoODtb69esVHh6uM2fOyOVyqXjx4qpZs6aaNm1q+ntG/lVa9wa9084WK1waFcgosrf12W3OZO//I3tbC9mb7E32JnubFdmb7E329j40wA3Upk0bvffee1qxYoVatmx5x7GhoaHasmWLJkyY4KHqjHfy5Em99957mjlzptGleIzZ5+zr66tq1aqpWrVq6tq1qyTp9OnTKUL52LFjlZCQoIIFC6pu3bqqV6+eOnXqZGzhWXTz5k35+fmlWJYUUtIKKw6HI8W96eD97Lij5ZtvvtGECRMUFRWlxx9/XO+++2667ptpFXYJaH919OhRjRgxQjt27FChQoX04Ycfet29e7LLt99+q/HjxysqKkqPPvqohg8frnLlyhldVrabPXu20SUYxt/fXy1btrzrb2wruN2OFintnS2EcNgR2fvOzJ5DM8PscyZ7/x/Z21rI3mRvsre1kL2tj+x9C9nbO9EAN1Dbtm0VGhqqt956S4cPH1bnzp1VvHjxFGPOnTunWbNmafbs2WrcuLFatGhhULXZY9++fZoyZYr27NkjSXrggQfUp08f1a5dO3mMy+XSF198oU8//VSxsbFGlZpt7DjnvypZsqSeeeYZPfPMM5JuXdpnyZIlWrRokVatWqWwsDDTh3C76du3r6pUqWJ0GR5lpx0thw4d0vDhwxUREaF77rlHI0eOVLNmzYwuy6PsEtCSxMXFafLkyZo5c6bi4+PVvn17DRo0SPnz5ze6tGx3+PBhvf/++9q7d6+KFi2qCRMmWDqkWeVSkLg9u+1oCQ4OtvTnMdyH7G2PHGrHOf8V2dt6yN63kL2ti+xN9rYKsrf1kb3NiQa4gZxOp6ZOnapBgwbp888/17Rp01SyZEkVK1ZMPj4+unjxoo4fPy6Xy6UWLVrogw8+MLrkLNm6dat69OihhIQElS9fXv7+/goPD1fXrl01a9Ys1alTRydPntQ//vEPRUREKG/evBoxYoTRZWeJHef8d7GxsQoPD9eOHTu0a9cu/fzzz7p586Zy5syZfEk2K7hy5YpOnTqV/O9JRyBfunQpxXLp1tGtZta3b98U/x4XF6dDhw7p3LlzyZe5CQgIsOT9iuygbdu2SkxMlCQVKVJEc+fO1dy5c+/4Nw6HQ19++aUnynMruwU0Sdq4caNGjhypyMhIValSRSNGjFD16tWNLsstxo4dqzlz5ighIUFPPvmkBgwYoLx586b6jP67tM40sar58+dr06ZNmjRpktGlZEp6L238V2b//MrMjpadO3e6oRLPsNs9fpF9yN7Wz6F2nPPfkb3J3jAXsjfZm+ydEtnbPMje6UP2Np7D5XK5jC4C0o8//qjFixcrIiJC58+fT/4hW6tWLbVp00b169c3usQse+WVVxQREaEZM2aoRo0akqSzZ8+qd+/eypEjh8aMGaMuXbro4sWLatasmd59910VK1bM4Kqzxo5zjo+P1969e7Vt2zZt27ZN+/bt082bN5UjRw5Vq1YtOXjXqFHDMpczCggISPO+LS6X6473czl48KA7y3K7CxcuaMKECQoLC1N0dHSKdf7+/nr66ac1cODAVGfXmFFAQIDeeecdBQYGJi+LiopScHCwPv744+T3d5LVq1frww8/NOU2btKkSab+bt26ddlciWfdLqDdjZkDWv/+/bV69WpJ0pNPPqkuXbrIx8fnrn9Xp04dd5fmFgEBAcn/nJF7bZnxfZxZw4cP14IFC0w75/R+fiUmJurs2bPJ39NmnW9GnD59WiEhIQoNDdWJEydsMWfgdsje1syhdpwz2fv/yN5kbzNuY7I32ftuyN7WRfa2LrK3d6EBDo+pX7++2rVrp0GDBqVYvmnTJvXo0UMVK1bU+fPn9f7775v+cnNJ7DbnHj16aOfOnYqNjZXT6dSDDz6o+vXrq169eqpVq1aqy1hZxdChQzP1d2Y+kmrv3r3q1auXoqKiVL16ddWvX1/FixeXr6+vzp07p/DwcIWHhyt//vyaMmWKatasaXTJWWLXHS12YseA9tc5S3eft9kDS2aPrP77mTdWZvYQnh779u3T+++/r4MHD6pMmTJ699131bhxY6PLcosbN24oLCxMixYt0vbt25Pfw40aNdLnn39udHkA3MhuOVSy35zJ3hlD9jYPsrf1kb3J3rdD9rYWsjfZ2xtwCXQT2b59uw4fPpypS0x4g2vXrqlixYqplt9///1yuVy6cuWKvv32W0vcWyCJ3eb8448/KkeOHAoKClKvXr103333GV2SR5g5TGfGxYsX1adPH+XJk0efffaZatWqlea4AwcOaMCAAerfv78WL16sIkWKeLjS7BMUFJShYGYnO3fuVEhIiOkvFWqnoJXEbp9dmdnGVrs3qJ1du3ZNH3/8sRYsWCCn06levXrp9ddft+QlQ/fu3atFixbp+++/159//ilJKly4sNq2basOHTqodOnSBlcIeD+yt/nYbc5kb3sge+OvyN7mZbfPLrK3vZG9yd7ehAa4iaxYsUILFiwwbQhPSEiQr2/ql1zSpbh69+5tmTCaxG5zbt++vbZv3558mY8KFSqoQYMGql+/vurUqaMCBQoYXSKywdy5cxUdHa358+erbNmytx33wAMPaNasWWrVqpW+/vpr9evXz4NVZq8PP/zQ6BK8ypkzZxQSEqKQkBCdOHFCkmwZws0e0IKDgzP8N5GRkW6oxPsk7VxatWqVqe/ZhFsWL16scePG6eLFi6pbt66GDx+eZpPEzM6dO6fQ0FCFhITo999/l8vlkr+/vxo2bKgtW7boX//6V4pLiQK4M7K3+dhtzmRveyB7g+x9C9nbusje1kL2Jnt7Gxrg8BpW+zBMD6vNeeTIkZKkU6dOacuWLdq2bZtWrlypuXPnyul0KiAgQPXq1UsO5blz5za4YmTGmjVr1Lp16zsG8CSlS5dWcHCwwsLCTB3Cu3Tpotdee00NGjRIXhYfH689e/YoICBA+fLlSzF+yZIlGjJkiA4cOODpUt0mLi4u+XI+27Ztk8vlksvlUr169fTCCy8YXZ5H2S2g3bhxQytXrlRISIjCw8O1f/9+o0tyi6SdS6GhoTp+/LhcLpcKFixodFnIgqNHj2rEiBHasWOHChUqpA8//FBBQUFGl5Wtvv/+ey1atEhbtmxRQkKC8ufPr1atWqlZs2Zq1KiRzp8/r6ZNmxpdJgAvY7Ucmh5WmzPZ2x7I3reQvcneZG9rIXtbD9mb7O2taIADyHalSpVSu3bt1K5dO0nSr7/+qm3btmnr1q1auHChZs2aJV9fXz300ENq0KCB3njjDYMrRkacPHlSL774YrrHBwQEKCQkxI0Vud+OHTvUvn37FMuuXbumLl26aObMmSnCeRKXy+Wp8tzq75fzSZrXM888oz59+qhChQoGV+gZdgxou3fv1qJFi7Ry5UpFR0fL5XLp/vvvN7qsbJW0cykkJETbtm1TYmKiXC6XHnnkEXXs2FEtW7Y0usQsCQ0NzdD4Y8eOuacQD4uLi9PkyZM1c+ZMxcfHq3379ho0aJDy589vdGnZbuDAgcqdO7c6deqkwMBA1alTRz4+PsnruYQoAFgb2dvayN63kL3J3mRv8yN7p0T2Nh+ytznRAIdH7dy5UwkJCSmWRUdHS5I2b96ss2fPpvobsx8tZMc5/93999+v+++/Xy+99JLi4uK0cuVKff3119q7d6/27dtHCDeZHDly6MaNG+keHxsba9kzDqwStP8urcv5FCxYUMHBwXrkkUc0fPhwtWzZ0vIB3OoBLS1nz55N3vZ//PGHJMnX11ctW7bUCy+8oNq1axtcYfbYt2+fFi5cmGLnUv78+XXt2jWNHDky1U43sxoyZEiGQpjL5TJ9aNu4caNGjhypyMhIValSRSNGjFD16tWNLsttypQpo5MnT2rRokU6duyYfvrpJzVt2lTly5c3ujQABrNjDrXjnP+O7G0tZO//I3uTva2G7E32JnubC9nbnGiAw6MWLFigBQsWpFiW9CN2xowZKT74k74IzB5I7Tjnvzp+/Lj27dunffv2KSIiQocOHdLNmzeVJ08ePf7446pTp47RJSKDKleurI0bN6b7nogbNmxQpUqV3FwVskvPnj21efNmJSQkqGTJkurUqZOaNm2qevXqyel0KjIy0rI7H5LYJaAliYuL05o1a7Rw4UJt27YtecdxxYoVdfToUX300Udq3ry5wVVm3blz57R48WKFhITo2LFjcrlcKlWqlIKDg9WsWTPdc889euqpp1S4cGGjS802Y8aMMboEj+rfv79Wr14tSXryySfVpUsXxcXFKTw8/I5/Z+bfImvWrNG+ffu0ZMkSrVy5Ups2bdKECRNUoUIFNWvWTA8++KDRJQIwiB1zqB3n/Fdkb+she1sb2ZvsTfYme5sV2ZvsbRY0wA106tSpDI1POnLZrOz2RSDZb85RUVGKiIhIDtwRERGKioqSy+VSgQIFVLNmTQ0cOFB16tTRAw88IKfTaXTJyIQ2bdrovffe04oVK+56FG5oaKi2bNmiCRMmeKg6ZNUPP/yg3Llzq0uXLurcubOKFStmdEkeYceAFhERoUWLFmnFihW6evWqnE6natSooWbNmqlZs2ZKSEhQ06ZNlSNHDqNLzRZNmjRRYmKiAgIC1Lt3bwUGBuqhhx5KXh8ZGWlgde4RHBxsdAkeFRYWlvzP69at0/r16+84Pqn5cfDgQXeX5lbVq1dX9erV9fbbb2vTpk1aunSp1q5dqylTpsjhcMjhcGj9+vUKCAhQ6dKljS4XMATZ2/rsNmeytz2Qva2N7E32JntbB9mb7E329k40wA3UpEkTW10aIzNfBGb/QrTbnOvVqyeHwyGXy6VChQqpbt26qlOnjurUqaMqVaqY+vWL/2vbtq1CQ0P11ltv6fDhw+rcubOKFy+eYsy5c+c0a9YszZ49W40bN1aLFi0MqhYZ1bdvXy1fvlxTp07V559/rvLly6tp06Zq2rSpqlWrZnR5bmPHgPb888/L399fjRo10uOPP64mTZqk2MlgtTnHx8fL399fRYsWlb+/f6pLpNrB2bNntWvXLp07d06SVLx4cdWoUUMlS5Y0uLLsYbfmx9/5+PiocePGaty4sWJjY7V69WotW7ZMmzdv1nfffadFixapXr16atu2rZ599lmjywU8iux9d2b/3rfbnMne9kD2tjayN9k7idXmTPYme1sd2ds8aIAbKCgoiFCShhs3bmjlypUKCQlReHi49u/fb3RJbmeVOTdv3lx169ZV3bp1ueyWhTmdTk2dOlWDBg3S559/rmnTpqlkyZIqVqyYfHx8dPHiRR0/flwul0stWrTQBx98YHTJyIC+ffuqb9+++vnnn7V06VKtWLFC06ZN0/Tp01WyZEnVqlXLkt9ddgxo/v7+iomJ0ZEjR1SoUCHlzp1bjz/+uPLmzWt0aW6xfv16LV26VEuXLtWECRPkcDhUtGhRPfXUU3rqqacsfXTur7/+qlGjRik8PFwulyvFpRSdTqdq1aqlYcOGqUqVKgZWmXV2O+r+Tvz8/NSqVSu1atVKly9f1ooVK7R06VJt3bpV27ZtI4TDdsjeabNKDs0Iq8yZ7G0PZG9rI3uTvcne1kP2th+yt3dzuKx+MxGYxu7du7Vo0SKtXLlS0dHRcrlcuv/++7V06VKjS3MbO84Z1vLjjz9q8eLFioiI0Pnz5+VyuVS8eHHVqlVLbdq0Uf369Y0uMVsEBATonXfeUWBgYPKyqKgoBQcH6+OPP1aNGjVSjF+9erU+/PBD01/aR7p1BtTWrVu1dOlSrV69Wn/++ackqXTp0mrbtq2CgoJUqlQpg6vMutOnTycHtF9//TXNgNasWTNNnjw5xevAzGJjY7Vu3TotWbJEmzZtUkJCgnLkyKEGDRroqaeeUkBAgNq1a2epOSc5dOhQ8k6m06dPy+FwJO+UGDJkiF5++WWjS8w2a9eu1YABA+RwONS0aVPVr19fxYsXl6+vr86dO6fw8HCtXLlS8fHxmjhxopo2bWp0yXCjEydOaPny5erdu7fRpQAwkB1zqB3nDGshe5O9yd7mRfYme5O97Yfs7R1ogJvE6dOnFRISotDQ0BT3WDC7s2fPKjQ0VCEhIfrjjz8kSb6+vmrWrJleeOEF1a5d2+AKs58d5wyYXUBAQJpHXt/t8phWCOF/FRcXp3Xr1mnZsmXauHGjbt68KafTqQYNGui///2v0eVlGzsFtCRXrlxJPkp17969Kdb17NlTvXv3lr+/vzHFudmOHTu0dOlShYWFKSoqSg6HQ2XKlNFzzz2n4OBglShRwugSM+3kyZNq1aqVypcvr08++URly5ZNc9yZM2fUv39//fbbb1q8ePFtx3m7oUOHZvhvHA6HRo8e7YZqAJgV2ds67DhnwOzI3reQvcneVkT2JnuTveFpNMC92I0bN7Rq1SqFhIRo+/btSkxMlK+vr37++WejS8uSuLg4rVmzRgsXLtS2bduSL3VTsWJFHT16VBMnTlTz5s0NrjJ72XHOsI+4uDgdOnRI586dSz4KPSAgQLly5TK6tGyTmR92krXviXP16lWtXLlSS5cu1a5du3TgwAGjS3ILKwe024mMjNTSpUu1bNky/fbbb3I4HMqdO7datGihtm3bpjrrwipu3rypH374QUuWLNGGDRt048YN0//u+uCDD7R48WKtXLkyxT3m0nLlyhW1bNlSrVu31pAhQzxUYfYKCAjI8N84HA5T7zDNzBkiDodDa9ascUM1gHmRva3DjnOGfZC9b4/sbX5kb7K3mX93kb3vjuwNI9AA90J79uxRSEiIVqxYkXxprhIlSqh9+/Z6/vnnVaxYMaNLzJSIiAgtWrRIK1as0NWrV+V0OlWjRg01a9ZMzZo1U0JCgpo2bWqpy73Ycc6wjwsXLmjChAkKCwtTdHR0inX+/v56+umnNXDgQBUvXtygCuEpO3futPwZNFYMaOlx6NAhLVmyRCtWrNCZM2dMH1jS688//1RYWJiWLVummTNnGl1OprVo0UKPP/54unckjhs3TuvXr9f333/v5srcIzIyMlN/Z+Z70DVp0iTVMpfLpdOnT6to0aLKmTNnmn+3bt06d5cGmALZ2zo51I5zhn2QvZGE7G1dZG+yt5mQvW8he3s/X6MLwC1nz57V4sWLtWjRIv3xxx9yuVxyOp2SpAEDBqhnz57J/25Wzz//vPz9/dWoUSM9/vjjatKkSYojojL7wenN7Dhn2MPevXvVq1cvRUVFqXr16mne1yY0NFTr1q3TlClTVLNmTaNLRgb9/PPP2rt3r1wul6pWrZpmyP7zzz81fvx4ffvtt9q/f78BVXpOjhw5FBgYqMDAwBQBzeoCAgIUEBCgt956S9u3b7fFnCUpb968atq0qXbv3m10KVly+vRpVapUKd3jK1SooHnz5rmxIvcyc5jOrLTC9KVLl9SwYUN99NFHatCggQFVAd6N7G3NHGrHOcMeyN7WR/ZOiexN9jYjsrf1kb3NiQa4gZIuzbVo0SJt3bpVCQkJypUrl5o0aaKnnnpKVapUUXBwsO6//37TB3BJyfdwOXLkiAoVKqTcuXPr8ccfV968eY0uzW3sOGdY38WLF9WnTx/lyZNHn332mWrVqpXmuAMHDmjAgAHq37+/Fi9erCJFini4UmTG9evX9eabb2rjxo1KukiMw+FQw4YNNWXKlOQjGjds2KDhw4fr7NmzKleunJEle5xVAlpGlSpVyvQ7j0+ePKlZs2Zpz549kqQHHnhAPXr00L333ptiXFhYmEaOHKkLFy5o1KhRRpSaLfz8/HT16tV0j7969ary58/vxoqMFRcXp99++01+fn6qUKGC0eW4zZ3ujwnYFdnb+jnUjnOG9ZG9rY3sfXdkb/Mie98Z2dsayN7ejwa4gRo1aqSrV6+qQIECeuaZZxQYGKjHH39c/v7+kqx3hPLWrVu1bt06LVmyRAsXLtSCBQuUI0cONWjQQE899VSm7h3h7ew4Z1jf3LlzFR0drfnz56ts2bK3HffAAw9o1qxZatWqlb7++mv169fPg1Uis/7zn/9ow4YNatSokYKDg5U7d25t3LhR33zzjcaNG6dhw4Zp7Nix+uKLL+Tj46Nu3bqpf//+RpedLewW0CRp3759mjJlSoo59+nTJ8VZBy6XS1988YU+/fRTxcbGGlVqlh08eFAvvfSS/vzzT/n5+cnPz08HDhzQihUrNH/+fFWuXFnXrl3TsGHDFBYWJh8fH/Xs2dPosrPkoYceUlhYmLp165au8atWrVLVqlXdXJV7Xbt2TdOnT9eePXs0Z86c5OVLly7VqFGjkndKlC9fXqNHj9YjjzxiUKUAPInsbf0casc5w/rI3tZG9iZ7k73J3mZG9oYZ0AA3UFRUlHLnzq2nn35a9erVU82aNZMDuBX5+fmpZcuWatmypa5cuaIVK1Zo6dKl+uGHH/TDDz9IunXUTEREhBo2bGiJ/xZ2nDOsb82aNWrduvUdA3iS0qVLKzg4WGFhYYRwk1i3bp3q1q2r6dOnJy974oknVKRIEc2ZM0cFCxbUrFmzFBAQoDFjxpj+B3sSOwa0rVu3qkePHkpISFD58uXl7++v8PBwde3aVbNmzVKdOnV08uRJ/eMf/1BERITy5s2rESNGGF12piXtRPj444/1zDPPSLp1v9A333xTo0aN0vjx49WlSxf9/vvvevjhhzVq1ChVqVLF4Kqzpl27dhowYIBmzZqlV1555Y5jp06dqoiIiBTvfbOJjo5Whw4ddPToUZUoUULx8fHy9fVVRESEBg8eLJfLpQ4dOuj+++9XaGioXnnlFYWGhqba0QbAesje1s+hdpwzrI/sbW1kb7I32ZvsbVZkb5iGC4YJDw93vffee666deu6AgICXFWrVnU9//zzrhkzZrj++OMP18mTJ11VqlRxrVmzxuhS3erkyZOuKVOmuJ555hlXlSpVXAEBAa6aNWu63nnnHdfu3buNLs8t7DhnWMcjjzzimj9/frrHL1iwwFWjRg03VoTs9Mgjj7i++OKLVMt/++03V5UqVVxVq1Z1jRw50hUXF2dAde7Tu3dv14MPPuhatmxZ8rJ9+/a5AgMDXS+99JLr7NmzrqefftpVpUoVV7t27VyHDh0ysNrs0bVrV1fNmjVTfO+cOXPGFRQU5Grfvr3rt99+czVs2NBVpUoVV79+/Vznzp0zsNqsa9iwoWvkyJGplq9atcr1wAMPuDp16uR66KGHXNOnT3clJCQYUKF79OvXzxUQEOD6xz/+4dqzZ0+K925CQoJrz549yWPeffddAyvNuk8//dT14IMPur7//vsUy3v27OkKCAhwjRkzJnlZbGysq1mzZq4hQ4Z4uky3u3TpkqtKlSquLVu2GF0K4DXI3rfYMYfacc6wDrK3tZG9yd5kb7K3WZG9byF7ez/OADdQ7dq1Vbt2bb377rvauHGjli5dqg0bNmjfvn0aP368ypYtK4fDoevXrxtdqluVLl1avXv3Vu/evXXo0CEtWbJEK1as0HfffaeFCxfq4MGDRpeY7ew4Z1hHjhw5dOPGjXSPj42NVe7cud1YEbJTTEyMChcunGp5oUKFJElPPfWUhg0b5umy3C4iIkIdO3ZMPjpZkqpVq6a33npLAwcO1MCBAxUZGalBgwbp1VdftcT9QQ8ePKgXXnhBNWrUSF52zz336B//+Id69OihN954Q/Hx8Zo4caJatGhhYKXZIyoqKs3Lnz788MNKSEjQ4cOHNWfOHMtdlmv8+PEaM2aM5s+fr+XLl8vHx0cFCxaUj4+Prly5ori4ODmdTnXr1k0DBw40utwsCQsLU5s2bdS8efPkZdHR0dq8ebMkqVOnTsnLc+XKpdatW+vbb7/1eJ0API/sfYsdc6gd5wzrIHtbG9mb7E32fsTzxbkR2ZvsDe9DA9wL+Pr6KjAwUIGBgYqOjlZYWJiWLl2q7du3y+VyafDgwVq4cKGee+45Pf3008qVK5fRJbtNQECAAgIC9NZbb2n79u1atmyZ0SW5nR3nDHOrXLmyNm7cqC5duqRr/IYNG1SpUiU3VwV3czgckqSgoCBjC3ETOwa0a9euqWLFiqmW33///XK5XLpy5Yq+/fZblStXzoDqsl98fHyav6H8/PwkST179rTU9k2SM2dODR8+XF26dFFoaKgiIiJ0/vx5uVwuVahQQbVq1VKrVq0scSmykydPpgjakhQeHq74+HiVLVs21Wu5ZMmSunjxoidLzHaTJk1KtSw2NlYOh0OLFy/Wrl27Uq13OBzq06ePJ8oDvA7Z+//smEPtOGeYG9nbnsjeZG+zI3uTvcnet5C9jUcD3MvkyZNHwcHBCg4O1sWLF7Vs2TItXbpU27Zt07Zt2zRy5EiFh4cbXaZH1KtXT/Xq1TO6DI+y45xhPm3atNF7772nFStWqGXLlnccGxoaqi1btmjChAkeqg7ulhRYrMaOAS0hIUG+vql/CubMmVOS1Lt3b8sE8PR46KGHjC7BrcqXL2/6o8zvxul0KjExMcWyrVu3SpIaNmyYavylS5eUN29ej9TmLmmF8CShoaFpLieEA7eQvf/PjjnUjnOG+ZC97Y3sbR1k75TI3uZH9k6J7O29aIB7sSJFiujll1/Wyy+/rD/++ENLliwx9RHK6T1i9a8cDoe+/PJLN1TjGXacM6yvbdu2Cg0N1VtvvaXDhw+rc+fOKl68eIox586d06xZszR79mw1btzYEpdwspOkI84zus7KrB7Q0pLWEepWZofX9tmzZ7Vr1y6dO3dOklS8eHHVqFFDJUuWNLiy7FGpUiXt2bNHnTt3liS5XC6tXr1aDodDTZo0STV+7dq1pn+dz5492+gSAEsge5s/h9pxzrA+srf1kb1TI3tbnx1e22TvlMjeMAoNcJO499571a9fP/Xr18/oUjJtx44daS53OBxyuVy3XWdmdpwzrM/pdGrq1KkaNGiQPv/8c02bNk0lS5ZUsWLF5OPjo4sXL+r48eNyuVxq0aKFPvjgA6NLRgaNHj1aEydOTLHM5XLJ4XBo0KBBqY7WdjgcWrNmjSdL9Dg+m63h6NGjqc7mu3btmiTp8OHDaR6VX6dOHY/U5k6//vqrRo0apfDwcLlcrhS/QZxOp2rVqqVhw4apSpUqBlaZdUFBQfrggw/08MMP69FHH9WCBQt06tQplStXTo0aNUoxdurUqdq7d6/p76tYt25do0sALIfsbU52nDOsj+xtfWTv1PhstgayN9k7CdkbRqIBbqAuXbrotddeU4MGDZKXxcfHa8+ePQoICFC+fPlSjF+yZImGDBmiAwcOeLrUbHHo0KFUyy5duqSGDRtq1qxZKf47WIUd5wx7yJcvnz7//HP9+OOPWrx4sSIiIvTLL7/I5XKpePHiCgoKUps2bVS/fn2jS0UGlSpVSpLS3FGYdKTq39fdbqei2dgxoO3cuVMJCQkplkVHR0uSNm/erLNnz6b6GzPfi27q1KmaOnVqmuvGjh2b5vKDBw+6syS3W7t2rQYMGCCHw6HmzZurfv36Kl68uHx9fXXu3DmFh4dr5cqVateunSZOnKimTZsaXXKmdezYUbt27dKYMWOSGx4FChTQ+PHj5XQ6JUnfffedpk2bphMnTqhWrVp64YUXDK7aveLi4vTbb7/Jz89PFSpUMLocwDBkb+vnUDvOGfZA9rYusjfZm+ydEtnbPMjeqZG9vZPDZZVvThMKCAjQRx99pFatWiUvu3z5sho2bKiZM2emCmhLlizR4MGDTf9l8FeXL19WgwYNbBVI7ThnAPB2AQEBtz3SPOkI/LSY+Tv5dnP+60/Dv65P+u9g1jn/5z//ydTZBH379nVDNZ5x8uRJtWrVSuXLl9cnn3yismXLpjnuzJkz6t+/v3777TctXrz4tuPMYs+ePdqzZ4/y5s2rpk2bqnDhwsnrJk2apMWLF6tVq1bq1atXmvcfNJtr165p+vTp2rNnj+bMmZO8fOnSpRo1apSuXr0q6da96EaPHm25eyoC6UH2tmcOteOcAcDbkb3/j+ydEtnbfMjet5C9vRdngHshjkkAYBaxsbHy8/NLtfy3335T/vz5U92fDN4vNDRUtWvXVpkyZYwuxaP69Olju0utjRkzxugSPMrMl7LNrC+//FI5cuTQjBkzUgTRvytRooSmTZumli1b6quvvtKQIUM8WGX2q1GjhmrUqJHmur59+952x8rNmze1d+/eNM8G9VbR0dHq0KGDjh49qhIlSig+Pl6+vr6KiIjQ4MGD5XK51KFDB91///0KDQ3VK6+8otDQUN17771Glw54BbI3ALMge1sP2ds+yN7WR/ZOjexN9vYGNMABABkWFxensWPHaunSpfrhhx9SBfEJEybohx9+UNu2bTV48GDlzp3boEqRUUOHDtW4ceNsF8LtGNCCg4ONLsGj0rr8rdVt2rRJwcHBdwzgSQoWLKigoCCtX7/e9CE8s6KiotSlS5c0zwb1VjNnztTx48f173//W82bN09ePnnyZLlcLr388svJ27Ndu3Zq3bq1pk6darudcAAAmBXZ27rI3vZB9rY+snfGkL3hKU6jCwAAmEtcXJy6deumr776SqVKldLly5dTjXnyySdVpUoVffPNN+revbvi4+MNqBSZYdczobp06aKtW7caXYZHBQYGau3atUaX4TE7duzQhQsXjC7Do06fPq1KlSqle3yFChV05swZN1bk/cz2GRgWFqY2bdqkCODR0dHavHmzJKlTp07Jy3PlyqXWrVvb7rMOAACzIntbm9l+d2YXsrf1kb3vjuxtvs9Asrc50QAHAGTIF198ofDwcA0bNkyhoaEqWbJkqjHt27fXwoUL1bdvX+3evVtz5841oFIg/ewY0CIjI3X9+nWjy4Ab+fn5Jd+DKj2uXr2q/Pnzu7EiZLeTJ0/qoYceSrEsPDxc8fHxKlOmjMqVK5diXcmSJXXx4kVPlggAADKJ7A0rInvDisje1kf2NicugQ6PCQ0NTbUsOjpakrR582adPXs2zb8LCgpyY1XuZcc5w/qWLl2qwMBAvfjii3cd27dvX+3YsUOLFy9W165d3V8cssWVK1d06tSpDP1NqVKl3FQNgMx66KGHFBYWpm7duqVr/KpVq1S1alU3V4Xs5HQ6lZiYmGJZ0lHmDRs2TDX+0qVLyps3r0dqA2AcO+ZQO84Z1kf2tj6yN2ANZG/rI3ubEw1wg/39h05UVJSkW2+Qv/8ASutSR2YyZMgQORyOFMuSLnUxY8YMORyO5H9P+meHw2HqQGrHOcP6/vjjD3Xs2DHd45944gl98sknbqwI2W306NEaPXp0usc7HA4dOHDAjRUB2WP16tX6448/0j3e4XCoT58+bqzIvdq1a6cBAwZo1qxZeuWVV+44durUqYqIiND06dM9VB2yQ6VKlbRnzx517txZ0q3fmatXr5bD4VCTJk1SjV+7dq0qVqzo6TIBr0D2tnYOteOcYX1kb+sje8OqyN63R/Y2J7K3OdEAN9jtfugMGjTIgGrca8yYMUaX4HF2nDOsL3fu3EpISEj3+Fy5csnPz8+NFSG71apVS2XLljW6DI+zW0CTpAULFmjLli3pHu9wODK0g8bbrF69WmFhYekeb/Zt3Lx5czVr1kzjxo3T/v379eKLL+rBBx9Ujhw5JEmJiYmKiIjQzJkztXr1arVv316PPfaYwVUjI4KCgvTBBx/o4Ycf1qOPPqoFCxbo1KlTKleunBo1apRi7NSpU7V3714NGzbMoGoBY5G9rc2Oc4b1kb2tj+ydPmbPZRLZ+27Mvo3J3tZH9jYnGuAGCgoKSnWEspUFBwffdUxUVJT8/PyUK1cuD1TkfnacM6yvQoUK2r17t7p06ZKu8bt27VLp0qXdXBWyU4cOHdSqVSujy/A4uwU06db9isLDw9M93uwhvFevXmlemsrKxo8frzFjxmj+/Plavny5fHx8VLBgQfn4+OjKlSuKi4uT0+lUt27dNHDgQKPLRQZ17NhRu3bt0pgxY5LPaCxQoIDGjx8vp9MpSfruu+80bdo0nThxQrVq1dILL7xgcNWA55G9U7NaDrXjnGF9ZG/rI3unD9nbfMjeZG+rIXubEw1wA3344YdGl+BxN2/e1KJFi7R3794UR2jv2LFD77//vo4dOyaHw6GGDRtq+PDhljgK0o5zhrUFBwdr+PDh2rZtm+rXr3/Hsdu3b1dYWJj69evnoeqAzLNjQHv77bcVGBhodBkeU7FiRdWtW9foMjwqZ86cGj58uLp06aLQ0FBFRETo/PnzcrlcqlChgmrVqqVWrVrp3nvvNbpUZILD4dD48ePVuXNn7dmzR3nz5lXTpk1VuHDh5DFnzpyRy+XSa6+9pl69eiWHc8BOyN72yKF2nDOsjewNqyJ7Wx/Zm+xtNWRvc6IBbqDu3bsrKChITZs2tcUlim7evKlXX31V4eHhypEjh0aOHClfX18dO3ZM3bt3182bN9WoUSNVqlRJq1atUocOHbRkyRIVLVrU6NIzzY5zhvUFBQVp4cKF6t27t3r16qX27dunes2eO3dO3377rWbMmKEyZcqoU6dOBlULpJ8dA1qhQoU4S8Qmypcvz1HmFlajRg3VqFEjzXV9+/ZV375901x38+ZN7d27VwEBAcqXL587SwQMRfa2fg6145xhfWRvWBXZG1ZG9rY2sre5cAiCgXbs2KF//vOfatiwoYYMGaItW7bI5XIZXZbbzJ07Vzt37tQ///lPhYeHy9f31vEX//nPfxQXF6dWrVpp2rRpeuutt7Rw4UL5+Pho6tSpBledNXacM6wvR44cmjx5sqpXr65PPvlEjRo1UmBgoDp27Kj27durSZMmaty4sf7zn/+oSpUqmjVrFl/sJlKqVCnlzp3b6DIAAB4QFRWlLl266Oeffza6FMCtyN7Wz6F2nDOsj+xtbWRvALAPsrcxOAPcQFu3btWaNWv0/fffa/ny5Vq8eLGKFi2qVq1aqXXr1goICDC6xGy1bNkyPf300+rWrVvysri4OK1bt04OhyPF8oIFC+q5557T8uXLNWzYMCPKzRZ2nDPsoUiRIvryyy8VFham5cuX68CBAzp8+LCcTqeKFi2qoKAgPfXUU2rSpInRpSKD1q1bd8f1iYmJOnPmjIoWLaqcOXN6qCog6/r27asqVaoYXYZHpfd+kX/lcDj05ZdfuqEa73D+/HkVLFhQOXLkSLWuQIECmj17tqpWrWpAZcaxchMQSEL2tn4OteOcYQ9kb+sie8OqyN7pQ/Yme8P9aIAbKE+ePGrTpo3atGmja9euadWqVVqxYoW+/PJLzZo1S5UqVVKbNm3UqlUr3XPPPUaXm2W///67goODUyzbtWuXYmNjVbx48VRfjOXKldO5c+c8WWK2s+OcYS/NmjVTs2bNjC4DHnTp0iUFBgZq5syZatCggdHlZBs7BrQxY8bc9rJNVnS7y1AluX79umbOnKmgoCCVKVPGQ1W5144dO9Jc7nA4bhu8HA6HO0vyiFmzZmnBggVasmRJqrA9evRobdmyRd26dVP37t1T3JMrR44ctrsUI2AXZG/r51A7zhn2Qva2H7K3dZC9UyJ7/3+d2ZG94e1ogHuJfPnyqV27dmrXrp0uXbqklStX6vvvv9eECRM0YcIE1alTR0FBQWrWrJny5MljdLmZkpiYKB8fnxTLtm3bJklq2LBhqvHXrl2Tv7+/R2pzFzvOGZBuXdbFz89PuXLlMroUuIEVj1i0Y0D7+07iv/vzzz/1wQcfqHv37qpYsaKHqjLO9evXNXnyZNWqVcsy2/jQoUOpll26dEkNGzbUrFmzLLUjTbr12TRo0CAtX75cRYoU0ZkzZ1S2bNkUYypWrKjdu3dr4sSJ+vnnn/Xpp58aVC0Ao5C9rZlD7ThnQCJ7Wx3Z2xq5jOydEtnb/MjeMAvuAe6FChcurE6dOmnOnDnasGGD3nnnHTmdTr333nt67LHHjC4v08qVK6eDBw+mWLZ69Wo5HA498cQTqcZv2rRJ5cqV81B17mHHOcMebt68qW+++UZDhw5NsXzHjh1q2bKl6tevrxo1aqh79+46fvy4QVUC2ScpoJ04ccLoUjwmNjZWoaGhtjo7yoo7mP7OCkeZ384333yj5cuXq2vXrtqwYUOqAC7d2uG2evVqPffcc1q9erUWLVpkQKUAvAXZ+xYr5FA7zhn2QPaG3ZC97YHsbW5kb5gFDXAvlyNHDvn5+Slv3rzy9fVVXFyc0SVl2jPPPKPFixdrzZo1iomJ0RdffKGjR4+qSJEiqe5VtGTJEm3evFmBgYEGVZs97DhnWN/Nmzf16quvavjw4Vq2bJni4+MlSceOHVP37t117NgxNWrUSF27dtWxY8fUsWNHXbhwweCqgayzQ0D7OzvOGeb13XffqW7duhoyZEia9xlLkjNnTo0aNUpVq1bVggULPFghAG9G9jZ3DrXjnGF9ZG/YlR1zqB3nDPMie8MsuAS6F7p06ZJWr16tlStXKjw8XPHx8XrggQf0xhtv6JlnnjG6vEzr2rWrfvzxR/Xt2zf5/hc5cuTQBx98oJw5c0q6dYT23LlztWPHDpUvX15du3Y1tugssuOcYX1z5/6PvfsOj6J62zh+bxppQELvHRJ6702K9EhHpYogAkoTVOAH0qKIgIqgIChdASkBqQaki/RepTeBQEiAQELavn/wZmVJgCQk2ezm+7kuL2HmzM4z29j7nJkzC7V//359/PHH6tSpkxwcnvxTMnXqVIWHh+uNN97QV199JUnq1auXfHx8NGPGDI0YMcKSZSOJODo6qnLlysqYMaOlSwEAM+fPn9eAAQPi1dZgMKhJkyaaPn16MlcFIDUje9tODk2LxwzbR/ZO28jeAFIrsjesBQPgqcSdO3fk7++vDRs26MCBA4qKilLu3LnVo0cPvfHGGzZx/w8nJyfNnTtX69at0+HDh+Xu7i4fHx8VKVLE1Ob48eM6ePCg3njjDQ0dOlTOzs4WrPjVpcVjhu1bs2aNGjdurB49epiWhYeHa/PmzTIYDGbLPTw81KZNG61du5YQbiUePHig9OnTP3d9xowZtWDBArNle/bsUdWqVZO7NCBZpU+fXuPHj1fRokUtXQoSycHBwTTIER8ZMmSIdb9YALaP7P2EreXQtHjMsH1kb9tG9kZaRfa2fmRvWAsGwC0oICBA/v7++uOPP3Tw4EFFRUUpY8aMateunXx8fFSpUiVLl5jk7O3t5ePjIx8fnzjX9+7dWwMGDJCdne3Mzp8Wjxm27dKlS2rdurXZsgMHDigsLEzZsmWTl5eX2bp8+fKlqfsYWbuuXbtqzpw58vDweGnbx48fa+LEifr111918uTJ5C/OgtJiQMuYMaPmz5+v4sWLW7qUFJEuXTrVqlWLKyysWP78+XX8+PF4tz9+/Lhy5syZjBUBSC3I3rHZYg5Ni8cM20b2tm1k77iRvW0f2dv6kb1hLRgAt6C6detKenKmcsOGDeXj46O6deu+8L4Jts7FxcXSJaS4tHjMsG7R0dGxztrbvXu3JKlGjRqx2j948ID3uRU5deqUOnfurLlz5ypLlizPbXfkyBF9+umnunTp0gvb2Yp06dKZdT5FRUVp5syZ6tOnjwWrSl6Ojo6qUqWK6e8PHjzQhAkT5Ovra8GqXt2cOXP022+/6ffff4/1m+uLL77Qrl271KNHD/Xs2dPqO8hXrlwZa9nDhw8lSX/99Zdu3boV53atWrVKxqqST4sWLTR58mR17979pR1mZ8+e1erVq9W1a9cUqg6AJZG9Y0uLv8/T4jHDupG9bRvZO25kb7K3NSJ7Px/ZG5ZkMBqNRksXkVZ16dJFLVu2VJMmTeTu7m7pcgAgXlq2bKmyZctq7NixpmXNmjXTxYsX9c0336hJkyZm7Xv27Kl79+5p6dKlKV0qEuGXX37R559/rrx582ru3LmxztCMiIjQd999p9mzZysqKkotW7bU8OHDbeLM3QcPHmjp0qU6fPiwjEajSpQooU6dOilDhgxm7Y4dO6YRI0bon3/+0alTpyxUbdK4du2a5syZo0OHDkmSSpQooffee0/58+c3a+fv769x48bpzp07VnvMRqNRQ4YM0dq1a5U5c2YtXrxYefPmNWszbdo0LV26VAEBAXr99df13XffWajapOHt7S2DwWC27Omf/nGtMxgMVvsaP3r0SG3atFFwcLCGDx+u5s2bx+o0QYZJtQABAABJREFUjoyM1Jo1azRp0iRJkp+fn7JmzWqJclPM7du35eHhEedAX0REhA4dOqTixYu/cApOwNqRvQFYI7K3bSN7k73J3mRva32Nyd5xI3unPgyAAwASZObMmfr+++81efJk1axZU0uWLNGXX36pLFmyaPPmzWb3gPn999/16aefasCAAerdu7cFq0ZCrFmzRkOHDlW2bNk0d+5c5cuXT9KTM9Q//fRT/fPPP8qVK5fGjBmj2rVrW7japHH16lV17dpVN2/eNAspWbJk0dKlS5UzZ05FRkZq8uTJmj9/vqKiotS8eXNNnjzZglW/mlOnTqlLly4KCQmRs7OznJ2dFRwcLFdXVy1evFjFihXTgwcPNGLECPn7+8ve3l49evTQoEGDLF16oixevFijR4/WO++8o8GDBz/3qr/w8HCNGTNGK1as0Oeff642bdqkcKVJx8/PL1HbPTvVpjW5ePGiPvjgA128eFGurq4qWbKksmbNqqioKAUGBur48eMKCwtTrly59P3338vb29vSJSeJF11dMWjQIJu6ugIAgLSC7G37yN5kb7I32dtakb3J3taAAXALimtqjPiw1qkxANiG8PBw9ejRQ/v27ZPBYJDRaJSjo6OmTZtmml5y48aNWrhwofbu3auCBQtqxYoVcnZ2tnDlSIht27Zp4MCBcnd316xZs/Tnn39qxowZioyM1Ntvv63BgwfLzc3N0mUmmcGDB2vdunUaNGiQ2rZtKxcXF23btk1jx45VuXLlNHHiRPXq1UsHDx5Urly5NGrUKNP73Vr16dNHO3bs0IQJE9S8eXNJ0tGjR/XRRx8pV65cmjRpkrp27apLly6pdOnS8vX1jXWfQWvSrl07ubq6av78+S9tazQa1bZtWzk5OWnx4sUpUB2SUnh4uH755RetXbtWp0+fVmRkpKQnUwuWK1dOjRo10ptvvmnWaWyt0uLVFUBikL0BWCOyd9pA9iZ7k73J3taK7E32Tu0YALegmKkxYqa8eBlrnxoDgO2IiorSunXrdPjwYbm7u8vHx0dFihQxrf/mm280e/ZsNWvWTEOHDpWnp6cFq0ViHThwQH369FFISIiMRqPy588vX19fVapUydKlJbk6deqoZs2aGj9+vNlyPz8/jRo1SnXq1NGmTZv09ttv6+OPP5arq6uFKk06NWvWVNOmTTVixAiz5f7+/ho0aJDKlSuno0ePasCAAXr33Xet/szV8uXLa8CAAXrnnXfi1X7mzJmaPn26aYo6axcWFhZnZ+i5c+eUIUMGZcuWzQJVpYy7d+/K3t7eJqaLfFZavLoCSAyyNwBrRfZOG8jeZG+yN9nbFpC9yd6pjYOlC0jLnv2HHgCshb29vXx8fOTj4xPn+t69e2vAgAFW/6M9ratYsaLmz5+vnj176u7duxo7dqxNBnBJCgoKUvny5WMtr1y5ssLDw7Vt2zZNmTJFjRs3tkB1yePevXtxTkFVunRpRUVF6cyZM1qwYIHKlSuX8sUlAwcHhwSddZwhQ4ZY97CyRuHh4ZowYYJWr16t7du3xwriX3/9tbZv3662bdvq008/tYkOpmdlypTJ0iUkm2XLlqlKlSoaOnToC9s5OTnJ19dXp06d0m+//UYIR5pD9gZgrcjeaQPZm+xN9iZ72wKyN9k7tWEA3IKs+R4PANKurl27qk+fPqpevbppWWRkpA4dOiRvb2+lT59eLi4upnUx9yLjChrr5O3trUWLFql79+7q06ePvv/+e1WrVs3SZSW5iIgIs/dtjJip5rp3725TAVx68rlNly5drOUxIa1Xr142E8AlKX/+/Dp+/Hi82x8/flw5c+ZMxoqS39PTZnp7eysoKCjWMdWrV0+3bt3SkiVLdPbsWc2fP18ODtYZEaZNm5ao7T788MMkriTlnD9/XgMGDIhXW4PBoCZNmmj69OnJXBWQ+pC9AVgjsnfaQvYme9sKsjfZ+3nI3khp1vkJS6OioqI0c+ZM9enTx9KlAEjD9u7dq/bt25ste/Dggbp27arZs2ebhXNYn2HDhsW5PH/+/Lp27Zref/99NW3a1Gz6UIPBoC+++CKlSrSIKlWqWLqEFFeqVClLl5CkWrRoocmTJ6t79+4qWrToC9uePXtWq1evVteuXVOouuQxd+5c7du3TyNGjFDnzp3jbNO+fXu1b99e06ZN07Rp07Rw4cJ4T1WX2sQ3hD87/bE1h/C0enUFkNzI3gBSA7K3bSN7x43sbf3I3mTvGGRvsrelMQBuYQ8ePNDSpUt1+PBhGY1GlShRQp06dVKGDBnM2h07dkwjRozQP//8QwgHkCoZjUZLl4Ak4Ofn98L1jx8/1sqVK82WpYUQnhZ/tMbnHqnWpEOHDlq8eLG6dOmi4cOHq3nz5rFe18jISK1Zs0aTJk1S+vTprT6Er169Wg0aNHhuAH/ahx9+qL1792rVqlVWG8L//PPPl7Z58OCBvv32W23dulUODg5W/xqnxasrgMQiewOwFWRv20D2jhvZ2/qRvV+M7G2dyN7WiQFwC7p69aq6du2qmzdvmn68bty4Ub/88ouWLl2qnDlzKjIyUpMnT9b8+fMVFRWl5s2bW7hqAIAti8+PWFsVHBysf//912zZvXv3JEl3796NtU6ScuXKlSK1JZcLFy5o3759ZssePHggSTpz5kyc03FVrlw5RWpLaq6urpo+fbo++OADffrppxozZoxKliyprFmzKioqSoGBgTp+/LjCwsKUK1cuff/998qaNauly34lly9f1ltvvRXv9q+99pqmTJmSjBUlr9y5c79w/bp16/Tll18qICBAFSpU0OjRo1WsWLEUqi55pMWrK4DEIHsDAFIbsjfZm+xN9rZWZG+yt7VgANyCvv32W928eVODBg1S27Zt5eLiom3btmns2LEaO3asJk6cqF69eungwYPKlSuXRo0apbp161q6bACADXvZj1hb9sUXXzz3bPohQ4bEWmYwGHTy5MnkLitZzZgxQzNmzIhz3YQJE+Jcbs33FCxYsKBWrlypX375RWvXrtXBgwcVGRkpSXJ0dFS5cuXUqFEjvfnmmwma2iq1cnV1VVRUVLzbp0uXznQfOlty5coVjRkzRrt27VLGjBnl6+urdu3aWbqsJJEWr64AEoPsDQBIbcjeZO8YZG+yt60ge5O9UxsGwC1o3759atWqlXr16mVa1rRpU4WFhWnUqFEaOnSoDh48qLffflsff/yxXF1dLVgtAACxzZgxQ/7+/lqxYoWlS3klrVu3tnQJKc6a7730KpycnNS9e3d1795d0pMrDOzt7ZUxY0YLV5b0ChUqpIMHD8Y7dB04cMCmOuLCw8M1c+ZMzZo1S+Hh4WrdurU+/vhjeXp6Wrq0JJMWr64AEoPsDQCwdmRv60X2Jns/i+xtfcje1okBcAsKCgpS+fLlYy2vXLmywsPDtW3bNk2ZMkWNGze2QHUAALzcjRs3rPqs5Bjjx4+3dAkpLq2G8GdlypTJ0iUkm9atW2vUqFHavXu3qlWr9sK2e/bskb+/v/r165dC1SWvXbt2acyYMbp8+bKKFi2qUaNGqVKlSpYuK1mktasrgMQgewMArB3Z23qRvZ8gez9B9rZeZG/rwwC4BUVERMjFxSXWcjc3N0lS9+7dCeAAUqVn79f0ons1BQUFpWhtABCXadOmJWo7a+6saNWqlZYvX67evXvr/fffV/v27ZUlSxazNgEBAVq6dKl++ukn5cmTRx07drRQtUnjzp07Gj9+vNatWydnZ2cNHjxY3bt3j/OeerYkLV1dASQG2RuAtSJ7A7A2ZG+yty0je1sXg9FoNFq6iLTK29tbEydOlI+Pj9nyoKAgVa9eXT/99JNq1aploeoAIG7e3t4yGAyxlhuNxjiXx7CFM5UR26hRo/Tbb79Z/eubFgPasGHDEryNwWB47r3aUjtvb+94tXv2e8za39uBgYH66KOPtGfPHhkMBuXKlctsiq4bN27IaDSqXLly+uabb5QzZ05Ll5xoCxcu1JQpUxQSEqL69etrxIgRVn08AJIO2RuANSJ742lkb7K3tSB7k72B1MK2T8ewcvb29pYuAQBiSYv3a4Lti28IfzagWXMI9/Pzi3fbp4/bWkP4n3/++dI2Dx480LfffqutW7fKwcEh3vfvSs0yZ86sefPmyd/fX2vXrtXJkyd15swZ2dnZKUuWLGrVqpVef/111a9f39KlvjJfX1/Tnzdv3qzNmze/dBuDwaCTJ08mZ1nJKi12IALJgewNIDUie8MWkb1fjOxtvcjeL0b2hiUwAG5hz05lJL14OiNJypUrV4rUBgBxSYv3a4LtS4sB7fTp0y9tc/36dY0bN05bt25V+vTpNXDgwOQvLJnkzp37hevXrVunL7/8UgEBAapQoYJGjx6tYsWKpVB1ya9Ro0Zq1KhRrOX37t2Ts7OzBSpKemmxkzgtdiACiUX2BmBtyN6wRWTvuJG9yd7WhOz9fGTv1IUp0C3oeVMZSc+fzsjaz5QBAKRuCT2jccuWLTp58qTVT1X1MrYe0J4VFRWl2bNn64cfflBYWJiaNWumYcOGxbqHlS24cuWKxowZo127diljxowaMmSI2rVrZ+mykkxERIRWrFihw4cPm3Wi7t27V6NHj9bFixdlMBhUo0YNffbZZ8qXL58Fq301w4YN01tvvaWyZctaupQUc/369Ze2iasD8ZNPPkmB6oDUg+wNAEhtyN5xI3uTva0V2du2kb2tEwPgFpSY+39InAEKAEg+8b1X09MMBoPNhnBbD2hx2b9/v8aMGaOzZ8+qQIECGjVqlKpXr27pspJceHi4Zs6cqVmzZik8PFytW7fWxx9/LE9PT0uXlmQiIiL07rvvat++fXJ0dNShQ4fk4OCgixcvqmXLlgoPD1edOnVUpEgR/fHHHwoNDdXvv/9utZ0tz7vHb1qW1joQgechewMAUhuytzmyN9nbmpG9QfZOnZgC3YII0wCA1Gb+/PmWLiFVSAsB7VlBQUH66quvtHLlSjk5Oalfv35677335OTkZOnSktyuXbs0ZswYXb58WUWLFtWoUaNUqVIlS5eV5BYuXKj9+/fr448/VqdOneTg8OSn/9SpUxUeHq433nhDX331lSSpV69e8vHx0YwZMzRixAhLlo0k8GwHoq+vr813IAIvQvYGAKQ2ZO8nyN5kb1tA9k67yN6pGwPgqUBoaKiWL1+uHTt26PTp0woODpbBYFCmTJnk7e2tBg0ayMfHxyb/EQQApC5VqlRJ8Db79+9PhkosJ60EtKctXbpUkyZN0r1791SzZk2NGjXKqqfjep47d+5o/PjxWrdunZydnTV48GB1797dFE5tzZo1a9S4cWP16NHDtCw8PFybN2+WwWAwW+7h4aE2bdpo7dq1hHArlhY7EIGEIHsDAFILsjfZm+xtO8jeaQ/Z2zrY5jeOFTlw4IAGDBigO3fuyMnJSfny5VPu3LkVGRmp4OBgbdmyRZs3b9a0adM0efJkVahQwdIlAwCgGzduyM/PTytXrtTVq1dtYhq2tBbQJOnMmTMaPXq0Dh8+rCxZsujrr79Ws2bNLF1Wsli4cKGmTJmikJAQ1a9fXyNGjFDOnDktXVayunTpklq3bm227MCBAwoLC1O2bNnk5eVlti5fvnwKCAhIyRKT3P79+xUVFZWgbVq1apU8xaSwtNiBCCQE2RsAYI3I3raB7E32fhrZ27qRva2H7f6rYgXOnz+vHj16yN3dXZMmTVKjRo1inWkeEhKiDRs26LvvvlPPnj3l5+en/PnzW6hiAEBa9vjxY/n7+2vFihXas2ePjEajDAaD6tSpY+nSXllaDGgTJkzQggULFBUVpXr16mngwIFyd3fXv//++8LtcuXKlUIVJi1fX1/Tnzdv3qzNmze/dBuDwaCTJ08mZ1nJKjo6Wvb29mbLdu/eLUmqUaNGrPYPHjyQi4tLitSWXH777Tf99ttv8Wob8x1m7SE8LXYgAglF9gYAWBOyt20he5O9n0X2tk5kb+vDK2NBP/zwg1xcXLR8+XJlz549zjbu7u5q166d6tSpo5YtW+qnn37SuHHjUrhSAEBadvjwYa1YsULr169XSEiIJClTpkxq27at3nzzTeXOndvCFb66tBjQ5syZY/rzli1btGXLlnhtZ61XHDx7NnZakC9fvliv18aNG2UwGPTaa6/Far9z506rn36vQ4cOKleunKXLSDFpsQMRSAyyNwDAGpC940b2ti5k7yfI3raF7G2dGAC3oH379qlNmzbPDeBPy5Ytm1q1aqWdO3emQGUAgLQuICBAK1eulJ+fny5duiSj0SgXFxfVqFFDu3bt0tixY9WgQQNLl5lkWrVqJYPBYOkyUtSHH36Y4G2MRmMyVJJy3nrrLZUtW9bSZaSY5s2b6/vvv1edOnVUs2ZNLVmyRBcuXFCWLFlUv359s7a///67/vrrLw0YMMBC1SaNSpUqycfHx9JlpJi02IEIJAbZGwCQWpG9bR/Z2/aRvW0f2ds6MQBuQUFBQQmaUq1QoUJaunRpMlYEAEjr1q9frxUrVmjXrl2KiopShgwZ5OPjo0aNGql27dq6ffu2GjZsaOkyk9yXX34pSYqIiNC5c+cUGRmpIkWKWP2UVC+SK1cutWnTJt7tr1+/ruHDhydjRcnLz89PNWrUSFMh/J133tGOHTv04YcfymAwyGg0ytHRUZ9//rlp6t+NGzdq4cKF2rt3rwoWLKh33nnHskUjQdLi1RVAYpC9AQCpDdmb7P08ZG/rQ/a2fWRv68QAuAVFREQk6B/3dOnS6eHDh8lYEQAgrRs0aJBcXV3VsWNHNWjQQJUrVza7j5Etn6n9888/a/r06aZ/a52cnNSxY0cNHjzYJu/nM2LECIWGhqpTp04vbbt06VJNmDCB3yFWxsnJSXPnztW6det0+PBhubu7y8fHR0WKFDG1OX78uA4ePKg33nhDQ4cOlbOzswUrRmKktasrgMQgewMAUhuyN9k7LmRv60T2ThvI3tbH9v5FAQAAiZYnTx5du3ZNK1as0MWLF3Xs2DE1bNhQBQsWtHRpyWr58uWaOHGicufOrVatWsnOzk579uzR3LlzFRUVZdVnXz9PgQIF5Ovrq9DQUPXs2TPONrdv39aIESO0fft2OTo6Wv0UXWmRvb29fHx8njs1We/evTVgwADZ2dmlcGVJr3Xr1lZ/H7WESotXVwAAANgCsjfZ+2lkb+tH9rZtZG/rxAC4hQUHB+vff/+NV9ugoKBkrgYAkNZt2rRJR44c0e+//64NGzZo586d+vrrr1WoUCE1atRIJUuWtHSJyWLJkiUqV66c5s2bp3Tp0kl6cs+tQYMGacmSJRoyZIhp2ipb8euvv6pnz56aPHmyQkND1a9fP7P1a9as0bhx43Tv3j2VL19evr6+Kly4sIWqTRr79+9XVFRUgrZp1apV8hSTStjSVIPjx4+3dAkAUjGyNwAgNSF7k71jkL2fIHtbD7I3rIXBaDQaLV1EWuXt7Z2o6WxOnTqVDNUAAGAuKipKO3fu1OrVq/Xnn38qNDTU9O9W27Zt1adPH+XOndvCVSaNihUr6qOPPoo1Jdnhw4f19ttvy8/PT97e3haqLvk8evRIffv21Z49e/TOO+/o008/VVBQkEaNGqWNGzfK2dlZgwYNUpcuXax+Cr6E/u4yGo0yGAz87kKq5u3trYkTJz73KgMAT5C9AQCpGdmb7E32JnsjdSN7WyeuALeg1q1bW7oEAACey97eXnXr1lXdunUVFhamjRs3as2aNfrrr7+0bNkyrVixQlWrVlXbtm3VokULS5f7SkJDQ5U+ffpYy/PkySOj0aj79+9boKrk5+rqqpkzZ+qjjz7S3Llzde3aNR08eFCBgYGqWbOmxo4dazMdLZLUoUMHlStXztJlAEmKqyuAlyN7AwBSM7I32ZvsDaR+ZG/rwxXgAADApFevXqpWrZqqVKmikiVLxnnWblBQkNatW6fVq1fr8OHDNnGm7vPO5AwKClL16tU1Z84cVa9e3ULVJb/o6GiNGDFCK1askJ2dncaOHat27dpZuqwkxdm6sEVcXQEAAGCdyN5kb7I3YD3I3taJK8ABAIDJ7t27tX37dhkMBrm7u6tSpUqqWrWqqlWrZpqGzNPTU506dVKnTp109epVrV271sJV41XZ2dnpiy++kIeHh2bPnq1du3apVatWcnDgpyKQ2nF1BQAAgPUhe6dNZG/AepG9rQ/frAAAwOTgwYM6efKkDh48qEOHDunw4cPasmWLDAaDMmTIoMqVK6tq1aqqWrWqihUrprx586p3796WLjtJBAcH699//zVbdu/ePUnS3bt3Y62TpFy5cqVIbckhruPp3LmzHj16pCVLlujhw4caOXKk7OzszNpY8zEDtqhSpUpcXQEAAGBlyN5kb7I3YF3I3taHKdABAMAL3bhxwyyUnz59WlFRUfLw8FCVKlVUtWpVdezY0dJlvpIXTWUUM23RswwGg06ePJncpSWblx2zpFjrrfmYhw0bprfeektly5a1dClAkmF6QQAAANtB9iZ7x7DmYyZ7wxaRva0TV4ADAIAXypkzp5o3b67mzZtLkh48eKDff/9dK1as0B9//CF/f3+rD+GtW7e2dAkprlWrVgm6f5G1Gz9+vKVLAAAAAIDnInvbJrI3AFgGA+AAAOCFwsLCtG/fPu3du1cHDhzQ8ePHFRERIScnJ9OUbNYuLQa0L7/80tIlAHhFrVu3Vr58+SxdBgAAAJIA2ds2kb0B60f2tk5MgQ4AAMxERkbq8OHD2r17t3bv3q0jR44oIiJCjo6OKlOmjCl4ly9fXk5OTpYuFwAAAAAAq0P2BgAg+TAADgAATN577z3t379fYWFhsrOzU8mSJVWtWjVVrVpVFStWlLOzs6VLBAAAAADAqpG9AQBIXgyAAwAAE29vbzk6OqpFixZ6//33VaBAAUuXBAAAAACATSF7AwCQvBgABwAAJiNHjtSePXt05coVGQwGFSpUSNWrV1e1atVUuXJlZcyY0dIlAgAAAABg1cjeAAAkLwbAAQBALP/++6927dpluhfZnTt3ZGdnJ29vb1WtWtUUyl1dXS1dKgAAAAAAVonsDQBA8mAAHAAAvNTZs2e1e/du/f3339q/f7/u378vBwcHlSpVStWrV9eAAQMsXSIAAAAAAFaN7A0AQNJgABwAACRIeHi4NmzYoF9//VWHDx+WwWDQqVOnLF0WAAAAAAA2g+wNAEDiOVi6AAAAkLpduXJFR44c0ZEjR3T06FGdPn1aERERcnNzU506dVS5cmVLlwgAAAAAgFUjewMAkHS4AhwAAJjcu3dPR48eNQXuo0eP6t69ezIajcqYMaMqVKigKlWqqHLlyipRooTs7OwsXTIAAAAAAFaF7A0AQPJiABwAAJh4e3vLYDDIaDTK09NTlStXNv3n5eUlg8Fg6RIBAAAAALBqZG8AAJIXU6ADAACTJk2aqEqVKqpSpYqKFCli6XIAAAAAALA5ZG8AAJIXV4ADAAAAAAAAAAAAAGwCNw8BAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMcLF0AAABpwdSpUzVt2rQEbfPnn38qT548yVRR4tWvX1/Xr1+XJP3vf/9T165dX9i+R48e2rlzpyRpzpw5qlGjRrLW5e/vr/z58yfLPgAAAAAAqRfZm+wNAIDEADgAACnCy8tLPj4+ZssCAwO1a9cuubq6qkGDBrG2cXV1TanyEm3Dhg0vDOF3797V7t27U7AiAAAAAEBaRfYGAAASA+AAAKSIRo0aqVGjRmbL9uzZo127dsnT01OTJk2yUGWJlyFDBh08eFC3bt1S9uzZ42zj7++vyMhIOTo6KiIiIoUrBAAAAACkJWRvsjcAABL3AAcAAInUsGFDGY1G+fv7P7fN2rVr5eHhodKlS6dgZQAAAAAA2AayNwAACccAOAAAqdjWrVvVo0cPValSRaVLl1bjxo01ceJEBQcHm7W7du2avLy8VKdOnTgfp0uXLvLy8tKePXtMy4YOHSovLy/t3btX/fr1U5kyZVStWjUtWLAgXrU1adJE0pOp2OISEBCg/fv3q3HjxnJweP6kM6tWrVLHjh1VoUIFlSlTRj4+Ppo+fbpCQ0PjbP/333+re/fuqly5sipVqqSBAwea7osWl6ioKC1atEjt27dX+fLlVb58eb355pvy8/OT0WiM17ECAAAAAGwX2Ts2sjcAwJoxBToAAKnUpEmTNGvWLNnb26tixYry9PTU4cOH9dNPP2n9+vWaN2+e8ubN+8r7GTlypAIDA1W7dm2dPXtW3t7e8dquQIECKl68uA4ePKiAgABly5bNbP2GDRsUHR2t5s2ba9q0abG2j46O1scff6w1a9bIyclJVapUkYuLi/bt26dvv/1Wf/zxh+bMmSNPT0/TNkuXLtVnn30mSapUqZIyZMignTt3av/+/QoPD4+1j4iICPXt21fbt2+Xu7u7ypcvL0dHR+3du1dDhw7Vnj179OWXXybk6QIAAAAA2BCyN9kbAGB7GAAHACAV2rx5s2bNmiUPDw/99NNPpmnMwsPDNXbsWC1dulQDBgzQ8uXLZTAYXmlfAQEB+v3335U3b15FR0fLzi7+E8Q0a9ZMp06dkr+/vzp37my2bt26dcqWLZsqV64c57YLFy7UmjVrlDdvXs2ePVv58uWTJIWEhGjw4MHaunWrPvvsM02dOlWSdOPGDfn6+srBwUEzZ85U9erVJUl3795Vjx49dPLkyVj7+OGHH7R9+3ZVqVJFU6ZMUaZMmSRJd+7c0XvvvSc/Pz9VrFhR7du3j/cxAwAAAABsA9mb7A0AsE1MgQ4AQCo0d+5cSdInn3xidg8vJycnjR49Wvnz59eJEye0e/fuV95XgwYNTGezJySAS1LTpk0lxZ6K7d9//9Xhw4fVtGnT5z7mvHnzJEm+vr6mAC5J7u7umjRpktKnTy9/f39dvnxZkuTn56ewsDC99dZbpgAuSZkyZdIXX3wR6/HDw8O1YMECOTo6atKkSaYALklZsmTR2LFjJUk///xzgo4ZAAAAAGAbyN5kbwCAbWIAHACAVCYyMlIHDx6UwWBQ48aNY613cHBQo0aNJMnsvmKJVaxYsURvmzdvXpUsWVIHDhxQQECAafm6detkNBrVokWLOLe7ceOGrl27Jk9PT1WrVi3W+vTp06t27dqSpL1790qS9u3bJ0mqW7durPbFixdXnjx5zJadOHFCDx48UKFChZQ9e/ZY25QuXVqZM2fWxYsXdfv27XgeMQAAAADAFpC9yd4AANvFFOgAAKQywcHBioiIkKenp9zd3eNsExM4kyI8ZsyY8ZW2b9asmU6cOKGNGzeqU6dOkp6E8Lx586pMmTJxbhMT2HPnzv3cx332GGO2yZEjx3PbX7t2zfT3GzduSJLOnDkjLy+vFx7DjRs3lDVr1he2AQAAAADYDrL3E2RvAIAtYgAcAIBUxmg0StIL7y8W08bJySlejxkVFfXcdQmdeu1ZTZs21cSJE7V+/Xp16tRJly9f1okTJ/T+++8/d5vEHOPL7rfm4GD+syY6OlqSlCtXLlWsWPGF27q5ub1wPQAAAADAtpC9zduQvQEAtoQBcAAAUhkPDw85OjoqODhYISEhcZ6JfvXqVUlS5syZJf0XpGOC57Pu3buXTNU+OZO8TJkyOnDggG7fvq1169ZJkpo3b/7cbbJlyyZJZmeNPyvmGLNkySJJyp49u86ePavr16+rSJEisdo/PQ2cJNNZ5Tly5NCkSZMScEQAAAAAAFtH9n6C7A0AsEXcAxwAgFTG0dFR5cuXV3R0tDZu3BhrfWRkpGl51apVJUmurq6SnoTtiIgIs/ZBQUG6ePFistbcrFkzRUdHy9/fX+vXr1eRIkVeOPVZrly5lDt3bgUFBZnuM/a0Bw8eaOfOnZKkypUrS5Jq1KghSXE+J1evXtW5c+fMlpUuXVrOzs46ffp0rIAuSbdu3VLTpk3VvXt3PXz4MP4HCwAAAACwemRvsjcAwHYxAA4AQCrUrVs3SdJXX32lkydPmpZHRERozJgxunLliooXL26aXszDw0M5cuRQeHi4Fi9ebGr/+PFjffbZZy+chi0pNGnSRAaDQQsXLtSZM2deeAZ6jJhjHDFihOmMc0l6+PChPv74Y4WEhKhevXqme5W1bt1aHh4eWr58uf744w9T+5CQEA0fPjzWGfiurq7q0KGDHj16pI8//liBgYFm+xg2bJguXLggV1dXpmEDAAAAgDSI7E32BgDYJqZABwAgFWrYsKHeffddzZ49W+3atVPFihXl6empI0eO6ObNm8qdO7e++eYbs3uI9ezZU76+vvL19dXatWuVJUsWHTx4UFFRUapXr562bNmSbPXmzJlT5cqV06FDhyS9eAq2GF26dNGhQ4e0fv16NW/eXJUrV5aLi4v279+voKAgeXt764svvjC1z5Qpk7744gsNHDhQ/fv3V/ny5ZUtWzbt27dPUVFRKliwYKyz7QcPHqxTp05p9+7dev3111W6dGm5uLjo0KFDCg4OVoECBTRmzJikfTIAAAAAAFaB7E32BgDYJq4ABwAglfr000/1ww8/qGrVqjp9+rS2bt0qNzc39enTR35+fipYsKBZ+y5dumjChAkqVaqUTp48qX379qlq1apatmxZrLbJoWnTppKkkiVLKn/+/C9tb2dnp2+++Ubjx49XyZIldfDgQf3111/KkSOHPv74Y/3222/KlCmT2TYNGjTQr7/+qgYNGujixYvasWOHSpQooV9++UU5cuSItQ9nZ2fNnj1b//vf/1SoUCEdPXpUe/bsUbZs2dSvXz8tXbrUdJ8zAAAAAEDaQ/YmewMAbI/BaDQaLV0EAAAAAAAAAAAAAACviivAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcMCGrFixQl5eXgn+r0uXLpYuPd6mTp363OMoXry4ypYtq/r166tfv37atGmTpcvF/zt06JDpderZs+dL2w8dOlReXl4aMmSI2fKYx9i1a1eS19ijRw/T4x85ciTJH/9pkZGRunjxYrLu41mnT5+Wr6+vmjdvrkqVKql06dKqW7euevbsqYULFyosLCzJ93n79m0NGTJENWrUUKlSpVS7dm1t375dkrRy5Uq1bNlSZcuWVaVKldSjRw/t2bPH9BpERkYmer/Xrl0zPc7ly5eT6nDwioxGo86fP2/pMhLlwoUL6tOnj6pWrarSpUvrtdde05kzZ2Q0GjVnzhw1adJEpUuXVtWqVfW///3P9O9xnTp1Xmm/SfWZSCpnz56Ntax+/fry8vLS0qVLE/RYid0OAABYD/oo6KNIreijMEcfBX0UqYk1fD4BWAcHSxcAIOlkzpxZFSpUiLX8xo0bunHjhpycnFSqVKlY64sVK5YS5SWpuI7FaDQqLCxM165dk7+/v/z9/eXj46OJEyfKYDBYqFJI0vLly01/3rlzp65evaq8efNasCJzN27cMPtBvGjRIpUtWzZZ9rVz5075+vqqcePGGjRoULLs41nfffedpk+frujoaLm7uytfvnxydHTU7du3tWPHDu3YsUM//fSTvv/+e5UsWTJJ9hkdHa2ePXvq9OnTcnBwUNGiRRUREaHcuXPrjz/+0KeffipJypo1q7Jnz56q3g9IekePHtW4ceOUP39+TZo0ydLlJMjDhw/VrVs3BQQEyNnZWUWLFlVoaKjy5MmjOXPmaMKECZKk3Llzy8PDQ3ny5LFwxUkvICBAEyZM0P79+7Vt2zZLlwMAAKwEfRT0UaRW9FH8hz4K+ihSm9T++QRgPRgAB2xI3bp1Vbdu3VjLp06dqmnTpilr1qxatGiRBSpLei86lvDwcH377bf6+eeftXr1alWpUkUdOnRI4QoRIzQ0VOvXr5fBYFCtWrW0Y8cOLVmyJNaZmZa0YsUKRUdHq27dutq2bZvWr1+vYcOGKWPGjEm+rx9//DFFz6xevny5vv/+e7m6umr8+PF6/fXXZW9vb1p//vx5DR8+XIcPH1aPHj20bt06ZcqU6ZX3e/HiRZ0+fVqSNGPGDNWuXdu0burUqZKkihUrav78+XJwePJzJDQ0VOvWrZMk07LEyJ49u+lxcuXKlejHQdL59ddfdfToUeXPn9/SpSTY/v37FRAQIIPBoBUrVqhw4cKmdevXr5ckNW/eXF9//bVp+YMHD1S2bFk5Ojq+0r7LlCmTJJ+JV7Vz506tWbNG2bNnt1gNAADA+tBH8QR9FKkLfRTm6KOgjyI1sYbPJwDrwRToAGyOk5OTPvnkE5UpU0aStGDBAgtXlLZt2LBBISEhKlq0qFq1aiXpSZgLDw+3bGH/z2g0ys/PT5LUtm1bFShQQGFhYaZl1m7GjBmSpE8++URNmjQxC5aSVLhwYU2fPl2ZM2dWUFCQ5s+fnyT7DQoKMv25atWqca6rWLGiWYh0cXFR4cKFzQYYE8PR0dH0OK86AAnEvF+zZMkS670Zs65KlSpmy9OnT6/ChQsrX758r7TvpPpMAAAAwHLoo0hd6KOwLPoo6KN4kdT++QRgXRgAB2CzGjZsKEn6559/9OjRIwtXk3atWLFCklSnTh3Vq1dPzs7OCgwM1MaNGy1c2RN79+7V1atX5ejoqBo1aqhp06aSpCVLlli4sld3//59XblyRZJeOF1apkyZTJ+Xo0ePJsm+o6KiTH92cnIyWxcdHR3nciA1etH7lfcyAAAA4os+itSBPgrLoY8CL5PaP58ArAsD4ABM/vjjD/Xs2VPVqlVTqVKlVKtWLfXr109///13nO29vLzk5eVldl+ip3Xp0kVeXl6mqYQk6dq1a/Ly8lLNmjV169Yt9erVS2XKlFGVKlU0ePDgJD0ed3d3058fPnxotn8vLy9dvnw5zu3q168vLy8v048uSdqzZ4+8vLzUoUMHnT9/Xm+//bZKly6t6tWrm+7/GrPdqVOntHXrVr311lsqX768qlatqq5du2rTpk3PrTUqKkpLly5Vly5dVLlyZZUqVUqvvfaaPv74Y504cSLObcLCwjRz5ky99dZbql69ukqXLq169epp8ODBOnDgwHP3dfr0aX366ad67bXXVKpUKVWtWlU9evTQH3/8EWf7p5+zp5+T+Lhy5Yr27dsnSWrUqJHc3NxUr149SUo1U93F3FuoWrVqSp8+vXx8fCRJFy5c0O7du+PcJjHvoxUrVsjLy0t79+6V9OSsZy8vLw0dOtRsu3v37mnatGlq1aqVypcvr7Jly6pp06aaMGGCAgICEnRsT5+5vGXLlhe27devn9auXavJkyebLR86dKi8vLyeO91UzHHVr19f0n/PTdeuXU1tYp6rmMeKeQ6mTZtmWif99znz8vJSZGRkrH2dPn1aI0eOVMOGDVW6dGlVrlxZ3bp104YNG8zavez1uXr1qkaPHq3XX39dpUuXVqVKldSxY0ctXbrULBQ/+xwsWrRI165d07Bhw1SnTh2VKlVKderU0f/+9z9du3btuc/t/v37NXjwYNWrV0+lSpVStWrV1Lt3b7Pv1h07dsjLy0slS5ZUYGBgnI8TFhamihUrysvLS0eOHIl1rAn9fN6/f18zZ85Up06dVLVqVZUsWVKVKlVSmzZtNHXqVN27dy/WNgn93o95TWOuVli9erW8vLzUpUuXWMc2d+5cdejQQRUqVFDp0qXVsGFDffbZZ7p06VKc+7p3756++eYbtWnTRlWqVFHZsmX1+uuv63//+5/OnDnz3Nq++eabOB9v6tSpZrXF1D5s2DBJ0vXr103HH/P5vn79uiRp2LBhZp+DmM9FnTp14txXfN4TT9fwos9EQr7PY56D7du36/Tp0xowYIBq1KihUqVKqUGDBvriiy909+5ds22efg5u3bpl9pl91oEDB9S7d29VrVpVZcqUUePGjTV58mSFhITE2f5VtwMAALaNPoon6KMwRx9FbPRR/Ic+Cuvto7CGzycA68IAOABFREToww8/VP/+/bVjxw45ODjI29tbkZGR8vf31zvvvKMvvvgiSfcZHh6uHj16aNeuXSpcuLAMBoNy586dpPuI+VHp7OwsT0/PJHnMu3fvqlu3bjp16pSKFCmix48fq0CBAmZtli9frvfff18nTpxQwYIFlS5dOu3Zs0cffPCBfH19Yz1mSEiIOnXqpBEjRmjv3r1Knz69vLy89ODBA/3+++9q166d5syZY7ZNeHi43nnnHU2ePFlHjx6Vh4eHihYtqpCQEK1Zs0adOnXS0qVLY+3rl19+UZs2bbRy5Urdu3dPRYsWlaurq3bu3Kn+/ftr8ODBcf64Tqzly5fLaDQqX758prN7W7RoIUnat2+fzp8/n2T7SoyQkBD5+/tL+q+uwoULq3jx4pKkxYsXJ9m+MmfOrAoVKpg6PXLmzKkKFSqYvX/OnDmjFi1aaOrUqTpz5oxy586tggUL6sqVK5o9e7ZatGihPXv2xHufrq6uqlChgqQng3uffvqp9u3bF+drnDVrVhUpUuSVPyvp0qVThQoVVKxYMdOyChUqmI41rucgpsYX+eWXX9SuXTv99ttvunv3rum9u3v3bg0YMOC5g5rP2rhxo1q0aKFFixYpICBAhQoVUqZMmXTgwAGNGDFCPXr0MHVGPevkyZNq2bKlVq5cKRcXF+XPn1+3bt3SsmXL1L59e924cSPWNl9//bU6d+6sNWvW6NGjR/Ly8pKdnZ22bNmid955x3QWf82aNZUzZ05FRkZqzZo1z609JCREhQsXfuHZ8vFx6dIlvfHGG5o8ebIOHz6sTJkyycvLS/b29jpx4oSmTZumN99887nPRXylT59eFSpUUObMmSU9OZP/2ffHzZs31bp1a40fP15HjhxR1qxZVbRoUd2+fVtLlizRG2+8YbpfWozg4GC1b99eM2bM0NmzZ5U1a1YVLFhQd+7c0bJly9S2bVtt3749SWqP+Yw6OTmZ3q8ODg6qUKGC6QqBmPd2qVKlXvq48X1PvMyrfJ9v375d7dq106ZNm+Tp6amcOXPq2rVrmjdvnt566y2zgeennwNHR8fnfmb9/PzUqVMn7dq1Szlz5lSmTJl06dIlUydoWFhYnLUkdjsAAGC76KOIP/ooEoY+iv/QR0EfRWrqo5BS/+cTgPVhAByAvvzyS23cuFGurq6aMmWKdu7cqWXLlumvv/7SZ599JgcHB82bN09z585Nsn3ev39ft2/f1sqVK+Xn56cdO3aoV69eSfb4d+/e1apVqyQ9+dH29Fmmr+Lq1atycXHRH3/8Yao75p40MRYsWKAaNWpo69atWrFihbZt26Zx48bJwcFBCxYsiPXDcciQITp06JCyZs2q+fPna/PmzVq+fLn+/vtv9e3bV9HR0fryyy9NIUh68qPw0KFDKlCggDZt2qT169drxYoV2rlzpzp16iSj0agJEybo8ePHpm22b9+ucePGyc7OTv/73/+0f/9++fn5acuWLZo7d64yZ86sNWvWmJ0NL0nZs2fXunXrtG7dOr3++uvxfq6io6NNr0HMGcuSVLduXXl4eEiy/Bmca9euVWhoqFxcXMyO7Y033pAkbdq0SXfu3EmSfdWtW1eLFi1SiRIlJEktW7bUokWL1Lt3b0lPgm7Pnj0VEBCg8uXLy9/fX2vWrNHKlSu1bds21atXT/fu3dMHH3ygq1evxnu/I0eOlKurq4xGo1auXKnOnTurSpUq6tWrl2bOnKkjR46YpvtKClmzZtWiRYs0YsQI07JFixaZjvXp56Bt27amdS9y8OBB+fr6KiIiQr169dLff/9t+myNHz9ednZ2mjFjhnbu3PnCxzl9+rQ++ugjPX78WH369NHevXu1atUq+fv7y8/PTwUKFNDff/+t0aNHx7n9b7/9piJFimjdunX6448/tHbtWi1evFhubm66e/euZs+ebdZ+7dq1+vHHH2VnZ6fhw4dr165dWr58uXbs2KGBAwdKksaMGaPz58/Lzs7O9F0S87l51sqVKyVJbdq0MS1L7Odz5MiRunHjhsqVK6ctW7aYvkN2796tCRMmyM7OThcvXjTtM7FKlCihRYsWma6ErlmzphYtWqSRI0dKenJlSe/evXXhwgUVLFhQq1at0h9//KEVK1bor7/+Uvv27fX48WN98sknpjPKJemnn37S5cuXVaFCBW3btk1r167VypUrtX37djVq1EgRERGv3CkaU/v7778v6b/39qJFi+Tv769FixYpa9askqT3339fixYt0nfffffCx0zIe+JFEvt9HmPBggWqWbOmtmzZorVr12rjxo364YcfZG9vr8uXL2vZsmWmtk8/B5kyZXruZ/bAgQNq0aKFtm/frpUrV2rr1q2aOHGiJOns2bPPPfs/sdsBAADbRR9F/NFHQR9FYtFHQR9FauqjsIbPJwDrwwA4kMbdvHnTdAbpuHHj1KRJE9M6e3t7derUSQMGDJD0ZCqgV70a8GkdO3ZUkSJFJD25su7p6cASw2g0KigoSJs3b9a7776r4OBgOTo6qn///klRrsn777+v7NmzS5Lc3NyULl06s/W5cuXS999/b7ri0WAwqEOHDurRo4ekJ89jjMOHD5umffruu+9UtWpV0zonJycNGDBAb775piRp0qRJpnWnT5+W9OSeOLly5TItT5cunYYOHapatWrp9ddfV3BwsGnd119/LaPRqCFDhqhr166yt7c3ratevbrGjx8vSZozZ46CgoJM6xwdHVW4cGEVLlxY6dOnj/fztHPnTtPZpjFhLebxYt5nq1atsujVfTFTizVo0EBubm6m5S1atJCdnZ0iIiJMbZLbr7/+qoCAAGXJkkU//vij8ubNa1qXJUsWfffddypWrJgePHigGTNmxPtxS5QooaVLl6pixYqmZSEhIdq2bZsmT56sDh06qFatWvrmm28UGhqapMeUVH744QdFR0eradOmGjx4sNlnrk2bNmrXrp0kvXSgbOrUqQoPD1fnzp01cOBAs8cpUaKEvvvuO9nb22v16tU6d+5crO0dHR01bdo0FSxY0LSsfPnyprB38OBBs/Yxn/Xu3burW7dups+cvb29+vTpo5o1ayoqKsoUGtu2bSuDwaATJ07EGgC9deuWdu3aJXt7e7Vs2dKspoR+PgMDA3X27FlJT773s2XLZlpnMBjUqlUrValSRZLinEo8KW3YsEGnTp1SunTpNGvWLHl7e5vWubu7y9fXV7Vr11ZERITZGfQx34GNGzdWpkyZTMvTp0+vESNGqEaNGqpcuXKqu3o4oe+J50ns93mMzJkz67vvvjN77Rs0aGA6UeHZ93J8FC5cWBMmTDB1TkhPvvtr1qwpSc+d9jKx2wEAANtEH0XC0UcRP/RRJAx9FM9HH0XS9lFI1vH5BGB9GAAH0rjt27crMjJSWbNmVbNmzeJs07lzZzk6OurBgwem++Ikhad/7CbU0/dijfnP29tb1apVU58+fXTq1CmlT59e3377rdmASlJ4Wd0dOnSQq6trrOVvvfWWJOnixYu6cOGCpP/ueVSmTJnnTrH07rvvSnoyXdo///wjSaYpqZYtW6Zff/3V7J6tTk5O+vnnnzV+/HhTCL527ZpOnTolyfyH5NPq1q0rT09PhYWFPfeeagkR80O/TJkysaZgi6nh/v37Wrt27SvvKzHOnz9vuqL02eckW7ZsqlatmiRpyZIlSXr28fNs3rxZktSqVStlzJgx1nonJyfTvYk3b94so9EY78cuUqSIfv31V61cuVIffvihypcvL0dHR9P6wMBAzZgxQ2+88YZu3rz5ikeStEJDQ033OYvpaHnWwIEDtWHDBtO97uISHh5umhL7eZ+BmO8Ro9EY5/3ISpUqZbri92mFChWSJD148MC07PLly6bPecxn/1mff/65Nm3apEGDBkmS8ubNq8qVK0tSrAHQVatWKTo6WnXq1ImzhoTInDmzdu/erSNHjphNAxcjKirK1NmX3OEy5n1fv359sw6Vp3Xv3l2StHfvXtNzHPOd8tNPP+n33383e+6zZ8+uOXPmaNy4cXJ2dk7G6hMmMe+JuCTF93n16tVjdYxKTwajJfP3cnw1aNDArNMyRsz98569t/irbgcAAGwTfRQJRx9F/NBHkTD0UcSNPoonkrKPQkr9n08A1ilp5tsBYLVifvwUL15cdnZxnxPj6uqqggUL6p9//tHFixdVr169JNn3q/xAcnJyinWvVTs7O7m5uSl79uwqW7asmjRp8spnbMflZXWXKVMmzuW5cuVS+vTp9eDBA126dEmFChUyPf8lS5Z87uMVKFBA7u7uCgkJ0cWLF1WsWDG1b99ey5Yt07lz5zRmzBiNHTtWxYsXV/Xq1VW7dm1VrlzZbEq1mKs9JemDDz547r5ipiOLqSuxgoOD9eeff0qK+4d8xYoVlTdvXl29elWLFi1S27ZtX2l/iREzxW/mzJlNVxo+rWXLltq1a5euX7+uHTt2qG7duslaz8WLFyW9+L0Qs+7u3bsKDg5O8L2wihcvruLFi6tfv34KDQ3VwYMHtXPnTq1atUqBgYG6cuWKBgwYEO97EKeEf//9VxEREZL03I6izJkzm65meJ5Lly4pPDxc0pMpvWLu3RzX/qS4PwMxnTXPihlkjYyMNC2Lub+fq6vrcwd2c+bMGWtZ27ZttXfvXq1evVofffSRDAaDpP+mHHt6arFX5ezsrBs3bujIkSO6cuWKrl69qvPnz+vUqVN69OiRJCV7x0pC3vdRUVG6fPmySpUqpR49emjDhg26ffu2Pv74Yzk4OKh06dKqUaOG6tSpo7Jly5qeu9Qise+JZyXF93lC3svx9bzHjOlsfd7JFIndDgAA2Cb6KBKOPoqXo48i4eijiBt9FEnfR2ENn08A1okBcCCNCwkJkaSXTksTE9KScnqxV7kyL+YePpbwsrrjOjM2hqurqx48eKD79+9Liv/z7+bmppCQENPz7+7uriVLlmj27Nlas2aNLl++rJMnT+rkyZP6+eeflTlzZg0cOFAdOnSQZH7WZ3ymtk3M1X9PW716temHvK+vr3x9fZ/b9tixYzpx4sQLQ1VSi4yM1O+//y7pyZnFL9v3okWLkj1cxue98HRnycOHDxMcLp/m4uKimjVrqmbNmhowYICGDx+utWvX6vDhwyn+erzI01PkPT0FXEI9/Z4+fvx4gtrHePqM9JeJqTuhNTdp0kTjxo3TjRs3tGfPHlWrVk3Hjh3TuXPn5OnpmWSdexcuXNBXX32lbdu2mQ1yu7u7q1KlSgoICDBNY5icEvO+l54E81WrVunHH3/Uhg0bdOvWLR06dEiHDh3S999/r9y5c2v48OFq2LBh8h5AAiT2PfGspPg+T8h7Ob7iuqI8ObcDAAC2iT6KhKOP4uXoo0g4+ijiRh9F0vdRpPbPJwDrxQA4kMbF/PB5WZiICUNx/VB63jRHMVcQplbJVfeL7lEUEyBizgSN7/Mfs/7p59/d3V39+/dX//79dfnyZe3Zs0d79uzRtm3bFBgYqJEjR8rDw0ONGjUyXUnn4eGhPXv2JP7g4inmnlSurq4vDEsBAQEyGo1avHixxo0bl+x1xdi6davu3Lkj6clUYs+7UvTRo0d68OCBtm/frhs3bsR5NmxSvY/c3Nx07969F74X7t27Z9b+ZT777DPt3r1brVu3Vp8+fZ7bztnZWWPHjpW/v78iIiJ08eLFWGHieceZ3PfkenqqvpCQELP7PSf2cQ4ePPjKg5Dx3V9CO+ScnZ3VvHlzLVmyRKtXr1a1atVMZ1b7+PgkycBlYGCgOnfurMDAQOXKlUsdOnRQiRIlVKhQIeXJk0cGg0GDBw9+4QB4Ur7vpRd/B8b8+/N0e+nJ9+jw4cM1fPhwnTlzRnv37tXu3bu1c+dOXb9+Xf3799fixYufe8XLq9aeUIl9TzzvcVLq+xwAACAl0UcRG30Ur44+Cvookgp9FEnfR5HaP58ArBf3AAfSuJj7wpw6deq5U92GhITo0qVLkqT8+fOblsfcszPmLL1nBQQEJGGlSePpKbfiqjssLOyVzyyOuQfWs65cuWL6oVmkSBFJ/z3/J06ceO7jnT9/3hRUYp7/wMBA7d+/33Rfrfz586tDhw6aPHmytm3bZpp6LeZHacGCBSU9OePz9u3bz93X/v37df78+Veacvb06dOme3mNHz9e27dvf+5/MWcsr1mzxhS8U0LMvYWKFi2qHTt2PLe+OXPmSHoy9fJvv/1m2j453kfxeS/EnBWcMWPGeJ1Z/fjxY12+fFmbNm16aVt3d3dT4Ho6wMV8zmOm+HpWcn/O8+bNa6rh6Wnynnbs2DG9/fbbGjZs2HND8NOPc+7cuefu7+jRozpz5swrD1LG3LPq0aNHunbtWpxt/vzzT3Xp0kVfffWV2fKY6bz+/PNPRUVFmaYCS6ppvpYvX67AwEB5eHho+fLl6tOnj+rWrau8efOaOlpu3boV57ZJ/b0fn/f9sWPHJEkGg0H58uUz1bd7927Td5WXl5e6dOmi77//Xn/++ady586tqKgorVmzJtlqT6hXeU88LSW/zwEAAFIafRTm6KOgj4I+CvoobLmPwho+nwCsFwPgQBpXp04dOTg46Pbt21q3bl2cbRYuXKjIyEi5uLioSpUqpuUxP27jug/N0aNHU2W49PDwMA3wxFX35s2bE3Xv06etWLEizqAeMx1auXLlTGfpxkwVdPTo0edO+zV37lxJUo4cOeTl5SVJ6tGjhzp16iQ/P79Y7d3c3FSuXDlJT0KRJBUuXNgUTBcuXBjnfg4cOKBOnTqpWbNmOnz4cDyONG4x963y9PRU/fr1X9j27bfflvTkB3hMEE5ugYGB2rZtm6SX/1gvXbq0KagvXbrU9N54lffR887kjnkvrFy50uws6hjh4eGm91Dt2rVfWHeMmHsnHT9+3BSon2fnzp0KDg6Wh4eHypYta1r+os95VFSUNm/eHK9aEsvd3V0VK1aU9N9Zwc9as2aNDh48qGvXrj33+XV3dzd9f82fPz/ONlevXlXHjh31xhtvaMOGDa9Ud+HChZU7d+4X1u3n56e9e/eaOolilC1bVkWLFlVQUJAWLFigf//9VyVKlHju/cUSKibs5sqVK86z1c+dO2f6Doj5DomR2O/9mNfl2fAf877fvHmzrl69Gue2Ma9XuXLllCFDBkVGRqpVq1bq1q2btm7dGqt9lixZVKxYMUnm9zB/Ue0PHz7U33//Hef+k8qrvCeefZyU+j6PEXP/zed13gAAACQV+ijM0UdBH8XT6KOgjyKxUmsfRWr/fAKwbgyAA2lczpw5TfdgGjlypNkPqujoaP3666+aOnWqJKlv375mU9HE/OCbM2eOzp8/b1p+7NgxffTRRylRfoI5OzurRIkSkqSpU6eaXeW4c+dOjR079pX3cfz4cY0cOdI07VJ0dLQWLlxoComDBg0ytS1fvrzpDMb+/fubTf0VHh6u7777znRW7yeffGL64dyyZUtJ0rRp07R9+3az/e/fv9/0Q/Dpe0INGDBAkjRz5kzNmjXL7Kzg/fv3m9aXK1dO1apVM62LiIjQ+fPndf78+ZeeMRweHq7Vq1dLejIVkpOT0wvb16lTx/QDfPHixS9s+yL//vuvzp8/r3///felbVeuXKnIyEg5OjqanscXifmBffv2bdNZrq/yPoqZdur69eux9pM9e3bduXNH77//vtlgYGBgoAYMGKB//vlHbm5u6tev30vrlqSaNWuqcePGkqQRI0bo888/j3Wm7+PHj7V8+XINHDhQ0pP3ydNTb8V8zs+ePav58+ebBsDu3bun4cOHP/dqgqTUt29fGQwGrVq1SjNmzDAL7itXrtSCBQskST179nzh4/Tr10/29vZas2aNxo8fb3YG9T///KNevXopIiJCuXPnlo+PzyvVbDAY1LdvX0nSrFmztHTpUtNzFxUVpZkzZ2rjxo1ycHDQO++8E2v7mI6PKVOmSJLatGkT534S8vmMEXMm/+nTp/XHH3+YlhuNRm3fvl09e/Y0nU3/7PRxif3ej3lPPfsZbdKkiby8vPT48WO99957ZtOuh4SEaOTIkdq5c6ccHBw0ZMgQSU+ubmjevLkk6fPPP9fRo0fNHtPf3187d+6U9OQ75tnad+zYIX9/f9PygIAA9e/fX4GBgc+tPym86nviaYn9Pk+smO+t+/fvc6Y9AABIVvRR0EcRsw19FHGjj4I+isRIjX0Ulvp8Akg7uAc4AA0bNky3bt3Sn3/+qQEDBihbtmzKkSOHrl69qqCgIElS586d9d5775lt16dPH+3YsUO3b9+Wj4+PihQposePH+vSpUvKmzev2rZt+9yzCi1p4MCB6tOnj86dO6eGDRuqSJEiunfvnq5fv67SpUurQoUKphCRGMWKFdOyZcu0fv16FSpUSDdv3tTt27dlZ2enYcOGxRqM+Oqrr9S7d28dOnRIXbt2Ve7cuZUpUyZdvHhRISEhsre318CBA00DPpLUtWtX7dq1S9u3b9d7772nbNmyKVu2bAoKCjKFlvr166t9+/ambZo3b65Lly5p6tSpmjRpkn788UcVKFBAd+/eNW1TsGBB/fDDD2b13bp1S82aNZP0ZDqi5/3IlaRNmzYpODhYUvymQrKzs9Obb76pr7/+Wv/8848OHDhgCjMJ8emnn2rv3r2qUqWKKWg8T8xZxq+99lq87tXUvHlzTZgwQffv39fixYtNYS2x76MSJUpoy5YtWr16tc6cOaNKlSpp1KhRypAhg2bMmKFevXrp0KFDatSokYoUKSIHBwedPXtWERER8vDw0KRJk0xTV8XHpEmT5OrqqpUrV2r+/PmaP3++cuXKpcyZM5s+r+Hh4XJ0dNTgwYPVsWNHs+3r1q2rSpUqaf/+/fr88881e/ZseXp66sKFC4qIiFC/fv1MHVDJpXr16ho2bJi+/PJLffPNN5o9e7by5s2rmzdvmu6T9sEHH5h1psSlYsWKGjdunEaNGqW5c+dq8eLFKly4sB4+fKjLly/LaDQqS5Ys+vnnn18avOKjXbt2OnfunObMmaMRI0bo22+/VY4cOXTt2jUFBwfL3t5eo0ePjvOs6ZYtW2ry5Ml69OiRHB0d1aJFizj3kZDP59N1/frrr7p8+bL69++v3Llzy9PTUzdu3FBgYKAcHR1VpUoV7d27N9ZU6In93i9evLikJ/c2a9KkiYoUKaJp06bJwcFBP/zwg9577z1duHBBLVu2VIECBeTm5maa6tDZ2VljxoxRpUqVTI83aNAgHThwQCdPnlT79u1NxxAQEGC6suftt982GwBv3bq1Fi5cqIsXL6pfv37Kly+fXF1ddf78ednb26t3796aMWPGS5+/V/Eq74mnJfb7PLG8vLxkZ2ensLAwNWnSRNmyZdPPP/8cr2kOAQAAEoo+Cvoo6KN4Pvoo6KNIrNTWR2GpzyeAtIMrwAHIyclJ33//vb755hvVqlVL4eHhOnXqlFxcXNS8eXPNnz9fI0eOjDVtT/HixbVs2TL5+PgoU6ZMunDhgqKiovTuu+/Kz89PWbNmtdARvVidOnX066+/qmHDhnJ1ddW5c+eULl069e/fX7/++qvp7NfE6tq1q77++msVLFjQdOZp48aNtXjx4jjPovTw8NCCBQs0btw4Va5cWQ8ePNCZM2fk6empdu3aadmyZerVq5fZNvb29vr+++81fPhwlS9fXmFhYTp9+rRCQ0NVq1YtffXVV/rhhx/M7gMlPfkBvmTJEvn4+Mjd3V2nT59WUFCQSpQooQEDBmj58uXKnDlzoo89JriVLFky3lMhtWvXTo6OjpKS/wzOI0eOmO6tFN97Fbm4uKhVq1aSpL///tt0r7nEvo/ee+89tW/fXh4eHrp06ZLOnDljWleiRAmtWbNGffv2VdGiRXX16lVdunRJBQsWVO/evfX777/He2qxGE5OTvryyy+1dOlSvfvuuypZsqTCw8N1+vRp3bx5UwULFlSPHj30+++/x3qfSU8Cxs8//6yBAweqaNGiCgwM1L///qvq1atr0aJFr3wWcnx169ZNS5YsUYsWLZQuXTqdOXNGkZGRqlu3rubMmaP+/fvH63Hatm2rVatW6c0331TWrFl19uxZ3bhxQ4ULF1bPnj31+++/m+5HlxSGDh2qOXPmqEGDBjIajTp9+rTs7e3VpEkTLVmyxKwD6GmZMmUyDd7Wr18/SQca3d3dTd8rRYsW1d27d3X27Fm5u7ubOgW/+OILSU+uEn/6qoXEfu+3atVKPXv2VNasWXXt2jWzezrmyZNHy5cv1yeffKIyZcro9u3bOn/+vHLmzKmuXbtq1apVps9gDDc3Ny1YsED9+/dXyZIlFRwcrNOnT8toNKpBgwb68ccfNXr06FjbLFmyRD169FD+/Pl148YN3blzR40bN5afn5+qVq2aZM/xiyT2PfGs5P4+f1r+/Pk1fvx4FShQQMHBwbpx40asK0QAAACSCn0U9FHQR/F89FHQR/EqUlMfRWr/fAKwfgYjN/MDgCRRv359Xb9+Xb6+vvEewEDSGTdunK5cuaJZs2ZZuhQgSbRp00YnTpzQzJkzX3rmOAAAAAA8jT4Ky6KPAraGPgoA1oYrwAEAVi86Olr79+9XkSJFLF0KkCROnDihEydOKGfOnKpVq5alywEAAAAAxBN9FLA19FEAsEbcAxwAYPXGjh2rwMBAdenSxdKlAIl29epVSdKdO3c0dOhQSU+mK7S3t7dkWQAAAACABKCPAraAPgoA1o4BcACA1XvrrbfUv39/ZcqUydKlAIm2bt06ff3116a/FytWTJ07d7ZgRQAAAACAhKKPAraAPgoA1o4p0AEAVs/b25tgCavn7e2tbNmyydXVVQ0bNtTs2bPl5ORk6bIAAAAAAAlAHwVsAX0UAKydwWg0Gi1dBAAAAAAAAAAAAAAAr4orwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATXCwdAHWwmg0Kjqa2eIBAAAAAObs7AwyGAyWLsMmkL0BAAAAAHFJSPZmADyeoqONunv3oaXLAAAAAACkMpkyucnengHwpED2BgAAAADEJSHZmynQAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADbBwdIFAAAAAABii46OVlRUpKXLSPPs7R1kZ8e54wAAAABgi8jeqUNSZ28GwAEAAAAgFTEajbp//65CQ0MsXQr+n4uLuzJkyCSDwWDpUgAAAAAASYDsnfokZfZmABwAAAAAUpGYAO7u7iknp3QMulqQ0WhUePhjhYQESZIyZsxs4YoAAAAAAEmB7J16JEf2ZgAcAAAAAFKJ6OgoUwB3d89g6XIgyckpnSQpJCRI6dN7Mh06AAAAAFg5snfqk9TZm+QOAAAAAKlEVFSUpP+CH1KHmNeD+8IBAAAAgPUje6dOSZm9GQAHAAAAgFSGqddSF14PAAAAALA9ZL3UJSlfDwbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEB0sXAAAAAACwnDNnTuuHH6bo9OmTio42qkSJUurVq69KliwlSdq3b7fmzPlJ58+flb29g6pUqaY+ffope/YckqR161briy/GaOnS35UzZy7T47Zr56Py5Svqf/8bLUmqVauS3n23l3bt2qmrVy/r7be76J13eur69WuaPn2qDhzYJ6PRqFKlSqtv3wEqVKiwJOnx48f6+ecZ2rTJX0FBd5UvX3517fquGjRolLJPFAAAAAAAiUT2TllcAQ4AAAAAadTDhyEaPLifMmb0kK/vBI0Z84XCwkI1ePCHCgkJ0R9/rNOgQR8qa9asGj36c/XrN0gnThxT797vKijoboL3N2/ez3rttfoaPfpz1a79mu7cuaP33uumy5cvavDgTzVq1Djdv39fAwf2VXBwsIxGo4YP/1grV67Qm2921Jdffq1Spcpo1KjhWr9+TTI8IwAAAAAAJC2yd8rjCnAAAAAASKMuXryo4OAgtWv3psqUKSdJyp+/gFatWq6QkAf64YcpqlSpisaMGW/apkyZcurcub0WLVqovn37J2h/JUqUUufO75j+/v33U/T4cZi+/fYHZc6cRZJUtKi33n//HR0/flTp0jlpz55dGjPmC9NZ51WrVldYWKhmzJim119vIgcHYi0AAAAAIPUie6c8rgAHAAAAgDSqUKHC8vDw1KeffqRJk8Zr587typw5i/r2HaCwsDAFBgaqUaOmZtvkzp1HJUuW1qFD+xO8v8KFi5j9/ciRQypVqowpgEtSlixZtHz5GtWqVUf79++TwWBQ9eq1FBkZafqvZs26Cgy8o4sXzyfuwAEAAAAASCFk75RnXcP1AAAAAIAk4+rqqh9+mKV5837Wpk3+WrlyuZydndWoUVM1adJckpQpU+ZY22XOnFlnzpxJ8P48PTOZ/f3+/Xtm9y571v3792Q0GtWoUZ0419+5c1tFi3oluA4AAAAAAFIK2TvlMQAOAAAAAGlYvnwFNHLkOEVFRenUqRPasGGdVq5cpixZskqS7t4NjLVNYGCgPDw8JEkGg0GSFB0dbdYmNPTRS/ft7p5ewcHBsZYfOLBPOXLklLt7erm4uGrq1Blxbp87d96X7gMAAAAAAEsje6cspkAHAAAAgDRqy5ZNatGioQID78je3l6lSpXRkCFD5e6eXnfv3lXmzJnl77/ebJvr16/p+PGjKlOmrCTJ1dVNknTr1k1TmytXLunevXsv3X/ZsuV04sRRBQXdNS0LDg7WkCH99ddf21WuXAWFhj6S0WiUt3cJ038XLpzX7NmzFBUVlRRPAwAAAAAAyYbsnfK4AvwV2dkZZGdnSLbHj442KjramGyPDwAAACDtKl26nKKiojVs2BB17vyO3Nzc9Oef/nr4MET16zdUiRIl9cUXYzRq1DA1adJC9+4Fa/bsmcqQIaPefLOTJKlixcpydnbWtGnf6L33+urRo0eaM+dJm5fp0KGj1q9fq48++lBdu74rJ6d0WrBgjjJnzqImTZrL3T29ypWroKFDB+udd3oqf/4COnXqhH7+eaaqVq1mOhMeiRcREaEFCxbIz89Ply5dkqurq0qXLq1u3bqpdu3asdpXrVo1zisHYhw9elTp0qVL8jrJ3gAAAACsFdk75RmMRiMJLx6ioqJ19+5Ds2V2dgZ5eLjK3j75LqSPiopWcPAjgjgAAACQBkREhCsw8IYyZ84pR0enFNnnqVMnNGvWdJ0+fUphYWEqVKiwunTprrp160mStm79UwsWzNWFC+fk5uamqlWrq1evD5Q9ew7TY+zevUszZkzT5csXlSNHTnXv3ksbNqxV5syZ9b//jZYk1apVSd27v6cePd432//ly5f0ww9TdPDgATk6Oqp8+Qrq23eAcufOI0kKDQ3VTz9N15Ytfyoo6K6yZMmmhg0b6Z13eibLQGtcXva6ZMrklqy5MLkYjUb169dPGzduVIYMGVShQgU9fvxY+/fvV0REhAYOHKg+ffqY2l+/fl3169dX9uzZVaVKlTgfc/z48XJ0dEx0TWRvAAAAAMmN7G372ZsB8HiKK4Q7ONjJ09NN3y/6S9cDXj7FQELlzpZRH7xdU0FBDxUZGf3yDQAAAABYNUuEcLycrQ6AL1q0SKNHj1bx4sU1Z84ceXp6SpJOnz6tTp066eHDh1q7dq0KFy4sSdq0aZM++OADdevWTcOHD0+WmsjeAAAAAJIb2Tt1SsrszRToSeB6wD1duh5k6TIAAAAAAIi3VatWSZKGDh1qGvyWJG9vb/n4+GjRokXavn27aQD8xIkTkqSSJUumfLEiewMAAAAA4ocBcAAAAAAA0qB58+bp4sWLKlq0aKx1jx49kiTZ29ublp06dUqSVKpUqZQpEAAAAACARLC+OdoAAAAAAMArS5cunby9vc0GuaUnU51v2LBBLi4uatSokWn5iRMn5OzsrOPHj+vtt99WpUqVVLlyZb3//vs6cuRISpcPAAAAAECcGAAHAAAAACCNu3fvnvr166emTZvqgw8+UKZMmTR9+nTlyJFDkhQYGKiAgACFhYXpk08+UXR0tKpWrSoPDw9t3bpVHTt21Lp16yx8FAAAAAAAMAU6AAAAAABp3tWrV+Xv72/6u8Fg0Llz51S9enVJ/93/29PTU9OnT1f58uUlSUajUfPmzdP48eM1bNgwVahQwTRonlgODubn6tvbp8y5+ym1HwAAAACWFR1tsHQJeAF7e0OsXJhQDIADAAAAAJDGFSxYUHv37pXRaNSuXbv0+eefy9fXVyEhIerTp49q166tHTt2yGg0Knv27KbtDAaD3nnnHe3bt0+bNm3SsmXL9OGHHya6Djs7gzw93ZLikBIsQwYXi+wXAAAAQMoKC7PXnTt2STLQiqQTHW2QnZ2dMmZ0lbOz8ys9FgPgAAAAAACkcW5u/w06N2vWTDly5FDHjh01c+ZMde3aVW5ubsqWLdtzt69Xr542bdqk48ePv1Id0dFG3b//yGyZvb1digxO378fqqio6GTfDwAAAADLCg9/rOjoaEVFGRUZSQZILaKijIqOjta9e48UGhoVa32GDC7xnrmLAXAAAAAAAGCmQoUKypcvny5fvqxLly6pZMmSL2yfNWtWSVJoaOgr79tSHVBRUdF0fgEAAABpQFSU0dIl4AWS4sQErusHAAAAACCNCQ0N1ZdffqkhQ4bIaIy788fJyUmSFBkZqSVLlmjgwIHatGlTnG2vXr0qSa98/28AAAAAAF5Vqr0CPCIiQgsWLJCfn58uXbokV1dXlS5dWt26dVPt2rVjta9ataqCg4Of+3hHjx5VunTpkrFiAAAAAEg+dnYG2dkZUny/0dFGRUdzdrytcXZ2lp+fn4KDg9WhQwdVqVLFbP3Vq1d18eJFOTk5qWjRotq2bZvWr1+v0NBQNWzY0Kyt0WjUqlWrJEm1atVKsWMAAAAAgKRG9rYNqXIA3Gg0atCgQdq4caMyZMigGjVq6PHjx9q9e7d27NihgQMHqk+fPqb2169fV3BwsLJnzx4rtMews+NidwAAAADWyc7OIA8P13jf6yopRUVFKzj4UaKCuL//Bi1fvkQXLpyTJOXPX1AtWrRUq1Ztk7pMJJDBYNCbb76pH3/8UaNHj9bcuXNN9/i+efOmPvroI0VGRqpbt25ydXVV69atNWvWLG3dulW//fabOnToIEmKjo7W1KlTdfToURUpUkRNmjSx5GEBAAAAQKKRvW1HqhwAX7x4sTZu3KjixYtrzpw58vT0lCSdPn1anTp10pQpU9SoUSMVLlxYknTq1ClJUpMmTTR8+HCL1Q0AAAAAycHOziB7ezt9v+gvXQ+4l2L7zZ0toz54u6bs7AwJDuFr1qzSt99OVP/+g1WuXAVJRu3bt1fffTdZQUF31b37e8lTNOKtb9++OnjwoPbt26fGjRurYsWKioiI0NGjR/Xo0SPVqlVLQ4YMkSTlzZtXo0eP1ogRIzRy5EgtXLhQBQoU0OnTp3X58mVlyZJFU6dOlaOjo4WPCgAAAAASh+xtO1LlAHjM1GlDhw41DX5Lkre3t3x8fLRo0SJt377dNAB+4sQJSVLJkiVTvlgAAAAASCHXA+7p0vUgS5cRL35+y9SiRUu98UZr07J8+Qro9u0A/fbbojQbwlMTZ2dnzZkzR/Pnz9eqVau0Z88eOTg4qGjRomrTpo3at28ve3t7U/u2bduqYMGCmjVrlg4ePKgLFy4oW7Zs6tKli/r06aPMmTNb8GgAAAAAIGmQva1fqpwXfN68eVq1apUqV64ca92jR48kySyEx1wBXqpUqZQpEAAAAADwQnZ2Bh07dlT37983W96pUzf9+OMcSVK7dj76+ecfzdZ/+GEvff75aEnSwYP7VatWJf3yyzw1a9ZA777bSX379tRnnw0z2+bo0cOqVauSrl27Kkn6668devfdzqpfv6befLOVZs2arvDwcEnSlCmT1aFDS7PtQ0JCVL9+Te3cuS3Jjt9aODo6qkePHvr999917NgxHTp0SL/99pveeusts9wdo0KFCpo+fbr27Nmj48ePa/PmzRoxYgSD3wAAAABgAWTvuKXKAfB06dLJ29s7VtjetGmTNmzYIBcXFzVq1Mi0/MSJE3J2dtbx48f19ttvq1KlSqpcubLef/99HTlyJKXLBwAAAIA0r1Onbjp79oxat26qjz8eoAUL5urkyeNyd3dXvnz5E/RYu3bt1I8/ztGwYZ+pRYuW+uuv7Xr06KFpvb//epUuXVZ58uTV7t27NHLkUL3xRistWLBEgwcP1ebNGzVu3GeSpBYtWurff6/ryJHDpu3//NNfbm5uqlatZpIcOwAAAAAAKYHsHbdUOQD+tHv37qlfv35q2rSpPvjgA2XKlEnTp09Xjhw5JEmBgYEKCAhQWFiYPvnkE0VHR6tq1ary8PDQ1q1b1bFjR61bt87CRwEAAAAAactrrzXQjz/O0Wuv1depUyf144/T1KvXO+rYsa2OHj2coMd6++3Oyps3n4oW9VK9eg1lZ2evbdu2SJIiIiK0efMmNWvmI0maP3+2WrR4Q61atVPu3HlUpUo1ffzxcG3Zskk3bvyrwoWLyMuruP74Y63p8TdsWKPGjZvJwSFV3iUMAAAAAIA4kb3jlurT/dWrV+Xv72/6u8Fg0Llz51S9enVJ/93/29PTU9OnT1f58uUlSUajUfPmzdP48eM1bNgwVahQwTRonlgODubnC9jbp8z5Aym1HwAAAACWFR1tsHQJSap48ZIaOXKcjEajLlw4r7//3qmlSxdryJABWrLEL96PkydPPtOfXVxcVK9eA/n7r1fTpi30999/6fHjMNWv31CS9M8/p3Xq1AmtX7/GtI3RaJQkXbp0UTlz5lLz5m9o5swfNHDgxwoIuKVjx47q44+Hv7QOe3tDrFwIAAAAAIAl2Vr2TgqpfgC8YMGC2rt3r4xGo3bt2qXPP/9cvr6+CgkJUZ8+fVS7dm3t2LFDRqNR2bNnN21nMBj0zjvvaN++fdq0aZOWLVumDz/8MNF12NkZ5OnplhSHlGAZMrhYZL8AAAAAUlZYmL3u3LGLNdBq6ZNiE7r/gIBbmj9/rrp27a5s2bJJkry8isnLq5jq1n1Nb7/dTseOHZYk2dmZn2wcFRUlg+HJ8cfs19XVxayNj88b+vDD3rp37642blyvunXrK2PGDJKeBO7OnbupWbMWserKkiWrHBzs1LRpM33//bfavfsvnT9/ViVKlFSxYsWeezzR0QbZ2dkpY0ZXOTs7J+i5AAAAAAAgOQQE3NIvv8xT587vKGvWbDIYDCpcuIgKFy6iWrXqqnPn9jp8+GCc20ZFRcZali5dOrO/N2vmowED+igw8I78/depTp16cnNzlyRFRxvVsWNXNW0aO3tnzpxFkvT66000bdq32rVrh86fP6fixUuoUKEir3rY8ZLqB8Dd3P4bdG7WrJly5Mihjh07aubMmeratavc3NxMHSpxqVevnjZt2qTjx4+/Uh3R0Ubdv//IbJm9vV2KDE7fvx+qqKjoZN8PAAAAAMsKD3+s6OhoRUUZFRmZejJAVFR0guqxs3PUypXLlTVrNnXq1M1snbOzqyQpY0ZPOTg46v79ENNjR0dH699/rylPnryKjIw25aBn91+6dHnlyJFTa9as1l9/7dSXX042rS9YsLAuXryonDnzmNofOnRAv/22SEOGDJWjYzq5uLipdu3XtHnzJl28eF6tWrV74fFFRRkVHR2te/ceKTQ0Ktb6DBlcLH6SAgAAAAAgbXFySqdVq1YoW7bssbJ3zPhqpkyZ5eDgqJCQENO6J9n7utkV33EpV66CcuTIqQ0b1mrXrr/05ZeTTesKFSqsy5cvKU+evKZlT2dvFxcXpU+fXnXqvKatWzebsndKSfUD4M+qUKGC8uXLp8uXL+vSpUsqWbLkC9tnzZpVkhQaGvrK+7ZUB1RCO5sAAAAAWKeoKKOlS0gSHh4e6tSpm2bO/EEhISGqX7+hXF3ddOnSRc2d+5MqVKiksmXLq0yZsvrzT3/VrVtPmTJl1uLFC81C+Ys0bdpC8+bNVsaMGVWpUhXT8k6duuqzz4bp559/1OuvN9Ht2wH68ktfZc+e3XQWuiQ1b/6Ghg79SEaj1LBh43jtM7WdmAAAAAAASLtsNXsnhVQ3AB4aGqopU6bozp07mjhxogyG2PfAc3JykiRFRkZqyZIl+vvvv9WiRQs1bNgwVturV69K0ivf/xsAAAAALC13toxWs7/33uujPHnyavXqlfLzW6qwsDBlz55D9eu/rq5d35Uk9er1gR48uK8hQ/rL2dlFPj6t1KBBI9N9w16kSZMWmj17ptq0aS87u/+uvq5Xr6HGjJEWLJithQvnKn36DKpZs7b69Olvtn2lSlWUMaOHSpcuq/Tp0yf6OAEAAAAAtoXs/R9rzd6pbgDc2dlZfn5+Cg4OVocOHVSlShWz9VevXtXFixfl5OSkokWLatu2bVq/fr1CQ0NjDYAbjUatWrVKklSrVq0UOwYAAAAASErR0UZFRUXrg7drpvi+o6KiFR2duCvTmzZtEef9wGJkyZJF48dPfu76ChUqaefO/XGuy5Ejh7Zv3xvnuvr1G6p+/dgnSD8tLCxMISEhatGi5QvbAQAAAADSBrJ3bNaavVPdALjBYNCbb76pH3/8UaNHj9bcuXNN9/i+efOmPvroI0VGRqpbt25ydXVV69atNWvWLG3dulW//fabOnToIOnJ/PVTp07V0aNHVaRIETVp0sSShwUAAAAAiRYdbVRw8CPZ2cWeISsl9p3YEJ4a3b9/XwcP7tPmzZuUPXt2syncAAAAAABpF9k76Vg6e6e6AXBJ6tu3rw4ePKh9+/apcePGqlixoiIiInT06FE9evRItWrV0pAhQyRJefPm1ejRozVixAiNHDlSCxcuVIECBXT69GldvnxZWbJk0dSpU+Xo6GjhowIAAACAxLO1MGwpUVGR+vLLcfLw8NTYsePjvO0WAAAAACBtInsnDUtn71Q5AO7s7Kw5c+Zo/vz5WrVqlfbs2SMHBwcVLVpUbdq0Ufv27WVvb29q37ZtWxUsWFCzZs3SwYMHdeHCBWXLlk1dunRRnz59lDlzZgseDQAAAAAgtfD0zKQNG7ZaugwAAAAAAGyWpbN3qhwAlyRHR0f16NFDPXr0iFf7ChUqaPr06clcFQAAAAAAAAAAAAAgtbKzdAEAAAAAAAAAAAAAACQFBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAADACtjZGeTgYJfi/9nZGRJVb7t2PqpVq5IWL14Y5/qJE79QrVqV9PPPPyb6OWnXzidB2ye0PQAAAAAgbSF7x70Pa8veDhbdOwAAAADgpezsDPL0dJGdnX2K7zs6OkpBQaGKjjYmeFsHBwdt2fKn3nqrs9nyyMhIbdu2WQZD4gI+AAAAAABJjextOxgABwAAAIBUzs7OIDs7e11cM0uhgTdSbL8umXOqYIv3ZGdnSFQIr1Spivbs+Vu3bt1U9uw5TMsPHtwvZ2cXpUvnnJTlAgAAAACQaGRv28EAOAAAAABYidDAGwq9dcXSZcRb8eIldfnyJW3ZssnsTPQ///RX/fqva/PmjaZlx48f1cyZP+jMmVNycHBQrVp19cEHA5UhQwZJUkhIiL79dqJ27twmBwdHde3aPdb+jh07ohkzpunUqZPy8PBQzZp11Lv3B3Jzc0/+gwUAAAAA2ASyt/Vnb+4BDgAAAABINvXqNdSWLX+a/h4REaHt27eqYcNGpmUnTx5Xv37vq0CBgpoxY47GjZugkyeP66OPPlR0dLQk6bPPhurUqROaMOEbffPNNP311w7dvPnfGfnnzp3VgAF9VblyVc2bt0ijRn2uM2dOadCgD2U0JvwMegAAAAAArAXZ2xwD4AAAAACAZFO//us6efK4bt26KUnau3e3PDw8VKyYt6nN4sW/qHDhovroo09VsGAhVahQSaNHf6HTp09qz56/deXKJe3du1uDBn2ismXLq2hRL40a5SsnJyfTYyxaNF+VKlXWO+/0VN68+VS2bDmNHv25Tp48rkOHDqT4cQMAAAAAkFLI3uaYAh0AAAAAkGy8vYsrV67cpqnYNm/2V8OGjc3aXLhwTpUrVzNbVrhwEbm7p9f582cVFhYqSSpevIRpfaZMmZUrV27T38+cOaNr167o9ddrx6rh8uVLqlChUlIeFgAAAAAAqQbZ2xwD4AAAAACAZFW//uvasuVPtW7dXjt2bNesWfPM1huNRhkMsbczGqPl4PBfbI2ONp9Ozd7ewaxto0ZN1bXru7Eex8PD8xWPAAAAAACA1I3s/R+mQAcAAAAAJKv69Rvq5MnjWrNmlXLlyq38+QuYrS9UqIiOHDlstuzs2X/08OFDFShQyDRl27FjR0zrHzx4oOvXr5r+XrBgYV28eF558uQ1/RcdHaXvvvtaAQE3k+3YAAAAAABIDcje/2EAHAAAAACQrIoW9VKePHk1c+b3atCgUaz1b77ZUefO/aOvv56gS5cu6tChAxo7doSKFfNSpUpVlDt3HtWr11DffPOV9u3bowsXzmncuM8UERFheoy33uqsf/45o4kTv9DFixd04sRxjR49QleuXFaePPlS8nABAAAAAEhxZO//MAU6AAAAAFgJl8w5rXZ/9eu/rnnzflbDhrFDeKlSZTRp0hTNmjVD777bSa6ubqpd+zX16fOhaRq2ESNG6/vvp2jUqOGKjo5Wy5ZtFBwc9NRjlNbXX0/TTz9NV48eXeTi4qwKFSrrgw8GysnJKcmOAwAAAABg28je1p+9DUaj0fjyZoiKitbduw/Nljk42MnT003Dp6zTpetBz9ky8Qrk9tQXA5opKOihIiOjk/zxAQAAAKQuERHhCgy8ocyZc8rR8b/gaGdnkKeni+zs7FO8pujoKAUFhca6B1ha8rzXJUamTG6yt2eCtaRA9gYAAACQ3MjeqVNSZm+uAAcAAACAVC462qigoFDZ2Rkssu+0HMABAAAAAGkD2dt2MAAOAAAAAFaAMAwAAAAAQPIie9sG5mgDAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAUhmjkfuNpSa8HgAAAABge8h6qUtSvh4MgAMAAABAKmFvby9JCg9/bOFK8LSY18Pe3sHClQAAAAAAXhXZO3VKyuxNegcAAACAVMLOzl4uLu4KCQmSJDk5pZPBYLBwVWmX0WhUePhjhYQEycXFXXZ2nEMOAAAAANaO7J26JEf2ZgAcAAAAAFKRDBkySZIpiMPyXFzcTa8LAAAAAMD6kb1Tn6TM3gyAAwAAAEAqYjAYlDFjZqVP76moqEhLl5Pm2ds7cOU3AAAAANgYsnfqktTZmwFwAAAAAEiF7OzsZGfnZOkyAAAAAACwWWRv28Rp7AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm+Bg6QIAAAAAAIBlREREaMGCBfLz89OlS5fk6uqq0qVLq1u3bqpdu3as9nfu3NEPP/ygHTt26NatW8qaNauaNGmivn37ys3NzQJHAAAAAACAOa4ABwAAAAAgDTIajRo0aJAmTJigmzdvqkaNGipevLh2796tnj17avr06WbtAwIC1KFDB/3yyy9ydnbWa6+9pujoaP300096++23FRISYqEjAQAAAADgPwyAAwAAAACQBi1evFgbN25U8eLF5e/vrx9//FFz587VsmXL5O7urilTpuj8+fOm9r6+vrp+/bp69eql1atX67vvvtMff/yhpk2b6syZM5o2bZoFjwYAAAAAgCcYAAcAAAAAIA1atWqVJGno0KHy9PQ0Lff29paPj4+MRqO2b98uSbpy5Yo2btyonDlzqn///qa2Tk5OGjdunNzc3LRkyRKFhYWl7EEAAAAAAPAMBsABAAAAAEiD5s2bp1WrVqly5cqx1j169EiSZG9vL0navn27oqOjVbduXTk6Opq1TZ8+vapVq6ZHjx5pz549yV84AAAAAAAvwAA4AAAAAABpULp06eTt7W0a5I6xadMmbdiwQS4uLmrUqJEk6Z9//pEkFStWLM7HKlKkiFk7AAAAAAAsxcHSBQAAAAAAAMu6d++eRowYoXPnzunChQvKmTOnxo8frxw5ckiSbt++LUnKmjVrnNvHLL9z507KFAwAAAAAwHMwAA4AAAAAQBp39epV+fv7m/5uMBh07tw5Va9eXdJ/U6I7OzvHuX3M8ph2r8LBwXyyOnv7lJm8LqX2AwAAAABIXgyAAwAAAACQxhUsWFB79+6V0WjUrl279Pnnn8vX11chISHq06ePaZp0g8EQ5/ZGo9Hs/4llZ2eQp6fbKz1GYmXI4GKR/QIAAAAAkhYD4AAAAAAApHFubv8NOjdr1kw5cuRQx44dNXPmTHXt2lWurq6SpMePH8e5fcxyF5dXG0SOjjbq/n3zq8jt7e1SZHD6/v1QRUVFJ/t+AAAAAAAJlyGDS7xn7mIAHAAAAAAAmKlQoYLy5cuny5cv69KlS8qWLZuk/+4F/qyX3SM8ISIjLTMIHRUVbbF9AwAAAACSTqodAI+IiNCCBQvk5+enS5cuydXVVaVLl1a3bt1Uu3btWO3v3LmjH374QTt27NCtW7eUNWtWNWnSRH379jU7k90aJed9yKKjjYqOfrUp6gAAAAAA1iU0NFRTpkzRnTt3NHHixDinNndycpIkRUZGqlixYpKk8+fPx/l4Z8+elSR5eXklU8UAAAAAAMRPqhwANxqNGjRokDZu3KgMGTKoRo0aevz4sXbv3q0dO3Zo4MCB6tOnj6l9QECA3nrrLV2/fl3FihXTa6+9pmPHjumnn37Sjh079Ouvv8rd3d2CR5Q4GdM7yxgdnaxTvUVHRykoKJRBcAAAAABIQ5ydneXn56fg4GB16NBBVapUMVt/9epVXbx4UU5OTipatKiyZMkiSdqyZYuGDRtmuie4JD148EB79uyRq6urKlasmKLHAQAAAADAs1LlAPjixYu1ceNGFS9eXHPmzJGnp6ck6fTp0+rUqZOmTJmiRo0aqXDhwpIkX19fXb9+Xb169dLgwYMlSeHh4frkk0+0fv16TZs2TUOHDrXY8SSWm7OTDHZ2urhmlkIDbyT547tkzqmCLd6TnZ2BAXAAAAAASEMMBoPefPNN/fjjjxo9erTmzp1rmub85s2b+uijjxQZGalu3brJ1dVVrq6uqlevnrZs2aKJEyfq008/lcFgUHh4uD777DM9fPhQ7777rlWefA4AAAAAsC2pcgB81apVkqShQ4eaBr8lydvbWz4+Plq0aJG2b9+uwoUL68qVK9q4caNy5syp/v37m9o6OTlp3Lhx2r59u5YsWaKBAwfK2dk5xY8lKYQG3lDorSuWLgMAAAAAYEP69u2rgwcPat++fWrcuLEqVqyoiIgIHT16VI8ePVKtWrU0ZMgQU/uRI0fqxIkTmjNnjrZt26aiRYvq2LFj+vfff1WyZEl9+OGHFjwaAAAAAACeSL6bS7+CefPmadWqVapcuXKsdY8ePZIk03Rr27dvV3R0tOrWrStHR0eztunTp1e1atX06NEj7dmzJ/kLBwAAAADASjg7O2vOnDn65JNPlDdvXu3Zs0dHjx5V0aJFNWbMGM2cOdN0H3BJyp07t5YtW6b27dvrwYMH2rJli5ycnNS7d2/Nnz9fbm5uFjwaAAAAAACeSJVXgKdLl07e3t6xlm/atEkbNmyQi4uLGjVqJEn6559/JEnFihWL87GKFCmiP//8U//884/q1q2bfEUDAAAAAGBlHB0d1aNHD/Xo0SNe7bNnzy5fX99krgoAAAAAgMRLlQPgT7t3755GjBihc+fO6cKFC8qZM6fGjx+vHDlySJJu374tScqaNWuc28csv3PnTsoUDAAAAAAAAAAAAACwiFQ/AH716lX5+/ub/m4wGHTu3DlVr15d0n9Toj/v/t4xy2PavQoHB/MZ4+3tU+UM8glmK8cBAAAAAAAAAAAAIG1L9QPgBQsW1N69e2U0GrVr1y59/vnn8vX1VUhIiPr06WO6F7jBYIhze6PRaPb/xLKzM8jT0zbvZ5Yhg4ulSwAAAAAAAAAAAACAV5bqB8Dd3P4bdG7WrJly5Mihjh07aubMmeratatcXV0lSY8fP45z+5jlLi6vNsgbHW3U/fvmV5Hb29vZxODx/fuhioqKtnQZAAAAAGCVMmRwYWYtAAAAAABSiVQ/AP6sChUqKF++fLp8+bIuXbqkbNmySfrvXuDPetk9whMiMtI2B4mjoqJt9tgAAAAAAAAAAAAApB2p7hT10NBQffnllxoyZMhzpy13cnKSJEVGRqpYsWKSpPPnz8fZ9uzZs5IkLy+vZKgWAAAAAAAAAAAAAJBapLoBcGdnZ/n5+Wn16tXat29frPVXr17VxYsX5eTkpKJFi6p27dqSpC1btigqKsqs7YMHD7Rnzx65urqqYsWKKVI/AAAAAAAAAAAAAMAyUt0AuMFg0JtvvilJGj16tAICAkzrbt68qY8++kiRkZF6++235erqqty5c6tevXq6du2aJk6caLpqPDw8XJ999pkePnyot956S+7u7hY5HgAAAAAAAAAAAABAykiV9wDv27evDh48qH379qlx48aqWLGiIiIidPToUT169Ei1atXSkCFDTO1HjhypEydOaM6cOdq2bZuKFi2qY8eO6d9//1XJkiX14YcfWvBoAAAAAAAAAAAAAAApIdVdAS49mQZ9zpw5+uSTT5Q3b17t2bNHR48eVdGiRTVmzBjNnDnTdB9wScqdO7eWLVum9u3b68GDB9qyZYucnJzUu3dvzZ8/X25ubhY8GgAAAAAAAAAAAABASkiVV4BLkqOjo3r06KEePXrEq3327Nnl6+ubzFUBAAAAAAAAAAAAAFKrVHkFOAAAAAAAAAAAAAAACcUAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJvwfe/cen3P9/3H8eV3XNtswp80xEUJf5ZzpIIpvKSmiVErKKULpK6cvIkMhnYiyyJCcKfFtjiUkJHMaosLIcY7bzHZdvz/8rNY2tl3nz+dxv92+t18+n/f1uV7v3+fadV3P6/U50AAHAAAAAAAAAAAAABgCDXAAAAAAAAAAAAAAgCEEeLsAAAAAAAAAb7PZ3HeOgN3ukN3ucNv2AQAAAAB/oQEOAAAAAABMq0jhYDnsdoWFhbjtOez2dCUmJtMEBwAAAAAPoAEOAAAAAABMq2BwkCxWq35bOkXJp4+5fPshJcrolke7yGq10AAHAAAAAA+gAQ4AAAAAAEwv+fQxJR8/5O0yAAAAAABOct8NrgAAAAAAAAAAAAAA8CAa4AAAAAAAAAAAAAAAQ+AS6PApVqtFVqvFrc9htzu47xoAAAAAAAAAAABgQDTA4TOsVouKFQuR1Wpz6/PY7elKTEymCQ4AAAAAMCUOPgcAAABgZDTA4TOuBnCbfls6Rcmnj7nlOUJKlNEtj3aR1WohiAMAAAAATIeDzwEAAAAYHQ1w+Jzk08eUfPyQt8sAAAAAAMBwOPgcAAAAgNHRAAcAAAAAAPAh7rxEuc1mlcTB5wAAAACMiwY4AAAAAACAj7BaLSpaNDSjUQ0AAAAAyBsa4AAAAAAAAD7CarXIZrNq4uz1SjhxzuXbr1WtrNo1r+3y7QIAAACAr6ABDgAAAAAA4GMSTpzT7wmJLt9u2Ygwl28TAAAAAHwJ19MCAAAAAAAAAAAAABgCDXAAAAAAAAAAAAAAgCHQAAcAAAAAAAAAAAAAGAINcAAAAAAAAAAAAACAIdAABwAAAAAAAAAAAAAYAg1wAAAAAAAAAAAAAIAhBHi7APgXq9Uiq9Xilm3bbByPAQAAAAAAAAAAACD/aIAj16xWi4oWDaVRDQAAAAAAAAAAAMAn0QBHrlmtFtlsVk2cvV4JJ865fPu1qpVVu+a1Xb5dAAAAAAAAAAAAAOZAAxx5lnDinH5PSHT5dstGhLl8mwAAAAAAAAAAAADMg2tZAwAAAAAAAAAAAAAMgQY4AAAAAAAAAAAAAMAQuAQ6AAAAAAAmZbfbNW/ePC1cuFD79+/XlStXVLZsWTVr1kzdunVTWFjmW1VFRkbq7NmzOW4vLi5OBQoUcHPVAAAAAADkjAY4AAAAAAAmZLfb1bt3b61YsULBwcGqWbOmQkNDFRcXp+joaK1YsUJffPGFwsPDJUkJCQk6e/asSpUqpQYNGmS7TauVC80BAAAAALyLBjgAAAAAACa0YMECrVixQhUrVlR0dLTKly8vSbp48aL69u2rNWvWKCoqSu+//74kac+ePZKk5s2ba9CgQd4qGwAAAACA6+LQbAAAAAAATGjBggWSpAEDBmQ0vyWpUKFCGjVqlCwWi1auXKmUlBRJ0q5duyRJNWrU8HyxAAAAAADkEg1wAAAAAABMqGjRoqpUqZJq166dZV3x4sVVpEgRXblyRYmJiZL+OgP89ttv92SZAAAAAADkCZdABwAAAADAhCZPnpzjusOHD+vs2bMKDAxU8eLFJV09Azw4OFg7d+7U4MGDtX//flksFtWtW1c9evRQrVq1PFU6AAAAAAA54gxwAAAAAACQybX7fjdp0kQFChTQ6dOndeLECaWkpKhfv36y2+2KjIxU0aJFtXbtWj377LNatmyZd4sGAAAAAECcAQ4AAAAAAP5mxowZWrp0qUJCQtSnTx9Jf93/u1ixYpo0aZLq1KkjSXI4HJo+fbpGjx6tgQMHqm7duipdurRTzx8QkPlYfZvNGMfu53YeRpmvZKy5AAAAAPAfNMABAAAAAIAkKSYmRqNGjZLFYtHIkSNVuXJlSVKjRo20bt06ORwOlSpVKmO8xWJRx44dtXnzZq1cuVLz589Xz5498/38VqtFxYoVdHoevigsLMTbJXicGecMAAAAwPtogAMAAAAAYHIOh0Pjxo1TdHS0bDabRo4cqRYtWmSst1gsKlmyZI6Pv//++7Vy5Urt3LnTqTrsdofOn0/KtMxmsxqikXr+fLLS0+03HGeU+Uq5nzMAAAAA3EhYWEiurzLlsw1wu92uefPmaeHChdq/f7+uXLmismXLqlmzZurWrZvCwsIyjY+MjNTZs2dz3F5cXJwKFCjg5qoBAAAAAPAvKSkpeuONNxQbG6vg4GC9++67atasWZ62ERERIUlKTk52up60NGM2TNPT7YadW07MOGcAAAAA3ueTDXC73a7evXtrxYoVCg4OVs2aNRUaGqq4uDhFR0drxYoV+uKLLxQeHi5JSkhI0NmzZ1WqVCk1aNAg221ardx3CgAAAACAv7t48aI6d+6sbdu2qUSJEpo0aZJq1aqVZdycOXO0ceNGPfroo9k2xw8fPixJTt//GwAAAAAAZ/lkA3zBggVasWKFKlasqOjoaJUvX17S1WDet29frVmzRlFRUXr//fclSXv27JEkNW/eXIMGDfJW2QAAAAAA+I0rV66oa9eu2rZtmypUqKDPPvssI3//0/Hjx7V8+XIlJydnaYA7HA4tWbJEknTvvfe6vW4AAAAAAK7HJ0+LXrBggSRpwIABmcJ3oUKFNGrUKFksFq1cuVIpKSmSpF27dkmSatSo4fliAQAAAADwQxMmTNDWrVsVERGhGTNm5Nj8lqTWrVsrKChIa9eu1dy5czOW2+12ffjhh4qLi1OVKlXUvHlzT5QOAAAAAECOfPIM8KJFi6pSpUqqXbt2lnXFixdXkSJFdPbsWSUmJqpMmTIZZ4DffvvtHq4UAAAAAAD/c+7cOU2fPl2SVKJECY0dOzbHsdcOTh82bJgGDx6sIUOGaObMmapYsaLi4+P1xx9/KDw8XB999JECAwM9NQUAAAAAALLlkw3wyZMn57ju8OHDOnv2rAIDA1W8eHFJV88ADw4O1s6dOzV48GDt379fFotFdevWVY8ePbK9fxkAAAAAAGa1fft2JScnS5Li4+MVHx+f49hevXopPDxcbdq00S233KIpU6bo559/1sGDB1WyZEk9//zz6t69u0qUKOGp8oE8s1otslotbtu+3e6Q3e5w2/YBAAAA5J5PNsCv59p9v5s0aaICBQro9OnTOnHihCSpX79+ql27tiIjI7Vv3z6tXbtWP/zwg8aOHatHHnnEi1UDAAAAAOA77rvvPu3duzfPj6tbt64mTZrkhooA97FaLSpWLERWq81tz2G3pysxMZkmOAAAAOAD/KoBPmPGDC1dulQhISHq06ePpL/u/12sWDFNmjRJderUkSQ5HA5Nnz5do0eP1sCBA1W3bl2VLl3aqecPCMh8y3SbzSdvoZ5nuZ2HUeYrGWsuAAAAAAAgZ1fP/rbpt6VTlHz6mMu3H1KijG55tIusVgsNcAAAAMAH+E0DPCYmRqNGjZLFYtHIkSNVuXJlSVKjRo20bt06ORwOlSpVKmO8xWJRx44dtXnzZq1cuVLz589Xz5498/38V48WLuj0PHxRWFiIt0vwODPOGQAAAAAAM0s+fUzJxw95uwwAAAAAbubzDXCHw6Fx48YpOjpaNptNI0eOVIsWLTLWWywWlSxZMsfH33///Vq5cqV27tzpVB12u0PnzydlWmazWQ3RSD1/Plnp6fYbjjPKfKXczxkAAAAAbiQsLISrTAEAAAAA4CN8ugGekpKiN954Q7GxsQoODta7776rZs2a5WkbERERkqTk5GSn60lLM2bDND3dbti55cSMcwYAAAAAAAAAAACMzmcb4BcvXlTnzp21bds2lShRQpMmTVKtWrWyjJszZ442btyoRx99NNvm+OHDhyXJ6ft/A+5y9V5kFrdt3253cA8yAAAAAAAAAAAAmIJPNsCvXLmirl27atu2bapQoYI+++wzlS9fPtuxx48f1/Lly5WcnJylAe5wOLRkyRJJ0r333uv2uoG8unpv+RBZrTa3PYfdnq7ExGSa4AAAAAAAAAAAADA8n2yAT5gwQVu3blVERIRmzJihUqVK5Ti2devWmjJlitauXau5c+fqqaeekiTZ7XZ99NFHiouLU5UqVdS8eXNPlQ/k2tWzv236bekUJZ8+5vLth5Qoo1se7SKr1UIDHAAAAAAAAAAAAIbncw3wc+fOafr06ZKkEiVKaOzYsTmOHTBggMqXL69hw4Zp8ODBGjJkiGbOnKmKFSsqPj5ef/zxh8LDw/XRRx8pMDDQU1MA8iz59DElHz/k7TIAAAAAAAAAAAAAv+ZzDfDt27crOTlZkhQfH6/4+Pgcx/bq1Uvh4eFq06aNbrnlFk2ZMkU///yzDh48qJIlS+r5559X9+7dVaJECU+VDwAAAAAAAAAAAADwEp9rgN93333au3dvnh9Xt25dTZo0yQ0VAQAAAAAAAAAAAAD8gdXbBQAAAAAAAAAAAAAA4Ao0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIbgVAN88eLF2rp16w3HrVq1Sh9++KEzTwUAAAAAgCmRvQEAAAAAyD2nGuADBgzQ3LlzbzhuyZIlmjZtmjNPBQAAAACAKZG9AQAAAADIvYC8DF68eLHS0tIyLfvjjz80f/78HB9z8eJFbdy4UYGBgfmrEAAAAAAAEyF7w4ysVousVotbtm2zcQdAAAAAwEzy1ADftWuXZsyYIYvlaiCxWCzavn27tm/fft3HORwOtW7dOv9VAl5ECAcAAADgSWRvmI3ValHRoqFkZAAAAAAukacGeO/evXXx4sWMfy9atEg333yz6tWrl+NjChQooIoVK+qZZ57Jf5WAlxDCAQAAAHga2RtmY7VaZLNZNXH2eiWcOOfy7deqVlbtmtd2+XYBAAAA+KY8NcALFy6s0aNHZ/x70aJFql27dqZlgJEQwgEAAAB4GtkbZpVw4px+T0h0+XbLRoS5fJsAAAAAfFeeGuD/FB8f76o6AJ9GCAcAAADgLWRvAAAAAAByz6kG+N+dPn1aycnJcjgcOY4pX768q54OAAAAAADTIXsDAAAAAHB9TjfAP//8c02ZMkVnzpy57jiLxaLdu3c7+3QAAAAAAJiOu7K33W7XvHnztHDhQu3fv19XrlxR2bJl1axZM3Xr1k1hYZmvWnXq1Cl9/PHHWrdunY4fP66IiAg1b95cPXr0UMGCBfM1NwAAAAAAXMmpBvjChQv19ttvS5KCgoJUrFgx2Ww2lxQGAAAAAADcl73tdrt69+6tFStWKDg4WDVr1lRoaKji4uIUHR2tFStW6IsvvlB4eLgk6cSJE3r66aeVkJCgqlWrqkmTJtqxY4eio6O1bt06ffHFFypUqJDTdQEAAAAA4AynGuAzZ86UxWLR4MGD9dRTTykwMNBVdQEAAAAAALkvey9YsEArVqxQxYoVFR0dnXHp9IsXL6pv375as2aNoqKi9P7770uSoqKilJCQoK5du+o///mPJCk1NVX9+vXT8uXLNWHCBA0YMMAltQEAAAAAkF9WZx584MAB1a5dW+3bt6f5DQAAAACAG7grey9YsECSNGDAgEz3DS9UqJBGjRoli8WilStXKiUlRYcOHdKKFStUpkwZ9e7dO2NsUFCQRowYoYIFC2rOnDlKSUlxWX0AAAAAAOSHUw3wkJAQFStWzFW1AAAAAACAf3BX9i5atKgqVaqk2rVrZ1lXvHhxFSlSRFeuXFFiYqK+//572e12NW7cOEsTvnDhwmrYsKGSkpK0adMml9cJAAAAAEBeONUAb9CggeLi4pScnOyqegAAAAAAwN+4K3tPnjxZy5cvz7a5fvjwYZ09e1aBgYEqXry49u3bJ0mqWrVqttuqUqWKJGWMAwAAAADAW5xqgPfp00fJyckaNGiQzp0756qaAAAAAADA//NG9r523+8mTZqoQIECOnnypCQpIiIi2/HXlp86dcoj9QEAAAAAkJMAZx785ZdfqmbNmvrf//6nFStWqGLFigoLC5PFYsky1mKxaObMmbnett1u17x587Rw4ULt379fV65cUdmyZdWsWTN169ZNYWFhmcafOnVKH3/8sdatW6fjx48rIiJCzZs3V48ePVSwYEFnpgkAAAAAgNe4M3tnZ8aMGVq6dKlCQkLUp08fSVJSUpIkKTg4ONvHXFt+bZwzAgIyH6tvszl17L7PyO08jDJfyXxzNso8AAAAAH/nVAN8+vTpGf+dlpamX3/9Ncex2QXznNjtdvXu3VsrVqxQcHCwatasqdDQUMXFxSk6OlorVqzQF198ofDwcEnSiRMn9PTTTyshIUFVq1ZVkyZNtGPHDkVHR2vdunX64osvVKhQofxPFAAAAAAAL3FX9s5OTEyMRo0aJYvFopEjR6py5cqSJJvNdt3tOxyOTP83v6xWi4oVM+ZB7GFhId4uwePMNmezzRcAAADwVU41wGNiYlxVRyYLFizIOKo9Ojpa5cuXlyRdvHhRffv21Zo1axQVFZVxSbaoqCglJCSoa9eu+s9//iNJSk1NVb9+/bR8+XJNmDBBAwYMcEutAAAAAAC4k7uy9985HA6NGzdO0dHRstlsGjlypFq0aJGxPjQ0VJJ0+fLlbB9/bXlIiHMNQLvdofPnM59FbrNZDdFYPH8+Wenp9huOM8p8JfPNObfzBQAAAJB3YWEhub7qklMN8AYNGjjz8BwtWLBAkjRgwICM5rckFSpUSKNGjdLdd9+tlStXKiUlRSdOnNCKFStUpkwZ9e7dO2NsUFCQRowYoe+//15z5szRa6+9luOl2gAAAAAA8FXuyt7XpKSk6I033lBsbKyCg4P17rvvqlmzZpnGlCxZUpIy7gX+Tze6R3hepKUZs4GYnm437NxyYrY5m22+AAAAgK9y2c2Jrly5ori4OH377bfaunWrJOno0aP52lbRokVVqVIl1a5dO8u64sWLq0iRIrpy5YoSExP1/fffy263q3HjxgoMDMw0tnDhwmrYsKGSkpK0adOmfNUCAAAAAICvcGX2lq5eaa1jx46KjY1ViRIlFBMTk6X5LUlVq1aVJB04cCDb7ezfv1+SVK1atXzXAgAAAACAKzjdAE9LS9MHH3yge+65R+3atdNrr72mOXPmSJL69++vJ554Qn/88Ueetjl58mQtX75cxYoVy7Lu8OHDOnv2rAIDA1W8eHHt27dP0l9h/J+qVKkiSRnjAAAAAADwN+7I3leuXFHXrl21bds2VahQQXPmzFGtWrWyHduoUSNJ0po1a5Senp5p3YULF7Rp0yaFhoaqXr16+ZgdAAAAAACu41QDPC0tTd26ddPkyZOVnJys22+/XQ6HI2P9pUuXtHv3brVv316nTp1yulhJGff9btKkiQoUKHDDy6xdW+6q5wcAAAAAwJPclb0nTJigrVu3KiIiQjNmzMh0C7J/KleunO6//34dOXJEY8eOzXj+1NRUDR06VJcuXdLTTz+tQoUK5X+iAAAAAAC4gFP3AJ81a5bWr1+ve++9V6NGjVLJkiVVvXr1jPVffPGFhg0bpsWLF+uzzz5T//79nSp2xowZWrp0qUJCQtSnTx9JUlJSkiTleH/va8uvjXNGQEDm4wVye6N1X5fbeRhlvpL55myUeQAAAABm5I7sfe7cOU2fPl2SVKJECY0dOzbHsQMGDFB4eLiGDBmiXbt2adq0afruu+906623aseOHTp69Khq1Kihnj17Oj9ZAAAAAACc5FQDfNGiRSpatKg++OADFSxYMMv64OBgjRgxQhs2bND333/vVAM8JiZGo0aNksVi0ciRI1W5cmVJks1mkyRZLJZsH3ftqPS/Hx2fH1arRcWKZZ2jEYSFhXi7BI8z25zNNl8AAADASNyRvbdv367k5GRJUnx8vOLj43Mc26tXL4WHh6tcuXKaP3++PvroI61du1Zr1qxR2bJl9fLLL6tLly7Z1gYAAAAAgKc51QD//fffde+991435AYGBqpmzZpav359vp7D4XBo3Lhxio6Ols1m08iRI9WiRYuM9aGhoZKky5cvZ/v4a8tDQpxrANrtDp0/n/kscpvNaojG4vnzyUpPt99wnFHmK5lvzrmdLwAAAIC8CwsLcetVl9yRve+77z7t3bs3z7WUKlVKUVFReX4cAAAAAACe4lQDPCAgQOfPn7/huLNnzyogIO9PlZKSojfeeEOxsbEKDg7Wu+++q2bNmmUaU7JkSUnKuBf4P93oHuF5kZZmzAZierrdsHPLidnmbLb5AgAAAEbi7uwNAAAAAICROHWI+m233aYdO3YoISEhxzGHDx/Wjh07Mt2fLDcuXryojh07KjY2ViVKlFBMTEyW5rckVa1aVZJ04MCBbLezf/9+SVK1atXy9PwAAAAAAPgCd2ZvAAAAAACMxqkG+DPPPKPk5GT16NFDu3fvzrJ+79696tWrl1JTU9W2bdtcb/fKlSvq2rWrtm3bpgoVKmjOnDmqVatWtmMbNWokSVqzZo3S09Mzrbtw4YI2bdqk0NBQ1atXLw8zAwAAAADAN7grewMAAAAAYEROXRvtkUce0YYNGzR//ny1adNGhQsXlsVi0bp169SkSRMdP35cDodDLVq00OOPP57r7U6YMEFbt25VRESEZsyYoVKlSuU4tly5crr//vu1Zs0ajR07Vv3795fFYlFqaqqGDh2qS5cu6aWXXlKhQoWcmSoAAAAAAF7hruwNAAAAAIAROX1zsKioKNWuXVufffaZfvvtN0lSYmKiJKls2bJ64YUX1KFDh1xv79y5c5o+fbokqUSJEho7dmyOYwcMGKDw8HANGTJEu3bt0rRp0/Tdd9/p1ltv1Y4dO3T06FHVqFFDPXv2dGKGAAAAAAB4l6uzNwAAAAAARuV0A1yS2rZtq7Zt2+rkyZM6duyY7Ha7IiIiVK5cuTxva/v27UpOTpYkxcfHKz4+PsexvXr1Unh4uMqVK6f58+fro48+0tq1a7VmzRqVLVtWL7/8srp06aKCBQvme24AAAAAAPgCV2ZvAAAAAACMyiUN8MTERO3fv18NGjRQRESEJOnXX3/VrFmz9OCDD2Ysy4377rtPe/fuzXMNpUqVUlRUVJ4fBwAAAACAP3Bl9gYAAAAAwKiszm5g7ty5uu+++/T2229nWr59+3aNGDFCDz30kJYtW+bs0wAAAAAAYFpkbwAAAAAAcsepBvj69es1dOhQBQQEqGHDhpnW1atXT506dZLD4VDfvn31448/OlUoAAAAAABmRPYGAAAAACD3nGqAR0dHKyAgQDExMerXr1+mdRUrVtQbb7yhmJgYWSwWTZkyxalCAQAAAAAwI7I3AAAAAAC551QDfN++fYqMjNQdd9yR45g77rhD9erV0y+//OLMUwEAAAAAYEpkbwAAAAAAcs+pBnhycrJCQkJuOK5o0aJKS0tz5qkAAAAAADAlsjcAAAAAALnnVAO8YsWK2rx5sy5evJjjmMuXL2vr1q26+eabnXkqAAAAAABMiewNAAAAAEDuOdUAf+yxx3Tu3Dn17t1bp06dyrI+MTFRr7/+us6cOaOWLVs681QAAAAAAJgS2RsAAAAAgNwLcObB7du317Jly7RhwwY1adJEt99+u8qUKSNJ+vPPP7Vr1y6lpqaqZs2a6tixoyvqBQAAAADAVMjeAAAAAADknlMN8MDAQE2bNk3vvfeeFi5cqF9++UW//PJLxvoCBQromWee0RtvvKGgoCBnawUAAAAAwHTI3gAAAAAA5J5TDXBJKliwoAYPHqx+/fpp586dOnnypNLT0xUREaEaNWooNDTUFXUCAAAAAGBaZG8AAAAAAHLHqQZ4hw4dVLFiRb311lsKCgpS3bp1XVUXAAAAAAAQ2RsAAAAAgLxwqgEeFxcnq9XqqloAAAAAAMA/kL0BAAAAAMg9pxJ0wYIF5XA4XFULAAAAAAD4B7I3AAAAAAC551QDvHv37vrpp580depUpaamuqomAAAAAADw/8jeAAAAAADknlOXQD98+LAqVKigsWPHavz48apQoYLCwsKyvTSbxWLRzJkznXk6AAAAAABMh+wNAAAAAEDuOdUAnz59esZ/p6Wl6cCBAzmOtVgszjwVAAAAAACmRPYGAAAAACD3nGqAx8TEuKoOAAAAAACQDbI3AAAAAAC551QDvEGDBq6qAwAAAAAAZIPsDQAAAABA7jnVAP+7K1euaM+ePTp27JjCw8NVr149HT16VGXLlnXVUwAAAAAAYGpkbwAAAAAArs/pBnhaWpomTpyoWbNm6cKFC5Kkli1bql69eurfv78uXbqk9957TxUqVHC6WAAAAAAAzIjsDQAAAABA7lideXBaWpq6deumyZMnKzk5WbfffrscDkfG+kuXLmn37t1q3769Tp065XSxAAAAAACYDdkbAAAAAIDcc6oBPmvWLK1fv1733HOPVq1apXnz5mVa/8UXX6hVq1Y6deqUPvvsM6cKBQAAAADAjMjeAAAAAADknlMN8EWLFqlo0aL64IMPVLJkySzrg4ODNWLECJUsWVLff/+9M08FAAAAAIApkb0BAAAAAMg9pxrgv//+u+rXr6+CBQvmOCYwMFA1a9bU0aNHnXkqAAAAAABMiewNAAAAAEDuOdUADwgI0Pnz52847uzZswoICHDmqQAAAAAAMCWyNwAAAAAAuedUA/y2227Tjh07lJCQkOOYw4cPa8eOHapevbozTwUAAAAAgCmRvQEAAAAAyD2nGuDPPPOMkpOT1aNHD+3evTvL+r1796pXr15KTU1V27ZtnXkqAAAAAABMiewNAAAAAEDuOXVttEceeUQbNmzQ/Pnz1aZNGxUuXFgWi0Xr1q1TkyZNdPz4cTkcDrVo0UKPP/64q2oGAAAAAMA0yN4AAAAAAOSe0zcHi4qKUu3atfXZZ5/pt99+kyQlJiZKksqWLasXXnhBHTp0cPZpAAAAAAAwLbI3AAAAAAC543QDXJLatm2rtm3b6uTJkzp27JjsdrsiIiJUrlw5V2weAAAAAADTI3sDAAAAAHBjeW6Ap6en64svvlBsbKxOnTqlsmXLqmXLlmrVqpUiIiIUERHhjjoBAAAAADANsjcAAAAAAPmTpwZ4amqqOnXqpC1btsjhcEiSfvvtN23YsEFr1qzRBx984JYiAQAAAAAwC7I3AAAAAAD5l6cG+JdffqnNmzerVKlS6tKli8qXL699+/YpOjpasbGxWrJkiR5//HF31QoAAAAAgOGRvQEAAAAAyL88NcD/97//KTg4WLNnz1bZsmUlSY0bN1ajRo3UunVrffPNN4RwAAAAAACcQPYGAAAAACD/rHkZfODAAdWvXz8jgF9TvXp11ahRQ/Hx8S4tDgAAAAAAsyF7AwAAAACQf3lqgF+6dElFihTJdt1NN92ks2fPuqImAAAAAABMi+wNAAAAAED+5akBnpaWJpvNlu26wMBAXblyxSVFAQAAAABgVmRvAAAAAADyL08NcAAAAAAAAAAAAAAAfBUNcAAAAAAAAAAAAACAIdAABwAAAAAAAAAAAAAYQkBeH7By5Uo1bdo0y/LExERJynadJFksFq1cuTKvTwcAAAAAgOmQvQEAAAAAyJ88N8CTkpKUlJSU4/qEhIRsl1sslrw+FQAAAAAApkT2BgAAAAAgf/LUAI+JiXFXHQAAAAAAQGRvAAAAAACckacGeIMGDdxVBwAAAAAAENkbAAAAAABnWL1dAAAAAAAAAAAAAAAArkADHAAAAAAAAAAAAABgCHm6BDoAAAAAADCuxYsXq3///po2bZruvvvuLOsjIyN19uzZHB8fFxenAgUKuLFCAAAAAACujwY4AAAAAABQXFycRowYkeP6hIQEnT17VqVKlcrxPuVWKxeaAwAAAAB4Fw1wAAAAAABMbvXq1erfv78uXryY45g9e/ZIkpo3b65BgwZ5qjQAAAAAAPKEBjgAAAAAACZ1/Phxvf/++1q0aJGCg4MVHh6uU6dOZTt2165dkqQaNWp4skQAAAAAAPKEa5MBAAAAAGBS7733nhYuXKgaNWpozpw5qlSpUo5jr50Bfvvtt3uqPAAAAAAA8owzwAEAAAAAMKlKlSrpnXfe0WOPPXbD+3fv2rVLwcHB2rlzpwYPHqz9+/fLYrGobt266tGjh2rVquWhqgEAAAAAyJnfnAG+ePFiVatWTRs2bMh2fWRkpKpVq5bj/y5fvuzhigEAAAAA8G1du3ZVq1atbtj8Pn36tE6cOKGUlBT169dPdrtdkZGRKlq0qNauXatnn31Wy5Yt81DVAAAAAADkzC/OAI+Li9OIESNyXJ+QkKCzZ8+qVKlSatCgQbZjbhTmAQAAAABA9q7d/7tYsWKaNGmS6tSpI0lyOByaPn26Ro8erYEDB6pu3boqXbq0U88VEJA5v9tsxsjzuZ2HUeYrmW/ORpkHAAAA4O98vgG+evVq9e/fXxcvXsxxzLX7kDVv3lyDBg3yVGkAAAAAAJhCo0aNtG7dOjkcDpUqVSpjucViUceOHbV582atXLlS8+fPV8+ePfP9PFarRcWKFXRFyT4nLCzE2yV4nNnmbLb5AgAAAL7KZxvgx48f1/vvv69FixYpODhY4eHhOnXqVLZjrx2JXqNGDU+WCAAAAACAKVgsFpUsWTLH9ffff79WrlypnTt3OvU8drtD588nZVpms1kN0Vg8fz5Z6en2G44zynwl8805t/MFAAAAkHdhYSG5vuqSzzbA33vvPS1atEi33367Ro0apaioqBwb4NfOAL/99ts9WSIAAAAAAJAUEREhSUpOTnZ6W2lpxmwgpqfbDTu3nJhtzmabLwAAAOCrfLYBXqlSJb3zzjt67LHHbnj/7l27dik4OFg7d+7U4MGDtX//flksFtWtW1c9evRQrVq1PFQ1AAAAAADGM2fOHG3cuFGPPvqomjVrlmX94cOHJcnp+38DAAAAAOCs3J0n7gVdu3ZVq1atbtj8Pn36tE6cOKGUlBT169dPdrtdkZGRKlq0qNauXatnn31Wy5Yt81DVAAAAAAAYz/Hjx7V8+XLNmzcvyzqHw6ElS5ZIku69915PlwYAAAAAQCY+ewZ4bl27/3exYsU0adIk1alTR9LVAD59+nSNHj1aAwcOVN26dZ0+Ej0gIHMzPrfXmfd1uZ2HUeYrmW/ORpkHAAAAAO9o3bq1pkyZorVr12ru3Ll66qmnJEl2u10fffSR4uLiVKVKFTVv3tzLlQIAAAAAzM7vG+CNGjXSunXr5HA4VKpUqYzlFotFHTt21ObNm7Vy5UrNnz9fPXv2zPfzWK0WFStW0BUl+5ywsBBvl+BxZpuz2eYLAAAAwLXKly+vYcOGafDgwRoyZIhmzpypihUrKj4+Xn/88YfCw8P10UcfKTAw0NulAgAAAABMzu8b4BaLRSVLlsxx/f3336+VK1dq586dTj2P3e7Q+fNJmZbZbFZDNBbPn09Werr9huOMMl/JfHPO7XwBAAAA5F1YWIgprrrUpk0b3XLLLZoyZYp+/vlnHTx4UCVLltTzzz+v7t27q0SJEt4uEQAAAAAA/2+A30hERIQkKTk52eltpaUZs4GYnm437NxyYrY5m22+AAAAAPJnxowZ111ft25dTZo0yUPVAAAAAACQd35/iPqcOXP02muvaeXKldmuP3z4sCQ5ff9vAAAAAAAAAAAAAIBv8/szwI8fP67ly5crOTlZzZo1y7TO4XBoyZIlkqR7773XG+UBAAAAAAAAAAAAADzE788Ab926tYKCgrR27VrNnTs3Y7ndbteHH36ouLg4ValSRc2bN/dilQAAAAAAAAAAAAAAd/P7M8DLly+vYcOGafDgwRoyZIhmzpypihUrKj4+Xn/88YfCw8P10UcfKTAw0NulAgAAAAAAAAAAAADcyO/PAJekNm3aaNasWXrggQd0/PhxrV69WmlpaXr++ef11VdfqVKlSt4uEQAAAAAAAAAAAADgZn5zBviMGTOuu75u3bqaNGmSh6oBAAAAAAAAAAAAAPgaQ5wBDgAAAAAAAAAAAAAADXAAAAAAAAAAAAAAgCHQAAcAAAAAAAAAAAAAGAINcAAAAAAAAAAAAACAIdAABwAAAAAAAAAAAAAYAg1wAAAAAAAAAAAAAIAh0AAHAAAAAAAAAAAAABgCDXAAAAAAAAAAAAAAgCEEeLsAAAAAAAAAAK5ltVpktVrctn273SG73eG27QMAAAD5RQMcAAAAAAAAMBCr1aJixUJktdrc9hx2e7oSE5NpggMAAMDn0AAHAAAAAAAADOTq2d82/bZ0ipJPH3P59kNKlNEtj3aR1WqhAQ4AAACfQwMcAAAAAAAAMKDk08eUfPyQt8sAAAAAPMrq7QIAAAAAAAAAAAAAAHAFGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwhABvFwDAt1itFlmtFm+X4RS73SG73eHtMgAAAAAAAAAAAOBhNMABZLBaLSpaNFQ2m3svDuGw22Wxuu857PZ0JSYm0wQHAAAAAAAAAAAwGRrgADJYrRbZbFZNnL1eCSfOueU5alUrq3bNa+u3pVOUfPqYy7cfUqKMbnm0i6xWCw1wAAAAAAAAAAAAk6EBDiCLhBPn9HtColu2XTYiTJKUfPqYko8fcstzAAAAAADgy9x9+zF3X9kNAAAA8GU0wAEAAAAAAAAP8dTtxwAAAACzogEOAAAAAAAAeIgnbz8GAAAAmBENcAAAAAAAAMDDPHH7MQAAAMCMuNYSAAAAAAAAAAAAAMAQaIADAAAAAAAAAAAAAAyBBjgAAAAAAAAAAAAAwBBogAMAAAAAAAAAAAAADIEGOAAAAAAAAAAAAADAEGiAAwAAAAAAAAAAAAAMgQY4AAAAAAAAAAAAAMAQaIADAAAAAAAAAAAAAAyBBjgAAAAAAAAAAAAAwBBogAMAAAAAAAAAAAAADIEGOAAAAAAAAAAAAADAEGiAAwAAAAAAAAAAAAAMgQY4AAAAAAAAAAAAAMAQaIADAAAAAAAAAAAAAAyBBjgAAAAAAAAAAAAAwBBogAMAAAAAAAAAAAAADIEGOAAAAAAAAAAAAADAEGiAAwAAAAAAAAAAAAAMgQY4AAAAAACQJC1evFjVqlXThg0bsl1/6tQpvfXWW/r3v/+tmjVrqmnTpho7dqwuXbrk4UoBAAAAAMgeDXAAAAAAAKC4uDiNGDEix/UnTpzQU089pVmzZik4OFhNmjSR3W5XdHS0nnnmGV28eNGD1QIAAAAAkD0a4AAAAAAAmNzq1avVqVOn6zaxo6KilJCQoK5du+rrr7/Whx9+qG+//VYPP/yw9u7dqwkTJniwYgAAAAAAsuc3DXAuwwYAAAAAgGsdP35cAwcOVI8ePXTlyhWFh4dnO+7QoUNasWKFypQpo969e2csDwoK0ogRI1SwYEHNmTNHKSkpniodAAAAAIBs+UUDnMuwAQAAAADgeu+9954WLlyoGjVqaM6cOapUqVK2477//nvZ7XY1btxYgYGBmdYVLlxYDRs2VFJSkjZt2uSJsgEAAAAAyJHPN8C5DBsAAAAAAO5RqVIlvfPOO5o3b56qVauW47h9+/ZJkqpWrZrt+ipVqmQaBwAAAACAt/hsA5zLsAEAAAAA4F5du3ZVq1atZLVe/+eBkydPSpIiIiKyXX9t+alTp1xbIAAAAAAAeRTg7QJy8t5772nRokW6/fbbNWrUKEVFRWUbpHNzGbZVq1Zp06ZNaty4safKBwAAAADAMJKSkiRJwcHB2a6/tvzaOGcEBGRuxttsPnvsfp7kdh5Gma9kvjmbbb6SseYCAAAA4/DZBvi1y7A99thj1z0SPTeXYVu1apX27dtHAxwAAAAAgHyw2WySJIvFku16h8OR6f/ml9VqUbFiBZ3ahq8KCwvxdgkeZ7Y5m22+kjnnDAAAAN/nsw3wrl275mocl2EDAAAAAMC9QkNDJUmXL1/Odv215SEhzjXD7HaHzp/PfBa5zWY1RJPt/PlkpafbbzjOKPOVzDdns81Xyv2cAQAAAGeFhYXk+gpEPtsAzy0uw+Y8LtHl/DhfZ7b5SsaaCwAAAOBtJUuWlPTXQej/dKOD0/MiLc2YzbT0dLth55YTs83ZbPOVzDlnAAAA+D6/b4BzGTbnGeWo47ww25zNNl/JnHMGAAAA3OXabccOHDiQ7fr9+/dLkqpVq+axmgAAAAAAyI7fN8C5DJvzuERXzowyZ7PNV+IybAAAAPCcvFyGzV81atRIkrRmzRoNHDgw42B0Sbpw4YI2bdqk0NBQ1atXz1slAgAAAAAgyQANcC7D5jwzXq7KbHM223wlc84ZAAAAcJdy5crp/vvv15o1azR27Fj1799fFotFqampGjp0qC5duqSXXnpJhQoV8napAAAAAACT8/sGOJdhAwAAAADA/YYMGaJdu3Zp2rRp+u6773Trrbdqx44dOnr0qGrUqKGePXt6u0QAAAAAAOT312j7+2XY0tPTM63jMmwAAAAAALhGuXLlNH/+fD355JO6cOGC1qxZo6CgIL388suKiYlRwYIFvV0iAAAAAAD+fwY4l2EDAAAAAMA1ZsyYcd31pUqVUlRUlIeqAQAAAAAg7/y+AS5xGTYAAAAAAAAAAAAAgAEugS5xGTYAAAAAAAAAAAAAgB+dAc5l2AAAAAAAAAAAAAAA12OIM8ABAAAAAAAAAAAAAKABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwBBrgAAAAAAAAAAAAAABDoAEOAAAAAAAAAAAAADAEGuAAAAAAAAAAAAAAAEOgAQ4AAAAAAAAAAAAAMAQa4AAAAAAAAAAAAAAAQ6ABDgAAAAAAAAAAAAAwhABvFwAAAAAAAPzH6tWr1b179xzXP/LII3rvvfc8WBEAAAAAAH+hAQ4AAAAAAHJt9+7dkqQ777xTpUuXzrK+Tp06ni4JAAAAAIAMhmqAcxQ6AAAAAADuda0BPnjwYFWvXt3L1QAAAAAAkJmhGuAchQ4AAAAAgHvt3r1bBQoUUJUqVbxdCgAAAAAAWRiyAc5R6AAAAAAAuF5iYqKOHTummjVrKiDAUD8pAAAAAAAMwlBplaPQAQAAAABwn2sHnpcpU0Zjx47VqlWrdPToUYWHh+uhhx7Syy+/rCJFini5SgAAAACAmVm9XYCrXDsKvVq1ahyFDgAAAACAG+zatUuS9O2332r27NmqWLGi6tatq3Pnzmnq1Kl66qmndPLkSS9XCQAAAAAwM8N0ijkKHQAAAAAA99qzZ48kqUmTJho3bpwKFy4sSTpz5oz69OmjH3/8UUOGDNHkyZPz/RwBAZmP1bfZjHHsfm7nYZT5Suabs9nmKxlrLgAAADAOwzTA/34UesGCBdWgQQOVLl1aO3bs0NSpU7V69WrNnDlTERERXq4UAAAAAAD/9M477+jVV19V6dKlFRwcnLG8ePHiGjNmjJo3b641a9boyJEjuummm/K8favVomLFCrqyZJ8RFhbi7RI8zmxzNtt8JXPOGQAAAL7PMA1wjkLPP45Qdn6crzPbfCVjzQUAAADwFUFBQapYsWK260qVKqV//etf2rJli3bt2pWvBrjd7tD580mZltlsVkM02c6fT1Z6uv2G44wyX8l8czbbfKXczxkAAABwVlhYSK57P4ZpgHMUev4ZJXTlhdnmbLb5SuacMwAAAOBt4eHhkqTk5OR8byMtzZjNtPR0u2HnlhOzzdls85XMOWcAAAD4PsM0wDkKPf84QjlnRpmz2eYrcRQ6AAAAPCcvR6H7s9TUVA0fPlyJiYkaN26cQkNDs4w5fPiwJKl06dKeLg8AAAAAAEkGaoDfCEeh58yMR+uabc5mm69kzjkDAAAA7hQUFKQNGzbo6NGj+v7779W8efNM6+Pj4xUfH6/ChQurdu3a3ikSAAAAAGB6hjhEPTU1Vf/973/Vo0cPJSUlZTuGo9ABAAAAAHBOu3btJElvv/22Dh06lLH81KlTGjRokNLT09WpU6dMtyYDAAAAAMCTDHEGOEehAwAAAADgfi+99JI2b96sH374QY8++qjq16+voKAgbdq0SUlJSXrooYfUtWtXb5cJAAAAADAxQ5wBLnEUOgAAAAAA7hYUFKRPP/1U//3vf1W5cmVt3bpVmzZt0q233qqoqCh98MEHstls3i4TAAAAAGBihjgDXOIodAAAAAAAPMFms6lDhw7q0KGDt0sBAAAAACALwzTArx2FPmvWLC1atEhbt26V1WrVrbfeqieffFJt27aVxWLxdpkAAAAAAAAAAAAAADcxTANc4ih0AAAAAAAAAAAAADAzw9wDHAAAAAAAAAAAAABgbjTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhkADHAAAAAAAAAAAAABgCDTAAQAAAAAAAAAAAACGQAMcAAAAAAAAAAAAAGAINMABAAAAAAAAAAAAAIZAAxwAAAAAAAAAAAAAYAg0wAEAAAAAAAAAAAAAhhDg7QIAwNusVousVou3y3CK3e6Q3e7wdhkAAAAAAHiFJ7I92RsAAMA/0AAHYGpWq0VFi4bKZnPfBTEcdrssVvdecMNuT1diYjJBHAAAAABgOlarRcWKhchqtbn1ecjeAAAA/oEGOABTs1otstmsmjh7vRJOnHP59mtVK6t2zWvrt6VTlHz6mMu3L0khJcrolke7yGq1EMIBAAAAAKZz9exvG9kbAAAAkmiAA4AkKeHEOf2ekOjy7ZaNCJMkJZ8+puTjh1y+fQAAAAAAcBXZGwAAABINcAAAAAAAAABu5s57dLvztmbA9bj73vPcdx4AgPyhAQ4AAAAAAADAbaxWi4oWDaVRDUPxxOs6Pd2us2eTaIIDAJBHNMABAAAAAAAAuI3VapHNZtXE2euVcOKcy7dfq1pZtWte2+XbBa7H3a/rciWL6JVn7uG+8wAA5AMNcAAAAAAAAABul3DinH5PSHT5dstGhLl8m0Buuet1DQAA8o8GOAAAAAAAAAAAPsjdtw7gPuMAACOiAQ4AAAAAAAAAgA8pUjhYDrtdYWEhbn0euz1diYnJNMEBAIZCAxwAAAAAAAAAAB9SMDhIFqtVvy2douTTx9zyHCElyuiWR7twn3EAgOHQAAcAAAAAAAAAwAclnz6m5OOHvF0GAAB+xb03EAEAAAAAAAAAAAAAwENogAMAAAAAAAAAAAAADIEGOAAAAAAAAAAAAADAEGiAAwAAAAAAAAAAAAAMIcDbBQAAAAAAAAAAcCNWq0VWq8Vt27fbHbLbHW7bPgAA8Awa4AAAAAAAAAAAn2a1WlSsWIisVpvbnsNuT1diYjJNcAAA/BwNcAAAXICj0AEAAAAAcJ+rudum35ZOUfLpYy7ffkiJMrrl0S6yWi3kbwBwgrt/J5X4rRQ3RgMcAAAncRQ6AAAAAACekXz6mJKPH/J2GYDLcFIFjMQTv5NK/FaKG6MBDgCAkzgKHQAAAAAAAHnFSRUwGnf/TirxW6mv8PWDdwzXAP/pp580efJk7dmzRykpKapWrZpeeOEFPfzww94uDQBgcByFDgAAzILsDQAA4DxOqoA3uLNxabNZJfE7qdH5w8E7hmqAf/3113rjjTcUEBCgyMhI2Ww2bdy4Ua+99poOHDignj17ertEAAAAAPAYXz8iG/6J7A0AANzFrN9faRbCU6xWi4oWDc1oVAP54Q8H7ximAX769GkNHjxYISEhiomJ0R133CFJOnDggDp06KAJEyaoWbNmql69upcrBQAAAAD384cjsuF/yN4A4DvM2iiEcfH9FXA/q9Uim82qibPXK+HEOZdvv1a1smrXvLbLt+vrzPqZ7MsH7ximAT5r1iylpKSoS5cuGQFckipXrqzXX39dgwYN0vTp0zV69GgvVgkA8AZ3fwHhiEkYlVm/vMO43P2alnzrde0PR2TD/5C9AcA30CiEEfH9FfCchBPn9HtCosu3WzYizOXb9HV8JvsmwzTA165dK0n697//nWVd06ZNZbFY9N1333m4KgCAt3FZH/cwWxPJjPjyDqPxxGta8s3XtS8fkQ3/Q/YGAN/gi41CDj6Hq/jS91de13AFTjAwNl/8TIaBGuC//vqrJKlKlSpZ1hUtWlTh4eE6efKkTp8+rRIlSni6PACAl7j7sj6Sb17ax51frC0Wi8LCCpiyiWQmZvzyTiA1Nne/piXffF0Drkb2BgDf4iuNQg4+hxHxuoYrcIKBefjKZ7LEwTuSQRrg586d0+XLl1WwYEEVLFgw2zElS5bUyZMndfLkSUI4AJiQuy7rI/nepX08FdDM1kTyteaop77ImuXLuycO7CCQ3pg797EvvqbhHr72fm0kZG8AQE7MevC5GXniO7uv4HXtHr74fd3dr2uznWAA7+LgnassDofD7/8ijh07piZNmig8PFzr16/Pdswzzzyjn3/+WbNnz1bdunXz/BwOR9Y3TYtFslqtOncxRenp9nzVfj1BgTYVCi2gK5fOy2FPd/n2LVabAguGyW63KzevAn+fr2S+OfvafCXzzdkXX9cZj3Pv1avdKq/zNOvr+lJSqtLtrp9zYIBNIcGBpntdWywWWdz4BNl917geq9W99VzjK69ryTNzTku5JIcb/m4sVqsCggvm+TUtmef9WvLMPjbbe5fVavWpv2PJ/a9pb7xfe+o92dvI3vlDRsnFeD+fs6/NVzLfnH3xdZ3xOJN8zvO6Ns/r2p+/s/vaPpZ873Wd8TgT/b4i8bp2JV9975LM95nsrt+GJff/PpzTnPPyt2qIM8Ct1qtHMVxv0tf6/Pnt91ssFtls2W+/SKHgfG0ztwILuvfMwmv//8stf5+vZL45+9p8JfPN2Rdf12Zjxtd1wdAgN1VyFa9r17redw1v8rXXtbsFBGd/RqOr+Np8zciM711m+zt2N199v/YEsrdzyCg35u9z9rX5Suabsy++rt3NbPtYMt+ceV27nq/tY8n35uzPfPX7uq/tY967XM/X9rG7fxuWfG/OmR7rwjq85tql11JSUnIck5qaKkkKDQ31SE0AAAAAABgJ2RsAAAAA4A8M0wAPDQ3VhQsXcgziJ06ckCRFRER4sjQAAAAAAAyB7A0AAAAA8AeGaIBbLBZVrVpVknTgwIEs68+ePatTp06pePHiCg8P93R5AAAAAAD4PbI3AAAAAMAfGKIBLkmNGjWSJK1cuTLLupUrV8rhcKhx48aeLgsAAAAAAMMgewMAAAAAfJ1hGuBt2rRRSEiIPv/8c/38888Zyw8ePKj3339fFotFL774ohcrBAAAAADAv5G9AQAAAAC+zuJwOBzeLsJV5s6dqyFDhshmsykyMlJBQUHauHGjLl++rP/85z/q2rWrt0sEAAAAAMCvkb0BAAAAAL7MUA1wSfr+++81ZcoU7dy5UzabTVWqVNFLL72kBx980NulAQAAAABgCGRvAAAAAICvMlwDHAAAAAAAAAAAAABgToa5BzgAAAAAAAAAAAAAwNxogAMAAAAAAAAAAAAADIEGOAAAAAAAAAAAAADAEGiAAwAAAAAAAAAAAAAMgQY4AAAAAAAAAAAAAMAQaIADAAAAAAAAAAAAAAyBBjgAl7lw4UKeH7Np0yY3VAIgvyZMmKB9+/Z5uwwAAAAAOSB7A/6P7A0AgHvRAIfHpaamaufOnYqPj1daWlqO486cOaPNmzd7sDLP27Rpk6ZNm6YvvvhChw8f9nY5TuvQoYPOnj2bq7GXL19WVFSUXnzxRfcWBSBPJkyYoL1793q7DMDlmjZtqlWrVnm7DK+w2+06dOhQpmUOh0PLli1TVFSU3n33XW3fvt1L1bnO0aNHlZKSkuvxhw8f1uLFi91XkBecOXNGGzdu1LJly7R8+XJt2rQp19/NABgP2fsvZG+yN+BryN4wKrI32fufyN7wlgBvF4DcS0lJ0ZkzZ1S2bFlvl5JvMTEx+uCDD5SUlCRJKly4sDp37qzOnTvLas18PMYPP/yg/v37a8+ePd4o1WX27t2rTz75RHv37lXZsmXVrVs31a1bV71799aqVavkcDgkSQEBAerVq5e6devm5Yrzb8+ePXruuef0+eefKzw8PMdx27dvV//+/fX7779fd5xRnTlzRgcOHNCdd97p7VI84sKFC3rnnXcUFRXl7VI8xmz72AiaNm2qQYMGqWnTpt4uxWNuu+02jRkzRi1btvR2KR6RkJCQ8f3DTNauXavhw4fr5MmT2rlzp6SrobxHjx767rvvMr6HREdHq0OHDho4cKA3y3VK06ZNs7ymk5KSNGLECHXu3FmVK1fONH7btm0aOHCgWrVq5eFKXe/bb7/VJ598ku33ZovForp166pz585q0qSJ54tzoerVq8tiseTpMRaLRbt373ZTRTAqsrd/IntnRfY2Vy4je8MfkL2Nj+xN9iZ7k719BWeAe1F2R0OlpqZq8eLFOnXqVJbxsbGxfv3lYPHixRo1apSqVaumgQMHqlu3bgoODtZ7772nl156SRcvXvR2iS63c+dOPfXUU1q7dq1CQkK0fft2dezYUaNGjdKqVavUqVMnLVq0SDNnzlTjxo31/vvva/ny5d4uO9+GDBmigwcPqn379jp27FiW9VeuXNG7776rZ599Vr///rsef/xxffPNN16o1LVuu+02ff3115mWpaSkaMKECTpy5EiW8T/88IM6dOjgqfLc4siRIxoxYoSeeOIJPfHEExo8eLD++OOPLONiY2P1yCOPaMGCBV6o0nXMuI/NxowB7Vr4gnHFx8frlVdekcPhUKdOnWS32yVJs2fP1tq1axUREaG5c+dq27Zt6tevn2JiYvz6e0h2r+nLly9r8eLFOnHihBcq8oyoqCi99tprSkhIUKtWrdS3b1+99dZbGjp0qHr37q2mTZtq165d6t69u95++21vl+uUO++8U/Xr18/T/+rVq+ftsuEDyN5kb7I32dtfkb2Nv4/NhuwNIyJ7k73J3r6ZvTkD3Iuy+8C/dOmSBg4cqKlTpxru6Nxp06bpzjvv1IwZMzKW9ejRQ8OGDdPChQvVsWNHff755ypUqJAXq3St9957TzfddJNmzJih4sWLKykpSd26ddOsWbPUrl079e3bN2Ns/fr19dxzz+mzzz7Tww8/7MWq8699+/YqUqSIBgwYoPbt2+vzzz/XzTffLOnqEer9+/fXvn37VLZsWQ0fPlyNGjXycsWukd2HfnJysiZOnKh69erppptu8kJV7rNnzx49//zzunjxooKDgxUcHKzdu3dr2bJl+vLLL1W1alVduHBBgwcPVmxsrGw2m7p27ertsp1itn188ODBPF8GkyPuAd8zZcoUlSxZUkuWLFFYWFjG8lmzZslisej1119XzZo1JUkvvviifvrpJ82ePdtvv4fkxMg/OH311VeaOXOmWrVqpaFDhyo0NDTbcZcuXdLIkSM1ffp01alTRw899JCHK3WNv+cIIC/I3mRvsjfZ2x+Rva8y8j4mewPGQPa+iuxN9vY1NMB9kFHfKH777TcNGDAg07KgoCCNGjVKRYsW1dSpU9W5c2dNnTo1xzcQf7Nt2za9/vrrKl68uCQpNDRUr776qp577jnde++9WcY//PDDGjNmjKfLdKlHH31UhQsX1muvvab27dtrypQpWrVqlSZPnqy0tDQ9++yz+s9//qOCBQt6u1S3M+rf8ocffqiUlBS9++67atGihSQpLi5Or7/+uqKiojRu3Dh16NBBv//+u+644w5FRUWpWrVqXq7aPYy6jydPnqzJkyfn6TH+fslMs8rr5Yz83dy5c7Vhw4Zcj7dYLBo1apQbK3KvzZs366mnnsoUwA8fPqyDBw8qICBA//73vzONv+eee/Thhx96ukw4Yfbs2apdu/YNjy4vWLCgRo0apQMHDmjevHl+G8KvXLmiwMDAPD1m+/btqlWrlpsqgr8z6nc5sjfZm+xtDGTvvxh1H5O9zYPsfX1kb/g6sveN+WL2pgEOjwkJCdHZs2ezXdevXz8lJSXpyy+/1Msvv6wpU6Z4tjg3KVSokM6fP59pWbVq1dS4cWMFBGT980tMTFSBAgU8VZ7bNG7cWNHR0erevbueeOIJORwOVahQQVFRUapfv763y4OT4uLi9PTTT2cEcEmqWbOm+vXrpz59+qhPnz5KSEhQ37599dJLL2W5xyB8X7NmzQz7w8n1mC2gSdKkSZM0d+7cXI+3WCyaPn26Gytyr82bN+fpDAt/38eJiYkqXbp0pmU//vijJKlWrVpZfhAPDg7W5cuXPVYfnPfrr7/m6R62TZs21Zw5c9xYkXs98cQTGjduXK4+o1JTU/Xee+8pJiZGu3bt8kB1gO8ge19F9iZ7+zuyt/GRvXPH33OZRPa+EX/fx2Rv4yN758yXszcNcHhMZGSkYmJi9O9//1u33nprlvVvvvmmLl68qKVLl+qll15S48aNvVCla91zzz36/PPPVadOHd11112SpMKFC+uTTz7JMnb79u2aMWNGxjh/V69ePcXExKhz5846c+aM3nrrLQK4QZw7d07Vq1fPsvyOO+5Qenq69u7dqxkzZqh27dqeLw4u8eCDD6ply5beLsPjzBbQJOnAgQM6cOBArsf7+1HrgwYN8ut7uuZVkSJFdObMmUzLfvjhB1ksFt1zzz1Zxh84cCDjzDn4h6SkJJUoUSLX4yMiIvz6nmynTp1S27Zt1atXL3Xp0iXH96StW7dq0KBB+uOPP1ShQgUPVwl4H9mb7E32Ngayt/GRvXOH7O1/yN5kb6Mhe/tn9qYBDo95/fXX9eyzz6p169b617/+pbFjx2b6o7BYLBozZoyCgoK0cOFC/fzzz16s1jX69u2ruLg4vfTSS6pfv36O9054/vnntXXrVhUvXjzTvcn8XfXq1TV79my9+OKL6t69uyZOnKiGDRt6uyw4KS0tLduzJYKDgyVJXbt2JYDDL5ktoEnS2LFjTfWDS7FixVSuXDlvl+ExdevW1bJly9SpUyfZbDadOnVKa9eulSQ1b94809gLFy7o66+/VmRkpBcqRX6lp6dne2ZjTmw2m9LS0txYkXstXbpUAwcO1Pjx47V27Vq98847Kl++fMb6a5eJvXavvU6dOql3795erBjwDrI32ZvsbQxkbxgV2dv4yN5kb6Mhe/tn9qYBDo+pWLGivvnmG02cOFFbtmzJ+ML+d1arVaNGjVKdOnX0wQcf6PTp016o1HVKlCihBQsW6Msvv1RqamqO44KDg9W2bVu9+uqreTqSyNcMHDgw2+UVKlTQkSNH1K1bNz388MOZjhgywlGcyOz222/3dglAvpgtoMH4unTpoqefflrt2rVTgwYNtGrVKl2+fFktWrRQpUqVJF39YfWXX37RO++8ozNnzqh9+/Zerto5K1as0B9//JHx75SUFFksFi1ZskRbt27NNHbfvn2eLg9OKlGihD799FPNmjVLY8eO1eOPP64BAwboqaee0k8//aT//ve/Onz4sKpVq6aRI0fynQSmRfYme5O9zYHPOfgrsjeMhuxN9jYao2RvGuBedvDgwUyXfLlw4YIkae/evVmOKMnLZVJ8VbFixTR48OAbjnvyySfVunXrTG+i/io4OFgdO3a87hij3Hdt0aJF111/+fJlLV68ONMyo4TwLVu2KD09PePfly5dkiStX79ex48fzzTWCGdYXI+/X6YpJ2bZx3feeafCw8O9XQYAF7jjjjs0adIkjRw5UlOnTpXNZlPLli01fPjwjDFjxoxRTEyMrFarBg4cqLp163qxYufFxsYqNjY2y/J/fv+4xgifWf/84eF6jPLDQ/v27dWwYUMNGTJEb775pmbMmKEDBw4oICBAvXv3VteuXfN0dD7MgeydPbK3fyJ7Gz+X5YYRvsdkxyz7mOwNGAfZ+y9k76vI3r7B4nA4HN4uwqyqV6+e7R++w+G47vI9e/Z4ojy3czgcOnz4sM6ePStJKl68uG666SbvFuVmRp9zQkJCvh7n70d9Zve3/Pe31uzW+fPfcvXq1dW9e3fdfffdmZZfuHBBPXr00IABA1SjRo0sj7vzzjs9VaLLmW0fm1H16tVNd0kys8150aJFql+/fqZLNplJYmKiQkJCspwF+N1332nXrl1q0aKFT96vKS9++umnfD2uQYMGLq7Ec7K7L+iNGOnzafPmzerRo4cuXLggi8WiHj16qFevXt4uCz6I7G3sHJodo8+Z7P0XI+cysvdVRt7HZmS2HCqZb85kb7J3Tsje/stfszcNcC+aMGFCvh7Xs2dPF1fiWXFxcYqOjtb69euVlJSUaV2hQoX0wAMP6MUXX8zXm4qvMuOczeRGR9/npHXr1i6uxDNy+gFRyvlHREl+/YFvpn389zOj8sKff2SRzBnQfvrpJ1WuXNmvL/8JmJ0Zf3iQpIsXL2rMmDGaP3++ChQooC5duujbb7/Vvn37dNdddykqKkply5b1dpnwIWRv8+RQM87ZTMyUyySyd1744z4me5O9AfgPsrd/Zm8a4PCoqVOnaty4cbJarapTp45uvfVWhYWFKS0tTWfPntXu3bu1Z88eWa1W9e/fXx06dPB2yU4z45xza/LkyYqNjdXChQu9XYrHpaamKigoyNtl5ItZf0DMK3/dx9f7keV6/PlHFphDTvfKvB6jXCoU2fvyyy/1ww8/5PtzDd6xdu1avfnmmzp+/LgaNmyoESNGqHz58rpy5Yo+/PBDTZ06VcHBwXrjjTf09NNPe7tcwGvMmEPNOOfcInv7Xy6TyN655a/7mOwNoyJ745/I3v7JCNmbBjg85rvvvlO3bt101113adSoUSpTpky24w4dOqThw4drw4YNmjp1qu666y4PV+o6ZpxzXrz55puaO3eu3395nzBhQp4CZlxcnAYOHKhvvvnGjVXBlcy0jz/66KN8hXB//5HFjAEtPz/6WiwWTZ8+3Q3VuJ8ZL1d1ox/VChQooMKFC6tq1ap68MEH9eSTT8pqtXqwQu8ywveQo0ePqnjx4lkur5eTw4cPa+vWrWrVqpV7C3OTvn376ptvvlFoaKj69eundu3aZRmzbds29e/fX4cPH1aDBg00cuRIQ132GMgNM+ZQM845L4zwmSeZK5eZlZn2Mdk798je/oXsnRXZ2/+/h5C9/TN70wD3IrN94L/44os6deqUFi5cqMDAwOuOTUtLU6tWrVShQgVNnDjRQxW6nhnnnBdG+PCTrn7J6dSpk954443rjktLS9OECRMUHR2t9PR0v593bqWkpOjMmTM+fTmUG2EfG59ZA1pe+fOczXivzOeff/6669PT03X+/HkdOnRIV65c0T333KPJkycrICDAQxV6lxG+h9x2220aM2ZMpvsJJiUlacSIEercubMqV66cafxXX32l/v37++2cq1evrkaNGmnEiBEqXbp0juNSUlL09ttv68svv1RoaKh+/vlnD1YJX0T2zplRcqgZ55wXRvjMk8hlN0L2hj8wWw6VzDdnsndWZG///x5C9s6er2dvc/yF+ai83Nfm70cQ+WsI3717tzp27HjDMCpJAQEBevjhh/XVV195oDL3MeOczah+/fqaOnWqkpOTNXTo0GzH7N27V/3799fevXtVpEgR/fe///Vwla7TtGlTDRo0SE2bNs1YlpqaqmXLlunee+9VeHh4pvGxsbF+/YEvmW8fm9GqVau8XYLHxcfHe7sEj/LnMJ1fM2bMyNW4lJQUzZ49W2PGjNHs2bNvGN7hO7I7lvny5ctavHixHnvssSwh3N+NHj06V/f4DA4O1rBhw/Tvf/+bz2NIIntfj1FyqBnnbEZmy2Vkb+PvYzMiexsf2TtnZG//RfbOnq9nbxrgXpSbD7+EhASNGDFCa9euVeHChfXaa6+5vzA3uXTpkkqWLJnr8WXKlNGff/7pxorcz4xzNqOpU6eqd+/emj17tpKTkzVq1KiMH84cDoc+/fRTTZw4UampqXrkkUc0ePBgFS9e3MtV519CQoKSkpIyLbt06ZIGDhyoqVOnZgnhRmC2fSxJBw8e1LZt29SmTZuMZadOndKECRP0888/KyQkRE2bNlXHjh398n5r/2TGgIbMUlNT9euvvyo4OFiVKlXydjkeFRwcrBdffFHbt2/XokWLCOEGYNSLfOUmgP/dLbfcoieffNJN1cCfkL2vzwg51IxzNiOz5TKyt/H3sUT2hvmQvcneRkL2vspXszcNcB+Vnp6uqVOn6uOPP1ZKSopatGihgQMH+vWX27S0tDx9UQsICFBqaqobK3I/M87ZjIKCgjRx4kQNHDhQixYtUkpKisaNG6dDhw5pwIABiouLU0REhIYNG6YHHnjA2+W6jVE/8CXz7eNx48Zp6tSpcjgcat26taxWqy5cuKB27drp6NGjKlq0qMqVK6cPPvhAq1ev1owZM3J1to0/M2NAO378uOLi4hQcHKw777wz1/c58mUXLlzQlClTtG3btkxHaH/99deKiorS+fPnJV394j5q1CjVrl3bS5V6R2RkpNavX+/tMgCnXL58Wd9++60WLlyon376SQ6HQ6+88oq3y4IPI3sbI4eacc5mZLZclhOyt3H2Mdk7K7I32dsMyN4wAn/I3jTAfdCWLVs0fPhw7d+/XxUrVtSbb76pu+66y9tlATc0YcKEPI3fuXOnmyrxPJvNpjFjxigsLEwzZ87UkSNHtH//fqWkpOjJJ59U//79VahQIW+XCSeYZR+vWLFC0dHRatKkiTp06CCr1SpJ+vjjj5WQkKBatWrp888/V0hIiOLi4vT888/r888/V5cuXbxcufPMGNASEhI0fvx4bdu2TatXr85Y/umnn+rDDz9Uenq6HA6HihQpohEjRujBBx/0YrXOuXTpktq1a6eDBw+qdOnSSktLU0BAgOLi4tS/f385HA61a9dOt956qxYvXqwXX3xRixcvVoUKFbxdusfYbDbZ7XZvl5FvixcvztP43377zT2FwCu2bdumhQsXavny5bp06ZIcDoduvvlmtWvXztulwYeRveGvyN7Gz2VmZpZ9TPYme0tkb7K3fyJ7m5s/ZW8a4D4kMTFRY8aM0eLFixUUFKRevXqpS5cuhri8zTVbtmxRenp6rsb+/PPPbq7GM8w057yGcCnzPfaMYPDgwSpatKgmTJggq9WqTz75RI0bN/Z2WXAho+/jL7/8UrVq1dLkyZMzljkcDn311VeyWCx69dVXFRISIkmqWbOmHn/8cX3zzTd+H8LNGNBOnz6tdu3aKTExUTVr1syY87p16zR+/HgFBATo9ddfV9WqVTV37ly9/vrrmjNnjmrUqOHt0vNl6tSpOnTokN5//301b948Y/nEiRPlcDj0wgsvaMCAAZKktm3b6rHHHtPkyZM1evRob5Xscdu3b1eZMmW8XUa+DRgwIE/fKxwOh+G+h5jN8ePHtWTJEi1cuFB//PFHxhlxkZGR6tKli+69914vVwhfRfbOzN9z6DVmmjPZ2/i5DMbfx2RvsjfZm+ztr8je5uOv2ZsGuI+YN2+exo0bp3Pnzumee+7Rm2++qZtvvtnbZbnc3LlzNXfu3FyNNcobo5nmHBMT4+0SfELPnj1VrFgxRUVFKTo6WvXq1TPE0cn4i5H38a5du7IE6t27d+v06dMqVKiQIiMjM62744479PXXX3uyRLcwY0D79NNPdenSJc2aNSvTEfWffvqpLBaLXnnllYzXwn333ac2bdpoypQpev/9971TsJNiY2P1+OOPZ9q/ly5dyrjs2LPPPpuxvECBAnrsscc0b948j9fpLf/73/+0ZMkSde7c2dul5Js//z0i91JTU7Vy5UotXLhQGzduVHp6umw2mxo0aKB69epp0qRJ6tChg88GcHgf2Tsrf8+h15hpzmTvq4ycy3CVkfcx2ZvsTfYme/srf/57RO4ZIXvTAPeyvXv3atiwYfrll18UHh6u8ePH65FHHvF2WW5hxjdGs825QYMGeX7Mli1b3FCJZ23evDnLsqpVq+rJJ5/U3Llz9cILL6hfv34Zl7O65s477/RUiXCSmfZxUlKSihQpkmnZjz/+KOnqfGw2W6Z1aWlpfv3j4TVmDGhr165VmzZtMgXws2fPauvWrZKkJ554ImO5xWLRww8/rOnTp3u6TJc5cuRIpv0oXf3bTktLU/ny5bM0P8qUKaPTp097skSXGzhw4HXXp6en69KlS/r111916NAhVaxY0a9DeOvWrb1dglesWLFCf/zxR8a/U1JSZLFYtGTJkoy/52v27dvn6fJcavjw4Vq2bJnOnTunAgUKqFGjRmrWrJmaNm2qYsWKKSEhQR9//LG3y4SPInsbm9nmTPb+i1FzmVmZaR+TvcneZO+ryN7+h+x9Fdnb97M3DXAveueddzRjxgylp6fr/vvv12uvvaZChQrp6NGj131c2bJlPVSha5nxjdGMc86NY8eOadGiRVq8eLEOHz6sPXv2eLskpzz//PPXDSG7du1Sx44dsyz353kfPHgwUzC9cOGCpKs/LAYEZP5oOXDggEdrcwcz7eOSJUvq8OHDmZatXbtWFotF9913X5bxcXFxKlWqlKfKcxszBrQ///xTVatWzbRs06ZNstvtqlKlSpb9WqJECZ07d86TJbqU1WrNco+tjRs3SpLuvvvuLOPPnDnj92eXLFq0KFfjypcvrxdeeEE9evTw+znnJLvv12XKlDHMj4ixsbFZlud0XzZ/nvPs2bMVGhqql19+WZ07dzbs6xWuR/Y2PjPOOTfI3lf587zJ3pkZaR+Tvf9C9iZ7+/v3erL3X8jef/HnORsle9MA96Jp06Zl/PeaNWu0Zs2aXD3OH7/U5ceZM2d04MABvzyKM7+MPOfLly8rNjZWCxcu1KZNmzIuOZfdl3p/88orr/j1B1p+TJ48OdN9qq555513sizz98sLSubax/fdd58WLFigZ599VqVKldK2bdu0ZcsWBQYG6qGHHso0dv/+/frmm2/01FNPeala1zFjQCtQoICSk5MzLduwYYMsFovuueeeLOP//PNPhYWFeao8l6tSpYq2bdum9u3bS7r63rRixQpZLBY98MADWcavWrVKlStX9nSZLrVq1arrri9QoIDCwsIMdc9bSVqwYIHmzZunjz/+WMWLF1diYqIeeOCBLO/jvXv3Vvfu3b1UpWuY7RK4rVu31sqVK/XJJ59o+vTpql+/fsZR6OHh4d4uDz6M7H19Rs6hOTHynMnexkL2Ni6y91/I3pmRvf0P2ZvsbTRGyd40wL2oZ8+e3i7Bo2677TaNGTNGLVu2zFiWkpKi6OhotWrVSjfddFOm8T/88IP69+/v1z86mHHO//TLL79o4cKFWr58uS5evChJKl68uNq0aaN27dqpXLlyXq7Qeb169fJ2CR5lpkB6jZn2cY8ePRQbG6uHH35YlSpV0r59++RwOPTKK6+oePHikq6G79jYWMXExCgwMFCdOnXyctXOM2NAq169ujZu3KgXXnhB0l/39pGkZs2aZRrrcDj0v//9T9WrV/d4na7SqlUrjRw5UnfccYfuuecezZ07V0ePHtXNN9+sRo0aZRo7efJk/fLLLxo8eLCXqnUNI3zG5tWrr76qb7/9VmXLltXRo0cz3rck6bHHHlP58uUlSUuWLNGkSZPUtm1bRUREeKtcp+XnErhpaWluqMQzRo8ereHDh2vNmjX6+uuv9f3332vdunUaPny46tSpo7p165ruOwpyh+xt/Bxqxjn/E9nbeMjexkb2JntLZG+yt/8ie98Y2dv7aIB7kdlCuMPhyLIsOTlZEydOVL169bIEUiMw45wl6cSJE1q8eLEWLVqk33//XQ6HQyEhIbr77ru1YcMGvfXWW2ratKm3y0Q+mSmQmlF4eLjmz5+viRMn6pdfftG//vUvtWnTRk8++WTGmEWLFmnq1KkqV66c3n33XZUpU8aLFbuGGQPa008/rddff12jRo3SPffcowULFuj06dP617/+lelsqJSUFL399tvav3+/X//g8vTTT2vr1q0aPXq0LBaLHA6HihQponHjxmXcQ3D+/Pn69NNPdfjwYdWrV0/PPPOMl6t2r7i4OG3btk1Wq1UNGjRQtWrVvF2SU7766it9++236tatm3r37p3lvomtWrXSXXfdJUlq3LixnnrqKc2ZM8cw38kvXbokh8Nx3TNktm3bpiFDhmjp0qUerMy1goKC9NBDD+mhhx7ShQsX9L///U9fffWVtm7dqq1bt8piseiTTz7RxYsX9dBDDyk4ONjbJcMHGOXvPLfMmEPNOGeJ7G10ZG9jI3uTvcneZG9/RfYme/tL9qYB7kNSU1MVHx+vEydOyOFwqGTJkqpevboKFCjg7dLcKruganRGnfPy5cu1cOFCbdiwQenp6QoLC1PLli314IMPqlGjRjp58mSWIxuNYMKECXl+jMVi0SuvvOKGatyvQ4cO6t69e8YXGTMw2z4uXbq0RowYkeP6Nm3a6IEHHlDdunUzwou/M2NAe+SRR7R3715FR0drxowZcjgcuummm/Tee+9ljPnss8/08ccf69KlS2revLkef/xxL1bsHIvFonHjxql9+/batm2bChUqpGbNmmU6SvnPP/+Uw+FQ9+7d1a1bN0O8vnfv3q1PPvlEBw4c0M0336yXX35ZNWvW1H//+18tXLgw4zuJxWLRo48+qtGjR2e5n6S/WLRokerUqaM+ffrccOy1H9y+++47vw/h3377rSZMmKBff/1V0tX7yvXu3VuPPvpoxpikpCSNHz9es2fPznLJSX8ycOBAPf3006pVq5YkqXDhwnryySf15JNP6vjx41q6dKmWLl2quLg47dixQyNGjNAjjzyit956y8uVw9eQvc3DqHMme+eeP+cysnfu+PM+JnuTva8he/v/65vsnT2yt38ySvb2z78wgzl16pTGjx+v2NhYXbp0KdO6kJAQPfTQQ+rTp49KlizppQqB3OnTp49CQ0P17LPPqmnTprrzzjszHQHmD5fFyA+zBbSffvop0xHJZmC2fXwj/n75seyYNaD16dNHzzzzjLZv365ChQqpQYMGCgwMzFhfoEAB3XHHHWrZsqWeeOIJL1bqOnXq1FGdOnWyXdezZ0+/D2R/t23bNnXo0EEBAQGqWrWqdu3apfbt2+v555/XggUL9Nhjj6l58+ZKSkrS6tWrtXTpUt1222166aWXvF16vuzevVsvv/xyrsffe++9mjhxohsrcr9ly5bp9ddfV4ECBXTvvfcqJCREW7Zs0RtvvJFx/8gdO3aoT58+OnLkiG666SYNHz7c22Xn26JFi3T33XdnhPC/K1WqlDp16qROnTrpwIED+uqrr/T1119r3rx5PhfC4T1kbxgF2Tv3/DmXkb1zx5/38Y2Qvcne/ozsTfa+huztf4ySvWmAe9kvv/yibt266dy5c6pVq5YaNmyokiVLKiAgQCdOnNDmzZu1ePFirV69WpMmTVLdunW9XTKQo5tuuklHjhzRwoUL9dtvv2nHjh1q1qyZbrnlFm+X5lYxMTHeLgFuZqZ9vHnz5nw97u+X7fJnZgpo15QuXVqlS5fOdt1zzz2n5557zsMVwVUmTpyoihUrKiYmRsWKFZPD4dCgQYM0bdo0PfbYYxozZkzG2EcffVTnz5/X0qVL/TaEp6SkKCwsLMvywoULa/LkybrtttsyLS9YsKBf35NLkmbOnKkSJUroyy+/zLjHWnJysrp3766PPvpIJUuW1EsvvaTLly/rxRdf1KuvvuqTlyVztcqVK6tPnz7q06ePfv75Z2+XAx9B9oaRkL1hVGbax2Rvsvffkb39G9n7KrI32dvX0AD3otOnT+uVV15RwYIF9fHHH6tevXrZjtu9e7dee+019e7dW0uWLFGJEiU8XCmQOytXrtT27dv11Vdf6X//+59++OEHjR8/XpUqVdKDDz6oGjVqeLtEt2jQoMENx1y4cEEWi+W69waB78rNPjaK559/Ps9njFgsFu3evdtNFQGuMXDgwDw/xmKxaNSoUW6oxjN27Nihzp07q1ixYpKuzqdTp05atGiRmjRpkmX8gw8+qLffftvDVbpOqVKldPTo0SzLAwICsp3v77//7vf3UTxw4ICef/75jAAuXT2LtWfPnnruuefUp08flShRQuPGjVPt2rW9V6gX0cSERPaG8ZC9c0b29m9k7+sje8MfkL3J3v9E9jYHX8zeNMC9aObMmbp06VKmo0ay869//UvTpk1Ty5Yt9cUXX6hXr14erBLIm1q1aqlWrVoaNGiQfvjhB3399ddatWqVJk2aJIvFIovFojVr1qh69eoqV66ct8t1GYfDoe+//16//vqrKlSooCZNmiggIEAbN25UVFSUDh48KEm67bbb9Prrr+vee+/1csXOWbFihf74449cjzfyJcmuMcoPLaNHj87VuG+//VZr166VJNWsWdONFXmGGQNahw4d8vwYi8Wi6dOnu6Ea91u0aFGux/79hyh/3sfnz59XeHh4pmXXLi1YtGjRLOODg4OVnJzsidLcombNmlq2bJleeeWVG14mMTU1VcuWLVPjxo09VJ17XLhwQTfddFOW5TfffLOkq5dS/PLLLzN+iDGCLVu2KD09PU+PadWqlXuKgd8ge8OIyN5k7+yQvf0H2Tv3yN7+hex9Fdn7KrK3/zJC9qYB7kUrV67UY489dt0Afk25cuXUunVrxcbG+nUI/+cfzbX7rq1fv17Hjx/PNNYXL5mQH2acsyTZbDY1btxYjRs3VkpKilasWKGlS5dq/fr1mj9/vhYuXKjIyEi1adNGjz76qLfLdcr58+fVtWtXbd++XQ6HQ5J0xx13aMiQIeratatCQkLUrFkzJSUlafv27erWrZumTZvm10c2r1ixQrGxsbkeb4QQ/vcfWm6++Wbdf//9hvyhpXXr1tddn5CQoBEjRmjt2rUKCwvT66+/rnbt2nmoOvcxY0A7cuRIrsbZ7XYdP35cDofDr+8nGR8ff8Mxf399Fy5cWK+99pr7C3Mjh8OhgIDMX/ev7UN/3pc5efrpp/Xcc8/prbfe0uDBg7PM/Rq73a6hQ4fqxIkTevrppz1cpWvZ7fZM93y95tr9BLt27WqoAC5Jc+fO1dy5c3M19tr7lq+FcHge2dscOdSMc5bI3mTvzMje/oPsfWNkb/9E9r6K7E329ndGyN40wL3oyJEjebq3R/Xq1fP0JcEX/fOP5lpgiY6OzvJh4O8f9teYac5du3ZVw4YN1aBBA9WoUSNjLsHBwWrZsqVatmypxMRELVu2TF9//bU2btyoH3/80e9D+Icffqj4+HgNHTpUkZGRSkhI0MiRI/XCCy+oYsWKmjFjRsbRfmfOnFHbtm01depUvw7h3bp109133+3tMjzGjD+0/FNaWpo+++wzTZ48WcnJyXrsscc0YMCAjCNa/Z0ZA9rq1atvOGb79u0aNmyY/vzzT910000aMmSIByrzvPT0dE2dOlUff/yxUlJS1KJFCw0cODDLEdzwbfXr11enTp302Wef6ccff9RLL72kyMhIlS5dWg6HQydPntSmTZs0a9YsxcfHq0+fPqpevbq3y3arsmXLersEl3vqqadMe0k55B/Z29g59BozzZnsTfY2KrI32Vsie5O94evI3lmRvX0TDXAvCgwM1OXLl3M9PiUlRaGhoW6syL1ye2kfIzHbnH/88Ud9//33GZeiql+/viIjI9WwYcOMD7lixYqpffv2at++vQ4fPqxvvvnGy1U7b/Xq1Xr66af1zDPPSJIqVaqkoUOH6qWXXlL79u0zXeqmePHieuqppzRjxgwvVesalStXNlTAvBEz/tDydz/99JOGDx+uAwcOqFKlSnrzzTcVGRnp7bI8xowB7cKFC3r33Xc1d+5cWa1WdevWTT169FCBAgW8XZrLbdmyRcOHD9f+/ftVsWJFvfnmm7rrrru8XZbL/POymSkpKbJYLFqyZIm2bt2aaey+ffs8XZ7LvfHGGypXrpzGjx+voUOHZtvwCA0N1bBhwwxxBo0Z1a9fXy1btvR2GfAzZG/jM9ucyd5kb6Mie5O9yd5kb39F9iZ7G40RsjcNcC+qWrWqvvvuu1zfB2Tt2rWqUqWKm6tynxtd2seIzDbnn3/+Wbt379bPP/+sbdu26ZdfftGaNWtksVgUFhamO++8U5GRkYqMjFTVqlVVvnx5vfzyy94u22knT55U5cqVMy279rea3dFfZcqU0blz5zxSG1zDjD+0SFd/UHjnnXf01VdfqUCBAnr11VfVuXPnjMv7mIHRA1p2lixZojFjxuj06dNq0KCB3nzzzSzvcUaQmJioMWPGaPHixQoKClKvXr3UpUsXBQUFebs0l4qNjc32spmLFy/Odrw/nw13zbPPPqvWrVtrzZo12rx5s/788085HA6VLFlSdevWVbNmzfz+npF/l929Qa/3Y4sRLo0K5BXZ2/jMNmey91/I3sZC9iZ7k73J3v6K7E32Jnv7HhrgXvT4449r6NChWrZsmR555JHrjl28eLE2bNig8ePHe6g67zty5IiGDh2qqVOnersUj/H3OQcEBKhmzZqqWbOmOnbsKEk6duxYplD+zjvvKD09XUWLFlWDBg0UGRmpZ5991ruFO+nKlSsKDg7OtOxaSMkurFgslkz3poPvM+MPLXPmzNH48eN17tw53XfffRoyZEiu7ptpFGYJaH938OBBDR8+XD/99JOKFSumt99+2+fu3eMq8+bN07hx43Tu3Dndc889evPNN3XzzTd7uyyXi4mJ8XYJXhMSEqJHHnnkht+xjSCnH1qk7H9sIYTDjMje1+fvOTQ//H3OZO+/kL2NhexN9iZ7GwvZ2/jI3leRvX0TDXAvatOmjRYvXqx+/fpp7969at++vUqWLJlpzIkTJzRt2jTFxMSocePGevjhh71UrWts375dkyZN0rZt2yRJ//rXv/TKK6+ofv36GWMcDoc+//xzffjhh0pJSfFWqS5jxjn/XZkyZdSiRQu1aNFC0tVL+3z11VdauHChvv32W8XGxvp9CDebnj17qlq1at4uw6PM9ENLfHy83nzzTcXFxalUqVIaMWKEHnzwQW+X5VFmCWjXpKamauLEiZo6darS0tL05JNPqm/fvgoLC/N2aS63d+9eDRs2TL/88ovCw8M1fvx4Q4c0o1wKEjkz2w8trVu3NvT7MdyH7G2OHGrGOf8d2dt4yN5Xkb2Ni+xN9jYKsrfxkb39Ew1wL7JarZo8ebL69u2rTz75RJ9++qnKlCmjiIgI2Ww2nT59WocOHZLD4dDDDz+skSNHertkp2zcuFFdunRRenq6brnlFoWEhGjz5s3q2LGjpk2bpjvvvFNHjhzRf/7zH8XFxalQoUIaPny4t8t2ihnn/E8pKSnavHmzfvrpJ23dulU7d+7UlStXFBQUlHFJNiM4e/asjh49mvHva0cgnzlzJtNy6erRrf6sZ8+emf6dmpqq+Ph4nThxIuMyN9WrVzfk/YrMoE2bNrLb7ZKkEiVKaObMmZo5c+Z1H2OxWDR9+nRPlOdWZgtokvTdd99pxIgRSkhIULVq1TR8+HDVqlXL22W5xTvvvKMZM2YoPT1d999/v1577TUVKlQoy3v0P2V3polRffnll/rhhx80YcIEb5eSL7m9tPHf+fv7V35+aNmyZYsbKvEMs93jF65D9jZ+DjXjnP+J7E32hn8he5O9yd6Zkb39B9k7d8je3mdxOBwObxcBad26dVqyZIni4uJ08uTJjC+y9erV0+OPP66GDRt6u0Snvfjii4qLi1N0dLTq1KkjSTp+/LhefvllBQYGavTo0erQoYNOnz6tBx98UEOGDFFERISXq3aOGeeclpamX375RT/++KN+/PFHbd++XVeuXFFgYKBq1qyZEbzr1KljmMsZVa9ePdv7tjgcjuvez2XPnj3uLMvtTp06pfHjxys2NlaXLl3KtC4kJEQPPfSQ+vTpk+XsGn9UvXp1/fe//1XTpk0zlp07d06tW7fWu+++m/H3fc2KFSv09ttv++U+fuCBB/L1uNWrV7u4Es/KKaDdiD8HtN69e2vFihWSpPvvv18dOnSQzWa74ePuvPNOd5fmFtWrV8/477zca8sf/47z680339TcuXP9ds65ff+y2+06fvx4xue0v843L44dO6ZFixZp8eLFOnz4sCnmDOSE7G3MHGrGOZO9/0L2Jnv74z4me5O9b4TsbVxkb+Mie/sWGuDwmIYNG6pt27bq27dvpuU//PCDunTposqVK+vkyZMaNmyY319u7hqzzblLly7asmWLUlJSZLVaVaNGDTVs2FCRkZH6v/buPDymc/ED+HeySSKILSW22pqxlYgkpBetRGwNiaW2Sim1XBRF0aZNEWIJqqUUV2zttVQSCRGJvUQWkkg1uJTaiS0RS0wyzu8PT+bXkSCJzJw553w/z3Ofp/fMO/V9m0jme95z3uPi4lJoGyu5mDFjRqneJ+UrqdLS0jBq1ChkZ2ejZcuWaNu2LRwcHGBhYYHMzEwkJycjOTkZFStWxIoVK9C6dWuxI78RpZ5oURIlFrR/zhl4/bylXlhKe2X1i3feyJnUS3hxnDx5Et999x1Onz6N2rVr45tvvkHHjh3FjmUQT58+RWxsLMLCwpCYmKj7O9y+fXv8/PPPYscjIgNSWg8FlDdndu+SYfeWDnZv+WP3Zvd+GXZveWH3Zvc2BdwCXUISExNx9uzZUm0xYQpycnLQsGHDQscbN24MQRCQlZWFbdu2yeLZAgWUNufff/8dlpaW8PX1xahRo/D222+LHckopFymS+Pu3bsYO3Ysypcvj59++gkuLi5FjsvIyMDEiRPx+eefY8eOHahataqRk5YdX1/fEhUzJTl+/DjCw8Mlv1WokopWAaX97CrN11huzwZVspycHCxatAhbt26FmZkZRo0ahX//+9+y3DI0LS0NYWFh2L17Nx4+fAgAqFKlCvr06YP+/fujVq1aIickMn3s3tKjtDmzeysDuzf9E7u3dCntZxe7t7Kxe7N7mxIugEtIdHQ0tm7dKtkSrtVqYWFR+FuuYCuu0aNHy6aMFlDanPv164fExETdNh8NGjRAu3bt0LZtW7i6uqJSpUpiR6QysGnTJjx69AibN29GnTp1XjquadOmCA0NhY+PD3799VeMHz/eiCnL1rx588SOYFJu3ryJ8PBwhIeH48qVKwCgyBIu9YLm5+dX4vdcu3bNAElMT8HJpT179kj6mU303I4dO7BgwQLcvXsXbm5uCAwMLHKRRMoyMzMRERGB8PBw/P333xAEATY2NvDw8EB8fDxmzZqlt5UoEb0au7f0KG3O7N7KwO5N7N7PsXvLF7u3vLB7s3ubGi6Ak8mQ2w/D4pDbnGfPng0AuH79OuLj45GQkICYmBhs2rQJZmZmUKvVcHd315VyW1tbkRNTaezduxc9e/Z8ZQEvUKtWLfj5+SE2NlbSJdzf3x9jxoxBu3btdMfy8/ORmpoKtVqNChUq6I2PjIzE9OnTkZGRYeyoBqPRaHTb+SQkJEAQBAiCAHd3dwwcOFDseEaltIL29OlTxMTEIDw8HMnJyfjzzz/FjmQQBSeXIiIicPnyZQiCAHt7e7Fj0Ru4cOECZs6ciaSkJFSuXBnz5s2Dr6+v2LHK1O7duxEWFob4+HhotVpUrFgRPj4+8Pb2Rvv27XH79m14eXmJHZOITIzcemhxyG3O7N7KwO79HLs3uze7t7ywe8sPuze7t6niAjgRlTlHR0f07dsXffv2BQCcO3cOCQkJOHbsGLZv347Q0FBYWFigefPmaNeuHSZMmCByYiqJq1ev4uOPPy72eLVajfDwcAMmMrykpCT069dP71hOTg78/f2xdu1avXJeQBAEY8UzqBe38ymYV48ePTB27Fg0aNBA5ITGocSClpKSgrCwMMTExODRo0cQBAGNGzcWO1aZKji5FB4ejoSEBDx79gyCIKBVq1YYMGAAunfvLnbENxIREVGi8RcvXjRMECPTaDRYvnw51q5di/z8fPTr1w9TpkxBxYoVxY5W5iZNmgRbW1sMGjQInp6ecHV1hbm5ue51biFKRCRv7N7yxu79HLs3uze7t/Sxe+tj95Yedm9p4gI4GdXx48eh1Wr1jj169AgAcPToUdy6davQe6R+tZAS5/yixo0bo3HjxhgyZAg0Gg1iYmLw66+/Ii0tDSdPnmQJlxhLS0s8ffq02ONzc3Nle8eBXIr2i4razsfe3h5+fn5o1aoVAgMD0b17d9kXcLkXtKLcunVL97W/dOkSAMDCwgLdu3fHwIED0aZNG5ETlo2TJ09i+/bteieXKlasiJycHMyePbvQSTepmj59eolKmCAIki9thw4dwuzZs3Ht2jU4OTlh5syZaNmypdixDKZ27dq4evUqwsLCcPHiRfzxxx/w8vJC/fr1xY5GRCJTYg9V4pxfxO4tL+ze/4/dm91bbti92b3ZvaWF3VuauABORrV161Zs3bpV71jBh9g1a9bo/eAv+EUg9UKqxDn/0+XLl3Hy5EmcPHkS6enpOHPmDPLy8lC+fHl06NABrq6uYkekEnrnnXdw6NChYj8T8eDBg2jUqJGBU1FZGTlyJI4ePQqtVouaNWti0KBB8PLygru7O8zMzHDt2jXZnnwooJSCVkCj0WDv3r3Yvn07EhISdCeOGzZsiAsXLmDhwoXo2rWryCnfXGZmJnbs2IHw8HBcvHgRgiDA0dERfn5+8Pb2xltvvYXOnTujSpUqYkctM8HBwWJHMKrPP/8ccXFxAIAPPvgA/v7+0Gg0SE5OfuX7pPxZZO/evTh58iQiIyMRExODI0eOYPHixWjQoAG8vb3RrFkzsSMSkUiU2EOVOOd/YveWH3ZveWP3Zvdm92b3lip2b3ZvqeACuIiuX79eovEFVy5LldJ+EQDKm3N2djbS09N1hTs9PR3Z2dkQBAGVKlVC69atMWnSJLi6uqJp06YwMzMTOzKVQq9evfDtt98iOjr6tVfhRkREID4+HosXLzZSOnpThw8fhq2tLfz9/TF48GBUr15d7EhGocSClp6ejrCwMERHR+PBgwcwMzODs7MzvL294e3tDa1WCy8vL1haWoodtUx06tQJz549g1qtxujRo+Hp6YnmzZvrXr927ZqI6QzDz89P7AhGFRsbq/vn/fv348CBA68cX7D4cfr0aUNHM6iWLVuiZcuW+Oqrr3DkyBFERUVh3759WLFiBVQqFVQqFQ4cOAC1Wo1atWqJHZdIFOze8qe0ObN7KwO7t7yxe7N7s3vLB7s3uze7t2niAriIOnXqpKitMUrzi0DqvxCVNmd3d3eoVCoIgoDKlSvDzc0Nrq6ucHV1hZOTk6S/f+n/9enTBxEREfjyyy9x9uxZDB48GA4ODnpjMjMzERoaig0bNqBjx47o1q2bSGmppMaNG4ddu3Zh5cqV+Pnnn1G/fn14eXnBy8sL7777rtjxDEaJBe2jjz6CjY0N2rdvjw4dOqBTp056JxnkNuf8/HzY2NigWrVqsLGxKbRFqhLcunULJ06cQGZmJgDAwcEBzs7OqFmzpsjJyobSFj9eZG5ujo4dO6Jjx47Izc1FXFwcdu7ciaNHj+K3335DWFgY3N3d0adPH3z44YdixyUyKnbv15P6732lzZndWxnYveWN3Zvdu4Dc5szuze4td+ze0sEFcBH5+vqylBTh6dOniImJQXh4OJKTk/Hnn3+KHcng5DLnrl27ws3NDW5ubtx2S8bMzMywcuVKTJkyBT///DNWrVqFmjVronr16jA3N8fdu3dx+fJlCIKAbt26Yc6cOWJHphIYN24cxo0bh1OnTiEqKgrR0dFYtWoVVq9ejZo1a8LFxUWWv7uUWNBsbGzw5MkT/PXXX6hcuTJsbW3RoUMH2NnZiR3NIA4cOICoqChERUVh8eLFUKlUqFatGjp37ozOnTvL+urcc+fOISgoCMnJyRAEQW8rRTMzM7i4uCAgIABOTk4ipnxzSrvq/lWsra3h4+MDHx8f3L9/H9HR0YiKisKxY8eQkJDAEk6Kw+5dNLn00JKQy5zZvZWB3Vve2L3Zvdm95YfdW3nYvU2bSpD7w0RIMlJSUhAWFoaYmBg8evQIgiCgcePGiIqKEjuawShxziQvv//+O3bs2IH09HTcvn0bgiDAwcEBLi4u6NWrF9q2bSt2xDKhVqvx9ddfw9PTU3csOzsbfn5+WLRoEZydnfXGx8XFYd68eZLf2gd4fgfUsWPHEBUVhbi4ODx8+BAAUKtWLfTp0we+vr5wdHQUOeWbu3Hjhq6gnTt3rsiC5u3tjeXLl+t9H0hZbm4u9u/fj8jISBw5cgRarRaWlpZo164dOnfuDLVajb59+8pqzgXOnDmjO8l048YNqFQq3UmJ6dOn45NPPhE7YpnZt28fJk6cCJVKBS8vL7Rt2xYODg6wsLBAZmYmkpOTERMTg/z8fCxZsgReXl5iRyYDunLlCnbt2oXRo0eLHYWIRKTEHqrEOZO8sHuze7N7Sxe7N7s3u7fysHubBi6AS8SNGzcQHh6OiIgIvWcsSN2tW7cQERGB8PBwXLp0CQBgYWEBb29vDBw4EG3atBE5YdlT4pyJpE6tVhd55fXrtseUQwn/J41Gg/3792Pnzp04dOgQ8vLyYGZmhnbt2uE///mP2PHKjJIKWoGsrCzdVappaWl6r40cORKjR4+GjY2NOOEMLCkpCVFRUYiNjUV2djZUKhVq166N3r17w8/PDzVq1BA7YqldvXoVPj4+qF+/PpYuXYo6deoUOe7mzZv4/PPPcf78eezYseOl40zdjBkzSvwelUqFuXPnGiANEUkVu7d8KHHORFLH7v0cuze7txyxe7N7s3uTsXEB3IQ9ffoUe/bsQXh4OBITE/Hs2TNYWFjg1KlTYkd7IxqNBnv37sX27duRkJCg2+qmYcOGuHDhApYsWYKuXbuKnLJsKXHOpBwajQZnzpxBZmam7ip0tVqNcuXKiR2tzJTmgx0g72fiPHjwADExMYiKisKJEyeQkZEhdiSDkHNBe5lr164hKioKO3fuxPnz56FSqWBra4tu3bqhT58+he66kIu8vDwcPnwYkZGROHjwIJ4+fSr5z11z5szBjh07EBMTo/eMuaJkZWWhe/fu6NmzJ6ZPn26khGVLrVaX+D0qlUrSJ0xLc4eISqXC3r17DZCGSLrYveVDiXMm5WD3fjl2b+lj92b3lvLnLnbv12P3JjFwAdwEpaamIjw8HNHR0bqtuWrUqIF+/frho48+QvXq1cWOWCrp6ekICwtDdHQ0Hjx4ADMzMzg7O8Pb2xve3t7QarXw8vKS1XYvSpwzKcedO3ewePFixMbG4tGjR3qv2djYoEuXLpg0aRIcHBxESkjGcvz4cdnfQSPHglYcZ86cQWRkJKKjo3Hz5k3JF5bievjwIWJjY7Fz506sXbtW7Dil1q1bN3To0KHYJxIXLFiAAwcOYPfu3QZOZhjXrl0r1fuk/Ay6Tp06FTomCAJu3LiBatWqwcrKqsj37d+/39DRiCSB3Vs+PVSJcyblYPemAuze8sXuze4tJezez7F7mz4LsQPQc7du3cKOHTsQFhaGS5cuQRAEmJmZAQAmTpyIkSNH6v6/VH300UewsbFB+/bt0aFDB3Tq1EnviqjS/uA0ZUqcMylDWloaRo0ahezsbLRs2bLI59pERERg//79WLFiBVq3bi12ZCqhU6dOIS0tDYIgoEmTJkWW7IcPHyIkJATbtm3Dn3/+KUJK47G0tISnpyc8PT31CprcqdVqqNVqfPnll0hMTFTEnAHAzs4OXl5eSElJETvKG7lx4wYaNWpU7PENGjTAf//7XwMmMiwpl+nSKqpM37t3Dx4eHli4cCHatWsnQioi08buLc8eqsQ5kzKwe8sfu7c+dm92byli95Y/dm9p4gK4iAq25goLC8OxY8eg1WpRrlw5dOrUCZ07dzgIiYwAAETSSURBVIaTkxP8/PzQuHFjyRdwALpnuPz111+oXLkybG1t0aFDB9jZ2YkdzWCUOGeSv7t372Ls2LEoX748fvrpJ7i4uBQ5LiMjAxMnTsTnn3+OHTt2oGrVqkZOSqXx+PFjfPHFFzh06BAKNolRqVTw8PDAihUrdFc0Hjx4EIGBgbh16xbq1q0rZmSjk0tBKylHR0fJnzy+evUqQkNDkZqaCgBo2rQpPvvsM9SrV09vXGxsLGbPno07d+4gKChIjKhlwtraGg8ePCj2+AcPHqBixYoGTCQujUaD8+fPw9raGg0aNBA7jsG86vmYRErF7i3/HqrEOZP8sXvLG7v367F7Sxe796uxe8sDu7fp4wK4iNq3b48HDx6gUqVK6NGjBzw9PdGhQwfY2NgAkN8VyseOHcP+/fsRGRmJ7du3Y+vWrbC0tES7du3QuXPnUj07wtQpcc4kf5s2bcKjR4+wefNm1KlT56XjmjZtitDQUPj4+ODXX3/F+PHjjZiSSuvHH3/EwYMH0b59e/j5+cHW1haHDh3Cli1bsGDBAgQEBGD+/PlYt24dzM3NMXz4cHz++edixy4TSitoAHDy5EmsWLFCb85jx47Vu+tAEASsW7cOP/zwA3Jzc8WK+sZOnz6NIUOG4OHDh7C2toa1tTUyMjIQHR2NzZs345133kFOTg4CAgIQGxsLc3NzjBw5UuzYb6R58+aIjY3F8OHDizV+z549aNKkiYFTGVZOTg5Wr16N1NRUbNy4UXc8KioKQUFBupMS9evXx9y5c9GqVSuRkhKRMbF7y7+HKnHOJH/s3vLG7s3uze7N7i1l7N4kBVwAF1F2djZsbW3RpUsXuLu7o3Xr1roCLkfW1tbo3r07unfvjqysLERHRyMqKgqHDx/G4cOHATy/aiY9PR0eHh6y+G+hxDmT/O3duxc9e/Z8ZQEvUKtWLfj5+SE2NpYlXCL2798PNzc3rF69Wnfs/fffR9WqVbFx40bY29sjNDQUarUawcHBkv/AXkCJBe3YsWP47LPPoNVqUb9+fdjY2CA5ORlDhw5FaGgoXF1dcfXqVUyePBnp6emws7PDzJkzxY5dagUnERYtWoQePXoAeP680C+++AJBQUEICQmBv78//v77b7Ro0QJBQUFwcnISOfWb6du3LyZOnIjQ0FAMGzbslWNXrlyJ9PR0vb/7UvPo0SP0798fFy5cQI0aNZCfnw8LCwukp6dj2rRpEAQB/fv3R+PGjREREYFhw4YhIiKi0Ik2IpIfdm/591Alzpnkj91b3ti92b3Zvdm9pYrdmyRDINEkJycL3377reDm5iao1WqhSZMmwkcffSSsWbNGuHTpknD16lXByclJ2Lt3r9hRDerq1avCihUrhB49eghOTk6CWq0WWrduLXz99ddCSkqK2PEMQolzJvlo1aqVsHnz5mKP37p1q+Ds7GzARFSWWrVqJaxbt67Q8fPnzwtOTk5CkyZNhNmzZwsajUaEdIYzevRooVmzZsLOnTt1x06ePCl4enoKQ4YMEW7duiV06dJFcHJyEvr27SucOXNGxLRlY+jQoULr1q31fu/cvHlT8PX1Ffr16yecP39e8PDwEJycnITx48cLmZmZIqZ9cx4eHsLs2bMLHd+zZ4/QtGlTYdCgQULz5s2F1atXC1qtVoSEhjF+/HhBrVYLkydPFlJTU/X+7mq1WiE1NVU35ptvvhEx6Zv74YcfhGbNmgm7d+/WOz5y5EhBrVYLwcHBumO5ubmCt7e3MH36dGPHNLh79+4JTk5OQnx8vNhRiEwGu/dzSuyhSpwzyQe7t7yxe7N7s3uze0sVu/dz7N6mj3eAi6hNmzZo06YNvvnmGxw6dAhRUVE4ePAgTp48iZCQENSpUwcqlQqPHz8WO6pB1apVC6NHj8bo0aNx5swZREZGIjo6Gr/99hu2b9+O06dPix2xzClxziQflpaWePr0abHH5+bmwtbW1oCJqCw9efIEVapUKXS8cuXKAIDOnTsjICDA2LEMLj09HQMGDNBdnQwA7777Lr788ktMmjQJkyZNwrVr1zBlyhR8+umnsng+6OnTpzFw4EA4Ozvrjr311luYPHkyPvvsM0yYMAH5+flYsmQJunXrJmLSspGdnV3k9qctWrSAVqvF2bNnsXHjRtltyxUSEoLg4GBs3rwZu3btgrm5Oezt7WFubo6srCxoNBqYmZlh+PDhmDRpkthx30hsbCx69eqFrl276o49evQIR48eBQAMGjRId7xcuXLo2bMntm3bZvScRGR87N7PKbGHKnHOJB/s3vLG7s3uze7dyvjhDIjdm92bTA8XwE2AhYUFPD094enpiUePHiE2NhZRUVFITEyEIAiYNm0atm/fjt69e6NLly4oV66c2JENRq1WQ61W48svv0RiYiJ27twpdiSDU+KcSdreeecdHDp0CP7+/sUaf/DgQTRq1MjAqcjQVCoVAMDX11fcIAaixIKWk5ODhg0bFjreuHFjCIKArKwsbNu2DXXr1hUhXdnLz88v8jOUtbU1AGDkyJGy+voWsLKyQmBgIPz9/REREYH09HTcvn0bgiCgQYMGcHFxgY+Pjyy2Irt69ape0QaA5ORk5Ofno06dOoW+l2vWrIm7d+8aM2KZW7ZsWaFjubm5UKlU2LFjB06cOFHodZVKhbFjxxojHpHJYff+f0rsoUqcM0kbu7cysXuze0sduze7N7v3c+ze4uMCuIkpX748/Pz84Ofnh7t372Lnzp2IiopCQkICEhISMHv2bCQnJ4sd0yjc3d3h7u4udgyjUuKcSXp69eqFb7/9FtHR0ejevfsrx0ZERCA+Ph6LFy82UjoytILCIjdKLGharRYWFoU/ClpZWQEARo8eLZsCXhzNmzcXO4JB1a9fX/JXmb+OmZkZnj17pnfs2LFjAAAPD49C4+/duwc7OzujZDOUokp4gYiIiCKPs4QTPcfu/f+U2EOVOGeSHnZvZWP3lg92b33s3tLH7q2P3dt0cQHchFWtWhWffPIJPvnkE1y6dAmRkZGSvkK5uFes/pNKpcL69esNkMY4lDhnkr8+ffogIiICX375Jc6ePYvBgwfDwcFBb0xmZiZCQ0OxYcMGdOzYURZbOClJwRXnJX1NzuRe0IpS1BXqcqaE7+1bt27hxIkTyMzMBAA4ODjA2dkZNWvWFDlZ2WjUqBFSU1MxePBgAIAgCIiLi4NKpUKnTp0Kjd+3b5/kv883bNggdgQiWWD3ln4PVeKcSf7YveWP3bswdm/5U8L3Nru3PnZvEgsXwCWiXr16GD9+PMaPHy92lFJLSkoq8rhKpYIgCC99TcqUOGeSPzMzM6xcuRJTpkzBzz//jFWrVqFmzZqoXr06zM3NcffuXVy+fBmCIKBbt26YM2eO2JGphObOnYslS5boHRMEASqVClOmTCl0tbZKpcLevXuNGdHo+LNZHi5cuFDobr6cnBwAwNmzZ4u8Kt/V1dUo2Qzp3LlzCAoKQnJyMgRB0PsMYmZmBhcXFwQEBMDJyUnElG/O19cXc+bMQYsWLfDee+9h69atuH79OurWrYv27dvrjV25ciXS0tIk/1xFNzc3sSMQyQ67tzQpcc4kf+ze8sfuXRh/NssDuze7dwF2bxITF8BF5O/vjzFjxqBdu3a6Y/n5+UhNTYVarUaFChX0xkdGRmL69OnIyMgwdtQycebMmULH7t27Bw8PD4SGhur9d5ALJc6ZlKFChQr4+eef8fvvv2PHjh1IT0/H//73PwiCAAcHB/j6+qJXr15o27at2FGphBwdHQGgyBOFBVeqvvjay04qSo0SC9rx48eh1Wr1jj169AgAcPToUdy6davQe6T8LLqVK1di5cqVRb42f/78Io+fPn3akJEMbt++fZg4cSJUKhW6du2Ktm3bwsHBARYWFsjMzERycjJiYmLQt29fLFmyBF5eXmJHLrUBAwbgxIkTCA4O1i14VKpUCSEhITAzMwMA/Pbbb1i1ahWuXLkCFxcXDBw4UOTUhqXRaHD+/HlYW1ujQYMGYschEg27t/x7qBLnTMrA7i1f7N7s3uze+ti9pYPduzB2b9OkEuTym1OC1Go1Fi5cCB8fH92x+/fvw8PDA2vXri1U0CIjIzFt2jTJ/zL4p/v376Ndu3aKKqRKnDMRkalTq9UvvdK84Ar8okj5d/LL5vzPj4b/fL3gv4NU5/zjjz+W6m6CcePGGSCNcVy9ehU+Pj6oX78+li5dijp16hQ57ubNm/j8889x/vx57Nix46XjpCI1NRWpqamws7ODl5cXqlSpontt2bJl2LFjB3x8fDBq1Kginz8oNTk5OVi9ejVSU1OxceNG3fGoqCgEBQXhwYMHAJ4/i27u3Lmye6YiUXGweyuzhypxzkREpo7d+/+xe+tj95Yedu/n2L1NF+8AN0G8JoGIpCI3NxfW1taFjp8/fx4VK1Ys9HwyMn0RERFo06YNateuLXYUoxo7dqzitloLDg4WO4JRSXkr29Jav349LC0tsWbNGr0i+qIaNWpg1apV6N69O3755RdMnz7diCnLnrOzM5ydnYt8bdy4cS89sZKXl4e0tLQi7wY1VY8ePUL//v1x4cIF1KhRA/n5+bCwsEB6ejqmTZsGQRDQv39/NG7cGBERERg2bBgiIiJQr149saMTmQR2byKSCnZv+WH3Vg52b/lj9y6M3Zvd2xRwAZyIiEpMo9Fg/vz5iIqKwuHDhwsV8cWLF+Pw4cPo06cPpk2bBltbW5GSUknNmDEDCxYsUFwJV2JB8/PzEzuCURW1/a3cHTlyBH5+fq8s4AXs7e3h6+uLAwcOSL6El1Z2djb8/f2LvBvUVK1duxaXL1/G999/j65du+qOL1++HIIg4JNPPtF9Pfv27YuePXti5cqVijsJR0REJFXs3vLF7q0c7N7yx+5dMuzeZCxmYgcgIiJp0Wg0GD58OH755Rc4Ojri/v37hcZ88MEHcHJywpYtWzBixAjk5+eLkJRKQ6l3Qvn7++PYsWNixzAqT09P7Nu3T+wYRpOUlIQ7d+6IHcOobty4gUaNGhV7fIMGDXDz5k0DJjJ9UvsZGBsbi169eukV8EePHuHo0aMAgEGDBumOlytXDj179lTczzoiIiKpYveWN6l97iwr7N7yx+79euze0vsZyO4tTVwAJyKiElm3bh2Sk5MREBCAiIgI1KxZs9CYfv36Yfv27Rg3bhxSUlKwadMmEZISFZ8SC9q1a9fw+PFjsWOQAVlbW+ueQVUcDx48QMWKFQ2YiMra1atX0bx5c71jycnJyM/PR+3atVG3bl2912rWrIm7d+8aMyIRERGVErs3yRG7N8kRu7f8sXtLE7dAJ6OJiIgodOzRo0cAgKNHj+LWrVtFvs/X19eAqQxLiXMm+YuKioKnpyc+/vjj144dN24ckpKSsGPHDgwdOtTw4ahMZGVl4fr16yV6j6Ojo4HSEFFpNW/eHLGxsRg+fHixxu/ZswdNmjQxcCoqS2ZmZnj27JnesYKrzD08PAqNv3fvHuzs7IySjYjEo8QeqsQ5k/yxe8sfuzeRPLB7yx+7tzRxAVxkL37Qyc7OBvD8L8iLH4CK2upISqZPnw6VSqV3rGCrizVr1kClUun+f8E/q1QqSRdSJc6Z5O/SpUsYMGBAsce///77WLp0qQETUVmbO3cu5s6dW+zxKpUKGRkZBkxEVDbi4uJw6dKlYo9XqVQYO3asARMZVt++fTFx4kSEhoZi2LBhrxy7cuVKpKenY/Xq1UZKR2WhUaNGSE1NxeDBgwE8/5wZFxcHlUqFTp06FRq/b98+NGzY0NgxiUwCu7e8e6gS50zyx+4tf+zeJFfs3i/H7i1N7N7SxAVwkb3sg86UKVNESGNYwcHBYkcwOiXOmeTP1tYWWq222OPLlSsHa2trAyaisubi4oI6deqIHcPolFbQAGDr1q2Ij48v9niVSlWiEzSmJi4uDrGxscUeL/WvcdeuXeHt7Y0FCxbgzz//xMcff4xmzZrB0tISAPDs2TOkp6dj7dq1iIuLQ79+/fCvf/1L5NRUEr6+vpgzZw5atGiB9957D1u3bsX169dRt25dtG/fXm/sypUrkZaWhoCAAJHSEomL3VvelDhnkj92b/lj9y4eqfcygN37daT+NWb3lj92b2niAriIfH19C12hLGd+fn6vHZOdnQ1ra2uUK1fOCIkMT4lzJvlr0KABUlJS4O/vX6zxJ06cQK1atQycispS//794ePjI3YMo1NaQQOeP68oOTm52OOlXsJHjRpV5NZUchYSEoLg4GBs3rwZu3btgrm5Oezt7WFubo6srCxoNBqYmZlh+PDhmDRpkthxqYQGDBiAEydOIDg4WHdHY6VKlRASEgIzMzMAwG+//YZVq1bhypUrcHFxwcCBA0VOTWR87N6Fya2HKnHOJH/s3vLH7l087N7Sw+7N7i037N7SxAVwEc2bN0/sCEaXl5eHsLAwpKWl6V2hnZSUhO+++w4XL16ESqWCh4cHAgMDZXEVpBLnTPLm5+eHwMBAJCQkoG3btq8cm5iYiNjYWIwfP95I6YhKT4kF7auvvoKnp6fYMYymYcOGcHNzEzuGUVlZWSEwMBD+/v6IiIhAeno6bt++DUEQ0KBBA7i4uMDHxwf16tUTOyqVgkqlQkhICAYPHozU1FTY2dnBy8sLVapU0Y25efMmBEHAmDFjMGrUKF05J1ISdm9l9FAlzpnkjd2b5IrdW/7Yvdm95YbdW5q4AC6iESNGwNfXF15eXorYoigvLw+ffvopkpOTYWlpidmzZ8PCwgIXL17EiBEjkJeXh/bt26NRo0bYs2cP+vfvj8jISFSrVk3s6KWmxDmT/Pn6+mL79u0YPXo0Ro0ahX79+hX6ns3MzMS2bduwZs0a1K5dG4MGDRIpLVHxKbGgVa5cmXeJKET9+vV5lbmMOTs7w9nZucjXxo0bh3HjxhX5Wl5eHtLS0qBWq1GhQgVDRiQSFbu3/HuoEudM8sfuTXLF7k1yxu4tb+ze0sJLEESUlJSEqVOnwsPDA9OnT0d8fDwEQRA7lsFs2rQJx48fx9SpU5GcnAwLi+fXX/z444/QaDTw8fHBqlWr8OWXX2L79u0wNzfHypUrRU79ZpQ4Z5I/S0tLLF++HC1btsTSpUvRvn17eHp6YsCAAejXrx86deqEjh074scff4STkxNCQ0P5i11CHB0dYWtrK3YMIiIyguzsbPj7++PUqVNiRyEyKHZv+fdQJc6Z5I/dW97YvYmIlIPdWxy8A1xEx44dw969e7F7927s2rULO3bsQLVq1eDj44OePXtCrVaLHbFM7dy5E126dMHw4cN1xzQaDfbv3w+VSqV33N7eHr1798auXbsQEBAgRtwyocQ5kzJUrVoV69evR2xsLHbt2oWMjAycPXsWZmZmqFatGnx9fdG5c2d06tRJ7KhUQvv373/l68+ePcPNmzdRrVo1WFlZGSkV0ZsbN24cnJycxI5hVMV9XuQ/qVQqrF+/3gBpTMPt27dhb28PS0vLQq9VqlQJGzZsQJMmTURIJh45LwISFWD3ln8PVeKcSRnYveWL3Zvkit27eNi92b3J8LgALqLy5cujV69e6NWrF3JycrBnzx5ER0dj/fr1CA0NRaNGjdCrVy/4+PjgrbfeEjvuG/v777/h5+end+zEiRPIzc2Fg4NDoV+MdevWRWZmpjEjljklzpmUxdvbG97e3mLHICO6d+8ePD09sXbtWrRr107sOGVGiQUtODj4pds2ydHLtqEq8PjxY6xduxa+vr6oXbu2kVIZVlJSUpHHVSrVS4uXSqUyZCSjCA0NxdatWxEZGVmobM+dOxfx8fEYPnw4RowYofdMLktLS8VtxUikFOze8u+hSpwzKQu7t/Kwe8sHu7c+du//f03q2L3J1HEB3ERUqFABffv2Rd++fXHv3j3ExMRg9+7dWLx4MRYvXgxXV1f4+vrC29sb5cuXFztuqTx79gzm5uZ6xxISEgAAHh4ehcbn5OTAxsbGKNkMRYlzJgKeb+tibW2NcuXKiR2FDECOVywqsaC9eJL4RQ8fPsScOXMwYsQINGzY0EipxPP48WMsX74cLi4usvkanzlzptCxe/fuwcPDA6GhobI6kQY8/9k0ZcoU7Nq1C1WrVsXNmzdRp04dvTENGzZESkoKlixZglOnTuGHH34QKS0RiYXdW549VIlzJgLYveWO3VsevYzdWx+7t/Sxe5NU8BngJqhKlSoYNGgQNm7ciIMHD+Lrr7+GmZkZvv32W/zrX/8SO16p1a1bF6dPn9Y7FhcXB5VKhffff7/Q+CNHjqBu3bpGSmcYSpwzKUNeXh62bNmCGTNm6B1PSkpC9+7d0bZtWzg7O2PEiBG4fPmySCmJyk5BQbty5YrYUYwmNzcXERERiro7So4nmF4kh6vMX2bLli3YtWsXhg4dioMHDxYq4MDzE25xcXHo3bs34uLiEBYWJkJSIjIV7N7PyaGHKnHOpAzs3qQ07N7KwO4tbezeJBVcADdxlpaWsLa2hp2dHSwsLKDRaMSOVGo9evTAjh07sHfvXjx58gTr1q3DhQsXULVq1ULPKoqMjMTRo0fh6ekpUtqyocQ5k/zl5eXh008/RWBgIHbu3In8/HwAwMWLFzFixAhcvHgR7du3x9ChQ3Hx4kUMGDAAd+7cETk10ZtTQkF7kRLnTNL122+/wc3NDdOnTy/yOWMFrKysEBQUhCZNmmDr1q1GTEhEpozdW9o9VIlzJvlj9yalUmIPVeKcSbrYvUkquAW6Cbp37x7i4uIQExOD5ORk5Ofno2nTppgwYQJ69OghdrxSGzp0KH7//XeMGzdO9/wLS0tLzJkzB1ZWVgCeX6G9adMmJCUloX79+hg6dKi4od+QEudM8rdp0yYcP34cU6dOxeDBg2Fh8fxXyY8//giNRoOePXtiwYIFAICRI0fCx8cHK1euREBAgJixqYxYWlrC1dUVlSpVEjsKEZGev/76CxMmTCjWWJVKha5du2LFihUGTkVEpozdWz49VIlzJvlj91Y2dm8iMlXs3iQVXAA3EXfu3EFsbCxiYmJw4sQJaLVa1KpVC8OHD0fPnj1l8fwPKysrrFu3DtHR0UhLS4OdnR18fHzQqFEj3ZhTp04hJSUFPXv2xPTp02FtbS1i4jenxDmT/O3cuRNdunTB8OHDdcc0Gg32798PlUqld9ze3h69e/fGrl27WMIlIicnBxUqVHjp65UqVcLGjRv1jiUmJsLd3d3Q0YgMqkKFCggODkbjxo3FjkKlZGFhoVvkKI6KFSsWel4sEckfu/dzcuuhSpwzyR+7t7yxe5NSsXtLH7s3SQUXwEWUmZmJ2NhY7NmzBykpKdBqtahUqRL69u0LHx8ftGnTRuyIZc7c3Bw+Pj7w8fEp8vXRo0djwoQJMDOTz+78Spwzydvff/8NPz8/vWMnTpxAbm4uHBwc4OTkpPda3bp1FfUcI6nz9/dHaGgo7O3tXzv26dOnWLhwIX799VdkZGQYPpyIlFjQKlWqhA0bNqBJkyZiRzGKcuXK4V//+hfvsJCwevXq4dSpU8Uef+rUKdSsWdOAiYjIVLB7FybHHqrEOZO8sXvLG7t30di95Y/dW/rYvUkquAAuoo4dOwJ4fqWyl5cXfHx80LFjx1c+N0HubGxsxI5gdEqcM0nbs2fPCl21l5CQAADw8PAoND4nJ4ff5xJy+vRpfPzxx1i3bh2qVav20nEnT57EtGnT8Pfff79ynFyUK1dO7+STVqvFqlWrMGbMGBFTGZalpSXc3Nx0/z8nJwfz589HUFCQiKneXGhoKLZu3YrIyMhCn7nmzp2L+Ph4DB8+HCNGjJD8CfKIiIhCxx49egQAOHr0KG7dulXk+3x9fQ2YynA+/PBDLFq0CMOGDXvtCbNz584hKioK/v7+RkpHRGJi9y5MiZ/PlThnkjZ2b3lj9y4auze7txSxe78cuzeJSSUIgiB2CKUaMmQIevXqha5du8LOzk7sOERExdKrVy+0bNkSs2bN0h3r3r07Ll68iCVLlqBr165640eMGIHs7Gxs27bN2FGpFH755RfMmTMHderUwbp16wpdoZmXl4cffvgBa9euhVarRa9evfDVV1/J4srdnJwcbNu2DWlpaRAEAU2bNsXgwYNRsWJFvXF//PEHAgIC8L///Q+nT58WKW3ZuHr1KkJDQ5GamgoAaNq0KT777DPUq1dPb1xsbCxmz56NO3fuSHbOgiBgypQp2LVrF6pWrYrNmzejTp06emOWLVuGbdu2ITMzE507d8YPP/wgUtqyoVaroVKp9I7986N/Ua+pVCrJfo0fP36M3r17IysrC1999RV69OhR6KRxfn4+du7ciZCQEABAeHg4qlevLkZco7l9+zbs7e2LXOjLy8tDamoqmjRp8sotOImkjt2biKSI3Vve2L3Zvdm92b2l+jVm9y4au7fp4QI4ERGVyKpVq7B8+XIsWrQI7733HrZs2YJ58+ahWrVq2L9/v94zYCIjIzFt2jRMmDABo0ePFjE1lcTOnTsxffp0ODg4YN26dahbty6A51eoT5s2Df/73//g6OiImTNnon379iKnLRtXrlyBv78/bt68qVdSqlWrhm3btqFmzZrIz8/HokWLsGHDBmi1WvTo0QOLFi0SMfWbOX36NIYMGYKHDx/C2toa1tbWyMrKgq2tLTZv3ox33nkHOTk5CAgIQGxsLMzNzTF8+HBMmjRJ7OilsnnzZnz33XcYOnQoJk+e/NK7/jQaDWbOnImwsDDMmTMHvXv3NnLSshMeHl6q97241aaUXLx4EWPHjsXFixdha2uLZs2aoXr16tBqtbh79y5OnTqF3NxcODo6Yvny5VCr1WJHLhOvurti0qRJsrq7goiISCnYveWP3Zvdm92b3Vuq2L3ZvaWAC+AiKmprjOKQ6tYYRCQPGo0Gw4cPR3JyMlQqFQRBgKWlJZYtW6bbXjIuLg6bNm1CUlIS6tevj7CwMFhbW4ucnEri0KFDmDhxIuzs7LB69Wrs27cPK1euRH5+PgYOHIjJkyejfPnyYscsM5MnT0Z0dDQmTZqEPn36wMbGBocOHcKsWbPQqlUrLFy4ECNHjkRKSgocHR0RGBio+36XqjFjxuD333/H/Pnz0aNHDwBAeno6vvjiCzg6OiIkJAT+/v74+++/0aJFCwQFBRV6zqCU9O3bF7a2ttiwYcNrxwqCgD59+sDKygqbN282QjoqSxqNBr/88gt27dqFM2fOID8/H8DzrQVbtWoFb29v9O/fX++ksVQp8e4KotJg9yYiKWL3VgZ2b3Zvdm92b6li92b3NnVcABdRwdYYBVtevI7Ut8YgIvnQarWIjo5GWloa7Ozs4OPjg0aNGuleX7JkCdauXYvu3btj+vTpqFy5sohpqbROnDiBMWPG4OHDhxAEAfXq1UNQUBDatGkjdrQy16FDB7z33nsIDg7WOx4eHo7AwEB06NABe/fuxcCBAzF16lTY2tqKlLTsvPfee+jWrRsCAgL0jsfGxmLSpElo1aoV0tPTMWHCBHz66aeSv3LV2dkZEyZMwNChQ4s1ftWqVVixYoVuizqpy83NLfJk6Pnz51GxYkU4ODiIkMo47t27B3Nzc1lsF/kiJd5dQVQa7N5EJFXs3srA7s3uze7N7i0H7N7s3qbGQuwASvbiL3oiIqkwNzeHj48PfHx8inx99OjRmDBhguQ/tCudi4sLNmzYgBEjRuDevXuYNWuWLAs4ANy/fx/Ozs6Fjru6ukKj0eDQoUNYunQpunTpIkI6w8jOzi5yC6oWLVpAq9Xi7Nmz2LhxI1q1amX8cAZgYWFRoquOK1asWOgZVlKk0Wgwf/58REVF4fDhw4WK+OLFi3H48GH06dMH06ZNk8UJphdVqVJF7AgG89tvv8HNzQ3Tp09/5TgrKysEBQXh9OnT2Lp1K0s4KQ67NxFJFbu3MrB7s3uze7N7ywG7N7u3qeECuIik/IwHIlIuf39/jBkzBu3atdMdy8/PR2pqKtRqNSpUqAAbGxvdawXPIuMdNNKkVqvx3//+F8OGDcOYMWOwfPlytG3bVuxYZS4vL0/v+7ZAwVZzw4YNk1UBB57/vS1Xrlyh4wUlbeTIkbIp4ABQr149nDp1qtjjT506hZo1axowkeH9c9tMtVqN+/fvF5rTBx98gFu3bmHLli04d+4cNmzYAAsLaVaEZcuWlep948aNK+MkxvPXX39hwoQJxRqrUqnQtWtXrFixwsCpiEwPuzcRSRG7t7Kwe7N7ywW7N7v3y7B7k7FJ82+YQmm1WqxatQpjxowROwoRKVhSUhL69eundywnJwf+/v5Yu3atXjkn6ZkxY0aRx+vVq4erV69i1KhR6Natm972oSqVCnPnzjVWRFG4ubmJHcHomjdvLnaEMvXhhx9i0aJFGDZsGBo3bvzKsefOnUNUVBT8/f2NlM4w1q1bh+TkZAQEBODjjz8ucky/fv3Qr18/LFu2DMuWLcOmTZuKvVWdqSluCX9x+2Mpl3Cl3l1BZGjs3kRkCti95Y3du2js3tLH7s3uXYDdm91bbFwAF1lOTg62bduGtLQ0CIKApk2bYvDgwahYsaLeuD/++AMBAQH43//+xxJORCZJEASxI1AZCA8Pf+XrT58+RUREhN4xJZRwJX5oLc4zUqXko48+wubNmzFkyBB89dVX6NGjR6Gva35+Pnbu3ImQkBBUqFBB8iU8KioKnp6eLy3g/zRu3DgkJSVhx44dki3h+/bte+2YnJwcfP/99zh48CAsLCwk/zVW4t0VRKXF7k1EcsHuLQ/s3kVj95Y+du9XY/eWJnZvaeICuIiuXLkCf39/3Lx5U/fhNS4uDr/88gu2bduGmjVrIj8/H4sWLcKGDRug1WrRo0cPkVMTEZGcFedDrFxlZWXh+vXreseys7MBAPfu3Sv0GgA4OjoaJZuhXLhwAcnJyXrHcnJyAABnz54tcjsuV1dXo2Qra7a2tlixYgXGjh2LadOmYebMmWjWrBmqV68OrVaLu3fv4tSpU8jNzYWjoyOWL1+O6tWrix37jVy6dAkDBgwo9vj3338fS5cuNWAiw6pVq9YrX4+Ojsa8efOQmZmJ1q1b47vvvsM777xjpHSGocS7K4hKg92biIhMDbs3uze7N7u3VLF7s3tLBRfARfT999/j5s2bmDRpEvr06QMbGxscOnQIs2bNwqxZs7Bw4UKMHDkSKSkpcHR0RGBgIDp27Ch2bCIikrHXfYiVs7lz5770avopU6YUOqZSqZCRkWHoWAa1cuVKrFy5ssjX5s+fX+RxKT9TsH79+oiIiMAvv/yCXbt2ISUlBfn5+QAAS0tLtGrVCt7e3ujfv3+JtrYyVba2ttBqtcUeX65cOd1z6OTk8uXLmDlzJuLj41GpUiUEBQWhb9++YscqE0q8u4KoNNi9iYjI1LB7s3sXYPdm95YLdm92b1PDBXARJScnw9fXFyNHjtQd69atG3JzcxEYGIjp06cjJSUFAwcOxNSpU2FraytiWiIiosJWrlyJ2NhYhIWFiR3ljfj5+Ykdweik/OylN2FlZYVhw4Zh2LBhAJ7fYWBubo5KlSqJnKzsNWjQACkpKcUuXSdOnJDViTiNRoNVq1Zh9erV0Gg08PPzw9SpU1G5cmWxo5UZJd5dQVQa7N5ERCR17N7Sxe7N7v0idm/pYfeWJi6Ai+j+/ftwdnYudNzV1RUajQaHDh3C0qVL0aVLFxHSERERvd6NGzckfVVygeDgYLEjGJ1SS/iLqlSpInYEg/Hz80NgYCASEhLQtm3bV45NTExEbGwsxo8fb6R0hhUfH4+ZM2fi0qVLaNy4MQIDA9GmTRuxYxmE0u6uICoNdm8iIpI6dm/pYvd+jt37OXZv6WL3lh4ugIsoLy8PNjY2hY6XL18eADBs2DAWcCIySS8+r+lVz2q6f/++UbMRERVl2bJlpXqflE9W+Pr6Yvv27Rg9ejRGjRqFfv36oVq1anpjMjMzsW3bNqxZswa1a9fGoEGDREpbNu7cuYPg4GBER0fD2toakydPxrBhw4p8pp6cKOnuCqLSYPcmIqli9yYiqWH3ZveWM3ZvaVEJgiCIHUKp1Go1Fi5cCB8fH73j9+/fR7t27bBmzRr861//EikdEVHR1Go1VCpVoeOCIBR5vIAcrlSmwgIDA7F161bJf32VWNBmzJhR4veoVKqXPqvN1KnV6mKNe/HnmNS/t+/evYsvvvgCiYmJUKlUcHR01Nui68aNGxAEAa1atcKSJUtQs2ZNsSOX2qZNm7B06VI8fPgQnTp1QkBAgKTnQ0Rlh92biKSI3Zv+id2b3Vsq2L3ZvYlMhbwvx5A4c3NzsSMQERWixOc1kfwVt4S/WNCkXMLDw8OLPfaf85ZqCd+3b99rx+Tk5OD777/HwYMHYWFhUeznd5myqlWrYv369YiNjcWuXbuQkZGBs2fPwszMDNWqVYOvry86d+6MTp06iR31jQUFBen+ef/+/di/f/9r36NSqZCRkWHIWAalxBOIRIbA7k1Epojdm+SI3fvV2L2li9371di9SQxcABfZi1sZAa/ezggAHB0djZKNiKgoSnxeE8mfEgvamTNnXjvm2rVrmD17Ng4ePIgKFSpg4sSJhg9mILVq1Xrl69HR0Zg3bx4yMzPRunVrfPfdd3jnnXeMlM7wvL294e3tXeh4dnY2rK2tRUhU9pR4kliJJxCJSovdm4ikht2b5Ijdu2js3uzeUsLu/XLs3qaFW6CL6GVbGQEv385I6lfKEBGRaSvpFY0HDhxARkaG5Leqeh25F7QXabVarF27Fj/99BNyc3PRvXt3zJgxo9AzrOTg8uXLmDlzJuLj41GpUiVMmTIFffv2FTtWmcnLy0NYWBjS0tL0TqImJSXhu+++w8WLF6FSqeDh4YFvv/0WdevWFTHtm5kxYwYGDBiAli1bih3FaK5du/baMUWdQPzyyy+NkI7IdLB7ExGRqWH3Lhq7N7u3VLF7yxu7tzRxAVxEpXn+B8ArQImIyHCK+6ymf1KpVLIt4XIvaEU5fvw4Zs6ciXPnzuHtt99GYGAg2rVrJ3asMqfRaLBq1SqsXr0aGo0Gfn5+mDp1KipXrix2tDKTl5eHTz/9FMnJybC0tERqaiosLCxw8eJF9OrVCxqNBh06dECjRo2wZ88ePHnyBJGRkZI92fKyZ/wqmdJOIBK9DLs3ERGZGnZvfeze7N5Sxu5N7N6miVugi4hlmoiITM2GDRvEjmASlFDQXnT//n0sWLAAERERsLKywvjx4/HZZ5/ByspK7GhlLj4+HjNnzsSlS5fQuHFjBAYGok2bNmLHKnObNm3C8ePHMXXqVAwePBgWFs8/+v/444/QaDTo2bMnFixYAAAYOXIkfHx8sHLlSgQEBIgZm8rAiycQg4KCZH8CkehV2L2JiMjUsHs/x+7N7i0H7N7Kxe5t2rgAbgKePHmC7du34/fff8eZM2eQlZUFlUqFKlWqQK1Ww9PTEz4+PrL8JUhERKbFzc2txO85fvy4AZKIRykF7Z+2bduGkJAQZGdn47333kNgYKCkt+N6mTt37iA4OBjR0dGwtrbG5MmTMWzYMF05lZudO3eiS5cuGD58uO6YRqPB/v37oVKp9I7b29ujd+/e2LVrF0u4hCnxBCJRSbB7ExGRqWD3Zvdm95YPdm/lYfeWBnn+xJGQEydOYMKECbhz5w6srKxQt25d1KpVC/n5+cjKysKBAwewf/9+LFu2DIsWLULr1q3FjkxERIQbN24gPDwcERERuHLliiy2YVNaQQOAs2fP4rvvvkNaWhqqVauGxYsXo3v37mLHMohNmzZh6dKlePjwITp16oSAgADUrFlT7FgG9ffff8PPz0/v2IkTJ5CbmwsHBwc4OTnpvVa3bl1kZmYaM2KZO378OLRabYne4+vra5gwRqbEE4hEJcHuTUREUsTuLQ/s3uze/8TuLW3s3tIh398qEvDXX39h+PDhsLOzQ0hICLy9vQtdaf7w4UPExMTghx9+wIgRIxAeHo569eqJlJiIiJTs6dOniI2NRVhYGBITEyEIAlQqFTp06CB2tDemxII2f/58bNy4EVqtFh988AEmTpwIOzs7XL9+/ZXvc3R0NFLCshUUFKT75/3792P//v2vfY9KpUJGRoYhYxnUs2fPYG5urncsISEBAODh4VFofE5ODmxsbIySzVC2bt2KrVu3Fmtswc8wqZdwJZ5AJCopdm8iIpISdm95Yfdm934Ru7c0sXtLD78yIvrpp59gY2OD7du346233ipyjJ2dHfr27YsOHTqgV69eWLNmDWbPnm3kpEREpGRpaWkICwvD7t278fDhQwBAlSpV0KdPH/Tv3x+1atUSOeGbU2JBCw0N1f3zgQMHcODAgWK9T6p3HLx4NbYS1K1bt9DXKy4uDiqVCu+//36h8UeOHJH89nsfffQRWrVqJXYMo1HiCUSi0mD3JiIiKWD3Lhq7t7Swez/H7i0v7N7SxAVwESUnJ6N3794vLeD/5ODgAF9fXxw5csQIyYiISOkyMzMRERGB8PBw/P333xAEATY2NvDw8EB8fDxmzZoFT09PsWOWGV9fX6hUKrFjGNW4ceNK/B5BEAyQxHgGDBiAli1bih3DaHr06IHly5ejQ4cOeO+997BlyxZcuHAB1apVQ6dOnfTGRkZG4ujRo5gwYYJIactGmzZt4OPjI3YMo1HiCUSi0mD3JiIiU8XuLX/s3vLH7i1/7N7SxAVwEd2/f79EW6o1aNAA27ZtM2AiIiJSut27dyMsLAzx8fHQarWoWLEifHx84O3tjfbt2+P27dvw8vISO2aZmzdvHgAgLy8P58+fR35+Pho1aiT5LalexdHREb179y72+GvXruGrr74yYCLDCg8Ph4eHh6JK+NChQ/H7779j3LhxUKlUEAQBlpaWmDNnjm7r37i4OGzatAlJSUmoX78+hg4dKm5oKhEl3l1BVBrs3kREZGrYvdm9X4bdW3rYveWP3VuauAAuory8vBL9ci9XrhwePXpkwERERKR0kyZNgq2tLQYNGgRPT0+4urrqPcdIzldq/+c//8GKFSt0v2utrKwwaNAgTJ48WZbP8wkICMCTJ08wePDg147dtm0b5s+fz88hEmNlZYV169YhOjoaaWlpsLOzg4+PDxo1aqQbc+rUKaSkpKBnz56YPn06rK2tRUxMpaG0uyuISoPdm4iITA27N7t3Udi9pYndWxnYvaVHfr9RiIiIqNRq166Nq1evIiwsDBcvXsQff/wBLy8v1K9fX+xoBrV9+3YsXLgQtWrVgq+vL8zMzJCYmIh169ZBq9VK+urrl3n77bcRFBSEJ0+eYMSIEUWOuX37NgICAnD48GFYWlpKfosuJTI3N4ePj89LtyYbPXo0JkyYADMzMyMnK3t+fn6Sf45aSSnx7goiIiIiOWD3Zvf+J3Zv6WP3ljd2b2niArjIsrKycP369WKNvX//voHTEBGR0u3duxcnT55EZGQkYmJicOTIESxevBgNGjSAt7c3mjVrJnZEg9iyZQtatWqF9evXo1y5cgCeP3Nr0qRJ2LJlC6ZMmaLbtkoufv31V4wYMQKLFi3CkydPMH78eL3Xd+7cidmzZyM7OxvOzs4ICgpCw4YNRUpbNo4fPw6tVlui9/j6+homjImQ01aDwcHBYkcgIhPG7k1ERKaE3ZvduwC793Ps3tLB7k1SoRIEQRA7hFKp1epSbWdz+vRpA6QhIiLSp9VqceTIEURFRWHfvn148uSJ7vdWnz59MGbMGNSqVUvklGXDxcUFX3zxRaEtydLS0jBw4ECEh4dDrVaLlM5wHj9+jH//+99ITEzE0KFDMW3aNNy/fx+BgYGIi4uDtbU1Jk2ahCFDhkh+C76Sfu4SBAEqlYqfu8ikqdVqLFy48KV3GRDRc+zeRERkyti92b3Zvdm9ybSxe0sT7wAXkZ+fn9gRiIiIXsrc3BwdO3ZEx44dkZubi7i4OOzcuRNHjx7Fb7/9hrCwMLi7u6NPnz748MMPxY77Rp48eYIKFSoUOl67dm0IgoAHDx6IkMrwbG1tsWrVKnzxxRdYt24drl69ipSUFNy9exfvvfceZs2aJZsTLQDw0UcfoVWrVmLHICpTvLuC6PXYvYmIyJSxe7N7s3sTmT52b+nhHeBERESkM3LkSLRt2xZubm5o1qxZkVft3r9/H9HR0YiKikJaWposrtR92ZWc9+/fR7t27RAaGop27dqJlM7wnj17hoCAAISFhcHMzAyzZs1C3759xY5Vpni1LskR764gIiIikiZ2b3Zvdm8i6WD3libeAU5EREQ6CQkJOHz4MFQqFezs7NCmTRu4u7ujbdu2um3IKleujMGDB2Pw4MG4cuUKdu3aJXJqelNmZmaYO3cu7O3tsXbtWsTHx8PX1xcWFvyoSGTqeHcFERERkfSweysTuzeRdLF7Sw9/shIREZFOSkoKMjIykJKSgtTUVKSlpeHAgQNQqVSoWLEiXF1d4e7uDnd3d7zzzjuoU6cORo8eLXbsMpGVlYXr16/rHcvOzgYA3Lt3r9BrAODo6GiUbIZQ1Hw+/vhjPH78GFu2bMGjR4/wzTffwMzMTG+MlOdMJEdt2rTh3RVEREREEsPuze7N7k0kLeze0sMt0ImIiOiVbty4oVfKz5w5A61WC3t7e7i5ucHd3R2DBg0SO+YbedVWRgXbFr1IpVIhIyPD0NEM5nVzBlDodSnPecaMGRgwYABatmwpdhSiMsPtBYmIiIjkg92b3buAlOfM7k1yxO4tTbwDnIiIiF6pZs2a6NGjB3r06AEAyMnJQWRkJMLCwrBnzx7ExsZKvoT7+fmJHcHofH19S/T8IqkLDg4WOwIREREREdFLsXvLE7s3EZE4uABOREREr5Sbm4vk5GQkJSXhxIkTOHXqFPLy8mBlZaXbkk3qlFjQ5s2bJ3YEInpDfn5+qFu3rtgxiIiIiKgMsHvLE7s3kfSxe0sTt0AnIiIiPfn5+UhLS0NCQgISEhJw8uRJ5OXlwdLSEu+++66ueDs7O8PKykrsuERERERERESSw+5NRERkOFwAJyIiIp3PPvsMx48fR25uLszMzNCsWTO0bdsW7u7ucHFxgbW1tdgRiYiIiIiIiCSN3ZuIiMiwuABOREREOmq1GpaWlvjwww8xatQovP3222JHIiIiIiIiIpIVdm8iIiLD4gI4ERER6XzzzTdITEzE5cuXoVKp0KBBA7Rr1w5t27aFq6srKlWqJHZEIiIiIiIiIklj9yYiIjIsLoATERFRIdevX0d8fLzuWWR37tyBmZkZ1Go13N3ddaXc1tZW7KhEREREREREksTuTUREZBhcACciIqLXOnfuHBISEnDs2DEcP34cDx48gIWFBZo3b4527dphwoQJYkckIiIiIiIikjR2byIiorLBBXAiIiIqEY1Gg5iYGPz6669IS0uDSqXC6dOnxY5FREREREREJBvs3kRERKVnIXYAIiIiMm2XL1/GyZMncfLkSaSnp+PMmTPIy8tD+fLl0aFDB7i6uoodkYiIiIiIiEjS2L2JiIjKDu8AJyIiIp3s7Gykp6frCnd6ejqys7MhCAIqVaqE1q1bw83NDa6urmjatCnMzMzEjkxEREREREQkKezeREREhsUFcCIiItJRq9VQqVQQBAGVK1eGq6ur7n9OTk5QqVRiRyQiIiIiIiKSNHZvIiIiw+IW6ERERKTTtWtXuLm5wc3NDY0aNRI7DhEREREREZHssHsTEREZFu8AJyIiIiIiIiIiIiIiIiIiWeDDQ4iIiIiIiIiIiIiIiIiISBa4AE5ERERERERERERERERERLLABXAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEsWIgdgIiISAl+/PFHLFu2rETv2bdvH2rXrm2gRKXXqVMnXLt2DQDw9ddfw9/f/5Xjhw8fjiNHjgAAQkND4eHhYdBcsbGxqFevnkH+DCIiIiIiIjJd7N7s3kRERAAXwImIiIzCyckJPj4+esfu3r2L+Ph42NrawtPTs9B7bG1tjRWv1GJiYl5Zwu/du4eEhAQjJiIiIiIiIiKlYvcmIiIigAvgRERERuHt7Q1vb2+9Y4mJiYiPj0flypUREhIiUrLSq1ixIlJSUnDr1i289dZbRY6JjY1Ffn4+LC0tkZeXZ+SEREREREREpCTs3uzeREREAJ8BTkRERKXk5eUFQRAQGxv70jG7du2Cvb09WrRoYcRkRERERERERPLA7k1ERFRyXAAnIiIyYQcPHsTw4cPh5uaGFi1aoEuXLli4cCGysrL0xl29ehVOTk7o0KFDkf+eIUOGwMnJCYmJibpj06dPh5OTE5KSkjB+/Hi8++67aNu2LTZu3FisbF27dgXwfCu2omRmZuL48ePo0qULLCxevunMjh07MGjQILRu3RrvvvsufHx8sGLFCjx58qTI8ceOHcOwYcPg6uqKNm3aYOLEibrnohVFq9Xiv//9L/r16wdnZ2c4Ozujf//+CA8PhyAIxZorERERERERyRe7d2Hs3kREJGXcAp2IiMhEhYSEYPXq1TA3N4eLiwsqV66MtLQ0rFmzBrt378b69etRp06dN/5zvvnmG9y9exft27fHuXPnoFari/W+t99+G02aNEFKSgoyMzPh4OCg93pMTAyePXuGHj16YNmyZYXe/+zZM0ydOhU7d+6ElZUV3NzcYGNjg+TkZHz//ffYs2cPQkNDUblyZd17tm3bhm+//RYA0KZNG1SsWBFHjhzB8ePHodFoCv0ZeXl5+Pe//43Dhw/Dzs4Ozs7OsLS0RFJSEqZPn47ExETMmzevJP+5iIiIiIiISEbYvdm9iYhIfrgATkREZIL279+P1atXw97eHmvWrNFtY6bRaDBr1ixs27YNEyZMwPbt26FSqd7oz8rMzERkZCTq1KmDZ8+ewcys+BvEdO/eHadPn0ZsbCw+/vhjvdeio6Ph4OAAV1fXIt+7adMm7Ny5E3Xq1MHatWtRt25dAMDDhw8xefJkHDx4EN9++y1+/PFHAMCNGzcQFBQECwsLrFq1Cu3atQMA3Lt3D8OHD0dGRkahP+Onn37C4cOH4ebmhqVLl6JKlSoAgDt37uCzzz5DeHg4XFxc0K9fv2LPmYiIiIiIiOSB3Zvdm4iI5IlboBMREZmgdevWAQC+/PJLvWd4WVlZ4bvvvkO9evXw559/IiEh4Y3/LE9PT93V7CUp4ADQrVs3AIW3Yrt+/TrS0tLQrVu3l/47169fDwAICgrSFXAAsLOzQ0hICCpUqIDY2FhcunQJABAeHo7c3FwMGDBAV8ABoEqVKpg7d26hf79Go8HGjRthaWmJkJAQXQEHgGrVqmHWrFkAgP/85z8lmjMRERERERHJA7s3uzcREckTF8CJiIhMTH5+PlJSUqBSqdClS5dCr1tYWMDb2xsA9J4rVlrvvPNOqd9bp04dNGvWDCdOnEBmZqbueHR0NARBwIcffljk+27cuIGrV6+icuXKaNu2baHXK1SogPbt2wMAkpKSAADJyckAgI4dOxYa36RJE9SuXVvv2J9//omcnBw0aNAAb731VqH3tGjRAlWrVsXFixdx+/btYs6YiIiIiIiI5IDdm92biIjki1ugExERmZisrCzk5eWhcuXKsLOzK3JMQeEsi/JYqVKlN3p/9+7d8eeffyIuLg6DBw8G8LyE16lTB++++26R7yko7LVq1Xrpv/fFORa8p0aNGi8df/XqVd3/v3HjBgDg7NmzcHJyeuUcbty4gerVq79yDBEREREREckHu/dz7N5ERCRHXAAnIiIyMYIgAMArny9WMMbKyqpY/06tVvvS10q69dqLunXrhoULF2L37t0YPHgwLl26hD///BOjRo166XtKM8fXPW/NwkL/Y82zZ88AAI6OjnBxcXnle8uXL//K14mIiIiIiEhe2L31x7B7ExGRnHABnIiIyMTY29vD0tISWVlZePjwYZFXol+5cgUAULVqVQD/X6QLiueLsrOzDZT2+ZXk7777Lk6cOIHbt28jOjoaANCjR4+XvsfBwQEA9K4af1HBHKtVqwYAeOutt3Du3Dlcu3YNjRo1KjT+n9vAAdBdVV6jRg2EhISUYEZEREREREQkd+zez7F7ExGRHPEZ4ERERCbG0tISzs7OePbsGeLi4gq9np+frzvu7u4OALC1tQXwvGzn5eXpjb9//z4uXrxo0Mzdu3fHs2fPEBsbi927d6NRo0av3PrM0dERtWrVwv3793XPGfunnJwcHDlyBADg6uoKAPDw8ACAIv+bXLlyBefPn9c71qJFC1hbW+PMmTOFCjoA3Lp1C926dcOwYcPw6NGj4k+WiIiIiIiIJI/dm92biIjkiwvgREREJuiTTz4BACxYsAAZGRm643l5eZg5cyYuX76MJk2a6LYXs7e3R40aNaDRaLB582bd+KdPn+Lbb7995TZsZaFr165QqVTYtGkTzp49+8or0AsUzDEgIEB3xTkAPHr0CFOnTsXDhw/xwQcf6J5V5ufnB3t7e2zfvh179uzRjX/48CG++uqrQlfg29ra4qOPPsLjx48xdepU3L17V+/PmDFjBi5cuABbW1tuw0ZERERERKRA7N7s3kREJE/cAp2IiMgEeXl54dNPP8XatWvRt29fuLi4oHLlyjh58iRu3ryJWrVqYcmSJXrPEBsxYgSCgoIQFBSEXbt2oVq1akhJSYFWq8UHH3yAAwcOGCxvzZo10apVK6SmpgJ49RZsBYYMGYLU1FTs3r0bPXr0gKurK2xsbHD8+HHcv38farUac+fO1Y2vUqUK5s6di4kTJ+Lzzz+Hs7MzHBwckJycDK1Wi/r16xe62n7y5Mk4ffo0EhIS0LlzZ7Ro0QI2NjZITU1FVlYW3n77bcycObNs/2MQERERERGRJLB7s3sTEZE88Q5wIiIiEzVt2jT89NNPcHd3x5kzZ3Dw4EGUL18eY8aMQXh4OOrXr683fsiQIZg/fz6aN2+OjIwMJCcnw93dHb/99luhsYbQrVs3AECzZs1Qr1691443MzPDkiVLEBwcjGbNmiElJQVHjx5FjRo1MHXqVGzduhVVqlTRe4+npyd+/fVXeHp64uLFi/j999/RtGlT/PLLL6hRo0ahP8Pa2hpr167F119/jQYNGiA9PR2JiYlwcHDA+PHjsW3bNt1zzoiIiIiIiEh52L3ZvYmISH5UgiAIYocgIiIiIiIiIiIiIiIiIiJ6U7wDnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgW/g+UClEIU8VIWAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 214 coefficients adjusted\n", - "\t 567 coefficients converged\n", - "\t 190 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChPklEQVR4nOzdeXxM9/7H8ffM5EYSpIlcEoRWo5Hat2i0lCK0RTVyVVUUVUtt11W0lttyW6rlcquqitCoJbSxVl21dvuholdbRZVGbCUaS8SSSGZ+f3hkmpEgM9kmmdfz8fBgzjLnM/P9Yj55zznHYLFYLAIAAAAAAAAAAECeGIu7AAAAAAAAAAAAgJKEcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUA8sFisahNmzaqVauWZs+ebde+q1atUq1atbRq1Srrslq1aqlXr14FXWYOSUlJunr1aqEfpyBkZmbqxIkTd93uvffeU61ate74q02bNoVe77Fjxwr9GAAAAHBe27dv17Bhw9SmTRvVrVtXDz30kF588UVt27atyGpIT0/X66+/rmbNmql+/fp68803c1326quvqlatWjp58qRdz5/12Xv37t2F9Aps3e0z9uuvv65atWopLi7ujtudPHlSISEh6t27d56PvXv3btWqVUvvvfdenvcpTrt27VKtWrX04IMP3rGPunz5skaMGKHGjRurUaNGio6OliSlpaXpzJkzRVWupPz11RK9dV7ltbcGkHduxV0AAJRku3bt0qlTp+Tl5aWVK1fqpZdekslkcvj53nnnHf31r38twApzWrNmjSZNmqT169fLy8urUI+VX6dPn9bAgQPVvn17DRs2LE/7dO/eXU2aNMl1XdmyZQuyvBxeeuklpaam6uOPPy7U4wAAAMD5pKamaty4cdq0aZPq1Kmjrl27qlKlSjpz5ozWrFmjl156SS+88IJeeeWVQq9l5cqVio2N1SOPPKInnnhCDzzwQK7LLBaLmjdvrgoVKtj1/OHh4apevbqCgoIK6RX8KS+fsf/2t78pNjZW69evV2Rk5G23W7NmjSwWi/72t78VRqlOIS4uTl5eXrp69apWrFihUaNG5brdnDlztHHjRnXs2FHNmzdXw4YNdeDAAQ0dOlRDhw5V165di6zmgu6rJXrrWznSWwO4O8IVAMiHTz/9VH/5y1/Up08fzZkzR9u3b1e7du0cfr4uXboUYHW527VrV4n5Zs2JEyd0+PBhtW/fPs/7NGzYsEjex9xs27ZNzZo1K5ZjAwAAoHhNmDBBmzZt0pgxY9SvXz+bdYMGDVK/fv20cOFC3X///erWrVuh1vLLL79IksaMGaOQkBBJsp7VkX2ZJDVq1Mju5w8JCbF5jsKUl8/Y9erVs55Jc/bsWfn7++e63dq1a3XPPffY1V+UJKmpqdq8ebPatm2rgwcPatWqVRo+fLjc3d1zbJs1RyZNmqTy5ctLunkGyKlTp4q0Zqng+2qJ3vpWjvTWAO6Oy4IBgIMuX76sLVu2qH79+nrqqackScuXLy/mqgAAAAAUtW+++UYbN25Uhw4dcgQrkuTu7q4pU6bIZDJp8eLFhV7PjRs3JEnlypW747LSJDIyUmazWZ9//nmu6/fu3avjx4+rc+fOKlOmTBFXVzQ2bNiga9euKSwsTO3atVNycrI2b96c67ZZ8yErWCku9NUASjLCFQBw0Geffabr16/rkUceUY0aNVSrVi19++23uV7DdPfu3Xr++efVuHFjhYWF6c0338z1Gy63Xhf2dtdAPnnypGrVqqVXX33VuuzatWt666239Pjjj6t+/fp66KGHNHDgQO3du9e6TZs2bbR69WpJUtu2ba3HevXVV9WoUSMdP35cQ4cOVZMmTdS4cWO99NJLOnPmjE6dOqXhw4erSZMmCgsL04gRI5SUlGRTk9ls1scff6wuXbqofv36atq0qV588UWb40t/Xp/56NGjmjBhgh555BHVq1dPXbp00fr16222e/755yVJs2fPduha0HdisVj0ySef6LnnnlPTpk1Vp04dtWjRQiNHjlRiYmKO7T///HP17NlTTZo00UMPPaTevXtr586dkv68DrMkfffddzmu9/vll1+qd+/eaty4serXr68uXbpo8eLFMpvN1m2yxvT999/XP/7xD9WrV08PP/ywfvrpJ2VmZmr27Nnq3LmzGjZsqKZNm6pXr15Fet1uAAAA3N6aNWsk6Y73eKhWrZrWr19v/Tye5ejRoxo5cqQefvhh1a1bV23bttXUqVN16dKlHM/x22+/aeTIkWrevLnq1q2r9u3b6z//+Y+uX78u6c/PlNk/82fdf/DWZVLu/YbFYtHy5cvVtWtXNWzYUA8//LAGDRqkn3/+2brN7e658vXXX1v7ngYNGqhr1642n4ulPz87b9iwQXPnzlV4eLjq1q2rNm3a6N1331VGRobNdlLun7Fv9dRTT+kvf/mLTU+RXdYYZV0S7MaNG4qOjlZkZKQaNWqkunXrqnXr1powYYKSk5NvexzpZl+V2/0cc7v3hyT9+OOPGjRokJo1a6Z69eqpU6dOWrhwoTIzM222O3DggAYNGqSWLVta58Kbb76pixcv3rGeLFlnJz3yyCN6/PHHJeUMKrLe1++++06SrPemfPXVVzV27FhJ0tixY63vvWR/r/fll1/qiSeeUN26dRUVFXXHmu3pq7Pqp7e2fb+Lu7cGXBmXBQMAB2V9cH3iiSckSR07dtQvv/yi2NhYjR492rrdjh07NGTIEFWqVEkDBw6U0WjUp59+esfGwBEjR47Ut99+q549e+r+++/XH3/8oaVLl6p379769NNPFRISonHjxmnRokWKj4/X2LFj9cADD1j3v3Hjhp577jk1a9ZMY8aM0b59+7Rq1SqdPXtWf/zxh0JDQzVmzBj98MMPiouLU2pqqhYsWGDdf9SoUdqwYYM6dOigZ555RpcuXdKqVavUq1cvzZgxw/rhPsuAAQOs70l6erpiYmI0atQoVaxYUWFhYQoPD1dGRoa14QoPD8/TtaCvXr2q8+fP51huMpl0zz33WB+/9dZbiomJUbt27fSPf/xDkhQfH6/PP/9cBw4c0Oeffy6j8eZ3EGbNmqX3339fISEhGjRokNzd3bVs2TL169dPH3zwgerUqaN33nlHY8aM0f33369BgwapcePGkqSFCxfq7bff1r333qv+/fvLy8tLW7Zs0eTJk7V7926999571uNI0oIFCxQcHKwJEybo2LFjql27tt566y0tXbpUzzzzjJ5//nldvnxZsbGxGjx4sD788EO1atUqL1MEAAAAheTHH3+Um5ubGjRocMftbr1HSXx8vPr16yeTyaQePXqoatWq2rdvnz766CNt27ZNsbGx1s/AP/74o/r06aNy5cqpZ8+eqlChgvbt26e5c+dq586dWrx4sSpUqKB33nlHK1eutH7mv+eee2Q0Gm2W+fr63rbGV155RWvXrlXTpk01YsQIpaen6+OPP1ZUVJSWLl2q2rVr57rf0qVL9cYbb6hevXoaOnSojEajtm7dqrFjx+rgwYMaP368zfYzZsyQxWJR9+7d5e3trVWrVmnOnDkyGAwaPny4goKCbvsZOze+vr5q27at/vvf/+ro0aM273VaWpo2btyoOnXq6MEHH5QkjRgxQlu3blVERISeeeYZpaWl6auvvtInn3yi06dPa+HChXccy7zaunWr/v73vyswMFAvvviivLy89O233+rtt9/W999/r/fee08Gg0EnTpxQ7969VbFiRfXp00fe3t764YcftGTJEv34449asWKFDAbDbY9z9OhR/fDDD2rUqJGqVKmiKlWq6L777tOePXts3o+s93Xu3Ln67bff9M4776hs2bLy8/OTu7u7VqxYkeM+lvb2eiNGjNDf/vY33Xfffblekiy7vPbVEr11UffWAPLAAgCw2+HDhy3BwcGWp59+2rrs+PHjluDgYEtYWJglLS3NYrFYLGaz2dKmTRtL06ZNLX/88Yd125SUFEv79u0twcHBlri4OOvy4OBgS1RUlPXxK6+8YgkODracOHHC5vgnTpywBAcHW1555RWLxWKxJCcnW4KDgy2vv/66zXb79u2ztG/f3rJy5co7PmfWslv379KliyU4ONjyxhtv2Czv1q2bJSQkxPo6P//8c0twcLBl/vz5NtulpqZaHn/8cctDDz1kuXr1qsVisVhmzZplCQ4OtvTv399iNput2+7Zs8cSHBxsGTlypHXZrl27LMHBwZZZs2ZZ7ibreW/367HHHrNue/78eUvt2rUtAwcOzPE8w4cPtwQHB1v2799vsVgslmPHjlkefPBBS1RUlPX1WiwWyx9//GFp0qSJpWvXrtZlt47f8ePHLbVr17Y8+eSTlitXrliXm81my6hRoyzBwcGWVatWWSyWP8e0YcOGlnPnztnU1LBhQ8uLL75os+z333+3tGvXzvLee+/d9b0BAABA4WrQoIHl4YcftmufzMxMS3h4uKVu3bqWI0eO2KxbuXKlJTg42PLqq69aLJabnx87duxoadWqleXChQu5bjtv3jzrsjt95r/Tsp07d1o/k2f/rH7kyBFLSEiIZdiwYRaL5c/P3rt27bJYLDc/m9apU8cycOBAm/3MZrNl9OjRluDgYMsPP/xgsVj+/Iz/yCOPWC5dumTd9sqVK5YmTZpYWrRoYfP6bv2MfSdffvmlJTg42DJz5kyb5Rs2bLAEBwdbli5darFYLJaDBw/m2udYLBZLZGSkJTg42Po+59aTPPbYYzb9RZa4uDibHu/q1auWhx56yBIREWHTS1gsFsvMmTMtwcHBlg0bNlgsFotlwYIFNu9TlrfeessSERFhOXPmzB1f+9SpUy3BwcGWmJgY67KsccrtdUZFRVmCg4PvWL/F4livN3z48DvWmiWvfbXFQm9dlL01gLzjsmAA4ICsb9d07NjRuqxatWpq2LChzp8/ry+++EKSdPDgQZ08eVJdunSRn5+fddvy5curR48eBVZPuXLlVL58eW3cuFErV67UuXPnJEkNGjTQpk2b8nzDzE6dOtk8zvp205NPPmmzvHr16jKbzfrjjz8k3by2ryR16NBB58+ft/5KS0tT+/btdeHCBe3Zs8fmOTp37mzzzav69etLkvU5HdWvXz8tWrQox69p06ZZt/H19VV8fLymT59us29KSoo8PT0lyXpq+bZt25SZmanevXvbfOvKz89Py5Yt03vvvXfbWjZv3qyMjAwNGDBAXl5e1uUGg0Evv/yyJOW4JnSDBg3017/+1WZZQECAvvvuO0VHR1tP3w4ICNDmzZs1dOjQPL83AAAAKBwmk8l6Oau8OnDggBITE/XUU0/lOKPlb3/7m+69915t2rRJmZmZ+uWXX/Trr7+qVatWMpvNNp+5H3vsMZUpU+a299awx5YtWyRJL774os1n9aCgIH366af65z//met+X3zxhW7cuKEnnnhCFy5csNZ24cIFa8+U1SNleeyxx+Tt7W197OXlpaCgoLtekutOWrRoocqVK+uzzz6zWb569Wp5eHioc+fOkqSQkBDt3btXI0eOtNkuOTnZWlNB3Kj8//7v/3ThwgV16NBBqampNuOW1WNljVvlypUlSdOmTdPOnTuVnp4u6eZlplatWiV/f//bHicjI0Pr1q2T0Wi0ngEi/dmvrl27VteuXXPoNTjS6+V2ybTc5LWvluiti6O3BnB3XBYMAOx048YNrVu3TtLND1jZr1UaFhamffv2afny5erUqZOOHz8u6eYHplvVrFmzwGpyd3fX1KlTNXbsWGvDExwcrBYtWqhz5863PXX/Vrf+UP8vf/mLJKlixYo2y93cbv73kXXPkISEBElSu3btbvvcp06duuOxsoKL7PchcUTNmjX18MMP33W7MmXKaOvWrdq+fbuOHz+ukydP6vfff7d+KM2qI2t877///hzPERwcfMdjZI1/9lPEswQEBKh8+fI5rnV76/siSZMnT9aIESP0zjvv6J133lH16tX1yCOPqGPHjgoNDb3rawUAAEDh8vf3V0JCgtLT0+96GaQsd/qsaDAYVLNmTSUmJurChQvWz9uxsbGKjY3N9flu/bztiKzPpreGPZJUp06d2+6XVd+YMWNuu83d+gHpZk9w631I7GE0GhUREaE5c+bof//7nxo1aqRz587p22+/VadOnWxu3u7u7q7PP//cen+PkydP6ty5czn6gfzIel9mzJihGTNm5LpN1vvSoUMHRUZGatWqVerTp488PDzUpEkTtWrVSk8//bTNJY5vtWPHDv3xxx+qV6+e0tLSrOPo7u6u++67T8eOHdOGDRus95tx5DXY0+vd2j/mxp6+WhK9dTZF1VsDuDvCFQCw044dO6zfprrdzfni4+N15MgR62OLxZJjm/x80Mmt4WjXrp0eeeQRff311/rmm2+0e/duLVy4UIsWLdK4ceOsN7C7k6wPdre607V9s+opW7asZs+efdttatSoYfM4+31GitqNGzc0dOhQ7dixQ3Xr1lXdunXVoUMH1a5dW19++aU+/PBDm22lu78Hucka99vtazabczTfuY1B48aNtWXLFu3atUtff/21du/erdjYWC1fvlx9+/a1ufkiAAAAil5oaKiOHj2q77//XmFhYbfdbuzYsbpx48YdQ4gsWf2Cu7u79c89e/a87Q9db/dZ3h5Zn33tldWfvPHGGwoMDMx1m1vv8VBY/UDXrl31wQcfaP369WrUqJHWr1+vzMxMm2AhNTVVvXv31s8//6wmTZqobt266tKli+rVq6eYmBjrD/3tdWufljVuw4cPV6NGjXLdp2zZspJunv00ZcoUDR48WNu3b9f//d//KT4+Xt9++60+/PBDxcbG5hosSH+eAfLTTz+pbdu2uW4TGxvrULjiSK9nMpnu+rz29NXZwxN6a+fqrQFXR7gCAHbK+uA6cOBA6+m22X3yySfasWOHzYfXo0eP5tguMTHxrsfK+lCalpZmszzr1OQsqamp+uWXXxQYGKj27durffv2kqRDhw6pd+/eev/99/P0AdBRgYGBSkhIUEhISI6m6eDBg0pKSrJebssZfP7559qxY4cGDBhgvTxXltWrV9s8zmoOExIScnyI/eijj3TkyBFNmDBBHh4eOY6T1fwcPnzYeuPMLKdPn9aVK1esp//fTlpamn755Rfdc889evTRR/Xoo49Kkk6cOKEXXnhBMTExGjp0qMqVK5eHVw4AAIDC0KlTJ8XGxmrZsmW3DVd+//13rVu3Tt7e3vLx8VG1atUkSb/++muObS0Wi44ePapy5crJ29vbJrC49Sxts9msTZs2WZ8vP7J/9q1Vq5bNuhkzZuj69esaN27cbffz9vbOUV9SUpJ+/PHHAqkvL6pVq6aHHnpIGzdu1IQJE7R+/Xrde++9atasmXWbxYsXa//+/Zo0aZKeffZZm/3zciklk8mkK1eu5Fh+a5+W9b54eHjkeF9SU1P1zTffWM9kOHXqlI4fP67mzZurV69e6tWrlzIyMhQdHa0ZM2Zo+fLleuWVV3IcMzk5WV999ZXKli2rt99+O8cP781ms1555RX99NNP+vnnn+94BlJuCqvXs6evnjBhgu677z5J9NbO1lsDro5oEwDscO7cOX399dfy8fHRkCFD1K5duxy/hg8fLklas2aN7r33XtWoUUPr1q2zOc35+vXrWrJkyV2PV6lSJUk3v4GU3Zo1a2weHz58WM8995zmzJljs7xmzZoqX768zbdmsr7Vkts3fhzVoUMHSdJ//vMfm+WpqakaMWKEhgwZkuNDbF5kfQAu6NOZL1y4IEk5GsbExERt2rRJ0p/fYGrbtq0MBoOWLl1qcx3tixcvav78+frxxx+twYrRaLSpNTw8XCaTSR9++KHNNZstFoveffddSdLjjz9+11q7d++uN954w2Z5tWrV5O/vL4PBwDeVAAAAilloaKjCw8O1adMmLVq0KMf6y5cv6+9//7syMjI0dOhQubu7q3bt2qpWrZrWrVuX4wfGcXFxOn78uPUHu3Xr1lXVqlW1evVq6+WRsqxYsUIjRoyw/rA6P7LOiomJibFZfvz4cX300Uc6ceJErvu1b99eRqNRc+fO1fXr123WTZ06VUOGDNH+/fsdqunWz9h5ERkZqfPnz2vNmjU6cOBAjjM2btcP/O9//7Pez+JOlyerVKmSzp8/b3N5pvT0dG3cuNFmuxYtWqhs2bL66KOPrMfMMnfuXP3973/Xl19+aX3cp08f/fDDD9Zt3Nzc1KBBA0m3PxtkzZo1ysjIUJcuXRQeHp6jP23fvr0iIyMlScuXL7/ta5L+7BWzv9+F0evZ21dfu3ZNISEh9NZO2FsDro4zVwDADlkfXLt27aoyZcrkuk2dOnUUGhqqPXv26LPPPtObb76pF154Qd26dVPPnj1Vrlw5xcXF6fLly3c9XkREhD788EO9+eabOnnypCpWrKjt27fr8OHDNsdv3LixWrRoodjYWKWkpKhZs2bKzMzUpk2bdOLECZtvOGVdj3XBggVq2bLlHa/lmlddu3bVf//7X61YsULHjx9XmzZtlJGRoU8++UTHjh3T6NGj73gDxtvJulHhtm3bVKVKFYWHh8vHxyff9bZs2VL//ve/NXnyZB0/flwVK1bUr7/+qri4OGuAkpKSIunm9aYHDBigDz/8UD169FDHjh1lNpu1cuVKXbp0yRqSZNV76NAhLVu2TE2bNlVwcLBGjBihf//733r66afVtWtXeXl5aevWrdq1a5cee+wxPfXUU3esNSAgQN26ddOKFSvUr18/tWnTRgaDQd9884327NmjqKgoeXl55fs9AQAAQP5MmTJFly5d0tSpU7V+/Xq1b99eFSpU0LFjx7R69WqdP39ePXv2VM+ePSXd/GHnm2++qQEDBqhbt27q0aOHAgMD9eOPP2r16tWqWrWqRo0aZbPtwIED1bVrVz377LOqXr26fvrpJ8XFxal69eoaPHhwvl9Dy5Yt1alTJ8XFxenMmTNq06aNUlNTtXTpUpUpU0ajR4/Odb/77rtPw4YN07vvvqsuXbooIiJC3t7e2rp1q7755hs99thj1qDIXrl9xr6bDh066I033tDbb78tNzc3Pf300zbr27Rpo48//lijRo3Sc889p/Lly2v//v1avXq1TCaTbty4Ye0HchMZGan4+Hj169dPzz33nMxms+Li4nIEMt7e3nrttdc0duxYde7cWd27d1elSpW0a9cuff7556pfv76ee+45SVKfPn20ceNGDRgwQM8++6wCAwN19uxZLV++XOXLl9czzzyTay2rVq2SJOvz5Ob555/X0qVLtWHDBr366qu3Pes9q1dct26dLBaLtYcp6F7Pkb66W7du9NZO2FsDro5wBQDssHr1ahkMhjt+cJVufjDes2ePYmNjFRcXp2XLlmnWrFn66KOPJN38Rljr1q3197///Y7PU716dc2fP1+zZ8/WvHnz5OnpqZYtW2r58uXq2LGjzbazZs3SwoULrZe8kqSQkBBNnz5dnTt3tm7Xo0cPfffdd4qLi9OuXbsK5AOgyWTS3LlzFRMTo7Vr12r69Ony9PRUUFCQ3nvvPYcbqRo1aqhv37769NNPNXnyZAUGBqp58+b5rjcoKEjz5s3TrFmzFB0dLUmqXLmyoqKi9Pjjj+vpp5/W119/bT2rZOTIkbr//vu1ZMkSzZw5U56enqpXr56mTZumevXqWZ93zJgxmj59uqZMmaJBgwYpODhYAwYM0P3336+PPvrIei+XGjVq6LXXXlOPHj3ydNbJa6+9pvvvv1+rV6/WjBkzlJmZqfvvv1///Oc/7zoXAQAAUDS8vb0VHR2tzz//XKtWrdKyZct0/vx5lStXTg0aNFDPnj2tl3jNEhYWppUrV2rOnDmKi4tTamqqqlSpohdeeEGDBg2St7e3dduHH35YK1eu1AcffGD9gXJAQICee+45DRw4ME83Ec+LadOmqX79+vr000/19ttv65577lHTpk3197//PcdlcrMbPHiwatasqcWLF2vevHkym82qVq2axowZo169euXpPhy5ye0z9t2UKVNGnTp10rJly9SmTRvrWQtZmjdvrhkzZlh7LXd3d1WpUkUjRoxQzZo1NWDAAH399dc2n/Wz69q1q65cuaJly5bpnXfe0V//+ld16dJFjz32mLp3726z7dNPP63KlStrwYIFWrx4sdLS0lSlShW99NJL6tevn/WLUkFBQVqyZIk++OADrVmzRsnJyfLx8VFYWJiGDBmS6/1WfvjhBx05ckShoaF64IEHbvt+VK9eXY899pi2bt2qtWvXWgO+W4WFhalz587asmWLfvrpJzVt2lQ1atQo8F7Pkb66W7duatq0Kb21k/XWgKszWAry3DUAgMMsFotCQkL00EMPafHixcVdDgAAAAAAJQ69NYCiwkXaAcBJZJ12XrZs2WKuBAAAAACAkoneGkBR4bJgAOAEPvzwQ/3888+Sbl5bFgAAAAAA2IfeGkBRIlwBgGKWkpKimJgY3bhxQ506dVLfvn2LuyQAAAAAAEoUemsARY17rgAAAAAAAAAAANiBe64AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdnD5G9pbLBaZzdx2Ji+MRgPvFWwwJ3Ar5gSyYz7gVsyJ4mc0GmQwGIq7DJQw9EzOj39fXQvj7ToYa9fCeLsOxtr55bVvcvlwxWy26Pz5K8VdhtNzczPK17esUlKuKiPDXNzlwAkwJ3Ar5gSyYz7gVswJ51ChQlmZTIQrsA89k3Pj31fXwni7DsbatTDeroOxLhny2jdxWTAAAAAAAAAAAAA7EK4AAAAAgJNITk7W6NGjFRYWpkaNGmnAgAE6cuSIdf3BgwcVFRWlhg0bqnXr1oqOjrbZ32w2a9asWWrZsqUaNGigF154QYmJiUX9MgAAAIBSj3AFAAAAAJzESy+9pBMnTmj+/Pn69NNP5eHhoT59+ujatWu6cOGC+vbtq/vuu09xcXEaNmyY3n33XcXFxVn3nzNnjmJjY/Xmm29qxYoVMhgM6t+/v9LT04vxVQEAAAClj8vfcwUAAAAAnMGFCxcUGBiol156SQ888IAkafDgwerSpYt+/fVX7dy5U+7u7po4caLc3NwUFBSkxMREzZ8/X5GRkUpPT9fChQs1evRotWrVSpI0c+ZMtWzZUps3b1bHjh2L8+UBAAAApQpnrgAAAACAE/D19dWMGTOswcoff/yh6OhoBQQEqGbNmoqPj1doaKjc3P78jlxYWJgSEhKUnJysQ4cO6cqVKwoLC7Ou9/b2Vu3atbVnz54ifz0AAABAacaZKwAAAADgZP75z39q5cqVcnd31wcffCAvLy+dOXNGwcHBNttVqlRJknT69GmdOXNGklS5cuUc2/z+++/5qsfNje/lOSuTyWjzO0o3xtt1MNauhfF2HYx16UK4AgAAAABOpnfv3urevbuWL1+uIUOGaNmyZbp+/brc3d1ttitTpowkKS0tTdeuXZOkXLe5dOmSw7UYjQb5+pZ1eH8UDW9vz+IuAUWI8XYdjLVrYbxdB2NdOhCuAAAAAICTqVmzpiTpjTfe0L59+7RkyRJ5eHjkuDF9WlqaJMnLy0seHh6SpPT0dOufs7bx9HS8gTebLUpJuerw/ihcJpNR3t6eSkm5psxMc3GXg0LGeLsOxtq1MN6ug7EuGby9PfN0dhHhCgAAAAA4geTkZO3cuVNPPPGETCaTJMloNCooKEhJSUkKCAhQUlKSzT5Zj/39/ZWRkWFdVr16dZttQkJC8lVbRgbNv7PLzDQzTi6E8XYdjLVrYbxdB2NdOnBxNwAAAABwAklJSXr55Zf13XffWZfduHFDBw4cUFBQkEJDQ7V3715lZmZa1+/cuVM1atSQn5+fQkJCVK5cOe3evdu6PiUlRQcOHFDTpk2L9LUAAAAApR3hCgAAAAA4gZCQELVo0UKTJk1SfHy8Dh8+rFdeeUUpKSnq06ePIiMjlZqaqvHjx+vIkSNatWqVYmJiNHDgQEk377USFRWl6dOna+vWrTp06JD+8Y9/KCAgQOHh4cX86gAAAIDSxWkuC7Z79249//zzua4LDAzU1q1bdfDgQU2ePFn79++Xj4+PevXqpX79+hVxpQAAAABQ8AwGg/7zn//o3//+t0aMGKHLly+radOmWrp0qapUqSJJWrBggSZPnqyIiAhVrFhRY8aMUUREhPU5hg8froyMDE2YMEHXr19XaGiooqOjc9zkHgAAAED+GCwWi6W4i5Bu3nTx0qVLNssOHz6sAQMGaOLEiWrXrp2eeOIJtWvXTn379tW+ffs0adIkvf7664qMjHT4uJmZZp0/fyW/5Zd6bm5G+fqW1YULV7geICQxJ5ATcwLZMR9wK+aEc6hQoWyebswIZEfP5Nz499W1MN6ug7F2LYy362CsS4a89k1Oc+aKu7u7KlasaH1848YNvfXWW2rfvr26deumDz/8UO7u7po4caLc3NwUFBSkxMREzZ8/P1/hCgAAAAAAAAAAgD2c9mtrS5cu1e+//66xY8dKkuLj4xUaGio3tz/zoLCwMCUkJCg5Obm4ygQAAAAAAAAAAC7Gac5cyS4tLU1z585V7969ValSJUnSmTNnFBwcbLNd1rrTp0/Lz8/P4eO5uTltxuQ0sk6D4jISyMKcwK2YE8iO+YBbMScAAAAAAKWJU4Yra9euVVpamnr16mVddv369Rw3YSxTpoykm2GMo4xGg3x9yzq8v6vx9vYs7hLgZJgTuBVzAtkxH3Ar5gQAAAAAoDRwynBlzZo1at++vXx9fa3LPDw8lJ6ebrNdVqji5eXl8LHMZotSUq46vL+rMJmM8vb2VErKNWVmcrMlMCeQE3MC2TEfcCvmhHPw9vbk7CEAAAAAKABOF66cP39e//vf/zRw4ECb5QEBAUpKSrJZlvXY398/X8fMyKDBz6vMTDPvF2wwJ3Ar5gSyYz7gVswJAAAAAEBp4HRfW/v+++9lMBjUrFkzm+WhoaHau3evMjMzrct27typGjVq5Ot+KwAAAAAAAAAAAPZwunDl0KFDqlatmjw9ba/HHRkZqdTUVI0fP15HjhzRqlWrFBMTk+MMFwAAAAAAAAAAgMLkdOHKH3/8IR8fnxzL/fz8tGDBAiUkJCgiIkKzZ8/WmDFjFBERUfRFAgAAAAAAAAAAl+V091yZOHHibdfVr19fK1asKLpiAAAAAAAAAAAAbuF04QqA4mc0GmQ0Gu64jclktPndbLbIbLYUem0AAAAAAAAlzZ1+1nLrz1iy8LMWwLkRrgCwYTQa5OPjleM/9Nvx9r55f6TMTLMuXrzKf/oAAAAAAADZ5PVnLVk/Y8nCz1oA50a4AsCG0WiQyWTU9KV7dfLs5TztE+hfXqN6NpHRaOA/fAAAAAAAgGz4WQtQOhGuAMjVybOXdfTUpeIuAwAAAAAAoFTgZy1A6ZK36/4AAAAAAAAAAABAEuEKAAAAAAAAAACAXQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHZwuXFmzZo2efPJJ1atXTx07dtTGjRut6w4ePKioqCg1bNhQrVu3VnR0dDFWCgAAAAAAAAAAXJFThStr167VuHHj1L17d3322Wd68sknNXLkSP3vf//ThQsX1LdvX913332Ki4vTsGHD9O677youLq64ywYAAAAAAAAAAC7ErbgLyGKxWPTuu++qd+/e6t27tyRpyJAh+v777/Xdd9/pu+++k7u7uyZOnCg3NzcFBQUpMTFR8+fPV2RkZDFXDwAAAAAAAAAAXIXTnLny22+/6dSpU+rcubPN8ujoaA0cOFDx8fEKDQ2Vm9ufeVBYWJgSEhKUnJxc1OUCAAAAAAAAAAAX5TThyrFjxyRJV69eVb9+/dS8eXN169ZN27ZtkySdOXNGAQEBNvtUqlRJknT69OkirRUAAAAACsPFixf12muv6dFHH1Xjxo3Vo0cPxcfHW9ePHTtWtWrVsvn16KOPWtebzWbNmjVLLVu2VIMGDfTCCy8oMTGxOF4KAAAAUKo5zWXBUlNTJUmvvPKKhg4dqlGjRmnTpk0aPHiwFi1apOvXr8vd3d1mnzJlykiS0tLS8nVsNzenyZiclslktPkdpVd+xpj54dr4dwLZMR9wK+YEkDcjR45UcnKyZsyYoQoVKmjZsmXq16+fVq1apaCgIP3yyy8aNGiQoqKirPuYTCbrn+fMmaPY2Fi99dZb8vf317Rp09S/f3999tlnOfopAAAAAI5zmnDlL3/5iySpX79+ioiIkCQ9+OCDOnDggBYtWiQPDw+lp6fb7JMVqnh5eTl8XKPRIF/fsg7v72q8vT2LuwQ4MeYHJOYBbDEfcCvmBHB7iYmJ+vbbb7V8+XI1btxYkjR+/Hh99dVX+uyzzzR06FAdOXJEgwcPVsWKFXPsn56eroULF2r06NFq1aqVJGnmzJlq2bKlNm/erI4dOxbp6wEAAABKM6cJV7Iu+RUcHGyzvGbNmtqxY4eqVq2qpKQkm3VZj/39/R0+rtlsUUrKVYf3dxUmk1He3p5KSbmmzExzcZeDQpQ11o5gfrg2/p1AdswH3Io54Ry8vT05e8iJ+fr6at68eapbt651mcFgkMVi0aVLl3Ts2DGlpaUpKCgo1/0PHTqkK1euKCwszLrM29tbtWvX1p49ewhXAAAAgALkNOFK7dq1VbZsWf3www9q2rSpdfnhw4dVvXp1NW7cWLGxscrMzLSe9r5z507VqFFDfn5++Tp2RgYNfl5lZpp5v3BbzA9IzAPYYj7gVswJ4Pa8vb2tZ5xk2bhxo44fP64WLVro8OHDMhgMiomJ0VdffSWj0ahWrVppxIgRKl++vM6cOSNJqly5ss1zVKpUSb///nuRvQ4AAADAFThNuOLh4aEXX3xR77//vvz9/VW/fn1t2LBB3377rT766CPVrFlTCxYs0Pjx4/Xiiy/qxx9/VExMjCZNmlTcpQMAAABAgdu7d6/GjRuntm3bqk2bNpo1a5aMRqOqVq2quXPnKjExUW+//bYOHz6smJgYXbt2TZJyvVflpUuX8lUL96l0XtzTyrUw3q6DsS5duL8tsvB3u3RxmnBFkgYPHixPT0/NnDlTZ8+eVVBQkN577z099NBDkqQFCxZo8uTJioiIUMWKFTVmzBjr/VkAAAAAoLTYsmWLRo0apQYNGmjGjBmSpGHDhqlPnz7y9vaWdPOSyhUrVlT37t31008/ycPDQ9LNe69k/Vm6ea9KT0/H73fEfSpLBu5p5VoYb9fBWIM5UDoxrqWDU4UrktS3b1/17ds313X169fXihUrirgiAAAAACg6S5Ys0eTJkxUeHq7p06dbz0QxGAzWYCVL1j0rz5w5Y70cWFJSkqpXr27dJikpSSEhIQ7Xw30qnRv3tHItjLfrYKxLF+5viyz83S4Z8nqvSqcLVwAAAADAVS1btkxvvPGGevXqpXHjxslo/LOpe/nll3Xx4kVFR0dbl/3000+SpJo1a6patWoqV66cdu/ebQ1XUlJSdODAAUVFReWrLu6V5Py4p5VrYbxdB2MN5kDpxLiWDoQrAAAAAOAEEhISNGXKFIWHh2vgwIFKTk62rvPw8FCnTp300ksv6YMPPlDHjh2VkJCgf/3rX+rUqZOCgoIkSVFRUZo+fboqVKigqlWratq0aQoICFB4eHhxvSwAAACgVCJcAQAAAAAnsGnTJt24cUObN2/W5s2bbdZFRERo6tSpevfddzV37lzNnTtX5cuXV+fOnTVixAjrdsOHD1dGRoYmTJig69evKzQ0VNHR0Tlucg8AAAAgfwhXAAAAAMAJDBo0SIMGDbrjNh06dFCHDh1uu95kMmn06NEaPXp0QZcHAAAAIJu735UFAAAAAAAAAAAAVoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsINThSunTp1SrVq1cvz65JNPJEkHDx5UVFSUGjZsqNatWys6OrqYKwYAAAAAAAAAAK7GrbgLyO6XX35RmTJltGXLFhkMBuvy8uXL68KFC+rbt6/atWunSZMmad++fZo0aZJ8fHwUGRlZjFUDAAAAAAAAAABX4lThyuHDh1WjRg1VqlQpx7qYmBi5u7tr4sSJcnNzU1BQkBITEzV//nzCFQAAAAAAAAAAUGSc6rJgv/zyi2rWrJnruvj4eIWGhsrN7c88KCwsTAkJCUpOTi6qEgEAAAAAAAAAgItzujNXKlasqOeee07Hjh3Tvffeq8GDB6tly5Y6c+aMgoODbbbPOsPl9OnT8vPzc/i4bm5OlTE5JZPJaPM7Sq/8jDHzw7Xx7wSyYz7gVswJAAAAAEBp4jThSnp6uo4dOyZPT0+NGTNGXl5eWrdunfr3769Fixbp+vXrcnd3t9mnTJkykqS0tDSHj2s0GuTrWzZftbsSb2/P4i4BToz5AYl5AFvMB9yKOQEAAAAAKA2cJlxxd3fXnj175ObmZg1R6tatq6NHjyo6OloeHh5KT0+32ScrVPHy8nL4uGazRSkpVx0v3EWYTEZ5e3sqJeWaMjPNxV0OClHWWDuC+eHa+HcC2TEfcCvmhHPw9vbk7CEAAAAAKABOE65IuYckwcHB+uabbxQQEKCkpCSbdVmP/f3983XcjAwa/LzKzDTzfuG2mB+QmAewxXzArZgTAAAAAIDSwGm+tnbo0CE1atRI8fHxNsv379+vmjVrKjQ0VHv37lVmZqZ13c6dO1WjRo183W8FAAAAAAAAAADAHk4TrgQHB+uBBx7QpEmTFB8fr6NHj+qtt97Svn37NGjQIEVGRio1NVXjx4/XkSNHtGrVKsXExGjgwIHFXToAAAAAAAAAAHAhBXpZsCtXrshkMsnDw8PufY1Go+bOnavp06drxIgRSklJUe3atbVo0SLVqlVLkrRgwQJNnjxZERERqlixosaMGaOIiIiCfAkAAAAA4LD89EQAAAAASg6Hw5WvvvpK+/fv1+DBgyVJb7/9thYvXiyDwaAePXpo/Pjxdj9nhQoVNGXKlNuur1+/vlasWOFoyQAAAABQYAqjJwIAAABQMjh0WbDt27dr4MCBWrt2rSQpPj5eixYtUtWqVdWoUSMtWbJEy5YtK9BCAQAAAMBZ0BMBAAAArs2hcGXRokWqXr26Fi9eLEnasGGDjEajFi1apI8//liPPfaY4uLiCrRQAAAAAHAW9EQAAACAa3MoXDl48KB69Oghf39/SdK3336r4OBgVa1aVZLUsmVL/fbbbwVXJQAAAAA4EXoiAAAAwLU5FK5kZGSoXLlykqRTp07p+PHjeuihh6zrzWaz3Nwcvp0LAAAAADg1eiIAAADAtTkUrgQGBurAgQOSpE2bNslgMKhly5bW9du3b1dgYGDBVAgAAAAAToaeCAAAAHBtDn2VqkOHDvrggw906tQpfffdd/L391dYWJiOHz+uN998U99++61effXVgq4VAAAAAJwCPREAAADg2hw6c2Xw4MHq0aOHvvvuO1WuXFkzZ86Um5ubLl68qG+++UbPPPOMoqKiCrpWAAAAAHAKhdUTXbx4Ua+99poeffRRNW7cWD169FB8fLx1/cGDBxUVFaWGDRuqdevWio6OttnfbDZr1qxZatmypRo0aKAXXnhBiYmJ+X69AAAAAGw5dOaK0WjUhAkTNGHCBJvlISEh2r59u/WmjgAAAABQGhVWTzRy5EglJydrxowZqlChgpYtW6Z+/fpp1apVqlChgvr27at27dpp0qRJ2rdvnyZNmiQfHx9FRkZKkubMmaPY2Fi99dZb8vf317Rp09S/f3999tlncnd3z/frBgAAAHCTQ2euPP/889q5c2eO5e7u7vL399eWLVv0+OOP57s4AAAAAHBGhdETJSYm6ttvv9Xrr7+upk2b6v7779f48ePl7++vzz77TCtXrpS7u7smTpyooKAgRUZGqk+fPpo/f74kKT09XQsXLtSwYcPUqlUrhYSEaObMmTp79qw2b95cIK8bAAAAwE15OnPl2rVrunDhgvXxd999p/DwcN177705tjWbzfrmm290+vTpgqsSAAAAAIpRUfREvr6+mjdvnurWrWtdZjAYZLFYdOnSJe3fv1+hoaFyc/uzjQsLC9OHH36o5ORknTp1SleuXFFYWJh1vbe3t2rXrq09e/aoY8eOdtUDAAAA4PbyFK6kpqaqU6dOunbtmnXZlClTNGXKlNvu07Bhw3wXBwAAAADOoCh6Im9vb7Vq1cpm2caNG3X8+HG1aNFCM2fOVHBwsM36SpUqSZJOnz6tM2fOSJIqV66cY5vff//drlpu5ebm0EUPUARMJqPN7yjdGG/XwViXLvkZR+ZA6cLf7dIlT+FKxYoV9dprr2n37t2yWCxas2aNmjRpomrVquXY1mg06q9//at69OhR4MUCAAAAQHEojp5o7969GjdunNq2bas2bdrorbfeynHflDJlykiS0tLSrMFPbttcunTJ4TqMRoN8fcs6vD+Khre3Z3GXgCLEeLsOxhrMgdKJcS0d8nxD+6efflpPP/20pJunwPft21dt27YtrLoAAAAAwKkUZU+0ZcsWjRo1Sg0aNNCMGTMkSR4eHkpPT7fZLi0tTZLk5eUlDw8PSTfvvZL156xtPD0db+DNZotSUq46vD8Kl8lklLe3p1JSrikz01zc5aCQMd6ug7EuXbLG0xHMgdKFv9slg7e3Z57OLspzuJLdtm3bHNkNAAAAAEqFwuyJlixZosmTJys8PFzTp0+3nokSEBCgpKQkm22zHvv7+ysjI8O6rHr16jbbhISE5KumjAyaf2eXmWlmnFwI4+06GGswB0onxrV0cChckSSLxaJdu3bp3LlzMptznwhZ3+oCAAAAgNKmMHqiZcuW6Y033lCvXr00btw4GY1/fmMuNDRUsbGxyszMlMlkkiTt3LlTNWrUkJ+fn8qXL69y5cpp9+7d1nAlJSVFBw4cUFRUlGMvEgAAAECuHApXEhMT1b9/f504cSLX9RaLRQaDgXAFAAAAQKlUGD1RQkKCpkyZovDwcA0cOFDJycnWdR4eHoqMjNSCBQs0fvx4vfjii/rxxx8VExOjSZMmSbp5r5WoqChNnz5dFSpUUNWqVTVt2jQFBAQoPDw8X68XAAAAgC2HwpXp06frxIkTioyMVL169XLcMBEAAAAASrPC6Ik2bdqkGzduaPPmzdq8ebPNuoiICE2dOlULFizQ5MmTFRERoYoVK2rMmDGKiIiwbjd8+HBlZGRowoQJun79ukJDQxUdHU3PBgAAABQwh8KVXbt2qUePHnrttdcKuh4AAAAAcHqF0RMNGjRIgwYNuuM29evX14oVK2673mQyafTo0Ro9enSB1QUAAAAgp7vf8j4XGRkZevDBBwu6FgAAAAAoEeiJAAAAANfmULhSp04d/fzzzwVdCwAAAACUCPREAAAAgGtzKFwZPny41q5dq02bNslisRR0TQAAAADg1OiJAAAAANfm0D1XFi5cqHvuuUcjRoyQh4eHfH19ZTAYbLYxGAzasmVLgRQJAAAAAM6EnggAAABwbQ6FK4cPH5bRaFTlypWty279thbf3gIAAABQWtETAQAAAK7NoXBl27ZtBV0HAAAAAJQY9EQAAACAa3Poniu3Sk9Pl9lsLoinAgAAAIASh54IAAAAcC0OhysXL17Uv/71L7Vo0UINGzbU7t27FR8fr0GDBikhIaEgawQAAAAAp0NPBAAAALguh8KVixcvqnv37lq2bJk8PT2t1xK+dOmSduzYoZ49e+rEiRMFWigAAAAAOAt6IgAAAMC1ORSuzJ49W6dOndKiRYu0YsUKayPRtm1bzZs3T1evXtWcOXMKtFAAAAAAcBb0RAAAAIBrcyhc2bZtm5555hk1b95cBoPBZt2jjz6q7t27a/fu3QVSIAAAAAA4G3oiAAAAwLU5FK4kJSUpJCTktuuDgoJ07tw5h4sCAAAAAGdGTwQAAAC4NofCFT8/P506deq26w8fPixfX1+HiwIAAAAAZ0ZPBAAAALg2h8KVRx99VLGxsTp58mSOdd9//71WrlypFi1a5Ls4AAAAAHBG9EQAAACAa3NzZKehQ4dq+/btioiIUJMmTWQwGBQbG6uYmBh9/fXXKleunAYPHlzQtQIAAACAU6AnAgAAAFybQ2eu+Pv7KzY2Vo0aNdJXX30li8WiTZs2aceOHWrYsKE+/vhjBQYGFnStAAAAAOAU6IkAAAAA1+bQmSuSFBgYqHnz5uny5cs6duyYzGazAgMD5efnV5D1AQAAAIBToicCAAAAXJfD4UqW8uXLq169egVRCwAAAACUOPREAAAAgOvJU7gyduxYPfvss2rQoIH18d0YDAZNmTIlf9UBAAAAgBOgJwIAAACQXZ7CldWrV+vhhx+2NhKrV6++6z40EgAAAABKC3oiAAAAANnlKVzZunWrKlSoYPMYAAAAAFwFPREAAACA7PIUrlStWjXXxykpKSpXrpyMRqMk6ddff1XFihXl4+NTsFUCAAAAQDGiJwIAAACQndHRHWfOnKmWLVvq+PHj1mXz589XixYttHDhwgIpDgAAAACcFT0RAAAA4LrydObKrVauXKkPP/xQTZo0UZkyZazLn376af3xxx+aNm2aKleurCeeeKLACgUAAAAAZ0FPBAAAALg2h85cWbZsmR555BEtXbpUlStXti5/+OGHtXDhQjVv3lyLFi0qsCIBAAAAwJnQEwEAAACuzaFwJTExUe3bt7/t+vDwcB09etThogAAAADAmdETAQAAAK7NoXDF09NT586du+36CxcuyGQyOVwUAAAAADgzeiIAAADAtTkUrjRp0kTLli3LtZk4f/68YmNj1bhx43wXBwAAAADOiJ4IAAAAcG0O3dB+wIABeu655/TUU0+pS5cuuv/++2UwGPTbb79p/fr1unjxogYPHlzQtQIAAACAU6AnAgAAAFybQ+FKvXr1NGfOHL3++uv66KOPbNYFBATo/fffV/369QuiPgAAAABwOvREAAAAgGtzKFyRpJYtW2rbtm06cOCATp48qYyMDAUGBqpOnTpcWxgAAABAqUdPBAAAALguh8OVLLVr11bt2rULohYAAAAAKHHoiQAAAADXk6dwZfbs2Wrfvr2Cg4Otj+/GYDBoyJAh+asOAAAAAJwAPREAAACA7PIcrtx77700EgAAAABcEj0RAAAAgOzyFK5ER0frwQcftD5evHhxoRUEAAAAAM6GnggAAABAdnkKV8aNG6eRI0eqS5cukqTTp0+radOmCgwMLNTiAAAAAMAZ0BMBAAAAyM6Yl43Onz+v1NRU6+OxY8dq3759hVUTAAAAADgVeiIAAAAA2eXpzJUqVapozpw5OnnypMqWLSuLxaIvvvhCx44du+0+XF8YAAAAQGlBTwQAAAAguzyFKyNGjNArr7yiRYsWSbrZJHzxxRf64osvbrsPjQQAAACA0oKeCAAAAEB2eQpXwsPDFRYWpmPHjik9PV29e/fWoEGD9PDDDxd2fQAAAABQ7OiJAAAAAGSXp3Clbdu2NjdvrFKliqpUqaJmzZoVanEAAAAA4AzoiQAAAABk59AN7U+fPi1PT89CKwoAAAAAnAk9EQAAAIDsHLqhvSRt3rxZiYmJt92H6wsDAAAAKC3oiQAAAABkxw3tAQAAAOAu6IkAAAAAZJencOWJJ54o8ps3JiQkqGvXrvrnP/+prl27SpIOHjyoyZMna//+/fLx8VGvXr3Ur1+/QqsBAAAAAKTi6YkAAAAAOK88hSuS5OvrK19fX0lSaGioHnrooUK7eeONGzc0atQoXb161brswoUL6tu3r9q1a6dJkyZp3759mjRpknx8fBQZGVkodQAAAABAlqLsiQAAAAA4tzyHK9l9/PHH1j8nJCTo1KlTqlOnjjw9PWU0GuXu7p6vot577z3rdYyzrFy5Uu7u7po4caLc3NwUFBSkxMREzZ8/n3AFAAAAQJEq7J4IAAAAgHMzOrrjvn371LlzZz355JPq37+/Dh06pO+//16tW7fWxo0bHS5oz549WrFihd5++22b5fHx8QoNDZWb2595UFhYmBISEpScnOzw8QAAAADAEYXVEwEAAABwfg6FK7/++qv69u2rP/74Q0899ZR1uaenpzIzMzVq1Cjt2bPH7udNSUnRmDFjNGHCBFWuXNlm3ZkzZxQQEGCzrFKlSpKk06dPO/AqAAAAAMAxhdUTAQAAACgZHLos2HvvvScvLy+tW7dOBoNBa9eulSQ1atRI69atU/fu3TV//nyFhoba9bwTJ05Uw4YN1blz5xzrrl+/nuPU+jJlykiS0tLSHHkZVm5uDp/A4zJMJqPN7yi98jPGzA/Xxr8TyI75gFsxJ1DaFFZPBAAAAKBkcChc+e6779SzZ0/5+fnpwoULNuv8/f3VvXt3LV261K7nXLNmjeLj47V+/fpc13t4eCg9Pd1mWVao4uXlZdexsjMaDfL1LXv3DSFJ8vb2LO4S4MSYH5CYB7DFfMCtmBMoLQqjJwIAAABQcjgUrly5ckX+/v63XX/PPfcoJSXFrueMi4tTcnKyWrdubbP89ddfV3R0tKpUqaKkpCSbdVmP71TL3ZjNFqWkXHV4f1dhMhnl7e2plJRrysw0F3c5KERZY+0I5odr498JZMd8wK2YE87B29uTs4cKSGH0RAAAAABKDofClcDAQP3000965plncl2/a9cuVa1a1a7nnD59uq5fv26zrH379ho+fLiefPJJbdiwQbGxscrMzJTJZJIk7dy5UzVq1JCfn58jL8MqI4MGP68yM828X7gt5gck5gFsMR9wK+YESovC6IkAAAAAlBwOfW2tU6dOWr16tb744gvrMoPBILPZrHnz5mnz5s3q0KGDXc/p7++ve++91+aXJPn5+alq1aqKjIxUamqqxo8fryNHjmjVqlWKiYnRwIEDHXkJAAAAAOCwwuiJAAAAAJQcDp250r9/f/3f//2f/v73v8vb21sGg0Gvv/66Ll68qEuXLikkJKTAQw8/Pz8tWLBAkydPVkREhCpWrKgxY8YoIiKiQI8DAAAAAHdTHD0RAAAAAOfhULji7u6ujz76SDExMdqwYYPS09P1+++/KzAwUM8995z69+8vT8/836z0l19+sXlcv359rVixIt/PCwAAAAD5UVQ9EQAAAADn5FC4Ikl/+ctf9OKLL+rFF18syHoAAAAAoESgJwIAAABcl8PhiiSlpqbqm2++0cmTJ+Xu7q4qVaqoRYsW8vDwKKj6AAAAAMBp0RMBAAAArsnhcGXTpk167bXXlJKSIovFIunmDRzLli2rf/3rX3ryyScLrEgAAAAAcDb0RAAAAIDrcihc+eGHH/Tyyy+rfPnyGj58uB544AGZzWYdPnxYS5Ys0ZgxYxQYGKj69esXdL0AAAAAUOzoiQAAAADX5lC48sEHH8jHx0dr166Vn5+fdXn79u3Vo0cPdenSRQsWLNCsWbMKrFAAAAAAcBb0RAAAAIBrMzqy0//+9z91797dponI4ufnp+7du2vv3r35Lg4AAAAAnBE9EQAAAODaHApXrl69mmsTkaVChQq6fPmyw0UBAAAAgDOjJwIAAABcm0PhSmBgoHbt2nXb9bt27VKVKlUcLgoAAAAAnBk9EQAAAODaHApXOnXqpM2bN2v27NlKT0+3Lk9PT9fs2bO1ZcsWPfnkkwVWJAAAAAA4E3oiAAAAwLU5dEP7/v3768svv9Ts2bO1cOFCVa9eXQaDQYmJibp69apq166tAQMGFHStAAAAAOAU6IkAAAAA1+ZQuOLu7q7FixcrOjpa//3vf3Xs2DFZLBZVr15dHTp0UL9+/eTh4VHQtQIAAACAU6AnAgAAAFybQ+GKJHl4eGjIkCEaMmRIQdYDAAAAACUCPREAAADguuy+58rPP/+c6/KtW7dq27Zt+S4IAAAAAJwZPREAAACAPIcr58+fV1RUlLp166aUlJQc65csWaIhQ4bo2Wef1dmzZwu0SAAAAAAobvREAAAAALLkKVy5evWqevfurfj4eIWGhuratWs5tunZs6cefvhh7du3Ty+88ILS0tIKvFgAAAAAKA70RAAAAACyy1O4EhMTo19//VX/+te/FBMTI39//xzbtGvXTtHR0Ro5cqSOHj2qjz/+uMCLBQAAAIDiQE8EAAAAILs8hSubNm1Sq1at9Mwzz9x12wEDBqhx48b6/PPP810cAAAAADgDeiIAAAAA2eUpXElMTFTz5s3z/KStW7dWQkKCw0UBAAAAgDOhJwIAAACQXZ7CFaPRKA8Pjzw/qY+PjwwGg8NFAQAAAIAzoScCAAAAkF2ewpUqVarot99+y/OTHjlyJNdrEAMAAABASURPBAAAACC7PIUrLVu21Nq1a3XlypW7bpuSkqJ169apUaNG+S4OAAAAAJxBcfREc+bMUa9evWyWjR07VrVq1bL59eijj1rXm81mzZo1Sy1btlSDBg30wgsvKDExMV91AAAAAMgpT+HKs88+q7S0NA0cOFAXLly47XbJyckaMmSIUlJS1LNnzwIrEgAAAACKU1H3RB999JFmzZqVY/kvv/yiQYMG6ZtvvrH+WrNmjXX9nDlzFBsbqzfffFMrVqyQwWBQ//79lZ6e7nAtAAAAAHJyy8tG1atX1/jx4/XPf/5Tbdu21ZNPPqnGjRurUqVKyszM1Llz57R371598cUXunLlil599VXVqVOnsGsHAAAAgCJRVD3R2bNnNX78eO3du1c1atSwWZeZmakjR45o8ODBqlixYo5909PTtXDhQo0ePVqtWrWSJM2cOVMtW7bU5s2b1bFjR8dePAAAAIAc8hSuSFK3bt1UqVIlvfbaa/r0008VFxdns95isahatWqaNm2a2rRpU+CFAgAAAEBxKoqe6Oeff9Y999yjdevW6f3339epU6es644dO6a0tDQFBQXluu+hQ4d05coVhYWFWZd5e3urdu3a2rNnD+EKAAAAUIDyHK5IUqtWrbRjxw7t2rVLP/zwg5KSkmQymeTv769mzZqpfv36hVUnAAAAABS7wu6J2rRpc9tg5vDhwzIYDIqJidFXX30lo9GoVq1aacSIESpfvrzOnDkjSapcubLNfpUqVdLvv/+er7oAAAAA2LIrXJEkg8Gg5s2bq3nz5oVRDwAAAAA4teLqiX799VcZjUZVrVpVc+fOVWJiot5++20dPnxYMTExunbtmiTJ3d3dZr8yZcro0qVL+Tq2m1uebteJYmAyGW1+R+nGeLsOxrp0yc84MgdKF/5uly52hysAAAAAgKI3bNgw9enTR97e3pKk4OBgVaxYUd27d9dPP/0kDw8PSTfvvZL1Z0lKS0uTp6enw8c1Gg3y9S2bv+JR6Ly9HR9jlDyMt+tgrMEcKJ0Y19KBcAUAAAAASgCDwWANVrIEBwdLks6cOWO9HFhSUpKqV69u3SYpKUkhISEOH9dstigl5arD+6NwmUxGeXt7KiXlmjIzzcVdDgoZ4+06GOvSJWs8HcEcKF34u10yeHt75unsIsIVAAAAACgBXn75ZV28eFHR0dHWZT/99JMkqWbNmqpWrZrKlSun3bt3W8OVlJQUHThwQFFRUfk6dkYGzb+zy8w0M04uhPF2HYw1mAOlE+NaOnBxNwAAAAAoATp16qRvv/1WH3zwgY4fP64vv/xS48aNU6dOnRQUFCR3d3dFRUVp+vTp2rp1qw4dOqR//OMfCggIUHh4eHGXDwAAAJQqeTpzZdGiRXr00UcVFBRU2PUAAAAAgNNxhp7oscce07vvvqu5c+dq7ty5Kl++vDp37qwRI0ZYtxk+fLgyMjI0YcIEXb9+XaGhoYqOjs5xk3sAAAAA+ZOncGXWrFny9va2NhJt27bVuHHj1LZt20ItDgAAAACcQXH0RFOnTs2xrEOHDurQocNt9zGZTBo9erRGjx5daHUBAAAAyONlwYxGo3bu3KkrV65Ikk6dOqVr164VamEAAAAA4CzoiQAAAABkl6czV1q2bKnPPvtMGzZskCQZDIa7fhvKYDDowIEDBVMlAAAAABQjeiIAAAAA2eUpXHnzzTdVuXJlHT58WOnp6YqPj1eNGjXk5+dX2PUBAAAAQLGjJwIAAACQXZ7ClXLlyumVV16xPg4JCdFLL72kzp07F1phAAAAAOAs6IkAAAAAZJencOVWixcvtt7IEQAAAABcDT0RAAAA4NocCleaNWsmSVqzZo02btyokydPyt3dXZUrV9bjjz+up556qkCLBAAAAABnQk8EAAAAuDaHwhWLxaLhw4dry5YtslgsKl++vMxmsw4ePKjt27frv//9r+bMmVPQtQIAAACAU6AnAgAAAFyb0ZGdlixZos2bN6tz58768ssvtWfPHu3du1fbt2/XU089pe3bt2v58uUFXSsAAAAAOAV6IgAAAMC1ORSuxMXFqVmzZnrnnXfk7+9vXV65cmW9/fbbatasmeLi4gqsSAAAAABwJvREAAAAgGtzKFxJSEhQeHj4bde3a9dOv/32m8NFAQAAAIAzoycCAAAAXJtD4Yqbm5uuXr162/VXr16VwWBwuCgAAAAAcGb0RAAAAIBrcyhcqVu3rlatWqW0tLQc665du6ZVq1apdu3a+S4OAAAAAJwRPREAAADg2hwKV1544QUlJibqb3/7mz777DMdOnRIhw4d0vr169WtWzcdP35cffv2LehaAQAAAMAp0BMBAAAArs3NkZ1atWqlMWPGaMaMGRo9erTNOqPRqH/84x9q06ZNgRQIAAAAAM6GnggAAABwbQ6FK9LNb2qFh4dry5YtOn78uCwWi6pXr67w8HBVq1atIGsEAAAAAKdDTwQAAAC4LofDFUmqVq0ap7oDAAAAcFn0RAAAAIBrcuieKwAAAAAAAAAAAK6KcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwg0PhyvLly3Xs2LECLgUAAAAASgZ6IgAAAMC1ORSuTJ8+XevXry/oWgAAAACgRKAnAgAAAFybQ+GK0WiUr69vQdcCAAAAACUCPREAAADg2hwKV/r166d58+bp66+/ltlsLuiaAAAAAMCp0RMBAAAArs3NkZ327dun1NRUDRgwQO7u7vL19ZXJZLLZxmAwaMuWLQVSJAAAAAA4E3oiAAAAwLU5FK4cPnxYPj4+8vHxsS6zWCw229z6GAAAAABKC3oiAAAAwLU5FK5s27atoOsAAAAAgBKDnggAAABwbQ7dc+VW6enpXGcYAAAAgMuiJwIAAABci8PhysWLF/Wvf/1LLVq0UMOGDbV7927Fx8dr0KBBSkhIKMgaAQAAAMDp0BMBAAAArsuhcOXixYvq3r27li1bJk9PT+u1hC9duqQdO3aoZ8+eOnHiRIEWCgAAAADOgp4IAAAAcG0OhSuzZ8/WqVOntGjRIq1YscLaSLRt21bz5s3T1atXNWfOnAItFAAAAACcBT0RAAAA4NocCle2bdumZ555Rs2bN5fBYLBZ9+ijj6p79+7avXu33c+bnJys0aNHKywsTI0aNdKAAQN05MgR6/qDBw8qKipKDRs2VOvWrRUdHe1I+QAAAACQL4XVEwEAAAAoGRwKV5KSkhQSEnLb9UFBQTp37pzdz/vSSy/pxIkTmj9/vj799FN5eHioT58+unbtmi5cuKC+ffvqvvvuU1xcnIYNG6Z3331XcXFxjrwEAAAAAHBYYfVEAAAAAEoGN0d28vPz06lTp267/vDhw/L19bXrOS9cuKDAwEC99NJLeuCBByRJgwcPVpcuXfTrr79q586dcnd318SJE+Xm5qagoCAlJiZq/vz5ioyMdORlAAAAAIBDCqMnAgAAAFByOHTmyqOPPqrY2FidPHkyx7rvv/9eK1euVIsWLex6Tl9fX82YMcMarPzxxx+Kjo5WQECAatasqfj4eIWGhsrN7c88KCwsTAkJCUpOTnbkZQAAAACAQwqjJwIAAABQcjh05srQoUO1fft2RUREqEmTJjIYDIqNjVVMTIy+/vprlStXToMHD3a4qH/+859auXKl3N3d9cEHH8jLy0tnzpxRcHCwzXaVKlWSJJ0+fVp+fn4OH8/NzaGMyaWYTEab31F65WeMmR+ujX8nkB3zAbdiTqC0KeyeCAAAAIBzcyhc8ff3V2xsrP71r3/pq6++ksVi0aZNmyRJTZo00euvv67AwECHi+rdu7e6d++u5cuXa8iQIVq2bJmuX78ud3d3m+3KlCkjSUpLS3P4WEajQb6+ZR3e39V4e3sWdwlwYswPSMwD2GI+4FbMCZQWhd0TAQAAAHBuDoUrkhQYGKh58+bp8uXLOnbsmMxmswIDA/N1BkmWmjVrSpLeeOMN7du3T0uWLJGHh4fS09NttssKVby8vBw+ltlsUUrKVceLdREmk1He3p5KSbmmzExzcZeDQpQ11o5gfrg2/p1AdswH3Io54Ry8vT05e6gAFWZPBAAAAMC5ORyuZMnIyJDFYpGbm5v1TBJHJCcna+fOnXriiSdkMpkkSUajUUFBQUpKSlJAQICSkpJs9sl67O/v7/gLkJSRQYOfV5mZZt4v3BbzAxLzALaYD7gVcwKlUUH1RAAAAABKDofDlZ9++knvvPOO9u7dK4vFIulmGPLII49o/Pjxuvfee+16vqSkJL388svy8/NT8+bNJUk3btzQgQMH1KZNG/31r39VbGysMjMzreHLzp07VaNGDb4ZBgAAAKDIFXRPBAAAAKDkcChc+fnnn9WrVy+lp6erZcuWuu+++2Q2m/Xbb7/p66+/1rPPPquVK1eqWrVqeX7OkJAQtWjRQpMmTdKbb74pb29vzZ07VykpKerTp4/KlCmjBQsWaPz48XrxxRf1448/KiYmRpMmTXLkJQAAAACAwwqjJwIAAABQcjgUrsyaNUvu7u6KjY1VSEiIzbp9+/apb9++mjFjhmbOnJnn5zQYDPrPf/6jf//73xoxYoQuX76spk2baunSpapSpYokacGCBZo8ebIiIiJUsWJFjRkzRhEREY68BAAAAABwWGH0RAAAAABKDofClfj4ePXp0ydHEyFJDRs2VFRUlFasWGH385YvX14TJ07UxIkTc11fv359h54XAAAAAApSYfVEAAAAAEoGoyM7GQwGeXt733Z9YGCgMjIyHC4KAAAAAJwZPREAAADg2hwKV1q1aqW1a9cqPT091/UbN25UixYt8lUYAAAAADgreiIAAADAteXpsmB79uyxedy2bVtNmDBBPXv21IABA3T//ffLaDTq+PHjWrJkiX799Vf95z//KYx6AQAAAKDI0RMBAAAAyC5P4UqvXr1kMBhsllksFv30008aPnx4juWS9Pzzz+vgwYMFVCYAAAAAFB96IgAAAADZ5SlcGTJkSI5GAgAAAABcBT0RAAAAgOzyFK4MGzassOsAAAAAAKdFTwQAAAAgO4duaA8AAAAAAAAAAOCq8nTmyq1SU1P173//Wzt27NDZs2et1xTOzmAw6MCBA/kuEAAAAACcDT0RAAAA4NocClfeeecdrVy5UpUqVVLDhg1lMpkKui4AAAAAcFr0RAAAAIBrcyhc2b59u9q1a6dZs2bJaOTKYgAAAABcCz0RAAAA4Noc6gJSU1PVqlUrmggAAAAALomeCAAAAHBtDnUCjRs31s8//1zQtQAAAABAiUBPBAAAALg2h8KV0aNHa+PGjYqJidG5c+cKuiYAAAAAcGr0RAAAAIBrc+ieK1WrVlWtWrU0depUTZ06NddtDAaDDhw4kK/iAAAAAMAZ0RMBAAAArs2hcGXy5Mn67rvvVKFCBd17771yc3PoaQAAAACgRKInAgAAAFybQx3A9u3b1bZtW7377rs0EQAAAABcDj0RAAAA4NocuudKenq6WrduTRMBAAAAwCXREwEAAACuzaFwpVGjRvr5558LuhYAAAAAKBHoiQAAAADX5lC48vLLL2vDhg1auHChzp49q8zMzIKuCwAAAACcFj0RAAAA4NocOof91VdfldFo1LRp0zRt2rRctzEYDDpw4EC+igMAAAAAZ0RPBAAAALg2h8IVHx8f+fj4FHApAAAAAFAy0BMBAAAArs2hcOXjjz8u6DoAAAAAoMSgJwIAAABcm0P3XAEAAAAAAAAAAHBVDp25Mnbs2LtuYzAYNGXKFEeeHgAAAACcGj0RAAAA4NocCldWr15923UGg0Hu7u4qU6YMjQQAAACAUomeCAAAAHBtDoUrW7duzbEsMzNT586d0+rVq7Vr1y4tW7Ys38UBAAAAgDOiJwIAAABcm0PhStWqVXNdXr16dTVp0kSDBg3Sv//9b7399tv5Kg4AAAAAnBE9EQAAAODaCuWG9m3atNGXX35ZGE8NAAAAAE6PnggAAAAo3QolXDl37pyuX79eGE8NAAAAAE6PnggAAAAo3Ry6LNjp06dzXX79+nXt379fMTExqlOnTr4KAwAAAABnRU8EAAAAuDaHwpU2bdrIYDDcdr3RaNTQoUMdLgoAAAAAnBk9EQAAAODaHApXnn766VwbCZPJpEqVKikiIkLVqlXLd3EAAAAA4IzoiQAAAADX5lC4MnXq1IKuAwAAAABKDHoiAAAAwLUVyg3tAQAAAAAAAAAASqs8nbkye/Zsh56cawwDAAAAKA2KoyeaM2eOdu7cqY8//ti67ODBg5o8ebL2798vHx8f9erVS/369bOuN5vNmj17tj755BOlpKSoSZMmev3113Xvvfc6XAcAAACAnAo8XMl+3WHCFQAAAAClQVH3RB999JFmzZql0NBQ67ILFy6ob9++ateunSZNmqR9+/Zp0qRJ8vHxUWRkpKSbgUxsbKzeeust+fv7a9q0aerfv78+++wzubu7O1QLAAAAgJzyFK4sXrz4rttYLBYtXbpUX3zxhSSpVatW+asMAAAAAJxEUfVEZ8+e1fjx47V3717VqFHDZt3KlSvl7u6uiRMnys3NTUFBQUpMTNT8+fMVGRmp9PR0LVy4UKNHj7Yee+bMmWrZsqU2b96sjh072l0PAAAAgNzlKVxp1qzZHdefPn1a48aN0+7du1W+fHm9+uqr1m9OAQBKFqPRIKPRcPcNszGbLYVUDQAAzqGoeqKff/5Z99xzj9atW6f3339fp06dsq6Lj49XaGio3Nz+bOPCwsL04YcfKjk5WadOndKVK1cUFhZmXe/t7a3atWtrz549hCsAAABAAcpTuHInsbGxmjZtmq5cuaIWLVpo8uTJ8vf3L4jaAABFzGg0yMfHSyaT0a79MjPNunz5eiFVBQCAcyvInqhNmzZq06ZNruvOnDmj4OBgm2WVKlWSdDPcOXPmjCSpcuXKObb5/fffHaoni5ubfZ8NUHSyPrfZ+/kNJRPj7ToY69IlP+PIHChd+Ltdujgcrpw5c0bjx4/X//3f/6ls2bJ644031K1bt4KsDQBQxIxGg0wmo6Yv3auTZy/naZ9A//Ia1bOJ3We7AABQ0hV1T3T9+vUc900pU6aMJCktLU3Xrl2TpFy3uXTpksPHNRoN8vUt6/D+KBre3p7FXQKKEOPtOhhrMAdKJ8a1dHAoXPnkk0/09ttvKzU1VQ8//LAmT56c49tRAICS6+TZyzp6yvEfwgAAUNoVR0/k4eGh9PR0m2VpaWmSJC8vL3l4eEiS0tPTrX/O2sbT0/EG3my2KCXlqsP7o3CZTEZ5e3sqJeWaMjPNxV0OChnj7ToY69IlazwdwRwoXfi7XTJ4e3vm6ewiu8KVs2fPasKECfrmm2/k6empiRMn6tlnn3W4SAAAAAAoSYqzJwoICFBSUpLNsqzH/v7+ysjIsC6rXr26zTYhISH5OnZGBs2/s8vMNDNOLoTxdh2MNZgDpRPjWjrk+eJuq1evVufOnfX111/roYce0vr16wlWAAAAALiM4u6JQkNDtXfvXmVmZlqX7dy5UzVq1JCfn59CQkJUrlw57d6927o+JSVFBw4cUNOmTYusTgAAAMAV5OnMlUGDBunLL7+UJD3++ON67rnndPr0aZ0+ffqO+4WGhua/QgAAAAAoZs7QE0VGRmrBggUaP368XnzxRf3444+KiYnRpEmTJN2810pUVJSmT5+uChUqqGrVqpo2bZoCAgIUHh5eYHUAAAAAyGO4smPHDuufN23apE2bNuXpyQ8ePOhQUQAAAADgTJyhJ/Lz89OCBQs0efJkRUREqGLFihozZowiIiKs2wwfPlwZGRmaMGGCrl+/rtDQUEVHR+e4yT0AAACA/MlTuDJ06NDCrgMAAAAAnFZx9ERTp07Nsax+/fpasWLFbfcxmUwaPXq0Ro8eXZilAQAAAC6PcAUAAAAA7oKeCAAAAEB2eb6hPQAAAAAAAAAAAAhXAAAAAAAAAAAA7EK4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2cKpw5eLFi3rttdf06KOPqnHjxurRo4fi4+Ot6w8ePKioqCg1bNhQrVu3VnR0dDFWCwAAAAAAAAAAXJFThSsjR47UDz/8oBkzZujTTz9VnTp11K9fPx09elQXLlxQ3759dd999ykuLk7Dhg3Tu+++q7i4uOIuGwAAAAAAAAAAuBC34i4gS2Jior799lstX75cjRs3liSNHz9eX331lT777DN5eHjI3d1dEydOlJubm4KCgpSYmKj58+crMjKymKsHAAAAAAAAAACuwmnOXPH19dW8efNUt25d6zKDwSCLxaJLly4pPj5eoaGhcnP7Mw8KCwtTQkKCkpOTi6NkAAAAAAAAAADggpzmzBVvb2+1atXKZtnGjRt1/PhxtWjRQjNnzlRwcLDN+kqVKkmSTp8+LT8/P4eP7ebmNBmT0zKZjDa/o/TKzxgzP0q+/Iyh0WjI93Og9OD/DdyKOQEAAAAAKE2cJly51d69ezVu3Di1bdtWbdq00VtvvSV3d3ebbcqUKSNJSktLc/g4RqNBvr5l81WrK/H29izuEuDEmB+urVw5D0nMA9hiPuBWzAkAAAAAQGnglOHKli1bNGrUKDVo0EAzZsyQJHl4eCg9Pd1mu6xQxcvLy+Fjmc0WpaRcdbxYF2EyGeXt7amUlGvKzDQXdzkoRFlj7QjmR8mXn/FPTb2ucuU8mAeQxP8byIk54Ry8vT05ewgAAAAACoDThStLlizR5MmTFR4erunTp1vPVgkICFBSUpLNtlmP/f3983XMjAwa/LzKzDTzfuG2mB+uzWy2SGIewBbzAbdiTgAAAAAASgOn+trasmXL9MYbb6hnz576z3/+Y3MZsNDQUO3du1eZmZnWZTt37lSNGjXydb8VAAAAAAAAAAAAezhNuJKQkKApU6YoPDxcAwcOVHJyss6dO6dz587p8uXLioyMVGpqqsaPH68jR45o1apViomJ0cCBA4u7dAAAAAAAAAAA4EKc5rJgmzZt0o0bN7R582Zt3rzZZl1ERISmTp2qBQsWaPLkyYqIiFDFihU1ZswYRUREFFPFAAAAAAAAAADAFTlNuDJo0CANGjTojtvUr19fK1asKKKKAAAAAAAAAAAAcnKay4IBAAAAAAAAAACUBIQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsIPT3HMFAAAAAAAAAJyd0WiQ0WjI8/Ymk+Pfb7dnX7PZIrPZ4vCxANiHcAUAAAAAAAAA8sBoNMjHxytfgUle+JQvI7PZIm9vzzzvk5lp1sWLVwlYgCJCuAIAAAAAAAAAeWA0GmQyGTV96V6dPHs5T/s0Dqmk55+sbddxynn+RUajIc/HCfQvr1E9m8hoNBCuAEWEcAUAAAAAAAAA7HDy7GUdPXUpT9sGVipXJMcBULS4oT0AAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALCDW3EXAAAoXEajQUajIU/bmkxk7gAAAAAAAMDdEK4AQClmNBrk4+NFaAIAAAAAAAAUIMIVACjFjEaDTCajpi/dq5NnL991+8YhlfT8k7WLoDIAAAAAAACg5CJcAQAXcPLsZR09demu2wVWKlcE1QAAAAAAAAAlG9eJAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOzAPVcAoJgYjQYZjQa79jGbLTKbLYVUEQAAAAAAAIC8IFwBgGJgNBrk4+Mlk8m+EwgzM826ePEqAQsAAAAAAABQjAhXAKAYGI0GmUxGTV+6VyfPXs7TPoH+5TWqZxMZjQbCFQAAAAAAAKAYEa4AQDE6efayjp66VNxlAAAAAAAAALADN7QHAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADsQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHQhXAAAAAAAAAAAA7OBW3AUAAEoHo9EgSTKZ8pbbm80Wmc2WwiwJAAAAAAAAKBSEKwCAfPEpX0Zms0XlynlIkry9PfO0X2amWRcvXiVgAQAAAAAAQIlDuAIAyJdynn+R0WjQ9KV7dfLs5TztE+hfXqN6NpHRaCBcAQAAAAAAQIlDuAIAKBAnz17W0VOXirsMAAAAAAAAoNBxQ3sAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAJcipU6dUq1atHL8++eQTSdLBgwcVFRWlhg0bqnXr1oqOji7migEAAIDSx624CwAAAAAA5N0vv/yiMmXKaMuWLTIYDNbl5cuX14ULF9S3b1+1a9dOkyZN0r59+zRp0iT5+PgoMjKyGKsGAAAAShfCFQAAAAAoQQ4fPqwaNWqoUqVKOdbFxMTI3d1dEydOlJubm4KCgpSYmKj58+cTrgAAAAAFiMuCAQAAAEAJ8ssvv6hmzZq5rouPj1doaKjc3P78Hl1YWJgSEhKUnJxcVCUCAAAApR7hCgAAAACUIIcPH1ZycrKee+45Pfzww+rRo4e+/vprSdKZM2cUEBBgs33WGS6nT58u8loBAACA0orLggEAAABACZGenq5jx47J09NTY8aMkZeXl9atW6f+/ftr0aJFun79utzd3W32KVOmjCQpLS3N4eO6ufG9PGdlMhltfkfpxni7DsbaeTn7mDh7fa6Ov9ulC+EKAAAAAJQQ7u7u2rNnj9zc3KwhSt26dXX06FFFR0fLw8ND6enpNvtkhSpeXl4OHdNoNMjXt2z+Ckeh8/b2LO4SUIQYb9fBWMNezJmSgXEqHQhXAAAAAKAEyS0kCQ4O1jfffKOAgAAlJSXZrMt67O/v79DxzGaLUlKuOrQvCp/JZJS3t6dSUq4pM9Nc3OWgkDHeroOxdl5ZY+OsmDPOjb/bJYO3t2eezi4iXAEAAACAEuLQoUPq0aOH5s+fr6ZNm1qX79+/XzVr1tSDDz6o2NhYZWZmymQySZJ27typGjVqyM/Pz+HjZmTQ/Du7zEwz4+RCGG/XwVjDXsyZkoFxKh24uBsAAAAAlBDBwcF64IEHNGnSJMXHx+vo0aN66623tG/fPg0aNEiRkZFKTU3V+PHjdeTIEa1atUoxMTEaOHBgcZcOAAAAlCqcuQIAAAAAJYTRaNTcuXM1ffp0jRgxQikpKapdu7YWLVqkWrVqSZIWLFigyZMnKyIiQhUrVtSYMWMUERFRzJUDAOCcjEaDjEZDnrfnRuQAshCuAEAJY88HOT70AQBQ+lSoUEFTpky57fr69etrxYoVRVgRAAAlk9FokI+PF70zAIcQrgBACeFTvozMZotT3zgPAAAAAICSwmg0yGQyavrSvTp59nKe9mkcUknPP1m7kCsDUBIQrgBACVHO8y8yGg186AMAAAAAoACdPHtZR09dytO2gZXKFXI1AEoKpw1X5syZo507d+rjjz+2Ljt48KAmT56s/fv3y8fHR7169VK/fv2KsUoAKHp86AMAAAAAAACKl1NeUPCjjz7SrFmzbJZduHBBffv21X333ae4uDgNGzZM7777ruLi4oqpSgAAAAAAAAAA4Iqc6syVs2fPavz48dq7d69q1Khhs27lypVyd3fXxIkT5ebmpqCgICUmJmr+/PmKjIwspooBAAAAAAAAAICrcaozV37++Wfdc889WrdunRo0aGCzLj4+XqGhoXJz+zMPCgsLU0JCgpKTk4u6VAAAAAAAAAAA4KKc6syVNm3aqE2bNrmuO3PmjIKDg22WVapUSZJ0+vRp+fn5FXp9AAAAAAAAAAAAThWu3Mn169fl7u5us6xMmTKSpLS0tHw9t5ubU53A45RMJqPN7yi98jPGzI+84726yd73wWAwyGg02LWP2WyRxWKxax/kH/9v4FbMCQAAANjLaLSvBzSbLTKb6f8AFI0SE654eHgoPT3dZllWqOLl5eXw8xqNBvn6ls1Xba7E29uzuEuAE2N+wF72zhmz2eJQuGLvPig4/LuAWzEnAAAAkBdGo0E+Pl52fTknM9OsixevErAAKBIlJlwJCAhQUlKSzbKsx/7+/g4/r9lsUUrK1XzV5gpMJqO8vT2VknJNmZnm4i4HhShrrB3B/Mi7/LzPpYk9cybrPZu+dK9Onr2cp30C/ctrVM8mzM1iwP8buBVzwjl4e3ty9hAAACgRjEaDTCZjnnvArP7PaDQQrgAoEiUmXAkNDVVsbKwyMzNlMpkkSTt37lSNGjXyfb+VjAwa/LzKzDTzfuG2mB+wlyNz5uTZyzp66lKhHwcFg/cet2JOAAAAwB6O9IAAUBRKzNfWIiMjlZqaqvHjx+vIkSNatWqVYmJiNHDgwOIuDQAAAAAAAAAAuJASE674+flpwYIFSkhIUEREhGbPnq0xY8YoIiKiuEsDAAAAAAAAAAAuxGkvCzZ16tQcy+rXr68VK1YUQzUAAAAAAAAAAAA3lZgzVwAAAAAAAAAAAJwB4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAPj/9u49PqZ73//4eyYkpEncKm6hVW0SxD3utZUWpyhFd7Ul6lTdWrdjV5Rqqw+qRQ4HPapt2O7iEre4bKV6qlS1sbupou1GEUVa17glZNbvD7+ZdiQha5LMTCav5+Ph8ZC1vt81n7W+k8z6zmd9v18AAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSK4AAAAAAAAAAACYQHIFAAAAAAAAAADABJIrAAAAAAAAAAAAJhTzdAAAAAAAAAAAgLzz8zP3LL3NZshmMwooGsC3kVwBAAAAAAAAgEKsdHCAbDZDISElTdXLzLTp4sVrJFgAF5BcAQAAAAAAAIBCLKhkcVmtFsUt2auUs2m5qhNWIViv9Wokq9VCcgVwAckVAMgHVqtFVqsl1+XNDtMFAAAAAAC4l5SzaTpy6pKnwwCKBJIrAJBHVqtFpUsHkjABAAAAAAAAigiSKwCQR1arRX5+VlNDbxtGhqpPx1oFHBkAAAAAAACAgkByBQDyiZmht2GhQQUcDQAAAAAAAICCwhw2AAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAExgQXsAPs9qtchqteS6vM1myGYzCjAi2Pn55T7Hb6YsAAAAAAAAUJBIrgDwaVarRaVLB5r6Yj4z06aLF6+RYClApYMDZLMZCgkp6elQAAAAAAAAANNIrgDwaVarRX5+VsUt2auUs2n3LB9WIViv9Wokq9VCcqUABZUsLqvVkut2kaSGkaHq07FWAUcGAAAAAAAA3BvJFQBFQsrZNB05dcnTYeAOZtolLDSogKMBAAAAAAAAcocJ7AEAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATWHMFAODz/PwK9lkCm82QzWYU6Gt4M6vVIqvV4rTNfs1zuvZF/ZoBAAAAAIDCjeQKAMBnlQ4OkM1mKCSkZK7rZNoM+d2RKLhnnUybLl68ViSTBVarRaVLB+aYRMnp2hflawYAAAAAAAo/kisAAJ8VVLK4rFaL4pbsVcrZtHuWbxgZqj4da+W6vCSFVQjWa70ayWq1FMlEgdVqkZ+flWsGAAAAAACKFJIrAACfl3I2TUdOXbpnubDQIFPl8QeuGQAAAAAAKEpIrgAAAAAAAADItezWXbwX1l0E4GtIrgAAAAAAAADIlXutu5gT1l0E4GtIrgAAAAAAAADIFdZdBIDbSK4AAJAPzD61xZB4AAAAAIUZ6y4CKOpIrgAAkAelgwNksxkKCSlpqh5D4gEAAAAAAAovkisAAORBUMnislotDIkHAAAAAAAoQkiuAACQDxgSDwAAAAAAUHSQXAEAAAAAAADgE8ysh2l27UwA+DOSKwAAAAAAAAAKNVfXwwQAV5FcAQAAAAAAAFCoubIeZsPIUPXpWKuAIwPgq0iuAAAAAAAAAEWU1WqR1WrJdXlvn0rLzHqYYaFBBRwNAF9GcgUAAAAAAAAogqxWi0qXDvT6hAkAeCOSKwAAAAAAAEARZLVa5OdnZSotAHAByRUAAAAAAACgCGMqLQAwjzF/AAAAAAAAAAAAJpBcAQAAAAAAAAAAMIFpwQAAAAAAAAAvZHaheZvNkM1mFFA0eWfmfMyeOwC4G8kVAAAAAAAAwItYLBbZbIZCQkqaqpeZaVNa2g0ZRu4SLO5KYJQODnDpfADAm5Fc8TCr1SKr1WKqjrc/hQDvYvY9xpMht/E0DQBvwz0DAABA0WG/94tbslcpZ9NyVadm9bLq37WOSpcOLODozAsqWdz0+TSMDFWfjrUKODIAcB3JFQ+yWi0qXTrQ9BezmZk2Xbx4jS9LcE+uvseKMp6mAeCNuGcAAAAomlLOpunIqUu5KhsWGuT1CQyz5wMA3ozkigdZrRb5+VlNfeiFVQjWa70ayWq18EUJ7smV91hRfzKEp2kAeCPuGQAAAJBbJDAAwD1IrngBMx96gCu4sTKPawbAG3HPAAAAACC/mR0hz/TDwG0kVwAAAAAAAACgiHF1anSmHwZuI7kCAAAAAADgI+wLoZvBU+hA0eTK1OhMPwz8geQKAAAAAACAD7BaLSpdOtD0FD88hQ4UbUw/DLiG5AoAAAAAAIAPsFot8vOz8hQ6AABuQHIFyIYrw6hd4WtDr80+HeUO3hgT4E5MCwEULH7HAADeyB1PoRf1z8Cifv4AAJIrQBYuD6O2GfIzeWPlK0OvXV4AzZVr5kIdoKhiWgigYPE7BgAoqor6Z2BRP38AwG0kV4A7uDKMumFkqPp0rFVkh167sgCaK9csL3WAoohpIYCCxe8YAMAss6MdvHWkQ14+A4sX91Nmpi1XdVw5f3eMKHHH+btjNg0AQN4UuuSKzWbTBx98oJUrV+ry5ctq1KiR3n77bT3wwAOeDg0+xsww6rDQINN1fFFBX7O81AGKsqL+twkoaPyOwdvQZwK8kyujHbx9pIOZz0BXZjwwe/7uHlFS0OcPAPBuhS65Mnv2bCUkJOi9995ThQoVNHXqVPXv318bNmyQv7+/p8MDAAAAAI/ytT4T6xrAV5gd7ZDdSAd70iCn5EFe1pw0U9eV1zE744ErI138/KxuGVHjjvNnFgZ4O3esceutn+fcm8CuUCVXMjIyNG/ePI0aNUqtW7eWJE2fPl2tWrXS1q1b1alTJw9HCAAAAACe42t9prw8hZ6WdkOGUbBfYvBFScFz5QssV7izLXM72uFuIx3yc/SDu0dU5Mf559dr5PV1XJHb2JiFAd7Krevuuunz3AyLxaLg4BIuj5ArSN6c9PHm2PKiUCVXDh8+rKtXr6pZs2aObSEhIapVq5a+/fbbQtdRAAAAAID85Gt9JlfWNahZvaz6d62j0qUDTb2Wq1/6ePOUTYWdy8k1H2nLvKxt6Y2vY1ZRP3/AW7lr3V1XPs9d+vvvQh1JLq+7WFDcPS2iGd4cW15ZDG9K/d3Dp59+qqFDh2rfvn0qUaKEY/vw4cN148YNffTRR6aPaRiey4BZLJLVatXFtHTdyuXQ02J+1v+fIc5d+fxktVo98rqeYLZdAvz9FBzo75Vt6Y5z8aU63hqXu+p4a1zuquOuuNz5t9wdnzOF6bOsMPOF6+yL9xJ5aRdP3IVbrRZZLCyQ68voM/3x2XzlWoYycxl38WJWBZYobqqOn9WioEB/r/i75ot/X+2sVqtPtaWZ97O33jO7q463xuWuOt4alzfX8da43FXHW+PKa53c/j135e9/XurkpW9WUJ/bZj8z3f3552ps3txvKlQjV65fvy5JWeYJDggI0KVLri0iarFY5Ofn2Q5m6eAA03Ws1oKf19CbXtcTXGkXb21Ld52LL9Xx1rjcVcdb43JXHV/6/ZfcE5s3n78v8YXr7G3x5AdfaBf4DvpMfwgKNL++jCt1vOX32VviKAi+1pbeem/qrXW8NS531fHWuLy5jrfG5a463hqXq3XM/j1312dGXvsABfWZ482ff94cm6u8O7o72J+8ysjIcNqenp6ukiXdMzcmAAAAAHgr+kwAAACAexSq5EqlSpUkSampqU7bU1NTVbFiRU+EBAAAAABegz4TAAAA4B6FKrkSGRmpoKAg7dmzx7Ht8uXLOnjwoKKjoz0YGQAAAAB4Hn0mAAAAwD0K1Zor/v7+6t27t+Li4lS2bFlVqVJFU6dOVcWKFdWuXTtPhwcAAAAAHkWfCQAAAHCPQpVckaRhw4bp1q1bGjdunG7cuKHGjRtr7ty5WRZsBAAAAICiiD4TAAAAUPAshmEYng4CAAAAAAAAAACgsChUa64AAAAAAAAAAAB4GskVAAAAAAAAAAAAE0iuAAAAAAAAAAAAmEByBQAAAAAAAAAAwASSKwAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFeQJ8nJyapZs6b27Nnj6VDgIadPn9bIkSPVsmVLNW7cWP369dPPP//s6bDgRjabTTNnzlSrVq1Ur149vfTSSzp+/Linw4KHXLx4UW+99Zb+8pe/qGHDhnr++eeVnJzs6bDgJY4dO6YGDRpo9erVng4FAAq9EydOaPDgwYqOjlZ0dLT+67/+S2fOnHEqs3v3bnXv3l1169ZV+/bttXbtWs8EizzLTb+L9vY9b7zxhl5//fUs22lr30F/umiYPXu2YmJinLYdOnRIvXv3Vv369fXYY49p7ty5HooOeUFyBS5LS0tTbGysbDabp0OBh2RkZGjAgAE6d+6cPvroIy1dulTBwcF68cUXdf78eU+HBzeZPXu2EhISNHHiRC1fvlwWi0X9+/dXRkaGp0ODB4wcOVL79u3TtGnTtGrVKtWuXVv9+vXTkSNHPB0aPOzmzZt67bXXdO3aNU+HAgCFXnp6uvr27StJWrZsmRYtWqTffvtNAwcOlGEYkqQjR45o4MCBat26tdauXauePXtq7Nix2r17twcjhyty0++ivX1LZmamJk+erFWrVmXZR1v7FvrTvm/+/PmaOXOm07YLFy7oP//zP/Xggw8qMTFRQ4cO1YwZM5SYmOihKOGqYp4OAIXX+PHjVbVqVZ06dcrTocBDkpOT9dNPP2nHjh2qUKGCJGnKlClq0qSJtm/frmeeecbDEaKgZWRkaN68eRo1apRat24tSZo+fbpatWqlrVu3qlOnTh6OEO50/Phx7dq1S8uWLVPDhg0l3X7abseOHdqwYYOGDx/u4QjhSbNmzdJ9993n6TAAwCf8+uuvqlOnjt5++22VLVtWktS3b1+9+uqrunDhgsqWLasFCxYoMjLS8fn70EMP6eDBg4qPj1fz5s09GT5Myk2/i/b2HUeOHNGYMWN08uRJVa5cOct+2tp30J/2bWfPntUbb7yhvXv3qnr16k77VqxYIX9/f40fP17FihVTjRo1dPz4cX3yySfq0aOHhyKGKxi5ApesW7dO3333ncaOHevpUOBBjzzyiD7++GPHDb6dYRi6dOmSh6KCOx0+fFhXr15Vs2bNHNtCQkJUq1Ytffvttx6MDJ5QpkwZffzxx4qKinJss1gs/E2Avv32Wy1fvlyTJ0/2dCgA4BOqV6+uGTNmOBIrKSkpWrp0qWrXrq0yZcpIuv2F/J/v0SSpWbNm2rt3r2N0CwqH3PS7aG/f8c0336hmzZrasGGDwsLCsuynrX0H/Wnf9sMPP6hUqVJav3696tWr57QvOTlZjRs3VrFif4x7aNasmY4dO6Zz5865O1TkASNXYFpKSoreffddzZ49mydQi7jy5cs7nq6wW7hwodLT09WyZUsPRQV3ss/rXalSJaftoaGhOn36tCdCggeFhIRk+ZuwefNmnThxQo8++qiHooKnXb58WbGxsRo3blyWvxUAgLx76aWXtGvXLpUqVUoLFiyQxWKRdPs+rWLFik5lQ0NDdf36dcfoFhQOuel30d6+4/nnn7/rftrad9Cf9m1t27ZV27Zts9135swZhYeHO20LDQ2VdHt0arly5Qo8PuQPkitwkpKSoscffzzH/Tt27FBsbKx69uyp6OhopaSkuDE6uNu93g87d+5U+fLlHT9/+umnmj59umJiYhQZGemOEOFh169flyT5+/s7bQ8ICGCkArR3716NHTtWjz/+eI43lfB948ePV/369fXUU095OhQAKDTM3IePGjVKw4cP14cffqi+fftq7dq1qlSpkm7cuJHlHs3+M3P5e5f86HfR3oWD2bbODm3tO+hPF13Z/R4HBARIur2uGgoPkitwUqFCBW3atCnH/StXrtS1a9c0dOhQN0YFT7nX++HPT8QsW7ZMEyZMUMeOHTVmzBh3hAcvUKJECUm3b+Lt/5du3wyULFnSU2HBC2zbtk2vvfaa6tWrp2nTpnk6HHjI2rVrlZycrKSkJE+HAgCFipn78Jo1a0q6PU//Y489psTERA0ZMkQBAQFZvmi1/8x9mnfJj34X7V04mGnrnNDWvoP+dNFVokSJLL/H9qRKYGCgJ0KCi0iuwEnx4sVVo0aNHPevXr1aqampatq0qSQ55vPs37+/mjRpovj4eLfECfe41/vBLi4uTp988oliYmL0xhtvOKYigO+zD19OTU1VtWrVHNtTU1MZvVSELV68WO+++67atWunuLi4LE/koOhITEzUuXPn9Nhjjzltf/vttzV37lxt3LjRM4EBgJe71334qVOndODAAXXo0MGxrWTJkgoLC1Nqaqqk2/dp9v/bpaamKjAwUMHBwQUTOFySH/0u2rtwyG1b3w1t7TvoTxddFStWzPb3WFKW9bXg3UiuwJRFixbp1q1bjp/Pnj2rmJgYTZw40ZFwQdEydepUxcfHKzY2Vv369fN0OHCzyMhIBQUFac+ePY6bwcuXL+vgwYPq3bu3h6ODJyxdulQTJkxQTEyMxo4dK6vV6umQ4EFxcXG6ceOG07b27dtr2LBh6tixo4eiAoDC79ChQxo2bJi2bt3qdA927NgxdenSRZIUHR2tb775xqne7t271bBhQz6fC6F79bto76KDtvYd9KeLrsaNGyshIUGZmZny8/OTdPv3uHr16qy3UsiQXIEpVapUcfrZ/gegQoUKZFaLoD179ig+Pl4xMTHq0qWLfvvtN8e+wMBA3XfffR6MDu7g7++v3r17Ky4uTmXLllWVKlU0depUVaxYUe3atfN0eHCzY8eOadKkSWrXrp0GDhyoc+fOOfaVKFGCJ+mKoJzuDcqVK5flngIAkHt/+ctfFBERodjYWL355psyDENTp05VmTJl1KNHD0lSTEyMunXrpri4OHXr1k1ffPGFtmzZwmwDhVBu+l20d9FBW/sO+tNFV48ePRQfH6833nhDL7/8svbv368FCxbonXfe8XRoMInkCgCXbdiwQdLtEU2LFi1y2jdkyBDW5ikihg0bplu3bmncuHG6ceOGGjdurLlz5zIVVBG0ZcsW3bx5U1u3btXWrVud9nXr1k3vv/++hyIDAMC3+Pv7Kz4+XpMnT1a/fv2UkZGhRx99VO+//76CgoIkSY888ohmz56tqVOnasGCBQoLC9PUqVPVvHlzD0cPs3LT76K9iw7a2rfQny6aypUrp/j4eL377rvq1q2bypcvr9jYWHXr1s3TocEki2FfNAMAAAAAAAAAAAD3xGSMAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSK4AAAAAAAAAAACYQHIFQKH2+eefa+jQoWrbtq2ioqLUtGlTvfzyy9q+fbvbYsjIyNDbb7+tJk2aqG7dupo4cWK2215//XVFREQoJSXF1PFnzZqliIgI7dmzp4DOwNkvv/xiqnxycrJiY2PVrl071a1bV9HR0YqJidHatWtlGIZTWVevQWHVtm1bRUREKCIiQtHR0ZKkPXv2KCIiQq+//nqO9VJSUhQREaGYmJgs++5snzvLFfQ1fvfddx3n5M73JQAAAAoWfav8d6++1dtvv62IiAglJibetVxKSooiIyP14osv5vq17f2OWbNm5bpOfrK3kf3foUOHJN3uv7Rt2/aude39qDsdP37c6eeYmBincqtXr1ZERIRWr16dD2eQ1bZt25zOyVPXFoD3KObpAADAFVeuXNHYsWO1ZcsW1a5dW927d1doaKjOnDmjtWvXavDgwXrppZc0evToAo9lxYoVSkhIUMuWLfXkk0/qkUceyXabYRhq3ry5ypYta+r47dq1U7Vq1VSjRo0COoM/DB48WFeuXNGiRYvuWfbmzZuaNGmSli5dqgcffFCdOnVS5cqVdf78eW3cuFGjR4/Wjh07NHXqVPn5+RV47N6qTJkyGjNmjIoXL57nY2XXPlOmTNH999+f52PnVteuXRUVFaWtW7dq69atbntdAAAAFAz6VgUjN32rZ555RgkJCUpKSlKPHj1yLGd/cO2ZZ54piFAL1JgxY1SmTBlVrlw5T8f55JNPNGPGDB04cMCxbdCgQW69JlFRUZoyZYqOHj2qOXPmuO11AXgvkisACqVx48Zpy5Ytio2NVb9+/Zz2DRo0SP369dO8efP00EMP6a9//WuBxvLjjz9KkmJjYxUZGSlJjieP/rxNkho0aGD6+JGRkU7HKEjbt29XkyZNclV2+vTpWrp0qWJiYjR27FhZrX8MhhwwYIBGjRqlDRs2qFq1ahoxYkQBRez9AgMD1bVr13w5Vnbtk1/Hzq2oqChFRUXpxIkTJFcAAAB8AH2rgpGbvlWdOnUcI2nOnj2rChUqZFtu3bp1KlWqlNq3b18QoRaoJ554QmFhYXk+zo4dO3Tz5k2nbS1btszzcc2oWLGiunbtqj179pBcASCJacEAFEI7d+7U5s2b1aFDhyw3/5Lk7++vSZMmyc/PTwsXLizweOw3eEFBQXfd5kuOHj2qefPmqU6dOho3bpxTYkWSrFar3nnnHQUHB2v58uVKT0/3UKQAAAAAckLfyvN69Oghm82mTZs2Zbt/7969OnHihJ566ikFBAS4OToAwN2QXAFQ6Kxdu1aSsl2Pwq5q1apKSkrSmjVrnLYfOXJEI0eOVIsWLRQVFaXHH39c77//vi5dupTlGEePHtXIkSPVvHlzRUVFqX379vqf//kf3bhxQ9If62LYX+Pxxx93zL165zYp+7UwDMPQsmXL1L17d9WvX18tWrTQoEGD9MMPPzjK5DQv8Jdffqk+ffqoYcOGqlevnrp3755lbln7PLsbN27UnDlz1K5dO0VFRalt27aaMWOGbt265VROkr755pt7zlO7bt06GYah3r1751gmKChIK1eu1P/93/9l6QScOnVKI0eOVJMmTVS/fn0999xz2rVrV5Zj7NmzR4MHD1aLFi1Uu3ZtNW7cWC+++KK++uorp3Jt27bVwIEDtWfPHvXq1UsNGjRQdHS0hgwZku08xxs2bHBc81atWikuLk4rV67M9jonJSXp2WefVf369dWgQQP16tXLrfNOS3dvn5zWZrlTbs9j06ZNeu655xxt07VrV82bN082my1/TwoAAAAeR9/qNk/2rbp06aLixYsrKSkp2/32NrJPf3Xz5k3NnTtXPXr0UIMGDRQVFaXHHntM48aN07lz53J8Hel2vym79U5yWqtk//79GjRokJo0aaI6deqoc+fOmjdvnjIzM+/6OvktIiJC33zzjeP/9vUr71xzJSe5PY+DBw9q0KBBatWqleM9PXHiRF28eDHfzwmAb2BaMACFzv79+1WsWDHVq1fvruXunEc3OTlZ/fr1k5+fn55//nlVqVJF//rXvzR//nxt375dCQkJjjl79+/fr759+yooKEi9evVS2bJl9a9//Utz5szR7t27tXDhQpUtW1ZTpkzRihUrlJycrDFjxqhUqVKyWq1O28qUKZNjjKNHj9a6desUHR2tESNGKCMjQ4sWLVLv3r21ZMkS1apVK9t6S5Ys0YQJE1SnTh0NGTJEVqtVn332mcaMGaNDhw7pjTfecCo/bdo0GYahnj17KiQkRKtXr9bs2bNlsVg0bNgw1ahRQ1OmTFFsbKweeughDRo0SA0bNrxrG0hSo0aN7toG1atXz3b7oEGDFB0drZEjRyo1NVULFizQwIEDtWbNGj3yyCOSpK1bt2rYsGGKjIxU//79FRQUpJ9++kmrVq1S//799emnn6pKlSqOYx4+fFgDBw5Uly5d1LVrVx08eFAJCQk6fPiwtmzZ4lj3JT4+XlOnTlXt2rU1YsQIpaWlafHixdnGOXXqVMXHx6tly5YaOXKk0tPTtXHjRg0ePFhjxoxR375973r++cVs+9wpt+fx6aefauTIkWrZsqWGDx8uq9Wqf/zjH5o8ebLOnTunUaNGFdAZAgAAwBPoW3m+b1WmTBk9/vjj+sc//qEjR444Xev09HRt3rxZtWvXVs2aNSVJI0aM0GeffaZu3brp2WefVXp6unbs2KGVK1fq119/1bx58+7alrn12Wefafjw4QoLC9PLL7+swMBA7dq1S5MnT9Y///lPzZo1SxaLJV9e616mTJmiOXPm6OjRo5oyZYqqVauW67q5PY+TJ0/qxRdfVPny5dW3b1+FhIRo3759Wrx4sfbv36/ly5e77XwBFCIGABQy9erVM1q0aGGqTmZmptGuXTsjKirK+Pe//+20b8WKFUZ4eLjx+uuvG4ZhGDabzejUqZPRunVr48KFC9mW/fjjjx3bRo8ebYSHhxsnT540tW337t1GeHi4MXLkSMNmsznK/fvf/zYiIyONoUOHGoZhGDNnzjTCw8ONr7/+2jAMwzh9+rRRu3ZtY+DAgU71bDabMWrUKCM8PNzYt2+fYRiG8fXXXxvh4eFGy5YtjUuXLjnKXr161WjUqJHx6KOPOp1feHi40bt373tez44dOxrh4eHGjRs37ln2z+zXYOzYsU7bV61aZYSHhxuzZs1ybHv66aeNli1bGlevXnUqu3jxYiM8PNyYN2+eY1ubNm2M8PBwY+PGjU5lx44da4SHhxs7d+40DMMwzpw5Y0RFRRndu3c30tPTHeWOHz9u1K1b1+k679u3zwgPDzfGjx/vdMyMjAwjJibGqF27tnH69Om7nm+bNm2MNm3aOG2zt8no0aNzrHfy5Mls2yI32+58n5k5jwEDBhj169c3MjMzHeVu3bpl9O7d2xg4cKBT/TvflwAAACh86Ft5vm9lGIbxxRdfGOHh4cb06dOdtm/cuNEIDw83lixZYhiGYRw6dMgIDw83JkyYkOUYPXr0MMLDwx3X2R7vzJkzHWWy658YhmEkJiYa4eHhRmJiomEYhnHt2jWjadOmRrdu3Zz6TYZhGNOnT8+273Wn7NrNMG5fl+xi+DN7/+7Pevfufc9teTmP+Ph4p/a2e++994xu3boZZ86ccWzL7toCKJqYFgxAoePn5+cYcp1bBw8e1PHjx9WlS5csT10988wzeuCBB7RlyxZlZmbqxx9/1M8//6zWrVvLZrPp/Pnzjn9t2rRRQEBAvizkvW3bNknSyy+/7PQETI0aNbRq1Sq9+eab2db79NNPdfPmTT355JO6cOGCI7YLFy6oU6dOjjJ/1qZNG4WEhDh+DgwMVI0aNe45bDwn9lEgZtvBrnv37k4/169fX5KUmprq2LZy5UqtX79egYGBjm0ZGRmOa3X16lWnY5QoUUIdOnRw2lanTh1J0m+//Sbp9jXPyMhQv3795O/v7yhXrVo1denSxanuxo0bJUkdO3Z0eg+kpaWpY8eOunnzpj7//HPT5+5uZs6jYsWKunbtmt555x0dPHhQhmHIz89PixYtYsFGAAAAH0TfyvN9K0l69NFHValSJW3YsMFp+5o1a1SiRAk99dRTkqTIyEjt3btXI0eOdCp37tw5R0zXrl1zOQ67r776ShcuXFCHDh105coVp3br2LGjJOVLuxU0M+dRqVIlSbdH/e/evVsZGRmSbk9Bt3r1alWoUMEzJwHAqzEtGIBCp0KFCjp27JgyMjKcviC/mxMnTkiSY8qpP7NYLHr44Yd1/PhxXbhwQceOHZMkJSQkKCEhIdvjnTp1ysXo/2CfH/jODokk1a5dO8d69vhiY2NzLHNnfPfff3+WMv7+/i7PlVuhQgX9+OOP+v3333XfffeZrl++fHmnn+1rsthvYCWpWLFiSklJ0ezZs3Xs2DGlpKQoJSXFEbNhGE7HKFOmjCPpY2d/f9jXC7Ffu4ceeihLTHe2g73s3daVceV9UKJECUl3T0zZz9FeNi/MnMfQoUN16NAhx3u/bNmyatasmZ544gl16NBBxYpx2wAAAOBL6Ft5vm8lSVarVd26ddPs2bP13XffqUGDBvrtt9+0a9cude7cWcHBwU6vtWnTJu3atUsnT55USkqKfvvtN0dSKT/WSrRfl2nTpmnatGnZlnG13QICAu6Z0Lt161a+9oVycx4dOnRQjx49tHr1avXt21clSpRQo0aN1Lp1az399NMqVapUnuMB4Hv4lgRAodO4cWMdOXJE//znP9WsWbMcy40ZM0Y3b968642ynf0G1N/f3/H/Xr166Yknnsi2fH58yXzz5k2X6tlv2idMmKCwsLBsy9jnN7azWvN3oGLjxo21Y8cOJScn64EHHsix3PTp03Xs2DENHTrUqfOVm3g++ugjTZs2TVWqVFF0dLSaNm2qiIgI3bp1S6+88kqW8rk5pj15k13H0Z7gsbNf59mzZ6tkyZLZHs/+dJMZ9pvyK1eu5FjGvgjon5+Ic5WZ87j//vu1YsUKff/99/riiy/09ddfa+vWrdq0aZPq16+vxYsXq3jx4nmOCQAAAN6BvpXn+1Z23bt314cffqikpCQ1aNBASUlJyszMdCxkL93uQ7z44ov64Ycf1KhRI0VFRalr166qU6eOFixYoPXr17v02ncmhuztNmzYMDVo0CDbOq48ZCfd7g+lpaXluN8wDF2+fDlf+kJmzsPPz0+TJk3SK6+8os8//1xfffWVkpOTtWvXLn300UdKSEgwtdYLgKKB5AqAQqdz585KSEjQ0qVLc+wAnD59WuvXr1dISIhKly6tqlWrSpJ+/vnnLGUNw9CRI0cUFBSkkJAQp5vqFi1aOJW12WzasmWL43h5YX+dY8eOKSIiwmnftGnTdOPGDY0dOzbHeiEhIVniS01N1f79+/Mlvrt58sknNWPGDC1btkzdu3fPdmG/q1evKiEhQVevXtVbb71l6vinT5/W9OnT1bhxY82bN88pGeJqh0GSqlevLkk6evRoltEr9qea7OzXOTQ01DG9mN3x48d19OhRpynLcissLExBQUE6fPhwjmUOHjwoSTkuumn29aR7n4dhGPr5559148YN1a1b17Gg55UrVzR69Ght27ZNO3fuVJs2bfIcEwAAALwDfSvP963sqlatqqZNm2rz5s0aN26ckpKS9MADD6hJkyaOMgsXLtSBAwf0zjvv6LnnnnOq//vvv9/zNfz8/LJMryz9MY2ynf26lChRIst1uXLlinbu3JllNoLcioyM1I4dO3Ty5Mlsr+2xY8d0/fp1NW3a1KXj/5mZ8zh16pROnDih5s2bKyYmRjExMbp165bmzp2radOmadmyZRo9enSeYwLgW1hzBUCh07hxY7Vr105btmzR3//+9yz709LSNHz4cN26dUtDhgyRv7+/atWqpapVq2r9+vU6cuSIU/nExESdOHFC7du3lyRFRUWpSpUqWrNmjWPIu93y5cs1YsQIJSYm5vk87E9uLViwwGn7iRMnNH/+fJ08eTLbeu3bt5fVatWcOXN048YNp33vv/++Xn31VR04cMClmKxWa66GkVetWlW9e/fW999/r0mTJmWpk56erlGjRunixYvq06dPtkPn7+bixYsyDEMPPfSQU2Ll+vXrWrRokSTX1ntp3769ihUrpsWLFzvVT01NVVJSklPZ//iP/5AkzZo1y+lJrps3b2rMmDEaNGiQzp49azqGYsWKqV27djp9+nS2UyNcvXpVixcvlr+/v+M9aZfb9nHlPCwWi4YOHarBgwc7PUkWFBTk6KDeOe0aAAAACjf6Vp7vW/1Zjx49dP78ea1du1YHDx50GrUiSRcuXJCkLAmk7777Tt9++62krKNQ/iw0NFTnz593mtIrIyNDmzdvdir36KOP6r777tP8+fMdr2k3Z84cDR8+XF988YWpc7N78sknJUkzZszIcn0Mw9DHH38s6Xbi78/sI4bMXFMz5zFnzhz17dtX+/btc5QpVqyY6tWrJ4m+EIDsMXIFQKE0adIkXbp0Se+//76SkpLUvn17lS1bVr/88ovWrFmj8+fPq1evXurVq5ek2zdCEydO1IABA/TXv/5Vzz//vMLCwrR//36tWbNGVapU0WuvveZUduDAgerevbuee+45VatWTd9//70SExNVrVq1bKelMqtVq1bq3LmzEhMTdebMGbVt21ZXrlzRkiVLFBAQoFGjRmVb78EHH9TQoUM1Y8YMde3aVd26dVNISIg+++wzx8iCO7+Uz61y5crp8OHDWrp0qaKjoxUeHp5j2b/97W86e/asFi5cqC+//FKdOnVShQoV9Ouvv2r9+vU6deqU2rVrpxEjRpiO4+GHH9YDDzygxMREBQQEKDw8XKmpqVqzZo3jqaq7DSXPSZUqVTR48GDNmjVLzz//vDp16qRr165p6dKljoUf7aNwmjdvrmeeeUarVq3Ss88+q44dO8rf31/r16/X/v379cILL6hu3bqmY5CkUaNG6bvvvtP48eO1c+dONWvWTCVLltSJEyeUlJSkM2fO6K233sryJJeZ9rEzcx5Dhw7V3/72N/Xs2VPdu3dXqVKldPjwYS1fvlw1a9bM8rQXAAAACj/6Vp7vW9l16NBBEyZM0OTJk1WsWDE9/fTTTvvbtm2rRYsW6bXXXtMLL7yg4OBgHThwQGvWrJGfn59u3rypy5cv53j8Hj16KDk5Wf369dMLL7wgm82mxMTELAmZkJAQvfXWWxozZoyeeuop9ezZU6Ghofr666+1adMm1a1bVy+88IJL16Vbt27avn27kpKS9Msvv6hDhw4qV66cfv/9d23fvl3fffedunbtqqeeesqpnv2BvZkzZ6pJkya56puYOY++fftq8+bNGjBggJ577jmFhYXp7NmzWrZsmYKDg/Xss8+6dL4AfBvJFQCFUkhIiObOnatNmzZp9erVWrp0qc6fP6+goCDVq1dPvXr10l/+8henOs2aNdOKFSs0e/ZsJSYm6sqVK6pcubJeeuklDRo0yGlO1xYtWmjFihX68MMPlZiYqLS0NFWsWFEvvPCCBg4c6PIQ6DtNnTpVdevW1apVqzR58mSVKlVK0dHRGj58uGMKq+y88sorevjhh7Vw4UJ9/PHHstlsqlq1qmJjYxUTE+PyUzWxsbGKi4vTpEmTNGjQoLt2APz9/TV9+nR16tRJK1eu1Jo1a5SamqqSJUuqVq1aGjlyZJanjXKrePHiio+PV1xcnDZu3KgVK1YoNDRU0dHRevXVV9WrVy/t3LnTpWMPGTJE999/vxYvXqy4uDiVKVNGPXr0UHp6uv7+9787jZSZOHGi6tevr+XLl2vWrFny8/PTgw8+qIkTJ2Z5isyMcuXKKTExUYsWLdLWrVs1c+ZMXb9+XeXLl1f9+vXVp08f1a9fP0s9M+3zZ7k9j86dO6tkyZKaP3++5s6dq7S0NFWqVEkxMTEaPHgwC9oDAAD4IPpWnu9b2QUEBKhz585aunSp2rZtq9DQUKf9zZs317Rp0/TJJ5/ogw8+kL+/vypXrqwRI0bo4Ycf1oABA/Tll19mmQ7Yrnv37rp69aqWLl2qKVOm6P7771fXrl3Vpk0b9ezZ06ns008/rUqVKik+Pl4LFy5Uenq6KleurMGDB6tfv34uTZEs3X6YbdasWVqzZo3WrVun+fPn69KlSypdurQefvhhTZs2TZ06dcpSr3///vrpp58UHx+vffv25frBr9yeR40aNbR48WJ9+OGHWrt2rc6dO6fSpUurWbNmevXVV1lvBUC2LIZhGJ4OAgAAd7h27ZoyMzMVHBycZd+bb76pFStW6LPPPstxMUuz2rZtK0navn17vhzPm8yaNUsffPCBFi5cmC/zIQMAAADwHa+//rrWrFmTr/0rb7Fnzx716dNHQ4YM0dChQz0dDgAPYs0VAECR8fPPPys6Olr/+7//67Q9LS1Nn3/+ucqXL68qVap4KDoAAAAAAAAUFszvAQAoMqKiohQREaE5c+bo/PnzioyM1MWLF7V69WqdO3dO//3f/+1YcyW/XLt2TevWrVPx4sXVsWPHfD22Jxw4cEBHjhzRjz/+6OlQAAAAAHi5bdu2qUyZMnrsscdUqlQpT4eTJ2fOnNGePXt09OhRT4cCwEuQXAEAFBl+fn6aP3++4uPjtW3bNq1cuVIlS5ZU3bp1NX78+AKZ3urChQuKjY1VcHCwTyRX1q1bp4ULF3o6DAAAAACFwHvvvSdJWrt2baFPrhw4cECxsbGeDgOAF2HNFQAAAAAAAAAAABNYcwUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSRXAAAAAAAAAAAATCC5AgAAAAAAAAAAYALJFQAAAAAAAAAAABNIrgAAAAAAAAAAAJhAcgUAAAAAAAAAAMCE/we37nBxuhOu1wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
541coef_calib_zeroautohhindivtou_SHARED3_atwork-35.9348700.00.0<NA>-35.934870True
543coef_calib_zeroautohhindivtou_BIKE_atwork-33.390562255.00.0-2-35.390562False
540coef_calib_zeroautohhindivtou_SHARED2_atwork-32.865285175.00.0-2-34.865285False
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-31.949893100.029.0-1.237874-33.187767True
542coef_calib_zeroautohhindivtou_WALK_atwork-25.7104761777.05313.01.09523-24.615246False
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-18.970666602.00.0-2-20.970666False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-18.9706661574.00.0-2-20.970666False
675coef_calib_autodeficienthhjoi_TAXI_maint-18.970666335.00.0-2-20.970666False
671coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint-19.51445672.042.0-0.538997-20.053453True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -35.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -33.390562 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -32.865285 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -31.949893 \n", - "542 coef_calib_zeroautohhindivtou_WALK_atwork -25.710476 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -18.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -18.970666 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -18.970666 \n", - "671 coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint -19.514456 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "541 0.0 0.0 -35.934870 True \n", - "543 255.0 0.0 -2 -35.390562 False \n", - "540 175.0 0.0 -2 -34.865285 False \n", - "544 100.0 29.0 -1.237874 -33.187767 True \n", - "542 1777.0 5313.0 1.09523 -24.615246 False \n", - "471 0.0 0.0 -23.883300 True \n", - "676 602.0 0.0 -2 -20.970666 False \n", - "677 1574.0 0.0 -2 -20.970666 False \n", - "675 335.0 0.0 -2 -20.970666 False \n", - "671 72.0 42.0 -0.538997 -20.053453 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - " Final coefficient table written to: C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_1\\tour_mode_choice_coefficients.csv\n" - ] - } - ], - "source": [ - "iteration_output_dir = output_dir.strip('_cold') + '_1'\n", - "\n", - "calibration_iterations_to_run = 1\n", - "start_iter_num = 1\n", - "\n", - "for i in range(start_iter_num, calibration_iterations_to_run+start_iter_num):\n", - " asim_calib_util.run_activitysim(\n", - " data_dir=data_dir, # data inputs for ActivitySim\n", - " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", - " configs_common_dir=configs_common_dir, # just the location of the common config, these files will be used from the original location\n", - " run_dir=activitysim_run_dir, # ActivitySim run directory\n", - " output_dir=iteration_output_dir, # location to store run model outputs\n", - " settings_file=warm_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", - " tour_mc_coef_file=tour_mc_coef_file # optional: tour_mode_choice_coefficients.csv to replace the one in configs_dir\n", - " )\n", - " \n", - " _ = asim_calib_util.perform_tour_mode_choice_model_calibration(\n", - " asim_output_dir=iteration_output_dir, # folder containing the activitysim model output\n", - " asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim tour mode choice config files\n", - " tour_mode_choice_calib_targets_file=tour_mode_choice_calib_targets_file, # folder containing tour mode choice calibration tables\n", - " max_ASC_adjust=max_ASC_adjust, # maximum allowed adjustment per iteration\n", - " damping_factor=damping_factor, # constant multiplied to all adjustments\n", - " adjust_when_zero_counts=adjust_when_zero_counts,\n", - " output_dir=iteration_output_dir, # location to write model calibration steps\n", - " )\n", - " tour_mc_coef_file = os.path.join(iteration_output_dir, 'tour_mode_choice_coefficients.csv')\n", - " iteration_output_dir = iteration_output_dir.strip('_'+str(i)) + '_' + str(i+1)\n", - "\n", - "print(\"\\n\\n\", \"Final coefficient table written to: \", tour_mc_coef_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_1\\tour_mode_choice_coefficients.csv\n", - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_2\n" - ] - } - ], - "source": [ - "print(tour_mc_coef_file)\n", - "print(iteration_output_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_2\n", - "ActivitySim run started at: 2023-09-13 00:32:40.676421\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 01:19:29.017960\n", - "Run Time: 2808.34 secs = 46.80566666666667 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXxMZ///8fdMFtmQiFhrjUzsSyja2quopatq0aq7lpZaS1t8abW29tYVRS1VtJaiKHe1aNVSLUorqNgTkSJEgpCQZM7vD78ZpkmQPSav5+ORBznnOue6rjNnTuYzn3Ouy2QYhiEAAAAAAAAAAAAAAO5x5rxuAAAAAAAAAAAAAAAA2YEEOAAAAAAAAAAAAADAKZAABwAAAAAAAAAAAAA4BRLgAAAAAAAAAAAAAACnQAIcAAAAAAAAAAAAAOAUSIADAAAAAAAAAAAAAJwCCXAAAAAAAAAAAAAAgFMgAQ4AAAAAAAAAAAAAcAokwAEAAAAAAAAAAAAAToEEOIC79u233yo4ODjDPy+88EJeN/2uTZ06Nd1+VKtWTXXq1FGrVq00cOBAbdy4Ma+bi//vzz//tL9OvXv3vmP5ESNGKDg4WMOHD3dYbtvH9u3bs72NvXr1su9/79692b7/WyUnJ+vEiRM5Wse/hYWFafz48erQoYMaNGigWrVqqXnz5urdu7e++uorJSYmZnud586d0/Dhw/Xggw+qZs2aatq0qbZs2SJJWrVqlR5//HHVqVNHDRo0UK9evbRjxw77a5CcnJzpek+dOmXfT0RERHZ1B1BcXJzOnTuXLftK7zqXU9sBAFAQESMTI+dXxMiOiJGJkQsiwzB07NixXKsvu68XhmFo3rx5ateunWrVqqVGjRrp//7v/+x/e5s1a5al/WfX+Z9djhw5kmpZq1atFBwcrGXLlmVoX5ndDnA2rnndAAD3Dn9/f4WEhKRafvr0aZ0+fVru7u6qWbNmqvUWiyU3mpet0uqLYRhKTEzUqVOntH79eq1fv16dOnXS5MmTZTKZ8qilkKQVK1bY/79t2zZFRkaqXLlyedgiR6dPn3YIABYvXqw6derkSF3btm3T+PHj1bZtWw0dOjRH6vi3KVOmaMaMGbJarfLx8VH58uXl5uamc+fOaevWrdq6davmzJmjzz77TDVq1MiWOq1Wq3r37q2wsDC5uroqKChISUlJKlu2rH788Ue9+eabkqSAgACVLFkyX50PQFq+/PJLTZ8+XZ988okCAgLyujkAAOAuECMTI+dXxMg3ESMTIxdEoaGhGjdunCpUqKAPPvggr5uTKfPmzdP7778vSSpbtqx8fX1133335XGrsl90dLTef/99/fHHH9q8eXNeNwdwKiTAAdy15s2bq3nz5qmWT506VdOmTVNAQIAWL16cBy3Lfrfry/Xr1/XJJ59o7ty5WrNmjRo2bKguXbrkcgthk5CQoHXr1slkMqlJkybaunWrli5dmq+eXvz2229ltVrVvHlzbd68WevWrdPIkSNVtGjRbK/r888/z9U721esWKHPPvtMXl5emjRpkh555BG5uLjY1x87dkyjRo3SX3/9pV69eun7779XsWLFslzviRMnFBYWJkmaOXOmmjZtal83depUSVL9+vW1YMECubre+LiTkJCg77//XpLsyzKjZMmS9v2UKVMm0/sBbjVp0qS8bgIAAMggYuQbiJHzF2JkR8TIxMgF0aJFixQaGqoKFSrkdVMybd26dZKkDh066KOPPrIvv3z5surUqSM3N7cs7b927drZcv5n1bZt27R27VqVLFkyz9oAOCuGQAeADHJ3d9cbb7yh2rVrS5IWLlyYxy0q2H744QfFx8crKChITzzxhKQbwfT169fztmH/n2EYWrlypSTp6aefVsWKFZWYmGhfdq+bOXOmJOmNN95Qu3btHAJ7SQoMDNSMGTPk7++v2NhYLViwIFvqjY2Ntf+/UaNGaa6rX7++QxDj6empwMBABQYGZqluNzc3+36yGnABAAAA9zpi5PyFGDlvESMTIyN72M7bhg0bOiwvXLiwAgMDVb58+SztP7vOfwD5FwlwAMik1q1bS5IOHz6sq1ev5nFrCq5vv/1WktSsWTO1bNlSHh4eiomJ0YYNG/K4ZTfs3LlTkZGRcnNz04MPPqhHH31UkrR06dI8blnWXbp0SSdPnpSk2w5XV6xYMfv7JTQ0NFvqTklJsf/f3d3dYZ3Vak1zOQAAAICcQ4ycPxAj5x1iZCD7cN4CyCoS4AByzY8//qjevXurcePGqlmzppo0aaKBAwfqt99+S7N8cHCwgoODHeaFutULL7yg4OBg+1BOknTq1CkFBwfroYce0tmzZ9W3b1/Vrl1bDRs21LBhw7K1Pz4+Pvb/X7lyxaH+4OBgRUREpLldq1atFBwcbA9KJWnHjh0KDg5Wly5ddOzYMXXt2lW1atXSAw88YJ/vxrbdwYMH9csvv+i5555TvXr11KhRI/Xo0UMbN25Mt60pKSlatmyZXnjhBd1///2qWbOmWrRooddff10HDhxIc5vExETNmjVLzz33nB544AHVqlVLLVu21LBhw7R79+506woLC9Obb76pFi1aqGbNmmrUqJF69eqlH3/8Mc3ytx6zW4/J3Th58qR27dolSWrTpo28vb3VsmVLSco3Qw3a5l5r3LixChcurE6dOkmSjh8/rt9//z3NbTJzHn377bcKDg7Wzp07Jd246zw4OFgjRoxw2O7ixYuaNm2annjiCdWrV0916tTRo48+qvfff1/R0dEZ6tutd45v2rTptmUHDhyo//3vf/rwww8dlo8YMULBwcHpDsdn61erVq0k3Tw2PXr0sJexHSvbvmzHYNq0afZ10s33WXBwsJKTk1PVFRYWpjFjxqh169aqVauW7r//fr344ov64YcfHMrd6fWJjIzU2LFj9cgjj6hWrVpq0KCBunXrpmXLljl8KfHvY7B48WKdOnVKI0eOVLNmzVSzZk01a9ZM//d//6dTp06le2z/+OMPDRs2TC1btlTNmjXVuHFjvfLKKw7X1q1btyo4OFg1atRQTExMmvtJTExU/fr1FRwcrL1796bq692+P6dOnWrf5k4//+7X+fPn9d///lft27dXnTp1VK9ePT399NP64osvdO3atXTr+uCDD7Rx40a1bdtWNWvWVKtWrfS///3PoW9ffvmlunTpopCQENWqVUutW7fWW2+9pfDw8HT7cvDgQY0ZM0aPPvqoQkJCVLNmTT344IPq06dPqvNCunm+NmvWLM393Xo8bX23vf42//nPf9I83idOnNDbb7+tRx55RDVr1lT9+vXVpUsXffnll0pMTEy3D5IUFRWlMWPGqHnz5qpZs6aaNm2qESNG3LbvWdkOAADcHWLkG4iRHREjp0aMfBMx8r0XI9tcunRJs2bNUvfu3dWoUSPVqFFDDRo00FNPPaWpU6fq4sWLqbbJ6HXf9praRlRYs2aNgoOD9cILL6TqW2Zi5IiICI0ZM0atWrVSrVq11KZNG02fPv2OI0zEx8frs88+s7/P6tatq06dOmnKlCm6dOlSmn2KioqSJI0cOdLhnL9T3H03r/+tx+p2539Grt22dm/ZskVhYWEaPHiwHnzwQdWsWVMPP/ywJk6cqAsXLjhsExwcrJEjR0qSzp496/D+/Lfdu3frlVdeUaNGjVS7dm21bdtWH374oeLj49Msn9XtAGdAAhxAjktKStKAAQM0aNAgbd26Va6urqpataqSk5O1fv169ezZUxMnTszWOq9fv65evXpp+/btCgwMlMlkUtmyZbO1DtuHeg8PD/n5+WXLPi9cuKAXX3xRBw8eVJUqVXTt2jVVrFjRocyKFSv08ssv68CBA6pUqZIKFSqkHTt26NVXX9X48eNT7TM+Pl7du3fX6NGjtXPnThUuXFjBwcG6fPmyvvvuO3Xu3Fnz5s1z2Ob69evq2bOnPvzwQ4WGhsrX11dBQUGKj4/X2rVr1b17dy1btixVXV9//bWeeuoprVq1ShcvXlRQUJC8vLy0bds2DRo0SMOGDUszuMmsFStWyDAMlS9f3n53dceOHSVJu3bt0rFjx7KtrsyIj4/X+vXrJd1sV2BgoKpVqyZJWrJkSbbV5e/vr5CQEPuXTqVLl1ZISIjD+XPo0CF17NhRU6dO1aFDh1S2bFlVqlRJJ0+e1BdffKGOHTtqx44dd12nl5eXQkJCJN1IRL755pvatWtXmq9xQECAqlSpkuX3SqFChRQSEiKLxWJfFhISYu9rWsfA1sbb+frrr9W5c2d98803unDhgv3c/f333zV48GB9/PHHd9W+DRs2qGPHjlq8eLGio6NVuXJlFStWTLt379bo0aPVq1cv+5eB//b333/r8ccf16pVq+Tp6akKFSro7NmzWr58uZ555hmdPn061TYfffSRnn/+ea1du1ZXr15VcHCwzGazNm3apJ49e9qfonjooYdUunRpJScna+3atem2PT4+XoGBgbd9WuFObj3uaf14enpKujFsWeHChe3b7d69Wx06dNDcuXN18uRJlStXTmXKlNGBAwf0/vvvq0uXLjp37lyade7atUuDBg3SpUuXFBgYqOjoaPv77MyZM3ryySc1adIk7d27VwEBAQoKCtK5c+e0dOlSPfbYY/Z5v261aNEiPfXUU/rmm28UExOjChUqqFy5crp8+bK2bNmSofPidmznrY3FYlFISIj8/f3ty7777js99thjWrJkiaKjo2WxWFS8eHHt3btXkyZN0jPPPKMzZ86kuf9Dhw7piSee0LJly+Tt7a1y5copJiZGK1eu1JNPPqmjR49m63YAAODOiJHvHjFyxhAj30SMTIycX2JkSQoPD9djjz2mDz/8UH/99ZeKFSum4OBgubi46MCBA5o2bZqeffbZdI/F3SpcuLBDPFmsWLFU50dmY+TffvtNTz75pL755hvFxsbKYrEoISFBn376qXr37p1um44dO6bHHntMU6ZM0eHDh1WiRAlVqFBBx48ftyfFb7022WJi25PftvO4Zs2ad+z/3b7+d5KVa/eWLVvUuXNnbdy4UX5+fipdurROnTql+fPn67nnnnNIPN96TXJzc0v3/bly5Up1795d27dvV+nSpVWsWDGFh4fbb8pK76b4zG4HOA0DALJoypQphsViMVq2bJnm+nfffdewWCxG3bp1jXXr1tmXJycnG1999ZVRvXp1w2KxGPPmzXPYzmKxGBaLxfj111/T3O/zzz9vWCwWY8qUKfZlkZGR9u0aNmxoHDlyxDAMw7h27Zpx+fLlLPfFJiYmxmjYsKFhsViMfv36pVl/eHh4mtu2bNnSsFgsxooVK+zLfv/9d/t2rVu3Ns6cOWMYhmHEx8cbiYmJDttZLBajZ8+exvnz5w3DMAyr1WosXbrUfhzXrFnjUN/LL79sWCwW46GHHjJ+//13+/Jr164Zn3zyiX2fP/74o33dokWLDIvFYrRp08aIioqyL09MTDTeeecdw2KxGPXr17e3zTAMY/PmzUZwcLBRo0YNY/78+UZycrJ93fbt240HHnjAsFgsxscff+zQvuvXrxtHjx41jh49aly6dOm2x/1WKSkpRvPmzQ2LxWJ8+umnDvuzvTbjxo1Lc9s333zTsFgsxrBhwxyW3+mcy6glS5YYFovFqFOnjhEfH29fPnfuXMNisRg1atQwzp07l2q7zJ5HhnHzffHRRx85LL98+bLRpEkTw2KxGM8++6xx8uRJ+7pz587Zz5P69es7rLuTAwcOGHXr1rW312KxGCEhIUafPn2Mzz//3Pjrr7+MlJSUdLdP77WwWbFiRZrvyVvfM/+W1rXh39skJSXZl+/evduoWrWqYbFYjA8++MDhvF6xYoV93datWw3DSP/1OXjwoFGzZk0jODjY+Pjjjx32c+DAAaNNmzaGxWIxhg8fnuYxsFgsRpcuXYzjx4/b1+3Zs8eoV6+eYbFYjPHjxztst3btWsNisRjVqlUzvvzyS/t7Ljk52Zg+fbp93dGjRw3DMIyPP/7YsFgsxpNPPpnmsX7ppZcMi8VizJ49274ss+/P9KxevdqwWCxG9erVjW3bttmXnzlzxv6+HT16tHHx4kX7uoiICOOZZ54xLBaL0a1bN4f92a7ZFovFePXVV41r164ZhnHjGm07Fo8//rhhsViMtm3bGgcPHrRve/nyZeP//u//7O/Fv/76y77uxIkTRo0aNQyLxWJMnz7duH79un1dbGysMXjwYPt2cXFx9nW287Vp06Zp9v/WcycyMtJhXXrXn7/++st+fR89erTD37K///7bfl49+eSTDuf1refVE088YRw7dsy+7uDBg0ajRo0Mi8ViDB482KG+zG4HAABuIkYmRjYMYuS0ECMTI996nApSjGx7Dbp06WKcPXvWvtxqtRorV660H9OvvvrKYbvMXPcNI/3zKLMx8sWLF43GjRsbFovFGDp0qMPfj2+//dYeP/+7rVeuXDEeeeQR+98G27XcMAwjOjra6Nu3r/3ampCQ4NDW9N7T6cXdGX390zv/M3vttr0WFovF6Nu3r8PrvHHjRqNatWpp/m2/3fcIt/6dGzZsmBEbG2tfZ/t+xWKxGF9//XW2bAc4G54AB5Cjzpw5Y7+Dd9y4cWrXrp19nYuLi7p3767BgwdLujEUU1bvdLxVt27dVKVKFUk35ou5dTi2zDAMQ7Gxsfr555/10ksvKS4uTm5ubho0aFB2NNfu5ZdfVsmSJSVJ3t7eKlSokMP6MmXK6LPPPrPfzWkymdSlSxf16tVL0o3jaPPXX3/Zh92aMmWKGjVqZF/n7u6uwYMH69lnn5UkffDBB/Z1YWFhkm7MGVamTBn78kKFCmnEiBFq0qSJHnnkEcXFxdnXffTRRzIMQ8OHD1ePHj3k4uJiX/fAAw9o0qRJkqR58+YpNjbWvs7NzU2BgYEKDAx0eBr0TrZt22a/2/exxx5z2J/tPFu9enWe3s1oG9rt4Ycflre3t315x44dZTablZSUZC+T0xYtWqTo6GgVL15cn3/+ucqVK2dfV7x4cU2ZMkUWi0WXL1/WzJkz73q/1atX17Jly1S/fn37svj4eG3evFkffvihunTpoiZNmujjjz9WQkJCtvYpu0yfPl1Wq1WPPvqohg0b5vCee+qpp9S5c2dJuuPwZlOnTtX169f1/PPPa8iQIQ77qV69uqZMmSIXFxetWbMmzadn3dzcNG3aNFWqVMm+rF69enrqqackSXv27HEob3uv/+c//9GLL75of8+5uLioX79+euihh5SSkqJVq1ZJkp5++mmZTCYdOHAg1ZMfZ8+e1fbt2+Xi4qLHH3/coU2ZeX+mZdeuXRo1apQkadSoUXrooYfs6+bOnau4uDi1atVK48aNU5EiRezrypcvr+nTp8vHx0d//PGHNm/enOb+33zzTfsd4sWKFZMk/fDDDzp48KAKFSqk2bNnq2rVqvbyPj4+Gj9+vJo2baqkpCSHJxh+/fVXubi4qEaNGurXr5/c3Nzs63x9ffXmm29KuvH01okTJ7J0XO5kypQpSk5OVpMmTTRu3DiHv2XVqlXTnDlz5OHhoQMHDjgM+27j6uqqzz77TJUrV7Yvq1q1qnr27CnpxvBwacnsdgAA4PaIkTOOGPnuECNnDDFy+oiRszdGjomJ0ZEjRyTduO6XKFHCvs5kMumJJ55Qw4YNJd0YlSAnZTZGXrJkiS5cuKCKFSvq/fffd/j78eSTT+qVV15Js75ly5YpIiJCNWrU0NSpU+3XcunGKAiffvqpypYtq/Dw8AwPKf9vGX3905PZa7eNv7+/pkyZ4vA6P/zww/Yh2/993t6NwMBAvf/++/L19bUve+yxx+zfq6Q3DUdmtwOcBQlwADlqy5YtSk5OVkBAgNq3b59mmeeff15ubm66fPmyfV6i7HBrsJFRUVFRqeaqrVq1qho3bqx+/frp4MGDKly4sD755BOHD4vZ4U7t7tKli7y8vFItf+655yTdmCf2+PHjkm7OOVW7du10h7h66aWXJN0Yru7w4cOSZB9+Z/ny5Vq0aJHDHDXu7u6aO3euJk2aZP/geurUKR08eFCSY6B9q+bNm8vPz0+JiYnpzmmXEbYPxrVr1041BJ6tDZcuXUozIZQbjh07Zp8j6t/HpESJEmrcuLEkaenSpbJarTnenp9//lmS9MQTT6ho0aKp1ru7u9vnhPr5559lGMZd77tKlSpatGiRVq1apQEDBqhevXoOCcOYmBjNnDlTjz32WLrDNOeVhIQE+zxzti+6/m3IkCH64Ycf7HMNpuX69evasmWLpPTfA7briGEYac4HV7NmTQUEBKRabktAXr582b4sIiLC/j63vff/bcKECdq4caOGDh0qSSpXrpzuv/9+SUoV8K1evVpWq1XNmjVLsw1Zdfz4cQ0YMEBJSUl64YUX1L17d4f1tvkZ0zt2xYsXtwdoaR27gIAAhy+sbGznfatWrdJcL90IjiVp586d9mPcvXt37d27V4sWLUpzGw8PD/v/c/JLq6tXr9qHXLx1Tr9blStXTq1bt5Yk/fTTT6nW16xZ0+FLWhvbvGK3fkmbHdsBAIDbI0bOOGLku0OMnDHEyGkjRr4hO2Nkf39//f7779q7d6/DUOQ2KSkp9oRyTt+gktkY2XYjeqdOnRzOZZuuXbumuS9brN++fXuHRLKNh4eH2rZtKyntWP9uZeb1T0t2XLsfeOCBVDdqSTeS0ZLjeXu3Hn744TSPny0+//fc4lndDnAWrnndAADOzfbho1q1ajKb077nxsvLS5UqVdLhw4d14sQJtWzZMlvqzsoHVHd391Rzy5jNZnl7e6tkyZKqU6eO2rVrl+U75tNyp3bXrl07zeVlypRR4cKFdfnyZYWHh6ty5cr241+jRo1091exYkX5+PgoPj5eJ06ckMVi0TPPPKPly5fr6NGjeuedd/Tuu++qWrVqeuCBB9S0aVPdf//9cnW9+SfEdierJL366qvp1nXt2jVJN8+LzIqLi7MnetL6QFq/fn2VK1dOkZGRWrx4sZ5++uks1ZcZy5cvl3Qj0Ln1SVebxx9/XNu3b1dUVJS2bt2q5s2b52h7bE+p3u5csK27cOGC4uLiMjwXWbVq1VStWjUNHDhQCQkJ2rNnj7Zt26bVq1crJiZGJ0+e1ODBg+96zqXc8M8//ygpKUmS0v2izt/f32E+5rSEh4fr+vXrkqR33nnH/iRyWvVJab8Hbr0T+la2ZGtycrJ9mW1+RS8vr3SD1tKlS6da9vTTT2vnzp1as2aNXnvtNZlMJkk3gntJ9jvps9OFCxfUt29fxcXFqUmTJho5cqTD+itXrigqKkrSjScNFixYkOZ+bGXSOna33ll9q4yc9ykpKYqIiHC49hcqVEihoaE6fPiwIiMjdfLkSR0+fNihDRn5IiyjIiMj7efn7eY7q1mzptauXZvm0+jpnVe2L4mTkpKUnJzscE3PynYAAOD2iJEzjhj5zoiRM44YOW3EyDkXI3t4eOj06dPau3evTp48qcjISB07dkwHDx7U1atXJSnHb/7IbIxs2y4oKCjNbfz9/VWiRAlFR0c7LLfdRLRs2bI0b9iWpPPnz0vK2nUws6//v2XHtTsj5+3dulN8nt6NE5ndDnAWfGMFIEfFx8dL0h2HBbIFydk5vNutT+hlVEBAgBYvXpxtbcmIO7U7rTuTbby8vHT58mVdunRJ0t0ff29vb8XHx9uPv4+Pj5YuXaovvvhCa9euVUREhP7++2/9/fffmjt3rvz9/TVkyBB16dJFkuPdi3czlE9m7na81Zo1a+yB1Pjx4zV+/Ph0y+7bt08HDhy47Yf77JacnKzvvvtO0o07u+9U9+LFi3M8uL+bc+HWL6uuXLmS4eD+Vp6ennrooYf00EMPafDgwRo1apT+97//6a+//sr11+N2bn2K9dYh+DLq1nN6//79GSpvk9Zd1OmxtTujbW7Xrp3GjRun06dPa8eOHWrcuLH27duno0ePys/PL9u+XLW5du2a+vXrp8jISFWpUkWffPJJqruPbeemdDM4vp20jl1ad1ffuu+MnPc2q1ev1vTp0xUeHu5Q/r777lPnzp31zTff3LGtWXXrsbmbPqT1NzS9L5ruJLPbAQCA2yNGzjhi5DsjRs44YuS0ESPnTIx8/Phx/fe//9XmzZsdktw+Pj5q0KCBoqOj7VMt5KTMxsi2a2hao23YFC1aNFUC3FZfeHh4qtj637JyHczs63+7NmT22p2R8/ZupfedR05tBzgLEuAAcpTtg8edPsTYPkil9UElvafrbHdH5lc51e7bDbdr+2BpuxP3bo+/bf2tx9/Hx0eDBg3SoEGDFBERoR07dmjHjh3avHmzYmJiNGbMGPn6+qpNmzb2D8C+vr724Xpzkm1OMC8vr9t+aI+OjpZhGFqyZInGjRuX4+2y+eWXX+x3sJYoUcJ+B/G/Xb16VZcvX9aWLVt0+vTpNO9Gza7zyNvbWxcvXrztuXDx4kWH8nfy1ltv6ffff9eTTz6pfv36pVvOw8ND7777rtavX2+fM/nfwX16/czpOdFuDd7i4+Ptc0dnZT979uzJctB1t/Vl9AtRDw8PdejQQUuXLtWaNWvUuHFj+53t6Q1lllmGYej111/XX3/9JT8/P82cOTPN96unp6f9/2vWrElzSLjMuptroO3vz63lV65cqREjRkiSmjZtqkceeURBQUEKDAxU0aJFlZSUdNsEeHadz7eeR5cvX073KQvbezenzzsAAJB1xMipESNnHTEyMXJ2IUbO/hg5JiZGzz//vGJiYlSmTBl16dJF1atXV+XKlXXffffJZDJp2LBht02AZ+d5L2U8Rvb19dW5c+ccbtL+t7SeJvb09NTly5c1c+bMbL/h/laZff3T209uXbsB5CzmAAeQo2zz8hw8eDDdYXzi4+PtdwFWqFDBvtz2lKDtLuZ/+/ddhfnBrUOepdXuxMTELN/Znd4TkidPnrR/0KtSpYqkm8f/wIED6e7v2LFj9g/MtuMfExOjP/74wz4XTIUKFdSlSxd9+OGH2rx5s33oO1tQUKlSJUk37rg8d+5cunX98ccfOnbsWJaG2AkLC7PPxzNp0iRt2bIl3R/bHeNr16697Yf07Gabey0oKEhbt25Nt33z5s2TdGNYqVuTaTlxHt3NuWC7K7to0aJ3dWf7tWvXFBERYZ/T6XZ8fHzsgdOtAbTtfW4bYu3fcvp9Xq5cOXsbbh3q6lb79u1T165dNXLkyHSDzlv3c/To0XTrCw0N1aFDh7IclNnm9Lt69apOnTqVZpmffvpJL7zwgv773/86LLcNd/jTTz8pJSXFPgxZdg+D+N///lc//vij3NzcNG3atHSHIStSpIiKFy8u6fbH7tChQzp48KDDl1B3cjfn/b59+yRJJpNJ5cuXlyR9/vnnkm7MBzhnzhw9++yzCgkJsT9dlN48fdn9d6t8+fL2L1xu99SEbd2tf0MBAED+RIzsiBiZGJkYmRjZ2WPkFStWKCYmRr6+vlqxYoX69eun5s2bq1y5cvabQc6ePZvmttl93c9sjGy7ptmuNf925coV+3D2t7Jtl965JN14Onzfvn1Zmo86K69/Wu3NjWs3gJxHAhxAjmrWrJlcXV117tw5ff/992mW+eqrr5ScnCxPT081bNjQvtwWXKQ1n0poaGi+DO59fX3tH17TavfPP/+cqblebvXtt9+m+UWJbTi6unXr2u+Stt1dGRoamu7QPV9++aUkqVSpUgoODpYk9erVS927d9fKlStTlff29lbdunUl3QhKJSkwMND+xcBXX32VZj27d+9W9+7d1b59e/3111930dO02eYN8/PzU6tWrW5btmvXrpJufAC2fRGR02JiYrR582ZJdw6WatWqZf+iZNmyZfZzIyvnUXp30tvOhVWrVqWZQLx+/br9HGratOlt221jm1tu//799i800rNt2zbFxcXJ19dXderUsS+/3fs8JSVFP//88121JbN8fHxUv359STefmvi3tWvXas+ePTp16lS6x9fHx8d+/UpvDuvIyEh169ZNjz32mH744YcstTswMFBly5a9bbtXrlypnTt3pgoi69Spo6CgIMXGxmrhwoX6559/VL169XTnd8uMxYsX64svvpB0YwjGBg0a3LZ8ixYtJN24fqR1fbt8+bJefPFFPfHEE5o/f/5dt8N23v/888+KjIxMs4zt9apbt66KFCkiSfaAOb1hCG3XIclx/i7b+Xzx4kXFxMSk2m7Dhg3pttV2bt36BZKXl5caNWrk0M5/i4yMtL9PmjVrlu7+AQBA/kCM7IgYmRj5VsTIxMiZlZ9jZFt8WaZMmTSfqD969Kj9GmC7hthk9rqfVnwpZT5GbtOmjaQbN/mkdbPCt99+m6rtt9a3fPnyNJPFycnJ6t+/vzp37qz3338/zfbcjay8/v/eT25du23M5hspuvRuJgGQeSTAAeSo0qVL2+fAGjNmjMMHWqvVqkWLFmnq1KmSpP79+zsM1WX7wD1v3jwdO3bMvnzfvn167bXXcqP5Gebh4aHq1atLkqZOnepwB+e2bdv07rvvZrmO/fv3a8yYMfZhr6xWq7766it7kD506FB72Xr16tnv8B40aJDD8D3Xr1/XlClT7HdVv/HGG/YPyI8//rgkadq0adqyZYtD/X/88Yc9UL51Tq7BgwdLkmbNmqXZs2c73J36xx9/2NfXrVtXjRs3tq9LSkrSsWPHdOzYsTvesX39+nWtWbNG0o2hqO40R22zZs3sH4CXLFly27K3888//+jYsWNp3s36b6tWrVJycrLc3Nzsx/F2bF9AnDt3zn6XcVbOI9twTVFRUanqKVmypM6fP6+XX37ZIdCJiYnR4MGDdfjwYXl7e2vgwIF3bLckPfTQQ2rbtq0kafTo0ZowYUKqO22vXbumFStWaMiQIZJunCe3Dn1me58fOXJECxYssH/gv3jxokaNGnVXc0JnVf/+/WUymbR69WrNnDnT4YuTVatWaeHChZKk3r1733Y/AwcOlIuLi9auXatJkyY5BIWHDx9W3759lZSUpLJly6pTp05ZarPJZFL//v0lSbNnz9ayZcvsxy4lJUWzZs3Shg0b5Orqqp49e6ba3vbF06effipJeuqpp9KsJyPvT5vNmzfbh1McNGiQnnjiiTtu07dvX3l5eWn37t16/fXXHQLSqKgo9e3bV7GxsSpcuLC6d+9+V+2QbsznFhwcrGvXrqlPnz4OQ8rFx8drzJgx2rZtm1xdXTV8+HD7Ottd8UuXLnV4/8XHx2vq1KmaNWuWfdmtQXydOnXk5uYmwzA0ceJE+7qkpCTNnz//tsOm2967/77ODBgwQK6urtq2bZvGjBnj8KROWFiY+vTpo2vXrqlq1ap3dawBAEDeIkYmRrZtQ4ycNmJkYuTMyM8xsi2+DAsL048//mhfbhiGtmzZot69e9uf+P/3EPeZve7bzql/v0czGyM/88wzqlChgs6cOaNBgwY53PC9fv16ffjhh2m2o3v37goICFBERIT69evn0J4LFy5oyJAhOnbsmNzc3PTSSy+l2587yerrf6vMXrszy3aNunTpUq6OzAEUBMwBDiDHjRw5UmfPntVPP/2kwYMHq0SJEipVqpQiIyMVGxsrSXr++efVp08fh+369eunrVu36ty5c+rUqZOqVKmia9euKTw8XOXKldPTTz+d7l19eWnIkCHq16+fjh49qtatW6tKlSq6ePGioqKiVKtWLYWEhNiDuMywWCxavny51q1bp8qVK+vMmTM6d+6czGazRo4cmerD13//+1+98sor+vPPP9WjRw+VLVtWxYoV04kTJxQfHy8XFxcNGTJEHTp0sG/To0cPbd++XVu2bFGfPn1UokQJlShRQrGxsfagsVWrVnrmmWfs23To0EHh4eGaOnWqPvjgA33++eeqWLGiLly4YN+mUqVKmj59ukP7zp49q/bt20u6MVxbekGGJG3cuFFxcXGS7m4oKrPZrGeffVYfffSRDh8+rN27d9uDh4x48803tXPnTjVs2NAe6KXHdpd3ixYt7mqurA4dOuj999/XpUuXtGTJEnuwnNnzqHr16tq0aZPWrFmjQ4cOqUGDBnr77bdVpEgRzZw5U3379tWff/6pNm3aqEqVKnJ1ddWRI0eUlJQkX19fffDBB/aho+7GBx98IC8vL61atUoLFizQggULVKZMGfn7+9vfr9evX5ebm5uGDRumbt26OWzfvHlzNWjQQH/88YcmTJigL774Qn5+fjp+/LiSkpI0cOBA+xeAOeWBBx7QyJEj9d577+njjz/WF198oXLlyunMmTP2eepeffVVhy+z0lK/fn2NGzdOb7/9tr788kstWbJEgYGBunLliiIiImQYhooXL665c+fe8Yupu9G5c2cdPXpU8+bN0+jRo/XJJ5+oVKlSOnXqlOLi4uTi4qKxY8emedf6448/rg8//FBXr16Vm5ubOnbsmGYdGXl/2gwdOlQpKSny8PDQ33//rV69eikxMTHNp3Kefvppde7cWRUqVNAnn3yioUOHau3atfrxxx9VpUoVJSUlKTw8XMnJyfLy8tKsWbPSnQc7La6urpo+fbr69Omj48eP6/HHH1fFihXl7e1tH67Mw8ND77zzjsNT6kOHDlX//v119OhRPfzww/Zh0CIiInTt2jX7UHUnT550GA69aNGi6tWrl2bOnKm1a9dq69atuu+++xQVFaW4uDh17dpVP//8c5rD21WvXl27du3Su+++q8WLF6tbt27q3Lmz6tWrpwkTJmj06NH65ptv9N133ykwMFBXr17ViRMnJN34uzBt2rRsOa8AAEDOI0YmRiZGTh8xMjFyZuXXGLlz585atGiRIiIiNGjQIJUtW1Z+fn46ffq0YmJi5ObmpoYNG2rnzp2pYsXMXverVasm6cb86+3atVOVKlU0bdq0TMfIHh4emjJlinr37q1t27apRYsWCgoKUlxcnP09eO7cuVTThRUtWlQzZsxQv379tH37dj388MOqUqWKTCaTTpw4oevXr8vV1VUfffSRfcSNzMrK63+rzF67Mys4OFhms1mJiYlq166dSpQooblz597VtAsAbo8nwAHkOHd3d3322Wf6+OOP1aRJE12/fl0HDx6Up6enOnTooAULFmjMmDGphk2qVq2ali9frk6dOqlYsWI6fvy4UlJS9NJLL2nlypUKCAjIox7dXrNmzbRo0SK1bt1aXl5eOnr0qAoVKqRBgwZp0aJF9jv7MqtHjx766KOPVKlSJfudv23bttWSJUvSvIvR19dXCxcu1Lhx43T//ffr8uXLOnTokPz8/NS5c2ctX75cffv2ddjGxcVFn332mUaNGqV69eopMTFRYWFhSkhIUJMmTfTf//5X06dPd5iHS7oRAC1dulSdOnWSj4+PwsLCFBsbq+rVq2vw4MFasWJFhpJX/2YLnGvUqHHXQ1F17tzZPoduVu5wvxt79+61z211t3NFeXp62p/a/O233+xz/WX2POrTp4+eeeYZ+fr6Kjw8XIcOHbKvq169utauXav+/fsrKChIkZGRCg8PV6VKlfTKK6/ou+++u+uh3Wzc3d313nvvadmyZXrppZdUo0YNXb9+XWFhYTpz5owqVaqkXr166bvvvkt1nkk3voCZO3euhgwZoqCgIMXExOiff/7RAw88oMWLF2f5LvC79eKLL2rp0qXq2LGjChUqpEOHDik5OVnNmzfXvHnzNGjQoLvaz9NPP63Vq1fr2WefVUBAgI4cOaLTp08rMDBQvXv31nfffWdPpmaHESNGaN68eXr44YdlGIbCwsLk4uKidu3aaenSpQ5fwN2qWLFi9uGyW7Vqla2Ble2u/sTERG3cuFHbtm3TH3/8oT179qT6OX36tH275s2b63//+5969uyp8uXL68SJE4qIiFDZsmXVrVs3fffddwoJCclwe+677z6tWLFCb7zxhmrXrq1z587p2LFjKl26tHr06KHVq1enenK6ZcuWWr58uVq3bq2AgAAdP35cp0+flsVi0bBhw7R69Wr7ublp0yaHbYcOHaoPPvhA9evXV1JSkk6cOKFKlSpp8uTJGjt2bLrtnDhxoh566CG5urrqxIkT9muBdGMu8tWrV6tLly4qXry4jhw5otjYWIWEhOitt97S8uXL051jHQAA5D/EyMTIxMjpI0YmRs6K/Bgj+/j42K8rQUFBunDhgo4cOSIfHx97AnvixImSbjwlfutT0pm97j/xxBPq3bu3AgICdOrUKR08eNB+U3pmYmRJqlq1qlauXKmXXnpJpUuX1pEjR2S1WtWzZ099+eWX6d7EUKtWLa1Zs0avvvqqgoODderUKR0/flzFixfXE088oRUrVtiHWM+qzL7+/5bT1+5bVahQQZMmTVLFihUVFxen06dPpxqxAkDmmAwmFwCAe0KrVq0UFRWl8ePH3/UHNmSfcePG6eTJk5o9e3ZeNwXIFk899ZQOHDigWbNm3fHOfQAAACC/IUbOW8TIcDbEyADgXHgCHACAO7Barfrjjz9UpUqVvG4KkC0OHDigAwcOqHTp0mrSpEleNwcAAADAPYQYGc6GGBkAnA9zgAMAcAfvvvuuYmJi9MILL+R1U4BMi4yMlCSdP39eI0aMkHRjuEgXF5e8bBYAAACAewwxMpwBMTIAODcS4AAA3MFzzz2nQYMGqVixYnndFCDTvv/+e3300Uf23y0Wi55//vk8bBEAAACAexExMpwBMTIAODeGQAcA4A6qVq1KYI97XtWqVVWiRAl5eXmpdevW+uKLL+Tu7p7XzQIAAABwjyFGhjMgRgYA52YyDMPI60YAAAAAAAAAAAAAAJBVPAEOAAAAAAAAAAAAAHAKJMABAAAAAAAAAAAAAE7BNa8bcK8wDENWK6PFAwAAAAAcmc0mmUymvG6GUyD2BgAAAACkJSOxNwnwu2S1Grpw4UpeNwMAAAAAkM8UK+YtFxcS4NmB2BsAAAAAkJaMxN4MgQ4AAAAAAAAAAAAAcAokwAEAAAAAAAAAAAAAToEEOAAAAAAAAAAAAADAKZAABwAAAAAAAAAAAAA4BRLgAAAAAAAAAAAAAACn4JrXDQAAAAAApGa1WpWSkpzXzSjwXFxcZTZz7zgAAAAAOCNi7/whu2NvEuAAAAAAkI8YhqFLly4oISE+r5uC/8/T00dFihSTyWTK66YAAAAAALIBsXf+k52xNwlwAAAAAMhHbAG4j4+f3N0LkXTNQ4Zh6Pr1a4qPj5UkFS3qn8ctAgAAAABkB2Lv/CMnYm8S4AAAAACQT1itKfYA3MenSF43B5Lc3QtJkuLjY1W4sB/DoQMAAADAPY7YO//J7tibyB0AAAAA8omUlBRJNwM/5A+214N54QAAAADg3kfsnT9lZ+ydb58AT0pK0sKFC7Vy5UqFh4fLy8tLtWrV0osvvqimTZumKt+oUSPFxcWlu7/Q0FAVKsSJDAAAACD/Y+i1/IXXAwAAAACcD7Fe/pKdr0e+TIAbhqGhQ4dqw4YNKlKkiB588EFdu3ZNv//+u7Zu3aohQ4aoX79+9vJRUVGKi4tTyZIl1bBhwzT3yTB1AAAAAAAAAAAAAODc8mUCfMmSJdqwYYOqVaumefPmyc/PT5IUFham7t2769NPP1WbNm0UGBgoSTp48KAkqV27dho1alSetRsAAAAAAAAAAAAAkHfy5WPRq1evliSNGDHCnvyWpKpVq6pTp04yDENbtmyxLz9w4IAkqUaNGrnbUAAAAAAAAAAAAABAvpEvnwCfP3++Tpw4oaCgoFTrrl69KklycXGxL7M9AV6zZs3caSAAAAAAAAAAAAAAIN/JlwnwQoUKqWrVqqmWb9y4UT/88IM8PT3Vpk0b+/IDBw7Iw8ND+/fv1+jRo3XkyBGZTCaFhISof//+qlOnTm42HwAAAADuGYcOhWn69E8VFva3rFZD1avXVN++/VWjxo0bjHft+l3z5s3RsWNH5OLiqoYNG6tfv4EqWbKUJOn779do4sR3tGzZdypduox9v507d1K9evX1f/83VpLUpEkDvfRSX23fvk2RkRHq2vUF9ezZW1FRpzRjxlTt3r1LhmGoZs1a6t9/sCpXvjHl1bVr1zR37kxt3LhesbEXVL58BfXo8ZIefriNAAAAAAC4FxB75658OQT6rS5evKiBAwfq0Ucf1auvvqpixYppxowZKlXqxgseExOj6OhoJSYm6o033pDValWjRo3k6+urX375Rd26ddP333+fx70AAAAAgPznypV4DRs2UEWL+mr8+Pf1zjsTlZiYoGHDBig+Pl4//vi9hg4doICAAI0dO0EDBw7VgQP79MorLyk29kKG65s/f65atGilsWMnqGnTFjp//rz69HlREREnNGzYm3r77XG6dOmShgzpr7i4OBmGoVGjXteqVd/q2We76b33PlLNmrX19tujtG7d2hw4IgAAAAAAZC9i79yXL58Av1VkZKTWr19v/91kMuno0aN64IEHJN2c/9vPz08zZsxQvXr1JEmGYWj+/PmaNGmSRo4cqZCQEHvSPLNcXfP9/QIAAAAA7mFWqylX6ztx4oTi4mLVufOzql27riSpQoWKWr16heLjL2v69E/VoEFDvfPOJPs2tWvX1fPPP6PFi79S//6DMlRf9eo19fzzPe2/f/bZp7p2LVGffDJd/v7FJUlBQVX18ss9tX9/qAoVcteOHdv1zjsT7XedN2r0gBITEzRz5jQ98kg7ubrmXljr4mIiLgQAAAAAZAixd+7L962tVKmSdu7cKcMwtH37dk2YMEHjx49XfHy8+vXrp6ZNm2rr1q0yDEMlS5a0b2cymdSzZ0/t2rVLGzdu1PLlyzVgwIBMt8NsNsnPzzs7ugQAAAAAaUpMdNH58+ZcS7RaLEHy8/PTiBGv6eGH2+jBBx/S/fc31KBBQ3XixHHFxMSoX7+BDm2pUKG8atasrb/+2i1XV7PM5htJexcXc6o2m0yO/ahSJcjh99DQP1WrVm2VLFnCvqxUqRJavfrGKF6ffTZFJpNJTZs2k2S1l2nWrIV+/HGdTp48IYslOFuPSVqsVpPMZrOKFvWSh4dHjtcHAAAAAHAelSsHytfXT2+++ZoefvgRNW78kBo0aKj+/QcrPPyEYmJi9PLLjjnMsmXvU40atfTnn39kuL7AwCoOv+/d+6dq1qxtT35LUvHixbVixY2nu2fMmCqTyaQHHmii5ORke5mHHmquH39cpxMnjikoKOdj7+yU7xPg3t43k87t27dXqVKl1K1bN82aNUs9evSQt7e3SpQoke72LVu21MaNG7V///4stcNqNXTp0tUs7QMAAAAAbuf69WuyWq1KSTGUnGy98wZZ5O7uoc8+m6358+dqw4YftXLlcnl4eKhNm0fVrl0HSZKvb7FUbSlWrJgOHTqk5GSrrFZDkpSSYk1VzjAc++Hr6+fw+8WLF1WqVJl0+2obiq1VqyZprj979qwqVw7KeMczKCXFkNVq1cWLV5WQkJJqfZEinnJx4clwAAAAAEBqXl5emj79Ruy9ceN6rVq1IlXsXayYf6rt/P39dejQoQzX5+dXzOH3S5cuOswb/m+XLl2UYRhq06ZZmuvPnz9HAjynhYSEqHz58oqIiFB4eLhq1Khx2/IBAQGSpISEhCzXnRtfQAEAAAAouFJSjFyvs3z5ihozZpxSUlJ08OAB/fDD91q1armKF78RS124EJNqm5iYGPn6+kq68ZS3JFmtjvFSQsKdbyD28SmsuLi4VMt3796lUqVKy8ensDw9vTR16sw0ty9bttwd68hOuXVjAgAAAADAuRB75658d4t6QkKC3nvvPQ0fPlyGkfaXP+7u7pKk5ORkLV26VEOGDNHGjRvTLBsZGSlJWZ7/GwAAAACczaZNG9WxY2vFxJyXi4uLatasreHDR8jHp7AuXLggf39/rV+/zmGbqKhT2r8/VLVr15EkeXndGLXr7Nkz9jInT4br4sWLd6y/Tp26OnAgVLGxF+zL4uLiNHz4IP366xbVrRuihISrMgxDVatWt/8cP35MX3wxWykpqZ/GBgAAAAAgPyH2zn357glwDw8PrVy5UnFxcerSpYsaNmzosD4yMlInTpyQu7u7goKCtHnzZq1bt04JCQlq3bq1Q1nDMLR69WpJUpMmaQ+ZByD3mc0m+1yROcFqNexDcQIAACB9tWrVVUqKVSNHDtfzz/eUt7e3fvppva5ciVerVq1VvXoNTZz4jt5+e6Tateuoixfj9MUXs1SkSFE9+2x3SVL9+vfLw8ND06Z9rD59+uvq1auaN+9GmTvp0qWb1q37n157bYB69HhJ7u6FtHDhPPn7F1e7dh3k41NYdeuGaMSIYerZs7cqVKiogwcPaO7cWWrUqLH9Tng4P2IIAAAAAPcqYu/cZzLSe8w6D3300Uf6/PPPFRgYqC+//NI+x/eZM2c0cOBAhYaG6sUXX9SoUaMUGRmp9u3b6/r16xo3bpy6dOki6cYQAFOnTtX06dNVpUoVrVq1Sm5ubpluU0qKVRcuXMmW/gEFmdlskp+fp8xmlxyrw2pNUWxsAl9gAQCAe05S0nXFxJyWv39pubm550qdBw8e0OzZMxQWdlCJiYmqXDlQL7zwHzVv3lKS9MsvP2nhwi91/PhReXt7q1GjB9S376sqWfLmKFu//75dM2dOU0TECZUqVVr/+U9f/fDD/+Tv76//+7+xkqQmTRroP//po169XnaoPyIiXNOnf6o9e3bLzc1N9eqFqH//wSpb9j5JN0YJmzNnhjZt+kmxsRdUvHgJtW7dRj179lahQoVy5Rjd6XUpVsybOcCzSVqxt9lskq+vV44e45QUq+LirhJDAAAAAAUAsbfzx975MgGemJio3r17a9euXfLy8lL9+vWVlJSk0NBQXb16VU2aNNGMGTPsQ6GvWLFCo0ePltVqVXBwsCpWrKiwsDBFRESoePHiWrhwoSpXrpylNpEAB7KHq6tZfn7eOrF2thJiTmf7/j39S6tSxz6Kjb3C/IwAAOCekxdBOO6MBHjuSSv2tsUQny3+VVHRdx7eL6PKliiqV7s+RAwBAAAAFBDE3vlTdsbe+W4IdOnGMOjz5s3TggULtHr1au3YsUOurq4KCgrSU089pWeeeUYuLjefHn366adVqVIlzZ49W3v27NHx48dVokQJvfDCC+rXr5/8/f3zsDcA0pIQc1oJZ0/mdTMAAAAA3COioi8qPCo2r5sBAAAAAMjn8mUCXJLc3NzUq1cv9erV667Kh4SEaMaMGTncKgAAAAAAAAAAAABAfsUYbQAAAAAAAAAAAAAAp0ACHAAAAAAAAAAAAADgFEiAAwAAAAAAAAAAAACcQr6dAxwAAAAAAOSspKQkLVy4UCtXrlR4eLi8vLxUq1Ytvfjii2ratGmq8o0aNVJcXFy6+wsNDVWhQoVysMUAAAAAANweCXAAAAAAAAogwzA0dOhQbdiwQUWKFNGDDz6oa9eu6ffff9fWrVs1ZMgQ9evXz14+KipKcXFxKlmypBo2bJjmPs1mBpoDAAAAAOQtEuAAAAAAABRAS5Ys0YYNG1StWjXNmzdPfn5+kqSwsDB1795dn376qdq0aaPAwEBJ0sGDByVJ7dq106hRo/Ks3QAAAAAA3A63ZgMAAAAAUACtXr1akjRixAh78luSqlatqk6dOskwDG3ZssW+/MCBA5KkGjVq5G5DAQAAAADIAJ4ABwAAAIB7gNlsktlsyvV6rVZDVquR6/Ui582fP18nTpxQUFBQqnVXr16VJLm4uNiX2Z4Ar1mzZu40EAAAAAByGbG3cyABDgAAAAD5nNlskq+vl1xccn8Qr5QUq+LirmYqEF+//getWLFUx48flSRVqFBJHTs+rieeeDq7m4lMKFSokKpWrZpq+caNG/XDDz/I09NTbdq0sS8/cOCAPDw8tH//fo0ePVpHjhyRyWRSSEiI+vfvrzp16uRm8wEAAAAgWxF7Ow8S4AAAAACQz5nNJrm4mPXZ4l8VFX0x1+otW6KoXu36kMxmU4aD8LVrV+uTTyZr0KBhqls3RJKhXbt2asqUDxUbe0H/+U+fnGk0MuXixYsaPXq0jh49quPHj6t06dKaNGmSSpUqJUmKiYlRdHS0JOmNN95Q3bp11ahRIx0+fFi//PKLtm3bpsmTJ6t9+/Z52Q0AAAAAyDRib+dBAhwAAAAA7hFR0RcVHhWb1824KytXLlfHjo/rsceetC8rX76izp2L1jffLC6wQXh+FRkZqfXr19t/N5lMOnr0qB544AFJN+f/9vPz04wZM1SvXj1JkmEYmj9/viZNmqSRI0cqJCTEnjTPLFdXx6ctcuvpi7x4ygMAAABA7rNabz/EObF33nJxMaWKCzOKBDgAAAAAINuZzSbt2xeqS5cuqUiRIvbl3bu/qPbtO0mSOnfupEcf7ahevV62rx8woK9Kly6j//u/sdqz5w8NGvSK+vUbqK+/XqBSpUrJw8NTxYsH6N13J9m3CQ39S/3799aSJSt1333l9OuvWzV37ucKDz+hgIAAtW7dVi++2Evu7u769NMP9euvW/TNN6vt28fHx+uxx9rq3XcnqkmT5rlwdPKfSpUqaefOnTIMQ9u3b9eECRM0fvx4xcfHq1+/fmratKm2bt0qwzBUsmRJ+3Ymk0k9e/bUrl27tHHjRi1fvlwDBgzIdDvMZpP8/Lyzo0sZVqSIZ57UCwAAACB3JSa66Px5c6pEa17fFJuZ+l1czNq/P1RXr8Y7xN4vvvgfPfbY43J1NeuJJzqoQ4dO6tPnFfv6fv36qHTpMnrrrXe0e/cfevXVvnr11UFauHC+SpUqLU9PDxUvHqAJE963b7N37196+eWXtGzZKpUrV17btm3R7Nkz7bH3I4+003/+01vu7u76+OPJ2rZtq1as+M6+fXz8ZXXo0Ebjxr2nZs1Sx95Wq0lms1lFi3rJw8Mjw8fiViTAAQAAAADZrnv3F/XWWyP15JOPKiSkgWrXrqf69RuoWrUaKly4cIb2tX37Nn3++TwlJiboyJHD+vDD93T16hV5ed1IlK5fv061atXRffeV0++/b9eYMSM0aNBQ3X9/Y0VFndLHH/9XJ09GaNy499Sx4+Natmyx9u79S3Xq1JUk/fTTenl7e6tx44ey+zDcM7y9byad27dvr1KlSqlbt26aNWuWevToIW9vb5UoUSLd7Vu2bKmNGzdq//79WWqH1Wro0qWrDstcXMy5kpy+dClBKSnWHK8HAAAAQN66fv2arFarUlIMJSfnnxggJcWa4fZ069ZDb701Up06tU0Ve5cp423fn9Xq2FfDMGQYN5bZ4qBt27amir0vXbpsj73XrfufatWqo9Kl79O2bds0atSbqWLv8PBwjRv3ntq3f1xLly7W7t177LH3jz/+KC8vbzVs+ECa/UxJMWS1WnXx4lUlJKSkWl+kiOdd3yRAAhwAAAAAkO1atHhYn38+T8uXL9GOHb/rt99+lSSVK1deI0e+pdq16971vrp2fV7lypWXJN13X3l9/PFkbd68SY8+2lFJSUn6+eeN6tdvoCRpwYIv1LHjY3riic6SpLJl79Prr4/SoEGv6PTpfxQYWEXBwdX044//swfhP/ywVm3btperKyGyTUhIiMqXL6+IiAiFh4erRo0aty0fEBAgSUpISMhy3Xn1BVRmvmwCAAAAcO9JScnYPNv5mTPG3tlxYwLRPQAAAAAgR1SrVkNjxoyTYRg6fvyYfvttm5YtW6Lhwwdr6dKVd72f++4rb/+/p6enWrZ8WOvXr9Ojj3bUb7/9qmvXEtWqVWtJ0uHDYTp48IDWrVtr38Ywbny5ER5+QqVLl1GHDo9p1qzpGjLkdUVHn9W+faF6/fVR2dTre0NCQoI+/fRTnT9/XpMnT5bJlHoOPHd3d0lScnKyli5dqt9++00dO3ZU69atU5WNjIyUpCzP/w0AAAAAyBhi79RIgAMAAAAAslV09Fl9/fV8Pf98TwUElJDJZFJgYBUFBlZRkybN9fzzz+ivv/akuW1KSnKqZYUKFXL4vX37Tho8uJ9iYs5r/frv1axZS3l7+0i6Maxbt2499OijHVPtx9+/uCTpkUfaadq0T7R9+1YdO3ZU1apVV+XKVbLa7XuKh4eHVq5cqbi4OHXp0kUNGzZ0WB8ZGakTJ07I3d1dQUFB2rx5s9atW6eEhIRUCXDDMLR69Y051Zs0aZJrfQAAAACAgozYO315O5s7AAAAAMDpuLsX0urV32r9+nWp1tnmmi5WzF+urm6Kj4+3r7Narfrnn6g77r9u3RCVKlVaP/zwP23f/qtDwF25cqAiIsJ1333l7D/nzkXrs88+1dWrVyRJhQsXVrNmLfTLLz9ry5ZNat/+sax2+Z5jMpn07LPPSpLGjh2r6Oho+7ozZ87otddeU3Jysrp27SovLy89+eSTcnd31y+//KJvvvnGXtZqtWrKlCkKDQ1VlSpV1K5du1zvCwAAAAAURMTe6eMJcAAAAABAtvL19VX37i9q1qzpio+PV6tWreXl5a3w8BP68ss5CglpoDp16ql27Tr66af1at68pYoV89eSJV85BOW38+ijHTV//hcqWrSoGjS4+fRy9+499NZbIzV37ud65JF2OncuWu+9N14lS5a034UuSR06PKYRI16TYUitW7fN9mNwL+jfv7/27NmjXbt2qW3btqpfv76SkpIUGhqqq1evqkmTJho+fLgkqVy5cho7dqxGjx6tMWPG6KuvvlLFihUVFhamiIgIFS9eXFOnTpWbm1se9woAAAAACgZi7/SRAAcAAACAe0TZEkXvmfr69Omn++4rpzVrVmnlymVKTExUyZKl1KrVI+rR4yVJUt++r+ry5UsaPnyQPDw81anTE3r44Tb2ecNup127jvrii1l66qlnZDbfHNysZcvWeucdaeHCL/TVV1+qcOEieuihpurXb5DD9g0aNFTRor6qVauOChcunOl+3ss8PDw0b948LViwQKtXr9aOHTvk6uqqoKAgPfXUU3rmmWfk4uJiL//000+rUqVKmj17tvbs2aPjx4+rRIkSeuGFF9SvXz/5+/vnYW8AAAAAIHsQe990r8beJuNuegelpFh14cKVvG4GcM9zdTXLz89bf89/VwlnT2b7/j1Lllf1F99SbOwVJSdbs33/AAAAOSkp6bpiYk7L37+03Nzc7cvNZpN8fb3k4pL7s1ilpFgVF3dVVqtzhY4JCQl6/PF2mjDhv7r//ka3LZve62JTrJh3nrw2ziit2NsWQ4z69HuFR8Vme50Vy/pp4uD2xBAAAABAAUHsnXvyKvbmCXAAAAAAyOesVkNxcVdlNpvypG5nCsAvXbqkPXt26eefN6pkyZIOQ7gBAAAAAAouYu/sk9exNwlwAAAAALgHOFswnFdSUpL13nvj5Ovrp3ffnSSTKfe/2AAAAAAA5E/E3tkjr2NvEuAAAAAAgALDz6+Yfvjhl7xuBgAAAAAATiuvY28mKQMAAAAAAAAAAAAAOAUS4AAAAAAAAAAAAAAAp0ACHAAAAAAAAAAAAADgFEiAAwAAAAAAAAAAAACcAglwAAAAAAAAAAAAAIBTIAEOAAAAAAAAAAAAAHAKJMABAAAA4B5gNpvk6mrO9R+z2ZSp9nbu3ElNmjTQkiVfpbl+8uSJatKkgebO/TzTx6Rz504Z2j6j5QEAAAAABQuxd9p13Guxt2ue1g4AAAAAuCOz2SQ/P0+ZzS65XrfVmqLY2ARZrUaGt3V1ddWmTT/pueeed1ienJyszZt/lsmUuQAfAAAAAIDsRuztPEiAAwAAAEA+ZzabZDa76MTa2UqIOZ1r9Xr6l1aljn1kNpsyFYQ3aNBQO3b8prNnz6hkyVL25Xv2/CEPD08VKuSRnc0FAAAAACDTiL2dBwlwAAAAALhHJMScVsLZk3ndjLtWrVoNRUSEa9OmjQ53ov/003q1avWIfv55g33Z/v2hmjVrug4dOihXV1c1adJcr746REWKFJEkxcfH65NPJmvbts1ydXVTjx7/SVXfvn17NXPmNB08+Ld8fX310EPN9Morr8rb2yfnOwsAAAAAcArE3vd+7M0c4AAAAACAHNOyZWtt2vST/fekpCRt2fKLWrduY1/299/7NXDgy6pYsZJmzpyncePe199/79drrw2Q1WqVJL311ggdPHhA77//sT7+eJp+/XWrzpy5eUf+0aNHNHhwf91/fyPNn79Yb789QYcOHdTQoQNkGBm/gx4AAAAAgHsFsbcjEuAAHJjNJrm6mnPsx8WFyw4AAEBB0qrVI/r77/06e/aMJGnnzt/l6+sri6WqvcySJV8rMDBIr732pipVqqyQkAYaO3aiwsL+1o4dv+nkyXDt3Pm7hg59Q3Xq1FNQULDefnu83N3d7ftYvHiBGjS4Xz179la5cuVVp05djR07QX//vV9//rk71/sNAAAAAEBuIfZ2xBDoAOzMZpN8fb1IUgMAACDbVK1aTWXKlLUPxfbzz+vVunVbhzLHjx/V/fc3dlgWGFhFPj6FdezYESUmJkiSqlWrbl9frJi/ypQpa//90KFDOnXqpB55pGmqNkREhCskpEF2dgsAAAAAgHyD2NsRCXAAdmazSS4uZn22+FdFRV/MkTrqBJfRs+3q5si+AQAAkD+1avWINm36SU8++Yy2bt2i2bPnO6w3DEMmU+rtDMMqV9ebYavV6jicmouLq0PZNm0eVY8eL6Xaj6+vXxZ7AAAAAABA/kbsfRMJcACpREVfVHhUbI7su0xAkRzZLwAAAPKvVq1a66uvvtTatatVpkxZVahQ0WF95cpVtHfvXw7Ljhw5rCtXrqhixcoqV668JGnfvr168MEmkqTLly8rKirSXr5SpUCdOHFM991Xzr7s5MlwTZv2qV555VX5+FTJmc4BAAAAAJAPEHvfxDjHAAAAAIAcFRQUrPvuK6dZsz7Tww+3SbX+2We76ejRw/roo/cVHn5Cf/65W+++O1oWS7AaNGiosmXvU8uWrfXxx//Vrl07dPz4UY0b95aSkpLs+3juued1+PAhTZ48USdOHNeBA/s1duxonTwZofvuK5+b3QUAAAAAINcRe9/EE+AAAAAAcI/w9C99z9bXqtUjmj9/rlq3Th2E16xZWx988Klmz56pl17qLi8vbzVt2kL9+g2wD8M2evRYffbZp3r77VGyWq16/PGnFBcXe8s+aumjj6ZpzpwZ6tXrBXl6eigk5H69+uoQubu7Z1s/AAAAAADOjdj73o+9TYZhGHcuhpQUqy5cuJLXzQBylKurWX5+3hr16fc5NgT6g3UraEC3Jvp7/rtKOHsy2/fvWbK8qr/4lmJjryg52Zrt+wcAAMhJSUnXFRNzWv7+peXmdjNwNJtN8vPzlNnskuttslpTFBubkGoOsIIkvdfFplgxb7m4MMBadkgr9s7pOKViWT9NHNyeGAIAAAAoIIi986fsjL15AhwAAAAA8jmr1VBsbILMZlOe1F2QA3AAAAAAQMFA7O08SIADAAAAwD2AYBgAAAAAgJxF7O0cGKMNAAAAAAAAAAAAAOAUSIADAAAAAAAAAAAAAJwCCXAAAAAAAAAAAAAAgFMgAQ4AAAAA+YxhMN9YfsLrAQAAAADOh1gvf8nO14MEOAAAAADkEy4uLpKk69ev5XFLcCvb6+Hi4prHLQEAAAAAZBWxd/6UnbE30TsAAAAA5BNms4s8PX0UHx8rSXJ3LySTyZTHrSq4DMPQ9evXFB8fK09PH5nN3EMOAAAAAPc6Yu/8JSdibxLgAAAAAJCPFClSTJLsgTjynqenj/11AQAAAADc+4i985/sjL1JgAMAAABAPmIymVS0qL8KF/ZTSkpyXjenwHNxceXJbwAAAABwMsTe+Ut2x94kwAEAAAAgHzKbzTKb3fO6GQAAAAAAOC1ib+fEbewAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnEK+nQM8KSlJCxcu1MqVKxUeHi4vLy/VqlVLL774opo2bZqq/Pnz5zV9+nRt3bpVZ8+eVUBAgNq1a6f+/fvL29s7D3oAAAAAAAAAAAAAAMhN+fIJcMMwNHToUL3//vs6c+aMHnzwQVWrVk2///67evfurRkzZjiUj46OVpcuXfT111/Lw8NDLVq0kNVq1Zw5c9S1a1fFx8fnUU8AAAAAAAAAAAAAALklXybAlyxZog0bNqhatWpav369Pv/8c3355Zdavny5fHx89Omnn+rYsWP28uPHj1dUVJT69u2rNWvWaMqUKfrxxx/16KOP6tChQ5o2bVoe9gYAAAAAAAAAAAAAkBvyZQJ89erVkqQRI0bIz8/Pvrxq1arq1KmTDMPQli1bJEknT57Uhg0bVLp0aQ0aNMhe1t3dXePGjZO3t7eWLl2qxMTE3O0EAAAAAAAAAAAAACBX5csE+Pz587V69Wrdf//9qdZdvXpVkuTi4iJJ2rJli6xWq5o3by43NzeHsoULF1bjxo119epV7dixI+cbDgAAAAAAAAAAAADIM/kyAV6oUCFVrVrVnuS22bhxo3744Qd5enqqTZs2kqTDhw9LkiwWS5r7qlKlikM5AAAAAAAAAAAAAIBzcs3rBtzJxYsXNXr0aB09elTHjx9X6dKlNWnSJJUqVUqSdO7cOUlSQEBAmtvblp8/fz53GgwAAAAAAAAAAAAAyBP5PgEeGRmp9evX2383mUw6evSoHnjgAUk3h0T38PBIc3vbclu5rHB1zZcPzAPZxsXFec5xZ+oLAAAAAAAAAAAA7k6+T4BXqlRJO3fulGEY2r59uyZMmKDx48crPj5e/fr1sw+TbjKZ0tzeMAyHfzPLbDbJz887S/sAkHuKFPHM6yYAAAAAAAAAAAAgl+X7BLi3982kc/v27VWqVCl169ZNs2bNUo8ePeTl5SVJunbtWprb25Z7emYtGWa1Grp0KetPkQP5mYuL2WkSx5cuJSglxZrXzQAAAEABUKSIJyMQAQAAAACQT+T7BPi/hYSEqHz58oqIiFB4eLhKlCgh6eZc4P92pznCMyI5mWQacK9ISbHyngUAAAAAAAAAAChg8t0t6gkJCXrvvfc0fPjwdIctd3d3lyQlJyfLYrFIko4dO5Zm2SNHjkiSgoODc6C1AAAAAAAAAAAAAID8It8lwD08PLRy5UqtWbNGu3btSrU+MjJSJ06ckLu7u4KCgtS0aVNJ0qZNm5SSkuJQ9vLly9qxY4e8vLxUv379XGk/AAAAAAAAAAAAACBv5LsEuMlk0rPPPitJGjt2rKKjo+3rzpw5o9dee03Jycnq2rWrvLy8VLZsWbVs2VKnTp3S5MmT7U+NX79+XW+99ZauXLmi5557Tj4+PnnSHwAAAAAAAAAAAABA7siXc4D3799fe/bs0a5du9S2bVvVr19fSUlJCg0N1dWrV9WkSRMNHz7cXn7MmDE6cOCA5s2bp82bNysoKEj79u3TP//8oxo1amjAgAF52BsAAAAAAAAAAAAAQG7Id0+ASzeGQZ83b57eeOMNlStXTjt27FBoaKiCgoL0zjvvaNasWfZ5wCWpbNmyWr58uZ555hldvnxZmzZtkru7u1555RUtWLBA3t7eedgbAAAAAAAAAAAAAEBuyJdPgEuSm5ubevXqpV69et1V+ZIlS2r8+PE53CoAAO4NZrNJZrMpx/ZvtRqyWo0c2z8AAAAAAAAAAJmRbxPgAAAgc8xmk3x9veTiknMDvaSkWBUXd5UkOAAA97ikpCQtXLhQK1euVHh4uLy8vFSrVi29+OKLatq0aary58+f1/Tp07V161adPXtWAQEBateunfr378/oawAAAACAfIEEOAAATsZsNsnFxazPFv+qqOiL2b7/siWK6tWuD8lsNpEABwDgHmYYhoYOHaoNGzaoSJEievDBB3Xt2jX9/vvv2rp1q4YMGaJ+/frZy0dHR+u5555TVFSULBaLWrRooX379mnOnDnaunWrFi1aJB8fnzzsEQAAAAAAJMABAHBaUdEXFR4Vm9fNAAAA+dSSJUu0YcMGVatWTfPmzZOfn58kKSwsTN27d9enn36qNm3aKDAwUJI0fvx4RUVFqW/fvho2bJgk6fr163rjjTe0bt06TZs2TSNGjMiz/gAAAAAAIEk5NzYqAAAAAADIt1avXi1JGjFihD35LUlVq1ZVp06dZBiGtmzZIkk6efKkNmzYoNKlS2vQoEH2su7u7ho3bpy8vb21dOlSJSYm5m4nAAAAAAD4FxLgAAAAAAAUQPPnz9fq1at1//33p1p39epVSZKLi4skacuWLbJarWrevLnc3NwcyhYuXFiNGzfW1atXtWPHjpxvOAAAAAAAt0ECHAAAAACAAqhQoUKqWrWqPclts3HjRv3www/y9PRUmzZtJEmHDx+WJFksljT3VaVKFYdyAAAAAADkFeYABwAAAACggLt48aJGjx6to0eP6vjx4ypdurQmTZqkUqVKSZLOnTsnSQoICEhze9vy8+fP506DAQAAAABIBwlwAAAAAAAKuMjISK1fv97+u8lk0tGjR/XAAw9IujkkuoeHR5rb25bbymWFq6vjYHUuLrkzeF1u1QMAAAAAyFkkwAEAAAAAKOAqVaqknTt3yjAMbd++XRMmTND48eMVHx+vfv362YdJN5lMaW5vGIbDv5llNpvk5+edpX1kVpEinnlSLwAAAAAge5EABwAAAACggPP2vpl0bt++vUqVKqVu3bpp1qxZ6tGjh7y8vCRJ165dS3N723JPz6wlka1WQ5cuOT5F7uJizpXk9KVLCUpJseZ4PQAAAACAjCtSxPOuR+4iAQ4AAAAAAByEhISofPnyioiIUHh4uEqUKCHp5lzg/3anOcIzIjk5b5LQKSnWPKsbAAAAAJB9mOAKAAAAAIACJiEhQe+9956GDx+e7rDl7u7ukqTk5GRZLBZJ0rFjx9Ise+TIEUlScHBwDrQWAAAAAIC7RwIcAAAAAIACxsPDQytXrtSaNWu0a9euVOsjIyN14sQJubu7KygoSE2bNpUkbdq0SSkpKQ5lL1++rB07dsjLy0v169fPlfYDAAAAAJAeEuAAAAAAABQwJpNJzz77rCRp7Nixio6Otq87c+aMXnvtNSUnJ6tr167y8vJS2bJl1bJlS506dUqTJ0+2PzV+/fp1vfXWW7py5Yqee+45+fj45El/AAAAAACwYQ5wAAAAAAAKoP79+2vPnj3atWuX2rZtq/r16yspKUmhoaG6evWqmjRpouHDh9vLjxkzRgcOHNC8efO0efNmBQUFad++ffrnn39Uo0YNDRgwIA97AwAAAADADTwBDgAAAABAAeTh4aF58+bpjTfeULly5bRjxw6FhoYqKChI77zzjmbNmmWfB1ySypYtq+XLl+uZZ57R5cuXtWnTJrm7u+uVV17RggUL5O3tnYe9AQAAAADgBp4ABwAAAACggHJzc1OvXr3Uq1evuypfsmRJjR8/PodbBQAAAABA5vEEOAAAAAAAAAAAAADAKZAABwAAAAAAAAAAAAA4BRLgAAAAAAAAAAAAAACnQAIcAAAAAAAAAAAAAOAUSIADAAAAAAAAAAAAAJwCCXAAAAAAAAAAAAAAgFMgAQ4AAAAAAAAAAAAAcAqued0AAAAAAAAA3GQ2m2Q2m3Js/1arIavVyLH9AwAAAEBeIgEOAAAAAACQT5jNJvn6esnFJecG7UtJsSou7ipJcAAAAABOiQQ4AAAAAABAPmE2m+TiYtZni39VVPTFbN9/2RJF9WrXh2Q2m0iAAwAAAHBKJMABAAAAAADymajoiwqPis3rZgAAAADAPSfnxtMCAAAAAAAAAAAAACAXkQAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKfAHOAAAAAAAAAFjItLzj4TYbUaslqNHK0DAAAAANJCAhwAAAAAAKCAKFrYQ4bVqiJFPHO0Hqs1RbGxCSTBAQAAAOQ6EuAAAAAAAAAFhLeHu0xms06sna2EmNM5Uoenf2lV6thHZrOJBDgAAACAXEcCHAAAAAAAoIBJiDmthLMn87oZAAAAAJDtcnbCJwAAAAAAAAAAAAAAcgkJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnAIJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnAIJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOwTWvG5Aeq9WqZcuW6dtvv9WRI0eUlJSkMmXKqHXr1nr55ZdVpEgRh/KNGjVSXFxcuvsLDQ1VoUKFcrjVAAAAAAAAAAAAAIC8ki8T4FarVYMGDdKGDRvk4eGh2rVry8vLS6GhoZozZ442bNigRYsWqXjx4pKkqKgoxcXFqWTJkmrYsGGa+zSbedgdAAAAAAAAAAAAAJxZvkyAr1ixQhs2bFDFihU1Z84clStXTpIUHx+v4cOHa9OmTRo/frw++eQTSdLBgwclSe3atdOoUaPyqtkAAAAAAAAAAAAAgDyULx+LXrFihSRpxIgR9uS3JPn4+GjixIkymUzauHGjEhMTJUkHDhyQJNWoUSP3GwsAAAAAAAAAAAAAyBfyZQLc19dXlStXVt26dVOtK1asmIoWLaqkpCTFxsZKuvkEeM2aNXOzmQAAAAAAAAAAAACAfCRfDoE+c+bMdNdFRkYqLi5Obm5uKlasmKQbT4B7eHho//79Gj16tI4cOSKTyaSQkBD1799fderUya2mAwAAAAAAAAAAAADySL58Avx2bPN+t2jRQoUKFVJMTIyio6OVmJioN954Q1arVY0aNZKvr69++eUXdevWTd9//33eNhoAAAAAAAAAAAAAkOPy5RPg6Vm4cKHWrl0rT09PDR06VNLN+b/9/Pw0Y8YM1atXT5JkGIbmz5+vSZMmaeTIkQoJCVGpUqWyVL+r6z13vwCQIS4uznOOO1NfgIzKrfOf9xkAAHAmOfnZxmo1ZLUaObZ/AAAAAMBN90wCfMGCBZo4caJMJpMmTJigwMBASVLTpk21detWGYahkiVL2subTCb17NlTu3bt0saNG7V8+XINGDAg0/WbzSb5+XlnuR8AckeRIp553QTA6fE+AwAAzqBoYQ8ZVmuOfraxWlMUG5tAEhwAAAAAckG+T4AbhqEPPvhAc+bMkYuLiyZMmKAOHTrY15tMJpUoUSLd7Vu2bKmNGzdq//79WWqH1Wro0qWrWdoHkN+5uJidJqF16VKCUlKsed0MIE/k1nuZ9xkAADcUKeLJyCj3MG8Pd5nMZp1YO1sJMaezff+e/qVVqWMfmc0mEuAAAAAAkAvydQI8MTFRr7/+utavXy8PDw99+OGHat26dYb2ERAQIElKSEjIcnuSk/mSH7hXpKRYec8COYz3GQAAcCYJMaeVcPZkXjcDAAAAAJBF+TYBHh8fr969e+vPP/+Uv7+/ZsyYoTp16qQqt3TpUv3222/q2LFjmsnxyMhIScry/N8AAAAAAAAAAAAAgPwtXybAk5KS1LdvX/3555+qUKGC5s6dq3LlyqVZ9uzZs1q3bp0SEhJSJcANw9Dq1aslSU2aNMnxdgMAAAAAAAAAAAAA8k6+nKRs2rRp2r17twICArRw4cJ0k9+S9OSTT8rd3V2//PKLvvnmG/tyq9WqKVOmKDQ0VFWqVFG7du1yo+kAAAAAAADIZ8xmk1xdzTn2Yzab8rqLAAAAAP6/fPcE+MWLFzV//nxJkr+/vyZPnpxu2REjRqhcuXIaO3asRo8erTFjxuirr75SxYoVFRYWpoiICBUvXlxTp06Vm5tbbnUBAAAAAIB7gtVq1bJly/Ttt9/qyJEjSkpKUpkyZdS6dWu9/PLLKlKkiEP5Ro0aKS4uLt39hYaGqlChQjncaiBjzGaT/Pw8ZTa75FgdVmuKYmMTZLUaOVYHAAAAgLuT7xLge/fuVUJCgiQpLCxMYWFh6ZYdOHCgihcvrqefflqVKlXS7NmztWfPHh0/flwlSpTQCy+8oH79+snf3z+3mg8AAAAAwD3BarVq0KBB2rBhgzw8PFS7dm15eXkpNDRUc+bM0YYNG7Ro0SIVL15ckhQVFaW4uDiVLFlSDRs2THOfZnO+HGgOBZzZbJLZ7KITa2crIeZ0tu/f07+0KnXsI7PZRAIcAAAAyAfyXQK8WbNmOnToUIa3CwkJ0YwZM3KgRQAAAAAAOJ8VK1Zow4YNqlixoubMmWOffiw+Pl7Dhw/Xpk2bNH78eH3yySeSpIMHD0qS2rVrp1GjRuVVs4FMS4g5rYSzJ/O6GQAAAAByGLdmAwAAAABQAK1YsULSzenFbHx8fDRx4kSZTCZt3LhRiYmJkqQDBw5IkmrUqJH7jQUAAAAA4C6RAAcAAAAAoADy9fVV5cqVVbdu3VTrihUrpqJFiyopKUmxsbGSbj4BXrNmzdxsJgAAAAAAGZLvhkAHAAAAAAA5b+bMmemui4yMVFxcnNzc3FSsWDFJN54A9/Dw0P79+zV69GgdOXJEJpNJISEh6t+/v+rUqZNbTQcAAAAAIF08AQ4AAAAAABzY5v1u0aKFChUqpJiYGEVHRysxMVFvvPGGrFarGjVqJF9fX/3yyy/q1q2bvv/++7xtNAAAAAAA4glwAAAAAABwi4ULF2rt2rXy9PTU0KFDJd2c/9vPz08zZsxQvXr1JEmGYWj+/PmaNGmSRo4cqZCQEJUqVSpL9bu6Ot6r7+LiHPfu320/nKW/Uv7pS261I7/0FwAAACjoSIADAAAAAABJ0oIFCzRx4kSZTCZNmDBBgYGBkqSmTZtq69atMgxDJUuWtJc3mUzq2bOndu3apY0bN2r58uUaMGBApus3m03y8/POcj/yoyJFPPO6CbmuoPW5oPUXAAAAyK9IgAMAAAAAUMAZhqEPPvhAc+bMkYuLiyZMmKAOHTrY15tMJpUoUSLd7Vu2bKmNGzdq//79WWqH1Wro0qWrDstcXMxOkVi8dClBKSnWO5Zzlv5Kd9/nnJZbxzS/9BcAAABwRkWKeN71qEskwAEAAAAAKMASExP1+uuva/369fLw8NCHH36o1q1bZ2gfAQEBkqSEhIQstyc52TkTiCkpVqftW3oKWp8LWn8BAACA/IoEOAAAAAAABVR8fLx69+6tP//8U/7+/poxY4bq1KmTqtzSpUv122+/qWPHjmkmxyMjIyUpy/N/AwAAAACQVSTAAQAAAAAogJKSktS3b1/9+eefqlChgubOnaty5cqlWfbs2bNat26dEhISUiXADcPQ6tWrJUlNmjTJ8XYDAAAAAHA7dzdQOgAAAAAAcCrTpk3T7t27FRAQoIULF6ab/JakJ598Uu7u7vrll1/0zTff2JdbrVZNmTJFoaGhqlKlitq1a5cbTQcAAAAAIF08AQ4AAAAAQAFz8eJFzZ8/X5Lk7++vyZMnp1t2xIgRKleunMaOHavRo0drzJgx+uqrr1SxYkWFhYUpIiJCxYsX19SpU+Xm5pZbXQAAAAAAIE0kwAEAAAAAKGD27t2rhIQESVJYWJjCwsLSLTtw4EAVL15cTz/9tCpVqqTZs2drz549On78uEqUKKEXXnhB/fr1k7+/f241HwAAAACAdJEABwAAAACggGnWrJkOHTqU4e1CQkI0Y8aMHGgRAAAAAADZgznAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnAIJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnAIJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnAIJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgFEuAAAAAAAAAAAAAAAKdAAhwAAAAAAAAAAAAA4BRIgAMAAAAAAAAAAAAAnAIJcAAAAAAAAAAAAACAUyABDgAAAAAAAAAAAABwCiTAAQAAAAAAAAAAAABOgQQ4AAAAAAAAAAAAAMApkAAHAAAAAAAAAAAAADgF17xuAAAAAAAAAAo2s9kks9mUI/t2ceH5DwAAAKAgIQEOAAAAAACAPGM2m+Tr60WiGgAAAEC2IAEOAAAAAACAPGM2m+TiYtZni39VVPTFbN9/neAyerZd3WzfLwAAAID8iQQ4AAAAAAAA8lxU9EWFR8Vm+37LBBTJ9n0CAAAAyL8YWwoAAAAAAAAAAAAA4BSylABftWqVdu/efcdyP/30k6ZMmZKVqgAAAAAAKJCIvQEAAAAAuHtZSoCPGDFC33zzzR3LrV69WvPmzcvQvq1Wq5YuXapnn31WISEhqlWrltq2bavJkyfr0qVLqcqfP39e7777rh555BHVrl1bDz/8sCZPnqwrV65kqF4AAAAAAPKTnIy9AQAAAABwNhmaA3zVqlVKTk52WBYREaHly5enu018fLx+++03ubm53XU9VqtVgwYN0oYNG+Th4aHatWvLy8tLoaGhmjNnjjZs2KBFixapePHikqTo6Gg999xzioqKksViUYsWLbRv3z7NmTNHW7du1aJFi+Tj45ORrgIAAAAAkCdyK/YGAAAAAMAZZSgBfuDAAS1cuFAmk0mSZDKZtHfvXu3du/e22xmGoSeffPKu61mxYoU2bNigihUras6cOSpXrpykGwH98OHDtWnTJo0fP16ffPKJJGn8+PGKiopS3759NWzYMEnS9evX9cYbb2jdunWaNm2aRowYkZGuAgAAAACQJ3Ir9gYAAAAAwBllKAE+aNAgxcfH239fuXKlypcvr/r166e7TaFChVSxYkV17dr1rutZsWKFpBvDvNmS35Lk4+OjiRMn6sEHH9TGjRuVmJio6OhobdiwQaVLl9agQYPsZd3d3TVu3Dht2bJFS5cu1ZAhQ+Th4ZGR7gIAAAAAkOtyK/YGAAAAAMAZZSgBXrhwYU2aNMn++8qVK1W3bl2HZdnB19dXlStXVt26dVOtK1asmIoWLaq4uDjFxsZqy5Ytslqtat68eaqh3goXLqzGjRvrp59+0o4dO9S8efNsbScAAAAAANktt2JvAAAAAACcUYYS4P8WFhaWXe1wMHPmzHTXRUZGKi4uTm5ubipWrJgOHz4sSbJYLGmWr1Klin766ScdPnyYBDgAAAAA4J6TU7E3AAAAAADOKEsJ8FvFxMQoISFBhmGkW+bW4cwzyzbvd4sWLVSoUCGdO3dOkhQQEJBmedvy8+fPZ7luAAAAAADyUm7F3gAAAAAA3KuynAD/8ssvNXv2bF24cOG25Uwmk/7+++8s1bVw4UKtXbtWnp6eGjp0qCTp6tWrkpTu/N625bZyWeHqas7yPoD8zMXFec5xZ+oLkFG5df7zPgMAIPfkZuwNAAAAAMC9LEsJ8G+//VbvvfeeJMnd3V1+fn5ycXHJlob924IFCzRx4kSZTCZNmDBBgYGBkmSvz2Qypbmd7a74290dfzfMZpP8/LyztA8AuadIEc+8bgLg9HifAQCQO3Iz9gYAAAAA4F6XpQT4V199JZPJpNGjR6tLly5yc3PLrnbZGYahDz74QHPmzJGLi4smTJigDh062Nd7eXlJkq5du5bm9rblnp5Z+5LeajV06VLWnyIH8jMXF7PTJLQuXUpQSoo1r5sB5Incei/zPgMA4IYiRTxzdGSU3Ii9AQAAAABwFllKgB87dkx169ZV9+7ds6s9DhITE/X6669r/fr18vDw0IcffqjWrVs7lClRooQk2ecC/7c7zRGeEcnJfMkP3CtSUqy8Z4EcxvsMAIDckdOxNwAAAAAAziRLCXBPT0/5+fllV1scxMfHq3fv3vrzzz/l7++vGTNmqE6dOqnKWSwWSTe+EEjLkSNHJEnBwcE50k4AAAAAAHJSTsbeVqtVy5Yt07fffqsjR44oKSlJZcqUUevWrfXyyy+rSJEiDuXPnz+v6dOna+vWrTp79qwCAgLUrl079e/fX97eTBsGAAAAAMh7WRqjrWHDhgoNDVVCQkJ2tUeSlJSUpL59++rPP/9UhQoVtHTp0jST35LUtGlTSdKmTZuUkpLisO7y5cvasWOHvLy8VL9+/WxtIwAAAAAAuSGnYm+r1apBgwbprbfeUlhYmGrUqKEHH3xQly5d0pw5c9S5c2edP3/eXj46OlpdunTR119/LQ8PD7Vo0UJWq1Vz5sxR165dFR8fn63tAwAAAAAgM7KUAB86dKgSEhI0atQoXbx4MbvapGnTpmn37t0KCAjQwoULVa5cuXTLli1bVi1bttSpU6c0efJkGYYhSbp+/breeustXblyRc8995x8fHyyrX0AAAAAAOSWnIq9V6xYoQ0bNqhixYpau3atFi5cqM8//1wbNmxQy5YtFRERofHjx9vLjx8/XlFRUerbt6/WrFmjKVOm6Mcff9Sjjz6qQ4cOadq0adnWNgAAAAAAMitLQ6AvWbJEtWvX1g8//GAPmosUKSKTyZSqrMlk0ldffXXHfV68eFHz58+XJPn7+2vy5Mnplh0xYoSKFy+uMWPG6MCBA5o3b542b96soKAg7du3T//8849q1KihAQMGZL6TAAAAAADkoZyIvaUbCXDpRmx9643nPj4+mjhxoh588EFt3LhRiYmJio6O1oYNG1S6dGkNGjTIXtbd3V3jxo3Tli1btHTpUg0ZMkQeHh5Z7DEAAAAAAJmXpQS4LVEtScnJyTp69Gi6ZdMKzNOyd+9e+7BuYWFhCgsLS7fswIEDVbx4cZUtW1bLly/X1KlT9csvv2jTpk0qU6aMXnnlFfXp04d5yAAAAAAA96yciL0lydfXV5UrV1bdunVTrStWrJiKFi2quLg4xcbGasuWLbJarWrevLnc3NwcyhYuXFiNGzfWTz/9pB07dqh58+Z33QYAAAAAALJblhLgCxYsyK522DVr1kyHDh3K8HYlS5Z0GJoNAAAAAABnkBOxtyTNnDkz3XWRkZGKi4uTm5ubihUrpsOHD0uSLBZLmuWrVKmin376SYcPHyYBDgAAAADIU1lKgDds2DC72gEAAAAAANKQF7H3J598Iklq0aKFChUqpHPnzkmSAgIC0ixvW37+/PlcaR8AAAAAAOnJUgL8VklJSTp48KBOnz6t4sWLq379+vrnn39UpkyZ7KoCAAAAAIACLTdi74ULF2rt2rXy9PTU0KFDJUlXr16VpHTn97Ytt5XLCldXs8PvLi7mdEreW+62H87SX6ng9dlZ+gEAAADc67KcAE9OTtZnn32mr7/+WpcvX5YkderUSfXr19ebb76pK1eu6OOPP1aFChWy3FgAAAAAAAqi3Iq9FyxYoIkTJ8pkMmnChAkKDAyUJLm4uEhKf45xwzAc/s0ss9kkPz/vLO0jvypSxDOvm5DrClqfC1p/AQAAgPwqSwnw5ORkvfzyy9q+fbtcXV1Vs2ZN7du3z77+ypUr+vvvv9W9e3etWrVKxYsXz3KDAQAAAAAoSHIj9jYMQx988IHmzJkjFxcXTZgwQR06dLCv9/LykiRdu3Ytze1tyz09s5YAtFoNXbrk+BS5i4vZKRKLly4lKCXFesdyztJfqeD1+W77CwAAACDjihTxvOtRl7KUAP/666/166+/qkmTJpo4caJKlCihqlWr2tcvWrRIY8eO1apVqzR37ly9+eabWakOAAAAAIACJ6dj78TERL3++utav369PDw89OGHH6p169YOZUqUKCFJ9rnA/+1Oc4RnRHKycyYQU1KsTtu39BS0Phe0/gIAAAD5VZYmJ1q5cqV8fX316aef2oPhW3l4eGjcuHEqUaKEtmzZkpWqAAAAAAAokHIy9o6Pj1fPnj21fv16+fv7a8GCBamS35JksVgkSceOHUtzP0eOHJEkBQcHZ6h+AAAAAACyW5YS4OHh4WrQoIG8vdOfn8vNzU21a9fWP//8k5WqAAAAAAAokHIq9k5KSlLfvn31559/qkKFClq6dKnq1KmTZtmmTZtKkjZt2qSUlBSHdZcvX9aOHTvk5eWl+vXr33X9AAAAAADkhCwlwF1dXXXp0qU7louLi5Ora5ZGWwcAAAAAoEDKqdh72rRp2r17twICArRw4UKVK1cu3bJly5ZVy5YtderUKU2ePFmGYUiSrl+/rrfeektXrlzRc889Jx8fn7uuHwAAAACAnJClrHS1atW0b98+RUVFqWzZsmmWiYyM1L59+1S7du2sVAUAAAAAQIGUE7H3xYsXNX/+fEmSv7+/Jk+enG7ZESNGqHjx4hozZowOHDigefPmafPmzQoKCtK+ffv0zz//qEaNGhowYEDGOwcAAAAAQDbL0hPgXbt2VUJCgvr376+///471fpDhw5p4MCBun79ujp37pyVqgAAAAAAKJByIvbeu3evEhISJElhYWFas2ZNuj9XrlyRdOMp8OXLl+uZZ57R5cuXtWnTJrm7u+uVV17RggULbjtEOwAAAAAAuSVLT4C3b99e27dv1/Lly/X000+rcOHCMplM2rp1q1q0aKGzZ8/KMAx16NBBjz/+eHa1GQAAAACAAiMnYu9mzZrp0KFDGW5LyZIlNX78+AxvBwAAAABAbsnyxNzjx49X3bp1NXfuXJ04cUKSFBsbK0kqU6aMXnzxRfXo0SOr1QAAAAAAUGARewMAAAAAcHeynACXpM6dO6tz5846d+6cTp8+LavVqoCAgHTnJgMAAAAAABlD7A0AAAAAwJ1laQ5wm9jYWO3cuVMBAQGqXbu26tatq4SEBH399dc6d+5cdlQBAAAAAECBRuwNAAAAAMCdZTkB/s0336hZs2Z67733HJbv3btX48aNU9u2bfX9999ntRoAAAAAAAosYm8AAAAAAO5OlhLgv/76q9566y25urqqcePGDuvq16+vXr16yTAMDR8+XL///nuWGlpQmc0mubqac+zHbDbldRcBAAAAALdB7A0AAAAAwN3L0hzgc+bMkaurqxYsWKBatWo5rKtYsaJef/11tWvXTs8995xmz56dKlDH7ZnNJvn5ecpsdsmxOqzWFMXGJshqNXKsDgAAAABA5hF7AwAAAABw97KUAD98+LAaNWqUKgC/Va1atVS/fn399ddfWamqQDKbTTKbXXRi7WwlxJzO9v17+pdWpY59ZDabSIADAAAAQD5F7A0AAAD8P/buOzyKcn//+L2bAEmA0HtRqVEUpBdFFBABpURAEBQLUqQJ6qH4BRFBEERQDwgqBxRQEDUJRYTQUWqAQJSmglICht4CISTZ3x/8Eo0JkLY7OzPv13Wd6+jMs7ufx93s7j2f2WcAIOOy1QC/evWq/P39bzuuYMGCSkhIyM5D2drVMyd0NeaI0WUAAAAAAAxA9gYAAAAAIOOydQ3wO++8UxEREbp8+fJNx1y7dk07duxQ+fLls/NQAAAAAADYEtkbAAAAAICMy1YDvG3btrpw4YIGDhyo06dPp9l/7tw5vfrqqzp79qzatGmTnYcCAAAAAMCWyN4AAAAAAGRctpZA79atm5YtW6ZNmzbp4Ycf1r333qtSpUpJkv766y/t2bNH8fHxql69up5//vmcqBcAAAAAAFshewMAAAAAkHHZaoDnypVLs2fP1pQpUxQSEqJdu3Zp165dKfvz5Mmjp59+Wv/5z3+UO3fu7NYKAAAAAIDtkL0BAAAAAMi4bDXAJSlv3rwaMWKEhgwZol9++UWnTp1SYmKiihUrpmrVqikgICAn6gQAAAAAwLbI3gAAAAAAZEy2GuDdu3fXnXfeqbffflu5c+dWrVq1cqouAAAAAAAgsjcAAAAAAJmRrQZ4VFSUnE5nTtUCAAAAAAD+hewNAAAAAEDGZStB582bVy6XK6dqAQAAAAAA/0L2BgAAAAAg47LVAH/55Ze1bds2zZo1S/Hx8TlVEwAAAAAA+P/I3gAAAAAAZFy2lkA/evSo7rjjDr333nuaPHmy7rjjDgUGBqa7NJvD4dC8efOy83AAAAAAANgO2RsAAAAAgIzLVgP8iy++SPnnhIQEHTx48KZjHQ5Hdh4KAAAAAABbInsDAAAAAJBx2WqAz5kzJ6fqAAAAAAAA6SB7AwAAAACQcdlqgNerVy+n6gAAAAAAAOkgewMAAAAAkHHZaoD/0/Xr17Vv3z6dOHFCRYsWVe3atXX8+HGVLl06px4CAAAAAABbI3sDAAAAAHBr2W6AJyQkaNq0afryyy916dIlSVKbNm1Uu3ZtDR06VLGxsZoyZYruuOOObBcLAAAAAIAdkb0BAAAAAMgYZ3ZunJCQoN69e2vGjBm6evWq7r33XrlcrpT9sbGx2rt3r7p166bTp09nu1gAAAAAAOyG7A0AAAAAQMZlqwH+5ZdfauPGjXrggQe0evVqffPNN6n2f/XVV2rfvr1Onz6t//3vf9kqFAAAAAAAOyJ7AwAAAACQcdlqgIeGhqpgwYL68MMPVbx48TT7/fz8NGbMGBUvXlwbNmzIzkMBAAAAAGBLZG8AAAAAADIuWw3wP//8U3Xq1FHevHlvOiZXrlyqXr26jh8/np2HAgAAAADAlsjeAAAAAABkXLYa4L6+vrp48eJtx50/f16+vr7ZeSgAAAAAAGyJ7A0AAAAAQMZlqwF+99136+eff1Z0dPRNxxw9elQ///yzgoKCsvNQAAAAAADYEtkbAAAAAICMy1YD/Omnn9bVq1fVt29f7d27N83+AwcOaMCAAYqPj1fHjh2z81AAAAAAANgS2RsAAAAAgIzL1tporVu31qZNm/Ttt9+qQ4cOyp8/vxwOh3788Uc9/PDDiomJkcvl0uOPP6527drlVM0AAAAAANgG2RsAAAAAgIzL9sXBxo4dq/vvv1//+9//9Mcff0iSzp07J0kqXbq0nnvuOXXv3j27DwMAAAAAgG2RvQEAAAAAyJhsN8AlqWPHjurYsaNOnTqlEydOKCkpScWKFVOZMmVy4u4BAAAAALA9sjcAAAAAALeX6QZ4YmKivvrqK4WHh+v06dMqXbq02rRpo/bt26tYsWIqVqyYO+oEAAAAAMA2yN4AAAAAAGRNphrg8fHx6tGjh7Zv3y6XyyVJ+uOPP7Rp0yatXbtWH374oVuKBAAAAADALsjeAAAAAABkXaYa4AsWLFBERIRKlCihnj17qly5cvr11181c+ZMhYeHa9GiRWrXrp27agUAAAAAwPLI3gAAAAAAZF2mGuDLly+Xn5+f5s+fr9KlS0uSmjRposaNGys4OFjff/89IRwAAAAAgGwgewMAAAAAkHXOzAw+ePCg6tSpkxLAkwUFBalatWrav39/jhYHAAAAAIDdkL0BAAAAAMi6TP0CPDY2VgUKFEh3X9myZfXrr7/mSFEAAMD7+fhk6jy6TEtKcikpyeXWxwAAwBuRvQEAAAAAyLpMNcATEhLk4+OT7r5cuXLp+vXrOVIUAADwXgXy+8mVlKTAQH+3Pk5SUqLOnbtKExwAYDtkbwAAAAAAsi5TDXAAAIC8frnlcDr1x9LPdPXMCbc8hn+RUrrriZ5yOh00wAEAAAAAAAAAGUYDHAAAZMnVMyd0NeaI0WUAAAAAAAAAAJDCvRfvBAAAAAAAAAAAAADAQzL9C/BVq1apWbNmabafO3dOktLdJ0kOh0OrVq3K7MMBAAAAAGA7ZG8AAAAAALIm0w3wK1eu6MqVKzfdHx0dne52h8OR2YdKJSwsTEOHDtXs2bPVqFGjNPvr16+v8+fP3/T2UVFRypMnT7ZqAAAAAADAE4zK3gAAAAAAmF2mGuBz5sxxVx23FBUVpTFjxtx0f3R0tM6fP68SJUqoXr166Y5xOlntHQAAAADg/YzK3gAAAAAAWEGmGuA3ay6705o1azR06FBdvnz5pmP27dsnSWrZsqXeeOMNT5UGAAAAAECOMyJ7AwAAAABgFZleAt1TYmJi9MEHHyg0NFR+fn4qWrSoTp8+ne7YPXv2SJKqVavmyRIBAAAAAAAAAAAAAF7Ea9cFnzJlikJCQlStWjV9/fXXqlChwk3HJv8C/N577/VUeQAAAAAAAAAAAAAAL+O1vwCvUKGCJkyYoLZt2972+t179uyRn5+ffvnlF40YMUK//fabHA6HatWqpb59+6pGjRoeqhoAAAAAAAAAAAAAYBSv/QV4r1691L59+9s2v8+cOaOTJ08qLi5OQ4YMUVJSkurXr6+CBQtq3bp16tq1q5YtW+ahqgEAAAAAAAAAAAAARvHaX4BnVPL1vwsVKqTp06erZs2akiSXy6UvvvhC48eP1/Dhw1WrVi2VLFkyW4/l6+vZ8wV8fDzzeJ56HHg/K70WrDQXILOs9Pq30lwAAAAAAAAAAO5n+gZ448aN9eOPP8rlcqlEiRIp2x0Oh55//nlFRERo1apV+vbbb9W/f/8sP47T6VChQnlzomSvExjob3QJQI7jdQ1YA3/LAAAAAAAAAIDMMH0D3OFwqHjx4jfd/8gjj2jVqlX65ZdfsvU4SUkuXbx4JVv3kVk+Pk6PHPi/ePGqEhOT3P448H6ees15Aq9r2Bl/ywAAeFZgoL9lVi0JCwvT0KFDNXv2bDVq1CjN/vr16+v8+fM3vX1UVJTy5MnjxgoBAAAAALg10zfAb6dYsWKSpKtXr2b7vhISrHkAPjExybJzg33xugasgb9lAAA8JyoqSmPGjLnp/ujoaJ0/f14lSpRQvXr10h3jdFrjRAAAAAAAgHmZvgH+9ddfa/PmzXriiSfUvHnzNPuPHj0qSdm+/jcAAAAAAFa1Zs0aDR06VJcvX77pmH379kmSWrZsqTfeeMNTpQEAAAAAkCmmb4DHxMTohx9+0NWrV9M0wF0ulxYtWiRJevDBB40oDwAAAAAArxUTE6MPPvhAoaGh8vPzU9GiRXX69Ol0x+7Zs0eSVK1aNU+WCAAAAABApph+bbLg4GDlzp1b69at08KFC1O2JyUl6aOPPlJUVJQqVaqkli1bGlglAAAAAADeZ8qUKQoJCVG1atX09ddfq0KFCjcdm/wL8HvvvddT5QEAAAAAkGmm/wV4uXLl9NZbb2nEiBEaOXKk5s2bpzvvvFP79+/X4cOHVbRoUf33v/9Vrly5jC4VAAAAAACvUqFCBU2YMEFt27a97fW79+zZIz8/P/3yyy8aMWKEfvvtNzkcDtWqVUt9+/ZVjRo1PFQ1AAAAAAA3Z/pfgEtShw4d9OWXX6pp06aKiYnRmjVrlJCQoGeffVaLFy++5RnsAAAAAADYVa9evdS+ffvbNr/PnDmjkydPKi4uTkOGDFFSUpLq16+vggULat26deratauWLVvmoaoBAAAAALg50/wCfO7cubfcX6tWLU2fPt1D1QAAAAAAYB/J1/8uVKiQpk+frpo1a0qSXC6XvvjiC40fP17Dhw9XrVq1VLJkyWw9lq9v6ma8j48lzt3P8DysMl/JfnO2yjwAAAAAszNNAxwAAAAAABijcePG+vHHH+VyuVSiRImU7Q6HQ88//7wiIiK0atUqffvtt+rfv3+WH8fpdKhQobw5UbLXCQz0N7oEj7PbnO02XwAAAMBb0QAHAAAAAAC35HA4VLx48Zvuf+SRR7Rq1Sr98ssv2XqcpCSXLl68kmqbj4/TEo3FixevKjEx6bbjrDJfyX5zzuh8AQAAAGReYKB/hlddogEOAAAAAACypVixYpKkq1evZvu+EhKs2UBMTEyy7Nxuxm5zttt8AQAAAG/FxYkAAAAAAMAtff311xo0aJBWrVqV7v6jR49KUrav/w0AAAAAQHbxC3AAAAAAAHBLMTEx+uGHH3T16lU1b9481T6Xy6VFixZJkh588EEjygMAAAAAIAW/AAcAAAAAALcUHBys3Llza926dVq4cGHK9qSkJH300UeKiopSpUqV1LJlSwOrBAAAAACAX4ADAAAAAIDbKFeunN566y2NGDFCI0eO1Lx583TnnXdq//79Onz4sIoWLar//ve/ypUrl9GlAgAAAABsjl+AAwAAAACA2+rQoYO+/PJLNW3aVDExMVqzZo0SEhL07LPPavHixapQoYLRJQIAAAAAwC/AAQAAAADADXPnzr3l/lq1amn69OkeqgYAAAAAgMzjF+AAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsARfowsAAAAAAE9wOh1yOh1ufYykJJeSklxufQwAADLC3Z97fOYBAADAW9EAzyZ3hgkfH36gDwAAAOQEp9OhQoX85XT6uPVxkpISde7cVRoCAABDeeJzj888AAAAeCvTNMDDwsI0dOhQzZ49W40aNUqz//Tp0/r444/1448/KiYmRsWKFVPLli3Vt29f5c2b1y01OZ0OFSwYQKMaAAAA8HI3Tlz10R9LP9PVMyfc8hj+RUrprid6yul00AwAABjK3Z97fOYBAADAm5miAR4VFaUxY8bcdP/JkyfVpUsXRUdHq0qVKnr44Yf1888/a+bMmfrxxx/11VdfKV++fDlel9PpkI+PU9Pmb1T0yQs5fv81qpZW55b35/j9AgAAAHZ19cwJXY05YnQZAAB4BJ97AAAAsCOvb4CvWbNGQ4cO1eXLl286ZuzYsYqOjlavXr302muvSZLi4+M1ZMgQ/fDDD5o6daqGDRvmthqjT17Qn9Hncvx+SxcLzPH7BAAAAAAAAAAAAACr8tq1u2NiYjR8+HD17dtX169fV9GiRdMdd+TIEa1cuVKlSpXSwIEDU7bnzp1bY8aMUd68efX1118rLi7OU6UDAAAAAAAAAAAAAAzgtQ3wKVOmKCQkRNWqVdPXX3+tChUqpDtuw4YNSkpKUpMmTZQrV65U+/Lnz68GDRroypUr2rp1qyfKBgAAAAAAAAAAAAAYxGsb4BUqVNCECRP0zTffqGrVqjcd9+uvv0qSqlSpku7+SpUqpRoHAAAAwDs5nQ75+jrd8j8fH6+NPgAAAAAAAMhBXnsN8F69emVo3KlTpyRJxYoVS3d/8vbTp0/nTGEAAAAAcpzT6VDBggE0qgGDhYWFaejQoZo9e7YaNWqUZv/p06f18ccf68cff1RMTIyKFSumli1bqm/fvsqbN68BFQMAAAAAkJrXNsAz6sqVK5IkPz+/dPcnb08elx2+vqkPxlnl4JxV5oHss9JrwUpzATLLSq9/K80FwK35+Nz4lfa0+RsVffJCjt9/jaql1bnl/Tl+v+nhvQtmFRUVpTFjxtx0/8mTJ9WlSxdFR0erSpUqevjhh/Xzzz9r5syZ+vHHH/XVV18pX758HqwYAAAAAIC0TN8A9/HxkSQ5HI5097tcrlT/n1VOp0OFClnzbPbAQH+jSwByHK9rwBr4WwbsJ/rkBf0ZfS7H77d0scAcv8+b4b0LZrRmzRoNHTpUly9fvumYsWPHKjo6Wr169dJrr70mSYqPj9eQIUP0ww8/aOrUqRo2bJinSgYAAAAAIF2mb4AHBARIkq5du5bu/uTt/v7ZOwiVlOTSxYupf0Xu4+O0xMGtixevKjExyegy4AWs8pqWeF3D3vhbBmBGvHfBzAID/U37y/+YmBh98MEHCg0NlZ+fn4oWLZruJcSOHDmilStXqlSpUho4cGDK9ty5c2vMmDHasGGDvv76aw0aNOimK7QBAAAAAOAJpm+AFy9eXNLf1wL/t9tdIzwzEhKseRArMTHJsnODffG6BqyBv2UAZsR7F8xkypQpCg0N1b333qtx48Zp7Nix6TbAN2zYoKSkJDVp0kS5cuVKtS9//vxq0KCBVq9era1bt6pJkyaeKh8AAAAAgDTMeYr6P1SpUkWSdPDgwXT3//bbb5KkqlWreqwmAAAAAADMoEKFCpowYYK++eabW+bmX3/9VdLfGfzfKlWqlGocAAAAAABGMX0DvHHjxpKktWvXKjExMdW+S5cuaevWrQoICFDt2rWNKA8AAAAAAK/Vq1cvtW/fXk7nrQ8P3G51teTt6f16HAAAAAAATzL9EuhlypTRI488orVr1+q9997T0KFD5XA4FB8frzfffFOxsbF68cUXlS9fPqNLBQAAAADAlK5cuSJJN72+d/L25HHZ4eubuhlv1uur/1tG52GV+Ur2m7M3zcNTtXjTnAEAAIBkpm+AS9LIkSO1Z88ezZ49W+vXr1flypX1888/6/jx46pWrZr69+9vdIkAAAAAAJiWj4+PJMnhcKS73+Vypfr/rHI6HSpUKG+27sNbBQb6G12Cx9ltznabr2TPOQMAAMD7WaIBXqZMGX377bf673//q3Xr1mnt2rUqXbq0+vTpo549eypvXmuGZwAAAAAAPCEgIECSdO3atXT3J2/3989eMywpyaWLF1P/itzHx2mJJtvFi1eVmJh023FWma9kvzlndL6e4Kn/pt40ZwAAAFhbYKB/hlcgMk0DfO7cubfcX6JECY0dO9ZD1QAAAAAAYB/FixeX9Pe1wP/tdtcIz4yEBGs20xITkyw7t5ux25ztNl/JnnMGAACA9+NCPQAAAAAA4JaqVKkiSTp48GC6+3/77TdJUtWqVT1WEwAAAAAA6aEBDgAAAAAAbqlx48aSpLVr1yoxMTHVvkuXLmnr1q0KCAhQ7dq1jSgPAAAAAIAUNMABAAAAAMAtlSlTRo888oiOHTum9957Ty6XS5IUHx+vN998U7GxserSpYvy5ctncKUAAAAAALszzTXAAQAAAACAcUaOHKk9e/Zo9uzZWr9+vSpXrqyff/5Zx48fV7Vq1dS/f3+jSwQAAAAAgF+AAwAAAACA2ytTpoy+/fZbderUSZcuXdLatWuVO3du9enTR3PmzFHevHmNLhEAAAAAAH4BDgAAAAAAbpg7d+4t95coUUJjx471UDUAAAAAAGQevwAHAAAAAAAAAAAAAFgCDXAAAAAAAAAAAAAAgCXQAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFgCDXAAAAAAAAAAAAAAgCXQAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYgq/RBcBcnE6HnE6H2+4/KcmlpCSX2+4fAAAAAADAaO4+vuLjw29eAAAAYF80wJFhTqdDBQsGuDVEJSYm6fz5KzTBAQAAAACAJXni+AoAAABgZzTAkWFOp0M+Pk5Nm79R0Scv5Pj9lyleQP2efkBOp4MGOAAAAAAAsCR3H1+RpBpVS6tzy/vdct8AAACAt6MBjkyLPnlBf0afM7oMAAAAAAAA03Ln8ZXSxQLdcr8AAACAGbDWEgAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASfI0uAPg3Hx/3npeRlORSUpLLrY8BAAAAAAAAAAAAwPNogMNrFMjvJ1dSkgID/d36OElJiTp37ipNcAAAAAAAAAAAAMBiaIDDa+T1yy2H06k/ln6mq2dOuOUx/IuU0l1P9JTT6aABDgAAAAAAAAAAAFgMDXB4natnTuhqzBGjywAAAAAAAAAAAABgMu692DIAAAAAAAAAAAAAAB5CAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAluBrdAE5ac2aNXr55Zdvur9169aaMmWKBysCAAAAAAAAAAAAAHiKpRrge/fulSTVrVtXJUuWTLO/Zs2ani4JAAAAAAAAAAAAAOAhlmyAjxgxQkFBQQZXAwAAAAAAAAAAAADwJMs1wPPkyaNKlSoZXQoAAAAAAJbE5ccAAAAAAN7MMg3wc+fO6cSJE6pevbp8fS0zLQAAAAAAvAqXHwMAAAAAeDPLdIqTA3ipUqX03nvvafXq1Tp+/LiKFi2qxx57TH369FGBAgUMrhIAAAAAAHPj8mMAAAAAAG/mNLqAnLJnzx5J0ooVKzR//nzdeeedqlWrli5cuKBZs2bpqaee0qlTpwyuEgAAAAAAc+PyYwAAAAAAb2aZX4Dv27dPkvTwww9r0qRJyp8/vyTp7NmzGjx4sLZs2aKRI0dqxowZWX4MX9/U5wv4+Fjj/IGMzsMq85WsNZecZKX/LlaaC5BZVnr9W2kuAG7NSn/vVpoL8G9cfgwAAAAA4O0sk1YnTJigV155RSVLlpSfn1/K9sKFC2vixIlq2bKl1q5dq2PHjqls2bKZvn+n06FChfLmZMleIzDQ3+gSPM6Oc7YbnmPAGvhbBmBGvHfByrj8GAAAAADA21mmAZ47d27deeed6e4rUaKE7rnnHm3fvl179uzJUgM8KcmlixevpNrm4+O0xMGtixevKjEx6bbjrDJfKeNzthueY8Aa+FsGYEa8d8HMAgP9bfPL/39efixv3ryqV6+eSpYsqZ9//lmzZs3SmjVrNG/ePBUrVszgSgEAAAAAdmWZBvjtFC1aVJJ09erVLN9HQoI1D2IlJiZZdm43Y8c52w3PMWAN/C0DMCPeu2BlXH4s67j8WPbHeTu7zVey1lwAAABgHZZogMfHx2v06NE6d+6cJk2apICAgDRjjh49KkkqWbKkp8sDAAAAAMASuPxY1llllYvMsNuc7TZfyZ5zBgAAgPezRAM8d+7c2rRpk44fP64NGzaoZcuWqfbv379f+/fvV/78+XX//fcbUyQAAAAAACbH5ceyjsuP3ZxV5my3+Upc9gMAAACek5nLj1miAS5JnTt31pQpU/Tuu+/qnnvuUfny5SVJp0+f1htvvKHExET16NEj1RnqAAAAAAAg53D5sZuz4+UR7DZnu81XsuecAQAA4P0s0wB/8cUXFRERoZ9++klPPPGE6tSpo9y5c2vr1q26cuWKHnvsMfXq1cvoMgEAAAAAMCUuPwYAAAAAMAPLNMBz586tTz/9VF9++aVCQ0O1Y8cOOZ1OVa5cWZ06dVLHjh3lcDiMLhMAAAAAAFPi8mMAAAAAADOwTANcknx8fNS9e3d1797d6FIAAAAAALAcLj8GAAAAAPB2lmqAAwAAAAAA9+HyYwAAAAAAb0cDHAAAAAAAZAiXHwMAAAAAeDsa4AAAAAAAIMO4/BgAAAAAwJs5jS4AAAAAAAAAAAAAAICcQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAm+RhcAAIAVOJ0OOZ0Ot91/UpJLSUkut90/AAAAAAAAAABWQAMcAIBscjodKlTIX06nj9seIykpUefOXaUJDgAAAAAAAADALdAABwAgm278+ttHfyz9TFfPnMjx+/cvUkp3PdFTTqeDBjgAAAAAADbh7tXmJFacAwBYEw1w4DY88UXTnfgSC3jO1TMndDXmiNFlAAAAAAAAk/PEanMSK84BAKyJBjhwC06nQwULBsjHx+m2x3AlJcnhdN/98yUWAAAAAAAAMBd3rzYnseIcAMC6aIADt+B0OuTj49S0+RsVffJCjt9/jaql1bnl/SybDAAAAOQQd6/gxApLAADAk1htDgCAzKMBDmRA9MkL+jP6XI7fb+ligZL4IgsAAADkBE8sFcoKSwAAAAAAeDca4AAAAAAAS3D3UqGssAQAAAAAgPejAQ4AAAAAsBRWWAIAAAAAwL6cRhcAAAAAAAAAAAAAAEBOoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEvgGuAAAAAm5HQ65HQ63PoYSUkuJSW53PoYAAAAAAAAAJCTaIADAACYjNPpUMGCAfLxce9iPomJSTp//gpNcAAAAAAAAACmQQMcAADAZJxOh3x8nJo2f6OiT15wy2OUKV5A/Z5+QE6ngwY4AAAAAKTDnStzufuEZwAArIwGOAAAgElFn7ygP6PPGV0GAAAAANiOp1bmAgAAmUcDHAAAAAAAAACATHD3ylw1qpZW55b35/j9AgBgBzTAAQAAAAAAAADIAnetzFW6WGCO3ycAAHbB+iwAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsASWQAcAAMBN+fi473zJpCSXkpJcbrt/AN7H6XTI6XS47f7d+Z4FAAAAAADMgQY4AAAA0iiQ30+upCQFBvq77TGSkhJ17txVmuAGcnczkpMc8E9Op0MFCwbQpAYAAAAAAG5FAxwAAABp5PXLLYfTqT+WfqarZ07k+P37Fymlu57oKafTQYPUIE6nQ4UK+cvp9HHbY3CSA/7J6XTIx8epafM3KvrkBbc8Ro2qpdW55f1uuW8AAAAAAGAONMABAABwU1fPnNDVmCNGlwE3uPHrbx9OcoDHRZ+8oD+jz7nlvksXC3TL/QIAAAAAAPOgAQ4Abubu5WUllpgFAGQdJzkAAAAAAADASmiAA4AbeWJ5WYklZgEAAAAA9sbJ5wAAAEhGAxwA3Mjdy8tKLDELAAAAALA3Tj4HAADAP9EABwAPYHlZAEBWuPOXTD4+TrfcLwAAgKdx8jkAAAD+iQY4ANujuZDz3L30HMvOAbADp9OhggUDbPtZAgAAkFmcfA4AAACJBjgAm6O5kPM8sfQcy84BsAOn0yEfH6emzd+o6JMXcvz+a1Qtrc4t78/x+wUAAAAAAACMRAMcgK3RXMh57l56jmXnANhN9MkL+jP6XI7fb+ligTl+nwAAADfD6ms5j9XXYEW8rgEAOYEGOACI5oI7sPQcAAAAAEBi9TV3YPU1WBGva8Aa3H0ii8TJLLg9GuAAAAAAAAAA3IbV13Ieq6/BinhdA+bniRNZJE5mwe3RAAcAAAAAAADgdqy+lvNYfQ1WxOsaMC93n8gicTILMoYGOAAAAAAAAAAAAIAcwYksMBoNcACA5bn7ujNcxw4AAAAAAAAAAO9guQb4tm3bNGPGDO3bt09xcXGqWrWqnnvuObVq1cro0gAABnA6HSpYMIAmNQAAQA4iewMAjODuE9yTklwspwsAgAVYqgG+ZMkS/ec//5Gvr6/q168vHx8fbd68WYMGDdLBgwfVv39/o0sEAK/gzsDobY1mp9MhHx+nps3fqOiTF9zyGDWqllbnlve75b4BAAC8DdkbAGAEp9OhQoX85XT6uO0xkpISde7cVZrgACzNTseG7crdJ4x5QnZPSrNMA/zMmTMaMWKE/P39NWfOHN13332SpIMHD6p79+6aOnWqmjdvrqCgIIMrBQBj2fUX0dEnL+jP6HNuue/SxQLdcr8AAADehuwNADDKjYP5Pvpj6We6euZEjt+/f5FSuuuJnnI6HTTAkYImEnKCN61eYddjw3biqefYlZQkh9N9j5Hdk9Is0wD/8ssvFRcXp549e6YEcEmqWLGiXn31Vb3xxhv64osvNH78eAOrBADjufsX0fwaGgAAwLrI3gAAo109c0JXY44YXQZsgCYScoK3rV7BsWHr8+SKqN58UpplGuDr1q2TJD366KNp9jVr1kwOh0Pr16/3cFUA4L3c9Ytofg0NAABgXWRvAABgFzSR7MPdS4J74+oVHBu2Pk+siOrNJ6VZpgH++++/S5IqVaqUZl/BggVVtGhRnTp1SmfOnFGRIkU8XR4AAAAAAKZH9gYAAHZj9yaS1Xnql/48x4BnWaIBfuHCBV27dk158+ZV3rx50x1TvHhxnTp1SqdOnSKEAwBgQd50PSUA8Ba8NyInkb0BALfi7u8dXK/WO7j7l7KAp7EkOGBNDpfLZfqjFSdOnNDDDz+sokWLauPGjemOefrpp7Vz507Nnz9ftWrVyvRjuFxpD+w4HJLT6dSFy3FKTEzKUu23kjuXj/IF5NH12ItyJSXm+P07nD7KlTdQSUlJysirwOzzlew3Z2+br2S/OfO6tv5zLNlvzt74upZuBBaHw30HW1wul9z5tSkzd23H13XK7dz3FLtdZl8+Zv9b5r0rE7dz4+va4XD/e2NGG+BWfu9y92eQtyB7Zw3vhxkYb/I5e9t8JfvN2Rtf1ym3c+PHg9Pp9Jrn+EY9nvk89JY52/V17Ynn2S7PseR979cptzPxV1uy923Gm3y+Eq/r27Hye1dmPoMs8Qtwp/PGmWG3mnTyAeusHrh2OBzy8Un//gvk88vSfWZUrrzuvWZC8n+/jDL7fCX7zdnb5ivZb868rnOet81Xst+cvfF17U7ubiJlhR1f13Zk9r9l3rus7VY56WZ47zIvsnf28H54e2afs7fNV7LfnL3xde1u3vYce4K3zZnXdc6z23Msed+c7cjsf8ve9rq243uXt7H7e5clXh3JS6/FxcXddEx8fLwkKSAgwCM1AQAAAABgJWRvAAAAAIAZWKYBHhAQoEuXLt00iJ88eVKSVKxYMU+WBgAAAACAJZC9AQAAAABmYIkGuMPhUJUqVSRJBw8eTLP//PnzOn36tAoXLqyiRYt6ujwAAAAAAEyP7A0AAAAAMANLNMAlqXHjxpKkVatWpdm3atUquVwuNWnSxNNlAQAAAABgGWRvAAAAAIC3s0wDvEOHDvL399fnn3+unTt3pmw/dOiQPvjgAzkcDr3wwgsGVggAAAAAgLmRvQEAAAAA3s7hcrlcRheRUxYuXKiRI0fKx8dH9evXV+7cubV582Zdu3ZNr732mnr16mV0iQAAAAAAmBrZGwAAAADgzSzVAJekDRs26LPPPtMvv/wiHx8fVapUSS+++KJatGhhdGkAAAAAAFgC2RsAAAAA4K0s1wAHAAAAAAAAAAAAANiTZa4BDgAAAAAAAAAAAACwNxrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDiDHXLp0KdO32bp1qxsqAZBVU6dO1a+//mp0GQAAAABuguwNmB/ZGwAA96IBDo+Lj4/XL7/8ov379yshIeGm486ePauIiAgPVuZ5W7du1ezZs/XVV1/p6NGjRpeTbd27d9f58+czNPbatWsaO3asXnjhBfcWBSBTpk6dqgMHDhhdBpDjmjVrptWrVxtdhiGSkpJ05MiRVNtcLpeWLVumsWPH6v3339fu3bsNqi7nHD9+XHFxcRkef/ToUYWFhbmvIAOcPXtWmzdv1rJly/TDDz9o69atGf5uBsB6yN5/I3uTvQFvQ/aGVZG9yd7/RvaGUXyNLgAZFxcXp7Nnz6p06dJGl5Jlc+bM0YcffqgrV65IkvLnz6+XXnpJL730kpzO1Odj/PTTTxo6dKj27dtnRKk55sCBA/rkk0904MABlS5dWr1791atWrU0cOBArV69Wi6XS5Lk6+urAQMGqHfv3gZXnHX79u3TM888o88//1xFixa96bjdu3dr6NCh+vPPP285zqrOnj2rgwcPqm7dukaX4hGXLl3ShAkTNHbsWKNL8Ri7PcdW0KxZM73xxhtq1qyZ0aV4zN13362JEyeqTZs2RpfiEdHR0SnfP+xk3bp1Gj16tE6dOqVffvlF0o1Q3rdvX61fvz7le8jMmTPVvXt3DR8+3Mhys6VZs2ZpXtNXrlzRmDFj9NJLL6lixYqpxkdGRmr48OFq3769hyvNeStWrNAnn3yS7vdmh8OhWrVq6aWXXtLDDz/s+eJyUFBQkBwOR6Zu43A4tHfvXjdVBKsie5sT2Tstsre9chnZG2ZA9rY+sjfZm+xN9vYW/ALcQOmdDRUfH6+wsDCdPn06zfjw8HBTfzkICwvTuHHjVLVqVQ0fPly9e/eWn5+fpkyZohdffFGXL182usQc98svv+ipp57SunXr5O/vr927d+v555/XuHHjtHr1avXo0UOhoaGaN2+emjRpog8++EA//PCD0WVn2ciRI3Xo0CF169ZNJ06cSLP/+vXrev/999W1a1f9+eefateunb7//nsDKs1Zd999t5YsWZJqW1xcnKZOnapjx46lGf/TTz+pe/funirPLY4dO6YxY8boySef1JNPPqkRI0bo8OHDacaFh4erdevW+u677wyoMufY8Tm2GzsGtOTwBevav3+/+vXrJ5fLpR49eigpKUmSNH/+fK1bt07FihXTwoULFRkZqSFDhmjOnDmm/h6S3mv62rVrCgsL08mTJw2oyDPGjh2rQYMGKTo6Wu3bt9frr7+ut99+W2+++aYGDhyoZs2aac+ePXr55Zf17rvvGl1uttStW1d16tTJ1P9q165tdNnwAmRvsjfZm+xtVmRv6z/HdkP2hhWRvcneZG/vzN78AtxA6X3gx8bGavjw4Zo1a5blzs6dPXu26tatq7lz56Zs69u3r9566y2FhITo+eef1+eff658+fIZWGXOmjJlisqWLau5c+eqcOHCunLlinr37q0vv/xSnTt31uuvv54ytk6dOnrmmWf0v//9T61atTKw6qzr1q2bChQooGHDhqlbt276/PPPVb58eUk3zlAfOnSofv31V5UuXVqjR49W48aNDa44Z6T3oX/16lVNmzZNtWvXVtmyZQ2oyn327dunZ599VpcvX5afn5/8/Py0d+9eLVu2TAsWLFCVKlV06dIljRgxQuHh4fLx8VGvXr2MLjtb7PYcHzp0KNPLYHLGPeB9PvvsMxUvXlyLFi1SYGBgyvYvv/xSDodDr776qqpXry5JeuGFF7Rt2zbNnz/ftN9DbsbKB5wWL16sefPmqX379nrzzTcVEBCQ7rjY2Fi98847+uKLL1SzZk099thjHq40Z/wzRwCZQfYme5O9yd5mRPa+wcrPMdkbsAay9w1kb7K3t6EB7oWs+kbxxx9/aNiwYam25c6dW+PGjVPBggU1a9YsvfTSS5o1a9ZN30DMJjIyUq+++qoKFy4sSQoICNArr7yiZ555Rg8++GCa8a1atdLEiRM9XWaOeuKJJ5Q/f34NGjRI3bp102effabVq1drxowZSkhIUNeuXfXaa68pb968Rpfqdlb9W/7oo48UFxen999/X48//rgkKSoqSq+++qrGjh2rSZMmqXv37vrzzz913333aezYsapatarBVbuHVZ/jGTNmaMaMGZm6jdmXzLSrzC5nZHYLFy7Upk2bMjze4XBo3LhxbqzIvSIiIvTUU0+lCuBHjx7VoUOH5Ovrq0cffTTV+AceeEAfffSRp8tENsyfP1/333//bc8uz5s3r8aNG6eDBw/qm2++MW0Iv379unLlypWp2+zevVs1atRwU0UwO6t+lyN7k73J3tZA9v6bVZ9jsrd9kL1vjewNb0f2vj1vzN40wOEx/v7+On/+fLr7hgwZoitXrmjBggXq06ePPvvsM88W5yb58uXTxYsXU22rWrWqmjRpIl/ftH9+586dU548eTxVnts0adJEM2fO1Msvv6wnn3xSLpdLd9xxh8aOHas6deoYXR6yKSoqSl26dEkJ4JJUvXp1DRkyRIMHD9bgwYMVHR2t119/XS+++GKaawzC+zVv3tyyB05uxW4BTZKmT5+uhQsXZni8w+HQF1984caK3CsiIiJTv7Aw+3N87tw5lSxZMtW2LVu2SJJq1KiR5oC4n5+frl275rH6kH2///57pq5h26xZM3399ddurMi9nnzySU2aNClDn1Hx8fGaMmWK5syZoz179nigOsB7kL1vIHuTvc2O7G19ZO+MMXsuk8jet2P255jsbX1k75vz5uxNAxweU79+fc2ZM0ePPvqoKleunGb/qFGjdPnyZS1dulQvvviimjRpYkCVOeuBBx7Q559/rpo1a6phw4aSpPz58+uTTz5JM3b37t2aO3duyjizq127tubMmaOXXnpJZ8+e1dtvv00At4gLFy4oKCgozfb77rtPiYmJOnDggObOnav777/f88UhR7Ro0UJt2rQxugyPs1tAk6SDBw/q4MGDGR5v9rPW33jjDVNf0zWzChQooLNnz6ba9tNPP8nhcOiBBx5IM/7gwYMpv5yDOVy5ckVFihTJ8PhixYqZ+ppsp0+fVseOHTVgwAD17Nnzpu9JO3bs0BtvvKHDhw/rjjvu8HCVgPHI3mRvsrc1kL2tj+ydMWRv8yF7k72thuxtzuxNAxwe8+qrr6pr164KDg7WPffco/feey/VH4XD4dDEiROVO3duhYSEaOfOnQZWmzNef/11RUVF6cUXX1SdOnVueu2EZ599Vjt27FDhwoVTXZvM7IKCgjR//ny98MILevnllzVt2jQ1aNDA6LKQTQkJCen+WsLPz0+S1KtXLwI4TMluAU2S3nvvPVsdcClUqJDKlCljdBkeU6tWLS1btkw9evSQj4+PTp8+rXXr1kmSWrZsmWrspUuXtGTJEtWvX9+ASpFViYmJ6f6y8WZ8fHyUkJDgxorca+nSpRo+fLgmT56sdevWacKECSpXrlzK/uRlYpOvtdejRw8NHDjQwIoBY5C9yd5kb2sge8OqyN7WR/Yme1sN2duc2ZsGODzmzjvv1Pfff69p06Zp+/btKV/Y/8npdGrcuHGqWbOmPvzwQ505c8aASnNOkSJF9N1332nBggWKj4+/6Tg/Pz917NhRr7zySqbOJPI2w4cPT3f7HXfcoWPHjql3795q1apVqjOGrHAWJ1K79957jS4ByBK7BTRYX8+ePdWlSxd17txZ9erV0+rVq3Xt2jU9/vjjqlChgqQbB1Z37dqlCRMm6OzZs+rWrZvBVWfPypUrdfjw4ZR/j4uLk8Ph0KJFi7Rjx45UY3/99VdPl4dsKlKkiD799FN9+eWXeu+999SuXTsNGzZMTz31lLZt26b/+7//09GjR1W1alW98847fCeBbZG9yd5kb3vgcw5mRfaG1ZC9yd5WY5XsTQPcYIcOHUq15MulS5ckSQcOHEhzRklmlknxVoUKFdKIESNuO65Tp04KDg5O9SZqVn5+fnr++edvOcYq110LDQ295f5r164pLCws1TarhPDt27crMTEx5d9jY2MlSRs3blRMTEyqsVb4hcWtmH2Zppuxy3Nct25dFS1a1OgyAOSA++67T9OnT9c777yjWbNmycfHR23atNHo0aNTxkycOFFz5syR0+nU8OHDVatWLQMrzr7w8HCFh4en2f7v7x/JrPCZ9e8DD7dilQMP3bp1U4MGDTRy5EiNGjVKc+fO1cGDB+Xr66uBAweqV69emTo7H/ZA9k4f2ducyN7Wz2UZYYXvMemxy3NM9gasg+z9N7L3DWRv7+BwuVwuo4uwq6CgoHT/8F0u1y2379u3zxPluZ3L5dLRo0d1/vx5SVLhwoVVtmxZY4tyM6vPOTo6Oku3M/tZn+n9Lf/zrTW9fWb+Ww4KCtLLL7+sRo0apdp+6dIl9e3bV8OGDVO1atXS3K5u3bqeKjHH2e05tqOgoCDbLUlmtzmHhoaqTp06qZZsspNz587J398/za8A169frz179ujxxx/3yus1Zca2bduydLt69erlcCWek951QW/HSp9PERER6tu3ry5duiSHw6G+fftqwIABRpcFL0T2tnYOTY/V50z2/puVcxnZ+wYrP8d2ZLccKtlvzmRvsvfNkL3Ny6zZmwa4gaZOnZql2/Xv3z+HK/GsqKgozZw5Uxs3btSVK1dS7cuXL5+aNm2qF154IUtvKt7KjnO2k9udfX8zwcHBOVyJZ9zsAKJ084OIkkz9gW+n5/ifv4zKDDMfZJHsGdC2bdumihUrmnr5T8Du7HjgQZIuX76siRMn6ttvv1WePHnUs2dPrVixQr/++qsaNmyosWPHqnTp0kaXCS9C9rZPDrXjnO3ETrlMIntnhhmfY7I32RuAeZC9zZm9aYDDo2bNmqVJkybJ6XSqZs2aqly5sgIDA5WQkKDz589r79692rdvn5xOp4YOHaru3bsbXXK22XHOGTVjxgyFh4crJCTE6FI8Lj4+Xrlz5za6jCyx6wHEzDLrc3yrgyy3YuaDLLCHm10r81asslQo0rdgwQL99NNPWf5cgzHWrVunUaNGKSYmRg0aNNCYMWNUrlw5Xb9+XR999JFmzZolPz8//ec//1GXLl2MLhcwjB1zqB3nnFFkb/PlMonsnVFmfY7J3rAqsjf+jextTlbI3jTA4THr169X79691bBhQ40bN06lSpVKd9yRI0c0evRobdq0SbNmzVLDhg09XGnOseOcM2PUqFFauHCh6b+8T506NVMBMyoqSsOHD9f333/vxqqQk+z0HP/3v//NUgg3+0EWOwa0rBz0dTgc+uKLL9xQjfvZcbmq2x1Uy5Mnj/Lnz68qVaqoRYsW6tSpk5xOpwcrNJYVvoccP35chQsXTrO83s0cPXpUO3bsUPv27d1bmJu8/vrr+v777xUQEKAhQ4aoc+fOacZERkZq6NChOnr0qOrVq6d33nnHUsseAxlhxxxqxzlnhhU+8yR75TK7stNzTPbOOLK3uZC90yJ7m/97CNnbnNmbBriB7PaB/8ILL+j06dMKCQlRrly5bjk2ISFB7du31x133KFp06Z5qMKcZ8c5Z4YVPvykG19yevToof/85z+3HJeQkKCpU6dq5syZSkxMNP28MyouLk5nz5716uVQbofn2PrsGtAyy8xztuO1Mp999tlb7k9MTNTFixd15MgRXb9+XQ888IBmzJghX19fD1VoLCt8D7n77rs1ceLEVNcTvHLlisaMGaOXXnpJFStWTDV+8eLFGjp0qGnnHBQUpMaNG2vMmDEqWbLkTcfFxcXp3Xff1YIFCxQQEKCdO3d6sEp4I7L3zVklh9pxzplhhc88iVx2O2RvmIHdcqhkvzmTvdMie5v/ewjZO33enr3t8RfmpTJzXZt/nkFk1hC+d+9ePf/887cNo5Lk6+urVq1aafHixR6ozH3sOGc7qlOnjmbNmqWrV6/qzTffTHfMgQMHNHToUB04cEAFChTQ//3f/3m4ypzTrFkzvfHGG2rWrFnKtvj4eC1btkwPPvigihYtmmp8eHi4qT/wJfs9x3a0evVqo0vwuP379xtdgkeZOUxn1dy5czM0Li4uTvPnz9fEiRM1f/7824Z3eI/0zmW+du2awsLC1LZt2zQh3OzGjx+foWt8+vn56a233tKjjz7K5zEkkb1vxSo51I5ztiO75TKyt/WfYzsie1sf2fvmyN7mRfZOn7dnbxrgBsrIh190dLTGjBmjdevWKX/+/Bo0aJD7C3OT2NhYFS9ePMPjS5Uqpb/++suNFbmfHedsR7NmzdLAgQM1f/58Xb16VePGjUs5cOZyufTpp59q2rRpio+PV+vWrTVixAgVLlzY4KqzLjo6WleuXEm1LTY2VsOHD9esWbPShHArsNtzLEmHDh1SZGSkOnTokLLt9OnTmjp1qnbu3Cl/f381a9ZMzz//vCmvt/ZvdgxoSC0+Pl6///67/Pz8VKFCBaPL8Sg/Pz+98MIL2r17t0JDQwnhFmDVRb4yEsD/6a677lKnTp3cVA3MhOx9a1bIoXacsx3ZLZeRva3/HEtkb9gP2ZvsbSVk7xu8NXvTAPdSiYmJmjVrlj7++GPFxcXp8ccf1/Dhw0395TYhISFTX9R8fX0VHx/vxorcz45ztqPcuXNr2rRpGj58uEJDQxUXF6dJkybpyJEjGjZsmKKiolSsWDG99dZbatq0qdHluo1VP/Al+z3HkyZN0qxZs+RyuRQcHCyn06lLly6pc+fOOn78uAoWLKgyZcroww8/1Jo1azR37twM/drGzOwY0GJiYhQVFSU/Pz/VrVs3w9c58maXLl3SZ599psjIyFRnaC9ZskRjx47VxYsXJd344j5u3Djdf//9BlVqjPr162vjxo1GlwFky7Vr17RixQqFhIRo27Ztcrlc6tevn9FlwYuRva2RQ+04ZzuyWy67GbK3dZ5jsndaZG+ytx2QvWEFZsjeNMC90Pbt2zV69Gj99ttvuvPOOzVq1Cg1bNjQ6LKA25o6dWqmxv/yyy9uqsTzfHx8NHHiRAUGBmrevHk6duyYfvvtN8XFxalTp04aOnSo8uXLZ3SZyAa7PMcrV67UzJkz9fDDD6t79+5yOp2SpI8//ljR0dGqUaOGPv/8c/n7+ysqKkrPPvusPv/8c/Xs2dPgyrPPjgEtOjpakydPVmRkpNasWZOy/dNPP9VHH32kxMREuVwuFShQQGPGjFGLFi0MrDZ7YmNj1blzZx06dEglS5ZUQkKCfH19FRUVpaFDh8rlcqlz586qXLmywsLC9MILLygsLEx33HGH0aV7jI+Pj5KSkowuI8vCwsIyNf6PP/5wTyEwRGRkpEJCQvTDDz8oNjZWLpdL5cuXV+fOnY0uDV6M7A2zIntbP5fZmV2eY7I32Vsie5O9zYnsbW9myt40wL3IuXPnNHHiRIWFhSl37twaMGCAevbsaYnlbZJt375diYmJGRq7c+dON1fjGXaac2ZDuJT6GntWMGLECBUsWFBTp06V0+nUJ598oiZNmhhdFnKQ1Z/jBQsWqEaNGpoxY0bKNpfLpcWLF8vhcOiVV16Rv7+/JKl69epq166dvv/+e9OHcDsGtDNnzqhz5846d+6cqlevnjLnH3/8UZMnT5avr69effVVValSRQsXLtSrr76qr7/+WtWqVTO69CyZNWuWjhw5og8++EAtW7ZM2T5t2jS5XC4999xzGjZsmCSpY8eOatu2rWbMmKHx48cbVbLH7d69W6VKlTK6jCwbNmxYpr5XuFwuy30PsZuYmBgtWrRIISEhOnz4cMov4urXr6+ePXvqwQcfNLhCeCuyd2pmz6HJ7DRnsrf1cxms/xyTvcneZG+yt1mRve3HrNmbBriX+OabbzRp0iRduHBBDzzwgEaNGqXy5csbXVaOW7hwoRYuXJihsVZ5Y7TTnOfMmWN0CV6hf//+KlSokMaOHauZM2eqdu3aljg7GX+z8nO8Z8+eNIF67969OnPmjPLly6f69eun2nffffdpyZIlnizRLewY0D799FPFxsbqyy+/THVG/aeffiqHw6F+/fqlvBYeeughdejQQZ999pk++OADYwrOpvDwcLVr1y7V8xsbG5uy7FjXrl1TtufJk0dt27bVN9984/E6jbJ8+XItWrRIL730ktGlZJmZ/x6RcfHx8Vq1apVCQkK0efNmJSYmysfHR/Xq1VPt2rU1ffp0de/e3WsDOIxH9k7L7Dk0mZ3mTPa+wcq5DDdY+Tkme5O9yd5kb7My898jMs4K2ZsGuMEOHDigt956S7t27VLRokU1efJktW7d2uiy3MKOb4x2m3O9evUyfZvt27e7oRLPioiISLOtSpUq6tSpkxYuXKjnnntOQ4YMSVnOKlndunU9VSKyyU7P8ZUrV1SgQIFU27Zs2SLpxnx8fHxS7UtISDD1wcNkdgxo69atU4cOHVIF8PPnz2vHjh2SpCeffDJlu8PhUKtWrfTFF194uswcc+zYsVTPo3TjbzshIUHlypVL0/woVaqUzpw548kSc9zw4cNvuT8xMVGxsbH6/fffdeTIEd15552mDuHBwcFGl2CIlStX6vDhwyn/HhcXJ4fDoUWLFqX8PSf79ddfPV1ejho9erSWLVumCxcuKE+ePGrcuLGaN2+uZs2aqVChQoqOjtbHH39sdJnwUmRva7PbnMnef7NqLrMrOz3HZG+yN9n7BrK3+ZC9byB7e3/2pgFuoAkTJmju3LlKTEzUI488okGDBilfvnw6fvz4LW9XunRpD1WYs+z4xmjHOWfEiRMnFBoaqrCwMB09elT79u0zuqRsefbZZ28ZQvbs2aPnn38+zXYzz/vQoUOpgumlS5ck3Tiw6Oub+qPl4MGDHq3NHez0HBcvXlxHjx5NtW3dunVyOBx66KGH0oyPiopSiRIlPFWe29gxoP3111+qUqVKqm1bt25VUlKSKlWqlOZ5LVKkiC5cuODJEnOU0+lMc42tzZs3S5IaNWqUZvzZs2dN/+uS0NDQDI0rV66cnnvuOfXt29f0c76Z9L5flypVyjIHEcPDw9Nsv9l12cw85/nz5ysgIEB9+vTRSy+9ZNnXK3Ie2dv67DjnjCB732DmeZO9U7PSc0z2/hvZm+xt9u/1ZO+/kb3/ZuY5WyV70wA30OzZs1P+ee3atVq7dm2GbmfGL3VZcfbsWR08eNCUZ3FmlZXnfO3aNYWHhyskJERbt25NWXIuvS/1ZtOvXz9Tf6BlxYwZM1JdpyrZhAkT0mwz+/KCkr2e44ceekjfffedunbtqhIlSigyMlLbt29Xrly59Nhjj6Ua+9tvv+n777/XU089ZVC1OceOAS1Pnjy6evVqqm2bNm2Sw+HQAw88kGb8X3/9pcDAQE+Vl+MqVaqkyMhIdevWTdKN96aVK1fK4XCoadOmacavXr1aFStW9HSZOWr16tW33J8nTx4FBgZa6pq3kvTdd9/pm2++0ccff6zChQvr3Llzatq0aZr38YEDB+rll182qMqcYbclcIODg7Vq1Sp98skn+uKLL1SnTp2Us9CLFi1qdHnwYmTvW7NyDr0ZK8+Z7G0tZG/rInv/jeydGtnbfMjeZG+rsUr2pgFuoP79+xtdgkfdfffdmjhxotq0aZOyLS4uTjNnzlT79u1VtmzZVON/+uknDR061NQHHew453/btWuXQkJC9MMPP+jy5cuSpMKFC6tDhw7q3LmzypQpY3CF2TdgwACjS/AoOwXSZHZ6jvv27avw8HC1atVKFSpU0K+//iqXy6V+/fqpcOHCkm6E7/DwcM2ZM0e5cuVSjx49DK46++wY0IKCgrR582Y999xzkv6+to8kNW/ePNVYl8ul5cuXKygoyON15pT27dvrnXfe0X333acHHnhACxcu1PHjx1W+fHk1btw41dgZM2Zo165dGjFihEHV5gwrfMZm1iuvvKIVK1aodOnSOn78eMr7liS1bdtW5cqVkyQtWrRI06dPV8eOHVWsWDGjys22rCyBm5CQ4IZKPGP8+PEaPXq01q5dqyVLlmjDhg368ccfNXr0aNWsWVO1atWy3XcUZAzZ2/o51I5z/jeyt/WQva2N7E32lsjeZG/zInvfHtnbeDTADWS3EO5yudJsu3r1qqZNm6batWunCaRWYMc5S9LJkycVFham0NBQ/fnnn3K5XPL391ejRo20adMmvf3222rWrJnRZSKL7BRI7aho0aL69ttvNW3aNO3atUv33HOPOnTooE6dOqWMCQ0N1axZs1SmTBm9//77KlWqlIEV5ww7BrQuXbro1Vdf1bhx4/TAAw/ou+++05kzZ3TPPfek+jVUXFyc3n33Xf3222+mPuDSpUsX7dixQ+PHj5fD4ZDL5VKBAgU0adKklGsIfvvtt/r000919OhR1a5dW08//bTBVbtXVFSUIiMj5XQ6Va9ePVWtWtXokrJl8eLFWrFihXr37q2BAwemuW5i+/bt1bBhQ0lSkyZN9NRTT+nrr7+2zHfy2NhYuVyuW/5CJjIyUiNHjtTSpUs9WFnOyp07tx577DE99thjunTpkpYvX67Fixdrx44d2rFjhxwOhz755BNdvnxZjz32mPz8/IwuGV7AKn/nGWXHHGrHOUtkb6sje1sb2ZvsTfYme5sV2ZvsbZbsTQPci8THx2v//v06efKkXC6XihcvrqCgIOXJk8fo0twqvaBqdVad8w8//KCQkBBt2rRJiYmJCgwMVJs2bdSiRQs1btxYp06dSnNmoxVMnTo107dxOBzq16+fG6pxv+7du+vll19O+SJjB3Z7jkuWLKkxY8bcdH+HDh3UtGlT1apVKyW8mJ0dA1rr1q114MABzZw5U3PnzpXL5VLZsmU1ZcqUlDH/+9//9PHHHys2NlYtW7ZUu3btDKw4exwOhyZNmqRu3bopMjJS+fLlU/PmzVOdpfzXX3/J5XLp5ZdfVu/evS3x+t67d68++eQTHTx4UOXLl1efPn1UvXp1/d///Z9CQkJSvpM4HA498cQTGj9+fJrrSZpFaGioatasqcGDB992bPIBt/Xr15s+hK9YsUJTp07V77//LunGdeUGDhyoJ554ImXMlStXNHnyZM2fPz/NkpNmMnz4cHXp0kU1atSQJOXPn1+dOnVSp06dFBMTo6VLl2rp0qWKiorSzz//rDFjxqh169Z6++23Da4c3obsbR9WnTPZO+PMnMvI3hlj5ueY7E32Tkb2Nv/rm+ydPrK3OVkle5vzL8xiTp8+rcmTJys8PFyxsbGp9vn7++uxxx7T4MGDVbx4cYMqBDJm8ODBCggIUNeuXdWsWTPVrVs31RlgZlgWIyvsFtC2bduW6oxkO7Dbc3w7Zl9+LD12DWiDBw/W008/rd27dytfvnyqV6+ecuXKlbI/T548uu+++9SmTRs9+eSTBlaac2rWrKmaNWumu69///6mD2T/FBkZqe7du8vX11dVqlTRnj171K1bNz377LP67rvv1LZtW7Vs2VJXrlzRmjVrtHTpUt1999168cUXjS49S/bu3as+ffpkePyDDz6oadOmubEi91u2bJleffVV5cmTRw8++KD8/f21fft2/ec//0m5fuTPP/+swYMH69ixYypbtqxGjx5tdNlZFhoaqkaNGqWE8H8qUaKEevTooR49eujgwYNavHixlixZom+++cbrQjiMQ/aGVZC9M87MuYzsnTFmfo5vh+xN9jYzsjfZOxnZ23yskr1pgBts165d6t27ty5cuKAaNWqoQYMGKl68uHx9fXXy5ElFREQoLCxMa9as0fTp01WrVi2jSwZuqmzZsjp27JhCQkL0xx9/6Oeff1bz5s111113GV2aW82ZM8foEuBmdnqOIyIisnS7fy7bZWZ2CmjJSpYsqZIlS6a775lnntEzzzzj4YqQU6ZNm6Y777xTc+bMUaFCheRyufTGG29o9uzZatu2rSZOnJgy9oknntDFixe1dOlS04bwuLg4BQYGptmeP39+zZgxQ3fffXeq7Xnz5jX1Nbkkad68eSpSpIgWLFiQco21q1ev6uWXX9Z///tfFS9eXC+++KKuXbumF154Qa+88opXLkuW0ypWrKjBgwdr8ODB2rlzp9HlwEuQvWElZG9YlZ2eY7I32fufyN7mRva+gexN9vY2NMANdObMGfXr10958+bVxx9/rNq1a6c7bu/evRo0aJAGDhyoRYsWqUiRIh6uFMiYVatWaffu3Vq8eLGWL1+un376SZMnT1aFChXUokULVatWzegS3aJevXq3HXPp0iU5HI5bXhsE3isjz7FVPPvss5n+xYjD4dDevXvdVBGQM4YPH57p2zgcDo0bN84N1XjGzz//rJdeekmFChWSdGM+PXr0UGhoqB5++OE041u0aKF3333Xw1XmnBIlSuj48eNptvv6+qY73z///NP011E8ePCgnn322ZQALt34FWv//v31zDPPaPDgwSpSpIgmTZqk+++/37hCDUQTExLZG9ZD9r45sre5kb1vjewNMyB7k73/jextD96YvWmAG2jevHmKjY1NddZIeu655x7Nnj1bbdq00VdffaUBAwZ4sEogc2rUqKEaNWrojTfe0E8//aQlS5Zo9erVmj59uhwOhxwOh9auXaugoCCVKVPG6HJzjMvl0oYNG/T777/rjjvu0MMPPyxfX19t3rxZY8eO1aFDhyRJd999t1599VU9+OCDBlecPStXrtThw4czPN7KS5Ils8qBlvHjx2do3IoVK7Ru3TpJUvXq1d1YkWfYMaB1794907dxOBz64osv3FCN+4WGhmZ47D8PRJn5Ob548aKKFi2aalvy0oIFCxZMM97Pz09Xr171RGluUb16dS1btkz9+vW77TKJ8fHxWrZsmZo0aeKh6tzj0qVLKlu2bJrt5cuXl3RjKcUFCxakHIixgu3btysxMTFTt2nfvr17ioFpkL1hRWRvsnd6yN7mQfbOOLK3uZC9byB730D2Ni8rZG8a4AZatWqV2rZte8sAnqxMmTIKDg5WeHi4qUP4v/9okq+7tnHjRsXExKQa641LJmSFHecsST4+PmrSpImaNGmiuLg4rVy5UkuXLtXGjRv17bffKiQkRPXr11eHDh30xBNPGF1utly8eFG9evXS7t275XK5JEn33XefRo4cqV69esnf31/NmzfXlStXtHv3bvXu3VuzZ8829ZnNK1euVHh4eIbHWyGE//NAS/ny5fXII49Y8kBLcHDwLfdHR0drzJgxWrdunQIDA/Xqq6+qc+fOHqrOfewY0I4dO5ahcUlJSYqJiZHL5TL19ST3799/2zH/fH3nz59fgwYNcn9hbuRyueTrm/rrfvJzaObn8ma6dOmiZ555Rm+//bZGjBiRZu7JkpKS9Oabb+rkyZPq0qWLh6vMWUlJSamu+Zos+XqCvXr1slQAl6SFCxdq4cKFGRqb/L7lbSEcnkf2tkcOteOcJbI32Ts1srd5kL1vj+xtTmTvG8jeZG+zs0L2pgFuoGPHjmXq2h5BQUGZ+pLgjf79R5McWGbOnJnmw8DsH/bJ7DTnXr16qUGDBqpXr56qVauWMhc/Pz+1adNGbdq00blz57Rs2TItWbJEmzdv1pYtW0wfwj/66CPt379fb775purXr6/o6Gi98847eu6553TnnXdq7ty5KWf7nT17Vh07dtSsWbNMHcJ79+6tRo0aGV2Gx9jxQMu/JSQk6H//+59mzJihq1evqm3btho2bFjKGa1mZ8eAtmbNmtuO2b17t9566y399ddfKlu2rEaOHOmByjwvMTFRs2bN0scff6y4uDg9/vjjGj58eJozuOHd6tSpox49euh///uftmzZohdffFH169dXyZIl5XK5dOrUKW3dulVffvml9u/fr8GDBysoKMjost2qdOnSRpeQ45566inbLimHrCN7WzuHJrPTnMneZG+rInuTvSWyN9kb3o7snRbZ2zvRADdQrly5dO3atQyPj4uLU0BAgBsrcq+MLu1jJXab85YtW7Rhw4aUpajq1Kmj+vXrq0GDBikfcoUKFVK3bt3UrVs3HT16VN9//73BVWffmjVr1KVLFz399NOSpAoVKujNN9/Uiy++qG7duqVa6qZw4cJ66qmnNHfuXIOqzRkVK1a0VMC8HTseaPmnbdu2afTo0Tp48KAqVKigUaNGqX79+kaX5TF2DGiXLl3S+++/r4ULF8rpdKp3797q27ev8uTJY3RpOW779u0aPXq0fvvtN915550aNWqUGjZsaHRZOebfy2bGxcXJ4XBo0aJF2rFjR6qxv/76q6fLy3H/+c9/VKZMGU2ePFlvvvlmug2PgIAAvfXWW5b4BY0d1alTR23atDG6DJgM2dv67DZnsjfZ26rI3mRvsjfZ26zI3mRvq7FC9qYBbqAqVapo/fr1Gb4OyLp161SpUiU3V+U+t1vax4rsNuedO3dq79692rlzpyIjI7Vr1y6tXbtWDodDgYGBqlu3rurXr6/69eurSpUqKleunPr06WN02dl26tQpVaxYMdW25L/V9M7+KlWqlC5cuOCR2pAz7HigRbpxQGHChAlavHix8uTJo1deeUUvvfRSyvI+dmD1gJaeRYsWaeLEiTpz5ozq1aunUaNGpXmPs4Jz585p4sSJCgsLU+7cuTVgwAD17NlTuXPnNrq0HBUeHp7usplhYWHpjjfzr+GSde3aVcHBwVq7dq0iIiL0119/yeVyqXjx4qpVq5aaN29u+mtG/lN61wa91cEWKyyNCmQW2dv67DZnsvffyN7WQvYme5O9yd5mRfYme5O9vQ8NcAO1a9dOb775ppYtW6bWrVvfcmxYWJg2bdqkyZMne6g64x07dkxvvvmmZs2aZXQpHmP2Ofv6+qp69eqqXr26nn/+eUnSiRMnUoXyCRMmKDExUQULFlS9evVUv359de3a1djCs+n69evy8/NLtS05pKQXVhwOR6pr08H72fFAy9dff63JkyfrwoULeuihhzRy5MgMXTfTKuwS0P7p0KFDGj16tLZt26ZChQrp3Xff9bpr9+SUb775RpMmTdKFCxf0wAMPaNSoUSpfvrzRZeW4OXPmGF2CYfz9/dW6devbfse2gpsdaJHSP9hCCIcdkb1vzew5NCvMPmey99/I3tZC9iZ7k72thextfWTvG8je3okGuIE6dOigsLAwDRkyRAcOHFC3bt1UvHjxVGNOnjyp2bNna86cOWrSpIlatWplULU5Y/fu3Zo+fboiIyMlSffcc4/69eunOnXqpIxxuVz6/PPP9dFHHykuLs6oUnOMHef8T6VKldLjjz+uxx9/XNKNpX0WL16skJAQrVixQuHh4aYP4XbTv39/Va1a1egyPMpOB1r279+vUaNGKSoqSiVKlNCYMWPUokULo8vyKLsEtGTx8fGaNm2aZs2apYSEBHXq1Emvv/66AgMDjS4txx04cEBvvfWWdu3apaJFi2ry5MmWDmlWWQoSN2e3Ay3BwcGWfj+G+5C97ZFD7TjnfyJ7Ww/Z+wayt3WRvcneVkH2tj6ytznRADeQ0+nUjBkz9Prrr+uTTz7Rp59+qlKlSqlYsWLy8fHRmTNndOTIEblcLrVq1UrvvPOO0SVny+bNm9WzZ08lJibqrrvukr+/vyIiIvT8889r9uzZqlu3ro4dO6bXXntNUVFRypcvn0aPHm102dlixzn/W1xcnCIiIrRt2zbt2LFDv/zyi65fv67cuXOnLMlmBefPn9fx48dT/j35DOSzZ8+m2i7dOLvVzPr375/q3+Pj47V//36dPHkyZZmboKAgS16vyA46dOigpKQkSVKRIkU0b948zZs375a3cTgc+uKLLzxRnlvZLaBJ0vr16zVmzBhFR0eratWqGj16tGrUqGF0WW4xYcIEzZ07V4mJiXrkkUc0aNAg5cuXL8179L+l90sTq1qwYIF++uknTZ061ehSsiSjSxv/k9nfv7JyoGX79u1uqMQz7HaNX+Qcsrf1c6gd5/xvZG+yN8yF7E32JnunRvY2D7J3xpC9jedwuVwuo4uA9OOPP2rRokWKiorSqVOnUr7I1q5dW+3atVODBg2MLjHbXnjhBUVFRWnmzJmqWbOmJCkmJkZ9+vRRrly5NH78eHXv3l1nzpxRixYtNHLkSBUrVszgqrPHjnNOSEjQrl27tGXLFm3ZskW7d+/W9evXlStXLlWvXj0leNesWdMyyxkFBQWle90Wl8t1y+u57Nu3z51lud3p06c1efJkhYeHKzY2NtU+f39/PfbYYxo8eHCaX9eYUVBQkP7v//5PzZo1S9l24cIFBQcH6/3330/5+062cuVKvfvuu6Z8jps2bZql261ZsyaHK/GsmwW02zFzQBs4cKBWrlwpSXrkkUfUvXt3+fj43PZ2devWdXdpbhEUFJTyz5m51pYZ/46zatSoUVq4cKFp55zR96+kpCTFxMSkfE6bdb6ZceLECYWGhiosLExHjx61xZyBmyF7WzOH2nHOZO+/kb3J3mZ8jsneZO/bIXtbF9nbusje3oUGODymQYMG6tixo15//fVU23/66Sf17NlTFStW1KlTp/TWW2+Zfrm5ZHabc8+ePbV9+3bFxcXJ6XSqWrVqatCggerXr6/atWunWcbKKoYPH56l25n5TKpdu3apd+/eunDhgmrUqKEGDRqoePHi8vX11cmTJxUREaGIiAgFBgZq+vTpqlWrltElZ4tdD7TYiR0D2j/nLN1+3mYPLFk9s/rfv7yxMrOH8IzYvXu33nrrLe3bt09ly5bVyJEj1aRJE6PLcotr164pPDxcISEh2rp1a8rfcOPGjfXJJ58YXR4AN7JbDpXsN2eyd+aQvc2D7G19ZG+y982Qva2F7E329gYsgW4iW7du1YEDB7K0xIQ3uHTpkipWrJhme+XKleVyuXT+/Hl98803lri2QDK7zfnHH39Urly51L59e/Xu3Vt33nmn0SV5hJnDdFacOXNG/fr1U968efXxxx+rdu3a6Y7bu3evBg0apIEDB2rRokUqUqSIhyvNOe3bt89UMLOT7du3KzQ01PRLhdopaCWz23tXVp5jq10b1M4uXbqk999/XwsXLpTT6VTv3r3Vt29fSy4ZumvXLoWEhOiHH37Q5cuXJUmFCxdWhw4d1LlzZ5UpU8bgCgHvR/Y2H7vNmextD2Rv/BPZ27zs9t5F9rY3sjfZ25vQADeRZcuWaeHChaYN4YmJifL1TfuSS16Kq0+fPpYJo8nsNudOnTpp69atKct8VKhQQQ0bNlSDBg1Ut25dFShQwOgSkQPmzZun2NhYLViwQOXKlbvpuHvuuUezZ89WmzZt9NVXX2nAgAEerDJnvfvuu0aX4FX++usvhYaGKjQ0VEePHpUkW4Zwswe04ODgTN8mOjraDZV4n+SDSytWrDD1NZtww6JFizRx4kSdOXNG9erV06hRo9JtkpjZyZMnFRYWptDQUP35559yuVzy9/dXo0aNtGnTJr399tuplhIFcGtkb/Ox25zJ3vZA9gbZ+wayt3WRva2F7E329jY0wOE1rPZmmBFWm/OYMWMkScePH9emTZu0ZcsWLV++XPPmzZPT6VRQUJDq16+fEsoDAgIMrhhZsWrVKrVt2/aWATxZmTJlFBwcrPDwcFOH8O7du+vll19Ww4YNU7YlJCQoMjJSQUFByp8/f6rxixcv1rBhw7R3715Pl+o28fHxKcv5bNmyRS6XSy6XS/Xr19fTTz9tdHkeZbeAdu3aNS1fvlyhoaGKiIjQnj17jC7JLZIPLoWFhenIkSNyuVwqWLCg0WUhGw4dOqTRo0dr27ZtKlSokN599121b9/e6LJy1A8//KCQkBBt2rRJiYmJCgwMVJs2bdSiRQs1btxYp06dUvPmzY0uE4CXsVoOzQirzZnsbQ9k7xvI3mRvsre1kL2th+xN9vZWNMAB5LjSpUurY8eO6tixoyTpt99+05YtW7R582Z99913mj17tnx9fXXvvfeqYcOGeuWVVwyuGJlx7NgxPfPMMxkeHxQUpNDQUDdW5H7btm1Tp06dUm27dOmSunfvrlmzZqUK58lcLpenynOrfy/nkzyvxx9/XP369VOFChUMrtAz7BjQdu7cqZCQEC1fvlyxsbFyuVyqXLmy0WXlqOSDS6GhodqyZYuSkpLkcrl0//33q0uXLmrdurXRJWZLWFhYpsb/8ccf7inEw+Lj4zVt2jTNmjVLCQkJ6tSpk15//XUFBgYaXVqOGzx4sAICAtS1a1c1a9ZMdevWlY+PT8p+lhAFAGsje1sb2fsGsjfZm+xtfmTv1Mje5kP2Nica4PCo7du3KzExMdW22NhYSdLGjRsVExOT5jZmP1vIjnP+t8qVK6ty5cp69tlnFR8fr+XLl+urr77Srl27tHv3bkK4yeTKlUvXrl3L8Pi4uDjL/uLAKkH739JbzqdgwYIKDg7W/fffr1GjRql169aWD+BWD2jpiYmJSXnuDx8+LEny9fVV69at9fTTT6tOnToGV5gzdu/ere+++y7VwaXAwEBdunRJY8aMSXPQzayGDRuWqRDmcrlMH9rWr1+vMWPGKDo6WlWrVtXo0aNVo0YNo8tym7Jly+rYsWMKCQnRH3/8oZ9//lnNmzfXXXfdZXRpAAxmxxxqxzn/G9nbWsjefyN7k72thuxN9iZ7mwvZ25xogMOjFi5cqIULF6balvwldubMmane+JM/CMweSO045386cuSIdu/erd27dysqKkr79+/X9evXlTdvXj300EOqW7eu0SUik6pUqaL169dn+JqI69atU6VKldxcFXJKr169tHHjRiUmJqpUqVLq2rWrmjdvrvr168vpdCo6OtqyBx+S2SWgJYuPj9eqVav03XffacuWLSkHjitWrKhDhw7pvffeU8uWLQ2uMvtOnjypRYsWKTQ0VH/88YdcLpdKly6t4OBgtWjRQiVKlNCjjz6qwoULG11qjhk/frzRJXjUwIEDtXLlSknSI488ou7duys+Pl4RERG3vJ2Zv4usWrVKu3fv1uLFi7V8+XL99NNPmjx5sipUqKAWLVqoWrVqRpcIwCB2zKF2nPM/kb2th+xtbWRvsjfZm+xtVmRvsrdZ0AA30PHjxzM1PvnMZbOy2weBZL85X7hwQVFRUSmBOyoqShcuXJDL5VKBAgVUq1YtDR48WHXr1tU999wjp9NpdMnIgnbt2unNN9/UsmXLbnsWblhYmDZt2qTJkyd7qDpk14YNGxQQEKDu3burW7duKlasmNEleYQdA1pUVJRCQkK0bNkyXbx4UU6nUzVr1lSLFi3UokULJSYmqnnz5sqVK5fRpeaIpk2bKikpSUFBQerTp4+aNWume++9N2V/dHS0gdW5R3BwsNEleFR4eHjKP69Zs0Zr16695fjk5se+ffvcXZpb1ahRQzVq1NAbb7yhn376SUuWLNHq1as1ffp0ORwOORwOrV27VkFBQSpTpozR5QKGIHtbn93mTPa2B7K3tZG9yd5kb+sge5O9yd7eiQa4gZo2bWqrpTGy8kFg9g9Eu825fv36cjgccrlcKlSokOrVq6e6deuqbt26qlq1qqlfv/hbhw4dFBYWpiFDhujAgQPq1q2bihcvnmrMyZMnNXv2bM2ZM0dNmjRRq1atDKoWmdW/f399//33mjFjhj755BPdddddat68uZo3b67q1asbXZ7b2DGgPfXUU/L391fjxo310EMPqWnTpqkOMlhtzgkJCfL391fRokXl7++fZolUO4iJidGOHTt08uRJSVLx4sVVs2ZNlSpVyuDKcobdmh//5uPjoyZNmqhJkyaKi4vTypUrtXTpUm3cuFHffvutQkJCVL9+fXXo0EFPPPGE0eUCHkX2vj2zf+7bbc5kb3sge1sb2ZvsncxqcyZ7k72tjuxtHjTADdS+fXtCSTquXbum5cuXKzQ0VBEREdqzZ4/RJbmdVebcsmVL1atXT/Xq1WPZLQtzOp2aMWOGXn/9dX3yySf69NNPVapUKRUrVkw+Pj46c+aMjhw5IpfLpVatWumdd94xumRkQv/+/dW/f3/98ssvWrJkiZYtW6ZPP/1Un332mUqVKqXatWtb8rPLjgHN399fV69e1cGDB1WoUCEFBATooYceUr58+YwuzS3Wrl2rJUuWaMmSJZo8ebIcDoeKFi2qRx99VI8++qilz8797bffNHbsWEVERMjlcqVaStHpdKp27doaMWKEqlatamCV2We3s+5vxc/PT23atFGbNm107tw5LVu2TEuWLNHmzZu1ZcsWQjhsh+ydPqvk0MywypzJ3vZA9rY2sjfZm+xtPWRv+yF7ezeHy+oXE4Fp7Ny5UyEhIVq+fLliY2PlcrlUuXJlLVmyxOjS3MaOc4a1/Pjjj1q0aJGioqJ06tQpuVwuFS9eXLVr11a7du3UoEEDo0vMEUFBQfq///s/NWvWLGXbhQsXFBwcrPfff181a9ZMNX7lypV69913Tb+0j3TjF1CbN2/WkiVLtHLlSl2+fFmSVKZMGXXo0EHt27dX6dKlDa4y+06cOJES0H777bd0A1qLFi00bdq0VK8DM4uLi9OaNWu0ePFi/fTTT0pMTFSuXLnUsGFDPfroowoKClLHjh0tNedk+/fvTznIdOLECTkcjpSDEsOGDdNzzz1ndIk5ZvXq1Ro0aJAcDoeaN2+uBg0aqHjx4vL19dXJkycVERGh5cuXKyEhQVOmTFHz5s2NLhludPToUX3//ffq06eP0aUAMJAdc6gd5wxrIXuTvcne5kX2JnuTve2H7O0daICbxIkTJxQaGqqwsLBU11gwu5iYGIWFhSk0NFSHDx+WJPn6+qpFixZ6+umnVadOHYMrzHl2nDNgdkFBQemeeX275TGtEML/KT4+XmvWrNHSpUu1fv16Xb9+XU6nUw0bNtT//vc/o8vLMXYKaMnOnz+fcpbqrl27Uu3r1auX+vTpI39/f2OKc7Nt27ZpyZIlCg8P14ULF+RwOFS2bFk9+eSTCg4OVsmSJY0uMcuOHTumNm3a6K677tKHH36ocuXKpTvur7/+0sCBA/X7779r0aJFNx3n7YYPH57p2zgcDo0bN84N1QAwK7K3ddhxzoDZkb1vIHuTva2I7E32JnvD02iAe7Fr165pxYoVCg0N1datW5WUlCRfX1/98ssvRpeWLfHx8Vq1apW+++47bdmyJWWpm4oVK+rQoUOaMmWKWrZsaXCVOcuOc4Z9xMfHa//+/Tp58mTKWehBQUHKkyeP0aXlmKx8sZOsfU2cixcvavny5VqyZIl27NihvXv3Gl2SW1g5oN1MdHS0lixZoqVLl+r333+Xw+FQQECAWrVqpQ4dOqT51YVVXL9+XRs2bNDixYu1bt06Xbt2zfTfu9555x0tWrRIy5cvT3WNufScP39erVu3Vtu2bTVs2DAPVZizgoKCMn0bh8Nh6gOmWfmFiMPh0KpVq9xQDWBeZG/rsOOcYR9k75sje5sf2ZvsbebvXWTv2yN7wwg0wL1QZGSkQkNDtWzZspSluUqWLKlOnTrpqaeeUrFixYwuMUuioqIUEhKiZcuW6eLFi3I6napZs6ZatGihFi1aKDExUc2bN7fUci92nDPs4/Tp05o8ebLCw8MVGxubap+/v78ee+wxDR48WMWLFzeoQnjK9u3bLf8LGisGtIzYv3+/Fi9erGXLlumvv/4yfWDJqMuXLys8PFxLly7VrFmzjC4ny1q1aqWHHnoowwcSJ06cqLVr1+qHH35wc2XuER0dnaXbmfkadE2bNk2zzeVy6cSJEypatKhy586d7u3WrFnj7tIAUyB7WyeH2nHOsA+yN5KRva2L7E32NhOy9w1kb+/na3QBuCEmJkaLFi1SSEiIDh8+LJfLJafTKUkaNGiQevXqlfLvZvXUU0/J399fjRs31kMPPaSmTZumOiMqq2+c3syOc4Y97Nq1S71799aFCxdUo0aNdK9rExYWpjVr1mj69OmqVauW0SUjk3755Rft2rVLLpdLd999d7oh+/Lly5o0aZK++eYb7dmzx4AqPSdXrlxq1qyZmjVrliqgWV1QUJCCgoI0ZMgQbd261RZzlqR8+fKpefPm2rlzp9GlZMuJEydUqVKlDI+vUKGC5s+f78aK3MvMYTqr0gvTZ8+eVaNGjfTee++pYcOGBlQFeDeytzVzqB3nDHsge1sf2Ts1sjfZ24zI3tZH9jYnGuAGSl6aKyQkRJs3b1ZiYqLy5Mmjpk2b6tFHH1XVqlUVHBysypUrmz6AS0q5hsvBgwdVqFAhBQQE6KGHHlK+fPmMLs1t7DhnWN+ZM2fUr18/5c2bVx9//LFq166d7ri9e/dq0KBBGjhwoBYtWqQiRYp4uFJkxZUrV/Tqq69q/fr1Sl4kxuFwqFGjRpo+fXrKGY3r1q3TqFGjFBMTo/LlyxtZssdZJaBlVunSpU1/8PjYsWOaPXu2IiMjJUn33HOPevbsqTvuuCPVuPDwcI0ZM0anT5/W2LFjjSg1R/j5+enixYsZHn/x4kUFBga6sSJjxcfH6/fff5efn58qVKhgdDluc6vrYwJ2Rfa2fg6145xhfWRvayN73x7Z27zI3rdG9rYGsrf3owFuoMaNG+vixYsqUKCAHn/8cTVr1kwPPfSQ/P39JVnvDOXNmzdrzZo1Wrx4sb777jstXLhQuXLlUsOGDfXoo49m6doR3s6Oc4b1zZs3T7GxsVqwYIHKlSt303H33HOPZs+erTZt2uirr77SgAEDPFglsuq///2v1q1bp8aNGys4OFgBAQFav369vv76a02cOFEjRozQhAkT9Pnnn8vHx0c9evTQwIEDjS47R9gtoEnS7t27NX369FRz7tevX6pfHbhcLn3++ef66KOPFBcXZ1Sp2bZv3z49++yzunz5svz8/OTn56e9e/dq2bJlWrBggapUqaJLly5pxIgRCg8Pl4+Pj3r16mV02dly7733Kjw8XD169MjQ+BUrVujuu+92c1XudenSJX322WeKjIzU3LlzU7YvWbJEY8eOTTkocdddd2ncuHG6//77DaoUgCeRva2fQ+04Z1gf2dvayN5kb7I32dvMyN4wAxrgBrpw4YICAgL02GOPqX79+qpVq1ZKALciPz8/tW7dWq1bt9b58+e1bNkyLVmyRBs2bNCGDRsk3ThrJioqSo0aNbLEfws7zhnWt2rVKrVt2/aWATxZmTJlFBwcrPDwcEK4SaxZs0b16tXTZ599lrLt4YcfVpEiRTR37lwVLFhQs2fPVlBQkMaPH2/6L+zJ7BjQNm/erJ49eyoxMVF33XWX/P39FRERoeeff16zZ89W3bp1dezYMb322muKiopSvnz5NHr0aKPLzrLkgwjvv/++Hn/8cUk3rhf66quvauzYsZo0aZK6d++uP//8U/fdd5/Gjh2rqlWrGlx19nTs2FGDBg3S7Nmz9cILL9xy7IwZMxQVFZXqb99sYmNj1blzZx06dEglS5ZUQkKCfH19FRUVpaFDh8rlcqlz586qXLmywsLC9MILLygsLCzNgTYA1kP2tn4OteOcYX1kb2sje5O9yd5kb7Mie8M0XDBMRESE680333TVq1fPFRQU5Lr77rtdTz31lGvmzJmuw4cPu44dO+aqWrWqa9WqVUaX6lbHjh1zTZ8+3fX444+7qlat6goKCnLVqlXL9X//93+unTt3Gl2eW9hxzrCO+++/37VgwYIMj1+4cKGrZs2abqwIOen+++93ff7552m2//77766qVau67r77bteYMWNc8fHxBlTnPn369HFVq1bNtXTp0pRtu3fvdjVr1sz17LPPumJiYlyPPfaYq2rVqq6OHTu69u/fb2C1OeP555931apVK9Xnzl9//eVq3769q1OnTq7ff//d1ahRI1fVqlVdAwYMcJ08edLAarOvUaNGrjFjxqTZvmLFCtc999zj6tq1q+vee+91ffbZZ67ExEQDKnSPAQMGuIKCglyvvfaaKzIyMtXfbmJioisyMjJlzMiRIw2sNPs++ugjV7Vq1Vw//PBDqu29evVyBQUFucaPH5+yLS4uztWiRQvXsGHDPF2m2509e9ZVtWpV16ZNm4wuBfAaZO8b7JhD7ThnWAfZ29rI3mRvsjfZ26zI3jeQvb0fvwA3UJ06dVSnTh2NHDlS69ev15IlS7Ru3Trt3r1bkyZNUrly5eRwOHTlyhWjS3WrMmXKqE+fPurTp4/279+vxYsXa9myZfr222/13Xffad++fUaXmOPsOGdYR65cuXTt2rUMj4+Li1NAQIAbK0JOunr1qgoXLpxme6FChSRJjz76qEaMGOHpstwuKipKXbp0STk7WZKqV6+uIUOGaPDgwRo8eLCio6P1+uuv68UXX7TE9UH37dunp59+WjVr1kzZVqJECb322mvq2bOnXnnlFSUkJGjKlClq1aqVgZXmjAsXLqS7/Ol9992nxMREHThwQHPnzrXcslyTJk3S+PHjtWDBAn3//ffy8fFRwYIF5ePjo/Pnzys+Pl5Op1M9evTQ4MGDjS43W8LDw9WuXTu1bNkyZVtsbKw2btwoSeratWvK9jx58qht27b65ptvPF4nAM8je99gxxxqxznDOsje1kb2JnuTve/3fHFuRPYme8P70AD3Ar6+vmrWrJmaNWum2NhYhYeHa8mSJdq6datcLpeGDh2q7777Tk8++aQee+wx5cmTx+iS3SYoKEhBQUEaMmSItm7dqqVLlxpdktvZcc4wtypVqmj9+vXq3r17hsavW7dOlSpVcnNVcDeHwyFJat++vbGFuIkdA9qlS5dUsWLFNNsrV64sl8ul8+fP65tvvlH58uUNqC7nJSQkpPsdys/PT5LUq1cvSz2/yXLnzq1Ro0ape/fuCgsLU1RUlE6dOiWXy6UKFSqodu3aatOmjSWWIjt27FiqoC1JERERSkhIULly5dK8lkuVKqUzZ854ssQcN3Xq1DTb4uLi5HA4tGjRIu3YsSPNfofDoX79+nmiPMDrkL3/Zsccasc5w9zI3vZE9iZ7mx3Zm+xN9r6B7G08GuBeJm/evAoODlZwcLDOnDmjpUuXasmSJdqyZYu2bNmiMWPGKCIiwugyPaJ+/fqqX7++0WV4lB3nDPNp166d3nzzTS1btkytW7e+5diwsDBt2rRJkydP9lB1cLfkwGI1dgxoiYmJ8vVN+1Uwd+7ckqQ+ffpYJoBnxL333mt0CW511113mf4s89txOp1KSkpKtW3z5s2SpEaNGqUZf/bsWeXLl88jtblLeiE8WVhYWLrbCeHADWTvv9kxh9pxzjAfsre9kb2tg+ydGtnb/MjeqZG9vRcNcC9WpEgRPffcc3ruued0+PBhLV682NRnKGf0jNV/cjgc+uKLL9xQjWfYcc6wvg4dOigsLExDhgzRgQMH1K1bNxUvXjzVmJMnT2r27NmaM2eOmjRpYoklnOwk+YzzzO6zMqsHtPSkd4a6ldnhtR0TE6MdO3bo5MmTkqTixYurZs2aKlWqlMGV5YxKlSopMjJS3bp1kyS5XC6tXLlSDodDTZs2TTN+9erVpn+dz5kzx+gSAEsge5s/h9pxzrA+srf1kb3TIntbnx1e22Tv1MjeMAoNcJO44447NGDAAA0YMMDoUrJs27Zt6W53OBxyuVw33WdmdpwzrM/pdGrGjBl6/fXX9cknn+jTTz9VqVKlVKxYMfn4+OjMmTM6cuSIXC6XWrVqpXfeecfokpFJ48aN05QpU1Jtc7lccjgcev3119Ocre1wOLRq1SpPluhxvDdbw6FDh9L8mu/SpUuSpAMHDqR7Vn7dunU9Ups7/fbbbxo7dqwiIiLkcrlSfQdxOp2qXbu2RowYoapVqxpYZfa1b99e77zzju677z498MADWrhwoY4fP67y5curcePGqcbOmDFDu3btMv11FevVq2d0CYDlkL3NyY5zhvWRva2P7J0W783WQPYmeycje8NINMAN1L17d7388stq2LBhyraEhARFRkYqKChI+fPnTzV+8eLFGjZsmPbu3evpUnPE/v3702w7e/asGjVqpNmzZ6f672AVdpwz7CF//vz65JNP9OOPP2rRokWKiorSr7/+KpfLpeLFi6t9+/Zq166dGjRoYHSpyKTSpUtLUroHCpPPVP33vpsdVDQbOwa07du3KzExMdW22NhYSdLGjRsVExOT5jZmvhbdjBkzNGPGjHT3TZgwId3t+/btc2dJbrd69WoNGjRIDodDLVu2VIMGDVS8eHH5+vrq5MmTioiI0PLly9WxY0dNmTJFzZs3N7rkLOvSpYt27Nih8ePHpzQ8ChQooEmTJsnpdEqSvv32W3366ac6evSoateuraefftrgqt0rPj5ev//+u/z8/FShQgWjywEMQ/a2fg6145xhD2Rv6yJ7k73J3qmRvc2D7J0W2ds7OVxW+eQ0oaCgIL333ntq06ZNyrZz586pUaNGmjVrVpqAtnjxYg0dOtT0Hwb/dO7cOTVs2NBWgdSOcwYAbxcUFHTTM82Tz8BPj5k/k282539+Nfzn/uT/Dmad83//+98s/Zqgf//+bqjGM44dO6Y2bdrorrvu0ocffqhy5cqlO+6vv/7SwIED9fvvv2vRokU3HWcWkZGRioyMVL58+dS8eXMVLlw4Zd/UqVO1aNEitWnTRr179073+oNmc+nSJX322WeKjIzU3LlzU7YvWbJEY8eO1cWLFyXduBbduHHjLHdNRSAjyN72zKF2nDMAeDuy99/I3qmRvc2H7H0D2dt78QtwL8Q5CQDMIi4uTn5+fmm2//777woMDExzfTJ4v7CwMNWpU0dly5Y1uhSP6tevn+2WWhs/frzRJXiUmZeyzaovvvhCuXLl0syZM1MF0X8rWbKkPv30U7Vu3Vpffvmlhg0b5sEqc17NmjVVs2bNdPf179//pgdWrl+/rl27dqX7a1BvFRsbq86dO+vQoUMqWbKkEhIS5Ovrq6ioKA0dOlQul0udO3dW5cqVFRYWphdeeEFhYWG64447jC4d8ApkbwBmQfa2HrK3fZC9rY/snRbZm+ztDWiAAwAyLT4+XhMmTNCSJUu0YcOGNEF88uTJ2rBhgzp06KChQ4cqICDAoEqRWcOHD9fEiRNtF8LtGNCCg4ONLsGj0lv+1up++uknBQcH3zKAJytYsKDat2+vtWvXmj6EZ9WFCxfUvXv3dH8N6q1mzZqlI0eO6IMPPlDLli1Ttk+bNk0ul0vPPfdcyvPZsWNHtW3bVjNmzLDdQTgAAMyK7G1dZG/7IHtbH9k7c8je8BSn0QUAAMwlPj5ePXr00JdffqnSpUvr3LlzacY88sgjqlq1qr7++mu99NJLSkhIMKBSZIVdfwnVvXt3bd682egyPKpZs2ZavXq10WV4zLZt23T69Gmjy/CoEydOqFKlShkeX6FCBf31119urMj7me09MDw8XO3atUsVwGNjY7Vx40ZJUteuXVO258mTR23btrXdex0AAGZF9rY2s33vzClkb+sje98e2dt874Fkb3OiAQ4AyJTPP/9cERERGjFihMLCwlSqVKk0Yzp16qTvvvtO/fv3186dOzVv3jwDKgUyzo4BLTo6WleuXDG6DLiRn59fyjWoMuLixYsKDAx0Y0XIaceOHdO9996baltERIQSEhJUtmxZlS9fPtW+UqVK6cyZM54sEQAAZBHZG1ZE9oYVkb2tj+xtTiyBDo8JCwtLsy02NlaStHHjRsXExKR7u/bt27uxKvey45xhfUuWLFGzZs30zDPP3HZs//79tW3bNi1atEjPP/+8+4tDjjh//ryOHz+eqduULl3aTdUAyKp7771X4eHh6tGjR4bGr1ixQnfffbebq0JOcjqdSkpKSrUt+SzzRo0apRl/9uxZ5cuXzyO1ATCOHXOoHecM6yN7Wx/ZG7AGsrf1kb3NiQa4wf79RefChQuSbvyB/PsLUHpLHZnJsGHD5HA4Um1LXupi5syZcjgcKf+e/M8Oh8PUgdSOc4b1HT58WF26dMnw+IcfflgffvihGytCThs3bpzGjRuX4fEOh0N79+51Y0VAzli5cqUOHz6c4fEOh0P9+vVzY0Xu1bFjRw0aNEizZ8/WCy+8cMuxM2bMUFRUlD777DMPVYecUKlSJUVGRqpbt26SbnzPXLlypRwOh5o2bZpm/OrVq1WxYkVPlwl4BbK3tXOoHecM6yN7Wx/ZG1ZF9r45src5kb3NiQa4wW72Ref11183oBr3Gj9+vNEleJwd5wzrCwgIUGJiYobH58mTR35+fm6sCDmtdu3aKleunNFleJzdApokLVy4UJs2bcrweIfDkakDNN5m5cqVCg8Pz/B4sz/HLVu2VIsWLTRx4kTt2bNHzzzzjKpVq6ZcuXJJkpKSkhQVFaVZs2Zp5cqV6tSpkx588EGDq0ZmtG/fXu+8847uu+8+PfDAA1q4cKGOHz+u8uXLq3HjxqnGzpgxQ7t27dKIESMMqhYwFtnb2uw4Z1gf2dv6yN4ZY/ZcJpG9b8fszzHZ2/rI3uZEA9xA7du3T3OGspUFBwffdsyFCxfk5+enPHnyeKAi97PjnGF9FSpU0M6dO9W9e/cMjd+xY4fKlCnj5qqQkzp37qw2bdoYXYbH2S2gSTeuVxQREZHh8WYP4b179053aSormzRpksaPH68FCxbo+++/l4+PjwoWLCgfHx+dP39e8fHxcjqd6tGjhwYPHmx0ucikLl26aMeOHRo/fnzKLxoLFCigSZMmyel0SpK+/fZbffrppzp69Khq166tp59+2uCqAc8je6dltRxqxznD+sje1kf2zhiyt/mQvcneVkP2Nica4AZ69913jS7B465fv66QkBDt2rUr1Rna27Zt01tvvaU//vhDDodDjRo10qhRoyxxFqQd5wxrCw4O1qhRo7RlyxY1aNDglmO3bt2q8PBwDRgwwEPVAVlnx4D2xhtvqFmzZkaX4TEVK1ZUvXr1jC7Do3Lnzq1Ro0ape/fuCgsLU1RUlE6dOiWXy6UKFSqodu3aatOmje644w6jS0UWOBwOTZo0Sd26dVNkZKTy5cun5s2bq3Dhwilj/vrrL7lcLr388svq3bt3SjgH7ITsbY8casc5w9rI3rAqsrf1kb3J3lZD9jYnGuAGeumll9S+fXs1b97cFksUXb9+XS+++KIiIiKUK1cujRkzRr6+vvrjjz/00ksv6fr162rcuLEqVaqkFStWqHPnzlq8eLGKFi1qdOlZZsc5w/r+H3v3HV/j+f9x/H2yZCERe6uR2HuvGrVTW1tbqaJm0eJLUVrV0lZRSmu3qL0Jtav2qlkjZhEiRkhknd8ffjl1JEgiyck5eT0fjz7KfV/3uT/3Wc77uu77ups1a6Zly5apR48e+vDDD9W6desY79mAgAAtWbJEP//8s3LmzKm2bdtaqFog7lJjQPP09OQqkVQiX758nGVuw0qXLq3SpUvHuq53797q3bt3rOvCw8N19OhR+fj4KG3atElZImBRZG/bz6Gp8Zhh+8jesFVkb9gysrdtI3tbF05BsKD9+/dr8ODBqlKlioYMGaI9e/bIaDRauqwks2DBAh08eFCDBw/WgQMH5ODw9PyLyZMnKywsTL6+vpoxY4Y++eQTLVu2TPb29po+fbqFq349qfGYYfscHR01depUlSxZUpMmTVL16tVVp04dvfvuu2rdurVq166tmjVravLkyfL29tbs2bP5h92KZM+eXa6urpYuAwCQDO7fv6+OHTvqxIkTli4FSFJkb9vPoanxmGH7yN62jewNAKkH2dsyuALcgv766y9t2bJFGzZs0Lp167Rq1SplzJhRvr6+evvtt+Xj42PpEhPV2rVrVb9+fXXt2tW0LCwsTFu3bpXBYDBb7uHhoRYtWmjdunUaPny4JcpNFKnxmJE6eHl5ae7cufLz89O6det06tQpnT17VnZ2dsqYMaOaNWumt956S7Vr17Z0qYinrVu3vnR9VFSUbt68qYwZM8rJySmZqgJeX+/eveXt7W3pMpJVXO8X+SyDwaC5c+cmQTUpw+3bt+Xh4SFHR8cY69KnT6958+apcOHCFqjMcmx5EBCIRva2/RyaGo8ZqQPZ23aRvWGryN5xQ/YmeyPpMQBuQW5ubmratKmaNm2qhw8fatOmTVq/fr3mzp2r2bNnq0CBAmratKl8fX2VJUsWS5f72i5duqTmzZubLTt06JBCQ0OVOXPmGP8w5s6dWwEBAclZYqJLjceM1KVevXqqV6+epctAMrp7967q1KmjWbNmqXLlypYuJ9GkxoA2bty4F07bZIteNA1VtMePH2vWrFlq1qyZcubMmUxVJa39+/fHutxgMLwweBkMhqQsKVnMnj1bv//+u1avXh0jbH/55Zfas2ePunbtqm7dupndk8vR0THVTcUIpBZkb9vPoanxmJG6kL1TH7K37SB7myN7/7fO2pG9kdIxAJ5CpE2bVq1atVKrVq109+5dbdy4URs2bNC3336rb7/9VuXLl1ezZs1Ur149ubm5WbrcBImKipK9vb3Zsr1790qSqlSpEqP9w4cP5eLikiy1JZXUeMyA9HRaF2dnZ6VJk8bSpSAJ2OIZi6kxoD3fSfy84OBgffHFF+rWrZvy58+fTFVZzuPHjzV16lSVLVvWZl7jM2fOxFh29+5dValSRbNnz7apjjTp6XfToEGDtG7dOnl5eenmzZvKlSuXWZv8+fPr8OHD+u6773TixAn98MMPFqoWgKWQvW0zh6bGYwYksretI3vbRi4je5sje1s/sjesBfcAT4EyZMigtm3bav78+dq+fbv+97//yc7OTp999pmqVatm6fISLHfu3Dp9+rTZss2bN8tgMOjNN9+M0X737t3KnTt3MlWXNFLjMSN1CA8P1+LFizV06FCz5fv371ejRo1UqVIllS5dWt26ddOVK1csVCWQeKID2tWrVy1dSrIJDQ3VypUrU9XVUbbYwfQ8WzjL/EUWL16sdevWqXPnztq+fXuMAC497XDbvHmzWrRooc2bN2v58uUWqBRASkH2fsoWcmhqPGakDmRvpDZk79SB7G3dyN6wFgyAp3COjo5ydnaWu7u7HBwcFBYWZumSEqxx48ZatWqVtmzZopCQEM2ZM0cXL16Ul5dXjHsVrV69Wn/++afq1KljoWoTR2o8Zti+8PBwvf/++xo5cqTWrl2riIgISZK/v7+6desmf39/Va9eXZ07d5a/v7/effdd3blzx8JVA68v6k8/egABAABJREFUNQS056XGY4b1Wrp0qSpUqKAhQ4bEep+xaE5OTho7dqwKFy6s33//PRkrBJCSkb2tO4emxmOG7SN7I7VKjTk0NR4zrBfZG9aCKdBToLt372rz5s3auHGjDhw4oIiICBUpUkT9+vVT48aNLV1egnXu3Fm7du1S7969Tfe/cHR01BdffCEnJydJT8/QXrBggfbv3698+fKpc+fOli36NaXGY4btW7BggQ4ePKjBgwerXbt2cnB4+k/J5MmTFRYWprfffltff/21JKl79+7y9fXV9OnTNXz4cEuWjUTi6Oio8uXLK3369JYuBQDMXLhwQf369YtTW4PBoAYNGmjatGlJXBWAlIzsbTs5NDUeM2wf2Tt1I3sDSKnI3rAWDICnEHfu3JGfn582btyoQ4cOKTIyUjly5FDXrl319ttv28T9P5ycnDRnzhytX79eR48elbu7u3x9fVWgQAFTmxMnTujw4cN6++23NWTIEDk7O1uw4teXGo8Ztm/t2rWqX7++unbtaloWFhamrVu3ymAwmC338PBQixYttG7dOkK4lXj48KHSpk37wvXp06fX/PnzzZbt27dPFStWTOrSgCSVNm1ajRs3TgULFrR0KUggBwcH0yBHXKRLly7G/WIB2D6y91O2lkNT4zHD9pG9bRvZG6kV2dv6kb1hLRgAt6CAgAD5+flp06ZNOnz4sCIjI5U+fXq1atVKvr6+KleunKVLTHT29vby9fWVr69vrOt79Oihfv36yc7OdmbnT43HDNt26dIlNW/e3GzZoUOHFBoaqsyZM8vb29tsXe7cuVPVfYysXceOHTV79mx5eHi8su2TJ0/0zTff6LffftOpU6eSvjgLSo0BLX369Jo3b54KFy5s6VKSRZo0aVStWjWusLBiefLk0YkTJ+Lc/sSJE8qWLVsSVgQgpSB7x2SLOTQ1HjNsG9nbtpG9Y0f2tn1kb+tH9oa1YADcgmrWrCnp6ZnKdevWla+vr2rWrPnS+ybYOhcXF0uXkOxS4zHDukVFRcU4a2/v3r2SpCpVqsRo//DhQ97nVuT06dNq37695syZo4wZM76w3bFjx/Tpp5/q0qVLL21nK9KkSWPW+RQZGakZM2aoZ8+eFqwqaTk6OqpChQqmvz98+FDjx4/X2LFjLVjV65s9e7Z+//13rV69OsZvri+//FJ79uxR165d1a1bN6vvIF+5cmWMZY8ePZIk/fnnn7p161as2zVr1iwJq0o6TZo00cSJE9WlS5dXdpidO3dOa9asUceOHZOpOgCWRPaOKTX+Pk+NxwzrRva2bWTv2JG9yd7WiOz9YmRvWJLBaDQaLV1EatWhQwc1bdpUDRo0kLu7u6XLAYA4adq0qUqWLKnPP//ctKxRo0by9/fXd999pwYNGpi179atm+7fv68lS5Ykd6lIgF9//VVffPGFcuXKpTlz5sQ4QzM8PFw//PCDZs2apcjISDVt2lTDhg2ziTN3Hz58qCVLlujo0aMyGo0qUqSI2rVrp3Tp0pm1+/vvvzV8+HD9888/On36tIWqTRzXrl3T7NmzdeTIEUlSkSJF9MEHHyhPnjxm7fz8/DRmzBjduXPHao/ZaDRq0KBBWrdunby8vLRo0SLlypXLrM2UKVO0ZMkSBQQE6K233tIPP/xgoWoTh4+PjwwGg9myZ3/6x7bOYDBY7Wv8+PFjtWjRQvfu3dOwYcPUuHHjGJ3GERERWrt2rSZMmCBJWrFihTJlymSJcpPN7du35eHhEetAX3h4uI4cOaLChQu/dApOwNqRvQFYI7K3bSN7k73J3mRva32Nyd6xI3unPAyAAwDiZcaMGZo6daomTpyoqlWravHixfrqq6+UMWNGbd261eweMKtXr9ann36qfv36qUePHhasGvGxdu1aDRkyRJkzZ9acOXOUO3duSU/PUP/000/1zz//KHv27Bo9erSqV69u4WoTx9WrV9WxY0fdvHnTLKRkzJhRS5YsUbZs2RQREaGJEydq3rx5ioyMVOPGjTVx4kQLVv16Tp8+rQ4dOig4OFjOzs5ydnbWvXv35OrqqkWLFqlQoUJ6+PChhg8fLj8/P9nb26tr164aMGCApUtPkEWLFmnUqFHq3LmzBg4c+MKr/sLCwjR69GgtX75cX3zxhVq0aJHMlSaeFStWJGi756fatCb+/v766KOP5O/vL1dXVxUtWlSZMmVSZGSkAgMDdeLECYWGhip79uyaOnWqfHx8LF1yonjZ1RUDBgywqasrAABILcjeto/sTfYme5O9rRXZm+xtDRgAt6DYpsaIC2udGgOAbQgLC1PXrl114MABGQwGGY1GOTo6asqUKabpJTdv3qwFCxZo//79ypcvn5YvXy5nZ2cLV4742LFjh/r37y93d3fNnDlTf/zxh6ZPn66IiAi99957GjhwoNzc3CxdZqIZOHCg1q9frwEDBqhly5ZycXHRjh079Pnnn6tUqVL65ptv1L17dx0+fFjZs2fXyJEjTe93a9WzZ0/t2rVL48ePV+PGjSVJx48f18cff6zs2bNrwoQJ6tixoy5duqTixYtr7NixMe4zaE1atWolV1dXzZs375VtjUajWrZsKScnJy1atCgZqkNiCgsL06+//qp169bpzJkzioiIkPR0asFSpUqpXr16euedd8w6ja1Vary6AkgIsjcAa0T2Th3I3mRvsjfZ21qRvcneKR0D4BYUPTVG9JQXr2LtU2MAsB2RkZFav369jh49Knd3d/n6+qpAgQKm9d99951mzZqlRo0aaciQIfL09LRgtUioQ4cOqWfPngoODpbRaFSePHk0duxYlStXztKlJboaNWqoatWqGjdunNnyFStWaOTIkapRo4a2bNmi9957T4MHD5arq6uFKk08VatWVcOGDTV8+HCz5X5+fhowYIBKlSql48ePq1+/fnr//fet/szV0qVLq1+/furcuXOc2s+YMUPTpk0zTVFn7UJDQ2PtDD1//rzSpUunzJkzW6Cq5HH37l3Z29vbxHSRz0uNV1cACUH2BmCtyN6pA9mb7E32JnvbArI32TulcbB0AanZ8//QA4C1sLe3l6+vr3x9fWNd36NHD/Xr18/qf7SndmXLltW8efPUrVs33b17V59//rlNBnBJCgoKUunSpWMsL1++vMLCwrRjxw5NmjRJ9evXt0B1SeP+/fuxTkFVvHhxRUZG6uzZs5o/f75KlSqV/MUlAQcHh3iddZwuXboY97CyRmFhYRo/frzWrFmjnTt3xgji3377rXbu3KmWLVvq008/tYkOpudlyJDB0iUkmaVLl6pChQoaMmTIS9s5OTlp7NixOn36tH7//XdCOFIdsjcAa0X2Th3I3mRvsjfZ2xaQvcneKQ0D4BZkzfd4AJB6dezYUT179lTlypVNyyIiInTkyBH5+Pgobdq0cnFxMa2LvhcZV9BYJx8fHy1cuFBdunRRz549NXXqVFWqVMnSZSW68PBws/dttOip5rp06WJTAVx6+rlNkyZNjOXRIa179+42E8AlKU+ePDpx4kSc2584cULZsmVLwoqS3rPTZvr4+CgoKCjGMdWqVUu3bt3S4sWLde7cOc2bN08ODtYZEaZMmZKg7Xr37p3IlSSfCxcuqF+/fnFqazAY1KBBA02bNi2JqwJSHrI3AGtE9k5dyN5kb1tB9iZ7vwjZG8nNOj9hqVRkZKRmzJihnj17WroUAKnY/v371bp1a7NlDx8+VMeOHTVr1iyzcA7rM3To0FiX58mTR9euXdOHH36ohg0bmk0fajAY9OWXXyZXiRZRoUIFS5eQ7IoVK2bpEhJVkyZNNHHiRHXp0kUFCxZ8adtz585pzZo16tixYzJVlzTmzJmjAwcOaPjw4Wrfvn2sbVq3bq3WrVtrypQpmjJlihYsWBDnqepSmriG8OenP7bmEJ5ar64AkhrZG0BKQPa2bWTv2JG9rR/Zm+wdjexN9rY0BsAt7OHDh1qyZImOHj0qo9GoIkWKqF27dkqXLp1Zu7///lvDhw/XP//8QwgHkCIZjUZLl4BEsGLFipeuf/LkiVauXGm2LDWE8NT4ozUu90i1Jm3atNGiRYvUoUMHDRs2TI0bN47xukZERGjt2rWaMGGC0qZNa/UhfM2aNapTp84LA/izevfurf3792vVqlVWG8L/+OOPV7Z5+PChvv/+e23fvl0ODg5W/xqnxqsrgIQiewOwFWRv20D2jh3Z2/qRvV+O7G2dyN7WiQFwC7p69ao6duyomzdvmn68bt68Wb/++quWLFmibNmyKSIiQhMnTtS8efMUGRmpxo0bW7hqAIAti8uPWFt17949/fvvv2bL7t+/L0m6e/dujHWSlD179mSpLalcvHhRBw4cMFv28OFDSdLZs2djnY6rfPnyyVJbYnN1ddW0adP00Ucf6dNPP9Xo0aNVtGhRZcqUSZGRkQoMDNSJEycUGhqq7Nmza+rUqcqUKZOly34tly9f1rvvvhvn9m+++aYmTZqUhBUlrRw5crx0/fr16/XVV18pICBAZcqU0ahRo1SoUKFkqi5ppMarK4CEIHsDAFIasjfZm+xN9rZWZG+yt7VgANyCvv/+e928eVMDBgxQy5Yt5eLioh07dujzzz/X559/rm+++Ubdu3fX4cOHlT17do0cOVI1a9a0dNkAABv2qh+xtuzLL7984dn0gwYNirHMYDDo1KlTSV1Wkpo+fbqmT58e67rx48fHutya7ymYL18+rVy5Ur/++qvWrVunw4cPKyIiQpLk6OioUqVKqV69enrnnXfiNbVVSuXq6qrIyMg4t0+TJo3pPnS25MqVKxo9erT27Nmj9OnTa+zYsWrVqpWly0oUqfHqCiAhyN4AgJSG7E32jkb2JnvbCrI32TulYQDcgg4cOKBmzZqpe/fupmUNGzZUaGioRo4cqSFDhujw4cN67733NHjwYLm6ulqwWgAAYpo+fbr8/Py0fPlyS5fyWpo3b27pEpKdNd976XU4OTmpS5cu6tKli6SnVxjY29srffr0Fq4s8b3xxhs6fPhwnEPXoUOHbKojLiwsTDNmzNDMmTMVFham5s2ba/DgwfL09LR0aYkmNV5dASQE2RsAYO3I3taL7E32fh7Z2/qQva0TA+AWFBQUpNKlS8dYXr58eYWFhWnHjh2aNGmS6tevb4HqAAB4tRs3blj1WcnRxo0bZ+kSkl1qDeHPy5Ahg6VLSDLNmzfXyJEjtXfvXlWqVOmlbfft2yc/Pz/16dMnmapLWnv27NHo0aN1+fJlFSxYUCNHjlS5cuUsXVaSSG1XVwAJQfYGAFg7srf1Ins/RfZ+iuxtvcje1ocBcAsKDw+Xi4tLjOVubm6SpC5duhDAAaRIz9+v6WX3agoKCkrW2gAgNlOmTEnQdtbcWdGsWTMtW7ZMPXr00IcffqjWrVsrY8aMZm0CAgK0ZMkS/fzzz8qZM6fatm1roWoTx507dzRu3DitX79ezs7OGjhwoLp06RLrPfVsSWq6ugJICLI3AGtF9gZgbcjeZG9bRva2Lgaj0Wi0dBGplY+Pj7755hv5+vqaLQ8KClLlypX1888/q1q1ahaqDgBi5+PjI4PBEGO50WiMdXk0WzhTGTGNHDlSv//+u9W/vqkxoA0dOjTe2xgMhhfeqy2l8/HxiVO757/HrP29HRgYqI8//lj79u2TwWBQ9uzZzabounHjhoxGo0qVKqXvvvtO2bJls3TJCbZgwQJNmjRJwcHBql27toYPH27VxwMg8ZC9AVgjsjeeRfYme1sLsjfZG0gpbPt0DCtnb29v6RIAIIbUeL8m2L64hvDnA5o1h/AVK1bEue2zx22tIfyPP/54ZZuHDx/q+++/1/bt2+Xg4BDn+3elZF5eXpo7d678/Py0bt06nTp1SmfPnpWdnZ0yZsyoZs2a6a233lLt2rUtXeprGzt2rOnPW7du1datW1+5jcFg0KlTp5KyrCSVGjsQgaRA9gaQEpG9YYvI3i9H9rZeZO+XI3vDEhgAt7DnpzKSXj6dkSRlz549WWoDgNikxvs1wfalxoB25syZV7a5fv26xowZo+3btytt2rTq379/0heWRHLkyPHS9evXr9dXX32lgIAAlSlTRqNGjVKhQoWSqbqkV69ePdWrVy/G8vv378vZ2dkCFSW+1NhJnBo7EIGEInsDsDZkb9gisnfsyN5kb2tC9n4xsnfKwhToFvSiqYykF09nZO1nygAAUrb4ntG4bds2nTp1yuqnqnoVWw9oz4uMjNSsWbP0448/KjQ0VI0aNdLQoUNj3MPKFly5ckWjR4/Wnj17lD59eg0aNEitWrWydFmJJjw8XMuXL9fRo0fNOlH379+vUaNGyd/fXwaDQVWqVNFnn32m3LlzW7Da1zN06FC9++67KlmypKVLSTbXr19/ZZvYOhA/+eSTZKgOSDnI3gCAlIbsHTuyN9nbWpG9bRvZ2zoxAG5BCbn/h8QZoACApBPXezU9y2Aw2GwIt/WAFpuDBw9q9OjROnfunPLmzauRI0eqcuXKli4r0YWFhWnGjBmaOXOmwsLC1Lx5cw0ePFienp6WLi3RhIeH6/3339eBAwfk6OioI0eOyMHBQf7+/mratKnCwsJUo0YNFShQQJs2bVJISIhWr15ttZ0tL7rHb2qW2joQgRchewMAUhqytzmyN9nbmpG9QfZOmZgC3YII0wCAlGbevHmWLiFFSA0B7XlBQUH6+uuvtXLlSjk5OalPnz764IMP5OTkZOnSEt2ePXs0evRoXb58WQULFtTIkSNVrlw5S5eV6BYsWKCDBw9q8ODBateunRwcnv70nzx5ssLCwvT222/r66+/liR1795dvr6+mj59uoYPH27JspEInu9AHDt2rM13IAIvQ/YGAKQ0ZO+nyN5kb1tA9k69yN4pGwPgKUBISIiWLVumXbt26cyZM7p3754MBoMyZMggHx8f1alTR76+vjb5jyAAIGWpUKFCvLc5ePBgElRiOakloD1ryZIlmjBhgu7fv6+qVatq5MiRVj0d14vcuXNH48aN0/r16+Xs7KyBAweqS5cupnBqa9auXav69eura9eupmVhYWHaunWrDAaD2XIPDw+1aNFC69atI4RbsdTYgQjEB9kbAJBSkL3J3mRv20H2Tn3I3tbBNr9xrMihQ4fUr18/3blzR05OTsqdO7dy5MihiIgI3bt3T9u2bdPWrVs1ZcoUTZw4UWXKlLF0yQAA6MaNG1qxYoVWrlypq1ev2sQ0bKktoEnS2bNnNWrUKB09elQZM2bUt99+q0aNGlm6rCSxYMECTZo0ScHBwapdu7aGDx+ubNmyWbqsJHXp0iU1b97cbNmhQ4cUGhqqzJkzy9vb22xd7ty5FRAQkJwlJrqDBw8qMjIyXts0a9YsaYpJZqmxAxGID7I3AMAakb1tA9mb7P0ssrd1I3tbD9v9V8UKXLhwQV27dpW7u7smTJigevXqxTjTPDg4WBs3btQPP/ygbt26acWKFcqTJ4+FKgYApGZPnjyRn5+fli9frn379sloNMpgMKhGjRqWLu21pcaANn78eM2fP1+RkZGqVauW+vfvL3d3d/37778v3S579uzJVGHiGjt2rOnPW7du1datW1+5jcFg0KlTp5KyrCQVFRUle3t7s2V79+6VJFWpUiVG+4cPH8rFxSVZaksqv//+u37//fc4tY3+DrP2EJ4aOxCB+CJ7AwCsCdnbtpC9yd7PI3tbJ7K39eGVsaAff/xRLi4uWrZsmbJkyRJrG3d3d7Vq1Uo1atRQ06ZN9fPPP2vMmDHJXCkAIDU7evSoli9frg0bNig4OFiSlCFDBrVs2VLvvPOOcuTIYeEKX19qDGizZ882/Xnbtm3atm1bnLaz1isOnj8bOzXInTt3jNdr8+bNMhgMevPNN2O03717t9VPv9emTRuVKlXK0mUkm9TYgQgkBNkbAGANyN6xI3tbF7L3U2Rv20L2tk4MgFvQgQMH1KJFixcG8GdlzpxZzZo10+7du5OhMgBAahcQEKCVK1dqxYoVunTpkoxGo1xcXFSlShXt2bNHn3/+uerUqWPpMhNNs2bNZDAYLF1Gsurdu3e8tzEajUlQSfJ59913VbJkSUuXkWwaN26sqVOnqkaNGqpataoWL16sixcvKmPGjKpdu7ZZ29WrV+vPP/9Uv379LFRt4ihXrpx8fX0tXUaySY0diEBCkL0BACkV2dv2kb1tH9nb9pG9rRMD4BYUFBQUrynV3njjDS1ZsiQJKwIApHYbNmzQ8uXLtWfPHkVGRipdunTy9fVVvXr1VL16dd2+fVt169a1dJmJ7quvvpIkhYeH6/z584qIiFCBAgWsfkqql8mePbtatGgR5/bXr1/XsGHDkrCipLVixQpVqVIlVYXwzp07a9euXerdu7cMBoOMRqMcHR31xRdfmKb+3bx5sxYsWKD9+/crX7586ty5s2WLRrykxqsrgIQgewMAUhqyN9n7Rcje1ofsbfvI3taJAXALCg8Pj9c/7mnSpNGjR4+SsCIAQGo3YMAAubq6qm3btqpTp47Kly9vdh8jWz5T+5dfftG0adNM/9Y6OTmpbdu2GjhwoE3ez2f48OEKCQlRu3btXtl2yZIlGj9+PL9DrIyTk5PmzJmj9evX6+jRo3J3d5evr68KFChganPixAkdPnxYb7/9toYMGSJnZ2cLVoyESG1XVwAJQfYGAKQ0ZG+yd2zI3taJ7J06kL2tj+39iwIAABIsZ86cunbtmpYvXy5/f3/9/fffqlu3rvLly2fp0pLUsmXL9M033yhHjhxq1qyZ7OzstG/fPs2ZM0eRkZFWffb1i+TNm1djx45VSEiIunXrFmub27dva/jw4dq5c6ccHR2tfoqu1Mje3l6+vr4vnJqsR48e6tevn+zs7JK5ssTXvHlzq7+PWnylxqsrAAAAbAHZm+z9LLK39SN72zayt3ViANzC7t27p3///TdObYOCgpK4GgBAardlyxYdO3ZMq1ev1saNG7V79259++23euONN1SvXj0VLVrU0iUmicWLF6tUqVKaO3eu0qRJI+npPbcGDBigxYsXa9CgQaZpq2zFb7/9pm7dumnixIkKCQlRnz59zNavXbtWY8aM0f3791W6dGmNHTtW+fPnt1C1iePgwYOKjIyM1zbNmjVLmmJSCFuaanDcuHGWLgFACkb2BgCkJGRvsnc0svdTZG/rQfaGtTAYjUajpYtIrXx8fBI0nc3p06eToBoAAMxFRkZq9+7dWrNmjf744w+FhISY/t1q2bKlevbsqRw5cli4ysRRtmxZffzxxzGmJDt69Kjee+89rVixQj4+PhaqLuk8fvxYvXr10r59+9S5c2d9+umnCgoK0siRI7V582Y5OztrwIAB6tChg9VPwRff311Go1EGg4HfXUjRfHx89M0337zwKgMAT5G9AQApGdmb7E32JnsjZSN7WyeuALeg5s2bW7oEAABeyN7eXjVr1lTNmjUVGhqqzZs3a+3atfrzzz+1dOlSLV++XBUrVlTLli3VpEkTS5f7WkJCQpQ2bdoYy3PmzCmj0agHDx5YoKqk5+rqqhkzZujjjz/WnDlzdO3aNR0+fFiBgYGqWrWqPv/8c5vpaJGkNm3aqFSpUpYuA0hUXF0BvBrZGwCQkpG9yd5kbyDlI3tbH64ABwAAJt27d1elSpVUoUIFFS1aNNazdoOCgrR+/XqtWbNGR48etYkzdV90JmdQUJAqV66s2bNnq3LlyhaqLulFRUVp+PDhWr58uezs7PT555+rVatWli4rUXG2LmwRV1cAAABYJ7I32ZvsDVgPsrd14gpwAABgsnfvXu3cuVMGg0Hu7u4qV66cKlasqEqVKpmmIfP09FS7du3Url07Xb16VevWrbNw1XhddnZ2+vLLL+Xh4aFZs2Zpz549atasmRwc+KkIpHRcXQEAAGB9yN6pE9kbsF5kb+vDNysAADA5fPiwTp06pcOHD+vIkSM6evSotm3bJoPBoHTp0ql8+fKqWLGiKlasqEKFCilXrlzq0aOHpctOFPfu3dO///5rtuz+/fuSpLt378ZYJ0nZs2dPltqSQmzH0759ez1+/FiLFy/Wo0ePNGLECNnZ2Zm1seZjBmxRuXLluLoCAADAypC9yd5kb8C6kL2tD1OgAwCAl7px44ZZKD9z5owiIyPl4eGhChUqqGLFimrbtq2ly3wtL5vKKHraoucZDAadOnUqqUtLMq86Zkkx1lvzMQ8dOlTvvvuuSpYsaelSgETD9IIAAAC2g+xN9o5mzcdM9oYtIntbJ64ABwAAL5UtWzY1btxYjRs3liQ9fPhQq1ev1vLly7Vp0yb5+flZfQhv3ry5pUtIds2aNYvX/Yus3bhx4yxdAgAAAAC8ENnbNpG9AcAyGAAHAAAvFRoaqgMHDmj//v06dOiQTpw4ofDwcDk5OZmmZLN2qTGgffXVV5YuAcBrat68uXLnzm3pMgAAAJAIyN62iewNWD+yt3ViCnQAAGAmIiJCR48e1d69e7V3714dO3ZM4eHhcnR0VIkSJUzBu3Tp0nJycrJ0uQAAAAAAWB2yNwAASYcBcAAAYPLBBx/o4MGDCg0NlZ2dnYoWLapKlSqpYsWKKlu2rJydnS1dIgAAAAAAVo3sDQBA0mIAHAAAmPj4+MjR0VFNmjTRhx9+qLx581q6JAAAAAAAbArZGwCApMUAOAAAMBkxYoT27dunK1euyGAw6I033lDlypVVqVIllS9fXunTp7d0iQAAAAAAWDWyNwAASYsBcAAAEMO///6rPXv2mO5FdufOHdnZ2cnHx0cVK1Y0hXJXV1dLlwoAAAAAgFUiewMAkDQYAAcAAK907tw57d27V3/99ZcOHjyoBw8eyMHBQcWKFVPlypXVr18/S5cIAAAAAIBVI3sDAJA4GAAHAADxEhYWpo0bN+q3337T0aNHZTAYdPr0aUuXBQAAAACAzSB7AwCQcA6WLgAAAKRsV65c0bFjx3Ts2DEdP35cZ86cUXh4uNzc3FSjRg2VL1/e0iUCAAAAAGDVyN4AACQergAHAAAm9+/f1/Hjx02B+/jx47p//76MRqPSp0+vMmXKqEKFCipfvryKFCkiOzs7S5cMAAAAAIBVIXsDAJC0GAAHAAAmPj4+MhgMMhqN8vT0VPny5U3/eXt7y2AwWLpEAAAAAACsGtkbAICkxRToAADApEGDBqpQoYIqVKigAgUKWLocAAAAAABsDtkbAICkxRXgAAAAAAAAAAAAAACbwM1DAAAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEB0sXAABAajB58mRNmTIlXtv88ccfypkzZxJVlHC1a9fW9evXJUn/+9//1LFjx5e279q1q3bv3i1Jmj17tqpUqZKkdfn5+SlPnjxJsg8AAAAAQMpF9iZ7AwAgMQAOAECy8Pb2lq+vr9mywMBA7dmzR66urqpTp06MbVxdXZOrvATbuHHjS0P43bt3tXfv3mSsCAAAAACQWpG9AQCAxAA4AADJol69eqpXr57Zsn379mnPnj3y9PTUhAkTLFRZwqVLl06HDx/WrVu3lCVLlljb+Pn5KSIiQo6OjgoPD0/mCgEAAAAAqQnZm+wNAIDEPcABAEAC1a1bV0ajUX5+fi9ss27dOnl4eKh48eLJWBkAAAAAALaB7A0AQPwxAA4AQAq2fft2de3aVRUqVFDx4sVVv359ffPNN7p3755Zu2vXrsnb21s1atSI9XE6dOggb29v7du3z7RsyJAh8vb21v79+9WnTx+VKFFClSpV0vz58+NUW4MGDSQ9nYotNgEBATp48KDq168vB4cXTzqzatUqtW3bVmXKlFGJEiXk6+uradOmKSQkJNb2f/31l7p06aLy5curXLly6t+/v+m+aLGJjIzUwoUL1bp1a5UuXVqlS5fWO++8oxUrVshoNMbpWAEAAAAAtovsHRPZGwBgzZgCHQCAFGrChAmaOXOm7O3tVbZsWXl6euro0aP6+eeftWHDBs2dO1e5cuV67f2MGDFCgYGBql69us6dOycfH584bZc3b14VLlxYhw8fVkBAgDJnzmy2fuPGjYqKilLjxo01ZcqUGNtHRUVp8ODBWrt2rZycnFShQgW5uLjowIED+v7777Vp0ybNnj1bnp6epm2WLFmizz77TJJUrlw5pUuXTrt379bBgwcVFhYWYx/h4eHq1auXdu7cKXd3d5UuXVqOjo7av3+/hgwZon379umrr76Kz9MFAAAAALAhZG+yNwDA9jAADgBACrR161bNnDlTHh4e+vnnn03TmIWFhenzzz/XkiVL1K9fPy1btkwGg+G19hUQEKDVq1crV65cioqKkp1d3CeIadSokU6fPi0/Pz+1b9/ebN369euVOXNmlS9fPtZtFyxYoLVr1ypXrlyaNWuWcufOLUkKDg7WwIEDtX37dn322WeaPHmyJOnGjRsaO3asHBwcNGPGDFWuXFmSdPfuXXXt2lWnTp2KsY8ff/xRO3fuVIUKFTRp0iRlyJBBknTnzh198MEHWrFihcqWLavWrVvH+ZgBAAAAALaB7E32BgDYJqZABwAgBZozZ44k6ZNPPjG7h5eTk5NGjRqlPHny6OTJk9q7d+9r76tOnTqms9njE8AlqWHDhpJiTsX277//6ujRo2rYsOELH3Pu3LmSpLFjx5oCuCS5u7trwoQJSps2rfz8/HT58mVJ0ooVKxQaGqp3333XFMAlKUOGDPryyy9jPH5YWJjmz58vR0dHTZgwwRTAJSljxoz6/PPPJUm//PJLvI4ZAAAAAGAbyN5kbwCAbWIAHACAFCYiIkKHDx+WwWBQ/fr1Y6x3cHBQvXr1JMnsvmIJVahQoQRvmytXLhUtWlSHDh1SQECAafn69etlNBrVpEmTWLe7ceOGrl27Jk9PT1WqVCnG+rRp06p69eqSpP3790uSDhw4IEmqWbNmjPaFCxdWzpw5zZadPHlSDx8+1BtvvKEsWbLE2KZ48eLy8vKSv7+/bt++HccjBgAAAADYArI32RsAYLuYAh0AgBTm3r17Cg8Pl6enp9zd3WNtEx04EyM8pk+f/rW2b9SokU6ePKnNmzerXbt2kp6G8Fy5cqlEiRKxbhMd2HPkyPHCx33+GKO3yZo16wvbX7t2zfT3GzduSJLOnj0rb2/vlx7DjRs3lClTppe2AQAAAADYDrL3U2RvAIAtYgAcAIAUxmg0StJL7y8W3cbJySlOjxkZGfnCdfGdeu15DRs21DfffKMNGzaoXbt2unz5sk6ePKkPP/zwhdsk5Bhfdb81BwfznzVRUVGSpOzZs6ts2bIv3dbNze2l6wEAAAAAtoXsbd6G7A0AsCUMgAMAkMJ4eHjI0dFR9+7dU3BwcKxnol+9elWS5OXlJem/IB0dPJ93//79JKr26ZnkJUqU0KFDh3T79m2tX79ektS4ceMXbpM5c2ZJMjtr/HnRx5gxY0ZJUpYsWXTu3Dldv35dBQoUiNH+2WngJJnOKs+aNasmTJgQjyMCAAAAANg6svdTZG8AgC3iHuAAAKQwjo6OKl26tKKiorR58+YY6yMiIkzLK1asKElydXWV9DRsh4eHm7UPCgqSv79/ktbcqFEjRUVFyc/PTxs2bFCBAgVeOvVZ9uzZlSNHDgUFBZnuM/ashw8favfu3ZKk8uXLS5KqVKkiSbE+J1evXtX58+fNlhUvXlzOzs46c+ZMjIAuSbdu3VLDhg3VpUsXPXr0KO4HCwAAAACwemRvsjcAwHYxAA4AQArUqVMnSdLXX3+tU6dOmZaHh4dr9OjRunLligoXLmyaXszDw0NZs2ZVWFiYFi1aZGr/5MkTffbZZy+dhi0xNGjQQAaDQQsWLNDZs2dfegZ6tOhjHD58uOmMc0l69OiRBg8erODgYNWqVct0r7LmzZvLw8NDy5Yt06ZNm0ztg4ODNWzYsBhn4Lu6uqpNmzZ6/PixBg8erMDAQLN9DB06VBcvXpSrqyvTsAEAAABAKkT2JnsDAGwTU6ADAJAC1a1bV++//75mzZqlVq1aqWzZsvL09NSxY8d08+ZN5ciRQ999953ZPcS6deumsWPHauzYsVq3bp0yZsyow4cPKzIyUrVq1dK2bduSrN5s2bKpVKlSOnLkiKSXT8EWrUOHDjpy5Ig2bNigxo0bq3z58nJxcdHBgwcVFBQkHx8fffnll6b2GTJk0Jdffqn+/furb9++Kl26tDJnzqwDBw4oMjJS+fLli3G2/cCBA3X69Gnt3btXb731looXLy4XFxcdOXJE9+7dU968eTV69OjEfTIAAAAAAFaB7E32BgDYJq4ABwAghfr000/1448/qmLFijpz5oy2b98uNzc39ezZUytWrFC+fPnM2nfo0EHjx49XsWLFdOrUKR04cEAVK1bU0qVLY7RNCg0bNpQkFS1aVHny5Hllezs7O3333XcaN26cihYtqsOHD+vPP/9U1qxZNXjwYP3+++/KkCGD2TZ16tTRb7/9pjp16sjf31+7du1SkSJF9Ouvvypr1qwx9uHs7KxZs2bpf//7n9544w0dP35c+/btU+bMmdWnTx8tWbLEdJ8zAAAAAEDqQ/YmewMAbI/BaDQaLV0EAAAAAAAAAAAAAACviyvAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcMCGLF++XN7e3vH+r0OHDpYuPc4mT578wuMoXLiwSpYsqdq1a6tPnz7asmWLpcvF/zty5IjpderWrdsr2w8ZMkTe3t4aNGiQ2fLox9izZ0+i19i1a1fT4x87dizRH/9ZERER8vf3T9J9PO/MmTMaO3asGjdurHLlyql48eKqWbOmunXrpgULFig0NDTR93n79m0NGjRIVapUUbFixVS9enXt3LlTkrRy5Uo1bdpUJUuWVLly5dS1a1ft27fP9BpEREQkeL/Xrl0zPc7ly5cT63DwmoxGoy5cuGDpMhLk4sWL6tmzpypWrKjixYvrzTff1NmzZ2U0GjV79mw1aNBAxYsXV8WKFfW///3P9O9xjRo1Xmu/ifWZSCznzp2Lsax27dry9vbWkiVL4vVYCd0OAABYD/oo6KNIqeijMEcfBX0UKYk1fD4BWAcHSxcAIPF4eXmpTJkyMZbfuHFDN27ckJOTk4oVKxZjfaFChZKjvEQV27EYjUaFhobq2rVr8vPzk5+fn3x9ffXNN9/IYDBYqFJI0rJly0x/3r17t65evapcuXJZsCJzN27cMPtBvHDhQpUsWTJJ9rV7926NHTtW9evX14ABA5JkH8/74YcfNG3aNEVFRcnd3V25c+eWo6Ojbt++rV27dmnXrl36+eefNXXqVBUtWjRR9hkVFaVu3brpzJkzcnBwUMGCBRUeHq4cOXJo06ZN+vTTTyVJmTJlUpYsWVLU+wGJ7/jx4xozZozy5MmjCRMmWLqceHn06JE6deqkgIAAOTs7q2DBggoJCVHOnDk1e/ZsjR8/XpKUI0cOeXh4KGfOnBauOPEFBARo/PjxOnjwoHbs2GHpcgAAgJWgj4I+ipSKPor/0EdBH0VKk9I/nwCsBwPggA2pWbOmatasGWP55MmTNWXKFGXKlEkLFy60QGWJ72XHEhYWpu+//16//PKL1qxZowoVKqhNmzbJXCGihYSEaMOGDTIYDKpWrZp27dqlxYsXxzgz05KWL1+uqKgo1axZUzt27NCGDRs0dOhQpU+fPtH39dNPPyXrmdXLli3T1KlT5erqqnHjxumtt96Svb29af2FCxc0bNgwHT16VF27dtX69euVIUOG196vv7+/zpw5I0maPn26qlevblo3efJkSVLZsmU1b948OTg8/TkSEhKi9evXS5JpWUJkyZLF9DjZs2dP8OMg8fz22286fvy48uTJY+lS4u3gwYMKCAiQwWDQ8uXLlT9/ftO6DRs2SJIaN26sb7/91rT84cOHKlmypBwdHV9r3yVKlEiUz8Tr2r17t9auXassWbJYrAYAAGB96KN4ij6KlIU+CnP0UdBHkZJYw+cTgPVgCnQANsfJyUmffPKJSpQoIUmaP3++hStK3TZu3Kjg4GAVLFhQzZo1k/Q0zIWFhVm2sP9nNBq1YsUKSVLLli2VN29ehYaGmpZZu+nTp0uSPvnkEzVo0MAsWEpS/vz5NW3aNHl5eSkoKEjz5s1LlP0GBQWZ/lyxYsVY15UtW9YsRLq4uCh//vxmA4wJ4ejoaHqc1x2ABKLfrxkzZozx3oxeV6FCBbPladOmVf78+ZU7d+7X2ndifSYAAABgOfRRpCz0UVgWfRT0UbxMSv98ArAuDIADsFl169aVJP3zzz96/PixhatJvZYvXy5JqlGjhmrVqiVnZ2cFBgZq8+bNFq7sqf379+vq1atydHRUlSpV1LBhQ0nS4sWLLVzZ63vw4IGuXLkiSS+dLi1Dhgymz8vx48cTZd+RkZGmPzs5OZmti4qKinU5kBK97P3KexkAAABxRR9FykAfheXQR4FXSemfTwDWhQFwACabNm1St27dVKlSJRUrVkzVqlVTnz599Ndff8Xa3tvbW97e3mb3JXpWhw4d5O3tbZpKSJKuXbsmb29vVa1aVbdu3VL37t1VokQJVahQQQMHDkzU43F3dzf9+dGjR2b79/b21uXLl2Pdrnbt2vL29jb96JKkffv2ydvbW23atNGFCxf03nvvqXjx4qpcubLp/q/R250+fVrbt2/Xu+++q9KlS6tixYrq2LGjtmzZ8sJaIyMjtWTJEnXo0EHly5dXsWLF9Oabb2rw4ME6efJkrNuEhoZqxowZevfdd1W5cmUVL15ctWrV0sCBA3Xo0KEX7uvMmTP69NNP9eabb6pYsWKqWLGiunbtqk2bNsXa/tnn7NnnJC6uXLmiAwcOSJLq1asnNzc31apVS5JSzFR30fcWqlSpktKmTStfX19J0sWLF7V3795Yt0nI+2j58uXy9vbW/v37JT0969nb21tDhgwx2+7+/fuaMmWKmjVrptKlS6tkyZJq2LChxo8fr4CAgHgd27NnLm/btu2lbfv06aN169Zp4sSJZsuHDBkib2/vF043FX1ctWvXlvTfc9OxY0dTm+jnKvqxop+DKVOmmNZJ/33OvL29FREREWNfZ86c0YgRI1S3bl0VL15c5cuXV6dOnbRx40azdq96fa5evapRo0bprbfeUvHixVWuXDm1bdtWS5YsMQvFzz8HCxcu1LVr1zR06FDVqFFDxYoVU40aNfS///1P165de+Fze/DgQQ0cOFC1atVSsWLFVKlSJfXo0cPsu3XXrl3y9vZW0aJFFRgYGOvjhIaGqmzZsvL29taxY8diHGt8P58PHjzQjBkz1K5dO1WsWFFFixZVuXLl1KJFC02ePFn379+PsU18v/ejX9PoqxXWrFkjb29vdejQIcaxzZkzR23atFGZMmVUvHhx1a1bV5999pkuXboU677u37+v7777Ti1atFCFChVUsmRJvfXWW/rf//6ns2fPvrC27777LtbHmzx5sllt0bUPHTpUknT9+nXT8Ud/vq9fvy5JGjp0qNnnIPpzUaNGjVj3FZf3xLM1vOwzEZ/v8+jnYOfOnTpz5oz69eunKlWqqFixYqpTp46+/PJL3b1712ybZ5+DW7dumX1mn3fo0CH16NFDFStWVIkSJVS/fn1NnDhRwcHBsbZ/3e0AAIBto4/iKfoozNFHERN9FP+hj8J6+yis4fMJwLowAA5A4eHh6t27t/r27atdu3bJwcFBPj4+ioiIkJ+fnzp37qwvv/wyUfcZFhamrl27as+ePcqfP78MBoNy5MiRqPuI/lHp7OwsT0/PRHnMu3fvqlOnTjp9+rQKFCigJ0+eKG/evGZtli1bpg8//FAnT55Uvnz5lCZNGu3bt08fffSRxo4dG+Mxg4OD1a5dOw0fPlz79+9X2rRp5e3trYcPH2r16tVq1aqVZs+ebbZNWFiYOnfurIkTJ+r48ePy8PBQwYIFFRwcrLVr16pdu3ZasmRJjH39+uuvatGihVauXKn79++rYMGCcnV11e7du9W3b18NHDgw1h/XCbVs2TIZjUblzp3bdHZvkyZNJEkHDhzQhQsXEm1fCREcHCw/Pz9J/9WVP39+FS5cWJK0aNGiRNuXl5eXypQpY+r0yJYtm8qUKWP2/jl79qyaNGmiyZMn6+zZs8qRI4fy5cunK1euaNasWWrSpIn27dsX5326urqqTJkykp4O7n366ac6cOBArK9xpkyZVKBAgdf+rKRJk0ZlypRRoUKFTMvKlCljOtbYnoPoGl/m119/VatWrfT777/r7t27pvfu3r171a9fvxcOaj5v8+bNatKkiRYuXKiAgAC98cYbypAhgw4dOqThw4era9eups6o5506dUpNmzbVypUr5eLiojx58ujWrVtaunSpWrdurRs3bsTY5ttvv1X79u21du1aPX78WN7e3rKzs9O2bdvUuXNn01n8VatWVbZs2RQREaG1a9e+sPbg4GDlz5//pWfLx8WlS5f09ttva+LEiTp69KgyZMggb29v2dvb6+TJk5oyZYreeeedFz4XcZU2bVqVKVNGXl5ekp6eyf/8++PmzZtq3ry5xo0bp2PHjilTpkwqWLCgbt++rcWLF+vtt9823S8t2r1799S6dWtNnz5d586dU6ZMmZQvXz7duXNHS5cuVcuWLbVz585EqT36M+rk5GR6vzo4OKhMmTKmKwSi39vFihV75ePG9T3xKq/zfb5z5061atVKW7Zskaenp7Jly6Zr165p7ty5evfdd80Gnp99DhwdHV/4mV2xYoXatWunPXv2KFu2bMqQIYMuXbpk6gQNDQ2NtZaEbgcAAGwXfRRxRx9F/NBH8R/6KOijSEl9FFLK/3wCsD4MgAPQV199pc2bN8vV1VWTJk3S7t27tXTpUv3555/67LPP5ODgoLlz52rOnDmJts8HDx7o9u3bWrlypVasWKFdu3ape/fuifb4d+/e1apVqyQ9/dH27Fmmr+Pq1atycXHRpk2bTHVH35Mm2vz581WlShVt375dy5cv144dOzRmzBg5ODho/vz5MX44Dho0SEeOHFGmTJk0b948bd26VcuWLdNff/2lXr16KSoqSl999ZUpBElPfxQeOXJEefPm1ZYtW7RhwwYtX75cu3fvVrt27WQ0GjV+/Hg9efLEtM3OnTs1ZswY2dnZ6X//+58OHjyoFStWaNu2bZozZ468vLy0du1as7PhJSlLlixav3691q9fr7feeivOz1VUVJTpNYg+Y1mSatasKQ8PD0mWP4Nz3bp1CgkJkYuLi9mxvf3225KkLVu26M6dO4myr5o1a2rhwoUqUqSIJKlp06ZauHChevToIelp0O3WrZsCAgJUunRp+fn5ae3atVq5cqV27NihWrVq6f79+/roo4909erVOO93xIgRcnV1ldFo1MqVK9W+fXtVqFBB3bt314wZM3Ts2DHTdF+JIVOmTFq4cKGGDx9uWrZw4ULTsT77HLRs2dK07mUOHz6ssWPHKjw8XN27d9dff/1l+myNGzdOdnZ2mj59unbv3v3Sxzlz5ow+/vhjPXnyRD179tT+/fu1atUq+fn5acWKFcqbN6/++usvjRo1Ktbtf//9dxUoUEDr16/Xpk2btG7dOi1atEhubm66e/euZs2aZdZ+3bp1+umnn2RnZ6dhw4Zpz549WrZsmXbt2qX+/ftLkkaPHq0LFy7Izs7O9F0S/bl53sqVKyVJLVq0MC1L6OdzxIgRunHjhkqVKqVt27aZvkP27t2r8ePHy87OTv7+/qZ9JlSRIkW0cOFC05XQVatW1cKFCzVixAhJT68s6dGjhy5evKh8+fJp1apV2rRpk5YvX64///xTrVu31pMnT/TJJ5+YziiXpJ9//lmXL19WmTJltGPHDq1bt04rV67Uzp07Va9ePYWHh792p2h07R9++KGk/97bCxculJ+fnxYuXKhMmTJJkj788EMtXLhQP/zww0sfMz7viZdJ6Pd5tPnz56tq1aratm2b1q1bp82bN+vHH3+Uvb29Ll++rKVLl5raPvscZMiQ4YWf2UOHDqlJkybauXOnVq5cqe3bt+ubb76RJJ07d+6FZ/8ndDsAAGC76KOIO/oo6KNIKPoo6KNISX0U1vD5BGB9GAAHUrmbN2+aziAdM2aMGjRoYFpnb2+vdu3aqV+/fpKeTgX0ulcDPqtt27YqUKCApKdX1j07HVhCGI1GBQUFaevWrXr//fd17949OTo6qm/fvolRrsmHH36oLFmySJLc3NyUJk0as/XZs2fX1KlTTVc8GgwGtWnTRl27dpX09HmMdvToUdO0Tz/88IMqVqxoWufk5KR+/frpnXfekSRNmDDBtO7MmTOSnt4TJ3v27KbladKk0ZAhQ1StWjW99dZbunfvnmndt99+K6PRqEGDBqljx46yt7c3ratcubLGjRsnSZo9e7aCgoJM6xwdHZU/f37lz59fadOmjfPztHv3btPZptFhLfrxot9nq1atsujVfdFTi9WpU0dubm6m5U2aNJGdnZ3Cw8NNbZLab7/9poCAAGXMmFE//fSTcuXKZVqXMWNG/fDDDypUqJAePnyo6dOnx/lxixQpoiVLlqhs2bKmZcHBwdqxY4cmTpyoNm3aqFq1avruu+8UEhKSqMeUWH788UdFRUWpYcOGGjhwoNlnrkWLFmrVqpUkvXKgbPLkyQoLC1P79u3Vv39/s8cpUqSIfvjhB9nb22vNmjU6f/58jO0dHR01ZcoU5cuXz7SsdOnSprB3+PBhs/bRn/UuXbqoU6dOps+cvb29evbsqapVqyoyMtIUGlu2bCmDwaCTJ0/GGAC9deuW9uzZI3t7ezVt2tSspvh+PgMDA3Xu3DlJT7/3M2fObFpnMBjUrFkzVahQQZJinUo8MW3cuFGnT59WmjRpNHPmTPn4+JjWubu7a+zYsapevbrCw8PNzqCP/g6sX7++MmTIYFqeNm1aDR8+XFWqVFH58uVT3NXD8X1PvEhCv8+jeXl56YcffjB77evUqWM6UeH593Jc5M+fX+PHjzd1TkhPv/urVq0qSS+c9jKh2wEAANtEH0X80UcRN/RRxA99FC9GH0Xi9lFI1vH5BGB9GAAHUrmdO3cqIiJCmTJlUqNGjWJt0759ezk6Ourhw4em++Ikhmd/7MbXs/dijf7Px8dHlSpVUs+ePXX69GmlTZtW33//vdmASmJ4Vd1t2rSRq6trjOXvvvuuJMnf318XL16U9N89j0qUKPHCKZbef/99SU+nS/vnn38kyTQl1dKlS/Xbb7+Z3bPVyclJv/zyi8aNG2cKwdeuXdPp06clmf+QfFbNmjXl6emp0NDQF95TLT6if+iXKFEixhRs0TU8ePBA69ate+19JcSFCxdMV5Q+/5xkzpxZlSpVkiQtXrw4Uc8+fpGtW7dKkpo1a6b06dPHWO/k5GS6N/HWrVtlNBrj/NgFChTQb7/9ppUrV6p3794qXbq0HB0dTesDAwM1ffp0vf3227p58+ZrHkniCgkJMd3nLLqj5Xn9+/fXxo0bTfe6i01YWJhpSuwXfQaiv0eMRmOs9yMrVqyY6YrfZ73xxhuSpIcPH5qWXb582fQ5j/7sP++LL77Qli1bNGDAAElSrly5VL58eUmKMQC6atUqRUVFqUaNGrHWEB9eXl7au3evjh07ZjYNXLTIyEhTZ19Sh8vo933t2rXNOlSe1aVLF0nS/v37Tc9x9HfKzz//rNWrV5s991myZNHs2bM1ZswYOTs7J2H18ZOQ90RsEuP7vHLlyjE6RqWng9GS+Xs5rurUqWPWaRkt+v55z99b/HW3AwAAtok+ivijjyJu6KOIH/ooYkcfxVOJ2UchpfzPJwDrlDjz7QCwWtE/fgoXLiw7u9jPiXF1dVW+fPn0zz//yN/fX7Vq1UqUfb/ODyQnJ6cY91q1s7OTm5ubsmTJopIlS6pBgwavfcZ2bF5Vd4kSJWJdnj17dqVNm1YPHz7UpUuX9MYbb5ie/6JFi77w8fLmzSt3d3cFBwfL399fhQoVUuvWrbV06VKdP39eo0eP1ueff67ChQurcuXKql69usqXL282pVr01Z6S9NFHH71wX9HTkUXXlVD37t3TH3/8ISn2H/Jly5ZVrly5dPXqVS1cuFAtW7Z8rf0lRPQUv15eXqYrDZ/VtGlT7dmzR9evX9euXbtUs2bNJK3H399f0svfC9Hr7t69q3v37sX7XliFCxdW4cKF1adPH4WEhOjw4cPavXu3Vq1apcDAQF25ckX9+vWL8z2Ik8O///6r8PBwSXphR5GXl5fpaoYXuXTpksLCwiQ9ndIr+t7Nse1Piv0zEN1Z87zoQdaIiAjTsuj7+7m6ur5wYDdbtmwxlrVs2VL79+/XmjVr9PHHH8tgMEj6b8qxZ6cWe13Ozs66ceOGjh07pitXrujq1au6cOGCTp8+rcePH0tSknesxOd9HxkZqcuXL6tYsWLq2rWrNm7cqNu3b2vw4MFycHBQ8eLFVaVKFdWoUUMlS5Y0PXcpRULfE89LjO/z+LyX4+pFjxnd2fqikykSuh0AALBN9FHEH30Ur0YfRfzRRxE7+igSv4/CGj6fAKwTA+BAKhccHCxJr5yWJjqkJeb0Yq9zZV70PXws4VV1x3ZmbDRXV1c9fPhQDx48kBT359/NzU3BwcGm59/d3V2LFy/WrFmztHbtWl2+fFmnTp3SqVOn9Msvv8jLy0v9+/dXmzZtJJmf9RmXqW0TcvXfs9asWWP6IT927FiNHTv2hW3//vtvnTx58qWhKrFFRERo9erVkp6eWfyqfS9cuDDJw2Vc3gvPdpY8evQo3uHyWS4uLqpataqqVq2qfv36adiwYVq3bp2OHj2a7K/Hyzw7Rd6zU8DF17Pv6RMnTsSrfbRnz0h/lei641tzgwYNNGbMGN24cUP79u1TpUqV9Pfff+v8+fPy9PRMtM69ixcv6uuvv9aOHTvMBrnd3d1Vrlw5BQQEmKYxTEoJed9LT4P5qlWr9NNPP2njxo26deuWjhw5oiNHjmjq1KnKkSOHhg0bprp16ybtAcRDQt8Tz0uM7/P4vJfjKrYrypNyOwAAYJvoo4g/+ihejT6K+KOPInb0USR+H0VK/3wCsF4MgAOpXPQPn1eFiegwFNsPpRdNcxR9BWFKlVR1v+weRdEBIvpM0Lg+/9Hrn33+3d3d1bdvX/Xt21eXL1/Wvn37tG/fPu3YsUOBgYEaMWKEPDw8VK9ePdOVdB4eHtq3b1/CDy6Oou9J5erq+tKwFBAQIKPRqEWLFmnMmDFJXle07du3686dO5KeTiX2oitFHz9+rIcPH2rnzp26ceNGrGfDJtb7yM3NTffv33/pe+H+/ftm7V/ls88+0969e9W8eXP17Nnzhe2cnZ31+eefy8/PT+Hh4fL3948RJl50nEl9T65np+oLDg42u99zQh/n8OHDrz0IGdf9xbdDztnZWY0bN9bixYu1Zs0aVapUyXRmta+vb6IMXAYGBqp9+/YKDAxU9uzZ1aZNGxUpUkRvvPGGcubMKYPBoIEDB750ADwx3/fSy78Do//9eba99PR7dNiwYRo2bJjOnj2r/fv3a+/evdq9e7euX7+uvn37atGiRS+84uV1a4+vhL4nXvQ4yfV9DgAAkJzoo4iJPorXRx8FfRSJhT6KxO+jSOmfTwDWi3uAA6lc9H1hTp8+/cKpboODg3Xp0iVJUp48eUzLo+/ZGX2W3vMCAgISsdLE8eyUW7HVHRoa+tpnFkffA+t5V65cMf3QLFCggKT/nv+TJ0++8PEuXLhgCirRz39gYKAOHjxouq9Wnjx51KZNG02cOFE7duwwTb0W/aM0X758kp6e8Xn79u0X7uvgwYO6cOHCa005e+bMGdO9vMaNG6edO3e+8L/oM5bXrl1rCt7JIfreQgULFtSuXbteWN/s2bMlPZ16+ffffzdtnxTvo7i8F6LPCk6fPn2czqx+8uSJLl++rC1btryyrbu7uylwPRvgoj/n0VN8PS+pP+e5cuUy1fDsNHnP+vvvv/Xee+9p6NChLwzBzz7O+fPnX7i/48eP6+zZs689SBl9z6rHjx/r2rVrsbb5448/1KFDB3399ddmy6On8/rjjz8UGRlpmgossab5WrZsmQIDA+Xh4aFly5apZ8+eqlmzpnLlymXqaLl161as2yb2935c3vd///23JMlgMCh37tym+vbu3Wv6rvL29laHDh00depU/fHHH8qRI4ciIyO1du3aJKs9vl7nPfGs5Pw+BwAASG70UZijj4I+Cvoo6KOw5T4Ka/h8ArBeDIADqVyNGjXk4OCg27dva/369bG2WbBggSIiIuTi4qIKFSqYlkf/uI3tPjTHjx9PkeHSw8PDNMATW91bt25N0L1Pn7V8+fJYg3r0dGilSpUynaUbPVXQ8ePHXzjt15w5cyRJWbNmlbe3tySpa9euateunVasWBGjvZubm0qVKiXpaSiSpPz585uC6YIFC2Ldz6FDh9SuXTs1atRIR48ejcORxi76vlWenp6qXbv2S9u+9957kp7+AI8OwkktMDBQO3bskPTqH+vFixc3BfUlS5aY3huv8z560Znc0e+FlStXmp1FHS0sLMz0HqpevfpL644Wfe+kEydOmAL1i+zevVv37t2Th4eHSpYsaVr+ss95ZGSktm7dGqdaEsrd3V1ly5aV9N9Zwc9bu3atDh8+rGvXrr3w+XV3dzd9f82bNy/WNlevXlXbtm319ttva+PGja9Vd/78+ZUjR46X1r1ixQrt37/f1EkUrWTJkipYsKCCgoI0f/58/fvvvypSpMgL7y8WX9FhN3v27LGerX7+/HnTd0D0d0i0hH7vR78uz4f/6Pf91q1bdfXq1Vi3jX69SpUqpXTp0ikiIkLNmjVTp06dtH379hjtM2bMqEKFCkkyv4f5y2p/9OiR/vrrr1j3n1he5z3x/OMk1/d5tOj7b76o8wYAACCx0Edhjj4K+iieRR8FfRQJlVL7KFL65xOAdWMAHEjlsmXLZroH04gRI8x+UEVFRem3337T5MmTJUm9evUym4om+gff7NmzdeHCBdPyv//+Wx9//HFylB9vzs7OKlKkiCRp8uTJZlc57t69W59//vlr7+PEiRMaMWKEadqlqKgoLViwwBQSBwwYYGpbunRp0xmMffv2NZv6KywsTD/88IPprN5PPvnE9MO5adOmkqQpU6Zo586dZvs/ePCg6Yfgs/eE6tevnyRpxowZmjlzptlZwQcPHjStL1WqlCpVqmRaFx4ergsXLujChQuvPGM4LCxMa9askfR0KiQnJ6eXtq9Ro4bpB/iiRYte2vZl/v33X124cEH//vvvK9uuXLlSERERcnR0ND2PLxP9A/v27dums1xf530UPe3U9evXY+wnS5YsunPnjj788EOzwcDAwED169dP//zzj9zc3NSnT59X1i1JVatWVf369SVJw4cP1xdffBHjTN8nT55o2bJl6t+/v6Sn75Nnp96K/pyfO3dO8+bNMw2A3b9/X8OGDXvh1QSJqVevXjIYDFq1apWmT59uFtxXrlyp+fPnS5K6dev20sfp06eP7O3ttXbtWo0bN87sDOp//vlH3bt3V3h4uHLkyCFfX9/XqtlgMKhXr16SpJkzZ2rJkiWm5y4yMlIzZszQ5s2b5eDgoM6dO8fYPrrjY9KkSZKkFi1axLqf+Hw+o0WfyX/mzBlt2rTJtNxoNGrnzp3q1q2b6Wz656ePS+j3fvR76vnPaIMGDeTt7a0nT57ogw8+MJt2PTg4WCNGjNDu3bvl4OCgQYMGSXp6dUPjxo0lSV988YWOHz9u9ph+fn7avXu3pKffMc/XvmvXLvn5+ZmWBwQEqG/fvgoMDHxh/Ynhdd8Tz0ro93lCRX9vPXjwgDPtAQBAkqKPgj6K6G3oo4gdfRT0USRESuyjsNTnE0DqwT3AAWjo0KG6deuW/vjjD/Xr10+ZM2dW1qxZdfXqVQUFBUmS2rdvrw8++MBsu549e2rXrl26ffu2fH19VaBAAT158kSXLl1Srly51LJlyxeeVWhJ/fv3V8+ePXX+/HnVrVtXBQoU0P3793X9+nUVL15cZcqUMYWIhChUqJCWLl2qDRs26I033tDNmzd1+/Zt2dnZaejQoTEGI77++mv16NFDR44cUceOHZUjRw5lyJBB/v7+Cg4Olr29vfr3728a8JGkjh07as+ePdq5c6c++OADZc6cWZkzZ1ZQUJAptNSuXVutW7c2bdO4cWNdunRJkydP1oQJE/TTTz8pb968unv3rmmbfPny6ccffzSr79atW2rUqJGkp9MRvehHriRt2bJF9+7dkxS3qZDs7Oz0zjvv6Ntvv9U///yjQ4cOmcJMfHz66afav3+/KlSoYAoaLxJ9lvGbb74Zp3s1NW7cWOPHj9eDBw+0aNEiU1hL6PuoSJEi2rZtm9asWaOzZ8+qXLlyGjlypNKlS6fp06ere/fuOnLkiOrVq6cCBQrIwcFB586dU3h4uDw8PDRhwgTT1FVxMWHCBLm6umrlypWaN2+e5s2bp+zZs8vLy8v0eQ0LC5Ojo6MGDhyotm3bmm1fs2ZNlStXTgcPHtQXX3yhWbNmydPTUxcvXlR4eLj69Olj6oBKKpUrV9bQoUP11Vdf6bvvvtOsWbOUK1cu3bx503SftI8++sisMyU2ZcuW1ZgxYzRy5EjNmTNHixYtUv78+fXo0SNdvnxZRqNRGTNm1C+//PLK4BUXrVq10vnz5zV79mwNHz5c33//vbJmzapr167p3r17sre316hRo2I9a7pp06aaOHGiHj9+LEdHRzVp0iTWfcTn8/lsXb/99psuX76svn37KkeOHPL09NSNGzcUGBgoR0dHVahQQfv3748xFXpCv/cLFy4s6em9zRo0aKACBQpoypQpcnBw0I8//qgPPvhAFy9eVNOmTZU3b165ubmZpjp0dnbW6NGjVa5cOdPjDRgwQIcOHdKpU6fUunVr0zEEBASYrux57733zAbAmzdvrgULFsjf3199+vRR7ty55erqqgsXLsje3l49evTQ9OnTX/n8vY7XeU88K6Hf5wnl7e0tOzs7hYaGqkGDBsqcObN++eWXOE1zCAAAEF/0UdBHQR/Fi9FHQR9FQqW0PgpLfT4BpB5cAQ5ATk5Omjp1qr777jtVq1ZNYWFhOn36tFxcXNS4cWPNmzdPI0aMiDFtT+HChbV06VL5+voqQ4YMunjxoiIjI/X+++9rxYoVypQpk4WO6OVq1Kih3377TXXr1pWrq6vOnz+vNGnSqG/fvvrtt99MZ78mVMeOHfXtt98qX758pjNP69evr0WLFsV6FqWHh4fmz5+vMWPGqHz58nr48KHOnj0rT09PtWrVSkuXLlX37t3NtrG3t9fUqVM1bNgwlS5dWqGhoTpz5oxCQkJUrVo1ff311/rxxx/N7gMlPf0BvnjxYvn6+srd3V1nzpxRUFCQihQpon79+mnZsmXy8vJK8LFHB7eiRYvGeSqkVq1aydHRUVLSn8F57Ngx072V4nqvIhcXFzVr1kyS9Ndff5nuNZfQ99EHH3yg1q1by8PDQ5cuXdLZs2dN64oUKaK1a9eqV69eKliwoK5evapLly4pX7586tGjh1avXh3nqcWiOTk56auvvtKSJUv0/vvvq2jRogoLC9OZM2d08+ZN5cuXT127dtXq1atjvM+kpwHjl19+Uf/+/VWwYEEFBgbq33//VeXKlbVw4cLXPgs5rjp16qTFixerSZMmSpMmjc6ePauIiAjVrFlTs2fPVt++feP0OC1bttSqVav0zjvvKFOmTDp37pxu3Lih/Pnzq1u3blq9erXpfnSJYciQIZo9e7bq1Kkjo9GoM2fOyN7eXg0aNNDixYvNOoCelSFDBtPgbe3atRN1oNHd3d30vVKwYEHdvXtX586dk7u7u6lT8Msvv5T09CrxZ69aSOj3frNmzdStWzdlypRJ165dM7unY86cObVs2TJ98sknKlGihG7fvq0LFy4oW7Zs6tixo1atWmX6DEZzc3PT/Pnz1bdvXxUtWlT37t3TmTNnZDQaVadOHf30008aNWpUjG0WL16srl27Kk+ePLpx44bu3Lmj+vXra8WKFapYsWKiPccvk9D3xPOS+vv8WXny5NG4ceOUN29e3bt3Tzdu3IhxhQgAAEBioY+CPgr6KF6MPgr6KF5HSuqjSOmfTwDWz2DkZn4AkChq166t69eva+zYsXEewEDiGTNmjK5cuaKZM2dauhQgUbRo0UInT57UjBkzXnnmOAAAAAA8iz4Ky6KPAraGPgoA1oYrwAEAVi8qKkoHDx5UgQIFLF0KkChOnjypkydPKlu2bKpWrZqlywEAAAAAxBF9FLA19FEAsEbcAxwAYPU+//xzBQYGqkOHDpYuBUiwq1evSpLu3LmjIUOGSHo6XaG9vb0lywIAAAAAxAN9FLAF9FEAsHYMgAMArN67776rvn37KkOGDJYuBUiw9evX69tvvzX9vVChQmrfvr0FKwIAAAAAxBd9FLAF9FEAsHZMgQ4AsHo+Pj4ES1g9Hx8fZc6cWa6urqpbt65mzZolJycnS5cFAAAAAIgH+ihgC+ijAGDtDEaj0WjpIgAAAAAAAAAAAAAAeF1cAQ4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbIKDpQuwFkajUVFRzBYPAAAAADBnZ2eQwWCwdBk2gewNAAAAAIhNfLI3A+BxFBVl1N27jyxdBgAAAAAghcmQwU329gyAJwayNwAAAAAgNvHJ3kyBDgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDpYuAAAAAAAQU1RUlCIjIyxdRqpnb+8gOzvOHQcAAAAAW0T2ThkSO3szAA4AAAAAKYjRaNSDB3cVEhJs6VLw/1xc3JUuXQYZDAZLlwIAAAAASARk75QnMbM3A+AAAAAAkIJEB3B3d085OaVh0NWCjEajwsKeKDg4SJKUPr2XhSsCAAAAACQGsnfKkRTZmwFwAAAAAEghoqIiTQHc3T2dpcuBJCenNJKk4OAgpU3ryXToAAAAAGDlyN4pT2Jnb5I7AAAAAKQQkZGRkv4LfkgZol8P7gsHAAAAANaP7J0yJWb2ZgAcAAAAAFIYpl5LWXg9AAAAAMD2kPVSlsR8PRgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATHCxdAAAAAADAcs6ePaMff5ykM2dOKSrKqCJFiql7914qWrSYJOnAgb2aPftnXbhwTvb2DqpQoZJ69uyjLFmySpLWr1+jL78crSVLVitbtuymx23VylelS5fV//43SpJUrVo5vf9+d+3Zs1tXr17We+91UOfO3XT9+jVNmzZZhw4dkNFoVLFixdWrVz+98UZ+SdKTJ0/0yy/TtWWLn4KC7ip37jzq2PF91alTL3mfKAAAAAAAEojsnby4AhwAAAAAUqlHj4I1cGAfpU/vobFjx2v06C8VGhqigQN7Kzg4WJs2rdeAAb2VKVMmjRr1hfr0GaCTJ/9Wjx7vKyjobrz3N3fuL3rzzdoaNeoLVa/+pu7cuaMPPuiky5f9NXDgpxo5cowePHig/v176d69ezIajRo2bLBWrlyud95pq6+++lbFipXQyJHDtGHD2iR4RgAAAAAASFxk7+THFeAAAAAAkEr5+/vr3r0gtWr1jkqUKCVJypMnr1atWqbg4If68cdJKleugkaPHmfapkSJUmrfvrUWLlygXr36xmt/RYoUU/v2nU1/nzp1kp48CdX33/8oL6+MkqSCBX304YeddeLEcaVJ46R9+/Zo9OgvTWedV6xYWaGhIZo+fYreequBHByItQAAAACAlIvsnfy4AhwAAAAAUqk33sgvDw9Pffrpx5owYZx2794pL6+M6tWrn0JDQxUYGKh69RqabZMjR04VLVpcR44cjPf+8ucvYPb3Y8eOqFixEqYALkkZM2bUsmVrVa1aDR08eEAGg0GVK1dTRESE6b+qVWsqMPCO/P0vJOzAAQAAAABIJmTv5Gddw/UAAAAAgETj6uqqH3+cqblzf9GWLX5auXKZnJ2dVa9eQzVo0FiSlCGDV4ztvLy8dPbs2Xjvz9Mzg9nfHzy4b3bvsuc9eHBfRqNR9erViHX9nTu3VbCgd7zrAAAAAAAguZC9kx8D4AAAAACQiuXOnVcjRoxRZGSkTp8+qY0b12vlyqXKmDGTJOnu3cAY2wQGBsrDw0OSZDAYJElRUVFmbUJCHr9y3+7uaXXv3r0Yyw8dOqCsWbPJ3T2tXFxcNXny9Fi3z5Ej1yv3AQAAAACApZG9kxdToAMAAABAKrVt2xY1aVJXgYF3ZG9vr2LFSmjQoCFyd0+ru3fvysvLS35+G8y2uX79mk6cOK4SJUpKklxd3SRJt27dNLW5cuWS7t+//8r9lyxZSidPHldQ0F3Tsnv37mnQoL7688+dKlWqjEJCHstoNMrHp4jpv4sXL2jWrJmKjIxMjKcBAAAAAIAkQ/ZOflwB/prs7AyyszMk2eNHRRkVFWVMsscHAAAAkHoVL15KkZFRGjp0kNq37yw3Nzf98YefHj0KVu3adVWkSFF9+eVojRw5VA0aNNH9+/c0a9YMpUuXXu+8006SVLZseTk7O2vKlO/0wQe99PjxY82e/bTNq7Rp01YbNqzTxx/3VseO78vJKY3mz58tL6+MatCgsdzd06pUqTIaMmSgOnfupjx58ur06ZP65ZcZqlixkulMeCRceHi45s+frxUrVujSpUtydXVV8eLF1alTJ1WvXj1G+4oVK8Z65UC048ePK02aNIleJ9kbAAAAgLUieyc/g9FoJOHFQWRklO7efWS2zM7OIA8PV9nbJ92F9JGRUbp37zFBHAAAAEgFwsPDFBh4Q15e2eTo6JQs+zx9+qRmzpymM2dOKzQ0VG+8kV8dOnRRzZq1JEnbt/+h+fPn6OLF83Jzc1PFipXVvftHypIlq+kx9u7do+nTp+jyZX9lzZpNXbp018aN6+Tl5aX//W+UJKlatXLq0uUDde36odn+L1++pB9/nKTDhw/J0dFRpUuXUa9e/ZQjR05JUkhIiH7+eZq2bftDQUF3lTFjZtWtW0+dO3dLkoHW2LzqdcmQwS1Jc2FSMRqN6tOnjzZv3qx06dKpTJkyevLkiQ4ePKjw8HD1799fPXv2NLW/fv26ateurSxZsqhChQqxPua4cePk6OiY4JrI3gAAAACSGtnb9rM3A+BxFFsId3Cwk6enm6Yu/FPXA149xUB85cicXh+9V1VBQY8UERH16g0AAAAAWDVLhHC8mq0OgC9cuFCjRo1S4cKFNXv2bHl6ekqSzpw5o3bt2unRo0dat26d8ufPL0nasmWLPvroI3Xq1EnDhg1LkprI3gAAAACSGtk7ZUrM7M0U6IngesB9XboeZOkyAAAAAACIs1WrVkmShgwZYhr8liQfHx/5+vpq4cKF2rlzp2kA/OTJk5KkokWLJn+xInsDAAAAAOKGAXAAAAAAAFKhuXPnyt/fXwULFoyx7vHjx5Ike3t707LTp09LkooVK5Y8BQIAAAAAkADWN0cbAAAAAAB4bWnSpJGPj4/ZILf0dKrzjRs3ysXFRfXq1TMtP3nypJydnXXixAm99957KleunMqXL68PP/xQx44dS+7yAQAAAACIFQPgAAAAAACkcvfv31efPn3UsGFDffTRR8qQIYOmTZumrFmzSpICAwMVEBCg0NBQffLJJ4qKilLFihXl4eGh7du3q23btlq/fr2FjwIAAAAAAKZABwAAAAAg1bt69ar8/PxMfzcYDDp//rwqV64s6b/7f3t6emratGkqXbq0JMloNGru3LkaN26chg4dqjJlypgGzRPKwcH8XH17++Q5dz+59gMAAADAsqKiDJYuAS9hb2+IkQvjiwFwAAAAAABSuXz58mn//v0yGo3as2ePvvjiC40dO1bBwcHq2bOnqlevrl27dsloNCpLliym7QwGgzp37qwDBw5oy5YtWrp0qXr37p3gOuzsDPL0dEuMQ4q3dOlcLLJfAAAAAMkrNNRed+7YJcpAKxJPVJRBdnZ2Sp/eVc7Ozq/1WAyAAwAAAACQyrm5/Tfo3KhRI2XNmlVt27bVjBkz1LFjR7m5uSlz5swv3L5WrVrasmWLTpw48Vp1REUZ9eDBY7Nl9vZ2yTI4/eBBiCIjo5J8PwAAAAAsKyzsiaKiohQZaVREBBkgpYiMNCoqKkr37z9WSEhkjPXp0rnEeeYuBsABAAAAAICZMmXKKHfu3Lp8+bIuXbqkokWLvrR9pkyZJEkhISGvvW9LdUBFRkbR+QUAAACkApGRRkuXgJdIjBMTuK4fAAAAAIBUJiQkRF999ZUGDRokozH2zh8nJydJUkREhBYvXqz+/ftry5Ytsba9evWqJL32/b8BAAAAAHhdKfYK8PDwcM2fP18rVqzQpUuX5OrqquLFi6tTp06qXr16jPYVK1bUvXv3Xvh4x48fV5o0aZKwYgAAAABIOnZ2BtnZGZJ9v1FRRkVFcXa8rXF2dtaKFSt07949tWnTRhUqVDBbf/XqVfn7+8vJyUkFCxbUjh07tGHDBoWEhKhu3bpmbY1Go1atWiVJqlatWrIdAwAAAAAkNrK3bUiRA+BGo1EDBgzQ5s2blS5dOlWpUkVPnjzR3r17tWvXLvXv3189e/Y0tb9+/bru3bunLFmyxAjt0ezsuNgdAAAAgHWyszPIw8M1zve6SkyRkVG6d+9xgoK4n99GLVu2WBcvnpck5cmTT02aNFWzZi0Tu0zEk8Fg0DvvvKOffvpJo0aN0pw5c0z3+L5586Y+/vhjRUREqFOnTnJ1dVXz5s01c+ZMbd++Xb///rvatGkjSYqKitLkyZN1/PhxFShQQA0aNLDkYQEAAABAgpG9bUeKHABftGiRNm/erMKFC2v27Nny9PSUJJ05c0bt2rXTpEmTVK9ePeXPn1+SdPr0aUlSgwYNNGzYMIvVDQAAAABJwc7OIHt7O01d+KeuB9xPtv3myJxeH71XVXZ2hniH8LVrV+n7779R374DVapUGUlGHTiwXz/8MFFBQXfVpcsHSVM04qxXr146fPiwDhw4oPr166ts2bIKDw/X8ePH9fjxY1WrVk2DBg2SJOXKlUujRo3S8OHDNWLECC1YsEB58+bVmTNndPnyZWXMmFGTJ0+Wo6OjhY8KAAAAABKG7G07UuQAePTUaUOGDDENfkuSj4+PfH19tXDhQu3cudM0AH7y5ElJUtGiRZO/WAAAAABIJtcD7uvS9SBLlxEnK1YsVZMmTfX2281Ny3LnzqvbtwP0++8LU20IT0mcnZ01e/ZszZs3T6tWrdK+ffvk4OCgggULqkWLFmrdurXs7e1N7Vu2bKl8+fJp5syZOnz4sC5evKjMmTOrQ4cO6tmzp7y8vCx4NAAAAACQOMje1i9Fzgs+d+5crVq1SuXLl4+x7vHjx5JkFsKjrwAvVqxY8hQIAAAAAHgpOzuD/v77uB48eGC2vF27Tvrpp9mSpFatfPXLLz+Zre/du7u++GKUJOnw4YOqVq2cfv11rho1qqP332+nXr266bPPhpptc/z4UVWrVk7Xrl2VJP355y69/3571a5dVe+800wzZ05TWFiYJGnSpIlq06ap2fbBwcGqXbuqdu/ekWjHby0cHR3VtWtXrV69Wn///beOHDmi33//Xe+++65Z7o5WpkwZTZs2Tfv27dOJEye0detWDR8+nMFvAAAAALAAsnfsUuQAeJo0aeTj4xMjbG/ZskUbN26Ui4uL6tWrZ1p+8uRJOTs768SJE3rvvfdUrlw5lS9fXh9++KGOHTuW3OUDAAAAQKrXrl0nnTt3Vs2bN9Tgwf00f/4cnTp1Qu7u7sqdO0+8HmvPnt366afZGjr0MzVp0lR//rlTjx8/Mq3389ug4sVLKmfOXNq7d49GjBiit99upvnzF2vgwCHaunWzxoz5TJLUpElT/fvvdR07dtS0/R9/+MnNzU2VKlVNlGMHAAAAACA5kL1jlyIHwJ91//599enTRw0bNtRHH32kDBkyaNq0acqaNaskKTAwUAEBAQoNDdUnn3yiqKgoVaxYUR4eHtq+fbvatm2r9evXW/goAAAAACB1efPNOvrpp9l6883aOn36lH76aYq6d++stm1b6vjxo/F6rPfea69cuXKrYEFv1apVV3Z29tqxY5skKTw8XFu3blGjRr6SpHnzZqlJk7fVrFkr5ciRUxUqVNLgwcO0bdsW3bjxr/LnLyBv78LatGmd6fE3blyr+vUbycEhRd4lDAAAAACAWJG9Y5fi0/3Vq1fl5+dn+rvBYND58+dVuXJlSf/d/9vT01PTpk1T6dKlJUlGo1Fz587VuHHjNHToUJUpU8Y0aJ5QDg7m5wvY2yfP+QPJtR8AAAAAlhUVZbB0CYmqcOGiGjFijIxGoy5evKC//tqtJUsWadCgflq8eEWcHydnztymP7u4uKhWrTry89ughg2b6K+//tSTJ6GqXbuuJOmff87o9OmT2rBhrWkbo9EoSbp0yV/ZsmVX48Zva8aMH9W//2AFBNzS338f1+DBw15Zh729IUYuBAAAAADAkmwteyeGFD8Ani9fPu3fv19Go1F79uzRF198obFjxyo4OFg9e/ZU9erVtWvXLhmNRmXJksW0ncFgUOfOnXXgwAFt2bJFS5cuVe/evRNch52dQZ6ebolxSPGWLp2LRfYLAAAAIHmFhtrrzh27GAOtlj4pNr77Dwi4pXnz5qhjxy7KnDmzJMnbu5C8vQupZs039d57rfT330clSXZ25icbR0ZGymB4evzR+3V1dTFr4+v7tnr37qH79+9q8+YNqlmzttKnTyfpaeBu376TGjVqEqOujBkzycHBTg0bNtLUqd9r794/deHCORUpUlSFChV64fFERRlkZ2en9Old5ezsHK/nAgAAAACApBAQcEu//jpX7dt3VqZMmWUwGJQ/fwHlz19A1arVVPv2rXX06OFYt42MjIixLE2aNGZ/b9TIV/369VRg4B35+a1XjRq15ObmLkmKijKqbduOatgwZvb28sooSXrrrQaaMuV77dmzSxcunFfhwkX0xhsFXvew4yTFD4C7uf036NyoUSNlzZpVbdu21YwZM9SxY0e5ubmZOlRiU6tWLW3ZskUnTpx4rTqioox68OCx2TJ7e7tkGZx+8CBEkZFRSb4fAAAAAJYVFvZEUVFRiow0KiIi5WSAyMioeNVjZ+eolSuXKVOmzGrXrpPZOmdnV0lS+vSecnBw1IMHwabHjoqK0r//XlPOnLkUERFlykHP77948dLKmjWb1q5doz//3K2vvppoWp8vX375+/srW7acpvZHjhzS778v1KBBQ+TomEYuLm6qXv1Nbd26Rf7+F9SsWauXHl9kpFFRUVG6f/+xQkIiY6xPl87F4icpAAAAAABSFyenNFq1arkyZ84SI3tHj69myOAlBwdHBQcHm9Y9zd7Xza74jk2pUmWUNWs2bdy4Tnv2/KmvvppoWvfGG/l1+fIl5cyZy7Ts2ezt4uKitGnTqkaNN7V9+1ZT9k4uKX4A/HllypRR7ty5dfnyZV26dElFixZ9aftMmTJJkkJCQl5735bqgIpvZxMAAAAA6xQZabR0CYnCw8ND7dp10owZPyo4OFi1a9eVq6ubLl3y15w5P6tMmXIqWbK0SpQoqT/+8FPNmrWUIYOXFi1aYBbKX6ZhwyaaO3eW0qdPr3LlKpiWt2vXUZ99NlS//PKT3nqrgW7fDtBXX41VlixZTGehS1Ljxm9ryJCPZTRKdevWj9M+U9qJCQAAAACA1MtWs3diSHED4CEhIZo0aZLu3Lmjb775RgZDzHvgOTk5SZIiIiK0ePFi/fXXX2rSpInq1q0bo+3Vq1cl6bXv/w0AAAAAlpYjc3qr2d8HH/RUzpy5tGbNSq1YsUShoaHKkiWratd+Sx07vi9J6t79Iz18+ECDBvWVs7OLfH2bqU6deqb7hr1MgwZNNGvWDLVo0Vp2dv9dfV2rVl2NHi3Nnz9LCxbMUdq06VS1anX17NnXbPty5SoofXoPFS9eUmnTpk3wcQIAAAAAbAvZ+z/Wmr1T3AC4s7OzVqxYoXv37qlNmzaqUKGC2fqrV6/K399fTk5OKliwoHbs2KENGzYoJCQkxgC40WjUqlWrJEnVqlVLtmMAAAAAgMQUFWVUZGSUPnqvarLvOzIySlFRCbsyvWHDJrHeDyxaxowZNW7cxBeuL1OmnHbvPhjruqxZs2rnzv2xrqtdu65q1455gvSzQkNDFRwcrCZNmr60HQAAAAAgdSB7x2St2TvFDYAbDAa98847+umnnzRq1CjNmTPHdI/vmzdv6uOPP1ZERIQ6deokV1dXNW/eXDNnztT27dv1+++/q02bNpKezl8/efJkHT9+XAUKFFCDBg0seVgAAAAAkGBRUUbdu/dYdnYxZ8hKjn0nNISnRA8ePNDhwwe0desWZcmSxWwKNwAAAABA6kX2TjyWzt4pbgBcknr16qXDhw/rwIEDql+/vsqWLavw8HAdP35cjx8/VrVq1TRo0CBJUq5cuTRq1CgNHz5cI0aM0IIFC5Q3b16dOXNGly9fVsaMGTV58mQ5Ojpa+KgAAAAAIOFsLQxbSmRkhL76aow8PDz1+efjYr3tFgAAAAAgdSJ7Jw5LZ+8UOQDu7Oys2bNna968eVq1apX27dsnBwcHFSxYUC1atFDr1q1lb29vat+yZUvly5dPM2fO1OHDh3Xx4kVlzpxZHTp0UM+ePeXl5WXBowEAAAAApBSenhm0ceN2S5cBAAAAAIDNsnT2TpED4JLk6Oiorl27qmvXrnFqX6ZMGU2bNi2JqwIAAAAAAAAAAAAApFR2li4AAAAAAAAAAAAAAIDEwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAWAE7O4McHOyS/T87O0OC6m3VylfVqpXTokULYl3/zTdfqlq1cvrll58S/Jy0auUbr+3j2x4AAAAAkLqQvWPfh7VlbweL7h0AAAAA8Ep2dgZ5errIzs4+2fcdFRWpoKAQRUUZ472tg4ODtm37Q+++295seUREhHbs2CqDIWEBHwAAAACAxEb2th0MgAMAAABACmdnZ5Cdnb38185USOCNZNuvi1c25WvygezsDAkK4eXKVdC+fX/p1q2bypIlq2n54cMH5ezsojRpnBOzXAAAAAAAEozsbTsYAAcAAAAAKxESeEMht65Yuow4K1y4qC5fvqRt27aYnYn+xx9+ql37LW3dutm07MSJ45ox40edPXtaDg4Oqlatpj76qL/SpUsnSQoODtb333+j3bt3yMHBUR07domxv7//Pqbp06fo9OlT8vDwUNWqNdSjx0dyc3NP+oMFAAAAANgEsrf1Z2/uAQ4AAAAASDK1atXVtm1/mP4eHh6unTu3q27deqZlp06dUJ8+Hypv3nyaPn22xowZr1OnTujjj3srKipKkvTZZ0N0+vRJjR//nb77bor+/HOXbt7874z88+fPqV+/XipfvqLmzl2okSO/0NmzpzVgQG8ZjfE/gx4AAAAAAGtB9jbHADgAAAAAIMnUrv2WTp06oVu3bkqS9u/fKw8PDxUq5GNqs2jRr8qfv6A+/vhT5cv3hsqUKadRo77UmTOntG/fX7py5ZL279+rAQM+UcmSpVWwoLdGjhwrJycn02MsXDhP5cqVV+fO3ZQrV26VLFlKo0Z9oVOnTujIkUPJftwAAAAAACQXsrc5pkC3Avb2SXeeQlSUMUH3EwAAAACAuPDxKazs2XOYpmLbutVPdevWN2tz8eJ5lS9fyWxZ/vwF5O6eVhcunFNoaIgkqXDhIqb1GTJ4KXv2HKa/nz17VteuXdFbb1WPUcPly5dUpky5xDwsAAAAAABSDLK3OQbAU7D0aZ1ljIpSunQuSbaPqKhIBQWFMAgOAAAAIMnUrv2Wtm37Q82bt9auXTs1c+Zcs/VGo1EGQ8ztjMYoOTj8F1ufzy329g5mbevVa6iOHd+P8TgeHp6veQQAAAAAAKRsZO//MACegrk5O8lgZyf/tTMVEnjj1RvEk4tXNuVr8oHs7AwMgAMAAABIMrVr19WCBXO0du0qZc+eQ3ny5DVb/8YbBXTs2FGzZefO/aNHjx4pb943lCtXbknS338fU5Uq1SRJDx8+1PXrV03t8+XLL3//C8qZM5dp2ZUrlzRlyiT16PGR3N0LJM3BAQAAAACQApC9/8MAuBUICbyhkFtXLF0GAAAAACRIwYLeypkzl2bMmKr27bvEWP/OO2310Ucf6Ntvx6tFizYKCrqrb78dr0KFvFWuXAU5ODioVq26+u67r+Xo6CgvLy9Nnz5V4eHhpsd49932+uijbvrmmy/VqtW7evz4sSZO/EqPHz9Wzpy5k/NwAQAAAABIdmTv/zAADgAAAABWwsUrm9Xur3bttzR37i+qW7dejHXFipXQhAmTNHPmdL3/fju5urqpevU31bNnb9M0bMOHj9LUqZM0cuQwRUVFqWnTFrp3L+iZxyiub7+dop9/nqauXTvIxcVZZcqU10cf9ZeTk1OiHQcAAAAAwLaRva0/exuMRiNzX8dBZGSU7t59ZLbMwcFOnp5uGjZpvS5dD3rBlglXpVQe9W5bTafmfp4kV4C7ZMmtIp0+U1DQI0VERCX64wMAAACIn/DwMAUG3pCXVzY5Ov4XHO3sDPL0dJGdnX2y1xQVFamgoJBUfdukF70u0TJkcJO9vZ0FKrM9lsjeeXN46st+jcjGAAAAQCpB9k6ZEjN7cwU4AAAAAKRwUVFGBQWFyM7OYJF9p+YADgAAAABIHcjetoMBcAAAAACwAoRhAAAAAACSFtnbNjBHGwAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAJDCGI3cbywl4fUAAAAAANtD1ktZEvP1YAAcAAAAAFIIe3t7SVJY2BMLV4JnRb8e9vYOFq4EAAAAAPC6yN4pU2Jmb9I7AAAAAKQQdnb2cnFxV3BwkCTJySmNDAaDhatKvYxGo8LCnig4OEguLu6ys+MccgAAAACwdmTvlCUpsjcD4AAAAACQgqRLl0GSTEEclufi4m56XQAAAAAA1o/snfIkZvZmABwAAAAAUhCDwaD06b2UNq2nIiMjLF1Oqmdv78CV3wAAAABgY8jeKUtiZ28GwAEAAAAgBbKzs5OdnZOlywAAAAAAwGaRvW0Tp7EDAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQ6WLgAAAAAAAMDS7O2T7hqBqCijoqKMSfb4AAAAAID/MAAOAAAAAABSrfRpnWWMilK6dC5Jto+oqEgFBYUwCA4AAAAAyYABcAAAAAAAkGq5OTvJYGcn/7UzFRJ4I9Ef38Urm/I1+UB2dgYGwAEAAAAgGTAADgAAAAAAUr2QwBsKuXXF0mUAAAAAAF5T0t3gCgAAAAAAAAAAAACAZMQV4AAAAAAApFLh4eGaP3++VqxYoUuXLsnV1VXFixdXp06dVL169Rjt79y5ox9//FG7du3SrVu3lClTJjVo0EC9evWSm5ubBY4AAAAAAABzXAEOAAAAAEAqZDQaNWDAAI0fP143b95UlSpVVLhwYe3du1fdunXTtGnTzNoHBASoTZs2+vXXX+Xs7Kw333xTUVFR+vnnn/Xee+8pODjYQkcCAAAAAMB/GAAHAAAAACAVWrRokTZv3qzChQvLz89PP/30k+bMmaOlS5fK3d1dkyZN0oULF0ztx44dq+vXr6t79+5as2aNfvjhB23atEkNGzbU2bNnNWXKFAseDQAAAAAATzEADgAAAABAKrRq1SpJ0pAhQ+Tp6Wla7uPjI19fXxmNRu3cuVOSdOXKFW3evFnZsmVT3759TW2dnJw0ZswYubm5afHixQoNDU3egwAAAAAA4DkMgAMAAAAAkArNnTtXq1atUvny5WOse/z4sSTJ3t5ekrRz505FRUWpZs2acnR0NGubNm1aVapUSY8fP9a+ffuSvnAAAAAAAF6CAXAAAAAAAFKhNGnSyMfHxzTIHW3Lli3auHGjXFxcVK9ePUnSP//8I0kqVKhQrI9VoEABs3YAAAAAAFiKg6ULAAAAAAAAlnX//n0NHz5c58+f18WLF5UtWzaNGzdOWbNmlSTdvn1bkpQpU6ZYt49efufOneQpGAAAAACAF2AAHAAAAACAVO7q1avy8/Mz/d1gMOj8+fOqXLmypP+mRHd2do51++jl0e1eh4OD+WR19va2MXmdrRwHAAAAAKR0DIADAAAAAJDK5cuXT/v375fRaNSePXv0xRdfaOzYsQoODlbPnj1N06QbDIZYtzcajWb/Tyg7O4M8Pd1e6zFSqnTpXCxdAgAAAACkCgyAAwAAAACQyrm5/Tfo3KhRI2XNmlVt27bVjBkz1LFjR7m6ukqSnjx5Euv20ctdXF5vkDcqyqgHD8yvIre3t7OJweMHD0IUGRll6TIAAAAAwCqlS+cS55m1GAAHAAAAAABmypQpo9y5c+vy5cu6dOmSMmfOLOm/e4E/71X3CI+PiAjbHCSOjIyy2WMDAAAAgJQkxQ6Ah4eHa/78+VqxYoUuXbokV1dXFS9eXJ06dVL16tVjtL9z545+/PFH7dq1S7du3VKmTJnUoEED9erVy+xMdgAAAAAAUruQkBBNmjRJd+7c0TfffBPr1OZOTk6SpIiICBUqVEiSdOHChVgf79y5c5Ikb2/vJKoYAAAAAIC4idt14snMaDRqwIABGj9+vG7evKkqVaqocOHC2rt3r7p166Zp06aZtQ8ICFCbNm3066+/ytnZWW+++aaioqL0888/67333lNwcLCFjgQAAAAAgJTH2dlZK1as0Jo1a3TgwIEY669evSp/f385OTmpYMGCphPRt23bpsjISLO2Dx8+1L59++Tq6qqyZcsmS/0AAAAAALxIihwAX7RokTZv3qzChQvLz89PP/30k+bMmaOlS5fK3d1dkyZNMjvrfOzYsbp+/bq6d++uNWvW6IcfftCmTZvUsGFDnT17VlOmTLHg0QAAAAAAkLIYDAa98847kqRRo0YpICDAtO7mzZv6+OOPFRERoffee0+urq7KkSOHatWqpWvXrumbb76R0WiUJIWFhemzzz7To0eP9O6778rd3d0ixwMAAAAAQLQUOQX6qlWrJElDhgyRp6enabmPj498fX21cOFC7dy5U/nz59eVK1e0efNmZcuWTX379jW1dXJy0pgxY7Rz504tXrxY/fv3l7Ozc7IfCwAAAAAAKVGvXr10+PBhHThwQPXr11fZsmUVHh6u48eP6/Hjx6pWrZoGDRpkaj9ixAidPHlSs2fP1o4dO1SwYEH9/fff+vfff1W0aFH17t3bgkcDAAAAAMBTKfIK8Llz52rVqlUqX758jHWPHz+WJNnb20uSdu7cqaioKNWsWVOOjo5mbdOmTatKlSrp8ePH2rdvX9IXDgAAAACAlXB2dtbs2bP1ySefKFeuXNq3b5+OHz+uggULavTo0ZoxY4bpPuCSlCNHDi1dulStW7fWw4cPtW3bNjk5OalHjx6aN2+e3NzcLHg0AAAAAAA8lSKvAE+TJo18fHxiLN+yZYs2btwoFxcX1atXT5L0zz//SJIKFSoU62MVKFDg/9i78zi75vt/4K87k2WSELITW2pv7aGiRVFaaiu1V6laohTF1xYNpSJatNqitIJK7EtCKZWEpNZaU7HFEkWEhpBIJBNZZn5/+CVtmoRJZrkz9z6fj0cf5ZzPPff9ce/M3Nd9n/M5eeCBB/Lqq69mu+22a7yiAQAAoIVp3bp1jjjiiBxxxBF1Gt+jR48MGDCgkasCAACAZdcsG+D/7eOPP07//v3z+uuv54033sjKK6+cCy64ICuttFKS5IMPPkiSdOvWbbGPn7998uTJTVMwAAAAAAAAAEXR7BvgEyZMyPDhwxf8e6FQyOuvv56vfe1rSf6zJPqS7u89f/v8cfXRqtXCK8ZXVjbLFeSXWqnMAwAAAAAAAChvzb4B/qUvfSlPPvlkamtr89hjj+X888/PgAED8sknn+SYY45ZcC/wQqGw2MfX1tYu9P/LqqKikE6dSvN+Zh07tit2CQAAAAAAAAD11uwb4B06/KfpvOuuu2allVbK97///fzpT3/KoYcemvbt2ydJPv3008U+fv72du3q1+StqanNtGkLX0VeWVlREs3jadOqM29eTbHLAAAAaJE6dmxnZS0AAABoJpp9A/x/9e7dO6uvvnreeuutvPnmm+nevXuS/9wL/H990T3Cl8bcuaXZJJ43r6Zk5wYAAAAAAACUj2Z3inp1dXV++ctf5pRTTlnisuVt2rRJksydOzfrrrtukmT8+PGLHfvaa68lSdZbb71GqBYAAAAAAACA5qLZNcCrqqoybNiw3H333XnqqacW2T9hwoT861//Sps2bbLOOutk2223TZKMGjUq8+bNW2js9OnT88QTT6R9+/bZfPPNm6R+AAAAAAAAAIqj2TXAC4VCDjjggCTJOeeck/fff3/Bvn//+985+eSTM3fu3Bx00EFp3759Vlllleywww555513ctFFFy24anz27Nk5++yzM2PGjBx44IFZbrnlijIfAAAAAAAAAJpGs7wH+LHHHptnn302Tz31VHbeeedsvvnmmTNnTsaOHZuZM2dmm222ySmnnLJg/FlnnZUXX3wx1157bf7+979nnXXWyfPPP5933303G2ywQY477rgizgYAAAAAAACAptDsrgBPPlsG/dprr81pp52W1VZbLU888UTGjh2bddZZJ+eee27+9Kc/LbgPeJKsssoquf3227Pffvtl+vTpGTVqVNq0aZMf//jHGTx4cDp06FDE2QAAAAAAAADQFJrlFeBJ0rp16xxxxBE54ogj6jS+R48eGTBgQCNXBQAAAAAAAEBz1SyvAAcAAAAAAACApaUBDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFXsAgAAAAD4j4qKQioqCo12/Jqa2tTU1Dba8QEAAIpJAxwAAACgmaioKGTFFdunsrLxFu2bN68mU6fO1AQHAABKkgY4AAAAQDNRUVFIZWVFLr/p0Ux8/+MGP/4q3VfITw7aOhUVBQ1wAACgJGmAAwAAADQzE9//OG9OnFLsMgAAAFqcxltPCwAAAAAAAACakAY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEloVuwBaloqKQioqCo12/Jqa2tTU1Dba8QEAAAAAAIDSpQFOnVVUFLLiiu1TWdl4CwfMm1eTqVNnaoIDAAAAAAAAS00DnDqrqCiksrIil9/0aCa+/3GDH3+V7ivkJwdtnYqKggY4AAAAAAAAsNQ0wFlqE9//OG9OnFLsMgAAAAAAAAAW0nhrWQMAAAAAAABAE9IABwAAAAAAAKAkWAIdAAAAylRNTU1uu+22DB06NK+99lrmzJmTnj17ZqeddsrRRx+djh07LjS+T58+mTp16hKPN3bs2LRt27aRqwYAAIAl0wAHAACAMlRTU5MTTjghI0aMSFVVVTbeeOO0b98+Y8eOzaBBgzJixIjceOON6dq1a5Jk4sSJmTp1anr06JEtt9xyscesqLDQHAAAAMWlAQ4AAABl6I477siIESPSq1evDBo0KKuttlqS5JNPPskpp5ySUaNGZcCAAfntb3+bJHn55ZeTJLvsskvOPPPMYpUNAAAAn8up2QAAAFCG7rjjjiTJGWecsaD5nSTLLbdcBg4cmEKhkJEjR2bWrFlJkhdffDFJssEGGzR9sQAAAFBHGuAAAABQhlZcccWsueaa2XTTTRfZ17lz56ywwgqZM2dOpkyZkuQ/V4BvuOGGTVkmAAAALBVLoAMAAEAZuvLKK5e4b8KECZk6dWpat26dzp07J/nsCvCqqqq88MIL6d+/f1577bUUCoX07t07xx57bDbZZJOmKp0GUFnZuNdE1NTUpqamtlGfAwAAYHE0wAEAAICFzL/v9/bbb5+2bdvmww8/zPvvv58kOe2007LpppumT58+efXVVzN69Og88sgjueiii7LrrrsWsWrqYoXlq1JbU5OOHds16vPU1MzLlCnVmuAAAECT0wAHAAAAFhgyZEjuueeetGvXLieddFKS/9z/u1OnTrniiiuy2WabJUlqa2tz3XXX5YILLki/fv3Su3fvrLTSSvV6/latFr4yubGvVG4qdZ1HY8+3Q1WbFCoq8q97rkr1h+81ynO067JyvrT7UWndujLz5tU0ynMAAAAsiQY4AAAAkCQZPHhwBg4cmEKhkPPPPz9rrbVWkmTbbbfNww8/nNra2vTo0WPB+EKhkMMOOyxPPfVURo4cmdtvvz3HHXfcMj9/RUUhnTp1qPc8mqPGvuJ6aVV/+F6qJ73dqM/R3OYMAACUBw1wAAAAKHO1tbW5+OKLM2jQoFRWVub888/PbrvttmB/oVBI9+7dl/j4HXbYISNHjswLL7xQrzpqamozbdrMhbZVVlaURCN12rTqOl0NXSrzTeo+ZwAAgC/SsWO7Oq+Y1Wwb4DU1NbntttsydOjQvPbaa5kzZ0569uyZnXbaKUcffXQ6duy40Pg+ffpk6tSpSzze2LFj07Zt20auGgAAAFqWWbNm5dRTT83w4cNTVVWVX//619lpp52W6hjdunVLklRXV9e7nrlzS7NhOm9eTcnObUnKcc4AAEDxNcsGeE1NTU444YSMGDEiVVVV2XjjjdO+ffuMHTs2gwYNyogRI3LjjTema9euSZKJEydm6tSp6dGjR7bccsvFHrOiojTuGQYAAAAN5ZNPPsmRRx6ZMWPGpEuXLrniiiuyySabLDLulltuyeOPP57dd999sc3xCRMmJEm97/8NAAAA9dUsG+B33HFHRowYkV69emXQoEFZbbXVknwWzE855ZSMGjUqAwYMyG9/+9skycsvv5wk2WWXXXLmmWcWq2wAAABoMebMmZO+fftmzJgxWWONNXL11VcvyN//a9KkSbnvvvtSXV29SAO8trY2d911V5Jkm222afS6AQAA4PM0y8ui77jjjiTJGWecsVD4Xm655TJw4MAUCoWMHDkys2bNSpK8+OKLSZINNtig6YsFAACAFuiyyy7LM888k27dumXIkCFLbH4nyd577502bdpk9OjRufXWWxdsr6mpye9///uMHTs2a6+9dnbZZZemKB0AAACWqFleAb7iiitmzTXXzKabbrrIvs6dO2eFFVbI1KlTM2XKlKy88soLrgDfcMMNm7hSAAAAaHk+/vjjXHfddUmSLl265KKLLlri2Pknp59zzjnp379/zjrrrFx//fXp1atXxo0bl7feeitdu3bNpZdemtatWzfVFGCpVFQUUlFRaLTj19TUpqamttGODwAA1F2zbIBfeeWVS9w3YcKETJ06Na1bt07nzp2TfHYFeFVVVV544YX0798/r732WgqFQnr37p1jjz12sfcvg+ZCCAcAAJrac889l+rq6iTJuHHjMm7cuCWOPf7449O1a9fss88++dKXvpSrrroqzz77bN5444107949hxxySI455ph06dKlqcqHpVJRUUinTu1SUVHZaM9RUzMvU6ZUy98AANAMNMsG+OeZf9/v7bffPm3bts2HH36Y999/P0ly2mmnZdNNN02fPn3y6quvZvTo0XnkkUdy0UUXZddddy1i1bB4QjgAAFAM3/jGN/LKK68s9eN69+6dK664ohEqgsbz2YnnlfnXPVel+sP3Gvz47bqsnC/tflQqKgqyNwAANAMtqgE+ZMiQ3HPPPWnXrl1OOumkJP+5/3enTp1yxRVXZLPNNkuS1NbW5rrrrssFF1yQfv36pXfv3llppZXq9fytWi18y/TKymZ5C/WlVtd5NNV8S+W/a11UVlY0SQhv3boy8+bVNPjxAQAAoKWo/vC9VE96u9hlAAAAjazFNMAHDx6cgQMHplAo5Pzzz89aa62VJNl2223z8MMPp7a2Nj169FgwvlAo5LDDDstTTz2VkSNH5vbbb89xxx23zM//2ZW6Heo9j+aoY8d2xS5hIc2tnqbQ2CG8HP+bAgAAAAAAUH6afQO8trY2F198cQYNGpTKysqcf/752W233RbsLxQK6d69+xIfv8MOO2TkyJF54YUX6lVHTU1tpk2budC2ysqKkmgsTptWXaerg5tqvnWtpxT4bwoAAC1fx47tymolKwAAAGjOmnUDfNasWTn11FMzfPjwVFVV5de//nV22mmnpTpGt27dkiTV1dX1rmfu3NJsIM6bV1Oyc1ucmprasrsnV7m9xgAAAAAAAJSnZtsA/+STT3LkkUdmzJgx6dKlS6644opssskmi4y75ZZb8vjjj2f33XdfbHN8woQJSVLv+3/T+FZYviq1NTWNfkV0Tc28TJlSXXZNcAAAAAAAACh1zbIBPmfOnPTt2zdjxozJGmuskauvvjqrrbbaYsdOmjQp9913X6qrqxdpgNfW1uauu+5KkmyzzTaNXjf106GqTQoVFfnXPVel+sP3GuU52nVZOV/a/ahUVBQ0wAEAAAAAAKDENMsG+GWXXZZnnnkm3bp1y5AhQ9KjR48ljt17771z1VVXZfTo0bn11luz//77J0lqampy6aWXZuzYsVl77bWzyy67NFX51FP1h++letLbxS4DAAAAAAAAaGGaXQP8448/znXXXZck6dKlSy666KIljj3jjDOy2mqr5Zxzzkn//v1z1lln5frrr0+vXr0ybty4vPXWW+natWsuvfTStG7duqmmAAAAAAAAAEARNLsG+HPPPZfq6uokybhx4zJu3Lgljj3++OPTtWvX7LPPPvnSl76Uq666Ks8++2zeeOONdO/ePYccckiOOeaYdOnSpanKBwAAAAAAAKBIml0D/Bvf+EZeeeWVpX5c7969c8UVVzRCRQAAAAAAAAC0BBXFLgAAAAAAAAAAGoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASahXA/zOO+/MM88884XjHnjggfz+97+vz1MBAABAWZK9AQAAoO7q1QA/44wzcuutt37huLvuuivXXnttfZ4KAAAAypLsDQAAAHXXamkG33nnnZk7d+5C2956663cfvvtS3zMJ598kscffzytW7detgoBAACgjMjelKOKikIqKgqNcuzKSncABACAcrJUDfAXX3wxQ4YMSaHwWSApFAp57rnn8txzz33u42pra7P33nsve5VQREI4AADQlGRvyk1FRSErrtheRgYAABrEUjXATzjhhHzyyScL/n3YsGFZffXVs/nmmy/xMW3btk2vXr1y0EEHLXuVUCRCOAAA0NRkb8pNRUUhlZUVufymRzPx/Y8b/PibrNczB+yyaYMfFwAAaJ6WqgG+/PLL54ILLljw78OGDcumm2660DYoJUI4AADQ1GRvytXE9z/OmxOnNPhxe3br2ODHBAAAmq+laoD/r3HjxjVUHdCsCeEAAECxyN4AAABQd/VqgP+3Dz/8MNXV1amtrV3imNVWW62hng4AAADKjuwNAAAAn6/eDfA///nPueqqq/LRRx997rhCoZCXXnqpvk8HAAAAZaexsndNTU1uu+22DB06NK+99lrmzJmTnj17ZqeddsrRRx+djh0XXrVq8uTJ+cMf/pCHH344kyZNSrdu3bLLLrvk2GOPTYcOHZZpbgAAANCQ6tUAHzp0aH75y18mSdq0aZNOnTqlsrKyQQoDAAAAGi9719TU5IQTTsiIESNSVVWVjTfeOO3bt8/YsWMzaNCgjBgxIjfeeGO6du2aJHn//fdz4IEHZuLEiVl33XWz/fbb5/nnn8+gQYPy8MMP58Ybb8xyyy1X77oAAACgPurVAL/++utTKBTSv3//7L///mndunVD1QUAAACk8bL3HXfckREjRqRXr14ZNGjQgqXTP/nkk5xyyikZNWpUBgwYkN/+9rdJkgEDBmTixInp27dv/u///i9JMnv27Jx22mm57777ctlll+WMM85okNoAAABgWVXU58Hjx4/PpptumoMPPljzGwAAABpBY2XvO+64I0lyxhlnLHTf8OWWWy4DBw5MoVDIyJEjM2vWrLz99tsZMWJEVl555ZxwwgkLxrZp0ybnnXdeOnTokFtuuSWzZs1qsPoAAABgWdSrAd6uXbt06tSpoWoBAAAA/kdjZe8VV1wxa665ZjbddNNF9nXu3DkrrLBC5syZkylTpuShhx5KTU1Ntttuu0Wa8Msvv3y22mqrzJw5M0888USD1wkAAABLo14N8C233DJjx45NdXV1Q9UDAAAA/JfGyt5XXnll7rvvvsU21ydMmJCpU6emdevW6dy5c1599dUkybrrrrvYY6299tpJsmAcAAAAFEu9GuAnnXRSqqurc+aZZ+bjjz9uqJoAAACA/68Y2Xv+fb+33377tG3bNh988EGSpFu3bosdP3/75MmTm6Q+AAAAWJJW9XnwzTffnI033jh/+9vfMmLEiPTq1SsdO3ZMoVBYZGyhUMj1119f52PX1NTktttuy9ChQ/Paa69lzpw56dmzZ3baaaccffTR6dix40LjJ0+enD/84Q95+OGHM2nSpHTr1i277LJLjj322HTo0KE+0wQAAICiaczsvThDhgzJPffck3bt2uWkk05KksycOTNJUlVVtdjHzN8+f1x9tGq18Ln6lZX1One/2ajrPEplvkn5zblU5gEAAC1dvRrg11133YJ/njt3bl5//fUljl1cMF+SmpqanHDCCRkxYkSqqqqy8cYbp3379hk7dmwGDRqUESNG5MYbb0zXrl2TJO+//34OPPDATJw4Meuuu2623377PP/88xk0aFAefvjh3HjjjVluueWWfaIAAABQJI2VvRdn8ODBGThwYAqFQs4///ystdZaSZLKysrPPX5tbe1C/7+sKioK6dSpNE9i79ixXbFLaHLlNudymy8AADRX9WqADx48uKHqWMgdd9yx4Kz2QYMGZbXVVkuSfPLJJznllFMyatSoDBgwYMGSbAMGDMjEiRPTt2/f/N///V+SZPbs2TnttNNy33335bLLLssZZ5zRKLUCAABAY2qs7P3famtrc/HFF2fQoEGprKzM+eefn912223B/vbt2ydJPv3008U+fv72du3q1wCsqanNtGkLX0VeWVlREo3FadOqM29ezReOK5X5JuU357rOFwAAWHodO7ar86pL9WqAb7nllvV5+BLdcccdSZIzzjhjQfM7SZZbbrkMHDgwX//61zNy5MjMmjUr77//fkaMGJGVV145J5xwwoKxbdq0yXnnnZeHHnoot9xyS0488cQlLtUGAAAAzVVjZe/5Zs2alVNPPTXDhw9PVVVVfv3rX2ennXZaaEz37t2TZMG9wP/XF90jfGnMnVuaDcR582pKdm5LUm5zLrf5AgBAc9VgNyeaM2dOxo4dm/vvvz/PPPNMkuTdd99dpmOtuOKKWXPNNbPpppsusq9z585ZYYUVMmfOnEyZMiUPPfRQampqst1226V169YLjV1++eWz1VZbZebMmXniiSeWqRYAAABoLhoyeyefrbR22GGHZfjw4enSpUsGDx68SPM7SdZdd90kyfjx4xd7nNdeey1Jst566y1zLQAAANAQ6t0Anzt3bn73u99l6623zgEHHJATTzwxt9xyS5Lk9NNPz/e+97289dZbS3XMK6+8Mvfdd186deq0yL4JEyZk6tSpad26dTp37pxXX301yX/C+P9ae+21k2TBOAAAAGhpGiN7z5kzJ3379s2YMWOyxhpr5JZbbskmm2yy2LHbbrttkmTUqFGZN2/eQvumT5+eJ554Iu3bt8/mm2++DLMDAACAhlOvBvjcuXNz9NFH58orr0x1dXU23HDD1NbWLtg/Y8aMvPTSSzn44IMzefLkehebZMF9v7fffvu0bdv2C5dZm7+9oZ4fAAAAmlJjZe/LLrsszzzzTLp165YhQ4YsdAuy/7XKKqtkhx12yDvvvJOLLrpowfPPnj07Z599dmbMmJEDDzwwyy233LJPFAAAABpAve4BfsMNN+TRRx/NNttsk4EDB6Z79+5Zf/31F+y/8cYbc8455+TOO+/M1VdfndNPP71exQ4ZMiT33HNP2rVrl5NOOilJMnPmzCRZ4v2952+fP64+WrVa+HyBut5ovbmr6zxKZb5J+c25VOYBAADlqDGy98cff5zrrrsuSdKlS5dcdNFFSxx7xhlnpGvXrjnrrLPy4osv5tprr83f//73rLPOOnn++efz7rvvZoMNNshxxx1X/8kCAABAPdWrAT5s2LCsuOKK+d3vfpcOHTossr+qqirnnXdeHnvssTz00EP1aoAPHjw4AwcOTKFQyPnnn5+11lorSVJZWZkkKRQKi33c/LPS//vs+GVRUVFIp06LzrEUdOzYrtglNLlym3O5zRcAAEpJY2Tv5557LtXV1UmScePGZdy4cUsce/zxx6dr165ZZZVVcvvtt+fSSy/N6NGjM2rUqPTs2TM//vGPc9RRRy22NgAAAGhq9WqAv/nmm9lmm20+N+S2bt06G2+8cR599NFleo7a2tpcfPHFGTRoUCorK3P++ednt912W7C/ffv2SZJPP/10sY+fv71du/o1AGtqajNt2sJXkVdWVpREY3HatOrMm1fzheNKZb5J+c25rvMFAACWXseO7Rp11aXGyN7f+MY38sorryx1LT169MiAAQOW+nEAAADQVOrVAG/VqlWmTZv2heOmTp2aVq2W/qlmzZqVU089NcOHD09VVVV+/etfZ6eddlpoTPfu3ZNkwb3A/9cX3SN8acydW5oNxHnzakp2bktSbnMut/kCAEApaezsDQAAAKWkXqeof/nLX87zzz+fiRMnLnHMhAkT8vzzzy90f7K6+OSTT3LYYYdl+PDh6dKlSwYPHrxI8ztJ1l133STJ+PHjF3uc1157LUmy3nrrLdXzAwAAQHPQmNkbAAAASk29GuAHHXRQqqurc+yxx+all15aZP8rr7yS448/PrNnz86+++5b5+POmTMnffv2zZgxY7LGGmvklltuySabbLLYsdtuu22SZNSoUZk3b95C+6ZPn54nnngi7du3z+abb74UMwMAAIDmobGyNwAAAJSieq2Ntuuuu+axxx7L7bffnn322SfLL798CoVCHn744Wy//faZNGlSamtrs9tuu+W73/1unY972WWX5Zlnnkm3bt0yZMiQ9OjRY4ljV1llleywww4ZNWpULrroopx++ukpFAqZPXt2zj777MyYMSOHH354lltuufpMFQAAAIqisbI3AAAAlKJ63xxswIAB2XTTTXP11VfnX//6V5JkypQpSZKePXvmhz/8YQ499NA6H+/jjz/OddddlyTp0qVLLrrooiWOPeOMM9K1a9ecddZZefHFF3Pttdfm73//e9ZZZ508//zzeffdd7PBBhvkuOOOq8cMAQAAoLgaOnsDAABAqap3AzxJ9t133+y777754IMP8t5776WmpibdunXLKqusstTHeu6551JdXZ0kGTduXMaNG7fEsccff3y6du2aVVZZJbfffnsuvfTSjB49OqNGjUrPnj3z4x//OEcddVQ6dOiwzHMDAACA5qAhszcAAACUqgZpgE+ZMiWvvfZattxyy3Tr1i1J8vrrr+eGG27It7/97QXb6uIb3/hGXnnllaWuoUePHhkwYMBSPw4AAABagobM3gAAAFCqKup7gFtvvTXf+MY38stf/nKh7c8991zOO++87Lzzzrn33nvr+zQAAABQtmRvAAAAqJt6NcAfffTRnH322WnVqlW22mqrhfZtvvnmOeKII1JbW5tTTjkl//jHP+pVKAAAAJQj2RsAAADqrl4N8EGDBqVVq1YZPHhwTjvttIX29erVK6eeemoGDx6cQqGQq666ql6FAgAAQDmSvQEAAKDu6tUAf/XVV9OnT59stNFGSxyz0UYbZfPNN88///nP+jwVAAAAlCXZGwAAAOquXg3w6urqtGvX7gvHrbjiipk7d259ngoAAADKkuwNAAAAdVevBnivXr3y1FNP5ZNPPlnimE8//TTPPPNMVl999fo8FQAAAJQl2RsAAADqrl4N8D333DMff/xxTjjhhEyePHmR/VOmTMnJJ5+cjz76KHvssUd9ngoAAADKkuwNAAAAddeqPg8++OCDc++99+axxx7L9ttvnw033DArr7xykuTf//53XnzxxcyePTsbb7xxDjvssIaoFwAAAMqK7A0AAAB1V68GeOvWrXPttdfmkksuydChQ/PPf/4z//znPxfsb9u2bQ466KCceuqpadOmTX1rBQAAgLIjewMAAEDd1asBniQdOnRI//79c9ppp+WFF17IBx98kHnz5qVbt27ZYIMN0r59+4aoEwAAAMqW7A0AAAB1U68G+KGHHppevXrlF7/4Rdq0aZPevXs3VF0AAABAZG8AAABYGvVqgI8dOzYVFRUNVQsAAADwP2RvAAAAqLt6JegOHTqktra2oWoBAAAA/ofsDQAAAHVXrwb4MccckyeffDLXXHNNZs+e3VA1AQAAAP+f7A0AAAB1V68l0CdMmJA11lgjF110UX7zm99kjTXWSMeOHRe7NFuhUMj1119fn6cDAACAsiN7AwAAQN3VqwF+3XXXLfjnuXPnZvz48UscWygU6vNUAAAAUJZkbwAAAKi7ejXABw8e3FB1AAAAAIshewMAAEDd1asBvuWWWzZUHQAAAMBiyN4AAABQd/VqgP+3OXPm5OWXX857772Xrl27ZvPNN8+7776bnj17NtRTAAAAQFmTvQEAAODz1bsBPnfu3Fx++eW54YYbMn369CTJHnvskc033zynn356ZsyYkUsuuSRrrLFGvYsFAACAciR7AwAAQN1U1OfBc+fOzdFHH50rr7wy1dXV2XDDDVNbW7tg/4wZM/LSSy/l4IMPzuTJk+tdLAAAAJQb2RsAAADqrl4N8BtuuCGPPvpott566zzwwAO57bbbFtp/4403Zq+99srkyZNz9dVX16tQAAAAKEeyNwAAANRdvRrgw4YNy4orrpjf/e536d69+yL7q6qqct5556V79+556KGH6vNUAAAAUJZkbwAAAKi7ejXA33zzzWyxxRbp0KHDEse0bt06G2+8cd599936PBUAAACUJdkbAAAA6q5eDfBWrVpl2rRpXzhu6tSpadWqVX2eCgAAAMqS7A0AAAB1V68G+Je//OU8//zzmThx4hLHTJgwIc8//3zWX3/9+jwVAAAAlCXZGwAAAOquXg3wgw46KNXV1Tn22GPz0ksvLbL/lVdeyfHHH5/Zs2dn3333rc9TAQAAQFmSvQEAAKDu6rU22q677prHHnsst99+e/bZZ58sv/zyKRQKefjhh7P99ttn0qRJqa2tzW677Zbvfve7DVUzAAAAlA3ZGwAAAOqu3jcHGzBgQDbddNNcffXV+de//pUkmTJlSpKkZ8+e+eEPf5hDDz20vk8DAAAAZUv2BgAAgLqpdwM8Sfbdd9/su++++eCDD/Lee++lpqYm3bp1yyqrrNIQhwcAAICyJ3sDAADAF1vqBvi8efNy4403Zvjw4Zk8eXJ69uyZPfbYI3vttVe6deuWbt26NUadAAAAUDZkbwAAAFg2S9UAnz17do444og8/fTTqa2tTZL861//ymOPPZZRo0bld7/7XaMUCQAAAOVC9gYAAIBlt1QN8JtvvjlPPfVUevTokaOOOiqrrbZaXn311QwaNCjDhw/PXXfdle9+97uNVSsAAACUPNkbAAAAlt1SNcD/9re/paqqKjfddFN69uyZJNluu+2y7bbbZu+9985f//pXIRwAAADqQfYGAACAZVexNIPHjx+fLbbYYkEAn2/99dfPBhtskHHjxjVocQAAAFBuZG8AAABYdkvVAJ8xY0ZWWGGFxe5bddVVM3Xq1IaoCQAAAMqW7A0AAADLbqka4HPnzk1lZeVi97Vu3Tpz5sxpkKIAAACgXMneAAAAsOyWqgEOAAAAAAAAAM2VBjgAAAAAAAAAJUEDHAAAAAAAAICS0GppHzBy5MjsuOOOi2yfMmVKkix2X5IUCoWMHDlyaZ8OAAAAyo7sDQAAAMtmqRvgM2fOzMyZM5e4f+LEiYvdXigUlvapAAAAoCzJ3gAAALBslqoBPnjw4MaqAwAAAIjsDQAAAPWxVA3wLbfcsrHqAAAAACJ7AwAAQH1UFLsAAAAAAAAAAGgIGuAAAAAAAAAAlISlWgIdAAAAKF133nlnTj/99Fx77bX5+te/vsj+Pn36ZOrUqUt8/NixY9O2bdtGrBAAAAA+nwY4AAAAkLFjx+a8885b4v6JEydm6tSp6dGjxxLvU15RYaE5AAAAiksDHAAAAMrcgw8+mNNPPz2ffPLJEse8/PLLSZJddtklZ555ZlOVBgAAAEtFAxwAAADK1KRJk/Lb3/42w4YNS1VVVbp27ZrJkycvduyLL76YJNlggw2askQAAABYKtYmAwAAgDJ1ySWXZOjQodlggw1yyy23ZM0111zi2PlXgG+44YZNVR4AAAAsNVeAAwAAQJlac80186tf/Sp77rnnF96/+8UXX0xVVVVeeOGF9O/fP6+99loKhUJ69+6dY489NptsskkTVQ0AAABL1mKuAL/zzjuz3nrr5bHHHlvs/j59+mS99dZb4v8+/fTTJq4YAAAAmre+fftmr732+sLm94cffpj3338/s2bNymmnnZaampr06dMnK664YkaPHp3vf//7uffee5uoagAAAFiyFnEF+NixY3Peeectcf/EiRMzderU9OjRI1tuueVix3xRmAcAAAAWb/79vzt16pQrrrgim222WZKktrY21113XS644IL069cvvXv3zkorrVSv52rVauH8XllZGnm+rvMolfkm5TfnUpkHAAC0dM2+Af7ggw/m9NNPzyeffLLEMfPvQ7bLLrvkzDPPbKrSAAAAoCxsu+22efjhh1NbW5sePXos2F4oFHLYYYflqaeeysiRI3P77bfnuOOOW+bnqagopFOnDg1RcrPTsWO7YpfQ5MptzuU2XwAAaK6abQN80qRJ+e1vf5thw4alqqoqXbt2zeTJkxc7dv6Z6BtssEFTlggAAABloVAopHv37kvcv8MOO2TkyJF54YUX6vU8NTW1mTZt5kLbKisrSqKxOG1adebNq/nCcaUy36T85lzX+QIAAEuvY8d2dV51qdk2wC+55JIMGzYsG264YQYOHJgBAwYssQE+/wrwDTfcsClLBAAAAJJ069YtSVJdXV3vY82dW5oNxHnzakp2bktSbnMut/kCAEBz1Wwb4GuuuWZ+9atfZc899/zC+3e/+OKLqaqqygsvvJD+/fvntddeS6FQSO/evXPsscdmk002aaKqAQAAoPTccsstefzxx7P77rtnp512WmT/hAkTkqTe9/8GAACA+qrbdeJF0Ldv3+y1115f2Pz+8MMP8/7772fWrFk57bTTUlNTkz59+mTFFVfM6NGj8/3vfz/33ntvE1UNAAAApWfSpEm57777ctttty2yr7a2NnfddVeSZJtttmnq0gAAAGAhzfYK8Lqaf//vTp065Yorrshmm22W5LMAft111+WCCy5Iv3790rt373qfid6q1cLN+LquM9/c1XUepTLfpPzmXCrzAAAAimPvvffOVVddldGjR+fWW2/N/vvvnySpqanJpZdemrFjx2bttdfOLrvsUuRKAQAAKHctvgG+7bbb5uGHH05tbW169OixYHuhUMhhhx2Wp556KiNHjsztt9+e4447bpmfp6KikE6dOjREyc1Ox47til1Ckyu3OZfbfAEAgIa12mqr5Zxzzkn//v1z1lln5frrr0+vXr0ybty4vPXWW+natWsuvfTStG7dutilAgAAUOZafAO8UCike/fuS9y/ww47ZOTIkXnhhRfq9Tw1NbWZNm3mQtsqKytKorE4bVp15s2r+cJxpTLfpPzmXNf5AgAAS69jx3ZlserSPvvsky996Uu56qqr8uyzz+aNN95I9+7dc8ghh+SYY45Jly5dil0iAAAAtPwG+Bfp1q1bkqS6urrex5o7tzQbiPPm1ZTs3Jak3OZcbvMFAACWzZAhQz53f+/evXPFFVc0UTUAAACw9Fr8Keq33HJLTjzxxIwcOXKx+ydMmJAk9b7/NwAAAAAAAADNW4u/AnzSpEm57777Ul1dnZ122mmhfbW1tbnrrruSJNtss00xygMAAAAAAACgibT4K8D33nvvtGnTJqNHj86tt966YHtNTU1+//vfZ+zYsVl77bWzyy67FLFKAAAAAAAAABpbi78CfLXVVss555yT/v3756yzzsr111+fXr16Zdy4cXnrrbfStWvXXHrppWndunWxSwUAAAAAAACgEbX4K8CTZJ999skNN9yQb37zm5k0aVIefPDBzJ07N4ccckj+8pe/ZM011yx2iQAAAAAAAAA0shZzBfiQIUM+d3/v3r1zxRVXNFE1AAAAAAAAADQ3JXEFOAAAAAAAAABogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KnYBAAAAAEDDqqgopKKi0GjHr6mpTU1NbaMdHwAAlpUGOAAAAACUkIqKQjp1apeKispGe46amnmZMqVaExwAgGZHAxwAAAAASshnV39X5l/3XJXqD99r8OO367JyvrT7UamoKGiAAwDQ7GiAAwAAAEAJqv7wvVRPervYZQAAQJOqKHYBAAAAAAAAANAQXAEONLnPlmIrNNrxa2pqLcEGAAAAAABQhjTAgSZVUVFIp07tUlFR2WjPUVMzL1OmVGuCAwAAAAAAlBkNcKBJfXb1d2X+dc9Vqf7wvQY/frsuK+dLux+VioqCBjgAAAAAAECZ0QAHiqL6w/dSPentYpcBAAAAAABACakodgEAAAAAAAAA0BA0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAloVWxCwCal4qKQioqCo12/MpK590AAAAAAADQODTAgQUqKgpZccX2mtQAAAAAAAC0SBrgwAIVFYVUVlbk8psezcT3P26U59hkvZ45YJdNG+XYAAAAAAAAlDcNcGARE9//OG9OnNIox+7ZrWOjHBcAAABaCrcfAwCAxqMBDgAAAABNxO3HAACgcWmAAwAAAEATcfsxAABoXBrgAAAAANDE3H4MAAAah7WWAAAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAACBJcuedd2a99dbLY489ttj9kydPzi9+8Yt861vfysYbb5wdd9wxF110UWbMmNHElQIAAMDiaYADAAAAGTt2bM4777wl7n///fez//7754YbbkhVVVW233771NTUZNCgQTnooIPyySefNGG1AAAAsHga4AAAAFDmHnzwwRxxxBGf28QeMGBAJk6cmL59++buu+/O73//+9x///35zne+k1deeSWXXXZZE1YMAAAAi9diGuCWYQMAAICGNWnSpPTr1y/HHnts5syZk65duy523Ntvv50RI0Zk5ZVXzgknnLBge5s2bXLeeeelQ4cOueWWWzJr1qymKh0AAAAWq0U0wC3DBgAAAA3vkksuydChQ7PBBhvklltuyZprrrnYcQ899FBqamqy3XbbpXXr1gvtW3755bPVVltl5syZeeKJJ5qibAAAAFiiZt8AtwwbAAAANI4111wzv/rVr3LbbbdlvfXWW+K4V199NUmy7rrrLnb/2muvvdA4AAAAKJZm2wC3DBsAAAA0rr59+2avvfZKRcXnfz3wwQcfJEm6deu22P3zt0+ePLlhCwQAAICl1KrYBSzJJZdckmHDhmXDDTfMwIEDM2DAgMUG6bosw/bAAw/kiSeeyHbbbddU5QMAAEDJmDlzZpKkqqpqsfvnb58/rj5atVq4GV9Z2WzP3V8qdZ1Hqcw3Kb85l9t8k9KaCwAApaPZNsDnL8O25557fu6Z6HVZhu2BBx7Iq6++qgEOAAAAy6CysjJJUigUFru/trZ2of9fVhUVhXTq1KFex2iuOnZsV+wSmly5zbnc5puU55wBAGj+mm0DvG/fvnUaZxk2AAAAaFzt27dPknz66aeL3T9/e7t29WuG1dTUZtq0ha8ir6ysKIkm27Rp1Zk3r+YLx5XKfJPym3O5zTep+5wBAKC+OnZsV+cViJptA7yuLMNWf5boqv+45q7c5puU1lwAAKDYunfvnuQ/J6H/ry86OX1pzJ1bms20efNqSnZuS1Jucy63+SblOWcAAJq/Ft8Atwxb/ZXKWcdLo9zmXG7zTcpzzgAA0Fjm33Zs/Pjxi93/2muvJUnWW2+9JqsJAAAAFqfFN8Atw1Z/luhaslKZc7nNN7EMGwAATWdplmFrqbbddtskyahRo9KvX78FJ6MnyfTp0/PEE0+kffv22XzzzYtVIgAAACQpgQa4ZdjqrxyXqyq3OZfbfJPynDMAADSWVVZZJTvssENGjRqViy66KKeffnoKhUJmz56ds88+OzNmzMjhhx+e5ZZbrtilAgAAUOZafAPcMmwAAADQ+M4666y8+OKLufbaa/P3v/8966yzTp5//vm8++672WCDDXLccccVu0QAAABIi1+j7b+XYZs3b95C+yzDBgAAAA1jlVVWye2335799tsv06dPz6hRo9KmTZv8+Mc/zuDBg9OhQ4dilwgAAAAt/wpwy7ABAABAwxgyZMjn7u/Ro0cGDBjQRNUAAADA0mvxDfDEMmwAAAAAAAAAlMAS6Ill2AAAAAAAAABoQVeAW4YNAAAAAAAAgM9TEleAAwAAAAAAAIAGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAloVWxCwAAAABajgcffDDHHHPMEvfvuuuuueSSS5qwIgAAAPgPDXAAAACgzl566aUkyVe/+tWstNJKi+zfbLPNmrokAAAAWKCkGuDOQgcAAIDGNb8B3r9//6y//vpFrgYAAAAWVlINcGehAwAAQON66aWX0rZt26y99trFLgUAAAAWUZINcGehAwAAQMObMmVK3nvvvWy88cZp1aqkvlIAAACgRJRUWnUWOgAAADSe+Seer7zyyrnooovywAMP5N13303Xrl2z884758c//nFWWGGFIlcJAABAOasodgENZf5Z6Outt56z0AEAAKARvPjii0mS+++/PzfddFN69eqV3r175+OPP84111yT/fffPx988EGRqwQAAKCclUyn2FnoAAAA0LhefvnlJMn222+fiy++OMsvv3yS5KOPPspJJ52Uf/zjHznrrLNy5ZVXLvNztGq18Ln6lZWlce5+XedRKvNNym/O5TbfpLTmAgBA6SiZBvh/n4XeoUOHbLnllllppZXy/PPP55prrsmDDz6Y66+/Pt26dStypQAAANAy/epXv8pPf/rTrLTSSqmqqlqwvXPnzrnwwguzyy67ZNSoUXnnnXey6qqrLvXxKyoK6dSpQ0OW3Gx07Niu2CU0uXKbc7nNNynPOQMA0PyVTAPcWejLzhnK9R/X3JXbfJPSmgsAADQXbdq0Sa9evRa7r0ePHvnKV76Sp59+Oi+++OIyNcBramozbdrMhbZVVlaURJNt2rTqzJtX84XjSmW+SfnNudzmm9R9zgAAUF8dO7arc++nZBrgzkJfdqUSupZGuc253OablOecAQCg2Lp27Zokqa6uXuZjzJ1bms20efNqSnZuS1Jucy63+SblOWcAAJq/kmmAOwt92TlDeclKZc7lNt/EWegAADSdpTkLvSWbPXt2zj333EyZMiUXX3xx2rdvv8iYCRMmJElWWmmlpi4PAAAAkpRQA/yLOAt9ycrxbN1ym3O5zTcpzzkDAEBjatOmTR577LG8++67eeihh7LLLrsstH/cuHEZN25cll9++Wy66abFKRIAAICyVxKnqM+ePTs/+9nPcuyxx2bmzJmLHeMsdAAAAKifAw44IEnyy1/+Mm+//faC7ZMnT86ZZ56ZefPm5Ygjjljo1mQAAADQlEriCnBnoQMAAEDjO/zww/PUU0/lkUceye67754tttgibdq0yRNPPJGZM2dm5513Tt++fYtdJgAAAGWsJK4AT5yFDgAAAI2tTZs2+dOf/pSf/exnWWuttfLMM8/kiSeeyDrrrJMBAwbkd7/7XSorK4tdJgAAAGWsJK4AT5yFDgAAAE2hsrIyhx56aA499NBilwIAAACLKJkG+Pyz0G+44YYMGzYszzzzTCoqKrLOOutkv/32y7777ptCoVDsMgEAAAAAAABoJCXTAE+chQ4AAAAAAABQzkrmHuAAAAAAAAAAlDcNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KnYBAMVWUVFIRUWh0Y5fU1ObmpraRjs+AAAAAAAAn9EAB8paRUUhK67YPpWVjbcgxrx5NZk+fVZqaxuvCa7JDgAAAAAAoAEOlLmKikIqKyty+U2PZuL7Hzf48dfr1S2H7rF5VlyxfYMf+7/V1MzLlCnVmuAAAAAAAEBZ0wAHSDLx/Y/z5sQpDX7cnt06plBRkX/dc1WqP3yvwY+fJO26rJwv7X5UKioKGuAAAACUpca+vVli9TUAgJZCAxygCVR/+F6qJ71d7DIAAACgKBqzQV0oFNKxY9tUVFQ2yvHns/oa/6uxT7xw0gUALBsNcAAAAACg0VRUFLLiiu1TWVnRqM9j9TWaUlO8r+fNq8nUqTO95wBgKWmAAwAAAACNpqKikMrKilx+06OZ+P7HDX78TdbrmQN22dTqazSpxn5fr9J9hfzkoK3TunVl5s2rafDjz+cqcwBKkQY4AAAAANDoJr7/cd6cOKXBj9uzW8cGPybUVWO9r1dYviq1NTXp2LFdgx/7v1naH4BSpAEOAAAAAADNSIeqNilUVFjaHwCWgQY4AAAAAAA0Q5b2B4ClV1HsAgAAAAAAAACgIWiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloVewCAAAAAAAAgJavoqKQiopCoz5HTU1tampqG/U5aNk0wAEAAAAAAIB6qagopFOndqmoqGzU56mpmZcpU6o1wVkiDXAAAAAAAJq9xr6q0BWFAPXz2e/pyvzrnqtS/eF7jfIc7bqsnC/tflQqKgp+Z7NEJdcAf/LJJ3PllVfm5ZdfzqxZs7Leeuvlhz/8Yb7zne8UuzQAAAAoCbI3AE2tKa4qdEUhUA4a82SiysqKJEn1h++letLbjfIcUBcl1QC/++67c+qpp6ZVq1bp06dPKisr8/jjj+fEE0/M+PHjc9xxxxW7RABKlLPQAYByIXsDUAyNfVWhKwqBclBRUciKK7Zf0KiGUlUyDfAPP/ww/fv3T7t27TJ48OBstNFGSZLx48fn0EMPzWWXXZaddtop66+/fpErBaDUOAsdACgXsjcAxeaqwtLmAgNoXBUVhVRWVuTymx7NxPc/bvDjb7Jezxywy6YNflxYWiXTAL/hhhsya9asHHXUUQsCeJKstdZaOfnkk3PmmWfmuuuuywUXXFDEKgEohsYOT5WVFWV3Fnpj/zdNhFIAaI5kb4DmQ6OQUuMCA2g6E9//OG9OnNLgx+3ZrWODHxOWRck0wEePHp0k+da3vrXIvh133DGFQiF///vfm7gqAIqtKZf1KZez0JsikCZCKQA0R7I3QPPQHBuFTXHyOaWtOS5z3xQXADQ2J7MAjaG5n4hXMg3w119/PUmy9tprL7JvxRVXTNeuXfPBBx/kww8/TJcuXZq6PACKpLGX9Uma59I+jfkBpLGveE+a51XvQMtn9QqoP9kboHlobo1C95SlITWXCwya6n1dW1OTQkXjPYcLDIqvuTcKKT2N/Z4rFArp2LFtszoR73+VRAP8448/zqeffpoOHTqkQ4cOix3TvXv3fPDBB/nggw+EcIAy1FjL+iTNb2mfpgpozSWQNpXmFlbK8Sz0lj5ngfSLNeZr3BThLGl+Xy41t99dtGyyN0Dz01xyWbmefF6OGvuE++akKd/XzeVklqbQHDNKS8+izS2HlqPm9L5uypPSmvPvrkJtbW2L/4l47733sv3226dr16559NFHFzvmoIMOyrPPPpubbropvXv3XurnqK1d9M1VKCQVFRX5+JNZmTevZplq/zxtWldmufZtM2fGtNTWzGvw4xcqKtO6Q8fU1NSkLu+Clj7fpPzm3Nzmm5TfnJvj+3rB41puD2mp51mu7+sZM2dnXk3Dz7l1q8q0q2pddu/rQqGQQiM+weI+a3yeiorGrSf5rKZymnNzm+985fL7Omma9/XcWTNS2wi/G5OkUFGRVlUd/O76Ai35PZ0s/n3dFO/d5kD2XjYySh3Gt/A5N7f5JuU35+b4vl7wuEb881BRUVE2r3Hifd0YluV93RSfe8rlNU6a3/t6wePKLKO05Cy6tDm0XH93JeXzvm7s74aTxv9+eEmv8dL8rJbEFeAV/395kM+b9Pw+/7L2+wuFQiorF3/8FZarWqZj1lXrDo17ZWHFUi6v0tLnm5TfnJvbfJPym3NzfF+Xm3J8X3do36aRKvmM93XD+rzPGsXS2OGvuc253OZbrlpVLf6q1YbkdxelSvauHxnli7X0OTe3+SblN+fm+L5ubOX2GiflN2fv64bX3F7jpPnNuSVrrhmlsbNoc3tfl+Pvrsa0LO/rxv5uOGnev7tK4t0xf+m1WbNmLXHM7NmzkyTt27dvkpoAAACglMjeAAAAtAQl0wBv3759pk+fvsQg/v777ydJunXr1pSlAQAAQEmQvQEAAGgJSqIBXigUsu666yZJxo8fv8j+qVOnZvLkyencuXO6du3a1OUBAABAiyd7AwAA0BKURAM8SbbddtskyciRIxfZN3LkyNTW1ma77bZr6rIAAACgZMjeAAAANHcl0wDfZ5990q5du/z5z3/Os88+u2D7G2+8kd/+9rcpFAr50Y9+VMQKAQAAoGWTvQEAAGjuCrW1tbXFLqKh3HrrrTnrrLNSWVmZPn36pE2bNnn88cfz6aef5v/+7//St2/fYpcIAAAALZrsDQAAQHNWUg3wJHnooYdy1VVX5YUXXkhlZWXWXnvtHH744fn2t79d7NIAAACgJMjeAAAANFcl1wAHAAAAAAAAoDyVzD3AAQAAAAAAAChvGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHGsz06dOX+jFPPPFEI1QCLKvLLrssr776arHLAAAAlkD2hpZP9gaAxqUBTpObPXt2XnjhhYwbNy5z585d4riPPvooTz31VBNW1vSeeOKJXHvttbnxxhszYcKEYpdTb4ceemimTp1ap7GffvppBgwYkB/96EeNWxSwVC677LK88sorxS4DGtyOO+6YBx54oNhlFEVNTU3efvvthbbV1tbm3nvvzYABA/LrX/86zz33XJGqazjvvvtuZs2aVefxEyZMyJ133tl4BRXBRx99lMcffzz33ntv7rvvvjzxxBN1/mwGlB7Z+z9kb9kbmhvZm1Ile8ve/0v2plhaFbsA6m7WrFn56KOP0rNnz2KXsswGDx6c3/3ud5k5c2aSZPnll8+RRx6ZI488MhUVC5+P8cgjj+T000/Pyy+/XIxSG8wrr7ySP/7xj3nllVfSs2fPHH300endu3dOOOGEPPDAA6mtrU2StGrVKscff3yOPvroIle87F5++eX84Ac/yJ///Od07dp1ieOee+65nH766XnzzTc/d1yp+uijjzJ+/Ph89atfLXYpTWL69On51a9+lQEDBhS7lCZTbq9xKdhxxx1z5plnZscddyx2KU3my1/+ci688MLssccexS6lSUycOHHB549yMnr06Jx77rn54IMP8sILLyT5LJQfe+yx+fvf/77gc8igQYNy6KGHpl+/fsUst1523HHHRd7TM2fOzHnnnZcjjzwya6211kLjx4wZk379+mWvvfZq4kob3v33358//vGPi/3cXCgU0rt37xx55JHZfvvtm764BrT++uunUCgs1WMKhUJeeumlRqqIUiV7t0yy96Jk7/LKZbI3LYHsXfpkb9lb9pa9mwtXgBfR4s6Gmj17du68885Mnjx5kfHDhw9v0R8O7rzzzgwcODDrrbde+vXrl6OPPjpVVVW55JJLcvjhh+eTTz4pdokN7oUXXsj++++f0aNHp127dnnuuedy2GGHZeDAgXnggQdyxBFHZNiwYbn++uuz3Xbb5be//W3uu+++Ype9zM4666y88cYbOfjgg/Pee+8tsn/OnDn59a9/ne9///t58803893vfjd//etfi1Bpw/ryl7+cu+++e6Fts2bNymWXXZZ33nlnkfGPPPJIDj300KYqr1G88847Oe+88/K9730v3/ve99K/f/+89dZbi4wbPnx4dt1119xxxx1FqLLhlONrXG7KMaDND1+UrnHjxuUnP/lJamtrc8QRR6SmpiZJctNNN2X06NHp1q1bbr311owZMyannXZaBg8e3KI/hyzuPf3pp5/mzjvvzPvvv1+EiprGgAEDcuKJJ2bixInZa6+9csopp+QXv/hFzj777JxwwgnZcccd8+KLL+aYY47JL3/5y2KXWy9f/epXs8UWWyzV/zbffPNil00zIHvL3rK37N1Syd6l/xqXG9mbUiR7y96yd/PM3q4AL6LF/cGfMWNG+vXrl2uuuabkzs699tpr89WvfjVDhgxZsO3YY4/NOeeck6FDh+awww7Ln//85yy33HJFrLJhXXLJJVl11VUzZMiQdO7cOTNnzszRRx+dG264IQcccEBOOeWUBWO32GKL/OAHP8jVV1+d73znO0WsetkdfPDBWWGFFXLGGWfk4IMPzp///OesvvrqST47Q/3000/Pq6++mp49e+bcc8/NtttuW+SKG8bi/uhXV1fn8ssvz+abb55VV121CFU1npdffjmHHHJIPvnkk1RVVaWqqiovvfRS7r333tx8881Zd911M3369PTv3z/Dhw9PZWVl+vbtW+yy66XcXuM33nhjqZfBdMY9ND9XXXVVunfvnrvuuisdO3ZcsP2GG25IoVDIySefnI033jhJ8qMf/ShPPvlkbrrpphb7OWRJSvkLp7/85S+5/vrrs9dee+Xss89O+/btFztuxowZOf/883Pddddls802y84779zElTaM/84RsDRkb9lb9pa9WyLZ+zOl/BrL3lAaZO/PyN6yd3OjAd4Mleovin/9618544wzFtrWpk2bDBw4MCuuuGKuueaaHHnkkbnmmmuW+AukpRkzZkxOPvnkdO7cOUnSvn37/PSnP80PfvCDbLPNNouM/853vpMLL7ywqctsULvvvnuWX375nHjiiTn44INz1VVX5YEHHsiVV16ZuXPn5vvf/37+7//+Lx06dCh2qY2uVH+Wf//732fWrFn59a9/nd122y1JMnbs2Jx88skZMGBALr744hx66KF58803s9FGG2XAgAFZb731ilx14yjV1/jKK6/MlVdeuVSPaelLZparpV3OqKW79dZb89hjj9V5fKFQyMCBAxuxosb11FNPZf/9918ogE+YMCFvvPFGWrVqlW9961sLjd96663z+9//vqnLpB5uuummbLrppl94dnmHDh0ycODAjB8/PrfddluLDeFz5sxJ69atl+oxzz33XDbZZJNGqoiWrlQ/y8nesrfsXRpk7/8o1ddY9i4fsvfnk71p7mTvL9Ycs7cGOE2mXbt2mTp16mL3nXbaaZk5c2Zuvvnm/PjHP85VV13VtMU1kuWWWy7Tpk1baNt6662X7bbbLq1aLfrjN2XKlLRt27apyms02223XQYNGpRjjjkm3/ve91JbW5s11lgjAwYMyBZbbFHs8qinsWPH5sADD1wQwJNk4403zmmnnZaTTjopJ510UiZOnJhTTjklhx9++CL3GKT522mnnUr2i5PPU24BLUmuuOKK3HrrrXUeXygUct111zViRY3rqaeeWqorLFr6azxlypSstNJKC237xz/+kSTZZJNNFvlCvKqqKp9++mmT1Uf9vf7660t1D9sdd9wxt9xySyNW1Li+973v5eKLL67T36jZs2fnkksuyeDBg/Piiy82QXXQfMjen5G9Ze+WTvYufbJ33bT0XJbI3l+kpb/Gsnfpk72XrDlnbw1wmkyfPn0yePDgfOtb38o666yzyP6f//zn+eSTT3LPPffk8MMPz3bbbVeEKhvW1ltvnT//+c/ZbLPN8rWvfS1Jsvzyy+ePf/zjImOfe+65DBkyZMG4lm7zzTfP4MGDc+SRR+ajjz7KL37xCwG8RHz88cdZf/31F9m+0UYbZd68eXnllVcyZMiQbLrppk1fHA3i29/+dvbYY49il9Hkyi2gJcn48eMzfvz4Oo9v6Wetn3nmmS36nq5La4UVVshHH3200LZHHnkkhUIhW2+99SLjx48fv+DKOVqGmTNnpkuXLnUe361btxZ9T7bJkydn3333zfHHH5+jjjpqib+TnnnmmZx55pl56623ssYaazRxlVB8srfsLXuXBtm79MnedSN7tzyyt+xdamTvlpm9NcBpMieffHK+//3vZ++9985XvvKVXHTRRQv9UBQKhVx44YVp06ZNhg4dmmeffbaI1TaMU045JWPHjs3hhx+eLbbYYon3TjjkkEPyzDPPpHPnzgvdm6ylW3/99XPTTTflRz/6UY455phcfvnl2WqrrYpdFvU0d+7cxV4tUVVVlSTp27evAE6LVG4BLUkuuuiisvrCpVOnTllllVWKXUaT6d27d+69994cccQRqayszOTJkzN69OgkyS677LLQ2OnTp+fuu+9Onz59ilApy2revHmLvbJxSSorKzN37txGrKhx3XPPPenXr19+85vfZPTo0fnVr36V1VZbbcH++cvEzr/X3hFHHJETTjihiBVDccjesrfsXRpkb0qV7F36ZG/Zu9TI3i0ze2uA02R69eqVv/71r7n88svz9NNPL/jA/t8qKioycODAbLbZZvnd736XDz/8sAiVNpwuXbrkjjvuyM0335zZs2cvcVxVVVX23Xff/PSnP12qM4mam379+i12+xprrJF33nknRx99dL7zne8sdMZQKZzFycI23HDDYpcAy6TcAhql76ijjsqBBx6YAw44IFtuuWUeeOCBfPrpp9ltt92y5pprJvnsi9V//vOf+dWvfpWPPvooBx98cJGrrp8RI0bkrbfeWvDvs2bNSqFQyF133ZVnnnlmobGvvvpqU5dHPXXp0iV/+tOfcsMNN+Siiy7Kd7/73ZxxxhnZf//98+STT+ZnP/tZJkyYkPXWWy/nn3++zySULdlb9pa9y4O/c7RUsjelRvaWvUtNqWRvDfAie+ONNxZa8mX69OlJkldeeWWRM0qWZpmU5qpTp07p37//F47bb7/9svfeey/0S7SlqqqqymGHHfa5Y0rlvmvDhg373P2ffvpp7rzzzoW2lUoIf/rppzNv3rwF/z5jxowkyaOPPppJkyYtNLYUrrD4PC19maYlKZfX+Ktf/Wq6du1a7DKABrDRRhvliiuuyPnnn59rrrkmlZWV2WOPPXLuuecuGHPhhRdm8ODBqaioSL9+/dK7d+8iVlx/w4cPz/DhwxfZ/r+fP+Yrhb9Z//vFw+cplS8eDj744Gy11VY566yz8vOf/zxDhgzJ+PHj06pVq5xwwgnp27fvUp2dT3mQvRdP9m6ZZO/Sz2V1UQqfYxanXF5j2RtKh+z9H7L3Z2Tv5qFQW1tbW+wiytX666+/2B/82traz93+8ssvN0V5ja62tjYTJkzI1KlTkySdO3fOqquuWtyiGlmpz3nixInL9LiWftbn4n6W//tX6+L2teSf5fXXXz/HHHNMvv71ry+0ffr06Tn22GNzxhlnZIMNNljkcV/96lebqsQGV26vcTlaf/31y25JsnKb87Bhw7LFFlsstGRTOZkyZUratWu3yFWAf//73/Piiy9mt912a5b3a1oaTz755DI9bsstt2zgSprO4u4L+kVK6e/TU089lWOPPTbTp09PoVDIsccem+OPP77YZdEMyd6lnUMXp9TnLHv/RynnMtn7M6X8GpejcsuhSfnNWfaWvZdE9m65Wmr21gAvossuu2yZHnfcccc1cCVNa+zYsRk0aFAeffTRzJw5c6F9yy23XL75zW/mRz/60TL9UmmuynHO5eSLzr5fkr333ruBK2kaS/oCMVnyl4hJWvQf/HJ6jf/7yqil0ZK/ZEnKM6A9+eSTWWuttVr08p9Q7srxi4ck+eSTT3LhhRfm9ttvT9u2bXPUUUfl/vvvz6uvvpqvfe1rGTBgQHr27FnsMmlGZO/yyaHlOOdyUk65LJG9l0ZLfI1lb9kbaDlk75aZvTXAaVLXXHNNLr744lRUVGSzzTbLOuusk44dO2bu3LmZOnVqXnrppbz88supqKjI6aefnkMPPbTYJddbOc65rq688soMHz48Q4cOLXYpTW727Nlp06ZNsctYJuX6BeLSaqmv8ed9yfJ5WvKXLJSHJd0r8/OUylKhLN7NN9+cRx55ZJn/rlEco0ePzs9//vNMmjQpW221Vc4777ysttpqmTNnTn7/+9/nmmuuSVVVVU499dQceOCBxS4XiqYcc2g5zrmuZO+Wl8sS2buuWuprLHtTqmRv/pfs3TKVQvbWAKfJ/P3vf8/RRx+dr33taxk4cGBWXnnlxY57++23c+655+axxx7LNddck6997WtNXGnDKcc5L42f//znufXWW1v8h/fLLrtsqQLm2LFj069fv/z1r39txKpoSOX0Gl966aXLFMJb+pcs5RjQluVL30KhkOuuu64Rqml85bhc1Rd9qda2bdssv/zyWXfddfPtb387++23XyoqKpqwwuIqhc8h7777bjp37rzI8npLMmHChDzzzDPZa6+9GrewRnLKKafkr3/9a9q3b5/TTjstBxxwwCJjxowZk9NPPz0TJkzIlltumfPPP7+klj2GuijHHFqOc14apfA3LymvXFauyuk1lr3rTvZuWWTvRcneLf9ziOzdMrO3BngRldsf/B/96EeZPHlyhg4dmtatW3/u2Llz52avvfbKGmuskcsvv7yJKmx45TjnpVEKf/ySzz7kHHHEETn11FM/d9zcuXNz2WWXZdCgQZk3b16Ln3ddzZo1Kx999FGzXg7li3iNS1+5BrSl1ZLnXI73yjzkkEM+d/+8efMybdq0vP3225kzZ0623nrrXHnllWnVqlUTVVhcpfA55Mtf/nIuvPDChe4nOHPmzJx33nk58sgjs9Zaay00/i9/+UtOP/30Fjvn9ddfP9tuu23OO++8rLTSSkscN2vWrPzyl7/MzTffnPbt2+fZZ59twippjmTvJSuVHFqOc14apfA3L5HLvojsTUtQbjk0Kb85y96Lkr1b/ucQ2Xvxmnv2Lo+fsGZqae5r899nELXUEP7SSy/lsMMO+8IwmiStWrXKd77znfzlL39pgsoaTznOuRxtscUWueaaa1JdXZ2zzz57sWNeeeWVnH766XnllVeywgor5Gc/+1kTV9lwdtxxx5x55pnZcccdF2ybPXt27r333myzzTbp2rXrQuOHDx/eov/gJ+X3GpejBx54oNglNLlx48YVu4Qm1ZLD9LIaMmRIncbNmjUrN910Uy688MLcdNNNXxjeaT4Wdy7zp59+mjvvvDN77rnnIiG8pbvgggvqdI/PqqqqnHPOOfnWt77l7zFJZO/PUyo5tBznXI7KLZfJ3qX/Gpcj2bv0yd5LJnu3XLL34jX37K0BXkR1+eM3ceLEnHfeeRk9enSWX375nHjiiY1fWCOZMWNGunfvXufxK6+8cv797383YkWNrxznXI6uueaanHDCCbnppptSXV2dgQMHLvjirLa2Nn/6059y+eWXZ/bs2dl1113Tv3//dO7cuchVL7uJEydm5syZC22bMWNG+vXrl2uuuWaREF4Kyu01TpI33ngjY8aMyT777LNg2+TJk3PZZZfl2WefTbt27bLjjjvmsMMOa5H3W/tf5RjQWNjs2bPz+uuvp6qqKmuuuWaxy2lSVVVV+dGPfpTnnnsuw4YNE8JLQKku8lWXAP7fvvSlL2W//fZrpGpoSWTvz1cKObQc51yOyi2Xyd6l/xonsjflR/aWvUuJ7P2Z5pq9NcCbqXnz5uWaa67JH/7wh8yaNSu77bZb+vXr16I/3M6dO3epPqi1atUqs2fPbsSKGl85zrkctWnTJpdffnn69euXYcOGZdasWbn44ovz9ttv54wzzsjYsWPTrVu3nHPOOfnmN79Z7HIbTan+wU/K7zW++OKLc80116S2tjZ77713KioqMn369BxwwAF59913s+KKK2aVVVbJ7373uzz44IMZMmRIna62acnKMaBNmjQpY8eOTVVVVb761a/W+T5Hzdn06dNz1VVXZcyYMQudoX333XdnwIABmTZtWpLPPrgPHDgwm266aZEqLY4+ffrk0UcfLXYZUC+ffvpp7r///gwdOjRPPvlkamtr85Of/KTYZdGMyd6lkUPLcc7lqNxy2ZLI3qXzGsvei5K9Ze9yIHtTClpC9tYAb4aefvrpnHvuuXnttdfSq1ev/PznP8/Xvva1YpcFX+iyyy5bqvEvvPBCI1XS9CorK3PhhRemY8eOuf766/POO+/ktddey6xZs7Lffvvl9NNPz3LLLVfsMqmHcnmNR4wYkUGDBmX77bfPoYcemoqKiiTJH/7wh0ycODGbbLJJ/vznP6ddu3YZO3ZsDjnkkPz5z3/OUUcdVeTK668cA9rEiRPzm9/8JmPGjMmDDz64YPuf/vSn/P73v8+8efNSW1ubFVZYIeedd16+/e1vF7Ha+pkxY0YOOOCAvPHGG1lppZUyd+7ctGrVKmPHjs3pp5+e2traHHDAAVlnnXVy55135kc/+lHuvPPOrLHGGsUuvclUVlampqam2GUsszvvvHOpxv/rX/9qnEIoijFjxmTo0KG57777MmPGjNTW1mb11VfPAQccUOzSaMZkb1oq2bv0c1k5K5fXWPaWvRPZW/ZumWTv8taSsrcGeDMyZcqUXHjhhbnzzjvTpk2bHH/88TnqqKNKYnmb+Z5++unMmzevTmOfffbZRq6maZTTnJc2hCcL32OvFPTv3z8rrrhiLrvsslRUVOSPf/xjtttuu2KXRQMq9df45ptvziabbJIrr7xywbba2tr85S9/SaFQyE9/+tO0a9cuSbLxxhvnu9/9bv7617+2+BBejgHtww8/zAEHHJApU6Zk4403XjDnhx9+OL/5zW/SqlWrnHzyyVl33XVz66235uSTT84tt9ySDTbYoNilL5Nrrrkmb7/9dn77299ml112WbD98ssvT21tbX74wx/mjDPOSJLsu+++2XPPPXPllVfmggsuKFbJTe65557LyiuvXOwyltkZZ5yxVJ8ramtrS+5zSLmZNGlS7rrrrgwdOjRvvfXWgivi+vTpk6OOOirbbLNNkSukuZK9F9bSc+h85TRn2bv0cxml/xrL3rK37C17t1Syd/lpqdlbA7yZuO2223LxxRfn448/ztZbb52f//znWX311YtdVoO79dZbc+utt9ZpbKn8YiynOQ8ePLjYJTQLxx13XDp16pQBAwZk0KBB2XzzzUvi7GT+o5Rf4xdffHGRQP3SSy/lww8/zHLLLZc+ffostG+jjTbK3Xff3ZQlNopyDGh/+tOfMmPGjNxwww0LnVH/pz/9KYVCIT/5yU8WvBe+8Y1vZJ999slVV12V3/72t8UpuJ6GDx+e7373uwu9vjNmzFiw7Nj3v//9Bdvbtm2bPffcM7fddluT11ksf/vb33LXXXflyCOPLHYpy6wl/zxSd7Nnz87IkSMzdOjQPP7445k3b14qKyuz5ZZbZvPNN88VV1yRQw89tNkGcIpP9l5US8+h85XTnGXvz5RyLuMzpfway96yt+wte7dULfnnkborheytAV5kr7zySs4555z885//TNeuXfOb3/wmu+66a7HLahTl+Iux3Oa85ZZbLvVjnn766UaopGk99dRTi2xbd911s99+++XWW2/ND3/4w5x22mkLlrOa76tf/WpTlUg9ldNrPHPmzKywwgoLbfvHP/6R5LP5VFZWLrRv7ty5LfrLw/nKMaCNHj06++yzz0IBfOrUqXnmmWeSJN/73vcWbC8UCvnOd76T6667rqnLbDDvvPPOQq9j8tnP9ty5c7Paaqst0vxYeeWV8+GHHzZliQ2uX79+n7t/3rx5mTFjRl5//fW8/fbb6dWrV4sO4XvvvXexSyiKESNG5K233lrw77NmzUqhUMhdd9214Od5vldffbWpy2tQ5557bu699958/PHHadu2bbbddtvstNNO2XHHHdOpU6dMnDgxf/jDH4pdJs2U7F3aym3Osvd/lGouK1fl9BrL3rK37P0Z2bvlkb0/I3s3/+ytAV5Ev/rVrzJkyJDMmzcvO+ywQ0488cQst9xyeffddz/3cT179myiChtWOf5iLMc518V7772XYcOG5c4778yECRPy8ssvF7ukejnkkEM+N4S8+OKLOeywwxbZ3pLn/cYbbywUTKdPn57ksy8WW7Va+E/L+PHjm7S2xlBOr3H37t0zYcKEhbaNHj06hUIh3/jGNxYZP3bs2PTo0aOpyms05RjQ/v3vf2fdddddaNsTTzyRmpqarL322ou8rl26dMnHH3/clCU2qIqKikXusfX4448nSb7+9a8vMv6jjz5q8VeXDBs2rE7jVltttfzwhz/Mscce2+LnvCSL+3y98sorl8yXiMOHD19k+5Luy9aS53zTTTelffv2+fGPf5wjjzyyZN+vNDzZu/SV45zrQvb+TEuet+y9sFJ6jWXv/5C9Ze+W/rle9v4P2fs/WvKcSyV7a4AX0bXXXrvgn0eNGpVRo0bV6XEt8UPdsvjoo48yfvz4FnkW57Iq5Tl/+umnGT58eIYOHZonnnhiwZJzi/tQ39L85Cc/adF/0JbFlVdeudB9qub71a9+tci2lr68YFJer/E3vvGN3HHHHfn+97+fHj16ZMyYMXn66afTunXr7LzzzguNfe211/LXv/41+++/f5GqbTjlGNDatm2b6urqhbY99thjKRQK2XrrrRcZ/+9//zsdO3ZsqvIa3Nprr50xY8bk4IMPTvLZ76YRI0akUCjkm9/85iLjH3jggay11lpNXWaDeuCBBz53f9u2bdOxY8eSuudtktxxxx257bbb8oc//CGdO3fOlClT8s1vfnOR3+MnnHBCjjnmmCJV2TDKbQncvffeOyNHjswf//jHXHfdddliiy0WnIXetWvXYpdHMyZ7f75SzqFLUspzlr1Li+xdumTv/5C9FyZ7tzyyt+xdakole2uAF9Fxxx1X7BKa1Je//OVceOGF2WOPPRZsmzVrVgYNGpS99torq6666kLjH3nkkZx++ukt+kuHcpzz//rnP/+ZoUOH5r777ssnn3ySJOncuXP22WefHHDAAVlllVWKXGH9HX/88cUuoUmVUyCdr5xe42OPPTbDhw/Pd77znay55pp59dVXU1tbm5/85Cfp3Llzks/C9/DhwzN48OC0bt06RxxxRJGrrr9yDGjrr79+Hn/88fzwhz9M8p97+yTJTjvttNDY2tra/O1vf8v666/f5HU2lL322ivnn39+Ntpoo2y99da59dZb8+6772b11VfPtttuu9DYK6+8Mv/85z/Tv3//IlXbMErhb+zS+ulPf5r7778/PXv2zLvvvrvg91aS7LnnnllttdWSJHfddVeuuOKK7LvvvunWrVuxyq23ZVkCd+7cuY1QSdO44IILcu6552bUqFG5++6789BDD+Xhhx/Oueeem8022yy9e/cuu88o1I3sXfo5tBzn/L9k79Ije5c22Vv2TmRv2bvlkr2/mOxdfBrgRVRuIby2tnaRbdXV1bn88suz+eabLxJIS0E5zjlJ3n///dx5550ZNmxY3nzzzdTW1qZdu3b5+te/nsceeyy/+MUvsuOOOxa7TJZROQXSctS1a9fcfvvtufzyy/PPf/4zX/nKV7LPPvtkv/32WzBm2LBhueaaa7LKKqvk17/+dVZeeeUiVtwwyjGgHXjggTn55JMzcODAbL311rnjjjvy4Ycf5itf+cpCV0PNmjUrv/zlL/Paa6+16C9cDjzwwDzzzDO54IILUigUUltbmxVWWCEXX3zxgnsI3n777fnTn/6UCRMmZPPNN89BBx1U5Kob19ixYzNmzJhUVFRkyy23zHrrrVfskurlL3/5S+6///4cffTROeGEExa5b+Jee+2Vr33ta0mS7bbbLvvvv39uueWWkvlMPmPGjNTW1n7uFTJjxozJWWedlXvuuacJK2tYbdq0yc4775ydd94506dPz9/+9rf85S9/yTPPPJNnnnkmhUIhf/zjH/PJJ59k5513TlVVVbFLphkolZ/zuirHHFqOc05k71Ine5c22Vv2lr1l75ZK9pa9W0r21gBvRmbPnp1x48bl/fffT21tbbp37571118/bdu2LXZpjWpxQbXUleqc77vvvgwdOjSPPfZY5s2bl44dO2aPPfbIt7/97Wy77bb54IMPFjmzsRRcdtllS/2YQqGQn/zkJ41QTeM79NBDc8wxxyz4IFMOyu01XmmllXLeeectcf8+++yTb37zm+ndu/eC8NLSlWNA23XXXfPKK69k0KBBGTJkSGpra7PqqqvmkksuWTDm6quvzh/+8IfMmDEju+yyS7773e8WseL6KRQKufjii3PwwQdnzJgxWW655bLTTjstdJbyv//979TW1uaYY47J0UcfXRLv75deeil//OMfM378+Ky++ur58Y9/nI033jg/+9nPMnTo0AWfSQqFQnbfffdccMEFi9xPsqUYNmxYNttss5x00klfOHb+F25///vfW3wIv//++3PZZZfl9ddfT/LZfeVOOOGE7L777gvGzJw5M7/5zW9y0003LbLkZEvSr1+/HHjggdlkk02SJMsvv3z222+/7Lfffpk0aVLuueee3HPPPRk7dmyef/75nHfeedl1113zi1/8osiV09zI3uWjVOcse9ddS85lsnfdtOTXWPaWveeTvVv++1v2XjzZu2UqlezdMn/CSszkyZPzm9/8JsOHD8+MGTMW2teuXbvsvPPOOemkk9K9e/ciVQh1c9JJJ6V9+/b5/ve/nx133DFf/epXFzoDrCUsi7Esyi2gPfnkkwudkVwOyu01/iItffmxxSnXgHbSSSfloIMOynPPPZflllsuW265ZVq3br1gf9u2bbPRRhtljz32yPe+970iVtpwNttss2y22WaL3Xfccce1+ED238aMGZNDDz00rVq1yrrrrpsXX3wxBx98cA455JDccccd2XPPPbPLLrtk5syZefDBB3PPPffky1/+cg4//PBil75MXnrppfz4xz+u8/htttkml19+eSNW1PjuvffenHzyyWnbtm222WabtGvXLk8//XROPfXUBfePfP7553PSSSflnXfeyaqrrppzzz232GUvs2HDhuXrX//6ghD+33r06JEjjjgiRxxxRMaPH5+//OUvufvuu3Pbbbc1uxBO8cjelArZu+5aci6TveumJb/GX0T2lr1bMtlb9p5P9m55SiV7a4AX2T//+c8cffTR+fjjj7PJJptkq622Svfu3dOqVau8//77eeqpp3LnnXfmwQcfzBVXXJHevXsXu2RYolVXXTXvvPNOhg4dmn/96195/vnns9NOO+VLX/pSsUtrVIMHDy52CTSycnqNn3rqqWV63H8v29WSlVNAm2+llVbKSiuttNh9P/jBD/KDH/ygiSuioVx++eXp1atXBg8enE6dOqW2tjZnnnlmrr322uy555658MILF4zdfffdM23atNxzzz0tNoTPmjUrHTt2XGT78ssvnyuvvDJf/vKXF9reoUOHFn1PriS5/vrr06VLl9x8880L7rFWXV2dY445Jpdeemm6d++eww8/PJ9++ml+9KMf5ac//WmzXJasoa211lo56aSTctJJJ+XZZ58tdjk0E7I3pUT2plSV02sse8ve/032btlk78/I3rJ3c6MBXkQffvhhfvKTn6RDhw75wx/+kM0333yx41566aWceOKJOeGEE3LXXXelS5cuTVwp1M3IkSPz3HPP5S9/+Uv+9re/5ZFHHslvfvObrLnmmvn2t7+dDTbYoNglNoott9zyC8dMnz49hULhc+8NQvNVl9e4VBxyyCFLfcVIoVDISy+91EgVQcPo16/fUj+mUChk4MCBjVBN03j++edz5JFHplOnTkk+m88RRxyRYcOGZfvtt19k/Le//e388pe/bOIqG06PHj3y7rvvLrK9VatWi53vm2++2eLvozh+/PgccsghCwJ48tlVrMcdd1x+8IMf5KSTTkqXLl1y8cUXZ9NNNy1eoUWkiUkie1N6ZO8lk71bNtn788netASyt+z9v2Tv8tAcs7cGeBFdf/31mTFjxkJnjSzOV77ylVx77bXZY489cuONN+b4449vwiph6WyyySbZZJNNcuaZZ+aRRx7J3XffnQceeCBXXHFFCoVCCoVCRo0alfXXXz+rrLJKscttMLW1tXnooYfy+uuvZ4011sj222+fVq1a5fHHH8+AAQPyxhtvJEm+/OUv5+STT84222xT5IrrZ8SIEXnrrbfqPL6UlySbr1S+aLngggvqNO7+++/P6NGjkyQbb7xxI1bUNMoxoB166KFL/ZhCoZDrrruuEappfMOGDavz2P/+Iqolv8bTpk1L165dF9o2f2nBFVdccZHxVVVVqa6uborSGsXGG2+ce++9Nz/5yU++cJnE2bNn59577812223XRNU1junTp2fVVVddZPvqq6+e5LOlFG+++eYFX8SUgqeffjrz5s1bqsfstddejVMMLYbsTSmSvWXvxZG9Ww7Zu+5k75ZF9v6M7P0Z2bvlKoXsrQFeRCNHjsyee+75uQF8vlVWWSV77713hg8f3qJD+P/+0My/79qjjz6aSZMmLTS2OS6ZsCzKcc5JUllZme222y7bbbddZs2alREjRuSee+7Jo48+mttvvz1Dhw5Nnz59ss8++2T33Xcvdrn1Mm3atPTt2zfPPfdcamtrkyQbbbRRzjrrrPTt2zft2rXLTjvtlJkzZ+a5557L0UcfnWuvvbZFn9k8YsSIDB8+vM7jSyGE//cXLauvvnp22GGHkvyiZe+99/7c/RMnTsx5552X0aNHp2PHjjn55JNzwAEHNFF1jaccA9o777xTp3E1NTWZNGlSamtrW/T9JMeNG/eFY/77/b388svnxBNPbPzCGlFtbW1atVr44/7817Alv5ZLcuCBB+YHP/hBfvGLX6R///6LzH2+mpqanH322Xn//fdz4IEHNnGVDaumpmahe77ON/9+gn379i2pAJ4kt956a2699dY6jZ3/e6u5hXCanuxdHjm0HOecyN6y98Jk75ZD9v5isnfLJHt/RvaWvVu6UsjeGuBF9M477yzVvT3WX3/9pfqQ0Bz97w/N/MAyaNCgRf4YtPQ/9vOV05z79u2brbbaKltuuWU22GCDBXOpqqrKHnvskT322CNTpkzJvffem7vvvjuPP/54/vGPf7T4EP773/8+48aNy9lnn50+ffpk4sSJOf/88/PDH/4wvXr1ypAhQxac7ffRRx9l3333zTXXXNOiQ/jRRx+dr3/968Uuo8mU4xct/2vu3Lm5+uqrc+WVV6a6ujp77rlnzjjjjAVntLZ05RjQHnzwwS8c89xzz+Wcc87Jv//976y66qo566yzmqCypjdv3rxcc801+cMf/pBZs2Zlt912S79+/RY5g5vmbYsttsgRRxyRq6++Ov/4xz9y+OGHp0+fPllppZVSW1ubDz74IE888URuuOGGjBs3LieddFLWX3/9YpfdqHr27FnsEhrc/vvvX7ZLyrHsZO/SzqHzldOcZW/Zu1TJ3rJ3InvL3jR3sveiZO/mSQO8iFq3bp1PP/20zuNnzZqV9u3bN2JFjauuS/uUknKb8z/+8Y889NBDC5ai2mKLLdKnT59stdVWC/7IderUKQcffHAOPvjgTJgwIX/961+LXHX9PfjggznwwANz0EEHJUnWXHPNnH322Tn88MNz8MEHL7TUTefOnbP//vtnyJAhRaq2Yay11lolFTC/SDl+0fLfnnzyyZx77rkZP3581lxzzfz85z9Pnz59il1WkynHgDZ9+vT8+te/zq233pqKioocffTROfbYY9O2bdtil9bgnn766Zx77rl57bXX0qtXr/z85z/P1772tWKX1WD+d9nMWbNmpVAo5K677sozzzyz0NhXX321qctrcKeeempWWWWV/OY3v8nZZ5+92IZH+/btc84555TEFTTlaIsttsgee+xR7DJoYWTv0lduc5a9Ze9SJXvL3rK37N1S/b/27jyuprzxA/jntqmEbI2yjbVrl1Q0D2aUbBNlGdtoGPsPg8FgppElexgzDINHtpnHMipFKPuQFJXGhIdh7GQrMXLrOr8/vLrPXIVK9557zvm8X695vca53zs+34m6n/M953vYvdm95UYO3ZsL4CKqX78+jhw5UujngBw+fBh169Y1cCrDedvWPnKktDknJSUhLS0NSUlJSE5ORkpKCg4dOgSVSoWyZcvCzc0NHh4e8PDwQP369VG9enWMHDlS7Njv7N69e6hTp47esby/qwVd/eXo6IjMzEyjZKOSocQTLcDLEwoLFixAZGQkSpUqhXHjxmHo0KG67X2UQO4FrSA7d+7EwoUL8eDBA7i7uyMoKCjf9zg5ePToERYuXIiIiAhYWVlh7NixGDZsGKysrMSOVqJiYmIK3DYzIiKiwPFSvhsuT//+/eHv749Dhw4hMTERd+7cgSAIcHBwQIsWLeDt7S35Z0b+U0HPBn3TyRY5bI1KVFTs3vKntDmze/8Pu7e8sHuze7N7s3tLFbs3uze7t+nhAriIunfvjunTpyM6OhpdunR549iIiAjExcVhyZIlRkonvhs3bmD69OlYt26d2FGMRupztrCwQNOmTdG0aVMMGjQIAHD79m29Ur5gwQJotVrY29vD3d0dHh4e6N+/v7jB31FOTg6sra31juWVlILKikql0ns2HZk+JZ5o2bp1K5YsWYLMzEy0bdsW3377baGemykXSilo/3T58mXMnDkTCQkJKF++PObPn29yz+4pKdu3b0dISAgyMzPxwQcfICgoCDVq1BA7VonbuHGj2BFEY2Njgy5durz1M7YcvO5EC1DwyRaWcFIidu83k3oPLQ6pz5nd+3/YveWF3Zvdm91bXti95Y/d+yV2b9PEBXAR9ezZExEREfjqq69w4cIFDBgwAA4ODnpj0tPTERoaio0bN6Jdu3bo3LmzSGlLxpkzZ7By5UokJycDABo2bIjRo0ejZcuWujGCIGD9+vX4/vvvkZ2dLVbUEqPEOf+To6Mjunbtiq5duwJ4ubVPZGQkwsLCsG/fPsTExEi+hCvNmDFj4OzsLHYMo1LSiZbz588jKCgIqampeO+99zB79mz4+PiIHcuolFLQ8mg0GqxYsQLr1q1Dbm4uevfujUmTJqFs2bJiRytxFy5cwIwZM5CSkoJKlSphyZIlsi5pctkKkl5PaSda/P39Zf39mAyH3VsZPVSJc/4ndm/5Yfd+id1bvti92b3lgt1b/ti9pYkL4CIyMzPDqlWrMGnSJPz0009YvXo1HB0dUblyZZibm+PBgwe4du0aBEFA586dMWfOHLEjv5MTJ05g2LBh0Gq1qFWrFmxsbJCYmIhBgwYhNDQUbm5uuHHjBiZOnIjU1FTY2dlh5syZYsd+J0qc86uys7ORmJiIhIQEnD59GmfPnkVOTg6srKx0W7LJQUZGBm7duqX7dd4VyA8fPtQ7Dry8ulXKxowZo/drjUaD8+fPIz09XbfNjVqtluXzipSgZ8+eePHiBQCgYsWK2Lx5MzZv3vzG96hUKmzYsMEY8QxKaQUNAI4cOYLZs2fj5s2bcHZ2xsyZM9GsWTOxYxnEggULsGnTJmi1Wnz00UcYP3487Ozs8n2PflVBd5rI1ZYtW3Ds2DEsX75c7CjFUtitjf9J6t+/inOi5dSpUwZIYhxKe8YvlRx2b/n3UCXO+VXs3uzeJC3s3uze7N762L2lg927cNi9xacSBEEQOwQBv/32G3bu3InU1FTcu3dP90HW1dUV3bt3R6tWrcSO+M4GDx6M1NRUrF27Fi4uLgCAu3fvYuTIkbC0tMS8efMQEBCABw8ewMfHB99++y0qV64scup3o8Q55+bmIiUlBfHx8YiPj8eZM2eQk5MDS0tLNG3aVFe8XVxcZLOdkVqtLvC5LYIgvPF5LufOnTNkLIO7f/8+lixZgpiYGDx9+lTvNRsbG3Ts2BETJkzId3eNFKnVanzzzTfw8vLSHcvMzIS/vz8WL16s+/udJzY2FvPnz5fk17h9+/bFet/BgwdLOIlxva6gvY2UC9oXX3yB2NhYAMBHH32EgIAAmJubv/V9bm5uho5mEGq1WvfvRXnWlhT/HhdXUFAQtm3bJtk5F/b714sXL3D37l3dz2mpzrcobt++jfDwcEREROD69euKmDPR67B7y7OHKnHO7N7/w+7N7i3FrzG7N7v327B7yxe7t3yxe5sWLoCT0bRq1Qq9evXCpEmT9I4fO3YMw4YNQ506dXDv3j3MmDFD8tvN5VHanIcNG4ZTp04hOzsbZmZmaNSoEVq1agUPDw+4urrm28ZKLqZNm1as90n5SqqUlBSMGDECmZmZaNasGVq1agUHBwdYWFggPT0diYmJSExMRNmyZbFy5Uq0aNFC7MjvRKknWpREiQXtn3MG3j5vqReW4l5Z/eqdN3Im9RJeGGfOnMGMGTNw7tw5VKtWDd9++y3atWsndiyDeP78OWJiYhAWFoaTJ0/q/g63adMGP/30k9jxiMiAlNZDAeXNmd27aNi9pYPdW/7Yvdm9X4fdW17Yvdm9TQG3QJeQkydP4sKFC8XaYsIUZGVloU6dOvmO16tXD4IgICMjA9u3b5fFswXyKG3Ov/32GywtLeHn54cRI0bg/fffFzuSUUi5TBfHgwcPMHr0aJQuXRo//vgjXF1dCxyXlpaG8ePH44svvsDOnTtRsWJFIyctOX5+fkUqZkpy6tQphIeHS36rUCUVrTxK+95VnK+x3J4NqmRZWVlYvHgxtm3bBjMzM4wYMQL/93//J8stQ1NSUhAWFoY9e/bgyZMnAIAKFSqgZ8+e6NOnD6pWrSpyQiLTx+4tPUqbM7u3MrB70z+xe0uX0r53sXsrG7s3u7cp4QK4hERHR2Pbtm2SLeFarRYWFvn/yOVtxTVy5EjZlNE8Sptz7969cfLkSd02H7Vr10br1q3RqlUruLm5oVy5cmJHpBKwefNmPH36FFu2bEH16tVfO65hw4YIDQ2Fr68vfvnlF4wdO9aIKUvW/PnzxY5gUu7cuYPw8HCEh4fj+vXrAKDIEi71gubv71/k99y8edMASUxP3smlffv2SfqZTfTSzp07sXDhQjx48ADu7u4ICgoqcJFEytLT0xEREYHw8HD89ddfEAQBNjY28PT0RFxcHGbNmqW3lSgRvRm7t/Qobc7s3srA7k3s3i+xe8sXu7e8sHuze5saLoCTyZDbN8PCkNucZ8+eDQC4desW4uLiEB8fj71792Lz5s0wMzODWq2Gh4eHrpTb2tqKnJiKY//+/ejWrdsbC3ieqlWrwt/fHzExMZIu4QEBARg1ahRat26tO5abm4vk5GSo1WqUKVNGb3xkZCSmTp2KtLQ0Y0c1GI1Go9vOJz4+HoIgQBAEeHh4oF+/fmLHMyqlFbTnz59j7969CA8PR2JiIv744w+xIxlE3smliIgIXLt2DYIgwN7eXuxY9A4uX76MmTNnIiEhAeXLl8f8+fPh5+cndqwStWfPHoSFhSEuLg5arRZly5aFr68vfHx80KZNG9y7dw/e3t5ixyQiEyO3HloYcpszu7cysHu/xO7N7s3uLS/s3vLD7s3ubaq4AE5EJc7JyQm9evVCr169AAAXL15EfHw8Tpw4gR07diA0NBQWFhZo3LgxWrdujXHjxomcmIrixo0b+PTTTws9Xq1WIzw83ICJDC8hIQG9e/fWO5aVlYWAgACsW7dOr5znEQTBWPEM6tXtfPLm1bVrV4wePRq1a9cWOaFxKLGgJSUlISwsDHv37sXTp08hCALq1asndqwSlXdyKTw8HPHx8Xjx4gUEQUDz5s3Rt29fdOnSReyI7yQiIqJI469cuWKYIEam0WiwYsUKrFu3Drm5uejduzcmTZqEsmXLih2txE2YMAG2trbo378/vLy84ObmBnNzc93r3EKUiEje2L3ljd37JXZvdm92b+lj99bH7i097N7SxAVwMqpTp05Bq9XqHXv69CkA4Pjx47h7926+90j9aiElzvlV9erVQ7169TBw4EBoNBrs3bsXv/zyC1JSUnDmzBmWcImxtLTE8+fPCz0+OztbtnccyKVov6qg7Xzs7e3h7++P5s2bIygoCF26dJF9AZd7QSvI3bt3dV/7q1evAgAsLCzQpUsX9OvXDy1bthQ5Yck4c+YMduzYoXdyqWzZssjKysLs2bPznXSTqqlTpxaphAmCIPnSduTIEcyePRs3b96Es7MzZs6ciWbNmokdy2CqVauGGzduICwsDFeuXMHvv/8Ob29v1KpVS+xoRCQyJfZQJc75Veze8sLu/T/s3uzecsPuze7N7i0t7N7SxAVwMqpt27Zh27ZtesfyPsSuXbtW7xt/3g8CqRdSJc75n65du4YzZ87gzJkzSE1Nxfnz55GTk4PSpUujbdu2cHNzEzsiFVH9+vVx5MiRQj8T8fDhw6hbt66BU1FJGT58OI4fPw6tVgtHR0f0798f3t7e8PDwgJmZGW7evCnbkw95lFLQ8mg0Guzfvx87duxAfHy87sRxnTp1cPnyZSxatAidOnUSOeW7S09Px86dOxEeHo4rV65AEAQ4OTnB398fPj4+eO+999ChQwdUqFBB7KglZt68eWJHMKovvvgCsbGxAICPPvoIAQEB0Gg0SExMfOP7pPxZZP/+/Thz5gwiIyOxd+9eHDt2DEuWLEHt2rXh4+ODRo0aiR2RiESixB6qxDn/E7u3/LB7yxu7N7s3uze7t1Sxe7N7SwUXwEV069atIo3Pu3JZqpT2gwBQ3pwzMzORmpqqK9ypqanIzMyEIAgoV64cWrRogQkTJsDNzQ0NGzaEmZmZ2JGpGLp3747p06cjOjr6rVfhRkREIC4uDkuWLDFSOnpXR48eha2tLQICAjBgwABUrlxZ7EhGocSClpqairCwMERHR+Px48cwMzODi4sLfHx84OPjA61WC29vb1haWoodtUS0b98eL168gFqtxsiRI+Hl5YXGjRvrXr9586aI6QzD399f7AhGFRMTo/v3gwcP4tChQ28cn7f4ce7cOUNHM6hmzZqhWbNm+Prrr3Hs2DFERUXhwIEDWLlyJVQqFVQqFQ4dOgS1Wo2qVauKHZdIFOze8qe0ObN7KwO7t7yxe7N7s3vLB7s3uze7t2niAriI2rdvr6itMYrzg0DqPxCVNmcPDw+oVCoIgoDy5cvD3d0dbm5ucHNzg7Ozs6T//NL/9OzZExEREfjqq69w4cIFDBgwAA4ODnpj0tPTERoaio0bN6Jdu3bo3LmzSGmpqMaMGYPdu3dj1apV+Omnn1CrVi14e3vD29sbTZs2FTuewSixoH3yySewsbFBmzZt0LZtW7Rv317vJIPc5pybmwsbGxtUqlQJNjY2+bZIVYK7d+/i9OnTSE9PBwA4ODjAxcUFjo6OIicrGUpb/HiVubk52rVrh3bt2iE7OxuxsbHYtWsXjh8/jl9//RVhYWHw8PBAz5498fHHH4sdl8io2L3fTuo/95U2Z3ZvZWD3ljd2b3bvPHKbM7s3u7fcsXtLBxfAReTn58dSUoDnz59j7969CA8PR2JiIv744w+xIxmcXObcqVMnuLu7w93dndtuyZiZmRlWrVqFSZMm4aeffsLq1avh6OiIypUrw9zcHA8ePMC1a9cgCAI6d+6MOXPmiB2ZimDMmDEYM2YMzp49i6ioKERHR2P16tVYs2YNHB0d4erqKsufXUosaDY2Nnj27Bn+/PNPlC9fHra2tmjbti3s7OzEjmYQhw4dQlRUFKKiorBkyRKoVCpUqlQJHTp0QIcOHWR9de7FixcRHByMxMRECIKgt5WimZkZXF1dERgYCGdnZxFTvjulXXX/JtbW1vD19YWvry8ePXqE6OhoREVF4cSJE4iPj2cJJ8Vh9y6YXHpoUchlzuzeysDuLW/s3uze7N7yw+6tPOzepk0lyP1hIiQZSUlJCAsLw969e/H06VMIgoB69eohKipK7GgGo8Q5k7z89ttv2LlzJ1JTU3Hv3j0IggAHBwe4urqie/fuaNWqldgRS4RarcY333wDLy8v3bHMzEz4+/tj8eLFcHFx0RsfGxuL+fPnS35rH+DlHVAnTpxAVFQUYmNj8eTJEwBA1apV0bNnT/j5+cHJyUnklO/u9u3buoJ28eLFAguaj48PVqxYoffnQMqys7Nx8OBBREZG4tixY9BqtbC0tETr1q3RoUMHqNVq9OrVS1ZzznP+/HndSabbt29DpVLpTkpMnToVn332mdgRS8yBAwcwfvx4qFQqeHt7o1WrVnBwcICFhQXS09ORmJiIvXv3Ijc3F0uXLoW3t7fYkcmArl+/jt27d2PkyJFiRzMx9UMAAEkhSURBVCEiESmxhypxziQv7N7s3uze0sXuze7N7q087N6mgQvgEnH79m2Eh4cjIiJC7xkLUnf37l1EREQgPDwcV69eBQBYWFjAx8cH/fr1Q8uWLUVOWPKUOGciqVOr1QVeef227THlUML/SaPR4ODBg9i1axeOHDmCnJwcmJmZoXXr1vj3v/8tdrwSo6SClicjI0N3lWpKSorea8OHD8fIkSNhY2MjTjgDS0hIQFRUFGJiYpCZmQmVSoVq1aqhR48e8Pf3R5UqVcSOWGw3btyAr68vatWqhWXLlqF69eoFjrtz5w6++OILXLp0CTt37nztOFM3bdq0Ir9HpVJh7ty5BkhDRFLF7i0fSpwzkdSxe7/E7s3uLUfs3uze7N5kbFwAN2HPnz/Hvn37EB4ejpMnT+LFixewsLDA2bNnxY72TjQaDfbv348dO3YgPj5et9VNnTp1cPnyZSxduhSdOnUSOWXJUuKcSTk0Gg3Onz+P9PR03VXoarUapUqVEjtaiSnOBztA3s/Eefz4Mfbu3YuoqCicPn0aaWlpYkcyCDkXtNe5efMmoqKisGvXLly6dAkqlQq2trbo3Lkzevbsme+uC7nIycnB0aNHERkZicOHD+P58+eS/9w1Z84c7Ny5E3v37tV7xlxBMjIy0KVLF3Tr1g1Tp041UsKSpVari/welUol6ROmxblDRKVSYf/+/QZIQyRd7N7yocQ5k3Kwe78eu7f0sXuze0v5cxe799uxe5MYuABugpKTkxEeHo7o6Gjd1lxVqlRB79698cknn6By5cpiRyyW1NRUhIWFITo6Go8fP4aZmRlcXFzg4+MDHx8faLVaeHt7y2q7FyXOmZTj/v37WLJkCWJiYvD06VO912xsbNCxY0dMmDABDg4OIiUkYzl16pTs76CRY0ErjPPnzyMyMhLR0dG4c+eO5AtLYT158gQxMTHYtWsX1q1bJ3acYuvcuTPatm1b6BOJCxcuxKFDh7Bnzx4DJzOMmzdvFut9Un4GXfv27fMdEwQBt2/fRqVKlWBlZVXg+w4ePGjoaESSwO4tnx6qxDmTcrB7Ux52b/li92b3lhJ275fYvU2fhdgB6KW7d+9i586dCAsLw9WrVyEIAszMzAAA48ePx/Dhw3W/lqpPPvkENjY2aNOmDdq2bYv27dvrXRFV3G+cpkyJcyZlSElJwYgRI5CZmYlmzZoV+FybiIgIHDx4ECtXrkSLFi3EjkxFdPbsWaSkpEAQBDRo0KDAkv3kyROEhIRg+/bt+OOPP0RIaTyWlpbw8vKCl5eXXkGTO7VaDbVaja+++gonT55UxJwBwM7ODt7e3khKShI7yju5ffs26tatW+jxtWvXxn/+8x8DJjIsKZfp4iqoTD98+BCenp5YtGgRWrduLUIqItPG7i3PHqrEOZMysHvLH7u3PnZvdm8pYveWP3ZvaeICuIjytuYKCwvDiRMnoNVqUapUKbRv3x4dOnSAs7Mz/P39Ua9ePckXcAC6Z7j8+eefKF++PGxtbdG2bVvY2dmJHc1glDhnkr8HDx5g9OjRKF26NH788Ue4uroWOC4tLQ3jx4/HF198gZ07d6JixYpGTkrF8ffff+PLL7/EkSNHkLdJjEqlgqenJ1auXKm7ovHw4cMICgrC3bt3UaNGDTEjG51cClpROTk5Sf7k8Y0bNxAaGork5GQAQMOGDTFs2DDUrFlTb1xMTAxmz56N+/fvIzg4WIyoJcLa2hqPHz8u9PjHjx+jbNmyBkwkLo1Gg0uXLsHa2hq1a9cWO47BvOn5mERKxe4t/x6qxDmT/LF7yxu799uxe0sXu/ebsXvLA7u36eMCuIjatGmDx48fo1y5cujatSu8vLzQtm1b2NjYAJDfFconTpzAwYMHERkZiR07dmDbtm2wtLRE69at0aFDh2I9O8LUKXHOJH+bN2/G06dPsWXLFlSvXv214xo2bIjQ0FD4+vril19+wdixY42Ykorrhx9+wOHDh9GmTRv4+/vD1tYWR44cwdatW7Fw4UIEBgZiwYIFWL9+PczNzTFkyBB88cUXYscuEUoraABw5swZrFy5Um/Oo0eP1rvrQBAErF+/Ht9//z2ys7PFivrOzp07h4EDB+LJkyewtraGtbU10tLSEB0djS1btqB+/frIyspCYGAgYmJiYG5ujuHDh4sd+500btwYMTExGDJkSKHG79u3Dw0aNDBwKsPKysrCmjVrkJycjE2bNumOR0VFITg4WHdSolatWpg7dy6aN28uUlIiMiZ2b/n3UCXOmeSP3Vve2L3Zvdm92b2ljN2bpIAL4CLKzMyEra0tOnbsCA8PD7Ro0UJXwOXI2toaXbp0QZcuXZCRkYHo6GhERUXh6NGjOHr0KICXV82kpqbC09NTFv8vlDhnkr/9+/ejW7dubyzgeapWrQp/f3/ExMSwhEvEwYMH4e7ujjVr1uiOffjhh6hYsSI2bdoEe3t7hIaGQq1WY968eZL/wJ5HiQXtxIkTGDZsGLRaLWrVqgUbGxskJiZi0KBBCA0NhZubG27cuIGJEyciNTUVdnZ2mDlzptixiy3vJMLixYvRtWtXAC+fF/rll18iODgYISEhCAgIwF9//YUmTZogODgYzs7OIqd+N7169cL48eMRGhqKwYMHv3HsqlWrkJqaqvd3X2qePn2KPn364PLly6hSpQpyc3NhYWGB1NRUTJkyBYIgoE+fPqhXrx4iIiIwePBgRERE5DvRRkTyw+4t/x6qxDmT/LF7yxu7N7s3uze7t1Sxe5NkCCSaxMREYfr06YK7u7ugVquFBg0aCJ988omwdu1a4erVq8KNGzcEZ2dnYf/+/WJHNagbN24IK1euFLp27So4OzsLarVaaNGihfDNN98ISUlJYsczCCXOmeSjefPmwpYtWwo9ftu2bYKLi4sBE1FJat68ubB+/fp8xy9duiQ4OzsLDRo0EGbPni1oNBoR0hnOyJEjhUaNGgm7du3SHTtz5ozg5eUlDBw4ULh7967QsWNHwdnZWejVq5dw/vx5EdOWjEGDBgktWrTQ+7lz584dwc/PT+jdu7dw6dIlwdPTU3B2dhbGjh0rpKeni5j23Xl6egqzZ8/Od3zfvn1Cw4YNhf79+wuNGzcW1qxZI2i1WhESGsbYsWMFtVotTJw4UUhOTtb7u6vVaoXk5GTdmG+//VbEpO/u+++/Fxo1aiTs2bNH7/jw4cMFtVotzJs3T3csOztb8PHxEaZOnWrsmAb38OFDwdnZWYiLixM7CpHJYPd+SYk9VIlzJvlg95Y3dm92b3Zvdm+pYvd+id3b9PEOcBG1bNkSLVu2xLfffosjR44gKioKhw8fxpkzZxASEoLq1atDpVLh77//FjuqQVWtWhUjR47EyJEjcf78eURGRiI6Ohq//vorduzYgXPnzokdscQpcc4kH5aWlnj+/Hmhx2dnZ8PW1taAiagkPXv2DBUqVMh3vHz58gCADh06IDAw0NixDC41NRV9+/bVXZ0MAE2bNsVXX32FCRMmYMKECbh58yYmTZqEzz//XBbPBz137hz69esHFxcX3bH33nsPEydOxLBhwzBu3Djk5uZi6dKl6Ny5s4hJS0ZmZmaB2582adIEWq0WFy5cwKZNm2S3LVdISAjmzZuHLVu2YPfu3TA3N4e9vT3Mzc2RkZEBjUYDMzMzDBkyBBMmTBA77juJiYlB9+7d0alTJ92xp0+f4vjx4wCA/v37646XKlUK3bp1w/bt242ek4iMj937JSX2UCXOmeSD3Vve2L3Zvdm9mxs/nAGxe7N7k+nhArgJsLCwgJeXF7y8vPD06VPExMQgKioKJ0+ehCAImDJlCnbs2IEePXqgY8eOKFWqlNiRDUatVkOtVuOrr77CyZMnsWvXLrEjGZwS50zSVr9+fRw5cgQBAQGFGn/48GHUrVvXwKnI0FQqFQDAz89P3CAGosSClpWVhTp16uQ7Xq9ePQiCgIyMDGzfvh01atQQIV3Jy83NLfAzlLW1NQBg+PDhsvr65rGyskJQUBACAgIQERGB1NRU3Lt3D4IgoHbt2nB1dYWvr68stiK7ceOGXtEGgMTEROTm5qJ69er5/iw7OjriwYMHxoxY4pYvX57vWHZ2NlQqFXbu3InTp0/ne12lUmH06NHGiEdkcti9/0eJPVSJcyZpY/dWJnZvdm+pY/dm92b3fondW3xcADcxpUuXhr+/P/z9/fHgwQPs2rULUVFRiI+PR3x8PGbPno3ExESxYxqFh4cHPDw8xI5hVEqcM0lP9+7dMX36dERHR6NLly5vHBsREYG4uDgsWbLESOnI0PIKi9wosaBptVpYWOT/KGhlZQUAGDlypGwKeGE0btxY7AgGVatWLclfZf42ZmZmePHihd6xEydOAAA8PT3zjX/48CHs7OyMks1QCirheSIiIgo8zhJO9BK79/8osYcqcc4kPezeysbuLR/s3vrYvaWP3Vsfu7fp4gK4CatYsSI+++wzfPbZZ7h69SoiIyMlfYVyYa9Y/SeVSoUNGzYYII1xKHHOJH89e/ZEREQEvvrqK1y4cAEDBgyAg4OD3pj09HSEhoZi48aNaNeunSy2cFKSvCvOi/qanMm9oBWkoCvU5UwJf7bv3r2L06dPIz09HQDg4OAAFxcXODo6ipysZNStWxfJyckYMGAAAEAQBMTGxkKlUqF9+/b5xh84cEDyf843btwodgQiWWD3ln4PVeKcSf7YveWP3Ts/dm/5U8KfbXZvfezeJBYugEtEzZo1MXbsWIwdO1bsKMWWkJBQ4HGVSgVBEF77mpQpcc4kf2ZmZli1ahUmTZqEn376CatXr4ajoyMqV64Mc3NzPHjwANeuXYMgCOjcuTPmzJkjdmQqorlz52Lp0qV6xwRBgEqlwqRJk/Jdra1SqbB//35jRjQ6fm+Wh8uXL+e7my8rKwsAcOHChQKvyndzczNKNkO6ePEigoODkZiYCEEQ9D6DmJmZwdXVFYGBgXB2dhYx5bvz8/PDnDlz0KRJE3zwwQfYtm0bbt26hRo1aqBNmzZ6Y1etWoWUlBTJP1fR3d1d7AhEssPuLU1KnDPJH7u3/LF758fvzfLA7s3unYfdm8TEBXARBQQEYNSoUWjdurXuWG5uLpKTk6FWq1GmTBm98ZGRkZg6dSrS0tKMHbVEnD9/Pt+xhw8fwtPTE6GhoXr/H+RCiXMmZShTpgx++ukn/Pbbb9i5cydSU1Px3//+F4IgwMHBAX5+fujevTtatWoldlQqIicnJwAo8ERh3pWqr772upOKUqPEgnbq1ClotVq9Y0+fPgUAHD9+HHfv3s33Hik/i27VqlVYtWpVga8tWLCgwOPnzp0zZCSDO3DgAMaPHw+VSoVOnTqhVatWcHBwgIWFBdLT05GYmIi9e/eiV69eWLp0Kby9vcWOXGx9+/bF6dOnMW/ePN2CR7ly5RASEgIzMzMAwK+//orVq1fj+vXrcHV1Rb9+/URObVgajQaXLl2CtbU1ateuLXYcItGwe8u/hypxzqQM7N7yxe7N7s3urY/dWzrYvfNj9zZNKkEuPzklSK1WY9GiRfD19dUde/ToETw9PbFu3bp8BS0yMhJTpkyR/A+Df3r06BFat26tqEKqxDkTEZk6tVr92ivN867AL4iUfya/bs7//Gj4z9fz/j9Idc4//PBDse4mGDNmjAHSGMeNGzfg6+uLWrVqYdmyZahevXqB4+7cuYMvvvgCly5dws6dO187TiqSk5ORnJwMOzs7eHt7o0KFCrrXli9fjp07d8LX1xcjRowo8PmDUpOVlYU1a9YgOTkZmzZt0h2PiopCcHAwHj9+DODls+jmzp0ru2cqEhUGu7cye6gS50xEZOrYvf+H3Vsfu7f0sHu/xO5tungHuAniNQlEJBXZ2dmwtrbOd/zSpUsoW7ZsvueTkemLiIhAy5YtUa1aNbGjGNXo0aMVt9XavHnzxI5gVFLeyra4NmzYAEtLS6xdu1aviL6qSpUqWL16Nbp06YKff/4ZU6dONWLKkufi4gIXF5cCXxszZsxrT6zk5OQgJSWlwLtBTdXTp0/Rp08fXL58GVWqVEFubi4sLCyQmpqKKVOmQBAE9OnTB/Xq1UNERAQGDx6MiIgI1KxZU+zoRCaB3ZuIpILdW37YvZWD3Vv+2L3zY/dm9zYFXAAnIqIi02g0WLBgAaKionD06NF8RXzJkiU4evQoevbsiSlTpsDW1lakpFRU06ZNw8KFCxVXwpVY0Pz9/cWOYFQFbX8rd8eOHYO/v/8bC3gee3t7+Pn54dChQ5Iv4cWVmZmJgICAAu8GNVXr1q3DtWvX8N1336FTp0664ytWrIAgCPjss890X89evXqhW7duWLVqleJOwhEREUkVu7d8sXsrB7u3/LF7Fw27NxmLmdgBiIhIWjQaDYYMGYKff/4ZTk5OePToUb4xH330EZydnbF161YMHToUubm5IiSl4lDqnVABAQE4ceKE2DGMysvLCwcOHBA7htEkJCTg/v37Yscwqtu3b6Nu3bqFHl+7dm3cuXPHgIlMn9S+B8bExKB79+56Bfzp06c4fvw4AKB///6646VKlUK3bt0U972OiIhIqti95U1qnztLCru3/LF7vx27t/S+B7J7SxMXwImIqEjWr1+PxMREBAYGIiIiAo6OjvnG9O7dGzt27MCYMWOQlJSEzZs3i5CUqPCUWNBu3ryJv//+W+wYZEDW1ta6Z1AVxuPHj1G2bFkDJqKSduPGDTRu3FjvWGJiInJzc1GtWjXUqFFD7zVHR0c8ePDAmBGJiIiomNi9SY7YvUmO2L3lj91bmrgFOhlNREREvmNPnz4FABw/fhx3794t8H1+fn4GTGVYSpwzyV9UVBS8vLzw6aefvnXsmDFjkJCQgJ07d2LQoEGGD0clIiMjA7du3SrSe5ycnAyUhoiKq3HjxoiJicGQIUMKNX7fvn1o0KCBgVNRSTIzM8OLFy/0juVdZe7p6Zlv/MOHD2FnZ2eUbEQkHiX2UCXOmeSP3Vv+2L2J5IHdW/7YvaWJC+Aie/WDTmZmJoCXf0Fe/QBU0FZHUjJ16lSoVCq9Y3lbXaxduxYqlUr367x/V6lUki6kSpwzyd/Vq1fRt2/fQo//8MMPsWzZMgMmopI2d+5czJ07t9DjVSoV0tLSDJiIqGTExsbi6tWrhR6vUqkwevRoAyYyrF69emH8+PEIDQ3F4MGD3zh21apVSE1NxZo1a4yUjkpC3bp1kZycjAEDBgB4+TkzNjYWKpUK7du3zzf+wIEDqFOnjrFjEpkEdm9591Alzpnkj91b/ti9Sa7YvV+P3Vua2L2liQvgInvdB51JkyaJkMaw5s2bJ3YEo1PinEn+bG1todVqCz2+VKlSsLa2NmAiKmmurq6oXr262DGMTmkFDQC2bduGuLi4Qo9XqVRFOkFjamJjYxETE1Po8VL/Gnfq1Ak+Pj5YuHAh/vjjD3z66ado1KgRLC0tAQAvXrxAamoq1q1bh9jYWPTu3Rv/+te/RE5NReHn54c5c+agSZMm+OCDD7Bt2zbcunULNWrUQJs2bfTGrlq1CikpKQgMDBQpLZG42L3lTYlzJvlj95Y/du/CkXovA9i930bqX2N2b/lj95YmLoCLyM/PL98VynLm7+//1jGZmZmwtrZGqVKljJDI8JQ4Z5K/2rVrIykpCQEBAYUaf/r0aVStWtXAqagk9enTB76+vmLHMDqlFTTg5fOKEhMTCz1e6iV8xIgRBW5NJWchISGYN28etmzZgt27d8Pc3Bz29vYwNzdHRkYGNBoNzMzMMGTIEEyYMEHsuFREffv2xenTpzFv3jzdHY3lypVDSEgIzMzMAAC//vorVq9ejevXr8PV1RX9+vUTOTWR8bF75ye3HqrEOZP8sXvLH7t34bB7Sw+7N7u33LB7SxMXwEU0f/58sSMYXU5ODsLCwpCSkqJ3hXZCQgJmzJiBK1euQKVSwdPTE0FBQbK4ClKJcyZ58/f3R1BQEOLj49GqVas3jj158iRiYmIwduxYI6UjKj4lFrSvv/4aXl5eYscwmjp16sDd3V3sGEZlZWWFoKAgBAQEICIiAqmpqbh37x4EQUDt2rXh6uoKX19f1KxZU+yoVAwqlQohISEYMGAAkpOTYWdnB29vb1SoUEE35s6dOxAEAaNGjcKIESN05ZxISdi9ldFDlThnkjd2b5Irdm/5Y/dm95Ybdm9p4gK4iIYOHQo/Pz94e3srYouinJwcfP7550hMTISlpSVmz54NCwsLXLlyBUOHDkVOTg7atGmDunXrYt++fejTpw8iIyNRqVIlsaMXmxLnTPLn5+eHHTt2YOTIkRgxYgR69+6d789seno6tm/fjrVr16JatWro37+/SGmJCk+JBa18+fK8S0QhatWqxavMZczFxQUuLi4FvjZmzBiMGTOmwNdycnKQkpICtVqNMmXKGDIikajYveXfQ5U4Z5I/dm+SK3ZvkjN2b3lj95YWXoIgooSEBEyePBmenp6YOnUq4uLiIAiC2LEMZvPmzTh16hQmT56MxMREWFi8vP7ihx9+gEajga+vL1avXo2vvvoKO3bsgLm5OVatWiVy6nejxDmT/FlaWmLFihVo1qwZli1bhjZt2sDLywt9+/ZF79690b59e7Rr1w4//PADnJ2dERoayh/sEuLk5ARbW1uxYxARkRFkZmYiICAAZ8+eFTsKkUGxe8u/hypxziR/7N7yxu5NRKQc7N7i4B3gIjpx4gT279+PPXv2YPfu3di5cycqVaoEX19fdOvWDWq1WuyIJWrXrl3o2LEjhgwZojum0Whw8OBBqFQqveP29vbo0aMHdu/ejcDAQDHilgglzpmUoWLFitiwYQNiYmKwe/dupKWl4cKFCzAzM0OlSpXg5+eHDh06oH379mJHpSI6ePDgG19/8eIF7ty5g0qVKsHKyspIqYje3ZgxY+Ds7Cx2DKMq7PMi/0mlUmHDhg0GSGMa7t27B3t7e1haWuZ7rVy5cti4cSMaNGggQjLxyHkRkCgPu7f8e6gS50zKwO4tX+zeJFfs3oXD7s3uTYbHBXARlS5dGt27d0f37t2RlZWFffv2ITo6Ghs2bEBoaCjq1q2L7t27w9fXF++9957Ycd/ZX3/9BX9/f71jp0+fRnZ2NhwcHPL9YKxRowbS09ONGbHEKXHOpCw+Pj7w8fEROwYZ0cOHD+Hl5YV169ahdevWYscpMUosaPPmzXvttk1y9LptqPL8/fffWLduHfz8/FCtWjUjpTKshISEAo+rVKrXFi+VSmXISEYRGhqKbdu2ITIyMl/Znjt3LuLi4jBkyBAMHTpU75lclpaWituKkUgp2L3l30OVOGdSFnZv5WH3lg92b33s3v97TerYvcnUcQHcRJQpUwa9evVCr1698PDhQ+zduxd79uzBkiVLsGTJEri5ucHPzw8+Pj4oXbq02HGL5cWLFzA3N9c7Fh8fDwDw9PTMNz4rKws2NjZGyWYoSpwzEfByWxdra2uUKlVK7ChkAHK8YlGJBe3Vk8SvevLkCebMmYOhQ4eiTp06Rkolnr///hsrVqyAq6urbL7G58+fz3fs4cOH8PT0RGhoqKxOpAEvvzdNmjQJu3fvRsWKFXHnzh1Ur15db0ydOnWQlJSEpUuX4uzZs/j+++9FSktEYmH3lmcPVeKciQB2b7lj95ZHL2P31sfuLX3s3iQVfAa4CapQoQL69++PTZs24fDhw/jmm29gZmaG6dOn41//+pfY8YqtRo0aOHfunN6x2NhYqFQqfPjhh/nGHzt2DDVq1DBSOsNQ4pxJGXJycrB161ZMmzZN73hCQgK6dOmCVq1awcXFBUOHDsW1a9dESklUcvIK2vXr18WOYjTZ2dmIiIhQ1N1RcjzB9Co5XGX+Olu3bsXu3bsxaNAgHD58OF8BB16ecIuNjUWPHj0QGxuLsLAwEZISkalg935JDj1UiXMmZWD3JqVh91YGdm9pY/cmqeACuImztLSEtbU17OzsYGFhAY1GI3akYuvatSt27tyJ/fv349mzZ1i/fj0uX76MihUr5ntWUWRkJI4fPw4vLy+R0pYMJc6Z5C8nJweff/45goKCsGvXLuTm5gIArly5gqFDh+LKlSto06YNBg0ahCtXrqBv3764f/++yKmJ3p0SCtqrlDhnkq5ff/0V7u7umDp1aoHPGctjZWWF4OBgNGjQANu2bTNiQiIyZeze0u6hSpwzyR+7NymVEnuoEudM0sXuTVLBLdBN0MOHDxEbG4u9e/ciMTERubm5aNiwIcaNG4euXbuKHa/YBg0ahN9++w1jxozRPf/C0tISc+bMgZWVFYCXV2hv3rwZCQkJqFWrFgYNGiRu6HekxDmT/G3evBmnTp3C5MmTMWDAAFhYvPxR8sMPP0Cj0aBbt25YuHAhAGD48OHw9fXFqlWrEBgYKGZsKiGWlpZwc3NDuXLlxI5CRKTnzz//xLhx4wo1VqVSoVOnTli5cqWBUxGRKWP3lk8PVeKcSf7YvZWN3ZuITBW7N0kFF8BNxP379xETE4O9e/fi9OnT0Gq1qFq1KoYMGYJu3brJ4vkfVlZWWL9+PaKjo5GSkgI7Ozv4+vqibt26ujFnz55FUlISunXrhqlTp8La2lrExO9OiXMm+du1axc6duyIIUOG6I5pNBocPHgQKpVK77i9vT169OiB3bt3s4RLRFZWFsqUKfPa18uVK4dNmzbpHTt58iQ8PDwMHY3IoMqUKYN58+ahXr16YkehYrKwsNAtchRG2bJl8z0vlojkj937Jbn1UCXOmeSP3Vve2L1Jqdi9pY/dm6SCC+AiSk9PR0xMDPbt24ekpCRotVqUK1cOvXr1gq+vL1q2bCl2xBJnbm4OX19f+Pr6Fvj6yJEjMW7cOJiZyWd3fiXOmeTtr7/+gr+/v96x06dPIzs7Gw4ODnB2dtZ7rUaNGop6jpHUBQQEIDQ0FPb29m8d+/z5cyxatAi//PIL0tLSDB9OREosaOXKlcPGjRvRoEEDsaMYRalSpfCvf/2Ld1hIWM2aNXH27NlCjz979iwcHR0NmIiITAW7d35y7KFKnDPJG7u3vLF7F4zdW/7YvaWP3ZukggvgImrXrh2Al1cqe3t7w9fXF+3atXvjcxPkzsbGRuwIRqfEOZO0vXjxIt9Ve/Hx8QAAT0/PfOOzsrL451xCzp07h08//RTr169HpUqVXjvuzJkzmDJlCv766683jpOLUqVK6Z180mq1WL16NUaNGiViKsOytLSEu7u77tdZWVlYsGABgoODRUz17kJDQ7Ft2zZERkbm+8w1d+5cxMXFYciQIRg6dKjkT5BHRETkO/b06VMAwPHjx3H37t0C3+fn52fAVIbz8ccfY/HixRg8ePBbT5hdvHgRUVFRCAgIMFI6IhITu3d+Svx8rsQ5k7Sxe8sbu3fB2L3ZvaWI3fv12L1JTCpBEASxQyjVwIED0b17d3Tq1Al2dnZixyEiKpTu3bujWbNmmDVrlu5Yly5dcOXKFSxduhSdOnXSGz906FBkZmZi+/btxo5KxfDzzz9jzpw5qF69OtavX5/vCs2cnBx8//33WLduHbRaLbp3746vv/5aFlfuZmVlYfv27UhJSYEgCGjYsCEGDBiAsmXL6o37/fffERgYiP/+9784d+6cSGlLxo0bNxAaGork5GQAQMOGDTFs2DDUrFlTb1xMTAxmz56N+/fvS3bOgiBg0qRJ2L17NypWrIgtW7agevXqemOWL1+O7du3Iz09HR06dMD3338vUtqSoVaroVKp9I7986N/Qa+pVCrJfo3//vtv9OjRAxkZGfj666/RtWvXfCeNc3NzsWvXLoSEhAAAwsPDUblyZTHiGs29e/dgb29f4EJfTk4OkpOT0aBBgzduwUkkdezeRCRF7N7yxu7N7s3uze4t1a8xu3fB2L1NDxfAiYioSFavXo0VK1Zg8eLF+OCDD7B161bMnz8flSpVwsGDB/WeARMZGYkpU6Zg3LhxGDlypIipqSh27dqFqVOnwsHBAevXr0eNGjUAvLxCfcqUKfjvf/8LJycnzJw5E23atBE5bcm4fv06AgICcOfOHb2SUqlSJWzfvh2Ojo7Izc3F4sWLsXHjRmi1WnTt2hWLFy8WMfW7OXfuHAYOHIgnT57A2toa1tbWyMjIgK2tLbZs2YL69esjKysLgYGBiImJgbm5OYYMGYIJEyaIHb1YtmzZghkzZmDQoEGYOHHia+/602g0mDlzJsLCwjBnzhz06NHDyElLTnh4eLHe9+pWm1Jy5coVjB49GleuXIGtrS0aNWqEypUrQ6vV4sGDBzh79iyys7Ph5OSEFStWQK1Wix25RLzp7ooJEybI6u4KIiIipWD3lj92b3Zvdm92b6li92b3lgIugIuooK0xCkOqW2MQkTxoNBoMGTIEiYmJUKlUEAQBlpaWWL58uW57ydjYWGzevBkJCQmoVasWwsLCYG1tLXJyKoojR45g/PjxsLOzw5o1a3DgwAGsWrUKubm56NevHyZOnIjSpUuLHbPETJw4EdHR0ZgwYQJ69uwJGxsbHDlyBLNmzULz5s2xaNEiDB8+HElJSXByckJQUJDuz7tUjRo1Cr/99hsWLFiArl27AgBSU1Px5ZdfwsnJCSEhIQgICMBff/2FJk2aIDg4ON9zBqWkV69esLW1xcaNG986VhAE9OzZE1ZWVtiyZYsR0lFJ0mg0+Pnnn7F7926cP38eubm5AF5uLdi8eXP4+PigT58+eieNpUqJd1cQFQe7NxFJEbu3MrB7s3uze7N7SxW7N7u3qeMCuIjytsbI2/LibaS+NQYRyYdWq0V0dDRSUlJgZ2cHX19f1K1bV/f60qVLsW7dOnTp0gVTp05F+fLlRUxLxXX69GmMGjUKT548gSAIqFmzJoKDg9GyZUuxo5W4tm3b4oMPPsC8efP0joeHhyMoKAht27bF/v370a9fP0yePBm2trYiJS05H3zwATp37ozAwEC94zExMZgwYQKaN2+O1NRUjBs3Dp9//rnkr1x1cXHBuHHjMGjQoEKNX716NVauXKnbok7qsrOzCzwZeunSJZQtWxYODg4ipDKOhw8fwtzcXBbbRb5KiXdXEBUHuzcRSRW7tzKwe7N7s3uze8sBuze7t6mxEDuAkr36g56ISCrMzc3h6+sLX1/fAl8fOXIkxo0bJ/kP7Urn6uqKjRs3YujQoXj48CFmzZolywIOAI8ePYKLi0u+425ubtBoNDhy5AiWLVuGjh07ipDOMDIzMwvcgqpJkybQarW4cOECNm3ahObNmxs/nAFYWFgU6arjsmXL5nuGlRRpNBosWLAAUVFROHr0aL4ivmTJEhw9ehQ9e/bElClTZHGC6VUVKlQQO4LB/Prrr3B3d8fUqVPfOM7KygrBwcE4d+4ctm3bxhJOisPuTURSxe6tDOze7N7s3uzecsDuze5targALiIpP+OBiJQrICAAo0aNQuvWrXXHcnNzkZycDLVajTJlysDGxkb3Wt6zyHgHjTSp1Wr85z//weDBgzFq1CisWLECrVq1EjtWicvJydH7c5snb6u5wYMHy6qAAy//3pYqVSrf8bySNnz4cNkUcACoWbMmzp49W+jxZ8+ehaOjowETGd4/t81Uq9V49OhRvjl99NFHuHv3LrZu3YqLFy9i48aNsLCQZkVYvnx5sd43ZsyYEk5iPH/++SfGjRtXqLEqlQqdOnXCypUrDZyKyPSwexORFLF7Kwu7N7u3XLB7s3u/Drs3GZs0/4YplFarxerVqzFq1CixoxCRgiUkJKB37956x7KyshAQEIB169bplXOSnmnTphV4vGbNmrhx4wZGjBiBzp07620fqlKpMHfuXGNFFIW7u7vYEYyucePGYkcoUR9//DEWL16MwYMHo169em8ce/HiRURFRSEgIMBI6Qxj/fr1SExMRGBgID799NMCx/Tu3Ru9e/fG8uXLsXz5cmzevLnQW9WZmsKW8Fe3P5ZyCVfq3RVEhsbuTUSmgN1b3ti9C8buLX3s3uzeedi92b3FxgVwkWVlZWH79u1ISUmBIAho2LAhBgwYgLJly+qN+/333xEYGIj//ve/LOFEZJIEQRA7ApWA8PDwN77+/PlzRERE6B1TQglX4ofWwjwjVUo++eQTbNmyBQMHDsTXX3+Nrl275vu65ubmYteuXQgJCUGZMmUkX8KjoqLg5eX12gL+T2PGjEFCQgJ27twp2RJ+4MCBt47JysrCd999h8OHD8PCwkLyX2Ml3l1BVFzs3kQkF+ze8sDuXTB2b+lj934zdm9pYveWJi6Ai+j69esICAjAnTt3dB9eY2Nj8fPPP2P79u1wdHREbm4uFi9ejI0bN0Kr1aJr164ipyYiIjkrzIdYucrIyMCtW7f0jmVmZgIAHj58mO81AHBycjJKNkO5fPkyEhMT9Y5lZWUBAC5cuFDgdlxubm5GyVbSbG1tsXLlSowePRpTpkzBzJkz0ahRI1SuXBlarRYPHjzA2bNnkZ2dDScnJ6xYsQKVK1cWO/Y7uXr1Kvr27Vvo8R9++CGWLVtmwESGVbVq1Te+Hh0djfnz5yM9PR0tWrTAjBkzUL9+fSOlMwwl3l1BVBzs3kREZGrYvdm92b3ZvaWK3ZvdWyq4AC6i7777Dnfu3MGECRPQs2dP2NjY4MiRI5g1axZmzZqFRYsWYfjw4UhKSoKTkxOCgoLQrl07sWMTEZGMve1DrJzNnTv3tVfTT5o0Kd8xlUqFtLQ0Q8cyqFWrVmHVqlUFvrZgwYICj0v5mYK1atVCREQEfv75Z+zevRtJSUnIzc0FAFhaWqJ58+bw8fFBnz59irS1lamytbWFVqst9PhSpUrpnkMnJ9euXcPMmTMRFxeHcuXKITg4GL169RI7VolQ4t0VRMXB7k1ERKaG3ZvdOw+7N7u3XLB7s3ubGi6AiygxMRF+fn4YPny47ljnzp2RnZ2NoKAgTJ06FUlJSejXrx8mT54MW1tbEdMSERHlt2rVKsTExCAsLEzsKO/E399f7AhGJ+VnL70LKysrDB48GIMHDwbw8g4Dc3NzlCtXTuRkJa927dpISkoqdOk6ffq0rE7EaTQarF69GmvWrIFGo4G/vz8mT56M8uXLix2txCjx7gqi4mD3JiIiqWP3li52b3bvV7F7Sw+7tzRxAVxEjx49gouLS77jbm5u0Gg0OHLkCJYtW4aOHTuKkI6IiOjtbt++LemrkvPMmzdP7AhGp9QS/qoKFSqIHcFg/P39ERQUhPj4eLRq1eqNY0+ePImYmBiMHTvWSOkMKy4uDjNnzsTVq1dRr149BAUFoWXLlmLHMgil3V1BVBzs3kREJHXs3tLF7v0Su/dL7N7Sxe4tPVwAF1FOTg5sbGzyHS9dujQAYPDgwSzgRGSSXn1e05ue1fTo0SOjZiMiKsjy5cuL9T4pn6zw8/PDjh07MHLkSIwYMQK9e/dGpUqV9Makp6dj+/btWLt2LapVq4b+/fuLlLZk3L9/H/PmzUN0dDSsra0xceJEDB48uMBn6smJku6uICoOdm8ikip2byKSGnZvdm85Y/eWFpUgCILYIZRKrVZj0aJF8PX11Tv+6NEjtG7dGmvXrsW//vUvkdIRERVMrVZDpVLlOy4IQoHH88jhSmXKLygoCNu2bZP811eJBW3atGlFfo9KpXrts9pMnVqtLtS4V7+PSf3P9oMHD/Dll1/i5MmTUKlUcHJy0tui6/bt2xAEAc2bN8fSpUvh6OgoduRi27x5M5YtW4YnT56gffv2CAwMlPR8iKjksHsTkRSxe9M/sXuze0sFuze7N5GpkPflGBJnbm4udgQionyU+Lwmkr/ClvBXC5qUS3h4eHihx/5z3lIt4QcOHHjrmKysLHz33Xc4fPgwLCwsCv38LlNWsWJFbNiwATExMdi9ezfS0tJw4cIFmJmZoVKlSvDz80OHDh3Qvn17saO+s+DgYN2/Hzx4EAcPHnzre1QqFdLS0gwZy6CUeAKRyBDYvYnIFLF7kxyxe78Zu7d0sXu/Gbs3iYEL4CJ7dSsj4M3bGQGAk5OTUbIRERVEic9rIvlTYkE7f/78W8fcvHkTs2fPxuHDh1GmTBmMHz/e8MEMpGrVqm98PTo6GvPnz0d6ejpatGiBGTNmoH79+kZKZ3g+Pj7w8fHJdzwzMxPW1tYiJCp5SjxJrMQTiETFxe5NRFLD7k1yxO5dMHZvdm8pYfd+PXZv08It0EX0uq2MgNdvZyT1K2WIiMi0FfWKxkOHDiEtLU3yW1W9jdwL2qu0Wi3WrVuHH3/8EdnZ2ejSpQumTZuW7xlWcnDt2jXMnDkTcXFxKFeuHCZNmoRevXqJHavE5OTkICwsDCkpKXonURMSEjBjxgxcuXIFKpUKnp6emD59OmrUqCFi2nczbdo09O3bF82aNRM7itHcvHnzrWMKOoH41VdfGSEdkelg9yYiIlPD7l0wdm92b6li95Y3dm9p4gK4iIrz/A+AV4ASEZHhFPZZTf+kUqlkW8LlXtAKcurUKcycORMXL17E+++/j6CgILRu3VrsWCVOo9Fg9erVWLNmDTQaDfz9/TF58mSUL19e7GglJicnB59//jkSExNhaWmJ5ORkWFhY4MqVK+jevTs0Gg3atm2LunXrYt++fXj27BkiIyMle7Lldc/4VTKlnUAkeh12byIiMjXs3vrYvdm9pYzdm9i9TRO3QBcRyzQREZmajRs3ih3BJCihoL3q0aNHWLhwISIiImBlZYWxY8di2LBhsLKyEjtaiYuLi8PMmTNx9epV1KtXD0FBQWjZsqXYsUrc5s2bcerUKUyePBkDBgyAhcXLj/4//PADNBoNunXrhoULFwIAhg8fDl9fX6xatQqBgYFixqYS8OoJxODgYNmfQCR6E3ZvIiIyNezeL7F7s3vLAbu3crF7mzYugJuAZ8+eYceOHfjtt99w/vx5ZGRkQKVSoUKFClCr1fDy8oKvr68sfwgSEZFpcXd3L/J7Tp06ZYAk4lFKQfun7du3IyQkBJmZmfjggw8QFBQk6e24Xuf+/fuYN28eoqOjYW1tjYkTJ2Lw4MG6cio3u3btQseOHTFkyBDdMY1Gg4MHD0KlUukdt7e3R48ePbB7926WcAlT4glEoqJg9yYiIlPB7s3uze4tH+zeysPuLQ3y/I4jIadPn8a4ceNw//59WFlZoUaNGqhatSpyc3ORkZGBQ4cO4eDBg1i+fDkWL16MFi1aiB2ZiIgIt2/fRnh4OCIiInD9+nVZbMOmtIIGABcuXMCMGTOQkpKCSpUqYcmSJejSpYvYsQxi8+bNWLZsGZ48eYL27dsjMDAQjo6OYscyqL/++gv+/v56x06fPo3s7Gw4ODjA2dlZ77UaNWogPT3dmBFL3KlTp6DVaov0Hj8/P8OEMTIlnkAkKgp2byIikiJ2b3lg92b3/id2b2lj95YO+f5UkYA///wTQ4YMgZ2dHUJCQuDj45PvSvMnT55g7969+P777zF06FCEh4ejZs2aIiUmIiIle/78OWJiYhAWFoaTJ09CEASoVCq0bdtW7GjvTIkFbcGCBdi0aRO0Wi0++ugjjB8/HnZ2drh169Yb3+fk5GSkhCUrODhY9+8HDx7EwYMH3/oelUqFtLQ0Q8YyqBcvXsDc3FzvWHx8PADA09Mz3/isrCzY2NgYJZuhbNu2Ddu2bSvU2LzvYVIv4Uo8gUhUVOzeREQkJeze8sLuze79KnZvaWL3lh5+ZUT0448/wsbGBjt27MB7771X4Bg7Ozv06tULbdu2Rffu3bF27VrMnj3byEmJiEjJUlJSEBYWhj179uDJkycAgAoVKqBnz57o06cPqlatKnLCd6fEghYaGqr790OHDuHQoUOFep9U7zh49WpsJahRo0a+r1dsbCxUKhU+/PDDfOOPHTsm+e33PvnkEzRv3lzsGEajxBOIRMXB7k1ERFLA7l0wdm9pYfd+id1bXti9pYkL4CJKTExEjx49XlvA/8nBwQF+fn44duyYEZIREZHSpaenIyIiAuHh4fjrr78gCAJsbGzg6emJuLg4zJo1C15eXmLHLDF+fn5QqVRixzCqMWPGFPk9giAYIInx9O3bF82aNRM7htF07doVK1asQNu2bfHBBx9g69atuHz5MipVqoT27dvrjY2MjMTx48cxbtw4kdKWjJYtW8LX11fsGEajxBOIRMXB7k1ERKaK3Vv+2L3lj91b/ti9pYkL4CJ69OhRkbZUq127NrZv327AREREpHR79uxBWFgY4uLioNVqUbZsWfj6+sLHxwdt2rTBvXv34O3tLXbMEjd//nwAQE5ODi5duoTc3FzUrVtX8ltSvYmTkxN69OhR6PE3b97E119/bcBEhhUeHg5PT09FlfBBgwbht99+w5gxY6BSqSAIAiwtLTFnzhzd1r+xsbHYvHkzEhISUKtWLQwaNEjc0FQkSry7gqg42L2JiMjUsHuze78Ou7f0sHvLH7u3NHEBXEQ5OTlF+uFeqlQpPH361ICJiIhI6SZMmABbW1v0798fXl5ecHNz03uOkZyv1P73v/+NlStX6n7WWllZoX///pg4caIsn+cTGBiIZ8+eYcCAAW8du337dixYsICfQyTGysoK69evR3R0NFJSUmBnZwdfX1/UrVtXN+bs2bNISkpCt27dMHXqVFhbW4uYmIpDaXdXEBUHuzcREZkadm9274Kwe0sTu7cysHtLj/x+ohAREVGxVatWDTdu3EBYWBiuXLmC33//Hd7e3qhVq5bY0Qxqx44dWLRoEapWrQo/Pz+YmZnh5MmTWL9+PbRaraSvvn6d999/H8HBwXj27BmGDh1a4Jh79+4hMDAQR48ehaWlpeS36FIic3Nz+Pr6vnZrspEjR2LcuHEwMzMzcrKS5+/vL/nnqBWVEu+uICIiIpIDdm92739i95Y+dm95Y/eWJi6AiywjIwO3bt0q1NhHjx4ZOA0RESnd/v37cebMGURGRmLv3r04duwYlixZgtq1a8PHxweNGjUSO6JBbN26Fc2bN8eGDRtQqlQpAC+fuTVhwgRs3boVkyZN0m1bJRe//PILhg4disWLF+PZs2cYO3as3uu7du3C7NmzkZmZCRcXFwQHB6NOnToipS0Zp06dglarLdJ7/Pz8DBPGRMhpq8F58+aJHYGITBi7NxERmRJ2b3bvPOzeL7F7Swe7N0mFShAEQewQSqVWq4u1nc25c+cMkIaIiEifVqvFsWPHEBUVhQMHDuDZs2e6n1s9e/bEqFGjULVqVZFTlgxXV1d8+eWX+bYkS0lJQb9+/RAeHg61Wi1SOsP5+++/8X//9384efIkBg0ahClTpuDRo0cICgpCbGwsrK2tMWHCBAwcOFDyW/AV9XOXIAhQqVT83EUmTa1WY9GiRa+9y4CIXmL3JiIiU8buze7N7s3uTaaN3VuaeAe4iPz9/cWOQERE9Frm5uZo164d2rVrh+zsbMTGxmLXrl04fvw4fv31V4SFhcHDwwM9e/bExx9/LHbcd/Ls2TOUKVMm3/Fq1apBEAQ8fvxYhFSGZ2tri9WrV+PLL7/E+vXrcePGDSQlJeHBgwf44IMPMGvWLNmcaAGATz75BM2bNxc7BlGJ4t0VRG/H7k1ERKaM3Zvdm92byPSxe0sP7wAnIiIineHDh6NVq1Zwd3dHo0aNCrxq99GjR4iOjkZUVBRSUlJkcaXu667kfPToEVq3bo3Q0FC0bt1apHSG9+LFCwQGBiIsLAxmZmaYNWsWevXqJXasEsWrdUmOeHcFERERkTSxe7N7s3sTSQe7tzTxDnAiIiLSiY+Px9GjR6FSqWBnZ4eWLVvCw8MDrVq10m1DVr58eQwYMAADBgzA9evXsXv3bpFT07syMzPD3LlzYW9vj3Xr1iEuLg5+fn6wsOBHRSJTx7sriIiIiKSH3VuZ2L2JpIvdW3r4nZWIiIh0kpKSkJaWhqSkJCQnJyMlJQWHDh2CSqVC2bJl4ebmBg8PD3h4eKB+/fqoXr06Ro4cKXbsEpGRkYFbt27pHcvMzAQAPHz4MN9rAODk5GSUbIZQ0Hw+/fRT/P3339i6dSuePn2Kb7/9FmZmZnpjpDxnIjlq2bIl764gIiIikhh2b3Zvdm8iaWH3lh5ugU5ERERvdPv2bb1Sfv78eWi1Wtjb28Pd3R0eHh7o37+/2DHfyZu2MsrbtuhVKpUKaWlpho5mMG+bM4B8r0t5ztOmTUPfvn3RrFkzsaMQlRhuL0hEREQkH+ze7N55pDxndm+SI3ZvaeId4ERERPRGjo6O6Nq1K7p27QoAyMrKQmRkJMLCwrBv3z7ExMRIvoT7+/uLHcHo/Pz8ivT8IqmbN2+e2BGIiIiIiIhei91bnti9iYjEwQVwIiIieqPs7GwkJiYiISEBp0+fxtmzZ5GTkwMrKyvdlmxSp8SCNn/+fLEjENE78vf3R40aNcSOQUREREQlgN1bnti9iaSP3VuauAU6ERER6cnNzUVKSgri4+MRHx+PM2fOICcnB5aWlmjatKmueLu4uMDKykrsuERERERERESSw+5NRERkOFwAJyIiIp1hw4bh1KlTyM7OhpmZGRo1aoRWrVrBw8MDrq6usLa2FjsiERERERERkaSxexMRERkWF8CJiIhIR61Ww9LSEh9//DFGjBiB999/X+xIRERERERERLLC7k1ERGRYXAAnIiIinW+//RYnT57EtWvXoFKpULt2bbRu3RqtWrWCm5sbypUrJ3ZEIiIiIiIiIklj9yYiIjIsLoATERFRPrdu3UJcXJzuWWT379+HmZkZ1Go1PDw8dKXc1tZW7KhEREREREREksTuTUREZBhcACciIqK3unjxIuLj43HixAmcOnUKjx8/hoWFBRo3bozWrVtj3LhxYkckIiIiIiIikjR2byIiopLBBXAiIiIqEo1Gg7179+KXX35BSkoKVCoVzp07J3YsIiIiIiIiItlg9yYiIio+C7EDEBERkWm7du0azpw5gzNnziA1NRXnz59HTk4OSpcujbZt28LNzU3siERERERERESSxu5NRERUcngHOBEREelkZmYiNTVVV7hTU1ORmZkJQRBQrlw5tGjRAu7u7nBzc0PDhg1hZmYmdmQiIiIiIiIiSWH3JiIiMiwugBMREZGOWq2GSqWCIAgoX7483NzcdP84OztDpVKJHZGIiIiIiIhI0ti9iYiIDItboBMREZFOp06d4O7uDnd3d9StW1fsOERERERERESyw+5NRERkWLwDnIiIiIiIiIiIiIiIiIiIZIEPDyEiIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESyYCF2ACIiIiX44YcfsHz58iK958CBA6hWrZqBEhVf+/btcfPmTQDAN998g4CAgDeOHzJkCI4dOwYACA0Nhaenp0FzxcTEoGbNmgb5PYiIiIiIiMh0sXuzexMREQFcACciIjIKZ2dn+Pr66h178OAB4uLiYGtrCy8vr3zvsbW1NVa8Ytu7d+8bS/jDhw8RHx9vxERERERERESkVOzeREREBHABnIiIyCh8fHzg4+Ojd+zkyZOIi4tD+fLlERISIlKy4itbtiySkpJw9+5dvPfeewWOiYmJQW5uLiwtLZGTk2PkhERERERERKQk7N7s3kRERACfAU5ERETF5O3tDUEQEBMT89oxu3fvhr29PZo0aWLEZERERERERETywO5NRERUdFwAJyIiMmGHDx/GkCFD4O7ujiZNmqBjx45YtGgRMjIy9MbduHEDzs7OaNu2bYH/nYEDB8LZ2RknT57UHZs6dSqcnZ2RkJCAsWPHomnTpmjVqhU2bdpUqGydOnUC8HIrtoKkp6fj1KlT6NixIywsXr/pzM6dO9G/f3+0aNECTZs2ha+vL1auXIlnz54VOP7EiRMYPHgw3Nzc0LJlS4wfP173XLSCaLVa/Oc//0Hv3r3h4uICFxcX9OnTB+Hh4RAEoVBzJSIiIiIiIvli986P3ZuIiKSMW6ATERGZqJCQEKxZswbm5uZwdXVF+fLlkZKSgrVr12LPnj3YsGEDqlev/s6/z7fffosHDx6gTZs2uHjxItRqdaHe9/7776NBgwZISkpCeno6HBwc9F7fu3cvXrx4ga5du2L58uX53v/ixQtMnjwZu3btgpWVFdzd3WFjY4PExER899132LdvH0JDQ1G+fHnde7Zv347p06cDAFq2bImyZcvi2LFjOHXqFDQaTb7fIycnB//3f/+Ho0ePws7ODi4uLrC0tERCQgKmTp2KkydPYv78+UX530VEREREREQywu7N7k1ERPLDBXAiIiITdPDgQaxZswb29vZYu3atbhszjUaDWbNmYfv27Rg3bhx27NgBlUr1Tr9Xeno6IiMjUb16dbx48QJmZoXfIKZLly44d+4cYmJi8Omnn+q9Fh0dDQcHB7i5uRX43s2bN2PXrl2oXr061q1bhxo1agAAnjx5gokTJ+Lw4cOYPn06fvjhBwDA7du3ERwcDAsLC6xevRqtW7cGADx8+BBDhgxBWlpavt/jxx9/xNGjR+Hu7o5ly5ahQoUKAID79+9j2LBhCA8Ph6urK3r37l3oORMREREREZE8sHuzexMRkTxxC3QiIiITtH79egDAV199pfcMLysrK8yYMQM1a9bEH3/8gfj4+Hf+vby8vHRXsxelgANA586dAeTfiu3WrVtISUlB586dX/vf3LBhAwAgODhYV8ABwM7ODiEhIShTpgxiYmJw9epVAEB4eDiys7PRt29fXQEHgAoVKmDu3Ln5/vsajQabNm2CpaUlQkJCdAUcACpVqoRZs2YBAP79738Xac5EREREREQkD+ze7N5ERCRPXAAnIiIyMbm5uUhKSoJKpULHjh3zvW5hYQEfHx8A0HuuWHHVr1+/2O+tXr06GjVqhNOnTyM9PV13PDo6GoIg4OOPPy7wfbdv38aNGzdQvnx5tGrVKt/rZcqUQZs2bQAACQkJAIDExEQAQLt27fKNb9CgAapVq6Z37I8//kBWVhZq166N9957L997mjRpgooVK+LKlSu4d+9eIWdMREREREREcsDuze5NRETyxS3QiYiITExGRgZycnJQvnx52NnZFTgmr3CWRHksV67cO72/S5cu+OOPPxAbG4sBAwYAeFnCq1evjqZNmxb4nrzCXrVq1df+d1+dY957qlSp8trxN27c0P369u3bAIALFy7A2dn5jXO4ffs2Kleu/MYxREREREREJB/s3i+xexMRkRxxAZyIiMjECIIAAG98vljeGCsrq0L9N7Va7WtfK+rWa6/q3LkzFi1ahD179mDAgAG4evUq/vjjD4wYMeK17ynOHN/2vDULC/2PNS9evAAAODk5wdXV9Y3vLV269BtfJyIiIiIiInlh99Yfw+5NRERywgVwIiIiE2Nvbw9LS0tkZGTgyZMnBV6Jfv36dQBAxYoVAfyvSOcVz1dlZmYaKO3LK8mbNm2K06dP4969e4iOjgYAdO3a9bXvcXBwAAC9q8ZflTfHSpUqAQDee+89XLx4ETdv3kTdunXzjf/nNnAAdFeVV6lSBSEhIUWYEREREREREckdu/dL7N5ERCRHfAY4ERGRibG0tISLiwtevHiB2NjYfK/n5ubqjnt4eAAAbG1tAbws2zk5OXrjHz16hCtXrhg0c5cuXfDixQvExMRgz549qFu37hu3PnNyckLVqlXx6NEj3XPG/ikrKwvHjh0DALi5uQEAPD09AaDA/yfXr1/HpUuX9I41adIE1tbWOH/+fL6CDgB3795F586dMXjwYDx9+rTwkyUiIiIiIiLJY/dm9yYiIvniAjgREZEJ+uyzzwAACxcuRFpamu54Tk4OZs6ciWvXrqFBgwa67cXs7e1RpUoVaDQabNmyRTf++fPnmD59+hu3YSsJnTp1gkqlwubNm3HhwoU3XoGeJ2+OgYGBuivOAeDp06eYPHkynjx5go8++kj3rDJ/f3/Y29tjx44d2Ldvn278kydP8PXXX+e7At/W1haffPIJ/v77b0yePBkPHjzQ+z2mTZuGy5cvw9bWltuwERERERERKRC7N7s3ERHJE7dAJyIiMkHe3t74/PPPsW7dOvTq1Quurq4oX748zpw5gzt37qBq1apYunSp3jPEhg4diuDgYAQHB2P37t2oVKkSkpKSoNVq8dFHH+HQoUMGy+vo6IjmzZsjOTkZwJu3YMszcOBAJCcnY8+ePejatSvc3NxgY2ODU6dO4dGjR1Cr1Zg7d65ufIUKFTB37lyMHz8eX3zxBVxcXODg4IDExERotVrUqlUr39X2EydOxLlz5xAfH48OHTqgSZMmsLGxQXJyMjIyMvD+++9j5syZJfs/g4iIiIiIiCSB3Zvdm4iI5Il3gBMREZmoKVOm4Mcff4SHhwfOnz+Pw4cPo3Tp0hg1ahTCw8NRq1YtvfEDBw7EggUL0LhxY6SlpSExMREeHh749ddf8401hM6dOwMAGjVqhJo1a751vJmZGZYuXYp58+ahUaNGSEpKwvHjx1GlShVMnjwZ27ZtQ4UKFfTe4+XlhV9++QVeXl64cuUKfvvtNzRs2BA///wzqlSpku/3sLa2xrp16/DNN9+gdu3aSE1NxcmTJ+Hg4ICxY8di+/btuuecERERERERkfKwe7N7ExGR/KgEQRDEDkFERERERERERERERERERPSueAc4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSz8P2Dpo//58cJgAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 191 coefficients adjusted\n", - "\t 609 coefficients converged\n", - "\t 148 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACZpUlEQVR4nOzdeZxVdf0/8NfcoWERJpAEVDQVG8l9AUOTNBSt1BTJzMTccl8yE830W5pLmqS5ZG6omCKYoLnk11zL/KoJ369pLpmmIJhiuAAuIDP394e/mRgBnXsZmO35fDzmAfecz7n3fedzBs57XvecU1EsFosBAAAAAACgSQotXQAAAAAAAEBbIlwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAFYBsViMcOGDct6662Xiy++uKRtJ0+enPXWWy+TJ09uWLbeeutl3333be4yFzNr1qy8++67y/11mkNtbW1efvnlTxx30UUXZb311vvYr2HDhi33el966aXl/hoAALRe999/f44++ugMGzYsG264Yb7whS/ku9/9bu67774VVsOCBQvyk5/8JFtuuWU23njjnHHGGUtc9sMf/jDrrbdeZsyYUdLz1x97P/roo8vpHTT2ScfYP/nJT7Leeutl0qRJHztuxowZGThwYPbbb78mv/ajjz6a9dZbLxdddFGTt2lJjzzySNZbb718/vOf/9g+au7cuTn22GOz+eabZ7PNNsvYsWOTJPPnz8+rr766ospNsmx9daK3bqqm9tZA03Vq6QIA2rJHHnkkM2fOTLdu3XLjjTfm8MMPT2VlZdnP9/Of/zyf+cxnmrHCxd1yyy057bTTctttt6Vbt27L9bWW1SuvvJJDDz00O+64Y44++ugmbbPXXntliy22WOK6lVZaqTnLW8zhhx+eefPm5Te/+c1yfR0AAFqfefPm5Uc/+lHuuuuubLDBBtljjz3Sp0+fvPrqq7nlllty+OGH58ADD8yJJ5643Gu58cYbM2HChHzxi1/MV7/61Xzuc59b4rJisZitttoqK6+8cknPP3z48Ky55poZMGDAcnoH/9GUY+xvfOMbmTBhQm677baMHDlyqeNuueWWFIvFfOMb31gepbYKkyZNSrdu3fLuu+9m4sSJOf7445c47pJLLsmdd96ZnXfeOVtttVU23XTTPP300znqqKNy1FFHZY899lhhNTd3X53orT+qnN4a+GTCFYBlcNNNN+VTn/pU9t9//1xyySW5//77s8MOO5T9fLvttlszVrdkjzzySJv5ZM3LL7+c5557LjvuuGOTt9l0001XyPdxSe67775sueWWLfLaAAC0rFNOOSV33XVXTjjhhBx00EGN1h122GE56KCDctVVV2WdddbJnnvuuVxr+fvf/54kOeGEEzJw4MAkaTirY9FlSbLZZpuV/PwDBw5s9BzLU1OOsTfaaKOGM2lee+219O3bd4njfve73+XTn/50Sf1FWzJv3rzcfffd2X777fPMM89k8uTJOeaYY1JVVbXY2Pp95LTTTkuPHj2SfHgGyMyZM1dozUnz99WJ3vqjyumtgU/msmAAZZo7d27uueeebLzxxvn617+eJLnhhhtauCoAAGBF+/Of/5w777wzO+2002LBSpJUVVXlrLPOSmVlZa699trlXs8HH3yQJOnevfvHLmtPRo4cmbq6uvz+979f4vqpU6dm+vTp2XXXXdO5c+cVXN2Kcccdd+S9997LkCFDssMOO2T27Nm5++67lzi2fn+oD1Zair4aaMuEKwBluv322/P+++/ni1/8YtZee+2st956eeihh5Z4DdNHH3003/nOd7L55ptnyJAhOeOMM5b4CZePXhd2addAnjFjRtZbb7388Ic/bFj23nvv5Wc/+1m+8pWvZOONN84XvvCFHHrooZk6dWrDmGHDhuXmm29Okmy//fYNr/XDH/4wm222WaZPn56jjjoqW2yxRTbffPMcfvjhefXVVzNz5swcc8wx2WKLLTJkyJAce+yxmTVrVqOa6urq8pvf/Ca77bZbNt544wwaNCjf/e53G71+8p/rM7/wwgs55ZRT8sUvfjEbbbRRdtttt9x2222Nxn3nO99Jklx88cVlXQv64xSLxfz2t7/Nt7/97QwaNCgbbLBBttlmmxx33HGZNm3aYuN///vfZ5999skWW2yRL3zhC9lvv/3y8MMPJ/nPdZiT5C9/+cti1/v94x//mP322y+bb755Nt544+y222659tprU1dX1zCmfk5/9atf5fvf/3422mijbL311nnyySdTW1ubiy++OLvuums23XTTDBo0KPvuu+8KvW43AABLd8sttyTJx97jYY011shtt93WcDxe74UXXshxxx2XrbfeOhtuuGG23377nH322Xn77bcXe45//vOfOe6447LVVltlww03zI477phf/vKXef/995P855hy0WP++vsPfnRZsuR+o1gs5oYbbsgee+yRTTfdNFtvvXUOO+ywPPXUUw1jlnbPlQcffLCh79lkk02yxx57NDouTv5z7HzHHXfk0ksvzfDhw7Phhhtm2LBhueCCC7Jw4cJG45IlH2N/1Ne//vV86lOfatRTLKp+juovCfbBBx9k7NixGTlyZDbbbLNsuOGG2W677XLKKadk9uzZS32d5MO+akn3c1zSvT+S5Iknnshhhx2WLbfcMhtttFF22WWXXHXVVamtrW007umnn85hhx2WoUOHNuwLZ5xxRt56662Prade/dlJX/ziF/OVr3wlyeJBRf339S9/+UuSNNyb8oc//GFOOumkJMlJJ53U8L1PSu/1/vjHP+arX/1qNtxww4waNepjay6lr66vX2/d+Pvd0r01dGQuCwZQpvoD169+9atJkp133jl///vfM2HChIwePbph3AMPPJAjjzwyffr0yaGHHppCoZCbbrrpYxuDchx33HF56KGHss8++2SdddbJv//971x//fXZb7/9ctNNN2XgwIH50Y9+lKuvvjpTpkzJSSedlM997nMN23/wwQf59re/nS233DInnHBCHn/88UyePDmvvfZa/v3vf2fw4ME54YQT8te//jWTJk3KvHnzcuWVVzZsf/zxx+eOO+7ITjvtlG9+85t5++23M3ny5Oy7774577zzGg7u6x1yyCEN35MFCxZk3LhxOf7447PKKqtkyJAhGT58eBYuXNjQcA0fPrxJ14J+991388Ybbyy2vLKyMp/+9KcbHv/sZz/LuHHjssMOO+T73/9+kmTKlCn5/e9/n6effjq///3vUyh8+BmECy+8ML/61a8ycODAHHbYYamqqsr48eNz0EEH5de//nU22GCD/PznP88JJ5yQddZZJ4cddlg233zzJMlVV12Vc845J5/97Gdz8MEHp1u3brnnnnty5pln5tFHH81FF13U8DpJcuWVV6ampiannHJKXnrppay//vr52c9+luuvvz7f/OY3853vfCdz587NhAkTcsQRR+Syyy7Ltttu25RdBACA5eSJJ55Ip06dsskmm3zsuI/eo2TKlCk56KCDUllZmb333jurr756Hn/88VxzzTW57777MmHChIZj4CeeeCL7779/unfvnn322Scrr7xyHn/88Vx66aV5+OGHc+2112bllVfOz3/+89x4440Nx/yf/vSnUygUGi3r1avXUms88cQT87vf/S6DBg3KsccemwULFuQ3v/lNRo0aleuvvz7rr7/+Ere7/vrrc/rpp2ejjTbKUUcdlUKhkHvvvTcnnXRSnnnmmZx88smNxp933nkpFovZa6+9Ul1dncmTJ+eSSy5JRUVFjjnmmAwYMGCpx9hL0qtXr2y//fb57//+77zwwguNvtfz58/PnXfemQ022CCf//znkyTHHnts7r333owYMSLf/OY3M3/+/PzpT3/Kb3/727zyyiu56qqrPnYum+ree+/N9773vfTv3z/f/e53061btzz00EM555xz8r//+7+56KKLUlFRkZdffjn77bdfVlllley///6prq7OX//611x33XV54oknMnHixFRUVCz1dV544YX89a9/zWabbZbVVlstq622WtZaa6089thjjb4f9d/XSy+9NP/85z/z85//PCuttFJ69+6dqqqqTJw4cbH7WJba6x177LH5xje+kbXWWmuJlyRbVFP76kRvvaJ7a6AJigCU7LnnnivW1NQUd99994Zl06dPL9bU1BSHDBlSnD9/frFYLBbr6uqKw4YNKw4aNKj473//u2HsnDlzijvuuGOxpqamOGnSpIblNTU1xVGjRjU8PvHEE4s1NTXFl19+udHrv/zyy8WampriiSeeWCwWi8XZs2cXa2pqij/5yU8ajXv88ceLO+64Y/HGG2/82OesX/bR7XfbbbdiTU1N8fTTT2+0fM899ywOHDiw4X3+/ve/L9bU1BSvuOKKRuPmzZtX/MpXvlL8whe+UHz33XeLxWKxeOGFFxZramqKBx98cLGurq5h7GOPPVasqakpHnfccQ3LHnnkkWJNTU3xwgsvLH6S+udd2teXv/zlhrFvvPFGcf311y8eeuihiz3PMcccU6ypqSn+7W9/KxaLxeJLL71U/PznP18cNWpUw/stFovFf//738UtttiiuMceezQs++j8TZ8+vbj++usXv/a1rxXfeeedhuV1dXXF448/vlhTU1OcPHlysVj8z5xuuummxddff71RTZtuumnxu9/9bqNl//rXv4o77LBD8aKLLvrE7w0AAMvXJptsUtx6661L2qa2trY4fPjw4oYbblh8/vnnG6278cYbizU1NcUf/vCHxWLxw+PHnXfeubjtttsW33zzzSWOvfzyyxuWfdwx/8cte/jhhxuOyRc9Vn/++eeLAwcOLB599NHFYvE/x96PPPJIsVj88Nh0gw02KB566KGNtqurqyuOHj26WFNTU/zrX/9aLBb/c4z/xS9+sfj22283jH3nnXeKW2yxRXGbbbZp9P4+eoz9cf74xz8Wa2pqiueff36j5XfccUexpqameP311xeLxWLxmWeeWWKfUywWiyNHjizW1NQ0fJ+X1JN8+ctfbtRf1Js0aVKjHu/dd98tfuELXyiOGDGiUS9RLBaL559/frGmpqZ4xx13FIvFYvHKK69s9H2q97Of/aw4YsSI4quvvvqx7/3ss88u1tTUFMeNG9ewrH6elvQ+R40aVaypqfnY+ovF8nq9Y4455mNrrdfUvrpY1FuvyN4aaDqXBQMoQ/2na3beeeeGZWussUY23XTTvPHGG/nDH/6QJHnmmWcyY8aM7Lbbbundu3fD2B49emTvvfdutnq6d++eHj165M4778yNN96Y119/PUmyySab5K677mryDTN32WWXRo/rP930ta99rdHyNddcM3V1dfn3v/+d5MNr+ybJTjvtlDfeeKPha/78+dlxxx3z5ptv5rHHHmv0HLvuumujT15tvPHGSdLwnOU66KCDcvXVVy/2de655zaM6dWrV6ZMmZIxY8Y02nbOnDnp2rVrkjScWn7fffeltrY2++23X6NPXfXu3Tvjx4/PRRddtNRa7r777ixcuDCHHHJIunXr1rC8oqIiP/jBD5JksWtCb7LJJvnMZz7TaFm/fv3yl7/8JWPHjm04fbtfv365++67c9RRRzX5ewMAwPJRWVnZcDmrpnr66aczbdq0fP3rX1/sjJZvfOMb+exnP5u77rortbW1+fvf/55//OMf2XbbbVNXV9fomPvLX/5yOnfuvNR7a5TinnvuSZJ897vfbXSsPmDAgNx00035r//6ryVu94c//CEffPBBvvrVr+bNN99sqO3NN99s6Jnqe6R6X/7yl1NdXd3wuFu3bhkwYMAnXpLr42yzzTZZddVVc/vttzdafvPNN6dLly7ZddddkyQDBw7M1KlTc9xxxzUaN3v27IaamuNG5f/zP/+TN998MzvttFPmzZvXaN7qe6z6eVt11VWTJOeee24efvjhLFiwIMmHl5maPHly+vbtu9TXWbhwYW699dYUCoWGM0CS//Srv/vd7/Lee++V9R7K6fWWdMm0JWlqX53orVuitwY+mcuCAZTogw8+yK233prkwwOsRa9VOmTIkDz++OO54YYbsssuu2T69OlJPjxg+qh111232WqqqqrK2WefnZNOOqmh4ampqck222yTXXfddamn7n/UR3+p/6lPfSpJssoqqzRa3qnTh/991N8z5MUXX0yS7LDDDkt97pkzZ37sa9UHF4veh6Qc6667brbeeutPHNe5c+fce++9uf/++zN9+vTMmDEj//rXvxoOSuvrqJ/fddZZZ7HnqKmp+djXqJ//RU8Rr9evX7/06NFjsWvdfvT7kiRnnnlmjj322Pz85z/Pz3/+86y55pr54he/mJ133jmDBw/+xPcKAMDy1bdv37z44otZsGDBJ14Gqd7HHStWVFRk3XXXzbRp0/Lmm282HG9PmDAhEyZMWOLzffR4uxz1x6YfDXuSZIMNNljqdvX1nXDCCUsd80n9QPJhT/DR+5CUolAoZMSIEbnkkkvyf//3f9lss83y+uuv56GHHsouu+zS6ObtVVVV+f3vf99wf48ZM2bk9ddfX6wfWBb135fzzjsv55133hLH1H9fdtppp4wcOTKTJ0/O/vvvny5dumSLLbbItttum913373RJY4/6oEHHsi///3vbLTRRpk/f37DPFZVVWWttdbKSy+9lDvuuKPhfjPlvIdSer2P9o9LUkpfnURvvYgV1VsDn0y4AlCiBx54oOHTVEu7Od+UKVPy/PPPNzwuFouLjVmWA50lNRw77LBDvvjFL+bBBx/Mn//85zz66KO56qqrcvXVV+dHP/pRww3sPk79gd1Hfdy1fevrWWmllXLxxRcvdczaa6/d6PGi9xlZ0T744IMcddRReeCBB7Lhhhtmww03zE477ZT1118/f/zjH3PZZZc1Gpt88vdgSernfWnb1tXVLdZ8L2kONt9889xzzz155JFH8uCDD+bRRx/NhAkTcsMNN+SAAw5odPNFAABWvMGDB+eFF17I//7v/2bIkCFLHXfSSSflgw8++NgQol59v1BVVdXw93322Wepv3Rd2rF8KeqPfUtV35+cfvrp6d+//xLHfPQeD8urH9hjjz3y61//Orfddls222yz3HbbbamtrW0ULMybNy/77bdfnnrqqWyxxRbZcMMNs9tuu2WjjTbKuHHjGn7pX6qP9mn183bMMcdks802W+I2K620UpIPz34666yzcsQRR+T+++/P//zP/2TKlCl56KGHctlll2XChAlLDBaS/5wB8uSTT2b77bdf4pgJEyaUFa6U0+tVVlZ+4vOW0lcvGp7orVtXbw0dnXAFoET1B66HHnpow+m2i/rtb3+bBx54oNHB6wsvvLDYuGnTpn3ia9UflM6fP7/R8vpTk+vNmzcvf//739O/f//suOOO2XHHHZMkzz77bPbbb7/86le/atIBYLn69++fF198MQMHDlysaXrmmWcya9ashstttQa///3v88ADD+SQQw5puDxXvZtvvrnR4/rm8MUXX1zsIPaaa67J888/n1NOOSVdunRZ7HXqm5/nnnuu4caZ9V555ZW88847Daf/L838+fPz97//PZ/+9KfzpS99KV/60peSJC+//HIOPPDAjBs3LkcddVS6d+/ehHcOAMDysMsuu2TChAkZP378UsOVf/3rX7n11ltTXV2dnj17Zo011kiS/OMf/1hsbLFYzAsvvJDu3bunurq6UWDx0bO06+rqctdddzU837JY9Nh3vfXWa7TuvPPOy/vvv58f/ehHS92uurp6sfpmzZqVJ554olnqa4o11lgjX/jCF3LnnXfmlFNOyW233ZbPfvaz2XLLLRvGXHvttfnb3/6W0047Ld/61rcabd+USylVVlbmnXfeWWz5R/u0+u9Lly5dFvu+zJs3L3/+858bzmSYOXNmpk+fnq222ir77rtv9t133yxcuDBjx47NeeedlxtuuCEnnnjiYq85e/bs/OlPf8pKK62Uc845Z7Ff3tfV1eXEE0/Mk08+maeeeupjz0BakuXV65XSV59yyilZa621kuitW1tvDR2daBOgBK+//noefPDB9OzZM0ceeWR22GGHxb6OOeaYJMktt9ySz372s1l77bVz6623NjrN+f3338911133ia/Xp0+fJB9+AmlRt9xyS6PHzz33XL797W/nkksuabR83XXXTY8ePRp9aqb+Uy1L+sRPuXbaaackyS9/+ctGy+fNm5djjz02Rx555GIHsU1RfwDc3Kczv/nmm0myWMM4bdq03HXXXUn+8wmm7bffPhUVFbn++usbXUf7rbfeyhVXXJEnnniiIVgpFAqNah0+fHgqKytz2WWXNbpmc7FYzAUXXJAk+cpXvvKJte611145/fTTGy1fY4010rdv31RUVPikEgBACxs8eHCGDx+eu+66K1dfffVi6+fOnZvvfe97WbhwYY466qhUVVVl/fXXzxprrJFbb711sV8YT5o0KdOnT2/4xe6GG26Y1VdfPTfffHPD5ZHqTZw4Mccee2zDL6uXRf1ZMePGjWu0fPr06bnmmmvy8ssvL3G7HXfcMYVCIZdeemnef//9RuvOPvvsHHnkkfnb3/5WVk0fPcZuipEjR+aNN97ILbfckqeffnqxMzaW1g/83//9X8P9LD7u8mR9+vTJG2+80ejyTAsWLMidd97ZaNw222yTlVZaKddcc03Da9a79NJL873vfS9//OMfGx7vv//++etf/9owplOnTtlkk02SLP1skFtuuSULFy7MbrvtluHDhy/Wn+64444ZOXJkkuSGG25Y6ntK/tMrLvr9Xh69Xql99XvvvZeBAwfqrVthbw0dnTNXAEpQf+C6xx57pHPnzkscs8EGG2Tw4MF57LHHcvvtt+eMM87IgQcemD333DP77LNPunfvnkmTJmXu3Lmf+HojRozIZZddljPOOCMzZszIKquskvvvvz/PPfdco9fffPPNs80222TChAmZM2dOttxyy9TW1uauu+7Kyy+/3OgTTvXXY73yyiszdOjQj72Wa1Ptscce+e///u9MnDgx06dPz7Bhw7Jw4cL89re/zUsvvZTRo0d/7A0Yl6b+RoX33XdfVltttQwfPjw9e/Zc5nqHDh2aX/ziFznzzDMzffr0rLLKKvnHP/6RSZMmNQQoc+bMSfLh9aYPOeSQXHbZZdl7772z8847p66uLjfeeGPefvvthpCkvt5nn30248ePz6BBg1JTU5Njjz02v/jFL7L77rtnjz32SLdu3XLvvffmkUceyZe//OV8/etf/9ha+/Xrlz333DMTJ07MQQcdlGHDhqWioiJ//vOf89hjj2XUqFHp1q3bMn9PAABYNmeddVbefvvtnH322bntttuy4447ZuWVV85LL72Um2++OW+88Ub22Wef7LPPPkk+/GXnGWeckUMOOSR77rln9t577/Tv3z9PPPFEbr755qy++uo5/vjjG4099NBDs8cee+Rb3/pW1lxzzTz55JOZNGlS1lxzzRxxxBHL/B6GDh2aXXbZJZMmTcqrr76aYcOGZd68ebn++uvTuXPnjB49eonbrbXWWjn66KNzwQUXZLfddsuIESNSXV2de++9N3/+85/z5S9/uSEoKtWSjrE/yU477ZTTTz8955xzTjp16pTdd9+90fphw4blN7/5TY4//vh8+9vfTo8ePfK3v/0tN998cyorK/PBBx809ANLMnLkyEyZMiUHHXRQvv3tb6euri6TJk1aLJCprq7Oj3/845x00knZdddds9dee6VPnz555JFH8vvf/z4bb7xxvv3tbydJ9t9//9x555055JBD8q1vfSv9+/fPa6+9lhtuuCE9evTIN7/5zSXWMnny5CRpeJ4l+c53vpPrr78+d9xxR374wx8u9az3+l7x1ltvTbFYbOhhmrvXK6ev3nPPPfXWrbC3ho5OuAJQgptvvjkVFRUfe+CafHhg/Nhjj2XChAmZNGlSxo8fnwsvvDDXXHNNkg8/Ebbddtvle9/73sc+z5prrpkrrrgiF198cS6//PJ07do1Q4cOzQ033JCdd9650dgLL7wwV111VcMlr5Jk4MCBGTNmTHbdddeGcXvvvXf+8pe/ZNKkSXnkkUea5QCwsrIyl156acaNG5ff/e53GTNmTLp27ZoBAwbkoosuKruRWnvttXPAAQfkpptuyplnnpn+/ftnq622WuZ6BwwYkMsvvzwXXnhhxo4dmyRZddVVM2rUqHzlK1/J7rvvngcffLDhrJLjjjsu66yzTq677rqcf/756dq1azbaaKOce+652WijjRqe94QTTsiYMWNy1lln5bDDDktNTU0OOeSQrLPOOrnmmmsa7uWy9tpr58c//nH23nvvJp118uMf/zjrrLNObr755px33nmpra3NOuusk//6r//6xH0RAIAVo7q6OmPHjs3vf//7TJ48OePHj88bb7yR7t27Z5NNNsk+++zTcInXekOGDMmNN96YSy65JJMmTcq8efOy2mqr5cADD8xhhx2W6urqhrFbb711brzxxvz6179u+IVyv3798u1vfzuHHnpok24i3hTnnntuNt5449x0000555xz8ulPfzqDBg3K9773vcUuk7uoI444Iuuuu26uvfbaXH755amrq8saa6yRE044Ifvuu2+T7sOxJEs6xv4knTt3zi677JLx48dn2LBhDWct1Ntqq61y3nnnNfRaVVVVWW211XLsscdm3XXXzSGHHJIHH3yw0bH+ovbYY4+88847GT9+fH7+85/nM5/5THbbbbd8+ctfzl577dVo7O67755VV101V155Za699trMnz8/q622Wg4//PAcdNBBDR+UGjBgQK677rr8+te/zi233JLZs2enZ8+eGTJkSI488sgl3m/lr3/9a55//vkMHjw4n/vc55b6/VhzzTXz5S9/Offee29+97vfNQR8HzVkyJDsuuuuueeee/Lkk09m0KBBWXvttZu91yunr95zzz0zaNAgvXUr662ho6soNue5awCUrVgsZuDAgfnCF76Qa6+9tqXLAQAAgDZHbw2sKC7SDtBK1J92vtJKK7VwJQAAANA26a2BFcVlwQBagcsuuyxPPfVUkg+vLQsAAACURm8NrEjCFYAWNmfOnIwbNy4ffPBBdtlllxxwwAEtXRIAAAC0KXprYEVzzxUAAAAAAIASuOcKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlKDD39C+WCymrq5t3namUKhos7XT8uw/lMu+Q7nsO5TLvtN8CoWKVFRUtHQZtDH1t+n0c9i++be2fTO/7Z85bv/McftnjluPpvZNHT5cqasr5o033mnpMkrWqVMhvXqtlDlz3s3ChXUtXQ5tjP2Hctl3KJd9h3LZd5rXyiuvlMpK4QqlqasrprKy4OewHfNvbftmfts/c9z+meP2zxy3Lk3tm1wWDAAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAWonZs2dn9OjRGTJkSDbbbLMccsghef755xvWP/PMMxk1alQ23XTTbLfddhk7dmyj7evq6nLhhRdm6NCh2WSTTXLggQdm2rRpK/ptAABAuydcgXauUKhIp06FRl+VlR/+6FdWFhZb16lTIYVCRQtXDQDQMR1++OF5+eWXc8UVV+Smm25Kly5dsv/+++e9997Lm2++mQMOOCBrrbVWJk2alKOPPjoXXHBBJk2a1LD9JZdckgkTJuSMM87IxIkTU1FRkYMPPjgLFixowXcFAJSj/nc6n/R7HL/PgZbRqaULAJafQqEiPXt2a/hP+KOqq7sucXltbV3eeuvd1NUVl2d5AAAs4s0330z//v1z+OGH53Of+1yS5Igjjshuu+2Wf/zjH3n44YdTVVWVU089NZ06dcqAAQMybdq0XHHFFRk5cmQWLFiQq666KqNHj862226bJDn//PMzdOjQ3H333dl5551b8u0BACVY0u90lvZ7nHp+nwMrlnAF2rFCoSKVlYWMuX5qZrw2t0nb9O/bI8fvs0UKhQr/GQMArEC9evXKeeed1/D43//+d8aOHZt+/fpl3XXXzUUXXZTBgwenU6f/tHFDhgzJZZddltmzZ2fmzJl55513MmTIkIb11dXVWX/99fPYY48JVwCgDSn1dzp+nwMrnnAFOoAZr83NCzPfbukyAABoov/6r//KjTfemKqqqvz6179Ot27d8uqrr6ampqbRuD59+iRJXnnllbz66qtJklVXXXWxMf/617/KrqXi/19hZGlnQ9P2LXq5Gdof89v+meP2qX4+S/2djv2gbfJz3DYJVwAAAFqZ/fbbL3vttVduuOGGHHnkkRk/fnzef//9VFVVNRrXuXPnJMn8+fPz3nvvJckSx7z9dvkftKn4/+nKJ12KhLbPHLdv5rf9M8ck9oO2zvy1LcIVAACAVmbddddNkpx++ul5/PHHc91116VLly6L3Zh+/vz5SZJu3bqlS5cuSZIFCxY0/L1+TNeu5TfqxWIxFRUVmTPnvdTW1pX9PLRelZWFVFd3NcftlPlt/8xx+1Q/r6WyH7RNfo5bl+rqrk06i0i4AgAA0ArMnj07Dz/8cL761a+msrIySVIoFDJgwIDMmjUr/fr1y6xZsxptU/+4b9++WbhwYcOyNddcs9GYgQMHll1X8f9ftr22ti4LF2r22zNz3L6Z3/bPHJPYD9o689e2uIgbAABAKzBr1qz84Ac/yF/+8peGZR988EGefvrpDBgwIIMHD87UqVNTW1vbsP7hhx/O2muvnd69e2fgwIHp3r17Hn300Yb1c+bMydNPP51Bgwat0PcCAADtnXAFAACgFRg4cGC22WabnHbaaZkyZUqee+65nHjiiZkzZ07233//jBw5MvPmzcvJJ5+c559/PpMnT864ceNy6KGHJvnwXiujRo3KmDFjcu+99+bZZ5/N97///fTr1y/Dhw9v4XcHAADti8uCAQAAtAIVFRX55S9/mV/84hc59thjM3fu3AwaNCjXX399VltttSTJlVdemTPPPDMjRozIKquskhNOOCEjRoxoeI5jjjkmCxcuzCmnnJL3338/gwcPztixYxe7yT0AALBshCsAAACtRI8ePXLqqafm1FNPXeL6jTfeOBMnTlzq9pWVlRk9enRGjx69nCoEAAASlwUDAAAAAAAoiXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAErQasOVF198MZtttlkmT57csOyZZ57JqFGjsummm2a77bbL2LFjW7BCAAAAAACgI2qV4coHH3yQ448/Pu+++27DsjfffDMHHHBA1lprrUyaNClHH310LrjggkyaNKkFKwUAAAAAADqaTi1dwJJcdNFFWWmllRotu/HGG1NVVZVTTz01nTp1yoABAzJt2rRcccUVGTlyZAtVCgAAAAAAdDSt7syVxx57LBMnTsw555zTaPmUKVMyePDgdOr0nzxoyJAhefHFFzN79uwVXSYAAAAAANBBtapwZc6cOTnhhBNyyimnZNVVV2207tVXX02/fv0aLevTp0+S5JVXXllhNQIAAAAAAB1bq7os2KmnnppNN900u+6662Lr3n///VRVVTVa1rlz5yTJ/Pnzl+l1O3VqVRlTk1RWFhr9CUuyLPuHfYsl8W8P5bLvUC77DgAAAK1RqwlXbrnllkyZMiW33XbbEtd36dIlCxYsaLSsPlTp1q1b2a9bKFSkV6+VPnlgK1Vd3bWlS6Cdsm/xcewflMu+Q7nsOwAAALQmrSZcmTRpUmbPnp3tttuu0fKf/OQnGTt2bFZbbbXMmjWr0br6x3379i37devqipkz592yt28plZWFVFd3zZw576W2tq6ly6GVqt9PymHfYkn820O57DuUy77TvKqruzoLCAAAoBm0mnBlzJgxef/99xst23HHHXPMMcfka1/7Wu64445MmDAhtbW1qaysTJI8/PDDWXvttdO7d+9leu2FC9tuo15bW9em66f1sm/xcewflMu+Q7nsOwAAALQmreZja3379s1nP/vZRl9J0rt376y++uoZOXJk5s2bl5NPPjnPP/98Jk+enHHjxuXQQw9t4coBAAAAAICOpNWEK5+kd+/eufLKK/Piiy9mxIgRufjii3PCCSdkxIgRLV0aAAAAAADQgbSay4Ityd///vdGjzfeeONMnDixhaoBAAAAAABoQ2euAAAAAAAAtAbCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAIBW4q233sqPf/zjfOlLX8rmm2+evffeO1OmTGlYf9JJJ2W99dZr9PWlL32pYX1dXV0uvPDCDB06NJtsskkOPPDATJs2rSXeCgAAtGudWroAAAAAPnTcccdl9uzZOe+887Lyyitn/PjxOeiggzJ58uQMGDAgf//733PYYYdl1KhRDdtUVlY2/P2SSy7JhAkT8rOf/Sx9+/bNueeem4MPPji33357qqqqWuItAQBAu+TMFQAAgFZg2rRpeeihh/KTn/wkgwYNyjrrrJOTTz45ffv2ze23357a2to8//zz2WijjbLKKqs0fK288spJkgULFuSqq67K0UcfnW233TYDBw7M+eefn9deey133313C787AABoX4QrAAAArUCvXr1y+eWXZ8MNN2xYVlFRkWKxmLfffjsvvfRS5s+fnwEDBixx+2effTbvvPNOhgwZ0rCsuro666+/fh577LHlXj8AAHQkLgsGAADQClRXV2fbbbdttOzOO+/M9OnTs8022+S5555LRUVFxo0blz/96U8pFArZdtttc+yxx6ZHjx559dVXkySrrrpqo+fo06dP/vWvf5VdV0XFh39WVvpsXntVP7fmuH0yv+2fOW6fyp1P+0Hb5Oe4bRKuAAAAtEJTp07Nj370o2y//fYZNmxYLrzwwhQKhay++uq59NJLM23atJxzzjl57rnnMm7cuLz33ntJsti9VTp37py333677Doq/n+6Ul3dtfw3Q5tgjts389v+mWMS+0FbZ/7aFuEKAABAK3PPPffk+OOPzyabbJLzzjsvSXL00Udn//33T3V1dZKkpqYmq6yySvbaa688+eST6dKlS5IP771S//ckmT9/frp2Lb9RLxaLqaioyJw576W2tm4Z3hWtVWVlIdXVXc1xO2V+2z9z3D7Vz2up7Adtk5/j1qW6umuTziISrgAAALQi1113Xc4888wMHz48Y8aMaTgTpaKioiFYqVdTU5MkefXVVxsuBzZr1qysueaaDWNmzZqVgQMHll1Psfjhn7W1dVm4ULPfnpnj9s38tn/mmMR+0NaZv7bFRdwAAABaifHjx+f000/PPvvsk1/+8peNLvH1gx/8IAcddFCj8U8++WSSZN11183AgQPTvXv3PProow3r58yZk6effjqDBg1aMW8AAAA6CGeuAAAAtAIvvvhizjrrrAwfPjyHHnpoZs+e3bCuS5cu2WWXXXL44Yfn17/+dXbeeee8+OKL+elPf5pddtklAwYMSJKMGjUqY8aMycorr5zVV1895557bvr165fhw4e31NsCAIB2SbgCAADQCtx111354IMPcvfdd+fuu+9utG7EiBE5++yzc8EFF+TSSy/NpZdemh49emTXXXfNscce2zDumGOOycKFC3PKKafk/fffz+DBgzN27NjFbnIPAAAsG+EKAABAK3DYYYflsMMO+9gxO+20U3baaaelrq+srMzo0aMzevTo5i4PAABYhHuuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmaNVx555138v777zfnUwIAALQZeiIAAOgYyg5X/vSnP+WSSy5peHzOOedkyy23zKBBg3LmmWc2S3EAAACtlZ4IAAA6rrLClfvvvz+HHnpofve73yVJpkyZkquvvjqrr756Nttss1x33XUZP358sxYKAADQWuiJAACgYysrXLn66quz5ppr5tprr02S3HHHHSkUCrn66qvzm9/8Jl/+8pczadKkZi0UAACgtdATAQBAx1ZWuPLMM89k7733Tt++fZMkDz30UGpqarL66qsnSYYOHZp//vOfJT/v7NmzM3r06AwZMiSbbbZZDjnkkDz//PONXnfUqFHZdNNNs91222Xs2LHllA8AALBMlldPBAAAtA1lhSsLFy5M9+7dkyQzZ87M9OnT84UvfKFhfV1dXTp16lTy8x5++OF5+eWXc8UVV+Smm25Kly5dsv/+++e9997Lm2++mQMOOCBrrbVWJk2alKOPPjoXXHCBT4MBAAAr3PLqiQAAgLahrKP9/v375+mnn06S3HXXXamoqMjQoUMb1t9///3p379/Sc/55ptvpn///jn88MPzuc99LklyxBFHZLfddss//vGPPPzww6mqqsqpp56aTp06ZcCAAZk2bVquuOKKjBw5spy3AQAAUJbl0RMBAABtR1lnruy0006ZOHFiDj300Fx00UXp27dvhgwZkunTp+eQQw7JQw89lN13372k5+zVq1fOO++8hmDl3//+d8aOHZt+/fpl3XXXzZQpUzJ48OBGn/4aMmRIXnzxxcyePbuctwEAAFCW5dETAQAAbUdZZ64cccQReeuttzJp0qSsuuqqOfPMM9OpU6e89dZb+fOf/5xvfvObGTVqVNlF/dd//VduvPHGVFVV5de//nW6deuWV199NTU1NY3G9enTJ0nyyiuvpHfv3mW/XqdOZWVMLaqystDoT1iSZdk/7FssiX97KJd9h3LZd2itlndPBAAAtG5lhSuFQiGnnHJKTjnllEbLBw4cmPvvv7/hpo7l2m+//bLXXnvlhhtuyJFHHpnx48fn/fffT1VVVaNxnTt3TpLMnz+/7NcqFCrSq9dKy1RvS6qu7trSJdBO2bf4OPYPymXfoVz2HVqb5d0TAQAArVtZ4cp3vvOdHH744dlqq60aLa+qqkrfvn1zzz33ZMyYMfnv//7vsopad911kySnn356Hn/88Vx33XXp0qVLFixY0GhcfajSrVu3sl4nSerqipkz592yt28plZWFVFd3zZw576W2tq6ly6GVqt9PymHfYkn820O57DuUy77TvKqruzoLqJks754IAABo3ZoUrrz33nt58803Gx7/5S9/yfDhw/PZz352sbF1dXX585//nFdeeaWkQmbPnp2HH344X/3qV1NZWZnkw0+DDRgwILNmzUq/fv0ya9asRtvUP17WT4UtXNh2G/Xa2ro2XT+tl32Lj2P/oFz2Hcpl36GlrYieCAAAaDuaFK7Mmzcvu+yyS957772GZWeddVbOOuuspW6z6aabllTIrFmz8oMf/CC9e/du+PTXBx98kKeffjrDhg3LZz7zmUyYMCG1tbUN4cvDDz+ctddee5nutwIAAPBJVkRPBAAAtB1NCldWWWWV/PjHP86jjz6aYrGYW265JVtssUXWWGONxcYWCoV85jOfyd57711SIQMHDsw222yT0047LWeccUaqq6tz6aWXZs6cOdl///3TuXPnXHnllTn55JPz3e9+N0888UTGjRuX0047raTXAQAAKNWK6IkAAIC2o8n3XNl9992z++67J/nwFPgDDjgg22+/fbMVUlFRkV/+8pf5xS9+kWOPPTZz587NoEGDcv3112e11VZLklx55ZU588wzM2LEiKyyyio54YQTMmLEiGarAQAAYGmWd08EAAC0HWXd0P6+++5r7jqSJD169Mipp56aU089dYnrN95440ycOHG5vDYAAEBTLa+eCAAAaBvKCleSpFgs5pFHHsnrr7+eurol31y0/lNdAAAA7Y2eCAAAOq6ywpVp06bl4IMPzssvv7zE9cViMRUVFRoJAACgXdITAQBAx1ZWuDJmzJi8/PLLGTlyZDbaaKNUVVU1d10AAACtlp4IAAA6trLClUceeSR77713fvzjHzd3PQAAAK2enggAADq2QjkbLVy4MJ///OebuxYAAIA2QU8EAAAdW1nhygYbbJCnnnqquWsBAABoE/REAADQsZUVrhxzzDH53e9+l7vuuivFYrG5awIAAGjVlldP9NZbb+XHP/5xvvSlL2XzzTfP3nvvnSlTpjSsf+aZZzJq1Khsuumm2W677TJ27NhG29fV1eXCCy/M0KFDs8kmm+TAAw/MtGnTmq0+AADgQ2Xdc+Wqq67Kpz/96Rx77LHp0qVLevXqlYqKikZjKioqcs899zRLkQAAAK3J8uqJjjvuuMyePTvnnXdeVl555YwfPz4HHXRQJk+enJVXXjkHHHBAdthhh5x22ml5/PHHc9ppp6Vnz54ZOXJkkuSSSy7JhAkT8rOf/Sx9+/bNueeem4MPPji33357qqqqmu39AwBAR1dWuPLcc8+lUChk1VVXbVj20U9rOaMFAABor5ZHTzRt2rQ89NBDueGGG7L55psnSU4++eT86U9/yu23354uXbqkqqoqp556ajp16pQBAwZk2rRpueKKKzJy5MgsWLAgV111VUaPHp1tt902SXL++edn6NChufvuu7Pzzjsv47sGAADqlRWu3Hfffc1dBwAAQJuxPHqiXr165fLLL8+GG27YsKyioiLFYjFvv/12/va3v2Xw4MHp1Ok/bdyQIUNy2WWXZfbs2Zk5c2beeeedDBkypGF9dXV11l9//Tz22GPCFQAAaEZlhSsftWDBgnTq1CmFQlm3cAEAAGjTmqMnqq6ubjjjpN6dd96Z6dOnZ5tttsn555+fmpqaRuv79OmTJHnllVfy6quvJkmjs2nqx/zrX/8qu676q51VVur32qv6uTXH7ZP5bf/McftU7nzaD9omP8dtU9nhyltvvZULL7wwf/jDH/LGG29k7Nix+dSnPpUrr7wyJ554YtZee+3mrBMAAKBVWd490dSpU/OjH/0o22+/fYYNG5af/exni903pXPnzkmS+fPn57333kuSJY55++23y66j/l4y1dVdy34O2gZz3L6Z3/bPHJPYD9o689e2lBWuvPXWW9lrr70ybdq0rLHGGg3XEn777bfzwAMP5IknnsjEiROzxhprNGuxAAAArcHy7onuueeeHH/88dlkk01y3nnnJUm6dOmSBQsWNBo3f/78JEm3bt3SpUuXJB+eRVP/9/oxXbuW36gXi8VUVFRkzpz3UltbV/bz0HpVVhZSXd3VHLdT5rf9M8ftU/28lsp+0Db5OW5dqqu7NuksorLClYsvvjgzZ87M1VdfnfXWWy9bb711kmT77bfP5ZdfnmOOOSaXXHJJfvazn5Xz9AAAAK3a8uyJrrvuupx55pkZPnx4xowZ03AmSr9+/TJr1qxGY+sf9+3bNwsXLmxYtuaaazYaM3DgwLLeZ5L8/9wotbV1WbhQs9+emeP2zfy2f+aYxH7Q1pm/tqWsi7jdd999+eY3v5mtttqq4RTxel/60pey11575dFHH22WAgEAAFqb5dUTjR8/Pqeffnr22Wef/PKXv2x0ia/Bgwdn6tSpqa2tbVj28MMPZ+21107v3r0zcODAdO/evdHrzpkzJ08//XQGDRpUxrsEAACWpqxw5ZM++TRgwIC8/vrrZRcFAADQmi2PnujFF1/MWWedleHDh+fQQw/N7Nmz8/rrr+f111/P3LlzM3LkyMybNy8nn3xynn/++UyePDnjxo3LoYcemuTDe62MGjUqY8aMyb333ptnn3023//+99OvX78MHz58md4vAADQWFmXBevdu3dmzpy51PXPPfdcevXqVXZRACxZoVCRQqHikwcuoq6umLq64nKqCAA6puXRE91111354IMPcvfdd+fuu+9utG7EiBE5++yzc+WVV+bMM8/MiBEjssoqq+SEE07IiBEjGsYdc8wxWbhwYU455ZS8//77GTx4cMaOHbvYTe4BAIBlU1a48qUvfSkTJkzInnvumZVWWqnRuv/93//NjTfemF122aVZCgTgQ4VCRXr27NakG2otqra2Lm+99a6ABQCa0fLoiQ477LAcdthhHztm4403zsSJE5e6vrKyMqNHj87o0aNLem0AAKA0ZYUrRx11VO6///6MGDEiW2yxRSoqKjJhwoSMGzcuDz74YLp3754jjjiiuWsF6NAKhYpUVhYy5vqpmfHa3CZt079vjxy/zxYpFCqEKwDQjPREAADQsZUVrvTt2zcTJkzIT3/60/zpT39KsVjMXXfdlSTZYost8pOf/CT9+/dv1kIB+NCM1+bmhZlvt3QZANCh6YkAAKBjKytcSZL+/fvn8ssvz9y5c/PSSy+lrq4u/fv3T+/evZuzPgAAgFZJTwQAAB1X2eFKvR49emSjjTZqjloAAADaHD0RAAB0PE0KV0466aR861vfyiabbNLw+JNUVFTkrLPOWrbqAAAAWgE9EQAAsKgmhSs333xztt5664ZG4uabb/7EbTQSAABAe6EnAgAAFtWkcOXee+/Nyiuv3OgxAABAR6EnAgAAFtWkcGX11Vdf4uM5c+ake/fuKRQKSZJ//OMfWWWVVdKzZ8/mrRIAAKAF6YkAAIBFFcrd8Pzzz8/QoUMzffr0hmVXXHFFttlmm1x11VXNUhwAAEBrpScCAICOq0lnrnzUjTfemMsuuyxbbLFFOnfu3LB89913z7///e+ce+65WXXVVfPVr3612QoFAABoLfREAADQsZV15sr48ePzxS9+Mddff31WXXXVhuVbb711rrrqqmy11Va5+uqrm61IAJZNZWUhnTo17atQqGjpcgGg1dMTAQBAx1ZWuDJt2rTsuOOOS10/fPjwvPDCC2UXBUDz6Nmjc+rqiqmu7ppevVZq0lfPnt0ELADwCfREAADQsZV1WbCuXbvm9ddfX+r6N998M5WVlWUXBUDz6N71UykUKjLm+qmZ8drcTxzfv2+PHL/PFikUKlJXV1wBFQJA26QnAgCAjq2scGWLLbbI+PHjs9dee2WVVVZptO6NN97IhAkTsvnmmzdLgQAsuxmvzc0LM99u6TIAoN3QEwEAQMdWVrhyyCGH5Nvf/na+/vWvZ7fddss666yTioqK/POf/8xtt92Wt956K0cccURz1woAANAq6IkAAKBjKytc2WijjXLJJZfkJz/5Sa655ppG6/r165df/epX2XjjjZujPgAAgFZHTwQAAB1bWeFKkgwdOjT33Xdfnn766cyYMSMLFy5M//79s8EGG7i2MAAA0O7piQAAoOMqO1ypt/7662f99ddvjloAAADaHD0RAAB0PE0KVy6++OLsuOOOqampaXj8SSoqKnLkkUcuW3UAAACtgJ4IAABYVJPDlc9+9rMaCQAAoEPSEwEAAItqUrgyduzYfP7zn294fO211y63ggAAAFobPREAALCoJoUrP/rRj3Lcccdlt912S5K88sorGTRoUPr3779ciwMAAGgN9EQAAMCiCk0Z9MYbb2TevHkNj0866aQ8/vjjy6smAACAVkVPBAAALKpJZ66sttpqueSSSzJjxoystNJKKRaL+cMf/pCXXnppqdu4vjAAANBe6IkAAIBFNSlcOfbYY3PiiSfm6quvTvJhk/CHP/whf/jDH5a6jUYCAABoL/REAADAopoUrgwfPjxDhgzJSy+9lAULFmS//fbLYYcdlq233np51wcAANDi9EQAAMCimhSubL/99o1u3rjaaqtltdVWy5ZbbrlciwMAAGgN9EQAAMCiyrqh/SuvvJKuXbsut6IAAABaEz0RAACwqLJuaJ8kd999d6ZNm7bUbVxfGAAAaC/0RAAAwKLc0B4AAOAT6IkAAIBFNSlc+epXv+rmjQAAQIelJwIAABbVpHAlSXr16pVevXolSQYPHpwvfOELbt4IAAB0GHoiAACgXpPDlUX95je/afj7iy++mJkzZ2aDDTZI165dUygUUlVV1WwFAgAAtDZ6IgAA6NgK5W74+OOPZ9ddd83Xvva1HHzwwXn22Wfzv//7v9luu+1y5513NmeNAAAArY6eCAAAOq6ywpV//OMfOeCAA/Lvf/87X//61xuWd+3aNbW1tTn++OPz2GOPNVuRAKxYlZWFdOq0+FdlZWGJ6wuFihauGABWLD0RAAB0bGWFKxdddFG6deuW22+/PSeeeGKKxWKSZLPNNsutt96aVVZZJVdccUWzFgrA8tezR+fU1RVTXd01vXqttNhXdXXXJFlsfc+e3QQsAHQoeiIAAOjYyrrnyl/+8pfss88+6d27d958881G6/r27Zu99tor119/fbMUCMCK073rp1IoVGTM9VMz47W5Tdqmf98eOX6fLVIoVKSurricKwSA1kFPBAAAHVtZ4co777yTvn37LnX9pz/96cyZM6fsogBoWTNem5sXZr7d0mUAQKulJwIAgI6trMuC9e/fP08++eRS1z/yyCNZffXVyy4KAACgNdMTAQBAx1ZWuLLLLrvk5ptvzh/+8IeGZRUVFamrq8vll1+eu+++OzvttFOzFQkAANCa6IkAAKBjK+uyYAcffHD+53/+J9/73vdSXV2dioqK/OQnP8lbb72Vt99+OwMHDsyhhx7a3LUCAAC0CnoiAADo2Mo6c6WqqirXXHNNfvCDH2S11VZLly5d8q9//Su9e/fO4YcfnvHjx6dr167NXSsAAECroCcCAICOrawzV5LkU5/6VL773e/mu9/9bnPWAwAA0CboiQAAoOMqO1xJknnz5uXPf/5zZsyYkaqqqqy22mrZZptt0qVLl+aqDwAAoNXSEwEAQMdUdrhy11135cc//nHmzJmTYrGY5MMbOK600kr56U9/mq997WvNViQAAEBroycCAICOq6xw5a9//Wt+8IMfpEePHjnmmGPyuc99LnV1dXnuuedy3XXX5YQTTkj//v2z8cYbN3e9AAAALU5PBAAAHVtZ4cqvf/3r9OzZM7/73e/Su3fvhuU77rhj9t577+y222658sorc+GFFzZboQAAAK2FnggAADq2Qjkb/d///V/22muvRk1Evd69e2evvfbK1KlTl7k4AACA1khPBAAAHVtZ4cq77767xCai3sorr5y5c+eWXRQAAEBrpicCAICOraxwpX///nnkkUeWuv6RRx7JaqutVnZRAAAArZmeCAAAOraywpVddtkld999dy6++OIsWLCgYfmCBQty8cUX55577snXvva1ZisSAACgNdETAQBAx1bWDe0PPvjg/PGPf8zFF1+cq666KmuuuWYqKioybdq0vPvuu1l//fVzyCGHNHetAAAArYKeCAAAOraywpWqqqpce+21GTt2bP77v/87L730UorFYtZcc83stNNOOeigg9KlS5fmrhUAAKBV0BMBAEDHVla4kiRdunTJkUcemSOPPLI56wEAAGgT9EQAANBxlXzPlaeeemqJy++9997cd999y1wQAABAa6YnAgAAmhyuvPHGGxk1alT23HPPzJkzZ7H11113XY488sh861vfymuvvdasRQIAALQ0PREAAFCvSeHKu+++m/322y9TpkzJ4MGD89577y02Zp999snWW2+dxx9/PAceeGDmz5/f7MUCAAC0BD0RAACwqCaFK+PGjcs//vGP/PSnP824cePSt2/fxcbssMMOGTt2bI477ri88MIL+c1vftPsxQIAALQEPREAALCoJoUrd911V7bddtt885vf/MSxhxxySDbffPP8/ve/X+biAAAAWgM9EQAAsKgmhSvTpk3LVltt1eQn3W677fLiiy+WXRQAAEBroicCAAAW1aRwpVAopEuXLk1+0p49e6aioqLsogAAAFoTPREAALCoJoUrq622Wv75z382+Umff/75JV6DGAAAoC3SEwEAAItqUrgydOjQ/O53v8s777zziWPnzJmTW2+9NZttttkyFwcAANAa6IkAAIBFNSlc+da3vpX58+fn0EMPzZtvvrnUcbNnz86RRx6ZOXPmZJ999mm2IgEAAFqSnggAAFhUp6YMWnPNNXPyySfnv/7rv7L99tvna1/7WjbffPP06dMntbW1ef311zN16tT84Q9/yDvvvJMf/vCH2WCDDZZ37QAAACuEnggAAFhUk8KVJNlzzz3Tp0+f/PjHP85NN92USZMmNVpfLBazxhpr5Nxzz82wYcOavVAAAICWpCcCAADqNTlcSZJtt902DzzwQB555JH89a9/zaxZs1JZWZm+fftmyy23zMYbb7y86gQAAGhxeiIAACApMVxJkoqKimy11VbZaqutlkc9AAAArZqeCAAAaNIN7QEAAAAAAPiQcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABK0KRw5eqrr84LL7ywvGsBAABolfREAADAopoUrlx44YV5/PHHGx5vv/32uffee5dXTQAAAK1KS/REl1xySfbdd99Gy0466aSst956jb6+9KUvNayvq6vLhRdemKFDh2aTTTbJgQcemGnTpi3XOgEAoCNqUrhSKBTy8MMP55133kmSzJw5M++9995yLQwAAKC1WNE90TXXXJMLL7xwseV///vfc9hhh+XPf/5zw9ctt9zSsP6SSy7JhAkTcsYZZ2TixImpqKjIwQcfnAULFiy3WgEAoCPq1JRBQ4cOze2335477rgjSVJRUZHRo0dn9OjRS92moqIiTz/9dPNUCQAA0IJWVE/02muv5eSTT87UqVOz9tprN1pXW1ub559/PkcccURWWWWVxbZdsGBBrrrqqowePTrbbrttkuT888/P0KFDc/fdd2fnnXcuqRYAAGDpmhSunHHGGVl11VXz3HPPZcGCBZkyZUrWXnvt9O7de3nXBwAA0OJWVE/01FNP5dOf/nRuvfXW/OpXv8rMmTMb1r300kuZP39+BgwYsMRtn3322bzzzjsZMmRIw7Lq6uqsv/76eeyxx4QrAADQjJoUrnTv3j0nnnhiw+OBAwfm8MMPz6677rrcCgMAAGgtVlRPNGzYsAwbNmyJ65577rlUVFRk3Lhx+dOf/pRCoZBtt902xx57bHr06JFXX301SbLqqqs22q5Pnz7517/+VXZNFRUf/llZ2aSrStMG1c+tOW6fzG/7Z47bp3Ln037QNvk5bpuaFK581LXXXrvUT0sBAAC0dy3RE/3jH/9IoVDI6quvnksvvTTTpk3LOeeck+eeey7jxo1ruAdMVVVVo+06d+6ct99+u+zXrfj/6Up1ddfyi6dNMMftm/lt/8wxif2grTN/bUtZ4cqWW26ZJLnlllty5513ZsaMGamqqsqqq66ar3zlK/n617/erEUCAAC0Ji3REx199NHZf//9U11dnSSpqanJKquskr322itPPvlkunTpkuTDe6/U/z1J5s+fn65dy2/Ui8ViKioqMmfOe6mtrVu2N0GrVFlZSHV1V3PcTpnf9s8ct0/181oq+0Hb5Oe4damu7tqks4jKCleKxWKOOeaY3HPPPSkWi+nRo0fq6uryzDPP5P77789///d/55JLLinnqQEAAFq9luiJKioqGoKVejU1NUmSV199teFyYLNmzcqaa67ZMGbWrFkZOHBg2a9bLH74Z21tXRYu1Oy3Z+a4fTO/7Z85JrEftHXmr20p6yJu1113Xe6+++7suuuu+eMf/5jHHnssU6dOzf3335+vf/3ruf/++3PDDTc0d60AAACtQkv0RD/4wQ9y0EEHNVr25JNPJknWXXfdDBw4MN27d8+jjz7asH7OnDl5+umnM2jQoGatBQAAOrqywpVJkyZlyy23zM9//vP07du3Yfmqq66ac845J1tuuWUmTZrUbEUCAAC0Ji3RE+2yyy556KGH8utf/zrTp0/PH//4x/zoRz/KLrvskgEDBqSqqiqjRo3KmDFjcu+99+bZZ5/N97///fTr1y/Dhw9v1loAAKCjKytcefHFFz/24HyHHXbIP//5z7KLAgAAaM1aoif68pe/nAsuuCB/+MMfsuuuu+bkk0/OjjvumLPOOqthzDHHHJNvfOMbOeWUU7L33nunsrIyY8eOXewm9wAAwLIp654rnTp1yrvvvrvU9e+++24qKirKLgoAAKA1WxE90dlnn73Ysp122ik77bTTUreprKzM6NGjM3r06GV6bQAA4OOVdebKhhtumMmTJ2f+/PmLrXvvvfcyefLkrL/++stcHAAAQGukJwIAgI6trHDlwAMPzLRp0/KNb3wjt99+e5599tk8++yzue2227Lnnntm+vTpOeCAA5q7VgAAgFZBTwQAAB1bWZcF23bbbXPCCSfkvPPOW+x080KhkO9///sZNmxYsxQIAADQ2uiJAACgYysrXEk+/KTW8OHDc88992T69OkpFotZc801M3z48KyxxhrNWSMAAECroycCAICOq+xwJUnWWGONZj3V/a233sp5552XBx54IPPmzct6662XH/zgBxk0aFCS5JlnnsmZZ56Zv/3tb+nZs2f23XffHHTQQc32+gAAAKVo7p4IAABoG8q658ryctxxx+Wvf/1rzjvvvNx0003ZYIMNctBBB+WFF17Im2++mQMOOCBrrbVWJk2alKOPPjoXXHBBJk2a1NJlAwAAAAAAHcgynbnSnKZNm5aHHnooN9xwQzbffPMkycknn5w//elPuf3229OlS5dUVVXl1FNPTadOnTJgwIBMmzYtV1xxRUaOHNnC1QMAAAAAAB1FqzlzpVevXrn88suz4YYbNiyrqKhIsVjM22+/nSlTpmTw4MHp1Ok/edCQIUPy4osvZvbs2S1RMgAAAAAA0AG1mjNXqqurs+222zZaduedd2b69OnZZpttcv7556empqbR+j59+iRJXnnllfTu3bvs1+7UqdVkTE1WWVlo9CcsybLsH/at1qe1z0lrr4+W5f8tymXfAQAAoDUqK1y54YYbstVWW2WttdZq5nL+Y+rUqfnRj36U7bffPsOGDcvPfvazVFVVNRrTuXPnJMn8+fPLfp1CoSK9eq20TLW2pOrqri1dAu2UfYtS2WdoCvsJ5bLv0NqsiJ4IAABovcoKV8aMGZP9998/Rx99dHPXkyS55557cvzxx2eTTTbJeeedlyTp0qVLFixY0GhcfajSrVu3sl+rrq6YOXPeLb/YFlJZWUh1ddfMmfNeamvrWrocWqn6/aQc9q3WZ1nmc0Wwz/Bx/L9Fuew7zau6uquzgJrJ8u6JAACA1q2scKVQKKRXr17NXUuS5LrrrsuZZ56Z4cOHZ8yYMQ1nq/Tr1y+zZs1qNLb+cd++fZfpNRcubLuNem1tXZuun9bLvkWp7DM0hf2Ectl3aG2WZ08EAAC0fmV9bO2ggw7K5ZdfngcffDB1dc3X5I4fPz6nn3569tlnn/zyl79sdBmwwYMHZ+rUqamtrW1Y9vDDD2fttddepvutAAAAlGp59UQAAEDbUNaZK48//njmzZuXQw45JFVVVenVq1cqKysbjamoqMg999zT5Od88cUXc9ZZZ2X48OE59NBDM3v27IZ1Xbp0yciRI3PllVfm5JNPzne/+9088cQTGTduXE477bRy3gIAAEDZlkdPBAAAtB1lhSvPPfdcevbsmZ49ezYsKxaLjcZ89PEnueuuu/LBBx/k7rvvzt13391o3YgRI3L22WfnyiuvzJlnnpkRI0ZklVVWyQknnJARI0aU8xYAAADKtjx6IgAAoO0oK1y57777mruOHHbYYTnssMM+dszGG2+ciRMnNvtrAwAAlGJ59EQAAEDbUdY9Vz5qwYIFrjMMAAB0WHoiAADoWMoOV95666389Kc/zTbbbJNNN900jz76aKZMmZLDDjssL774YnPWCAAA0OroiQAAoOMqK1x56623stdee2X8+PHp2rVrw7WE33777TzwwAPZZ5998vLLLzdroQAAAK2FnggAADq2ssKViy++ODNnzszVV1+diRMnNjQS22+/fS6//PK8++67ueSSS5q1UAAAgNZCTwQAAB1bWeHKfffdl29+85vZaqutUlFR0Wjdl770pey111559NFHm6VAAACA1kZPBAAAHVtZ4cqsWbMycODApa4fMGBAXn/99bKLAgAAaM30RAAA0LGVFa707t07M2fOXOr65557Lr169Sq7KAAAgNZMTwQAAB1bWeHKl770pUyYMCEzZsxYbN3//u//5sYbb8w222yzzMUBAAC0RnoiAADo2DqVs9FRRx2V+++/PyNGjMgWW2yRioqKTJgwIePGjcuDDz6Y7t2754gjjmjuWgEAAFoFPREAAHRsZZ250rdv30yYMCGbbbZZ/vSnP6VYLOauu+7KAw88kE033TS/+c1v0r9//+auFQAAoFXQEwEAQMdW1pkrSdK/f/9cfvnlmTt3bl566aXU1dWlf//+6d27d3PWBwAA0CrpiQAAoOMq68yVRS1cuDDFYjGdOnVK586dm6MmAACANkNPBAAAHU/ZZ648+eST+fnPf56pU6emWCwmSQqFQr74xS/m5JNPzmc/+9lmKxIAAKC10RMBAEDHVVa48tRTT2XffffNggULMnTo0Ky11lqpq6vLP//5zzz44IP51re+lRtvvDFrrLFGc9cLAADQ4vREAADQsZUVrlx44YWpqqrKhAkTMnDgwEbrHn/88RxwwAE577zzcv755zdLkQAAAK2JnggAADq2su65MmXKlOy7776LNRFJsummm2bUqFF56KGHlrk4AACA1khPBAAAHVtZ4UpFRUWqq6uXur5///5ZuHBh2UUBAAC0ZnoiAADo2MoKV7bddtv87ne/y4IFC5a4/s4778w222yzTIUBAAC0VnoiAADo2Jp0z5XHHnus0ePtt98+p5xySvbZZ58ccsghWWeddVIoFDJ9+vRcd911+cc//pFf/vKXy6NeAACAFU5PBAAALKpJ4cq+++6bioqKRsuKxWKefPLJHHPMMYstT5LvfOc7eeaZZ5qpTAAAgJajJwIAABbVpHDlyCOPXKyRAAAA6Cj0RAAAwKKaFK4cffTRy7sOAACAVktPBAAALKqsG9oDAAAAAAB0VE06c+Wj5s2bl1/84hd54IEH8tprrzVcU3hRFRUVefrpp5e5QAAAgNZGTwQAAB1bWeHKz3/+89x4443p06dPNt1001RWVjZ3XQAAAK2WnggAADq2ssKV+++/PzvssEMuvPDCFAquLAYAAHQseiIAAOjYyuoC5s2bl2233VYTAQAAdEh6IgAA6NjK6gQ233zzPPXUU81dCwAAQJugJwIAgI6trHBl9OjRufPOOzNu3Li8/vrrzV0TAABAq6YnAgCAjq2se66svvrqWW+99XL22Wfn7LPPXuKYioqKPP3008tUHAAAQGukJwIAgI6trHDlzDPPzF/+8pesvPLK+exnP5tOncp6GgAAgDZJTwQAAB1bWR3A/fffn+233z4XXHCBJgIAAOhw9EQAANCxlXXPlQULFmS77bbTRAAAAB2SnggAADq2ssKVzTbbLE899VRz1wIAANAm6IkAAKBjKytc+cEPfpA77rgjV111VV577bXU1tY2d10AAACtlp4IAAA6trLOYf/hD3+YQqGQc889N+eee+4Sx1RUVOTpp59epuIAAABaIz0RAAB0bGWFKz179kzPnj2buRQAAIC2QU8EAAAdW1nhym9+85vmrgMAAKDN0BMBAEDHVtY9VwAAAAAAADqqss5cOemkkz5xTEVFRc4666xynh4AAKBV0xMBAEDHVla4cvPNNy91XUVFRaqqqtK5c2eNBAAA0C7piQAAoGMrK1y59957F1tWW1ub119/PTfffHMeeeSRjB8/fpmLAwAAaI30RAAA0LGVFa6svvrqS1y+5pprZosttshhhx2WX/ziFznnnHOWqTgAAIDWSE8EAAAd23K5of2wYcPyxz/+cXk8NQAAQKunJwIAgPZtuYQrr7/+et5///3l8dQAAACtnp4IAADat7IuC/bKK68scfn777+fv/3tbxk3blw22GCDZSoMAACgtdITAQBAx1ZWuDJs2LBUVFQsdX2hUMhRRx1VdlEAAACtmZ4IAAA6trLCld13332JjURlZWX69OmTESNGZI011ljm4gAAAFojPREAAHRsZYUrZ599dnPXAQAA0GboiQAAoGNbLje0BwAAAAAAaK+adObKxRdfXNaTu8YwAADQHuiJAACARTV7uLLodYc1EgAAQHugJwIAABbVpHDl2muv/cQxxWIx119/ff7whz8kSbbddttlqwwAAKCV0BMBAACLalK4suWWW37s+ldeeSU/+tGP8uijj6ZHjx754Q9/mJEjRzZLgQAAAC1NTwQAACyqSeHKx5kwYULOPffcvPPOO9lmm21y5plnpm/fvs1RGwAAQKunJwIAgI6n7HDl1Vdfzcknn5z/+Z//yUorrZTTTz89e+65Z3PWBgAA0GrpiQAAoOMqK1z57W9/m3POOSfz5s3L1ltvnTPPPDOrrrpqc9cGAADQKumJAACgYyuUMvi1117LwQcfnB//+Mepq6vLqaeemquuukoTAQAAdAgrsie65JJLsu+++zZa9swzz2TUqFHZdNNNs91222Xs2LGN1tfV1eXCCy/M0KFDs8kmm+TAAw/MtGnTmr02AADo6Jocrtx8883Zdddd8+CDD+YLX/hCbrvttnzrW99anrUBAAC0GiuyJ7rmmmty4YUXNlr25ptv5oADDshaa62VSZMm5eijj84FF1yQSZMmNYy55JJLMmHChJxxxhmZOHFiKioqcvDBB2fBggXLpU4AAOiomnRZsMMOOyx//OMfkyRf+cpX8u1vfzuvvPJKXnnllY/dbvDgwcteIQAAQAtbUT3Ra6+9lpNPPjlTp07N2muv3WjdjTfemKqqqpx66qnp1KlTBgwYkGnTpuWKK67IyJEjs2DBglx11VUZPXp0tt122yTJ+eefn6FDh+buu+/OzjvvXFItAADA0jUpXHnggQca/n7XXXflrrvuatKTP/PMM2UVBQAA0JqsqJ7oqaeeyqc//enceuut+dWvfpWZM2c2rJsyZUoGDx6cTp3+08YNGTIkl112WWbPnp2ZM2fmnXfeyZAhQxrWV1dXZ/31189jjz0mXAEAgGbUpHDlqKOOWt51AAAAtForqicaNmxYhg0btsR1r776ampqahot69OnT5LklVdeyauvvpoki93/pU+fPvnXv/5Vdk0VFR/+WVlZ0i07aUPq59Yct0/mt/0zx+1TufNpP2ib/By3TcIVAACAT9AaeqL3338/VVVVjZZ17tw5STJ//vy89957SbLEMW+//XbZr1vx/9OV6uquZT8HbYM5bt/Mb/tnjknsB22d+WtbmhSuAAAA0LK6dOmy2I3p58+fnyTp1q1bunTpkiRZsGBBw9/rx3TtWn6jXiwWU1FRkTlz3kttbV3Zz0PrVVlZSHV1V3PcTpnf9s8ct0/181oq+0Hb5Oe4damu7tqks4iEKwAAAG1Av379MmvWrEbL6h/37ds3CxcubFi25pprNhozcODAsl+3WPzwz9rauixcqNlvz8xx+2Z+2z9zTGI/aOvMX9viIm4AAABtwODBgzN16tTU1tY2LHv44Yez9tprp3fv3hk4cGC6d++eRx99tGH9nDlz8vTTT2fQoEEtUTIAALRbwhUAAIA2YOTIkZk3b15OPvnkPP/885k8eXLGjRuXQw89NMmH91oZNWpUxowZk3vvvTfPPvtsvv/976dfv34ZPnx4C1cPAADti8uCAQAAtAG9e/fOlVdemTPPPDMjRozIKquskhNOOCEjRoxoGHPMMcdk4cKFOeWUU/L+++9n8ODBGTt27GI3uQcAAJaNcAUAAKAVOvvssxdbtvHGG2fixIlL3aaysjKjR4/O6NGjl2dpAADQ4bksGAAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACTq1dAEAAAAAAO1ZoVCRQqGiyeMrK30mHlo74QoAAAAAwHJSKFSkZ89uAhNoZ4QrAAAAAADLSaFQkcrKQsZcPzUzXpvbpG02H9gn3/na+su5MmBZCFcAAAAAAJazGa/NzQsz327S2P59ui/naoBl5Vw0AAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAErQqaULAKBjKhQqUihUlLRNXV0xdXXF5VQRAAAAADSNcAWAFa5QqEjPnt1SWVnaCZS1tXV56613BSwAAAAAtCjhCgArXKFQkcrKQsZcPzUzXpvbpG369+2R4/fZIoVChXAFAAAAgBYlXAGgxcx4bW5emPl2S5cBAAAAACVxQ3sAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAoQasNVy655JLsu+++jZY988wzGTVqVDbddNNst912GTt2bAtVBwAAAAAAdFStMly55pprcuGFFzZa9uabb+aAAw7IWmutlUmTJuXoo4/OBRdckEmTJrVQlQAAAAAAQEfUqaULWNRrr72Wk08+OVOnTs3aa6/daN2NN96YqqqqnHrqqenUqVMGDBiQadOm5YorrsjIkSNbqGIAAAAAAKCjaVVnrjz11FP59Kc/nVtvvTWbbLJJo3VTpkzJ4MGD06nTf/KgIUOG5MUXX8zs2bNXdKkAAAAAAEAH1arOXBk2bFiGDRu2xHWvvvpqampqGi3r06dPkuSVV15J7969l3t9AAAAAAAArSpc+Tjvv/9+qqqqGi3r3LlzkmT+/PnL9NydOrWqE3iapLKy0OhPWJJl2T/sW61Pa5+TUuqzb3Y8/t+iXPYdAAAAWqM2E6506dIlCxYsaLSsPlTp1q1b2c9bKFSkV6+Vlqm2llRd3bWlS6Cdsm9RqhW1z9g32zbzR7nsOwAAALQmbSZc6devX2bNmtVoWf3jvn37lv28dXXFzJnz7jLV1hIqKwupru6aOXPeS21tXUuXQytVv5+Uw77V+izLfK4Ipewz9s2Ox/9blMu+07yqq7s6CwgAAKAZtJlwZfDgwZkwYUJqa2tTWVmZJHn44Yez9tprL/P9VhYubLuNem1tXZuun9bLvkWpVtQ+Y99s28wf5bLvAAAA0Jq0mY+tjRw5MvPmzcvJJ5+c559/PpMnT864ceNy6KGHtnRpAAAAAABAB9JmwpXevXvnyiuvzIsvvpgRI0bk4osvzgknnJARI0a0dGkAAAAAAEAH0movC3b22WcvtmzjjTfOxIkTW6AaAAAAAACAD7WZM1cAAAAAAABaA+EKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUIJOLV0AQEdVKFSkUKho8vjKSnl4Uvr3oa6umLq64nKqBgAAAICOSLgC0AIKhYr07NlNYFKCnj06p66umOrqriVtV1tbl7feelfAAgAAAECzEa4AtIBCoSKVlYWMuX5qZrw2t0nbbD6wT77ztfWXc2WtV/eun0qhUFHS96x/3x45fp8tUihUCFcAAAAAaDbCFYAWNOO1uXlh5ttNGtu/T/flXE3bUMr3DAAAAACWB9ejAQAAAAAAKIFwBQAAAAAAoATCFQAAgDZk5syZWW+99Rb7+u1vf5skeeaZZzJq1Khsuumm2W677TJ27NgWrhgAANof91wBAABoQ/7+97+nc+fOueeee1JRUdGwvEePHnnzzTdzwAEHZIcddshpp52Wxx9/PKeddlp69uyZkSNHtmDVAADQvghXAAAA2pDnnnsua6+9dvr06bPYunHjxqWqqiqnnnpqOnXqlAEDBmTatGm54oorhCsAANCMXBYMAACgDfn73/+eddddd4nrpkyZksGDB6dTp/98jm7IkCF58cUXM3v27BVVIgDQQiorC+nUqelfhULFJz8psETOXAEAAGhDnnvuuayyyir59re/nZdeeimf/exnc8QRR2To0KF59dVXU1NT02h8/Rkur7zySnr37l3y69Vfeayy0mfz2qv6uTXH7ZP5bf/Mceu3IuamZ4/Oqasrprq6a0nb1dbWZe7c91MsFpdTZTSFn+O2SbgCAADQRixYsCAvvfRSunbtmhNOOCHdunXLrbfemoMPPjhXX3113n///VRVVTXapnPnzkmS+fPnl/Wa9fd1KfWXNbQ95rh9M7/tnznu2Lp3/VQKhYqMuX5qZrw2t0nb9O/bI8fvs0V69uy2nKujqfwcty3CFQCaRSmfrvBJDAAoT1VVVR577LF06tSpIUTZcMMN88ILL2Ts2LHp0qVLFixY0Gib+lClW7fyfnFSLBZTUVGROXPeS21t3bK9AVqlyspCqqu7muN2yvy2f+a49aufoxVhxmtz88LMt0vaxr7T8vwcty7V1V2b9Lsr4QoAy6TcU48BgPIsKSSpqanJn//85/Tr1y+zZs1qtK7+cd++fct6vfqrhNTW1mXhQs1+e2aO2zfz2/6ZY8pl32k9zEXbIlwBYJmUc+rx5gP75DtfW385VwYA7c+zzz6bvffeO1dccUUGDRrUsPxvf/tb1l133Xz+85/PhAkTUltbm8rKyiTJww8/nLXXXrus+60AAIsrFCpKuhG8qzdA+yRcAaBZlHLqcf8+3ZdzNQDQPtXU1ORzn/tcTjvttPzkJz9Jr169cuONN+bxxx/PTTfdlM985jO58sorc/LJJ+e73/1unnjiiYwbNy6nnXZaS5cOAO1CoVCRnj27CUwA4QoAAEBbUSgUcumll2bMmDE59thjM2fOnKy//vq5+uqrs9566yVJrrzyypx55pkZMWJEVllllZxwwgkZMWJEC1cOAO1DoVCRysqCqzcAwhUAAIC2ZOWVV85ZZ5211PUbb7xxJk6cuAIrAoCOx9UbAOevAQAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFCCTi1dAEBrUyhUpFCoKGmburpi6uqKy6kiAAAAAKA1Ea4ALKJQqEjPnt1SWVnaiX21tXV56613BSwAAAAA0AEIVwAWUShUpLKykDHXT82M1+Y2aZv+fXvk+H22SKFQIVwBAAAAgA5AuAKwBDNem5sXZr7d0mUAAAAAAK2QG9oDAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACXo1NIFALQXlZVNz6tLGQsAAAAAtC7CFYBl1LNH59TVFVNd3bWlSwEAAAAAVgDhCsAy6t71UykUKjLm+qmZ8drcJm2z+cA++c7X1l/OlQEAAAAAy4NwBaCZzHhtbl6Y+XaTxvbv0305VwMAAAAALC8u+g8AAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUIJOLV0AAAAAAMCyKhQqUihULNfXqKz0WXXgQ8IVAAAAAKBNKxQq0rNnt5LDj9q6YiqXcyADtE/CFQAAAACgTSsUKlJZWciY66dmxmtzm7TN5gP75DtfW7+sbQCEKwAAAABAuzDjtbl5YebbTRrbv0/3srcBEK4AAAAAAMtVOfdDqasrpq6uuJwqAlg2whUAAAAAYLkp+34otXV56613BSxAqyRcAQAAAACWm3Luh9K/b48cv88WKRQqhCtAqyRcAQAAAACWu1LubQLQ2pV2Lh4AAAAAAEAH58wVAAAAAKBVaup9Wkq9nwv/Uer3rq6u6FJtEOEKALCMCoWKFAoVHzum/mC9/k8H4wAAwMfp2aNz6uqKqa7u2tKltFvlfo9ra+vy1lvv6uno8IQrAEDZCoWK9OzZrcmfdKo/aHcwDgAAfJzuXT+VQqEiY66fmhmvzf3E8ZsP7JPvfG39FVBZ+1Hq9zhJ+vftkeP32SKFQoV+jg5PuAIAlK1QqEhlZcHBOAAAsFzMeG1uXpj59ieO69+n+wqopn1q6vcYaEy4AgAsMwfjAAAAQEfiTk8AAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAk6tXQBHV2hUJFCoaKkberqisupGmj9yvmZKUVlpcyZ0i3v/bJeXV3R/wEAAAAArYBwpQUVChXp2bNbyb/Mra2ty9y57y+nqqD1Kvtnpq6YyhXwi286phW5X9bW1uWtt94VsAAAAAC0MOFKCyoUKlJZWciY66dmxmtzm7RN/749cvw+W6yQT0hDa1POz8zmA/vkO19bv8nb1I+HploR+2XS+N9/4QoAAABAyxKutAIzXpubF2a+3dJlQJtRys9M/z7dS9qmfjyUannulwAAAAC0LsIVAAAAAKDJSr3vpPubAu2RcAUA/l979x5VVbXvAfzLQx4GKKiggpqPNiiIqKD4SsXQm6gEePIFyY0UKFEvJ1DQ0oZmKly4SpfMkKNAiCgPxcdR1G6mGYXHoxlaHiQREzHEF8p73T8cex+3PNxrC/sB388YjSFrzbX2b6652K0fc805iYiIiIiISCHKrjtJRNTesHOFiIiIiIiIiIiIFPIy604SEbUn7FwhIiIiIiIiIiJqB8RO16UM6YgVZdadJCJqT9i5QkREREREREREpOV0dHTQtaux6Om66hsE6LVxhwwRUXvEzhUiIiIiIiIiIiIt9zLTdXGKLyIi8di5QkRERERERERE1E4oM10Xp/giIhJP3DhBIiIiIiIiIiIiIiKiDo4jV6jVKLNoWkODgIYGoY0iUl57qouyxM7Rqkz9xV5nsTERSbXlvcP7Unma+D2j7OeQZlJF+/MeIyIiIkWJfW7gMwMRkWZj5wq1Cl1dHXTt2ln8omn1Dbh377FGPSy0p7ooo6upIRoaBJiZGYs6Tmz9lb3ORGIocz9zMce2p+nfM+3l+7yjU0X78x4jIiIiRSnz3MBnBiIizcbOFWoVyiyaZmNlig8XjISuro5GPSi0p7oow8S4E3R1ddq8/i+z0B6RosTez1zMUTU0+XumPX2fd3SqaH/eY0RERO2Dqka7inlu4DMDEZHmY+cKtSoxC6BpuvZUF2Woqv5cNI9UQdH7jIs5qpYmfs9Q+6OK9uc9RkREpL1UPRKVzw1ERO0HO1eIiIiIiIiIiDRQR1/bSxNHlAAcVUJERE+xc4WIiIiIiIiISMN09LW9OKLkKUXqLy0jtiOKiIheDjtXiIiIiIiIiIg0TEcfUdHR69/V1BANDQLMzIwVPsbExKgNIyIiouexc4WIiIiIiIiISEOpYkSFMtNvKUOZKcs0dURJWzMx7gRdXR1RnUsj7CzxzvQhbRwZ0VNiR5Up8/sv9rupPU2LSNpB6zpXGhoa8Pnnn2Pv3r148OABRo4ciTVr1qBfv37qDo2IiIiIiEjtmDMRkRhKT7/VIEBPZIdMe5myTJXEdC7ZWJq0cTREyo2qAsT//ivz3cTvGFI1retciY+PR1paGj777DNYWVkhKioKixYtwsGDB2FgYKDu8IiIiIiIiNSqveVMHX1Bb1INTR65oYxn/xgp/Xdzf6DU09MVPf2WdISEMlN2deqkh/r6hheWF9vZQ0SqocyoKrG//4D47yZVTgvIZxOS0qrOlZqaGiQmJiIsLAwTJ04EAMTGxmLChAnIzc2Fh4eHmiMkIiIiIiJSn/aWM3X0Bb1JNdrTyI2W3ih/0VvmyoyQEHOMsm+7E5FmUtXvv6ZNDchnE3qWVnWuXLlyBZWVlXB1dZVtMzMzw5AhQ/DTTz9pXaJARERERETUmtpbzvQyC1qLeTtWWXwLtX1Q5j57mZEbbflWtSav0yE2tpeJS8wfPV9mhIyqPodI22nyd5PYUSjKjPZT5NmkqVGGYp8zNHlEjSbH9jJ0BEHQ7AifcezYMYSEhODChQswMjKSbV+2bBmqqqrw5Zdfij6nIKivkXR0AF1dXdx7WI06BR/69fV0Zb29Tx/I2jZZEEP5umhOHaQ6cl0MDfRg2tlAJfVXRWxij1HFZ2jyMZoal6qO0dS4AH7PqOp7RpOvc0emq6urVJuoov1f5jPU8RSuq6sDHZ22n/aG1KetciYdHR213LfK5EwGnXRh2tlA9L0urafYY7QopW6Rst+17YWmPs9oYs6kqmOU+Qxlf/8BaNznaGq7aPIxmhqXqo7R1LhUdYyyuZyOjnLPx6p6NhHznKFMXVT1LKNsbOr6u72ieZNWjVx58uQJADSaJ9jQ0BD37ys3PExHRwd6eupNMLuaGoo+RtrTp6urWW8+KFcXzaqDVEevi6rqr6rYxB6jqXGp6hhNjUtVx2hqXAC/Z1T1PaOp17kjU7ZNVNH+vMdIk7RVzgSo975V5vdMLGX+sKLsH2Q0VUf/btLU5xlNfjbV1GdzZWjq52hqu2jyMZoal6qO0dS4VHWMqv5fpqpnk7Z+ztDkZxlN+Lv9i2jVk5P0zauamhq57dXV1TA25pydRERERETUsTFnIiIiIiJSDa3qXOnVqxcAoKysTG57WVkZevbsqY6QiIiIiIiINAZzJiIiIiIi1dCqzhU7OzuYmJggLy9Ptu3BgwcoKCiAs7OzGiMjIiIiIiJSP+ZMRERERESqoVVrrhgYGMDX1xfR0dGwsLCAtbU1oqKi0LNnT7i7u6s7PCIiIiIiIrVizkREREREpBpa1bkCAEuXLkVdXR1Wr16NqqoquLi4YMeOHY0WbCQiIiIiIuqImDMREREREbU9HUEQBHUHQUREREREREREREREpC20as0VIiIiIiIiIiIiIiIidWPnChERERERERERERERkQjsXCEiIiIiIiIiIiIiIhKBnStEREREREREREREREQisHOFiIiIiIiIiIiIiIhIBHauEBERERERERERERERicDOFSIiIiIiIiIiIiIiIhHYudLO5OfnY/DgwcjLy1N3KKQFbt26hdDQUIwbNw4uLi4ICAjA1atX1R0WaaCGhgZs3boVEyZMwLBhw/Duu+/i+vXr6g6LtMC9e/fw8ccf4/XXX8eIESMwb9485Ofnqzss0jJFRUUYPnw4MjMz1R0KUYfVXJ5x9uxZeHt7w9HREVOnTkV2drZ6AiTRiouLERwcDGdnZzg7O+O//uu/UFpaKleG7avdFMn32Mbtx6pVq7By5cpG29nG2o25ePsWHx8PPz8/uW2XL1+Gr68vnJycMGnSJOzYsUNN0ZEi2LnSjjx8+BDh4eFoaGhQdyikBWpqarB48WKUl5fjyy+/RGpqKkxNTbFw4ULcvXtX3eGRhomPj0daWhrWr1+PPXv2QEdHB4sWLUJNTY26QyMNFxoaigsXLiAmJgb79u2Dvb09AgICUFhYqO7QSEvU1tbiww8/xOPHj9UdClGH1VyeUVhYiMDAQEycOBHZ2dmYM2cOIiMjcfbsWTVFSoqqrq6Gv78/AGD37t1ITk7GnTt3EBgYCEEQALB9tZ0i+R7buH2or6/Hpk2bsG/fvkb72Mbaj7l4+7Vz505s3bpVbltFRQX+8z//E6+++ioyMjIQEhKCLVu2ICMjQ01R0ovoqzsAaj1r165Fnz59cPPmTXWHQlogPz8fv/32G06dOgUrKysAwObNmzFq1CicPHkSs2fPVnOEpClqamqQmJiIsLAwTJw4EQAQGxuLCRMmIDc3Fx4eHmqOkDTV9evXcebMGezevRsjRowA8PSNulOnTuHgwYNYtmyZmiMkbRAXF4dXXnlF3WEQdWjN5Rm7du2CnZ2d7Pt8wIABKCgoQEJCAsaMGaOOUElBf/zxB4YOHYo1a9bAwsICAODv748PPvgAFRUVsLCwYPtqOUXyPbax9issLERERARu3LiB3r17N9rPNtZuzMXbp9u3b2PVqlU4d+4c+vfvL7cvPT0dBgYGWLt2LfT19TFw4EBcv34dX331FXx8fNQUMbWEI1faif379+P8+fOIjIxUdyikJV577TVs375d9qAtJQgC7t+/r6aoSBNduXIFlZWVcHV1lW0zMzPDkCFD8NNPP6kxMtJ05ubm2L59OxwcHGTbdHR0+D1DCvvpp5+wZ88ebNq0Sd2hEHVYLeUZ+fn5cs8HAODq6opz587JRj+QZurfvz+2bNki61gpKSlBamoq7O3tYW5uDoDtq+0UyffYxtrvxx9/xODBg3Hw4EHY2Ng02s821m7MxdunX375BV26dMGBAwcwbNgwuX35+flwcXGBvv6/x0O4urqiqKgI5eXlqg6VFMCRK+1ASUkJPv30U8THx/PNTlJYjx49ZG8+SCUlJaG6uhrjxo1TU1SkiaRzb/fq1Utuu6WlJW7duqWOkEhLmJmZNfqeOXLkCIqLizF+/Hg1RUXa4sGDBwgPD8fq1asbff8QkWq8KM8oLS1Fz5495bZZWlriyZMnstEPpPneffddnDlzBl26dMGuXbugo6MDgO2r7RTJ99jG2m/evHkt7mcbazfm4u2Tm5sb3NzcmtxXWloKiUQit83S0hLA01Gn3bp1a/P4SBx2rmi4kpISTJkypdn9p06dQnh4OObMmQNnZ2eUlJSoMDrSZC+6d06fPo0ePXrIfj527BhiY2Ph5+cHOzs7VYRIWuLJkycAAAMDA7nthoaGHH1Aopw7dw6RkZGYMmVKsw+TRFJr166Fk5MTZs6cqe5QiNql1sgzqqqqGj0fSH/mXPDqJSYXCAsLw7Jly/DFF1/A398f2dnZ6NWrF9tXw7VGvsc21mxi27gpbGPtxly842nqd9bQ0BDA0/XSSPOwc0XDWVlZ4fDhw83u37t3Lx4/foyQkBAVRkXa4EX3zrNvqOzevRvr1q3D9OnTERERoYrwSIsYGRkBePrwLf038PR/7MbGxuoKi7TM8ePH8eGHH2LYsGGIiYlRdzik4bKzs5Gfn4+cnBx1h0LUbrVGnmFoaNjoj3PSn/mMoF5icoHBgwcDeDqP/6RJk5CRkYElS5awfTVca+R7bGPNJqaNm8M21m7MxTseIyOjRr+z0k6Vzp07qyMkegF2rmi4Tp06YeDAgc3uz8zMRFlZGUaPHg0AsjkzFy1ahFGjRiEhIUElcZLmedG9IxUdHY2vvvoKfn5+WLVqlWwaACIp6RDksrIy9O3bV7a9rKyMo5xIISkpKfj000/h7u6O6OjoRm/iED0vIyMD5eXlmDRpktz2NWvWYMeOHTh06JB6AiNqR1ojz+jVqxfKysrkjisrK0Pnzp1hamradsHTC72ofW/evIlLly5h2rRpsm3GxsawsbGRtSnbV7O1Rr7HNtZsirZxS9jG2o25eMfTs2fPJn9nATRaQ4s0AztXtFxycjLq6upkP9++fRt+fn5Yv369LBEiak5UVBQSEhIQHh6OgIAAdYdDGsrOzg4mJibIy8uTPdA9ePAABQUF8PX1VXN0pOlSU1Oxbt06+Pn5ITIyErq6uuoOibRAdHQ0qqqq5LZNnToVS5cuxfTp09UUFVHHokie4ezsjB9//FHuuLNnz2LEiBH8vtdwly9fxtKlS5Gbmyv3fFdUVIRZs2YBYPu2By/K99jG7R/bWLsxF+94XFxckJaWhvr6eujp6QF4+jvbv39/rreiodi5ouWsra3lfpb+4llZWbFHk1qUl5eHhIQE+Pn5YdasWbhz545sX+fOnZtctJQ6JgMDA/j6+iI6OhoWFhawtrZGVFQUevbsCXd3d3WHRxqsqKgIGzZsgLu7OwIDA1FeXi7bZ2RkxLflqFnNPcN069at0bMPEbUNRfIMPz8/eHl5ITo6Gl5eXvj2229x9OhRjp7XAq+//jpsbW0RHh6Ojz76CIIgICoqCubm5vDx8QHA9tV2iuR7bOP2j22s3ZiLdzw+Pj5ISEjAqlWr8N577+HixYvYtWsXPvnkE3WHRs1g5wpRB3Xw4EEAT99KTE5Oltu3ZMkSruNDcpYuXYq6ujqsXr0aVVVVcHFxwY4dOzi9E7Xo6NGjqK2tRW5uLnJzc+X2eXl5YePGjWqKjIiIWsNrr72G+Ph4REVFYdeuXbCxsUFUVBTGjBmj7tDoBQwMDJCQkIBNmzYhICAANTU1GD9+PDZu3AgTExMAbF9tp0i+xzZu/9jG2o+5eMfSrVs3JCQk4NNPP4WXlxd69OiB8PBweHl5qTs0aoaOIJ08l4iIiIiIiIiIiIiIiF6IEywSERERERERERERERGJwM4VIiIiIiIiIiIiIiIiEdi5QkREREREREREREREJAI7V4iIiIiIiIiIiIiIiERg5woREREREREREREREZEI7FwhIiIiIiIiIiIiIiISgZ0rREREREREREREREREIrBzhYi02jfffIOQkBC4ubnBwcEBo0ePxnvvvYeTJ0+qLIaamhqsWbMGo0aNgqOjI9avX9/ktpUrV8LW1hYlJSWizh8XFwdbW1vk5eW1UQ3k/f7776LK5+fnIzw8HO7u7nB0dISzszP8/PyQnZ0NQRDkyip7DbSVm5sbbG1tYWtrC2dnZwBAXl4ebG1tsXLlymaPKykpga2tLfz8/Brte759ni/X1tf4008/ldVJlfclEREREbUt5lat70W51Zo1a2Bra4uMjIwWy5WUlMDOzg4LFy5U+LOleUdcXJzCx7QmaRtJ/7t8+TKAp/mLm5tbi8dK86jnXb9+Xe5nPz8/uXKZmZmwtbVFZmZmK9SgsePHj8vVSV3Xlog0h766AyAiUsajR48QGRmJo0ePwt7eHt7e3rC0tERpaSmys7MRHByMd999FytWrGjzWNLT05GWloZx48bhzTffxGuvvdbkNkEQMGbMGFhYWIg6v7u7O/r27YuBAwe2UQ3+LTg4GI8ePUJycvILy9bW1mLDhg1ITU3Fq6++Cg8PD/Tu3Rt3797FoUOHsGLFCpw6dQpRUVHQ09Nr89g1lbm5OSIiItCpU6eXPldT7bN582Z07979pc+tKE9PTzg4OCA3Nxe5ubkq+1wiIiIiahvMrdqGIrnV7NmzkZaWhpycHPj4+DRbTvri2uzZs9si1DYVEREBc3Nz9O7d+6XO89VXX2HLli24dOmSbFtQUJBKr4mDgwM2b96Ma9euYdu2bSr7XCLSXOxcISKttHr1ahw9ehTh4eEICAiQ2xcUFISAgAAkJiZiwIAB+Mtf/tKmsfz6668AgPDwcNjZ2QGA7M2jZ7cBwPDhw0Wf387OTu4cbenkyZMYNWqUQmVjY2ORmpoKPz8/REZGQlf334MhFy9ejLCwMBw8eBB9+/bF8uXL2yhizde5c2d4enq2yrmaap/WOreiHBwc4ODggOLiYnauEBEREbUDzK3ahiK51dChQ2UjaW7fvg0rK6smy+3fvx9dunTB1KlT2yLUNvXGG2/Axsbmpc9z6tQp1NbWym0bN27cS59XjJ49e8LT0xN5eXnsXCEiAJwWjIi00OnTp3HkyBFMmzat0cM/ABgYGGDDhg3Q09NDUlJSm8cjfcAzMTFpcVt7cu3aNSQmJmLo0KFYvXq1XMcKAOjq6uKTTz6Bqakp9uzZg+rqajVFSkREREREzWFupX4+Pj5oaGjA4cOHm9x/7tw5FBcXY+bMmTA0NFRxdERE1BJ2rhCR1snOzgaAJtejkOrTpw9ycnKQlZUlt72wsBChoaEYO3YsHBwcMGXKFGzcuBH3799vdI5r164hNDQUY8aMgYODA6ZOnYr/+Z//QVVVFYB/r4sh/YwpU6bI5l59fhvQ9FoYgiBg9+7d8Pb2hpOTE8aOHYugoCD88ssvsjLNzQv83Xff4Z133sGIESMwbNgweHt7N5pbVjrP7qFDh7Bt2za4u7vDwcEBbm5u2LJlC+rq6uTKAcCPP/74wnlq9+/fD0EQ4Ovr22wZExMT7N27F//3f//XKAm4efMmQkNDMWrUKDg5OWHu3Lk4c+ZMo3Pk5eUhODgYY8eOhb29PVxcXLBw4UJ8//33cuXc3NwQGBiIvLw8LFiwAMOHD4ezszOWLFnS5DzHBw8elF3zCRMmIDo6Gnv37m3yOufk5ODtt9+Gk5MThg8fjgULFqh03mmg5fZpbm2W5ylaj8OHD2Pu3LmytvH09ERiYiIaGhpat1JEREREpHbMrZ5SZ241a9YsdOrUCTk5OU3ul7aRdPqr2tpa7NixAz4+Phg+fDgcHBwwadIkrF69GuXl5c1+DvA0b2pqvZPm1iq5ePEigoKCMGrUKAwdOhQzZsxAYmIi6uvrW/yc1mZra4sff/xR9m/p+pXPr7nSHEXrUVBQgKCgIEyYMEF2T69fvx737t1r9ToRUfvAacGISOtcvHgR+vr6GDZsWIvlnp9HNz8/HwEBAdDT08O8efNgbW2Nf/7zn9i5cydOnjyJtLQ02Zy9Fy9ehL+/P0xMTLBgwQJYWFjgn//8J7Zt24azZ88iKSkJFhYW2Lx5M9LT05Gfn4+IiAh06dIFurq6ctvMzc2bjXHFihXYv38/nJ2dsXz5ctTU1CA5ORm+vr74+uuvMWTIkCaP+/rrr7Fu3ToMHToUS5Ysga6uLk6cOIGIiAhcvnwZq1atkisfExMDQRAwZ84cmJmZITMzE/Hx8dDR0cHSpUsxcOBAbN68GeHh4RgwYACCgoIwYsSIFtsAAEaOHNliG/Tv37/J7UFBQXB2dkZoaCjKysqwa9cuBAYGIisrC6+99hoAIDc3F0uXLoWdnR0WLVoEExMT/Pbbb9i3bx8WLVqEY8eOwdraWnbOK1euIDAwELNmzYKnpycKCgqQlpaGK1eu4OjRo7J1XxISEhAVFQV7e3ssX74cDx8+REpKSpNxRkVFISEhAePGjUNoaCiqq6tx6NAhBAcHIyIiAv7+/i3Wv7WIbZ/nKVqPY8eOITQ0FOPGjcOyZcugq6uLv//979i0aRPKy8sRFhbWRjUkIiIiInVgbqX+3Mrc3BxTpkzB3//+dxQWFspd6+rqahw5cgT29vYYPHgwAGD58uU4ceIEvLy88Pbbb6O6uhqnTp3C3r178ccffyAxMbHFtlTUiRMnsGzZMtjY2OC9995D586dcebMGWzatAn/+Mc/EBcXBx0dnVb5rBfZvHkztm3bhmvXrmHz5s3o27evwscqWo8bN25g4cKF6NGjB/z9/WFmZoYLFy4gJSUFFy9exJ49e1RWXyLSIgIRkZYZNmyYMHbsWFHH1NfXC+7u7oKDg4Pwr3/9S25fenq6IJFIhJUrVwqCIAgNDQ2Ch4eHMHHiRKGioqLJstu3b5dtW7FihSCRSIQbN26I2nb27FlBIpEIoaGhQkNDg6zcv/71L8HOzk4ICQkRBEEQtm7dKkgkEuGHH34QBEEQbt26Jdjb2wuBgYFyxzU0NAhhYWGCRCIRLly4IAiCIPzwww+CRCIRxo0bJ9y/f19WtrKyUhg5cqQwfvx4ufpJJBLB19f3hddz+vTpgkQiEaqqql5Y9lnSaxAZGSm3fd++fYJEIhHi4uJk29566y1h3LhxQmVlpVzZlJQUQSKRCImJibJtkydPFiQSiXDo0CG5spGRkYJEIhFOnz4tCIIglJaWCg4ODoK3t7dQXV0tK3f9+nXB0dFR7jpfuHBBkEgkwtq1a+XOWVNTI/j5+Qn29vbCrVu3Wqzv5MmThcmTJ8ttk7bJihUrmj3uxo0bTbaFItuev8/E1GPx4sWCk5OTUF9fLytXV1cn+Pr6CoGBgXLHP39fEhEREZH2YW6l/txKEATh22+/FSQSiRAbGyu3/dChQ4JEIhG+/vprQRAE4fLly4JEIhHWrVvX6Bw+Pj6CRCKRXWdpvFu3bpWVaSo/EQRByMjIECQSiZCRkSEIgiA8fvxYGD16tODl5SWXNwmCIMTGxjaZez2vqXYThKfXpakYniXN757l6+v7wm0vU4+EhAS59pb67LPPBC8vL6G0tFS2ralrS0QdE6cFIyKto6enJxtyraiCggJcv34ds2bNavTW1ezZs9GvXz8cPXoU9fX1+PXXX3H16lVMnDgRDQ0NuHv3ruy/yZMnw9DQsFUW8j5+/DgA4L333pN7A2bgwIHYt28fPvrooyaPO3bsGGpra/Hmm2+ioqJCFltFRQU8PDxkZZ41efJkmJmZyX7u3LkzBg4c+MJh482RjgIR2w5S3t7ecj87OTkBAMrKymTb9u7diwMHDqBz586ybTU1NbJrVVlZKXcOIyMjTJs2TW7b0KFDAQB37twB8PSa19TUICAgAAYGBrJyffv2xaxZs+SOPXToEABg+vTpcvfAw4cPMX36dNTW1uKbb74RXXdVE1OPnj174vHjx/jkk09QUFAAQRCgp6eH5ORkLthIRERE1A4xt1J/bgUA48ePR69evXDw4EG57VlZWTAyMsLMmTMBAHZ2djh37hxCQ0PlypWXl8tievz4sdJxSH3//feoqKjAtGnT8OjRI7l2mz59OgC0Sru1NTH16NWrF4Cno/7Pnj2LmpoaAE+noMvMzISVlZV6KkFEGo3TghGR1rGyskJRURFqamrk/kDekuLiYgCQTTn1LB0dHQwaNAjXr19HRUUFioqKAABpaWlIS0tr8nw3b95UMvp/k84P/HxCAgD29vbNHieNLzw8vNkyz8fXvXv3RmUMDAyUnivXysoKv/76K/7880+88soroo/v0aOH3M/SNVmkD7AAoK+vj5KSEsTHx6OoqAglJSUoKSmRxSwIgtw5zM3NZZ0+UtL7Q7peiPTaDRgwoFFMz7eDtGxL68oocx8YGRkBaLljSlpHadmXIaYeISEhuHz5suzet7CwgKurK9544w1MmzYN+vp8bCAiIiJqT5hbqT+3AgBdXV14eXkhPj4e58+fx/Dhw3Hnzh2cOXMGM2bMgKmpqdxnHT58GGfOnMGNGzdQUlKCO3fuyDqVWmOtROl1iYmJQUxMTJNllG03Q0PDF3bo1dXVtWoupEg9pk2bBh8fH2RmZsLf3x9GRkYYOXIkJk6ciLfeegtdunR56XiIqP3hX0mISOu4uLigsLAQ//jHP+Dq6tpsuYiICNTW1rb4oCwlfQA1MDCQ/XvBggV44403mizfGn9krq2tVeo46UP7unXrYGNj02QZ6fzGUrq6rTtQ0cXFBadOnUJ+fj769evXbLnY2FgUFRUhJCRELvlSJJ4vv/wSMTExsLa2hrOzM0aPHg1bW1vU1dXh/fffb1RekXNKO2+aShylHTxS0uscHx8PY2PjJs8nfbtJDOlD+aNHj5otI10E9Nk34pQlph7du3dHeno6fv75Z3z77bf44YcfkJubi8OHD8PJyQkpKSno1KnTS8dERERERJqBuZX6cyspb29vfPHFF8jJycHw4cORk5OD+vp62UL2wNMcYuHChfjll18wcuRIODg4wNPTE0OHDsWuXbtw4MABpT77+Y4habstXboUw4cPb/IYZV6yA57mQw8fPmx2vyAIePDgQavkQmLqoaenhw0bNuD999/HN998g++//x75+fk4c+YMvvzyS6SlpYla64WIOgZ2rhCR1pkxYwbS0tKQmprabAJw69YtHDhwAGZmZujatSv69OkDALh69WqjsoIgoLCwECYmJjAzM5N7qB47dqxc2YaGBhw9elR2vpch/ZyioiLY2trK7YuJiUFVVRUiIyObPc7MzKxRfGVlZbh48WKrxNeSN998E1u2bMHu3bvh7e3d5MJ+lZWVSEtLQ2VlJT7++GNR57916xZiY2Ph4uKCxMREuc4QZRMGAOjfvz8A4Nq1a41Gr0jfapKSXmdLS0vZ9GJS169fx7Vr1+SmLFOUjY0NTExMcOXKlWbLFBQUAECzi26K/TzgxfUQBAFXr15FVVUVHB0dZQt6Pnr0CCtWrMDx48dx+vRpTJ48+aVjIiIiIiLNwNxK/bmVVJ8+fTB69GgcOXIEq1evRk5ODvr164dRo0bJyiQlJeHSpUv45JNPMHfuXLnj//zzzxd+hp6eXqPplYF/T6MsJb0uRkZGja7Lo0ePcPr06UazESjKzs4Op06dwo0bN5q8tkVFRXjy5AlGjx6t1PmfJaYeN2/eRHFxMcaMGQM/Pz/4+fmhrq4OO3bsQExMDHbv3o0VK1a8dExE1L5wzRUi0jouLi5wd3fH0aNH8be//a3R/ocPH2LZsmWoq6vDkiVLYGBggCFDhqBPnz44cOAACgsL5cpnZGSguLgYU6dOBQA4ODjA2toaWVlZsiHvUnv27MHy5cuRkZHx0vWQvrm1a9cuue3FxcXYuXMnbty40eRxU6dOha6uLrZt24aqqiq5fRs3bsQHH3yAS5cuKRWTrq6uQsPI+/TpA19fX/z888/YsGFDo2Oqq6sRFhaGe/fu4Z133mly6HxL7t27B0EQMGDAALmOlSdPniA5ORmAcuu9TJ06Ffr6+khJSZE7vqysDDk5OXJl/+M//gMAEBcXJ/cmV21tLSIiIhAUFITbt2+LjkFfXx/u7u64detWk1MjVFZWIiUlBQYGBrJ7UkrR9lGmHjo6OggJCUFwcLDcm2QmJiayBPX5adeIiIiISLsxt1J/bvUsHx8f3L17F9nZ2SgoKJAbtQIAFRUVANCoA+n8+fP46aefADQehfIsS0tL3L17V25Kr5qaGhw5ckSu3Pjx4/HKK69g586dss+U2rZtG5YtW4Zvv/1WVN2k3nzzTQDAli1bGl0fQRCwfft2AE87/p4lHTEk5pqKqce2bdvg7++PCxcuyMro6+tj2LBhAJgLEVHTOHKFiLTShg0bcP/+fWzcuBE5OTmYOnUqLCws8PvvvyMrKwt3797FggULsGDBAgBPH4TWr1+PxYsX4y9/+QvmzZsHGxsbXLx4EVlZWbC2tsaHH34oVzYwMBDe3t6YO3cu+vbti59//hkZGRno27dvk9NSiTVhwgTMmDEDGRkZKC0thZubGx49eoSvv/4ahoaGCAsLa/K4V199FSEhIdiyZQs8PT3h5eUFMzMznDhxQjay4Pk/yiuqW7duuHLlClJTU+Hs7AyJRNJs2b/+9a+4ffs2kpKS8N1338HDwwNWVlb4448/cODAAdy8eRPu7u5Yvny56DgGDRqEfv36ISMjA4aGhpBIJCgrK0NWVpbsraqWhpI3x9raGsHBwYiLi8O8efPg4eGBx48fIzU1Vbbwo3QUzpgxYzB79mzs27cPb7/9NqZPnw4DAwMcOHAAFy9exPz58+Ho6Cg6BgAICwvD+fPnsXbtWpw+fRqurq4wNjZGcXExcnJyUFpaio8//rjRm1xi2kdKTD1CQkLw17/+FXPmzIG3tze6dOmCK1euYM+ePRg8eHCjt72IiIiISPsxt1J/biU1bdo0rFu3Dps2bYK+vj7eeustuf1ubm5ITk7Ghx9+iPnz58PU1BSXLl1CVlYW9PT0UFtbiwcPHjR7fh8fH+Tn5yMgIADz589HQ0MDMjIyGnXImJmZ4eOPP0ZERARmzpyJOXPmwNLSEj/88AMOHz4MR0dHzJ8/X6nr4uXlhZMnTyInJwe///47pk2bhm7duuHPP//EyZMncf78eXh6emLmzJlyx0lf2Nu6dStGjRqlUG4iph7+/v44cuQIFi9ejLlz58LGxga3b9/G7t27YWpqirffflup+hJR+8bOFSLSSmZmZtixYwcOHz6MzMxMpKam4u7duzAxMcGwYcOwYMECvP7663LHuLq6Ij09HfHx8cjIyMCjR4/Qu3dvvPvuuwgKCpKb03Xs2LFIT0/HF198gYyMDDx8+BA9e/bE/PnzERgYqPQQ6OdFRUXB0dER+/btw6ZNm9ClSxc4Oztj2bJlsimsmvL+++9j0KBBSEpKwvbt29HQ0IA+ffogPDwcfn5+Sr9VEx4ejujoaGzYsAFBQUEtJgAGBgaIjY2Fh4cH9u7di6ysLJSVlcHY2BhDhgxBaGhoo7eNFNWpUyckJCQgOjoahw4dQnp6OiwtLeHs7IwPPvgACxYswOnTp5U695IlS9C9e3ekpKQgOjoa5ubm8PHxQXV1Nf72t7/JjZRZv349nJycsGfPHsTFxUFPTw+vvvoq1q9f3+gtMjG6deuGjIwMJCcnIzc3F1u3bsWTJ0/Qo0cPODk54Z133oGTk1Oj48S0z7MUrceMGTNgbGyMnTt3YseOHXj48CF69eoFPz8/BAcHc0F7IiIionaIuZX6cyspQ0NDzJgxA6mpqXBzc4OlpaXc/jFjxiAmJgZfffUVPv/8cxgYGKB3795Yvnw5Bg0ahMWLF+O7775rNB2wlLe3NyorK5GamorNmzeje/fu8PT0xOTJkzFnzhy5sm+99RZ69eqFhIQEJCUlobq6Gr1790ZwcDACAgKUmiIZePoyW1xcHLKysrB//37s3LkT9+/fR9euXTFo0CDExMTAw8Oj0XGLFi3Cb7/9hoSEBFy4cEHhF78UrcfAgQORkpKCL774AtnZ2SgvL0fXrl3h6uqKDz74gOutEFGTdARBENQdBBERkSo8fvwY9fX1MDU1bbTvo48+Qnp6Ok6cONHsYpZiubm5AQBOnjzZKufTJHFxcfj888+RlJTUKvMhExERERFR+7Fy5UpkZWW1an6lKfLy8vDOO+9gyZIlCAkJUXc4RKRGXHOFiIg6jKtXr8LZ2Rn/+7//K7f94cOH+Oabb9CjRw9YW1urKToiIiIiIiIiItIWnN+DiIg6DAcHB9ja2mLbtm24e/cu7OzscO/ePWRmZqK8vBz//d//LVtzpbU8fvwY+/fvR6dOnTB9+vRWPbc6XLp0CYWFhfj111/VHQoREREREWm448ePw9zcHJMmTUKXLl3UHc5LKS0tRV5eHq5du6buUIhIQ7BzhYiIOgw9PT3s3LkTCQkJOH78OPbu3QtjY2M4Ojpi7dq1bTK9VUVFBcLDw2FqatouOlf279+PpKQkdYdBRERERERa4LPPPgMAZGdna33nyqVLlxAeHq7uMIhIg3DNFSIiIiIiIiIiIiIiIhG45goREREREREREREREZEI7FwhIiIiIiIiIiIiIiISgZ0rREREREREREREREREIrBzhYiIiIiIiIiIiIiISAR2rhAREREREREREREREYnAzhUiIiIiIiIiIiIiIiIR2LlCREREREREREREREQkAjtXiIiIiIiIiIiIiIiIRGDnChERERERERERERERkQj/D2M1u7IOv7W/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
543coef_calib_zeroautohhindivtou_BIKE_atwork-35.390562127.00.0-2-37.390562False
540coef_calib_zeroautohhindivtou_SHARED2_atwork-34.865285143.00.0-2-36.865285False
541coef_calib_zeroautohhindivtou_SHARED3_atwork-35.9348700.00.0<NA>-35.934870True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-33.187767112.029.0-1.351203-34.538970True
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
542coef_calib_zeroautohhindivtou_WALK_atwork-24.6152461984.05313.00.985042-23.630204False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-20.970666386.00.0-2-22.970666False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-20.970666203.00.0-2-22.970666False
675coef_calib_autodeficienthhjoi_TAXI_maint-20.97066692.00.0<NA>-20.970666True
671coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint-20.053453100.042.0-0.867501-20.920953True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -35.390562 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -34.865285 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -35.934870 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -33.187767 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "542 coef_calib_zeroautohhindivtou_WALK_atwork -24.615246 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -20.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -20.970666 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -20.970666 \n", - "671 coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint -20.053453 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "543 127.0 0.0 -2 -37.390562 False \n", - "540 143.0 0.0 -2 -36.865285 False \n", - "541 0.0 0.0 -35.934870 True \n", - "544 112.0 29.0 -1.351203 -34.538970 True \n", - "471 0.0 0.0 -23.883300 True \n", - "542 1984.0 5313.0 0.985042 -23.630204 False \n", - "677 386.0 0.0 -2 -22.970666 False \n", - "676 203.0 0.0 -2 -22.970666 False \n", - "675 92.0 0.0 -20.970666 True \n", - "671 100.0 42.0 -0.867501 -20.920953 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_3\n", - "ActivitySim run started at: 2023-09-13 01:20:03.956510\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 02:05:31.639605\n", - "Run Time: 2727.68 secs = 45.46133333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN5f/H8fc5s5jNmDHG2tiGGfsyhMqepNAqhZJvliKNREVfStkq2hCyJEuWEOKbQsmSQmRJxj5jTNYxgzEzZjn37w+/c3LMDLPPOPN6Ph4e5b6v+74+9zn3uZ3P+dz3dZkMwzAEAAAAAAAAAAAAAMAdzlzQAQAAAAAAAAAAAAAAkBsogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAPItG+//VbBwcFZ/vPcc88VdOiZNnny5AyPo2bNmqpfv77atm2rV155RRs2bCjocPH//vzzT9v71KdPn9u2HzZsmIKDgzV06FC75dZ9bNu2Lddj7N27t23/e/fuzfX93yglJUUnTpzI0z5uFhYWpjFjxqhjx45q3Lix6tatq1atWqlPnz5asGCBEhMTc73P8+fPa+jQobr33ntVp04dtWjRQps3b5YkrVy5Uo8++qjq16+vxo0bq3fv3tq+fbvtPUhJScl2v6dOnbLtJyIiIrcOB1BsbKzOnz+fK/vK6DqXV9sBAFAUkSOTIxdW5Mj2yJHJkYsiwzB07NixfOsvt68XhmFozpw56tChg+rWraumTZvqv//9r+3f3pYtW+Zo/7l1/ueWI0eOpFnWtm1bBQcHa+nSpVnaV3a3AxyNc0EHAODO4efnp5CQkDTLT58+rdOnT8vV1VV16tRJsz4oKCg/wstV6R2LYRhKTEzUqVOntG7dOq1bt06dO3fWhAkTZDKZCihSSNLy5ctt/79161ZFRkYqICCgACOyd/r0absEYNGiRapfv36e9LV161aNGTNGDz74oAYPHpwnfdxs0qRJmjZtmiwWi7y8vFSxYkW5uLjo/Pnz2rJli7Zs2aJZs2bp888/V+3atXOlT4vFoj59+igsLEzOzs6qXr26kpOTVaFCBf3444968803JUn+/v4qU6ZMoTofgPR89dVXmjp1qj799FP5+/sXdDgAACATyJHJkQsrcuR/kSOTIxdF+/bt0+jRo1WpUiVNnDixoMPJljlz5uiDDz6QJFWoUEE+Pj666667Cjiq3Hfu3Dl98MEH+uOPP7Rp06aCDgdwKBTAAWRaq1at1KpVqzTLJ0+erClTpsjf31+LFi0qgMhy362OJSkpSZ9++qlmz56t1atXq0mTJuratWs+RwirhIQErV27ViaTSc2bN9eWLVu0ZMmSQvX04rfffiuLxaJWrVpp06ZNWrt2rYYPH64SJUrkel9ffPFFvt7Zvnz5cn3++efy8PDQ+PHj9cADD8jJycm2/tixY3rrrbe0Z88e9e7dW99//71KliyZ435PnDihsLAwSdL06dPVokUL27rJkydLkho1aqR58+bJ2fn6152EhAR9//33kmRblh1lypSx7ad8+fLZ3g9wo/Hjxxd0CAAAIIvIka8jRy5cyJHtkSOTIxdFCxcu1L59+1SpUqWCDiXb1q5dK0nq2LGjPv74Y9vyK1euqH79+nJxccnR/uvVq5cr539Obd26VWvWrFGZMmUKLAbAUTEEOgBkkaurq9544w3Vq1dPkjR//vwCjqho++GHHxQXF6fq1avrsccek3Q9mU5KSirYwP6fYRhasWKFJOnJJ59U5cqVlZiYaFt2p5s+fbok6Y033lCHDh3sEntJCgwM1LRp0+Tn56eYmBjNmzcvV/qNiYmx/X/Tpk3TXdeoUSO7JMbd3V2BgYEKDAzMUd8uLi62/eQ04QIAAADudOTIhQs5csEiRyZHRu6wnrdNmjSxW168eHEFBgaqYsWKOdp/bp3/AAovCuAAkE3t2rWTJB0+fFjx8fEFHE3R9e2330qSWrZsqTZt2sjNzU3R0dFav359AUd23Y4dOxQZGSkXFxfde++9euihhyRJS5YsKeDIcu7y5cs6efKkJN1yuLqSJUvaPi/79u3Llb5TU1Nt/+/q6mq3zmKxpLscAAAAQN4hRy4cyJELDjkykHs4bwHkFAVwAPnmxx9/VJ8+fdSsWTPVqVNHzZs31yuvvKLffvst3fbBwcEKDg62mxfqRs8995yCg4NtQzlJ0qlTpxQcHKz77rtPZ8+eVb9+/VSvXj01adJEQ4YMydXj8fLysv3/1atX7foPDg5WREREutu1bdtWwcHBtqRUkrZv367g4GB17dpVx44dU7du3VS3bl3dc889tvlurNsdPHhQv/zyi5555hk1bNhQTZs2Vc+ePbVhw4YMY01NTdXSpUv13HPP6e6771adOnXUunVrvf766zpw4EC62yQmJmrGjBl65plndM8996hu3bpq06aNhgwZol27dmXYV1hYmN588021bt1aderUUdOmTdW7d2/9+OOP6ba/8TW78TXJjJMnT2rnzp2SpPbt28vT01Nt2rSRpEIz1KB17rVmzZqpePHi6ty5syTp+PHj+v3339PdJjvn0bfffqvg4GDt2LFD0vW7zoODgzVs2DC77S5duqQpU6boscceU8OGDVW/fn099NBD+uCDD3Tu3LksHduNd45v3Ljxlm1feeUV/e9//9NHH31kt3zYsGEKDg7OcDg+63G1bdtW0r+vTc+ePW1trK+VdV/W12DKlCm2ddK/n7Pg4GClpKSk6SssLEwjR45Uu3btVLduXd199916/vnn9cMPP9i1u937ExkZqVGjRumBBx5Q3bp11bhxY3Xv3l1Lly61+1Hi5tdg0aJFOnXqlIYPH66WLVuqTp06atmypf773//q1KlTGb62f/zxh4YMGaI2bdqoTp06atasmV566SW7a+uWLVsUHBys2rVrKzo6Ot39JCYmqlGjRgoODtbevXvTHGtmP5+TJ0+2bXO7Pzcf14ULF/Thhx/q4YcfVv369dWwYUM9+eST+vLLL3Xt2rUM+5o4caI2bNigBx98UHXq1FHbtm31v//9z+7YvvrqK3Xt2lUhISGqW7eu2rVrp7ffflvh4eEZHsvBgwc1cuRIPfTQQwoJCVGdOnV07733qm/fvmnOC+nf87Vly5bp7u/G19N67Nb33+o///lPuq/3iRMn9M477+iBBx5QnTp11KhRI3Xt2lVfffWVEhMTMzwGSYqKitLIkSPVqlUr1alTRy1atNCwYcNueew52Q4AAGQOOfJ15Mj2yJHTIkf+FznynZcjW12+fFkzZsxQjx491LRpU9WuXVuNGzfWE088ocmTJ+vSpUtptsnqdd/6nlpHVFi9erWCg4P13HPPpTm27OTIERERGjlypNq2bau6deuqffv2mjp16m1HmIiLi9Pnn39u+5w1aNBAnTt31qRJk3T58uV0jykqKkqSNHz4cLtz/nZ5d2be/xtfq1ud/1m5dlvj3rx5s8LCwjRo0CDde++9qlOnju6//36NGzdOFy9etNsmODhYw4cPlySdPXvW7vN5s127dumll15S06ZNVa9ePT344IP66KOPFBcXl277nG4HOAIK4ADyXHJysgYOHKjQ0FBt2bJFzs7OqlGjhlJSUrRu3Tr16tVL48aNy9U+k5KS1Lt3b23btk2BgYEymUyqUKFCrvZh/VLv5uYmX1/fXNnnxYsX9fzzz+vgwYOqVq2arl27psqVK9u1Wb58uV588UUdOHBAVapUUbFixbR9+3a9/PLLGjNmTJp9xsXFqUePHhoxYoR27Nih4sWLKzg4WFeuXNF3332nLl26aM6cOXbbJCUlqVevXvroo4+0b98++fj4qHr16oqLi9OaNWvUo0cPLV26NE1fX3/9tZ544gmtXLlSly5dUvXq1eXh4aGtW7cqNDRUQ4YMSTe5ya7ly5fLMAxVrFjRdnd1p06dJEk7d+7UsWPHcq2v7IiLi9O6desk/RtXYGCgatasKUlavHhxrvXl5+enkJAQ249O5cqVU0hIiN35c+jQIXXq1EmTJ0/WoUOHVKFCBVWpUkUnT57Ul19+qU6dOmn79u2Z7tPDw0MhISGSrhci33zzTe3cuTPd99jf31/VqlXL8WelWLFiCgkJUVBQkG1ZSEiI7VjTew2sMd7K119/rS5duuibb77RxYsXbefu77//rkGDBumTTz7JVHzr169Xp06dtGjRIp07d05Vq1ZVyZIltWvXLo0YMUK9e/e2/Rh4s7///luPPvqoVq5cKXd3d1WqVElnz57VsmXL9NRTT+n06dNptvn444/17LPPas2aNYqPj1dwcLDMZrM2btyoXr162Z6iuO+++1SuXDmlpKRozZo1GcYeFxenwMDAWz6tcDs3vu7p/XF3d5d0fdiy4sWL27bbtWuXOnbsqNmzZ+vkyZMKCAhQ+fLldeDAAX3wwQfq2rWrzp8/n26fO3fuVGhoqC5fvqzAwECdO3fO9jk7c+aMHn/8cY0fP1579+6Vv7+/qlevrvPnz2vJkiV65JFHbPN+3WjhwoV64okn9M033yg6OlqVKlVSQECArly5os2bN2fpvLgV63lrFRQUpJCQEPn5+dmWfffdd3rkkUe0ePFinTt3TkFBQSpVqpT27t2r8ePH66mnntKZM2fS3f+hQ4f02GOPaenSpfL09FRAQICio6O1YsUKPf744zp69GiubgcAAG6PHDnzyJGzhhz5X+TI5MiFJUeWpPDwcD3yyCP66KOPtGfPHpUsWVLBwcFycnLSgQMHNGXKFD399NMZvhaZVbx4cbt8smTJkmnOj+zmyL/99psef/xxffPNN4qJiVFQUJASEhL02WefqU+fPhnGdOzYMT3yyCOaNGmSDh8+rNKlS6tSpUo6fvy4rSh+47XJmhNbn/y2nsd16tS57fFn9v2/nZxcuzdv3qwuXbpow4YN8vX1Vbly5XTq1CnNnTtXzzzzjF3h+cZrkouLS4afzxUrVqhHjx7atm2bypUrp5IlSyo8PNx2U1ZGN8VndzvAYRgAkEOTJk0ygoKCjDZt2qS7/r333jOCgoKMBg0aGGvXrrUtT0lJMRYsWGDUqlXLCAoKMubMmWO3XVBQkBEUFGT8+uuv6e732WefNYKCgoxJkybZlkVGRtq2a9KkiXHkyBHDMAzj2rVrxpUrV3J8LFbR0dFGkyZNjKCgIKN///7p9h8eHp7utm3atDGCgoKM5cuX25b9/vvvtu3atWtnnDlzxjAMw4iLizMSExPttgsKCjJ69eplXLhwwTAMw7BYLMaSJUtsr+Pq1avt+nvxxReNoKAg47777jN+//132/Jr164Zn376qW2fP/74o23dwoULjaCgIKN9+/ZGVFSUbXliYqLx7rvvGkFBQUajRo1ssRmGYWzatMkIDg42ateubcydO9dISUmxrdu2bZtxzz33GEFBQcYnn3xiF19SUpJx9OhR4+jRo8bly5dv+brfKDU11WjVqpURFBRkfPbZZ3b7s743o0ePTnfbN9980wgKCjKGDBlit/x251xWLV682AgKCjLq169vxMXF2ZbPnj3bCAoKMmrXrm2cP38+zXbZPY8M49/Pxccff2y3/MqVK0bz5s2NoKAg4+mnnzZOnjxpW3f+/HnbedKoUSO7dbdz4MABo0GDBrZ4g4KCjJCQEKNv377GF198YezZs8dITU3NcPuM3gur5cuXp/uZvPEzc7P0rg03b5OcnGxbvmvXLqNGjRpGUFCQMXHiRLvzevny5bZ1W7ZsMQwj4/fn4MGDRp06dYzg4GDjk08+sdvPgQMHjPbt2xtBQUHG0KFD030NgoKCjK5duxrHjx+3rdu9e7fRsGFDIygoyBgzZozddmvWrDGCgoKMmjVrGl999ZXtM5eSkmJMnTrVtu7o0aOGYRjGJ598YgQFBRmPP/54uq/1Cy+8YAQFBRkzZ860Lcvu5zMjq1atMoKCgoxatWoZW7dutS0/c+aM7XM7YsQI49KlS7Z1ERERxlNPPWUEBQUZ3bt3t9uf9ZodFBRkvPzyy8a1a9cMw7h+jba+Fo8++qgRFBRkPPjgg8bBgwdt2165csX473//a/ss7tmzx7buxIkTRu3atY2goCBj6tSpRlJSkm1dTEyMMWjQINt2sbGxtnXW87VFixbpHv+N505kZKTduoyuP3v27LFd30eMGGH3b9nff/9tO68ef/xxu/P6xvPqscceM44dO2Zbd/DgQaNp06ZGUFCQMWjQILv+srsdAAD4FzkyObJhkCOnhxyZHPnG16ko5cjW96Br167G2bNnbcstFouxYsUK22u6YMECu+2yc903jIzPo+zmyJcuXTKaNWtmBAUFGYMHD7b79+Pbb7+15c83x3r16lXjgQcesP3bYL2WG4ZhnDt3zujXr5/t2pqQkGAXa0af6Yzy7qy+/xmd/9m9dlvfi6CgIKNfv3527/OGDRuMmjVrpvtv+61+R7jx37khQ4YYMTExtnXW31eCgoKMr7/+Ole2AxwNT4ADyFNnzpyx3cE7evRodejQwbbOyclJPXr00KBBgyRdH4opp3c63qh79+6qVq2apOvzxdw4HFt2GIahmJgY/fzzz3rhhRcUGxsrFxcXhYaG5ka4Ni+++KLKlCkjSfL09FSxYsXs1pcvX16ff/657W5Ok8mkrl27qnfv3pKuv45We/bssQ27NWnSJDVt2tS2ztXVVYMGDdLTTz8tSZo4caJtXVhYmKTrc4aVL1/etrxYsWIaNmyYmjdvrgceeECxsbG2dR9//LEMw9DQoUPVs2dPOTk52dbdc889Gj9+vCRpzpw5iomJsa1zcXFRYGCgAgMD7Z4GvZ2tW7fa7vZ95JFH7PZnPc9WrVpVoHczWod2u//+++Xp6Wlb3qlTJ5nNZiUnJ9va5LWFCxfq3LlzKlWqlL744gsFBATY1pUqVUqTJk1SUFCQrly5ounTp2d6v7Vq1dLSpUvVqFEj27K4uDht2rRJH330kbp27armzZvrk08+UUJCQq4eU26ZOnWqLBaLHnroIQ0ZMsTuM/fEE0+oS5cuknTb4c0mT56spKQkPfvss3r11Vft9lOrVi1NmjRJTk5OWr16dbpPz7q4uGjKlCmqUqWKbVnDhg31xBNPSJJ2795t1976Wf/Pf/6j559/3vaZc3JyUv/+/XXfffcpNTVVK1eulCQ9+eSTMplMOnDgQJonP86ePatt27bJyclJjz76qF1M2fl8pmfnzp166623JElvvfWW7rvvPtu62bNnKzY2Vm3bttXo0aPl7e1tW1exYkVNnTpVXl5e+uOPP7Rp06Z09//mm2/a7hAvWbKkJOmHH37QwYMHVaxYMc2cOVM1atSwtffy8tKYMWPUokULJScn2z3B8Ouvv8rJyUm1a9dW//795eLiYlvn4+OjN998U9L1p7dOnDiRo9fldiZNmqSUlBQ1b95co0ePtvu3rGbNmpo1a5bc3Nx04MABu2HfrZydnfX555+ratWqtmU1atRQr169JF0fHi492d0OAADcGjly1pEjZw45ctaQI2eMHDl3c+To6GgdOXJE0vXrfunSpW3rTCaTHnvsMTVp0kTS9VEJ8lJ2c+TFixfr4sWLqly5sj744AO7fz8ef/xxvfTSS+n2t3TpUkVERKh27dqaPHmy7VouXR8F4bPPPlOFChUUHh6e5SHlb5bV9z8j2b12W/n5+WnSpEl27/P9999vG7L95vM2MwIDA/XBBx/Ix8fHtuyRRx6x/a6S0TQc2d0OcBQUwAHkqc2bNyslJUX+/v56+OGH023z7LPPysXFRVeuXLHNS5Qbbkw2sioqKirNXLU1atRQs2bN1L9/fx08eFDFixfXp59+avdlMTfcLu6uXbvKw8MjzfJnnnlG0vV5Yo8fPy7p3zmn6tWrl+EQVy+88IKk68PVHT58WJJsw+8sW7ZMCxcutJujxtXVVbNnz9b48eNtX1xPnTqlgwcPSrJPtG/UqlUr+fr6KjExMcM57bLC+sW4Xr16aYbAs8Zw+fLldAtC+eHYsWO2OaJufk1Kly6tZs2aSZKWLFkii8WS5/H8/PPPkqTHHntMJUqUSLPe1dXVNifUzz//LMMwMr3vatWqaeHChVq5cqUGDhyohg0b2hUMo6OjNX36dD3yyCMZDtNcUBISEmzzzFl/6LrZq6++qh9++ME212B6kpKStHnzZkkZfwas1xHDMNKdD65OnTry9/dPs9xagLxy5YptWUREhO1zbv3s32zs2LHasGGDBg8eLEkKCAjQ3XffLUlpEr5Vq1bJYrGoZcuW6caQU8ePH9fAgQOVnJys5557Tj169LBbb52fMaPXrlSpUrYELb3Xzt/f3+4HKyvred+2bdt010vXk2NJ2rFjh+017tGjh/bu3auFCxemu42bm5vt//PyR6v4+HjbkIs3zul3o4CAALVr106S9NNPP6VZX6dOHbsfaa2s84rd+CNtbmwHAABujRw568iRM4ccOWvIkdNHjnxdbubIfn5++v3337V37167ocitUlNTbQXlvL5BJbs5svVG9M6dO9udy1bdunVLd1/WXP/hhx+2KyRbubm56cEHH5SUfq6fWdl5/9OTG9fue+65J82NWtL1YrRkf95m1v3335/u62fNz2+eWzyn2wGOwrmgAwDg2KxfPmrWrCmzOf17bjw8PFSlShUdPnxYJ06cUJs2bXKl75x8QXV1dU0zt4zZbJanp6fKlCmj+vXrq0OHDjm+Yz49t4u7Xr166S4vX768ihcvritXrig8PFxVq1a1vf61a9fOcH+VK1eWl5eX4uLidOLECQUFBempp57SsmXLdPToUb377rt67733VLNmTd1zzz1q0aKF7r77bjk7//tPiPVOVkl6+eWXM+zr2rVrkv49L7IrNjbWVuhJ7wtpo0aNFBAQoMjISC1atEhPPvlkjvrLjmXLlkm6nujc+KSr1aOPPqpt27YpKipKW7ZsUatWrfI0HutTqrc6F6zrLl68qNjY2CzPRVazZk3VrFlTr7zyihISErR7925t3bpVq1atUnR0tE6ePKlBgwZles6l/PDPP/8oOTlZkjL8oc7Pz89uPub0hIeHKykpSZL07rvv2p5ETq8/Kf3PwI13Qt/IWmxNSUmxLbPOr+jh4ZFh0lquXLk0y5588knt2LFDq1ev1muvvSaTySTpenIvyXYnfW66ePGi+vXrp9jYWDVv3lzDhw+3W3/16lVFRUVJuv6kwbx589Ldj7VNeq/djXdW3ygr531qaqoiIiLsrv3FihXTvn37dPjwYUVGRurkyZM6fPiwXQxZ+SEsqyIjI23n563mO6tTp47WrFmT7tPoGZ1X1h+Jk5OTlZKSYndNz8l2AADg1siRs44c+fbIkbOOHDl95Mh5lyO7ubnp9OnT2rt3r06ePKnIyEgdO3ZMBw8eVHx8vCTl+c0f2c2RrdtVr1493W38/PxUunRpnTt3zm659SaipUuXpnvDtiRduHBBUs6ug9l9/2+WG9furJy3mXW7/DyjGyeyux3gKPjFCkCeiouLk6TbDgtkTZJzc3i3G5/Qyyp/f38tWrQo12LJitvFnd6dyVYeHh66cuWKLl++LCnzr7+np6fi4uJsr7+Xl5eWLFmiL7/8UmvWrFFERIT+/vtv/f3335o9e7b8/Pz06quvqmvXrpLs717MzFA+2bnb8UarV6+2JVJjxozRmDFjMmy7f/9+HThw4JZf7nNbSkqKvvvuO0nX7+y+Xd+LFi3K8+Q+M+fCjT9WXb16NcvJ/Y3c3d1133336b777tOgQYP01ltv6X//+5/27NmT7+/Hrdz4FOuNQ/Bl1Y3n9F9//ZWl9lbp3UWdEWvcWY25Q4cOGj16tE6fPq3t27erWbNm2r9/v44ePSpfX99c+3HV6tq1a+rfv78iIyNVrVo1ffrpp2nuPraem9K/yfGtpPfapXd39Y37zsp5b7Vq1SpNnTpV4eHhdu3vuusudenSRd98881tY82pG1+bzBxDev+GZvRD0+1kdzsAAHBr5MhZR458e+TIWUeOnD5y5LzJkY8fP64PP/xQmzZtsitye3l5qXHjxjp37pxtqoW8lN0c2XoNTW+0DasSJUqkKYBb+wsPD0+TW98sJ9fB7L7/t4ohu9furJy3mZXRbx55tR3gKCiAA8hT1i8et/sSY/0ild4XlYyerrPeHVlY5VXctxpu1/rF0nonbmZff+v6G19/Ly8vhYaGKjQ0VBEREdq+fbu2b9+uTZs2KTo6WiNHjpSPj4/at29v+wLs4+NjG643L1nnBPPw8Ljll/Zz587JMAwtXrxYo0ePzvO4rH755RfbHaylS5e23UF8s/j4eF25ckWbN2/W6dOn070bNbfOI09PT126dOmW58KlS5fs2t/O22+/rd9//12PP/64+vfvn2E7Nzc3vffee1q3bp1tzuSbk/uMjjOv50S7MXmLi4uzzR2dk/3s3r07x0lXZvvL6g+ibm5u6tixo5YsWaLVq1erWbNmtjvbMxrKLLsMw9Drr7+uPXv2yNfXV9OnT0/38+ru7m77/9WrV6c7JFx2ZeYaaP3358b2K1as0LBhwyRJLVq00AMPPKDq1asrMDBQJUqUUHJy8i0L4Ll1Pt94Hl25ciXDpyysn928Pu8AAEDOkSOnRY6cc+TI5Mi5hRw593Pk6OhoPfvss4qOjlb58uXVtWtX1apVS1WrVtVdd90lk8mkIUOG3LIAnpvnvZT1HNnHx0fnz5+3u0n7Zuk9Tezu7q4rV65o+vTpuX7D/Y2y+/5ntJ/8unYDyFvMAQ4gT1nn5Tl48GCGw/jExcXZ7gKsVKmSbbn1KUHrXcw3u/muwsLgxiHP0os7MTExx3d2Z/SE5MmTJ21f9KpVqybp39f/wIEDGe7v2LFjti/M1tc/Ojpaf/zxh20umEqVKqlr16766KOPtGnTJtvQd9akoEqVKpKu33F5/vz5DPv6448/dOzYsRwNsRMWFmabj2f8+PHavHlzhn+sd4yvWbPmll/Sc5t17rXq1atry5YtGcY3Z84cSdeHlbqxmJYX51FmzgXrXdklSpTI1J3t165dU0REhG1Op1vx8vKyJU43JtDWz7l1iLWb5fXnPCAgwBbDjUNd3Wj//v3q1q2bhg8fnmHSeeN+jh49mmF/+/bt06FDh3KclFnn9IuPj9epU6fSbfPTTz/pueee04cffmi33Drc4U8//aTU1FTbMGS5PQzihx9+qB9//FEuLi6aMmVKhsOQeXt7q1SpUpJu/dodOnRIBw8etPsR6nYyc97v379fkmQymVSxYkVJ0hdffCHp+nyAs2bN0tNPP62QkBDb00UZzdOX2/9uVaxY0faDy62emrCuu/HfUAAAUDiRI9sjRyZHJkcmR3b0HHn58uWKjo6Wj4+Pli9frv79+6tVq1YKCAiw3Qxy9uzZdLfN7et+dnNk6zXNeq252dWrV23D2d/Iul1G55J0/enw/fv352g+6py8/+nFmx/XbgB5jwI4gDzVsmVLOTs76/z58/r+++/TbbNgwQKlpKTI3d1dTZo0sS23Jhfpzaeyb9++Qpnc+/j42L68phf3zz//nK25Xm707bffpvtDiXU4ugYNGtjukrbeXblv374Mh+756quvJElly5ZVcHCwJKl3797q0aOHVqxYkaa9p6enGjRoIOl6UipJgYGBth8GFixYkG4/u3btUo8ePfTwww9rz549mTjS9FnnDfP19VXbtm1v2bZbt26Srn8Btv4Qkdeio6O1adMmSbdPlurWrWv7oWTp0qW2cyMn51FGd9Jbz4WVK1emW0BMSkqynUMtWrS4ZdxW1rnl/vrrL9sPGhnZunWrYmNj5ePjo/r169uW3+pznpqaqp9//jlTsWSXl5eXGjVqJOnfpyZutmbNGu3evVunTp3K8PX18vKyXb8ymsM6MjJS3bt31yOPPKIffvghR3EHBgaqQoUKt4x7xYoV2rFjR5oksn79+qpevbpiYmI0f/58/fPPP6pVq1aG87tlx6JFi/Tll19Kuj4EY+PGjW/ZvnXr1pKuXz/Su75duXJFzz//vB577DHNnTs303FYz/uff/5ZkZGR6baxvl8NGjSQt7e3JNkS5oyGIbRehyT7+bus5/OlS5cUHR2dZrv169dnGKv13LrxByQPDw81bdrULs6bRUZG2j4nLVu2zHD/AACgcCBHtkeOTI58I3JkcuTsKsw5sjW/LF++fLpP1B89etR2DbBeQ6yye91PL7+Usp8jt2/fXtL1m3zSu1nh22+/TRP7jf0tW7Ys3WJxSkqKBgwYoC5duuiDDz5IN57MyMn7f/N+8uvabWU2Xy/RZXQzCYDsowAOIE+VK1fONgfWyJEj7b7QWiwWLVy4UJMnT5YkDRgwwG6oLusX7jlz5ujYsWO25fv379drr72WH+FnmZubm2rVqiVJmjx5st0dnFu3btV7772X4z7++usvjRw50jbslcVi0YIFC2xJ+uDBg21tGzZsaLvDOzQ01G74nqSkJE2aNMl2V/Ubb7xh+4L86KOPSpKmTJmizZs32/X/xx9/2BLlG+fkGjRokCRpxowZmjlzpt3dqX/88YdtfYMGDdSsWTPbuuTkZB07dkzHjh277R3bSUlJWr16taTrQ1Hdbo7ali1b2r4AL168+JZtb+Wff/7RsWPH0r2b9WYrV65USkqKXFxcbK/jrVh/gDh//rztLuOcnEfW4ZqioqLS9FOmTBlduHBBL774ol2iEx0drUGDBunw4cPy9PTUK6+8ctu4Jem+++7Tgw8+KEkaMWKExo4dm+ZO22vXrmn58uV69dVXJV0/T24c+sz6OT9y5IjmzZtn+8J/6dIlvfXWW5maEzqnBgwYIJPJpFWrVmn69Ol2P5ysXLlS8+fPlyT16dPnlvt55ZVX5OTkpDVr1mj8+PF2SeHhw4fVr18/JScnq0KFCurcuXOOYjaZTBowYIAkaebMmVq6dKnttUtNTdWMGTO0fv16OTs7q1evXmm2t/7w9Nlnn0mSnnjiiXT7ycrn02rTpk224RRDQ0P12GOP3Xabfv36ycPDQ7t27dLrr79ul5BGRUWpX79+iomJUfHixdWjR49MxSFdn88tODhY165dU9++fe2GlIuLi9PIkSO1detWOTs7a+jQobZ11rvilyxZYvf5i4uL0+TJkzVjxgzbshuT+Pr168vFxUWGYWjcuHG2dcnJyZo7d+4th023fnZvvs4MHDhQzs7O2rp1q0aOHGn3pE5YWJj69u2ra9euqUaNGpl6rQEAQMEiRyZHtm5Djpw+cmRy5OwozDmyNb8MCwvTjz/+aFtuGIY2b96sPn362J74v3mI++xe963n1M2f0ezmyE899ZQqVaqkM2fOKDQ01O6G73Xr1umjjz5KN44ePXrI399fERER6t+/v108Fy9e1Kuvvqpjx47JxcVFL7zwQobHczs5ff9vlN1rd3ZZr1GXL1/O15E5gKKAOcAB5Lnhw4fr7Nmz+umnnzRo0CCVLl1aZcuWVWRkpGJiYiRJzz77rPr27Wu3Xf/+/bVlyxadP39enTt3VrVq1XTt2jWFh4crICBATz75ZIZ39RWkV199Vf3799fRo0fVrl07VatWTZcuXVJUVJTq1q2rkJAQWxKXHUFBQVq2bJnWrl2rqlWr6syZMzp//rzMZrOGDx+e5svXhx9+qJdeekl//vmnevbsqQoVKqhkyZI6ceKE4uLi5OTkpFdffVUdO3a0bdOzZ09t27ZNmzdvVt++fVW6dGmVLl1aMTExtqSxbdu2euqpp2zbdOzYUeHh4Zo8ebImTpyoL774QpUrV9bFixdt21SpUkVTp061i+/s2bN6+OGHJV0fri2jJEOSNmzYoNjYWEmZG4rKbDbr6aef1scff6zDhw9r165dtuQhK958803t2LFDTZo0sSV6GbHe5d26detMzZXVsWNHffDBB7p8+bIWL15sS5azex7VqlVLGzdu1OrVq3Xo0CE1btxY77zzjry9vTV9+nT169dPf/75p9q3b69q1arJ2dlZR44cUXJysnx8fDRx4kTb0FGZMXHiRHl4eGjlypWaN2+e5s2bp/Lly8vPz8/2eU1KSpKLi4uGDBmi7t27223fqlUrNW7cWH/88YfGjh2rL7/8Ur6+vjp+/LiSk5P1yiuv2H4AzCv33HOPhg8frvfff1+ffPKJvvzySwUEBOjMmTO2eepefvllux+z0tOoUSONHj1a77zzjr766istXrxYgYGBunr1qiIiImQYhkqVKqXZs2ff9oepzOjSpYuOHj2qOXPmaMSIEfr0009VtmxZnTp1SrGxsXJyctKoUaPSvWv90Ucf1UcffaT4+Hi5uLioU6dO6faRlc+n1eDBg5Wamio3Nzf9/fff6t27txITE9N9KufJJ59Uly5dVKlSJX366acaPHiw1qxZox9//FHVqlVTcnKywsPDlZKSIg8PD82YMSPDebDT4+zsrKlTp6pv3746fvy4Hn30UVWuXFmenp624crc3Nz07rvv2j2lPnjwYA0YMEBHjx7V/fffbxsGLSIiQteuXbMNVXfy5Em74dBLlCih3r17a/r06VqzZo22bNmiu+66S1FRUYqNjVW3bt30888/pzu8Xa1atbRz50699957WrRokbp3764uXbqoYcOGGjt2rEaMGKFvvvlG3333nQIDAxUfH68TJ05Iuv7vwpQpU3LlvAIAAHmPHJkcmRw5Y+TI5MjZVVhz5C5dumjhwoWKiIhQaGioKlSoIF9fX50+fVrR0dFycXFRkyZNtGPHjjS5Ynav+zVr1pR0ff71Dh06qFq1apoyZUq2c2Q3NzdNmjRJffr00datW9W6dWtVr15dsbGxts/g+fPn00wXVqJECU2bNk39+/fXtm3bdP/996tatWoymUw6ceKEkpKS5OzsrI8//tg24kZ25eT9v1F2r93ZFRwcLLPZrMTERHXo0EGlS5fW7NmzMzXtAoBb4wlwAHnO1dVVn3/+uT755BM1b95cSUlJOnjwoNzd3dWxY0fNmzdPI0eOTDNsUs2aNbVs2TJ17txZJUuW1PHjx5WamqoXXnhBK1askL+/fwEd0a21bNlSCxcuVLt27eTh4aGjR4+qWLFiCg0N1cKFC2139mVXz5499fHHH6tKlSq2O38ffPBBLV68ON27GH18fDR//nyNHj1ad999t65cuaJDhw7J19dXXbp00bJly9SvXz+7bZycnPT555/rrbfeUsOGDZWYmKiwsDAlJCSoefPm+vDDDzV16lS7ebik6wnQkiVL1LlzZ3l5eSksLEwxMTGqVauWBg0apOXLl2epeHUza+Jcu3btTA9F1aVLF9scujm5wz0z9u7da5vbKrNzRbm7u9ue2vztt99sc/1l9zzq27evnnrqKfn4+Cg8PFyHDh2yratVq5bWrFmjAQMGqHr16oqMjFR4eLiqVKmil156Sd99912mh3azcnV11fvvv6+lS5fqhRdeUO3atZWUlKSwsDCdOXNGVapUUe/evfXdd9+lOc+k6z/AzJ49W6+++qqqV6+u6Oho/fPPP7rnnnu0aNGiHN8FnlnPP/+8lixZok6dOqlYsWI6dOiQUlJS1KpVK82ZM0ehoaGZ2s+TTz6pVatW6emnn5a/v7+OHDmi06dPKzAwUH369NF3331nK6bmhmHDhmnOnDm6//77ZRiGwsLC5OTkpA4dOmjJkiV2P8DdqGTJkrbhstu2bZuriZX1rv7ExERt2LBBW7du1R9//KHdu3en+XP69Gnbdq1atdL//vc/9erVSxUrVtSJEycUERGhChUqqHv37vruu+8UEhKS5XjuuusuLV++XG+88Ybq1aun8+fP69ixYypXrpx69uypVatWpXlyuk2bNlq2bJnatWsnf39/HT9+XKdPn1ZQUJCGDBmiVatW2c7NjRs32m07ePBgTZw4UY0aNVJycrJOnDihKlWqaMKECRo1alSGcY4bN0733XefnJ2ddeLECdu1QLo+F/mqVavUtWtXlSpVSkeOHFFMTIxCQkL09ttva9myZRnOsQ4AAAofcmRyZHLkjJEjkyPnRGHMkb28vGzXlerVq+vixYs6cuSIvLy8bAXscePGSbr+lPiNT0ln97r/2GOPqU+fPvL399epU6d08OBB203p2cmRJalGjRpasWKFXnjhBZUrV05HjhyRxWJRr1699NVXX2V4E0PdunW1evVqvfzyywoODtapU6d0/PhxlSpVSo899piWL19uG2I9p7L7/t8sr6/dN6pUqZLGjx+vypUrKzY2VqdPn04zYgWA7DEZTC4AAHeEtm3bKioqSmPGjMn0FzbkntGjR+vkyZOaOXNmQYcC5IonnnhCBw4c0IwZM2575z4AAABQ2JAjFyxyZDgacmQAcCw8AQ4AwG1YLBb98ccfqlatWkGHAuSKAwcO6MCBAypXrpyaN29e0OEAAAAAuIOQI8PRkCMDgONhDnAAAG7jvffeU3R0tJ577rmCDgXItsjISEnShQsXNGzYMEnXh4t0cnIqyLAAAAAA3GHIkeEIyJEBwLFRAAcA4DaeeeYZhYaGqmTJkgUdCpBt33//vT7++GPb34OCgvTss88WYEQAAAAA7kTkyHAE5MgA4NgYAh0AgNuoUaMGiT3ueDVq1FDp0qXl4eGhdu3a6csvv5Srq2tBhwUAAADgDkOODEdAjgwAjs1kGIZR0EEAAAAAAAAAAAAAAJBTPAEOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA7BuaADuFMYhiGLhdHiAQAAAAD2zGaTTCZTQYfhEMi9AQAAAADpyUruTQE8kywWQxcvXi3oMAAAAAAAhUzJkp5ycqIAnhvIvQEAAAAA6clK7s0Q6AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIzgUdAAAAAAAgLYvFotTUlIIOo8hzcnKW2cy94wAAAADgiMi9C4fczr0pgAMAAABAIWIYhi5fvqiEhLiCDgX/z93dS97eJWUymQo6FAAAAABALiD3LnxyM/emAA4AAAAAhYg1Affy8pWrazGKrgXIMAwlJV1TXFyMJKlECb8CjggAAAAAkBvIvQuPvMi9KYADAAAAQCFhsaTaEnAvL++CDgeSXF2LSZLi4mJUvLgvw6EDAAAAwB2O3Lvwye3cm8wdAAAAAAqJ1NRUSf8mfigcrO8H88IBAAAAwJ2P3Ltwys3cmwI4AAAAABQyDL1WuPB+AAAAAIDjIdcrXHLz/aAADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgE54IOAAAAAABQcA4dCtPUqZ8pLOxvWSyGatWqo379Bqh27TqSpJ07f9ecObN07NgROTk5q0mTZurf/xWVKVNWkvT996s1bty7Wrr0O5UrV9623y5dOqthw0b6739HSZKaN2+sF17op23btioyMkLduj2nXr36KCrqlKZNm6xdu3bKMAzVqVNXAwYMUtWqgZKka9euafbs6dqwYZ1iYi6qYsVK6tnzBd1/f/v8faEAAAAAAMgmcu/8xRPgAAAAAFBEXb0apyFDXlGJEj4aM+YDvfvuOCUmJmjIkIGKi4vTjz9+r8GDB8rf31+jRo3VK68M1oED+/XSSy8oJuZilvubO3e2Wrduq1GjxqpFi9a6cOGC+vZ9XhERJzRkyJt6553Runz5sl59dYBiY2NlGIbeeut1rVz5rZ5+urvef/9j1alTT++885bWrl2TB68IAAAAAAC5i9w7//EEOAAAAAAUUSdOnFBsbIy6dHla9eo1kCRVqlRZq1YtV1zcFU2d+pkaN26id98db9umXr0GevbZp7Ro0QINGBCapf5q1aqjZ5/tZfv7559/pmvXEvXpp1Pl51dKklS9eg29+GIv/fXXPhUr5qrt27fp3XfH2e46b9r0HiUmJmj69Cl64IEOcnYmrQUAAAAAFF7k3vmPJ8ABAAAAoIiqWjVQPj6+evPN1zRx4nht3bpZfn6lNGDAICUmJio6Olrt2z9kt02FCnepdu26+vPPP7LcX2BgNbu/7937p+rUqWdLwCWpVKlSWr58jZo3b6k//tgpk8mke+5prpSUFNuf++5rpejoCzpx4lj2DhwAAAAAgHxC7p3/7qxyPQAAAAAg13h4eGjq1JmaO3e2NmxYp5Url8vNzU3t2z+kDh06SpJKlvRLs52fn58OHTqU5f58fUva/f3y5Ut2c5fd7PLlSzIMQ+3bt0x3/YUL51W9enCW4wAAAAAAIL+Qe+c/CuAAAAAAUIRVrFhZI0eOVmpqqg4ePKAffvheK1cuU6lS/pKkixej02wTHR0tHx8fSZLJZJIkWSwWuzYJCfG37dvLq7hiY2PTLN+1a6fKli0nL6/icnf30OTJ09PdvkKFgNv2AQAAAABAQSP3zl8MgQ4AAAAARdTGjRvUqVM7RUdfkJOTk+rUqaehQ4fJy6u4Ll68KD8/P61bt9Zum6ioU/rrr32qV6++JMnDw1OSdPbsGVubkyfDdenSpdv2X79+Ax04sE8xMRdty2JjYzV0aKh+/XWzGjQIUUJCvAzDUI0atWx/jh8/pi+/nKnU1NTceBkAAAAAAMgz5N75jyfAAeQ7s9kks9mUZ/u3WAxZLEae7R8AAMBR1K3bQKmpFg0fPlTPPttLnp6e+umndbp6NU5t27ZTrVq1NW7cu3rnneHq0KGTLl2K1ZdfzpC3dwk9/XQPSVKjRnfLzc1NU6Z8or59Byg+Pl5z5lxvcztdu3bX2rX/02uvDVTPni/I1bWY5s+fIz+/UurQoaO8vIqrQYMQDRs2RL169VGlSpV18OABzZ49Q02bNrPdCQ/HRw4BAAAA4E5F7p3/TIZhkOFlQmqqRRcvXi3oMIA7ntlskq+vu8xmpzzrw2JJVUxMAj9gAQCAO05ycpKio0/Lz6+cXFxc86XPgwcPaObMaQoLO6jExERVrRqo5577j1q1aiNJ+uWXnzR//lc6fvyoPD091bTpPerX72WVKVPWto/ff9+m6dOnKCLihMqWLaf//Keffvjhf/Lz89N//ztKktS8eWP95z991bv3i3b9R0SEa+rUz7R79y65uLioYcMQDRgwSBUq3CVJSkhI0KxZ07Rx40+KibmoUqVKq1279urVq4+KFSuWL6/R7d6XkiU95eTEAGu5Ib3c22w2ycfHI09f49RUi2Jj48khAAAAgCKA3Nvxc28K4JlEARzIHc7OZvn6eurEmplKiD6d6/t39yunKp36KibmqlJSLLffAAAAoBApiCQct0cBPP+kl3tbc4jPF/2qqHO3H94vqyqULqGXu91HDgEAAAAUEeTehVNu5t4MgQ6gQCREn1bC2ZMFHQYAAACAO0TUuUsKj4op6DAAAAAAAIUct6gDAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADsG5oAMAAAAAAAAFIzk5WfPnz9eKFSsUHh4uDw8P1a1bV88//7xatGiRpn3Tpk0VGxub4f727dunYsWK5WHEAAAAAADcGgVwAAAAAACKIMMwNHjwYK1fv17e3t669957de3aNf3+++/asmWLXn31VfXv39/WPioqSrGxsSpTpoyaNGmS7j7NZgaaAwAAAAAULArgAAAAAAAUQYsXL9b69etVs2ZNzZkzR76+vpKksLAw9ejRQ5999pnat2+vwMBASdLBgwclSR06dNBbb71VYHEDAAAAAHAr3JoNAAAAAEARtGrVKknSsGHDbMVvSapRo4Y6d+4swzC0efNm2/IDBw5IkmrXrp2/gQIAAAAAkAU8AQ7AjtlsktlsyrP9Ozlx3w0AAEB25PX3tIxYLIYsFiPf+0Xemzt3rk6cOKHq1aunWRcfHy9JcnJysi2zPgFep06d/AkQAAAAAPIZubdjoAAOwMZsNsnHx4MiNQAAQCFTkN/TUlMtio2Nz1Yivm7dD1q+fImOHz8qSapUqYo6dXpUjz32ZG6HiWwoVqyYatSokWb5hg0b9MMPP8jd3V3t27e3LT9w4IDc3Nz0119/acSIETpy5IhMJpNCQkI0YMAA1a9fPz/DBwAAAIBcRe7tOCiAA7Axm01ycjLr80W/KurcpTzpo35weT3doUGe7BsAAMBR5cf3tPRUKF1CL3e7T2azKctJ+Jo1q/TppxMUGjpEDRqESDK0c+cOTZr0kWJiLuo//+mbN0EjWy5duqQRI0bo6NGjOn78uMqVK6fx48erbNmykqTo6GidO3dOkvTGG2+oQYMGatq0qQ4fPqxffvlFW7du1YQJE/Twww8X5GEAAAAAQLaRezsOCuAA0og6d0nhUTF5su/y/t55sl8AAICiIC+/p+W2FSuWqVOnR/XII4/bllWsWFnnz5/TN98sKrJJeGEVGRmpdevW2f5uMpl09OhR3XPPPZL+nf/b19dX06ZNU8OGDSVJhmFo7ty5Gj9+vIYPH66QkBBb0Ty7nJ3tn7bIr6cvGAkLAAAAKBosllsPcU7uXbCcnExp8sKsogAOAAAAAMh1ZrNJ+/fv0+XLl+Xt/e9NkD16PK+HH+4sSerSpbMeeqiTevd+0bZ+4MB+KleuvP7731HavfsPhYa+pP79X9HXX89T2bJl5ebmrlKl/PXee+Nt2+zbt0cDBvTR4sUrdNddAfr11y2aPfsLhYefkL+/v9q1e1DPP99brq6u+uyzj/Trr5v1zTerbNvHxcXpkUce1HvvjVPz5q3y4dUpfKpUqaIdO3bIMAxt27ZNY8eO1ZgxYxQXF6f+/furRYsW2rJliwzDUJkyZWzbmUwm9erVSzt37tSGDRu0bNkyDRw4MNtxmM0m+fp65sYhZZm3t3uB9AsAAAAgfyUmOunCBXOaQmtB3xSbnf6dnMz66699io+Ps8u9n3/+P3rkkUfl7GzWY491VMeOndW370u29f3791W5cuX19tvvateuP/Tyy/308suhmj9/rsqWLSd3dzeVKuWvsWM/sG2zd+8evfjiC1q6dKUCAipq69bNmjlzui33fuCBDvrPf/rI1dVVn3wyQVu3btHy5d/Zto+Lu6KOHdtr9Oj31bJl2tzbYjHJbDarRAkPubm5Zfm1uBEFcAAAAABAruvR43m9/fZwPf74QwoJaax69RqqUaPGqlmztooXL56lfW3btlVffDFHiYkJOnLksD766H3Fx1+Vh8f1Qum6dWtVt2593XVXgH7/fZtGjhym0NDBuvvuZoqKOqVPPvlQJ09GaPTo99Wp06NaunSR9u7do/r1G0iSfvppnTw9PdWs2X25/TLcMTw9/y06P/zwwypbtqy6d++uGTNmqGfPnvL09FTp0qUz3L5NmzbasGGD/vrrrxzFYbEYunw53m6Zk5M5X4rTly8nKDXVkuf9AAAAAChYSUnXZLFYlJpqKCWl8OQAqamWLMfTvXtPvf32cHXu/GCa3Lt8eU/b/iwW+2M1DEOGcX2ZNQ/aunVLmtz78uUrttx77dr/qW7d+ipX7i5t3bpVb731ZprcOzw8XKNHv6+HH35US5Ys0q5du225948//igPD081aXJPuseZmmrIYrHo0qV4JSSkplnv7e2e6ZsEKIADAAAAAHJd69b364sv5mjZssXavv13/fbbr5KkgICKGj78bdWr1yDT++rW7VkFBFSUJN11V0V98skEbdq0UQ891EnJycn6+ecN6t//FUnSvHlfqlOnR/TYY10kSRUq3KXXX39LoaEv6fTpfxQYWE3BwTX144//syXhP/ywRg8++LCcnUmRrUJCQlSxYkVFREQoPDxctWvXvmV7f39/SVJCQkKO+y6oH6Cy82MTAAAAgDtPamrW5tkuzBwx986NGxPI7gEAAAAAeaJmzdoaOXK0DMPQ8ePH9NtvW7V06WINHTpIS5asyPR+7rqrou3/3d3d1abN/Vq3bq0eeqiTfvvtV127lqi2bdtJkg4fDtPBgwe0du0a2zaGcf3HjfDwEypXrrw6dnxEM2ZM1auvvq5z585q//59ev31t3LpqO8MCQkJ+uyzz3ThwgVNmDBBJlPaOfBcXV0lSSkpKVqyZIl+++03derUSe3atUvTNjIyUpJyPP83AAAAACBryL3TogAOAAAAAMhV586d1ddfz9Wzz/aSv39pmUwmBQZWU2BgNTVv3krPPvuU9uzZne62qakpaZYVK1bM7u8PP9xZgwb1V3T0Ba1b971atmwjT08vSdeHdevevaceeqhTmv34+ZWSJD3wQAdNmfKptm3bomPHjqpmzVqqWrVaTg/7juLm5qYVK1YoNjZWXbt2VZMmTezWR0ZG6sSJE3J1dVX16tW1adMmrV27VgkJCWkK4IZhaNWq63OqN2/ePN+OAQAAAACKMnLvjBXsbO4AAAAAAIfj6lpMq1Z9q3Xr1qZZZ51rumRJPzk7uyguLs62zmKx6J9/om67/wYNQlS2bDn98MP/tG3br3YJd9WqgYqICNdddwXY/pw/f06ff/6Z4uOvSpKKFy+uli1b65dfftbmzRv18MOP5PSQ7zgmk0lPP/20JGnUqFE6d+6cbd2ZM2f02muvKSUlRd26dZOHh4cef/xxubq66pdfftE333xja2uxWDRp0iTt27dP1apVU4cOHfL9WAAAAACgKCL3zhhPgAMAAAAAcpWPj4969HheM2ZMVVxcnNq2bScPD0+Fh5/QV1/NUkhIY9Wv31D16tXXTz+tU6tWbVSypJ8WL15gl5TfykMPddLcuV+qRIkSatz436eXe/ToqbffHq7Zs7/QAw900Pnz5/T++2NUpkwZ213oktSx4yMaNuw1GYbUrt2Duf4a3AkGDBig3bt3a+fOnXrwwQfVqFEjJScna9++fYqPj1fz5s01dOhQSVJAQIBGjRqlESNGaOTIkVqwYIEqV66ssLAwRUREqFSpUpo8ebJcXFwK+KgAAAAAoGgg984YBXAAAAAAuENUKF3ijumvb9/+uuuuAK1evVIrVixVYmKiypQpq7ZtH1DPni9Ikvr1e1lXrlzW0KGhcnNzV+fOj+n++9vb5g27lQ4dOunLL2foiSeektn87+Bmbdq007vvSvPnf6kFC75S8eLeuu++FurfP9Ru+8aNm6hECR/VrVtfxYsXz/Zx3snc3Nw0Z84czZs3T6tWrdL27dvl7Oys6tWr64knntBTTz0lJycnW/snn3xSVapU0cyZM7V7924dP35cpUuX1nPPPaf+/fvLz8+vAI8GAAAAAHIHufe/7tTc22Rk5uig1FSLLl68WtBhAHnK2dksX19PvfXZ9wqPismTPu5tUEkDuzfX33PfU8LZk7m+f/cyFVXr+bcVE3NVKSmWXN8/AABAXkpOTlJ09Gn5+ZWTi4urbbnZbJKPj4ecnPJ/FqvUVItiY+NlsThW6piQkKBHH+2gsWM/1N13N71l24zeF6uSJT0L5L1xROnl3nmdp1Su4Ktxgx4mhwAAAACKCHLv/FNQuTdPgAMAAABAIWexGIqNjZfZbCqQvh0pAb98+bJ2796pn3/eoDJlytgN4QYAAAAAKLrIvXNPQefeFMABAAAA4A7gaMlwQUlNTdH774+Wj4+v3ntvvEym/P9hAwAAAABQOJF7546Czr0pgAMAAAAAigxf35L64YdfCjoMAAAAAAAcVkHn3kxSBgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAKbQE8OTlZX375pTp37qy6deuqadOm6tOnj7Zs2ZJu+wsXLui9997TAw88oHr16un+++/XhAkTdPXq1XyOHAAAAAByn9lskrOzOd//mM2mbMXbpUtnNW/eWIsXL0h3/YQJ49S8eWPNnv1Ftl+TLl06Z2n7rLYHAAAAABQt5N7p93Gn5d7OBdp7BgzD0ODBg7V+/Xp5e3vr3nvv1bVr1/T7779ry5YtevXVV9W/f39b+3PnzumZZ55RVFSUgoKC1Lp1a+3fv1+zZs3Sli1btHDhQnl5eRXgEQEAAABA9pnNJvn6ustsdsr3vi2WVMXEJMhiMbK8rbOzszZu/EnPPPOs3fKUlBRt2vSzTKbsJfgAAAAAAOQ2cm/HUSgL4IsXL9b69etVs2ZNzZkzR76+vpKksLAw9ejRQ5999pnat2+vwMBASdKYMWMUFRWlfv36aciQIZKkpKQkvfHGG1q7dq2mTJmiYcOGFdjxAAAAAEBOmM0mmc1OOrFmphKiT+dbv+5+5VSlU1+ZzaZsJeGNGzfR9u2/6ezZMypTpqxt+e7df8jNzV3FirnlZrgAAAAAAGQbubfjKJQF8FWrVkmShg0bZit+S1KNGjXUuXNnLVq0SJs3b1ZgYKBOnjyp9evXq1y5cgoNDbW1dXV11ejRo7V582YtWbJEr776qtzcit4bDAAAAMBxJESfVsLZkwUdRqbVrFlbERHh2rhxg92d6D/9tE5t2z6gn39eb1v211/7NGPGVB06dFDOzs5q3ryVXn75VXl7e0uS4uLi9OmnE7R16yY5O7uoZ8//pOlv//69mj59ig4e/Fs+Pj66776Weumll+XpyYhgAAAAAIDMIfe+83PvQjkH+Ny5c7Vq1SrdfffdadbFx8dLkpycrg8/sHnzZlksFrVq1UouLi52bYsXL65mzZopPj5e27dvz/vAAQAAAAB22rRpp40bf7L9PTk5WZs3/6J27drblv3991965ZUXVblyFU2fPkejR3+gv//+S6+9NlAWi0WS9Pbbw3Tw4AF98MEn+uSTKfr11y06c+bfO/KPHj2iQYMG6O67m2ru3EV6552xOnTooAYPHijDyPod9AAAAAAA3CnIve0VygJ4sWLFVKNGDVuR22rDhg364Ycf5O7urvbtr79hhw8fliQFBQWlu69q1arZtQMAAAAA5J+2bR/Q33//pbNnz0iSduz4XT4+PgoKqmFrs3jx1woMrK7XXntTVapUVUhIY40aNU5hYX9r+/bfdPJkuHbs+F2DB7+h+vUbqnr1YL3zzhi5urra9rFo0Tw1bny3evXqo4CAiqpfv4FGjRqrv//+S3/+uSvfjxsAAAAAgPxC7m2vUA6BfqNLly5pxIgROnr0qI4fP65y5cpp/PjxKlv2+hj258+flyT5+/unu711+YULF/InYAAAAACATY0aNVW+fAXbUGw//7xO7do9aNfm+PGjuvvuZnbLAgOrycuruI4dO6LExARJUs2atWzrS5b0U/nyFWx/P3TokE6dOqkHHmiRJoaIiHCFhDTOzcMCAAAAAKDQIPe2V+gL4JGRkVq3bp3t7yaTSUePHtU999wj6d8h0TOa39u63NouJ5ydC+UD80CucXJynHPckY4FAAAUHRaLqaBDyBNt2z6gjRt/0uOPP6UtWzZr5sy5dusNw5ApnUM3DIucnf9NWy0W++HUnJyc7dq2b/+QevZ8Ic1+fHx8c3gE1v5M5IUAAAAAgELJUXLv3FDoC+BVqlTRjh07ZBiGtm3bprFjx2rMmDGKi4tT//79bcOkm9J7xyTbePM5HXfebDbJ19czR/sAkH+8vd0LOgQAAIAsS0x00oUL5jSF1oK+uS+7/ZvN14/jgQfaa8GCr7R27XeqUKGCAgOr2rWpVq269u3bY3fMR44c1tWrVxUYGKiAgIqSpL//3qf77rt+l/mVK1cUFRVp6yMwsJrCw4+rcuVKtn1ERIRr0qRPNGDAK/Lx8baLKSssFpPMZrNKlPDI8OZrAAAAAAAKUtu27bRgwVdas2aVypevoEqVKtutr1q1mvbu3WO3zJp7V65c1ZZ779+/V/fe21zSv7m3VZUqgTpx4pjuuivAtuzkyXBNmfKZXnrpZXl5Vcubg8uiQl8A9/T8t+j88MMPq2zZsurevbtmzJihnj17ysPDQ5J07dq1dLe3Lnd3z1kxzGIxdPlyzp8iBwozJyezwxSOL19OUGqqpaDDAAAAyJKkpGuyWCxKTTWUklJ4vsukplqyFY/Fcv04qlatrrvuCtC0aVP07LP/sduXxWLoqae66eWX++rDD8friSe6Kibmoj7++AMFBQWrYcO75ezsrDZt2mnixA9kNjvLz89P06d/ruTkZFsfXbv20Msv99H48WPUpcszio+P10cfva/4+HiVK3eXrU9r+6wdvyGLxaJLl+KVkJCaZr23t3uB36QAAAAAACjaqlcP1l13BWjGjM/17LP/SbP+6ae76+WX++rjjz9Ik3s3btzElnt/8smHcnFxscu9rZ555lm9/HIfTZgwLk3ufdddFfPzcG+p0BfAbxYSEqKKFSsqIiJC4eHhKl26tKR/5wK/2e3mCM+KwvQDFIBby+6PtAAAAAUpNfXWI1e5+5XLp0hyv7+2bR/Q3Lmz1a5d+zTr6tSpp4kTP9PMmdP1wgs95OHhqRYtWqt//4G2YdhGjBilzz//TO+885YsFoseffQJxcbG3LCPuvr44ymaNWuaevd+Tu7ubgoJuVsvv/yqXF1dc+UYCtuNCQAAAACA3EfuXbC5d24wGTkdGzyXJSQk6LPPPtOFCxc0YcKEdIc279Spk44cOaJvvvlGBw8e1DvvvKPnnntOI0aMSNO2f//++vnnnzVjxgy1atUq23Glplp08eLVbG8P3Amcnc3y9fXUW599r/ComNtvkA33Nqikgd2b6++57ynh7Mlc3797mYqq9fzbiom5yo+TAADgjpOcnKTo6NPy8ysnF5d/E8frUzK5y2x2yveYLJZUxcQkpJkDrCjJ6H2xKlnSkyfAc0l6uXde5ymVK/hq3KCHySEAAACAIoLcu3DKzdy70D0B7ubmphUrVig2NlZdu3ZVkyZN7NZHRkbqxIkTcnV1VfXq1VWqVClJ0saNGzV8+HDbnODS9XHpt2/fLg8PDzVq1ChfjwMAAAAAcovFYigmJkFmc9obhPOj76KcgAMAAAAAigZyb8dR6G5RN5lMevrppyVJo0aN0rlz52zrzpw5o9dee00pKSnq1q2bPDw8VKFCBbVp00anTp3ShAkTZH2gPSkpSW+//bauXr2qZ555Rl5eXgVyPAAAAACQG6xzV+f3HxJwAAAAAEBRQe7tGArdE+CSNGDAAO3evVs7d+7Ugw8+qEaNGik5OVn79u1TfHy8mjdvrqFDh9rajxw5UgcOHNCcOXO0adMmVa9eXfv379c///yj2rVra+DAgQV4NAAAAAAAAAAAAACA/FDongCXrg+DPmfOHL3xxhsKCAjQ9u3btW/fPlWvXl3vvvuuZsyYYTeReoUKFbRs2TI99dRTunLlijZu3ChXV1e99NJLmjdvnjw9PQvwaAAAAAAAAAAAAAAA+aFQPgEuSS4uLurdu7d69+6dqfZlypTRmDFj8jgqAAAAAAAAAAAAAEBhVWgL4AAAIPvMZpPMZlOe7d9iMZiXBgDykGFwjS1MeD8AAAAAwPGQ6xUuufl+UAAHAMDBmM0m+fh4yMkp72Y6SU21KDY2niI4AOQyJycnSVJS0jW5uhYr4GhglZR0TZLk5EQKDQAAAAB3OnLvwik3c2+ydwAAHIzZbJKTk1mfL/pVUecu5fr+K5QuoZe73Sez2UQBHABymdnsJHd3L8XFxUiSXF2LyWTKuxE9cGuGYSgp6Zri4mLk7u4lsznvbi4DAAAAAOQPcu/CJS9ybwrgAAA4qKhzlxQeFVPQYQAAssjbu6Qk2RJxFDx3dy/b+wIAAAAAuPORexc+uZl7UwAHAAAAgELEZDKpRAk/FS/uq9TUlIIOp8hzcnLmyW8AAAAAcDDk3oVLbufeFMABAAAAoBAym80ym10LOgwAAAAAABwWubdj4jZ2AAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCE4F3QAAAAAAACgYCQnJ2v+/PlasWKFwsPD5eHhobp16+r5559XixYt0rS/cOGCpk6dqi1btujs2bPy9/dXhw4dNGDAAHl6ehbAEQAAAAAAYI8nwAEAAAAAKIIMw9DgwYP1wQcf6MyZM7r33ntVs2ZN/f777+rTp4+mTZtm1/7cuXPq2rWrvv76a7m5ual169ayWCyaNWuWunXrpri4uAI6EgAAAAAA/kUBHAAAAACAImjx4sVav369atasqXXr1umLL77QV199pWXLlsnLy0ufffaZjh07Zms/ZswYRUVFqV+/flq9erUmTZqkH3/8UQ899JAOHTqkKVOmFODRAAAAAABwHQVwAAAAAACKoFWrVkmShg0bJl9fX9vyGjVqqHPnzjIMQ5s3b5YknTx5UuvXr1e5cuUUGhpqa+vq6qrRo0fL09NTS5YsUWJiYv4eBAAAAAAAN6EADgAAAABAETR37lytWrVKd999d5p18fHxkiQnJydJ0ubNm2WxWNSqVSu5uLjYtS1evLiaNWum+Ph4bd++Pe8DBwAAAADgFiiAAwAAAABQBBUrVkw1atSwFbmtNmzYoB9++EHu7u5q3769JOnw4cOSpKCgoHT3Va1aNbt2AAAAAAAUFOeCDgAAAAAAABSsS5cuacSIETp69KiOHz+ucuXKafz48Spbtqwk6fz585Ikf3//dLe3Lr9w4UL+BAwAAAAAQAYogAMAAAAAUMRFRkZq3bp1tr+bTCYdPXpU99xzj6R/h0R3c3NLd3vrcmu7nHB2th+szskpfwavy69+AAAAAAB5iwI4AAAAAABFXJUqVbRjxw4ZhqFt27Zp7NixGjNmjOLi4tS/f3/bMOkmkynd7Q3DsPtvdpnNJvn6euZoH9nl7e1eIP0CAAAAAHIXBXAAAAAAAIo4T89/i84PP/ywypYtq+7du2vGjBnq2bOnPDw8JEnXrl1Ld3vrcnf3nBWRLRZDly/bP0Xu5GTOl+L05csJSk215Hk/AAAAAICs8/Z2z/TIXRTAAQAAAACAnZCQEFWsWFEREREKDw9X6dKlJf07F/jNbjdHeFakpBRMETo11VJgfQMAAAAAcg8TXAEAAAAAUMQkJCTo/fff19ChQzMcttzV1VWSlJKSoqCgIEnSsWPH0m175MgRSVJwcHAeRAsAAAAAQOZRAAcAAAAAoIhxc3PTihUrtHr1au3cuTPN+sjISJ04cUKurq6qXr26WrRoIUnauHGjUlNT7dpeuXJF27dvl4eHhxo1apQv8ecFJyeznJ3z5o/ZnP7c6QAAAACA3EcBHAAAAACAIsZkMunpp5+WJI0aNUrnzp2zrTtz5oxee+01paSkqFu3bvLw8FCFChXUpk0bnTp1ShMmTLA9NZ6UlKS3335bV69e1TPPPCMvL68COZ6cKFHcTYbFIm9vd/n6eubRH3eK4AAAAACQT5gDHAAAAACAImjAgAHavXu3du7cqQcffFCNGjVScnKy9u3bp/j4eDVv3lxDhw61tR85cqQOHDigOXPmaNOmTapevbr279+vf/75R7Vr19bAgQML8Giyz9PNVSazWSfWzFRC9Olc37+7XzlV6dRXZrNJFkv6w80DAAAAAHIPBXAAAAAAAIogNzc3zZkzR/PmzdOqVau0fft2OTs7q3r16nriiSf01FNPycnJyda+QoUKWrZsmSZPnqxffvlFGzduVPny5fXSSy+pb9++8vT0LMCjybmE6NNKOHuyoMMAAAAAAOQQBXAAAAAAAIooFxcX9e7dW717985U+zJlymjMmDF5HBUAAAAAANnHHOAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhOBd0AAAAAAAAAPiX2WyS2WzKs/1bLIYsFiPP9g8AAAAABYkCOAAAAAAAQCFhNpvk4+MhJ6e8G7QvNdWi2Nh4iuAAAAAAHBIFcAAAAAAAgELCbDbJycmszxf9qqhzl3J9/xVKl9DL3e6T2WyiAA4AAADAIVEABwAAAAAAKGSizl1SeFRMQYcBAAAAAHecvBtPCwAAAAAAAAAAAACAfEQBHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA7BuaADyIjFYtHSpUv17bff6siRI0pOTlb58uXVrl07vfjii/L29rZr37RpU8XGxma4v3379qlYsWJ5HDUAAAAAAAAAAAAAoKAUygK4xWJRaGio1q9fLzc3N9WrV08eHh7at2+fZs2apfXr12vhwoUqVaqUJCkqKkqxsbEqU6aMmjRpku4+zWYedgcAAAAAAAAAAAAAR1YoC+DLly/X+vXrVblyZc2aNUsBAQGSpLi4OA0dOlQbN27UmDFj9Omnn0qSDh48KEnq0KGD3nrrrYIKGwAAAAAAAAAAAABQgArlY9HLly+XJA0bNsxW/JYkLy8vjRs3TiaTSRs2bFBiYqIk6cCBA5Kk2rVr53+wAAAAAAAAAAAAAIBCoVAWwH18fFS1alU1aNAgzbqSJUuqRIkSSk5OVkxMjKR/nwCvU6dOfoYJAAAAAAAAAAAAAChECuUQ6NOnT89wXWRkpGJjY+Xi4qKSJUtKuv4EuJubm/766y+NGDFCR44ckclkUkhIiAYMGKD69evnV+gAAAAAAAAAAAAAgAJSKJ8AvxXrvN+tW7dWsWLFFB0drXPnzikxMVFvvPGGLBaLmjZtKh8fH/3yyy/q3r27vv/++4INGgAAAAAAAAAAAACQ5wrlE+AZmT9/vtasWSN3d3cNHjxY0r/zf/v6+mratGlq2LChJMkwDM2dO1fjx4/X8OHDFRISorJly+aof2fnO+5+ASBLnJwc5xx3pGMBsiq/zn8+ZwAAAAAAAACAwuaOKYDPmzdP48aNk8lk0tixYxUYGChJatGihbZs2SLDMFSmTBlbe5PJpF69emnnzp3asGGDli1bpoEDB2a7f7PZJF9fzxwfB4D84e3tXtAhAA6PzxkAAAAAAAAAoLAp9AVwwzA0ceJEzZo1S05OTho7dqw6duxoW28ymVS6dOkMt2/Tpo02bNigv/76K0dxWCyGLl+Oz9E+gMLOycnsMAWty5cTlJpqKegwgAKRX59lPmcAAFzn7e3OyCgAAAAAABQShboAnpiYqNdff13r1q2Tm5ubPvroI7Vr1y5L+/D395ckJSQk5DielBR+5AfuFKmpFj6zQB7jcwYAAAAAAAAAKGwKbQE8Li5Offr00Z9//ik/Pz9NmzZN9evXT9NuyZIl+u2339SpU6d0i+ORkZGSlOP5vwEAAAAAAAAAAAAAhVuhLIAnJyerX79++vPPP1WpUiXNnj1bAQEB6bY9e/as1q5dq4SEhDQFcMMwtGrVKklS8+bN8zxuAAAAAAAAAAAAAEDBKZSTlE2ZMkW7du2Sv7+/5s+fn2HxW5Ief/xxubq66pdfftE333xjW26xWDRp0iTt27dP1apVU4cOHfIjdAAAAAAAAAAAAABAASl0T4BfunRJc+fOlST5+flpwoQJGbYdNmyYAgICNGrUKI0YMUIjR47UggULVLlyZYWFhSkiIkKlSpXS5MmT5eLikl+HAAAAAAAAAAAAAAAoAIWuAL53714lJCRIksLCwhQWFpZh21deeUWlSpXSk08+qSpVqmjmzJnavXu3jh8/rtKlS+u5555T//795efnl1/hAwAAAAAAAAAAAAAKSKErgLds2VKHDh3K8nYhISGaNm1aHkQEAAAAAAAAAAAAALgTFMo5wAEAAAAAAAAAAAAAyCoK4AAAAAAAAAAAAAAAh1DohkAHAAAAAAAAcpPZbJLZbMqz/VsshiwWI8/2DwAAACDzKIADAAAAAADAYZnNJvn6ustsdsqzPiyWVMXEJFAEBwAAAAoBCuAAAAAAAABwWNef/nbSiTUzlRB9Otf37+5XTlU69ZXZbKIADgAAABQCFMABAAAAAADg8BKiTyvh7MmCDgMAAABAHjMXdAAAAAAAAAAAAAAAAOQGCuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhOBd0AAAAAAAAAMhfTk55+0yExWLIYjHytA8AAAAASA8FcAAAAAAAgCKiRHE3GRaLvL3d87QfiyVVMTEJFMEBAAAA5DsK4AAAAAAAAEWEp5urTGazTqyZqYTo03nSh7tfOVXp1Fdms4kCOAAAAIB8RwEcAAAAAACgiEmIPq2EsycLOgwAAAAAyHUUwAEAAAAAKKIsFouWLl2qb7/9VkeOHFFycrLKly+vdu3a6cUXX5S3t7dd+6ZNmyo2NjbD/e3bt0/FihXL46gBAAAAAMgYBXAAAAAAAIogi8Wi0NBQrV+/Xm5ubqpXr548PDy0b98+zZo1S+vXr9fChQtVqlQpSVJUVJRiY2NVpkwZNWnSJN19ms3m/DwEAAAAAADSoAAOAAAAAEARtHz5cq1fv16VK1fWrFmzFBAQIEmKi4vT0KFDtXHjRo0ZM0affvqpJOngwYOSpA4dOuitt94qqLABAAAAALglbs0GAAAAAKAIWr58uSRp2LBhtuK3JHl5eWncuHEymUzasGGDEhMTJUkHDhyQJNWuXTv/gwUAAAAAIJMogAMAAAAAUAT5+PioatWqatCgQZp1JUuWVIkSJZScnKyYmBhJ/z4BXqdOnfwMEwAAAACALGEIdAAAAAAAiqDp06dnuC4yMlKxsbFycXFRyZIlJV1/AtzNzU1//fWXRowYoSNHjshkMikkJEQDBgxQ/fr18yt0AAAAAAAyxBPgAAAAAADAjnXe79atW6tYsWKKjo7WuXPnlJiYqDfeeEMWi0VNmzaVj4+PfvnlF3Xv3l3ff/99wQYNAAAAAIB4AhwAAAAAANxg/vz5WrNmjdzd3TV48GBJ/87/7evrq2nTpqlhw4aSJMMwNHfuXI0fP17Dhw9XSEiIypYtm6P+nZ3t79V3cnKMe/czexyOcrxS4TmW/IqjsBwvAAAAUNRRAAcAAAAAAJKkefPmady4cTKZTBo7dqwCAwMlSS1atNCWLVtkGIbKlClja28ymdSrVy/t3LlTGzZs0LJlyzRw4MBs9282m+Tr65nj4yiMvL3dCzqEfFfUjrmoHS8AAABQWFEABwAAAACgiDMMQxMnTtSsWbPk5OSksWPHqmPHjrb1JpNJpUuXznD7Nm3aaMOGDfrrr79yFIfFYujy5Xi7ZU5OZocoLF6+nKDUVMtt2znK8UqZP+a8ll+vaWE5XgAAAMAReXu7Z3rUJQrgAAAAAAAUYYmJiXr99de1bt06ubm56aOPPlK7du2ytA9/f39JUkJCQo7jSUlxzAJiaqrFYY8tI0XtmIva8QIAAACFFQVwAAAAAACKqLi4OPXp00d//vmn/Pz8NG3aNNWvXz9NuyVLlui3335Tp06d0i2OR0ZGSlKO5/8GAAAAACCnKIADAAAAAFAEJScnq1+/fvrzzz9VqVIlzZ49WwEBAem2PXv2rNauXauEhIQ0BXDDMLRq1SpJUvPmzfM8bgAAAAAAbiVzA6UDAAAAAACHMmXKFO3atUv+/v6aP39+hsVvSXr88cfl6uqqX375Rd98841tucVi0aRJk7Rv3z5Vq1ZNHTp0yI/QAQAAAADIEE+AAwAAAABQxFy6dElz586VJPn5+WnChAkZth02bJgCAgI0atQojRgxQiNHjtSCBQtUuXJlhYWFKSIiQqVKldLkyZPl4uKSX4cAAAAAAEC6KIADAAAAAFDE7N27VwkJCZKksLAwhYWFZdj2lVdeUalSpfTkk0+qSpUqmjlzpnbv3q3jx4+rdOnSeu6559S/f3/5+fnlV/gAAAAAAGSIAjgAAAAAAEVMy5YtdejQoSxvFxISomnTpuVBRAAAAAAA5A7mAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCE4F3QAGbFYLFq6dKm+/fZbHTlyRMnJySpfvrzatWunF198Ud7e3nbtL1y4oKlTp2rLli06e/as/P391aFDBw0YMECenp4FdBQAAAAAAAAAAAAAgPxSKJ8At1gsCg0N1dtvv62wsDDVrl1b9957ry5fvqxZs2apS5cuunDhgq39uXPn1LVrV3399ddyc3NT69atZbFYNGvWLHXr1k1xcXEFeDQAAAAAAAAAAAAAgPxQKAvgy5cv1/r161W5cmWtWbNG8+fP1xdffKH169erTZs2ioiI0JgxY2ztx4wZo6ioKPXr10+rV6/WpEmT9OOPP+qhhx7SoUOHNGXKlAI8GgAAAAAAAAAAAABAfii0BXBJGjZsmAICAmzLvby8NG7cOJlMJm3YsEGJiYk6efKk1q9fr3Llyik0NNTW1tXVVaNHj5anp6eWLFmixMTEfD8OAAAAAAAAAAAAAED+KZQFcB8fH1WtWlUNGjRIs65kyZIqUaKEkpOTFRMTo82bN8tisahVq1ZycXGxa1u8eHE1a9ZM8fHx2r59ez5FDwAAAAAAAAAAAAAoCIWyAD59+nStXbtWvr6+adZFRkYqNjZWLi4uKlmypA4fPixJCgoKSndf1apVkyRbOwAAAAAAAAAAAACAYyqUBfBb+fTTTyVJrVu3VrFixXT+/HlJkr+/f7rtrcsvXLiQL/EBAAAAAAAAAAAAAAqGc0EHkBXz58/XmjVr5O7ursGDB0uS4uPjJUlubm7pbmNdbm2XE87Od9z9AkCWODk5zjnuSMcCZFV+nf98zgAAAAAAAAAAhc0dUwCfN2+exo0bJ5PJpLFjxyowMFCS5OTkJEkymUzpbmcYht1/s8tsNsnX1zNH+wCQf7y93Qs6BMDh8TkDAAAAAAAAABQ2hb4AbhiGJk6cqFmzZsnJyUljx45Vx44dbes9PDwkSdeuXUt3e+tyd/ec/UhvsRi6fDnnT5EDhZmTk9lhClqXLycoNdVS0GEABSK/Pst8zgAAuM7b252RUQAAAAAAKCQKdQE8MTFRr7/+utatWyc3Nzd99NFHateunV2b0qVLS5JtLvCb3W6O8KxISeFHfuBOkZpq4TML5DE+ZwAAAAAAAACAwqbQFsDj4uLUp08f/fnnn/Lz89O0adNUv379NO2CgoIkSceOHUt3P0eOHJEkBQcH512wAAAAAAAAyDaz2SSzOf3p7XKKERoAAACAoqVQFsCTk5PVr18//fnnn6pUqZJmz56tgICAdNu2aNFCkrRx40YNHz7cNie4JF25ckXbt2+Xh4eHGjVqlC+xAwAAAAAAIPPMZpN8fDwoVAMAAADIFYWyAD5lyhTt2rVL/v7+mj9/vsqUKZNh2woVKqhNmzbauHGjJkyYoDfffFMmk0lJSUl6++23dfXqVb3wwgvy8vLKxyMAAAAAAABAZpjNJjk5mfX5ol8Vde5Sru+/fnB5Pd2hQa7vFwAAAEDhVOgK4JcuXdLcuXMlSX5+fpowYUKGbYcNG6ZSpUpp5MiROnDggObMmaNNmzapevXq2r9/v/755x/Vrl1bAwcOzK/wAQAAAAAAkA1R5y4pPCom1/db3t871/cJAAAAoPAqdAXwvXv3KiEhQZIUFhamsLCwDNu+8sorKlWqlCpUqKBly5Zp8uTJ+uWXX7Rx40aVL19eL730kvr27StPT8/8Ch8AAAAAAAAAAAAAUEByVABfuXKlAgICbju/9k8//aQDBw4oNDT0tvts2bKlDh06lOVYypQpozFjxmR5OwAAAAAACrO8yL0BAAAAAHBU5pxsPGzYMH3zzTe3bbdq1SrNmTMnJ10BAAAAAFAkkXsDAAAAAJB5WXoCfOXKlUpJSbFbFhERoWXLlmW4TVxcnH777Te5uLhkL0IAAAAAAIoQcm8AAAAAALIvSwXwAwcOaP78+TKZTJIkk8mkvXv3au/evbfczjAMPf7449mPEgAAAACAIoLcGwAAAACA7MtSATw0NFRxcXG2v69YsUIVK1a85TxkxYoVU+XKldWtW7fsRwkAAAAAQBFB7g0AAAAAQPZlqQBevHhxjR8/3vb3FStWqEGDBnbLAAAAAABA9pF7AwAAAACQfVkqgN8sLCwst+IAAAAAAADpIPcGAAAAACDzclQAv1F0dLQSEhJkGEaGbQICAnKrOwAAAAAAihxybwAAAAAAbi3HBfCvvvpKM2fO1MWLF2/ZzmQy6e+//85pdwAAAAAAFDnk3gAAAAAAZE6OCuDffvut3n//fUmSq6urfH195eTklCuBAQAAAAAAcm8AAAAAALIiRwXwBQsWyGQyacSIEeratatcXFxyKy4AAAAAACBybwAAAAAAsiJHBfBjx46pQYMG6tGjR27FAwAAAAAAbkDuDQAAAABA5uWoAO7u7i5fX9/cigUAANxBnJzMebp/i8WQxWLkaR8AANwJ8jL3tlgsWrp0qb799lsdOXJEycnJKl++vNq1a6cXX3xR3t7edu0vXLigqVOnasuWLTp79qz8/f3VoUMHDRgwQJ6ennkSIwAAAAAAWZGjAniTJk20e/duJSQkyN3dPbdiAgAAhViJ4m4yLBZ5e+ftv/0WS6piYhIoggMAiry8yr0tFotCQ0O1fv16ubm5qV69evLw8NC+ffs0a9YsrV+/XgsXLlSpUqUkSefOndMzzzyjqKgoBQUFqXXr1tq/f79mzZqlLVu2aOHChfLy8sq1+AAAAAAAyI4cFcAHDx6sLl266K233tKoUaNUokSJ3IoLAAAUUp5urjKZzTqxZqYSok/nSR/ufuVUpVNfmc0mCuAAgCIvr3Lv5cuXa/369apcubJmzZqlgIAASVJcXJyGDh2qjRs3asyYMfr0008lSWPGjFFUVJT69eunIUOGSJKSkpL0xhtvaO3atZoyZYqGDRuWK7EBAAAAAJBdOSqAL168WPXq1dMPP/xgS5q9vb1lMpnStDWZTFqwYEFOugMAAIVIQvRpJZw9WdBhAADg8PIq916+fLkkadiwYbbityR5eXlp3Lhxuvfee7VhwwYlJibq3LlzWr9+vcqVK6fQ0FBbW1dXV40ePVqbN2/WkiVL9Oqrr8rNzS2HRwwAAAAAQPblqAA+d+5c2/+npKTo6NGjGbZNLzEHAAAAAAC3lle5t4+Pj6pWraoGDRqkWVeyZEmVKFFCsbGxiomJ0ebNm2WxWNSqVSu5uLjYtS1evLiaNWumn376Sdu3b1erVq0yHQMAAAAAALktRwXwefPm5VYcAAAAAAAgHXmVe0+fPj3DdZGRkYqNjZWLi4tKliypw4cPS5KCgoLSbV+tWjX99NNPOnz4MAVwAAAAAECBylEBvEmTJrkVBwAAAAAASEdB5N7Web9bt26tYsWK6fz585Ikf3//dNtbl1+4cCFf4gMAAAAAICM5KoDfKDk5WQcPHtTp06dVqlQpNWrUSP/884/Kly+fW10AAAAAAFCk5UfuPX/+fK1Zs0bu7u4aPHiwJCk+Pl6SMpzf27rc2i4nnJ3Ndn93cjJn0PLOktnjcJTjlYreMTvKcQAAAAB3uhwXwFNSUvT555/r66+/1pUrVyRJnTt3VqNGjfTmm2/q6tWr+uSTT1SpUqUcBwsAAAAAQFGUX7n3vHnzNG7cOJlMJo0dO1aBgYGSJCcnJ0kZzzFuGIbdf7PLbDbJ19czR/sorLy93Qs6hHxX1I65qB0vAAAAUFjlqACekpKiF198Udu2bZOzs7Pq1Kmj/fv329ZfvXpVf//9t3r06KGVK1eqVKlSOQ4YAAAAAICiJD9yb8MwNHHiRM2aNUtOTk4aO3asOnbsaFvv4eEhSbp27Vq621uXu7vnrABosRi6fNn+KXInJ7NDFBYvX05Qaqrltu0c5XilonfMmT1eAAAAAFnn7e2e6VGXclQA//rrr/Xrr7+qefPmGjdunEqXLq0aNWrY1i9cuFCjRo3SypUrNXv2bL355ps56a5IMptNMpvTv8M+N1gshiyWnN2hDwAAAADIO3mdeycmJur111/XunXr5Obmpo8++kjt2rWza1O6dGlJss0FfrPbzRGeFSkpjllATE21OOyxZaSoHXNRO14AAACgsMpRAXzFihXy8fHRZ599Jk/PtEOUubm5afTo0dq2bZs2b95MATyLrg/95i6z2SnP+rBYUhUTk0ARHAAAAAAKqbzMvePi4tSnTx/9+eef8vPz07Rp01S/fv007YKCgiRJx44dS3c/R44ckSQFBwdnum8AAAAAAPJCjgrg4eHhat68eboJuJWLi4vq1aunX3/9NSddFUnXn/520ok1M5UQfTrX9+/uV05VOvWV2WyiAA4AAAAAhVRe5d7Jycnq16+f/vzzT1WqVEmzZ89WQEBAum1btGghSdq4caOGDx9umxNckq5cuaLt27fLw8NDjRo1ynT/AAAAAADkhRwVwJ2dnXX58uXbtouNjZWzc466KtISok8r4ezJgg4DAAAAAFAA8ir3njJlinbt2iV/f3/Nnz9fZcqUybBthQoV1KZNG23cuFETJkzQm2++KZPJpKSkJL399tu6evWqXnjhBXl5eWW6fwAAAAAA8kKOqtI1a9bU/v37FRUVpQoVKqTbJjIyUvv371e9evVy0hUAAAAAAEVSXuTely5d0ty5cyVJfn5+mjBhQoZthw0bplKlSmnkyJE6cOCA5syZo02bNql69erav3+//vnnH9WuXVsDBw7M+sEBAAAAAJDLzDnZuFu3bkpISNCAAQP0999/p1l/6NAhvfLKK0pKSlKXLl1y0hUAAAAAAEVSXuTee/fuVUJCgiQpLCxMq1evzvDP1atXJV1/CnzZsmV66qmndOXKFW3cuFGurq566aWXNG/evFsO0Q4AAAAAQH7J0RPgDz/8sLZt26Zly5bpySefVPHixWUymbRlyxa1bt1aZ8+elWEY6tixox599NHcihkAAAAAgCIjL3Lvli1b6tChQ1mOpUyZMhozZkyWtwMAAAAAIL/keGLuMWPGqEGDBpo9e7ZOnDghSYqJiZEklS9fXs8//7x69uyZ024AAAAAACiyyL0BAAAAAMicHBfAJalLly7q0qWLzp8/r9OnT8tiscjf3z/DuckAAAAAAEDWkHsDAAAAAHB7OZoD3ComJkY7duyQv7+/6tWrpwYNGighIUFff/21zp8/nxtdAAAAAABQpJF7AwAAAABwezkugH/zzTdq2bKl3n//fbvle/fu1ejRo/Xggw/q+++/z2k3AAAAAAAUWeTeAAAAAABkTo4K4L/++qvefvttOTs7q1mzZnbrGjVqpN69e8swDA0dOlS///57jgIFAAAAAKAoIvcGAAAAACDzclQAnzVrlpydnTVv3jy98cYbdusqV66s119/XfPmzZPJZNLMmTNzFCgAAAAAAEURuTcAAAAAAJmXowL44cOH1bRpU9WtWzfDNnXr1lWjRo20Z8+enHQFAAAAAECRRO4NAAAAAEDm5agAnpCQIHd399u28/HxUUpKSk66AgAAAACgSCL3BgAAAAAg83JUAK9cubJ27typuLi4DNtcu3ZNu3btUsWKFXPSFQAAAAAARRK5NwAAAAAAmZejAvgjjzyiS5cuKTQ0VBcuXEizPiYmRq+99pouXryozp0756QrAAAAAACKJHJvAAAAAAAyzzknG/fo0UPff/+9tm3bptatW6tOnToqV66cJOnMmTM6cOCAkpKSVK9ePfXq1Ss34gUAAAAAoEgh9wYAAAAAIPNyVAB3cXHRnDlz9Mknn+jbb7/Vnj17tGfPHtv6YsWKqVu3bnr99dfl6uqa01gBAAAAAChyyL0BAAAAAMi8HBXAJcnT01MjRozQG2+8ob/++kvnz59Xamqq/P39Vbt2bXl4eORGnAAAAAAAFFnk3gAAAAAAZE6OCuA9e/ZU5cqV9d5778nV1VUhISG5FRcAAAAAABC5NwAAAAAAWZGjAvi+fftkNptzKxYAAAAAAHATcm8AAAAAADIvRxm0p6enDMPIrVgAAAAAAMBNyL0BAAAAAMi8HBXA+/fvrx07dujLL79UUlJSbsUEAAAAAAD+H7k3AAAAAACZl6Mh0CMjI1WpUiVNmDBBH3/8sSpVqiRvb+90h2YzmUxasGBBTroDAAAAAKDIIfcGAAAAACDzclQAnzt3ru3/U1JSdOzYsQzbmkymnHQFAAAAAECRRO4NAAAAAEDm5agAPm/evNyKAwAAAAAApIPcGwAAAACAzMtRAbxJkya5FQcAAAAAAEgHuTcAAAAAAJmXowL4jZKTk3Xw4EGdPn1apUqVUqNGjfTPP/+ofPnyudUFAAAAAABFGrk3AAAAAAC3luMCeEpKij7//HN9/fXXunLliiSpc+fOatSokd58801d/T/27js8inpt4/i9mwAJJfTQLbREUZBeFFFAmlIiVdBYkCJNUF+KgsgBQRDBAoLAAQUVRElCESF0pIcapamglIAJNUAghCT7/sGVHGMCJCS7szvz/VzXuY7O/Hb3+Tmb3b3nmRIXp8mTJ+vee+/NdrEAAAAAAFgR2RsAAAAAgMyxZ+fBiYmJ6tWrl6ZPn65r167poYceksPhSF0fFxenAwcOqFu3bjp79my2iwUAAAAAwGrI3gAAAAAAZF62GuDffPONNm/erEcffVRr1qzR999/n2b9t99+q3bt2uns2bP673//m61CAQAAAACwIrI3AAAAAACZl60GeGhoqAoVKqRPPvlE/v7+6db7+Pho9OjR8vf318aNG7PzUgAAAAAAWBLZGwAAAACAzMtWA/yvv/5SrVq1lC9fvluOyZUrl6pWrapTp05l56UAAAAAALAksjcAAAAAAJmXrQa4t7e3Ll26dMdxFy9elLe3d3ZeCgAAAAAASyJ7AwAAAACQedlqgD/wwAP65ZdfFBUVdcsxJ06c0C+//KLAwMDsvBQAAAAAAJZE9gYAAAAAIPOy1QB/7rnndO3aNfXp00cHDhxIt/7w4cPq37+/EhIS1KFDh+y8FAAAAAAAlkT2BgAAAAAg87J1bbRWrVppy5Yt+uGHH9S+fXsVKFBANptNP//8s5544glFR0fL4XDo6aefVtu2bXOqZgAAAAAALIPsDQAAAABA5mX75mBjxozRI488ov/+97/6888/JUkXLlyQJJUuXVovvviigoODs/syCgsL05AhQzRnzhw1aNAg3fq6devq4sWLt3x8ZGSk8uTJk+06AAAAAABwNVdlbwAAAAAAPF22G+CS1KFDB3Xo0EFnzpzR6dOnlZycrOLFi6tMmTI58fSKjIzU6NGjb7k+KipKFy9eVIkSJVSnTp0Mx9jt2braOwAAAAAAhnJ29gYAAAAAwAyy3ABPSkrSt99+q/DwcJ09e1alS5dW69at1a5dOxUvXlzFixfP0QLXrl2rIUOG6MqVK7ccc/DgQUlSixYt9Pbbb+fo6wMAAAAA4Gquzt4AAAAAAJhFlhrgCQkJ6t69u3bu3CmHwyFJ+vPPP7VlyxatW7dOn3zySY4VFh0drY8//lihoaHy8fFRsWLFdPbs2QzH7t+/X5JUpUqVHHt9AAAAAACM4MrsDQAAAACA2WTpuuALFixQRESE/P39NXz4cH3xxRd688035efnp/DwcC1evDjHCps8ebJCQkJUpUoVfffddypfvvwtx6acAf7QQw/l2OsDAAAAAGAEV2ZvAAAAAADMJktngK9YsUI+Pj6aP3++SpcuLUlq1KiRGjZsqKCgIP34449q27ZtjhRWvnx5jR8/Xm3atLnj/bv3798vHx8f/frrrxo+fLh+//132Ww21ahRQ3369FG1atVypCYAAAAAAJzNldkbAAAAAACzydIZ4EeOHFGtWrVSA3iKwMBAValSRYcOHcqxwnr27Kl27drdsfl97tw5xcTEKD4+XoMHD1ZycrLq1q2rQoUKaf369eratauWL1+eY3UBAAAAAOBMrszeAAAAAACYTZbOAI+Li1PBggUzXFe2bFn99ttvOVJUVqTc/7tw4cKaNm2aqlevLklyOBz66quvNG7cOA0bNkw1atRQyZIls/Va3t5ZOl4g27y8XPN6rnoduD8zvRfMNBcgq8z0/jfTXAAAyCx3zN4AAAAAAHiKLDXAExMT5eXlleG6XLly6caNGzlSVFY0bNhQP//8sxwOh0qUKJG63Gaz6aWXXlJERIRWr16tH374Qf369bvr17HbbSpcOF9OlOx2/Px8jS4ByHG8rwFz4G8ZAGBF7pi9AQAAAADwFFlqgLsjm80mf3//W65/8skntXr1av3666/Zep3kZIcuXbqarefIKi8vu0t2/F+6dE1JSclOfx24P1e951yB9zWsjL9lAABcy8/Pl6uWAAAAAADgJjy+AX4nxYsXlyRdu3Yt28+VmGjOHfBJScmmnRusi/c1YA78LQMAAAAAAAAAssLjD1H/7rvvNHDgQK1evTrD9SdOnJCkbN//GwAAAAAAAAAAAADg3rJ8Bvjq1avVpEmTdMsvXLggSRmuk25eqvxWTersiI6O1k8//aRr166padOmadY5HA4tXrxYkvTYY4/l+GsDAAAAAOAM7pa9AQAAAADwFFlugF+9elVXr976XthRUVEZLrfZbFl9qUwJCgrSzJkztX79ei1cuFCdOnWSJCUnJ+uzzz5TZGSkKlasqBYtWjjl9QEAAAAAyGnulr0BAAAAAPAUWWqAz50711l13LVy5crpvffe0/DhwzVixAh9/fXXuu+++3To0CEdO3ZMxYoV02effaZcuXIZXSoAAAAAAHfkjtkbAAAAAABPkaUGeJ06dZxVR7a0b99e999/v2bOnKndu3fr6NGj8vf31wsvvKDXXntNRYsWNbpEAAAAAAAyxV2zNwAAAAAAniDLl0A3yrx58267vkaNGpo2bZqLqgEAAAAAAAAAAAAAuBu70QUAAAAAAAAAAAAAAJATaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLyNLgAAAAAAALiHsLAwDRkyRHPmzFGDBg3Sra9bt64uXrx4y8dHRkYqT548TqwQAAAAAIDbowEOAAAAAAAUGRmp0aNH33J9VFSULl68qBIlSqhOnToZjrHbudAcAAAAAMBYNMABAAAAALC4tWvXasiQIbpy5cotxxw8eFCS1KJFC7399tuuKg0AAAAAgCyhAQ4AAAAAgEVFR0fr448/VmhoqHx8fFSsWDGdPXs2w7H79++XJFWpUsWVJQIAAAAAkCVcmwwAAAAAAIuaPHmyQkJCVKVKFX333XcqX778LcemnAH+0EMPuao8AAAAAACyjDPAAQAAAACwqPLly2v8+PFq06bNHe/fvX//fvn4+OjXX3/V8OHD9fvvv8tms6lGjRrq06ePqlWr5qKqAQAAAAC4Nc4ABwAAAADAonr27Kl27drdsfl97tw5xcTEKD4+XoMHD1ZycrLq1q2rQoUKaf369eratauWL1/uoqoBAAAAALg1zgAHAAAAAAC3lXL/78KFC2vatGmqXr26JMnhcOirr77SuHHjNGzYMNWoUUMlS5bM1mt5e6dtxnt5mePY/czOwyzzlaw3Z7PMAwAAAPB0NMABAAAAAMBtNWzYUD///LMcDodKlCiRutxms+mll15SRESEVq9erR9++EH9+vW769ex220qXDhfTpTsdvz8fI0uweWsNmerzRcAAABwVzTAAQAAAADAbdlsNvn7+99y/ZNPPqnVq1fr119/zdbrJCc7dOnS1TTLvLzspmgsXrp0TUlJyXccZ5b5Stabc2bnCwAAACDr/Px8M33VJRrgAAAAAAAgW4oXLy5JunbtWrafKzHRnA3EpKRk087tVqw2Z6vNFwAAAHBX3JwIAAAAAADc1nfffaeBAwdq9erVGa4/ceKEJGX7/t8AAAAAAGQXZ4ADAAAAAIDbio6O1k8//aRr166padOmadY5HA4tXrxYkvTYY48ZUR4AAAAAAKk4AxwAAAAAANxWUFCQcufOrfXr12vhwoWpy5OTk/Xpp58qMjJSFStWVIsWLQysEgAAAAAAzgAHAAAAAAB3UK5cOb333nsaPny4RowYoa+//lr33XefDh06pGPHjqlYsWL67LPPlCtXLqNLBQAAAABYHGeAAwAAAACAO2rfvr2++eYbNW7cWNHR0Vq7dq0SExP1wgsvaMmSJSpfvrzRJQIAAAAAwBngAAAAAADgpnnz5t12fY0aNTRt2jQXVQMAAAAAQNZxBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUvI0uAAAAAABcwW63yW63OfU1kpMdSk52OPU1AAAAAAAAcGs0wAEAAACYnt1uU+HCvrLbvZz6OsnJSbpw4RpNcAAAAAAAAIPQAAcAAABgejfP/vbSn8tm6tq50055Dd+ipXT/Mz1kt9togAMAAAAAABiEBjgAAAAAy7h27rSuRR83ugwAAAAAAAA4id3oAgAAAAAAAAAAAAAAyAk0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GF+Dp7Hab7HabU57by4vjEwAAAAAAAAAAAAAgs2iAZ4PdblOhQnlpVAMAAAAAAAAAAACAG/CYBnhYWJiGDBmiOXPmqEGDBunWnz17Vp9//rl+/vlnRUdHq3jx4mrRooX69OmjfPnyOaUmu90mLy+7ps7frKiY2Bx//moBpdW5xSM5/rwAAAAAAAAAAAAAYEYe0QCPjIzU6NGjb7k+JiZGXbp0UVRUlCpXrqwnnnhCv/zyi2bNmqWff/5Z3377rfLnz++0+qJiYvVX1IUcf97Sxf1y/DkBAAAAAAAAAAAAwKzc/trda9euVffu3XXlypVbjhkzZoyioqLUs2dPLV26VJ9++qlWrlypli1b6vDhw5oyZYoLKwYAAAAAAAAAAAAAGMFtG+DR0dEaNmyY+vTpoxs3bqhYsWIZjjt+/LhWrVqlUqVKacCAAanLc+fOrdGjRytfvnz67rvvFB8f76rSAQAAAAAAAAAAAAAGcNsG+OTJkxUSEqIqVarou+++U/ny5TMct3HjRiUnJ6tRo0bKlStXmnUFChRQvXr1dPXqVW3fvt0VZQMAAAAAAAAAAAAADOK2DfDy5ctr/Pjx+v777xUQEHDLcb/99pskqXLlyhmur1ixYppxAAAAANyT3W6Tt7fdKf/z8nLb6AMAAAAAAIAc5G10AbfSs2fPTI07c+aMJKl48eIZrk9Zfvbs2ZwpDAAAAECOs9ttKlQoL41qAAAAAAAAZIvbNsAz6+rVq5IkHx+fDNenLE8Zlx3e3ml3xpll55xZ5oHsM9N7wUxzAbLKTO9/M80FwO15ed08S3vq/M2KionN8eevFlBanVs8kuPPmxE+uwAAAAAAAIzj8Q1wLy8vSZLNZstwvcPhSPP/d8tut6lw4XzZeg535efna3QJQI7jfQ2YA3/LgPVExcTqr6gLOf68pYv75fhz3gqfXQAAAAAAAMbx+AZ43rx5JUnXr1/PcH3Kcl/f7O2ESk526NKltGeRe3nZTbFz69Kla0pKSja6DLgBs7ynJd7XsDb+lgF4Ij674Mn8/Hw58x8AAAAAADfh8Q1wf39/Sf+7F/i/3eke4VmRmGjOnVhJScmmnRusi/c1YA78LQPwRHx2AQAAAAAAGMfjD1GvXLmyJOnIkSMZrv/9998lSQEBAS6rCQAAAAAAAAAAAADgeh7fAG/YsKEkad26dUpKSkqz7vLly9q+fbvy5s2rmjVrGlEeAAAAAAAAAAAAAMBFPL4BXqZMGT355JM6efKkPvzwQzkcDklSQkKC3n33XcXFxalLly7Knz+/wZUCAAAAAAAAAAAAAJzJ4xvgkjRixAj5+/trzpw5atWqlQYMGKDmzZtr+fLlqlKlivr162d0iQAAAAAAuL2wsDAFBARoy5YtGa4/e/as/vOf/+ipp55S1apV1aRJE3344YeKi4tzcaUAAAAAAGTMFA3wMmXK6IcfflDHjh11+fJlrVu3Trlz51bv3r01d+5c5cuXz+gSAQAAAABwa5GRkRo9evQt18fExKhTp0765ptv5OPjoyeeeELJycmaNWuWnnvuOV25csWF1QIAAAAAkDFvowvIrHnz5t12fYkSJTRmzBgXVQMAAAAAgHmsXbtWQ4YMuW0Te8yYMYqKilLPnj315ptvSrp5+7HBgwfrp59+0pQpUzR06FBXlQzgDux2m+x2m9OePznZoeRkh9OeHwAAALhbHtMABwAAAAAAOSs6Oloff/yxQkND5ePjo2LFiuns2bPpxh0/flyrVq1SqVKlNGDAgNTluXPn1ujRo7Vx40Z99913GjhwoHx8fFw5BQAZsNttKlzYV3a7l9NeIzk5SRcuXKMJDgAAALdDAxwAAAAAAIuaPHmyQkND9dBDD2ns2LEaM2ZMhg3wjRs3Kjk5WY0aNVKuXLnSrCtQoIDq1aunNWvWaPv27WrUqJGrygdwCzfP/vbSn8tm6tq50zn+/L5FS+n+Z3rIbrfRAAcAAIDboQEOAAAAAIBFlS9fXuPHj1ebNm1kt9tvOe63336TJFWuXDnD9RUrVtSaNWv022+/0QAH3Mi1c6d1Lfq40WUAAAAALkUDHAAAAAAAi+rZs2emxp05c0aSVLx48QzXpyzP6OxxAAAAAABciQY4AAAAAAC4ratXr0rSLe/vnbI8ZVx2eHunPRPdy+vWZ6Z7kszOwyzzlaw3Z3eah6tqcac5AwAAAClogAMAAAAAgNvy8vKSJNlstgzXOxyONP9/t+x2mwoXzpet53BXfn6+Rpfgclabs9XmK1lzzgAAAHB/NMABAAAAAMBt5c2bV5J0/fr1DNenLPf1zV4zLDnZoUuX0p5F7uVlN0WT7dKla0pKSr7jOLPMV7LenDM7X1dw1X9Td5ozAAAAzM3PzzfTVyCiAQ4AAAAAAG7L399f0v/uBf5vd7pHeFYkJpqzmZaUlGzaud2K1eZstflK1pwzAAAA3B836gEAAAAAALdVuXJlSdKRI0cyXP/7779LkgICAlxWEwAAAAAAGaEBDgAAAAAAbqthw4aSpHXr1ikpKSnNusuXL2v79u3KmzevatasaUR5AAAAAACkogEOAAAAAABuq0yZMnryySd18uRJffjhh3I4HJKkhIQEvfvuu4qLi1OXLl2UP39+gysFAAAAAFgd9wAHAAAAAAB3NGLECO3fv19z5szRhg0bVKlSJf3yyy86deqUqlSpon79+hldIgAAAAAAnAEOAAAAAADurEyZMvrhhx/UsWNHXb58WevWrVPu3LnVu3dvzZ07V/ny5TO6RAAAAAAAOAMcAAAAAADcNG/evNuuL1GihMaMGeOiagAAAAAAyDrOAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKXAJdLgVu90mu93m1NdITnYoOdnh1NcAAAAAAAAAAAAA4Ho0wOE27HabChf2ld3u5dTXSU5O0oUL12iCAwAAAAAAAAAAACZDAxxu4+bZ3176c9lMXTt32imv4Vu0lO5/pofsdhsNcAAAAAAAAAAAAMBkaIAjS5x5iXIvr5u3pL927rSuRR93ymsAAAAAAAAAAAAAMC8a4Mg0u92mQoXypjaqAQAAAAAAAAAAAMCd0ABHptntNnl52TV1/mZFxcTm+PNXCyitzi0eyfHnBQAAAAAAAAAAAGANNMCRZVExsfor6kKOP2/p4n45/pwAAAAAAAAAAAAArINrWQMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLgEOgAAAAAAAOBCdrtNdrvNac/v5cU5LwAAALAuGuAAAAAAAACAi9jtNhUqlJcmNQAAAOAkNMABAAAAAAAAF7HbbfLysmvq/M2Kiol1ymtUCyitzi0eccpzAwAAAO6OBjgAAAAAAADgYlExsfor6oJTnrt0cT+nPC8AAADgCbjWEgAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATMHb6AJy0tq1a/Xaa6/dcn2rVq00efJkF1YEAAAAAAAAAAAAAHAVUzXADxw4IEmqXbu2SpYsmW599erVXV0SAAAAAAAAAAAAAMBFTNkAHz58uAIDAw2uBgAAAAAAAAAAAADgSqa6B/iBAweUJ08eVaxY0ehSAAAAAAAAAAAAAAAuZpoG+IULF3T69GkFBATI29tUJ7YDAAAAAAAAAAAAADLBNJ3ilMuflypVSh9++KHWrFmjU6dOqVixYmrevLl69+6tggULGlwlAAAAAAAAAAAAAMBZTHMG+P79+yVJK1eu1Pz583XfffepRo0aio2N1ezZs9WpUyedOXPG4CoBAAAAAAAAAAAAAM5imjPADx48KEl64oknNHHiRBUoUECSdP78eQ0aNEjbtm3TiBEjNH369Lt+DW/vtMcLeHmZ4/iBzM7DLPOVzDWXnGSm/y5mmguQVWZ6/5tpLgBuz0x/72aaC5CRtWvX6rXXXrvl+latWmny5MkurAgAAAAAgP8xTQN8/Pjxev3111WyZEn5+PikLi9SpIgmTJigFi1aaN26dTp58qTKli2b5ee3220qXDhfTpbsNvz8fI0uweWsOGerYRsD5sDfMgBPxGcXzC7lFmS1a9dWyZIl062vXr26q0sCAAAAACCVaRrguXPn1n333ZfhuhIlSujBBx/Uzp07tX///rtqgCcnO3Tp0tU0y7y87KbYuXXp0jUlJSXfcZxZ5itlfs5WwzYGzIG/ZQCeiM8ueDI/P19Lnfmf0gAfPny4AgMDDa4GAAAAAIC0TNMAv5NixYpJkq5du3bXz5GYaM6dWElJyaad261Ycc5WwzYGzIG/ZQCeiM8umN2BAweUJ08eVaxY0ehSAAAAAABIxxSHqCckJOidd95Rnz59dPXq1QzHnDhxQpIyvDwbAAAAAAC4swsXLuj06dMKCAiQt7dljqkHAAAAAHgQUzTAc+fOrS1btmjNmjXauHFjuvWHDh3SoUOHVKBAAT3yyCOuLxAAAAAAABNIufx5qVKl9OGHH6pFixaqWrWqGjdurPHjxys2NtbgCgEAAAAAVmeKBrgkde7cWZL0wQcf6Pjx46nLz549q7fffltJSUnq3r27fHx8jCoRAAAAAACPtn//fknSypUrNX/+fN13332qUaOGYmNjNXv2bHXq1ElnzpwxuEoAAAAAgJWZ5nplr7zyiiIiIrRp0yY988wzqlWrlnLnzq3t27fr6tWrat68uXr27Gl0mQAAAAAAeKyDBw9Kkp544glNnDhRBQoUkCSdP39egwYN0rZt2zRixAhNnz79rl/D2zvtsfpeXuY4dj+z8zDLfCXrzdlq85XMNRcAAACYh2ka4Llz59aMGTP0zTffKDQ0VLt27ZLdblelSpXUsWNHdejQQTabzegyAQAAAADwWOPHj9frr7+ukiVLprnCWpEiRTRhwgS1aNFC69at08mTJ1W2bNksP7/dblPhwvlysmS34efna3QJLme1OVttvpI15wwAAAD3Z5oGuCR5eXkpODhYwcHBRpcCAAAAAIDp5M6dW/fdd1+G60qUKKEHH3xQO3fu1P79+++qAZ6c7NClS1fTLPPyspuiyXbp0jUlJSXfcZxZ5itZb85Wm6+U+TkDAAAA2eXn55vpKxCZqgEOAAAAAACMU6xYMUnStWvX7vo5EhPN2UxLSko27dxuxWpzttp8JWvOGQAAAO6PG/UAAAAAAIA7SkhI0DvvvKM+ffro6tWrGY45ceKEJKlkyZKuLA0AAAAAgFQ0wAEAAAAAwB3lzp1bW7Zs0Zo1a7Rx48Z06w8dOqRDhw6pQIECeuSRR1xfIAAAAAAAogEOAAAAAAAyqXPnzpKkDz74QMePH09dfvbsWb399ttKSkpS9+7d5ePjY1SJAAAAAACL4x7gAAAAAAAgU1555RVFRERo06ZNeuaZZ1SrVi3lzp1b27dv19WrV9W8eXP17NnT6DIBAAAAABZGAxwAAAAAAGRK7ty5NWPGDH3zzTcKDQ3Vrl27ZLfbValSJXXs2FEdOnSQzWYzukwAAAAAgIXRAAcAAAAAAJnm5eWl4OBgBQcHG10KAAAAAADpcA9wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKXgbXQDg7ux2m+x2m9OePznZoeRkh9OeHwAAAAAAAAAAALAKGuDAbdjtNhUqlFdeXs67WEJSUrIuXrxKExwAAAAAAAAAAADIJhrgwG3Y7TZ5edk1df5mRcXE5vjzl/EvqL7PPSq73UYDHAAAAAAAAAAAAMgmGuBAJkTFxOqvqAtGlwEAAAAAAAAAAADgNpx3XWcAAAAAAAAAAAAAAFyIM8ABAMgBdrtNdrvNac+fnOzgVgkAAAAAAAAAANwBDXAAALLJbrepcGFf2e1eTnuN5OQkXbhwjSY4AAAAAAAW4eyD7SUOuAcAmBMNcAAAsulmIPXSn8tm6tq50zn+/L5FS+n+Z3rIbrcRSgEAAAAAsABXHGwvccA9AMCcaIADAJBDrp07rWvRx40uAwAAAAAAeDhnH2wvccA9AMC8aIADAAB4IC6FBwAAAADmx8H2AABkHQ1wAAAAD2O321SoUF55edmd+jpJScm6ePEqTXAAAAAAAAAAHoMGOAAAgIex223y8rJr6vzNioqJdcprlPEvqL7PPcql8AAAAAAAAAB4FBrgAAAAHioqJlZ/RV0wugwAAAAAAAAAcBs0wAEAAHBLzrzMOvcYBwAAAODJ7Hab7HabU57b2be8AgDAzGiAAwAAIJ2CBXzkSE6Wn5+v014jOTlJFy5cowkOAAAAwOPY7TYVKpSXRjUAAG6IBjgAAADSyeeTWza7XX8um6lr507n+PP7Fi2l+5/pwT3GAQAAAHgku90mLy+7ps7frKiY2Bx//moBpdW5xSM5/rwAAFgBDXAAAADc0rVzp3Ut+rjRZQAAAACAW4qKidVfURdy/HlLF/fL8ecEAMAqaIADAAAAAFzCmffJTJGc7ODKEgAAAAAAWBgNcAAAAACA07nqPplJScm6ePEqTXAAAAAAACyKBjgAAAAAwOmcfZ9MSSrjX1B9n3tUdruNBjgAAAAAABZFAxwAAACwKGdfjppLUSMjzrpP5j858yxz3tcAAAAAALg3GuAAAACABdntNhUu7Cu73ctpr5GcnKQLF67RLITLFCzgI0dysvz8fJ32GryvAQAAAABwbzTAAQAAAAu6efa3l/5cNlPXzp3O8ef3LVpK9z/Tg0tRw6Xy+eSWzW7nfQ0AAAAAgIXRAAfcAJdoNDdnX15WYjsDAO7etXOndS36uNFlADmK9zUAAAAAANZFAxwwEJdoND9XXF5WYjsDAAAAAAAAAABINMABQ3GJRvNz9uVlJbYzAJiZM68i4swr0AAAAAAAAABGoQEOuAEu0WgsVzQXrLaNnX3Zdy75DsAK7HabChXKS6MaAAAgE7j9GAAAAFLQAAdgaTQXcp4rLvvOJd8BWIHdbpOXl11T529WVExsjj9/tYDS6tzikRx/XgAAAFfj9mMAAAD4JxrgACyN5kLOc/Zl37nkOwCriYqJ1V9RF3L8eUsX98vx5wQAADACtx8DAADAP9EABwDRXHAGq132HQAAAABwa9x+DAAAAK5CAxwAAAAAAACA03D7Medw9n3Puec5AADwVDTAAQAAAAAAADgNtx/Lea647zn3PAdcg4NZAHgid//sogEOAAAAAAAAwOm4/VjOcfZ9z7nnOeAaHMwCwBN5wmcXDXAAAAAAAAAA8EDc9xzwbBzMAsATecJnFw1wAIDpOftyLNzHDgAAAAAAAHeLg1kAeCJ3/uwyXQN8x44dmj59ug4ePKj4+HgFBAToxRdfVMuWLY0uDQBgALvdpkKF8tKkBgAAyEFkbwAAAACAuzJVA3zp0qX6v//7P3l7e6tu3bry8vLS1q1bNXDgQB05ckT9+vUzukQAcAvOPCPa3RrNdrtNXl52TZ2/WVExsU55jWoBpdW5xSNOeW4AAAB3Q/YGAAAAPJezr5aZnOzgkvsG44qoJmqAnzt3TsOHD5evr6/mzp2rhx9+WJJ05MgRBQcHa8qUKWratKkCAwMNrhQAjGXVM6KjYmL1V9QFpzx36eJ+TnleAAAAd0P2BgAAVkITCWbjin3DSUnJunw5Xg6H85rgNNlvzar7///NNA3wb775RvHx8erRo0dqAJekChUq6I033tDbb7+tr776SuPGjTOwSgAwnrPPiOZsaAAAAPMiewMAjMRZi3AlmkjIKe702eXsfcMB9xVXcOuaKlQob44/9z8lJyfpwoVrfGZngCui3mSaBvj69eslSU899VS6dU2aNJHNZtOGDRtcXBUAuC9nnRHN2dAAAADmRfYGABjFbrepcGFf2e1eTnsNGirGs1KjUPKMJpIVOPN9Z7PZ5OeXx+0+u5y5b9hmt+vPZTN17dzpHH9+SfItWkr3P9NDdruNz+vbsPoVUU3TAP/jjz8kSRUrVky3rlChQipWrJjOnDmjc+fOqWjRoq4uDwAAAAAAj0f2BgAY5WaDystpTRUaKsZz14McrN5EMjtXnelvtc+ua+dO61r0caPLgIWZogEeGxur69evK1++fMqXL1+GY/z9/XXmzBmdOXOGEA4AgAm501HiAOAu+GxETiJ7AwBux1X3SqapYixnbmcvLzsHOcDlXHW7SD67ANeyOZx5F3oXOX36tJ544gkVK1ZMmzdvznDMc889p927d2v+/PmqUaNGll/D4Ui/Y8dmk+x2u2KvxCspKfmuar+d3Lm8lD9vHt2IuyRHclKOP7/N7qVc+fyUnJyszLwLPH2+kvXm7G7zlaw3Z97X5t/GkvXm7I7va+lmYLHZnLezxeFwyJk/m7Ly1FZ8X6c+znmb2Omy+vbx9L9lPruy8Dgnvq9tNud/NmZ256GZP7uc/R3kLsjed4fPw0yM9/A5u9t8JevN2R3f16mPc+LXg91ud5ttfLMe13wfusucrfq+dsV2tso2ltzv8zr1cR7805bsfYfxHj5fiff1nZj5sysr30GmOAPcbr959N/tJp2yw/pud1zbbDZ5eWX8/AXz+9zVc2ZWrnzOvQxKyn+/zPL0+UrWm7O7zVey3px5X+c8d5uvZL05u+P72pmc3US6G1Z8X1uRp/8t89llbrfLSbfCZ5fnIntnD5+Hd+bpc3a3+UrWm7M7vq+dzd22sSu425x5X+c8q21jyf3mbEWe/rfsbu9rK352uRurf3aZ4t2Rcum1+Pj4W45JSEiQJOXNm9clNQEAAAAAYCZkbwAAAACAJzBNAzxv3ry6fPnyLYN4TEyMJKl48eKuLA0AAAAAAFMgewMAAAAAPIEpGuA2m02VK1eWJB05ciTd+osXL+rs2bMqUqSIihUr5uryAAAAAADweGRvAAAAAIAnMEUDXJIaNmwoSVq9enW6datXr5bD4VCjRo1cXRYAAAAAAKZB9gYAAAAAuDvTNMDbt28vX19fffnll9q9e3fq8qNHj+rjjz+WzWbTyy+/bGCFAAAAAAB4NrI3AAAAAMDd2RwOh8PoInLKwoULNWLECHl5ealu3brKnTu3tm7dquvXr+vNN99Uz549jS4RAAAAAACPRvYGAAAAALgzUzXAJWnjxo2aOXOmfv31V3l5ealixYp65ZVX1KxZM6NLAwAAAADAFMjeAAAAAAB3ZboGOAAAAAAAAAAAAADAmkxzD3AAAAAAAAAAAAAAgLXRAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAOeby5ctZfsz27dudUAmAuzVlyhT99ttvRpcBAAAA4BbI3oDnI3sDAOBcNMDhcgkJCfr111916NAhJSYm3nLc+fPnFRER4cLKXG/79u2aM2eOvv32W504ccLocrItODhYFy9ezNTY69eva8yYMXr55ZedWxSALJkyZYoOHz5sdBlAjmvSpInWrFljdBmGSE5O1vHjx9MsczgcWr58ucaMGaOPPvpI+/btM6i6nHPq1CnFx8dnevyJEycUFhbmvIIMcP78eW3dulXLly/XTz/9pO3bt2f6txkA8yF7/w/Zm+wNuBuyN8yK7E32/jeyN4zibXQByLz4+HidP39epUuXNrqUuzZ37lx98sknunr1qiSpQIECevXVV/Xqq6/Kbk97PMamTZs0ZMgQHTx40IhSc8zhw4f1xRdf6PDhwypdurR69eqlGjVqaMCAAVqzZo0cDockydvbW/3791evXr0MrvjuHTx4UM8//7y+/PJLFStW7Jbj9u3bpyFDhuivv/667TizOn/+vI4cOaLatWsbXYpLXL58WePHj9eYMWOMLsVlrLaNzaBJkyZ6++231aRJE6NLcZkHHnhAEyZMUOvWrY0uxSWioqJSf39Yyfr16zVq1CidOXNGv/76q6SbobxPnz7asGFD6u+QWbNmKTg4WMOGDTOy3Gxp0qRJuvf01atXNXr0aL366quqUKFCmvF79uzRsGHD1K5dOxdXmvNWrlypL774IsPfzTabTTVq1NCrr76qJ554wvXF5aDAwEDZbLYsPcZms+nAgQNOqghmRfb2TGTv9Mje1splZG94ArK3+ZG9yd5kb7K3u+AMcANldDRUQkKCwsLCdPbs2XTjw8PDPfrHQVhYmMaOHauAgAANGzZMvXr1ko+PjyZPnqxXXnlFV65cMbrEHPfrr7+qU6dOWr9+vXx9fbVv3z699NJLGjt2rNasWaPu3bsrNDRUX3/9tRo1aqSPP/5YP/30k9Fl37URI0bo6NGj6tatm06fPp1u/Y0bN/TRRx+pa9eu+uuvv9S2bVv9+OOPBlSasx544AEtXbo0zbL4+HhNmTJFJ0+eTDd+06ZNCg4OdlV5TnHy5EmNHj1azz77rJ599lkNHz5cx44dSzcuPDxcrVq10qJFiwyoMudYcRtbjRUDWkr4gnkdOnRIffv2lcPhUPfu3ZWcnCxJmj9/vtavX6/ixYtr4cKF2rNnjwYPHqy5c+d69O+QjN7T169fV1hYmGJiYgyoyDXGjBmjgQMHKioqSu3atdNbb72l//znP3r33Xc1YMAANWnSRPv379drr72mDz74wOhys6V27dqqVatWlv5Xs2ZNo8uGGyB7k73J3mRvT0X2Nv82thqyN8yI7E32Jnu7Z/bmDHADZfSFHxcXp2HDhmn27NmmOzp3zpw5ql27tubNm5e6rE+fPnrvvfcUEhKil156SV9++aXy589vYJU5a/LkySpbtqzmzZunIkWK6OrVq+rVq5e++eYbde7cWW+99Vbq2Fq1aun555/Xf//7X7Vs2dLAqu9et27dVLBgQQ0dOlTdunXTl19+qXvuuUfSzSPUhwwZot9++02lS5fWqFGj1LBhQ4MrzhkZfelfu3ZNU6dOVc2aNVW2bFkDqnKegwcP6oUXXtCVK1fk4+MjHx8fHThwQMuXL9eCBQtUuXJlXb58WcOHD1d4eLi8vLzUs2dPo8vOFqtt46NHj2b5MpgccQ+4n5kzZ8rf31+LFy+Wn59f6vJvvvlGNptNb7zxhqpWrSpJevnll7Vjxw7Nnz/fY3+H3IqZdzgtWbJEX3/9tdq1a6d3331XefPmzXBcXFyc3n//fX311VeqXr26mjdv7uJKc8Y/cwSQFWRvsjfZm+zticjeN5l5G5O9AXMge99E9iZ7uxsa4G7IrB8Uf/75p4YOHZpmWe7cuTV27FgVKlRIs2fP1quvvqrZs2ff8gPE0+zZs0dvvPGGihQpIknKmzevXn/9dT3//PN67LHH0o1v2bKlJkyY4Ooyc9QzzzyjAgUKaODAgerWrZtmzpypNWvWaPr06UpMTFTXrl315ptvKl++fEaX6nRm/Vv+9NNPFR8fr48++khPP/20JCkyMlJvvPGGxowZo4kTJyo4OFh//fWXHn74YY0ZM0YBAQEGV+0cZt3G06dP1/Tp07P0GE+/ZKZVZfVyRp5u4cKF2rJlS6bH22w2jR071okVOVdERIQ6deqUJoCfOHFCR48elbe3t5566qk04x999FF9+umnri4T2TB//nw98sgjdzy6PF++fBo7dqyOHDmi77//3mND+I0bN5QrV64sPWbfvn2qVq2akyqCpzPrbzmyN9mb7G0OZO//Mes2JntbB9n79sjecHdk7ztzx+xNAxwu4+vrq4sXL2a4bvDgwbp69aoWLFig3r17a+bMma4tzkny58+vS5cupVkWEBCgRo0ayds7/Z/fhQsXlCdPHleV5zSNGjXSrFmz9Nprr+nZZ5+Vw+HQvffeqzFjxqhWrVpGl4dsioyMVJcuXVIDuCRVrVpVgwcP1qBBgzRo0CBFRUXprbfe0iuvvJLuHoNwf02bNjXtjpPbsVpAk6Rp06Zp4cKFmR5vs9n01VdfObEi54qIiMjSGRaevo0vXLigkiVLplm2bds2SVK1atXS7RD38fHR9evXXVYfsu+PP/7I0j1smzRpou+++86JFTnXs88+q4kTJ2bqOyohIUGTJ0/W3LlztX//fhdUB7gPsvdNZG+yt6cje5sf2TtzPD2XSWTvO/H0bUz2Nj+y9625c/amAQ6XqVu3rubOnaunnnpKlSpVSrd+5MiRunLlipYtW6ZXXnlFjRo1MqDKnPXoo4/qyy+/VPXq1VW/fn1JUoECBfTFF1+kG7tv3z7NmzcvdZynq1mzpubOnatXX31V58+f13/+8x8CuEnExsYqMDAw3fKHH35YSUlJOnz4sObNm6dHHnnE9cUhRzRr1kytW7c2ugyXs1pAk6QjR47oyJEjmR7v6Uetv/322x59T9esKliwoM6fP59m2aZNm2Sz2fToo4+mG3/kyJHUM+fgGa5evaqiRYtmenzx4sU9+p5sZ8+eVYcOHdS/f3/16NHjlp9Ju3bt0ttvv61jx47p3nvvdXGVgPHI3mRvsrc5kL3Nj+ydOWRvz0P2JnubDdnbM7M3DXC4zBtvvKGuXbsqKChIDz74oD788MM0fxQ2m00TJkxQ7ty5FRISot27dxtYbc546623FBkZqVdeeUW1atW65b0TXnjhBe3atUtFihRJc28yTxcYGKj58+fr5Zdf1muvvaapU6eqXr16RpeFbEpMTMzwbAkfHx9JUs+ePQng8EhWC2iS9OGHH1pqh0vhwoVVpkwZo8twmRo1amj58uXq3r27vLy8dPbsWa1fv16S1KJFizRjL1++rKVLl6pu3boGVIq7lZSUlOGZjbfi5eWlxMREJ1bkXMuWLdOwYcM0adIkrV+/XuPHj1e5cuVS16dcJjblXnvdu3fXgAEDDKwYMAbZm+xN9jYHsjfMiuxtfmRvsrfZkL09M3vTAIfL3Hffffrxxx81depU7dy5M/UH+z/Z7XaNHTtW1atX1yeffKJz584ZUGnOKVq0qBYtWqQFCxYoISHhluN8fHzUoUMHvf7661k6ksjdDBs2LMPl9957r06ePKlevXqpZcuWaY4YMsNRnEjroYceMroE4K5YLaDB/Hr06KEuXbqoc+fOqlOnjtasWaPr16/r6aefVvny5SXd3LG6d+9ejR8/XufPn1e3bt0Mrjp7Vq1apWPHjqX+e3x8vGw2mxYvXqxdu3alGfvbb7+5ujxkU9GiRTVjxgx98803+vDDD9W2bVsNHTpUnTp10o4dO/TOO+/oxIkTCggI0Pvvv89vElgW2ZvsTfa2Br7n4KnI3jAbsjfZ22zMkr1pgBvs6NGjaS75cvnyZUnS4cOH0x1RkpXLpLirwoULa/jw4Xcc17FjRwUFBaX5EPVUPj4+eumll247xiz3XQsNDb3t+uvXryssLCzNMrOE8J07dyopKSn13+Pi4iRJmzdvVnR0dJqxZjjD4nY8/TJNt2KVbVy7dm0VK1bM6DIA5ICHH35Y06ZN0/vvv6/Zs2fLy8tLrVu31qhRo1LHTJgwQXPnzpXdbtewYcNUo0YNAyvOvvDwcIWHh6db/u/fHynM8J317x0Pt2OWHQ/dunVTvXr1NGLECI0cOVLz5s3TkSNH5O3trQEDBqhnz55ZOjof1kD2zhjZ2zORvc2fyzLDDL9jMmKVbUz2BsyD7P0/ZO+byN7uweZwOBxGF2FVgYGBGf7hOxyO2y4/ePCgK8pzOofDoRMnTujixYuSpCJFiqhs2bLGFuVkZp9zVFTUXT3O04/6zOhv+Z8frRmt8+S/5cDAQL322mtq0KBBmuWXL19Wnz59NHToUFWpUiXd42rXru2qEnOc1baxFQUGBlrukmRWm3NoaKhq1aqV5pJNVnLhwgX5+vqmOwtww4YN2r9/v55++mm3vF9TVuzYseOuHlenTp0crsR1Mrov6J2Y6fspIiJCffr00eXLl2Wz2dSnTx/179/f6LLghsje5s6hGTH7nMne/2PmXEb2vsnM29iKrJZDJevNmexN9r4Vsrfn8tTsTQPcQFOmTLmrx/Xr1y+HK3GtyMhIzZo1S5s3b9bVq1fTrMufP78aN26sl19++a4+VNyVFedsJXc6+v5WgoKCcrgS17jVDkTp1jsRJXn0F76VtvE/z4zKCk/eySJZM6Dt2LFDFSpU8OjLfwJWZ8UdD5J05coVTZgwQT/88IPy5MmjHj16aOXKlfrtt99Uv359jRkzRqVLlza6TLgRsrd1cqgV52wlVsplEtk7KzxxG5O9yd4APAfZ2zOzNw1wuNTs2bM1ceJE2e12Va9eXZUqVZKfn58SExN18eJFHThwQAcPHpTdbteQIUMUHBxsdMnZZsU5Z9b06dMVHh6ukJAQo0txuYSEBOXOndvoMu6KVXcgZpWnbuPb7WS5HU/eyQJruNW9Mm/HLJcKRcYWLFigTZs23fX3Goyxfv16jRw5UtHR0apXr55Gjx6tcuXK6caNG/r00081e/Zs+fj46P/+7//UpUsXo8sFDGPFHGrFOWcW2dvzcplE9s4sT93GZG+YFdkb/0b29kxmyN40wOEyGzZsUK9evVS/fn2NHTtWpUqVynDc8ePHNWrUKG3ZskWzZ89W/fr1XVxpzrHinLNi5MiRWrhwocf/eJ8yZUqWAmZkZKSGDRumH3/80YlVISdZaRt/9tlndxXCPX0nixUD2t3s9LXZbPrqq6+cUI3zWfFyVXfaqZYnTx4VKFBAlStXVrNmzdSxY0fZ7XYXVmgsM/wOOXXqlIoUKZLu8nq3cuLECe3atUvt2rVzbmFO8tZbb+nHH39U3rx5NXjwYHXu3DndmD179mjIkCE6ceKE6tSpo/fff99Ulz0GMsOKOdSKc84KM3znSdbKZVZlpW1M9s48srdnIXunR/b2/N8hZG/PzN40wA1ktS/8l19+WWfPnlVISIhy5cp127GJiYlq166d7r33Xk2dOtVFFeY8K845K8zw5Sfd/JHTvXt3/d///d9txyUmJmrKlCmaNWuWkpKSPH7emRUfH6/z58+79eVQ7oRtbH5WDWhZ5clztuK9Ml944YXbrk9KStKlS5d0/Phx3bhxQ48++qimT58ub29vF1VoLDP8DnnggQc0YcKENPcTvHr1qkaPHq1XX31VFSpUSDN+yZIlGjJkiMfOOTAwUA0bNtTo0aNVsmTJW46Lj4/XBx98oAULFihv3rzavXu3C6uEOyJ735pZcqgV55wVZvjOk8hld0L2hiewWg6VrDdnsnd6ZG/P/x1C9s6Yu2dva/yFuams3Nfmn0cQeWoIP3DggF566aU7hlFJ8vb2VsuWLbVkyRIXVOY8VpyzFdWqVUuzZ8/WtWvX9O6772Y45vDhwxoyZIgOHz6sggUL6p133nFxlTmnSZMmevvtt9WkSZPUZQkJCVq+fLkee+wxFStWLM348PBwj/7Cl6y3ja1ozZo1RpfgcocOHTK6BJfy5DB9t+bNm5epcfHx8Zo/f74mTJig+fPn3zG8w31kdCzz9evXFRYWpjZt2qQL4Z5u3LhxmbrHp4+Pj9577z099dRTfB9DEtn7dsySQ604ZyuyWi4je5t/G1sR2dv8yN63Rvb2XGTvjLl79qYBbqDMfPlFRUVp9OjRWr9+vQoUKKCBAwc6vzAniYuLk7+/f6bHlypVSn///bcTK3I+K87ZimbPnq0BAwZo/vz5unbtmsaOHZu648zhcGjGjBmaOnWqEhIS1KpVKw0fPlxFihQxuOq7FxUVpatXr6ZZFhcXp2HDhmn27NnpQrgZWG0bS9LRo0e1Z88etW/fPnXZ2bNnNWXKFO3evVu+vr5q0qSJXnrpJY+839q/WTGgIa2EhAT98ccf8vHxUfny5Y0ux6V8fHz08ssva9++fQoNDSWEm4BZL/KVmQD+T/fff786duzopGrgScjet2eGHGrFOVuR1XIZ2dv821gie8N6yN5kbzMhe9/krtmbBribSkpK0uzZs/X5558rPj5eTz/9tIYNG+bRP24TExOz9EPN29tbCQkJTqzI+aw4ZyvKnTu3pk6dqmHDhik0NFTx8fGaOHGijh8/rqFDhyoyMlLFixfXe++9p8aNGxtdrtOY9Qtfst42njhxombPni2Hw6GgoCDZ7XZdvnxZnTt31qlTp1SoUCGVKVNGn3zyidauXat58+Zl6mwbT2bFgBYdHa3IyEj5+Piodu3amb7PkTu7fPmyZs6cqT179qQ5Qnvp0qUaM2aMLl26JOnmD/exY8fqkUceMahSY9StW1ebN282ugwgW65fv66VK1cqJCREO3bskMPhUN++fY0uC26M7G2OHGrFOVuR1XLZrZC9zbONyd7pkb3J3lZA9oYZeEL2pgHuhnbu3KlRo0bp999/13333aeRI0eqfv36RpcF3NGUKVOyNP7XX391UiWu5+XlpQkTJsjPz09ff/21Tp48qd9//13x8fHq2LGjhgwZovz58xtdJrLBKtt41apVmjVrlp544gkFBwfLbrdLkj7//HNFRUWpWrVq+vLLL+Xr66vIyEi98MIL+vLLL9WjRw+DK88+Kwa0qKgoTZo0SXv27NHatWtTl8+YMUOffvqpkpKS5HA4VLBgQY0ePVrNmjUzsNrsiYuLU+fOnXX06FGVLFlSiYmJ8vb2VmRkpIYMGSKHw6HOnTurUqVKCgsL08svv6ywsDDde++9RpfuMl5eXkpOTja6jLsWFhaWpfF//vmncwqBIfbs2aOQkBD99NNPiouLk8Ph0D333KPOnTsbXRrcGNkbnorsbf5cZmVW2cZkb7K3RPYme3smsre1eVL2pgHuRi5cuKAJEyYoLCxMuXPnVv/+/dWjRw9TXN4mxc6dO5WUlJSpsbt373ZyNa5hpTlnNYRLae+xZwbDhw9XoUKFNGXKFNntdn3xxRdq1KiR0WUhB5l9Gy9YsEDVqlXT9OnTU5c5HA4tWbJENptNr7/+unx9fSVJVatWVdu2bfXjjz96fAi3YkA7d+6cOnfurAsXLqhq1aqpc/755581adIkeXt764033lDlypW1cOFCvfHGG/ruu+9UpUoVo0u/K7Nnz9bx48f18ccfq0WLFqnLp06dKofDoRdffFFDhw6VJHXo0EFt2rTR9OnTNW7cOKNKdrl9+/apVKlSRpdx14YOHZql3xUOh8N0v0OsJjo6WosXL1ZISIiOHTuWekZc3bp11aNHDz322GMGVwh3RfZOy9NzaAorzZnsbf5cBvNvY7I32ZvsTfb2VGRv6/HU7E0D3E18//33mjhxomJjY/Xoo49q5MiRuueee4wuK8ctXLhQCxcuzNRYs3wwWmnOc+fONboEt9CvXz8VLlxYY8aM0axZs1SzZk1THJ2M/zHzNt6/f3+6QH3gwAGdO3dO+fPnV926ddOse/jhh7V06VJXlugUVgxoM2bMUFxcnL755ps0R9TPmDFDNptNffv2TX0vPP7442rfvr1mzpypjz/+2JiCsyk8PFxt27ZNs33j4uJSLzvWtWvX1OV58uRRmzZt9P3337u8TqOsWLFCixcv1quvvmp0KXfNk/8ekXkJCQlavXq1QkJCtHXrViUlJcnLy0t16tRRzZo1NW3aNAUHB7ttAIfxyN7peXoOTWGlOZO9bzJzLsNNZt7GZG+yN9mb7O2pPPnvEZlnhuxNA9xghw8f1nvvvae9e/eqWLFimjRpklq1amV0WU5hxQ9Gq825Tp06WX7Mzp07nVCJa0VERKRbVrlyZXXs2FELFy7Uiy++qMGDB6dezipF7dq1XVUisslK2/jq1asqWLBgmmXbtm2TdHM+Xl5eadYlJiZ69M7DFFYMaOvXr1f79u3TBPCLFy9q165dkqRnn302dbnNZlPLli311VdfubrMHHPy5Mk021G6+bedmJiocuXKpWt+lCpVSufOnXNliTlu2LBht12flJSkuLg4/fHHHzp+/Ljuu+8+jw7hQUFBRpdgiFWrVunYsWOp/x4fHy+bzabFixen/j2n+O2331xdXo4aNWqUli9frtjYWOXJk0cNGzZU06ZN1aRJExUuXFhRUVH6/PPPjS4TborsbW5WmzPZ+3/MmsusykrbmOxN9iZ730T29jxk75vI3u6fvWmAG2j8+PGaN2+ekpKS9OSTT2rgwIHKnz+/Tp06ddvHlS5d2kUV5iwrfjBacc6Zcfr0aYWGhiosLEwnTpzQwYMHjS4pW1544YXbhpD9+/frpZdeSrfck+d99OjRNMH08uXLkm7uWPT2TvvVcuTIEZfW5gxW2sb+/v46ceJEmmXr16+XzWbT448/nm58ZGSkSpQo4arynMaKAe3vv/9W5cqV0yzbvn27kpOTVbFixXTbtWjRooqNjXVliTnKbrenu8fW1q1bJUkNGjRIN/78+fMef3ZJaGhopsaVK1dOL774ovr06ePxc76VjH5flypVyjQ7EcPDw9Mtv9V92Tx5zvPnz1fevHnVu3dvvfrqq6Z9vyLnkb3Nz4pzzgyy902ePG+yd1pm2sZk7/8he5O9Pf13Pdn7f8je/+PJczZL9qYBbqA5c+ak/vO6deu0bt26TD3OE3/U3Y3z58/ryJEjHnkU590y85yvX7+u8PBwhYSEaPv27amXnMvoR72n6du3r0d/od2N6dOnp7lPVYrx48enW+bplxeUrLWNH3/8cS1atEhdu3ZViRIltGfPHu3cuVO5cuVS8+bN04z9/fff9eOPP6pTp04GVZtzrBjQ8uTJo2vXrqVZtmXLFtlsNj366KPpxv/999/y8/NzVXk5rmLFitqzZ4+6desm6eZn06pVq2Sz2dS4ceN049esWaMKFSq4uswctWbNmtuuz5Mnj/z8/Ex1z1tJWrRokb7//nt9/vnnKlKkiC5cuKDGjRun+xwfMGCAXnvtNYOqzBlWuwRuUFCQVq9erS+++EJfffWVatWqlXoUerFixYwuD26M7H17Zs6ht2LmOZO9zYXsbV5k7/8he6dF9vY8ZG+yt9mYJXvTADdQv379jC7BpR544AFNmDBBrVu3Tl0WHx+vWbNmqV27dipbtmya8Zs2bdKQIUM8eqeDFef8b3v37lVISIh++uknXblyRZJUpEgRtW/fXp07d1aZMmUMrjD7+vfvb3QJLmWlQJrCStu4T58+Cg8PV8uWLVW+fHn99ttvcjgc6tu3r4oUKSLpZvgODw/X3LlzlStXLnXv3t3gqrPPigEtMDBQW7du1Ysvvijpf/f2kaSmTZumGetwOLRixQoFBga6vM6c0q5dO73//vt6+OGH9eijj2rhwoU6deqU7rnnHjVs2DDN2OnTp2vv3r0aPny4QdXmDDN8x2bV66+/rpUrV6p06dI6depU6ueWJLVp00blypWTJC1evFjTpk1Thw4dVLx4caPKzba7uQRuYmKiEypxjXHjxmnUqFFat26dli5dqo0bN+rnn3/WqFGjVL16ddWoUcNyv1GQOWRv8+dQK87538je5kP2NjeyN9lbInuTvT0X2fvOyN7GowFuIKuFcIfDkW7ZtWvXNHXqVNWsWTNdIDUDK85ZkmJiYhQWFqbQ0FD99ddfcjgc8vX1VYMGDbRlyxb95z//UZMmTYwuE3fJSoHUiooVK6YffvhBU6dO1d69e/Xggw+qffv26tixY+qY0NBQzZ49W2XKlNFHH32kUqVKGVhxzrBiQOvSpYveeOMNjR07Vo8++qgWLVqkc+fO6cEHH0xzNlR8fLw++OAD/f777x69w6VLly7atWuXxo0bJ5vNJofDoYIFC2rixImp9xD84YcfNGPGDJ04cUI1a9bUc889Z3DVzhUZGak9e/bIbrerTp06CggIMLqkbFmyZIlWrlypXr16acCAAenum9iuXTvVr19fktSoUSN16tRJ3333nWl+k8fFxcnhcNz2DJk9e/ZoxIgRWrZsmQsry1m5c+dW8+bN1bx5c12+fFkrVqzQkiVLtGvXLu3atUs2m01ffPGFrly5oubNm8vHx8fokuEGzPJ3nllWzKFWnLNE9jY7sre5kb3J3mRvsrenInuTvT0le9MAdyMJCQk6dOiQYmJi5HA45O/vr8DAQOXJk8fo0pwqo6Bqdmad808//aSQkBBt2bJFSUlJ8vPzU+vWrdWsWTM1bNhQZ86cSXdkoxlMmTIly4+x2Wzq27evE6pxvuDgYL322mupP2SswGrbuGTJkho9evQt17dv316NGzdWjRo1UsOLp7NiQGvVqpUOHz6sWbNmad68eXI4HCpbtqwmT56cOua///2vPv/8c8XFxalFixZq27atgRVnj81m08SJE9WtWzft2bNH+fPnV9OmTdMcpfz333/L4XDotddeU69evUzx/j5w4IC++OILHTlyRPfcc4969+6tqlWr6p133lFISEjqbxKbzaZnnnlG48aNS3c/SU8RGhqq6tWra9CgQXccm7LDbcOGDR4fwleuXKkpU6bojz/+kHTzvnIDBgzQM888kzrm6tWrmjRpkubPn5/ukpOeZNiwYerSpYuqVasmSSpQoIA6duyojh07Kjo6WsuWLdOyZcsUGRmpX375RaNHj1arVq30n//8x+DK4W7I3tZh1jmTvTPPk3MZ2TtzPHkbk73J3inI3p7//iZ7Z4zs7ZnMkr098y/MZM6ePatJkyYpPDxccXFxadb5+vqqefPmGjRokPz9/Q2qEMicQYMGKW/evOratauaNGmi2rVrpzkCzBMui3E3rBbQduzYkeaIZCuw2ja+E0+//FhGrBrQBg0apOeee0779u1T/vz5VadOHeXKlSt1fZ48efTwww+rdevWevbZZw2sNOdUr15d1atXz3Bdv379PD6Q/dOePXsUHBwsb29vVa5cWfv371e3bt30wgsvaNGiRWrTpo1atGihq1evau3atVq2bJkeeOABvfLKK0aXflcOHDig3r17Z3r8Y489pqlTpzqxIudbvny53njjDeXJk0ePPfaYfH19tXPnTv3f//1f6v0jf/nlFw0aNEgnT55U2bJlNWrUKKPLvmuhoaFq0KBBagj/pxIlSqh79+7q3r27jhw5oiVLlmjp0qX6/vvv3S6Ewzhkb5gF2TvzPDmXkb0zx5O38Z2QvcnenozsTfZOQfb2PGbJ3jTADbZ371716tVLsbGxqlatmurVqyd/f395e3srJiZGERERCgsL09q1azVt2jTVqFHD6JKBWypbtqxOnjypkJAQ/fnnn/rll1/UtGlT3X///UaX5lRz5841ugQ4mZW2cURExF097p+X7fJkVgpoKUqWLKmSJUtmuO7555/X888/7+KKkFOmTp2q++67T3PnzlXhwoXlcDj09ttva86cOWrTpo0mTJiQOvaZZ57RpUuXtGzZMo8N4fHx8fLz80u3vECBApo+fboeeOCBNMvz5cvn0ffkkqSvv/5aRYsW1YIFC1LvsXbt2jW99tpr+uyzz+Tv769XXnlF169f18svv6zXX3/dLS9LltMqVKigQYMGadCgQdq9e7fR5cBNkL1hJmRvmJWVtjHZm+z9T2Rvz0b2vonsTfZ2NzTADXTu3Dn17dtX+fLl0+eff66aNWtmOO7AgQMaOHCgBgwYoMWLF6to0aIurhTInNWrV2vfvn1asmSJVqxYoU2bNmnSpEkqX768mjVrpipVqhhdolPUqVPnjmMuX74sm81223uDwH1lZhubxQsvvJDlM0ZsNpsOHDjgpIqAnDFs2LAsP8Zms2ns2LFOqMY1fvnlF7366qsqXLiwpJvz6d69u0JDQ/XEE0+kG9+sWTN98MEHLq4y55QoUUKnTp1Kt9zb2zvD+f71118efx/FI0eO6IUXXkgN4NLNs1j79eun559/XoMGDVLRokU1ceJEPfLII8YVaiCamJDI3jAfsvetkb09G9n79sje8ARkb7L3v5G9rcEdszcNcAN9/fXXiouLS3PUSEYefPBBzZkzR61bt9a3336r/v37u7BKIGuqVaumatWq6e2339amTZu0dOlSrVmzRtOmTZPNZpPNZtO6desUGBioMmXKGF1ujnE4HNq4caP++OMP3XvvvXriiSfk7e2trVu3asyYMTp69Kgk6YEHHtAbb7yhxx57zOCKs2fVqlU6duxYpseb+ZJkKcyyo2XcuHGZGrdy5UqtX79eklS1alUnVuQaVgxowcHBWX6MzWbTV1995YRqnC80NDTTY/+5I8qTt/GlS5dUrFixNMtSLi1YqFChdON9fHx07do1V5TmFFWrVtXy5cvVt2/fO14mMSEhQcuXL1ejRo1cVJ1zXL58WWXLlk23/J577pF081KKCxYsSN0RYwY7d+5UUlJSlh7Trl075xQDj0H2hhmRvcneGSF7ew6yd+aRvT0L2fsmsvdNZG/PZYbsTQPcQKtXr1abNm1uG8BTlClTRkFBQQoPD/foEP7vP5qU+65t3rxZ0dHRaca64yUT7oYV5yxJXl5eatSokRo1aqT4+HitWrVKy5Yt0+bNm/XDDz8oJCREdevWVfv27fXMM88YXW62XLp0ST179tS+ffvkcDgkSQ8//LBGjBihnj17ytfXV02bNtXVq1e1b98+9erVS3PmzPHoI5tXrVql8PDwTI83Qwj/546We+65R08++aQpd7QEBQXddn1UVJRGjx6t9evXy8/PT2+88YY6d+7souqcx4oB7eTJk5kal5ycrOjoaDkcDo++n+ShQ4fuOOaf7+8CBQpo4MCBzi/MiRwOh7y90/7cT9mGnrwtb6VLly56/vnn9Z///EfDhw9PN/cUycnJevfddxUTE6MuXbq4uMqclZycnOaerylS7ifYs2dPUwVwSVq4cKEWLlyYqbEpn1vuFsLhemRva+RQK85ZInuTvdMie3sOsvedkb09E9n7JrI32dvTmSF70wA30MmTJ7N0b4/AwMAs/UhwR//+o0kJLLNmzUr3ZeDpX/YprDTnnj17ql69eqpTp46qVKmSOhcfHx+1bt1arVu31oULF7R8+XItXbpUW7du1bZt2zw+hH/66ac6dOiQ3n33XdWtW1dRUVF6//339eKLL+q+++7TvHnzUo/2O3/+vDp06KDZs2d7dAjv1auXGjRoYHQZLmPFHS3/lpiYqP/+97+aPn26rl27pjZt2mjo0KGpR7R6OisGtLVr195xzL59+/Tee+/p77//VtmyZTVixAgXVOZ6SUlJmj17tj7//HPFx8fr6aef1rBhw9IdwQ33VqtWLXXv3l3//e9/tW3bNr3yyiuqW7euSpYsKYfDoTNnzmj79u365ptvdOjQIQ0aNEiBgYFGl+1UpUuXNrqEHNepUyfLXlIOd4/sbe4cmsJKcyZ7k73NiuxN9pbI3mRvuDuyd3pkb/dEA9xAuXLl0vXr1zM9Pj4+Xnnz5nViRc6V2Uv7mInV5rxt2zZt3Lgx9VJUtWrVUt26dVWvXr3UL7nChQurW7du6tatm06cOKEff/zR4Kqzb+3aterSpYuee+45SVL58uX17rvv6pVXXlG3bt3SXOqmSJEi6tSpk+bNm2dQtTmjQoUKpgqYd2LFHS3/tGPHDo0aNUpHjhxR+fLlNXLkSNWtW9foslzGigHt8uXL+uijj7Rw4ULZ7Xb16tVLffr0UZ48eYwuLcft3LlTo0aN0u+//6777rtPI0eOVP369Y0uK8f8+7KZ8fHxstlsWrx4sXbt2pVm7G+//ebq8nLc//3f/6lMmTKaNGmS3n333QwbHnnz5tV7771nijNorKhWrVpq3bq10WXAw5C9zc9qcyZ7k73NiuxN9iZ7k709Fdmb7G02ZsjeNMANVLlyZW3YsCHT9wFZv369Klas6OSqnOdOl/YxI6vNeffu3Tpw4IB2796tPXv2aO/evVq3bp1sNpv8/PxUu3Zt1a1bV3Xr1lXlypVVrlw59e7d2+iys+3MmTOqUKFCmmUpf6sZHf1VqlQpxcbGuqQ25Awr7miRbu5QGD9+vJYsWaI8efLo9ddf16uvvpp6eR8rMHtAy8jixYs1YcIEnTt3TnXq1NHIkSPTfcaZwYULFzRhwgSFhYUpd+7c6t+/v3r06KHcuXMbXVqOCg8Pz/CymWFhYRmO9+Sz4VJ07dpVQUFBWrdunSIiIvT333/L4XDI399fNWrUUNOmTT3+npH/lNG9QW+3s8UMl0YFsorsbX5WmzPZ+3/I3uZC9iZ7k73J3p6K7E32Jnu7HxrgBmrbtq3effddLV++XK1atbrt2LCwMG3ZskWTJk1yUXXGO3nypN59913Nnj3b6FJcxtPn7O3trapVq6pq1ap66aWXJEmnT59OE8rHjx+vpKQkFSpUSHXq1FHdunXVtWtXYwvPphs3bsjHxyfNspSQklFYsdlsae5NB/dnxR0t3333nSZNmqTY2Fg9/vjjGjFiRKbum2kWVglo/3T06FGNGjVKO3bsUOHChfXBBx+43b17csr333+viRMnKjY2Vo8++qhGjhype+65x+iyctzcuXONLsEwvr6+atWq1R1/Y5vBrXa0SBnvbCGEw4rI3rfn6Tn0bnj6nMne/0P2NheyN9mb7G0uZG/zI3vfRPZ2TzTADdS+fXuFhYVp8ODBOnz4sLp16yZ/f/80Y2JiYjRnzhzNnTtXjRo1UsuWLQ2qNmfs27dP06ZN0549eyRJDz74oPr27atatWqljnE4HPryyy/16aefKj4+3qhSc4wV5/xPpUqV0tNPP62nn35a0s1L+yxZskQhISFauXKlwsPDPT6EW02/fv0UEBBgdBkuZaUdLYcOHdLIkSMVGRmpEiVKaPTo0WrWrJnRZbmUVQJaioSEBE2dOlWzZ89WYmKiOnbsqLfeekt+fn5Gl5bjDh8+rPfee0979+5VsWLFNGnSJFOHNLNcChK3ZrUdLUFBQab+PIbzkL2tkUOtOOd/InubD9n7JrK3eZG9yd5mQfY2P7K3Z6IBbiC73a7p06frrbfe0hdffKEZM2aoVKlSKl68uLy8vHTu3DkdP35cDodDLVu21Pvvv290ydmydetW9ejRQ0lJSbr//vvl6+uriIgIvfTSS5ozZ45q166tkydP6s0331RkZKTy58+vUaNGGV12tlhxzv8WHx+viIgI7dixQ7t27dKvv/6qGzduKHfu3KmXZDODixcv6tSpU6n/nnIE8vnz59Msl24e3erJ+vXrl+bfExISdOjQIcXExKRe5iYwMNCU9yuygvbt2ys5OVmSVLRoUX399df6+uuvb/sYm82mr776yhXlOZXVApokbdiwQaNHj1ZUVJQCAgI0atQoVatWzeiynGL8+PGaN2+ekpKS9OSTT2rgwIHKnz9/us/of8voTBOzWrBggTZt2qQpU6YYXcpdyeyljf/J0z+/7mZHy86dO51QiWtY7R6/yDlkb/PnUCvO+d/I3mRveBayN9mb7J0W2dtzkL0zh+xtPJvD4XAYXQSkn3/+WYsXL1ZkZKTOnDmT+kO2Zs2aatu2rerVq2d0idn28ssvKzIyUrNmzVL16tUlSdHR0erdu7dy5cqlcePGKTg4WOfOnVOzZs00YsQIFS9e3OCqs8eKc05MTNTevXu1bds2bdu2Tfv27dONGzeUK1cuVa1aNTV4V69e3TSXMwoMDMzwvi0Oh+O293M5ePCgM8tyurNnz2rSpEkKDw9XXFxcmnW+vr5q3ry5Bg0alO7sGk8UGBiod955R02aNEldFhsbq6CgIH300Uepf98pVq1apQ8++MAjt3Hjxo3v6nFr167N4Upc61YB7U48OaANGDBAq1atkiQ9+eSTCg4OlpeX1x0fV7t2bWeX5hSBgYGp/5yVe2154t/x3Ro5cqQWLlzosXPO7OdXcnKyoqOjU7+nPXW+WXH69GmFhoYqLCxMJ06csMScgVshe5szh1pxzmTv/yF7k709cRuTvcned0L2Ni+yt3mRvd0LDXC4TL169dShQwe99dZbaZZv2rRJPXr0UIUKFXTmzBm99957Hn+5uRRWm3OPHj20c+dOxcfHy263q0qVKqpXr57q1q2rmjVrpruMlVkMGzbsrh7nyUdS7d27V7169VJsbKyqVaumevXqyd/fX97e3oqJiVFERIQiIiLk5+enadOmqUaNGkaXnC1W3dFiJVYMaP+cs3TneXt6YLnbI6v/feaNmXl6CM+Mffv26b333tPBgwdVtmxZjRgxQo0aNTK6LKe4fv26wsPDFRISou3bt6f+DTds2FBffPGF0eUBcCKr5VDJenMme2cN2dtzkL3Nj+xN9r4Vsre5kL3J3u6AS6B7kO3bt+vw4cN3dYkJd3D58mVVqFAh3fJKlSrJ4XDo4sWL+v77701xb4EUVpvzzz//rFy5cqldu3bq1auX7rvvPqNLcglPDtN349y5c+rbt6/y5cunzz//XDVr1sxw3IEDBzRw4EANGDBAixcvVtGiRV1cac5p165dloKZlezcuVOhoaEef6lQKwWtFFb77LqbbWy2e4Na2eXLl/XRRx9p4cKFstvt6tWrl/r06WPKS4bu3btXISEh+umnn3TlyhVJUpEiRdS+fXt17txZZcqUMbhCwP2RvT2P1eZM9rYGsjf+ieztuaz22UX2tjayN9nbndAA9yDLly/XwoULPTaEJyUlyds7/Vsu5VJcvXv3Nk0YTWG1OXfs2FHbt29PvcxH+fLlVb9+fdWrV0+1a9dWwYIFjS4ROeDrr79WXFycFixYoHLlyt1y3IMPPqg5c+aodevW+vbbb9W/f38XVpmzPvjgA6NLcCt///23QkNDFRoaqhMnTkiSJUO4pwe0oKCgLD8mKirKCZW4n5SdSytXrvToezbhpsWLF2vChAk6d+6c6tSpo5EjR2bYJPFkMTExCgsLU2hoqP766y85HA75+vqqQYMG2rJli/7zn/+kuZQogNsje3seq82Z7G0NZG+QvW8ie5sX2dtcyN5kb3dDAxxuw2wfhplhtjmPHj1aknTq1Clt2bJF27Zt04oVK/T111/LbrcrMDBQdevWTQ3lefPmNbhi3I3Vq1erTZs2tw3gKcqUKaOgoCCFh4d7dAgPDg7Wa6+9pvr166cuS0xM1J49exQYGKgCBQqkGb9kyRINHTpUBw4ccHWpTpOQkJB6OZ9t27bJ4XDI4XCobt26eu6554wuz6WsFtCuX7+uFStWKDQ0VBEREdq/f7/RJTlFys6lsLAwHT9+XA6HQ4UKFTK6LGTD0aNHNWrUKO3YsUOFCxfWBx98oHbt2hldVo766aefFBISoi1btigpKUl+fn5q3bq1mjVrpoYNG+rMmTNq2rSp0WUCcDNmy6GZYbY5k72tgex9E9mb7E32Nheyt/mQvcne7ooGOIAcV7p0aXXo0EEdOnSQJP3+++/atm2btm7dqkWLFmnOnDny9vbWQw89pPr16+v11183uGJkxcmTJ/X8889nenxgYKBCQ0OdWJHz7dixQx07dkyz7PLlywoODtbs2bPThPMUDofDVeU51b8v55Myr6efflp9+/ZV+fLlDa7QNawY0Hbv3q2QkBCtWLFCcXFxcjgcqlSpktFl5aiUnUuhoaHatm2bkpOT5XA49Mgjj6hLly5q1aqV0SVmS1hYWJbG//nnn84pxMUSEhI0depUzZ49W4mJierYsaPeeust+fn5GV1ajhs0aJDy5s2rrl27qkmTJqpdu7a8vLxS13MJUQAwN7K3uZG9byJ7k73J3p6P7J0W2dvzkL09Ew1wuNTOnTuVlJSUZllcXJwkafPmzYqOjk73GE8/WsiKc/63SpUqqVKlSnrhhReUkJCgFStW6Ntvv9XevXu1b98+QriHyZUrl65fv57p8fHx8aY948AsQfvfMrqcT6FChRQUFKRHHnlEI0eOVKtWrUwfwM0e0DISHR2duu2PHTsmSfL29larVq303HPPqVatWgZXmDP27dunRYsWpdm55Ofnp8uXL2v06NHpdrp5qqFDh2YphDkcDo8PbRs2bNDo0aMVFRWlgIAAjRo1StWqVTO6LKcpW7asTp48qZCQEP3555/65Zdf1LRpU91///1GlwbAYFbMoVac87+Rvc2F7P0/ZG+yt9mQvcneZG/PQvb2TDTA4VILFy7UwoUL0yxL+RE7a9asNB/8KV8Enh5IrTjnfzp+/Lj27dunffv2KTIyUocOHdKNGzeUL18+Pf7446pdu7bRJSKLKleurA0bNmT6nojr169XxYoVnVwVckrPnj21efNmJSUlqVSpUuratauaNm2qunXrym63KyoqyrQ7H1JYJaClSEhI0OrVq7Vo0SJt27YtdcdxhQoVdPToUX344Ydq0aKFwVVmX0xMjBYvXqzQ0FD9+eefcjgcKl26tIKCgtSsWTOVKFFCTz31lIoUKWJ0qTlm3LhxRpfgUgMGDNCqVaskSU8++aSCg4OVkJCgiIiI2z7Ok3+LrF69Wvv27dOSJUu0YsUKbdq0SZMmTVL58uXVrFkzValSxegSARjEijnUinP+J7K3+ZC9zY3sTfYme5O9PRXZm+ztKWiAG+jUqVNZGp9y5LKnstoXgWS9OcfGxioyMjI1cEdGRio2NlYOh0MFCxZUjRo1NGjQINWuXVsPPvig7Ha70SXjLrRt21bvvvuuli9ffsejcMPCwrRlyxZNmjTJRdUhuzZu3Ki8efMqODhY3bp1U/HixY0uySWsGNAiIyMVEhKi5cuX69KlS7Lb7apevbqaNWumZs2aKSkpSU2bNlWuXLmMLjVHNG7cWMnJyQoMDFTv3r3VpEkTPfTQQ6nro6KiDKzOOYKCgowuwaXCw8NT/3nt2rVat27dbcenND8OHjzo7NKcqlq1aqpWrZrefvttbdq0SUuXLtWaNWs0bdo02Ww22Ww2rVu3ToGBgSpTpozR5QKGIHubn9XmTPa2BrK3uZG9yd5kb/Mge5O9yd7uiQa4gRo3bmypS2PczReBp38hWm3OdevWlc1mk8PhUOHChVWnTh3Vrl1btWvXVkBAgEe/f/E/7du3V1hYmAYPHqzDhw+rW7du8vf3TzMmJiZGc+bM0dy5c9WoUSO1bNnSoGqRVf369dOPP/6o6dOn64svvtD999+vpk2bqmnTpqpatarR5TmNFQNap06d5Ovrq4YNG+rxxx9X48aN0+xkMNucExMT5evrq2LFisnX1zfdJVKtIDo6Wrt27VJMTIwkyd/fX9WrV1epUqUMrixnWK358W9eXl5q1KiRGjVqpPj4eK1atUrLli3T5s2b9cMPPygkJER169ZV+/bt9cwzzxhdLuBSZO878/TvfavNmextDWRvcyN7k71TmG3OZG+yt9mRvT0HDXADtWvXjlCSgevXr2vFihUKDQ1VRESE9u/fb3RJTmeWObdo0UJ16tRRnTp1uOyWidntdk2fPl1vvfWWvvjiC82YMUOlSpVS8eLF5eXlpXPnzun48eNyOBxq2bKl3n//faNLRhb069dP/fr106+//qqlS5dq+fLlmjFjhmbOnKlSpUqpZs2apvzusmJA8/X11bVr13TkyBEVLlxYefPm1eOPP678+fMbXZpTrFu3TkuXLtXSpUs1adIk2Ww2FStWTE899ZSeeuopUx+d+/vvv2vMmDGKiIiQw+FIcylFu92umjVravjw4QoICDCwyuyz2lH3t+Pj46PWrVurdevWunDhgpYvX66lS5dq69at2rZtGyEclkP2zphZcmhWmGXOZG9rIHubG9mb7E32Nh+yt/WQvd2bzWH2m4nAY+zevVshISFasWKF4uLi5HA4VKlSJS1dutTo0pzGinOGufz8889avHixIiMjdebMGTkcDvn7+6tmzZpq27at6tWrZ3SJOSIwMFDvvPOOmjRpkrosNjZWQUFB+uijj1S9evU041etWqUPPvjA4y/tI908A2rr1q1aunSpVq1apStXrkiSypQpo/bt26tdu3YqXbq0wVVm3+nTp1MD2u+//55hQGvWrJmmTp2a5n3gyeLj47V27VotWbJEmzZtUlJSknLlyqX69evrqaeeUmBgoDp06GCqOac4dOhQ6k6m06dPy2azpe6UGDp0qF588UWjS8wxa9as0cCBA2Wz2dS0aVPVq1dP/v7+8vb2VkxMjCIiIrRixQolJiZq8uTJatq0qdElw4lOnDihH3/8Ub179za6FAAGsmIOteKcYS5kb7I32dtzkb3J3mRv6yF7uwca4B7i9OnTCg0NVVhYWJp7LHi66OhohYWFKTQ0VMeOHZMkeXt7q1mzZnruuedUq1YtgyvMeVacM+DpAgMDMzzy+k6XxzRDCP+nhIQErV27VsuWLdOGDRt048YN2e121a9fX//973+NLi/HWCmgpbh48WLqUap79+5Ns65nz57q3bu3fH19jSnOyXbs2KGlS5cqPDxcsbGxstlsKlu2rJ599lkFBQWpZMmSRpd4106ePKnWrVvr/vvv1yeffKJy5cplOO7vv//WgAED9Mcff2jx4sW3HOfuhg0bluXH2Gw2jR071gnVAPBUZG/zsOKcAU9H9r6J7E32NiOyN9mb7A1XowHuxq5fv66VK1cqNDRU27dvV3Jysry9vfXrr78aXVq2JCQkaPXq1Vq0aJG2bduWeqmbChUq6OjRo5o8ebJatGhhcJU5y4pzhnUkJCTo0KFDiomJST0KPTAwUHny5DG6tBxzNz/sJHPfE+fSpUtasWKFli5dql27dunAgQNGl+QUZg5otxIVFaWlS5dq2bJl+uOPP2Sz2ZQ3b161bNlS7du3T3fWhVncuHFDGzdu1JIlS7R+/Xpdv37d4393vf/++1q8eLFWrFiR5h5zGbl48aJatWqlNm3aaOjQoS6qMGcFBgZm+TE2m82jd5jezRkiNptNq1evdkI1gOcie5uHFecM6yB73xrZ2/ORvcnenvy7i+x9Z2RvGIEGuBvas2ePQkNDtXz58tRLc5UsWVIdO3ZUp06dVLx4caNLvCuRkZEKCQnR8uXLdenSJdntdlWvXl3NmjVTs2bNlJSUpKZNm5rqci9WnDOs4+zZs5o0aZLCw8MVFxeXZp2vr6+aN2+uQYMGyd/f36AK4So7d+40/Rk0ZgxomXHo0CEtWbJEy5cv199//+3xgSWzrly5ovDwcC1btkyzZ882upy71rJlSz3++OOZ3pE4YcIErVu3Tj/99JOTK3OOqKiou3qcJ9+DrnHjxumWORwOnT59WsWKFVPu3LkzfNzatWudXRrgEcje5smhVpwzrIPsjRRkb/Mie5O9PQnZ+yayt/vzNroA3BQdHa3FixcrJCREx44dk8PhkN1ulyQNHDhQPXv2TP13T9WpUyf5+vqqYcOGevzxx9W4ceM0R0Td7QenO7PinGENe/fuVa9evRQbG6tq1apleF+bsLAwrV27VtOmTVONGjWMLhlZ9Ouvv2rv3r1yOBx64IEHMgzZV65c0cSJE/X9999r//79BlTpOrly5VKTJk3UpEmTNAHN7AIDAxUYGKjBgwdr+/btlpizJOXPn19NmzbV7t27jS4lW06fPq2KFStmenz58uU1f/58J1bkXJ4cpu9WRmH6/PnzatCggT788EPVr1/fgKoA90b2NmcOteKcYQ1kb/Mje6dF9iZ7eyKyt/mRvT0TDXADpVyaKyQkRFu3blVSUpLy5Mmjxo0b66mnnlJAQICCgoJUqVIljw/gklLv4XLkyBEVLlxYefPm1eOPP678+fMbXZrTWHHOML9z586pb9++ypcvnz7//HPVrFkzw3EHDhzQwIEDNWDAAC1evFhFixZ1caW4G1evXtUbb7yhDRs2KOUiMTabTQ0aNNC0adNSj2hcv369Ro4cqejoaN1zzz1GluxyZgloWVW6dGmP33l88uRJzZkzR3v27JEkPfjgg+rRo4fuvffeNOPCw8M1evRonT17VmPGjDGi1Bzh4+OjS5cuZXr8pUuX5Ofn58SKjJWQkKA//vhDPj4+Kl++vNHlOM3t7o8JWBXZ2/w51IpzhvmRvc2N7H1nZG/PRfa+PbK3OZC93R8NcAM1bNhQly5dUsGCBfX000+rSZMmevzxx+Xr6yvJfEcob926VWvXrtWSJUu0aNEiLVy4ULly5VL9+vX11FNP3dW9I9ydFecM8/v6668VFxenBQsWqFy5crcc9+CDD2rOnDlq3bq1vv32W/Xv39+FVeJuffbZZ1q/fr0aNmyooKAg5c2bVxs2bNB3332nCRMmaPjw4Ro/fry+/PJLeXl5qXv37howYIDRZecIqwU0Sdq3b5+mTZuWZs59+/ZNc9aBw+HQl19+qU8//VTx8fFGlZptBw8e1AsvvKArV67Ix8dHPj4+OnDggJYvX64FCxaocuXKunz5soYPH67w8HB5eXmpZ8+eRpedLQ899JDCw8PVvXv3TI1fuXKlHnjgASdX5VyXL1/WzJkztWfPHs2bNy91+dKlSzVmzJjUnRL333+/xo4dq0ceecSgSgG4Etnb/DnUinOG+ZG9zY3sTfYme5O9PRnZG56ABriBYmNjlTdvXjVv3lx169ZVjRo1UgO4Gfn4+KhVq1Zq1aqVLl68qOXLl2vp0qXauHGjNm7cKOnmUTORkZFq0KCBKf5bWHHOML/Vq1erTZs2tw3gKcqUKaOgoCCFh4cTwj3E2rVrVadOHc2cOTN12RNPPKGiRYtq3rx5KlSokObMmaPAwECNGzfO43+wp7BiQNu6dat69OihpKQk3X///fL19VVERIReeuklzZkzR7Vr19bJkyf15ptvKjIyUvnz59eoUaOMLvuupexE+Oijj/T0009Lunm/0DfeeENjxozRxIkTFRwcrL/++ksPP/ywxowZo4CAAIOrzp4OHTpo4MCBmjNnjl5++eXbjp0+fboiIyPT/O17mri4OHXu3FlHjx5VyZIllZiYKG9vb0VGRmrIkCFyOBzq3LmzKlWqpLCwML388ssKCwtLt6MNgPmQvc2fQ604Z5gf2dvcyN5kb7I32dtTkb3hMRwwTEREhOPdd9911KlTxxEYGOh44IEHHJ06dXLMmjXLcezYMcfJkycdAQEBjtWrVxtdqlOdPHnSMW3aNMfTTz/tCAgIcAQGBjpq1KjheOeddxy7d+82ujynsOKcYR6PPPKIY8GCBZkev3DhQkf16tWdWBFy0iOPPOL48ssv0y3/448/HAEBAY4HHnjAMXr0aEdCQoIB1TlP7969HVWqVHEsW7Ysddm+ffscTZo0cbzwwguO6OhoR/PmzR0BAQGODh06OA4dOmRgtTnjpZdectSoUSPN987ff//taNeunaNjx46OP/74w9GgQQNHQECAo3///o6YmBgDq82+Bg0aOEaPHp1u+cqVKx0PPvigo2vXro6HHnrIMXPmTEdSUpIBFTpH//79HYGBgY4333zTsWfPnjR/u0lJSY49e/akjhkxYoSBlWbfp59+6qhSpYrjp59+SrO8Z8+ejsDAQMe4ceNSl8XHxzuaNWvmGDp0qKvLdLrz5887AgICHFu2bDG6FMBtkL1vsmIOteKcYR5kb3Mje5O9yd5kb09F9r6J7O3+OAPcQLVq1VKtWrU0YsQIbdiwQUuXLtX69eu1b98+TZw4UeXKlZPNZtPVq1eNLtWpypQpo969e6t37946dOiQlixZouXLl+uHH37QokWLdPDgQaNLzHFWnDPMI1euXLp+/Xqmx8fHxytv3rxOrAg56dq1aypSpEi65YULF5YkPfXUUxo+fLiry3K6yMhIdenSJfXoZEmqWrWqBg8erEGDBmnQoEGKiorSW2+9pVdeecUU9wc9ePCgnnvuOVWvXj11WYkSJfTmm2+qR48eev3115WYmKjJkyerZcuWBlaaM2JjYzO8/OnDDz+spKQkHT58WPPmzTPdZbkmTpyocePGacGCBfrxxx/l5eWlQoUKycvLSxcvXlRCQoLsdru6d++uQYMGGV1utoSHh6tt27Zq0aJF6rK4uDht3rxZktS1a9fU5Xny5FGbNm30/fffu7xOAK5H9r7JijnUinOGeZC9zY3sTfYmez/i+uKciOxN9ob7oQHuBry9vdWkSRM1adJEcXFxCg8P19KlS7V9+3Y5HA4NGTJEixYt0rPPPqvmzZsrT548RpfsNIGBgQoMDNTgwYO1fft2LVu2zOiSnM6Kc4Znq1y5sjZs2KDg4OBMjV+/fr0qVqzo5KrgbDabTZLUrl07YwtxEisGtMuXL6tChQrplleqVEkOh0MXL17U999/r3vuuceA6nJeYmJihr+hfHx8JEk9e/Y01fZNkTt3bo0cOVLBwcEKCwtTZGSkzpw5I4fDofLly6tmzZpq3bq1KS5FdvLkyTRBW5IiIiKUmJiocuXKpXsvlypVSufOnXNliTluypQp6ZbFx8fLZrNp8eLF2rVrV7r1NptNffv2dUV5gNshe/+PFXOoFecMz0b2tiayN9nb05G9yd5k75vI3sajAe5m8uXLp6CgIAUFBencuXNatmyZli5dqm3btmnbtm0aPXq0IiIijC7TJerWrau6desaXYZLWXHO8Dxt27bVu+++q+XLl6tVq1a3HRsWFqYtW7Zo0qRJLqoOzpYSWMzGigEtKSlJ3t7pfwrmzp1bktS7d2/TBPDMeOihh4wuwanuv/9+jz/K/E7sdruSk5PTLNu6daskqUGDBunGnz9/Xvnz53dJbc6SUQhPERYWluFyQjhwE9n7f6yYQ604Z3gesre1kb3Ng+ydFtnb85G90yJ7uy8a4G6saNGievHFF/Xiiy/q2LFjWrJkiUcfoZzZI1b/yWaz6auvvnJCNa5hxTnD/Nq3b6+wsDANHjxYhw8fVrdu3eTv759mTExMjObMmaO5c+eqUaNGpriEk5WkHHGe1XVmZvaAlpGMjlA3Myu8t6Ojo7Vr1y7FxMRIkvz9/VW9enWVKlXK4MpyRsWKFbVnzx5169ZNkuRwOLRq1SrZbDY1btw43fg1a9Z4/Pt87ty5RpcAmALZ2/NzqBXnDPMje5sf2Ts9srf5WeG9TfZOi+wNo9AA9xD33nuv+vfvr/79+xtdyl3bsWNHhsttNpscDsct13kyK84Z5me32zV9+nS99dZb+uKLLzRjxgyVKlVKxYsXl5eXl86dO6fjx4/L4XCoZcuWev/9940uGVk0duxYTZ48Oc0yh8Mhm82mt956K93R2jabTatXr3ZliS7HZ7M5HD16NN3ZfJcvX5YkHT58OMOj8mvXru2S2pzp999/15gxYxQRESGHw5HmN4jdblfNmjU1fPhwBQQEGFhl9rVr107vv/++Hn74YT366KNauHChTp06pXvuuUcNGzZMM3b69Onau3evx99XsU6dOkaXAJgO2dszWXHOMD+yt/mRvdPjs9kcyN5k7xRkbxiJBriBgoOD9dprr6l+/fqpyxITE7Vnzx4FBgaqQIECacYvWbJEQ4cO1YEDB1xdao44dOhQumXnz59XgwYNNGfOnDT/HczCinOGNRQoUEBffPGFfv75Zy1evFiRkZH67bff5HA45O/vr3bt2qlt27aqV6+e0aUii0qXLi1JGe4oTDlS9d/rbrVT0dNYMaDt3LlTSUlJaZbFxcVJkjZv3qzo6Oh0j/Hke9FNnz5d06dPz3Dd+PHjM1x+8OBBZ5bkdGvWrNHAgQNls9nUokUL1atXT/7+/vL29lZMTIwiIiK0YsUKdejQQZMnT1bTpk2NLvmudenSRbt27dK4ceNSGx4FCxbUxIkTZbfbJUk//PCDZsyYoRMnTqhmzZp67rnnDK7auRISEvTHH3/Ix8dH5cuXN7ocwDBkb/PnUCvOGdZA9jYvsjfZm+ydFtnbc5C90yN7uyebwyzfnB4oMDBQH374oVq3bp267MKFC2rQoIFmz56dLqAtWbJEQ4YM8fgvg3+6cOGC6tevb6lAasU5A4C7CwwMvOWR5ilH4GfEk7+TbzXnf/40/Of6lP8Onjrnzz777K7OJujXr58TqnGNkydPqnXr1rr//vv1ySefqFy5chmO+/vvvzVgwAD98ccfWrx48S3HeYo9e/Zoz549yp8/v5o2baoiRYqkrpsyZYoWL16s1q1bq1evXhnef9DTXL58WTNnztSePXs0b9681OVLly7VmDFjdOnSJUk370U3duxY091TEcgMsrc1c6gV5wwA7o7s/T9k77TI3p6H7H0T2dt9cQa4G+KYBACeIj4+Xj4+PumW//HHH/Lz80t3fzK4v7CwMNWqVUtly5Y1uhSX6tu3r+UutTZu3DijS3ApT76U7d366quvlCtXLs2aNStNEP23kiVLasaMGWrVqpW++eYbDR061IVV5rzq1aurevXqGa7r16/fLXes3LhxQ3v37s3wbFB3FRcXp86dO+vo0aMqWbKkEhMT5e3trcjISA0ZMkQOh0OdO3dWpUqVFBYWppdffllhYWG69957jS4dcAtkbwCeguxtPmRv6yB7mx/ZOz2yN9nbHdAABwBkWUJCgsaPH6+lS5dq48aN6YL4pEmTtHHjRrVv315DhgxR3rx5DaoUWTVs2DBNmDDBciHcigEtKCjI6BJcKqPL35rdpk2bFBQUdNsAnqJQoUJq166d1q1b5/Eh/G7FxsYqODg4w7NB3dXs2bN1/Phxffzxx2rRokXq8qlTp8rhcOjFF19M3Z4dOnRQmzZtNH36dMvthAMAwFORvc2L7G0dZG/zI3tnDdkbrmI3ugAAgGdJSEhQ9+7d9c0336h06dK6cOFCujFPPvmkAgIC9N133+nVV19VYmKiAZXiblj1TKjg4GBt3brV6DJcqkmTJlqzZo3RZbjMjh07dPbsWaPLcKnTp0+rYsWKmR5fvnx5/f33306syP152mdgeHi42rZtmyaAx8XFafPmzZKkrl27pi7PkyeP2rRpY7nPOgAAPBXZ29w87XdnTiF7mx/Z+87I3p73GUj29kw0wAEAWfLll18qIiJCw4cPV1hYmEqVKpVuTMeOHbVo0SL169dPu3fv1tdff21ApUDmWTGgRUVF6erVq0aXASfy8fFJvQdVZly6dEl+fn5OrAg57eTJk3rooYfSLIuIiFBiYqLKli2re+65J826UqVK6dy5c64sEQAA3CWyN8yI7A0zInubH9nbM3EJdLhMWFhYumVxcXGSpM2bNys6OjrDx7Vr186JVTmXFecM81u6dKmaNGmi559//o5j+/Xrpx07dmjx4sV66aWXnF8ccsTFixd16tSpLD2mdOnSTqoGwN166KGHFB4eru7du2dq/MqVK/XAAw84uSrkJLvdruTk5DTLUo4yb9CgQbrx58+fV/78+V1SGwDjWDGHWnHOMD+yt/mRvQFzIHubH9nbM9EAN9i/f+jExsZKuvkH8u8fQBld6siTDB06VDabLc2ylEtdzJo1SzabLfXfU/7ZZrN5dCC14pxhfseOHVOXLl0yPf6JJ57QJ5984sSKkNPGjh2rsWPHZnq8zWbTgQMHnFgRkDNWrVqlY8eOZXq8zWZT3759nViRc3Xo0EEDBw7UnDlz9PLLL9927PTp0xUZGamZM2e6qDrkhIoVK2rPnj3q1q2bpJu/M1etWiWbzabGjRunG79mzRpVqFDB1WUCboHsbe4casU5w/zI3uZH9oZZkb1vjeztmcjenokGuMFu9UPnrbfeMqAa5xo3bpzRJbicFecM88ubN6+SkpIyPT5Pnjzy8fFxYkXIaTVr1lS5cuWMLsPlrBbQJGnhwoXasmVLpsfbbLYs7aBxN6tWrVJ4eHimx3v6Nm7RooWaNWumCRMmaP/+/Xr++edVpUoV5cqVS5KUnJysyMhIzZ49W6tWrVLHjh312GOPGVw1sqJdu3Z6//339fDDD+vRRx/VwoULderUKd1zzz1q2LBhmrHTp0/X3r17NXz4cIOqBYxF9jY3K84Z5kf2Nj+yd+Z4ei6TyN534unbmOxtfmRvz0QD3EDt2rVLd4SymQUFBd1xTGxsrHx8fJQnTx4XVOR8VpwzzK98+fLavXu3goODMzV+165dKlOmjJOrQk7q3LmzWrdubXQZLme1gCbdvF9RREREpsd7egjv1atXhpemMrOJEydq3LhxWrBggX788Ud5eXmpUKFC8vLy0sWLF5WQkCC73a7u3btr0KBBRpeLLOrSpYt27dqlcePGpZ7RWLBgQU2cOFF2u12S9MMPP2jGjBk6ceKEatasqeeee87gqgHXI3unZ7YcasU5w/zI3uZH9s4csrfnIXuTvc2G7O2ZaIAb6IMPPjC6BJe7ceOGQkJCtHfv3jRHaO/YsUPvvfee/vzzT9lsNjVo0EAjR440xVGQVpwzzC0oKEgjR47Utm3bVK9evduO3b59u8LDw9W/f38XVQfcPSsGtLfffltNmjQxugyXqVChgurUqWN0GS6VO3dujRw5UsHBwQoLC1NkZKTOnDkjh8Oh8uXLq2bNmmrdurXuvfdeo0vFXbDZbJo4caK6deumPXv2KH/+/GratKmKFCmSOubvv/+Ww+HQa6+9pl69eqWGc8BKyN7WyKFWnDPMjewNsyJ7mx/Zm+xtNmRvz0QD3ECvvvqq2rVrp6ZNm1riEkU3btzQK6+8ooiICOXKlUujR4+Wt7e3/vzzT7366qu6ceOGGjZsqIoVK2rlypXq3LmzlixZomLFihld+l2z4pxhfu3atdOiRYvUu3dv9erVSx07dkz3no2JidH333+vWbNmqWzZsuratatB1QKZZ8WAVrhwYc4SsYj777+fo8xNrHr16qpevXqG6/r166d+/fpluO7GjRvau3evAgMDVaBAAWeWCBiK7G3+HGrFOcP8yN4wK7I3zIzsbW5kb8/CIQgG2rFjh/7v//5PDRo00NChQ7VlyxY5HA6jy3Kar7/+Wjt37tT//d//KSIiQt7eN4+/+Oyzz5SQkKDWrVtrxowZGjx4sBYtWiQvLy9Nnz7d4Kqzx4pzhvnlypVLU6dOVbVq1fTJJ5+oYcOGatKkibp06aKOHTuqcePGatSokT777DMFBARozpw5fLF7kNKlSytv3rxGlwEAcIHY2FgFBwfr119/NboUwKnI3ubPoVacM8yP7G1uZG8AsA6ytzE4A9xAW7du1erVq/XTTz/pxx9/1OLFi1WsWDG1bt1abdq0UWBgoNEl5qhly5apefPm6t69e+qyhISE/2fvvuNrPP8/jr9PliwkYm81EnvvVaN2amttSrW0VmmLL0VpVUtbRSmt3aL2JtSu2qtmjZhFiBghkXV+f/jl1JGEJJKcnJPX8/HwaN3j3J/7LOd9Xfd9Xdq6dasMBoPZcg8PD7Vq1Urr1q3T8OHDLVFukkiL54y0wcvLS3PnzpWfn5/WrVunU6dO6ezZs7Kzs1PmzJnVokULvfHGG6pbt66lS0UCbd269YXro6KidPPmTWXOnFlOTk4pVBXw6j788EN5e3tbuowUFd/5Ip9lMBg0d+7cZKgmdbh9+7Y8PDzk6OgYY13GjBk1b948FS1a1AKVWY4tdwIC0cjetp9D0+I5I20ge9susjdsFdk7fsjeZG8kPzrALcjNzU3NmzdX8+bN9fDhQ23atEnr16/X3LlzNXv2bBUqVEjNmzeXr6+vsmXLZulyX9mlS5fUsmVLs2WHDh1SaGiosmbNGuMfxrx58yogICAlS0xyafGckbY0aNBADRo0sHQZSEF3795VvXr1NGvWLFWtWtXS5SSZtBjQxo0bF+ewTbYormGooj1+/FizZs1SixYtlDt37hSqKnnt378/1uUGgyHO4GUwGJKzpBQxe/Zs/f7771q9enWMsP3ll19qz5496tGjh3r27Gk2J5ejo2OaG4oRSCvI3rafQ9PiOSNtIXunPWRv20H2Nkf2/m+dtSN7I7WjAzyVSJ8+vdq0aaM2bdro7t272rhxozZs2KBvv/1W3377rSpWrKgWLVqoQYMGcnNzs3S5iRIVFSV7e3uzZXv37pUkVatWLcb2Dx8+lIuLS4rUllzS4jkD0tNhXZydnZUuXTpLl4JkYItXLKbFgPZ8I/HzgoOD9cUXX6hnz54qWLBgClVlOY8fP9bUqVNVvnx5m3mNz5w5E2PZ3bt3Va1aNc2ePdumGtKkp99NgwcP1rp16+Tl5aWbN28qT548ZtsULFhQhw8f1nfffacTJ07ohx9+sFC1ACyF7G2bOTQtnjMgkb1tHdnbNnIZ2dsc2dv6kb1hLZgDPBXKlCmTOnTooPnz52v79u363//+Jzs7O3322WeqUaOGpctLtLx58+r06dNmyzZv3iyDwaDXX389xva7d+9W3rx5U6i65JEWzxlpQ3h4uBYvXqyhQ4eaLd+/f7+aNGmiKlWqqGzZsurZs6euXLlioSqBpBMd0K5evWrpUlJMaGioVq5cmabujrLFBqbn2cJV5nFZvHix1q1bp27dumn79u0xArj0tMFt8+bNatWqlTZv3qzly5dboFIAqQXZ+ylbyKFp8ZyRNpC9kdaQvdMGsrd1I3vDWtABnso5OjrK2dlZ7u7ucnBwUFhYmKVLSrSmTZtq1apV2rJli0JCQjRnzhxdvHhRXl5eMeYqWr16tf7880/Vq1fPQtUmjbR4zrB94eHheueddzRy5EitXbtWERERkiR/f3/17NlT/v7+qlmzprp16yZ/f3+9/fbbunPnjoWrBl5dWghoz0uL5wzrtXTpUlWqVElDhgyJdZ6xaE5OTho7dqyKFi2q33//PQUrBJCakb2tO4emxXOG7SN7I61Kizk0LZ4zrBfZG9aCIdBTobt372rz5s3auHGjDhw4oIiICBUrVkz9+/dX06ZNLV1eonXr1k27du3Shx9+aJr/wtHRUV988YWcnJwkPb1Ce8GCBdq/f78KFCigbt26WbboV5QWzxm2b8GCBTp48KA+/vhjdezYUQ4OT/8pmTx5ssLCwvTmm2/q66+/liT16tVLvr6+mj59uoYPH27JspFEHB0dVbFiRWXMmNHSpQCAmQsXLqh///7x2tZgMKhRo0aaNm1aMlcFIDUje9tODk2L5wzbR/ZO28jeAFIrsjesBR3gqcSdO3fk5+enjRs36tChQ4qMjFSuXLnUo0cPvfnmmzYx/4eTk5PmzJmj9evX6+jRo3J3d5evr68KFSpk2ubEiRM6fPiw3nzzTQ0ZMkTOzs4WSkg8vwABAABJREFUrPjVpcVzhu1bu3atGjZsqB49epiWhYWFaevWrTIYDGbLPTw81KpVK61bt44QbiUePnyo9OnTx7k+Y8aMmj9/vtmyffv2qXLlysldGpCs0qdPr3Hjxqlw4cKWLgWJ5ODgYOrkiI8MGTLEmC8WgO0jez9lazk0LZ4zbB/Z27aRvZFWkb2tH9kb1oIOcAsKCAiQn5+fNm3apMOHDysyMlIZM2ZUmzZt5OvrqwoVKli6xCRnb28vX19f+fr6xrr+/fffV//+/WVnZzuj86fFc4Ztu3Tpklq2bGm27NChQwoNDVXWrFnl7e1tti5v3rxpah4ja9elSxfNnj1bHh4eL932yZMn+uabb/Tbb7/p1KlTyV+cBaXFgJYxY0bNmzdPRYsWtXQpKSJdunSqUaMGd1hYsXz58unEiRPx3v7EiRPKkSNHMlYEILUge8dkizk0LZ4zbBvZ27aRvWNH9rZ9ZG/rR/aGtaAD3IJq164t6emVyvXr15evr69q1679wnkTbJ2Li4ulS0hxafGcYd2ioqJiXLW3d+9eSVK1atVibP/w4UPe51bk9OnT6tSpk+bMmaPMmTPHud2xY8f06aef6tKlSy/czlakS5fOrPEpMjJSM2bMUO/evS1YVfJydHRUpUqVTH9/+PChxo8fr7Fjx1qwqlc3e/Zs/f7771q9enWM31xffvml9uzZox49eqhnz55W30C+cuXKGMsePXokSfrzzz9169atWPdr0aJFMlaVfJo1a6aJEyeqe/fuL20wO3funNasWaMuXbqkUHUALInsHVNa/H2eFs8Z1o3sbdvI3rEje5O9rRHZO25kb1iSwWg0Gi1dRFrVuXNnNW/eXI0aNZK7u7ulywGAeGnevLlKly6tzz//3LSsSZMm8vf313fffadGjRqZbd+zZ0/dv39fS5YsSelSkQi//vqrvvjiC+XJk0dz5syJcYVmeHi4fvjhB82aNUuRkZFq3ry5hg0bZhNX7j58+FBLlizR0aNHZTQaVaxYMXXs2FEZMmQw2+7vv//W8OHD9c8//+j06dMWqjZpXLt2TbNnz9aRI0ckScWKFdO7776rfPnymW3n5+enMWPG6M6dO1Z7zkajUYMHD9a6devk5eWlRYsWKU+ePGbbTJkyRUuWLFFAQIDeeOMN/fDDDxaqNmn4+PjIYDCYLXv2p39s6wwGg9W+xo8fP1arVq107949DRs2TE2bNo3RaBwREaG1a9dqwoQJkqQVK1YoS5Yslig3xdy+fVseHh6xdvSFh4fryJEjKlq06AuH4ASsHdkbgDUie9s2sjfZm+xN9rbW15jsHTuyd+pDBzgAIEFmzJihqVOnauLEiapevboWL16sr776SpkzZ9bWrVvN5oBZvXq1Pv30U/Xv31/vv/++BatGQqxdu1ZDhgxR1qxZNWfOHOXNm1fS0yvUP/30U/3zzz/KmTOnRo8erZo1a1q42qRx9epVdenSRTdv3jQLKZkzZ9aSJUuUI0cORUREaOLEiZo3b54iIyPVtGlTTZw40YJVv5rTp0+rc+fOCg4OlrOzs5ydnXXv3j25urpq0aJFKlKkiB4+fKjhw4fLz89P9vb26tGjhwYOHGjp0hNl0aJFGjVqlLp166ZBgwbFeddfWFiYRo8ereXLl+uLL75Qq1atUrjSpLNixYpE7ff8UJvWxN/fXx988IH8/f3l6uqq4sWLK0uWLIqMjFRgYKBOnDih0NBQ5cyZU1OnTpWPj4+lS04SL7q7YuDAgTZ1dwUAAGkF2dv2kb3J3mRvsre1InuTva0BHeAWFNvQGPFhrUNjALANYWFh6tGjhw4cOCCDwSCj0ShHR0dNmTLFNLzk5s2btWDBAu3fv18FChTQ8uXL5ezsbOHKkRA7duzQgAED5O7urpkzZ+qPP/7Q9OnTFRERofbt22vQoEFyc3OzdJlJZtCgQVq/fr0GDhyo1q1by8XFRTt27NDnn3+uMmXK6JtvvlGvXr10+PBh5cyZUyNHjjS9361V7969tWvXLo0fP15NmzaVJB0/flwfffSRcubMqQkTJqhLly66dOmSSpYsqbFjx8aYZ9CatGnTRq6urpo3b95LtzUajWrdurWcnJy0aNGiFKgOSSksLEy//vqr1q1bpzNnzigiIkLS06EFy5QpowYNGuitt94yazS2Vmnx7gogMcjeAKwR2TttIHuTvcneZG9rRfYme6d2dIBbUPTQGNFDXryMtQ+NAcB2REZGav369Tp69Kjc3d3l6+urQoUKmdZ/9913mjVrlpo0aaIhQ4bI09PTgtUisQ4dOqTevXsrODhYRqNR+fLl09ixY1WhQgVLl5bkatWqperVq2vcuHFmy1esWKGRI0eqVq1a2rJli9q3b6+PP/5Yrq6uFqo06VSvXl2NGzfW8OHDzZb7+flp4MCBKlOmjI4fP67+/fvrnXfesforV8uWLav+/furW7du8dp+xowZmjZtmmmIOmsXGhoaa2Po+fPnlSFDBmXNmtUCVaWMu3fvyt7e3iaGi3xeWry7AkgMsjcAa0X2ThvI3mRvsjfZ2xaQvcneqY2DpQtIy57/hx4ArIW9vb18fX3l6+sb6/r3339f/fv3t/of7Wld+fLlNW/ePPXs2VN3797V559/bpMBXJKCgoJUtmzZGMsrVqyosLAw7dixQ5MmTVLDhg0tUF3yuH//fqxDUJUsWVKRkZE6e/as5s+frzJlyqR8ccnAwcEhQVcdZ8iQIcYcVtYoLCxM48eP15o1a7Rz584YQfzbb7/Vzp071bp1a3366ac20cD0vEyZMlm6hGSzdOlSVapUSUOGDHnhdk5OTho7dqxOnz6t33//nRCONIfsDcBakb3TBrI32ZvsTfa2BWRvsndqQwe4BVnzHA8A0q4uXbqod+/eqlq1qmlZRESEjhw5Ih8fH6VPn14uLi6mddFzkXEHjXXy8fHRwoUL1b17d/Xu3VtTp05VlSpVLF1WkgsPDzd730aLHmque/fuNhXApaef23Tp0sVYHh3SevXqZTMBXJLy5cunEydOxHv7EydOKEeOHMlYUfJ7dthMHx8fBQUFxTinOnXq6NatW1q8eLHOnTunefPmycHBOiPClClTErXfhx9+mMSVpJwLFy6of//+8drWYDCoUaNGmjZtWjJXBaQ+ZG8A1ojsnbaQvcnetoLsTfaOC9kbKc06P2FpVGRkpGbMmKHevXtbuhQAadj+/fvVtm1bs2UPHz5Uly5dNGvWLLNwDuszdOjQWJfny5dP165d03vvvafGjRubDR9qMBj05ZdfplSJFlGpUiVLl5DiSpQoYekSklSzZs00ceJEde/eXYULF37htufOndOaNWvUpUuXFKouecyZM0cHDhzQ8OHD1alTp1i3adu2rdq2baspU6ZoypQpWrBgQbyHqktt4hvCnx/+2JpDeFq9uwJIbmRvAKkB2du2kb1jR/a2fmRvsnc0sjfZ29LoALewhw8fasmSJTp69KiMRqOKFSumjh07KkOGDGbb/f333xo+fLj++ecfQjiAVMloNFq6BCSBFStWvHD9kydPtHLlSrNlaSGEp8UfrfGZI9WatGvXTosWLVLnzp01bNgwNW3aNMbrGhERobVr12rChAlKnz691YfwNWvWqF69enEG8Gd9+OGH2r9/v1atWmW1IfyPP/546TYPHz7U999/r+3bt8vBwcHqX+O0eHcFkFhkbwC2guxtG8jesSN7Wz+y94uRva0T2ds60QFuQVevXlWXLl108+ZN04/XzZs369dff9WSJUuUI0cORUREaOLEiZo3b54iIyPVtGlTC1cNALBl8fkRa6vu3bunf//912zZ/fv3JUl3796NsU6ScubMmSK1JZeLFy/qwIEDZssePnwoSTp79mysw3FVrFgxRWpLaq6urpo2bZo++OADffrppxo9erSKFy+uLFmyKDIyUoGBgTpx4oRCQ0OVM2dOTZ06VVmyZLF02a/k8uXLevvtt+O9/euvv65JkyYlY0XJK1euXC9cv379en311VcKCAhQuXLlNGrUKBUpUiSFqkseafHuCiAxyN4AgNSG7E32JnuTva0V2ZvsbS3oALeg77//Xjdv3tTAgQPVunVrubi4aMeOHfr888/1+eef65tvvlGvXr10+PBh5cyZUyNHjlTt2rUtXTYAwIa97EesLfvyyy/jvJp+8ODBMZYZDAadOnUquctKVtOnT9f06dNjXTd+/PhYl1vznIIFChTQypUr9euvv2rdunU6fPiwIiIiJEmOjo4qU6aMGjRooLfeeitBQ1ulVq6uroqMjIz39unSpTPNQ2dLrly5otGjR2vPnj3KmDGjxo4dqzZt2li6rCSRFu+uABKD7A0ASG3I3mTvaGRvsretIHuTvVMbOsAt6MCBA2rRooV69eplWta4cWOFhoZq5MiRGjJkiA4fPqz27dvr448/lqurqwWrBQAgpunTp8vPz0/Lly+3dCmvpGXLlpYuIcVZ89xLr8LJyUndu3dX9+7dJT29w8De3l4ZM2a0cGVJ77XXXtPhw4fjHboOHTpkUw1xYWFhmjFjhmbOnKmwsDC1bNlSH3/8sTw9PS1dWpJJi3dXAIlB9gYAWDuyt/Uie5O9n0f2tj5kb+tEB7gFBQUFqWzZsjGWV6xYUWFhYdqxY4cmTZqkhg0bWqA6AABe7saNG1Z9VXK0cePGWbqEFJdWQ/jzMmXKZOkSkk3Lli01cuRI7d27V1WqVHnhtvv27ZOfn5/69u2bQtUlrz179mj06NG6fPmyChcurJEjR6pChQqWLitZpLW7K4DEIHsDAKwd2dt6kb2fIns/Rfa2XmRv60MHuAWFh4fLxcUlxnI3NzdJUvfu3QngAFKl5+dretFcTUFBQSlaGwDEZsqUKYnaz5obK1q0aKFly5bp/fff13vvvae2bdsqc+bMZtsEBARoyZIl+vnnn5U7d2516NDBQtUmjTt37mjcuHFav369nJ2dNWjQIHXv3j3WOfVsSVq6uwJIDLI3AGtF9gZgbcjeZG9bRva2Lgaj0Wi0dBFplY+Pj7755hv5+vqaLQ8KClLVqlX1888/q0aNGhaqDgBi5+PjI4PBEGO50WiMdXk0W7hSGTGNHDlSv//+u9W/vmkxoA0dOjTB+xgMhjjnakvtfHx84rXd899j1v7eDgwM1EcffaR9+/bJYDAoZ86cZkN03bhxQ0ajUWXKlNF3332nHDlyWLrkRFuwYIEmTZqk4OBg1a1bV8OHD7fq8wGQdMjeAKwR2RvPInuTva0F2ZvsDaQWtn05hpWzt7e3dAkAEENanK8Jti++Ifz5gGbNIXzFihXx3vbZ87bWEP7HH3+8dJuHDx/q+++/1/bt2+Xg4BDv+btSMy8vL82dO1d+fn5at26dTp06pbNnz8rOzk6ZM2dWixYt9MYbb6hu3bqWLvWVjR071vT/W7du1datW1+6j8Fg0KlTp5KzrGSVFhsQgeRA9gaQGpG9YYvI3i9G9rZeZO8XI3vDEugAt7DnhzKSXjyckSTlzJkzRWoDgNikxfmaYPvSYkA7c+bMS7e5fv26xowZo+3btyt9+vQaMGBA8heWTHLlyvXC9evXr9dXX32lgIAAlStXTqNGjVKRIkVSqLrk16BBAzVo0CDG8vv378vZ2dkCFSW9tNhInBYbEIHEInsDsDZkb9gisnfsyN5kb2tC9o4b2Tt1YQh0C4prKCMp7uGMrP1KGQBA6pbQKxq3bdumU6dOWf1QVS9j6wHteZGRkZo1a5Z+/PFHhYaGqkmTJho6dGiMOaxswZUrVzR69Gjt2bNHGTNm1ODBg9WmTRtLl5VkwsPDtXz5ch09etSsEXX//v0aNWqU/P39ZTAYVK1aNX322WfKmzevBat9NUOHDtXbb7+t0qVLW7qUFHP9+vWXbhNbA+Inn3ySAtUBqQfZGwCQ2pC9Y0f2JntbK7K3bSN7Wyc6wC0oMfN/SFwBCgBIPvGdq+lZBoPBZkO4rQe02Bw8eFCjR4/WuXPnlD9/fo0cOVJVq1a1dFlJLiwsTDNmzNDMmTMVFhamli1b6uOPP5anp6elS0sy4eHheuedd3TgwAE5OjrqyJEjcnBwkL+/v5o3b66wsDDVqlVLhQoV0qZNmxQSEqLVq1dbbWNLXHP8pmVprQERiAvZGwCQ2pC9zZG9yd7WjOwNsnfqxBDoFkSYBgCkNvPmzbN0CalCWghozwsKCtLXX3+tlStXysnJSX379tW7774rJycnS5eW5Pbs2aPRo0fr8uXLKly4sEaOHKkKFSpYuqwkt2DBAh08eFAff/yxOnbsKAeHpz/9J0+erLCwML355pv6+uuvJUm9evWSr6+vpk+fruHDh1uybCSB5xsQx44da/MNiMCLkL0BAKkN2fspsjfZ2xaQvdMusnfqRgd4KhASEqJly5Zp165dOnPmjO7duyeDwaBMmTLJx8dH9erVk6+vr03+IwgASF0qVaqU4H0OHjyYDJVYTloJaM9asmSJJkyYoPv376t69eoaOXKkVQ/HFZc7d+5o3LhxWr9+vZydnTVo0CB1797dFE5tzdq1a9WwYUP16NHDtCwsLExbt26VwWAwW+7h4aFWrVpp3bp1hHArlhYbEIGEIHsDAFILsjfZm+xtO8jeaQ/Z2zrY5jeOFTl06JD69++vO3fuyMnJSXnz5lWuXLkUERGhe/fuadu2bdq6daumTJmiiRMnqly5cpYuGQAA3bhxQytWrNDKlSt19epVmxiGLa0FNEk6e/asRo0apaNHjypz5sz69ttv1aRJE0uXlSwWLFigSZMmKTg4WHXr1tXw4cOVI0cOS5eVrC5duqSWLVuaLTt06JBCQ0OVNWtWeXt7m63LmzevAgICUrLEJHfw4EFFRkYmaJ8WLVokTzEpLC02IAIJQfYGAFgjsrdtIHuTvZ9F9rZuZG/rYbv/qliBCxcuqEePHnJ3d9eECRPUoEGDGFeaBwcHa+PGjfrhhx/Us2dPrVixQvny5bNQxQCAtOzJkyfy8/PT8uXLtW/fPhmNRhkMBtWqVcvSpb2ytBjQxo8fr/nz5ysyMlJ16tTRgAED5O7urn///feF++XMmTOFKkxaY8eONf3/1q1btXXr1pfuYzAYdOrUqeQsK1lFRUXJ3t7ebNnevXslSdWqVYux/cOHD+Xi4pIitSWX33//Xb///nu8to3+DrP2EJ4WGxCBhCJ7AwCsCdnbtpC9yd7PI3tbJ7K39eGVsaAff/xRLi4uWrZsmbJlyxbrNu7u7mrTpo1q1aql5s2b6+eff9aYMWNSuFIAQFp29OhRLV++XBs2bFBwcLAkKVOmTGrdurXeeust5cqVy8IVvrq0GNBmz55t+v9t27Zp27Zt8drPWu84eP5q7LQgb968MV6vzZs3y2Aw6PXXX4+x/e7du61++L127dqpTJkyli4jxaTFBkQgMcjeAABrQPaOHdnbupC9nyJ72xayt3WiA9yCDhw4oFatWsUZwJ+VNWtWtWjRQrt3706BygAAaV1AQIBWrlypFStW6NKlSzIajXJxcVG1atW0Z88eff7556pXr56ly0wyLVq0kMFgsHQZKerDDz9M8D5GozEZKkk5b7/9tkqXLm3pMlJM06ZNNXXqVNWqVUvVq1fX4sWLdfHiRWXOnFl169Y123b16tX6888/1b9/fwtVmzQqVKggX19fS5eRYtJiAyKQGGRvAEBqRfa2fWRv20f2tn1kb+tEB7gFBQUFJWhItddee01LlixJxooAAGndhg0btHz5cu3Zs0eRkZHKkCGDfH191aBBA9WsWVO3b99W/fr1LV1mkvvqq68kSeHh4Tp//rwiIiJUqFAhqx+S6kVy5sypVq1axXv769eva9iwYclYUfJasWKFqlWrlqZCeLdu3bRr1y59+OGHMhgMMhqNcnR01BdffGEa+nfz5s1asGCB9u/frwIFCqhbt26WLRoJkhbvrgASg+wNAEhtyN5k77iQva0P2dv2kb2tEx3gFhQeHp6gf9zTpUunR48eJWNFAIC0buDAgXJ1dVWHDh1Ur149VaxY0WweI1u+UvuXX37RtGnTTP/WOjk5qUOHDho0aJBNzuczfPhwhYSEqGPHji/ddsmSJRo/fjy/Q6yMk5OT5syZo/Xr1+vo0aNyd3eXr6+vChUqZNrmxIkTOnz4sN58800NGTJEzs7OFqwYiZHW7q4AEoPsDQBIbcjeZO/YkL2tE9k7bSB7Wx/b+xcFAAAkWu7cuXXt2jUtX75c/v7++vvvv1W/fn0VKFDA0qUlq2XLlumbb75Rrly51KJFC9nZ2Wnfvn2aM2eOIiMjrfrq67jkz59fY8eOVUhIiHr27BnrNrdv39bw4cO1c+dOOTo6Wv0QXWmRvb29fH194xya7P3331f//v1lZ2eXwpUlvZYtW1r9PGoJlRbvrgAAALAFZG+y97PI3taP7G3byN7WiQ5wC7t3757+/fffeG0bFBSUzNUAANK6LVu26NixY1q9erU2btyo3bt369tvv9Vrr72mBg0aqHjx4pYuMVksXrxYZcqU0dy5c5UuXTpJT+fcGjhwoBYvXqzBgwebhq2yFb/99pt69uypiRMnKiQkRH379jVbv3btWo0ZM0b3799X2bJlNXbsWBUsWNBC1SaNgwcPKjIyMkH7tGjRInmKSSVsaajBcePGWboEAKkY2RsAkJqQvcne0cjeT5G9rQfZG9bCYDQajZYuIq3y8fFJ1HA2p0+fToZqAAAwFxkZqd27d2vNmjX6448/FBISYvp3q3Xr1urdu7dy5cpl4SqTRvny5fXRRx/FGJLs6NGjat++vVasWCEfHx8LVZd8Hj9+rD59+mjfvn3q1q2bPv30UwUFBWnkyJHavHmznJ2dNXDgQHXu3Nnqh+BL6O8uo9Eog8HA7y6kaj4+Pvrmm2/ivMsAwFNkbwBAakb2JnuTvcneSN3I3taJO8AtqGXLlpYuAQCAONnb26t27dqqXbu2QkNDtXnzZq1du1Z//vmnli5dquXLl6ty5cpq3bq1mjVrZulyX0lISIjSp08fY3nu3LllNBr14MEDC1SV/FxdXTVjxgx99NFHmjNnjq5du6bDhw8rMDBQ1atX1+eff24zDS2S1K5dO5UpU8bSZQBJirsrgJcjewMAUjOyN9mb7A2kfmRv68Md4AAAwKRXr16qUqWKKlWqpOLFi8d61W5QUJDWr1+vNWvW6OjRozZxpW5cV3IGBQWpatWqmj17tqpWrWqh6pJfVFSUhg8fruXLl8vOzk6ff/652rRpY+mykhRX68IWcXcFAACAdSJ7k73J3oD1IHtbJ+4ABwAAJnv37tXOnTtlMBjk7u6uChUqqHLlyqpSpYppGDJPT0917NhRHTt21NWrV7Vu3ToLV41XZWdnpy+//FIeHh6aNWuW9uzZoxYtWsjBgZ+KQGrH3RUAAADWh+ydNpG9AetF9rY+fLMCAACTw4cP69SpUzp8+LCOHDmio0ePatu2bTIYDMqQIYMqVqyoypUrq3LlyipSpIjy5Mmj999/39JlJ4l79+7p33//NVt2//59SdLdu3djrJOknDlzpkhtySG28+nUqZMeP36sxYsX69GjRxoxYoTs7OzMtrHmcwZsUYUKFbi7AgAAwMqQvcneZG/AupC9rQ9DoAMAgBe6ceOGWSg/c+aMIiMj5eHhoUqVKqly5crq0KGDpct8JS8ayih62KLnGQwGnTp1KrlLSzYvO2dJMdZb8zkPHTpUb7/9tkqXLm3pUoAkw/CCAAAAtoPsTfaOZs3nTPaGLSJ7WyfuAAcAAC+UI0cONW3aVE2bNpUkPXz4UKtXr9by5cu1adMm+fn5WX0Ib9mypaVLSHEtWrRI0PxF1m7cuHGWLgEAAAAA4kT2tk1kbwCwDDrAAQDAC4WGhurAgQPav3+/Dh06pBMnTig8PFxOTk6mIdmsXVoMaF999ZWlSwDwilq2bKm8efNaugwAAAAkAbK3bSJ7A9aP7G2dGAIdAACYiYiI0NGjR7V3717t3btXx44dU3h4uBwdHVWqVClT8C5btqycnJwsXS4AAAAAAFaH7A0AQPKhAxwAAJi8++67OnjwoEJDQ2VnZ6fixYurSpUqqly5ssqXLy9nZ2dLlwgAAAAAgFUjewMAkLzoAAcAACY+Pj5ydHRUs2bN9N577yl//vyWLgkAAAAAAJtC9gYAIHnRAQ4AAExGjBihffv26cqVKzIYDHrttddUtWpVValSRRUrVlTGjBktXSIAAAAAAFaN7A0AQPKiAxwAAMTw77//as+ePaa5yO7cuSM7Ozv5+PiocuXKplDu6upq6VIBAAAAALBKZG8AAJIHHeAAAOClzp07p7179+qvv/7SwYMH9eDBAzk4OKhEiRKqWrWq+vfvb+kSAQAAAACwamRvAACSBh3gAAAgQcLCwrRx40b99ttvOnr0qAwGg06fPm3psgAAAAAAsBlkbwAAEs/B0gUAAIDU7cqVKzp27JiOHTum48eP68yZMwoPD5ebm5tq1aqlihUrWrpEAAAAAACsGtkbAICkwx3gAADA5P79+zp+/LgpcB8/flz379+X0WhUxowZVa5cOVWqVEkVK1ZUsWLFZGdnZ+mSAQAAAACwKmRvAACSFx3gAADAxMfHRwaDQUajUZ6enqpYsaLpj7e3twwGg6VLBAAAAADAqpG9AQBIXgyBDgAATBo1aqRKlSqpUqVKKlSokKXLAQAAAADA5pC9AQBIXtwBDgAAAAAAAAAAAACwCUweAgAAAAAAAAAAAACwCXSAAwAAAAAAAAAAAABsAh3gAAAAAAAAAAAAAACbQAc4AAAAAAAAAAAAAMAmOFi6AAAA0oLJkydrypQpCdrnjz/+UO7cuZOposSrW7eurl+/Lkn63//+py5durxw+x49emj37t2SpNmzZ6tatWrJWpefn5/y5cuXLMcAAAAAAKReZG+yNwAAEh3gAACkCG9vb/n6+potCwwM1J49e+Tq6qp69erF2MfV1TWlyku0jRs3vjCE3717V3v37k3BigAAAAAAaRXZGwAASHSAAwCQIho0aKAGDRqYLdu3b5/27NkjT09PTZgwwUKVJV6GDBl0+PBh3bp1S9myZYt1Gz8/P0VERMjR0VHh4eEpXCEAAAAAIC0he5O9AQCQmAMcAAAkUv369WU0GuXn5xfnNuvWrZOHh4dKliyZgpUBAAAAAGAbyN4AACQcHeAAAKRi27dvV48ePVSpUiWVLFlSDRs21DfffKN79+6ZbXft2jV5e3urVq1asT5O586d5e3trX379pmWDRkyRN7e3tq/f7/69u2rUqVKqUqVKpo/f368amvUqJGkp0OxxSYgIEAHDx5Uw4YN5eAQ96Azq1atUocOHVSuXDmVKlVKvr6+mjZtmkJCQmLd/q+//lL37t1VsWJFVahQQQMGDDDNixabyMhILVy4UG3btlXZsmVVtmxZvfXWW1qxYoWMRmO8zhUAAAAAYLvI3jGRvQEA1owh0AEASKUmTJigmTNnyt7eXuXLl5enp6eOHj2qn3/+WRs2bNDcuXOVJ0+eVz7OiBEjFBgYqJo1a+rcuXPy8fGJ13758+dX0aJFdfjwYQUEBChr1qxm6zdu3KioqCg1bdpUU6ZMibF/VFSUPv74Y61du1ZOTk6qVKmSXFxcdODAAX3//ffatGmTZs+eLU9PT9M+S5Ys0WeffSZJqlChgjJkyKDdu3fr4MGDCgsLi3GM8PBw9enTRzt37pS7u7vKli0rR0dH7d+/X0OGDNG+ffv01VdfJeTpAgAAAADYELI32RsAYHvoAAcAIBXaunWrZs6cKQ8PD/3888+mYczCwsL0+eefa8mSJerfv7+WLVsmg8HwSscKCAjQ6tWrlSdPHkVFRcnOLv4DxDRp0kSnT5+Wn5+fOnXqZLZu/fr1ypo1qypWrBjrvgsWLNDatWuVJ08ezZo1S3nz5pUkBQcHa9CgQdq+fbs+++wzTZ48WZJ048YNjR07Vg4ODpoxY4aqVq0qSbp796569OihU6dOxTjGjz/+qJ07d6pSpUqaNGmSMmXKJEm6c+eO3n33Xa1YsULly5dX27Zt433OAAAAAADbQPYmewMAbBNDoAMAkArNmTNHkvTJJ5+YzeHl5OSkUaNGKV++fDp58qT27t37yseqV6+e6Wr2hARwSWrcuLGkmEOx/fvvvzp69KgaN24c52POnTtXkjR27FhTAJckd3d3TZgwQenTp5efn58uX74sSVqxYoVCQ0P19ttvmwK4JGXKlElffvlljMcPCwvT/Pnz5ejoqAkTJpgCuCRlzpxZn3/+uSTpl19+SdA5AwAAAABsA9mb7A0AsE10gAMAkMpERETo8OHDMhgMatiwYYz1Dg4OatCggSSZzSuWWEWKFEn0vnny5FHx4sV16NAhBQQEmJavX79eRqNRzZo1i3W/Gzdu6Nq1a/L09FSVKlVirE+fPr1q1qwpSdq/f78k6cCBA5Kk2rVrx9i+aNGiyp07t9mykydP6uHDh3rttdeULVu2GPuULFlSXl5e8vf31+3bt+N5xgAAAAAAW0D2JnsDAGwXQ6ADAJDK3Lt3T+Hh4fL09JS7u3us20QHzqQIjxkzZnyl/Zs0aaKTJ09q8+bN6tixo6SnITxPnjwqVapUrPtEB/ZcuXLF+bjPn2P0PtmzZ49z+2vXrpn+fuPGDUnS2bNn5e3t/cJzuHHjhrJkyfLCbQAAAAAAtoPs/RTZGwBgi+gABwAglTEajZL0wvnFordxcnKK12NGRkbGuS6hQ689r3Hjxvrmm2+0YcMGdezYUZcvX9bJkyf13nvvxblPYs7xZfOtOTiY/6yJioqSJOXMmVPly5d/4b5ubm4vXA8AAAAAsC1kb/NtyN4AAFtCBzgAAKmMh4eHHB0dde/ePQUHB8d6JfrVq1clSV5eXpL+C9LRwfN59+/fT6Zqn15JXqpUKR06dEi3b9/W+vXrJUlNmzaNc5+sWbNKktlV48+LPsfMmTNLkrJly6Zz587p+vXrKlSoUIztnx0GTpLpqvLs2bNrwoQJCTgjAAAAAICtI3s/RfYGANgi5gAHACCVcXR0VNmyZRUVFaXNmzfHWB8REWFaXrlyZUmSq6urpKdhOzw83Gz7oKAg+fv7J2vNTZo0UVRUlPz8/LRhwwYVKlTohUOf5cyZU7ly5VJQUJBpnrFnPXz4ULt375YkVaxYUZJUrVo1SYr1Obl69arOnz9vtqxkyZJydnbWmTNnYgR0Sbp165YaN26s7t2769GjR/E/WQAAAACA1SN7k70BALaLDnAAAFKhrl27SpK+/vprnTp1yrQ8PDxco0eP1pUrV1S0aFHT8GIeHh7Knj27wsLCtGjRItP2T5480WefffbCYdiSQqNGjWQwGLRgwQKdPXv2hVegR4s+x+HDh5uuOJekR48e6eOPP1ZwcLDq1KljmqusZcuW8vDw0LJly7Rp0ybT9sHBwRo2bFiMK/BdXV3Vrl07PX78WB9//LECAwPNjjF06FBdvHhRrq6uDMMGAAAAAGkQ2ZvsDQCwTQyBDgBAKlS/fn298847mjVrltq0aaPy5cvL09NTx44d082bN5UrVy599913ZnOI9ezZU2PHjtXYsWO1bt06Zc6cWYcPH1ZkZKTq1Kmjbdu2JVu9OXLkUJkyZXTkyBFJLx6CLVrnzp115MgRbdiwQU2bNlXFihXl4uKigwcPKigoSD4+Pvryyy9N22fKlElffvmlBgwYoH79+qls2bLKmjWrDhw4oMjISBUoUCDG1faDBg3S6dOntXfvXr3xxhsqWbKkXFxcdOTIEd27d0/58+fX6NGjk/bJAAAAAABYBbI32RsAYJu4AxwAgFTq008/1Y8//qjKlSvrzJkz2r59u9zc3NS7d2+tWLFCBQoUMNu+c+fOGj9+vEqUKKFTp07pwIEDqly5spYuXRpj2+TQuHFjSVLx4sWVL1++l25vZ2en7777TuPGjVPx4sV1+PBh/fnnn8qePbs+/vhj/f7778qUKZPZPvXq1dNvv/2mevXqyd/fX7t27VKxYsX066+/Knv27DGO4ezsrFmzZul///ufXnvtNR0/flz79u1T1qxZ1bdvXy1ZssQ0zxkAAAAAIO0he5O9AQC2x2A0Go2WLgIAAAAAAAAAAAAAgFfFHeAAAAAAAAAAAAAAAJtABzgAAAAAAAAAAAAAwCbQAQ4AAAAAAAAAAAAAsAl0gAMAAAAAAAAAAAAAbAId4AAAAAAAAAAAAAAAm0AHOAAAAAAAAAAAAADAJtABDgAAAAAAAAAAAACwCXSAAwAAAAAAAAAAAABsAh3gAAAAAAAAAAAAAACbQAc4AAAAAAAAAAAAAMAm0AEOAAAAAAAAAAAAALAJdIADAAAAAAAAAAAAAGwCHeAAAAAAAAAAAAAAAJtABzgAAAAAAAAAAAAAwCbQAQ4AAAAAAAAAAAAAsAl0gAMAAAAAAAAAAAAAbAId4AAAAAAAAAAAAAAAm0AHOAAAAAAAAAAAAADAJtABDgAAAAAAAAAAAACwCXSAAwAAAAAAAAAAAABsAh3gAAAAAAAAAAAAAACbQAc4YEOWL18ub2/vBP/p3LmzpUuPt8mTJ8d5HkWLFlXp0qVVt25d9e3bV1u2bLF0ufh/R44cMb1OPXv2fOn2Q4YMkbe3twYPHmy2PPox9uzZk+Q19ujRw/T4x44dS/LHf1ZERIT8/f2T9RjPO3PmjMaOHaumTZuqQoUKKlmypGrXrq2ePXtqwYIFCg0NTfJj3r59W4MHD1a1atVUokQJ1axZUzt37pQkrVy5Us2bN1fp0qVVoUIF9ejRQ/v27TO9BhEREYk+7rVr10yPc/ny5aQ6Hbwio9GoCxcuWLqMRLl48aJ69+6typUrq2TJknr99dd19uxZGY1GzZ49W40aNVLJkiVVuXJl/e9//zP9e1yrVq1XOm5SfSaSyrlz52Isq1u3rry9vbVkyZIEPVZi9wMAANaDNgraKFIr2ijM0UZBG0VqYg2fTwDWwcHSBQBIOl5eXipXrlyM5Tdu3NCNGzfk5OSkEiVKxFhfpEiRlCgvScV2LkajUaGhobp27Zr8/Pzk5+cnX19fffPNNzIYDBaqFJK0bNky0//v3r1bV69eVZ48eSxYkbkbN26Y/SBeuHChSpcunSzH2r17t8aOHauGDRtq4MCByXKM5/3www+aNm2aoqKi5O7urrx588rR0VG3b9/Wrl27tGvXLv3888+aOnWqihcvniTHjIqKUs+ePXXmzBk5ODiocOHCCg8PV65cubRp0yZ9+umnkqQsWbIoW7Zsqer9gKR3/PhxjRkzRvny5dOECRMsXU6CPHr0SF27dlVAQICcnZ1VuHBhhYSEKHfu3Jo9e7bGjx8vScqVK5c8PDyUO3duC1ec9AICAjR+/HgdPHhQO3bssHQ5AADAStBGQRtFakUbxX9oo6CNIrVJ7Z9PANaDDnDAhtSuXVu1a9eOsXzy5MmaMmWKsmTJooULF1qgsqT3onMJCwvT999/r19++UVr1qxRpUqV1K5duxSuENFCQkK0YcMGGQwG1ahRQ7t27dLixYtjXJlpScuXL1dUVJRq166tHTt2aMOGDRo6dKgyZsyY5Mf66aefUvTK6mXLlmnq1KlydXXVuHHj9MYbb8je3t60/sKFCxo2bJiOHj2qHj16aP369cqUKdMrH9ff319nzpyRJE2fPl01a9Y0rZs8ebIkqXz58po3b54cHJ7+HAkJCdH69eslybQsMbJly2Z6nJw5cyb6cZB0fvvtNx0/flz58uWzdCkJdvDgQQUEBMhgMGj58uUqWLCgad2GDRskSU2bNtW3335rWv7w4UOVLl1ajo6Or3TsUqVKJcln4lXt3r1ba9euVbZs2SxWAwAAsD60UTxFG0XqQhuFOdooaKNITazh8wnAejAEOgCb4+TkpE8++USlSpWSJM2fP9/CFaVtGzduVHBwsAoXLqwWLVpIehrmwsLCLFvY/zMajVqxYoUkqXXr1sqfP79CQ0NNy6zd9OnTJUmffPKJGjVqZBYsJalgwYKaNm2avLy8FBQUpHnz5iXJcYOCgkz/X7ly5VjXlS9f3ixEuri4qGDBgmYdjInh6OhoepxX7YAEot+vmTNnjvHejF5XqVIls+Xp06dXwYIFlTdv3lc6dlJ9JgAAAGA5tFGkLrRRWBZtFLRRvEhq/3wCsC50gAOwWfXr15ck/fPPP3r8+LGFq0m7li9fLkmqVauW6tSpI2dnZwUGBmrz5s0Wruyp/fv36+rVq3J0dFS1atXUuHFjSdLixYstXNmre/Dgga5cuSJJLxwuLVOmTKbPy/Hjx5Pk2JGRkab/d3JyMlsXFRUV63IgNXrR+5X3MgAAAOKLNorUgTYKy6GNAi+T2j+fAKwLHeAATDZt2qSePXuqSpUqKlGihGrUqKG+ffvqr7/+inV7b29veXt7m81L9KzOnTvL29vbNJSQJF27dk3e3t6qXr26bt26pV69eqlUqVKqVKmSBg0alKTn4+7ubvr/R48emR3f29tbly9fjnW/unXrytvb2/SjS5L27dsnb29vtWvXThcuXFD79u1VsmRJVa1a1TT/a/R+p0+f1vbt2/X222+rbNmyqly5srp06aItW7bEWWtkZKSWLFmizp07q2LFiipRooRef/11ffzxxzp58mSs+4SGhmrGjBl6++23VbVqVZUsWVJ16tTRoEGDdOjQoTiPdebMGX366ad6/fXXVaJECVWuXFk9evTQpk2bYt3+2efs2eckPq5cuaIDBw5Ikho0aCA3NzfVqVNHklLNUHfRcwtVqVJF6dOnl6+vryTp4sWL2rt3b6z7JOZ9tHz5cnl7e2v//v2Snl717O3trSFDhpjtd//+fU2ZMkUtWrRQ2bJlVbp0aTVu3Fjjx49XQEBAgs7t2SuXt23b9sJt+/btq3Xr1mnixIlmy4cMGSJvb+84h5uKPq+6detK+u+56dKli2mb6Ocq+rGin4MpU6aY1kn/fc68vb0VERER41hnzpzRiBEjVL9+fZUsWVIVK1ZU165dtXHjRrPtXvb6XL16VaNGjdIbb7yhkiVLqkKFCurQoYOWLFliFoqffw4WLlyoa9euaejQoapVq5ZKlCihWrVq6X//+5+uXbsW53N78OBBDRo0SHXq1FGJEiVUpUoVvf/++2bfrbt27ZK3t7eKFy+uwMDAWB8nNDRU5cuXl7e3t44dOxbjXBP6+Xzw4IFmzJihjh07qnLlyipevLgqVKigVq1aafLkybp//36MfRL6vR/9mkbfrbBmzRp5e3urc+fOMc5tzpw5ateuncqVK6eSJUuqfv36+uyzz3Tp0qVYj3X//n199913atWqlSpVqqTSpUvrjTfe0P/+9z+dPXs2ztq+++67WB9v8uTJZrVF1z506FBJ0vXr103nH/35vn79uiRp6NChZp+D6M9FrVq1Yj1WfN4Tz9bwos9EQr7Po5+DnTt36syZM+rfv7+qVaumEiVKqF69evryyy919+5ds32efQ5u3bpl9pl93qFDh/T++++rcuXKKlWqlBo2bKiJEycqODg41u1fdT8AAGDbaKN4ijYKc7RRxEQbxX9oo7DeNgpr+HwCsC50gANQeHi4PvzwQ/Xr10+7du2Sg4ODfHx8FBERIT8/P3Xr1k1ffvllkh4zLCxMPXr00J49e1SwYEEZDAblypUrSY8R/aPS2dlZnp6eSfKYd+/eVdeuXXX69GkVKlRIT548Uf78+c22WbZsmd577z2dPHlSBQoUULp06bRv3z598MEHGjt2bIzHDA4OVseOHTV8+HDt379f6dOnl7e3tx4+fKjVq1erTZs2mj17ttk+YWFh6tatmyZOnKjjx4/Lw8NDhQsXVnBwsNauXauOHTtqyZIlMY7166+/qlWrVlq5cqXu37+vwoULy9XVVbt371a/fv00aNCgWH9cJ9ayZctkNBqVN29e09W9zZo1kyQdOHBAFy5cSLJjJUZwcLD8/Pwk/VdXwYIFVbRoUUnSokWLkuxYXl5eKleunKnRI0eOHCpXrpzZ++fs2bNq1qyZJk+erLNnzypXrlwqUKCArly5olmzZqlZs2bat29fvI/p6uqqcuXKSXrauffpp5/qwIEDsb7GWbJkUaFChV75s5IuXTqVK1dORYoUMS0rV66c6Vxjew6ia3yRX3/9VW3atNHvv/+uu3fvmt67e/fuVf/+/ePs1Hze5s2b1axZMy1cuFABAQF67bXXlClTJh06dEjDhw9Xjx49TI1Rzzt16pSaN2+ulStXysXFRfny5dOtW7e0dOlStW3bVjdu3Iixz7fffqtOnTpp7dq1evz4sby9vWVnZ6dt27apW7dupqv4q1evrhw5cigiIkJr166Ns/bg4GAVLFjwhVfLx8elS5f05ptvauLEiTp69KgyZcokb29v2dvb6+TJk5oyZYreeuutOJ+L+EqfPr3KlSsnLy8vSU+v5H/+/XHz5k21bNlS48aN07Fjx5QlSxYVLlxYt2/f1uLFi/Xmm2+a5kuLdu/ePbVt21bTp0/XuXPnlCVLFhUoUEB37tzR0qVL1bp1a+3cuTNJao/+jDo5OZnerw4ODipXrpzpDoHo93aJEiVe+rjxfU+8zKt8n+/cuVNt2rTRli1b5OnpqRw5cujatWuaO3eu3n77bbOO52efA0dHxzg/sytWrFDHjh21Z88e5ciRQ5kyZdKlS5dMjaChoaGx1pLY/QAAgO2ijSL+aKNIGNoo/kMbBW0UqamNQkr9n08A1ocOcAD66quvtHnzZrm6umrSpEnavXu3li5dqj///FOfffaZHBwcNHfuXM2ZMyfJjvngwQPdvn1bK1eu1IoVK7Rr1y716tUryR7/7t27WrVqlaSnP9qevcr0VVy9elUuLi7atGmTqe7oOWmizZ8/X9WqVdP27du1fPly7dixQ2PGjJGDg4Pmz58f44fj4MGDdeTIEWXJkkXz5s3T1q1btWzZMv3111/q06ePoqKi9NVXX5lCkPT0R+GRI0eUP39+bdmyRRs2bNDy5cu1e/dudezYUUajUePHj9eTJ09M++zcuVNjxoyRnZ2d/ve//+ngwYNasWKFtm3bpjlz5sjLy0tr1641uxpekrJly6b169dr/fr1euONN+L9XEVFRZleg+grliWpdu3a8vDwkGT5KzjXrVunkJAQubi4mJ3bm2++KUnasmWL7ty5kyTHql27thYuXKhixYpJkpo3b66FCxfq/fffl/Q06Pbs2VMBAQEqW7as/Pz8tHbtWq1cuVI7duxQnTp1dP/+fX3wwQe6evVqvI87YsQIubq6ymg0auXKlerUqZMqVaqkXr16acaMGTp27JhpuK+kkCVLFi1cuFDDhw83LVu4cKHpXJ99Dlq3bm1a9yKHDx/W2LFjFR4erl69eumvv/4yfbbGjRsnOzs7TZ8+Xbt3737h45w5c0YfffSRnjx5ot69e2v//v1atWqV/Pz8tGLFCuXPn19//fWXRo0aFev+v//+uwoVKqT169dr06ZNWrdunRYtWiQ3NzfdvXtXs2bNMtt+3bp1+umnn2RnZ6dhw4Zpz549WrZsmXbt2qUBAwZIkkaPHq0LFy7Izs7O9F0S/bl53sqVKyVJrVq1Mi1L7OdzxIgRunHjhsqUKaNt27aZvkP27t2r8ePHy87OTv7+/qZjJlaxYsW0cOFC053Q1atX18KFCzVixAhJT+8sef/993Xx4kUVKFBAq1at0qZNm7R8+XL9+eefatu2rZ48eaJPPvnEdEW5JP3888+6fPmyypUrpx07dmjdunVauXKldu7cqQYNGig8PPyVG0Wja3/vvfck/ffeXrhwofz8/LRw4UJlyZJFkvTee+9p4cKF+uGHH174mAl5T7xIYr/Po82fP1/Vq1fXtm3btG7dOm3evFk//vij7O3tdfnyZS1dutS07bPPQaZMmeL8zB46dEjNmjXTzp07tXLlSm3fvl3ffPONJOncuXNxXv2f2P0AAIDtoo0i/mijoI0isWijoI0iNbVRWMPnE4D1oQMcSONu3rxpuoJ0zJgxatSokWmdvb29OnbsqP79+0t6OhTQq94N+KwOHTqoUKFCkp7eWffscGCJYTQaFRQUpK1bt+qdd97RvXv35OjoqH79+iVFuSbvvfeesmXLJklyc3NTunTpzNbnzJlTU6dONd3xaDAY1K5dO/Xo0UPS0+cx2tGjR03DPv3www+qXLmyaZ2Tk5P69++vt956S5I0YcIE07ozZ85IejonTs6cOU3L06VLpyFDhqhGjRp64403dO/ePdO6b7/9VkajUYMHD1aXLl1kb29vWle1alWNGzdOkjR79mwFBQWZ1jk6OqpgwYIqWLCg0qdPH+/naffu3aarTaPDWvTjRb/PVq1aZdG7+6KHFqtXr57c3NxMy5s1ayY7OzuFh4ebtkluv/32mwICApQ5c2b99NNPypMnj2ld5syZ9cMPP6hIkSJ6+PChpk+fHu/HLVasmJYsWaLy5cublgUHB2vHjh2aOHGi2rVrpxo1aui7775TSEhIkp5TUvnxxx8VFRWlxo0ba9CgQWafuVatWqlNmzaS9NKOssmTJyssLEydOnXSgAEDzB6nWLFi+uGHH2Rvb681a9bo/PnzMfZ3dHTUlClTVKBAAdOysmXLmsLe4cOHzbaP/qx3795dXbt2NX3m7O3t1bt3b1WvXl2RkZGm0Ni6dWsZDAadPHkyRgforVu3tGfPHtnb26t58+ZmNSX08xkYGKhz585Jevq9nzVrVtM6g8GgFi1aqFKlSpIU61DiSWnjxo06ffq00qVLp5kzZ8rHx8e0zt3dXWPHjlXNmjUVHh5udgV99Hdgw4YNlSlTJtPy9OnTa/jw4apWrZoqVqyY6u4eTuh7Ii6J/T6P5uXlpR9++MHsta9Xr57pQoXn38vxUbBgQY0fP97UOCE9/e6vXr26JMU57GVi9wMAALaJNoqEo40ifmijSBjaKOJGG0XStlFI1vH5BGB96AAH0ridO3cqIiJCWbJkUZMmTWLdplOnTnJ0dNTDhw9N8+IkhWd/7CbUs3OxRv/x8fFRlSpV1Lt3b50+fVrp06fX999/b9ahkhReVne7du3k6uoaY/nbb78tSfL399fFixcl/TfnUalSpeIcYumdd96R9HS4tH/++UeSTENSLV26VL/99pvZnK1OTk765ZdfNG7cOFMIvnbtmk6fPi3J/Ifks2rXri1PT0+FhobGOadaQkT/0C9VqlSMIdiia3jw4IHWrVv3ysdKjAsXLpjuKH3+OcmaNauqVKkiSVq8eHGSXn0cl61bt0qSWrRooYwZM8ZY7+TkZJqbeOvWrTIajfF+7EKFCum3337TypUr9eGHH6ps2bJydHQ0rQ8MDNT06dP15ptv6ubNm694JkkrJCTENM9ZdEPL8wYMGKCNGzea5rqLTVhYmGlI7Lg+A9HfI0ajMdb5yEqUKGG64/dZr732miTp4cOHpmWXL182fc6jP/vP++KLL7RlyxYNHDhQkpQnTx5VrFhRkmJ0gK5atUpRUVGqVatWrDUkhJeXl/bu3atjx46ZDQMXLTIy0tTYl9zhMvp9X7duXbMGlWd1795dkrR//37Tcxz9nfLzzz9r9erVZs99tmzZNHv2bI0ZM0bOzs7JWH3CJOY9EZuk+D6vWrVqjIZR6WlntGT+Xo6vevXqmTVaRoueP+/5ucVfdT8AAGCbaKNIONoo4oc2ioShjSJ2tFE8lZRtFFLq/3wCsE5JM94OAKsV/eOnaNGisrOL/ZoYV1dXFShQQP/884/8/f1Vp06dJDn2q/xAcnJyijHXqp2dndzc3JQtWzaVLl1ajRo1euUrtmPzsrpLlSoV6/KcOXMqffr0evjwoS5duqTXXnvN9PwXL148zsfLnz+/3N3dFRwcLH9/fxUpUkRt27bV0qVLdf78eY0ePVqff/65ihYtqqpVq6pmzZqqWLGi2ZBq0Xd7StIHH3wQ57GihyOLriux7t27pz/++ENS7D/ky5cvrzx58ujq1atauHChWrdu/UrHS4zoIX69vLxMdxo+q3nz5tqzZ4+uX7+uXbt2qXbt2slaj7+/v6QXvxei1929e1f37t1L8FxYRYsWVdGiRdW3b1+FhITo8OHD2r17t1atWqXAwEBduXJF/fv3j/ccxCnh33//VXh4uCTF2VDk5eVlupshLpcuXVJYWJikp0N6Rc/dHNvxpNg/A9GNNc+L7mSNiIgwLYue38/V1TXOjt0cOXLEWNa6dWvt379fa9as0UcffSSDwSDpvyHHnh1a7FU5Ozvrxo0bOnbsmK5cuaKrV6/qwoULOn36tB4/fixJyd6wkpD3fWRkpC5fvqwSJUqoR48e2rhxo27fvq2PP/5YDg4OKlmypKpVq6ZatWqpdOnSpucutUjse+J5SfF9npD3cnzF9ZjRja1xXUyR2P0AAIBtoo0i4WijeDnaKBKONorY0UaR9G0U1vD5BGCd6AAH0rjg4GBJeumwNNEhLSmHF3uVO/Oi5/CxhJfVHduVsdFcXV318OFDPXjwQFL8n383NzcFBwebnn93d3ctXrxYs2bN0tq1a3X58mWdOnVKp06d0i+//CIvLy8NGDBA7dq1k2R+1Wd8hrZNzN1/z1qzZo3ph/zYsWM1duzYOLf9+++/dfLkyReGqqQWERGh1atXS3p6ZfHLjr1w4cJkD5fxeS8821jy6NGjBIfLZ7m4uKh69eqqXr26+vfvr2HDhmndunU6evRoir8eL/LsEHnPDgGXUM++p0+cOJGg7aM9e0X6y0TXndCaGzVqpDFjxujGjRvat2+fqlSpor///lvnz5+Xp6dnkjXuXbx4UV9//bV27Nhh1snt7u6uChUqKCAgwDSMYXJKzPteehrMV61apZ9++kkbN27UrVu3dOTIER05ckRTp05Vrly5NGzYMNWvXz95TyABEvueeF5SfJ8n5L0cX7HdUZ6c+wEAANtEG0XC0UbxcrRRJBxtFLGjjSLp2yhS++cTgPWiAxxI46J/+LwsTESHodh+KMU1zFH0HYSpVXLV/aI5iqIDRPSVoPF9/qPXP/v8u7u7q1+/furXr58uX76sffv2ad++fdqxY4cCAwM1YsQIeXh4qEGDBqY76Tw8PLRv377En1w8Rc9J5erq+sKwFBAQIKPRqEWLFmnMmDHJXle07du3686dO5KeDiUW152ijx8/1sOHD7Vz507duHEj1qthk+p95Obmpvv377/wvXD//n2z7V/ms88+0969e9WyZUv17t07zu2cnZ31+eefy8/PT+Hh4fL3948RJuI6z+Sek+vZofqCg4PN5ntO7OMcPnz4lTsh43u8hDbIOTs7q2nTplq8eLHWrFmjKlWqmK6s9vX1TZKOy8DAQHXq1EmBgYHKmTOn2rVrp2LFium1115T7ty5ZTAYNGjQoBd2gCfl+1568Xdg9L8/z24vPf0eHTZsmIYNG6azZ89q//792rt3r3bv3q3r16+rX79+WrRoUZx3vLxq7QmV2PdEXI+TUt/nAAAAKYk2iphoo3h1tFHQRpFUaKNI+jaK1P75BGC9mAMcSOOi54U5ffp0nEPdBgcH69KlS5KkfPnymZZHz9kZfZXe8wICApKw0qTx7JBbsdUdGhr6ylcWR8+B9bwrV66YfmgWKlRI0n/P/8mTJ+N8vAsXLpiCSvTzHxgYqIMHD5rm1cqXL5/atWuniRMnaseOHaah16J/lBYoUEDS0ys+b9++HeexDh48qAsXLrzSkLNnzpwxzeU1btw47dy5M84/0Vcsr1271hS8U0L03EKFCxfWrl274qxv9uzZkp4Ovfz777+b9k+O91F83gvRVwVnzJgxXldWP3nyRJcvX9aWLVteuq27u7spcD0b4KI/59FDfD0vuT/nefLkMdXw7DB5z/r777/Vvn17DR06NM4Q/OzjnD9/Ps7jHT9+XGfPnn3lTsroOaseP36sa9euxbrNH3/8oc6dO+vrr782Wx49nNcff/yhyMhI01BgSTXM17JlyxQYGCgPDw8tW7ZMvXv3Vu3atZUnTx5TQ8utW7di3Tepv/fj877/+++/JUkGg0F58+Y11bd3717Td5W3t7c6d+6sqVOn6o8//lCuXLkUGRmptWvXJlvtCfUq74lnpeT3OQAAQEqjjcIcbRS0UdBGQRuFLbdRWMPnE4D1ogMcSONq1aolBwcH3b59W+vXr491mwULFigiIkIuLi6qVKmSaXn0j9vY5qE5fvx4qgyXHh4epg6e2OreunVrouY+fdby5ctjDerRw6GVKVPGdJVu9FBBx48fj3PYrzlz5kiSsmfPLm9vb0lSjx491LFjR61YsSLG9m5ubipTpoykp6FIkgoWLGgKpgsWLIj1OIcOHVLHjh3VpEkTHT16NB5nGrvoeas8PT1Vt27dF27bvn17SU9/gEcH4eQWGBioHTt2SHr5j/WSJUuagvqSJUtM741XeR/FdSV39Hth5cqVZldRRwsLCzO9h2rWrPnCuqNFz5104sQJU6COy+7du3Xv3j15eHiodOnSpuUv+pxHRkZq69at8aolsdzd3VW+fHlJ/10V/Ly1a9fq8OHDunbtWpzPr7u7u+n7a968ebFuc/XqVXXo0EFvvvmmNm7c+Ep1FyxYULly5Xph3StWrND+/ftNjUTRSpcurcKFCysoKEjz58/Xv//+q2LFisU5v1hCRYfdnDlzxnq1+vnz503fAdHfIdES+70f/bo8H/6j3/dbt27V1atXY903+vUqU6aMMmTIoIiICLVo0UJdu3bV9u3bY2yfOXNmFSlSRJL5HOYvqv3Ro0f666+/Yj1+UnmV98Tzj5NS3+fRouffjKvxBgAAIKnQRmGONgraKJ5FGwVtFImVWtsoUvvnE4B1owMcSONy5MhhmoNpxIgRZj+ooqKi9Ntvv2ny5MmSpD59+pgNRRP9g2/27Nm6cOGCafnff/+tjz76KCXKTzBnZ2cVK1ZMkjR58mSzuxx3796tzz///JWPceLECY0YMcI07FJUVJQWLFhgCokDBw40bVu2bFnTFYz9+vUzG/orLCxMP/zwg+mq3k8++cT0w7l58+aSpClTpmjnzp1mxz948KDph+Czc0L1799fkjRjxgzNnDnT7KrggwcPmtaXKVNGVapUMa0LDw/XhQsXdOHChZdeMRwWFqY1a9ZIejoUkpOT0wu3r1WrlukH+KJFi1647Yv8+++/unDhgv7999+Xbrty5UpFRETI0dHR9Dy+SPQP7Nu3b5uucn2V91H0sFPXr1+PcZxs2bLpzp07eu+998w6AwMDA9W/f3/9888/cnNzU9++fV9atyRVr15dDRs2lCQNHz5cX3zxRYwrfZ88eaJly5ZpwIABkp6+T54deiv6c37u3DnNmzfP1AF2//59DRs2LM67CZJSnz59ZDAYtGrVKk2fPt0suK9cuVLz58+XJPXs2fOFj9O3b1/Z29tr7dq1GjdunNkV1P/884969eql8PBw5cqVS76+vq9Us8FgUJ8+fSRJM2fO1JIlS0zPXWRkpGbMmKHNmzfLwcFB3bp1i7F/dMPHpEmTJEmtWrWK9TgJ+XxGi76S/8yZM9q0aZNpudFo1M6dO9WzZ0/T1fTPDx+X2O/96PfU85/RRo0aydvbW0+ePNG7775rNux6cHCwRowYod27d8vBwUGDBw+W9PTuhqZNm0qSvvjiCx0/ftzsMf38/LR7925JT79jnq99165d8vPzMy0PCAhQv379FBgYGGf9SeFV3xPPSuz3eWJFf289ePCAK+0BAECyoo2CNorofWijiB1tFLRRJEZqbKOw1OcTQNrBHOAANHToUN26dUt//PGH+vfvr6xZsyp79uy6evWqgoKCJEmdOnXSu+++a7Zf7969tWvXLt2+fVu+vr4qVKiQnjx5okuXLilPnjxq3bp1nFcVWtKAAQPUu3dvnT9/XvXr11ehQoV0//59Xb9+XSVLllS5cuVMISIxihQpoqVLl2rDhg167bXXdPPmTd2+fVt2dnYaOnRojM6Ir7/+Wu+//76OHDmiLl26KFeuXMqUKZP8/f0VHBwse3t7DRgwwNThI0ldunTRnj17tHPnTr377rvKmjWrsmbNqqCgIFNoqVu3rtq2bWvap2nTprp06ZImT56sCRMm6KefflL+/Pl19+5d0z4FChTQjz/+aFbfrVu31KRJE0lPhyOK60euJG3ZskX37t2TFL+hkOzs7PTWW2/p22+/1T///KNDhw6ZwkxCfPrpp9q/f78qVapkChpxib7K+PXXX4/XXE1NmzbV+PHj9eDBAy1atMgU1hL7PipWrJi2bdumNWvW6OzZs6pQoYJGjhypDBkyaPr06erVq5eOHDmiBg0aqFChQnJwcNC5c+cUHh4uDw8PTZgwwTR0VXxMmDBBrq6uWrlypebNm6d58+YpZ86c8vLyMn1ew8LC5OjoqEGDBqlDhw5m+9euXVsVKlTQwYMH9cUXX2jWrFny9PTUxYsXFR4err59+5oaoJJL1apVNXToUH311Vf67rvvNGvWLOXJk0c3b940zZP2wQcfmDWmxKZ8+fIaM2aMRo4cqTlz5mjRokUqWLCgHj16pMuXL8toNCpz5sz65ZdfXhq84qNNmzY6f/68Zs+ereHDh+v7779X9uzZde3aNd27d0/29vYaNWpUrFdNN2/eXBMnTtTjx4/l6OioZs2axXqMhHw+n63rt99+0+XLl9WvXz/lypVLnp6eunHjhgIDA+Xo6KhKlSpp//79MYZCT+z3ftGiRSU9ndusUaNGKlSokKZMmSIHBwf9+OOPevfdd3Xx4kU1b95c+fPnl5ubm2moQ2dnZ40ePVoVKlQwPd7AgQN16NAhnTp1Sm3btjWdQ0BAgOnOnvbt25t1gLds2VILFiyQv7+/+vbtq7x588rV1VUXLlyQvb293n//fU2fPv2lz9+reJX3xLMS+32eWN7e3rKzs1NoaKgaNWqkrFmz6pdffonXMIcAAAAJRRsFbRS0UcSNNgraKBIrtbVRWOrzCSDt4A5wAHJyctLUqVP13XffqUaNGgoLC9Pp06fl4uKipk2bat68eRoxYkSMYXuKFi2qpUuXytfXV5kyZdLFixcVGRmpd955RytWrFCWLFksdEYvVqtWLf3222+qX7++XF1ddf78eaVLl079+vXTb7/9Zrr6NbG6dOmib7/9VgUKFDBdedqwYUMtWrQo1qsoPTw8NH/+fI0ZM0YVK1bUw4cPdfbsWXl6eqpNmzZaunSpevXqZbaPvb29pk6dqmHDhqls2bIKDQ3VmTNnFBISoho1aujrr7/Wjz/+aDYPlPT0B/jixYvl6+srd3d3nTlzRkFBQSpWrJj69++vZcuWycvLK9HnHh3cihcvHu+hkNq0aSNHR0dJyX8F57Fjx0xzK8V3riIXFxe1aNFCkvTXX3+Z5ppL7Pvo3XffVdu2beXh4aFLly7p7NmzpnXFihXT2rVr1adPHxUuXFhXr17VpUuXVKBAAb3//vtavXp1vIcWi+bk5KSvvvpKS5Ys0TvvvKPixYsrLCxMZ86c0c2bN1WgQAH16NFDq1evjvE+k54GjF9++UUDBgxQ4cKFFRgYqH///VdVq1bVwoULX/kq5Pjq2rWrFi9erGbNmildunQ6e/asIiIiVLt2bc2ePVv9+vWL1+O0bt1aq1at0ltvvaUsWbLo3LlzunHjhgoWLKiePXtq9erVpvnoksKQIUM0e/Zs1atXT0ajUWfOnJG9vb0aNWqkxYsXmzUAPStTpkymztu6desmaUeju7u76XulcOHCunv3rs6dOyd3d3dTo+CXX34p6eld4s/etZDY7/0WLVqoZ8+eypIli65du2Y2p2Pu3Lm1bNkyffLJJypVqpRu376tCxcuKEeOHOrSpYtWrVpl+gxGc3Nz0/z589WvXz8VL15c9+7d05kzZ2Q0GlWvXj399NNPGjVqVIx9Fi9erB49eihfvny6ceOG7ty5o4YNG2rFihWqXLlykj3HL5LY98Tzkvv7/Fn58uXTuHHjlD9/ft27d083btyIcYcIAABAUqGNgjYK2ijiRhsFbRSvIjW1UaT2zycA62cwMpkfACSJunXr6vr16xo7dmy8OzCQdMaMGaMrV65o5syZli4FSBKtWrXSyZMnNWPGjJdeOQ4AAAAAz6KNwrJoo4CtoY0CgLXhDnAAgNWLiorSwYMHVahQIUuXAiSJkydP6uTJk8qRI4dq1Khh6XIAAAAAAPFEGwVsDW0UAKwRc4ADAKze559/rsDAQHXu3NnSpQCJdvXqVUnSnTt3NGTIEElPhyu0t7e3ZFkAAAAAgASgjQK2gDYKANaODnAAgNV7++231a9fP2XKlMnSpQCJtn79en377bemvxcpUkSdOnWyYEUAAAAAgISijQK2gDYKANaOIdABAFbPx8eHYAmr5+Pjo6xZs8rV1VX169fXrFmz5OTkZOmyAAAAAAAJQBsFbAFtFACsncFoNBotXQQAAAAAAAAAAAAAAK+KO8ABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE1wsHQB1sJoNCoqitHiAQAAAADm7OwMMhgMli7DJpC9AQAAAACxSUj2pgM8nqKijLp795GlywAAAAAApDKZMrnJ3p4O8KRA9gYAAAAAxCYh2Zsh0AEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2wcHSBQAAAAAAYoqKilJkZISly0jz7O0dZGfHteMAAAAAYIvI3qlDUmdvOsABAAAAIBUxGo168OCuQkKCLV0K/p+Li7syZMgkg8Fg6VIAAAAAAEmA7J36JGX2pgMcAAAAAFKR6ADu7u4pJ6d0dLpakNFoVFjYEwUHB0mSMmb0snBFAAAAAICkQPZOPZIje9MBDgAAAACpRFRUpCmAu7tnsHQ5kOTklE6SFBwcpPTpPRkOHQAAAACsHNk79Unq7E1yBwAAAIBUIjIyUtJ/wQ+pQ/TrwbxwAAAAAGD9yN6pU1JmbzrAAQAAACCVYei11IXXAwAAAABsD1kvdUnK14MOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2wcHSBQAAAAAALOfs2TP68cdJOnPmlKKijCpWrIR69eqj4sVLSJIOHNir2bN/1oUL52Rv76BKlaqod+++ypYtuyRp/fo1+vLL0VqyZLVy5Mhpetw2bXxVtmx5/e9/oyRJNWpU0Dvv9NKePbt19epltW/fWd269dT169c0bdpkHTp0QEajUSVKlFSfPv312msFJUlPnjzRL79M15YtfgoKuqu8efOpS5d3VK9eg5R9ogAAAAAASCSyd8riDnAAAAAASKMePQrWoEF9lTGjh8aOHa/Ro79UaGiIBg36UMHBwdq0ab0GDvxQWbJk0ahRX6hv34E6efJvvf/+OwoKupvg482d+4tef72uRo36QjVrvq47d+7o3Xe76vJlfw0a9KlGjhyjBw8eaMCAPrp3756MRqOGDftYK1cu11tvddBXX32rEiVKaeTIYdqwYW0yPCMAAAAAACQtsnfK4w5wAAAAAEij/P39de9ekNq0eUulSpWRJOXLl1+rVi1TcPBD/fjjJFWoUEmjR48z7VOqVBl16tRWCxcuUJ8+/RJ0vGLFSqhTp26mv0+dOklPnoTq++9/lJdXZklS4cI+eu+9bjpx4rjSpXPSvn17NHr0l6arzitXrqrQ0BBNnz5Fb7zRSA4OxFoAAAAAQOpF9k553AEOAAAAAGnUa68VlIeHpz799CNNmDBOu3fvlJdXZvXp01+hoaEKDAxUgwaNzfbJlSu3ihcvqSNHDib4eAULFjL7+7FjR1SiRClTAJekzJkza9mytapRo5YOHjwgg8GgqlVrKCIiwvSnevXaCgy8I3//C4k7cQAAAAAAUgjZO+VZV3c9AAAAACDJuLq66scfZ2ru3F+0ZYufVq5cJmdnZzVo0FiNGjWVJGXK5BVjPy8vL509ezbBx/P0zGT29wcP7pvNXfa8Bw/uy2g0qkGDWrGuv3PntgoX9k5wHQAAAAAApBSyd8qjAxwAAAAA0rC8efNrxIgxioyM1OnTJ7Vx43qtXLlUmTNnkSTdvRsYY5/AwEB5eHhIkgwGgyQpKirKbJuQkMcvPba7e3rdu3cvxvJDhw4oe/YccndPLxcXV02ePD3W/XPlyvPSYwAAAAAAYGlk75TFEOgAAAAAkEZt27ZFzZrVV2DgHdnb26tEiVIaPHiI3N3T6+7du/Ly8pKf3wazfa5fv6YTJ46rVKnSkiRXVzdJ0q1bN03bXLlySffv33/p8UuXLqOTJ48rKOiuadm9e/c0eHA//fnnTpUpU04hIY9lNBrl41PM9OfixQuaNWumIiMjk+JpAAAAAAAg2ZC9Ux53gL8iOzuD7OwMyfb4UVFGRUUZk+3xAQAAAKRdJUuWUWRklIYOHaxOnbrJzc1Nf/zhp0ePglW3bn0VK1ZcX345WiNHDlWjRs10//49zZo1QxkyZNRbb3WUJJUvX1HOzs6aMuU7vftuHz1+/FizZz/d5mXateugDRvW6aOPPlSXLu/IySmd5s+fLS+vzGrUqKnc3dOrTJlyGjJkkLp166l8+fLr9OmT+uWXGapcuYrpSngkXnh4uObPn68VK1bo0qVLcnV1VcmSJdW1a1fVrFkzxvaVK1eO9c6BaMePH1e6dOmSvE6yNwAAAABrRfZOeQaj0UjCi4fIyCjdvfvIbJmdnUEeHq6yt0++G+kjI6N0795jgjgAAACQBoSHhykw8Ia8vHLI0dEpRY55+vRJzZw5TWfOnFZoaKhee62gOnfurtq160iStm//Q/Pnz9HFi+fl5uamypWrqlevD5QtW3bTY+zdu0fTp0/R5cv+yp49h7p376WNG9fJy8tL//vfKElSjRoV1L37u+rR4z2z41++fEk//jhJhw8fkqOjo8qWLac+fforV67ckqSQkBD9/PM0bdv2h4KC7ipz5qyqX7+BunXrmSwdrbF52euSKZNbsubC5GI0GtW3b19t3rxZGTJkULly5fTkyRMdPHhQ4eHhGjBggHr37m3a/vr166pbt66yZcumSpUqxfqY48aNk6OjY6JrInsDAAAASG5kb9vP3nSAx1NsIdzBwU6enm6auvBPXQ94+RADCZUra0Z90L66goIeKSIi6uU7AAAAALBqlgjheDlb7QBfuHChRo0apaJFi2r27Nny9PSUJJ05c0YdO3bUo0ePtG7dOhUsWFCStGXLFn3wwQfq2rWrhg0bliw1kb0BAAAAJDeyd+qUlNmbIdCTwPWA+7p0PcjSZQAAAAAAEG+rVq2SJA0ZMsTU+S1JPj4+8vX11cKFC7Vz505TB/jJkyclScWLF0/5YkX2BgAAAADEDx3gAAAAAACkQXPnzpW/v78KFy4cY93jx48lSfb29qZlp0+fliSVKFEiZQoEAAAAACARrG+MNgAAAAAA8MrSpUsnHx8fs05u6elQ5xs3bpSLi4saNGhgWn7y5Ek5OzvrxIkTat++vSpUqKCKFSvqvffe07Fjx1K6fAAAAAAAYkUHOAAAAAAAadz9+/fVt29fNW7cWB988IEyZcqkadOmKXv27JKkwMBABQQEKDQ0VJ988omioqJUuXJleXh4aPv27erQoYPWr19v4bMAAAAAAIAh0AEAAAAASPOuXr0qPz8/098NBoPOnz+vqlWrSvpv/m9PT09NmzZNZcuWlSQZjUbNnTtX48aN09ChQ1WuXDlTp3liOTiYX6tvb58y1+6n1HEAAAAAWFZUlMHSJeAF7O0NMXJhQtEBDgAAAABAGlegQAHt379fRqNRe/bs0RdffKGxY8cqODhYvXv3Vs2aNbVr1y4ZjUZly5bNtJ/BYFC3bt104MABbdmyRUuXLtWHH36Y6Drs7Azy9HRLilNKsAwZXCxyXAAAAAApKzTUXnfu2CVJRyuSTlSUQXZ2dsqY0VXOzs6v9Fh0gAMAAAAAkMa5uf3X6dykSRNlz55dHTp00IwZM9SlSxe5ubkpa9asce5fp04dbdmyRSdOnHilOqKijHrw4LHZMnt7uxTpnH7wIESRkVHJfhwAAAAAlhUW9kRRUVGKjDQqIoIMkFpERhoVFRWl+/cfKyQkMsb6DBlc4j1yFx3gAAAAAADATLly5ZQ3b15dvnxZly5dUvHixV+4fZYsWSRJISEhr3xsSzVARUZG0fgFAAAApAGRkUZLl4AXSIoLE7ivHwAAAACANCYkJERfffWVBg8eLKMx9sYfJycnSVJERIQWL16sAQMGaMuWLbFue/XqVUl65fm/AQAAAAB4Van2DvDw8HDNnz9fK1as0KVLl+Tq6qqSJUuqa9euqlmzZoztK1eurHv37sX5eMePH1e6dOmSsWIAAAAASD52dgbZ2RlS/LhRUUZFRXF1vK1xdnbWihUrdO/ePbVr106VKlUyW3/16lX5+/vLyclJhQsX1o4dO7RhwwaFhISofv36ZtsajUatWrVKklSjRo0UOwcAAAAASGpkb9uQKjvAjUajBg4cqM2bNytDhgyqVq2anjx5or1792rXrl0aMGCAevfubdr++vXrunfvnrJlyxYjtEezs+NmdwAAAADWyc7OIA8P13jPdZWUIiOjdO/e40QFcT+/jVq2bLEuXjwvScqXr4CaNWuuFi1aJ3WZSCCDwaC33npLP/30k0aNGqU5c+aY5vi+efOmPvroI0VERKhr165ydXVVy5YtNXPmTG3fvl2///672rVrJ0mKiorS5MmTdfz4cRUqVEiNGjWy5GkBAAAAQKKRvW1HquwAX7RokTZv3qyiRYtq9uzZ8vT0lCSdOXNGHTt21KRJk9SgQQMVLFhQknT69GlJUqNGjTRs2DCL1Q0AAAAAycHOziB7eztNXfinrgfcT7Hj5sqaUR+0ry47O0OCQ/jatav0/fffqF+/QSpTppwkow4c2K8ffpiooKC76t793eQpGvHWp08fHT58WAcOHFDDhg1Vvnx5hYeH6/jx43r8+LFq1KihwYMHS5Ly5MmjUaNGafjw4RoxYoQWLFig/Pnz68yZM7p8+bIyZ86syZMny9HR0cJnBQAAAACJQ/a2HamyAzx66LQhQ4aYOr8lycfHR76+vlq4cKF27txp6gA/efKkJKl48eIpXywAAAAApJDrAfd16XqQpcuIlxUrlqpZs+Z6882WpmV58+bX7dsB+v33hWk2hKcmzs7Omj17tubNm6dVq1Zp3759cnBwUOHChdWqVSu1bdtW9vb2pu1bt26tAgUKaObMmTp8+LAuXryorFmzqnPnzurdu7e8vLwseDYAAAAAkDTI3tYvVY4LPnfuXK1atUoVK1aMse7x48eSZBbCo+8AL1GiRMoUCAAAAAB4ITs7g/7++7gePHhgtrxjx6766afZkqQ2bXz1yy8/ma3/8MNe+uKLUZKkw4cPqkaNCvr117lq0qSe3nmno/r06anPPhtqts/x40dVo0YFXbt2VZL055+79M47nVS3bnW99VYLzZw5TWFhYZKkSZMmql275mb7BwcHq27d6tq9e0eSnb+1cHR0VI8ePbR69Wr9/fffOnLkiH7//Xe9/fbbZrk7Wrly5TRt2jTt27dPJ06c0NatWzV8+HA6vwEAAADAAsjesUuVHeDp0qWTj49PjLC9ZcsWbdy4US4uLmrQoIFp+cmTJ+Xs7KwTJ06offv2qlChgipWrKj33ntPx44dS+nyAQAAACDN69ixq86dO6uWLRvr44/7a/78OTp16oTc3d2VN2++BD3Wnj279dNPszV06Gdq1qy5/vxzpx4/fmRa7+e3QSVLllbu3Hm0d+8ejRgxRG++2ULz5y/WoEFDtHXrZo0Z85kkqVmz5vr33+s6duyoaf8//vCTm5ubqlSpniTnDgAAAABASiB7xy5VdoA/6/79++rbt68aN26sDz74QJkyZdK0adOUPXt2SVJgYKACAgIUGhqqTz75RFFRUapcubI8PDy0fft2dejQQevXr7fwWQAAAABA2vL66/X000+z9frrdXX69Cn99NMU9erVTR06tNbx40cT9Fjt23dSnjx5Vbiwt+rUqS87O3vt2LFNkhQeHq6tW7eoSRNfSdK8ebPUrNmbatGijXLlyq1Klaro44+Hadu2Lbpx418VLFhI3t5FtWnTOtPjb9y4Vg0bNpGDQ6qcJQwAAAAAgFiRvWOX6tP91atX5efnZ/q7wWDQ+fPnVbVqVUn/zf/t6empadOmqWzZspIko9GouXPnaty4cRo6dKjKlStn6jRPLAcH8+sF7O1T5vqBlDoOAAAAAMuKijJYuoQkVbRocY0YMUZGo1EXL17QX3/t1pIlizR4cH8tXrwi3o+TO3de0/+7uLioTp168vPboMaNm+mvv/7Ukyehqlu3viTpn3/O6PTpk9qwYa1pH6PRKEm6dMlfOXLkVNOmb2rGjB81YMDHCgi4pb//Pq6PPx720jrs7Q0xciEAAAAAAJZka9k7KaT6DvACBQpo//79MhqN2rNnj7744guNHTtWwcHB6t27t2rWrKldu3bJaDQqW7Zspv0MBoO6deumAwcOaMuWLVq6dKk+/PDDRNdhZ2eQp6dbUpxSgmXI4GKR4wIAAABIWaGh9rpzxy5GR6ulL4pN6PEDAm5p3rw56tKlu7JmzSpJ8vYuIm/vIqpd+3W1b99Gf/99VJJkZ2d+sXFkZKQMhqfnH31cV1cXs218fd/Uhx++r/v372rz5g2qXbuuMmbMIOlp4O7UqauaNGkWo67MmbPIwcFOjRs30dSp32vv3j914cI5FStWXEWKFInzfKKiDLKzs1PGjK5ydnZO0HMBAAAAAEByCAi4pV9/natOnbopS5asMhgMKliwkAoWLKQaNWqrU6e2Onr0cKz7RkZGxFiWLl06s783aeKr/v17KzDwjvz81qtWrTpyc3OXJEVFGdWhQxc1bhwze3t5ZZYkvfFGI02Z8r327NmlCxfOq2jRYnrttUKvetrxkuo7wN3c/ut0btKkibJnz64OHTpoxowZ6tKli9zc3EwNKrGpU6eOtmzZohMnTrxSHVFRRj148Nhsmb29XYp0Tj94EKLIyKhkPw4AAAAAywoLe6KoqChFRhoVEZF6MkBkZFSC6rGzc9TKlcuUJUtWdezY1Wyds7OrJCljRk85ODjqwYNg02NHRUXp33+vKXfuPIqIiDLloOePX7JkWWXPnkNr167Rn3/u1ldfTTStL1CgoPz9/ZUjR27T9keOHNLvvy/U4MFD5OiYTi4ubqpZ83Vt3bpF/v4X1KJFmxeeX2SkUVFRUbp//7FCQiJjrM+QwcXiFykAAAAAANIWJ6d0WrVqubJmzRYje0f3r2bK5CUHB0cFBweb1j3N3tfN7viOTZky5ZQ9ew5t3LhOe/b8qa++mmha99prBXX58iXlzp3HtOzZ7O3i4qL06dOrVq3XtX37VlP2TimpvgP8eeXKlVPevHl1+fJlXbp0ScWLF3/h9lmyZJEkhYSEvPKxLdUAldDGJgAAAADWKTLSaOkSkoSHh4c6duyqGTN+VHBwsOrWrS9XVzdduuSvOXN+VrlyFVS6dFmVKlVaf/zhp9q16yhTJi8tWrTALJS/SOPGzTR37ixlzJhRFSpUMi3v2LGLPvtsqH755Se98UYj3b4doK++Gqts2bKZrkKXpKZN39SQIR/JaJTq128Yr2OmtgsTAAAAAABpl61m76SQ6jrAQ0JCNGnSJN25c0fffPONDIaYc+A5OTlJkiIiIrR48WL99ddfatasmerXrx9j26tXr0rSK8//DQAAAACWlitrRqs53rvv9lbu3Hm0Zs1KrVixRKGhocqWLbvq1n1DXbq8I0nq1esDPXz4QIMH95Ozs4t8fVuoXr0GpnnDXqRRo2aaNWuGWrVqKzu7/+6+rlOnvkaPlubPn6UFC+YoffoMql69pnr37me2f4UKlZQxo4dKliyt9OnTJ/o8AQAAAAC2hez9H2vN3qmuA9zZ2VkrVqzQvXv31K5dO1WqVMls/dWrV+Xv7y8nJycVLlxYO3bs0IYNGxQSEhKjA9xoNGrVqlWSpBo1aqTYOQAAAABAUoqKMioyMkoftK+e4seOjIxSVFTi7kxv3LhZrPOBRcucObPGjZsY5/py5Spo9+6Dsa7Lnj27du7cH+u6unXrq27dmBdIPys0NFTBwcFq1qz5C7cDAAAAAKQNZO+YrDV7p7oOcIPBoLfeeks//fSTRo0apTlz5pjm+L5586Y++ugjRUREqGvXrnJ1dVXLli01c+ZMbd++Xb///rvatWsn6en49ZMnT9bx48dVqFAhNWrUyJKnBQAAAACJFhVl1L17j2VnF3OErJQ4dmJDeGr04MEDHT58QFu3blG2bNnMhnADAAAAAKRdZO+kY+nsneo6wCWpT58+Onz4sA4cOKCGDRuqfPnyCg8P1/Hjx/X48WPVqFFDgwcPliTlyZNHo0aN0vDhwzVixAgtWLBA+fPn15kzZ3T58mVlzpxZkydPlqOjo4XPCgAAAAASz9bCsKVERkboq6/GyMPDU59/Pi7WabcAAAAAAGkT2TtpWDp7p8oOcGdnZ82ePVvz5s3TqlWrtG/fPjk4OKhw4cJq1aqV2rZtK3t7e9P2rVu3VoECBTRz5kwdPnxYFy9eVNasWdW5c2f17t1bXl5eFjwbAAAAAEBq4emZSRs3brd0GQAAAAAA2CxLZ+9U2QEuSY6OjurRo4d69OgRr+3LlSunadOmJXNVlmFvb/fyjRKJK1kAAAAAAAAAAAAA2IpU2wEOKWN6ZxmjopQhg0uyHSMqKlJBQSF0ggMAAAAAAAAAAACwenSAp2Juzk4y2NnJf+1MhQTeSPLHd/HKoQLN3pWdnYEOcAAAAAAAAAAAAABWjw5wKxASeEMht65YugwAAAAAAAAAAAAASNWSb3JpAAAAAAAAAAAAAABSEB3gAAAAAAAAAAAAAACbQAc4AAAAAFgBOzuDHBzsUvyPnZ0hUfW2aeOrGjUqaNGiBbGu/+abL1WjRgX98stPiX5O2rTxTdD+Cd0eAAAAAJC2kL1jP4a1ZW/mAAcAAACAVM7OziBPTxfZ2dmn+LGjoiIVFBSiqChjgvd1cHDQtm1/6O23O5ktj4iI0I4dW2UwJC7gAwAAAACQ1MjetoMOcAAAAABI5ezsDLKzs5f/2pkKCbyRYsd18cqhAs3elZ2dIVEhvEKFStq37y/dunVT2bJlNy0/fPignJ1dlC6dc1KWCwAAAABAopG9bQcd4AAAAABgJUICbyjk1hVLlxFvRYsW1+XLl7Rt2xazK9H/+MNPdeu+oa1bN5uWnThxXDNm/KizZ0/LwcFBNWrU1gcfDFCGDBkkScHBwfr++2+0e/cOOTg4qkuX7jGO9/ffxzR9+hSdPn1KHh4eql69lt5//wO5ubkn/8kCAAAAAGwC2dv6szdzgAMAAAAAkk2dOvW1bdsfpr+Hh4dr587tql+/gWnZqVMn1Lfve8qfv4CmT5+tMWPG69SpE/roow8VFRUlSfrssyE6ffqkxo//Tt99N0V//rlLN2/+d0X++fPn1L9/H1WsWFlz5y7UyJFf6OzZ0xo48EMZjQm/gh4AAAAAAGtB9jZHBzgAAAAAINnUrfuGTp06oVu3bkqS9u/fKw8PDxUp4mPaZtGiX1WwYGF99NGnKlDgNZUrV0GjRn2pM2dOad++v3TlyiXt379XAwd+otKly6pwYW+NHDlWTk5OpsdYuHCeKlSoqG7deipPnrwqXbqMRo36QqdOndCRI4dS/LwBAAAAAEgpZG9zDIEOAAAAAEg2Pj5FlTNnLtNQbFu3+ql+/YZm21y8eF4VK1YxW1awYCG5u6fXhQvnFBoaIkkqWrSYaX2mTF7KmTOX6e9nz57VtWtX9MYbNWPUcPnyJZUrVyEpTwsAAAAAgFSD7G2ODnAAAAAAQLKqW/cNbdv2h1q2bKtdu3Zq5sy5ZuuNRqMMhpj7GY1RcnD4L7ZGRZkPp2Zv72C2bYMGjdWlyzsxHsfDw/MVzwAAAAAAgNSN7P0fhkAHAAAAACSrunXr69SpE1q7dpVy5sylfPnym61/7bVCOnbsqNmyc+f+0aNHj5Q//2umIdv+/vuYaf3Dhw91/fpV098LFCgof/8Lyp07j+lPVFSkfvjhWwUE3Ey2c4PtsLe3k4ND8vyxs4ullQkAAAAAkhDZ+z/cAQ4AAAAASFaFC3srd+48mjFjqjp16h5j/VtvddAHH7yrb78dr1at2iko6K6+/Xa8ihTxVoUKleTg4KA6derru+++lqOjo7y8vDR9+lSFh4ebHuPttzvpgw966ptvvlSbNm/r8ePHmjjxKz1+/Fi5c+dNydOFlcmY3lnGqChlyOCSbMeIiopUUFBIjDspAAAAACCpkL3/Qwc4AAAAAFgJF68cVnu8unXf0Ny5v6h+/QYx1pUoUUoTJkzSzJnT9c47HeXq6qaaNV9X794fmoZhGz58lKZOnaSRI4cpKipKzZu30r17Qc88Rkl9++0U/fzzNPXo0VkuLs4qV66iPvhggJycnJLsPGB73JydZLCzk//amQoJvJHkj+/ilUMFmr0rOzsDHeAAAACAFSB7W3/2NhiNRtJXPERGRunu3Udmyxwc7OTp6aZhk9br0vWgOPZMvGpl8unDDjV0au7nCrl1Jckf3yVbXhXr+pmCgh4pIiIqyR8fAAAAQMKEh4cpMPCGvLxyyNHxv+BoZ2eQp6eL7OzsU7wm7lyN+3WJlimTm+ztmWEsKZC9AQAAACQ3snfqlJTZmzvAAQAAACCVi4oyKigoxCLzCEdFGdN0AAcAAAAApA1kb9tBBzgAAAAAWAHCMAAAAAAAyYvsbRsYow0AAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAABIZYxG5htLTXg9AAAAAMD2kPVSl6R8PegABwAAAIBUwt7eXpIUFvbEwpXgWdGvh729g4UrAQAAAAC8KrJ36pSU2Zv0DgAAAACphJ2dvVxc3BUcHCRJcnJKJ4PBYOGq0i6j0aiwsCcKDg6Si4u77Oy4hhwAAAAArB3ZO3VJjuxNBzgAAAAApCIZMmSSJFMQh+W5uLibXhcAAAAAgPUje6c+SZm96QAHAAAAgFTEYDAoY0YvpU/vqcjICEuXk+bZ2ztw5zcAAAAA2Biyd+qS1NmbDnAAAAAASIXs7OxkZ+dk6TIAAAAAALBZZG/bxGXsAAAAAAAAAAAAAACbQAc4AAAAAAAAAAAAAMAm0AEOAAAAAAAAAAAAALAJdIADAAAAAAAAAAAAAGwCHeAAAAAAAAAAAAAAAJtABzgAAAAAAAAAAAAAwCbQAQ4AAAAAAAAAAAAAsAl0gAMAAAAAAAAAAAAAbAId4AAAAAAAAAAAAAAAm0AHOAAAAAAAAAAAAADAJtABDgAAAAAAAAAAAACwCXSAAwAAAAAAAAAAAABsAh3gAAAAAAAAAAAAAACb4GDpAgAAAAAAgGWEh4dr/vz5WrFihS5duiRXV1eVLFlSXbt2Vc2aNWNsf+fOHf3444/atWuXbt26pSxZsqhRo0bq06eP3NzcLHAGAAAAAACY4w5wAAAAAADSIKPRqIEDB2r8+PG6efOmqlWrpqJFi2rv3r3q2bOnpk2bZrZ9QECA2rVrp19//VXOzs56/fXXFRUVpZ9//lnt27dXcHCwhc4EAAAAAID/0AEOAAAAAEAatGjRIm3evFlFixaVn5+ffvrpJ82ZM0dLly6Vu7u7Jk2apAsXLpi2Hzt2rK5fv65evXppzZo1+uGHH7Rp0yY1btxYZ8+e1ZQpUyx4NgAAAAAAPEUHOAAAAAAAadCqVaskSUOGDJGnp6dpuY+Pj3x9fWU0GrVz505J0pUrV7R582blyJFD/fr1M23r5OSkMWPGyM3NTYsXL1ZoaGjKngQAAAAAAM+hAxwAAAAAgDRo7ty5WrVqlSpWrBhj3ePHjyVJ9vb2kqSdO3cqKipKtWvXlqOjo9m26dOnV5UqVfT48WPt27cv+QsHAAAAAOAF6AAHAAAAACANSpcunXx8fEyd3NG2bNmijRs3ysXFRQ0aNJAk/fPPP5KkIkWKxPpYhQoVMtsOAAAAAABLcbB0AQAAAAAAwLLu37+v4cOH6/z587p48aJy5MihcePGKXv27JKk27dvS5KyZMkS6/7Ry+/cuZMyBQMAAAAAEAc6wAEAAAAASOOuXr0qPz8/098NBoPOnz+vqlWrSvpvSHRnZ+dY949eHr3dq3BwMB+szt7eNgavs5XzAAAAAIDUjg5wAAAAAADSuAIFCmj//v0yGo3as2ePvvjiC40dO1bBwcHq3bu3aZh0g8EQ6/5Go9Hsv4llZ2eQp6fbKz1GapUhg4ulSwAAAACANIEOcAAAAAAA0jg3t/86nZs0aaLs2bOrQ4cOmjFjhrp06SJXV1dJ0pMnT2LdP3q5i8urdfJGRRn14IH5XeT29nY20Xn84EGIIiOjLF0GAAAAAFilDBlc4j2yFh3gAAAAAADATLly5ZQ3b15dvnxZly5dUtasWSX9Nxf48142R3hCRETYZidxZGSUzZ4bAAAAAKQmqbYDPDw8XPPnz9eKFSt06dIlubq6qmTJkuratatq1qwZY/s7d+7oxx9/1K5du3Tr1i1lyZJFjRo1Up8+fcyuZAcAAAAAIK0LCQnRpEmTdOfOHX3zzTexDm3u5OQkSYqIiFCRIkUkSRcuXIj18c6dOydJ8vb2TqaKAQAAAACIn/jdJ57CjEajBg4cqPHjx+vmzZuqVq2aihYtqr1796pnz56aNm2a2fYBAQFq166dfv31Vzk7O+v1119XVFSUfv75Z7Vv317BwcEWOhMAAAAAAFIfZ2dnrVixQmvWrNGBAwdirL969ar8/f3l5OSkwoULmy5E37ZtmyIjI822ffjwofbt2ydXV1eVL18+ReoHAAAAACAuqbIDfNGiRdq8ebOKFi0qPz8//fTTT5ozZ46WLl0qd3d3TZo0yeyq87Fjx+r69evq1auX1qxZox9++EGbNm1S48aNdfbsWU2ZMsWCZwMAAAAAQOpiMBj01ltvSZJGjRqlgIAA07qbN2/qo48+UkREhNq3by9XV1flypVLderU0bVr1/TNN9/IaDRKksLCwvTZZ5/p0aNHevvtt+Xu7m6R8wEAAAAAIFqqHAJ91apVkqQhQ4bI09PTtNzHx0e+vr5auHChdu7cqYIFC+rKlSvavHmzcuTIoX79+pm2dXJy0pgxY7Rz504tXrxYAwYMkLOzc4qfCwAAAAAAqVGfPn10+PBhHThwQA0bNlT58uUVHh6u48eP6/Hjx6pRo4YGDx5s2n7EiBE6efKkZs+erR07dqhw4cL6+++/9e+//6p48eL68MMPLXg2AAAAAAA8lSrvAJ87d65WrVqlihUrxlj3+PFjSZK9vb0kaefOnYqKilLt2rXl6Ohotm369OlVpUoVPX78WPv27Uv+wgEAAAAAsBLOzs6aPXu2PvnkE+XJk0f79u3T8ePHVbhwYY0ePVozZswwzQMuSbly5dLSpUvVtm1bPXz4UNu2bZOTk5Pef/99zZs3T25ubhY8GwAAAAAAnkqVd4CnS5dOPj4+MZZv2bJFGzdulIuLixo0aCBJ+ueffyRJRYoUifWxChUqpD/++EP//POPateunXxFAwAAAABgZRwdHdWjRw/16NEjXttny5ZNY8eOTeaqAAAAAABIvFTZAf6s+/fva/jw4Tp//rwuXryoHDlyaNy4ccqePbsk6fbt25KkLFmyxLp/9PI7d+6kTMEAAAAAAAAAAAAAAItI9R3gV69elZ+fn+nvBoNB58+fV9WqVSX9NyR6XPN7Ry+P3u5VODiYjxhvb58qR5BPMFs5DwAAAAAAAAAAAABpW6rvAC9QoID2798vo9GoPXv26IsvvtDYsWMVHBys3r17m+YCNxgMse5vNBrN/ptYdnYGeXra5nxmGTK4WLoEAAAAAAAAAAAAAHhlqb4D3M3tv07nJk2aKHv27OrQoYNmzJihLl26yNXVVZL05MmTWPePXu7i8mqdvFFRRj14YH4Xub29nU10Hj94EKLIyChLlwEAAAAAVilDBhdG1gIAAAAA4P/Yu/M4u+b7f+CvO5NlkhCJbMSW2lt7LGmLorTUVmqnVC2xFMXXFrVWRC2lLUorqMS+JLGUSkKCotYQW9AoIjS2JCKLLDO/P/ySNk3CJLPcmXufz8fDo5zzuee+P713Zu7rvs/5nCaiyTfA/1fPnj2z8sor55133snbb7+drl27JvnPvcD/19fdI3xxzJ5dmk3iOXOqS3ZuAAAAAAAAQPlocqeoT58+Pb/5zW9y0kknLXLZ8latWiVJZs+enTXXXDNJMnbs2IWOffPNN5Mka621VgNUCwAAAAAAAEBT0eQa4FVVVRk8eHDuvffePPPMMwvsHzduXP71r3+lVatWWWONNbLlllsmSUaMGJE5c+bMN3bKlCl56qmn0rZt22y88caNUj8AAAAAAAAAxdHkGuCFQiH77LNPkuScc87Jhx9+OG/fv//975x44omZPXt29ttvv7Rt2zYrrLBCttlmm7z33nu5+OKL5101PnPmzJx11lmZOnVq9t133yy11FJFmQ8AAAAAAAAAjaNJ3gP86KOPzvPPP59nnnkm22+/fTbeeOPMmjUro0ePzrRp07LFFlvkpJNOmjf+zDPPzCuvvJLrr78+jzzySNZYY4289NJLef/997POOuvkmGOOKeJsAAAAAAAAAGgMTe4K8OTLZdCvv/76nHLKKVlppZXy1FNPZfTo0VljjTVy7rnn5s9//vO8+4AnyQorrJA777wze+21V6ZMmZIRI0akVatWOfLIIzNgwIC0a9euiLMBAAAAAAAAoDE0ySvAk6Rly5Y59NBDc+ihh9ZqfLdu3dK3b98GrgoAAAAAAACApqpJXgEOAAAAAAAAAItLAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAktCi2AUAAAAA8B8VFYVUVBQa7PjV1TWprq5psOMDAAAUkwY4AAAAQBNRUVFIhw5tU1nZcIv2zZlTnUmTpmmCAwAAJUkDHAAAAKCJqKgopLKyIlfe8njGfzi53o+/Qtdl8ov9Nk9FRUEDHAAAKEka4AAAAABNzPgPJ+ft8ROLXQYAAECz03DraQEAAAAAAABAI9IABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKLYhdA81JRUUhFRaHBjl9dXZPq6poGOz4AAAAAAABQujTAqbWKikI6dGibysqGWzhgzpzqTJo0TRMcAAAAAAAAWGwa4NRaRUUhlZUVufKWxzP+w8n1fvwVui6TX+y3eSoqChrgAAAAAAAAwGLTAGexjf9wct4eP7HYZQAAAAAAAADMp+HWsgYAAAAAAACARqQBDgAAAAAAAEBJsAQ6AAAAlKnq6urccccdGTRoUN58883MmjUr3bt3z3bbbZcjjjgi7du3n298r169MmnSpEUeb/To0WndunUDVw0AAACLpgEOAAAAZai6ujrHHXdchg0blqqqqqy//vpp27ZtRo8enf79+2fYsGG5+eab07lz5yTJ+PHjM2nSpHTr1i2bbbbZQo9ZUWGhOQAAAIpLAxwAAADK0F133ZVhw4alR48e6d+/f1ZaaaUkyeeff56TTjopI0aMSN++ffO73/0uSfLaa68lSXbYYYecfvrpxSobAAAAvpJTswEAAKAM3XXXXUmS0047bV7zO0mWWmqp9OvXL4VCIcOHD8+MGTOSJK+88kqSZJ111mn8YgEAAKCWNMABAACgDHXo0CGrrrpqNtxwwwX2LbvssllmmWUya9asTJw4Mcl/rgBfd911G7NMAAAAWCyWQAcAAIAydPXVVy9y37hx4zJp0qS0bNkyyy67bJIvrwCvqqrKyy+/nDPOOCNvvvlmCoVCevbsmaOPPjobbLBBY5UOAAAAi+QKcAAAAGA+c+/7vfXWW6d169b55JNP8uGHH2bGjBk55ZRTUl1dnV69eqVDhw4ZOXJk9t9//9x///3FLRoAAADiCnAAAADgvwwcODD33Xdf2rRpkxNOOCHJf+7/3bFjx1x11VXZaKONkiQ1NTW54YYbcsEFF6RPnz7p2bNnlltuuTo9f4sW85+rX1lZGufu13YejTXfUvn/FQAA4H9pgAMAAABJkgEDBqRfv34pFAo5//zzs9pqqyVJttxyyzz22GOpqalJt27d5o0vFAo5+OCD88wzz2T48OG58847c8wxxyzx81dUFNKxY7s6z6Mpat++TbFLmE9TqwcAAKC+aIADAABAmaupqckll1yS/v37p7KyMueff3522mmnefsLhUK6du26yMdvs802GT58eF5++eU61VFdXZPPPps237bKyoqSaNZ+9tn0zJlT/bXjGmu+ta0HAACgKWjfvk2tV7Jqsg3w6urq3HHHHRk0aFDefPPNzJo1K927d892222XI444Iu3bt59vfK9evTJp0qRFHm/06NFp3bp1A1cNAAAAzcuMGTNy8sknZ+jQoamqqspvf/vbbLfddot1jC5duiRJpk+fXud6Zs8uzabsnDnVJTu3hamurkl1dU2xywAAAMpQk2yAV1dX57jjjsuwYcNSVVWV9ddfP23bts3o0aPTv3//DBs2LDfffHM6d+6cJBk/fnwmTZqUbt26ZbPNNlvoMSsq3NsKAAAA/tvnn3+eww47LKNGjUqnTp1y1VVXZYMNNlhg3G233ZYnn3wyO++880Kb4+PGjUuSOt//m4a3zNJVqamubvCrzKur52TixOma4AAAQKNrkg3wu+66K8OGDUuPHj3Sv3//rLTSSkm+DOYnnXRSRowYkb59++Z3v/tdkuS1115Lkuywww45/fTTi1U2AAAANBuzZs1K7969M2rUqKyyyiq59tpr5+Xv/zVhwoQ88MADmT59+gIN8Jqamtx9991Jki222KLB66Zu2lW1SqGiIv+675pM/+SDBnmONp2Wzzd2PjwVFQUNcAAAoNE12QZ4kpx22mnzhe+llloq/fr1y3e/+90MHz48M2bMSFVVVV555ZUkyTrrrFOUegEAAKC5ueKKK/Lcc8+lS5cuGThwYLp167bIsbvvvnuuueaajBw5Mrfffnv23nvvJF+u4Hb55Zdn9OjRWX311bPDDjs0VvnU0fRPPsj0Ce8WuwwAAIB61yQb4B06dMiqq66aDTfccIF9yy67bJZZZplMmjQpEydOzPLLLz/vCvB11123kSulIdT2BvZLyn3IAACAcjd58uTccMMNSZJOnTrl4osvXuTYuSenn3POOTnjjDNy5pln5sYbb0yPHj0yZsyYvPPOO+ncuXMuv/zytGzZsrGmAAAAAAvVJBvgV1999SL3jRs3LpMmTUrLli2z7LLLJkleeeWVVFVV5eWXX84ZZ5yRN998M4VCIT179szRRx+90PuX0fS4DxkAAEDjePHFFzN9+vQkyZgxYzJmzJhFjj322GPTuXPn7LHHHvnGN76Ra665Js8//3zeeuutdO3aNQceeGCOOuqodOrUqbHKBwAAgEVqkg3wrzL3vt9bb711WrdunU8++SQffvhhkuSUU07JhhtumF69euWNN97IyJEj8/e//z0XX3xxdtxxxyJWTW24DxkAAEDj+N73vpfXX399sR/Xs2fPXHXVVQ1QEQAAANSPZtUAHzhwYO677760adMmJ5xwQpLMu/93x44dc9VVV2WjjTZKktTU1OSGG27IBRdckD59+qRnz55Zbrnl6vT8LVrMvzR3Qy/V3VhqO4/Gmm9j3IesVF47AAAAAAAA4D+aTQN8wIAB6devXwqFQs4///ysttpqSZItt9wyjz32WGpqatKtW7d54wuFQg4++OA888wzGT58eO68884cc8wxS/z8FRWFdOzYrs7zaIoaesnxpqgc5wwAAAAAAAClrsk3wGtqanLJJZekf//+qayszPnnn5+ddtpp3v5CoZCuXbsu8vHbbLNNhg8fnpdffrlOdVRX1+Szz6bNt62ysqIkGqmffTY9c+ZUf+24UplvUvs5AwAAfJ327dtYZQoAAACaiCbdAJ8xY0ZOPvnkDB06NFVVVfntb3+b7bbbbrGO0aVLlyTJ9OnT61zP7Nml2TCdM6e6ZOe2KOU4ZwAAAAAAACh1TbYB/vnnn+ewww7LqFGj0qlTp1x11VXZYIMNFhh322235cknn8zOO++80Ob4uHHjkqTO9/8GAAAAoHmqqCikoqLQYMevrq5JdXVNgx0fAACovSbZAJ81a1Z69+6dUaNGZZVVVsm1116blVZaaaFjJ0yYkAceeCDTp09foAFeU1OTu+++O0myxRZbNHjdAAAAADQtFRWFdOzYJhUVlQ32HNXVczJx4nRNcAAAaAKaZAP8iiuuyHPPPZcuXbpk4MCB6dat2yLH7r777rnmmmsycuTI3H777dl7772TJNXV1bn88sszevTorL766tlhhx0aq3wAAAAAmogvr/6uzL/uuybTP/mg3o/fptPy+cbOh6eioqABDgAATUCTa4BPnjw5N9xwQ5KkU6dOufjiixc59rTTTstKK62Uc845J2eccUbOPPPM3HjjjenRo0fGjBmTd955J507d87ll1+eli1bNtYUAAAAAGhipn/yQaZPeLfYZQAAAA2syTXAX3zxxUyfPj1JMmbMmIwZM2aRY4899th07tw5e+yxR77xjW/kmmuuyfPPP5+33norXbt2zYEHHpijjjoqnTp1aqzyAQAAAAAAACiSJtcA/973vpfXX399sR/Xs2fPXHXVVQ1QEQAAAAAAAADNQUWxCwAAAAAAAACA+qABDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0uXuAQ7mpqCikoqLQYMevrq5JdXVNgx0fAAAAAAAAmgoNcCiiiopCOnZsk4qKygZ7jurqOZk4cbomOAAAAAAAACVPAxyK6Murvyvzr/uuyfRPPqj347fptHy+sfPhqagoaIADAAAAAABQ8jTAoQmY/skHmT7h3WKXAQAAAAAAAM1aRbELAAAAAAAAAID6oAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAl1aoAPGTIkzz333NeOe+ihh/KHP/yhLk8FAAAAZUn2BgAAgNqrUwP8tNNOy+233/614+6+++5cf/31dXkqAAAAKEuyNwAAANRei8UZPGTIkMyePXu+be+8807uvPPORT7m888/z5NPPpmWLVsuWYUAAABQRmRvylFFRSEVFYUGOXZlpTsAAgBAOVmsBvgrr7ySgQMHplD4MpAUCoW8+OKLefHFF7/ycTU1Ndl9992XvEooIiEcAABoTLI35aaiopAOHdrKyAAAQL1YrAb4cccdl88//3zefw8ePDgrr7xyNt5440U+pnXr1unRo0f222+/Ja8SikQIBwAAGpvsTbmpqCiksrIiV97yeMZ/OLnej7/BWt2zzw4b1vtxAQCApmmxGuBLL710Lrjggnn/PXjw4Gy44YbzbYNSIoQDAACNTfamXI3/cHLeHj+x3o/bvUv7ej8mAADQdC1WA/x/jRkzpr7qgCZNCAcAAIpF9gYAAIDaq1MD/L998sknmT59empqahY5ZqWVVqqvpwMAAICyI3sDAADAV6tzA/wvf/lLrrnmmnz66adfOa5QKOTVV1+t69MBAABA2Wmo7F1dXZ077rgjgwYNyptvvplZs2ale/fu2W677XLEEUekffv5V636+OOP88c//jGPPfZYJkyYkC5dumSHHXbI0UcfnXbt2i3R3AAAAKA+1akBPmjQoPzmN79JkrRq1SodO3ZMZWVlvRQGAAAANFz2rq6uznHHHZdhw4alqqoq66+/ftq2bZvRo0enf//+GTZsWG6++eZ07tw5SfLhhx9m3333zfjx47Pmmmtm6623zksvvZT+/fvnsccey80335ylllqqznUBAABAXdSpAX7jjTemUCjkjDPOyN57752WLVvWV10AAABAGi5733XXXRk2bFh69OiR/v37z1s6/fPPP89JJ52UESNGpG/fvvnd736XJOnbt2/Gjx+f3r175//+7/+SJDNnzswpp5ySBx54IFdccUVOO+20eqkNAAAAllRFXR48duzYbLjhhjnggAM0vwEAAKABNFT2vuuuu5Ikp5122nz3DV9qqaXSr1+/FAqFDB8+PDNmzMi7776bYcOGZfnll89xxx03b2yrVq1y3nnnpV27drntttsyY8aMeqsPAAAAlkSdGuBt2rRJx44d66sWAAAA4H80VPbu0KFDVl111Wy44YYL7Ft22WWzzDLLZNasWZk4cWIeffTRVFdXZ6uttlqgCb/00kvn29/+dqZNm5annnqq3usEAACAxVGnBvhmm22W0aNHZ/r06fVVDwAAAPBfGip7X3311XnggQcW2lwfN25cJk2alJYtW2bZZZfNG2+8kSRZc801F3qs1VdfPUnmjQMAAIBiqVMD/IQTTsj06dNz+umnZ/LkyfVVEwAAAPD/FSN7z73v99Zbb53WrVvno48+SpJ06dJloePnbv/4448bpT4AAABYlBZ1efCtt96a9ddfP3/7298ybNiw9OjRI+3bt0+hUFhgbKFQyI033ljrY1dXV+eOO+7IoEGD8uabb2bWrFnp3r17tttuuxxxxBFp3779fOM//vjj/PGPf8xjjz2WCRMmpEuXLtlhhx1y9NFHp127dnWZJgAAABRNQ2bvhRk4cGDuu+++tGnTJieccEKSZNq0aUmSqqqqhT5m7va54+qiRYv5z9WvrKzTuftNRm3nUSrzTcpvzqUyDwAAaO7q1AC/4YYb5v377Nmz889//nORYxcWzBeluro6xx13XIYNG5aqqqqsv/76adu2bUaPHp3+/ftn2LBhufnmm9O5c+ckyYcffph9990348ePz5prrpmtt946L730Uvr375/HHnssN998c5ZaaqklnygAAAAUSUNl74UZMGBA+vXrl0KhkPPPPz+rrbZakqSysvIrj19TUzPf/y6piopCOnYszZPY27dvU+wSGl25zbnc5gsAAE1VnRrgAwYMqK865nPXXXfNO6u9f//+WWmllZIkn3/+eU466aSMGDEiffv2nbckW9++fTN+/Pj07t07//d//5ckmTlzZk455ZQ88MADueKKK3Laaac1SK0AAADQkBoqe/+3mpqaXHLJJenfv38qKytz/vnnZ6eddpq3v23btkmSL774YqGPn7u9TZu6NQCrq2vy2WfzX0VeWVlREo3Fzz6bnjlzqr92XKnMNym/Odd2vgAAwOJr375NrVddqlMDfLPNNqvLwxfprrvuSpKcdtpp85rfSbLUUkulX79++e53v5vhw4dnxowZ+fDDDzNs2LAsv/zyOe644+aNbdWqVc4777w8+uijue2223L88ccvcqk2AAAAaKoaKnvPNWPGjJx88skZOnRoqqqq8tvf/jbbbbfdfGO6du2aJPPuBf6/vu4e4Ytj9uzSbCDOmVNdsnNblHKbc7nNFwAAmqp6uznRrFmzMnr06Dz44IN57rnnkiTvv//+Eh2rQ4cOWXXVVbPhhhsusG/ZZZfNMsssk1mzZmXixIl59NFHU11dna222iotW7acb+zSSy+db3/725k2bVqeeuqpJaoFAAAAmor6zN7JlyutHXzwwRk6dGg6deqUAQMGLND8TpI111wzSTJ27NiFHufNN99Mkqy11lpLXAsAAADUhzo3wGfPnp3f//732XzzzbPPPvvk+OOPz2233ZYkOfXUU/OTn/wk77zzzmId8+qrr84DDzyQjh07LrBv3LhxmTRpUlq2bJlll102b7zxRpL/hPH/tfrqqyfJvHEAAADQ3DRE9p41a1Z69+6dUaNGZZVVVsltt92WDTbYYKFjt9xyyyTJiBEjMmfOnPn2TZkyJU899VTatm2bjTfeeAlmBwAAAPWnTg3w2bNn54gjjsjVV1+d6dOnZ911101NTc28/VOnTs2rr76aAw44IB9//HGdi00y777fW2+9dVq3bv21y6zN3V5fzw8AAACNqaGy9xVXXJHnnnsuXbp0ycCBA+e7Bdn/WmGFFbLNNtvkvffey8UXXzzv+WfOnJmzzjorU6dOzb777pulllpqyScKAAAA9aBO9wC/6aab8vjjj2eLLbZIv3790rVr16y99trz9t98880555xzMmTIkFx77bU59dRT61TswIEDc99996VNmzY54YQTkiTTpk1LkkXe33vu9rnj6qJFi/nPF6jtjdabutrOo1Tmm5TfnEtlHgAAUI4aIntPnjw5N9xwQ5KkU6dOufjiixc59rTTTkvnzp1z5pln5pVXXsn111+fRx55JGussUZeeumlvP/++1lnnXVyzDHH1H2yAAAAUEd1aoAPHjw4HTp0yO9///u0a9dugf1VVVU577zz8sQTT+TRRx+tUwN8wIAB6devXwqFQs4///ysttpqSZLKysokSaFQWOjj5p6V/t9nxy+JiopCOnZccI6loH37NsUuodGV25zLbb4AAFBKGiJ7v/jii5k+fXqSZMyYMRkzZswixx577LHp3LlzVlhhhdx55525/PLLM3LkyIwYMSLdu3fPkUcemcMPP3yhtQEAAEBjq1MD/O23384WW2zxlSG3ZcuWWX/99fP4448v0XPU1NTkkksuSf/+/VNZWZnzzz8/O+2007z9bdu2TZJ88cUXC3383O1t2tStAVhdXZPPPpv/KvLKyoqSaCx+9tn0zJlT/bXjSmW+SfnNubbzBQAAFl/79m0adNWlhsje3/ve9/L6668vdi3dunVL3759F/txAAAA0Fjq1ABv0aJFPvvss68dN2nSpLRosfhPNWPGjJx88skZOnRoqqqq8tvf/jbbbbfdfGO6du2aJPPuBf6/vu4e4Ytj9uzSbCDOmVNdsnNblHKbc7nNFwAASklDZ28AAAAoJXU6Rf2b3/xmXnrppYwfP36RY8aNG5eXXnppvvuT1cbnn3+egw8+OEOHDk2nTp0yYMCABZrfSbLmmmsmScaOHbvQ47z55ptJkrXWWmuxnh8AAACagobM3gAAAFBq6tQA32+//TJ9+vQcffTRefXVVxfY//rrr+fYY4/NzJkzs+eee9b6uLNmzUrv3r0zatSorLLKKrntttuywQYbLHTslltumSQZMWJE5syZM9++KVOm5Kmnnkrbtm2z8cYbL8bMAAAAoGloqOwNAAAApahOa6PtuOOOeeKJJ3LnnXdmjz32yNJLL51CoZDHHnssW2+9dSZMmJCamprstNNO+fGPf1zr415xxRV57rnn0qVLlwwcODDdunVb5NgVVlgh22yzTUaMGJGLL744p556agqFQmbOnJmzzjorU6dOzSGHHJKlllqqLlMFAACAomio7A0AAAClqM43B+vbt2823HDDXHvttfnXv/6VJJk4cWKSpHv37vnZz36Wgw46qNbHmzx5cm644YYkSadOnXLxxRcvcuxpp52Wzp0758wzz8wrr7yS66+/Po888kjWWGONvPTSS3n//fezzjrr5JhjjqnDDAEAAKC46jt7AwAAQKmqcwM8Sfbcc8/sueee+eijj/LBBx+kuro6Xbp0yQorrLDYx3rxxRczffr0JMmYMWMyZsyYRY499thj07lz56ywwgq58847c/nll2fkyJEZMWJEunfvniOPPDKHH3542rVrt8RzAwAAgKagPrM3AAAAlKp6aYBPnDgxb775ZjbbbLN06dIlSfLPf/4zN910U374wx/O21Yb3/ve9/L6668vdg3dunVL3759F/txAAAA0BzUZ/YGAACAUlVR1wPcfvvt+d73vpff/OY3821/8cUXc95552X77bfP/fffX9enAQAAgLIlewMAAEDt1KkB/vjjj+ess85KixYt8u1vf3u+fRtvvHEOPfTQ1NTU5KSTTso//vGPOhUKAAAA5Uj2BgAAgNqrUwO8f//+adGiRQYMGJBTTjllvn09evTIySefnAEDBqRQKOSaa66pU6EAAABQjmRvAAAAqL06NcDfeOON9OrVK+utt94ix6y33nrZeOON88ILL9TlqQAAAKAsyd4AAABQe3VqgE+fPj1t2rT52nEdOnTI7Nmz6/JUAAAAUJZkbwAAAKi9OjXAe/TokWeeeSaff/75Isd88cUXee6557LyyivX5akAAACgLMneAAAAUHt1aoDvuuuumTx5co477rh8/PHHC+yfOHFiTjzxxHz66afZZZdd6vJUAAAAUJZkbwAAAKi9FnV58AEHHJD7778/TzzxRLbeeuusu+66WX755ZMk//73v/PKK69k5syZWX/99XPwwQfXR70AAABQVmRvAAAAqL06NcBbtmyZ66+/PpdddlkGDRqUF154IS+88MK8/a1bt85+++2Xk08+Oa1ataprrQAAAFB2ZG8AAACovTo1wJOkXbt2OeOMM3LKKafk5ZdfzkcffZQ5c+akS5cuWWedddK2bdv6qBMAAADKluwNAAAAtVOnBvhBBx2UHj165Ne//nVatWqVnj171lddAAAAQGRvAAAAWBx1aoCPHj06FRUV9VULAAAA8D9kbwAAAKi9OiXodu3apaampr5qAQAAAP6H7A0AAAC1V6cG+FFHHZWnn3461113XWbOnFlfNQEAAAD/n+wNAAAAtVenJdDHjRuXVVZZJRdffHEuvfTSrLLKKmnfvv1Cl2YrFAq58cYb6/J0AAAAUHZkbwAAAKi9OjXAb7jhhnn/Pnv27IwdO3aRYwuFQl2eCgAAAMqS7A0AAAC1V6cG+IABA+qrDgAAAGAhZG8AAACovTo1wDfbbLP6qgMAAABYCNkbAAAAaq9ODfD/NmvWrLz22mv54IMP0rlz52y88cZ5//3307179/p6CgAAAChrsjcAAAB8tTo3wGfPnp0rr7wyN910U6ZMmZIk2WWXXbLxxhvn1FNPzdSpU3PZZZdllVVWqXOxAAAAUI5kbwAAAKidiro8ePbs2TniiCNy9dVXZ/r06Vl33XVTU1Mzb//UqVPz6quv5oADDsjHH39c52IBAACg3MjeAAAAUHt1aoDfdNNNefzxx7P55pvnoYceyh133DHf/ptvvjm77bZbPv7441x77bV1KhQAAADKkewNAAAAtVenBvjgwYPToUOH/P73v0/Xrl0X2F9VVZXzzjsvXbt2zaOPPlqXpwIAAICyJHsDAABA7dWpAf72229nk002Sbt27RY5pmXLlll//fXz/vvv1+WpAAAAoCzJ3gAAAFB7dWqAt2jRIp999tnXjps0aVJatGhRl6cCAACAsiR7AwAAQO3VqQH+zW9+My+99FLGjx+/yDHjxo3LSy+9lLXXXrsuTwUAAABlSfYGAACA2qtTA3y//fbL9OnTc/TRR+fVV19dYP/rr7+eY489NjNnzsyee+5Zl6cCAACAsiR7AwAAQO3VaW20HXfcMU888UTuvPPO7LHHHll66aVTKBTy2GOPZeutt86ECRNSU1OTnXbaKT/+8Y/rq2YAAAAoG7I3AAAA1F6dbw7Wt2/fbLjhhrn22mvzr3/9K0kyceLEJEn37t3zs5/9LAcddFBdnwYAAADKluwNAAAAtVPnBniS7Lnnntlzzz3z0Ucf5YMPPkh1dXW6dOmSFVZYoT4ODwAAAGVP9gYAAICvt9gN8Dlz5uTmm2/O0KFD8/HHH6d79+7ZZZddsttuu6VLly7p0qVLQ9QJAAAAZUP2BgAAgCWzWA3wmTNn5tBDD82zzz6bmpqaJMm//vWvPPHEExkxYkR+//vfN0iRAAAAUC5kbwAAAFhyi9UAv/XWW/PMM8+kW7duOfzww7PSSivljTfeSP/+/TN06NDcfffd+fGPf9xQtQIAAEDJk70BAABgyS1WA/xvf/tbqqqqcsstt6R79+5Jkq222ipbbrlldt999/z1r38VwgEAAKAOZG8AAABYchWLM3js2LHZZJNN5gXwudZee+2ss846GTNmTL0WBwAAAOVG9gYAAIAlt1gN8KlTp2aZZZZZ6L4VV1wxkyZNqo+aAAAAoGzJ3gAAALDkFqsBPnv27FRWVi50X8uWLTNr1qx6KQoAAADKlewNAAAAS26xGuAAAAAAAAAA0FRpgAMAAAAAAABQEjTAAQAAAAAAACgJLRb3AcOHD8+22267wPaJEycmyUL3JUmhUMjw4cMX9+kAAACg7MjeAAAAsGQWuwE+bdq0TJs2bZH7x48fv9DthUJhcZ8KAAAAypLsDQAAAEtmsRrgAwYMaKg6AAAAgMjeAAAAUBeL1QDfbLPNGqoOAAAAILI3AAAA1EVFsQsAAAAAAAAAgPqgAQ4AAAAAAABASVisJdABAACA0jVkyJCceuqpuf766/Pd7353gf29evXKpEmTFvn40aNHp3Xr1g1YIQAAAHw1DXAAAAAgo0ePznnnnbfI/ePHj8+kSZPSrVu3Rd6nvKLCQnMAAAAUlwY4AAAAlLmHH344p556aj7//PNFjnnttdeSJDvssENOP/30xioNAAAAFosGOAAAAJSpCRMm5He/+10GDx6cqqqqdO7cOR9//PFCx77yyitJknXWWacxSwQAAIDFYm0yAAAAKFOXXXZZBg0alHXWWSe33XZbVl111UWOnXsF+LrrrttY5QEAAMBicwU4AAAAlKlVV101F154YXbdddevvX/3K6+8kqqqqrz88ss544wz8uabb6ZQKKRnz545+uijs8EGGzRS1QAAALBozeYK8CFDhmSttdbKE088sdD9vXr1ylprrbXIf7744otGrhgAAACatt69e2e33Xb72ub3J598kg8//DAzZszIKaeckurq6vTq1SsdOnTIyJEjs//+++f+++9vpKoBAABg0ZrFFeCjR4/Oeeedt8j948ePz6RJk9KtW7dsttlmCx3zdWEeAAAAWLi59//u2LFjrrrqqmy00UZJkpqamtxwww254IIL0qdPn/Ts2TPLLbdcnZ6rRYv583tlZWnk+drOo1Tmm5TfnEtlHgAA0Nw1+Qb4ww8/nFNPPTWff/75IsfMvQ/ZDjvskNNPP72xSgMAAICysOWWW+axxx5LTU1NunXrNm97oVDIwQcfnGeeeSbDhw/PnXfemWOOOWaJn6eiopCOHdvVR8lNTvv2bYpdQqMrtzmX23wBAKCparIN8AkTJuR3v/tdBg8enKqqqnTu3Dkff/zxQsfOPRN9nXXWacwSAQAAoCwUCoV07dp1kfu32WabDB8+PC+//HKdnqe6uiaffTZtvm2VlRUl0Vj87LPpmTOn+mvHlcp8k/Kbc23nCwAALL727dvUetWlJtsAv+yyyzJ48OCsu+666devX/r27bvIBvjcK8DXXXfdxiwRAAAASNKlS5ckyfTp0+t8rNmzS7OBOGdOdcnObVHKbc7lNl8AAGiqmmwDfNVVV82FF16YXXfd9Wvv3/3KK6+kqqoqL7/8cs4444y8+eabKRQK6dmzZ44++uhssMEGjVQ1AAAAlJ7bbrstTz75ZHbeeedst912C+wfN25cktT5/t8AAABQV7W7TrwIevfund122+1rm9+ffPJJPvzww8yYMSOnnHJKqqur06tXr3To0CEjR47M/vvvn/vvv7+RqgYAAIDSM2HChDzwwAO54447FthXU1OTu+++O0myxRZbNHZpAAAAMJ8mewV4bc29/3fHjh1z1VVXZaONNkryZQC/4YYbcsEFF6RPnz7p2bNnnc9Eb9Fi/mZ8bdeZb+pqO49SmW9SfnMulXkAAADFsfvuu+eaa67JyJEjc/vtt2fvvfdOklRXV+fyyy/P6NGjs/rqq2eHHXYocqUAAACUu2bfAN9yyy3z2GOPpaamJt26dZu3vVAo5OCDD84zzzyT4cOH584778wxxxyzxM9TUVFIx47t6qPkJqd9+zbFLqHRlducy22+AABA/VpppZVyzjnn5IwzzsiZZ56ZG2+8MT169MiYMWPyzjvvpHPnzrn88svTsmXLYpcKAABAmWv2DfBCoZCuXbsucv8222yT4cOH5+WXX67T81RX1+Szz6bNt62ysqIkGouffTY9c+ZUf+24UplvUn5zru18AQCAxde+fZuyWHVpjz32yDe+8Y1cc801ef755/PWW2+la9euOfDAA3PUUUelU6dOxS4RAAAAmn8D/Ot06dIlSTJ9+vQ6H2v27NJsIM6ZU12yc1uUcptzuc0XAABYMgMHDvzK/T179sxVV13VSNUAAADA4mv2p6jfdtttOf744zN8+PCF7h83blyS1Pn+3wAAAAAAAAA0bc3+CvAJEybkgQceyPTp07PddtvNt6+mpiZ33313kmSLLbYoRnkAAAAAAAAANJJmfwX47rvvnlatWmXkyJG5/fbb522vrq7OH/7wh4wePTqrr756dthhhyJWCQAAAAAAAEBDa/ZXgK+00ko555xzcsYZZ+TMM8/MjTfemB49emTMmDF555130rlz51x++eVp2bJlsUsFAAAAAAAAoAE1+yvAk2SPPfbITTfdlO9///uZMGFCHn744cyePTsHHnhg7rnnnqy66qrFLhEAAAAAAACABtZsrgAfOHDgV+7v2bNnrrrqqkaqBgAAAAAAAICmpiSuAAcAAAAAAAAADXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJLQotgFAAAAAAD1q6KikIqKQoMdv7q6JtXVNQ12fAAAWFIa4ECjE8IBAACg4VRUFNKxY5tUVFQ22HNUV8/JxInT5W8AAJocDXCgUQnhAAAA0LC+PPG8Mv+675pM/+SDej9+m07L5xs7H56KioLsDQBAk6MBDjQqIRwAAAAax/RPPsj0Ce8WuwwAAGhUGuBAUQjhAAAAAAAA1LeKYhcAAAAAAAAAAPVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJLYpdANC0VFQUUlFRaLDjV1Y67wYAAAAAAICGoQEOzFNRUUiHDm01qQEAAAAAAGiWNMCBeSoqCqmsrMiVtzye8R9ObpDn2GCt7tlnhw0b5NgAAAAAAACUNw1wYAHjP5yct8dPbJBjd+/SvkGOCwAAAM2F248BAEDD0QAHAAAAgEbi9mMAANCwNMABAAAAoJG4/RgAADQsDXAAAAAAaGRuPwYAAA3DWksAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAkCQZMmRI1lprrTzxxBML3f/xxx/n17/+dX7wgx9k/fXXz7bbbpuLL744U6dObeRKAQAAYOE0wAEAAICMHj0655133iL3f/jhh9l7771z0003paqqKltvvXWqq6vTv3//7Lfffvn8888bsVoAAABYOA1wAAAAKHMPP/xwDj300K9sYvft2zfjx49P7969c++99+YPf/hDHnzwwfzoRz/K66+/niuuuKIRKwYAAICFazYNcMuwAQAAQP2aMGFC+vTpk6OPPjqzZs1K586dFzru3XffzbBhw7L88svnuOOOm7e9VatWOe+889KuXbvcdtttmTFjRmOVDgAAAAvVLBrglmEDAACA+nfZZZdl0KBBWWeddXLbbbdl1VVXXei4Rx99NNXV1dlqq63SsmXL+fYtvfTS+fa3v51p06blqaeeaoyyAQAAYJGafAPcMmwAAADQMFZdddVceOGFueOOO7LWWmstctwbb7yRJFlzzTUXun/11VefbxwAAAAUS5NtgFuGDQAAABpW7969s9tuu6Wi4qu/Hvjoo4+SJF26dFno/rnbP/744/otEAAAABZTi2IXsCiXXXZZBg8enHXXXTf9+vVL3759Fxqka7MM20MPPZSnnnoqW221VWOVDwAAACVj2rRpSZKqqqqF7p+7fe64umjRYv5mfGVlkz13f7HUdh6lMt+k/OZcbvNNSmsuAACUjibbAJ+7DNuuu+76lWei12YZtoceeihvvPGGBjgAAAAsgcrKyiRJoVBY6P6ampr5/ndJVVQU0rFjuzodo6lq375NsUtodOU253Kbb1KecwYAoOlrsg3w3r1712qcZdgAAACgYbVt2zZJ8sUXXyx0/9ztbdrUrRlWXV2Tzz6b/yryysqKkmiyffbZ9MyZU/2140plvkn5zbnc5pvUfs4AAFBX7du3qfUKRE22AV5blmGrO0t01X1cU1du801Kay4AAFBsXbt2TfKfk9D/19ednL44Zs8uzWbanDnVJTu3RSm3OZfbfJPynDMAAE1fs2+AW4at7krlrOPFUW5zLrf5JuU5ZwAAaChzbzs2duzYhe5/8803kyRrrbVWo9UEAAAAC9PsG+CWYas7S3QtWqnMudzmm1iGDQCAxrM4y7A1V1tuuWWSZMSIEenTp8+8k9GTZMqUKXnqqafStm3bbLzxxsUqEQAAAJKUQAPcMmx1V47LVZXbnMttvkl5zhkAABrKCiuskG222SYjRozIxRdfnFNPPTWFQiEzZ87MWWedlalTp+aQQw7JUkstVexSAQAAKHPNvgFuGTYAAABoeGeeeWZeeeWVXH/99XnkkUeyxhpr5KWXXsr777+fddZZJ8ccc0yxSwQAAIA0+zXa/nsZtjlz5sy3zzJsAAAAUD9WWGGF3Hnnndlrr70yZcqUjBgxIq1atcqRRx6ZAQMGpF27dsUuEQAAAJr/FeCWYQMAAID6MXDgwK/c361bt/Tt27eRqgEAAIDF1+wb4Ill2AAAAAAAAAAogSXQE8uwAQAAAAAAANCMrgC3DBsAAAAAAAAAX6UkrgAHAAAAAAAAAA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEpCi2IXAAAAADQfDz/8cI466qhF7t9xxx1z2WWXNWJFAAAA8B8a4AAAAECtvfrqq0mSTTfdNMstt9wC+zfaaKPGLgkAAADmKakGuLPQAQAAoGHNbYCfccYZWXvttYtcDQAAAMyvpBrgzkIHAACAhvXqq6+mdevWWX311YtdCgAAACygJBvgzkIHAACA+jdx4sR88MEHWX/99dOiRUl9pQAAAECJKKm06ix0AAAAaDhzTzxffvnlc/HFF+ehhx7K+++/n86dO2f77bfPkUcemWWWWabIVQIAAFDOKopdQH2Zexb6Wmut5Sx0AAAAaACvvPJKkuTBBx/MLbfckh49eqRnz56ZPHlyrrvuuuy999756KOPilwlAAAA5axkOsXOQgcAAICG9dprryVJtt5661xyySVZeumlkySffvppTjjhhPzjH//ImWeemauvvnqJn6NFi/nP1a+sLI1z92s7j1KZb1J+cy63+SalNRcAAEpHyTTA//ss9Hbt2mWzzTbLcsstl5deeinXXXddHn744dx4443p0qVLkSsFAACA5unCCy/ML3/5yyy33HKpqqqat33ZZZfNRRddlB122CEjRozIe++9lxVXXHGxj19RUUjHju3qs+Qmo337NsUuodGV25zLbb5Jec4ZAICmr2Qa4M5CX3LOUK77uKau3OablNZcAACgqWjVqlV69Oix0H3dunXLt771rTz77LN55ZVXlqgBXl1dk88+mzbftsrKipJosn322fTMmVP9teNKZb5J+c253Oab1H7OAABQV+3bt6l176dkGuDOQl9ypRK6Fke5zbnc5puU55wBAKDYOnfunCSZPn36Eh9j9uzSbKbNmVNdsnNblHKbc7nNNynPOQMA0PSVTAPcWehLzhnKi1Yqcy63+SbOQgcAoPEszlnozdnMmTNz7rnnZuLEibnkkkvStm3bBcaMGzcuSbLccss1dnkAAACQpIQa4F/HWeiLVo5n65bbnMttvkl5zhkAABpSq1at8sQTT+T999/Po48+mh122GG+/WPGjMmYMWOy9NJLZ8MNNyxOkQAAAJS9kjhFfebMmfnVr36Vo48+OtOmTVvoGGehAwAAQN3ss88+SZLf/OY3effdd+dt//jjj3P66adnzpw5OfTQQ+e7NRkAAAA0ppK4AtxZ6AAAANDwDjnkkDzzzDP5+9//np133jmbbLJJWrVqlaeeeirTpk3L9ttvn969exe7TAAAAMpYSVwBnjgLHQAAABpaq1at8uc//zm/+tWvstpqq+W5557LU089lTXWWCN9+/bN73//+1RWVha7TAAAAMpYSVwBnjgLHQAAABpDZWVlDjrooBx00EHFLgUAAAAWUDIN8Llnod90000ZPHhwnnvuuVRUVGSNNdbIXnvtlT333DOFQqHYZQIAAAAAAADQQEqmAZ44Cx0AAAAAAACgnJXMPcABAAAAAAAAKG8a4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloUewCAIqtoqKQiopCgx2/urom1dU1DXZ8AAAAAAAAvqQBDpS1iopCOnRom8rKhlsQY86c6kyZMiM1NQ3XBNdkBwAAAAAA0AAHylxFRSGVlRW58pbHM/7DyfV+/LV6dMlBu2ycDh3a1vux/1t19ZxMnDhdExwAAAAAAChrGuAAScZ/ODlvj59Y78ft3qV9ChUV+dd912T6Jx/U+/GTpE2n5fONnQ9PRUVBAxwAAAAAAChrGuAAjWD6Jx9k+oR3i10GAAAAFEVFRSEVFYVil1Enbj/G/2ro97X3HAAsGQ1wAAAAAKDBVFQU0qFD21RWVjTYc9RUV6dQ0XDHT9x+jPk1xvt6zpzqTJo0zXsOABaTBjgAAAAA0GAqKgqprKzIlbc8nvEfTq7342+wVvfss8OGbj9Go2ro9/UKXZfJL/bb3HsOAJaABjgAAAAA0ODGfzg5b4+fWO/H7d6lfRK3H6M4Gup9PVdDXmGeWGYdgNKkAQ4AAAAAAE3IMktXpaa6Ou3bt2nQ57G0PwClSAMcAAAAAACakHZVrVKoqLC0PwAsAQ1wAAAAAABogiztDwCLr2FvIAIAAAAAAAAAjUQDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJaFFsQsAAAAAAAAAmr+KikIqKgoN+hzV1TWprq5p0OegeSu5BvjTTz+dq6++Oq+99lpmzJiRtdZaKz/72c/yox/9qNilAQAAQEmQvQEAoHlqyAZ1oVBI+/atU1FR2SDHn6u6ek4mTpyuCc4ilVQD/N57783JJ5+cFi1apFevXqmsrMyTTz6Z448/PmPHjs0xxxxT7BIBAACgWZO9ASiWhr6q0BWFQKmrqCikQ4e2qaxs2Dsk/+u+azL9kw8a5NhtOi2fb+x8eCoqCn5ns0gl0wD/5JNPcsYZZ6RNmzYZMGBA1ltvvSTJ2LFjc9BBB+WKK67Idtttl7XXXrvIlQJQioRwAKAcyN4AFEtFRSEdO7Zp0KsKXVFIMfhOicZUUVFIZWVFrrzl8Yz/cHK9H3+Dtbpnnx02zPRPPsj0Ce/W+/GhtkqmAX7TTTdlxowZOfzww+cF8CRZbbXVcuKJJ+b000/PDTfckAsuuKCIVQJQDA0dJBpjaR8hHABoCmRvgKaj3JpmX863ssGuKnRFIcXgxA6KZfyHk/P2+In1ftzuXdrX+zFpmpr655CSaYCPHDkySfKDH/xggX3bbrttCoVCHnnkkUauCoBia6xlfZKGW9qnKYbwhv6AkzS9L1sAANkboKloik2zhs6Jc3O9qwppTI3xvnZiB9DcNMXPIf+rZBrg//znP5Mkq6+++gL7OnTokM6dO+ejjz7KJ598kk6dOjV2eQAUSUMv65M0zaV9GjKgNcYV74kzlIH65+QdqDvZG6BpaGpXQzfmyefQWBrzfd2UvlOi/jX1K2UpPU7eKZEG+OTJk/PFF1+kXbt2adeu3ULHdO3aNR999FE++ugjIRygDDXUsj5J01vap7ECWkN9wEma5hnKTS2sNEYjr6GV25wF0q/n5B1o2mRvgKanqTTNGvPkc4qrnHKZ93XDaGrfryTNP4vKofw3J+98qVBTU9PsfyI++OCDbL311uncuXMef/zxhY7Zb7/98vzzz+eWW25Jz549F/s5amoW/KVZKCQVFRWZ/PmMzJlTvUS1f5VWLSuzVNvWmTX1s9RUz6n34xcqKtOyXftUV1enNu+C5j7fpPzm3NTmm5TfnJvi+3re45pvVlnseZbr+3rqtJmZU13/c27ZojJtqlqW3fu6UCik0IBPsLDPGl+loqJh60m+rKmc5tzU5jtXufy+ThrnfT17xtTUNMDvxiQpVFSkRVW7JvW7q6EtSZpszvNNFj7nxnjvNgWy95KRUWoxvpnPuanNNym/OTfF9/W8xzXgn4eKioqyeY0T7+uGsCTv63LKZeX4vp73uDL6fiVp3ll0cXNouf7uSpp3Fl2S78Mb6rvhpOG/H17Ua7w4P6slcQV4RcWXZzF81aTn9vmXtN9fKBRSWbnw4y+zVNUSHbO2WrZr2CsL5/7/V1vNfb5J+c25qc03Kb85N8X3dbkpx/d1u7atGqiSL3lf16+v+qxRLA0d/pranMttvuWqRdXCr1qtT+X0u4vyInvXjYzy9Zr7nJvafJPym3NTfF83tHJ7jZPym3O5va+bYi4rx/d1c9ZUs3dDZ1G/u/hfDf3dcNK0f3eVxLtj7tJrM2bMWOSYmTNnJknatm3bKDUBAABAKZG9AQAAaA5KpgHetm3bTJkyZZFB/MMPP0ySdOnSpTFLAwAAgJIgewMAANAclEQDvFAoZM0110ySjB07doH9kyZNyscff5xll102nTt3buzyAAAAoNmTvQEAAGgOSqIBniRbbrllkmT48OEL7Bs+fHhqamqy1VZbNXZZAAAAUDJkbwAAAJq6kmmA77HHHmnTpk3+8pe/5Pnnn5+3/a233srvfve7FAqF/PznPy9ihQAAANC8yd4AAAA0dYWampqaYhdRX26//faceeaZqaysTK9evdKqVas8+eST+eKLL/J///d/6d27d7FLBAAAgGZN9gYAAKApK6kGeJI8+uijueaaa/Lyyy+nsrIyq6++eg455JD88Ic/LHZpAAAAUBJkbwAAAJqqkmuAAwAAAAAAAFCeSuYe4AAAAAAAAACUNw1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAA/VmypQpi/2Yp556qgEqAZbUFVdckTfeeKPYZQAAAIsge0PzJ3sDQMPSAKfRzZw5My+//HLGjBmT2bNnL3Lcp59+mmeeeaYRK2t8Tz31VK6//vrcfPPNGTduXLHLqbODDjookyZNqtXYL774In379s3Pf/7zhi0KWCxXXHFFXn/99WKXAfVu2223zUMPPVTsMoqiuro677777nzbampqcv/996dv37757W9/mxdffLFI1dWf999/PzNmzKj1+HHjxmXIkCENV1ARfPrpp3nyySdz//3354EHHshTTz1V689mQOmRvf9D9pa9oamRvSlVsrfs/b9kb4qlRbELoPZmzJiRTz/9NN27dy92KUtswIAB+f3vf59p06YlSZZeeukcdthhOeyww1JRMf/5GH//+99z6qmn5rXXXitGqfXm9ddfz5/+9Ke8/vrr6d69e4444oj07Nkzxx13XB566KHU1NQkSVq0aJFjjz02RxxxRJErXnKvvfZafvrTn+Yvf/lLOnfuvMhxL774Yk499dS8/fbbXzmuVH366acZO3ZsNt1002KX0iimTJmSCy+8MH379i12KY2m3F7jUrDtttvm9NNPz7bbblvsUhrNN7/5zVx00UXZZZddil1Koxg/fvy8zx/lZOTIkTn33HPz0Ucf5eWXX07yZSg/+uij88gjj8z7HNK/f/8cdNBB6dOnTzHLrZNtt912gff0tGnTct555+Wwww7LaqutNt/4UaNGpU+fPtltt90audL69+CDD+ZPf/rTQj83FwqF9OzZM4cddli23nrrxi+uHq299topFAqL9ZhCoZBXX321gSqiVMnezZPsvSDZu7xymexNcyB7lz7ZW/aWvWXvpsIV4EW0sLOhZs6cmSFDhuTjjz9eYPzQoUOb9YeDIUOGpF+/fllrrbXSp0+fHHHEEamqqspll12WQw45JJ9//nmxS6x3L7/8cvbee++MHDkybdq0yYsvvpiDDz44/fr1y0MPPZRDDz00gwcPzo033pitttoqv/vd7/LAAw8Uu+wlduaZZ+att97KAQcckA8++GCB/bNmzcpvf/vb7L///nn77bfz4x//OH/961+LUGn9+uY3v5l77713vm0zZszIFVdckffee2+B8X//+99z0EEHNVZ5DeK9997Leeedl5/85Cf5yU9+kjPOOCPvvPPOAuOGDh2aHXfcMXfddVcRqqw/5fgal5tyDGhzwxela8yYMfnFL36RmpqaHHrooamurk6S3HLLLRk5cmS6dOmS22+/PaNGjcopp5ySAQMGNOvPIQt7T3/xxRcZMmRIPvzwwyJU1Dj69u2b448/PuPHj89uu+2Wk046Kb/+9a9z1lln5bjjjsu2226bV155JUcddVR+85vfFLvcOtl0002zySabLNY/G2+8cbHLpgmQvWVv2Vv2bq5k79J/jcuN7E0pkr1lb9m7aWZvV4AX0cL+4E+dOjV9+vTJddddV3Jn515//fXZdNNNM3DgwHnbjj766JxzzjkZNGhQDj744PzlL3/JUkstVcQq69dll12WFVdcMQMHDsyyyy6badOm5YgjjshNN92UffbZJyeddNK8sZtsskl++tOf5tprr82PfvSjIla95A444IAss8wyOe2003LAAQfkL3/5S1ZeeeUkX56hfuqpp+aNN95I9+7dc+6552bLLbcscsX1Y2F/9KdPn54rr7wyG2+8cVZcccUiVNVwXnvttRx44IH5/PPPU1VVlaqqqrz66qu5//77c+utt2bNNdfMlClTcsYZZ2To0KGprKxM7969i112nZTba/zWW28t9jKYzriHpueaa65J165dc/fdd6d9+/bztt90000pFAo58cQTs/766ydJfv7zn+fpp5/OLbfc0mw/hyxKKX/hdM899+TGG2/MbrvtlrPOOitt27Zd6LipU6fm/PPPzw033JCNNtoo22+/fSNXWj/+O0fA4pC9ZW/ZW/ZujmTvL5Xyayx7Q2mQvb8ke8veTY0GeBNUqr8o/vWvf+W0006bb1urVq3Sr1+/dOjQIdddd10OO+ywXHfddYv8BdLcjBo1KieeeGKWXXbZJEnbtm3zy1/+Mj/96U+zxRZbLDD+Rz/6US666KLGLrNe7bzzzll66aVz/PHH54ADDsg111yThx56KFdffXVmz56d/fffP//3f/+Xdu3aFbvUBleqP8t/+MMfMmPGjPz2t7/NTjvtlCQZPXp0TjzxxPTt2zeXXHJJDjrooLz99ttZb7310rdv36y11lpFrrphlOprfPXVV+fqq69erMc09yUzy9XiLmfU3N1+++154oknaj2+UCikX79+DVhRw3rmmWey9957zxfAx40bl7feeistWrTID37wg/nGb7755vnDH/7Q2GVSB7fccks23HDDrz27vF27dunXr1/Gjh2bO+64o9mG8FmzZqVly5aL9ZgXX3wxG2ywQQNVRHNXqp/lZG/ZW/YuDbL3f5Tqayx7lw/Z+6vJ3jR1svfXa4rZWwOcRtOmTZtMmjRpoftOOeWUTJs2LbfeemuOPPLIXHPNNY1bXANZaqml8tlnn823ba211spWW22VFi0W/PGbOHFiWrdu3VjlNZitttoq/fv3z1FHHZWf/OQnqampySqrrJK+fftmk002KXZ51NHo0aOz7777zgvgSbL++uvnlFNOyQknnJATTjgh48ePz0knnZRDDjlkgXsM0vRtt912JfvFyVcpt4CWJFdddVVuv/32Wo8vFAq54YYbGrCihvXMM88s1hUWzf01njhxYpZbbrn5tv3jH/9IkmywwQYLfCFeVVWVL774otHqo+7++c9/LtY9bLfddtvcdtttDVhRw/rJT36SSy65pFZ/o2bOnJnLLrssAwYMyCuvvNII1UHTIXt/SfaWvZs72bv0yd6109xzWSJ7f53m/hrL3qVP9l60ppy9NcBpNL169cqAAQPygx/8IGusscYC+88+++x8/vnnue+++3LIIYdkq622KkKV9WvzzTfPX/7yl2y00Ub5zne+kyRZeuml86c//WmBsS+++GIGDhw4b1xzt/HGG2fAgAE57LDD8umnn+bXv/61AF4iJk+enLXXXnuB7eutt17mzJmT119/PQMHDsyGG27Y+MVRL374wx9ml112KXYZja7cAlqSjB07NmPHjq31+OZ+1vrpp5/erO/puriWWWaZfPrpp/Nt+/vf/55CoZDNN998gfFjx46dd+UczcO0adPSqVOnWo/v0qVLs74n28cff5w999wzxx57bA4//PBF/k567rnncvrpp+edd97JKqus0shVQvHJ3rK37F0aZO/SJ3vXjuzd/Mjesnepkb2bZ/bWAKfRnHjiidl///2z++6751vf+lYuvvji+X4oCoVCLrroorRq1SqDBg3K888/X8Rq68dJJ52U0aNH55BDDskmm2yyyHsnHHjggXnuueey7LLLzndvsuZu7bXXzi233JKf//znOeqoo3LllVfm29/+drHLoo5mz5690KslqqqqkiS9e/cWwGmWyi2gJcnFF19cVl+4dOzYMSussEKxy2g0PXv2zP33359DDz00lZWV+fjjjzNy5MgkyQ477DDf2ClTpuTee+9Nr169ilApS2rOnDkLvbJxUSorKzN79uwGrKhh3XfffenTp08uvfTSjBw5MhdeeGFWWmmlefvnLhM79157hx56aI477rgiVgzFIXvL3rJ3aZC9KVWyd+mTvWXvUiN7N8/srQFOo+nRo0f++te/5sorr8yzzz477wP7f6uoqEi/fv2y0UYb5fe//30++eSTIlRafzp16pS77rort956a2bOnLnIcVVVVdlzzz3zy1/+crHOJGpq+vTps9Dtq6yySt57770cccQR+dGPfjTfGUOlcBYn81t33XWLXQIskXILaJS+ww8/PPvuu2/22WefbLbZZnnooYfyxRdfZKeddsqqq66a5MsvVl944YVceOGF+fTTT3PAAQcUueq6GTZsWN555515/z1jxowUCoXcfffdee655+Yb+8YbbzR2edRRp06d8uc//zk33XRTLr744vz4xz/Oaaedlr333jtPP/10fvWrX2XcuHFZa621cv755/tMQtmSvWVv2bs8+DtHcyV7U2pkb9m71JRK9tYAL7K33nprviVfpkyZkiR5/fXXFzijZHGWSWmqOnbsmDPOOONrx+21117Zfffd5/sl2lxVVVXl4IMP/soxpXLftcGDB3/l/i+++CJDhgyZb1uphPBnn302c+bMmfffU6dOTZI8/vjjmTBhwnxjS+EKi6/S3JdpWpRyeY033XTTdO7cudhlAPVgvfXWy1VXXZXzzz8/1113XSorK7PLLrvk3HPPnTfmoosuyoABA1JRUZE+ffqkZ8+eRay47oYOHZqhQ4cusP1/P3/MVQp/s/73i4evUipfPBxwwAH59re/nTPPPDNnn312Bg4cmLFjx6ZFixY57rjj0rt378U6O5/yIHsvnOzdPMnepZ/LaqMUPscsTLm8xrI3lA7Z+z9k7y/J3k1DoaampqbYRZSrtddee6E/+DU1NV+5/bXXXmuM8hpcTU1Nxo0bl0mTJiVJll122ay44orFLaqBlfqcx48fv0SPa+5nfS7sZ/m/f7UubF9z/llee+21c9RRR+W73/3ufNunTJmSo48+OqeddlrWWWedBR636aabNlaJ9a7cXuNytPbaa5fdkmTlNufBgwdnk002mW/JpnIyceLEtGnTZoGrAB955JG88sor2WmnnZrk/ZoWx9NPP71Ej9tss83quZLGs7D7gn6dUvr79Mwzz+Too4/OlClTUigUcvTRR+fYY48tdlk0QbJ3aefQhSn1Ocve/1HKuUz2/lIpv8blqNxyaFJ+c5a9Ze9Fkb2br+aavTXAi+iKK65Yoscdc8wx9VxJ4xo9enT69++fxx9/PNOmTZtv31JLLZXvf//7+fnPf75Ev1SaqnKcczn5urPvF2X33Xev50oax6K+QEwW/SVikmb9B7+cXuP/vjJqcTTnL1mS8gxoTz/9dFZbbbVmvfwnlLty/OIhST7//PNcdNFFufPOO9O6descfvjhefDBB/PGG2/kO9/5Tvr27Zvu3bsXu0yaENm7fHJoOc65nJRTLktk78XRHF9j2Vv2BpoP2bt5Zm8NcBrVddddl0suuSQVFRXZaKONssYaa6R9+/aZPXt2Jk2alFdffTWvvfZaKioqcuqpp+aggw4qdsl1Vo5zrq2rr746Q4cOzaBBg4pdSqObOXNmWrVqVewylki5foG4uJrra/xVX7J8leb8JQvlYVH3yvwqpbJUKAt366235u9///sS/12jOEaOHJmzzz47EyZMyLe//e2cd955WWmllTJr1qz84Q9/yHXXXZeqqqqcfPLJ2XfffYtdLhRNOebQcpxzbcnezS+XJbJ3bTXX11j2plTJ3vwv2bt5KoXsrQFOo3nkkUdyxBFH5Dvf+U769euX5ZdffqHj3n333Zx77rl54oknct111+U73/lOI1daf8pxzovj7LPPzu23397sP7xfccUVixUwR48enT59+uSvf/1rA1ZFfSqn1/jyyy9fohDe3L9kKceAtiRf+hYKhdxwww0NUE3DK8flqr7uS7XWrVtn6aWXzpprrpkf/vCH2WuvvVJRUdGIFRZXKXwOef/997PssssusLzeoowbNy7PPfdcdtttt4YtrIGcdNJJ+etf/5q2bdvmlFNOyT777LPAmFGjRuXUU0/NuHHjstlmm+X8888vqWWPoTbKMYeW45wXRyn8zUvKK5eVq3J6jWXv2pO9mxfZe0Gyd/P/HCJ7N8/srQFeROX2B//nP/95Pv744wwaNCgtW7b8yrGzZ8/ObrvtllVWWSVXXnllI1VY/8pxzoujFP74JV9+yDn00ENz8sknf+W42bNn54orrkj//v0zZ86cZj/v2poxY0Y+/fTTJr0cytfxGpe+cg1oi6s5z7kc75V54IEHfuX+OXPm5LPPPsu7776bWbNmZfPNN8/VV1+dFi1aNFKFxVUKn0O++c1v5qKLLprvfoLTpk3Leeedl8MOOyyrrbbafOPvueeenHrqqc12zmuvvXa23HLLnHfeeVluueUWOW7GjBn5zW9+k1tvvTVt27bN888/34hV0hTJ3otWKjm0HOe8OErhb14il30d2ZvmoNxyaFJ+c5a9FyR7N//PIbL3wjX17F0eP2FN1OLc1+a/zyBqriH81VdfzcEHH/y1YTRJWrRokR/96Ee55557GqGyhlOOcy5Hm2yySa677rpMnz49Z5111kLHvP766zn11FPz+uuvZ5lllsmvfvWrRq6y/my77bY5/fTTs+22287bNnPmzNx///3ZYost0rlz5/nGDx06tFn/wU/K7zUuRw899FCxS2h0Y8aMKXYJjao5h+klNXDgwFqNmzFjRm655ZZcdNFFueWWW742vNN0LOxc5i+++CJDhgzJrrvuukAIb+4uuOCCWt3js6qqKuecc05+8IMf+HtMEtn7q5RKDi3HOZejcstlsnfpv8blSPYufbL3osnezZfsvXBNPXtrgBdRbf74jR8/Puedd15GjhyZpZdeOscff3zDF9ZApk6dmq5du9Z6/PLLL59///vfDVhRwyvHOZej6667Lscdd1xuueWWTJ8+Pf369Zv3xVlNTU3+/Oc/58orr8zMmTOz44475owzzsiyyy5b5KqX3Pjx4zNt2rT5tk2dOjV9+vTJddddt0AILwXl9honyVtvvZVRo0Zljz32mLft448/zhVXXJHnn38+bdq0ybbbbpuDDz64Wd5v7X+VY0BjfjNnzsw///nPVFVVZdVVVy12OY2qqqoqP//5z/Piiy9m8ODBQngJKNVFvmoTwP/bN77xjey1114NVA3Niez91Uohh5bjnMtRueUy2bv0X+NE9qb8yN6ydymRvb/UVLO3BngTNWfOnFx33XX54x//mBkzZmSnnXZKnz59mvWH29mzZy/WB7UWLVpk5syZDVhRwyvHOZejVq1a5corr0yfPn0yePDgzJgxI5dccknefffdnHbaaRk9enS6dOmSc845J9///veLXW6DKdU/+En5vcaXXHJJrrvuutTU1GT33XdPRUVFpkyZkn322Sfvv/9+OnTokBVWWCG///3v8/DDD2fgwIG1utqmOSvHgDZhwoSMHj06VVVV2XTTTWt9n6OmbMqUKbnmmmsyatSo+c7Qvvfee9O3b9989tlnSb784N6vX79suOGGRaq0OHr16pXHH3+82GVAnXzxxRd58MEHM2jQoDz99NOpqanJL37xi2KXRRMme5dGDi3HOZejcstliyJ7l85rLHsvSPaWvcuB7E0paA7ZWwO8CXr22Wdz7rnn5s0330yPHj1y9tln5zvf+U6xy4KvdcUVVyzW+JdffrmBKml8lZWVueiii9K+ffvceOONee+99/Lmm29mxowZ2WuvvXLqqadmqaWWKnaZ1EG5vMbDhg1L//79s/XWW+eggw5KRUVFkuSPf/xjxo8fnw022CB/+ctf0qZNm4wePToHHnhg/vKXv+Twww8vcuV1V44Bbfz48bn00kszatSoPPzww/O2//nPf84f/vCHzJkzJzU1NVlmmWVy3nnn5Yc//GERq62bqVOnZp999slbb72V5ZZbLrNnz06LFi0yevTonHrqqampqck+++yTNdZYI0OGDMnPf/7zDBkyJKusskqxS280lZWVqa6uLnYZS2zIkCGLNf5f//pXwxRCUYwaNSqDBg3KAw88kKlTp6ampiYrr7xy9tlnn2KXRhMme9Ncyd6ln8vKWbm8xrK37J3I3rJ38yR7l7fmlL01wJuQiRMn5qKLLsqQIUPSqlWrHHvssTn88MNLYnmbuZ599tnMmTOnVmOff/75Bq6mcZTTnBc3hCfz32OvFJxxxhnp0KFDrrjiilRUVORPf/pTttpqq2KXRT0q9df41ltvzQYbbJCrr7563raamprcc889KRQK+eUvf5k2bdokSdZff/38+Mc/zl//+tdmH8LLMaB98skn2WeffTJx4sSsv/768+b82GOP5dJLL02LFi1y4oknZs0118ztt9+eE088MbfddlvWWWedYpe+RK677rq8++67+d3vfpcddthh3vYrr7wyNTU1+dnPfpbTTjstSbLnnntm1113zdVXX50LLrigWCU3uhdffDHLL798sctYYqeddtpifa6oqakpuc8h5WbChAm5++67M2jQoLzzzjvzrojr1atXDj/88GyxxRZFrpCmSvaeX3PPoXOV05xl79LPZZT+ayx7y96yt+zdXMne5ae5Zm8N8CbijjvuyCWXXJLJkydn8803z9lnn52VV1652GXVu9tvvz233357rcaWyi/GcprzgAEDil1Ck3DMMcekY8eO6du3b/r375+NN964JM5O5j9K+TV+5ZVXFgjUr776aj755JMstdRS6dWr13z71ltvvdx7772NWWKDKMeA9uc//zlTp07NTTfdNN8Z9X/+859TKBTyi1/8Yt574Xvf+1722GOPXHPNNfnd735XnILraOjQofnxj3883+s7derUecuO7b///vO2t27dOrvuumvuuOOORq+zWP72t7/l7rvvzmGHHVbsUpZYc/55pPZmzpyZ4cOHZ9CgQXnyySczZ86cVFZWZrPNNsvGG2+cq666KgcddFCTDeAUn+y9oOaeQ+cqpznL3l8q5VzGl0r5NZa9ZW/ZW/ZurprzzyO1VwrZWwO8yF5//fWcc845eeGFF9K5c+dceuml2XHHHYtdVoMox1+M5TbnzTbbbLEf8+yzzzZAJY3rmWeeWWDbmmuumb322iu33357fvazn+WUU06Zt5zVXJtuumljlUgdldNrPG3atCyzzDLzbfvHP/6R5Mv5VFZWzrdv9uzZzfrLw7nKMaCNHDkye+yxx3wBfNKkSXnuueeSJD/5yU/mbS8UCvnRj36UG264obHLrDfvvffefK9j8uXP9uzZs7PSSist0PxYfvnl88knnzRmifWuT58+X7l/zpw5mTp1av75z3/m3XffTY8ePZp1CN99992LXUJRDBs2LO+88868/54xY0YKhULuvvvueT/Pc73xxhuNXV69Ovfcc3P//fdn8uTJad26dbbccstst9122XbbbdOxY8eMHz8+f/zjH4tdJk2U7F3aym3Osvd/lGouK1fl9BrL3rK37P0l2bv5kb2/JHs3/eytAV5EF154YQYOHJg5c+Zkm222yfHHH5+llloq77///lc+rnv37o1UYf0qx1+M5Tjn2vjggw8yePDgDBkyJOPGjctrr71W7JLq5MADD/zKEPLKK6/k4IMPXmB7c573W2+9NV8wnTJlSpIvv1hs0WL+Py1jx45t1NoaQjm9xl27ds24cePm2zZy5MgUCoV873vfW2D86NGj061bt8Yqr8GUY0D797//nTXXXHO+bU899VSqq6uz+uqrL/C6durUKZMnT27MEutVRUXFAvfYevLJJ5Mk3/3udxcY/+mnnzb7q0sGDx5cq3ErrbRSfvazn+Xoo49u9nNelIV9vl5++eVL5kvEoUOHLrB9Ufdla85zvuWWW9K2bdsceeSROeyww0r2/Ur9k71LXznOuTZk7y8153nL3vMrpddY9v4P2Vv2bu6f62Xv/5C9/6M5z7lUsrcGeBFdf/318/59xIgRGTFiRK0e1xw/1C2JTz/9NGPHjm2WZ3EuqVKe8xdffJGhQ4dm0KBBeeqpp+YtObewD/XNzS9+8Ytm/QdtSVx99dXz3adqrgsvvHCBbc19ecGkvF7j733ve7nrrruy//77p1u3bhk1alSeffbZtGzZMttvv/18Y99888389a9/zd57712kautPOQa01q1bZ/r06fNte+KJJ1IoFLL55psvMP7f//532rdv31jl1bvVV189o0aNygEHHJDky99Nw4YNS6FQyPe///0Fxj/00ENZbbXVGrvMevXQQw995f7WrVunffv2JXXP2yS56667cscdd+SPf/xjll122UycODHf//73F/g9ftxxx+Woo44qUpX1o9yWwN19990zfPjw/OlPf8oNN9yQTTbZZN5Z6J07dy52eTRhsvdXK+UcuiilPGfZu7TI3qVL9v4P2Xt+snfzI3vL3qWmVLK3BngRHXPMMcUuoVF985vfzEUXXZRddtll3rYZM2akf//+2W233bLiiivON/7vf/97Tj311Gb9pUM5zvl/vfDCCxk0aFAeeOCBfP7550mSZZddNnvssUf22WefrLDCCkWusO6OPfbYYpfQqMopkM5VTq/x0UcfnaFDh+ZHP/pRVl111bzxxhupqanJL37xiyy77LJJvgzfQ4cOzYABA9KyZcsceuihRa667soxoK299tp58skn87Of/SzJf+7tkyTbbbfdfGNramryt7/9LWuvvXaj11lfdtttt5x//vlZb731svnmm+f222/P+++/n5VXXjlbbrnlfGOvvvrqvPDCCznjjDOKVG39KIW/sYvrl7/8ZR588MF0794977///rzfW0my6667ZqWVVkqS3H333bnqqquy5557pkuXLsUqt86WZAnc2bNnN0AljeOCCy7IueeemxEjRuTee+/No48+msceeyznnntuNtpoo/Ts2bPsPqNQO7J36efQcpzz/5K9S4/sXdpkb9k7kb1l7+ZL9v56snfxaYAXUbmF8JqamgW2TZ8+PVdeeWU23njjBQJpKSjHOSfJhx9+mCFDhmTw4MF5++23U1NTkzZt2uS73/1unnjiifz617/OtttuW+wyWULlFEjLUefOnXPnnXfmyiuvzAsvvJBvfetb2WOPPbLXXnvNGzN48OBcd911WWGFFfLb3/42yy+/fBErrh/lGND23XffnHjiienXr18233zz3HXXXfnkk0/yrW99a76roWbMmJHf/OY3efPNN5v1Fy777rtvnnvuuVxwwQUpFAqpqanJMsssk0suuWTePQTvvPPO/PnPf864ceOy8cYbZ7/99ity1Q1r9OjRGTVqVCoqKrLZZptlrbXWKnZJdXLPPffkwQcfzBFHHJHjjjtugfsm7rbbbvnOd76TJNlqq62y995757bbbiuZz+RTp05NTU3NV14hM2rUqJx55pm57777GrGy+tWqVatsv/322X777TNlypT87W9/yz333JPnnnsuzz33XAqFQv70pz/l888/z/bbb5+qqqpil0wTUCo/57VVjjm0HOecyN6lTvYubbK37C17y97NlewtezeX7K0B3oTMnDkzY8aMyYcffpiampp07do1a6+9dlq3bl3s0hrUwoJqqSvVOT/wwAMZNGhQnnjiicyZMyft27fPLrvskh/+8IfZcsst89FHHy1wZmMpuOKKKxb7MYVCIb/4xS8aoJqGd9BBB+Woo46a90GmHJTba7zccsvlvPPOW+T+PfbYI9///vfTs2fPeeGluSvHgLbjjjvm9ddfT//+/TNw4MDU1NRkxRVXzGWXXTZvzLXXXps//vGPmTp1anbYYYf8+Mc/LmLFdVMoFHLJJZfkgAMOyKhRo7LUUktlu+22m+8s5X//+9+pqanJUUcdlSOOOKIk3t+vvvpq/vSnP2Xs2LFZeeWVc+SRR2b99dfPr371qwwaNGjeZ5JCoZCdd945F1xwwQL3k2wuBg8enI022ignnHDC146d+4XbI4880uxD+IMPPpgrrrgi//znP5N8eV+54447LjvvvPO8MdOmTcull16aW265ZYElJ5uTPn36ZN99980GG2yQJFl66aWz1157Za+99sqECRNy33335b777svo0aPz0ksv5bzzzsuOO+6YX//610WunKZG9i4fpTpn2bv2mnMuk71rpzm/xrK37D2X7N3839+y98LJ3s1TqWTv5vkTVmI+/vjjXHrppRk6dGimTp063742bdpk++23zwknnJCuXbsWqUKonRNOOCFt27bN/vvvn2233TabbrrpfGeANYdlMZZEuQW0p59+er4zkstBub3GX6e5Lz+2MOUa0E444YTst99+efHFF7PUUktls802S8uWLeftb926ddZbb73ssssu+clPflLESuvPRhttlI022mih+4455phmH8j+26hRo3LQQQelRYsWWXPNNfPKK6/kgAMOyIEHHpi77roru+66a3bYYYdMmzYtDz/8cO67775885vfzCGHHFLs0pfIq6++miOPPLLW47fYYotceeWVDVhRw7v//vtz4oknpnXr1tliiy3Spk2bPPvsszn55JPn3T/ypZdeygknnJD33nsvK664Ys4999xil73EBg8enO9+97vzQvh/69atWw499NAceuihGTt2bO65557ce++9ueOOO5pcCKd4ZG9Khexde805l8netdOcX+OvI3vL3s2Z7C17zyV7Nz+lkr01wIvshRdeyBFHHJHJkydngw02yLe//e107do1LVq0yIcffphnnnkmQ4YMycMPP5yrrroqPXv2LHbJsEgrrrhi3nvvvQwaNCj/+te/8tJLL2W77bbLN77xjWKX1qAGDBhQ7BJoYOX0Gj/zzDNL9Lj/XrarOSungDbXcsstl+WWW26h+37605/mpz/9aSNXRH258sor06NHjwwYMCAdO3ZMTU1NTj/99Fx//fXZddddc9FFF80bu/POO+ezzz7Lfffd12xD+IwZM9K+ffsFti+99NK5+uqr881vfnO+7e3atWvW9+RKkhtvvDGdOnXKrbfeOu8ea9OnT89RRx2Vyy+/PF27ds0hhxySL774Ij//+c/zy1/+skkuS1bfVltttZxwwgk54YQT8vzzzxe7HJoI2ZtSIntTqsrpNZa9Ze//Jns3b7L3l2Rv2bup0QAvok8++SS/+MUv0q5du/zxj3/MxhtvvNBxr776ao4//vgcd9xxufvuu9OpU6dGrhRqZ/jw4XnxxRdzzz335G9/+1v+/ve/59JLL82qq66aH/7wh1lnnXWKXWKD2Gyzzb52zJQpU1IoFL7y3iA0XbV5jUvFgQceuNhXjBQKhbz66qsNVBHUjz59+iz2YwqFQvr169cA1TSOl156KYcddlg6duyY5Mv5HHrooRk8eHC23nrrBcb/8Ic/zG9+85tGrrL+dOvWLe+///4C21u0aLHQ+b799tvN/j6KY8eOzYEHHjgvgCdfXsV6zDHH5Kc//WlOOOGEdOrUKZdcckk23HDD4hVaRJqYJLI3pUf2XjTZu3mTvb+a7E1zIHvL3v9L9i4PTTF7a4AX0Y033pipU6fOd9bIwnzrW9/K9ddfn1122SU333xzjj322EasEhbPBhtskA022CCnn356/v73v+fee+/NQw89lKuuuiqFQiGFQiEjRozI2muvnRVWWKHY5dabmpqaPProo/nnP/+ZVVZZJVtvvXVatGiRJ598Mn379s1bb72VJPnmN7+ZE088MVtssUWRK66bYcOG5Z133qn1+FJekmyuUvmi5YILLqjVuAcffDAjR45Mkqy//voNWFHjKMeAdtBBBy32YwqFQm644YYGqKbhDR48uNZj//uLqOb8Gn/22Wfp3LnzfNvmLi3YoUOHBcZXVVVl+vTpjVFag1h//fVz//335xe/+MXXLpM4c+bM3H///dlqq60aqbqGMWXKlKy44ooLbF955ZWTfLmU4q233jrvi5hS8Oyzz2bOnDmL9ZjddtutYYqh2ZC9KUWyt+y9MLJ38yF7157s3bzI3l+Svb8kezdfpZC9NcCLaPjw4dl1112/MoDPtcIKK2T33XfP0KFDm3UI/98fmrn3XXv88cczYcKE+cY2xSUTlkQ5zjlJKisrs9VWW2WrrbbKjBkzMmzYsNx33315/PHHc+edd2bQoEHp1atX9thjj+y8887FLrdOPvvss/Tu3TsvvvhiampqkiTrrbdezjzzzPTu3Ttt2rTJdtttl2nTpuXFF1/MEUcckeuvv75Zn9k8bNiwDB06tNbjSyGE//cXLSuvvHK22WabkvyiZffdd//K/ePHj895552XkSNHpn379jnxxBOzzz77NFJ1DaccA9p7771Xq3HV1dWZMGFCampqmvX9JMeMGfO1Y/77/b300kvn+OOPb/jCGlBNTU1atJj/4/7c17A5v5aLsu++++anP/1pfv3rX+eMM85YYO5zVVdX56yzzsqHH36Yfffdt5GrrF/V1dXz3fN1rrn3E+zdu3dJBfAkuf3223P77bfXauzc31tNLYTT+GTv8sih5TjnRPaWvecnezcfsvfXk72bJ9n7S7K37N3clUL21gAvovfee2+x7u2x9tprL9aHhKbof39o5gaW/v37L/DHoLn/sZ+rnObcu3fvfPvb385mm22WddZZZ95cqqqqsssuu2SXXXbJxIkTc//99+fee+/Nk08+mX/84x/NPoT/4Q9/yJgxY3LWWWelV69eGT9+fM4///z87Gc/S48ePTJw4MB5Z/t9+umn2XPPPXPdddc16xB+xBFH5Lvf/W6xy2g05fhFy/+aPXt2rr322lx99dWZPn16dt1115x22mnzzmht7soxoD388MNfO+bFF1/MOeeck3//+99ZccUVc+aZZzZCZY1vzpw5ue666/LHP/4xM2bMyE477ZQ+ffoscAY3Tdsmm2ySQw89NNdee23+8Y9/5JBDDkmvXr2y3HLLpaamJh999FGeeuqp3HTTTRkzZkxOOOGErL322sUuu0F179692CXUu7333rtsl5RjycnepZ1D5yqnOcvesnepkr1l70T2lr1p6mTvBcneTZMGeBG1bNkyX3zxRa3Hz5gxI23btm3AihpWbZf2KSXlNud//OMfefTRR+ctRbXJJpukV69e+fa3vz3vj1zHjh1zwAEH5IADDsi4cePy17/+tchV193DDz+cfffdN/vtt1+SZNVVV81ZZ52VQw45JAcccMB8S90su+yy2XvvvTNw4MAiVVs/VltttZIKmF+nHL9o+W9PP/10zj333IwdOzarrrpqzj777PTq1avYZTWacgxoU6ZMyW9/+9vcfvvtqaioyBFHHJGjjz46rVu3LnZp9e7ZZ5/NueeemzfffDM9evTI2Wefne985zvFLqve/O+ymTNmzEihUMjdd9+d5557br6xb7zxRmOXV+9OPvnkrLDCCrn00ktz1llnLbTh0bZt25xzzjklcQVNOdpkk02yyy67FLsMmhnZu/SV25xlb9m7VMnesrfsLXs3V7K37F1qSiF7a4AX0ZprrplHHnmk1vcBGTlyZFZfffUGrqrhfN3SPqWo3Ob8/PPP59VXX83zzz+fUaNG5YUXXsiIESNSKBTSvn37bLrppunVq1d69eqVNddcMyuttFKOPPLIYpddZx999FFWW221+bbN/Vld2Nlfyy+/fCZPntwotVE/yvGLluTLLxQuvPDC3HPPPWndunV++ctf5rDDDpu3vE85KPWAtjB33313LrroonzyySfZbLPNcvbZZy/wO64UTJw4MRdddFGGDBmSVq1a5dhjj83hhx+eVq1aFbu0ejV06NCFLps5ZMiQhY5vzlfDzbX//vtn9913z4gRI/LMM8/k3//+d2pqatK1a9f07Nkz2223XbO/Z+R/W9i9Qb/qy5ZSWBoVFpfsXfrKbc6y93/I3qVF9pa9ZW/Zu7mSvWVv2bvp0QAvoh//+Mc566yzcv/992fHHXf8yrFDhgzJE088kUsvvbSRqiu+9957L2eddVauu+66YpfSaJr7nFu0aJH1118/66+/fg4++OAkyQcffDBfKL/wwgszZ86cdOjQIZtttll69eqV/fffv7iF19GsWbNSVVU137a5IWVhYaVQKMx3bzqavnL8ouW2227LpZdemsmTJ+d73/tezjzzzFrdN7NUlEtA+29vvfVWzj333Dz99NPp2LFjfvOb3zS5e/fUlzvuuCOXXHJJJk+enM033zxnn312Vl555WKXVe8GDBhQ7BKKpk2bNtlxxx2/9jN2KVjUFy3Jwr9sEcIpR/+vvTsPi6pc/AD+HTYBUXEjwS23GLcUkUW6agniQii45Jakuf/U1NTUonBB0dyyNE294lbXJQFBEUFxSZFFAclcrqa5K24gkjgwnt8fPsxtBBWRmcM55/t5np4nz7yT3zcU5nvec97D7v1yUu+hpSH1ObN7/w+7t7ywe7N7s3vLC7u3/LF7P8PuXT5xAVxEvXv3RkREBL744gucO3cOgwYNgp2dnd6YzMxMhIaGYuPGjejYsSO6desmUtqycfLkSaxcuRJpaWkAgGbNmmHs2LFo27atbowgCFi/fj2+//575OXliRW1zChxzv9kb28PHx8f+Pj4AHi2tU9kZCTCwsKwd+9exMbGSr6EK824cePg6OgodgyjUtKJlrNnzyIoKAgZGRl46623MGfOHHh7e4sdy6iUUtAKaTQarFixAuvWrUNBQQH69u2LKVOmoHLlymJHK3Pnzp3DzJkzkZ6ejho1amDJkiWyLmly2QqSXkxpJ1r8/f1l/f2YDIfdWxk9VIlz/id2b/lh936G3Vu+2L3ZveWC3Vv+2L2liQvgIjIxMcGqVaswZcoU/PTTT1i9ejXs7e1Rs2ZNmJqa4t69e7hy5QoEQUC3bt0wd+5csSO/kWPHjmHEiBHQarVo0KABrKyskJKSgiFDhiA0NBQuLi64du0aJk+ejIyMDNjY2GDWrFlix34jSpzz8/Ly8pCSkoLk5GScOHECp06dQn5+PiwsLHRbsslBVlYWbty4oft14RXI9+/f1zsOPLu6VcrGjRun92uNRoOzZ88iMzNTt82NWq2W5fOKlKB37954+vQpAKB69erYvHkzNm/e/NL3qFQqbNiwwRjxDEppBQ0ADh06hDlz5uD69etwdHTErFmz0KpVK7FjGcSCBQuwadMmaLVafPDBB5g4cSJsbGyKfI9+XnF3msjVli1bcOTIESxfvlzsKKVS0q2N/0nq379Kc6Ll+PHjBkhiHEp7xi+VHXZv+fdQJc75eeze7N4kLeze7N7s3vrYvaWD3btk2L3FpxIEQRA7BAG//fYbdu7ciYyMDNy5c0f3QdbZ2Rk9e/aEu7u72BHf2NChQ5GRkYG1a9fCyckJAHD79m2MHj0a5ubmCAkJQUBAAO7duwdvb298/fXXqFmzpsip34wS51xQUID09HQkJiYiMTERJ0+eRH5+PszNzfHuu+/qireTk5NstjNSq9XFPrdFEISXPs/lzJkzhoxlcHfv3sWSJUsQGxuL3NxcvdesrKzQpUsXTJo0qcjdNVKkVqvx1VdfwdPTU3csOzsb/v7+WLx4se7vd6G4uDjMnz9fkl/jTp06lep98fHxZZzEuF5U0F5FygXts88+Q1xcHADggw8+QEBAAExNTV/5PhcXF0NHMwi1Wq3799d51pYU/x6XVlBQELZt2ybZOZf0+9fTp09x+/Zt3c9pqc73ddy8eRPh4eGIiIjA1atXFTFnohdh95ZnD1XinNm9/4fdm91bil9jdm9271dh95Yvdm/5YvcuX7gATkbj7u6OPn36YMqUKXrHjxw5ghEjRqBRo0a4c+cOZs6cKfnt5gopbc4jRozA8ePHkZeXBxMTEzRv3hzu7u5wc3ODs7NzkW2s5GLGjBmlep+Ur6RKT0/HqFGjkJ2djVatWsHd3R12dnYwMzNDZmYmUlJSkJKSgsqVK2PlypVo06aN2JHfiFJPtCiJEgvaP+cMvHreUi8spb2y+vk7b+RM6iW8JE6ePImZM2fizJkzqFOnDr7++mt07NhR7FgG8eTJE8TGxiIsLAxJSUm6v8Pt27fHTz/9JHY8IjIgpfVQQHlzZvd+Peze0sHuLX/s3uzeL8LuLS/s3uze5QG3QJeQpKQknDt3rlRbTJQHOTk5aNSoUZHjTZo0gSAIyMrKwvbt22XxbIFCSpvzb7/9BnNzc/j5+WHUqFF4++23xY5kFFIu06Vx7949jB07FhUrVsSPP/4IZ2fnYsedPn0aEydOxGeffYadO3eievXqRk5advz8/F6rmCnJ8ePHER4eLvmtQpVUtAop7XtXab7Gcns2qJLl5ORg8eLF2LZtG0xMTDBq1Cj83//9nyy3DE1PT0dYWBj27NmDR48eAQCqVauG3r17o1+/fqhdu7bICYnKP3Zv6VHanNm9lYHdm/6J3Vu6lPa9i91b2di92b3LEy6AS0h0dDS2bdsm2RKu1WphZlb0j1zhVlyjR4+WTRktpLQ59+3bF0lJSbptPho2bIh27drB3d0dLi4uqFKlitgRqQxs3rwZubm52LJlC+rWrfvCcc2aNUNoaCh8fX3xyy+/YPz48UZMWbbmz58vdoRy5datWwgPD0d4eDiuXr0KAIos4VIvaP7+/q/9nuvXrxsgSflTeHJp7969kn5mEz2zc+dOfPvtt7h37x5cXV0RFBRU7CKJlGVmZiIiIgLh4eH466+/IAgCrKys4OHhgYSEBMyePVtvK1Eiejl2b+lR2pzZvZWB3ZvYvZ9h95Yvdm95Yfdm9y5vuABO5YbcvhmWhNzmPGfOHADAjRs3kJCQgMTERMTExGDz5s0wMTGBWq2Gm5ubrpRbW1uLnJhKY9++fejRo8dLC3ih2rVrw9/fH7GxsZIu4QEBARgzZgzatWunO1ZQUIC0tDSo1WpUqlRJb3xkZCSmT5+O06dPGzuqwWg0Gt12PomJiRAEAYIgwM3NDQMGDBA7nlEpraA9efIEMTExCA8PR0pKCv744w+xIxlE4cmliIgIXLlyBYIgwNbWVuxY9AYuXryIWbNmITk5GVWrVsX8+fPh5+cndqwytWfPHoSFhSEhIQFarRaVK1eGr68vvL290b59e9y5cwdeXl5ixySickZuPbQk5DZndm9lYPd+ht2b3ZvdW17YveWH3Zvdu7ziAjgRlTkHBwf06dMHffr0AQCcP38eiYmJOHbsGHbs2IHQ0FCYmZmhRYsWaNeuHSZMmCByYnod165dw8cff1zi8Wq1GuHh4QZMZHjJycno27ev3rGcnBwEBARg3bp1euW8kCAIxopnUM9v51M4Lx8fH4wdOxYNGzYUOaFxKLGgpaamIiwsDDExMcjNzYUgCGjSpInYscpU4cml8PBwJCYm4unTpxAEAa1bt0b//v3RvXt3sSO+kYiIiNcaf+nSJcMEMTKNRoMVK1Zg3bp1KCgoQN++fTFlyhRUrlxZ7GhlbtKkSbC2tsbAgQPh6ekJFxcXmJqa6l7nFqJERPLG7i1v7N7PsHuze7N7Sx+7tz52b+lh95YmLoCTUR0/fhxarVbvWG5uLgDg6NGjuH37dpH3SP1qISXO+XlNmjRBkyZNMHjwYGg0GsTExOCXX35Beno6Tp48yRIuMebm5njy5EmJx+fl5cn2jgO5FO3nFbedj62tLfz9/dG6dWsEBQWhe/fusi/gci9oxbl9+7bua3/58mUAgJmZGbp3744BAwagbdu2IicsGydPnsSOHTv0Ti5VrlwZOTk5mDNnTpGTblI1ffr01yphgiBIvrQdOnQIc+bMwfXr1+Ho6IhZs2ahVatWYscymDp16uDatWsICwvDpUuX8Pvvv8PLywsNGjQQOxoRiUyJPVSJc34eu7e8sHv/D7s3u7fcsHuze7N7Swu7tzRxAZyMatu2bdi2bZvescIPsWvXrtX7xl/4g0DqhVSJc/6nK1eu4OTJkzh58iQyMjJw9uxZ5Ofno2LFiujQoQNcXFzEjkiv6Z133sGhQ4dK/EzEgwcPonHjxgZORWVl5MiROHr0KLRaLezt7TFw4EB4eXnBzc0NJiYmuH79umxPPhRSSkErpNFosG/fPuzYsQOJiYm6E8eNGjXCxYsXsXDhQnTt2lXklG8uMzMTO3fuRHh4OC5dugRBEODg4AB/f394e3vjrbfeQufOnVGtWjWxo5aZkJAQsSMY1WeffYa4uDgAwAcffICAgABoNBqkpKS89H1S/iyyb98+nDx5EpGRkYiJicGRI0ewZMkSNGzYEN7e3mjevLnYEYlIJErsoUqc8z+xe8sPu7e8sXuze7N7s3tLFbs3u7dUcAFcRDdu3Hit8YVXLkuV0n4QAMqbc3Z2NjIyMnSFOyMjA9nZ2RAEAVWqVEGbNm0wadIkuLi4oFmzZjAxMRE7MpVCz5498c033yA6OvqVV+FGREQgISEBS5YsMVI6elOHDx+GtbU1AgICMGjQINSsWVPsSEahxIKWkZGBsLAwREdH4+HDhzAxMYGTkxO8vb3h7e0NrVYLLy8vmJubix21THTq1AlPnz6FWq3G6NGj4enpiRYtWuhev379uojpDMPf31/sCEYVGxur+/f4+HgcOHDgpeMLFz/OnDlj6GgG1apVK7Rq1Qpffvkljhw5gqioKOzfvx8rV66ESqWCSqXCgQMHoFarUbt2bbHjEomC3Vv+lDZndm9lYPeWN3Zvdm92b/lg92b3Zvcun7gALqJOnTopamuM0vwgkPoPRKXN2c3NDSqVCoIgoGrVqnB1dYWLiwtcXFzg6Ogo6T+/9D+9e/dGREQEvvjiC5w7dw6DBg2CnZ2d3pjMzEyEhoZi48aN6NixI7p16yZSWnpd48aNw+7du7Fq1Sr89NNPaNCgAby8vODl5YV3331X7HgGo8SC9tFHH8HKygrt27dHhw4d0KlTJ72TDHKbc0FBAaysrFCjRg1YWVkV2SJVCW7fvo0TJ04gMzMTAGBnZwcnJyfY29uLnKxsKG3x43mmpqbo2LEjOnbsiLy8PMTFxWHXrl04evQofv31V4SFhcHNzQ29e/fGhx9+KHZcIqNi9341qf/cV9qc2b2Vgd1b3ti92b0LyW3O7N7s3nLH7i0dXAAXkZ+fH0tJMZ48eYKYmBiEh4cjJSUFf/zxh9iRDE4uc+7atStcXV3h6urKbbdkzMTEBKtWrcKUKVPw008/YfXq1bC3t0fNmjVhamqKe/fu4cqVKxAEAd26dcPcuXPFjkyvYdy4cRg3bhxOnTqFqKgoREdHY/Xq1VizZg3s7e3h7Owsy59dSixoVlZWePz4Mf78809UrVoV1tbW6NChA2xsbMSOZhAHDhxAVFQUoqKisGTJEqhUKtSoUQOdO3dG586dZX117vnz5xEcHIyUlBQIgqC3laKJiQmcnZ0RGBgIR0dHEVO+OaVddf8ylpaW8PX1ha+vLx48eIDo6GhERUXh2LFjSExMZAknxWH3Lp5ceujrkMuc2b2Vgd1b3ti92b3ZveWH3Vt52L3LN5Ug94eJkGSkpqYiLCwMMTExyM3NhSAIaNKkCaKiosSOZjBKnDPJy2+//YadO3ciIyMDd+7cgSAIsLOzg7OzM3r27Al3d3exI5YJtVqNr776Cp6enrpj2dnZ8Pf3x+LFi+Hk5KQ3Pi4uDvPnz5f81j7Aszugjh07hqioKMTFxeHRo0cAgNq1a6N3797w8/ODg4ODyCnf3M2bN3UF7fz588UWNG9vb6xYsULvz4GU5eXlIT4+HpGRkThy5Ai0Wi3Mzc3Rrl07dO7cGWq1Gn369JHVnAudPXtWd5Lp5s2bUKlUupMS06dPxyeffCJ2xDKzf/9+TJw4ESqVCl5eXnB3d4ednR3MzMyQmZmJlJQUxMTEoKCgAEuXLoWXl5fYkcmArl69it27d2P06NFiRyEiESmxhypxziQv7N7s3uze0sXuze7N7q087N7lAxfAJeLmzZsIDw9HRESE3jMWpO727duIiIhAeHg4Ll++DAAwMzODt7c3BgwYgLZt24qcsOwpcc5EUqdWq4u98vpV22PKoYT/k0ajQXx8PHbt2oVDhw4hPz8fJiYmaNeuHf7973+LHa/MKKmgFcrKytJdpZqenq732siRIzF69GhYWVmJE87AkpOTERUVhdjYWGRnZ0OlUqFOnTro1asX/P39UatWLbEjltq1a9fg6+uLBg0aYNmyZahbt26x427duoXPPvsMFy5cwM6dO184rrybMWPGa79HpVJh3rx5BkhDRFLF7i0fSpwzkdSxez/D7s3uLUfs3uze7N5kbFwAL8eePHmCvXv3Ijw8HElJSXj69CnMzMxw6tQpsaO9EY1Gg3379mHHjh1ITEzUbXXTqFEjXLx4EUuXLkXXrl1FTlm2lDhnUg6NRoOzZ88iMzNTdxW6Wq1GhQoVxI5WZkrzwQ6Q9zNxHj58iJiYGERFReHEiRM4ffq02JEMQs4F7UWuX7+OqKgo7Nq1CxcuXIBKpYK1tTW6deuG3r17F7nrQi7y8/Nx+PBhREZG4uDBg3jy5InkP3fNnTsXO3fuRExMjN4z5oqTlZWF7t27o0ePHpg+fbqREpYttSI7j3sAAEcvSURBVFr92u9RqVSSPmFamjtEVCoV9u3bZ4A0RNLF7i0fSpwzKQe794uxe0sfuze7t5Q/d7F7vxq7N4mBC+DlUFpaGsLDwxEdHa3bmqtWrVro27cvPvroI9SsWVPsiKWSkZGBsLAwREdH4+HDhzAxMYGTkxO8vb3h7e0NrVYLLy8vWW33osQ5k3LcvXsXS5YsQWxsLHJzc/Ves7KyQpcuXTBp0iTY2dmJlJCM5fjx47K/g0aOBa0kzp49i8jISERHR+PWrVuSLywl9ejRI8TGxmLXrl1Yt26d2HFKrVu3bujQoUOJTyR+++23OHDgAPbs2WPgZIZx/fr1Ur1Pys+g69SpU5FjgiDg5s2bqFGjBiwsLIp9X3x8vKGjEUkCu7d8eqgS50zKwe5Nhdi95Yvdm91bSti9n2H3Lv/MxA5Az9y+fRs7d+5EWFgYLl++DEEQYGJiAgCYOHEiRo4cqfu1VH300UewsrJC+/bt0aFDB3Tq1EnviqjSfuMsz5Q4Z1KG9PR0jBo1CtnZ2WjVqlWxz7WJiIhAfHw8Vq5ciTZt2ogdmV7TqVOnkJ6eDkEQ0LRp02JL9qNHj7Bo0SJs374df/zxhwgpjcfc3Byenp7w9PTUK2hyp1aroVar8cUXXyApKUkRcwYAGxsbeHl5ITU1Vewob+TmzZto3Lhxicc3bNgQ//nPfwyYyLCkXKZLq7gyff/+fXh4eGDhwoVo166dCKmIyjd2b3n2UCXOmZSB3Vv+2L31sXuze0sRu7f8sXtLExfARVS4NVdYWBiOHTsGrVaLChUqoFOnTujcuTMcHR3h7++PJk2aSL6AA9A9w+XPP/9E1apVYW1tjQ4dOsDGxkbsaAajxDmT/N27dw9jx45FxYoV8eOPP8LZ2bnYcadPn8bEiRPx2WefYefOnahevbqRk1Jp/P333/j8889x6NAhFG4So1Kp4OHhgZUrV+quaDx48CCCgoJw+/Zt1KtXT8zIRieXgva6HBwcJH/y+Nq1awgNDUVaWhoAoFmzZhgxYgTq16+vNy42NhZz5szB3bt3ERwcLEbUMmFpaYmHDx+WePzDhw9RuXJlAyYSl0ajwYULF2BpaYmGDRuKHcdgXvZ8TCKlYveWfw9V4pxJ/ti95Y3d+9XYvaWL3fvl2L3lgd27/OMCuIjat2+Phw8fokqVKvDx8YGnpyc6dOgAKysrAPK7QvnYsWOIj49HZGQkduzYgW3btsHc3Bzt2rVD586dS/XsiPJOiXMm+du8eTNyc3OxZcsW1K1b94XjmjVrhtDQUPj6+uKXX37B+PHjjZiSSuuHH37AwYMH0b59e/j7+8Pa2hqHDh3C1q1b8e233yIwMBALFizA+vXrYWpqimHDhuGzzz4TO3aZUFpBA4CTJ09i5cqVenMeO3as3l0HgiBg/fr1+P7775GXlydW1Dd25swZDB48GI8ePYKlpSUsLS1x+vRpREdHY8uWLXjnnXeQk5ODwMBAxMbGwtTUFCNHjhQ79htp0aIFYmNjMWzYsBKN37t3L5o2bWrgVIaVk5ODNWvWIC0tDZs2bdIdj4qKQnBwsO6kRIMGDTBv3jy0bt1apKREZEzs3vLvoUqcM8kfu7e8sXuze7N7s3tLGbs3SQEXwEWUnZ0Na2trdOnSBW5ubmjTpo2ugMuRpaUlunfvju7duyMrKwvR0dGIiorC4cOHcfjwYQDPrprJyMiAh4eHLP5fKHHOJH/79u1Djx49XlrAC9WuXRv+/v6IjY1lCZeI+Ph4uLq6Ys2aNbpj77//PqpXr45NmzbB1tYWoaGhUKvVCAkJkfwH9kJKLGjHjh3DiBEjoNVq0aBBA1hZWSElJQVDhgxBaGgoXFxccO3aNUyePBkZGRmwsbHBrFmzxI5daoUnERYvXgwfHx8Az54X+vnnnyM4OBiLFi1CQEAA/vrrL7Rs2RLBwcFwdHQUOfWb6dOnDyZOnIjQ0FAMHTr0pWNXrVqFjIwMvb/7UpObm4t+/frh4sWLqFWrFgoKCmBmZoaMjAxMmzYNgiCgX79+aNKkCSIiIjB06FBEREQUOdFGRPLD7i3/HqrEOZP8sXvLG7s3uze7N7u3VLF7k2QIJJqUlBThm2++EVxdXQW1Wi00bdpU+Oijj4S1a9cKly9fFq5duyY4OjoK+/btEzuqQV27dk1YuXKl4OPjIzg6OgpqtVpo06aN8NVXXwmpqalixzMIJc6Z5KN169bCli1bSjx+27ZtgpOTkwETUVlq3bq1sH79+iLHL1y4IDg6OgpNmzYV5syZI2g0GhHSGc7o0aOF5s2bC7t27dIdO3nypODp6SkMHjxYuH37ttClSxfB0dFR6NOnj3D27FkR05aNIUOGCG3atNH7uXPr1i3Bz89P6Nu3r3DhwgXBw8NDcHR0FMaPHy9kZmaKmPbNeXh4CHPmzClyfO/evUKzZs2EgQMHCi1atBDWrFkjaLVaERIaxvjx4wW1Wi1MnjxZSEtL0/u7q9VqhbS0NN2Yr7/+WsSkb+77778XmjdvLuzZs0fv+MiRIwW1Wi2EhITojuXl5Qne3t7C9OnTjR3T4O7fvy84OjoKCQkJYkchKjfYvZ9RYg9V4pxJPti95Y3dm92b3ZvdW6rYvZ9h9y7/eAe4iNq2bYu2bdvi66+/xqFDhxAVFYWDBw/i5MmTWLRoEerWrQuVSoW///5b7KgGVbt2bYwePRqjR4/G2bNnERkZiejoaPz666/YsWMHzpw5I3bEMqfEOZN8mJub48mTJyUen5eXB2trawMmorL0+PFjVKtWrcjxqlWrAgA6d+6MwMBAY8cyuIyMDPTv3193dTIAvPvuu/jiiy8wadIkTJo0CdevX8eUKVPw6aefyuL5oGfOnMGAAQPg5OSkO/bWW29h8uTJGDFiBCZMmICCggIsXboU3bp1EzFp2cjOzi52+9OWLVtCq9Xi3Llz2LRpk+y25Vq0aBFCQkKwZcsW7N69G6amprC1tYWpqSmysrKg0WhgYmKCYcOGYdKkSWLHfSOxsbHo2bMnunbtqjuWm5uLo0ePAgAGDhyoO16hQgX06NED27dvN3pOIjI+du9nlNhDlThnkg92b3lj92b3ZvdubfxwBsTuze5N5Q8XwMsBMzMzeHp6wtPTE7m5uYiNjUVUVBSSkpIgCAKmTZuGHTt2oFevXujSpQsqVKggdmSDUavVUKvV+OKLL5CUlIRdu3aJHcnglDhnkrZ33nkHhw4dQkBAQInGHzx4EI0bNzZwKjI0lUoFAPDz8xM3iIEosaDl5OSgUaNGRY43adIEgiAgKysL27dvR7169URIV/YKCgqK/QxlaWkJABg5cqSsvr6FLCwsEBQUhICAAERERCAjIwN37tyBIAho2LAhnJ2d4evrK4utyK5du6ZXtAEgJSUFBQUFqFu3bpE/y/b29rh3754xI5a55cuXFzmWl5cHlUqFnTt34sSJE0VeV6lUGDt2rDHiEZU77N7/o8QeqsQ5k7SxeysTuze7t9Sxe7N7s3s/w+4tPi6AlzMVK1aEv78//P39ce/ePezatQtRUVFITExEYmIi5syZg5SUFLFjGoWbmxvc3NzEjmFUSpwzSU/Pnj3xzTffIDo6Gt27d3/p2IiICCQkJGDJkiVGSkeGVlhY5EaJBU2r1cLMrOhHQQsLCwDA6NGjZVPAS6JFixZiRzCoBg0aSP4q81cxMTHB06dP9Y4dO3YMAODh4VFk/P3792FjY2OUbIZSXAkvFBERUexxlnCiZ9i9/0eJPVSJcybpYfdWNnZv+WD31sfuLX3s3vrYvcsvLoCXY9WrV8cnn3yCTz75BJcvX0ZkZKSkr1Au6RWr/6RSqbBhwwYDpDEOJc6Z5K93796IiIjAF198gXPnzmHQoEGws7PTG5OZmYnQ0FBs3LgRHTt2lMUWTkpSeMX5674mZ3IvaMUp7gp1OVPCn+3bt2/jxIkTyMzMBADY2dnByckJ9vb2IicrG40bN0ZaWhoGDRoEABAEAXFxcVCpVOjUqVOR8fv375f8n/ONGzeKHYFIFti9pd9DlThnkj92b/lj9y6K3Vv+lPBnm91bH7s3iYUL4BJRv359jB8/HuPHjxc7SqklJycXe1ylUkEQhBe+JmVKnDPJn4mJCVatWoUpU6bgp59+wurVq2Fvb4+aNWvC1NQU9+7dw5UrVyAIArp164a5c+eKHZle07x587B06VK9Y4IgQKVSYcqUKUWu1lapVNi3b58xIxodvzfLw8WLF4vczZeTkwMAOHfuXLFX5bu4uBglmyGdP38ewcHBSElJgSAIep9BTExM4OzsjMDAQDg6OoqY8s35+flh7ty5aNmyJd577z1s27YNN27cQL169dC+fXu9satWrUJ6errkn6vo6uoqdgQi2WH3liYlzpnkj91b/ti9i+L3Znlg92b3LsTuTWLiAriIAgICMGbMGLRr1053rKCgAGlpaVCr1ahUqZLe+MjISEyfPh2nT582dtQycfbs2SLH7t+/Dw8PD4SGhur9f5ALJc6ZlKFSpUr46aef8Ntvv2Hnzp3IyMjAf//7XwiCADs7O/j5+aFnz55wd3cXOyq9JgcHBwAo9kRh4ZWqz7/2opOKUqPEgnb8+HFotVq9Y7m5uQCAo0eP4vbt20XeI+Vn0a1atQqrVq0q9rUFCxYUe/zMmTOGjGRw+/fvx8SJE6FSqdC1a1e4u7vDzs4OZmZmyMzMREpKCmJiYtCnTx8sXboUXl5eYkcutf79++PEiRMICQnRLXhUqVIFixYtgomJCQDg119/xerVq3H16lU4OztjwIABIqc2LI1GgwsXLsDS0hINGzYUOw6RaNi95d9DlThnUgZ2b/li92b3ZvfWx+4tHezeRbF7l08qQS4/OSVIrVZj4cKF8PX11R178OABPDw8sG7duiIFLTIyEtOmTZP8D4N/evDgAdq1a6eoQqrEORMRlXdqtfqFV5oXXoFfHCn/TH7RnP/50fCfrxf+f5DqnH/44YdS3U0wbtw4A6QxjmvXrsHX1xcNGjTAsmXLULdu3WLH3bp1C5999hkuXLiAnTt3vnCcVKSlpSEtLQ02Njbw8vJCtWrVdK8tX74cO3fuhK+vL0aNGlXs8welJicnB2vWrEFaWho2bdqkOx4VFYXg4GA8fPgQwLNn0c2bN092z1QkKgl2b2X2UCXOmYiovGP3/h92b33s3tLD7v0Mu3f5xTvAyyFek0BEUpGXlwdLS8sixy9cuIDKlSsXeT4ZlX8RERFo27Yt6tSpI3YUoxo7dqzitloLCQkRO4JRSXkr29LasGEDzM3NsXbtWr0i+rxatWph9erV6N69O37++WdMnz7diCnLnpOTE5ycnIp9bdy4cS88sZKfn4/09PRi7wYtr3Jzc9GvXz9cvHgRtWrVQkFBAczMzJCRkYFp06ZBEAT069cPTZo0QUREBIYOHYqIiAjUr19f7OhE5QK7NxFJBbu3/LB7Kwe7t/yxexfF7s3uXR5wAZyIiF6bRqPBggULEBUVhcOHDxcp4kuWLMHhw4fRu3dvTJs2DdbW1iIlpdc1Y8YMfPvtt4or4UosaP7+/mJHMKritr+VuyNHjsDf3/+lBbyQra0t/Pz8cODAAcmX8NLKzs5GQEBAsXeDllfr1q3DlStX8N1336Fr16664ytWrIAgCPjkk090X88+ffqgR48eWLVqleJOwhEREUkVu7d8sXsrB7u3/LF7vx52bzIWE7EDEBGRtGg0GgwbNgw///wzHBwc8ODBgyJjPvjgAzg6OmLr1q0YPnw4CgoKREhKpaHUO6ECAgJw7NgxsWMYlaenJ/bv3y92DKNJTk7G3bt3xY5hVDdv3kTjxo1LPL5hw4a4deuWAROVf1L7HhgbG4uePXvqFfDc3FwcPXoUADBw4EDd8QoVKqBHjx6K+15HREQkVeze8ia1z51lhd1b/ti9X43dW3rfA9m9pYkL4ERE9FrWr1+PlJQUBAYGIiIiAvb29kXG9O3bFzt27MC4ceOQmpqKzZs3i5CUqOSUWNCuX7+Ov//+W+wYZECWlpa6Z1CVxMOHD1G5cmUDJqKydu3aNbRo0ULvWEpKCgoKClCnTh3Uq1dP7zV7e3vcu3fPmBGJiIiolNi9SY7YvUmO2L3lj91bmrgFOhlNREREkWO5ubkAgKNHj+L27dvFvs/Pz8+AqQxLiXMm+YuKioKnpyc+/vjjV44dN24ckpOTsXPnTgwZMsTw4ahMZGVl4caNG6/1HgcHBwOlIaLSatGiBWJjYzFs2LASjd+7dy+aNm1q4FRUlkxMTPD06VO9Y4VXmXt4eBQZf//+fdjY2BglGxGJR4k9VIlzJvlj95Y/dm8ieWD3lj92b2niArjInv+gk52dDeDZX5DnPwAVt9WRlEyfPh0qlUrvWOFWF2vXroVKpdL9uvDfVSqVpAupEudM8nf58mX079+/xOPff/99LFu2zICJqKzNmzcP8+bNK/F4lUqF06dPGzARUdmIi4vD5cuXSzxepVJh7NixBkxkWH369MHEiRMRGhqKoUOHvnTsqlWrkJGRgTVr1hgpHZWFxo0bIy0tDYMGDQLw7HNmXFwcVCoVOnXqVGT8/v370ahRI2PHJCoX2L3l3UOVOGeSP3Zv+WP3Jrli934xdm9pYveWJi6Ai+xFH3SmTJkiQhrDCgkJETuC0SlxziR/1tbW0Gq1JR5foUIFWFpaGjARlTVnZ2fUrVtX7BhGp7SCBgDbtm1DQkJCicerVKrXOkFT3sTFxSE2NrbE46X+Ne7atSu8vb3x7bff4o8//sDHH3+M5s2bw9zcHADw9OlTZGRkYN26dYiLi0Pfvn3xr3/9S+TU9Dr8/Pwwd+5ctGzZEu+99x62bduGGzduoF69emjfvr3e2FWrViE9PR2BgYEipSUSF7u3vClxziR/7N7yx+5dMlLvZQC796tI/WvM7i1/7N7SxAVwEfn5+RW5QlnO/P39XzkmOzsblpaWqFChghESGZ4S50zy17BhQ6SmpiIgIKBE40+cOIHatWsbOBWVpX79+sHX11fsGEantIIGPHteUUpKSonHS72Ejxo1qtitqeRs0aJFCAkJwZYtW7B7926YmprC1tYWpqamyMrKgkajgYmJCYYNG4ZJkyaJHZdeU//+/XHixAmEhITo7misUqUKFi1aBBMTEwDAr7/+itWrV+Pq1atwdnbGgAEDRE5NZHzs3kXJrYcqcc4kf+ze8sfuXTLs3tLD7s3uLTfs3tLEBXARzZ8/X+wIRpefn4+wsDCkp6frXaGdnJyMmTNn4tKlS1CpVPDw8EBQUJAsroJU4pxJ3vz9/REUFITExES4u7u/dGxSUhJiY2Mxfvx4I6UjKj0lFrQvv/wSnp6eYscwmkaNGsHV1VXsGEZlYWGBoKAgBAQEICIiAhkZGbhz5w4EQUDDhg3h7OwMX19f1K9fX+yoVAoqlQqLFi3CoEGDkJaWBhsbG3h5eaFatWq6Mbdu3YIgCBgzZgxGjRqlK+dESsLurYweqsQ5k7yxe5NcsXvLH7s3u7fcsHtLExfARTR8+HD4+fnBy8tLEVsU5efn49NPP0VKSgrMzc0xZ84cmJmZ4dKlSxg+fDjy8/PRvn17NG7cGHv37kW/fv0QGRmJGjVqiB291JQ4Z5I/Pz8/7NixA6NHj8aoUaPQt2/fIn9mMzMzsX37dqxduxZ16tTBwIEDRUpLVHJKLGhVq1blXSIK0aBBA15lLmNOTk5wcnIq9rVx48Zh3Lhxxb6Wn5+P9PR0qNVqVKpUyZARiUTF7i3/HqrEOZP8sXuTXLF7k5yxe8sbu7e08BIEESUnJ2Pq1Knw8PDA9OnTkZCQAEEQxI5lMJs3b8bx48cxdepUpKSkwMzs2fUXP/zwAzQaDXx9fbF69Wp88cUX2LFjB0xNTbFq1SqRU78ZJc6Z5M/c3BwrVqxAq1atsGzZMrRv3x6enp7o378/+vbti06dOqFjx4744Ycf4OjoiNDQUP5glxAHBwdYW1uLHYOIiIwgOzsbAQEBOHXqlNhRiAyK3Vv+PVSJcyb5Y/eWN3ZvIiLlYPcWB+8AF9GxY8ewb98+7NmzB7t378bOnTtRo0YN+Pr6okePHlCr1WJHLFO7du1Cly5dMGzYMN0xjUaD+Ph4qFQqveO2trbo1asXdu/ejcDAQDHilgklzpmUoXr16tiwYQNiY2Oxe/dunD59GufOnYOJiQlq1KgBPz8/dO7cGZ06dRI7Kr2m+Pj4l77+9OlT3Lp1CzVq1ICFhYWRUhG9uXHjxsHR0VHsGEZV0udF/pNKpcKGDRsMkKZ8uHPnDmxtbWFubl7ktSpVqmDjxo1o2rSpCMnEI+dFQKJC7N7y76FKnDMpA7u3fLF7k1yxe5cMuze7NxkeF8BFVLFiRfTs2RM9e/ZETk4O9u7di+joaGzYsAGhoaFo3LgxevbsCV9fX7z11ltix31jf/31F/z9/fWOnThxAnl5ebCzsyvyg7FevXrIzMw0ZsQyp8Q5k7J4e3vD29tb7BhkRPfv34enpyfWrVuHdu3aiR2nzCixoIWEhLxw2yY5etE2VIX+/vtvrFu3Dn5+fqhTp46RUhlWcnJyscdVKtULi5dKpTJkJKMIDQ3Ftm3bEBkZWaRsz5s3DwkJCRg2bBiGDx+u90wuc3NzxW3FSKQU7N7y76FKnDMpC7u38rB7ywe7tz527/+9JnXs3lTecQG8nKhUqRL69OmDPn364P79+4iJicGePXuwZMkSLFmyBC4uLvDz84O3tzcqVqwodtxSefr0KUxNTfWOJSYmAgA8PDyKjM/JyYGVlZVRshmKEudMBDzb1sXS0hIVKlQQOwoZgByvWFRiQXv+JPHzHj16hLlz52L48OFo1KiRkVKJ5++//8aKFSvg7Owsm6/x2bNnixy7f/8+PDw8EBoaKqsTacCz701TpkzB7t27Ub16ddy6dQt169bVG9OoUSOkpqZi6dKlOHXqFL7//nuR0hKRWNi95dlDlThnIoDdW+7YveXRy9i99bF7Sx+7N0kFnwFeDlWrVg0DBw7Epk2bcPDgQXz11VcwMTHBN998g3/9619ixyu1evXq4cyZM3rH4uLioFKp8P777xcZf+TIEdSrV89I6QxDiXMmZcjPz8fWrVsxY8YMvePJycno3r073N3d4eTkhOHDh+PKlSsipSQqO4UF7erVq2JHMZq8vDxEREQo6u4oOZ5gep4crjJ/ka1bt2L37t0YMmQIDh48WKSAA89OuMXFxaFXr16Ii4tDWFiYCEmJqLxg935GDj1UiXMmZWD3JqVh91YGdm9pY/cmqeACeDlnbm4OS0tL2NjYwMzMDBqNRuxIpebj44OdO3di3759ePz4MdavX4+LFy+ievXqRZ5VFBkZiaNHj8LT01OktGVDiXMm+cvPz8enn36KoKAg7Nq1CwUFBQCAS5cuYfjw4bh06RLat2+PIUOG4NKlS+jfvz/u3r0rcmqiN6eEgvY8Jc6ZpOvXX3+Fq6srpk+fXuxzxgpZWFggODgYTZs2xbZt24yYkIjKM3ZvafdQJc6Z5I/dm5RKiT1UiXMm6WL3JqngFujl0P379xEXF4eYmBikpKSgoKAAzZo1w4QJE+Dj4yN2vFIbMmQIfvvtN4wbN073/Atzc3PMnTsXFhYWAJ5dob1582YkJyejQYMGGDJkiLih35AS50zyt3nzZhw/fhxTp07FoEGDYGb27EfJDz/8AI1Ggx49euDbb78FAIwcORK+vr5YtWoVAgMDxYxNZcTc3BwuLi6oUqWK2FGIiPT8+eefmDBhQonGqlQqdO3aFStXrjRwKiIqz9i95dNDlThnkj92b2Vj9yai8ordm6SCC+DlxN27dxEbG4uYmBicOHECWq0WtWvXxrBhw9CjRw9ZPP/DwsIC69evR3R0NNLT02FjYwNfX180btxYN+bUqVNITU1Fjx49MH36dFhaWoqY+M0pcc4kf7t27UKXLl0wbNgw3TGNRoP4+HioVCq947a2tujVqxd2797NEi4ROTk5qFSp0gtfr1KlCjZt2qR3LCkpCW5uboaORmRQlSpVQkhICJo0aSJ2FColMzMz3SJHSVSuXLnI82KJSP7YvZ+RWw9V4pxJ/ti95Y3dm5SK3Vv62L1JKrgALqLMzEzExsZi7969SE1NhVarRZUqVdCnTx/4+vqibdu2Ykcsc6ampvD19YWvr2+xr48ePRoTJkyAiYl8dudX4pxJ3v766y/4+/vrHTtx4gTy8vJgZ2cHR0dHvdfq1aunqOcYSV1AQABCQ0Nha2v7yrFPnjzBwoUL8csvv+D06dOGDyciJRa0KlWqYOPGjWjatKnYUYyiQoUK+Ne//sU7LCSsfv36OHXqVInHnzp1Cvb29gZMRETlBbt3UXLsoUqcM8kbu7e8sXsXj91b/ti9pY/dm6SCC+Ai6tixI4BnVyp7eXnB19cXHTt2fOlzE+TOyspK7AhGp8Q5k7Q9ffq0yFV7iYmJAAAPD48i43NycvjnXELOnDmDjz/+GOvXr0eNGjVeOO7kyZOYNm0a/vrrr5eOk4sKFSronXzSarVYvXo1xowZI2IqwzI3N4erq6vu1zk5OViwYAGCg4NFTPXmQkNDsW3bNkRGRhb5zDVv3jwkJCRg2LBhGD58uORPkEdERBQ5lpubCwA4evQobt++Xez7/Pz8DJjKcD788EMsXrwYQ4cOfeUJs/PnzyMqKgoBAQFGSkdEYmL3LkqJn8+VOGeSNnZveWP3Lh67N7u3FLF7vxi7N4lJJQiCIHYIpRo8eDB69uyJrl27wsbGRuw4REQl0rNnT7Rq1QqzZ8/WHevevTsuXbqEpUuXomvXrnrjhw8fjuzsbGzfvt3YUakUfv75Z8ydOxd169bF+vXri1yhmZ+fj++//x7r1q2DVqtFz5498eWXX8riyt2cnBxs374d6enpEAQBzZo1w6BBg1C5cmW9cb///jsCAwPx3//+F2fOnBEpbdm4du0aQkNDkZaWBgBo1qwZRowYgfr16+uNi42NxZw5c3D37l3JzlkQBEyZMgW7d+9G9erVsWXLFtStW1dvzPLly7F9+3ZkZmaic+fO+P7770VKWzbUajVUKpXesX9+9C/uNZVKJdmv8d9//41evXohKysLX375JXx8fIqcNC4oKMCuXbuwaNEiAEB4eDhq1qwpRlyjuXPnDmxtbYtd6MvPz0daWhqaNm360i04iaSO3ZuIpIjdW97Yvdm92b3ZvaX6NWb3Lh67d/nDBXAiInotq1evxooVK7B48WK899572Lp1K+bPn48aNWogPj5e7xkwkZGRmDZtGiZMmIDRo0eLmJpex65duzB9+nTY2dlh/fr1qFevHoBnV6hPmzYN//3vf+Hg4IBZs2ahffv2IqctG1evXkVAQABu3bqlV1Jq1KiB7du3w97eHgUFBVi8eDE2btwIrVYLHx8fLF68WMTUb+bMmTMYPHgwHj16BEtLS1haWiIrKwvW1tbYsmUL3nnnHeTk5CAwMBCxsbEwNTXFsGHDMGnSJLGjl8qWLVswc+ZMDBkyBJMnT37hXX8ajQazZs1CWFgY5s6di169ehk5adkJDw8v1fue32pTSi5duoSxY8fi0qVLsLa2RvPmzVGzZk1otVrcu3cPp06dQl5eHhwcHLBixQqo1WqxI5eJl91dMWnSJFndXUFERKQU7N7yx+7N7s3uze4tVeze7N5SwAVwERW3NUZJSHVrDCKSB41Gg2HDhiElJQUqlQqCIMDc3BzLly/XbS8ZFxeHzZs3Izk5GQ0aNEBYWBgsLS1FTk6v49ChQ5g4cSJsbGywZs0a7N+/H6tWrUJBQQEGDBiAyZMno2LFimLHLDOTJ09GdHQ0Jk2ahN69e8PKygqHDh3C7Nmz0bp1ayxcuBAjR45EamoqHBwcEBQUpPvzLlVjxozBb7/9hgULFsDHxwcAkJGRgc8//xwODg5YtGgRAgIC8Ndff6Fly5YIDg4u8pxBKenTpw+sra2xcePGV44VBAG9e/eGhYUFtmzZYoR0VJY0Gg1+/vln7N69G2fPnkVBQQGAZ1sLtm7dGt7e3ujXr5/eSWOpUuLdFUSlwe5NRFLE7q0M7N7s3uze7N5Sxe7N7l3ecQFcRIVbYxRuefEqUt8ag4jkQ6vVIjo6Gunp6bCxsYGvry8aN26se33p0qVYt24dunfvjunTp6Nq1aoipqXSOnHiBMaMGYNHjx5BEATUr18fwcHBaNu2rdjRylyHDh3w3nvvISQkRO94eHg4goKC0KFDB+zbtw8DBgzA1KlTYW1tLVLSsvPee++hW7duCAwM1DseGxuLSZMmoXXr1sjIyMCECRPw6aefSv7KVScnJ0yYMAFDhgwp0fjVq1dj5cqVui3qpC4vL6/Yk6EXLlxA5cqVYWdnJ0Iq47h//z5MTU1lsV3k85R4dwVRabB7E5FUsXsrA7s3uze7N7u3HLB7s3uXN2ZiB1Cy53/QExFJhampKXx9feHr61vs66NHj8aECRMk/6Fd6ZydnbFx40YMHz4c9+/fx+zZs2VZwAHgwYMHcHJyKnLcxcUFGo0Ghw4dwrJly9ClSxcR0hlGdnZ2sVtQtWzZElqtFufOncOmTZvQunVr44czADMzs9e66rhy5cpFnmElRRqNBgsWLEBUVBQOHz5cpIgvWbIEhw8fRu/evTFt2jRZnGB6XrVq1cSOYDC//vorXF1dMX369JeOs7CwQHBwMM6cOYNt27axhJPisHsTkVSxeysDuze7N7s3u7ccsHuze5c3XAAXkZSf8UBEyhUQEIAxY8agXbt2umMFBQVIS0uDWq1GpUqVYGVlpXut8FlkvINGmtRqNf7zn/9g6NChGDNmDFasWAF3d3exY5W5/Px8vT+3hQq3mhs6dKisCjjw7O9thQoVihwvLGkjR46UTQEHgPr16+PUqVMlHn/q1CnY29sbMJHh/XPbTLVajQcPHhSZ0wcffIDbt29j69atOH/+PDZu3AgzM2lWhOXLl5fqfePGjSvjJMbz559/YsKECSUaq1Kp0LVrV6xcudLAqYjKH3ZvIpIidm9lYfdm95YLdm927xdh9yZjk+bfMIXSarVYvXo1xowZI3YUIlKw5ORk9O3bV+9YTk4OAgICsG7dOr1yTtIzY8aMYo/Xr18f165dw6hRo9CtWze97UNVKhXmzZtnrIiicHV1FTuC0bVo0ULsCGXqww8/xOLFizF06FA0adLkpWPPnz+PqKgoBAQEGCmdYaxfvx4pKSkIDAzExx9/XOyYvn37om/fvli+fDmWL1+OzZs3l3iruvKmpCX8+e2PpVzClXp3BZGhsXsTUXnA7i1v7N7FY/eWPnZvdu9C7N7s3mLjArjIcnJysH37dqSnp0MQBDRr1gyDBg1C5cqV9cb9/vvvCAwMxH//+1+WcCIqlwRBEDsClYHw8PCXvv7kyRNEREToHVNCCVfih9aSPCNVSj766CNs2bIFgwcPxpdffgkfH58iX9eCggLs2rULixYtQqVKlSRfwqOiouDp6fnCAv5P48aNQ3JyMnbu3CnZEr5///5XjsnJycF3332HgwcPwszMTPJfYyXeXUFUWuzeRCQX7N7ywO5dPHZv6WP3fjl2b2li95YmLoCL6OrVqwgICMCtW7d0H17j4uLw888/Y/v27bC3t0dBQQEWL16MjRs3QqvVwsfHR+TUREQkZyX5ECtXWVlZuHHjht6x7OxsAMD9+/eLvAYADg4ORslmKBcvXkRKSoresZycHADAuXPnit2Oy8XFxSjZypq1tTVWrlyJsWPHYtq0aZg1axaaN2+OmjVrQqvV4t69ezh16hTy8vLg4OCAFStWoGbNmmLHfiOXL19G//79Szz+/fffx7JlywyYyLBq16790tejo6Mxf/58ZGZmok2bNpg5cybeeecdI6UzDCXeXUFUGuzeRERU3rB7s3uze7N7SxW7N7u3VHABXETfffcdbt26hUmTJqF3796wsrLCoUOHMHv2bMyePRsLFy7EyJEjkZqaCgcHBwQFBaFjx45ixyYiIhl71YdYOZs3b94Lr6afMmVKkWMqlQqnT582dCyDWrVqFVatWlXsawsWLCj2uJSfKdigQQNERETg559/xu7du5GamoqCggIAgLm5OVq3bg1vb2/069fvtba2Kq+sra2h1WpLPL5ChQq659DJyZUrVzBr1iwkJCSgSpUqCA4ORp8+fcSOVSaUeHcFUWmwexMRUXnD7s3uXYjdm91bLti92b3LGy6AiyglJQV+fn4YOXKk7li3bt2Ql5eHoKAgTJ8+HampqRgwYACmTp0Ka2trEdMSEREVtWrVKsTGxiIsLEzsKG/E399f7AhGJ+VnL70JCwsLDB06FEOHDgXw7A4DU1NTVKlSReRkZa9hw4ZITU0tcek6ceKErE7EaTQarF69GmvWrIFGo4G/vz+mTp2KqlWrih2tzCjx7gqi0mD3JiIiqWP3li52b3bv57F7Sw+7tzRxAVxEDx48gJOTU5HjLi4u0Gg0OHToEJYtW4YuXbqIkI6IiOjVbt68KemrkguFhISIHcHolFrCn1etWjWxIxiMv78/goKCkJiYCHd395eOTUpKQmxsLMaPH2+kdIaVkJCAWbNm4fLly2jSpAmCgoLQtm1bsWMZhNLuriAqDXZvIiKSOnZv6WL3fobd+xl2b+li95YeLoCLKD8/H1ZWVkWOV6xYEQAwdOhQFnAiKpeef17Ty57V9ODBA6NmIyIqzvLly0v1PimfrPDz88OOHTswevRojBo1Cn379kWNGjX0xmRmZmL79u1Yu3Yt6tSpg4EDB4qUtmzcvXsXISEhiI6OhqWlJSZPnoyhQ4cW+0w9OVHS3RVEpcHuTURSxe5NRFLD7s3uLWfs3tKiEgRBEDuEUqnVaixcuBC+vr56xx88eIB27dph7dq1+Ne//iVSOiKi4qnVaqhUqiLHBUEo9nghOVypTEUFBQVh27Ztkv/6KrGgzZgx47Xfo1KpXvistvJOrVaXaNzz38ek/mf73r17+Pzzz5GUlASVSgUHBwe9Lbpu3rwJQRDQunVrLF26FPb29mJHLrXNmzdj2bJlePToETp16oTAwEBJz4eIyg67NxFJEbs3/RO7N7u3VLB7s3sTlRfyvhxD4kxNTcWOQERUhBKf10TyV9IS/nxBk3IJDw8PL/HYf85bqiV8//79rxyTk5OD7777DgcPHoSZmVmJn99VnlWvXh0bNmxAbGwsdu/ejdOnT+PcuXMwMTFBjRo14Ofnh86dO6NTp05iR31jwcHBun+Pj49HfHz8K9+jUqlw+vRpQ8YyKCWeQCQyBHZvIiqP2L1Jjti9X47dW7rYvV+O3ZvEwAVwkT2/lRHw8u2MAMDBwcEo2YiIiqPE5zWR/CmxoJ09e/aVY65fv445c+bg4MGDqFSpEiZOnGj4YAZSu3btl74eHR2N+fPnIzMzE23atMHMmTPxzjvvGCmd4Xl7e8Pb27vI8ezsbFhaWoqQqOwp8SSxEk8gEpUWuzcRSQ27N8kRu3fx2L3ZvaWE3fvF2L3LF26BLqIXbWUEvHg7I6lfKUNEROXb617ReODAAZw+fVryW1W9itwL2vO0Wi3WrVuHH3/8EXl5eejevTtmzJhR5BlWcnDlyhXMmjULCQkJqFKlCqZMmYI+ffqIHavM5OfnIywsDOnp6XonUZOTkzFz5kxcunQJKpUKHh4e+Oabb1CvXj0R076ZGTNmoH///mjVqpXYUYzm+vXrrxxT3AnEL774wgjpiMoPdm8iIipv2L2Lx+7N7i1V7N7yxu4tTVwAF1Fpnv8B8ApQIiIynJI+q+mfVCqVbEu43AtacY4fP45Zs2bh/PnzePvttxEUFIR27dqJHavMaTQarF69GmvWrIFGo4G/vz+mTp2KqlWrih2tzOTn5+PTTz9FSkoKzM3NkZaWBjMzM1y6dAk9e/aERqNBhw4d0LhxY+zduxePHz9GZGSkZE+2vOgZv0qmtBOIRC/C7k1EROUNu7c+dm92bylj9yZ27/KJW6CLiGWaiIjKm40bN4odoVxQQkF73oMHD/Dtt98iIiICFhYWGD9+PEaMGAELCwuxo5W5hIQEzJo1C5cvX0aTJk0QFBSEtm3bih2rzG3evBnHjx/H1KlTMWjQIJiZPfvo/8MPP0Cj0aBHjx749ttvAQAjR46Er68vVq1ahcDAQDFjUxl4/gRicHCw7E8gEr0MuzcREZU37N7PsHuze8sBu7dysXuXb1wALwceP36MHTt24LfffsPZs2eRlZUFlUqFatWqQa1Ww9PTE76+vrL8IUhEROWLq6vra7/n+PHjBkgiHqUUtH/avn07Fi1ahOzsbLz33nsICgqS9HZcL3L37l2EhIQgOjoalpaWmDx5MoYOHaorp3Kza9cudOnSBcOGDdMd02g0iI+Ph0ql0jtua2uLXr16Yffu3SzhEqbEE4hEr4Pdm4iIygt2b3Zvdm/5YPdWHnZvaZDndxwJOXHiBCZMmIC7d+/CwsIC9erVQ+3atVFQUICsrCwcOHAA8fHxWL58ORYvXow2bdqIHZmIiAg3b95EeHg4IiIicPXqVVlsw6a0ggYA586dw8yZM5Geno4aNWpgyZIl6N69u9ixDGLz5s1YtmwZHj16hE6dOiEwMBD29vZixzKov/76C/7+/nrHTpw4gby8PNjZ2cHR0VHvtXr16iEzM9OYEcvc8ePHodVqX+s9fn5+hgljZEo8gUj0Oti9iYhIiti95YHdm937n9i9pY3dWzrk+1NFAv78808MGzYMNjY2WLRoEby9vYtcaf7o0SPExMTg+++/x/DhwxEeHo769euLlJiIiJTsyZMniI2NRVhYGJKSkiAIAlQqFTp06CB2tDemxIK2YMECbNq0CVqtFh988AEmTpwIGxsb3Lhx46Xvc3BwMFLCshUcHKz79/j4eMTHx7/yPSqVCqdPnzZkLIN6+vQpTE1N9Y4lJiYCADw8PIqMz8nJgZWVlVGyGcq2bduwbdu2Eo0t/B4m9RKuxBOIRK+L3ZuIiKSE3Vte2L3ZvZ/H7i1N7N7Sw6+MiH788UdYWVlhx44deOutt4odY2Njgz59+qBDhw7o2bMn1q5dizlz5hg5KRERKVl6ejrCwsKwZ88ePHr0CABQrVo19O7dG/369UPt2rVFTvjmlFjQQkNDdf9+4MABHDhwoETvk+odB89fja0E9erVK/L1iouLg0qlwvvvv19k/JEjRyS//d5HH32E1q1bix3DaJR4ApGoNNi9iYhICti9i8fuLS3s3s+we8sLu7c0cQFcRCkpKejVq9cLC/g/2dnZwc/PD0eOHDFCMiIiUrrMzExEREQgPDwcf/31FwRBgJWVFTw8PJCQkIDZs2fD09NT7Jhlxs/PDyqVSuwYRjVu3LjXfo8gCAZIYjz9+/dHq1atxI5hND4+PlixYgU6dOiA9957D1u3bsXFixdRo0YNdOrUSW9sZGQkjh49igkTJoiUtmy0bdsWvr6+YscwGiWeQCQqDXZvIiIqr9i95Y/dW/7YveWP3VuauAAuogcPHrzWlmoNGzbE9u3bDZiIiIiUbs+ePQgLC0NCQgK0Wi0qV64MX19feHt7o3379rhz5w68vLzEjlnm5s+fDwDIz8/HhQsXUFBQgMaNG0t+S6qXcXBwQK9evUo8/vr16/jyyy8NmMiwwsPD4eHhoagSPmTIEPz2228YN24cVCoVBEGAubk55s6dq9v6Ny4uDps3b0ZycjIaNGiAIUOGiBuaXosS764gKg12byIiKm/Yvdm9X4TdW3rYveWP3VuauAAuovz8/Nf64V6hQgXk5uYaMBERESndpEmTYG1tjYEDB8LT0xMuLi56zzGS85Xa//73v7Fy5Urdz1oLCwsMHDgQkydPluXzfAIDA/H48WMMGjTolWO3b9+OBQsW8HOIxFhYWGD9+vWIjo5Geno6bGxs4Ovri8aNG+vGnDp1CqmpqejRowemT58OS0tLERNTaSjt7gqi0mD3JiKi8obdm927OOze0sTurQzs3tIjv58oREREVGp16tTBtWvXEBYWhkuXLuH333+Hl5cXGjRoIHY0g9qxYwcWLlyI2rVrw8/PDyYmJkhKSsL69euh1WolffX1i7z99tsIDg7G48ePMXz48GLH3LlzB4GBgTh8+DDMzc0lv0WXEpmamsLX1/eFW5ONHj0aEyZMgImJiZGTlT1/f3/JP0ftdSnx7goiIiIiOWD3Zvf+J3Zv6WP3ljd2b2niArjIsrKycOPGjRKNffDggYHTEBGR0u3btw8nT55EZGQkYmJicOTIESxZsgQNGzaEt7c3mjdvLnZEg9i6dStat26NDRs2oEKFCgCePXNr0qRJ2Lp1K6ZMmaLbtkoufvnlFwwfPhyLFy/G48ePMX78eL3Xd+3ahTlz5iA7OxtOTk4IDg5Go0aNREpbNo4fPw6tVvta7/Hz8zNMmHJCTlsNhoSEiB2BiMoxdm8iIipP2L3ZvQuxez/D7i0d7N4kFSpBEASxQyiVWq0u1XY2Z86cMUAaIiIifVqtFkeOHEFUVBT279+Px48f635u9e7dG2PGjEHt2rVFTlk2nJ2d8fnnnxfZkiw9PR0DBgxAeHg41Gq1SOkM5++//8b//d//ISkpCUOGDMG0adPw4MEDBAUFIS4uDpaWlpg0aRIGDx4s+S34XvdzlyAIUKlU/NxF5ZparcbChQtfeJcBET3D7k1EROUZuze7N7s3uzeVb+ze0sQ7wEXk7+8vdgQiIqIXMjU1RceOHdGxY0fk5eUhLi4Ou3btwtGjR/Hrr78iLCwMbm5u6N27Nz788EOx476Rx48fo1KlSkWO16lTB4Ig4OHDhyKkMjxra2usXr0an3/+OdavX49r164hNTUV9+7dw3vvvYfZs2fL5kQLAHz00Udo3bq12DGIyhTvriB6NXZvIiIqz9i92b3ZvYnKP3Zv6eEd4ERERKQzcuRIuLu7w9XVFc2bNy/2qt0HDx4gOjoaUVFRSE9Pl8WVui+6kvPBgwdo164dQkND0a5dO5HSGd7Tp08RGBiIsLAwmJiYYPbs2ejTp4/YscoUr9YlOeLdFURERETSxO7N7s3uTSQd7N7SxDvAiYiISCcxMRGHDx+GSqWCjY0N2rZtCzc3N7i7u+u2IatatSoGDRqEQYMG4erVq9i9e7fIqelNmZiYYN68ebC1tcW6deuQkJAAPz8/mJnxoyJRece7K4iIiIikh91bmdi9iaSL3Vt6+J2ViIiIdFJTU3H69GmkpqYiLS0N6enpOHDgAFQqFSpXrgwXFxe4ubnBzc0N77zzDurWrYvRo0eLHbtMZGVl4caNG3rHsrOzAQD3798v8hoAODg4GCWbIRQ3n48//hh///03tm7ditzcXHz99dcwMTHRGyPlORPJUdu2bXl3BREREZHEsHuze7N7E0kLu7f0cAt0IiIieqmbN2/qlfKzZ89Cq9XC1tYWrq6ucHNzw8CBA8WO+UZetpVR4bZFz1OpVDh9+rShoxnMq+YMoMjrUp7zjBkz0L9/f7Rq1UrsKERlhtsLEhEREckHuze7dyEpz5ndm+SI3VuaeAc4ERERvZS9vT18fHzg4+MDAMjJyUFkZCTCwsKwd+9exMbGSr6E+/v7ix3B6Pz8/F7r+UVSFxISInYEIiIiIiKiF2L3lid2byIicXABnIiIiF4qLy8PKSkpSE5OxokTJ3Dq1Cnk5+fDwsJCtyWb1CmxoM2fP1/sCET0hvz9/VGvXj2xYxARERFRGWD3lid2byLpY/eWJm6BTkRERHoKCgqQnp6OxMREJCYm4uTJk8jPz4e5uTneffddXfF2cnKChYWF2HGJiIiIiIiIJIfdm4iIyHC4AE5EREQ6I0aMwPHjx5GXlwcTExM0b94c7u7ucHNzg7OzMywtLcWOSERERERERCRp7N5ERESGxQVwIiIi0lGr1TA3N8eHH36IUaNG4e233xY7EhEREREREZGssHsTEREZFhfAiYiISOfrr79GUlISrly5ApVKhYYNG6Jdu3Zwd3eHi4sLqlSpInZEIiIiIiIiIklj9yYiIjIsLoATERFRETdu3EBCQoLuWWR3796FiYkJ1Go13NzcdKXc2tpa7KhEREREREREksTuTUREZBhcACciIqJXOn/+PBITE3Hs2DEcP34cDx8+hJmZGVq0aIF27dphwoQJYkckIiIiIiIikjR2byIiorLBBXAiIiJ6LRqNBjExMfjll1+Qnp4OlUqFM2fOiB2LiIiIiIiISDbYvYmIiErPTOwAREREVL5duXIFJ0+exMmTJ5GRkYGzZ88iPz8fFStWRIcOHeDi4iJ2RCIiIiIiIiJJY/cmIiIqO7wDnIiIiHSys7ORkZGhK9wZGRnIzs6GIAioUqUK2rRpA1dXV7i4uKBZs2YwMTEROzIRERERERGRpLB7ExERGRYXwImIiEhHrVZDpVJBEARUrVoVLi4uun8cHR2hUqnEjkhEREREREQkaezeREREhsUt0ImIiEina9eucHV1haurKxo3bix2HCIiIiIiIiLZYfcmIiIyLN4BTkREREREREREREREREREssCHhxARERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZMBM7ABERkRL88MMPWL58+Wu9Z//+/ahTp46BEpVep06dcP36dQDAV199hYCAgJeOHzZsGI4cOQIACA0NhYeHh0FzxcbGon79+gb5PYiIiIiIiKj8Yvdm9yYiIgK4AE5ERGQUjo6O8PX11Tt27949JCQkwNraGp6enkXeY21tbax4pRYTE/PSEn7//n0kJiYaMREREREREREpFbs3ERERAVwAJyIiMgpvb294e3vrHUtKSkJCQgKqVq2KRYsWiZSs9CpXrozU1FTcvn0bb731VrFjYmNjUVBQAHNzc+Tn5xs5IRERERERESkJuze7NxEREcBngBMREVEpeXl5QRAExMbGvnDM7t27YWtri5YtWxoxGREREREREZE8sHsTERG9Pi6AExERlWMHDx7EsGHD4OrqipYtW6JLly5YuHAhsrKy9MZdu3YNjo6O6NChQ7H/ncGDB8PR0RFJSUm6Y9OnT4ejoyOSk5Mxfvx4vPvuu3B3d8emTZtKlK1r164Anm3FVpzMzEwcP34cXbp0gZnZized2blzJwYOHIg2bdrg3Xffha+vL1auXInHjx8XO/7YsWMYOnQoXFxc0LZtW0ycOFH3XLTiaLVa/Oc//0Hfvn3h5OQEJycn9OvXD+Hh4RAEoURzJSIiIiIiIvli9y6K3ZuIiKSMW6ATERGVU4sWLcKaNWtgamoKZ2dnVK1aFenp6Vi7di327NmDDRs2oG7dum/8+3z99de4d+8e2rdvj/Pnz0OtVpfofW+//TaaNm2K1NRUZGZmws7OTu/1mJgYPH36FD4+Pli+fHmR9z99+hRTp07Frl27YGFhAVdXV1hZWSElJQXfffcd9u7di9DQUFStWlX3nu3bt+Obb74BALRt2xaVK1fGkSNHcPz4cWg0miK/R35+Pv7v//4Phw8fho2NDZycnGBubo7k5GRMnz4dSUlJmD9//uv87yIiIiIiIiIZYfdm9yYiIvnhAjgREVE5FB8fjzVr1sDW1hZr167VbWOm0Wgwe/ZsbN++HRMmTMCOHTugUqne6PfKzMxEZGQk6tati6dPn8LEpOQbxHTv3h1nzpxBbGwsPv74Y73XoqOjYWdnBxcXl2Lfu3nzZuzatQt169bFunXrUK9ePQDAo0ePMHnyZBw8eBDffPMNfvjhBwDAzZs3ERwcDDMzM6xevRrt2rUDANy/fx/Dhg3D6dOni/weP/74Iw4fPgxXV1csW7YM1apVAwDcvXsXI0aMQHh4OJydndG3b98Sz5mIiIiIiIjkgd2b3ZuIiOSJW6ATERGVQ+vXrwcAfPHFF3rP8LKwsMDMmTNRv359/PHHH0hMTHzj38vT01N3NfvrFHAA6NatG4CiW7HduHED6enp6Nat2wv/mxs2bAAABAcH6wo4ANjY2GDRokWoVKkSYmNjcfnyZQBAeHg48vLy0L9/f10BB4Bq1aph3rx5Rf77Go0GmzZtgrm5ORYtWqQr4ABQo0YNzJ49GwDw73//+7XmTERERERERPLA7s3uTURE8sQFcCIionKmoKAAqampUKlU6NKlS5HXzczM4O3tDQB6zxUrrXfeeafU761bty6aN2+OEydOIDMzU3c8OjoagiDgww8/LPZ9N2/exLVr11C1alW4u7sXeb1SpUpo3749ACA5ORkAkJKSAgDo2LFjkfFNmzZFnTp19I798ccfyMnJQcOGDfHWW28VeU/Lli1RvXp1XLp0CXfu3CnhjImIiIiIiEgO2L3ZvYmISL64BToREVE5k5WVhfz8fFStWhU2NjbFjiksnGVRHqtUqfJG7+/evTv++OMPxMXFYdCgQQCelfC6devi3XffLfY9hYW9du3aL/zvPj/HwvfUqlXrheOvXbum+/XNmzcBAOfOnYOjo+NL53Dz5k3UrFnzpWOIiIiIiIhIPti9n2H3JiIiOeICOBERUTkjCAIAvPT5YoVjLCwsSvTf1Gq1L3ztdbdee163bt2wcOFC7NmzB4MGDcLly5fxxx9/YNSoUS98T2nm+KrnrZmZ6X+sefr0KQDAwcEBzs7OL31vxYoVX/o6ERERERERyQu7t/4Ydm8iIpITLoATERGVM7a2tjA3N0dWVhYePXpU7JXoV69eBQBUr14dwP+KdGHxfF52draB0j67kvzdd9/FiRMncOfOHURHRwMAfHx8XvgeOzs7ANC7avx5hXOsUaMGAOCtt97C+fPncf36dTRu3LjI+H9uAwdAd1V5rVq1sGjRoteYEREREREREckdu/cz7N5ERCRHfAY4ERFROWNubg4nJyc8ffoUcXFxRV4vKCjQHXdzcwMAWFtbA3hWtvPz8/XGP3jwAJcuXTJo5u7du+Pp06eIjY3Fnj170Lhx45dufebg4IDatWvjwYMHuueM/VNOTg6OHDkCAHBxcQEAeHh4AECx/0+uXr2KCxcu6B1r2bIlLC0tcfbs2SIFHQBu376Nbt26YejQocjNzS35ZImIiIiIiEjy2L3ZvYmISL64AE5ERFQOffLJJwCAb7/9FqdPn9Ydz8/Px6xZs3DlyhU0bdpUt72Yra0tatWqBY1Ggy1btujGP3nyBN98881Lt2ErC127doVKpcLmzZtx7ty5l16BXqhwjoGBgborzgEgNzcXU6dOxaNHj/DBBx/onlXm7+8PW1tb7NixA3v37tWNf/ToEb788ssiV+BbW1vjo48+wt9//42pU6fi3r17er/HjBkzcPHiRVhbW3MbNiIiIiIiIgVi92b3JiIieeIW6EREROWQl5cXPv30U6xbtw59+vSBs7MzqlatipMnT+LWrVuoXbs2li5dqvcMseHDhyM4OBjBwcHYvXs3atSogdTUVGi1WnzwwQc4cOCAwfLa29ujdevWSEtLA/DyLdgKDR48GGlpadizZw98fHzg4uICKysrHD9+HA8ePIBarca8efN046tVq4Z58+Zh4sSJ+Oyzz+Dk5AQ7OzukpKRAq9WiQYMGRa62nzx5Ms6cOYPExER07twZLVu2hJWVFdLS0pCVlYW3334bs2bNKtv/GURERERERCQJ7N7s3kREJE+8A5yIiKicmjZtGn788Ue4ubnh7NmzOHjwICpWrIgxY8YgPDwcDRo00Bs/ePBgLFiwAC1atMDp06eRkpICNzc3/Prrr0XGGkK3bt0AAM2bN0f9+vVfOd7ExARLly5FSEgImjdvjtTUVBw9ehS1atXC1KlTsW3bNlSrVk3vPZ6envjll1/g6emJS5cu4bfffkOzZs3w888/o1atWkV+D0tLS6xbtw5fffUVGjZsiIyMDCQlJcHOzg7jx4/H9u3bdc85IyIiIiIiIuVh92b3JiIi+VEJgiCIHYKIiIiIiIiIiIiIiIiIiOhN8Q5wIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIln4f/vw1KtvxzS8AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 183 coefficients adjusted\n", - "\t 622 coefficients converged\n", - "\t 135 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACkAUlEQVR4nOzdfXzN9f/H8ec5Z802djK+zMUoTbOv66vVFKlpVEjLV8KEhLn87puLcvEtvi4iUuSLMJpcjBol5SuKlC/C96eEDDFXuWhhLjfbOb8/3HZybGPn7MzOdh73282NvT/vz+e8zut91OfldT6fj8FqtVoFAAAAAAAAAACAPDEWdgAAAAAAAAAAAABFCc0VAAAAAAAAAAAAB9BcAQAAAAAAAAAAcADNFQAAAAAAAAAAAAfQXAEAAAAAAAAAAHAAzRUAAAAAAAAAAAAH0FwBAAAAAAAAAABwAM0VAAAAAAAAAAAAB9BcAQAAAAAAAAAAcADNFQDIB6vVqoiICNWoUUMzZsxwaN8VK1aoRo0aWrFihW2sRo0a6tq1q6vDzObMmTO6cuVKgb+OK2RmZurYsWN3nPf++++rRo0at/0VERFR4PEeOXKkwF8DAAAA7mvDhg0aOHCgIiIiVLt2bT388MN65ZVX9M0339y1GNLT0/Xmm2/qoYceUt26dTVu3Lgcx15//XXVqFFDx48fd+j4Wefe27ZtK6B3YO9O59hvvvmmatSoocTExNvOO378uEJDQ9WtW7c8v/a2bdtUo0YNvf/++3nepzBt3bpVNWrU0F//+tfb1lEXL15UbGysGjZsqAYNGiguLk6SlJaWplOnTt2tcCXlr66WqK3zKq+1NYC88yrsAACgKNu6datOnDghPz8/LV++XH379pXJZHL6eG+//bb+8pe/uDDC7D799FONGTNGn3/+ufz8/Ar0tfLr5MmT6tOnj1q2bKmBAwfmaZ+OHTuqUaNGOW4rWbKkK8PLpm/fvrp06ZI++uijAn0dAAAAuJ9Lly5pxIgRWrt2rWrVqqXnn39e5cuX16lTp/Tpp5+qb9++evnll/Xaa68VeCzLly9XQkKCHn30UT399NN68MEHcxyzWq1q0qSJypQp49DxIyMjVbVqVQUHBxfQO/hTXs6x//a3vykhIUGff/652rdvn+u8Tz/9VFarVX/7298KIlS3kJiYKD8/P125ckXLli3TkCFDcpw3c+ZMrVmzRq1bt1aTJk1Uv3597d27VwMGDNCAAQP0/PPP37WYXV1XS9TWt3KmtgZwZzRXACAfPvnkE91zzz3q3r27Zs6cqQ0bNujJJ590+njt2rVzYXQ527p1a5H5Zs2xY8eUlJSkli1b5nmf+vXr35U85uSbb77RQw89VCivDQAAgMI1atQorV27VsOGDVPPnj3ttsXExKhnz56aP3++HnjgAXXo0KFAY9m/f78kadiwYQoNDZUk21UdN49JUoMGDRw+fmhoqN0xClJezrHr1Klju5Lm9OnTCgwMzHHeZ599pnvvvdeh+qIouXTpktatW6cWLVpo3759WrFihQYNGiRvb+9sc7M+I2PGjJG/v7+kG1eAnDhx4q7GLLm+rpaorW/lTG0N4M64LRgAOOnixYtav3696tatq2effVaStHTp0kKOCgAAAMDd9v3332vNmjVq1apVtsaKJHl7e2vChAkymUxauHBhgcdz/fp1SVKpUqVuO1actG/fXhaLRV9++WWO23fu3KmjR4+qbdu2KlGixF2O7u744osvdPXqVYWHh+vJJ59USkqK1q1bl+PcrM9DVmOlsFBXAyjKaK4AgJNWr16ta9eu6dFHH1W1atVUo0YNbd68Ocd7mG7btk0vvfSSGjZsqPDwcI0bNy7Hb7jcel/Y3O6BfPz4cdWoUUOvv/66bezq1at666239NRTT6lu3bp6+OGH1adPH+3cudM2JyIiQitXrpQktWjRwvZar7/+uho0aKCjR49qwIABatSokRo2bKi+ffvq1KlTOnHihAYNGqRGjRopPDxcsbGxOnPmjF1MFotFH330kdq1a6e6deuqcePGeuWVV+xeX/rz/syHDh3SqFGj9Oijj6pOnTpq166dPv/8c7t5L730kiRpxowZTt0L+nasVqs+/vhjde7cWY0bN1atWrXUtGlTvfrqq0pOTs42/8svv1SXLl3UqFEjPfzww+rWrZu2bNki6c/7MEvSDz/8kO1+v99++626deumhg0bqm7dumrXrp0WLlwoi8Vim5O1pv/+97/1j3/8Q3Xq1NEjjzyi3bt3KzMzUzNmzFDbtm1Vv359NW7cWF27dr2r9+0GAABA7j799FNJuu0zHqpUqaLPP//cdj6e5dChQ3r11Vf1yCOPqHbt2mrRooUmTpyoCxcuZDvGr7/+qldffVVNmjRR7dq11bJlS7333nu6du2apD/PKW8+5896/uCtY1LO9YbVatXSpUv1/PPPq379+nrkkUcUExOjPXv22Obk9syV7777zlb31KtXT88//7zdebH057nzF198odmzZysyMlK1a9dWRESEpk2bpoyMDLt5Us7n2Ld69tlndc8999jVFDfLWqOsW4Jdv35dcXFxat++vRo0aKDatWvr8ccf16hRo5SSkpLr60g36qqcnueY07M/JOmnn35STEyMHnroIdWpU0dt2rTR/PnzlZmZaTdv7969iomJUbNmzWyfhXHjxun8+fO3jSdL1tVJjz76qJ566ilJ2RsVWXn94YcfJMn2bMrXX39dw4cPlyQNHz7clnvJ8Vrv22+/1dNPP63atWsrOjr6tjE7UldnxU9tbZ/vwq6tAU/GbcEAwElZJ65PP/20JKl169bav3+/EhISNHToUNu8jRs3qn///ipfvrz69Okjo9GoTz755LaFgTNeffVVbd68WV26dNEDDzyg33//XYsXL1a3bt30ySefKDQ0VCNGjNCCBQu0Y8cODR8+XA8++KBt/+vXr6tz58566KGHNGzYMO3atUsrVqzQ6dOn9fvvvyssLEzDhg3Tjz/+qMTERF26dEnz5s2z7T9kyBB98cUXatWqlV544QVduHBBK1asUNeuXTV16lTbyX2W3r1723KSnp6u+Ph4DRkyROXKlVN4eLgiIyOVkZFhK7giIyPzdC/oK1eu6I8//sg2bjKZdO+999p+fuuttxQfH68nn3xS//jHPyRJO3bs0Jdffqm9e/fqyy+/lNF44zsI06dP17///W+FhoYqJiZG3t7eWrJkiXr27KlZs2apVq1aevvttzVs2DA98MADiomJUcOGDSVJ8+fP16RJk3TfffepV69e8vPz0/r16zV+/Hht27ZN77//vu11JGnevHkKCQnRqFGjdOTIEdWsWVNvvfWWFi9erBdeeEEvvfSSLl68qISEBPXr108ffPCBmjdvnpePCAAAAArITz/9JC8vL9WrV++28259RsmOHTvUs2dPmUwmderUSZUrV9auXbv04Ycf6ptvvlFCQoLtHPinn35S9+7dVapUKXXp0kVlypTRrl27NHv2bG3ZskULFy5UmTJl9Pbbb2v58uW2c/57771XRqPRbiwgICDXGF977TV99tlnaty4sWJjY5Wenq6PPvpI0dHRWrx4sWrWrJnjfosXL9bYsWNVp04dDRgwQEajUV9//bWGDx+uffv2aeTIkXbzp06dKqvVqo4dO8psNmvFihWaOXOmDAaDBg0apODg4FzPsXMSEBCgFi1a6D//+Y8OHTpkl+u0tDStWbNGtWrV0l//+ldJUmxsrL7++mtFRUXphRdeUFpamjZt2qSPP/5YJ0+e1Pz582+7lnn19ddf6+9//7uCgoL0yiuvyM/PT5s3b9akSZP0v//9T++//74MBoOOHTumbt26qVy5curevbvMZrN+/PFHLVq0SD/99JOWLVsmg8GQ6+scOnRIP/74oxo0aKBKlSqpUqVKuv/++7V9+3a7fGTldfbs2fr111/19ttvq2TJkipbtqy8vb21bNmybM+xdLTWi42N1d/+9jfdf//9Od6S7GZ5raslauu7XVsDyAMrAMBhSUlJ1pCQEOtzzz1nGzt69Kg1JCTEGh4ebk1LS7NarVarxWKxRkREWBs3bmz9/fffbXNTU1OtLVu2tIaEhFgTExNt4yEhIdbo6Gjbz6+99po1JCTEeuzYMbvXP3bsmDUkJMT62muvWa1WqzUlJcUaEhJiffPNN+3m7dq1y9qyZUvr8uXLb3vMrLFb92/Xrp01JCTEOnbsWLvxDh06WENDQ23v88svv7SGhIRY586dazfv0qVL1qeeesr68MMPW69cuWK1Wq3W6dOnW0NCQqy9evWyWiwW29zt27dbQ0JCrK+++qptbOvWrdaQkBDr9OnTrXeSddzcfj3xxBO2uX/88Ye1Zs2a1j59+mQ7zqBBg6whISHWn3/+2Wq1Wq1Hjhyx/vWvf7VGR0fb3q/VarX+/vvv1kaNGlmff/5529it63f06FFrzZo1rc8884z18uXLtnGLxWIdMmSINSQkxLpixQqr1frnmtavX9969uxZu5jq169vfeWVV+zGfvvtN+uTTz5pff/99++YGwAAABSsevXqWR955BGH9snMzLRGRkZaa9eubT148KDdtuXLl1tDQkKsr7/+utVqvXH+2Lp1a2vz5s2t586dy3HunDlzbGO3O+e/3diWLVts5+Q3n6sfPHjQGhoaah04cKDVav3z3Hvr1q1Wq/XGuWmtWrWsffr0sdvPYrFYhw4dag0JCbH++OOPVqv1z3P8Rx991HrhwgXb3MuXL1sbNWpkbdq0qd37u/Uc+3a+/fZba0hIiPXdd9+1G//iiy+sISEh1sWLF1utVqt13759OdY5VqvV2r59e2tISIgtzznVJE888YRdfZElMTHRrsa7cuWK9eGHH7ZGRUXZ1RJWq9X67rvvWkNCQqxffPGF1Wq1WufNm2eXpyxvvfWWNSoqynrq1KnbvveJEydaQ0JCrPHx8baxrHXK6X1GR0dbQ0JCbhu/1epcrTdo0KDbxpolr3W11UptfTdrawB5x23BAMAJWd+uad26tW2sSpUqql+/vv744w999dVXkqR9+/bp+PHjateuncqWLWub6+/vr06dOrksnlKlSsnf319r1qzR8uXLdfbsWUlSvXr1tHbt2jw/MLNNmzZ2P2d9u+mZZ56xG69ataosFot+//13STfu7StJrVq10h9//GH7lZaWppYtW+rcuXPavn273THatm1r982runXrSpLtmM7q2bOnFixYkO3X5MmTbXMCAgK0Y8cOTZkyxW7f1NRU+fr6SpLt0vJvvvlGmZmZ6tatm923rsqWLaslS5bo/fffzzWWdevWKSMjQ71795afn59t3GAwaPDgwZKU7Z7Q9erV01/+8he7sQoVKuiHH35QXFyc7fLtChUqaN26dRowYECecwMAAICCYTKZbLezyqu9e/cqOTlZzz77bLYrWv72t7/pvvvu09q1a5WZman9+/frwIEDat68uSwWi9059xNPPKESJUrk+mwNR6xfv16S9Morr9idqwcHB+uTTz7RP//5zxz3++qrr3T9+nU9/fTTOnfunC22c+fO2WqmrBopyxNPPCGz2Wz72c/PT8HBwXe8JdftNG3aVBUrVtTq1avtxleuXCkfHx+1bdtWkhQaGqqdO3fq1VdftZuXkpJii8kVDyr/73//q3PnzqlVq1a6dOmS3bpl1VhZ61axYkVJ0uTJk7Vlyxalp6dLunGbqRUrVigwMDDX18nIyNCqVatkNBptV4BIf9arn332ma5everUe3Cm1svplmk5yWtdLVFbF0ZtDeDOuC0YADjo+vXrWrVqlaQbJ1g336s0PDxcu3bt0tKlS9WmTRsdPXpU0o0TpltVr17dZTF5e3tr4sSJGj58uK3gCQkJUdOmTdW2bdtcL92/1a3/qH/PPfdIksqVK2c37uV1438fWc8MOXz4sCTpySefzPXYJ06cuO1rZTUubn4OiTOqV6+uRx555I7zSpQooa+//lobNmzQ0aNHdfz4cf3222+2k9KsOLLW94EHHsh2jJCQkNu+Rtb633yJeJYKFSrI398/271ub82LJI0fP16xsbF6++239fbbb6tq1ap69NFH1bp1a4WFhd3xvQIAAKBgBQYG6vDhw0pPT7/jbZCy3O5c0WAwqHr16kpOTta5c+ds59sJCQlKSEjI8Xi3nm87I+vc9NZmjyTVqlUr1/2y4hs2bFiuc+5UD0g3aoJbn0PiCKPRqKioKM2cOVP/93//pwYNGujs2bPavHmz2rRpY/fwdm9vb3355Ze253scP35cZ8+ezVYP5EdWXqZOnaqpU6fmOCcrL61atVL79u21YsUKde/eXT4+PmrUqJGaN2+u5557zu4Wx7fauHGjfv/9d9WpU0dpaWm2dfT29tb999+vI0eO6IsvvrA9b8aZ9+BIrXdr/ZgTR+pqSdTWN7lbtTWAO6O5AgAO2rhxo+3bVLk9nG/Hjh06ePCg7Wer1ZptTn5OdHIqOJ588kk9+uij+u677/T9999r27Ztmj9/vhYsWKARI0bYHmB3O1kndre63b19s+IpWbKkZsyYkeucatWq2f1883NG7rbr169rwIAB2rhxo2rXrq3atWurVatWqlmzpr799lt98MEHdnOlO+cgJ1nrntu+FoslW/Gd0xo0bNhQ69ev19atW/Xdd99p27ZtSkhI0NKlS9WjRw+7hy8CAADg7gsLC9OhQ4f0v//9T+Hh4bnOGz58uK5fv37bJkSWrHrB29vb9ucuXbrk+o+uuZ3LOyLr3NdRWfXJ2LFjFRQUlOOcW5/xUFD1wPPPP69Zs2bp888/V4MGDfT5558rMzPTrrFw6dIldevWTXv27FGjRo1Uu3ZttWvXTnXq1FF8fLztH/0ddWudlrVugwYNUoMGDXLcp2TJkpJuXP00YcIE9evXTxs2bNB///tf7dixQ5s3b9YHH3yghISEHBsL0p9XgOzevVstWrTIcU5CQoJTzRVnaj2TyXTH4zpSV9/cPKG2dq/aGvB0NFcAwEFZJ659+vSxXW57s48//lgbN260O3k9dOhQtnnJycl3fK2sk9K0tDS78axLk7NcunRJ+/fvV1BQkFq2bKmWLVtKkn755Rd169ZN//73v/N0AuisoKAgHT58WKGhodmKpn379unMmTO22225gy+//FIbN25U7969bbfnyrJy5Uq7n7OKw8OHD2c7if3www918OBBjRo1Sj4+PtleJ6v4SUpKsj04M8vJkyd1+fJl2+X/uUlLS9P+/ft177336rHHHtNjjz0mSTp27JhefvllxcfHa8CAASpVqlQe3jkAAAAKQps2bZSQkKAlS5bk2lz57bfftGrVKpnNZpUuXVpVqlSRJB04cCDbXKvVqkOHDqlUqVIym812DYtbr9K2WCxau3at7Xj5cfO5b40aNey2TZ06VdeuXdOIESNy3c9sNmeL78yZM/rpp59cEl9eVKlSRQ8//LDWrFmjUaNG6fPPP9d9992nhx56yDZn4cKF+vnnnzVmzBi9+OKLdvvn5VZKJpNJly9fzjZ+a52WlRcfH59sebl06ZK+//5725UMJ06c0NGjR9WkSRN17dpVXbt2VUZGhuLi4jR16lQtXbpUr732WrbXTElJ0aZNm1SyZElNmjQp2z/eWywWvfbaa9q9e7f27Nlz2yuQclJQtZ4jdfWoUaN0//33S6K2drfaGvB0tDYBwAFnz57Vd999p9KlS6t///568skns/0aNGiQJOnTTz/Vfffdp2rVqmnVqlV2lzlfu3ZNixYtuuPrlS9fXtKNbyDd7NNPP7X7OSkpSZ07d9bMmTPtxqtXry5/f3+7b81kfaslp2/8OKtVq1aSpPfee89u/NKlS4qNjVX//v2zncTmRdYJsKsvZz537pwkZSsYk5OTtXbtWkl/foOpRYsWMhgMWrx4sd19tM+fP6+5c+fqp59+sjVWjEajXayRkZEymUz64IMP7O7ZbLVaNW3aNEnSU089dcdYO3bsqLFjx9qNV6lSRYGBgTIYDHxTCQAAoJCFhYUpMjJSa9eu1YIFC7Jtv3jxov7+978rIyNDAwYMkLe3t2rWrKkqVapo1apV2f7BODExUUePHrX9w27t2rVVuXJlrVy50nZ7pCzLli1TbGys7R+r8yPrqpj4+Hi78aNHj+rDDz/UsWPHctyvZcuWMhqNmj17tq5du2a3beLEierfv79+/vlnp2K69Rw7L9q3b68//vhDn376qfbu3Zvtio3c6oH/+7//sz3P4na3Jytfvrz++OMPu9szpaena82aNXbzmjZtqpIlS+rDDz+0vWaW2bNn6+9//7u+/fZb28/du3fXjz/+aJvj5eWlevXqScr9apBPP/1UGRkZateunSIjI7PVpy1btlT79u0lSUuXLs31PUl/1oo357sgaj1H6+qrV68qNDSU2toNa2vA03HlCgA4IOvE9fnnn1eJEiVynFOrVi2FhYVp+/btWr16tcaNG6eXX35ZHTp0UJcuXVSqVCklJibq4sWLd3y9qKgoffDBBxo3bpyOHz+ucuXKacOGDUpKSrJ7/YYNG6pp06ZKSEhQamqqHnroIWVmZmrt2rU6duyY3Tecsu7HOm/ePDVr1uy293LNq+eff17/+c9/tGzZMh09elQRERHKyMjQxx9/rCNHjmjo0KG3fQBjbrIeVPjNN9+oUqVKioyMVOnSpfMdb7NmzfTOO+9o/PjxOnr0qMqVK6cDBw4oMTHR1kBJTU2VdON+071799YHH3ygTp06qXXr1rJYLFq+fLkuXLhga5JkxfvLL79oyZIlaty4sUJCQhQbG6t33nlHzz33nJ5//nn5+fnp66+/1tatW/XEE0/o2WefvW2sFSpUUIcOHbRs2TL17NlTERERMhgM+v7777V9+3ZFR0fLz88v3zkBAABA/kyYMEEXLlzQxIkT9fnnn6tly5YqU6aMjhw5opUrV+qPP/5Qly5d1KVLF0k3/rFz3Lhx6t27tzp06KBOnTopKChIP/30k1auXKnKlStryJAhdnP79Omj559/Xi+++KKqVq2q3bt3KzExUVWrVlW/fv3y/R6aNWumNm3aKDExUadOnVJERIQuXbqkxYsXq0SJEho6dGiO+91///0aOHCgpk2bpnbt2ikqKkpms1lff/21vv/+ez3xxBO2RpGjcjrHvpNWrVpp7NixmjRpkry8vPTcc8/ZbY+IiNBHH32kIUOGqHPnzvL399fPP/+slStXymQy6fr167Z6ICft27fXjh071LNnT3Xu3FkWi0WJiYnZGjJms1lvvPGGhg8frrZt26pjx44qX768tm7dqi+//FJ169ZV586dJUndu3fXmjVr1Lt3b7344osKCgrS6dOntXTpUvn7++uFF17IMZYVK1ZIku04OXnppZe0ePFiffHFF3r99ddzveo9q1ZctWqVrFarrYZxda3nTF3doUMHams3rK0BT0dzBQAcsHLlShkMhtueuEo3Toy3b9+uhIQEJSYmasmSJZo+fbo+/PBDSTe+Efb444/r73//+22PU7VqVc2dO1czZszQnDlz5Ovrq2bNmmnp0qVq3bq13dzp06dr/vz5tlteSVJoaKimTJmitm3b2uZ16tRJP/zwgxITE7V161aXnACaTCbNnj1b8fHx+uyzzzRlyhT5+voqODhY77//vtOFVLVq1dSjRw998sknGj9+vIKCgtSkSZN8xxscHKw5c+Zo+vTpiouLkyRVrFhR0dHReuqpp/Tcc8/pu+++s11V8uqrr+qBBx7QokWL9O6778rX11d16tTR5MmTVadOHdtxhw0bpilTpmjChAmKiYlRSEiIevfurQceeEAffvih7Vku1apV0xtvvKFOnTrl6aqTN954Qw888IBWrlypqVOnKjMzUw888ID++c9/3vGzCAAAgLvDbDYrLi5OX375pVasWKElS5bojz/+UKlSpVSvXj116dLFdovXLOHh4Vq+fLlmzpypxMREXbp0SZUqVdLLL7+smJgYmc1m29xHHnlEy5cv16xZs2z/oFyhQgV17txZffr0ydNDxPNi8uTJqlu3rj755BNNmjRJ9957rxo3bqy///3v2W6Te7N+/fqpevXqWrhwoebMmSOLxaIqVapo2LBh6tq1a56ew5GTnM6x76REiRJq06aNlixZooiICNtVC1maNGmiqVOn2motb29vVapUSbGxsapevbp69+6t7777zu5c/2bPP/+8Ll++rCVLlujtt9/WX/7yF7Vr105PPPGEOnbsaDf3ueeeU8WKFTVv3jwtXLhQaWlpqlSpkvr27auePXvavigVHBysRYsWadasWfr000+VkpKi0qVLKzw8XP3798/xeSs//vijDh48qLCwMD344IO55qNq1ap64okn9PXXX+uzzz6zNfhuFR4errZt22r9+vXavXu3GjdurGrVqrm81nOmru7QoYMaN25Mbe1mtTXg6QxWV167BgBwmtVqVWhoqB5++GEtXLiwsMMBAAAAAKDIobYGcLdwk3YAcBNZl52XLFmykCMBAAAAAKBoorYGcLdwWzAAcAMffPCB9uzZI+nGvWUBAAAAAIBjqK0B3E00VwCgkKWmpio+Pl7Xr19XmzZt1KNHj8IOCQAAAACAIoXaGsDdxjNXAAAAAAAAAAAAHMAzVwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAc4PEPtLdarbJYnH/sjNFoyNf+uIE8ugZ5dB1y6Rrk0TXIo2uQR9cgj65RWHk0Gg0yGAx3/XVRtN2uZuK/CcUfa1y8sb7FG+tbvLG+xRvrW7jyWjd5fHPFYrHqjz8uO7Wvl5dRAQEllZp6RRkZFhdH5jnIo2uQR9chl65BHl2DPLoGeXQN8ugahZnHMmVKymSiuQLH5FYz8d+E4o81Lt5Y3+KN9S3eWN/ijfUtfHmtm7gtGAAAAAAAAAAAgANorgAAAAAAAAAAADiA5goAAAAAAAAAAIADaK4AAAAAAAAAAAA4gOYKAAAAAAAAAACAA2iuAAAAAAAAAAAAOIDmCgAAAAAAAAAAgANorgAAAAAAAAAAADiA5goAAAAAAAAAAIADaK4AAAAAAAAAAAA4gOYKAAAAALiJlJQUDR06VOHh4WrQoIF69+6tgwcP2rbv27dP0dHRql+/vh5//HHFxcXZ7W+xWDR9+nQ1a9ZM9erV08svv6zk5OS7/TYAAACAYo/mCgAAAAC4ib59++rYsWOaO3euPvnkE/n4+Kh79+66evWqzp07px49euj+++9XYmKiBg4cqGnTpikxMdG2/8yZM5WQkKBx48Zp2bJlMhgM6tWrl9LT0wvxXQEAAADFj1dhBwAAAAAAkM6dO6egoCD17dtXDz74oCSpX79+ateunQ4cOKAtW7bI29tbo0ePlpeXl4KDg5WcnKy5c+eqffv2Sk9P1/z58zV06FA1b95ckvTuu++qWbNmWrdunVq3bl2Ybw8AAAAoVrhyBQAAAADcQEBAgKZOnWprrPz++++Ki4tThQoVVL16de3YsUNhYWHy8vrzO3Lh4eE6fPiwUlJS9Msvv+jy5csKDw+3bTebzapZs6a2b99+198PAAAAUJxx5QoAAAAAuJl//vOfWr58uby9vTVr1iz5+fnp1KlTCgkJsZtXvnx5SdLJkyd16tQpSVLFihWzzfntt9/yFY+XV/bv5ZlMRrvfUfywxsUb61u8sb7FG+tbvLG+RQfNFQAAAABwM926dVPHjh21dOlS9e/fX0uWLNG1a9fk7e1tN69EiRKSpLS0NF29elWScpxz4cIFp2MxGg0KCCiZ63az2dfpY6NoYI2LN9a3eGN9izfWt3hjfd0fzRUAAAAAcDPVq1eXJI0dO1a7du3SokWL5OPjk+3B9GlpaZIkPz8/+fj4SJLS09Ntf86a4+vrfHFusViVmnol27jJZJTZ7KvU1KvKzLQ4fXy4L9a4eGN9izfWt3hjfYs31rfwmc2+ebpyiOYKAAAAALiBlJQUbdmyRU8//bRMJpMkyWg0Kjg4WGfOnFGFChV05swZu32yfg4MDFRGRoZtrGrVqnZzQkND8xVbRkbuhX1mpuW221H0scbFG+tbvLG+xRvrW7yxvu6PG7cBAAAAgBs4c+aMBg8erB9++ME2dv36de3du1fBwcEKCwvTzp07lZmZadu+ZcsWVatWTWXLllVoaKhKlSqlbdu22banpqZq7969aty48V19LwAAAEBx51bNlZSUFA0dOlTh4eFq0KCBevfurYMHD9q2Dx8+XDVq1LD79dhjjxVixAAAAADgGqGhoWratKnGjBmjHTt2KCkpSa+99ppSU1PVvXt3tW/fXpcuXdLIkSN18OBBrVixQvHx8erTp4+kG89aiY6O1pQpU/T111/rl19+0T/+8Q9VqFBBkZGRhfzuAAAAgOLFrW4L1rdvXxmNRs2dO1d+fn6aNm2aunfvrnXr1snX11f79+9XTEyMoqOjbftkXS4PAAAAAEWZwWDQe++9p3feeUexsbG6ePGiGjdurMWLF6tSpUqSpHnz5mn8+PGKiopSuXLlNGzYMEVFRdmOMWjQIGVkZGjUqFG6du2awsLCFBcXl+0h9wAAAADyx22aK+fOnVNQUJD69u2rBx98UJLUr18/tWvXTgcOHFCtWrV08OBB9evXT+XKlSvkaAEAAADA9fz9/TV69GiNHj06x+1169bVsmXLct3fZDJp6NChGjp0aAFFCAAAAEByo+ZKQECApk6davv5999/V1xcnCpUqKDq1avryJEjSktLU3BwcCFGCQAAAAAAAAAAPJ3bNFdu9s9//lPLly+Xt7e3Zs2aJT8/PyUlJclgMCg+Pl6bNm2S0WhU8+bNFRsbK39//3y9npeXc4+eMZmMdr/DOeTRMQaDQUajIdt41tg995jscmmxWGW1Wu9afMUBn0nXII+uQR5dgzy6Bnl0DfIIAACAvDAac/43oNzOJy0WqywW/g0IuFvcsrnSrVs3dezYUUuXLlX//v21ZMkSHThwQEajUZUrV9bs2bOVnJysSZMmKSkpSfHx8TIanStOjUaDAgJK5ites9k3X/vjBvKYNxaLNcf/sWYpVcrHofnIHZ9J1yCPrkEeXYM8ugZ5dA3yCAAAgNwYjQaVLu132y/k3Ho+mZlp0fnzV2iwAHeJWzZXqlevLkkaO3asdu3apUWLFmnChAnq3r27zGazJCkkJETlypVTx44dtXv3btWrV8+p17JYrEpNveLUviaTUWazr1JTryoz0+LUMUAeHZGVqymLd+r46Yt3nB8U6K8hXRqRWwfxmXQN8uga5NE1yKNrkEfXKMw8ms2+XDEDAABQBBiNBplMRof/DchoNNBcAe4St2mupKSkaMuWLXr66adlMpkkSUajUcHBwTpz5owMBoOtsZIlJCREknTq1CmnmyuSlJGRv6I2M9OS72OAPDri+OmLOnTiQp7nk1vnkDfXII+uQR5dgzy6Bnl0DfIIAACAO3H034AA3D1u87W1M2fOaPDgwfrhhx9sY9evX9fevXsVHByswYMHq2fPnnb77N69W9KfV7oAAAAAAAAAAAAUNLdproSGhqpp06YaM2aMduzYoaSkJL322mtKTU1V9+7d1aZNG23evFmzZs3S0aNH9e2332rEiBFq06aNgoODCzt8AAAAAAAAAADgIdzmtmAGg0Hvvfee3nnnHcXGxurixYtq3LixFi9erEqVKqlSpUqaNm2aZs+erdmzZ8vf319t27ZVbGxsYYcOAAAAAAAAAAA8iNs0VyTJ399fo0eP1ujRo3Pc3qpVK7Vq1eruBgUAAAAAAAAAAHATt7ktGAAAAAAAAAAAQFFAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAFehR0AAMC9GI0GGY0Gh/axWKyyWKwFFBEAAAAAAADgXmiuAABsjEaDSpf2k8nk2IWNmZkWnT9/hQYLAAAAAAAAPALNFQCAjdFokMlk1JTFO3X89MU87RMU6K8hXRrJaDTQXAEAAAAAAIBHoLkCAMjm+OmLOnTiQmGHAQAAAAAAALglHmgPAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4ACaKwAAAAAAAAAAAA6guQIAAAAAAAAAAOAAmisAAAAAAAAAAAAOoLkCAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4ACaKwAAAAAAAAAAAA6guQIAAAAAAAAAAOAAmisAAAAAAAAAAAAOoLkCAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4ACaKwAAAAAAAAAAAA6guQIAAAAAAAAAAOAAmisAAAAAAAAAAAAOoLkCAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4AC3aq6kpKRo6NChCg8PV4MGDdS7d28dPHjQtn3fvn2Kjo5W/fr19fjjjysuLq4QowUAAAAAAAAAAJ7IrZorffv21bFjxzR37lx98skn8vHxUffu3XX16lWdO3dOPXr00P3336/ExEQNHDhQ06ZNU2JiYmGHDQAAAAAAAAAAPIhXYQeQ5dy5cwoKClLfvn314IMPSpL69eundu3a6cCBA9qyZYu8vb01evRoeXl5KTg4WMnJyZo7d67at29fyNEDAAAAAAAAAABP4TZXrgQEBGjq1Km2xsrvv/+uuLg4VahQQdWrV9eOHTsUFhYmL68/+0Hh4eE6fPiwUlJSCitsAAAAAAAAAADgYdzmypWb/fOf/9Ty5cvl7e2tWbNmyc/PT6dOnVJISIjdvPLly0uSTp48qbJlyzr9el5ezvWYTCaj3e9wDnnMO2dzRG4d48mfyfy851v39eQ8uhJ5dA3y6Brk0TXIIwAAAAAUfW7ZXOnWrZs6duyopUuXqn///lqyZImuXbsmb29vu3klSpSQJKWlpTn9WkajQQEBJfMVr9nsm6/9cQN5LDjk1jnkzTG55Ys8ugZ5dA3y6Brk0TXII3Jy/vx5TZ06VRs3btSlS5dUo0YNDR48WI0bN5YkDR8+XCtWrLDbJzAwUJs2bZIkWSwWzZgxQx9//LFSU1PVqFEjvfnmm7rvvvvu+nsBAAAAijO3bK5Ur15dkjR27Fjt2rVLixYtko+Pj9LT0+3mZTVV/Pz8nH4ti8Wq1NQrTu1rMhllNvsqNfWqMjMtTsfg6chj3mXlylHk1jGe/Jl09jMmZf+ceXIeXYk8ugZ5dA3y6BqFmUez2ZcrZtzcq6++qpSUFE2dOlVlypTRkiVL1LNnT61YsULBwcHav3+/YmJiFB0dbdvHZDLZ/jxz5kwlJCTorbfeUmBgoCZPnqxevXpp9erV2b6sBgAAAMB5btNcSUlJ0ZYtW/T000/bigOj0ajg4GCdOXNGFSpU0JkzZ+z2yfo5MDAwX6+dkZG/ojYz05LvY4A8FiRy6xzy5pjc8kUeXYM8ugZ5dA3y6BrkEbdKTk7W5s2btXTpUjVs2FCSNHLkSG3atEmrV6/WgAEDdPDgQfXr10/lypXLtn96errmz5+voUOHqnnz5pKkd999V82aNdO6devUunXru/p+AAAAgOLMbb62dubMGQ0ePFg//PCDbez69evau3evgoODFRYWpp07dyozM9O2fcuWLapWrVq+nrcCAAAAAO4gICBAc+bMUe3atW1jBoNBVqtVFy5c0JEjR5SWlqbg4OAc9//ll190+fJlhYeH28bMZrNq1qyp7du3F3j8AAAAgCdxmytXQkND1bRpU40ZM0bjxo2T2WzW7NmzlZqaqu7du6tEiRKaN2+eRo4cqVdeeUU//fST4uPjNWbMmMIOHQAAAADyzWw22644ybJmzRodPXpUTZs2VVJSkgwGg+Lj47Vp0yYZjUY1b95csbGx8vf316lTpyRJFStWtDtG+fLl9dtvv+UrNi+v7N/Ly7rFHLeaK75Y4+KN9S3eWN+iz9m1Y82LPv7+Fh1u01wxGAx677339M477yg2NlYXL15U48aNtXjxYlWqVEmSNG/ePI0fP15RUVEqV66chg0bpqioqEKOHAAAAABcb+fOnRoxYoRatGihiIgITZ8+XUajUZUrV9bs2bOVnJysSZMmKSkpSfHx8bp69aokZXu2SokSJXThwgWn4zAaDQoIKJnrdmef14aigzUu3ljf4o319TysefHBWro/t2muSJK/v79Gjx6t0aNH57i9bt26WrZs2d0NCgAAAADusvXr12vIkCGqV6+epk6dKkkaOHCgunfvLrPZLEkKCQlRuXLl1LFjR+3evVs+Pj6Sbjx7JevPkpSWliZfX+eLc4vFqtTUK9nGTSajzGZfpaZeVWYmzw8qjljj4o31Ld5Y36Ivaw0dxZoXffz9LXxms2+erhxyq+YKAAAAAHi6RYsWafz48YqMjNSUKVNsV6IYDAZbYyVLSEiIJOnUqVO224GdOXNGVatWtc05c+aMQkND8xVTRkbuhX1mpuW221H0scbFG+tbvLG+noc1Lz5YS/fHjdsAAAAAwE0sWbJEY8eOVZcuXfTee+/Z3eJr8ODB6tmzp9383bt3S5KqV6+u0NBQlSpVStu2bbNtT01N1d69e9W4ceO78wYAAAAAD8GVKwAAAADgBg4fPqwJEyYoMjJSffr0UUpKim2bj4+P2rRpo759+2rWrFlq3bq1Dh8+rH/9619q06aNgoODJUnR0dGaMmWKypQpo8qVK2vy5MmqUKGCIiMjC+ttAQAAAMUSzRUAAAAAcANr167V9evXtW7dOq1bt85uW1RUlCZOnKhp06Zp9uzZmj17tvz9/dW2bVvFxsba5g0aNEgZGRkaNWqUrl27prCwMMXFxWV7yD0AAACA/KG5AgAAAABuICYmRjExMbed06pVK7Vq1SrX7SaTSUOHDtXQoUNdHR4AAACAm/DMFQAAAAAAAAAAAAfQXAEAAAAAAAAAAHAAtwUDALiEyWTM8edbx7NYLFZZLNYCjwsAAAAAAABwNZorAIB8Ke1fQhaLVWazb47bcxvPzLTo/PkrNFgAAAAAAABQ5NBcAQDkSynfe2Q0GjRl8U4dP30xT/sEBfprSJdGMhoNNFcAAAAAAABQ5NBcAQC4xPHTF3XoxIXCDgMAAAAAAAAocDzQHgAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABNFcAAAAAAAAAAAAcQHMFAAAAAAAAAADAATRXAAAAAAAAAAAAHEBzBQAAAAAAAAAAwAE0VwAAAAAAAAAAABzgVdgB3Oz8+fOaOnWqNm7cqEuXLqlGjRoaPHiwGjduLEkaPny4VqxYYbdPYGCgNm3aVBjhAgAAAAAAAAAAD+RWzZVXX31VKSkpmjp1qsqUKaMlS5aoZ8+eWrFihYKDg7V//37FxMQoOjrato/JZCrEiAEAAAAAAAAAgKdxm9uCJScna/PmzXrzzTfVuHFjPfDAAxo5cqQCAwO1evVqZWZm6uDBg6pTp47KlStn+1WmTJnCDh0AAAAAAAAAAHgQt2muBAQEaM6cOapdu7ZtzGAwyGq16sKFCzpy5IjS0tIUHBxciFECAAAAAAAAAABP5za3BTObzWrevLnd2Jo1a3T06FE1bdpUSUlJMhgMio+P16ZNm2Q0GtW8eXPFxsbK39+/kKIGAAAAAAAAAACexqXNlcuXL8tkMsnHxyffx9q5c6dGjBihFi1aKCIiQtOnT5fRaFTlypU1e/ZsJScna9KkSUpKSlJ8fLyMRucvwvHycm5fk8lo9zucQx7zztkckVvHePJn8m6/Z0/MsaM8+fPoSuTRNcija5DH4s2VNREAAAAA9+V0c2XTpk36+eef1a9fP0nSpEmTtHDhQhkMBnXq1EkjR450Oqj169dryJAhqlevnqZOnSpJGjhwoLp37y6z2SxJCgkJUbly5dSxY0ft3r1b9erVc+q1jEaDAgJKOh2rJJnNvvnaHzeQx4JDbp1D3goeOc47cuUa5NE1yKNrkMeiryBrIgAAAADuzanmyoYNG9SvXz9VrVpV/fr1044dO7RgwQJVrVpVgYGBWrRokapVq6bOnTs7fOxFixZp/PjxioyM1JQpU+Tt7S3pxvNXshorWUJCQiRJp06dcrq5YrFYlZp6xal9TSajzGZfpaZeVWamxaljgDw6IitXjiK3jvHkz6SznzFneWKOHeXJn0dXIo+uQR5dozDzaDb7csWMixRkTQQAAADA/TnVXMkqGhYuXChJ+uKLL2Q0GrVgwQJVrlxZ/fr1U2JiosOFxJIlSzR27Fh17dpVI0aMsLvV1+DBg3X+/HnFxcXZxnbv3i1Jql69ujNvwyYjI39FbWamJd/HAHksSOTWOeSt4JHjvCNXrkEeXYM8ugZ5LNoKqiYCAAAAUDQ49bW1ffv2qVOnTgoMDJQkbd68WSEhIapcubIkqVmzZvr1118dOubhw4c1YcIERUZGqk+fPkpJSdHZs2d19uxZXbx4UW3atNHmzZs1a9YsHT16VN9++61GjBihNm3aKDg42Jm3AQAAAABOKYiaCAAAAEDR4dSVKxkZGSpVqpQk6cSJEzp69Ki6detm226xWOTl5dih165dq+vXr2vdunVat26d3baoqChNnDhR06ZN0+zZszV79mz5+/urbdu2io2NdeYtAAAAAIDTCqImAgAAAFB0OHW2HxQUpL1790q60RQxGAxq1qyZbfuGDRsUFBTk0DFjYmIUExNz2zmtWrVSq1atHA8YAAAAAFyoIGoiAAAAAEWHU82VVq1aadasWTpx4oR++OEHBQYGKjw8XEePHtW4ceO0efNmvf76666OFQAAAADcAjURAAAA4Nmcaq7069dP58+fV2JioipWrKjx48fLy8tL58+f1/fff68XXnhB0dHRro4VAAAAANwCNREAAADg2ZxqrhiNRo0aNUqjRo2yGw8NDdWGDRtsD3UEAAAAgOKImggAAADwbEZndnrppZe0ZcuWbOPe3t4KDAzU+vXr9dRTT+U7OAAAAABwR9REAAAAgGfL05UrV69e1blz52w///DDD4qMjNR9992Xba7FYtH333+vkydPui5KAAAAAChE1EQAAAAAbpan5sqlS5fUpk0bXb161TY2YcIETZgwIdd96tevn+/gAAAAAMAdUBMBAAAAuFmemivlypXTG2+8oW3btslqterTTz9Vo0aNVKVKlWxzjUaj/vKXv6hTp04uDxYAAAAACgM1EQAAAICb5fmB9s8995yee+45STcuge/Ro4datGhRUHEBAAAAgFu5GzXR+fPnNXXqVG3cuFGXLl1SjRo1NHjwYDVu3FiStG/fPo0fP14///yzSpcura5du6pnz562/S0Wi2bMmKGPP/5YqampatSokd58880cb18GAAAAwHlOPdD+m2++obECAAAAwGMVVE306quv6scff9TUqVP1ySefqFatWurZs6cOHTqkc+fOqUePHrr//vuVmJiogQMHatq0aUpMTLTtP3PmTCUkJGjcuHFatmyZDAaDevXqpfT0dJfHCgAAAHiyPF+5ciur1aqtW7fq7NmzslgsOc7J+lYXAAAAABQ3rq6JkpOTtXnzZi1dulQNGzaUJI0cOVKbNm3S6tWr5ePjI29vb40ePVpeXl4KDg5WcnKy5s6dq/bt2ys9PV3z58/X0KFD1bx5c0nSu+++q2bNmmndunVq3bp1vt8zAAAAgBucaq4kJyerV69eOnbsWI7brVarDAYDzRUAAAAAxVJB1EQBAQGaM2eOateubRszGAyyWq26cOGCfv75Z4WFhcnL688yLjw8XB988IFSUlJ04sQJXb58WeHh4bbtZrNZNWvW1Pbt22muAAAAAC7kVHNlypQpOnbsmNq3b686derI29vb1XEBAAAAgNsqiJrIbDbbrjjJsmbNGh09elRNmzbVu+++q5CQELvt5cuXlySdPHlSp06dkiRVrFgx25zffvstX7F5eWW/o7TJZLT7HcUPa1y8sb7FG+tb9Dm7dqx50cff36LDqebK1q1b1alTJ73xxhuujgcAAAAA3N7dqIl27typESNGqEWLFoqIiNBbb72VrYlTokQJSVJaWpquXr0qSTnOuXDhgtNxGI0GBQSUzHW72ezr9LFRNLDGxRvrW7yxvp6HNS8+WEv351RzJSMjQ3/9619dHQsAAAAAFAkFXROtX79eQ4YMUb169TR16lRJko+PT7YH06elpUmS/Pz85OPjI0lKT0+3/Tlrjq+v88W5xWJVauqVbOMmk1Fms69SU68qMzPnZ86gaGONizfWt3hjfYu+rDV0FGte9PH3t/CZzb55unLIqeZKrVq1tGfPHnXo0MGZ3QEAAACgSCvImmjRokUaP368IiMjNWXKFNuVKBUqVNCZM2fs5mb9HBgYqIyMDNtY1apV7eaEhobmK6aMjNwL+8xMy223o+hjjYs31rd4Y309D2tefLCW7s+pG7cNGjRIn332mdauXSur1erqmAAAAADArRVUTbRkyRKNHTtWXbp00XvvvWd3i6+wsDDt3LlTmZmZtrEtW7aoWrVqKlu2rEJDQ1WqVClt27bNtj01NVV79+5V48aNXRYjAAAAACevXJk/f77uvfdexcbGysfHRwEBATIYDHZzDAaD1q9f75IgAQAAAMCdFERNdPjwYU2YMEGRkZHq06ePUlJSbNt8fHzUvn17zZs3TyNHjtQrr7yin376SfHx8RozZoykG89aiY6O1pQpU1SmTBlVrlxZkydPVoUKFRQZGemaNw4AAABAkpPNlaSkJBmNRlWsWNE2duu3tbiiBQAAAEBxVRA10dq1a3X9+nWtW7dO69ats9sWFRWliRMnat68eRo/fryioqJUrlw5DRs2TFFRUbZ5gwYNUkZGhkaNGqVr164pLCxMcXFx2R5yDwAAACB/nGqufPPNN66OAwAAAACKjIKoiWJiYhQTE3PbOXXr1tWyZcty3W4ymTR06FANHTrU1eEBAAAAuIlTz1y5VXp6uiwWHq4DAAAAwDNREwEAAACexenmyvnz5/Wvf/1LTZs2Vf369bVt2zbt2LFDMTExOnz4sCtjBAAAAAC3Q00EAAAAeC6nmivnz59Xx44dtWTJEvn6+truJXzhwgVt3LhRXbp00bFjx1waKAAAAAC4C2oiAAAAwLM51VyZMWOGTpw4oQULFmjZsmW2QqJFixaaM2eOrly5opkzZ7o0UAAAAABwF9REAAAAgGdzqrnyzTff6IUXXlCTJk1kMBjstj322GPq2LGjtm3b5pIAAQAAAMDdUBMBAAAAns2p5sqZM2cUGhqa6/bg4GCdPXvW6aAAAAAAwJ1REwEAAACezanmStmyZXXixIlctyclJSkgIMDpoAAAAADAnVETAQAAAJ7NqebKY489poSEBB0/fjzbtv/9739avny5mjZtmu/gAAAAAMAdURMBAAAAns3LmZ0GDBigDRs2KCoqSo0aNZLBYFBCQoLi4+P13XffqVSpUurXr5+rYwUAAAAAt0BNBAAAAHg2p65cCQwMVEJCgho0aKBNmzbJarVq7dq12rhxo+rXr6+PPvpIQUFBro4VAAAAANwCNREAAADg2Zy6ckWSgoKCNGfOHF28eFFHjhyRxWJRUFCQypYt68r4AAAAAMAtURMBAAAAnsvp5koWf39/1alTxxWxAAAAAECRQ00EAAAAeJ48NVeGDx+uF198UfXq1bP9fCcGg0ETJkzIX3QAAAAA4AaoiQAAAADcLE/NlZUrV+qRRx6xFRIrV6684z4UEgAAAACKC2oiAAAAADfLU3Pl66+/VpkyZex+BgAAAABPQU0EAAAA4GZ5aq5Urlw5x59TU1NVqlQpGY1GSdKBAwdUrlw5lS5d2rVRAgAAAEAhoiYCAAAAcDOjszu+++67atasmY4ePWobmzt3rpo2bar58+e7JDgAAAAAcFfURAAAAIDnytOVK7davny5PvjgAzVq1EglSpSwjT/33HP6/fffNXnyZFWsWFFPP/20ywIFAAAAAHdBTQQAAAB4NqeuXFmyZIkeffRRLV68WBUrVrSNP/LII5o/f76aNGmiBQsWuCxIAAAAAHAn1EQAAACAZ3OquZKcnKyWLVvmuj0yMlKHDh1yOigAAAAAcGfURAAAAIBnc6q54uvrq7Nnz+a6/dy5czKZTE4HBQAAAADujJoIAAAA8GxONVcaNWqkJUuW5FhM/PHHH0pISFDDhg3zHRwAAAAAuCNqIgAAAMCzOfVA+969e6tz58569tln1a5dOz3wwAMyGAz69ddf9fnnn+v8+fPq16+fq2MFAAAAALdATQQAAAB4NqeaK3Xq1NHMmTP15ptv6sMPP7TbVqFCBf373/9W3bp1XREfAAAAALgdaiIAAADAsznVXJGkZs2a6ZtvvtHevXt1/PhxZWRkKCgoSLVq1eLewgAAAACKPWoiAAAAwHM53VzJUrNmTdWsWdMVsQAAAABAkUNNBAAAAHiePDVXZsyYoZYtWyokJMT2850YDAb1798/f9EBAAAAgBugJgIAAABwszw3V+677z4KCQAAAAAeiZoIAAAAwM3y1FyJi4vTX//6V9vPCxcuLLCAAAAAAMDdUBMBAAAAuFmemisjRozQq6++qnbt2kmSTp48qcaNGysoKKhAgwMAAAAAd0BNBAAAAOBmxrxM+uOPP3Tp0iXbz8OHD9euXbsKKiYAAAAAcCvURAAAAABulqcrVypVqqSZM2fq+PHjKlmypKxWq7766isdOXIk1324vzAAAACA4oKaCAAAAMDN8tRciY2N1WuvvaYFCxZIulEkfPXVV/rqq69y3YdCAgAAAEBxQU0EAAAA4GZ5aq5ERkYqPDxcR44cUXp6urp166aYmBg98sgjBR0fAAAAABQ6aiIAAAAAN8tTc6VFixZ2D2+sVKmSKlWqpIceeqhAgwMAAAAAd0BNBAAAAOBmTj3Q/uTJk/L19S2woAAAAADAnVATAQAAALiZUw+0l6R169YpOTk51324vzAAAACA4oKaCAAAAMDNeKA9AAAAANwBNREAAACAm+WpufL000/z8EYAAAAAHouaCAAAAMDN8tRckaSAgAAFBARIksLCwvTwww/z8EYAAAAAHoOaCAAAAECWPDdXbvbRRx/Z/nz48GGdOHFCtWrVkq+vr4xGo7y9vV0WIAAAAAC4G2oiAAAAwLMZnd1x165datu2rZ555hn16tVLv/zyi/73v//p8ccf15o1a1wZIwAAAAC4HWoiAAAAwHM51Vw5cOCAevTood9//13PPvusbdzX11eZmZkaMmSItm/f7vBxz58/rzfeeEOPPfaYGjZsqE6dOmnHjh227fv27VN0dLTq16+vxx9/XHFxcc6EDwAAAAD5UlA1EQAAAICiwanmyvvvvy8/Pz+tXr1ar732mqxWqySpQYMGWrVqlcqVK6e5c+c6fNxXX31VP/74o6ZOnapPPvlEtWrVUs+ePXXo0CGdO3dOPXr00P3336/ExEQNHDhQ06ZNU2JiojNvAQAAAACcVlA1EQAAAICiwalnrvzwww/q0qWLypYtq3PnztltCwwMVMeOHbV48WKHjpmcnKzNmzdr6dKlatiwoSRp5MiR2rRpk1avXi0fHx95e3tr9OjR8vLyUnBwsJKTkzV37ly1b9/embcBAAAAAE4piJoIAAAAQNHh1JUrly9fVmBgYK7b7733XqWmpjp0zICAAM2ZM0e1a9e2jRkMBlmtVl24cEE7duxQWFiYvLz+7AeFh4fr8OHDSklJcfxNAAAAAICTCqImAgAAAFB0ONVcCQoK0u7du3PdvnXrVlWuXNmhY5rNZjVv3lze3t62sTVr1ujo0aNq2rSpTp06pQoVKtjtU758eUnSyZMnHXotAAAAAMiPgqiJAAAAABQdTt0WrE2bNpo1a5aaNWumsLAwSTeuMrFYLJo3b57WrVunPn365CuwnTt3asSIEWrRooUiIiL01ltv2TVeJKlEiRKSpLS0tHy9lpeXUz0mmUxGu9/hHPKYd87miNw6xpM/k3f7PXtijh3lyZ9HVyKPrkEeXYM8Fg93oyYCAAAA4L6caq706tVL//3vf/X3v/9dZrNZBoNBb775ps6fP68LFy4oNDQ0X4XE+vXrNWTIENWrV09Tp06VJPn4+Cg9Pd1uXlZTxc/Pz+nXMhoNCggo6fT+kmQ2++Zrf9xAHgsOuXUOeSt45DjvyJVrkEfXII+uQR6LtoKuiQAAAAC4N6eaK97e3vrwww8VHx+vL774Qunp6frtt98UFBSkzp07q1evXvL1da5YXLRokcaPH6/IyEhNmTLFdrVKhQoVdObMGbu5WT/f7l7Hd2KxWJWaesWpfU0mo8xmX6WmXlVmpsXpGDwdecy7rFw5itw6xpM/k85+xpzliTl2lCd/Hl2JPLoGeXSNwsyj2ezLFTMuUpA1EQAAAAD351RzRZLuuecevfLKK3rllVdcFsySJUs0duxYde3aVSNGjJDR+GfhFxYWpoSEBGVmZspkMkmStmzZomrVqqls2bL5et2MjPwVtZmZlnwfA+SxIJFb55C3gkeO845cuQZ5dA3y6BrksegriJoIAAAAQNHgdHNFki5duqTvv/9ex48fl7e3typVqqSmTZvKx8fH4WMdPnxYEyZMUGRkpPr06aOUlBTbNh8fH7Vv317z5s3TyJEj9corr+inn35SfHy8xowZk5+3AAAAAABOc2VNBAAAAKDocLq5snbtWr3xxhtKTU2V1WqVdOMBjiVLltS//vUvPfPMMw4f7/r161q3bp3WrVtnty0qKkoTJ07UvHnzNH78eEVFRalcuXIaNmyYoqKinH0LAAAAAOA0V9dEAAAAAIoOp5orP/74owYPHix/f38NGjRIDz74oCwWi5KSkrRo0SINGzZMQUFBqlu3bp6PGRMTo5iYmNvOqVu3rpYtW+ZMyAAAAADgMgVREwEAAAAoOpxqrsyaNUulS5fWZ599Zve8k5YtW6pTp05q166d5s2bp+nTp7ssUAAAAABwF9REAAAAgGcz3nlKdv/3f/+njh075vgg+bJly6pjx47auXNnvoMDAAAAAHdETQQAAAB4NqeaK1euXMmxiMhSpkwZXbx40emgAAAAAMCdURMBAAAAns2p5kpQUJC2bt2a6/atW7eqUqVKTgcFAAAAAO6MmggAAADwbE41V9q0aaN169ZpxowZSk9Pt42np6drxowZWr9+vZ555hmXBQkAAAAA7oSaCAAAAPBsTj3QvlevXvr22281Y8YMzZ8/X1WrVpXBYFBycrKuXLmimjVrqnfv3q6OFQAAAADcAjURAAAA4Nmcaq54e3tr4cKFiouL03/+8x8dOXJEVqtVVatWVatWrdSzZ0/5+Pi4OlYAAAAAcAvURAAAAIBnc6q5Ikk+Pj7q37+/+vfv78p4AAAAAKBIoCYCAAAAPJfDz1zZs2dPjuNff/21vvnmm3wHBAAAAADujJoIAAAAQJ6bK3/88Yeio6PVoUMHpaamZtu+aNEi9e/fXy+++KJOnz7t0iABAAAAoLBREwEAAADIkqfmypUrV9StWzft2LFDYWFhunr1arY5Xbp00SOPPKJdu3bp5ZdfVlpamsuDBQAAAIDCQE0EAAAA4GZ5aq7Ex8frwIED+te//qX4+HgFBgZmm/Pkk08qLi5Or776qg4dOqSPPvrI5cECAAAAQGGgJgIAAABwszw1V9auXavmzZvrhRdeuOPc3r17q2HDhvryyy/zHRwAAAAAuANqIgAAAAA3y1NzJTk5WU2aNMnzQR9//HEdPnzY6aAAAAAAwJ1QEwEAAAC4WZ6aK0ajUT4+Pnk+aOnSpWUwGJwOCgAAAADcCTURAAAAgJvlqblSqVIl/frrr3k+6MGDB3O8BzEAAAAAFEXURAAAAABulqfmSrNmzfTZZ5/p8uXLd5ybmpqqVatWqUGDBvkODgAAAADcATURAAAAgJvlqbny4osvKi0tTX369NG5c+dynZeSkqL+/fsrNTVVXbp0cVmQAAAAAFCYqIkAAAAA3MwrL5OqVq2qkSNH6p///KdatGihZ555Rg0bNlT58uWVmZmps2fPaufOnfrqq690+fJlvf7666pVq1ZBxw4AAAAAdwU1EQAAAICb5am5IkkdOnRQ+fLl9cYbb+iTTz5RYmKi3Xar1aoqVapo8uTJioiIcHmgAAAAAFCYqIkAAAAAZMlzc0WSmjdvro0bN2rr1q368ccfdebMGZlMJgUGBuqhhx5S3bp1CypOAAAAACh01EQAAAAAJAebK5JkMBjUpEkTNWnSpCDiAQAAAAC3drdqopkzZ2rLli366KOPbGPDhw/XihUr7OYFBgZq06ZNkiSLxaIZM2bo448/Vmpqqho1aqQ333xT9913X4HGCgAAAHgah5srAICixWg0yGg05GmuyWQs4GgAAEBefPjhh5o+fbrCwsLsxvfv36+YmBhFR0fbxkwmk+3PM2fOVEJCgt566y0FBgZq8uTJ6tWrl1avXi1vb++7Fj8AAABQ3NFcAYBizGg0qHRpP5omAAAUEadPn9bIkSO1c+dOVatWzW5bZmamDh48qH79+qlcuXLZ9k1PT9f8+fM1dOhQNW/eXJL07rvvqlmzZlq3bp1at259V94DAAAA4AlorgBAMWY0GmQyGTVl8U4dP33xjvMbhpbXS8/UvAuRAQCAnOzZs0f33nuvVq1apX//+986ceKEbduRI0eUlpam4ODgHPf95ZdfdPnyZYWHh9vGzGazatasqe3bt9NcAQAAAFyI5goAeIDjpy/q0IkLd5wXVL7UXYgGAADkJiIiQhERETluS0pKksFgUHx8vDZt2iSj0ajmzZsrNjZW/v7+OnXqlCSpYsWKdvuVL19ev/32W77i8vLKfhVs1pWxXCFbfLHGxRvrW7yxvkWfs2vHmhd9/P0tOvLUXFmwYIEee+yxXL8hBQAAAADFmTvURAcOHJDRaFTlypU1e/ZsJScna9KkSUpKSlJ8fLyuXr0qSdmerVKiRAlduHDnL1nkxmg0KCCgZK7bzWZfp4+NooE1Lt5Y3+KN9fU8rHnxwVq6vzw1V6ZPny6z2WwrJFq0aKERI0aoRYsWBRocAAAAALgDd6iJBg4cqO7du8tsNkuSQkJCVK5cOXXs2FG7d++Wj4+PpBvPXsn6sySlpaXJ19f54txisSo19Uq2cZPJKLPZV6mpV5WZaXH6+HBfrHHxxvoWb6xv0Ze1ho5izYs+/v4WPrPZN09XDuWpuWI0GrVlyxY99dRTKlmypE6cOGH7VhQAAAAAFHfuUBMZDAZbYyVLSEiIJOnUqVO224GdOXNGVatWtc05c+aMQkND8/XaGRm5F/aZmZbbbkfRxxoXb6xv8cb6eh7WvPhgLd1fnporzZo10+rVq/XFF19IunFSP3ToUA0dOjTXfQwGg/bu3euaKAEAAACgELlDTTR48GCdP39ecXFxtrHdu3dLkqpXr64qVaqoVKlS2rZtm625kpqaqr179yo6OtplcQAAAADIY3Nl3LhxqlixopKSkpSenq4dO3aoWrVqKlu2bEHHBwAAAACFzh1qojZt2qhv376aNWuWWrdurcOHD+tf//qX2rRpY7tdWXR0tKZMmaIyZcqocuXKmjx5sipUqKDIyMi7FicAAADgCfLUXClVqpRee+0128+hoaHq27ev2rZtW2CBAQAAAIC7cIea6IknntC0adM0e/ZszZ49W/7+/mrbtq1iY2NtcwYNGqSMjAyNGjVK165dU1hYmOLi4rI95B4AAABA/uSpuXKrhQsX2r4ZBQAAAACe5m7URBMnTsw21qpVK7Vq1SrXfUwm0x1vVwYAAAAg/5xqrjz00EOSpE8//VRr1qzR8ePH5e3trYoVK+qpp57Ss88+69IgAQAAAMCdUBMBAAAAns2p5orVatWgQYO0fv16Wa1W+fv7y2KxaN++fdqwYYP+85//aObMma6OFQAAAADcAjURAAAA4NmMzuy0aNEirVu3Tm3bttW3336r7du3a+fOndqwYYOeffZZbdiwQUuXLnV1rAAAAADgFqiJAAAAAM/mVHMlMTFRDz30kN5++20FBgbaxitWrKhJkybpoYceUmJiosuCBAAAAAB3Qk0EAAAAeDanmiuHDx9WZGRkrtuffPJJ/frrr04HBQAAAADujJoIAAAA8GxONVe8vLx05cqVXLdfuXJFBoPB6aAAAAAAwJ1REwEAAACezanmSu3atbVixQqlpaVl23b16lWtWLFCNWvWzHdwAAAAAOCOqIkAAAAAz+ZUc+Xll19WcnKy/va3v2n16tX65Zdf9Msvv+jzzz9Xhw4ddPToUfXo0cPVsQIAAACAW6AmAgAAADyblzM7NW/eXMOGDdPUqVM1dOhQu21Go1H/+Mc/FBER4ZIAAQAAAMDdUBMBAAAAns2p5op045takZGRWr9+vY4ePSqr1aqqVasqMjJSVapUcWWMAAAAAOB2qIkAAAAAz+V0c0WSqlSpwqXuAAAAADwWNREAAADgmZx65goAAAAAAAAAAICnorkCAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4ACnmitLly7VkSNHXBwKAAAAABQN1EQAAACAZ3OquTJlyhR9/vnnro4FAAAAAIoEaiIAAADAsznVXDEajQoICHB1LAAAAABQJFATAQAAAJ7NqeZKz549NWfOHH333XeyWCyujgkAAAAA3Bo1EQAAAODZvJzZadeuXbp06ZJ69+4tb29vBQQEyGQy2c0xGAxav369S4IEAAAAAHdCTQQAAAB4NqeaK0lJSSpdurRKly5tG7NarXZzbv0ZAAAAAIoLaiIAAADAsznVXPnmm29cHQcAAAAAFBnURAAAAIBnc+qZK7dKT0/nPsMAAAAAPBY1EQAAAOBZnG6unD9/Xv/617/UtGlT1a9fX9u2bdOOHTsUExOjw4cPuzJGAAAAAHA71EQAAACA53KquXL+/Hl17NhRS5Yska+vr+1ewhcuXNDGjRvVpUsXHTt2zKWBAgAAAIC7oCYCAAAAPJtTzZUZM2boxIkTWrBggZYtW2YrJFq0aKE5c+boypUrmjlzpksDBQAAAAB3QU0EAAAAeDanmivffPONXnjhBTVp0kQGg8Fu22OPPaaOHTtq27ZtLgkQAAAAANwNNREAAADg2Zxqrpw5c0ahoaG5bg8ODtbZs2edDgoAAAAA3Bk1EQAAAODZnGqulC1bVidOnMh1e1JSkgICApwOCgAAAADcGTURAAAA4Nmcaq489thjSkhI0PHjx7Nt+9///qfly5eradOm+Qps5syZ6tq1q93Y8OHDVaNGDbtfjz32WL5eBwAAAAAcdTdqIgAAAADuy8uZnQYMGKANGzYoKipKjRo1ksFgUEJCguLj4/Xdd9+pVKlS6tevn9NBffjhh5o+fbrCwsLsxvfv36+YmBhFR0fbxkwmk9OvAwAAAADOKOiaCAAAAIB7c+rKlcDAQCUkJKhBgwbatGmTrFar1q5dq40bN6p+/fr66KOPFBQU5PBxT58+rVdeeUXTpk1TtWrV7LZlZmbq4MGDqlOnjsqVK2f7VaZMGWfeAgAAAAA4raBqIgAAAABFg1NXrkhSUFCQ5syZo4sXL+rIkSOyWCwKCgpS2bJlnQ5mz549uvfee7Vq1Sr9+9//truH8ZEjR5SWlqbg4GCnjw8AAAAArlIQNREAAACAosHp5kqWjIwMWa1WeXl5qUSJEvk6VkREhCIiInLclpSUJIPBoPj4eG3atElGo1HNmzdXbGys/P398/W6Xl5OXcAjk8lo9zucQx7zztkckVvHFKfPpLu/B3ePzx0Up89jYSKPrkEeXYM8Fj+urIkAAAAAFA1ON1d2796tt99+Wzt37pTVapUkGY1GPfrooxo5cqTuu+8+lwUpSQcOHJDRaFTlypU1e/ZsJScna9KkSUpKSlJ8fLyMRueKU6PRoICAkvmKzWz2zdf+uIE8Fhxy6xzyVvDIcd6RK9cgj65BHl2DPBZ9d7smAgAAAOA+nGqu7NmzR127dlV6erqaNWum+++/XxaLRb/++qu+++47vfjii1q+fLmqVKniskAHDhyo7t27y2w2S5JCQkJUrlw5dezYUbt371a9evWcOq7FYlVq6hWn9jWZjDKbfZWaelWZmRanjgHy6IisXDmK3DqmOH0mnf3M3C3FIccFrTh9HgsTeXQN8ugahZlHs9mXK2ZcpDBqIgAAAADuw6nmyvTp0+Xt7a2EhASFhobabdu1a5d69OihqVOn6t1333VJkJJkMBhsjZUsISEhkqRTp0453VyRpIyM/BW1mZmWfB8D5LEgkVvnkLeCR47zjly5Bnl0DfLoGuSxaCuMmggAAACA+3Dqa2s7duxQ165dsxURklS/fn1FR0dr8+bN+Q7uZoMHD1bPnj3txnbv3i1Jql69uktfCwAAAABupzBqIgAAAADuw6nmSk5XkdwsKChIGRkZTgeVkzZt2mjz5s2aNWuWjh49qm+//VYjRoxQmzZtFBwc7NLXAgAAAIDbKYyaCAAAAID7cKq50rx5c3322WdKT0/PcfuaNWvUtGnTfAV2qyeeeELTpk3TV199pbZt22rkyJFq2bKlJkyY4NLXAQAAAIA7KYyaCAAAAID7yNMzV7Zv3273c4sWLTRq1Ch16dJFvXv31gMPPCCj0aijR49q0aJFOnDggN577718BTZx4sRsY61atVKrVq3ydVwAAAAAcFRh1EQAAAAA3Feemitdu3aVwWCwG7Nardq9e7cGDRqUbVySXnrpJe3bt89FYQIAAABA4aEmAgAAAHCzPDVX+vfvn62QAAAAAABPQU0EAAAA4GZ5aq4MHDiwoOMAAAAAALdFTQQAAADgZk490B4AAAAAAAAAAMBT5enKlVtdunRJ77zzjjZu3KjTp0/b7il8M4PBoL179+Y7QAAAAABwN9REAAAAgGdzqrny9ttva/ny5Spfvrzq168vk8nk6rgAAAAAwG1REwEAAACezanmyoYNG/Tkk09q+vTpMhq5sxgAAAAAz0JNBAAAAHg2p6qAS5cuqXnz5hQRAAAAADwSNREAAADg2ZyqBBo2bKg9e/a4OhYAAAAAKBKoiQAAAADP5lRzZejQoVqzZo3i4+N19uxZV8cEAAAAAG6NmggAAADwbE49c6Vy5cqqUaOGJk6cqIkTJ+Y4x2AwaO/evfkKDgAAAADcETURAAAA4Nmcaq6MHz9eP/zwg8qUKaP77rtPXl5OHQYAAAAAiiRqIgAAAMCzOVUBbNiwQS1atNC0adMoIgAAAAB4HGoiAAAAwLM59cyV9PR0Pf744xQRAAAAADwSNREAAADg2ZxqrjRo0EB79uxxdSwAAAAAUCRQEwEAAACezanmyuDBg/XFF19o/vz5On36tDIzM10dFwAAAAC4LWoiAAAAwLM5dQ3766+/LqPRqMmTJ2vy5Mk5zjEYDNq7d2++ggMAAAAAd0RNBAAAAHg2p5orpUuXVunSpV0cCgAAAAAUDdREAAAAgGdzqrny0UcfuToOAAAAACgyqIkAAAAAz+bUM1cAAAAAAAAAAAA8lVNXrgwfPvyOcwwGgyZMmODM4QEAAADArVETAQAAAJ7NqebKypUrc91mMBjk7e2tEiVKUEgAAAAAKJaoiQAAAADP5lRz5euvv842lpmZqbNnz2rlypXaunWrlixZku/gAAAAAMAdURMBAAAAns2p5krlypVzHK9ataoaNWqkmJgYvfPOO5o0aVK+ggMAAAAAd0RNBAAAAHi2AnmgfUREhL799tuCODQAAAAAuD1qIgAAAKB4K5DmytmzZ3Xt2rWCODQAAAAAuD1qIgAAAKB4c+q2YCdPnsxx/Nq1a/r5558VHx+vWrVq5SswAAAAAHBX1EQAAACAZ3OquRIRESGDwZDrdqPRqAEDBjgdFAAAAAC4M2oiAAAAwLM51Vx57rnnciwkTCaTypcvr6ioKFWpUiXfwQEAAACAO6ImAgAAADybU82ViRMnujoOAAAAACgyqIkAAAAAz1YgD7QHAAAAAAAAAAAorvJ05cqMGTOcOjj3GAYAAABQHFATAQAAALiZy5srN993mEICAAAAQHFATQQAAADgZnlqrixcuPCOc6xWqxYvXqyvvvpKktS8efP8RQYAAAAAboKaCAAAAMDN8tRceeihh267/eTJkxoxYoS2bdsmf39/vf7662rfvr1LAgQAAACAwlYYNdHMmTO1ZcsWffTRR7axffv2afz48fr5559VunRpde3aVT179rRtt1gsmjFjhj7++GOlpqaqUaNGevPNN3XfffflKxYAAAAA9vL9QPuEhAS1bdtWW7du1aOPPqrVq1fTWAEAAADgMQqiJvrwww81ffp0u7Fz586pR48euv/++5WYmKiBAwdq2rRpSkxMtM2ZOXOmEhISNG7cOC1btkwGg0G9evVSenp6vuIBAAAAYC9PV67k5NSpUxo5cqT++9//qmTJkho7dqw6dOjgytgAAMWcyeRYj99iscpisRZQNAAAOKYgaqLTp09r5MiR2rlzp6pVq2a3bfny5fL29tbo0aPl5eWl4OBgJScna+7cuWrfvr3S09M1f/58DR061HZLsnfffVfNmjXTunXr1Lp163zFBgAAAOBPTl258vHHH6tNmzbavHmzmjRpos8//5zGCgAgz0r7l5DFYpXZ7KuAgJJ5/lW6tJ+MRsOdXwAAgAJWUDXRnj17dO+992rVqlWqV6+e3bYdO3YoLCxMXl5/fkcuPDxchw8fVkpKin755RddvnxZ4eHhtu1ms1k1a9bU9u3b8x0bAAAAgD85dOXK6dOnNWrUKH3//ffy9fXV6NGj9eKLLxZUbACAYqqU7z0yGg2asninjp++mKd9ggL9NaRLIxmNBq5eAQAUmoKuiSIiIhQREZHjtlOnTikkJMRurHz58pJuPPPl1KlTkqSKFStmm/Pbb7/lKy4vr+zfy8u6AtXRK1FRdLDGxRvrW7yxvkWfs2vHmhd9/P0tOvLcXFm5cqXeeustpaamKjw8XOPHj1flypULMjYAQDF3/PRFHTpxobDDAAAgTwq7Jrp27Zq8vb3txkqUKCFJSktL09WrVyUpxzkXLjj//1uj0aCAgJK5bjebfZ0+NooG1rh4Y32LN9bX87DmxQdr6f7y1FyJiYnRt99+K0l66qmn1LlzZ508eVInT5687X5hYWH5jxAAAAAACpk71EQ+Pj7ZHkyflpYmSfLz85OPj48kKT093fbnrDm+vs4X5xaLVampV7KNm0xGmc2+Sk29qsxMi9PHh/tijYs31rd4Y32Lvqw1dBRrXvTx97fwmc2+ebpyKE/NlY0bN9r+vHbtWq1duzZPQezbty9P8wAAAADAnblDTVShQgWdOXPGbizr58DAQGVkZNjGqlatajcnNDQ0X6+dkZF7YZ+ZabntdhR9rHHxxvoWb6yv52HNiw/W0v3lqbkyYMCAgo4DAAAAANyWO9REYWFhSkhIUGZmpkwmkyRpy5YtqlatmsqWLSt/f3+VKlVK27ZtszVXUlNTtXfvXkVHRxdm6AAAAECxQ3MFAAAAAO7AHWqi9u3ba968eRo5cqReeeUV/fTTT4qPj9eYMWMk3XjWSnR0tKZMmaIyZcqocuXKmjx5sipUqKDIyMhCjh4AAAAoXvL8QHsAAAAAQOEpW7as5s2bp/HjxysqKkrlypXTsGHDFBUVZZszaNAgZWRkaNSoUbp27ZrCwsIUFxeX7SH3AAAAAPKH5goAAAAAuKGJEydmG6tbt66WLVuW6z4mk0lDhw7V0KFDCzI0AAAAwOPd+ZH3AAAAAAAAAAAAsKG5AgAAAAAAAAAA4ACaKwAAAAAAAAAAAA6guQIAAAAAAAAAAOAAmisAAAAAAAAAAAAOoLkCAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4ACaKwAAAAAAAAAAAA6guQIAAAAAAAAAAOAAmisAAAAAAAAAAAAOoLkCAAAAAAAAAADgAJorAAAAAAAAAAAADqC5AgAAAAAAAAAA4ACaKwAAAAAAAAAAAA5w2+bKzJkz1bVrV7uxffv2KTo6WvXr19fjjz+uuLi4QooOAAAAAAAAAAB4Krdsrnz44YeaPn263di5c+fUo0cP3X///UpMTNTAgQM1bdo0JSYmFlKUAAAAAAAAAADAE3kVdgA3O336tEaOHKmdO3eqWrVqdtuWL18ub29vjR49Wl5eXgoODlZycrLmzp2r9u3bF1LEAAAAAAAAAADA07jVlSt79uzRvffeq1WrVqlevXp223bs2KGwsDB5ef3ZDwoPD9fhw4eVkpJyt0MFAAAAAAAAAAAeyq2uXImIiFBERESO206dOqWQkBC7sfLly0uSTp48qbJlyxZ4fAAAAAAAAAAAAG7VXLmda9euydvb226sRIkSkqS0tLR8HdvLy7kLeEwmo93vcA55zDtnc0RuHVOcPpPF4T3cqji+p9spTp/HwkQeXYM8ugZ5BAAAAICir8g0V3x8fJSenm43ltVU8fPzc/q4RqNBAQEl8xWb2eybr/1xA3ksOOTWOeTNPXnqunjq+3Y18uga5NE1yCMAAAAAFF1FprlSoUIFnTlzxm4s6+fAwECnj2uxWJWaesWpfU0mo8xmX6WmXlVmpsXpGDwdecy7rFw5itw6pjh9Jp39zLiz4rAujihOn8fCRB5dgzy6RmHm0Wz25YoZAAAAAHCBItNcCQsLU0JCgjIzM2UymSRJW7ZsUbVq1fL9vJWMjPwVtZmZlnwfA+SxIJFb55A39+Sp6+Kp79vVyKNrkEfXII8AAAAAUHQVma+ttW/fXpcuXdLIkSN18OBBrVixQvHx8erTp09hhwYAAAAAAAAAADxIkWmulC1bVvPmzdPhw4cVFRWlGTNmaNiwYYqKiirs0AAAAAAAAAAAgAdx29uCTZw4MdtY3bp1tWzZskKIBgAAAAAAAAAA4IYic+UKAAAAAAAAAACAO6C5AgAAAAAAAAAA4AC3vS0YAAAAAAAAABQHRqNBRqMhz/NNJr4TD7g7misAAAAAAAAAUECMRoNKl/ajYQIUMzRXAAAAAAAAAKCAGI0GmUxGTVm8U8dPX8zTPg1Dy+ulZ2oWcGQA8oPmCgAAAAAAAAAUsOOnL+rQiQt5mhtUvlQBRwMgv7gWDQAAAAAAAAAAwAE0VwAAAAAAAAAAABxAcwUAAAAAAAAAAMABPHMFAAAAAAAAAIoBk8mx79JbLFZZLNYCigYo3miuAAAAAAAAAEARVtq/hCwWq8xmX4f2y8y06Pz5KzRYACfQXAEAAAAAAACAIqyU7z0yGg2asninjp++mKd9ggL9NaRLIxmNBporgBNorgAAAAAAAABAMXD89EUdOnGhsMMAPAIPtAcAAAAAAAAAAHAAzRUAAAAAAAAAAAAH0FwBAAAAAAAAAABwAM0VAAAAAAAAAAAAB9BcAQAAAAAAAAAAcADNFQAAAAAAAAAAAAfQXAEAAAAAAAAAAHAAzRUAAAAAAAAAAAAH0FwBAAAAAAAAAABwgFdhBwAAyDuj0SCj0ZDn+SZT8euhO/qeLBarLBZrAUUDAAAAAAAAT0RzBQCKCKPRoNKl/YplwyQvSvuXkMVildns69B+mZkWnT9/hQYLAAAAAAAAXIbmCgAUEUajQSaTUVMW79Tx0xfztE/D0PJ66ZmaBRzZ3VHK9x4ZjQaH3n9QoL+GdGkko9FAcwUAAAAAAAAuQ3MFAIqY46cv6tCJC3maG1S+VAFHc/c58v4BAAAAAACAguCZ95YBAAAAAAAAAABwEs0VAAAAAAAAAAAAB9BcAQAAAAAAAAAAcADNFQAAAAAAAAAAAAfQXAEAAAAAAAAAAHAAzRUAAAAAAAAAAAAH0FwBAAAAAAAAAABwAM0VAAAAAAAAAAAAB9BcAQAAAAAAAAAAcADNFQAAAAAAAAAAAAfQXAEAAAAAAAAAAHCAV2EHAADFgdFokNFoKNDXMJnohwMAAAAAAADugOYKAOST0WhQ6dJ+Djc/Mi1WmQq4IQMAAAAAAADA9WiuAEA+GY0GmUxGTVm8U8dPX8zTPg1Dy+ulZ2o6tQ8AAAAAAACAwkVzBQBc5Pjpizp04kKe5gaVL+X0PgAAAAAAAAAKFzfwBwAAAAAAAAAAcADNFQAAAAAAAAAAAAfQXAEAAAAAAAAAAHAAzRUAAAAAAAAAAAAH0FwBAAAAAAAAAABwAM0VAAAAAAAAAAAAB9BcAQAAAAAAAAAAcADNFQAAAAAoQk6cOKEaNWpk+/Xxxx9Lkvbt26fo6GjVr19fjz/+uOLi4go5YgAAAKD48SrsAAAAAAAAebd//36VKFFC69evl8FgsI37+/vr3Llz6tGjh5588kmNGTNGu3bt0pgxY1S6dGm1b9++EKMGAAAAiheaKwAAAABQhCQlJalatWoqX758tm3x8fHy9vbW6NGj5eXlpeDgYCUnJ2vu3Lk0VwAAAAAX4rZgAIBiz2Qyyssrb7+MRsOdDwgAQCHav3+/qlevnuO2HTt2KCwsTF5ef36PLjw8XIcPH1ZKSsrdChEAAAAo9rhyBQBQbJX2LyGLxSqz2TfP+2RmWnT+/BVZLNYCjAwAAOclJSWpXLly6ty5s44cOaL77rtP/fr1U7NmzXTq1CmFhITYzc+6wuXkyZMqW7asU6/p5ZX9e3kmk9HudxQ/rHHxxvoWb6yve3H3dXD3+DwNf3+LDporAIBiq5TvPTIaDZqyeKeOn754x/lBgf4a0qWRjEYDzRUAgFtKT0/XkSNH5Ovrq2HDhsnPz0+rVq1Sr169tGDBAl27dk3e3t52+5QoUUKSlJaW5tRrGo0GBQSUzHW7I19iQNHEGhdvrG/xxvoiL/icuCfWxf3RXAEAFHvHT1/UoRMXCjsMAADyzdvbW9u3b5eXl5etiVK7dm0dOnRIcXFx8vHxUXp6ut0+WU0VPz8/p17TYrEqNfVKtnGTySiz2VepqVeVmWlx6thwb6xx8cb6Fm+sr3vJWg93xefEvfD3t/CZzb55unKI5goAAAAAFCE5NUlCQkL0/fffq0KFCjpz5ozdtqyfAwMDnX7NjIzcC/vMTMttt6PoY42LN9a3eGN9kRd8TtwT6+L+uHEbAAAAABQRv/zyixo0aKAdO3bYjf/888+qXr26wsLCtHPnTmVmZtq2bdmyRdWqVXP6eSsAAAAAsqO5AgAAAABFREhIiB588EGNGTNGO3bs0KFDh/TWW29p165diomJUfv27XXp0iWNHDlSBw8e1IoVKxQfH68+ffoUdugAAABAscJtwQAAAACgiDAajZo9e7amTJmi2NhYpaamqmbNmlqwYIFq1KghSZo3b57Gjx+vqKgolStXTsOGDVNUVFQhRw4AAAAULzRXAAAAAKAIKVOmjCZMmJDr9rp162rZsmV3MSIAAADA83BbMAAAAAAAAAAAAAcUuStXTpw4oYiIiGzj48aNU4cOHQohIgAAAAAAAAAA4EmKXHNl//79KlGihNavXy+DwWAb9/f3L8SoAAAAAAAAAACApyhyzZWkpCRVq1ZN5cuXL+xQAAAAAAAAAACABypyz1zZv3+/qlevXthhAAAAAAAAAAAAD1XkmitJSUlKSUlR586d9cgjj6hTp0767rvvCjssAAAAAAAAAADgIYrUbcHS09N15MgR+fr6atiwYfLz89OqVavUq1cvLViwQE2aNHHquF5ezvWYTCaj3e9wDnnMO2dzRG4d4+hnkvwWP+60pvw30jXIo2uQR9cgjwAAAABQ9BWp5oq3t7e2b98uLy8veXt7S5Jq166tQ4cOKS4uzqnmitFoUEBAyXzFZTb75mt/3EAeCw65dQ5581zuuPbuGFNRRB5dgzy6BnkEAAAAgKKrSDVXJMnPzy/bWEhIiL7//nunjmexWJWaesWpfU0mo8xmX6WmXlVmpsWpY4A8OiIrV44it45x9DPp7LrAfbnT3xn+G+ka5NE1yKNrFGYezWZfrpgBAAAAABcoUs2VX375RZ06ddLcuXPVuHFj2/jPP/+cr4fcZ2Tkr6jNzLTk+xggjwWJ3DqHvHkud1x7d4ypKCKPrkEeXYM8AgAAAEDRVaS+thYSEqIHH3xQY8aM0Y4dO3To0CG99dZb2rVrl2JiYgo7PAAAAAAAAAAA4AGK1JUrRqNRs2fP1pQpUxQbG6vU1FTVrFlTCxYsUI0aNQo7PAAAAAAAAAAA4AGKVHNFksqUKaMJEyYUdhgAAAAAAAAAAMBDFbnmCgAAAAAAAAAUFqPRIKPR8P/t3Xl8jPfe//H3TEjQJLaKLXShSUrssVOlxV2UoqfaknJXba3t1opSbfVBtcjhoLdqG45dLLHFcpTqXaWqjdNSRasookhrjTWRuX5/+M0cIwlzjSQzk7yej8d5nLrmWj7X9Z2ZXJ/5XN/v1+X1/fx8amYGAC6iuAIAAAAAAAAALrBaLSpRohgFEwAUVwAAAAAAAADAFVarRX5+VsUu3KXk06kubVM3IkQvtauWy5EByGsUVwAAAAAAAADAhOTTqTp04oJL64aGBOZyNAA8gf5rAAAAAAAAAAAAJlBcAQAAAAAAAAAAMIHiCgAAAAAAAAAAgAkUVwAAAAAAAAAAAExgQnsAAJBvWa0WWa0W+fndfJ7E/v93YrMZstmM3A4NAAAAAAD4MIorAAAgX7JaLSpRophTQSU4uOhdt8vIsOn8+SsUWAAAAAAAQLYorgAAgHzJ3mMlduEuJZ9OdWmb0LJBeqN7PVmtFoorAAAAAAAgWxRXAABAvpZ8OlWHTlzwdBgAAAAA4JVcGT75VgylDNxEcQUAAAAAAACAz7PPuWhGQS4UlAgKkM1muDR88q0YShm4ieIKAAAAAAAAAJ+W1ZyLrijIhYLAooVltVoYShlwE8UVAAAAAAAAAD6NORfdx1DKgHsorgAAAAAAAADIFygUAMgr5vrJAQAAAAAAAAAAFHAUVwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABIorAAAAAAAAAAAAJlBcAQAAAAAAAAAAMIHiCgAAAAAAAAAAgAkUVwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABIorAAAAAAAAAAAAJhTydAAAAAAAAAAAfIfVapHVajG1jc1myGYzcu04fn48Qw4gb1FcAQAAAAAAAOASq9WiEiWKmS5mZGTYdP78FZcLLO4eBwDyCsUVAAAAAAAAAC6xWi3y87MqduEuJZ9OdWmb0LJBeqN7PVmtFlPFFTPHqRsRopfaVXNp3wCQEyiuAAAAAAAAADAl+XSqDp244DXHCQ0JzPVYAOBW9KsDAAAAAAAAAAAwgeIKAAAAAAAAAACACQwL5mFWq0VWq8XUNjab4fL4lADMf84sFnOfSeQ/3jRhoj0WPz8r3/8AAAAAAABeguKKB1mtFpUoUcz0j3gZGTadP3+FH9gAF7jzOcvIsOViRPBmJYICZLMZCg4uamq7DJshP5OFcrPbBAcX5fsfAAAAAHKBmd8MvOlhPACeRXHFg6xWi/z8rIpduEvJp1Nd2ia0bJDe6F5PVquFH9cAF5j9nNk/YyiYAosWltVqMfW9XDciRC+1q5br2/D9DwAAAAA5y90H7ABAorjiFZJPp+rQiQueDgPI1/icwQwz75fQkMA82QYAAAAAkLPu5QE7AKC4AgAAAAAAAKDAcudhOQCguAIAAAAAAAAg1zG3CYD8hOIKAAAAAAAAgFzD3CYA8iOKKwAAAAAAAAByDXObAMiPKK4AAAAAAAAABZTVapHVanF5/XsZrou5TQDkJxRXAAAAAAAAgALIarWoRIlizG8CAG6guAIAAAAAAAAUQFarRX5+VobrAgA3UFwBAAAAAAAACjCG6wIA8+jzBwAAAAAAAAAAYALFFQAAAAAAAAAAABMorgAAAAAAAAAAAJjAnCvI96xWi6xWi6ltbDZDNpuRSxF5P2++ZmZj8/Nzv4bs6rb3cgzAG7nzHWBWQf+eRf7hzufFYsndzxcAAAAAIPdRXEG+ZrVaVKJEMdM/fmdk2HT+/JUC+cOfN18zd2Mzo0RQgGw2Q1arRcHBRXPtOIC3cudzlmEz5Gfyx+WC/D2L/ONe/mYCAAAAAHwbxRXka1arRX5+VsUu3KXk06kubRNaNkhvdK8nq9VSIH/08+Zr5k5sdSNC9FK7ai4fI7BoYVmtllw9BuDNzH7O7O9/b/zOAHLbvfzNBAAAAAD4NoorKBCST6fq0IkLng7Dp3jzNTMTW2hIoNceA/Bmrn4G7O9/b/7OAHIb738AAAAAKHgorgAAAAAAAOQBs3N1MU8dzLK/x+zDlt5t+FLmEAUA91FcAQAAAAAAyGVuzW3HPHUwIav3GHOJAkDuobgCAAAAAACQy8zO1eXt89SZ7YUjeW9PHG89F7Nx+flZc32eUgDAf1BcAQAAAAAAyCPeOFeX2R/xLRaLgoKKmB5SymxPnLwoerjTo0jK/V5F7sYlMYcoAOQViisAAAAAAAAFlMViUYkSRd36Ed9MDwmzPXHyquhhtkeRlDe9ityJi14oAJC3KK4AAAAAAADkE6729rAXLQoVcn8oqdzshXMvRY/Chf2UkWFzaRv7dciLHkVmeuK4Exe9UJCXzBY+vXEoPcl7hyuEb/C54orNZtNHH32kZcuW6eLFi6pXr57effddPfDAA54ODQAAAAA8jpwJKLjc6e0RGFhEkvf+iG8mrhJBAbLZDK+cxP1ehvkCvIm7nzNvHUovt+NC/uZzxZUZM2YoPj5eH3zwgcqWLatJkyapT58+Wrt2rfz9/T0dHgAAAAB4VH7LmXgKFXBdQR9KKrBoYVmtljw7fzM/4pqdbD4/tQvyF3c+Z+4OpWe2t5c3DvGH/M2niitpaWmaPXu2hg8frhYtWkiSpkyZoubNm2vTpk1q3769hyMEAAAAAM/JbzkTT6EC7vHWXih5JbfP/156yLgaW35sF+QvuT2Unrv3AHkxxB9g51PFlQMHDujy5ctq1KiRY1lwcLCqVaum77//3ucSBQAAAADISfktZ8qrORfcRQ+Zgs1sryp3h4My2zvC27kaozefS173kAHyC2/t7eVt3zf2eCwWcz133ent6w537n/ya09ki2EY3h3hLT7//HMNGjRIu3fvVpEiRRzLhwwZomvXrumTTz4xvU/DcL+RLBbJarXKZrPJnato3/586nXdcPGmv5Cf9f8/IZG7SUJes1/H3Np3frrGZs7H3XPx5mtmNrYAfz8FFfN3eRuz6+e3bbw1rrzaxlvjkrz3c5afzkXy/r8B3iA3/2b7InffY5Lcvoe8F1arxXSSBt+SlznTveZDrnAnZ/IvbFVQMX/T73XDMNzaxodSarfwvZ89i8W971RX38/uvpfNHEPKu/tZd8/HG8+loOcm3rqNt8aVV9t4a1xS3nyf5WVc7t4z5PZ9hjt/l/Lq/sfd2DxVXHE1b/KpnitXr16VpEzjBAcEBOjCBfe6e1ksFvn53VuCabXeW3XTnmDn5TG9UW6eU367xmbPx51z8eZr5k5sZrfJi2N48zbeGldebeOtcUne+znLT+ciefffAG/A9XHmzntM4joid3giZ8qL97K7nzMz3PnBx90f130N31c5Ky/ez958P5sXx8hP23hrXN68jbfGlVfbeGtc7sqL8zfL3XsGd7bJ7fsMb43Lfpx7/d0+t/nUHZL9yau0tDSn5devX1fRoubHuQQAAACA/IScCQAAAMgbPlVcKV++vCQpJSXFaXlKSorKlSvniZAAAAAAwGuQMwEAAAB5w6eKKxEREQoMDNTOnTsdyy5evKh9+/YpKirKg5EBAAAAgOeRMwEAAAB5w6fmXPH391ePHj0UGxurUqVKqWLFipo0aZLKlSun1q1bezo8AAAAAPAociYAAAAgb/hUcUWSBg8erBs3bmj06NG6du2a6tevr1mzZmWasBEAAAAACiJyJgAAACD3WQzDMDwdBAAAAAAAAAAAgK/wqTlXAAAAAAAAAAAAPI3iCgAAAAAAAAAAgAkUVwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABIoruSApKUmPPvqodu7c6elQfM6xY8c0YMAARUVFKSoqSv/zP/+jU6dOeTosn3Py5EkNGzZMTZs2Vf369dW7d28dPHjQ02H5tLfeektvvvmmp8PwCTabTdOmTVPz5s1Vq1Ytvfzyyzp69Kinw/JpM2bMUHR0tKfD8Ennz5/XO++8o8cee0x169bVCy+8oKSkJE+H5XPOnDmj4cOHq1GjRqpTp4769u2r3377zdNh+bQjR46oTp06WrFihadDAe5JdrnPjh071KVLF9WsWVNt2rTRqlWrPBMgTHMlJ6N9fZsr+SJtnD9kl8fSvr6LfDv/yirv379/v3r06KHatWvr8ccf16xZszwUHbJDcSWHpaamKiYmRjabzdOh+Jzr16+rV69ekqTFixdr/vz5+vPPP9WvXz8ZhuHZ4HxIWlqa+vbtqzNnzuiTTz7RokWLFBQUpJ49e+rs2bOeDs/nZGRkaMKECVq+fLmnQ/EZM2bMUHx8vMaNG6clS5bIYrGoT58+SktL83RoPmnOnDmaNm2ap8PwWcOGDdPu3bs1efJkLV++XNWrV1fv3r116NAhT4fmUwYMGKDjx4/rs88+0/Lly1WkSBH16tVLV69e9XRoPik9PV1vvPGGrly54ulQgHuSXe5z6NAh9evXTy1atNCqVavUrVs3jRo1Sjt27PBQpHCVKzkZ7evbXMkXaWPfd6c8lvb1beTb+VNWef+5c+f03//933rwwQeVkJCgQYMGaerUqUpISPBQlMhKIU8HkN+MGTNGlSpV0okTJzwdis/5448/VKNGDb377rsqVaqUJKlXr1567bXXdO7cOccy3FlSUpJ+/fVXbd26VWXLlpUkTZw4UQ0aNNCWLVv07LPPejhC33Ho0CGNHDlSx48fV4UKFTwdjk9IS0vT7NmzNXz4cLVo0UKSNGXKFDVv3lybNm1S+/btPRyh7zh9+rTeeust7dq1Sw899JCnw/FJR48e1fbt27V48WLVrVtX0s2n97Zu3aq1a9dqyJAhHo7QN5w7d06hoaEaMGCAHnnkEUnSq6++qk6dOungwYOqWbOmhyP0PdOnT9d9993n6TCAe5Zd7jN37lxFREQ4vmcffvhh7du3T3FxcWrcuLEnQoWLXMnJaF/f5kq+SBv7trvlsbSv7yLfzn/ulPcvXbpU/v7+GjNmjAoVKqQqVaro6NGj+uyzz9S1a1cPRYzb0XMlB61evVo//PCDRo0a5elQfNJDDz2kqVOnOm7ik5OTtWjRIlWvXl0lS5b0cHS+45FHHtGnn37quFG2MwxDFy5c8FBUvum7777To48+qrVr1yo0NNTT4fiEAwcO6PLly2rUqJFjWXBwsKpVq6bvv//eg5H5np9//lnFixfXmjVrVKtWLU+H45NKliypTz/9VJGRkY5lFouF70OTSpYsqcmTJzsKK3/99ZdmzZqlcuXKqWrVqh6Ozvd8//33WrJkiSZMmODpUIB7cqfcJykpyeleQJIaNWqkXbt20SPdy7mSk9G+vs2VfJE29m13y2NpX99Fvp3/3CnvT0pKUv369VWo0H/6RjRq1EhHjhzRmTNn8jpUZIOeKzkkOTlZ77//vmbMmMGTiDng5Zdf1vbt21W8eHHNnTtXFovF0yH5jDJlyjieYLCbN2+erl+/rqZNm3ooKt/0wgsveDoEn2Mfj7t8+fJOy0NCQnTy5ElPhOSzWrVqpVatWnk6DJ8WHByc6ftww4YNOnbsmJo1a+ahqHzb22+/7XiC6uOPP1axYsU8HZJPuXjxomJiYjR69OhM35OAL7lb7nPq1CmVK1fOaVlISIiuXr1Kj3Qfkl1ORvv6NlfyRdrYt90tj6V9fRf5dv5zp7z/1KlTCgsLc1oWEhIi6WZP09KlS+d6fLg7iisuSE5O1hNPPJHt61u3blVMTIy6deumqKgoJScn52F0vuNu13Hbtm0qU6aMJGn48OEaMmSIPv74Y/Xq1UurVq3iR4j/z8x1lKTPP/9cU6ZMUXR0tCIiIvIiRJ9g9jrCNfb5F/z9/Z2WBwQE0FMAHrdr1y6NGjVKTzzxBIUrN/Xs2VPdunXT4sWL9dprrzmeZoZrxowZo9q1a+vpp5/2dChAtnIi97l27VqmewH7vxkT3rNyIiejfb1bTuSLtLH3yok8lvb1XeTbBUtWn9WAgABJN+dIg3eguOKCsmXLav369dm+vmzZMl25ckWDBg3Kw6h8z92u461PRzz66KOSbo4d+fjjjyshIUEDBw7M9Rh9gZnruHjxYo0dO1bt2rXTyJEj8yI8n2HmOsJ1RYoUkXTzptz+39LNP/xFixb1VFiANm/erDfeeEO1atXS5MmTPR2Oz7IPAzZ27Fj9+OOPWrBggT744AMPR+UbVq1apaSkJCUmJno6FOCOciL3CQgIyPQDnf3f3A94Vk7kZLSvd8uJfJE29l45kcfSvr6LfLtgKVKkSKbPqr2owggC3oPiigsKFy6sKlWqZPv6ihUrlJKSooYNG0qSY4zKPn36qEGDBoqLi8uTOL3d3a7jiRMntHfvXrVt29axrGjRogoNDVVKSkpehOgT7nYd7WJjY/XZZ58pOjpab731FkOr3cbV6whz7D3MUlJSVLlyZcfylJQUek7BYxYsWKD3339frVu3VmxsbKanf3BnZ86c0Y4dO/TUU0/Jz89PkmS1WlWlShX+PpuQkJCgM2fO6PHHH3da/u6772rWrFlat26dZwIDbpMTuU/58uUzfT+kpKSoWLFiCgoKyr3gcVc5kZPRvt4tJ/JF2th75UQeS/v6LvLtgqVcuXJZflYlZZo3C55DcSUHzJ8/Xzdu3HD8+/Tp04qOjta4ceMcSQfubv/+/Ro8eLA2bdrk+CNx8eJFHTlyRB07dvRwdL5l0qRJiouLU0xMjHr37u3pcFCAREREKDAwUDt37nT6HO/bt089evTwcHQoiBYtWqSxY8cqOjpao0aNktVq9XRIPiclJUWvv/66SpcurcaNG0uS0tPTtW/fPoZXMyE2NlbXrl1zWtamTRsNHjxY7dq181BUgHmu5D5RUVH67rvvnLbbsWOH6taty/ewl3MlJ6N9fd/d8kXaOH+jfX0X+XbBUr9+fcXHxysjI8PxkNuOHTv00EMPMd+KF6G4kgMqVqzo9G/7G75s2bJUEk147LHHFB4erpiYGL399tsyDEOTJk1SyZIl1bVrV0+H5zN27typuLg4RUdHq2PHjvrzzz8drxUrVizLSUeBnOLv768ePXooNjZWpUqVUsWKFTVp0iSVK1dOrVu39nR4KGCOHDmi8ePHq3Xr1urXr5/OnDnjeK1IkSI8meeiiIgINWvWTO+9957GjRun4OBgzZw5UxcvXlSvXr08HZ7PyO6esHTp0pnuJQFv5kruEx0drc6dOys2NladO3fWV199pY0bN9Kj3we4kpPRvr7NlXyRNs7faF/fRb5dsHTt2lVxcXF666239Morr2jPnj2aO3eu3nvvPU+HhltQXIHX8Pf3V1xcnCZMmKDevXsrLS1NzZo104cffqjAwEBPh+cz1q5dK+nmU4Xz5893em3gwIHMDYRcN3jwYN24cUOjR4/WtWvXVL9+fc2aNYuhmJDnNm7cqPT0dG3atEmbNm1yeq1z58768MMPPRSZb7FYLPrHP/6hv//97xo6dKhSU1MVFRWlhQsXqkKFCp4OD4AXeuSRRzRjxgxNmjRJc+fOVWhoqCZNmuTo/Qbv5UpORvv6NlfyRdo4f6N9fRv5dsFRunRpxcXF6f3331fnzp1VpkwZxcTEqHPnzp4ODbewGPZBcgEAAAAAAAAAAHBXDKYIAAAAAAAAAABgAsUVAAAAAAAAAAAAEyiuAAAAAAAAAAAAmEBxBQAAAAAAAAAAwASKKwAAAAAAAAAAACZQXAEAAAAAAAAAADCB4goAAAAAAAAAAIAJFFcA+LQvv/xSgwYNUqtWrRQZGamGDRvqlVde0ZYtW/IshrS0NL377rtq0KCBatasqXHjxmW57M0331R4eLiSk5NN7X/69OkKDw/Xzp07c+kMnP3++++m1k9KSlJMTIxat26tmjVrKioqStHR0Vq1apUMw3Ba191r4KtatWql8PBwhYeHKyoqSpK0c+dOhYeH680338x2u+TkZIWHhys6OjrTa7e3z+3r5fY1fv/99x3nlJfvSwAAAOQucqucd7fc6t1331V4eLgSEhLuuF5ycrIiIiLUs2dPl49tzzumT5/u8jY5yd5G9v/t379f0s38pVWrVnfc1p5H3e7o0aNO/46OjnZab8WKFQoPD9eKFSty4Awy27x5s9M5eeraAvAehTwdAAC449KlSxo1apQ2btyo6tWrq0uXLgoJCdGpU6e0atUqDRgwQC+//LJGjBiR67EsXbpU8fHxatq0qZ566ik98sgjWS4zDEONGzdWqVKlTO2/devWqly5sqpUqZJLZ/AfAwYM0KVLlzR//vy7rpuenq7x48dr0aJFevDBB9W+fXtVqFBBZ8+e1bp16zRixAht3bpVkyZNkp+fX67H7q1KliypkSNHqnDhwve8r6zaZ+LEibr//vvved+u6tSpkyIjI7Vp0yZt2rQpz44LAACA3EFulTtcya2effZZxcfHKzExUV27ds12PfuDa88++2xuhJqrRo4cqZIlS6pChQr3tJ/PPvtMU6dO1d69ex3L+vfvn6fXJDIyUhMnTtThw4c1c+bMPDsuAO9FcQWATxo9erQ2btyomJgY9e7d2+m1/v37q3fv3po9e7Yefvhh/e1vf8vVWH755RdJUkxMjCIiIiTJ8eTRrcskqU6dOqb3HxER4bSP3LRlyxY1aNDApXWnTJmiRYsWKTo6WqNGjZLV+p/OkH379tXw4cO1du1aVa5cWUOHDs2liL1fsWLF1KlTpxzZV1btk1P7dlVkZKQiIyN17NgxiisAAAD5ALlV7nAlt6pRo4ajJ83p06dVtmzZLNdbvXq1ihcvrjZt2uRGqLnqySefVGho6D3vZ+vWrUpPT3da1rRp03verxnlypVTp06dtHPnToorACQxLBgAH7Rt2zZt2LBBbdu2zXTzL0n+/v4aP368/Pz8NG/evFyPx36DFxgYeMdl+cnhw4c1e/Zs1ahRQ6NHj3YqrEiS1WrVe++9p6CgIC1ZskTXr1/3UKQAAAAAskNu5Xldu3aVzWbT+vXrs3x9165dOnbsmJ5++mkFBATkcXQAgDuhuALA56xatUqSspyPwq5SpUpKTEzUypUrnZYfOnRIw4YNU5MmTRQZGaknnnhCH374oS5cuJBpH4cPH9awYcPUuHFjRUZGqk2bNvrHP/6ha9euSfrPvBj2YzzxxBOOsVdvXyZlPReGYRhavHixunTpotq1a6tJkybq37+/fv75Z8c62Y0L/PXXX+ull15S3bp1VatWLXXp0iXT2LL2cXbXrVunmTNnqnXr1oqMjFSrVq00depU3bhxw2k9Sfruu+/uOk7t6tWrZRiGevToke06gYGBWrZsmf7v//4vUxJw4sQJDRs2TA0aNFDt2rX1/PPPa/v27Zn2sXPnTg0YMEBNmjRR9erVVb9+ffXs2VPffPON03qtWrVSv379tHPnTnXv3l116tRRVFSUBg4cmOU4x2vXrnVc8+bNmys2NlbLli3L8jonJibqueeeU+3atVWnTh117949T8edlu7cPtnNzXI7V89j/fr1ev755x1t06lTJ82ePVs2my1nTwoAAAAeR251kydzq44dO6pw4cJKTEzM8nV7G9mHv0pPT9esWbPUtWtX1alTR5GRkXr88cc1evRonTlzJtvjSDfzpqzmO8lurpI9e/aof//+atCggWrUqKEOHTpo9uzZysjIuONxclp4eLi+++47x3/b56+8fc6V7Lh6Hvv27VP//v3VvHlzx3t63LhxOn/+fI6fE4D8gWHBAPicPXv2qFChQqpVq9Yd17t9HN2kpCT17t1bfn5+euGFF1SxYkX9+OOPmjNnjrZs2aL4+HjHmL179uxRr169FBgYqO7du6tUqVL68ccfNXPmTO3YsUPz5s1TqVKlNHHiRC1dulRJSUkaOXKkihcvLqvV6rSsZMmS2cY4YsQIrV69WlFRURo6dKjS0tI0f/589ejRQwsXLlS1atWy3G7hwoUaO3asatSooYEDB8pqteqLL77QyJEjtX//fr311ltO60+ePFmGYahbt24KDg7WihUrNGPGDFksFg0ePFhVqlTRxIkTFRMTo4cfflj9+/dX3bp179gGklSvXr07tsFDDz2U5fL+/fsrKipKw4YNU0pKiubOnat+/fpp5cqVeuSRRyRJmzZt0uDBgxUREaE+ffooMDBQv/76q5YvX64+ffro888/V8WKFR37PHDggPr166eOHTuqU6dO2rdvn+Lj43XgwAFt3LjRMe9LXFycJk2apOrVq2vo0KFKTU3VggULsoxz0qRJiouLU9OmTTVs2DBdv35d69at04ABAzRy5Ej16tXrjuefU8y2z+1cPY/PP/9cw4YNU9OmTTVkyBBZrVb961//0oQJE3TmzBkNHz48l84QAAAAnkBu5fncqmTJknriiSf0r3/9S4cOHXK61tevX9eGDRtUvXp1Pfroo5KkoUOH6osvvlDnzp313HPP6fr169q6dauWLVumP/74Q7Nnz75jW7rqiy++0JAhQxQaGqpXXnlFxYoV0/bt2zVhwgT9+9//1vTp02WxWHLkWHczceJEzZw5U4cPH9bEiRNVuXJll7d19TyOHz+unj17qkyZMurVq5eCg4O1e/duLViwQHv27NGSJUvy7HwB+BADAHxMrVq1jCZNmpjaJiMjw2jdurURGRlp/Pbbb06vLV261AgLCzPefPNNwzAMw2azGe3btzdatGhhnDt3Lst1P/30U8eyESNGGGFhYcbx48dNLduxY4cRFhZmDBs2zLDZbI71fvvtNyMiIsIYNGiQYRiGMW3aNCMsLMz49ttvDcMwjJMnTxrVq1c3+vXr57SdzWYzhg8fboSFhRm7d+82DMMwvv32WyMsLMxo2rSpceHCBce6ly9fNurVq2c0a9bM6fzCwsKMHj163PV6tmvXzggLCzOuXbt213VvZb8Go0aNclq+fPlyIywszJg+fbpj2TPPPGM0bdrUuHz5stO6CxYsMMLCwozZs2c7lrVs2dIICwsz1q1b57TuqFGjjLCwMGPbtm2GYRjGqVOnjMjISKNLly7G9evXHesdPXrUqFmzptN13r17txEWFmaMGTPGaZ9paWlGdHS0Ub16dePkyZN3PN+WLVsaLVu2dFpmb5MRI0Zku93x48ezbAtXlt3+PjNzHn379jVq165tZGRkONa7ceOG0aNHD6Nfv35O29/+vgQAAIDvIbfyfG5lGIbx1VdfGWFhYcaUKVOclq9bt84ICwszFi5caBiGYezfv98ICwszxo4dm2kfXbt2NcLCwhzX2R7vtGnTHOtklZ8YhmEkJCQYYWFhRkJCgmEYhnHlyhWjYcOGRufOnZ3yJsMwjClTpmSZe90uq3YzjJvXJasYbmXP727Vo0ePuy67l/OIi4tzam+7Dz74wOjcubNx6tQpx7Ksri2AgolhwQD4HD8/P0eXa1ft27dPR48eVceOHTM9dfXss8/qgQce0MaNG5WRkaFffvlFBw8eVIsWLWSz2XT27FnH/1q2bKmAgIAcmch78+bNkqRXXnnF6QmYKlWqaPny5Xr77bez3O7zzz9Xenq6nnrqKZ07d84R27lz59S+fXvHOrdq2bKlgoODHf8uVqyYqlSpctdu49mx9wIx2w52Xbp0cfp37dq1JUkpKSmOZcuWLdOaNWtUrFgxx7K0tDTHtbp8+bLTPooUKaK2bds6LatRo4Yk6c8//5R085qnpaWpd+/e8vf3d6xXuXJldezY0WnbdevWSZLatWvn9B5ITU1Vu3btlJ6eri+//NL0uec1M+dRrlw5XblyRe+995727dsnwzDk5+en+fPnM2EjAABAPkRu5fncSpKaNWum8uXLa+3atU7LV65cqSJFiujpp5+WJEVERGjXrl0aNmyY03pnzpxxxHTlyhW347D75ptvdO7cObVt21aXLl1yard27dpJUo60W24zcx7ly5eXdLPX/44dO5SWlibp5hB0K1asUNmyZT1zEgC8GsOCAfA5ZcuW1ZEjR5SWlub0A/mdHDt2TJIcQ07dymKxqGrVqjp69KjOnTunI0eOSJLi4+MVHx+f5f5OnDjhZvT/YR8f+PaERJKqV6+e7Xb2+GJiYrJd5/b47r///kzr+Pv7uz1WbtmyZfXLL7/or7/+0n333Wd6+zJlyjj92z4ni/0GVpIKFSqk5ORkzZgxQ0eOHFFycrKSk5MdMRuG4bSPkiVLOoo+dvb3h32+EPu1e/jhhzPFdHs72Ne907wy7rwPihQpIunOhSn7OdrXvRdmzmPQoEHav3+/471fqlQpNWrUSE8++aTatm2rQoW4bQAAAMhPyK08n1tJktVqVefOnTVjxgz98MMPqlOnjv78809t375dHTp0UFBQkNOx1q9fr+3bt+v48eNKTk7Wn3/+6Sgq5cRcifbrMnnyZE2ePDnLddxtt4CAgLsW9G7cuJGjuZAr59G2bVt17dpVK1asUK9evVSkSBHVq1dPLVq00DPPPKPixYvfczwA8h9+JQHgc+rXr69Dhw7p3//+txo1apTteiNHjlR6evodb5Tt7Deg/v7+jv/u3r27nnzyySzXz4kfmdPT093azn7TPnbsWIWGhma5jn18YzurNWc7KtavX19bt25VUlKSHnjggWzXmzJlio4cOaJBgwY5JV+uxPPJJ59o8uTJqlixoqKiotSwYUOFh4frxo0bevXVVzOt78o+7cWbrBJHe4HHzn6dZ8yYoaJFi2a5P/vTTWbYb8ovXbqU7Tr2SUBvfSLOXWbO4/7779fSpUv1008/6auvvtK3336rTZs2af369apdu7YWLFigwoUL33NMAAAA8A7kVp7Prey6dOmijz/+WImJiapTp44SExOVkZHhmMheuplD9OzZUz///LPq1aunyMhIderUSTVq1NDcuXO1Zs0at459e2HI3m6DBw9WnTp1stzGnYfspJv5UGpqaravG4ahixcv5kguZOY8/Pz8NH78eL366qv68ssv9c033ygpKUnbt2/XJ598ovj4eFNzvQAoGCiuAPA5HTp0UHx8vBYtWpRtAnDy5EmtWbNGwcHBKlGihCpVqiRJOnjwYKZ1DcPQoUOHFBgYqODgYKeb6iZNmjita7PZtHHjRsf+7oX9OEeOHFF4eLjTa5MnT9a1a9c0atSobLcLDg7OFF9KSor27NmTI/HdyVNPPaWpU6dq8eLF6tKlS5YT+12+fFnx8fG6fPmy3nnnHVP7P3nypKZMmaL69etr9uzZTsUQdxMGSXrooYckSYcPH87Ue8X+VJOd/TqHhIQ4hhezO3r0qA4fPuw0ZJmrQkNDFRgYqAMHDmS7zr59+yQp20k3zR5Puvt5GIahgwcP6tq1a6pZs6ZjQs9Lly5pxIgR2rx5s7Zt26aWLVvec0wAAADwDuRWns+t7CpVqqSGDRtqw4YNGj16tBITE/XAAw+oQYMGjnXmzZunvXv36r333tPzzz/vtP1ff/1112P4+fllGl5Z+s8wynb261KkSJFM1+XSpUvatm1bptEIXBUREaGtW7fq+PHjWV7bI0eO6OrVq2rYsKFb+7+VmfM4ceKEjh07psaNGys6OlrR0dG6ceOGZs2apcmTJ2vx4sUaMWLEPccEIH9hzhUAPqd+/fpq3bq1Nm7cqH/+85+ZXk9NTdWQIUN048YNDRw4UP7+/qpWrZoqVaqkNWvW6NChQ07rJyQk6NixY2rTpo0kKTIyUhUrVtTKlSsdXd7tlixZoqFDhyohIeGez8P+5NbcuXOdlh87dkxz5szR8ePHs9yuTZs2slqtmjlzpq5du+b02ocffqjXXntNe/fudSsmq9XqUjfySpUqqUePHvrpp580fvz4TNtcv35dw4cP1/nz5/XSSy9l2XX+Ts6fPy/DMPTwww87FVauXr2q+fPnS3Jvvpc2bdqoUKFCWrBggdP2KSkpSkxMdFr3v/7rvyRJ06dPd3qSKz09XSNHjlT//v11+vRp0zEUKlRIrVu31smTJ7McGuHy5ctasGCB/P39He9JO1fbx53zsFgsGjRokAYMGOD0JFlgYKAjQb192DUAAAD4NnIrz+dWt+ratavOnj2rVatWad++fU69ViTp3LlzkpSpgPTDDz/o+++/l5S5F8qtQkJCdPbsWachvdLS0rRhwwan9Zo1a6b77rtPc+bMcRzTbubMmRoyZIi++uorU+dm99RTT0mSpk6dmun6GIahTz/9VNLNwt+t7D2GzFxTM+cxc+ZM9erVS7t373asU6hQIdWqVUsSuRCArNFzBYBPGj9+vC5cuKAPP/xQiYmJatOmjUqVKqXff/9dK1eu1NmzZ9W9e3d1795d0s0boXHjxqlv377629/+phdeeEGhoaHas2ePVq5cqYoVK+qNN95wWrdfv37q0qWLnn/+eVWuXFk//fSTEhISVLly5SyHpTKrefPm6tChgxISEnTq1Cm1atVKly5d0sKFCxUQEKDhw4dnud2DDz6oQYMGaerUqerUqZM6d+6s4OBgffHFF46eBbf/KO+q0qVL68CBA1q0aJGioqIUFhaW7bqvv/66Tp8+rXnz5unrr79W+/btVbZsWf3xxx9as2aNTpw4odatW2vo0KGm46hataoeeOABJSQkKCAgQGFhYUpJSdHKlSsdT1XdqSt5dipWrKgBAwZo+vTpeuGFF9S+fXtduXJFixYtckz8aO+F07hxYz377LNavny5nnvuObVr107+/v5as2aN9uzZoxdffFE1a9Y0HYMkDR8+XD/88IPGjBmjbdu2qVGjRipatKiOHTumxMREnTp1Su+8806mJ7nMtI+dmfMYNGiQXn/9dXXr1k1dunRR8eLFdeDAAS1ZskSPPvpopqe9AAAA4PvIrTyfW9m1bdtWY8eO1YQJE1SoUCE988wzTq+3atVK8+fP1xtvvKEXX3xRQUFB2rt3r1auXCk/Pz+lp6fr4sWL2e6/a9euSkpKUu/evfXiiy/KZrMpISEhU0EmODhY77zzjkaOHKmnn35a3bp1U0hIiL799lutX79eNWvW1IsvvujWdencubO2bNmixMRE/f7772rbtq1Kly6tv/76S1u2bNEPP/ygTp066emnn3bazv7A3rRp09SgQQOXchMz59GrVy9t2LBBffv21fPPP6/Q0FCdPn1aixcvVlBQkJ577jm3zhdA/kZxBYBPCg4O1qxZs7R+/XqtWLFCixYt0tmzZxUYGKhatWqpe/fueuyxx5y2adSokZYuXaoZM2YoISFBly5dUoUKFfTyyy+rf//+TmO6NmnSREuXLtXHH3+shIQEpaamqly5cnrxxRfVr18/t7tA327SpEmqWbOmli9frgkTJqh48eKKiorSkCFDHENYZeXVV19V1apVNW/ePH366aey2WyqVKmSYmJiFB0d7fZTNTExMYqNjdX48ePVv3//OyYA/v7+mjJlitq3b69ly5Zp5cqVSklJUdGiRVWtWjUNGzYs09NGripcuLDi4uIUGxurdevWaenSpQoJCVFUVJRee+01de/eXdu2bXNr3wMHDtT999+vBQsWKDY2ViVLllTXrl11/fp1/fOf/3TqKTNu3DjVrl1bS5Ys0fTp0+Xn56cHH3xQ48aNy/QUmRmlS5dWQkKC5s+fr02bNmnatGm6evWqypQpo9q1a+ull15S7dq1M21npn1u5ep5dOjQQUWLFtWcOXM0a9Yspaamqnz58oqOjtaAAQOY0B4AACAfIrfyfG5lFxAQoA4dOmjRokVq1aqVQkJCnF5v3LixJk+erM8++0wfffSR/P39VaFCBQ0dOlRVq1ZV37599fXXX2caDtiuS5cuunz5shYtWqSJEyfq/vvvV6dOndSyZUt169bNad1nnnlG5cuXV1xcnObNm6fr16+rQoUKGjBggHr37u3WEMnSzYfZpk+frpUrV2r16tWaM2eOLly4oBIlSqhq1aqaPHmy2rdvn2m7Pn366Ndff1VcXJx2797t8oNfrp5HlSpVtGDBAn388cdatWqVzpw5oxIlSqhRo0Z67bXXmG8FQJYshmEYng4CAIC8cOXKFWVkZCgoKCjTa2+//baWLl2qL774ItvJLM1q1aqVJGnLli05sj9vMn36dH300UeaN29ejoyHDAAAACD/ePPNN7Vy5cocza+8xc6dO/XSSy9p4MCBGjRokKfDAeBBzLkCACgwDh48qKioKP3v//6v0/LU1FR9+eWXKlOmjCpWrOih6AAAAAAAAOArGN8DAFBgREZGKjw8XDNnztTZs2cVERGh8+fPa8WKFTpz5oz+/ve/O+ZcySlXrlzR6tWrVbhwYbVr1y5H9+0Je/fu1aFDh/TLL794OhQAAAAAXm7z5s0qWbKkHn/8cRUvXtzT4dyTU6dOaefOnTp8+LCnQwHgJSiuAAAKDD8/P82ZM0dxcXHavHmzli1bpqJFi6pmzZoaM2ZMrgxvde7cOcXExCgoKChfFFdWr16tefPmeToMAAAAAD7ggw8+kCStWrXK54sre/fuVUxMjKfDAOBFmHMFAAAAAAAAAADABOZcAQAAAAAAAAAAMIHiCgAAAAAAAAAAgAkUVwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABIorAAAAAAAAAAAAJlBcAQAAAAAAAAAAMOH/AUSsO+qqFIhpAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
541coef_calib_zeroautohhindivtou_SHARED3_atwork-35.934870131.00.0-2-37.934870False
543coef_calib_zeroautohhindivtou_BIKE_atwork-37.39056268.00.0<NA>-37.390562True
540coef_calib_zeroautohhindivtou_SHARED2_atwork-36.86528516.00.0<NA>-36.865285True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-34.53897096.029.0-1.197052-35.736022True
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
675coef_calib_autodeficienthhjoi_TAXI_maint-20.970666335.00.0-2-22.970666False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-22.97066628.00.0<NA>-22.970666True
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-22.97066688.00.0<NA>-22.970666True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-20.875688203.00.0-2-22.875688False
542coef_calib_zeroautohhindivtou_WALK_atwork-23.6302041992.05313.00.981017-22.649186False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -35.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -37.390562 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -36.865285 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -34.538970 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -20.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -22.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -22.970666 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -20.875688 \n", - "542 coef_calib_zeroautohhindivtou_WALK_atwork -23.630204 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "541 131.0 0.0 -2 -37.934870 False \n", - "543 68.0 0.0 -37.390562 True \n", - "540 16.0 0.0 -36.865285 True \n", - "544 96.0 29.0 -1.197052 -35.736022 True \n", - "471 0.0 0.0 -23.883300 True \n", - "675 335.0 0.0 -2 -22.970666 False \n", - "676 28.0 0.0 -22.970666 True \n", - "677 88.0 0.0 -22.970666 True \n", - "698 203.0 0.0 -2 -22.875688 False \n", - "542 1992.0 5313.0 0.981017 -22.649186 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_4\n", - "ActivitySim run started at: 2023-09-13 02:06:05.703048\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 02:51:13.815844\n", - "Run Time: 2708.11 secs = 45.13516666666667 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmmEhBCqoRjY0EtAQKWLgBQrooACjxQFEURRwQcQpamISBGRIlKkSBceUUCRIgoIUkRCTwiRGhIgkJCy8/7BuytLEkhPSL6f6+JSZs7MuWd3dth775lzTIZhGAIAAAAAAAAAAAAA4B5nzu0AAAAAAAAAAAAAAADIChTAAQAAAAAAAAAAAAD5AgVwAAAAAAAAAAAAAEC+QAEcAAAAAAAAAAAAAJAvUAAHAAAAAAAAAAAAAOQLFMABAAAAAAAAAAAAAPkCBXAAAAAAAAAAAAAAQL5AARwAAAAAAAAAAAAAkC9QAAcAAAAAAAAAAAAA5AsUwAGk2YoVKxQUFJTuPy+++GJuh55mU6ZMSfU4qlSpolq1aqlFixZ67bXXtHHjxtwOF//vzz//tL9PvXr1umv7IUOGKCgoSIMHD3ZYbtvH9u3bszzGnj172ve/b9++LN//rRITE3Xy5Mls7eN2ISEhGj16tNq1a6d69eqpRo0aatq0qXr16qUFCxYoLi4uy/u8cOGCBg8erIceekjVq1dX48aNtWXLFknSqlWr9MQTT6hWrVqqV6+eevbsqR07dtjfg8TExAz3e/r0aft+wsLCsupwAEVHR+vChQtZsq/UrnPZtR0AAAUROTI5cl5FjuyIHJkcuSAyDEPHjx/Psf6y+nphGIbmzJmjNm3aqEaNGmrQoIH++9//2v/tbdKkSab2n1Xnf1Y5evRosmUtWrRQUFCQli5dmq59ZXQ7IL9xzu0AANw7/Pz8FBwcnGz5mTNndObMGbm6uqp69erJ1lsslpwIL0uldCyGYSguLk6nT5/W+vXrtX79enXo0EHjx4+XyWTKpUghScuXL7f//7Zt2xQeHq6AgIBcjMjRmTNnHBKARYsWqVatWtnS17Zt2zR69Gi1bt1agwYNypY+bjd58mR98cUXslqt8vLyUtmyZeXi4qILFy5o69at2rp1q2bNmqXPP/9c1apVy5I+rVarevXqpZCQEDk7O6tSpUpKSEhQmTJl9OOPP+qdd96RJPn7+6tEiRJ56nwAUvL1119r2rRp+uyzz+Tv75/b4QAAgDQgRyZHzqvIkf9FjkyOXBDt379fo0aNUrly5fTJJ5/kdjgZMmfOHH300UeSpDJlysjHx0f33XdfLkeV9c6fP6+PPvpIf/zxhzZv3pzb4QD5CgVwAGnWtGlTNW3aNNnyKVOmaOrUqfL399eiRYtyIbKsd6djiY+P12effabZs2drzZo1ql+/vjp16pTDEcImNjZW69atk8lkUqNGjbR161YtWbIkTz29uGLFClmtVjVt2lSbN2/WunXrNHToUBUpUiTL+/ryyy9z9M725cuX6/PPP5eHh4fGjRunRx99VE5OTvb1x48f17vvvqu9e/eqZ8+e+v7771W0aNFM93vy5EmFhIRIkqZPn67GjRvb102ZMkWSVLduXc2bN0/Ozje/7sTGxur777+XJPuyjChRooR9P6VLl87wfoBbjRs3LrdDAAAA6USOfBM5ct5CjuyIHJkcuSBauHCh9u/fr3LlyuV2KBm2bt06SVK7du306aef2pdfvXpVtWrVkouLS6b2X7NmzSw5/zNr27ZtWrt2rUqUKJFrMQD5FUOgA0A6ubq66u2331bNmjUlSfPnz8/liAq2H374QTExMapUqZKefPJJSTeT6fj4+NwN7P8ZhqGVK1dKkp555hmVL19ecXFx9mX3uunTp0uS3n77bbVp08YhsZekwMBAffHFF/Lz81NUVJTmzZuXJf1GRUXZ/79BgwYprqtbt65DEuPu7q7AwEAFBgZmqm8XFxf7fjKbcAEAAAD3OnLkvIUcOXeRI5MjI2vYztv69es7LC9cuLACAwNVtmzZTO0/q85/AHkXBXAAyKCWLVtKko4cOaLr16/ncjQF14oVKyRJTZo0UfPmzeXm5qbIyEht2LAhlyO7aefOnQoPD5eLi4seeughPfbYY5KkJUuW5HJkmXflyhWdOnVKku44XF3RokXtn5f9+/dnSd9JSUn2/3d1dXVYZ7VaU1wOAAAAIPuQI+cN5Mi5hxwZyDqctwAyiwI4gBzz448/qlevXmrYsKGqV6+uRo0a6bXXXtNvv/2WYvugoCAFBQU5zAt1qxdffFFBQUH2oZwk6fTp0woKCtLDDz+sc+fOqU+fPqpZs6bq16+vN998M0uPx8vLy/7/165dc+g/KChIYWFhKW7XokULBQUF2ZNSSdqxY4eCgoLUqVMnHT9+XJ07d1aNGjX04IMP2ue7sW136NAh/fLLL3r++edVp04dNWjQQN26ddPGjRtTjTUpKUlLly7Viy++qAceeEDVq1dXs2bN9NZbb+ngwYMpbhMXF6cZM2bo+eef14MPPqgaNWqoefPmevPNN7V79+5U+woJCdE777yjZs2aqXr16mrQoIF69uypH3/8McX2t75mt74maXHq1Cnt2rVLktSqVSt5enqqefPmkpRnhhq0zb3WsGFDFS5cWB06dJAknThxQr///nuK22TkPFqxYoWCgoK0c+dOSTfvOg8KCtKQIUMctrt8+bKmTp2qJ598UnXq1FGtWrX02GOP6aOPPtL58+fTdWy33jm+adOmO7Z97bXX9L///U8TJkxwWD5kyBAFBQWlOhyf7bhatGgh6d/Xplu3bvY2ttfKti/bazB16lT7Ounfz1lQUJASExOT9RUSEqLhw4erZcuWqlGjhh544AF1795dP/zwg0O7u70/4eHhGjlypB599FHVqFFD9erVU5cuXbR06VKHHyVufw0WLVqk06dPa+jQoWrSpImqV6+uJk2a6L///a9Onz6d6mv7xx9/6M0331Tz5s1VvXp1NWzYUK+88orDtXXr1q0KCgpStWrVFBkZmeJ+4uLiVLduXQUFBWnfvn3JjjWtn88pU6bYt7nbn9uP6+LFi/r444/Vtm1b1apVS3Xq1NEzzzyjr776Sjdu3Ei1r08++UQbN25U69atVb16dbVo0UL/+9//HI7t66+/VqdOnRQcHKwaNWqoZcuWGjFihEJDQ1M9lkOHDmn48OF67LHHFBwcrOrVq+uhhx5S7969k50X0r/na5MmTVLc362vp+3Ybe+/zX/+858UX++TJ0/qvffe06OPPqrq1aurbt266tSpk77++mvFxcWlegySFBERoeHDh6tp06aqXr26GjdurCFDhtzx2DOzHQAASBty5JvIkR2RIydHjvwvcuR7L0e2uXLlimbMmKGuXbuqQYMGqlatmurVq6enn35aU6ZM0eXLl5Ntk97rvu09tY2osGbNGgUFBenFF19MdmwZyZHDwsI0fPhwtWjRQjVq1FCrVq00bdq0u44wERMTo88//9z+Oatdu7Y6dOigyZMn68qVKykeU0REhCRp6NChDuf83fLutLz/t75Wdzr/03PttsW9ZcsWhYSEaODAgXrooYdUvXp1PfLIIxo7dqwuXbrksE1QUJCGDh0qSTp37pzD5/N2u3fv1iuvvKIGDRqoZs2aat26tSZMmKCYmJgU22d2OyA/oAAOINslJCSof//+GjBggLZu3SpnZ2dVrlxZiYmJWr9+vXr06KGxY8dmaZ/x8fHq2bOntm/frsDAQJlMJpUpUyZL+7B9qXdzc5Ovr2+W7PPSpUvq3r27Dh06pIoVK+rGjRsqX768Q5vly5fr5Zdf1sGDB1WhQgUVKlRIO3bs0KuvvqrRo0cn22dMTIy6du2qYcOGaefOnSpcuLCCgoJ09epVfffdd+rYsaPmzJnjsE18fLx69OihCRMmaP/+/fLx8VGlSpUUExOjtWvXqmvXrlq6dGmyvr755hs9/fTTWrVqlS5fvqxKlSrJw8ND27Zt04ABA/Tmm2+mmNxk1PLly2UYhsqWLWu/u7p9+/aSpF27dun48eNZ1ldGxMTEaP369ZL+jSswMFBVqlSRJC1evDjL+vLz81NwcLD9R6dSpUopODjY4fw5fPiw2rdvrylTpujw4cMqU6aMKlSooFOnTumrr75S+/bttWPHjjT36eHhoeDgYEk3C5HvvPOOdu3aleJ77O/vr4oVK2b6s1KoUCEFBwfLYrHYlwUHB9uPNaXXwBbjnXzzzTfq2LGjvv32W126dMl+7v7+++8aOHCgJk6cmKb4NmzYoPbt22vRokU6f/687r//fhUtWlS7d+/WsGHD1LNnT/uPgbf7+++/9cQTT2jVqlVyd3dXuXLldO7cOS1btkzPPvuszpw5k2ybTz/9VC+88ILWrl2r69evKygoSGazWZs2bVKPHj3sT1E8/PDDKlWqlBITE7V27dpUY4+JiVFgYOAdn1a4m1tf95T+uLu7S7o5bFnhwoXt2+3evVvt2rXT7NmzderUKQUEBKh06dI6ePCgPvroI3Xq1EkXLlxIsc9du3ZpwIABunLligIDA3X+/Hn75+zs2bN66qmnNG7cOO3bt0/+/v6qVKmSLly4oCVLlujxxx+3z/t1q4ULF+rpp5/Wt99+q8jISJUrV04BAQG6evWqtmzZkq7z4k5s562NxWJRcHCw/Pz87Mu+++47Pf7441q8eLHOnz8vi8WiYsWKad++fRo3bpyeffZZnT17NsX9Hz58WE8++aSWLl0qT09PBQQEKDIyUitXrtRTTz2lY8eOZel2AADg7siR044cOX3Ikf9FjkyOnFdyZEkKDQ3V448/rgkTJmjv3r0qWrSogoKC5OTkpIMHD2rq1Kl67rnnUn0t0qpw4cIO+WTRokWTnR8ZzZF/++03PfXUU/r2228VFRUli8Wi2NhYTZo0Sb169Uo1puPHj+vxxx/X5MmTdeTIERUvXlzlypXTiRMn7EXxW69NtpzY9uS37TyuXr36XY8/re//3WTm2r1lyxZ17NhRGzdulK+vr0qVKqXTp09r7ty5ev755x0Kz7dek1xcXFL9fK5cuVJdu3bV9u3bVapUKRUtWlShoaH2m7JSuyk+o9sB+YYBAJk0efJkw2KxGM2bN09x/QcffGBYLBajdu3axrp16+zLExMTjQULFhhVq1Y1LBaLMWfOHIftLBaLYbFYjF9//TXF/b7wwguGxWIxJk+ebF8WHh5u365+/frG0aNHDcMwjBs3bhhXr17N9LHYREZGGvXr1zcsFovRt2/fFPsPDQ1NcdvmzZsbFovFWL58uX3Z77//bt+uZcuWxtmzZw3DMIyYmBgjLi7OYTuLxWL06NHDuHjxomEYhmG1Wo0lS5bYX8c1a9Y49Pfyyy8bFovFePjhh43ff//dvvzGjRvGZ599Zt/njz/+aF+3cOFCw2KxGK1atTIiIiLsy+Pi4oz333/fsFgsRt26de2xGYZhbN682QgKCjKqVatmzJ0710hMTLSv2759u/Hggw8aFovFmDhxokN88fHxxrFjx4xjx44ZV65cuePrfqukpCSjadOmhsViMSZNmuSwP9t7M2rUqBS3feeddwyLxWK8+eabDsvvds6l1+LFiw2LxWLUqlXLiImJsS+fPXu2YbFYjGrVqhkXLlxItl1GzyPD+Pdz8emnnzosv3r1qtGoUSPDYrEYzz33nHHq1Cn7ugsXLtjPk7p16zqsu5uDBw8atWvXtsdrsViM4OBgo3fv3saXX35p7N2710hKSkp1+9TeC5vly5en+Jm89TNzu5SuDbdvk5CQYF++e/duo3LlyobFYjE++eQTh/N6+fLl9nVbt241DCP19+fQoUNG9erVjaCgIGPixIkO+zl48KDRqlUrw2KxGIMHD07xNbBYLEanTp2MEydO2Nft2bPHqFOnjmGxWIzRo0c7bLd27VrDYrEYVapUMb7++mv7Zy4xMdGYNm2afd2xY8cMwzCMiRMnGhaLxXjqqadSfK1feuklw2KxGDNnzrQvy+jnMzWrV682LBaLUbVqVWPbtm325WfPnrV/bocNG2ZcvnzZvi4sLMx49tlnDYvFYnTp0sVhf7ZrtsViMV599VXjxo0bhmHcvEbbXosnnnjCsFgsRuvWrY1Dhw7Zt7169arx3//+1/5Z3Lt3r33dyZMnjWrVqhkWi8WYNm2aER8fb18XFRVlDBw40L5ddHS0fZ3tfG3cuHGKx3/ruRMeHu6wLrXrz969e+3X92HDhjn8W/b333/bz6unnnrK4by+9bx68sknjePHj9vXHTp0yGjQoIFhsViMgQMHOvSX0e0AAMC/yJHJkQ2DHDkl5MjkyLe+TgUpR7a9B506dTLOnTtnX261Wo2VK1faX9MFCxY4bJeR675hpH4eZTRHvnz5stGwYUPDYrEYgwYNcvj3Y8WKFfb8+fZYr127Zjz66KP2fxts13LDMIzz588bffr0sV9bY2NjHWJN7TOdWt6d3vc/tfM/o9du23thsViMPn36OLzPGzduNKpUqZLiv+13+h3h1n/n3nzzTSMqKsq+zvb7isViMb755pss2Q7Ib3gCHEC2Onv2rP0O3lGjRqlNmzb2dU5OTuratasGDhwo6eZQTJm90/FWXbp0UcWKFSXdnC/m1uHYMsIwDEVFRennn3/WSy+9pOjoaLm4uGjAgAFZEa7dyy+/rBIlSkiSPD09VahQIYf1pUuX1ueff26/m9NkMqlTp07q2bOnpJuvo83evXvtw25NnjxZDRo0sK9zdXXVwIED9dxzz0mSPvnkE/u6kJAQSTfnDCtdurR9eaFChTRkyBA1atRIjz76qKKjo+3rPv30UxmGocGDB6tbt25ycnKyr3vwwQc1btw4SdKcOXMUFRVlX+fi4qLAwEAFBgY6PA16N9u2bbPf7fv444877M92nq1evTpX72a0De32yCOPyNPT0768ffv2MpvNSkhIsLfJbgsXLtT58+dVrFgxffnllwoICLCvK1asmCZPniyLxaKrV69q+vTpad5v1apVtXTpUtWtW9e+LCYmRps3b9aECRPUqVMnNWrUSBMnTlRsbGyWHlNWmTZtmqxWqx577DG9+eabDp+5p59+Wh07dpSkuw5vNmXKFMXHx+uFF17Q66+/7rCfqlWravLkyXJyctKaNWtSfHrWxcVFU6dOVYUKFezL6tSpo6efflqStGfPHof2ts/6f/7zH3Xv3t3+mXNyclLfvn318MMPKykpSatWrZIkPfPMMzKZTDp48GCyJz/OnTun7du3y8nJSU888YRDTBn5fKZk165devfddyVJ7777rh5++GH7utmzZys6OlotWrTQqFGj5O3tbV9XtmxZTZs2TV5eXvrjjz+0efPmFPf/zjvv2O8QL1q0qCTphx9+0KFDh1SoUCHNnDlTlStXtrf38vLS6NGj1bhxYyUkJDg8wfDrr7/KyclJ1apVU9++feXi4mJf5+Pjo3feeUfSzae3Tp48manX5W4mT56sxMRENWrUSKNGjXL4t6xKlSqaNWuW3NzcdPDgQYdh322cnZ31+eef6/7777cvq1y5snr06CHp5vBwKcnodgAA4M7IkdOPHDltyJHThxw5deTIWZsjR0ZG6ujRo5JuXveLFy9uX2cymfTkk0+qfv36km6OSpCdMpojL168WJcuXVL58uX10UcfOfz78dRTT+mVV15Jsb+lS5cqLCxM1apV05QpU+zXcunmKAiTJk1SmTJlFBoamu4h5W+X3vc/NRm9dtv4+flp8uTJDu/zI488Yh+y/fbzNi0CAwP10UcfycfHx77s8ccft/+ukto0HBndDsgvKIADyFZbtmxRYmKi/P391bZt2xTbvPDCC3JxcdHVq1ft8xJlhVuTjfSKiIhINldt5cqV1bBhQ/Xt21eHDh1S4cKF9dlnnzl8WcwKd4u7U6dO8vDwSLb8+eefl3RzntgTJ05I+nfOqZo1a6Y6xNVLL70k6eZwdUeOHJEk+/A7y5Yt08KFCx3mqHF1ddXs2bM1btw4+xfX06dP69ChQ5IcE+1bNW3aVL6+voqLi0t1Trv0sH0xrlmzZrIh8GwxXLlyJcWCUE44fvy4fY6o21+T4sWLq2HDhpKkJUuWyGq1Zns8P//8syTpySefVJEiRZKtd3V1tc8J9fPPP8swjDTvu2LFilq4cKFWrVql/v37q06dOg4Fw8jISE2fPl2PP/54qsM055bY2Fj7PHO2H7pu9/rrr+uHH36wzzWYkvj4eG3ZskVS6p8B23XEMIwU54OrXr26/P39ky23FSCvXr1qXxYWFmb/nNs++7cbM2aMNm7cqEGDBkmSAgIC9MADD0hSsoRv9erVslqtatKkSYoxZNaJEyfUv39/JSQk6MUXX1TXrl0d1tvmZ0zttStWrJg9QUvptfP393f4wcrGdt63aNEixfXSzeRYknbu3Gl/jbt27ap9+/Zp4cKFKW7j5uZm///s/NHq+vXr9iEXb53T71YBAQFq2bKlJOmnn35Ktr569eoOP9La2OYVu/VH2qzYDgAA3Bk5cvqRI6cNOXL6kCOnjBz5pqzMkf38/PT7779r3759DkOR2yQlJdkLytl9g0pGc2TbjegdOnRwOJdtOnfunOK+bLl+27ZtHQrJNm5ubmrdurWklHP9tMrI+5+SrLh2P/jgg8lu1JJuFqMlx/M2rR555JEUXz9bfn773OKZ3Q7IL5xzOwAA+Zvty0eVKlVkNqd8z42Hh4cqVKigI0eO6OTJk2revHmW9J2ZL6iurq7J5pYxm83y9PRUiRIlVKtWLbVp0ybTd8yn5G5x16xZM8XlpUuXVuHChXX16lWFhobq/vvvt7/+1apVS3V/5cuXl5eXl2JiYnTy5ElZLBY9++yzWrZsmY4dO6b3339fH3zwgapUqaIHH3xQjRs31gMPPCBn53//CbHdySpJr776aqp93bhxQ9K/50VGRUdH2ws9KX0hrVu3rgICAhQeHq5FixbpmWeeyVR/GbFs2TJJNxOdW590tXniiSe0fft2RUREaOvWrWratGm2xmN7SvVO54Jt3aVLlxQdHZ3uuciqVKmiKlWq6LXXXlNsbKz27Nmjbdu2afXq1YqMjNSpU6c0cODANM+5lBP++ecfJSQkSFKqP9T5+fk5zMecktDQUMXHx0uS3n//ffuTyCn1J6X8Gbj1Tuhb2YqtiYmJ9mW2+RU9PDxSTVpLlSqVbNkzzzyjnTt3as2aNXrjjTdkMpkk3UzuJdnvpM9Kly5dUp8+fRQdHa1GjRpp6NChDuuvXbumiIgISTefNJg3b16K+7G1Sem1u/XO6lul57xPSkpSWFiYw7W/UKFC2r9/v44cOaLw8HCdOnVKR44ccYghPT+EpVd4eLj9/LzTfGfVq1fX2rVrU3waPbXzyvYjcUJCghITEx2u6ZnZDgAA3Bk5cvqRI98dOXL6kSOnjBw5+3JkNzc3nTlzRvv27dOpU6cUHh6u48eP69ChQ7p+/bokZfvNHxnNkW3bVapUKcVt/Pz8VLx4cZ0/f95hue0moqVLl6Z4w7YkXbx4UVLmroMZff9vlxXX7vSct2l1t/w8tRsnMrodkF/wixWAbBUTEyNJdx0WyJYkZ+Xwbrc+oZde/v7+WrRoUZbFkh53izulO5NtPDw8dPXqVV25ckVS2l9/T09PxcTE2F9/Ly8vLVmyRF999ZXWrl2rsLAw/f333/r77781e/Zs+fn56fXXX1enTp0kOd69mJahfDJyt+Ot1qxZY0+kRo8erdGjR6fa9sCBAzp48OAdv9xntcTERH333XeSbt7Zfbe+Fy1alO3JfVrOhVt/rLp27Vq6k/tbubu76+GHH9bDDz+sgQMH6t1339X//vc/7d27N8ffjzu59SnWW4fgS69bz+m//vorXe1tUrqLOjW2uNMbc5s2bTRq1CidOXNGO3bsUMOGDXXgwAEdO3ZMvr6+Wfbjqs2NGzfUt29fhYeHq2LFivrss8+S3X1sOzelf5PjO0nptUvp7upb952e895m9erVmjZtmkJDQx3a33ffferYsaO+/fbbu8aaWbe+Nmk5hpT+DU3th6a7yeh2AADgzsiR048c+e7IkdOPHDll5MjZkyOfOHFCH3/8sTZv3uxQ5Pby8lK9evV0/vx5+1QL2SmjObLtGprSaBs2RYoUSVYAt/UXGhqaLLe+XWaugxl9/+8UQ0av3ek5b9Mqtd88sms7IL+gAA4gW9m+eNztS4zti1RKX1RSe7rOdndkXpVdcd9puF3bF0vbnbhpff1t6299/b28vDRgwAANGDBAYWFh2rFjh3bs2KHNmzcrMjJSw4cPl4+Pj1q1amX/Auzj42Mfrjc72eYE8/DwuOOX9vPnz8swDC1evFijRo3K9rhsfvnlF/sdrMWLF7ffQXy769ev6+rVq9qyZYvOnDmT4t2oWXUeeXp66vLly3c8Fy5fvuzQ/m5GjBih33//XU899ZT69u2bajs3Nzd98MEHWr9+vX3O5NuT+9SOM7vnRLs1eYuJibHPHZ2Z/ezZsyfTSVda+0vvD6Jubm5q166dlixZojVr1qhhw4b2O9tTG8osowzD0FtvvaW9e/fK19dX06dPT/Hz6u7ubv//NWvWpDgkXEal5Rpo+/fn1vYrV67UkCFDJEmNGzfWo48+qkqVKikwMFBFihRRQkLCHQvgWXU+33oeXb16NdWnLGyf3ew+7wAAQOaRIydHjpx55MjkyFmFHDnrc+TIyEi98MILioyMVOnSpdWpUydVrVpV999/v+677z6ZTCa9+eabdyyAZ+V5L6U/R/bx8dGFCxccbtK+XUpPE7u7u+vq1auaPn16lt9wf6uMvv+p7Senrt0AshdzgAPIVrZ5eQ4dOpTqMD4xMTH2uwDLlStnX257StB2F/Ptbr+rMC+4dcizlOKOi4vL9J3dqT0heerUKfsXvYoVK0r69/U/ePBgqvs7fvy4/Quz7fWPjIzUH3/8YZ8Lply5curUqZMmTJigzZs324e+syUFFSpUkHTzjssLFy6k2tcff/yh48ePZ2qInZCQEPt8POPGjdOWLVtS/WO7Y3zt2rV3/JKe1Wxzr1WqVElbt25NNb45c+ZIujms1K3FtOw4j9JyLtjuyi5SpEia7my/ceOGwsLC7HM63YmXl5c9cbo1gbZ9zm1DrN0uuz/nAQEB9hhuHerqVgcOHFDnzp01dOjQVJPOW/dz7NixVPvbv3+/Dh8+nOmkzDan3/Xr13X69OkU2/z000968cUX9fHHHzsstw13+NNPPykpKck+DFlWD4P48ccf68cff5SLi4umTp2a6jBk3t7eKlasmKQ7v3aHDx/WoUOHHH6Eupu0nPcHDhyQJJlMJpUtW1aS9OWXX0q6OR/grFmz9Nxzzyk4ONj+dFFq8/Rl9b9bZcuWtf/gcqenJmzrbv03FAAA5E3kyI7IkcmRyZHJkfN7jrx8+XJFRkbKx8dHy5cvV9++fdW0aVMFBATYbwY5d+5cittm9XU/ozmy7Zpmu9bc7tq1a/bh7G9l2y61c0m6+XT4gQMHMjUfdWbe/5TizYlrN4DsRwEcQLZq0qSJnJ2ddeHCBX3//fcptlmwYIESExPl7u6u+vXr25fbkouU5lPZv39/nkzufXx87F9eU4r7559/ztBcL7dasWJFij+U2Iajq127tv0uadvdlfv370916J6vv/5aklSyZEkFBQVJknr27KmuXbtq5cqVydp7enqqdu3akm4mpZIUGBho/2FgwYIFKfaze/dude3aVW3bttXevXvTcKQps80b5uvrqxYtWtyxbefOnSXd/AJs+yEiu0VGRmrz5s2S7p4s1ahRw/5DydKlS+3nRmbOo9TupLedC6tWrUqxgBgfH28/hxo3bnzHuG1sc8v99ddf9h80UrNt2zZFR0fLx8dHtWrVsi+/0+c8KSlJP//8c5piySgvLy/VrVtX0r9PTdxu7dq12rNnj06fPp3q6+vl5WW/fqU2h3V4eLi6dOmixx9/XD/88EOm4g4MDFSZMmXuGPfKlSu1c+fOZElkrVq1VKlSJUVFRWn+/Pn6559/VLVq1VTnd8uIRYsW6auvvpJ0cwjGevXq3bF9s2bNJN28fqR0fbt69aq6d++uJ598UnPnzk1zHLbz/ueff1Z4eHiKbWzvV+3ateXt7S1J9oQ5tWEIbdchyXH+Ltv5fPnyZUVGRibbbsOGDanGaju3bv0BycPDQw0aNHCI83bh4eH2z0mTJk1S3T8AAMgbyJEdkSOTI9+KHJkcOaPyco5syy9Lly6d4hP1x44ds18DbNcQm4xe91PKL6WM58itWrWSdPMmn5RuVlixYkWy2G/tb9myZSkWixMTE9WvXz917NhRH330UYrxpEVm3v/b95NT124bs/lmiS61m0kAZBwFcADZqlSpUvY5sIYPH+7whdZqtWrhwoWaMmWKJKlfv34OQ3XZvnDPmTNHx48fty8/cOCA3njjjZwIP93c3NxUtWpVSdKUKVMc7uDctm2bPvjgg0z38ddff2n48OH2Ya+sVqsWLFhgT9IHDRpkb1unTh37Hd4DBgxwGL4nPj5ekydPtt9V/fbbb9u/ID/xxBOSpKlTp2rLli0O/f/xxx/2RPnWObkGDhwoSZoxY4ZmzpzpcHfqH3/8YV9fu3ZtNWzY0L4uISFBx48f1/Hjx+96x3Z8fLzWrFkj6eZQVHebo7ZJkyb2L8CLFy++Y9s7+eeff3T8+PEU72a93apVq5SYmCgXFxf763gnth8gLly4YL/LODPnkW24poiIiGT9lChRQhcvXtTLL7/skOhERkZq4MCBOnLkiDw9PfXaa6/dNW5Jevjhh9W6dWtJ0rBhwzRmzJhkd9reuHFDy5cv1+uvvy7p5nly69Bnts/50aNHNW/ePPsX/suXL+vdd99N05zQmdWvXz+ZTCatXr1a06dPd/jhZNWqVZo/f74kqVevXnfcz2uvvSYnJyetXbtW48aNc0gKjxw5oj59+ighIUFlypRRhw4dMhWzyWRSv379JEkzZ87U0qVL7a9dUlKSZsyYoQ0bNsjZ2Vk9evRItr3th6dJkyZJkp5++ukU+0nP59Nm8+bN9uEUBwwYoCeffPKu2/Tp00ceHh7avXu33nrrLYeENCIiQn369FFUVJQKFy6srl27pikO6eZ8bkFBQbpx44Z69+7tMKRcTEyMhg8frm3btsnZ2VmDBw+2r7PdFb9kyRKHz19MTIymTJmiGTNm2JfdmsTXqlVLLi4uMgxDY8eOta9LSEjQ3Llz7zhsuu2ze/t1pn///nJ2dta2bds0fPhwhyd1QkJC1Lt3b924cUOVK1dO02sNAAByFzkyObJtG3LklJEjkyNnRF7OkW35ZUhIiH788Uf7csMwtGXLFvXq1cv+xP/tQ9xn9LpvO6du/4xmNEd+9tlnVa5cOZ09e1YDBgxwuOF7/fr1mjBhQopxdO3aVf7+/goLC1Pfvn0d4rl06ZJef/11HT9+XC4uLnrppZdSPZ67yez7f6uMXrszynaNunLlSo6OzAEUBMwBDiDbDR06VOfOndNPP/2kgQMHqnjx4ipZsqTCw8MVFRUlSXrhhRfUu3dvh+369u2rrVu36sKFC+rQoYMqVqyoGzduKDQ0VAEBAXrmmWdSvasvN73++uvq27evjh07ppYtW6pixYq6fPmyIiIiVKNGDQUHB9uTuIywWCxatmyZ1q1bp/vvv19nz57VhQsXZDabNXTo0GRfvj7++GO98sor+vPPP9WtWzeVKVNGRYsW1cmTJxUTEyMnJye9/vrrateunX2bbt26afv27dqyZYt69+6t4sWLq3jx4oqKirInjS1atNCzzz5r36Zdu3YKDQ3VlClT9Mknn+jLL79U+fLldenSJfs2FSpU0LRp0xziO3funNq2bSvp5nBtqSUZkrRx40ZFR0dLSttQVGazWc8995w+/fRTHTlyRLt377YnD+nxzjvvaOfOnapfv7490UuN7S7vZs2apWmurHbt2umjjz7SlStXtHjxYnuynNHzqGrVqtq0aZPWrFmjw4cPq169enrvvffk7e2t6dOnq0+fPvrzzz/VqlUrVaxYUc7Ozjp69KgSEhLk4+OjTz75xD50VFp88skn8vDw0KpVqzRv3jzNmzdPpUuXlp+fn/3zGh8fLxcXF7355pvq0qWLw/ZNmzZVvXr19Mcff2jMmDH66quv5OvrqxMnTighIUGvvfaa/QfA7PLggw9q6NCh+vDDDzVx4kR99dVXCggI0NmzZ+3z1L366qsOP2alpG7duho1apTee+89ff3111q8eLECAwN17do1hYWFyTAMFStWTLNnz77rD1Np0bFjRx07dkxz5szRsGHD9Nlnn6lkyZI6ffq0oqOj5eTkpJEjR6Z41/oTTzyhCRMm6Pr163JxcVH79u1T7CM9n0+bQYMGKSkpSW5ubvr777/Vs2dPxcXFpfhUzjPPPKOOHTuqXLly+uyzzzRo0CCtXbtWP/74oypWrKiEhASFhoYqMTFRHh4emjFjRqrzYKfE2dlZ06ZNU+/evXXixAk98cQTKl++vDw9Pe3Dlbm5uen99993eEp90KBB6tevn44dO6ZHHnnEPgxaWFiYbty4YR+q7tSpUw7DoRcpUkQ9e/bU9OnTtXbtWm3dulX33XefIiIiFB0drc6dO+vnn39OcXi7qlWrateuXfrggw+0aNEidenSRR07dlSdOnU0ZswYDRs2TN9++62+++47BQYG6vr16zp58qSkm/8uTJ06NUvOKwAAkP3IkcmRyZFTR45MjpxReTVH7tixoxYuXKiwsDANGDBAZcqUka+vr86cOaPIyEi5uLiofv362rlzZ7JcMaPX/SpVqki6Of96mzZtVLFiRU2dOjXDObKbm5smT56sXr16adu2bWrWrJkqVaqk6Oho+2fwwoULyaYLK1KkiL744gv17dtX27dv1yOPPKKKFSvKZDLp5MmTio+Pl7Ozsz799FP7iBsZlZn3/1YZvXZnVFBQkMxms+Li4tSmTRsVL15cs2fPTtO0CwDujCfAAWQ7V1dXff7555o4caIaNWqk+Ph4HTp0SO7u7mrXrp3mzZun4cOHJxs2qUqVKlq2bJk6dOigokWL6sSJE0pKStJLL72klStXyt/fP5eO6M6aNGmihQsXqmXLlvLw8NCxY8dUqFAhDRgwQAsXLrTf2ZdR3bp106effqoKFSrY7/xt3bq1Fi9enOJdjD4+Ppo/f75GjRqlBx54QFevXtXhw4fl6+urjh07atmyZerTp4/DNk5OTvr888/17rvvqk6dOoqLi1NISIhiY2PVqFEjffzxx5o2bZrDPFzSzQRoyZIl6tChg7y8vBQSEqKoqChVrVpVAwcO1PLly9NVvLqdLXGuVq1amoei6tixo30O3czc4Z4W+/bts89tlda5otzd3e1Pbf7222/2uf4yeh717t1bzz77rHx8fBQaGqrDhw/b11WtWlVr165Vv379VKlSJYWHhys0NFQVKlTQK6+8ou+++y7NQ7vZuLq66sMPP9TSpUv10ksvqVq1aoqPj1dISIjOnj2rChUqqGfPnvruu++SnWfSzR9gZs+erddff12VKlVSZGSk/vnnHz344INatGhRpu8CT6vu3btryZIlat++vQoVKqTDhw8rMTFRTZs21Zw5czRgwIA07eeZZ57R6tWr9dxzz8nf319Hjx7VmTNnFBgYqF69eum7776zF1OzwpAhQzRnzhw98sgjMgxDISEhcnJyUps2bbRkyRKHH+BuVbRoUftw2S1atMjSxMp2V39cXJw2btyobdu26Y8//tCePXuS/Tlz5ox9u6ZNm+p///ufevToobJly+rkyZMKCwtTmTJl1KVLF3333XcKDg5Odzz33Xefli9frrfffls1a9bUhQsXdPz4cZUqVUrdunXT6tWrkz053bx5cy1btkwtW7aUv7+/Tpw4oTNnzshisejNN9/U6tWr7efmpk2bHLYdNGiQPvnkE9WtW1cJCQk6efKkKlSooPHjx2vkyJGpxjl27Fg9/PDDcnZ21smTJ+3XAunmXOSrV69Wp06dVKxYMR09elRRUVEKDg7WiBEjtGzZslTnWAcAAHkPOTI5Mjly6siRyZEzIy/myF5eXvbrSqVKlXTp0iUdPXpUXl5e9gL22LFjJd18SvzWp6Qzet1/8skn1atXL/n7++v06dM6dOiQ/ab0jOTIklS5cmWtXLlSL730kkqVKqWjR4/KarWqR48e+vrrr1O9iaFGjRpas2aNXn31VQUFBen06dM6ceKEihUrpieffFLLly+3D7GeWRl9/2+X3dfuW5UrV07jxo1T+fLlFR0drTNnziQbsQJAxpgMJhcAgHtCixYtFBERodGjR6f5CxuyzqhRo3Tq1CnNnDkzt0MBssTTTz+tgwcPasaMGXe9cx8AAADIa8iRcxc5MvIbcmQAyF94AhwAgLuwWq36448/VLFixdwOBcgSBw8e1MGDB1WqVCk1atQot8MBAAAAcA8hR0Z+Q44MAPkPc4ADAHAXH3zwgSIjI/Xiiy/mdihAhoWHh0uSLl68qCFDhki6OVykk5NTboYFAAAA4B5Djoz8gBwZAPI3CuAAANzF888/rwEDBqho0aK5HQqQYd9//70+/fRT+98tFoteeOGFXIwIAAAAwL2IHBn5ATkyAORvDIEOAMBdVK5cmcQe97zKlSurePHi8vDwUMuWLfXVV1/J1dU1t8MCAAAAcI8hR0Z+QI4MAPmbyTAMI7eDAAAAAAAAAAAAAAAgs3gCHAAAAAAAAAAAAACQL1AABwAAAAAAAAAAAADkC865HcC9wjAMWa2MFg8AAAAAcGQ2m2QymXI7jHyB3BsAAAAAkJL05N4UwNPIajV06dK13A4DAAAAAJDHFC3qKScnCuBZgdwbAAAAAJCS9OTeDIEOAAAAAAAAAAAAAMgXKIADAAAAAAAAAAAAAPIFCuAAAAAAAAAAAAAAgHyBAjgAAAAAAAAAAAAAIF+gAA4AAAAAAAAAAAAAyBecczsAAAAAAEByVqtVSUmJuR1Ggefk5CyzmXvHAQAAACA/IvfOG7I696YADgAAAAB5iGEYunLlkmJjY3I7FPw/d3cveXsXlclkyu1QAAAAAABZgNw778nK3JsCOAAAAADkIbYE3MvLV66uhSi65iLDMBQff0MxMVGSpCJF/HI5IgAAAABAViD3zjuyI/emAA4AAAAAeYTVmmRPwL28vHM7HEhydS0kSYqJiVLhwr4Mhw4AAAAA9zhy77wnq3NvMncAAAAAyCOSkpIk/Zv4IW+wvR/MCwcAAAAA9z5y77wpK3NvCuAAAAAAkMcw9FrewvsBAAAAAPkPuV7ekpXvBwVwAAAAAAAAAAAAAEC+QAEcAAAAAAAAAAAAAJAvUAAHAAAAAAAAAAAAAOQLFMABAAAAAAAAAAAAAPmCc24HAAAAAADIPYcPh2jatEkKCflbVquhqlWrq0+ffqpWrbokadeu3zVnziwdP35UTk7Oql+/ofr2fU0lSpSUJH3//RqNHfu+li79TqVKlbbvt2PHDqpTp67++9+RkqRGjerppZf6aPv2bQoPD1Pnzi+qR49eiog4rS++mKLdu3fJMAxVr15D/foN1P33B0qSbty4odmzp2vjxvWKirqksmXLqVu3l/TII61y9oUCAAAAACCDyL1zFk+AAwAAAEABde1ajN588zUVKeKj0aM/0vvvj1VcXKzefLO/YmJi9OOP32vQoP7y9/fXyJFj9Nprg3Tw4AG98spLioq6lO7+5s6drWbNWmjkyDFq3LiZLl68qN69uyss7KTefPMdvffeKF25ckWvv95P0dHRMgxD7777llatWqHnnuuiDz/8VNWr19R7772rdevWZsMrAgAAAABA1iL3znk8AQ4AAAAABdTJkycVHR2ljh2fU82atSVJ5cqV1+rVyxUTc1XTpk1SvXr19f774+zb1KxZWy+88KwWLVqgfv0GpKu/qlWr64UXetj//vnnk3TjRpw++2ya/PyKSZIqVaqsl1/uob/+2q9ChVy1Y8d2vf/+WPtd5w0aPKi4uFhNnz5Vjz7aRs7OpLUAAAAAgLyL3Dvn8QQ4AAAAABRQ998fKB8fX73zzhv65JNx2rZti/z8iqlfv4GKi4tTZGSkWrV6zGGbMmXuU7VqNfTnn3+ku7/AwIoOf9+3709Vr17TnoBLUrFixbR8+Vo1atREf/yxSyaTSQ8+2EiJiYn2Pw8/3FSRkRd18uTxjB04AAAAAAA5hNw7591b5XoAAAAAQJbx8PDQtGkzNXfubG3cuF6rVi2Xm5ubWrV6TG3atJMkFS3ql2w7Pz8/HT58ON39+foWdfj7lSuXHeYuu92VK5dlGIZatWqS4vqLFy+oUqWgdMcBAAAAAEBOIffOeRTAAQAAAKAAK1u2vIYPH6WkpCQdOnRQP/zwvVatWqZixfwlSZcuRSbbJjIyUj4+PpIkk8kkSbJarQ5tYmOv37VvL6/Cio6OTrZ89+5dKlmylLy8Csvd3UNTpkxPcfsyZQLu2gcAAAAAALmN3DtnMQQ6AAAAABRQmzZtVPv2LRUZeVFOTk6qXr2mBg8eIi+vwrp06ZL8/Py0fv06h20iIk7rr7/2q2bNWpIkDw9PSdK5c2ftbU6dCtXly5fv2n+tWrV18OB+RUVdsi+Ljo7W4MED9OuvW1S7drBiY6/LMAxVrlzV/ufEieP66quZSkpKyoqXAQAAAACAbEPunfN4AhyAA7PZJLPZlK19WK2GrFYjW/sAAADA3dWoUVtJSVYNHTpYL7zQQ56envrpp/W6di1GLVq0VNWq1TR27Pt6772hatOmvS5fjtZXX82Qt3cRPfdcV0lS3boPyM3NTVOnTlTv3v10/fp1zZlzs83ddOrURevW/U9vvNFf3bq9JFfXQpo/f478/IqpTZt28vIqrNq1gzVkyJvq0aOXypUrr0OHDmr27Blq0KCh/U545H/ZnaeQowAAAADILuTeOc9kGAYZXhokJVl16dK13A4DyFZms0k+Ph5ycsrewSGSkqyKjr7OD0wAAAC3SUiIV2TkGfn5lZKLi2uO9Hno0EHNnPmFQkIOKS4uTvffH6gXX/yPmjZtLkn65ZefNH/+1zpx4pg8PT3VoMGD6tPnVZUoUdK+j99/367p06cqLOykSpYspf/8p49++OF/8vPz03//O1KS1KhRPf3nP73Vs+fLDv2HhYVq2rRJ2rNnt1xcXFSnTrD69RuoMmXukyTFxsZq1qwvtGnTT4qKuqRixYqrZctW6tGjlwoVKpQjr9Hd3peiRT2z/Tt0QZFS7p0TeQo5CgAAAFBwkHvn/9ybAngaUQBHQeDsbJavr6c+X/SrIs7ffdiMjChTvIhe7fywoqKuKTHRevcNAAAACpDcSMJxdxTAc05KuXd25ynkKAAAAEDBQu6dN2Vl7s0Q6ACSiTh/WaERUbkdBgAAAADYkacAAAAAANKCW9QBAAAAAAAAAAAAAPkCBXAAAAAAAAAAAAAAQL5AARwAAAAAAAAAAAAAkC8wBziAXOHklH3331ithqxWI9v2DwAAAAAAAAAAgLyJAjiAHFWksJsMq1Xe3u7Z1ofVmqSoqFiK4AAAAMBdJCQkaP78+Vq5cqVCQ0Pl4eGhGjVqqHv37mrcuHGy9g0aNFB0dHSq+9u/f78KFSqUjREDAAAAAHBnFMAB5ChPN1eZzGadXDtTsZFnsnz/7n6lVKF9b5nNJgrgAAAAwB0YhqFBgwZpw4YN8vb21kMPPaQbN27o999/19atW/X666+rb9++9vYRERGKjo5WiRIlVL9+/RT3aTYz0xoAAAAAIHdRAAeQK2Ijzyj23KncDgMAAAAosBYvXqwNGzaoSpUqmjNnjnx9fSVJISEh6tq1qyZNmqRWrVopMDBQknTo0CFJUps2bfTuu+/mWtwAAAAAANwJt2YDAAAAAFAArV69WpI0ZMgQe/FbkipXrqwOHTrIMAxt2bLFvvzgwYOSpGrVquVsoAAAAAAApANPgAMAAADAPcBsNslsNuV4v1arwdQy+dTcuXN18uRJVapUKdm669evS5KcnJzsy2xPgFevXj1nAgQAAACAHEbunT9QAAcAAACAPM5sNsnHx0NOTjk/iFdSklXR0dczlIivX/+Dli9fohMnjkmSypWroPbtn9CTTz6T1WEiAwoVKqTKlSsnW75x40b98MMPcnd3V6tWrezLDx48KDc3N/31118aNmyYjh49KpPJpODgYPXr10+1atXKyfABAAAAIEuRe+cfFMABAAAAII8zm01ycjLr80W/KuL85Rzrt0zxInq188Mym03pTsLXrl2tzz4brwED3lTt2sGSDO3atVOTJ09QVNQl/ec/vbMnaGTI5cuXNWzYMB07dkwnTpxQqVKlNG7cOJUsWVKSFBkZqfPnz0uS3n77bdWuXVsNGjTQkSNH9Msvv2jbtm0aP3682rZtm5uHAQAAAAAZRu6df1AABwAAAIB7RMT5ywqNiMrtMNJk5cplat/+CT3++FP2ZWXLlteFC+f17beLCmwSnleFh4dr/fr19r+bTCYdO3ZMDz74oKR/5//29fXVF198oTp16kiSDMPQ3LlzNW7cOA0dOlTBwcH2onlGOTs7Pm2RU09f5MZTHgAAAAByntV65yHOyb1zl5OTKVlemF4UwAEAAAAAWc5sNunAgf26cuWKvL297cu7du2utm07SJI6duygxx5rr549X7av79+/j0qVKq3//nek9uz5QwMGvKK+fV/TN9/MU8mSJeXm5q5ixfz1wQfj7Nvs379X/fr10uLFK3XffQH69detmj37S4WGnpS/v79atmyt7t17ytXVVZMmTdCvv27Rt9+utm8fExOjxx9vrQ8+GKtGjZrmwKuT91SoUEE7d+6UYRjavn27xowZo9GjRysmJkZ9+/ZV48aNtXXrVhmGoRIlSti3M5lM6tGjh3bt2qWNGzdq2bJl6t+/f4bjMJtN8vX1zIpDSjdvb/dc6RcAAABAzoqLc9LFi+Zkhdbcvik2I/07OZn111/7df16jEPu3b37f/T440/I2dmsJ59sp3btOqh371fs6/v27a1SpUprxIj3tXv3H3r11T569dUBmj9/rkqWLCV3dzcVK+avMWM+sm+zb99evfzyS1q6dJUCAspq27Ytmjlzuj33fvTRNvrPf3rJ1dVVEyeO17ZtW7V8+Xf27WNirqpdu1YaNepDNWmSPPe2Wk0ym80qUsRDbm5u6X4tbkUBHAAAAACQ5bp27a4RI4bqqaceU3BwPdWsWUd169ZTlSrVVLhw4XTta/v2bfryyzmKi4vV0aNHNGHCh7p+/Zo8PG4WStevX6caNWrpvvsC9Pvv2zV8+BANGDBIDzzQUBERpzVx4sc6dSpMo0Z9qPbtn9DSpYu0b99e1apVW5L000/r5enpqYYNH87ql+Ge4en5b9G5bdu2KlmypLp06aIZM2aoW7du8vT0VPHixVPdvnnz5tq4caP++uuvTMVhtRq6cuW6wzInJ3OOFKevXIlVUpI12/sBAAAAkLvi42/IarUqKclQYmLeyQGSkqzpjqdLl24aMWKoOnRonSz3Ll3a074/q9XxWA3DkGHcXGbLg7Zt25os975y5ao991637n+qUaOWSpW6T9u2bdO7776TLPcODQ3VqFEfqm3bJ7RkySLt3r3Hnnv/+OOP8vDwVP36D6Z4nElJhqxWqy5fvq7Y2KRk67293dN8kwAFcAAAAABAlmvW7BF9+eUcLVu2WDt2/K7ffvtVkhQQUFZDh45QzZq107yvzp1fUEBAWUnSffeV1cSJ47V58yY99lh7JSQk6OefN6pv39ckSfPmfaX27R/Xk092lCSVKXOf3nrrXQ0Y8IrOnPlHgYEVFRRURT/++D97Ev7DD2vVunVbOTuTItsEBwerbNmyCgsLU2hoqKpVq3bH9v7+/pKk2NjYTPedWz9AZeTHJgAAAAD3nqSk9M2znZflx9w7K25MILsHAAAAAGSLKlWqafjwUTIMQydOHNdvv23T0qWLNXjwQC1ZsjLN+7nvvrL2/3d3d1fz5o9o/fp1euyx9vrtt19140acWrRoKUk6ciREhw4d1Lp1a+3bGMbNHzdCQ0+qVKnSatfucc2YMU2vv/6Wzp8/pwMH9uutt97NoqO+N8TGxmrSpEm6ePGixo8fL5Mp+Rx4rq6ukqTExEQtWbJEv/32m9q3b6+WLVsmaxseHi5JmZ7/GwAAAACQPuTeyVEABwAAAABkqfPnz+mbb+bqhRd6yN+/uEwmkwIDKyowsKIaNWqqF154Vnv37klx26SkxGTLChUq5PD3tm07aODAvoqMvKj1679XkybN5enpJenmsG5dunTTY4+1T7YfP79ikqRHH22jqVM/0/btW3X8+DFVqVJV999fMbOHfU9xc3PTypUrFR0drU6dOql+/foO68PDw3Xy5Em5urqqUqVK2rx5s9atW6fY2NhkBXDDMLR69c051Rs1apRjxwAAAAAABRm5d+pydzZ3AAAAAEC+4+paSKtXr9D69euSrbPNNV20qJ+cnV0UExNjX2e1WvXPPxF33X/t2sEqWbKUfvjhf9q+/VeHhPv++wMVFhaq++4LsP+5cOG8Pv98kq5fvyZJKly4sJo0aaZffvlZW7ZsUtu2j2f2kO85JpNJzz33nCRp5MiROn/+vH3d2bNn9cYbbygxMVGdO3eWh4eHnnrqKbm6uuqXX37Rt99+a29rtVo1efJk7d+/XxUrVlSbNm1y/FgAAAAAoCAi904dT4ADAAAAALKUj4+PunbtrhkzpikmJkYtWrSUh4enQkNP6uuvZyk4uJ5q1aqjmjVr6aef1qtp0+YqWtRPixcvcEjK7+Sxx9pr7tyvVKRIEdWr9+/Ty127dtOIEUM1e/aXevTRNrpw4bw+/HC0SpQoYb8LXZLatXtcQ4a8IcOQWrZsneWvwb2gX79+2rNnj3bt2qXWrVurbt26SkhI0P79+3X9+nU1atRIgwcPliQFBARo5MiRGjZsmIYPH64FCxaofPnyCgkJUVhYmIoVK6YpU6bIxcUll48KAAAAAAoGcu/UUQAHAAAAgHtEmeJF7pn+evfuq/vuC9CaNau0cuVSxcXFqUSJkmrR4lF16/aSJKlPn1d19eoVDR48QG5u7urQ4Uk98kgr+7xhd9KmTXt99dUMPf30szKb/x3crHnzlnr/fWn+/K+0YMHXKlzYWw8/3Fh9+w5w2L5evfoqUsRHNWrUUuHChTN8nPcyNzc3zZkzR/PmzdPq1au1Y8cOOTs7q1KlSnr66af17LPPysnJyd7+mWeeUYUKFTRz5kzt2bNHJ06cUPHixfXiiy+qb9++8vPzy8WjAQAAAICsQe79r3s19zYZaTm6XJCQkKD58+dr5cqVCg0NlYeHh2rUqKHu3burcePGydpfvHhR06ZN09atW3Xu3Dn5+/urTZs26tevn/0x/8xISrLq0qVrmd4PkJc5O5vl6+updyd9r9CIqGzp46Ha5dS/SyP9PfcDxZ47leX7dy9RVlW7j1BU1DUlJlqzfP8AAADZKSEhXpGRZ+TnV0ouLq725WazST4+HnJyyvlZrJKSrIqOvi6rNU+mjhkWGxurJ55oozFjPtYDDzS4Y9vU3hebokU9c+W9yY9Syr2zO08pX8ZXYwe2JYcAAAAACghy75yTW7l3nnwC3DAMDRo0SBs2bJC3t7ceeugh3bhxQ7///ru2bt2q119/XX379rW3P3/+vJ5//nlFRETIYrGoWbNmOnDggGbNmqWtW7dq4cKF8vLyysUjAgAAAICMs1oNRUdfl9lsypW+81MCfuXKFe3Zs0s//7xRJUqUcBjCDQAAAABQcJF7Z53czr3zZAF88eLF2rBhg6pUqaI5c+bI19dXkhQSEqKuXbtq0qRJatWqlQIDAyVJo0ePVkREhPr06aM333xTkhQfH6+3335b69at09SpUzVkyJBcOx4AAAAAyKz8lgznlqSkRH344Sj5+Pjqgw/GyWTK+R82AAAAAAB5E7l31sjt3DtPjtG2evVqSdKQIUPsxW9Jqly5sjp06CDDMLRlyxZJ0qlTp7RhwwaVKlVKAwb8O668q6urRo0aJU9PTy1ZskRxcXE5exAAAAAAgDzH17eofvjhFy1evFIWS+XcDgcAAAAAgHwnt3PvPFkAnzt3rlavXq0HHngg2brr169LkpycnCRJW7ZskdVqVdOmTeXi4uLQtnDhwmrYsKGuX7+uHTt2ZH/gAAAAAAAAAAAAAIBckycL4IUKFVLlypXtRW6bjRs36ocffpC7u7tatWolSTpy5IgkyWKxpLivihUrOrQDAAAAAAAAAAAAAORPeXIO8FtdvnxZw4YN07Fjx3TixAmVKlVK48aNU8mSJSVJFy5ckCT5+/unuL1t+cWLF3MmYAAAAAAAAAAAAABArsjzBfDw8HCtX7/e/neTyaRjx47pwQcflPTvkOhubm4pbm9bbmuXGc7OefKBeSDLODnln3M8Px0LAAAoOKxWU26HgDtwcjKRFwIAAAAAkMfl+QJ4hQoVtHPnThmGoe3bt2vMmDEaPXq0YmJi1LdvX/sw6SZTyj8UGYbh8N+MMptN8vX1zNQ+AOQcb2/33A4BAAAg3eLinHTxoplCax5jtZpkNptVpIhHqjdfAwAAAACAvCHPF8A9Pf8tOrdt21YlS5ZUly5dNGPGDHXr1k0eHh6SpBs3bqS4vW25u3vmimFWq6ErVzL/FDmQlzk5mfNN4fjKlVglJVlzOwwAAIB0iY+/IavVqqQkQ4mJfJfJK5KSDFmtVl2+fF2xsUnJ1nt7uzMCEQAAAAAAeUSeL4DfLjg4WGXLllVYWJhCQ0NVvHhxSf/OBX67u80Rnh78AAXcO5KSrHxmAQDAPScpKfWRq8xmk8zmnB8i3Wo1ZLWmf0Stjh076OzZM+rf/3U9//wLydaPHz9Wq1ev0H/+01s9e76codg6duygxx5rn+bt09v+dtyYAAAAAAD5G7l3yn3kZO6dFfJcATw2NlaTJk3SxYsXNX78+BSHNnd1dZUkJSYmymKxSJKOHz+e4v6OHj0qSQoKCsqmiAEAAAAge92cksldZrNTjvdttSYpKio2Q4m4s7OzNm36KVkSnpiYqM2bf051KisAAAAAAHIauXf+kecK4G5ublq5cqWio6PVqVMn1a9f32F9eHi4Tp48KVdXV1WqVEnFihWTJG3atElDhw61zwkuSVevXtWOHTvk4eGhunXr5uhxAAAAAEBWuXkHupNOrp2p2MgzOdavu18pVWjfW2azKUNJeL169bVjx286d+6sSpQoaV++Z88fcnNzV6FCzKcNAAAAAMgbyL3zjzxXADeZTHruuef05ZdfauTIkfr666/tw5yfPXtWb7zxhhITE9W9e3d5eHjIw8NDzZs316ZNmzR+/Hi98847MplMio+P14gRI3Tt2jW99NJL8vLyyuUjAwAAAIDMiY08o9hzp3I7jDSrUqWawsJCtWnTRoc70X/6ab1atHhUP/+8wb7sr7/2a8aMaTp8+JCcnZ3VqFFTvfrq6/L29pYkxcTE6LPPxmvbts1ydnZRt27/SdbfgQP7NH36VB069Ld8fHz08MNN9Morr8rTk3wQAAAAAJA25N73fu5tzu0AUtKvXz898MADOn78uFq3bq1evXqpe/fueuyxx7R//341atRIgwcPtrcfPny4ihcvrjlz5qht27YaMGCAWrdure+//17VqlVT//79c/FoAAAAAKDgat68pTZt+sn+94SEBG3Z8otatmxlX/b333/ptddeVvnyFTR9+hyNGvWR/v77L73xRn9ZrTfn3B4xYogOHTqojz6aqIkTp+rXX7fq7Nl/78g/duyoBg7spwceaKC5cxfpvffG6PDhQxo0qL8MI/130AMAAAAAcK8g93aUJwvgbm5umjNnjt5++20FBARox44d2r9/vypVqqT3339fM2bMsM8DLkllypTRsmXL9Oyzz+rq1avatGmTXF1d9corr2jevHny9PTMxaMBAAAAgIKrRYtH9ffff+ncubOSpJ07f5ePj48slsr2NosXf6PAwEp64413VKHC/QoOrqeRI8cqJORv7djxm06dCtXOnb9r0KC3VatWHVWqFKT33hvtkBcuWjRP9eo9oB49eikgoKxq1aqtkSPH6O+//9Kff+7O8eMGAAAAACCnkHs7ynNDoNu4uLioZ8+e6tmzZ5ralyhRQqNHj87mqAAAuDfcnK/GlG37t1qNDM1HAwAoeCpXrqLSpcvYh2L7+ef1atmytUObEyeO6YEHGjosCwysKC+vwjp+/Kji4mIlSVWqVLWvL1rUT6VLl7H//fDhwzp9+pQefbRxshjCwkIVHFwvKw8LAAAAAIA8g9zbUZ4tgAMAgIwxm03y8fGQk1P2DfSSlGRVdPR1iuAAgDRp0eJRbdr0k5566llt3bpFM2fOdVhvGIZMKdy3ZRhWOTv/m7be/u+Ok5OzQ9tWrR5Tt24vJduPj49vJo8AAAAAAIC8jdz7XxTAAQDIZ8xmk5yczPp80a+KOH85y/dfpngRvdr5YZnNJgrgAIA0adGipRYs+Fpr165W6dJlVK5ceYf1999fUfv27XVYdvToEV27dk3ly9+vgICykqQDB/bpoYcaSZKuXr2qiIhwe/sKFQJ18uRx3XdfgH3ZqVOhmjp1kl555VV5eVXMnoMDAAAAACAPIPf+FwVwAADyqYjzlxUaEZXbYQAAoEqVgnTffQGaMeNzvfDCf5Ktf+65Lnr11d769NOP9PTTnRQVdUmffvqRLJYg1atXX87OzmrevKUmTvxYLi4u8vPz0/TpnyshIcG+j+eff0GvvtpL48ePVceOz+v69euaMOFDXb9+XffdVzYnDxcAAAAAgBxH7v0vCuAAAAAAcI9w9yt1z/bXosWjmjt3tlq2bJVsXfXqNfXJJ5M0c+Z0vfRSV3l4eKpx42bq27e/fRi2YcNG6vPPJ+m9996V1WrVE088rejoqFv2UUOffjpVs2Z9oZ49X5S7u5uCgx/Qq6++LldX1yw7DgAAAABA/kbufe/n3ibDMBi7NA2Skqy6dOlabocBZCtnZ7N8fT317qTvs+2p0Ydql1P/Lo3099wPFHvuVJbv371EWVXtPkJRUdeUmGjN8v0D94Ls/iyXL+OrsQPb8jkDgGyQkBCvyMgz8vMrJReXfxNHs9kkX193mc1OOR6T1ZqkqKjYAj3tRWrvi03Rop5ycjLnQmT5T0q5N99tAAAAAGQlcu+8KStzb54ABwAAAIA8zmo1FBUVK7PZlCt9F+QEHAAAAABQMJB75x8UwAEAAADgHkAyDAAAAABA9iL3zh8Yow0AAAAAAAAAAAAAkC9QAAcAAAAAAAAAAAAA5AsUwAEAAAAAAAAAAAAA+QIFcAAAAADIYwyD+cbyEt4PAAAAAMh/yPXylqx8PyiAAwAAAEAe4eTkJEmKj7+Ry5HgVrb3w8nJOZcjAQAAAABkFrl33pSVuTfZOwAAAADkEWazk9zdvRQTEyVJcnUtJJPJlMtRFVyGYSg+/oZiYqLk7u4ls5l7yAEAAADgXkfunbdkR+5NARwAAAAA8hBv76KSZE/Ekfvc3b3s7wsAAAAA4N5H7p33ZGXuTQEcAAAAAPIQk8mkIkX8VLiwr5KSEnM7nALPycmZJ78BAAAAIJ8h985bsjr3pgAOAAAAAHmQ2WyW2eya22EAAAAAAJBvkXvnT9zGDgAAAAAAAAAAAADIFyiAAwAAAAAAAAAAAADyBQrgAAAAAAAAAAAAAIB8gTnAAQAAAABAgefklH3PCFithqxWI9v2DwAAAAD4FwVwAAAAAABQYBUp7CbDapW3t3u29WG1JikqKpYiOAAAAADkAArgAAAAAACgwPJ0c5XJbNbJtTMVG3kmy/fv7ldKFdr3ltlsogAOAAAAADmAAjgAAAAAACjwYiPPKPbcqdwOAwAAAACQSdk3wRUAAAAAAAAAAAAAADmIAjgAAAAAAAAAAAAAIF+gAA4AAAAAAAAAAAAAyBcogAMAAAAAAAAAAAAA8gUK4AAAAAAAAAAAAACAfIECOAAAAAAAAAAAAAAgX6AADgAAAAAAAAAAAADIFyiAAwAAAAAAAAAAAADyBQrgAAAAAAAAAAAAAIB8gQI4AAAAAAAAAAAAACBfoAAOAAAAAAAAAAAAAMgXKIADAAAAAAAAAAAAAPIFCuAAAAAAAAAAAAAAgHzBObcDAAAAAAAAuSMhIUHz58/XypUrFRoaKg8PD9WoUUPdu3dX48aNk7W/ePGipk2bpq1bt+rcuXPy9/dXmzZt1K9fP3l6eubCEQAAAAAA4IgnwAEAAAAAKIAMw9CgQYP00Ucf6ezZs3rooYdUpUoV/f777+rVq5e++OILh/bnz59Xp06d9M0338jNzU3NmjWT1WrVrFmz1LlzZ8XExOTSkQAAAAAA8C8K4AAAAAAAFECLFy/Whg0bVKVKFa1fv15ffvmlvv76ay1btkxeXl6aNGmSjh8/bm8/evRoRUREqE+fPlqzZo0mT56sH3/8UY899pgOHz6sqVOn5uLRAAAAAABwEwVwAAAAAAAKoNWrV0uShgwZIl9fX/vyypUrq0OHDjIMQ1u2bJEknTp1Shs2bFCpUqU0YMAAe1tXV1eNGjVKnp6eWrJkieLi4nL2IAAAAAAAuA0FcAAAAAAACqC5c+dq9erVeuCBB5Ktu379uiTJyclJkrRlyxZZrVY1bdpULi4uDm0LFy6shg0b6vr169qxY0f2Bw4AAAAAwB1QAAcAAAAAoAAqVKiQKleubC9y22zcuFE//PCD3N3d1apVK0nSkSNHJEkWiyXFfVWsWNGhHQAAAAAAucU5twMAAAAAAAC56/Llyxo2bJiOHTumEydOqFSpUho3bpxKliwpSbpw4YIkyd/fP8XtbcsvXryYMwEDAAAAAJAKCuAAAAAAABRw4eHhWr9+vf3vJpNJx44d04MPPijp3yHR3dzcUtzettzWLjOcnR0Hq3Nyyh+D1+WX4wAAAACAvI4COAAAAAAABVyFChW0c+dOGYah7du3a8yYMRo9erRiYmLUt29f+zDpJpMpxe0Nw3D4b0aZzSb5+npmah95lbe3e26HAAAAAAAFAgVwAAAAAAAKOE/Pf4vObdu2VcmSJdWlSxfNmDFD3bp1k4eHhyTpxo0bKW5vW+7unrkir9Vq6MoVx6fInZzM+aJ4fOVKrJKSrLkdBgAAAADck7y93dM8shYFcAAAAAAA4CA4OFhly5ZVWFiYQkNDVbx4cUn/zgV+u7vNEZ4eiYn5s0iclGTNt8cGAAAAAHkJE1ABAAAAAFDAxMbG6sMPP9TgwYNTHbbc1dVVkpSYmCiLxSJJOn78eIptjx49KkkKCgrKhmgBAAAAAEg7CuAAAAAAABQwbm5uWrlypdasWaNdu3YlWx8eHq6TJ0/K1dVVlSpVUuPGjSVJmzZtUlJSkkPbq1evaseOHfLw8FDdunVzJH4AAAAAAFJDARwAAAAAgALGZDLpueeekySNHDlS58+ft687e/as3njjDSUmJqpz587y8PBQmTJl1Lx5c50+fVrjx4+3PzUeHx+vESNG6Nq1a3r++efl5eWVK8cDAAAAAIANc4ADAAAAAFAA9evXT3v27NGuXbvUunVr1a1bVwkJCdq/f7+uX7+uRo0aafDgwfb2w4cP18GDBzVnzhxt3rxZlSpV0oEDB/TPP/+oWrVq6t+/fy4eDQAAAAAAN/EEOAAAAAAABZCbm5vmzJmjt99+WwEBAdqxY4f279+vSpUq6f3339eMGTPs84BLUpkyZbRs2TI9++yzunr1qjZt2iRXV1e98sormjdvnjw9PXPxaAAAAAAAuIknwAEAAAAAKKBcXFzUs2dP9ezZM03tS5QoodGjR2dzVAAAAAAAZBxPgAMAAAAAAAAAAAAA8gUK4AAAAAAAAAAAAACAfIECOAAAAAAAAAAAAAAgX6AADgAAAAAAAAAAAADIFyiAAwAAAAAAAAAAAADyBQrgAAAAAAAAAAAAAIB8gQI4AAAAAAAAAAAAACBfcM7tAAAAAAAAAPAvs9kks9mUbfu3Wg1ZrUa27R8AAAAAclOeLYBbrVYtXbpUK1as0NGjR5WQkKDSpUurZcuWevnll+Xt7e3QvkGDBoqOjk51f/v371ehQoWyOWoAAAAAAICMM5tN8vHxkJNT9g3al5RkVXT0dYrgAAAAAPKlPFkAt1qtGjBggDZs2CA3NzfVrFlTHh4e2r9/v2bNmqUNGzZo4cKFKlasmCQpIiJC0dHRKlGihOrXr5/iPs1mRnsHAAAAAAB5m9lskpOTWZ8v+lUR5y9n+f7LFC+iVzs/LLPZRAEcAAAAQL6UJwvgy5cv14YNG1S+fHnNmjVLAQEBkqSYmBgNHjxYmzZt0ujRo/XZZ59Jkg4dOiRJatOmjd59993cChsAAAAAACBLRJy/rNCIqNwOAwAAAADuOXnysejly5dLkoYMGWIvfkuSl5eXxo4dK5PJpI0bNyouLk6SdPDgQUlStWrVcj5YAAAAAAAAAAAAAECekCcL4D4+Prr//vtVu3btZOuKFi2qIkWKKCEhQVFRN++Etj0BXr169ZwMEwAAAAAAAAAAAACQh+TJIdCnT5+e6rrw8HBFR0fLxcVFRYsWlXTzCXA3Nzf99ddfGjZsmI4ePSqTyaTg4GD169dPtWrVyqnQAQAAAAAAAAAAAAC5JE8+AX4ntnm/mzVrpkKFCikyMlLnz59XXFyc3n77bVmtVjVo0EA+Pj765Zdf1KVLF33//fe5GzQAAAAAAAAAAAAAINvlySfAUzN//nytXbtW7u7uGjRokKR/5//29fXVF198oTp16kiSDMPQ3LlzNW7cOA0dOlTBwcEqWbJkpvp3dr7n7hcA0sXJKf+c4/npWID0yqnzn88ZAAAAAAAAACCvuWcK4PPmzdPYsWNlMpk0ZswYBQYGSpIaN26srVu3yjAMlShRwt7eZDKpR48e2rVrlzZu3Khly5apf//+Ge7fbDbJ19cz08cBIGd4e7vndghAvsfnDAAAAAAAAACQ1+T5ArhhGPrkk080a9YsOTk5acyYMWrXrp19vclkUvHixVPdvnnz5tq4caP++uuvTMVhtRq6cuV6pvYB5HVOTuZ8U9C6ciVWSUnW3A4DyBU59VnmcwYAwE3e3u6MjAIAAAAAQB6RpwvgcXFxeuutt7R+/Xq5ublpwoQJatmyZbr24e/vL0mKjY3NdDyJifzID9wrkpKsfGaBbMbnDAAAAAAAAACQ1+TZAnhMTIx69eqlP//8U35+fvriiy9Uq1atZO2WLFmi3377Te3bt0+xOB4eHi5JmZ7/GwAAAAAAAAAAAACQt+XJAnhCQoL69OmjP//8U+XKldPs2bMVEBCQYttz585p3bp1io2NTVYANwxDq1evliQ1atQo2+MGAAAAAAAAAAAAAOSePDlJ2dSpU7V79275+/tr/vz5qRa/Jempp56Sq6urfvnlF3377bf25VarVZMnT9b+/ftVsWJFtWnTJidCBwAAAAAAAAAAAADkkjz3BPjly5c1d+5cSZKfn5/Gjx+fatshQ4YoICBAI0eO1LBhwzR8+HAtWLBA5cuXV0hIiMLCwlSsWDFNmTJFLi4uOXUIAAAAAAAAAAAAAIBckOcK4Pv27VNsbKwkKSQkRCEhIam2fe2111SsWDE988wzqlChgmbOnKk9e/boxIkTKl68uF588UX17dtXfn5+ORU+AAAAAAAAAAAAACCX5LkCeJMmTXT48OF0bxccHKwvvvgiGyICAAAAAAAAAAAAANwL8uQc4AAAAAAAAAAAAAAApBcFcAAAAAAAAAAAAABAvkABHAAAAAAAAAAAAACQL1AABwAAAAAAAAAAAADkCxTAAQAAAAAAAAAAAAD5AgVwAAAAAAAAAAAAAEC+QAEcAAAAAAAAAAAAAJAvUAAHAAAAAAAAAAAAAOQLFMABAAAAAAAAAAAAAPkCBXAAAAAAAAAAAAAAQL5AARwAAAAAAAAAAAAAkC8453YAAAAAAAAAyFlOTtn7TITVashqNbK1DwAAAABICQVwAAAAAACAAqJIYTcZVqu8vd2ztR+rNUlRUbEUwQEAAADkOArgAAAAAAAABYSnm6tMZrNOrp2p2Mgz2dKHu18pVWjfW2aziQI4AAAAgBxHARwAAAAAAKCAiY08o9hzp3I7DAAAAADIctk74RMAAAAAAAAAAAAAADmEAjgAAAAAAAAAAAAAIF+gAA4AAAAAAAAAAAAAyBcogAMAAAAAAAAAAAAA8gUK4AAAAAAAAAAAAACAfIECOAAAAAAAAAAAAAAgX6AADgAAAAAAAAAAAADIFyiAAwAAAAAAAAAAAADyBQrgAAAAAAAAAAAAAIB8gQI4AAAAAAAAAAAAACBfoAAOAAAAAAAAAAAAAMgXKIADAAAAAAAAAAAAAPIF59wOAAAAAAAA5A6r1aqlS5dqxYoVOnr0qBISElS6dGm1bNlSL7/8sry9vR3aN2jQQNHR0anub//+/SpUqFA2Rw0AAAAAQOoogAMAAAAAUABZrVYNGDBAGzZskJubm2rWrCkPDw/t379fs2bN0oYNG7Rw4UIVK1ZMkhQREaHo6GiVKFFC9evXT3GfZjMDzQEAAAAAchcFcAAAAAAACqDly5drw4YNKl++vGbNmqWAgABJUkxMjAYPHqxNmzZp9OjR+uyzzyRJhw4dkiS1adNG7777bm6FDQAAAADAHXFrNgAAAAAABdDy5cslSUOGDLEXvyXJy8tLY8eOlclk0saNGxUXFydJOnjwoCSpWrVqOR8sAAAAAABpRAEcAAAAAIACyMfHR/fff79q166dbF3RokVVpEgRJSQkKCoqStK/T4BXr149J8MEAAAAACBdGAIdAAAAAIACaPr06amuCw8PV3R0tFxcXFS0aFFJN58Ad3Nz019//aVhw4bp6NGjMplMCg4OVr9+/VSrVq2cCh0AAAAAgFTxBDgAAAAAAHBgm/e7WbNmKlSokCIjI3X+/HnFxcXp7bffltVqVYMGDeTj46NffvlFXbp00ffff5+7QQMAAAAAIJ4ABwAAAAAAt5g/f77Wrl0rd3d3DRo0SNK/83/7+vrqiy++UJ06dSRJhmFo7ty5GjdunIYOHarg4GCVLFkyU/07Ozveq+/klD/u3U/rceSX45Xy1rGYTCaZzaZs27/VasgwjGzbPwAAAIC0owAOAAAAAAAkSfPmzdPYsWNlMpk0ZswYBQYGSpIaN26srVu3yjAMlShRwt7eZDKpR48e2rVrlzZu3Khly5apf//+Ge7fbDbJ19cz08eRF3l7u+d2CDkuLx2zYbXKZM6+gnx27x8AAABA2lEABwAAAACggDMMQ5988olmzZolJycnjRkzRu3atbOvN5lMKl68eKrbN2/eXBs3btRff/2VqTisVkNXrlx3WObkZM5ThdSMunIlVklJ1ru2yy/HK6X9mLOb7TU9uXamYiPPZPn+3f1KqUL73nnmeAEAAID8yNvbPc2jTFEABwAAAACgAIuLi9Nbb72l9evXy83NTRMmTFDLli3TtQ9/f39JUmxsbKbjSUzMnwXEpCRrvj221OS1Y46NPKPYc6eybf957XgBAACAgooCOAAAAAAABVRMTIx69eqlP//8U35+fvriiy9Uq1atZO2WLFmi3377Te3bt0+xOB4eHi5JmZ7/GwAAAACAzKIADgAAAABAAZSQkKA+ffrozz//VLly5TR79mwFBASk2PbcuXNat26dYmNjkxXADcPQ6tWrJUmNGjXK9rgBAAAAALiTtA2UDgAAAAAA8pWpU6dq9+7d8vf31/z581MtfkvSU089JVdXV/3yyy/69ttv7cutVqsmT56s/fv3q2LFimrTpk1OhA4AAAAAQKp4AhwAAAAAgALm8uXLmjt3riTJz89P48ePT7XtkCFDFBAQoJEjR2rYsGEaPny4FixYoPLlyyskJERhYWEqVqyYpkyZIhcXl5w6BAAAAAAAUkQBHAAAAACAAmbfvn2KjY2VJIWEhCgkJCTVtq+99pqKFSumZ555RhUqVNDMmTO1Z88enThxQsWLF9eLL76ovn37ys/PL6fCBwAAAAAgVRTAAQAAAAAoYJo0aaLDhw+ne7vg4GB98cUX2RARAAAAAABZgznAAQAAAAAAAAAAAAD5AgVwAAAAAAAAAAAAAEC+QAEcAAAAAAAAAAAAAJAvUAAHAAAAAAAAAAAAAOQLFMABAAAAAAAAAAAAAPkCBXAAAAAAAAAAAAAAQL5AARwAAAAAAAAAAAAAkC9QAAcAAAAAAAAAAAAA5AvOuR0AAAC4Nzk5Ze99dFarIavVyNY+AAAAAAAAAAD5CwVwAACQLkUKu8mwWuXt7Z6t/VitSYqKiqUIDgAAAAAAAABIMwrgAAAgXTzdXGUym3Vy7UzFRp7Jlj7c/UqpQvveMptNFMABAAAAAAAAAGlGARwAAGRIbOQZxZ47ldthAAAAAAAAAABgl72TdwIAAAAAAAAAAAAAkEMogAMAAAAAAAAAAAAA8gUK4AAAAAAAAAAAAACAfIECOAAAAAAAAAAAAAAgX6AADgAAAAAAAAAAAADIF5xzO4DUWK1WLV26VCtWrNDRo0eVkJCg0qVLq2XLlnr55Zfl7e3t0P7ixYuaNm2atm7dqnPnzsnf319t2rRRv3795OnpmUtHAQAAAAAAAAAAAADIKXnyCXCr1aoBAwZoxIgRCgkJUbVq1fTQQw/pypUrmjVrljp27KiLFy/a258/f16dOnXSN998Izc3NzVr1kxWq1WzZs1S586dFRMTk4tHAwAAAAAAAAAAAADICXmyAL58+XJt2LBB5cuX19q1azV//nx9+eWX2rBhg5o3b66wsDCNHj3a3n706NGKiIhQnz59tGbNGk2ePFk//vijHnvsMR0+fFhTp07NxaMBAAAAAAAAAAAAAOSEPFsAl6QhQ4YoICDAvtzLy0tjx46VyWTSxo0bFRcXp1OnTmnDhg0qVaqUBgwYYG/r6uqqUaNGydPTU0uWLFFcXFyOHwcAAAAAAAAAAAAAIOfkyQK4j4+P7r//ftWuXTvZuqJFi6pIkSJKSEhQVFSUtmzZIqvVqqZNm8rFxcWhbeHChdWwYUNdv35dO3bsyKHoAQAAAAAAAAAAAAC5IU8WwKdPn65169bJ19c32brw8HBFR0fLxcVFRYsW1ZEjRyRJFoslxX1VrFhRkuztAAAAAAAAAAAAAAD5U54sgN/JZ599Jklq1qyZChUqpAsXLkiS/P39U2xvW37x4sUciQ8AAAAAAAAAAAAAkDucczuA9Jg/f77Wrl0rd3d3DRo0SJJ0/fp1SZKbm1uK29iW29plhrPzPXe/AJAuTk755xzPT8cCpFd+Ov/z07EAAAAAAAAAALLfPVMAnzdvnsaOHSuTyaQxY8YoMDBQkuTk5CRJMplMKW5nGIbDfzPKbDbJ19czU/sAkHO8vd1zOwQAWYDPMgAAAAAAAAAgPfJ8AdwwDH3yySeaNWuWnJycNGbMGLVr186+3sPDQ5J048aNFLe3LXd3z9wP6FaroStXMv8UOZCXOTmZ802x6cqVWCUlWXM7DCBX8FkGACBneXu7M2oJAAAAAAB5RJ4ugMfFxemtt97S+vXr5ebmpgkTJqhly5YObYoXLy5J9rnAb3e3OcLTIzGRH+CBe0VSkpXPLJAP8FkGAAAAAAAAAKRHni2Ax8TEqFevXvrzzz/l5+enL774QrVq1UrWzmKxSJKOHz+e4n6OHj0qSQoKCsq+YAEAAAAAAAAAAAAAuS5PjtGWkJCgPn366M8//1S5cuW0ZMmSFIvfktS4cWNJ0qZNm5SUlOSw7urVq9qxY4c8PDxUt27dbI8bAAAAAAAAAAAAAJB78mQBfOrUqdq9e7f8/f01f/58BQQEpNq2TJkyat68uU6fPq3x48fLMAxJUnx8vEaMGKFr167p+eefl5eXV06FDwAAAAAAAAAAAADIBXluCPTLly9r7ty5kiQ/Pz+NHz8+1bZDhgxRsWLFNHz4cB08eFBz5szR5s2bValSJR04cED//POPqlWrpv79++dU+AAAAAAAAAAAAACAXJLnCuD79u1TbGysJCkkJEQhISGptn3ttddUrFgxlSlTRsuWLdOUKVP0yy+/aNOmTSpdurReeeUV9e7dW56enjkVPgAAAAAAAAAAAAAgl+S5AniTJk10+PDhdG9XokQJjR49OhsiAgAAAAAAAAAAAADcC/LkHOAAAAAAAAAAAAAAAKRXnnsCHAAAAAAAAAWL2WyS2WzKln07OfH8BwAAAFCQUAAHAAAAAABArjGbTfLx8aBQDQAAACBLUAAHAAAAAABArjGbTXJyMuvzRb8q4vzlLN9/raDSeq5N7SzfLwAAAIC8iQI4AAAAAAAAcl3E+csKjYjK8v2W9vfO8n0CAAAAyLsYWwoAAAAAAAAAAAAAkC9kqgC+atUq7d69+67tfvrpJ02ePDkzXQEAAAAAUCCRewMAAAAAkHaZKoAPGTJE33777V3brV69WnPmzMlMVwAAAAAAFEjk3gAAAAAApF265gBftWqVEhMTHZaFhYVp2bJlqW4TExOj3377TS4uLhmLEAAAAACAAoTcGwAAAACAjEtXAfzgwYOaP3++TCaTJMlkMmnfvn3at2/fHbczDENPPfVUxqMEAAAAAKCAIPcGAAAAACDj0lUAHzBggGJiYux/X7lypcqWLau6deumuk2hQoVUvnx5de7cOeNRAgAAAABQQJB7AwAAAACQcekqgBcuXFjjxo2z/33lypWqXbu2wzIAAAAAAJBx5N4AAAAAAGRcugrgtwsJCcmqOAAAAAAAQArIvQEAAAAASLtMFcBvFRkZqdjYWBmGkWqbgICArOoOAAAAAIACh9wbAAAAAIA7y3QB/Ouvv9bMmTN16dKlO7YzmUz6+++/M9sdAAAAAAAFDrk3AAAAAABpk6kC+IoVK/Thhx9KklxdXeXr6ysnJ6csCQwAAAAAAJB7AwAAAACQHpkqgC9YsEAmk0nDhg1Tp06d5OLiklVxAQAAAAAAkXsDAAAAAJAemSqAHz9+XLVr11bXrl2zKh4AAAAAAHALcm8AAAAAANIuUwVwd3d3+fr6ZlUsAAAAAADgNtmZe1utVi1dulQrVqzQ0aNHlZCQoNKlS6tly5Z6+eWX5e3t7dD+4sWLmjZtmrZu3apz587J399fbdq0Ub9+/eTp6ZktMQIAAAAAkB7mzGxcv3597d+/X7GxsVkVDwAAAAAAuEV25d5Wq1UDBgzQiBEjFBISomrVqumhhx7SlStXNGvWLHXs2FEXL160tz9//rw6deqkb775Rm5ubmrWrJmsVqtmzZqlzp07KyYmJkvjAwAAAAAgIzJVAB80aJBiY2P17rvv6vLly1kVEwAAAAAA+H/ZlXsvX75cGzZsUPny5bV27VrNnz9fX375pTZs2KDmzZsrLCxMo0ePtrcfPXq0IiIi1KdPH61Zs0aTJ0/Wjz/+qMcee0yHDx/W1KlTsyw2AAAAAAAyKlNDoC9evFg1a9bUDz/8YE+avb29ZTKZkrU1mUxasGBBZroDAAAAAKDAya7ce/ny5ZKkIUOGKCAgwL7cy8tLY8eO1UMPPaSNGzcqLi5O58+f14YNG1SqVCkNGDDA3tbV1VWjRo3Sli1btGTJEr3++utyc3PL5BEDAAAAAJBxmSqAz5071/7/iYmJOnbsWKptU0rMAQAAAADAnWVX7u3j46P7779ftWvXTrauaNGiKlKkiKKjoxUVFaUtW7bIarWqadOmcnFxcWhbuHBhNWzYUD/99JN27Nihpk2bpjkGAAAAAACyWqYK4PPmzcuqOAAAAAAAQAqyK/eePn16quvCw8MVHR0tFxcXFS1aVEeOHJEkWSyWFNtXrFhRP/30k44cOUIBHAAAAACQqzJVAK9fv35WxQEAAAAAAFKQG7n3Z599Jklq1qyZChUqpAsXLkiS/P39U2xvW37x4sUciQ8AAAAAgNRkqgB+q4SEBB06dEhnzpxRsWLFVLduXf3zzz8qXbp0VnUBAAAAAECBlhO59/z587V27Vq5u7tr0KBBkqTr169LUqrze9uW29plhrOz2eHvTk7mVFreW9J6HPnleKWCd8z55TgAAACAe12mC+CJiYn6/PPP9c033+jq1auSpA4dOqhu3bp65513dO3aNU2cOFHlypXLdLAAAAAAABREOZV7z5s3T2PHjpXJZNKYMWMUGBgoSXJycpKU+hzjhmE4/DejzGaTfH09M7WPvMrb2z23Q8hxBe2YC9rxAgAAAHlVpgrgiYmJevnll7V9+3Y5OzurevXqOnDggH39tWvX9Pfff6tr165atWqVihUrlumAAQAAAAAoSHIi9zYMQ5988olmzZolJycnjRkzRu3atbOv9/DwkCTduHEjxe1ty93dM1cAtFoNXbni+BS5k5M5XxQWr1yJVVKS9a7t8svxSgXvmNN6vAAAAADSz9vbPc2jLmWqAP7NN9/o119/VaNGjTR27FgVL15clStXtq9fuHChRo4cqVWrVmn27Nl65513MtMdAAAAAAAFTnbn3nFxcXrrrbe0fv16ubm5acKECWrZsqVDm+LFi0uSfS7w291tjvD0SEzMnwXEpCRrvj221BS0Yy5oxwsAAADkVZmanGjlypXy8fHRpEmT7Mnwrdzc3DRq1CgVL15cW7ZsyUxXAAAAAAAUSNmZe8fExKhHjx5av369/Pz8NG/evGTFb0myWCySpOPHj6e4n6NHj0qSgoKC0tU/AAAAAABZLVMF8NDQUNWrV0+enqnPz+Xi4qKaNWvqn3/+yUxXAAAAAAAUSNmVeyckJKhPnz76888/Va5cOS1ZskS1atVKsW3jxo0lSZs2bVJSUpLDuqtXr2rHjh3y8PBQ3bp109w/AAAAAADZIVMFcGdnZ125cuWu7aKjo+XsnKnR1gEAAAAAKJCyK/eeOnWqdu/eLX9/f82fP18BAQGpti1TpoyaN2+u06dPa/z48TIMQ5IUHx+vESNG6Nq1a3r++efl5eWV5v4BAAAAAMgOmapKV6lSRQcOHFBERITKlCmTYpvw8HAdOHBANWvWzExXAAAAAAAUSNmRe1++fFlz586VJPn5+Wn8+PGpth0yZIiKFSum4cOH6+DBg5ozZ442b96sSpUq6cCBA/rnn39UrVo19e/fP/0HBwAAAABAFsvUE+CdO3dWbGys+vXrp7///jvZ+sOHD+u1115TfHy8OnbsmJmuAAAAAAAokLIj9963b59iY2MlSSEhIVqzZk2qf65duybp5lPgy5Yt07PPPqurV69q06ZNcnV11SuvvKJ58+bdcYh2AAAAAABySqaeAG/btq22b9+uZcuW6ZlnnlHhwoVlMpm0detWNWvWTOfOnZNhGGrXrp2eeOKJrIoZAAAAAIACIzty7yZNmujw4cPpjqVEiRIaPXp0urcDAAAAACCnZHpi7tGjR6t27dqaPXu2Tp48KUmKioqSJJUuXVrdu3dXt27dMtsNAAAAAAAFFrk3AAAAAABpk+kCuCR17NhRHTt21IULF3TmzBlZrVb5+/unOjcZAAAAAABIH3JvAAAAAADuLlNzgNtERUVp586d8vf3V82aNVW7dm3Fxsbqm2++0YULF7KiCwAAAAAACjRybwAAAAAA7i7TBfBvv/1WTZo00YcffuiwfN++fRo1apRat26t77//PrPdFFhms0nOzuZs+2M2m3L7EAEAAAAAd0HuDQAAAABA2mRqCPRff/1VI0aMkLu7uxo2bOiwrm7duurZs6cWLlyowYMHq2jRosna4M7MZpN8fd1lNjtlWx9Wa5KiomJltRrZ1gcAAAAAIOPIvQEAAAAASLtMFcBnzZolZ2dnzZs3TzVq1HBYV758eb311ltq06aNnn/+ec2cOZMkPJ3MZpPMZiedXDtTsZFnsnz/7n6lVKF9b5nNJgrgAAAAAJBHkXsDAAAAAJB2mSqAHzlyRA0aNEiWgN+qRo0aqlu3rvbu3ZuZrgq02Mgzij13KrfDAAAAAADkAnJvAAAAAADSLlNzgMfGxsrd3f2u7Xx8fJSYmJiZrgAAAAAAKJDIvQEAAAAASLtMFcDLly+vXbt2KSYmJtU2N27c0O7du1W2bNnMdAUAAAAAQIFE7g0AAAAAQNplqgD++OOP6/LlyxowYIAuXryYbH1UVJTeeOMNXbp0SR06dMhMVwAAAAAAFEjk3gAAAAAApF2m5gDv2rWrvv/+e23fvl3NmjVT9erVVapUKUnS2bNndfDgQcXHx6tmzZrq0aNHVsQLAAAAAECBQu4NAAAAAEDaZaoA7uLiojlz5mjixIlasWKF9u7dq71799rXFypUSJ07d9Zbb70lV1fXzMYKAAAAAECBQ+4NAAAAAEDaZaoALkmenp4aNmyY3n77bf3111+6cOGCkpKS5O/vr2rVqsnDwyMr4gQAAAAAoMAi9wYAAAAAIG0yVQDv1q2bypcvrw8++ECurq4KDg7OqrgAAAAAAIDIvQEAAAAASI9MFcD3798vs9mcVbEAAAAAAIDbkHsDAAAAAJB2mcqgPT09ZRhGVsUCAAAAAABuQ+4NAAAAAEDaZaoA3rdvX+3cuVNfffWV4uPjsyomAAAAAADw/8i9AQAAAABIu0wNgR4eHq5y5cpp/Pjx+vTTT1WuXDl5e3unODSbyWTSggULMtMdAAAAAAAFDrk3AAAAAABpl6kC+Ny5c+3/n5iYqOPHj6fa1mQyZaYrAAAAAAAKJHJvAAAAAADSLlMF8Hnz5mVVHAAAAAAAIAXk3gAAAAAApF2mCuD169fPqjgAAAAAAEAKyL0BAAAAAEi7TBXAb5WQkKBDhw7pzJkzKlasmOrWrat//vlHpUuXzqouAAAAAAAo0Mi9AQAAAAC4s0wXwBMTE/X555/rm2++0dWrVyVJHTp0UN26dfXOO+/o2rVrmjhxosqVK5fpYAEAAAAAKIjIvQEAAAAASBtzZjZOTEzUyy+/rOnTpys2NlbVq1eXYRj29deuXdPff/+trl276uLFi5kOFgAAAACAgobcGwAAAACAtMtUAfybb77Rr7/+qocfflg//fSTli5d6rB+4cKFevLJJ3Xx4kXNnj07U4ECAAAAAFAQkXv/H3v3HR5VnbZx/J5JCEmA0DtYaImi9K6IAtKUEgFB0FiQIk1wXQEXRBYEQYRVQRB5QQEXRElCFUJHeqhRmgpKCZjQSyCEJPP+wZWsMQHSZs7MOd/Pde21es5vZp6fZzIz93lOAQAAAAAg83LUAA8LC1OhQoX0ySefqESJEunW+/r6avTo0SpRooQ2bdqUk5cCAAAAAMCSyN4AAAAAAGRejhrgf/zxh+rUqaN8+fLdcUyePHlUrVo1nT59OicvpfDwcAUGBmrr1q0Zrq9fv74CAwPv+L+bN2/m6PUBAAAAADCCK7M3AAAAAACezjtHD/b21pUrV+457tKlS/L2zv5LRUVFafTo0XdcHx0drUuXLqlkyZKqV69ehmPs9hz1+gEAAAAAMISrsjcAAAAAAGaQo2T80EMP6aefflJ0dLTKli2b4ZiTJ0/qp59+UrVq1bL1GuvWrdOQIUN07dq1O445dOiQJKlVq1Z69913s/U6AAAAAAC4I1dkbwAAAAAAzCJHp0W/8MILunHjhvr27auDBw+mW3/kyBENGDBACQkJ6tSpU5aeOyYmRsOGDVPfvn1169YtFStW7I5jDxw4IEmqWrVq1iYAAAAAAICbc2b2BgAAAADAbHJ0BnibNm20detWff/99+rYsaMKFCggm82mH3/8UU8++aRiYmLkcDj0zDPPqH379ll67smTJyssLEyPPPKIxo4dqzFjxujcuXMZjk05A/yRRx7JyXQAAAAAAHA7zszeAAAAAACYTY5vDjZmzBjVqFFD//d//6fff/9dknTx4kVJUpkyZfTyyy8rJCQky89boUIFjR8/Xu3atbvn/bsPHDggX19f/fzzzxo+fLh+/fVX2Ww21apVS3379lX16tWzPjEAAAAAANyEs7I3AAAAAABmk+MGuCR16tRJnTp10tmzZ3XmzBklJyerePHid7w3WWb06tUrU+POnz+v2NhYSdI777yjGjVqqH79+vrll1+0YcMGbd68WR999JHatGmT7VoAAAAAADCaM7I3AAAAAABmk+UGeFJSkv773/8qIiJC586dU5kyZdS2bVt16NBBxYsXV/HixZ1R5x2l3P+7cOHCmjZtmmrWrClJcjgc+vrrrzVu3DgNGzZMtWrVUqlSpXL0Wt7eObplepZ5ebnm9Vz1OnB/ZnovmGkuQFaZ6f1vprkAAJAV7pa9AQAAAADwFFlqgCckJKhHjx7atWuXHA6HJOn333/X1q1btX79en3yySdOKfJuGjdurB9//FEOh0MlS5ZMXW6z2fTKK68oMjJSa9as0ffff6/+/ftn+3XsdpsKF86XGyW7nYAAP6NLAHId72vAHPhbBgBYkTtmbwAAAAAAPEWWGuALFixQZGSkSpYsqZ49e6p8+fL65ZdfNHPmTEVERGjx4sVq3769s2rNkM1mU4kSJe64/qmnntKaNWv0888/5+h1kpMdunLleo6eI6u8vOwu2fF/5coNJSUlO/114P5c9Z5zBd7XsDL+lgEAcK2AAL9cvWqJO2ZvAAAAAAA8RZYa4CtXrpSvr6/mz5+vMmXKSJKaNGmixo0bKzg4WMuXL3e7EJ5yWbgbN27k+LkSE825Az4pKdm0c4N18b4GzIG/ZQCAFXli9gYAAAAAwF1k6RD1o0ePqk6dOqkBPEVQUJCqVq2qw4cP52pxmfHtt99q0KBBWrNmTYbrT548KUk5vv83AAAAAACu4I7ZGwAAAAAAT5GlBnhcXJwKFiyY4bpy5crp0qVLuVFTlsTExOiHH37Qd999l26dw+HQ4sWLJUmPP/64q0sDAAAAACDL3DF7AwAAAADgKbLUAE9MTJSXl1eG6/LkyaNbt27lSlFZERwcLB8fH23YsEELFy5MXZ6cnKxPP/1UUVFRqlSpklq1auXy2gAAAAAAyCp3zN4AAAAAAHiKLN0D3B2VL19e77//voYPH64RI0Zo3rx5euCBB3T48GEdP35cxYoV02effaY8efIYXSoAAAAAAAAAAAAAwImydAa4u+rYsaO++eYbNW3aVDExMVq3bp0SExP10ksvacmSJapQoYLRJQIAAAAAAAAAAAAAnMxjzgCfO3fuXdfXqlVL06ZNc1E1AAAAAAAAAAAAAAB3k+UG+Jo1a9SsWbN0yy9evChJGa6TJJvNpjVr1mT15QAAAAAAsByyNwAAAAAA2ZPlBvj169d1/fr1O66Pjo7OcLnNZsvqSwEAAAAAYElkbwAAAAAAsidLDfA5c+Y4qw4AAAAAACCyNwAAAAAAOZGlBni9evWcVQcAAAAAABDZGwAAAACAnLAbXQAAAAAAAAAAAAAAALmBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUvI0uAAAAAAAAuIfw8HANGTJEs2fPVqNGjdKtr1+/vi5dunTHx0dFRSlv3rxOrBAAAAAAgLujAQ4AAAAAABQVFaXRo0ffcX10dLQuXbqkkiVLql69ehmOsdu50BwAAAAAwFg0wAEAAAAAsLh169ZpyJAhunbt2h3HHDp0SJLUqlUrvfvuu64qDQAAAACALKEBDgAAAACARcXExOg///mPwsLC5Ovrq2LFiuncuXMZjj1w4IAkqWrVqq4sEQAAAACALOHaZAAAAAAAWNTkyZMVGhqqqlWr6ttvv1WFChXuODblDPBHHnnEVeUBAAAAAJBlnAEOAAAAAIBFVahQQePHj1e7du3uef/uAwcOyNfXVz///LOGDx+uX3/9VTabTbVq1VLfvn1VvXp1F1UNAAAAAMCdcQY4AAAAAAAW1atXL3Xo0OGeze/z588rNjZW8fHxeuedd5ScnKz69eurUKFC2rBhg7p166YVK1a4qGoAAAAAAO6MM8ABAAAAAMBdpdz/u3Dhwpo2bZpq1qwpSXI4HPr66681btw4DRs2TLVq1VKpUqVy9Fre3mmb8V5e5jh2P7PzMMt8JevN2SzzAAAAADwdDXAAAAAAAHBXjRs31o8//iiHw6GSJUumLrfZbHrllVcUGRmpNWvW6Pvvv1f//v2z/Tp2u02FC+fLjZLdTkCAn9EluJzV5my1+QIAAADuigY4AAAAAAC4K5vNphIlStxx/VNPPaU1a9bo559/ztHrJCc7dOXK9TTLvLzspmgsXrlyQ0lJyfccZ5b5Stabc2bnCwAAACDrAgL8Mn3VJRrgAAAAAAAgR4oXLy5JunHjRo6fKzHRnA3EpKRk087tTqw2Z6vNFwAAAHBX3JwIAAAAAADc1bfffqtBgwZpzZo1Ga4/efKkJOX4/t8AAAAAAOQUZ4ADAAAAAIC7iomJ0Q8//KAbN26oefPmadY5HA4tXrxYkvT4448bUR4AAAAAAKk4AxwAAAAAANxVcHCwfHx8tGHDBi1cuDB1eXJysj799FNFRUWpUqVKatWqlYFVAgAAAADAGeAAAAAAAOAeypcvr/fff1/Dhw/XiBEjNG/ePD3wwAM6fPiwjh8/rmLFiumzzz5Tnjx5jC4VAAAAAGBxnAEOAAAAAADuqWPHjvrmm2/UtGlTxcTEaN26dUpMTNRLL72kJUuWqEKFCkaXCAAAAAAAZ4ADAAAAAIDb5s6de9f1tWrV0rRp01xUDQAAAAAAWccZ4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFPwNroAAAAAAHAFu90mu93m1NdITnYoOdnh1NcAAAAAAADAndEABwAAAGB6drtNhQv7yW73currJCcn6eLFGzTBAQAAAAAADEIDHAAAAIDp3T7720u/L/tSN86fccpr+BUtrQef7Sm73UYDHAAAAAAAwCA0wAEAAABYxo3zZ3Qj5oTRZQAAAAAAAMBJaIDnkDPvI+jlZXfK8wIAAAAAAAAAAACAGXlMAzw8PFxDhgzR7Nmz1ahRo3Trz507p88//1w//vijYmJiVLx4cbVq1Up9+/ZVvnz5nFKT3W5ToUL+NKoBAAAAAAAAAAAAwA14RAM8KipKo0ePvuP62NhYde3aVdHR0apSpYqefPJJ/fTTT5o5c6Z+/PFH/fe//1X+/PlzvS673SYvL7umzt+i6NjLuf781QPLqEurGrn+vAAAAAAAAAAAAABgRm7fAF+3bp2GDBmia9eu3XHMmDFjFB0drV69eukf//iHJCkhIUHvvPOOfvjhB02ZMkVDhw51Wo3RsZf1R/TFXH/eMsUDcv05AQAAAAAAAAAAAMCs3Pba3TExMRo2bJj69u2rW7duqVixYhmOO3HihFavXq3SpUtr4MCBqct9fHw0evRo5cuXT99++63i4+NdVToAAAAAAAAAAAAAwABu2wCfPHmyQkNDVbVqVX377beqUKFChuM2bdqk5ORkNWnSRHny5EmzrkCBAmrQoIGuX7+uHTt2uKJsAAAAAAAAAAAAAIBB3LYBXqFCBY0fP17fffedAgMD7zjul19+kSRVqVIlw/WVKlVKMw4AAACAe7LbbfL2tjvlf15ebht9AAAAAAAAkIvc9h7gvXr1ytS4s2fPSpKKFy+e4fqU5efOncudwgAAAADkOrvdpkKF/GlUAwAAAAAAIEfctgGeWdevX5ck+fr6Zrg+ZXnKuJzw9k67M84sO+fMMg/knJneC2aaC5BVZnr/m2kuAO7Oy+v2WdpT529RdOzlXH/+6oFl1KVVjVx/3ozw2QUAAAAAAGAcj2+Ae3l5SZJsNluG6x0OR5r/zy673abChfPl6DncVUCAn9ElALmO9zVgDvwtA9YTHXtZf0RfzPXnLVM8INef80747AIAAAAAADCOxzfA/f39JUk3b97McH3Kcj+/nO2ESk526MqVtGeRe3nZTbFz68qVG0pKSja6DLgBs7ynJd7XsDb+lgF4Ij674MkCAvw48x8AAAAAADfh8Q3wEiVKSPrfvcD/7l73CM+KxERz7sRKSko27dxgXbyvAXPgbxmAJ+KzCwAAAAAAwDgef4h6lSpVJElHjx7NcP2vv/4qSQoMDHRZTQAAAAAAAAAAAAAA1/P4Bnjjxo0lSevXr1dSUlKadVevXtWOHTvk7++v2rVrG1EeAAAAAAAAAAAAAMBFPL4BXrZsWT311FM6deqUPvroIzkcDklSQkKC3nvvPcXFxalr167Knz+/wZUCAAAAAAAAAAAAAJzJ4+8BLkkjRozQgQMHNHv2bG3cuFGVK1fWTz/9pNOnT6tq1arq37+/0SUCAAAAAAAAAAAAAJzM488Al26fBf7999+rc+fOunr1qtavXy8fHx/16dNHc+bMUb58+YwuEQAAAAAAAAAAAADgZB5zBvjcuXPvur5kyZIaM2aMi6oBAAAAAAAAAAAAALgbU5wBDgAAAAAAAAAAAAAADXAAAAAAACBJCg8PV2BgoLZu3Zrh+nPnzunf//63nn76aVWrVk3NmjXTRx99pLi4OBdXCgAAAABAxmiAAwAAAAAARUVFafTo0XdcHxsbq+eff17ffPONfH199eSTTyo5OVkzZ87UCy+8oGvXrrmwWgAAAAAAMkYDHAAAAAAAi1u3bp169Ohx1yb2mDFjFB0drV69emnp0qX69NNPtWrVKrVu3VpHjhzRlClTXFgxAAAAAAAZowEOAAAAAIBFxcTEaNiwYerbt69u3bqlYsWKZTjuxIkTWr16tUqXLq2BAwemLvfx8dHo0aOVL18+ffvtt4qPj3dV6QAAAAAAZIgGOAAAAAAAFjV58mSFhoaqatWq+vbbb1WhQoUMx23atEnJyclq0qSJ8uTJk2ZdgQIF1KBBA12/fl07duxwRdkAAAAAANwRDXAAAAAAACyqQoUKGj9+vL777jsFBgbecdwvv/wiSapSpUqG6ytVqpRmHAAAAAAARvE2ugAAAAAAAGCMXr16ZWrc2bNnJUnFixfPcH3K8nPnzuVOYQAAAAAAZBMNcAAAAAAAcFfXr1+XJPn6+ma4PmV5yric8PZOe7E6Ly9zXLwus/Mwy3wl683ZLPMAAAAAPB0NcAAAAAAAcFdeXl6SJJvNluF6h8OR5v+zy263qXDhfDl6DncVEOBndAkuZ7U5W22+AAAAgLuiAQ4AAAAAAO7K399fknTz5s0M16cs9/PLWQMwOdmhK1fSnkXu5WU3RWPxypUbSkpKvuc4s8xXst6cMztfV7DZbAoIyCu73ctpr5GcnKQrV27m+MAXAAAAIDMCAvwyfdUlGuAAAAAAAOCuSpQoIel/9wL/u3vdIzwrEhPdo4GY25KSkk07tzux2pzdab7e3nbZ7V76fdmXunH+TK4/v1/R0nrw2Z5yOBxuM2cAAAAgBQ1wAAAAAABwV1WqVJEkHT16NMP1v/76qyQpMDDQZTUBuLcb58/oRswJo8sAAAAAXCpz54kDAAAAAADLaty4sSRp/fr1SkpKSrPu6tWr2rFjh/z9/VW7dm0jygMAAAAAIBUNcAAAAAAAcFdly5bVU089pVOnTumjjz5KvedvQkKC3nvvPcXFxalr167Knz+/wZUCAAAAAKyOS6ADAAAAAIB7GjFihA4cOKDZs2dr48aNqly5sn766SedPn1aVatWVf/+/Y0uEQAAAAAAzgAHAAAAAAD3VrZsWX3//ffq3Lmzrl69qvXr18vHx0d9+vTRnDlzlC9fPqNLBAAAAACAM8ABAAAAAMBtc+fOvev6kiVLasyYMS6qBgAAAACArOMMcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYApdAR5bY7TbZ7TanPX9yskPJyQ6nPT8AAAAAAAAAAAAA86IBjkyz220qVMhfXl7Ou3BAUlKyLl26ThMcAAAAAAAAAAAAQJbRAEem2e02eXnZNXX+FkXHXs715y9boqD6vfCY7HYbDXAAAAAAAAAAAAAAWUYDHFkWHXtZf0RfNLoMAAAAAAAAAAAAAEjDedeyBgAAAAAAAAAAAADAhWiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBS8jS4AAAAAAAAAsBK73Sa73ea05/fy4pwXAAAAWBcNcAAAAAAAAMBF7HabChXyp0kNAAAAOAkNcAAAAAAAAMBF7HabvLzsmjp/i6JjLzvlNaoHllGXVjWc8twAAACAu6MBDgAAAAAAALhYdOxl/RF90SnPXaZ4gFOeFwAAAPAEXGsJAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GFwD8nZeXc4/LSE52KDnZ4dTXAAAAAAAAAAAAAOB6NMDhNgoW8JUjOVkBAX5OfZ3k5CRdvHiDJjgAAAAAAAAAAABgMjTA4Tby+frIZrfr92Vf6sb5M055Db+ipfXgsz1lt9togAMAAAAAAAAAAAAmQwMcbufG+TO6EXPC6DIAAAAAAAAAAAAAeBjn3mwZAAAAAAAAAAAAAAAXoQEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABT8Da6gNy0bt06vfHGG3dc36ZNG02ePNmFFQEAAAAAAAAAAAAAXMVUDfCDBw9KkurWratSpUqlW1+zZk1XlwQAAAAAAAAAAAAAcBFTNsCHDx+uoKAgg6sBAAAAAAAAAAAAALiSqe4BfvDgQeXNm1eVKlUyuhQAAAAAAAAAAAAAgIuZpgF+8eJFnTlzRoGBgfL2NtWJ7QAAAAAAAAAAAACATDBNpzjl8uelS5fWRx99pLVr1+r06dMqVqyYWrZsqT59+qhgwYIGVwkAAAAAAAAAAAAAcBbTnAF+4MABSdKqVas0f/58PfDAA6pVq5YuX76sWbNm6fnnn9fZs2cNrhIAAAAAAAAAAAAA4CymOQP80KFDkqQnn3xSEydOVIECBSRJFy5c0ODBg7V9+3aNGDFC06dPz/ZreHunPV7Ay8scxw9kdh5mma9krrnkJjP9dzHTXICsMtP730xzAXB3Zvp7N9NcAAAAAAAAPI1pGuDjx4/Xm2++qVKlSsnX1zd1eZEiRTRhwgS1atVK69ev16lTp1SuXLksP7/dblPhwvlys2S3ERDgZ3QJLmfFOVsN2xgwB/6WAXgiPrsAAAAAAACMY5oGuI+Pjx544IEM15UsWVIPP/ywdu3apQMHDmSrAZ6c7NCVK9fTLPPyspti59aVKzeUlJR8z3Fmma+U+TlbDdsYMAf+lgF4Ij674MkCAvwsdeb/unXr9MYbb9xxfZs2bTR58mQXVgQAAAAAwP+YpgF+L8WKFZMk3bhxI9vPkZhozp1YSUnJpp3bnVhxzlbDNgbMgb9lAJ6Izy6Y3cGDByVJdevWValSpdKtr1mzpqtLAgAAAAAglSka4AkJCRo1apQuXryoiRMnyt/fP92YkydPSlKG4RwAAAAAAGROSgN8+PDhCgoKMrgaAAAAAADSMsU12nx8fLR161atXbtWmzZtSrf+8OHDOnz4sAoUKKAaNWq4vkAAAAAAAEzi4MGDyps3rypVqmR0KQAAAAAApGOKBrgkdenSRZL04Ycf6sSJE6nLz507p3fffVdJSUnq0aOHfH19jSoRAAAAAACPdvHiRZ05c0aBgYHy9jbFReUAAAAAACZjmrT62muvKTIyUps3b9azzz6rOnXqyMfHRzt27ND169fVsmVL9erVy+gyAQAAAADwWCmXPy9durQ++ugjrV27VqdPn1axYsXUsmVL9enTRwULFjS4SgAAAACAlZmmAe7j46MZM2bom2++UVhYmHbv3i273a7KlSurc+fO6tSpk2w2m9FlAgAAAADgsQ4cOCBJWrVqlfLly6d69eqpVKlS+umnnzRr1iytW7dO8+bNU/HixQ2uFAAAAABgVaZpgEuSl5eXQkJCFBISYnQpAAAAAACYzqFDhyRJTz75pCZOnKgCBQpIki5cuKDBgwdr+/btGjFihKZPn57t1/D2Tnu3Ni8vc9y9LbPzMMt8JevN2Wrzlcw1FwAAAJiHqRrgAAAAAADAecaPH68333xTpUqVkq+vb+ryIkWKaMKECWrVqpXWr1+vU6dOqVy5cll+frvdpsKF8+VmyW4jIMDP6BJczmpzttp8JWvOGQAAAO6PBjgAAAAAAMgUHx8fPfDAAxmuK1mypB5++GHt2rVLBw4cyFYDPDnZoStXrqdZ5uVlN0WT7cqVG0pKSr7nOLPMV7LenK02XynzcwYAAAByKiDAL9NXIKIBDgAAAAAAckWxYsUkSTdu3Mj2cyQmmrOZlpSUbNq53YnV5my1+UrWnDMAAADcHzfqAQAAAAAA95SQkKB//etf6tu3r65fv57hmJMnT0qSSpUq5crSAAAAAABIRQMcAAAAAADck4+Pj7Zu3aq1a9dq06ZN6dYfPnxYhw8fVoECBVSjRg3XFwgAAAAAgGiAAwAAAACATOrSpYsk6cMPP9SJEydSl587d07vvvuukpKS1KNHD/n6+hpVIgAAAADA4rgHOAAAAAAAyJTXXntNkZGR2rx5s5599lnVqVNHPj4+2rFjh65fv66WLVuqV69eRpcJAAAAALAwGuAAAAAAACBTfHx8NGPGDH3zzTcKCwvT7t27ZbfbVblyZXXu3FmdOnWSzWYzukwAAAAAgIXRAAcAAAAAAJnm5eWlkJAQhYSEGF0KAAAAAADpcA9wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKXgbXQBgdXa7TXa7zWnPn5zsUHKyw2nPDwAAAAAAAAAAALgLGuCAgex2mwoX9pPd7uW010hOTtLFizdoggMAAAAAAAAAAMD0aIADBrp99reXfl/2pW6cP5Prz+9XtLQefLan7HYbDXAAAAAAAAAAAACYHg1wwA3cOH9GN2JOGF0GAAAAAAAAAAAA4NHsRhcAAAAAAAAAAAAAAEBu4Axw4B5uX6bc5pTn9vLiGBQAAAAAAAAAAAAgt9AAB+7CbrepUCF/GtUAAAAAAAAAAACAB6ABDtyF3W6Tl5ddU+dvUXTs5Vx//uqBZdSlVY1cf14AAAAAAAAAAADAimiAA5kQHXtZf0RfzPXnLVM8INefEwAAAAAAAAAAALAqrusMAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFPgEugAAOQCu90mu93mtOdPTnYoOdnhtOcHAAAAAAAAAMAMaIADAJBDdrtNhQv7yW73ctprJCcn6eLFGzTBAQAAAAAAAAC4CxrgAADk0O2zv730+7IvdeP8mVx/fr+ipfXgsz1lt9togAMAAAAAAAAAcBc0wAEAyCU3zp/RjZgTRpcBAAAAAAAAAIBl0QAHAADwQM6+77zEvecBAAAAwEjkPgAAsocGOAAAgIex220qVMhfXl52p75OUlKyLl26zs4QAB7F2TuK2UkMAABcwW63qXBhP9ntXk59neTkJF28eIPfNwAAU6EBDgAA4GHsdpu8vOyaOn+LomMvO+U1ypYoqH4vPKY8ebyUlJTslNegiQQgt7liRzE7iQEAgCvcPqjPS78v+1I3zp9xymv4FS2tB5/tKbvdxm8bAICp0AAHAADwUNGxl/VH9EWnPHfBAr5yJCcrIMDPKc8v0UQCkPucvaOYncQAAMDVbpw/oxsxJ4wuAwAAj0IDHAAAAOnk8/WRzW6niQTAI7GjGAAAuIIzb73i7FteAQBgZjTAAQAAcEc0kQAAAAAgPbvdpkKF/GlUAwDghmiAAwAAAAAAAACQBXa7TV5edk2dv0XRsZdz/fmrB5ZRl1Y1cv15AQCwAhrgAAAAAAAAAABkQ3TsZf0RfTHXn7dM8YBcf04AAKyCBjgAAAAAwCWceZ9MiXtlAgAAAAAAGuAAAAAAABfgPpkAAAAAAMAVaIADAAAAAJzO2ffJlLhXJgAAAAAAoAEOAAAAAHAhZ90nU+JemQAAAAAAQOLacwAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBS6BDgBOZrfbZLfbnPoayckOJSc7nPoaAADzcfZ3FN9PAAAAAAAAcDUa4ADgRHa7TYUL+8lu93Lq6yQnJ+nixRs0GQAAmeaK7yi+nwAAAAAAAOBqNMABwIlun1nnpd+Xfakb58845TX8ipbWg8/2lN1uo8EAACbjzDO0vbzsTv2O4vsJAAAAAAAARqABDsDynN1ckKQb58/oRswJp7yGO+KSugCQc3a7TYUK+ad+lziL1b6jAAAAAAAAYG40wAFYmquaC1bCJXUBIHfY7TZ5edk1df4WRcdezvXnrx5YRl1a1cj15wUAAAAAAACMRAMcgKXRXMh9zr7sO5fUBWA10bGX9Uf0xVx/3jLFA3L9OQEAAIzi7CuRSVyNDAAAwFPQAAcA0VxwBi6pCwAAAABI4cwGtc1mU0BAXqdeiUziamQAAACeggY4AAAAAAAAAKdx1e3HnHUlMomrkQEAAHgSGuAAAAAAAAAAnMZVtx+z2pXInH3Zdy75DgAAPBUNcAAAAAAAAABOx+3Hco/dblPhwn5Ovew7l3wHAACeigY4AAAAAAAAAHiQ22d/ezntsu9c8h0AAHgyGuAAANNz9mXhnH0fOwAAAAAAMmK1y74DANyfs/fFStymA/dmugb4zp07NX36dB06dEjx8fEKDAzUyy+/rNatWxtdGgDAAHa7TYUK+dOkBgAAyEVkbwAAAAB/54pbdEjcpgP3ZqoG+NKlS/XPf/5T3t7eql+/vry8vLRt2zYNGjRIR48eVf/+/Y0uEQDcgjOPwnO3RrPdbpOXl11T529RdOxlp7xG9cAy6tKqhlOeGwAAwN2QvQEAAADP5ex9w868RYfEbToywxVn4TtbTs/yN00D/Pz58xo+fLj8/Pw0Z84cPfroo5Kko0ePKiQkRFOmTFHz5s0VFBRkcKUAYCyrnhEdHXtZf0RfdMpzlyke4JTnBQAAcDdkbwAAYCU0kWA2rto3zC06jOOqbexITpbN7rzXyOlZ/qZpgH/zzTeKj49Xz549UwO4JFWsWFFvvfWW3n33XX399dcaN26cgVUCgPGcfUY0Z0MDAACYF9kbAAA4k7MbzllpBtNEQm5xt/c1+4bNzZVXRHXWmf65cZa/aRrgGzZskCQ9/fTT6dY1a9ZMNptNGzdudHFVAOC+nHVGNGdDAwAAmBfZGwAAOIsr7h2clWYwTSTrcGaD2mazKSAgr9u8r1Owb9j8XHFFVHc+0980DfDffvtNklSpUqV06woVKqRixYrp7NmzOn/+vIoWLerq8gAAAAAA8HhkbwCAkdzpLErkvtvb13n3Ds5uM9jqTSSzc9WZ/u72vgbMzhQN8MuXL+vmzZvKly+f8uXLl+GYEiVK6OzZszp79iwhHAAAE2JHCACkx2cjchPZGwBwN87+3eGuZ1FajTO3c0oDkmYwXMlVlwTnfQ24ls3hcHj8t/mZM2f05JNPqlixYtqyZUuGY1544QXt2bNH8+fPV61atbL8Gg5H+h07Nptkt9t1+Vq8kpKSs1X73fjk8VJ+/7y6FXdFjuSkXH9+m91LefIFKDk5WZl5F3j6fCXrzdnd5itZb868r82/jSXrzdkd39fS7cBiszlvZ4vD4ZAzfzZl5amt+L5OfZzzNrHTZfXt4+l/y3x2ZeFxTnxf22zO/2zM7A5iM392Ofs7yF2QvbOHz8NMjPfwObvbfCXrzdkd39epj3Pi14PdbnebbXy7Htd8HybGx8mRnPvvI5vdLm/ffLyv78EV29ld3tdW/LxOfZwH/7Qle99jvIfPV+J9fS9m/uzKyneQKc4At9tvHxl2t0mn7LDO7o5rm80mL6+Mn79gft9sPWdm5cnn3HsmpPz3yyxPn69kvTm723wl682Z93Xuc7f5Stabszu+r53J2U2k7LDi+9qKPP1vmc8uc7tbTroTPrs8F9k7Z/g8vDdPn7O7zVey3pzd8X3tbO62jV3B2zfjq5DkFt7XxnO397UVP6+tyNP/lt3tfW3Fzy53Y/XPLlO8O1IuvRYfH3/HMQkJCZIkf39/l9QEAAAAAICZkL0BAAAAAJ7ANA1wf39/Xb169Y5BPDY2VpJUvHhxV5YGAAAAAIApkL0BAAAAAJ7AFA1wm82mKlWqSJKOHj2abv2lS5d07tw5FSlSRMWKFXN1eQAAAAAAeDyyNwAAAADAE5iiAS5JjRs3liStWbMm3bo1a9bI4XCoSZMmri4LAAAAAADTIHsDAAAAANydaRrgHTt2lJ+fn7766ivt2bMndfmxY8f0n//8RzabTa+++qqBFQIAAAAA4NnI3gAAAAAAd2dzOBwOo4vILQsXLtSIESPk5eWl+vXry8fHR9u2bdPNmzf1j3/8Q7169TK6RAAAAAAAPBrZGwAAAADgzkzVAJekTZs26csvv9TPP/8sLy8vVapUSa+99ppatGhhdGkAAAAAAJgC2RsAAAAA4K5M1wAHAAAAAAAAAAAAAFiTae4BDgAAAAAAAAAAAACwNhrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDiDXXL16NcuP2bFjhxMqAZBdU6ZM0S+//GJ0GQAAAADugOwNeD6yNwAAzkUDHC6XkJCgn3/+WYcPH1ZiYuIdx124cEGRkZEurMz1duzYodmzZ+u///2vTp48aXQ5ORYSEqJLly5lauzNmzc1ZswYvfrqq84tCkCWTJkyRUeOHDG6DCDXNWvWTGvXrjW6DEMkJyfrxIkTaZY5HA6tWLFCY8aM0ccff6z9+/cbVF3uOX36tOLj4zM9/uTJkwoPD3deQQa4cOGCtm3bphUrVuiHH37Qjh07Mv3bDID5kL3/h+xN9gbcDdkbZkX2Jnv/HdkbRvE2ugBkXnx8vC5cuKAyZcoYXUq2zZkzR5988omuX78uSSpQoIBef/11vf7667Lb0x6PsXnzZg0ZMkSHDh0yotRcc+TIEX3xxRc6cuSIypQpo969e6tWrVoaOHCg1q5dK4fDIUny9vbWgAED1Lt3b4Mrzr5Dhw7pxRdf1FdffaVixYrdcdz+/fs1ZMgQ/fHHH3cdZ1YXLlzQ0aNHVbduXaNLcYmrV69q/PjxGjNmjNGluIzVtrEZNGvWTO+++66aNWtmdCku89BDD2nChAlq27at0aW4RHR0dOrvDyvZsGGDRo0apbNnz+rnn3+WdDuU9+3bVxs3bkz9HTJz5kyFhIRo2LBhRpabI82aNUv3nr5+/bpGjx6t119/XRUrVkwzfu/evRo2bJg6dOjg4kpz36pVq/TFF19k+LvZZrOpVq1aev311/Xkk0+6vrhcFBQUJJvNlqXH2Gw2HTx40EkVwazI3p6J7J0e2dtauYzsDU9A9jY/sjfZm+xN9nYXnAFuoIyOhkpISFB4eLjOnTuXbnxERIRH/zgIDw/X2LFjFRgYqGHDhql3797y9fXV5MmT9dprr+natWtGl5jrfv75Zz3//PPasGGD/Pz8tH//fr3yyisaO3as1q5dqx49eigsLEzz5s1TkyZN9J///Ec//PCD0WVn24gRI3Ts2DF1795dZ86cSbf+1q1b+vjjj9WtWzf98ccfat++vZYvX25ApbnroYce0tKlS9Msi4+P15QpU3Tq1Kl04zdv3qyQkBBXlecUp06d0ujRo/Xcc8/pueee0/Dhw3X8+PF04yIiItSmTRstWrTIgCpzjxW3sdVYMaClhC+Y1+HDh9WvXz85HA716NFDycnJkqT58+drw4YNKl68uBYuXKi9e/fqnXfe0Zw5czz6d0hG7+mbN28qPDxcsbGxBlTkGmPGjNGgQYMUHR2tDh066O2339a///1vvffeexo4cKCaNWumAwcO6I033tCHH35odLk5UrduXdWpUydL/6tdu7bRZcMNkL3J3mRvsrenInubfxtbDdkbZkT2JnuTvd0ze3MGuIEy+sKPi4vTsGHDNGvWLNMdnTt79mzVrVtXc+fOTV3Wt29fvf/++woNDdUrr7yir776Svnz5zewytw1efJklStXTnPnzlWRIkV0/fp19e7dW9988426dOmit99+O3VsnTp19OKLL+r//u//1Lp1awOrzr7u3burYMGCGjp0qLp3766vvvpK9913n6TbR6gPGTJEv/zyi8qUKaNRo0apcePGBlecOzL60r9x44amTp2q2rVrq1y5cgZU5TyHDh3SSy+9pGvXrsnX11e+vr46ePCgVqxYoQULFqhKlSq6evWqhg8froiICHl5ealXr15Gl50jVtvGx44dy/JlMDniHnA/X375pUqUKKHFixcrICAgdfk333wjm82mt956S9WqVZMkvfrqq9q5c6fmz5/vsb9D7sTMO5yWLFmiefPmqUOHDnrvvffk7++f4bi4uDh98MEH+vrrr1WzZk21bNnSxZXmjr/mCCAryN5kb7I32dsTkb1vM/M2JnsD5kD2vo3sTfZ2NzTA3ZBZPyh+//13DR06NM0yHx8fjR07VoUKFdKsWbP0+uuva9asWXf8APE0e/fu1VtvvaUiRYpIkvz9/fXmm2/qxRdf1OOPP55ufOvWrTVhwgRXl5mrnn32WRUoUECDBg1S9+7d9eWXX2rt2rWaPn26EhMT1a1bN/3jH/9Qvnz5jC7V6cz6t/zpp58qPj5eH3/8sZ555hlJUlRUlN566y2NGTNGEydOVEhIiP744w89+uijGjNmjAIDAw2u2jnMuo2nT5+u6dOnZ+kxnn7JTKvK6uWMPN3ChQu1devWTI+32WwaO3asEytyrsjISD3//PNpAvjJkyd17NgxeXt76+mnn04z/rHHHtOnn37q6jKRA/Pnz1eNGjXueXR5vnz5NHbsWB09elTfffedx4bwW7duKU+ePFl6zP79+1W9enUnVQRPZ9bfcmRvsjfZ2xzI3v9j1m1M9rYOsvfdkb3h7sje9+aO2ZsGOFzGz89Ply5dynDdO++8o+vXr2vBggXq06ePvvzyS9cW5yT58+fXlStX0iwLDAxUkyZN5O2d/s/v4sWLyps3r6vKc5omTZpo5syZeuONN/Tcc8/J4XDo/vvv15gxY1SnTh2jy0MORUVFqWvXrqkBXJKqVaumd955R4MHD9bgwYMVHR2tt99+W6+99lq6ewzC/TVv3ty0O07uxmoBTZKmTZumhQsXZnq8zWbT119/7cSKnCsyMjJLZ1h4+ja+ePGiSpUqlWbZ9u3bJUnVq1dPt0Pc19dXN2/edFl9yLnffvstS/ewbdasmb799lsnVuRczz33nCZOnJip76iEhARNnjxZc+bM0YEDB1xQHeA+yN63kb3J3p6O7G1+ZO/M8fRcJpG978XTtzHZ2/zI3nfmztmbBjhcpn79+pozZ46efvppVa5cOd36kSNH6tq1a1q2bJlee+01NWnSxIAqc9djjz2mr776SjVr1lTDhg0lSQUKFNAXX3yRbuz+/fs1d+7c1HGernbt2pozZ45ef/11XbhwQf/+978J4CZx+fJlBQUFpVv+6KOPKikpSUeOHNHcuXNVo0YN1xeHXNGiRQu1bdvW6DJczmoBTZKOHj2qo0ePZnq8px+1/u6773r0PV2zqmDBgrpw4UKaZZs3b5bNZtNjjz2WbvzRo0dTz5yDZ7h+/bqKFi2a6fHFixf36HuynTt3Tp06ddKAAQPUs2fPO34m7d69W++++66OHz+u+++/38VVAsYje5O9yd7mQPY2P7J35pC9PQ/Zm+xtNmRvz8zeNMDhMm+99Za6deum4OBgPfzww/roo4/S/FHYbDZNmDBBPj4+Cg0N1Z49ewysNne8/fbbioqK0muvvaY6derc8d4JL730knbv3q0iRYqkuTeZpwsKCtL8+fP16quv6o033tDUqVPVoEEDo8tCDiUmJmZ4toSvr68kqVevXgRweCSrBTRJ+uijjyy1w6Vw4cIqW7as0WW4TK1atbRixQr16NFDXl5eOnfunDZs2CBJatWqVZqxV69e1dKlS1W/fn0DKkV2JSUlZXhm4514eXkpMTHRiRU517JlyzRs2DBNmjRJGzZs0Pjx41W+fPnU9SmXiU25116PHj00cOBAAysGjEH2JnuTvc2B7A2zInubH9mb7G02ZG/PzN40wOEyDzzwgJYvX66pU6dq165dqT/Y/8put2vs2LGqWbOmPvnkE50/f96ASnNP0aJFtWjRIi1YsEAJCQl3HOfr66tOnTrpzTffzNKRRO5m2LBhGS6///77derUKfXu3VutW7dOc8SQGY7iRFqPPPKI0SUA2WK1gAbz69mzp7p27aouXbqoXr16Wrt2rW7evKlnnnlGFSpUkHR7x+q+ffs0fvx4XbhwQd27dze46pxZvXq1jh8/nvrv8fHxstlsWrx4sXbv3p1m7C+//OLq8pBDRYsW1YwZM/TNN9/oo48+Uvv27TV06FA9//zz2rlzp/71r3/p5MmTCgwM1AcffMBvElgW2ZvsTfa2Br7n4KnI3jAbsjfZ22zMkr1pgBvs2LFjaS75cvXqVUnSkSNH0h1RkpXLpLirwoULa/jw4fcc17lzZwUHB6f5EPVUvr6+euWVV+46xiz3XQsLC7vr+ps3byo8PDzNMrOE8F27dikpKSn13+Pi4iRJW7ZsUUxMTJqxZjjD4m48/TJNd2KVbVy3bl0VK1bM6DIA5IJHH31U06ZN0wcffKBZs2bJy8tLbdu21ahRo1LHTJgwQXPmzJHdbtewYcNUq1YtAyvOuYiICEVERKRb/vffHynM8J319x0Pd2OWHQ/du3dXgwYNNGLECI0cOVJz587V0aNH5e3trYEDB6pXr15ZOjof1kD2zhjZ2zORvc2fyzLDDL9jMmKVbUz2BsyD7P0/ZO/byN7uweZwOBxGF2FVQUFBGf7hOxyOuy4/dOiQK8pzOofDoZMnT+rSpUuSpCJFiqhcuXLGFuVkZp9zdHR0th7n6Ud9ZvS3/NeP1ozWefLfclBQkN544w01atQozfKrV6+qb9++Gjp0qKpWrZrucXXr1nVVibnOatvYioKCgix3STKrzTksLEx16tRJc8kmK7l48aL8/PzSnQW4ceNGHThwQM8884xb3q8pK3bu3Jmtx9WrVy+XK3GdjO4Lei9m+n6KjIxU3759dfXqVdlsNvXt21cDBgwwuiy4IbK3uXNoRsw+Z7L3/5g5l5G9bzPzNrYiq+VQyXpzJnuTve+E7O25PDV70wA30JQpU7L1uP79++dyJa4VFRWlmTNnasuWLbp+/Xqadfnz51fTpk316quvZutDxV1Zcc5Wcq+j7+8kODg4lytxjTvtQJTuvBNRkkd/4VtpG//1zKis8OSdLJI1A9rOnTtVsWJFj778J2B1VtzxIEnXrl3ThAkT9P333ytv3rzq2bOnVq1apV9++UUNGzbUmDFjVKZMGaPLhBshe1snh1pxzlZipVwmkb2zwhO3Mdmb7A3Ac5C9PTN70wCHS82aNUsTJ06U3W5XzZo1VblyZQUEBCgxMVGXLl3SwYMHdejQIdntdg0ZMkQhISFGl5xjVpxzZk2fPl0REREKDQ01uhSXS0hIkI+Pj9FlZItVdyBmladu47vtZLkbT97JAmu4070y78YslwpFxhYsWKDNmzdn+3sNxtiwYYNGjhypmJgYNWjQQKNHj1b58uV169Ytffrpp5o1a5Z8fX31z3/+U127djW6XMAwVsyhVpxzZpG9PS+XSWTvzPLUbUz2hlmRvfF3ZG/PZIbsTQMcLrNx40b17t1bDRs21NixY1W6dOkMx504cUKjRo3S1q1bNWvWLDVs2NDFleYeK845K0aOHKmFCxd6/I/3KVOmZClgRkVFadiwYVq+fLkTq0JustI2/uyzz7IVwj19J4sVA1p2dvrabDZ9/fXXTqjG+ax4uap77VTLmzevChQooCpVqqhFixbq3Lmz7Ha7Cys0lhl+h5w+fVpFihRJd3m9Ozl58qR2796tDh06OLcwJ3n77be1fPly+fv765133lGXLl3Sjdm7d6+GDBmikydPql69evrggw9MddljIDOsmEOtOOesMMN3nmStXGZVVtrGZO/MI3t7FrJ3emRvz/8dQvb2zOxNA9xAVvvCf/XVV3Xu3DmFhoYqT548dx2bmJioDh066P7779fUqVNdVGHus+Kcs8IMX37S7R85PXr00D//+c+7jktMTNSUKVM0c+ZMJSUlefy8Mys+Pl4XLlxw68uh3Avb2PysGtCyypPnbMV7Zb700kt3XZ+UlKQrV67oxIkTunXrlh577DFNnz5d3t7eLqrQWGb4HfLQQw9pwoQJae4neP36dY0ePVqvv/66KlasmGb8kiVLNGTIEI+dc1BQkBo3bqzRo0erVKlSdxwXHx+vDz/8UAsWLJC/v7/27Nnjwirhjsjed2aWHGrFOWeFGb7zJHLZvZC94QmslkMl682Z7J0e2dvzf4eQvTPm7tnbGn9hbior97X56xFEnhrCDx48qFdeeeWeYVSSvL291bp1ay1ZssQFlTmPFedsRXXq1NGsWbN048YNvffeexmOOXLkiIYMGaIjR46oYMGC+te//uXiKnNPs2bN9O6776pZs2apyxISErRixQo9/vjjKlasWJrxERERHv2FL1lvG1vR2rVrjS7B5Q4fPmx0CS7lyWE6u+bOnZupcfHx8Zo/f74mTJig+fPn3zO8w31kdCzzzZs3FR4ernbt2qUL4Z5u3LhxmbrHp6+vr95//309/fTTfB9DEtn7bsySQ604ZyuyWi4je5t/G1sR2dv8yN53Rvb2XGTvjLl79qYBbqDMfPlFR0dr9OjR2rBhgwoUKKBBgwY5vzAniYuLU4kSJTI9vnTp0vrzzz+dWJHzWXHOVjRr1iwNHDhQ8+fP140bNzR27NjUHWcOh0MzZszQ1KlTlZCQoDZt2mj48OEqUqSIwVVnX3R0tK5fv55mWVxcnIYNG6ZZs2alC+FmYLVtLEnHjh3T3r171bFjx9Rl586d05QpU7Rnzx75+fmpWbNmeuWVVzzyfmt/Z8WAhrQSEhL022+/ydfXVxUqVDC6HJfy9fXVq6++qv379yssLIwQbgJmvchXZgL4Xz344IPq3Lmzk6qBJyF7350ZcqgV52xFVstlZG/zb2OJ7A3rIXuTvc2E7H2bu2ZvGuBuKikpSbNmzdLnn3+u+Ph4PfPMMxo2bJhH/7hNTEzM0g81b29vJSQkOLEi57PinK3Ix8dHU6dO1bBhwxQWFqb4+HhNnDhRJ06c0NChQxUVFaXixYvr/fffV9OmTY0u12nM+oUvWW8bT5w4UbNmzZLD4VBwcLDsdruuXr2qLl266PTp0ypUqJDKli2rTz75ROvWrdPcuXMzdbaNJ7NiQIuJiVFUVJR8fX1Vt27dTN/nyJ1dvXpVX375pfbu3ZvmCO2lS5dqzJgxunLliqTbP9zHjh2rGjVqGFSpMerXr68tW7YYXQaQIzdv3tSqVasUGhqqnTt3yuFwqF+/fkaXBTdG9jZHDrXinK3IarnsTsje5tnGZO/0yN5kbysge8MMPCF70wB3Q7t27dKoUaP066+/6oEHHtDIkSPVsGFDo8sC7mnKlClZGv/zzz87qRLX8/Ly0oQJExQQEKB58+bp1KlT+vXXXxUfH6/OnTtryJAhyp8/v9FlIgesso1Xr16tmTNn6sknn1RISIjsdrsk6fPPP1d0dLSqV6+ur776Sn5+foqKitJLL72kr776Sj179jS48pyzYkCLjo7WpEmTtHfvXq1bty51+YwZM/Tpp58qKSlJDodDBQsW1OjRo9WiRQsDq82ZuLg4denSRceOHVOpUqWUmJgob29vRUVFaciQIXI4HOrSpYsqV66s8PBwvfrqqwoPD9f9999vdOku4+XlpeTkZKPLyLbw8PAsjf/999+dUwgMsXfvXoWGhuqHH35QXFycHA6H7rvvPnXp0sXo0uDGyN7wVGRv8+cyK7PKNiZ7k70lsjfZ2zORva3Nk7I3DXA3cvHiRU2YMEHh4eHy8fHRgAED1LNnT1Nc3ibFrl27lJSUlKmxe/bscXI1rmGlOWc1hEtp77FnBsOHD1ehQoU0ZcoU2e12ffHFF2rSpInRZSEXmX0bL1iwQNWrV9f06dNTlzkcDi1ZskQ2m01vvvmm/Pz8JEnVqlVT+/bttXz5co8P4VYMaOfPn1eXLl108eJFVatWLXXOP/74oyZNmiRvb2+99dZbqlKlihYuXKi33npL3377rapWrWp06dkya9YsnThxQv/5z3/UqlWr1OVTp06Vw+HQyy+/rKFDh0qSOnXqpHbt2mn69OkaN26cUSW73P79+1W6dGmjy8i2oUOHZul3hcPhMN3vEKuJiYnR4sWLFRoaquPHj6eeEVe/fn317NlTjz/+uMEVwl2RvdPy9ByawkpzJnubP5fB/NuY7E32JnuTvT0V2dt6PDV70wB3E999950mTpyoy5cv67HHHtPIkSN13333GV1Wrlu4cKEWLlyYqbFm+WC00pznzJljdAluoX///ipcuLDGjBmjmTNnqnbt2qY4Ohn/Y+ZtfODAgXSB+uDBgzp//rzy58+v+vXrp1n36KOPaunSpa4s0SmsGNBmzJihuLg4ffPNN2mOqJ8xY4ZsNpv69euX+l544okn1LFjR3355Zf6z3/+Y0zBORQREaH27dun2b5xcXGplx3r1q1b6vK8efOqXbt2+u6771xep1FWrlypxYsX6/XXXze6lGzz5L9HZF5CQoLWrFmj0NBQbdu2TUlJSfLy8lK9evVUu3ZtTZs2TSEhIW4bwGE8snd6np5DU1hpzmTv28ycy3Cbmbcx2ZvsTfYme3sqT/57ROaZIXvTADfYkSNH9P7772vfvn0qVqyYJk2apDZt2hhdllNY8YPRanOuV69elh+za9cuJ1TiWpGRkemWValSRZ07d9bChQv18ssv65133km9nFWKunXruqpE5JCVtvH169dVsGDBNMu2b98u6fZ8vLy80qxLTEz06J2HKawY0DZs2KCOHTumCeCXLl3S7t27JUnPPfdc6nKbzabWrVvr66+/dnWZuebUqVNptqN0+287MTFR5cuXT9f8KF26tM6fP+/KEnPdsGHD7ro+KSlJcXFx+u2333TixAk98MADHh3Cg4ODjS7BEKtXr9bx48dT/z0+Pl42m02LFy9O/XtO8csvv7i6vFw1atQorVixQpcvX1bevHnVuHFjNW/eXM2aNVPhwoUVHR2tzz//3Ogy4abI3uZmtTmTvf/HrLnMqqy0jcneZG+y921kb89D9r6N7O3+2ZsGuIHGjx+vuXPnKikpSU899ZQGDRqk/Pnz6/Tp03d9XJkyZVxUYe6y4gejFeecGWfOnFFYWJjCw8N18uRJHTp0yOiScuSll166awg5cOCAXnnllXTLPXnex44dSxNMr169Kun2jkVv77RfLUePHnVpbc5gpW1cokQJnTx5Ms2yDRs2yGaz6Yknnkg3PioqSiVLlnRVeU5jxYD2559/qkqVKmmW7dixQ8nJyapUqVK67Vq0aFFdvnzZlSXmKrvdnu4eW9u2bZMkNWrUKN34CxcuePzZJWFhYZkaV758eb388svq27evx8/5TjL6fV26dGnT7ESMiIhIt/xO92Xz5DnPnz9f/v7+6tOnj15//XXTvl+R+8je5mfFOWcG2fs2T5432TstM21jsvf/kL3J3p7+u57s/T9k7//x5DmbJXvTADfQ7NmzU/95/fr1Wr9+faYe54k/6rLjwoULOnr0qEcexZldZp7zzZs3FRERodDQUO3YsSP1knMZ/aj3NP369fPoL7TsmD59epr7VKUYP358umWefnlByVrb+IknntCiRYvUrVs3lSxZUnv37tWuXbuUJ08etWzZMs3YX3/9VcuXL9fzzz9vULW5x4oBLW/evLpx40aaZVu3bpXNZtNjjz2Wbvyff/6pgIAAV5WX6ypVqqS9e/eqe/fukm5/Nq1evVo2m01NmzZNN37t2rWqWLGiq8vMVWvXrr3r+rx58yogIMBU97yVpEWLFum7777T559/riJFiujixYtq2rRpus/xgQMH6o033jCoytxhtUvgBgcHa82aNfriiy/09ddfq06dOqlHoRcrVszo8uDGyN53Z+YceidmnjPZ21zI3uZF9v4fsndaZG/PQ/Yme5uNWbI3DXAD9e/f3+gSXOqhhx7ShAkT1LZt29Rl8fHxmjlzpjp06KBy5cqlGb9582YNGTLEo3c6WHHOf7dv3z6Fhobqhx9+0LVr1yRJRYoUUceOHdWlSxeVLVvW4ApzbsCAAUaX4FJWCqQprLSN+/btq4iICLVu3VoVKlTQL7/8IofDoX79+qlIkSKSbofviIgIzZkzR3ny5FGPHj0MrjrnrBjQgoKCtG3bNr388suS/ndvH0lq3rx5mrEOh0MrV65UUFCQy+vMLR06dNAHH3ygRx99VI899pgWLlyo06dP67777lPjxo3TjJ0+fbr27dun4cOHG1Rt7jDDd2xWvfnmm1q1apXKlCmj06dPp35uSVK7du1Uvnx5SdLixYs1bdo0derUScWLFzeq3BzLziVwExMTnVCJa4wbN06jRo3S+vXrtXTpUm3atEk//vijRo0apZo1a6pWrVqW+42CzCF7mz+HWnHOf0f2Nh+yt7mRvcneEtmb7O25yN73RvY2Hg1wA1kthDscjnTLbty4oalTp6p27drpAqkZWHHOkhQbG6vw8HCFhYXpjz/+kMPhkJ+fnxo1aqStW7fq3//+t5o1a2Z0mcgmKwVSKypWrJi+//57TZ06Vfv27dPDDz+sjh07qnPnzqljwsLCNGvWLJUtW1Yff/yxSpcubWDFucOKAa1r16566623NHbsWD322GNatGiRzp8/r4cffjjN2VDx8fH68MMP9euvv3r0DpeuXbtq9+7dGjdunGw2mxwOhwoWLKiJEyem3kPw+++/14wZM3Ty5EnVrl1bL7zwgsFVO1dUVJT27t0ru92uevXqKTAw0OiScmTJkiVatWqVevfurYEDB6a7b2KHDh3UsGFDSVKTJk30/PPP69tvvzXNb/K4uDg5HI67niGzd+9ejRgxQsuWLXNhZbnLx8dHLVu2VMuWLXX16lWtXLlSS5Ys0e7du7V7927ZbDZ98cUXunbtmlq2bClfX1+jS4YbMMvfeWZZMYdacc4S2dvsyN7mRvYme5O9yd6eiuxN9vaU7E0D3I0kJCTo8OHDio2NlcPhUIkSJRQUFKS8efMaXZpTZRRUzc6sc/7hhx8UGhqqrVu3KikpSQEBAWrbtq1atGihxo0b6+zZs+mObDSDKVOmZPkxNptN/fr1c0I1zhcSEqI33ngj9YeMFVhtG5cqVUqjR4++4/qOHTuqadOmqlWrVmp48XRWDGht2rTRkSNHNHPmTM2dO1cOh0PlypXT5MmTU8f83//9nz7//HPFxcWpVatWat++vYEV54zNZtPEiRPVvXt37d27V/nz51fz5s3THKX8559/yuFw6I033lDv3r1N8f4+ePCgvvjiCx09elT33Xef+vTpo2rVqulf//qXQkNDU3+T2Gw2Pfvssxo3bly6+0l6irCwMNWsWVODBw++59iUHW4bN270+BC+atUqTZkyRb/99puk2/eVGzhwoJ599tnUMdevX9ekSZM0f/78dJec9CTDhg1T165dVb16dUlSgQIF1LlzZ3Xu3FkxMTFatmyZli1bpqioKP30008aPXq02rRpo3//+98GVw53Q/a2DrPOmeydeZ6cy8jemePJ25jsTfZOQfb2/Pc32TtjZG/PZJbs7Zl/YSZz7tw5TZo0SREREYqLi0uzzs/PTy1bttTgwYNVokQJgyoEMmfw4MHy9/dXt27d1KxZM9WtWzfNEWCecFmM7LBaQNu5c2eaI5KtwGrb+F48/fJjGbFqQBs8eLBeeOEF7d+/X/nz51e9evWUJ0+e1PV58+bVo48+qrZt2+q5554zsNLcU7NmTdWsWTPDdf379/f4QPZXe/fuVUhIiLy9vVWlShUdOHBA3bt310svvaRFixapXbt2atWqla5fv65169Zp2bJleuihh/Taa68ZXXq2HDx4UH369Mn0+Mcff1xTp051YkXOt2LFCr311lvKmzevHn/8cfn5+WnXrl365z//mXr/yJ9++kmDBw/WqVOnVK5cOY0aNcrosrMtLCxMjRo1Sg3hf1WyZEn16NFDPXr00NGjR7VkyRItXbpU3333nduFcBiH7A2zIHtnnifnMrJ35njyNr4XsjfZ25ORvcneKcjenscs2ZsGuMH27dun3r176/Lly6pevboaNGigEiVKyNvbW7GxsYqMjFR4eLjWrVunadOmqVatWkaXDNxRuXLldOrUKYWGhur333/XTz/9pObNm+vBBx80ujSnmjNnjtElwMmstI0jIyOz9bi/XrbLk1kpoKUoVaqUSpUqleG6F198US+++KKLK0JumTp1qh544AHNmTNHhQsXlsPh0LvvvqvZs2erXbt2mjBhQurYZ599VleuXNGyZcs8NoTHx8crICAg3fICBQpo+vTpeuihh9Isz5cvn0ffk0uS5s2bp6JFi2rBggWp91i7ceOG3njjDX322WcqUaKEXnvtNd28eVOvvvqq3nzzTbe8LFluq1ixogYPHqzBgwdrz549RpcDN0H2hpmQvWFWVtrGZG+y91+RvT0b2fs2sjfZ293QADfQ+fPn1a9fP+XLl0+ff/65ateuneG4gwcPatCgQRo4cKAWL16sokWLurhSIHPWrFmj/fv3a8mSJVq5cqU2b96sSZMmqUKFCmrRooWqVq1qdIlOUa9evXuOuXr1qmw2213vDQL3lZltbBYvvfRSls8YsdlsOnjwoJMqAnLHsGHDsvwYm82msWPHOqEa1/jpp5/0+uuvq3DhwpJuz6dHjx4KCwvTk08+mW58ixYt9OGHH7q4ytxTsmRJnT59Ot1yb2/vDOf7xx9/ePx9FI8ePaqXXnopNYBLt89i7d+/v1588UUNHjxYRYsW1cSJE1WjRg3jCjUQTUxIZG+YD9n7zsjeno3sfXdkb3gCsjfZ++/I3tbgjtmbBriB5s2bp7i4uDRHjWTk4Ycf1uzZs9W2bVv997//1YABA1xYJZA11atXV/Xq1fXuu+9q8+bNWrp0qdauXatp06bJZrPJZrNp/fr1CgoKUtmyZY0uN9c4HA5t2rRJv/32m+6//349+eST8vb21rZt2zRmzBgdO3ZMkvTQQw/prbfe0uOPP25wxTmzevVqHT9+PNPjzXxJshRm2dEybty4TI1btWqVNmzYIEmqVq2aEytyDSsGtJCQkCw/xmaz6euvv3ZCNc4XFhaW6bF/3RHlydv4ypUrKlasWJplKZcWLFSoULrxvr6+unHjhitKc4pq1appxYoV6tev3z0vk5iQkKAVK1aoSZMmLqrOOa5evapy5cqlW37fffdJun0pxQULFqTuiDGDXbt2KSkpKUuP6dChg3OKgccge8OMyN5k74yQvT0H2TvzyN6ehex9G9n7NrK35zJD9qYBbqA1a9aoXbt2dw3gKcqWLavg4GBFRER4dAj/+x9Nyn3XtmzZopiYmDRj3fGSCdlhxTlLkpeXl5o0aaImTZooPj5eq1ev1rJly7RlyxZ9//33Cg0NVf369dWxY0c9++yzRpebI1euXFGvXr20f/9+ORwOSdKjjz6qESNGqFevXvLz81Pz5s11/fp17d+/X71799bs2bM9+sjm1atXKyIiItPjzRDC/7qj5b777tNTTz1lyh0twcHBd10fHR2t0aNHa8OGDQoICNBbb72lLl26uKg657FiQDt16lSmxiUnJysmJkYOh8Oj7yd5+PDhe4756/u7QIECGjRokPMLcyKHwyFv77Q/91O2oSdvyzvp2rWrXnzxRf373//W8OHD0809RXJyst577z3Fxsaqa9euLq4ydyUnJ6e552uKlPsJ9urVy1QBXJIWLlyohQsXZmpsyueWu4VwuB7Z2xo51IpzlsjeZO+0yN6eg+x9b2Rvz0T2vo3sTfb2dGbI3jTADXTq1Kks3dsjKCgoSz8S3NHf/2hSAsvMmTPTfRl4+pd9CivNuVevXmrQoIHq1aunqlWrps7F19dXbdu2Vdu2bXXx4kWtWLFCS5cu1bZt27R9+3aPD+GffvqpDh8+rPfee0/169dXdHS0PvjgA7388st64IEHNHfu3NSj/S5cuKBOnTpp1qxZHh3Ce/furUaNGhldhstYcUfL3yUmJur//u//NH36dN24cUPt2rXT0KFDU49o9XRWDGjr1q2755j9+/fr/fff159//qly5cppxIgRLqjM9ZKSkjRr1ix9/vnnio+P1zPPPKNhw4alO4Ib7q1OnTrq0aOH/u///k/bt2/Xa6+9pvr166tUqVJyOBw6e/asduzYoW+++UaHDx/W4MGDFRQUZHTZTlWmTBmjS8h1zz//vGUvKYfsI3ubO4emsNKcyd5kb7Mie5O9JbI32RvujuydHtnbPdEAN1CePHl08+bNTI+Pj4+Xv7+/Eytyrsxe2sdMrDbn7du3a9OmTamXoqpTp47q16+vBg0apH7JFS5cWN27d1f37t118uRJLV++3OCqc27dunXq2rWrXnjhBUlShQoV9N577+m1115T9+7d01zqpkiRInr++ec1d+5cg6rNHRUrVjRVwLwXK+5o+audO3dq1KhROnr0qCpUqKCRI0eqfv36RpflMlYMaFevXtXHH3+shQsXym63q3fv3urbt6/y5s1rdGm5bteuXRo1apR+/fVXPfDAAxo5cqQaNmxodFm55u+XzYyPj5fNZtPixYu1e/fuNGN/+eUXV5eX6/75z3+qbNmymjRpkt57770MGx7+/v56//33TXEGjRXVqVNHbdu2NboMeBiyt/lZbc5kb7K3WZG9yd5kb7K3pyJ7k73NxgzZmwa4gapUqaKNGzdm+j4gGzZsUKVKlZxclfPc69I+ZmS1Oe/Zs0cHDx7Unj17tHfvXu3bt0/r16+XzWZTQECA6tatq/r166t+/fqqUqWKypcvrz59+hhddo6dPXtWFStWTLMs5W81o6O/SpcurcuXL7ukNuQOK+5okW7vUBg/fryWLFmivHnz6s0339Trr7+eenkfKzB7QMvI4sWLNWHCBJ0/f1716tXTyJEj033GmcHFixc1YcIEhYeHy8fHRwMGDFDPnj3l4+NjdGm5KiIiIsPLZoaHh2c43pPPhkvRrVs3BQcHa/369YqMjNSff/4ph8OhEiVKqFatWmrevLnH3zPyrzK6N+jddraY4dKoQFaRvc3PanMme/8P2dtcyN5kb7I32dtTkb3J3mRv90MD3EDt27fXe++9pxUrVqhNmzZ3HRseHq6tW7dq0qRJLqrOeKdOndJ7772nWbNmGV2Ky3j6nL29vVWtWjVVq1ZNr7zyiiTpzJkzaUL5+PHjlZSUpEKFCqlevXqqX7++unXrZmzhOXTr1i35+vqmWZYSUjIKKzabLc296eD+rLij5dtvv9WkSZN0+fJlPfHEExoxYkSm7ptpFlYJaH917NgxjRo1Sjt37lThwoX14Ycfut29e3LLd999p4kTJ+ry5ct67LHHNHLkSN13331Gl5Xr5syZY3QJhvHz81ObNm3u+RvbDO60o0XKeGcLIRxWRPa+O0/Podnh6XMme/8P2dtcyN5kb7K3uZC9zY/sfRvZ2z3RADdQx44dFR4ernfeeUdHjhxR9+7dVaJEiTRjYmNjNXv2bM2ZM0dNmjRR69atDao2d+zfv1/Tpk3T3r17JUkPP/yw+vXrpzp16qSOcTgc+uqrr/Tpp58qPj7eqFJzjRXn/FelS5fWM888o2eeeUbS7Uv7LFmyRKGhoVq1apUiIiI8PoRbTf/+/RUYGGh0GS5lpR0thw8f1siRIxUVFaWSJUtq9OjRatGihdFluZRVAlqKhIQETZ06VbNmzVJiYqI6d+6st99+WwEBAUaXluuOHDmi999/X/v27VOxYsU0adIkU4c0s1wKEndmtR0twcHBpv48hvOQva2RQ604578ie5sP2fs2srd5kb3J3mZB9jY/srdnogFuILvdrunTp+vtt9/WF198oRkzZqh06dIqXry4vLy8dP78eZ04cUIOh0OtW7fWBx98YHTJObJt2zb17NlTSUlJevDBB+Xn56fIyEi98sormj17turWratTp07pH//4h6KiopQ/f36NGjXK6LJzxIpz/rv4+HhFRkZq586d2r17t37++WfdunVLPj4+qZdkM4NLly7p9OnTqf+ecgTyhQsX0iyXbh/d6sn69++f5t8TEhJ0+PBhxcbGpl7mJigoyJT3K7KCjh07Kjk5WZJUtGhRzZs3T/PmzbvrY2w2m77++mtXlOdUVgtokrRx40aNHj1a0dHRCgwM1KhRo1S9enWjy3KK8ePHa+7cuUpKStJTTz2lQYMGKX/+/Ok+o/8uozNNzGrBggXavHmzpkyZYnQp2ZLZSxv/lad/fmVnR8uuXbucUIlrWO0ev8g9ZG/z51ArzvnvyN5kb3gWsjfZm+ydFtnbc5C9M4fsbTybw+FwGF0EpB9//FGLFy9WVFSUzp49m/pDtnbt2mrfvr0aNGhgdIk59uqrryoqKkozZ85UzZo1JUkxMTHq06eP8uTJo3HjxikkJETnz59XixYtNGLECBUvXtzgqnPGinNOTEzUvn37tH37dm3fvl379+/XrVu3lCdPHlWrVi01eNesWdM0lzMKCgrK8L4tDofjrvdzOXTokDPLcrpz585p0qRJioiIUFxcXJp1fn5+atmypQYPHpzu7BpPFBQUpH/9619q1qxZ6rLLly8rODhYH3/8cerfd4rVq1frww8/9Mht3LRp02w9bt26dblciWvdKaDdiycHtIEDB2r16tWSpKeeekohISHy8vK65+Pq1q3r7NKcIigoKPWfs3KvLU/8O86ukSNHauHChR4758x+fiUnJysmJib1e9pT55sVZ86cUVhYmMLDw3Xy5ElLzBm4E7K3OXOoFedM9v4fsjfZ2xO3Mdmb7H0vZG/zInubF9nbvdAAh8s0aNBAnTp10ttvv51m+ebNm9WzZ09VrFhRZ8+e1fvvv+/xl5tLYbU59+zZU7t27VJ8fLzsdruqVq2qBg0aqH79+qpdu3a6y1iZxbBhw7L1OE8+kmrfvn3q3bu3Ll++rOrVq6tBgwYqUaKEvL29FRsbq8jISEVGRiogIEDTpk1TrVq1jC45R6y6o8VKrBjQ/jpn6d7z9vTAkt0jq/9+5o2ZeXoIz4z9+/fr/fff16FDh1SuXDmNGDFCTZo0Mbosp7h586YiIiIUGhqqHTt2pP4NN27cWF988YXR5QFwIqvlUMl6cyZ7Zw3Z23OQvc2P7E32vhOyt7mQvcne7oBLoHuQHTt26MiRI9m6xIQ7uHr1qipWrJhueeXKleVwOHTp0iV99913pri3QAqrzfnHH39Unjx51KFDB/Xu3VsPPPCA0SW5hCeH6ew4f/68+vXrp3z58unzzz9X7dq1Mxx38OBBDRo0SAMHDtTixYtVtGhRF1eaezp06JClYGYlu3btUlhYmMdfKtRKQSuF1T67srONzXZvUCu7evWqPv74Yy1cuFB2u129e/dW3759TXnJ0H379ik0NFQ//PCDrl27JkkqUqSIOnbsqC5duqhs2bIGVwi4P7K357HanMne1kD2xl+RvT2X1T67yN7WRvYme7sTGuAeZMWKFVq4cKHHhvCkpCR5e6d/y6VciqtPnz6mCaMprDbnzp07a8eOHamX+ahQoYIaNmyoBg0aqG7duipYsKDRJSIXzJs3T3FxcVqwYIHKly9/x3EPP/ywZs+erbZt2+q///2vBgwY4MIqc9eHH35odAlu5c8//1RYWJjCwsJ08uRJSbJkCPf0gBYcHJzlx0RHRzuhEveTsnNp1apVHn3PJty2ePFiTZgwQefPn1e9evU0cuTIDJskniw2Nlbh4eEKCwvTH3/8IYfDIT8/PzVq1Ehbt27Vv//97zSXEgVwd2Rvz2O1OZO9rYHsDbL3bWRv8yJ7mwvZm+ztbmiAw22Y7cMwM8w259GjR0uSTp8+ra1bt2r79u1auXKl5s2bJ7vdrqCgINWvXz81lPv7+xtcMbJjzZo1ateu3V0DeIqyZcsqODhYERERHh3CQ0JC9MYbb6hhw4apyxITE7V3714FBQWpQIECacYvWbJEQ4cO1cGDB11dqtMkJCSkXs5n+/btcjgccjgcql+/vl544QWjy3MpqwW0mzdvauXKlQoLC1NkZKQOHDhgdElOkbJzKTw8XCdOnJDD4VChQoWMLgs5cOzYMY0aNUo7d+5U4cKF9eGHH6pDhw5Gl5WrfvjhB4WGhmrr1q1KSkpSQECA2rZtqxYtWqhx48Y6e/asmjdvbnSZANyM2XJoZphtzmRvayB730b2JnuTvc2F7G0+ZG+yt7uiAQ4g15UpU0adOnVSp06dJEm//vqrtm/frm3btmnRokWaPXu2vL299cgjj6hhw4Z68803Da4YWXHq1Cm9+OKLmR4fFBSksLAwJ1bkfDt37lTnzp3TLLt69apCQkI0a9asNOE8hcPhcFV5TvX3y/mkzOuZZ55Rv379VKFCBYMrdA0rBrQ9e/YoNDRUK1euVFxcnBwOhypXrmx0WbkqZedSWFiYtm/fruTkZDkcDtWoUUNdu3ZVmzZtjC4xR8LDw7M0/vfff3dOIS6WkJCgqVOnatasWUpMTFTnzp319ttvKyAgwOjSct3gwYPl7++vbt26qVmzZqpbt668vLxS13MJUQAwN7K3uZG9byN7k73J3p6P7J0W2dvzkL09Ew1wuNSuXbuUlJSUZllcXJwkacuWLYqJiUn3GE8/WsiKc/67ypUrq3LlynrppZeUkJCglStX6r///a/27dun/fv3E8I9TJ48eXTz5s1Mj4+PjzftGQdmCdp/l9HlfAoVKqTg4GDVqFFDI0eOVJs2bUwfwM0e0DISExOTuu2PHz8uSfL29labNm30wgsvqE6dOgZXmDv279+vRYsWpdm5FBAQoKtXr2r06NHpdrp5qqFDh2YphDkcDo8PbRs3btTo0aMVHR2twMBAjRo1StWrVze6LKcpV66cTp06pdDQUP3+++/66aef1Lx5cz344INGlwbAYFbMoVac89+Rvc2F7P0/ZG+yt9mQvcneZG/PQvb2TDTA4VILFy7UwoUL0yxL+RE7c+bMNB/8KV8Enh5IrTjnvzpx4oT279+v/fv3KyoqSocPH9atW7eUL18+PfHEE6pbt67RJSKLqlSpoo0bN2b6nogbNmxQpUqVnFwVckuvXr20ZcsWJSUlqXTp0urWrZuaN2+u+vXry263Kzo62rQ7H1JYJaClSEhI0Jo1a7Ro0SJt3749dcdxxYoVdezYMX300Udq1aqVwVXmXGxsrBYvXqywsDD9/vvvcjgcKlOmjIKDg9WiRQuVLFlSTz/9tIoUKWJ0qblm3LhxRpfgUgMHDtTq1aslSU899ZRCQkKUkJCgyMjIuz7Ok3+LrFmzRvv379eSJUu0cuVKbd68WZMmTVKFChXUokULVa1a1egSARjEijnUinP+K7K3+ZC9zY3sTfYme5O9PRXZm+ztKWiAG+j06dNZGp9y5LKnstoXgWS9OV++fFlRUVGpgTsqKkqXL1+Ww+FQwYIFVatWLQ0ePFh169bVww8/LLvdbnTJyIb27dvrvffe04oVK+55FG54eLi2bt2qSZMmuag65NSmTZvk7++vkJAQde/eXcWLFze6JJewYkCLiopSaGioVqxYoStXrshut6tmzZpq0aKFWrRooaSkJDVv3lx58uQxutRc0bRpUyUnJysoKEh9+vRRs2bN9Mgjj6Suj46ONrA65wgODja6BJeKiIhI/ed169Zp/fr1dx2f0vw4dOiQs0tzqurVq6t69ep69913tXnzZi1dulRr167VtGnTZLPZZLPZtH79egUFBals2bJGlwsYguxtflabM9nbGsje5kb2JnuTvc2D7E32Jnu7JxrgBmratKmlLo2RnS8CT/9CtNqc69evL5vNJofDocKFC6tevXqqW7eu6tatq8DAQI9+/+J/OnbsqPDwcL3zzjs6cuSIunfvrhIlSqQZExsbq9mzZ2vOnDlq0qSJWrdubVC1yKr+/ftr+fLlmj59ur744gs9+OCDat68uZo3b65q1aoZXZ7TWDGgPf/88/Lz81Pjxo31xBNPqGnTpml2MphtzomJifLz81OxYsXk5+eX7hKpVhATE6Pdu3crNjZWklSiRAnVrFlTpUuXNriy3GG15sffeXl5qUmTJmrSpIni4+O1evVqLVu2TFu2bNH333+v0NBQ1a9fXx07dtSzzz5rdLmAS5G9783Tv/etNmeytzWQvc2N7E32TmG2OZO9yd5mR/b2HDTADdShQwdCSQZu3ryplStXKiwsTJGRkTpw4IDRJTmdWebcqlUr1atXT/Xq1eOyWyZmt9s1ffp0vf322/riiy80Y8YMlS5dWsWLF5eXl5fOnz+vEydOyOFwqHXr1vrggw+MLhlZ0L9/f/Xv318///yzli5dqhUrVmjGjBn68ssvVbp0adWuXduU311WDGh+fn66ceOGjh49qsKFC8vf319PPPGE8ufPb3RpTrF+/XotXbpUS5cu1aRJk2Sz2VSsWDE9/fTTevrpp019dO6vv/6qMWPGKDIyUg6HI82lFO12u2rXrq3hw4crMDDQwCpzzmpH3d+Nr6+v2rZtq7Zt2+rixYtasWKFli5dqm3btmn79u2EcFgO2TtjZsmhWWGWOZO9rYHsbW5kb7I32dt8yN7WQ/Z2bzaH2W8mAo+xZ88ehYaGauXKlYqLi5PD4VDlypW1dOlSo0tzGivOGeby448/avHixYqKitLZs2flcDhUokQJ1a5dW+3bt1eDBg2MLjFXBAUF6V//+peaNWuWuuzy5csKDg7Wxx9/rJo1a6YZv3r1an344Ycef2kf6fYZUNu2bdPSpUu1evVqXbt2TZJUtmxZdezYUR06dFCZMmUMrjLnzpw5kxrQfv311wwDWosWLTR16tQ07wNPFh8fr3Xr1mnJkiXavHmzkpKSlCdPHjVs2FBPP/20goKC1KlTJ1PNOcXhw4dTdzKdOXNGNpstdafE0KFD9fLLLxtdYq5Zu3atBg0aJJvNpubNm6tBgwYqUaKEvL29FRsbq8jISK1cuVKJiYmaPHmymjdvbnTJcKKTJ09q+fLl6tOnj9GlADCQFXOoFecMcyF7k73J3p6L7E32JntbD9nbPdAA9xBnzpxRWFiYwsPD09xjwdPFxMQoPDxcYWFhOn78uCTJ29tbLVq00AsvvKA6deoYXGHus+KcAU8XFBSU4ZHX97o8phlC+F8lJCRo3bp1WrZsmTZu3Khbt27JbrerYcOG+r//+z+jy8s1VgpoKS5dupR6lOq+ffvSrOvVq5f69OkjPz8/Y4pzsp07d2rp0qWKiIjQ5cuXZbPZVK5cOT333HMKDg5WqVKljC4x206dOqW2bdvqwQcf1CeffKLy5ctnOO7PP//UwIED9dtvv2nx4sV3HOfuhg0bluXH2Gw2jR071gnVAPBUZG/zsOKcAU9H9r6N7E32NiOyN9mb7A1XowHuxm7evKlVq1YpLCxMO3bsUHJysry9vfXzzz8bXVqOJCQkaM2aNVq0aJG2b9+eeqmbihUr6tixY5o8ebJatWplcJW5y4pzhnUkJCTo8OHDio2NTT0KPSgoSHnz5jW6tFyTnR92krnviXPlyhWtXLlSS5cu1e7du3Xw4EGjS3IKMwe0O4mOjtbSpUu1bNky/fbbb7LZbPL391fr1q3VsWPHdGddmMWtW7e0adMmLVmyRBs2bNDNmzc9/nfXBx98oMWLF2vlypVp7jGXkUuXLqlNmzZq166dhg4d6qIKc1dQUFCWH2Oz2Tx6h2l2zhCx2Wxas2aNE6oBPBfZ2zysOGdYB9n7zsjeno/sTfb25N9dZO97I3vDCDTA3dDevXsVFhamFStWpF6aq1SpUurcubOef/55FS9e3OgSsyUqKkqhoaFasWKFrly5Irvdrpo1a6pFixZq0aKFkpKS1Lx5c1Nd7sWKc4Z1nDt3TpMmTVJERITi4uLSrPPz81PLli01ePBglShRwqAK4Sq7du0y/Rk0ZgxomXH48GEtWbJEK1as0J9//unxgSWzrl27poiICC1btkyzZs0yupxsa926tZ544olM70icMGGC1q9frx9++MHJlTlHdHR0th7nyfega9q0abplDodDZ86cUbFixeTj45Ph49atW+fs0gCPQPY2Tw614pxhHWRvpCB7mxfZm+ztScjet5G93Z+30QXgtpiYGC1evFihoaE6fvy4HA6H7Ha7JGnQoEHq1atX6r97queff15+fn5q3LixnnjiCTVt2jTNEVHZ/eB0Z1acM6xh37596t27ty5fvqzq1atneF+b8PBwrVu3TtOmTVOtWrWMLhlZ9PPPP2vfvn1yOBx66KGHMgzZ165d08SJE/Xdd9/pwIEDBlTpOnny5FGzZs3UrFmzNAHN7IKCghQUFKR33nlHO3bssMScJSl//vxq3ry59uzZY3QpOXLmzBlVqlQp0+MrVKig+fPnO7Ei5/LkMJ1dGYXpCxcuqFGjRvroo4/UsGFDA6oC3BvZ25w51IpzhjWQvc2P7J0W2Zvs7YnI3uZH9vZMNMANlHJprtDQUG3btk1JSUnKmzevmjZtqqefflqBgYEKDg5W5cqVPT6AS0q9h8vRo0dVuHBh+fv764knnlD+/PmNLs1prDhnmN/58+fVr18/5cuXT59//rlq166d4biDBw9q0KBBGjhwoBYvXqyiRYu6uFJkx/Xr1/XWW29p48aNSrlIjM1mU6NGjTRt2rTUIxo3bNigkSNHKiYmRvfdd5+RJbucWQJaVpUpU8bjdx6fOnVKs2fP1t69eyVJDz/8sHr27Kn7778/zbiIiAiNHj1a586d05gxY4woNVf4+vrqypUrmR5/5coVBQQEOLEiYyUkJOi3336Tr6+vKlSoYHQ5TnO3+2MCVkX2Nn8OteKcYX5kb3Mje98b2dtzkb3vjuxtDmRv90cD3ECNGzfWlStXVLBgQT3zzDNq1qyZnnjiCfn5+Uky3xHK27Zt07p167RkyRItWrRICxcuVJ48edSwYUM9/fTT2bp3hLuz4pxhfvPmzVNcXJwWLFig8uXL33Hcww8/rNmzZ6tt27b673//qwEDBriwSmTXZ599pg0bNqhx48YKDg6Wv7+/Nm7cqG+//VYTJkzQ8OHDNX78eH311Vfy8vJSjx49NHDgQKPLzhVWC2iStH//fk2bNi3NnPv165fmrAOHw6GvvvpKn376qeLj440qNccOHTqkl156SdeuXZOvr698fX118OBBrVixQgsWLFCVKlV09epVDR8+XBEREfLy8lKvXr2MLjtHHnnkEUVERKhHjx6ZGr9q1So99NBDTq7Kua5evaovv/xSe/fu1dy5c1OXL126VGPGjEndKfHggw9q7NixqlGjhkGVAnAlsrf5c6gV5wzzI3ubG9mb7E32Jnt7MrI3PAENcANdvnxZ/v7+atmyperXr69atWqlBnAz8vX1VZs2bdSmTRtdunRJK1as0NKlS7Vp0yZt2rRJ0u2jZqKiotSoUSNT/Lew4pxhfmvWrFG7du3uGsBTlC1bVsHBwYqIiCCEe4h169apXr16+vLLL1OXPfnkkypatKjmzp2rQoUKafbs2QoKCtK4ceM8/gd7CisGtG3btqlnz55KSkrSgw8+KD8/P0VGRuqVV17R7NmzVbduXZ06dUr/+Mc/FBUVpfz582vUqFFGl51tKTsRPv74Yz3zzDOSbt8v9K233tKYMWM0ceJEhYSE6I8//tCjjz6qMWPGKDAw0OCqc6ZTp04aNGiQZs+erVdfffWuY6dPn66oqKg0f/ueJi4uTl26dNGxY8dUqlQpJSYmytvbW1FRURoyZIgcDoe6dOmiypUrKzw8XK+++qrCw8PT7WgDYD5kb/PnUCvOGeZH9jY3sjfZm+xN9vZUZG94DAcMExkZ6Xjvvfcc9erVcwQFBTkeeughx/PPP++YOXOm4/jx445Tp045AgMDHWvWrDG6VKc6deqUY9q0aY5nnnnGERgY6AgKCnLUqlXL8a9//cuxZ88eo8tzCivOGeZRo0YNx4IFCzI9fuHChY6aNWs6sSLkpho1aji++uqrdMt/++03R2BgoOOhhx5yjB492pGQkGBAdc7Tp08fR9WqVR3Lli1LXbZ//35Hs2bNHC+99JIjJibG0bJlS0dgYKCjU6dOjsOHDxtYbe545ZVXHLVq1UrzvfPnn386OnTo4OjcubPjt99+czRq1MgRGBjoGDBggCM2NtbAanOuUaNGjtGjR6dbvmrVKsfDDz/s6Natm+ORRx5xfPnll46kpCQDKnSOAQMGOIKCghz/+Mc/HHv37k3zt5uUlOTYu3dv6pgRI0YYWGnOffrpp46qVas6fvjhhzTLe/Xq5QgKCnKMGzcudVl8fLyjRYsWjqFDh7q6TKe7cOGCIzAw0LF161ajSwHcBtn7NivmUCvOGeZB9jY3sjfZm+xN9vZUZO/byN7ujzPADVSnTh3VqVNHI0aM0MaNG7V06VJt2LBB+/fv18SJE1W+fHnZbDZdv37d6FKdqmzZsurTp4/69Omjw4cPa8mSJVqxYoW+//57LVq0SIcOHTK6xFxnxTnDPPLkyaObN29menx8fLz8/f2dWBFy040bN1SkSJF0ywsXLixJevrppzV8+HBXl+V0UVFR6tq1a+rRyZJUrVo1vfPOOxo8eLAGDx6s6Ohovf3223rttddMcX/QQ4cO6YUXXlDNmjVTl5UsWVL/+Mc/1LNnT7355ptKTEzU5MmT1bp1awMrzR2XL1/O8PKnjz76qJKSknTkyBHNnTvXdJflmjhxosaNG6cFCxZo+fLl8vLyUqFCheTl5aVLly4pISFBdrtdPXr00ODBg40uN0ciIiLUvn17tWrVKnVZXFyctmzZIknq1q1b6vK8efOqXbt2+u6771xeJwDXI3vfZsUcasU5wzzI3uZG9iZ7k71ruL44JyJ7k73hfmiAuwFvb281a9ZMzZo1U1xcnCIiIrR06VLt2LFDDodDQ4YM0aJFi/Tcc8+pZcuWyps3r9ElO01QUJCCgoL0zjvvaMeOHVq2bJnRJTmdFecMz1alShVt3LhRISEhmRq/YcMGVapUyclVwdlsNpskqUOHDsYW4iRWDGhXr15VxYoV0y2vXLmyHA6HLl26pO+++0733XefAdXlvsTExAx/Q/n6+kqSevXqZartm8LHx0cjR45USEiIwsPDFRUVpbNnz8rhcKhChQqqXbu22rZta4pLkZ06dSpN0JakyMhIJSYmqnz58uney6VLl9b58+ddWWKumzJlSrpl8fHxstlsWrx4sXbv3p1uvc1mU79+/VxRHuB2yN7/Y8UcasU5w7ORva2J7E329nRkb7I32fs2srfxaIC7mXz58ik4OFjBwcE6f/68li1bpqVLl2r79u3avn27Ro8ercjISKPLdIn69eurfv36RpfhUlacMzxP+/bt9d5772nFihVq06bNXceGh4dr69atmjRpkouqg7OlBBazsWJAS0pKkrd3+p+CPj4+kqQ+ffqYJoBnxiOPPGJ0CU714IMPevxR5vdit9uVnJycZtm2bdskSY0aNUo3/sKFC8qfP79LanOWjEJ4ivDw8AyXE8KB28je/2PFHGrFOcPzkL2tjextHmTvtMjeno/snRbZ233RAHdjRYsW1csvv6yXX35Zx48f15IlSzz6COXMHrH6VzabTV9//bUTqnENK84Z5texY0eFh4frnXfe0ZEjR9S9e3eVKFEizZjY2FjNnj1bc+bMUZMmTUxxCScrSTniPKvrzMzsAS0jGR2hbmZWeG/HxMRo9+7dio2NlSSVKFFCNWvWVOnSpQ2uLHdUqlRJe/fuVffu3SVJDodDq1evls1mU9OmTdONX7t2rce/z+fMmWN0CYApkL09P4dacc4wP7K3+ZG90yN7m58V3ttk77TI3jAKDXAPcf/992vAgAEaMGCA0aVk286dOzNcbrPZ5HA47rjOk1lxzjA/u92u6dOn6+2339YXX3yhGTNmqHTp0ipevLi8vLx0/vx5nThxQg6HQ61bt9YHH3xgdMnIorFjx2ry5MlpljkcDtlsNr399tvpjta22Wxas2aNK0t0OT6bzeHYsWPpzua7evWqJOnIkSMZHpVft25dl9TmTL/++qvGjBmjyMhIORyONL9B7Ha7ateureHDhyswMNDAKnOuQ4cO+uCDD/Too4/qscce08KFC3X69Gndd999aty4cZqx06dP1759+zz+vor16tUzugTAdMjensmKc4b5kb3Nj+ydHp/N5kD2JnunIHvDSDTADRQSEqI33nhDDRs2TF2WmJiovXv3KigoSAUKFEgzfsmSJRo6dKgOHjzo6lJzxeHDh9Mtu3Dhgho1aqTZs2en+e9gFlacM6yhQIEC+uKLL/Tjjz9q8eLFioqK0i+//CKHw6ESJUqoQ4cOat++vRo0aGB0qciiMmXKSFKGOwpTjlT9+7o77VT0NFYMaLt27VJSUlKaZXFxcZKkLVu2KCYmJt1jPPledNOnT9f06dMzXDd+/PgMlx86dMiZJTnd2rVrNWjQINlsNrVq1UoNGjRQiRIl5O3trdjYWEVGRmrlypXq1KmTJk+erObNmxtdcrZ17dpVu3fv1rhx41IbHgULFtTEiRNlt9slSd9//71mzJihkydPqnbt2nrhhRcMrtq5EhIS9Ntvv8nX11cVKlQwuhzAMGRv8+dQK84Z1kD2Ni+yN9mb7J0W2dtzkL3TI3u7J5vDLN+cHigoKEgfffSR2rZtm7rs4sWLatSokWbNmpUuoC1ZskRDhgzx+C+Dv7p48aIaNmxoqUBqxTkDgLsLCgq645HmKUfgZ8STv5PvNOe//jT86/qU/w6eOufPPvssW2cT9O/f3wnVuMapU6fUtm1bPfjgg/rkk09Uvnz5DMf9+eefGjhwoH777TctXrz4juM8xd69e7V3717lz59fzZs3V5EiRVLXTZkyRYsXL1bbtm3Vu3fvDO8/6GmuXr2qL7/8Unv37tXcuXNTly9dulRjxozRlStXJN2+F93YsWNNd09FIDPI3tbMoVacMwC4O7L3/5C90yJ7ex6y921kb/fFGeBuiGMSAHiK+Ph4+fr6plv+22+/KSAgIN39yeD+wsPDVadOHZUrV87oUlyqX79+lrvU2rhx44wuwaU8+VK22fX1118rT548mjlzZpog+nelSpXSjBkz1KZNG33zzTcaOnSoC6vMfTVr1lTNmjUzXNe/f/877li5deuW9u3bl+HZoO4qLi5OXbp00bFjx1SqVCklJibK29tbUVFRGjJkiBwOh7p06aLKlSsrPDxcr776qsLDw3X//fcbXTrgFsjeADwF2dt8yN7WQfY2P7J3emRvsrc7oAEOAMiyhIQEjR8/XkuXLtWmTZvSBfFJkyZp06ZN6tixo4YMGSJ/f3+DKkVWDRs2TBMmTLBcCLdiQAsODja6BJfK6PK3Zrd582YFBwffNYCnKFSokDp06KD169d7fAjPrsuXLyskJCTDs0Hd1axZs3TixAn95z//UatWrVKXT506VQ6HQy+//HLq9uzUqZPatWun6dOnW24nHAAAnorsbV5kb+sge5sf2TtryN5wFbvRBQAAPEtCQoJ69Oihb775RmXKlNHFixfTjXnqqacUGBiob7/9Vq+//roSExMNqBTZYdUzoUJCQrRt2zajy3CpZs2aae3atUaX4TI7d+7UuXPnjC7Dpc6cOaNKlSplenyFChX0559/OrEi9+dpn4ERERFq3759mgAeFxenLVu2SJK6deuWujxv3rxq166d5T7rAADwVGRvc/O03525hextfmTveyN7e95nINnbM9EABwBkyVdffaXIyEgNHz5c4eHhKl26dLoxnTt31qJFi9S/f3/t2bNH8+bNM6BSIPOsGNCio6N1/fp1o8uAE/n6+qbegyozrly5ooCAACdWhNx26tQpPfLII2mWRUZGKjExUeXKldN9992XZl3p0qV1/vx5V5YIAACyiewNMyJ7w4zI3uZH9vZMXAIdLhMeHp5uWVxcnCRpy5YtiomJyfBxHTp0cGJVzmXFOcP8li5dqmbNmunFF1+859j+/ftr586dWrx4sV555RXnF4dccenSJZ0+fTpLjylTpoyTqgGQXY888ogiIiLUo0ePTI1ftWqVHnroISdXhdxkt9uVnJycZlnKUeaNGjVKN/7ChQvKnz+/S2oDYBwr5lArzhnmR/Y2P7I3YA5kb/Mje3smGuAG+/sPncuXL0u6/Qfy9x9AGV3qyJMMHTpUNpstzbKUS13MnDlTNpst9d9T/tlms3l0ILXinGF+x48fV9euXTM9/sknn9Qnn3zixIqQ28aOHauxY8dmerzNZtPBgwedWBGQO1avXq3jx49nerzNZlO/fv2cWJFzderUSYMGDdLs2bP16quv3nXs9OnTFRUVpS+//NJF1SE3VKpUSXv37lX37t0l3f6duXr1atlsNjVt2jTd+LVr16pixYquLhNwC2Rvc+dQK84Z5kf2Nj+yN8yK7H1nZG/PRPb2TDTADXanHzpvv/22AdU417hx44wuweWsOGeYn7+/v5KSkjI9Pm/evPL19XViRchttWvXVvny5Y0uw+WsFtAkaeHChdq6dWumx9tstiztoHE3q1evVkRERKbHe/o2btWqlVq0aKEJEybowIEDevHFF1W1alXlyZNHkpScnKyoqCjNmjVLq1evVufOnfX4448bXDWyokOHDvrggw/06KOP6rHHHtPChQt1+vRp3XfffWrcuHGasdOnT9e+ffs0fPhwg6oFjEX2NjcrzhnmR/Y2P7J35nh6LpPI3vfi6duY7G1+ZG/PRAPcQB06dEh3hLKZBQcH33PM5cuX5evrq7x587qgIuez4pxhfhUqVNCePXsUEhKSqfG7d+9W2bJlnVwVclOXLl3Utm1bo8twOasFNOn2/YoiIyMzPd7TQ3jv3r0zvDSVmU2cOFHjxo3TggULtHz5cnl5ealQoULy8vLSpUuXlJCQILvdrh49emjw4MFGl4ss6tq1q3bv3q1x48alntFYsGBBTZw4UXa7XZL0/fffa8aMGTp58qRq166tF154weCqAdcje6dnthxqxTnD/Mje5kf2zhyyt+che5O9zYbs7ZlogBvoww8/NLoEl7t165ZCQ0O1b9++NEdo79y5U++//75+//132Ww2NWrUSCNHjjTFUZBWnDPMLTg4WCNHjtT27dvVoEGDu47dsWOHIiIiNGDAABdVB2SfFQPau+++q2bNmhldhstUrFhR9erVM7oMl/Lx8dHIkSMVEhKi8PBwRUVF6ezZs3I4HKpQoYJq166ttm3b6v777ze6VGSDzWbTxIkT1b17d+3du1f58+dX8+bNVaRIkdQxf/75pxwOh9544w317t07NZwDVkL2tkYOteKcYW5kb5gV2dv8yN5kb7Mhe3smGuAGev3119WhQwc1b97cEpcounXrll577TVFRkYqT548Gj16tLy9vfX777/r9ddf161bt9S4cWNVqlRJq1atUpcuXbRkyRIVK1bM6NKzzYpzhvl16NBBixYtUp8+fdS7d2917tw53Xs2NjZW3333nWbOnKly5cqpW7duBlULZJ4VA1rhwoU5S8QiHnzwQY4yN7GaNWuqZs2aGa7r37+/+vfvn+G6W7duad++fQoKClKBAgWcWSJgKLK3+XOoFecM8yN7w6zI3jAzsre5kb09C4cgGGjnzp365z//qUaNGmno0KHaunWrHA6H0WU5zbx587Rr1y7985//VGRkpLy9bx9/8dlnnykhIUFt27bVjBkz9M4772jRokXy8vLS9OnTDa46Z6w4Z5hfnjx5NHXqVFWvXl2ffPKJGjdurGbNmqlr167q3LmzmjZtqiZNmuizzz5TYGCgZs+ezRe7BylTpoz8/f2NLgMA4AKXL19WSEiIfv75Z6NLAZyK7G3+HGrFOcP8yN7mRvYGAOsgexuDM8ANtG3bNq1Zs0Y//PCDli9frsWLF6tYsWJq27at2rVrp6CgIKNLzFXLli1Ty5Yt1aNHj9RlCQkJWrdunWw2W5rlhQoV0nPPPafly5dr+PDhRpSbK6w4Z1hD0aJF9fXXXysiIkLLly/XwYMHdeTIEdntdhUrVkwdOnTQ008/raZNmxpdKrJo3bp1d12fnJysP//8U8WKFZOPj4+LqgJyrn///goMDDS6DJfK7P0i/8pms+nrr792QjXu4ezZsypUqJDy5MmTbl3BggU1Z84cPfTQQwZUZhwzNwGBFGRv8+dQK84Z1kD2Nq//Z+++w6Oo3jaO35tGGpDQe5GS0HtvUqRHOkoHQRSUJqjADwQERRRUBARB6QpICb0EpIv0JlVKqAKBEEogIW3fP3izsiSBJCTZ7Ob7uS4uZebMzjPb2PucmTNkb9gqsnf8kL3J3kh+DIBbkJubm1q0aKEWLVro4cOH2rRpk9avX6958+Zpzpw5Kly4sFq0aCEfHx9lz57d0uW+skuXLqlVq1Zmyw4dOqTQ0FBly5Ytxj+M+fLlU0BAQEqWmOTS4jEjbWnYsKEaNmxo6TKQgu7evav69etr9uzZqlatmqXLSTJpMaCNHz8+zmmbbFFc01BFe/z4sWbPnq2WLVsqT548KVRV8tq/f3+syw0GQ5zBy2AwJGdJKWLOnDn6/ffftXr16hhh+8svv9SePXvUs2dP9erVy+yeXI6OjmluKkYgrSB7234OTYvHjLSF7J32kL1tB9nbHNn7v3XWjuyN1I4B8FQiffr0atu2rdq2bau7d+9q48aN2rBhg7799lt9++23qlSpklq2bKmGDRvKzc3N0uUmSlRUlOzt7c2W7d27V5JUvXr1GO0fPnwoFxeXFKktuaTFYwakp9O6ODs7K126dJYuBcnAFs9YTIsB7flO4ucFBwfriy++UK9evVSoUKEUqspyHj9+rGnTpqlChQo28xqfOXMmxrK7d++qevXqmjNnjk11pElPv5uGDBmidevWKXPmzLp586by5s1r1qZQoUI6fPiwvvvuO504cUI//PCDhaoFYClkb9vMoWnxmAGJ7G3ryN62kcvI3ubI3taP7A1rwT3AU6FMmTKpY8eOWrBggbZv367//e9/srOz02effaaaNWtaurxEy5cvn06fPm22bPPmzTIYDHr99ddjtN+9e7fy5cuXQtUlj7R4zEgbwsPDtWTJEg0bNsxs+f79+9W0aVNVrVpV5cqVU69evXTlyhULVQkkneiAdvXqVUuXkmJCQ0O1cuXKNHV1lC12MD3PFs4yj8uSJUu0bt06de/eXdu3b48RwKWnHW6bN29W69attXnzZq1YscIClQJILcjeT9lCDk2Lx4y0geyNtIbsnTaQva0b2RvWggHwVM7R0VHOzs5yd3eXg4ODwsLCLF1SojVr1kyrVq3Sli1bFBISorlz5+rixYvKnDlzjHsVrV69Wn/++afq169voWqTRlo8Zti+8PBwvfPOOxo1apTWrl2riIgISZK/v7969eolf39/1apVS927d5e/v7/efvtt3blzx8JVA68uLQS056XFY4b1WrZsmSpXrqyhQ4fGep+xaE5OTho3bpyKFSum33//PQUrBJCakb2tO4emxWOG7SN7I61Kizk0LR4zrBfZG9aCKdBTobt372rz5s3auHGjDhw4oIiICBUvXlwDBgxQs2bNLF1eonXv3l27du3Shx9+aLr/haOjo7744gs5OTlJenqG9sKFC7V//34VLFhQ3bt3t2zRrygtHjNs38KFC3Xw4EF9/PHH6tSpkxwcnv5TMmXKFIWFhenNN9/U119/LUnq3bu3fHx8NGPGDI0YMcKSZSOJODo6qlKlSsqYMaOlSwEAMxcuXNCAAQPi1dZgMKhx48aaPn16MlcFIDUje9tODk2LxwzbR/ZO28jeAFIrsjesBQPgqcSdO3fk5+enjRs36tChQ4qMjFTu3LnVs2dPvfnmmzZx/w8nJyfNnTtX69ev19GjR+Xu7i4fHx8VLlzY1ObEiRM6fPiw3nzzTQ0dOlTOzs4WrPjVpcVjhu1bu3atGjVqpJ49e5qWhYWFaevWrTIYDGbLPTw81Lp1a61bt44QbiUePnyo9OnTx7k+Y8aMWrBggdmyffv2qUqVKsldGpCs0qdPr/Hjx6tIkSKWLgWJ5ODgYBrkiI8MGTLEuF8sANtH9n7K1nJoWjxm2D6yt20jeyOtIntbP7I3rAUD4BYUEBAgPz8/bdq0SYcPH1ZkZKQyZsyotm3bysfHRxUrVrR0iUnO3t5ePj4+8vHxiXX9+++/rwEDBsjOznZm50+LxwzbdunSJbVq1cps2aFDhxQaGqps2bLJy8vLbF2+fPnS1H2MrF3Xrl01Z84cMwVILAABAABJREFUeXh4vLTtkydP9M033+i3337TqVOnkr84C0qLAS1jxoyaP3++ihUrZulSUkS6dOlUs2ZNrrCwYvnz59eJEyfi3f7EiRPKmTNnMlYEILUge8dkizk0LR4zbBvZ27aRvWNH9rZ9ZG/rR/aGtWAA3ILq1Kkj6emZyg0aNJCPj4/q1Knzwvsm2DoXFxdLl5Di0uIxw7pFRUXFOGtv7969kqTq1avHaP/w4UPe51bk9OnT6ty5s+bOnassWbLE2e7YsWP69NNPdenSpRe2sxXp0qUz63yKjIzUzJkz1adPHwtWlbwcHR1VuXJl098fPnyoCRMmaNy4cRas6tXNmTNHv//+u1avXh3jN9eXX36pPXv2qGfPnurVq5fVd5CvXLkyxrJHjx5Jkv7880/dunUr1u1atmyZjFUln+bNm2vSpEnq0aPHSzvMzp07pzVr1qhr164pVB0ASyJ7x5QWf5+nxWOGdSN72zayd+zI3mRva0T2jhvZG5ZkMBqNRksXkVZ16dJFLVq0UOPGjeXu7m7pcgAgXlq0aKEyZcro888/Ny1r2rSp/P399d1336lx48Zm7Xv16qX79+9r6dKlKV0qEuHXX3/VF198obx582ru3LkxztAMDw/XDz/8oNmzZysyMlItWrTQ8OHDbeLM3YcPH2rp0qU6evSojEajihcvrk6dOilDhgxm7f7++2+NGDFC//zzj06fPm2hapPGtWvXNGfOHB05ckSSVLx4cb377rvKnz+/WTs/Pz+NHTtWd+7csdpjNhqNGjJkiNatW6fMmTNr8eLFyps3r1mbqVOnaunSpQoICNAbb7yhH374wULVJg1vb28ZDAazZc/+9I9tncFgsNrX+PHjx2rdurXu3bun4cOHq1mzZjE6jSMiIrR27VpNnDhRkuTr66usWbNaotwUc/v2bXl4eMQ60BceHq4jR46oWLFiL5yCE7B2ZG8A1ojsbdvI3mRvsjfZ21pfY7J37MjeqQ8D4ACABJk5c6amTZumSZMmqUaNGlqyZIm++uorZcmSRVu3bjW7B8zq1av16aefasCAAXr//fctWDUSYu3atRo6dKiyZcumuXPnKl++fJKenqH+6aef6p9//lGuXLk0ZswY1apVy8LVJo2rV6+qa9euunnzpllIyZIli5YuXaqcOXMqIiJCkyZN0vz58xUZGalmzZpp0qRJFqz61Zw+fVpdunRRcHCwnJ2d5ezsrHv37snV1VWLFy9W0aJF9fDhQ40YMUJ+fn6yt7dXz549NWjQIEuXniiLFy/W6NGj1b17dw0ePDjOq/7CwsI0ZswYrVixQl988YVat26dwpUmHV9f30Rt9/xUm9bE399fH3zwgfz9/eXq6qoSJUooa9asioyMVGBgoE6cOKHQ0FDlypVL06ZNk7e3t6VLThIvurpi0KBBNnV1BQAAaQXZ2/aRvcneZG+yt7Uie5O9rQED4BYU29QY8WGtU2MAsA1hYWHq2bOnDhw4IIPBIKPRKEdHR02dOtU0veTmzZu1cOFC7d+/XwULFtSKFSvk7Oxs4cqREDt27NDAgQPl7u6uWbNm6Y8//tCMGTMUERGhDh06aPDgwXJzc7N0mUlm8ODBWr9+vQYNGqQ2bdrIxcVFO3bs0Oeff66yZcvqm2++Ue/evXX48GHlypVLo0aNMr3frVWfPn20a9cuTZgwQc2aNZMkHT9+XB999JFy5cqliRMnqmvXrrp06ZJKlSqlcePGxbjPoDVp27atXF1dNX/+/Je2NRqNatOmjZycnLR48eIUqA5JKSwsTL/++qvWrVunM2fOKCIiQtLTqQXLli2rhg0b6q233jLrNLZWafHqCiAxyN4ArBHZO20ge5O9yd5kb2tF9iZ7p3YMgFtQ9NQY0VNevIy1T40BwHZERkZq/fr1Onr0qNzd3eXj46PChQub1n/33XeaPXu2mjZtqqFDh8rT09OC1SKxDh06pD59+ig4OFhGo1H58+fXuHHjVLFiRUuXluRq166tGjVqaPz48WbLfX19NWrUKNWuXVtbtmxRhw4d9PHHH8vV1dVClSadGjVqqEmTJhoxYoTZcj8/Pw0aNEhly5bV8ePHNWDAAL3zzjtWf+ZquXLlNGDAAHXv3j1e7WfOnKnp06ebpqizdqGhobF2hp4/f14ZMmRQtmzZLFBVyrh7967s7e1tYrrI56XFqyuAxCB7A7BWZO+0gexN9iZ7k71tAdmb7J3aOFi6gLTs+X/oAcBa2Nvby8fHRz4+PrGuf//99zVgwACr/9Ge1lWoUEHz589Xr169dPfuXX3++ec2GcAlKSgoSOXKlYuxvFKlSgoLC9OOHTs0efJkNWrUyALVJY/79+/HOgVVqVKlFBkZqbNnz2rBggUqW7ZsyheXDBwcHBJ01nGGDBli3MPKGoWFhWnChAlas2aNdu7cGSOIf/vtt9q5c6fatGmjTz/91CY6mJ6XKVMmS5eQbJYtW6bKlStr6NChL2zn5OSkcePG6fTp0/r9998J4UhzyN4ArBXZO20ge5O9yd5kb1tA9iZ7pzYMgFuQNd/jAUDa1bVrV/Xp00fVqlUzLYuIiNCRI0fk7e2t9OnTy8XFxbQu+l5kXEFjnby9vbVo0SL16NFDffr00bRp01S1alVLl5XkwsPDzd630aKnmuvRo4dNBXDp6ec2Xbp0MZZHh7TevXvbTACXpPz58+vEiRPxbn/ixAnlzJkzGStKfs9Om+nt7a2goKAYx1S3bl3dunVLS5Ys0blz5zR//nw5OFhnRJg6dWqitvvwww+TuJKUc+HCBQ0YMCBebQ0Ggxo3bqzp06cnc1VA6kP2BmCNyN5pC9mb7G0ryN5k77iQvZHSrPMTlkZFRkZq5syZ6tOnj6VLAZCG7d+/X+3atTNb9vDhQ3Xt2lWzZ882C+ewPsOGDYt1ef78+XXt2jW99957atKkidn0oQaDQV9++WVKlWgRlStXtnQJKa5kyZKWLiFJNW/eXJMmTVKPHj1UpEiRF7Y9d+6c1qxZo65du6ZQdclj7ty5OnDggEaMGKHOnTvH2qZdu3Zq166dpk6dqqlTp2rhwoXxnqoutYlvCH9++mNrDuFp9eoKILmRvQGkBmRv20b2jh3Z2/qRvcne0cjeZG9LYwDcwh4+fKilS5fq6NGjMhqNKl68uDp16qQMGTKYtfv77781YsQI/fPPP4RwAKmS0Wi0dAlIAr6+vi9c/+TJE61cudJsWVoI4WnxR2t87pFqTdq3b6/FixerS5cuGj58uJo1axbjdY2IiNDatWs1ceJEpU+f3upD+Jo1a1S/fv04A/izPvzwQ+3fv1+rVq2y2hD+xx9/vLTNw4cP9f3332v79u1ycHCw+tc4LV5dASQW2RuArSB72wayd+zI3taP7P1iZG/rRPa2TgyAW9DVq1fVtWtX3bx50/TjdfPmzfr111+1dOlS5cyZUxEREZo0aZLmz5+vyMhINWvWzMJVAwBsWXx+xNqqe/fu6d9//zVbdv/+fUnS3bt3Y6yTpFy5cqVIbcnl4sWLOnDggNmyhw8fSpLOnj0b63RclSpVSpHakpqrq6umT5+uDz74QJ9++qnGjBmjEiVKKGvWrIqMjFRgYKBOnDih0NBQ5cqVS9OmTVPWrFktXfYruXz5st5+++14t3/99dc1efLkZKwoeeXOnfuF69evX6+vvvpKAQEBKl++vEaPHq2iRYumUHXJIy1eXQEkBtkbAJDakL3J3mRvsre1InuTva0FA+AW9P333+vmzZsaNGiQ2rRpIxcXF+3YsUOff/65Pv/8c33zzTfq3bu3Dh8+rFy5cmnUqFGqU6eOpcsGANiwl/2ItWVffvllnGfTDxkyJMYyg8GgU6dOJXdZyWrGjBmaMWNGrOsmTJgQ63JrvqdgwYIFtXLlSv36669at26dDh8+rIiICEmSo6OjypYtq4YNG+qtt95K0NRWqZWrq6siIyPj3T5dunSm+9DZkitXrmjMmDHas2ePMmbMqHHjxqlt27aWLitJpMWrK4DEIHsDAFIbsjfZOxrZm+xtK8jeZO/UhgFwCzpw4IBatmyp3r17m5Y1adJEoaGhGjVqlIYOHarDhw+rQ4cO+vjjj+Xq6mrBagEAiGnGjBny8/PTihUrLF3KK2nVqpWlS0hx1nzvpVfh5OSkHj16qEePHpKeXmFgb2+vjBkzWriypPfaa6/p8OHD8Q5dhw4dsqmOuLCwMM2cOVOzZs1SWFiYWrVqpY8//lienp6WLi3JpMWrK4DEIHsDAKwd2dt6kb3J3s8je1sfsrd1YgDcgoKCglSuXLkYyytVqqSwsDDt2LFDkydPVqNGjSxQHQAAL3fjxg2rPis52vjx4y1dQopLqyH8eZkyZbJ0CcmmVatWGjVqlPbu3auqVau+sO2+ffvk5+enfv36pVB1yWvPnj0aM2aMLl++rCJFimjUqFGqWLGipctKFmnt6gogMcjeAABrR/a2XmTvp8jeT5G9rRfZ2/owAG5B4eHhcnFxibHczc1NktSjRw8COIBU6fn7Nb3oXk1BQUEpWhsAxGbq1KmJ2s6aOytatmyp5cuX6/3339d7772ndu3aKUuWLGZtAgICtHTpUv3888/KkyePOnbsaKFqk8adO3c0fvx4rV+/Xs7Ozho8eLB69OgR6z31bElauroCSAyyNwBrRfYGYG3I3mRvW0b2ti4Go9FotHQRaZW3t7e++eYb+fj4mC0PCgpStWrV9PPPP6tmzZoWqg4AYuft7S2DwRBjudFojHV5NFs4UxkxjRo1Sr///rvVv75pMaANGzYswdsYDIY479WW2nl7e8er3fPfY9b+3g4MDNRHH32kffv2yWAwKFeuXGZTdN24cUNGo1Fly5bVd999p5w5c1q65ERbuHChJk+erODgYNWrV08jRoyw6uMBkHTI3gCsEdkbzyJ7k72tBdmb7A2kFrZ9OoaVs7e3t3QJABBDWrxfE2xffEP48wHNmkO4r69vvNs+e9zWGsL/+OOPl7Z5+PChvv/+e23fvl0ODg7xvn9XapY5c2bNmzdPfn5+WrdunU6dOqWzZ8/Kzs5OWbJkUcuWLfXGG2+oXr16li71lY0bN870/1u3btXWrVtfuo3BYNCpU6eSs6xklRY7EIHkQPYGkBqRvWGLyN4vRva2XmTvFyN7wxIYALew56cykl48nZEk5cqVK0VqA4DYpMX7NcH2pcWAdubMmZe2uX79usaOHavt27crffr0GjhwYPIXlkxy5879wvXr16/XV199pYCAAJUvX16jR49W0aJFU6i65NewYUM1bNgwxvL79+/L2dnZAhUlvbTYSZwWOxCBxCJ7A7A2ZG/YIrJ37MjeZG9rQvaOG9k7dWEKdAuKayojKe7pjKz9TBkAQOqW0DMat23bplOnTln9VFUvY+sB7XmRkZGaPXu2fvzxR4WGhqpp06YaNmxYjHtY2YIrV65ozJgx2rNnjzJmzKghQ4aobdu2li4ryYSHh2vFihU6evSoWSfq/v37NXr0aPn7+8tgMKh69er67LPPlC9fPgtW+2qGDRumt99+W2XKlLF0KSnm+vXrL20TWwfiJ598kgLVAakH2RsAkNqQvWNH9iZ7Wyuyt20je1snBsAtKDH3/5A4AxQAkHzie6+mZxkMBpsN4bYe0GJz8OBBjRkzRufOnVOBAgU0atQoVatWzdJlJbmwsDDNnDlTs2bNUlhYmFq1aqWPP/5Ynp6eli4tyYSHh+udd97RgQMH5OjoqCNHjsjBwUH+/v5q0aKFwsLCVLt2bRUuXFibNm1SSEiIVq9ebbWdLXHd4zctS2sdiEBcyN4AgNSG7G2O7E32tmZkb5C9UyemQLcgwjQAILWZP3++pUtIFdJCQHteUFCQvv76a61cuVJOTk7q16+f3n33XTk5OVm6tCS3Z88ejRkzRpcvX1aRIkU0atQoVaxY0dJlJbmFCxfq4MGD+vjjj9WpUyc5ODz96T9lyhSFhYXpzTff1Ndffy1J6t27t3x8fDRjxgyNGDHCkmUjCTzfgThu3Dib70AEXoTsDQBIbcjeT5G9yd62gOyddpG9UzcGwFOBkJAQLV++XLt27dKZM2d07949GQwGZcqUSd7e3qpfv758fHxs8h9BAEDqUrly5QRvc/DgwWSoxHLSSkB71tKlSzVx4kTdv39fNWrU0KhRo6x6Oq643LlzR+PHj9f69evl7OyswYMHq0ePHqZwamvWrl2rRo0aqWfPnqZlYWFh2rp1qwwGg9lyDw8PtW7dWuvWrSOEW7G02IEIJATZGwCQWpC9yd5kb9tB9k57yN7WwTa/cazIoUOHNGDAAN25c0dOTk7Kly+fcufOrYiICN27d0/btm3T1q1bNXXqVE2aNEnly5e3dMkAAOjGjRvy9fXVypUrdfXqVZuYhi2tBTRJOnv2rEaPHq2jR48qS5Ys+vbbb9W0aVNLl5UsFi5cqMmTJys4OFj16tXTiBEjlDNnTkuXlawuXbqkVq1amS07dOiQQkNDlS1bNnl5eZmty5cvnwICAlKyxCR38OBBRUZGJmibli1bJk8xKSwtdiACCUH2BgBYI7K3bSB7k72fRfa2bmRv62G7/6pYgQsXLqhnz55yd3fXxIkT1bBhwxhnmgcHB2vjxo364Ycf1KtXL/n6+ip//vwWqhgAkJY9efJEfn5+WrFihfbt2yej0SiDwaDatWtburRXlhYD2oQJE7RgwQJFRkaqbt26GjhwoNzd3fXvv/++cLtcuXKlUIVJa9y4cab/37p1q7Zu3frSbQwGg06dOpWcZSWrqKgo2dvbmy3bu3evJKl69eox2j98+FAuLi4pUlty+f333/X777/Hq230d5i1h/C02IEIJBTZGwBgTcjetoXsTfZ+HtnbOpG9rQ+vjAX9+OOPcnFx0fLly5U9e/ZY27i7u6tt27aqXbu2WrRooZ9//lljx45N4UoBAGnZ0aNHtWLFCm3YsEHBwcGSpEyZMqlNmzZ66623lDt3bgtX+OrSYkCbM2eO6f+3bdumbdu2xWs7a73i4PmzsdOCfPnyxXi9Nm/eLIPBoNdffz1G+927d1v99Hvt27dX2bJlLV1GikmLHYhAYpC9AQDWgOwdO7K3dSF7P0X2ti1kb+vEALgFHThwQK1bt44zgD8rW7ZsatmypXbv3p0ClQEA0rqAgACtXLlSvr6+unTpkoxGo1xcXFS9enXt2bNHn3/+uerXr2/pMpNMy5YtZTAYLF1Givrwww8TvI3RaEyGSlLO22+/rTJlyli6jBTTrFkzTZs2TbVr11aNGjW0ZMkSXbx4UVmyZFG9evXM2q5evVp//vmnBgwYYKFqk0bFihXl4+Nj6TJSTFrsQAQSg+wNAEityN62j+xt+8jeto/sbZ0YALegoKCgBE2p9tprr2np0qXJWBEAIK3bsGGDVqxYoT179igyMlIZMmSQj4+PGjZsqFq1aun27dtq0KCBpctMcl999ZUkKTw8XOfPn1dERIQKFy5s9VNSvUiuXLnUunXreLe/fv26hg8fnowVJS9fX19Vr149TYXw7t27a9euXfrwww9lMBhkNBrl6OioL774wjT17+bNm7Vw4ULt379fBQsWVPfu3S1bNBIkLV5dASQG2RsAkNqQvcnecSF7Wx+yt+0je1snBsAtKDw8PEH/uKdLl06PHj1KxooAAGndoEGD5Orqqo4dO6p+/fqqVKmS2X2MbPlM7V9++UXTp083/Vvr5OSkjh07avDgwTZ5P58RI0YoJCREnTp1emnbpUuXasKECfwOsTJOTk6aO3eu1q9fr6NHj8rd3V0+Pj4qXLiwqc2JEyd0+PBhvfnmmxo6dKicnZ0tWDESI61dXQEkBtkbAJDakL3J3rEhe1snsnfaQPa2Prb3LwoAAEi0PHny6Nq1a1qxYoX8/f31999/q0GDBipYsKClS0tWy5cv1zfffKPcuXOrZcuWsrOz0759+zR37lxFRkZa9dnXcSlQoIDGjRunkJAQ9erVK9Y2t2/f1ogRI7Rz5045Ojpa/RRdaZG9vb18fHzinJrs/fff14ABA2RnZ5fClSW9Vq1aWf191BIqLV5dAQAAYAvI3mTvZ5G9rR/Z27aRva0TA+AWdu/ePf3777/xahsUFJTM1QAA0rotW7bo2LFjWr16tTZu3Kjdu3fr22+/1WuvvaaGDRuqRIkSli4xWSxZskRly5bVvHnzlC5dOklP77k1aNAgLVmyREOGDDFNW2UrfvvtN/Xq1UuTJk1SSEiI+vXrZ7Z+7dq1Gjt2rO7fv69y5cpp3LhxKlSokIWqTRoHDx5UZGRkgrZp2bJl8hSTStjSVIPjx4+3dAkAUjGyNwAgNSF7k72jkb2fIntbD7I3rIXBaDQaLV1EWuXt7Z2o6WxOnz6dDNUAAGAuMjJSu3fv1po1a/THH38oJCTE9O9WmzZt1KdPH+XOndvCVSaNChUq6KOPPooxJdnRo0fVoUMH+fr6ytvb20LVJZ/Hjx+rb9++2rdvn7p3765PP/1UQUFBGjVqlDZv3ixnZ2cNGjRIXbp0sfop+BL6u8toNMpgMPC7C6mat7e3vvnmmzivMgDwFNkbAJCakb3J3mRvsjdSN7K3deIKcAtq1aqVpUsAACBO9vb2qlOnjurUqaPQ0FBt3rxZa9eu1Z9//qlly5ZpxYoVqlKlitq0aaPmzZtbutxXEhISovTp08dYnidPHhmNRj148MACVSU/V1dXzZw5Ux999JHmzp2ra9eu6fDhwwoMDFSNGjX0+eef20xHiyS1b99eZcuWtXQZQJLi6grg5cjeAIDUjOxN9iZ7A6kf2dv6cAU4AAAw6d27t6pWrarKlSurRIkSsZ61GxQUpPXr12vNmjU6evSoTZypG9eZnEFBQapWrZrmzJmjatWqWai65BcVFaURI0ZoxYoVsrOz0+eff662bdtauqwkxdm6sEVcXQEAAGCdyN5kb7I3YD3I3taJK8ABAIDJ3r17tXPnThkMBrm7u6tixYqqUqWKqlatapqGzNPTU506dVKnTp109epVrVu3zsJV41XZ2dnpyy+/lIeHh2bPnq09e/aoZcuWcnDgpyKQ2nF1BQAAgPUhe6dNZG/AepG9rQ/frAAAwOTw4cM6deqUDh8+rCNHjujo0aPatm2bDAaDMmTIoEqVKqlKlSqqUqWKihYtqrx58+r999+3dNlJ4t69e/r333/Nlt2/f1+SdPfu3RjrJClXrlwpUltyiO14OnfurMePH2vJkiV69OiRRo4cKTs7O7M21nzMgC2qWLEiV1cAAABYGbI32ZvsDVgXsrf1YQp0AADwQjdu3DAL5WfOnFFkZKQ8PDxUuXJlValSRR07drR0ma/kRVMZRU9b9DyDwaBTp04ld2nJ5mXHLCnGems+5mHDhuntt99WmTJlLF0KkGSYXhAAAMB2kL3J3tGs+ZjJ3rBFZG/rxBXgAADghXLmzKlmzZqpWbNmkqSHDx9q9erVWrFihTZt2iQ/Pz+rD+GtWrWydAkprmXLlgm6f5G1Gz9+vKVLAAAAAIA4kb1tE9kbACyDAXAAAPBCoaGhOnDggPbv369Dhw7pxIkTCg8Pl5OTk2lKNmuXFgPaV199ZekSALyiVq1aKV++fJYuAwAAAEmA7G2byN6A9SN7WyemQAcAAGYiIiJ09OhR7d27V3v37tWxY8cUHh4uR0dHlS5d2hS8y5UrJycnJ0uXCwAAAACA1SF7AwCQfBgABwAAJu+++64OHjyo0NBQ2dnZqUSJEqpataqqVKmiChUqyNnZ2dIlAgAAAABg1cjeAAAkLwbAAQCAibe3txwdHdW8eXO99957KlCggKVLAgAAAADAppC9AQBIXgyAAwAAk5EjR2rfvn26cuWKDAaDXnvtNVWrVk1Vq1ZVpUqVlDFjRkuXCAAAAACAVSN7AwCQvBgABwAAMfz777/as2eP6V5kd+7ckZ2dnby9vVWlShVTKHd1dbV0qQAAAAAAWCWyNwAAyYMBcAAA8FLnzp3T3r179ddff+ngwYN68OCBHBwcVLJkSVWrVk0DBgywdIkAAAAAAFg1sjcAAEmDAXAAAJAgYWFh2rhxo3777TcdPXpUBoNBp0+ftnRZAAAAAADYDLI3AACJ52DpAgAAQOp25coVHTt2TMeOHdPx48d15swZhYeHy83NTbVr11alSpUsXSIAAAAAAFaN7A0AQNLhCnAAAGBy//59HT9+3BS4jx8/rvv378toNCpjxowqX768KleurEqVKql48eKys7OzdMkAAAAAAFgVsjcAAMmLAXAAAGDi7e0tg8Ego9EoT09PVapUyfTHy8tLBoPB0iUCAAAAAGDVyN4AACQvpkAHAAAmjRs3VuXKlVW5cmUVLlzY0uUAAAAAAGBzyN4AACQvrgAHAAAAAAAAAAAAANgEbh4CAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCY4WLoAAADSgilTpmjq1KkJ2uaPP/5Qnjx5kqmixKtXr56uX78uSfrf//6nrl27vrB9z549tXv3bknSnDlzVL169WSty8/PT/nz50+WfQAAAAAAUi+yN9kbAACJAXAAAFKEl5eXfHx8zJYFBgZqz549cnV1Vf369WNs4+rqmlLlJdrGjRtfGMLv3r2rvXv3pmBFAAAAAIC0iuwNAAAkBsABAEgRDRs2VMOGDc2W7du3T3v27JGnp6cmTpxoocoSL0OGDDp8+LBu3bql7Nmzx9rGz89PERERcnR0VHh4eApXCAAAAABIS8jeZG8AACTuAQ4AABKpQYMGMhqN8vPzi7PNunXr5OHhoVKlSqVgZQAAAAAA2AayNwAACccAOAAAqdj27dvVs2dPVa5cWaVKlVKjRo30zTff6N69e2btrl27Ji8vL9WuXTvWx+nSpYu8vLy0b98+07KhQ4fKy8tL+/fvV79+/VS6dGlVrVpVCxYsiFdtjRs3lvR0KrbYBAQE6ODBg2rUqJEcHOKedGbVqlXq2LGjypcvr9KlS8vHx0fTp09XSEhIrO3/+usv9ejRQ5UqVVLFihU1cOBA033RYhMZGalFixapXbt2KleunMqVK6e33npLvr6+MhqN8TpWAAAAAIDtInvHRPYGAFgzpkAHACCVmjhxombNmiV7e3tVqFBBnp6eOnr0qH7++Wdt2LBB8+bNU968eV95PyNHjlRgYKBq1aqlc+fOydvbO17bFShQQMWKFdPhw4cVEBCgbNmyma3fuHGjoqKi1KxZM02dOjXG9lFRUfr444+1du1aOTk5qXLlynJxcdGBAwf0/fffa9OmTZozZ448PT1N2yxdulSfffaZJKlixYrKkCGDdu/erYMHDyosLCzGPsLDw9W3b1/t3LlT7u7uKleunBwdHbV//34NHTpU+/bt01dffZWQpwsAAAAAYEPI3mRvAIDtYQAcAIBUaOvWrZo1a5Y8PDz0888/m6YxCwsL0+eff66lS5dqwIABWr58uQwGwyvtKyAgQKtXr1bevHkVFRUlO7v4TxDTtGlTnT59Wn5+furcubPZuvXr1ytbtmyqVKlSrNsuXLhQa9euVd68eTV79mzly5dPkhQcHKzBgwdr+/bt+uyzzzRlyhRJ0o0bNzRu3Dg5ODho5syZqlatmiTp7t276tmzp06dOhVjHz/++KN27typypUra/LkycqUKZMk6c6dO3r33Xfl6+urChUqqF27dvE+ZgAAAACAbSB7k70BALaJKdABAEiF5s6dK0n65JNPzO7h5eTkpNGjRyt//vw6efKk9u7d+8r7ql+/vuls9oQEcElq0qSJpJhTsf377786evSomjRpEudjzps3T5I0btw4UwCXJHd3d02cOFHp06eXn5+fLl++LEny9fVVaGio3n77bVMAl6RMmTLpyy+/jPH4YWFhWrBggRwdHTVx4kRTAJekLFmy6PPPP5ck/fLLLwk6ZgAAAACAbSB7k70BALaJAXAAAFKZiIgIHT58WAaDQY0aNYqx3sHBQQ0bNpQks/uKJVbRokUTvW3evHlVokQJHTp0SAEBAabl69evl9FoVPPmzWPd7saNG7p27Zo8PT1VtWrVGOvTp0+vWrVqSZL2798vSTpw4IAkqU6dOjHaFytWTHny5DFbdvLkST18+FCvvfaasmfPHmObUqVKKXPmzPL399ft27fjecQAAAAAAFtA9iZ7AwBsF1OgAwCQyty7d0/h4eHy9PSUu7t7rG2iA2dShMeMGTO+0vZNmzbVyZMntXnzZnXq1EnS0xCeN29elS5dOtZtogN77ty543zc548xepscOXLE2f7atWumv9+4cUOSdPbsWXl5eb3wGG7cuKGsWbO+sA0AAAAAwHaQvZ8iewMAbBED4AAApDJGo1GSXnh/seg2Tk5O8XrMyMjIONcldOq15zVp0kTffPONNmzYoE6dOuny5cs6efKk3nvvvTi3Scwxvux+aw4O5j9roqKiJEm5cuVShQoVXritm5vbC9cDAAAAAGwL2du8DdkbAGBLGAAHACCV8fDwkKOjo+7du6fg4OBYz0S/evWqJClz5syS/gvS0cHzeffv30+map+eSV66dGkdOnRIt2/f1vr16yVJzZo1i3ObbNmySZLZWePPiz7GLFmySJKyZ8+uc+fO6fr16ypcuHCM9s9OAyfJdFZ5jhw5NHHixAQcEQAAAADA1pG9nyJ7AwBsEfcABwAglXF0dFS5cuUUFRWlzZs3x1gfERFhWl6lShVJkqurq6SnYTs8PNysfVBQkPz9/ZO15qZNmyoqKkp+fn7asGGDChcu/MKpz3LlyqXcuXMrKCjIdJ+xZz18+FC7d++WJFWqVEmSVL16dUmK9Tm5evWqzp8/b7asVKlScnZ21pkzZ2IEdEm6deuWmjRpoh49eujRo0fxP1gAAAAAgNUje5O9AQC2iwFwAABSoW7dukmSvv76a506dcq0PDw8XGPGjNGVK1dUrFgx0/RiHh4eypEjh8LCwrR48WJT+ydPnuizzz574TRsSaFx48YyGAxauHChzp49+8Iz0KNFH+OIESNMZ5xL0qNHj/Txxx8rODhYdevWNd2rrFWrVvLw8NDy5cu1adMmU/vg4GANHz48xhn4rq6uat++vR4/fqyPP/5YgYGBZvsYNmyYLl68KFdXV6ZhAwAAAIA0iOxN9gYA2CamQAcAIBVq0KCB3nnnHc2ePVtt27ZVhQoV5OnpqWPHjunmzZvKnTu3vvvuO7N7iPXq1Uvjxo3TuHHjtG7dOmXJkkWHDx9WZGSk6tatq23btiVbvTlz5lTZsmV15MgRSS+egi1aly5ddOTIEW3YsEHNmjVTpUqV5OLiooMHDyooKEje3t768ssvTe0zZcqkL7/8UgMHDlT//v1Vrlw5ZcuWTQcOHFBkZKQKFiwY42z7wYMH6/Tp09q7d6/eeOMNlSpVSi4uLjpy5Iju3bunAgUKaMyYMUn7ZAAAAAAArALZm+wNALBNXAEOAEAq9emnn+rHH39UlSpVdObMGW3fvl1ubm7q06ePfH19VbBgQbP2Xbp00YQJE1SyZEmdOnVKBw4cUJUqVbRs2bIYbZNDkyZNJEklSpRQ/vz5X9rezs5O3333ncaPH68SJUro8OHD+vPPP5UjRw59/PHH+v3335UpUyazberXr6/ffvtN9evXl7+/v3bt2qXixYvr119/VY4cOWLsw9nZWbNnz9b//vc/vfbaazp+/Lj27dunbNmyqV+/flq6dKnpPmcAAAAAgLSH7E32BgDYHoPRaDRauggAAAAAAAAAAAAAAF4VV4ADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPggA1ZsWKFvLy8EvynS5culi493qZMmRLncRQrVkxlypRRvXr11K9fP23ZssXS5eL/HTlyxPQ69erV66Xthw4dKi8vLw0ZMsRsefRj7NmzJ8lr7Nmzp+nxjx07luSP/6yIiAj5+/sn6z6ed+bMGY0bN07NmjVTxYoVVapUKdWpU0e9evXSwoULFRoamuT7vH37toYMGaLq1aurZMmSqlWrlnbu3ClJWrlypVq0aKEyZcqoYsWK6tmzp/bt22d6DSIiIhK932vXrpke5/Lly0l1OHhFRqNRFy5csHQZiXLx4kX16dNHVapUUalSpfT666/r7NmzMhqNmjNnjho3bqxSpUqpSpUq+t///mf697h27dqvtN+k+kwklXPnzsVYVq9ePXl5eWnp0qUJeqzEbgcAAKwHfRT0UaRW9FGYo4+CPorUxBo+nwCsg4OlCwCQdDJnzqzy5cvHWH7jxg3duHFDTk5OKlmyZIz1RYsWTYnyklRsx2I0GhUaGqpr167Jz89Pfn5+8vHx0TfffCODwWChSiFJy5cvN/3/7t27dfXqVeXNm9eCFZm7ceOG2Q/iRYsWqUyZMsmyr927d2vcuHFq1KiRBg0alCz7eN4PP/yg6dOnKyoqSu7u7sqXL58cHR11+/Zt7dq1S7t27dLPP/+sadOmqUSJEkmyz6ioKPXq1UtnzpyRg4ODihQpovDwcOXOnVubNm3Sp59+KknKmjWrsmfPnqreD0h6x48f19ixY5U/f35NnDjR0uUkyKNHj9StWzcFBATI2dlZRYoUUUhIiPLkyaM5c+ZowoQJkqTcuXPLw8NDefLksXDFSS8gIEATJkzQwYMHtWPHDkuXAwAArAR9FPRRpFb0UfyHPgr6KFKb1P75BGA9GAAHbEidOnVUp06dGMunTJmiqVOnKmvWrFq0aJEFKkt6LzqWsLAwff/99/rll1+0Zs0aVa5cWe3bt0/hChEtJCREGzZskMFgUM2aNbVr1y4tWbIkxpmZlrRixQpFRUWpTp062rFjhzZs2KBhw4YpY8aMSb6vn376KUXPrF6+fLmmTZsmV1dXjR8/Xm+88Ybs7e1N6y9cuKDhw4fr6NGj6tmzp9avX69MmTK98n79/f115swZSdKMGTNUq1Yt07opU6ZIkipUqKD58+fLweHpz5GQkBCtX79ekkzLEiN79uymx8mVK1eiHwdJ57ffftPx48eVP39+S5eSYAcPHlRAQIAMBoNWrFihQoUKmdZt2LBBktSsWTN9++23puUPHz5UmTJl5Ojo+Er7Ll26dJJ8Jl7V7t27tXbtWmXPnt1iNQAAAOtDH8VT9FGkLvRRmKOPgj6K1MQaPp8ArAdToAOwOU5OTvrkk09UunRpSdKCBQssXFHatnHjRgUHB6tIkSJq2bKlpKdhLiwszLKF/T+j0ShfX19JUps2bVSgQAGFhoaallm7GTNmSJI++eQTNW7c2CxYSlKhQoU0ffp0Zc6cWUFBQZo/f36S7DcoKMj0/1WqVIl1XYUKFcxCpIuLiwoVKmQ2wJgYjo6Opsd51QFIIPr9miVLlhjvzeh1lStXNluePn16FSpUSPny5XulfSfVZwIAAACWQx9F6kIfhWXRR0EfxYuk9s8nAOvCADgAm9WgQQNJ0j///KPHjx9buJq0a8WKFZKk2rVrq27dunJ2dlZgYKA2b95s4cqe2r9/v65evSpHR0dVr15dTZo0kSQtWbLEwpW9ugcPHujKlSuS9MLp0jJlymT6vBw/fjxJ9h0ZGWn6fycnJ7N1UVFRsS4HUqMXvV95LwMAACC+6KNIHeijsBz6KPAyqf3zCcC6MAAOwGTTpk3q1auXqlatqpIlS6pmzZrq16+f/vrrr1jbe3l5ycvLy+y+RM/q0qWLvLy8TFMJSdK1a9fk5eWlGjVq6NatW+rdu7dKly6typUra/DgwUl6PO7u7qb/f/Tokdn+vby8dPny5Vi3q1evnry8vEw/uiRp37598vLyUvv27XXhwgV16NBBpUqVUrVq1Uz3f43e7vTp09q+fbvefvttlStXTlWqVFHXrl21ZcuWOGuNjIzU0qVL1aVLF1WqVEklS5bU66+/ro8//lgnT56MdZvQ0FDNnDlTb7/9tqpVq6ZSpUqpbt26Gjx4sA4dOhTnvs6cOaNPP/1Ur7/+ukqWLKkqVaqoZ8+e2rRpU6ztn33Onn1O4uPKlSs6cOCAJKlhw4Zyc3NT3bp1JSnVTHUXfW+hqlWrKn369PLx8ZEkXbx4UXv37o11m8S8j1asWCEvLy/t379f0tOznr28vDR06FCz7e7fv6+pU6eqZcuWKleunMqUKaMmTZpowoQJCggISNCxPXvm8rZt217Ytl+/flq3bp0mTZpktnzo0KHy8vKKc7qp6OOqV6+epP+em65du5raRD9X0Y8V/RxMnTrVtE7673Pm5eWliIiIGPs6c+aMRo4cqQYNGqhUqVKqVKmSunXrpo0bN5q1e9nrc/XqVY0ePVpvvPGGSpUqpYoVK6pjx45aunSpWSh+/jlYtGiRrl27pmHDhql27doqWbKkateurf/973+6du1anM/twYMHNXjwYNWtW1clS5ZU1apV9f7775t9t+7atUteXl4qUaKEAgMDY32c0NBQVahQQV5eXjp27FiMY03o5/PBgweaOXOmOnXqpCpVqqhEiRKqWLGiWrdurSlTpuj+/fsxtkno9370axp9tcKaNWvk5eWlLl26xDi2uXPnqn379ipfvrxKlSqlBg0a6LPPPtOlS5di3df9+/f13XffqXXr1qpcubLKlCmjN954Q//73/909uzZOGv77rvvYn28KVOmmNUWXfuwYcMkSdevXzcdf/Tn+/r165KkYcOGmX0Ooj8XtWvXjnVf8XlPPFvDiz4TCfk+j34Odu7cqTNnzmjAgAGqXr26SpYsqfr16+vLL7/U3bt3zbZ59jm4deuW2Wf2eYcOHdL777+vKlWqqHTp0mrUqJEmTZqk4ODgWNu/6nYAAMC20UfxFH0U5uijiIk+iv/QR2G9fRTW8PkEYF0YAAeg8PBwffjhh+rfv7927dolBwcHeXt7KyIiQn5+furevbu+/PLLJN1nWFiYevbsqT179qhQoUIyGAzKnTt3ku4j+kels7OzPD09k+Qx7969q27duun06dMqXLiwnjx5ogIFCpi1Wb58ud577z2dPHlSBQsWVLp06bRv3z598MEHGjduXIzHDA4OVqdOnTRixAjt379f6dOnl5eXlx4+fKjVq1erbdu2mjNnjtk2YWFh6t69uyZNmqTjx4/Lw8NDRYoUUXBwsNauXatOnTpp6dKlMfb166+/qnXr1lq5cqXu37+vIkWKyNXVVbt371b//v01ePDgWH9cJ9by5ctlNBqVL18+09m9zZs3lyQdOHBAFy5cSLJ9JUZwcLD8/Pwk/VdXoUKFVKxYMUnS4sWLk2xfmTNnVvny5U2dHjlz5lT58uXN3j9nz55V8+bNNWXKFJ09e1a5c+dWwYIFdeXKFc2ePVvNmzfXvn374r1PV1dXlS9fXtLTwb1PP/1UBw4ciPU1zpo1qwoXLvzKn5V06dKpfPnyKlq0qGlZ+fLlTcca23MQXeOL/Prrr2rbtq1+//133b171/Te3bt3rwYMGBDnoObzNm/erObNm2vRokUKCAjQa6+9pkyZMunQoUMaMWKEevbsaeqMet6pU6fUokULrVy5Ui4uLsqfP79u3bqlZcuWqV27drpx40aMbb799lt17txZa9eu1ePHj+Xl5SU7Oztt27ZN3bt3N53FX6NGDeXMmVMRERFau3ZtnLUHBwerUKFCLzxbPj4uXbqkN998U5MmTdLRo0eVKVMmeXl5yd7eXidPntTUqVP11ltvxflcxFf69OlVvnx5Zc6cWdLTM/mff3/cvHlTrVq10vjx43Xs2DFlzZpVRYoU0e3bt7VkyRK9+eabpvulRbt3757atWunGTNm6Ny5c8qaNasKFiyoO3fuaNmyZWrTpo127tyZJLVHf0adnJxM71cHBweVL1/edIVA9Hu7ZMmSL33c+L4nXuZVvs937typtm3basuWLfL09FTOnDl17do1zZs3T2+//bbZwPOzz4Gjo2Ocn1lfX1916tRJe/bsUc6cOZUpUyZdunTJ1AkaGhoaay2J3Q4AANgu+ijijz6KhKGP4j/0UdBHkZr6KKTU//kEYH0YAAegr776Sps3b5arq6smT56s3bt3a9myZfrzzz/12WefycHBQfPmzdPcuXOTbJ8PHjzQ7du3tXLlSvn6+mrXrl3q3bt3kj3+3bt3tWrVKklPf7Q9e5bpq7h69apcXFy0adMmU93R96SJtmDBAlWvXl3bt2/XihUrtGPHDo0dO1YODg5asGBBjB+OQ4YM0ZEjR5Q1a1bNnz9fW7du1fLly/XXX3+pb9++ioqK0ldffWUKQdLTH4VHjhxRgQIFtGXLFm3YsEErVqzQ7t271alTJxmNRk2YMEFPnjwxbbNz506NHTtWdnZ2+t///qeDBw/K19dX27Zt09y5c5U5c2atXbvW7Gx4ScqePbvWr1+v9evX64033oj3cxUVFWV6DaLPWJakOnXqyMPDQ5Llz+Bct26dQkJC5OLiYnZsb775piRpy5YtunPnTpLsq06dOlq0aJGKFy8uSWrRooUWLVqk999/X9LToNurVy8FBASoXLly8vPz09q1a7Vy5Urt2LFDdevW1f379/XBBx/o6tWr8d7vyJEj5erqKqPRqJUrV6pz586qXLmyevfurZkzZ+rYsWOm6b6SQtasWbVo0SKNGDHCtGzRokWmY332OWjTpo1p3YscPnxY48aNU3h4uHr37q2//vrL9NkaP3687OzsNGPGDO3evfuFj3PmzBl99NFHevLkifr06aP9+/dr1apV8vPzk6+vrwoUKKC//vpLo0ePjnX733//XYULF9b69eu1adMmrVu3TosXL5abm5vu3r2r2bNnm7Vft26dfvrpJ9nZ2Wn48OHas2ePli9frl27dmngwIGSpDFjxujChQuys7MzfZdEf26et3LlSklS69atTcsS+/kcOXKkbty4obJly2rbtm2m75C9e/dqwoQJsrOzk7+/v2mfiVW8eHEtWrTIdCV0jRo1tGjRIo0cOVLS0ytL3n//fV28eFEFCxbUqlWrtGnTJq1YsUJ//vmn2rVrpydPnuiTTz4xnVEuST///LMuX76s8uXLa8eOHVq3bp1WrlypnTt3qmHDhgoPD3/lTtHo2t977z1J/723Fy1aJD8/Py1atEhZs2aVJL333ntatGiRfvjhhxc+ZkLeEy+S2O/zaAsWLFCNGjW0bds2rVu3Tps3b9aPP/4oe3t7Xb58WcuWLTO1ffY5yJQpU5yf2UOHDql58+bauXOnVq5cqe3bt+ubb76RJJ07dy7Os/8Tux0AALBd9FHEH30U9FEkFn0U9FGkpj4Ka/h8ArA+DIADadzNmzdNZ5COHTtWjRs3Nq2zt7dXp06dNGDAAElPpwJ61asBn9WxY0cVLlxY0tMr656dDiwxjEajgoKCtHXrVr3zzju6d++eHB0d1b9//6Qo1+S9995T9uzZJUlubm5Kly6d2fpcuXJp2rRppiseDQaD2rdvr549e0p6+jxGO3r0qGnapx9++EFVqlQxrXNyctKAAQP01ltvSZImTpxoWnfmzBlJT++JkytXLtPydOnSaejQoapZs6beeOMN3bt3z7Tu22+/ldFo1JAhQ9S1a1fZ29ub1lWrVk3jx4+XJM2ZM0dBQUGmdY6OjipUqJAKFSqk9OnTx/t52r17t+ls0+iwFv140e+zVatWWfTqvuipxerXry83NzfT8ubNm8vOzk7h4eGmNsntt99+U0BAgLJkyaKffvpJefPmNa3LkiWLfvjhBxUtWlQPHz7UjBkz4v24xYsX19KlS1WhQgXTsuDgYO3YsUOTJk1S+/btVbNmTX333XcKCQlJ0mNKKj/++KOioqLUpEkTDR482Owz17p1a7Vt21aSXjpQNmXKFIWFhalz584aOHCg2eMUL15cP/zwg+zt7bVmzRqdP38+xvaOjo6aOnWqChYsaFpWrlw5U9g7fPiwWfvoz3qPHj3UrVs302fO3t5effr0UY0aNRQZGWkKjW3atJHBYNDJkydjDIDeunVLe/bskb29vVq0aGFWU0I/n4GBgTp37pykp9/72bJlM60zGAxq2bKlKleuLEmxTiWelDZu3KjTp08rXbp0mjVrlry9vU3r3N3dNW7cONWqVUvh4eFmZ9BHfwc2atRImTJlMi1Pnz69RowYoerVq6tSpUqp7urhhL4n4pLY7/NomTNn1g8//GD22tevX990osLz7+X4KFSokCZMmGDqnJCefvfXqFFDkuKc9jKx2wEAANtEH0XC0UcRP/RRJAx9FHGjjyJp+ygk6/h8ArA+DIADadzOnTsVERGhrFmzqmnTprG26dy5sxwdHfXw4UPTfXGSwrM/dhPq2XuxRv/x9vZW1apV1adPH50+fVrp06fX999/bzagkhReVnf79u3l6uoaY/nbb78tSfL399fFixcl/XfPo9KlS8c5xdI777wj6el0af/8848kmaakWrZsmX777Teze7Y6OTnpl19+0fjx400h+Nq1azp9+rQk8x+Sz6pTp448PT0VGhoa5z3VEiL6h37p0qVjTMEWXcODBw+0bt26V95XYly4cMF0Renzz0m2bNlUtWpVSdKSJUuS9OzjuGzdulWS1LJlS2XMmDHGeicnJ9O9ibdu3Sqj0Rjvxy5cuLB+++03rVy5Uh9++KHKlSsnR0dH0/rAwEDNmDFDb775pm7evPmKR5K0QkJCTPc5i+5oed7AgQO1ceNG073uYhMWFmaaEjuuz0D094jRaIz1fmQlS5Y0XfH7rNdee02S9PDhQ9Oyy5cvmz7n0Z/9533xxRfasmWLBg0aJEnKmzevKlWqJEkxBkBXrVqlqKgo1a5dO9YaEiJz5szau3evjh07ZjYNXLTIyEhTZ19yh8vo9329evXMOlSe1aNHD0nS/v37Tc9x9HfKzz//rNWrV5s999mzZ9ecOXM0duxYOTs7J2P1CZOY90RskuL7vFq1ajE6RqWng9GS+Xs5vurXr2/WaRkt+v55z99b/FW3AwAAtok+ioSjjyJ+6KNIGPooYkcfxVNJ2Uchpf7PJwDrlDTz7QCwWtE/fooVKyY7u9jPiXF1dVXBggX1zz//yN/fX3Xr1k2Sfb/KDyQnJ6cY91q1s7OTm5ubsmfPrjJlyqhx48avfMZ2bF5Wd+nSpWNdnitXLqVPn14PHz7UpUuX9Nprr5me/xIlSsT5eAUKFJC7u7uCg4Pl7++vokWLql27dlq2bJnOnz+vMWPG6PPPP1exYsVUrVo11apVS5UqVTKbUi36ak9J+uCDD+LcV/R0ZNF1Jda9e/f0xx9/SIr9h3yFChWUN29eXb16VYsWLVKbNm1eaX+JET3Fb+bMmU1XGj6rRYsW2rNnj65fv65du3apTp06yVqPv7+/pBe/F6LX3b17V/fu3UvwvbCKFSumYsWKqV+/fgoJCdHhw4e1e/durVq1SoGBgbpy5YoGDBgQ73sQp4R///1X4eHhkhRnR1HmzJlNVzPE5dKlSwoLC5P0dEqv6Hs3x7Y/KfbPQHRnzfOiB1kjIiJMy6Lv7+fq6hrnwG7OnDljLGvTpo3279+vNWvW6KOPPpLBYJD035Rjz04t9qqcnZ1148YNHTt2TFeuXNHVq1d14cIFnT59Wo8fP5akZO9YScj7PjIyUpcvX1bJkiXVs2dPbdy4Ubdv39bHH38sBwcHlSpVStWrV1ft2rVVpkwZ03OXWiT2PfG8pPg+T8h7Ob7ieszozta4TqZI7HYAAMA20UeRcPRRvBx9FAlHH0Xs6KNI+j4Ka/h8ArBODIADaVxwcLAkvXRamuiQlpTTi73KlXnR9/CxhJfVHduZsdFcXV318OFDPXjwQFL8n383NzcFBwebnn93d3ctWbJEs2fP1tq1a3X58mWdOnVKp06d0i+//KLMmTNr4MCBat++vSTzsz7jM7VtYq7+e9aaNWtMP+THjRuncePGxdn277//1smTJ18YqpJaRESEVq9eLenpmcUv2/eiRYuSPVzG573wbGfJo0ePEhwun+Xi4qIaNWqoRo0aGjBggIYPH65169bp6NGjKf56vMizU+Q9OwVcQj37nj5x4kSC2kd79oz0l4muO6E1N27cWGPHjtWNGze0b98+Va1aVX///bfOnz8vT0/PJOvcu3jxor7++mvt2LHDbJDb3d1dFStWVEBAgGkaw+SUmPe99DSYr1q1Sj/99JM2btyoW7du6ciRIzpy5IimTZum3Llza/jw4WrQoEHyHkACJPY98byk+D5PyHs5vmK7ojw5twMAALaJPoqEo4/i5eijSDj6KGJHH0XS91Gk9s8nAOvFADiQxkX/8HlZmIgOQ7H9UIprmqPoKwhTq+Sq+0X3KIoOENFngsb3+Y9e/+zz7+7urv79+6t///66fPmy9u3bp3379mnHjh0KDAzUyJEj5eHhoYYNG5qupPPw8NC+ffsSf3DxFH1PKldX1xeGpYCAABmNRi1evFhjx45N9rqibd++XXfu3JH0dCqxuK4Uffz4sR4+fKidO3fqxo0bsZ4Nm1TvIzc3N92/f/+F74X79++btX+Zzz77THv37lWrVq3Up0+fONs5Ozvr888/l5+fn8LDw+Xv7x8jTMR1nMl9T65np+oLDg42u99zYh/n8OHDrzwIGd/9JbRDztnZWc2aNdOSJUu0Zs0aVa1a1XRmtY+PT5IMXAYGBqpz584KDAxUrly51L59exUvXlyvvfaa8uTJI4PBoMGDB79wADwp3/fSi78Do//9eba99PR7dPjw4Ro+fLjOnj2r/fv3a+/evdq9e7euX7+u/v37a/HixXFe8fKqtSdUYt8TcT1OSn2fAwAApCT6KGKij+LV0UdBH0VSoY8i6fsoUvvnE4D14h7gQBoXfV+Y06dPxznVbXBwsC5duiRJyp8/v2l59D07o8/Se15AQEASVpo0np1yK7a6Q0NDX/nM4uh7YD3vypUrph+ahQsXlvTf83/y5Mk4H+/ChQumoBL9/AcGBurgwYOm+2rlz59f7du316RJk7Rjxw7T1GvRP0oLFiwo6ekZn7dv345zXwcPHtSFCxdeacrZM2fOmO7lNX78eO3cuTPOP9FnLK9du9YUvFNC9L2FihQpol27dsVZ35w5cyQ9nXr5999/N22fHO+j+LwXos8KzpgxY7zOrH7y5IkuX76sLVu2vLStu7u7KXA9G+CiP+fRU3w9L7k/53nz5jXV8Ow0ec/6+++/1aFDBw0bNizOEPzs45w/fz7O/R0/flxnz5595UHK6HtWPX78WNeuXYu1zR9//KEuXbro66+/NlsePZ3XH3/8ocjISNNUYEk1zdfy5csVGBgoDw8PLV++XH369FGdOnWUN29eU0fLrVu3Yt02qb/34/O+//vvvyVJBoNB+fLlM9W3d+9e03eVl5eXunTpomnTpumPP/5Q7ty5FRkZqbVr1yZb7Qn1Ku+JZ6Xk9zkAAEBKo4/CHH0U9FHQR0EfhS33UVjD5xOA9WIAHEjjateuLQcHB92+fVvr16+Ptc3ChQsVEREhFxcXVa5c2bQ8+sdtbPehOX78eKoMlx4eHqYBntjq3rp1a6LuffqsFStWxBrUo6dDK1u2rOks3eipgo4fPx7ntF9z586VJOXIkUNeXl6SpJ49e6pTp07y9fWN0d7NzU1ly5aV9DQUSVKhQoVMwXThwoWx7ufQoUPq1KmTmjZtqqNHj8bjSGMXfd8qT09P1atX74VtO3ToIOnpD/DoIJzcAgMDtWPHDkkv/7FeqlQpU1BfunSp6b3xKu+juM7kjn4vrFy50uws6mhhYWGm91CtWrVeWHe06HsnnThxwhSo47J7927du3dPHh4eKlOmjGn5iz7nkZGR2rp1a7xqSSx3d3dVqFBB0n9nBT9v7dq1Onz4sK5duxbn8+vu7m76/po/f36sba5evaqOHTvqzTff1MaNG1+p7kKFCil37twvrNvX11f79+83dRJFK1OmjIoUKaKgoCAtWLBA//77r4oXLx7n/cUSKjrs5sqVK9az1c+fP2/6Doj+DomW2O/96Nfl+fAf/b7funWrrl69Guu20a9X2bJllSFDBkVERKhly5bq1q2btm/fHqN9lixZVLRoUUnm9zB/Ue2PHj3SX3/9Fev+k8qrvCeef5yU+j6PFn3/zbg6bwAAAJIKfRTm6KOgj+JZ9FHQR5FYqbWPIrV/PgFYNwbAgTQuZ86cpnswjRw50uwHVVRUlH777TdNmTJFktS3b1+zqWiif/DNmTNHFy5cMC3/+++/9dFHH6VE+Qnm7Oys4sWLS5KmTJlidpXj7t279fnnn7/yPk6cOKGRI0eapl2KiorSwoULTSFx0KBBprblypUzncHYv39/s6m/wsLC9MMPP5jO6v3kk09MP5xbtGghSZo6dap27txptv+DBw+afgg+e0+oAQMGSJJmzpypWbNmmZ0VfPDgQdP6smXLqmrVqqZ14eHhunDhgi5cuPDSM4bDwsK0Zs0aSU+nQnJycnph+9q1a5t+gC9evPiFbV/k33//1YULF/Tvv/++tO3KlSsVEREhR0dH0/P4ItE/sG/fvm06y/VV3kfR005dv349xn6yZ8+uO3fu6L333jMbDAwMDNSAAQP0zz//yM3NTf369Xtp3ZJUo0YNNWrUSJI0YsQIffHFFzHO9H3y5ImWL1+ugQMHSnr6Pnl26q3oz/m5c+c0f/580wDY/fv3NXz48DivJkhKffv2lcFg0KpVqzRjxgyz4L5y5UotWLBAktSrV68XPk6/fv1kb2+vtWvXavz48WZnUP/zzz/q3bu3wsPDlTt3bvn4+LxSzQaDQX379pUkzZo1S0uXLjU9d5GRkZo5c6Y2b94sBwcHde/ePcb20R0fkydPliS1bt061v0k5PMZLfpM/jNnzmjTpk2m5UajUTt37lSvXr1MZ9M/P31cYr/3o99Tz39GGzduLC8vLz158kTvvvuu2bTrwcHBGjlypHbv3i0HBwcNGTJE0tOrG5o1ayZJ+uKLL3T8+HGzx/Tz89Pu3bslPf2Oeb72Xbt2yc/Pz7Q8ICBA/fv3V2BgYJz1J4VXfU88K7Hf54kV/b314MEDzrQHAADJij4K+iiit6GPInb0UdBHkRipsY/CUp9PAGkH9wAHoGHDhunWrVv6448/NGDAAGXLlk05cuTQ1atXFRQUJEnq3Lmz3n33XbPt+vTpo127dun27dvy8fFR4cKF9eTJE126dEl58+ZVmzZt4jyr0JIGDhyoPn366Pz582rQoIEKFy6s+/fv6/r16ypVqpTKly9vChGJUbRoUS1btkwbNmzQa6+9pps3b+r27duys7PTsGHDYgxGfP3113r//fd15MgRde3aVblz51amTJnk7++v4OBg2dvba+DAgaYBH0nq2rWr9uzZo507d+rdd99VtmzZlC1bNgUFBZlCS7169dSuXTvTNs2aNdOlS5c0ZcoUTZw4UT/99JMKFCigu3fvmrYpWLCgfvzxR7P6bt26paZNm0p6Oh1RXD9yJWnLli26d++epPhNhWRnZ6e33npL3377rf755x8dOnTIFGYS4tNPP9X+/ftVuXJlU9CIS/RZxq+//nq87tXUrFkzTZgwQQ8ePNDixYtNYS2x76PixYtr27ZtWrNmjc6ePauKFStq1KhRypAhg2bMmKHevXvryJEjatiwoQoXLiwHBwedO3dO4eHh8vDw0MSJE01TV8XHxIkT5erqqpUrV2r+/PmaP3++cuXKpcyZM5s+r2FhYXJ0dNTgwYPVsWNHs+3r1KmjihUr6uDBg/riiy80e/ZseXp66uLFiwoPD1e/fv1MHVDJpVq1aho2bJi++uorfffdd5o9e7by5s2rmzdvmu6T9sEHH5h1psSmQoUKGjt2rEaNGqW5c+dq8eLFKlSokB49eqTLly/LaDQqS5Ys+uWXX14avOKjbdu2On/+vObMmaMRI0bo+++/V44cOXTt2jXdu3dP9vb2Gj16dKxnTbdo0UKTJk3S48eP5ejoqObNm8e6j4R8Pp+t67ffftPly5fVv39/5c6dW56enrpx44YCAwPl6OioypUra//+/TGmQk/s936xYsUkPb23WePGjVW4cGFNnTpVDg4O+vHHH/Xuu+/q4sWLatGihQoUKCA3NzfTVIfOzs4aM2aMKlasaHq8QYMG6dChQzp16pTatWtnOoaAgADTlT0dOnQwGwBv1aqVFi5cKH9/f/Xr10/58uWTq6urLly4IHt7e73//vuaMWPGS5+/V/Eq74lnJfb7PLG8vLxkZ2en0NBQNW7cWNmyZdMvv/wSr2kOAQAAEoo+Cvoo6KOIG30U9FEkVmrro7DU5xNA2sEV4ADk5OSkadOm6bvvvlPNmjUVFham06dPy8XFRc2aNdP8+fM1cuTIGNP2FCtWTMuWLZOPj48yZcqkixcvKjIyUu+88458fX2VNWtWCx3Ri9WuXVu//fabGjRoIFdXV50/f17p0qVT//799dtvv5nOfk2srl276ttvv1XBggVNZ542atRIixcvjvUsSg8PDy1YsEBjx45VpUqV9PDhQ509e1aenp5q27atli1bpt69e5ttY29vr2nTpmn48OEqV66cQkNDdebMGYWEhKhmzZr6+uuv9eOPP5rdB0p6+gN8yZIl8vHxkbu7u86cOaOgoCAVL15cAwYM0PLly5U5c+ZEH3t0cCtRokS8p0Jq27atHB0dJSX/GZzHjh0z3VspvvcqcnFxUcuWLSVJf/31l+lec4l9H7377rtq166dPDw8dOnSJZ09e9a0rnjx4lq7dq369u2rIkWK6OrVq7p06ZIKFiyo999/X6tXr4731GLRnJyc9NVXX2np0qV65513VKJECYWFhenMmTO6efOmChYsqJ49e2r16tUx3mfS04Dxyy+/aODAgSpSpIgCAwP177//qlq1alq0aNErn4UcX926ddOSJUvUvHlzpUuXTmfPnlVERITq1KmjOXPmqH///vF6nDZt2mjVqlV66623lDVrVp07d043btxQoUKF1KtXL61evdp0P7qkMHToUM2ZM0f169eX0WjUmTNnZG9vr8aNG2vJkiVmHUDPypQpk2nwtl69ekk60Oju7m76XilSpIju3r2rc+fOyd3d3dQp+OWXX0p6epX4s1ctJPZ7v2XLlurVq5eyZs2qa9eumd3TMU+ePFq+fLk++eQTlS5dWrdv39aFCxeUM2dOde3aVatWrTJ9BqO5ublpwYIF6t+/v0qUKKF79+7pzJkzMhqNql+/vn766SeNHj06xjZLlixRz549lT9/ft24cUN37txRo0aN5OvrqypVqiTZc/wiiX1PPC+5v8+flT9/fo0fP14FChTQvXv3dOPGjRhXiAAAACQV+ijoo6CPIm70UdBH8SpSUx9Fav98ArB+BiM38wOAJFGvXj1dv35d48aNi/cABpLO2LFjdeXKFc2aNcvSpQBJonXr1jp58qRmzpz50jPHAQAAAOBZ9FFYFn0UsDX0UQCwNlwBDgCwelFRUTp48KAKFy5s6VKAJHHy5EmdPHlSOXPmVM2aNS1dDgAAAAAgnuijgK2hjwKANeIe4AAAq/f5558rMDBQXbp0sXQpQKJdvXpVknTnzh0NHTpU0tPpCu3t7S1ZFgAAAAAgAeijgC2gjwKAtWMAHABg9d5++231799fmTJlsnQpQKKtX79e3377renvRYsWVefOnS1YEQAAAAAgoeijgC2gjwKAtWMKdACA1fP29iZYwup5e3srW7ZscnV1VYMGDTR79mw5OTlZuiwAAAAAQALQRwFbQB8FAGtnMBqNRksXAQAAAAAAAAAAAADAq+IKcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExwsXYC1MBqNiopitngAAAAAgDk7O4MMBoOly7AJZG8AAAAAQGwSkr0ZAI+nqCij7t59ZOkyAAAAAACpTKZMbrK3ZwA8KZC9AQAAAACxSUj2Zgp0AAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1wsHQBAAAAAICYoqKiFBkZYeky0jx7ewfZ2XHuOAAAAADYIrJ36pDU2ZsBcAAAAABIRYxGox48uKuQkGBLl4L/5+LirgwZMslgMFi6FAAAAABAEiB7pz5Jmb0ZAAcAAACAVCQ6gLu7e8rJKR2DrhZkNBoVFvZEwcFBkqSMGTNbuCIAAAAAQFIge6ceyZG9GQAHAAAAgFQiKirSFMDd3TNYuhxIcnJKJ0kKDg5S+vSeTIcOAAAAAFaO7J36JHX2JrkDAAAAQCoRGRkp6b/gh9Qh+vXgvnAAAAAAYP3I3qlTUmZvBsABAAAAIJVh6rXUhdcDAAAAAGwPWS91ScrXgwFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADbBwdIFAAAAAAAs5+zZM/rxx8k6c+aUoqKMKl68pHr37qsSJUpKkg4c2Ks5c37WhQvnZG/voMqVq6pPn37Knj2HJGn9+jX68ssxWrp0tXLmzGV63LZtfVSuXAX973+jJUk1a1bUO+/01p49u3X16mV16NBF3bv30vXr1zR9+hQdOnRARqNRJUuWUt++A/Taa4UkSU+ePNEvv8zQli1+Cgq6q3z58qtr13dUv37DlH2iAAAAAABIJLJ3yuIKcAAAAABIox49Ctbgwf2UMaOHxo2boDFjvlRoaIgGD/5QwcHB2rRpvQYN+lBZs2bV6NFfqF+/QTp58m+9//47Cgq6m+D9zZv3i15/vZ5Gj/5CtWq9rjt37ujdd7vp8mV/DR78qUaNGqsHDx5o4MC+unfvnoxGo4YP/1grV67QW2911FdffauSJUtr1Kjh2rBhbTI8IwAAAAAAJC2yd8rjCnAAAAAASKP8/f11716Q2rZ9S6VLl5Uk5c9fQKtWLVdw8EP9+ONkVaxYWWPGjDdtU7p0WXXu3E6LFi1U3779E7S/4sVLqnPn7qa/T5s2WU+ehOr7739U5sxZJElFinjrvfe668SJ40qXzkn79u3RmDFfms46r1KlmkJDQzRjxlS98UZjOTgQawEAAAAAqRfZO+VxBTgAAAAApFGvvVZIHh6e+vTTjzRx4njt3r1TmTNnUd++AxQaGqrAwEA1bNjEbJvcufOoRIlSOnLkYIL3V6hQYbO/Hzt2RCVLljYFcEnKkiWLli9fq5o1a+vgwQMyGAyqVq2mIiIiTH9q1KijwMA78ve/kLgDBwAAAAAghZC9U551DdcDAAAAAJKMq6urfvxxlubN+0Vbtvhp5crlcnZ2VsOGTdS4cTNJUqZMmWNslzlzZp09ezbB+/P0zGT29wcP7pvdu+x5Dx7cl9FoVMOGtWNdf+fObRUp4pXgOgAAAAAASClk75THADgAAAAApGH58hXQyJFjFRkZqdOnT2rjxvVauXKZsmTJKkm6ezcwxjaBgYHy8PCQJBkMBklSVFSUWZuQkMcv3be7e3rdu3cvxvJDhw4oR46ccndPLxcXV02ZMiPW7XPnzvvSfQAAAAAAYGlk75TFFOgAAAAAkEZt27ZFzZs3UGDgHdnb26tkydIaMmSo3N3T6+7du8qcObP8/DaYbXP9+jWdOHFcpUuXkSS5urpJkm7dumlqc+XKJd2/f/+l+y9TpqxOnjyuoKC7pmX37t3TkCH99eefO1W2bHmFhDyW0WiUt3dx05+LFy9o9uxZioyMTIqnAQAAAACAZEP2TnlcAf6K7OwMsrMzJNvjR0UZFRVlTLbHBwAAAJB2lSpVVpGRURo2bIg6d+4uNzc3/fGHnx49Cla9eg1UvHgJffnlGI0aNUyNGzfX/fv3NHv2TGXIkFFvvdVJklShQiU5Oztr6tTv9O67ffX48WPNmfO0zcu0b99RGzas00cffaiuXd+Rk1M6LVgwR5kzZ1Hjxs3k7p5eZcuW19Chg9W9ey/lz19Ap0+f1C+/zFSVKlVNZ8Ij8cLDw7VgwQL5+vrq0qVLcnV1ValSpdStWzfVqlUrRvsqVarEeuVAtOPHjytdunRJXifZGwAAAIC1InunPIPRaCThxUNkZJTu3n1ktszOziAPD1fZ2yffhfSRkVG6d+8xQRwAAABIA8LDwxQYeEOZM+eUo6NTiuzz9OmTmjVrus6cOa3Q0FC99lohdenSQ3Xq1JUkbd/+hxYsmKuLF8/Lzc1NVapUU+/eHyh79hymx9i7d49mzJiqy5f9lSNHTvXo0VsbN65T5syZ9b//jZYk1axZUT16vKuePd8z2//ly5f044+TdfjwITk6OqpcufLq23eAcufOI0kKCQnRzz9P17Ztfygo6K6yZMmmBg0aqnv3Xsky0Bqbl70umTK5JWsuTC5Go1H9+vXT5s2blSFDBpUvX15PnjzRwYMHFR4eroEDB6pPnz6m9tevX1e9evWUPXt2Va5cOdbHHD9+vBwdHRNdE9kbAAAAQHIje9t+9mYAPJ5iC+EODnby9HTTtEV/6nrAy6cYSKjc2TLqgw41FBT0SBERUS/fAAAAAIBVs0QIx8vZ6gD4okWLNHr0aBUrVkxz5syRp6enJOnMmTPq1KmTHj16pHXr1qlQoUKSpC1btuiDDz5Qt27dNHz48GSpiewNAAAAILmRvVOnpMzeTIGeBK4H3Nel60GWLgMAAAAAgHhbtWqVJGno0KGmwW9J8vb2lo+PjxYtWqSdO3eaBsBPnjwpSSpRokTKFyuyNwAAAAAgfhgABwAAAAAgDZo3b578/f1VpEiRGOseP34sSbK3tzctO336tCSpZMmSKVMgAAAAAACJYH1ztAEAAAAAgFeWLl06eXt7mw1yS0+nOt+4caNcXFzUsGFD0/KTJ0/K2dlZJ06cUIcOHVSxYkVVqlRJ7733no4dO5bS5QMAAAAAECsGwAEAAAAASOPu37+vfv36qUmTJvrggw+UKVMmTZ8+XTly5JAkBQYGKiAgQKGhofrkk08UFRWlKlWqyMPDQ9u3b1fHjh21fv16Cx8FAAAAAABMgQ4AAAAAQJp39epV+fn5mf5uMBh0/vx5VatWTdJ/9//29PTU9OnTVa5cOUmS0WjUvHnzNH78eA0bNkzly5c3DZonloOD+bn69vYpc+5+Su0HAAAAgGVFRRksXQJewN7eECMXJhQD4AAAAAAApHEFCxbU/v37ZTQatWfPHn3xxRcaN26cgoOD1adPH9WqVUu7du2S0WhU9uzZTdsZDAZ1795dBw4c0JYtW7Rs2TJ9+OGHia7Dzs4gT0+3pDikBMuQwcUi+wUAAACQskJD7XXnjl2SDLQi6URFGWRnZ6eMGV3l7Oz8So/FADgAAAAAAGmcm9t/g85NmzZVjhw51LFjR82cOVNdu3aVm5ubsmXLFuf2devW1ZYtW3TixIlXqiMqyqgHDx6bLbO3t0uRwekHD0IUGRmV7PsBAAAAYFlhYU8UFRWlyEijIiLIAKlFZKRRUVFRun//sUJCImOsz5DBJd4zdzEADgAAAAAAzJQvX1758uXT5cuXdenSJZUoUeKF7bNmzSpJCgkJeeV9W6oDKjIyis4vAAAAIA2IjDRaugS8QFKcmMB1/QAAAAAApDEhISH66quvNGTIEBmNsXf+ODk5SZIiIiK0ZMkSDRw4UFu2bIm17dWrVyXple//DQAAAADAq0q1V4CHh4drwYIF8vX11aVLl+Tq6qpSpUqpW7duqlWrVoz2VapU0b179+J8vOPHjytdunTJWDEAAAAAJB87O4Ps7Awpvt+oKKOiojg73tY4OzvL19dX9+7dU/v27VW5cmWz9VevXpW/v7+cnJxUpEgR7dixQxs2bFBISIgaNGhg1tZoNGrVqlWSpJo1a6bYMQAAAABAUiN724ZUOQBuNBo1aNAgbd68WRkyZFD16tX15MkT7d27V7t27dLAgQPVp08fU/vr16/r3r17yp49e4zQHs3OjovdAQAAAFgnOzuDPDxc432vq6QUGRmle/ceJyqI+/lt1PLlS3Tx4nlJUv78BdW8eQu1bNkmqctEAhkMBr311lv66aefNHr0aM2dO9d0j++bN2/qo48+UkREhLp16yZXV1e1atVKs2bN0vbt2/X777+rffv2kqSoqChNmTJFx48fV+HChdW4cWNLHhYAAAAAJBrZ23akygHwxYsXa/PmzSpWrJjmzJkjT09PSdKZM2fUqVMnTZ48WQ0bNlShQoUkSadPn5YkNW7cWMOHD7dY3QAAAACQHOzsDLK3t9O0RX/qesD9FNtv7mwZ9UGHGrKzMyQ4hK9du0rff/+N+vcfrLJly0sy6sCB/frhh0kKCrqrHj3eTZ6iEW99+/bV4cOHdeDAATVq1EgVKlRQeHi4jh8/rsePH6tmzZoaMmSIJClv3rwaPXq0RowYoZEjR2rhwoUqUKCAzpw5o8uXLytLliyaMmWKHB0dLXxUAAAAAJA4ZG/bkSoHwKOnThs6dKhp8FuSvL295ePjo0WLFmnnzp2mAfCTJ09KkkqUKJHyxQIAAABACrkecF+XrgdZuox48fVdpubNW+jNN1uZluXLV0C3bwfo998XpdkQnpo4Oztrzpw5mj9/vlatWqV9+/bJwcFBRYoUUevWrdWuXTvZ29ub2rdp00YFCxbUrFmzdPjwYV28eFHZsmVTly5d1KdPH2XOnNmCRwMAAAAASYPsbf1S5bzg8+bN06pVq1SpUqUY6x4/fixJZiE8+grwkiVLpkyBAAAAAIAXsrMz6O+/j+vBgwdmyzt16qaffpojSWrb1ke//PKT2foPP+ytL74YLUk6fPigatasqF9/naemTevrnXc6qW/fXvrss2Fm2xw/flQ1a1bUtWtXJUl//rlL77zTWfXq1dBbb7XUrFnTFRYWJkmaPHmS2rdvYbZ9cHCw6tWrod27dyTZ8VsLR0dH9ezZU6tXr9bff/+tI0eO6Pfff9fbb79tlrujlS9fXtOnT9e+fft04sQJbd26VSNGjGDwGwAAAAAsgOwdu1Q5AJ4uXTp5e3vHCNtbtmzRxo0b5eLiooYNG5qWnzx5Us7Ozjpx4oQ6dOigihUrqlKlSnrvvfd07NixlC4fAAAAANK8Tp266dy5s2rVqok+/niAFiyYq1OnTsjd3V358uVP0GPt2bNbP/00R8OGfabmzVvozz936vHjR6b1fn4bVKpUGeXJk1d79+7RyJFD9eabLbVgwRINHjxUW7du1tixn0mSmjdvoX//va5jx46atv/jDz+5ubmpatUaSXLsAAAAAACkBLJ37FLlAPiz7t+/r379+qlJkyb64IMPlClTJk2fPl05cuSQJAUGBiogIEChoaH65JNPFBUVpSpVqsjDw0Pbt29Xx44dtX79egsfxauxt7eTg0Py/LGzM1j68AAAAADYoNdfr6+ffpqj11+vp9OnT+mnn6aqd+/u6tixjY4fP5qgx+rQobPy5s2nIkW8VLduA9nZ2WvHjm2SpPDwcG3dukVNm/pIkubPn63mzd9Uy5ZtlTt3HlWuXFUffzxc27Zt0Y0b/6pQocLy8iqmTZvWmR5/48a1atSoqRwcUuVdwgAAAAAAiBXZO3apPt1fvXpVfn5+pr8bDAadP39e1apVk/Tf/b89PT01ffp0lStXTpJkNBo1b948jR8/XsOGDVP58uVNg+aJ5eBgfr6AvX3ynj+QMb2zjFFRypDBJdn2ERUVqQcPnshoNCbbPgAAAADET1SUbZ2gWqxYCY0cOVZGo1EXL17QX3/t1tKlizVkyAAtWeIb78fJkyef6f9dXFxUt259+fltUJMmzfXXX3/qyZNQ1avXQJL0zz9ndPr0SW3YsNa0TXTeuXTJXzlz5lKzZm9q5swfNXDgxwoIuKW//z6ujz8e/tI67O0NMXIhAAAAAACWZGvZOymk+gHwggULav/+/TIajdqzZ4+++OILjRs3TsHBwerTp49q1aqlXbt2yWg0Knv27KbtDAaDunfvrgMHDmjLli1atmyZPvzww0TXYWdnkKenW1IcUry5OTvJYGcn/7WzFBJ4I8kf3yVzThVs/q48PFyT/LEBAAAAJFxoqL3u3LGLMdCa3CffvkxC9x8QcEvz589V1649lC1bNkmSl1dReXkVVZ06r6tDh7b6+++jkiQ7O/OTjSMjI2UwPD3+6P26urqYtfHxeVMffvi+7t+/q82bN6hOnXrKmDGDpKeBu3PnbmratHmMurJkySoHBzs1adJU06Z9r717/9SFC+dUvHgJFS1aNM7jiYoyyM7OThkzusrZ2TlBzwUAAAAAAMkhIOCWfv11njp37q6sWbPJYDCoUKHCKlSosGrWrKPOndvp6NHDsW4bGRkRY1m6dOnM/t60qY8GDOijwMA78vNbr9q168rNzV2SFBVlVMeOXdWkSczsnTlzFknSG2801tSp32vPnl26cOG8ihUrrtdeK/yqhx0vqX4A3M3tv0Hnpk2bKkeOHOrYsaNmzpyprl27ys3NzdShEpu6detqy5YtOnHixCvVERVl1IMHj82W2dvbJevV2dFCAm8o5NaVZHv8Bw9CFBkZlWyPDwAAACB+wsKeKCoqSpGRRkVEpJ7f6JGRUQmqx87OUStXLlfWrNnUqVM3s3XOzk9PwM2Y0VMODo568CDY9NhRUVH6999rypMnryIiokw55fn9lypVTjly5NTatWv055+79dVXk0zrCxYsJH9/f+XMmcfU/siRQ/r990UaMmSoHB3TycXFTbVqva6tW7fI3/+CWrZs+8Lji4w0KioqSvfvP1ZISGSM9RkyuFj8JAUAAAAAQNri5JROq1atULZs2WNk7+jx1UyZMsvBwVHBwcGmdU+z93WzK75jU7ZseeXIkVMbN67Tnj1/6quvJpnWvfZaIV2+fEl58uQ1LXs2e7u4uCh9+vSqXft1bd++1ZS9U0qqHwB/Xvny5ZUvXz5dvnxZly5dUokSJV7YPmvWrJKkkJCQV953auqASkoJ7cwCAAAAkDwiI23j1kQeHh7q1KmbZs78UcHBwapXr4FcXd106ZK/5s79WeXLV1SZMuVUunQZ/fGHn+rUqatMmTJr8eKFZqH8RZo0aa5582YrY8aMqlixsml5p05d9dlnw/TLLz/pjTca6/btAH311Thlz57ddBa6JDVr9qaGDv1IRqPUoEGjeO0ztZ2YAAAAAABIu2w1eyeFVDcAHhISosmTJ+vOnTv65ptvZDDEvAeek5OTJCkiIkJLlizRX3/9pebNm6tBgwYx2l69elWSXvn+3wAAAABgabmzZbSa/b37bh/lyZNXa9aslK/vUoWGhip79hyqV+8Nde36jiSpd+8P9PDhAw0Z0l/Ozi7y8Wmp+vUbmu4b9iKNGzfX7Nkz1bp1O9nZ/Xf1dd26DTRmjLRgwWwtXDhX6dNnUI0atdSnT3+z7StWrKyMGT1UqlQZpU+fPtHHCQAAAACwLWTv/1hr9k51A+DOzs7y9fXVvXv31L59e1WuXNls/dWrV+Xv7y8nJycVKVJEO3bs0IYNGxQSEhJjANxoNGrVqlWSpJo1a6bYMQAAAABAUoqKMioyMkofdKiR4vuOjIxSVFTirkxv0qR5rPcDi5YlSxaNHz8pzvXly1fU7t0HY12XI0cO7dy5P9Z19eo1UL16MU+QflZoaKiCg4PVvHmLF7YDAAAAAKQNZO+YrDV7p7oBcIPBoLfeeks//fSTRo8erblz55ru8X3z5k199NFHioiIULdu3eTq6qpWrVpp1qxZ2r59u37//Xe1b99e0tP566dMmaLjx4+rcOHCaty4sSUPCwAAAAASLSrKqHv3HsvOLuYMWSmx78SG8NTowYMHOnz4gLZu3aLs2bObTeEGAAAAAEi7yN5Jx9LZO9UNgEtS3759dfjwYR04cECNGjVShQoVFB4eruPHj+vx48eqWbOmhgwZIknKmzevRo8erREjRmjkyJFauHChChQooDNnzujy5cvKkiWLpkyZIkdHRwsfFQAAAAAknq2FYUuJjIzQV1+NlYeHpz7/fHyst90CAAAAAKRNZO+kYensnSoHwJ2dnTVnzhzNnz9fq1at0r59++Tg4KAiRYqodevWateunezt7U3t27Rpo4IFC2rWrFk6fPiwLl68qGzZsqlLly7q06ePMmfObMGjAQAAAACkFp6embRx43ZLl4FUyN7e7uWNEolONAAAAABpiaWzd6ocAJckR0dH9ezZUz179oxX+/Lly2v69OnJXBUAAAAAALAlGdM7yxgVpQwZXJJtH1FRkQoKCmEQHAAAAABSQKodAAcAAAAAAEhubs5OMtjZyX/tLIUE3kjyx3fJnFMFm78rOzsDA+AAAAAAkAIYAAcAAAAAAGleSOANhdy6YukyAAAAAACvKPlucAUAAAAAAAAAAAAAQApiABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAADACtjZGeTgYJfif+zsDImqt21bH9WsWVGLFy+Mdf0333ypmjUr6pdffkr0c9K2rU+Ctk9oewAAAABA2kL2jn0f1pa9HSy6dwAAAADAS9nZGeTp6SI7O/sU33dUVKSCgkIUFWVM8LYODg7atu0Pvf12Z7PlERER2rFjqwyGxAV8AAAAAACSGtnbdjAADgAAAACpnJ2dQXZ29vJfO0shgTdSbL8umXOqYPN3ZWdnSFQIr1ixsvbt+0u3bt1U9uw5TMsPHz4oZ2cXpUvnnJTlAgAAAACQaGRv28EAOAAAAABYiZDAGwq5dcXSZcRbsWIldPnyJW3btsXsTPQ//vBTvXpvaOvWzaZlJ04c18yZP+rs2dNycHBQzZp19MEHA5UhQwZJUnBwsL7//hvt3r1DDg6O6tq1R4z9/f33Mc2YMVWnT5+Sh4eHatSorfff/0Bubu7Jf7AAAAAAAJtA9rb+7M09wAEAAAAAyaZu3Qbatu0P09/Dw8O1c+d2NWjQ0LTs1KkT6tfvPRUoUFAzZszR2LETdOrUCX300YeKioqSJH322VCdPn1SEyZ8p+++m6o//9ylmzf/OyP//PlzGjCgrypVqqJ58xZp1KgvdPbsaQ0a9KGMxoSfQQ8AAAAAgLUge5tjABwAAAAAkGzq1XtDp06d0K1bNyVJ+/fvlYeHh4oW9Ta1Wbz4VxUqVEQfffSpChZ8TeXLV9To0V/qzJlT2rfvL125ckn79+/VoEGfqEyZcipSxEujRo2Tk5OT6TEWLZqvihUrqXv3XsqbN5/KlCmr0aO/0KlTJ3TkyKEUP24AAAAAAFIK2dscU6ADAAAAAJKNt3cx5cqV2zQV29atfmrQoJFZm4sXz6tSpapmywoVKix39/S6cOGcQkNDJEnFihU3rc+UKbNy5cpt+vvZs2d17doVvfFGrRg1XL58SeXLV0zKwwIAAAAAINUge5tjABwAAAAAkKzq1XtD27b9oVat2mnXrp2aNWue2Xqj0SiDIeZ2RmOUHBz+i61RUebTqdnbO5i1bdiwibp2fSfG43h4eL7iEQAAAAAAkLqRvf/DFOgAAAAAgGRVr14DnTp1QmvXrlKuXLmVP38Bs/WvvVZYx44dNVt27tw/evTokQoUeM00Zdvffx8zrX/48KGuX79q+nvBgoXk739BefLkNf2JiorUDz98q4CAm8l2bAAAAAAApAZk7/8wAA4AAAAASFZFingpT568mjlzmurXbxhj/VtvddT58//o228n6NIlfx05ckiffz5CRYt6qWLFysqdO4/q1m2g7777WgcO7NPFi+c1duxnCg8PNz3G22931j//nNU333wpf/+LOnnyhEaPHqErVy4rT558KXm4AAAAAACkOLL3f5gCHQAAAACshEvmnFa7v3r13tC8eb+oQYOYIbxkydKaOHGyZs2aoXfe6SRXVzfVqvW6+vT50DQN24gRozVt2mSNGjVcUVFRatGite7dC3rmMUrp22+n6uefp6tnzy5ycXFW+fKV9MEHA+Xk5JRkxwEAAAAAsG1kb+vP3gaj0Wh8eTNERkbp7t1HZsscHOzk6emm4ZPX69L1oDi2TLzqZfPrw441dWre5wq5dSXJH98lez4V7/aZgoIeKSIiKskfHwAAAEDChIeHKTDwhjJnzilHx/+Co52dQZ6eLrKzs0/xmqKiIhUUFBLjHmBpSVyvS7RMmdxkb88Ea0mB7A0AAAAguZG9U6ekzN5cAQ4AAAAAqVxUlFFBQSGyszNYZN9pOYADAAAAANIGsrftYAAcAAAAAKwAYRgAAAAAgORF9rYNzNEGAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAApDJGI/cbS014PQAAAADA9pD1UpekfD0YAAcAAACAVMLe3l6SFBb2xMKV4FnRr4e9vYOFKwEAAAAAvCqyd+qUlNmb9A4AAAAAqYSdnb1cXNwVHBwkSXJySieDwWDhqtIuo9GosLAnCg4OkouLu+zsOIccAAAAAKwd2Tt1SY7szQA4AAAAAKQiGTJkkiRTEIflubi4m14XAAAAAID1I3unPkmZvRkABwAAAIBUxGAwKGPGzEqf3lORkRGWLifNs7d34MpvAAAAALAxZO/UJamzNwPgAAAAAJAK2dnZyc7OydJlAAAAAABgs8jetonT2AEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANsHB0gUAAAAAAADLCA8P14IFC+Tr66tLly7J1dVVpUqVUrdu3VSrVq0Y7e/cuaMff/xRu3bt0q1bt5Q1a1Y1btxYffv2lZubmwWOAAAAAAAAc1wBDgAAAABAGmQ0GjVo0CBNmDBBN2/eVPXq1VWsWDHt3btXvXr10vTp083aBwQEqH379vr111/l7Oys119/XVFRUfr555/VoUMHBQcHW+hIAAAAAAD4DwPgAAAAAACkQYsXL9bmzZtVrFgx+fn56aefftLcuXO1bNkyubu7a/Lkybpw4YKp/bhx43T9+nX17t1ba9as0Q8//KBNmzapSZMmOnv2rKZOnWrBowEAAAAA4CkGwAEAAAAASINWrVolSRo6dKg8PT1Ny729veXj4yOj0aidO3dKkq5cuaLNmzcrZ86c6t+/v6mtk5OTxo4dKzc3Ny1ZskShoaEpexAAAAAAADyHAXAAAAAAANKgefPmadWqVapUqVKMdY8fP5Yk2dvbS5J27typqKgo1alTR46OjmZt06dPr6pVq+rx48fat29f8hcOAAAAAMALMAAOAAAAAEAalC5dOnl7e5sGuaNt2bJFGzdulIuLixo2bChJ+ueffyRJRYsWjfWxChcubNYOAAAAAABLcbB0AQAAAAAAwLLu37+vESNG6Pz587p48aJy5syp8ePHK0eOHJKk27dvS5KyZs0a6/bRy+/cuZMyBQMAAAAAEAcGwAEAAAAASOOuXr0qPz8/098NBoPOnz+vatWqSfpvSnRnZ+dYt49eHt3uVTg4mE9WZ29vG5PX2cpxAAAAAEBqxwA4AAAAAABpXMGCBbV//34ZjUbt2bNHX3zxhcaNG6fg4GD16dPHNE26wWCIdXuj0Wj238SyszPI09PtlR4jtcqQwcXSJQAAAABAmsAAOAAAAAAAaZyb23+Dzk2bNlWOHDnUsWNHzZw5U127dpWrq6sk6cmTJ7FuH73cxeXVBnmjoox68MD8KnJ7ezubGDx+8CBEkZFRli4DAAAAAKxShgwu8Z5ZiwFwAAAAAABgpnz58sqXL58uX76sS5cuKVu2bJL+uxf48152j/CEiIiwzUHiyMgomz02AAAAAEhNUu0AeHh4uBYsWCBfX19dunRJrq6uKlWqlLp166ZatWrFaH/nzh39+OOP2rVrl27duqWsWbOqcePG6tu3r9mZ7AAAAAAApHUhISGaPHmy7ty5o2+++SbWqc2dnJwkSRERESpatKgk6cKFC7E+3rlz5yRJXl5eyVQxAAAAAADxE7/rxFOY0WjUoEGDNGHCBN28eVPVq1dXsWLFtHfvXvXq1UvTp083ax8QEKD27dvr119/lbOzs15//XVFRUXp559/VocOHRQcHGyhIwEAAAAAIPVxdnaWr6+v1qxZowMHDsRYf/XqVfn7+8vJyUlFihQxnYi+bds2RUZGmrV9+PCh9u3bJ1dXV1WoUCFF6gcAAAAAIC6pcgB88eLF2rx5s4oVKyY/Pz/99NNPmjt3rpYtWyZ3d3dNnjzZ7KzzcePG6fr16+rdu7fWrFmjH374QZs2bVKTJk109uxZTZ061YJHAwAAAABA6mIwGPTWW29JkkaPHq2AgADTups3b+qjjz5SRESEOnToIFdXV+XOnVt169bVtWvX9M0338hoNEqSwsLC9Nlnn+nRo0d6++235e7ubpHjAQAAAAAgWqqcAn3VqlWSpKFDh8rT09O03NvbWz4+Plq0aJF27typQoUK6cqVK9q8ebNy5syp/v37m9o6OTlp7Nix2rlzp5YsWaKBAwfK2dk5xY8FAAAAAIDUqG/fvjp8+LAOHDigRo0aqUKFCgoPD9fx48f1+PFj1axZU0OGDDG1HzlypE6ePKk5c+Zox44dKlKkiP7++2/9+++/KlGihD788EMLHg0AAAAAAE+lyivA582bp1WrVqlSpUox1j1+/FiSZG9vL0nauXOnoqKiVKdOHTk6Opq1TZ8+vapWrarHjx9r3759yV84AAAAAABWwtnZWXPmzNEnn3yivHnzat++fTp+/LiKFCmiMWPGaObMmab7gEtS7ty5tWzZMrVr104PHz7Utm3b5OTkpPfff1/z58+Xm5ubBY8GAAAAAICnUuUV4OnSpZO3t3eM5Vu2bNHGjRvl4uKihg0bSpL++ecfSVLRokVjfazChQvrjz/+0D///KM6deokX9EAAAAAAFgZR0dH9ezZUz179oxX++zZs2vcuHHJXBUAAAAAAImXKgfAn3X//n2NGDFC58+f18WLF5UzZ06NHz9eOXLkkCTdvn1bkpQ1a9ZYt49efufOnZQpGAAAAAAAAAAAAABgEal+APzq1avy8/Mz/d1gMOj8+fOqVq2apP+mRI/r/t7Ry6PbvQoHB/MZ4+3tU+UM8glmK8cBAAAAAAAAAAAAIG1L9QPgBQsW1P79+2U0GrVnzx598cUXGjdunIKDg9WnTx/TvcANBkOs2xuNRrP/JpadnUGenrZ5P7MMGVwsXQIAAAAAAAAAAAAAvLJUPwDu5vbfoHPTpk2VI0cOdezYUTNnzlTXrl3l6uoqSXry5Ems20cvd3F5tUHeqCijHjwwv4rc3t7OJgaPHzwIUWRklKXLAAAAAACrlCGDCzNrAQAAAACQSqT6AfDnlS9fXvny5dPly5d16dIlZcuWTdJ/9wJ/3svuEZ4QERG2OUgcGRlls8cGAAAAAAAAAAAAIO1Idaeoh4SE6KuvvtKQIUPinLbcyclJkhQREaGiRYtKki5cuBBr23PnzkmSvLy8kqFaAAAAAAAAAAAAAEBqkeoGwJ2dnfV/7N15nF3z/T/w153JMkmIRBYEldpbeyzRoigttZXaKVVL7IqvLWqtiFpKq5RWUIl9SWIplYQERa0htqDREqGJJYnIIsvM7w+/pE2TMMksd+be5/Px8CjnfO6570/vnZn7uu9zPmfQoEG5//7789xzzy2wf+zYsfnnP/+ZVq1aZY011shWW22VJBk+fHjmzJkz39gpU6bkmWeeSdu2bbPxxhs3Sv0AAAAAAAAAFEeTa4AXCoXsu+++SZLzzjsvEyZMmLfv3//+d04++eTMnj07+++/f9q2bZsVV1wx2267bd5///1ceuml864anzlzZs4555xMnTo1++23X5ZaaqmizAcAAAAAAACAxtEk7wF+zDHH5MUXX8xzzz2XHXbYIRtvvHFmzZqVUaNGZdq0adlyyy1zyimnzBt/9tln57XXXsuNN96Yxx57LGussUZeeeWVfPDBB1lnnXVy3HHHFXE2AAAAAAAAADSGJncFePLlMug33nhjTjvttKy88sp55plnMmrUqKyxxho5//zz86c//WnefcCTZMUVV8zdd9+dvffeO1OmTMnw4cPTqlWrHHXUUenfv3/atWtXxNkAAAAAAAAA0Bia5BXgSdKyZcscdthhOeyww2o1frnllkufPn0auCoAAAAAAAAAmqomeQU4AAAAAAAAACwuDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKLYhcAAAAAwH9UVBRSUVFosONXV9ekurqmwY4PAABQTBrgAAAAAE1ERUUhHTq0TWVlwy3aN2dOdSZNmqYJDgAAlCQNcAAAAIAmoqKikMrKilx925MZN2FyvR9/xa7L5Nj9t0hFRUEDHAAAKEka4AAAAABNzLgJk/OvcROLXQYAAECz03DraQEAAAAAAABAI9IABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKLYhdA81JRUUhFRaHBjl9dXZPq6poGOz4AAAAAAABQujTAqbWKikI6dGibysqGWzhgzpzqTJo0TRMcAAAAAAAAWGwa4NRaRUUhlZUVufq2JzNuwuR6P/6KXZfJsftvkYqKggY4AAAAAAAAsNg0wFls4yZMzr/GTSx2GQAAAAAAAADzabi1rAEAAAAAAACgEWmAAwAAAAAAAFASLIEOAAAAZaq6ujp33XVXBg4cmLfffjuzZs1Kt27dsv322+fII49M+/bt5xvfs2fPTJo0aZHHGzVqVFq3bt3AVQMAAMCiaYADAABAGaqurs4JJ5yQoUOHpqqqKuuvv37atm2bUaNGpV+/fhk6dGhuvfXWdO7cOUkybty4TJo0Kcstt1w222yzhR6zosJCcwAAABSXBjgAAACUoXvuuSdDhw5N9+7d069fv6y88spJks8//zynnHJKhg8fnj59+uS3v/1tkuSNN95Ikuy4444588wzi1U2AAAAfCWnZgMAAEAZuueee5IkZ5xxxrzmd5IstdRS6du3bwqFQoYNG5YZM2YkSV577bUkyTrrrNP4xQIAAEAtaYADAABAGerQoUNWXXXVbLjhhgvsW3bZZbPMMstk1qxZmThxYpL/XAG+7rrrNmaZAAAAsFgsgQ4AAABl6Nprr13kvrFjx2bSpElp2bJlll122SRfXgFeVVWVV199NWeddVbefvvtFAqF9OjRI8ccc0w22GCDxiodAAAAFskV4AAAAMB85t73e5tttknr1q3zySefZMKECZkxY0ZOO+20VFdXp2fPnunQoUNGjBiRAw44IA8++GBxiwYAAIC4AhwAAAD4LwMGDMgDDzyQNm3a5KSTTkryn/t/d+zYMddcc0022mijJElNTU1uuummXHTRRendu3d69OiR5Zdfvk7P36LF/OfqV1aWxrn7tZ1HY823VP5/BQAA+F8a4AAAAECSpH///unbt28KhUIuvPDCrLbaakmSrbbaKk888URqamqy3HLLzRtfKBRyyCGH5LnnnsuwYcNy991357jjjlvi56+oKKRjx3Z1nkdT1L59m2KXMJ+mVg8AAEB90QAHAACAMldTU5PLLrss/fr1S2VlZS688MLsvPPO8/YXCoV07dp1kY/fdtttM2zYsLz66qt1qqO6uiaffTZtvm2VlRUl0az97LPpmTOn+mvHNdZ8P/98Rqqraxrs+NXVNampabjjAwAA5aV9+za1XsmqyTbAq6urc9ddd2XgwIF5++23M2vWrHTr1i3bb799jjzyyLRv336+8T179sykSZMWebxRo0aldevWDVw1AAAANC8zZszIqaeemiFDhqSqqiq/+c1vsv322y/WMbp06ZIkmT59ep3rmT3765vEzdGcOdVNYm7LLF2VmurqLLVUVYM+T3X1nEycOL1Bm+wAAAAL0yQb4NXV1TnhhBMydOjQVFVVZf3110/btm0zatSo9OvXL0OHDs2tt96azp07J0nGjRuXSZMmZbnllstmm2220GNWVLi3FQAAAPy3zz//PIcffnhGjhyZTp065ZprrskGG2ywwLg77rgjTz/9dHbZZZeFNsfHjh2bJHW+/zcNr11VqxQqKvLPB67L9E8+bJDnaNNphXxzlyNSUVHQAAcAABpdk2yA33PPPRk6dGi6d++efv36ZeWVV07yZTA/5ZRTMnz48PTp0ye//e1vkyRvvPFGkmTHHXfMmWeeWayyAQAAoNmYNWtWevXqlZEjR2aVVVbJ9ddfPy9//6/x48fnoYceyvTp0xdogNfU1OTee+9Nkmy55ZYNXjf1Y/onH2b6+PeKXQYAAEC9a5KXRd9zzz1JkjPOOGO+8L3UUkulb9++KRQKGTZsWGbMmJEkee2115Ik66yzTuMXCwAAAM3QVVddlRdeeCFdunTJgAEDFtn8TpI99tgjrVq1yogRI3LnnXfO215dXZ0rr7wyo0aNyuqrr54dd9yxMUoHAACARWqSV4B36NAhq666ajbccMMF9i277LJZZpllMmnSpEycODErrLDCvCvA11133UauFAAAAJqfyZMn56abbkqSdOrUKZdeeukix849Of28887LWWedlbPPPjs333xzunfvntGjR+fdd99N586d8/vf/z4tW7ZsrCkAAADAQjXJBvi11167yH1jx47NpEmT0rJlyyy77LJJvrwCvKqqKq+++mrOOuusvP322ykUCunRo0eOOeaYhd6/DAAAAMrVyy+/nOnTpydJRo8endGjRy9y7PHHH5/OnTtnzz33zDe/+c1cd911efHFF/POO++ka9euOeigg3L00UenU6dOjVU+AAAALFKTbIB/lbn3/d5mm23SunXrfPLJJ5kwYUKS5LTTTsuGG26Ynj175q233sqIESPyt7/9LZdeeml22mmnIlbN4qisbNiV+aura1JdXdOgzwEAANCUfe9738ubb7652I/r0aNHrrnmmgaoCAAAAOpHs2qADxgwIA888EDatGmTk046Kcl/7v/dsWPHXHPNNdloo42SJDU1Nbnpppty0UUXpXfv3unRo0eWX375Oj1/ixbzN2YbulHbWGo7j4ae7zJLV6Wmujrt27dp0Oeprp6Tzz77IjU1muAAAAAAAABQSppNA7x///7p27dvCoVCLrzwwqy22mpJkq222ipPPPFEampqstxyy80bXygUcsghh+S5557LsGHDcvfdd+e4445b4uevqCikY8d2dZ5HU9TQDefaalfVKoWKivzzgesy/ZMPG+Q52nRaId/c5Yh06NC2QY4PAAAAAAAAFE+Tb4DX1NTksssuS79+/VJZWZkLL7wwO++887z9hUIhXbt2XeTjt9122wwbNiyvvvpqneqorq7JZ59Nm29bZWVFk2ke18Vnn03PnDnVXzuuseY7/ZMPM338ew36HLWdMwAAwNdp375NyawQBgAAAM1dk26Az5gxI6eeemqGDBmSqqqq/OY3v8n222+/WMfo0qVLkmT69Ol1rmf27NJsmM6ZU12yc1uUcpwzAAAAAAAAlLom2wD//PPPc/jhh2fkyJHp1KlTrrnmmmywwQYLjLvjjjvy9NNPZ5dddlloc3zs2LFJUuf7fwMAAAAAAADQtDXJBvisWbPSq1evjBw5Mqusskquv/76rLzyygsdO378+Dz00EOZPn36Ag3wmpqa3HvvvUmSLbfcssHrBgAAAAAAAKB4muRNyq666qq88MIL6dKlSwYMGLDI5neS7LHHHmnVqlVGjBiRO++8c9726urqXHnllRk1alRWX3317Ljjjo1ROgAAAAAAAABF0uSuAJ88eXJuuummJEmnTp1y6aWXLnLsGWeckZVXXjnnnXdezjrrrJx99tm5+eab071794wePTrvvvtuOnfunN///vdp2bJlY00BAAAAAAAAgCJocg3wl19+OdOnT0+SjB49OqNHj17k2OOPPz6dO3fOnnvumW9+85u57rrr8uKLL+add95J165dc9BBB+Xoo49Op06dGqt8AAAAAAAAAIqkyTXAv/e97+XNN99c7Mf16NEj11xzTQNUBAAAAAAAAEBz0CTvAQ4AAAAAAAAAi0sDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASWhS7AAAAAABoSBUVhVRUFBrs+NXVNamurmmw4wMAALWnAQ4AAABAyaqoKKRjxzapqKhssOeorp6TiROna4IDAEAToAEOAAAAQMn68urvyvzzgesy/ZMP6/34bTqtkG/uckQqKgoa4AAA0ARogAMAAABQ8qZ/8mGmj3+v2GUAAAANrKLYBQAAAAAAAABAfXAFOBTZl0uxFRrs+NXVNZZgAwAAAAAAoCxogEMRVVQU0rFjm1RUVDbYc1RXz8nEidM1wQEAAAAAACh5GuBQRF9e/V2Zfz5wXaZ/8mG9H79NpxXyzV2OSEVFQQMcAAAAAACAkqcBDk3A9E8+zPTx7xW7DAAAAAAAAGjWKopdAAAAAAAAAADUBw1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJNSpAT548OC88MILXzvukUceyZVXXlmXpwIAAICyJHsDAABA7dWpAX7GGWfkzjvv/Npx9957b2688ca6PBUAAACUJdkbAAAAaq/F4gwePHhwZs+ePd+2d999N3ffffciH/P555/n6aefTsuWLZesQgAAACgjsjflqKKikIqKQoMcu7LSHQABAKCcLFYD/LXXXsuAAQNSKHwZSAqFQl5++eW8/PLLX/m4mpqa7LHHHkteJRSREA4AADQm2ZtyU1FRSIcObWVkAACgXixWA/yEE07I559/Pu+/Bw0alG984xvZeOONF/mY1q1bp3v37tl///2XvEooEiEcAABobLI35aaiopDKyopcfduTGTdhcr0ff4O1umXfHTes9+MCAABN02I1wJdeeulcdNFF8/570KBB2XDDDefbBqVECAcAABqb7E25Gjdhcv41bmK9H7dbl/b1fkwAAKDpWqwG+P8aPXp0fdUBTZoQDgAAFIvsDQAAALVXpwb4f/vkk08yffr01NTULHLMyiuvXF9PBwAAAGVH9gYAAICvVucG+J///Odcd911+fTTT79yXKFQyOuvv17XpwMAAICy01DZu7q6OnfddVcGDhyYt99+O7NmzUq3bt2y/fbb58gjj0z79vOvWvXxxx/nD3/4Q5544omMHz8+Xbp0yY477phjjjkm7dq1W6K5AQAAQH2qUwN84MCB+fWvf50kadWqVTp27JjKysp6KQwAAABouOxdXV2dE044IUOHDk1VVVXWX3/9tG3bNqNGjUq/fv0ydOjQ3HrrrencuXOSZMKECdlvv/0ybty4rLnmmtlmm23yyiuvpF+/fnniiSdy6623ZqmllqpzXQAAAFAXdWqA33zzzSkUCjnrrLOyzz77pGXLlvVVFwAAAJCGy9733HNPhg4dmu7du6dfv37zlk7//PPPc8opp2T48OHp06dPfvvb3yZJ+vTpk3HjxqVXr175v//7vyTJzJkzc9ppp+Whhx7KVVddlTPOOKNeagMAAIAlVVGXB48ZMyYbbrhhDjzwQM1vAAAAaAANlb3vueeeJMkZZ5wx333Dl1pqqfTt2zeFQiHDhg3LjBkz8t5772Xo0KFZYYUVcsIJJ8wb26pVq1xwwQVp165d7rjjjsyYMaPe6gMAAIAlUacGeJs2bdKxY8f6qgUAAAD4Hw2VvTt06JBVV101G2644QL7ll122SyzzDKZNWtWJk6cmMcffzzV1dXZeuutF2jCL7300tl8880zbdq0PPPMM/VeJwAAACyOOjXAN9tss4waNSrTp0+vr3oAAACA/9JQ2fvaa6/NQw89tNDm+tixYzNp0qS0bNkyyy67bN56660kyZprrrnQY62++upJMm8cAAAAFEudGuAnnXRSpk+fnjPPPDOTJ0+ur5oAAACA/68Y2Xvufb+32WabtG7dOh999FGSpEuXLgsdP3f7xx9/3Cj1AQAAwKK0qMuDb7/99qy//vr561//mqFDh6Z79+5p3759CoXCAmMLhUJuvvnmWh+7uro6d911VwYOHJi33347s2bNSrdu3bL99tvnyCOPTPv27ecb//HHH+cPf/hDnnjiiYwfPz5dunTJjjvumGOOOSbt2rWryzQBAACgaBoyey/MgAED8sADD6RNmzY56aSTkiTTpk1LklRVVS30MXO3zx1XFy1azH+ufmVlnc7dbzJqO49SmW9SfnMulXkAAEBzV6cG+E033TTv32fPnp1//OMfixy7sGC+KNXV1TnhhBMydOjQVFVVZf3110/btm0zatSo9OvXL0OHDs2tt96azp07J0kmTJiQ/fbbL+PGjcuaa66ZbbbZJq+88kr69euXJ554IrfeemuWWmqpJZ8oAAAAFElDZe+F6d+/f/r27ZtCoZALL7wwq622WpKksrLyK49fU1Mz3/8uqYqKQjp2LM2T2Nu3b1PsEhpduc253OYLAABNVZ0a4P3796+vOuZzzz33zDurvV+/fll55ZWTJJ9//nlOOeWUDB8+PH369Jm3JFufPn0ybty49OrVK//3f/+XJJk5c2ZOO+20PPTQQ7nqqqtyxhlnNEitAAAA0JAaKnv/t5qamlx22WXp169fKisrc+GFF2bnnXeet79t27ZJki+++GKhj5+7vU2bujUAq6tr8tln819FXllZURKNxc8+m545c6q/dlypzDcpvznXdr4AAMDia9++Ta1XXapTA3yzzTary8MX6Z577kmSnHHGGfOa30my1FJLpW/fvvnud7+bYcOGZcaMGZkwYUKGDh2aFVZYISeccMK8sa1atcoFF1yQxx9/PHfccUdOPPHERS7VBgAAAE1VQ2XvuWbMmJFTTz01Q4YMSVVVVX7zm99k++23n29M165dk2TevcD/19fdI3xxzJ5dmg3EOXOqS3Zui1Jucy63+QIAQFNVbzcnmjVrVkaNGpWHH344L7zwQpLkgw8+WKJjdejQIauuumo23HDDBfYtu+yyWWaZZTJr1qxMnDgxjz/+eKqrq7P11lunZcuW841deumls/nmm2fatGl55plnlqgWAAAAaCrqM3snX660dsghh2TIkCHp1KlT+vfvv0DzO0nWXHPNJMmYMWMWepy33347SbLWWmstcS0AAABQH+rcAJ89e3Z+97vfZYsttsi+++6bE088MXfccUeS5PTTT89PfvKTvPvuu4t1zGuvvTYPPfRQOnbsuMC+sWPHZtKkSWnZsmWWXXbZvPXWW0n+E8b/1+qrr54k88YBAABAc9MQ2XvWrFnp1atXRo4cmVVWWSV33HFHNthgg4WO3WqrrZIkw4cPz5w5c+bbN2XKlDzzzDNp27ZtNt544yWYHQAAANSfOjXAZ8+enSOPPDLXXnttpk+fnnXXXTc1NTXz9k+dOjWvv/56DjzwwHz88cd1LjbJvPt+b7PNNmnduvXXLrM2d3t9PT8AAAA0pobK3ldddVVeeOGFdOnSJQMGDJjvFmT/a8UVV8y2226b999/P5deeum85585c2bOOeecTJ06Nfvtt1+WWmqpJZ8oAAAA1IM63QP8lltuyZNPPpktt9wyffv2TdeuXbP22mvP23/rrbfmvPPOy+DBg3P99dfn9NNPr1OxAwYMyAMPPJA2bdrkpJNOSpJMmzYtSRZ5f++52+eOq4sWLeY/X6C2N1pv6mo7j1KZb1J+cy6VeQAAQDlqiOw9efLk3HTTTUmSTp065dJLL13k2DPOOCOdO3fO2Wefnddeey033nhjHnvssayxxhp55ZVX8sEHH2SdddbJcccdV/fJAgAAQB3VqQE+aNCgdOjQIb/73e/Srl27BfZXVVXlggsuyFNPPZXHH3+8Tg3w/v37p2/fvikUCrnwwguz2mqrJUkqKyuTJIVCYaGPm3tW+n+fHb8kKioK6dhxwTmWgvbt2xS7hEZXbnMut/kCAEApaYjs/fLLL2f69OlJktGjR2f06NGLHHv88cenc+fOWXHFFXP33Xfn97//fUaMGJHhw4enW7duOeqoo3LEEUcstDYAAABobHVqgP/rX//Klltu+ZUht2XLlll//fXz5JNPLtFz1NTU5LLLLku/fv1SWVmZCy+8MDvvvPO8/W3btk2SfPHFFwt9/NztbdrUrQFYXV2Tzz6b/yryysqKkmgsfvbZ9MyZU/2140plvkn5zbm28wUAABZf+/ZtGnTVpYbI3t/73vfy5ptvLnYtyy23XPr06bPYjwMAAIDGUqcGeIsWLfLZZ5997bhJkyalRYvFf6oZM2bk1FNPzZAhQ1JVVZXf/OY32X777ecb07Vr1ySZdy/w//V19whfHLNnl2YDcc6c6pKd26KU25zLbb4AAFBKGjp7AwAAQCmp0ynq3/rWt/LKK69k3LhxixwzduzYvPLKK/Pdn6w2Pv/88xxyyCEZMmRIOnXqlP79+y/Q/E6SNddcM0kyZsyYhR7n7bffTpKstdZai/X8AAAA0BQ0ZPYGAACAUlOnBvj++++f6dOn55hjjsnrr7++wP4333wzxx9/fGbOnJm99tqr1sedNWtWevXqlZEjR2aVVVbJHXfckQ022GChY7faaqskyfDhwzNnzpz59k2ZMiXPPPNM2rZtm4033ngxZgYAAABNQ0NlbwAAAChFdVobbaeddspTTz2Vu+++O3vuuWeWXnrpFAqFPPHEE9lmm20yfvz41NTUZOedd86Pf/zjWh/3qquuygsvvJAuXbpkwIABWW655RY5dsUVV8y2226b4cOH59JLL83pp5+eQqGQmTNn5pxzzsnUqVNz6KGHZqmllqrLVAEAAKAoGip7AwAAQCmq883B+vTpkw033DDXX399/vnPfyZJJk6cmCTp1q1bfvazn+Xggw+u9fEmT56cm266KUnSqVOnXHrppYsce8YZZ6Rz5845++yz89prr+XGG2/MY489ljXWWCOvvPJKPvjgg6yzzjo57rjj6jBDAAAAKK76zt4AAABQqurcAE+SvfbaK3vttVc++uijfPjhh6murk6XLl2y4oorLvaxXn755UyfPj1JMnr06IwePXqRY48//vh07tw5K664Yu6+++78/ve/z4gRIzJ8+PB069YtRx11VI444oi0a9duiecGAAAATUF9Zm8AAAAoVfXSAJ84cWLefvvtbLbZZunSpUuS5B//+EduueWW/PCHP5y3rTa+973v5c0331zsGpZbbrn06dNnsR8HAAAAzUF9Zm8AAAAoVRV1PcCdd96Z733ve/n1r3893/aXX345F1xwQXbYYYc8+OCDdX0aAAAAKFuyNwAAANROnRrgTz75ZM4555y0aNEim2+++Xz7Nt544xx22GGpqanJKaeckr///e91KhQAAADKkewNAAAAtVenBni/fv3SokWL9O/fP6eddtp8+7p3755TTz01/fv3T6FQyHXXXVenQgEAAKAcyd4AAABQe3VqgL/11lvp2bNn1ltvvUWOWW+99bLxxhvnpZdeqstTAQAAQFmSvQEAAKD26tQAnz59etq0afO14zp06JDZs2fX5akAAACgLMneAAAAUHt1aoB37949zz33XD7//PNFjvniiy/ywgsv5Bvf+EZdngoAAADKkuwNAAAAtVenBvhuu+2WyZMn54QTTsjHH3+8wP6JEyfm5JNPzqeffppdd921Lk8FAAAAZUn2BgAAgNprUZcHH3jggXnwwQfz1FNPZZtttsm6666bFVZYIUny73//O6+99lpmzpyZ9ddfP4ccckh91AsAAABlRfYGAACA2qtTA7xly5a58cYbc8UVV2TgwIF56aWX8tJLL83b37p16+y///459dRT06pVq7rWCgAAAGVH9gYAAIDaq1MDPEnatWuXs846K6eddlpeffXVfPTRR5kzZ066dOmSddZZJ23btq2POgEAAKBsyd4AAABQO3VqgB988MHp3r17fvWrX6VVq1bp0aNHfdUFAAAARPYGAACAxVGnBvioUaNSUVFRX7UAAAAA/0P2BgAAgNqrU4Ju165dampq6qsWAAAA4H/I3gAAAFB7dWqAH3300Xn22Wdzww03ZObMmfVVEwAAAPD/yd4AAABQe3VaAn3s2LFZZZVVcumll+byyy/PKquskvbt2y90abZCoZCbb765Lk8HAAAAZUf2BgAAgNqrUwP8pptumvfvs2fPzpgxYxY5tlAo1OWpAAAAoCzJ3gAAAFB7dWqA9+/fv77qAAAAABZC9gYAAIDaq1MDfLPNNquvOgAAAICFkL0BAACg9urUAP9vs2bNyhtvvJEPP/wwnTt3zsYbb5wPPvgg3bp1q6+nAAAAgLImewMAAMBXq3MDfPbs2bn66qtzyy23ZMqUKUmSXXfdNRtvvHFOP/30TJ06NVdccUVWWWWVOhcLAAAA5Uj2BgAAgNqpqMuDZ8+enSOPPDLXXnttpk+fnnXXXTc1NTXz9k+dOjWvv/56DjzwwHz88cd1LhYAAADKjewNAAAAtVenBvgtt9ySJ598MltssUUeeeSR3HXXXfPtv/XWW7P77rvn448/zvXXX1+nQgEAAKAcyd4AAABQe3VqgA8aNCgdOnTI7373u3Tt2nWB/VVVVbngggvStWvXPP7443V5KgAAAChLsjcAAADUXp0a4P/617+yySabpF27dosc07Jly6y//vr54IMP6vJUAAAAUJZkbwAAAKi9OjXAW7Rokc8+++xrx02aNCktWrSoy1MBAABAWZK9AQAAoPbq1AD/1re+lVdeeSXjxo1b5JixY8fmlVdeydprr12XpwIAAICyJHsDAABA7dWpAb7//vtn+vTpOeaYY/L6668vsP/NN9/M8ccfn5kzZ2avvfaqy1MBAABAWZK9AQAAoPbqtDbaTjvtlKeeeip333139txzzyy99NIpFAp54oknss0222T8+PGpqanJzjvvnB//+Mf1VTMAAACUDdkbAAAAaq/ONwfr06dPNtxww1x//fX55z//mSSZOHFikqRbt2752c9+loMPPriuTwMAAABlS/YGAACA2qlzAzxJ9tprr+y111756KOP8uGHH6a6ujpdunTJiiuuWB+HBwAAgLInewMAAMDXW+wG+Jw5c3LrrbdmyJAh+fjjj9OtW7fsuuuu2X333dOlS5d06dKlIeoEAACAsiF7AwAAwJJZrAb4zJkzc9hhh+X5559PTU1NkuSf//xnnnrqqQwfPjy/+93vGqRIAAAAKBeyNwAAACy5xWqA33777Xnuueey3HLL5YgjjsjKK6+ct956K/369cuQIUNy77335sc//nFD1QoAAAAlT/YGAACAJbdYDfC//vWvqaqqym233ZZu3bolSbbeeutstdVW2WOPPfKXv/xFCAcAAIA6kL0BAABgyVUszuAxY8Zkk002mRfA51p77bWzzjrrZPTo0fVaHAAAAJQb2RsAAACW3GI1wKdOnZpllllmoftWWmmlTJo0qT5qAgAAgLIlewMAAMCSW6wG+OzZs1NZWbnQfS1btsysWbPqpSgAAAAoV7I3AAAALLnFaoADAAAAAAAAQFOlAQ4AAAAAAABASdAABwAAAAAAAKAktFjcBwwbNizbbbfdAtsnTpyYJAvdlySFQiHDhg1b3KcDAACAsiN7AwAAwJJZ7Ab4tGnTMm3atEXuHzdu3EK3FwqFxX0qAAAAKEuyNwAAACyZxWqA9+/fv6HqAAAAACJ7AwAAQF0sVgN8s802a6g6AAAAgMjeAAAAUBcVxS4AAAAAAAAAAOqDBjgAAAAAAAAAJWGxlkAHAAAAStfgwYNz+umn58Ybb8x3v/vdBfb37NkzkyZNWuTjR40aldatWzdghQAAAPDVNMABAACAjBo1KhdccMEi948bNy6TJk3Kcsstt8j7lFdUWGgOAACA4tIABwAAgDL36KOP5vTTT8/nn3++yDFvvPFGkmTHHXfMmWee2VilAQAAwGLRAAcAAIAyNX78+Pz2t7/NoEGDUlVVlc6dO+fjjz9e6NjXXnstSbLOOus0ZokAAACwWKxNBgAAAGXqiiuuyMCBA7POOuvkjjvuyKqrrrrIsXOvAF933XUbqzwAAABYbK4ABwAAgDK16qqr5uKLL85uu+32tffvfu2111JVVZVXX301Z511Vt5+++0UCoX06NEjxxxzTDbYYINGqhoAAAAWrdlcAT548OCstdZaeeqppxa6v2fPnllrrbUW+c8XX3zRyBUDAABA09arV6/svvvuX9v8/uSTTzJhwoTMmDEjp512Wqqrq9OzZ8906NAhI0aMyAEHHJAHH3ywkaoGAACARWsWV4CPGjUqF1xwwSL3jxs3LpMmTcpyyy2XzTbbbKFjvi7MAwAAAAs39/7fHTt2zDXXXJONNtooSVJTU5ObbropF110UXr37p0ePXpk+eWXr9NztWgxf36vrCyNPF/beZTKfJPym3OpzAMAAJq7Jt8Af/TRR3P66afn888/X+SYufch23HHHXPmmWc2VmkAAABQFrbaaqs88cQTqampyXLLLTdve6FQyCGHHJLnnnsuw4YNy913353jjjtuiZ+noqKQjh3b1UfJTU779m2KXUKjK7c5l9t8AQCgqWqyDfDx48fnt7/9bQYNGpSqqqp07tw5H3/88ULHzj0TfZ111mnMEgEAAKAsFAqFdO3adZH7t9122wwbNiyvvvpqnZ6nuromn302bb5tlZUVJdFY/Oyz6Zkzp/prx5XKfJPym3Nt5wsAACy+9u3b1HrVpSbbAL/iiisyaNCgrLvuuunbt2/69OmzyAb43CvA11133cYsEQAAAEjSpUuXJMn06dPrfKzZs0uzgThnTnXJzm1Rym3O5TZfAABoqppsA3zVVVfNxRdfnN122+1r79/92muvpaqqKq+++mrOOuusvP322ykUCunRo0eOOeaYbLDBBo1UNQAAAJSeO+64I08//XR22WWXbL/99gvsHzt2bJLU+f7fAAAAUFe1u068CHr16pXdd9/9a5vfn3zySSZMmJAZM2bktNNOS3V1dXr27JkOHTpkxIgROeCAA/Lggw82UtUAAABQesaPH5+HHnood9111wL7ampqcu+99yZJttxyy8YuDQAAAObTZK8Ar6259//u2LFjrrnmmmy00UZJvgzgN910Uy666KL07t07PXr0qPOZ6C1azN+Mr+06801dbedRKvNNym/OpTIPAACgOPbYY49cd911GTFiRO68887ss88+SZLq6ur8/ve/z6hRo7L66qtnxx13LHKlAAAAlLtm3wDfaqut8sQTT6SmpibLLbfcvO2FQiGHHHJInnvuuQwbNix33313jjvuuCV+noqKQjp2bFcfJTc57du3KXYJja7c5lxu8wUAAOrXyiuvnPPOOy9nnXVWzj777Nx8883p3r17Ro8enXfffTedO3fO73//+7Rs2bLYpQIAAFDmmn0DvFAopGvXrovcv+2222bYsGF59dVX6/Q81dU1+eyzafNtq6ysKInG4mefTc+cOdVfO65U5puU35xrO18AAGDxtW/fpixWXdpzzz3zzW9+M9ddd11efPHFvPPOO+natWsOOuigHH300enUqVOxSwQAAIDm3wD/Ol26dEmSTJ8+vc7Hmj27NBuIc+ZUl+zcFqXc5lxu8wUAAJbMgAEDvnJ/jx49cs011zRSNQAAALD4mv0p6nfccUdOPPHEDBs2bKH7x44dmyR1vv83AAAAAAAAAE1bs78CfPz48XnooYcyffr0bL/99vPtq6mpyb333psk2XLLLYtRHgAAAAAAAACNpNlfAb7HHnukVatWGTFiRO68885526urq3PllVdm1KhRWX311bPjjjsWsUoAAAAAAAAAGlqzvwJ85ZVXznnnnZezzjorZ599dm6++eZ07949o0ePzrvvvpvOnTvn97//fVq2bFnsUgEAAAAAAABoQM3+CvAk2XPPPXPLLbfk+9//fsaPH59HH300s2fPzkEHHZT77rsvq666arFLBAAAAAAAAKCBNZsrwAcMGPCV+3v06JFrrrmmkaoBAAAAAAAAoKkpiSvAAQAAAAAAAEADHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASWhS7AKD8VFQUUlFRaLDjV1fXpLq6psGODwAAAE2d7A0AQLnSAAcaVUVFIR07tklFRWWDPUd19ZxMnDhdEAcAAKAsyd4AAJQzDXCgUX15Bnpl/vnAdZn+yYf1fvw2nVbIN3c5IhUVBSEcAACAsiR7AwBQzjTAgaKY/smHmT7+vWKXAQAAACVL9gYAoBxVFLsAAAAAAAAAAKgPGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAoCmpaKikIqKQoMdv7LSeTcAAAAAAAA0DA1wYJ6KikI6dGirSQ0AAAAAAECzpAEOzFNRUUhlZUWuvu3JjJswuUGeY4O1umXfHTdskGMDAAAAAABQ3jTAgQWMmzA5/xo3sUGO3a1L+wY5LgAAADQXbj8GAAANRwMcAAAAABqJ248BAEDD0gAHAAAAgEbi9mMAANCwNMABAAAAoJG5/RgAADQMay0BAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAQJJk8ODBWWuttfLUU08tdP/HH3+cX/3qV/nBD36Q9ddfP9ttt10uvfTSTJ06tZErBQAAgIXTAAcAAAAyatSoXHDBBYvcP2HChOyzzz655ZZbUlVVlW222SbV1dXp169f9t9//3z++eeNWC0AAAAsnAY4AAAAlLlHH300hx122Fc2sfv06ZNx48alV69euf/++3PllVfm4Ycfzo9+9KO8+eabueqqqxqxYgAAAFi4ZtMAtwwbAAAA1K/x48end+/eOeaYYzJr1qx07tx5oePee++9DB06NCussEJOOOGEedtbtWqVCy64IO3atcsdd9yRGTNmNFbpAAAAsFDNogFuGTYAAACof1dccUUGDhyYddZZJ3fccUdWXXXVhY57/PHHU11dna233jotW7acb9/SSy+dzTffPNOmTcszzzzTGGUDAADAIjX5Brhl2AAAAKBhrLrqqrn44otz1113Za211lrkuLfeeitJsuaaay50/+qrrz7fOAAAACiWJtsAtwwbAAAANKxevXpl9913T0XFV3898NFHHyVJunTpstD9c7d//PHH9VsgAAAALKYWxS5gUa644ooMGjQo6667bvr27Zs+ffosNEjXZhm2Rx55JM8880y23nrrxiofAAAASsa0adOSJFVVVQvdP3f73HF10aLF/M34ysome+7+YqntPEplvkn5zbnc5puU1lwAACgdTbYBPncZtt122+0rz0SvzTJsjzzySN566y0NcAAAAFgClZWVSZJCobDQ/TU1NfP975KqqCikY8d2dTpGU9W+fZtil9Doym3O5TbfpDznDABA09dkG+C9evWq1TjLsAEAAEDDatu2bZLkiy++WOj+udvbtKlbM6y6uiaffTb/VeSVlRUl0WT77LPpmTOn+mvHlcp8k/Kbc7nNN6n9nAEAoK7at29T6xWImmwDvLYsw1Z3luiq+7imrtzmm5TWXAAAoNi6du2a5D8nof+vrzs5fXHMnl2azbQ5c6pLdm6LUm5zLrf5JuU5ZwAAmr5m3wC3DFvdlcpZx4uj3OZcbvNNynPOAADQUObedmzMmDEL3f/2228nSdZaa61GqwkAAAAWptk3wC3DVneW6Fq0Uplzuc03sQwbAACNZ3GWYWuuttpqqyTJ8OHD07t373knoyfJlClT8swzz6Rt27bZeOONi1UiAAAAJCmBBrhl2OquHJerKrc5l9t8k/KcMwAANJQVV1wx2267bYYPH55LL700p59+egqFQmbOnJlzzjknU6dOzaGHHpqlllqq2KUCAABQ5pp9A9wybAAAANDwzj777Lz22mu58cYb89hjj2WNNdbIK6+8kg8++CDrrLNOjjvuuGKXCAAAAGn2a7T99zJsc+bMmW+fZdgAAACgfqy44oq5++67s/fee2fKlCkZPnx4WrVqlaOOOir9+/dPu3btil0iAAAANP8rwC3DBgAAAPVjwIABX7l/ueWWS58+fRqpGgAAAFh8zb4BnliGDQAAAAAAAIASWAI9sQwbAAAAAAAAAM3oCnDLsAEAAAAAAADwVUriCnAAAAAAAAAA0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KHYBAAAAQPPx6KOP5uijj17k/p122ilXXHFFI1YEAAAA/6EBDgAAANTa66+/niTZdNNNs/zyyy+wf6ONNmrskgAAAGCekmqAOwsdAAAAGtbcBvhZZ52Vtddeu8jVAAAAwPxKqgHuLHQAAABoWK+//npat26d1VdfvdilAAAAwAJKsgHuLHQAAACofxMnTsyHH36Y9ddfPy1alNRXCgAAAJSIkkqrzkIHAACAhjP3xPMVVlghl156aR555JF88MEH6dy5c3bYYYccddRRWWaZZYpcJQAAAOWsotgF1Je5Z6GvtdZazkIHAACABvDaa68lSR5++OHcdttt6d69e3r06JHJkyfnhhtuyD777JOPPvqoyFUCAABQzkqmU+wsdAAAAGhYb7zxRpJkm222yWWXXZall146SfLpp5/mpJNOyt///vecffbZufbaa5f4OVq0mP9c/crK0jh3v7bzKJX5JuU353Kbb1JacwEAoHSUTAP8v89Cb9euXTbbbLMsv/zyeeWVV3LDDTfk0Ucfzc0335wuXboUuVIAAABoni6++OL84he/yPLLL5+qqqp525dddtlccskl2XHHHTN8+PC8//77WWmllRb7+BUVhXTs2K4+S24y2rdvU+wSGl25zbnc5puU55wBAGj6SqYB7iz0JecM5bqPa+rKbb5Jac0FAACailatWqV79+4L3bfccsvl29/+dp5//vm89tprS9QAr66uyWefTZtvW2VlRUk02T77bHrmzKn+2nGlMt+k/OZcbvNNaj9nAACoq/bt29S691MyDXBnoS+5Ugldi6Pc5lxu803Kc84AAFBsnTt3TpJMnz59iY8xe3ZpNtPmzKku2bktSrnNudzmm5TnnAEAaPpKpgHuLPQl5wzlRSuVOZfbfBNnoQMA0HgW5yz05mzmzJk5//zzM3HixFx22WVp27btAmPGjh2bJFl++eUbuzwAAABIUkIN8K/jLPRFK8ezdcttzuU236Q85wwAAA2pVatWeeqpp/LBBx/k8ccfz4477jjf/tGjR2f06NFZeumls+GGGxanSAAAAMpeSZyiPnPmzPzyl7/MMccck2nTpi10jLPQAQAAoG723XffJMmvf/3rvPfee/O2f/zxxznzzDMzZ86cHHbYYfPdmgwAAAAaU0lcAe4sdAAAAGh4hx56aJ577rn87W9/yy677JJNNtkkrVq1yjPPPJNp06Zlhx12SK9evYpdJgAAAGWsJK4AT5yFDgAAAA2tVatW+dOf/pRf/vKXWW211fLCCy/kmWeeyRprrJE+ffrkd7/7XSorK4tdJgAAAGWsJK4AT5yFDgAAAI2hsrIyBx98cA4++OBilwIAAAALKJkG+Nyz0G+55ZYMGjQoL7zwQioqKrLGGmtk7733zl577ZVCoVDsMgEAAAAAAABoICXTAE+chQ4AAAAAAABQzkrmHuAAAAAAAAAAlDcNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KHYBAMVWUVFIRUWhwY5fXV2T6uqaBjs+AAAAAAAAX9IAB8paRUUhHTq0TWVlwy2IMWdOdaZMmZGamoZrgmuyAwAAAAAAaIADZa6iopDKyopcfduTGTdhcr0ff63uXXLwrhunQ4e29X7s/1ZdPScTJ07XBAcAAAAAAMqaBjhAknETJudf4ybW+3G7dWmfQkVF/vnAdZn+yYf1fvwkadNphXxzlyNSUVHQAAcAAAAAAMqaBjhAI5j+yYeZPv69YpcBAAAARVFRUUhFRaHYZdSJ24/xvxr6fe09BwBLRgMcAAAAAGgwFRWFdOjQNpWVFQ32HDXV1SlUNNzxE7cfY36N8b6eM6c6kyZN854DgMWkAQ4AAAAANJiKikIqKyty9W1PZtyEyfV+/A3W6pZ9d9zQ7cdoVA39vl6x6zI5dv8tvOcAYAlogAMAAAAADW7chMn517iJ9X7cbl3aJ3H7MYqjod7XczXkFeaJZdYBKE0a4AAAAAAA0IQss3RVaqqr0759mwZ9Hkv7A1CKNMABAAAAAKAJaVfVKoWKCkv7A8AS0AAHAAAAAIAmyNL+ALD4GvYGIgAAAAAAAADQSDTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEloUuwAAAAAAAACg+auoKKSiotCgz1FdXZPq6poGfQ6at5JrgD/77LO59tpr88Ybb2TGjBlZa6218rOf/Sw/+tGPil0aAAAAlATZGwAAmqeGbFAXCoW0b986FRWVDXL8uaqr52TixOma4CxSSTXA77///px66qlp0aJFevbsmcrKyjz99NM58cQTM2bMmBx33HHFLhEAAACaNdkbAACap4qKQjp0aJvKyoa9Q/I/H7gu0z/5sEGO3abTCvnmLkekoqKgAc4ilUwD/JNPPslZZ52VNm3apH///llvvfWSJGPGjMnBBx+cq666Kttvv33WXnvtIlcKQClq6KV9LOsDADQFsjcAxSR7A9RNRUUhlZUVufq2JzNuwuR6P/4Ga3XLvjtumOmffJjp49+r9+NDbZVMA/yWW27JjBkzcsQRR8wL4Emy2mqr5eSTT86ZZ56Zm266KRdddFERqwSgGBo6IDfG0j6W9QEAmgLZG4BiqagopGPHNrI3QD0YN2Fy/jVuYr0ft1uX9vV+TFgSJdMAHzFiRJLkBz/4wQL7tttuuxQKhTz22GONXBUAxdZYy/okDbe0T1Nc1qehTypInHkPAE2R7A3QdDS1q6Ebup7KyopUVFSWVfam+Brj+4+G5vsVoCE0tc8h/6tkGuD/+Mc/kiSrr776Avs6dOiQzp0756OPPsonn3ySTp06NXZ5ABRJQy/rkzTNpX0a8gNIY1zxnjjzHgCaItkboGloaldDN+bJ500pe1P/mlJDpbHe1zXV1SlUNNxz+H4Fyo8VUUukAT558uR88cUXadeuXdq1a7fQMV27ds1HH32Ujz76SAgHKEMNtaxP0vSW9mmsgNZQZ90nzryvjXI8C725z9lZ91+vub/GideZ0iZ7AzQdX35uajpXQzfmyecUV3M/4X5xT+xorPd1U/lZLlfNPYvKofw3K6J+qVBTU9Psfyo+/PDDbLPNNuncuXOefPLJhY7Zf//98+KLL+a2225Ljx49Fvs5amoW/AVSKCQVFRWZ/PmMzJlTvUS1f5VWLSuzVNvWmTX1s9RUz6n34xcqKtOyXftUV1enNu+C5j7fpPzm3NTmm5TfnJvi+3re45rvZ7rFnme5vq+nTpuZOdX1P+eWLSrTpqql93U9W9xPZBUVhRQaeMI1NTUN+hwL+3z1VRp6zk1tvnN5X9efhn6N5z7H4r7O5fQaJ817vsnC59wYv5ObAtl7ycgotRjfzOfc1OablN+cm+L7et7jGvDPQ0VFRdm8xon3dUNYkvd1Y3zumT1jamoa4PuMQkVFWlS1azKvcdL03tfzHteMP9ouSUZp7ll0cXJouf7uSsrnfd3Q3w0nDf/98KJe48X5WS2JK8Ar/v/yIF816bl9/iXt9xcKhVRWLvz4yyxVtUTHrK2W7Rr2ysKKxVxepbnPNym/OTe1+SblN+em+L4uN+X4vm7XtlUDVfIl7+vS19BfanzV56tiKLf5lqPGaFB6nSllsnfdyChfr7nPuanNNym/OTfF93VDK7fXOCm/OZfj+7pF1cJXmqkvTe01Tpre+5r61RS/b/C7q/Q19HfDSdP+3VUS7465S6/NmDFjkWNmzpyZJGnbtm2j1AQAAAClRPYGAACgOSiZBnjbtm0zZcqURQbxCRMmJEm6dOnSmKUBAABASZC9AQAAaA5KogFeKBSy5pprJknGjBmzwP5Jkybl448/zrLLLpvOnTs3dnkAAADQ7MneAAAANAcl0QBPkq222ipJMmzYsAX2DRs2LDU1Ndl6660buywAAAAoGbI3AAAATV3JNMD33HPPtGnTJn/+85/z4osvztv+zjvv5Le//W0KhUJ+/vOfF7FCAAAAaN5kbwAAAJq6Qk1NTU2xi6gvd955Z84+++xUVlamZ8+eadWqVZ5++ul88cUX+b//+7/06tWr2CUCAABAsyZ7AwAA0JSVVAM8SR5//PFcd911efXVV1NZWZnVV189hx56aH74wx8WuzQAAAAoCbI3AAAATVXJNcABAAAAAAAAKE8lcw9wAAAAAAAAAMqbBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMCBejNlypTFfswzzzzTAJUAS+qqq67KW2+9VewyAACARZC9ofmTvQGgYWmA0+hmzpyZV199NaNHj87s2bMXOe7TTz/Nc88914iVNb5nnnkmN954Y2699daMHTu22OXU2cEHH5xJkybVauwXX3yRPn365Oc//3nDFgUslquuuipvvvlmscuAerfddtvlkUceKXYZRVFdXZ333ntvvm01NTV58MEH06dPn/zmN7/Jyy+/XKTq6s8HH3yQGTNm1Hr82LFjM3jw4IYrqAg+/fTTPP3003nwwQfz0EMP5Zlnnqn1ZzOg9Mje/yF7y97Q1MjelCrZW/b+X7I3xdKi2AVQezNmzMinn36abt26FbuUJda/f//87ne/y7Rp05IkSy+9dA4//PAcfvjhqaiY/3yMv/3tbzn99NPzxhtvFKPUevPmm2/mj3/8Y958881069YtRx55ZHr06JETTjghjzzySGpqapIkLVq0yPHHH58jjzyyyBUvuTfeeCM//elP8+c//zmdO3de5LiXX345p59+ev71r3995bhS9emnn2bMmDHZdNNNi11Ko5gyZUouvvji9OnTp9ilNJpye41LwXbbbZczzzwz2223XbFLaTTf+ta3cskll2TXXXctdimNYty4cfM+f5STESNG5Pzzz89HH32UV199NcmXofyYY47JY489Nu9zSL9+/XLwwQend+/exSy3TrbbbrsF3tPTpk3LBRdckMMPPzyrrbbafONHjhyZ3r17Z/fdd2/kSuvfww8/nD/+8Y8L/dxcKBTSo0ePHH744dlmm20av7h6tPbaa6dQKCzWYwqFQl5//fUGqohSJXs3T7L3gmTv8splsjfNgexd+mRv2Vv2lr2bCleAF9HCzoaaOXNmBg8enI8//niB8UOGDGnWHw4GDx6cvn37Zq211krv3r1z5JFHpqqqKldccUUOPfTQfP7558Uusd69+uqr2WeffTJixIi0adMmL7/8cg455JD07ds3jzzySA477LAMGjQoN998c7beeuv89re/zUMPPVTsspfY2WefnXfeeScHHnhgPvzwwwX2z5o1K7/5zW9ywAEH5F//+ld+/OMf5y9/+UsRKq1f3/rWt3L//ffPt23GjBm56qqr8v777y8w/m9/+1sOPvjgxiqvQbz//vu54IIL8pOf/CQ/+clPctZZZ+Xdd99dYNyQIUOy00475Z577ilClfWnHF/jclOOAW1u+KJ0jR49Oscee2xqampy2GGHpbq6Okly2223ZcSIEenSpUvuvPPOjBw5Mqeddlr69+/frD+HLOw9/cUXX2Tw4MGZMGFCESpqHH369MmJJ56YcePGZffdd88pp5ySX/3qVznnnHNywgknZLvttstrr72Wo48+Or/+9a+LXW6dbLrpptlkk00W65+NN9642GXTBMjesrfsLXs3V7J36b/G5Ub2phTJ3rK37N00s7crwItoYX/wp06dmt69e+eGG24oubNzb7zxxmy66aYZMGDAvG3HHHNMzjvvvAwcODCHHHJI/vznP2eppZYqYpX164orrshKK62UAQMGZNlll820adNy5JFH5pZbbsm+++6bU045Zd7YTTbZJD/96U9z/fXX50c/+lERq15yBx54YJZZZpmcccYZOfDAA/PnP/853/jGN5J8eYb66aefnrfeeivdunXL+eefn6222qrIFdePhf3Rnz59eq6++upsvPHGWWmllYpQVcN54403ctBBB+Xzzz9PVVVVqqqq8vrrr+fBBx/M7bffnjXXXDNTpkzJWWedlSFDhqSysjK9evUqdtl1Um6v8TvvvLPYy2A64x6anuuuuy5du3bNvffem/bt28/bfsstt6RQKOTkk0/O+uuvnyT5+c9/nmeffTa33XZbs/0csiil/IXTfffdl5tvvjm77757zjnnnLRt23ah46ZOnZoLL7wwN910UzbaaKPssMMOjVxp/fjvHAGLQ/aWvWVv2bs5kr2/VMqvsewNpUH2/pLsLXs3NRrgTVCp/qL45z//mTPOOGO+ba1atUrfvn3ToUOH3HDDDTn88MNzww03LPIXSHMzcuTInHzyyVl22WWTJG3bts0vfvGL/PSnP82WW265wPgf/ehHueSSSxq7zHq1yy67ZOmll86JJ56YAw88MNddd10eeeSRXHvttZk9e3YOOOCA/N///V/atWtX7FIbXKn+LF955ZWZMWNGfvOb32TnnXdOkowaNSonn3xy+vTpk8suuywHH3xw/vWvf2W99dZLnz59stZaaxW56oZRqq/xtddem2uvvXaxHtPcl8wsV4u7nFFzd+edd+app56q9fhCoZC+ffs2YEUN67nnnss+++wzXwAfO3Zs3nnnnbRo0SI/+MEP5hu/xRZb5Morr2zsMqmD2267LRtuuOHXnl3erl279O3bN2PGjMldd93VbEP4rFmz0rJly8V6zMsvv5wNNtiggSqiuSvVz3Kyt+wte5cG2fs/SvU1lr3Lh+z91WRvmjrZ++s1xeytAU6jadOmTSZNmrTQfaeddlqmTZuW22+/PUcddVSuu+66xi2ugSy11FL57LPP5tu21lprZeutt06LFgv++E2cODGtW7durPIazNZbb51+/frl6KOPzk9+8pPU1NRklVVWSZ8+fbLJJpsUuzzqaNSoUdlvv/3mBfAkWX/99XPaaaflpJNOykknnZRx48bllFNOyaGHHrrAPQZp+rbffvuS/eLkq5RbQEuSa665JnfeeWetxxcKhdx0000NWFHDeu655xbrCovm/hpPnDgxyy+//Hzb/v73vydJNthggwW+EK+qqsoXX3zRaPVRd//4xz8W6x622223Xe64444GrKhh/eQnP8lll11Wq79RM2fOzBVXXJH+/fvntddea4TqoOmQvb8ke8vezZ3sXfpk79pp7rkskb2/TnN/jWXv0id7L1pTzt4a4DSanj17pn///vnBD36QNdZYY4H95557bj7//PM88MADOfTQQ7P11lsXocr6tcUWW+TPf/5zNtpoo3znO99Jkiy99NL54x//uMDYl19+OQMGDJg3rrnbeOON079//xx++OH59NNP86tf/UoALxGTJ0/O2muvvcD29dZbL3PmzMmbb76ZAQMGZMMNN2z84qgXP/zhD7PrrrsWu4xGV24BLUnGjBmTMWPG1Hp8cz9r/cwzz2zW93RdXMsss0w+/fTT+bb97W9/S6FQyBZbbLHA+DFjxsy7co7mYdq0aenUqVOtx3fp0qVZ35Pt448/zl577ZXjjz8+RxxxxCJ/J73wwgs588wz8+6772aVVVZp5Cqh+GRv2Vv2Lg2yd+mTvWtH9m5+ZG/Zu9TI3s0ze2uA02hOPvnkHHDAAdljjz3y7W9/O5deeul8PxSFQiGXXHJJWrVqlYEDB+bFF18sYrX145RTTsmoUaNy6KGHZpNNNlnkvRMOOuigvPDCC1l22WXnuzdZc7f22mvntttuy89//vMcffTRufrqq7P55psXuyzqaPbs2Qu9WqKqqipJ0qtXLwGcZqncAlqSXHrppWX1hUvHjh2z4oorFruMRtOjR488+OCDOeyww1JZWZmPP/44I0aMSJLsuOOO842dMmVK7r///vTs2bMIlbKk5syZs9ArGxelsrIys2fPbsCKGtYDDzyQ3r175/LLL8+IESNy8cUXZ+WVV563f+4ysXPvtXfYYYflhBNOKGLFUByyt+wte5cG2ZtSJXuXPtlb9i41snfzzN4a4DSa7t275y9/+UuuvvrqPP/88/M+sP+3ioqK9O3bNxtttFF+97vf5ZNPPilCpfWnU6dOueeee3L77bdn5syZixxXVVWVvfbaK7/4xS8W60yipqZ3794L3b7KKqvk/fffz5FHHpkf/ehH850xVApncTK/ddddt9glwBIpt4BG6TviiCOy3377Zd99981mm22WRx55JF988UV23nnnrLrqqkm+/GL1pZdeysUXX5xPP/00Bx54YJGrrpuhQ4fm3XffnfffM2bMSKFQyL333psXXnhhvrFvvfVWY5dHHXXq1Cl/+tOfcsstt+TSSy/Nj3/845xxxhnZZ5998uyzz+aXv/xlxo4dm7XWWisXXnihzySULdlb9pa9y4O/czRXsjelRvaWvUtNqWRvDfAie+edd+Zb8mXKlClJkjfffHOBM0oWZ5mUpqpjx44566yzvnbc3nvvnT322GO+X6LNVVVVVQ455JCvHFMq910bNGjQV+7/4osvMnjw4Pm2lUoIf/755zNnzpx5/z116tQkyZNPPpnx48fPN7YUrrD4Ks19maZFKZfXeNNNN03nzp2LXQZQD9Zbb71cc801ufDCC3PDDTeksrIyu+66a84///x5Yy655JL0798/FRUV6d27d3r06FHEiutuyJAhGTJkyALb//fzx1yl8Dfrf794+Cql8sXDgQcemM033zxnn312zj333AwYMCBjxoxJixYtcsIJJ6RXr16LdXY+5UH2XjjZu3mSvUs/l9VGKXyOWZhyeY1lbygdsvd/yN5fkr2bhkJNTU1NsYsoV2uvvfZCf/Bramq+cvsbb7zRGOU1uJqamowdOzaTJk1Kkiy77LJZaaWViltUAyv1OY8bN26JHtfcz/pc2M/yf/9qXdi+5vyzvPbaa+foo4/Od7/73fm2T5kyJcccc0zOOOOMrLPOOgs8btNNN22sEutdub3G5WjttdcuuyXJym3OgwYNyiabbDLfkk3lZOLEiWnTps0CVwE+9thjee2117Lzzjs3yfs1LY5nn312iR632Wab1XMljWdh9wX9OqX09+m5557LMccckylTpqRQKOSYY47J8ccfX+yyaIJk79LOoQtT6nOWvf+jlHOZ7P2lUn6Ny1G55dCk/OYse8veiyJ7N1/NNXtrgBfRVVddtUSPO+644+q5ksY1atSo9OvXL08++WSmTZs2376llloq3//+9/Pzn/98iX6pNFXlOOdy8nVn3y/KHnvsUc+VNI5FfYGYLPpLxCTN+g9+Ob3G/31l1OJozl+yJOUZ0J599tmsttpqzXr5Tyh35fjFQ5J8/vnnueSSS3L33XendevWOeKII/Lwww/nrbfeyne+85306dMn3bp1K3aZNCGyd/nk0HKcczkpp1yWyN6Lozm+xrK37A00H7J388zeGuA0qhtuuCGXXXZZKioqstFGG2WNNdZI+/btM3v27EyaNCmvv/563njjjVRUVOT000/PwQcfXOyS66wc51xb1157bYYMGZKBAwcWu5RGN3PmzLRq1arYZSyRcv0CcXE119f4q75k+SrN+UsWysOi7pX5VUplqVAW7vbbb8/f/va3Jf67RnGMGDEi5557bsaPH5/NN988F1xwQVZeeeXMmjUrV155ZW644YZUVVXl1FNPzX777VfscqFoyjGHluOca0v2bn65LJG9a6u5vsayN6VK9uZ/yd7NUylkbw1wGs1jjz2WI488Mt/5znfSt2/frLDCCgsd99577+X888/PU089lRtuuCHf+c53GrnS+lOOc14c5557bu68885m/+H9qquuWqyAOWrUqPTu3Tt/+ctfGrAq6lM5vca///3vlyiEN/cvWcoxoC3Jl76FQiE33XRTA1TT8Mpxuaqv+1KtdevWWXrppbPmmmvmhz/8Yfbee+9UVFQ0YoXFVQqfQz744IMsu+yyCyyvtyhjx47NCy+8kN13371hC2sgp5xySv7yl7+kbdu2Oe2007LvvvsuMGbkyJE5/fTTM3bs2Gy22Wa58MILS2rZY6iNcsyh5TjnxVEKf/OS8spl5aqcXmPZu/Zk7+ZF9l6Q7N38P4fI3s0ze2uAF1G5/cH/+c9/no8//jgDBw5My5Ytv3Ls7Nmzs/vuu2eVVVbJ1Vdf3UgV1r9ynPPiKIU/fsmXH3IOO+ywnHrqqV85bvbs2bnqqqvSr1+/zJkzp9nPu7ZmzJiRTz/9tEkvh/J1vMalr1wD2uJqznMux3tlHnTQQV+5f86cOfnss8/y3nvvZdasWdliiy1y7bXXpkWLFo1UYXGVwueQb33rW7nkkkvmu5/gtGnTcsEFF+Twww/PaqutNt/4++67L6effnqznfPaa6+drbbaKhdccEGWX375RY6bMWNGfv3rX+f2229P27Zt8+KLLzZilTRFsveilUoOLcc5L45S+JuXyGVfR/amOSi3HJqU35xl7wXJ3s3/c4jsvXBNPXuXx09YE7U497X57zOImmsIf/3113PIIYd8bRhNkhYtWuRHP/pR7rvvvkaorOGU45zL0SabbJIbbrgh06dPzznnnLPQMW+++WZOP/30vPnmm1lmmWXyy1/+spGrrD/bbbddzjzzzGy33Xbzts2cOTMPPvhgttxyy3Tu3Hm+8UOGDGnWf/CT8nuNy9EjjzxS7BIa3ejRo4tdQqNqzmF6SQ0YMKBW42bMmJHbbrstl1xySW677bavDe80HQs7l/mLL77I4MGDs9tuuy0Qwpu7iy66qFb3+Kyqqsp5552XH/zgB/4ek0T2/iqlkkPLcc7lqNxymexd+q9xOZK9S5/svWiyd/Mley9cU8/eGuBFVJs/fuPGjcsFF1yQESNGZOmll86JJ57Y8IU1kKlTp6Zr1661Hr/CCivk3//+dwNW1PDKcc7l6IYbbsgJJ5yQ2267LdOnT0/fvn3nfXFWU1OTP/3pT7n66qszc+bM7LTTTjnrrLOy7LLLFrnqJTdu3LhMmzZtvm1Tp05N7969c8MNNywQwktBub3GSfLOO+9k5MiR2XPPPedt+/jjj3PVVVflxRdfTJs2bbLddtvlkEMOaZb3W/tf5RjQmN/MmTPzj3/8I1VVVVl11VWLXU6jqqqqys9//vO8/PLLGTRokBBeAkp1ka/aBPD/9s1vfjN77713A1VDcyJ7f7VSyKHlOOdyVG65TPYu/dc4kb0pP7K37F1KZO8vNdXsrQHeRM2ZMyc33HBD/vCHP2TGjBnZeeed07t372b94Xb27NmL9UGtRYsWmTlzZgNW1PDKcc7lqFWrVrn66qvTu3fvDBo0KDNmzMhll12W9957L2eccUZGjRqVLl265Lzzzsv3v//9YpfbYEr1D35Sfq/xZZddlhtuuCE1NTXZY489UlFRkSlTpmTffffNBx98kA4dOmTFFVfM7373uzz66KMZMGBAra62ac7KMaCNHz8+o0aNSlVVVTbddNNa3+eoKZsyZUquu+66jBw5cr4ztO+///706dMnn332WZIvP7j37ds3G264YZEqLY6ePXvmySefLHYZUCdffPFFHn744QwcODDPPvtsampqcuyxxxa7LJow2bs0cmg5zrkclVsuWxTZu3ReY9l7QbK37F0OZG9KQXPI3hrgTdDzzz+f888/P2+//Xa6d++ec889N9/5zneKXRZ8rauuumqxxr/66qsNVEnjq6yszCWXXJL27dvn5ptvzvvvv5+33347M2bMyN57753TTz89Sy21VLHLpA7K5TUeOnRo+vXrl2222SYHH3xwKioqkiR/+MMfMm7cuGywwQb585//nDZt2mTUqFE56KCD8uc//zlHHHFEkSuvu3IMaOPGjcvll1+ekSNH5tFHH523/U9/+lOuvPLKzJkzJzU1NVlmmWVywQUX5Ic//GERq62bqVOnZt99980777yT5ZdfPrNnz06LFi0yatSonH766ampqcm+++6bNdZYI4MHD87Pf/7zDB48OKusskqxS280lZWVqa6uLnYZS2zw4MGLNf6f//xnwxRCUYwcOTIDBw7MQw89lKlTp6ampibf+MY3su+++xa7NJow2ZvmSvYu/VxWzsrlNZa9Ze9E9pa9myfZu7w1p+ytAd6ETJw4MZdcckkGDx6cVq1a5fjjj88RRxxREsvbzPX8889nzpw5tRr74osvNnA1jaOc5ry4ITyZ/x57peCss85Khw4dctVVV6WioiJ//OMfs/XWWxe7LOpRqb/Gt99+ezbYYINce+2187bV1NTkvvvuS6FQyC9+8Yu0adMmSbL++uvnxz/+cf7yl780+xBejgHtk08+yb777puJEydm/fXXnzfnJ554IpdffnlatGiRk08+OWuuuWbuvPPOnHzyybnjjjuyzjrrFLv0JXLDDTfkvffey29/+9vsuOOO87ZfffXVqampyc9+9rOcccYZSZK99toru+22W6699tpcdNFFxSq50b388stZYYUVil3GEjvjjDMW63NFTU1NyX0OKTfjx4/Pvffem4EDB+bdd9+dd0Vcz549c8QRR2TLLbcscoU0VbL3/Jp7Dp2rnOYse5d+LqP0X2PZW/aWvWXv5kr2Lj/NNXtrgDcRd911Vy677LJMnjw5W2yxRc4999x84xvfKHZZ9e7OO+/MnXfeWauxpfKLsZzm3L9//2KX0CQcd9xx6dixY/r06ZN+/fpl4403Lomzk/mPUn6NX3vttQUC9euvv55PPvkkSy21VHr27DnfvvXWWy/3339/Y5bYIMoxoP3pT3/K1KlTc8stt8x3Rv2f/vSnFAqFHHvssfPeC9/73vey55575rrrrstvf/vb4hRcR0OGDMmPf/zj+V7fqVOnzlt27IADDpi3vXXr1tltt91y1113NXqdxfLXv/419957bw4//PBil7LEmvPPI7U3c+bMDBs2LAMHDszTTz+dOXPmpLKyMptttlk23njjXHPNNTn44IObbACn+GTvBTX3HDpXOc1Z9v5SKecyvlTKr7HsLXvL3rJ3c9Wcfx6pvVLI3hrgRfbmm2/mvPPOy0svvZTOnTvn8ssvz0477VTsshpEOf5iLLc5b7bZZov9mOeff74BKmlczz333ALb1lxzzey99965884787Of/SynnXbavOWs5tp0000bq0TqqJxe42nTpmWZZZaZb9vf//73JF/Op7Kycr59s2fPbtZfHs5VjgFtxIgR2XPPPecL4JMmTcoLL7yQJPnJT34yb3uhUMiPfvSj3HTTTY1dZr15//3353sdky9/tmfPnp2VV155gebHCiuskE8++aQxS6x3vXv3/sr9c+bMydSpU/OPf/wj7733Xrp3796sQ/gee+xR7BKKYujQoXn33Xfn/feMGTNSKBRy7733zvt5nuutt95q7PLq1fnnn58HH3wwkydPTuvWrbPVVltl++23z3bbbZeOHTtm3Lhx+cMf/lDsMmmiZO/SVm5zlr3/o1RzWbkqp9dY9pa9Ze8vyd7Nj+z9Jdm76WdvDfAiuvjiizNgwIDMmTMn2267bU488cQstdRS+eCDD77ycd26dWukCutXOf5iLMc518aHH36YQYMGZfDgwRk7dmzeeOONYpdUJwcddNBXhpDXXnsthxxyyALbm/O833nnnfmC6ZQpU5J8+cViixbz/2kZM2ZMo9bWEMrpNe7atWvGjh0737YRI0akUCjke9/73gLjR40aleWWW66xymsw5RjQ/v3vf2fNNdecb9szzzyT6urqrL766gu8rp06dcrkyZMbs8R6VVFRscA9tp5++ukkyXe/+90Fxn/66afN/uqSQYMG1WrcyiuvnJ/97Gc55phjmv2cF2Vhn69XWGGFkvkScciQIQtsX9R92ZrznG+77ba0bds2Rx11VA4//PCSfb9S/2Tv0leOc64N2ftLzXnesvf8Suk1lr3/Q/aWvZv753rZ+z9k7/9oznMuleytAV5EN95447x/Hz58eIYPH16rxzXHD3VL4tNPP82YMWOa5VmcS6qU5/zFF19kyJAhGThwYJ555pl5S84t7EN9c3Psscc26z9oS+Laa6+d7z5Vc1188cULbGvuywsm5fUaf+9738s999yTAw44IMstt1xGjhyZ559/Pi1btswOO+ww39i33347f/nLX7LPPvsUqdr6U44BrXXr1pk+ffp825566qkUCoVsscUWC4z/97//nfbt2zdWefVu9dVXz8iRI3PggQcm+fJ309ChQ1MoFPL9739/gfGPPPJIVltttcYus1498sgjX7m/devWad++fUnd8zZJ7rnnntx11135wx/+kGWXXTYTJ07M97///QV+j59wwgk5+uiji1Rl/Si3JXD32GOPDBs2LH/84x9z0003ZZNNNpl3Fnrnzp2LXR5NmOz91Uo5hy5KKc9Z9i4tsnfpkr3/Q/aen+zd/MjesnepKZXsrQFeRMcdd1yxS2hU3/rWt3LJJZdk1113nbdtxowZ6devX3bfffestNJK843/29/+ltNPP71Zf+lQjnP+Xy+99FIGDhyYhx56KJ9//nmSZNlll82ee+6ZfffdNyuuuGKRK6y7448/vtglNKpyCqRzldNrfMwxx2TIkCH50Y9+lFVXXTVvvfVWampqcuyxx2bZZZdN8mX4HjJkSPr375+WLVvmsMMOK3LVdVeOAW3ttdfO008/nZ/97GdJ/nNvnyTZfvvt5xtbU1OTv/71r1l77bUbvc76svvuu+fCCy/Meuutly222CJ33nlnPvjgg3zjG9/IVlttNd/Ya6+9Ni+99FLOOuusIlVbP0rhb+zi+sUvfpGHH3443bp1ywcffDDv91aS7Lbbbll55ZWTJPfee2+uueaa7LXXXunSpUuxyq2zJVkCd/bs2Q1QSeO46KKLcv7552f48OG5//778/jjj+eJJ57I+eefn4022ig9evQou88o1I7sXfo5tBzn/L9k79Ije5c22Vv2TmRv2bv5kr2/nuxdfBrgRVRuIbympmaBbdOnT8/VV1+djTfeeIFAWgrKcc5JMmHChAwePDiDBg3Kv/71r9TU1KRNmzb57ne/m6eeeiq/+tWvst122xW7TJZQOQXSctS5c+fcfffdufrqq/PSSy/l29/+dvbcc8/svffe88YMGjQoN9xwQ1ZcccX85je/yQorrFDEiutHOQa0/fbbLyeffHL69u2bLbbYIvfcc08++eSTfPvb357vaqgZM2bk17/+dd5+++1m/YXLfvvtlxdeeCEXXXRRCoVCampqsswyy+Syyy6bdw/Bu+++O3/6058yduzYbLzxxtl///2LXHXDGjVqVEaOHJmKiopsttlmWWuttYpdUp3cd999efjhh3PkkUfmhBNOWOC+ibvvvnu+853vJEm23nrr7LPPPrnjjjtK5jP51KlTU1NT85VXyIwcOTJnn312HnjggUasrH61atUqO+ywQ3bYYYdMmTIlf/3rX3PfffflhRdeyAsvvJBCoZA//vGP+fzzz7PDDjukqqqq2CXTBJTKz3ltlWMOLcc5J7J3qZO9S5vsLXvL3rJ3cyV7y97NJXtrgDchM2fOzOjRozNhwoTU1NSka9euWXvttdO6detil9agFhZUS12pzvmhhx7KwIED89RTT2XOnDlp3759dt111/zwhz/MVlttlY8++miBMxtLwVVXXbXYjykUCjn22GMboJqGd/DBB+foo4+e90GmHJTba7z88svnggsuWOT+PffcM9///vfTo0ePeeGluSvHgLbTTjvlzTffTL9+/TJgwIDU1NRkpZVWyhVXXDFvzPXXX58//OEPmTp1anbcccf8+Mc/LmLFdVMoFHLZZZflwAMPzMiRI7PUUktl++23n+8s5X//+9+pqanJ0UcfnSOPPLIk3t+vv/56/vjHP2bMmDH5xje+kaOOOirrr79+fvnLX2bgwIHzPpMUCoXssssuueiiixa4n2RzMWjQoGy00UY56aSTvnbs3C/cHnvssWYfwh9++OFcddVV+cc//pHky/vKnXDCCdlll13mjZk2bVouv/zy3HbbbQssOdmc9O7dO/vtt1822GCDJMnSSy+dvffeO3vvvXfGjx+fBx54IA888EBGjRqVV155JRdccEF22mmn/OpXvypy5TQ1snf5KNU5y96115xzmexdO835NZa9Ze+5ZO/m//6WvRdO9m6eSiV7N8+fsBLz8ccf5/LLL8+QIUMyderU+fa1adMmO+ywQ0466aR07dq1SBVC7Zx00klp27ZtDjjggGy33XbZdNNN5zsDrDksi7Ekyi2gPfvss/OdkVwOyu01/jrNffmxhSnXgHbSSSdl//33z8svv5yllloqm222WVq2bDlvf+vWrbPeeutl1113zU9+8pMiVlp/Ntpoo2y00UYL3Xfcccc1+0D230aOHJmDDz44LVq0yJprrpnXXnstBx54YA466KDcc8892W233bLjjjtm2rRpefTRR/PAAw/kW9/6Vg499NBil75EXn/99Rx11FG1Hr/lllvm6quvbsCKGt6DDz6Yk08+Oa1bt86WW26ZNm3a5Pnnn8+pp5467/6Rr7zySk466aS8//77WWmllXL++ecXu+wlNmjQoHz3u9+dF8L/23LLLZfDDjsshx12WMaMGZP77rsv999/f+66664mF8IpHtmbUiF7115zzmWyd+0059f468jesndzJnvL3nPJ3s1PqWRvDfAie+mll3LkkUdm8uTJ2WCDDbL55puna9euadGiRSZMmJDnnnsugwcPzqOPPpprrrkmPXr0KHbJsEgrrbRS3n///QwcODD//Oc/88orr2T77bfPN7/5zWKX1qD69+9f7BJoYOX0Gj/33HNL9Lj/XrarOSungDbX8ssvn+WXX36h+37605/mpz/9aSNXRH25+uqr07179/Tv3z8dO3ZMTU1NzjzzzNx4443Zbbfdcskll8wbu8suu+Szzz7LAw880GxD+IwZM9K+ffsFti+99NK59tpr861vfWu+7e3atWvW9+RKkptvvjmdOnXK7bffPu8ea9OnT8/RRx+d3//+9+natWsOPfTQfPHFF/n5z3+eX/ziF01yWbL6ttpqq+Wkk07KSSedlBdffLHY5dBEyN6UEtmbUlVOr7HsLXv/N9m7eZO9vyR7y95NjQZ4EX3yySc59thj065du/zhD3/IxhtvvNBxr7/+ek488cSccMIJuffee9OpU6dGrhRqZ9iwYXn55Zdz33335a9//Wv+9re/5fLLL8+qq66aH/7wh1lnnXWKXWKD2Gyzzb52zJQpU1IoFL7y3iA0XbV5jUvFQQcdtNhXjBQKhbz++usNVBHUj969ey/2YwqFQvr27dsA1TSOV155JYcffng6duyY5Mv5HHbYYRk0aFC22WabBcb/8Ic/zK9//etGrrL+LLfccvnggw8W2N6iRYuFzvdf//pXs7+P4pgxY3LQQQfNC+DJl1exHnfccfnpT3+ak046KZ06dcpll12WDTfcsHiFFpEmJonsTemRvRdN9m7eZO+vJnvTHMjesvf/kr3LQ1PM3hrgRXTzzTdn6tSp8501sjDf/va3c+ONN2bXXXfNrbfemuOPP74Rq4TFs8EGG2SDDTbImWeemb/97W+5//7788gjj+Saa65JoVBIoVDI8OHDs/baa2fFFVcsdrn1pqamJo8//nj+8Y9/ZJVVVsk222yTFi1a5Omnn06fPn3yzjvvJEm+9a1v5eSTT86WW25Z5IrrZujQoXn33XdrPb6UlySbq1S+aLnoootqNe7hhx/OiBEjkiTrr79+A1bUOMoxoB188MGL/ZhCoZCbbrqpAappeIMGDar12P/+Iqo5v8afffZZOnfuPN+2uUsLdujQYYHxVVVVmT59emOU1iDWX3/9PPjggzn22GO/dpnEmTNn5sEHH8zWW2/dSNU1jClTpmSllVZaYPs3vvGNJF8upXj77bfP+yKmFDz//POZM2fOYj1m9913b5hiaDZkb0qR7C17L4zs3XzI3rUnezcvsveXZO8vyd7NVylkbw3wIho2bFh22223rwzgc6244orZY489MmTIkGYdwv/3h2bufdeefPLJjB8/fr6xTXHJhCVRjnNOksrKymy99dbZeuutM2PGjAwdOjQPPPBAnnzyydx9990ZOHBgevbsmT333DO77LJLscutk88++yy9evXKyy+/nJqamiTJeuutl7PPPju9evVKmzZtsv3222fatGl5+eWXc+SRR+bGG29s1mc2Dx06NEOGDKn1+FII4f/9Rcs3vvGNbLvttiX5Rcsee+zxlfvHjRuXCy64ICNGjEj79u1z8sknZ999922k6hpOOQa0999/v1bjqqurM378+NTU1DTr+0mOHj36a8f89/t76aWXzoknntjwhTWgmpqatGgx/8f9ua9hc34tF2W//fbLT3/60/zqV7/KWWedtcDc56qurs4555yTCRMmZL/99mvkKutXdXX1fPd8nWvu/QR79epVUgE8Se68887ceeedtRo79/dWUwvhND7ZuzxyaDnOOZG9Ze/5yd7Nh+z99WTv5kn2/pLsLXs3d6WQvTXAi+j9999frHt7rL322ov1IaEp+t8fmrmBpV+/fgv8MWjuf+znKqc59+rVK5tvvnk222yzrLPOOvPmUlVVlV133TW77rprJk6cmAcffDD3339/nn766fz9739v9iH8yiuvzOjRo3POOeekZ8+eGTduXC688ML87Gc/S/fu3TNgwIB5Z/t9+umn2WuvvXLDDTc06xB+5JFH5rvf/W6xy2g05fhFy/+aPXt2rr/++lx77bWZPn16dtttt5xxxhnzzmht7soxoD366KNfO+bll1/Oeeedl3//+99ZaaWVcvbZZzdCZY1vzpw5ueGGG/KHP/whM2bMyM4775zevXsvcAY3Tdsmm2ySww47LNdff33+/ve/59BDD03Pnj2z/PLLp6amJh999FGeeeaZ3HLLLRk9enROOumkrL322sUuu0F169at2CXUu3322adsl5RjycnepZ1D5yqnOcvesnepkr1l70T2lr1p6mTvBcneTZMGeBG1bNkyX3zxRa3Hz5gxI23btm3AihpWbZf2KSXlNue///3vefzxx+ctRbXJJpukZ8+e2Xzzzef9kevYsWMOPPDAHHjggRk7dmz+8pe/FLnqunv00Uez3377Zf/990+SrLrqqjnnnHNy6KGH5sADD5xvqZtll102++yzTwYMGFCkauvHaqutVlIB8+uU4xct/+3ZZ5/N+eefnzFjxmTVVVfNueeem549exa7rEZTjgFtypQp+c1vfpM777wzFRUVOfLII3PMMcekdevWxS6t3j3//PM5//zz8/bbb6d79+4599xz853vfKfYZdWb/102c8aMGSkUCrn33nvzwgsvzDf2rbfeauzy6t2pp56aFVdcMZdffnnOOeechTY82rZtm/POO68krqApR5tsskl23XXXYpdBMyN7l75ym7PsLXuXKtlb9pa9Ze/mSvaWvUtNKWRvDfAiWnPNNfPYY4/V+j4gI0aMyOqrr97AVTWcr1vapxSV25xffPHFvP7663nxxRczcuTIvPTSSxk+fHgKhULat2+fTTfdND179kzPnj2z5pprZuWVV85RRx1V7LLr7KOPPspqq60237a5P6sLO/trhRVWyOTJkxulNupHOX7Rknz5hcLFF1+c++67L61bt84vfvGLHH744fOW9ykHpR7QFubee+/NJZdckk8++SSbbbZZzj333AV+x5WCiRMn5pJLLsngwYPTqlWrHH/88TniiCPSqlWrYpdWr4YMGbLQZTMHDx680PHN+Wq4uQ444IDsscceGT58eJ577rn8+9//Tk1NTbp27ZoePXpk++23b/b3jPxvC7s36Fd92VIKS6PC4pK9S1+5zVn2/g/Zu7TI3rK37C17N1eyt+wtezc9GuBF9OMf/zjnnHNOHnzwwey0005fOXbw4MF56qmncvnllzdSdcX3/vvv55xzzskNN9xQ7FIaTXOfc4sWLbL++utn/fXXzyGHHJIk+fDDD+cL5RdffHHmzJmTDh06ZLPNNkvPnj1zwAEHFLfwOpo1a1aqqqrm2zY3pCwsrBQKhfnuTUfTV45ftNxxxx25/PLLM3ny5Hzve9/L2WefXav7ZpaKcglo/+2dd97J+eefn2effTYdO3bMr3/96yZ37576ctddd+Wyyy7L5MmTs8UWW+Tcc8/NN77xjWKXVe/69+9f7BKKpk2bNtlpp52+9jN2KVjUFy3Jwr9sEcIpR7L3V2vuOXRJNPc5y97/IXuXFtlb9pa9S4vsXfpk7y/J3k2TBngR7bnnnhk8eHBOO+20vPnmmznwwAPTtWvX+cZMmDAhN954Y/r375+tt946P/rRj4pUbf14+eWXc80112TkyJFJkm9/+9s59thjs8kmm/y/9u48LKpy8QP4d9gERMWNBLfcYtxSRBbpqiWIC6HgkluS5n7T1NTUonBB0dyyNE294lbXJQFBEUFxSZFFAbmGevVq7oobiCQOjOf3hw/zawQVkZnDOef7eZ6eJ8+8k983FOZ73nPeoxsjCAI2bNiAH374Afn5+WJFLTdKnPPf2dvbw8fHBz4+PgCebe0TGRmJsLAw7Nu3D7GxsZIv4Uozfvx4ODo6ih3DqJR0ouXs2bMICgpCRkYG3nrrLcydOxfe3t5ixzIqpRS0IhqNBitXrsT69etRWFiI/v37Y+rUqahatarY0crduXPnMGvWLKSnp6NWrVpYunSprEuaXLaCpBdT2okWf39/WX8/JsNh91ZGD1XinP+O3Vt+2L2fYfeWL3Zvdm+5YPeWP3ZvaeICuIhMTEywevVqTJ06FT///DPWrFkDe3t71K5dG6amprh37x6uXLkCQRDQo0cPzJs3T+zIb+T48eMYNWoUtFotGjVqBCsrK6SkpGDYsGEIDQ2Fi4sLrl27hilTpiAjIwM2NjaYPXu22LHfiBLn/Lz8/HykpKQgOTkZJ0+exOnTp1FQUAALCwvdlmxykJ2djRs3buh+XXQF8v379/WOA8+ubpWy8ePH6/1ao9Hg7NmzyMrK0m1zo1arZfm8IiXo27cvnj59CgCoWbMmtmzZgi1btrz0PSqVChs3bjRGPINSWkEDgMOHD2Pu3Lm4fv06HB0dMXv2bLRp00bsWAaxcOFCbN68GVqtFh988AEmTZoEGxubYt+jn1fSnSZytXXrVhw9ehQrVqwQO0qZlHZr47+T+vevspxoOXHihAGSGIfSnvFL5YfdW/49VIlzfh67N7s3SQu7N7s3u7c+dm/pYPcuHXZv8akEQRDEDkHA77//jl27diEjIwN37tzRfZB1dnZG79694e7uLnbENzZ8+HBkZGRg3bp1cHJyAgDcvn0bY8eOhbm5OUJCQhAQEIB79+7B29sb33zzDWrXri1y6jejxDkXFhYiPT0diYmJSExMxKlTp1BQUABzc3O8++67uuLt5OQkm+2M1Gp1ic9tEQThpc9zOXPmjCFjGdzdu3exdOlSxMbGIi8vT+81KysrdOvWDZMnTy52d40UqdVqfP311/D09NQdy8nJgb+/P5YsWaL7+10kLi4OCxYskOTXuEuXLmV6X3x8fDknMa4XFbRXkXJB+/zzzxEXFwcA+OCDDxAQEABTU9NXvs/FxcXQ0QxCrVbr/v11nrUlxb/HZRUUFITt27dLds6l/f719OlT3L59W/dzWqrzfR03b95EeHg4IiIicPXqVUXMmehF2L3l2UOVOGd27//H7s3uLcWvMbs3u/ersHvLF7u3fLF7VyxcACejcXd3R79+/TB16lS940ePHsWoUaPQpEkT3LlzB7NmzZL8dnNFlDbnUaNG4cSJE8jPz4eJiQlatmwJd3d3uLm5wdnZudg2VnIxc+bMMr1PyldSpaenY8yYMcjJyUGbNm3g7u4OOzs7mJmZISsrCykpKUhJSUHVqlWxatUqtGvXTuzIb0SpJ1qURIkF7e9zBl49b6kXlrJeWf38nTdyJvUSXhqnTp3CrFmzcObMGdSrVw/ffPMNOnfuLHYsg3jy5AliY2MRFhaGpKQk3d/hjh074ueffxY7HhEZkNJ6KKC8ObN7vx52b+lg95Y/dm927xdh95YXdm9274qAW6BLSFJSEs6dO1emLSYqgtzcXDRp0qTY8WbNmkEQBGRnZ2PHjh2yeLZAEaXN+ffff4e5uTn8/PwwZswYvP3222JHMgopl+myuHfvHj777DNUrlwZP/30E5ydnUscl5mZiUmTJuHzzz/Hrl27ULNmTSMnLT9+fn6vVcyU5MSJEwgPD5f8VqFKKlpFlPa9qyxfY7k9G1TJcnNzsWTJEmzfvh0mJiYYM2YM/vnPf8pyy9D09HSEhYVh7969ePToEQCgRo0a6Nu3LwYMGIC6deuKnJCo4mP3lh6lzZndWxnYvenv2L2lS2nfu9i9lY3dm927IuECuIRER0dj+/btki3hWq0WZmbF/8gVbcU1duxY2ZTRIkqbc//+/ZGUlKTb5qNx48bo0KED3N3d4eLigmrVqokdkcrBli1bkJeXh61bt6J+/fovHNeiRQuEhobC19cXv/76KyZMmGDElOVrwYIFYkeoUG7duoXw8HCEh4fj6tWrAKDIEi71gubv7//a77l+/boBklQ8RSeX9u3bJ+lnNtEzu3btwnfffYd79+7B1dUVQUFBJS6SSFlWVhYiIiIQHh6OP//8E4IgwMrKCh4eHkhISMCcOXP0thIlopdj95Yepc2Z3VsZ2L2J3fsZdm/5YveWF3Zvdu+KhgvgVGHI7ZthachtznPnzgUA3LhxAwkJCUhMTERMTAy2bNkCExMTqNVquLm56Uq5tbW1yImpLPbv349evXq9tIAXqVu3Lvz9/REbGyvpEh4QEIBx48ahQ4cOumOFhYVIS0uDWq1GlSpV9MZHRkZixowZyMzMNHZUg9FoNLrtfBITEyEIAgRBgJubGwYNGiR2PKNSWkF78uQJYmJiEB4ejpSUFPzxxx9iRzKIopNLERERuHLlCgRBgK2trdix6A1cvHgRs2fPRnJyMqpXr44FCxbAz89P7Fjlau/evQgLC0NCQgK0Wi2qVq0KX19feHt7o2PHjrhz5w68vLzEjklEFYzcemhpyG3O7N7KwO79DLs3uze7t7ywe8sPuze7d0XFBXAiKncODg7o168f+vXrBwA4f/48EhMTcfz4cezcuROhoaEwMzNDq1at0KFDB0ycOFHkxPQ6rl27ho8//rjU49VqNcLDww2YyPCSk5PRv39/vWO5ubkICAjA+vXr9cp5EUEQjBXPoJ7fzqdoXj4+Pvjss8/QuHFjkRMahxILWmpqKsLCwhATE4O8vDwIgoBmzZqJHatcFZ1cCg8PR2JiIp4+fQpBENC2bVsMHDgQPXv2FDviG4mIiHit8ZcuXTJMECPTaDRYuXIl1q9fj8LCQvTv3x9Tp05F1apVxY5W7iZPngxra2sMHjwYnp6ecHFxgampqe51biFKRCRv7N7yxu79DLs3uze7t/Sxe+tj95Yedm9p4gI4GdWJEyeg1Wr1juXl5QEAjh07htu3bxd7j9SvFlLinJ/XrFkzNGvWDEOHDoVGo0FMTAx+/fVXpKen49SpUyzhEmNubo4nT56Uenx+fr5s7ziQS9F+Xknb+dja2sLf3x9t27ZFUFAQevbsKfsCLveCVpLbt2/rvvaXL18GAJiZmaFnz54YNGgQ2rdvL3LC8nHq1Cns3LlT7+RS1apVkZubi7lz5xY76SZVM2bMeK0SJgiC5Evb4cOHMXfuXFy/fh2Ojo6YPXs22rRpI3Ysg6lXrx6uXbuGsLAwXLp0Cf/5z3/g5eWFRo0aiR2NiESmxB6qxDk/j91bXti9/x+7N7u33LB7s3uze0sLu7c0cQGcjGr79u3Yvn273rGiD7Hr1q3T+8Zf9INA6oVUiXP+uytXruDUqVM4deoUMjIycPbsWRQUFKBy5cro1KkTXFxcxI5Ir+mdd97B4cOHS/1MxEOHDqFp06YGTkXlZfTo0Th27Bi0Wi3s7e0xePBgeHl5wc3NDSYmJrh+/bpsTz4UUUpBK6LRaLB//37s3LkTiYmJuhPHTZo0wcWLF7Fo0SJ0795d5JRvLisrC7t27UJ4eDguXboEQRDg4OAAf39/eHt746233kLXrl1Ro0YNsaOWm5CQELEjGNXnn3+OuLg4AMAHH3yAgIAAaDQapKSkvPR9Uv4ssn//fpw6dQqRkZGIiYnB0aNHsXTpUjRu3Bje3t5o2bKl2BGJSCRK7KFKnPPfsXvLD7u3vLF7s3uze7N7SxW7N7u3VHABXEQ3btx4rfFFVy5LldJ+EADKm3NOTg4yMjJ0hTsjIwM5OTkQBAHVqlVDu3btMHnyZLi4uKBFixYwMTEROzKVQe/evfHtt98iOjr6lVfhRkREICEhAUuXLjVSOnpTR44cgbW1NQICAjBkyBDUrl1b7EhGocSClpGRgbCwMERHR+Phw4cwMTGBk5MTvL294e3tDa1WCy8vL5ibm4sdtVx06dIFT58+hVqtxtixY+Hp6YlWrVrpXr9+/bqI6QzD399f7AhGFRsbq/v3+Ph4HDx48KXjixY/zpw5Y+hoBtWmTRu0adMGX331FY4ePYqoqCgcOHAAq1atgkqlgkqlwsGDB6FWq1G3bl2x4xKJgt1b/pQ2Z3ZvZWD3ljd2b3Zvdm/5YPdm92b3rpi4AC6iLl26KGprjLL8IJD6D0SlzdnNzQ0qlQqCIKB69epwdXWFi4sLXFxc4OjoKOk/v/T/+vbti4iICHz55Zc4d+4chgwZAjs7O70xWVlZCA0NxaZNm9C5c2f06NFDpLT0usaPH489e/Zg9erV+Pnnn9GoUSN4eXnBy8sL7777rtjxDEaJBe2jjz6ClZUVOnbsiE6dOqFLly56JxnkNufCwkJYWVmhVq1asLKyKrZFqhLcvn0bJ0+eRFZWFgDAzs4OTk5OsLe3FzlZ+VDa4sfzTE1N0blzZ3Tu3Bn5+fmIi4vD7t27cezYMfz2228ICwuDm5sb+vbtiw8//FDsuERGxe79alL/ua+0ObN7KwO7t7yxe7N7F5HbnNm92b3ljt1bOrgALiI/Pz+WkhI8efIEMTExCA8PR0pKCv744w+xIxmcXObcvXt3uLq6wtXVldtuyZiJiQlWr16NqVOn4ueff8aaNWtgb2+P2rVrw9TUFPfu3cOVK1cgCAJ69OiBefPmiR2ZXsP48eMxfvx4nD59GlFRUYiOjsaaNWuwdu1a2Nvbw9nZWZY/u5RY0KysrPD48WP873//Q/Xq1WFtbY1OnTrBxsZG7GgGcfDgQURFRSEqKgpLly6FSqVCrVq10LVrV3Tt2lXWV+eeP38ewcHBSElJgSAIelspmpiYwNnZGYGBgXB0dBQx5ZtT2lX3L2NpaQlfX1/4+vriwYMHiI6ORlRUFI4fP47ExESWcFIcdu+SyaWHvg65zJndWxnYveWN3Zvdm91bfti9lYfdu2JTCXJ/mAhJRmpqKsLCwhATE4O8vDwIgoBmzZohKipK7GgGo8Q5k7z8/vvv2LVrFzIyMnDnzh0IggA7Ozs4Ozujd+/ecHd3FztiuVCr1fj666/h6empO5aTkwN/f38sWbIETk5OeuPj4uKwYMECyW/tAzy7A+r48eOIiopCXFwcHj16BACoW7cu+vbtCz8/Pzg4OIic8s3dvHlTV9DOnz9fYkHz9vbGypUr9f4cSFl+fj7i4+MRGRmJo0ePQqvVwtzcHB06dEDXrl2hVqvRr18/Wc25yNmzZ3UnmW7evAmVSqU7KTFjxgx88sknYkcsNwcOHMCkSZOgUqng5eUFd3d32NnZwczMDFlZWUhJSUFMTAwKCwuxbNkyeHl5iR2ZDOjq1avYs2cPxo4dK3YUIhKREnuoEudM8sLuze7N7i1d7N7s3uzeysPuXTFwAVwibt68ifDwcEREROg9Y0Hqbt++jYiICISHh+Py5csAADMzM3h7e2PQoEFo3769yAnLnxLnTCR1arW6xCuvX7U9phxK+N9pNBrEx8dj9+7dOHz4MAoKCmBiYoIOHTrgX//6l9jxyo2SClqR7Oxs3VWq6enpeq+NHj0aY8eOhZWVlTjhDCw5ORlRUVGIjY1FTk4OVCoV6tWrhz59+sDf3x916tQRO2KZXbt2Db6+vmjUqBGWL1+O+vXrlzju1q1b+Pzzz3HhwgXs2rXrheMqupkzZ772e1QqFebPn2+ANEQkVeze8qHEORNJHbv3M+ze7N5yxO7N7s3uTcbGBfAK7MmTJ9i3bx/Cw8ORlJSEp0+fwszMDKdPnxY72hvRaDTYv38/du7cicTERN1WN02aNMHFixexbNkydO/eXeSU5UuJcybl0Gg0OHv2LLKysnRXoavValSqVEnsaOWmLB/sAHk/E+fhw4eIiYlBVFQUTp48iczMTLEjGYScC9qLXL9+HVFRUdi9ezcuXLgAlUoFa2tr9OjRA3379i1214VcFBQU4MiRI4iMjMShQ4fw5MkTyX/umjdvHnbt2oWYmBi9Z8yVJDs7Gz179kSvXr0wY8YMIyUsX2q1+rXfo1KpJH3CtCx3iKhUKuzfv98AaYiki91bPpQ4Z1IOdu8XY/eWPnZvdm8pf+5i9341dm8SAxfAK6C0tDSEh4cjOjpatzVXnTp10L9/f3z00UeoXbu22BHLJCMjA2FhYYiOjsbDhw9hYmICJycneHt7w9vbG1qtFl5eXrLa7kWJcybluHv3LpYuXYrY2Fjk5eXpvWZlZYVu3bph8uTJsLOzEykhGcuJEydkfweNHAtaaRivDkkAAEZ8SURBVJw9exaRkZGIjo7GrVu3JF9YSuvRo0eIjY3F7t27sX79erHjlFmPHj3QqVOnUp9I/O6773Dw4EHs3bvXwMkM4/r162V6n5SfQdelS5dixwRBwM2bN1GrVi1YWFiU+L74+HhDRyOSBHZv+fRQJc6ZlIPdm4qwe8sXuze7t5Swez/D7l3xmYkdgJ65ffs2du3ahbCwMFy+fBmCIMDExAQAMGnSJIwePVr3a6n66KOPYGVlhY4dO6JTp07o0qWL3hVRZf3GWZEpcc6kDOnp6RgzZgxycnLQpk2bEp9rExERgfj4eKxatQrt2rUTOzK9ptOnTyM9PR2CIKB58+YlluxHjx5h8eLF2LFjB/744w8RUhqPubk5PD094enpqVfQ5E6tVkOtVuPLL79EUlKSIuYMADY2NvDy8kJqaqrYUd7IzZs30bRp01KPb9y4Mf79738bMJFhSblMl1VJZfr+/fvw8PDAokWL0KFDBxFSEVVs7N7y7KFKnDMpA7u3/LF762P3ZveWInZv+WP3liYugIuoaGuusLAwHD9+HFqtFpUqVUKXLl3QtWtXODo6wt/fH82aNZN8AQege4bL//73P1SvXh3W1tbo1KkTbGxsxI5mMEqcM8nfvXv38Nlnn6Fy5cr46aef4OzsXOK4zMxMTJo0CZ9//jl27dqFmjVrGjkplcVff/2FL774AocPH0bRJjEqlQoeHh5YtWqV7orGQ4cOISgoCLdv30aDBg3EjGx0cilor8vBwUHyJ4+vXbuG0NBQpKWlAQBatGiBUaNGoWHDhnrjYmNjMXfuXNy9exfBwcFiRC0XlpaWePjwYanHP3z4EFWrVjVgInFpNBpcuHABlpaWaNy4sdhxDOZlz8ckUip2b/n3UCXOmeSP3Vve2L1fjd1buti9X47dWx7YvSs+LoCLqGPHjnj48CGqVasGHx8feHp6olOnTrCysgIgvyuUjx8/jvj4eERGRmLnzp3Yvn07zM3N0aFDB3Tt2rVMz46o6JQ4Z5K/LVu2IC8vD1u3bkX9+vVfOK5FixYIDQ2Fr68vfv31V0yYMMGIKamsfvzxRxw6dAgdO3aEv78/rK2tcfjwYWzbtg3fffcdAgMDsXDhQmzYsAGmpqYYMWIEPv/8c7FjlwulFTQAOHXqFFatWqU3588++0zvrgNBELBhwwb88MMPyM/PFyvqGztz5gyGDh2KR48ewdLSEpaWlsjMzER0dDS2bt2Kd955B7m5uQgMDERsbCxMTU0xevRosWO/kVatWiE2NhYjRowo1fh9+/ahefPmBk5lWLm5uVi7di3S0tKwefNm3fGoqCgEBwfrTko0atQI8+fPR9u2bUVKSkTGxO4t/x6qxDmT/LF7yxu7N7s3uze7t5Sxe5MUcAFcRDk5ObC2tka3bt3g5uaGdu3a6Qq4HFlaWqJnz57o2bMnsrOzER0djaioKBw5cgRHjhwB8OyqmYyMDHh4eMji/4US50zyt3//fvTq1eulBbxI3bp14e/vj9jYWJZwiYiPj4erqyvWrl2rO/b++++jZs2a2Lx5M2xtbREaGgq1Wo2QkBDJf2AvosSCdvz4cYwaNQparRaNGjWClZUVUlJSMGzYMISGhsLFxQXXrl3DlClTkJGRARsbG8yePVvs2GVWdBJhyZIl8PHxAfDseaFffPEFgoODsXjxYgQEBODPP/9E69atERwcDEdHR5FTv5l+/fph0qRJCA0NxfDhw186dvXq1cjIyND7uy81eXl5GDBgAC5evIg6deqgsLAQZmZmyMjIwPTp0yEIAgYMGIBmzZohIiICw4cPR0RERLETbUQkP+ze8u+hSpwzyR+7t7yxe7N7s3uze0sVuzdJhkCiSUlJEb799lvB1dVVUKvVQvPmzYWPPvpIWLdunXD58mXh2rVrgqOjo7B//36xoxrUtWvXhFWrVgk+Pj6Co6OjoFarhXbt2glff/21kJqaKnY8g1DinEk+2rZtK2zdurXU47dv3y44OTkZMBGVp7Zt2wobNmwodvzChQuCo6Oj0Lx5c2Hu3LmCRqMRIZ3hjB07VmjZsqWwe/du3bFTp04Jnp6ewtChQ4Xbt28L3bp1ExwdHYV+/foJZ8+eFTFt+Rg2bJjQrl07vZ87t27dEvz8/IT+/fsLFy5cEDw8PARHR0dhwoQJQlZWlohp35yHh4cwd+7cYsf37dsntGjRQhg8eLDQqlUrYe3atYJWqxUhoWFMmDBBUKvVwpQpU4S0tDS9v7tarVZIS0vTjfnmm29ETPrmfvjhB6Fly5bC3r179Y6PHj1aUKvVQkhIiO5Yfn6+4O3tLcyYMcPYMQ3u/v37gqOjo5CQkCB2FKIKg937GSX2UCXOmeSD3Vve2L3Zvdm92b2lit37GXbvio93gIuoffv2aN++Pb755hscPnwYUVFROHToEE6dOoXFixejfv36UKlU+Ouvv8SOalB169bF2LFjMXbsWJw9exaRkZGIjo7Gb7/9hp07d+LMmTNiRyx3SpwzyYe5uTmePHlS6vH5+fmwtrY2YCIqT48fP0aNGjWKHa9evToAoGvXrggMDDR2LIPLyMjAwIEDdVcnA8C7776LL7/8EpMnT8bkyZNx/fp1TJ06FZ9++qksng965swZDBo0CE5OTrpjb731FqZMmYJRo0Zh4sSJKCwsxLJly9CjRw8Rk5aPnJycErc/bd26NbRaLc6dO4fNmzfLbluuxYsXIyQkBFu3bsWePXtgamoKW1tbmJqaIjs7GxqNBiYmJhgxYgQmT54sdtw3Ehsbi969e6N79+66Y3l5eTh27BgAYPDgwbrjlSpVQq9evbBjxw6j5yQi42P3fkaJPVSJcyb5YPeWN3Zvdm9277bGD2dA7N7s3lTxcAG8AjAzM4Onpyc8PT2Rl5eH2NhYREVFISkpCYIgYPr06di5cyf69OmDbt26oVKlSmJHNhi1Wg21Wo0vv/wSSUlJ2L17t9iRDE6JcyZpe+edd3D48GEEBASUavyhQ4fQtGlTA6ciQ1OpVAAAPz8/cYMYiBILWm5uLpo0aVLseLNmzSAIArKzs7Fjxw40aNBAhHTlr7CwsMTPUJaWlgCA0aNHy+rrW8TCwgJBQUEICAhAREQEMjIycOfOHQiCgMaNG8PZ2Rm+vr6y2Irs2rVrekUbAFJSUlBYWIj69esX+7Nsb2+Pe/fuGTNiuVuxYkWxY/n5+VCpVNi1axdOnjxZ7HWVSoXPPvvMGPGIKhx27/+nxB6qxDmTtLF7KxO7N7u31LF7s3uzez/D7i0+LoBXMJUrV4a/vz/8/f1x79497N69G1FRUUhMTERiYiLmzp2LlJQUsWMahZubG9zc3MSOYVRKnDNJT+/evfHtt98iOjoaPXv2fOnYiIgIJCQkYOnSpUZKR4ZWVFjkRokFTavVwsys+EdBCwsLAMDYsWNlU8BLo1WrVmJHMKhGjRpJ/irzVzExMcHTp0/1jh0/fhwA4OHhUWz8/fv3YWNjY5RshlJSCS8SERFR4nGWcKJn2L3/nxJ7qBLnTNLD7q1s7N7ywe6tj91b+ti99bF7V1xcAK/AatasiU8++QSffPIJLl++jMjISElfoVzaK1b/TqVSYePGjQZIYxxKnDPJX9++fREREYEvv/wS586dw5AhQ2BnZ6c3JisrC6Ghodi0aRM6d+4siy2clKToivPXfU3O5F7QSlLSFepypoQ/27dv38bJkyeRlZUFALCzs4OTkxPs7e1FTlY+mjZtirS0NAwZMgQAIAgC4uLioFKp0KVLl2LjDxw4IPk/55s2bRI7ApEssHtLv4cqcc4kf+ze8sfuXRy7t/wp4c82u7c+dm8SCxfAJaJhw4aYMGECJkyYIHaUMktOTi7xuEqlgiAIL3xNypQ4Z5I/ExMTrF69GlOnTsXPP/+MNWvWwN7eHrVr14apqSnu3buHK1euQBAE9OjRA/PmzRM7Mr2m+fPnY9myZXrHBEGASqXC1KlTi12trVKpsH//fmNGNDp+b5aHixcvFrubLzc3FwBw7ty5Eq/Kd3FxMUo2Qzp//jyCg4ORkpICQRD0PoOYmJjA2dkZgYGBcHR0FDHlm/Pz88O8efPQunVrvPfee9i+fTtu3LiBBg0aoGPHjnpjV69ejfT0dMk/V9HV1VXsCESyw+4tTUqcM8kfu7f8sXsXx+/N8sDuze5dhN2bxMQFcBEFBARg3Lhx6NChg+5YYWEh0tLSoFarUaVKFb3xkZGRmDFjBjIzM40dtVycPXu22LH79+/Dw8MDoaGhev8f5EKJcyZlqFKlCn7++Wf8/vvv2LVrFzIyMvDf//4XgiDAzs4Ofn5+6N27N9zd3cWOSq/JwcEBAEo8UVh0perzr73opKLUKLGgnThxAlqtVu9YXl4eAODYsWO4fft2sfdI+Vl0q1evxurVq0t8beHChSUeP3PmjCEjGdyBAwcwadIkqFQqdO/eHe7u7rCzs4OZmRmysrKQkpKCmJgY9OvXD8uWLYOXl5fYkcts4MCBOHnyJEJCQnQLHtWqVcPixYthYmICAPjtt9+wZs0aXL16Fc7Ozhg0aJDIqQ1Lo9HgwoULsLS0ROPGjcWOQyQadm/591AlzpmUgd1bvti92b3ZvfWxe0sHu3dx7N4Vk0qQy09OCVKr1Vi0aBF8fX11xx48eAAPDw+sX7++WEGLjIzE9OnTJf/D4O8ePHiADh06KKqQKnHOREQVnVqtfuGV5kVX4JdEyj+TXzTnv380/PvrRf8fpDrnH3/8sUx3E4wfP94AaYzj2rVr8PX1RaNGjbB8+XLUr1+/xHG3bt3C559/jgsXLmDXrl0vHCcVaWlpSEtLg42NDby8vFCjRg3daytWrMCuXbvg6+uLMWPGlPj8QanJzc3F2rVrkZaWhs2bN+uOR0VFITg4GA8fPgTw7Fl08+fPl90zFYlKg91bmT1UiXMmIqro2L3/H7u3PnZv6WH3fobdu+LiHeAVEK9JICKpyM/Ph6WlZbHjFy5cQNWqVYs9n4wqvoiICLRv3x716tUTO4pRffbZZ4rbai0kJETsCEYl5a1sy2rjxo0wNzfHunXr9Iro8+rUqYM1a9agZ8+e+OWXXzBjxgwjpix/Tk5OcHJyKvG18ePHv/DESkFBAdLT00u8G7SiysvLw4ABA3Dx4kXUqVMHhYWFMDMzQ0ZGBqZPnw5BEDBgwAA0a9YMERERGD58OCIiItCwYUOxoxNVCOzeRCQV7N7yw+6tHOze8sfuXRy7N7t3RcAFcCIiem0ajQYLFy5EVFQUjhw5UqyIL126FEeOHEHfvn0xffp0WFtbi5SUXtfMmTPx3XffKa6EK7Gg+fv7ix3BqEra/lbujh49Cn9//5cW8CK2trbw8/PDwYMHJV/CyyonJwcBAQEl3g1aUa1fvx5XrlzB999/j+7du+uOr1y5EoIg4JNPPtF9Pfv164devXph9erVijsJR0REJFXs3vLF7q0c7N7yx+79eti9yVhMxA5ARETSotFoMGLECPzyyy9wcHDAgwcPio354IMP4OjoiG3btmHkyJEoLCwUISmVhVLvhAoICMDx48fFjmFUnp6eOHDggNgxjCY5ORl3794VO4ZR3bx5E02bNi31+MaNG+PWrVsGTFTxSe17YGxsLHr37q1XwPPy8nDs2DEAwODBg3XHK1WqhF69einuex0REZFUsXvLm9Q+d5YXdm/5Y/d+NXZv6X0PZPeWJi6AExHRa9mwYQNSUlIQGBiIiIgI2NvbFxvTv39/7Ny5E+PHj0dqaiq2bNkiQlKi0lNiQbt+/Tr++usvsWOQAVlaWuqeQVUaDx8+RNWqVQ2YiMrbtWvX0KpVK71jKSkpKCwsRL169dCgQQO91+zt7XHv3j1jRiQiIqIyYvcmOWL3Jjli95Y/dm9p4hboZDQRERHFjuXl5QEAjh07htu3b5f4Pj8/PwOmMiwlzpnkLyoqCp6envj4449fOXb8+PFITk7Grl27MGzYMMOHo3KRnZ2NGzduvNZ7HBwcDJSGiMqqVatWiI2NxYgRI0o1ft++fWjevLmBU1F5MjExwdOnT/WOFV1l7uHhUWz8/fv3YWNjY5RsRCQeJfZQJc6Z5I/dW/7YvYnkgd1b/ti9pYkL4CJ7/oNOTk4OgGd/QZ7/AFTSVkdSMmPGDKhUKr1jRVtdrFu3DiqVSvfron9XqVSSLqRKnDPJ3+XLlzFw4MBSj3///fexfPlyAyai8jZ//nzMnz+/1ONVKhUyMzMNmIiofMTFxeHy5culHq9SqfDZZ58ZMJFh9evXD5MmTUJoaCiGDx/+0rGrV69GRkYG1q5da6R0VB6aNm2KtLQ0DBkyBMCzz5lxcXFQqVTo0qVLsfEHDhxAkyZNjB2TqEJg95Z3D1XinEn+2L3lj92b5Ird+8XYvaWJ3VuauAAushd90Jk6daoIaQwrJCRE7AhGp8Q5k/xZW1tDq9WWenylSpVgaWlpwERU3pydnVG/fn2xYxid0goaAGzfvh0JCQmlHq9SqV7rBE1FExcXh9jY2FKPl/rXuHv37vD29sZ3332HP/74Ax9//DFatmwJc3NzAMDTp0+RkZGB9evXIy4uDv3798c//vEPkVPT6/Dz88O8efPQunVrvPfee9i+fTtu3LiBBg0aoGPHjnpjV69ejfT0dAQGBoqUlkhc7N7ypsQ5k/yxe8sfu3fpSL2XAezeryL1rzG7t/yxe0sTF8BF5OfnV+wKZTnz9/d/5ZicnBxYWlqiUqVKRkhkeEqcM8lf48aNkZqaioCAgFKNP3nyJOrWrWvgVFSeBgwYAF9fX7FjGJ3SChrw7HlFKSkppR4v9RI+ZsyYEremkrPFixcjJCQEW7duxZ49e2BqagpbW1uYmpoiOzsbGo0GJiYmGDFiBCZPnix2XHpNAwcOxMmTJxESEqK7o7FatWpYvHgxTExMAAC//fYb1qxZg6tXr8LZ2RmDBg0SOTWR8bF7Fye3HqrEOZP8sXvLH7t36bB7Sw+7N7u33LB7SxMXwEW0YMECsSMYXUFBAcLCwpCenq53hXZycjJmzZqFS5cuQaVSwcPDA0FBQbK4ClKJcyZ58/f3R1BQEBITE+Hu7v7SsUlJSYiNjcWECROMlI6o7JRY0L766it4enqKHcNomjRpAldXV7FjGJWFhQWCgoIQEBCAiIgIZGRk4M6dOxAEAY0bN4azszN8fX3RsGFDsaNSGahUKixevBhDhgxBWloabGxs4OXlhRo1aujG3Lp1C4IgYNy4cRgzZoyunBMpCbu3MnqoEudM8sbuTXLF7i1/7N7s3nLD7i1NXAAX0ciRI+Hn5wcvLy9FbFFUUFCATz/9FCkpKTA3N8fcuXNhZmaGS5cuYeTIkSgoKEDHjh3RtGlT7Nu3DwMGDEBkZCRq1aoldvQyU+KcSf78/Pywc+dOjB07FmPGjEH//v2L/ZnNysrCjh07sG7dOtSrVw+DBw8WKS1R6SmxoFWvXp13iShEo0aNeJW5jDk5OcHJyanE18aPH4/x48eX+FpBQQHS09OhVqtRpUoVQ0YkEhW7t/x7qBLnTPLH7k1yxe5NcsbuLW/s3tLCSxBElJycjGnTpsHDwwMzZsxAQkICBEEQO5bBbNmyBSdOnMC0adOQkpICM7Nn11/8+OOP0Gg08PX1xZo1a/Dll19i586dMDU1xerVq0VO/WaUOGeSP3Nzc6xcuRJt2rTB8uXL0bFjR3h6emLgwIHo378/unTpgs6dO+PHH3+Eo6MjQkND+YNdQhwcHGBtbS12DCIiMoKcnBwEBATg9OnTYkchMih2b/n3UCXOmeSP3Vve2L2JiJSD3VscvANcRMePH8f+/fuxd+9e7NmzB7t27UKtWrXg6+uLXr16Qa1Wix2xXO3evRvdunXDiBEjdMc0Gg3i4+OhUqn0jtva2qJPnz7Ys2cPAgMDxYhbLpQ4Z1KGmjVrYuPGjYiNjcWePXuQmZmJc+fOwcTEBLVq1YKfnx+6du2KLl26iB2VXlN8fPxLX3/69Clu3bqFWrVqwcLCwkipiN7c+PHj4ejoKHYMoyrt8yL/TqVSYePGjQZIUzHcuXMHtra2MDc3L/ZatWrVsGnTJjRv3lyEZOKR8yIgURF2b/n3UCXOmZSB3Vu+2L1Jrti9S4fdm92bDI8L4CKqXLkyevfujd69eyM3Nxf79u1DdHQ0Nm7ciNDQUDRt2hS9e/eGr68v3nrrLbHjvrE///wT/v7+esdOnjyJ/Px82NnZFfvB2KBBA2RlZRkzYrlT4pxJWby9veHt7S12DDKi+/fvw9PTE+vXr0eHDh3EjlNulFjQQkJCXrhtkxy9aBuqIn/99RfWr18PPz8/1KtXz0ipDCs5ObnE4yqV6oXFS6VSGTKSUYSGhmL79u2IjIwsVrbnz5+PhIQEjBgxAiNHjtR7Jpe5ubnitmIkUgp2b/n3UCXOmZSF3Vt52L3lg91bH7v3/78mdezeVNFxAbyCqFKlCvr164d+/frh/v37iImJwd69e7F06VIsXboULi4u8PPzg7e3NypXrix23DJ5+vQpTE1N9Y4lJiYCADw8PIqNz83NhZWVlVGyGYoS50wEPNvWxdLSEpUqVRI7ChmAHK9YVGJBe/4k8fMePXqEefPmYeTIkWjSpImRUonnr7/+wsqVK+Hs7Cybr/HZs2eLHbt//z48PDwQGhoqqxNpwLPvTVOnTsWePXtQs2ZN3Lp1C/Xr19cb06RJE6SmpmLZsmU4ffo0fvjhB5HSEpFY2L3l2UOVOGcigN1b7ti95dHL2L31sXtLH7s3SQWfAV4B1ahRA4MHD8bmzZtx6NAhfP311zAxMcG3336Lf/zjH2LHK7MGDRrgzJkzesfi4uKgUqnw/vvvFxt/9OhRNGjQwEjpDEOJcyZlKCgowLZt2zBz5ky948nJyejZsyfc3d3h5OSEkSNH4sqVKyKlJCo/RQXt6tWrYkcxmvz8fERERCjq7ig5nmB6nhyuMn+Rbdu2Yc+ePRg2bBgOHTpUrIADz064xcXFoU+fPoiLi0NYWJgISYmoomD3fkYOPVSJcyZlYPcmpWH3VgZ2b2lj9yap4AJ4BWdubg5LS0vY2NjAzMwMGo1G7Ehl5uPjg127dmH//v14/PgxNmzYgIsXL6JmzZrFnlUUGRmJY8eOwdPTU6S05UOJcyb5KygowKeffoqgoCDs3r0bhYWFAIBLly5h5MiRuHTpEjp27Ihhw4bh0qVLGDhwIO7evStyaqI3p4SC9jwlzpmk67fffoOrqytmzJhR4nPGilhYWCA4OBjNmzfH9u3bjZiQiCoydm9p91Alzpnkj92blEqJPVSJcybpYvcmqeAW6BXQ/fv3ERcXh5iYGKSkpKCwsBAtWrTAxIkT4ePjI3a8Mhs2bBh+//13jB8/Xvf8C3Nzc8ybNw8WFhYAnl2hvWXLFiQnJ6NRo0YYNmyYuKHfkBLnTPK3ZcsWnDhxAtOmTcOQIUNgZvbsR8mPP/4IjUaDXr164bvvvgMAjB49Gr6+vli9ejUCAwPFjE3lxNzcHC4uLqhWrZrYUYiI9Pzvf//DxIkTSzVWpVKhe/fuWLVqlYFTEVFFxu4tnx6qxDmT/LF7Kxu7NxFVVOzeJBVcAK8g7t69i9jYWMTExODkyZPQarWoW7cuRowYgV69esni+R8WFhbYsGEDoqOjkZ6eDhsbG/j6+qJp06a6MadPn0Zqaip69eqFGTNmwNLSUsTEb06Jcyb52717N7p164YRI0bojmk0GsTHx0OlUukdt7W1RZ8+fbBnzx6WcInIzc1FlSpVXvh6tWrVsHnzZr1jSUlJcHNzM3Q0IoOqUqUKQkJC0KxZM7GjUBmZmZnpFjlKo2rVqsWeF0tE8sfu/YzceqgS50zyx+4tb+zepFTs3tLH7k1SwQVwEWVlZSE2Nhb79u1DamoqtFotqlWrhn79+sHX1xft27cXO2K5MzU1ha+vL3x9fUt8fezYsZg4cSJMTOSzO78S50zy9ueff8Lf31/v2MmTJ5Gfnw87Ozs4OjrqvdagQQNFPcdI6gICAhAaGgpbW9tXjn3y5AkWLVqEX3/9FZmZmYYPJyIlFrRq1aph06ZNaN68udhRjKJSpUr4xz/+wTssJKxhw4Y4ffp0qcefPn0a9vb2BkxERBUFu3dxcuyhSpwzyRu7t7yxe5eM3Vv+2L2lj92bpIIL4CLq3LkzgGdXKnt5ecHX1xedO3d+6XMT5M7KykrsCEanxDmTtD19+rTYVXuJiYkAAA8Pj2Ljc3Nz+edcQs6cOYOPP/4YGzZsQK1atV447tSpU5g+fTr+/PPPl46Ti0qVKumdfNJqtVizZg3GjRsnYirDMjc3h6urq+7Xubm5WLhwIYKDg0VM9eZCQ0Oxfft2REZGFvvMNX/+fCQkJGDEiBEYOXKk5E+QR0REFDuWl5cHADh27Bhu375d4vv8/PwMmMpwPvzwQyxZsgTDhw9/5Qmz8+fPIyoqCgEBAUZKR0RiYvcuTomfz5U4Z5I2dm95Y/cuGbs3u7cUsXu/GLs3iUklCIIgdgilGjp0KHr37o3u3bvDxsZG7DhERKXSu3dvtGnTBnPmzNEd69mzJy5duoRly5ahe/fueuNHjhyJnJwc7Nixw9hRqQx++eUXzJs3D/Xr18eGDRuKXaFZUFCAH374AevXr4dWq0Xv3r3x1VdfyeLK3dzcXOzYsQPp6ekQBAEtWrTAkCFDULVqVb1x//nPfxAYGIj//ve/OHPmjEhpy8e1a9cQGhqKtLQ0AECLFi0watQoNGzYUG9cbGws5s6di7t370p2zoIgYOrUqdizZw9q1qyJrVu3on79+npjVqxYgR07diArKwtdu3bFDz/8IFLa8qFWq6FSqfSO/f2jf0mvqVQqyX6N//rrL/Tp0wfZ2dn46quv4OPjU+ykcWFhIXbv3o3FixcDAMLDw1G7dm0x4hrNnTt3YGtrW+JCX0FBAdLS0tC8efOXbsFJJHXs3kQkReze8sbuze7N7s3uLdWvMbt3ydi9Kx4ugBMR0WtZs2YNVq5ciSVLluC9997Dtm3bsGDBAtSqVQvx8fF6z4CJjIzE9OnTMXHiRIwdO1bE1PQ6du/ejRkzZsDOzg4bNmxAgwYNADy7Qn369On473//CwcHB8yePRsdO3YUOW35uHr1KgICAnDr1i29klKrVi3s2LED9vb2KCwsxJIlS7Bp0yZotVr4+PhgyZIlIqZ+M2fOnMHQoUPx6NEjWFpawtLSEtnZ2bC2tsbWrVvxzjvvIDc3F4GBgYiNjYWpqSlGjBiByZMnix29TLZu3YpZs2Zh2LBhmDJlygvv+tNoNJg9ezbCwsIwb9489OnTx8hJy094eHiZ3vf8VptScunSJXz22We4dOkSrK2t0bJlS9SuXRtarRb37t3D6dOnkZ+fDwcHB6xcuRJqtVrsyOXiZXdXTJ48WVZ3VxARESkFu7f8sXuze7N7s3tLFbs3u7cUcAFcRCVtjVEaUt0ag4jkQaPRYMSIEUhJSYFKpYIgCDA3N8eKFSt020vGxcVhy5YtSE5ORqNGjRAWFgZLS0uRk9PrOHz4MCZNmgQbGxusXbsWBw4cwOrVq1FYWIhBgwZhypQpqFy5stgxy82UKVMQHR2NyZMno2/fvrCyssLhw4cxZ84ctG3bFosWLcLo0aORmpoKBwcHBAUF6f68S9W4cePw+++/Y+HChfDx8QEAZGRk4IsvvoCDgwMWL16MgIAA/Pnnn2jdujWCg4OLPWdQSvr16wdra2ts2rTplWMFQUDfvn1hYWGBrVu3GiEdlSeNRoNffvkFe/bswdmzZ1FYWAjg2daCbdu2hbe3NwYMGKB30liqlHh3BVFZsHsTkRSxeysDuze7N7s3u7dUsXuze1d0XAAXUdHWGEVbXryK1LfGICL50Gq1iI6ORnp6OmxsbODr64umTZvqXl+2bBnWr1+Pnj17YsaMGahevbqIaamsTp48iXHjxuHRo0cQBAENGzZEcHAw2rdvL3a0ctepUye89957CAkJ0TseHh6OoKAgdOrUCfv378egQYMwbdo0WFtbi5S0/Lz33nvo0aMHAgMD9Y7HxsZi8uTJaNu2LTIyMjBx4kR8+umnkr9y1cnJCRMnTsSwYcNKNX7NmjVYtWqVbos6qcvPzy/xZOiFCxdQtWpV2NnZiZDKOO7fvw9TU1NZbBf5PCXeXUFUFuzeRCRV7N7KwO7N7s3uze4tB+ze7N4VjZnYAZTs+R/0RERSYWpqCl9fX/j6+pb4+tixYzFx4kTJf2hXOmdnZ2zatAkjR47E/fv3MWfOHFkWcAB48OABnJycih13cXGBRqPB4cOHsXz5cnTr1k2EdIaRk5NT4hZUrVu3hlarxblz57B582a0bdvW+OEMwMzM7LWuOq5atWqxZ1hJkUajwcKFCxEVFYUjR44UK+JLly7FkSNH0LdvX0yfPl0WJ5ieV6NGDbEjGMxvv/0GV1dXzJgx46XjLCwsEBwcjDNnzmD79u0s4aQ47N5EJFXs3srA7s3uze7N7i0H7N7s3hUNF8BFJOVnPBCRcgUEBGDcuHHo0KGD7lhhYSHS0tKgVqtRpUoVWFlZ6V4rehYZ76CRJrVajX//+98YPnw4xo0bh5UrV8Ld3V3sWOWuoKBA789tkaKt5oYPHy6rAg48+3tbqVKlYseLStro0aNlU8ABoGHDhjh9+nSpx58+fRr29vYGTGR4f982U61W48GDB8Xm9MEHH+D27dvYtm0bzp8/j02bNsHMTJoVYcWKFWV63/jx48s5ifH873//w8SJE0s1VqVSoXv37li1apWBUxFVPOzeRCRF7N7Kwu7N7i0X7N7s3i/C7k3GJs2/YQql1WqxZs0ajBs3TuwoRKRgycnJ6N+/v96x3NxcBAQEYP369XrlnKRn5syZJR5v2LAhrl27hjFjxqBHjx5624eqVCrMnz/fWBFF4erqKnYEo2vVqpXYEcrVhx9+iCVLlmD48OFo1qzZS8eeP38eUVFRCAgIMFI6w9iwYQNSUlIQGBiIjz/+uMQx/fv3R//+/bFixQqsWLECW7ZsKfVWdRVNaUv489sfS7mEK/XuCiJDY/cmooqA3Vve2L1Lxu4tfeze7N5F2L3ZvcXGBXCR5ebmYseOHUhPT4cgCGjRogWGDBmCqlWr6o37z3/+g8DAQPz3v/9lCSeiCkkQBLEjUDkIDw9/6etPnjxBRESE3jEllHAlfmgtzTNSpeSjjz7C1q1bMXToUHz11Vfw8fEp9nUtLCzE7t27sXjxYlSpUkXyJTwqKgqenp4vLOB/N378eCQnJ2PXrl2SLeEHDhx45Zjc3Fx8//33OHToEMzMzCT/NVbi3RVEZcXuTURywe4tD+zeJWP3lj5275dj95Ymdm9p4gK4iK5evYqAgADcunVL9+E1Li4Ov/zyC3bs2AF7e3sUFhZiyZIl2LRpE7RaLXx8fEROTUREclaaD7FylZ2djRs3bugdy8nJAQDcv3+/2GsA4ODgYJRshnLx4kWkpKToHcvNzQUAnDt3rsTtuFxcXIySrbxZW1tj1apV+OyzzzB9+nTMnj0bLVu2RO3ataHVanHv3j2cPn0a+fn5cHBwwMqVK1G7dm2xY7+Ry5cvY+DAgaUe//7772P58uUGTGRYdevWfenr0dHRWLBgAbKystCuXTvMmjUL77zzjpHSGYYS764gKgt2byIiqmjYvdm92b3ZvaWK3ZvdWyq4AC6i77//Hrdu3cLkyZPRt29fWFlZ4fDhw5gzZw7mzJmDRYsWYfTo0UhNTYWDgwOCgoLQuXNnsWMTEZGMvepDrJzNnz//hVfTT506tdgxlUqFzMxMQ8cyqNWrV2P16tUlvrZw4cISj0v5mYKNGjVCREQEfvnlF+zZswepqakoLCwEAJibm6Nt27bw9vbGgAEDXmtrq4rK2toaWq221OMrVaqkew6dnFy5cgWzZ89GQkICqlWrhuDgYPTr10/sWOVCiXdXEJUFuzcREVU07N7s3kXYvdm95YLdm927ouECuIhSUlLg5+eH0aNH64716NED+fn5CAoKwowZM5CamopBgwZh2rRpsLa2FjEtERFRcatXr0ZsbCzCwsLEjvJG/P39xY5gdFJ+9tKbsLCwwPDhwzF8+HAAz+4wMDU1RbVq1UROVv4aN26M1NTUUpeukydPyupEnEajwZo1a7B27VpoNBr4+/tj2rRpqF69utjRyo0S764gKgt2byIikjp2b+li92b3fh67t/Swe0sTF8BF9ODBAzg5ORU77uLiAo1Gg8OHD2P58uXo1q2bCOmIiIhe7ebNm5K+KrlISEiI2BGMTqkl/Hk1atQQO4LB+Pv7IygoCImJiXB3d3/p2KSkJMTGxmLChAlGSmdYCQkJmD17Ni5fvoxmzZohKCgI7du3FzuWQSjt7gqismD3JiIiqWP3li5272fYvZ9h95Yudm/p4QK4iAoKCmBlZVXseOXKlQEAw4cPZwEnogrp+ec1vexZTQ8ePDBqNiKikqxYsaJM75PyyQo/Pz/s3LkTY8eOxZgxY9C/f3/UqlVLb0xWVhZ27NiBdevWoV69ehg8eLBIacvH3bt3ERISgujoaFhaWmLKlCkYPnx4ic/UkxMl3V1BVBbs3kQkVezeRCQ17N7s3nLG7i0tKkEQBLFDKJVarcaiRYvg6+urd/zBgwfo0KED1q1bh3/84x8ipSMiKplarYZKpSp2XBCEEo8XkcOVylRcUFAQtm/fLvmvrxIL2syZM1/7PSqV6oXPaqvo1Gp1qcY9/31M6n+27927hy+++AJJSUlQqVRwcHDQ26Lr5s2bEAQBbdu2xbJly2Bvby925DLbsmULli9fjkePHqFLly4IDAyU9HyIqPywexORFLF709+xe7N7SwW7N7s3UUUh78sxJM7U1FTsCERExSjxeU0kf6Ut4c8XNCmX8PDw8FKP/fu8pVrCDxw48Moxubm5+P7773Ho0CGYmZmV+vldFVnNmjWxceNGxMbGYs+ePcjMzMS5c+dgYmKCWrVqwc/PD127dkWXLl3EjvrGgoODdf8eHx+P+Pj4V75HpVIhMzPTkLEMSoknEIkMgd2biCoidm+SI3bvl2P3li5275dj9yYxcAFcZM9vZQS8fDsjAHBwcDBKNiKikijxeU0kf0osaGfPnn3lmOvXr2Pu3Lk4dOgQqlSpgkmTJhk+mIHUrVv3pa9HR0djwYIFyMrKQrt27TBr1iy88847RkpneN7e3vD29i52PCcnB5aWliIkKn9KPEmsxBOIRGXF7k1EUsPuTXLE7l0ydm92bylh934xdu+KhVugi+hFWxkBL97OSOpXyhARUcX2ulc0Hjx4EJmZmZLfqupV5F7QnqfVarF+/Xr89NNPyM/PR8+ePTFz5sxiz7CSgytXrmD27NlISEhAtWrVMHXqVPTr10/sWOWmoKAAYWFhSE9P1zuJmpycjFmzZuHSpUtQqVTw8PDAt99+iwYNGoiY9s3MnDkTAwcORJs2bcSOYjTXr19/5ZiSTiB++eWXRkhHVHGwexMRUUXD7l0ydm92b6li95Y3dm9p4gK4iMry/A+AV4ASEZHhlPZZTX+nUqlkW8LlXtBKcuLECcyePRvnz5/H22+/jaCgIHTo0EHsWOVOo9FgzZo1WLt2LTQaDfz9/TFt2jRUr15d7GjlpqCgAJ9++ilSUlJgbm6OtLQ0mJmZ4dKlS+jduzc0Gg06deqEpk2bYt++fXj8+DEiIyMle7LlRc/4VTKlnUAkehF2byIiqmjYvfWxe7N7Sxm7N7F7V0zcAl1ELNNERFTRbNq0SewIFYISCtrzHjx4gO+++w4RERGwsLDAhAkTMGrUKFhYWIgdrdwlJCRg9uzZuHz5Mpo1a4agoCC0b99e7FjlbsuWLThx4gSmTZuGIUOGwMzs2Uf/H3/8ERqNBr169cJ3330HABg9ejR8fX2xevVqBAYGihmbysHzJxCDg4NlfwKR6GXYvYmIqKJh936G3ZvdWw7YvZWL3bti4wJ4BfD48WPs3LkTv//+O86ePYvs7GyoVCrUqFEDarUanp6e8PX1leUPQSIiqlhcXV1f+z0nTpwwQBLxKKWg/d2OHTuwePFi5OTk4L333kNQUJCkt+N6kbt37yIkJATR0dGwtLTElClTMHz4cF05lZvdu3ejW7duGDFihO6YRqNBfHw8VCqV3nFbW1v06dMHe/bsYQmXMCWeQCR6HezeRERUUbB7s3uze8sHu7fysHtLgzy/40jIyZMnMXHiRNy9excWFhZo0KAB6tati8LCQmRnZ+PgwYOIj4/HihUrsGTJErRr107syERERLh58ybCw8MRERGBq1evymIbNqUVNAA4d+4cZs2ahfT0dNSqVQtLly5Fz549xY5lEFu2bMHy5cvx6NEjdOnSBYGBgbC3txc7lkH9+eef8Pf31zt28uRJ5Ofnw87ODo6OjnqvNWjQAFlZWcaMWO5OnDgBrVb7Wu/x8/MzTBgjU+IJRKLXwe5NRERSxO4tD+ze7N5/x+4tbeze0iHfnyoS8L///Q8jRoyAjY0NFi9eDG9v72JXmj969AgxMTH44YcfMHLkSISHh6Nhw4YiJSYiIiV78uQJYmNjERYWhqSkJAiCAJVKhU6dOokd7Y0psaAtXLgQmzdvhlarxQcffIBJkybBxsYGN27ceOn7HBwcjJSwfAUHB+v+PT4+HvHx8a98j0qlQmZmpiFjGdTTp09hamqqdywxMREA4OHhUWx8bm4urKysjJLNULZv347t27eXamzR9zCpl3AlnkAkel3s3kREJCXs3vLC7s3u/Tx2b2li95YefmVE9NNPP8HKygo7d+7EW2+9VeIYGxsb9OvXD506dULv3r2xbt06zJ0718hJiYhIydLT0xEWFoa9e/fi0aNHAIAaNWqgb9++GDBgAOrWrStywjenxIIWGhqq+/eDBw/i4MGDpXqfVO84eP5qbCVo0KBBsa9XXFwcVCoV3n///WLjjx49Kvnt9z766CO0bdtW7BhGo8QTiERlwe5NRERSwO5dMnZvaWH3fobdW17YvaWJC+AiSklJQZ8+fV5YwP/Ozs4Ofn5+OHr0qBGSERGR0mVlZSEiIgLh4eH4888/IQgCrKys4OHhgYSEBMyZMweenp5ixyw3fn5+UKlUYscwqvHjx7/2ewRBMEAS4xk4cCDatGkjdgyj8fHxwcqVK9GpUye899572LZtGy5evIhatWqhS5cuemMjIyNx7NgxTJw4UaS05aN9+/bw9fUVO4bRKPEEIlFZsHsTEVFFxe4tf+ze8sfuLX/s3tLEBXARPXjw4LW2VGvcuDF27NhhwERERKR0e/fuRVhYGBISEqDValG1alX4+vrC29sbHTt2xJ07d+Dl5SV2zHK3YMECAEBBQQEuXLiAwsJCNG3aVPJbUr2Mg4MD+vTpU+rx169fx1dffWXARIYVHh4ODw8PRZXwYcOG4ffff8f48eOhUqkgCALMzc0xb9483da/cXFx2LJlC5KTk9GoUSMMGzZM3ND0WpR4dwVRWbB7ExFRRcPuze79Iuze0sPuLX/s3tLEBXARFRQUvNYP90qVKiEvL8+AiYiISOkmT54Ma2trDB48GJ6ennBxcdF7jpGcr9T+17/+hVWrVul+1lpYWGDw4MGYMmWKLJ/nExgYiMePH2PIkCGvHLtjxw4sXLiQn0MkxsLCAhs2bEB0dDTS09NhY2MDX19fNG3aVDfm9OnTSE1NRa9evTBjxgxYWlqKmJjKQml3VxCVBbs3ERFVNOze7N4lYfeWJnZvZWD3lh75/UQhIiKiMqtXrx6uXbuGsLAwXLp0Cf/5z3/g5eWFRo0aiR3NoHbu3IlFixahbt268PPzg4mJCZKSkrBhwwZotVpJX339Im+//TaCg4Px+PFjjBw5ssQxd+7cQWBgII4cOQJzc3PJb9GlRKampvD19X3h1mRjx47FxIkTYWJiYuRk5c/f31/yz1F7XUq8u4KIiIhIDti92b3/jt1b+ti95Y3dW5q4AC6y7Oxs3Lhxo1RjHzx4YOA0RESkdPv378epU6cQGRmJmJgYHD16FEuXLkXjxo3h7e2Nli1bih3RILZt24a2bdti48aNqFSpEoBnz9yaPHkytm3bhqlTp+q2rZKLX3/9FSNHjsSSJUvw+PFjTJgwQe/13bt3Y+7cucjJyYGTkxOCg4PRpEkTkdKWjxMnTkCr1b7We/z8/AwTpoKQ01aDISEhYkcgogqM3ZuIiCoSdm927yLs3s+we0sHuzdJhUoQBEHsEEqlVqvLtJ3NmTNnDJCGiIhIn1arxdGjRxEVFYUDBw7g8ePHup9bffv2xbhx41C3bl2RU5YPZ2dnfPHFF8W2JEtPT8egQYMQHh4OtVotUjrD+euvv/DPf/4TSUlJGDZsGKZPn44HDx4gKCgIcXFxsLS0xOTJkzF06FDJb8H3up+7BEGASqXi5y6q0NRqNRYtWvTCuwyI6Bl2byIiqsjYvdm92b3ZvaliY/eWJt4BLiJ/f3+xIxAREb2QqakpOnfujM6dOyM/Px9xcXHYvXs3jh07ht9++w1hYWFwc3ND37598eGHH4od9408fvwYVapUKXa8Xr16EAQBDx8+FCGV4VlbW2PNmjX44osvsGHDBly7dg2pqam4d+8e3nvvPcyZM0c2J1oA4KOPPkLbtm3FjkFUrnh3BdGrsXsTEVFFxu7N7s3uTVTxsXtLD+8AJyIiIp3Ro0fD3d0drq6uaNmyZYlX7T548ADR0dGIiopCenq6LK7UfdGVnA8ePECHDh0QGhqKDh06iJTO8J4+fYrAwECEhYXBxMQEc+bMQb9+/cSOVa54tS7JEe+uICIiIpImdm92b3ZvIulg95Ym3gFOREREOomJiThy5AhUKhVsbGzQvn17uLm5wd3dXbcNWfXq1TFkyBAMGTIEV69exZ49e0ROTW/KxMQE8+fPh62tLdavX4+EhAT4+fnBzIwfFYkqOt5dQURERCQ97N7KxO5NJF3s3tLD76xERESkk5qaiszMTKSmpiItLQ3p6ek4ePAgVCoVqlatChcXF7i5ucHNzQ3vvPMO6tevj7Fjx4odu1xkZ2fjxo0besdycnIAAPfv3y/2GgA4ODgYJZshlDSfjz/+GH/99Re2bduGvLw8fPPNNzAxMdEbI+U5E8lR+/bteXcFERERkcSwe7N7s3sTSQu7t/RwC3QiIiJ6qZs3b+qV8rNnz0Kr1cLW1haurq5wc3PD4MGDxY75Rl62lVHRtkXPU6lUyMzMNHQ0g3nVnAEUe13Kc545cyYGDhyINm3aiB2FqNxwe0EiIiIi+WD3ZvcuIuU5s3uTHLF7SxPvACciIqKXsre3h4+PD3x8fAAAubm5iIyMRFhYGPbt24fY2FjJl3B/f3+xIxidn5/faz2/SOpCQkLEjkBERERERPRC7N7yxO5NRCQOLoATERHRS+Xn5yMlJQXJyck4efIkTp8+jYKCAlhYWOi2ZJM6JRa0BQsWiB2BiN6Qv78/GjRoIHYMIiIiIioH7N7yxO5NJH3s3tLELdCJiIhIT2FhIdLT05GYmIjExEScOnUKBQUFMDc3x7vvvqsr3k5OTrCwsBA7LhEREREREZHksHsTEREZDhfAiYiISGfUqFE4ceIE8vPzYWJigpYtW8Ld3R1ubm5wdnaGpaWl2BGJiIiIiIiIJI3dm4iIyLC4AE5EREQ6arUa5ubm+PDDDzFmzBi8/fbbYkciIiIiIiIikhV2byIiIsPiAjgRERHpfPPNN0hKSsKVK1egUqnQuHFjdOjQAe7u7nBxcUG1atXEjkhEREREREQkaezeREREhsUFcCIiIirmxo0bSEhI0D2L7O7duzAxMYFarYabm5uulFtbW4sdlYiIiIiIiEiS2L2JiIgMgwvgRERE9Ernz59HYmIijh8/jhMnTuDhw4cwMzNDq1at0KFDB0ycOFHsiERERERERESSxu5NRERUPrgATkRERK9Fo9EgJiYGv/76K9LT06FSqXDmzBmxYxERERERERHJBrs3ERFR2ZmJHYCIiIgqtitXruDUqVM4deoUMjIycPbsWRQUFKBy5cro1KkTXFxcxI5IREREREREJGns3kREROWHd4ATERGRTk5ODjIyMnSFOyMjAzk5ORAEAdWqVUO7du3g6uoKFxcXtGjRAiYmJmJHJiIiIiIiIpIUdm8iIiLD4gI4ERER6ajVaqhUKgiCgOrVq8PFxUX3j6OjI1QqldgRiYiIiIiIiCSN3ZuIiMiwuAU6ERER6XTv3h2urq5wdXVF06ZNxY5DREREREREJDvs3kRERIbFO8CJiIiIiIiIiIiIiIiIiEgW+PAQIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtmYgcgIiJSgh9//BErVqx4rfccOHAA9erVM1CisuvSpQuuX78OAPj6668REBDw0vEjRozA0aNHAQChoaHw8PAwaK7Y2Fg0bNjQIL8HERERERERVVzs3uzeREREABfAiYiIjMLR0RG+vr56x+7du4eEhARYW1vD09Oz2Husra2NFa/MYmJiXlrC79+/j8TERCMmIiIiIiIiIqVi9yYiIiKAC+BERERG4e3tDW9vb71jSUlJSEhIQPXq1bF48WKRkpVd1apVkZqaitu3b+Ott94qcUxsbCwKCwthbm6OgoICIyckIiIiIiIiJWH3ZvcmIiIC+AxwIiIiKiMvLy8IgoDY2NgXjtmzZw9sbW3RunVrIyYjIiIiIiIikgd2byIiotfHBXAiIqIK7NChQxgxYgRcXV3RunVrdOvWDYsWLUJ2drbeuGvXrsHR0RGdOnUq8b8zdOhQODo6IikpSXdsxowZcHR0RHJyMiZMmIB3330X7u7u2Lx5c6myde/eHcCzrdhKkpWVhRMnTqBbt24wM3vxpjO7du3C4MGD0a5dO7z77rvw9fXFqlWr8Pjx4xLHHz9+HMOHD4eLiwvat2+PSZMm6Z6LVhKtVot///vf6N+/P5ycnODk5IQBAwYgPDwcgiCUaq5EREREREQkX+zexbF7ExGRlHELdCIiogpq8eLFWLt2LUxNTeHs7Izq1asjPT0d69atw969e7Fx40bUr1//jX+fb775Bvfu3UPHjh1x/vx5qNXqUr3v7bffRvPmzZGamoqsrCzY2dnpvR4TE4OnT5/Cx8cHK1asKPb+p0+fYtq0adi9ezcsLCzg6uoKKysrpKSk4Pvvv8e+ffsQGhqK6tWr696zY8cOfPvttwCA9u3bo2rVqjh69ChOnDgBjUZT7PcoKCjAP//5Txw5cgQ2NjZwcnKCubk5kpOTMWPGDCQlJWHBggWv87+LiIiIiIiIZITdm92biIjkhwvgREREFVB8fDzWrl0LW1tbrFu3TreNmUajwZw5c7Bjxw5MnDgRO3fuhEqleqPfKysrC5GRkahfvz6ePn0KE5PSbxDTs2dPnDlzBrGxsfj444/1XouOjoadnR1cXFxKfO+WLVuwe/du1K9fH+vXr0eDBg0AAI8ePcKUKVNw6NAhfPvtt/jxxx8BADdv3kRwcDDMzMywZs0adOjQAQBw//59jBgxApmZmcV+j59++glHjhyBq6srli9fjho1agAA7t69i1GjRiE8PBzOzs7o379/qedMRERERERE8sDuze5NRETyxC3QiYiIKqANGzYAAL788ku9Z3hZWFhg1qxZaNiwIf744w8kJia+8e/l6empu5r9dQo4APTo0QNA8a3Ybty4gfT0dPTo0eOF/82NGzcCAIKDg3UFHABsbGywePFiVKlSBbGxsbh8+TIAIDw8HPn5+Rg4cKCugANAjRo1MH/+/GL/fY1Gg82bN8Pc3ByLFy/WFXAAqFWrFubMmQMA+Ne//vVacyYiIiIiIiJ5YPdm9yYiInniAjgREVEFU1hYiNTUVKhUKnTr1q3Y62ZmZvD29gYAveeKldU777xT5vfWr18fLVu2xMmTJ5GVlaU7Hh0dDUEQ8OGHH5b4vps3b+LatWuoXr063N3di71epUoVdOzYEQCQnJwMAEhJSQEAdO7cudj45s2bo169enrH/vjjD+Tm5qJx48Z46623ir2ndevWqFmzJi5duoQ7d+6UcsZEREREREQkB+ze7N5ERCRf3AKdiIiogsnOzkZBQQGqV68OGxubEscUFc7yKI/VqlV7o/f37NkTf/zxB+Li4jBkyBAAz0p4/fr18e6775b4nqLCXrdu3Rf+d5+fY9F76tSp88Lx165d0/365s2bAIBz587B0dHxpXO4efMmateu/dIxREREREREJB/s3s+wexMRkRxxAZyIiKiCEQQBAF76fLGiMRYWFqX6b2q12he+9rpbrz2vR48eWLRoEfbu3YshQ4bg8uXL+OOPPzBmzJgXvqcsc3zV89bMzPQ/1jx9+hQA4ODgAGdn55e+t3Llyi99nYiIiIiIiOSF3Vt/DLs3ERHJCRfAiYiIKhhbW1uYm5sjOzsbjx49KvFK9KtXrwIAatasCeD/i3RR8XxeTk6OgdI+u5L83XffxcmTJ3Hnzh1ER0cDAHx8fF74Hjs7OwDQu2r8eUVzrFWrFgDgrbfewvnz53H9+nU0bdq02Pi/bwMHQHdVeZ06dbB48eLXmBERERERERHJHbv3M+zeREQkR3wGOBERUQVjbm4OJycnPH36FHFxccVeLyws1B13c3MDAFhbWwN4VrYLCgr0xj948ACXLl0yaOaePXvi6dOniI2Nxd69e9G0adOXbn3m4OCAunXr4sGDB7rnjP1dbm4ujh49CgBwcXEBAHh4eABAif9Prl69igsXLugda926NSwtLXH27NliBR0Abt++jR49emD48OHIy8sr/WSJiIiIiIhI8ti92b2JiEi+uABORERUAX3yyScAgO+++w6ZmZm64wUFBZg9ezauXLmC5s2b67YXs7W1RZ06daDRaLB161bd+CdPnuDbb7996TZs5aF79+5QqVTYsmULzp0799Ir0IsUzTEwMFB3xTkA5OXlYdq0aXj06BE++OAD3bPK/P39YWtri507d2Lfvn268Y8ePcJXX31V7Ap8a2trfPTRR/jrr78wbdo03Lt3T+/3mDlzJi5evAhra2tuw0ZERERERKRA7N7s3kREJE/cAp2IiKgC8vLywqeffor169ejX79+cHZ2RvXq1XHq1CncunULdevWxbJly/SeITZy5EgEBwcjODgYe/bsQa1atZCamgqtVosPPvgABw8eNFhee3t7tG3bFmlpaQBevgVbkaFDhyItLQ179+6Fj48PXFxcYGVlhRMnTuDBgwdQq9WYP3++bnyNGjUwf/58TJo0CZ9//jmcnJxgZ2eHlJQUaLVaNGrUqNjV9lOmTMGZM2eQmJiIrl27onXr1rCyskJaWhqys7Px9ttvY/bs2eX7P4OIiIiIiIgkgd2b3ZuIiOSJd4ATERFVUNOnT8dPP/0ENzc3nD17FocOHULlypUxbtw4hIeHo1GjRnrjhw4dioULF6JVq1bIzMxESkoK3Nzc8NtvvxUbawg9evQAALRs2RINGzZ85XgTExMsW7YMISEhaNmyJVJTU3Hs2DHUqVMH06ZNw/bt21GjRg2993h6euLXX3+Fp6cnLl26hN9//x0tWrTAL7/8gjp16hT7PSwtLbF+/Xp8/fXXaNy4MTIyMpCUlAQ7OztMmDABO3bs0D3njIiIiIiIiJSH3Zvdm4iI5EclCIIgdggiIiIiIiIiIiIiIiIiIqI3xTvAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGTh/wDpDN5HRQa0CgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 184 coefficients adjusted\n", - "\t 637 coefficients converged\n", - "\t 120 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAChrklEQVR4nOzde3iMd/7/8dfMZCMJSYUlDqHVaGSdT2lDqTaEtqimWVUVRRVxXFuH1mFbqpSyLFUUoWkdQptQ1VqlpdSi2K9WUcESpzo0RcQhkcz8/ugvUyNBZjJJJpnn47pczH2a98znk3beec193waLxWIRAAAAAAAAAAAA8sRY1AUAAAAAAAAAAAAUJ4QrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAJAPFotF4eHhqlWrlmbPnm3XvomJiapVq5YSExOty2rVqqXu3bs7u8wczp8/r2vXrhX48zhDVlaWTp48ec/t3nvvPdWqVeuuf8LDwwu83uPHjxf4cwAAAMB1bdq0SYMHD1Z4eLjq1q2rRx55RK+88oq++eabQqshIyNDb775ph5++GHVr19fb7/9dq7LXn/9ddWqVUunTp2y6/jZn7137txZQK/A1r0+Y7/55puqVauWEhIS7rrdqVOnFBISoh49euT5uXfu3KlatWrpvffey/M+RWnHjh2qVauW/vKXv9y1j7py5YqGDh2qxo0bq1GjRoqNjZUkpaen6+zZs4VVrqT89dUSvXVe5bW3BpB3HkVdAAAUZzt27NDp06fl4+OjlStXqn///jKZTA4f791339Wf//xnJ1aY0+rVqzV+/Hh9/vnn8vHxKdDnyq8zZ86oX79+atu2rQYPHpynfbp06aImTZrkuq506dLOLC+H/v37Ky0tTR9//HGBPg8AAABcT1pamkaPHq3169erTp06eu6551SxYkWdPXtWq1evVv/+/fXyyy/rtddeK/BaVq5cqfj4eD366KN66qmn9NBDD+W6zGKxqFmzZipXrpxdx4+IiFD16tUVFBRUQK/gD3n5jP3Xv/5V8fHx+vzzzxUVFXXH7VavXi2LxaK//vWvBVGqS0hISJCPj4+uXbumFStWaPjw4bluN2fOHK1bt07t27dXs2bN1LBhQx04cECDBg3SoEGD9NxzzxVazc7uqyV669s50lsDuDfCFQDIh08//VR/+tOf1LNnT82ZM0ebNm1SmzZtHD5ep06dnFhd7nbs2FFsvllz8uRJJSUlqW3btnnep2HDhoXyPubmm2++0cMPP1wkzw0AAICiNXbsWK1fv14jR45U7969bdbFxMSod+/eWrRokR588EF17ty5QGs5dOiQJGnkyJEKCQmRJOtZHbcuk6RGjRrZffyQkBCbYxSkvHzGrlevnvVMmnPnzikgICDX7T777DPdd999dvUXxUlaWpo2bNig1q1b6+DBg0pMTNSQIUPk6emZY9vsOTJ+/Hj5+vpK+v0MkNOnTxdqzZLz+2qJ3vp2jvTWAO6Ny4IBgIOuXLmijRs3qn79+nrmmWckScuXLy/iqgAAAAAUtu+++07r1q1Tu3btcgQrkuTp6alJkybJZDLpo48+KvB6bt68KUkqU6bMXZeVJFFRUTKbzfryyy9zXb9nzx6dOHFCHTt2VKlSpQq5usLxxRdf6Pr16woLC1ObNm2UkpKiDRs25Lpt9nzIDlaKCn01gOKMcAUAHLR27VrduHFDjz76qGrUqKFatWpp27ZtuV7DdOfOnXrppZfUuHFjhYWF6e233871Gy63Xxf2TtdAPnXqlGrVqqXXX3/duuz69et655139OSTT6p+/fp65JFH1K9fP+3Zs8e6TXh4uFatWiVJat26tfW5Xn/9dTVq1EgnTpzQoEGD1KRJEzVu3Fj9+/fX2bNndfr0aQ0ZMkRNmjRRWFiYhg4dqvPnz9vUZDab9fHHH6tTp06qX7++mjZtqldeecXm+aU/rs989OhRjR07Vo8++qjq1aunTp066fPPP7fZ7qWXXpIkzZ4926FrQd+NxWLRJ598ohdffFFNmzZVnTp11KJFC7366qtKTk7Osf2XX36pbt26qUmTJnrkkUfUo0cPbd++XdIf12GWpO+//z7H9X6//fZb9ejRQ40bN1b9+vXVqVMnffTRRzKbzdZtssf0/fff19///nfVq1dPzZs31759+5SVlaXZs2erY8eOatiwoZo2baru3bsX6nW7AQAAcGerV6+WpLve46FatWr6/PPPrZ/Hsx09elSvvvqqmjdvrrp166p169aaPHmyLl++nOMY//vf//Tqq6+qWbNmqlu3rtq2bat//etfunHjhqQ/PlPe+pk/+/6Dty+Tcu83LBaLli9frueee04NGzZU8+bNFRMTo/3791u3udM9V7Zu3Wrtexo0aKDnnnvO5nOx9Mdn5y+++ELz5s1TRESE6tatq/DwcM2cOVOZmZk220m5f8a+3TPPPKM//elPNj3FrbLHKPuSYDdv3lRsbKyioqLUqFEj1a1bV48//rjGjh2rlJSUOz6P9Htfldv9HHO794ck/fjjj4qJidHDDz+sevXqqUOHDlq0aJGysrJstjtw4IBiYmLUsmVL61x4++23denSpbvWky377KRHH31UTz75pKScQUX2+/r9999LkvXelK+//rpGjRolSRo1apT1vZfs7/W+/fZbPfXUU6pbt66io6PvWrM9fXV2/fTWtu93UffWgDvjsmAA4KDsD65PPfWUJKl9+/Y6dOiQ4uPjNWLECOt2mzdv1sCBA1WxYkX169dPRqNRn3766V0bA0e8+uqr2rZtm7p166YHH3xQv/76q5YuXaoePXro008/VUhIiEaPHq3Fixdr9+7dGjVqlB566CHr/jdv3tSLL76ohx9+WCNHjtTevXuVmJioc+fO6ddff1VoaKhGjhypH374QQkJCUpLS9PChQut+w8fPlxffPGF2rVrp+eff16XL19WYmKiunfvrunTp1s/3Gfr27ev9T3JyMhQXFychg8frgoVKigsLEwRERHKzMy0NlwRERF5uhb0tWvX9Ntvv+VYbjKZdN9991kfv/POO4qLi1ObNm3097//XZK0e/duffnllzpw4IC+/PJLGY2/fwdh1qxZev/99xUSEqKYmBh5enpq2bJl6t27t+bOnas6dero3Xff1ciRI/Xggw8qJiZGjRs3liQtWrRIU6ZM0f33368+ffrIx8dHGzdu1MSJE7Vz506999571ueRpIULFyo4OFhjx47V8ePHVbt2bb3zzjtaunSpnn/+eb300ku6cuWK4uPjNWDAAH3wwQdq1apVXqYIAAAACsiPP/4oDw8PNWjQ4K7b3X6Pkt27d6t3794ymUzq2rWrqlatqr179+rDDz/UN998o/j4eOtn4B9//FE9e/ZUmTJl1K1bN5UrV0579+7VvHnztH37dn300UcqV66c3n33Xa1cudL6mf++++6T0Wi0Webv73/HGl977TV99tlnatq0qYYOHaqMjAx9/PHHio6O1tKlS1W7du1c91u6dKkmTJigevXqadCgQTIajfr66681atQoHTx4UGPGjLHZfvr06bJYLOrSpYv8/PyUmJioOXPmyGAwaMiQIQoKCrrjZ+zc+Pv7q3Xr1vr3v/+to0eP2rzX6enpWrdunerUqaO//OUvkqShQ4fq66+/VmRkpJ5//nmlp6dry5Yt+uSTT3TmzBktWrTormOZV19//bX+9re/KTAwUK+88op8fHy0bds2TZkyRf/973/13nvvyWAw6OTJk+rRo4cqVKignj17ys/PTz/88IOWLFmiH3/8UStWrJDBYLjj8xw9elQ//PCDGjVqpCpVqqhKlSp64IEHtGvXLpv3I/t9nTdvnv73v//p3XffVenSpVW+fHl5enpqxYoVOe5jaW+vN3ToUP31r3/VAw88kOslyW6V175aorcu7N4aQB5YAAB2S0pKsgQHB1ueffZZ67ITJ05YgoODLWFhYZb09HSLxWKxmM1mS3h4uKVp06aWX3/91bptamqqpW3btpbg4GBLQkKCdXlwcLAlOjra+vi1116zBAcHW06ePGnz/CdPnrQEBwdbXnvtNYvFYrGkpKRYgoODLW+++abNdnv37rW0bdvWsnLlyrseM3vZ7ft36tTJEhwcbJkwYYLN8s6dO1tCQkKsr/PLL7+0BAcHWxYsWGCzXVpamuXJJ5+0PPLII5Zr165ZLBaLZdasWZbg4GBLnz59LGaz2brtrl27LMHBwZZXX33VumzHjh2W4OBgy6xZsyz3kn3cO/154oknrNv+9ttvltq1a1v69euX4zhDhgyxBAcHW3766SeLxWKxHD9+3PKXv/zFEh0dbX29FovF8uuvv1qaNGliee6556zLbh+/EydOWGrXrm15+umnLVevXrUuN5vNluHDh1uCg4MtiYmJFovljzFt2LCh5cKFCzY1NWzY0PLKK6/YLPvll18sbdq0sbz33nv3fG8AAABQsBo0aGBp3ry5XftkZWVZIiIiLHXr1rUcOXLEZt3KlSstwcHBltdff91isfz++bF9+/aWVq1aWS5evJjrtvPnz7cuu9tn/rst2759u/Uz+a2f1Y8cOWIJCQmxDB482GKx/PHZe8eOHRaL5ffPpnXq1LH069fPZj+z2WwZMWKEJTg42PLDDz9YLJY/PuM/+uijlsuXL1u3vXr1qqVJkyaWFi1a2Ly+2z9j3823335rCQ4OtsyYMcNm+RdffGEJDg62LF261GKxWCwHDx7Mtc+xWCyWqKgoS3BwsPV9zq0neeKJJ2z6i2wJCQk2Pd61a9csjzzyiCUyMtKml7BYLJYZM2ZYgoODLV988YXFYrFYFi5caPM+ZXvnnXcskZGRlrNnz971tU+ePNkSHBxsiYuLsy7LHqfcXmd0dLQlODj4rvVbLI71ekOGDLlrrdny2ldbLPTWhdlbA8g7LgsGAA7I/nZN+/btrcuqVaumhg0b6rffftNXX30lSTp48KBOnTqlTp06qXz58tZtfX191bVrV6fVU6ZMGfn6+mrdunVauXKlLly4IElq0KCB1q9fn+cbZnbo0MHmcfa3m55++mmb5dWrV5fZbNavv/4q6fdr+0pSu3bt9Ntvv1n/pKenq23btrp48aJ27dplc4yOHTvafPOqfv36kmQ9pqN69+6txYsX5/gzdepU6zb+/v7avXu3pk2bZrNvamqqvL29Jcl6avk333yjrKws9ejRw+ZbV+XLl9eyZcv03nvv3bGWDRs2KDMzU3379pWPj491ucFg0LBhwyQpxzWhGzRooD//+c82yypVqqTvv/9esbGx1tO3K1WqpA0bNmjQoEF5fm8AAABQMEwmk/VyVnl14MABJScn65lnnslxRstf//pX3X///Vq/fr2ysrJ06NAhHT58WK1atZLZbLb5zP3EE0+oVKlSd7y3hj02btwoSXrllVdsPqsHBQXp008/1T/+8Y9c9/vqq6908+ZNPfXUU7p48aK1tosXL1p7puweKdsTTzwhPz8/62MfHx8FBQXd85Jcd9OiRQtVrlxZa9eutVm+atUqeXl5qWPHjpKkkJAQ7dmzR6+++qrNdikpKdaanHGj8v/85z+6ePGi2rVrp7S0NJtxy+6xssetcuXKkqSpU6dq+/btysjIkPT7ZaYSExMVEBBwx+fJzMzUmjVrZDQarWeASH/0q5999pmuX7/u0GtwpNfL7ZJpuclrXy3RWxdFbw3g3rgsGADY6ebNm1qzZo2k3z9g3Xqt0rCwMO3du1fLly9Xhw4ddOLECUm/f2C6Xc2aNZ1Wk6enpyZPnqxRo0ZZG57g4GC1aNFCHTt2vOOp+7e7/Zf6f/rTnyRJFSpUsFnu4fH7/z6y7xly7NgxSVKbNm3ueOzTp0/f9bmyg4tb70PiiJo1a6p58+b33K5UqVL6+uuvtWnTJp04cUKnTp3SL7/8Yv1Qml1H9vg++OCDOY4RHBx81+fIHv9bTxHPVqlSJfn6+ua41u3t74skTZw4UUOHDtW7776rd999V9WrV9ejjz6q9u3bKzQ09J6vFQAAAAUrICBAx44dU0ZGxj0vg5Ttbp8VDQaDatasqeTkZF28eNH6eTs+Pl7x8fG5Hu/2z9uOyP5senvYI0l16tS5437Z9Y0cOfKO29yrH5B+7wluvw+JPYxGoyIjIzVnzhz93//9nxo1aqQLFy5o27Zt6tChg83N2z09PfXll19a7+9x6tQpXbhwIUc/kB/Z78v06dM1ffr0XLfJfl/atWunqKgoJSYmqmfPnvLy8lKTJk3UqlUrPfvsszaXOL7d5s2b9euvv6pevXpKT0+3jqOnp6ceeOABHT9+XF988YX1fjOOvAZ7er3b+8fc2NNXS6K3vkVh9dYA7o1wBQDstHnzZuu3qe50c77du3fryJEj1scWiyXHNvn5oJNbw9GmTRs9+uij2rp1q7777jvt3LlTixYt0uLFizV69GjrDezuJvuD3e3udm3f7HpKly6t2bNn33GbGjVq2Dy+9T4jhe3mzZsaNGiQNm/erLp166pu3bpq166dateurW+//VYffPCBzbbSvd+D3GSP+532NZvNOZrv3MagcePG2rhxo3bs2KGtW7dq586dio+P1/Lly9WrVy+bmy8CAACg8IWGhuro0aP673//q7CwsDtuN2rUKN28efOuIUS27H7B09PT+u9u3brd8Zeud/osb4/sz772yu5PJkyYoMDAwFy3uf0eDwXVDzz33HOaO3euPv/8czVq1Eiff/65srKybIKFtLQ09ejRQ/v371eTJk1Ut25dderUSfXq1VNcXJz1l/72ur1Pyx63IUOGqFGjRrnuU7p0aUm/n/00adIkDRgwQJs2bdJ//vMf7d69W9u2bdMHH3yg+Pj4XIMF6Y8zQPbt26fWrVvnuk18fLxD4YojvZ7JZLrnce3pq28NT+itXau3Btwd4QoA2Cn7g2u/fv2sp9ve6pNPPtHmzZttPrwePXo0x3bJycn3fK7sD6Xp6ek2y7NPTc6WlpamQ4cOKTAwUG3btlXbtm0lST///LN69Oih999/P08fAB0VGBioY8eOKSQkJEfTdPDgQZ0/f956uS1X8OWXX2rz5s3q27ev9fJc2VatWmXzOLs5PHbsWI4PsR9++KGOHDmisWPHysvLK8fzZDc/SUlJ1htnZjtz5oyuXr1qPf3/TtLT03Xo0CHdd999euyxx/TYY49Jkk6ePKmXX35ZcXFxGjRokMqUKZOHVw4AAICC0KFDB8XHx2vZsmV3DFd++eUXrVmzRn5+fipbtqyqVasmSTp8+HCObS0Wi44ePaoyZcrIz8/PJrC4/Sxts9ms9evXW4+XH7d+9q1Vq5bNuunTp+vGjRsaPXr0Hffz8/PLUd/58+f1448/OqW+vKhWrZoeeeQRrVu3TmPHjtXnn3+u+++/Xw8//LB1m48++kg//fSTxo8frxdeeMFm/7xcSslkMunq1as5lt/ep2W/L15eXjnel7S0NH333XfWMxlOnz6tEydOqFmzZurevbu6d++uzMxMxcbGavr06Vq+fLlee+21HM+ZkpKiLVu2qHTp0poyZUqOX96bzWa99tpr2rdvn/bv33/XM5ByU1C9nj199dixY/XAAw9Iord2td4acHdEmwBghwsXLmjr1q0qW7asBg4cqDZt2uT4M2TIEEnS6tWrdf/996tGjRpas2aNzWnON27c0JIlS+75fBUrVpT0+zeQbrV69Wqbx0lJSXrxxRc1Z84cm+U1a9aUr6+vzbdmsr/Vkts3fhzVrl07SdK//vUvm+VpaWkaOnSoBg4cmONDbF5kfwB29unMFy9elKQcDWNycrLWr18v6Y9vMLVu3VoGg0FLly61uY72pUuXtGDBAv3444/WYMVoNNrUGhERIZPJpA8++MDmms0Wi0UzZ86UJD355JP3rLVLly6aMGGCzfJq1aopICBABoOBbyoBAAAUsdDQUEVERGj9+vVavHhxjvVXrlzR3/72N2VmZmrQoEHy9PRU7dq1Va1aNa1ZsybHL4wTEhJ04sQJ6y9269atq6pVq2rVqlXWyyNlW7FihYYOHWr9ZXV+ZJ8VExcXZ7P8xIkT+vDDD3Xy5Mlc92vbtq2MRqPmzZunGzdu2KybPHmyBg4cqJ9++smhmm7/jJ0XUVFR+u2337R69WodOHAgxxkbd+oH/u///s96P4u7XZ6sYsWK+u2332wuz5SRkaF169bZbNeiRQuVLl1aH374ofU5s82bN09/+9vf9O2331of9+zZUz/88IN1Gw8PDzVo0EDSnc8GWb16tTIzM9WpUydFRETk6E/btm2rqKgoSdLy5cvv+JqkP3rFW9/vguj17O2rr1+/rpCQEHprF+ytAXfHmSsAYIfsD67PPfecSpUqles2derUUWhoqHbt2qW1a9fq7bff1ssvv6zOnTurW7duKlOmjBISEnTlypV7Pl9kZKQ++OADvf322zp16pQqVKigTZs2KSkpyeb5GzdurBYtWig+Pl6pqal6+OGHlZWVpfXr1+vkyZM233DKvh7rwoUL1bJly7teyzWvnnvuOf373//WihUrdOLECYWHhyszM1OffPKJjh8/rhEjRtz1Box3kn2jwm+++UZVqlRRRESEypYtm+96W7ZsqX/+85+aOHGiTpw4oQoVKujw4cNKSEiwBiipqamSfr/edN++ffXBBx+oa9euat++vcxms1auXKnLly9bQ5Lsen/++WctW7ZMTZs2VXBwsIYOHap//vOfevbZZ/Xcc8/Jx8dHX3/9tXbs2KEnnnhCzzzzzF1rrVSpkjp37qwVK1aod+/eCg8Pl8Fg0Hfffaddu3YpOjpaPj4++X5PAAAAkD+TJk3S5cuXNXnyZH3++edq27atypUrp+PHj2vVqlX67bff1K1bN3Xr1k3S77/sfPvtt9W3b1917txZXbt2VWBgoH788UetWrVKVatW1fDhw2227devn5577jm98MILql69uvbt26eEhARVr15dAwYMyPdraNmypTp06KCEhASdPXtW4eHhSktL09KlS1WqVCmNGDEi1/0eeOABDR48WDNnzlSnTp0UGRkpPz8/ff311/ruu+/0xBNPWIMie+X2Gfte2rVrpwkTJmjKlCny8PDQs88+a7M+PDxcH3/8sYYPH64XX3xRvr6++umnn7Rq1SqZTCbdvHnT2g/kJioqSrt371bv3r314osvymw2KyEhIUcg4+fnpzfeeEOjRo1Sx44d1aVLF1WsWFE7duzQl19+qfr16+vFF1+UJPXs2VPr1q1T37599cILLygwMFDnzp3T8uXL5evrq+effz7XWhITEyXJepzcvPTSS1q6dKm++OILvf7663c86z27V1yzZo0sFou1h3F2r+dIX925c2d6axfsrQF3R7gCAHZYtWqVDAbDXT+4Sr9/MN61a5fi4+OVkJCgZcuWadasWfrwww8l/f6NsMcff1x/+9vf7nqc6tWra8GCBZo9e7bmz58vb29vtWzZUsuXL1f79u1ttp01a5YWLVpkveSVJIWEhGjatGnq2LGjdbuuXbvq+++/V0JCgnbs2OGUD4Amk0nz5s1TXFycPvvsM02bNk3e3t4KCgrSe++953AjVaNGDfXq1UuffvqpJk6cqMDAQDVr1izf9QYFBWn+/PmaNWuWYmNjJUmVK1dWdHS0nnzyST377LPaunWr9aySV199VQ8++KCWLFmiGTNmyNvbW/Xq1dPUqVNVr14963FHjhypadOmadKkSYqJiVFwcLD69u2rBx98UB9++KH1Xi41atTQG2+8oa5du+bprJM33nhDDz74oFatWqXp06crKytLDz74oP7xj3/ccy4CAACgcPj5+Sk2NlZffvmlEhMTtWzZMv32228qU6aMGjRooG7dulkv8ZotLCxMK1eu1Jw5c5SQkKC0tDRVqVJFL7/8smJiYuTn52fdtnnz5lq5cqXmzp1r/YVypUqV9OKLL6pfv355uol4XkydOlX169fXp59+qilTpui+++5T06ZN9be//S3HZXJvNWDAANWsWVMfffSR5s+fL7PZrGrVqmnkyJHq3r17nu7DkZvcPmPfS6lSpdShQwctW7ZM4eHh1rMWsjVr1kzTp0+39lqenp6qUqWKhg4dqpo1a6pv377aunWrzWf9Wz333HO6evWqli1bpnfffVd//vOf1alTJz3xxBPq0qWLzbbPPvusKleurIULF+qjjz5Senq6qlSpov79+6t3797WL0oFBQVpyZIlmjt3rlavXq2UlBSVLVtWYWFhGjhwYK73W/nhhx905MgRhYaG6qGHHrrj+1G9enU98cQT+vrrr/XZZ59ZA77bhYWFqWPHjtq4caP27dunpk2bqkaNGk7v9Rzpqzt37qymTZvSW7tYbw24O4PFmeeuAQAcZrFYFBISokceeUQfffRRUZcDAAAAAECxQ28NoLBwkXYAcBHZp52XLl26iCsBAAAAAKB4orcGUFi4LBgAuIAPPvhA+/fvl/T7tWUBAAAAAIB96K0BFCbCFQAoYqmpqYqLi9PNmzfVoUMH9erVq6hLAgAAAACgWKG3BlDYuOcKAAAAAAAAAACAHbjnCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHt7+hvcVikdnMbWfgfEajgbmFAsUcQ0FjjqEwMM8Kl9FokMFgKOoyUMw4s2fiZ75kYlxLJsa15GJsSybGteRibAtfXvsmtw9XzGaLfvvtalGXgRLGw8Mof//SSk29psxMc1GXgxKIOYaCxhxDYWCeFb5y5UrLZCJcgX2c1TPxM18yMa4lE+NacjG2JRPjWnIxtkUjr30TlwUDAAAAAAAAAACwA+EKAAAAALiIlJQUjRgxQmFhYWrUqJH69u2rI0eOWNcfPHhQ0dHRatiwoR5//HHFxsba7G82mzVr1iy1bNlSDRo00Msvv6zk5OTCfhkAAABAiUe4AgAAAAAuon///jp58qQWLFigTz/9VF5eXurZs6euX7+uixcvqlevXnrggQeUkJCgwYMHa+bMmUpISLDuP2fOHMXHx+vtt9/WihUrZDAY1KdPH2VkZBThqwIAAABKHre/5woAAAAAuIKLFy8qMDBQ/fv310MPPSRJGjBggDp16qTDhw9r+/bt8vT01Lhx4+Th4aGgoCAlJydrwYIFioqKUkZGhhYtWqQRI0aoVatWkqQZM2aoZcuW2rBhg9q3b1+ULw8AAAAoUThzBQAAAABcgL+/v6ZPn24NVn799VfFxsaqUqVKqlmzpnbv3q3Q0FB5ePzxHbmwsDAdO3ZMKSkp+vnnn3X16lWFhYVZ1/v5+al27dratWtXob8eAAAAoCTjzBUAAAAAcDH/+Mc/tHLlSnl6emru3Lny8fHR2bNnFRwcbLNdxYoVJUlnzpzR2bNnJUmVK1fOsc0vv/ySr3o8PPL/vTyTyWjzN0oGxrVkYlxLLsa2ZGJcSy7G1rURrgAAAACAi+nRo4e6dOmi5cuXa+DAgVq2bJlu3LghT09Pm+1KlSolSUpPT9f169clKddtLl++7HAtRqNB/v6lHd7/dn5+3k47FlwH41oyMa4lF2NbMjGuJRdj65oIVwAAAADAxdSsWVOSNGHCBO3du1dLliyRl5dXjhvTp6enS5J8fHzk5eUlScrIyLD+O3sbb2/HG3Kz2aLU1GsO75/NZDLKz89bqanXlZVlzvfx4BoY15KJcS25GNuSiXEtuRjbouHn552ns4UIVwAAAADABaSkpGj79u166qmnZDKZJElGo1FBQUE6f/68KlWqpPPnz9vsk/04ICBAmZmZ1mXVq1e32SYkJCRftWVmOq+Zz8oyO/V4cA2Ma8nEuJZcjG3JxLiWXIyta+JibQAAAADgAs6fP69hw4bp+++/ty67efOmDhw4oKCgIIWGhmrPnj3Kysqyrt++fbtq1Kih8uXLKyQkRGXKlNHOnTut61NTU3XgwAE1bdq0UF8LAAAAUNIRrgAAAACACwgJCVGLFi00fvx47d69W0lJSXrttdeUmpqqnj17KioqSmlpaRozZoyOHDmixMRExcXFqV+/fpJ+v9dKdHS0pk2bpq+//lo///yz/v73v6tSpUqKiIgo4lcHAAAAlCxcFgwAAAAAXIDBYNC//vUv/fOf/9TQoUN15coVNW3aVEuXLlWVKlUkSQsXLtTEiRMVGRmpChUqaOTIkYqMjLQeY8iQIcrMzNTYsWN148YNhYaGKjY2NsdN7gEAAADkj8FisViKuoiilJVl1m+/XS3qMlDCeHgY5e9fWhcvXuV6iCgQzDEUNOYYCgPzrPCVK1c6TzdmBG7lrJ6Jn/mSiXEtmRjXkouxLZkY15KLsS0aee2b6KwAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB4+iLgAA3JXRaJDRaHBoX5PJaPP33ZjNFpnNFoeeBwAAAAAAFI28/t4g+3cDBoNjv2MA4BjCFQAoAkajQWXL+uQpHLlVltki0y0frPz8vO+9T5ZZly5dI2ABAAAAAKCYcOT3Br6+XvT/QCEiXAGAImA0GmQyGTVt6R6dOnclT/s0Dqmol56ubdc+gQG+Gt6tiYxGAx+uAAAAAAAoJuz9vQH9P1D4CFcAoAidOndFR09fztO2gRXL2L0PAAAAAAAovvgdAOC6uKE9AAAAAAAAAACAHQhXAAAAAAAAAAAA7EC4AgAAAAAAAAAAYAfCFQAAAAAAAAAAADu4bLhy7NgxNWrUSImJidZlBw8eVHR0tBo2bKjHH39csbGxRVghAAAAAAAAAABwRy4Zrty8eVPDhw/XtWvXrMsuXryoXr166YEHHlBCQoIGDx6smTNnKiEhoQgrBQAAAAAAAAAA7sajqAvIzXvvvafSpUvbLFu5cqU8PT01btw4eXh4KCgoSMnJyVqwYIGioqKKqFIAAAAAAAAAAOBuXO7MlV27dmnFihWaMmWKzfLdu3crNDRUHh5/5EFhYWE6duyYUlJSCrtMAAAAAAAAAADgplzqzJXU1FSNHDlSY8eOVeXKlW3WnT17VsHBwTbLKlasKEk6c+aMypcv7/Dzeni4XMaEYs5kMtr8DdyusOcGcxH24r9jKAzMMwAAAABAceVS4cq4cePUsGFDdezYMce6GzduyNPT02ZZqVKlJEnp6ekOP6fRaJC/f+l7bwg4wM/Pu6hLACQxF+E45g4KA/MMAAAAAFDcuEy4snr1au3evVuff/55ruu9vLyUkZFhsyw7VPHx8XH4ec1mi1JTrzm8P5Abk8koPz9vpaZeV1aWuajLgQvKniOFhbkIe/HfMRQG5lnh8/Pz5kwhAAAAAHAClwlXEhISlJKSoscff9xm+ZtvvqnY2FhVqVJF58+ft1mX/TggICBfz52ZSTOPgpGVZWZ+wSUwF+Eo5g4KA/MMAAAAAFDcuEy4Mm3aNN24ccNmWdu2bTVkyBA9/fTT+uKLLxQfH6+srCyZTCZJ0vbt21WjRo183W8FAAAAAAAAAADAHi5zTYCAgADdf//9Nn8kqXz58qpataqioqKUlpamMWPG6MiRI0pMTFRcXJz69etXxJUDAAAAAAAAAAB34jLhyr2UL19eCxcu1LFjxxQZGanZs2dr5MiRioyMLOrSAAAAAAAAAACAG3GZy4Ll5tChQzaP69evrxUrVhRRNQAAAAAAAAAAAMXozBUAAAAAAAAAAABXQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAO3gUdQFASWE0GmQ0GiRJJpPR5u87MZstMpstBV4bAAAAAAAAAMB5CFcAJzAaDSpb1idHmOLn533X/bKyzLp06RoBCwAAAAAAAAAUI4QrgBMYjQaZTEZNW7pHp85dydM+gQG+Gt6tiYxGA+EKAAAAAAAAABQjhCuAE506d0VHT18u6jIAAABQTF26dEnTp0/X5s2blZaWplq1amnYsGFq2rSpJGnUqFFKTEy02ScgIEBbtmyRJJnNZs2ePVuffPKJUlNT1aRJE7355pu6//77C/21AAAAACUZ4QoAAAAAuIhXX31VKSkpmj59usqVK6dly5apd+/eSkxMVFBQkA4dOqSYmBhFR0db9zGZTNZ/z5kzR/Hx8XrnnXcUEBCgqVOnqk+fPlq7dq08PT2L4iUBAAAAJdLd77YNAAAAACgUycnJ2rZtm9588001bdpUDz74oMaMGaOAgACtXbtWWVlZOnLkiOrVq6cKFSpY/5QrV06SlJGRoUWLFmnw4MFq1aqVQkJCNGPGDJ07d04bNmwo4lcHAAAAlCyEKwAAAADgAvz9/TV//nzVrVvXusxgMMhisejy5cs6fvy40tPTFRQUlOv+P//8s65evaqwsDDrMj8/P9WuXVu7du0q8PoBAAAAd8JlwQAAAADABfj5+alVq1Y2y9atW6cTJ06oRYsWSkpKksFgUFxcnLZs2SKj0ahWrVpp6NCh8vX11dmzZyVJlStXtjlGxYoV9csvvxTa6wAAAADcgUuFKykpKZo8ebK2bt2q9PR0hYaGauTIkapZs6ake9+8EQAAAABKij179mj06NFq3bq1wsPDNWvWLBmNRlWtWlXz5s1TcnKypkyZoqSkJMXFxen69euSlOPeKqVKldLly5fzVYuHR/4vemAyGW3+RsnAuJZMjGvJxdgWH46OEWNbsvAz69pcKlzp37+/jEajFixYIB8fH82cOVM9e/bUhg0b5O3tfc+bNwIAAABASbBx40YNHz5cDRo00PTp0yVJgwcPVs+ePeXn5ydJCg4OVoUKFdSlSxft27dPXl5ekn6/90r2vyUpPT1d3t7eDtdiNBrk7186H6/Glp+f47XAdTGuJRPjWnIxtiUXY1syMa6uyWXClYsXLyowMFD9+/fXQw89JEkaMGCAOnXqpMOHD6tOnTo6cuSIBgwYoAoVKhRxtQAAAABQMJYsWaKJEycqIiJC06ZNs56JYjAYrMFKtuDgYEnS2bNnrZcDO3/+vKpXr27d5vz58woJCXG4HrPZotTUaw7vn81kMsrPz1upqdeVlWXO9/HgGhjXkolxLbkY2+Ije6zsxdiWLPzMFg0/P+88nS3kMuGKv7+/9RtZkvTrr78qNjZWlSpVUs2aNe9580YAAAAAKO6WLVumCRMmqHv37ho9erSMxj+aumHDhunSpUuKjY21Ltu3b58kqWbNmqpWrZrKlCmjnTt3WsOV1NRUHThwwObsf0dkZjqvmc/KMjv1eHANjGvJxLiWXIxtycXYlkyMq2tymXDlVv/4xz+0cuVKeXp6au7cufLx8bnnzRvzwxnXD4Z7y891D7lmonsq7HFnnsFeXNcVhYF5Btg6duyYJk2apIiICPXr108pKSnWdV5eXurQoYP69++vuXPnqn379jp27JjeeustdejQwfoltOjoaE2bNk3lypVT1apVNXXqVFWqVEkRERFF9bIAAACAEsklw5UePXqoS5cuWr58uQYOHKhly5bp8OHDd715463f6LKHs68fDNiLayaiMDDP4CjmDgoD8wz43fr163Xz5k1t2LBBGzZssFkXGRmpyZMna+bMmZo3b57mzZsnX19fdezYUUOHDrVuN2TIEGVmZmrs2LG6ceOGQkNDFRsbm+Mm9wAAAADyxyXDlZo1a0qSJkyYoL1792rJkiWaNGnSXW/e2KBBA4eey1nXD4Z7c/Q6mBLXwnRX+ZkzjmCewV5c1xWFgXlW+PJ67WAUjZiYGMXExNx1m3bt2qldu3Z3XG8ymTRixAiNGDHC2eUBAAAAuIXLhCspKSnavn27nnrqKZlMJkmS0WhUUFCQzp8/f8+bNzoarkjOvX4wYC+umYjCwDyDo5g7KAzMMwAAAABAceMyX1s7f/68hg0bpu+//9667ObNmzpw4ICCgoI0bNgw9e7d22afW2/eCAAAAAAAAAAAUBhcJlwJCQlRixYtNH78eO3evVtJSUl67bXXlJqaqp49e6pDhw7atm2b5s6dqxMnTujbb7/V6NGjbW7eCAAAAAAAAAAAUNBc5rJgBoNB//rXv/TPf/5TQ4cO1ZUrV9S0aVMtXbpUVapUUZUqVe5580YAAAAAAAAAAICC5jLhiiT5+vpq3LhxGjduXK7r73XzRgAAAAAAAAAAgILmMpcFAwAAAAAAAAAAKA4IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOxAuAIAAAAAAAAAAGAHwhUAAAAAAAAAAAA7EK4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdiBcAQAAAAAAAAAAsAPhCgAAAAAAAAAAgB0IVwAAAAAAAAAAAOzgUuFKSkqKRowYobCwMDVq1Eh9+/bVkSNHrOsPHjyo6OhoNWzYUI8//rhiY2OLsFoAAAAAAAAAAOCOXCpc6d+/v06ePKkFCxbo008/lZeXl3r27Knr16/r4sWL6tWrlx544AElJCRo8ODBmjlzphISEoq6bAAAAAAAAAAA4EY8irqAbBcvXlRgYKD69++vhx56SJI0YMAAderUSYcPH9b27dvl6empcePGycPDQ0FBQUpOTtaCBQsUFRVVxNUDAAAAAAAAAAB34TJnrvj7+2v69OnWYOXXX39VbGysKlWqpJo1a2r37t0KDQ2Vh8cfeVBYWJiOHTumlJSUoiobAAAAAAAAAAC4GZc5c+VW//jHP7Ry5Up5enpq7ty58vHx0dmzZxUcHGyzXcWKFSVJZ86cUfny5YuiVAAAAAAAAAAA4GZcMlzp0aOHunTpouXLl2vgwIFatmyZbty4IU9PT5vtSpUqJUlKT0/P1/N5eLjMCTwopkwmx+dQfvZF8VXY4848g72y5wxzBwWJeQYAAAAAKK5cMlypWbOmJGnChAnau3evlixZIi8vL2VkZNhslx2q+Pj4OPxcRqNB/v6lHS8WyCc/P++iLgFugHkGRzF3UBiYZwAAAACA4sZlwpWUlBRt375dTz31lEwmkyTJaDQqKChI58+fV6VKlXT+/HmbfbIfBwQEOPy8ZrNFqanXHC8c0O/fuHX0F0OpqdeVlWV2ckVwdfmZM45gnsFe2XOUuYOCxDwrfH5+3pwpBAAAAABO4DLhyvnz5zVs2DCVL19ezZo1kyTdvHlTBw4cUHh4uP785z8rPj5eWVlZ1vBl+/btqlGjRr7vt5KZSTOPopOVZWYOosAxz+Ao5g4KA/MMAAAAAFDcuMzX1kJCQtSiRQuNHz9eu3fvVlJSkl577TWlpqaqZ8+eioqKUlpamsaMGaMjR44oMTFRcXFx6tevX1GXDgAAAAAAAAAA3IjLhCsGg0H/+te/FBYWpqFDh6pz5866fPmyli5dqipVqqh8+fJauHChjh07psjISM2ePVsjR45UZGRkUZcOAAAAAAAAAADciMtcFkySfH19NW7cOI0bNy7X9fXr19eKFSsKtygAAAAAAAAAAIBbuMyZKwAAAAAAAAAAAMUB4QoAAAAAAAAAAIAdnBquXL16VTdu3HDmIQEAAACg2KAnAgAAANyDw+HKli1bNGfOHOvjKVOm6OGHH1bTpk01ceJEpxQHAAAAAK6KnggAAABwXw6FK5s2bVK/fv302WefSZJ2796txYsXq2rVqmrUqJGWLFmiZcuWObVQAAAAAHAV9EQAAACAe3MoXFm8eLGqV6+ujz76SJL0xRdfyGg0avHixfr444/1xBNPKCEhwamFAgAAAICroCcCAAAA3JtD4crBgwfVtWtXBQQESJK2bdum4OBgVa1aVZLUsmVL/e9//3NelQAAAADgQuiJAAAAAPfmULiSmZmpMmXKSJJOnz6tEydO6JFHHrGuN5vN8vDwcE6FAAAAAOBi6IkAAAAA9+ZQuBIYGKgDBw5IktavXy+DwaCWLVta12/atEmBgYHOqRAAAAAAXAw9EQAAAODeHPoqVbt27TR37lydPn1a33//vQICAhQWFqYTJ07o7bff1rZt2/T66687u1YAAAAAcAn0RAAAAIB7c+jMlQEDBqhr1676/vvvVblyZc2YMUMeHh66dOmSvvvuOz3//POKjo52dq0AAAAA4BIKqie6dOmS3njjDT322GNq3Lixunbtqt27d1vXHzx4UNHR0WrYsKEef/xxxcbG2uxvNps1a9YstWzZUg0aNNDLL7+s5OTkfL9eAAAAALYcOnPFaDRq7NixGjt2rM3ykJAQbdq0yXpTRwAAAAAoiQqqJ3r11VeVkpKi6dOnq1y5clq2bJl69+6txMRElStXTr169VKbNm00fvx47d27V+PHj1fZsmUVFRUlSZozZ47i4+P1zjvvKCAgQFOnTlWfPn20du1aeXp65vt1AwAAAPidQ2euvPTSS9q+fXuO5Z6engoICNDGjRv15JNP5rs4AAAAAHBFBdETJScna9u2bXrzzTfVtGlTPfjggxozZowCAgK0du1arVy5Up6enho3bpyCgoIUFRWlnj17asGCBZKkjIwMLVq0SIMHD1arVq0UEhKiGTNm6Ny5c9qwYYNTXjcAAACA3+XpzJXr16/r4sWL1sfff/+9IiIidP/99+fY1mw267vvvtOZM2ecVyUAAAAAFKHC6In8/f01f/581a1b17rMYDDIYrHo8uXL+umnnxQaGioPjz/auLCwMH3wwQdKSUnR6dOndfXqVYWFhVnX+/n5qXbt2tq1a5fat29vVz0AAAAA7ixP4UpaWpo6dOig69evW5dNmjRJkyZNuuM+DRs2zHdxAAAAAOAKCqMn8vPzU6tWrWyWrVu3TidOnFCLFi00Y8YMBQcH26yvWLGiJOnMmTM6e/asJKly5co5tvnll1/squV2Hh4OXfTAhslktPkbJQPjWjIxriUXY1t8ODpGjG3Jws+sa8tTuFKhQgW98cYb2rlzpywWi1avXq0mTZqoWrVqObY1Go3685//rK5duzq9WAAAAAAoCkXRE+3Zs0ejR49W69atFR4ernfeeSfHfVNKlSolSUpPT7cGP7ltc/nyZYfrMBoN8vcv7fD+t/Pz83baseA6GNeSiXEtuRjbkouxLZkYV9eU5xvaP/vss3r22Wcl/X4KfK9evdS6deuCqgsAAAAAXEph9kQbN27U8OHD1aBBA02fPl2S5OXlpYyMDJvt0tPTJUk+Pj7y8vKS9Pu9V7L/nb2Nt7fjDbnZbFFq6jWH989mMhnl5+et1NTrysoy5/t4cA2Ma8nEuJZcjG3xkT1W9mJsSxZ+ZouGn593ns4WynO4cqtvvvnGkd0AAAAAoEQoyJ5oyZIlmjhxoiIiIjRt2jTrmSiVKlXS+fPnbbbNfhwQEKDMzEzrsurVq9tsExISkq+aMjOd18xnZZmdejy4Bsa1ZGJcSy7GtuRibEsmxtU1ORSuSJLFYtGOHTt04cIFmc25D2z2t7oAAAAAoKQpiJ5o2bJlmjBhgrp3767Ro0fLaPzjG3OhoaGKj49XVlaWTCaTJGn79u2qUaOGypcvL19fX5UpU0Y7d+60hiupqak6cOCAoqOjHXuRAAAAAHLlULiSnJysPn366OTJk7mut1gsMhgMhCsAAAAASqSC6ImOHTumSZMmKSIiQv369VNKSop1nZeXl6KiorRw4UKNGTNGr7zyin788UfFxcVp/Pjxkn6/10p0dLSmTZumcuXKqWrVqpo6daoqVaqkiIiIfL1eAAAAALYcClemTZumkydPKioqSvXq1ctxw0QAAAAAKMkKoidav369bt68qQ0bNmjDhg026yIjIzV58mQtXLhQEydOVGRkpCpUqKCRI0cqMjLSut2QIUOUmZmpsWPH6saNGwoNDVVsbCw9GwAAAOBkDoUrO3bsUNeuXfXGG284ux4AAAAAcHkF0RPFxMQoJibmrtvUr19fK1asuON6k8mkESNGaMSIEU6rCwAAAEBO977lfS4yMzP1l7/8xdm1AAAAAECxQE8EAAAAuDeHwpU6depo//79zq4FAAAAAIoFeiIAAADAvTkUrgwZMkSfffaZ1q9fL4vF4uyaAAAAAMCl0RMBAAAA7s2he64sWrRI9913n4YOHSovLy/5+/vLYDDYbGMwGLRx40anFAkAAAAAroSeCAAAAHBvDoUrSUlJMhqNqly5snXZ7d/W4ttbAAAAAEoqeiIAAADAvTkUrnzzzTfOrgMAAAAAig16IgAAAMC9OXTPldtlZGTIbDY741AAAAAAUOzQEwEAAADuxeFw5dKlS3rrrbfUokULNWzYUDt37tTu3bsVExOjY8eOObNGAAAAAHA59EQAAACA+3IoXLl06ZK6dOmiZcuWydvb23ot4cuXL2vz5s3q1q2bTp486dRCAQAAAMBV0BMBAAAA7s2hcGX27Nk6ffq0Fi9erBUrVlgbidatW2v+/Pm6du2a5syZ49RCAQAAAMBV0BMBAAAA7s2hcOWbb77R888/r2bNmslgMNise+yxx9SlSxft3LnTKQUCAAAAgKuhJwIAAADcm0Phyvnz5xUSEnLH9UFBQbpw4YLDRQEAAACAK6MnAgAAANybQ+FK+fLldfr06TuuT0pKkr+/v8NFAQAAAIAroycCAAAA3JtD4cpjjz2m+Ph4nTp1Kse6//73v1q5cqVatGiR7+IAAAAAwBXREwEAAADuzcORnQYNGqRNmzYpMjJSTZo0kcFgUHx8vOLi4rR161aVKVNGAwYMcHatAAAAAOAS6IkAAAAA9+bQmSsBAQGKj49Xo0aNtGXLFlksFq1fv16bN29Ww4YN9fHHHyswMNDZtQIAAACAS6AnAgAAANybQ2euSFJgYKDmz5+vK1eu6Pjx4zKbzQoMDFT58uWdWR8AAAAAuCR6IgAAAMB9ORyuZPP19VW9evWcUQsAAAAAFDv0RAAAAID7yVO4MmrUKL3wwgtq0KCB9fG9GAwGTZo0KX/VAQAAAIALoCcCAAAAcKs8hSurVq1S8+bNrY3EqlWr7rkPjQQAAACAkoKeCAAAAMCt8hSufP311ypXrpzNYwAAAABwF/REAAAAAG6Vp3ClatWquT5OTU1VmTJlZDQaJUmHDx9WhQoVVLZsWedWCQAAAABFiJ4IAAAAwK2Mju44Y8YMtWzZUidOnLAuW7BggVq0aKFFixY5pTgAAAAAcFX0RAAAAID7ytOZK7dbuXKlPvjgAzVp0kSlSpWyLn/22Wf166+/aurUqapcubKeeuoppxUKAAAAAK6CnggAAABwbw6dubJs2TI9+uijWrp0qSpXrmxd3rx5cy1atEjNmjXT4sWLnVYkAAAAALgSeiIAAADAvTkUriQnJ6tt27Z3XB8REaGjR486XBQAAAAAuDJ6IgAAAMC9ORSueHt768KFC3dcf/HiRZlMJoeLAgAAAABXRk8EAAAAuDeHwpUmTZpo2bJluTYTv/32m+Lj49W4ceN8FwcAAAAAroieCAAAAHBvDt3Qvm/fvnrxxRf1zDPPqFOnTnrwwQdlMBj0v//9T59//rkuXbqkAQMGOLtWAAAAAHAJ9EQAAACAe3MoXKlXr57mzJmjN998Ux9++KHNukqVKun9999X/fr17T7upUuXNH36dG3evFlpaWmqVauWhg0bpqZNm0qSRo0apcTERJt9AgICtGXLFkdeBgAAAAA4pKB6IgAAAADFg0PhiiS1bNlS33zzjQ4cOKBTp04pMzNTgYGBqlOnjsPXFn711VeVkpKi6dOnq1y5clq2bJl69+6txMREBQUF6dChQ4qJiVF0dLR1H65jDAAAAKAoFERPBAAAAKB4cDhcyVa7dm3Vrl0734UkJydr27ZtWr58ufXaxGPGjNGWLVu0du1aDRo0SEeOHNGAAQNUoUKFfD8fAAAAADiDs3oiAAAAAMVHnsKV2bNnq23btgoODrY+vheDwaCBAwfmuRB/f3/Nnz9fdevWtTmGxWLR5cuXdfz4caWnpysoKCjPxwQAAAAAZyiMnggAAABA8ZHncOX+++8v0EbCz89PrVq1slm2bt06nThxQi1atFBSUpIMBoPi4uK0ZcsWGY1GtWrVSkOHDpWvr2+enyc3Hh7GfO0PmEyOz6H87Iviq7DHnXkGe2XPGeYOChLzDMVJYfREAAAAAIqPPIUrsbGx+stf/mJ9/NFHHxVYQdn27Nmj0aNHq3Xr1goPD9esWbNkNBpVtWpVzZs3T8nJyZoyZYqSkpIUFxcno9GxptxoNMjfv7STqwfyzs/Pu6hLgBtgnsFRzB0UBuYZioOi6IkAAAAAuK48hSujR4/Wq6++qk6dOkmSzpw5o6ZNmyowMLBAitq4caOGDx+uBg0aaPr06ZKkwYMHq2fPnvLz85MkBQcHq0KFCurSpYv27dunBg0aOPRcZrNFqanXnFY73JPJZHT4F0OpqdeVlWV2ckVwdfmZM45gnsFe2XOUuYOCxDwrfH5+3pwp5KDC7okAAAAAuLY8hSu//fab0tLSrI9HjRqlqVOnFkgjsWTJEk2cOFERERGaNm2aPD09Jf1+Sn12sJIt+5T8s2fPOhyuSFJmJs08ik5Wlpk5iALHPIOjmDsoDMwzFAeF2RMBAAAAcH15CleqVKmiOXPm6NSpUypdurQsFou++uorHT9+/I77OHJ94WXLlmnChAnq3r27Ro8ebXOpr2HDhunSpUuKjY21Ltu3b58kqWbNmnY9DwAAAADYo7B6IgAAAADFQ57ClaFDh+q1117T4sWLJf3eJHz11Vf66quv7riPvY3EsWPHNGnSJEVERKhfv35KSUmxrvPy8lKHDh3Uv39/zZ07V+3bt9exY8f01ltvqUOHDgoKCsrz8wAAAACAvQqjJwIAAABQfOQpXImIiFBYWJiOHz+ujIwM9ejRQzExMWrevLnTClm/fr1u3rypDRs2aMOGDTbrIiMjNXnyZM2cOVPz5s3TvHnz5Ovrq44dO2ro0KFOqwEAAAAAclMYPREAAACA4iNP4Urr1q1tbt5YpUoVValSRQ8//LDTComJiVFMTMxdt2nXrp3atWvntOcEAAAAgLwojJ4IAAAAQPFhvPcmOW/eeObMGXl7exdYUQAAAADgSuiJAAAAANzKoRvaS9KGDRuUnJx8x324vjAAAACAkoKeCAAAAMCtXOaG9gAAAADgquiJAAAAANwqT+HKU089xc0bAQAAALgteiIAAAAAt8pTuCJJ/v7+8vf3lySFhobqkUce4eaNAAAAANwGPREAAACAbHkOV2718ccfW/997NgxnT59WnXq1JG3t7eMRqM8PT2dViAAAAAAuBp6IgAAAMC9GR3dce/everYsaOefvpp9enTRz///LP++9//6vHHH9e6deucWSMAAAAAuBx6IgAAAMB9ORSuHD58WL169dKvv/6qZ555xrrc29tbWVlZGj58uHbt2uW0IgEAAADAldATAQAAAO7NoXDlvffek4+Pj9auXavXXntNFotFktSoUSOtWbNGFSpU0IIFC5xaKAAAAAC4CnoiAAAAwL05FK58//33euGFF1S+fHkZDAabdQEBAerSpYsOHDjglAIBAAAAwNXQEwEAAADuzaFw5erVqwoICLjj+vvuu0+pqakOFwUAAAAAroyeCAAAAHBvDoUrgYGB2rdv3x3X79ixQ1WrVnW4KAAAAABwZfREAAAAgHtzKFzp0KGDVq1apa+++sq6zGAwyGw2a/78+dqwYYPatWvntCIBAAAAwJXQEwEAAADuzcORnfr06aP//Oc/+tvf/iY/Pz8ZDAa9+eabunTpki5fvqyQkBD169fP2bUCAAAAgEugJwIAAADcm0Nnrnh6eurDDz/UsGHDVKVKFXl5eemXX35R+fLl1b9/fy1btkze3t7OrhUAAAAAXAI9EQAAAODeHDpzRZL+9Kc/6ZVXXtErr7zizHoAAAAAoFigJwIAAADcl8PhiiSlpaXpu+++06lTp+Tp6akqVaqoRYsW8vLyclZ9AAAAAOCy6IkAAAAA9+RwuLJ+/Xq98cYbSk1NlcVikfT7DRxLly6tt956S08//bTTigQAAAAAV0NPBAAAALgvh8KVH374QcOGDZOvr6+GDBmihx56SGazWUlJSVqyZIlGjhypwMBA1a9f39n1AgAAAECRoycCAAAA3JtD4crcuXNVtmxZffbZZypfvrx1edu2bdW1a1d16tRJCxcu1KxZs5xWKAAAAAC4CnoiAAAAwL0ZHdnp//7v/9SlSxebJiJb+fLl1aVLF+3ZsyffxQEAAACAK6InAgAAANybQ+HKtWvXcm0ispUrV05XrlxxuCgAAAAAcGX0RAAAAIB7cyhcCQwM1I4dO+64fseOHapSpYrDRQEAAACAK6MnAgAAANybQ+FKhw4dtGHDBs2ePVsZGRnW5RkZGZo9e7Y2btyop59+2mlFAgAAAIAroScCAAAA3JtDN7Tv06ePvv32W82ePVuLFi1S9erVZTAYlJycrGvXrql27drq27evs2sFAAAAAJdATwQAAAC4N4fCFU9PT3300UeKjY3Vv//9bx0/flwWi0XVq1dXu3bt1Lt3b3l5eTm7VgAAAABwCfREAAAAgHtzKFyRJC8vLw0cOFADBw50Zj0AAAAAUCzQEwEAAADuy+57ruzfvz/X5V9//bW++eabfBcEAAAAAK6MnggAAABAnsOV3377TdHR0ercubNSU1NzrF+yZIkGDhyoF154QefOnXNqkQAAAABQ1OiJAAAAAGTLU7hy7do19ejRQ7t371ZoaKiuX7+eY5tu3bqpefPm2rt3r15++WWlp6c7vVgAAAAAKAr0RAAAAABuladwJS4uTocPH9Zbb72luLg4BQQE5NimTZs2io2N1auvvqqjR4/q448/dnqxAAAAAFAU6IkAAAAA3CpP4cr69evVqlUrPf/88/fctm/fvmrcuLG+/PLLfBcHAAAAAK6AnggAAADArfIUriQnJ6tZs2Z5Pujjjz+uY8eOOVwUAAAAALgSeiIAAAAAt8pTuGI0GuXl5ZXng5YtW1YGg8HhogAAAADAldATAQAAALhVnsKVKlWq6H//+1+eD3rkyJFcr0EMAAAAAMURPREAAACAW+UpXGnZsqU+++wzXb169Z7bpqamas2aNWrUqFG+iwMAAAAAV1AUPdGcOXPUvXt3m2WjRo1SrVq1bP489thj1vVms1mzZs1Sy5Yt1aBBA7388stKTk7OVx0AAAAAcspTuPLCCy8oPT1d/fr108WLF++4XUpKigYOHKjU1FR169bNaUUCAAAAQFEq7J7oww8/1KxZs3IsP3TokGJiYvTdd99Z/6xevdq6fs6cOYqPj9fbb7+tFStWyGAwqE+fPsrIyHC4FgAAAAA5eeRlo+rVq2vMmDH6xz/+odatW+vpp59W48aNVbFiRWVlZenChQvas2ePvvrqK129elWvv/666tSpU9C1AwAAAEChKKye6Ny5cxozZoz27NmjGjVq2KzLysrSkSNHNGDAAFWoUCHHvhkZGVq0aJFGjBihVq1aSZJmzJihli1basOGDWrfvr1jLx4AAABADnkKVySpc+fOqlixot544w19+umnSkhIsFlvsVhUrVo1TZ06VeHh4U4vFAAAAACKUmH0RPv379d9992nNWvW6P3339fp06et644fP6709HQFBQXluu/PP/+sq1evKiwszLrMz89PtWvX1q5duwhXAAAAACfKc7giSa1atdLmzZu1Y8cO/fDDDzp//rxMJpMCAgL08MMPq379+gVVJwAAAAAUuYLuicLDw+8YzCQlJclgMCguLk5btmyR0WhUq1atNHToUPn6+urs2bOSpMqVK9vsV7FiRf3yyy/5qgsAAACALbvCFUkyGAxq1qyZmjVrVhD1AAAAAIBLK6qe6PDhwzIajapatarmzZun5ORkTZkyRUlJSYqLi9P169clSZ6enjb7lSpVSpcvX87Xc3t45Ol2nXdlMhlt/kbJwLiWTIxrycXYFh+OjhFjW7LwM+va7A5XAAAAAACFb/DgwerZs6f8/PwkScHBwapQoYK6dOmiffv2ycvLS9Lv917J/rckpaeny9vb2+HnNRoN8vcvnb/ib+Hn53gtcF2Ma8nEuJZcjG3JxdiWTIyrayJcAQAAAIBiwGAwWIOVbMHBwZKks2fPWi8Hdv78eVWvXt26zfnz5xUSEuLw85rNFqWmXnN4/2wmk1F+ft5KTb2urCxzvo8H18C4lkyMa8nF2BYf2WNlL8a2ZOFntmj4+Xnn6WwhwhUAAAAAKAaGDRumS5cuKTY21rps3759kqSaNWuqWrVqKlOmjHbu3GkNV1JTU3XgwAFFR0fn67kzM53XzGdlmZ16PLgGxrVkYlxLLsa25GJsSybG1TVxsTYAAAAAKAY6dOigbdu2ae7cuTpx4oS+/fZbjR49Wh06dFBQUJA8PT0VHR2tadOm6euvv9bPP/+sv//976pUqZIiIiKKunwAAACgRMnTmSuLFy/WY489pqCgoIKuBwAAAABcjiv0RE888YRmzpypefPmad68efL19VXHjh01dOhQ6zZDhgxRZmamxo4dqxs3big0NFSxsbE5bnIPAAAAIH/yFK7MmjVLfn5+1kaidevWGj16tFq3bl2gxQEAAACAKyiKnmjy5Mk5lrVr107t2rW74z4mk0kjRozQiBEjCqwuAAAAAHm8LJjRaNT27dt19epVSdLp06d1/fr1Ai0MAAAAAFwFPREAAACAW+XpzJWWLVtq7dq1+uKLLyRJBoPhnt+GMhgMOnDggHOqBAAAAIAiRE8EAAAA4FZ5ClfefvttVa5cWUlJScrIyNDu3btVo0YNlS9fvqDrAwAAAIAiR08EAAAA4FZ5ClfKlCmj1157zfo4JCRE/fv3V8eOHZ1azKVLlzR9+nRt3rxZaWlpqlWrloYNG6amTZtKkg4ePKiJEyfqp59+UtmyZdW9e3f17t3bqTUAAAAAwO0KqycCAAAAUDzk6Z4rt/voo4/UvHlzZ9eiV199VT/88IOmT5+uTz/9VHXq1FHv3r119OhRXbx4Ub169dIDDzyghIQEDR48WDNnzlRCQoLT6wAAAACAuymonggAAABA8ZCnM1du9/DDD0uSVq9erXXr1unUqVPy9PRU5cqV9eSTT+qZZ56x+5jJycnatm2bli9frsaNG0uSxowZoy1btmjt2rXy8vKSp6enxo0bJw8PDwUFBSk5OVkLFixQVFSUIy8DAAAAABxSED0RAAAAgOLDoXDFYrFoyJAh2rhxoywWi3x9fWU2m3Xw4EFt2rRJ//73vzVnzhy7junv76/58+erbt261mUGg0EWi0WXL1/WTz/9pNDQUHl4/FFyWFiYPvjgA6WkpHCtYwAAAACFpiB6IgAAAADFh0OXBVuyZIk2bNigjh076ttvv9WuXbu0Z88ebdq0Sc8884w2bdqk5cuX23VMPz8/tWrVSp6entZl69at04kTJ9SiRQudPXtWlSpVstmnYsWKkqQzZ8448jIAAAAAwCEF0RMBAAAAKD4cOnMlISFBDz/8sN59912b5ZUrV9aUKVN09uxZJSQkqGvXrg4XtmfPHo0ePVqtW7dWeHi43nnnHZvgRZJKlSolSUpPT3f4eSTJw8OhjAmwMpkcn0P52RfFV2GPO/MM9sqeM8wdFCTmGYqzwuiJAAAAALguh8KVY8eOafjw4Xdc36ZNG82YMcPhojZu3Kjhw4erQYMGmj59uiTJy8tLGRkZNttlhyo+Pj4OP5fRaJC/f2mH9wfyy8/Pu6hLgBtgnsFRzB0UBuYZiqOC7okAAAAAuDaHwhUPDw9du3btjuuvXbsmg8HgUEFLlizRxIkTFRERoWnTplnPVqlUqZLOnz9vs23244CAAIeeS5LMZotSU+/8WoC8MJmMDv9iKDX1urKyzE6uCK4uP3PGEcwz2Ct7jjJ3UJCYZ4XPz8+bM4WcpCB7IgAAAACuz6FwpW7dukpMTFTPnj2tl+bKdv36dSUmJqp27dp2H3fZsmWaMGGCunfvrtGjR8to/KPxCw0NVXx8vLKysmQymSRJ27dvV40aNfJ9M/vMTJp5FJ2sLDNzEAWOeQZHMXdQGJhnKI4KqicCAAAAUDw49LW1l19+WcnJyfrrX/+qtWvX6ueff9bPP/+szz//XJ07d9aJEyfUq1cvu4557NgxTZo0SREREerXr59SUlJ04cIFXbhwQVeuXFFUVJTS0tI0ZswYHTlyRImJiYqLi1O/fv0ceQkAAAAA4LCC6IkAAAAAFB8OnbnSqlUrjRw5UtOnT9eIESNs1hmNRv39739XeHi4Xcdcv369bt68qQ0bNmjDhg026yIjIzV58mQtXLhQEydOVGRkpCpUqKCRI0cqMjLSkZcAAAAAAA4riJ4IAAAAQPHhULgi/f5NrYiICG3cuFEnTpyQxWJR9erVFRERoWrVqtl9vJiYGMXExNx1m/r162vFihWOlgwAAAAATuPsnggAAABA8eFwuCJJ1apV41R3AAAAAG6LnggAAABwTw7dcwUAAAAAAAAAAMBdEa4AAAAAAAAAAADYgXAFAAAAAAAAAADADoQrAAAAAAAAAAAAdnAoXFm+fLmOHz/u5FIAAAAAoHigJwIAAADcm0PhyrRp0/T55587uxYAAAAAKBboiQAAAAD35lC4YjQa5e/v7+xaAAAAAKBYoCcCAAAA3JtD4Urv3r01f/58bd26VWaz2dk1AQAAAIBLoycCAAAA3JuHIzvt3btXaWlp6tu3rzw9PeXv7y+TyWSzjcFg0MaNG51SJAAAAAC4EnoiAAAAwL05FK4kJSWpbNmyKlu2rHWZxWKx2eb2xwAAAABQUtATAQAAAO7NoXDlm2++cXYdAAAAAFBs0BMBAAAA7s2he67cLiMjg+sMAwAAAHBb9EQAAACAe3E4XLl06ZLeeusttWjRQg0bNtTOnTu1e/duxcTE6NixY86sEQAAAABcDj0RAAAA4L4cClcuXbqkLl26aNmyZfL29rZeS/jy5cvavHmzunXrppMnTzq1UAAAAABwFfREAAAAgHtzKFyZPXu2Tp8+rcWLF2vFihXWRqJ169aaP3++rl27pjlz5ji1UAAAAABwFfREAAAAgHtzKFz55ptv9Pzzz6tZs2YyGAw26x577DF16dJFO3fudEqBAAAAAOBq6IkAAAAA9+ZQuHL+/HmFhITccX1QUJAuXLjgcFEAAAAA4MroiQAAAAD35lC4Ur58eZ0+ffqO65OSkuTv7+9wUQAAAADgyuiJAAAAAPfmULjy2GOPKT4+XqdOncqx7r///a9WrlypFi1a5Ls4AAAAAHBF9EQAAACAe/NwZKdBgwZp06ZNioyMVJMmTWQwGBQfH6+4uDht3bpVZcqU0YABA5xdKwAAAAC4BHoiAAAAwL05dOZKQECA4uPj1ahRI23ZskUWi0Xr16/X5s2b1bBhQ3388ccKDAx0dq0AAAAA4BLoiQAAAAD35tCZK5IUGBio+fPn68qVKzp+/LjMZrMCAwNVvnx5Z9YHAAAAAC6JnggAAABwXw6duXKrzMxMWSwWeXh4qFSpUs6oCQAAAACKDXoiAAAAwP04fObKvn379O6772rPnj2yWCySJKPRqEcffVRjxozR/fff77QiAQAAAMDV0BMBAAAA7suhcGX//v3q3r27MjIy1LJlSz3wwAMym8363//+p61bt+qFF17QypUrVa1aNWfXCwAAAABFjp4IAAAAcG8OhSuzZs2Sp6en4uPjFRISYrNu79696tWrl6ZPn64ZM2Y4pUgAAAAAcCX0RAAAAIB7c+ieK7t371b37t1zNBGS1LBhQ0VHR2vbtm35Lg4AAAAAXBE9EQAAAODeHApXDAaD/Pz87rg+MDBQmZmZDhcFAAAAAK6MnggAAABwbw6FK61atdJnn32mjIyMXNevW7dOLVq0yFdhAAAAAOCq6IkAAAAA95ane67s2rXL5nHr1q01duxYdevWTX379tWDDz4oo9GoEydOaMmSJTp8+LD+9a9/FUS9AAAAAFDo6IkAAAAA3CpP4Ur37t1lMBhsllksFu3bt09DhgzJsVySXnrpJR08eNBJZQIAAABA0aEnAgAAAHCrPIUrAwcOzNFIAAAAAIC7oCcCAAAAcKs8hSuDBw8u6DoAAAAAwGXREwEAAAC4lUM3tAcAAAAAAAAAAHBXeTpz5XZpaWn65z//qc2bN+vcuXPWawrfymAw6MCBA/kuEAAAAABcDT0RAAAA4N4cClfeffddrVy5UhUrVlTDhg1lMpmcXRcAAAAAuCx6IgAAAMC9ORSubNq0SW3atNGsWbNkNHJlMQAAAADuhZ4IAAAAcG8OdQFpaWlq1aoVTQQAAAAAt0RPBAAAALg3hzqBxo0ba//+/c6uBQAAAACKBXoiAAAAwL05FK6MGDFC69atU1xcnC5cuODsmgAAAADApdETAQAAAO7NoXuuVK1aVbVq1dLkyZM1efLkXLcxGAw6cOBAvooDAAAAAFdETwQAAAC4N4fClYkTJ+r7779XuXLldP/998vDw6HDAAAAAECxRE8EAAAAuDeHOoBNmzapdevWmjlzJk0EAAAAALdDTwQAAAC4N4fuuZKRkaHHH3+cJgIAAACAW6InAgAAANybQ+FKo0aNtH//fmfXAgAAAADFAj0RAAAA4N4cCleGDRumL774QosWLdK5c+eUlZXl7LoAAAAAwGXREwEAAADuzaFz2F9//XUZjUZNnTpVU6dOzXUbg8GgAwcO5Ks4AAAAAHBF9EQAAACAe3MoXClbtqzKli3r5FIAAAAAoHigJwIAAADcm0Physcff+zsOgAAAACg2KAnAgAAANybQ/dcAQAAAAAAAAAAcFcOnbkyatSoe25jMBg0adIkRw4vSZozZ462b99u842wUaNGKTEx0Wa7gIAAbdmyxeHnAQAAAAB7FUZPBAAAAMB1ORSurFq16o7rDAaDPD09VapUKYcbiQ8//FCzZs1SaGiozfJDhw4pJiZG0dHR1mUmk8mh5wAAAAAARxV0TwQAAADAtTkUrnz99dc5lmVlZenChQtatWqVduzYoWXLltl93HPnzmnMmDHas2ePatSokeP4R44c0YABA1ShQgVHygYAAAAApyionggAAABA8eBQuFK1atVcl1evXl1NmjRRTEyM/vnPf2rKlCl2HXf//v267777tGbNGr3//vs6ffq0dd3x48eVnp6uoKAgR0oGAAAAAKcpqJ4IAAAAQPHgULhyL+Hh4Zo+fbpD+4WHh+e6LikpSQaDQXFxcdqyZYuMRqNatWqloUOHytfXN1/1engY87U/YDI5Pofysy+Kr8Ied+YZ7JU9Z5g7KEjMM5RkjvZEAAAAAIqHAglXLly4oBs3bjj1mIcPH5bRaFTVqlU1b948JScna8qUKUpKSlJcXJyMRseacqPRIH//0k6tFbCHn593UZcAN8A8g6OYOygMzDOURAXREwEAAABwHQ6FK2fOnMl1+Y0bN/TTTz8pLi5OderUyVdhtxs8eLB69uwpPz8/SVJwcLAqVKigLl26aN++fWrQoIFDxzWbLUpNvebMUuGGTCajw78YSk29rqwss5MrgqvLz5xxBPMM9sqeo8wdFCTmWeHz8/PmTCEnKYqeCAAAAIDrcChcCQ8Pl8FguON6o9GoQYMGOVxUbgwGgzVYyRYcHCxJOnv2rMPhiiRlZtLMo+hkZZmZgyhwzDM4irmDwsA8Q3FUFD0RAAAAANfhULjy7LPP5tpImEwmVaxYUZGRkapWrVq+i7vVsGHDdOnSJcXGxlqX7du3T5JUs2ZNpz4XAAAAANxNUfREAAAAAFyHQ+HK5MmTnV3HPXXo0EH9+/fX3Llz1b59ex07dkxvvfWWOnTooKCgoEKvBwAAAID7KoqeCAAAAIDrKJAb2heEJ554QjNnztS8efM0b948+fr6qmPHjho6dGhRlwYAAAAAAAAAANxInsKV2bNnO3Tw/FxjOLdvgrVr107t2rVz+JgAAAAA4Iii6InmzJmj7du36+OPP7YuO3jwoCZOnKiffvpJZcuWVffu3dW7d2/rerPZrNmzZ+uTTz5RamqqmjRpojfffFP333+/w3UAAAAAyMnp4cqt1x3mBo4AAAAASoLC7ok+/PBDzZo1S6GhodZlFy9eVK9evdSmTRuNHz9ee/fu1fjx41W2bFlFRUVJ+j2QiY+P1zvvvKOAgABNnTpVffr00dq1a+Xp6elQLQAAAAByylO48tFHH91zG4vFoqVLl+qrr76SJLVq1Sp/lQEAAACAiyisnujcuXMaM2aM9uzZoxo1atisW7lypTw9PTVu3Dh5eHgoKChIycnJWrBggaKiopSRkaFFixZpxIgR1ueeMWOGWrZsqQ0bNqh9+/Z21wMAAAAgd3kKVx5++OG7rj9z5oxGjx6tnTt3ytfXV6+//rr1m1MAAAAAUNwVVk+0f/9+3XfffVqzZo3ef/99nT592rpu9+7dCg0NlYfHH21cWFiYPvjgA6WkpOj06dO6evWqwsLCrOv9/PxUu3Zt7dq1i3AFAAAAcKJ839A+Pj5eU6dO1dWrV9WiRQtNnDhRAQEBzqgNAAAAAFyeM3ui8PBwhYeH57ru7NmzCg4OtllWsWJFSb+HO2fPnpUkVa5cOcc2v/zyi0P1ZPPwMOZrf0kymYw2f6NkYFxLJsa15GJsiw9Hx4ixLVn4mXVtDocrZ8+e1ZgxY/Sf//xHpUuX1oQJE9S5c2dn1gYAAAAALquwe6IbN27kuG9KqVKlJEnp6em6fv26JOW6zeXLlx1+XqPRIH//0g7vfzs/P2+nHQuug3EtmRjXkouxLbkY25KJcXVNDoUrn3zyiaZMmaK0tDQ1b95cEydOzPHtKABwJ0ajQUaj4d4b/n984wAAgOKtKHoiLy8vZWRk2CxLT0+XJPn4+MjLy0uSlJGRYf139jbe3o435GazRamp1xzeP5vJZJSfn7dSU68rK8uc7+PBNTCuJRPjWnIxtsVH9ljZi7EtWfiZLRp+ft55+t2dXeHKuXPnNHbsWH333Xfy9vbWuHHj9MILLzhcJACUBEajQWXL+hCYAADgBoqyJ6pUqZLOnz9vsyz7cUBAgDIzM63LqlevbrNNSEhIvp47M9N5zXxWltmpx4NrYFxLJsa15GJsSy7GtmRiXF1TnsOVVatW6Z133lFqaqrCwsI0ceJEVa1atSBrA4BiwWg0yGQyatrSPTp17kqe9mkcUlEvPV27gCsDAADOVNQ9UWhoqOLj45WVlSWTySRJ2r59u2rUqKHy5cvL19dXZcqU0c6dO63hSmpqqg4cOKDo6OhCqxMAAABwB3kKV2JiYvTtt99Kkp588km9+OKLOnPmjM6cOXPX/UJDQ/NfIQAUE6fOXdHR03m7nnlgxTIFXA0AAHAmV+iJoqKitHDhQo0ZM0avvPKKfvzxR8XFxWn8+PGSfr/XSnR0tKZNm6Zy5cqpatWqmjp1qipVqqSIiAin1QEAAAAgj+HK5s2brf9ev3691q9fn6eDHzx40KGiAAAAAMCVuEJPVL58eS1cuFATJ05UZGSkKlSooJEjRyoyMtK6zZAhQ5SZmamxY8fqxo0bCg0NVWxsbI6b3AMAAADInzyFK4MGDSroOgAAAADAZRVFTzR58uQcy+rXr68VK1bccR+TyaQRI0ZoxIgRBVkaAAAA4PYIVwAAAADgHuiJAAAAANzKWNQFAAAAAAAAAAAAFCeEKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA4eRV0AAAAAAAAAACD/TCb7vktvNltkNlsKqBqgZCNcAQAAAAAAAIBirKxvKZnNFvn5edu1X1aWWZcuXSNgARxAuAIAAAAAAAAAxVgZ7z/JaDRo2tI9OnXuSp72CQzw1fBuTWQ0GghXAAcQrgAAAAAAAABACXDq3BUdPX25qMsA3AI3tAcAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdPIq6AABAwTOZ8p6lm80Wmc2WAqwGAAAAAAAAKN4IVwCgBCvrW0pms0V+ft553icry6xLl64RsAAAAAAAAAB3QLgCACVYGe8/yWg0aNrSPTp17so9tw8M8NXwbk1kNBoIVwAAAAAAAIA7IFwBADdw6twVHT19uajLAAAAAAAAAEoEbmgPAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA4uG67MmTNH3bt3t1l28OBBRUdHq2HDhnr88ccVGxtbRNUBAAAAAAAAAAB35ZLhyocffqhZs2bZLLt48aJ69eqlBx54QAkJCRo8eLBmzpyphISEIqoSAAAAAAAAAAC4I4+iLuBW586d05gxY7Rnzx7VqFHDZt3KlSvl6empcePGycPDQ0FBQUpOTtaCBQsUFRVVRBUDAAAAAAAAAAB341Jnruzfv1/33Xef1qxZowYNGtis2717t0JDQ+Xh8UceFBYWpmPHjiklJaWwSwUAAAAAAAAAAG7Kpc5cCQ8PV3h4eK7rzp49q+DgYJtlFStWlCSdOXNG5cuXd/h5PTxcKmNCMWQyOT6H8rMvCobBYJDRaMjz9vZsW1wwL5E9B5gLKEjMMwAAAABAceVS4crd3LhxQ56enjbLSpUqJUlKT093+LhGo0H+/qXzVRuQH35+3kVdAm5jNltKZGBiD+YlsjEXUBiYZwAAAACA4qbYhCteXl7KyMiwWZYdqvj4+Dh8XLPZotTUa/mqDTCZjA7/Yig19bqyssxOrgiOyh7LaUv36NS5K3nap3FIRb30dO0CrqxwMS+R/bPAXEBBYp4VPj8/b84UAgAAAAAnKDbhSqVKlXT+/HmbZdmPAwIC8nXszEyaeRSdrCwzc9AFnTp3RUdPX87TtoEVyxRwNYWPeYlszAUUBuYZAAAAAKC4KTZfWwsNDdWePXuUlZVlXbZ9+3bVqFEjX/dbAQAAAAAAAAAAsEexCVeioqKUlpamMWPG6MiRI0pMTFRcXJz69etX1KUBAAAAAAAAAAA3UmzClfLly2vhwoU6duyYIiMjNXv2bI0cOVKRkZFFXRoAAAAAAAAAAHAjLnvPlcmTJ+dYVr9+fa1YsaIIqgEAAAAAAAAAAPhdsTlzBQAAAAAAAAAAwBUQrgAAAAAAAAAAANiBcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwA+EKAAAAAAAAAACAHTyKugAAAAAAAAAAKMmMRoOMRkOetzeZ+E484OoIVwAAAAAAAACggBiNBpUt60NgApQwhCsAAAAAAAAAUECMRoNMJqOmLd2jU+eu5GmfxiEV9dLTtQu4MgD5QbgCAAAAAAAAAAXs1LkrOnr6cp62DaxYpoCrAZBfnIsGAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAOxCuAAAAAAAAAAAA2IFwBQAAAAAAAAAAwA6EKwAAAAAAAAAAAHYgXAEAAAAAAAAAALAD4QoAAAAAFCOnT59WrVq1cvz55JNPJEkHDx5UdHS0GjZsqMcff1yxsbFFXDEAAABQ8ngUdQEAAAAAgLw7dOiQSpUqpY0bN8pgMFiX+/r66uLFi+rVq5fatGmj8ePHa+/evRo/frzKli2rqKioIqwaAAAAKFkIVwAAAACgGElKSlKNGjVUsWLFHOvi4uLk6empcePGycPDQ0FBQUpOTtaCBQsIVwAAAAAn4rJgAAAAAFCMHDp0SDVr1sx13e7duxUaGioPjz++RxcWFqZjx44pJSWlsEoEAAAASjzCFQAAAAAoRpKSkpSSkqIXX3xRzZs3V9euXbV161ZJ0tmzZ1WpUiWb7bPPcDlz5kyh1woAAACUVFwWDAAAAACKiYyMDB0/flze3t4aOXKkfHx8tGbNGvXp00eLFy/WjRs35OnpabNPqVKlJEnp6ekOP6+HR/6/l2cyGW3+RsnAuJZMjGvJxdgWDVd/v129PnfGz6xrI1wBAAAAgGLC09NTu3btkoeHhzVEqVu3ro4eParY2Fh5eXkpIyPDZp/sUMXHx8eh5zQaDfL3L52/wm/h5+fttGPBdTCuJRPjWnIxtrgV88H1MUauiXAFAAAAAIqR3EKS4OBgfffdd6pUqZLOnz9vsy77cUBAgEPPZzZblJp6zaF9b2UyGeXn563U1OvKyjLn+3hwDYxrycS4llyMbdHIft9dFfPBdfEzWzT8/LzzdLYQ4QoAAAAAFBM///yzunbtqgULFqhp06bW5T/99JNq1qypv/zlL4qPj1dWVpZMJpMkafv27apRo4bKly/v8PNmZjqvmc/KMjv1eHANjGvJxLiWXIwtbsV8cH2MkWviYm0AAAAAUEwEBwfroYce0vjx47V7924dPXpU77zzjvbu3auYmBhFRUUpLS1NY8aM0ZEjR5SYmKi4uDj169evqEsHAAAAShTOXAEAAACAYsJoNGrevHmaNm2ahg4dqtTUVNWuXVuLFy9WrVq1JEkLFy7UxIkTFRkZqQoVKmjkyJGKjIws4soBAACAkoVwBQAAAACKkXLlymnSpEl3XF+/fn2tWLGiECsCAAAA3A+XBQMAAAAAAAAAALAD4QoAAAAAAAAAAIAdCFcAAAAAAAAAAADsQLgCAAAAAAAAAABgB8IVAAAAAAAAAAAAO3gUdQEAAAAAAAAAgKJhMtn3/Xuz2SKz2VJA1QDFB+EKgGLFaDTIaDTYtQ//07cfH6wAAAAAACjZyvqWktlskZ+ft137ZWWZdenSNX4PALdHuAKg2DAaDSpb1sfuX/zzP/2844MVAAAAAADuoYz3n2Q0GjRt6R6dOnclT/sEBvhqeLcmMhoN/A4Abo9wBUCxYTQaZDIZ+Z9+AeKDFQAAAAAA7uXUuSs6evpyUZcBFDuEKwCKHf6nX/B4jwEAAAAAAIA7s+/aOgAAAAAAAAAAAG6OcAUAAAAAAAAAAMAOhCsAAAAAAAAAAAB2IFwBAAAAAAAAAACwQ7G7of3p06cVHh6eY/nbb7+tzp07F0FFAAAAAAAAAADAnRS7cOXQoUMqVaqUNm7cKIPBYF3u6+tbhFUBAAAAAAAAAAB3UezClaSkJNWoUUMVK1Ys6lIAAAAAAAAAAIAbKnb3XDl06JBq1qxZ1GUAAAAAAAAAAAA3VezClaSkJKWkpOjFF19U8+bN1bVrV23durWoywIAAAAAAAAAAG6iWF0WLCMjQ8ePH5e3t7dGjhwpHx8frVmzRn369NHixYvVrFkzh47r4VHsMia4GJPJ8TmUn33dTWG8z4yH43jvSpbs8WRcUZCYZwAAAACA4qpYhSuenp7atWuXPDw85OnpKUmqW7eujh49qtjYWIfCFaPRIH//0s4uFcgzPz/voi7BLfA+Fzze45KJcUVhYJ4BAP5fe3ceHUW17n38lw4kgEmYJEwBRbQTIcxhFpEocAUEAY+IEOWKTMp0ORIEUXGBKJALF/AiakAmIQxhCsNBEK8IIhqOggioJyAQBKKMYUogXe8fvN2HJgmkQtJTvp+1WItU76p6du3q7tr9VO0NAADgbbwquSJJpUqVyrbMarVq+/bt+dqezWbowoXLdxsWijh/f0u+fxi6cOGKsrJsBRyRb3LFcb6bfRR1nMu+xf5eoF1RmDjPXC8kpCRPCgEAAABAAfCq5MrBgwfVs2dPffLJJ4qKinIs37dv311Ncn/9Op15uE9Wlo1z0AU4zoWPY+ybaFe4AucZAAAAAMDbeNVta1arVQ899JDeeecdJScnKyUlRe+9955+/PFHDRw40N3hAQAAAAAAAACAIsCrnlyxWCyaPXu24uLiNHz4cF24cEG1atXSp59+qvDwcHeHBwAAAAAAAAAAigCvSq5IUrly5TRx4kR3hwEAAAAAAAAAAIoorxoWDAAAAAAAAAAAwN1IrgAAAAAAAAAAAJjgdcOCAQAAAAAAAIC7WCx+slj88lze35/72wFfRHIFAAAAAAAAAPLAYvFTmTKlSJgAILkCAAAAAAAAAHlhsfjJ39+iuM92K/VUep7WaRgRqhc61CrkyAC4GskVAECBMHvXjs1myGYzCikaAAAAAAAKT+qpdKUcP5+nsmGhQYUcDQB3ILkCALgrZYIDZbMZCgkpaWq9rCybzp27TIIFAAAAAOA2zJ8CIL9IrgAA7kpQyeKyWPxMPRIdVjFYr/VqJIvFj+QKAAAAAMAtmD8FwN0guQIAKBBmHokGAAAAAMDdmD8FwN0guQIAAAAAAACgyGL+FAD5wTNvAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATirk7AAAAAAAAAAC4lcXiJ4vFL8/lbTZDNptRiBEBwL+RXAEAAAAAAADgUSwWP5UpU0r+/nkfeCcry6Zz5y6TYAHgEiRXAAAAAAAAAHgUi8VP/v4WxX22W6mn0u9YPqxisF7r1UgWix/JFQAuQXIFAAAAAAAAgEdKPZWulOPn3R0GAGTDhPYAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSRXAAAAAAAAAAAATCC5AgAAAAAAAAAAYALJFQAAAAAAAAAAABNIrgAAAAAAAAAAAJhAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmFHN3AAAAAAAAAAC8h8XiJ4vFz9Q6Npshm80opIj+zd8/7/eSmykLALciuYIC48lfrPBMZs8ZLnpQ1Lnqc9Zi8XO83/LyvuOzHAAAAPAMd+oz5HSdb/Z63mLxU5kypUz30bOybDp37nKh9R3KBAfKZjMUElKyULYPALciuYIC4alfrPBc+T1ngKLKVZ+zt+4nLx0TPssBAAAA9zPTZ7j5Oj8/fQZ/f4viPtut1FPpeVonrGKwXuvVSBaLX6H1G4JKFpfF4mcqroYRoXqhQ61CiQeA7yO5ggLhqV+s8Fz5OWe46EFR5qrPWbP74bMcAAAA8Ayu/m0m9VS6Uo6fz0+ohcpMXGGhQYUcDQBfRnIFBcpTv1jhubjoAcxx1ecsn+cAAACAd+JaHgBcg/F4AAAAAAAAAAAATCC5AgAAAAAAAAAAYALJFQAAAAAAAAAAABNIrgAAAAAAAAAAAJjAhPYAAAAAAABAEebvn/f7r82Uhe8yex7YbIZsNqOQogHcg+QKAAAAAAAAUASVCQ6UzWYoJKSkS/ZHEsf75fecycqy6dy5yyRY4FNIrgAAAAAAAABFUFDJ4rJY/BT32W6lnkrP0zoNI0L1Qodapvbj6iQOCk9+zpmwisF6rVcjWSx+JFfgU0iuAAAAAAAAAEVY6ql0pRw/n6eyYaFBprfvqiQOXMfMOQP4KpIrAAAAAAAAAApdYSdxAMCVSK64mcXiJ4vFz9Q6RX0CKLPHjOPFOQbfkZ/z2RV4zwBFF9+zAACgsJi9zmCOEgBwLZIrbmSx+KlMmVKmv/yK8gRQ+TlmHC/OMfiGfJ/PNkP+JjokZstLvGeAoorvWQAAUFjye50BAHAdkituZLH4yd/fwgRQJpg9ZhwvzjH4jvycz/YxevO6jtnyEu8ZoCjjexYAAM/jK0+V3k3/BwDgGiRXPAATQJnHMTOH4wVfkp8xevO6jtnyACDxmQEA8Cy+klzID198qpQ5SgDAc5FcAQAAAAAA8AG+mFwwg6dKAQCuRHIFAAAAAADAB5BcuIGnSgEArkByBQAAAAAAwIeQXAAAoPCRXAEAAAAAAHABs/OhuHIulJuHErP/3+zwYnditj5mj9fdxFvQdc2Jr8xtA3iqojznFNzD65IrNptNH3zwgZYvX64LFy6oUaNGevvtt3Xfffe5OzQAAAAAcDv6TIBnys98KK6YC6VMcKBsNkMhISWzvZbTMkdsNkP+Jn/ENFOf/M4fY9bt6n87hV1/AOYU9Tmn4B5el1yZNWuWEhIS9N5776lixYqaMmWK+vXrp3Xr1ikgIMDd4QEAAACAW/lan4m7UOEK+TnPzPL3t5iaD8U+F0rx4v7KyrLleR9mBZUsLovFz9Q8LQ0jQvVCh1qFOrdLfuaPscdlhqfWH/BFhZksNfsZK/G+xN3zquRKZmam5s6dq5EjR6p169aSpGnTpqlVq1bavHmzOnbs6OYIAQAAAMB9fK3PdDd3oaanX5VhFO4PJSRxfEO+z7N8PLkg5X0+lPw+UZFfZuZpCQsNMr2OXV6Ps71cfuLKD0+tP+ALXPmEWGG+L+9Gfq4Z7ElmybM+E/JbF1+8WcarkisHDx7UpUuX1KxZM8eykJAQ1apVS99//73XdRQAAAAAoCD5Wp8pP3euP1yjnPp1qaMyZUqZ2hdD/BRdd/OERGE+VXE3T1R4IlcnizxNUa8/ijZXPCGWn88/Tx4W8NbEf15izFdcbqhLYe3HHfyMwr6VpwB9/vnnGjJkiPbs2aMSJUo4lg8bNkxXr17VRx99ZHqbhuG+DJifn2SxWHQuPUPX8/iIbzF/y/9/4+etvCu5qi5m9uPK4+WpbempcUnmYwsM8FdwqYBCr48r4vLUdVwVlyve//mJzZV1yY+i/jkL32SxWLz6/Lmb96U7rsItFj/5+RXusDdwL0/uM9n7P2bO//z0mezf5xcvZyorj3EXL2ZRqRLFTa3jb/FTUKkAr/4MKyje/lkueWYfwFP7DHe7Tl7fZ/b3pSfXhfp71jqeGper1vHUuFy1jivel5JrrxksFovpzwxfqMut+/HkfpNXPbly5coVSco2TnBgYKDOnzf3uJedn5+f/P3d28EsExxoeh2LxXMeBbuZq+pidj+uOl6e2paeGpeUv9hcUR9XxeWp63hqu+R3P66ovye/Z3zpcxa+ydvPH0/+zEDR4w19Jld9/weVMj+/TH7W4f18gy8ch6J+be6qdcy+zzy5LtTfM9fx1LhctY6nxuWqdXztmsHsfnypLvndjyt5dnS3sN95lZmZ6bQ8IyNDJUvyWCUAAACAoo0+EwAAAOAaXpVcqVy5siQpLS3NaXlaWpoqVarkjpAAAAAAwGPQZwIAAABcw6uSKxEREQoKCtKuXbscyy5cuKD9+/crKirKjZEBAAAAgPvRZwIAAABcw6vmXAkICFDv3r0VFxencuXKqWrVqpoyZYoqVaqktm3bujs8AAAAAHAr+kwAAACAa3hVckWShg4dquvXr2vs2LG6evWqGjdurDlz5mSbsBEAAAAAiiL6TAAAAEDh8zMMw3B3EAAAAAAAAAAAAN7Cq+ZcAQAAAAAAAAAAcDeSKwAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMILkCAAAAAAAAAABgAskVAAAAAAAAAAAAE0iuAIXoxIkTGjFihFq2bKnGjRurb9+++u2339wdFryczWbTjBkz1KpVK9WrV08vvfSSjhw54u6w4EPOnTunt956S48++qgaNmyonj17Kjk52d1hwUcdPnxYDRo00MqVK90dCgAXSE5O1sMPP6xdu3Y5Ld+5c6e6deumunXrql27dlq9erV7AkSeHT16VIMGDVJUVJSioqL0X//1Xzp58qRTGdrV++SlD0u7er833nhDr7/+erbltK134jcC3zNr1izFxMQ4LTtw4IB69+6t+vXr67HHHtOcOXPcFB1uRnIFKCSZmZnq37+/Tp8+rY8++kiLFy9WcHCwXnzxRZ05c8bd4cGLzZo1SwkJCZowYYKWLl0qPz8/9evXT5mZme4ODT5ixIgR2rNnj6ZOnaoVK1aodu3a6tu3r1JSUtwdGnzMtWvX9Nprr+ny5cvuDgWAC6Snpys2NlY2m81peUpKigYMGKDWrVtr9erV6tGjh8aMGaOdO3e6KVLcSUZGhvr06SNJWrJkiRYuXKg///xTAwYMkGEYkmhXb5SXPizt6t2ysrI0adIkrVixIttrtK334jcC3zJv3jzNmDHDadnZs2f1n//5n7r//vuVmJioIUOGaPr06UpMTHRTlLAr5u4AAF+VnJysX3/9Vdu2bVPFihUlSZMnT1aTJk20detWPfPMM26OEN4oMzNTc+fO1ciRI9W6dWtJ0rRp09SqVStt3rxZHTt2dHOE8HZHjhzRjh07tGTJEjVs2FDSjTvbtm3bpnXr1mnYsGFujhC+ZObMmbrnnnvcHQYAFxk3bpyqVaum48ePOy2fP3++IiIiHN8xDzzwgPbv36/4+Hg1b97cHaHiDv744w/VqVNHb7/9tsqVKydJ6tOnj1599VWdPXtW5cqVo129UF76sLSr90pJSdHo0aN17NgxValSJdvrtK134jcC33Hq1Cm98cYb2r17t2rUqOH02rJlyxQQEKBx48apWLFiqlmzpo4cOaJPPvlE3bt3d1PEkHhyBSg0Dz30kD7++GPHRamdYRg6f/68m6KCtzt48KAuXbqkZs2aOZaFhISoVq1a+v77790YGXxF2bJl9fHHHysyMtKxzM/Pj88uFLjvv/9eS5cu1aRJk9wdCgAXWLNmjX744QeNGTMm22vJyclO1zaS1KxZM+3evdvxFAQ8S40aNTR9+nRHYiU1NVWLFy9W7dq1VbZsWUm0qzfKSx+WdvVe3333nR5++GGtW7dOYWFh2V6nbb0TvxH4jp9//lmlS5fW2rVrVa9ePafXkpOT1bhxYxUr9u/nJJo1a6bDhw/r9OnTrg4VN+HJFaCQVKhQwXHXgN2CBQuUkZGhli1buikqeDv7ONaVK1d2Wh4aGqoTJ064IyT4mJCQkGyfXRs3btTRo0f1yCOPuCkq+JoLFy4oNjZWY8eOzfZ5BsD3pKam6t1339WsWbNyfFrt5MmTqlSpktOy0NBQXblyxfEUBDzXSy+9pB07dqh06dKaP3++/Pz8JNGu3igvfVja1Xv17Nnztq/Ttt6J3wh8R3R0tKKjo3N87eTJk7JarU7LQkNDJd14mrR8+fKFHh9yRnIFyKfU1FQ9/vjjub6+fft2VahQwfH3559/rmnTpikmJkYRERGuCBE+6MqVK5KkgIAAp+WBgYE8VYBCsXv3bo0ZM0aPP/54rhd6gFnjxo1T/fr19dRTT7k7FAB36U7XxNu2bVNsbKx69OihqKgopaamZitz9erVbNc29r8ZL949zPR1Ro4cqWHDhunDDz9Unz59tHr1alWuXJl29UAF0YelXT2T2bbNCW3rnfiNoGjI6f0ZGBgo6cY8aHAfkitAPlWsWFEbNmzI9fWb7+pYsmSJxo8frw4dOmj06NGuCA8+qkSJEpJuXNza/y/d+DItWbKku8KCj9qyZYtee+011atXT1OnTnV3OPARq1evVnJyspKSktwdCoACcKdr4uXLl+vy5csaMmRIrmUCAwOz/XBn/5vrG/cw09d5+OGHJd0Y4/+xxx5TYmKiBg8eTLt6oILow9KunslM2+aGtvVO/EZQNJQoUSLb+9OeVClVqpQ7QsL/R3IFyKfixYurZs2adywXFxenTz75RDExMXrjjTccj8kD+WF/1DctLU3Vq1d3LE9LS+OJKBSoRYsW6d1331Xbtm0VFxeX7S4ZIL8SExN1+vRpPfbYY07L3377bc2ZM0fr1693T2AA8uVO18QrV65UWlqamjZtKkmOcfv79eunJk2aKD4+XpUrV1ZaWprTemlpaSpVqpSCg4MLL3jk6k7tevz4ce3bt0/t27d3LCtZsqTCwsIcbUm7ep6C6MPSrp4pr217O7Std+I3gqKhUqVKOb4/JWWbJwuuRXIFKERTpkxRfHy8YmNj1bdvX3eHAx8QERGhoKAg7dq1y3HhdOHCBe3fv1+9e/d2c3TwFYsXL9b48eMVExOjMWPGyGKxuDsk+JC4uDhdvXrVaVm7du00dOhQdejQwU1RASgsCxcu1PXr1x1/nzp1SjExMZowYYIj4RIVFaXvvvvOab2dO3eqYcOGfAd5qAMHDmjo0KHavHmz0zXp4cOH1blzZ0m0q7e6Ux+WdvVdtK134jeCoqFx48ZKSEhQVlaW/P39Jd14f9aoUYP5VtyM5ApQSHbt2qX4+HjFxMSoc+fO+vPPPx2vlSpVKsfJPIE7CQgIUO/evRUXF6dy5cqpatWqmjJliipVqqS2bdu6Ozz4gMOHD2vixIlq27atBgwYoNOnTzteK1GiBHet4a7ldmdV+fLlVbVqVRdHA6Cw3fq+tv8gULFiRcfnQUxMjLp27aq4uDh17dpVX331lTZt2qT4+HiXx4u8efTRRxUeHq7Y2Fi9+eabMgxDU6ZMUdmyZdW9e3dJtKs3yksflnb1XbStd+I3gqKhe/fuio+P1xtvvKGXX35Ze/fu1fz58/XOO++4O7Qij+QKUEjWrVsn6cbdegsXLnR6bfDgwbcddxq4naFDh+r69esaO3asrl69qsaNG2vOnDkM24QCsWnTJl27dk2bN2/W5s2bnV7r2rWr3n//fTdFBgDwVQ899JBmzZqlKVOmaP78+QoLC9OUKVPUvHlzd4eGXAQEBCg+Pl6TJk1S3759lZmZqUceeUTvv/++goKCJNGu3igvfVja1XfRtt6L3wh8X/ny5RUfH693331XXbt2VYUKFRQbG6uuXbu6O7Qiz8+wD3oLAAAAAAAAAACAO2LQRAAAAAAAAAAAABNIrgAAAAAAAAAAAJhAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSRXAAAAAAAAAAAATCC5AsCrffnllxoyZIiio6MVGRmppk2b6uWXX9bWrVtdFkNmZqbefvttNWnSRHXr1tWECRNyXPb6668rPDxcqampprY/c+ZMhYeHa9euXYVUA2e///67qfLJycmKjY1V27ZtVbduXUVFRSkmJkarV6+WYRhOZfN7DLxVdHS0wsPDFR4erqioKEnSrl27FB4ertdffz3X9VJTUxUeHq6YmJhsr93aPreWK+xj/O677zrq5MrzEgAAAIWLvlXBu1Pf6u2331Z4eLgSExNvWy41NVURERF68cUX87xve79j5syZeV6nINnbyP7vwIEDkm70X6Kjo2+7rr0fdasjR444/R0TE+NUbuXKlQoPD9fKlSsLoAbZbdmyxalO7jq2ADxHMXcHAAD5cfHiRY0ZM0abNm1S7dq11a1bN4WGhurkyZNavXq1Bg0apJdeekmjRo0q9FiWLVumhIQEtWzZUk8++aQeeuihHJcZhqHmzZurXLlyprbftm1bVa9eXTVr1iykGvzboEGDdPHiRS1cuPCOZa9du6aJEydq8eLFuv/++9WxY0dVqVJFZ86c0fr16zVq1Cht27ZNU6ZMkb+/f6HH7qnKli2r0aNHq3jx4ne9rZzaZ/Lkybr33nvvett51aVLF0VGRmrz5s3avHmzy/YLAACAwkHfqnDkpW/1zDPPKCEhQUlJSerevXuu5ew3rj3zzDOFEWqhGj16tMqWLasqVarc1XY++eQTTZ8+Xfv27XMsGzhwoEuPSWRkpCZPnqxDhw5p9uzZLtsvAM9FcgWAVxo7dqw2bdqk2NhY9e3b1+m1gQMHqm/fvpo7d64eeOAB/e1vfyvUWH755RdJUmxsrCIiIiTJcefRzcskqUGDBqa3HxER4bSNwrR161Y1adIkT2WnTZumxYsXKyYmRmPGjJHF8u+HIfv376+RI0dq3bp1ql69uoYPH15IEXu+UqVKqUuXLgWyrZzap6C2nVeRkZGKjIzU0aNHSa4AAAD4APpWhSMvfas6deo4nqQ5deqUKlasmGO5NWvWqHTp0mrXrl1hhFqonnjiCYWFhd31drZt26Zr1645LWvZsuVdb9eMSpUqqUuXLtq1axfJFQCSGBYMgBfavn27Nm7cqPbt22e7+JekgIAATZw4Uf7+/lqwYEGhx2O/wAsKCrrtMl9y6NAhzZ07V3Xq1NHYsWOdEiuSZLFY9M477yg4OFhLly5VRkaGmyIFAAAAkBv6Vu7XvXt32Ww2bdiwIcfXd+/eraNHj+qpp55SYGCgi6MDANwOyRUAXmf16tWSlON8FHbVqlVTUlKSVq1a5bQ8JSVFI0aMUIsWLRQZGanHH39c77//vs6fP59tG4cOHdKIESPUvHlzRUZGql27dvqf//kfXb16VdK/58Ww7+Pxxx93jL166zIp57kwDMPQkiVL1K1bN9WvX18tWrTQwIED9fPPPzvK5DYu8Ndff60XXnhBDRs2VL169dStW7dsY8vax9ldv369Zs+erbZt2yoyMlLR0dGaPn26rl+/7lROkr777rs7jlO7Zs0aGYah3r1751omKChIy5cv1//93/9l6wQcP35cI0aMUJMmTVS/fn0999xz2rFjR7Zt7Nq1S4MGDVKLFi1Uu3ZtNW7cWC+++KK++eYbp3LR0dEaMGCAdu3apV69eqlBgwaKiorS4MGDcxzneN26dY5j3qpVK8XFxWn58uU5HuekpCQ9++yzql+/vho0aKBevXq5dNxp6fbtk9vcLLfKaz02bNig5557ztE2Xbp00dy5c2Wz2Qq2UgAAAHA7+lY3uLNv1blzZxUvXlxJSUk5vm5vI/vwV9euXdOcOXPUvXt3NWjQQJGRkXrsscc0duxYnT59Otf9SDf6TTnNd5LbXCV79+7VwIED1aRJE9WpU0edOnXS3LlzlZWVddv9FLTw8HB99913jv/b56+8dc6V3OS1Hvv379fAgQPVqlUrxzk9YcIEnTt3rsDrBMA3MCwYAK+zd+9eFStWTPXq1bttuVvH0U1OTlbfvn3l7++vnj17qmrVqvrxxx81b948bd26VQkJCY4xe/fu3as+ffooKChIvXr1Urly5fTjjz9q9uzZ2rlzpxYsWKBy5cpp8uTJWrZsmZKTkzV69GiVLl1aFovFaVnZsmVzjXHUqFFas2aNoqKiNHz4cGVmZmrhwoXq3bu3PvvsM9WqVSvH9T777DONHz9ederU0eDBg2WxWPTFF19o9OjROnDggN544w2n8lOnTpVhGOrRo4dCQkK0cuVKzZo1S35+fho6dKhq1qypyZMnKzY2Vg888IAGDhyohg0b3rYNJKlRo0a3bYMaNWrkuHzgwIGKiorSiBEjlJaWpvnz52vAgAFatWqVHnroIUnS5s2bNXToUEVERKhfv34KCgrSr7/+qhUrVqhfv376/PPPVbVqVcc2Dx48qAEDBqhz587q0qWL9u/fr4SEBB08eFCbNm1yzPsSHx+vKVOmqHbt2ho+fLjS09O1aNGiHOOcMmWK4uPj1bJlS40YMUIZGRlav369Bg0apNGjR6tPnz63rX9BMds+t8prPT7//HONGDFCLVu21LBhw2SxWPSPf/xDkyZN0unTpzVy5MhCqiEAAADcgb6V+/tWZcuW1eOPP65//OMfSklJcTrWGRkZ2rhxo2rXrq2HH35YkjR8+HB98cUX6tq1q5599lllZGRo27ZtWr58uf744w/NnTv3tm2ZV1988YWGDRumsLAwvfzyyypVqpR27NihSZMm6Z///KdmzpwpPz+/AtnXnUyePFmzZ8/WoUOHNHnyZFWvXj3P6+a1HseOHdOLL76oChUqqE+fPgoJCdGePXu0aNEi7d27V0uXLnVZfQF4EQMAvEy9evWMFi1amFonKyvLaNu2rREZGWn861//cnpt2bJlhtVqNV5//XXDMAzDZrMZHTt2NFq3bm2cPXs2x7Iff/yxY9moUaMMq9VqHDt2zNSynTt3Glar1RgxYoRhs9kc5f71r38ZERERxpAhQwzDMIwZM2YYVqvV+Pbbbw3DMIwTJ04YtWvXNgYMGOC0ns1mM0aOHGlYrVZjz549hmEYxrfffmtYrVajZcuWxvnz5x1lL126ZDRq1Mh45JFHnOpntVqN3r173/F4dujQwbBarcbVq1fvWPZm9mMwZswYp+UrVqwwrFarMXPmTMeyp59+2mjZsqVx6dIlp7KLFi0yrFarMXfuXMeyNm3aGFar1Vi/fr1T2TFjxhhWq9XYvn27YRiGcfLkSSMyMtLo1q2bkZGR4Sh35MgRo27duk7Hec+ePYbVajXGjRvntM3MzEwjJibGqF27tnHixInb1rdNmzZGmzZtnJbZ22TUqFG5rnfs2LEc2yIvy249z8zUo3///kb9+vWNrKwsR7nr168bvXv3NgYMGOC0/q3nJQAAALwPfSv3960MwzC++uorw2q1GtOmTXNavn79esNqtRqfffaZYRiGceDAAcNqtRrjx4/Pto3u3bsbVqvVcZzt8c6YMcNRJqf+iWEYRmJiomG1Wo3ExETDMAzj8uXLRtOmTY2uXbs69ZsMwzCmTZuWY9/rVjm1m2HcOC45xXAze//uZr17977jsrupR3x8vFN727333ntG165djZMnTzqW5XRsARRNDAsGwOv4+/s7HrnOq/379+vIkSPq3LlztruunnnmGd13333atGmTsrKy9Msvv+i3335T69atZbPZdObMGce/Nm3aKDAwsEAm8t6yZYsk6eWXX3a6A6ZmzZpasWKF3nzzzRzX+/zzz3Xt2jU9+eSTOnv2rCO2s2fPqmPHjo4yN2vTpo1CQkIcf5cqVUo1a9a842PjubE/BWK2Hey6devm9Hf9+vUlSWlpaY5ly5cv19q1a1WqVCnHsszMTMexunTpktM2SpQoofbt2zstq1OnjiTpzz//lHTjmGdmZqpv374KCAhwlKtevbo6d+7stO769eslSR06dHA6B9LT09WhQwddu3ZNX375pem6u5qZelSqVEmXL1/WO++8o/3798swDPn7+2vhwoVM2AgAAOCD6Fu5v28lSY888ogqV66sdevWOS1ftWqVSpQooaeeekqSFBERod27d2vEiBFO5U6fPu2I6fLly/mOw+6bb77R2bNn1b59e128eNGp3Tp06CBJBdJuhc1MPSpXrizpxlP/O3fuVGZmpqQbQ9CtXLlSFStWdE8lAHg0hgUD4HUqVqyow4cPKzMz0+kH8ts5evSoJDmGnLqZn5+fHnzwQR05ckRnz57V4cOHJUkJCQlKSEjIcXvHjx/PZ/T/Zh8f+NYOiSTVrl071/Xs8cXGxuZa5tb47r333mxlAgIC8j1WbsWKFfXLL7/or7/+0j333GN6/QoVKjj9bZ+TxX4BK0nFihVTamqqZs2apcOHDys1NVWpqamOmA3DcNpG2bJlHUkfO/v5YZ8vxH7sHnjggWwx3doO9rK3m1cmP+dBiRIlJN0+MWWvo73s3TBTjyFDhujAgQOOc79cuXJq1qyZnnjiCbVv317FinHZAAAA4EvoW7m/byVJFotFXbt21axZs/TDDz+oQYMG+vPPP7Vjxw516tRJwcHBTvvasGGDduzYoWPHjik1NVV//vmnI6lUEHMl2o/L1KlTNXXq1BzL5LfdAgMD75jQu379eoH2hfJSj/bt26t79+5auXKl+vTpoxIlSqhRo0Zq3bq1nn76aZUuXfqu4wHge/iVBIDXady4sVJSUvTPf/5TzZo1y7Xc6NGjde3atdteKNvZL0ADAgIc/+/Vq5eeeOKJHMsXxI/M165dy9d69ov28ePHKywsLMcy9vGN7SyWgn1QsXHjxtq2bZuSk5N133335Vpu2rRpOnz4sIYMGeLU+cpLPB999JGmTp2qqlWrKioqSk2bNlV4eLiuX7+uV155JVv5vGzTnrzJqeNoT/DY2Y/zrFmzVLJkyRy3Z7+7yQz7RfnFixdzLWOfBPTmO+Lyy0w97r33Xi1btkw//fSTvvrqK3377bfavHmzNmzYoPr162vRokUqXrz4XccEAAAAz0Dfyv19K7tu3brpww8/VFJSkho0aKCkpCRlZWU5JrKXbvQhXnzxRf38889q1KiRIiMj1aVLF9WpU0fz58/X2rVr87XvWxND9nYbOnSoGjRokOM6+bnJTrrRH0pPT8/1dcMwdOHChQLpC5mph7+/vyZOnKhXXnlFX375pb755hslJydrx44d+uijj5SQkGBqrhcARQPJFQBep1OnTkpISNDixYtz7QCcOHFCa9euVUhIiMqUKaNq1apJkn777bdsZQ3DUEpKioKCghQSEuJ0Ud2iRQunsjabTZs2bXJs727Y93P48GGFh4c7vTZ16lRdvXpVY8aMyXW9kJCQbPGlpaVp7969BRLf7Tz55JOaPn26lixZom7duuU4sd+lS5eUkJCgS5cu6a233jK1/RMnTmjatGlq3Lix5s6d65QMyW+HQZJq1KghSTp06FC2p1fsdzXZ2Y9zaGioY3gxuyNHjujQoUNOQ5blVVhYmIKCgnTw4MFcy+zfv1+Scp100+z+pDvXwzAM/fbbb7p69arq1q3rmNDz4sWLGjVqlLZs2aLt27erTZs2dx0TAAAAPAN9K/f3reyqVaumpk2bauPGjRo7dqySkpJ03333qUmTJo4yCxYs0L59+/TOO+/oueeec1r/r7/+uuM+/P39sw2vLP17GGU7+3EpUaJEtuNy8eJFbd++PdtoBHkVERGhbdu26dixYzke28OHD+vKlStq2rRpvrZ/MzP1OH78uI4eParmzZsrJiZGMTExun79uubMmaOpU6dqyZIlGjVq1F3HBMC3MOcKAK/TuHFjtW3bVps2bdKnn36a7fX09HQNGzZM169f1+DBgxUQEKBatWqpWrVqWrt2rVJSUpzKJyYm6ujRo2rXrp0kKTIyUlWrVtWqVascj7zbLV26VMOHD1diYuJd18N+59b8+fOdlh89elTz5s3TsWPHclyvXbt2slgsmj17tq5ever02vvvv69XX31V+/bty1dMFoslT4+RV6tWTb1799ZPP/2kiRMnZlsnIyNDI0eO1Llz5/TCCy/k+Oj87Zw7d06GYeiBBx5wSqxcuXJFCxculJS/+V7atWunYsWKadGiRU7rp6WlKSkpyansf/zHf0iSZs6c6XQn17Vr1zR69GgNHDhQp06dMh1DsWLF1LZtW504cSLHoREuXbqkRYsWKSAgwHFO2uW1ffJTDz8/Pw0ZMkSDBg1yupMsKCjI0UG9ddg1AAAAeDf6Vu7vW92se/fuOnPmjFavXq39+/c7PbUiSWfPnpWkbAmkH374Qd9//72k7E+h3Cw0NFRnzpxxGtIrMzNTGzdudCr3yCOP6J577tG8efMc+7SbPXu2hg0bpq+++spU3eyefPJJSdL06dOzHR/DMPTxxx9LupH4u5n9iSEzx9RMPWbPnq0+ffpoz549jjLFihVTvXr1JNEXApAznlwB4JUmTpyo8+fP6/3331dSUpLatWuncuXK6ffff9eqVat05swZ9erVS7169ZJ040JowoQJ6t+/v/72t7+pZ8+eCgsL0969e7Vq1SpVrVpVr732mlPZAQMGqFu3bnruuedUvXp1/fTTT0pMTFT16tVzHJbKrFatWqlTp05KTEzUyZMnFR0drYsXL+qzzz5TYGCgRo4cmeN6999/v4YMGaLp06erS5cu6tq1q0JCQvTFF184niy49Uf5vCpfvrwOHjyoxYsXKyoqSlarNdeyf//733Xq1CktWLBAX3/9tTp27KiKFSvqjz/+0Nq1a3X8+HG1bdtWw4cPNx3Hgw8+qPvuu0+JiYkKDAyU1WpVWlqaVq1a5bir6naPkuematWqGjRokGbOnKmePXuqY8eOunz5shYvXuyY+NH+FE7z5s31zDPPaMWKFXr22WfVoUMHBQQEaO3atdq7d6+ef/551a1b13QMkjRy5Ej98MMPGjdunLZv365mzZqpZMmSOnr0qJKSknTy5Em99dZb2e7kMtM+dmbqMWTIEP39739Xjx491K1bN5UuXVoHDx7U0qVL9fDDD2e72wsAAADej76V+/tWdu3bt9f48eM1adIkFStWTE8//bTT69HR0Vq4cKFee+01Pf/88woODta+ffu0atUq+fv769q1a7pw4UKu2+/evbuSk5PVt29fPf/887LZbEpMTMyWkAkJCdFbb72l0aNH66mnnlKPHj0UGhqqb7/9Vhs2bFDdunX1/PPP5+u4dO3aVVu3blVSUpJ+//13tW/fXuXLl9dff/2lrVu36ocfflCXLl301FNPOa1nv2FvxowZatKkSZ76Jmbq0adPH23cuFH9+/fXc889p7CwMJ06dUpLlixRcHCwnn322XzVF4BvI7kCwCuFhIRozpw52rBhg1auXKnFixfrzJkzCgoKUr169dSrVy89+uijTus0a9ZMy5Yt06xZs5SYmKiLFy+qSpUqeumllzRw4ECnMV1btGihZcuW6cMPP1RiYqLS09NVqVIlPf/88xowYEC+H4G+1ZQpU1S3bl2tWLFCkyZNUunSpRUVFaVhw4Y5hrDKySuvvKIHH3xQCxYs0McffyybzaZq1aopNjZWMTEx+b6rJjY2VnFxcZo4caIGDhx42w5AQECApk2bpo4dO2r58uVatWqV0tLSVLJkSdWqVUsjRozIdrdRXhUvXlzx8fGKi4vT+vXrtWzZMoWGhioqKkqvvvqqevXqpe3bt+dr24MHD9a9996rRYsWKS4uTmXLllX37t2VkZGhTz/91OlJmQkTJqh+/fpaunSpZs6cKX9/f91///2aMGFCtrvIzChfvrwSExO1cOFCbd68WTNmzNCVK1dUoUIF1a9fXy+88ILq16+fbT0z7XOzvNajU6dOKlmypObNm6c5c+YoPT1dlStXVkxMjAYNGsSE9gAAAD6IvpX7+1Z2gYGB6tSpkxYvXqzo6GiFhoY6vd68eXNNnTpVn3zyiT744AMFBASoSpUqGj58uB588EH1799fX3/9dbbhgO26deumS5cuafHixZo8ebLuvfdedenSRW3atFGPHj2cyj799NOqXLmy4uPjtWDBAmVkZKhKlSoaNGiQ+vbtm68hkqUbN7PNnDlTq1at0po1azRv3jydP39eZcqU0YMPPqipU6eqY8eO2dbr16+ffv31V8XHx2vPnj15vvErr/WoWbOmFi1apA8//FCrV6/W6dOnVaZMGTVr1kyvvvoq860AyJGfYRiGu4MAAMAVLl++rKysLAUHB2d77c0339SyZcv0xRdf5DqZpVnR0dGSpK1btxbI9jzJzJkz9cEHH2jBggUFMh4yAAAAAN/x+uuva9WqVQXav/IUu3bt0gsvvKDBgwdryJAh7g4HgBsx5woAoMj47bffFBUVpf/93/91Wp6enq4vv/xSFSpUUNWqVd0UHQAAAAAAALwF43sAAIqMyMhIhYeHa/bs2Tpz5owiIiJ07tw5rVy5UqdPn9Z///d/O+ZcKSiXL1/WmjVrVLx4cXXo0KFAt+0O+/btU0pKin755Rd3hwIAAADAw23ZskVly5bVY489ptKlS7s7nLty8uRJ7dq1S4cOHXJ3KAA8BMkVAECR4e/vr3nz5ik+Pl5btmzR8uXLVbJkSdWtW1fjxo0rlOGtzp49q9jYWAUHB/tEcmXNmjVasGCBu8MAAAAA4AXee+89SdLq1au9Prmyb98+xcbGujsMAB6EOVcAAAAAAAAAAABMYM4VAAAAAAAAAAAAE0iuAAAAAAAAAAAAmEByBQAAAAAAAAAAwASSKwAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMILkCAAAAAAAAAABgAskVAAAAAAAAAAAAE/4fE+Pe0AhRYO4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-36.865285131.00.0-2-38.865285False
541coef_calib_zeroautohhindivtou_SHARED3_atwork-37.9348700.00.0<NA>-37.934870True
543coef_calib_zeroautohhindivtou_BIKE_atwork-37.390562100.00.0<NA>-37.390562True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-35.73602272.029.0-0.90937-36.645393True
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-22.970666219.00.0-2-24.970666False
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-22.875688159.00.0-2-24.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-22.246255124.00.0-2-24.246255False
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
675coef_calib_autodeficienthhjoi_TAXI_maint-22.97066632.00.0<NA>-22.970666True
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-22.97066660.00.0<NA>-22.970666True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -36.865285 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -37.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -37.390562 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -35.736022 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -22.970666 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -22.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -22.246255 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -22.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -22.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 131.0 0.0 -2 -38.865285 False \n", - "541 0.0 0.0 -37.934870 True \n", - "543 100.0 0.0 -37.390562 True \n", - "544 72.0 29.0 -0.90937 -36.645393 True \n", - "677 219.0 0.0 -2 -24.970666 False \n", - "698 159.0 0.0 -2 -24.875688 False \n", - "695 124.0 0.0 -2 -24.246255 False \n", - "471 0.0 0.0 -23.883300 True \n", - "675 32.0 0.0 -22.970666 True \n", - "676 60.0 0.0 -22.970666 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_5\n", - "ActivitySim run started at: 2023-09-13 02:51:44.198650\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 03:38:29.700390\n", - "Run Time: 2805.5 secs = 46.75833333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVfv/8c9uCmmEhBCqoRhI6CUgoNJFQIoVUUCBR4qCCKKo4BcQpemDSBWRIlKkSBceUUCRIgoIUkRCTwiRGhIgkJCy8/uD364sSSA9YfN+XReXMnNmzj2zs8vee8+cYzIMwxAAAAAAAAAAAAAAAPc5c14HAAAAAAAAAAAAAABAdqAADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADiDdVq5cqeDg4Az/efnll/M69HSbOnVqmsdRpUoV1apVSy1atNAbb7yhTZs25XW4+P/+/PNP2+vUq1eve7YfMmSIgoODNXjwYLvl1n3s2LEj22Ps2bOnbf/79+/P9v3fLikpSadOncrRPu4UGhqq0aNHq127dqpXr55q1Kihpk2bqlevXlq4cKHi4+Ozvc+LFy9q8ODBeuSRR1S9enU1btxYW7dulSStXr1aTz31lGrVqqV69eqpZ8+e2rlzp+01SEpKynS/Z86cse0nPDw8uw4HUExMjC5evJgt+0rrcy6ntgMAoCAiRyZHzq/Ike2RI5MjF0SGYejEiRO51l92f14YhqG5c+eqTZs2qlGjhho0aKD/+7//s/3b26RJkyztP7uu/+xy7NixFMtatGih4OBgLVu2LEP7yux2gKNxzusAANw//Pz8FBISkmL52bNndfbsWbm6uqp69eop1gcFBeVGeNkqtWMxDEPx8fE6c+aMNmzYoA0bNqhDhw4aP368TCZTHkUKSVqxYoXt/7dv366IiAgFBATkYUT2zp49a5cALF68WLVq1cqRvrZv367Ro0erdevWGjRoUI70cacpU6boiy++kMVikZeXl8qWLSsXFxddvHhR27Zt07Zt2zR79mx9/vnnqlatWrb0abFY1KtXL4WGhsrZ2VmVKlVSYmKiypQpox9//FHvvfeeJMnf318lSpTIV9cDkJqvv/5a06dP16RJk+Tv75/X4QAAgHQgRyZHzq/Ikf9FjkyOXBAdOHBAo0aNUrly5fTpp5/mdTiZMnfuXH3yySeSpDJlysjHx0cPPPBAHkeV/S5cuKBPPvlEf/zxh7Zs2ZLX4QAOhQI4gHRr2rSpmjZtmmL51KlTNW3aNPn7+2vx4sV5EFn2u9uxJCQkaNKkSZozZ47Wrl2r+vXrq1OnTrkcIazi4uK0fv16mUwmNWrUSNu2bdPSpUvz1dOLK1eulMViUdOmTbVlyxatX79eQ4cOVZEiRbK9ry+//DJX72xfsWKFPv/8c3l4eGjcuHF6/PHH5eTkZFt/4sQJvf/++9q3b5969uyp77//XkWLFs1yv6dOnVJoaKgkacaMGWrcuLFt3dSpUyVJdevW1fz58+XsfOvrTlxcnL7//ntJsi3LjBIlStj2U7p06UzvB7jduHHj8joEAACQQeTIt5Aj5y/kyPbIkcmRC6JFixbpwIEDKleuXF6Hkmnr16+XJLVr106fffaZbfm1a9dUq1Ytubi4ZGn/NWvWzJbrP6u2b9+udevWqUSJEnkWA+CoGAIdADLI1dVV7777rmrWrClJWrBgQR5HVLD98MMPio2NVaVKlfT0009LupVMJyQk5G1g/59hGFq1apUk6bnnnlP58uUVHx9vW3a/mzFjhiTp3XffVZs2bewSe0kKDAzUF198IT8/P0VHR2v+/PnZ0m90dLTt/xs0aJDqurp169olMe7u7goMDFRgYGCW+nZxcbHtJ6sJFwAAAHC/I0fOX8iR8xY5Mjkysof1uq1fv77d8sKFCyswMFBly5bN0v6z6/oHkH9RAAeATGrZsqUk6ejRo7px40YeR1NwrVy5UpLUpEkTNW/eXG5uboqKitLGjRvzOLJbdu3apYiICLm4uOiRRx7RE088IUlaunRpHkeWdVevXtXp06cl6a7D1RUtWtT2fjlw4EC29J2cnGz7f1dXV7t1Fosl1eUAAAAAcg45cv5Ajpx3yJGB7MN1CyCrKIADyDU//vijevXqpYYNG6p69epq1KiR3njjDf3222+ptg8ODlZwcLDdvFC3e/nllxUcHGwbykmSzpw5o+DgYD366KM6f/68+vTpo5o1a6p+/fp6++23s/V4vLy8bP9//fp1u/6Dg4MVHh6e6nYtWrRQcHCwLSmVpJ07dyo4OFidOnXSiRMn1LlzZ9WoUUMPP/ywbb4b63aHDx/WL7/8ohdffFF16tRRgwYN1K1bN23atCnNWJOTk7Vs2TK9/PLLeuihh1S9enU1a9ZM77zzjg4dOpTqNvHx8Zo5c6ZefPFFPfzww6pRo4aaN2+ut99+W3v27Emzr9DQUL333ntq1qyZqlevrgYNGqhnz5768ccfU21/+zm7/Zykx+nTp7V7925JUqtWreTp6anmzZtLUr4ZatA691rDhg1VuHBhdejQQZJ08uRJ/f7776luk5nraOXKlQoODtauXbsk3brrPDg4WEOGDLHb7sqVK5o2bZqefvpp1alTR7Vq1dITTzyhTz75RBcuXMjQsd1+5/jmzZvv2vaNN97Q//73P02YMMFu+ZAhQxQcHJzmcHzW42rRooWkf89Nt27dbG2s58q6L+s5mDZtmm2d9O/7LDg4WElJSSn6Cg0N1fDhw9WyZUvVqFFDDz30kLp3764ffvjBrt29Xp+IiAiNHDlSjz/+uGrUqKF69eqpS5cuWrZsmd2PEneeg8WLF+vMmTMaOnSomjRpourVq6tJkyb6v//7P505cybNc/vHH3/o7bffVvPmzVW9enU1bNhQr732mt1n67Zt2xQcHKxq1aopKioq1f3Ex8erbt26Cg4O1v79+1Mca3rfn1OnTrVtc68/dx7XpUuX9N///ldt27ZVrVq1VKdOHT333HP66quvdPPmzTT7+vTTT7Vp0ya1bt1a1atXV4sWLfS///3P7ti+/vprderUSSEhIapRo4ZatmypESNGKCwsLM1jOXz4sIYPH64nnnhCISEhql69uh555BH17t07xXUh/Xu9NmnSJNX93X4+rcduff2t/vOf/6R6vk+dOqUPPvhAjz/+uKpXr666deuqU6dO+vrrrxUfH5/mMUhSZGSkhg8frqZNm6p69epq3LixhgwZctdjz8p2AAAgfciRbyFHtkeOnBI58r/Ike+/HNnq6tWrmjlzprp27aoGDRqoWrVqqlevnp599llNnTpVV65cSbFNRj/3ra+pdUSFtWvXKjg4WC+//HKKY8tMjhweHq7hw4erRYsWqlGjhlq1aqXp06ffc4SJ2NhYff7557b3We3atdWhQwdNmTJFV69eTfWYIiMjJUlDhw61u+bvlXen5/W//Vzd7frPyGe3Ne6tW7cqNDRUAwcO1COPPKLq1avrscce09ixY3X58mW7bYKDgzV06FBJ0vnz5+3en3fas2ePXnvtNTVo0EA1a9ZU69atNWHCBMXGxqbaPqvbAY6AAjiAHJeYmKj+/ftrwIAB2rZtm5ydnVW5cmUlJSVpw4YN6tGjh8aOHZutfSYkJKhnz57asWOHAgMDZTKZVKZMmWztw/ql3s3NTb6+vtmyz8uXL6t79+46fPiwKlasqJs3b6p8+fJ2bVasWKFXX31Vhw4dUoUKFVSoUCHt3LlTr7/+ukaPHp1in7GxseratauGDRumXbt2qXDhwgoODta1a9f03XffqWPHjpo7d67dNgkJCerRo4cmTJigAwcOyMfHR5UqVVJsbKzWrVunrl27atmyZSn6+uabb/Tss89q9erVunLliipVqiQPDw9t375dAwYM0Ntvv51qcpNZK1askGEYKlu2rO3u6vbt20uSdu/erRMnTmRbX5kRGxurDRs2SPo3rsDAQFWpUkWStGTJkmzry8/PTyEhIbYfnUqVKqWQkBC76+fIkSNq3769pk6dqiNHjqhMmTKqUKGCTp8+ra+++krt27fXzp07092nh4eHQkJCJN0qRL733nvavXt3qq+xv7+/KlasmOX3SqFChRQSEqKgoCDbspCQENuxpnYOrDHezTfffKOOHTvq22+/1eXLl23X7u+//66BAwdq4sSJ6Ypv48aNat++vRYvXqwLFy7owQcfVNGiRbVnzx4NGzZMPXv2tP0YeKe///5bTz31lFavXi13d3eVK1dO58+f1/Lly/X888/r7NmzKbb57LPP9NJLL2ndunW6ceOGgoODZTabtXnzZvXo0cP2FMWjjz6qUqVKKSkpSevWrUsz9tjYWAUGBt71aYV7uf28p/bH3d1d0q1hywoXLmzbbs+ePWrXrp3mzJmj06dPKyAgQKVLl9ahQ4f0ySefqFOnTrp48WKqfe7evVsDBgzQ1atXFRgYqAsXLtjeZ+fOndMzzzyjcePGaf/+/fL391elSpV08eJFLV26VE8++aRt3q/bLVq0SM8++6y+/fZbRUVFqVy5cgoICNC1a9e0devWDF0Xd2O9bq2CgoIUEhIiPz8/27LvvvtOTz75pJYsWaILFy4oKChIxYoV0/79+zVu3Dg9//zzOnfuXKr7P3LkiJ5++mktW7ZMnp6eCggIUFRUlFatWqVnnnlGx48fz9btAADAvZEjpx85csaQI/+LHJkcOb/kyJIUFhamJ598UhMmTNC+fftUtGhRBQcHy8nJSYcOHdK0adP0wgsvpHku0qtw4cJ2+WTRokVTXB+ZzZF/++03PfPMM/r2228VHR2toKAgxcXFafLkyerVq1eaMZ04cUJPPvmkpkyZoqNHj6p48eIqV66cTp48aSuK3/7ZZM2JrU9+W6/j6tWr3/P40/v630tWPru3bt2qjh07atOmTfL19VWpUqV05swZzZs3Ty+++KJd4fn2zyQXF5c035+rVq1S165dtWPHDpUqVUpFixZVWFiY7aastG6Kz+x2gMMwACCLpkyZYgQFBRnNmzdPdf1HH31kBAUFGbVr1zbWr19vW56UlGQsXLjQqFq1qhEUFGTMnTvXbrugoCAjKCjI+PXXX1Pd70svvWQEBQUZU6ZMsS2LiIiwbVe/fn3j2LFjhmEYxs2bN41r165l+VisoqKijPr16xtBQUFG3759U+0/LCws1W2bN29uBAUFGStWrLAt+/33323btWzZ0jh37pxhGIYRGxtrxMfH220XFBRk9OjRw7h06ZJhGIZhsViMpUuX2s7j2rVr7fp79dVXjaCgIOPRRx81fv/9d9vymzdvGpMmTbLt88cff7StW7RokREUFGS0atXKiIyMtC2Pj483PvzwQyMoKMioW7euLTbDMIwtW7YYwcHBRrVq1Yx58+YZSUlJtnU7duwwHn74YSMoKMiYOHGiXXwJCQnG8ePHjePHjxtXr16963m/XXJystG0aVMjKCjImDx5st3+rK/NqFGjUt32vffeM4KCgoy3337bbvm9rrmMWrJkiREUFGTUqlXLiI2NtS2fM2eOERQUZFSrVs24ePFiiu0yex0Zxr/vi88++8xu+bVr14xGjRoZQUFBxgsvvGCcPn3atu7ixYu266Ru3bp26+7l0KFDRu3atW3xBgUFGSEhIUbv3r2NL7/80ti3b5+RnJyc5vZpvRZWK1asSPU9eft75k6pfTbcuU1iYqJt+Z49e4zKlSsbQUFBxqeffmp3Xa9YscK2btu2bYZhpP36HD582KhevboRHBxsTJw40W4/hw4dMlq1amUEBQUZgwcPTvUcBAUFGZ06dTJOnjxpW7d3716jTp06RlBQkDF69Gi77datW2cEBQUZVapUMb7++mvbey4pKcmYPn26bd3x48cNwzCMiRMnGkFBQcYzzzyT6rl+5ZVXjKCgIGPWrFm2ZZl9f6ZlzZo1RlBQkFG1alVj+/bttuXnzp2zvW+HDRtmXLlyxbYuPDzceP75542goCCjS5cudvuzfmYHBQUZr7/+unHz5k3DMG59RlvPxVNPPWUEBQUZrVu3Ng4fPmzb9tq1a8b//d//2d6L+/bts607deqUUa1aNSMoKMiYPn26kZCQYFsXHR1tDBw40LZdTEyMbZ31em3cuHGqx3/7tRMREWG3Lq3Pn3379tk+34cNG2b3b9nff/9tu66eeeYZu+v69uvq6aefNk6cOGFbd/jwYaNBgwZGUFCQMXDgQLv+MrsdAAD4FzkyObJhkCOnhhyZHPn281SQcmTra9CpUyfj/PnztuUWi8VYtWqV7ZwuXLjQbrvMfO4bRtrXUWZz5CtXrhgNGzY0goKCjEGDBtn9+7Fy5Upb/nxnrNevXzcef/xx278N1s9ywzCMCxcuGH369LF9tsbFxdnFmtZ7Oq28O6Ovf1rXf2Y/u62vRVBQkNGnTx+713nTpk1GlSpVUv23/W6/I9z+79zbb79tREdH29ZZf18JCgoyvvnmm2zZDnA0PAEOIEedO3fOdgfvqFGj1KZNG9s6Jycnde3aVQMHDpR0ayimrN7peLsuXbqoYsWKkm7NF3P7cGyZYRiGoqOj9fPPP+uVV15RTEyMXFxcNGDAgOwI1+bVV19ViRIlJEmenp4qVKiQ3frSpUvr888/t93NaTKZ1KlTJ/Xs2VPSrfNotW/fPtuwW1OmTFGDBg1s61xdXTVw4EC98MILkqRPP/3Uti40NFTSrTnDSpcubVteqFAhDRkyRI0aNdLjjz+umJgY27rPPvtMhmFo8ODB6tatm5ycnGzrHn74YY0bN06SNHfuXEVHR9vWubi4KDAwUIGBgXZPg97L9u3bbXf7Pvnkk3b7s15na9asydO7Ga1Duz322GPy9PS0LW/fvr3MZrMSExNtbXLaokWLdOHCBRUrVkxffvmlAgICbOuKFSumKVOmKCgoSNeuXdOMGTPSvd+qVatq2bJlqlu3rm1ZbGystmzZogkTJqhTp05q1KiRJk6cqLi4uGw9puwyffp0WSwWPfHEE3r77bft3nPPPvusOnbsKEn3HN5s6tSpSkhI0EsvvaQ333zTbj9Vq1bVlClT5OTkpLVr16b69KyLi4umTZumChUq2JbVqVNHzz77rCRp7969du2t7/X//Oc/6t69u+095+TkpL59++rRRx9VcnKyVq9eLUl67rnnZDKZdOjQoRRPfpw/f147duyQk5OTnnrqKbuYMvP+TM3u3bv1/vvvS5Lef/99Pfroo7Z1c+bMUUxMjFq0aKFRo0bJ29vbtq5s2bKaPn26vLy89Mcff2jLli2p7v+9996z3SFetGhRSdIPP/ygw4cPq1ChQpo1a5YqV65sa+/l5aXRo0ercePGSkxMtHuC4ddff5WTk5OqVaumvn37ysXFxbbOx8dH7733nqRbT2+dOnUqS+flXqZMmaKkpCQ1atRIo0aNsvu3rEqVKpo9e7bc3Nx06NAhu2HfrZydnfX555/rwQcftC2rXLmyevToIenW8HCpyex2AADg7siRM44cOX3IkTOGHDlt5MjZmyNHRUXp2LFjkm597hcvXty2zmQy6emnn1b9+vUl3RqVICdlNkdesmSJLl++rPLly+uTTz6x+/fjmWee0WuvvZZqf8uWLVN4eLiqVaumqVOn2j7LpVujIEyePFllypRRWFhYhoeUv1NGX/+0ZPaz28rPz09Tpkyxe50fe+wx25Dtd1636REYGKhPPvlEPj4+tmVPPvmk7XeVtKbhyOx2gKOgAA4gR23dulVJSUny9/dX27ZtU23z0ksvycXFRdeuXbPNS5Qdbk82MioyMjLFXLWVK1dWw4YN1bdvXx0+fFiFCxfWpEmT7L4sZod7xd2pUyd5eHikWP7iiy9KujVP7MmTJyX9O+dUzZo10xzi6pVXXpF0a7i6o0ePSpJt+J3ly5dr0aJFdnPUuLq6as6cORo3bpzti+uZM2d0+PBhSfaJ9u2aNm0qX19fxcfHpzmnXUZYvxjXrFkzxRB41hiuXr2aakEoN5w4ccI2R9Sd56R48eJq2LChJGnp0qWyWCw5Hs/PP/8sSXr66adVpEiRFOtdXV1tc0L9/PPPMgwj3fuuWLGiFi1apNWrV6t///6qU6eOXcEwKipKM2bM0JNPPpnmMM15JS4uzjbPnPWHrju9+eab+uGHH2xzDaYmISFBW7dulZT2e8D6OWIYRqrzwVWvXl3+/v4pllsLkNeuXbMtCw8Pt73Pre/9O40ZM0abNm3SoEGDJEkBAQF66KGHJClFwrdmzRpZLBY1adIk1Riy6uTJk+rfv78SExP18ssvq2vXrnbrrfMzpnXuihUrZkvQUjt3/v7+dj9YWVmv+xYtWqS6XrqVHEvSrl27bOe4a9eu2r9/vxYtWpTqNm5ubrb/z8kfrW7cuGEbcvH2Of1uFxAQoJYtW0qSfvrppxTrq1evbvcjrZV1XrHbf6TNju0AAMDdkSNnHDly+pAjZww5curIkW/JzhzZz89Pv//+u/bv3283FLlVcnKyraCc0zeoZDZHtt6I3qFDB7tr2apz586p7sua67dt29aukGzl5uam1q1bS0o910+vzLz+qcmOz+6HH344xY1a0q1itGR/3abXY489lur5s+bnd84tntXtAEfhnNcBAHBs1i8fVapUkdmc+j03Hh4eqlChgo4ePapTp06pefPm2dJ3Vr6gurq6pphbxmw2y9PTUyVKlFCtWrXUpk2bLN8xn5p7xV2zZs1Ul5cuXVqFCxfWtWvXFBYWpgcffNB2/qtVq5bm/sqXLy8vLy/Fxsbq1KlTCgoK0vPPP6/ly5fr+PHj+vDDD/XRRx+pSpUqevjhh9W4cWM99NBDcnb+958Q652skvT666+n2dfNmzcl/XtdZFZMTIyt0JPaF9K6desqICBAERERWrx4sZ577rks9ZcZy5cvl3Qr0bn9SVerp556Sjt27FBkZKS2bdumpk2b5mg81qdU73YtWNddvnxZMTExGZ6LrEqVKqpSpYreeOMNxcXFae/evdq+fbvWrFmjqKgonT59WgMHDkz3nEu54Z9//lFiYqIkpflDnZ+fn918zKkJCwtTQkKCJOnDDz+0PYmcWn9S6u+B2++Evp212JqUlGRbZp1f0cPDI82ktVSpUimWPffcc9q1a5fWrl2rt956SyaTSdKt5F6S7U767HT58mX16dNHMTExatSokYYOHWq3/vr164qMjJR060mD+fPnp7ofa5vUzt3td1bfLiPXfXJyssLDw+0++wsVKqQDBw7o6NGjioiI0OnTp3X06FG7GDLyQ1hGRURE2K7Pu813Vr16da1bty7Vp9HTuq6sPxInJiYqKSnJ7jM9K9sBAIC7I0fOOHLkeyNHzjhy5NSRI+dcjuzm5qazZ89q//79On36tCIiInTixAkdPnxYN27ckKQcv/kjszmydbtKlSqluo2fn5+KFy+uCxcu2C233kS0bNmyVG/YlqRLly5JytrnYGZf/ztlx2d3Rq7b9LpXfp7WjROZ3Q5wFPxiBSBHxcbGStI9hwWyJsnZObzb7U/oZZS/v78WL16cbbFkxL3iTu3OZCsPDw9du3ZNV69elZT+8+/p6anY2Fjb+ffy8tLSpUv11Vdfad26dQoPD9fff/+tv//+W3PmzJGfn5/efPNNderUSZL93YvpGconM3c73m7t2rW2RGr06NEaPXp0mm0PHjyoQ4cO3fXLfXZLSkrSd999J+nWnd336nvx4sU5ntyn51q4/ceq69evZzi5v527u7seffRRPfrooxo4cKDef/99/e9//9O+ffty/fW4m9ufYr19CL6Muv2a/uuvvzLU3iq1u6jTYo07ozG3adNGo0aN0tmzZ7Vz5041bNhQBw8e1PHjx+Xr65ttP65a3bx5U3379lVERIQqVqyoSZMmpbj72HptSv8mx3eT2rlL7e7q2/edkeveas2aNZo+fbrCwsLs2j/wwAPq2LGjvv3223vGmlW3n5v0HENq/4am9UPTvWR2OwAAcHfkyBlHjnxv5MgZR46cOnLknMmRT548qf/+97/asmWLXZHby8tL9erV04ULF2xTLeSkzObI1s/Q1EbbsCpSpEiKAri1v7CwsBS59Z2y8jmY2df/bjFk9rM7I9dteqX1m0dObQc4CgrgAHKU9YvHvb7EWL9IpfZFJa2n66x3R+ZXORX33YbbtX6xtN6Jm97zb11/+/n38vLSgAEDNGDAAIWHh2vnzp3auXOntmzZoqioKA0fPlw+Pj5q1aqV7Quwj4+PbbjenGSdE8zDw+OuX9ovXLggwzC0ZMkSjRo1Ksfjsvrll19sd7AWL17cdgfxnW7cuKFr165p69atOnv2bKp3o2bXdeTp6akrV67c9Vq4cuWKXft7GTFihH7//Xc988wz6tu3b5rt3Nzc9NFHH2nDhg22OZPvTO7TOs6cnhPt9uQtNjbWNnd0Vvazd+/eLCdd6e0voz+Iurm5qV27dlq6dKnWrl2rhg0b2u5sT2sos8wyDEPvvPOO9u3bJ19fX82YMSPV96u7u7vt/9euXZvqkHCZlZ7PQOu/P7e3X7VqlYYMGSJJaty4sR5//HFVqlRJgYGBKlKkiBITE+9aAM+u6/n26+jatWtpPmVhfe/m9HUHAACyjhw5JXLkrCNHJkfOLuTI2Z8jR0VF6aWXXlJUVJRKly6tTp06qWrVqnrwwQf1wAMPyGQy6e23375rATw7r3sp4zmyj4+PLl68aHeT9p1Se5rY3d1d165d04wZM7L9hvvbZfb1T2s/ufXZDSBnMQc4gBxlnZfn8OHDaQ7jExsba7sLsFy5crbl1qcErXcx3+nOuwrzg9uHPEst7vj4+Czf2Z3WE5KnT5+2fdGrWLGipH/P/6FDh9Lc34kTJ2xfmK3nPyoqSn/88YdtLphy5cqpU6dOmjBhgrZs2WIb+s6aFFSoUEHSrTsuL168mGZff/zxh06cOJGlIXZCQ0Nt8/GMGzdOW7duTfOP9Y7xdevW3fVLenazzr1WqVIlbdu2Lc345s6dK+nWsFK3F9Ny4jpKz7VgvSu7SJEi6bqz/ebNmwoPD7fN6XQ3Xl5etsTp9gTa+j63DrF2p5x+nwcEBNhiuH2oq9sdPHhQnTt31tChQ9NMOm/fz/Hjx9Ps78CBAzpy5EiWkzLrnH43btzQmTNnUm3z008/6eWXX9Z///tfu+XW4Q5/+uknJScn24Yhy+5hEP/73//qxx9/lIuLi6ZNm5bmMGTe3t4qVqyYpLufuyNHjujw4cN2P0LdS3qu+4MHD0qSTCaTypYtK0n68ssvJd2aD3D27Nl64YUXFBISYnu6KK15+rL7362yZcvafnC521MT1nW3/xsKAADyJ3Jke+TI5MjkyOTIjp4jr1ixQlFRUfLx8dGKFSvUt29fNW3aVAEBAbabQc6fP5/qttn9uZ/ZHNn6mWb9rLnT9evXbcPZ3866XVrXknTr6fCDBw9maT7qrLz+qcWbG5/dAHIeBXAAOapJkyZydnbWxYsX9f3336faZuHChUpKSpK7u7vq169vW25NLlKbT+XAgQP5Mrn38fGxfXlNLe6ff/45U3O93G7lypWp/lBiHY6udu3atrukrXdXHjhwIM2he77++mtJUsmSJRUcHCxJ6tmzp7p27apVq1alaO/p6anatWtLupWUSlJgYKDth4GFCxem2s+ePXvUtWtXtW3bVvv27UvHkabOOm+Yr6+vWrRocde2nTt3lnTrC7D1h4icFhUVpS1btki6d7JUo0YN2w8ly5Yts10bWbmO0rqT3notrF69OtUCYkJCgu0aaty48V3jtrLOLffXX3/ZftBIy/bt2xUTEyMfHx/VqlXLtvxu7/Pk5GT9/PPP6Yols7y8vFS3bl1J/z41cad169Zp7969OnPmTJrn18vLy/b5ldYc1hEREerSpYuefPJJ/fDDD1mKOzAwUGXKlLlr3KtWrdKuXbtSJJG1atVSpUqVFB0drQULFuiff/5R1apV05zfLTMWL16sr776StKtIRjr1at31/bNmjWTdOvzI7XPt2vXrql79+56+umnNW/evHTHYb3uf/75Z0VERKTaxvp61a5dW97e3pJkS5jTGobQ+jkk2c/fZb2er1y5oqioqBTbbdy4Mc1YrdfW7T8geXh4qEGDBnZx3ikiIsL2PmnSpEma+wcAAPkDObI9cmRy5NuRI5MjZ1Z+zpGt+WXp0qVTfaL++PHjts8A62eIVWY/91PLL6XM58itWrWSdOsmn9RuVli5cmWK2G/vb/ny5akWi5OSktSvXz917NhRn3zySarxpEdWXv8795Nbn91WZvOtEl1aN5MAyDwK4AByVKlSpWxzYA0fPtzuC63FYtGiRYs0depUSVK/fv3shuqyfuGeO3euTpw4YVt+8OBBvfXWW7kRfoa5ubmpatWqkqSpU6fa3cG5fft2ffTRR1nu46+//tLw4cNtw15ZLBYtXLjQlqQPGjTI1rZOnTq2O7wHDBhgN3xPQkKCpkyZYrur+t1337V9QX7qqackSdOmTdPWrVvt+v/jjz9sifLtc3INHDhQkjRz5kzNmjXL7u7UP/74w7a+du3aatiwoW1dYmKiTpw4oRMnTtzzju2EhAStXbtW0q2hqO41R22TJk1sX4CXLFly17Z3888//+jEiROp3s16p9WrVyspKUkuLi6283g31h8gLl68aLvLOCvXkXW4psjIyBT9lChRQpcuXdKrr75ql+hERUVp4MCBOnr0qDw9PfXGG2/cM25JevTRR9W6dWtJ0rBhwzRmzJgUd9revHlTK1as0Jtvvinp1nVy+9Bn1vf5sWPHNH/+fNsX/itXruj9999P15zQWdWvXz+ZTCatWbNGM2bMsPvhZPXq1VqwYIEkqVevXnfdzxtvvCEnJyetW7dO48aNs0sKjx49qj59+igxMVFlypRRhw4dshSzyWRSv379JEmzZs3SsmXLbOcuOTlZM2fO1MaNG+Xs7KwePXqk2N76w9PkyZMlSc8++2yq/WTk/Wm1ZcsW23CKAwYM0NNPP33Pbfr06SMPDw/t2bNH77zzjl1CGhkZqT59+ig6OlqFCxdW165d0xWHdGs+t+DgYN28eVO9e/e2G1IuNjZWw4cP1/bt2+Xs7KzBgwfb1lnvil+6dKnd+y82NlZTp07VzJkzbctuT+Jr1aolFxcXGYahsWPH2tYlJiZq3rx5dx023frevfNzpn///nJ2dtb27ds1fPhwuyd1QkND1bt3b928eVOVK1dO17kGAAB5ixyZHNm6DTly6siRyZEzIz/nyNb8MjQ0VD/++KNtuWEY2rp1q3r16mV74v/OIe4z+7lvvabufI9mNkd+/vnnVa5cOZ07d04DBgywu+F7w4YNmjBhQqpxdO3aVf7+/goPD1ffvn3t4rl8+bLefPNNnThxQi4uLnrllVfSPJ57yerrf7vMfnZnlvUz6urVq7k6MgdQEDAHOIAcN3ToUJ0/f14//fSTBg4cqOLFi6tkyZKKiIhQdHS0JOmll15S79697bbr27evtm3bposXL6pDhw6qWLGibt68qbCwMAUEBOi5555L866+vPTmm2+qb9++On78uFq2bKmKFSvqypUrioyMVI0aNRQSEmJL4jIjKChIy5cv1/r16/Xggw/q3Llzunjxosxms4YOHZriy9d///tfvfbaa/rzzz/VrVs3lSlTRkWLFtWpU6cUGxsrJycnvfnmm2rXrp1tm27dumnHjh3aunWrevfureLFi6t48eKKjo62JY0tWrTQ888/b9umXbt2CgsL09SpU/Xpp5/qyy+/VPny5XX58mXbNhUqVND06dPt4jt//rzatm0r6dZwbWklGZK0adMmxcTESErfUFRms1kvvPCCPvvsMx09elR79uyxJQ8Z8d5772nXrl2qX7++LdFLi/Uu72bNmqVrrqx27drpk08+0dWrV7VkyRJbspzZ66hq1aravHmz1q5dqyNHjqhevXr64IMP5O3trRkzZqhPnz76888/1apVK1WsWFHOzs46duyYEhMT5ePjo08//dQ2dFR6fPrpp/Lw8NDq1as1f/58zZ8/X6VLl5afn5/t/ZqQkCAXFxe9/fbb6tKli932TZs2Vb169fTHH39ozJgx+uqrr+Tr66uTJ08qMTFRb7zxhu0HwJzy8MMPa+jQofr44481ceJEffXVVwoICNC5c+ds89S9/vrrdj9mpaZu3boaNWqUPvjgA3399ddasmSJAgMDdf36dYWHh8swDBUrVkxz5sy55w9T6dGxY0cdP35cc+fO1bBhwzRp0iSVLFlSZ86cUUxMjJycnDRy5MhU71p/6qmnNGHCBN24cUMuLi5q3759qn1k5P1pNWjQICUnJ8vNzU1///23evbsqfj4+FSfynnuuefUsWNHlStXTpMmTdKgQYO0bt06/fjjj6pYsaISExMVFhampKQkeXh4aObMmWnOg50aZ2dnTZ8+Xb1799bJkyf11FNPqXz58vL09LQNV+bm5qYPP/zQ7in1QYMGqV+/fjp+/Lgee+wx2zBo4eHhunnzpm2outOnT9sNh16kSBH17NlTM2bM0Lp167Rt2zY98MADioyMVExMjDp37qyff/451eHtqlatqt27d+ujjz7S4sWL1aVLF3Xs2FF16tTRmDFjNGzYMH377bf67rvvFBgYqBs3bujUqVOSbv27MG3atGy5rgAAQM4jRyZHJkdOGzkyOXJm5dccuWPHjlq0aJHCw8M1YMAAlSlTRr6+vjp79qyioqLk4uKi+vXra9euXSlyxcx+7lepUkXSrfnX27Rpo4oVK2ratGmZzpHd3Nw0ZcoU9erVS9u3b1ezZs1UqVIlxcTE2N6DFy9eTDFdWJEiRfTFF1+ob9++2rFjhx577DFVrFhRJpNJp06dUkJCgpydnfXZZ5/ZRtzIrKy8/rfL7Gd3ZgUHB8tsNis+Pl5t2rRR8eLFNWfOnHRNuwDg7ngCHECOc3V11eeff66JEyeqUaNGSkhI0OHDh+Xu7q527dpp/vz5Gj58eIphk6pUqaLly5erQ4cOKlq0qE6ePKnk5GS98sorWrVqlfz9/fPoiO6uSZMmWrRokVq2bCkPDw8dP35chQoV0oABA7Ro0SLbnX2Z1a1bN3322WeqUKGC7c7f1q1ba8mSJanexejj46MFCxZo1KhReuihh3Tt2jUdOXJEvr6+6tixo5YvX64+ffrYbePk5KTPP/9c77//vurUqaP4+HiFhoYqLi5OjRo10n//+19Nnz7dbh4u6VYCtHTpUnXo0EFeXl4KDQ1VdHS0qlatqoEDB2rFihUZKl7dyZo4V6tWLd1DUXXs2NE2h25W7nBPj/3799vmtkrvXFHu7u62pzZ/++0321x/mb2Oevfureeff14+Pj4KCwvTkSNHbOuqVq2qdevWqV+/fqpUqZIiIiIUFhamChUq6LXXXtN3332X7qHdrFxdXfXxxx9r2bJleuWVV1StWjUlJCQoNDRU586dU4UKFdSzZ0999913Ka4z6dYPMHPmzNGbb76pSpUqKSoqSv/8848efvhhLV68OMt3gadX9+7dtXTpUrVv316FChXSkSNHlJSUpKZNm2ru3LkaMGBAuvbz3HPPac2aNXrhhRfk7++vY8eO6ezZswoMDFSvXr303Xff2Yqp2WHIkCGaO3euHnvsMRmGodDQUDk5OalNmzZaunSp3Q9wtytatKhtuOwWLVpka2Jlvas/Pj5emzZt0vbt2/XHH39o7969Kf6cPXvWtl3Tpk31v//9Tz169FDZsmV16tQphYeHq0yZMurSpYu+++47hYSEZDieBx54QCtWrNC7776rmjVr6uLFizpx4oRKlSqlbt26ac2aNSmenG7evLmWL1+uli1byt/fXydPntTZs2cVFBSkt99+W2vWrLFdm5s3b7bbdtCgQfr0009Vt25dJSYm6tSpU6pQoYLGjx+vkSNHphnn2LFj9eijj8rZ2VmnTp2yfRZIt+YiX7NmjTp16qRixYrp2LFjio6OVkhIiEaMGKHly5enOcc6AADIf8iRyZHJkdNGjkyOnBX5MUf28vKyfa5UqlRJly9f1rFjx+Tl5WUrYI8dO1bSrafEb39KOrOf+08//bR69eolf39/nTlzRocPH7bdlJ6ZHFmSKleurFWrVumVV15RqVKldOzYMVksFvXo0UNff/11mjcx1KhRQ2vXrtXrr7+u4OBgnTlzRidPnlSxYsX09NNPa8WKFbYh1rMqs6//nXL6s/t25cqV07hx41S+fHnFxMTo7NmzKUasAJA5JoPJBQDgvtCiRQtFRkZq9OjR6f7ChuwzatQonT59WrNmzcrrUIBs8eyzz+rQoUOaOXPmPe/cBwAAAPIbcuS8RY4MR0OODACOhSfAAQC4B4vFoj/++EMVK1bM61CAbHHo0CEdOnRIpUqVUqNGjfI6HAAAAAD3EXJkOBpyZABwPMwBDgDAPXz00UeKiorSyy+/nNehAJkWEREhSbp06ZKGDBki6dZwkU5OTnkZFgAAAID7DDkyHAE5MgA4NgrgAADcw4svvqgBAwaoaNGieR0KkGnff/+9PvvsM9vfg4KC9NJLL+VhRAAAAADuR+TIcATkyADg2BgCHQCAe6hcuTKJPe57lStXVvHixeXh4aGWLVvqq6++kqura16HBQAAAOA+Q44MR0CODACOzWQYhpHXQQAAAAAAAAAAAAAAkFU8AQ4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADsE5rwO4XxiGIYuF0eIBAAAAAPbMZpNMJlNeh+EQyL0BAAAAAKnJSO5NATydLBZDly9fz+swAAAAAAD5TNGinnJyogCeHci9AQAAAACpyUjuzRDoAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAjOeR0AAAAAACAli8Wi5OSkvA6jwHNycpbZzL3jAAAAAOCIyL3zh+zOvSmAAwAAAEA+YhiGrl69rLi42LwOBf+fu7uXvL2LymQy5XUoAAAAAIBsQO6d/2Rn7k0BHAAAAADyEWsC7uXlK1fXQhRd85BhGEpIuKnY2GhJUpEifnkcEQAAAAAgO5B75x85kXtTAAcAAACAfMJiSbYl4F5e3nkdDiS5uhaSJMXGRqtwYV+GQwcAAACA+xy5d/6T3bk3mTsAAAAA5BPJycmS/k38kD9YXw/mhQMAAACA+x+5d/6Unbk3BXAAAAAAyGcYei1/4fUAAAAAAMdDrpe/ZOfrQQEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAjOeR0AAAAAACDvHDkSqunTJys09G9ZLIaqVq2uPn36qVq16pKk3bt/19y5s3XixDE5OTmrfv2G6tv3DZUoUVKS9P33azV27Idatuw7lSpV2rbfjh07qE6duvq//xspSWrUqJ5eeaWPduzYroiIcHXu/LJ69OilyMgz+uKLqdqzZ7cMw1D16jXUr99APfhgoCTp5s2bmjNnhjZt2qDo6MsqW7acunV7RY891ip3TxQAAAAAAJlE7p27eAIcAAAAAAqo69dj9fbbb6hIER+NHv2JPvxwrOLj4/T22/0VGxurH3/8XoMG9Ze/v79GjhyjN94YpEOHDuq1115RdPTlDPc3b94cNWvWQiNHjlHjxs106dIl9e7dXeHhp/T22+/pgw9G6erVq3rzzX6KiYmRYRh6//13tHr1Sr3wQhd9/PFnql69pj744H2tX78uB84IAAAAAADZi9w79/EEOAAAAAAUUKdOnVJMTLQ6dnxBNWvWliSVK1dea9asUGzsNU2fPln16tXXhx+Os21Ts2ZtvfTS81q8eKH69RuQof6qVq2ul17qYfv7559P1s2b8Zo0abr8/IpJkipVqqxXX+2hv/46oEKFXLVz5w59+OFY213nDRo8rPj4OM2YMU2PP95Gzs6ktQAAAACA/IvcO/fxBDgAAAAAFFAPPhgoHx9fvffeW/r003Havn2r/PyKqV+/gYqPj1dUVJRatXrCbpsyZR5QtWo19Oeff2S4v8DAinZ/37//T1WvXtOWgEtSsWLFtGLFOjVq1ER//LFbJpNJDz/cSElJSbY/jz7aVFFRl3Tq1InMHTgAAAAAALmE3Dv33V/legAAAABAtvHw8ND06bM0b94cbdq0QatXr5Cbm5tatXpCbdq0kyQVLeqXYjs/Pz8dOXIkw/35+ha1+/vVq1fs5i6709WrV2QYhlq1apLq+kuXLqpSpeAMxwEAAAAAQG4h9859FMABAAAAoAArW7a8hg8fpeTkZB0+fEg//PC9Vq9ermLF/CVJly9HpdgmKipKPj4+kiSTySRJslgsdm3i4m7cs28vr8KKiYlJsXzPnt0qWbKUvLwKy93dQ1Onzkh1+zJlAu7ZBwAAAAAAeY3cO3cxBDoAAAAAFFCbN29S+/YtFRV1SU5OTqpevaYGDx4iL6/Cunz5svz8/LRhw3q7bSIjz+ivvw6oZs1akiQPD09J0vnz52xtTp8O05UrV+7Zf61atXXo0AFFR1+2LYuJidHgwQP0669bVbt2iOLibsgwDFWuXNX25+TJE/rqq1lKTk7OjtMAAAAAAECOIffOfTwBDsCO2WyS2WzK0T4sFkMWi5GjfQAAAODeatSoreRki4YOHayXXuohT09P/fTTBl2/HqsWLVqqatVqGjv2Q33wwVC1adNeV67E6KuvZsrbu4heeKGrJKlu3Yfk5uamadMmqnfvfrpx44bmzr3V5l46deqi9ev/p7fe6q9u3V6Rq2shLVgwV35+xdSmTTt5eRVW7dohGjLkbfXo0UvlypXX4cOHNGfOTDVo0NB2JzwcX07nKeQoAAAAAHIKuXfuMxmGQYaXDsnJFl2+fD2vwwBylNlsko+Ph5yccnZwiORki2JibvADEwAAwB0SExMUFXVWfn6l5OLimit9Hj58SLNmfaHQ0MOKj4/Xgw8G6uWX/6OmTZtLkn755SctWPC1Tp48Lk9PTzVo8LD69HldJUqUtO3j9993aMaMaQoPP6WSJUvpP//pox9++J/8/Pz0f/83UpLUqFE9/ec/vdWz56t2/YeHh2n69Mnau3ePXFxcVKdOiPr1G6gyZR6QJMXFxWn27C+0efNPio6+rGLFiqtly1bq0aOXChUqlCvn6F6vS9Ginjn+HbqgSC33zo08hRwFAAAAKDjIvR0/96YAnk4UwFEQODub5evrqc8X/6rIC/ceNiMzyhQvotc7P6ro6OtKSrLcewMAAIACJC+ScNwbBfDck1rundN5CjkKAAAAULCQe+dP2Zl7MwQ6gBQiL1xRWGR0XocBAAAAADbkKQAAAACA9OAWdQAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhOOd1AAAAAAAAIG8kJiZqwYIFWrVqlcLCwuTh4aEaNWqoe/fuaty4cYr2DRo0UExMTJr7O3DggAoVKpSDEQMAAAAAcHcUwAEAAAAAKIAMw9CgQYO0ceNGeXt765FHHtHNmzf1+++/a9u2bXrzzTfVt29fW/vIyEjFxMSoRIkSql+/fqr7NJsZaA4AAAAAkLcogAMAAAAAUAAtWbJEGzduVJUqVTR37lz5+vpKkkJDQ9W1a1dNnjxZrVq1UmBgoCTp8OHDkqQ2bdro/fffz7O4AQAAAAC4G27NBgAAAACgAFqzZo0kaciQIbbityRVrlxZHTp0kGEY2rp1q235oUOHJEnVqlXL3UABAAAAAMgAngAHAAAAgPuA2WyS2WzK9X4tFkMWi5Hr/SLnzZs3T6dOnVKlSpVSrLtx44YkycnJybbM+gR49erVcydAAAAAAMhl5N6OgQI4AAAAAORzZrNJPj4ecnLK/UG8kpMtiom5kalEfMOGH7RixVKdPHlcklSuXAW1b/+Unn76uewOE5lQqFAhVa5cOcXyTZs26YcffpC7u7tatWplW37o0CG5ubnpr7/+0rBhw3Ts2DGZTCaFhISoX79+qlWrVm6GDwAAAADZitzbcVAABwAAAIB8zmw2ycnJrM8X/6rIC1dyrd8yxYvo9c6Pymw2ZTgJX7dujSZNGq8BA95W7dohkgzt3r1LU6ZMUHT0Zf3nP71zJmhkypUrVzRs2DAdP35cJ0+eVKlSpTRu3DiVLFlSkhQVFaULFy5Ikt59913Vrl1bDRo00NGjR/XLL79o+/btGj9+vNq2bZuXhwEAAAAAmUbu7TgogAMAAADAfSLywhWFRUbndRjpsmrVcrVv/5SefPIZ27KyZcvr4sUL+vbbxQU2Cc+vIiIitGHDBtvfTSaTjh8/rocffljSv/N/+/r66osvvlCdOnUkSYZhaN68eRo3bpyGDh2qkJAQW9E8s5yd7Z+2yK2nL/LiKQ8AAAAAuc9iufsQ5+TeecvJyZQiL8woCuAAAAAAgGxnNpt08OABXb16Vd7e3rblXbt2V9u2HSRJHTt20BNPtFfPnq/a1vfv30elSpXW//3fSO3d+4cGDHhNffu+oW++ma+SJUvKzc1dxYr566OPxtm2OXBgn/r166UlS1bpgQcC9Ouv2zRnzpcKCzslf39/tWzZWt2795Srq6smT56gX3/dqm+/XWPbPjY2Vk8+2VoffTRWjRo1zYWzk/9UqFBBu3btkmEY2rFjh8aMGaPRo0crNjZWffv2VePGjbVt2zYZhqESJUrYtjOZTOrRo4d2796tTZs2afny5erfv3+m4zCbTfL19cyOQ8owb2/3POkXAAAAQO6Kj3fSpUvmFIXWvL4pNjP9OzmZ9ddfB3TjRqxd7t29+3/05JNPydnZrKefbqd27Tqod+/XbOv79u2tUqVKa8SID7Vnzx96/fU+ev31AVqwYJ5Kliwld3c3FSvmrzFjPrFts3//Pr366itatmy1AgLKavv2rZo1a4Yt93788Tb6z396ydXVVRMnjtf27du0YsV3tu1jY6+pXbtWGjXqYzVpkjL3tlhMMpvNKlLEQ25ubhk+F7ejAA4AAAAAyHZdu3bXiBFD9cwzTygkpJ5q1qyjunXrqUqVaipcuHCG9rVjx3Z9+eVcxcfH6dixo5ow4WPduHFdHh63CqUbNqxXjRq19MADAfr99x0aPnyIBgwYpIceaqjIyDOaOPG/On06XKNGfaz27Z/SsmWLtX//PtWqVVuS9NNPG+Tp6amGDR/N7tNw3/D0/Lfo3LZtW5UsWVJdunTRzJkz1a1bN3l6eqp48eJpbt+8eXNt2rRJf/31V5bisFgMXb16w26Zk5M5V4rTV6/GKTnZkuP9AAAAAMhbCQk3ZbFYlJxsKCkp/+QAycmWDMfTpUs3jRgxVB06tE6Re5cu7Wnbn8Vif6yGYcgwbi2z5kHbt29LkXtfvXrNlnuvX/8/1ahRS6VKPaDt27fr/fffS5F7h4WFadSoj9W27VNaunSx9uzZa8u9f/zxR3l4eKp+/YdTPc7kZEMWi0VXrtxQXFxyivXe3u7pvkmAAjgAAAAAINs1a/aYvvxyrpYvX6KdO3/Xb7/9KkkKCCiroUNHqGbN2uneV+fOLykgoKwk6YEHymrixPHasmWznniivRITE/Xzz5vUt+8bkqT5879S+/ZP6umnO0qSypR5QO+8874GDHhNZ8/+o8DAigoOrqIff/yfLQn/4Yd1at26rZydSZGtQkJCVLZsWYWHhyssLEzVqlW7a3t/f39JUlxcXJb7zqsfoDLzYxMAAACA+09ycsbm2c7PHDH3zo4bE8juAQAAAAA5okqVaho+fJQMw9DJkyf022/btWzZEg0ePFBLl65K934eeKCs7f/d3d3VvPlj2rBhvZ54or1+++1X3bwZrxYtWkqSjh4N1eHDh7R+/TrbNoZx68eNsLBTKlWqtNq1e1IzZ07Xm2++owsXzuvgwQN65533s+mo7w9xcXGaPHmyLl26pPHjx8tkSjkHnqurqyQpKSlJS5cu1W+//ab27durZcuWKdpGRERIUpbn/wYAAAAAZAy5d0oUwAEAAAAA2erChfP65pt5eumlHvL3Ly6TyaTAwIoKDKyoRo2a6qWXnte+fXtT3TY5OSnFskKFCtn9vW3bDho4sK+ioi5pw4bv1aRJc3l6ekm6Naxbly7d9MQT7VPsx8+vmCTp8cfbaNq0SdqxY5tOnDiuKlWq6sEHK2b1sO8rbm5uWrVqlWJiYtSpUyfVr1/fbn1ERIROnTolV1dXVapUSVu2bNH69esVFxeXogBuGIbWrLk1p3qjRo1y7RgAAAAAoCAj905b3s7mDqDAcnIyy9k5Z/6YzSmfXgEAAEDucXUtpDVrVmrDhvUp1lnnmi5a1E/Ozi6KjY21rbNYLPrnn8h77r927RCVLFlKP/zwP+3Y8atdwv3gg4EKDw/TAw8E2P5cvHhBn38+WTduXJckFS5cWE2aNNMvv/ysrVs3q23bJ7N6yPcdk8mkF154QZI0cuRIXbhwwbbu3Llzeuutt5SUlKTOnTvLw8NDzzzzjFxdXfXLL7/o22+/tbW1WCyaMmWKDhw4oIoVK6pNmza5fiwAAAAAUBCRe6eNJ8AB5Koihd1kWCzy9nbPsT4slmRFR8fJYnGceTwAAADuJz4+Puratbtmzpyu2NhYtWjRUh4engoLO6Wvv56tkJB6qlWrjmrWrKWfftqgpk2bq2hRPy1ZstAuKb+bJ55or3nzvlKRIkVUr96/Ty937dpNI0YM1Zw5X+rxx9vo4sUL+vjj0SpRooTtLnRJatfuSQ0Z8pYMQ2rZsnW2n4P7Qb9+/bR3717t3r1brVu3Vt26dZWYmKgDBw7oxo0batSokQYPHixJCggI0MiRIzVs2DANHz5cCxcuVPny5RUaGqrw8HAVK1ZMU6dOlYuLSx4fFQAAAAAUDOTeaaMADiBXebq5ymQ269S6WYqLOpvt+3f3K6UK7XvLbDZRAAcAAA6nTPEi901/vXv31QMPBGjt2tVatWqZ4uPjVaJESbVo8bi6dXtFktSnz+u6du2qBg8eIDc3d3Xo8LQee6yVbd6wu2nTpr2++mqmnn32eZnN/w5u1rx5S334obRgwVdauPBrFS7srUcfbay+fQfYbV+vXn0VKeKjGjVqqXDhwpk+zvuZm5ub5s6dq/nz52vNmjXauXOnnJ2dValSJT377LN6/vnn5eTkZGv/3HPPqUKFCpo1a5b27t2rkydPqnjx4nr55ZfVt29f+fn55eHRAAAAAED2IPf+1/2ae5uM9BxdHkhMTNSCBQu0atUqhYWFycPDQzVq1FD37t3VuHHjFO0vXbqk6dOna9u2bTp//rz8/f3Vpk0b9evXz/aYf1YkJ1t0+fL1LO8HyM+cnc3y9fXU+5O/V1hkdI708UjtcurfpZH+nveR4s6fzvb9u5coq6rdRyg6+rqSkizZvn8AAICclJiYoKios/LzKyUXF1fbcrPZJB8fDzk55f4sVsnJFsXE3HC4mwvj4uL01FNtNGbMf/XQQw3u2jat18WqaFHPPHltHFFquXdO5ynly/hq7MC25BAAAABAAUHunXvyKvfOl0+AG4ahQYMGaePGjfL29tYjjzyimzdv6vfff9e2bdv05ptvqm/fvrb2Fy5c0IsvvqjIyEgFBQWpWbNmOnjwoGbPnq1t27Zp0aJF8vLyysMjAgAAAIDMs1gMxcTckNlsypO+HSkBv3r1qvbu3a2ff96kEiVK2A3hBgAAAAAouMi9s09e5975sgC+ZMkSbdy4UVWqVNHcuXPl6+srSQoNDVXXrl01efJktWrVSoGBgZKk0aNHKzIyUn369NHbb78tSUpISNC7776r9evXa9q0aRoyZEieHQ8AAAAAZJWjJcN5JTk5SR9/PEo+Pr766KNxMply/4cNAAAAAED+RO6dPfI6986XY7StWbNGkjRkyBBb8VuSKleurA4dOsgwDG3dulWSdPr0aW3cuFGlSpXSgAH/jivv6uqqUaNGydPTU0uXLlV8fHzuHgQAAAAAIN/x9S2qH374RUuWrFJQUOW8DgcAAAAAAIeT17l3viyAz5s3T2vWrNFDDz2UYt2NGzckSU5OTpKkrVu3ymKxqGnTpnJxcbFrW7hwYTVs2FA3btzQzp07cz5wAAAAAAAAAAAAAECeyZcF8EKFCqly5cq2IrfVpk2b9MMPP8jd3V2tWrWSJB09elSSFBQUlOq+KlasaNcOAAAAAAAAAAAAAOCY8uUc4Le7cuWKhg0bpuPHj+vkyZMqVaqUxo0bp5IlS0qSLl68KEny9/dPdXvr8kuXLuVOwAAAAAAAAAAAAACAPJHvC+ARERHasGGD7e8mk0nHjx/Xww8/LOnfIdHd3NxS3d663NouK5yd8+UD80C2cXJynGvckY4FAAAUHBaLKa9DwF04OZnICwEAAAAAyOfyfQG8QoUK2rVrlwzD0I4dOzRmzBiNHj1asbGx6tu3r22YdJMp9R+KDMOw+29mmc0m+fp6ZmkfAHKPt7d7XocAAACQYfHxTrp0yUyhNZ+xWEwym80qUsQjzZuvAQAAAABA/pDvC+Cenv8Wndu2bauSJUuqS5cumjlzprp16yYPDw9J0s2bN1Pd3rrc3T1rxTCLxdDVq1l/ihzIz5yczA5TOL56NU7JyZa8DgMAACBDEhJuymKxKDnZUFIS32Xyi+RkQxaLRVeu3FBcXHKK9d7e7oxABAAAAABAPpHvC+B3CgkJUdmyZRUeHq6wsDAVL15c0r9zgd/pXnOEZwQ/QAH3j+RkC+9ZAABw30lOTnvkKrPZJLM594dIt1gMWSwZH1GrY8cOOnfurPr3f1MvvvhSivXjx4/VmjUr9Z//9FbPnq9mKraOHTvoiSfap3v7jLa/EzcmAAAAAIBjI/dOvY/czL2zQ74rgMfFxWny5Mm6dOmSxo8fn+rQ5q6urpKkpKQkBQUFSZJOnDiR6v6OHTsmSQoODs6hiAEAAAAgZ92aksldZrNTrvdtsSQrOjouU4m4s7OzNm/+KUUSnpSUpC1bfk5zKisAAAAAAHIbubfjyHcFcDc3N61atUoxMTHq1KmT6tevb7c+IiJCp06dkqurqypVqqRixYpJkjZv3qyhQ4fa5gSXpGvXrmnnzp3y8PBQ3bp1c/U4AAAAACC73LoD3Umn1s1SXNTZXOvX3a+UKrTvLbPZlKkkvF69+tq58zedP39OJUqUtC3fu/cPubm5q1Ah5tMGAAAAAOQP5N6OI98VwE0mk1544QV9+eWXGjlypL7++mvbMOfnzp3TW2+9paSkJHXv3l0eHh7y8PBQ8+bNtXnzZo0fP17vvfeeTCaTEhISNGLECF2/fl2vvPKKvLy88vjIAAAAACBr4qLOKu786bwOI92qVKmm8PAwbd68ye5O9J9+2qAWLR7Xzz9vtC37668Dmjlzuo4cOSxnZ2c1atRUr7/+pry9vSVJsbGxmjRpvLZv3yJnZxd16/afFP0dPLhfM2ZM0+HDf8vHx0ePPtpEr732ujw9yQcBAAAAAOlD7n3/597mvA4gNf369dNDDz2kEydOqHXr1urVq5e6d++uJ554QgcOHFCjRo00ePBgW/vhw4erePHimjt3rtq2basBAwaodevW+v7771WtWjX1798/D48GAAAAAAqu5s1bavPmn2x/T0xM1Natv6hly1a2ZX///ZfeeONVlS9fQTNmzNWoUZ/o77//0ltv9ZfFcmvO7REjhujw4UP65JOJmjhxmn79dZvOnfv3jvzjx49p4MB+euihBpo3b7E++GCMjhw5rEGD+sswMn4HPQoeJyeznJ1z5k9ezCEIAAAAoOAg97aX754Al24Ngz537lzNnz9fa9as0c6dO+Xs7KxKlSrp2Wef1fPPP2831HmZMmW0fPlyTZ06Vb/88os2b96s0qVL67XXXlPv3r3l6emZh0cDAAAAAAVXixaPa/HiBbah2Hbt+l0+Pj4KCqpsa7NkyTcKDKykt956T5JUocKDGjlyrLp3f1E7d/6mMmXKaNeu3zVp0nTVqlVHkvTBB6PVsWMH2z4WL56vevUeUo8evSRJAQFlNXLkGHXq9JT+/HOPQkLq5eJR435SpLCbDItF3t7uOdZHVubzAwAAAIB7Ife2ly8L4JLk4uKinj17qmfPnulqX6JECY0ePTqHowIA4P5wa76anHvSyGIx+AEXAJAulStXUenSZWxDsf388wa1bNnars3Jk8f10EMN7ZYFBlaUl1dhnThxTPHxcZKkKlWq2tYXLeqn0qXL2P5+5MgRnTlzWo8/3jhFDOHhYfkmCUf+4+nmKpPZnGPz/GV1Pj8AAAAAuBdyb3v5tgAOAAAyx2w2ycfHQ05OOTfTSXKyRTExN/gRFwCQLi1aPK7Nm3/SM888r23btmrWrHl26w3DkCmV+7YMwyJn53/T1jv/3XFycrZr26rVE+rW7ZUU+/Hx8c3iEaAguN/m+QMAAACA25F7/4sCOAAADsZsNsnJyazPF/+qyAtXsn3/ZYoX0eudH+UpJgBAurVo0VILF36tdevWqHTpMipXrrzd+gcfrKj9+/fZLTt27KiuX7+u8uUfVEBAWUnSwYP79cgjjSRJ165dU2RkhK19hQqBOnXqhB54IMC27PTpME2bNlmvvfa6vLwq5szBAQAAAACQD5B7/4sCOAAADirywhWFRUbndRgAAKhSpWA98ECAZs78XC+99J8U6194oYtef723PvvsEz37bCdFR1/WZ599oqCgYNWrV1/Ozs5q3rylJk78r1xcXOTn56cZMz5XYmKibR8vvviSXn+9l8aPH6uOHV/UjRs3NGHCx7px44YeeKBsbh4uAAAAAAC5jtz7XxTAAQAAAOA+4e5X6r7tr0WLxzVv3hy1bNkqxbrq1Wvq008na9asGXrlla7y8PBU48bN1Ldvf9swbMOGjdTnn0/WBx+8L4vFoqeeelYxMdG37aOGPvtsmmbP/kI9e74sd3c3hYQ8pNdff1Ourq7ZdhwAAAAAAMdG7n3/594mwzAYuzQdkpMtunz5el6HAeQoZ2ezfH099f7k73PsqdFHapdT/y6N9Pe8j3Jkfj33EmVVtfsIRUdfV1KSJdv3D9wPcvq9XL6Mr8YObMv7DAByQGJigqKizsrPr5RcXP5NHM1mk3x93WU2O+V6TBZLsqKj4wr0tBdpvS5WRYt6ysnJnAeROZ7Ucu+c/m5DjgIAAAAULOTe+VN25t48AQ4AAAAA+ZzFYig6Ok5msylP+i7ICTgAAAAAoGAg93YcFMABAAAA4D5AMgwAAAAAQM4i93YMjNEGAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAACAfMYwmG8sP+H1AAAAAADHQ66Xv2Tn60EBHAAAAADyCScnJ0lSQsLNPI4Et7O+Hk5OznkcCQAAAAAgq8i986fszL3J3gEAAAAgnzCbneTu7qXY2GhJkqtrIZlMpjyOquAyDEMJCTcVGxstd3cvmc3cQw4AAAAA9zty7/wlJ3JvCuAAAAAAkI94exeVJFsijrzn7u5le10AAAAAAPc/cu/8JztzbwrgAAAAAJCPmEwmFSnip8KFfZWcnJTX4RR4Tk7OPPkNAAAAAA6G3Dt/ye7cmwI4AAAAAORDZrNZZrNrXocBAAAAAIDDIvd2TNzGDgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgE57wOAAAAAAAA5I3ExEQtWLBAq1atUlhYmDw8PFSjRg11795djRs3TtH+0qVLmj59urZt26bz58/L399fbdq0Ub9+/eTp6ZkHRwAAAAAAgD2eAAcAAAAAoAAyDEODBg3SJ598onPnzumRRx5RlSpV9Pvvv6tXr1764osv7NpfuHBBnTp10jfffCM3Nzc1a9ZMFotFs2fPVufOnRUbG5tHRwIAAAAAwL8ogAMAAAAAUAAtWbJEGzduVJUqVbRhwwZ9+eWX+vrrr7V8+XJ5eXlp8uTJOnHihK396NGjFRkZqT59+mjt2rWaMmWKfvzxRz3xxBM6cuSIpk2blodHAwAAAADALRTAAQAAAAAogNasWSNJGjJkiHx9fW3LK1eurA4dOsgwDG3dulWSdPr0aW3cuFGlSpXSgAEDbG1dXV01atQoeXp6aunSpYqPj8/dgwAAAAAA4A4UwAEAAAAAKIDmzZunNWvW6KGHHkqx7saNG5IkJycnSdLWrVtlsVjUtGlTubi42LUtXLiwGjZsqBs3bmjnzp05HzgAAAAAAHdBARwAAAAAgAKoUKFCqly5sq3IbbVp0yb98MMPcnd3V6tWrSRJR48elSQFBQWluq+KFSvatQMAAAAAIK8453UAAAAAAAAgb125ckXDhg3T8ePHdfLkSZUqVUrjxo1TyZIlJUkXL16UJPn7+6e6vXX5pUuXcidgAAAAAADSQAEcAAAAAIACLiIiQhs2bLD93WQy6fjx43r44Ycl/TskupubW6rbW5db22WFs7P9YHVOTo4xeJ2jHAcAAAAA5HcUwAEAAAAAKOAqVKigXbt2yTAM7dixQ2PGjNHo0aMVGxurvn372oZJN5lMqW5vGIbdfzPLbDbJ19czS/vIr7y93fM6BAAAAAAoECiAAwAAAABQwHl6/lt0btu2rUqWLKkuXbpo5syZ6tatmzw8PCRJN2/eTHV763J396wVeS0WQ1ev2j9F7uRkdoji8dWrcUpOtuR1GAAAAABwX/L2dk/3yFoUwAEAAAAAgJ2QkBCVLVtW4eHhCgsLU/HixSX9Oxf4ne41R3hGJCU5ZpE4OdnisMcGAAAAAPkJE1ABAAAAAFDAxMXF6eOPP9bgwYPTHLbc1dVVkpSUlKSgoCBJ0okTJ1Jte+zYMUlScHBwDkQLAAAAAED6UQAHAAAAAKCAcXNz06pVq7R27Vrt3r07xfqIiAidOnVKrq6uqlSpkho3bixJ2rx5s5KTk+3aXrt2TTt37pSHh4fq1q2bK/EDAAAAAJAWCuAAAAAAABQwJpNJL7zwgiRp5MiRunDhgm3duXPn9NZbbykpKUmdO3eWh4eHypQpo+bNm+vMmTMaP3687anxhIQEjRgxQtevX9eLL74oLy+vPDkeAAAAAACsmAMcAAAAAIACqF+/ftq7d692796t1q1bq27dukpMTNSBAwd048YNNWrUSIMHD7a1Hz58uA4dOqS5c+dqy5YtqlSpkg4ePKh//vlH1apVU//+/fPwaAAAAAAAuIUnwAEAAAAAKIDc3Nw0d+5cvfvuuwoICNDOnTt14MABVapUSR9++KFmzpxpmwdcksqUKaPly5fr+eef17Vr17R582a5urrqtdde0/z58+Xp6ZmHRwMAAAAAwC08AQ4AAAAAQAHl4uKinj17qmfPnulqX6JECY0ePTqHowIAAAAAIPN4AhwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgE57wOAAAAAAAAAP8ym00ym005tn+LxZDFYuTY/gEAAAAgL+XbArjFYtGyZcu0cuVKHTt2TImJiSpdurRatmypV199Vd7e3nbtGzRooJiYmDT3d+DAARUqVCiHowYAAAAAAMg8s9kkHx8POTnl3KB9yckWxcTcoAgOAAAAwCHlywK4xWLRgAEDtHHjRrm5ualmzZry8PDQgQMHNHv2bG3cuFGLFi1SsWLFJEmRkZGKiYlRiRIlVL9+/VT3aTYz2jsAAAAAAMjfzGaTnJzM+nzxr4q8cCXb91+meBG93vlRmc0mCuAAAAAAHFK+LICvWLFCGzduVPny5TV79mwFBARIkmJjYzV48GBt3rxZo0eP1qRJkyRJhw8fliS1adNG77//fl6FDQAAAAAAkC0iL1xRWGR0XocBAAAAAPedfPlY9IoVKyRJQ4YMsRW/JcnLy0tjx46VyWTSpk2bFB8fL0k6dOiQJKlatWq5HywAAAAAAAAAAAAAIF/IlwVwHx8fPfjgg6pdu3aKdUWLFlWRIkWUmJio6Ohbd0JbnwCvXr16boYJAAAAAAAAAAAAAMhH8uUQ6DNmzEhzXUREhGJiYuTi4qKiRYtKuvUEuJubm/766y8NGzZMx44dk8lkUkhIiPr166datWrlVugAAAAAAAAAAAAAgDySL58AvxvrvN/NmjVToUKFFBUVpQsXLig+Pl7vvvuuLBaLGjRoIB8fH/3yyy/q0qWLvv/++7wNGgAAAAAAAAAAAACQ4/LlE+BpWbBggdatWyd3d3cNGjRI0r/zf/v6+uqLL75QnTp1JEmGYWjevHkaN26chg4dqpCQEJUsWTJL/Ts733f3CwAZ4uTkONe4Ix0LkFG5df3zPgMAAAAAAAAA5Df3TQF8/vz5Gjt2rEwmk8aMGaPAwEBJUuPGjbVt2zYZhqESJUrY2ptMJvXo0UO7d+/Wpk2btHz5cvXv3z/T/ZvNJvn6emb5OADkDm9v97wOAXB4vM8AAAAAAAAAAPlNvi+AG4ahTz/9VLNnz5aTk5PGjBmjdu3a2dabTCYVL148ze2bN2+uTZs26a+//spSHBaLoatXb2RpH0B+5+RkdpiC1tWrcUpOtuR1GECeyK33Mu8zAABu8fZ2Z2QUAAAAAADyiXxdAI+Pj9c777yjDRs2yM3NTRMmTFDLli0ztA9/f39JUlxcXJbjSUriR37gfpGcbOE9C+Qw3mcAAAAAAAAAgPwm3xbAY2Nj1atXL/3555/y8/PTF198oVq1aqVot3TpUv32229q3759qsXxiIgIScry/N8AAAAAAAAAAAAAgPwtXxbAExMT1adPH/35558qV66c5syZo4CAgFTbnj9/XuvXr1dcXFyKArhhGFqzZo0kqVGjRjkeNwAAAAAAAAAAAAAg7+TLScqmTZumPXv2yN/fXwsWLEiz+C1JzzzzjFxdXfXLL7/o22+/tS23WCyaMmWKDhw4oIoVK6pNmza5EToAAAAAAAAAAAAAII/kuyfAr1y5onnz5kmS/Pz8NH78+DTbDhkyRAEBARo5cqSGDRum4cOHa+HChSpfvrxCQ0MVHh6uYsWKaerUqXJxccmtQwAAAAAAAAAAAAAA5IF8VwDfv3+/4uLiJEmhoaEKDQ1Ns+0bb7yhYsWK6bnnnlOFChU0a9Ys7d27VydPnlTx4sX18ssvq2/fvvLz88ut8AEAAAAAAAAAAAAAeSTfFcCbNGmiI0eOZHi7kJAQffHFFzkQEQAAAAAAAAAAAADgfpAv5wAHAAAAAAAAAAAAACCjKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAjOeR0AAAC4Pzk55ex9dBaLIYvFyNE+AAAAAAAAAACOhQI4AADIkCKF3WRYLPL2ds/RfiyWZEVHx1EEBwAAAAAAAACkGwVwAACQIZ5urjKZzTq1bpbios7mSB/ufqVUoX1vmc0mCuAAAADIMrPZJLPZlGP7Z/QiAAAAIP+gAA4AADIlLuqs4s6fzuswAAAAgLsym03y9XWX2eyUY30wehEAAACQf1AABwAAAAAAgMO69fS3U46NYMToRQAAAED+QgEcAAAAAAAADo8RjAAAAICCwZzXAQAAAAAAAAAAAAAAkB14AhwAAAAAgALKYrFo2bJlWrlypY4dO6bExESVLl1aLVu21Kuvvipvb2+79g0aNFBMTEya+ztw4IAKFSqUw1EDAAAAAJA2CuAAAAAAABRAFotFAwYM0MaNG+Xm5qaaNWvKw8NDBw4c0OzZs7Vx40YtWrRIxYoVkyRFRkYqJiZGJUqUUP369VPdp9nMQHMAAAAAgLxFARwAAAAAgAJoxYoV2rhxo8qXL6/Zs2crICBAkhQbG6vBgwdr8+bNGj16tCZNmiRJOnz4sCSpTZs2ev/99/MqbAAAAAAA7opbswEAAAAAKIBWrFghSRoyZIit+C1JXl5eGjt2rEwmkzZt2qT4+HhJ0qFDhyRJ1apVy/1gAQAAAABIJwrgAAAAAAAUQD4+PnrwwQdVu3btFOuKFi2qIkWKKDExUdHR0ZL+fQK8evXquRkmAAAAAAAZwhDoAAAAAAAUQDNmzEhzXUREhGJiYuTi4qKiRYtKuvUEuJubm/766y8NGzZMx44dk8lkUkhIiPr166datWrlVugAAAAAAKSJJ8ABAAAAAIAd67zfzZo1U6FChRQVFaULFy4oPj5e7777riwWixo0aCAfHx/98ssv6tKli77//vu8DRoAAAAAAPEEOAAAAAAAuM2CBQu0bt06ubu7a9CgQZL+nf/b19dXX3zxherUqSNJMgxD8+bN07hx4zR06FCFhISoZMmSWerf2dn+Xn0nJ8e4dz+9x5Fbx+so5zU9OKcAAABAwUIBHAAAAAAASJLmz5+vsWPHymQyacyYMQoMDJQkNW7cWNu2bZNhGCpRooStvclkUo8ePbR7925t2rRJy5cvV//+/TPdv9lskq+vZ5aPIz/y9nbP6xDs5Ld4HAHnFAAAAMgfKIADAAAAAFDAGYahTz/9VLNnz5aTk5PGjBmjdu3a2dabTCYVL148ze2bN2+uTZs26a+//spSHBaLoatXb9gtc3IyO0Rh8erVOCUnW+7ZLreONzY2XhaLkWP7t1gMGUbO7T8jcuucpvc1BgAAAJBx3t7u6R51iQI4AAAAAAAFWHx8vN555x1t2LBBbm5umjBhglq2bJmhffj7+0uS4uLishxPUpJjFhCTky354tiKFHaTYbHIy8stR/uxWJIVHR2Xo0X2/Ca/vMYAAABAQUcBHAAAAACAAio2Nla9evXSn3/+KT8/P33xxReqVatWinZLly7Vb7/9pvbt26daHI+IiJCkLM//jZzn6eYqk9msU+tmKS7qbI704e5XShXa95bZbCpQBXAAAAAA+QMFcAAAAAAACqDExET16dNHf/75p8qVK6c5c+YoICAg1bbnz5/X+vXrFRcXl6IAbhiG1qxZI0lq1KhRjseN7BEXdVZx50/ndRgAAAAAkO3SN1A6AAAAAABwKNOmTdOePXvk7++vBQsWpFn8lqRnnnlGrq6u+uWXX/Ttt9/allssFk2ZMkUHDhxQxYoV1aZNm9wIHQAAAACANPEEOAAAAAAABcyVK1c0b948SZKfn5/Gjx+fZtshQ4YoICBAI0eO1LBhwzR8+HAtXLhQ5cuXV2hoqMLDw1WsWDFNnTpVLi4uuXUIAAAAAACkigI4AAAAAAAFzP79+xUXFydJCg0NVWhoaJpt33jjDRUrVkzPPfecKlSooFmzZmnv3r06efKkihcvrpdffll9+/aVn59fboUPAAAAAECaKIADAAAAAFDANGnSREeOHMnwdiEhIfriiy9yICIAAAAAALIHc4ADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAAByCc14HkBaLxaJly5Zp5cqVOnbsmBITE1W6dGm1bNlSr776qry9ve3aX7p0SdOnT9e2bdt0/vx5+fv7q02bNurXr588PT3z6CgAAAAAAAAAAAAAALklXz4BbrFYNGDAAI0YMUKhoaGqVq2aHnnkEV29elWzZ89Wx44ddenSJVv7CxcuqFOnTvrmm2/k5uamZs2ayWKxaPbs2ercubNiY2Pz8GgAAAAAAAAAAAAAALkhXxbAV6xYoY0bN6p8+fJat26dFixYoC+//FIbN25U8+bNFR4ertGjR9vajx49WpGRkerTp4/Wrl2rKVOm6Mcff9QTTzyhI0eOaNq0aXl4NAAAAAAAAAAAAACA3JBvC+CSNGTIEAUEBNiWe3l5aezYsTKZTNq0aZPi4+N1+vRpbdy4UaVKldKAAQNsbV1dXTVq1Ch5enpq6dKlio+Pz/XjAAAAAAAAAAAAAADknnxZAPfx8dGDDz6o2rVrp1hXtGhRFSlSRImJiYqOjtbWrVtlsVjUtGlTubi42LUtXLiwGjZsqBs3bmjnzp25FD0AAAAAAAAAAAAAIC/kywL4jBkztH79evn6+qZYFxERoZiYGLm4uKho0aI6evSoJCkoKCjVfVWsWFGSbO0AAAAAAAAAAAAAAI4pXxbA72bSpEmSpGbNmqlQoUK6ePGiJMnf3z/V9tblly5dypX4AAAAAAAAAAAAAAB5wzmvA8iIBQsWaN26dXJ3d9egQYMkSTdu3JAkubm5pbqNdbm1XVY4O9939wsAGeLk5DjXuCMdC5BRjnT9O9KxAAAAAAAAAABy3n1TAJ8/f77Gjh0rk8mkMWPGKDAwUJLk5OQkSTKZTKluZxiG3X8zy2w2ydfXM0v7AJB7vL3d8zoEANmA9zIAAAAAAAAAICPyfQHcMAx9+umnmj17tpycnDRmzBi1a9fOtt7Dw0OSdPPmzVS3ty53d8/aD+gWi6GrV7P+FDmQnzk5mR2m2HT1apySky15HQaQJ3gvAwCQu7y93Rm1BAAAAACAfCJfF8Dj4+P1zjvvaMOGDXJzc9OECRPUsmVLuzbFixeXJNtc4He61xzhGZGUxA/wwP0iOdnCexZwALyXAQAAAAAAAAAZkW8L4LGxserVq5f+/PNP+fn56YsvvlCtWrVStAsKCpIknThxItX9HDt2TJIUHBycc8ECAAAAAAAAAAAAAPJcvhyjLTExUX369NGff/6pcuXKaenSpakWvyWpcePGkqTNmzcrOTnZbt21a9e0c+dOeXh4qG7dujkeNwAAAAAAAAAAAAAg7+TLAvi0adO0Z88e+fv7a8GCBQoICEizbZkyZdS8eXOdOXNG48ePl2EYkqSEhASNGDFC169f14svvigvL6/cCh8AAAAAAAAAAAAAkAfy3RDoV65c0bx58yRJfn5+Gj9+fJpthwwZomLFimn48OE6dOiQ5s6dqy1btqhSpUo6ePCg/vnnH1WrVk39+/fPrfABAAAAAAAAAAAAAHkk3xXA9+/fr7i4OElSaGioQkND02z7xhtvqFixYipTpoyWL1+uqVOn6pdfftHmzZtVunRpvfbaa+rdu7c8PT1zK3wAAAAAAAAAAAAAQB7JdwXwJk2a6MiRIxnerkSJEho9enQORAQAAAAAAAAAAAAAuB/kyznAAQAAAAAAAAAAAADIqHz3BDgAAAAAAAAKFrPZJLPZlCP7dnLi+Q8AAACgIKEADgAAAAAAgDxjNpvk4+NBoRoAAABAtqAADgAAAAAAgDxjNpvk5GTW54t/VeSFK9m+/1rBpfVCm9rZvl8AAAAA+RMFcAAAAAAAAOS5yAtXFBYZne37Le3vne37BAAAAJB/MbYUAAAAAAAAAAAAAMAhZKkAvnr1au3Zs+ee7X766SdNmTIlK10BAAAAAFAgkXsDAAAAAJB+WSqADxkyRN9+++09261Zs0Zz587NSlcAAAAAABRI5N4AAAAAAKRfhuYAX716tZKSkuyWhYeHa/ny5WluExsbq99++00uLi6ZixAAAAAAgAKE3BsAAAAAgMzLUAH80KFDWrBggUwmkyTJZDJp//792r9//123MwxDzzzzTOajBAAAAACggCD3BgAAAAAg8zJUAB8wYIBiY2Ntf1+1apXKli2runXrprlNoUKFVL58eXXu3DnzUQIAAAAAUECQewMAAAAAkHkZKoAXLlxY48aNs/191apVql27tt0yAAAAAACQeeTeAAAAAABkXoYK4HcKDQ3NrjgAAAAAAEAqyL0BAAAAAEi/LBXAbxcVFaW4uDgZhpFmm4CAgOzqDgAAAACAAofcGwAAAACAu8tyAfzrr7/WrFmzdPny5bu2M5lM+vvvv7PaHQAAAAAABQ65NwAAAAAA6ZOlAvjKlSv18ccfS5JcXV3l6+srJyenbAkMAAAAAACQewMAAAAAkBFZKoAvXLhQJpNJw4YNU6dOneTi4pJdcQEAAAAAAJF7AwAAAACQEVkqgJ84cUK1a9dW165dsyseAAAAAABwG3JvAAAAAADSL0sFcHd3d/n6+mZXLAAAAAAA4A45mXtbLBYtW7ZMK1eu1LFjx5SYmKjSpUurZcuWevXVV+Xt7W3X/tKlS5o+fbq2bdum8+fPy9/fX23atFG/fv3k6emZIzECAAAAAJAR5qxsXL9+fR04cEBxcXHZFQ8AAAAAALhNTuXeFotFAwYM0IgRIxQaGqpq1arpkUce0dWrVzV79mx17NhRly5dsrW/cOGCOnXqpG+++UZubm5q1qyZLBaLZs+erc6dOys2NjZb4wMAAAAAIDOyVAAfNGiQ4uLi9P777+vKlSvZFRMAAAAAAPj/cir3XrFihTZu3Kjy5ctr3bp1WrBggb788ktt3LhRzZs3V3h4uEaPHm1rP3r0aEVGRqpPnz5au3atpkyZoh9//FFPPPGEjhw5omnTpmVbbAAAAAAAZFaWhkBfsmSJatasqR9++MGWNHt7e8tkMqVoazKZtHDhwqx0BwAAAABAgZNTufeKFSskSUOGDFFAQIBtuZeXl8aOHatHHnlEmzZtUnx8vC5cuKCNGzeqVKlSGjBggK2tq6urRo0apa1bt2rp0qV688035ebmlsUjBgAAAAAg87JUAJ83b57t/5OSknT8+PE026aWmAMAAAAAgLvLqdzbx8dHDz74oGrXrp1iXdGiRVWkSBHFxMQoOjpaW7dulcViUdOmTeXi4mLXtnDhwmrYsKF++ukn7dy5U02bNk13DAAAAAAAZLcsFcDnz5+fXXEAAAAAAIBU5FTuPWPGjDTXRUREKCYmRi4uLipatKiOHj0qSQoKCkq1fcWKFfXTTz/p6NGjFMABAAAAAHkqSwXw+vXrZ1ccAAAAAAAgFXmRe0+aNEmS1KxZMxUqVEgXL16UJPn7+6fa3rr80qVLuRIfAAAAAABpyVIB/HaJiYk6fPiwzp49q2LFiqlu3br6559/VLp06ezqAgAAAACAAi03cu8FCxZo3bp1cnd316BBgyRJN27ckKQ05/e2Lre2ywpnZ7Pd352czGm0vL+k9zgc5XilgnfMjnIcAAAAwP0uywXwpKQkff755/rmm2907do1SVKHDh1Ut25dvffee7p+/bomTpyocuXKZTlYAAAAAAAKotzKvefPn6+xY8fKZDJpzJgxCgwMlCQ5OTlJSnuOccMw7P6bWWazSb6+nlnaR37l7e2e1yHkuoJ2zAXteAEAAID8KksF8KSkJL366qvasWOHnJ2dVb16dR08eNC2/vr16/r777/VtWtXrV69WsWKFctywAAAAAAAFCS5kXsbhqFPP/1Us2fPlpOTk8aMGaN27drZ1nt4eEiSbt68mer21uXu7lkrAFoshq5etX+K3MnJ7BCFxatX45ScbLlnO0c5XqngHXN6jxcAAABAxnl7u6d71KUsFcC/+eYb/frrr2rUqJHGjh2r4sWLq3Llyrb1ixYt0siRI7V69WrNmTNH7733Xla6AwAAAACgwMnp3Ds+Pl7vvPOONmzYIDc3N02YMEEtW7a0a1O8eHFJss0Ffqd7zRGeEUlJjllATE62OOyxpaWgHXNBO14AAAAgv8rS5ESrVq2Sj4+PJk+ebEuGb+fm5qZRo0apePHi2rp1a1a6AgAAAACgQMrJ3Ds2NlY9evTQhg0b5Ofnp/nz56cofktSUFCQJOnEiROp7ufYsWOSpODg4Az1DwAAAABAdstSATwsLEz16tWTp2fa83O5uLioZs2a+ueff7LSFQAAAAAABVJO5d6JiYnq06eP/vzzT5UrV05Lly5VrVq1Um3buHFjSdLmzZuVnJxst+7atWvauXOnPDw8VLdu3XT3DwAAAABATshSAdzZ2VlXr169Z7uYmBg5O2dptHUAAAAAAAqknMq9p02bpj179sjf318LFixQQEBAmm3LlCmj5s2b68yZMxo/frwMw5AkJSQkaMSIEbp+/bpefPFFeXl5pbt/AAAAAAByQpaq0lWqVNHBgwcVGRmpMmXKpNomIiJCBw8eVM2aNbPSFQAAAAAABVJO5N5XrlzRvHnzJEl+fn4aP358mm2HDBmiYsWKafjw4Tp06JDmzp2rLVu2qFKlSjp48KD++ecfVatWTf3798/4wQEAAAAAkM2y9AR4586dFRcXp379+unvv/9Osf7IkSN64403lJCQoI4dO2alKwAAAAAACqScyL3379+vuLg4SVJoaKjWrl2b5p/r169LuvUU+PLly/X888/r2rVr2rx5s1xdXfXaa69p/vz5dx2iHQAAAACA3JKlJ8Dbtm2rHTt2aPny5XruuedUuHBhmUwmbdu2Tc2aNdP58+dlGIbatWunp556KrtiBgAAAACgwMiJ3LtJkyY6cuRIhmMpUaKERo8eneHtAAAAAADILVmemHv06NGqXbu25syZo1OnTkmSoqOjJUmlS5dW9+7d1a1bt6x2AwAAAABAgUXuDQAAAABA+mS5AC5JHTt2VMeOHXXx4kWdPXtWFotF/v7+ac5NBgAAAAAAMobcGwAAAACAe8vSHOBW0dHR2rVrl/z9/VWzZk3Vrl1bcXFx+uabb3Tx4sXs6AIAAAAAgAKN3BsAAAAAgHvLcgH822+/VZMmTfTxxx/bLd+/f79GjRql1q1b6/vvv89qNwAAAAAAFFjk3gAAAAAApE+WCuC//vqrRowYIWdnZzVs2NBuXd26ddWzZ08ZhqHBgwfr999/z1KgAAAAAAAUROTeAAAAAACkX5YK4LNnz5azs7Pmz5+vd999125d+fLl9c4772j+/PkymUyaNWtWlgIFAAAAAKAgIvcGAAAAACD9slQAP3r0qBo0aKAaNWqk2aZGjRqqW7eu9u3bl5WuAAAAAAAokMi9AQAAAABIvywVwOPi4uTu7n7Pdj4+PkpKSspKVwAAAAAAFEjk3gAAAAAApF+WCuDly5fX7t27FRsbm2abmzdvas+ePSpbtmxWugIAAAAAoEAi9wYAAAAAIP2yVAB/8skndeXKFQ0YMECXLl1KsT46OlpvvfWWLl++rA4dOmSlKwAAAAAACiRybwAAAAAA0s85Kxt37dpV33//vXbs2KFmzZqpevXqKlWqlCTp3LlzOnTokBISElSzZk316NEjO+IFAAAAAKBAIfcGAAAAACD9slQAd3Fx0dy5czVx4kStXLlS+/bt0759+2zrCxUqpM6dO+udd96Rq6trVmMFAAAAAKDAIfcGAAAAACD9slQAlyRPT08NGzZM7777rv766y9dvHhRycnJ8vf3V7Vq1eTh4ZEdcQIAAAAAUGCRewMAAAAAkD5ZKoB369ZN5cuX10cffSRXV1eFhIRkV1wAAAAAAEDk3gAAAAAAZESWCuAHDhyQ2WzOrlgAAAAAAMAdyL0BAAAAAEi/LGXQnp6eMgwju2IBAAAAAAB3IPcGAAAAACD9slQA79u3r3bt2qWvvvpKCQkJ2RUTbmM2m+TsbM6xP2azKa8PEQAAAABwF+TeAAAAAACkX5aGQI+IiFC5cuU0fvx4ffbZZypXrpy8vb1THZrNZDJp4cKFWemuwDGbTfL1dZfZ7JRjfVgsyYqOjpPFwtMEAAAAAJAfkXsDAAAAAJB+WSqAz5s3z/b/SUlJOnHiRJptTSaeNM4os9kks9lJp9bNUlzU2Wzfv7tfKVVo31tms4kCOAAAAADkU+TeAAAAAACkX5YK4PPnz8+uOHAXcVFnFXf+dF6HAQAAAADIA+TeAAAAAACkX5YK4PXr18+uOAAAAAAAQCrIvQEAAAAASL8sFcBvl5iYqMOHD+vs2bMqVqyY6tatq3/++UelS5fOri4AAAAAACjQyL0BAAAAALi7LBfAk5KS9Pnnn+ubb77RtWvXJEkdOnRQ3bp19d577+n69euaOHGiypUrl+VgAQAAAAAoiMi9AQAAAABIH3NWNk5KStKrr76qGTNmKC4uTtWrV5dhGLb1169f199//62uXbvq0qVLWQ4WAAAAAICChtwbAAAAAID0y1IB/JtvvtGvv/6qRx99VD/99JOWLVtmt37RokV6+umndenSJc2ZMydLgQIAAAAAUBCRewMAAAAAkH5ZKoCvWrVKPj4+mjx5sooXL55ivZubm0aNGqXixYtr69atWekKAAAAAIACidwbAAAAAID0y1IBPCws7P+xd9/hUZT738c/uwmQhN67hZYoSu+KKEGaUiIgCBoLUqQJHg/FAyKCIIhwVBBEfiDFA6KQUIXQlR5qlKaCUgImdEIghCT7/MGTaEyAtN3ZnXm/rutcR2fu3XxvZ9tnvlNUp04d5c2b945jcuXKpWrVqunMmTPZ+VMKDQ2Vv7+/tm3blu76+vXry9/f/47/u3nzZrb+PgAAAAAARnBl9gYAAAAAwNN5Z+vB3t66evXqPcddvnxZ3t5Z/1MREREaPXr0HddHRkbq8uXLKlmypOrVq5fuGLs9W71+AAAAAAAM4arsDQAAAACAGWQrGT/00EP66aefFBkZqbJly6Y75tSpU/rpp59UrVq1LP2NDRs2aMiQIbp27dodxxw+fFiS1LJlS73zzjtZ+jsAAAAAALgjV2RvAAAAAADMIlunRb/wwgu6ceOG+vTpo0OHDqVZf/ToUfXv31/x8fHq2LFjpp47KipKw4YNU58+fXTr1i0VK1bsjmMPHjwoSapatWrmJgAAAAAAgJtzZvYGAAAAAMBssnUGeOvWrbVt2zZ999136tChg/Lnzy+bzaYff/xRTz75pKKiouRwOPTMM8+oXbt2mXruyZMnKyQkRI888ojGjh2rMWPG6Pz58+mOTT4D/JFHHsnOdAAAAAAAcDvOzN4AAAAAAJhNtm8ONmbMGNWoUUP/93//p99//12SdOnSJUlSmTJl9PLLLys4ODjTz1uhQgWNHz9ebdu2vef9uw8ePCgfHx/9/PPPGj58uH799VfZbDbVqlVLffr0UfXq1TM/MQAAAAAA3ISzsjcAAAAAAGaT7Qa4JHXs2FEdO3bUuXPndPbsWSUlJal48eJ3vDdZRvTs2TND4y5cuKDo6GhJ0uDBg1WjRg3Vr19fv/zyizZt2qQtW7boo48+UuvWrbNcCwAAAAAARnNG9gYAAAAAwGwy3QBPTEzU//73P4WFhen8+fMqU6aM2rRpo/bt26t48eIqXry4M+q8o+T7fxcuXFjTpk1TzZo1JUkOh0Nz5szRuHHjNGzYMNWqVUulSpXK1t/y9s7WLdMzzcvLNX/PVX8H7s9MrwUzzQXILDO9/s00FwAAMsPdsjcAAAAAAJ4iUw3w+Ph4de/eXbt375bD4ZAk/f7779q2bZs2btyoTz75xClF3k3jxo31448/yuFwqGTJkinLbTabXnnlFYWHh2vdunX67rvv1K9fvyz/HbvdpsKF8+ZEyW6nQAFfo0sAchyva8AceC8DAKzIHbM3AAAAAACeIlMN8IULFyo8PFwlS5ZUjx49VL58ef3yyy+aOXOmwsLCtHTpUrVr185ZtabLZrOpRIkSd1z/1FNPad26dfr555+z9XeSkhy6evV6tp4js7y87C7Z8X/16g0lJiY5/e/A/bnqNecKvK5hZbyXAQBwrQIFfHP0qiXumL0BAAAAAPAUmWqAr169Wj4+PlqwYIHKlCkjSWrSpIkaN26soKAgrVy50u1CePJl4W7cuJHt50pIMOcO+MTEJNPODdbF6xowB97LAAAr8sTsDQAAAACAu8jUIerHjh1TnTp1UgJ4soCAAFWtWlVHjhzJ0eIy4ptvvtHAgQO1bt26dNefOnVKkrJ9/28AAAAAAFzBHbM3AAAAAACeIlMN8NjYWBUsWDDddeXKldPly5dzoqZMiYqK0vfff69vv/02zTqHw6GlS5dKkh5//HFXlwYAAAAAQKa5Y/YGAAAAAMBTZKoBnpCQIC8vr3TX5cqVS7du3cqRojIjKChIuXPn1qZNm7Ro0aKU5UlJSfr0008VERGhSpUqqWXLli6vDQAAAACAzHLH7A0AAAAAgKfI1D3A3VH58uX13nvvafjw4RoxYoTmz5+vBx54QEeOHNGJEydUrFgxffbZZ8qVK5fRpQIAAAAAAAAAAAAAnChTZ4C7qw4dOujrr79W06ZNFRUVpQ0bNighIUEvvfSSli1bpgoVKhhdIgAAAAAAAAAAAADAyTzmDPB58+bddX2tWrU0bdo0F1UDAAAAAAAAAAAAAHA3mW6Ar1u3ToGBgWmWX7p0SZLSXSdJNptN69aty+yfAwAAAADAcsjeAAAAAABkTaYb4NevX9f169fvuD4yMjLd5TabLbN/CgAAAAAASyJ7AwAAAACQNZlqgM+dO9dZdQAAAAAAAJG9AQAAAADIjkw1wOvVq+esOgAAAAAAgMjeAAAAAABkh93oAgAAAAAAAAAAAAAAyAk0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKbgbXQBAAAAAADAPYSGhmrIkCGaPXu2GjVqlGZ9/fr1dfny5Ts+PiIiQnny5HFihQAAAAAA3B0NcAAAAAAAoIiICI0ePfqO6yMjI3X58mWVLFlS9erVS3eM3c6F5gAAAAAAxqIBDgAAAACAxW3YsEFDhgzRtWvX7jjm8OHDkqSWLVvqnXfecVVpAAAAAABkCg1wAAAAAAAsKioqSv/9738VEhIiHx8fFStWTOfPn0937MGDByVJVatWdWWJAAAAAABkCtcmAwAAAADAoiZPnqwlS5aoatWq+uabb1ShQoU7jk0+A/yRRx5xVXkAAAAAAGQaZ4ADAAAAAGBRFSpU0Pjx49W2bdt73r/74MGD8vHx0c8//6zhw4fr119/lc1mU61atdSnTx9Vr17dRVUDAAAAAHBnnAEOAAAAAIBF9ezZU+3bt79n8/vChQuKjo5WXFycBg8erKSkJNWvX1+FChXSpk2b1LVrV61atcpFVQMAAAAAcGecAQ4AAAAAAO4q+f7fhQsX1rRp01SzZk1JksPh0Jw5czRu3DgNGzZMtWrVUqlSpbL1t7y9UzfjvbzMcex+RudhlvlK1puzWeYBAAAAeDoa4AAAAAAA4K4aN26sH3/8UQ6HQyVLlkxZbrPZ9Morryg8PFzr1q3Td999p379+mX579jtNhUunDcnSnY7BQr4Gl2Cy1ltzlabLwAAAOCuaIADAAAAAIC7stlsKlGixB3XP/XUU1q3bp1+/vnnbP2dpCSHrl69nmqZl5fdFI3Fq1dvKDEx6Z7jzDJfyXpzzuh8AQAAAGRegQK+Gb7qEg1wAAAAAACQLcWLF5ck3bhxI9vPlZBgzgZiYmKSaed2J1abs9XmCwAAALgrbk4EAAAAAADu6ptvvtHAgQO1bt26dNefOnVKkrJ9/28AAAAAALKLM8ABAAAAAMBdRUVF6fvvv9eNGzfUrFmzVOscDoeWLl0qSXr88ceNKA8AAAAAgBScAQ4AAAAAAO4qKChIuXPn1qZNm7Ro0aKU5UlJSfr0008VERGhSpUqqWXLlgZWCQAAAAAAZ4ADAAAAAIB7KF++vN577z0NHz5cI0aM0Pz58/XAAw/oyJEjOnHihIoVK6bPPvtMuXLlMrpUAAAAAIDFcQY4AAAAAAC4pw4dOujrr79W06ZNFRUVpQ0bNighIUEvvfSSli1bpgoVKhhdIgAAAAAAnAEOAAAAAABumzdv3l3X16pVS9OmTXNRNQAAAAAAZB5ngAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATMHb6AIAAAAAwBXsdpvsdptT/0ZSkkNJSQ6n/g0AAAAAAADcGQ1wAAAAAKZnt9tUuLCv7HYvp/6dpKREXbp0gyY4AAAAAACAQWiAAwAAADC922d/e+n3FV/qxoWzTvkbvkVL68Fne8hut9EABwAAAAAAMAgNcAAAAACWcePCWd2IOml0GQAAAAAAAHASu9EFAAAAAAAAAAAAAACQE2iAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEzB2+gCPJ3dbpPdbnPKc3t5cXwCAAAAAAAAAAAAAGSUxzTAQ0NDNWTIEM2ePVuNGjVKs/78+fP6/PPP9eOPPyoqKkrFixdXy5Yt1adPH+XNm9cpNdntNhUq5EejGgAAAAAAAAAAAADcgEc0wCMiIjR69Og7ro+OjlaXLl0UGRmpKlWq6Mknn9RPP/2kmTNn6scff9T//vc/5cuXL8frsttt8vKya+qCrYqMvpLjz1/dv4w6t6yR488LAAAAAAAAAAAAAGbk9g3wDRs2aMiQIbp27dodx4wZM0aRkZHq2bOn/vWvf0mS4uPjNXjwYH3//feaMmWKhg4d6rQaI6Ov6I/ISzn+vGWKF8jx5wQAAAAAAAAAAAAAs3Lba3dHRUVp2LBh6tOnj27duqVixYqlO+7kyZNau3atSpcurQEDBqQsz507t0aPHq28efPqm2++UVxcnKtKBwAAAAAAAAAAAAAYwG0b4JMnT9aSJUtUtWpVffPNN6pQoUK643744QclJSWpSZMmypUrV6p1+fPnV4MGDXT9+nXt3LnTFWUDAAAAAAAAAAAAAAzitg3wChUqaPz48fr222/l7+9/x3G//PKLJKlKlSrprq9UqVKqcQAAAADck91uk7e33Sn/8/Jy2+gDAAAAAACAHOS29wDv2bNnhsadO3dOklS8ePF01ycvP3/+fM4UBgAAACDH2e02FSrkR6MaAAAAAAAA2eK2DfCMun79uiTJx8cn3fXJy5PHZYe3d+qdcWbZOWeWeSD7zPRaMNNcgMwy0+vfTHMBcHdeXrfP0p66YKsio6/k+PNX9y+jzi1r5PjzpofPLgAAAAAAAON4fAPcy8tLkmSz2dJd73A4Uv1/VtntNhUunDdbz+GuChTwNboEIMfxugbMgfcyYD2R0Vf0R+SlHH/eMsUL5Phz3gmfXQAAAAAAAMbx+Aa4n5+fJOnmzZvprk9e7uubvZ1QSUkOXb2a+ixyLy+7KXZuXb16Q4mJSUaXATdglte0xOsa1sZ7GYAn4rMLnqxAAV/O/AcAAAAAwE14fAO8RIkSkv66F/g/3ese4ZmRkGDOnViJiUmmnRusi9c1YA68lwF4Ij67AAAAAAAAjOPxh6hXqVJFknTs2LF01//666+SJH9/f5fVBAAAAAAAAAAAAABwPY9vgDdu3FiStHHjRiUmJqZaFxMTo507d8rPz0+1a9c2ojwAAAAAAAAAAAAAgIt4fAO8bNmyeuqpp3T69Gl99NFHcjgckqT4+Hi9++67io2NVZcuXZQvXz6DKwUAAAAAAAAAAAAAOJPH3wNckkaMGKGDBw9q9uzZ2rx5sypXrqyffvpJZ86cUdWqVdWvXz+jSwQAAAAAAAAAAAAAOJnHnwEu3T4L/LvvvlOnTp0UExOjjRs3Knfu3Ordu7fmzp2rvHnzGl0iAAAAAAAAAAAAAMDJPOYM8Hnz5t11fcmSJTVmzBgXVQMAAAAAAAAAAAAAcDemOAMcAAAAAAAAAAAAAAAa4AAAAAAAQJIUGhoqf39/bdu2Ld3158+f1/vvv6+nn35a1apVU2BgoD766CPFxsa6uFIAAAAAANJHAxwAAAAAACgiIkKjR4++4/ro6Gg9//zz+vrrr+Xj46Mnn3xSSUlJmjlzpl544QVdu3bNhdUCAAAAAJA+GuAAAAAAAFjchg0b1L1797s2sceMGaPIyEj17NlTy5cv16effqo1a9aoVatWOnr0qKZMmeLCigEAAAAASB8NcAAAAAAALCoqKkrDhg1Tnz59dOvWLRUrVizdcSdPntTatWtVunRpDRgwIGV57ty5NXr0aOXNm1fffPON4uLiXFU6AAAAAADpogEOAAAAAIBFTZ48WUuWLFHVqlX1zTffqEKFCumO++GHH5SUlKQmTZooV65cqdblz59fDRo00PXr17Vz505XlA0AAAAAwB3RAAcAAAAAwKIqVKig8ePH69tvv5W/v/8dx/3yyy+SpCpVqqS7vlKlSqnGAQAAAABgFG+jCwAAAAAAAMbo2bNnhsadO3dOklS8ePF01ycvP3/+fM4UBgAAAABAFtEABwAAAAAAd3X9+nVJko+PT7rrk5cnj8sOb+/UF6vz8jLHxesyOg+zzFey3pzNMg8AAADA09EABwAAAAAAd+Xl5SVJstls6a53OByp/j+r7HabChfOm63ncFcFCvgaXYLLWW3OVpsvAAAA4K5ogAMAAAAAgLvy8/OTJN28eTPd9cnLfX2z1wBMSnLo6tXUZ5F7edlN0Vi8evWGEhOT7jnOLPOVrDfnjM4XAAAAQOYVKOCb4asu0QAHAAAAAAB3VaJECUl/3Qv8n+51j/DMSEgwZwMxMTHJtHO7E6vN2d3ma7fbZLenf9WGnJCU5FBSUvau+gAAAAA4Aw1wAAAAAABwV1WqVJEkHTt2LN31v/76qyTJ39/fZTUBuLPbtxPwld3u5bS/kZSUqEuXbtAEBwAAgNuhAQ4AAAAAAO6qcePGkqSNGzdq2LBhKfcEl6SYmBjt3LlTfn5+ql27tlElAvib22d/e+n3FV/qxoWzOf78vkVL68Fne8hut9EABwAAgNuhAQ4AAAAAAO6qbNmyeuqpp7Rx40Z99NFHGjJkiGw2m+Lj4/Xuu+8qNjZWr732mvLly2d0qQD+5saFs7oRddLoMgAAAACXogEOAAAAAADuacSIETp48KBmz56tzZs3q3Llyvrpp5905swZVa1aVf369TO6RAAAAAAAZDe6AAAAAAAA4P7Kli2r7777Tp06dVJMTIw2btyo3Llzq3fv3po7d67y5s1rdIkAAAAAAHAGOAAAAAAAuG3evHl3XV+yZEmNGTPGRdUAAAAAAJB5nAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFPgEujIFLvdJrvd5rTnT0pyKCnJ4bTnBwAAAAAAAAAAAGBeNMCRYXa7TYUK+cnLy3kXDkhMTFJMTJwcDuc1wWmyAwAAAAAAAAAAAOZEAxwZZrfb5OVl19QFWxUZfSXHn9//geIKblNbhQr55fhz/11SUqIuXbpBExwAAAAAAAAAAAAwGRrgyLTI6Cv6I/JSjj9vmeIFZLPb9fuKL3Xjwtkcf35J8i1aWg8+20N2u40GOAAAAAAAAAAAAGAyNMDhdm5cOKsbUSeNLgMAAAAAAAAAAACAh3HezZwBAAAAAAAAAAAAAHAhGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU/A2ugAAAAAAAADASux2m+x2m9Oe38uLc14AAABgXTTAAQAAAAAAABex220qVMiPJjUAAADgJDTAAQAAAAAAABex223y8rJr6oKtioy+4pS/Ud2/jDq3rOGU5wYAAADcHQ1wAAAAAAAAwMUio6/oj8hLTnnuMsULOOV5AQAAAE/AtZYAAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GF5CTNmzYoDfeeOOO61u3bq3Jkye7sCIAAAAAAAAAAAAAgKuYqgF+6NAhSVLdunVVqlSpNOtr1qzp6pIAAAAAAAAAAAAAAC5iygb48OHDFRAQYHA1AAAAAAAAAAAAAABXMtU9wA8dOqQ8efKoUqVKRpcCAAAAAAAAAAAAAHAx0zTAL126pLNnz8rf31/e3qY6sR0AAAAAAAAAAAAAkAGm6RQnX/68dOnS+uijj7R+/XqdOXNGxYoVU4sWLdS7d28VLFjQ4CoBAAAAAAAAAAAAAM5imjPADx48KElas2aNFixYoAceeEC1atXSlStXNGvWLD3//PM6d+6cwVUCAAAAAAAAAAAAAJzFNGeAHz58WJL05JNPauLEicqfP78k6eLFixo0aJB27NihESNGaPr06Vn+G97eqY8X8PIyx/EDGZ2HWeYrmWsuOclM/13MNBcgs8z0+jfTXADcnZne72aaCwAAAAAAgKcxTQN8/PjxevPNN1WqVCn5+PikLC9SpIgmTJigli1bauPGjTp9+rTKlSuX6ee3220qXDhvTpbsNgoU8DW6BJez4pythm0MmAPvZQCeiM8uAAAAAAAA45imAZ47d2498MAD6a4rWbKkHn74Ye3evVsHDx7MUgM8Kcmhq1evp1rm5WU3xc6tq1dvKDEx6Z7jzDJfKeNzthq2MWAOvJcBeCI+u+DJChTwtdSZ/xs2bNAbb7xxx/WtW7fW5MmTXVgRAAAAAAB/MU0D/F6KFSsmSbpx40aWnyMhwZw7sRITk0w7tzux4pythm0MmAPvZQCeiM8umN2hQ4ckSXXr1lWpUqXSrK9Zs6arSwIAAAAAIIUpGuDx8fEaNWqULl26pIkTJ8rPzy/NmFOnTklSuuEcAAAAAABkTHIDfPjw4QoICDC4GgAAAAAAUjPFNdpy586tbdu2af369frhhx/SrD9y5IiOHDmi/Pnzq0aNGq4vEAAAAAAAkzh06JDy5MmjSpUqGV0KAAAAAABpmKIBLkmdO3eWJH344Yc6efJkyvLz58/rnXfeUWJiorp37y4fHx+jSgQAAAAAwKNdunRJZ8+elb+/v7y9TXFROQAAAACAyZgmrb722msKDw/Xli1b9Oyzz6pOnTrKnTu3du7cqevXr6tFixbq2bOn0WUCAAAAAOCxki9/Xrp0aX300Udav369zpw5o2LFiqlFixbq3bu3ChYsaHCVAAAAAAArM00DPHfu3JoxY4a+/vprhYSEaM+ePbLb7apcubI6deqkjh07ymazGV0mAAAAAAAe6+DBg5KkNWvWKG/evKpXr55KlSqln376SbNmzdKGDRs0f/58FS9e3OBKAQAAAABWZZoGuCR5eXkpODhYwcHBRpcCAAAAAIDpHD58WJL05JNPauLEicqfP78k6eLFixo0aJB27NihESNGaPr06Vn+G97eqe/W5uVljru3ZXQeZpmvZL05W22+krnmAgAAAPMwVQMcAAAAAAA4z/jx4/Xmm2+qVKlS8vHxSVlepEgRTZgwQS1bttTGjRt1+vRplStXLtPPb7fbVLhw3pws2W0UKOBrdAkuZ7U5W22+kjXnDAAAAPdHAxwAAAAAAGRI7ty59cADD6S7rmTJknr44Ye1e/duHTx4MEsN8KQkh65evZ5qmZeX3RRNtqtXbygxMeme48wyX8l6c7bafKWMzxkAAADIrgIFfDN8BSIa4AAAAAAAIEcUK1ZMknTjxo0sP0dCgjmbaYmJSaad251Ybc5Wm69kzTkDAADA/XGjHgAAAAAAcE/x8fH6z3/+oz59+uj69evpjjl16pQkqVSpUq4sDQAAAACAFDTAAQAAAADAPeXOnVvbtm3T+vXr9cMPP6RZf+TIER05ckT58+dXjRo1XF8gAAAAAACiAQ4AAAAAADKoc+fOkqQPP/xQJ0+eTFl+/vx5vfPOO0pMTFT37t3l4+NjVIkAAAAAAIvjHuAAAAAAACBDXnvtNYWHh2vLli169tlnVadOHeXOnVs7d+7U9evX1aJFC/Xs2dPoMgEAAAAAFkYDHAAAAAAAZEju3Lk1Y8YMff311woJCdGePXtkt9tVuXJlderUSR07dpTNZjO6TAAAAACAhdEABwAAAAAAGebl5aXg4GAFBwcbXQoAAAAAAGlwD3AAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYgrfRBQDuzm63yW63Oe35k5IcSkpyOO35AQAAAAAAAAAAAKugAQ7chd1uU6FCfvLyct7FEhITk3T58nWa4AAAAAAAAAAAAEA20QAH7sJut8nLy66pC7YqMvpKjj9/2RIF1feFx2S322iAAwAAAAAAAAAAANlEAxzIgMjoK/oj8pLRZQAAAAAAAAAAAAC4C+dd1xkAAAAAAAAAAAAAABeiAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU+Ae4AAA5AC73Sa73ea0509KcigpyeG05wcAAAAAAAAAwAxogAMAkE12u02FC/vKbvdy2t9ISkrUpUs3aIIDAAAAAAAAAHAXNMABAMim22d/e+n3FV/qxoWzOf78vkVL68Fne8hut9EABwAAAAAAAADgLmiAAwCQQ25cOKsbUSeNLgMW4ezL7ktceh8AAAAAAACA56EBDgAA4GHsdpsKFfKTl5fdqX8nMTFJMTFxcjic0wSnwQ4AAAAAd8aBzwAAZA0NcAAAAA9jt9vk5WXX1AVbFRl9xSl/w/+B4gpuU1uFCvk55fkl7m0PAAAAAHdit9tUuLCv7HYvp/4dchkAwIxogAMAAHioyOgr+iPyklOeu0zxArLZ7dzbHgAAAAAMcPvsby+nZTKJXAYAMC8a4AAAALgj7m0PAAAAAOlz5iXKk295RSYDACDzaIADAAAAAAAAAJAJdrtNhQr5pTSqAQCA+6ABDrgBZ/5QTkpycAkjAAAAAAAAIAfZ7TZ5edk1dcFWRUZfyfHnr+5fRp1b1sjx5wUAwApogAMGKpjfR46kJBUo4Ou0v5GUlKhLl27QBAcAAAAAAAByWGT0Ff0ReSnHn7dM8QI5/pwAAFgFDXDAQHl9cstmt+v3FV/qxoWzOf78vkVL68Fne8hut9EABwAAgOGceZ9MV+EKSwAAAAAAuDca4IAbuHHhrG5EnTS6DAAAAMBpXHWfTEdSkmx2Z95iiCssAQAAAADgzmiAAwAAAACcztn3yZT+ulcmV1gCAAAAAMC6aIADAAAAAFzGWffJlP66VyZXWAIAAAAAwLqce+05AAAAAAAAAAAAAABchAY4AAAAAAAAAAAAAMAUuAQ6ADiZ3W6T3W5z6t9ISnJwH0oAAAAAAAAAAGB5NMABwInsdpsKF/aV3e7l1L+TlJSoS5du0AQHAGSKsw/S4gAtAAAAAAAAuBoNcABwotuNBS/9vuJL3bhw1il/w7doaT34bA/Z7TaaDABgMs5sUNtsNhUokMepB2lxgBYAAAAAAABcjQY4AMtzZnPBy8suSbpx4axuRJ10yt9wR5xRCADZZ7fbVKiQX8p3ibM46yAtDtACAAAAAACAEWiAA7A0VzUXrMQVl33njEIAVmC32+TlZdfUBVsVGX0lx5+/un8ZdW5Zw3IHaQEAAAAAAMDcaIADsDRXNResxNmXfeeMQgBWExl9RX9EXsrx5y1TvECOPycAAAAAAABgNBrgACCaC87AGYUAAAAAgGTOvlWWK3A7LgAAAM9AAxwAAAAAAACA07ji9mOOpCTZ7M69vRm34wIAAPAMNMABAAAAAAAAOI2rbj/mrFtxSdyOCwAAwJPQAAcAAAAAAADgdM6+/Ri34gIAAIBEAxwAAAAAAAAAPI6z76vOPc8BAICnogEOADA9Z+8UcOZ97AAAAAAA+Ce73abChX1lt3s57W9wz3MAAHAn7n4gnuka4Lt27dL06dN1+PBhxcXFyd/fXy+//LJatWpldGkAAAPY7TYVKuRHkxoAACAHkb0BwFi3dzp7Oe2+59zzHHAdd28iAcA/ecKBeKZqgC9fvlz//ve/5e3trfr168vLy0vbt2/XwIEDdezYMfXr18/oEgHALTjzh7W7NZrtdpu8vOyaumCrIqOvOOVvVPcvo84tazjluQEAANwN2RsA3Af3PQc8myc0kWA+zj7owhU4sOPuXHFFVHc/EM80DfALFy5o+PDh8vX11dy5c/Xoo49Kko4dO6bg4GBNmTJFzZo1U0BAgMGVAoCxrHpGdGT0Ff0Reckpz12meAGnPC8AAIC7IXsDAAAroYkEs3HFvmFHUpJsdufue+bAjjtz5f5/dz4QzzQN8K+//lpxcXHq0aNHSgCXpIoVK+qtt97SO++8ozlz5mjcuHEGVgkAxnP2GdGcDQ0AAGBeZG8AAGAVNJFgRq7aN+ysgzokDuy4F66IeptpGuCbNm2SJD399NNp1gUGBspms2nz5s0urgoA3JezzojmbGgAAADzInsDAACroIlkHZ5+SfCsXA7c2fuGOajDeFa/IqppGuC//fabJKlSpUpp1hUqVEjFihXTuXPndOHCBRUtWtTV5QEAAAAA4PHI3gAAwGqs3kQyOzNcEpzLgQNpmaIBfuXKFd28eVN58+ZV3rx50x1TokQJnTt3TufOnSOEAwBgQs4+WjcrR9MCAGAmZG8AwN14+hmUErkvIzx9O7ON8U+efklwLgcOpM/mcDg8/h1x9uxZPfnkkypWrJi2bt2a7pgXXnhBe/fu1YIFC1SrVq1M/w2HI+0Xo80m2e12XbkWp8TEpCzVfje5c3kpn18e3Yq9KkdSYo4/v83upVx5CygpKUkZeRV4+nwl683Z3eYrWW/OvK7Nv40l683ZHV/X0u3AYrM5L4Q7HA4582dTZp7aiq/rlMd57n6WTM1T8vz3Mp9dmXicRV7XZv7scvZ3kLsge2cNn4cZGO/hc3a3+UrWm7M7vq5THufErwe73e422/h2Pc7/PnQ4HE7PfRltIFn1de2K7G2VbSy53+d1yuM8+Kct2fse4z18vhKv63sx82dXZr6DTHEGuP3/XzribpNO3mGd1R3XNptNXl7pP3/BfD5Zes6MypXXuZdBsWfy0huePl/JenN2t/lK1pszr+uc527zlaw3Z3d8XTuTzeZ+zQ0rvq6tyNPfy3x24Z/47PJcZO/s4fPw3jx9zu42X8l6c3bH17Wzuds2djZnZ7K7fQ/dCa/rnGXFbSxZ773sjjz9vcx3Mv7J6p9dpnh1JF96LS4u7o5j4uPjJUl+fn4uqQkAAAAAADMhewMAAAAAPIFpGuB+fn6KiYm5YxCPjo6WJBUvXtyVpQEAAAAAYApkbwAAAACAJzBFA9xms6lKlSqSpGPHjqVZf/nyZZ0/f15FihRRsWLFXF0eAAAAAAAej+wNAAAAAPAEpmiAS1Ljxo0lSevWrUuzbt26dXI4HGrSpImrywIAAAAAwDTI3gAAAAAAd2eaBniHDh3k6+urr776Snv37k1Zfvz4cf33v/+VzWbTq6++amCFAAAAAAB4NrI3AAAAAMDd2RwOh8PoInLKokWLNGLECHl5eal+/frKnTu3tm/frps3b+pf//qXevbsaXSJAAAAAAB4NLI3AAAAAMCdmaoBLkk//PCDvvzyS/3888/y8vJSpUqV9Nprr6l58+ZGlwYAAAAAgCmQvQEAAAAA7sp0DXAAAAAAAAAAAAAAgDWZ5h7gAAAAAAAAAAAAAABrowEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAHJMTExMph+zc+dOJ1QCIKumTJmiX375xegyAAAAANwB2RvwfGRvAACciwY4XC4+Pl4///yzjhw5ooSEhDuOu3jxosLDw11Ymevt3LlTs2fP1v/+9z+dOnXK6HKyLTg4WJcvX87Q2Js3b2rMmDF69dVXnVsUgEyZMmWKjh49anQZQI4LDAzU+vXrjS7DEElJSTp58mSqZQ6HQ6tWrdKYMWP08ccf68CBAwZVl3POnDmjuLi4DI8/deqUQkNDnVeQAS5evKjt27dr1apV+v7777Vz584M/zYDYD5k77+QvcnegLshe8OsyN5k738ie8Mo3kYXgIyLi4vTxYsXVaZMGaNLybK5c+fqk08+0fXr1yVJ+fPn1+uvv67XX39ddnvq4zG2bNmiIUOG6PDhw0aUmmOOHj2qL774QkePHlWZMmXUq1cv1apVSwMGDND69evlcDgkSd7e3urfv7969eplcMVZd/jwYb344ov66quvVKxYsTuOO3DggIYMGaI//vjjruPM6uLFizp27Jjq1q1rdCkuERMTo/Hjx2vMmDFGl+IyVtvGZhAYGKh33nlHgYGBRpfiMg899JAmTJigNm3aGF2KS0RGRqb8/rCSTZs2adSoUTp37px+/vlnSbdDeZ8+fbR58+aU3yEzZ85UcHCwhg0bZmS52RIYGJjmNX39+nWNHj1ar7/+uipWrJhq/L59+zRs2DC1b9/exZXmvDVr1uiLL75I93ezzWZTrVq19Prrr+vJJ590fXE5KCAgQDabLVOPsdlsOnTokJMqglmRvT0T2Tstsre1chnZG56A7G1+ZG+yN9mb7O0uOAPcQOkdDRUfH6/Q0FCdP38+zfiwsDCP/nEQGhqqsWPHyt/fX8OGDVOvXr3k4+OjyZMn67XXXtO1a9eMLjHH/fzzz3r++ee1adMm+fr66sCBA3rllVc0duxYrV+/Xt27d1dISIjmz5+vJk2a6L///a++//57o8vOshEjRuj48ePq1q2bzp49m2b9rVu39PHHH6tr1676448/1K5dO61cudKASnPWQw89pOXLl6daFhcXpylTpuj06dNpxm/ZskXBwcGuKs8pTp8+rdGjR+u5557Tc889p+HDh+vEiRNpxoWFhal169ZavHixAVXmHCtuY6uxYkBLDl8wryNHjqhv375yOBzq3r27kpKSJEkLFizQpk2bVLx4cS1atEj79u3T4MGDNXfuXI/+HZLea/rmzZsKDQ1VdHS0ARW5xpgxYzRw4EBFRkaqffv2evvtt/X+++/r3Xff1YABAxQYGKiDBw/qjTfe0Icffmh0udlSt25d1alTJ1P/q127ttFlww2QvcneZG+yt6cie5t/G1sN2RtmRPYme5O93TN7cwa4gdL7wo+NjdWwYcM0a9Ys0x2dO3v2bNWtW1fz5s1LWdanTx+99957WrJkiV555RV99dVXypcvn4FV5qzJkyerXLlymjdvnooUKaLr16+rV69e+vrrr9W5c2e9/fbbKWPr1KmjF198Uf/3f/+nVq1aGVh11nXr1k0FCxbU0KFD1a1bN3311Ve67777JN0+Qn3IkCH65ZdfVKZMGY0aNUqNGzc2uOKckd6X/o0bNzR16lTVrl1b5cqVM6Aq5zl8+LBeeuklXbt2TT4+PvLx8dGhQ4e0atUqLVy4UFWqVFFMTIyGDx+usLAweXl5qWfPnkaXnS1W28bHjx/P9GUwOeIecD9ffvmlSpQooaVLl6pAgQIpy7/++mvZbDa99dZbqlatmiTp1Vdf1a5du7RgwQKP/R1yJ2be4bRs2TLNnz9f7du317vvvis/P790x8XGxuqDDz7QnDlzVLNmTbVo0cLFleaMv+cIIDPI3mRvsjfZ2xORvW8z8zYmewPmQPa+jexN9nY3NMDdkFk/KH7//XcNHTo01bLcuXNr7NixKlSokGbNmqXXX39ds2bNuuMHiKfZt2+f3nrrLRUpUkSS5OfnpzfffFMvvviiHn/88TTjW7VqpQkTJri6zBz17LPPKn/+/Bo4cKC6deumL7/8UuvXr9f06dOVkJCgrl276l//+pfy5s1rdKlOZ9b38qeffqq4uDh9/PHHeuaZZyRJEREReuuttzRmzBhNnDhRwcHB+uOPP/Too49qzJgx8vf3N7hq5zDrNp4+fbqmT5+eqcd4+iUzrSqzlzPydIsWLdK2bdsyPN5ms2ns2LFOrMi5wsPD9fzzz6cK4KdOndLx48fl7e2tp59+OtX4xx57TJ9++qmry0Q2LFiwQDVq1Ljn0eV58+bV2LFjdezYMX377bceG8Jv3bqlXLlyZeoxBw4cUPXq1Z1UETydWX/Lkb3J3mRvcyB7/8Ws25jsbR1k77sje8Pdkb3vzR2zNw1wuIyvr68uX76c7rrBgwfr+vXrWrhwoXr37q0vv/zStcU5Sb58+XT16tVUy/z9/dWkSRN5e6d9+126dEl58uRxVXlO06RJE82cOVNvvPGGnnvuOTkcDt1///0aM2aM6tSpY3R5yKaIiAh16dIlJYBLUrVq1TR48GANGjRIgwYNUmRkpN5++2299tprae4xCPfXrFkz0+44uRurBTRJmjZtmhYtWpTh8TabTXPmzHFiRc4VHh6eqTMsPH0bX7p0SaVKlUq1bMeOHZKk6tWrp9kh7uPjo5s3b7qsPmTfb7/9lql72AYGBuqbb75xYkXO9dxzz2nixIkZ+o6Kj4/X5MmTNXfuXB08eNAF1QHug+x9G9mb7O3pyN7mR/bOGE/PZRLZ+148fRuTvc2P7H1n7py9aYDDZerXr6+5c+fq6aefVuXKldOsHzlypK5du6YVK1botddeU5MmTQyoMmc99thj+uqrr1SzZk01bNhQkpQ/f3598cUXacYeOHBA8+bNSxnn6WrXrq25c+fq9ddf18WLF/X+++8TwE3iypUrCggISLP80UcfVWJioo4ePap58+apRo0ari8OOaJ58+Zq06aN0WW4nNUCmiQdO3ZMx44dy/B4Tz9q/Z133vHoe7pmVsGCBXXx4sVUy7Zs2SKbzabHHnsszfhjx46lnDkHz3D9+nUVLVo0w+OLFy/u0fdkO3/+vDp27Kj+/furR48ed/xM2rNnj9555x2dOHFC999/v4urBIxH9iZ7k73NgextfmTvjCF7ex6yN9nbbMjenpm9aYDDZd566y117dpVQUFBevjhh/XRRx+lelPYbDZNmDBBuXPn1pIlS7R3714Dq80Zb7/9tiIiIvTaa6+pTp06d7x3wksvvaQ9e/aoSJEiqe5N5ukCAgK0YMECvfrqq3rjjTc0depUNWjQwOiykE0JCQnpni3h4+MjSerZsycBHB7JagFNkj766CNL7XApXLiwypYta3QZLlOrVi2tWrVK3bt3l5eXl86fP69NmzZJklq2bJlqbExMjJYvX6769esbUCmyKjExMd0zG+/Ey8tLCQkJTqzIuVasWKFhw4Zp0qRJ2rRpk8aPH6/y5cunrE++TGzyvfa6d++uAQMGGFgxYAyyN9mb7G0OZG+YFdnb/MjeZG+zIXt7ZvamAQ6XeeCBB7Ry5UpNnTpVu3fvTvnB/nd2u11jx45VzZo19cknn+jChQsGVJpzihYtqsWLF2vhwoWKj4+/4zgfHx917NhRb775ZqaOJHI3w4YNS3f5/fffr9OnT6tXr15q1apVqiOGzHAUJ1J75JFHjC4ByBKrBTSYX48ePdSlSxd17txZ9erV0/r163Xz5k0988wzqlChgqTbO1b379+v8ePH6+LFi+rWrZvBVWfP2rVrdeLEiZR/j4uLk81m09KlS7Vnz55UY3/55RdXl4dsKlq0qGbMmKGvv/5aH330kdq1a6ehQ4fq+eef165du/Sf//xHp06dkr+/vz744AN+k8CyyN5kb7K3NfA9B09F9obZkL3J3mZjluxNA9xgx48fT3XJl5iYGEnS0aNH0xxRkpnLpLirwoULa/jw4fcc16lTJwUFBaX6EPVUPj4+euWVV+46xiz3XQsJCbnr+ps3byo0NDTVMrOE8N27dysxMTHl32NjYyVJW7duVVRUVKqxZjjD4m48/TJNd2KVbVy3bl0VK1bM6DIA5IBHH31U06ZN0wcffKBZs2bJy8tLbdq00ahRo1LGTJgwQXPnzpXdbtewYcNUq1YtAyvOvrCwMIWFhaVZ/s/fH8nM8J31zx0Pd2OWHQ/dunVTgwYNNGLECI0cOVLz5s3TsWPH5O3trQEDBqhnz56ZOjof1kD2Th/Z2zORvc2fyzLCDL9j0mOVbUz2BsyD7P0XsvdtZG/3YHM4HA6ji7CqgICAdN/4DofjrssPHz7sivKczuFw6NSpU7p8+bIkqUiRIipXrpyxRTmZ2eccGRmZpcd5+lGf6b2X//7Rmt46T34vBwQE6I033lCjRo1SLY+JiVGfPn00dOhQVa1aNc3j6tat66oSc5zVtrEVBQQEWO6SZFabc0hIiOrUqZPqkk1WcunSJfn6+qY5C3Dz5s06ePCgnnnmGbe8X1Nm7Nq1K0uPq1evXg5X4jrp3Rf0Xsz0/RQeHq4+ffooJiZGNptNffr0Uf/+/Y0uC26I7G3uHJoes8+Z7P0XM+cysvdtZt7GVmS1HCpZb85kb7L3nZC9PZenZm8a4AaaMmVKlh7Xr1+/HK7EtSIiIjRz5kxt3bpV169fT7UuX758atq0qV599dUsfai4KyvO2UrudfT9nQQFBeVwJa5xpx2I0p13Ikry6C98K23jv58ZlRmevJNFsmZA27VrlypWrOjRl/8ErM6KOx4k6dq1a5owYYK+++475cmTRz169NCaNWv0yy+/qGHDhhozZozKlCljdJlwI2Rv6+RQK87ZSqyUyySyd2Z44jYme5O9AXgOsrdnZm8a4HCpWbNmaeLEibLb7apZs6YqV66sAgUKKCEhQZcvX9ahQ4d0+PBh2e12DRkyRMHBwUaXnG1WnHNGTZ8+XWFhYVqyZInRpbhcfHy8cufObXQZWWLVHYiZ5anb+G47We7Gk3eywBrudK/MuzHLpUKRvoULF2rLli1Z/l6DMTZt2qSRI0cqKipKDRo00OjRo1W+fHndunVLn376qWbNmiUfHx/9+9//VpcuXYwuFzCMFXOoFeecUWRvz8tlEtk7ozx1G5O9YVZkb/wT2dszmSF70wCHy2zevFm9evVSw4YNNXbsWJUuXTrdcSdPntSoUaO0bds2zZo1Sw0bNnRxpTnHinPOjJEjR2rRokUe/+N9ypQpmQqYERERGjZsmFauXOnEqpCTrLSNP/vssyyFcE/fyWLFgJaVnb42m01z5sxxQjXOZ8XLVd1rp1qePHmUP39+ValSRc2bN1enTp1kt9tdWKGxzPA75MyZMypSpEiay+vdyalTp7Rnzx61b9/euYU5ydtvv62VK1fKz89PgwcPVufOndOM2bdvn4YMGaJTp06pXr16+uCDD0x12WMgI6yYQ60458www3eeZK1cZlVW2sZk74wje3sWsndaZG/P/x1C9vbM7E0D3EBW+8J/9dVXdf78eS1ZskS5cuW669iEhAS1b99e999/v6ZOneqiCnOeFeecGWb48pNu/8jp3r27/v3vf991XEJCgqZMmaKZM2cqMTHR4+edUXFxcbp48aJbXw7lXtjG5mfVgJZZnjxnK94r86WXXrrr+sTERF29elUnT57UrVu39Nhjj2n69Ony9vZ2UYXGMsPvkIceekgTJkxIdT/B69eva/To0Xr99ddVsWLFVOOXLVumIUOGeOycAwIC1LhxY40ePVqlSpW647i4uDh9+OGHWrhwofz8/LR3714XVgl3RPa+M7PkUCvOOTPM8J0nkcvuhewNT2C1HCpZb85k77TI3p7/O4TsnT53z97WeIe5qczc1+bvRxB5agg/dOiQXnnllXuGUUny9vZWq1attGzZMhdU5jxWnLMV1alTR7NmzdKNGzf07rvvpjvm6NGjGjJkiI4ePaqCBQvqP//5j4urzDmBgYF65513FBgYmLIsPj5eq1at0uOPP65ixYqlGh8WFubRX/iS9baxFa1fv97oElzuyJEjRpfgUp4cprNq3rx5GRoXFxenBQsWaMKECVqwYME9wzvcR3rHMt+8eVOhoaFq27ZtmhDu6caNG5ehe3z6+Pjovffe09NPP833MSSRve/GLDnUinO2IqvlMrK3+bexFZG9zY/sfWdkb89F9k6fu2dvGuAGysiXX2RkpEaPHq1NmzYpf/78GjhwoPMLc5LY2FiVKFEiw+NLly6tP//804kVOZ8V52xFs2bN0oABA7RgwQLduHFDY8eOTdlx5nA4NGPGDE2dOlXx8fFq3bq1hg8friJFihhcddZFRkbq+vXrqZbFxsZq2LBhmjVrVpoQbgZW28aSdPz4ce3bt08dOnRIWXb+/HlNmTJFe/fula+vrwIDA/XKK6945P3W/smKAQ2pxcfH67fffpOPj48qVKhgdDku5ePjo1dffVUHDhxQSEgIIdwEzHqRr4wE8L978MEH1alTJydVA09C9r47M+RQK87ZiqyWy8je5t/GEtkb1kP2JnubCdn7NnfN3jTA3VRiYqJmzZqlzz//XHFxcXrmmWc0bNgwj/5xm5CQkKkfat7e3oqPj3diRc5nxTlbUe7cuTV16lQNGzZMISEhiouL08SJE3Xy5EkNHTpUERERKl68uN577z01bdrU6HKdxqxf+JL1tvHEiRM1a9YsORwOBQUFyW63KyYmRp07d9aZM2dUqFAhlS1bVp988ok2bNigefPmZehsG09mxYAWFRWliIgI+fj4qG7duhm+z5E7i4mJ0Zdffql9+/alOkJ7+fLlGjNmjK5evSrp9g/3sWPHqkaNGgZVaoz69etr69atRpcBZMvNmze1Zs0aLVmyRLt27ZLD4VDfvn2NLgtujOxtjhxqxTlbkdVy2Z2Qvc2zjcneaZG9yd5WQPaGGXhC9qYB7oZ2796tUaNG6ddff9UDDzygkSNHqmHDhkaXBdzTlClTMjX+559/dlIlrufl5aUJEyaoQIECmj9/vk6fPq1ff/1VcXFx6tSpk4YMGaJ8+fIZXSaywSrbeO3atZo5c6aefPJJBQcHy263S5I+//xzRUZGqnr16vrqq6/k6+uriIgIvfTSS/rqq6/Uo0cPgyvPPisGtMjISE2aNEn79u3Thg0bUpbPmDFDn376qRITE+VwOFSwYEGNHj1azZs3N7Da7ImNjVXnzp11/PhxlSpVSgkJCfL29lZERISGDBkih8Ohzp07q3LlygoNDdWrr76q0NBQ3X///UaX7jJeXl5KSkoyuowsCw0NzdT433//3TmFwBD79u3TkiVL9P333ys2NlYOh0P33XefOnfubHRpcGNkb3gqsrf5c5mVWWUbk73J3hLZm+ztmcje1uZJ2ZsGuBu5dOmSJkyYoNDQUOXOnVv9+/dXjx49THF5m2S7d+9WYmJihsbu3bvXydW4hpXmnNkQLqW+x54ZDB8+XIUKFdKUKVNkt9v1xRdfqEmTJkaXhRxk9m28cOFCVa9eXdOnT09Z5nA4tGzZMtlsNr355pvy9fWVJFWrVk3t2rXTypUrPT6EWzGgXbhwQZ07d9alS5dUrVq1lDn/+OOPmjRpkry9vfXWW2+pSpUqWrRokd566y198803qlq1qtGlZ8msWbN08uRJ/fe//1XLli1Tlk+dOlUOh0Mvv/yyhg4dKknq2LGj2rZtq+nTp2vcuHFGlexyBw4cUOnSpY0uI8uGDh2aqd8VDofDdL9DrCYqKkpLly7VkiVLdOLEiZQz4urXr68ePXro8ccfN7hCuCuyd2qenkOTWWnOZG/z5zKYfxuTvcneZG+yt6cie1uPp2ZvGuBu4ttvv9XEiRN15coVPfbYYxo5cqTuu+8+o8vKcYsWLdKiRYsyNNYsH4xWmvPcuXONLsEt9OvXT4ULF9aYMWM0c+ZM1a5d2xRHJ+MvZt7GBw8eTBOoDx06pAsXLihfvnyqX79+qnWPPvqoli9f7soSncKKAW3GjBmKjY3V119/neqI+hkzZshms6lv374pr4UnnnhCHTp00Jdffqn//ve/xhScTWFhYWrXrl2q7RsbG5ty2bGuXbumLM+TJ4/atm2rb7/91uV1GmX16tVaunSpXn/9daNLyTJPfj8i4+Lj47Vu3TotWbJE27dvV2Jiory8vFSvXj3Vrl1b06ZNU3BwsNsGcBiP7J2Wp+fQZFaaM9n7NjPnMtxm5m1M9iZ7k73J3p7Kk9+PyDgzZG8a4AY7evSo3nvvPe3fv1/FihXTpEmT1Lp1a6PLcgorfjBabc716tXL9GN2797thEpcKzw8PM2yKlWqqFOnTlq0aJFefvllDR48OOVyVsnq1q3rqhKRTVbaxtevX1fBggVTLduxY4ek2/Px8vJKtS4hIcGjdx4ms2JA27Rpkzp06JAqgF++fFl79uyRJD333HMpy202m1q1aqU5c+a4uswcc/r06VTbUbr93k5ISFD58uXTND9Kly6tCxcuuLLEHDds2LC7rk9MTFRsbKx+++03nTx5Ug888IBHh/CgoCCjSzDE2rVrdeLEiZR/j4uLk81m09KlS1Pez8l++eUXV5eXo0aNGqVVq1bpypUrypMnjxo3bqxmzZopMDBQhQsXVmRkpD7//HOjy4SbInubm9XmTPb+i1lzmVVZaRuTvcneZO/byN6eh+x9G9nb/bM3DXADjR8/XvPmzVNiYqKeeuopDRw4UPny5dOZM2fu+rgyZcq4qMKcZcUPRivOOSPOnj2rkJAQhYaG6tSpUzp8+LDRJWXLSy+9dNcQcvDgQb3yyitplnvyvI8fP54qmMbExEi6vWPR2zv1V8uxY8dcWpszWGkblyhRQqdOnUq1bNOmTbLZbHriiSfSjI+IiFDJkiVdVZ7TWDGg/fnnn6pSpUqqZTt37lRSUpIqVaqUZrsWLVpUV65ccWWJOcput6e5x9b27dslSY0aNUoz/uLFix5/dklISEiGxpUvX14vv/yy+vTp4/FzvpP0fl+XLl3aNDsRw8LC0iy/033ZPHnOCxYskJ+fn3r37q3XX3/dtK9X5Dyyt/lZcc4ZQfa+zZPnTfZOzUzbmOz9F7I32dvTf9eTvf9C9v6LJ8/ZLNmbBriBZs+enfLPGzdu1MaNGzP0OE/8UZcVFy9e1LFjxzzyKM6sMvOcb968qbCwMC1ZskQ7d+5MueRcej/qPU3fvn09+gstK6ZPn57qPlXJxo8fn2aZp19eULLWNn7iiSe0ePFide3aVSVLltS+ffu0e/du5cqVSy1atEg19tdff9XKlSv1/PPPG1RtzrFiQMuTJ49u3LiRatm2bdtks9n02GOPpRn/559/qkCBAq4qL8dVqlRJ+/btU7du3STd/mxau3atbDabmjZtmmb8+vXrVbFiRVeXmaPWr19/1/V58uRRgQIFTHXPW0lavHixvv32W33++ecqUqSILl26pKZNm6b5HB8wYIDeeOMNg6rMGVa7BG5QUJDWrVunL774QnPmzFGdOnVSjkIvVqyY0eXBjZG9787MOfROzDxnsre5kL3Ni+z9F7J3amRvz0P2JnubjVmyNw1wA/Xr18/oElzqoYce0oQJE9SmTZuUZXFxcZo5c6bat2+vcuXKpRq/ZcsWDRkyxKN3Olhxzv+0f/9+LVmyRN9//72uXbsmSSpSpIg6dOigzp07q2zZsgZXmH39+/c3ugSXslIgTWalbdynTx+FhYWpVatWqlChgn755Rc5HA717dtXRYoUkXQ7fIeFhWnu3LnKlSuXunfvbnDV2WfFgBYQEKDt27fr5ZdflvTXvX0kqVmzZqnGOhwOrV69WgEBAS6vM6e0b99eH3zwgR599FE99thjWrRokc6cOaP77rtPjRs3TjV2+vTp2r9/v4YPH25QtTnDDN+xmfXmm29qzZo1KlOmjM6cOZPyuSVJbdu2Vfny5SVJS5cu1bRp09SxY0cVL17cqHKzLSuXwE1ISHBCJa4xbtw4jRo1Shs3btTy5cv1ww8/6Mcff9SoUaNUs2ZN1apVy3K/UZAxZG/z51ArzvmfyN7mQ/Y2N7I32Vsie5O9PRfZ+97I3sajAW4gq4Vwh8ORZtmNGzc0depU1a5dO00gNQMrzlmSoqOjFRoaqpCQEP3xxx9yOBzy9fVVo0aNtG3bNr3//vsKDAw0ukxkkZUCqRUVK1ZM3333naZOnar9+/fr4YcfVocOHdSpU6eUMSEhIZo1a5bKli2rjz/+WKVLlzaw4pxhxYDWpUsXvfXWWxo7dqwee+wxLV68WBcuXNDDDz+c6myouLg4ffjhh/r11189eodLly5dtGfPHo0bN042m00Oh0MFCxbUxIkTU+4h+N1332nGjBk6deqUateurRdeeMHgqp0rIiJC+/btk91uV7169eTv7290SdmybNkyrVmzRr169dKAAQPS3Dexffv2atiwoSSpSZMmev755/XNN9+Y5jd5bGysHA7HXc+Q2bdvn0aMGKEVK1a4sLKclTt3brVo0UItWrRQTEyMVq9erWXLlmnPnj3as2ePbDabvvjiC127dk0tWrSQj4+P0SXDDZjlfZ5RVsyhVpyzRPY2O7K3uZG9yd5kb7K3pyJ7k709JXvTAHcj8fHxOnLkiKKjo+VwOFSiRAkFBAQoT548RpfmVOkFVbMz65y///57LVmyRNu2bVNiYqIKFCigNm3aqHnz5mrcuLHOnTuX5shGM5gyZUqmH2Oz2dS3b18nVON8wcHBeuONN1J+yFiB1bZxqVKlNHr06Duu79Chg5o2bapatWqlhBdPZ8WA1rp1ax09elQzZ87UvHnz5HA4VK5cOU2ePDllzP/93//p888/V2xsrFq2bKl27doZWHH22Gw2TZw4Ud26ddO+ffuUL18+NWvWLNVRyn/++accDofeeOMN9erVyxSv70OHDumLL77QsWPHdN9996l3796qVq2a/vOf/2jJkiUpv0lsNpueffZZjRs3Ls39JD1FSEiIatasqUGDBt1zbPIOt82bN3t8CF+zZo2mTJmi3377TdLt+8oNGDBAzz77bMqY69eva9KkSVqwYEGaS056kmHDhqlLly6qXr26JCl//vzq1KmTOnXqpKioKK1YsUIrVqxQRESEfvrpJ40ePVqtW7fW+++/b3DlcDdkb+sw65zJ3hnnybmM7J0xnryNyd5k72Rkb89/fZO900f29kxmyd6e+Q4zmfPnz2vSpEkKCwtTbGxsqnW+vr5q0aKFBg0apBIlShhUIZAxgwYNkp+fn7p27arAwEDVrVs31RFgnnBZjKywWkDbtWtXqiOSrcBq2/hePP3yY+mxakAbNGiQXnjhBR04cED58uVTvXr1lCtXrpT1efLk0aOPPqo2bdroueeeM7DSnFOzZk3VrFkz3XX9+vXz+ED2d/v27VNwcLC8vb1VpUoVHTx4UN26ddNLL72kxYsXq23btmrZsqWuX7+uDRs2aMWKFXrooYf02muvGV16lhw6dEi9e/fO8PjHH39cU6dOdWJFzrdq1Sq99dZbypMnjx5//HH5+vpq9+7d+ve//51y/8iffvpJgwYN0unTp1WuXDmNGjXK6LKzLCQkRI0aNUoJ4X9XsmRJde/eXd27d9exY8e0bNkyLV++XN9++63bhXAYh+wNsyB7Z5wn5zKyd8Z48ja+F7I32duTkb3J3snI3p7HLNmbBrjB9u/fr169eunKlSuqXr26GjRooBIlSsjb21vR0dEKDw9XaGioNmzYoGnTpqlWrVpGlwzcUbly5XT69GktWbJEv//+u3766Sc1a9ZMDz74oNGlOdXcuXONLgFOZqVtHB4enqXH/f2yXZ7MSgEtWalSpVSqVKl017344ot68cUXXVwRcsrUqVP1wAMPaO7cuSpcuLAcDofeeecdzZ49W23bttWECRNSxj777LO6evWqVqxY4bEhPC4uTgUKFEizPH/+/Jo+fboeeuihVMvz5s3r0ffkkqT58+eraNGiWrhwYco91m7cuKE33nhDn332mUqUKKHXXntNN2/e1Kuvvqo333zTLS9LltMqVqyoQYMGadCgQdq7d6/R5cBNkL1hJmRvmJWVtjHZm+z9d2Rvz0b2vo3sTfZ2NzTADXThwgX17dtXefPm1eeff67atWunO+7QoUMaOHCgBgwYoKVLl6po0aIurhTImHXr1unAgQNatmyZVq9erS1btmjSpEmqUKGCmjdvrqpVqxpdolPUq1fvnmNiYmJks9nuem8QuK+MbGOzeOmllzJ9xojNZtOhQ4ecVBGQM4YNG5bpx9hsNo0dO9YJ1bjGTz/9pNdff12FCxeWdHs+3bt3V0hIiJ588sk045s3b64PP/zQxVXmnJIlS+rMmTNplnt7e6c73z/++MPj76N47NgxvfTSSykBXLp9Fmu/fv304osvatCgQSpatKgmTpyoGjVqGFeogWhiQiJ7w3zI3ndG9vZsZO+7I3vDE5C9yd7/RPa2BnfM3jTADTR//nzFxsamOmokPQ8//LBmz56tNm3a6H//+5/69+/vwiqBzKlevbqqV6+ud955R1u2bNHy5cu1fv16TZs2TTabTTabTRs3blRAQIDKli1rdLk5xuFw6IcfftBvv/2m+++/X08++aS8vb21fft2jRkzRsePH5ckPfTQQ3rrrbf0+OOPG1xx9qxdu1YnTpzI8HgzX5IsmVl2tIwbNy5D49asWaNNmzZJkqpVq+bEilzDigEtODg404+x2WyaM2eOE6pxvpCQkAyP/fuOKE/exlevXlWxYsVSLUu+tGChQoXSjPfx8dGNGzdcUZpTVKtWTatWrVLfvn3veZnE+Ph4rVq1Sk2aNHFRdc4RExOjcuXKpVl+3333Sbp9KcWFCxem7Igxg927dysxMTFTj2nfvr1zioHHIHvDjMjeZO/0kL09B9k748jenoXsfRvZ+zayt+cyQ/amAW6gdevWqW3btncN4MnKli2roKAghYWFeXQI/+ebJvm+a1u3blVUVFSqse54yYSssOKcJcnLy0tNmjRRkyZNFBcXp7Vr12rFihXaunWrvvvuOy1ZskT169dXhw4d9OyzzxpdbrZcvXpVPXv21IEDB+RwOCRJjz76qEaMGKGePXvK19dXzZo10/Xr13XgwAH16tVLs2fP9ugjm9euXauwsLAMjzdDCP/7jpb77rtPTz31lCl3tAQFBd11fWRkpEaPHq1NmzapQIECeuutt9S5c2cXVec8Vgxop0+fztC4pKQkRUVFyeFwePT9JI8cOXLPMX9/fefPn18DBw50fmFO5HA45O2d+ud+8jb05G15J126dNGLL76o999/X8OHD08z92RJSUl69913FR0drS5duri4ypyVlJSU6p6vyZLvJ9izZ09TBXBJWrRokRYtWpShscmfW+4WwuF6ZG9r5FArzlkie5O9UyN7ew6y972RvT0T2fs2sjfZ29OZIXvTADfQ6dOnM3Vvj4CAgEz9SHBH/3zTJAeWmTNnpvky8PQv+2RWmnPPnj3VoEED1atXT1WrVk2Zi4+Pj9q0aaM2bdro0qVLWrVqlZYvX67t27drx44dHh/CP/30Ux05ckTvvvuu6tevr8jISH3wwQd6+eWX9cADD2jevHkpR/tdvHhRHTt21KxZszw6hPfq1UuNGjUyugyXseKOln9KSEjQ//3f/2n69Om6ceOG2rZtq6FDh6Yc0erprBjQNmzYcM8xBw4c0Hvvvac///xT5cqV04gRI1xQmeslJiZq1qxZ+vzzzxUXF6dnnnlGw4YNS3MEN9xbnTp11L17d/3f//2fduzYoddee03169dXqVKl5HA4dO7cOe3cuVNff/21jhw5okGDBikgIMDosp2qTJkyRpeQ455//nnLXlIOWUf2NncOTWalOZO9yd5mRfYme0tkb7I33B3ZOy2yt3uiAW6gXLly6ebNmxkeHxcXJz8/PydW5FwZvbSPmVhtzjt27NAPP/yQcimqOnXqqH79+mrQoEHKl1zhwoXVrVs3devWTadOndLKlSsNrjr7NmzYoC5duuiFF16QJFWoUEHvvvuuXnvtNXXr1i3VpW6KFCmi559/XvPmzTOo2pxRsWJFUwXMe7Hijpa/27Vrl0aNGqVjx46pQoUKGjlypOrXr290WS5jxYAWExOjjz/+WIsWLZLdblevXr3Up08f5cmTx+jSctzu3bs1atQo/frrr3rggQc0cuRINWzY0Oiycsw/L5sZFxcnm82mpUuXas+ePanG/vLLL64uL8f9+9//VtmyZTVp0iS9++676TY8/Pz89N5775niDBorqlOnjtq0aWN0GfAwZG/zs9qcyd5kb7Mie5O9yd5kb09F9iZ7m40ZsjcNcANVqVJFmzdvzvB9QDZt2qRKlSo5uSrnudelfczIanPeu3evDh06pL1792rfvn3av3+/Nm7cKJvNpgIFCqhu3bqqX7++6tevrypVqqh8+fLq3bu30WVn27lz51SxYsVUy5Lfq+kd/VW6dGlduXLFJbUhZ1hxR4t0e4fC+PHjtWzZMuXJk0dvvvmmXn/99ZTL+1iB2QNaepYuXaoJEybowoULqlevnkaOHJnmM84MLl26pAkTJig0NFS5c+dW//791aNHD+XOndvo0nJUWFhYupfNDA0NTXe8J58Nl6xr164KCgrSxo0bFR4erj///FMOh0MlSpRQrVq11KxZM4+/Z+TfpXdv0LvtbDHDpVGBzCJ7m5/V5kz2/gvZ21zI3mRvsjfZ21ORvcneZG/3QwPcQO3atdO7776rVatWqXXr1ncdGxoaqm3btmnSpEkuqs54p0+f1rvvvqtZs2YZXYrLePqcvb29Va1aNVWrVk2vvPKKJOns2bOpQvn48eOVmJioQoUKqV69eqpfv766du1qbOHZdOvWLfn4+KRalhxS0gsrNpst1b3p4P6suKPlm2++0aRJk3TlyhU98cQTGjFiRIbum2kWVglof3f8+HGNGjVKu3btUuHChfXhhx+63b17csq3336riRMn6sqVK3rsscc0cuRI3XfffUaXlePmzp1rdAmG8fX1VevWre/5G9sM7rSjRUp/ZwshHFZE9r47T8+hWeHpcyZ7/4XsbS5kb7I32dtcyN7mR/a+jeztnmiAG6hDhw4KDQ3V4MGDdfToUXXr1k0lSpRINSY6OlqzZ8/W3Llz1aRJE7Vq1cqganPGgQMHNG3aNO3bt0+S9PDDD6tv376qU6dOyhiHw6GvvvpKn376qeLi4owqNcdYcc5/V7p0aT3zzDN65plnJN2+tM+yZcu0ZMkSrVmzRmFhYR4fwq2mX79+8vf3N7oMl7LSjpYjR45o5MiRioiIUMmSJTV69Gg1b97c6LJcyioBLVl8fLymTp2qWbNmKSEhQZ06ddLbb7+tAgUKGF1ajjt69Kjee+897d+/X8WKFdOkSZNMHdLMcilI3JnVdrQEBQWZ+vMYzkP2tkYOteKc/47sbT5k79vI3uZF9iZ7mwXZ2/zI3p6JBriB7Ha7pk+frrfffltffPGFZsyYodKlS6t48eLy8vLShQsXdPLkSTkcDrVq1UoffPCB0SVny/bt29WjRw8lJibqwQcflK+vr8LDw/XKK69o9uzZqlu3rk6fPq1//etfioiIUL58+TRq1Cijy84WK875n+Li4hQeHq5du3Zpz549+vnnn3Xr1i3lzp075ZJsZnD58mWdOXMm5d+Tj0C+ePFiquXS7aNbPVm/fv1S/Xt8fLyOHDmi6OjolMvcBAQEmPJ+RVbQoUMHJSUlSZKKFi2q+fPna/78+Xd9jM1m05w5c1xRnlNZLaBJ0ubNmzV69GhFRkbK399fo0aNUvXq1Y0uyynGjx+vefPmKTExUU899ZQGDhyofPnypfmM/qf0zjQxq4ULF2rLli2aMmWK0aVkSUYvbfx3nv75lZUdLbt373ZCJa5htXv8IueQvc2fQ604538ie5O94VnI3mRvsndqZG/PQfbOGLK38WwOh8NhdBGQfvzxRy1dulQRERE6d+5cyg/Z2rVrq127dmrQoIHRJWbbq6++qoiICM2cOVM1a9aUJEVFRal3797KlSuXxo0bp+DgYF24cEHNmzfXiBEjVLx4cYOrzh4rzjkhIUH79+/Xjh07tGPHDh04cEC3bt1Srly5VK1atZTgXbNmTdNcziggICDd+7Y4HI673s/l8OHDzizL6c6fP69JkyYpLCxMsbGxqdb5+vqqRYsWGjRoUJqzazxRQECA/vOf/ygwMDBl2ZUrVxQUFKSPP/445f2dbO3atfrwww89chs3bdo0S4/bsGFDDlfiWncKaPfiyQFtwIABWrt2rSTpqaeeUnBwsLy8vO75uLp16zq7NKcICAhI+efM3GvLE9/HWTVy5EgtWrTIY+ec0c+vpKQkRUVFpXxPe+p8M+Ps2bMKCQlRaGioTp06ZYk5A3dC9jZnDrXinMnefyF7k709cRuTvcne90L2Ni+yt3mRvd0LDXC4TIMGDdSxY0e9/fbbqZZv2bJFPXr0UMWKFXXu3Dm99957Hn+5uWRWm3OPHj20e/duxcXFyW63q2rVqmrQoIHq16+v2rVrp7mMlVkMGzYsS4/z5COp9u/fr169eunKlSuqXr26GjRooBIlSsjb21vR0dEKDw9XeHi4ChQooGnTpqlWrVpGl5wtVt3RYiVWDGh/n7N073l7emDJ6pHV/zzzxsw8PYRnxIEDB/Tee+/p8OHDKleunEaMGKEmTZoYXZZT3Lx5U2FhYVqyZIl27tyZ8h5u3LixvvjiC6PLA+BEVsuhkvXmTPbOHLK35yB7mx/Zm+x9J2RvcyF7k73dAZdA9yA7d+7U0aNHs3SJCXcQExOjihUrplleuXJlORwOXb58Wd9++60p7i2QzGpz/vHHH5UrVy61b99evXr10gMPPGB0SS7hyWE6Ky5cuKC+ffsqb968+vzzz1W7du10xx06dEgDBw7UgAEDtHTpUhUtWtTFleac9u3bZyqYWcnu3bsVEhLi8ZcKtVLQSma1z66sbGOz3RvUymJiYvTxxx9r0aJFstvt6tWrl/r06WPKS4bu379fS5Ys0ffff69r165JkooUKaIOHTqoc+fOKlu2rMEVAu6P7O15rDZnsrc1kL3xd2Rvz2W1zy6yt7WRvcne7oQGuAdZtWqVFi1a5LEhPDExUd7eaV9yyZfi6t27t2nCaDKrzblTp07auXNnymU+KlSooIYNG6pBgwaqW7euChYsaHSJyAHz589XbGysFi5cqPLly99x3MMPP6zZs2erTZs2+t///qf+/fu7sMqc9eGHHxpdglv5888/FRISopCQEJ06dUqSLBnCPT2gBQUFZfoxkZGRTqjE/STvXFqzZo1H37MJty1dulQTJkzQhQsXVK9ePY0cOTLdJokni46OVmhoqEJCQvTHH3/I4XDI19dXjRo10rZt2/T++++nupQogLsje3seq82Z7G0NZG+QvW8je5sX2dtcyN5kb3dDAxxuw2wfhhlhtjmPHj1aknTmzBlt27ZNO3bs0OrVqzV//nzZ7XYFBASofv36KaHcz8/P4IqRFevWrVPbtm3vGsCTlS1bVkFBQQoLC/PoEB4cHKw33nhDDRs2TFmWkJCgffv2KSAgQPnz5081ftmyZRo6dKgOHTrk6lKdJj4+PuVyPjt27JDD4ZDD4VD9+vX1wgsvGF2eS1ktoN28eVOrV69WSEiIwsPDdfDgQaNLcorknUuhoaE6efKkHA6HChUqZHRZyIbjx49r1KhR2rVrlwoXLqwPP/xQ7du3N7qsHPX9999ryZIl2rZtmxITE1WgQAG1adNGzZs3V+PGjXXu3Dk1a9bM6DIBuBmz5dCMMNucyd7WQPa+jexN9iZ7mwvZ23zI3mRvd0UDHECOK1OmjDp27KiOHTtKkn799Vft2LFD27dv1+LFizV79mx5e3vrkUceUcOGDfXmm28aXDEy4/Tp03rxxRczPD4gIEAhISFOrMj5du3apU6dOqVaFhMTo+DgYM2aNStVOE/mcDhcVZ5T/fNyPsnzeuaZZ9S3b19VqFDB4Apdw4oBbe/evVqyZIlWr16t2NhYORwOVa5c2eiyclTyzqWQkBDt2LFDSUlJcjgcqlGjhrp06aLWrVsbXWK2hIaGZmr877//7pxCXCw+Pl5Tp07VrFmzlJCQoE6dOuntt99WgQIFjC4txw0aNEh+fn7q2rWrAgMDVbduXXl5eaWs5xKiAGBuZG9zI3vfRvYme5O9PR/ZOzWyt+che3smGuBwqd27dysxMTHVstjYWEnS1q1bFRUVleYxnn60kBXn/E+VK1dW5cqV9dJLLyk+Pl6rV6/W//73P+3fv18HDhwghHuYXLly6ebNmxkeHxcXZ9ozDswStP8pvcv5FCpUSEFBQapRo4ZGjhyp1q1bmz6Amz2gpScqKipl2584cUKS5O3trdatW+uFF15QnTp1DK4wZxw4cECLFy9OtXOpQIECiomJ0ejRo9PsdPNUQ4cOzVQIczgcHh/aNm/erNGjRysyMlL+/v4aNWqUqlevbnRZTlOuXDmdPn1aS5Ys0e+//66ffvpJzZo104MPPmh0aQAMZsUcasU5/xPZ21zI3n8he5O9zYbsTfYme3sWsrdnogEOl1q0aJEWLVqUalnyj9iZM2em+uBP/iLw9EBqxTn/3cmTJ3XgwAEdOHBAEREROnLkiG7duqW8efPqiSeeUN26dY0uEZlUpUoVbd68OcP3RNy0aZMqVark5KqQU3r27KmtW7cqMTFRpUuXVteuXdWsWTPVr19fdrtdkZGRpt35kMwqAS1ZfHy81q1bp8WLF2vHjh0pO44rVqyo48eP66OPPlLLli0NrjL7oqOjtXTpUoWEhOj333+Xw+FQmTJlFBQUpObNm6tkyZJ6+umnVaRIEaNLzTHjxo0zugSXGjBggNauXStJeuqppxQcHKz4+HiFh4ff9XGe/Ftk3bp1OnDggJYtW6bVq1dry5YtmjRpkipUqKDmzZuratWqRpcIwCBWzKFWnPPfkb3Nh+xtbmRvsjfZm+ztqcjeZG9PQQPcQGfOnMnU+OQjlz2V1b4IJOvN+cqVK4qIiEgJ3BEREbpy5YocDocKFiyoWrVqadCgQapbt64efvhh2e12o0tGFrRr107vvvuuVq1adc+jcENDQ7Vt2zZNmjTJRdUhu3744Qf5+fkpODhY3bp1U/HixY0uySWsGNAiIiK0ZMkSrVq1SlevXpXdblfNmjXVvHlzNW/eXImJiWrWrJly5cpldKk5omnTpkpKSlJAQIB69+6twMBAPfLIIynrIyMjDazOOYKCgowuwaXCwsJS/nnDhg3auHHjXccnNz8OHz7s7NKcqnr16qpevbreeecdbdmyRcuXL9f69es1bdo02Ww22Ww2bdy4UQEBASpbtqzR5QKGIHubn9XmTPa2BrK3uZG9yd5kb/Mge5O9yd7uiQa4gZo2bWqpS2Nk5YvA078QrTbn+vXry2azyeFwqHDhwqpXr57q1q2runXryt/f36Nfv/hLhw4dFBoaqsGDB+vo0aPq1q2bSpQokWpMdHS0Zs+erblz56pJkyZq1aqVQdUis/r166eVK1dq+vTp+uKLL/Tggw+qWbNmatasmapVq2Z0eU5jxYD2/PPPy9fXV40bN9YTTzyhpk2bptrJYLY5JyQkyNfXV8WKFZOvr2+aS6RaQVRUlPbs2aPo6GhJUokSJVSzZk2VLl3a4MpyhtWaH//k5eWlJk2aqEmTJoqLi9PatWu1YsUKbd26Vd99952WLFmi+vXrq0OHDnr22WeNLhdwKbL3vXn6977V5kz2tgayt7mRvcneycw2Z7I32dvsyN6egwa4gdq3b08oScfNmze1evVqhYSEKDw8XAcPHjS6JKczy5xbtmypevXqqV69elx2y8TsdrumT5+ut99+W1988YVmzJih0qVLq3jx4vLy8tKFCxd08uRJORwOtWrVSh988IHRJSMT+vXrp379+unnn3/W8uXLtWrVKs2YMUNffvmlSpcurdq1a5vyu8uKAc3X11c3btzQsWPHVLhwYfn5+emJJ55Qvnz5jC7NKTZu3Kjly5dr+fLlmjRpkmw2m4oVK6ann35aTz/9tKmPzv311181ZswYhYeHy+FwpLqUot1uV+3atTV8+HD5+/sbWGX2We2o+7vx8fFRmzZt1KZNG126dEmrVq3S8uXLtX37du3YsYMQDsshe6fPLDk0M8wyZ7K3NZC9zY3sTfYme5sP2dt6yN7uzeYw+81E4DH27t2rJUuWaPXq1YqNjZXD4VDlypW1fPlyo0tzGivOGeby448/aunSpYqIiNC5c+fkcDhUokQJ1a5dW+3atVODBg2MLjFHBAQE6D//+Y8CAwNTll25ckVBQUH6+OOPVbNmzVTj165dqw8//NDjL+0j3T4Davv27Vq+fLnWrl2ra9euSZLKli2rDh06qH379ipTpozBVWbf2bNnUwLar7/+mm5Aa968uaZOnZrqdeDJ4uLitGHDBi1btkxbtmxRYmKicuXKpYYNG+rpp59WQECAOnbsaKo5Jzty5EjKTqazZ8/KZrOl7JQYOnSoXn75ZaNLzDHr16/XwIEDZbPZ1KxZMzVo0EAlSpSQt7e3oqOjFR4ertWrVyshIUGTJ09Ws2bNjC4ZTnTq1CmtXLlSvXv3NroUAAayYg614pxhLmRvsjfZ23ORvcneZG/rIXu7BxrgHuLs2bMKCQlRaGhoqnsseLqoqCiFhoYqJCREJ06ckCR5e3urefPmeuGFF1SnTh2DK8x5Vpwz4OkCAgLSPfL6XpfHNEMI/7v4+Hht2LBBK1as0ObNm3Xr1i3Z7XY1bNhQ//d//2d0eTnGSgEt2eXLl1OOUt2/f3+qdT179lTv3r3l6+trTHFOtmvXLi1fvlxhYWG6cuWKbDabypUrp+eee05BQUEqVaqU0SVm2enTp9WmTRs9+OCD+uSTT1S+fPl0x/35558aMGCAfvvtNy1duvSO49zdsGHDMv0Ym82msWPHOqEaAJ6K7G0eVpwz4OnI3reRvcneZkT2JnuTveFqNMDd2M2bN7VmzRqFhIRo586dSkpKkre3t37++WejS8uW+Ph4rVu3TosXL9aOHTtSLnVTsWJFHT9+XJMnT1bLli0NrjJnWXHOsI74+HgdOXJE0dHRKUehBwQEKE+ePEaXlmOy8sNOMvc9ca5evarVq1dr+fLl2rNnjw4dOmR0SU5h5oB2J5GRkVq+fLlWrFih3377TTabTX5+fmrVqpU6dOiQ5qwLs7h165Z++OEHLVu2TJs2bdLNmzc9/nfXBx98oKVLl2r16tWp7jGXnsuXL6t169Zq27athg4d6qIKc1ZAQECmH2Oz2Tx6h2lWzhCx2Wxat26dE6oBPBfZ2zysOGdYB9n7zsjeno/sTfb25N9dZO97I3vDCDTA3dC+ffsUEhKiVatWpVyaq1SpUurUqZOef/55FS9e3OgSsyQiIkJLlizRqlWrdPXqVdntdtWsWVPNmzdX8+bNlZiYqGbNmpnqci9WnDOs4/z585o0aZLCwsIUGxubap2vr69atGihQYMGqUSJEgZVCFfZvXu36c+gMWNAy4gjR45o2bJlWrVqlf7880+PDywZde3aNYWFhWnFihWaNWuW0eVkWatWrfTEE09keEfihAkTtHHjRn3//fdOrsw5IiMjs/Q4T74HXdOmTdMsczgcOnv2rIoVK6bcuXOn+7gNGzY4uzTAI5C9zZNDrThnWAfZG8nI3uZF9iZ7exKy921kb/fnbXQBuC0qKkpLly7VkiVLdOLECTkcDtntdknSwIED1bNnz5R/91TPP/+8fH191bhxYz3xxBNq2rRpqiOisvrB6c6sOGdYw/79+9WrVy9duXJF1atXT/e+NqGhodqwYYOmTZumWrVqGV0yMunnn3/W/v375XA49NBDD6Ubsq9du6aJEyfq22+/1cGDBw2o0nVy5cqlwMBABQYGpgpoZhcQEKCAgAANHjxYO3futMScJSlfvnxq1qyZ9u7da3Qp2XL27FlVqlQpw+MrVKigBQsWOLEi5/LkMJ1V6YXpixcvqlGjRvroo4/UsGFDA6oC3BvZ25w51IpzhjWQvc2P7J0a2Zvs7YnI3uZH9vZMNMANlHxpriVLlmj79u1KTExUnjx51LRpUz399NPy9/dXUFCQKleu7PEBXFLKPVyOHTumwoULy8/PT0888YTy5ctndGlOY8U5w/wuXLigvn37Km/evPr8889Vu3btdMcdOnRIAwcO1IABA7R06VIVLVrUxZUiK65fv6633npLmzdvVvJFYmw2mxo1aqRp06alHNG4adMmjRw5UlFRUbrvvvuMLNnlzBLQMqtMmTIev/P49OnTmj17tvbt2ydJevjhh9WjRw/df//9qcaFhYVp9OjROn/+vMaMGWNEqTnCx8dHV69ezfD4q1evqkCBAk6syFjx8fH67bff5OPjowoVKhhdjtPc7f6YgFWRvc2fQ604Z5gf2dvcyN73Rvb2XGTvuyN7mwPZ2/3RADdQ48aNdfXqVRUsWFDPPPOMAgMD9cQTT8jX11eS+Y5Q3r59uzZs2KBly5Zp8eLFWrRokXLlyqWGDRvq6aefztK9I9ydFecM85s/f75iY2O1cOFClS9f/o7jHn74Yc2ePVtt2rTR//73P/Xv39+FVSKrPvvsM23atEmNGzdWUFCQ/Pz8tHnzZn3zzTeaMGGChg8frvHjx+urr76Sl5eXunfvrgEDBhhddo6wWkCTpAMHDmjatGmp5ty3b99UZx04HA599dVX+vTTTxUXF2dUqdl2+PBhvfTSS7p27Zp8fHzk4+OjQ4cOadWqVVq4cKGqVKmimJgYDR8+XGFhYfLy8lLPnj2NLjtbHnnkEYWFhal79+4ZGr9mzRo99NBDTq7KuWJiYvTll19q3759mjdvXsry5cuXa8yYMSk7JR588EGNHTtWNWrUMKhSAK5E9jZ/DrXinGF+ZG9zI3uTvcneZG9PRvaGJ6ABbqArV67Iz89PLVq0UP369VWrVq2UAG5GPj4+at26tVq3bq3Lly9r1apVWr58uX744Qf98MMPkm4fNRMREaFGjRqZ4r+FFecM81u3bp3atm171wCerGzZsgoKClJYWBgh3ENs2LBB9erV05dffpmy7Mknn1TRokU1b948FSpUSLNnz1ZAQIDGjRvn8T/Yk1kxoG3fvl09evRQYmKiHnzwQfn6+io8PFyvvPKKZs+erbp16+r06dP617/+pYiICOXLl0+jRo0yuuwsS96J8PHHH+uZZ56RdPt+oW+99ZbGjBmjiRMnKjg4WH/88YceffRRjRkzRv7+/gZXnT0dO3bUwIEDNXv2bL366qt3HTt9+nRFRESkeu97mtjYWHXu3FnHjx9XqVKllJCQIG9vb0VERGjIkCFyOBzq3LmzKleurNDQUL366qsKDQ1Ns6MNgPmQvc2fQ604Z5gf2dvcyN5kb7I32dtTkb3hMRwwTHh4uOPdd9911KtXzxEQEOB46KGHHM8//7xj5syZjhMnTjhOnz7t8Pf3d6xbt87oUp3q9OnTjmnTpjmeeeYZh7+/vyMgIMBRq1Ytx3/+8x/H3r17jS7PKaw4Z5hHjRo1HAsXLszw+EWLFjlq1qzpxIqQk2rUqOH46quv0iz/7bffHP7+/o6HHnrIMXr0aEd8fLwB1TlP7969HVWrVnWsWLEiZdmBAwccgYGBjpdeeskRFRXlaNGihcPf39/RsWNHx5EjRwysNme88sorjlq1aqX63vnzzz8d7du3d3Tq1Mnx22+/ORo1auTw9/d39O/f3xEdHW1gtdnXqFEjx+jRo9MsX7NmjePhhx92dO3a1fHII484vvzyS0diYqIBFTpH//79HQEBAY5//etfjn379qV67yYmJjr27duXMmbEiBEGVpp9n376qaNq1aqO77//PtXynj17OgICAhzjxo1LWRYXF+do3ry5Y+jQoa4u0+kuXrzo8Pf3d2zbts3oUgC3Qfa+zYo51IpzhnmQvc2N7E32JnuTvT0V2fs2srf74wxwA9WpU0d16tTRiBEjtHnzZi1fvlybNm3SgQMHNHHiRJUvX142m03Xr183ulSnKlu2rHr37q3evXvryJEjWrZsmVatWqXvvvtOixcv1uHDh40uMcdZcc4wj1y5cunmzZsZHh8XFyc/Pz8nVoScdOPGDRUpUiTN8sKFC0uSnn76aQ0fPtzVZTldRESEunTpknJ0siRVq1ZNgwcP1qBBgzRo0CBFRkbq7bff1muvvWaK+4MePnxYL7zwgmrWrJmyrGTJkvrXv/6lHj166M0331RCQoImT56sVq1aGVhpzrhy5Uq6lz999NFHlZiYqKNHj2revHmmuyzXxIkTNW7cOC1cuFArV66Ul5eXChUqJC8vL12+fFnx8fGy2+3q3r27Bg0aZHS52RIWFqZ27dqpZcuWKctiY2O1detWSVLXrl1TlufJk0dt27bVt99+6/I6Abge2fs2K+ZQK84Z5kH2NjeyN9mb7F3D9cU5Edmb7A33QwPcDXh7eyswMFCBgYGKjY1VWFiYli9frp07d8rhcGjIkCFavHixnnvuObVo0UJ58uQxumSnCQgIUEBAgAYPHqydO3dqxYoVRpfkdFacMzxblSpVtHnzZgUHB2do/KZNm1SpUiUnVwVns9lskqT27dsbW4iTWDGgxcTEqGLFimmWV65cWQ6HQ5cvX9a3336r++67z4Dqcl5CQkK6v6F8fHwkST179jTV9k2WO3dujRw5UsHBwQoNDVVERITOnTsnh8OhChUqqHbt2mrTpo0pLkV2+vTpVEFbksLDw5WQkKDy5cuneS2XLl1aFy5ccGWJOW7KlClplsXFxclms2np0qXas2dPmvU2m019+/Z1RXmA2yF7/8WKOdSKc4ZnI3tbE9mb7O3pyN5kb7L3bWRv49EAdzN58+ZVUFCQgoKCdOHCBa1YsULLly/Xjh07tGPHDo0ePVrh4eFGl+kS9evXV/369Y0uw6WsOGd4nnbt2undd9/VqlWr1Lp167uODQ0N1bZt2zRp0iQXVQdnSw4sZmPFgJaYmChv77Q/BXPnzi1J6t27t2kCeEY88sgjRpfgVA8++KDHH2V+L3a7XUlJSamWbd++XZLUqFGjNOMvXryofPnyuaQ2Z0kvhCcLDQ1NdzkhHLiN7P0XK+ZQK84ZnofsbW1kb/Mge6dG9vZ8ZO/UyN7uiwa4GytatKhefvllvfzyyzpx4oSWLVvm0UcoZ/SI1b+z2WyaM2eOE6pxDSvOGebXoUMHhYaGavDgwTp69Ki6deumEiVKpBoTHR2t2bNna+7cuWrSpIkpLuFkJclHnGd2nZmZPaClJ70j1M3MCq/tqKgo7dmzR9HR0ZKkEiVKqGbNmipdurTBleWMSpUqad++ferWrZskyeFwaO3atbLZbGratGma8evXr/f41/ncuXONLgEwBbK35+dQK84Z5kf2Nj+yd1pkb/Ozwmub7J0a2RtGoQHuIe6//371799f/fv3N7qULNu1a1e6y202mxwOxx3XeTIrzhnmZ7fbNX36dL399tv64osvNGPGDJUuXVrFixeXl5eXLly4oJMnT8rhcKhVq1b64IMPjC4ZmTR27FhNnjw51TKHwyGbzaa33347zdHaNptN69atc2WJLsdnszkcP348zdl8MTExkqSjR4+me1R+3bp1XVKbM/36668aM2aMwsPD5XA4Uv0Gsdvtql27toYPHy5/f38Dq8y+9u3b64MPPtCjjz6qxx57TIsWLdKZM2d03333qXHjxqnGTp8+Xfv37/f4+yrWq1fP6BIA0yF7eyYrzhnmR/Y2P7J3Wnw2mwPZm+ydjOwNI9EAN1BwcLDeeOMNNWzYMGVZQkKC9u3bp4CAAOXPnz/V+GXLlmno0KE6dOiQq0vNEUeOHEmz7OLFi2rUqJFmz56d6r+DWVhxzrCG/Pnz64svvtCPP/6opUuXKiIiQr/88oscDodKlCih9u3bq127dmrQoIHRpSKTypQpI0np7ihMPlL1n+vutFPR01gxoO3evVuJiYmplsXGxkqStm7dqqioqDSP8eR70U2fPl3Tp09Pd9348ePTXX748GFnluR069ev18CBA2Wz2dSyZUs1aNBAJUqUkLe3t6KjoxUeHq7Vq1erY8eOmjx5spo1a2Z0yVnWpUsX7dmzR+PGjUtpeBQsWFATJ06U3W6XJH333XeaMWOGTp06pdq1a+uFF14wuGrnio+P12+//SYfHx9VqFDB6HIAw5C9zZ9DrThnWAPZ27zI3mRvsndqZG/PQfZOi+ztnmwOs3xzeqCAgAB99NFHatOmTcqyS5cuqVGjRpo1a1aagLZs2TINGTLE478M/u7SpUtq2LChpQKpFecMAO4uICDgjkeaJx+Bnx5P/k6+05z//tPw7+uT/zt46pw/++yzLJ1N0K9fPydU4xqnT59WmzZt9OCDD+qTTz5R+fLl0x33559/asCAAfrtt9+0dOnSO47zFPv27dO+ffuUL18+NWvWTEWKFElZN2XKFC1dulRt2rRRr1690r3/oKeJiYnRl19+qX379mnevHkpy5cvX64xY8bo6tWrkm7fi27s2LGmu6cikBFkb2vmUCvOGQDcHdn7L2Tv1MjenofsfRvZ231xBrgb4pgEAJ4iLi5OPj4+aZb/9ttvKlCgQJr7k8H9hYaGqk6dOipXrpzRpbhU3759LXeptXHjxhldgkt58qVss2rOnDnKlSuXZs6cmSqI/lOpUqU0Y8YMtW7dWl9//bWGDh3qwipzXs2aNVWzZs101/Xr1++OO1Zu3bql/fv3p3s2qLuKjY1V586ddfz4cZUqVUoJCQny9vZWRESEhgwZIofDoc6dO6ty5coKDQ3Vq6++qtDQUN1///1Glw64BbI3AE9B9jYfsrd1kL3Nj+ydFtmb7O0OaIADADItPj5e48eP1/Lly/XDDz+kCeKTJk3SDz/8oA4dOmjIkCHy8/MzqFJk1rBhwzRhwgTLhXArBrSgoCCjS3Cp9C5/a3ZbtmxRUFDQXQN4skKFCql9+/bauHGjx4fwrLpy5YqCg4PTPRvUXc2aNUsnT57Uf//7X7Vs2TJl+dSpU+VwOPTyyy+nbM+OHTuqbdu2mj59uuV2wgEA4KnI3uZF9rYOsrf5kb0zh+wNV7EbXQAAwLPEx8ere/fu+vrrr1WmTBldunQpzZinnnpK/v7++uabb/T6668rISHBgEqRFVY9Eyo4OFjbt283ugyXCgwM1Pr1640uw2V27dql8+fPG12GS509e1aVKlXK8PgKFSrozz//dGJF7s/TPgPDwsLUrl27VAE8NjZWW7dulSR17do1ZXmePHnUtm1by33WAQDgqcje5uZpvztzCtnb/Mje90b29rzPQLK3Z6IBDgDIlK+++krh4eEaPny4QkNDVbp06TRjOnXqpMWLF6tfv37au3ev5s+fb0ClQMZZMaBFRkbq+vXrRpcBJ/Lx8Um5B1VGXL16VQUKFHBiRchpp0+f1iOPPJJqWXh4uBISElSuXDndd999qdaVLl1aFy5ccGWJAAAgi8jeMCOyN8yI7G1+ZG/PxCXQ4TKhoaFplsXGxkqStm7dqqioqHQf1759eydW5VxWnDPMb/ny5QoMDNSLL754z7H9+vXTrl27tHTpUr3yyivOLw454vLlyzpz5kymHlOmTBknVQMgqx555BGFhYWpe/fuGRq/Zs0aPfTQQ06uCjnJbrcrKSkp1bLko8wbNWqUZvzFixeVL18+l9QGwDhWzKFWnDPMj+xtfmRvwBzI3uZH9vZMNMAN9s8fOleuXJF0+w3yzx9A6V3qyJMMHTpUNpst1bLkS13MnDlTNpst5d+T/9lms3l0ILXinGF+J06cUJcuXTI8/sknn9Qnn3zixIqQ08aOHauxY8dmeLzNZtOhQ4ecWBGQM9auXasTJ05keLzNZlPfvn2dWJFzdezYUQMHDtTs2bP16quv3nXs9OnTFRERoS+//NJF1SEnVKpUSfv27VO3bt0k3f6duXbtWtlsNjVt2jTN+PXr16tixYquLhNwC2Rvc+dQK84Z5kf2Nj+yN8yK7H1nZG/PRPb2TDTADXanHzpvv/22AdU417hx44wuweWsOGeYn5+fnxITEzM8Pk+ePPLx8XFiRchptWvXVvny5Y0uw+WsFtAkadGiRdq2bVuGx9tstkztoHE3a9euVVhYWIbHe/o2btmypZo3b64JEybo4MGDevHFF1W1alXlypVLkpSUlKSIiAjNmjVLa9euVadOnfT4448bXDUyo3379vrggw/06KOP6rHHHtOiRYt05swZ3XfffWrcuHGqsdOnT9f+/fs1fPhwg6oFjEX2NjcrzhnmR/Y2P7J3xnh6LpPI3vfi6duY7G1+ZG/PRAPcQO3bt09zhLKZBQUF3XPMlStX5OPjozx58rigIuez4pxhfhUqVNDevXsVHBycofF79uxR2bJlnVwVclLnzp3Vpk0bo8twOasFNOn2/YrCw8MzPN7TQ3ivXr3SvTSVmU2cOFHjxo3TwoULtXLlSnl5ealQoULy8vLS5cuXFR8fL7vdru7du2vQoEFGl4tM6tKli/bs2aNx48alnNFYsGBBTZw4UXa7XZL03XffacaMGTp16pRq166tF154weCqAdcje6dlthxqxTnD/Mje5kf2zhiyt+che5O9zYbs7ZlogBvoww8/NLoEl7t165aWLFmi/fv3pzpCe9euXXrvvff0+++/y2azqVGjRho5cqQpjoK04pxhbkFBQRo5cqR27NihBg0a3HXszp07FRYWpv79+7uoOiDrrBjQ3nnnHQUGBhpdhstUrFhR9erVM7oMl8qdO7dGjhyp4OBghYaGKiIiQufOnZPD4VCFChVUu3ZttWnTRvfff7/RpSILbDabJk6cqG7dumnfvn3Kly+fmjVrpiJFiqSM+fPPP+VwOPTGG2+oV69eKeEcsBKytzVyqBXnDHMje8OsyN7mR/Yme5sN2dsz0QA30Ouvv6727durWbNmlrhE0a1bt/Taa68pPDxcuXLl0ujRo+Xt7a3ff/9dr7/+um7duqXGjRurUqVKWrNmjTp37qxly5apWLFiRpeeZVacM8yvffv2Wrx4sXr37q1evXqpU6dOaV6z0dHR+vbbbzVz5kyVK1dOXbt2NahaIOOsGNAKFy7MWSIW8eCDD3KUuYnVrFlTNWvWTHddv3791K9fv3TX3bp1S/v371dAQIDy58/vzBIBQ5G9zZ9DrThnmB/ZG2ZF9oaZkb3NjeztWTgEwUC7du3Sv//9bzVq1EhDhw7Vtm3b5HA4jC7LaebPn6/du3fr3//+t8LDw+Xtffv4i88++0zx8fFq06aNZsyYocGDB2vx4sXy8vLS9OnTDa46e6w4Z5hfrly5NHXqVFWvXl2ffPKJGjdurMDAQHXp0kWdOnVS06ZN1aRJE3322Wfy9/fX7Nmz+WL3IGXKlJGfn5/RZQAAXODKlSsKDg7Wzz//bHQpgFORvc2fQ604Z5gf2dvcyN4AYB1kb2NwBriBtm/frnXr1un777/XypUrtXTpUhUrVkxt2rRR27ZtFRAQYHSJOWrFihVq0aKFunfvnrIsPj5eGzZskM1mS7W8UKFCeu6557Ry5UoNHz7ciHJzhBXnDGsoWrSo5syZo7CwMK1cuVKHDh3S0aNHZbfbVaxYMbVv315PP/20mjZtanSpyKQNGzbcdX1SUpL+/PNPFStWTLlz53ZRVUD29evXT/7+/kaX4VIZvV/k39lsNs2ZM8cJ1biHc+fOqVChQsqVK1eadQULFtTcuXP10EMPGVCZcczcBASSkb3Nn0OtOGdYA9nbvMjeMCuyd8aQvcnecD4a4AbKmzev2rVrp3bt2ikmJkZr1qzRqlWrNGfOHM2ePVuVKlVSu3bt1KZNG5UsWdLocrPtjz/+UFBQUKple/bsUVxcnEqUKJHmi/G+++5TdHS0K0vMcVacM6ylefPmat68udFlwIUuXryowMBAzZo1Sw0bNjS6nBxjxYA2bty4O162yYzudBmqZNev/z/27js8iupt4/i9aaQBCb0XKQm99yZFepSudBBEQGmCCghSFfgJKgKCoHQFpASkGpAu0ptUKaEKBEIogYS0ff/gzcqSBJKQZLOb7+e6uJSZMzvPbGPvc2bOPNbcuXPVokUL5cmTJ4WqSl779++PdbnBYIgzeBkMhuQsKUXMmzdPv/76q3777bcYYfvLL7/Unj171KNHD/Xs2dPsnlyOjo5pbipGIK0ge9t+Dk2Lx4y0heyd9pC9bQfZ2xzZ+7911o7sjdSOAfBUIn369GrTpo3atGmju3fvatOmTdq4caO+/vprff3116pUqZJatGihhg0bys3NzdLlJkpUVJTs7e3Nlu3du1eSVL169RjtHz58KBcXlxSpLbmkxWMGpKfTujg7OytdunSWLgXJwBbPWEyLAe35TuLnBQcH64svvlDPnj1VqFChFKrKch4/fqwZM2aoQoUKNvManzlzJsayu3fvqnr16po3b55NdaRJT7+bhgwZovXr1ytz5sy6efOm8ubNa9amUKFCOnz4sL755hudOHFC3333nYWqBWApZG/bzKFp8ZgBiext68jetpHLyN7myN7Wj+wNa8E9wFOhTJkyqUOHDlq0aJG2b9+uzz77THZ2dvr8889Vs2ZNS5eXaPny5dPp06fNlm3evFkGg0Gvv/56jPa7d+9Wvnz5Uqi65JEWjxlpQ3h4uJYtW6Zhw4aZLd+/f7+aNm2qqlWrqly5curZs6euXLlioSqBpBMd0K5evWrpUlJMaGioVq9enaaujrLFDqbn2cJZ5nFZtmyZ1q9fr27dumn79u0xArj0tMNt8+bNatWqlTZv3qxVq1ZZoFIAqQXZ+ylbyKFp8ZiRNpC9kdaQvdMGsrd1I3vDWjAAnso5OjrK2dlZ7u7ucnBwUFhYmKVLSrRmzZppzZo12rJli0JCQjR//nxdvHhRmTNnjnGvot9++01//vmn6tevb6Fqk0ZaPGbYvvDwcL377rsaNWqU1q1bp4iICEmSv7+/evbsKX9/f9WqVUvdunWTv7+/3nnnHd25c8fCVQOvLi0EtOelxWOG9VqxYoUqV66soUOHxnqfsWhOTk4aP368ihUrpl9//TUFKwSQmpG9rTuHpsVjhu0jeyOtSos5NC0eM6wX2RvWginQU6G7d+9q8+bN2rRpkw4cOKCIiAgVL15cAwYMULNmzSxdXqJ169ZNu3bt0ocffmi6/4Wjo6O++OILOTk5SXp6hvbixYu1f/9+FSxYUN26dbNs0a8oLR4zbN/ixYt18OBBffzxx+rYsaMcHJ7+UzJt2jSFhYXpzTff1P/+9z9JUq9eveTj46NZs2ZpxIgRliwbScTR0VGVKlVSxowZLV0KAJi5cOGCBgwYEK+2BoNBjRs31syZM5O5KgCpGdnbdnJoWjxm2D6yd9pG9gaQWpG9YS0YAE8l7ty5Iz8/P23atEmHDh1SZGSkcufOrR49eujNN9+0ift/ODk5af78+dqwYYOOHj0qd3d3+fj4qHDhwqY2J06c0OHDh/Xmm29q6NChcnZ2tmDFry4tHjNs37p169SoUSP16NHDtCwsLExbt26VwWAwW+7h4aFWrVpp/fr1hHAr8fDhQ6VPnz7O9RkzZtSiRYvMlu3bt09VqlRJ7tKAZJU+fXpNmDBBRYoUsXQpSCQHBwfTIEd8ZMiQIcb9YgHYPrL3U7aWQ9PiMcP2kb1tG9kbaRXZ2/qRvWEtGAC3oICAAPn5+en333/X4cOHFRkZqYwZM6pNmzby8fFRxYoVLV1ikrO3t5ePj498fHxiXd+7d28NGDBAdna2Mzt/Wjxm2LZLly6pZcuWZssOHTqk0NBQZcuWTV5eXmbr8uXLl6buY2TtunTponnz5snDw+OlbZ88eaKvvvpKv/zyi06dOpX8xVlQWgxoGTNm1MKFC1WsWDFLl5Ii0qVLp5o1a3KFhRXLnz+/Tpw4Ee/2J06cUM6cOZOxIgCpBdk7JlvMoWnxmGHbyN62jewdO7K37SN7Wz+yN6wFA+AWVKdOHUlPz1Ru0KCBfHx8VKdOnRfeN8HWubi4WLqEFJcWjxnWLSoqKsZZe3v37pUkVa9ePUb7hw8fpw4QFQABAABJREFU8j63IqdPn1anTp00f/58ZcmSJc52x44d06effqpLly69sJ2tSJcunVnnU2RkpGbPnq0+ffpYsKrk5ejoqMqVK5v+/vDhQ02aNEnjx4+3YFWvbt68efr111/122+/xfjN9eWXX2rPnj3q0aOHevbsafUd5KtXr46x7NGjR5KkP//8U7du3Yp1uxYtWiRjVcmnefPmmjJlirp37/7SDrNz585p7dq16tKlSwpVB8CSyN4xpcXf52nxmGHdyN62jewdO7I32dsakb3jRvaGJRmMRqPR0kWkVZ07d9Zbb72lxo0by93d3dLlAEC8vPXWWypTpozGjh1rWta0aVP5+/vrm2++UePGjc3a9+zZU/fv39fy5ctTulQkws8//6wvvvhCefPm1fz582OcoRkeHq7vvvtOc+fOVWRkpN566y0NHz7cJs7cffjwoZYvX66jR4/KaDSqePHi6tixozJkyGDW7u+//9aIESP0zz//6PTp0xaqNmlcu3ZN8+bN05EjRyRJxYsX13vvvaf8+fObtfPz89O4ceN0584dqz1mo9GoIUOGaP369cqcObOWLl2qvHnzmrWZPn26li9froCAAL3xxhv67rvvLFRt0vD29pbBYDBb9uxP/9jWGQwGq32NHz9+rFatWunevXsaPny4mjVrFqPTOCIiQuvWrdPkyZMlSb6+vsqaNaslyk0xt2/floeHR6wDfeHh4Tpy5IiKFSv2wik4AWtH9gZgjcjeto3sTfYme5O9rfU1JnvHjuyd+jAADgBIkNmzZ2vGjBmaMmWKatSooWXLlmnixInKkiWLtm7danYPmN9++02ffvqpBgwYoN69e1uwaiTEunXrNHToUGXLlk3z589Xvnz5JD09Q/3TTz/VP//8o1y5cmnMmDGqVauWhatNGlevXlWXLl108+ZNs5CSJUsWLV++XDlz5lRERISmTJmihQsXKjIyUs2aNdOUKVMsWPWrOX36tDp37qzg4GA5OzvL2dlZ9+7dk6urq5YuXaqiRYvq4cOHGjFihPz8/GRvb68ePXpo0KBBli49UZYuXarRo0erW7duGjx4cJxX/YWFhWnMmDFatWqVvvjiC7Vq1SqFK006vr6+idru+ak2rYm/v78++OAD+fv7y9XVVSVKlFDWrFkVGRmpwMBAnThxQqGhocqVK5dmzJghb29vS5ecJF50dcWgQYNs6uoKAADSCrK37SN7k73J3mRva0X2JntbAwbALSi2qTHiw1qnxgBgG8LCwtSjRw8dOHBABoNBRqNRjo6Omj59uml6yc2bN2vx4sXav3+/ChYsqFWrVsnZ2dnClSMhduzYoYEDB8rd3V1z5szRH3/8oVmzZikiIkLt27fX4MGD5ebmZukyk8zgwYO1YcMGDRo0SK1bt5aLi4t27NihsWPHqmzZsvrqq6/Uq1cvHT58WLly5dKoUaNM73dr1adPH+3atUuTJk1Ss2bNJEnHjx/XRx99pFy5cmny5Mnq0qWLLl26pFKlSmn8+PEx7jNoTdq0aSNXV1ctXLjwpW2NRqNat24tJycnLV26NAWqQ1IKCwvTzz//rPXr1+vMmTOKiIiQ9HRqwbJly6phw4Z6++23zTqNrVVavLoCSAyyNwBrRPZOG8jeZG+yN9nbWpG9yd6pHQPgFhQ9NUb0lBcvY+1TYwCwHZGRkdqwYYOOHj0qd3d3+fj4qHDhwqb133zzjebOnaumTZtq6NCh8vT0tGC1SKxDhw6pT58+Cg4OltFoVP78+TV+/HhVrFjR0qUludq1a6tGjRqaMGGC2XJfX1+NGjVKtWvX1pYtW9S+fXt9/PHHcnV1tVClSadGjRpq0qSJRowYYbbcz89PgwYNUtmyZXX8+HENGDBA7777rtWfuVquXDkNGDBA3bp1i1f72bNna+bMmaYp6qxdaGhorJ2h58+fV4YMGZQtWzYLVJUy7t69K3t7e5uYLvJ5afHqCiAxyN4ArBXZO20ge5O9yd5kb1tA9iZ7pzYOli4gLXv+H3oAsBb29vby8fGRj49PrOt79+6tAQMGWP2P9rSuQoUKWrhwoXr27Km7d+9q7NixNhnAJSkoKEjlypWLsbxSpUoKCwvTjh07NHXqVDVq1MgC1SWP+/fvxzoFValSpRQZGamzZ89q0aJFKlu2bMoXlwwcHBwSdNZxhgwZYtzDyhqFhYVp0qRJWrt2rXbu3BkjiH/99dfauXOnWrdurU8//dQmOpielylTJkuXkGxWrFihypUra+jQoS9s5+TkpPHjx+v06dP69ddfCeFIc8jeAKwV2TttIHuTvcneZG9bQPYme6c2DIBbkDXf4wFA2tWlSxf16dNH1apVMy2LiIjQkSNH5O3trfTp08vFxcW0LvpeZFxBY528vb21ZMkSde/eXX369NGMGTNUtWpVS5eV5MLDw83et9Gip5rr3r27TQVw6ennNl26dDGWR4e0Xr162UwAl6T8+fPrxIkT8W5/4sQJ5cyZMxkrSn7PTpvp7e2toKCgGMdUt25d3bp1S8uWLdO5c+e0cOFCOThYZ0SYPn16orb78MMPk7iSlHPhwgUNGDAgXm0NBoMaN26smTNnJnNVQOpD9gZgjcjeaQvZm+xtK8jeZO+4kL2R0qzzE5ZGRUZGavbs2erTp4+lSwGQhu3fv19t27Y1W/bw4UN16dJFc+fONQvnsD7Dhg2LdXn+/Pl17do1vf/++2rSpInZ9KEGg0FffvllSpVoEZUrV7Z0CSmuZMmSli4hSTVv3lxTpkxR9+7dVaRIkRe2PXfunNauXasuXbqkUHXJY/78+Tpw4IBGjBihTp06xdqmbdu2atu2raZPn67p06dr8eLF8Z6qLrWJbwh/fvpjaw7hafXqCiC5kb0BpAZkb9tG9o4d2dv6kb3J3tHI3mRvS2MA3MIePnyo5cuX6+jRozIajSpevLg6duyoDBkymLX7+++/NWLECP3zzz+EcACpktFotHQJSAK+vr4vXP/kyROtXr3abFlaCOFp8UdrfO6Rak3atWunpUuXqnPnzho+fLiaNWsW43WNiIjQunXrNHnyZKVPn97qQ/jatWtVv379OAP4sz788EPt379fa9assdoQ/scff7y0zcOHD/Xtt99q+/btcnBwsPrXOC1eXQEkFtkbgK0ge9sGsnfsyN7Wj+z9YmRv60T2tk4MgFvQ1atX1aVLF928edP043Xz5s36+eeftXz5cuXMmVMRERGaMmWKFi5cqMjISDVr1szCVQMAbFl8fsTaqnv37unff/81W3b//n1J0t27d2Osk6RcuXKlSG3J5eLFizpw4IDZsocPH0qSzp49G+t0XJUqVUqR2pKaq6urZs6cqQ8++ECffvqpxowZoxIlSihr1qyKjIxUYGCgTpw4odDQUOXKlUszZsxQ1qxZLV32K7l8+bLeeeedeLd//fXXNXXq1GSsKHnlzp37hes3bNigiRMnKiAgQOXLl9fo0aNVtGjRFKoueaTFqyuAxCB7AwBSG7I32ZvsTfa2VmRvsre1YADcgr799lvdvHlTgwYNUuvWreXi4qIdO3Zo7NixGjt2rL766iv16tVLhw8fVq5cuTRq1CjVqVPH0mUDAGzYy37E2rIvv/wyzrPphwwZEmOZwWDQqVOnkrusZDVr1izNmjUr1nWTJk2Kdbk131OwYMGCWr16tX7++WetX79ehw8fVkREhCTJ0dFRZcuWVcOGDfX2228naGqr1MrV1VWRkZHxbp8uXTrTfehsyZUrVzRmzBjt2bNHGTNm1Pjx49WmTRtLl5Uk0uLVFUBikL0BAKkN2ZvsHY3sTfa2FWRvsndqwwC4BR04cEAtWrRQr169TMuaNGmi0NBQjRo1SkOHDtXhw4fVvn17ffzxx3J1dbVgtQAAxDRr1iz5+flp1apVli7llbRs2dLSJaQ4a7730qtwcnJS9+7d1b17d0lPrzCwt7dXxowZLVxZ0nvttdd0+PDheIeuQ4cO2VRHXFhYmGbPnq05c+YoLCxMLVu21McffyxPT09Ll5Zk0uLVFUBikL0BANaO7G29yN5k7+eRva0P2ds6MQBuQUFBQSpXrlyM5ZUqVVJYWJh27NihqVOnqlGjRhaoDgCAl7tx44ZVn5UcbcKECZYuIcWl1RD+vEyZMlm6hGTTsmVLjRo1Snv37lXVqlVf2Hbfvn3y8/NTv379Uqi65LVnzx6NGTNGly9fVpEiRTRq1ChVrFjR0mUli7R2dQWQGGRvAIC1I3tbL7L3U2Tvp8je1ovsbX0YALeg8PBwubi4xFju5uYmSerevTsBHECq9Pz9ml50r6agoKAUrQ0AYjN9+vREbWfNnRUtWrTQypUr1bt3b73//vtq27atsmTJYtYmICBAy5cv148//qg8efKoQ4cOFqo2ady5c0cTJkzQhg0b5OzsrMGDB6t79+6x3lPPlqSlqyuAxCB7A7BWZG8A1obsTfa2ZWRv62IwGo1GSxeRVnl7e+urr76Sj4+P2fKgoCBVq1ZNP/74o2rWrGmh6gAgdt7e3jIYDDGWG43GWJdHs4UzlRHTqFGj9Ouvv1r965sWA9qwYcMSvI3BYIjzXm2pnbe3d7zaPf89Zu3v7cDAQH300Ufat2+fDAaDcuXKZTZF140bN2Q0GlW2bFl98803ypkzp6VLTrTFixdr6tSpCg4OVr169TRixAirPh4ASYfsDcAakb3xLLI32dtakL3J3kBqYdunY1g5e3t7S5cAADGkxfs1wfbFN4Q/H9CsOYT7+vrGu+2zx22tIfyPP/54aZuHDx/q22+/1fbt2+Xg4BDv+3elZpkzZ9aCBQvk5+en9evX69SpUzp79qzs7OyUJUsWtWjRQm+88Ybq1atn6VJf2fjx403/v3XrVm3duvWl2xgMBp06dSo5y0pWabEDEUgOZG8AqRHZG7aI7P1iZG/rRfZ+MbI3LIEBcAt7fioj6cXTGUlSrly5UqQ2AIhNWrxfE2xfWgxoZ86ceWmb69eva9y4cdq+fbvSp0+vgQMHJn9hySR37twvXL9hwwZNnDhRAQEBKl++vEaPHq2iRYumUHXJr2HDhmrYsGGM5ffv35ezs7MFKkp6abGTOC12IAKJRfYGYG3I3rBFZO/Ykb3J3taE7B03snfqwhToFhTXVEZS3NMZWfuZMgCA1C2hZzRu27ZNp06dsvqpql7G1gPa8yIjIzV37lx9//33Cg0NVdOmTTVs2LAY97CyBVeuXNGYMWO0Z88eZcyYUUOGDFGbNm0sXVaSCQ8P16pVq3T06FGzTtT9+/dr9OjR8vf3l8FgUPXq1fX5558rX758Fqz21QwbNkzvvPOOypQpY+lSUsz169df2ia2DsRPPvkkBaoDUg+yNwAgtSF7x47sTfa2VmRv20b2tk4MgFtQYu7/IXEGKAAg+cT3Xk3PMhgMNhvCbT2gxebgwYMaM2aMzp07pwIFCmjUqFGqVq2apctKcmFhYZo9e7bmzJmjsLAwtWzZUh9//LE8PT0tXVqSCQ8P17vvvqsDBw7I0dFRR44ckYODg/z9/fXWW28pLCxMtWvXVuHChfX7778rJCREv/32m9V2tsR1j9+0LK11IAJxIXsDAFIbsrc5sjfZ25qRvUH2Tp2YAt2CCNMAgNRm4cKFli4hVUgLAe15QUFB+t///qfVq1fLyclJ/fr103vvvScnJydLl5bk9uzZozFjxujy5csqUqSIRo0apYoVK1q6rCS3ePFiHTx4UB9//LE6duwoB4enP/2nTZumsLAwvfnmm/rf//4nSerVq5d8fHw0a9YsjRgxwpJlIwk834E4fvx4m+9ABF6E7A0ASG3I3k+RvcnetoDsnXaRvVM3BsBTgZCQEK1cuVK7du3SmTNndO/ePRkMBmXKlEne3t6qX7++fHx8bPIfQQBA6lK5cuUEb3Pw4MFkqMRy0kpAe9by5cs1efJk3b9/XzVq1NCoUaOsejquuNy5c0cTJkzQhg0b5OzsrMGDB6t79+6mcGpr1q1bp0aNGqlHjx6mZWFhYdq6dasMBoPZcg8PD7Vq1Urr168nhFuxtNiBCCQE2RsAkFqQvcneZG/bQfZOe8je1sE2v3GsyKFDhzRgwADduXNHTk5Oypcvn3Lnzq2IiAjdu3dP27Zt09atWzV9+nRNmTJF5cuXt3TJAADoxo0b8vX11erVq3X16lWbmIYtrQU0STp79qxGjx6to0ePKkuWLPr666/VtGlTS5eVLBYvXqypU6cqODhY9erV04gRI5QzZ05Ll5WsLl26pJYtW5otO3TokEJDQ5UtWzZ5eXmZrcuXL58CAgJSssQkd/DgQUVGRiZomxYtWiRPMSksLXYgAglB9gYAWCOyt20ge5O9n0X2tm5kb+thu/+qWIELFy6oR48ecnd31+TJk9WwYcMYZ5oHBwdr06ZN+u6779SzZ0/5+voqf/78FqoYAJCWPXnyRH5+flq1apX27dsno9Eog8Gg2rVrW7q0V5YWA9qkSZO0aNEiRUZGqm7duho4cKDc3d3177//vnC7XLlypVCFSWv8+PGm/9+6dau2bt360m0MBoNOnTqVnGUlq6ioKNnb25st27t3rySpevXqMdo/fPhQLi4uKVJbcvn111/166+/xqtt9HeYtYfwtNiBCCQU2RsAYE3I3raF7E32fh7Z2zqRva0Pr4wFff/993JxcdHKlSuVPXv2WNu4u7urTZs2ql27tt566y39+OOPGjduXApXCgBIy44ePapVq1Zp48aNCg4OliRlypRJrVu31ttvv63cuXNbuMJXlxYD2rx580z/v23bNm3bti1e21nrFQfPn42dFuTLly/G67V582YZDAa9/vrrMdrv3r3b6qffa9euncqWLWvpMlJMWuxABBKD7A0AsAZk79iRva0L2fspsrdtIXtbJwbALejAgQNq1apVnAH8WdmyZVOLFi20e/fuFKgMAJDWBQQEaPXq1fL19dWlS5dkNBrl4uKi6tWra8+ePRo7dqzq169v6TKTTIsWLWQwGCxdRor68MMPE7yN0WhMhkpSzjvvvKMyZcpYuowU06xZM82YMUO1a9dWjRo1tGzZMl28eFFZsmRRvXr1zNr+9ttv+vPPPzVgwAALVZs0KlasKB8fH0uXkWLSYgcikBhkbwBAakX2tn1kb9tH9rZ9ZG/rxAC4BQUFBSVoSrXXXntNy5cvT8aKAABp3caNG7Vq1Srt2bNHkZGRypAhg3x8fNSwYUPVqlVLt2/fVoMGDSxdZpKbOHGiJCk8PFznz59XRESEChcubPVTUr1Irly51KpVq3i3v379uoYPH56MFSUvX19fVa9ePU2F8G7dumnXrl368MMPZTAYZDQa5ejoqC+++MI09e/mzZu1ePFi7d+/XwULFlS3bt0sWzQSJC1eXQEkBtkbAJDakL3J3nEhe1sfsrftI3tbJwbALSg8PDxB/7inS5dOjx49SsaKAABp3aBBg+Tq6qoOHTqofv36qlSpktl9jGz5TO2ffvpJM2fONP1b6+TkpA4dOmjw4ME2eT+fESNGKCQkRB07dnxp2+XLl2vSpEn8DrEyTk5Omj9/vjZs2KCjR4/K3d1dPj4+Kly4sKnNiRMndPjwYb355psaOnSonJ2dLVgxEiOtXV0BJAbZGwCQ2pC9yd6xIXtbJ7J32kD2tj629y8KAABItDx58ujatWtatWqV/P399ffff6tBgwYqWLCgpUtLVitXrtRXX32l3Llzq0WLFrKzs9O+ffs0f/58RUZGWvXZ13EpUKCAxo8fr5CQEPXs2TPWNrdv39aIESO0c+dOOTo6Wv0UXWmRvb29fHx84pyarHfv3howYIDs7OxSuLKk17JlS6u/j1pCpcWrKwAAAGwB2Zvs/Syyt/Uje9s2srd1YgDcwu7du6d///03Xm2DgoKSuRoAQFq3ZcsWHTt2TL/99ps2bdqk3bt36+uvv9Zrr72mhg0bqkSJEpYuMVksW7ZMZcuW1YIFC5QuXTpJT++5NWjQIC1btkxDhgwxTVtlK3755Rf17NlTU6ZMUUhIiPr162e2ft26dRo3bpzu37+vcuXKafz48SpUqJCFqk0aBw8eVGRkZIK2adGiRfIUk0rY0lSDEyZMsHQJAFIxsjcAIDUhe5O9o5G9nyJ7Ww+yN6yFwWg0Gi1dRFrl7e2dqOlsTp8+nQzVAABgLjIyUrt379batWv1xx9/KCQkxPTvVuvWrdWnTx/lzp3bwlUmjQoVKuijjz6KMSXZ0aNH1b59e/n6+srb29tC1SWfx48fq2/fvtq3b5+6deumTz/9VEFBQRo1apQ2b94sZ2dnDRo0SJ07d7b6KfgS+rvLaDTKYDDwuwupmre3t7766qs4rzIA8BTZGwCQmpG9yd5kb7I3Ujeyt3XiCnALatmypaVLAAAgTvb29qpTp47q1Kmj0NBQbd68WevWrdOff/6pFStWaNWqVapSpYpat26t5s2bW7rcVxISEqL06dPHWJ4nTx4ZjUY9ePDAAlUlP1dXV82ePVsfffSR5s+fr2vXrunw4cMKDAxUjRo1NHbsWJvpaJGkdu3aqWzZspYuA0hSXF0BvBzZGwCQmpG9yd5kbyD1I3tbH64ABwAAJr169VLVqlVVuXJllShRItazdoOCgrRhwwatXbtWR48etYkzdeM6kzMoKEjVqlXTvHnzVK1aNQtVl/yioqI0YsQIrVq1SnZ2dho7dqzatGlj6bKSFGfrwhZxdQUAAIB1InuTvcnegPUge1snrgAHAAAme/fu1c6dO2UwGOTu7q6KFSuqSpUqqlq1qmkaMk9PT3Xs2FEdO3bU1atXtX79egtXjVdlZ2enL7/8Uh4eHpo7d6727NmjFi1ayMGBn4pAasfVFQAAANaH7J02kb0B60X2tj58swIAAJPDhw/r1KlTOnz4sI4cOaKjR49q27ZtMhgMypAhgypVqqQqVaqoSpUqKlq0qPLmzavevXtbuuwkce/ePf37779my+7fvy9Junv3box1kpQrV64UqS05xHY8nTp10uPHj7Vs2TI9evRII0eOlJ2dnVkbaz5mwBZVrFiRqysAAACsDNmb7E32BqwL2dv6MAU6AAB4oRs3bpiF8jNnzigyMlIeHh6qXLmyqlSpog4dOli6zFfyoqmMoqctep7BYNCpU6eSu7Rk87JjlhRjvTUf87Bhw/TOO++oTJkyli4FSDJMLwgAAGA7yN5k72jWfMxkb9gisrd14gpwAADwQjlz5lSzZs3UrFkzSdLDhw/122+/adWqVfr999/l5+dn9SG8ZcuWli4hxbVo0SJB9y+ydhMmTLB0CQAAAAAQJ7K3bSJ7A4BlMAAOAABeKDQ0VAcOHND+/ft16NAhnThxQuHh4XJycjJNyWbt0mJAmzhxoqVLAPCKWrZsqXz58lm6DAAAACQBsrdtInsD1o/sbZ2YAh0AAJiJiIjQ0aNHtXfvXu3du1fHjh1TeHi4HB0dVbp0aVPwLleunJycnCxdLgAAAAAAVofsDQBA8mEAHAAAmLz33ns6ePCgQkNDZWdnpxIlSqhq1aqqUqWKKlSoIGdnZ0uXCAAAAACAVSN7AwCQvBgABwAAJt7e3nJ0dFTz5s31/vvvq0CBApYuCQAAAAAAm0L2BgAgeTEADgAATEaOHKl9+/bpypUrMhgMeu2111StWjVVrVpVlSpVUsaMGS1dIgAAAAAAVo3sDQBA8mIAHAAAxPDvv/9qz549pnuR3blzR3Z2dvL29laVKlVModzV1dXSpQIAAAAAYJXI3gAAJA8GwAEAwEudO3dOe/fu1V9//aWDBw/qwYMHcnBwUMmSJVWtWjUNGDDA0iUCAAAAAGDVyN4AACQNBsABAECChIWFadOmTfrll1909OhRGQwGnT592tJlAQAAAABgM8jeAAAknoOlCwAAAKnblStXdOzYMR07dkzHjx/XmTNnFB4eLjc3N9WuXVuVKlWydIkAAAAAAFg1sjcAAEmHK8ABAIDJ/fv3dfz4cVPgPn78uO7fvy+j0aiMGTOqfPnyqly5sipVqqTixYvLzs7O0iUDAAAAAGBVyN4AACQvBsABAICJt7e3DAaDjEajPD09ValSJdMfLy8vGQwGS5cIAAAAAIBVI3sDAJC8mAIdAACYNG7cWJUrV1blypVVuHBhS5cDAAAAAIDNIXsDAJC8uAIcAAAAAAAAAAAAAGATuHkIAAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvgYOkCAABIC6ZNm6bp06cnaJs//vhDefLkSaaKEq9evXq6fv26JOmzzz5Tly5dXti+R48e2r17tyRp3rx5ql69erLW5efnp/z58yfLPgAAAAAAqRfZm+wNAIDEADgAACnCy8tLPj4+ZssCAwO1Z88eubq6qn79+jG2cXV1TanyEm3Tpk0vDOF3797V3r17U7AiAAAAAEBaRfYGAAASA+AAAKSIhg0bqmHDhmbL9u3bpz179sjT01OTJ0+2UGWJlyFDBh0+fFi3bt1S9uzZY23j5+eniIgIOTo6Kjw8PIUrBAAAAACkJWRvsjcAABL3AAcAAInUoEEDGY1G+fn5xdlm/fr18vDwUKlSpVKwMgAAAAAAbAPZGwCAhGMAHACAVGz79u3q0aOHKleurFKlSqlRo0b66quvdO/ePbN2165dk5eXl2rXrh3r43Tu3FleXl7at2+fadnQoUPl5eWl/fv3q1+/fipdurSqVq2qRYsWxau2xo0bS3o6FVtsAgICdPDgQTVq1EgODnFPOrNmzRp16NBB5cuXV+nSpeXj46OZM2cqJCQk1vZ//fWXunfvrkqVKqlixYoaOHCg6b5osYmMjNSSJUvUtm1blStXTuXKldPbb78tX19fGY3GeB0rAAAAAMB2kb1jInsDAKwZU6ADAJBKTZ48WXPmzJG9vb0qVKggT09PHT16VD/++KM2btyoBQsWKG/evK+8n5EjRyowMFC1atXSuXPn5O3tHa/tChQooGLFiunw4cMKCAhQtmzZzNZv2rRJUVFRatasmaZPnx5j+6ioKH388cdat26dnJycVLlyZbm4uOjAgQP69ttv9fvvv2vevHny9PQ0bbN8+XJ9/vnnkqSKFSsqQ4YM2r17tw4ePKiwsLAY+wgPD1ffvn21c+dOubu7q1y5cnJ0dNT+/fs1dOhQ7du3TxMnTkzI0wUAAAAAsCFkb7I3AMD2MAAOAEAqtHXrVs2ZM0ceHh768ccfTdOYhYWFaezYsVq+fLkGDBiglStXymAwvNK+AgIC9Ntvvylv3ryKioqSnV38J4hp2rSpTp8+LT8/P3Xq1Mls3YYNG5QtWzZVqlQp1m0XL16sdevWKW/evJo7d67y5csnSQoODtbgwYO1fft2ff7555o2bZok6caNGxo/frwcHBw0e/ZsVatWTZJ09+5d9ejRQ6dOnYqxj++//147d+5U5cqVNXXqVGXKlEmSdOfOHb333nvy9fVVhQoV1LZt23gfMwAAAADANpC9yd4AANvEFOgAAKRC8+fPlyR98sknZvfwcnJy0ujRo5U/f36dPHlSe/fufeV91a9f33Q2e0ICuCQ1adJEUsyp2P79918dPXpUTZo0ifMxFyxYIEkaP368KYBLkru7uyZPnqz06dPLz89Ply9fliT5+voqNDRU77zzjimAS1KmTJn05Zdfxnj8sLAwLVq0SI6Ojpo8ebIpgEtSlixZNHbsWEnSTz/9lKBjBgAAAADYBrI32RsAYJsYAAcAIJWJiIjQ4cOHZTAY1KhRoxjrHRwc1LBhQ0kyu69YYhUtWjTR2+bNm1clSpTQoUOHFBAQYFq+YcMGGY1GNW/ePNbtbty4oWvXrsnT01NVq1aNsT59+vSqVauWJGn//v2SpAMHDkiS6tSpE6N9sWLFlCdPHrNlJ0+e1MOHD/Xaa68pe/bsMbYpVaqUMmfOLH9/f92+fTueRwwAAAAAsAVkb7I3AMB2MQU6AACpzL179xQeHi5PT0+5u7vH2iY6cCZFeMyYMeMrbd+0aVOdPHlSmzdvVseOHSU9DeF58+ZV6dKlY90mOrDnzp07zsd9/hijt8mRI0ec7a9du2b6+40bNyRJZ8+elZeX1wuP4caNG8qaNesL2wAAAAAAbAfZ+ymyNwDAFjEADgBAKmM0GiXphfcXi27j5OQUr8eMjIyMc11Cp157XpMmTfTVV19p48aN6tixoy5fvqyTJ0/q/fffj3ObxBzjy+635uBg/rMmKipKkpQrVy5VqFDhhdu6ubm9cD0AAAAAwLaQvc3bkL0BALaEAXAAAFIZDw8POTo66t69ewoODo71TPSrV69KkjJnzizpvyAdHTyfd//+/WSq9umZ5KVLl9ahQ4d0+/ZtbdiwQZLUrFmzOLfJli2bJJmdNf686GPMkiWLJCl79uw6d+6crl+/rsKFC8do/+w0cJJMZ5XnyJFDkydPTsARAQAAAABsHdn7KbI3AMAWcQ9wAABSGUdHR5UrV05RUVHavHlzjPURERGm5VWqVJEkubq6SnoatsPDw83aBwUFyd/fP1lrbtq0qaKiouTn56eNGzeqcOHCL5z6LFeuXMqdO7eCgoJM9xl71sOHD7V7925JUqVKlSRJ1atXl6RYn5OrV6/q/PnzZstKlSolZ2dnnTlzJkZAl6Rbt26pSZMm6t69ux49ehT/gwUAAAAAWD2yN9kbAGC7GAAHACAV6tq1qyTpf//7n06dOmVaHh4erjFjxujKlSsqVqyYaXoxDw8P5ciRQ2FhYVq6dKmp/ZMnT/T555+/cBq2pNC4cWMZDAYtXrxYZ8+efeEZ6NGij3HEiBGmM84l6dGjR/r4448VHBysunXrmu5V1rJlS3l4eGjlypX6/fffTe2Dg4M1fPjwGGfgu7q6ql27dnr8+LE+/vhjBQYGmu1j2LBhunjxolxdXZmGDQAAAADSILI32RsAYJuYAh0AgFSoQYMGevfddzV37ly1adNGFSpUkKenp44dO6abN28qd+7c+uabb8zuIdazZ0+NHz9e48eP1/r165UlSxYdPnxYkZGRqlu3rrZt25Zs9ebMmVNly5bVkSNHJL14CrZonTt31pEjR7Rx40Y1a9ZMlSpVkouLiw4ePKigoCB5e3vryy+/NLXPlCmTvvzySw0cOFD9+/dXuXLllC1bNh04cECRkZEqWLBgjLPtBw8erNOnT2vv3r164403VKpUKbm4uOjIkSO6d++eChQooDFjxiTtkwEAAAAAsApkb7I3AMA2cQU4AACp1Keffqrvv/9eVapU0ZkzZ7R9+3a5ubmpT58+8vX1VcGCBc3ad+7cWZMmTVLJkiV16tQpHThwQFWqVNGKFStitE0OTZo0kSSVKFFC+fPnf2l7Ozs7ffPNN5owYYJKlCihw4cP688//1SOHDn08ccf69dff1WmTJnMtqlfv75++eUX1a9fX/7+/tq1a5eKFy+un3/+WTly5IixD2dnZ82dO1efffaZXnvtNR0/flz79u1TtmzZ1K9fPy1fvtx0nzMAAAAAQNpD9iZ7AwBsj8FoNBotXQQAAAAAAAAAAAAAAK+KK8ABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwwIasWrVKXl5eCf7TuXNnS5ceb9OmTYvzOIoVK6YyZcqoXr166tevn7Zs2WLpcvH/jhw5Ynqdevbs+dL2Q4cOlZeXl4YMGWK2PPox9uzZk+Q19ujRw/T4x44dS/LHf1ZERIT8/f2TdR/PO3PmjMaPH69mzZqpYsWKKlWqlOrUqaOePXtq8eLFCg0NTfJ93r59W0OGDFH16tVVsmRJ1apVSzt37pQkrV69Wm+99ZbKlCmjihUrqkePHtq3b5/pNYiIiEj0fq9du2Z6nMuXLyfV4eAVGY1GXbhwwdJlJMrFixfVp08fValSRaVKldLrr7+us2fPymg0at68eWrcuLFKlSqlKlWq6LPPPjP9e1y7du1X2m9SfSaSyrlz52Isq1evnry8vLR8+fIEPVZitwMAANaDPgr6KFIr+ijM0UdBH0VqYg2fTwDWwcHSBQBIOpkzZ1b58uVjLL9x44Zu3LghJycnlSxZMsb6okWLpkR5SSq2YzEajQoNDdW1a9fk5+cnPz8/+fj46KuvvpLBYLBQpZCklStXmv5/9+7dunr1qvLmzWvBiszduHHD7AfxkiVLVKZMmWTZ1+7duzV+/Hg1atRIgwYNSpZ9PO+7777TzJkzFRUVJXd3d+XLl0+Ojo66ffu2du3apV27dunHH3/UjBkzVKJEiSTZZ1RUlHr27KkzZ87IwcFBRYoUUXh4uHLnzq3ff/9dn376qSQpa9asyp49e6p6PyDpHT9+XOPGjVP+/Pk1efJkS5eTII8ePVLXrl0VEBAgZ2dnFSlSRCEhIcqTJ4/mzZunSZMmSZJy584tDw8P5cmTx8IVJ72AgABNmjRJBw8e1I4dOyxdDgAAsBL0UdBHkVrRR/Ef+ijoo0htUvvnE4D1YAAcsCF16tRRnTp1YiyfNm2apk+frqxZs2rJkiUWqCzpvehYwsLC9O233+qnn37S2rVrVblyZbVr1y6FK0S0kJAQbdy4UQaDQTVr1tSuXbu0bNmyGGdmWtKqVasUFRWlOnXqaMeOHdq4caOGDRumjBkzJvm+fvjhhxQ9s3rlypWaMWOGXF1dNWHCBL3xxhuyt7c3rb9w4YKGDx+uo0ePqkePHtqwYYMyZcr0yvv19/fXmTNnJEmzZs1SrVq1TOumTZsmSapQoYIWLlwoB4enP0dCQkK0YcMGSTItS4zs2bObHidXrlyJfhwknV9++UXHjx9X/vz5LV1Kgh08eFABAQEyGAxatWqVChUqZFq3ceNGSVKzZs309ddfm5Y/fPhQZcqUkaOj4yvtu3Tp0knymXhVu3fv1rp165Q9e3aL1QAAAKwPfRRP0UeRutBHYY4+CvooUhNr+HwCsB5MgQ7A5jg5OemTTz5R6dKlJUmLFi2ycEVp26ZNmxQcHKwiRYqoRYsWkp6GubCwMMsW9v+MRqN8fX0lSa1bt1aBAgUUGhpqWmbtZs2aJUn65JNP1LhxY7NgKUmFChXSzJkzlTlzZgUFBWnhwoVJst+goCDT/1epUiXWdRUqVDALkS4uLipUqJDZAGNiODo6mh7nVQcggej3a5YsWWK8N6PXVa5c2Wx5+vTpVahQIeXLl++V9p1UnwkAAABYDn0UqQt9FJZFHwV9FC+S2j+fAKwLA+AAbFaDBg0kSf/8848eP35s4WrSrlWrVkmSateurbp168rZ2VmBgYHavHmzhSt7av/+/bp69aocHR1VvXp1NWnSRJK0bNkyC1f26h48eKArV65I0gunS8uUKZPp83L8+PEk2XdkZKTp/52cnMzWRUVFxbocSI1e9H7lvQwAAID4oo8idaCPwnLoo8DLpPbPJwDrwgA4AJPff/9dPXv2VNWqVVWyZEnVrFlT/fr1019//RVrey8vL3l5eZndl+hZnTt3lpeXl2kqIUm6du2avLy8VKNGDd26dUu9evVS6dKlVblyZQ0ePDhJj8fd3d30/48ePTLbv5eXly5fvhzrdvXq1ZOXl5fpR5ck7du3T15eXmrXrp0uXLig9u3bq1SpUqpWrZrp/q/R250+fVrbt2/XO++8o3LlyqlKlSrq0qWLtmzZEmetkZGRWr58uTp37qxKlSqpZMmSev311/Xxxx/r5MmTsW4TGhqq2bNn65133lG1atVUqlQp1a1bV4MHD9ahQ4fi3NeZM2f06aef6vXXX1fJkiVVpUoV9ejRQ7///nus7Z99zp59TuLjypUrOnDggCSpYcOGcnNzU926dSUp1Ux1F31voapVqyp9+vTy8fGRJF28eFF79+6NdZvEvI9WrVolLy8v7d+/X9LTs569vLw0dOhQs+3u37+v6dOnq0WLFipXrpzKlCmjJk2aaNKkSQoICEjQsT175vK2bdte2LZfv35av369pkyZYrZ86NCh8vLyinO6qejjqlevnqT/npsuXbqY2kQ/V9GPFf0cTJ8+3bRO+u9z5uXlpYiIiBj7OnPmjEaOHKkGDRqoVKlSqlSpkrp27apNmzaZtXvZ63P16lWNHj1ab7zxhkqVKqWKFSuqQ4cOWr58uVkofv45WLJkia5du6Zhw4apdu3aKlmypGrXrq3PPvtM165di/O5PXjwoAYPHqy6deuqZMmSqlq1qnr37m323bpr1y55eXmpRIkSCgwMjPVxQkNDVaFCBXl5eenYsWMxjjWhn88HDx5o9uzZ6tixo6pUqaISJUqoYsWKatWqlaZNm6b79+/H2Cah3/vRr2n01Qpr166Vl5eXOnfuHOPY5s+fr3bt2ql8+fIqVaqUGjRooM8//1yXLl2KdV/379/XN998o1atWqly5coqU6aM3njjDX322Wc6e/ZsnLV98803sT7etGnTzGqLrn3YsGGSpOvXr5uOP/rzff36dUnSsGHDzD4H0Z+L2rVrx7qv+Lwnnq3hRZ+JhHyfRz8HO3fu1JkzZzRgwABVr15dJUuWVP369fXll1/q7t27Zts8+xzcunXL7DP7vEOHDql3796qUqWKSpcurUaNGmnKlCkKDg6Otf2rbgcAAGwbfRRP0Udhjj6KmOij+A99FNbbR2ENn08A1oUBcAAKDw/Xhx9+qP79+2vXrl1ycHCQt7e3IiIi5Ofnp27duunLL79M0n2GhYWpR48e2rNnjwoVKiSDwaDcuXMn6T6if1Q6OzvL09MzSR7z7t276tq1q06fPq3ChQvryZMnKlCggFmblStX6v3339fJkydVsGBBpUuXTvv27dMHH3yg8ePHx3jM4OBgdezYUSNGjND+/fuVPn16eXl56eHDh/rtt9/Upk0bzZs3z2ybsLAwdevWTVOmTNHx48fl4eGhIkWKKDg4WOvWrVPHjh21fPnyGPv6+eef1apVK61evVr3799XkSJF5Orqqt27d6t///4aPHhwrD+uE2vlypUyGo3Kly+f6eze5s2bS5IOHDigCxcuJNm+EiM4OFh+fn6S/qurUKFCKlasmCRp6dKlSbavzJkzq3z58qZOj5w5c6p8+fJm75+zZ8+qefPmmjZtms6ePavcuXOrYMGCunLliubOnavmzZtr37598d6nq6urypcvL+np4N6nn36qAwcOxPoaZ82aVYULF37lz0q6dOlUvnx5FS1a1LSsfPnypmON7TmIrvFFfv75Z7Vp00a//vqr7t69a3rv7t27VwMGDIhzUPN5mzdvVvPmzbVkyRIFBATotddeU6ZMmXTo0CGNGDFCPXr0MHVGPe/UqVN66623tHr1arm4uCh//vy6deuWVqxYobZt2+rGjRsxtvn666/VqVMnrVu3To8fP5aXl5fs7Oy0bds2devWzXQWf40aNZQzZ05FRERo3bp1cdYeHBysQoUKvfBs+fi4dOmS3nzzTU2ZMkVHjx5VpkyZ5OXlJXt7e508eVLTp0/X22+/HedzEV/p06dX+fLllTlzZklPz+R//v1x8+ZNtWzZUhMmTNCxY8eUNWtWFSlSRLdv39ayZcv05ptvmu6XFu3evXtq27atZs2apXPnzilr1qwqWLCg7ty5oxUrVqh169bauXNnktQe/Rl1cnIyvV8dHBxUvnx50xUC0e/tkiVLvvRx4/ueeJlX+T7fuXOn2rRpoy1btsjT01M5c+bUtWvXtGDBAr3zzjtmA8/PPgeOjo5xfmZ9fX3VsWNH7dmzRzlz5lSmTJl06dIlUydoaGhorLUkdjsAAGC76KOIP/ooEoY+iv/QR0EfRWrqo5BS/+cTgPVhAByAJk6cqM2bN8vV1VVTp07V7t27tWLFCv3555/6/PPP5eDgoAULFmj+/PlJts8HDx7o9u3bWr16tXx9fbVr1y716tUryR7/7t27WrNmjaSnP9qePcv0VVy9elUuLi76/fffTXVH35Mm2qJFi1S9enVt375dq1at0o4dOzRu3Dg5ODho0aJFMX44DhkyREeOHFHWrFm1cOFCbd26VStXrtRff/2lvn37KioqShMnTjSFIOnpj8IjR46oQIEC2rJlizZu3KhVq1Zp9+7d6tixo4xGoyZNmqQnT56Yttm5c6fGjRsnOzs7ffbZZzp48KB8fX21bds2zZ8/X5kzZ9a6devMzoaXpOzZs2vDhg3asGGD3njjjXg/V1FRUabXIPqMZUmqU6eOPDw8JFn+DM7169crJCRELi4uZsf25ptvSpK2bNmiO3fuJMm+6tSpoyVLlqh48eKSpLfeektLlixR7969JT0Nuj179lRAQIDKlSsnPz8/rVu3TqtXr9aOHTtUt25d3b9/Xx988IGuXr0a7/2OHDlSrq6uMhqNWr16tTp16qTKlSurV69emj17to4dO2aa7ispZM2aVUuWLNGIESNMy5YsWWI61mefg9atW5vWvcjhw4c1fvx4hYeHq1evXvrrr79Mn60JEybIzs5Os2bN0u7du1/4OGfOnNFHH32kJ0+eqE+fPtq/f7/WrFkjPz8/+fr6qkCBAvrrr780evToWLf/9ddfVbhwYW3YsEG///671q9fr6VLl8rNzU13797V3LlzzdqvX79eP/zwg+zs7DR8+HDt2bNHK1eu1K5duzRw4EBJ0pgxY3ThwgXZ2dmZvkuiPzfPW716tSSpVatWpmWJ/XyOHDlSN27cUNmyZbVt2zbTd8jevXs1adIk2dnZyd/f37TPxCpevLiWLFliuhK6Ro0aWrJkiUaOHCnp6ZUlvXv31sWLF1WwYEGtWbNGv//+u1atWqU///xTbdu21ZMnT/TJJ5+YziiXpB9//FGXL19W+fLltWPHDq1fv16rV6/Wzp071bBhQ4WHh79yp2h07e+//76k/97bS5YskZ+fn5YsWaKsWbNKkt5//30tWbJE33333QsfMyHviRdJ7Pd5tEWLFqlGjRratm2b1q9fr82bN+v777+Xvb29Ll++rBUrVpjaPvscZMqUKc7P7KFDh9S8eXPt3LlTq1ev1vbt2/XVV19Jks6dOxfn2f+J3Q4AANgu+ijijz4K+igSiz4K+ihSUx+FNXw+AVgfBsCBNO7mzZumM0jHjRunxo0bm9bZ29urY8eOGjBggKSnUwG96tWAz+rQoYMKFy4s6emVdc9OB5YYRqNRQUFB2rp1q959913du3dPjo6O6t+/f1KUa/L+++8re/bskiQ3NzelS5fObH2uXLk0Y8YM0xWPBoNB7dq1U48ePSQ9fR6jHT161DTt03fffacqVaqY1jk5OWnAgAF6++23JUmTJ082rTtz5oykp/fEyZUrl2l5unTpNHToUNWsWVNvvPGG7t27Z1r39ddfy2g0asiQIerSpYvs7e1N66pVq6YJEyZIkubNm6egoCDTOkdHRxUqVEiFChVS+vTp4/087d6923S2aXRYi3686PfZmjVrLHp1X/TUYvXr15ebm5tpefPmzWVnZ6fw8HBTm+T2yy+/KCAgQFmyZNEPP/ygvHnzmtZlyZJF3333nYoWLaqHDx9q1qxZ8X7c4sWLa/ny5apQoYJpWXBwsHbs2KEpU6aoXbt2qlmzpr755huFhIQk6TElle+//15RUVFq0qSJBg8ebPaZa9Wqldq0aSNJLx0omzZtmsLCwtSpUycNHDjQ7HGKFy+u7777Tvb29lq7dq3Onz8fY3tHR0dNnz5dBQsWNC0rV66cKewdPnzYrH30Z7179+7q2rWr6TNnb2+vPn36qEaNGoqMjDSFxtatW8tgMOjkyZMxBkBv3bqlPXv2yN7eXm+99ZZZTQn9fAYGBurcuXOSnn7vZ8uWzbTOYDCoRYsWqly5siTFOpV4Utq0aZNOnz6tdOnSac6cOfL29jatc3d31/jx41WrVi2Fh4ebnUEf/R3YqFEjZcqUybQ8ffr0GjFihKpXr65KlSqluquHE/qeiEtiv8+jZc6cWd99953Za1+/fn3TiQrPv5fjo1ChQpo0aZKpc0J6+t1fo0YNSYpz2svEbgcAAGwTfRQJRx9F/NBHkTD0UcSNPoqk7aOQrOPzCcD6MAAOpHE7d+5URESEsmbNqqZNm8baplOnTnJ0dNTDhw9N98VJCs/+2E2oZ+/FGv3H29tbVatWVZ8+fXT69GmlT59e3377rdmASlJ4Wd3t2rWTq6trjOXvvPOOJMnf318XL16U9N89j0qXLh3nFEvvvvuupKfTpf3zzz+SZJqSasWKFfrll1/M7tnq5OSkn376SRMmTDCF4GvXrun06dOSzH9IPqtOnTry9PRUaGhonPdUS4joH/qlS5eOMQVbdA0PHjzQ+vXrX3lfiXHhwgXTFaXPPyfZsmVT1apVJUnLli1L0rOP47J161ZJUosWLZQxY8YY652cnEz3Jt66dauMRmO8H7tw4cL65ZdftHr1an344YcqV66cHB0dTesDAwM1a9Ysvfnmm7p58+YrHknSCgkJMd3nLLqj5XkDBw7Upk2bTPe6i01YWJhpSuy4PgPR3yNGozHW+5GVLFnSdMXvs1577TVJ0sOHD03LLl++bPqcR3/2n/fFF19oy5YtGjRokCQpb968qlSpkiTFGABds2aNoqKiVLt27VhrSIjMmTNr7969OnbsmNk0cNEiIyNNnX3JHS6j3/f16tUz61B5Vvfu3SVJ+/fvNz3H0d8pP/74o3777Tez5z579uyaN2+exo0bJ2dn52SsPmES856ITVJ8n1erVi1Gx6j0dDBaMn8vx1f9+vXNOi2jRd8/7/l7i7/qdgAAwDbRR5Fw9FHED30UCUMfRezoo3gqKfsopNT/+QRgnZJmvh0AViv6x0+xYsVkZxf7OTGurq4qWLCg/vnnH/n7+6tu3bpJsu9X+YHk5OQU416rdnZ2cnNzU/bs2VWmTBk1btz4lc/Yjs3L6i5dunSsy3PlyqX06dPr4cOHunTpkl577TXT81+iRIk4H69AgQJyd3dXcHCw/P39VbRoUbVt21YrVqzQ+fPnNWbMGI0dO1bFihVTtWrVVKtWLVWqVMlsSrXoqz0l6YMPPohzX9HTkUXXlVj37t3TH3/8ISn2H/IVKlRQ3rx5dfXqVS1ZskStW7d+pf0lRvQUv5kzZzZdafist956S3v27NH169e1a9cu1alTJ1nr8ff3l/Ti90L0urt37+revXsJvhdWsWLFVKxYMfXr108hISE6fPiwdu/erTVr1igwMFBXrlzRgAED4n0P4pTw77//Kjw8XJLi7CjKnDmz6WqGuFy6dElhYWGSnk7pFX3v5tj2J8X+GYjurHle9CBrRESEaVn0/f1cXV3jHNjNmTNnjGWtW7fW/v37tXbtWn300UcyGAyS/pty7NmpxV6Vs7Ozbty4oWPHjunKlSu6evWqLly4oNOnT+vx48eSlOwdKwl530dGRury5csqWbKkevTooU2bNun27dv6+OOP5eDgoFKlSql69eqqXbu2ypQpY3ruUovEvieelxTf5wl5L8dXXI8Z3dka18kUid0OAADYJvooEo4+ipejjyLh6KOIHX0USd9HYQ2fTwDWiQFwII0LDg6WpJdOSxMd0pJyerFXuTIv+h4+lvCyumM7Mzaaq6urHj58qAcPHkiK//Pv5uam4OBg0/Pv7u6uZcuWae7cuVq3bp0uX76sU6dO6dSpU/rpp5+UOXNmDRw4UO3atZNkftZnfKa2TczVf89au3at6Yf8+PHjNX78+Djb/v333zp58uQLQ1VSi4iI0G+//Sbp6ZnFL9v3kiVLkj1cxue98GxnyaNHjxIcLp/l4uKiGjVqqEaNGhowYICGDx+u9evX6+jRoyn+erzIs1PkPTsFXEI9+54+ceJEgtpHe/aM9JeJrjuhNTdu3Fjjxo3TjRs3tG/fPlWtWlV///23zp8/L09PzyTr3Lt48aL+97//aceOHWaD3O7u7qpYsaICAgJM0xgmp8S876WnwXzNmjX64YcftGnTJt26dUtHjhzRkSNHNGPGDOXOnVvDhw9XgwYNkvcAEiCx74nnJcX3eULey/EV2xXlybkdAACwTfRRJBx9FC9HH0XC0UcRO/ookr6PIrV/PgFYLwbAgTQu+ofPy8JEdBiK7YdSXNMcRV9BmFolV90vukdRdICIPhM0vs9/9Ppnn393d3f1799f/fv31+XLl7Vv3z7t27dPO3bsUGBgoEaOHCkPDw81bNjQdCWdh4eH9u3bl/iDi6foe1K5urq+MCwFBATIaDRq6dKlGjduXLLXFW379u26c+eOpKdTicV1pejjx4/18OFD7dy5Uzdu3Ij1bNikeh+5ubnp/v37L3wv3L9/36z9y3z++efau3evWrZsqT59+sTZztnZWWPHjpWfn5/Cw8Pl7+8fI0zEdZzJfU+uZ6fqCw4ONrvfc2If5/Dhw688CBnf/SW0Q87Z2VnNmjXTsmXLtHbtWlWtWtV0ZrWPj0+SDFwGBgaqU6dOCgwMVK5cudSuXTsVL15cr732mvLkySODwaDBgwe/cAA8Kd/30ou/A6P//Xm2vfT0e3T48OEaPny4zp49q/3792vv3r3avXu3rl+/rv79+2vp0qVxXvHyqrUnVGLfE3E9Tkp9nwMAAKQk+ihioo/i1dFHQR9FUqGPIun7KFL75xOA9eIe4EAaF31fmNOnT8c51W1wcLAuXbokScqfP79pefQ9O6PP0nteQEBAElaaNJ6dciu2ukNDQ1/5zOLoe2A978qVK6YfmoULF5b03/N/8uTJOB/vwoULpqAS/fwHBgbq4MGDpvtq5c+fX+3atdOUKVO0Y8cO09Rr0T9KCxYsKOnpGZ+3b9+Oc18HDx7UhQsXXmnK2TNnzpju5TVhwgTt3Lkzzj/RZyyvW7fOFLxTQvS9hYoUKaJdu3bFWd+8efMkPZ16+ddffzVtnxzvo/i8F6LPCs6YMWO8zqx+8uSJLl++rC1btry0rbu7uylwPRvgoj/n0VN8PS+5P+d58+Y11fDsNHnP+vvvv9W+fXsNGzYszhD87OOcP38+zv0dP35cZ8+efeVByuh7Vj1+/FjXrl2Ltc0ff/yhzp0763//+5/Z8ujpvP744w9FRkaapgJLqmm+Vq5cqcDAQHl4eGjlypXq06eP6tSpo7x585o6Wm7duhXrtkn9vR+f9/3ff/8tSTIYDMqXL5+pvr1795q+q7y8vNS5c2fNmDFDf/zxh3Lnzq3IyEitW7cu2WpPqFd5TzwrJb/PAQAAUhp9FOboo6CPgj4K+ihsuY/CGj6fAKwXA+BAGle7dm05ODjo9u3b2rBhQ6xtFi9erIiICLm4uKhy5cqm5dE/bmO7D83x48dTZbj08PAwDfDEVvfWrVsTde/TZ61atSrWoB49HVrZsmVNZ+lGTxV0/PjxOKf9mj9/viQpR44c8vLykiT16NFDHTt2lK+vb4z2bm5uKlu2rKSnoUiSChUqZAqmixcvjnU/hw4dUseOHdW0aVMdPXo0Hkcau+j7Vnl6eqpevXovbNu+fXtJT3+ARwfh5BYYGKgdO3ZIevmP9VKlSpmC+vLly03vjVd5H8V1Jnf0e2H16tVmZ1FHCwsLM72HatWq9cK6o0XfO+nEiROmQB2X3bt36969e/Lw8FCZMmVMy1/0OY+MjNTWrVvjVUtiubu7q0KFCpL+Oyv4eevWrdPhw4d17dq1OJ9fd3d30/fXwoULY21z9epVdejQQW+++aY2bdr0SnUXKlRIuXPnfmHdvr6+2r9/v6mTKFqZMmVUpEgRBQUFadGiRfr3339VvHjxOO8vllDRYTdXrlyxnq1+/vx503dA9HdItMR+70e/Ls+H/+j3/datW3X16tVYt41+vcqWLasMGTIoIiJCLVq0UNeuXbV9+/YY7bNkyaKiRYtKMr+H+Ytqf/Tokf76669Y959UXuU98fzjpNT3ebTo+2/G1XkDAACQVOijMEcfBX0Uz6KPgj6KxEqtfRSp/fMJwLoxAA6kcTlz5jTdg2nkyJFmP6iioqL0yy+/aNq0aZKkvn37mk1FE/2Db968ebpw4YJp+d9//62PPvooJcpPMGdnZxUvXlySNG3aNLOrHHfv3q2xY8e+8j5OnDihkSNHmqZdioqK0uLFi00hcdCgQaa25cqVM53B2L9/f7Opv8LCwvTdd9+Zzur95JNPTD+c33rrLUnS9OnTtXPnTrP9Hzx40PRD8Nl7Qg0YMECSNHv2bM2ZM8fsrOCDBw+a1pctW1ZVq1Y1rQsPD9eFCxd04cKFl54xHBYWprVr10p6OhWSk5PTC9vXrl3b9AN86dKlL2z7Iv/++68uXLigf//996VtV69erYiICDk6OpqexxeJ/oF9+/Zt01mur/I+ip526vr16zH2kz17dt25c0fvv/++2WBgYGCgBgwYoH/++Udubm7q16/fS+uWpBo1aqhRo0aSpBEjRuiLL76IcabvkydPtHLlSg0cOFDS0/fJs1NvRX/Oz507p4ULF5oGwO7fv6/hw4fHeTVBUurbt68MBoPWrFmjWbNmmQX31atXa9GiRZKknj17vvBx+vXrJ3t7e61bt04TJkwwO4P6n3/+Ua9evRQeHq7cuXPLx8fnlWo2GAzq27evJGnOnDlavny56bmLjIzU7NmztXnzZjk4OKhbt24xto/u+Jg6daokqVWrVrHuJyGfz2jRZ/KfOXNGv//+u2m50WjUzp071bNnT9PZ9M9PH5fY7/3o99Tzn9HGjRvLy8tLT5480XvvvWc27XpwcLBGjhyp3bt3y8HBQUOGDJH09OqGZs2aSZK++OILHT9+3Owx/fz8tHv3bklPv2Oer33Xrl3y8/MzLQ8ICFD//v0VGBgYZ/1J4VXfE89K7Pd5YkV/bz148IAz7QEAQLKij4I+iuht6KOIHX0U9FEkRmrso7DU5xNA2sE9wAFo2LBhunXrlv744w8NGDBA2bJlU44cOXT16lUFBQVJkjp16qT33nvPbLs+ffpo165dun37tnx8fFS4cGE9efJEly5dUt68edW6des4zyq0pIEDB6pPnz46f/68GjRooMKFC+v+/fu6fv26SpUqpfLly5tCRGIULVpUK1as0MaNG/Xaa6/p5s2bun37tuzs7DRs2LAYgxH/+9//1Lt3bx05ckRdunRR7ty5lSlTJvn7+ys4OFj29vYaOHCgacBHkrp06aI9e/Zo586deu+995QtWzZly5ZNQUFBptBSr149tW3b1rRNs2bNdOnSJU2bNk2TJ0/WDz/8oAIFCuju3bumbQoWLKjvv//erL5bt26padOmkp5ORxTXj1xJ2rJli+7duycpflMh2dnZ6e2339bXX3+tf/75R4cOHTKFmYT49NNPtX//flWuXNkUNOISfZbx66+/Hq97NTVr1kyTJk3SgwcPtHTpUlNYS+z7qHjx4tq2bZvWrl2rs2fPqmLFiho1apQyZMigWbNmqVevXjpy5IgaNmyowoULy8HBQefOnVN4eLg8PDw0efJk09RV8TF58mS5urpq9erVWrhwoRYuXKhcuXIpc+bMps9rWFiYHB0dNXjwYHXo0MFs+zp16qhixYo6ePCgvvjiC82dO1eenp66ePGiwsPD1a9fP1MHVHKpVq2ahg0bpokTJ+qbb77R3LlzlTdvXt28edN0n7QPPvjArDMlNhUqVNC4ceM0atQozZ8/X0uXLlWhQoX06NEjXb58WUajUVmyZNFPP/300uAVH23atNH58+c1b948jRgxQt9++61y5Miha9eu6d69e7K3t9fo0aNjPWv6rbfe0pQpU/T48WM5OjqqefPmse4jIZ/PZ+v65ZdfdPnyZfXv31+5c+eWp6enbty4ocDAQDk6Oqpy5crav39/jKnQE/u9X6xYMUlP723WuHFjFS5cWNOnT5eDg4O+//57vffee7p48aLeeustFShQQG5ubqapDp2dnTVmzBhVrFjR9HiDBg3SoUOHdOrUKbVt29Z0DAEBAaYre9q3b282AN6yZUstXrxY/v7+6tevn/LlyydXV1dduHBB9vb26t27t2bNmvXS5+9VvMp74lmJ/T5PLC8vL9nZ2Sk0NFSNGzdWtmzZ9NNPP8VrmkMAAICEoo+CPgr6KOJGHwV9FImV2vooLPX5BJB2cAU4ADk5OWnGjBn65ptvVLNmTYWFhen06dNycXFRs2bNtHDhQo0cOTLGtD3FihXTihUr5OPjo0yZMunixYuKjIzUu+++K19fX2XNmtVCR/RitWvX1i+//KIGDRrI1dVV58+fV7p06dS/f3/98ssvprNfE6tLly76+uuvVbBgQdOZp40aNdLSpUtjPYvSw8NDixYt0rhx41SpUiU9fPhQZ8+elaenp9q0aaMVK1aoV69eZtvY29trxowZGj58uMqVK6fQ0FCdOXNGISEhqlmzpv73v//p+++/N7sPlPT0B/iyZcvk4+Mjd3d3nTlzRkFBQSpevLgGDBiglStXKnPmzIk+9ujgVqJEiXhPhdSmTRs5OjpKSv4zOI8dO2a6t1J871Xk4uKiFi1aSJL++usv073mEvs+eu+999S2bVt5eHjo0qVLOnv2rGld8eLFtW7dOvXt21dFihTR1atXdenSJRUsWFC9e/fWb7/9Fu+pxaI5OTlp4sSJWr58ud59912VKFFCYWFhOnPmjG7evKmCBQuqR48e+u2332K8z6SnAeOnn37SwIEDVaRIEQUGBurff/9VtWrVtGTJklc+Czm+unbtqmXLlql58+ZKly6dzp49q4iICNWpU0fz5s1T//794/U4rVu31po1a/T2228ra9asOnfunG7cuKFChQqpZ8+e+u2330z3o0sKQ4cO1bx581S/fn0ZjUadOXNG9vb2aty4sZYtW2bWAfSsTJkymQZv69Wrl6QDje7u7qbvlSJFiuju3bs6d+6c3N3dTZ2CX375paSnV4k/e9VCYr/3W7RooZ49eypr1qy6du2a2T0d8+TJo5UrV+qTTz5R6dKldfv2bV24cEE5c+ZUly5dtGbNGtNnMJqbm5sWLVqk/v37q0SJErp3757OnDkjo9Go+vXr64cfftDo0aNjbLNs2TL16NFD+fPn140bN3Tnzh01atRIvr6+qlKlSpI9xy+S2PfE85L7+/xZ+fPn14QJE1SgQAHdu3dPN27ciHGFCAAAQFKhj4I+Cvoo4kYfBX0UryI19VGk9s8nAOtnMHIzPwBIEvXq1dP169c1fvz4eA9gIOmMGzdOV65c0Zw5cyxdCpAkWrVqpZMnT2r27NkvPXMcAAAAAJ5FH4Vl0UcBW0MfBQBrwxXgAACrFxUVpYMHD6pw4cKWLgVIEidPntTJkyeVM2dO1axZ09LlAAAAAADiiT4K2Br6KABYI+4BDgCwemPHjlVgYKA6d+5s6VKARLt69aok6c6dOxo6dKikp9MV2tvbW7IsAAAAAEAC0EcBW0AfBQBrxwA4AMDqvfPOO+rfv78yZcpk6VKARNuwYYO+/vpr09+LFi2qTp06WbAiAAAAAEBC0UcBW0AfBQBrxxToAACr5+3tTbCE1fP29la2bNnk6uqqBg0aaO7cuXJycrJ0WQAAAACABKCPAraAPgoA1s5gNBqNli4CAAAAAAAAAAAAAIBXxRXgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmOFi6AGthNBoVFcVs8QAAAAAAc3Z2BhkMBkuXYRPI3gAAAACA2CQkezMAHk9RUUbdvfvI0mUAAAAAAFKZTJncZG/PAHhSIHsDAAAAAGKTkOzNFOgAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm+Bg6QIAAAAAADFFRUUpMjLC0mWkefb2DrKz49xxAAAAALBFZO/UIamzNwPgAAAAAJCKGI1GPXhwVyEhwZYuBf/PxcVdGTJkksFgsHQpAAAAAIAkQPZOfZIyezMADgAAAACpSHQAd3f3lJNTOgZdLchoNCos7ImCg4MkSRkzZrZwRQAAAACApED2Tj2SI3szAA4AAAAAqURUVKQpgLu7Z7B0OZDk5JROkhQcHKT06T2ZDh0AAAAArBzZO/VJ6uxNcgcAAACAVCIyMlLSf8EPqUP068F94QAAAADA+pG9U6ekzN4MgAMAAABAKsPUa6kLrwcAAAAA2B6yXuqSlK8HA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbIKDpQsAAAAAAFjO2bNn9P33U3XmzClFRRlVvHhJ9erVVyVKlJQkHTiwV/Pm/agLF87J3t5BlStXVZ8+/ZQ9ew5J0oYNa/Xll2O0fPlvypkzl+lx27TxUblyFfTZZ6MlSTVrVtS77/bSnj27dfXqZbVv31nduvXU9evXNHPmNB06dEBGo1ElS5ZS374D9NprhSRJT5480U8/zdKWLX4KCrqrfPnyq0uXd1W/fsOUfaIAAAAAAEgksnfK4gpwAAAAAEijHj0K1uDB/ZQxo4fGj5+kMWO+VGhoiAYP/lDBwcH6/fcNGjToQ2XNmlWjR3+hfv0G6eTJv9W797sKCrqb4P0tWPCTXn+9nkaP/kK1ar2uO3fu6L33uuryZX8NHvypRo0apwcPHmjgwL66d++ejEajhg//WKtXr9Lbb3fQxIlfq2TJ0ho1arg2blyXDM8IAAAAAABJi+yd8rgCHAAAAADSKH9/f927F6Q2bd5W6dJlJUn58xfQmjUrFRz8UN9/P1UVK1bWmDETTNuULl1WnTq11ZIli9W3b/8E7a948ZLq1Kmb6e8zZkzVkyeh+vbb75U5cxZJUpEi3nr//W46ceK40qVz0r59ezRmzJems86rVKmm0NAQzZo1XW+80VgODsRaAAAAAEDqRfZOeVwBDgAAAABp1GuvFZKHh6c+/fQjTZ48Qbt371TmzFnUt+8AhYaGKjAwUA0bNjHbJnfuPCpRopSOHDmY4P0VKlTY7O/Hjh1RyZKlTQFckrJkyaKVK9epZs3aOnjwgAwGg6pVq6mIiAjTnxo16igw8I78/S8k7sABAAAAAEghZO+UZ13D9QAAAACAJOPq6qrvv5+jBQt+0pYtflq9eqWcnZ3VsGETNW7cTJKUKVPmGNtlzpxZZ8+eTfD+PD0zmf39wYP7Zvcue96DB/dlNBrVsGHtWNffuXNbRYp4JbgOAAAAAABSCtk75TEADgAAAABpWL58BTRy5DhFRkbq9OmT2rRpg1avXqEsWbJKku7eDYyxTWBgoDw8PCRJBoNBkhQVFWXWJiTk8Uv37e6eXvfu3Yux/NChA8qRI6fc3dPLxcVV06bNinX73LnzvnQfAAAAAABYGtk7ZTEFOgAAAACkUdu2bVHz5g0UGHhH9vb2KlmytIYMGSp39/S6e/euMmfOLD+/jWbbXL9+TSdOHFfp0mUkSa6ubpKkW7dumtpcuXJJ9+/ff+n+y5Qpq5Mnjyso6K5p2b179zRkSH/9+edOlS1bXiEhj2U0GuXtXdz05+LFC5o7d44iIyOT4mkAAAAAACDZkL1THleAvyI7O4Ps7AzJ9vhRUUZFRRmT7fEBAAAApF2lSpVVZGSUhg0bok6dusnNzU1//OGnR4+CVa9eAxUvXkJffjlGo0YNU+PGzXX//j3NnTtbGTJk1Ntvd5QkVahQSc7Ozpo+/Ru9915fPX78WPPmPW3zMu3addDGjev10UcfqkuXd+XklE6LFs1T5sxZ1LhxM7m7p1fZsuU1dOhgdevWU/nzF9Dp0yf100+zVaVKVdOZ8Ei88PBwLVq0SL6+vrp06ZJcXV1VqlQpde3aVbVq1YrRvkqVKrFeORDt+PHjSpcuXZLXSfYGAAAAYK3I3inPYDQaSXjxEBkZpbt3H5kts7MzyMPDVfb2yXchfWRklO7de0wQBwAAANKA8PAwBQbeUObMOeXo6JQi+zx9+qTmzJmpM2dOKzQ0VK+9VkidO3dXnTp1JUnbt/+hRYvm6+LF83Jzc1OVKtXUq9cHyp49h+kx9u7do1mzpuvyZX/lyJFT3bv30qZN65U5c2Z99tloSVLNmhXVvft76tHjfbP9X758Sd9/P1WHDx+So6OjypUrr759Byh37jySpJCQEP3440xt2/aHgoLuKkuWbGrQoKG6deuZLAOtsXnZ65Ipk1uy5sLkYjQa1a9fP23evFkZMmRQ+fLl9eTJEx08eFDh4eEaOHCg+vTpY2p//fp11atXT9mzZ1flypVjfcwJEybI0dEx0TWRvQEAAAAkN7K37WdvBsDjKbYQ7uBgJ09PN81Y8qeuB7x8ioGEyp0toz5oX0NBQY8UERH18g0AAAAAWDVLhHC8nK0OgC9ZskSjR49WsWLFNG/ePHl6ekqSzpw5o44dO+rRo0dav369ChUqJEnasmWLPvjgA3Xt2lXDhw9PlprI3gAAAACSG9k7dUrK7M0U6EngesB9XboeZOkyAAAAAACItzVr1kiShg4dahr8liRvb2/5+PhoyZIl2rlzp2kA/OTJk5KkEiVKpHyxInsDAAAAAOKHAXAAAAAAANKgBQsWyN/fX0WKFImx7vHjx5Ike3t707LTp09LkkqWLJkyBQIAAAAAkAjWN0cbAAAAAAB4ZenSpZO3t7fZILf0dKrzTZs2ycXFRQ0bNjQtP3nypJydnXXixAm1b99eFStWVKVKlfT+++/r2LFjKV0+AAAAAACxYgAcAAAAAIA07v79++rXr5+aNGmiDz74QJkyZdLMmTOVI0cOSVJgYKACAgIUGhqqTz75RFFRUapSpYo8PDy0fft2dejQQRs2bLDwUQAAAAAAwBToAAAAAACkeVevXpWfn5/p7waDQefPn1e1atUk/Xf/b09PT82cOVPlypWTJBmNRi1YsEATJkzQsGHDVL58edOgeWI5OJifq29vnzLn7qfUfgAAAABYVlSUwdIl4AXs7Q0xcmFCMQAOAAAAAEAaV7BgQe3fv19Go1F79uzRF198ofHjxys4OFh9+vRRrVq1tGvXLhmNRmXPnt20ncFgULdu3XTgwAFt2bJFK1as0IcffpjoOuzsDPL0dEuKQ0qwDBlcLLJfAAAAACkrNNRed+7YJclAK5JOVJRBdnZ2ypjRVc7Ozq/0WAyAAwAAAACQxrm5/Tfo3LRpU+XIkUMdOnTQ7Nmz1aVLF7m5uSlbtmxxbl+3bl1t2bJFJ06ceKU6oqKMevDgsdkye3u7FBmcfvAgRJGRUcm+HwAAAACWFRb2RFFRUYqMNCoiggyQWkRGGhUVFaX79x8rJCQyxvoMGVziPXMXA+AAAAAAAMBM+fLllS9fPl2+fFmXLl1SiRIlXtg+a9askqSQkJBX3relOqAiI6Po/AIAAADSgMhIo6VLwAskxYkJXNcPAAAAAEAaExISookTJ2rIkCEyGmPv/HFycpIkRUREaNmyZRo4cKC2bNkSa9urV69K0ivf/xsAAAAAgFeVaq8ADw8P16JFi+Tr66tLly7J1dVVpUqVUteuXVWrVq0Y7atUqaJ79+7F+XjHjx9XunTpkrFiAAAAAEg+dnYG2dkZUny/UVFGRUVxdrytcXZ2lq+vr+7du6d27dqpcuXKZuuvXr0qf39/OTk5qUiRItqxY4c2btyokJAQNWjQwKyt0WjUmjVrJEk1a9ZMsWMAAAAAgKRG9rYNqXIA3Gg0atCgQdq8ebMyZMig6tWr68mTJ9q7d6927dqlgQMHqk+fPqb2169f171795Q9e/YYoT2anZ31Xuwe3/nsE4MPFAAAAJD62dkZ5OHhmqzZIC6RkVG6d+9xonKDn98mrVy5TBcvnpck5c9fUM2bv6UWLVondZlIIIPBoLfffls//PCDRo8erfnz55vu8X3z5k199NFHioiIUNeuXeXq6qqWLVtqzpw52r59u3799Ve1a9dOkhQVFaVp06bp+PHjKly4sBo3bmzJwwIAAACARCN7245UOQC+dOlSbd68WcWKFdO8efPk6ekpSTpz5ow6duyoqVOnqmHDhipUqJAk6fTp05Kkxo0ba/jw4RarO6llTO8sY1SUMmRwSbZ9REVFKigohEFwAAAAIBWzszPI3t5OM5b8qesB91Nsv7mzZdQH7WvIzs6Q4Mywbt0affvtV+rff7DKli0vyagDB/bru++mKCjorrp3fy95ika89e3bV4cPH9aBAwfUqFEjVahQQeHh4Tp+/LgeP36smjVrasiQIZKkvHnzavTo0RoxYoRGjhypxYsXq0CBAjpz5owuX76sLFmyaNq0aXJ0dLTwUQEAAABA4pC9bUeqHACPnjpt6NChpsFvSfL29paPj4+WLFminTt3mgbAT548KUkqUaJEyhebjNycnWSws5P/ujkKCbyR5I/vkjmnCjZ/L1EfKAAAAAAp73rAfV26HmTpMuLF13eFmjd/S2++2dK0LF++Arp9O0C//rokzYbw1MTZ2Vnz5s3TwoULtWbNGu3bt08ODg4qUqSIWrVqpbZt28re3t7UvnXr1ipYsKDmzJmjw4cP6+LFi8qWLZs6d+6sPn36KHPmzBY8GgAAAABIGmRv65cqB8AXLFggf39/FSlSJMa6x48fS5JZCI++ArxkyZIpU2AKCwm8oZBbVyxdBgAAAADEm52dQX//fVwPHjxQhgwZTMs7duyqpk19JElt2vioSZPm6tHjfdP6Dz/spZw5c+mzz0br8OGD6t+/t/r06aeff16oHDlyyNnZRVmyZNXYsRNM2xw/flR9+/bU0qW+ypMnr/78c5d++ukHXbrkr6xZs6pBg0bq2rWHnJycNHXqFP355079+usa0/bBwcF6881GGjv2S9WsWScFnp3Uw9HRUT169FCPHj3i1b58+fKaOXNmMlcFAAAAAIgPsnfsUuUAeLp06eTt7R1j+ZYtW7Rp0ya5uLioYcOGpuUnT56Us7OzTpw4oREjRujcuXMyGAwqX768+vbtqzJlyqRk+QAAAACQ5nXs2FWffz5MLVs2UfnyFVW6dDlVqFBRxYqVUPr06RP0WHv27NYPP8xTaGiIzp37R1OmTNTjx4/k6uomSfLz26hSpcooT5682rt3j0aOHKr+/QepUqWqun79mr755n+6cuWyxo2bqObN39Ly5Ut07NhRlSlTVpL0xx9+cnNzU9WqNZL6aYAVSc77/EVFGZl5DQAAAECSI3vHLuXv4p5A9+/fV79+/dSkSRN98MEHypQpk2bOnKkcOXJIkgIDAxUQEKDQ0FB98sknioqKUpUqVeTh4aHt27erQ4cO2rBhg4WPAgAAAADSltdfr68ffpin11+vp9OnT+mHH6arV69u6tChtY4fP5qgx2rfvpPy5s2nIkW8VLduA9nZ2WvHjm2SpPDwcG3dusV0ZvvChXPVvPmbatGijXLnzqPKlavq44+Ha9u2Lbpx418VKlRYXl7F9Pvv602Pv2nTOjVq1FQODqnyHHEks4zpnWWMilKGDC7y9HRLpj8usrMzWPpQAQAAANgYsnfsUn26v3r1qvz8/Ex/NxgMOn/+vKpVqybpv/t/e3p6aubMmSpXrpwkyWg0asGCBZowYYKGDRum8uXLmwbNE8vBwfx8geQ8Ozwl2cpxAAAAANYuKsq2BsiKFSuhkSPHyWg06uLFC/rrr91avnyphgwZoGXLfOP9OHny5DP9v4uLi+rWrS8/v41q0qS5/vrrTz15Eqp69RpIkv7554xOnz6pjRvXmbYxGp9eeXvpkr9y5sylZs3e1OzZ32vgwI8VEHBLf/99XB9/PPylddjbG2LkQlg/N2cnGezs5L9ujkICbyT547tkzqmCzd+TnZ2Bq8ABAAAAJDlby95JIdUPgBcsWFD79++X0WjUnj179MUXX2j8+PEKDg5Wnz59VKtWLe3atUtGo1HZs2c3bWcwGNStWzcdOHBAW7Zs0YoVK/Thhx8mug47O4M8Pd2S4pBSnQwZXCxdAgAAAABJoaH2unPHLsZAq6VPWk3o/gMCbmnhwvnq0qW7smXLJkny8ioqL6+iqlPndbVv30Z//31UkmRnZ36ycWRkpAyGp8cfvV9XVxezNj4+b+rDD3vr/v272rx5o+rUqaeMGZ/e68xoNKpTp65q2rR5jLqyZMkqBwc7NWnSVDNmfKu9e//UhQvnVLx4CRUtWjTO44mKMsjOzk4ZM7rK2dk5Qc8FrEdI4A2F3Lpi6TIAAAAAIF4CAm7p558XqFOnbsqaNZsMBoMKFSqsQoUKq2bNOurUqa2OHj0c67aRkRExlqVLl87s702b+mjAgD4KDLwjP78Nql27rtzc3CU9vc1Thw5d1KRJzOydOXMWSdIbbzTW9Onfas+eXbpw4byKFSuu114r/KqHHS+pfgDcze2/QeemTZsqR44c6tChg2bPnq0uXbrIzc3N1KESm7p162rLli06ceLEK9URFWXUgwePzZbZ29vZxODxgwchioyMsnQZAAAAQJoXFvZEUVFRiow0KiIi9fxGj4yMSlA9dnaOWr16pbJmzaaOHbuarXN2dpUkZczoKQcHRz14EGx67KioKP377zXlyZNXERFRppzy/P5LlSqnHDlyat26tfrzz92aOHGKaX3BgoXk7++vnDnzmNofOXJIv/66REOGDJWjYzq5uLipVq3XtXXrFvn7X1CLFm1eeHyRkUZFRUXp/v3HCgmJjLE+QwYXi5+kAAAAAABIW5yc0mnNmlXKli17jOwdPb6aKVNmOTg4Kjg42LTuafa+bnbFd2zKli2vHDlyatOm9dqz509NnDjFtO611wrp8uVLypMnr2nZs9nbxcVF6dOnV+3ar2v79q2m7J1SUv0A+PPKly+vfPny6fLly7p06ZJKlCjxwvZZs2aVJIWEhLzyvlNTB1RSSmhnFgAAAIDkERlpG9Mje3h4qGPHrpo9+3sFBwerXr0GcnV106VL/po//0eVL19RZcqUU+nSZfTHH36qU6euMmXKrKVLF5uF8hdp0qS5FiyYq4wZM6pixcqm5R07dtHnnw/TTz/9oDfeaKzbtwM0ceJ4Zc+e3XQWuiQ1a/amhg79SEaj1KBBo3jtM7WdmAAAAAAASLtsNXsnhVQ3AB4SEqKpU6fqzp07+uqrr2QwxLwHnpOTkyQpIiJCy5Yt019//aXmzZurQYMGMdpevXpVkl75/t8AAAAAYGm5s2W0mv29914f5cmTV2vXrpav73KFhoYqe/YcqlfvDXXp8q4kqVevD/Tw4QMNGdJfzs4u8vFpofr1G5ruG/YijRs319y5s9WqVVvZ2f139XXdug00Zoy0aNFcLV48X+nTZ1CNGrXUp09/s+0rVqysjBk9VKpUGaVPnz7RxwkAAAAAsC1k7/9Ya/ZOdQPgzs7O8vX11b1799SuXTtVrlzZbP3Vq1fl7+8vJycnFSlSRDt27NDGjRsVEhISYwDcaDRqzZo1kqSaNWum2DEAAAAAQFKKijIqMjJKH7SvkeL7joyMUlRU4q5Mb9Kkeaz3A4uWJUsWTZgwJc715ctX1O7dB2NdlyNHDu3cuT/WdfXqNVC9ejFPkH5WaGiogoOD1bz5Wy9sBwAAAABIG8jeMVlr9k51A+AGg0Fvv/22fvjhB40ePVrz58833eP75s2b+uijjxQREaGuXbvK1dVVLVu21Jw5c7R9+3b9+uuvateunaSn89dPmzZNx48fV+HChdW4cWNLHhYAAAAAJFpUlFH37j2WnV3MGbJSYt+JDeGp0YMHD3T48AFt3bpF2bNnN5vCDQAAAACQdpG9k46ls3eqGwCXpL59++rw4cM6cOCAGjVqpAoVKig8PFzHjx/X48ePVbNmTQ0ZMkSSlDdvXo0ePVojRozQyJEjtXjxYhUoUEBnzpzR5cuXlSVLFk2bNk2Ojo4WPioAAAAASDxbC8OWEhkZoYkTx8nDw1Njx06I9bZbAAAAAIC0ieydNCydvVPlALizs7PmzZunhQsXas2aNdq3b58cHBxUpEgRtWrVSm3btpW9vb2pfevWrVWwYEHNmTNHhw8f1sWLF5UtWzZ17txZffr0UebMmS14NAAAAACA1MLTM5M2bdpu6TIAAAAAALBZls7eqXIAXJIcHR3Vo0cP9ejRI17ty5cvr5kzZyZzVQAAAAAAAAAAAACA1MrO0gUAAAAAAAAAAAAAAJAUGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAK2BnZ5CDg12K/7GzMySq3jZtfFSzZkUtXbo41vVfffWlatasqJ9++iHRz0mbNj4J2j6h7QEAAAAAaQvZO/Z9WFv2drDo3gEAAAAAL2VnZ5Cnp4vs7OxTfN9RUZEKCgpRVJQxwds6ODho27Y/9M47ncyWR0REaMeOrTIYEhfwAQAAAABIamRv28EAOAAAAACkcnZ2BtnZ2ct/3RyFBN5Isf26ZM6pgs3fk52dIVEhvGLFytq37y/dunVT2bPnMC0/fPignJ1dlC6dc1KWCwAAAABAopG9bQcD4AAAAABgJUICbyjk1hVLlxFvxYqV0OXLl7Rt2xazM9H/+MNP9eq9oa1bN5uWnThxXLNnf6+zZ0/LwcFBNWvW0QcfDFSGDBkkScHBwfr226+0e/cOOTg4qkuX7jH29/ffxzRr1nSdPn1KHh4eqlGjtnr3/kBubu7Jf7AAAAAAAJtA9rb+7M09wAEAAAAAyaZu3Qbatu0P09/Dw8O1c+d2NWjQ0LTs1KkT6tfvfRUoUFCzZs3TuHGTdOrUCX300YeKioqSJH3++VCdPn1SkyZ9o2++ma4//9ylmzf/OyP//PlzGjCgrypVqqIFC5Zo1KgvdPbsaQ0a9KGMxoSfQQ8AAAAAgLUge5tjABwAAAAAkGzq1XtDp06d0K1bNyVJ+/fvlYeHh4oW9Ta1Wbr0ZxUqVEQfffSpChZ8TeXLV9To0V/qzJlT2rfvL125ckn79+/VoEGfqEyZcipSxEujRo2Xk5OT6TGWLFmoihUrqVu3nsqbN5/KlCmr0aO/0KlTJ3TkyKEUP24AAAAAAFIK2dscU6ADAAAAAJKNt3cx5cqV2zQV29atfmrQoJFZm4sXz6tSpapmywoVKix39/S6cOGcQkNDJEnFihU3rc+UKbNy5cpt+vvZs2d17doVvfFGrRg1XL58SeXLV0zKwwIAAAAAINUge5tjABwAAAAAkKzq1XtD27b9oZYt22rXrp2aM2eB2Xqj0SiDIeZ2RmOUHBz+i61RUebTqdnbO5i1bdiwibp0eTfG43h4eL7iEQAAAAAAkLqRvf/DFOgAAAAAgGRVr14DnTp1QuvWrVGuXLmVP38Bs/WvvVZYx44dNVt27tw/evTokQoUeM00Zdvffx8zrX/48KGuX79q+nvBgoXk739BefLkNf2JiorUd999rYCAm8l2bAAAAAAApAZk7/8wAA4AAAAASFZFingpT568mj17hurXbxhj/dtvd9D58//o668n6dIlfx05ckhjx45Q0aJeqlixsnLnzqO6dRvom2/+pwMH9unixfMaN+5zhYeHmx7jnXc66Z9/zuqrr76Uv/9FnTx5QqNHj9CVK5eVJ0++lDxcAAAAAABSHNn7P0yBDgAAAABWwiVzTqvdX716b2jBgp/UoEHMEF6yZGlNnjxVc+bM0rvvdpSrq5tq1Xpdffp8aJqGbcSI0ZoxY6pGjRquqKgovfVWK927F/TMY5TS119P148/zlSPHp3l4uKs8uUr6YMPBsrJySnJjgMAAAAAYNvI3tafvQ1Go9H48maIjIzS3buPzJY5ONjJ09NNw6du0KXrQXFsmXjVy+bXhx1q6tSCsQq5dSXJH98lez4V7/q5goIeKSIiKskfHwAAAEDChIeHKTDwhjJnzilHx/+Co52dQZ6eLrKzs0/xmqKiIhUUFBLjHmBpSVyvS7RMmdxkb88Ea0mB7A0AAAAguZG9U6ekzN5cAQ4AAAAAqVxUlFFBQSGyszNYZN9pOYADAAAAANIGsrftYAAcAAAAAKwAYRgAAAAAgORF9rYNzNEGAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAApDJGI/cbS014PQAAAADA9pD1UpekfD0YAAcAAACAVMLe3l6SFBb2xMKV4FnRr4e9vYOFKwEAAAAAvCqyd+qUlNmb9A4AAAAAqYSdnb1cXNwVHBwkSXJySieDwWDhqtIuo9GosLAnCg4OkouLu+zsOIccAAAAAKwd2Tt1SY7szQA4AAAAAKQiGTJkkiRTEIflubi4m14XAAAAAID1I3unPkmZvRkABwAAAIBUxGAwKGPGzEqf3lORkRGWLifNs7d34MpvAAAAALAxZO/UJamzNwPgAAAAAJAK2dnZyc7OydJlAAAAAABgs8jetonT2AEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANsHB0gUAAAAAAADLCA8P16JFi+Tr66tLly7J1dVVpUqVUteuXVWrVq0Y7e/cuaPvv/9eu3bt0q1bt5Q1a1Y1btxYffv2lZubmwWOAAAAAAAAc1wBDgAAAABAGmQ0GjVo0CBNmjRJN2/eVPXq1VWsWDHt3btXPXv21MyZM83aBwQEqF27dvr555/l7Oys119/XVFRUfrxxx/Vvn17BQcHW+hIAAAAAAD4DwPgAAAAAACkQUuXLtXmzZtVrFgx+fn56YcfftD8+fO1YsUKubu7a+rUqbpw4YKp/fjx43X9+nX16tVLa9eu1Xfffafff/9dTZo00dmzZzV9+nQLHg0AAAAAAE8xAA4AAAAAQBq0Zs0aSdLQoUPl6elpWu7t7S0fHx8ZjUbt3LlTknTlyhVt3rxZOXPmVP/+/U1tnZycNG7cOLm5uWnZsmUKDQ1N2YMAAAAAAOA5DIADAAAAAJAGLViwQGvWrFGlSpVirHv8+LEkyd7eXpK0c+dORUVFqU6dOnJ0dDRrmz59elWtWlWPHz/Wvn37kr9wAAAAAABegAFwAAAAAADSoHTp0snb29s0yB1ty5Yt2rRpk1xcXNSwYUNJ0j///CNJKlq0aKyPVbhwYbN2AAAAAABYioOlCwAAAAAAAJZ1//59jRgxQufPn9fFixeVM2dOTZgwQTly5JAk3b59W5KUNWvWWLePXn7nzp2UKRgAAAAAgDgwAA4AAAAAQBp39epV+fn5mf5uMBh0/vx5VatWTdJ/U6I7OzvHun308uh2r8LBwXyyOnt725i8zlaOAwAAAABSOwbAAQAAAABI4woWLKj9+/fLaDRqz549+uKLLzR+/HgFBwerT58+pmnSDQZDrNsbjUaz/yaWnZ1Bnp5ur/QYqVWGDC6WLgEAAAAA0gQGwAEAAAAASOPc3P4bdG7atKly5MihDh06aPbs2erSpYtcXV0lSU+ePIl1++jlLi6vNsgbFWXUgwfmV5Hb29vZxODxgwchioyMsnQZAAAAAGCVMmRwiffMWgyAAwAAAAAAM+XLl1e+fPl0+fJlXbp0SdmyZZP0373An/eye4QnRESEbQ4SR0ZG2eyxAQAAAEBqkmoHwMPDw7Vo0SL5+vrq0qVLcnV1ValSpdS1a1fVqlUrRvs7d+7o+++/165du3Tr1i1lzZpVjRs3Vt++fc3OZAcAAAAAIK0LCQnR1KlTdefOHX311VexTm3u5OQkSYqIiFDRokUlSRcuXIj18c6dOydJ8vLySqaKAQAAAACIn/hdJ57CjEajBg0apEmTJunmzZuqXr26ihUrpr1796pnz56aOXOmWfuAgAC1a9dOP//8s5ydnfX6668rKipKP/74o9q3b6/g4GALHQkAAAAAAKmPs7OzfH19tXbtWh04cCDG+qtXr8rf319OTk4qUqSI6UT0bdu2KTIy0qztw4cPtW/fPrm6uqpChQopUj8AAAAAAHFJlQPgS5cu1ebNm1WsWDH5+fnphx9+0Pz587VixQq5u7tr6tSpZmedjx8/XtevX1evXr20du1afffdd/r999/VpEkTnT17VtOnT7fg0QAAAAAAkLoYDAa9/fbbkqTRo0crICDAtO7mzZv66KOPFBERofbt28vV1VW5c+dW3bp1de3aNX311VcyGo2SpLCwMH3++ed69OiR3nnnHbm7u1vkeAAAAAAAiJYqp0Bfs2aNJGno0KHy9PQ0Lff29paPj4+WLFminTt3qlChQrpy5Yo2b96snDlzqn///qa2Tk5OGjdunHbu3Klly5Zp4MCBcnZ2TvFjAQAAAAAgNerbt68OHz6sAwcOqFGjRqpQoYLCw8N1/PhxPX78WDVr1tSQIUNM7UeOHKmTJ09q3rx52rFjh4oUKaK///5b//77r0qUKKEPP/zQgkcDAAAAAMBTqfIK8AULFmjNmjWqVKlSjHWPHz+WJNnb20uSdu7cqaioKNWpU0eOjo5mbdOnT6+qVavq8ePH2rdvX/IXDgAAAACAlXB2dta8efP0ySefKG/evNq3b5+OHz+uIkWKaMyYMZo9e7bpPuCSlDt3bq1YsUJt27bVw4cPtW3bNjk5Oal3795auHCh3NzcLHg0AAAAAAA8lSqvAE+XLp28vb1jLN+yZYs2bdokFxcXNWzYUJL0zz//SJKKFi0a62MVLlxYf/zxh/755x/VqVMn+YoGAAAAAMDKODo6qkePHurRo0e82mfPnl3jx49P5qoAAAAAAEi8VDkA/qz79+9rxIgROn/+vC5evKicOXNqwoQJypEjhyTp9u3bkqSsWbPGun308jt37qRMwQAAAAAAAAAAAAAAi0j1A+BXr16Vn5+f6e8Gg0Hnz59XtWrVJP03JXpc9/eOXh7d7lU4OJjPGG9vnypnkE8wWzkOAAAAAAAAAAAAAGlbqh8AL1iwoPbv3y+j0ag9e/boiy++0Pjx4xUcHKw+ffqY7gVuMBhi3d5oNJr9N7Hs7Azy9LTN+5llyOBi6RIAAAAAAAAAAAAA4JWl+gFwN7f/Bp2bNm2qHDlyqEOHDpo9e7a6dOkiV1dXSdKTJ09i3T56uYvLqw3yRkUZ9eCB+VXk9vZ2NjF4/OBBiCIjoyxdBgAAAABYpQwZXJhZCwAAAACAVCLVD4A/r3z58sqXL58uX76sS5cuKVu2bJL+uxf48152j/CEiIiwzUHiyMgomz02AAAAAAAAAAAAAGlHqjtFPSQkRBMnTtSQIUPinLbcyclJkhQREaGiRYtKki5cuBBr23PnzkmSvLy8kqFaAAAAAAAAAAAAAEBqkeoGwJ2dneXr66u1a9fqwIEDMdZfvXpV/v7+cnJyUpEiRVSrVi1J0rZt2xQZGWnW9uHDh9q3b59cXV1VoUKFFKkfAAAAAAAAAAAAAGAZqW4A3GAw6O2335YkjR49WgEBAaZ1N2/e1EcffaSIiAi1b99erq6uyp07t+rWratr1679H3t3HmfXfP8P/HVnsofIjqBSe2uPJVqUltau1E6p2vfia4taK6KW0iqVVkQl9iWJpVQSEhS1htiCRkuEhpBEZJFl5veHX9KmSZhkljtz7/P5eHiUcz733Pen987Mfd33OZ+Tyy+/fP5V47Nmzcp5552XadOmZf/9988yyyxTlPkAAAAAAAAA0DAa5T3AjzvuuLz44ot57rnnssMOO2STTTbJ7NmzM3r06EyfPj1bbbVVTjvttPnjzz333Lz22mu58cYb89hjj2XNNdfMK6+8kg8++CDrrrtuTjjhhCLOBgAAAAAAAICG0OiuAE++XAb9xhtvzBlnnJFVVlklzzzzTEaPHp0111wzF154Yf70pz/Nvw94kqy00kq5++67s88++2Tq1KkZMWJEWrRokWOOOSYDBgxI27ZtizgbAAAAAAAAABpCo7wCPEmaN2+eww8/PIcffniNxi+//PLp3bt3PVcFAAAAAAAAQGPVKK8ABwAAAAAAAIAlpQEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloVuwCAAAAAPiPiopCKioK9Xb8qqrqVFVV19vxAQAAikkDHAAAAKCRqKgopH37NqmsrL9F++bOrcrkydM1wQEAgJKkAQ4AAADQSFRUFFJZWZFrb3sy4z+aUufHX6nrcjn+gC1TUVHQAAcAAEqSBjgAAABAIzP+oyn51/hJxS4DAACgyam/9bQAAAAAAAAAoAFpgAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACWhWbELoGmpqCikoqJQb8evqqpOVVV1vR0fAAAAAAAAKF0a4NRYRUUh7du3SWVl/S0cMHduVSZPnq4JDgAAAAAAACwxDXBqrKKikMrKilx725MZ/9GUOj/+Sl2Xy/EHbJmKioIGOAAAAAAAALDENMBZYuM/mpJ/jZ9U7DIAAAAAAAAAFlB/a1kDAAAAAAAAQAPSAAcAAAAAAACgJFgCHQAAAMpUVVVV7rrrrgwaNChvv/12Zs+enW7dumX77bfP0UcfnXbt2i0wvmfPnpk8efJijzd69Oi0bNmynqsGAACAxdMABwAAgDJUVVWVk046KcOGDUurVq2ywQYbpE2bNhk9enT69euXYcOG5dZbb03nzp2TJOPHj8/kyZOz/PLLZ/PNN1/kMSsqLDQHAABAcWmAAwAAQBm65557MmzYsHTv3j39+vXLKquskiT5/PPPc9ppp2XEiBHp3bt3fvvb3yZJ3njjjSTJjjvumLPPPrtYZQMAAMBXcmo2AAAAlKF77rknSXLWWWfNb34nyTLLLJM+ffqkUChk+PDhmTlzZpLktddeS5Ksu+66DV8sAAAA1JAGOAAAAJSh9u3bZ7XVVstGG2200L6OHTtmueWWy+zZszNp0qQk/7kCfL311mvIMgEAAGCJWAIdAAAAylDfvn0Xu2/cuHGZPHlymjdvno4dOyb58grwVq1a5dVXX80555yTt99+O4VCIT169Mhxxx2XDTfcsKFKBwAAgMVyBTgAAACwgHn3/d52223TsmXLfPLJJ/noo48yc+bMnHHGGamqqkrPnj3Tvn37jBw5MgceeGAefPDB4hYNAAAAcQU4AAAA8F8GDhyYBx54IK1bt84pp5yS5D/3/+7QoUOuu+66bLzxxkmS6urq3HTTTbnkkkvSq1ev9OjRIyussEKtnr9ZswXP1a+sLI1z92s6j4aab6n8/woAAPC/NMABAACAJMmAAQPSp0+fFAqFXHzxxVl99dWTJFtvvXWeeOKJVFdXZ/nll58/vlAo5NBDD81zzz2X4cOH5+67784JJ5yw1M9fUVFIhw5taz2Pxqhdu9bFLmEBja0eAACAuqIBDgAAAGWuuro6V1xxRfr165fKyspcfPHF2WWXXebvLxQK6dq162If//3vfz/Dhw/Pq6++Wqs6qqqq89ln0xfYVllZURLN2s8+m5G5c6u+dlxDzbem9QAAADQG7dq1rvFKVo22AV5VVZW77rorgwYNyttvv53Zs2enW7du2X777XP00UenXbt2C4zv2bNnJk+evNjjjR49Oi1btqznqgEAAKBpmTlzZk4//fQMHTo0rVq1ym9+85tsv/32S3SMLl26JElmzJhR63rmzCnNpuzcuVWNam6NrR4AAIC60igb4FVVVTnppJMybNiwtGrVKhtssEHatGmT0aNHp1+/fhk2bFhuvfXWdO7cOUkyfvz4TJ48Ocsvv3w233zzRR6zosK9rQAAAOC/ff755zniiCMyatSodOrUKdddd1023HDDhcbdcccdefrpp7Prrrsusjk+bty4JKn1/b8BAACgthplA/yee+7JsGHD0r179/Tr1y+rrLJKki+D+WmnnZYRI0akd+/e+e1vf5skeeONN5IkO+64Y84+++xilQ0AAABNxuzZs3PUUUdl1KhRWXXVVXPDDTfMz9//a8KECXnooYcyY8aMhRrg1dXVuffee5MkW221Vb3XDQAAAF+lUV4Wfc899yRJzjrrrAXC9zLLLJM+ffqkUChk+PDhmTlzZpLktddeS5Ksu+66DV8sAAAANEHXXHNNXnjhhXTp0iUDBw5cbPM7Sfbcc8+0aNEiI0eOzJ133jl/e1VVVa6++uqMHj06a6yxRnbccceGKB0AAAAWq1FeAd6+ffusttpq2WijjRba17Fjxyy33HKZPHlyJk2alBVXXHH+FeDrrbdeA1cKAAAATc+UKVNy0003JUk6deqUyy+/fLFj552cfsEFF+Scc87Jueeem5tvvjndu3fPmDFj8u6776Zz5875/e9/n+bNmzfUFAAAAGCRGmUDvG/fvovdN27cuEyePDnNmzdPx44dk3x5BXirVq3y6quv5pxzzsnbb7+dQqGQHj165Ljjjlvk/csAAACgXL388suZMWNGkmTMmDEZM2bMYseeeOKJ6dy5c/baa69885vfzPXXX58XX3wx77zzTrp27ZqDDz44xx57bDp16tRQ5VMHKivrd1HAqqrqVFVV1+tzAAAALEqjbIB/lXn3/d52223TsmXLfPLJJ/noo4+SJGeccUY22mij9OzZM2+99VZGjhyZv/3tb7n88suz8847F7FqloQQDgAAUL++973v5c0331zix/Xo0SPXXXddPVREQ1lu2VaprqpKu3at6/V5qqrmZtKkGfI3AADQ4JpUA3zgwIF54IEH0rp165xyyilJ/nP/7w4dOuS6667LxhtvnCSprq7OTTfdlEsuuSS9evVKjx49ssIKK9Tq+Zs1W7AxW9+N2oZS03nU93wbMoR/9tkXqa4WwgEAACgvbVu1SKGiIv984PrM+OTDenmO1p1WzDd3PTIVFQUNcAAAoME1mQb4gAED0qdPnxQKhVx88cVZffXVkyRbb711nnjiiVRXV2f55ZefP75QKOTQQw/Nc889l+HDh+fuu+/OCSecsNTPX1FRSIcObWs9j8aovhvONdWQIbx9+zb1cnwAAABoCmZ88mFmTHiv2GUAAADUuUbfAK+urs4VV1yRfv36pbKyMhdffHF22WWX+fsLhUK6du262Md///vfz/Dhw/Pqq6/Wqo6qqup89tn0BbZVVlY0muZxbXz22YzMnVv1teMaar4NEcJrOmcAAICv065d65JZIQwAAACaukbdAJ85c2ZOP/30DB06NK1atcpvfvObbL/99kt0jC5duiRJZsyYUet65swpzYbp3LlVJTu3xSnHOQMAAAAAAECpa7QN8M8//zxHHHFERo0alU6dOuW6667LhhtuuNC4O+64I08//XR23XXXRTbHx40blyS1vv83AAAAAAAAAI1bo2yAz549O0cddVRGjRqVVVddNTfccENWWWWVRY6dMGFCHnroocyYMWOhBnh1dXXuvffeJMlWW21V73UDAAAAAAAAUDyN8iZl11xzTV544YV06dIlAwcOXGzzO0n23HPPtGjRIiNHjsydd945f3tVVVWuvvrqjB49OmussUZ23HHHhigdAAAAAAAAgCJpdFeAT5kyJTfddFOSpFOnTrn88ssXO/ass87KKquskgsuuCDnnHNOzj333Nx8883p3r17xowZk3fffTedO3fO73//+zRv3ryhpgAAAAAAAABAETS6BvjLL7+cGTNmJEnGjBmTMWPGLHbsiSeemM6dO2evvfbKN7/5zVx//fV58cUX884776Rr1645+OCDc+yxx6ZTp04NVT4AAAAAAAAARdLoGuDf+9738uabby7x43r06JHrrruuHioCAAAAAAAAoClolPcABwAAAAAAAIAlpQEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUhGbFLgAAAAAA6lNFRSEVFYV6O35VVXWqqqrr7fgAAEDNaYADAAAAULIqKgrp0KF1Kioq6+05qqrmZtKkGZrgAADQCGiAAwAAAFCyvrz6uzL/fOD6zPjkwzo/futOK+abux6ZioqCBjgAADQCGuAAAAAAlLwZn3yYGRPeK3YZAABAPasodgEAAAAAAAAAUBc0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJLQrNgFQLmrqCikoqJQb8evqqpOVVV1vR0fAAAAAAAAGgsNcCiiiopCOnRonYqKynp7jqqquZk0aYYmOAAAAAAAACVPAxyK6Murvyvzzweuz4xPPqzz47futGK+ueuRqagoaIADAAAAAABQ8jTAoRGY8cmHmTHhvWKXAQAAAAAAAE1aRbELAAAAAAAAAIC6oAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJaFWDfAhQ4bkhRde+NpxjzzySK6++uraPBUAAACUJdkbAAAAaq5WDfCzzjord95559eOu/fee3PjjTfW5qkAAACgLMneAAAAUHPNlmTwkCFDMmfOnAW2vfvuu7n77rsX+5jPP/88Tz/9dJo3b750FQIAAEAZkb0pRxUVhVRUFOrl2JWV7gAIAADlZIka4K+99loGDhyYQuHLQFIoFPLyyy/n5Zdf/srHVVdXZ88991z6KqGIhHAAAKAhyd6Um4qKQtq3byMjAwAAdWKJGuAnnXRSPv/88/n/PXjw4HzjG9/IJptsstjHtGzZMt27d88BBxyw9FVCkQjhAABAQ5O9KTcVFYVUVlbk2tuezPiPptT58Tdcu1v223GjOj8uAADQOC1RA3zZZZfNJZdcMv+/Bw8enI022miBbVBKhHAAAKChyd6Uq/EfTcm/xk+q8+N269Kuzo8JAAA0XkvUAP9fY8aMqas6oFETwgEAgGKRvQEAAKDmatUA/2+ffPJJZsyYkerq6sWOWWWVVerq6QAAAKDsyN4AAADw1WrdAP/zn/+c66+/Pp9++ulXjisUCnn99ddr+3QAAABQduore1dVVeWuu+7KoEGD8vbbb2f27Nnp1q1btt9++xx99NFp127BVasmTpyYP/zhD3niiScyYcKEdOnSJTvuuGOOO+64tG3bdqnmBgAAAHWpVg3wQYMG5de//nWSpEWLFunQoUMqKyvrpDAAAACg/rJ3VVVVTjrppAwbNiytWrXKBhtskDZt2mT06NHp169fhg0blltvvTWdO3dOknz00UfZf//9M378+Ky11lrZdttt88orr6Rfv3554okncuutt2aZZZapdV0AAABQG7VqgN98880pFAo555xzsu+++6Z58+Z1VRcAAACQ+sve99xzT4YNG5bu3bunX79+85dO//zzz3PaaadlxIgR6d27d377298mSXr37p3x48fnqKOOyv/93/8lSWbNmpUzzjgjDz30UK655pqcddZZdVIbAAAALK2K2jx47Nix2WijjXLQQQdpfgMAAEA9qK/sfc899yRJzjrrrAXuG77MMsukT58+KRQKGT58eGbOnJn33nsvw4YNy4orrpiTTjpp/tgWLVrkoosuStu2bXPHHXdk5syZdVYfAAAALI1aNcBbt26dDh061FUtAAAAwP+or+zdvn37rLbaatloo40W2texY8cst9xymT17diZNmpTHH388VVVV2WabbRZqwi+77LLZYostMn369DzzzDN1XicAAAAsiVo1wDfffPOMHj06M2bMqKt6AAAAgP9SX9m7b9++eeihhxbZXB83blwmT56c5s2bp2PHjnnrrbeSJGuttdYij7XGGmskyfxxAAAAUCy1aoCfcsopmTFjRs4+++xMmTKlrmoCAAAA/r9iZO959/3edttt07Jly3z88cdJki5duixy/LztEydObJD6AAAAYHGa1ebBt99+ezbYYIP89a9/zbBhw9K9e/e0a9cuhUJhobGFQiE333xzjY9dVVWVu+66K4MGDcrbb7+d2bNnp1u3btl+++1z9NFHp127dguMnzhxYv7whz/kiSeeyIQJE9KlS5fsuOOOOe6449K2bdvaTBMAAACKpj6z96IMHDgwDzzwQFq3bp1TTjklSTJ9+vQkSatWrRb5mHnb542rjWbNFjxXv7KyVufuNxo1nUepzDcpvzmXyjwAAKCpq1UD/Kabbpr/73PmzMk//vGPxY5dVDBfnKqqqpx00kkZNmxYWrVqlQ022CBt2rTJ6NGj069fvwwbNiy33nprOnfunCT56KOPsv/++2f8+PFZa621su222+aVV15Jv3798sQTT+TWW2/NMssss/QTBQAAgCKpr+y9KAMGDEifPn1SKBRy8cUXZ/XVV0+SVFZWfuXxq6urF/jfpVVRUUiHDqV5Enu7dq2LXUKDK7c5l9t8AQCgsapVA3zAgAF1VccC7rnnnvlntffr1y+rrLJKkuTzzz/PaaedlhEjRqR3797zl2Tr3bt3xo8fn6OOOir/93//lySZNWtWzjjjjDz00EO55pprctZZZ9VLrQAAAFCf6it7/7fq6upcccUV6devXyorK3PxxRdnl112mb+/TZs2SZIvvvhikY+ft71169o1AKuqqvPZZwteRV5ZWVESjcXPPpuRuXOrvnZcqcw3Kb8513S+AADAkmvXrnWNV12qVQN88803r83DF+uee+5Jkpx11lnzm99Jsswyy6RPnz757ne/m+HDh2fmzJn56KOPMmzYsKy44oo56aST5o9t0aJFLrroojz++OO54447cvLJJy92qTYAAABorOore88zc+bMnH766Rk6dGhatWqV3/zmN9l+++0XGNO1a9ckmX8v8P/1dfcIXxJz5pRmA3Hu3KqSndvilNucy22+AADQWNXZzYlmz56d0aNH5+GHH84LL7yQJPnggw+W6ljt27fPaqutlo022mihfR07dsxyyy2X2bNnZ9KkSXn88cdTVVWVbbbZJs2bN19g7LLLLpstttgi06dPzzPPPLNUtQAAAEBjUZfZO/lypbVDDz00Q4cOTadOnTJgwICFmt9JstZaayVJxo4du8jjvP3220mStddee6lrAQAAgLpQ6wb4nDlz8rvf/S5bbrll9ttvv5x88sm54447kiRnnnlmfvKTn+Tdd99domP27ds3Dz30UDp06LDQvnHjxmXy5Mlp3rx5OnbsmLfeeivJf8L4/1pjjTWSZP44AAAAaGrqI3vPnj07Rx11VEaNGpVVV101d9xxRzbccMNFjt16662TJCNGjMjcuXMX2Dd16tQ888wzadOmTTbZZJOlmB0AAADUnVo1wOfMmZOjjz46ffv2zYwZM7Leeuulurp6/v5p06bl9ddfz0EHHZSJEyfWutgk8+/7ve2226Zly5Zfu8zavO119fwAAADQkOore19zzTV54YUX0qVLlwwcOHCBW5D9r5VWWinf//738/777+fyyy+f//yzZs3Keeedl2nTpmX//ffPMssss/QTBQAAgDpQq3uA33LLLXnyySez1VZbpU+fPunatWvWWWed+ftvvfXWXHDBBRkyZEhuuOGGnHnmmbUqduDAgXnggQfSunXrnHLKKUmS6dOnJ8li7+89b/u8cbXRrNmC5wvU9EbrjV1N51Eq803Kb86lMg8AAChH9ZG9p0yZkptuuilJ0qlTp1x++eWLHXvWWWelc+fOOffcc/Paa6/lxhtvzGOPPZY111wzr7zySj744IOsu+66OeGEE2o/WQAAAKilWjXABw8enPbt2+d3v/td2rZtu9D+Vq1a5aKLLspTTz2Vxx9/vFYN8AEDBqRPnz4pFAq5+OKLs/rqqydJKisrkySFQmGRj5t3Vvp/nx2/NCoqCunQYeE5loJ27VoXu4QGV25zLrf5AgBAKamP7P3yyy9nxowZSZIxY8ZkzJgxix174oknpnPnzllppZVy99135/e//31GjhyZESNGpFu3bjnmmGNy5JFHLrI2AAAAaGi1aoD/61//ylZbbfWVIbd58+bZYIMN8uSTTy7Vc1RXV+eKK65Iv379UllZmYsvvji77LLL/P1t2rRJknzxxReLfPy87a1b164BWFVVnc8+W/Aq8srKipJoLH722YzMnVv1teNKZb5J+c25pvMFAACWXLt2ret11aX6yN7f+9738uabby5xLcsvv3x69+69xI8DAACAhlKrBnizZs3y2Weffe24yZMnp1mzJX+qmTNn5vTTT8/QoUPTqlWr/OY3v8n222+/wJiuXbsmyfx7gf+vr7tH+JKYM6c0G4hz51aV7NwWp9zmXG7zBQCAUlLf2RsAAABKSa1OUf/Wt76VV155JePHj1/smHHjxuWVV15Z4P5kNfH555/n0EMPzdChQ9OpU6cMGDBgoeZ3kqy11lpJkrFjxy7yOG+//XaSZO21116i5wcAAIDGoD6zNwAAAJSaWjXADzjggMyYMSPHHXdcXn/99YX2v/nmmznxxBMza9as7L333jU+7uzZs3PUUUdl1KhRWXXVVXPHHXdkww03XOTYrbfeOkkyYsSIzJ07d4F9U6dOzTPPPJM2bdpkk002WYKZAQAAQONQX9kbAAAASlGt1kbbeeed89RTT+Xuu+/OXnvtlWWXXTaFQiFPPPFEtt1220yYMCHV1dXZZZdd8uMf/7jGx73mmmvywgsvpEuXLhk4cGCWX375xY5daaWV8v3vfz8jRozI5ZdfnjPPPDOFQiGzZs3Keeedl2nTpuWwww7LMsssU5upAgAAQFHUV/YGAACAUlTrm4P17t07G220UW644Yb885//TJJMmjQpSdKtW7f87Gc/yyGHHFLj402ZMiU33XRTkqRTp065/PLLFzv2rLPOSufOnXPuuefmtddey4033pjHHnssa665Zl555ZV88MEHWXfddXPCCSfUYoYAAABQXHWdvQEAAKBU1boBniR777139t5773z88cf58MMPU1VVlS5dumSllVZa4mO9/PLLmTFjRpJkzJgxGTNmzGLHnnjiiencuXNWWmml3H333fn973+fkSNHZsSIEenWrVuOOeaYHHnkkWnbtu1Szw0AAAAag7rM3gAAAFCq6qQBPmnSpLz99tvZfPPN06VLlyTJP/7xj9xyyy350Y9+NH9bTXzve9/Lm2++ucQ1LL/88undu/cSPw4AAACagrrM3gAAAFCqKmp7gDvvvDPf+9738utf/3qB7S+//HIuuuii7LDDDnnwwQdr+zQAAABQtmRvAAAAqJlaNcCffPLJnHfeeWnWrFm22GKLBfZtsskmOfzww1NdXZ3TTjstf//732tVKAAAAJQj2RsAAABqrlYN8H79+qVZs2YZMGBAzjjjjAX2de/ePaeffnoGDBiQQqGQ66+/vlaFAgAAQDmSvQEAAKDmatUAf+utt9KzZ8+sv/76ix2z/vrrZ5NNNslLL71Um6cCAACAsiR7AwAAQM3VqgE+Y8aMtG7d+mvHtW/fPnPmzKnNUwEAAEBZkr0BAACg5mrVAO/evXuee+65fP7554sd88UXX+SFF17IN77xjdo8FQAAAJQl2RsAAABqrlYN8N133z1TpkzJSSedlIkTJy60f9KkSTn11FPz6aefZrfddqvNUwEAAEBZkr0BAACg5prV5sEHHXRQHnzwwTz11FPZdttts95662XFFVdMkvz73//Oa6+9llmzZmWDDTbIoYceWhf1AgAAQFmRvQEAAKDmatUAb968eW688cZcddVVGTRoUF566aW89NJL8/e3bNkyBxxwQE4//fS0aNGitrUCAABA2ZG9AQAAoOZq1QBPkrZt2+acc87JGWeckVdffTUff/xx5s6dmy5dumTddddNmzZt6qJOAAAAKFuyNwAAANRMrRrghxxySLp3755f/epXadGiRXr06FFXdQEAAACRvQEAAGBJ1KoBPnr06FRUVNRVLQAAAMD/kL0BAACg5mqVoNu2bZvq6uq6qgUAAAD4H7I3AAAA1FytGuDHHntsnn322fTv3z+zZs2qq5oAAACA/0/2BgAAgJqr1RLo48aNy6qrrprLL788V155ZVZdddW0a9dukUuzFQqF3HzzzbV5OgAAACg7sjcAAADUXK0a4DfddNP8f58zZ07Gjh272LGFQqE2TwUAAABlSfYGAACAmqtVA3zAgAF1VQcAAACwCLI3AAAA1FytGuCbb755XdUBAAAALILsDQAAADVXqwb4f5s9e3beeOONfPjhh+ncuXM22WSTfPDBB+nWrVtdPQUAAACUNdkbAAAAvlqtG+Bz5szJtddem1tuuSVTp05Nkuy2227ZZJNNcuaZZ2batGm56qqrsuqqq9a6WAAAAChHsjcAAADUTEVtHjxnzpwcffTR6du3b2bMmJH11lsv1dXV8/dPmzYtr7/+eg466KBMnDix1sUCAABAuZG9AQAAoOZq1QC/5ZZb8uSTT2bLLbfMI488krvuumuB/bfeemv22GOPTJw4MTfccEOtCgUAAIByJHsDAABAzdWqAT548OC0b98+v/vd79K1a9eF9rdq1SoXXXRRunbtmscff7w2TwUAAABlSfYGAACAmqtVA/xf//pXNt1007Rt23axY5o3b54NNtggH3zwQW2eCgAAAMqS7A0AAAA1V6sGeLNmzfLZZ5997bjJkyenWbNmtXkqAAAAKEuyNwAAANRcrRrg3/rWt/LKK69k/Pjxix0zbty4vPLKK1lnnXVq81QAAABQlmRvAAAAqLlaNcAPOOCAzJgxI8cdd1xef/31hfa/+eabOfHEEzNr1qzsvffetXkqAAAAKEuyNwAAANRcrdZG23nnnfPUU0/l7rvvzl577ZVll102hUIhTzzxRLbddttMmDAh1dXV2WWXXfLjH/+4rmoGAACAsiF7AwAAQM3V+uZgvXv3zkYbbZQbbrgh//znP5MkkyZNSpJ069YtP/vZz3LIIYfU9mkAAACgbMneAAAAUDO1boAnyd5775299947H3/8cT788MNUVVWlS5cuWWmlleri8AAAAFD2ZG8AAAD4ekvcAJ87d25uvfXWDB06NBMnTky3bt2y2267ZY899kiXLl3SpUuX+qgTAAAAyobsDQAAAEtniRrgs2bNyuGHH57nn38+1dXVSZJ//vOfeeqppzJixIj87ne/q5ciAQAAoFzI3gAAALD0lqgBfvvtt+e5557L8ssvnyOPPDKrrLJK3nrrrfTr1y9Dhw7Nvffemx//+Mf1VSsAAACUPNkbAAAAlt4SNcD/+te/plWrVrntttvSrVu3JMk222yTrbfeOnvuuWf+8pe/COEAAABQC7I3AAAALL2KJRk8duzYbLrppvMD+DzrrLNO1l133YwZM6ZOiwMAAIByI3sDAADA0luiBvi0adOy3HLLLXLfyiuvnMmTJ9dFTQAAAFC2ZG8AAABYekvUAJ8zZ04qKysXua958+aZPXt2nRQFAAAA5Ur2BgAAgKW3RA1wAAAAAAAAAGisNMABAAAAAAAAKAka4AAAAAAAAACUhGZL+oDhw4dnu+22W2j7pEmTkmSR+5KkUChk+PDhS/p0AAAAUHZkbwAAAFg6S9wAnz59eqZPn77Y/ePHj1/k9kKhsKRPBQAAAGVJ9gYAAICls0QN8AEDBtRXHQAAAEBkbwAAAKiNJWqAb7755vVVBwAAABDZGwAAAGqjotgFAAAAAAAAAEBd0AAHAAAAAAAAoCQs0RLoAAAAQOkaMmRIzjzzzNx444357ne/u9D+nj17ZvLkyYt9/OjRo9OyZct6rBAAAAC+mgY4AAAAkNGjR+eiiy5a7P7x48dn8uTJWX755Rd7n/KKCgvNAQAAUFwa4AAAAFDmHn300Zx55pn5/PPPFzvmjTfeSJLsuOOOOfvssxuqNAAAAFgiGuAAAABQpiZMmJDf/va3GTx4cFq1apXOnTtn4sSJixz72muvJUnWXXfdhiwRAAAAloi1yQAAAKBMXXXVVRk0aFDWXXfd3HHHHVlttdUWO3beFeDrrbdeQ5UHAAAAS8wV4AAAAFCmVltttVx66aXZfffdv/b+3a+99lpatWqVV199Neecc07efvvtFAqF9OjRI8cdd1w23HDDBqoaAAAAFq/JXAE+ZMiQrL322nnqqacWub9nz55Ze+21F/vPF1980cAVAwAAQON21FFHZY899vja5vcnn3ySjz76KDNnzswZZ5yRqqqq9OzZM+3bt8/IkSNz4IEH5sEHH2ygqgEAAGDxmsQV4KNHj85FF1202P3jx4/P5MmTs/zyy2fzzTdf5JivC/MAAADAos27/3eHDh1y3XXXZeONN06SVFdX56abbsoll1ySXr16pUePHllhhRVq9VzNmi2Y3ysrSyPP13QepTLfpPzmXCrzAACApq7RN8AfffTRnHnmmfn8888XO2befch23HHHnH322Q1VGgAAAJSFrbfeOk888USqq6uz/PLLz99eKBRy6KGH5rnnnsvw4cNz991354QTTljq56moKKRDh7Z1UXKj065d62KX0ODKbc7lNl8AAGisGm0DfMKECfntb3+bwYMHp1WrVuncuXMmTpy4yLHzzkRfd911G7JEAAAAKAuFQiFdu3Zd7P7vf//7GT58eF599dVaPU9VVXU++2z6AtsqKytKorH42WczMndu1deOK5X5JuU355rOFwAAWHLt2rWu8apLjbYBftVVV2Xw4MFZb7310qdPn/Tu3XuxDfB5V4Cvt956DVkiAAAAkKRLly5JkhkzZtT6WHPmlGYDce7cqpKd2+KU25zLbb4AANBYNdoG+GqrrZZLL700u++++9fev/u1115Lq1at8uqrr+acc87J22+/nUKhkB49euS4447Lhhtu2EBVAwAAQOm544478vTTT2fXXXfN9ttvv9D+cePGJUmt7/8NAAAAtVWz68SL4Kijjsoee+zxtc3vTz75JB999FFmzpyZM844I1VVVenZs2fat2+fkSNH5sADD8yDDz7YQFUDAABA6ZkwYUIeeuih3HXXXQvtq66uzr333psk2WqrrRq6NAAAAFhAo70CvKbm3f+7Q4cOue6667Lxxhsn+TKA33TTTbnkkkvSq1ev9OjRo9ZnojdrtmAzvqbrzDd2NZ1Hqcw3Kb85l8o8AACA4thzzz1z/fXXZ+TIkbnzzjuz7777Jkmqqqry+9//PqNHj84aa6yRHXfcsciVAgAAUO6afAN86623zhNPPJHq6uosv/zy87cXCoUceuihee655zJ8+PDcfffdOeGEE5b6eSoqCunQoW1dlNzotGvXutglNLhym3O5zRcAAKhbq6yySi644IKcc845Offcc3PzzTene/fuGTNmTN5999107tw5v//979O8efNilwoAAECZa/IN8EKhkK5duy52//e///0MHz48r776aq2ep6qqOp99Nn2BbZWVFSXRWPzssxmZO7fqa8eVynyT8ptzTecLAAAsuXbtWpfFqkt77bVXvvnNb+b666/Piy++mHfeeSddu3bNwQcfnGOPPTadOnUqdokAAADQ9BvgX6dLly5JkhkzZtT6WHPmlGYDce7cqpKd2+KU25zLbb4AAMDSGThw4Ffu79GjR6677roGqgYAAACWXJM/Rf2OO+7IySefnOHDhy9y/7hx45Kk1vf/BgAAAAAAAKBxa/JXgE+YMCEPPfRQZsyYke23336BfdXV1bn33nuTJFtttVUxygMAAAAAAACggTT5K8D33HPPtGjRIiNHjsydd945f3tVVVWuvvrqjB49OmussUZ23HHHIlYJAAAAAAAAQH1r8leAr7LKKrngggtyzjnn5Nxzz83NN9+c7t27Z8yYMXn33XfTuXPn/P73v0/z5s2LXSoAAAAAAAAA9ajJXwGeJHvttVduueWW/OAHP8iECRPy6KOPZs6cOTn44INz3333ZbXVVit2iQAAAAAAAADUsyZzBfjAgQO/cn+PHj1y3XXXNVA1AAAAAAAAADQ2JXEFOAAAAAAAAABogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlIRmxS4AKD8VFYVUVBTq7fhVVdWpqqqut+MDAAAAAADQOGmAAw2qoqKQDh1ap6Kist6eo6pqbiZNmqEJDgAAAAAAUGY0wIEG9eXV35X55wPXZ8YnH9b58Vt3WjHf3PXIVFQUNMABAAAoW1ZfAwCgXGmAA0Ux45MPM2PCe8UuAwAAAEqO1dcAAChnGuAAAAAAUEKsvgYAQDnTAAcAAACAEmT1NQAAylFFsQsAAAAAAAAAgLqgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCc2KXQDQuFRUFFJRUai341dWOu8GAAAAAACA+qEBDsxXUVFI+/ZtNKkBAAAAAABokjTAgfkqKgqprKzItbc9mfEfTamX59hw7W7Zb8eN6uXYAAAAAAAAlDcNcGAh4z+akn+Nn1Qvx+7WpV29HBcAAACaCrcfAwCA+qMBDgAAAAANxO3HAACgfmmAAwAAAEADcfsxAACoXxrgAAAAANDA3H4MAADqh7WWAAAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAACBJMmTIkKy99tp56qmnFrl/4sSJ+dWvfpUf/vCH2WCDDbLddtvl8ssvz7Rp0xq4UgAAAFg0DXAAAAAgo0ePzkUXXbTY/R999FH23Xff3HLLLWnVqlW23XbbVFVVpV+/fjnggAPy+eefN2C1AAAAsGga4AAAAFDmHn300Rx++OFf2cTu3bt3xo8fn6OOOir3339/rr766jz88MPZaaed8uabb+aaa65pwIoBAABg0ZpMA9wybAAAAFC3JkyYkF69euW4447L7Nmz07lz50WOe++99zJs2LCsuOKKOemkk+Zvb9GiRS666KK0bds2d9xxR2bOnNlQpQMAAMAiNYkGuGXYAAAAoO5dddVVGTRoUNZdd93ccccdWW211RY57vHHH09VVVW22WabNG/efIF9yy67bLbYYotMnz49zzzzTEOUDQAAAIvV6BvglmEDAACA+rHaaqvl0ksvzV133ZW11157sePeeuutJMlaa621yP1rrLHGAuMAAACgWBptA9wybAAAAFC/jjrqqOyxxx6pqPjqrwc+/vjjJEmXLl0WuX/e9okTJ9ZtgQAAALCEmhW7gMW56qqrMnjw4Ky33nrp06dPevfuvcggXZNl2B555JE888wz2WabbRqqfAAAACgZ06dPT5K0atVqkfvnbZ83rjaaNVuwGV9Z2WjP3V8iNZ1Hqcw3Kb85l9t8k9KaCwAApaPRNsDnLcO2++67f+WZ6DVZhu2RRx7JW2+9pQEOAAAAS6GysjJJUigUFrm/urp6gf9dWhUVhXTo0LZWx2is2rVrXewSGly5zbnc5puU55wBAGj8Gm0D/KijjqrROMuwAQAAQP1q06ZNkuSLL75Y5P5521u3rl0zrKqqOp99tuBV5JWVFSXRZPvssxmZO7fqa8eVynyT8ptzuc03qfmcAQCgttq1a13jFYgabQO8pizDVnuW6Kr9uMau3OablNZcAACg2Lp27ZrkPyeh/6+vOzl9ScyZU5rNtLlzq0p2botTbnMut/km5TlnAAAavybfALcMW+2VylnHS6Lc5lxu803Kc84AAFBf5t12bOzYsYvc//bbbydJ1l577QarCQAAABalyTfALcNWe5boWrxSmXO5zTexDBsAAA1nSZZha6q23nrrJMmIESPSq1ev+SejJ8nUqVPzzDPPpE2bNtlkk02KVSIAAAAkKYEGuGXYaq8cl6sqtzmX23yT8pwzAADUl5VWWinf//73M2LEiFx++eU588wzUygUMmvWrJx33nmZNm1aDjvssCyzzDLFLhUAAIAy1+Qb4JZhAwAAgPp37rnn5rXXXsuNN96Yxx57LGuuuWZeeeWVfPDBB1l33XVzwgknFLtEAAAASJNfo+2/l2GbO3fuAvsswwYAAAB1Y6WVVsrdd9+dffbZJ1OnTs2IESPSokWLHHPMMRkwYEDatm1b7BIBAACg6V8Bbhk2AAAAqBsDBw78yv3LL798evfu3UDVAAAAwJJr8g3wxDJsAAAAAAAAAJTAEuiJZdgAAAAAAAAAaEJXgFuGDQAAAAAAAICvUhJXgAMAAAAAAACABjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJaFZsQsAAAAAmo5HH300xx577GL377zzzrnqqqsasCIAAAD4Dw1wAAAAoMZef/31JMlmm22WFVZYYaH9G2+8cUOXBAAAAPOVVAPcWegAAABQv+Y1wM8555yss846Ra4GAAAAFlRSDXBnoQMAAED9ev3119OyZcusscYaxS4FAAAAFlKSDXBnoQMAAEDdmzRpUj788MNssMEGadaspL5SAAAAoESUVFp1FjoAAADUn3knnq+44oq5/PLL88gjj+SDDz5I586ds8MOO+SYY47JcsstV+QqAQAAKGcVxS6grsw7C33ttdd2FjoAAADUg9deey1J8vDDD+e2225L9+7d06NHj0yZMiX9+/fPvvvum48//rjIVQIAAFDOSqZT7Cx0AAAAqF9vvPFGkmTbbbfNFVdckWWXXTZJ8umnn+aUU07J3//+95x77rnp27fvUj9Hs2YLnqtfWVka5+7XdB6lMt+k/OZcbvNNSmsuAACUjpJpgP/3Weht27bN5ptvnhVWWCGvvPJK+vfvn0cffTQ333xzunTpUuRKAQAAoGm69NJL84tf/CIrrLBCWrVqNX97x44dc9lll2XHHXfMiBEj8v7772fllVde4uNXVBTSoUPbuiy50WjXrnWxS2hw5TbncptvUp5zBgCg8SuZBriz0JeeM5RrP66xK7f5JqU1FwAAaCxatGiR7t27L3Lf8ssvn29/+9t5/vnn89prry1VA7yqqjqffTZ9gW2VlRUl0WT77LMZmTu36mvHlcp8k/Kbc7nNN6n5nAEAoLbatWtd495PyTTAnYW+9EoldC2Jcptzuc03Kc85AwBAsXXu3DlJMmPGjKU+xpw5pdlMmzu3qmTntjjlNudym29SnnMGAKDxK5kGuLPQl54zlBevVOZcbvNNnIUOAEDDWZKz0JuyWbNm5cILL8ykSZNyxRVXpE2bNguNGTduXJJkhRVWaOjyAAAAIEkJNcC/jrPQF68cz9YttzmX23yT8pwzAADUpxYtWuSpp57KBx98kMcffzw77rjjAvvHjBmTMWPGZNlll81GG21UnCIBAAAoeyVxivqsWbPyy1/+Mscdd1ymT5++yDHOQgcAAIDa2W+//ZIkv/71r/Pee+/N3z5x4sScffbZmTt3bg4//PAFbk0GAAAADakkrgB3FjoAAADUv8MOOyzPPfdc/va3v2XXXXfNpptumhYtWuSZZ57J9OnTs8MOO+Soo44qdpkAAACUsZK4AjxxFjoAAADUtxYtWuRPf/pTfvnLX2b11VfPCy+8kGeeeSZrrrlmevfund/97neprKwsdpkAAACUsZK4AjxxFjoAAAA0hMrKyhxyyCE55JBDil0KAAAALKRkGuDzzkK/5ZZbMnjw4LzwwgupqKjImmuumX322Sd77713CoVCscsEAAAAAAAAoJ6UTAM8cRY6AAAAAAAAQDkrmXuAAwAAAAAAAFDeNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICS0KzYBQAUW0VFIRUVhXo7flVVdaqqquvt+AAAAAAAAHxJAxwoaxUVhbRv3yaVlfW3IMbcuVWZOnVmqqvrrwmuyQ4AAAAAAKABDpS5iopCKisrcu1tT2b8R1Pq/Phrd++SQ3bbJO3bt6nzY/+3qqq5mTRphiY4AAAAAABQ1jTAAZKM/2hK/jV+Up0ft1uXdilUVOSfD1yfGZ98WOfHT5LWnVbMN3c9MhUVBQ1wAAAAAACgrGmAAzSAGZ98mBkT3it2GQAAAFAUFRWFVFQUil1Grbj9GP+rvt/X3nMAsHQ0wAEAAACAelNRUUj79m1SWVlRb89RXVWVQkX9HT9x+zEW1BDv67lzqzJ58nTvOQBYQhrgAAAAAEC9qagopLKyItfe9mTGfzSlzo+/4drdst+OG7n9GA2qvt/XK3VdLscfsKX3HAAsBQ1wAAAAAKDejf9oSv41flKdH7dbl3ZJ3H6M4qiv9/U89XmFeWKZdQBKkwY4AAAAAAA0Isst2yrVVVVp1651vT6Ppf0BKEUa4AAAAAAA0Ii0bdUihYoKS/sDwFLQAAcAAAAAgEbI0v4AsOTq9wYiAAAAAAAAANBANMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASmhW7AAAAAAAAAKDpq6gopKKiUK/PUVVVnaqq6np9Dpq2kmuAP/vss+nbt2/eeOONzJw5M2uvvXZ+9rOfZaeddip2aQAAAFASZG8AAGia6rNBXSgU0q5dy1RUVNbL8eepqpqbSZNmaIKzWCXVAL///vtz+umnp1mzZunZs2cqKyvz9NNP5+STT87YsWNzwgknFLtEAAAAaNJkbwAAaJoqKgpp375NKivr9w7J/3zg+sz45MN6OXbrTivmm7semYqKggY4i1UyDfBPPvkk55xzTlq3bp0BAwZk/fXXT5KMHTs2hxxySK655ppsv/32WWeddYpcKQClqL6X9rGsDwDQGMjeABST7A1QOxUVhVRWVuTa257M+I+m1PnxN1y7W/bbcaPM+OTDzJjwXp0fH2qqZBrgt9xyS2bOnJkjjzxyfgBPktVXXz2nnnpqzj777Nx000255JJLilglAMVQ3wG5IZb2sawPANAYyN4AFEtFRSEdOrSWvSk5TuygGMZ/NCX/Gj+pzo/brUu7Oj8mLI2SaYCPHDkySfLDH/5woX3bbbddCoVCHnvssQauCoBia6hlfZL6W9qnMS7rU9/hLBHQAKAxkr0BGo/G1jSr73oqKytSUVFZVtmb4nNRBcCiNbbPIf+rZBrg//jHP5Ika6yxxkL72rdvn86dO+fjjz/OJ598kk6dOjV0eQAUSX0v65M0zqV96vMDSEOEs0RAA4DGSPYGaBwa29XQDXnyeWPK3pQ2F1UATZWTd0qkAT5lypR88cUXadu2bdq2bbvIMV27ds3HH3+cjz/+WAgHKEP1taxP0viW9mmogFZf4SwR0GqiIa7Cr2+N7YqS+mZVg6/X1F/jxOtMaZO9ARqPLz83NZ6roRvy5HOKq6l/Zl+Sz+vlelFFOSqn9zWlz8k7XypUV1c3+Z+KDz/8MNtuu206d+6cJ598cpFjDjjggLz44ou57bbb0qNHjyV+jurqhX+BFApJRUVFpnw+M3PnVi1V7V+lRfPKLNOmZWZP+yzVVXPr/PiFiso0b9suVVVVqcm7oKnPNym/OTe2+SblN+fG+L6e/7im+5luiedZru/radNnZW5V3c+5ebPKtG7V3Pu6ji3pJ7KKikIK9Tzh6urqen2ORX2++ir1PefGNt95vK/rTn2/xvOeY0lf53J6jZOmPd9k0XNuiN/JjYHsvXRklBqMb+JzbmzzTcpvzo3xfT3/cfX456GioqJsXuPE+7o+LM37uql/Zl+Sz+vl+L6e/7gm/NF2aTKK93Xdaay/u5LyeV/X93fDSf1/P7y413hJflZL4grwioovz2L4qknP6/Mvbb+/UCiksnLRx19umVZLdcyaat62fq8snPf/X0019fkm5TfnxjbfpPzm3Bjf1+WmHN/Xbdu0qKdKvuR9Xfrqu5nzVZ+viqHc5luOGqJB6XWmlMnetSOjfL2mPufGNt+k/ObcGN/X9a3cXuOk/OZcbu/rxpjLyvF9Td0qx/d1uf3uaozq+7vhpHH/7iqJd8e8pddmzpy52DGzZs1KkrRp06ZBagIAAIBSInsDAADQFJRMA7xNmzaZOnXqYoP4Rx99lCTp0qVLQ5YGAAAAJUH2BgAAoCkoiQZ4oVDIWmutlSQZO3bsQvsnT56ciRMnpmPHjuncuXNDlwcAAABNnuwNAABAU1ASDfAk2XrrrZMkw4cPX2jf8OHDU11dnW222aahywIAAICSIXsDAADQ2JVMA3yvvfZK69at8+c//zkvvvji/O3vvPNOfvvb36ZQKOTnP/95ESsEAACApk32BgAAoLErVFdXVxe7iLpy55135txzz01lZWV69uyZFi1a5Omnn84XX3yR//u//8tRRx1V7BIBAACgSZO9AQAAaMxKqgGeJI8//niuv/76vPrqq6msrMwaa6yRww47LD/60Y+KXRoAAACUBNkbAACAxqrkGuAAAAAAAAAAlKeSuQc4AAAAAAAAAOVNAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuBAnZk6deoSP+aZZ56ph0qApXXNNdfkrbfeKnYZAADAYsje0PTJ3gBQvzTAaXCzZs3Kq6++mjFjxmTOnDmLHffpp5/mueeea8DKGt4zzzyTG2+8MbfeemvGjRtX7HJq7ZBDDsnkyZNrNPaLL75I79698/Of/7x+iwKWyDXXXJM333yz2GVAndtuu+3yyCOPFLuMoqiqqsp77723wLbq6uo8+OCD6d27d37zm9/k5ZdfLlJ1deeDDz7IzJkzazx+3LhxGTJkSP0VVASffvppnn766Tz44IN56KGH8swzz9T4sxlQemTv/5C9ZW9obGRvSpXsLXv/L9mbYmlW7AKouZkzZ+bTTz9Nt27dil3KUhswYEB+97vfZfr06UmSZZddNkcccUSOOOKIVFQseD7G3/72t5x55pl54403ilFqnXnzzTfzxz/+MW+++Wa6deuWo48+Oj169MhJJ52URx55JNXV1UmSZs2a5cQTT8zRRx9d5IqX3htvvJGf/vSn+fOf/5zOnTsvdtzLL7+cM888M//617++clyp+vTTTzN27NhsttlmxS6lQUydOjWXXnppevfuXexSGky5vcalYLvttsvZZ5+d7bbbrtilNJhvfetbueyyy7LbbrsVu5QGMX78+PmfP8rJyJEjc+GFF+bjjz/Oq6++muTLUH7cccflsccem/85pF+/fjnkkEPSq1evYpZbK9ttt91C7+np06fnoosuyhFHHJHVV199gfGjRo1Kr169ssceezRwpXXv4Ycfzh//+MdFfm4uFArp0aNHjjjiiGy77bYNX1wdWmeddVIoFJboMYVCIa+//no9VUSpkr2bJtl7YbJ3eeUy2ZumQPYufbK37C17y96NhSvAi2hRZ0PNmjUrQ4YMycSJExcaP3To0Cb94WDIkCHp06dP1l577fTq1StHH310WrVqlauuuiqHHXZYPv/882KXWOdeffXV7Lvvvhk5cmRat26dl19+OYceemj69OmTRx55JIcffngGDx6cm2++Odtss01++9vf5qGHHip22Uvt3HPPzTvvvJODDjooH3744UL7Z8+end/85jc58MAD869//Ss//vGP85e//KUIldatb33rW7n//vsX2DZz5sxcc801ef/99xca/7e//S2HHHJIQ5VXL95///1cdNFF+clPfpKf/OQnOeecc/Luu+8uNG7o0KHZeeedc8899xShyrpTjq9xuSnHgDYvfFG6xowZk+OPPz7V1dU5/PDDU1VVlSS57bbbMnLkyHTp0iV33nlnRo0alTPOOCMDBgxo0p9DFvWe/uKLLzJkyJB89NFHRaioYfTu3Tsnn3xyxo8fnz322COnnXZafvWrX+W8887LSSedlO222y6vvfZajj322Pz6178udrm1stlmm2XTTTddon822WSTYpdNIyB7y96yt+zdVMnepf8alxvZm1Ike8vesnfjzN6uAC+iRf3BnzZtWnr16pX+/fuX3Nm5N954YzbbbLMMHDhw/rbjjjsuF1xwQQYNGpRDDz00f/7zn7PMMssUscq6ddVVV2XllVfOwIED07Fjx0yfPj1HH310brnlluy333457bTT5o/ddNNN89Of/jQ33HBDdtpppyJWvfQOOuigLLfccjnrrLNy0EEH5c9//nO+8Y1vJPnyDPUzzzwzb731Vrp165YLL7wwW2+9dZErrhuL+qM/Y8aMXHvttdlkk02y8sorF6Gq+vPGG2/k4IMPzueff55WrVqlVatWef311/Pggw/m9ttvz1prrZWpU6fmnHPOydChQ1NZWZmjjjqq2GXXSrm9xu+8884SL4PpjHtofK6//vp07do19957b9q1azd/+y233JJCoZBTTz01G2ywQZLk5z//eZ599tncdtttTfZzyOKU8hdO9913X26++ebsscceOe+889KmTZtFjps2bVouvvji3HTTTdl4442zww47NHCldeO/cwQsCdlb9pa9Ze+mSPb+Uim/xrI3lAbZ+0uyt+zd2GiAN0Kl+ovin//8Z84666wFtrVo0SJ9+vRJ+/bt079//xxxxBHp37//Yn+BNDWjRo3Kqaeemo4dOyZJ2rRpk1/84hf56U9/mq222mqh8TvttFMuu+yyhi6zTu26665Zdtllc/LJJ+eggw7K9ddfn0ceeSR9+/bNnDlzcuCBB+b//u//0rZt22KXWu9K9Wf56quvzsyZM/Ob3/wmu+yyS5Jk9OjROfXUU9O7d+9cccUVOeSQQ/Kvf/0r66+/fnr37p211167yFXXj1J9jfv27Zu+ffsu0WOa+pKZ5WpJlzNq6u6888489dRTNR5fKBTSp0+feqyofj333HPZd999Fwjg48aNyzvvvJNmzZrlhz/84QLjt9xyy1x99dUNXSa1cNttt2WjjTb62rPL27Ztmz59+mTs2LG56667mmwInz17dpo3b75Ej3n55Zez4YYb1lNFNHWl+llO9pa9Ze/SIHv/R6m+xrJ3+ZC9v5rsTWMne3+9xpi9NcBpMK1bt87kyZMXue+MM87I9OnTc/vtt+eYY47J9ddf37DF1ZNlllkmn3322QLb1l577WyzzTZp1mzhH79JkyalZcuWDVVevdlmm23Sr1+/HHvssfnJT36S6urqrLrqqundu3c23XTTYpdHLY0ePTr777///ACeJBtssEHOOOOMnHLKKTnllFMyfvz4nHbaaTnssMMWuscgjd/2229fsl+cfJVyC2hJct111+XOO++s8fhCoZCbbrqpHiuqX88999wSXWHR1F/jSZMmZYUVVlhg29///vckyYYbbrjQF+KtWrXKF1980WD1UXv/+Mc/lugettttt13uuOOOeqyofv3kJz/JFVdcUaO/UbNmzcpVV12VAQMG5LXXXmuA6qDxkL2/JHvL3k2d7F36ZO+aaeq5LJG9v05Tf41l79Iney9eY87eGuA0mJ49e2bAgAH54Q9/mDXXXHOh/eeff34+//zzPPDAAznssMOyzTbbFKHKurXlllvmz3/+czbeeON85zvfSZIsu+yy+eMf/7jQ2JdffjkDBw6cP66p22STTTJgwIAcccQR+fTTT/OrX/1KAC8RU6ZMyTrrrLPQ9vXXXz9z587Nm2++mYEDB2ajjTZq+OKoEz/60Y+y2267FbuMBlduAS1Jxo4dm7Fjx9Z4fFM/a/3ss89u0vd0XVLLLbdcPv300wW2/e1vf0uhUMiWW2650PixY8fOv3KOpmH69Onp1KlTjcd36dKlSd+TbeLEidl7771z4okn5sgjj1zs76QXXnghZ599dt59992suuqqDVwlFJ/sLXvL3qVB9i59snfNyN5Nj+wte5ca2btpZm8NcBrMqaeemgMPPDB77rlnvv3tb+fyyy9f4IeiUCjksssuS4sWLTJo0KC8+OKLRay2bpx22mkZPXp0DjvssGy66aaLvXfCwQcfnBdeeCEdO3Zc4N5kTd0666yT2267LT//+c9z7LHH5tprr80WW2xR7LKopTlz5izyaolWrVolSY466igBnCap3AJaklx++eVl9YVLhw4dstJKKxW7jAbTo0ePPPjggzn88MNTWVmZiRMnZuTIkUmSHXfccYGxU6dOzf3335+ePXsWoVKW1ty5cxd5ZePiVFZWZs6cOfVYUf164IEH0qtXr1x55ZUZOXJkLr300qyyyirz989bJnbevfYOP/zwnHTSSUWsGIpD9pa9Ze/SIHtTqmTv0id7y96lRvZumtlbA5wG07179/zlL3/Jtddem+eff37+B/b/VlFRkT59+mTjjTfO7373u3zyySdFqLTudOrUKffcc09uv/32zJo1a7HjWrVqlb333ju/+MUvluhMosamV69ei9y+6qqr5v3338/RRx+dnXbaaYEzhkrhLE4WtN566xW7BFgq5RbQKH1HHnlk9t9//+y3337ZfPPN88gjj+SLL77ILrvsktVWWy3Jl1+svvTSS7n00kvz6aef5qCDDipy1bUzbNiwvPvuu/P/e+bMmSkUCrn33nvzwgsvLDD2rbfeaujyqKVOnTrlT3/6U2655ZZcfvnl+fGPf5yzzjor++67b5599tn88pe/zLhx47L22mvn4osv9pmEsiV7y96yd3nwd46mSvam1MjesnepKZXsrQFeZO+8884CS75MnTo1SfLmm28udEbJkiyT0lh16NAh55xzzteO22effbLnnnsu8Eu0qWrVqlUOPfTQrxxTKvddGzx48Ffu/+KLLzJkyJAFtpVKCH/++eczd+7c+f89bdq0JMmTTz6ZCRMmLDC2FK6w+CpNfZmmxSmX13izzTZL586di10GUAfWX3/9XHfddbn44ovTv3//VFZWZrfddsuFF144f8xll12WAQMGpKKiIr169UqPHj2KWHHtDR06NEOHDl1o+/9+/pinFP5m/e8XD1+lVL54OOigg7LFFlvk3HPPzfnnn5+BAwdm7NixadasWU466aQcddRRS3R2PuVB9l402btpkr1LP5fVRCl8jlmUcnmNZW8oHbL3f8jeX5K9G4dCdXV1dbGLKFfrrLPOIn/wq6urv3L7G2+80RDl1bvq6uqMGzcukydPTpJ07NgxK6+8cnGLqmelPufx48cv1eOa+lmfi/pZ/u9frYva15R/ltdZZ50ce+yx+e53v7vA9qlTp+a4447LWWedlXXXXXehx2222WYNVWKdK7fXuByts846ZbckWbnNefDgwdl0000XWLKpnEyaNCmtW7de6CrAxx57LK+99lp22WWXRnm/piXx7LPPLtXjNt988zqupOEs6r6gX6eU/j4999xzOe644zJ16tQUCoUcd9xxOfHEE4tdFo2Q7F3aOXRRSn3Osvd/lHIuk72/VMqvcTkqtxyalN+cZW/Ze3Fk76arqWZvDfAiuuaaa5bqcSeccEIdV9KwRo8enX79+uXJJ5/M9OnTF9i3zDLL5Ac/+EF+/vOfL9UvlcaqHOdcTr7u7PvF2XPPPeu4koaxuC8Qk8V/iZikSf/BL6fX+L+vjFoSTflLlqQ8A9qzzz6b1VdfvUkv/wnlrhy/eEiSzz//PJdddlnuvvvutGzZMkceeWQefvjhvPXWW/nOd76T3r17p1u3bsUuk0ZE9i6fHFqOcy4n5ZTLEtl7STTF11j2lr2BpkP2bprZWwOcBtW/f/9cccUVqaioyMYbb5w111wz7dq1y5w5czJ58uS8/vrreeONN1JRUZEzzzwzhxxySLFLrrVynHNN9e3bN0OHDs2gQYOKXUqDmzVrVlq0aFHsMpZKuX6BuKSa6mv8VV+yfJWm/CUL5WFx98r8KqWyVCiLdvvtt+dvf/vbUv9dozhGjhyZ888/PxMmTMgWW2yRiy66KKusskpmz56dq6++Ov3790+rVq1y+umnZ//99y92uVA05ZhDy3HONSV7N71clsjeNdVUX2PZm1Ile/O/ZO+mqRSytwY4Deaxxx7L0Ucfne985zvp06dPVlxxxUWOe++993LhhRfmqaeeSv/+/fOd73yngSutO+U45yVx/vnn584772zyH96vueaaJQqYo0ePTq9evfKXv/ylHquiLpXTa/z73/9+qUJ4U/+SpRwD2tJ86VsoFHLTTTfVQzX1rxyXq/q6L9VatmyZZZddNmuttVZ+9KMfZZ999klFRUUDVlhcpfA55IMPPkjHjh0XWl5vccaNG5cXXnghe+yxR/0WVk9OO+20/OUvf0mbNm1yxhlnZL/99ltozKhRo3LmmWdm3Lhx2XzzzXPxxReX1LLHUBPlmEPLcc5LohT+5iXllcvKVTm9xrJ3zcneTYvsvTDZu+l/DpG9m2b21gAvonL7g//zn/88EydOzKBBg9K8efOvHDtnzpzsscceWXXVVXPttdc2UIV1rxznvCRK4Y9f8uWHnMMPPzynn376V46bM2dOrrnmmvTr1y9z585t8vOuqZkzZ+bTTz9t1MuhfB2vcekr14C2pJrynMvxXpkHH3zwV+6fO3duPvvss7z33nuZPXt2ttxyy/Tt2zfNmjVroAqLqxQ+h3zrW9/KZZddtsD9BKdPn56LLrooRxxxRFZfffUFxt93330588wzm+yc11lnnWy99da56KKLssIKKyx23MyZM/PrX/86t99+e9q0aZMXX3yxAaukMZK9F69Ucmg5znlJlMLfvEQu+zqyN01BueXQpPzmLHsvTPZu+p9DZO9Fa+zZuzx+whqpJbmvzX+fQdRUQ/jrr7+eQw899GvDaJI0a9YsO+20U+67774GqKz+lOOcy9Gmm26a/v37Z8aMGTnvvPMWOebNN9/MmWeemTfffDPLLbdcfvnLXzZwlXVnu+22y9lnn53ttttu/rZZs2blwQcfzFZbbZXOnTsvMH7o0KFN+g9+Un6vcTl65JFHil1CgxszZkyxS2hQTTlML62BAwfWaNzMmTNz22235bLLLsttt932teGdxmNR5zJ/8cUXGTJkSHbfffeFQnhTd8kll9ToHp+tWrXKBRdckB/+8If+HpNE9v4qpZJDy3HO5ajccpnsXfqvcTmSvUuf7L14snfTJXsvWmPP3hrgRVSTP37jx4/PRRddlJEjR2bZZZfNySefXP+F1ZNp06ala9euNR6/4oor5t///nc9VlT/ynHO5ah///456aSTctttt2XGjBnp06fP/C/Oqqur86c//SnXXnttZs2alZ133jnnnHNOOnbsWOSql9748eMzffr0BbZNmzYtvXr1Sv/+/RcK4aWg3F7jJHnnnXcyatSo7LXXXvO3TZw4Mddcc01efPHFtG7dOtttt10OPfTQJnm/tf9VjgGNBc2aNSv/+Mc/0qpVq6y22mrFLqdBtWrVKj//+c/z8ssvZ/DgwUJ4CSjVRb5qEsD/2ze/+c3ss88+9VQNTYns/dVKIYeW45zLUbnlMtm79F/jRPam/Mjesncpkb2/1FiztwZ4IzV37tz0798/f/jDHzJz5szssssu6dWrV5P+cDtnzpwl+qDWrFmzzJo1qx4rqn/lOOdy1KJFi1x77bXp1atXBg8enJkzZ+aKK67Ie++9l7POOiujR49Oly5dcsEFF+QHP/hBscutN6X6Bz8pv9f4iiuuSP/+/VNdXZ0999wzFRUVmTp1avbbb7988MEHad++fVZaaaX87ne/y6OPPpqBAwfW6GqbpqwcA9qECRMyevTotGrVKptttlmN73PUmE2dOjXXX399Ro0atcAZ2vfff3969+6dzz77LMmXH9z79OmTjTbaqEiVFkfPnj3z5JNPFrsMqJUvvvgiDz/8cAYNGpRnn3021dXVOf7444tdFo2Y7F0aObQc51yOyi2XLY7sXTqvsey9MNlb9i4HsjeloClkbw3wRuj555/PhRdemLfffjvdu3fP+eefn+985zvFLgu+1jXXXLNE41999dV6qqThVVZW5rLLLku7du1y88035/3338/bb7+dmTNnZp999smZZ56ZZZZZpthlUgvl8hoPGzYs/fr1y7bbbptDDjkkFRUVSZI//OEPGT9+fDbccMP8+c9/TuvWrTN69OgcfPDB+fOf/5wjjzyyyJXXXjkGtPHjx+fKK6/MqFGj8uijj87f/qc//SlXX3115s6dm+rq6iy33HK56KKL8qMf/aiI1dbOtGnTst9+++Wdd97JCiuskDlz5qRZs2YZPXp0zjzzzFRXV2e//fbLmmuumSFDhuTnP/95hgwZklVXXbXYpTeYysrKVFVVFbuMpTZkyJAlGv/Pf/6zfgqhKEaNGpVBgwbloYceyrRp01JdXZ1vfOMb2W+//YpdGo2Y7E1TJXuXfi4rZ+XyGsvesncie8veTZPsXd6aUvbWAG9EJk2alMsuuyxDhgxJixYtcuKJJ+bII48sieVt5nn++eczd+7cGo198cUX67mahlFOc17SEJ4seI+9UnDOOeekffv2ueaaa1JRUZE//vGP2WabbYpdFnWo1F/j22+/PRtuuGH69u07f1t1dXXuu+++FAqF/OIXv0jr1q2TJBtssEF+/OMf5y9/+UuTD+HlGNA++eST7Lfffpk0aVI22GCD+XN+4okncuWVV6ZZs2Y59dRTs9Zaa+XOO+/MqaeemjvuuCPrrrtusUtfKv379897772X3/72t9lxxx3nb7/22mtTXV2dn/3sZznrrLOSJHvvvXd233339O3bN5dcckmxSm5wL7/8clZcccVil7HUzjrrrCX6XFFdXV1yn0PKzYQJE3Lvvfdm0KBBeffdd+dfEdezZ88ceeSR2WqrrYpcIY2V7L2gpp5D5ymnOcvepZ/LKP3XWPaWvWVv2bupkr3LT1PN3hrgjcRdd92VK664IlOmTMmWW26Z888/P9/4xjeKXVadu/POO3PnnXfWaGyp/GIspzkPGDCg2CU0CieccEI6dOiQ3r17p1+/ftlkk01K4uxk/qOUX+PXXnttoUD9+uuv55NPPskyyyyTnj17LrBv/fXXz/3339+QJdaLcgxof/rTnzJt2rTccsstC5xR/6c//SmFQiHHH3/8/PfC9773vey11165/vrr89vf/rY4BdfS0KFD8+Mf/3iB13fatGnzlx078MAD529v2bJldt9999x1110NXmex/PWvf829996bI444otilLLWm/PNIzc2aNSvDhw/PoEGD8vTTT2fu3LmprKzM5ptvnk022STXXXddDjnkkEYbwCk+2XthTT2HzlNOc5a9v1TKuYwvlfJrLHvL3rK37N1UNeWfR2quFLK3BniRvfnmm7ngggvy0ksvpXPnzrnyyiuz8847F7uselGOvxjLbc6bb775Ej/m+eefr4dKGtZzzz230La11lor++yzT+6888787Gc/yxlnnDF/Oat5Nttss4YqkVoqp9d4+vTpWW655RbY9ve//z3Jl/OprKxcYN+cOXOa9JeH85RjQBs5cmT22muvBQL45MmT88ILLyRJfvKTn8zfXigUstNOO+Wmm25q6DLrzPvvv7/A65h8+bM9Z86crLLKKgs1P1ZcccV88sknDVlinevVq9dX7p87d26mTZuWf/zjH3nvvffSvXv3Jh3C99xzz2KXUBTDhg3Lu+++O/+/Z86cmUKhkHvvvXf+z/M8b731VkOXV6cuvPDCPPjgg5kyZUpatmyZrbfeOttvv3222267dOjQIePHj88f/vCHYpdJIyV7l7Zym7Ps/R+lmsvKVTm9xrK37C17f0n2bnpk7y/J3o0/e2uAF9Gll16agQMHZu7cufn+97+fk08+Ocsss0w++OCDr3xct27dGqjCulWOvxjLcc418eGHH2bw4MEZMmRIxo0blzfeeKPYJdXKwQcf/JUh5LXXXsuhhx660PamPO933nlngWA6derUJF9+sdis2YJ/WsaOHdugtdWHcnqNu3btmnHjxi2wbeTIkSkUCvne97630PjRo0dn+eWXb6jy6k05BrR///vfWWuttRbY9swzz6SqqiprrLHGQq9rp06dMmXKlIYssU5VVFQsdI+tp59+Okny3e9+d6Hxn376aZO/umTw4ME1GrfKKqvkZz/7WY477rgmP+fFWdTn6xVXXLFkvkQcOnToQtsXd1+2pjzn2267LW3atMkxxxyTI444omTfr9Q92bv0leOca0L2/lJTnrfsvaBSeo1l7/+QvWXvpv65Xvb+D9n7P5rynEsle2uAF9GNN944/99HjBiRESNG1OhxTfFD3dL49NNPM3bs2CZ5FufSKuU5f/HFFxk6dGgGDRqUZ555Zv6Sc4v6UN/UHH/88U36D9rS6Nu37wL3qZrn0ksvXWhbU19eMCmv1/h73/te7rnnnhx44IFZfvnlM2rUqDz//PNp3rx5dthhhwXGvv322/nLX/6Sfffdt0jV1p1yDGgtW7bMjBkzFtj21FNPpVAoZMstt1xo/L///e+0a9euocqrc2ussUZGjRqVgw46KMmXv5uGDRuWQqGQH/zgBwuNf+SRR7L66qs3dJl16pFHHvnK/S1btky7du1K6p63SXLPPffkrrvuyh/+8Id07NgxkyZNyg9+8IOFfo+fdNJJOfbYY4tUZd0otyVw99xzzwwfPjx//OMfc9NNN2XTTTedfxZ6586di10ejZjs/dVKOYcuTinPWfYuLbJ36ZK9/0P2XpDs3fTI3rJ3qSmV7K0BXkQnnHBCsUtoUN/61rdy2WWXZbfddpu/bebMmenXr1/22GOPrLzyyguM/9vf/pYzzzyzSX/pUI5z/l8vvfRSBg0alIceeiiff/55kqRjx47Za6+9st9++2WllVYqcoW1d+KJJxa7hAZVToF0nnJ6jY877rgMHTo0O+20U1ZbbbW89dZbqa6uzvHHH5+OHTsm+TJ8Dx06NAMGDEjz5s1z+OGHF7nq2ivHgLbOOuvk6aefzs9+9rMk/7m3T5Jsv/32C4ytrq7OX//616yzzjoNXmdd2WOPPXLxxRdn/fXXz5Zbbpk777wzH3zwQb7xjW9k6623XmBs375989JLL+Wcc84pUrV1oxT+xi6pX/ziF3n44YfTrVu3fPDBB/N/byXJ7rvvnlVWWSVJcu+99+a6667L3nvvnS5duhSr3FpbmiVw58yZUw+VNIxLLrkkF154YUaMGJH7778/jz/+eJ544olceOGF2XjjjdOjR4+y+4xCzcjepZ9Dy3HO/0v2Lj2yd2mTvWXvRPaWvZsu2fvryd7FpwFeROUWwqurqxfaNmPGjFx77bXZZJNNFgqkpaAc55wkH330UYYMGZLBgwfnX//6V6qrq9O6det897vfzVNPPZVf/epX2W677YpdJkupnAJpOercuXPuvvvuXHvttXnppZfy7W9/O3vttVf22Wef+WMGDx6c/v37Z6WVVspvfvObrLjiikWsuG6UY0Dbf//9c+qpp6ZPnz7Zcsstc8899+STTz7Jt7/97QWuhpo5c2Z+/etf5+23327SX7jsv//+eeGFF3LJJZekUCikuro6yy23XK644or59xC8++6786c//Snjxo3LJptskgMOOKDIVdev0aNHZ9SoUamoqMjmm2+etddeu9gl1cp9992Xhx9+OEcffXROOumkhe6buMcee+Q73/lOkmSbbbbJvvvumzvuuKNkPpNPmzYt1dXVX3mFzKhRo3LuuefmgQceaMDK6laLFi2yww47ZIcddsjUqVPz17/+Nffdd19eeOGFvPDCCykUCvnjH/+Yzz//PDvssENatWpV7JJpBErl57ymyjGHluOcE9m71MnepU32lr1lb9m7qZK9Ze+mkr01wBuRWbNmZcyYMfnoo49SXV2drl27Zp111knLli2LXVq9WlRQLXWlOueHHnoogwYNylNPPZW5c+emXbt22W233fKjH/0oW2+9dT7++OOFzmwsBddcc80SP6ZQKOT444+vh2rq3yGHHJJjjz12/geZclBur/EKK6yQiy66aLH799prr/zgBz9Ijx495oeXpq4cA9rOO++cN998M/369cvAgQNTXV2dlVdeOVddddX8MTfccEP+8Ic/ZNq0adlxxx3z4x//uIgV106hUMgVV1yRgw46KKNGjcoyyyyT7bfffoGzlP/973+nuro6xx57bI4++uiSeH+//vrr+eMf/5ixY8fmG9/4Ro455phssMEG+eUvf5lBgwbN/0xSKBSy66675pJLLlnofpJNxeDBg7PxxhvnlFNO+dqx875we+yxx5p8CH/44YdzzTXX5B//+EeSL+8rd9JJJ2XXXXedP2b69Om58sorc9ttty205GRT0qtXr+y///7ZcMMNkyTLLrts9tlnn+yzzz6ZMGFCHnjggTzwwAMZPXp0XnnllVx00UXZeeed86tf/arIldPYyN7lo1TnLHvXXFPOZbJ3zTTl11j2lr3nkb2b/vtb9l402btpKpXs3TR/wkrMxIkTc+WVV2bo0KGZNm3aAvtat26dHXbYIaecckq6du1apAqhZk455ZS0adMmBx54YLbbbrtsttlmC5wB1hSWxVga5RbQnn322QXOSC4H5fYaf52mvvzYopRrQDvllFNywAEH5OWXX84yyyyTzTffPM2bN5+/v2XLlll//fWz22675Sc/+UkRK607G2+8cTbeeONF7jvhhBOafCD7b6NGjcohhxySZs2aZa211sprr72Wgw46KAcffHDuueee7L777tlxxx0zffr0PProo3nggQfyrW99K4cddlixS18qr7/+eo455pgaj99qq61y7bXX1mNF9e/BBx/MqaeempYtW2arrbZK69at8/zzz+f000+ff//IV155Jaecckref//9rLzyyrnwwguLXfZSGzx4cL773e/OD+H/bfnll8/hhx+eww8/PGPHjs19992X+++/P3fddVejC+EUj+xNqZC9a64p5zLZu2aa8mv8dWRv2bspk71l73lk76anVLK3BniRvfTSSzn66KMzZcqUbLjhhtliiy3StWvXNGvWLB999FGee+65DBkyJI8++miuu+669OjRo9glw2KtvPLKef/99zNo0KD885//zCuvvJLtt98+3/zmN4tdWr0aMGBAsUugnpXTa/zcc88t1eP+e9mupqycAto8K6ywQlZYYYVF7vvpT3+an/70pw1cEXXl2muvTffu3TNgwIB06NAh1dXVOfvss3PjjTdm9913z2WXXTZ/7K677prPPvssDzzwQJMN4TNnzky7du0W2r7sssumb9+++da3vrXA9rZt2zbpe3Ilyc0335xOnTrl9ttvn3+PtRkzZuTYY4/N73//+3Tt2jWHHXZYvvjii/z85z/PL37xi0a5LFldW3311XPKKafklFNOyYsvvljscmgkZG9KiexNqSqn11j2lr3/m+zdtMneX5K9Ze/GRgO8iD755JMcf/zxadu2bf7whz9kk002WeS4119/PSeffHJOOumk3HvvvenUqVMDVwo1M3z48Lz88su577778te//jV/+9vfcuWVV2a11VbLj370o6y77rrFLrFebL755l87ZurUqSkUCl95bxAar5q8xqXi4IMPXuIrRgqFQl5//fV6qgjqRq9evZb4MYVCIX369KmHahrGK6+8kiOOOCIdOnRI8uV8Dj/88AwePDjbbrvtQuN/9KMf5de//nUDV1l3ll9++XzwwQcLbW/WrNki5/uvf/2ryd9HcezYsTn44IPnB/Dky6tYTzjhhPz0pz/NKaeckk6dOuWKK67IRhttVLxCi0gTk0T2pvTI3osnezdtsvdXk71pCmRv2ft/yd7loTFmbw3wIrr55pszbdq0Bc4aWZRvf/vbufHGG7Pbbrvl1ltvzYknntiAVcKS2XDDDbPhhhvm7LPPzt/+9rfcf//9eeSRR3LdddelUCikUChkxIgRWWeddbLSSisVu9w6U11dnccffzz/+Mc/suqqq2bbbbdNs2bN8vTTT6d379555513kiTf+ta3cuqpp2arrbYqcsW1M2zYsLz77rs1Hl/KS5LNUypftFxyySU1Gvfwww9n5MiRSZINNtigHitqGOUY0A455JAlfkyhUMhNN91UD9XUv8GDB9d47H9/EdWUX+PPPvssnTt3XmDbvKUF27dvv9D4Vq1aZcaMGQ1RWr3YYIMN8uCDD+b444//2mUSZ82alQcffDDbbLNNA1VXP6ZOnZqVV155oe3f+MY3kny5lOLtt98+/4uYUvD8889n7ty5S/SYPfbYo36KocmQvSlFsrfsvSiyd9Mhe9ec7N20yN5fkr2/JHs3XaWQvTXAi2j48OHZfffdvzKAz7PSSitlzz33zNChQ5t0CP/fH5p591178sknM2HChAXGNsYlE5ZGOc45SSorK7PNNttkm222ycyZMzNs2LA88MADefLJJ3P33Xdn0KBB6dmzZ/baa6/suuuuxS63Vj777LMcddRRefnll1NdXZ0kWX/99XPuuefmqKOOSuvWrbP99ttn+vTpefnll3P00UfnxhtvbNJnNg8bNixDhw6t8fhSCOH//UXLN77xjXz/+98vyS9a9txzz6/cP378+Fx00UUZOXJk2rVrl1NPPTX77bdfA1VXf8oxoL3//vs1GldVVZUJEyakurq6Sd9PcsyYMV875r/f38suu2xOPvnk+i+sHlVXV6dZswU/7s97DZvya7k4+++/f37605/mV7/6Vc4555yF5j5PVVVVzjvvvHz00UfZf//9G7jKulVVVbXAPV/nmXc/waOOOqqkAniS3HnnnbnzzjtrNHbe763GFsJpeLJ3eeTQcpxzInvL3guSvZsO2fvryd5Nk+z9Jdlb9m7qSiF7a4AX0fvvv79E9/ZYZ511luhDQmP0vz808wJLv379Fvpj0NT/2M9TTnM+6qijssUWW2TzzTfPuuuuO38urVq1ym677ZbddtstkyZNyoMPPpj7778/Tz/9dP7+9783+RB+9dVXZ8yYMTnvvPPSs2fPjB8/PhdffHF+9rOfpXv37hk4cOD8s/0+/fTT7L333unfv3+TDuFHH310vvvd7xa7jAZTjl+0/K85c+bkhhtuSN++fTNjxozsvvvuOeuss+af0drUlWNAe/TRR792zMsvv5wLLrgg//73v7Pyyivn3HPPbYDKGt7cuXPTv3///OEPf8jMmTOzyy67pFevXgudwU3jtummm+bwww/PDTfckL///e857LDD0rNnz6ywwgqprq7Oxx9/nGeeeSa33HJLxowZk1NOOSXrrLNOscuuV926dSt2CXVu3333Ldsl5Vh6sndp59B5ymnOsrfsXapkb9k7kb1lbxo72XthsnfjpAFeRM2bN88XX3xR4/EzZ85MmzZt6rGi+lXTpX1KSbnN+e9//3sef/zx+UtRbbrppunZs2e22GKL+X/kOnTokIMOOigHHXRQxo0bl7/85S9Frrr2Hn300ey///454IADkiSrrbZazjvvvBx22GE56KCDFljqpmPHjtl3330zcODAIlVbN1ZfffWSCphfpxy/aPlvzz77bC688MKMHTs2q622Ws4///z07Nmz2GU1mHIMaFOnTs1vfvOb3HnnnamoqMjRRx+d4447Li1btix2aXXu+eefz4UXXpi333473bt3z/nnn5/vfOc7xS6rzvzvspkzZ85MoVDIvffemxdeeGGBsW+99VZDl1fnTj/99Ky00kq58sorc9555y2y4dGmTZtccMEFJXEFTTnadNNNs9tuuxW7DJoY2bv0lducZW/Zu1TJ3rK37C17N1Wyt+xdakohe2uAF9Faa62Vxx57rMb3ARk5cmTWWGONeq6q/nzd0j6lqNzm/OKLL+b111/Piy++mFGjRuWll17KiBEjUigU0q5du2y22Wbp2bNnevbsmbXWWiurrLJKjjnmmGKXXWsff/xxVl999QW2zftZXdTZXyuuuGKmTJnSILVRN8rxi5bkyy8ULr300tx3331p2bJlfvGLX+SII46Yv7xPOSj1gLYo9957by677LJ88skn2XzzzXP++ecv9DuuFEyaNCmXXXZZhgwZkhYtWuTEE0/MkUcemRYtWhS7tDo1dOjQRS6bOWTIkEWOb8pXw81z4IEHZs8998yIESPy3HPP5d///neqq6vTtWvX9OjRI9tvv32Tv2fkf1vUvUG/6suWUlgaFZaU7F36ym3Osvd/yN6lRfaWvWVv2bupkr1lb9m78dEAL6If//jHOe+88/Lggw9m5513/sqxQ4YMyVNPPZUrr7yygaorvvfffz/nnXde+vfvX+xSGkxTn3OzZs2ywQYbZIMNNsihhx6aJPnwww8XCOWXXnpp5s6dm/bt22fzzTdPz549c+CBBxa38FqaPXt2WrVqtcC2eSFlUWGlUCgscG86Gr9y/KLljjvuyJVXXpkpU6bke9/7Xs4999wa3TezVJRLQPtv77zzTi688MI8++yz6dChQ3796183unv31JW77rorV1xxRaZMmZItt9wy559/fr7xjW8Uu6w6N2DAgGKXUDStW7fOzjvv/LWfsUvB4r5oSRb9ZYsQTjmSvb9aU8+hS6Opz1n2/g/Zu7TI3rK37F1aZO/SJ3t/SfZunDTAi2ivvfbKkCFDcsYZZ+TNN9/MQQcdlK5duy4w5qOPPsqNN96YAQMGZJtttslOO+1UpGrrxssvv5zrrrsuo0aNSpJ8+9vfzvHHH59NN910/pjq6ur8+c9/ztVXX52ZM2cWq9Q6U45z/m8rrrhidtlll+yyyy5Jvlza57777sugQYPy8MMPZ+jQoU0+hJebE044IWuvvXaxy2hQ5fRFy5gxY3L++edn9OjRWX755XPRRRflRz/6UbHLalDlEtDmmTVrVq699tr0798/c+bMyT777JPTTjst7dq1K3Zpde7NN9/MBRdckJdeeimdO3fOlVdeWdIhrVSWgmTxyu2Llj333LOkfx9Tf2Tv8sih5Tjn/yZ7lx7Z+0uyd+mSvWXvUiF7lz7Zu2nSAC+iioqK9O3bN6eddlr++Mc/5k9/+lNWXHHFdOnSJZWVlfnkk0/y3nvvpbq6OjvttFMuvvji/9fevcfVfD9+AH+dbioht0Zuc1vHbSRdtC82JbdFucxtGnP/jmEYtraGiLnNxhi+ctu+LlMpkiKXkS5UmoUvY+7kVtLk1Onz+8Oj89tRqHTOp8/n83o+Hns8+Jz3Z15vpXNen8v7I3bk13LixAmMGTMGWq0WjRs3hpWVFZKSkjBixAgEBwfD2dkZ169fx7Rp05CWlgYbGxvMmTNH7NivRYlzfl5ubi6SkpKQmJiIU6dO4cyZM8jLy4OFhYVuSTY5yMzMxM2bN3W/L7wC+cGDB3rbgWdXt0rZxIkT9X6v0Whw7tw5ZGRk6Ja5UavVsnxekRL0798fBQUFAICaNWti69at2Lp160v3UalU2LRpkzHiGZTSChoAHDlyBPPmzcONGzfg4OCAOXPmoG3btmLHMohFixZhy5Yt0Gq1eO+99zBlyhTY2NgU+Rn9vOLuNJGrbdu24dixY1i5cqXYUcqkpEsb/5PUf36V5UDLyZMnDZDEOJT2jF8qP+ze8u+hSpzz89i92b1JWti92b3ZvfWxe0sHu3fJsHuLTyUIgiB2CAJ+++037N69G2lpabh7967ug6yTkxP69u0LNzc3sSO+tpEjRyItLQ3r16+Ho6MjAODOnTsYP348zM3NERQUBD8/P9y/fx9eXl746quvULt2bZFTvx4lzjk/Px+pqamIj49HfHw8Tp8+jby8PJibm+Ptt9/WFW9HR0fZLGekVquLfW6LIAgvfZ7L2bNnDRnL4O7du4dly5YhOjoaOTk5eq9ZWVmhe/fumDp1apG7a6RIrVbjyy+/hIeHh25bVlYWfH19sXTpUt2/70IxMTFYuHChJL/GXbt2LdN+sbGx5ZzEuF5U0F5FygXt008/RUxMDADgvffeg5+fH0xNTV+5n7Ozs6GjGYRardb9ujTP2pLiv+OyCggIwI4dOyQ755L+/CooKMCdO3d079NSnW9p3Lp1C6GhoQgLC8O1a9cUMWeiF2H3lmcPVeKc2b3/H7s3u7cUv8bs3uzer8LuLV/s3vLF7l2x8AQ4GY2bmxsGDBiA6dOn620/duwYxowZg6ZNm+Lu3bv45ptvJL/cXCGlzXnMmDE4efIkcnNzYWJiglatWsHNzQ2urq5wcnIqsoyVXMyePbtM+0n5SqrU1FSMGzcOWVlZaNu2Ldzc3GBnZwczMzNkZGQgKSkJSUlJqFq1KlavXo327duLHfm1KPVAi5IosaD9c87Aq+ct9cJS1iurn7/zRs6kXsJL4vTp0/jmm29w9uxZ1K9fH1999RW6dOkidiyDePr0KaKjoxESEoKEhATdv+FOnTrhp59+EjseERmQ0noooLw5s3uXDru3dLB7yx+7N7v3i7B7ywu7N7t3RcAl0CUkISEB58+fL9MSExVBdnY2mjZtWmR78+bNIQgCMjMzsXPnTlk8W6CQ0ub822+/wdzcHD4+Phg3bhzefPNNsSMZhZTLdFncv38fn3zyCSpXrowff/wRTk5OxY5LT0/HlClT8Omnn2L37t2oWbOmkZOWHx8fn1IVMyU5efIkQkNDJb9UqJKKViGl/ewqy9dYbs8GVbLs7GwsXboUO3bsgImJCcaNG4d///vfslwyNDU1FSEhIdi3bx8eP34MAKhRowb69++PQYMGoV69eiInJKr42L2lR2lzZvdWBnZv+id2b+lS2s8udm9lY/dm965IeAJcQiIjI7Fjxw7JlnCtVgszs6LfcoVLcY0fP142ZbSQ0uY8cOBAJCQk6Jb5aNKkCTp27Ag3Nzc4OzujWrVqYkekcrB161bk5ORg27ZtaNCgwQvHtWzZEsHBwfD29sYvv/yCSZMmGTFl+Vq4cKHYESqU27dvIzQ0FKGhobh27RoAKLKES72g+fr6lnqfGzduGCBJxVN4cGn//v2SfmYTPbN79258++23uH//PlxcXBAQEFDsSRIpy8jIQFhYGEJDQ/HXX39BEARYWVnB3d0dcXFxmDt3rt5SokT0cuze0qO0ObN7KwO7N7F7P8PuLV/s3vLC7s3uXdHwBDhVGHL7YVgScpvzvHnzAAA3b95EXFwc4uPjERUVha1bt8LExARqtRqurq66Um5tbS1yYiqLAwcOoE+fPi8t4IXq1asHX19fREdHS7qE+/n5YcKECejYsaNuW35+PlJSUqBWq1GlShW98eHh4Zg1axbS09ONHdVgNBqNbjmf+Ph4CIIAQRDg6uqKIUOGiB3PqJRW0J4+fYqoqCiEhoYiKSkJf/zxh9iRDKLw4FJYWBiuXr0KQRBga2srdix6DZcuXcKcOXOQmJiI6tWrY+HChfDx8RE7Vrnat28fQkJCEBcXB61Wi6pVq8Lb2xteXl7o1KkT7t69C09PT7FjElEFI7ceWhJymzO7tzKwez/D7s3uze4tL+ze8sPuze5dUfEEOBGVO3t7ewwYMAADBgwAAFy4cAHx8fE4ceIEdu3aheDgYJiZmaF169bo2LEjJk+eLHJiKo3r16/jww8/LPF4tVqN0NBQAyYyvMTERAwcOFBvW3Z2Nvz8/LBhwwa9cl5IEARjxTOo55fzKZxX79698cknn6BJkyYiJzQOJRa05ORkhISEICoqCjk5ORAEAc2bNxc7VrkqPLgUGhqK+Ph4FBQUQBAEtGvXDoMHD0avXr3EjvhawsLCSjX+8uXLhgliZBqNBqtWrcKGDRuQn5+PgQMHYvr06ahatarY0crd1KlTYW1tjaFDh8LDwwPOzs4wNTXVvc4lRImI5I3dW97YvZ9h92b3ZveWPnZvfeze0sPuLU08AU5GdfLkSWi1Wr1tOTk5AIDjx4/jzp07RfaR+tVCSpzz85o3b47mzZtj+PDh0Gg0iIqKwi+//ILU1FScPn2aJVxizM3N8fTp0xKPz83Nle0dB3Ip2s8rbjkfW1tb+Pr6ol27dggICECvXr1kX8DlXtCKc+fOHd3X/sqVKwAAMzMz9OrVC0OGDEGHDh1ETlg+Tp8+jV27dukdXKpatSqys7Mxb968IgfdpGrWrFmlKmGCIEi+tB05cgTz5s3DjRs34ODggDlz5qBt27ZixzKY+vXr4/r16wgJCcHly5fx+++/w9PTE40bNxY7GhGJTIk9VIlzfh67t7ywe/8/dm92b7lh92b3ZveWFnZvaeIJcDKqHTt2YMeOHXrbCj/Erl+/Xu8Hf+EbgdQLqRLn/E9Xr17F6dOncfr0aaSlpeHcuXPIy8tD5cqV0blzZzg7O4sdkUrprbfewpEjR0r8TMTDhw+jWbNmBk5F5WXs2LE4fvw4tFot6tati6FDh8LT0xOurq4wMTHBjRs3ZHvwoZBSClohjUaDAwcOYNeuXYiPj9cdOG7atCkuXbqExYsXo0ePHiKnfH0ZGRnYvXs3QkNDcfnyZQiCAHt7e/j6+sLLywtvvPEGunXrhho1aogdtdwEBQWJHcGoPv30U8TExAAA3nvvPfj5+UGj0SApKeml+0n5s8iBAwdw+vRphIeHIyoqCseOHcOyZcvQpEkTeHl5oVWrVmJHJCKRKLGHKnHO/8TuLT/s3vLG7s3uze7N7i1V7N7s3lLBE+AiunnzZqnGF165LFVKeyMAlDfnrKwspKWl6Qp3WloasrKyIAgCqlWrhvbt22Pq1KlwdnZGy5YtYWJiInZkKoO+ffvi66+/RmRk5Cuvwg0LC0NcXByWLVtmpHT0uo4ePQpra2v4+flh2LBhqF27ttiRjEKJBS0tLQ0hISGIjIzEo0ePYGJiAkdHR3h5ecHLywtarRaenp4wNzcXO2q56Nq1KwoKCqBWqzF+/Hh4eHigdevWutdv3LghYjrD8PX1FTuCUUVHR+t+HRsbi0OHDr10fOHJj7Nnzxo6mkG1bdsWbdu2xRdffIFjx44hIiICBw8exOrVq6FSqaBSqXDo0CGo1WrUq1dP7LhEomD3lj+lzZndWxnYveWN3Zvdm91bPti92b3ZvSsmngAXUdeuXRW1NEZZ3gik/oaotDm7urpCpVJBEARUr14dLi4ucHZ2hrOzMxwcHCT9/Uv/r3///ggLC8Pnn3+O8+fPY9iwYbCzs9Mbk5GRgeDgYGzevBldunRBz549RUpLpTVx4kTs3bsXa9aswU8//YTGjRvD09MTnp6eePvtt8WOZzBKLGgffPABrKys0KlTJ3Tu3Bldu3bVO8ggtznn5+fDysoKtWrVgpWVVZElUpXgzp07OHXqFDIyMgAAdnZ2cHR0RN26dUVOVj6UdvLjeaampujSpQu6dOmC3NxcxMTEYM+ePTh+/Dh+/fVXhISEwNXVFf3798f7778vdlwio2L3fjWpv+8rbc7s3srA7i1v7N7s3oXkNmd2b3ZvuWP3lg6eABeRj48PS0kxnj59iqioKISGhiIpKQl//PGH2JEMTi5z7tGjB1xcXODi4sJlt2TMxMQEa9aswfTp0/HTTz9h7dq1qFu3LmrXrg1TU1Pcv38fV69ehSAI6NmzJ+bPny92ZCqFiRMnYuLEiThz5gwiIiIQGRmJtWvXYt26dahbty6cnJxk+d6lxIJmZWWFJ0+e4M8//0T16tVhbW2Nzp07w8bGRuxoBnHo0CFEREQgIiICy5Ytg0qlQq1atdCtWzd069ZN1lfnXrhwAYGBgUhKSoIgCHpLKZqYmMDJyQn+/v5wcHAQMeXrU9pV9y9jaWkJb29veHt74+HDh4iMjERERAROnDiB+Ph4lnBSHHbv4smlh5aGXObM7q0M7N7yxu7N7s3uLT/s3srD7l2xqQS5P0yEJCM5ORkhISGIiopCTk4OBEFA8+bNERERIXY0g1HinElefvvtN+zevRtpaWm4e/cuBEGAnZ0dnJyc0LdvX7i5uYkdsVyo1Wp8+eWX8PDw0G3LysqCr68vli5dCkdHR73xMTExWLhwoeSX9gGe3QF14sQJREREICYmBo8fPwYA1KtXD/3794ePjw/s7e1FTvn6bt26pStoFy5cKLageXl5YdWqVXrfB1KWm5uL2NhYhIeH49ixY9BqtTA3N0fHjh3RrVs3qNVqDBgwQFZzLnTu3DndQaZbt25BpVLpDkrMmjULH330kdgRy83BgwcxZcoUqFQqeHp6ws3NDXZ2djAzM0NGRgaSkpIQFRWF/Px8LF++HJ6enmJHJgO6du0a9u7di/Hjx4sdhYhEpMQeqsQ5k7ywe7N7s3tLF7s3uze7t/Kwe1cMPAEuEbdu3UJoaCjCwsL0nrEgdXfu3EFYWBhCQ0Nx5coVAICZmRm8vLwwZMgQdOjQQeSE5U+JcyaSOrVaXeyV169aHlMOJfyfNBoNYmNjsWfPHhw5cgR5eXkwMTFBx44d8Z///EfseOVGSQWtUGZmpu4q1dTUVL3Xxo4di/Hjx8PKykqccAaWmJiIiIgIREdHIysrCyqVCvXr10e/fv3g6+uLOnXqiB2xzK5fvw5vb280btwYK1asQIMGDYodd/v2bXz66ae4ePEidu/e/cJxFd3s2bNLvY9KpcKCBQsMkIaIpIrdWz6UOGciqWP3fobdm91bjti92b3ZvcnYeAK8Anv69Cn279+P0NBQJCQkoKCgAGZmZjhz5ozY0V6LRqPBgQMHsGvXLsTHx+uWumnatCkuXbqE5cuXo0ePHiKnLF9KnDMph0ajwblz55CRkaG7Cl2tVqNSpUpiRys3ZflgB8j7mTiPHj1CVFQUIiIicOrUKaSnp4sdySDkXNBe5MaNG4iIiMCePXtw8eJFqFQqWFtbo2fPnujfv3+Ruy7kIi8vD0ePHkV4eDgOHz6Mp0+fSv5z1/z587F7925ERUXpPWOuOJmZmejVqxf69OmDWbNmGSlh+VKr1aXeR6VSSfqAaVnuEFGpVDhw4IAB0hBJF7u3fChxzqQc7N4vxu4tfeze7N5S/tzF7v1q7N4kBp4Ar4BSUlIQGhqKyMhI3dJcderUwcCBA/HBBx+gdu3aYkcsk7S0NISEhCAyMhKPHj2CiYkJHB0d4eXlBS8vL2i1Wnh6espquRclzpmU4969e1i2bBmio6ORk5Oj95qVlRW6d++OqVOnws7OTqSEZCwnT56U/R00cixoJXHu3DmEh4cjMjISt2/flnxhKanHjx8jOjoae/bswYYNG8SOU2Y9e/ZE586dS3wg8dtvv8WhQ4ewb98+AyczjBs3bpRpPyk/g65r165FtgmCgFu3bqFWrVqwsLAodr/Y2FhDRyOSBHZv+fRQJc6ZlIPdmwqxe8sXuze7t5Swez/D7l3xmYkdgJ65c+cOdu/ejZCQEFy5cgWCIMDExAQAMGXKFIwdO1b3e6n64IMPYGVlhU6dOqFz587o2rWr3hVRZf3BWZEpcc6kDKmpqRg3bhyysrLQtm3bYp9rExYWhtjYWKxevRrt27cXOzKV0pkzZ5CamgpBENCiRYtiS/bjx38xGloAAEV+SURBVI+xZMkS7Ny5E3/88YcIKY3H3NwcHh4e8PDw0CtocqdWq6FWq/H5558jISFBEXMGABsbG3h6eiI5OVnsKK/l1q1baNasWYnHN2nSBP/9738NmMiwpFymy6q4Mv3gwQO4u7tj8eLF6NixowipiCo2dm959lAlzpmUgd1b/ti99bF7s3tLEbu3/LF7SxNPgIuocGmukJAQnDhxAlqtFpUqVULXrl3RrVs3ODg4wNfXF82bN5d8AQege4bLn3/+ierVq8Pa2hqdO3eGjY2N2NEMRolzJvm7f/8+PvnkE1SuXBk//vgjnJycih2Xnp6OKVOm4NNPP8Xu3btRs2ZNIyelsvj777/x2Wef4ciRIyhcJEalUsHd3R2rV6/WXdF4+PBhBAQE4M6dO2jYsKGYkY1OLgWttOzt7SV/8Pj69esIDg5GSkoKAKBly5YYM2YMGjVqpDcuOjoa8+bNw7179xAYGChG1HJhaWmJR48elXj8o0ePULVqVQMmEpdGo8HFixdhaWmJJk2aiB3HYF72fEwipWL3ln8PVeKcSf7YveWN3fvV2L2li9375di95YHdu+LjCXARderUCY8ePUK1atXQu3dveHh4oHPnzrCysgIgvyuUT5w4gdjYWISHh2PXrl3YsWMHzM3N0bFjR3Tr1q1Mz46o6JQ4Z5K/rVu3IicnB9u2bUODBg1eOK5ly5YIDg6Gt7c3fvnlF0yaNMmIKamsfvjhBxw+fBidOnWCr68vrK2tceTIEWzfvh3ffvst/P39sWjRImzcuBGmpqYYNWoUPv30U7FjlwulFTQAOH36NFavXq03508++UTvrgNBELBx40Z8//33yM3NFSvqazt79iyGDx+Ox48fw9LSEpaWlkhPT0dkZCS2bduGt956C9nZ2fD390d0dDRMTU0xduxYsWO/ltatWyM6OhqjRo0q0fj9+/ejRYsWBk5lWNnZ2Vi3bh1SUlKwZcsW3faIiAgEBgbqDko0btwYCxYsQLt27URKSkTGxO4t/x6qxDmT/LF7yxu7N7s3uze7t5Sxe5MU8AS4iLKysmBtbY3u3bvD1dUV7du31xVwObK0tESvXr3Qq1cvZGZmIjIyEhERETh69CiOHj0K4NlVM2lpaXB3d5fF34US50zyd+DAAfTp0+elBbxQvXr14Ovri+joaJZwiYiNjYWLiwvWrVun2/buu++iZs2a2LJlC2xtbREcHAy1Wo2goCDJf2AvpMSCduLECYwZMwZarRaNGzeGlZUVkpKSMGLECAQHB8PZ2RnXr1/HtGnTkJaWBhsbG8yZM0fs2GVWeBBh6dKl6N27N4Bnzwv97LPPEBgYiCVLlsDPzw9//fUX2rRpg8DAQDg4OIic+vUMGDAAU6ZMQXBwMEaOHPnSsWvWrEFaWprev32pycnJwaBBg3Dp0iXUqVMH+fn5MDMzQ1paGmbOnAlBEDBo0CA0b94cYWFhGDlyJMLCwoocaCMi+WH3ln8PVeKcSf7YveWN3Zvdm92b3Vuq2L1JMgQSTVJSkvD1118LLi4uglqtFlq0aCF88MEHwvr164UrV64I169fFxwcHIQDBw6IHdWgrl+/LqxevVro3bu34ODgIKjVaqF9+/bCl19+KSQnJ4sdzyCUOGeSj3bt2gnbtm0r8fgdO3YIjo6OBkxE5aldu3bCxo0bi2y/ePGi4ODgILRo0UKYN2+eoNFoREhnOOPHjxdatWol7NmzR7ft9OnTgoeHhzB8+HDhzp07Qvfu3QUHBwdhwIABwrlz50RMWz5GjBghtG/fXu995/bt24KPj48wcOBA4eLFi4K7u7vg4OAgTJo0ScjIyBAx7etzd3cX5s2bV2T7/v37hZYtWwpDhw4VWrduLaxbt07QarUiJDSMSZMmCWq1Wpg2bZqQkpKi929Xq9UKKSkpujFfffWViElf3/fffy+0atVK2Ldvn972sWPHCmq1WggKCtJty83NFby8vIRZs2YZO6bBPXjwQHBwcBDi4uLEjkJUYbB7P6PEHqrEOZN8sHvLG7s3uze7N7u3VLF7P8PuXfHxDnARdejQAR06dMBXX32FI0eOICIiAocPH8bp06exZMkSNGjQACqVCn///bfYUQ2qXr16GD9+PMaPH49z584hPDwckZGR+PXXX7Fr1y6cPXtW7IjlTolzJvkwNzfH06dPSzw+NzcX1tbWBkxE5enJkyeoUaNGke3Vq1cHAHTr1g3+/v7GjmVwaWlpGDx4sO7qZAB4++238fnnn2Pq1KmYOnUqbty4genTp+Pjjz+WxfNBz549iyFDhsDR0VG37Y033sC0adMwZswYTJ48Gfn5+Vi+fDl69uwpYtLykZWVVezyp23atIFWq8X58+exZcsW2S3LtWTJEgQFBWHbtm3Yu3cvTE1NYWtrC1NTU2RmZkKj0cDExASjRo3C1KlTxY77WqKjo9G3b1/06NFDty0nJwfHjx8HAAwdOlS3vVKlSujTpw927txp9JxEZHzs3s8osYcqcc4kH+ze8sbuze7N7t3O+OEMiN2b3ZsqHp4ArwDMzMzg4eEBDw8P5OTkIDo6GhEREUhISIAgCJg5cyZ27dqFfv36oXv37qhUqZLYkQ1GrVZDrVbj888/R0JCAvbs2SN2JINT4pxJ2t566y0cOXIEfn5+JRp/+PBhNGvWzMCpyNBUKhUAwMfHR9wgBqLEgpadnY2mTZsW2d68eXMIgoDMzEzs3LkTDRs2FCFd+cvPzy/2M5SlpSUAYOzYsbL6+haysLBAQEAA/Pz8EBYWhrS0NNy9exeCIKBJkyZwcnKCt7e3LJYiu379ul7RBoCkpCTk5+ejQYMGRb6X69ati/v37xszYrlbuXJlkW25ublQqVTYvXs3Tp06VeR1lUqFTz75xBjxiCocdu//p8QeqsQ5k7SxeysTuze7t9Sxe7N7s3s/w+4tPp4Ar2AqV64MX19f+Pr64v79+9izZw8iIiIQHx+P+Ph4zJs3D0lJSWLHNApXV1e4urqKHcOolDhnkp6+ffvi66+/RmRkJHr16vXSsWFhYYiLi8OyZcuMlI4MrbCwyI0SC5pWq4WZWdGPghYWFgCA8ePHy6aAl0Tr1q3FjmBQjRs3lvxV5q9iYmKCgoICvW0nTpwAALi7uxcZ/+DBA9jY2Bglm6EUV8ILhYWFFbudJZzoGXbv/6fEHqrEOZP0sHsrG7u3fLB762P3lj52b33s3hUXT4BXYDVr1sRHH32Ejz76CFeuXEF4eLikr1Au6RWr/6RSqbBp0yYDpDEOJc6Z5K9///4ICwvD559/jvPnz2PYsGGws7PTG5ORkYHg4GBs3rwZXbp0kcUSTkpSeMV5aV+TM7kXtOIUd4W6nCnhe/vOnTs4deoUMjIyAAB2dnZwdHRE3bp1RU5WPpo1a4aUlBQMGzYMACAIAmJiYqBSqdC1a9ci4w8ePCj57/PNmzeLHYFIFti9pd9DlThnkj92b/lj9y6K3Vv+lPC9ze6tj92bxMIT4BLRqFEjTJo0CZMmTRI7SpklJiYWu12lUkEQhBe+JmVKnDPJn4mJCdasWYPp06fjp59+wtq1a1G3bl3Url0bpqamuH//Pq5evQpBENCzZ0/Mnz9f7MhUSgsWLMDy5cv1tgmCAJVKhenTpxe5WlulUuHAgQPGjGh0/NksD5cuXSpyN192djYA4Pz588Vele/s7GyUbIZ04cIFBAYGIikpCYIg6H0GMTExgZOTE/z9/eHg4CBiytfn4+OD+fPno02bNnjnnXewY8cO3Lx5Ew0bNkSnTp30xq5ZswapqamSf66ii4uL2BGIZIfdW5qUOGeSP3Zv+WP3Loo/m+WB3ZvduxC7N4mJJ8BF5OfnhwkTJqBjx466bfn5+UhJSYFarUaVKlX0xoeHh2PWrFlIT083dtRyce7cuSLbHjx4AHd3dwQHB+v9PciFEudMylClShX89NNP+O2337B7926kpaXhf//7HwRBgJ2dHXx8fNC3b1+4ubmJHZVKyd7eHgCKPVBYeKXq86+96KCi1CixoJ08eRJarVZvW05ODgDg+PHjuHPnTpF9pPwsujVr1mDNmjXFvrZo0aJit589e9aQkQzu4MGDmDJlClQqFXr06AE3NzfY2dnBzMwMGRkZSEpKQlRUFAYMGIDly5fD09NT7MhlNnjwYJw6dQpBQUG6Ex7VqlXDkiVLYGJiAgD49ddfsXbtWly7dg1OTk4YMmSIyKkNS6PR4OLFi7C0tESTJk3EjkMkGnZv+fdQJc6ZlIHdW77Yvdm92b31sXtLB7t3UezeFZNKkMs7pwSp1WosXrwY3t7eum0PHz6Eu7s7NmzYUKSghYeHY+bMmZJ/M/inhw8fomPHjooqpEqcMxFRRadWq194pXnhFfjFkfJ78ovm/M+Phv98vfDvQapz/uGHH8p0N8HEiRMNkMY4rl+/Dm9vbzRu3BgrVqxAgwYNih13+/ZtfPrpp7h48SJ27979wnFSkZKSgpSUFNjY2MDT0xM1atTQvbZy5Urs3r0b3t7eGDduXLHPH5Sa7OxsrFu3DikpKdiyZYtue0REBAIDA/Ho0SMAz55Ft2DBAtk9U5GoJNi9ldlDlThnIqKKjt37/7F762P3lh5272fYvSsu3gFeAfGaBCKSitzcXFhaWhbZfvHiRVStWrXI88mo4gsLC0OHDh1Qv359saMY1SeffKK4pdaCgoLEjmBUUl7Ktqw2bdoEc3NzrF+/Xq+IPq9OnTpYu3YtevXqhZ9//hmzZs0yYsry5+joCEdHx2Jfmzhx4gsPrOTl5SE1NbXYu0ErqpycHAwaNAiXLl1CnTp1kJ+fDzMzM6SlpWHmzJkQBAGDBg1C8+bNERYWhpEjRyIsLAyNGjUSOzpRhcDuTURSwe4tP+zeysHuLX/s3kWxe7N7VwQ8AU5ERKWm0WiwaNEiRERE4OjRo0WK+LJly3D06FH0798fM2fOhLW1tUhJqbRmz56Nb7/9VnElXIkFzdfXV+wIRlXc8rdyd+zYMfj6+r60gBeytbWFj48PDh06JPkSXlZZWVnw8/Mr9m7QimrDhg24evUqvvvuO/To0UO3fdWqVRAEAR999JHu6zlgwAD06dMHa9asUdxBOCIiIqli95Yvdm/lYPeWP3bv0mH3JmMxETsAERFJi0ajwahRo/Dzzz/D3t4eDx8+LDLmvffeg4ODA7Zv347Ro0cjPz9fhKRUFkq9E8rPzw8nTpwQO4ZReXh44ODBg2LHMJrExETcu3dP7BhGdevWLTRr1qzE45s0aYLbt28bMFHFJ7WfgdHR0ejbt69eAc/JycHx48cBAEOHDtVtr1SpEvr06aO4n3VERERSxe4tb1L73Fle2L3lj9371di9pfczkN1bmngCnIiISmXjxo1ISkqCv78/wsLCULdu3SJjBg4ciF27dmHixIlITk7G1q1bRUhKVHJKLGg3btzA33//LXYMMiBLS0vdM6hK4tGjR6hataoBE1F5u379Olq3bq23LSkpCfn5+ahfvz4aNmyo91rdunVx//59Y0YkIiKiMmL3Jjli9yY5YveWP3ZvaeIS6GQ0YWFhRbbl5OQAAI4fP447d+4Uu5+Pj48BUxmWEudM8hcREQEPDw98+OGHrxw7ceJEJCYmYvfu3RgxYoThw1G5yMzMxM2bN0u1j729vYHSEFFZtW7dGtHR0Rg1alSJxu/fvx8tWrQwcCoqTyYmJigoKNDbVniVubu7e5HxDx48gI2NjVGyEZF4lNhDlThnkj92b/lj9yaSB3Zv+WP3liaeABfZ8x90srKyADz7B/L8B6DiljqSklmzZkGlUultK1zqYv369VCpVLrfF/5apVJJupAqcc4kf1euXMHgwYNLPP7dd9/FihUrDJiIytuCBQuwYMGCEo9XqVRIT083YCKi8hETE4MrV66UeLxKpcInn3xiwESGNWDAAEyZMgXBwcEYOXLkS8euWbMGaWlpWLdunZHSUXlo1qwZUlJSMGzYMADPPmfGxMRApVKha9euRcYfPHgQTZs2NXZMogqB3VvePVSJcyb5Y/eWP3Zvkit27xdj95Ymdm9p4glwkb3og8706dNFSGNYQUFBYkcwOiXOmeTP2toaWq22xOMrVaoES0tLAyai8ubk5IQGDRqIHcPolFbQAGDHjh2Ii4sr8XiVSlWqAzQVTUxMDKKjo0s8Xupf4x49esDLywvffvst/vjjD3z44Ydo1aoVzM3NAQAFBQVIS0vDhg0bEBMTg4EDB+Jf//qXyKmpNHx8fDB//ny0adMG77zzDnbs2IGbN2+iYcOG6NSpk97YNWvWIDU1Ff7+/iKlJRIXu7e8KXHOJH/s3vLH7l0yUu9lALv3q0j9a8zuLX/s3tLEE+Ai8vHxKXKFspz5+vq+ckxWVhYsLS1RqVIlIyQyPCXOmeSvSZMmSE5Ohp+fX4nGnzp1CvXq1TNwKipPgwYNgre3t9gxjE5pBQ149ryipKSkEo+XegkfN25csUtTydmSJUsQFBSEbdu2Ye/evTA1NYWtrS1MTU2RmZkJjUYDExMTjBo1ClOnThU7LpXS4MGDcerUKQQFBenuaKxWrRqWLFkCExMTAMCvv/6KtWvX4tq1a3BycsKQIUNETk1kfOzeRcmthypxziR/7N7yx+5dMuze0sPuze4tN+ze0sQT4CJauHCh2BGMLi8vDyEhIUhNTdW7QjsxMRHffPMNLl++DJVKBXd3dwQEBMjiKkglzpnkzdfXFwEBAYiPj4ebm9tLxyYkJCA6OhqTJk0yUjqislNiQfviiy/g4eEhdgyjadq0KVxcXMSOYVQWFhYICAiAn58fwsLCkJaWhrt370IQBDRp0gROTk7w9vZGo0aNxI5KZaBSqbBkyRIMGzYMKSkpsLGxgaenJ2rUqKEbc/v2bQiCgAkTJmDcuHG6ck6kJOzeyuihSpwzyRu7N8kVu7f8sXuze8sNu7c08QS4iEaPHg0fHx94enoqYomivLw8fPzxx0hKSoK5uTnmzZsHMzMzXL58GaNHj0ZeXh46deqEZs2aYf/+/Rg0aBDCw8NRq1YtsaOXmRLnTPLn4+ODXbt2Yfz48Rg3bhwGDhxY5Hs2IyMDO3fuxPr161G/fn0MHTpUpLREJafEgla9enXeJaIQjRs35lXmMubo6AhHR8diX5s4cSImTpxY7Gt5eXlITU2FWq1GlSpVDBmRSFTs3vLvoUqcM8kfuzfJFbs3yRm7t7yxe0sLL0EQUWJiImbMmAF3d3fMmjULcXFxEARB7FgGs3XrVpw8eRIzZsxAUlISzMyeXX/xww8/QKPRwNvbG2vXrsXnn3+OXbt2wdTUFGvWrBE59etR4pxJ/szNzbFq1Sq0bdsWK1asQKdOneDh4YHBgwdj4MCB6Nq1K7p06YIffvgBDg4OCA4O5hu7hNjb28Pa2lrsGEREZARZWVnw8/PDmTNnxI5CZFDs3vLvoUqcM8kfu7e8sXsTESkHu7c4eAe4iE6cOIEDBw5g37592Lt3L3bv3o1atWrB29sbffr0gVqtFjtiudqzZw+6d++OUaNG6bZpNBrExsZCpVLpbbe1tUW/fv2wd+9e+Pv7ixG3XChxzqQMNWvWxKZNmxAdHY29e/ciPT0d58+fh4mJCWrVqgUfHx9069YNXbt2FTsqlVJsbOxLXy8oKMDt27dRq1YtWFhYGCkV0eubOHEiHBwcxI5hVCV9XuQ/qVQqbNq0yQBpKoa7d+/C1tYW5ubmRV6rVq0aNm/ejBYtWoiQTDxyPglIVIjdW/49VIlzJmVg95Yvdm+SK3bvkmH3Zvcmw+MJcBFVrlwZffv2Rd++fZGdnY39+/cjMjISmzZtQnBwMJo1a4a+ffvC29sbb7zxhthxX9tff/0FX19fvW2nTp1Cbm4u7OzsirwxNmzYEBkZGcaMWO6UOGdSFi8vL3h5eYkdg4zowYMH8PDwwIYNG9CxY0ex45QbJRa0oKCgFy7bJEcvWoaq0N9//40NGzbAx8cH9evXN1Iqw0pMTCx2u0qlemHxUqlUhoxkFMHBwdixYwfCw8OLlO0FCxYgLi4Oo0aNwujRo/WeyWVubq64pRiJlILdW/49VIlzJmVh91Yedm/5YPfWx+79/69JHbs3VXQ8AV5BVKlSBQMGDMCAAQPw4MEDREVFYd++fVi2bBmWLVsGZ2dn+Pj4wMvLC5UrVxY7bpkUFBTA1NRUb1t8fDwAwN3dvcj47OxsWFlZGSWboShxzkTAs2VdLC0tUalSJbGjkAHI8YpFJRa05w8SP+/x48eYP38+Ro8ejaZNmxoplXj+/vtvrFq1Ck5OTrL5Gp87d67ItgcPHsDd3R3BwcGyOpAGPPvZNH36dOzduxc1a9bE7du30aBBA70xTZs2RXJyMpYvX44zZ87g+++/FyktEYmF3VuePVSJcyYC2L3ljt1bHr2M3Vsfu7f0sXuTVPAZ4BVQjRo1MHToUGzZsgWHDx/Gl19+CRMTE3z99df417/+JXa8MmvYsCHOnj2rty0mJgYqlQrvvvtukfHHjh1Dw4YNjZTOMJQ4Z1KGvLw8bN++HbNnz9bbnpiYiF69esHNzQ2Ojo4YPXo0rl69KlJKovJTWNCuXbsmdhSjyc3NRVhYmKLujpLjAabnyeEq8xfZvn079u7dixEjRuDw4cNFCjjw7IBbTEwM+vXrh5iYGISEhIiQlIgqCnbvZ+TQQ5U4Z1IGdm9SGnZvZWD3ljZ2b5IKngCv4MzNzWFpaQkbGxuYmZlBo9GIHanMevfujd27d+PAgQN48uQJNm7ciEuXLqFmzZpFnlUUHh6O48ePw8PDQ6S05UOJcyb5y8vLw8cff4yAgADs2bMH+fn5AIDLly9j9OjRuHz5Mjp16oQRI0bg8uXLGDx4MO7duydyaqLXp4SC9jwlzpmk69dff4WLiwtmzZpV7HPGCllYWCAwMBAtWrTAjh07jJiQiCoydm9p91Alzpnkj92blEqJPVSJcybpYvcmqeAS6BXQgwcPEBMTg6ioKCQlJSE/Px8tW7bE5MmT0bt3b7HjldmIESPw22+/YeLEibrnX5ibm2P+/PmwsLAA8OwK7a1btyIxMRGNGzfGiBEjxA39mpQ4Z5K/rVu34uTJk5gxYwaGDRsGM7NnbyU//PADNBoN+vTpg2+//RYAMHbsWHh7e2PNmjXw9/cXMzaVE3Nzczg7O6NatWpiRyEi0vPnn39i8uTJJRqrUqnQo0cPrF692sCpiKgiY/eWTw9V4pxJ/ti9lY3dm4gqKnZvkgqeAK8g7t27h+joaERFReHUqVPQarWoV68eRo0ahT59+sji+R8WFhbYuHEjIiMjkZqaChsbG3h7e6NZs2a6MWfOnEFycjL69OmDWbNmwdLSUsTEr0+Jcyb527NnD7p3745Ro0bptmk0GsTGxkKlUultt7W1Rb9+/bB3716WcInIzs5GlSpVXvh6tWrVsGXLFr1tCQkJcHV1NXQ0IoOqUqUKgoKC0Lx5c7GjUBmZmZnpTnKURNWqVYs8L5aI5I/d+xm59VAlzpnkj91b3ti9SanYvaWP3ZukgifARZSRkYHo6Gjs378fycnJ0Gq1qFatGgYMGABvb2906NBB7IjlztTUFN7e3vD29i729fHjx2Py5MkwMZHP6vxKnDPJ219//QVfX1+9badOnUJubi7s7Ozg4OCg91rDhg0V9RwjqfPz80NwcDBsbW1fOfbp06dYvHgxfvnlF6Snpxs+nIiUWNCqVauGzZs3o0WLFmJHMYpKlSrhX//6F++wkLBGjRrhzJkzJR5/5swZ1K1b14CJiKiiYPcuSo49VIlzJnlj95Y3du/isXvLH7u39LF7k1TwBLiIunTpAuDZlcqenp7w9vZGly5dXvrcBLmzsrISO4LRKXHOJG0FBQVFrtqLj48HALi7uxcZn52dze9zCTl79iw+/PBDbNy4EbVq1XrhuNOnT2PmzJn466+/XjpOLipVqqR38Emr1WLt2rWYMGGCiKkMy9zcHC4uLrrfZ2dnY9GiRQgMDBQx1esLDg7Gjh07EB4eXuQz14IFCxAXF4dRo0Zh9OjRkj9AHhYWVmRbTk4OAOD48eO4c+dOsfv5+PgYMJXhvP/++1i6dClGjhz5ygNmFy5cQEREBPz8/IyUjojExO5dlBI/nytxziRt7N7yxu5dPHZvdm8pYvd+MXZvEpNKEARB7BBKNXz4cPTt2xc9evSAjY2N2HGIiEqkb9++aNu2LebOnavb1qtXL1y+fBnLly9Hjx499MaPHj0aWVlZ2Llzp7GjUhn8/PPPmD9/Pho0aICNGzcWuUIzLy8P33//PTZs2ACtVou+ffviiy++kMWVu9nZ2di5cydSU1MhCAJatmyJYcOGoWrVqnrjfv/9d/j7++N///sfzp49K1La8nH9+nUEBwcjJSUFANCyZUuMGTMGjRo10hsXHR2NefPm4d69e5KdsyAImD59Ovbu3YuaNWti27ZtaNCggd6YlStXYufOncjIyEC3bt3w/fffi5S2fKjVaqhUKr1t//zoX9xrKpVKsl/jv//+G/369UNmZia++OIL9O7du8hB4/z8fOzZswdLliwBAISGhqJ27dpixDWau3fvwtbWttgTfXl5eUhJSUGLFi1eugQnkdSxexORFLF7yxu7N7s3uze7t1S/xuzexWP3rnh4ApyIiEpl7dq1WLVqFZYuXYp33nkH27dvx8KFC1GrVi3ExsbqPQMmPDwcM2fOxOTJkzF+/HgRU1Np7NmzB7NmzYKdnR02btyIhg0bAnh2hfrMmTPxv//9D/b29pgzZw46deokctryce3aNfj5+eH27dt6JaVWrVrYuXMn6tati/z8fCxduhSbN2+GVqtF7969sXTpUhFTv56zZ89i+PDhePz4MSwtLWFpaYnMzExYW1tj27ZteOutt5CdnQ1/f39ER0fD1NQUo0aNwtSpU8WOXibbtm3DN998gxEjRmDatGkvvOtPo9Fgzpw5CAkJwfz589GvXz8jJy0/oaGhZdrv+aU2peTy5cv45JNPcPnyZVhbW6NVq1aoXbs2tFot7t+/jzNnziA3Nxf29vZYtWoV1Gq12JHLxcvurpg6daqs7q4gIiJSCnZv+WP3Zvdm92b3lip2b3ZvKeAJcBEVtzRGSUh1aQwikgeNRoNRo0YhKSkJKpUKgiDA3NwcK1eu1C0vGRMTg61btyIxMRGNGzdGSEgILC0tRU5OpXHkyBFMmTIFNjY2WLduHQ4ePIg1a9YgPz8fQ4YMwbRp01C5cmWxY5abadOmITIyElOnTkX//v1hZWWFI0eOYO7cuWjXrh0WL16MsWPHIjk5Gfb29ggICNB9v0vVhAkT8Ntvv2HRokXo3bs3ACAtLQ2fffYZ7O3tsWTJEvj5+eGvv/5CmzZtEBgYWOQ5g1IyYMAAWFtbY/Pmza8cKwgC+vfvDwsLC2zbts0I6ag8aTQa/Pzzz9i7dy/OnTuH/Px8AM+WFmzXrh28vLwwaNAgvYPGUqXEuyuIyoLdm4ikiN1bGdi92b3Zvdm9pYrdm927ouMJcBEVLo1RuOTFq0h9aQwikg+tVovIyEikpqbCxsYG3t7eaNasme715cuXY8OGDejVqxdmzZqF6tWri5iWyurUqVOYMGECHj9+DEEQ0KhRIwQGBqJDhw5iRyt3nTt3xjvvvIOgoCC97aGhoQgICEDnzp1x4MABDBkyBDNmzIC1tbVIScvPO++8g549e8Lf319ve3R0NKZOnYp27dohLS0NkydPxscffyz5K1cdHR0xefJkjBgxokTj165di9WrV+uWqJO63NzcYg+GXrx4EVWrVoWdnZ0IqYzjwYMHMDU1lcVykc9T4t0VRGXB7k1EUsXurQzs3uze7N7s3nLA7s3uXdGYiR1AyZ5/oycikgpTU1N4e3vD29u72NfHjx+PyZMnS/5Du9I5OTlh8+bNGD16NB48eIC5c+fKsoADwMOHD+Ho6Fhku7OzMzQaDY4cOYIVK1age/fuIqQzjKysrGKXoGrTpg20Wi3Onz+PLVu2oF27dsYPZwBmZmaluuq4atWqRZ5hJUUajQaLFi1CREQEjh49WqSIL1u2DEePHkX//v0xc+ZMWRxgel6NGjXEjmAwv/76K1xcXDBr1qyXjrOwsEBgYCDOnj2LHTt2sIST4rB7E5FUsXsrA7s3uze7N7u3HLB7s3tXNDwBLiIpP+OBiJTLz88PEyZMQMeOHXXb8vPzkZKSArVajSpVqsDKykr3WuGzyHgHjTSp1Wr897//xciRIzFhwgSsWrUKbm5uYscqd3l5eXrft4UKl5obOXKkrAo48OzfbaVKlYpsLyxpY8eOlU0BB4BGjRrhzJkzJR5/5swZ1K1b14CJDO+fy2aq1Wo8fPiwyJzee+893LlzB9u3b8eFCxewefNmmJlJsyKsXLmyTPtNnDixnJMYz59//onJkyeXaKxKpUKPHj2wevVqA6ciqnjYvYlIiti9lYXdm91bLti92b1fhN2bjE2a/8IUSqvVYu3atZgwYYLYUYhIwRITEzFw4EC9bdnZ2fDz88OGDRv0yjlJz+zZs4vd3qhRI1y/fh3jxo1Dz5499ZYPValUWLBggbEiisLFxUXsCEbXunVrsSOUq/fffx9Lly7FyJEj0bx585eOvXDhAiIiIuDn52ekdIaxceNGJCUlwd/fHx9++GGxYwYOHIiBAwdi5cqVWLlyJbZu3VripeoqmpKW8OeXP5ZyCVfq3RVEhsbuTUQVAbu3vLF7F4/dW/rYvdm9C7F7s3uLjSfARZadnY2dO3ciNTUVgiCgZcuWGDZsGKpWrao37vfff4e/vz/+97//sYQTUYUkCILYEagchIaGvvT1p0+fIiwsTG+bEkq4Ej+0luQZqVLywQcfYNu2bRg+fDi++OIL9O7du8jXNT8/H3v27MGSJUtQpUoVyZfwiIgIeHh4vLCA/9PEiRORmJiI3bt3S7aEHzx48JVjsrOz8d133+Hw4cMwMzOT/NdYiXdXEJUVuzcRyQW7tzywexeP3Vv62L1fjt1bmti9pYknwEV07do1+Pn54fbt27oPrzExMfj555+xc+dO1K1bF/n5+Vi6dCk2b94MrVaL3r17i5yaiIjkrCQfYuUqMzMTN2/e1NuWlZUFAHjw4EGR1wDA3t7eKNkM5dKlS0hKStLblp2dDQA4f/58sctxOTs7GyVbebO2tsbq1avxySefYObMmZgzZw5atWqF2rVrQ6vV4v79+zhz5gxyc3Nhb2+PVatWoXbt2mLHfi1XrlzB4MGDSzz+3XffxYoVKwyYyLDq1av30tcjIyOxcOFCZGRkoH379vjmm2/w1ltvGSmdYSjx7gqismD3JiKiiobdm92b3ZvdW6rYvdm9pYInwEX03Xff4fbt25g6dSr69+8PKysrHDlyBHPnzsXcuXOxePFijB07FsnJybC3t0dAQAC6dOkidmwiIpKxV32IlbMFCxa88Gr66dOnF9mmUqmQnp5u6FgGtWbNGqxZs6bY1xYtWlTsdik/U7Bx48YICwvDzz//jL179yI5ORn5+fkAAHNzc7Rr1w5eXl4YNGhQqZa2qqisra2h1WpLPL5SpUq659DJydWrVzFnzhzExcWhWrVqCAwMxIABA8SOVS6UeHcFUVmwexMRUUXD7s3uXYjdm91bLti92b0rGp4AF1FSUhJ8fHwwduxY3baePXsiNzcXAQEBmDVrFpKTkzFkyBDMmDED1tbWIqYlIiIqas2aNYiOjkZISIjYUV6Lr6+v2BGMTsrPXnodFhYWGDlyJEaOHAng2R0GpqamqFatmsjJyl+TJk2QnJxc4tJ16tQpWR2I02g0WLt2LdatWweNRgNfX1/MmDED1atXFztauVHi3RVEZcHuTUREUsfuLV3s3uzez2P3lh52b2niCXARPXz4EI6OjkW2Ozs7Q6PR4MiRI1ixYgW6d+8uQjoiIqJXu3XrlqSvSi4UFBQkdgSjU2oJf16NGjXEjmAwvr6+CAgIQHx8PNzc3F46NiEhAdHR0Zg0aZKR0hlWXFwc5syZgytXrqB58+YICAhAhw4dxI5lEEq7u4KoLNi9iYhI6ti9pYvd+xl272fYvaWL3Vt6eAJcRHl5ebCysiqyvXLlygCAkSNHsoATUYX0/POaXvaspocPHxo1GxFRcVauXFmm/aR8sMLHxwe7du3C+PHjMW7cOAwcOBC1atXSG5ORkYGdO3di/fr1qF+/PoYOHSpS2vJx7949BAUFITIyEpaWlpg2bRpGjhxZ7DP15ERJd1cQlQW7NxFJFbs3EUkNuze7t5yxe0uLShAEQewQSqVWq7F48WJ4e3vrbX/48CE6duyI9evX41//+pdI6YiIiqdWq6FSqYpsFwSh2O2F5HClMhUVEBCAHTt2SP7rq8SCNnv27FLvo1KpXvistopOrVaXaNzzP8ek/r19//59fPbZZ0hISIBKpYK9vb3eEl23bt2CIAho164dli9fjrp164oducy2bt2KFStW4PHjx+jatSv8/f0lPR8iKj/s3kQkReze9E/s3uzeUsHuze5NVFHI+3IMiTM1NRU7AhFREUp8XhPJX0lL+PMFTcolPDQ0tMRj/zlvqZbwgwcPvnJMdnY2vvvuOxw+fBhmZmYlfn5XRVazZk1s2rQJ0dHR2Lt3L9LT03H+/HmYmJigVq1a8PHxQbdu3dC1a1exo762wMBA3a9jY2MRGxv7yn1UKhXS09MNGcuglHgAkcgQ2L2JqCJi9yY5Yvd+OXZv6WL3fjl2bxIDT4CL7PmljICXL2cEAPb29kbJRkRUHCU+r4nkT4kF7dy5c68cc+PGDcybNw+HDx9GlSpVMGXKFMMHM5B69eq99PXIyEgsXLgQGRkZaN++Pb755hu89dZbRkpneF5eXvDy8iqyPSsrC5aWliIkKn9KPEisxAOIRGXF7k1EUsPuTXLE7l08dm92bylh934xdu+KhUugi+hFSxkBL17OSOpXyhARUcVW2isaDx06hPT0dMkvVfUqci9oz9NqtdiwYQN+/PFH5ObmolevXpg9e3aRZ1jJwdWrVzFnzhzExcWhWrVqmD59OgYMGCB2rHKTl5eHkJAQpKam6h1ETUxMxDfffIPLly9DpVLB3d0dX3/9NRo2bChi2tcze/ZsDB48GG3bthU7itHcuHHjlWOKO4D4+eefGyEdUcXB7k1ERBUNu3fx2L3ZvaWK3Vve2L2liSfARVSW538AvAKUiIgMp6TPavonlUol2xIu94JWnJMnT2LOnDm4cOEC3nzzTQQEBKBjx45ixyp3Go0Ga9euxbp166DRaODr64sZM2agevXqYkcrN3l5efj444+RlJQEc3NzpKSkwMzMDJcvX0bfvn2h0WjQuXNnNGvWDPv378eTJ08QHh4u2YMtL3rGr5Ip7QAi0YuwexMRUUXD7q2P3ZvdW8rYvYndu2LiEugiYpkmIqKKZvPmzWJHqBCUUNCe9/DhQ3z77bcICwuDhYUFJk2ahDFjxsDCwkLsaOUuLi4Oc+bMwZUrV9C8eXMEBASgQ4cOYscqd1u3bsXJkycxY8YMDBs2DGZmzz76//DDD9BoNOjTpw++/fZbAMDYsWPh7e2NNWvWwN/fX8zYVA6eP4AYGBgo+wOIRC/D7k1ERBUNu/cz7N7s3nLA7q1c7N4VG0+AVwBPnjzBrl278Ntvv+HcuXPIzMyESqVCjRo1oFar4eHhAW9vb1m+CRIRUcXi4uJS6n1OnjxpgCTiUUpB+6edO3diyZIlyMrKwjvvvIOAgABJL8f1Ivfu3UNQUBAiIyNhaWmJadOmYeTIkbpyKjd79uxB9+7dMWrUKN02jUaD2NhYqFQqve22trbo168f9u7dyxIuYUo8gEhUGuzeRERUUbB7s3uze8sHu7fysHtLgzx/4kjIqVOnMHnyZNy7dw8WFhZo2LAh6tWrh/z8fGRmZuLQoUOIjY3FypUrsXTpUrRv317syERERLh16xZCQ0MRFhaGa9euyWIZNqUVNAA4f/48vvnmG6SmpqJWrVpYtmwZevXqJXYsg9i6dStWrFiBx48fo2vXrvD390fdunXFjmVQf/31F3x9ffW2nTp1Crm5ubCzs4ODg4Peaw0bNkRGRoYxI5a7kydPQqvVlmofHx8fw4QxMiUeQCQqDXZvIiKSInZveWD3Zvf+J3ZvaWP3lg75vqtIwJ9//olRo0bBxsYGS5YsgZeXV5ErzR8/foyoqCh8//33GD16NEJDQ9GoUSOREhMRkZI9ffoU0dHRCAkJQUJCAgRBgEqlQufOncWO9tqUWNAWLVqELVu2QKvV4r333sOUKVNgY2ODmzdvvnQ/e3t7IyUsX4GBgbpfx8bGIjY29pX7qFQqpKenGzKWQRUUFMDU1FRvW3x8PADA3d29yPjs7GxYWVkZJZuh7NixAzt27CjR2MKfYVIv4Uo8gEhUWuzeREQkJeze8sLuze79PHZvaWL3lh5+ZUT0448/wsrKCrt27cIbb7xR7BgbGxsMGDAAnTt3Rt++fbF+/XrMmzfPyEmJiEjJUlNTERISgn379uHx48cAgBo1aqB///4YNGgQ6tWrJ3LC16fEghYcHKz79aFDh3Do0KES7SfVOw6evxpbCRo2bFjk6xUTEwOVSoV33323yPhjx45Jfvm9Dz74AO3atRM7htEo8QAiUVmwexMRkRSwexeP3Vta2L2fYfeWF3ZvaeIJcBElJSWhX79+Lyzg/2RnZwcfHx8cO3bMCMmIiEjpMjIyEBYWhtDQUPz1118QBAFWVlZwd3dHXFwc5s6dCw8PD7FjlhsfHx+oVCqxYxjVxIkTS72PIAgGSGI8gwcPRtu2bcWOYTS9e/fGqlWr0LlzZ7zzzjvYvn07Ll26hFq1aqFr1656Y8PDw3H8+HFMnjxZpLTlo0OHDvD29hY7htEo8QAiUVmwexMRUUXF7i1/7N7yx+4tf+ze0sQT4CJ6+PBhqZZUa9KkCXbu3GnAREREpHT79u1DSEgI4uLioNVqUbVqVXh7e8PLywudOnXC3bt34enpKXbMcrdw4UIAQF5eHi5evIj8/Hw0a9ZM8ktSvYy9vT369etX4vE3btzAF198YcBEhhUaGgp3d3dFlfARI0bgt99+w8SJE6FSqSAIAszNzTF//nzd0r8xMTHYunUrEhMT0bhxY4wYMULc0FQqSry7gqgs2L2JiKiiYfdm934Rdm/pYfeWP3ZvaeIJcBHl5eWV6s29UqVKyMnJMWAiIiJSuqlTp8La2hpDhw6Fh4cHnJ2d9Z5jJOcrtf/zn/9g9erVuvdaCwsLDB06FNOmTZPl83z8/f3x5MkTDBs27JVjd+7ciUWLFvFziMRYWFhg48aNiIyMRGpqKmxsbODt7Y1mzZrpxpw5cwbJycno06cPZs2aBUtLSxETU1ko7e4KorJg9yYiooqG3Zvduzjs3tLE7q0M7N7SI793FCIiIiqz+vXr4/r16wgJCcHly5fx+++/w9PTE40bNxY7mkHt2rULixcvRr169eDj4wMTExMkJCRg48aN0Gq1kr76+kXefPNNBAYG4smTJxg9enSxY+7evQt/f38cPXoU5ubmkl+iS4lMTU3h7e39wqXJxo8fj8mTJ8PExMTIycqfr6+v5J+jVlpKvLuCiIiISA7Yvdm9/4ndW/rYveWN3VuaeAJcZJmZmbh582aJxj58+NDAaYiISOkOHDiA06dPIzw8HFFRUTh27BiWLVuGJk2awMvLC61atRI7okFs374d7dq1w6ZNm1CpUiUAz565NXXqVGzfvh3Tp0/XLVslF7/88gtGjx6NpUuX4smTJ5g0aZLe63v27MG8efOQlZUFR0dHBAYGomnTpiKlLR8nT56EVqst1T4+Pj6GCVNByGmpwaCgILEjEFEFxu5NREQVCbs3u3chdu9n2L2lg92bpEIlCIIgdgilUqvVZVrO5uzZswZIQ0REpE+r1eLYsWOIiIjAwYMH8eTJE937Vv/+/TFhwgTUq1dP5JTlw8nJCZ999lmRJclSU1MxZMgQhIaGQq1Wi5TOcP7++2/8+9//RkJCAkaMGIGZM2fi4cOHCAgIQExMDCwtLTF16lQMHz5c8kvwlfZzlyAIUKlU/NxFFZparcbixYtfeJcBET3D7k1ERBUZuze7N7s3uzdVbOze0sQ7wEXk6+srdgQiIqIXMjU1RZcuXdClSxfk5uYiJiYGe/bswfHjx/Hrr78iJCQErq6u6N+/P95//32x476WJ0+eoEqVKkW2169fH4Ig4NGjRyKkMjxra2usXbsWn332GTZu3Ijr168jOTkZ9+/fxzvvvIO5c+fK5kALAHzwwQdo166d2DGIyhXvriB6NXZvIiKqyNi92b3ZvYkqPnZv6eEd4ERERKQzduxYuLm5wcXFBa1atSr2qt2HDx8iMjISERERSE1NlcWVui+6kvPhw4fo2LEjgoOD0bFjR5HSGV5BQQH8/f0REhICExMTzJ07FwMGDBA7Vrni1bokR7y7goiIiEia2L3Zvdm9iaSD3VuaeAc4ERER6cTHx+Po0aNQqVSwsbFBhw4d4OrqCjc3N90yZNWrV8ewYcMwbNgwXLt2DXv37hU5Nb0uExMTLFiwALa2ttiwYQPi4uLg4+MDMzN+VCSq6Hh3BREREZH0sHsrE7s3kXSxe0sPf7ISERGRTnJyMtLT05GcnIyUlBSkpqbi0KFDUKlUqFq1KpydneHq6gpXV1e89dZbaNCgAcaPHy927HKRmZmJmzdv6m3LysoCADx48KDIawBgb29vlGyGUNx8PvzwQ/z999/Yvn07cnJy8NVXX8HExERvjJTnTCRHHTp04N0VRERERBLD7s3uze5NJC3s3tLDJdCJiIjopW7duqVXys+dOwetVgtbW1u4uLjA1dUVQ4cOFTvma3nZUkaFyxY9T6VSIT093dDRDOZVcwZQ5HUpz3n27NkYPHgw2rZtK3YUonLD5QWJiIiI5IPdm927kJTnzO5NcsTuLU28A5yIiIheqm7duujduzd69+4NAMjOzkZ4eDhCQkKwf/9+REdHS76E+/r6ih3B6Hx8fEr1/CKpCwoKEjsCERERERHRC7F7yxO7NxGROHgCnIiIiF4qNzcXSUlJSExMxKlTp3DmzBnk5eXBwsJCtySb1CmxoC1cuFDsCET0mnx9fdGwYUOxYxARERFROWD3lid2byLpY/eWJi6BTkRERHry8/ORmpqK+Ph4xMfH4/Tp08jLy4O5uTnefvttXfF2dHSEhYWF2HGJiIiIiIiIJIfdm4iIyHB4ApyIiIh0xowZg5MnTyI3NxcmJiZo1aoV3Nzc4OrqCicnJ1haWoodkYiIiIiIiEjS2L2JiIgMiyfAiYiISEetVsPc3Bzvv/8+xo0bhzfffFPsSERERERERESywu5NRERkWDwBTkRERDpfffUVEhIScPXqVahUKjRp0gQdO3aEm5sbnJ2dUa1aNbEjEhEREREREUkauzcREZFh8QQ4ERERFXHz5k3ExcXpnkV27949mJiYQK1Ww9XVVVfKra2txY5KREREREREJEns3kRERIbBE+BERET0ShcuXEB8fDxOnDiBkydP4tGjRzAzM0Pr1q3RsWNHTJ48WeyIRERERERERJLG7k1ERFQ+eAKciIiISkWj0SAqKgq//PILUlNToVKpcPbsWbFjEREREREREckGuzcREVHZmYkdgIiIiCq2q1ev4vTp0zh9+jTS0tJw7tw55OXloXLlyujcuTOcnZ3FjkhEREREREQkaezeRERE5Yd3gBMREZFOVlYW0tLSdIU7LS0NWVlZEAQB1apVQ/v27eHi4gJnZ2e0bNkSJiYmYkcmIiIiIiIikhR2byIiIsPiCXAiIiLSUavVUKlUEAQB1atXh7Ozs+4/BwcHqFQqsSMSERERERERSRq7NxERkWFxCXQiIiLS6dGjB1xcXODi4oJmzZqJHYeIiIiIiIhIdti9iYiIDIt3gBMRERERERERERERERERkSzw4SFERERERERERERERERERCQLPAFORERERERERERERERERESywBPgREREREREREREREREREQkCzwBTkREREREREREREREREREsmAmdgAiIiIl+OGHH7By5cpS7XPw4EHUr1/fQInKrmvXrrhx4wYA4Msvv4Sfn99Lx48aNQrHjh0DAAQHB8Pd3d2guaKjo9GoUSOD/BlERERERERUcbF7s3sTEREBPAFORERkFA4ODvD29tbbdv/+fcTFxcHa2hoeHh5F9rG2tjZWvDKLiop6aQl/8OAB4uPjjZiIiIiIiIiIlIrdm4iIiACeACciIjIKLy8veHl56W1LSEhAXFwcqlevjiVLloiUrOyqVq2K5ORk3LlzB2+88UaxY6Kjo5Gfnw9zc3Pk5eUZOSEREREREREpCbs3uzcRERHAZ4ATERFRGXl6ekIQBERHR79wzN69e2Fra4s2bdoYMRkRERERERGRPLB7ExERlR5PgBMREVVghw8fxqhRo+Di4oI2bdqge/fuWLx4MTIzM/XGXb9+HQ4ODujcuXOx/5/hw4fDwcEBCQkJum2zZs2Cg4MDEhMTMWnSJLz99ttwc3PDli1bSpStR48eAJ4txVacjIwMnDx5Et27d4eZ2YsXndm9ezeGDh2K9u3b4+2334a3tzdWr16NJ0+eFDv+xIkTGDlyJJydndGhQwdMmTJF91y04mi1Wvz3v//FwIED4ejoCEdHRwwaNAihoaEQBKFEcyUiIiIiIiL5Yvcuit2biIikjEugExERVVBLlizBunXrYGpqCicnJ1SvXh2pqalYv3499u3bh02bNqFBgwav/ed89dVXuH//Pjp16oQLFy5ArVaXaL8333wTLVq0QHJyMjIyMmBnZ6f3elRUFAoKCtC7d2+sXLmyyP4FBQWYMWMG9uzZAwsLC7i4uMDKygpJSUn47rvvsH//fgQHB6N69eq6fXbu3Imvv/4aANChQwdUrVoVx44dw8mTJ6HRaIr8GXl5efj3v/+No0ePwsbGBo6OjjA3N0diYiJmzZqFhIQELFy4sDR/XURERERERCQj7N7s3kREJD88AU5ERFQBxcbGYt26dbC1tcX69et1y5hpNBrMnTsXO3fuxOTJk7Fr1y6oVKrX+rMyMjIQHh6OBg0aoKCgACYmJV8gplevXjh79iyio6Px4Ycf6r0WGRkJOzs7ODs7F7vv1q1bsWfPHjRo0AAbNmxAw4YNAQCPHz/GtGnTcPjwYXz99df44YcfAAC3bt1CYGAgzMzMsHbtWnTs2BEA8ODBA4waNQrp6elF/owff/wRR48ehYuLC1asWIEaNWoAAO7du4cxY8YgNDQUTk5OGDhwYInnTERERERERPLA7s3uTURE8sQl0ImIiCqgjRs3AgA+//xzvWd4WVhY4JtvvkGjRo3wxx9/ID4+/rX/LA8PD93V7KUp4ADQs2dPAEWXYrt58yZSU1PRs2fPF/4/N23aBAAIDAzUFXAAsLGxwZIlS1ClShVER0fjypUrAIDQ0FDk5uZi8ODBugIOADVq1MCCBQuK/P81Gg22bNkCc3NzLFmyRFfAAaBWrVqYO3cuAOA///lPqeZMRERERERE8sDuze5NRETyxBPgREREFUx+fj6Sk5OhUqnQvXv3Iq+bmZnBy8sLAPSeK1ZWb731Vpn3bdCgAVq1aoVTp04hIyNDtz0yMhKCIOD9998vdr9bt27h+vXrqF69Otzc3Iq8XqVKFXTq1AkAkJiYCABISkoCAHTp0qXI+BYtWqB+/fp62/744w9kZ2ejSZMmeOONN4rs06ZNG9SsWROXL1/G3bt3SzhjIiIiIiIikgN2b3ZvIiKSLy6BTkREVMFkZmYiLy8P1atXh42NTbFjCgtneZTHatWqvdb+vXr1wh9//IGYmBgMGzYMwLMS3qBBA7z99tvF7lNY2OvVq/fC/+/zcyzcp06dOi8cf/36dd3vb926BQA4f/48HBwcXjqHW7duoXbt2i8dQ0RERERERPLB7v0MuzcREckRT4ATERFVMIIgAMBLny9WOMbCwqJE/0+tVvvC10q79NrzevbsicWLF2Pfvn0YNmwYrly5gj/++APjxo174T5lmeOrnrdmZqb/saagoAAAYG9vDycnp5fuW7ly5Ze+TkRERERERPLC7q0/ht2biIjkhCfAiYiIKhhbW1uYm5sjMzMTjx8/LvZK9GvXrgEAatasCeD/i3Rh8XxeVlaWgdI+u5L87bffxqlTp3D37l1ERkYCAHr37v3Cfezs7ABA76rx5xXOsVatWgCAN954AxcuXMCNGzfQrFmzIuP/uQwcAN1V5XXq1MGSJUtKMSMiIiIiIiKSO3bvZ9i9iYhIjvgMcCIiogrG3Nwcjo6OKCgoQExMTJHX8/PzddtdXV0BANbW1gCele28vDy98Q8fPsTly5cNmrlXr14oKChAdHQ09u3bh2bNmr106TN7e3vUq1cPDx8+1D1n7J+ys7Nx7NgxAICzszMAwN3dHQCK/Tu5du0aLl68qLetTZs2sLS0xLlz54oUdAC4c+cOevbsiZEjRyInJ6fkkyUiIiIiIiLJY/dm9yYiIvniCXAiIqIK6KOPPgIAfPvtt0hPT9dtz8vLw5w5c3D16lW0aNFCt7yYra0t6tSpA41Gg23btunGP336FF9//fVLl2ErDz169IBKpcLWrVtx/vz5l16BXqhwjv7+/rorzgEgJycHM2bMwOPHj/Hee+/pnlXm6+sLW1tb7Nq1C/v379eNf/z4Mb744osiV+BbW1vjgw8+wN9//40ZM2bg/v37en/G7NmzcenSJVhbW3MZNiIiIiIiIgVi92b3JiIieeIS6ERERBWQp6cnPv74Y2zYsAEDBgyAk5MTqlevjtOnT+P27duoV68eli9frvcMsdGjRyMwMBCBgYHYu3cvatWqheTkZGi1Wrz33ns4dOiQwfLWrVsX7dq1Q0pKCoCXL8FWaPjw4UhJScG+ffvQu3dvODs7w8rKCidPnsTDhw+hVquxYMEC3fgaNWpgwYIFmDJlCj799FM4OjrCzs4OSUlJ0Gq1aNy4cZGr7adNm4azZ88iPj4e3bp1Q5s2bWBlZYWUlBRkZmbizTffxJw5c8r3L4OIiIiIiIgkgd2b3ZuIiOSJd4ATERFVUDNnzsSPP/4IV1dXnDt3DocPH0blypUxYcIEhIaGonHjxnrjhw8fjkWLFqF169ZIT09HUlISXF1d8euvvxYZawg9e/YEALRq1QqNGjV65XgTExMsX74cQUFBaNWqFZKTk3H8+HHUqVMHM2bMwI4dO1CjRg29fTw8PPDLL7/Aw8MDly9fxm+//YaWLVvi559/Rp06dYr8GZaWltiwYQO+/PJLNGnSBGlpaUhISICdnR0mTZqEnTt36p5zRkRERERERMrD7s3uTURE8qMSBEEQOwQREREREREREREREREREdHr4h3gREREREREREREREREREQkCzwBTkREREREREREREREREREssAT4EREREREREREREREREREJAs8AU5ERERERERERERERERERLLAE+BERERERERERERERERERCQLPAFORERERERERERERERERESywBPgREREREREREREREREREQkCzwBTkREREREREREREREREREssAT4EREREREREREREREREREJAs8AU5ERERERERERERERERERLLAE+BERERERERERERERERERCQLPAFORERERERERERERERERESywBPgREREREREREREREREREQkC/8Hvr6aqZmEdGEAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 179 coefficients adjusted\n", - "\t 658 coefficients converged\n", - "\t 99 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcl0lEQVR4nOzdeZyd890//tecSSeLZJpIJUEsER2pfYuGUoTQFiVSVURRJbFWlailLSXWlFI3iiCWCG1CLXWrtcWNin619pRGYmlEg0SQRGbO7w+/TI0kzDmZZCYzz+fjkYec6/pc53qf87kyznte57quimKxWAwAAAAAAACNUmjuAgAAAAAAAJYnwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFYAlUCwWM3DgwKyzzjq5+OKLS9p2woQJWWeddTJhwoT6Zeuss07233//pi5zIdOnT88HH3yw1PfTFGpra/Pqq69+7rjf/OY3WWeddT7zz8CBA5d6va+88spS3wcAAC3XAw88kKOOOioDBw7M+uuvn69+9av54Q9/mPvvv3+Z1TBv3rz84he/yBZbbJENN9wwZ5xxxiKX/fSnP80666yT1157raTnX/DZ+/HHH19Kr6Chz/uM/Ytf/CLrrLNOxo8f/5njXnvttfTr1y8HHHBAo/f9+OOPZ5111slvfvObRm/TnB577LGss846+cpXvvKZfdR7772XY445Jptuumk22WSTjB49Okkyd+7cTJs2bVmVm2TJ+upEb91Yje2tgcZr19wFACzPHnvssbz++uvp1KlTbr755hx22GGprKws+/nOPffcfOlLX2rCChd266235rTTTsvtt9+eTp06LdV9Lak33ngjw4YNy0477ZSjjjqqUdvsvffe2WyzzRa5boUVVmjK8hZy2GGHZfbs2bnuuuuW6n4AAGh5Zs+enZNOOil333131ltvvey5557p0aNHpk2blltvvTWHHXZYfvCDH+SEE05Y6rXcfPPNGTduXL72ta/lm9/8Zr785S8vclmxWMyWW26ZFVdcsaTnHzRoUFZfffX07dt3Kb2C/2rMZ+zvfOc7GTduXG6//fYMGTJkseNuvfXWFIvFfOc731kapbYI48ePT6dOnfLBBx/kpptuynHHHbfIcZdccknuuuuu7LLLLtlyyy2z8cYb57nnnsuRRx6ZI488Mnvuuecyq7mp++pEb/1p5fTWwOcTrgAsgd///vf5whe+kAMPPDCXXHJJHnjggey4445lP9/uu+/ehNUt2mOPPbbcfLPm1VdfzaRJk7LTTjs1epuNN954mbyPi3L//fdniy22aJZ9AwDQvE455ZTcfffdGTFiRA4++OAG64YPH56DDz44V111VdZaa63stddeS7WWF198MUkyYsSI9OvXL0nqz+r45LIk2WSTTUp+/n79+jV4jqWpMZ+xN9hgg/ozad5888307NlzkeP+8Ic/5Itf/GJJ/cXyZPbs2bnnnnuyww475Pnnn8+ECRNy9NFHp6qqaqGxC46R0047LV26dEny8Rkgr7/++jKtOWn6vjrRW39aOb018PlcFgygTO+9917uvffebLjhhvn2t7+dJLnxxhubuSoAAGBZe/jhh3PXXXdl5513XihYSZKqqqqceeaZqayszLXXXrvU6/noo4+SJJ07d/7MZa3JkCFDUldXlz/+8Y+LXP/kk09m6tSp2W233dK+fftlXN2yceedd+bDDz/MgAEDsuOOO2bGjBm55557Fjl2wfGwIFhpLvpqYHkmXAEo0x133JE5c+bka1/7Wvr06ZN11lknjzzyyCKvYfr444/n+9//fjbddNMMGDAgZ5xxxiK/4fLp68Iu7hrIr732WtZZZ5389Kc/rV/24Ycf5qyzzso3vvGNbLjhhvnqV7+aYcOG5cknn6wfM3DgwNxyyy1Jkh122KF+Xz/96U+zySabZOrUqTnyyCOz2WabZdNNN81hhx2WadOm5fXXX8/RRx+dzTbbLAMGDMgxxxyT6dOnN6iprq4u1113XXbfffdsuOGG2XzzzfPDH/6wwf6T/16f+eWXX84pp5ySr33ta9lggw2y++675/bbb28w7vvf/36S5OKLLy7rWtCfpVgs5ne/+1323XffbL755llvvfWy9dZb59hjj82UKVMWGv/HP/4x++23XzbbbLN89atfzQEHHJBHH300yX+vw5wkf/3rXxe63u+f//znHHDAAdl0002z4YYbZvfdd8+1116burq6+jEL5vR//ud/8uMf/zgbbLBBttpqqzz99NOpra3NxRdfnN122y0bb7xxNt988+y///7L9LrdAAAs3q233pokn3mPh9VWWy233357/efxBV5++eUce+yx2WqrrbL++utnhx12yNlnn52ZM2cu9Bz/+te/cuyxx2bLLbfM+uuvn5122im//vWvM2fOnCT//Uz5yc/8C+4/+OllyaL7jWKxmBtvvDF77rlnNt5442y11VYZPnx4nn322foxi7vnykMPPVTf92y00UbZc889G3wuTv772fnOO+/MZZddlkGDBmX99dfPwIEDc+GFF2b+/PkNxiWL/oz9ad/+9rfzhS98oUFP8UkL5mjBJcE++uijjB49OkOGDMkmm2yS9ddfP9ttt11OOeWUzJgxY7H7ST7uqxZ1P8dF3fsjSf7xj39k+PDh2WKLLbLBBhtk1113zVVXXZXa2toG45577rkMHz4822yzTf2xcMYZZ+Tdd9/9zHoWWHB20te+9rV84xvfSLJwULHgff3rX/+aJPX3pvzpT3+aE088MUly4okn1r/3Sem93p///Od885vfzPrrr5+hQ4d+Zs2l9NUL6tdbN3y/m7u3hrbMZcEAyrTgg+s3v/nNJMkuu+ySF198MePGjcvxxx9fP+7BBx/MEUcckR49emTYsGEpFAr5/e9//5mNQTmOPfbYPPLII9lvv/2y1lpr5T//+U9uuOGGHHDAAfn973+ffv365aSTTsrVV1+diRMn5sQTT8yXv/zl+u0/+uij7Lvvvtliiy0yYsSIPPXUU5kwYULefPPN/Oc//0n//v0zYsSI/P3vf8/48eMze/bsXHnllfXbH3fccbnzzjuz884757vf/W5mzpyZCRMmZP/998/5559f/+F+gUMPPbT+PZk3b17GjBmT4447LiuttFIGDBiQQYMGZf78+fUN16BBgxp1LegPPvggb7/99kLLKysr88UvfrH+8VlnnZUxY8Zkxx13zI9//OMkycSJE/PHP/4xzz33XP74xz+mUPj4OwgXXXRR/ud//if9+vXL8OHDU1VVlbFjx+bggw/OpZdemvXWWy/nnntuRowYkbXWWivDhw/PpptumiS56qqrcs4552SNNdbIIYcckk6dOuXee+/NyJEj8/jjj+c3v/lN/X6S5Morr0xNTU1OOeWUvPLKK1l33XVz1lln5YYbbsh3v/vdfP/73897772XcePG5fDDD89vf/vbbLvtto05RAAAWEr+8Y9/pF27dtloo40+c9yn71EyceLEHHzwwamsrMw+++yTVVddNU899VSuueaa3H///Rk3blz9Z+B//OMfOfDAA9O5c+fst99+WXHFFfPUU0/lsssuy6OPPpprr702K664Ys4999zcfPPN9Z/5v/jFL6ZQKDRY1q1bt8XWeMIJJ+QPf/hDNt988xxzzDGZN29errvuugwdOjQ33HBD1l133UVud8MNN+T000/PBhtskCOPPDKFQiH33XdfTjzxxDz//PM5+eSTG4w///zzUywWs/fee6e6ujoTJkzIJZdckoqKihx99NHp27fvYj9jL0q3bt2yww475H//93/z8ssvN3iv586dm7vuuivrrbdevvKVryRJjjnmmNx3330ZPHhwvvvd72bu3Ln5y1/+kt/97nd54403ctVVV33mXDbWfffdlx/96Efp3bt3fvjDH6ZTp0555JFHcs455+Rvf/tbfvOb36SioiKvvvpqDjjggKy00ko58MADU11dnb///e+5/vrr849//CM33XRTKioqFrufl19+OX//+9+zySabZJVVVskqq6ySNddcM0888USD92PB+3rZZZflX//6V84999yssMIK6d69e6qqqnLTTTctdB/LUnu9Y445Jt/5zney5pprLvKSZJ/U2L460Vsv694aaIQiACWbNGlSsaamprjHHnvUL5s6dWqxpqamOGDAgOLcuXOLxWKxWFdXVxw4cGBx8803L/7nP/+pHztr1qziTjvtVKypqSmOHz++fnlNTU1x6NCh9Y9POOGEYk1NTfHVV19tsP9XX321WFNTUzzhhBOKxWKxOGPGjGJNTU3xF7/4RYNxTz31VHGnnXYq3nzzzZ/5nAuWfXr73XffvVhTU1M8/fTTGyzfa6+9iv369at/nX/84x+LNTU1xSuuuKLBuNmzZxe/8Y1vFL/61a8WP/jgg2KxWCxedNFFxZqamuIhhxxSrKurqx/7xBNPFGtqaorHHnts/bLHHnusWFNTU7zooouKn2fB8y7uz/bbb18/9u233y6uu+66xWHDhi30PEcffXSxpqam+MwzzxSLxWLxlVdeKX7lK18pDh06tP71FovF4n/+85/iZpttVtxzzz3rl316/qZOnVpcd911i9/61reK77//fv3yurq64nHHHVesqakpTpgwoVgs/ndON9544+Jbb73VoKaNN964+MMf/rDBsn//+9/FHXfcsfib3/zmc98bAACWro022qi41VZblbRNbW1tcdCgQcX111+/+NJLLzVYd/PNNxdramqKP/3pT4vF4sefH3fZZZfitttuW3znnXcWOfbyyy+vX/ZZn/k/a9mjjz5a/5n8k5/VX3rppWK/fv2KRx11VLFY/O9n78cee6xYLH782XS99dYrDhs2rMF2dXV1xeOPP75YU1NT/Pvf/14sFv/7Gf9rX/tacebMmfVj33///eJmm21W3HrrrRu8vk9/xv4sf/7zn4s1NTXFCy64oMHyO++8s1hTU1O84YYbisVisfj8888vss8pFovFIUOGFGtqaurf50X1JNtvv32D/mKB8ePHN+jxPvjgg+JXv/rV4uDBgxv0EsVisXjBBRcUa2pqinfeeWexWCwWr7zyygbv0wJnnXVWcfDgwcVp06Z95ms/++yzizU1NcUxY8bUL1swT4t6nUOHDi3W1NR8Zv3FYnm93tFHH/2ZtS7Q2L66WNRbL8veGmg8lwUDKMOCb9fssssu9ctWW221bLzxxnn77bfzpz/9KUny/PPP57XXXsvuu++e7t2714/t0qVL9tlnnyarp3PnzunSpUvuuuuu3HzzzXnrrbeSJBtttFHuvvvuRt8wc9ddd23weMG3m771rW81WL766qunrq4u//nPf5J8fG3fJNl5553z9ttv1/+ZO3dudtppp7zzzjt54oknGjzHbrvt1uCbVxtuuGGS1D9nuQ4++OBcffXVC/0577zz6sd069YtEydOzKhRoxpsO2vWrHTs2DFJ6k8tv//++1NbW5sDDjigwbeuunfvnrFjx+Y3v/nNYmu55557Mn/+/Bx66KHp1KlT/fKKior85Cc/SZKFrgm90UYb5Utf+lKDZb169cpf//rXjB49uv707V69euWee+7JkUce2ej3BgCApaOysrL+claN9dxzz2XKlCn59re/vdAZLd/5zneyxhpr5O67705tbW1efPHF/POf/8y2226burq6Bp+5t99++7Rv336x99Yoxb333psk+eEPf9jgs3rfvn3z+9//Pj/72c8Wud2f/vSnfPTRR/nmN7+Zd955p762d955p75nWtAjLbD99tunurq6/nGnTp3St2/fz70k12fZeuuts/LKK+eOO+5osPyWW25Jhw4dsttuuyVJ+vXrlyeffDLHHntsg3EzZsyor6kpblT+f//3f3nnnXey8847Z/bs2Q3mbUGPtWDeVl555STJeeedl0cffTTz5s1L8vFlpiZMmJCePXsudj/z58/PbbfdlkKhUH8GSPLffvUPf/hDPvzww7JeQzm93qIumbYoje2rE711c/TWwOdzWTCAEn300Ue57bbbknz8AeuT1yodMGBAnnrqqdx4443ZddddM3Xq1CQff2D6tLXXXrvJaqqqqsrZZ5+dE088sb7hqampydZbb53ddtttsafuf9qnf6n/hS98IUmy0korNVjert3H//tYcM+QyZMnJ0l23HHHxT7366+//pn7WhBcfPI+JOVYe+21s9VWW33uuPbt2+e+++7LAw88kKlTp+a1117Lv//97/oPpQvqWDC/a6211kLPUVNT85n7WDD/nzxFfIFevXqlS5cuC13r9tPvS5KMHDkyxxxzTM4999yce+65WX311fO1r30tu+yyS/r37/+5rxUAgKWrZ8+emTx5cubNm/e5l0Fa4LM+K1ZUVGTttdfOlClT8s4779R/3h43blzGjRu3yOf79Oftciz4bPrpsCdJ1ltvvcVut6C+ESNGLHbM5/UDycc9wafvQ1KKQqGQwYMH55JLLsn/+3//L5tsskneeuutPPLII9l1110b3Ly9qqoqf/zjH+vv7/Haa6/lrbfeWqgfWBIL3pfzzz8/559//iLHLHhfdt555wwZMiQTJkzIgQcemA4dOmSzzTbLtttumz322KPBJY4/7cEHH8x//vOfbLDBBpk7d279PFZVVWXNNdfMK6+8kjvvvLP+fjPlvIZSer1P94+LUkpfnURv/QnLqrcGPp9wBaBEDz74YP23qRZ3c76JEyfmpZdeqn9cLBYXGrMkH3QW1XDsuOOO+drXvpaHHnooDz/8cB5//PFcddVVufrqq3PSSSfV38Dusyz4YPdpn3Vt3wX1rLDCCrn44osXO6ZPnz4NHn/yPiPL2kcffZQjjzwyDz74YNZff/2sv/762XnnnbPuuuvmz3/+c3772982GJt8/nuwKAvmfXHb1tXVLdR8L2oONt1009x777157LHH8tBDD+Xxxx/PuHHjcuONN+aggw5qcPNFAACWvf79++fll1/O3/72twwYMGCx40488cR89NFHnxlCLLCgX6iqqqr/+3777bfYX7ou7rN8KRZ89i3Vgv7k9NNPT+/evRc55tP3eFha/cCee+6ZSy+9NLfffns22WST3H777amtrW0QLMyePTsHHHBAnn322Wy22WZZf/31s/vuu2eDDTbImDFj6n/pX6pP92kL5u3oo4/OJptssshtVlhhhSQfn/105pln5vDDD88DDzyQ//u//8vEiRPzyCOP5Le//W3GjRu3yGAh+e8ZIE8//XR22GGHRY4ZN25cWeFKOb1eZWXl5z5vKX31J8MTvXXL6q2hrROuAJRowQfXYcOG1Z9u+0m/+93v8uCDDzb48Pryyy8vNG7KlCmfu68FH0rnzp3bYPmCU5MXmD17dl588cX07t07O+20U3baaackyQsvvJADDjgg//M//9OoD4Dl6t27dyZPnpx+/fot1DQ9//zzmT59ev3ltlqCP/7xj3nwwQdz6KGH1l+ea4FbbrmlweMFzeHkyZMX+hB7zTXX5KWXXsopp5ySDh06LLSfBc3PpEmT6m+cucAbb7yR999/v/70/8WZO3duXnzxxXzxi1/M17/+9Xz9619Pkrz66qv5wQ9+kDFjxuTII49M586dG/HKAQBYGnbdddeMGzcuY8eOXWy48u9//zu33XZbqqur07Vr16y22mpJkn/+858LjS0Wi3n55ZfTuXPnVFdXNwgsPn2Wdl1dXe6+++7651sSn/zsu8466zRYd/7552fOnDk56aSTFrtddXX1QvVNnz49//jHP5qkvsZYbbXV8tWvfjV33XVXTjnllNx+++1ZY401ssUWW9SPufbaa/PMM8/ktNNOy/e+970G2zfmUkqVlZV5//33F1r+6T5twfvSoUOHhd6X2bNn5+GHH64/k+H111/P1KlTs+WWW2b//ffP/vvvn/nz52f06NE5//zzc+ONN+aEE05YaJ8zZszIX/7yl6ywwgo555xzFvrlfV1dXU444YQ8/fTTefbZZz/zDKRFWVq9Xil99SmnnJI111wzid66pfXW0NaJNgFK8NZbb+Whhx5K165dc8QRR2THHXdc6M/RRx+dJLn11luzxhprpE+fPrntttsanOY8Z86cXH/99Z+7vx49eiT5+BtIn3Trrbc2eDxp0qTsu+++ueSSSxosX3vttdOlS5cG35pZ8K2WRX3jp1w777xzkuTXv/51g+WzZ8/OMccckyOOOGKhD7GNseADcFOfzvzOO+8kyUIN45QpU3L33Xcn+e83mHbYYYdUVFTkhhtuaHAd7XfffTdXXHFF/vGPf9QHK4VCoUGtgwYNSmVlZX772982uGZzsVjMhRdemCT5xje+8bm17r333jn99NMbLF9ttdXSs2fPVFRU+KYSAEAz69+/fwYNGpS77747V1999ULr33vvvfzoRz/K/Pnzc+SRR6aqqirrrrtuVltttdx2220L/cJ4/PjxmTp1av0vdtdff/2suuqqueWWW+ovj7TATTfdlGOOOab+l9VLYsFZMWPGjGmwfOrUqbnmmmvy6quvLnK7nXbaKYVCIZdddlnmzJnTYN3ZZ5+dI444Is8880xZNX36M3ZjDBkyJG+//XZuvfXWPPfccwudsbG4fuD//b//V38/i8+6PFmPHj3y9ttvN7g807x583LXXXc1GLf11ltnhRVWyDXXXFO/zwUuu+yy/OhHP8qf//zn+scHHnhg/v73v9ePadeuXTbaaKMkiz8b5NZbb838+fOz++67Z9CgQQv1pzvttFOGDBmSJLnxxhsX+5qS//aKn3y/l0avV2pf/eGHH6Zfv3566xbYW0Nb58wVgBIs+OC65557pn379oscs95666V///554okncscdd+SMM87ID37wg+y1117Zb7/90rlz54wfPz7vvffe5+5v8ODB+e1vf5szzjgjr732WlZaaaU88MADmTRpUoP9b7rpptl6660zbty4zJo1K1tssUVqa2tz991359VXX23wDacF12O98sors80223zmtVwba88998z//u//5qabbsrUqVMzcODAzJ8/P7/73e/yyiuv5Pjjj//MGzAuzoIbFd5///1ZZZVVMmjQoHTt2nWJ691mm23yq1/9KiNHjszUqVOz0kor5Z///GfGjx9fH6DMmjUrycfXmz700EPz29/+Nvvss0922WWX1NXV5eabb87MmTPrQ5IF9b7wwgsZO3ZsNt9889TU1OSYY47Jr371q+yxxx7Zc88906lTp9x333157LHHsv322+fb3/72Z9baq1ev7LXXXrnpppty8MEHZ+DAgamoqMjDDz+cJ554IkOHDk2nTp2W+D0BAGDJnHnmmZk5c2bOPvvs3H777dlpp52y4oor5pVXXsktt9ySt99+O/vtt1/222+/JB//svOMM87IoYcemr322iv77LNPevfunX/84x+55ZZbsuqqq+a4445rMHbYsGHZc889873vfS+rr756nn766YwfPz6rr756Dj/88CV+Ddtss0123XXXjB8/PtOmTcvAgQMze/bs3HDDDWnfvn2OP/74RW635ppr5qijjsqFF16Y3XffPYMHD051dXXuu+++PPzww9l+++3rg6JSLeoz9ufZeeedc/rpp+ecc85Ju3btssceezRYP3DgwFx33XU57rjjsu+++6ZLly555plncsstt6SysjIfffRRfT+wKEOGDMnEiRNz8MEHZ999901dXV3Gjx+/UCBTXV2dn//85znxxBOz2267Ze+9906PHj3y2GOP5Y9//GM23HDD7LvvvkmSAw88MHfddVcOPfTQfO9730vv3r3z5ptv5sYbb0yXLl3y3e9+d5G1TJgwIUnqn2dRvv/97+eGG27InXfemZ/+9KeLPet9Qa942223pVgs1vcwTd3rldNX77XXXnrrFthbQ1snXAEowS233JKKiorP/OCafPzB+Iknnsi4ceMyfvz4jB07NhdddFGuueaaJB9/I2y77bbLj370o898ntVXXz1XXHFFLr744lx++eXp2LFjttlmm9x4443ZZZddGoy96KKLctVVV9Vf8ipJ+vXrl1GjRmW33XarH7fPPvvkr3/9a8aPH5/HHnusST4AVlZW5rLLLsuYMWPyhz/8IaNGjUrHjh3Tt2/f/OY3vym7kerTp08OOuig/P73v8/IkSPTu3fvbLnllktcb9++fXP55ZfnoosuyujRo5MkK6+8coYOHZpvfOMb2WOPPfLQQw/Vn1Vy7LHHZq211sr111+fCy64IB07dswGG2yQ8847LxtssEH9844YMSKjRo3KmWeemeHDh6empiaHHnpo1lprrVxzzTX193Lp06dPfv7zn2efffZp1FknP//5z7PWWmvllltuyfnnn5/a2tqstdZa+dnPfva5xyIAAMtGdXV1Ro8enT/+8Y+ZMGFCxo4dm7fffjudO3fORhttlP3226/+Eq8LDBgwIDfffHMuueSSjB8/PrNnz84qq6ySH/zgBxk+fHiqq6vrx2611Va5+eabc+mll9b/QrlXr17Zd999M2zYsEbdRLwxzjvvvGy44Yb5/e9/n3POOSdf/OIXs/nmm+dHP/rRQpfJ/aTDDz88a6+9dq699tpcfvnlqaury2qrrZYRI0Zk//33b9R9OBZlUZ+xP0/79u2z6667ZuzYsRk4cGD9WQsLbLnlljn//PPre62qqqqsssoqOeaYY7L22mvn0EMPzUMPPdTgs/4n7bnnnnn//fczduzYnHvuufnSl76U3XffPdtvv3323nvvBmP32GOPrLzyyrnyyitz7bXXZu7cuVlllVVy2GGH5eCDD67/olTfvn1z/fXX59JLL82tt96aGTNmpGvXrhkwYECOOOKIRd5v5e9//3teeuml9O/fP1/+8pcX+36svvrq2X777XPfffflD3/4Q33A92kDBgzIbrvtlnvvvTdPP/10Nt988/Tp06fJe71y+uq99torm2++ud66hfXW0NZVFJvy3DUAylYsFtOvX7989atfzbXXXtvc5QAAAMByR28NLCsu0g7QQiw47XyFFVZo5koAAABg+aS3BpYVlwUDaAF++9vf5tlnn03y8bVlAQAAgNLorYFlSbgC0MxmzZqVMWPG5KOPPsquu+6agw46qLlLAgAAgOWK3hpY1txzBQAAAAAAoATuuQIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlaPM3tC8Wi6mrc9uZ5UWhUGG+KIljhlI5ZiiVY4ZSNecxUyhUpKKioln2zfKrOXsmP2NbH3PaupjP1sV8ti7ms3Uxn8tWY/umNh+u1NUV8/bb7zd3GTRCu3aFdOu2QmbN+iDz59c1dzksBxwzlMoxQ6kcM5SquY+ZFVdcIZWVwhVK01w9U3P/e6HpmdPWxXy2LuazdTGfrYv5XPYa2ze5LBgAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAtBAzZszI8ccfnwEDBmSTTTbJoYcempdeeql+/fPPP5+hQ4dm4403znbbbZfRo0c32L6uri4XXXRRttlmm2y00Ub5wQ9+kClTpizrlwEAAK2ecAUAAKCFOOyww/Lqq6/miiuuyO9///t06NAhBx54YD788MO88847Oeigg7Lmmmtm/PjxOeqoo3LhhRdm/Pjx9dtfcsklGTduXM4444zcdNNNqaioyCGHHJJ58+Y146sCAIDWp11zFwAAAEDyzjvvpHfv3jnssMPy5S9/OUly+OGHZ/fdd88///nPPProo6mqqsqpp56adu3apW/fvpkyZUquuOKKDBkyJPPmzctVV12V448/Pttuu22S5IILLsg222yTe+65J7vssktzvjwAAGhVnLkCAADQAnTr1i3nn39+fbDyn//8J6NHj06vXr2y9tprZ+LEienfv3/atfvvd+QGDBiQyZMnZ8aMGXnhhRfy/vvvZ8CAAfXrq6urs+666+aJJ55Y5q8HAABaM2euAAAAtDA/+9nPcvPNN6eqqiqXXnppOnXqlGnTpqWmpqbBuB49eiRJ3njjjUybNi1JsvLKKy805t///veyKRwAANoI4QoAAEALc8ABB2TvvffOjTfemCOOOCJjx47NnDlzUlVV1WBc+/btkyRz587Nhx9+mCSLHDNz5swlqqddu2V/0YPKykKD/7L8M6eti/lsXcxn62I+Wxfz2XIJVwAAAFqYtddeO0ly+umn56mnnsr111+fDh06LHRj+rlz5yZJOnXqlA4dOiRJ5s2bV//3BWM6duxYdi2FQkW6dVuh7O2XVHV1+bXTMpnT1sV8ti7ms3Uxn62L+Wx5hCsAAAAtwIwZM/Loo4/mm9/8ZiorK5MkhUIhffv2zfTp09OrV69Mnz69wTYLHvfs2TPz58+vX7b66qs3GNOvX7+y66qrK2bWrA/K3r5clZWFVFd3zKxZH6a2tm6Z75+mZ05bF/PZupjP1sV8ti7mc9mrru7YqDOFhCsAAAAtwPTp0/OTn/wk3bt3z5Zbbpkk+eijj/Lcc89l4MCB+dKXvpRx48altra2Pnx59NFH06dPn3Tv3j1dunRJ586d8/jjj9eHK7Nmzcpzzz2XoUOHLlFt8+c3XyNfW1vXrPun6ZnT1sV8ti7ms3Uxn62L+Wx5XKgNAACgBejXr1+23nrrnHbaaZk4cWImTZqUE044IbNmzcqBBx6YIUOGZPbs2Tn55JPz0ksvZcKECRkzZkyGDRuW5ON7rQwdOjSjRo3KfffdlxdeeCE//vGP06tXrwwaNKiZXx0AALQuzlwBAABoASoqKvLrX/86v/rVr3LMMcfkvffey+abb54bbrghq6yySpLkyiuvzMiRIzN48OCstNJKGTFiRAYPHlz/HEcffXTmz5+fU045JXPmzEn//v0zevTohW5yDwAALJmKYrFYbO4imlNtbV3efvv95i6DRmjXrpBu3VbIO++87xQ4GsUxQ6kcM5TKMUOpmvuYWXHFFRp17WD4pObqmZr73wtNz5y2LuazdTGfrYv5bF3M57LX2L5JZwUAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQgnbNXQAALE2FQkUKhYpGja2s9J0DAAAAlk8L+t8FvW1jety6umLq6opLuzRolYQrALRahUJFunbtVFJoUldXTEVF48IYAAAAaAkW1f9WV3f83O1qa+vy7rsfCFigDMIVAFqtBd/YGXXDk3ntzfc+d3zvnl1y3H6bNfpMFwAAAGgJSu1/k4Y9sHAFSidcAaDVe+3N9/Ly6zObuwwAAABYqvS/sOy4uDwAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlaFHhyuuvv5511llnoT+/+93vkiTPP/98hg4dmo033jjbbbddRo8e3cwVAwAAAAAAbU275i7gk1588cW0b98+9957byoqKuqXd+nSJe+8804OOuig7LjjjjnttNPy1FNP5bTTTkvXrl0zZMiQZqwaAAAAAABoS1pUuDJp0qT06dMnPXr0WGjdmDFjUlVVlVNPPTXt2rVL3759M2XKlFxxxRXCFQAAAAAAYJlpUZcFe/HFF7P22msvct3EiRPTv3//tGv33zxowIABmTx5cmbMmLGsSgQAAAAAANq4FhWuTJo0KTNmzMi+++6brbbaKvvss08eeuihJMm0adPSq1evBuMXnOHyxhtvLPNaAQAAAACAtqnFXBZs3rx5eeWVV9KxY8eMGDEinTp1ym233ZZDDjkkV199debMmZOqqqoG27Rv3z5JMnfu3CXad7t2LSpjYjEqKwsN/gufxzFDuXNfKFT4fwON4ucMpXLMAAAAtA4tJlypqqrKE088kXbt2tWHKOuvv35efvnljB49Oh06dMi8efMabLMgVOnUqVPZ+y0UKtKt2wrlF84yV13dsblLYDnjmKFUnTt3aO4SWM74OUOpHDMAAADLtxYTriSLDklqamry8MMPp1evXpk+fXqDdQse9+zZs+x91tUVM2vWB2Vvz7JTWVlIdXXHzJr1YWpr65q7HJYDjhkWHAOlmj17Tj76qHYpVERr4+cMpWruY6a6uqOzZgAAAJpAiwlXXnjhheyzzz654oorsvnmm9cvf+aZZ7L22mvnK1/5SsaNG5fa2tpUVlYmSR599NH06dMn3bt3X6J9z5/vlyHLk9raOnNGSRwzlKquruiYoSR+zlAqxwwAAMDyrcV8ba2mpiZf/vKXc9ppp2XixIl5+eWXc9ZZZ+Wpp57K8OHDM2TIkMyePTsnn3xyXnrppUyYMCFjxozJsGHDmrt0AAAAAACgDWkxZ64UCoVcdtllGTVqVI455pjMmjUr6667bq6++uqss846SZIrr7wyI0eOzODBg7PSSitlxIgRGTx4cDNXDgAAAAAAtCUtJlxJkhVXXDFnnnnmYtdvuOGGuemmm5ZhRQAAAAAAAA21mMuCAQAAAAAALA+EKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAtxLvvvpuf//zn+frXv55NN900++yzTyZOnFi//sQTT8w666zT4M/Xv/71+vV1dXW56KKLss0222SjjTbKD37wg0yZMqU5XgoAALRq7Zq7AAAAAD527LHHZsaMGTn//POz4oorZuzYsTn44IMzYcKE9O3bNy+++GKGDx+eoUOH1m9TWVlZ//dLLrkk48aNy1lnnZWePXvmvPPOyyGHHJI77rgjVVVVzfGSAACgVXLmCgAAQAswZcqUPPLII/nFL36RzTffPGuttVZOPvnk9OzZM3fccUdqa2vz0ksvZYMNNshKK61U/2fFFVdMksybNy9XXXVVjjrqqGy77bbp169fLrjggrz55pu55557mvnVAQBA6yJcAQAAaAG6deuWyy+/POuvv379soqKihSLxcycOTOvvPJK5s6dm759+y5y+xdeeCHvv/9+BgwYUL+suro66667bp544omlXj8AALQlLgsGAADQAlRXV2fbbbdtsOyuu+7K1KlTs/XWW2fSpEmpqKjImDFj8pe//CWFQiHbbrttjjnmmHTp0iXTpk1Lkqy88soNnqNHjx7597//vUS1tWu37L+XV1lZaPBfln/mtHUxn62L+Vz+LcncmfeWzb/Plku4AgAA0AI9+eSTOemkk7LDDjtk4MCBueiii1IoFLLqqqvmsssuy5QpU3LOOedk0qRJGTNmTD788MMkWejeKu3bt8/MmTPLrqNQqEi3biss0WtZEtXVHZtt3ywd5rR1MZ+ti/lsm8z78sE8tTzCFQAAgBbm3nvvzXHHHZeNNtoo559/fpLkqKOOyoEHHpjq6uokSU1NTVZaaaXsvffeefrpp9OhQ4ckH997ZcHfk2Tu3Lnp2LH8ZryurphZsz5YgldTnsrKQqqrO2bWrA9TW1u3zPdP0zOnrYv5bF3M5/JvwRyWw7y3bP59LnvV1R0bdaaQcAUAAKAFuf766zNy5MgMGjQoo0aNqj8TpaKioj5YWaCmpiZJMm3atPrLgU2fPj2rr756/Zjp06enX79+S1TT/PnN18jX1tY16/5peua0dTGfrYv5bJvM+/LBPLU8LtQGAADQQowdOzann3569ttvv/z6179ucImvn/zkJzn44IMbjH/66aeTJGuvvXb69euXzp075/HHH69fP2vWrDz33HPZfPPNl80LAACANsKZKwAAAC3A5MmTc+aZZ2bQoEEZNmxYZsyYUb+uQ4cO2XXXXXPYYYfl0ksvzS677JLJkyfnl7/8ZXbdddf07ds3STJ06NCMGjUqK664YlZdddWcd9556dWrVwYNGtRcLwsAAFol4QoAAEALcPfdd+ejjz7KPffck3vuuafBusGDB+fss8/OhRdemMsuuyyXXXZZunTpkt122y3HHHNM/bijjz468+fPzymnnJI5c+akf//+GT169EI3uQcAAJaMcAUAAKAFGD58eIYPH/6ZY3beeefsvPPOi11fWVmZ448/Pscff3xTlwcAAHyCe64AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJWix4crkyZOzySabZMKECfXLnn/++QwdOjQbb7xxtttuu4wePboZKwQAAAAAANqiFhmufPTRRznuuOPywQcf1C975513ctBBB2XNNdfM+PHjc9RRR+XCCy/M+PHjm7FSAAAAAACgrWnX3AUsym9+85ussMIKDZbdfPPNqaqqyqmnnpp27dqlb9++mTJlSq644ooMGTKkmSoFAAAAAADamhZ35soTTzyRm266Keecc06D5RMnTkz//v3Trt1/86ABAwZk8uTJmTFjxrIuEwAAAAAAaKNaVLgya9asjBgxIqecckpWXnnlBuumTZuWXr16NVjWo0ePJMkbb7yxzGoEAAAAAADathZ1WbBTTz01G2+8cXbbbbeF1s2ZMydVVVUNlrVv3z5JMnfu3CXab7t2LSpjYjEqKwsN/gufxzFDuXNfKFT4fwON4ucMpXLMAAAAtA4tJly59dZbM3HixNx+++2LXN+hQ4fMmzevwbIFoUqnTp3K3m+hUJFu3Vb4/IG0GNXVHZu7BJYzjhlK1blzh+YugeWMnzOUyjEDAACwfGsx4cr48eMzY8aMbLfddg2W/+IXv8jo0aOzyiqrZPr06Q3WLXjcs2fPsvdbV1fMrFkflL09y05lZSHV1R0za9aHqa2ta+5yWA44ZlhwDJRq9uw5+eij2qVQEa2NnzOUqrmPmerqjs6aAQAAaAItJlwZNWpU5syZ02DZTjvtlKOPPjrf+ta3cuedd2bcuHGpra1NZWVlkuTRRx9Nnz590r179yXa9/z5fhmyPKmtrTNnlMQxQ6nq6oqOGUri5wylcswAAAAs31rM19Z69uyZNdZYo8GfJOnevXtWXXXVDBkyJLNnz87JJ5+cl156KRMmTMiYMWMybNiwZq4cAAAAAABoS1pMuPJ5unfvniuvvDKTJ0/O4MGDc/HFF2fEiBEZPHhwc5cGAAAAAAC0IS3msmCL8uKLLzZ4vOGGG+amm25qpmoAAAAAAACa+MyV999/f6H7pgAAALQVeiIAAGgbyg5X/vKXv+SSSy6pf3zOOedkiy22yOabb56RI0c2SXEAAAAtlZ4IAADarrLClQceeCDDhg3LH/7whyTJxIkTc/XVV2fVVVfNJptskuuvvz5jx45t0kIBAABaCj0RAAC0bWWFK1dffXVWX331XHvttUmSO++8M4VCIVdffXWuu+66bL/99hk/fnyTFgoAANBS6IkAAKBtKytcef7557PPPvukZ8+eSZJHHnkkNTU1WXXVVZMk22yzTf71r381XZUAAAAtiJ4IAADatrLClfnz56dz585Jktdffz1Tp07NV7/61fr1dXV1adeuXdNUCAAA0MLoiQAAoG0rK1zp3bt3nnvuuSTJ3XffnYqKimyzzTb16x944IH07t27aSoEAABoYfREAADQtpX1Vaqdd945l156aV5//fX89a9/Tc+ePTNgwIBMnTo1Z5xxRh555JH89Kc/bepaAQAAWgQ9EQAAtG1lhSuHH3543n333YwfPz4rr7xyRo4cmXbt2uXdd9/Nww8/nO9+97sZOnRoU9cKAADQIuiJAACgbSsrXCkUCjnllFNyyimnNFjer1+/PPDAA/U3dQQAAGiN9EQAANC2lXXPle9///t59NFHF1peVVWVnj175t577803vvGNJS4OAACgJdITAQBA29aoM1c+/PDDvPPOO/WP//rXv2bQoEFZY401FhpbV1eXhx9+OG+88UbTVQkAANCMllVP9O677+b888/Pgw8+mNmzZ2edddbJT37yk2y++eZJkueffz4jR47MM888k65du2b//ffPwQcf3GDfF198cX73u99l1qxZ2WyzzfKLX/xikXUCAADla1S4Mnv27Oy666758MMP65edeeaZOfPMMxe7zcYbb7zExQEAALQEy6onOvbYYzNjxoycf/75WXHFFTN27NgcfPDBmTBhQlZcccUcdNBB2XHHHXPaaaflqaeeymmnnZauXbtmyJAhSZJLLrkk48aNy1lnnZWePXvmvPPOyyGHHJI77rgjVVVVJdcDAAAsWqPClZVWWik///nP8/jjj6dYLObWW2/NZpttltVWW22hsYVCIV/60peyzz77NHmxAAAAzWFZ9ERTpkzJI488khtvvDGbbrppkuTkk0/OX/7yl9xxxx3p0KFDqqqqcuqpp6Zdu3bp27dvpkyZkiuuuCJDhgzJvHnzctVVV+X444/PtttumyS54IILss022+See+7JLrvssuRvBAAAkKSEG9rvscce2WOPPZJ8fAr8QQcdlB122GFp1QUAANCiLO2eqFu3brn88suz/vrr1y+rqKhIsVjMzJkz88wzz6R///5p1+6/bdyAAQPy29/+NjNmzMjrr7+e999/PwMGDKhfX11dnXXXXTdPPPGEcAUAAJpQo8OVT7r//vubug4AAIDlxtLoiaqrq+vPOFngrrvuytSpU7P11lvnggsuSE1NTYP1PXr0SJK88cYbmTZtWpJk5ZVXXmjMv//97yavFwAA2rKywpUkKRaLeeyxx/LWW2+lrq5ukWMWfKsLAACgtVnaPdGTTz6Zk046KTvssEMGDhyYs846a6H7prRv3z5JMnfu3Pr7wSxqzMyZM8uuI0natSss0fblqKwsNPgvyz9z2rqYz9bFfC7/lmTuzHvL5t9ny1VWuDJlypQccsghefXVVxe5vlgspqKiQrgCAAC0Sku7J7r33ntz3HHHZaONNsr555+fJOnQoUPmzZvXYNzcuXOTJJ06dUqHDh2SJPPmzav/+4IxHTt2LKuOJCkUKtKt2wplb7+kqqvLr52WyZy2LuazdTGfbZN5Xz6Yp5anrHBl1KhRefXVVzNkyJBssMEGC30zCgAAoDVbmj3R9ddfn5EjR2bQoEEZNWpU/XP36tUr06dPbzB2weOePXtm/vz59ctWX331BmP69etXdj11dcXMmvVB2duXq7KykOrqjpk168PU1i76zCCWL+a0dTGfrYv5XP4tmMNymPeWzb/PZa+6umOjzhQqK1x57LHHss8+++TnP/95OZsDAAAs15ZWTzR27Nicfvrp2X///XPSSSelUPhvU9e/f/+MGzcutbW1qaysTJI8+uij6dOnT7p3754uXbqkc+fOefzxx+vDlVmzZuW5557L0KFDl6iu+fObr5Gvra1r1v3T9Mxp62I+Wxfz2TaZ9+WDeWp5yrpQ2/z58/OVr3ylqWsBAABYLiyNnmjy5Mk588wzM2jQoAwbNiwzZszIW2+9lbfeeivvvfdehgwZktmzZ+fkk0/OSy+9lAkTJmTMmDEZNmxYko/vtTJ06NCMGjUq9913X1544YX8+Mc/Tq9evTJo0KAmrRUAANq6ss5cWW+99fLss89mr732aup6AAAAWryl0RPdfffd+eijj3LPPffknnvuabBu8ODBOfvss3PllVdm5MiRGTx4cFZaaaWMGDEigwcPrh939NFHZ/78+TnllFMyZ86c9O/fP6NHj3YpZwAAaGJlhStHH310hg0bli233DI77bRTKioqmrouAACAFmtp9ETDhw/P8OHDP3PMhhtumJtuummx6ysrK3P88cfn+OOPX+J6AACAxSsrXLnqqqvyxS9+Mcccc0w6dOiQbt26LdRMVFRU5N57722SIgEAAFoSPREAALRtZYUrkyZNSqFQyMorr1y/rFgsNhjz6ccAAACthZ4IAADatrLClfvvv7+p6wAAAFhu6IkAAKBtKzTFk8ybNy91dXVN8VQAAADLHT0RAAC0LWWHK++++25++ctfZuutt87GG2+cxx9/PBMnTszw4cMzefLkpqwRAACgxdETAQBA21VWuPLuu+9m7733ztixY9OxY8f6awnPnDkzDz74YPbbb7+8+uqrTVooAABAS6EnAgCAtq2scOXiiy/O66+/nquvvjo33XRTfSOxww475PLLL88HH3yQSy65pEkLBQAAaCn0RAAA0LaVFa7cf//9+e53v5stt9wyFRUVDdZ9/etfz957753HH3+8SQoEAABoafREAADQtpUVrkyfPj39+vVb7Pq+ffvmrbfeKrsoAACAlkxPBAAAbVtZ4Ur37t3z+uuvL3b9pEmT0q1bt7KLAgAAaMn0RAAA0LaVFa58/etfz7hx4/Laa68ttO5vf/tbbr755my99dZLXBwAAEBLpCcCAIC2rV05Gx155JF54IEHMnjw4Gy22WapqKjIuHHjMmbMmDz00EPp3LlzDj/88KauFQAAoEXQEwEAQNtW1pkrPXv2zLhx47LJJpvkL3/5S4rFYu6+++48+OCD2XjjjXPdddeld+/eTV0rAABAi6AnAgCAtq2sM1eSpHfv3rn88svz3nvv5ZVXXkldXV169+6d7t27N2V9AAAALZKeCAAA2q6yw5UFunTpkg022KApagEAAFju6IkAAKDtaVS4cuKJJ+Z73/teNtpoo/rHn6eioiJnnnnmklUHAADQAuiJAACAT2pUuHLLLbdkq622qm8kbrnlls/dRiMBAAC0FnoiAADgkxoVrtx3331ZccUVGzwGAABoK/REAADAJzUqXFl11VUX+XjWrFnp3LlzCoVCkuSf//xnVlpppXTt2rVpqwQAAGhGeiIAAOCTCuVueMEFF2SbbbbJ1KlT65ddccUV2XrrrXPVVVc1SXEAAAAtlZ4IAADarkadufJpN998c377299ms802S/v27euX77HHHvnPf/6T8847LyuvvHK++c1vNlmhAAAALYWeCAAA2rayzlwZO3Zsvva1r+WGG27IyiuvXL98q622ylVXXZUtt9wyV199dZMVCQAA0JLoiQAAoG0rK1yZMmVKdtppp8WuHzRoUF5++eWyiwIAAGjJ9EQAANC2lRWudOzYMW+99dZi17/zzjuprKwsuygAAICWTE8EAABtW1nhymabbZaxY8cuspl4++23M27cuGy66aZLXBwAAEBLpCcCAIC2rawb2h966KHZd9998+1vfzu777571lprrVRUVORf//pXbr/99rz77rs5/PDDm7pWAACAFkFPBAAAbVtZ4coGG2yQSy65JL/4xS9yzTXXNFjXq1ev/M///E823HDDpqgPAACgxdETAQBA21ZWuJIk22yzTe6///4899xzee211zJ//vz07t076623nmsLAwAArZ6eCAAA2q6yw5UF1l133ay77rpNUQsAAMByR08EAABtT6PClYsvvjg77bRTampq6h9/noqKihxxxBFLVh0AAEALoCcCAAA+qdHhyhprrKGRAAAA2iQ9EQAA8EmNCldGjx6dr3zlK/WPr7322qVWEAAAQEujJwIAAD6pUeHKSSedlGOPPTa77757kuSNN97I5ptvnt69ey/V4gAAAFoCPREAAPBJhcYMevvttzN79uz6xyeeeGKeeuqppVUTAABAi6InAgAAPqlRZ66sssoqueSSS/Laa69lhRVWSLFYzJ/+9Ke88sori93G9YUBAIDWQk8EAAB8UqPClWOOOSYnnHBCrr766iQfNwl/+tOf8qc//Wmx22gkAACA1kJPBAAAfFKjwpVBgwZlwIABeeWVVzJv3rwccMABGT58eLbaaqulXR8AAECz0xMBAACf1KhwZYcddmhw88ZVVlklq6yySrbYYoulWhwAAEBLoCcCAAA+qawb2r/xxhvp2LHjUisKAACgJdETAQAAn1TWDe2T5J577smUKVMWu43rCwMAAK2FnggAAPgkN7QHAAD4HHoiAADgkxoVrnzzm99080YAAKDN0hMBAACf1KhwJUm6deuWbt26JUn69++fr371q27eCAAAtBl6IgAAYIFGhyufdN1119X/ffLkyXn99dez3nrrpWPHjikUCqmqqmqyAgEAAFoaPREAALRthXI3fOqpp7LbbrvlW9/6Vg455JC88MIL+dvf/pbtttsud911V1PWCAAA0OLoiQAAoO0qK1z55z//mYMOOij/+c9/8u1vf7t+eceOHVNbW5vjjjsuTzzxRJMVCQAA0JLoiQAAoG0rK1z5zW9+k06dOuWOO+7ICSeckGKxmCTZZJNNctttt2WllVbKFVdc0aSFAgAAtBR6IgAAaNvKClf++te/5nvf+166d++eioqKBut69uyZvffeO88991yTFAgAANDS6IkAAKBtKytcef/999OzZ8/Frv/iF7+YWbNmlV0UAABAS6YnAgCAtq2scKV37955+umnF7v+sccey6qrrlp2UQAAAC2ZnggAANq2ssKVXXfdNbfcckv+9Kc/1S+rqKhIXV1dLr/88txzzz3Zeeedm6xIAACAlkRPBAAAbVu7cjY65JBD8n//93/50Y9+lOrq6lRUVOQXv/hF3n333cycOTP9+vXLsGHDmrpWAACAFkFPBAAAbVtZZ65UVVXlmmuuyU9+8pOsssoq6dChQ/7973+ne/fuOeywwzJ27Nh07NixqWsFAABoEfREAADQtpV15kqSfOELX8gPf/jD/PCHP2zKegAAAJYLeiIAAGi7yg5XkmT27Nl5+OGH89prr6WqqiqrrLJKtt5663To0KGp6qOVKxQqUihUNGpsZeXHJ1pVVDRuPAAALG16IgAAaJvKDlfuvvvu/PznP8+sWbNSLBaTfPxL7xVWWCG//OUv861vfavJiqR1KhQq0rVrp/rQpLG6dOmQd9/9IHV1xaVUGQAAfD49EQAAtF1lhSt///vf85Of/CRdunTJ0UcfnS9/+cupq6vLpEmTcv3112fEiBHp3bt3Ntxww6aul1akUKhIZWUho254Mq+9+V6jtunds0uO22+zFAoVwhUAAJqNnggAANq2ssKVSy+9NF27ds0f/vCHdO/evX75TjvtlH322Se77757rrzyylx00UVNViit12tvvpeXX5/Z3GUAAECj6YkAAKBtK+16TP+///f//l/23nvvBk3EAt27d8/ee++dJ598comLAwAAaIn0RAAA0LaVFa588MEHi2wiFlhxxRXz3nuNu8zTJ82YMSPHH398BgwYkE022SSHHnpoXnrppfr1zz//fIYOHZqNN9442223XUaPHl1O+QAAAEtkafVEAADA8qGscKV379557LHHFrv+scceyyqrrFLy8x522GF59dVXc8UVV+T3v/99OnTokAMPPDAffvhh3nnnnRx00EFZc801M378+Bx11FG58MILM378+HJeAgAAQNmWVk8EAAAsH8oKV3bdddfcc889ufjiizNv3rz65fPmzcvFF1+ce++9N9/61rdKes533nknvXv3zumnn54NNtggffv2zeGHH5633nor//znP3PzzTenqqoqp556avr27ZshQ4bkwAMPzBVXXFHOSwAAACjb0uiJAACA5UdZN7Q/5JBD8uc//zkXX3xxrrrqqqy++uqpqKjIlClT8sEHH2TdddfNoYceWtJzduvWLeeff3794//85z8ZPXp0evXqlbXXXju/+c1v0r9//7Rr99+SBwwYkN/+9reZMWPGZ56SDwAA0JSWRk8EAAAsP8oKV6qqqnLttddm9OjR+d///d+88sorKRaLWX311bPzzjvn4IMPTocOHcou6mc/+1n9mSqXXnppOnXqlGnTpqWmpqbBuB49eiRJ3njjjSUKV9q1K+sEHpZQZWX57/uSbEvbseA4cby0XeXOfaFQ4f8NNIqfM5TKMdN6LO2eCAAAaNnKCleSpEOHDjniiCNyxBFHNGU9SZIDDjgge++9d2688cYcccQRGTt2bObMmZOqqqoG49q3b58kmTt3btn7KhQq0q3bCktUL8tedXXH5i6B5YjjhVJ17uyXYZTGzxlK5ZhpHZZmTwQAALRsJYcrzz77bNZbb72Flt93332pqKjIwIEDl7iotddeO0ly+umn56mnnsr111+fDh06NLiWcfLfUKVTp05l76uurphZsz4ov1jKVllZKPsXC7NmfZja2romrojWZsEx5nhpu8r9OTN79px89FHtUqiI1sbPGUrV3MdMdXVHZ800gWXREwEAAC1bo8OVt99+O0cffXT+9re/5bHHHkt1dXWD9ddff30ee+yxbLTRRrnwwgvTs2fPkgqZMWNGHn300Xzzm99MZWVlkqRQKKRv376ZPn16evXqlenTpzfYZsHjUvf1afPn+2XI8qa2ts680WiOF0pVV1d0zFASP2colWNm+bS0eyIAAGD50aivrX3wwQc54IADMnHixPTv3z8ffvjhQmP222+/bLXVVnnqqafygx/8oORLdU2fPj0/+clP8te//rV+2UcffZTnnnsuffv2Tf/+/fPkk0+mtva/3yR+9NFH06dPHzezBwAAlqpl0RMBAADLj0aFK2PGjMk///nP/PKXv8yYMWMW+Q2sHXfcMaNHj86xxx6bl19+Odddd11JhfTr1y9bb711TjvttEycODGTJk3KCSeckFmzZuXAAw/MkCFDMnv27Jx88sl56aWXMmHChIwZMybDhg0raT8AAAClWhY9EQAAsPxoVLhy9913Z9ttt813v/vdzx176KGHZtNNN80f//jHkgqpqKjIr3/96wwYMCDHHHNM9tprr8ycOTM33HBDVllllXTv3j1XXnllJk+enMGDB+fiiy/OiBEjMnjw4JL2AwAAUKpl0RMBAADLj0bdc2XKlCnZY489Gv2k2223XS699NKSi+nSpUtOPfXUnHrqqYtcv+GGG+amm24q+XkBAACWxLLqiQAAgOVDo85cKRQK6dChQ6OftGvXrqmoqCi7KAAAgJZETwQAAHxSo8KVVVZZJf/6178a/aQvvfTSIq9BDAAAsDzSEwEAAJ/UqHBlm222yR/+8Ie8//77nzt21qxZue2227LJJpsscXEAAAAtgZ4IAAD4pEaFK9/73vcyd+7cDBs2LO+8885ix82YMSNHHHFEZs2alf3226/JigQAAGhOeiIAAOCTGnVD+9VXXz0nn3xyfvazn2WHHXbIt771rWy66abp0aNHamtr89Zbb+XJJ5/Mn/70p7z//vv56U9/mvXWW29p1w4AALBM6IkAAIBPalS4kiR77bVXevTokZ///Of5/e9/n/HjxzdYXywWs9pqq+W8887LwIEDm7xQAACA5rSse6JLLrkkjz76aK677rr6ZSeeeGImTJjQYFzPnj3zl7/8JUlSV1eXiy++OL/73e8ya9asbLbZZvnFL36RNdZYY4nrAQAA/qvR4UqSbLvttnnwwQfz2GOP5e9//3umT5+eysrK9OzZM1tssUU23HDDpVUnAABAs1tWPdE111yTiy66KP3792+w/MUXX8zw4cMzdOjQ+mWVlZX1f7/kkksybty4nHXWWenZs2fOO++8HHLIIbnjjjtSVVXVJLUBAAAlhitJUlFRkS233DJbbrnl0qgHAACgRVuaPdGbb76Zk08+OU8++WT69OnTYF1tbW1eeumlHH744VlppZUW2nbevHm56qqrcvzxx2fbbbdNklxwwQXZZpttcs8992SXXXZp8noBAKCtatQN7QEAAFj6nn322Xzxi1/Mbbfdlo022qjBuldeeSVz585N3759F7ntCy+8kPfffz8DBgyoX1ZdXZ111103TzzxxFKtGwAA2pqSz1wBAABg6Rg4cOBi79cyadKkVFRUZMyYMfnLX/6SQqGQbbfdNsccc0y6dOmSadOmJUlWXnnlBtv16NEj//73v5eornbtlv338iorCw3+y/LPnLYu5rN1MZ/LvyWZO/Pesvn32XIJVwAAAJYD//znP1MoFLLqqqvmsssuy5QpU3LOOedk0qRJGTNmTD788MMkWejeKu3bt8/MmTPL3m+hUJFu3VZYotqXRHV1x2bbN0uHOW1dzGfrYj7bJvO+fDBPLY9wBQAAYDlw1FFH5cADD0x1dXWSpKamJiuttFL23nvvPP300+nQoUOSj++9suDvSTJ37tx07Fh+M15XV8ysWR8sWfFlqKwspLq6Y2bN+jC1tXXLfP80PXPaupjP1sV8Lv8WzGE5zHvL5t/nsldd3bFRZwo1Kly5+uqr8/Wvf32x1/YFAABozVpCT1RRUVEfrCxQU1OTJJk2bVr95cCmT5+e1VdfvX7M9OnT069fvyXa9/z5zdfI19bWNev+aXrmtHUxn62L+WybzPvywTy1PI26UNtFF12Up556qv7xDjvskPvuu29p1QQAANCitISe6Cc/+UkOPvjgBsuefvrpJMnaa6+dfv36pXPnznn88cfr18+aNSvPPfdcNt9882VaKwAAtHaNClcKhUIeffTRvP/++0mS119/vf56vgAAAK1dS+iJdt111zzyyCO59NJLM3Xq1Pz5z3/OSSedlF133TV9+/ZNVVVVhg4dmlGjRuW+++7LCy+8kB//+Mfp1atXBg0atExrBQCA1q5RlwXbZpttcscdd+TOO+9M8vHp6Mcff3yOP/74xW5TUVGR5557rmmqBAAAaEYtoSfafvvtc+GFF+ayyy7LZZddli5dumS33XbLMcccUz/m6KOPzvz583PKKadkzpw56d+/f0aPHr3QTe4BAIAl06hw5YwzzsjKK6+cSZMmZd68eZk4cWL69OmT7t27L+36AAAAml1z9ERnn332Qst23nnn7LzzzovdprKy8nNDHwAAYMk1Klzp3LlzTjjhhPrH/fr1y2GHHZbddtttqRUGAADQUuiJAACAT2pUuPJp1157bfr27dvUtQAAACwX9EQAANC2lRWubLHFFkmSW2+9NXfddVdee+21VFVVZeWVV843vvGNfPvb327SIgEAAFoSPREAALRtZYUrxWIxRx99dO69994Ui8V06dIldXV1ef755/PAAw/kf//3f3PJJZc0da0AAAAtgp4IAADatkI5G11//fW55557sttuu+XPf/5znnjiiTz55JN54IEH8u1vfzsPPPBAbrzxxqauFQAAoEXQEwEAQNtWVrgyfvz4bLHFFjn33HPTs2fP+uUrr7xyzjnnnGyxxRYZP358kxUJAADQkuiJAACgbSsrXJk8eXIGDRq02PU77rhj/vWvf5VdFAAAQEumJwIAgLatrHClXbt2+eCDDxa7/oMPPkhFRUXZRQEAALRkeiIAAGjbygpX1l9//UyYMCFz585daN2HH36YCRMmZN11113i4gAAAFoiPREAALRtZYUrP/jBDzJlypR85zvfyR133JEXXnghL7zwQm6//fbstddemTp1ag466KCmrhUAAKBF0BMBAEDb1q6cjbbddtuMGDEi559/fo4//vgG6wqFQn784x9n4MCBTVIgAABAS6MnAgCAtq2scCX5+JtagwYNyr333pupU6emWCxm9dVXz6BBg7Laaqs1ZY0AAAAtjp4IAADarrLDlSRZbbXVnOoOAAC0WXoiAABom8q65woAAAAAAEBbJVwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEpQVrtx444155ZVXmrgUAACA5YOeCAAA2raywpVRo0bl9ttvb+paAAAAlgt6IgAAaNvKClcKhUK6devW1LUAAAAsF/REAADQtpUVrhx88MG5/PLL89BDD6Wurq6pawIAAGjR9EQAANC2tStno6eeeiqzZ8/OoYcemqqqqnTr1i2VlZUNxlRUVOTee+9tkiIBAABaEj0RAAC0bWWFK5MmTUrXrl3TtWvX+mXFYrHBmE8/BgAAaC30RAAA0LaVFa7cf//9TV0HAADAckNPBAAAbVtZ91z5tHnz5rnOMAAA0GbpiQAAoG0pO1x5991388tf/jJbb711Nt544zz++OOZOHFihg8fnsmTJzdljQAAAC2OnggAANqussKVd999N3vvvXfGjh2bjh071l9LeObMmXnwwQez33775dVXX23SQgEAAFoKPREAALRtZYUrF198cV5//fVcffXVuemmm+obiR122CGXX355Pvjgg1xyySVNWigAAEBLoScCAIC2raxw5f777893v/vdbLnllqmoqGiw7utf/3r23nvvPP74401SIAAAQEujJwIAgLatrHBl+vTp6dev32LX9+3bN2+99VbZRQEAALRkeiIAAGjbygpXunfvntdff32x6ydNmpRu3bqVXRQAAEBLpicCAIC2raxw5etf/3rGjRuX1157baF1f/vb33LzzTdn6623XuLiAAAAWiI9EQAAtG3tytnoyCOPzAMPPJDBgwdns802S0VFRcaNG5cxY8bkoYceSufOnXP44Yc3da0AAAAtgp4IAADatrLOXOnZs2fGjRuXTTbZJH/5y19SLBZz991358EHH8zGG2+c6667Lr17927qWgEAAFoEPREAALRtZZ25kiS9e/fO5Zdfnvfeey+vvPJK6urq0rt373Tv3r0p6wMAAGiR9EQAANB2lXXmyifNnz8/xWIx7dq1S/v27ZuiJgAAgOWGnggAANqess9cefrpp3PuuefmySefTLFYTJIUCoV87Wtfy8knn5w11lijyYoEAABoafREAADQdpUVrjz77LPZf//9M2/evGyzzTZZc801U1dXl3/961956KGH8r3vfS8333xzVltttaauFwAAoNnpiQAAoG0rK1y56KKLUlVVlXHjxqVfv34N1j311FM56KCDcv755+eCCy5okiIBAABaEj0RAAC0bWXdc2XixInZf//9F2oikmTjjTfO0KFD88gjjyxxcQAAAC2RnggAANq2ssKVioqKVFdXL3Z97969M3/+/LKLAgAAaMn0RAAA0LaVFa5su+22+cMf/pB58+Ytcv1dd92VrbfeeokKAwAAaKn0RAAA0LY16p4rTzzxRIPHO+ywQ0455ZTst99+OfTQQ7PWWmulUChk6tSpuf766/PPf/4zv/71r5dGvQAAAMucnggAAPikRoUr+++/fyoqKhosKxaLefrpp3P00UcvtDxJvv/97+f5559vojIBAACaj54IAAD4pEaFK0ccccRCjQQAAEBboScCAAA+qVHhylFHHbW06wAAAGix9EQAAMAnlXVDewAAAAAAgLaqUWeufNrs2bPzq1/9Kg8++GDefPPN+msKf1JFRUWee+65JS4QAACgpdETAQBA21ZWuHLuuefm5ptvTo8ePbLxxhunsrKyqesCAABosfREAADQtpUVrjzwwAPZcccdc9FFF6VQcGUxAACgbdETAQBA21ZWFzB79uxsu+22mggAAKBN0hMBAEDbVlYnsOmmm+bZZ59t6loAAACWC3oiAABo28oKV44//vjcddddGTNmTN56662mrgkAAKBF0xMBAEDbVtY9V1ZdddWss846Ofvss3P22WcvckxFRUWee+65JSoOAACgJdITAQBA21ZWuDJy5Mj89a9/zYorrpg11lgj7dqV9TQAAADLJT0RAAC0bWV1AA888EB22GGHXHjhhZoIAACgzdETAQBA21bWPVfmzZuX7bbbThMBAAC0SXoiAABo28oKVzbZZJM8++yzTV0LAADAckFPBAAAbVtZ4cpPfvKT3Hnnnbnqqqvy5ptvpra2tqnrAgAAaLH0RAAA0LaVdQ77T3/60xQKhZx33nk577zzFjmmoqIizz333BIVBwAA0BLpiQAAoG0rK1zp2rVrunbt2sSlAAAALB/0RAAA0LaVFa5cd911TV0HAADAckNPBAAAbVtZ91wBAAAAAABoq8o6c+XEE0/83DEVFRU588wzy3l6AACAFk1PBAAAbVtZ4cott9yy2HUVFRWpqqpK+/btS24k3n333Zx//vl58MEHM3v27Kyzzjr5yU9+ks033zxJ8vzzz2fkyJF55pln0rVr1+y///45+OCDy3kJAAAAZVtaPREAALB8KCtcue+++xZaVltbm7feeiu33HJLHnvssYwdO7bk5z322GMzY8aMnH/++VlxxRUzduzYHHzwwZkwYUJWXHHFHHTQQdlxxx1z2mmn5amnnsppp52Wrl27ZsiQIeW8DAAAgLIsrZ4IAABYPpQVrqy66qqLXL766qtns802y/Dhw/OrX/0q55xzTqOfc8qUKXnkkUdy4403ZtNNN02SnHzyyfnLX/6SO+64Ix06dEhVVVVOPfXUtGvXLn379s2UKVNyxRVXCFcAAIBlamn0RAAAwPJjqdzQfuDAgfnzn/9c0jbdunXL5ZdfnvXXX79+WUVFRYrFYmbOnJmJEyemf//+adfuv3nQgAEDMnny5MyYMaPJagcAAFhS5fREAADA8mOphCtvvfVW5syZU9I21dXV2XbbbVNVVVW/7K677srUqVOz9dZbZ9q0aenVq1eDbXr06JEkeeONN5a8aAAAgCZSTk8EAAAsP8q6LNjiwow5c+bkmWeeyZgxY7LeeustUWFPPvlkTjrppOywww4ZOHBgzjrrrAbBS5K0b98+STJ37twl2le7dkslY+JzVFaW/74vyba0HQuOE8dL21Xu3BcKFf7fQKP4OUOpHDOtx7LoiQAAgJarrHBl4MCBqaioWOz6QqGQI488suyi7r333hx33HHZaKONcv755ydJOnTokHnz5jUYtyBU6dSpU9n7KhQq0q3bCmVvT/Ooru7Y3CWwHHG8UKrOnTs0dwksZ/ycoVSOmeXf0u6JAACAlq2scGWPPfZYZCNRWVmZHj16ZPDgwVlttdXKKuj666/PyJEjM2jQoIwaNar+bJVevXpl+vTpDcYueNyzZ8+y9pUkdXXFzJr1QdnbU77KykLZv1iYNevD1NbWNXFFtDYLjjHHS9tV7s+Z2bPn5KOPapdCRbQ2fs5QquY+ZqqrOzprpokszZ4IAABo+coKV84+++ymriNJMnbs2Jx++unZf//9c9JJJ6VQ+G/j179//4wbNy61tbWprKxMkjz66KPp06dPunfvvkT7nT/fL0OWN7W1deaNRnO8UKq6uqJjhpL4OUOpHDPLv6XVEwEAAMuHFvO1tcmTJ+fMM8/MoEGDMmzYsMyYMSNvvfVW3nrrrbz33nsZMmRIZs+enZNPPjkvvfRSJkyYkDFjxmTYsGHNXToAAAAAANCGNOrMlYsvvrisJy/lGsN33313Pvroo9xzzz255557GqwbPHhwzj777Fx55ZUZOXJkBg8enJVWWikjRozI4MGDy6oNAACgsZZFTwQAACw/mjxc+eR1h0tpJIYPH57hw4d/5pgNN9wwN910U6OfEwAAoCksi54IAABYfjQqXLn22ms/d0yxWMwNN9yQP/3pT0mSbbfddskqAwAAaCGaoye65JJL8uijj+a6666rX/b8889n5MiReeaZZ9K1a9fsv//+Ofjgg+vX19XV5eKLL87vfve7zJo1K5tttll+8YtfZI011liiWgAAgIYaFa5sscUWn7n+jTfeyEknnZTHH388Xbp0yU9/+tMMGTKkSQoEAABobsu6J7rmmmty0UUXpX///vXL3nnnnRx00EHZcccdc9ppp+Wpp57Kaaedlq5du9bv65JLLsm4ceNy1llnpWfPnjnvvPNyyCGH5I477khVVVXZ9QAAAA01Klz5LOPGjct5552X999/P1tvvXVGjhyZnj17NkVtAAAALV5T9kRvvvlmTj755Dz55JPp06dPg3U333xzqqqqcuqpp6Zdu3bp27dvpkyZkiuuuCJDhgzJvHnzctVVV+X444+vP2vmggsuyDbbbJN77rknu+yyyxK/VgAA4GOFcjecNm1aDj744Jx22mmpqKjI6aefniuvvFKwAgAAtAlLoyd69tln88UvfjG33XZbNtpoowbrJk6cmP79+6ddu/9+R27AgAGZPHlyZsyYkRdeeCHvv/9+BgwYUL++uro66667bp544omyawIAABZW1pkrv/vd73LOOedk9uzZ2WqrrTJy5MisvPLKTV0bAABAi7S0eqKBAwdm4MCBi1w3bdq01NTUNFjWo0ePJB9flmzatGlJslAdPXr0yL///e8lqqtdu7K/l1e2yspCg/+y/DOnrYv5bF3M5/JvSebOvLds/n22XCWFK2+++WZOOeWUPPzww+nYsWNOPfXUfO9731tatQEAALQozdkTzZkzZ6H7prRv3z5JMnfu3Hz44YdJssgxM2fOLHu/hUJFunVboeztl1R1dcdm2zdLhzltXcxn62I+2ybzvnwwTy1Po8OVW265JWeddVZmzZqVAQMGZOTIkVl11VWXZm0AAAAtRnP3RB06dMi8efMaLJs7d26SpFOnTunQoUOSZN68efV/XzCmY8fym/G6umJmzfqg7O3LVVlZSHV1x8ya9WFqa+uW+f5peua0dTGfrYv5XP4tmMNymPeWzb/PZa+6umOjzhRqVLgyfPjw/PnPf06SfOMb38i+++6bN954I2+88cZnbte/f//GPD0AAECL1hJ6ol69emX69OkNli143LNnz8yfP79+2eqrr95gTL9+/ZZo3/PnN18jX1tb16z7p+mZ09bFfLYu5rNtMu/LB/PU8jQqXHnwwQfr/3733Xfn7rvvbtSTP//882UVBQAA0JK0hJ6of//+GTduXGpra1NZWZkkefTRR9OnT5907949Xbp0SefOnfP444/XhyuzZs3Kc889l6FDhzZZHQAAQCPDlSOPPHJp1wEAANBitYSeaMiQIbnyyitz8skn54c//GH+8Y9/ZMyYMTnttNOSfHyvlaFDh2bUqFFZccUVs+qqq+a8885Lr169MmjQoGauHgAAWhfhCgAAwOdoCT1R9+7dc+WVV2bkyJEZPHhwVlpppYwYMSKDBw+uH3P00Udn/vz5OeWUUzJnzpz0798/o0ePXugm9wAAwJJp9A3tAQAAWHbOPvvshZZtuOGGuemmmxa7TWVlZY4//vgcf/zxS7M0AABo8z7/lvcAAAAAAADUE64AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlKBdcxcAAAAAAEBDhUJFCoWKRo2trPQdeljWhCsAAAAAAC1IoVCRrl07CU2gBROuAAAAAAC0IIVCRSorCxl1w5N57c33Pnf8pv165PvfWncZVAYsIFwBAAAAAGiBXnvzvbz8+szPHde7R+dlUA3wSc4rAwAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABK0K65CwCAlqZQqEi7do3//kFdXTF1dcWlWBEAAAAALYlwBQD+f127tE9dXTGdO3coabva2rq8++4HAhYAAACANkK4AgD/v84dv5BCoSKjbngyr735XqO26d2zS47bb7MUChXCFQAAAIA2QrgCAJ/y2pvv5eXXZzZ3GQAAAAC0UG5oDwAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlaNfcBQBAYxUKFSkUKho9vrLSdwgAAAAAaHrCFQCWC4VCRbp27SQwAQAAAKDZCVcAWC4UChWprCxk1A1P5rU332vUNpv265Hvf2vdpVwZAAAAAG2NcAWA5cprb76Xl1+f2aixvXt0XsrVAAAAANAWtdhrq1xyySXZf//9Gyx7/vnnM3To0Gy88cbZbrvtMnr06GaqDgAAAAAAaKtaZLhyzTXX5KKLLmqw7J133slBBx2UNddcM+PHj89RRx2VCy+8MOPHj2+mKgEAAAAAgLaoRV0W7M0338zJJ5+cJ598Mn369Gmw7uabb05VVVVOPfXUtGvXLn379s2UKVNyxRVXZMiQIc1UMQAAAAAA0Na0qDNXnn322Xzxi1/Mbbfdlo022qjBuokTJ6Z///5p1+6/edCAAQMyefLkzJgxY1mXCgAAAAAAtFEt6syVgQMHZuDAgYtcN23atNTU1DRY1qNHjyTJG2+8ke7duy/1+gAAAAAAWpPKytK+f19XV0xdXXEpVQPLjxYVrnyWOXPmpKqqqsGy9u3bJ0nmzp27RM/drl2LOoGnzSj1B3dTbUvbseA4cby0Di19Hlt6fSwdfs5QKscMAAAtRdcu7VNXV0x1dceStqutrcu7734gYKHNW27ClQ4dOmTevHkNli0IVTp16lT28xYKFenWbYUlqo1lr9Qf+rRtjheWBcdZ22b+KZVjhiXx+uuvL/KM/zPOOCN77bVXnn/++YwcOTLPPPNMunbtmv333z8HH3xwM1QKALRknTt+IYVCRUbd8GRee/O9Rm3Tu2eXHLffZikUKoQrtHnLTbjSq1evTJ8+vcGyBY979uxZ9vPW1RUza9YHS1Qb5amsLJT9i4VZsz5MbW1dE1dEa7PgGHO8tA5L8jNjWXCctU1+zlCq5j5mqqs7OmumFXjxxRfTvn373HvvvamoqKhf3qVLl7zzzjs56KCDsuOOO+a0007LU089ldNOOy1du3bNkCFDmrFqAKCleu3N9/Ly6zObuwxY7iw34Ur//v0zbty41NbWprKyMkny6KOPpk+fPkt8v5X58/0yZHlTW1tn3mg0xwvLguOsbTP/lMoxw5KYNGlS+vTpU38Pyk8aM2ZMqqqqcuqpp6Zdu3bp27dvpkyZkiuuuEK4AgAATWi5+drakCFDMnv27Jx88sl56aWXMmHChIwZMybDhg1r7tIAAACWmRdffDFrr732ItdNnDgx/fv3T7t2//0e3YABAzJ58uTMmDFjWZUIAACt3nITrnTv3j1XXnllJk+enMGDB+fiiy/OiBEjMnjw4OYuDQAAYJmZNGlSZsyYkX333TdbbbVV9tlnnzz00ENJkmnTpqVXr14Nxi84w+WNN95Y5rUCAEBr1WIvC3b22WcvtGzDDTfMTTfd1AzVAAAANL958+bllVdeSceOHTNixIh06tQpt912Ww455JBcffXVmTNnTqqqqhps0759+yTJ3Llzy95vu3bL/nt5C+4P5D5BrYc5bV3MZ+tiPpe+ioqKFAoVnz/w/1fK2ObgWFl2/PtsuVpsuAIAAEBDVVVVeeKJJ9KuXbv6EGX99dfPyy+/nNGjR6dDhw6ZN29eg20WhCqdOnUqa5+FQkW6dVthyQpfAtXVHZtt3ywd5rR1MZ+ti/lceurqii0+MCmFY2XZ8563PMIVAACA5ciiQpKampo8/PDD6dWrV6ZPn95g3YLHPXv2LGt/dXXFzJr1QVnbLonKykKqqztm1qwPU1tbt8z3T9Mzp62L+WxdzOfSteD9HXXDk3ntzfcatc2m/Xrk+99adylXVj7HyrLj3+eyV13dsVFnCglXAAAAlhMvvPBC9tlnn1xxxRXZfPPN65c/88wzWXvttfOVr3wl48aNS21tbSorK5Mkjz76aPr06ZPu3buXvd/585uvka+trWvW/dP0zGnrYj5bF/O5dL325nt5+fWZjRrbu0fnpVzNknGsLHve85bHhdoAAACWEzU1Nfnyl7+c0047LRMnTszLL7+cs846K0899VSGDx+eIUOGZPbs2Tn55JPz0ksvZcKECRkzZkyGDRvW3KUDAECr4swVAACA5UShUMhll12WUaNG5ZhjjsmsWbOy7rrr5uqrr84666yTJLnyyiszcuTIDB48OCuttFJGjBiRwYMHN3PlAADQughXAAAAliMrrrhizjzzzMWu33DDDXPTTTctw4oAAKDtcVkwAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKEG75i4AgOVfoVCRQqGipG3q6oqpqysupYqWvcrK0r6v0JJff6nz2ZJfCwAAAMDSIFwBYIkUChXp2rVTyeFCbW1d3n33g+X+l/Jdu7RPXV0x1dUdS9qupb7+cuazpb4WAAAAgKVFuALAEikUKlJZWcioG57Ma2++16htevfskuP22yyFQsVy/wv5zh2/kEKhotW8/lLnsyW/FgAAAIClRbgCQJN47c338vLrM5u7jGbT2l5/a3s9AAAAAE3JDe0BAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAAStCuuQsAYOkqFCpSKFQ0enxdXTF1dcWlWNF/VVY2PuMvZSwAAAAALE3CFYBWrFCoSNeunUoKJmpr6/Luux8s1YCla5f2qasrprq641LbBwAAAAAsLcIVgFasUKhIZWUho254Mq+9+d7nju/ds0uO22+zFAoVSzVc6dzxCykUKhpdV5Js2q9Hvv+tdZdaTQAAAADQWMIVgDbgtTffy8uvz2zuMhZSSl29e3ReytUAAAAAQOMIVwAAAACANqnU+5Qmy/ZepUDLJVwBAAAAANqccu5Tmiybe5UCLZ9wBQAAAABoc0q9T2my7O5VCrR8whUAAAAAoM1qqfcpBVq20s55AwAAAAAAaOOEKwAAAAAAACVwWTAAFlLKzfxKvfEf/1Xqe1dXV3RNXwAAAIAWQLgCQL2uXdqnrq6Y6uqOzV1Kq1bu+1xbW5d33/1AwAIAAADQzIQrANTr3PELKRQqMuqGJ/Pam+81aptN+/XI97+17lKurHUp533u3bNLjttvsxQKFcIVAACAZuaKD4BwBYCFvPbme3n59ZmNGtu7R+elXE3rVcr7DAAAQPNzxQdgAeEKAAAAAEAjuOIDsIBwBQAAAACgBK74ALjgHwAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJTAPVcAmkChUJFCoaKkberqiqmrKy6liuBjpR6blZW+dwEAAADweYQrAEuoUKhI166dSv6ldG1tXd599wMBC0tNuccmAAAAAJ9NuAKwhAqFilRWFjLqhifz2pvvNWqb3j275Lj9NkuhUCFcYakp59jctF+PfP9b6y7lygDg/2vvzuOqKvc9jn/ZKKgBDiVOqJm1QcUZ58yk0JuaJnSyUsqbKVqiHk5imqfhpVkOV6/aNSv0OIU4ICoOxxy6mWYUno5magOaiqmUUziBwrp/ePeuLaDsLbAHP+/Xy9dL1n7WWr9nPXtv1o9nPc8DAAAAuDc6VwCghGSeylbG8fPODgMowJ73ZlCgXylHAwAAAAAA4P7oXAEAAAAAAADgcuxdQ5K1TQGUJTpXAAAAAAAAALgUR9aQZG1TAGWJzhUAAAAAAAAALsXeNSRZ2xRAWaNzBQAAAAAAAIBLYn1TAK6q+OPqAAAAAAAAAAAAwMgVAAAAwFH2LrJqz5zhAAAAsJ8991vcmznO3muXn28wXRs8Dp0rAAAAgAMcWWRVup5YenkVv0MGAAAAt1bF31f5+YYCAio6OxSP5uh1zsvL17lzl+hggUehcwUAAABwgL2LrEq2C60CAACg5PhVLC+Tycuue7NWIYF6rkfjUo7Mszhynf98D0znCjwJnSsAAADAbWCRVQAAANdhz71ZUKBfKUfjubgHBljQHgAAAAAAAAAAwC50rgAAAAAAAAAAANiBzhUAAAAAAAAAAAA7sOYKAAAAAAAAgGIzmbxkMnnZtU9+vsFi5gA8Cp0rAAAAAAAAAIrFZPJSlSqV5O1t34Q4eXn5OnfuEh0sADwGnSsAAAAAAACAi3HV0SEmk5e8vU2a9vFuZZ7KLtY+QTX89Ur/1jKZvOhcAeAx6FwBUICr3sABAAAAAHAncIfRIZmnspVx/HypnwcAXBWdKwBsuMMNHAAAAAAAnqwsR4dYziWpWH8LsPfvBQDgqehcAWCD4b0AAAAAALiG0h4dcuMDlgEBFUvtXADgaehcAVAohvcCAAAAAODZHHnAslVIoJ7r0biUIwMA10fnCgAAAAAAAOAh7Jm2y1LWngcsgwL9HIrrz+cr6bIA4Ax0rgAAAAAAAABuroq/r/LzDZec2suVYwMAR9G5AgAAAAAAALg5v4rlZTJ5ueQUX64cGwA4is4VAAAAAAAAwEOU1RRfjnDl2ADAXkxeCAAAAAAAAAAAYAdGrjiZyeQlk8nLrn3y8w3l5xulFBEcRVu6Li8vL5UrV/y+ZNoFrsxVF4C091yOfM4c+Z51hCOxuWr9y+L7zFXjAgAAAACgNNG54kQmk5eqVKlk9x9k8vLyde7cJf4o4UJoS9fm71/BrrahXeCKXHUBSEfjsvdz5vD3bL4hbzv/8G9PbF5eXq5d/1L+PnPVuAAAAAAAKG10rjiRyeQlb2+TXYt5BdXw1yv9W8tk8uIPEi6EtnRt9rQN7QJX5aoLQDoSlyOfM0e+Zy31L83YLKM2XLH+ZfF95qpxAQDgKcpqhKgj5zGZrj9cYc9DFq46qrasMHoXKF2MqkdZo3PFBdizmBdcG23pumgbeApXXQCyrD5jjtS/LGJzxfqXJVeNCwAAd1ZWI0RvZ4SwJLtG8LrsqFpHRjuX8ghpAPZhVD2cgc4VAAAAAIDLsnf9PImnUOEZbmeEaPny3srLyy/WPt7eJpccISzZ/xR6WdWlrOoPeJrSXKuyrL4z7Y0Lns3tOlfy8/P13nvvacWKFfr999/VunVrvfHGG6pfv76zQwMAAAAAp/O0nMne9fMknkKFZ7FnhOjtrNPnaiOEHX0KXSr9upTlCGnAE5TVWp1S2Xxncp8BC7frXJkzZ46SkpL0zjvvqEaNGpo6daoGDx6sdevWycfHx9nhAQAAAIBTeVrOxNpOcFWuOLe/q67T54jbWXPPlRW3s8iRTiXAVZXVWp2eEldZcsXfZe7ErTpXcnNzNX/+fI0ePVpdunSRJM2YMUOdO3fW5s2b1bNnTydHCAAAAADO46k5U1k8Hc4fFzxHWSxo7uXl5fCoquzsKzKMW79vbueP6666Tp9kf+eCK9fFHrczqgjwFK462stV47L8PrN8H97q+9Pe+5KyXKfGU++z3Kpz5eDBg7p48aLat29v3RYQEKDGjRvr66+/dttEAQAAAABKAjmTY1gE13OU5YLmkux62rlRg2oa3KepqlSpZPd5PMGd3rlg7xPy7jAKB0DpKez32a2+P+29L7mddWrsXT/LU++zvIziPC7hIj755BPFxsZqz549qlChgnX7yJEjdeXKFX3wwQd2H9MwnNcD5uUlmUwmncvO0bViLppUztv0/zckxV9kyZV5Uv2pi+vWRVKx6+NoXVz5mtkTm6+Pt/wr+dhVF0/ax1XjcuV9HDlHWX3Oyia260/fuGL9y+p7xlXjKiu3U39n3IWbTF7y8irdp7nhXJ6UM1nyJan493LS7X3PXriUq7xi1tXb5CW/Sj4e831WVkwmU5n8brKnLcuXM6lShfIO7ePIvUlxz3M753Dlfe70+pObcM2of+n9PnfNnNFx9vw+c/S+pKzyudu5z3LlvMmtRq5cvnxZkgrME+zr66vz5x0buuXl5SVvb+cmmFX8fe3ex5JkeAJPqj91cc26SPbXx5G6uPI1szc2R+riSfu4alyuvE9Zvf/Lqv72xubK9S+L7xlXjaus3On1h2shZ/qDI58zv0r2r0nD59l+ZXHNHGlLR/Zx5L1p73lc9f7P0X3u9PqTm3DNSnsfV43L0X3KIjdz5ft5e78zXTnP9MT7LNeO7gaWJ69yc3Nttufk5KhixTtzWCkAAAAAWJAzAQAAAGXDrTpXatWqJUnKysqy2Z6VlaWaNWs6IyQAAAAAcBnkTAAAAEDZcKvOlZCQEPn5+SktLc267ffff9f+/fsVFhbmxMgAAAAAwPnImQAAAICy4VZrrvj4+GjAgAGaNm2aqlWrpjp16mjq1KmqWbOmIiIinB0eAAAAADgVORMAAABQNtyqc0WSRowYoWvXrmn8+PG6cuWK2rRpo3nz5hVYsBEAAAAA7kTkTAAAAEDp8zIMw3B2EAAAAAAAAAAAAO7CrdZcAQAAAAAAAAAAcDY6VwAAAAAAAAAAAOxA5woAAAAAAAAAAIAd6FwBAAAAAAAAAACwA50rAAAAAAAAAAAAdqBzBQAAAAAAAAAAwA50rgAAAAAAAAAAANiBzhW4nRMnTiguLk6dOnVSmzZtNGjQIP3444/ODgtu4rXXXtOrr77q7DDgYvLz8zVr1ix17txZzZs31wsvvKAjR444Oyy4kTlz5ig6OtrZYcCFnTt3Tq+//roeeughtWrVSs8884zS09OdHRbg8tLT09WoUSOlpaXZbN+1a5ciIyPVrFkzdevWTatXr3ZOgCiWo0ePatiwYQoLC1NYWJj++te/6uTJkzZlaFP3UZycnPZ0T0Xly7Sn+yC39RyF5ZgHDhzQgAED1KJFCz388MOaN2+ek6KDBZ0rcCu5ubkaMmSITp8+rQ8++ECJiYny9/fX888/rzNnzjg7PLiwvLw8TZ48WStXrnR2KHBBc+bMUVJSkiZOnKhly5bJy8tLgwcPVm5urrNDgxtYsGCBZs2a5eww4OLi4uK0Z88eTZ8+XStXrlSTJk00aNAgZWRkODs0wGVlZ2crPj5e+fn5NtszMjIUExOjLl26aPXq1erXr5/GjRunXbt2OSlS3ExOTo4GDhwoSVq6dKkWL16sX3/9VTExMTIMQxJt6k6Kk5PTnu7nZvky7eleyG09Q2E55tmzZ/Wf//mfuvfee5WcnKzY2FjNnDlTycnJTooSklTO2QEA9khPT9cPP/yg7du3q0aNGpKkKVOmqG3bttq2bZuefPJJJ0cIV5SRkaGxY8fq2LFjql27trPDgYvJzc3V/PnzNXr0aHXp0kWSNGPGDHXu3FmbN29Wz549nRwhXNWpU6f02muvaffu3WrQoIGzw4ELO3LkiHbu3KmlS5eqVatWkq4/Gbp9+3atW7dOI0eOdHKEgGt68803VbduXR0/ftxm+8KFCxUSEmL97Nx3333av3+/EhIS1KFDB2eEipv45Zdf1LRpU73xxhuqVq2aJGngwIF6+eWXdfbsWVWrVo02dSPFyclpT/dyq3yZ9nQf5Lbu72Y55vLly+Xj46M333xT5cqVU8OGDXXkyBF99NFHioqKclLEYOQK3MoDDzygDz/80HoTZ2EYhs6fP++kqODqvvrqKzVq1Ejr1q1TUFCQs8OBizl48KAuXryo9u3bW7cFBASocePG+vrrr50YGVzdd999p8qVK2vt2rVq3ry5s8OBC6tatao+/PBDhYaGWrd5eXlx/wLcxJo1a/TNN99o3LhxBV5LT0+3+b0tSe3bt9fu3butIyHgOho0aKCZM2daO1YyMzOVmJioJk2aqGrVqpJoU3dSnJyc9nQvt8qXaU/3QW7r/m6WY6anp6tNmzYqV+6PsRLt27fX4cOHdfr06bIOFf+PkStwK9WrV7f2vlssWrRIOTk56tSpk5Oigqt75plnnB0CXJhlvu9atWrZbA8MDNSJEyecERLcRHh4uMLDw50dBtxAQEBAgfuXjRs36ujRo3rwwQedFBXgujIzM/X2229rzpw5uuuuuwq8fvLkSdWsWdNmW2BgoC5fvmwdCQHX9MILL2jnzp2qXLmyFi5cKC8vL0m0qTspTk5Oe7qXW+XLtKf7ILd1fzfLMU+ePCmz2WyzLTAwUNL1UaJ33313qceHguhcgUvJzMzUI488UuTrO3bsUPXq1a0/f/LJJ5oxY4aio6MVEhJSFiHCxdj7ngFudPnyZUmSj4+PzXZfX1+eKAdQKnbv3q1x48bpkUceoYMOd5xb3btt375d8fHx6tevn8LCwpSZmVmgzJUrVwr83rb8zJzyZc+e+/HRo0dr5MiRev/99zVw4ECtXr1atWrVok1dSEnk5LSn6yiJfJn2dB/ktp6tsM+ir6+vpOvrm8E56FyBS6lRo4Y2bNhQ5Ot/fiJi6dKlmjBhgnr06KGxY8eWRXhwQfa8Z4DCVKhQQdL1xMDyf+n6zUnFihWdFRYAD7Vlyxa98sorat68uaZPn+7scIAyd6t7txUrVujSpUuKjY0tsoyvr2+BP+hZfuZ3d9mz5368UaNGkq6vAfDwww8rOTlZw4cPp01dSEnk5LSn6yiJfJn2dB/ktp6tQoUKBT6Llk6VSpUqOSMkiM4VuJjy5curYcOGtyw3bdo0ffTRR4qOjtZrr71mHU6OO09x3zNAUSxDprOyslSvXj3r9qysLEbEAShRS5Ys0dtvv62IiAhNmzatwJNnwJ3gVvduq1atUlZWltq1aydJ1vn8Bw8erLZt2yohIUG1atVSVlaWzX5ZWVmqVKmS/P39Sy94FOpWbXr8+HHt27dP3bt3t26rWLGigoKCrO1Im7qOksjJaU/XURL5Mu3pPshtPVvNmjUL/SxKKrAOFsoOnStwO1OnTlVCQoLi4+M1aNAgZ4cDwM2FhITIz89PaWlp1hvQ33//Xfv379eAAQOcHB0AT5GYmKgJEyYoOjpa48aNk8lkcnZIgEtavHixrl27Zv351KlTio6O1sSJE60dLmFhYfrqq69s9tu1a5datWrFZ8sFHThwQCNGjNDmzZtt7rUOHz6s3r17S6JN3c2tcnLa07PQnu6D3NaztWnTRklJScrLy5O3t7ek65/FBg0asN6KE/EtCLeSlpamhIQERUdHq3fv3vr111+t/y5evOjs8AC4IR8fHw0YMEDTpk3T1q1bdfDgQf31r39VzZo1FRER4ezwAHiAw4cPa9KkSYqIiFBMTIxOnz5tvX/Jzs52dniAS6lTp47q169v/Ve7dm1J15/ItDyVGR0drb1792ratGnKyMjQ/PnztWnTJr344ovODB1FeOihhxQcHKz4+Hh999132rdvn2JjY1W1alVFRUVJok3dSXFyctrTs9Ce7oPc1rNFRUXpwoULeu211/TTTz9p1apVWrhwoWJiYpwd2h2NkStwK+vWrZN0/Ym2xYsX27w2fPjwm87NDABFGTFihK5du6bx48frypUratOmjebNm8eUPQBKxKZNm3T16lVt3rxZmzdvtnmtb9++evfdd50UGeCeHnjgAc2ZM0dTp07VwoULFRQUpKlTp6pDhw7ODg2F8PHxUUJCgiZPnqxBgwYpNzdXDz74oN599135+flJok3dSXFyctrTs9Ce7oXc1nPdfffdSkhI0Ntvv62+ffuqevXqio+PV9++fZ0d2h3Ny7BMYgsAAAAAAAAAAIBbYlowAAAAAAAAAAAAO9C5AgAAAAAAAAAAYAc6VwAAAAAAAAAAAOxA5woAAAAAAAAAAIAd6FwBAAAAAAAAAACwA50rAAAAAAAAAAAAdqBzBQAAAAAAAAAAwA50rgBwa59++qliY2MVHh6u0NBQtWvXTi+++KK2bdtWZjHk5ubqjTfeUNu2bdWsWTNNnDix0G2vvvqqgoODlZmZadfxZ8+ereDgYKWlpZVSDWz9/PPPdpVPT09XfHy8IiIi1KxZM4WFhSk6OlqrV6+WYRg2ZR29Bu4qPDxcwcHBCg4OVlhYmCQpLS1NwcHBevXVV4vcLzMzU8HBwYqOji7w2o3tc2O50r7Gb7/9trVOZfm+BAAAQOkityp5t8qt3njjDQUHBys5Ofmm5TIzMxUSEqLnn3++2Oe25B2zZ88u9j4lydJGln8HDhyQdD1/CQ8Pv+m+ljzqRkeOHLH5OTo62qbcqlWrFBwcrFWrVpVADQrasmWLTZ2cdW0BuI5yzg4AABxx4cIFjRs3Tps2bVKTJk0UGRmpwMBAnTx5UqtXr9awYcP0wgsvaMyYMaUey/Lly5WUlKROnTrpscce0wMPPFDoNsMw1KFDB1WrVs2u40dERKhevXpq2LBhKdXgD8OGDdOFCxe0ePHiW5a9evWqJk2apMTERN17773q2bOnateurTNnzmj9+vUaM2aMtm/frqlTp8rb27vUY3dVVatW1dixY1W+fPnbPlZh7TNlyhTdc889t33s4urTp49CQ0O1efNmbd68uczOCwAAgNJBblU6ipNbPfnkk0pKSlJqaqqioqKKLGd5cO3JJ58sjVBL1dixY1W1alXVrl37to7z0UcfaebMmdq3b59129ChQ8v0moSGhmrKlCk6dOiQ5s6dW2bnBeC66FwB4JbGjx+vTZs2KT4+XoMGDbJ5bejQoRo0aJDmz5+v++67T3/5y19KNZbvv/9ekhQfH6+QkBBJsj559OdtktSyZUu7jx8SEmJzjNK0bds2tW3btlhlZ8yYocTEREVHR2vcuHEymf4YDDlkyBCNHj1a69atU7169TRq1KhSitj1VapUSX369CmRYxXWPiV17OIKDQ1VaGiojh49SucKAACAByC3Kh3Fya2aNm1qHUlz6tQp1ahRo9Bya9asUeXKldWtW7fSCLVUPfroowoKCrrt42zfvl1Xr1612dapU6fbPq49atasqT59+igtLY3OFQCSmBYMgBvasWOHNm7cqO7duxe4+ZckHx8fTZo0Sd7e3lq0aFGpx2O5wfPz87vpNk9y6NAhzZ8/X02bNtX48eNtOlYkyWQy6a233pK/v7+WLVumnJwcJ0UKAAAAoCjkVs4XFRWl/Px8bdiwodDXd+/eraNHj+rxxx+Xr69vGUcHALgZOlcAuJ3Vq1dLUqHrUVjUrVtXqampSklJsdmekZGhuLg4dezYUaGhoXrkkUf07rvv6vz58wWOcejQIcXFxalDhw4KDQ1Vt27d9N///d+6cuWKpD/WxbCc45FHHrHOvXrjNqnwtTAMw9DSpUsVGRmpFi1aqGPHjho6dKi+++47a5mi5gX+/PPP9dxzz6lVq1Zq3ry5IiMjC8wta5lnd/369Zo7d64iIiIUGhqq8PBwzZw5U9euXbMpJ0lfffXVLeepXbNmjQzD0IABA4os4+fnpxUrVuh///d/CyQBx48fV1xcnNq2basWLVro6aef1s6dOwscIy0tTcOGDVPHjh3VpEkTtWnTRs8//7y++OILm3Lh4eGKiYlRWlqa+vfvr5YtWyosLEzDhw8vdJ7jdevWWa95586dNW3aNK1YsaLQ65yamqqnnnpKLVq0UMuWLdW/f/8ynXdaunn7FLU2y42KW48NGzbo6aeftrZNnz59NH/+fOXn55dspQAAAOB05FbXOTO36t27t8qXL6/U1NRCX7e0kWX6q6tXr2revHmKiopSy5YtFRoaqocffljjx4/X6dOnizyPdD1vKmy9k6LWKtm7d6+GDh2qtm3bqmnTpurVq5fmz5+vvLy8m56npAUHB+urr76y/t+yfuWNa64Upbj12L9/v4YOHarOnTtb39MTJ07UuXPnSrxOADwD04IBcDt79+5VuXLl1Lx585uWu3Ee3fT0dA0aNEje3t565plnVKdOHf373//WggULtG3bNiUlJVnn7N27d68GDhwoPz8/9e/fX9WqVdO///1vzZ07V7t27dKiRYtUrVo1TZkyRcuXL1d6errGjh2rypUry2Qy2WyrWrVqkTGOGTNGa9asUVhYmEaNGqXc3FwtXrxYAwYM0Mcff6zGjRsXut/HH3+sCRMmqGnTpho+fLhMJpO2bt2qsWPH6sCBA3rttddsyk+fPl2GYahfv34KCAjQqlWrNGfOHHl5eWnEiBFq2LChpkyZovj4eN13330aOnSoWrVqddM2kKTWrVvftA0aNGhQ6PahQ4cqLCxMcXFxysrK0sKFCxUTE6OUlBQ98MADkqTNmzdrxIgRCgkJ0eDBg+Xn56cffvhBK1eu1ODBg/XJJ5+oTp061mMePHhQMTEx6t27t/r06aP9+/crKSlJBw8e1KZNm6zrviQkJGjq1Klq0qSJRo0apezsbC1ZsqTQOKdOnaqEhAR16tRJcXFxysnJ0fr16zVs2DCNHTtWAwcOvGn9S4q97XOj4tbjk08+UVxcnDp16qSRI0fKZDLpn//8pyZPnqzTp09r9OjRpVRDAAAAOAO5lfNzq6pVq+qRRx7RP//5T2VkZNhc65ycHG3cuFFNmjRRo0aNJEmjRo3S1q1b1bdvXz311FPKycnR9u3btWLFCv3yyy+aP3/+TduyuLZu3aqRI0cqKChIL774oipVqqSdO3dq8uTJ+te//qXZs2fLy8urRM51K1OmTNHcuXN16NAhTZkyRfXq1Sv2vsWtx7Fjx/T888+revXqGjhwoAICArRnzx4tWbJEe/fu1bJly8qsvgDciAEAbqZ58+ZGx44d7donLy/PiIiIMEJDQ42ffvrJ5rXly5cbZrPZePXVVw3DMIz8/HyjZ8+eRpcuXYyzZ88WWvbDDz+0bhszZoxhNpuNY8eO2bVt165dhtlsNuLi4oz8/HxruZ9++skICQkxYmNjDcMwjFmzZhlms9n48ssvDcMwjBMnThhNmjQxYmJibPbLz883Ro8ebZjNZmPPnj2GYRjGl19+aZjNZqNTp07G+fPnrWUvXrxotG7d2njwwQdt6mc2m40BAwbc8nr26NHDMJvNxpUrV25Z9s8s12DcuHE221euXGmYzWZj9uzZ1m1PPPGE0alTJ+PixYs2ZZcsWWKYzWZj/vz51m1du3Y1zGazsX79epuy48aNM8xms7Fjxw7DMAzj5MmTRmhoqBEZGWnk5ORYyx05csRo1qyZzXXes2ePYTabjTfffNPmmLm5uUZ0dLTRpEkT48SJEzetb9euXY2uXbvabLO0yZgxY4rc79ixY4W2RXG23fg+s6ceQ4YMMVq0aGHk5eVZy127ds0YMGCAERMTY7P/je9LAAAAuB9yK+fnVoZhGJ999plhNpuNGTNm2Gxfv369YTabjY8//tgwDMM4cOCAYTabjQkTJhQ4RlRUlGE2m63X2RLvrFmzrGUKy08MwzCSk5MNs9lsJCcnG4ZhGJcuXTLatWtn9O3b1yZvMgzDmDFjRqG5140KazfDuH5dCovhzyz53Z8NGDDglttupx4JCQk27W3xzjvvGH379jVOnjxp3VbYtQVwZ2JaMABux9vb2zrkurj279+vI0eOqHfv3gWeunryySdVv359bdq0SXl5efr+++/1448/qkuXLsrPz9eZM2es/7p27SpfX98SWch7y5YtkqQXX3zR5gmYhg0bauXKlfr73/9e6H6ffPKJrl69qscee0xnz561xnb27Fn17NnTWubPunbtqoCAAOvPlSpVUsOGDW85bLwollEg9raDRWRkpM3PLVq0kCRlZWVZt61YsUJr165VpUqVrNtyc3Ot1+rixYs2x6hQoYK6d+9us61p06aSpF9//VXS9Wuem5urQYMGycfHx1quXr166t27t82+69evlyT16NHD5j2QnZ2tHj166OrVq/r000/trntZs6ceNWvW1KVLl/TWW29p//79MgxD3t7eWrx4MQs2AgAAeCByK+fnVpL04IMPqlatWlq3bp3N9pSUFFWoUEGPP/64JCkkJES7d+9WXFycTbnTp09bY7p06ZLDcVh88cUXOnv2rLp3764LFy7YtFuPHj0kqUTarbTZU49atWpJuj7qf9euXcrNzZV0fQq6VatWqUaNGs6pBACXxrRgANxOjRo1dPjwYeXm5tr8gfxmjh49KknWKaf+zMvLS/fff7+OHDmis2fP6vDhw5KkpKQkJSUlFXq848ePOxj9HyzzA9+YkEhSkyZNitzPEl98fHyRZW6M75577ilQxsfHx+G5cmvUqKHvv/9ev/32m+666y67969evbrNz5Y1WSw3sJJUrlw5ZWZmas6cOTp8+LAyMzOVmZlpjdkwDJtjVK1a1drpY2F5f1jWC7Fcu/vuu69ATDe2g6XszdaVceR9UKFCBUk375iy1NFS9nbYU4/Y2FgdOHDA+t6vVq2a2rdvr0cffVTdu3dXuXLcNgAAAHgScivn51aSZDKZ1LdvX82ZM0fffPONWrZsqV9//VU7d+5Ur1695O/vb3OuDRs2aOfOnTp27JgyMzP166+/WjuVSmKtRMt1mT59uqZPn15oGUfbzdfX95YdeteuXSvRXKg49ejevbuioqK0atUqDRw4UBUqVFDr1q3VpUsXPfHEE6pcufJtxwPA8/BXEgBup02bNsrIyNC//vUvtW/fvshyY8eO1dWrV296o2xhuQH18fGx/r9///569NFHCy1fEn9kvnr1qkP7WW7aJ0yYoKCgoELLWOY3tjCZSnagYps2bbR9+3alp6erfv36RZabMWOGDh8+rNjYWJvkqzjxfPDBB5o+fbrq1KmjsLAwtWvXTsHBwbp27ZpeeumlAuWLc0xL501hiaOlg8fCcp3nzJmjihUrFno8y9NN9rDclF+4cKHIMpZFQP/8RJyj7KnHPffco+XLl+vbb7/VZ599pi+//FKbN2/Whg0b1KJFCy1ZskTly5e/7ZgAAADgGsitnJ9bWURGRur9999XamqqWrZsqdTUVOXl5VkXspeu5xDPP/+8vvvuO7Vu3VqhoaHq06ePmjZtqoULF2rt2rUOnfvGjiFLu40YMUItW7YsdB9HHrKTrudD2dnZRb5uGIZ+//33EsmF7KmHt7e3Jk2apJdeekmffvqpvvjiC6Wnp2vnzp364IMPlJSUZNdaLwDuDHSuAHA7vXr1UlJSkhITE4tMAE6cOKG1a9cqICBAVapUUd26dSVJP/74Y4GyhmEoIyNDfn5+CggIsLmp7tixo03Z/Px8bdq0yXq822E5z+HDhxUcHGzz2vTp03XlyhWNGzeuyP0CAgIKxJeVlaW9e/eWSHw389hjj2nmzJlaunSpIiMjC13Y7+LFi0pKStLFixf1+uuv23X8EydOaMaMGWrTpo3mz59v0xniaMIgSQ0aNJAkHTp0qMDoFctTTRaW6xwYGGidXsziyJEjOnTokM2UZcUVFBQkPz8/HTx4sMgy+/fvl6QiF92093zSrethGIZ+/PFHXblyRc2aNbMu6HnhwgWNGTNGW7Zs0Y4dO9S1a9fbjgkAAACugdzK+bmVRd26ddWuXTtt3LhR48ePV2pqqurXr6+2bdtayyxatEj79u3TW2+9paefftpm/99+++2W5/D29i4wvbL0xzTKFpbrUqFChQLX5cKFC9qxY0eB2QiKKyQkRNu3b9exY8cKvbaHDx/W5cuX1a5dO4eO/2f21OP48eM6evSoOnTooOjoaEVHR+vatWuaN2+epk+frqVLl2rMmDG3HRMAz8KaKwDcTps2bRQREaFNmzbpH//4R4HXs7OzNXLkSF27dk3Dhw+Xj4+PGjdurLp162rt2rXKyMiwKZ+cnKyjR4+qW7dukqTQ0FDVqVNHKSkp1iHvFsuWLdOoUaOUnJx82/WwPLm1cOFCm+1Hjx7VggULdOzYsUL369atm0wmk+bOnasrV67YvPbuu+/q5Zdf1r59+xyKyWQyFWsYed26dTVgwAB9++23mjRpUoF9cnJyNHr0aJ07d07PPfdcoUPnb+bcuXMyDEP33XefTcfK5cuXtXjxYkmOrffSrVs3lStXTkuWLLHZPysrS6mpqTZl/+M//kOSNHv2bJsnua5evaqxY8dq6NChOnXqlN0xlCtXThERETpx4kShUyNcvHhRS5YskY+Pj/U9aVHc9nGkHl5eXoqNjdWwYcNsniTz8/OzJqg3TrsGAAAA90Zu5fzc6s+ioqJ05swZrV69Wvv377cZtSJJZ8+elaQCHUjffPONvv76a0kFR6H8WWBgoM6cOWMzpVdubq42btxoU+7BBx/UXXfdpQULFljPaTF37lyNHDlSn332mV11s3jsscckSTNnzixwfQzD0Icffijpesffn1lGDNlzTe2px9y5czVw4EDt2bPHWqZcuXJq3ry5JHIhAIVj5AoAtzRp0iSdP39e7777rlJTU9WtWzdVq1ZNP//8s1JSUnTmzBn1799f/fv3l3T9RmjixIkaMmSI/vKXv+iZZ55RUFCQ9u7dq5SUFNWpU0evvPKKTdmYmBhFRkbq6aefVr169fTtt98qOTlZ9erVK3RaKnt17txZvXr1UnJysk6ePKnw8HBduHBBH3/8sXx9fTV69OhC97v33nsVGxurmTNnqk+fPurbt68CAgK0detW68iCG/8oX1x33323Dh48qMTERIWFhclsNhdZ9m9/+5tOnTqlRYsW6fPPP1fPnj1Vo0YN/fLLL1q7dq2OHz+uiIgIjRo1yu447r//ftWvX1/Jycny9fWV2WxWVlaWUlJSrE9V3WwoeVHq1KmjYcOGafbs2XrmmWfUs2dPXbp0SYmJidaFHy2jcDp06KAnn3xSK1eu1FNPPaUePXrIx8dHa9eu1d69e/Xss8+qWbNmdscgSaNHj9Y333yjN998Uzt27FD79u1VsWJFHT16VKmpqTp58qRef/31Ak9y2dM+FvbUIzY2Vn/729/Ur18/RUZGqnLlyjp48KCWLVumRo0aFXjaCwAAAO6P3Mr5uZVF9+7dNWHCBE2ePFnlypXTE088YfN6eHi4Fi9erFdeeUXPPvus/P39tW/fPqWkpMjb21tXr17V77//XuTxo6KilJ6erkGDBunZZ59Vfn6+kpOTC3TIBAQE6PXXX9fYsWP1+OOPq1+/fgoMDNSXX36pDRs2qFmzZnr22Wcdui59+/bVtm3blJqaqp9//lndu3fX3Xffrd9++03btm3TN998oz59+ujxxx+32c/ywN6sWbPUtm3bYuUm9tRj4MCB2rhxo4YMGaKnn35aQUFBOnXqlJYuXSp/f3899dRTDtUXgGejcwWAWwoICNC8efO0YcMGrVq1SomJiTpz5oz8/PzUvHlz9e/fXw899JDNPu3bt9fy5cs1Z84cJScn68KFC6pdu7ZeeOEFDR061GZO144dO2r58uV6//33lZycrOzsbNWsWVPPPvusYmJiHB4CfaOpU6eqWbNmWrlypSZPnqzKlSsrLCxMI0eOtE5hVZiXXnpJ999/vxYtWqQPP/xQ+fn5qlu3ruLj4xUdHe3wUzXx8fGaNm2aJk2apKFDh940AfDx8dGMGTPUs2dPrVixQikpKcrKylLFihXVuHFjxcXFFXjaqLjKly+vhIQETZs2TevXr9fy5csVGBiosLAwvfzyy+rfv7927Njh0LGHDx+ue+65R0uWLNG0adNUtWpVRUVFKScnR//4xz9sRspMnDhRLVq00LJlyzR79mx5e3vr3nvv1cSJEws8RWaPu+++W8nJyVq8eLE2b96sWbNm6fLly6pevbpatGih5557Ti1atCiwnz3t82fFrUevXr1UsWJFLViwQPPmzVN2drZq1aql6OhoDRs2jAXtAQAAPBC5lfNzKwtfX1/16tVLiYmJCg8PV2BgoM3rHTp00PTp0/XRRx/pvffek4+Pj2rXrq1Ro0bp/vvv15AhQ/T5558XmA7YIjIyUhcvXlRiYqKmTJmie+65R3369FHXrl3Vr18/m7JPPPGEatWqpYSEBC1atEg5OTmqXbu2hg0bpkGDBjk0RbJ0/WG22bNnKyUlRWvWrNGCBQt0/vx5ValSRffff7+mT5+unj17Fthv8ODB+uGHH5SQkKA9e/YU+8Gv4tajYcOGWrJkid5//32tXr1ap0+fVpUqVdS+fXu9/PLLrLcCoFBehmEYzg4CAICycOnSJeXl5cnf37/Aa3//+9+1fPlybd26tcjFLO0VHh4uSdq2bVuJHM+VzJ49W++9954WLVpUIvMhAwAAAPAcr776qlJSUko0v3IVaWlpeu655zR8+HDFxsY6OxwATsSaKwCAO8aPP/6osLAw/c///I/N9uzsbH366aeqXr266tSp46ToAAAAAAAA4C6Y3wMAcMcIDQ1VcHCw5s6dqzNnzigkJETnzp3TqlWrdPr0af3Xf/2Xdc2VknLp0iWtWbNG5cuXV48ePUr02M6wb98+ZWRk6Pvvv3d2KAAAAABc3JYtW1S1alU9/PDDqly5srPDuS0nT55UWlqaDh065OxQALgIOlcAAHcMb29vLViwQAkJCdqyZYtWrFihihUrqlmzZnrzzTdLZXqrs2fPKj4+Xv7+/h7RubJmzRotWrTI2WEAAAAAcAPvvPOOJGn16tVu37myb98+xcfHOzsMAC6ENVcAAAAAAAAAAADswJorAAAAAAAAAAAAdqBzBQAAAAAAAAAAwA50rgAAAAAAAAAAANiBzhUAAAAAAAAAAAA70LkCAAAAAAAAAABgBzpXAAAAAAAAAAAA7EDnCgAAAAAAAAAAgB3oXAEAAAAAAAAAALADnSsAAAAAAAAAAAB2+D+Gv6y0mDhn1AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
541coef_calib_zeroautohhindivtou_SHARED3_atwork-37.934870108.00.0-2-39.934870False
543coef_calib_zeroautohhindivtou_BIKE_atwork-37.390562108.00.0-2-39.390562False
540coef_calib_zeroautohhindivtou_SHARED2_atwork-38.8652858.00.0<NA>-38.865285True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-36.64539360.029.0-0.727049-37.372441True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-24.875688139.00.0-2-26.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-24.246255116.00.0-2-26.246255False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-22.970666219.00.0-2-24.970666False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-24.97066620.00.0<NA>-24.970666True
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
675coef_calib_autodeficienthhjoi_TAXI_maint-22.97066668.00.0<NA>-22.970666True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -37.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -37.390562 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -38.865285 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -36.645393 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -24.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -24.246255 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -22.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -24.970666 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -22.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "541 108.0 0.0 -2 -39.934870 False \n", - "543 108.0 0.0 -2 -39.390562 False \n", - "540 8.0 0.0 -38.865285 True \n", - "544 60.0 29.0 -0.727049 -37.372441 True \n", - "698 139.0 0.0 -2 -26.875688 False \n", - "695 116.0 0.0 -2 -26.246255 False \n", - "676 219.0 0.0 -2 -24.970666 False \n", - "677 20.0 0.0 -24.970666 True \n", - "471 0.0 0.0 -23.883300 True \n", - "675 68.0 0.0 -22.970666 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_6\n", - "ActivitySim run started at: 2023-09-13 03:38:57.140971\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 04:26:17.760735\n", - "Run Time: 2840.62 secs = 47.343666666666664 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmlAQgjVUAwk9BIQUOkiIMWKKKDAI0VBBFFU8AFEaSoiUkSkiBQp0oVHlCJSRAFBqoSeECI1JEAgIWXn/YN3V5YkkJ6w+X6ui0uZOTPnnt3ZYe+9Z84xGYZhCAAAAAAAAAAAAACA+5w5twMAAAAAAAAAAAAAACArUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHkGbLly9XUFBQuv+8/PLLuR16mk2ePDnV46hcubJq1qyp5s2b64033tCGDRtyO1z8v7/++sv2PvXs2fOe7QcPHqygoCANGjTIbrl1H9u3b8/yGHv06GHb/759+7J8/7dLTEzUqVOnsrWPO4WEhGjUqFFq27at6tatq+rVq6tJkybq2bOn5s+fr7i4uCzv8+LFixo0aJAeeeQRVatWTY0aNdKWLVskSStXrtRTTz2lmjVrqm7duurRo4d27Nhhew8SExMz3O+ZM2ds+wkLC8uqwwEUHR2tixcvZsm+UrvOZdd2AADkR+TI5Mh5FTmyPXJkcuT8yDAMnThxIsf6y+rrhWEYmj17tlq3bq3q1aurfv36+u9//2v7t7dx48aZ2n9Wnf9Z5dixY8mWNW/eXEFBQVqyZEm69pXR7QBH45zbAQC4f/j6+io4ODjZ8rNnz+rs2bNydXVVtWrVkq0PDAzMifCyVErHYhiG4uLidObMGa1bt07r1q1T+/btNW7cOJlMplyKFJK0bNky2/9v27ZN4eHh8vf3z8WI7J09e9YuAVi4cKFq1qyZLX1t27ZNo0aNUqtWrTRw4MBs6eNOkyZN0ldffSWLxSIvLy+VKVNGLi4uunjxorZu3aqtW7dq5syZ+vLLL1W1atUs6dNisahnz54KCQmRs7OzKlasqISEBJUuXVo///yz3nvvPUmSn5+fihcvnqfOByAl3377raZOnaovvvhCfn5+uR0OAABIA3JkcuS8ihz5X+TI5Mj50f79+zVy5EiVLVtWn332WW6HkyGzZ8/WJ598IkkqXbq0vL299cADD+RyVFnvwoUL+uSTT/Tnn39q8+bNuR0O4FAogANIsyZNmqhJkybJlk+ePFlTpkyRn5+fFi5cmAuRZb27HUt8fLy++OILzZo1S6tXr1a9evXUsWPHHI4QVrGxsVq7dq1MJpMaNmyorVu3avHixXnq6cXly5fLYrGoSZMm2rx5s9auXashQ4aocOHCWd7X119/naN3ti9btkxffvmlPDw8NHbsWD3++ONycnKyrT9x4oTef/997d27Vz169NCPP/6oIkWKZLrfU6dOKSQkRJI0bdo0NWrUyLZu8uTJkqQ6depo7ty5cna+9XUnNjZWP/74oyTZlmVE8eLFbfspVapUhvcD3G7s2LG5HQIAAEgncuRbyJHzFnJke+TI5Mj50YIFC7R//36VLVs2t0PJsLVr10qS2rZtq88//9y2/Nq1a6pZs6ZcXFwytf8aNWpkyfmfWdu2bdOaNWtUvHjxXIsBcFQMgQ4A6eTq6qp3331XNWrUkCTNmzcvlyPK33766SfFxMSoYsWKevrppyXdSqbj4+NzN7D/ZxiGVqxYIUl67rnnVK5cOcXFxdmW3e+mTZsmSXr33XfVunVru8RekgICAvTVV1/J19dXUVFRmjt3bpb0GxUVZfv/+vXrp7iuTp06dkmMu7u7AgICFBAQkKm+XVxcbPvJbMIFAAAA3O/IkfMWcuTcRY5MjoysYT1v69WrZ7e8YMGCCggIUJkyZTK1/6w6/wHkXRTAASCDWrRoIUk6evSobty4kcvR5F/Lly+XJDVu3FjNmjWTm5ubIiMjtX79+lyO7JadO3cqPDxcLi4ueuSRR/TEE09IkhYvXpzLkWXe1atXdfr0aUm663B1RYoUsX1e9u/fnyV9JyUl2f7f1dXVbp3FYklxOQAAAIDsQ46cN5Aj5x5yZCDrcN4CyCwK4AByzM8//6yePXuqQYMGqlatmho2bKg33nhDv//+e4rtg4KCFBQUZDcv1O1efvllBQUF2YZykqQzZ84oKChIjz76qM6fP6/evXurRo0aqlevnt5+++0sPR4vLy/b/1+/ft2u/6CgIIWFhaW4XfPmzRUUFGRLSiVpx44dCgoKUseOHXXixAl16tRJ1atX18MPP2yb78a63eHDh/Xrr7/qxRdfVO3atVW/fn117dpVGzZsSDXWpKQkLVmyRC+//LIeeughVatWTU2bNtU777yjQ4cOpbhNXFycpk+frhdffFEPP/ywqlevrmbNmuntt9/W7t27U+0rJCRE7733npo2bapq1aqpfv366tGjh37++ecU29/+mt3+mqTF6dOntWvXLklSy5Yt5enpqWbNmklSnhlq0Dr3WoMGDVSwYEG1b99eknTy5En98ccfKW6TkfNo+fLlCgoK0s6dOyXduus8KChIgwcPttvuypUrmjJlip5++mnVrl1bNWvW1BNPPKFPPvlEFy5cSNex3X7n+KZNm+7a9o033tD//vc/jR8/3m754MGDFRQUlOpwfNbjat68uaR/X5uuXbva2lhfK+u+rK/BlClTbOukfz9nQUFBSkxMTNZXSEiIhg0bphYtWqh69ep66KGH1K1bN/3000927e71/oSHh2vEiBF6/PHHVb16ddWtW1edO3fWkiVL7H6UuPM1WLhwoc6cOaMhQ4aocePGqlatmho3bqz//ve/OnPmTKqv7Z9//qm3335bzZo1U7Vq1dSgQQO99tprdtfWrVu3KigoSFWrVlVkZGSK+4mLi1OdOnUUFBSkffv2JTvWtH4+J0+ebNvmXn/uPK5Lly7p008/VZs2bVSzZk3Vrl1bzz33nL755hvdvHkz1b4+++wzbdiwQa1atVK1atXUvHlz/e9//7M7tm+//VYdO3ZUcHCwqlevrhYtWmj48OEKDQ1N9VgOHz6sYcOG6YknnlBwcLCqVaumRx55RL169Up2Xkj/nq+NGzdOcX+3v57WY7e+/1b/+c9/Uny9T506pQ8++ECPP/64qlWrpjp16qhjx4769ttvFRcXl+oxSFJERISGDRumJk2aqFq1amrUqJEGDx5812PPzHYAACBtyJFvIUe2R46cHDnyv8iR778c2erq1auaPn26unTpovr166tq1aqqW7eunn32WU2ePFlXrlxJtk16r/vW99Q6osLq1asVFBSkl19+OdmxZSRHDgsL07Bhw9S8eXNVr15dLVu21NSpU+85wkRMTIy+/PJL2+esVq1aat++vSZNmqSrV6+meEwRERGSpCFDhtid8/fKu9Py/t/+Wt3t/E/Ptdsa95YtWxQSEqIBAwbokUceUbVq1fTYY49pzJgxunz5st02QUFBGjJkiCTp/Pnzdp/PO+3evVuvvfaa6tevrxo1aqhVq1YaP368YmJiUmyf2e0AR0ABHEC2S0hIUL9+/dS/f39t3bpVzs7OqlSpkhITE7Vu3Tp1795dY8aMydI+4+Pj1aNHD23fvl0BAQEymUwqXbp0lvZh/VLv5uYmHx+fLNnn5cuX1a1bNx0+fFgVKlTQzZs3Va5cObs2y5Yt06uvvqpDhw6pfPnyKlCggHbs2KHXX39do0aNSrbPmJgYdenSRUOHDtXOnTtVsGBBBQUF6dq1a/rhhx/UoUMHzZ49226b+Ph4de/eXePHj9f+/fvl7e2tihUrKiYmRmvWrFGXLl20ZMmSZH199913evbZZ7Vy5UpduXJFFStWlIeHh7Zt26b+/fvr7bffTjG5yahly5bJMAyVKVPGdnd1u3btJEm7du3SiRMnsqyvjIiJidG6desk/RtXQECAKleuLElatGhRlvXl6+ur4OBg249OJUuWVHBwsN35c+TIEbVr106TJ0/WkSNHVLp0aZUvX16nT5/WN998o3bt2mnHjh1p7tPDw0PBwcGSbhUi33vvPe3atSvF99jPz08VKlTI9GelQIECCg4OVmBgoG1ZcHCw7VhTeg2sMd7Nd999pw4dOuj777/X5cuXbefuH3/8oQEDBmjChAlpim/9+vVq166dFi5cqAsXLujBBx9UkSJFtHv3bg0dOlQ9evSw/Rh4p7///ltPPfWUVq5cKXd3d5UtW1bnz5/X0qVL9fzzz+vs2bPJtvn888/10ksvac2aNbpx44aCgoJkNpu1adMmde/e3fYUxaOPPqqSJUsqMTFRa9asSTX2mJgYBQQE3PVphXu5/XVP6Y+7u7ukW8OWFSxY0Lbd7t271bZtW82aNUunT5+Wv7+/SpUqpUOHDumTTz5Rx44ddfHixRT73LVrl/r376+rV68qICBAFy5csH3Ozp07p2eeeUZjx47Vvn375Ofnp4oVK+rixYtavHixnnzySdu8X7dbsGCBnn32WX3//feKjIxU2bJl5e/vr2vXrmnLli3pOi/uxnreWgUGBio4OFi+vr62ZT/88IOefPJJLVq0SBcuXFBgYKCKFi2qffv2aezYsXr++ed17ty5FPd/5MgRPf3001qyZIk8PT3l7++vyMhIrVixQs8884yOHz+epdsBAIB7I0dOO3Lk9CFH/hc5MjlyXsmRJSk0NFRPPvmkxo8fr71796pIkSIKCgqSk5OTDh06pClTpuiFF15I9bVIq4IFC9rlk0WKFEl2fmQ0R/7999/1zDPP6Pvvv1dUVJQCAwMVGxuriRMnqmfPnqnGdOLECT355JOaNGmSjh49qmLFiqls2bI6efKkrSh++7XJmhNbn/y2nsfVqlW75/Gn9f2/l8xcu7ds2aIOHTpow4YN8vHxUcmSJXXmzBnNmTNHL774ol3h+fZrkouLS6qfzxUrVqhLly7avn27SpYsqSJFiig0NNR2U1ZqN8VndDvAYRgAkEmTJk0yAgMDjWbNmqW4/qOPPjICAwONWrVqGWvXrrUtT0xMNObPn29UqVLFCAwMNGbPnm23XWBgoBEYGGj89ttvKe73pZdeMgIDA41JkybZloWHh9u2q1evnnHs2DHDMAzj5s2bxrVr1zJ9LFaRkZFGvXr1jMDAQKNPnz4p9h8aGprits2aNTMCAwONZcuW2Zb98ccftu1atGhhnDt3zjAMw4iJiTHi4uLstgsMDDS6d+9uXLp0yTAMw7BYLMbixYttr+Pq1avt+nv11VeNwMBA49FHHzX++OMP2/KbN28aX3zxhW2fP//8s23dggULjMDAQKNly5ZGRESEbXlcXJzx4YcfGoGBgUadOnVssRmGYWzevNkICgoyqlatasyZM8dITEy0rdu+fbvx8MMPG4GBgcaECRPs4ouPjzeOHz9uHD9+3Lh69epdX/fbJSUlGU2aNDECAwONiRMn2u3P+t6MHDkyxW3fe+89IzAw0Hj77bftlt/rnEuvRYsWGYGBgUbNmjWNmJgY2/JZs2YZgYGBRtWqVY2LFy8m2y6j55Fh/Pu5+Pzzz+2WX7t2zWjYsKERGBhovPDCC8bp06dt6y5evGg7T+rUqWO37l4OHTpk1KpVyxZvYGCgERwcbPTq1cv4+uuvjb179xpJSUmpbp/ae2G1bNmyFD+Tt39m7pTSteHObRISEmzLd+/ebVSqVMkIDAw0PvvsM7vzetmyZbZ1W7duNQwj9ffn8OHDRrVq1YygoCBjwoQJdvs5dOiQ0bJlSyMwMNAYNGhQiq9BYGCg0bFjR+PkyZO2dXv27DFq165tBAYGGqNGjbLbbs2aNUZgYKBRuXJl49tvv7V95hITE42pU6fa1h0/ftwwDMOYMGGCERgYaDzzzDMpvtavvPKKERgYaMyYMcO2LKOfz9SsWrXKCAwMNKpUqWJs27bNtvzcuXO2z+3QoUONK1eu2NaFhYUZzz//vBEYGGh07tzZbn/Wa3ZgYKDx+uuvGzdv3jQM49Y12vpaPPXUU0ZgYKDRqlUr4/Dhw7Ztr127Zvz3v/+1fRb37t1rW3fq1CmjatWqRmBgoDF16lQjPj7eti4qKsoYMGCAbbvo6GjbOuv52qhRoxSP//ZzJzw83G5datefvXv32q7vQ4cOtfu37O+//7adV88884zdeX37efX0008bJ06csK07fPiwUb9+fSMwMNAYMGCAXX8Z3Q4AAPyLHJkc2TDIkVNCjkyOfPvrlJ9yZOt70LFjR+P8+fO25RaLxVixYoXtNZ0/f77ddhm57htG6udRRnPkK1euGA0aNDACAwONgQMH2v37sXz5clv+fGes169fNx5//HHbvw3Wa7lhGMaFCxeM3r17266tsbGxdrGm9plOLe9O7/uf2vmf0Wu39b0IDAw0evfubfc+b9iwwahcuXKK/7bf7XeE2/+de/vtt42oqCjbOuvvK4GBgcZ3332XJdsBjoYnwAFkq3Pnztnu4B05cqRat25tW+fk5KQuXbpowIABkm4NxZTZOx1v17lzZ1WoUEHSrflibh+OLSMMw1BUVJR++eUXvfLKK4qOjpaLi4v69++fFeHavPrqqypevLgkydPTUwUKFLBbX6pUKX355Ze2uzlNJpM6duyoHj16SLr1Olrt3bvXNuzWpEmTVL9+fds6V1dXDRgwQC+88IIk6bPPPrOtCwkJkXRrzrBSpUrZlhcoUECDBw9Ww4YN9fjjjys6Otq27vPPP5dhGBo0aJC6du0qJycn27qHH35YY8eOlSTNnj1bUVFRtnUuLi4KCAhQQECA3dOg97Jt2zbb3b5PPvmk3f6s59mqVaty9W5G69Bujz32mDw9PW3L27VrJ7PZrISEBFub7LZgwQJduHBBRYsW1ddffy1/f3/buqJFi2rSpEkKDAzUtWvXNG3atDTvt0qVKlqyZInq1KljWxYTE6PNmzdr/Pjx6tixoxo2bKgJEyYoNjY2S48pq0ydOlUWi0VPPPGE3n77bbvP3LPPPqsOHTpI0j2HN5s8ebLi4+P10ksv6c0337TbT5UqVTRp0iQ5OTlp9erVKT496+LioilTpqh8+fK2ZbVr19azzz4rSdqzZ49de+tn/T//+Y+6detm+8w5OTmpT58+evTRR5WUlKSVK1dKkp577jmZTCYdOnQo2ZMf58+f1/bt2+Xk5KSnnnrKLqaMfD5TsmvXLr3//vuSpPfff1+PPvqobd2sWbMUHR2t5s2ba+TIkSpUqJBtXZkyZTR16lR5eXnpzz//1ObNm1Pc/3vvvWe7Q7xIkSKSpJ9++kmHDx9WgQIFNGPGDFWqVMnW3svLS6NGjVKjRo2UkJBg9wTDb7/9JicnJ1WtWlV9+vSRi4uLbZ23t7fee+89Sbee3jp16lSmXpd7mTRpkhITE9WwYUONHDnS7t+yypUra+bMmXJzc9OhQ4fshn23cnZ21pdffqkHH3zQtqxSpUrq3r27pFvDw6Uko9sBAIC7I0dOP3LktCFHTh9y5NSRI2dtjhwZGaljx45JunXdL1asmG2dyWTS008/rXr16km6NSpBdspojrxo0SJdvnxZ5cqV0yeffGL378czzzyj1157LcX+lixZorCwMFWtWlWTJ0+2XculW6MgTJw4UaVLl1ZoaGi6h5S/U3rf/9Rk9Npt5evrq0mTJtm9z4899phtyPY7z9u0CAgI0CeffCJvb2/bsieffNL2u0pq03BkdDvAUVAAB5CttmzZosTERPn5+alNmzYptnnppZfk4uKia9eu2eYlygq3JxvpFRERkWyu2kqVKqlBgwbq06ePDh8+rIIFC+qLL76w+7KYFe4Vd8eOHeXh4ZFs+Ysvvijp1jyxJ0+elPTvnFM1atRIdYirV155RdKt4eqOHj0qSbbhd5YuXaoFCxbYzVHj6uqqWbNmaezYsbYvrmfOnNHhw4cl2Sfat2vSpIl8fHwUFxeX6px26WH9YlyjRo1kQ+BZY7h69WqKBaGccOLECdscUXe+JsWKFVODBg0kSYsXL5bFYsn2eH755RdJ0tNPP63ChQsnW+/q6mqbE+qXX36RYRhp3neFChW0YMECrVy5Uv369VPt2rXtCoaRkZGaNm2annzyyVSHac4tsbGxtnnmrD903enNN9/UTz/9ZJtrMCXx8fHasmWLpNQ/A9briGEYKc4HV61aNfn5+SVbbi1AXrt2zbYsLCzM9jm3fvbvNHr0aG3YsEEDBw6UJPn7++uhhx6SpGQJ36pVq2SxWNS4ceMUY8iskydPql+/fkpISNDLL7+sLl262K23zs+Y2mtXtGhRW4KW0mvn5+dn94OVlfW8b968eYrrpVvJsSTt3LnT9hp36dJF+/bt04IFC1Lcxs3Nzfb/2fmj1Y0bN2xDLt4+p9/t/P391aJFC0nSxo0bk62vVq2a3Y+0VtZ5xW7/kTYrtgMAAHdHjpx+5MhpQ46cPuTIKSNHviUrc2RfX1/98ccf2rdvn91Q5FZJSUm2gnJ236CS0RzZeiN6+/bt7c5lq06dOqW4L2uu36ZNG7tCspWbm5tatWolKeVcP60y8v6nJCuu3Q8//HCyG7WkW8Voyf68TavHHnssxdfPmp/fObd4ZrcDHIVzbgcAwLFZv3xUrlxZZnPK99x4eHiofPnyOnr0qE6dOqVmzZplSd+Z+YLq6uqabG4Zs9ksT09PFS9eXDVr1lTr1q0zfcd8Su4Vd40aNVJcXqpUKRUsWFDXrl1TaGioHnzwQdvrX7Vq1VT3V65cOXl5eSkmJkanTp1SYGCgnn/+eS1dulTHjx/Xhx9+qI8++kiVK1fWww8/rEaNGumhhx6Ss/O//4RY72SVpNdffz3Vvm7evCnp3/Mio6Kjo22FnpS+kNapU0f+/v4KDw/XwoUL9dxzz2Wqv4xYunSppFuJzu1Pulo99dRT2r59uyIiIrR161Y1adIkW+OxPqV6t3PBuu7y5cuKjo5O91xklStXVuXKlfXGG28oNjZWe/bs0bZt27Rq1SpFRkbq9OnTGjBgQJrnXMoJ//zzjxISEiQp1R/qfH197eZjTkloaKji4+MlSR9++KHtSeSU+pNS/gzcfif07azF1sTERNsy6/yKHh4eqSatJUuWTLbsueee086dO7V69Wq99dZbMplMkm4l95Jsd9JnpcuXL6t3796Kjo5Ww4YNNWTIELv1169fV0REhKRbTxrMnTs3xf1Y26T02t1+Z/Xt0nPeJyUlKSwszO7aX6BAAe3fv19Hjx5VeHi4Tp8+raNHj9rFkJ4fwtIrPDzcdn7ebb6zatWqac2aNSk+jZ7aeWX9kTghIUGJiYl21/TMbAcAAO6OHDn9yJHvjRw5/ciRU0aOnH05spubm86ePat9+/bp9OnTCg8P14kTJ3T48GHduHFDkrL95o+M5sjW7SpWrJjiNr6+vipWrJguXLhgt9x6E9GSJUtSvGFbki5duiQpc9fBjL7/d8qKa3d6ztu0uld+ntqNExndDnAU/GIFIFvFxMRI0j2HBbImyVk5vNvtT+ill5+fnxYuXJhlsaTHveJO6c5kKw8PD127dk1Xr16VlPbX39PTUzExMbbX38vLS4sXL9Y333yjNWvWKCwsTH///bf+/vtvzZo1S76+vnrzzTfVsWNHSfZ3L6ZlKJ+M3O14u9WrV9sSqVGjRmnUqFGptj1w4IAOHTp01y/3WS0xMVE//PCDpFt3dt+r74ULF2Z7cp+Wc+H2H6uuX7+e7uT+du7u7nr00Uf16KOPasCAAXr//ff1v//9T3v37s3x9+Nubn+K9fYh+NLr9nP64MGD6WpvldJd1Kmxxp3emFu3bq2RI0fq7Nmz2rFjhxo0aKADBw7o+PHj8vHxybIfV61u3rypPn36KDw8XBUqVNAXX3yR7O5j67kp/Zsc301Kr11Kd1ffvu/0nPdWq1at0tSpUxUaGmrX/oEHHlCHDh30/fff3zPWzLr9tUnLMaT0b2hqPzTdS0a3AwAAd0eOnH7kyPdGjpx+5MgpI0fOnhz55MmT+vTTT7V582a7IreXl5fq1q2rCxcu2KZayE4ZzZGt19CURtuwKly4cLICuLW/0NDQZLn1nTJzHczo+3+3GDJ67U7PeZtWqf3mkV3bAY6CAjiAbGX94nGvLzHWL1IpfVFJ7ek6692ReVV2xX234XatXyytd+Km9fW3rr/99ffy8lL//v3Vv39/hYWFaceOHdqxY4c2b96syMhIDRs2TN7e3mrZsqXtC7C3t7dtuN7sZJ0TzMPD465f2i9cuCDDMLRo0SKNHDky2+Oy+vXXX213sBYrVsx2B/Gdbty4oWvXrmnLli06e/ZsinejZtV55OnpqStXrtz1XLhy5Ypd+3sZPny4/vjjDz3zzDPq06dPqu3c3Nz00Ucfad26dbY5k+9M7lM7zuyeE+325C0mJsY2d3Rm9rNnz55MJ11p7S+9P4i6ubmpbdu2Wrx4sVavXq0GDRrY7mxPbSizjDIMQ++884727t0rHx8fTZs2LcXPq7u7u+3/V69eneKQcBmVlmug9d+f29uvWLFCgwcPliQ1atRIjz/+uCpWrKiAgAAVLlxYCQkJdy2AZ9X5fPt5dO3atVSfsrB+drP7vAMAAJlHjpwcOXLmkSOTI2cVcuSsz5EjIyP10ksvKTIyUqVKlVLHjh1VpUoVPfjgg3rggQdkMpn09ttv37UAnpXnvZT+HNnb21sXL160u0n7Tik9Tezu7q5r165p2rRpWX7D/e0y+v6ntp+cunYDyF7MAQ4gW1nn5Tl8+HCqw/jExMTY7gIsW7asbbn1KUHrXcx3uvOuwrzg9iHPUoo7Li4u03d2p/aE5OnTp21f9CpUqCDp39f/0KFDqe7vxIkTti/M1tc/MjJSf/75p20umLJly6pjx44aP368Nm/ebBv6zpoUlC9fXtKtOy4vXryYal9//vmnTpw4kakhdkJCQmzz8YwdO1ZbtmxJ9Y/1jvE1a9bc9Ut6VrPOvVaxYkVt3bo11fhmz54t6dawUrcX07LjPErLuWC9K7tw4cJpurP95s2bCgsLs83pdDdeXl62xOn2BNr6ObcOsXan7P6c+/v722K4fair2x04cECdOnXSkCFDUk06b9/P8ePHU+1v//79OnLkSKaTMuucfjdu3NCZM2dSbLNx40a9/PLL+vTTT+2WW4c73Lhxo5KSkmzDkGX1MIiffvqpfv75Z7m4uGjKlCmpDkNWqFAhFS1aVNLdX7sjR47o8OHDdj9C3UtazvsDBw5Ikkwmk8qUKSNJ+vrrryXdmg9w5syZeuGFFxQcHGx7uii1efqy+t+tMmXK2H5wudtTE9Z1t/8bCgAA8iZyZHvkyOTI5MjkyI6eIy9btkyRkZHy9vbWsmXL1KdPHzVp0kT+/v62m0HOnz+f4rZZfd3PaI5svaZZrzV3un79um04+9tZt0vtXJJuPR1+4MCBTM1HnZn3P6V4c+LaDSD7UQAHkK0aN24sZ2dnXbx4UT/++GOKbebPn6/ExES5u7urXr16tuXW5CKl+VT279+fJ5N7b29v25fXlOL+5ZdfMjTXy+2WL1+e4g8l1uHoatWqZbtL2np35f79+1Mduufbb7+VJJUoUUJBQUGSpB49eqhLly5asWJFsvaenp6qVauWpFtJqSQFBATYfhiYP39+iv3s3r1bXbp0UZs2bbR37940HGnKrPOG+fj4qHnz5ndt26lTJ0m3vgBbf4jIbpGRkdq8ebOkeydL1atXt/1QsmTJEtu5kZnzKLU76a3nwsqVK1MsIMbHx9vOoUaNGt01bivr3HIHDx60/aCRmm3btik6Olre3t6qWbOmbfndPudJSUn65Zdf0hRLRnl5ealOnTqS/n1q4k5r1qzRnj17dObMmVRfXy8vL9v1K7U5rMPDw9W5c2c9+eST+umnnzIVd0BAgEqXLn3XuFesWKGdO3cmSyJr1qypihUrKioqSvPmzdM///yjKlWqpDq/W0YsXLhQ33zzjaRbQzDWrVv3ru2bNm0q6db1I6Xr27Vr19StWzc9/fTTmjNnTprjsJ73v/zyi8LDw1NsY32/atWqpUKFCkmSLWFObRhC63VIsp+/y3o+X7lyRZGRkcm2W79+faqxWs+t239A8vDwUP369e3ivFN4eLjtc9K4ceNU9w8AAPIGcmR75MjkyLcjRyZHzqi8nCNb88tSpUql+ET98ePHbdcA6zXEKqPX/ZTySynjOXLLli0l3brJJ6WbFZYvX54s9tv7W7p0aYrF4sTERPXt21cdOnTQJ598kmI8aZGZ9//O/eTUtdvKbL5VokvtZhIAGUcBHEC2KlmypG0OrGHDhtl9obVYLFqwYIEmT54sSerbt6/dUF3WL9yzZ8/WiRMnbMsPHDigt956KyfCTzc3NzdVqVJFkjR58mS7Ozi3bdumjz76KNN9HDx4UMOGDbMNe2WxWDR//nxbkj5w4EBb29q1a9vu8O7fv7/d8D3x8fGaNGmS7a7qd9991/YF+amnnpIkTZkyRVu2bLHr/88//7QlyrfPyTVgwABJ0vTp0zVjxgy7u1P//PNP2/patWqpQYMGtnUJCQk6ceKETpw4cc87tuPj47V69WpJt4aiutcctY0bN7Z9AV60aNFd297NP//8oxMnTqR4N+udVq5cqcTERLm4uNhex7ux/gBx8eJF213GmTmPrMM1RUREJOunePHiunTpkl599VW7RCcyMlIDBgzQ0aNH5enpqTfeeOOecUvSo48+qlatWkmShg4dqtGjRye70/bmzZtatmyZ3nzzTUm3zpPbhz6zfs6PHTumuXPn2r7wX7lyRe+//36a5oTOrL59+8pkMmnVqlWaNm2a3Q8nK1eu1Lx58yRJPXv2vOt+3njjDTk5OWnNmjUaO3asXVJ49OhR9e7dWwkJCSpdurTat2+fqZhNJpP69u0rSZoxY4aWLFlie+2SkpI0ffp0rV+/Xs7OzurevXuy7a0/PE2cOFGS9Oyzz6bYT3o+n1abN2+2DafYv39/Pf300/fcpnfv3vLw8NDu3bv1zjvv2CWkERER6t27t6KiolSwYEF16dIlTXFIt+ZzCwoK0s2bN9WrVy+7IeViYmI0bNgwbdu2Tc7Ozho0aJBtnfWu+MWLF9t9/mJiYjR58mRNnz7dtuz2JL5mzZpycXGRYRgaM2aMbV1CQoLmzJlz12HTrZ/dO68z/fr1k7Ozs7Zt26Zhw4bZPakTEhKiXr166ebNm6pUqVKaXmsAAJC7yJHJka3bkCOnjByZHDkj8nKObM0vQ0JC9PPPP9uWG4ahLVu2qGfPnrYn/u8c4j6j133rOXXnZzSjOfLzzz+vsmXL6ty5c+rfv7/dDd/r1q3T+PHjU4yjS5cu8vPzU1hYmPr06WMXz+XLl/Xmm2/qxIkTcnFx0SuvvJLq8dxLZt//22X02p1R1mvU1atXc3RkDiA/YA5wANluyJAhOn/+vDZu3KgBAwaoWLFiKlGihMLDwxUVFSVJeumll9SrVy+77fr06aOtW7fq4sWLat++vSpUqKCbN28qNDRU/v7+eu6551K9qy83vfnmm+rTp4+OHz+uFi1aqEKFCrpy5YoiIiJUvXp1BQcH25K4jAgMDNTSpUu1du1aPfjggzp37pwuXrwos9msIUOGJPvy9emnn+q1117TX3/9pa5du6p06dIqUqSITp06pZiYGDk5OenNN99U27Ztbdt07dpV27dv15YtW9SrVy8VK1ZMxYoVU1RUlC1pbN68uZ5//nnbNm3btlVoaKgmT56szz77TF9//bXKlSuny5cv27YpX768pk6dahff+fPn1aZNG0m3hmtLLcmQpA0bNig6OlpS2oaiMpvNeuGFF/T555/r6NGj2r17ty15SI/33ntPO3fuVL169WyJXmqsd3k3bdo0TXNltW3bVp988omuXr2qRYsW2ZLljJ5HVapU0aZNm7R69WodOXJEdevW1QcffKBChQpp2rRp6t27t/766y+1bNlSFSpUkLOzs44dO6aEhAR5e3vrs88+sw0dlRafffaZPDw8tHLlSs2dO1dz585VqVKl5Ovra/u8xsfHy8XFRW+//bY6d+5st32TJk1Ut25d/fnnnxo9erS++eYb+fj46OTJk0pISNAbb7xh+wEwuzz88MMaMmSIPv74Y02YMEHffPON/P39de7cOds8da+//rrdj1kpqVOnjkaOHKkPPvhA3377rRYtWqSAgABdv35dYWFhMgxDRYsW1axZs+75w1RadOjQQcePH9fs2bM1dOhQffHFFypRooTOnDmj6OhoOTk5acSIESnetf7UU09p/PjxunHjhlxcXNSuXbsU+0jP59Nq4MCBSkpKkpubm/7++2/16NFDcXFxKT6V89xzz6lDhw4qW7asvvjiCw0cOFBr1qzRzz//rAoVKighIUGhoaFKTEyUh4eHpk+fnuo82ClxdnbW1KlT1atXL508eVJPPfWUypUrJ09PT9twZW5ubvrwww/tnlIfOHCg+vbtq+PHj+uxxx6zDYMWFhammzdv2oaqO336tN1w6IULF1aPHj00bdo0rVmzRlu3btUDDzygiIgIRUdHq1OnTvrll19SHN6uSpUq2rVrlz766CMtXLhQnTt3VocOHVS7dm2NHj1aQ4cO1ffff68ffvhBAQEBunHjhk6dOiXp1r8LU6ZMyZLzCgAAZD9yZHJkcuTUkSOTI2dUXs2RO3TooAULFigsLEz9+/dX6dKl5ePjo7NnzyoyMlIuLi6qV6+edu7cmSxXzOh1v3LlypJuzb/eunVrVahQQVOmTMlwjuzm5qZJkyapZ8+e2rZtm5o2baqKFSsqOjra9hm8ePFisunCChcurK+++kp9+vTR9u3b9dhjj6lChQoymUw6deqU4uPj5ezsrM8//9w24kZGZeb9v11Gr90ZFRQUJLPZrLi4OLVu3VrFihXTrFmz0jTtAoC74wlwANnO1dVVX375pSZMmKCGDRsqPj5ehw8flru7u9q2bau5c+dq2LBhyYZNqly5spYuXar27durSJEiOnnypJKSkvTKK69oxYoV8vPzy6UjurvGjRtrwYIFatGihTw8PHT8+HEVKFBA/fv314IFC2x39mVU165d9fnnn6t8+fK2O39btWqlRYsWpXgXo7e3t+bNm6eRI0fqoYce0rVr13TkyBH5+PioQ4cOWrp0qXr37m23jZOTk7788ku9//77ql27tuLi4hQSEqLY2Fg1bNhQn376qaZOnWo3D5d0KwFavHix2rdvLy8vL4WEhCgqKkpVqlTRgAEDtGzZsnQVr+5kTZyrVq2a5qGoOnToYJtDNzN3uKfFvn37bHNbpXWuKHd3d9tTm7///rttrr+Mnke9evXS888/L29vb4WGhurIkSO2dVWqVNGaNWvUt29fVaxYUeHh4QoNDVX58uX12muv6Ycffkjz0G5Wrq6u+vjjj7VkyRK98sorqlq1quLj4xUSEqJz586pfPny6tGjh3744Ydk55l06weYWbNm6c0331TFihUVGRmpf/75Rw8//LAWLlyY6bvA06pbt25avHix2rVrpwIFCujIkSNKTExUkyZNNHv2bPXv3z9N+3nuuee0atUqvfDCC/Lz89OxY8d09uxZBQQEqGfPnvrhhx9sxdSsMHjwYM2ePVuPPfaYDMNQSEiInJyc1Lp1ay1evNjuB7jbFSlSxDZcdvPmzbM0sbLe1R8XF6cNGzZo27Zt+vPPP7Vnz55kf86ePWvbrkmTJvrf//6n7t27q0yZMjp16pTCwsJUunRpde7cWT/88IOCg4PTHc8DDzygZcuW6d1331WNGjV08eJFnThxQiVLllTXrl21atWqZE9ON2vWTEuXLlWLFi3k5+enkydP6uzZswoMDNTbb7+tVatW2c7NTZs22W07cOBAffbZZ6pTp44SEhJ06tQplS9fXuPGjdOIESNSjXPMmDF69NFH5ezsrFOnTtmuBdKtuchXrVqljh07qmjRojp27JiioqIUHBys4cOHa+nSpanOsQ4AAPIecmRyZHLk1JEjkyNnRl7Mkb28vGzXlYoVK+ry5cs6duyYvLy8bAXsMWPGSLr1lPjtT0ln9Lr/9NNPq2fPnvLz89OZM2d0+PBh203pGcmRJalSpUpasWKFXnnlFZUsWVLHjh2TxWJR9+7d9e2336Z6E0P16tW1evVqvf766woKCtKZM2d08uRJFS1aVE8//bSWLVtmG2I9szL6/t8pu6/dtytbtqzGjh2rcuXKKTo6WmfPnk02YgWAjDEZTC4AAPeF5s2bKyIiQqNGjUrzFzZknZEjR+r06dOaMWNGbocCZIlnn31Whw4d0vTp0+955z4AAACQ15Aj5y5yZDgacmQAcCw8AQ4AwD1YLBb9+eefqlChQm6HAmSJQ4cO6dChQypZsqQaNmyY2+EAAAAAuI+QI8PRkCMDgONhDnAAAO7ho48+UmRkpF5++eXcDgXIsPDwcEnSpUuXNHjwYEm3hot0cnLKzbAAAAAA3GfIkeEIyJEBwLFRAAcA4B5efPFF9e/fX0WKFMntUIAM+/HHH/X555/b/h4YGKiXXnopFyMCAAAAcD8iR4YjIEcGAMfGEOgAANxDpUqVSOxx36tUqZKKFSsmDw8PtWjRQt98841cXV1zOywAAAAA9xlyZDgCcmQAcGwmwzCM3A4CAAAAAAAAAAAAAIDM4glwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIzrkdwP3CMAxZLIwWDwAAAACwZzabZDKZcjsMh0DuDQAAAABISXpybwrgaWSxGLp8+XpuhwEAAAAAyGOKFPGUkxMF8KxA7g0AAAAASEl6cm+GQAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDcM7tAAAAAAAAyVksFiUlJeZ2GPmek5OzzGbuHQcAAAAAR0TunTdkde5NARwAAAAA8hDDMHT16mXFxsbkdij4f+7uXipUqIhMJlNuhwIAAAAAyALk3nlPVubeFMABAAAAIA+xJuBeXj5ydS1A0TUXGYah+PibiomJkiQVLuybyxEBAAAAALICuXfekR25NwVwAAAAAMgjLJYkWwLu5VUot8OBJFfXApKkmJgoFSzow3DoAAAAAHCfI/fOe7I69yZzBwAAAIA8IikpSdK/iR/yBuv7wbxwAAAAAHD/I/fOm7Iy96YADgAAAAB5DEOv5S28HwAAAADgeMj18pasfD8ogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOwTm3AwAAAAAA5J4jR0I0depEhYT8LYvFUJUq1dS7d19VrVpNkrRr1x+aPXumTpw4JicnZ9Wr10B9+ryh4sVLSJJ+/HG1xoz5UEuW/KCSJUvZ9tuhQ3vVrl1H//3vCElSw4Z19corvbV9+zaFh4epU6eX1b17T0VEnNFXX03W7t27ZBiGqlWrrr59B+jBBwMkSTdv3tSsWdO0YcM6RUVdVpkyZdW16yt67LGWOftCAQAAAACQQeTeOYsnwAEAAAAgn7p+PUZvv/2GChf21qhRn+jDD8coLi5Wb7/dTzExMfr55x81cGA/+fn5acSI0XrjjYE6dOiAXnvtFUVFXU53f3PmzFLTps01YsRoNWrUVJcuXVKvXt0UFnZKb7/9nj74YKSuXr2qN9/sq+joaBmGoffff0crVy7XCy901scff65q1Wrogw/e19q1a7LhFQEAAAAAIGuRe+c8ngAHAAAAgHzq1KlTio6OUocOL6hGjVqSpLJly2nVqmWKibmmqVMnqm7devrww7G2bWrUqKWXXnpeCxfOV9++/dPVX5Uq1fTSS91tf//yy4m6eTNOX3wxVb6+RSVJFStW0quvdtfBg/tVoICrduzYrg8/HGO767x+/YcVFxeradOm6PHHW8vZmbQWAAAAAJB3kXvnPJ4ABwAAAIB86sEHA+Tt7aP33ntLn302Vtu2bZGvb1H17TtAcXFxioyMVMuWT9htU7r0A6patbr++uvPdPcXEFDB7u/79v2latVq2BJwSSpatKiWLVujhg0b688/d8lkMunhhxsqMTHR9ufRR5soMvKSTp06kbEDBwAAAAAgh5B757z7q1wPAAAAAMgyHh4emjp1hubMmaUNG9Zp5cplcnNzU8uWT6h167aSpCJFfJNt5+vrqyNHjqS7Px+fInZ/v3r1it3cZXe6evWKDMNQy5aNU1x/6dJFVawYlO44AAAAAADIKeTeOY8COAAAAADkY2XKlNOwYSOVlJSkw4cP6aefftTKlUtVtKifJOny5chk20RGRsrb21uSZDKZJEkWi8WuTWzsjXv27eVVUNHR0cmW7969SyVKlJSXV0G5u3to8uRpKW5furT/PfsAAAAAACC3kXvnLIZABwAAAIB8atOmDWrXroUiIy/JyclJ1arV0KBBg+XlVVCXL1+Wr6+v1q1ba7dNRMQZHTy4XzVq1JQkeXh4SpLOnz9na3P6dKiuXLlyz/5r1qylQ4f2Kyrqsm1ZdHS0Bg3qr99+26JatYIVG3tDhmGoUqUqtj8nT57QN9/MUFJSUla8DAAAAAAAZBty75zHE+AA7JjNJpnNpmztw2IxZLEY2doHAAAA7q169VpKSrJoyJBBeuml7vL09NTGjet0/XqMmjdvoSpVqmrMmA/1wQdD1Lp1O125Eq1vvpmuQoUK64UXukiS6tR5SG5ubpoyZYJ69eqrGzduaPbsW23upWPHzlq79n96661+6tr1Fbm6FtC8ebPl61tUrVu3lZdXQdWqFazBg99W9+49VbZsOR0+fEizZk1X/foNbHfCw/Fld55CjgIAAAAgu5B75zyTYRhkeGmQlGTR5cvXczsMIFuZzSZ5e3vIySl7B4dISrIoOvoGPzABAADcISEhXpGRZ+XrW1IuLq450ufhw4c0Y8ZXCgk5rLi4OD34YIBefvk/atKkmSTp1183at68b3Xy5HF5enqqfv2H1bv36ypevIRtH3/8sV3Tpk1RWNgplShRUv/5T2/99NP/5Ovrq//+d4QkqWHDuvrPf3qpR49X7foPCwvV1KkTtWfPbrm4uKh27WD17TtApUs/IEmKjY3VzJlfadOmjYqKuqyiRYupRYuW6t69pwoUKJAjr9G93pciRTyz/Tt0fpFS7p0TeQo5CgAAAJB/kHs7fu5NATyNKIAjP3B2NsvHx1NfLvxNERfuPWxGRpQuVlivd3pUUVHXlZhoufcGAAAA+UhuJOG4NwrgOSel3Du78xRyFAAAACB/IffOm7Iy92YIdADJRFy4otCIqNwOAwAAAABsyFMAAAAAAGnBLeoAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ3DO7QAAAAAAAEDuSEhI0Lx587RixQqFhobKw8ND1atXV7du3dSoUaNk7evXr6/o6OhU97d//34VKFAgGyMGAAAAAODuKIADAAAAAJAPGYahgQMHav369SpUqJAeeeQR3bx5U3/88Ye2bt2qN998U3369LG1j4iIUHR0tIoXL6569eqluE+zmYHmAAAAAAC5iwI4AAAAAAD50KJFi7R+/XpVrlxZs2fPlo+PjyQpJCREXbp00cSJE9WyZUsFBARIkg4fPixJat26td5///1cixsAAAAAgLvh1mwAAAAAAPKhVatWSZIGDx5sK35LUqVKldS+fXsZhqEtW7bYlh86dEiSVLVq1ZwNFAAAAACAdOAJcAAAAAC4D5jNJpnNphzv12IxZLEYOd4vst+cOXN06tQpVaxYMdm6GzduSJKcnJxsy6xPgFerVi1nAgQAAACAHEbu7RgogAMAAABAHmc2m+Tt7SEnp5wfxCspyaLo6BsZSsTXrftJy5Yt1smTxyVJZcuWV7t2T+npp5/L6jCRAQUKFFClSpWSLd+wYYN++uknubu7q2XLlrblhw4dkpubmw4ePKihQ4fq2LFjMplMCg4OVt++fVWzZs2cDB8AAAAAshS5t+OgAA4AAAAAeZzZbJKTk1lfLvxNEReu5Fi/pYsV1uudHpXZbEp3Er5mzSp98cU49e//tmrVCpZkaNeunZo0abyioi7rP//plT1BI0OuXLmioUOH6vjx4zp58qRKliypsWPHqkSJEpKkyMhIXbhwQZL07rvvqlatWqpfv76OHj2qX3/9Vdu2bdO4cePUpk2b3DwMAAAAAMgwcm/HQQEcAAAAAO4TEReuKDQiKrfDSJMVK5aqXbun9OSTz9iWlSlTThcvXtD33y/Mt0l4XhUeHq5169bZ/m4ymXT8+HE9/PDDkv6d/9vHx0dfffWVateuLUkyDENz5szR2LFjNWTIEAUHB9uK5hnl7Gz/tEVOPX2RG095AAAAAMh5Fsvdhzgn985dTk6mZHlhelEABwAAAABkObPZpAMH9uvq1asqVKiQbXmXLt3Upk17SVKHDu31xBPt1KPHq7b1/fr1VsmSpfTf/47Qnj1/qn//19Snzxv67ru5KlGihNzc3FW0qJ8++misbZv9+/eqb9+eWrRohR54wF+//bZVs2Z9rdDQU/Lz81OLFq3UrVsPubq6auLE8frtty36/vtVtu1jYmL05JOt9NFHY9SwYZMceHXynvLly2vnzp0yDEPbt2/X6NGjNWrUKMXExKhPnz5q1KiRtm7dKsMwVLx4cdt2JpNJ3bt3165du7RhwwYtXbpU/fr1y3AcZrNJPj6eWXFI6VaokHuu9AsAAAAgZ8XFOenSJXOyQmtu3xSbkf6dnMw6eHC/btyIscu9u3X7j5588ik5O5v19NNt1bZte/Xq9ZptfZ8+vVSyZCkNH/6hdu/+U6+/3luvv95f8+bNUYkSJeXu7qaiRf00evQntm327durV199RUuWrJS/fxlt27ZFM2ZMs+Xejz/eWv/5T0+5urpqwoRx2rZtq5Yt+8G2fUzMNbVt21IjR36sxo2T594Wi0lms1mFC3vIzc0t3a/F7SiAAwAAAACyXJcu3TR8+BA988wTCg6uqxo1aqtOnbqqXLmqChYsmK59bd++TV9/PVtxcbE6duyoxo//WDduXJeHx61C6bp1a1W9ek098IC//vhju4YNG6z+/QfqoYcaKCLijCZM+FSnT4dp5MiP1a7dU1qyZKH27durmjVrSZI2blwnT09PNWjwaFa/DPcNT89/i85t2rRRiRIl1LlzZ02fPl1du3aVp6enihUrlur2zZo104YNG3Tw4MFMxWGxGLp69YbdMicnc44Up69ejVVSkiXb+wEAAACQu+Ljb8pisSgpyVBiYt7JAZKSLOmOp3Pnrho+fIjat2+VLPcuVcrTtj+Lxf5YDcOQYdxaZs2Dtm3bmiz3vnr1mi33Xrv2f6pevaZKlnxA27Zt0/vvv5cs9w4NDdXIkR+rTZuntHjxQu3evceWe//888/y8PBUvXoPp3icSUmGLBaLrly5odjYpGTrCxVyT/NNAhTAAQAAAABZrmnTx/T117O1dOki7djxh37//TdJkr9/GQ0ZMlw1atRK8746dXpJ/v5lJEkPPFBGEyaM0+bNm/TEE+2UkJCgX37ZoD593pAkzZ37jdq1e1JPP91BklS69AN655331b//azp79h8FBFRQUFBl/fzz/2xJ+E8/rVGrVm3k7EyKbBUcHKwyZcooLCxMoaGhqlq16l3b+/n5SZJiY2Mz3Xdu/QCVkR+bAAAAANx/kpLSN892XuaIuXdW3JhAdg8AAAAAyBaVK1fVsGEjZRiGTp48od9/36YlSxZp0KABWrx4RZr388ADZWz/7+7urmbNHtO6dWv1xBPt9Pvvv+nmzTg1b95CknT0aIgOHz6ktWvX2LYxjFs/boSGnlLJkqXUtu2Tmj59qt588x1duHBeBw7s1zvvvJ9FR31/iI2N1cSJE3Xp0iWNGzdOJlPyOfBcXV0lSYmJiVq8eLF+//13tWvXTi1atEjWNjw8XJIyPf83AAAAACB9yL2TowAOAAAAAMhSFy6c13ffzdFLL3WXn18xmUwmBQRUUEBABTVs2EQvvfS89u7dk+K2SUmJyZYVKFDA7u9t2rTXgAF9FBl5SevW/ajGjZvJ09NL0q1h3Tp37qonnmiXbD++vkUlSY8/3lpTpnyh7du36sSJ46pcuYoefLBCZg/7vuLm5qYVK1YoOjpaHTt2VL169ezWh4eH69SpU3J1dVXFihW1efNmrV27VrGxsckK4IZhaNWqW3OqN2zYMMeOAQAAAADyM3Lv1OXubO4AAAAAAIfj6lpAq1Yt17p1a5Ots841XaSIr5ydXRQTE2NbZ7FY9M8/Effcf61awSpRoqR++ul/2r79N7uE+8EHAxQWFqoHHvC3/bl48YK+/HKibty4LkkqWLCgGjduql9//UVbtmxSmzZPZvaQ7zsmk0kvvPCCJGnEiBG6cOGCbd25c+f01ltvKTExUZ06dZKHh4eeeeYZubq66tdff9X3339va2uxWDRp0iTt379fFSpUUOvWrXP8WAAAAAAgPyL3Th1PgAMAAAAAspS3t7e6dOmm6dOnKiYmRs2bt5CHh6dCQ0/p229nKji4rmrWrK0aNWpq48Z1atKkmYoU8dWiRfPtkvK7eeKJdpoz5xsVLlxYdev++/Ryly5dNXz4EM2a9bUef7y1Ll68oI8/HqXixYvb7kKXpLZtn9TgwW/JMKQWLVpl+WtwP+jbt6/27NmjXbt2qVWrVqpTp44SEhK0f/9+3bhxQw0bNtSgQYMkSf7+/hoxYoSGDh2qYcOGaf78+SpXrpxCQkIUFhamokWLavLkyXJxccnlowIAAACA/IHcO3UUwAEAAADgPlG6WOH7pr9evfrogQf8tXr1Sq1YsURxcXEqXryEmjd/XF27viJJ6t37dV27dlWDBvWXm5u72rd/Wo891tI2b9jdtG7dTt98M13PPvu8zOZ/Bzdr1qyFPvxQmjfvG82f/60KFiykRx9tpD59+tttX7duPRUu7K3q1WuqYMGCGT7O+5mbm5tmz56tuXPnatWqVdqxY4ecnZ1VsWJFPfvss3r++efl5ORka//cc8+pfPnymjFjhvbs2aOTJ0+qWLFievnll9WnTx/5+vrm4tEAAAAAQNYg9/7X/Zp7m4y0HF0uSEhI0Lx587RixQqFhobKw8ND1atXV7du3dSoUaNk7S9duqSpU6dq69atOn/+vPz8/NS6dWv17dvX9ph/ZiQlWXT58vVM7wfIy5ydzfLx8dT7E39UaERUtvRRrrSPxgxoo6io60pMtGRLHwAAAPerhIR4RUaela9vSbm4uNqWm80meXt7yMkp52exSkqyKDr6hiyWPJk6ZlhsbKyeeqq1Ro/+VA89VP+ubVN7X6yKFPHMlffGEaWUe2d3nkKOAgAAAOQv5N45J7dy7zz5BLhhGBo4cKDWr1+vQoUK6ZFHHtHNmzf1xx9/aOvWrXrzzTfVp08fW/sLFy7oxRdfVEREhAIDA9W0aVMdOHBAM2fO1NatW7VgwQJ5eXnl4hEBAAAAQMZZLIaio2/IbDblSt+OlIBfvXpVe/bs0i+/bFDx4sXthnADAAAAAORf5N5ZJ7dz7zxZAF+0aJHWr1+vypUra/bs2fLx8ZEkhYSEqEuXLpo4caJatmypgIAASdKoUaMUERGh3r176+2335YkxcfH691339XatWs1ZcoUDR48ONeOBwAAAAAyy9GS4dySlJSojz8eKW9vH3300ViZTDn/wwYAAAAAIG8i984auZ1758kx2latWiVJGjx4sK34LUmVKlVS+/btZRiGtmzZIkk6ffq01q9fr5IlS6p//3/HlXd1ddXIkSPl6empxYsXKy4uLmcPAgAAAACQ5/j4FNFPP/2qRYtWKDCwUm6HAwAAAACAw8nt3DtPPgE+Z84cnTp1ShUrVky27saNG5IkJycnSdKWLVtksVjUpEkTubi42LUtWLCgGjRooI0bN2rHjh1q0qRJ9gcPIE2ycw4N7tACAAAAkF7kKAAAAADgGPJkAbxAgQKqVCn53QAbNmzQTz/9JHd3d7Vs2VKSdPToUUlSYGBgivuqUKGCNm7cqKNHj1IAB/KAwgXdZFgsKlTIPdv6sFiSFBUVyw9MAAAAAO6JHAUAAAAAHEueLIDf7sqVKxo6dKiOHz+ukydPqmTJkho7dqxKlCghSbp48aIkyc/PL8XtrcsvXbqUMwEDuCtPN1eZzGadWjNDsZFns3z/7r4lVb5dL5nNJn5cAgAAAHBP5CgAAAAA4FjyfAE8PDxc69ats/3dZDLp+PHjevjhhyX9OyS6m5tbittbl1vbZYazc56cMh3IMtk55N+dYiPPKvb86Wzbf04eCwAAQFaxWEy5HQLuwsnJRF7owLI7RwEAAAAA5Iw8XwAvX768du7cKcMwtH37do0ePVqjRo1STEyM+vTpY5sL3GRK+YciwzDs/ptRZrNJPj6emdoHgJyTncMXAgAAZJe4OCddumSm0JrHWCwmmc1mFS7skerN1wAAAAAAIG/I8wVwT89/i85t2rRRiRIl1LlzZ02fPl1du3aVh4eHJOnmzZspbm9d7u6euWKYxWLo6tXMP0UO5GVOTmaHKRxfvRqrpCRLbocBAACQLvHxN2WxWJSUZCgxke8yeUVSkiGLxaIrV24oNjYp2fpChdwZgQgAAAAAgDwizxfA7xQcHKwyZcooLCxMoaGhKlasmKR/5wK/073mCE8PfoAC7h9JSRY+swAA4L6TlJT6yFVms0lmc84PkW6xGBmat7hDh/Y6d+6s+vV7Uy+++FKy9ePGjdGqVcv1n//0Uo8er2Yotg4d2uuJJ9qlefv0tr8TNyYAAAAAgGMj9065j5zMvbNCniuAx8bGauLEibp06ZLGjRuX4tDmrq6ukqTExEQFBgZKkk6cOJHi/o4dOyZJCgoKyqaIAQAAACB73ZqSyV1ms1OO922xJCkqKjZDibizs7M2bdqYLAlPTEzU5s2/pDqVFQAAAAAAOY3c23HkuQK4m5ubVqxYoejoaHXs2FH16tWzWx8eHq5Tp07J1dVVFStWVNGiRSVJmzZt0pAhQ2xzgkvStWvXtGPHDnl4eKhOnTo5ehwAAAAAkFVu3YHupFNrZig28myO9evuW1Ll2/WS2WzKUBJet2497djxu86fP6fixUvYlu/Z86fc3NxVoADzaQMAAAAA8gZyb8eR5wrgJpNJL7zwgr7++muNGDFC3377rW2Y83Pnzumtt95SYmKiunXrJg8PD3l4eKhZs2batGmTxo0bp/fee08mk0nx8fEaPny4rl+/rldeeUVeXl65fGQAAAAAkDmxkWcVe/50boeRZpUrV1VYWKg2bdpgdyf6xo3r1Lz54/rll/W2ZQcP7tf06VN15MhhOTs7q2HDJnr99TdVqFAhSVJMTIy++GKctm3bLGdnF3Xt+p9k/R04sE/Tpk3R4cN/y9vbW48+2livvfa6PD3JBwEAAAAAaUPuff/n3ubcDiAlffv21UMPPaQTJ06oVatW6tmzp7p166YnnnhC+/fvV8OGDTVo0CBb+2HDhqlYsWKaPXu22rRpo/79+6tVq1b68ccfVbVqVfXr1y8XjwYAAAAA8q9mzVpo06aNtr8nJCRoy5Zf1aJFS9uyv/8+qDfeeFXlypXXtGmzNXLkJ/r774N6661+slhuzbk9fPhgHT58SJ98MkETJkzRb79t1blz/96Rf/z4MQ0Y0FcPPVRfc+Ys1AcfjNaRI4c1cGA/GUb676AHAAAAAOB+Qe5tL08WwN3c3DR79my9++678vf3144dO7R//35VrFhRH374oaZPn26bB1ySSpcuraVLl+r555/XtWvXtGnTJrm6uuq1117T3Llz5enpmYtHAwAAAAD5V/Pmj+vvvw/q/PlzkqSdO/+Qt7e3AgMr2dosWvSdAgIq6q233lP58g8qOLiuRowYo5CQv7Vjx+86fTpUO3f+oYED31XNmrVVsWKQPvhglF1euHDhXNWt+5C6d+8pf/8yqlmzlkaMGK2//z6ov/7anePHDQAAAABATiH3tpfnhkC3cnFxUY8ePdSjR480tS9evLhGjRqVzVEBAHB/uDVfjSnb9m+xGBmajwYAkP9UqlRZpUqVtg3F9ssv69SiRSu7NidPHtdDDzWwWxYQUEFeXgV14sQxxcXFSpIqV65iW1+kiK9KlSpt+/uRI0d05sxpPf54o2QxhIWFKji4blYeFgAAAAAAeQa5t708WwAHAAAZYzab5O3tISen7BvoJSnJoujoGxTBAQBp0rz549q0aaOeeeZ5bd26RTNmzLFbbxiGTCnct2UYFjk7/5u23vnvjpOTs13bli2fUNeuryTbj7e3TyaPAAAAAACAvI3c+18UwAEAcDBms0lOTmZ9ufA3RVy4kuX7L12ssF7v9KjMZhMFcABAmjRv3kLz53+rNWtWqVSp0ipbtpzd+gcfrKB9+/baLTt27KiuX7+ucuUelL9/GUnSgQP79MgjDSVJ165dU0REuK19+fIBOnXqhB54wN+27PTpUE2ZMlGvvfa6vLwqZM/BAQAAAACQB5B7/4sCOAAADiriwhWFRkTldhgAAKhixSA98IC/pk//Ui+99J9k6194obNef72XPv/8Ez37bEdFRV3W559/osDAINWtW0/Ozs5q1qyFJkz4VC4uLvL19dW0aV8qISHBto8XX3xJr7/eU+PGjVGHDi/qxo0bGj/+Y924cUMPPFAmJw8XAAAAAIAcR+79LwrgAAAAAHCfcPcted/217z545ozZ5ZatGiZbF21ajX02WcTNWPGNL3yShd5eHiqUaOm6tOnn20YtqFDR+jLLyfqgw/el8Vi0VNPPavo6Kjb9lFdn38+RTNnfqUePV6Wu7ubgoMf0uuvvylXV9csOw4AAAAAgGMj977/c2+TYRiMXZoGSUkWXb58PbfDALKVs7NZPj6een/ij9n21OgjtcqqX+eG+nvOR4o9fzrL9+9evIyqdBuuqKjrSky0ZPn+gftBdn+Wy5X20ZgBbficAUA2SEiIV2TkWfn6lpSLy7+Jo9lsko+Pu8xmpxyPyWJJUlRUbL6e9iK198WqSBFPOTmZcyEyx5NS7p3d323IUQAAAID8hdw7b8rK3JsnwAEAAAAgj7NYDEVFxcpsNuVK3/k5AQcAAAAA5A/k3o6DAjgAAAAA3AdIhgEAAAAAyF7k3o6BMdoAAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAACQxxgG843lJbwfAAAAAOB4yPXylqx8PyiAAwAAAEAe4eTkJEmKj7+Zy5Hgdtb3w8nJOZcjAQAAAABkFrl33pSVuTfZOwAAAADkEWazk9zdvRQTEyVJcnUtIJPJlMtR5V+GYSg+/qZiYqLk7u4ls5l7yAEAAADgfkfunbdkR+5NARwAAAAA8pBChYpIki0RR+5zd/eyvS8AAAAAgPsfuXfek5W5NwVwAAAAAMhDTCaTChf2VcGCPkpKSsztcPI9JydnnvwGAAAAAAdD7p23ZHXuTQEcAAAAAPIgs9kss9k1t8MAAAAAAMBhkXs7Jm5jBwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAAByCc24HAAAAAAAAckdCQoLmzZunFStWKDQ0VB4eHqpevbq6deumRo0aJWt/6dIlTZ06VVu3btX58+fl5+en1q1bq2/fvvL09MyFIwAAAAAAwB5PgAMAAAAAkA8ZhqGBAwfqk08+0blz5/TII4+ocuXK+uOPP9SzZ0999dVXdu0vXLigjh076rvvvpObm5uaNm0qi8WimTNnqlOnToqJicmlIwEAAAAA4F8UwAEAAAAAyIcWLVqk9evXq3Llylq3bp2+/vprffvtt1q6dKm8vLw0ceJEnThxwtZ+1KhRioiIUO/evbV69WpNmjRJP//8s5544gkdOXJEU6ZMycWjAQAAAADgFgrgAAAAAADkQ6tWrZIkDR48WD4+PrbllSpVUvv27WUYhrZs2SJJOn36tNavX6+SJUuqf//+traurq4aOXKkPD09tXjxYsXFxeXsQQAAAAAAcAcK4AAAAAAA5ENz5szRqlWr9NBDDyVbd+PGDUmSk5OTJGnLli2yWCxq0qSJXFxc7NoWLFhQDRo00I0bN7Rjx47sDxwAAAAAgLugAA4AAAAAQD5UoEABVapUyVbkttqwYYN++uknubu7q2XLlpKko0ePSpICAwNT3FeFChXs2gEAAAAAkFucczsAAAAAAACQu65cuaKhQ4fq+PHjOnnypEqWLKmxY8eqRIkSkqSLFy9Kkvz8/FLc3rr80qVLORMwAAAAAACpoAAOAAAAAEA+Fx4ernXr1tn+bjKZdPz4cT388MOS/h0S3c3NLcXtrcut7TLD2dl+sDonJ8cYvM5RjgMAAAAA8joK4AAAAAAA5HPly5fXzp07ZRiGtm/frtGjR2vUqFGKiYlRnz59bMOkm0ymFLc3DMPuvxllNpvk4+OZqX3kVYUKued2CAAAAACQL1AABwAAAAAgn/P0/Lfo3KZNG5UoUUKdO3fW9OnT1bVrV3l4eEiSbt68meL21uXu7pkr8loshq5etX+K3MnJ7BDF46tXY5WUZMntMAAAAADgvlSokHuaR9aiAA4AAAAAAOwEBwerTJkyCgsLU2hoqIoVKybp37nA73SvOcLTIzHRMYvESUkWhz02AAAAAMhLmIAKAAAAAIB8JjY2Vh9//LEGDRqU6rDlrq6ukqTExEQFBgZKkk6cOJFi22PHjkmSgoKCsiFaAAAAAADSjgI4AAAAAAD5jJubm1asWKHVq1dr165dydaHh4fr1KlTcnV1VcWKFdWoUSNJ0qZNm5SUlGTX9tq1a9qxY4c8PDxUp06dHIkfAAAAAIDUUAAHAAAAACCfMZlMeuGFFyRJI0aM0IULF2zrzp07p7feekuJiYnq1KmTPDw8VLp0aTVr1kxnzpzRuHHjbE+Nx8fHa/jw4bp+/bpefPFFeXl55crxAAAAAABgxRzgAAAAAADkQ3379tWePXu0a9cutWrVSnXq1FFCQoL279+vGzduqGHDhho0aJCt/bBhw3To0CHNnj1bmzdvVsWKFXXgwAH9888/qlq1qvr165eLRwMAAAAAwC08AQ4AAAAAQD7k5uam2bNn691335W/v7927Nih/fv3q2LFivrwww81ffp02zzgklS6dGktXbpUzz//vK5du6ZNmzbJ1dVVr732mubOnStPT89cPBoAAAAAAG7hCXAAAAAAAPIpFxcX9ejRQz169EhT++LFi2vUqFHZHBUAAAAAABnHE+AAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhOOd2AAAAAAAAAPiX2WyS2WzKtv1bLIYsFiPb9g8AAAAAuSnPFsAtFouWLFmi5cuX69ixY0pISFCpUqXUokULvfrqqypUqJBd+/r16ys6OjrV/e3fv18FChTI5qgBAAAAAAAyzmw2ydvbQ05O2TdoX1KSRdHRNyiCAwAAAHBIebIAbrFY1L9/f61fv15ubm6qUaOGPDw8tH//fs2cOVPr16/XggULVLRoUUlSRESEoqOjVbx4cdWrVy/FfZrNjPYOAAAAAADyNrPZJCcns75c+JsiLlzJ8v2XLlZYr3d6VGaziQI4AAAAAIeUJwvgy5Yt0/r161WuXDnNnDlT/v7+kqSYmBgNGjRImzZt0qhRo/TFF19Ikg4fPixJat26td5///3cChsAAAAAACBLRFy4otCIqNwOAwAAAADuO3nysehly5ZJkgYPHmwrfkuSl5eXxowZI5PJpA0bNiguLk6SdOjQIUlS1apVcz5YAAAAAAAAAAAAAECekCcL4N7e3nrwwQdVq1atZOuKFCmiwoULKyEhQVFRt+6Etj4BXq1atZwMEwAAAAAAAAAAAACQh+TJIdCnTZuW6rrw8HBFR0fLxcVFRYoUkXTrCXA3NzcdPHhQQ4cO1bFjx2QymRQcHKy+ffuqZs2aORU6AAAAAAAAAAAAACCX5MknwO/GOu9306ZNVaBAAUVGRurChQuKi4vTu+++K4vFovr168vb21u//vqrOnfurB9//DF3gwYAAAAAAAAAAAAAZLs8+QR4aubNm6c1a9bI3d1dAwcOlPTv/N8+Pj766quvVLt2bUmSYRiaM2eOxo4dqyFDhig4OFglSpTIVP/Ozvfd/QJAujg5Oc457kjHAqRXTp3/fM4AAAAAAAAAAHnNfVMAnzt3rsaMGSOTyaTRo0crICBAktSoUSNt3bpVhmGoePHitvYmk0ndu3fXrl27tGHDBi1dulT9+vXLcP9ms0k+Pp6ZPg4AOaNQIffcDgFweHzOAAAAAAAAAAB5TZ4vgBuGoc8++0wzZ86Uk5OTRo8erbZt29rWm0wmFStWLNXtmzVrpg0bNujgwYOZisNiMXT16o1M7QPI65yczA5T0Lp6NVZJSZbcDgPIFTn1WeZzBgDALYUKuTMyCgAAAAAAeUSeLoDHxcXpnXfe0bp16+Tm5qbx48erRYsW6dqHn5+fJCk2NjbT8SQm8iM/cL9ISrLwmQWyGZ8zAAAAAAAAAEBek2cL4DExMerZs6f++usv+fr66quvvlLNmjWTtVu8eLF+//13tWvXLsXieHh4uCRlev5vAAAAAAAAAAAAAEDelicL4AkJCerdu7f++usvlS1bVrNmzZK/v3+Kbc+fP6+1a9cqNjY2WQHcMAytWrVKktSwYcNsjxsAAAAAAAAAAAAAkHvy5CRlU6ZM0e7du+Xn56d58+alWvyWpGeeeUaurq769ddf9f3339uWWywWTZo0Sfv371eFChXUunXrnAgdAAAAAAAAAAAAAJBL8twT4FeuXNGcOXMkSb6+vho3blyqbQcPHix/f3+NGDFCQ4cO1bBhwzR//nyVK1dOISEhCgsLU9GiRTV58mS5uLjk1CEAAAAAAAAAAAAAAHJBniuA79u3T7GxsZKkkJAQhYSEpNr2jTfeUNGiRfXcc8+pfPnymjFjhvbs2aOTJ0+qWLFievnll9WnTx/5+vrmVPgAAAAAAAAAAAAAgFyS5wrgjRs31pEjR9K9XXBwsL766qtsiAgAAAAAAAAAAAAAcD/Ik3OAAwAAAAAAAAAAAACQXhTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgE59wOAAAA3J+cnLL3PjqLxZDFYmRrHwAAAAAAAAAAx0IBHAAApEvhgm4yLBYVKuSerf1YLEmKioqlCA4AAAAAAAAASDMK4AAAIF083VxlMpt1as0MxUaezZY+3H1Lqny7XjKbTRTAAQAAAAAAAABpRgEcAABkSGzkWcWeP53bYQAAAAAAAAAAYJO9k3cCAAAAAAAAAAAAAJBDKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADsE5twMAAAAAAABAznJyyt5nIiwWQxaLka19AAAAAEBKKIADAAAAAADkE4ULusmwWFSokHu29mOxJCkqKpYiOAAAAIAcRwEcAAAAAAAgn/B0c5XJbNapNTMUG3k2W/pw9y2p8u16yWw2UQAHAAAAkOMogAMAAAAAAOQzsZFnFXv+dG6HAQAAAABZLnsnfAIAAAAAAAAAAAAAIIdQAAcAAAAAAAAAAAAAOASGQAcAAAAAIJ+yWCxasmSJli9frmPHjikhIUGlSpVSixYt9Oqrr6pQoUJ27evXr6/o6OhU97d//34VKFAgm6MGAAAAACB1FMABAAAAAMiHLBaL+vfvr/Xr18vNzU01atSQh4eH9u/fr5kzZ2r9+vVasGCBihYtKkmKiIhQdHS0ihcvrnr16qW4T7OZgeYAAAAAALmLAjgAAAAAAPnQsmXLtH79epUrV04zZ86Uv7+/JCkmJkaDBg3Spk2bNGrUKH3xxReSpMOHD0uSWrdurffffz+3wgYAAAAA4K64NRsAAAAAgHxo2bJlkqTBgwfbit+S5OXlpTFjxshkMmnDhg2Ki4uTJB06dEiSVLVq1ZwPFgAAAACANKIADgAAAABAPuTt7a0HH3xQtWrVSrauSJEiKly4sBISEhQVFSXp3yfAq1WrlpNhAgAAAACQLgyBDgAAAABAPjRt2rRU14WHhys6OlouLi4qUqSIpFtPgLu5uengwYMaOnSojh07JpPJpODgYPXt21c1a9bMqdABAAAAAEgVT4ADAAAAAAA71nm/mzZtqgIFCigyMlIXLlxQXFyc3n33XVksFtWvX1/e3t769ddf1blzZ/3444+5GzQAAAAAAOIJcAAAAAAAcJt58+ZpzZo1cnd318CBAyX9O/+3j4+PvvrqK9WuXVuSZBiG5syZo7Fjx2rIkCEKDg5WiRIlMtW/s7P9vfpOTo5x735aj8NRjldyrGMBAAAAcP+gAA4AAAAAACRJc+fO1ZgxY2QymTR69GgFBARIkho1aqStW7fKMAwVL17c1t5kMql79+7atWuXNmzYoKVLl6pfv34Z7t9sNsnHxzPTx5EXFSrkntsh5Lj8eMwAAAAAch8FcAAAAAAA8jnDMPTZZ59p5syZcnJy0ujRo9W2bVvbepPJpGLFiqW6fbNmzbRhwwYdPHgwU3FYLIauXr1ht8zJyewQhdSrV2OVlGS5ZztHOV4p7ccMAAAAAPdSqJB7mkeZogAOAAAAAEA+FhcXp3feeUfr1q2Tm5ubxo8frxYtWqRrH35+fpKk2NjYTMeTmOiYBdOkJIvDHltq8uMxAwAAAMh9FMABAAAAAMinYmJi1LNnT/3111/y9fXVV199pZo1ayZrt3jxYv3+++9q165disXx8PBwScr0/N9AdjGbTTKbTdm2f4vFkMViZNv+AQAAAKQdBXAAAAAAAPKhhIQE9e7dW3/99ZfKli2rWbNmyd/fP8W258+f19q1axUbG5usAG4YhlatWiVJatiwYbbHDaTXrbnl3WU2O2VbHxZLkqKiYimCAwAAAHkABXAAAAAAAPKhKVOmaPfu3fLz89O8efNUvHjxVNs+88wzmjFjhn799Vd9//336tixoyTJYrFo8uTJ2r9/vypUqKDWrVvnVPhAmt16+ttJp9bMUGzk2Szfv7tvSZVv10tms4kCOAAAAJAHUAAHAAAAACCfuXLliubMmSNJ8vX11bhx41JtO3jwYPn7+2vEiBEaOnSohg0bpvnz56tcuXIKCQlRWFiYihYtqsmTJ8vFxSWnDgFIt9jIs4o9fzq3wwAAAACQzSiAAwAAAACQz+zbt0+xsbGSpJCQEIWEhKTa9o033lDRokX13HPPqXz58poxY4b27NmjkydPqlixYnr55ZfVp08f+fr65lT4AAAAAACkigI4AAAAAAD5TOPGjXXkyJF0bxccHKyvvvoqGyICAAAAACBrmHM7AAAAAAAAAAAAAAAAsgIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHIJzbgeQGovFoiVLlmj58uU6duyYEhISVKpUKbVo0UKvvvqqChUqZNf+0qVLmjp1qrZu3arz58/Lz89PrVu3Vt++feXp6ZlLRwEAAAAAAAAAAAAAyCl58glwi8Wi/v37a/jw4QoJCVHVqlX1yCOP6OrVq5o5c6Y6dOigS5cu2dpfuHBBHTt21HfffSc3Nzc1bdpUFotFM2fOVKdOnRQTE5OLRwMAAAAAAAAAAAAAyAl5sgC+bNkyrV+/XuXKldOaNWs0b948ff3111q/fr2aNWumsLAwjRo1ytZ+1KhRioiIUO/evbV69WpNmjRJP//8s5544gkdOXJEU6ZMycWjAQAAAAAAAAAAAADkhDxbAJekwYMHy9/f37bcy8tLY8aMkclk0oYNGxQXF6fTp09r/fr1KlmypPr3729r6+rqqpEjR8rT01OLFy9WXFxcjh8HAAAAAAAAAAAAACDn5MkCuLe3tx588EHVqlUr2boiRYqocOHCSkhIUFRUlLZs2SKLxaImTZrIxcXFrm3BggXVoEED3bhxQzt27Mih6AEAAAAAAAAAAAAAuSFPFsCnTZumtWvXysfHJ9m68PBwRUdHy8XFRUWKFNHRo0clSYGBgSnuq0KFCpJkawcAAAAAAAAAAAAAcEx5sgB+N1988YUkqWnTpipQoIAuXrwoSfLz80uxvXX5pUuXciQ+AAAAAAAAAAAAAEDucM7tANJj3rx5WrNmjdzd3TVw4EBJ0o0bNyRJbm5uKW5jXW5tlxnOzvfd/QJAujg5Oc457kjHAqSXI53/jnQsAAAAAAAAAIDsd98UwOfOnasxY8bIZDJp9OjRCggIkCQ5OTlJkkwmU4rbGYZh99+MMptN8vHxzNQ+AOScQoXcczsEAFmAzzIAAAAAAAAAID3yfAHcMAx99tlnmjlzppycnDR69Gi1bdvWtt7Dw0OSdPPmzRS3ty53d8/cD+gWi6GrVzP/FDmQlzk5mR2m2HT1aqySkiy5HQaQK/gsAwCQswoVcmfUEgAAAAAA8og8XQCPi4vTO++8o3Xr1snNzU3jx49XixYt7NoUK1ZMkmxzgd/pXnOEp0diIj/AA/eLpCQLn1nAAfBZBgAAAAAAAACkR54tgMfExKhnz57666+/5Ovrq6+++ko1a9ZM1i4wMFCSdOLEiRT3c+zYMUlSUFBQ9gULAAAAAAAAAAAAAMh1eXKMtoSEBPXu3Vt//fWXypYtq8WLF6dY/JakRo0aSZI2bdqkpKQku3XXrl3Tjh075OHhoTp16mR73AAAAAAAAAAAAACA3JMnC+BTpkzR7t275efnp3nz5snf3z/VtqVLl1azZs105swZjRs3ToZhSJLi4+M1fPhwXb9+XS+++KK8vLxyKnwAAAAAAAAAAAAAQC7Ic0OgX7lyRXPmzJEk+fr6aty4cam2HTx4sIoWLaphw4bp0KFDmj17tjZv3qyKFSvqwIED+ueff1S1alX169cvp8IHAAAAAAAAAAAAAOSSPFcA37dvn2JjYyVJISEhCgkJSbXtG2+8oaJFi6p06dJaunSpJk+erF9//VWbNm1SqVKl9Nprr6lXr17y9PTMqfABAAAAAAAAAAAAALkkzxXAGzdurCNHjqR7u+LFi2vUqFHZEBEAAAAAAAAAAAAA4H6QJ+cABwAAAAAAAAAAAAAgvfLcE+AAAAAAAADIX8xmk8xmU7bs28mJ5z8AAACA/IQCOAAAAAAAAHKN2WySt7cHhWoAAAAAWYICOAAAAAAAAHKN2WySk5NZXy78TREXrmT5/msGldILrWtl+X4BAAAA5E0UwAEAAAAAAJDrIi5cUWhEVJbvt5RfoSzfJwAAAIC8i7GlAAAAAAAAAAAAAAAOIVMF8JUrV2r37t33bLdx40ZNmjQpM10BAAAAAJAvkXsDAAAAAJB2mSqADx48WN9///09261atUqzZ8/OTFcAAAAAAORL5N4AAAAAAKRduuYAX7lypRITE+2WhYWFaenSpaluExMTo99//10uLi4ZixAAAAAAgHyE3BsAAAAAgIxLVwH80KFDmjdvnkwmkyTJZDJp37592rdv3123MwxDzzzzTMajBAAAAAAgnyD3BgAAAAAg49JVAO/fv79iYmJsf1+xYoXKlCmjOnXqpLpNgQIFVK5cOXXq1CnjUQIAAAAAkE+QewMAAAAAkHHpKoAXLFhQY8eOtf19xYoVqlWrlt0yAAAAAACQceTeAAAAAABkXLoK4HcKCQnJqjgAAAAAAEAKyL0BAAAAAEi7TBXAbxcZGanY2FgZhpFqG39//6zqDgAAAACAfIfcGwAAAACAu8t0Afzbb7/VjBkzdPny5bu2M5lM+vvvvzPbHQAAAAAA+Q65NwAAAAAAaZOpAvjy5cv18ccfS5JcXV3l4+MjJyenLAkMAAAAAACQewMAAAAAkB6ZKoDPnz9fJpNJQ4cOVceOHeXi4pJVcQEAAAAAAJF7AwAAAACQHpkqgJ84cUK1atVSly5dsioeAAAAAABwG3JvAAAAAADSLlMFcHd3d/n4+GRVLAAAAAAA4A7ZmXtbLBYtWbJEy5cv17Fjx5SQkKBSpUqpRYsWevXVV1WoUCG79pcuXdLUqVO1detWnT9/Xn5+fmrdurX69u0rT0/PbIkRAAAAAID0MGdm43r16mn//v2KjY3NqngAAAAAAMBtsiv3tlgs6t+/v4YPH66QkBBVrVpVjzzyiK5evaqZM2eqQ4cOunTpkq39hQsX1LFjR3333Xdyc3NT06ZNZbFYNHPmTHXq1EkxMTFZGh8AAAAAABmRqQL4wIEDFRsbq/fff19XrlzJqpgAAAAAAMD/y67ce9myZVq/fr3KlSunNWvWaN68efr666+1fv16NWvWTGFhYRo1apSt/ahRoxQREaHevXtr9erVmjRpkn7++Wc98cQTOnLkiKZMmZJlsQEAAAAAkFGZGgJ90aJFqlGjhn766Sdb0lyoUCGZTKZkbU0mk+bPn5+Z7gAAAAAAyHeyK/detmyZJGnw4MHy9/e3Lffy8tKYMWP0yCOPaMOGDYqLi9OFCxe0fv16lSxZUv3797e1dXV11ciRI7VlyxYtXrxYb775ptzc3DJ5xAAAAAAAZFymCuBz5syx/X9iYqKOHz+eatuUEnMAAAAAAHB32ZV7e3t768EHH1StWrWSrStSpIgKFy6s6OhoRUVFacuWLbJYLGrSpIlcXFzs2hYsWFANGjTQxo0btWPHDjVp0iTNMQAAAAAAkNUyVQCfO3duVsUBAAAAAABSkF2597Rp01JdFx4erujoaLm4uKhIkSI6evSoJCkwMDDF9hUqVNDGjRt19OhRCuAAAAAAgFyVqQJ4vXr1sioOAAAAAACQgtzIvb/44gtJUtOmTVWgQAFdvHhRkuTn55die+vyS5cu5Uh8AAAAAACkJlMF8NslJCTo8OHDOnv2rIoWLao6deron3/+UalSpbKqCwAAAAAA8rWcyL3nzZunNWvWyN3dXQMHDpQk3bhxQ5JSnd/butzaLjOcnc12f3dyMqfS8v6S1uNwlOOV8t8xO8pxAAAAAPe7TBfAExMT9eWXX+q7777TtWvXJEnt27dXnTp19N577+n69euaMGGCypYtm+lgAQAAAADIj3Iq9547d67GjBkjk8mk0aNHKyAgQJLk5OQkKfU5xg3DsPtvRpnNJvn4eGZqH3lVoULuuR1Cjstvx5zfjhcAAADIqzJVAE9MTNSrr76q7du3y9nZWdWqVdOBAwds669fv66///5bXbp00cqVK1W0aNFMBwwAAAAAQH6SE7m3YRj67LPPNHPmTDk5OWn06NFq27atbb2Hh4ck6ebNmylub13u7p65AqDFYujqVfunyJ2czA5RWLx6NVZJSZZ7tnOU45Xy3zGn9XgBAAAApF+hQu5pHnUpUwXw7777Tr/99psaNmyoMWPGqFixYqpUqZJt/YIFCzRixAitXLlSs2bN0nvvvZeZ7gAAAAAAyHeyO/eOi4vTO++8o3Xr1snNzU3jx49XixYt7NoUK1ZMkmxzgd/pXnOEp0diomMWEJOSLA57bKnJb8ec344XAAAAyKsyNTnRihUr5O3trYkTJ9qS4du5ublp5MiRKlasmLZs2ZKZrgAAAAAAyJeyM/eOiYlR9+7dtW7dOvn6+mru3LnJit+SFBgYKEk6ceJEivs5duyYJCkoKChd/QMAAAAAkNUyVQAPDQ1V3bp15emZ+vxcLi4uqlGjhv7555/MdAUAAAAAQL6UXbl3QkKCevfurb/++ktly5bV4sWLVbNmzRTbNmrUSJK0adMmJSUl2a27du2aduzYIQ8PD9WpUyfN/QMAAAAAkB0yVQB3dnbW1atX79kuOjpazs6ZGm0dAAAAAIB8Kbty7ylTpmj37t3y8/PTvHnz5O/vn2rb0qVLq1mzZjpz5ozGjRsnwzAkSfHx8Ro+fLiuX7+uF198UV5eXmnuHwAAAACA7JCpqnTlypV14MABRUREqHTp0im2CQ8P14EDB1SjRo3MdAUAAAAAQL6UHbn3lStXNGfOHEmSr6+vxo0bl2rbwYMHq2jRoho2bJgOHTqk2bNna/PmzapYsaIOHDigf/75R1WrVlW/fv3Sf3AAAAAAAGSxTD0B3qlTJ8XGxqpv3776+++/k60/cuSI3njjDcXHx6tDhw6Z6QoAAAAAgHwpO3Lvffv2KTY2VpIUEhKi1atXp/rn+vXrkm49Bb506VI9//zzunbtmjZt2iRXV1e99tprmjt37l2HaAcAAAAAIKdk6gnwNm3aaPv27Vq6dKmee+45FSxYUCaTSVu3blXTpk11/vx5GYahtm3b6qmnnsqqmAEAAAAAyDeyI/du3Lixjhw5ku5YihcvrlGjRqV7OwAAAAAAckqmJ+YeNWqUatWqpVmzZunUqVOSpKioKElSqVKl1K1bN3Xt2jWz3QAAAAAAkG+RewMAAAAAkDaZLoBLUocOHdShQwddvHhRZ8+elcVikZ+fX6pzkwEAAAAAgPQh9wYAAAAA4N4yNQe4VVRUlHbu3Ck/Pz/VqFFDtWrVUmxsrL777jtdvHgxK7oAAAAAACBfI/cGAAAAAODeMl0A//7779W4cWN9/PHHdsv37dunkSNHqlWrVvrxxx8z2w0AAAAAAPkWuTcAAAAAAGmTqQL4b7/9puHDh8vZ2VkNGjSwW1enTh316NFDhmFo0KBB+uOPPzIVKAAAAAAA+RG5NwAAAAAAaZepAvjMmTPl7OysuXPn6t1337VbV65cOb3zzjuaO3euTCaTZsyYkalAAQAAAADIj8i9AQAAAABIu0wVwI8ePar69eurevXqqbapXr266tSpo71792amKwAAAAAA8iVybwAAAAAA0i5TBfDY2Fi5u7vfs523t7cSExMz0xUAAAAAAPkSuTcAAAAAAGmXqQJ4uXLltGvXLsXExKTa5ubNm9q9e7fKlCmTma4AAAAAAMiXyL0BAAAAAEi7TBXAn3zySV25ckX9+/fXpUuXkq2PiorSW2+9pcuXL6t9+/aZ6QoAAAAAgHyJ3BsAAAAAgLRzzszGXbp00Y8//qjt27eradOmqlatmkqWLClJOnfunA4dOqT4+HjVqFFD3bt3z4p4AQAAAADIV8i9AQAAAABIu0wVwF1cXDR79mxNmDBBy5cv1969e7V3717b+gIFCqhTp05655135OrqmtlYAQAAAADId8i9AQAAAABIu0wVwCXJ09NTQ4cO1bvvvquDBw/q4sWLSkpKkp+fn6pWrSoPD4+siBMAAAAAgHyL3BsAAAAAgLTJVAG8a9euKleunD766CO5uroqODg4q+ICAAAAAAAi9wYAAAAAID0yVQDfv3+/zGZzVsUCAAAAAADuQO4NAAAAAEDaZSqD9vT0lGEYWRULAAAAAAC4A7k3AAAAAABpl6kCeJ8+fbRz50598803io+Pz6qYAAAAAADA/yP3BgAAAAAg7TI1BHp4eLjKli2rcePG6fPPP1fZsmVVqFChFIdmM5lMmj9/fma6AwAAAAAg3yH3BgAAAAAg7TJVAJ8zZ47t/xMTE3XixIlU25pMpsx0BQAAAABAvkTuDQAAAABA2mWqAD537tysigMAAAAAAKSA3BsAAAAAgLTLVAG8Xr16WRUHAAAAAABIAbk3AAAAAABpl6kC+O0SEhJ0+PBhnT17VkWLFlWdOnX0zz//qFSpUlnVRb5kNptkNmffEHYWiyGLxci2/QMAAAAAsg65NwAAAAAAd5fpAnhiYqK+/PJLfffdd7p27ZokqX379qpTp47ee+89Xb9+XRMmTFDZsmUzHWx+Yzab5OPjLrPZKdv6sFiSFBUVSxEcAAAAAPIwcm8AAAAAANImUwXwxMREvfrqq9q+fbucnZ1VrVo1HThwwLb++vXr+vvvv9WlSxetXLlSRYsWzXTA+cmtp7+ddGrNDMVGns3y/bv7llT5dr1kNpsogAMAAABAHkXuDQAAAABA2pkzs/F3332n3377TY8++qg2btyoJUuW2K1fsGCBnn76aV26dEmzZs3KVKD5WWzkWcWeP531f7KhqA4AAAAAyFrk3gAAAAAApF2mCuArVqyQt7e3Jk6cqGLFiiVb7+bmppEjR6pYsWLasmVLZroCAAAAACBfIvcGgP9j776jq6jz/4+/7k2AJPTeLbREUXpXRAFpSomAIGgsSJEmuK6ACyILgiDCqiCIfEGKC6KQUIXQlR5qlKaCUgKG3gIhJJnfH/ySNSZA2r1z78zzcY5ndeaTe9+fndte854CAAAApF+WGuB//PGHatWqpdy5c99xTI4cOVSlShWdOnUqK0+lsLAwBQYGasuWLWmur1u3rgIDA+/4z82bN7P0/AAAAAAAmMGd2RsAAAAAAG+XpXuA+/r66sqVK/ccd+nSJfn6Zv6pIiMjNXLkyDuuj4qK0qVLl1S8eHHVqVMnzTFOZ5Z6/QAAAAAAmMJd2RsAAAAAACvIUjJ+6KGH9NNPPykqKkqlS5dOc8yJEyf0008/qUqVKpl6jnXr1mnQoEG6du3aHcccPHhQktSiRQu9++67mXoeAAAAAAA8kTuyNwAAAAAAVpGl06JfeOEF3bhxQ71799aBAwdSrT98+LD69eunuLg4dejQIUOPHR0drSFDhqh37966deuWihQpcsex+/fvlyRVrlw5YxMAAAAAAMDDuTJ7AwAAAABgNVk6A7xVq1basmWLvvvuO7Vv31558+aVw+HQjz/+qCeffFLR0dEyDEPPPPOM2rZtm6HHnjhxokJDQ/XII49o9OjRGjVqlM6dO5fm2KQzwB955JGsTAcAAAAAAI/jyuwNAAAAAIDVZPnmYKNGjVK1atX0f//3f/r9998lSRcvXpQklSpVSi+//LJCQkIy/LjlypXT2LFj1aZNm3vev3v//v3y8/PTzz//rKFDh+rXX3+Vw+FQjRo11Lt3b1WtWjXjEwMAAAAAwEO4KnsDAAAAAGA1WW6AS1KHDh3UoUMHnT17VqdPn1ZiYqKKFi16x3uTpUePHj3SNe78+fM6c+aMJOmdd95RtWrVVLduXf3yyy/asGGDNm3apI8++kitWrXKdC0AAAAAAJjNFdkbAAAAAACryXADPCEhQf/9738VHh6uc+fOqVSpUmrdurXatWunokWLqmjRoq6o846S7v9dsGBBTZkyRdWrV5ckGYahWbNmacyYMRoyZIhq1KihEiVKZOm5fH2zdMv0DPPxcc/zuet54Pms9Fqw0lyAjLLS699KcwEAICM8LXsDAAAAAOAtMtQAj4uLU7du3bRz504ZhiFJ+v3337VlyxatX79en3zyiUuKvJuGDRvqxx9/lGEYKl68ePJyh8OhV155RREREVqzZo2+++479e3bN9PP43Q6VLBg7uwo2ePky+dvdglAtuN1DVgD72UAgB15YvYGAAAAAMBbZKgBPn/+fEVERKh48eLq3r27ypYtq19++UXTp09XeHi4Fi9erLZt27qq1jQ5HA4VK1bsjuufeuoprVmzRj///HOWnicx0dCVK9ez9BgZ5ePjdMuO/ytXbighIdHlzwPP567XnDvwuoad8V4GAMC98uXzz9arlnhi9gYAAAAAwFtkqAG+cuVK+fn5ad68eSpVqpQkqVGjRmrYsKGCg4O1fPlyjwvhSZeFu3HjRpYfKz7emjvgExISLTs32Beva8AaeC8DAOzIG7M3AAAAAACeIkOHqB85ckS1atVKDuBJgoKCVLlyZR06dChbi0uPb775RgMGDNCaNWvSXH/ixAlJyvL9vwEAAAAAcAdPzN4AAAAAAHiLDDXAY2JilD9//jTXlSlTRpcuXcqOmjIkOjpa33//vb799ttU6wzD0OLFiyVJjz/+uLtLAwAAAAAgwzwxewMAAAAA4C0y1ACPj4+Xj49Pmuty5MihW7duZUtRGREcHKycOXNqw4YNWrBgQfLyxMREffrpp4qMjFSFChXUokULt9cGAAAAAEBGeWL2BgAAAADAW2ToHuCeqGzZsnr//fc1dOhQDRs2THPnztUDDzygQ4cO6dixYypSpIg+++wz5ciRw+xSAQAAAAAAAAAAAAAulKEzwD1V+/bt9fXXX6tx48aKjo7WunXrFB8fr5deeklLlixRuXLlzC4RAAAAAAAAAAAAAOBiXnMG+Jw5c+66vkaNGpoyZYqbqgEAAAAAAAAAAAAAeJoMN8DXrFmjJk2apFp+8eJFSUpznSQ5HA6tWbMmo08HAAAAAIDtkL0BAAAAAMicDDfAr1+/ruvXr99xfVRUVJrLHQ5HRp8KAAAAAABbInsDAAAAAJA5GWqAz54921V1AAAAAAAAkb0BAAAAAMiKDDXA69Sp46o6AAAAAACAyN4AAAAAAGSF0+wCAAAAAAAAAAAAAADIDjTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAluBrdgEAAAAAAMAzhIWFadCgQZo5c6YaNGiQan3dunV16dKlO/59ZGSkcuXK5cIKAQAAAAC4OxrgAAAAAABAkZGRGjly5B3XR0VF6dKlSypevLjq1KmT5hinkwvNAQAAAADMRQMcAAAAAACbW7dunQYNGqRr167dcczBgwclSS1atNC7777rrtIAAAAAAMgQGuAAAAAAANhUdHS0/vOf/yg0NFR+fn4qUqSIzp07l+bY/fv3S5IqV67szhIBAAAAAMgQrk0GAAAAAIBNTZw4UYsWLVLlypX1zTffqFy5cnccm3QG+COPPOKu8gAAAAAAyDDOAAcAAAAAwKbKlSunsWPHqk2bNve8f/f+/fvl5+enn3/+WUOHDtWvv/4qh8OhGjVqqHfv3qpataqbqgYAAAAA4M44AxwAAAAAAJvq0aOH2rVrd8/m9/nz53XmzBnFxsbqnXfeUWJiourWrasCBQpow4YN6tKli1asWOGmqgEAAAAAuDPOAAcAAAAAAHeVdP/vggULasqUKapevbokyTAMzZo1S2PGjNGQIUNUo0YNlShRIkvP5eubshnv42ONY/fTOw+rzFey35ytMg8AAADA29EABwAAAAAAd9WwYUP9+OOPMgxDxYsXT17ucDj0yiuvKCIiQmvWrNF3332nvn37Zvp5nE6HChbMnR0le5x8+fzNLsHt7DZnu80XAAAA8FQ0wAEAAAAAwF05HA4VK1bsjuufeuoprVmzRj///HOWnicx0dCVK9dTLPPxcVqisXjlyg0lJCTec5xV5ivZb87pnS8AAACAjMuXzz/dV12iAQ4AAAAAALKkaNGikqQbN25k+bHi463ZQExISLTs3O7EbnO223wBAAAAT8XNiQAAAAAAwF198803GjBggNasWZPm+hMnTkhSlu//DQAAAABAVnEGOAAAAAAAuKvo6Gh9//33unHjhpo2bZpinWEYWrx4sSTp8ccfN6M8AAAAAACScQY4AAAAAAC4q+DgYOXMmVMbNmzQggULkpcnJibq008/VWRkpCpUqKAWLVqYWCUAAAAAAJwBDgAAAAAA7qFs2bJ6//33NXToUA0bNkxz587VAw88oEOHDunYsWMqUqSIPvvsM+XIkcPsUgEAAAAANscZ4AAAAAAA4J7at2+vr7/+Wo0bN1Z0dLTWrVun+Ph4vfTSS1qyZInKlStndokAAAAAAHAGOAAAAAAAuG3OnDl3XV+jRg1NmTLFTdUAAAAAAJBxnAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABL8DW7AAAAAABwB6fTIafT4dLnSEw0lJhouPQ5AAAAAAAAcGc0wAEAAABYntPpUMGC/nI6fVz6PImJCbp48QZNcAAAAAAAAJPQAAcAAABgebfP/vbR78u+1I3zp13yHP6FS+rBZ7vL6XTQAAcAAAAAADAJDfAscuVlFH18uEU7AAAAkJ1unD+tG9HHzS4DAAAAAAAALuI1DfCwsDANGjRIM2fOVIMGDVKtP3funD7//HP9+OOPio6OVtGiRdWiRQv17t1buXPndklNTqdDBQoE0KgGAAAAAAAAAAAAAA/gFQ3wyMhIjRw58o7rz5w5o86dOysqKkqVKlXSk08+qZ9++knTp0/Xjz/+qP/+97/KkydPttfldDrk4+PU5HmbFXXmcrY/ftXAUurUolq2Py4AAAAAAAAAAAAAWJHHN8DXrVunQYMG6dq1a3ccM2rUKEVFRalHjx76xz/+IUmKi4vTO++8o++//16TJk3S4MGDXVZj1JnL+iPqYrY/bqmi+bL9MQEAAAAAAAAAAADAqjz22t3R0dEaMmSIevfurVu3bqlIkSJpjjt+/LhWr16tkiVLqn///snLc+bMqZEjRyp37tz65ptvFBsb667SAQAAAAAAAAAAAAAm8NgG+MSJE7Vo0SJVrlxZ33zzjcqVK5fmuB9++EGJiYlq1KiRcuTIkWJd3rx5Va9ePV2/fl3bt293R9kAAAAAAAAAAAAAAJN4bAO8XLlyGjt2rL799lsFBgbecdwvv/wiSapUqVKa6ytUqJBiHAAAAADP5HQ65OvrdMk/Pj4eG30AAAAAAACQjTz2HuA9evRI17izZ89KkooWLZrm+qTl586dy57CAAAAAGQ7p9OhAgUCaFQDAAAAAAAgSzy2AZ5e169flyT5+fmluT5pedK4rPD1Tbkzzio756wyD2SdlV4LVpoLkFFWev1baS4A7s7H5/ZZ2pPnbVbUmcvZ/vhVA0upU4tq2f64aeGzCwAAAAAAwDxe3wD38fGRJDkcjjTXG4aR4n8zy+l0qGDB3Fl6DE+VL5+/2SUA2Y7XNWANvJcB+4k6c1l/RF3M9sctVTRftj/mnfDZBQAAAAAAYB6vb4AHBARIkm7evJnm+qTl/v5Z2wmVmGjoypWUZ5H7+DgtsXPrypUbSkhINLsMeACrvKYlXtewN97LALwRn13wZvny+XPmPwAAAAAAHsLrG+DFihWT9L97gf/dve4RnhHx8dbciZWQkGjZucG+eF0D1sB7GYA34rMLAAAAAADAPF5/iHqlSpUkSUeOHElz/a+//ipJCgwMdFtNAAAAAAAAAAAAAAD38/oGeMOGDSVJ69evV0JCQop1V69e1fbt2xUQEKCaNWuaUR4AAAAAAAAAAAAAwE28vgFeunRpPfXUUzp58qQ++ugjGYYhSYqLi9N7772nmJgYde7cWXny5DG5UgAAAAAAAAAAAACAK3n9PcAladiwYdq/f79mzpypjRs3qmLFivrpp5906tQpVa5cWX379jW7RAAAAAAAAAAAAACAi3n9GeDS7bPAv/vuO3Xs2FFXr17V+vXrlTNnTvXq1UuzZ89W7ty5zS4RAAAAAAAAAAAAAOBiXnMG+Jw5c+66vnjx4ho1apSbqgEAAAAAAAAAAAAAeBpLnAEOAAAAAAAAAAAAAAANcAAAAAAAIEkKCwtTYGCgtmzZkub6c+fO6d///reefvppValSRU2aNNFHH32kmJgYN1cKAAAAAEDaaIADAAAAAABFRkZq5MiRd1x/5swZPf/88/r666/l5+enJ598UomJiZo+fbpeeOEFXbt2zY3VAgAAAACQNhrgAAAAAADY3Lp169StW7e7NrFHjRqlqKgo9ejRQ0uXLtWnn36qVatWqWXLljp8+LAmTZrkxooBAAAAAEgbDXAAAAAAAGwqOjpaQ4YMUe/evXXr1i0VKVIkzXHHjx/X6tWrVbJkSfXv3z95ec6cOTVy5Ejlzp1b33zzjWJjY91VOgAAAAAAaaIBDgAAAACATU2cOFGLFi1S5cqV9c0336hcuXJpjvvhhx+UmJioRo0aKUeOHCnW5c2bV/Xq1dP169e1fft2d5QNAAAAAMAd0QAHAAAAAMCmypUrp7Fjx+rbb79VYGDgHcf98ssvkqRKlSqlub5ChQopxgEAAAAAYBZfswsAAAAAAADm6NGjR7rGnT17VpJUtGjRNNcnLT937lz2FAYAAAAAQCbRAAcAAAAAAHd1/fp1SZKfn1+a65OWJ43LCl/flBer8/GxxsXr0jsPq8xXst+crTIPAAAAwNvRAAcAAAAAAHfl4+MjSXI4HGmuNwwjxf9mltPpUMGCubP0GJ4qXz5/s0twO7vN2W7zBQAAADwVDXAAAAAAAHBXAQEBkqSbN2+muT5pub9/1hqAiYmGrlxJeRa5j4/TEo3FK1duKCEh8Z7jrDJfyX5zTu98AQAAAGRcvnz+6b7qEg1wAAAAAABwV8WKFZP0v3uB/9297hGeEfHx1mwgJiQkWnZud2K3OdttvgAAAICn4uZEAAAAAADgripVqiRJOnLkSJrrf/31V0lSYGCg22oCAAAAACAtNMABAAAAAMBdNWzYUJK0fv16JSQkpFh39epVbd++XQEBAapZs6YZ5QEAAAAAkIwGOAAAAAAAuKvSpUvrqaee0smTJ/XRRx/JMAxJUlxcnN577z3FxMSoc+fOypMnj8mVAkjidDrk6+t02T9Op8PsKQIAAABp4h7gAAAAAADgnoYNG6b9+/dr5syZ2rhxoypWrKiffvpJp06dUuXKldW3b1+zSwTw/zmdDhUs6C+n08dlz5GYmKCLF28oMdFw2XMAAAAAmUEDHAAAAAAA3FPp0qX13Xff6bPPPtOGDRu0fv16lSpVSr169VL37t2VO3dus0sE8P85nQ45nT76fdmXunH+dLY/vn/hknrw2e5yOh00wAEAAOBxaIADAAAAAABJ0pw5c+66vnjx4ho1apSbqgGQVTfOn9aN6ONmlwEAAAC4FfcABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAlcAl0ZMjte0g5XPb4iYkG944CAAAAAAAAAAAAkCk0wJFuTqdDBQoEyMfHdRcOSEhI1KVL12mCAwAAAAAAAAAAAMgwGuBIN6fTIR8fpybP26yoM5ez/fFLF8uvPi88JqfTQQMcAAAAAAAAAAAAQIbRAEeGRZ25rD+iLppdBgAAAAAAAAAAAACk4LprWQMAAAAAAAAAAAAA4EY0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJvmYXAAAAAAAAANiJ0+mQ0+lw2eP7+HDOCwAAAOyLBjgAAAAAAADgJk6nQwUKBNCkBgAAAFyEBjgAAAAAAADgJk6nQz4+Tk2et1lRZy675DmqBpZSpxbVXPLYAAAAgKejAQ4AAAAAAAC4WdSZy/oj6qJLHrtU0XwueVwAAADAG3CtJQAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFgCDXAAAAAAAAAAAAAAgCXQAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl+JpdAPB3Pj6uPS4jMdFQYqLh0ucAAAAAAAAAAAAA4H40wOEx8uf1k5GYqHz5/F36PImJCbp48QZNcAAAAAAAAAAAAMBiaIDDY+T2yymH06nfl32pG+dPu+Q5/AuX1IPPdpfT6aABDgAAAAAAAAAAAFgMDXB4nBvnT+tG9HGzywAAAAAAAAAAAADgZVx7s2UAAAAAAAAAAAAAANyEBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALMHX7AKy07p16/TGG2/ccX2rVq00ceJEN1YEAAAAAAAAAAAAAHAXSzXADxw4IEmqXbu2SpQokWp99erV3V0SAAAAAAAAAAAAAMBNLNkAHzp0qIKCgkyuBgAAAAAAAAAAAADgTpa6B/iBAweUK1cuVahQwexSAAAAAAAAAAAAAABuZpkG+MWLF3X69GkFBgbK19dSJ7YDAAAAAAAAAAAAANLBMp3ipMuflyxZUh999JHWrl2rU6dOqUiRImrevLl69eql/Pnzm1wlAAAAAAAAAAAAAMBVLHMG+P79+yVJq1at0rx58/TAAw+oRo0aunz5smbMmKHnn39eZ8+eNblKAAAAAAAAAAAAAICrWOYM8IMHD0qSnnzySY0fP1558+aVJF24cEEDBw7Utm3bNGzYME2dOjXTz+Hrm/J4AR8faxw/kN55WGW+krXmkp2s9P+LleYCZJSVXv9WmguAu7PS+91KcwEAAAAAAPA2lmmAjx07Vm+++aZKlCghPz+/5OWFChXSuHHj1KJFC61fv14nT55UmTJlMvz4TqdDBQvmzs6SPUa+fP5ml+B2dpyz3bCNAWvgvQzAG/HZBQAAAAAAYB7LNMBz5sypBx54IM11xYsX18MPP6ydO3dq//79mWqAJyYaunLleoplPj5OS+zcunLlhhISEu85zirzldI/Z7thGwPWwHsZgDfiswveLF8+f1ud+b9u3Tq98cYbd1zfqlUrTZw40Y0VAQAAAADwP5ZpgN9LkSJFJEk3btzI9GPEx1tzJ1ZCQqJl53Yndpyz3bCNAWvgvQzAG/HZBas7cOCAJKl27doqUaJEqvXVq1d3d0kAAAAAACSzRAM8Li5OI0aM0MWLFzV+/HgFBASkGnPixAlJSjOcAwAAAACA9ElqgA8dOlRBQUEmVwMAAAAAQEqWuEZbzpw5tWXLFq1du1Y//PBDqvWHDh3SoUOHlDdvXlWrVs39BQIAAAAAYBEHDhxQrly5VKFCBbNLAQAAAAAgFUs0wCWpU6dOkqQPP/xQx48fT15+7tw5vfvuu0pISFC3bt3k5+dnVokAAAAAAHi1ixcv6vTp0woMDJSvryUuKgcAAAAAsBjLpNXXXntNERER2rRpk5599lnVqlVLOXPm1Pbt23X9+nU1b95cPXr0MLtMAAAAAAC8VtLlz0uWLKmPPvpIa9eu1alTp1SkSBE1b95cvXr1Uv78+U2uEgAAAABgZ5ZpgOfMmVPTpk3T119/rdDQUO3atUtOp1MVK1ZUx44d1aFDBzkcDrPLBAAAAADAa+3fv1+StGrVKuXOnVt16tRRiRIl9NNPP2nGjBlat26d5s6dq6JFi5pcKQAAAADArizTAJckHx8fhYSEKCQkxOxSAAAAAACwnIMHD0qSnnzySY0fP1558+aVJF24cEEDBw7Utm3bNGzYME2dOjXTz+Hrm/JubT4+1rh7W3rnYZX5Svabs93mK1lrLgAAALAOSzXAAQAAAACA64wdO1ZvvvmmSpQoIT8/v+TlhQoV0rhx49SiRQutX79eJ0+eVJkyZTL8+E6nQwUL5s7Okj1Gvnz+Zpfgdnabs93mK9lzzgAAAPB8NMABAAAAAEC65MyZUw888ECa64oXL66HH35YO3fu1P79+zPVAE9MNHTlyvUUy3x8nJZosl25ckMJCYn3HGeV+Ur2m7Pd5iulf84AAABAVuXL55/uKxDRAAcAAAAAANmiSJEikqQbN25k+jHi463ZTEtISLTs3O7EbnO223wle84ZAAAAno8b9QAAAAAAgHuKi4vTv/71L/Xu3VvXr19Pc8yJEyckSSVKlHBnaQAAAAAAJKMBDgAAAAAA7ilnzpzasmWL1q5dqx9++CHV+kOHDunQoUPKmzevqlWr5v4CAQAAAAAQDXAAAAAAAJBOnTp1kiR9+OGHOn78ePLyc+fO6d1331VCQoK6desmPz8/s0oEAAAAANgc9wAHAAAAAADp8tprrykiIkKbNm3Ss88+q1q1ailnzpzavn27rl+/rubNm6tHjx5mlwkAAAAAsDEa4AAAAAAAIF1y5sypadOm6euvv1ZoaKh27dolp9OpihUrqmPHjurQoYMcDofZZQIAAAAAbIwGOAAAAAAASDcfHx+FhIQoJCTE7FIAAAAAAEiFe4ADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASfM0uALA7p9Mhp9PhssdPTDSUmGi47PEBAAAAAAAAAAAAT0EDHDCR0+lQwYL+cjp9XPYciYkJunjxBk1wAAAAAAAAAAAAWB4NcMBEt8/+9tHvy77UjfOns/3x/QuX1IPPdpfT6aABDgAAAAAAAAAAAMujAQ54gBvnT+tG9HGzywAAAAAAAAAAAAC8Gg1w4B5ceY9uHx+nSx4XAAAAAAAAAAAAsCMa4MBdOJ0OFSgQQKMaAAAAAAAAAAAA8AI0wIG7cDod8vFxavK8zYo6cznbH79qYCl1alEt2x8XAAAAAAAAAAAAsCMa4EA6RJ25rD+iLmb745Yqmi/bHxMAAAAAAAAAAACwK67rDAAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEvwNbsAAACswOl0yOl0uOzxExMNJSYaLnt8AAAAAAAAAACsgAY4AABZ5HQ6VLCgv5xOH5c9R2Jigi5evEETHAAAAAAAAACAu6ABDgBAFt0++9tHvy/7UjfOn872x/cvXFIPPttdTqeDBjiSufqqA+7AlQ0AAAAAAAAAZDca4AAAZJMb50/rRvRxs8uADTidDhUoECAfH6dLn8dITJTD6brn4MoGAAAAAAAAALIbDXAAAAAv43Q65OPj1OR5mxV15rJLnqNqYCl1alGNKxsAAAAAgEncceUvrswFALAiGuAAAABeKurMZf0RddElj12qaD5JXNkAAAAAAMzgdDpUsKC/nE4flz4PV+YCAFgRDXAAAAAAgGW4+kwpzpICAABJXPm7w8fHKafTx2VX5ZK4MhcAwLpogAMAAAAALMEdZ0pxlhQAAJBu/+4oUCBAPj5Olz4PV+UCACDjaIADAAAAACzh9llYrjtTirOkAABAEqfTIR8fpybP26yoM5ez/fGrBpZSpxbVsv1xAQCwAxrgAAAAAABL4UwpAADgLlFnLuuPqIvZ/riliubL9scEAMAuaIADAAAAANzC1ffndvUlSAEAAAAAgOejAQ4AAAAAcDl33ScTAAAAAADYGw1wAAAAAIDLufo+mRL3ygQAAAAAADTAAQAAAABu5Kr7ZErcKxMAAAAAAEhcew4AAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCdwDHABczOl0yOl0uPQ5EhMNJSYaLn0OAAAAAAAAAAAAT0cDHABcyOl0qGBBfzmdPi59nsTEBF28eIMmOABYjKsPouIAKgAAAAAAAFgNDXAAtufK5oKPj1NOp49+X/albpw/7ZLn8C9cUg8+211Op8Njmhg0bAAg65xOhwoUCJCPj+vuWpSQkKirV2NlGK75TOXzGgAAAAAAAO5GAxyArbmjuSBJN86f1o3o4y59Dk/hjrPeOeMdgB04nQ75+Dg1ed5mRZ25nO2PH/hAUYW0rqkCBQKy/bGT8HkNAAAAAAAAd6MBDsDWXN1cqBpYSp1aVMv2x/Vkt8/+dt1Z7554xjsAuFLUmcv6I+pitj9uqaL55HA6+bwGAAAAAACApdAABwC5trlgV3Y66x0AvBmf1wAAwB1cfassd+D2LgAAAN6BBjgAAAAAAAAAl3HH7ceMxEQ5nK69vRm3dwEAAPAONMABAAAAAAAAuIy7bj/mqlu7SNzeBQAAwJvQAAcAAAAAAADgcq6+/Ri3dgEAAIAkufa6QAAAAAAAAAAAAAAAuAlngAMALM/pdMjpdLjs8V15HzsAAAAAAAAAAJB+lmuA79ixQ1OnTtXBgwcVGxurwMBAvfzyy2rZsqXZpQEATOB0OlSgQABNagAAgGxE9gYAAACQFlefjCRJiYmGEhMNlz4H7s7V2zmr29hSDfClS5fqn//8p3x9fVW3bl35+Pho69atGjBggI4cOaK+ffuaXSIAeARXfjl5WqPZ6XTIx8epyfM2K+rMZZc8R9XAUurUoppLHhsAAMDTkL0BwDN4+o5nAIBncuX3h8PhUL58ueR0+rjk8ZMkJibo4sUbfE/dgat/I7hjO2d1G1umAX7+/HkNHTpU/v7+mj17th599FFJ0pEjRxQSEqJJkyapadOmCgoKMrlSADCXXc+IjjpzWX9EXXTJY5cqms8ljwsAAOBpyN4A4BmcTocKFvT36B3PgBW440xWV+NgFvyVu/YN/77sS904f9olj+1fuKQefLa7nE4Hr+00uHP/v6u2c3ZsY8s0wL/++mvFxsaqe/fuyQFcksqXL6+33npL7777rmbNmqUxY8aYWCUAmM/VZ0RzNjQAAIB1kb0BwDPcbsr5ePSOZ8DbuauJZCQmyuF03XNwMAv+yl37hm+cP60b0cez/fFxb+68Iqonb2fLNMA3bNggSXr66adTrWvSpIkcDoc2btzo5qoAwHO56oxozoYGAACwLrI3AHgWT97xDGSGJ13a351NJA5mMZe3n+mfmbP82TdsfXa/IqplGuC//fabJKlChQqp1hUoUEBFihTR2bNndf78eRUuXNjd5QEAAAAA4PXI3gAAwFU89dL+7mgicTCLedxxpj9n+QPuZ4kG+OXLl3Xz5k3lzp1buXPnTnNMsWLFdPbsWZ09e5YQDgCABXnSUeIAAFgR2RsAcDfefgalRO5LD1duZx8fJ5f2h9u565LgvK4B93IYhuH174jTp0/rySefVJEiRbR58+Y0x7zwwgvavXu35s2bpxo1amT4OQwj9Y8fh0NyOp26fC1WCQmJmar9bnLm8FGegFy6FXNFRmJCtj++w+mjHLnzKTExUel5FXj7fCX7zdnT5ivZb868rq2/jSX7zdkTX9fS7cDicLhuZ4thGHLlz6aMPLQdX9fJf+fF+9My+vLx9vcyn10Z+DubvK6t/Nnl6u8gT0H2zhw+D9Mx3svn7Gnzlew3Z098XSf/nQu/HpxOp8ds49v1uP770DAMl+e+9DaQ7Pq6dsd29pTXtR0/r5P/zot/2pK97zHey+cr8bq+Fyt/dmXkO8gSZ4A7//+lI+426aQd1pndce1wOOTjk/bj58/jl6nHTK8cuV17LX1nBi+94e3zlew3Z0+br2S/OfO6zn6eNl/JfnP2xNe1KzkcntfcsOPr2o68/b3MZxf+js8u70X2zho+D+/N2+fsafOV7DdnT3xdu5qnbWNXc3Umu9v30J3wus5+nva6tuPntR15+3vZ017Xdvzs8jR2/+yyxKsj6dJrsbGxdxwTFxcnSQoICHBLTQAAAAAAWAnZGwAAAADgDSzTAA8ICNDVq1fvGMTPnDkjSSpatKg7SwMAAAAAwBLI3gAAAAAAb2CJBrjD4VClSpUkSUeOHEm1/tKlSzp37pwKFSqkIkWKuLs8AAAAAAC8HtkbAAAAAOANLNEAl6SGDRtKktasWZNq3Zo1a2QYhho1auTusgAAAAAAsAyyNwAAAADA01mmAd6+fXv5+/vrq6++0u7du5OXHz16VP/5z3/kcDj06quvmlghAAAAAADejewNAAAAAPB0DsMwDLOLyC4LFizQsGHD5OPjo7p16ypnzpzaunWrbt68qX/84x/q0aOH2SUCAAAAAODVyN4AAAAAAE9mqQa4JP3www/68ssv9fPPP8vHx0cVKlTQa6+9pmbNmpldGgAAAAAAlkD2BgAAAAB4Kss1wAEAAAAAAAAAAAAA9mSZe4ADAAAAAAAAAAAAAOyNBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALIEGOAAAAAAAAAAAAADAEmiAAwAAAAAAAAAAAAAsgQY4AAAAAAAAAAAAAMASaIADyDZXr17N8N9s377dBZUAyKxJkybpl19+MbsMAAAAAHdA9ga8H9kbAADXogEOt4uLi9PPP/+sQ4cOKT4+/o7jLly4oIiICDdW5n7bt2/XzJkz9d///lcnTpwwu5wsCwkJ0aVLl9I19ubNmxo1apReffVV1xYFIEMmTZqkw4cPm10GkO2aNGmitWvXml2GKRITE3X8+PEUywzD0IoVKzRq1Ch9/PHH2rdvn0nVZZ9Tp04pNjY23eNPnDihsLAw1xVkggsXLmjr1q1asWKFvv/+e23fvj3dv80AWA/Z+3/I3mRvwNOQvWFVZG+y99+RvWEWX7MLQPrFxsbqwoULKlWqlNmlZNrs2bP1ySef6Pr165KkvHnz6vXXX9frr78upzPl8RibNm3SoEGDdPDgQTNKzTaHDx/WF198ocOHD6tUqVLq2bOnatSoof79+2vt2rUyDEOS5Ovrq379+qlnz54mV5x5Bw8e1IsvvqivvvpKRYoUueO4ffv2adCgQfrjjz/uOs6qLly4oCNHjqh27dpml+IWV69e1dixYzVq1CizS3Ebu21jK2jSpIneffddNWnSxOxS3Oahhx7SuHHj1Lp1a7NLcYuoqKjk3x92smHDBo0YMUJnz57Vzz//LOl2KO/du7c2btyY/Dtk+vTpCgkJ0ZAhQ8wsN0uaNGmS6jV9/fp1jRw5Uq+//rrKly+fYvyePXs0ZMgQtWvXzs2VZr9Vq1bpiy++SPN3s8PhUI0aNfT666/rySefdH9x2SgoKEgOhyNDf+NwOHTgwAEXVQSrInt7J7J3amRve+Uysje8Adnb+sjeZG+yN9nbU3AGuInSOhoqLi5OYWFhOnfuXKrx4eHhXv3jICwsTKNHj1ZgYKCGDBminj17ys/PTxMnTtRrr72ma9eumV1itvv555/1/PPPa8OGDfL399e+ffv0yiuvaPTo0Vq7dq26deum0NBQzZ07V40aNdJ//vMfff/992aXnWnDhg3T0aNH1bVrV50+fTrV+lu3bunjjz9Wly5d9Mcff6ht27Zavny5CZVmr4ceekhLly5NsSw2NlaTJk3SyZMnU43ftGmTQkJC3FWeS5w8eVIjR47Uc889p+eee05Dhw7VsWPHUo0LDw9Xq1attHDhQhOqzD523MZ2Y8eAlhS+YF2HDh1Snz59ZBiGunXrpsTEREnSvHnztGHDBhUtWlQLFizQnj179M4772j27Nle/Tskrdf0zZs3FRYWpjNnzphQkXuMGjVKAwYMUFRUlNq1a6e3335b//73v/Xee++pf//+atKkifbv36833nhDH374odnlZknt2rVVq1atDP1Ts2ZNs8uGByB7k73J3mRvb0X2tv42thuyN6yI7E32Jnt7ZvbmDHATpfWFHxMToyFDhmjGjBmWOzp35syZql27tubMmZO8rHfv3nr//fe1aNEivfLKK/rqq6+UJ08eE6vMXhMnTlSZMmU0Z84cFSpUSNevX1fPnj319ddfq1OnTnr77beTx9aqVUsvvvii/u///k8tW7Y0serM69q1q/Lnz6/Bgwera9eu+uqrr3TfffdJun2E+qBBg/TLL7+oVKlSGjFihBo2bGhyxdkjrS/9GzduaPLkyapZs6bKlCljQlWuc/DgQb300ku6du2a/Pz85OfnpwMHDmjFihWaP3++KlWqpKtXr2ro0KEKDw+Xj4+PevToYXbZWWK3bXz06NEMXwaTI+4Bz/Pll1+qWLFiWrx4sfLly5e8/Ouvv5bD4dBbb72lKlWqSJJeffVV7dixQ/PmzfPa3yF3YuUdTkuWLNHcuXPVrl07vffeewoICEhzXExMjD744APNmjVL1atXV/Pmzd1cafb4a44AMoLsTfYme5O9vRHZ+zYrb2OyN2ANZO/byN5kb09DA9wDWfWD4vfff9fgwYNTLMuZM6dGjx6tAgUKaMaMGXr99dc1Y8aMO36AeJs9e/borbfeUqFChSRJAQEBevPNN/Xiiy/q8ccfTzW+ZcuWGjdunLvLzFbPPvus8ubNqwEDBqhr16768ssvtXbtWk2dOlXx8fHq0qWL/vGPfyh37txml+pyVn0vf/rpp4qNjdXHH3+sZ555RpIUGRmpt956S6NGjdL48eMVEhKiP/74Q48++qhGjRqlwMBAk6t2Datu46lTp2rq1KkZ+htvv2SmXWX0ckbebsGCBdqyZUu6xzscDo0ePdqFFblWRESEnn/++RQB/MSJEzp69Kh8fX319NNPpxj/2GOP6dNPP3V3mciCefPmqVq1avc8ujx37twaPXq0jhw5om+//dZrQ/itW7eUI0eODP3Nvn37VLVqVRdVBG9n1d9yZG+yN9nbGsje/2PVbUz2tg+y992RveHpyN735onZmwY43Mbf31+XLl1Kc90777yj69eva/78+erVq5e+/PJL9xbnInny5NGVK1dSLAsMDFSjRo3k65v67Xfx4kXlypXLXeW5TKNGjTR9+nS98cYbeu6552QYhu6//36NGjVKtWrVMrs8ZFFkZKQ6d+6cHMAlqUqVKnrnnXc0cOBADRw4UFFRUXr77bf12muvpbrHIDxf06ZNLbvj5G7sFtAkacqUKVqwYEG6xzscDs2aNcuFFblWREREhs6w8PZtfPHiRZUoUSLFsm3btkmSqlatmmqHuJ+fn27evOm2+pB1v/32W4buYdukSRN98803LqzItZ577jmNHz8+Xd9RcXFxmjhxombPnq39+/e7oTrAc5C9byN7k729Hdnb+sje6ePtuUwie9+Lt29jsrf1kb3vzJOzNw1wuE3dunU1e/ZsPf3006pYsWKq9cOHD9e1a9e0bNkyvfbaa2rUqJEJVWavxx57TF999ZWqV6+u+vXrS5Ly5s2rL774ItXYffv2ac6cOcnjvF3NmjU1e/Zsvf7667pw4YL+/e9/E8At4vLlywoKCkq1/NFHH1VCQoIOHz6sOXPmqFq1au4vDtmiWbNmat26tdlluJ3dApokHTlyREeOHEn3eG8/av3dd9/16nu6ZlT+/Pl14cKFFMs2bdokh8Ohxx57LNX4I0eOJJ85B+9w/fp1FS5cON3jixYt6tX3ZDt37pw6dOigfv36qXv37nf8TNq1a5feffddHTt2TPfff7+bqwTMR/Yme5O9rYHsbX1k7/Qhe3sfsjfZ22rI3t6ZvWmAw23eeustdenSRcHBwXr44Yf10UcfpXhTOBwOjRs3Tjlz5tSiRYu0e/duE6vNHm+//bYiIyP12muvqVatWne8d8JLL72kXbt2qVChQinuTebtgoKCNG/ePL366qt64403NHnyZNWrV8/sspBF8fHxaZ4t4efnJ0nq0aMHARxeyW4BTZI++ugjW+1wKViwoEqXLm12GW5To0YNrVixQt26dZOPj4/OnTunDRs2SJJatGiRYuzVq1e1dOlS1a1b14RKkVkJCQlpntl4Jz4+PoqPj3dhRa61bNkyDRkyRBMmTNCGDRs0duxYlS1bNnl90mVik+61161bN/Xv39/EigFzkL3J3mRvayB7w6rI3tZH9iZ7Ww3Z2zuzNw1wuM0DDzyg5cuXa/Lkydq5c2fyD/a/cjqdGj16tKpXr65PPvlE58+fN6HS7FO4cGEtXLhQ8+fPV1xc3B3H+fn5qUOHDnrzzTczdCSRpxkyZEiay++//36dPHlSPXv2VMuWLVMcMWSFoziR0iOPPGJ2CUCm2C2gwfq6d++uzp07q1OnTqpTp47Wrl2rmzdv6plnnlG5cuUk3d6xunfvXo0dO1YXLlxQ165dTa46a1avXq1jx44l/3dsbKwcDocWL16sXbt2pRj7yy+/uLs8ZFHhwoU1bdo0ff311/roo4/Utm1bDR48WM8//7x27Nihf/3rXzpx4oQCAwP1wQcf8JsEtkX2JnuTve2B7zl4K7I3rIbsTfa2GqtkbxrgJjt69GiKS75cvXpVknT48OFUR5Rk5DIpnqpgwYIaOnToPcd17NhRwcHBKT5EvZWfn59eeeWVu46xyn3XQkND77r+5s2bCgsLS7HMKiF8586dSkhISP7vmJgYSdLmzZsVHR2dYqwVzrC4G2+/TNOd2GUb165dW0WKFDG7DADZ4NFHH9WUKVP0wQcfaMaMGfLx8VHr1q01YsSI5DHjxo3T7Nmz5XQ6NWTIENWoUcPEirMuPDxc4eHhqZb//fdHEit8Z/19x8PdWGXHQ9euXVWvXj0NGzZMw4cP15w5c3TkyBH5+vqqf//+6tGjR4aOzoc9kL3TRvb2TmRv6+ey9LDC75i02GUbk70B6yB7/w/Z+zayt2dwGIZhmF2EXQUFBaX5xjcM467LDx486I7yXM4wDJ04cUKXLl2SJBUqVEhlypQxtygXs/qco6KiMvV33n7UZ1rv5b9+tKa1zpvfy0FBQXrjjTfUoEGDFMuvXr2q3r17a/DgwapcuXKqv6tdu7a7Ssx2dtvGdhQUFGS7S5LZbc6hoaGqVatWiks22cnFixfl7++f6izAjRs3av/+/XrmmWc88n5NGbFjx45M/V2dOnWyuRL3Seu+oPdipe+niIgI9e7dW1evXpXD4VDv3r3Vr18/s8uCByJ7WzuHpsXqcyZ7/4+VcxnZ+zYrb2M7slsOlew3Z7I32ftOyN7ey1uzNw1wE02aNClTf9e3b99srsS9IiMjNX36dG3evFnXr19PsS5Pnjxq3LixXn311Ux9qHgqO87ZTu519P2dBAcHZ3Ml7nGnHYjSnXciSvLqL3w7beO/nhmVEd68k0WyZ0DbsWOHypcv79WX/wTszo47HiTp2rVrGjdunL777jvlypVL3bt316pVq/TLL7+ofv36GjVqlEqVKmV2mfAgZG/75FA7ztlO7JTLJLJ3RnjjNiZ7k70BeA+yt3dmbxrgcKsZM2Zo/Pjxcjqdql69uipWrKh8+fIpPj5ely5d0oEDB3Tw4EE5nU4NGjRIISEhZpecZXacc3pNnTpV4eHhWrRokdmluF1cXJxy5sxpdhmZYtcdiBnlrdv4bjtZ7sabd7LAHu50r8y7scqlQpG2+fPna9OmTZn+XoM5NmzYoOHDhys6Olr16tXTyJEjVbZsWd26dUuffvqpZsyYIT8/P/3zn/9U586dzS4XMI0dc6gd55xeZG/vy2US2Tu9vHUbk71hVWRv/B3Z2ztZIXvTAIfbbNy4UT179lT9+vU1evRolSxZMs1xx48f14gRI7RlyxbNmDFD9evXd3Ol2ceOc86I4cOHa8GCBV7/433SpEkZCpiRkZEaMmSIli9f7sKqkJ3stI0/++yzTIVwb9/JYseAlpmdvg6HQ7NmzXJBNa5nx8tV3WunWq5cuZQ3b15VqlRJzZo1U8eOHeV0Ot1Yobms8Dvk1KlTKlSoUKrL693JiRMntGvXLrVr1861hbnI22+/reXLlysgIEDvvPOOOnXqlGrMnj17NGjQIJ04cUJ16tTRBx98YKnLHgPpYcccasc5Z4QVvvMke+Uyu7LTNiZ7px/Z27uQvVMje3v/7xCyt3dmbxrgJrLbF/6rr76qc+fOadGiRcqRI8ddx8bHx6tdu3a6//77NXnyZDdVmP3sOOeMsMKXn3T7R063bt30z3/+867j4uPjNWnSJE2fPl0JCQleP+/0io2N1YULFzz6cij3wja2PrsGtIzy5jnb8V6ZL7300l3XJyQk6MqVKzp+/Lhu3bqlxx57TFOnTpWvr6+bKjSXFX6HPPTQQxo3blyK+wlev35dI0eO1Ouvv67y5cunGL9kyRINGjTIa+ccFBSkhg0bauTIkSpRosQdx8XGxurDDz/U/PnzFRAQoN27d7uxSngisvedWSWH2nHOGWGF7zyJXHYvZG94A7vlUMl+cyZ7p0b29v7fIWTvtHl69rbHO8xDZeS+Nn89gshbQ/iBAwf0yiuv3DOMSpKvr69atmypJUuWuKEy17HjnO2oVq1amjFjhm7cuKH33nsvzTGHDx/WoEGDdPjwYeXPn1//+te/3Fxl9mnSpIneffddNWnSJHlZXFycVqxYoccff1xFihRJMT48PNyrv/Al+21jO1q7dq3ZJbjdoUOHzC7Brbw5TGfWnDlz0jUuNjZW8+bN07hx4zRv3rx7hnd4jrSOZb5586bCwsLUpk2bVCHc240ZMyZd9/j08/PT+++/r6effprvY0gie9+NVXKoHedsR3bLZWRv629jOyJ7Wx/Z+87I3t6L7J02T8/eNMBNlJ4vv6ioKI0cOVIbNmxQ3rx5NWDAANcX5iIxMTEqVqxYuseXLFlSf/75pwsrcj07ztmOZsyYof79+2vevHm6ceOGRo8enbzjzDAMTZs2TZMnT1ZcXJxatWqloUOHqlChQiZXnXlRUVG6fv16imUxMTEaMmSIZsyYkSqEW4HdtrEkHT16VHv27FH79u2Tl507d06TJk3S7t275e/vryZNmuiVV17xyvut/Z0dAxpSiouL02+//SY/Pz+VK1fO7HLcys/PT6+++qr27dun0NBQQrgFWPUiX+kJ4H/14IMPqmPHji6qBt6E7H13VsihdpyzHdktl5G9rb+NJbI37IfsTfa2ErL3bZ6avWmAe6iEhATNmDFDn3/+uWJjY/XMM89oyJAhXv3jNj4+PkM/1Hx9fRUXF+fCilzPjnO2o5w5c2ry5MkaMmSIQkNDFRsbq/Hjx+v48eMaPHiwIiMjVbRoUb3//vtq3Lix2eW6jFW/8CX7bePx48drxowZMgxDwcHBcjqdunr1qjp16qRTp06pQIECKl26tD755BOtW7dOc+bMSdfZNt7MjgEtOjpakZGR8vPzU+3atdN9nyNPdvXqVX355Zfas2dPiiO0ly5dqlGjRunKlSuSbv9wHz16tKpVq2ZSpeaoW7euNm/ebHYZQJbcvHlTq1at0qJFi7Rjxw4ZhqE+ffqYXRY8GNnbGjnUjnO2I7vlsjshe1tnG5O9UyN7k73tgOwNK/CG7E0D3APt3LlTI0aM0K+//qoHHnhAw4cPV/369c0uC7inSZMmZWj8zz//7KJK3M/Hx0fjxo1Tvnz5NHfuXJ08eVK//vqrYmNj1bFjRw0aNEh58uQxu0xkgV228erVqzV9+nQ9+eSTCgkJkdPplCR9/vnnioqKUtWqVfXVV1/J399fkZGReumll/TVV1+pe/fuJleedXYMaFFRUZowYYL27NmjdevWJS+fNm2aPv30UyUkJMgwDOXPn18jR45Us2bNTKw2a2JiYtSpUycdPXpUJUqUUHx8vHx9fRUZGalBgwbJMAx16tRJFStWVFhYmF599VWFhYXp/vvvN7t0t/Hx8VFiYqLZZWRaWFhYhsb//vvvrikEptizZ48WLVqk77//XjExMTIMQ/fdd586depkdmnwYGRveCuyt/VzmZ3ZZRuTvcneEtmb7O2dyN725k3Zmwa4B7l48aLGjRunsLAw5cyZU/369VP37t0tcXmbJDt37lRCQkK6xu7evdvF1biHneac0RAupbzHnhUMHTpUBQoU0KRJk+R0OvXFF1+oUaNGZpeFbGT1bTx//nxVrVpVU6dOTV5mGIaWLFkih8OhN998U/7+/pKkKlWqqG3btlq+fLnXh3A7BrTz58+rU6dOunjxoqpUqZI85x9//FETJkyQr6+v3nrrLVWqVEkLFizQW2+9pW+++UaVK1c2u/RMmTFjho4fP67//Oc/atGiRfLyyZMnyzAMvfzyyxo8eLAkqUOHDmrTpo2mTp2qMWPGmFWy2+3bt08lS5Y0u4xMGzx4cIZ+VxiGYbnfIXYTHR2txYsXa9GiRTp27FjyGXF169ZV9+7d9fjjj5tcITwV2Tslb8+hSew0Z7K39XMZrL+Nyd5kb7I32dtbkb3tx1uzNw1wD/Htt99q/Pjxunz5sh577DENHz5c9913n9llZbsFCxZowYIF6RprlQ9GO8159uzZZpfgEfr27auCBQtq1KhRmj59umrWrGmJo5PxP1bexvv3708VqA8cOKDz588rT548qlu3bop1jz76qJYuXerOEl3CjgFt2rRpiomJ0ddff53iiPpp06bJ4XCoT58+ya+FJ554Qu3bt9eXX36p//znP+YUnEXh4eFq27Ztiu0bExOTfNmxLl26JC/PlSuX2rRpo2+//dbtdZpl5cqVWrx4sV5//XWzS8k0b34/Iv3i4uK0Zs0aLVq0SFu3blVCQoJ8fHxUp04d1axZU1OmTFFISIjHBnCYj+ydmrfn0CR2mjPZ+zYr5zLcZuVtTPYme5O9yd7eypvfj0g/K2RvGuAmO3z4sN5//33t3btXRYoU0YQJE9SqVSuzy3IJO34w2m3OderUyfDf7Ny50wWVuFdERESqZZUqVVLHjh21YMECvfzyy3rnnXeSL2eVpHbt2u4qEVlkp218/fp15c+fP8Wybdu2Sbo9Hx8fnxTr4uPjvXrnYRI7BrQNGzaoffv2KQL4pUuXtGvXLknSc889l7zc4XCoZcuWmjVrlrvLzDYnT55MsR2l2+/t+Ph4lS1bNlXzo2TJkjp//rw7S8x2Q4YMuev6hIQExcTE6LffftPx48f1wAMPeHUIDw4ONrsEU6xevVrHjh1L/u/Y2Fg5HA4tXrw4+f2c5JdffnF3edlqxIgRWrFihS5fvqxcuXKpYcOGatq0qZo0aaKCBQsqKipKn3/+udllwkORva3NbnMme/+PVXOZXdlpG5O9yd5k79vI3t6H7H0b2dvzszcNcBONHTtWc+bMUUJCgp566ikNGDBAefLk0alTp+76d6VKlXJThdnLjh+Mdpxzepw+fVqhoaEKCwvTiRMndPDgQbNLypKXXnrpriFk//79euWVV1It9+Z5Hz16NEUwvXr1qqTbOxZ9fVN+tRw5csSttbmCnbZxsWLFdOLEiRTLNmzYIIfDoSeeeCLV+MjISBUvXtxd5bmMHQPan3/+qUqVKqVYtn37diUmJqpChQqptmvhwoV1+fJld5aYrZxOZ6p7bG3dulWS1KBBg1TjL1y44PVnl4SGhqZrXNmyZfXyyy+rd+/eXj/nO0nr93XJkiUtsxMxPDw81fI73ZfNm+c8b948BQQEqFevXnr99dct+3pF9iN7W58d55weZO/bvHneZO+UrLSNyd7/Q/Yme3v773qy9/+Qvf/Hm+dslexNA9xEM2fOTP739evXa/369en6O2/8UZcZFy5c0JEjR7zyKM7MsvKcb968qfDwcC1atEjbt29PvuRcWj/qvU2fPn28+gstM6ZOnZriPlVJxo4dm2qZt19eULLXNn7iiSe0cOFCdenSRcWLF9eePXu0c+dO5ciRQ82bN08x9tdff9Xy5cv1/PPPm1Rt9rFjQMuVK5du3LiRYtmWLVvkcDj02GOPpRr/559/Kl++fO4qL9tVqFBBe/bsUdeuXSXd/mxavXq1HA6HGjdunGr82rVrVb58eXeXma3Wrl171/W5cuVSvnz5LHXPW0lauHChvv32W33++ecqVKiQLl68qMaNG6f6HO/fv7/eeOMNk6rMHna7BG5wcLDWrFmjL774QrNmzVKtWrWSj0IvUqSI2eXBg5G9787KOfROrDxnsre1kL2ti+z9P2TvlMje3ofsTfa2GqtkbxrgJurbt6/ZJbjVQw89pHHjxql169bJy2JjYzV9+nS1a9dOZcqUSTF+06ZNGjRokFfvdLDjnP9u7969WrRokb7//ntdu3ZNklSoUCG1b99enTp1UunSpU2uMOv69etndgluZadAmsRO27h3794KDw9Xy5YtVa5cOf3yyy8yDEN9+vRRoUKFJN0O3+Hh4Zo9e7Zy5Mihbt26mVx11tkxoAUFBWnr1q16+eWXJf3v3j6S1LRp0xRjDcPQypUrFRQU5PY6s0u7du30wQcf6NFHH9Vjjz2mBQsW6NSpU7rvvvvUsGHDFGOnTp2qvXv3aujQoSZVmz2s8B2bUW+++aZWrVqlUqVK6dSpU8mfW5LUpk0blS1bVpK0ePFiTZkyRR06dFDRokXNKjfLMnMJ3Pj4eBdU4h5jxozRiBEjtH79ei1dulQ//PCDfvzxR40YMULVq1dXjRo1bPcbBelD9rZ+DrXjnP+O7G09ZG9rI3uTvSWyN9nbe5G9743sbT4a4CayWwg3DCPVshs3bmjy5MmqWbNmqkBqBXacsySdOXNGYWFhCg0N1R9//CHDMOTv768GDRpoy5Yt+ve//60mTZqYXSYyyU6B1I6KFCmi7777TpMnT9bevXv18MMPq3379urYsWPymNDQUM2YMUOlS5fWxx9/rJIlS5pYcfawY0Dr3Lmz3nrrLY0ePVqPPfaYFi5cqPPnz+vhhx9OcTZUbGysPvzwQ/36669evcOlc+fO2rVrl8aMGSOHwyHDMJQ/f36NHz8++R6C3333naZNm6YTJ06oZs2aeuGFF0yu2rUiIyO1Z88eOZ1O1alTR4GBgWaXlCVLlizRqlWr1LNnT/Xv3z/VfRPbtWun+vXrS5IaNWqk559/Xt98841lfpPHxMTIMIy7niGzZ88eDRs2TMuWLXNjZdkrZ86cat68uZo3b66rV69q5cqVWrJkiXbt2qVdu3bJ4XDoiy++0LVr19S8eXP5+fmZXTI8gFXe5+llxxxqxzlLZG+rI3tbG9mb7E32Jnt7K7I32dtbsjcNcA8SFxenQ4cO6cyZMzIMQ8WKFVNQUJBy5cpldmkulVZQtTqrzvn777/XokWLtGXLFiUkJChfvnxq3bq1mjVrpoYNG+rs2bOpjmy0gkmTJmX4bxwOh/r06eOCalwvJCREb7zxRvIPGTuw2zYuUaKERo4cecf17du3V+PGjVWjRo3k8OLt7BjQWrVqpcOHD2v69OmaM2eODMNQmTJlNHHixOQx//d//6fPP/9cMTExatGihdq2bWtixVnjcDg0fvx4de3aVXv27FGePHnUtGnTFEcp//nnnzIMQ2+88YZ69uxpidf3gQMH9MUXX+jIkSO677771KtXL1WpUkX/+te/tGjRouTfJA6HQ88++6zGjBmT6n6S3iI0NFTVq1fXwIED7zk2aYfbxo0bvT6Er1q1SpMmTdJvv/0m6fZ95fr3769nn302ecz169c1YcIEzZs3L9UlJ73JkCFD1LlzZ1WtWlWSlDdvXnXs2FEdO3ZUdHS0li1bpmXLlikyMlI//fSTRo4cqVatWunf//63yZXD05C97cOqcyZ7p5835zKyd/p48zYme5O9k5C9vf/1TfZOG9nbO1kle3vnO8xizp07pwkTJig8PFwxMTEp1vn7+6t58+YaOHCgihUrZlKFQPoMHDhQAQEB6tKli5o0aaLatWunOALMGy6LkRl2C2g7duxIcUSyHdhtG9+Lt19+LC12DWgDBw7UCy+8oH379ilPnjyqU6eOcuTIkbw+V65cevTRR9W6dWs999xzJlaafapXr67q1aunua5v375eH8j+as+ePQoJCZGvr68qVaqk/fv3q2vXrnrppZe0cOFCtWnTRi1atND169e1bt06LVu2TA899JBee+01s0vPlAMHDqhXr17pHv/4449r8uTJLqzI9VasWKG33npLuXLl0uOPPy5/f3/t3LlT//znP5PvH/nTTz9p4MCBOnnypMqUKaMRI0aYXXamhYaGqkGDBskh/K+KFy+ubt26qVu3bjpy5IiWLFmipUuX6ttvv/W4EA7zkL1hFWTv9PPmXEb2Th9v3sb3QvYme3szsjfZOwnZ2/tYJXvTADfZ3r171bNnT12+fFlVq1ZVvXr1VKxYMfn6+urMmTOKiIhQWFiY1q1bpylTpqhGjRpmlwzcUZkyZXTy5EktWrRIv//+u3766Sc1bdpUDz74oNmludTs2bPNLgEuZqdtHBERkam/++tlu7yZnQJakhIlSqhEiRJprnvxxRf14osvurkiZJfJkyfrgQce0OzZs1WwYEEZhqF3331XM2fOVJs2bTRu3Ljksc8++6yuXLmiZcuWeW0Ij42NVb58+VItz5s3r6ZOnaqHHnooxfLcuXN79T25JGnu3LkqXLiw5s+fn3yPtRs3buiNN97QZ599pmLFium1117TzZs39eqrr+rNN9/0yMuSZbfy5ctr4MCBGjhwoHbv3m12OfAQZG9YCdkbVmWnbUz2Jnv/Fdnbu5G9byN7k709DQ1wE50/f159+vRR7ty59fnnn6tmzZppjjtw4IAGDBig/v37a/HixSpcuLCbKwXSZ82aNdq3b5+WLFmilStXatOmTZowYYLKlSunZs2aqXLlymaX6BJ16tS555irV6/K4XDc9d4g8Fzp2cZW8dJLL2X4jBGHw6EDBw64qCIgewwZMiTDf+NwODR69GgXVOMeP/30k15//XUVLFhQ0u35dOvWTaGhoXryySdTjW/WrJk+/PBDN1eZfYoXL65Tp06lWu7r65vmfP/44w+vv4/ikSNH9NJLLyUHcOn2Wax9+/bViy++qIEDB6pw4cIaP368qlWrZl6hJqKJCYnsDeshe98Z2du7kb3vjuwNb0D2Jnv/HdnbHjwxe9MAN9HcuXMVExOT4qiRtDz88MOaOXOmWrdurf/+97/q16+fG6sEMqZq1aqqWrWq3n33XW3atElLly7V2rVrNWXKFDkcDjkcDq1fv15BQUEqXbq02eVmG8Mw9MMPP+i3337T/fffryeffFK+vr7aunWrRo0apaNHj0qSHnroIb311lt6/PHHTa44a1avXq1jx46le7yVL0mWxCo7WsaMGZOucatWrdKGDRskSVWqVHFhRe5hx4AWEhKS4b9xOByaNWuWC6pxvdDQ0HSP/euOKG/exleuXFGRIkVSLEu6tGCBAgVSjffz89ONGzfcUZpLVKlSRStWrFCfPn3ueZnEuLg4rVixQo0aNXJTda5x9epVlSlTJtXy++67T9LtSynOnz8/eUeMFezcuVMJCQkZ+pt27dq5phh4DbI3rIjsTfZOC9nbe5C904/s7V3I3reRvW8je3svK2RvGuAmWrNmjdq0aXPXAJ6kdOnSCg4OVnh4uFeH8L+/aZLuu7Z582ZFR0enGOuJl0zIDDvOWZJ8fHzUqFEjNWrUSLGxsVq9erWWLVumzZs367vvvtOiRYtUt25dtW/fXs8++6zZ5WbJlStX1KNHD+3bt0+GYUiSHn30UQ0bNkw9evSQv7+/mjZtquvXr2vfvn3q2bOnZs6c6dVHNq9evVrh4eHpHm+FEP7XHS333XefnnrqKUvuaAkODr7r+qioKI0cOVIbNmxQvnz59NZbb6lTp05uqs517BjQTp48ma5xiYmJio6OlmEYXn0/yUOHDt1zzF9f33nz5tWAAQNcX5gLGYYhX9+UP/eTtqE3b8s76dy5s1588UX9+9//1tChQ1PNPUliYqLee+89nTlzRp07d3ZzldkrMTExxT1fkyTdT7BHjx6WCuCStGDBAi1YsCBdY5M+tzwthMP9yN72yKF2nLNE9iZ7p0T29h5k73sje3snsvdtZG+yt7ezQvamAW6ikydPZujeHkFBQRn6keCJ/v6mSQos06dPT/Vl4O1f9knsNOcePXqoXr16qlOnjipXrpw8Fz8/P7Vu3VqtW7fWxYsXtWLFCi1dulRbt27Vtm3bvD6Ef/rppzp06JDee+891a1bV1FRUfrggw/08ssv64EHHtCcOXOSj/a7cOGCOnTooBkzZnh1CO/Zs6caNGhgdhluY8cdLX8XHx+v//u//9PUqVN148YNtWnTRoMHD04+otXb2TGgrVu37p5j9u3bp/fff19//vmnypQpo2HDhrmhMvdLSEjQjBkz9Pnnnys2NlbPPPOMhgwZkuoIbni2WrVqqVu3bvq///s/bdu2Ta+99prq1q2rEiVKyDAMnT17Vtu3b9fXX3+tQ4cOaeDAgQoKCjK7bJcqVaqU2SVku+eff962l5RD5pG9rZ1Dk9hpzmRvsrdVkb3J3hLZm+wNT0f2To3s7ZlogJsoR44cunnzZrrHx8bGKiAgwIUVuVZ6L+1jJXab87Zt2/TDDz8kX4qqVq1aqlu3rurVq5f8JVewYEF17dpVXbt21YkTJ7R8+XKTq866devWqXPnznrhhRckSeXKldN7772n1157TV27dk1xqZtChQrp+eef15w5c0yqNnuUL1/eUgHzXuy4o+WvduzYoREjRujIkSMqV66chg8frrp165pdltvYMaBdvXpVH3/8sRYsWCCn06mePXuqd+/eypUrl9mlZbudO3dqxIgR+vXXX/XAAw9o+PDhql+/vtllZZu/XzYzNjZWDodDixcv1q5du1KM/eWXX9xdXrb75z//qdKlS2vChAl677330mx4BAQE6P3337fEGTR2VKtWLbVu3drsMuBlyN7WZ7c5k73J3lZF9iZ7k73J3t6K7E32thorZG8a4CaqVKmSNm7cmO77gGzYsEEVKlRwcVWuc69L+1iR3ea8e/duHThwQLt379aePXu0d+9erV+/Xg6HQ/ny5VPt2rVVt25d1a1bV5UqVVLZsmXVq1cvs8vOsrNnz6p8+fIpliW9V9M6+qtkyZK6fPmyW2pD9rDjjhbp9g6FsWPHasmSJcqVK5fefPNNvf7668mX97EDqwe0tCxevFjjxo3T+fPnVadOHQ0fPjzVZ5wVXLx4UePGjVNYWJhy5sypfv36qXv37sqZM6fZpWWr8PDwNC+bGRYWluZ4bz4bLkmXLl0UHBys9evXKyIiQn/++acMw1CxYsVUo0YNNW3a1OvvGflXad0b9G47W6xwaVQgo8je1me3OZO9/4fsbS1kb7I32Zvs7a3I3mRvsrfnoQFuorZt2+q9997TihUr1KpVq7uODQsL05YtWzRhwgQ3VWe+kydP6r333tOMGTPMLsVtvH3Ovr6+qlKliqpUqaJXXnlFknT69OkUoXzs2LFKSEhQgQIFVKdOHdWtW1ddunQxt/AsunXrlvz8/FIsSwopaYUVh8OR4t508Hx23NHyzTffaMKECbp8+bKeeOIJDRs2LF33zbQKuwS0vzp69KhGjBihHTt2qGDBgvrwww897t492eXbb7/V+PHjdfnyZT322GMaPny47rvvPrPLynazZ882uwTT+Pv7q1WrVvf8jW0Fd9rRIqW9s4UQDjsie9+dt+fQzPD2OZO9/4fsbS1kb7I32dtayN7WR/a+jeztmWiAm6h9+/YKCwvTO++8o8OHD6tr164qVqxYijFnzpzRzJkzNXv2bDVq1EgtW7Y0qdrssW/fPk2ZMkV79uyRJD388MPq06ePatWqlTzGMAx99dVX+vTTTxUbG2tWqdnGjnP+q5IlS+qZZ57RM888I+n2pX2WLFmiRYsWadWqVQoPD/f6EG43ffv2VWBgoNlluJWddrQcOnRIw4cPV2RkpIoXL66RI0eqWbNmZpflVnYJaEni4uI0efJkzZgxQ/Hx8erYsaPefvtt5cuXz+zSst3hw4f1/vvva+/evSpSpIgmTJhg6ZBmlUtB4s7stqMlODjY0p/HcB2ytz1yqB3n/Fdkb+she99G9rYusjfZ2yrI3tZH9vZONMBN5HQ6NXXqVL399tv64osvNG3aNJUsWVJFixaVj4+Pzp8/r+PHj8swDLVs2VIffPCB2SVnydatW9W9e3clJCTowQcflL+/vyIiIvTKK69o5syZql27tk6ePKl//OMfioyMVJ48eTRixAizy84SO87572JjYxUREaEdO3Zo165d+vnnn3Xr1i3lzJkz+ZJsVnDp0iWdOnUq+b+TjkC+cOFCiuXS7aNbvVnfvn1T/HdcXJwOHTqkM2fOJF/mJigoyJL3K7KD9u3bKzExUZJUuHBhzZ07V3Pnzr3r3zgcDs2aNcsd5bmU3QKaJG3cuFEjR45UVFSUAgMDNWLECFWtWtXsslxi7NixmjNnjhISEvTUU09pwIABypMnT6rP6L9L60wTq5o/f742bdqkSZMmmV1KpqT30sZ/5e2fX5nZ0bJz504XVOIedrvHL7IP2dv6OdSOc/47sjfZG96F7E32JnunRPb2HmTv9CF7m89hGIZhdhGQfvzxRy1evFiRkZE6e/Zs8g/ZmjVrqm3btqpXr57ZJWbZq6++qsjISE2fPl3Vq1eXJEVHR6tXr17KkSOHxowZo5CQEJ0/f17NmjXTsGHDVLRoUZOrzho7zjk+Pl579+7Vtm3btG3bNu3bt0+3bt1Sjhw5VKVKleTgXb16dctczigoKCjN+7YYhnHX+7kcPHjQlWW53Llz5zRhwgSFh4crJiYmxTp/f381b95cAwcOTHV2jTcKCgrSv/71LzVp0iR52eXLlxUcHKyPP/44+f2dZPXq1frwww+9chs3btw4U3+3bt26bK7Eve4U0O7FmwNa//79tXr1aknSU089pZCQEPn4+Nzz72rXru3q0lwiKCgo+d8zcq8tb3wfZ9bw4cO1YMECr51zej+/EhMTFR0dnfw97a3zzYjTp08rNDRUYWFhOnHihC3mDNwJ2duaOdSOcyZ7/w/Zm+ztjduY7E32vheyt3WRva2L7O1ZaIDDberVq6cOHTro7bffTrF806ZN6t69u8qXL6+zZ8/q/fff9/rLzSWx25y7d++unTt3KjY2Vk6nU5UrV1a9evVUt25d1axZM9VlrKxiyJAhmfo7bz6Sau/everZs6cuX76sqlWrql69eipWrJh8fX115swZRUREKCIiQvny5dOUKVNUo0YNs0vOErvuaLETOwa0v85Zuve8vT2wZPbI6r+feWNl3h7C02Pfvn16//33dfDgQZUpU0bDhg1To0aNzC7LJW7evKnw8HAtWrRI27dvT34PN2zYUF988YXZ5QFwIbvlUMl+cyZ7ZwzZ23uQva2P7E32vhOyt7WQvcnenoBLoHuR7du36/Dhw5m6xIQnuHr1qsqXL59qecWKFWUYhi5duqRvv/3WEvcWSGK3Of/444/KkSOH2rVrp549e+qBBx4wuyS38OYwnRnnz59Xnz59lDt3bn3++eeqWbNmmuMOHDigAQMGqH///lq8eLEKFy7s5kqzT7t27TIUzOxk586dCg0N9fpLhdopaCWx22dXZrax1e4NamdXr17Vxx9/rAULFsjpdKpnz57q3bu3JS8ZunfvXi1atEjff/+9rl27JkkqVKiQ2rdvr06dOql06dImVwh4PrK397HbnMne9kD2xl+Rvb2X3T67yN72RvYme3sSGuBeZMWKFVqwYIHXhvCEhAT5+qZ+ySVdiqtXr16WCaNJ7Dbnjh07avv27cmX+ShXrpzq16+vevXqqXbt2sqfP7/ZJSIbzJ07VzExMZo/f77Kli17x3EPP/ywZs6cqdatW+u///2v+vXr58Yqs9eHH35odgke5c8//1RoaKhCQ0N14sQJSbJlCPf2gBYcHJzhv4mKinJBJZ4naefSqlWrvPqeTbht8eLFGjdunM6fP686depo+PDhaTZJvNmZM2cUFham0NBQ/fHHHzIMQ/7+/mrQoIG2bNmif//73ykuJQrg7sje3sducyZ72wPZG2Tv28je1kX2thayN9nb09AAh8ew2odhelhtziNHjpQknTp1Slu2bNG2bdu0cuVKzZ07V06nU0FBQapbt25yKA8ICDC5YmTGmjVr1KZNm7sG8CSlS5dWcHCwwsPDvTqEh4SE6I033lD9+vWTl8XHx2vPnj0KCgpS3rx5U4xfsmSJBg8erAMHDri7VJeJi4tLvpzPtm3bZBiGDMNQ3bp19cILL5hdnlvZLaDdvHlTK1euVGhoqCIiIrR//36zS3KJpJ1LYWFhOn78uAzDUIECBcwuC1lw9OhRjRgxQjt27FDBggX14Ycfql27dmaXla2+//57LVq0SFu2bFFCQoLy5cun1q1bq1mzZmrYsKHOnj2rpk2bml0mAA9jtRyaHlabM9nbHsjet5G9yd5kb2she1sP2Zvs7alogAPIdqVKlVKHDh3UoUMHSdKvv/6qbdu2aevWrVq4cKFmzpwpX19fPfLII6pfv77efPNNkytGRpw8eVIvvvhiuscHBQUpNDTUhRW53o4dO9SxY8cUy65evaqQkBDNmDEjRThPYhiGu8pzqb9fzidpXs8884z69OmjcuXKmVyhe9gxoO3evVuLFi3SypUrFRMTI8MwVLFiRbPLylZJO5dCQ0O1bds2JSYmyjAMVatWTZ07d1arVq3MLjFLwsLCMjT+999/d00hbhYXF6fJkydrxowZio+PV8eOHfX2228rX758ZpeW7QYOHKiAgAB16dJFTZo0Ue3ateXj45O8nkuIAoC1kb2tjex9G9mb7E329n5k75TI3t6H7O2daIDDrXbu3KmEhIQUy2JiYiRJmzdvVnR0dKq/8fajhew457+rWLGiKlasqJdeeklxcXFauXKl/vvf/2rv3r3at28fIdzL5MiRQzdv3kz3+NjYWMuecWCVoP13aV3Op0CBAgoODla1atU0fPhwtWrVyvIB3OoBLS3R0dHJ2/7YsWOSJF9fX7Vq1UovvPCCatWqZXKF2WPfvn1auHBhip1L+fLl09WrVzVy5MhUO9281eDBgzMUwgzD8PrQtnHjRo0cOVJRUVEKDAzUiBEjVLVqVbPLcpkyZcro5MmTWrRokX7//Xf99NNPatq0qR588EGzSwNgMjvmUDvO+e/I3tZC9v4fsjfZ22rI3mRvsrd3IXt7JxrgcKsFCxZowYIFKZYl/YidPn16ig/+pC8Cbw+kdpzzXx0/flz79u3Tvn37FBkZqUOHDunWrVvKnTu3nnjiCdWuXdvsEpFBlSpV0saNG9N9T8QNGzaoQoUKLq4K2aVHjx7avHmzEhISVLJkSXXp0kVNmzZV3bp15XQ6FRUVZdmdD0nsEtCSxMXFac2aNVq4cKG2bduWvOO4fPnyOnr0qD766CO1aNHC5Cqz7syZM1q8eLFCQ0P1+++/yzAMlSpVSsHBwWrWrJmKFy+up59+WoUKFTK71GwzZswYs0twq/79+2v16tWSpKeeekohISGKi4tTRETEXf/Om3+LrFmzRvv27dOSJUu0cuVKbdq0SRMmTFC5cuXUrFkzVa5c2ewSAZjEjjnUjnP+K7K39ZC9rY3sTfYme5O9vRXZm+ztLWiAm+jUqVMZGp905LK3stsXgWS/OV++fFmRkZHJgTsyMlKXL1+WYRjKnz+/atSooYEDB6p27dp6+OGH5XQ6zS4ZmdC2bVu99957WrFixT2Pwg0LC9OWLVs0YcIEN1WHrPrhhx8UEBCgkJAQde3aVUWLFjW7JLewY0CLjIzUokWLtGLFCl25ckVOp1PVq1dXs2bN1KxZMyUkJKhp06bKkSOH2aVmi8aNGysxMVFBQUHq1auXmjRpokceeSR5fVRUlInVuUZwcLDZJbhVeHh48r+vW7dO69evv+v4pObHwYMHXV2aS1WtWlVVq1bVu+++q02bNmnp0qVau3atpkyZIofDIYfDofXr1ysoKEilS5c2u1zAFGRv67PbnMne9kD2tjayN9mb7G0dZG+yN9nbM9EAN1Hjxo1tdWmMzHwRePsXot3mXLduXTkcDhmGoYIFC6pOnTqqXbu2ateurcDAQK9+/eJ/2rdvr7CwML3zzjs6fPiwunbtqmLFiqUYc+bMGc2cOVOzZ89Wo0aN1LJlS5OqRUb17dtXy5cv19SpU/XFF1/owQcfVNOmTdW0aVNVqVLF7PJcxo4B7fnnn5e/v78aNmyoJ554Qo0bN06xk8Fqc46Pj5e/v7+KFCkif3//VJdItYPo6Gjt2rVLZ86ckSQVK1ZM1atXV8mSJU2uLHvYrfnxdz4+PmrUqJEaNWqk2NhYrV69WsuWLdPmzZv13XffadGiRapbt67at2+vZ5991uxyAbcie9+bt3/v223OZG97IHtbG9mb7J3EanMme5O9rY7s7T1ogJuoXbt2hJI03Lx5UytXrlRoaKgiIiK0f/9+s0tyOavMuUWLFqpTp47q1KnDZbcszOl0aurUqXr77bf1xRdfaNq0aSpZsqSKFi0qHx8fnT9/XsePH5dhGGrZsqU++OADs0tGBvTt21d9+/bVzz//rKVLl2rFihWaNm2avvzyS5UsWVI1a9a05HeXHQOav7+/bty4oSNHjqhgwYIKCAjQE088oTx58phdmkusX79eS5cu1dKlSzVhwgQ5HA4VKVJETz/9tJ5++mlLH53766+/atSoUYqIiJBhGCkupeh0OlWzZk0NHTpUgYGBJlaZdXY76v5u/Pz81Lp1a7Vu3VoXL17UihUrtHTpUm3dulXbtm0jhMN2yN5ps0oOzQirzJnsbQ9kb2sje5O9yd7WQ/a2H7K3Z3MYVr+ZCLzG7t27tWjRIq1cuVIxMTEyDEMVK1bU0qVLzS7NZew4Z1jLjz/+qMWLFysyMlJnz56VYRgqVqyYatasqbZt26pevXpml5gtgoKC9K9//UtNmjRJXnb58mUFBwfr448/VvXq1VOMX716tT788EOvv7SPdPsMqK1bt2rp0qVavXq1rl27JkkqXbq02rdvr3bt2qlUqVImV5l1p0+fTg5ov/76a5oBrVmzZpo8eXKK14E3i42N1bp167RkyRJt2rRJCQkJypEjh+rXr6+nn35aQUFB6tChg6XmnOTQoUPJO5lOnz4th8ORvFNi8ODBevnll80uMdusXbtWAwYMkMPhUNOmTVWvXj0VK1ZMvr6+OnPmjCIiIrRy5UrFx8dr4sSJatq0qdklw4VOnDih5cuXq1evXmaXAsBEdsyhdpwzrIXsTfYme3svsjfZm+xtP2Rvz0AD3EucPn1aoaGhCgsLS3GPBW8XHR2tsLAwhYaG6tixY5IkX19fNWvWTC+88IJq1aplcoXZz45zBrxdUFBQmkde3+vymFYI4X8VFxendevWadmyZdq4caNu3bolp9Op+vXr6//+7//MLi/b2CmgJbl06VLyUap79+5Nsa5Hjx7q1auX/P39zSnOxXbs2KGlS5cqPDxcly9flsPhUJkyZfTcc88pODhYJUqUMLvETDt58qRat26tBx98UJ988onKli2b5rg///xT/fv312+//abFixffcZynGzJkSIb/xuFwaPTo0S6oBoC3Intbhx3nDHg7svdtZG+ytxWRvcneZG+4Gw1wD3bz5k2tWrVKoaGh2r59uxITE+Xr66uff/7Z7NKyJC4uTmvWrNHChQu1bdu25EvdlC9fXkePHtXEiRPVokULk6vMXnacM+wjLi5Ohw4d0pkzZ5KPQg8KClKuXLnMLi3bZOaHnWTte+JcuXJFK1eu1NKlS7Vr1y4dOHDA7JJcwsoB7U6ioqK0dOlSLVu2TL/99pscDocCAgLUsmVLtW/fPtVZF1Zx69Yt/fDDD1qyZIk2bNigmzdvev3vrg8++ECLFy/WypUrU9xjLi2XLl1Sq1at1KZNGw0ePNhNFWavoKCgDP+Nw+Hw6h2mmTlDxOFwaM2aNS6oBvBeZG/rsOOcYR9k7zsje3s/sjfZ25t/d5G9743sDTPQAPdAe/bsUWhoqFasWJF8aa4SJUqoY8eOev7551W0aFGzS8yUyMhILVq0SCtWrNCVK1fkdDpVvXp1NWvWTM2aNVNCQoKaNm1qqcu92HHOsI9z585pwoQJCg8PV0xMTIp1/v7+at68uQYOHKhixYqZVCHcZefOnZY/g8aKAS09Dh06pCVLlmjFihX6888/vT6wpNe1a9cUHh6uZcuWacaMGWaXk2ktW7bUE088ke4diePGjdP69ev1/fffu7gy14iKisrU33nzPegaN26caplhGDp9+rSKFCminDlzpvl369atc3VpgFcge1snh9pxzrAPsjeSkL2ti+xN9vYmZO/byN6ez9fsAnBbdHS0Fi9erEWLFunYsWMyDENOp1OSNGDAAPXo0SP5v73V888/L39/fzVs2FBPPPGEGjdunOKIqMx+cHoyO84Z9rB371717NlTly9fVtWqVdO8r01YWJjWrVunKVOmqEaNGmaXjAz6+eeftXfvXhmGoYceeijNkH3t2jWNHz9e3377rfbv329Cle6TI0cONWnSRE2aNEkR0KwuKChIQUFBeuedd7R9+3ZbzFmS8uTJo6ZNm2r37t1ml5Ilp0+fVoUKFdI9vly5cpo3b54LK3Itbw7TmZVWmL5w4YIaNGigjz76SPXr1zehKsCzkb2tmUPtOGfYA9nb+sjeKZG9yd7eiOxtfWRv70QD3ERJl+ZatGiRtm7dqoSEBOXKlUuNGzfW008/rcDAQAUHB6tixYpeH8AlJd/D5ciRIypYsKACAgL0xBNPKE+ePGaX5jJ2nDOs7/z58+rTp49y586tzz//XDVr1kxz3IEDBzRgwAD1799fixcvVuHChd1cKTLj+vXreuutt7Rx40YlXSTG4XCoQYMGmjJlSvIRjRs2bNDw4cMVHR2t++67z8yS3c4qAS2jSpUq5fU7j0+ePKmZM2dqz549kqSHH35Y3bt31/33359iXHh4uEaOHKlz585p1KhRZpSaLfz8/HTlypV0j79y5Yry5cvnworMFRcXp99++01+fn4qV66c2eW4zN3ujwnYFdnb+jnUjnOG9ZG9rY3sfW9kb+9F9r47src1kL09Hw1wEzVs2FBXrlxR/vz59cwzz6hJkyZ64okn5O/vL8l6Ryhv3bpV69at05IlS7Rw4UItWLBAOXLkUP369fX0009n6t4Rns6Oc4b1zZ07VzExMZo/f77Kli17x3EPP/ywZs6cqdatW+u///2v+vXr58YqkVmfffaZNmzYoIYNGyo4OFgBAQHauHGjvvnmG40bN05Dhw7V2LFj9dVXX8nHx0fdunVT//79zS47W9gtoEnSvn37NGXKlBRz7tOnT4qzDgzD0FdffaVPP/1UsbGxZpWaZQcPHtRLL72ka9euyc/PT35+fjpw4IBWrFih+fPnq1KlSrp69aqGDh2q8PBw+fj4qEePHmaXnSWPPPKIwsPD1a1bt3SNX7VqlR566CEXV+VaV69e1Zdffqk9e/Zozpw5ycuXLl2qUaNGJe+UePDBBzV69GhVq1bNpEoBuBPZ2/o51I5zhvWRva2N7E32JnuTvb0Z2RvegAa4iS5fvqyAgAA1b95cdevWVY0aNZIDuBX5+fmpVatWatWqlS5duqQVK1Zo6dKl+uGHH/TDDz9Iun3UTGRkpBo0aGCJ/y/sOGdY35o1a9SmTZu7BvAkpUuXVnBwsMLDwwnhXmLdunWqU6eOvvzyy+RlTz75pAoXLqw5c+aoQIECmjlzpoKCgjRmzBiv/8GexI4BbevWrerevbsSEhL04IMPyt/fXxEREXrllVc0c+ZM1a5dWydPntQ//vEPRUZGKk+ePBoxYoTZZWda0k6Ejz/+WM8884yk2/cLfeuttzRq1CiNHz9eISEh+uOPP/Too49q1KhRCgwMNLnqrOnQoYMGDBigmTNn6tVXX73r2KlTpyoyMjLFe9/bxMTEqFOnTjp69KhKlCih+Ph4+fr6KjIyUoMGDZJhGOrUqZMqVqyosLAwvfrqqwoLC0u1ow2A9ZC9rZ9D7ThnWB/Z29rI3mRvsjfZ21uRveE1DJgmIiLCeO+994w6deoYQUFBxkMPPWQ8//zzxvTp041jx44ZJ0+eNAIDA401a9aYXapLnTx50pgyZYrxzDPPGIGBgUZQUJBRo0YN41//+pexe/dus8tzCTvOGdZRrVo1Y/78+ekev2DBAqN69eourAjZqVq1asZXX32Vavlvv/1mBAYGGg899JAxcuRIIy4uzoTqXKdXr15G5cqVjWXLliUv27dvn9GkSRPjpZdeMqKjo43mzZsbgYGBRocOHYxDhw6ZWG32eOWVV4waNWqk+N75888/jXbt2hkdO3Y0fvvtN6NBgwZGYGCg0a9fP+PMmTMmVpt1DRo0MEaOHJlq+apVq4yHH37Y6NKli/HII48YX375pZGQkGBCha7Rr18/IygoyPjHP/5h7NmzJ8V7NyEhwdizZ0/ymGHDhplYadZ9+umnRuXKlY3vv/8+xfIePXoYQUFBxpgxY5KXxcbGGs2aNTMGDx7s7jJd7sKFC0ZgYKCxZcsWs0sBPAbZ+zY75lA7zhnWQfa2NrI32ZvsTfb2VmTv28jeno8zwE1Uq1Yt1apVS8OGDdPGjRu1dOlSbdiwQfv27dP48eNVtmxZORwOXb9+3exSXap06dLq1auXevXqpUOHDmnJkiVasWKFvvvuOy1cuFAHDx40u8RsZ8c5wzpy5Mihmzdvpnt8bGysAgICXFgRstONGzdUqFChVMsLFiwoSXr66ac1dOhQd5flcpGRkercuXPy0cmSVKVKFb3zzjsaOHCgBg4cqKioKL399tt67bXXLHF/0IMHD+qFF15Q9erVk5cVL15c//jHP9S9e3e9+eabio+P18SJE9WyZUsTK80ely9fTvPyp48++qgSEhJ0+PBhzZkzx3KX5Ro/frzGjBmj+fPna/ny5fLx8VGBAgXk4+OjS5cuKS4uTk6nU926ddPAgQPNLjdLwsPD1bZtW7Vo0SJ5WUxMjDZv3ixJ6tKlS/LyXLlyqU2bNvr222/dXicA9yN732bHHGrHOcM6yN7WRvYme5O9q7m/OBcie5O94XlogHsAX19fNWnSRE2aNFFMTIzCw8O1dOlSbd++XYZhaNCgQVq4cKGee+45NW/eXLly5TK7ZJcJCgpSUFCQ3nnnHW3fvl3Lli0zuySXs+Oc4d0qVaqkjRs3KiQkJF3jN2zYoAoVKri4Kriaw+GQJLVr187cQlzEjgHt6tWrKl++fKrlFStWlGEYunTpkr799lvdd999JlSX/eLj49P8DeXn5ydJ6tGjh6W2b5KcOXNq+PDhCgkJUVhYmCIjI3X27FkZhqFy5cqpZs2aat26tSUuRXby5MkUQVuSIiIiFB8fr7Jly6Z6LZcsWVLnz593Z4nZbtKkSamWxcbGyuFwaPHixdq1a1eq9Q6HQ3369HFHeYDHIXv/jx1zqB3nDO9G9rYnsjfZ29uRvcneZO/byN7mowHuYXLnzq3g4GAFBwfr/PnzWrZsmZYuXapt27Zp27ZtGjlypCIiIswu0y3q1q2runXrml2GW9lxzvA+bdu21XvvvacVK1aoVatWdx0bFhamLVu2aMKECW6qDq6WFFisxo4BLSEhQb6+qX8K5syZU5LUq1cvywTw9HjkkUfMLsGlHnzwQa8/yvxenE6nEhMTUyzbunWrJKlBgwapxl+4cEF58uRxS22uklYITxIWFpbmckI4cBvZ+3/smEPtOGd4H7K3vZG9rYPsnRLZ2/uRvVMie3suGuAerHDhwnr55Zf18ssv69ixY1qyZIlXH6Gc3iNW/8rhcGjWrFkuqMY97DhnWF/79u0VFhamd955R4cPH1bXrl1VrFixFGPOnDmjmTNnavbs2WrUqJElLuFkJ0lHnGd0nZVZPaClJa0j1K3MDq/t6Oho7dq1S2fOnJEkFStWTNWrV1fJkiVNrix7VKhQQXv27FHXrl0lSYZhaPXq1XI4HGrcuHGq8WvXrvX61/ns2bPNLgGwBLK39+dQO84Z1kf2tj6yd2pkb+uzw2ub7J0S2RtmoQHuJe6//37169dP/fr1M7uUTNuxY0eayx0OhwzDuOM6b2bHOcP6nE6npk6dqrfffltffPGFpk2bppIlS6po0aLy8fHR+fPndfz4cRmGoZYtW+qDDz4wu2Rk0OjRozVx4sQUywzDkMPh0Ntvv53qaG2Hw6E1a9a4s0S347PZGo4ePZrqbL6rV69Kkg4fPpzmUfm1a9d2S22u9Ouvv2rUqFGKiIiQYRgpfoM4nU7VrFlTQ4cOVWBgoIlVZl27du30wQcf6NFHH9Vjjz2mBQsW6NSpU7rvvvvUsGHDFGOnTp2qvXv3ev19FevUqWN2CYDlkL29kx3nDOsje1sf2Ts1PputgexN9k5C9oaZaICbKCQkRG+88Ybq16+fvCw+Pl579uxRUFCQ8ubNm2L8kiVLNHjwYB04cMDdpWaLQ4cOpVp24cIFNWjQQDNnzkzx/4NV2HHOsIe8efPqiy++0I8//qjFixcrMjJSv/zyiwzDULFixdSuXTu1bdtW9erVM7tUZFCpUqUkKc0dhUlHqv593Z12KnobOwa0nTt3KiEhIcWymJgYSdLmzZsVHR2d6m+8+V50U6dO1dSpU9NcN3bs2DSXHzx40JUludzatWs1YMAAORwOtWjRQvXq1VOxYsXk6+urM2fOKCIiQitXrlSHDh00ceJENW3a1OySM61z587atWuXxowZk9zwyJ8/v8aPHy+n0ylJ+u677zRt2jSdOHFCNWvW1AsvvGBy1a4VFxen3377TX5+fipXrpzZ5QCmIXtbP4facc6wB7K3dZG9yd5k75TI3t6D7J0a2dszOQyrfHN6oaCgIH300Udq3bp18rKLFy+qQYMGmjFjRqqAtmTJEg0aNMjrvwz+6uLFi6pfv76tAqkd5wwAni4oKOiOR5onHYGfFm/+Tr7TnP/60/Cv65P+f/DWOX/22WeZOpugb9++LqjGPU6ePKnWrVvrwQcf1CeffKKyZcumOe7PP/9U//799dtvv2nx4sV3HOct9uzZoz179ihPnjxq2rSpChUqlLxu0qRJWrx4sVq3bq2ePXumef9Bb3P16lV9+eWX2rNnj+bMmZO8fOnSpRo1apSuXLki6fa96EaPHm25eyoC6UH2tmcOteOcAcDTkb3/h+ydEtnb+5C9byN7ey7OAPdAHJMAwFvExsbKz88v1fLffvtN+fLlS3V/Mni+sLAw1apVS2XKlDG7FLfq06eP7S61NmbMGLNLcCtvvpRtZs2aNUs5cuTQ9OnTUwTRvytRooSmTZumVq1a6euvv9bgwYPdWGX2q169uqpXr57mur59+95xx8qtW7e0d+/eNM8G9VQxMTHq1KmTjh49qhIlSig+Pl6+vr6KjIzUoEGDZBiGOnXqpIoVKyosLEyvvvqqwsLCdP/995tdOuARyN4AvAXZ23rI3vZB9rY+sndqZG+ytyegAQ4AyLC4uDiNHTtWS5cu1Q8//JAqiE+YMEE//PCD2rdvr0GDBikgIMCkSpFRQ4YM0bhx42wXwu0Y0IKDg80uwa3Suvyt1W3atEnBwcF3DeBJChQooHbt2mn9+vVeH8Iz6/LlywoJCUnzbFBPNWPGDB0/flz/+c9/1KJFi+TlkydPlmEYevnll5O3Z4cOHdSmTRtNnTrVdjvhAADwVmRv6yJ72wfZ2/rI3hlD9oa7OM0uAADgXeLi4tStWzd9/fXXKlWqlC5evJhqzFNPPaXAwEB98803ev311xUfH29CpcgMu54JFRISoq1bt5pdhls1adJEa9euNbsMt9mxY4fOnTtndhludfr0aVWoUCHd48uVK6c///zThRV5Pm/7DAwPD1fbtm1TBPCYmBht3rxZktSlS5fk5bly5VKbNm1s91kHAIC3Intbm7f97swuZG/rI3vfG9nb+z4Dyd7eiQY4ACBDvvrqK0VERGjo0KEKCwtTyZIlU43p2LGjFi5cqL59+2r37t2aO3euCZUC6WfHgBYVFaXr16+bXQZcyM/PL/keVOlx5coV5cuXz4UVIbudPHlSjzzySIplERERio+PV5kyZXTfffelWFeyZEmdP3/enSUCAIBMInvDisjesCKyt/WRvb0Tl0CH24SFhaVaFhMTI0navHmzoqOj0/y7du3aubAq17LjnGF9S5cuVZMmTfTiiy/ec2zfvn21Y8cOLV68WK+88orri0O2uHTpkk6dOpWhvylVqpSLqgGQWY888ojCw8PVrVu3dI1ftWqVHnroIRdXhezkdDqVmJiYYlnSUeYNGjRINf7ChQvKkyePW2oDYB475lA7zhnWR/a2PrI3YA1kb+sje3snGuAm+/sPncuXL0u6/Qb5+w+gtC515E0GDx4sh8ORYlnSpS6mT58uh8OR/N9J/+5wOLw6kNpxzrC+Y8eOqXPnzuke/+STT+qTTz5xYUXIbqNHj9bo0aPTPd7hcOjAgQMurAjIHqtXr9axY8fSPd7hcKhPnz4urMi1OnTooAEDBmjmzJl69dVX7zp26tSpioyM1Jdffumm6pAdKlSooD179qhr166Sbv/OXL16tRwOhxo3bpxq/Nq1a1W+fHl3lwl4BLK3tXOoHecM6yN7Wx/ZG1ZF9r4zsrd3Int7JxrgJrvTD523337bhGpca8yYMWaX4HZ2nDOsLyAgQAkJCekenytXLvn5+bmwImS3mjVrqmzZsmaX4XZ2C2iStGDBAm3ZsiXd4x0OR4Z20Hia1atXKzw8PN3jvX0bt2jRQs2aNdO4ceO0f/9+vfjii6pcubJy5MghSUpMTFRkZKRmzJih1atXq2PHjnr88cdNrhoZ0a5dO33wwQd69NFH9dhjj2nBggU6deqU7rvvPjVs2DDF2KlTp2rv3r0aOnSoSdUC5iJ7W5sd5wzrI3tbH9k7fbw9l0lk73vx9m1M9rY+srd3ogFuonbt2qU6QtnKgoOD7znm8uXL8vPzU65cudxQkevZcc6wvnLlymn37t0KCQlJ1/hdu3apdOnSLq4K2alTp05q3bq12WW4nd0CmnT7fkURERHpHu/tIbxnz55pXprKysaPH68xY8Zo/vz5Wr58uXx8fFSgQAH5+Pjo0qVLiouLk9PpVLdu3TRw4ECzy0UGde7cWbt27dKYMWOSz2jMnz+/xo8fL6fTKUn67rvvNG3aNJ04cUI1a9bUCy+8YHLVgPuRvVOzWg6145xhfWRv6yN7pw/Z2/uQvcneVkP29k40wE304Ycfml2C2926dUuLFi3S3r17UxyhvWPHDr3//vv6/fff5XA41KBBAw0fPtwSR0Hacc6wtuDgYA0fPlzbtm1TvXr17jp2+/btCg8PV79+/dxUHZB5dgxo7777rpo0aWJ2GW5Tvnx51alTx+wy3CpnzpwaPny4QkJCFBYWpsjISJ09e1aGYahcuXKqWbOmWrdurfvvv9/sUpEJDodD48ePV9euXbVnzx7lyZNHTZs2VaFChZLH/PnnnzIMQ2+88YZ69uyZHM4BOyF72yOH2nHOsDayN6yK7G19ZG+yt9WQvb0TDXATvf7662rXrp2aNm1qi0sU3bp1S6+99poiIiKUI0cOjRw5Ur6+vvr999/1+uuv69atW2rYsKEqVKigVatWqVOnTlqyZImKFClidumZZsc5w/ratWunhQsXqlevXurZs6c6duyY6jV75swZffvtt5o+fbrKlCmjLl26mFQtkH52DGgFCxbkLBGbePDBBznK3MKqV6+u6tWrp7mub9++6tu3b5rrbt26pb179yooKEh58+Z1ZYmAqcje1s+hdpwzrI/sDasie8PKyN7WRvb2LhyCYKIdO3bon//8pxo0aKDBgwdry5YtMgzD7LJcZu7cudq5c6f++c9/KiIiQr6+t4+/+OyzzxQXF6fWrVtr2rRpeuedd7Rw4UL5+Pho6tSpJledNXacM6wvR44cmjx5sqpWrapPPvlEDRs2VJMmTdS5c2d17NhRjRs3VqNGjfTZZ58pMDBQM2fO5Ivdi5QqVUoBAQFmlwEAcIPLly8rJCREP//8s9mlAC5F9rZ+DrXjnGF9ZG9rI3sDgH2Qvc3BGeAm2rp1q9asWaPvv/9ey5cv1+LFi1WkSBG1bt1abdq0UVBQkNklZqtly5apefPm6tatW/KyuLg4rVu3Tg6HI8XyAgUK6LnnntPy5cs1dOhQM8rNFnacM+yhcOHCmjVrlsLDw7V8+XIdOHBAhw8fltPpVJEiRdSuXTs9/fTTaty4sdmlIoPWrVt31/WJiYn6888/VaRIEeXMmdNNVQFZ17dvXwUGBppdhlul936Rf+VwODRr1iwXVOMZzp49qwIFCihHjhyp1uXPn1+zZ8/WQw89ZEJl5rFyExBIQva2fg6145xhD2Rv6yJ7w6rI3ulD9iZ7w/VogJsod+7catu2rdq2baurV69q1apVWrFihWbNmqX/x959x9d4/n8cf58sWUjsPWok9t6rRu3U1tqUammt0hZfitKqoq2ilNZuUSM2DbWr9qpZI2YRIkZIZJ3fH345dSQhiSQn5+T1fDz6KPc49+c+y3lf131f19y5c1W4cGG1aNFCPj4+yp49u6XLfWWXLl1Sq1atzJYdOnRIoaGhypYtW4x/GPPly6eAgICULDHJpcVzRtrSsGFDNWzY0NJlIAXdvXtX9evX15w5c1StWjVLl5Nk0mJAGz9+fJzDNtmiuIahivb48WPNmTNHLVu2VJ48eVKoquS1f//+WJcbDIY4g5fBYEjOklLE3Llz9dtvv2nNmjUxwvaXX36pPXv2qGfPnurVq5fZnFyOjo5pbihGIK0ge9t+Dk2L54y0heyd9pC9bQfZ2xzZ+7911o7sjdSODvBUIn369Grbtq3atm2ru3fvatOmTdq4caO++eYbffPNN6pUqZJatmyphg0bys3NzdLlJkpUVJTs7e3Nlu3du1eSVL169RjbP3z4UC4uLilSW3JJi+cMSE+HdXF2dla6dOksXQqSgS1esZgWA9rzjcTPCw4O1hdffKFevXqpUKFCKVSV5Tx+/FjTp09XhQoVbOY1PnPmTIxld+/eVfXq1TV37lybakiTnn43DRkyROvXr1fmzJl18+ZN5c2b12ybQoUK6fDhw/r222914sQJff/99xaqFoClkL1tM4emxXMGJLK3rSN720YuI3ubI3tbP7I3rAVzgKdCmTJlUseOHbVw4UJt375d//vf/2RnZ6fPPvtMNWvWtHR5iZYvXz6dPn3abNnmzZtlMBj0+uuvx9h+9+7dypcvXwpVlzzS4jkjbQgPD9fSpUs1bNgws+X79+9X06ZNVbVqVZUrV069evXSlStXLFQlkHSiA9rVq1ctXUqKCQ0N1apVq9LU3VG22MD0PFu4yjwuS5cu1fr169W9e3dt3749RgCXnja4bd68Wa1bt9bmzZu1cuVKC1QKILUgez9lCzk0LZ4z0gayN9IasnfaQPa2bmRvWAs6wFM5R0dHOTs7y93dXQ4ODgoLC7N0SYnWrFkzrV69Wlu2bFFISIjmzZunixcvKnPmzDHmKlqzZo3+/PNP1a9f30LVJo20eM6wfeHh4XrnnXc0atQorVu3ThEREZIkf39/9erVS/7+/qpVq5a6d+8uf39/vf3227pz546FqwZeXVoIaM9Li+cM67V8+XJVrlxZQ4cOjXWesWhOTk4aN26cihUrpt9++y0FKwSQmpG9rTuHpsVzhu0jeyOtSos5NC2eM6wX2RvWgiHQU6G7d+9q8+bN2rRpkw4cOKCIiAgVL15cAwYMULNmzSxdXqJ1795du3bt0ocffmia/8LR0VFffPGFnJycJD29QnvRokXav3+/ChYsqO7du1u26FeUFs8Ztm/RokU6ePCgPv74Y3Xq1EkODk//KZk6darCwsL05ptv6uuvv5Yk9e7dWz4+Ppo5c6ZGjBhhybKRRBwdHVWpUiVlzJjR0qUAgJkLFy5owIAB8drWYDCocePGmjFjRjJXBSA1I3vbTg5Ni+cM20f2TtvI3gBSK7I3rAUd4KnEnTt35Ofnp02bNunQoUOKjIxU7ty51bNnT7355ps2Mf+Hk5OT5s2bpw0bNujo0aNyd3eXj4+PChcubNrmxIkTOnz4sN58800NHTpUzs7OFqz41aXFc4btW7dunRo1aqSePXualoWFhWnr1q0yGAxmyz08PNS6dWutX7+eEG4lHj58qPTp08e5PmPGjFq4cKHZsn379qlKlSrJXRqQrNKnT6/x48erSJEili4FieTg4GDq5IiPDBkyxJgvFoDtI3s/ZWs5NC2eM2wf2du2kb2RVpG9rR/ZG9aCDnALCggIkJ+fn37//XcdPnxYkZGRypgxo9q2bSsfHx9VrFjR0iUmOXt7e/n4+MjHxyfW9e+//74GDBggOzvbGZ0/LZ4zbNulS5fUqlUrs2WHDh1SaGiosmXLJi8vL7N1+fLlS1PzGFm7rl27au7cufLw8Hjptk+ePNHEiRP166+/6tSpU8lfnAWlxYCWMWNGLViwQMWKFbN0KSkiXbp0qlmzJndYWLH8+fPrxIkT8d7+xIkTypkzZzJWuVmmbAABAABJREFUBCC1IHvHZIs5NC2eM2wb2du2kb1jR/a2fWRv60f2hrWgA9yC6tSpI+nplcoNGjSQj4+P6tSp88J5E2ydi4uLpUtIcWnxnGHdoqKiYly1t3fvXklS9erVY2z/8OFD3udW5PTp0+rcubPmzZunLFmyxLndsWPH9Omnn+rSpUsv3M5WpEuXzqzxKTIyUrNmzVKfPn0sWFXycnR0VOXKlU1/f/jwoSZMmKBx48ZZsKpXN3fuXP32229as2ZNjN9cX375pfbs2aOePXuqV69eVt9AvmrVqhjLHj16JEn6888/devWrVj3a9myZTJWlXyaN2+uyZMnq0ePHi9tMDt37pzWrl2rrl27plB1ACyJ7B1TWvx9nhbPGdaN7G3byN6xI3uTva0R2TtuZG9YksFoNBotXURa1aVLF7Vo0UKNGzeWu7u7pcsBgHhp0aKFypQpo88//9y0rGnTpvL399e3336rxo0bm23fq1cv3b9/X8uWLUvpUpEIv/zyi7744gvlzZtX8+bNi3GFZnh4uL7//nvNmTNHkZGRatGihYYPH24TV+4+fPhQy5Yt09GjR2U0GlW8eHF16tRJGTJkMNvu77//1ogRI/TPP//o9OnTFqo2aVy7dk1z587VkSNHJEnFixfXu+++q/z585tt5+fnp7Fjx+rOnTtWe85Go1FDhgzR+vXrlTlzZi1ZskR58+Y122batGlatmyZAgIC9MYbb+j777+3ULVJw9vbWwaDwWzZsz/9Y1tnMBis9jV+/PixWrdurXv37mn48OFq1qxZjEbjiIgIrVu3TpMmTZIk+fr6KmvWrJYoN8Xcvn1bHh4esXb0hYeH68iRIypWrNgLh+AErB3ZG4A1InvbNrI32ZvsTfa21teY7B07snfqQwc4ACBBZs2apenTp2vy5MmqUaOGli5dqq+++kpZsmTR1q1bzeaAWbNmjT799FMNGDBA77//vgWrRkKsW7dOQ4cOVbZs2TRv3jzly5dP0tMr1D/99FP9888/ypUrl8aMGaNatWpZuNqkcfXqVXXt2lU3b940CylZsmTRsmXLlDNnTkVERGjy5MlasGCBIiMj1axZM02ePNmCVb+a06dPq0uXLgoODpazs7OcnZ117949ubq6asmSJSpatKgePnyoESNGyM/PT/b29urZs6cGDRpk6dITZcmSJRo9erS6d++uwYMHx3nXX1hYmMaMGaOVK1fqiy++UOvWrVO40qTj6+ubqP2eH2rTmvj7++uDDz6Qv7+/XF1dVaJECWXNmlWRkZEKDAzUiRMnFBoaqly5cmn69Ony9va2dMlJ4kV3VwwaNMim7q4AACCtIHvbPrI32ZvsTfa2VmRvsrc1oAPcgmIbGiM+rHVoDAC2ISwsTD179tSBAwdkMBhkNBrl6OioadOmmYaX3Lx5sxYtWqT9+/erYMGCWrlypZydnS1cORJix44dGjhwoNzd3TV79mz98ccfmjlzpiIiItShQwcNHjxYbm5uli4zyQwePFgbNmzQoEGD1KZNG7m4uGjHjh36/PPPVbZsWU2cOFG9e/fW4cOHlStXLo0aNcr0frdWffr00a5duzRhwgQ1a9ZMknT8+HF99NFHypUrlyZNmqSuXbvq0qVLKlWqlMaNGxdjnkFr0rZtW7m6umrBggUv3dZoNKpNmzZycnLSkiVLUqA6JKWwsDD98ssvWr9+vc6cOaOIiAhJT4cWLFu2rBo2bKi33nrLrNHYWqXFuyuAxCB7A7BGZO+0gexN9iZ7k72tFdmb7J3a0QFuQdFDY0QPefEy1j40BgDbERkZqQ0bNujo0aNyd3eXj4+PChcubFr/7bffas6cOWratKmGDh0qT09PC1aLxDp06JD69Omj4OBgGY1G5c+fX+PGjVPFihUtXVqSq127tmrUqKHx48ebLff19dWoUaNUu3ZtbdmyRR06dNDHH38sV1dXC1WadGrUqKEmTZpoxIgRZsv9/Pw0aNAglS1bVsePH9eAAQP0zjvvWP2Vq+XKldOAAQPUvXv3eG0/a9YszZgxwzREnbULDQ2NtTH0/PnzypAhg7Jly2aBqlLG3bt3ZW9vbxPDRT4vLd5dASQG2RuAtSJ7pw1kb7I32ZvsbQvI3mTv1MbB0gWkZc//Qw8A1sLe3l4+Pj7y8fGJdf3777+vAQMGWP2P9rSuQoUKWrBggXr16qW7d+/q888/t8kALklBQUEqV65cjOWVKlVSWFiYduzYoSlTpqhRo0YWqC553L9/P9YhqEqVKqXIyEidPXtWCxcuVNmyZVO+uGTg4OCQoKuOM2TIEGMOK2sUFhamCRMmaO3atdq5c2eMIP7NN99o586datOmjT799FObaGB6XqZMmSxdQrJZvny5KleurKFDh75wOycnJ40bN06nT5/Wb7/9RghHmkP2BmCtyN5pA9mb7E32JnvbArI32Tu1oQPcgqx5jgcAaVfXrl3Vp08fVatWzbQsIiJCR44ckbe3t9KnTy8XFxfTuui5yLiDxjp5e3tr8eLF6tGjh/r06aPp06eratWqli4ryYWHh5u9b6NFDzXXo0cPmwrg0tPPbbp06WIsjw5pvXv3tpkALkn58+fXiRMn4r39iRMnlDNnzmSsKPk9O2ymt7e3goKCYpxT3bp1devWLS1dulTnzp3TggUL5OBgnRFh2rRpidrvww8/TOJKUs6FCxc0YMCAeG1rMBjUuHFjzZgxI5mrAlIfsjcAa0T2TlvI3mRvW0H2JnvHheyNlGadn7A0KjIyUrNmzVKfPn0sXQqANGz//v1q166d2bKHDx+qa9eumjNnjlk4h/UZNmxYrMvz58+va9eu6b333lOTJk3Mhg81GAz68ssvU6pEi6hcubKlS0hxJUuWtHQJSap58+aaPHmyevTooSJFirxw23Pnzmnt2rXq2rVrClWXPObNm6cDBw5oxIgR6ty5c6zbtGvXTu3atdO0adM0bdo0LVq0KN5D1aU28Q3hzw9/bM0hPK3eXQEkN7I3gNSA7G3byN6xI3tbP7I32Tsa2ZvsbWl0gFvYw4cPtWzZMh09elRGo1HFixdXp06dlCFDBrPt/v77b40YMUL//PMPIRxAqmQ0Gi1dApKAr6/vC9c/efJEq1atMluWFkJ4WvzRGp85Uq1J+/bttWTJEnXp0kXDhw9Xs2bNYryuERERWrdunSZNmqT06dNbfQhfu3at6tevH2cAf9aHH36o/fv3a/Xq1VYbwv/444+XbvPw4UN999132r59uxwcHKz+NU6Ld1cAiUX2BmAryN62gewdO7K39SN7vxjZ2zqRva0THeAWdPXqVXXt2lU3b940/XjdvHmzfvnlFy1btkw5c+ZURESEJk+erAULFigyMlLNmjWzcNUAAFsWnx+xturevXv6999/zZbdv39fknT37t0Y6yQpV65cKVJbcrl48aIOHDhgtuzhw4eSpLNnz8Y6HFelSpVSpLak5urqqhkzZuiDDz7Qp59+qjFjxqhEiRLKmjWrIiMjFRgYqBMnTig0NFS5cuXS9OnTlTVrVkuX/UouX76st99+O97bv/7665oyZUoyVpS8cufO/cL1GzZs0FdffaWAgACVL19eo0ePVtGiRVOouuSRFu+uABKD7A0ASG3I3mRvsjfZ21qRvcne1oIOcAv67rvvdPPmTQ0aNEht2rSRi4uLduzYoc8//1yff/65Jk6cqN69e+vw4cPKlSuXRo0apTp16li6bACADXvZj1hb9uWXX8Z5Nf2QIUNiLDMYDDp16lRyl5WsZs6cqZkzZ8a6bsKECbEut+Y5BQsWLKhVq1bpl19+0fr163X48GFFRERIkhwdHVW2bFk1bNhQb731VoKGtkqtXF1dFRkZGe/t06VLZ5qHzpZcuXJFY8aM0Z49e5QxY0aNGzdObdu2tXRZSSIt3l0BJAbZGwCQ2pC9yd7RyN5kb1tB9iZ7pzZ0gFvQgQMH1LJlS/Xu3du0rEmTJgoNDdWoUaM0dOhQHT58WB06dNDHH38sV1dXC1YLAEBMM2fOlJ+fn1auXGnpUl5Jq1atLF1CirPmuZdehZOTk3r06KEePXpIenqHgb29vTJmzGjhypLea6+9psOHD8c7dB06dMimGuLCwsI0a9YszZ49W2FhYWrVqpU+/vhjeXp6Wrq0JJMW764AEoPsDQCwdmRv60X2Jns/j+xtfcje1okOcAsKCgpSuXLlYiyvVKmSwsLCtGPHDk2ZMkWNGjWyQHUAALzcjRs3rPqq5Gjjx4+3dAkpLq2G8OdlypTJ0iUkm1atWmnUqFHau3evqlat+sJt9+3bJz8/P/Xr1y+Fqktee/bs0ZgxY3T58mUVKVJEo0aNUsWKFS1dVrJIa3dXAIlB9gYAWDuyt/Uiez9F9n6K7G29yN7Whw5wCwoPD5eLi0uM5W5ubpKkHj16EMABpErPz9f0ormagoKCUrQ2AIjNtGnTErWfNTdWtGzZUitWrND777+v9957T+3atVOWLFnMtgkICNCyZcv0008/KU+ePOrYsaOFqk0ad+7c0fjx47VhwwY5Oztr8ODB6tGjR6xz6tmStHR3BZAYZG8A1orsDcDakL3J3raM7G1dDEaj0WjpItIqb29vTZw4UT4+PmbLg4KCVK1aNf3000+qWbOmhaoDgNh5e3vLYDDEWG40GmNdHs0WrlRGTKNGjdJvv/1m9a9vWgxow4YNS/A+BoMhzrnaUjtvb+94bff895i1v7cDAwP10Ucfad++fTIYDMqVK5fZEF03btyQ0WhU2bJl9e233ypnzpyWLjnRFi1apClTpig4OFj16tXTiBEjrPp8ACQdsjcAa0T2xrPI3mRva0H2JnsDqYVtX45h5ezt7S1dAgDEkBbna4Lti28Ifz6gWXMI9/X1jfe2z563tYbwP/7446XbPHz4UN999522b98uBweHeM/flZplzpxZ8+fPl5+fn9avX69Tp07p7NmzsrOzU5YsWdSyZUu98cYbqlevnqVLfWXjxo0z/Xnr1q3aunXrS/cxGAw6depUcpaVrNJiAyKQHMjeAFIjsjdsEdn7xcje1ovs/WJkb1gCHeAW9vxQRtKLhzOSpFy5cqVIbQAQm7Q4XxNsX1oMaGfOnHnpNtevX9fYsWO1fft2pU+fXgMHDkz+wpJJ7ty5X7h+w4YN+uqrrxQQEKDy5ctr9OjRKlq0aApVl/waNmyohg0bxlh+//59OTs7W6CipJcWG4nTYgMikFhkbwDWhuwNW0T2jh3Zm+xtTcjecSN7py4MgW5BcQ1lJMU9nJG1XykDAEjdEnpF47Zt23Tq1CmrH6rqZWw9oD0vMjJSc+bM0Q8//KDQ0FA1bdpUw4YNizGHlS24cuWKxowZoz179ihjxowaMmSI2rZta+mykkx4eLhWrlypo0ePmjWi7t+/X6NHj5a/v78MBoOqV6+uzz77TPny5bNgta9m2LBhevvtt1WmTBlLl5Jirl+//tJtYmtA/OSTT1KgOiD1IHsDAFIbsnfsyN5kb2tF9rZtZG/rRAe4BSVm/g+JK0ABAMknvnM1PctgMNhsCLf1gBabgwcPasyYMTp37pwKFCigUaNGqVq1apYuK8mFhYVp1qxZmj17tsLCwtSqVSt9/PHH8vT0tHRpSSY8PFzvvPOODhw4IEdHRx05ckQODg7y9/dXixYtFBYWptq1a6tw4cL6/fffFRISojVr1lhtY0tcc/ymZWmtARGIC9kbAJDakL3Nkb3J3taM7A2yd+rEEOgWRJgGAKQ2CxYssHQJqUJaCGjPCwoK0tdff61Vq1bJyclJ/fr107vvvisnJydLl5bk9uzZozFjxujy5csqUqSIRo0apYoVK1q6rCS3aNEiHTx4UB9//LE6deokB4enP/2nTp2qsLAwvfnmm/r6668lSb1795aPj49mzpypESNGWLJsJIHnGxDHjRtn8w2IwIuQvQEAqQ3Z+ymyN9nbFpC90y6yd+pGB3gqEBISohUrVmjXrl06c+aM7t27J4PBoEyZMsnb21v169eXj4+PTf4jCABIXSpXrpzgfQ4ePJgMlVhOWgloz1q2bJkmTZqk+/fvq0aNGho1apRVD8cVlzt37mj8+PHasGGDnJ2dNXjwYPXo0cMUTm3NunXr1KhRI/Xs2dO0LCwsTFu3bpXBYDBb7uHhodatW2v9+vWEcCuWFhsQgYQgewMAUguyN9mb7G07yN5pD9nbOtjmN44VOXTokAYMGKA7d+7IyclJ+fLlU+7cuRUREaF79+5p27Zt2rp1q6ZNm6bJkyerfPnyli4ZAADduHFDvr6+WrVqla5evWoTw7CltYAmSWfPntXo0aN19OhRZcmSRd98842aNm1q6bKSxaJFizRlyhQFBwerXr16GjFihHLmzGnpspLVpUuX1KpVK7Nlhw4dUmhoqLJlyyYvLy+zdfny5VNAQEBKlpjkDh48qMjIyATt07Jly+QpJoWlxQZEICHI3gAAa0T2tg1kb7L3s8je1o3sbT1s918VK3DhwgX17NlT7u7umjRpkho2bBjjSvPg4GBt2rRJ33//vXr16iVfX1/lz5/fQhUDANKyJ0+eyM/PTytXrtS+fftkNBplMBhUu3ZtS5f2ytJiQJswYYIWLlyoyMhI1a1bVwMHDpS7u7v+/fffF+6XK1euFKowaY0bN870561bt2rr1q0v3cdgMOjUqVPJWVayioqKkr29vdmyvXv3SpKqV68eY/uHDx/KxcUlRWpLLr/99pt+++23eG0b/R1m7SE8LTYgAglF9gYAWBOyt20he5O9n0f2tk5kb+vDK2NBP/zwg1xcXLRixQplz5491m3c3d3Vtm1b1a5dWy1atNBPP/2ksWPHpnClAIC07OjRo1q5cqU2btyo4OBgSVKmTJnUpk0bvfXWW8qdO7eFK3x1aTGgzZ071/Tnbdu2adu2bfHaz1rvOHj+auy0IF++fDFer82bN8tgMOj111+Psf3u3butfvi99u3bq2zZspYuI8WkxQZEIDHI3gAAa0D2jh3Z27qQvZ8ie9sWsrd1ogPcgg4cOKDWrVvHGcCflS1bNrVs2VK7d+9OgcoAAGldQECAVq1aJV9fX126dElGo1EuLi6qXr269uzZo88//1z169e3dJlJpmXLljIYDJYuI0V9+OGHCd7HaDQmQyUp5+2331aZMmUsXUaKadasmaZPn67atWurRo0aWrp0qS5evKgsWbKoXr16ZtuuWbNGf/75pwYMGGChapNGxYoV5ePjY+kyUkxabEAEEoPsDQBIrcjeto/sbfvI3raP7G2d6AC3oKCgoAQNqfbaa69p2bJlyVgRACCt27hxo1auXKk9e/YoMjJSGTJkkI+Pjxo2bKhatWrp9u3batCggaXLTHJfffWVJCk8PFznz59XRESEChcubPVDUr1Irly51Lp163hvf/36dQ0fPjwZK0pevr6+ql69epoK4d27d9euXbv04YcfymAwyGg0ytHRUV988YVp6N/Nmzdr0aJF2r9/vwoWLKju3btbtmgkSFq8uwJIDLI3ACC1IXuTveNC9rY+ZG/bR/a2TnSAW1B4eHiC/nFPly6dHj16lIwVAQDSukGDBsnV1VUdO3ZU/fr1ValSJbN5jGz5Su2ff/5ZM2bMMP1b6+TkpI4dO2rw4ME2OZ/PiBEjFBISok6dOr1022XLlmnChAn8DrEyTk5OmjdvnjZs2KCjR4/K3d1dPj4+Kly4sGmbEydO6PDhw3rzzTc1dOhQOTs7W7BiJEZau7sCSAyyNwAgtSF7k71jQ/a2TmTvtIHsbX1s718UAACQaHny5NG1a9e0cuVK+fv76++//1aDBg1UsGBBS5eWrFasWKGJEycqd+7catmypezs7LRv3z7NmzdPkZGRVn31dVwKFCigcePGKSQkRL169Yp1m9u3b2vEiBHauXOnHB0drX6IrrTI3t5ePj4+cQ5N9v7772vAgAGys7NL4cqSXqtWrax+HrWESot3VwAAANgCsjfZ+1lkb+tH9rZtZG/rRAe4hd27d0///vtvvLYNCgpK5moAAGndli1bdOzYMa1Zs0abNm3S7t279c033+i1115Tw4YNVaJECUuXmCyWLl2qsmXLav78+UqXLp2kp3NuDRo0SEuXLtWQIUNMw1bZil9//VW9evXS5MmTFRISon79+pmtX7duncaOHav79++rXLlyGjdunAoVKmShapPGwYMHFRkZmaB9WrZsmTzFpBK2NNTg+PHjLV0CgFSM7A0ASE3I3mTvaGTvp8je1oPsDWthMBqNRksXkVZ5e3snajib06dPJ0M1AACYi4yM1O7du7V27Vr98ccfCgkJMf271aZNG/Xp00e5c+e2cJVJo0KFCvroo49iDEl29OhRdejQQb6+vvL29rZQdcnn8ePH6tu3r/bt26fu3bvr008/VVBQkEaNGqXNmzfL2dlZgwYNUpcuXax+CL6E/u4yGo0yGAz87kKq5u3trYkTJ8Z5lwGAp8jeAIDUjOxN9iZ7k72RupG9rRN3gFtQq1atLF0CAABxsre3V506dVSnTh2FhoZq8+bNWrdunf78808tX75cK1euVJUqVdSmTRs1b97c0uW+kpCQEKVPnz7G8jx58shoNOrBgwcWqCr5ubq6atasWfroo480b948Xbt2TYcPH1ZgYKBq1Kihzz//3GYaWiSpffv2Klu2rKXLAJIUd1cAL0f2BgCkZmRvsjfZG0j9yN7WhzvAAQCASe/evVW1alVVrlxZJUqUiPWq3aCgIG3YsEFr167V0aNHbeJK3biu5AwKClK1atU0d+5cVatWzULVJb+oqCiNGDFCK1eulJ2dnT7//HO1bdvW0mUlKa7WhS3i7goAAADrRPYme5O9AetB9rZO3AEOAABM9u7dq507d8pgMMjd3V0VK1ZUlSpVVLVqVdMwZJ6enurUqZM6deqkq1evav369RauGq/Kzs5OX375pTw8PDRnzhzt2bNHLVu2lIMDPxWB1I67KwAAAKwP2TttInsD1ovsbX34ZgUAACaHDx/WqVOndPjwYR05ckRHjx7Vtm3bZDAYlCFDBlWqVElVqlRRlSpVVLRoUeXNm1fvv/++pctOEvfu3dO///5rtuz+/fuSpLt378ZYJ0m5cuVKkdqSQ2zn07lzZz1+/FhLly7Vo0ePNHLkSNnZ2ZltY83nDNiiihUrcncFAACAlSF7k73J3oB1IXtbH4ZABwAAL3Tjxg2zUH7mzBlFRkbKw8NDlStXVpUqVdSxY0dLl/lKXjSUUfSwRc8zGAw6depUcpeWbF52zpJirLfmcx42bJjefvttlSlTxtKlAEmG4QUBAABsB9mb7B3Nms+Z7A1bRPa2TtwBDgAAXihnzpxq1qyZmjVrJkl6+PCh1qxZo5UrV+r333+Xn5+f1YfwVq1aWbqEFNeyZcsEzV9k7caPH2/pEgAAAAAgTmRv20T2BgDLoAMcAAC8UGhoqA4cOKD9+/fr0KFDOnHihMLDw+Xk5GQaks3apcWA9tVXX1m6BACvqFWrVsqXL5+lywAAAEASIHvbJrI3YP3I3taJIdABAICZiIgIHT16VHv37tXevXt17NgxhYeHy9HRUaVLlzYF73LlysnJycnS5QIAAAAAYHXI3gAAJB86wAEAgMm7776rgwcPKjQ0VHZ2dipRooSqVq2qKlWqqEKFCnJ2drZ0iQAAAAAAWDWyNwAAyYsOcAAAYOLt7S1HR0c1b95c7733ngoUKGDpkgAAAAAAsClkbwAAkhcd4AAAwGTkyJHat2+frly5IoPBoNdee03VqlVT1apVValSJWXMmNHSJQIAAAAAYNXI3gAAJC86wAEAQAz//vuv9uzZY5qL7M6dO7Kzs5O3t7eqVKliCuWurq6WLhUAAAAAAKtE9gYAIHnQAQ4AAF7q3Llz2rt3r/766y8dPHhQDx48kIODg0qWLKlq1appwIABli4RAAAAAACrRvYGACBp0AEOAAASJCwsTJs2bdKvv/6qo0ePymAw6PTp05YuCwAAAAAAm0H2BgAg8RwsXQAAAEjdrly5omPHjunYsWM6fvy4zpw5o/DwcLm5ual27dqqVKmSpUsEAAAAAMCqkb0BAEg63AEOAABM7t+/r+PHj5sC9/Hjx3X//n0ZjUZlzJhR5cuXV+XKlVWpUiUVL15cdnZ2li4ZAAAAAACrQvYGACB50QEOAABMvL29ZTAYZDQa5enpqUqVKpn+8/LyksFgsHSJAAAAAABYNbI3AADJiyHQAQCASePGjVW5cmVVrlxZhQsXtnQ5AAAAAADYHLI3AADJizvAAQAAAAAAAAAAAAA2gclDAAAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEB0sXAABAWjB16lRNmzYtQfv88ccfypMnTzJVlHj16tXT9evXJUn/+9//1LVr1xdu37NnT+3evVuSNHfuXFWvXj1Z6/Lz81P+/PmT5RgAAAAAgNSL7E32BgBAogMcAIAU4eXlJR8fH7NlgYGB2rNnj1xdXVW/fv0Y+7i6uqZUeYm2adOmF4bwu3fvau/evSlYEQAAAAAgrSJ7AwAAiQ5wAABSRMOGDdWwYUOzZfv27dOePXvk6empSZMmWaiyxMuQIYMOHz6sW7duKXv27LFu4+fnp4iICDk6Oio8PDyFKwQAAAAApCVkb7I3AAASc4ADAIBEatCggYxGo/z8/OLcZv369fLw8FCpUqVSsDIAAAAAAGwD2RsAgISjAxwAgFRs+/bt6tmzpypXrqxSpUqpUaNGmjhxou7du2e23bVr1+Tl5aXatWvH+jhdunSRl5eX9u3bZ1o2dOhQeXl5af/+/erXr59Kly6tqlWrauHChfGqrXHjxpKeDsUWm4CAAB08eFCNGjWSg0Pcg86sXr1aHTt2VPny5VW6dGn5+PhoxowZCgkJiXX7v/76Sz169FClSpVUsWJFDRw40DQvWmwiIyO1ePFitWvXTuXKlVO5cuX01ltvydfXV0ajMV7nCgAAAACwXWTvmMjeAABrxhDoAACkUpMmTdLs2bNlb2+vChUqyNPTU0ePHtVPP/2kjRs3av78+cqbN+8rH2fkyJEKDAxUrVq1dO7cOXl7e8drvwIFCqhYsWI6fPiwAgIClC1bNrP1mzZtUlRUlJo1a6Zp06bF2D8qKkoff/yx1q1bJycnJ1WuXFkuLi46cOCAvvvuO/3++++aO3euPD09TfssW7ZMn332mSSpYsWKypAhg3bv3q2DBw8qLCwsxjHCw8PVt29f7dy5U+7u7ipXrpwcHR21f/9+DR06VPv27dNXX32VkKcLAAAAAGBDyN5kbwCA7aEDHACAVGjr1q2aPXu2PDw89NNPP5mGMQsLC9Pnn3+uZcuWacCAAVqxYoUMBsMrHSsgIEBr1qxR3rx5FRUVJTu7+A8Q07RpU50+fVp+fn7q3Lmz2boNGzYoW7ZsqlSpUqz7Llq0SOvWrVPevHk1Z84c5cuXT5IUHByswYMHa/v27frss880depUSdKNGzc0btw4OTg4aNasWapWrZok6e7du+rZs6dOnToV4xg//PCDdu7cqcqVK2vKlCnKlCmTJOnOnTt699135evrqwoVKqhdu3bxPmcAAAAAgG0ge5O9AQC2iSHQAQBIhebNmydJ+uSTT8zm8HJyctLo0aOVP39+nTx5Unv37n3lY9WvX990NXtCArgkNWnSRFLModj+/fdfHT16VE2aNInzMefPny9JGjdunCmAS5K7u7smTZqk9OnTy8/PT5cvX5Yk+fr6KjQ0VG+//bYpgEtSpkyZ9OWXX8Z4/LCwMC1cuFCOjo6aNGmSKYBLUpYsWfT5559Lkn7++ecEnTMAAAAAwDaQvcneAADbRAc4AACpTEREhA4fPiyDwaBGjRrFWO/g4KCGDRtKktm8YolVtGjRRO+bN29elShRQocOHVJAQIBp+YYNG2Q0GtW8efNY97tx44auXbsmT09PVa1aNcb69OnTq1atWpKk/fv3S5IOHDggSapTp06M7YsVK6Y8efKYLTt58qQePnyo1157TdmzZ4+xT6lSpZQ5c2b5+/vr9u3b8TxjAAAAAIAtIHuTvQEAtosh0AEASGXu3bun8PBweXp6yt3dPdZtogNnUoTHjBkzvtL+TZs21cmTJ7V582Z16tRJ0tMQnjdvXpUuXTrWfaIDe+7cueN83OfPMXqfHDlyxLn9tWvXTH+/ceOGJOns2bPy8vJ64TncuHFDWbNmfeE2AAAAAADbQfZ+iuwNALBFdIADAJDKGI1GSXrh/GLR2zg5OcXrMSMjI+Ncl9Ch157XpEkTTZw4URs3blSnTp10+fJlnTx5Uu+9916c+yTmHF8235qDg/nPmqioKElSrly5VKFChRfu6+bm9sL1AAAAAADbQvY234bsDQCwJXSAAwCQynh4eMjR0VH37t1TcHBwrFeiX716VZKUOXNmSf8F6ejg+bz79+8nU7VPryQvXbq0Dh06pNu3b2vDhg2SpGbNmsW5T7Zs2STJ7Krx50WfY5YsWSRJ2bNn17lz53T9+nUVLlw4xvbPDgMnyXRVeY4cOTRp0qQEnBEAAAAAwNaRvZ8iewMAbBFzgAMAkMo4OjqqXLlyioqK0ubNm2Osj4iIMC2vUqWKJMnV1VXS07AdHh5utn1QUJD8/f2TteamTZsqKipKfn5+2rhxowoXLvzCoc9y5cql3LlzKygoyDTP2LMePnyo3bt3S5IqVaokSapevbokxfqcXL16VefPnzdbVqpUKTk7O+vMmTMxArok3bp1S02aNFGPHj306NGj+J8sAAAAAMDqkb3J3gAA20UHOAAAqVC3bt0kSV9//bVOnTplWh4eHq4xY8boypUrKlasmGl4MQ8PD+XIkUNhYWFasmSJafsnT57os88+e+EwbEmhcePGMhgMWrRokc6ePfvCK9CjRZ/jiBEjTFecS9KjR4/08ccfKzg4WHXr1jXNVdaqVSt5eHhoxYoV+v33303bBwcHa/jw4TGuwHd1dVX79u31+PFjffzxxwoMDDQ7xrBhw3Tx4kW5uroyDBsAAAAApEFkb7I3AMA2MQQ6AACpUIMGDfTOO+9ozpw5atu2rSpUqCBPT08dO3ZMN2/eVO7cufXtt9+azSHWq1cvjRs3TuPGjdP69euVJUsWHT58WJGRkapbt662bduWbPXmzJlTZcuW1ZEjRyS9eAi2aF26dNGRI0e0ceNGNWvWTJUqVZKLi4sOHjyooKAgeXt768svvzRtnylTJn355ZcaOHCg+vfvr3Llyilbtmw6cOCAIiMjVbBgwRhX2w8ePFinT5/W3r179cYbb6hUqVJycXHRkSNHdO/ePRUoUEBjxoxJ2icDAAAAAGAVyN5kbwCAbeIOcAAAUqlPP/1UP/zwg6pUqaIzZ85o+/btcnNzU58+feTr66uCBQuabd+lSxdNmDBBJUuW1KlTp3TgwAFVqVJFy5cvj7FtcmjSpIkkqUSJEsqfP/9Lt7ezs9O3336r8ePHq0SJEjp8+LD+/PNP5ciRQx9//LF+++03ZcqUyWyf+vXr69dff1X9+vXl7++vXbt2qXjx4vrll1+UI0eOGMdwdnbWnDlz9L///U+vvfaajh8/rn379ilbtmzq16+fli1bZprnDAAAAACQ9pC9yd4AANtjMBqNRksXAQAAAAAAAAAAAADAq+IOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxywIStXrpSXl1eC/+vSpYulS4+3qVOnxnkexYoVU5kyZVSvXj3169dPW7ZssXS5+H9HjhwxvU69evV66fZDhw6Vl5eXhgwZYrY8+jH27NmT5DX27NnT9PjHjh1L8sd/VkREhPz9/ZP1GM87c+aMxo0bp2bNmqlixYoqVaqU6tSpo169emnRokUKDQ1N8mPevn1bQ4YMUfXq1VWyZEnVqlVLO3fulCStWrVKLVq0UJkyZVSxYkX17NlT+/btM70GERERiT7utWvXTI9z+fLlpDodvCKj0agLFy5YuoxEuXjxovr06aMqVaqoVKlSev3113X27FkZjUbNnTtXjRs3VqlSpVSlShX973//M/17XLt27Vc6blJ9JpLKuXPnYiyrV6+evLy8tGzZsgQ9VmL3AwAA1oM2CtooUivaKMzRRkEbRWpiDZ9PANbBwdIFAEg6mTNnVvny5WMsv3Hjhm7cuCEnJyeVLFkyxvqiRYumRHlJKrZzMRqNCg0N1bVr1+Tn5yc/Pz/5+Pho4sSJMhgMFqoUkrRixQrTn3fv3q2rV68qb968FqzI3I0bN8x+EC9evFhlypRJlmPt3r1b48aNU6NGjTRo0KBkOcbzvv/+e82YMUNRUVFyd3dXvnz55OjoqNu3b2vXrl3atWuXfvrpJ02fPl0lSpRIkmNGRUWpV69eOnPmjBwcHFSkSBGFh4crd+7c+v333/Xpp59KkrJmzars2bOnqvcDkt7x48c1duxY5c+fX5MmTbJ0OQny6NEjdevWTQEBAXJ2dlaRIkUUEhKiPHnyaO7cuZowYYIkKXfu3PLw8FCePHksXHHSCwgI0IQJE3Tw4EHt2LHD0uUAAAArQRsFbRSpFW0U/6GNgjaK1Ca1fz4BWA86wAEbUqdOHdWpUyfG8qlTp2ratGnKmjWrFi9ebIHKkt6LziUsLEzfffedfv75Z61du1aVK1dW+/btU7hCRAsJCdHGjRtlMBhUs2ZN7dq1S0uXLo1xZaYlrVy5UlFRUapTp4527NihjRs3atiwYcqYMWOSH+vHH39M0SurV6xYoenTp8vV1VXjx4/XG2+8IXt7e9P6CxcuaPjw4Tp69Kh69uypDRs2KFOmTK98XH9/f505c0aSNHPmTNWqVcu0burUqZKkChUqaMGCBXJwePpzJCQkRBs2bJAk07LEyJ49u+lxcuXKlejHQdL59ddfdfz4ceXPn9/SpSTYwYMHFRAQIIPBoJUrV6pQoUKmdRs3bpQkNWvWTN98841p+cOHD1WmTBk5Ojq+0rFLly6dJJ+JV7V7926tW7dO2bNnt1gNAADA+tBG8RRtFKkLbRTmaKOgjSI1sYbPJwDrwRDoAGyOk5OTPvnkE5UuXVqStHDhQgtXlLZt2rRJwcHBKlKkiFq2bCnpaZgLCwuzbGH/z2g0ytfXV5LUpk0bFShQQKGhoaZl1m7mzJmSpE8++USNGzc2C5aSVKhQIc2YMUOZM2dWUFCQFixYkCTHDQoKMv25SpUqsa6rUKGCWYh0cXFRoUKFzDoYE8PR0dH0OK/aAQlEv1+zZMkS470Zva5y5cpmy9OnT69ChQopX758r3TspPpMAAAAwHJoo0hdaKOwLNooaKN4kdT++QRgXegAB2CzGjRoIEn6559/9PjxYwtXk3atXLlSklS7dm3VrVtXzs7OCgwM1ObNmy1c2VP79+/X1atX5ejoqOrVq6tJkyaSpKVLl1q4slf34MEDXblyRZJeOFxapkyZTJ+X48ePJ8mxIyMjTX92cnIyWxcVFRXrciA1etH7lfcyAAAA4os2itSBNgrLoY0CL5PaP58ArAsd4ABMfv/9d/Xq1UtVq1ZVyZIlVbNmTfXr109//fVXrNt7eXnJy8vLbF6iZ3Xp0kVeXl6moYQk6dq1a/Ly8lKNGjV069Yt9e7dW6VLl1blypU1ePDgJD0fd3d3058fPXpkdnwvLy9dvnw51v3q1asnLy8v048uSdq3b5+8vLzUvn17XbhwQR06dFCpUqVUrVo10/yv0fudPn1a27dv19tvv61y5cqpSpUq6tq1q7Zs2RJnrZGRkVq2bJm6dOmiSpUqqWTJknr99df18ccf6+TJk7HuExoaqlmzZuntt99WtWrVVKpUKdWtW1eDBw/WoUOH4jzWmTNn9Omnn+r1119XyZIlVaVKFfXs2VO///57rNs/+5w9+5zEx5UrV3TgwAFJUsOGDeXm5qa6detKUqoZ6i56bqGqVasqffr08vHxkSRdvHhRe/fujXWfxLyPVq5cKS8vL+3fv1/S06uevby8NHToULP97t+/r2nTpqlly5YqV66cypQpoyZNmmjChAkKCAhI0Lk9e+Xytm3bXrhtv379tH79ek2ePNls+dChQ+Xl5RXncFPR51WvXj1J/z03Xbt2NW0T/VxFP1b0czBt2jTTOum/z5mXl5ciIiJiHOvMmTMaOXKkGjRooFKlSqlSpUrq1q2bNm3aZLbdy16fq1evavTo0XrjjTdUqlQpVaxYUR07dtSyZcvMQvHzz8HixYt17do1DRs2TLVr11bJkiVVu3Zt/e9//9O1a9fifG4PHjyowYMHq27duipZsqSqVq2q999/3+y7ddeuXfLy8lKJEiUUGBgY6+OEhoaqQoUK8vLy0rFjx2Kca0I/nw8ePNCsWbPUqVMnValSRSVKlFDFihXVunVrTZ06Vffv34+xT0K/96Nf0+i7FdauXSsvLy916dIlxrnNmzdP7du3V/ny5VWqVCk1aNBAn332mS5duhTrse7fv69vv/1WrVu3VuXKlVWmTBm98cYb+t///qezZ8/GWdu3334b6+NNnTrVrLbo2ocNGyZJun79uun8oz/f169flyQNGzbM7HMQ/bmoXbt2rMeKz3vi2Rpe9JlIyPd59HOwc+dOnTlzRgMGDFD16tVVsmRJ1a9fX19++aXu3r1rts+zz8GtW7fMPrPPO3TokN5//31VqVJFpUuXVqNGjTR58mQFBwfHuv2r7gcAAGwbbRRP0UZhjjaKmGij+A9tFNbbRmENn08A1oUOcAAKDw/Xhx9+qP79+2vXrl1ycHCQt7e3IiIi5Ofnp+7du+vLL79M0mOGhYWpZ8+e2rNnjwoVKiSDwaDcuXMn6TGif1Q6OzvL09MzSR7z7t276tatm06fPq3ChQvryZMnKlCggNk2K1as0HvvvaeTJ0+qYMGCSpcunfbt26cPPvhA48aNi/GYwcHB6tSpk0aMGKH9+/crffr08vLy0sOHD7VmzRq1bdtWc+fONdsnLCxM3bt31+TJk3X8+HF5eHioSJEiCg4O1rp169SpUyctW7YsxrF++eUXtW7dWqtWrdL9+/dVpEgRubq6avfu3erfv78GDx4c64/rxFqxYoWMRqPy5ctnurq3efPmkqQDBw7owoULSXasxAgODpafn5+k/+oqVKiQihUrJklasmRJkh0rc+bMKl++vKnRI2fOnCpfvrzZ++fs2bNq3ry5pk6dqrNnzyp37twqWLCgrly5ojlz5qh58+bat29fvI/p6uqq8uXLS3rauffpp5/qwIEDsb7GWbNmVeHChV/5s5IuXTqVL19eRYsWNS0rX7686Vxjew6ia3yRX375RW3bttVvv/2mu3fvmt67e/fu1YABA+Ls1Hze5s2b1bx5cy1evFgBAQF67bXXlClTJh06dEgjRoxQz549TY1Rzzt16pRatGihVatWycXFRfnz59etW7e0fPlytWvXTjdu3IixzzfffKPOnTtr3bp1evz4sby8vGRnZ6dt27ape/fupqv4a9SooZw5cyoiIkLr1q2Ls/bg4GAVKlTohVfLx8elS5f05ptvavLkyTp69KgyZcokLy8v2dvb6+TJk5o2bZreeuutOJ+L+EqfPr3Kly+vzJkzS3p6Jf/z74+bN2+qVatWGj9+vI4dO6asWbOqSJEiun37tpYuXao333zTNF9atHv37qldu3aaOXOmzp07p6xZs6pgwYK6c+eOli9frjZt2mjnzp1JUnv0Z9TJycn0fnVwcFD58uVNdwhEv7dLliz50seN73viZV7l+3znzp1q27attmzZIk9PT+XMmVPXrl3T/Pnz9fbbb5t1PD/7HDg6Osb5mfX19VWnTp20Z88e5cyZU5kyZdKlS5dMjaChoaGx1pLY/QAAgO2ijSL+aKNIGNoo/kMbBW0UqamNQkr9n08A1ocOcAD66quvtHnzZrm6umrKlCnavXu3li9frj///FOfffaZHBwcNH/+fM2bNy/JjvngwQPdvn1bq1atkq+vr3bt2qXevXsn2ePfvXtXq1evlvT0R9uzV5m+iqtXr8rFxUW///67qe7oOWmiLVy4UNWrV9f27du1cuVK7dixQ2PHjpWDg4MWLlwY44fjkCFDdOTIEWXNmlULFizQ1q1btWLFCv3111/q27evoqKi9NVXX5lCkPT0R+GRI0dUoEABbdmyRRs3btTKlSu1e/duderUSUajURMmTNCTJ09M++zcuVNjx46VnZ2d/ve//+ngwYPy9fXVtm3bNG/ePGXOnFnr1q0zuxpekrJnz64NGzZow4YNeuONN+L9XEVFRZleg+grliWpTp068vDwkGT5KzjXr1+vkJAQubi4mJ3bm2++KUnasmWL7ty5kyTHqlOnjhYvXqzixYtLklq0aKHFixfr/fffl/Q06Pbq1UsBAQEqV66c/Pz8tG7dOq1atUo7duxQ3bp1df/+fX3wwQe6evVqvI87cuRIubq6ymg0atWqVercubMqV66s3r17a9asWTp27JhpuK+kkDVrVi1evFgjRowwLVu8eLHpXJ99Dtq0aWNa9yKHDx/WuHHjFB4ert69e+uvv/4yfbbGjx8vOzs7zZw5U7t3737h45w5c0YfffSRnjx5oj59+mj//v1avXq1/Pz85OvrqwIFCuivv/7S6NGjY93/t99+U+HChbVhwwb9/vvvWr9+vZYsWSI3NzfdvXtXc+bMMdt+/fr1+vHHH2VnZ6fhw4drz549WrFihXbt2qWBAwdKksaMGaMLFy7Izs7O9F0S/bl53qpVqyRJrVu3Ni1L7Odz5MiRunHjhsqWLatt27aZvkP27t2rCRMmyM7OTv7+/qZjJlbx4sW1ePFi053QNWrU0OLFizVy5EhJT+8sef/993Xx4kUVLFhQq1ev1u+//66VK1fqzz//VLt27fTkyRN98sknpivKJemnn37S5cuXVb58ee3YsUPr16/XqlWrtHPnTjVs2FDh4eGv3CgaXft7770n6b/39uLFi+Xn56fFixcra9askqT33ntPixcv1vfff//Cx0zIe+JFEvt9Hm3hwoWqUaOGtm3bpvXr12vz5s364YcfZG9vr8uXL2v58uWmbZ99DjJlyhTnZ/bQoUNq3ry5du7cqVWrVmn79u2aOHGiJOncuXNxXv2f2P0AAIDtoo0i/mijoI0isWijoI0iNbVRWMPnE4D1oQMcSONu3rxpuoJ07Nixaty4sWmdvb29OnXqpAEDBkh6OhTQq94N+KyOHTuqcOHCkp7eWffscGCJYTQaFRQUpK1bt+qdd97RvXv35OjoqP79+ydFuSbvvfeesmfPLklyc3NTunTpzNbnypVL06dPN93xaDAY1L59e/Xs2VPS0+cx2tGjR03DPn3//feqUqWKaZ2Tk5MGDBigt956S5I0adIk07ozZ85IejonTq5cuUzL06VLp6FDh6pmzZp64403dO/ePdO6b775RkajUUOGDFHXrl1lb29vWletWjWNHz9ekjR37lwFBQWZ1jk6OqpQoUIqVKiQ0qdPH+/naffu3aarTaPDWvTjRb/PVq9ebdG7+6KHFqtfv77c3NxMy5s3by47OzuFh4ebtkluv/76qwICApQlSxb9+OOPyps3r2ldlixZ9P3336to0aJ6+PChZs6cGe/HLV68uJYtW6YKFSqYlgUHB2vHjh2aPHmy2rdvr5o1a+rbb79VSEhIkp5TUvnhhx8UFRWlJk2aaPDgwWafudatW6tt27aS9NKOsqlTpyosLEydO3fWwIEDzR6nePHi+v7772Vvb6+1a9fq/PnzMfZ3dHTUtGnTVLBgQdOycuXKmcLe4cOHzbaP/qz36NFD3bp1M33m7O3t1adPH9WoUUORkZGm0NimTRsZDAadPHkyRgforVu3tGfPHtnb26tFixZmNSX08xkYGKhz585Jevq9ny1bNtM6g8Ggli1bqnLlypIU61DiSWnTpk06ffq00qVLp9mzZ8vb29u0zt3dXePGjVOtWrUUHh5udgV99Hdgo0aNlClTJtPy9OnTa8SIEapevboqVaqU6u4eTuh7Ii6J/T6PljlzZn3//fdmr339+vVNFyo8/16Oj0KFCmnChAmmxgnp6Xd/jRo1JCnOYS8Tux8AALBNtFEkHG0U8UMbRcLQRhE32iiSto1Cso7PJwDrQwc4kMbt3LlTERERypo1q5o2bRrrNp07d5ajo6MePnxomhcnKTz7Yzehnp2LNfo/b29vVa1aVX369NHp06eVPn16fffdd2YdKknhZXW3b99erq6uMZa//fbbkiR/f39dvHhR0n9zHpUuXTrOIZbeeecdSU+HS/vnn38kyTQk1fLly/Xrr7+azdnq5OSkn3/+WePHjzeF4GvXrun06dOSzH9IPqtOnTry9PRUaGhonHOqJUT0D/3SpUvHGIItuoYHDx5o/fr1r3ysxLhw4YLpjtLnn5Ns2bKpatWqkqSlS5cm6dXHcdm6daskqWXLlsqYMWOM9U5OTqa5ibdu3Sqj0Rjvxy5cuLB+/fVXrVq1Sh9++KHKlSsnR0dH0/rAwEDNnDlTb775pm7evPmKZ5K0QkJCTPOcRTe0PG/gwIHatGmTaa672ISFhZmGxI7rMxD9PWI0GmOdj6xkyZKmO36f9dprr0mSHj58aFp2+fJl0+c8+rP/vC+++EJbtmzRoEGDJEl58+ZVpUqVJClGB+jq1asVFRWl2rVrx1pDQmTOnFl79+7VsWPHzIaBixYZGWlq7EvucBn9vq9Xr55Zg8qzevToIUnav3+/6TmO/k756aeftGbNGrPnPnv27Jo7d67Gjh0rZ2fnZKw+YRLznohNUnyfV6tWLUbDqPS0M1oyfy/HV/369c0aLaNFz5/3/Nzir7ofAACwTbRRJBxtFPFDG0XC0EYRO9oonkrKNgop9X8+AVinpBlvB4DViv7xU6xYMdnZxX5NjKurqwoWLKh//vlH/v7+qlu3bpIc+1V+IDk5OcWYa9XOzk5ubm7Knj27ypQpo8aNG7/yFduxeVndpUuXjnV5rly5lD59ej18+FCXLl3Sa6+9Znr+S5QoEefjFShQQO7u7goODpa/v7+KFi2qdu3aafny5Tp//rzGjBmjzz//XMWKFVO1atVUq1YtVapUyWxItei7PSXpgw8+iPNY0cORRdeVWPfu3dMff/whKfYf8hUqVFDevHl19epVLV68WG3atHml4yVG9BC/mTNnNt1p+KwWLVpoz549un79unbt2qU6deokaz3+/v6SXvxeiF539+5d3bt3L8FzYRUrVkzFihVTv379FBISosOHD2v37t1avXq1AgMDdeXKFQ0YMCDecxCnhH///Vfh4eGSFGdDUebMmU13M8Tl0qVLCgsLk/R0SK/ouZtjO54U+2cgurHmedGdrBEREaZl0fP7ubq6xtmxmzNnzhjL2rRpo/3792vt2rX66KOPZDAYJP035NizQ4u9KmdnZ924cUPHjh3TlStXdPXqVV24cEGnT5/W48ePJSnZG1YS8r6PjIzU5cuXVbJkSfXs2VObNm3S7du39fHHH8vBwUGlSpVS9erVVbt2bZUpU8b03KUWiX1PPC8pvs8T8l6Or7geM7qxNa6LKRK7HwAAsE20USQcbRQvRxtFwtFGETvaKJK+jcIaPp8ArBMd4EAaFxwcLEkvHZYmOqQl5fBir3JnXvQcPpbwsrpjuzI2mqurqx4+fKgHDx5Iiv/z7+bmpuDgYNPz7+7urqVLl2rOnDlat26dLl++rFOnTunUqVP6+eeflTlzZg0cOFDt27eXZH7VZ3yGtk3M3X/PWrt2remH/Lhx4zRu3Lg4t/3777918uTJF4aqpBYREaE1a9ZIenpl8cuOvXjx4mQPl/F5LzzbWPLo0aMEh8tnubi4qEaNGqpRo4YGDBig4cOHa/369Tp69GiKvx4v8uwQec8OAZdQz76nT5w4kaDtoz17RfrLRNed0JobN26ssWPH6saNG9q3b5+qVq2qv//+W+fPn5enp2eSNe5dvHhRX3/9tXbs2GHWye3u7q6KFSsqICDANIxhckrM+156GsxXr16tH3/8UZs2bdKtW7d05MgRHTlyRNOnT1fu3Lk1fPhwNWjQIHlPIAES+554XlJ8nyfkvRxfsd1Rnpz7AQAA20QbRcLRRvFytFEkHG0UsaONIunbKFL75xOA9aIDHEjjon/4vCxMRIeh2H4oxTXMUfQdhKlVctX9ojmKogNE9JWg8X3+o9c/+/y7u7urf//+6t+/vy5fvqx9+/Zp37592rFjhwIDAzVy5Eh5eHioYcOGpjvpPDw8tG/fvsSfXDxFz0nl6ur6wrAUEBAgo9GoJUuWaOzYscleV7Tt27frzp07kp4OJRbXnaKPHz/Ww4cPtXPnTt24cSPWq2GT6n3k5uam+/fvv/C9cP/+fbPtX+azzz7T3r171apVK/Xp0yfO7ZydnfX555/Lz89P4eHh8vf3jxEm4jrP5J6T69mh+oKDg83me07s4xw+fPiVOyHje7yENsg5OzurWbNmWrp0qdauXauqVauarqz28fFJko7LwMBAde7cWYGBgcqVK5fat2+v4sWL67XXXlOePHlkMBg0ePDgF3aAJ+X7Xnrxd2D0vz/Pbi89/R4dPny4hg8frrNnz2r//v3au3evdu/erevXr6t///5asmRJnHe8vGrtCZXY90Rcj5NS3+cAAAApiTaKmGijeHW0UdBGkVRoo0j6NorU/vkEYL2YAxxI46LnhTl9+nScQ90GBwfr0qVLkqT8+fOblkfP2Rl9ld7zAgICkrDSpPHskFux1R0aGvrKVxZHz4H1vCtXrph+aBYuXFjSf8//yZMn43y8CxcumIJK9PMfGBiogwcPmubVyp8/v9q3b6/Jkydrx44dpqHXon+UFixYUNLTKz5v374d57EOHjyoCxcuvNKQs2fOnDHN5TV+/Hjt3Lkzzv+ir1het26dKXinhOi5hYoUKaJdu3bFWd/cuXMlPR16+bfffjPtnxzvo/i8F6KvCs6YMWO8rqx+8uSJLl++rC1btrx0W3d3d1PgejbARX/Oo4f4el5yf87z5s1rquHZYfKe9ffff6tDhw4aNmxYnCH42cc5f/58nMc7fvy4zp49+8qdlNFzVj1+/FjXrl2LdZs//vhDXbp00ddff222PHo4rz/++EORkZGmocCSapivFStWKDAwUB4eHlqxYoX69OmjOnXqKG/evKaGllu3bsW6b1J/78fnff/3339LkgwGg/Lly2eqb+/evabvKi8vL3Xp0kXTp0/XH3/8ody5cysyMlLr1q1LttoT6lXeE89Kye9zAACAlEYbhTnaKGijoI2CNgpbbqOwhs8nAOtFBziQxtWuXVsODg66ffu2NmzYEOs2ixYtUkREhFxcXFS5cmXT8ugft7HNQ3P8+PFUGS49PDxMHTyx1b1169ZEzX36rJUrV8Ya1KOHQytbtqzpKt3ooYKOHz8e57Bf8+bNkyTlyJFDXl5ekqSePXuqU6dO8vX1jbG9m5ubypYtK+lpKJKkQoUKmYLpokWLYj3OoUOH1KlTJzVt2lRHjx6Nx5nGLnreKk9PT9WrV++F23bo0EHS0x/g0UE4uQUGBmrHjh2SXv5jvVSpUqagvmzZMtN741XeR3FdyR39Xli1apXZVdTRwsLCTO+hWrVqvbDuaNFzJ504ccIUqOOye/du3bt3Tx4eHipTpoxp+Ys+55GRkdq6dWu8akksd3d3VahQQdJ/VwU/b926dTp8+LCuXbsW5/Pr7u5u+v5asGBBrNtcvXpVHTt21JtvvqlNmza9Ut2FChVS7ty5X1i3r6+v9u/fb2okilamTBkVKVJEQUFBWrhwof79918VL148zvnFEio67ObKlSvWq9XPnz9v+g6I/g6Jltjv/ejX5fnwH/2+37p1q65evRrrvtGvV9myZZUhQwZFRESoZcuW6tatm7Zv3x5j+yxZsqho0aKSzOcwf1Htjx490l9//RXr8ZPKq7wnnn+clPo+jxY9/2ZcjTcAAABJhTYKc7RR0EbxLNooaKNIrNTaRpHaP58ArBsd4EAalzNnTtMcTCNHjjT7QRUVFaVff/1VU6dOlST17dvXbCia6B98c+fO1YULF0zL//77b3300UcpUX6COTs7q3jx4pKkqVOnmt3luHv3bn3++eevfIwTJ05o5MiRpmGXoqKitGjRIlNIHDRokGnbcuXKma5g7N+/v9nQX2FhYfr+++9NV/V+8sknph/OLVq0kCRNmzZNO3fuNDv+wYMHTT8En50TasCAAZKkWbNmafbs2WZXBR88eNC0vmzZsqpatappXXh4uC5cuKALFy689IrhsLAwrV27VtLToZCcnJxeuH3t2rVNP8CXLFnywm1f5N9//9WFCxf077//vnTbVatWKSIiQo6Ojqbn8UWif2Dfvn3bdJXrq7yPooedun79eozjZM+eXXfu3NF7771n1hkYGBioAQMG6J9//pGbm5v69ev30rolqUaNGmrUqJEkacSIEfriiy9iXOn75MkTrVixQgMHDpT09H3y7NBb0Z/zc+fOacGCBaYOsPv372v48OFx3k2QlPr27SuDwaDVq1dr5syZZsF91apVWrhwoSSpV69eL3ycfv36yd7eXuvWrdP48ePNrqD+559/1Lt3b4WHhyt37tzy8fF5pZoNBoP69u0rSZo9e7aWLVtmeu4iIyM1a9Ysbd68WQ4ODurevXuM/aMbPqZMmSJJat26dazHScjnM1r0lfxnzpzR77//blpuNBq1c+dO9erVy3Q1/fPDxyX2ez/6PfX8Z7Rx48by8vLSkydP9O6775oNux4cHKyRI0dq9+7dcnBw0JAhQyQ9vbuhWbNmkqQvvvhCx48fN3tMPz8/7d69W9LT75jna9+1a5f8/PxMywMCAtS/f38FBgbGWX9SeNX3xLMS+32eWNHfWw8ePOBKewAAkKxoo6CNInof2ihiRxsFbRSJkRrbKCz1+QSQdjAHOAANGzZMt27d0h9//KEBAwYoW7ZsypEjh65evaqgoCBJUufOnfXuu++a7denTx/t2rVLt2/flo+PjwoXLqwnT57o0qVLyps3r9q0aRPnVYWWNHDgQPXp00fnz59XgwYNVLhwYd2/f1/Xr19XqVKlVL58eVOISIyiRYtq+fLl2rhxo1577TXdvHlTt2/flp2dnYYNGxajM+Lrr7/W+++/ryNHjqhr167KnTu3MmXKJH9/fwUHB8ve3l4DBw40dfhIUteuXbVnzx7t3LlT7777rrJly6Zs2bIpKCjIFFrq1aundu3amfZp1qyZLl26pKlTp2rSpEn68ccfVaBAAd29e9e0T8GCBfXDDz+Y1Xfr1i01bdpU0tPhiOL6kStJW7Zs0b179yTFbygkOzs7vfXWW/rmm2/0zz//6NChQ6YwkxCffvqp9u/fr8qVK5uCRlyirzJ+/fXX4zVXU7NmzTRhwgQ9ePBAS5YsMYW1xL6Pihcvrm3btmnt2rU6e/asKlasqFGjRilDhgyaOXOmevfurSNHjqhhw4YqXLiwHBwcdO7cOYWHh8vDw0OTJk0yDV0VH5MmTZKrq6tWrVqlBQsWaMGCBcqVK5cyZ85s+ryGhYXJ0dFRgwcPVseOHc32r1OnjipWrKiDBw/qiy++0Jw5c+Tp6amLFy8qPDxc/fr1MzVAJZdq1app2LBh+uqrr/Ttt99qzpw5yps3r27evGmaJ+2DDz4wa0yJTYUKFTR27FiNGjVK8+bN05IlS1SoUCE9evRIly9fltFoVJYsWfTzzz+/NHjFR9u2bXX+/HnNnTtXI0aM0HfffaccOXLo2rVrunfvnuzt7TV69OhYr5pu0aKFJk+erMePH8vR0VHNmzeP9RgJ+Xw+W9evv/6qy5cvq3///sqdO7c8PT1148YNBQYGytHRUZUrV9b+/ftjDIWe2O/9YsWKSXo6t1njxo1VuHBhTZs2TQ4ODvrhhx/07rvv6uLFi2rRooUKFCggNzc301CHzs7OGjNmjCpWrGh6vEGDBunQoUM6deqU2rVrZzqHgIAA0509HTp0MOsAb9WqlRYtWiR/f3/169dP+fLlk6urqy5cuCB7e3u9//77mjlz5kufv1fxKu+JZyX2+zyxvLy8ZGdnp9DQUDVu3FjZsmXTzz//HK9hDgEAABKKNgraKGijiBttFLRRJFZqa6Ow1OcTQNrBHeAA5OTkpOnTp+vbb79VzZo1FRYWptOnT8vFxUXNmjXTggULNHLkyBjD9hQrVkzLly+Xj4+PMmXKpIsXLyoyMlLvvPOOfH19lTVrVgud0YvVrl1bv/76qxo0aCBXV1edP39e6dKlU//+/fXrr7+arn5NrK5du+qbb75RwYIFTVeeNmrUSEuWLIn1KkoPDw8tXLhQY8eOVaVKlfTw4UOdPXtWnp6eatu2rZYvX67evXub7WNvb6/p06dr+PDhKleunEJDQ3XmzBmFhISoZs2a+vrrr/XDDz+YzQMlPf0BvnTpUvn4+Mjd3V1nzpxRUFCQihcvrgEDBmjFihXKnDlzos89OriVKFEi3kMhtW3bVo6OjpKS/wrOY8eOmeZWiu9cRS4uLmrZsqUk6a+//jLNNZfY99G7776rdu3aycPDQ5cuXdLZs2dN64oXL65169apb9++KlKkiK5evapLly6pYMGCev/997VmzZp4Dy0WzcnJSV999ZWWLVumd955RyVKlFBYWJjOnDmjmzdvqmDBgurZs6fWrFkT430mPQ0YP//8swYOHKgiRYooMDBQ//77r6pVq6bFixe/8lXI8dWtWzctXbpUzZs3V7p06XT27FlFRESoTp06mjt3rvr37x+vx2nTpo1Wr16tt956S1mzZtW5c+d048YNFSpUSL169dKaNWtM89ElhaFDh2ru3LmqX7++jEajzpw5I3t7ezVu3FhLly41awB6VqZMmUydt/Xq1UvSjkZ3d3fT90qRIkV09+5dnTt3Tu7u7qZGwS+//FLS07vEn71rIbHf+y1btlSvXr2UNWtWXbt2zWxOxzx58mjFihX65JNPVLp0ad2+fVsXLlxQzpw51bVrV61evdr0GYzm5uamhQsXqn///ipRooTu3bunM2fOyGg0qn79+vrxxx81evToGPssXbpUPXv2VP78+XXjxg3duXNHjRo1kq+vr6pUqZJkz/GLJPY98bzk/j5/Vv78+TV+/HgVKFBA9+7d040bN2LcIQIAAJBUaKOgjYI2irjRRkEbxatITW0Uqf3zCcD6GYxM5gcASaJevXq6fv26xo0bF+8ODCSdsWPH6sqVK5o9e7alSwGSROvWrXXy5EnNmjXrpVeOAwAAAMCzaKOwLNooYGtoowBgbbgDHABg9aKionTw4EEVLlzY0qUASeLkyZM6efKkcubMqZo1a1q6HAAAAABAPNFGAVtDGwUAa8Qc4AAAq/f5558rMDBQXbp0sXQpQKJdvXpVknTnzh0NHTpU0tPhCu3t7S1ZFgAAAAAgAWijgC2gjQKAtaMDHABg9d5++231799fmTJlsnQpQKJt2LBB33zzjenvRYsWVefOnS1YEQAAAAAgoWijgC2gjQKAtWMIdACA1fP29iZYwup5e3srW7ZscnV1VYMGDTRnzhw5OTlZuiwAAAAAQALQRgFbQBsFAGtnMBqNRksXAQAAAAAAAAAAAADAq+IOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgExwsXYC1MBqNiopitHgAAAAAgDk7O4MMBoOly7AJZG8AAAAAQGwSkr3pAI+nqCij7t59ZOkyAAAAAACpTKZMbrK3pwM8KZC9AQAAAACxSUj2Zgh0AAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE1wsHQBAAAAAICYoqKiFBkZYeky0jx7ewfZ2XHtOAAAAADYIrJ36pDU2ZsOcAAAAABIRYxGox48uKuQkGBLl4L/5+LirgwZMslgMFi6FAAAAABAEiB7pz5Jmb3pAAcAAACAVCQ6gLu7e8rJKR2drhZkNBoVFvZEwcFBkqSMGTNbuCIAAAAAQFIge6ceyZG96QAHAAAAgFQiKirSFMDd3TNYuhxIcnJKJ0kKDg5S+vSeDIcOAAAAAFaO7J36JHX2JrkDAAAAQCoRGRkp6b/gh9Qh+vVgXjgAAAAAsH5k79QpKbM3HeAAAAAAkMow9FrqwusBAAAAALaHrJe6JOXrQQc4AAAAAAAAAAAAAMAm0AEOAAAAAAAAAAAAALAJdIADAAAAAAAAAAAAAGwCHeAAAAAAAAAAAAAAAJvgYOkCAAAAAACWc/bsGf3wwxSdOXNKUVFGFS9eUr1791WJEiUlSQcO7NXcuT/pwoVzsrd3UOXKVdWnTz9lz55DkrRhw1p9+eUYLVu2Rjlz5jI9btu2PipXroL+97/RkqSaNSvqnXd6a8+e3bp69bI6dOii7t176fr1a5oxY6oOHTogo9GokiVLqW/fAXrttUKSpCdPnujnn2dqyxY/BQXdVb58+dW16zuqX79hyj5RAAAAAAAkEtk7ZXEHOAAAAACkUY8eBWvw4H7KmNFD48ZN0JgxXyo0NESDB3+o4OBg/f77Bg0a9KGyZs2q0aO/UL9+g3Ty5N96//13FBR0N8HHmz//Z73+ej2NHv2FatV6XXfu3NG773bT5cv+Gjz4U40aNVYPHjzQwIF9de/ePRmNRg0f/rFWrVqpt97qqK+++kYlS5bWqFHDtXHjumR4RgAAAAAASFpk75THHeAAAAAAkEb5+/vr3r0gtW37lkqXLitJyp+/gFavXqHg4If64YcpqlixssaMGW/ap3TpsurcuZ0WL16kvn37J+h4xYuXVOfO3U1/nz59ip48CdV33/2gzJmzSJKKFPHWe+9114kTx5UunZP27dujMWO+NF11XqVKNYWGhmjmzGl6443GcnAg1gIAAAAAUi+yd8rjDnAAAAAASKNee62QPDw89emnH2nSpPHavXunMmfOor59Byg0NFSBgYFq2LCJ2T65c+dRiRKldOTIwQQfr1ChwmZ/P3bsiEqWLG0K4JKUJUsWrVixTjVr1tbBgwdkMBhUrVpNRUREmP6rUaOOAgPvyN//QuJOHAAAAACAFEL2TnnW1V0PAAAAAEgyrq6u+uGH2Zo//2dt2eKnVatWyNnZWQ0bNlHjxs0kSZkyZY6xX+bMmXX27NkEH8/TM5PZ3x88uG82d9nzHjy4L6PRqIYNa8e6/s6d2ypSxCvBdQAAAAAAkFLI3imPDnAAAAAASMPy5SugkSPHKjIyUqdPn9SmTRu0atVyZcmSVZJ0925gjH0CAwPl4eEhSTIYDJKkqKgos21CQh6/9Nju7ul17969GMsPHTqgHDlyyt09vVxcXDV16sxY98+dO+9LjwEAAAAAgKWRvVMWQ6ADAAAAQBq1bdsWNW/eQIGBd2Rvb6+SJUtryJChcndPr7t37ypz5szy89tots/169d04sRxlS5dRpLk6uomSbp166ZpmytXLun+/fsvPX6ZMmV18uRxBQXdNS27d++ehgzprz//3KmyZcsrJOSxjEajvL2Lm/67ePGC5syZrcjIyKR4GgAAAAAASDZk75THHeCvyM7OIDs7Q7I9flSUUVFRxmR7fAAAAABpV6lSZRUZGaVhw4aoc+fucnNz0x9/+OnRo2DVq9dAxYuX0JdfjtGoUcPUuHFz3b9/T3PmzFKGDBn11ludJEkVKlSSs7Ozpk37Vu++21ePHz/W3LlPt3mZ9u07auPG9froow/Vtes7cnJKp4UL5ypz5ixq3LiZ3N3Tq2zZ8ho6dLC6d++l/PkL6PTpk/r551mqUqWq6Up4JF54eLgWLlwoX19fXbp0Sa6uripVqpS6deumWrVqxdi+SpUqsd45EO348eNKly5dktdJ9gYAAABgrcjeKc9gNBpJePEQGRmlu3cfmS2zszPIw8NV9vbJdyN9ZGSU7t17TBAHAAAA0oDw8DAFBt5Q5sw55ejolCLHPH36pGbPnqEzZ04rNDRUr71WSF269FCdOnUlSdu3/6GFC+fp4sXzcnNzU5Uq1dS79wfKnj2H6TH27t2jmTOn6fJlf+XIkVM9evTWpk3rlTlzZv3vf6MlSTVrVlSPHu+qZ8/3zI5/+fIl/fDDFB0+fEiOjo4qV668+vYdoNy580iSQkJC9NNPM7Rt2x8KCrqrLFmyqUGDhurevVeydLTG5mWvS6ZMbsmaC5OL0WhUv379tHnzZmXIkEHly5fXkydPdPDgQYWHh2vgwIHq06ePafvr16+rXr16yp49uypXrhzrY44fP16Ojo6JronsDQAAACC5kb1tP3vTAR5PsYVwBwc7eXq6afriP3U94OVDDCRU7mwZ9UGHGgoKeqSIiKiX7wAAAADAqlkihOPlbLUDfPHixRo9erSKFSumuXPnytPTU5J05swZderUSY8ePdL69etVqFAhSdKWLVv0wQcfqFu3bho+fHiy1ET2BgAAAJDcyN6pU1Jmb4ZATwLXA+7r0vUgS5cBAAAAAEC8rV69WpI0dOhQU+e3JHl7e8vHx0eLFy/Wzp07TR3gJ0+elCSVKFEi5YsV2RsAAAAAED90gAMAAAAAkAbNnz9f/v7+KlKkSIx1jx8/liTZ29ublp0+fVqSVLJkyZQpEAAAAACARLC+MdoAAAAAAMArS5cunby9vc06uaWnQ51v2rRJLi4uatiwoWn5yZMn5ezsrBMnTqhDhw6qWLGiKlWqpPfee0/Hjh1L6fIBAAAAAIgVHeAAAAAAAKRx9+/fV79+/dSkSRN98MEHypQpk2bMmKEcOXJIkgIDAxUQEKDQ0FB98sknioqKUpUqVeTh4aHt27erY8eO2rBhg4XPAgAAAAAAhkAHAAAAACDNu3r1qvz8/Ex/NxgMOn/+vKpVqybpv/m/PT09NWPGDJUrV06SZDQaNX/+fI0fP17Dhg1T+fLlTZ3mieXgYH6tvr19yly7n1LHAQAAAGBZUVEGS5eAF7C3N8TIhQlFBzgAAAAAAGlcwYIFtX//fhmNRu3Zs0dffPGFxo0bp+DgYPXp00e1atXSrl27ZDQalT17dtN+BoNB3bt314EDB7RlyxYtX75cH374YaLrsLMzyNPTLSlOKcEyZHCxyHEBAAAApKzQUHvduWOXJB2tSDpRUQbZ2dkpY0ZXOTs7v9Jj0QFuBZLzKvSoKKOioozJ9vgAAAAAgNTPze2/TuemTZsqR44c6tixo2bNmqWuXbvKzc1N2bJli3P/unXrasuWLTpx4sQr1REVZdSDB4/Nltnb26VI5/SDByGKjIxK9uMAAAAAsKywsCeKiopSZKRRERFkgNQiMtKoqKgo3b//WCEhkTHWZ8jgEu8+UzrAU7GM6Z1ljIpK1qAfFRWpoKAQOsEBAAAAACbly5dXvnz5dPnyZV26dEklSpR44fZZs2aVJIWEhLzysS3VABUZGUXjFwAAAJAGREbSJ5aaJcWFCXSAp2Juzk4y2NnJf91shQTeSPLHd8mcUwWbvys7OwMd4AAAAACQhoSEhGjKlCm6c+eOJk6cKIMh5hx4Tk5OkqSIiAgtXbpUf/31l5o3b64GDRrE2Pbq1auS9MrzfwMAAAAA8KpSbQd4eHi4Fi5cKF9fX126dEmurq4qVaqUunXrplq1asXYvkqVKrp3716cj3f8+HGlS5cuGStOPiGBNxRy64qlywAAAABgQXZ2BtnZxeykTG5Mm2SbnJ2d5evrq3v37ql9+/aqXLmy2fqrV6/K399fTk5OKlKkiHbs2KGNGzcqJCQkRge40WjU6tWrJUk1a9ZMsXNIakw/BgAAAIDsbRtSZQe40WjUoEGDtHnzZmXIkEHVq1fXkydPtHfvXu3atUsDBw5Unz59TNtfv35d9+7dU/bs2WOE9mh2dkxiDwAAAMA62dkZ5OHhmqwddHGJjIzSvXuPExXE/fw2acWKpbp48bwkKX/+gmrevIVatmyT1GUigQwGg9566y39+OOPGj16tObNm2ea4/vmzZv66KOPFBERoW7dusnV1VWtWrXS7NmztX37dv32229q3769JCkqKkpTp07V8ePHVbhwYTVu3NiSp5UoTD8GAAAAQCJ725JU2QG+ZMkSbd68WcWKFdPcuXPl6ekpSTpz5ow6deqkKVOmqGHDhipUqJAk6fTp05Kkxo0ba/jw4RarGwAAAACSg52dQfb2dpq++E9dD7ifYsfNnS2jPuhQI1HTJq1bt1rffTdR/fsPVtmy5SUZdeDAfn3//WQFBd1Vjx7vJk/RiLe+ffvq8OHDOnDggBo1aqQKFSooPDxcx48f1+PHj1WzZk0NGTJEkpQ3b16NHj1aI0aM0MiRI7Vo0SIVKFBAZ86c0eXLl5UlSxZNnTpVjo6OFj6rhGP6MQAAAAAS2duWpMoO8Oih04YOHWrq/JYkb29v+fj4aPHixdq5c6epA/zkyZOSpBIlSqR8sQAAAACQQq4H3Nel60GWLiNefH2Xq3nzFnrzzVamZfnyFdDt2wH67bfFaTaEpybOzs6aO3euFixYoNWrV2vfvn1ycHBQkSJF1Lp1a7Vr10729vam7du0aaOCBQtq9uzZOnz4sC5evKhs2bKpS5cu6tOnjzJnzmzBs3l1TD8GAAAAQCJ724JUOS74/PnztXr1alWqVCnGusePH0uSWQiPvgO8ZMmSKVMgAAAAAOCF7OwM+vvv43rw4IHZ8k6duunHH+dKktq29dHPP/9otv7DD3vriy9GS5IOHz6omjUr6pdf5qtp0/p6551O6tu3lz77bJjZPsePH1XNmhV17dpVSdKff+7SO+90Vr16NfTWWy01e/YMhYWFSZKmTJms9u1bmO0fHBysevVqaPfuHUl2/tbC0dFRPXv21Jo1a/T333/ryJEj+u233/T222+b5e5o5cuX14wZM7Rv3z6dOHFCW7du1YgRI6y+8xsAAAAArBHZO3apsgM8Xbp08vb2jhG2t2zZok2bNsnFxUUNGzY0LT958qScnZ114sQJdejQQRUrVlSlSpX03nvv6dixYyldPgAAAACkeZ06ddO5c2fVqlUTffzxAC1cOE+nTp2Qu7u78uXLn6DH2rNnt378ca6GDftMzZu30J9/7tTjx49M6/38NqpUqTLKkyev9u7do5Ejh+rNN1tq4cKlGjx4qLZu3ayxYz+TJDVv3kL//ntdx44dNe3/xx9+cnNzU9WqNZLk3AEAAAAASAlk79ilyg7wZ92/f1/9+vVTkyZN9MEHHyhTpkyaMWOGcuTIIUkKDAxUQECAQkND9cknnygqKkpVqlSRh4eHtm/fro4dO2rDhg0WPgsAAAAASFtef72+fvxxrl5/vZ5Onz6lH3+cpt69u6tjxzY6fvxogh6rQ4fOyps3n4oU8VLdug1kZ2evHTu2SZLCw8O1desWNW3qI0lasGCOmjd/Uy1btlXu3HlUuXJVffzxcG3btkU3bvyrQoUKy8urmH7/fb3p8TdtWqdGjZrKwSFVzhIGAAAAAECsyN6xS/Xp/urVq/Lz8zP93WAw6Pz586pWrZqk/+b/9vT01IwZM1SuXDlJktFo1Pz58zV+/HgNGzZM5cuXN3WaJ5aDg/n1Avb2qf76gXixlfMAAAAArF1UlMHSJSSpYsVKaOTIsTIajbp48YL++mu3li1boiFDBmjpUt94P06ePPlMf3ZxcVHduvXl57dRTZo0119//aknT0JVr14DSdI//5zR6dMntXHjOtM+RqNRknTpkr9y5sylZs3e1KxZP2jgwI8VEHBLf/99XB9/PPylddjbG2LkQgAAAAAALMnWsndSSPUd4AULFtT+/ftlNBq1Z88effHFFxo3bpyCg4PVp08f1apVS7t27ZLRaFT27NlN+xkMBnXv3l0HDhzQli1btHz5cn344YeJrsPOziBPT7ekOKVUJ0MGF0uXAAAAAEBSaKi97tyxi9HRaumLVhN6/ICAW1qwYJ66du2hbNmySZK8vIrKy6uo6tR5XR06tNXffx+VJNnZmV9sHBkZKYPh6flHH9fV1cVsGx+fN/Xhh+/r/v272rx5o+rUqaeMGTNIehq4O3fupqZNm8eoK0uWrHJwsFOTJk01ffp32rv3T124cE7Fi5dQ0aJF4zyfqCiD7OzslDGjq5ydnRP0XAAAAAAAkBwCAm7pl1/mq3Pn7sqaNZsMBoMKFSqsQoUKq2bNOurcuZ2OHj0c676RkRExlqVLl87s702b+mjAgD4KDLwjP78Nql27rtzc3CVJUVFGdezYVU2axMzemTNnkSS98UZjTZv2nfbs2aULF86rWLHieu21wq962vGS6jvA3dz+63Ru2rSpcuTIoY4dO2rWrFnq2rWr3NzcTA0qsalbt662bNmiEydOvFIdUVFGPXjw2GyZvb2dTXQeP3gQosjIKEuXAQAAAKR5YWFPFBUVpchIoyIiUs9v9MjIqATVY2fnqFWrVihr1mzq1Kmb2TpnZ1dJUsaMnnJwcNSDB8Gmx46KitK//15Tnjx5FRERZcopzx+/VKlyypEjp9atW6s//9ytr76abFpfsGAh+fv7K2fOPKbtjxw5pN9+W6whQ4bK0TGdXFzcVKvW69q6dYv8/S+oZcu2Lzy/yEijoqKidP/+Y4WERMZYnyGDi8UvUgAAAAAApC1OTum0evVKZcuWPUb2ju5fzZQpsxwcHBUcHGxa9zR7Xze74zs2ZcuWV44cObVp03rt2fOnvvpqsmnda68V0uXLl5QnT17Tsmezt4uLi9KnT6/atV/X9u1bTdk7paT6DvDnlS9fXvny5dPly5d16dIllShR4oXbZ82aVZIUEhLyysdOTQ1QSSmhjVkAAAAAkkdkpNHSJSQJDw8PderUTbNm/aDg4GDVq9dArq5uunTJX/Pm/aTy5SuqTJlyKl26jP74w0916tRVpkyZtWTJIrNQ/iJNmjTX/PlzlDFjRlWsWNm0vFOnrvrss2H6+ecf9cYbjXX7doC++mqcsmfPbroKXZKaNXtTQ4d+JKNRatCgUbyOmdouTAAAAAAApF22mr2TQqrrAA8JCdGUKVN0584dTZw4UQZDzDnwnJycJEkRERFaunSp/vrrLzVv3lwNGjSIse3Vq1cl6ZXn/wYAAAAAS8udLaPVHO/dd/soT568Wrt2lXx9lyk0NFTZs+dQvXpvqGvXdyRJvXt/oIcPH2jIkP5ydnaRj09L1a/f0DRv2Is0btxcc+bMUuvW7WRn99/d13XrNtCYMdLChXO0aNE8pU+fQTVq1FKfPv3N9q9YsbIyZvRQqVJllD59+kSfJwAAAADAtpC9/2Ot2TvVdYA7OzvL19dX9+7dU/v27VW5cmWz9VevXpW/v7+cnJxUpEgR7dixQxs3blRISEiMDnCj0ajVq1dLkmrWrJli5wAAAAAASSkqyqjIyCh90KFGih87MjJKUVGJuzO9SZPmsc4HFi1LliwaP35ynOvLl6+o3bsPxrouR44c2rlzf6zr6tVroHr1Yl4g/azQ0FAFBwerefMWL9wOAAAAAJA2kL1jstbsneo6wA0Gg9566y39+OOPGj16tObNm2ea4/vmzZv66KOPFBERoW7dusnV1VWtWrXS7NmztX37dv32229q3769pKfj10+dOlXHjx9X4cKF1bhxY0ueFgAAAAAkWlSUUffuPZadXcwRslLi2IkN4anRgwcPdPjwAW3dukXZs2c3G8INAAAAAJB2kb2TjqWzd6rrAJekvn376vDhwzpw4IAaNWqkChUqKDw8XMePH9fjx49Vs2ZNDRkyRJKUN29ejR49WiNGjNDIkSO1aNEiFShQQGfOnNHly5eVJUsWTZ06VY6OjhY+KwAAAABIPFsLw5YSGRmhr74aKw8PT33++fhYp90CAAAAAKRNZO+kYensnSo7wJ2dnTV37lwtWLBAq1ev1r59++Tg4KAiRYqodevWateunezt7U3bt2nTRgULFtTs2bN1+PBhXbx4UdmyZVOXLl3Up08fZc6c2YJnAwAAAABILTw9M2nTpu2WLgMAAAAAAJtl6eydKjvAJcnR0VE9e/ZUz54947V9+fLlNWPGjGSuCgAAAAAAAAAAAACQWtlZugAAAAAAAAAAAAAAAJICHeAAAAAAAAAAAAAAAJtABzgAAAAAAAAAAAAAwCbQAQ4AAAAAAAAAAAAAsAl0gAMAAAAAAAAAAAAAbAId4AAAAABgBezsDHJwsEvx/+zsDImqt21bH9WsWVFLliyKdf3EiV+qZs2K+vnnHxP9nLRt65Og/RO6PQAAAAAgbSF7x34Ma8veDhY9OgAAAADgpezsDPL0dJGdnX2KHzsqKlJBQSGKijImeF8HBwdt2/aH3n67s9nyiIgI7dixVQZD4gI+AAAAAABJjextO+gABwAAAIBUzs7OIDs7e/mvm62QwBspdlyXzDlVsPm7srMzJCqEV6xYWfv2/aVbt24qe/YcpuWHDx+Us7OL0qVzTspyAQAAAABINLK37aADHAAAAACsREjgDYXcumLpMuKtWLESunz5krZt22J2Jfoff/ipXr03tHXrZtOyEyeOa9asH3T27Gk5ODioZs06+uCDgcqQIYMkKTg4WN99N1G7d++Qg4OjunbtEeN4f/99TDNnTtPp06fk4eGhGjVq6/33P5Cbm3vynywAAAAAwCaQva0/ezMHOAAAAAAg2dSt20Dbtv1h+nt4eLh27tyuBg0ampadOnVC/fq9pwIFCmrmzLkaO3aCTp06oY8++lBRUVGSpM8+G6rTp09qwoRv9e230/Tnn7t08+Z/V+SfP39OAwb0VaVKVTR//mKNGvWFzp49rUGDPpTRmPAr6AEAAAAAsBZkb3N0gAMAAAAAkk29em/o1KkTunXrpiRp//698vDwUNGi3qZtliz5RYUKFdFHH32qggVfU/nyFTV69Jc6c+aU9u37S1euXNL+/Xs1aNAnKlOmnIoU8dKoUePk5ORkeozFixeoYsVK6t69l/LmzacyZcpq9OgvdOrUCR05cijFzxsAAAAAgJRC9jbHEOgAAAAAgGTj7V1MuXLlNg3FtnWrnxo0aGS2zcWL51WpUlWzZYUKFZa7e3pduHBOoaEhkqRixYqb1mfKlFm5cuU2/f3s2bO6du2K3nijVowaLl++pPLlKyblaQEAAAAAkGqQvc3RAQ4AAAAASFb16r2hbdv+UKtW7bRr107Nnj3fbL3RaJTBEHM/ozFKDg7/xdaoKPPh1OztHcy2bdiwibp2fSfG43h4eL7iGQAAAAAAkLqRvf/DEOgAAAAAgGRVr14DnTp1QuvWrVauXLmVP38Bs/WvvVZYx44dNVt27tw/evTokQoUeM00ZNvffx8zrX/48KGuX79q+nvBgoXk739BefLkNf0XFRWp77//RgEBN5Pt3AAAAAAASA3I3v+hAxwAAAAAkKyKFPFSnjx5NWvWdNWv3zDG+rfe6qjz5//RN99M0KVL/jpy5JA+/3yEihb1UsWKlZU7dx7VrdtA3377tQ4c2KeLF89r7NjPFB4ebnqMt9/urH/+OauJE7+Uv/9FnTx5QqNHj9CVK5eVJ0++lDxdAAAAAABSHNn7PwyBDgAAAABWwiVzTqs9Xr16b2j+/J/VoEHMEF6yZGlNmjRFs2fP1DvvdJKrq5tq1Xpdffp8aBqGbcSI0Zo+fYpGjRquqKgotWjRWvfuBT3zGKX0zTfT9NNPM9SzZxe5uDirfPlK+uCDgXJyckqy8wAAAAAA2Dayt/Vnb4PRaDS+fDNERkbp7t1HZsscHOzk6emm4VM26NL1oDj2TLzqZfPrw441dWr+5wq5dSXJH98lez4V7/aZgoIeKSIiKskfHwAAAEDChIeHKTDwhjJnzilHx/+Co52dQZ6eLrKzs0/xmqKiIhUUFBJjDrC0JK7XJVqmTG6yt2eAtaRA9gYAAACQ3MjeqVNSZm/uAAcAAACAVC4qyqigoBDZ2Rkscuy0HMABAAAAAGkD2dt20AEOAAAAAFaAMAwAAAAAQPIie9sGxmgDAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAUhmjkfnGUhNeDwAAAACwPWS91CUpXw86wAEAAAAglbC3t5ckhYU9sXAleFb062Fv72DhSgAAAAAAr4rsnTolZfYmvQMAAABAKmFnZy8XF3cFBwdJkpyc0slgMFi4qrTLaDQqLOyJgoOD5OLiLjs7riEHAAAAAGtH9k5dkiN70wEOAAAAAKlIhgyZJMkUxGF5Li7uptcFAAAAAGD9yN6pT1JmbzrAAQAAACAVMRgMypgxs9Kn91RkZISly0nz7O0duPMbAAAAAGwM2Tt1SersTQc4AAAAAKRCdnZ2srNzsnQZAAAAAADYLLK3beIydgAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATXCwdAEAAAAAAMAywsPDtXDhQvn6+urSpUtydXVVqVKl1K1bN9WqVSvG9nfu3NEPP/ygXbt26datW8qaNasaN26svn37ys3NzQJnAAAAAACAOe4ABwAAAAAgDTIajRo0aJAmTJigmzdvqnr16ipWrJj27t2rXr16acaMGWbbBwQEqH379vrll1/k7Oys119/XVFRUfrpp5/UoUMHBQcHW+hMAAAAAAD4Dx3gAAAAAACkQUuWLNHmzZtVrFgx+fn56ccff9S8efO0fPlyubu7a8qUKbpw4YJp+3Hjxun69evq3bu31q5dq++//16///67mjRporNnz2ratGkWPBsAAAAAAJ6iAxwAAAAAgDRo9erVkqShQ4fK09PTtNzb21s+Pj4yGo3auXOnJOnKlSvavHmzcubMqf79+5u2dXJy0tixY+Xm5qalS5cqNDQ0ZU8CAAAAAIDn0AEOAAAAAEAaNH/+fK1evVqVKlWKse7x48eSJHt7e0nSzp07FRUVpTp16sjR0dFs2/Tp06tq1ap6/Pix9u3bl/yFAwAAAADwAnSAAwAAAACQBqVLl07e3t6mTu5oW7Zs0aZNm+Ti4qKGDRtKkv755x9JUtGiRWN9rMKFC5ttBwAAAACApThYugAAAAAAAGBZ9+/f14gRI3T+/HldvHhROXPm1Pjx45UjRw5J0u3btyVJWbNmjXX/6OV37txJmYIBAAAAAIgDHeAAAAAAAKRxV69elZ+fn+nvBoNB58+fV7Vq1ST9NyS6s7NzrPtHL4/e7lU4OJgPVmdvbxuD19nKeQAAAABAakcHOAAAAAAAaVzBggW1f/9+GY1G7dmzR1988YXGjRun4OBg9enTxzRMusFgiHV/o9Fo9v/EsrMzyNPT7ZUeI7XKkMHF0iUAAAAAQJpABzgAAAAAAGmcm9t/nc5NmzZVjhw51LFjR82aNUtdu3aVq6urJOnJkyex7h+93MXl1Tp5o6KMevDA/C5ye3s7m+g8fvAgRJGRUZYuAwAAAACsUoYMLvEeWYsOcAAAAAAAYKZ8+fLKly+fLl++rEuXLilbtmyS/psL/HkvmyM8ISIibLOTODIyymbPDQAAAABSk1TbAR4eHq6FCxfK19dXly5dkqurq0qVKqVu3bqpVq1aMba/c+eOfvjhB+3atUu3bt1S1qxZ1bhxY/Xt29fsSnYAAAAAANK6kJAQTZkyRXfu3NHEiRNjHdrcyclJkhQREaGiRYtKki5cuBDr4507d06S5OXllUwVAwAAAAAQP/G7TzyFGY1GDRo0SBMmTNDNmzdVvXp1FStWTHv37lWvXr00Y8YMs+0DAgLUvn17/fLLL3J2dtbrr7+uqKgo/fTTT+rQoYOCg4MtdCYAAAAAAKQ+zs7O8vX11dq1a3XgwIEY669evSp/f385OTmpSJEipgvRt23bpsjISLNtHz58qH379snV1VUVKlRIkfoBAAAAAIhLquwAX7JkiTZv3qxixYrJz89PP/74o+bNm6fly5fL3d1dU6ZMMbvqfNy4cbp+/bp69+6ttWvX6vvvv9fvv/+uJk2a6OzZs5o2bZoFzwYAAAAAgNTFYDDorbfekiSNHj1aAQEBpnU3b97URx99pIiICHXo0EGurq7KnTu36tatq2vXrmnixIkyGo2SpLCwMH322Wd69OiR3n77bbm7u1vkfAAAAAAAiJYqh0BfvXq1JGno0KHy9PQ0Lff29paPj48WL16snTt3qlChQrpy5Yo2b96snDlzqn///qZtnZycNHbsWO3cuVNLly7VwIED5ezsnOLnAgAAAABAatS3b18dPnxYBw4cUKNGjVShQgWFh4fr+PHjevz4sWrWrKkhQ4aYth85cqROnjypuXPnaseOHSpSpIj+/vtv/fvvvypRooQ+/PBDC54NAAAAAABPpco7wOfPn6/Vq1erUqVKMdY9fvxYkmRvby9J2rlzp6KiolSnTh05OjqabZs+fXpVrVpVjx8/1r59+5K/cAAAAAAArISzs7Pmzp2rTz75RHnz5tW+fft0/PhxFSlSRGPGjNGsWbNM84BLUu7cubV8+XK1a9dODx8+1LZt2+Tk5KT3339fCxYskJubmwXPBgAAAACAp1LlHeDp0qWTt7d3jOVbtmzRpk2b5OLiooYNG0qS/vnnH0lS0aJFY32swoUL648//tA///yjOnXqJF/RAAAAAABYGUdHR/Xs2VM9e/aM1/bZs2fXuHHjkrkqAAAAAAASL1V2gD/r/v37GjFihM6fP6+LFy8qZ86cGj9+vHLkyCFJun37tiQpa9asse4fvfzOnTspUzAAAAAAAAAAAAAAwCJSfQf41atX5efnZ/q7wWDQ+fPnVa1aNUn/DYke1/ze0cujt3sVDg7mI8bb26fKEeQTzFbOAwAAAAAAAAAAAEDaluo7wAsWLKj9+/fLaDRqz549+uKLLzRu3DgFBwerT58+prnADQZDrPsbjUaz/yeWnZ1Bnp62OZ9Zhgwuli4BAAAAAAAAAAAAAF5Zqu8Ad3P7r9O5adOmypEjhzp27KhZs2apa9eucnV1lSQ9efIk1v2jl7u4vFonb1SUUQ8emN9Fbm9vZxOdxw8ehCgyMsrSZQAAAACAVcqQwYWRtQAAAAAASCVSfQf488qXL698+fLp8uXLunTpkrJlyybpv7nAn/eyOcITIiLCNjuJIyOjbPbcAAAAAAAAAAAAAKQdqe4S9ZCQEH311VcaMmRInMOWOzk5SZIiIiJUtGhRSdKFCxdi3fbcuXOSJC8vr2SoFgAAAAAAAAAAAACQWqS6DnBnZ2f5+vpq7dq1OnDgQIz1V69elb+/v5ycnFSkSBHVqlVLkrRt2zZFRkaabfvw4UPt27dPrq6uqlChQorUDwAAAAAAAAAAAACwjFTXAW74P/buPM6u+f4f+OvOZJkkRPYQW4qi1VpiiRZFaau2Ujulat+Lry1qrYhaShdKK6IS+5KEKpWEpBRVSyqEoNESoYmQRGSRZeb3h1/SpkmYZJY7c+/z+Xh4lHM+99z3p/fOzH3d9zmfUyjkgAMOSJJcdNFFmTx58qJ9//73v3P66adn/vz5Oeigg9K2bdusvvrq2XHHHfPOO+/kyiuvXHTV+Ny5c3PBBRdk5syZOfDAA7PSSisVZT4AAAAAAAAANI4meQ/wE044IS+88EKeffbZfOc738nmm2+eefPmZcyYMZk1a1a23XbbnHHGGYvGn3/++Rk7dmxuvvnm/PnPf84Xv/jFvPTSS3n33Xez0UYb5aSTTiribAAAAAAAAABoDE3uCvDk02XQb7755px11llZc80188wzz2TMmDH54he/mIsvvji/+93vFt0HPElWX3313Hvvvdlvv/0yY8aMjBw5Mq1atcpxxx2XgQMHpl27dkWcDQAAAAAAAACNoUleAZ4kLVu2zJFHHpkjjzyyVuO7d++evn37NnBVAAAAAAAAADRVTfIKcAAAAAAAAABYXhrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJSEFsUuAAAAAID/qKgopKKi0GDHr66uSXV1TYMdHwAAoJg0wAEAAACaiIqKQjp0aJvKyoZbtG/BgupMmzZLExwAAChJGuAAAAAATURFRSGVlRW57o4nM3Hy9Ho//urdVsmJB22TioqCBjgAAFCSNMABAAAAmpiJk6fnXxOnFrsMAACAZqfh1tMCAAAAAAAAgEakAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJSEFsUugOaloqKQiopCgx2/urom1dU1DXZ8AAAAAAAAoHRpgFNrFRWFdOjQNpWVDbdwwIIF1Zk2bZYmOAAAAAAAALDcNMCptYqKQiorK3LdHU9m4uTp9X781butkhMP2iYVFQUNcAAAAAAAAGC5aYCz3CZOnp5/TZxa7DIAAAAAAAAAFtNwa1kDAAAAAAAAQCPSAAcAAAAAAACgJFgCHQAAAMpUdXV17rnnngwePDhvvPFG5s2blx49emTnnXfOsccem/bt2y82vnfv3pk2bdoyjzdmzJi0bt26gasGAACAZdMABwAAgDJUXV2dU045JcOHD09VVVU23njjtG3bNmPGjEn//v0zfPjw3H777enSpUuSZOLEiZk2bVq6d++erbbaaqnHrKiw0BwAAADFpQEOAAAAZei+++7L8OHD07Nnz/Tv3z9rrrlmkuTjjz/OGWeckZEjR6Zv3775xS9+kSR59dVXkyS77LJLzj333GKVDQAAAJ/JqdkAAABQhu67774kyTnnnLOo+Z0kK620Uvr165dCoZARI0Zkzpw5SZKxY8cmSTbaaKPGLxYAAABqSQMcAAAAylCHDh2yzjrrZNNNN11iX6dOnbLKKqtk3rx5mTp1apL/XAH+la98pTHLBAAAgOViCXQAAAAoQzfccMMy902YMCHTpk1Ly5Yt06lTpySfXgFeVVWVl19+Oeedd17eeOONFAqF9OrVKyeccEI22WSTxiodAAAAlskV4AAAAMBiFt73e4cddkjr1q3zwQcfZPLkyZkzZ07OOuusVFdXp3fv3unQoUNGjRqVgw8+OA899FBxiwYAAIC4AhwAAAD4L4MGDcqDDz6YNm3a5LTTTkvyn/t/d+zYMddff30222yzJElNTU1uueWWXHbZZenTp0969eqVVVddtU7P36LF4ufqV1aWxrn7tZ1HY823VP5/BQAA+F8a4AAAAECSZODAgenXr18KhUIuvfTSrLvuukmS7bbbLk888URqamrSvXv3ReMLhUIOP/zwPPvssxkxYkTuvffenHTSSSv8/BUVhXTs2K7O82iK2rdvU+wSFtPU6gEAAKgvGuAAAABQ5mpqanLVVVelf//+qayszKWXXprddttt0f5CoZBu3bot8/E77rhjRowYkZdffrlOdVRX1+Sjj2Yttq2ysqIkmrUffTQ7CxZUf+64xppvbesBAABoCtq3b1PrlayabAO8uro699xzTwYPHpw33ngj8+bNS48ePbLzzjvn2GOPTfv27Rcb37t370ybNm2ZxxszZkxat27dwFUDAABA8zJnzpyceeaZGTZsWKqqqvLzn/88O++883Ido2vXrkmS2bNn17me+fNLsym7YEF1yc5taaqra1JdXVPsMgAAgDLUJBvg1dXVOeWUUzJ8+PBUVVVl4403Ttu2bTNmzJj0798/w4cPz+23354uXbokSSZOnJhp06ale/fu2WqrrZZ6zIoK97YCAACA//bxxx/nqKOOyujRo9O5c+dcf/312WSTTZYYd9ddd+Xpp5/O7rvvvtTm+IQJE5Kkzvf/puGtsnJVaqqrG/wq8+rqBZk6dbYmOAAA0OiaZAP8vvvuy/Dhw9OzZ8/0798/a665ZpJPg/kZZ5yRkSNHpm/fvvnFL36RJHn11VeTJLvsskvOPffcYpUNAAAAzca8efNyzDHHZPTo0Vl77bVz0003Lcrf/2vSpEl5+OGHM3v27CUa4DU1Nbn//vuTJNtuu22D103dtKtqlUJFRf754I2Z/cF7DfIcbTqvli/sfnQqKgoa4AAAQKNrsg3wJDnnnHMWC98rrbRS+vXrl69//esZMWJE5syZk6qqqowdOzZJstFGGxWlXgAAAGhurr322jz//PPp2rVrBg0alO7duy9z7N57750bb7wxo0aNyt133539998/yacruP3617/OmDFjst5662WXXXZprPKpo9kfvJfZk94udhkAAAD1rkk2wDt06JB11lknm2666RL7OnXqlFVWWSXTpk3L1KlTs9pqqy26AvwrX/lKI1dKQ6jtDexXlPuQAQAA5W769Om55ZZbkiSdO3fOlVdeucyxC09Ov+iii3Leeefl/PPPz6233pqePXtm3Lhxeeutt9KlS5f8+te/TsuWLRtrCgAAALBUTbIBfsMNNyxz34QJEzJt2rS0bNkynTp1SpKMHTs2VVVVefnll3PeeefljTfeSKFQSK9evXLCCScs9f5lND3uQwYAANA4XnzxxcyePTtJMm7cuIwbN26ZY08++eR06dIl++yzT77whS/kxhtvzAsvvJA333wz3bp1y6GHHprjjz8+nTt3bqzyAQAAYJmaZAP8syy87/cOO+yQ1q1b54MPPsjkyZOTJGeddVY23XTT9O7dO6+//npGjRqVv/zlL7nyyiuz6667FrFqasN9yAAAABrHN77xjbz22mvL/bhevXrl+uuvb4CKAAAAoH40qwb4oEGD8uCDD6ZNmzY57bTTkmTR/b87duyY66+/PptttlmSpKamJrfccksuu+yy9OnTJ7169cqqq65ap+dv0WLxpbkbeqnuxlLbeTTWfBvjPmSl8toBAAAAAAAA/9FsGuADBw5Mv379UigUcumll2bddddNkmy33XZ54oknUlNTk+7duy8aXygUcvjhh+fZZ5/NiBEjcu+99+akk05a4eevqCikY8d2dZ5HU9TQS443ReU4ZwAAAAAAACh1Tb4BXlNTk6uuuir9+/dPZWVlLr300uy2226L9hcKhXTr1m2Zj99xxx0zYsSIvPzyy3Wqo7q6Jh99NGuxbZWVFSXRSP3oo9lZsKD6c8eVynyT2s8ZAADg87Rv38YqUwAAANBENOkG+Jw5c3LmmWdm2LBhqaqqys9//vPsvPPOy3WMrl27Jklmz55d53rmzy/NhumCBdUlO7dlKcc5AwAAAAAAQKlrsg3wjz/+OEcddVRGjx6dzp075/rrr88mm2yyxLi77rorTz/9dHbfffelNscnTJiQJHW+/zcAAAAAAAAATVuTbIDPmzcvxxxzTEaPHp211147N910U9Zcc82ljp00aVIefvjhzJ49e4kGeE1NTe6///4kybbbbtvgdQMAAAAAAABQPE3yJmXXXnttnn/++XTt2jWDBg1aZvM7Sfbee++0atUqo0aNyt13371oe3V1dX71q19lzJgxWW+99bLLLrs0RukAAAAAAAAAFEmTuwJ8+vTpueWWW5IknTt3zpVXXrnMseecc07WXHPNXHTRRTnvvPNy/vnn59Zbb03Pnj0zbty4vPXWW+nSpUt+/etfp2XLlo01BQAAAAAAAACKoMk1wF988cXMnj07STJu3LiMGzdumWNPPvnkdOnSJfvss0++8IUv5MYbb8wLL7yQN998M926dcuhhx6a448/Pp07d26s8gEAAAAAAAAokibXAP/GN76R1157bbkf16tXr1x//fUNUBEAAAAAAAAAzUGTvAc4AAAAAAAAACwvDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAktCh2AQAAAADQkCoqCqmoKDTY8aura1JdXdNgxwcAAGpPAxwAAACAklVRUUjHjm1SUVHZYM9RXb0gU6fO1gQHAIAmQAMcAAAAgJL16dXflfnngzdm9gfv1fvx23ReLV/Y/ehUVBQ0wAEAoAnQAAcAAACg5M3+4L3MnvR2scsAAAAaWEWxCwAAAAAAAACA+qABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEloUuwAodxUVhVRUFBrs+NXVNamurmmw4wMAAAAAAEBToQEORVRRUUjHjm1SUVHZYM9RXb0gU6fO1gQHAAAAAACg5GmAQxF9evV3Zf754I2Z/cF79X78Np1Xyxd2PzoVFQUNcAAAAAAAAEqeBjg0AbM/eC+zJ71d7DIAAAAAAACgWasodgEAAAAAAAAAUB80wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCXVqgA8dOjTPP//854579NFH86tf/aouTwUAAABlSfYGAACA2qtTA/ycc87J3Xff/bnj7r///tx88811eSoAAAAoS7I3AAAA1F6L5Rk8dOjQzJ8/f7Ftb731Vu69995lPubjjz/O008/nZYtW65YhQAAAFBGZG/KUUVFIRUVhQY5dmWlOwACAEA5Wa4G+NixYzNo0KAUCp8GkkKhkBdffDEvvvjiZz6upqYme++994pXCUUkhAMAAI1J9qbcVFQU0qFDWxkZAACoF8vVAD/llFPy8ccfL/rvIUOGZK211srmm2++zMe0bt06PXv2zEEHHbTiVUKRCOEAAEBjk70pNxUVhVRWVuS6O57MxMnT6/34m2zQIwfssmm9HxcAAGialqsBvvLKK+eyyy5b9N9DhgzJpptuutg2KCVCOAAA0Nhkb8rVxMnT86+JU+v9uD26tq/3YwIAAE3XcjXA/9e4cePqqw5o0oRwAACgWGRvAAAAqL06NcD/2wcffJDZs2enpqZmmWPWXHPN+no6AAAAKDuyNwAAAHy2OjfAf//73+fGG2/Mhx9++JnjCoVCXnnllbo+HQAAAJSdhsre1dXVueeeezJ48OC88cYbmTdvXnr06JGdd945xx57bNq3X3zVqilTpuQ3v/lNnnjiiUyaNCldu3bNLrvskhNOOCHt2rVbobkBAABAfapTA3zw4MH52c9+liRp1apVOnbsmMrKynopDAAAAGi47F1dXZ1TTjklw4cPT1VVVTbeeOO0bds2Y8aMSf/+/TN8+PDcfvvt6dKlS5Jk8uTJOfDAAzNx4sSsv/762WGHHfLSSy+lf//+eeKJJ3L77bdnpZVWqnNdAAAAUBd1aoDfeuutKRQKOe+887L//vunZcuW9VUXAAAAkIbL3vfdd1+GDx+enj17pn///ouWTv/4449zxhlnZOTIkenbt29+8YtfJEn69u2biRMn5phjjsn//d//JUnmzp2bs846Kw8//HCuvfbanHPOOfVSGwAAAKyoiro8ePz48dl0001zyCGHaH4DAABAA2io7H3fffclSc4555zF7hu+0korpV+/fikUChkxYkTmzJmTt99+O8OHD89qq62WU045ZdHYVq1a5ZJLLkm7du1y1113Zc6cOfVWHwAAAKyIOjXA27Rpk44dO9ZXLQAAAMD/aKjs3aFDh6yzzjrZdNNNl9jXqVOnrLLKKpk3b16mTp2axx9/PNXV1dl+++2XaMKvvPLK2XrrrTNr1qw888wz9V4nAAAALI86NcC32mqrjBkzJrNnz66vegAAAID/0lDZ+4YbbsjDDz+81Ob6hAkTMm3atLRs2TKdOnXK66+/niRZf/31l3qs9dZbL0kWjQMAAIBiqVMD/LTTTsvs2bNz7rnnZvr06fVVEwAAAPD/FSN7L7zv9w477JDWrVvn/fffT5J07dp1qeMXbp8yZUqj1AcAAADL0qIuD77zzjuz8cYb509/+lOGDx+enj17pn379ikUCkuMLRQKufXWW2t97Orq6txzzz0ZPHhw3njjjcybNy89evTIzjvvnGOPPTbt27dfbPyUKVPym9/8Jk888UQmTZqUrl27ZpdddskJJ5yQdu3a1WWaAAAAUDQNmb2XZtCgQXnwwQfTpk2bnHbaaUmSWbNmJUmqqqqW+piF2xeOq4sWLRY/V7+ysk7n7jcZtZ1Hqcw3Kb85l8o8AACguatTA/yWW25Z9O/z58/PP/7xj2WOXVowX5bq6uqccsopGT58eKqqqrLxxhunbdu2GTNmTPr375/hw4fn9ttvT5cuXZIkkydPzoEHHpiJEydm/fXXzw477JCXXnop/fv3zxNPPJHbb789K6200opPFAAAAIqkobL30gwcODD9+vVLoVDIpZdemnXXXTdJUllZ+ZnHr6mpWex/V1RFRSEdO5bmSezt27cpdgmNrtzmXG7zBQCApqpODfCBAwfWVx2Lue+++xad1d6/f/+sueaaSZKPP/44Z5xxRkaOHJm+ffsuWpKtb9++mThxYo455pj83//9X5Jk7ty5Oeuss/Lwww/n2muvzTnnnNMgtQIAAEBDaqjs/d9qampy1VVXpX///qmsrMyll16a3XbbbdH+tm3bJkk++eSTpT5+4fY2berWAKyurslHHy1+FXllZUVJNBY/+mh2Fiyo/txxpTLfpPzmXNv5AgAAy699+za1XnWpTg3wrbbaqi4PX6b77rsvSXLOOecsan4nyUorrZR+/frl61//ekaMGJE5c+Zk8uTJGT58eFZbbbWccsopi8a2atUql1xySR5//PHcddddOfXUU5e5VBsAAAA0VQ2VvReaM2dOzjzzzAwbNixVVVX5+c9/np133nmxMd26dUuSRfcC/1+fd4/w5TF/fmk2EBcsqC7ZuS1Luc253OYLAABNVb3dnGjevHkZM2ZMHnnkkTz//PNJknfffXeFjtWhQ4ess8462XTTTZfY16lTp6yyyiqZN29epk6dmscffzzV1dXZfvvt07Jly8XGrrzyytl6660za9asPPPMMytUCwAAADQV9Zm9k09XWjv88MMzbNiwdO7cOQMHDlyi+Z0k66+/fpJk/PjxSz3OG2+8kSTZYIMNVrgWAAAAqA91boDPnz8/v/zlL7PNNtvkgAMOyKmnnpq77rorSXL22Wfn+9//ft56663lOuYNN9yQhx9+OB07dlxi34QJEzJt2rS0bNkynTp1yuuvv57kP2H8f6233npJsmgcAAAANDcNkb3nzZuXY445JqNHj87aa6+du+66K5tssslSx2633XZJkpEjR2bBggWL7ZsxY0aeeeaZtG3bNptvvvkKzA4AAADqT50a4PPnz8+xxx6bG264IbNnz85XvvKV1NTULNo/c+bMvPLKKznkkEMyZcqUOhebZNF9v3fYYYe0bt36c5dZW7i9vp4fAAAAGlNDZe9rr702zz//fLp27ZpBgwYtdguy/7X66qtnxx13zDvvvJMrr7xy0fPPnTs3F1xwQWbOnJkDDzwwK6200opPFAAAAOpBne4Bftttt+XJJ5/Mtttum379+qVbt27ZcMMNF+2//fbbc9FFF2Xo0KG56aabcvbZZ9ep2EGDBuXBBx9MmzZtctpppyVJZs2alSTLvL/3wu0Lx9VFixaLny9Q2xutN3W1nUepzDcpvzmXyjwAAKAcNUT2nj59em655ZYkSefOnXPllVcuc+w555yTLl265Pzzz8/YsWNz8803589//nO++MUv5qWXXsq7776bjTbaKCeddFLdJwsAAAB1VKcG+JAhQ9KhQ4f88pe/TLt27ZbYX1VVlUsuuSRPPfVUHn/88To1wAcOHJh+/fqlUCjk0ksvzbrrrpskqaysTJIUCoWlPm7hWen/fXb8iqioKKRjxyXnWArat29T7BIaXbnNudzmCwAApaQhsveLL76Y2bNnJ0nGjRuXcePGLXPsySefnC5dumT11VfPvffem1//+tcZNWpURo4cmR49euS4447L0UcfvdTaAAAAoLHVqQH+r3/9K9tuu+1nhtyWLVtm4403zpNPPrlCz1FTU5Orrroq/fv3T2VlZS699NLstttui/a3bds2SfLJJ58s9fELt7dpU7cGYHV1TT76aPGryCsrK0qisfjRR7OzYEH1544rlfkm5Tfn2s4XAABYfu3bt2nQVZcaInt/4xvfyGuvvbbctXTv3j19+/Zd7scBAABAY6lTA7xFixb56KOPPnfctGnT0qLF8j/VnDlzcuaZZ2bYsGGpqqrKz3/+8+y8886LjenWrVuSLLoX+P/6vHuEL4/580uzgbhgQXXJzm1Zym3O5TZfAAAoJQ2dvQEAAKCU1OkU9S996Ut56aWXMnHixGWOmTBhQl566aXF7k9WGx9//HEOP/zwDBs2LJ07d87AgQOXaH4nyfrrr58kGT9+/FKP88YbbyRJNthgg+V6fgAAAGgKGjJ7AwAAQKmpUwP8oIMOyuzZs3PCCSfklVdeWWL/a6+9lpNPPjlz587NvvvuW+vjzps3L8ccc0xGjx6dtddeO3fddVc22WSTpY7dbrvtkiQjR47MggULFts3Y8aMPPPMM2nbtm0233zz5ZgZAAAANA0Nlb0BAACgFNVpbbRdd901Tz31VO69997ss88+WXnllVMoFPLEE09khx12yKRJk1JTU5Pddtst3/ve92p93GuvvTbPP/98unbtmkGDBqV79+7LHLv66qtnxx13zMiRI3PllVfm7LPPTqFQyNy5c3PBBRdk5syZOeKII7LSSivVZaoAAABQFA2VvQEAAKAU1fnmYH379s2mm26am266Kf/85z+TJFOnTk2S9OjRIz/84Q9z2GGH1fp406dPzy233JIk6dy5c6688spljj3nnHPSpUuXnH/++Rk7dmxuvvnm/PnPf84Xv/jFvPTSS3n33Xez0UYb5aSTTqrDDAEAAKC46jt7AwAAQKmqcwM8Sfbdd9/su+++ef/99/Pee++luro6Xbt2zeqrr77cx3rxxRcze/bsJMm4ceMybty4ZY49+eST06VLl6y++uq599578+tf/zqjRo3KyJEj06NHjxx33HE5+uij065duxWeGwAAADQF9Zm9AQAAoFTVSwN86tSpeeONN7LVVlula9euSZJ//OMfue222/Ltb3970bba+MY3vpHXXnttuWvo3r17+vbtu9yPAwAAgOagPrM3AAAAlKqKuh7g7rvvzje+8Y387Gc/W2z7iy++mEsuuSTf+c538tBDD9X1aQAAAKBsyd4AAABQO3VqgD/55JO54IIL0qJFi2y99daL7dt8881z5JFHpqamJmeccUb++te/1qlQAAAAKEeyNwAAANRenRrg/fv3T4sWLTJw4MCcddZZi+3r2bNnzjzzzAwcODCFQiE33nhjnQoFAACAciR7AwAAQO3VqQH++uuvp3fv3vnqV7+6zDFf/epXs/nmm+fvf/97XZ4KAAAAypLsDQAAALVXpwb47Nmz06ZNm88d16FDh8yfP78uTwUAAABlSfYGAACA2qtTA7xnz5559tln8/HHHy9zzCeffJLnn38+a621Vl2eCgAAAMqS7A0AAAC1V6cG+J577pnp06fnlFNOyZQpU5bYP3Xq1Jx++un58MMPs8cee9TlqQAAAKAsyd4AAABQey3q8uBDDjkkDz30UJ566qnssMMO+cpXvpLVVlstSfLvf/87Y8eOzdy5c7Pxxhvn8MMPr496AQAAoKzI3gAAAFB7dWqAt2zZMjfffHOuueaaDB48OH//+9/z97//fdH+1q1b56CDDsqZZ56ZVq1a1bVWAAAAKDuyNwAAANRenRrgSdKuXbucd955Oeuss/Lyyy/n/fffz4IFC9K1a9dstNFGadu2bX3UCQAAAGVL9gYAAIDaqVMD/LDDDkvPnj3z05/+NK1atUqvXr3qqy4AAAAgsjcAAAAsjzo1wMeMGZOKior6qgUAAAD4H7I3AAAA1F6dEnS7du1SU1NTX7UAAAAA/0P2BgAAgNqrUwP8+OOPz9/+9rcMGDAgc+fOra+aAAAAgP9P9gYAAIDaq9MS6BMmTMjaa6+dK6+8MldffXXWXnvttG/ffqlLsxUKhdx66611eToAAAAoO7I3AAAA1F6dGuC33HLLon+fP39+xo8fv8yxhUKhLk8FAAAAZUn2BgAAgNqrUwN84MCB9VUHAAAAsBSyNwAAANRenRrgW221VX3VAQAAACyF7A0AAAC1V6cG+H+bN29eXn311bz33nvp0qVLNt9887z77rvp0aNHfT0FAAAAlDXZGwAAAD5bnRvg8+fPz3XXXZfbbrstM2bMSJLsscce2XzzzXP22Wdn5syZueaaa7L22mvXuVgAAAAoR7I3AAAA1E5FXR48f/78HHvssbnhhhsye/bsfOUrX0lNTc2i/TNnzswrr7ySQw45JFOmTKlzsQAAAFBuZG8AAACovTo1wG+77bY8+eST2WabbfLoo4/mnnvuWWz/7bffnr322itTpkzJTTfdVKdCAQAAoBzJ3gAAAFB7dWqADxkyJB06dMgvf/nLdOvWbYn9VVVVueSSS9KtW7c8/vjjdXkqAAAAKEuyNwAAANRenRrg//rXv7LFFlukXbt2yxzTsmXLbLzxxnn33Xfr8lQAAABQlmRvAAAAqL06NcBbtGiRjz766HPHTZs2LS1atKjLUwEAAEBZkr0BAACg9urUAP/Sl76Ul156KRMnTlzmmAkTJuSll17KhhtuWJenAgAAgLIkewMAAEDt1akBftBBB2X27Nk54YQT8sorryyx/7XXXsvJJ5+cuXPnZt99963LUwEAAEBZkr0BAACg9uq0Ntquu+6ap556Kvfee2/22WefrLzyyikUCnniiSeyww47ZNKkSampqcluu+2W733ve/VVMwAAAJQN2RsAAABqr843B+vbt2823XTT3HTTTfnnP/+ZJJk6dWqSpEePHvnhD3+Yww47rK5PAwAAAGVL9gYAAIDaqXMDPEn23Xff7Lvvvnn//ffz3nvvpbq6Ol27ds3qq69eH4cHAACAsid7AwAAwOdb7gb4ggULcvvtt2fYsGGZMmVKevTokT322CN77bVXunbtmq5duzZEnQAAAFA2ZG8AAABYMcvVAJ87d26OPPLIPPfcc6mpqUmS/POf/8xTTz2VkSNH5pe//GWDFAkAAADlQvYGAACAFbdcDfA777wzzz77bLp3756jjz46a665Zl5//fX0798/w4YNy/3335/vfe97DVUrAAAAlDzZGwAAAFbccjXA//SnP6Wqqip33HFHevTokSTZfvvts91222XvvffOH//4RyEcAAAA6kD2BgAAgBVXsTyDx48fny222GJRAF9oww03zEYbbZRx48bVa3EAAABQbmRvAAAAWHHL1QCfOXNmVllllaXuW2ONNTJt2rT6qAkAAADKluwNAAAAK265GuDz589PZWXlUve1bNky8+bNq5eiAAAAoFzJ3gAAALDilqsBDgAAAAAAAABNlQY4AAAAAAAAACVBAxwAAAAAAACAktBieR8wYsSI7LTTTktsnzp1apIsdV+SFAqFjBgxYnmfDgAAAMqO7A0AAAArZrkb4LNmzcqsWbOWuX/ixIlL3V4oFJb3qQAAAKAsyd4AAACwYparAT5w4MCGqgMAAACI7A0AAAB1sVwN8K222qqh6gAAAAAiewMAAEBdVBS7AAAAAAAAAACoDxrgAAAAAAAAAJSE5VoCHQAAAChdQ4cOzdlnn52bb745X//615fY37t370ybNm2Zjx8zZkxat27dgBUCAADAZ9MABwAAADJmzJhccskly9w/ceLETJs2Ld27d1/mfcorKiw0BwAAQHFpgAMAAECZe+yxx3L22Wfn448/XuaYV199NUmyyy675Nxzz22s0gAAAGC5aIADAABAmZo0aVJ+8YtfZMiQIamqqkqXLl0yZcqUpY4dO3ZskmSjjTZqzBIBAABguVibDAAAAMrUNddck8GDB2ejjTbKXXfdlXXWWWeZYxdeAf6Vr3ylscoDAACA5eYKcAAAAChT66yzTi6//PLsueeen3v/7rFjx6aqqiovv/xyzjvvvLzxxhspFArp1atXTjjhhGyyySaNVDUAAAAsW7O5Anzo0KHZYIMN8tRTTy11f+/evbPBBhss859PPvmkkSsGAACApu2YY47JXnvt9bnN7w8++CCTJ0/OnDlzctZZZ6W6ujq9e/dOhw4dMmrUqBx88MF56KGHGqlqAAAAWLZmcQX4mDFjcskllyxz/8SJEzNt2rR07949W2211VLHfF6YBwAAAJZu4f2/O3bsmOuvvz6bbbZZkqSmpia33HJLLrvssvTp0ye9evXKqquuWqfnatFi8fxeWVkaeb628yiV+SblN+dSmQcAADR3Tb4B/thjj+Xss8/Oxx9/vMwxC+9Dtssuu+Tcc89trNIAAACgLGy33XZ54oknUlNTk+7duy/aXigUcvjhh+fZZ5/NiBEjcu+99+akk05a4eepqCikY8d29VFyk9O+fZtil9Doym3O5TZfAABoqppsA3zSpEn5xS9+kSFDhqSqqipdunTJlClTljp24ZnoG220UWOWCAAAAGWhUCikW7duy9y/4447ZsSIEXn55Zfr9DzV1TX56KNZi22rrKwoicbiRx/NzoIF1Z87rlTmm5TfnGs7XwAAYPm1b9+m1qsuNdkG+DXXXJMhQ4bkK1/5Svr165e+ffsuswG+8Arwr3zlK41ZIgAAAJCka9euSZLZs2fX+Vjz55dmA3HBguqSnduylNucy22+AADQVDXZBvg666yTyy+/PHvuuefn3r977Nixqaqqyssvv5zzzjsvb7zxRgqFQnr16pUTTjghm2yySSNVDQAAAKXnrrvuytNPP53dd989O++88xL7J0yYkCR1vv83AAAA1FXtrhMvgmOOOSZ77bXX5za/P/jgg0yePDlz5szJWWedlerq6vTu3TsdOnTIqFGjcvDBB+ehhx5qpKoBAACg9EyaNCkPP/xw7rnnniX21dTU5P7770+SbLvtto1dGgAAACymyV4BXlsL7//dsWPHXH/99dlss82SfBrAb7nlllx22WXp06dPevXqVecz0Vu0WLwZX9t15pu62s6jVOablN+cS2UeAABAcey999658cYbM2rUqNx9993Zf//9kyTV1dX59a9/nTFjxmS99dbLLrvsUuRKAQAAKHfNvgG+3Xbb5YknnkhNTU26d+++aHuhUMjhhx+eZ599NiNGjMi9996bk046aYWfp6KikI4d29VHyU1O+/Ztil1Coyu3OZfbfAEAgPq15ppr5qKLLsp5552X888/P7feemt69uyZcePG5a233kqXLl3y61//Oi1btix2qQAAAJS5Zt8ALxQK6dat2zL377jjjhkxYkRefvnlOj1PdXVNPvpo1mLbKisrSqKx+NFHs7NgQfXnjiuV+SblN+fazhcAAFh+7du3KYtVl/bZZ5984QtfyI033pgXXnghb775Zrp165ZDDz00xx9/fDp37lzsEgEAAKD5N8A/T9euXZMks2fPrvOx5s8vzQbiggXVJTu3ZSm3OZfbfAEAgBUzaNCgz9zfq1evXH/99Y1UDQAAACy/Zn+K+l133ZVTTz01I0aMWOr+CRMmJEmd7/8NAAAAAAAAQNPW7K8AnzRpUh5++OHMnj07O++882L7ampqcv/99ydJtt1222KUBwAAAAAAAEAjafZXgO+9995p1apVRo0albvvvnvR9urq6vzqV7/KmDFjst5662WXXXYpYpUAAAAAAAAANLRmfwX4mmuumYsuuijnnXdezj///Nx6663p2bNnxo0bl7feeitdunTJr3/967Rs2bLYpQIAAAAAAADQgJr9FeBJss8+++S2227LN7/5zUyaNCmPPfZY5s+fn0MPPTQPPPBA1llnnWKXCAAAAAAAAEADazZXgA8aNOgz9/fq1SvXX399I1UDAAAAAAAAQFNTEleAAwAAAAAAAIAGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASWhR7AKA8lNRUUhFRaHBjl9dXZPq6poGOz4AAAAAAABNkwY40KgqKgrp2LFNKioqG+w5qqsXZOrU2ZrgAAAAAAAAZUYDHGhUn179XZl/PnhjZn/wXr0fv03n1fKF3Y9ORUVBAxwAAAAAAKDMaIADRTH7g/cye9LbxS4DAAAASpLbjwEAUK40wAEAAACghLj9GAAA5UwDHAAAAABKiNuPAQBQzjTAAQAAAKAEuf0YAADlqKLYBQAAAAAAAABAfdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCS2KXQDQtFRUFFJRUWiw41dWOu8GAAAAAACAhqEBDixSUVFIhw5tNakBAAAAAABoljTAgUUqKgqprKzIdXc8mYmTpzfIc2yyQY8csMumDXJsAAAAAAAAypsGOLCEiZOn518TpzbIsXt0bd8gxwUAAIDmwu3HAACg4WiAAwAAAEAjcfsxAABoWBrgAAAAANBI3H4MAAAalgY4AAAAADQytx8DAICGYa0lAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAEiSDB06NBtssEGeeuqppe6fMmVKfvrTn+Zb3/pWNt544+y000658sorM3PmzEauFAAAAJZOAxwAAADImDFjcskllyxz/+TJk7P//vvntttuS1VVVXbYYYdUV1enf//+Oeigg/Lxxx83YrUAAACwdBrgAAAAUOYee+yxHHnkkZ/ZxO7bt28mTpyYY445Jn/4wx/yq1/9Ko888ki++93v5rXXXsu1117biBUDAADA0jWbBrhl2AAAAKB+TZo0KX369MkJJ5yQefPmpUuXLksd9/bbb2f48OFZbbXVcsoppyza3qpVq1xyySVp165d7rrrrsyZM6exSgcAAIClahYNcMuwAQAAQP275pprMnjw4Gy00Ua56667ss466yx13OOPP57q6upsv/32admy5WL7Vl555Wy99daZNWtWnnnmmcYoGwAAAJapyTfALcMGAAAADWOdddbJ5ZdfnnvuuScbbLDBMse9/vrrSZL1119/qfvXW2+9xcYBAABAsTTZBrhl2AAAAKBhHXPMMdlrr71SUfHZXw+8//77SZKuXbsudf/C7VOmTKnfAgEAAGA5tSh2ActyzTXXZMiQIfnKV76Sfv36pW/fvksN0rVZhu3RRx/NM888k+23376xygcAAICSMWvWrCRJVVXVUvcv3L5wXF20aLF4M76yssmeu79cajuPUplvUn5zLrf5JqU1FwAASkeTbYAvXIZtzz33/Mwz0WuzDNujjz6a119/XQMcAAAAVkBlZWWSpFAoLHV/TU3NYv+7oioqCunYsV2djtFUtW/fptglNLpym3O5zTcpzzkDAND0NdkG+DHHHFOrcZZhAwAAgIbVtm3bJMknn3yy1P0Lt7dpU7dmWHV1TT76aPGryCsrK0qiyfbRR7OzYEH1544rlfkm5TfncptvUvs5AwBAXbVv36bWKxA12QZ4bVmGre4s0VX3cU1duc03Ka25AABAsXXr1i3Jf05C/1+fd3L68pg/vzSbaQsWVJfs3Jal3OZcbvNNynPOAAA0fc2+AW4ZtrorlbOOl0e5zbnc5puU55wBAKChLLzt2Pjx45e6/4033kiSbLDBBo1WEwAAACxNs2+AW4at7izRtWylMudym29iGTYAABrP8izD1lxtt912SZKRI0emT58+i05GT5IZM2bkmWeeSdu2bbP55psXq0QAAABIUgINcMuw1V05LldVbnMut/km5TlnAABoKKuvvnp23HHHjBw5MldeeWXOPvvsFAqFzJ07NxdccEFmzpyZI444IiuttFKxSwUAAKDMNfsGuGXYAAAAoOGdf/75GTt2bG6++eb8+c9/zhe/+MW89NJLeffdd7PRRhvlpJNOKnaJAAAAkGa/Rtt/L8O2YMGCxfZZhg0AAADqx+qrr5577703++23X2bMmJGRI0emVatWOe644zJw4MC0a9eu2CUCAABA878C3DJsAAAAUD8GDRr0mfu7d++evn37NlI1AAAAsPyafQM8sQwbAAAAAAAAACWwBHpiGTYAAAAAAAAAmtEV4JZhAwAAAAAAAOCzlMQV4AAAAAAAAACgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASWhR7AIAAACA5uOxxx7L8ccfv8z9u+66a6655ppGrAgAAAD+QwMcAAAAqLVXXnklSbLllltm1VVXXWL/Zptt1tglAQAAwCIl1QB3FjoAAAA0rIUN8PPOOy8bbrhhkasBAACAxZVUA9xZ6AAAANCwXnnllbRu3TrrrbdesUsBAACAJZRkA9xZ6AAAAFD/pk6dmvfeey8bb7xxWrQoqa8UAAAAKBEllVadhQ4AAAANZ+GJ56uttlquvPLKPProo3n33XfTpUuXfOc738lxxx2XVVZZpchVAgAAUM4qil1AfVl4FvoGG2zgLHQAAABoAGPHjk2SPPLII7njjjvSs2fP9OrVK9OnT8+AAQOy//775/333y9ylQAAAJSzkukUOwsdAAAAGtarr76aJNlhhx1y1VVXZeWVV06SfPjhhznttNPy17/+Neeff35uuOGGFX6OFi0WP1e/srI0zt2v7TxKZb5J+c253OablNZcAAAoHSXTAP/vs9DbtWuXrbbaKquuumpeeumlDBgwII899lhuvfXWdO3atciVAgAAQPN0+eWX58c//nFWXXXVVFVVLdreqVOnXHHFFdlll10ycuTIvPPOO1ljjTWW+/gVFYV07NiuPktuMtq3b1PsEhpduc253OablOecAQBo+kqmAe4s9BXnDOW6j2vqym2+SWnNBQAAmopWrVqlZ8+eS93XvXv3fPnLX85zzz2XsWPHrlADvLq6Jh99NGuxbZWVFSXRZPvoo9lZsKD6c8eVynyT8ptzuc03qf2cAQCgrtq3b1Pr3k/JNMCdhb7iSiV0LY9ym3O5zTcpzzkDAECxdenSJUkye/bsFT7G/Pml2UxbsKC6ZOe2LOU253Kbb1KecwYAoOkrmQa4s9BXnDOUl61U5lxu802chQ4AQONZnrPQm7O5c+fm4osvztSpU3PVVVelbdu2S4yZMGFCkmTVVVdt7PIAAAAgSQk1wD+Ps9CXrRzP1i23OZfbfJPynDMAADSkVq1a5amnnsq7776bxx9/PLvsssti+8eNG5dx48Zl5ZVXzqabblqcIgEAACh7JXGK+ty5c/OTn/wkJ5xwQmbNmrXUMc5CBwAAgLo54IADkiQ/+9nP8vbbby/aPmXKlJx77rlZsGBBjjzyyMVuTQYAAACNqSSuAHcWOgAAADS8I444Is8++2z+8pe/ZPfdd88WW2yRVq1a5ZlnnsmsWbPyne98J8ccc0yxywQAAKCMlcQV4Imz0AEAAKChtWrVKr/73e/yk5/8JOuuu26ef/75PPPMM/niF7+Yvn375pe//GUqKyuLXSYAAABlrCSuAE+chQ4AAACNobKyMocddlgOO+ywYpcCAAAASyiZBvjCs9Bvu+22DBkyJM8//3wqKiryxS9+Mfvtt1/23XffFAqFYpcJAAAAAAAAQAMpmQZ44ix0AAAAAAAAgHJWMvcABwAAAAAAAKC8aYADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAloUWxCwAotoqKQioqCsUuo06qq2tSXV1T7DIAAAAAAACKSgMcKGsVFYV06NA2lZUNtyBGTXV1ChUNu+BGdfWCTJ06WxMcAAAAAAAoaxrgQFmrqCiksrIi193xZCZOnl7vx99kgx45YJdN888Hb8zsD96r9+MnSZvOq+ULux+dioqCBjgAAAAAAFDWNMABkkycPD3/mji13o/bo2v7JMnsD97L7Elv1/vxAQAAAAAA+A8NcAAAAACgQVVUFFJRUSh2GXVSXV1j5TUW09Dva+85AFgxGuAAAAAAQIOpqCikQ4e2qaysaLDnqKmuTqGi4Y6fJNXVCzJ16mwNSZI0zvt6wYLqTJs2y3sOAJaTBjgAAAAA0GAqKgqprKzIdXc8mYmTp9f78TfZoEcO2GXT/PPBGzP7g/fq/fhJ0qbzavnC7kenoqKgGUmShn9fr95tlZx40DZp2bIyCxZU1/vxF3KVOQClSAMcAAAAAGhwEydPz78mTq334/bo2j5JMvuD9zJ70tv1fnz4LA31vl5l5arUVFenffs29X7s/2ZlAwBKkQY4AAAAAAA0Ie2qWqVQUWFlAwBYARrgAAAAAADQBFnZAACWX0WxCwAAAAAAAACA+qABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAgAAAAAAAIDmr6KikIqKQoM+R3V1Taqraxr0OWjeSq4B/re//S033HBDXn311cyZMycbbLBBfvjDH+a73/1usUsDAACAkiB7AwBA89SQDepCoZD27VunoqKyQY6/UHX1gkydOlsTnGUqqQb4H/7wh5x55plp0aJFevfuncrKyjz99NM59dRTM378+Jx00knFLhEAAACaNdkbAACap4qKQjp0aJvKyoa9Q/I/H7wxsz94r0GO3abzavnC7kenoqKgAc4ylUwD/IMPPsh5552XNm3aZODAgfnqV7+aJBk/fnwOO+ywXHvttdl5552z4YYbFrlSAEpRQy/tY1kfAKApkL0BKCbZG6BuKioKqaysyHV3PJmJk6fX+/E32aBHDthl08z+4L3MnvR2vR8faqtkGuC33XZb5syZk6OPPnpRAE+SddddN6effnrOPffc3HLLLbnsssuKWCUAxdDQAbkxlvaxrA8A0BTI3gAUS0VFIR07tpG9AerBxMnT86+JU+v9uD26tq/3Y8KKKJkG+KhRo5Ik3/rWt5bYt9NOO6VQKOTPf/5zI1cFQLE11rI+ScMt7WNZHwCgqZC9AViWhj75vLKyIhUVlbI3jaqh39eNwcoGQENo6quylEwD/B//+EeSZL311ltiX4cOHdKlS5e8//77+eCDD9K5c+fGLg+AImnoZX2Sprm0j4AGADQE2Rug6WhKXzw35snnTSl7U9oa631dU12dQkXDPYeVDaD8WBG1RBrg06dPzyeffJJ27dqlXbt2Sx3TrVu3vP/++3n//feFcIAy1FDL+iRNb2mfxghoDR3OkqYX0JrSl0uNUU9jKLc5O6nj8zX31zjxOlPaZG+ApqOpLQfemCefU1zN/TP78p7Y0VjvaysbFFc5va8pfVZE/VShpqam2f9UvPfee9lhhx3SpUuXPPnkk0sdc9BBB+WFF17IHXfckV69ei33c9TULPkLpFBIKioqMv3jOVmwoHqFav8srVpWZqW2rTNv5kepqV5Q78cvVFSmZbv2qa6uTm3eBc19vkn5zbmpzTcpvzk3xff1osc13890yz3Pcn1fz5w1Nwuq63/OLVtUpk1Vy8yfMzM1DXD8JClUVKRFVbsm9b4uFAopNOATLO2zxmepqGjYepJPayqnOTe1+S5ULr+vk+b/Gi98juV9ncvpNU6a93yTpc+5MX4nNwWy94qRUWoxvpnPuanNNym/OTfF9/WixzXgn4eKiooGy2XLm8m8r8vnfd3cP7Mvz+f1cnxfL3pcM/5ouyIZxfu6/jTV311J+byvG/q74eQ/3w839u+u5flZLYkrwCv+/xVonzXphX3+Fe33FwqFVFYu/firrFS1QsesrZbtGvbKworlvIKvuc83Kb85N7X5JuU356b4vi435fi+bte2VQNV8qkWVUu/8qs+ldP7+rM+axRLQzdzmtqcy22+5agxGpReZ0qZ7F03Msrna+5zbmrzTcpvzk3xfd3QGjqXNbXXOPG+bghN6X3dFHNZOb6vqV/l+L4ut99dTVFDfzecNO3fXSXx7li49NqcOXOWOWbu3LlJkrZt2zZKTQAAAFBKZG8AAACag5JpgLdt2zYzZsxYZhCfPHlykqRr166NWRoAAACUBNkbAACA5qAkGuCFQiHrr79+kmT8+PFL7J82bVqmTJmSTp06pUuXLo1dHgAAADR7sjcAAADNQUk0wJNku+22S5KMGDFiiX0jRoxITU1Ntt9++8YuCwAAAEqG7A0AAEBTVzIN8H322Sdt2rTJ73//+7zwwguLtr/55pv5xS9+kUKhkB/96EdFrBAAAACaN9kbAACApq5QU1NTU+wi6svdd9+d888/P5WVlendu3datWqVp59+Op988kn+7//+L8ccc0yxSwQAAIBmTfYGAACgKSupBniSPP7447nxxhvz8ssvp7KyMuutt16OOOKIfPvb3y52aQAAAFASZG8AAACaqpJrgAMAAAAAAABQnkrmHuAAAAAAAAAAlDcNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAP1ZsaMGcv9mGeeeaYBKgFW1LXXXpvXX3+92GUAAADLIHtD8yd7A0DD0gCn0c2dOzcvv/xyxo0bl/nz5y9z3Icffphnn322EStrfM8880xuvvnm3H777ZkwYUKxy6mzww47LNOmTavV2E8++SR9+/bNj370o4YtClgu1157bV577bVilwH1bqeddsqjjz5a7DKKorq6Om+//fZi22pqavLQQw+lb9+++fnPf54XX3yxSNXVn3fffTdz5syp9fgJEyZk6NChDVdQEXz44Yd5+umn89BDD+Xhhx/OM888U+vPZkDpkb3/Q/aWvaGpkb0pVbK37P2/ZG+KpUWxC6D25syZkw8//DA9evQodikrbODAgfnlL3+ZWbNmJUlWXnnlHHXUUTnqqKNSUbH4+Rh/+ctfcvbZZ+fVV18tRqn15rXXXstvf/vbvPbaa+nRo0eOPfbY9OrVK6ecckoeffTR1NTUJElatGiRk08+Occee2yRK15xr776an7wgx/k97//fbp06bLMcS+++GLOPvvs/Otf//rMcaXqww8/zPjx47PlllsWu5RGMWPGjFx++eXp27dvsUtpNOX2GpeCnXbaKeeee2522mmnYpfSaL70pS/liiuuyB577FHsUhrFxIkTF33+KCejRo3KxRdfnPfffz8vv/xykk9D+QknnJA///nPiz6H9O/fP4cddlj69OlTzHLrZKeddlriPT1r1qxccsklOeqoo7LuuusuNn706NHp06dP9tprr0autP498sgj+e1vf7vUz82FQiG9evXKUUcdlR122KHxi6tHG264YQqFwnI9plAo5JVXXmmgiihVsnfzJHsvSfYur1wme9McyN6lT/aWvWVv2bupcAV4ES3tbKi5c+dm6NChmTJlyhLjhw0b1qw/HAwdOjT9+vXLBhtskD59+uTYY49NVVVVrrnmmhxxxBH5+OOPi11ivXv55Zez//77Z9SoUWnTpk1efPHFHH744enXr18effTRHHnkkRkyZEhuvfXWbL/99vnFL36Rhx9+uNhlr7Dzzz8/b775Zg455JC89957S+yfN29efv7zn+fggw/Ov/71r3zve9/LH//4xyJUWr++9KUv5Q9/+MNi2+bMmZNrr70277zzzhLj//KXv+Swww5rrPIaxDvvvJNLLrkk3//+9/P9738/5513Xt56660lxg0bNiy77rpr7rvvviJUWX/K8TUuN+UY0BaGL0rXuHHjcuKJJ6ampiZHHnlkqqurkyR33HFHRo0ala5du+buu+/O6NGjc9ZZZ2XgwIHN+nPI0t7Tn3zySYYOHZrJkycXoaLG0bdv35x66qmZOHFi9tprr5xxxhn56U9/mgsuuCCnnHJKdtppp4wdOzbHH398fvaznxW73DrZcssts8UWWyzXP5tvvnmxy6YJkL1lb9lb9m6uZO/Sf43LjexNKZK9ZW/Zu2lmb1eAF9HS/uDPnDkzffr0yYABA0ru7Nybb745W265ZQYNGrRo2wknnJCLLroogwcPzuGHH57f//73WWmllYpYZf265pprssYaa2TQoEHp1KlTZs2alWOPPTa33XZbDjjggJxxxhmLxm6xxRb5wQ9+kJtuuinf/e53i1j1ijvkkEOyyiqr5JxzzskhhxyS3//+91lrrbWSfHqG+tlnn53XX389PXr0yMUXX5ztttuuyBXXj6X90Z89e3auu+66bL755lljjTWKUFXDefXVV3PooYfm448/TlVVVaqqqvLKK6/koYceyp133pn1118/M2bMyHnnnZdhw4alsrIyxxxzTLHLrpNye43ffPPN5V4G0xn30PTceOON6datW+6///60b99+0fbbbrsthUIhp59+ejbeeOMkyY9+9KP87W9/yx133NFsP4csSyl/4fTAAw/k1ltvzV577ZULLrggbdu2Xeq4mTNn5tJLL80tt9ySzTbbLN/5zncaudL68d85ApaH7C17y96yd3Mke3+qlF9j2RtKg+z9Kdlb9m5qNMCboFL9RfHPf/4z55xzzmLbWrVqlX79+qVDhw4ZMGBAjjrqqAwYMGCZv0Cam9GjR+f0009Pp06dkiRt27bNj3/84/zgBz/Itttuu8T47373u7niiisau8x6tfvuu2fllVfOqaeemkMOOSQ33nhjHn300dxwww2ZP39+Dj744Pzf//1f2rVrV+xSG1yp/iz/6le/ypw5c/Lzn/88u+22W5JkzJgxOf3009O3b99cddVVOeyww/Kvf/0rX/3qV9O3b99ssMEGRa66YZTqa3zDDTfkhhtuWK7HNPclM8vV8i5n1Nzdfffdeeqpp2o9vlAopF+/fg1YUcN69tlns//++y8WwCdMmJA333wzLVq0yLe+9a3Fxm+zzTb51a9+1dhlUgd33HFHNt100889u7xdu3bp169fxo8fn3vuuafZhvB58+alZcuWy/WYF198MZtsskkDVURzV6qf5WRv2Vv2Lg2y93+U6msse5cP2fuzyd40dbL352uK2VsDnEbTpk2bTJs2ban7zjrrrMyaNSt33nlnjjvuuNx4442NW1wDWWmllfLRRx8ttm2DDTbI9ttvnxYtlvzxmzp1alq3bt1Y5TWY7bffPv3798/xxx+f73//+6mpqcnaa6+dvn37Zosttih2edTRmDFjcuCBBy4K4Emy8cYb56yzzsppp52W0047LRMnTswZZ5yRI444Yol7DNL07bzzziX7xclnKbeAliTXX3997r777lqPLxQKueWWWxqwoob17LPPLtcVFs39NZ46dWpWXXXVxbb99a9/TZJssskmS3whXlVVlU8++aTR6qPu/vGPfyzXPWx32mmn3HXXXQ1YUcP6/ve/n6uuuqpWf6Pmzp2ba665JgMHDszYsWMboTpoOmTvT8nesndzJ3uXPtm7dpp7Lktk78/T3F9j2bv0yd7L1pSztwY4jaZ3794ZOHBgvvWtb+WLX/ziEvsvvPDCfPzxx3nwwQdzxBFHZPvtty9ClfVrm222ye9///tsttlm+drXvpYkWXnllfPb3/52ibEvvvhiBg0atGhcc7f55ptn4MCBOeqoo/Lhhx/mpz/9qQBeIqZPn54NN9xwie1f/epXs2DBgrz22msZNGhQNt1008Yvjnrx7W9/O3vssUexy2h05RbQkmT8+PEZP358rcc397PWzz333GZ9T9fltcoqq+TDDz9cbNtf/vKXFAqFbLPNNkuMHz9+/KIr52geZs2alc6dO9d6fNeuXZv1PdmmTJmSfffdNyeffHKOPvroZf5Oev7553Puuefmrbfeytprr93IVULxyd6yt+xdGmTv0id7147s3fzI3rJ3qZG9m2f21gCn0Zx++uk5+OCDs/fee+fLX/5yrrzyysV+KAqFQq644oq0atUqgwcPzgsvvFDEauvHGWeckTFjxuSII47IFltsscx7Jxx66KF5/vnn06lTp8XuTdbcbbjhhrnjjjvyox/9KMcff3yuu+66bL311sUuizqaP3/+Uq+WqKqqSpIcc8wxAjjNUrkFtCS58sory+oLl44dO2b11VcvdhmNplevXnnooYdy5JFHprKyMlOmTMmoUaOSJLvssstiY2fMmJE//OEP6d27dxEqZUUtWLBgqVc2LktlZWXmz5/fgBU1rAcffDB9+vTJ1VdfnVGjRuXyyy/PmmuuuWj/wmViF95r78gjj8wpp5xSxIqhOGRv2Vv2Lg2yN6VK9i59srfsXWpk7+aZvTXAaTQ9e/bMH//4x1x33XV57rnnFn1g/28VFRXp169fNttss/zyl7/MBx98UIRK60/nzp1z33335c4778zcuXOXOa6qqir77rtvfvzjHy/XmURNTZ8+fZa6fe21184777yTY489Nt/97ncXO2OoFM7iZHFf+cpXil0CrJByC2iUvqOPPjoHHnhgDjjggGy11VZ59NFH88knn2S33XbLOuusk+TTL1b//ve/5/LLL8+HH36YQw45pMhV183w4cPz1ltvLfrvOXPmpFAo5P7778/zzz+/2NjXX3+9scujjjp37pzf/e53ue2223LllVfme9/7Xs4555zsv//++dvf/paf/OQnmTBhQjbYYINceumlPpNQtmRv2Vv2Lg/+ztFcyd6UGtlb9i41pZK9NcCL7M0331xsyZcZM2YkSV577bUlzihZnmVSmqqOHTvmvPPO+9xx++23X/bee+/Ffok2V1VVVTn88MM/c0yp3HdtyJAhn7n/k08+ydChQxfbVioh/LnnnsuCBQsW/ffMmTOTJE8++WQmTZq02NhSuMLiszT3ZZqWpVxe4y233DJdunQpdhlAPfjqV7+a66+/PpdeemkGDBiQysrK7LHHHrn44osXjbniiisycODAVFRUpE+fPunVq1cRK667YcOGZdiwYUts/9/PHwuVwt+s//3i4bOUyhcPhxxySLbeeuucf/75ufDCCzNo0KCMHz8+LVq0yCmnnJJjjjlmuc7OpzzI3ksnezdPsnfp57LaKIXPMUtTLq+x7A2lQ/b+D9n7U7J301CoqampKXYR5WrDDTdc6g9+TU3NZ25/9dVXG6O8BldTU5MJEyZk2rRpSZJOnTpljTXWKG5RDazU5zxx4sQVelxzP+tzaT/L//2rdWn7mvPP8oYbbpjjjz8+X//61xfbPmPGjJxwwgk555xzstFGGy3xuC233LKxSqx35fYal6MNN9yw7JYkK7c5DxkyJFtsscViSzaVk6lTp6ZNmzZLXAX45z//OWPHjs1uu+3WJO/XtDz+9re/rdDjttpqq3qupPEs7b6gn6eU/j49++yzOeGEEzJjxowUCoWccMIJOfnkk4tdFk2Q7F3aOXRpSn3Osvd/lHIuk70/VcqvcTkqtxyalN+cZW/Ze1lk7+aruWZvDfAiuvbaa1focSeddFI9V9K4xowZk/79++fJJ5/MrFmzFtu30kor5Zvf/GZ+9KMfrdAvlaaqHOdcTj7v7Ptl2Xvvveu5ksaxrC8Qk2V/iZikWf/BL6fX+L+vjFoezflLlqQ8A9rf/va3rLvuus16+U8od+X4xUOSfPzxx7niiity7733pnXr1jn66KPzyCOP5PXXX8/Xvva19O3bNz169Ch2mTQhsnf55NBynHM5Kadclsjey6M5vsayt+wNNB+yd/PM3hrgNKoBAwbkqquuSkVFRTbbbLN88YtfTPv27TN//vxMmzYtr7zySl599dVUVFTk7LPPzmGHHVbskuusHOdcWzfccEOGDRuWwYMHF7uURjd37ty0atWq2GWskHL9AnF5NdfX+LO+ZPkszflLFsrDsu6V+VlKZalQlu7OO+/MX/7ylxX+u0ZxjBo1KhdeeGEmTZqUrbfeOpdccknWXHPNzJs3L7/61a8yYMCAVFVV5cwzz8yBBx5Y7HKhaMoxh5bjnGtL9m5+uSyRvWurub7GsjelSvbmf8nezVMpZG8NcBrNn//85xx77LH52te+ln79+mW11VZb6ri33347F198cZ566qkMGDAgX/va1xq50vpTjnNeHhdeeGHuvvvuZv/h/dprr12ugDlmzJj06dMnf/zjHxuwKupTOb3Gv/71r1cohDf3L1nKMaCtyJe+hUIht9xySwNU0/DKcbmqz/tSrXXr1ll55ZWz/vrr59vf/nb222+/VFRUNGKFxVUKn0PefffddOrUaYnl9ZZlwoQJef7557PXXns1bGEN5Iwzzsgf//jHtG3bNmeddVYOOOCAJcaMHj06Z599diZMmJCtttoql156aUktewy1UY45tBznvDxK4W9eUl65rFyV02sse9ee7N28yN5Lkr2b/+cQ2bt5Zm8N8CIqtz/4P/rRjzJlypQMHjw4LVu2/Myx8+fPz1577ZW111471113XSNVWP/Kcc7LoxT++CWffsg58sgjc+aZZ37muPnz5+faa69N//79s2DBgmY/79qaM2dOPvzwwya9HMrn8RqXvnINaMurOc+5HO+Veeihh37m/gULFuSjjz7K22+/nXnz5mWbbbbJDTfckBYtWjRShcVVCp9DvvSlL+WKK65Y7H6Cs2bNyiWXXJKjjjoq66677mLjH3jggZx99tnNds4bbrhhtttuu1xyySVZddVVlzluzpw5+dnPfpY777wzbdu2zQsvvNCIVdIUyd7LVio5tBznvDxK4W9eIpd9Htmb5qDccmhSfnOWvZckezf/zyGy99I19exdHj9hTdTy3Nfmv88gaq4h/JVXXsnhhx/+uWE0SVq0aJHvfve7eeCBBxqhsoZTjnMuR1tssUUGDBiQ2bNn54ILLljqmNdeey1nn312Xnvttayyyir5yU9+0shV1p+ddtop5557bnbaaadF2+bOnZuHHnoo2267bbp06bLY+GHDhjXrP/hJ+b3G5ejRRx8tdgmNbty4ccUuoVE15zC9ogYNGlSrcXPmzMkdd9yRK664InfcccfnhneajqWdy/zJJ59k6NCh2XPPPZcI4c3dZZddVqt7fFZVVeWiiy7Kt771LX+PSSJ7f5ZSyaHlOOdyVG65TPYu/de4HMnepU/2XjbZu/mSvZeuqWdvDfAiqs0fv4kTJ+aSSy7JqFGjsvLKK+fUU09t+MIayMyZM9OtW7daj19ttdXy73//uwEranjlOOdyNGDAgJxyyim54447Mnv27PTr12/RF2c1NTX53e9+l+uuuy5z587NrrvumvPOOy+dOnUqctUrbuLEiZk1a9Zi22bOnJk+ffpkwIABS4TwUlBur3GSvPnmmxk9enT22WefRdumTJmSa6+9Ni+88ELatGmTnXbaKYcffnizvN/a/yrHgMbi5s6dm3/84x+pqqrKOuusU+xyGlVVVVV+9KMf5cUXX8yQIUOE8BJQqot81SaA/7cvfOEL2W+//RqoGpoT2fuzlUIOLcc5l6Nyy2Wyd+m/xonsTfmRvWXvUiJ7f6qpZm8N8CZqwYIFGTBgQH7zm99kzpw52W233dKnT59m/eF2/vz5y/VBrUWLFpk7d24DVtTwynHO5ahVq1a57rrr0qdPnwwZMiRz5szJVVddlbfffjvnnHNOxowZk65du+aiiy7KN7/5zWKX22BK9Q9+Un6v8VVXXZUBAwakpqYme++9dyoqKjJjxowccMABeffdd9OhQ4esvvrq+eUvf5nHHnssgwYNqtXVNs1ZOQa0SZMmZcyYMamqqsqWW25Z6/scNWUzZszIjTfemNGjRy92hvYf/vCH9O3bNx999FGSTz+49+vXL5tuummRKi2O3r1758knnyx2GVAnn3zySR555JEMHjw4f/vb31JTU5MTTzyx2GXRhMnepZFDy3HO5ajcctmyyN6l8xrL3kuSvWXvciB7UwqaQ/bWAG+CnnvuuVx88cV544030rNnz1x44YX52te+Vuyy4HNde+21yzX+5ZdfbqBKGl9lZWWuuOKKtG/fPrfeemveeeedvPHGG5kzZ07222+/nH322VlppZWKXSZ1UC6v8fDhw9O/f//ssMMOOeyww1JRUZEk+c1vfpOJEydmk002ye9///u0adMmY8aMyaGHHprf//73Ofroo4tced2VY0CbOHFirr766owePTqPPfbYou2/+93v8qtf/SoLFixITU1NVllllVxyySX59re/XcRq62bmzJk54IAD8uabb2bVVVfN/Pnz06JFi4wZMyZnn312ampqcsABB+SLX/xihg4dmh/96EcZOnRo1l577WKX3mgqKytTXV1d7DJW2NChQ5dr/D//+c+GKYSiGD16dAYPHpyHH344M2fOTE1NTdZaa60ccMABxS6NJkz2prmSvUs/l5WzcnmNZW/ZO5G9Ze/mSfYub80pe2uANyFTp07NFVdckaFDh6ZVq1Y5+eSTc/TRR5fE8jYLPffcc1mwYEGtxr7wwgsNXE3jKKc5L28ITxa/x14pOO+889KhQ4dce+21qaioyG9/+9tsv/32xS6LelTqr/Gdd96ZTTbZJDfccMOibTU1NXnggQdSKBTy4x//OG3atEmSbLzxxvne976XP/7xj80+hJdjQPvggw9ywAEHZOrUqdl4440XzfmJJ57I1VdfnRYtWuT000/P+uuvn7vvvjunn3567rrrrmy00UbFLn2FDBgwIG+//XZ+8YtfZJdddlm0/brrrktNTU1++MMf5pxzzkmS7Lvvvtlzzz1zww035LLLLitWyY3uxRdfzGqrrVbsMlbYOeecs1yfK2pqakruc0i5mTRpUu6///4MHjw4b7311qIr4nr37p2jjz462267bZErpKmSvRfX3HPoQuU0Z9m79HMZpf8ay96yt+wtezdXsnf5aa7ZWwO8ibjnnnty1VVXZfr06dlmm21y4YUXZq211ip2WfXu7rvvzt13312rsaXyi7Gc5jxw4MBil9AknHTSSenYsWP69u2b/v37Z/PNNy+Js5P5j1J+jceOHbtEoH7llVfywQcfZKWVVkrv3r0X2/fVr341f/jDHxqzxAZRjgHtd7/7XWbOnJnbbrttsTPqf/e736VQKOTEE09c9F74xje+kX322Sc33nhjfvGLXxSn4DoaNmxYvve97y32+s6cOXPRsmMHH3zwou2tW7fOnnvumXvuuafR6yyWP/3pT7n//vtz1FFHFbuUFdacfx6pvblz52bEiBEZPHhwnn766SxYsCCVlZXZaqutsvnmm+f666/PYYcd1mQDOMUney+puefQhcppzrL3p0o5l/GpUn6NZW/ZW/aWvZur5vzzSO2VQvbWAC+y1157LRdddFH+/ve/p0uXLrn66quz6667FrusBlGOvxjLbc5bbbXVcj/mueeea4BKGtezzz67xLb1118/++23X+6+++788Ic/zFlnnbVoOauFttxyy8YqkToqp9d41qxZWWWVVRbb9te//jXJp/OprKxcbN/8+fOb9ZeHC5VjQBs1alT22WefxQL4tGnT8vzzzydJvv/97y/aXigU8t3vfje33HJLY5dZb955553FXsfk05/t+fPnZ80111yi+bHaaqvlgw8+aMwS612fPn0+c/+CBQsyc+bM/OMf/8jbb7+dnj17NusQvvfeexe7hKIYPnx43nrrrUX/PWfOnBQKhdx///2Lfp4Xev311xu7vHp18cUX56GHHsr06dPTunXrbLfddtl5552z0047pWPHjpk4cWJ+85vfFLtMmijZu7SV25xl7/8o1VxWrsrpNZa9ZW/Z+1Oyd/Mje39K9m762VsDvIguv/zyDBo0KAsWLMiOO+6YU089NSuttFLefffdz3xcjx49GqnC+lWOvxjLcc618d5772XIkCEZOnRoJkyYkFdffbXYJdXJoYce+pkhZOzYsTn88MOX2N6c5/3mm28uFkxnzJiR5NMvFlu0WPxPy/jx4xu1toZQTq9xt27dMmHChMW2jRo1KoVCId/4xjeWGD9mzJh07969scprMOUY0P79739n/fXXX2zbM888k+rq6qy33npLvK6dO3fO9OnTG7PEelVRUbHEPbaefvrpJMnXv/71JcZ/+OGHzf7qkiFDhtRq3Jprrpkf/vCHOeGEE5r9nJdlaZ+vV1tttZL5EnHYsGFLbF/Wfdma85zvuOOOtG3bNscdd1yOOuqokn2/Uv9k79JXjnOuDdn7U8153rL34krpNZa9/0P2lr2b++d62fs/ZO//aM5zLpXsrQFeRDfffPOifx85cmRGjhxZq8c1xw91K+LDDz/M+PHjm+VZnCuqlOf8ySefZNiwYRk8eHCeeeaZRUvOLe1DfXNz4oknNus/aCvihhtuWOw+VQtdfvnlS2xr7ssLJuX1Gn/jG9/Ifffdl4MPPjjdu3fP6NGj89xzz6Vly5b5zne+s9jYN954I3/84x+z//77F6na+lOOAa1169aZPXv2YtueeuqpFAqFbLPNNkuM//e//5327ds3Vnn1br311svo0aNzyCGHJPn0d9Pw4cNTKBTyzW9+c4nxjz76aNZdd93GLrNePfroo5+5v3Xr1mnfvn1J3fM2Se67777cc889+c1vfpNOnTpl6tSp+eY3v7nE7/FTTjklxx9/fJGqrB/ltgTu3nvvnREjRuS3v/1tbrnllmyxxRaLzkLv0qVLscujCZO9P1sp59BlKeU5y96lRfYuXbL3f8jei5O9mx/ZW/YuNaWSvTXAi+ikk04qdgmN6ktf+lKuuOKK7LHHHou2zZkzJ/37989ee+2VNdZYY7Hxf/nLX3L22Wc36y8dynHO/+vvf/97Bg8enIcffjgff/xxkqRTp07ZZ599csABB2T11VcvcoV1d/LJJxe7hEZVToF0oXJ6jU844YQMGzYs3/3ud7POOuvk9ddfT01NTU488cR06tQpyafhe9iwYRk4cGBatmyZI488sshV1105BrQNN9wwTz/9dH74wx8m+c+9fZJk5513XmxsTU1N/vSnP2XDDTds9Drry1577ZVLL700X/3qV7PNNtvk7rvvzrvvvpu11lor22233WJjb7jhhvz973/PeeedV6Rq60cp/I1dXj/+8Y/zyCOPpEePHnn33XcX/d5Kkj333DNrrrlmkuT+++/P9ddfn3333Tddu3YtVrl1tiJL4M6fP78BKmkcl112WS6++OKMHDkyf/jDH/L444/niSeeyMUXX5zNNtssvXr1KrvPKNSO7F36ObQc5/y/ZO/SI3uXNtlb9k5kb9m7+ZK9P5/sXXwa4EVUbiG8pqZmiW2zZ8/Oddddl80333yJQFoKynHOSTJ58uQMHTo0Q4YMyb/+9a/U1NSkTZs2+frXv56nnnoqP/3pT7PTTjsVu0xWUDkF0nLUpUuX3Hvvvbnuuuvy97//PV/+8pezzz77ZL/99ls0ZsiQIRkwYEBWX331/PznP89qq61WxIrrRzkGtAMPPDCnn356+vXrl2222Sb33XdfPvjgg3z5y19e7GqoOXPm5Gc/+1neeOONZv2Fy4EHHpjnn38+l112WQqFQmpqarLKKqvkqquuWnQPwXvvvTe/+93vMmHChGy++eY56KCDilx1wxozZkxGjx6dioqKbLXVVtlggw2KXVKdPPDAA3nkkUdy7LHH5pRTTlnivol77bVXvva1ryVJtt9+++y///656667SuYz+cyZM1NTU/OZV8iMHj06559/fh588MFGrKx+tWrVKt/5znfyne98JzNmzMif/vSnPPDAA3n++efz/PPPp1Ao5Le//W0+/vjjfOc730lVVVWxS6YJKJWf89oqxxxajnNOZO9SJ3uXNtlb9pa9Ze/mSvaWvZtL9tYAb0Lmzp2bcePGZfLkyampqUm3bt2y4YYbpnXr1sUurUEtLaiWulKd88MPP5zBgwfnqaeeyoIFC9K+ffvsscce+fa3v53tttsu77///hJnNpaCa6+9drkfUygUcuKJJzZANQ3vsMMOy/HHH7/og0w5KLfXeNVVV80ll1yyzP377LNPvvnNb6ZXr16LwktzV44Bbdddd81rr72W/v37Z9CgQampqckaa6yRa665ZtGYm266Kb/5zW8yc+bM7LLLLvne975XxIrrplAo5KqrrsohhxyS0aNHZ6WVVsrOO++82FnK//73v1NTU5Pjjz8+xx57bEm8v1955ZX89re/zfjx47PWWmvluOOOy8Ybb5yf/OQnGTx48KLPJIVCIbvvvnsuu+yyJe4n2VwMGTIkm222WU477bTPHbvwC7c///nPzT6EP/LII7n22mvzj3/8I8mn95U75ZRTsvvuuy8aM2vWrFx99dW54447llhysjnp06dPDjzwwGyyySZJkpVXXjn77bdf9ttvv0yaNCkPPvhgHnzwwYwZMyYvvfRSLrnkkuy666756U9/WuTKaWpk7/JRqnOWvWuvOecy2bt2mvNrLHvL3gvJ3s3//S17L53s3TyVSvZunj9hJWbKlCm5+uqrM2zYsMycOXOxfW3atMl3vvOdnHbaaenWrVuRKoTaOe2009K2bdscfPDB2WmnnbLlllsudgZYc1gWY0WUW0D729/+ttgZyeWg3F7jz9Pclx9bmnINaKeddloOOuigvPjii1lppZWy1VZbpWXLlov2t27dOl/96lezxx575Pvf/34RK60/m222WTbbbLOl7jvppJOafSD7b6NHj85hhx2WFi1aZP3118/YsWNzyCGH5NBDD819992XPffcM7vssktmzZqVxx57LA8++GC+9KUv5Ygjjih26SvklVdeyXHHHVfr8dtuu22uu+66Bqyo4T300EM5/fTT07p162y77bZp06ZNnnvuuZx55pmL7h/50ksv5bTTTss777yTNdZYIxdffHGxy15hQ4YMyde//vVFIfy/de/ePUceeWSOPPLIjB8/Pg888ED+8Ic/5J577mlyIZzikb0pFbJ37TXnXCZ7105zfo0/j+wtezdnsrfsvZDs3fyUSvbWAC+yv//97zn22GMzffr0bLLJJtl6663TrVu3tGjRIpMnT86zzz6boUOH5rHHHsv111+fXr16FbtkWKY11lgj77zzTgYPHpx//vOfeemll7LzzjvnC1/4QrFLa1ADBw4sdgk0sHJ6jZ999tkVetx/L9vVnJVTQFto1VVXzaqrrrrUfT/4wQ/ygx/8oJEror5cd9116dmzZwYOHJiOHTumpqYm5557bm6++ebsueeeueKKKxaN3X333fPRRx/lwQcfbLYhfM6cOWnfvv0S21deeeXccMMN+dKXvrTY9nbt2jXre3Ilya233prOnTvnzjvvXHSPtdmzZ+f444/Pr3/963Tr1i1HHHFEPvnkk/zoRz/Kj3/84ya5LFl9W3fddXPaaafltNNOywsvvFDscmgiZG9KiexNqSqn11j2lr3/m+zdvMnen5K9Ze+mRgO8iD744IOceOKJadeuXX7zm99k8803X+q4V155JaeeempOOeWU3H///encuXMjVwq1M2LEiLz44ot54IEH8qc//Sl/+ctfcvXVV2edddbJt7/97Wy00UbFLrFBbLXVVp87ZsaMGSkUCp95bxCartq8xqXi0EMPXe4rRgqFQl555ZUGqgjqR58+fZb7MYVCIf369WuAahrHSy+9lKOOOiodO3ZM8ul8jjzyyAwZMiQ77LDDEuO//e1v52c/+1kjV1l/unfvnnfffXeJ7S1atFjqfP/1r381+/sojh8/PoceeuiiAJ58ehXrSSedlB/84Ac57bTT0rlz51x11VXZdNNNi1doEWliksjelB7Ze9lk7+ZN9v5ssjfNgewte/8v2bs8NMXsrQFeRLfeemtmzpy52FkjS/PlL385N998c/bYY4/cfvvtOfnkkxuxSlg+m2yySTbZZJOce+65+ctf/pI//OEPefTRR3P99denUCikUChk5MiR2XDDDbP66qsXu9x6U1NTk8cffzz/+Mc/svbaa2eHHXZIixYt8vTTT6dv37558803kyRf+tKXcvrpp2fbbbctcsV1M3z48Lz11lu1Hl/KS5ItVCpftFx22WW1GvfII49k1KhRSZKNN964AStqHOUY0A477LDlfkyhUMgtt9zSANU0vCFDhtR67H9/EdWcX+OPPvooXbp0WWzbwqUFO3TosMT4qqqqzJ49uzFKaxAbb7xxHnrooZx44omfu0zi3Llz89BDD2X77bdvpOoaxowZM7LGGmsssX2ttdZK8ulSinfeeeeiL2JKwXPPPZcFCxYs12P22muvhimGZkP2phTJ3rL30sjezYfsXXuyd/Mie39K9v6U7N18lUL21gAvohEjRmTPPff8zAC+0Oqrr5699947w4YNa9Yh/H9/aBbed+3JJ5/MpEmTFhvbFJdMWBHlOOckqayszPbbb5/tt98+c+bMyfDhw/Pggw/mySefzL333pvBgwend+/e2WeffbL77rsXu9w6+eijj3LMMcfkxRdfTE1NTZLkq1/9as4///wcc8wxadOmTXbeeefMmjUrL774Yo499tjcfPPNzfrM5uHDh2fYsGG1Hl8KIfy/v2hZa621suOOO5bkFy177733Z+6fOHFiLrnkkowaNSrt27fP6aefngMOOKCRqms45RjQ3nnnnVqNq66uzqRJk1JTU9Os7yc5bty4zx3z3+/vlVdeOaeeemrDF9aAampq0qLF4h/3F76Gzfm1XJYDDzwwP/jBD/LTn/4055133hJzX6i6ujoXXHBBJk+enAMPPLCRq6xf1dXVi93zdaGF9xM85phjSiqAJ8ndd9+du+++u1ZjF/7eamohnMYne5dHDi3HOSeyt+y9ONm7+ZC9P5/s3TzJ3p+SvWXv5q4UsrcGeBG98847y3Vvjw033HC5PiQ0Rf/7Q7MwsPTv33+JPwbN/Y/9QuU052OOOSZbb711ttpqq2y00UaL5lJVVZU99tgje+yxR6ZOnZqHHnoof/jDH/L000/nr3/9a7MP4b/61a8ybty4XHDBBendu3cmTpyYSy+9ND/84Q/Ts2fPDBo0aNHZfh9++GH23XffDBgwoFmH8GOPPTZf//rXi11GoynHL1r+1/z583PTTTflhhtuyOzZs7PnnnvmnHPOWXRGa3NXjgHtscce+9wxL774Yi666KL8+9//zhprrJHzzz+/ESprfAsWLMiAAQPym9/8JnPmzMluu+2WPn36LHEGN03bFltskSOPPDI33XRT/vrXv+aII45I7969s+qqq6ampibvv/9+nnnmmdx2220ZN25cTjvttGy44YbFLrtB9ejRo9gl1Lv999+/bJeUY8XJ3qWdQxcqpznL3rJ3qZK9Ze9E9pa9aepk7yXJ3k2TBngRtWzZMp988kmtx8+ZMydt27ZtwIoaVm2X9ikl5Tbnv/71r3n88ccXLUW1xRZbpHfv3tl6660X/ZHr2LFjDjnkkBxyyCGZMGFC/vjHPxa56rp77LHHcuCBB+aggw5Kkqyzzjq54IILcsQRR+SQQw5ZbKmbTp06Zf/998+gQYOKVG39WHfddUsqYH6ecvyi5b/97W9/y8UXX5zx48dnnXXWyYUXXpjevXsXu6xGU44BbcaMGfn5z3+eu+++OxUVFTn22GNzwgknpHXr1sUurd4999xzufjii/PGG2+kZ8+eufDCC/O1r32t2GXVm/9dNnPOnDkpFAq5//778/zzzy829vXXX2/s8urdmWeemdVXXz1XX311LrjggqU2PNq2bZuLLrqoJK6gKUdbbLFF9thjj2KXQTMje5e+cpuz7C17lyrZW/aWvWXv5kr2lr1LTSlkbw3wIlp//fXz5z//udb3ARk1alTWW2+9Bq6q4Xze0j6lqNzm/MILL+SVV17JCy+8kNGjR+fvf/97Ro4cmUKhkPbt22fLLbdM796907t376y//vpZc801c9xxxxW77Dp7//33s+666y62beHP6tLO/lpttdUyffr0RqmN+lGOX7Qkn36hcPnll+eBBx5I69at8+Mf/zhHHXXUouV9ykGpB7Sluf/++3PFFVfkgw8+yFZbbZULL7xwid9xpWDq1Km54oorMnTo0LRq1Sonn3xyjj766LRq1arYpdWrYcOGLXXZzKFDhy51fHO+Gm6hgw8+OHvvvXdGjhyZZ599Nv/+979TU1OTbt26pVevXtl5552b/T0j/9vS7g36WV+2lMLSqLC8ZO/SV25zlr3/Q/YuLbK37C17y97Nlewte8veTY8GeBF973vfywUXXJCHHnoou+6662eOHTp0aJ566qlcffXVjVRd8b3zzju54IILMmDAgGKX0mia+5xbtGiRjTfeOBtvvHEOP/zwJMl77723WCi//PLLs2DBgnTo0CFbbbVVevfunYMPPri4hdfRvHnzUlVVtdi2hSFlaWGlUCgsdm86mr5y/KLlrrvuytVXX53p06fnG9/4Rs4///xa3TezVJRLQPtvb775Zi6++OL87W9/S8eOHfOzn/2syd27p77cc889ueqqqzJ9+vRss802ufDCC7PWWmsVu6x6N3DgwGKXUDRt2rTJrrvu+rmfsUvBsr5oSZb+ZYsQTjmSvT9bc8+hK6K5z1n2/g/Zu7TI3rK37F1aZO/SJ3t/SvZumjTAi2ifffbJ0KFDc9ZZZ+W1117LIYcckm7dui02ZvLkybn55pszcODAbL/99vnud79bpGrrx4svvpjrr78+o0ePTpJ8+ctfzoknnpgttthi0Ziampr8/ve/z69+9avMmTOnWKXWm3Kc839bbbXVsttuu2W33XZL8unSPg888EAGDx6cRx55JMOGDWv2IbzcnHTSSdlggw2KXUajKqcvWsaNG5cLL7wwY8aMSffu3XPJJZfk29/+drHLalTlEtAWmjt3bq677roMGDAg8+fPz377/b/27jwsqnLxA/h32ARExY0Ut9xi3FJEFumqJYhbKLjklqS53zQ1NbUoXFA0tyxNU6+41XVJQFBEUFxSZFFArqFevZq74gYiiQPD+f3hw/waQQVk5nDO+X6ep+fJM+/k9w2F+Z73nPcMxPTp01G1alWxo5W7CxcuYM6cOUhNTUWtWrWwfPlyWZc0uWwFSS+ntBMtvr6+sv5+TIbD7q2MHqrEOf8du7f8sHs/x+4tX+ze7N5ywe4tf+ze0sQFcBGZmJhg7dq1mD59On7++WesW7cOdevWRe3atWFqaooHDx7g2rVrEAQBPXv2xIIFC8SO/EZOnjyJMWPGQKvVonHjxrCyskJSUhJGjBiB4OBgODs748aNG5g2bRrS0tJgY2ODuXPnih37jShxzi/Kzc1FUlISEhMTcfr0aZw9exZ5eXmwsLDQbckmB5mZmbh165bu14VXID98+FDvOPD86lYpmzhxot6vNRoNzp8/j4yMDN02N2q1WpbPK1KC/v37o6CgAABQs2ZNbNu2Ddu2bXvle1QqFTZv3myMeAaltIIGAEePHsX8+fNx8+ZNODg4YO7cuWjbtq3YsQxi8eLF2Lp1K7RaLT744ANMmTIFNjY2Rb5Hv6i4O03kavv27Th+/DhWrVoldpQyKenWxn8n9e9fZTnRcurUKQMkMQ6lPeOXyg+7t/x7qBLn/CJ2b3ZvkhZ2b3Zvdm997N7Swe5dMuze4lMJgiCIHYKA33//HXv27EFaWhru3bun+yDr5OSEvn37ws3NTeyIb2zkyJFIS0vDhg0b4OjoCAC4e/cuxo8fD3NzcwQFBcHPzw8PHjyAl5cXvvnmG9SuXVvk1G9GiXPOz89Hamoq4uPjER8fjzNnziAvLw/m5uZ49913dcXb0dFRNtsZqdXqYp/bIgjCK5/ncu7cOUPGMrj79+9j+fLliI6ORk5Ojt5rVlZW6N69O6ZOnVrk7hopUqvV+Prrr+Hh4aE7lpWVBV9fXyxbtkz397tQTEwMFi1aJMmvcdeuXcv0vtjY2HJOYlwvK2ivI+WC9vnnnyMmJgYA8MEHH8DPzw+mpqavfZ+zs7OhoxmEWq3W/XtpnrUlxb/HZRUQEICdO3dKds4l/f5VUFCAu3fv6n5OS3W+pXH79m2EhoYiLCwM169fV8SciV6G3VuePVSJc2b3/n/s3uzeUvwas3uze78Ou7d8sXvLF7t3xcIFcDIaNzc3DBgwANOnT9c7fvz4cYwZMwZNmzbFvXv3MGfOHMlvN1dIaXMeM2YMTp06hdzcXJiYmKBVq1Zwc3ODq6srnJycimxjJRezZ88u0/ukfCVVamoqxo0bh6ysLLRt2xZubm6ws7ODmZkZMjIykJSUhKSkJFStWhVr1qxB+/btxY78RpR6okVJlFjQ/j5n4PXzlnphKeuV1S/eeSNnUi/hJXHmzBnMmTMH586dQ/369fHNN9+gS5cuYscyiGfPniE6OhohISFISEjQ/R3u1KkTfv75Z7HjEZEBKa2HAsqbM7t36bB7Swe7t/yxe7N7vwy7t7ywe7N7VwTcAl1CEhIScOHChTJtMVERZGdno2nTpkWON2/eHIIgIDMzE7t27ZLFswUKKW3Ov//+O8zNzeHj44Nx48bh7bffFjuSUUi5TJfFgwcP8Nlnn6Fy5cr46aef4OTkVOy49PR0TJkyBZ9//jn27NmDmjVrGjlp+fHx8SlVMVOSU6dOITQ0VPJbhSqpaBVS2veusnyN5fZsUCXLzs7GsmXLsHPnTpiYmGDcuHH45z//KcstQ1NTUxESEoL9+/fjyZMnAIAaNWqgf//+GDRoEOrVqydyQqKKj91bepQ2Z3ZvZWD3pr9j95YupX3vYvdWNnZvdu+KhAvgEhIZGYmdO3dKtoRrtVqYmRX9I1e4Fdf48eNlU0YLKW3OAwcOREJCgm6bjyZNmqBjx45wc3ODs7MzqlWrJnZEKgfbtm1DTk4Otm/fjgYNGrx0XMuWLREcHAxvb2/8+uuvmDRpkhFTlq9FixaJHaFCuXPnDkJDQxEaGorr168DgCJLuNQLmq+vb6nfc/PmTQMkqXgKTy4dOHBA0s9souf27NmD7777Dg8ePICLiwsCAgKKXSSRsoyMDISFhSE0NBR//vknBEGAlZUV3N3dERcXh3nz5ultJUpEr8buLT1KmzO7tzKwexO793Ps3vLF7i0v7N7s3hUNF8CpwpDbN8OSkNuc58+fDwC4desW4uLiEB8fj6ioKGzbtg0mJiZQq9VwdXXVlXJra2uRE1NZHDx4EH369HllAS9Ur149+Pr6Ijo6WtIl3M/PDxMmTEDHjh11x/Lz85GSkgK1Wo0qVarojQ8PD8esWbOQnp5u7KgGo9FodNv5xMfHQxAECIIAV1dXDBkyROx4RqW0gvbs2TNERUUhNDQUSUlJ+OOPP8SOZBCFJ5fCwsJw7do1CIIAW1tbsWPRG7h8+TLmzp2LxMREVK9eHYsWLYKPj4/YscrV/v37ERISgri4OGi1WlStWhXe3t7w8vJCp06dcO/ePXh6eoodk4gqGLn10JKQ25zZvZWB3fs5dm92b3ZveWH3lh92b3bviooL4ERU7uzt7TFgwAAMGDAAAHDx4kXEx8fj5MmT2L17N4KDg2FmZobWrVujY8eOmDx5ssiJqTRu3LiBjz/+uMTj1Wo1QkNDDZjI8BITEzFw4EC9Y9nZ2fDz88PGjRv1ynkhQRCMFc+gXtzOp3BevXv3xmeffYYmTZqInNA4lFjQkpOTERISgqioKOTk5EAQBDRv3lzsWOWq8ORSaGgo4uPjUVBQAEEQ0K5dOwwePBi9evUSO+IbCQsLK9X4K1euGCaIkWk0GqxevRobN25Efn4+Bg4ciOnTp6Nq1apiRyt3U6dOhbW1NYYOHQoPDw84OzvD1NRU9zq3ECUikjd2b3lj936O3Zvdm91b+ti99bF7Sw+7tzRxAZyM6tSpU9BqtXrHcnJyAAAnTpzA3bt3i7xH6lcLKXHOL2revDmaN2+O4cOHQ6PRICoqCr/++itSU1Nx5swZlnCJMTc3x7Nnz0o8Pjc3V7Z3HMilaL+ouO18bG1t4evri3bt2iEgIAC9evWSfQGXe0Erzt27d3Vf+6tXrwIAzMzM0KtXLwwZMgQdOnQQOWH5OHPmDHbv3q13cqlq1arIzs7G/Pnzi5x0k6pZs2aVqoQJgiD50nb06FHMnz8fN2/ehIODA+bOnYu2bduKHctg6tevjxs3biAkJARXrlzBf/7zH3h6eqJx48ZiRyMikSmxhypxzi9i95YXdu//x+7N7i037N7s3uze0sLuLU1cACej2rlzJ3bu3Kl3rPBD7IYNG/S+8Rf+IJB6IVXinP/u2rVrOHPmDM6cOYO0tDScP38eeXl5qFy5Mjp37gxnZ2exI1IpvfPOOzh69GiJn4l45MgRNGvWzMCpqLyMHTsWJ06cgFarRd26dTF06FB4enrC1dUVJiYmuHnzpmxPPhRSSkErpNFocPDgQezevRvx8fG6E8dNmzbF5cuXsWTJEvTo0UPklG8uIyMDe/bsQWhoKK5cuQJBEGBvbw9fX194eXnhrbfeQrdu3VCjRg2xo5aboKAgsSMY1eeff46YmBgAwAcffAA/Pz9oNBokJSW98n1S/ixy8OBBnDlzBuHh4YiKisLx48exfPlyNGnSBF5eXmjVqpXYEYlIJErsoUqc89+xe8sPu7e8sXuze7N7s3tLFbs3u7dUcAFcRLdu3SrV+MIrl6VKaT8IAOXNOSsrC2lpabrCnZaWhqysLAiCgGrVqqF9+/aYOnUqnJ2d0bJlS5iYmIgdmcqgb9+++PbbbxEZGfnaq3DDwsIQFxeH5cuXGykdvaljx47B2toafn5+GDZsGGrXri12JKNQYkFLS0tDSEgIIiMj8fjxY5iYmMDR0RFeXl7w8vKCVquFp6cnzM3NxY5aLrp27YqCggKo1WqMHz8eHh4eaN26te71mzdvipjOMHx9fcWOYFTR0dG6f4+NjcXhw4dfOb5w8ePcuXOGjmZQbdu2Rdu2bfHVV1/h+PHjiIiIwKFDh7BmzRqoVCqoVCocPnwYarUa9erVEzsukSjYveVPaXNm91YGdm95Y/dm92b3lg92b3Zvdu+KiQvgIuratauitsYoyw8Cqf9AVNqcXV1doVKpIAgCqlevDhcXFzg7O8PZ2RkODg6S/vNL/69///4ICwvDl19+iQsXLmDYsGGws7PTG5ORkYHg4GBs2bIFXbp0Qc+ePUVKS6U1ceJE7Nu3D2vXrsXPP/+Mxo0bw9PTE56ennj33XfFjmcwSixoH330EaysrNCpUyd07twZXbt21TvJILc55+fnw8rKCrVq1YKVlVWRLVKV4O7duzh9+jQyMjIAAHZ2dnB0dETdunVFTlY+lLb48SJTU1N06dIFXbp0QW5uLmJiYrB3716cOHECv/32G0JCQuDq6or+/fvjww8/FDsukVGxe7+e1H/uK23O7N7KwO4tb+ze7N6F5DZndm92b7lj95YOLoCLyMfHh6WkGM+ePUNUVBRCQ0ORlJSEP/74Q+xIBieXOffo0QMuLi5wcXHhtlsyZmJigrVr12L69On4+eefsW7dOtStWxe1a9eGqakpHjx4gGvXrkEQBPTs2RMLFiwQOzKVwsSJEzFx4kScPXsWERERiIyMxLp167B+/XrUrVsXTk5OsvzZpcSCZmVlhadPn+J///sfqlevDmtra3Tu3Bk2NjZiRzOIw4cPIyIiAhEREVi+fDlUKhVq1aqFbt26oVu3brK+OvfixYsIDAxEUlISBEHQ20rRxMQETk5O8Pf3h4ODg4gp35zSrrp/FUtLS3h7e8Pb2xuPHj1CZGQkIiIicPLkScTHx7OEk+KwexdPLj20NOQyZ3ZvZWD3ljd2b3Zvdm/5YfdWHnbvik0lyP1hIiQZycnJCAkJQVRUFHJyciAIApo3b46IiAixoxmMEudM8vL7779jz549SEtLw7179yAIAuzs7ODk5IS+ffvCzc1N7IjlQq1W4+uvv4aHh4fuWFZWFnx9fbFs2TI4OjrqjY+JicGiRYskv7UP8PwOqJMnTyIiIgIxMTF48uQJAKBevXro378/fHx8YG9vL3LKN3f79m1dQbt48WKxBc3LywurV6/W+3MgZbm5uYiNjUV4eDiOHz8OrVYLc3NzdOzYEd26dYNarcaAAQNkNedC58+f151kun37NlQqle6kxKxZs/DJJ5+IHbHcHDp0CFOmTIFKpYKnpyfc3NxgZ2cHMzMzZGRkICkpCVFRUcjPz8eKFSvg6ekpdmQyoOvXr2Pfvn0YP3682FGISERK7KFKnDPJC7s3uze7t3Sxe7N7s3srD7t3xcAFcIm4ffs2QkNDERYWpveMBam7e/cuwsLCEBoaiqtXrwIAzMzM4OXlhSFDhqBDhw4iJyx/SpwzkdSp1epir7x+3faYcijhf6fRaBAbG4u9e/fi6NGjyMvLg4mJCTp27Ih//etfYscrN0oqaIUyMzN1V6mmpqbqvTZ27FiMHz8eVlZW4oQzsMTERERERCA6OhpZWVlQqVSoX78++vXrB19fX9SpU0fsiGV248YNeHt7o3Hjxli5ciUaNGhQ7Lg7d+7g888/x6VLl7Bnz56XjqvoZs+eXer3qFQqLFy40ABpiEiq2L3lQ4lzJpI6du/n2L3ZveWI3Zvdm92bjI0L4BXYs2fPcODAAYSGhiIhIQEFBQUwMzPD2bNnxY72RjQaDQ4ePIjdu3cjPj5et9VN06ZNcfnyZaxYsQI9evQQOWX5UuKcSTk0Gg3Onz+PjIwM3VXoarUalSpVEjtauSnLBztA3s/Eefz4MaKiohAREYHTp08jPT1d7EgGIeeC9jI3b95EREQE9u7di0uXLkGlUsHa2ho9e/ZE//79i9x1IRd5eXk4duwYwsPDceTIETx79kzyn7sWLFiAPXv2ICoqSu8Zc8XJzMxEr1690KdPH8yaNctICcuXWq0u9XtUKpWkT5iW5Q4RlUqFgwcPGiANkXSxe8uHEudMysHu/XLs3tLH7s3uLeXPXezer8fuTWLgAngFlJKSgtDQUERGRuq25qpTpw4GDhyIjz76CLVr1xY7YpmkpaUhJCQEkZGRePz4MUxMTODo6AgvLy94eXlBq9XC09NTVtu9KHHOpBz379/H8uXLER0djZycHL3XrKys0L17d0ydOhV2dnYiJSRjOXXqlOzvoJFjQSuJ8+fPIzw8HJGRkbhz547kC0tJPXnyBNHR0di7dy82btwodpwy69mzJzp37lziE4nfffcdDh8+jP379xs4mWHcvHmzTO+T8jPounbtWuSYIAi4ffs2atWqBQsLi2LfFxsba+hoRJLA7i2fHqrEOZNysHtTIXZv+WL3ZveWEnbv59i9Kz4zsQPQc3fv3sWePXsQEhKCq1evQhAEmJiYAACmTJmCsWPH6n4tVR999FrS30MAAEXQSURBVBGsrKzQqVMndO7cGV27dtW7Iqqs3zgrMiXOmZQhNTUV48aNQ1ZWFtq2bVvsc23CwsIQGxuLNWvWoH379mJHplI6e/YsUlNTIQgCWrRoUWzJfvLkCZYuXYpdu3bhjz/+ECGl8Zibm8PDwwMeHh56BU3u1Go11Go1vvzySyQkJChizgBgY2MDT09PJCcnix3ljdy+fRvNmjUr8fgmTZrg3//+twETGZaUy3RZFVemHz58CHd3dyxZsgQdO3YUIRVRxcbuLc8eqsQ5kzKwe8sfu7c+dm92byli95Y/dm9p4gK4iAq35goJCcHJkyeh1WpRqVIldO3aFd26dYODgwN8fX3RvHlzyRdwALpnuPzvf/9D9erVYW1tjc6dO8PGxkbsaAajxDmT/D148ACfffYZKleujJ9++glOTk7FjktPT8eUKVPw+eefY8+ePahZs6aRk1JZ/PXXX/jiiy9w9OhRFG4So1Kp4O7ujjVr1uiuaDxy5AgCAgJw9+5dNGzYUMzIRieXglZa9vb2kj95fOPGDQQHByMlJQUA0LJlS4wZMwaNGjXSGxcdHY358+fj/v37CAwMFCNqubC0tMTjx49LPP7x48eoWrWqAROJS6PR4NKlS7C0tESTJk3EjmMwr3o+JpFSsXvLv4cqcc4kf+ze8sbu/Xrs3tLF7v1q7N7ywO5d8XEBXESdOnXC48ePUa1aNfTu3RseHh7o3LkzrKysAMjvCuWTJ08iNjYW4eHh2L17N3bu3Alzc3N07NgR3bp1K9OzIyo6Jc6Z5G/btm3IycnB9u3b0aBBg5eOa9myJYKDg+Ht7Y1ff/0VkyZNMmJKKqsff/wRR44cQadOneDr6wtra2scPXoUO3bswHfffQd/f38sXrwYmzZtgqmpKUaNGoXPP/9c7NjlQmkFDQDOnDmDNWvW6M35s88+07vrQBAEbNq0CT/88ANyc3PFivrGzp07h+HDh+PJkyewtLSEpaUl0tPTERkZie3bt+Odd95BdnY2/P39ER0dDVNTU4wdO1bs2G+kdevWiI6OxqhRo0o0/sCBA2jRooWBUxlWdnY21q9fj5SUFGzdulV3PCIiAoGBgbqTEo0bN8bChQvRrl07kZISkTGxe8u/hypxziR/7N7yxu7N7s3uze4tZezeJAVcABdRVlYWrK2t0b17d7i6uqJ9+/a6Ai5HlpaW6NWrF3r16oXMzExERkYiIiICx44dw7FjxwA8v2omLS0N7u7usvh/ocQ5k/wdPHgQffr0eWUBL1SvXj34+voiOjqaJVwiYmNj4eLigvXr1+uOvf/++6hZsya2bt0KW1tbBAcHQ61WIygoSPIf2AspsaCdPHkSY8aMgVarRePGjWFlZYWkpCSMGDECwcHBcHZ2xo0bNzBt2jSkpaXBxsYGc+fOFTt2mRWeRFi2bBl69+4N4PnzQr/44gsEBgZi6dKl8PPzw59//ok2bdogMDAQDg4OIqd+MwMGDMCUKVMQHByMkSNHvnLs2rVrkZaWpvd3X2pycnIwaNAgXL58GXXq1EF+fj7MzMyQlpaGmTNnQhAEDBo0CM2bN0dYWBhGjhyJsLCwIifaiEh+2L3l30OVOGeSP3ZveWP3Zvdm92b3lip2b5IMgUSTlJQkfPvtt4KLi4ugVquFFi1aCB999JGwYcMG4erVq8KNGzcEBwcH4eDBg2JHNagbN24Ia9asEXr37i04ODgIarVaaN++vfD1118LycnJYsczCCXOmeSjXbt2wvbt20s8fufOnYKjo6MBE1F5ateunbBp06Yixy9duiQ4ODgILVq0EObPny9oNBoR0hnO+PHjhVatWgl79+7VHTtz5ozg4eEhDB8+XLh7967QvXt3wcHBQRgwYIBw/vx5EdOWjxEjRgjt27fX+7lz584dwcfHRxg4cKBw6dIlwd3dXXBwcBAmTZokZGRkiJj2zbm7uwvz588vcvzAgQNCy5YthaFDhwqtW7cW1q9fL2i1WhESGsakSZMEtVotTJs2TUhJSdH7u6vVaoWUlBTdmG+++UbEpG/uhx9+EFq1aiXs379f7/jYsWMFtVotBAUF6Y7l5uYKXl5ewqxZs4wd0+AePnwoODg4CHFxcWJHIaow2L2fU2IPVeKcST7YveWN3Zvdm92b3Vuq2L2fY/eu+HgHuIg6dOiADh064JtvvsHRo0cRERGBI0eO4MyZM1i6dCkaNGgAlUqFv/76S+yoBlWvXj2MHz8e48ePx/nz5xEeHo7IyEj89ttv2L17N86dOyd2xHKnxDmTfJibm+PZs2clHp+bmwtra2sDJqLy9PTpU9SoUaPI8erVqwMAunXrBn9/f2PHMri0tDQMHjxYd3UyALz77rv48ssvMXXqVEydOhU3b97E9OnT8emnn8ri+aDnzp3DkCFD4OjoqDv21ltvYdq0aRgzZgwmT56M/Px8rFixAj179hQxafnIysoqdvvTNm3aQKvV4sKFC9i6davstuVaunQpgoKCsH37duzbtw+mpqawtbWFqakpMjMzodFoYGJiglGjRmHq1Klix30j0dHR6Nu3L3r06KE7lpOTgxMnTgAAhg4dqjteqVIl9OnTB7t27TJ6TiIyPnbv55TYQ5U4Z5IPdm95Y/dm92b3bmf8cAbE7s3uTRUPF8ArADMzM3h4eMDDwwM5OTmIjo5GREQEEhISIAgCZs6cid27d6Nfv37o3r07KlWqJHZkg1Gr1VCr1fjyyy+RkJCAvXv3ih3J4JQ4Z5K2d955B0ePHoWfn1+Jxh85cgTNmjUzcCoyNJVKBQDw8fERN4iBKLGgZWdno2nTpkWON2/eHIIgIDMzE7t27ULDhg1FSFf+8vPzi/0MZWlpCQAYO3asrL6+hSwsLBAQEAA/Pz+EhYUhLS0N9+7dgyAIaNKkCZycnODt7S2Lrchu3LihV7QBICkpCfn5+WjQoEGRP8t169bFgwcPjBmx3K1atarIsdzcXKhUKuzZswenT58u8rpKpcJnn31mjHhEFQ679/9TYg9V4pxJ2ti9lYndm91b6ti92b3ZvZ9j9xYfF8ArmMqVK8PX1xe+vr548OAB9u7di4iICMTHxyM+Ph7z589HUlKS2DGNwtXVFa6urmLHMColzpmkp2/fvvj2228RGRmJXr16vXJsWFgY4uLisHz5ciOlI0MrLCxyo8SCptVqYWZW9KOghYUFAGD8+PGyKeAl0bp1a7EjGFTjxo0lf5X565iYmKCgoEDv2MmTJwEA7u7uRcY/fPgQNjY2RslmKMWV8EJhYWHFHmcJJ3qO3fv/KbGHKnHOJD3s3srG7i0f7N762L2lj91bH7t3xcUF8AqsZs2a+OSTT/DJJ5/g6tWrCA8Pl/QVyiW9YvXvVCoVNm/ebIA0xqHEOZP89e/fH2FhYfjyyy9x4cIFDBs2DHZ2dnpjMjIyEBwcjC1btqBLly6y2MJJSQqvOC/ta3Im94JWnOKuUJczJfzZvnv3Lk6fPo2MjAwAgJ2dHRwdHVG3bl2Rk5WPZs2aISUlBcOGDQMACIKAmJgYqFQqdO3atcj4Q4cOSf7P+ZYtW8SOQCQL7N7S76FKnDPJH7u3/LF7F8XuLX9K+LPN7q2P3ZvEwgVwiWjUqBEmTZqESZMmiR2lzBITE4s9rlKpIAjCS1+TMiXOmeTPxMQEa9euxfTp0/Hzzz9j3bp1qFu3LmrXrg1TU1M8ePAA165dgyAI6NmzJxYsWCB2ZCqlhQsXYsWKFXrHBEGASqXC9OnTi1ytrVKpcPDgQWNGNDp+b5aHy5cvF7mbLzs7GwBw4cKFYq/Kd3Z2Nko2Q7p48SICAwORlJQEQRD0PoOYmJjAyckJ/v7+cHBwEDHlm/Px8cGCBQvQpk0bvPfee9i5cydu3bqFhg0bolOnTnpj165di9TUVMk/V9HFxUXsCESyw+4tTUqcM8kfu7f8sXsXxe/N8sDuze5diN2bxMQFcBH5+flhwoQJ6Nixo+5Yfn4+UlJSoFarUaVKFb3x4eHhmDVrFtLT040dtVycP3++yLGHDx/C3d0dwcHBev8f5EKJcyZlqFKlCn7++Wf8/vvv2LNnD9LS0vDf//4XgiDAzs4OPj4+6Nu3L9zc3MSOSqVkb28PAMWeKCy8UvXF1152UlFqlFjQTp06Ba1Wq3csJycHAHDixAncvXu3yHuk/Cy6tWvXYu3atcW+tnjx4mKPnzt3zpCRDO7QoUOYMmUKVCoVevToATc3N9jZ2cHMzAwZGRlISkpCVFQUBgwYgBUrVsDT01PsyGU2ePBgnD59GkFBQboFj2rVqmHp0qUwMTEBAPz2229Yt24drl+/DicnJwwZMkTk1Ial0Whw6dIlWFpaokmTJmLHIRINu7f8e6gS50zKwO4tX+ze7N7s3vrYvaWD3bsodu+KSSXI5SenBKnVaixZsgTe3t66Y48ePYK7uzs2btxYpKCFh4dj5syZkv9h8HePHj1Cx44dFVVIlThnIqKKTq1Wv/RK88Ir8Isj5Z/JL5vz3z8a/v31wv8PUp3zjz/+WKa7CSZOnGiANMZx48YNeHt7o3Hjxli5ciUaNGhQ7Lg7d+7g888/x6VLl7Bnz56XjpOKlJQUpKSkwMbGBp6enqhRo4butVWrVmHPnj3w9vbGuHHjin3+oNRkZ2dj/fr1SElJwdatW3XHIyIiEBgYiMePHwN4/iy6hQsXyu6ZikQlwe6tzB6qxDkTEVV07N7/j91bH7u39LB7P8fuXXHxDvAKiNckEJFU5ObmwtLSssjxS5cuoWrVqkWeT0YVX1hYGDp06ID69euLHcWoPvvsM8VttRYUFCR2BKOS8la2ZbV582aYm5tjw4YNekX0RXXq1MG6devQq1cv/PLLL5g1a5YRU5Y/R0dHODo6FvvaxIkTX3piJS8vD6mpqcXeDVpR5eTkYNCgQbh8+TLq1KmD/Px8mJmZIS0tDTNnzoQgCBg0aBCaN2+OsLAwjBw5EmFhYWjUqJHY0YkqBHZvIpIKdm/5YfdWDnZv+WP3Lordm927IuACOBERlZpGo8HixYsRERGBY8eOFSniy5cvx7Fjx9C/f3/MnDkT1tbWIiWl0po9eza+++47xZVwJRY0X19fsSMYVXHb38rd8ePH4evr+8oCXsjW1hY+Pj44fPiw5Et4WWVlZcHPz6/Yu0Erqo0bN+LatWv4/vvv0aNHD93x1atXQxAEfPLJJ7qv54ABA9CnTx+sXbtWcSfhiIiIpIrdW77YvZWD3Vv+2L1Lh92bjMVE7ABERCQtGo0Go0aNwi+//AJ7e3s8evSoyJgPPvgADg4O2LFjB0aPHo38/HwRklJZKPVOKD8/P5w8eVLsGEbl4eGBQ4cOiR3DaBITE3H//n2xYxjV7du30axZsxKPb9KkCe7cuWPARBWf1L4HRkdHo2/fvnoFPCcnBydOnAAADB06VHe8UqVK6NOnj+K+1xEREUkVu7e8Se1zZ3lh95Y/du/XY/eW3vdAdm9p4gI4ERGVyqZNm5CUlAR/f3+EhYWhbt26RcYMHDgQu3fvxsSJE5GcnIxt27aJkJSo5JRY0G7evIm//vpL7BhkQJaWlrpnUJXE48ePUbVqVQMmovJ248YNtG7dWu9YUlIS8vPzUb9+fTRs2FDvtbp16+LBgwfGjEhERERlxO5NcsTuTXLE7i1/7N7SxC3QyWjCwsKKHMvJyQEAnDhxAnfv3i32fT4+PgZMZVhKnDPJX0REBDw8PPDxxx+/duzEiRORmJiIPXv2YMSIEYYPR+UiMzMTt27dKtV77O3tDZSGiMqqdevWiI6OxqhRo0o0/sCBA2jRooWBU1F5MjExQUFBgd6xwqvM3d3di4x/+PAhbGxsjJKNiMSjxB6qxDmT/LF7yx+7N5E8sHvLH7u3NHEBXGQvftDJysoC8PwvyIsfgIrb6khKZs2aBZVKpXescKuLDRs2QKVS6X5d+O8qlUrShVSJcyb5u3r1KgYPHlzi8e+//z5WrlxpwERU3hYuXIiFCxeWeLxKpUJ6eroBExGVj5iYGFy9erXE41UqFT777DMDJjKsAQMGYMqUKQgODsbIkSNfOXbt2rVIS0vD+vXrjZSOykOzZs2QkpKCYcOGAXj+OTMmJgYqlQpdu3YtMv7QoUNo2rSpsWMSVQjs3vLuoUqcM8kfu7f8sXuTXLF7vxy7tzSxe0sTF8BF9rIPOtOnTxchjWEFBQWJHcHolDhnkj9ra2totdoSj69UqRIsLS0NmIjKm5OTExo0aCB2DKNTWkEDgJ07dyIuLq7E41UqValO0FQ0MTExiI6OLvF4qX+Ne/ToAS8vL3z33Xf4448/8PHHH6NVq1YwNzcHABQUFCAtLQ0bN25ETEwMBg4ciH/84x8ip6bS8PHxwYIFC9CmTRu899572LlzJ27duoWGDRuiU6dOemPXrl2L1NRU+Pv7i5SWSFzs3vKmxDmT/LF7yx+7d8lIvZcB7N6vI/WvMbu3/LF7SxMXwEXk4+NT5AplOfP19X3tmKysLFhaWqJSpUpGSGR4SpwzyV+TJk2QnJwMPz+/Eo0/ffo06tWrZ+BUVJ4GDRoEb29vsWMYndIKGvD8eUVJSUklHi/1Ej5u3Lhit6aSs6VLlyIoKAjbt2/Hvn37YGpqCltbW5iamiIzMxMajQYmJiYYNWoUpk6dKnZcKqXBgwfj9OnTCAoK0t3RWK1aNSxduhQmJiYAgN9++w3r1q3D9evX4eTkhCFDhoicmsj42L2LklsPVeKcSf7YveWP3btk2L2lh92b3Vtu2L2liQvgIlq0aJHYEYwuLy8PISEhSE1N1btCOzExEXPmzMGVK1egUqng7u6OgIAAWVwFqcQ5k7z5+voiICAA8fHxcHNze+XYhIQEREdHY9KkSUZKR1R2SixoX331FTw8PMSOYTRNmzaFi4uL2DGMysLCAgEBAfDz80NYWBjS0tJw7949CIKAJk2awMnJCd7e3mjUqJHYUakMVCoVli5dimHDhiElJQU2Njbw9PREjRo1dGPu3LkDQRAwYcIEjBs3TlfOiZSE3VsZPVSJcyZ5Y/cmuWL3lj92b3ZvuWH3liYugIto9OjR8PHxgaenpyK2KMrLy8Onn36KpKQkmJubY/78+TAzM8OVK1cwevRo5OXloVOnTmjWrBkOHDiAQYMGITw8HLVq1RI7epkpcc4kfz4+Pti9ezfGjx+PcePGYeDAgUX+zGZkZGDXrl3YsGED6tevj6FDh4qUlqjklFjQqlevzrtEFKJx48a8ylzGHB0d4ejoWOxrEydOxMSJE4t9LS8vD6mpqVCr1ahSpYohIxKJit1b/j1UiXMm+WP3Jrli9yY5Y/eWN3ZvaeElCCJKTEzEjBkz4O7ujlmzZiEuLg6CIIgdy2C2bduGU6dOYcaMGUhKSoKZ2fPrL3788UdoNBp4e3tj3bp1+PLLL7F7926Ymppi7dq1Iqd+M0qcM8mfubk5Vq9ejbZt22LlypXo1KkTPDw8MHjwYAwcOBBdu3ZFly5d8OOPP8LBwQHBwcH8wS4h9vb2sLa2FjsGEREZQVZWFvz8/HD27FmxoxAZFLu3/HuoEudM8sfuLW/s3kREysHuLQ7eAS6ikydP4uDBg9i/fz/27duHPXv2oFatWvD29kafPn2gVqvFjliu9u7di+7du2PUqFG6YxqNBrGxsVCpVHrHbW1t0a9fP+zbtw/+/v5ixC0XSpwzKUPNmjWxefNmREdHY9++fUhPT8eFCxdgYmKCWrVqwcfHB926dUPXrl3FjkqlFBsb+8rXCwoKcOfOHdSqVQsWFhZGSkX05iZOnAgHBwexYxhVSZ8X+XcqlQqbN282QJqK4d69e7C1tYW5uXmR16pVq4YtW7agRYsWIiQTj5wXAYkKsXvLv4cqcc6kDOze8sXuTXLF7l0y7N7s3mR4XAAXUeXKldG3b1/07dsX2dnZOHDgACIjI7F582YEBwejWbNm6Nu3L7y9vfHWW2+JHfeN/fnnn/D19dU7dvr0aeTm5sLOzq7ID8aGDRsiIyPDmBHLnRLnTMri5eUFLy8vsWOQET18+BAeHh7YuHEjOnbsKHaccqPEghYUFPTSbZvk6GXbUBX666+/sHHjRvj4+KB+/fpGSmVYiYmJxR5XqVQvLV4qlcqQkYwiODgYO3fuRHh4eJGyvXDhQsTFxWHUqFEYPXq03jO5zM3NFbcVI5FSsHvLv4cqcc6kLOzeysPuLR/s3vrYvf//Nalj96aKjgvgFUSVKlUwYMAADBgwAA8fPkRUVBT279+P5cuXY/ny5XB2doaPjw+8vLxQuXJlseOWSUFBAUxNTfWOxcfHAwDc3d2LjM/OzoaVlZVRshmKEudMBDzf1sXS0hKVKlUSOwoZgByvWFRiQXvxJPGLnjx5ggULFmD06NFo2rSpkVKJ56+//sLq1avh5OQkm6/x+fPnixx7+PAh3N3dERwcLKsTacDz703Tp0/Hvn37ULNmTdy5cwcNGjTQG9O0aVMkJydjxYoVOHv2LH744QeR0hKRWNi95dlDlThnIoDdW+7YveXRy9i99bF7Sx+7N0kFnwFeAdWoUQNDhw7F1q1bceTIEXz99dcwMTHBt99+i3/84x9ixyuzhg0b4ty5c3rHYmJioFKp8P777xcZf/z4cTRs2NBI6QxDiXMmZcjLy8OOHTswe/ZsveOJiYno1asX3Nzc4OjoiNGjR+PatWsipSQqP4UF7fr162JHMZrc3FyEhYUp6u4oOZ5gepEcrjJ/mR07dmDfvn0YMWIEjhw5UqSAA89PuMXExKBfv36IiYlBSEiICEmJqKJg935ODj1UiXMmZWD3JqVh91YGdm9pY/cmqeACeAVnbm4OS0tL2NjYwMzMDBqNRuxIZda7d2/s2bMHBw8exNOnT7Fp0yZcvnwZNWvWLPKsovDwcJw4cQIeHh4ipS0fSpwzyV9eXh4+/fRTBAQEYO/evcjPzwcAXLlyBaNHj8aVK1fQqVMnjBgxAleuXMHgwYNx//59kVMTvTklFLQXKXHOJF2//fYbXFxcMGvWrGKfM1bIwsICgYGBaNGiBXbu3GnEhERUkbF7S7uHKnHOJH/s3qRUSuyhSpwzSRe7N0kFt0CvgB4+fIiYmBhERUUhKSkJ+fn5aNmyJSZPnozevXuLHa/MRowYgd9//x0TJ07UPf/C3NwcCxYsgIWFBYDnV2hv27YNiYmJaNy4MUaMGCFu6DekxDmT/G3btg2nTp3CjBkzMGzYMJiZPf9R8uOPP0Kj0aBPnz747rvvAABjx46Ft7c31q5dC39/fzFjUzkxNzeHs7MzqlWrJnYUIiI9//vf/zB58uQSjVWpVOjRowfWrFlj4FREVJGxe8unhypxziR/7N7Kxu5NRBUVuzdJBRfAK4j79+8jOjoaUVFROH36NLRaLerVq4dRo0ahT58+snj+h4WFBTZt2oTIyEikpqbCxsYG3t7eaNasmW7M2bNnkZycjD59+mDWrFmwtLQUMfGbU+KcSf727t2L7t27Y9SoUbpjGo0GsbGxUKlUesdtbW3Rr18/7Nu3jyVcIrKzs1GlSpWXvl6tWjVs3bpV71hCQgJcXV0NHY3IoKpUqYKgoCA0b95c7ChURmZmZrpFjpKoWrVqkefFEpH8sXs/J7ceqsQ5k/yxe8sbuzcpFbu39LF7k1RwAVxEGRkZiI6OxoEDB5CcnAytVotq1aphwIAB8Pb2RocOHcSOWO5MTU3h7e0Nb2/vYl8fP348Jk+eDBMT+ezOr8Q5k7z9+eef8PX11Tt2+vRp5Obmws7ODg4ODnqvNWzYUFHPMZI6Pz8/BAcHw9bW9rVjnz17hiVLluDXX39Fenq64cOJSIkFrVq1atiyZQtatGghdhSjqFSpEv7xj3/wDgsJa9SoEc6ePVvi8WfPnkXdunUNmIiIKgp276Lk2EOVOGeSN3ZveWP3Lh67t/yxe0sfuzdJBRfARdSlSxcAz69U9vT0hLe3N7p06fLK5ybInZWVldgRjE6JcyZpKygoKHLVXnx8PADA3d29yPjs7Gz+OZeQc+fO4eOPP8amTZtQq1atl447c+YMZs6ciT///POV4+SiUqVKeieftFot1q1bhwkTJoiYyrDMzc3h4uKi+3V2djYWL16MwMBAEVO9ueDgYOzcuRPh4eFFPnMtXLgQcXFxGDVqFEaPHi35E+RhYWFFjuXk5AAATpw4gbt37xb7Ph8fHwOmMpwPP/wQy5Ytw8iRI197wuzixYuIiIiAn5+fkdIRkZjYvYtS4udzJc6ZpI3dW97YvYvH7s3uLUXs3i/H7k1iUgmCIIgdQqmGDx+Ovn37okePHrCxsRE7DhFRifTt2xdt27bFvHnzdMd69eqFK1euYMWKFejRo4fe+NGjRyMrKwu7du0ydlQqg19++QULFixAgwYNsGnTpiJXaObl5eGHH37Axo0bodVq0bdvX3z11VeyuHI3Ozsbu3btQmpqKgRBQMuWLTFs2DBUrVpVb9x//vMf+Pv747///S/OnTsnUtrycePGDQQHByMlJQUA0LJlS4wZMwaNGjXSGxcdHY358+fj/v37kp2zIAiYPn069u3bh5o1a2L79u1o0KCB3phVq1Zh165dyMjIQLdu3fDDDz+IlLZ8qNVqqFQqvWN//+hf3GsqlUqyX+O//voL/fr1Q2ZmJr766iv07t27yEnj/Px87N27F0uXLgUAhIaGonbt2mLENZp79+7B1ta22IW+vLw8pKSkoEWLFq/cgpNI6ti9iUiK2L3ljd2b3Zvdm91bql9jdu/isXtXPFwAJyKiUlm3bh1Wr16NZcuW4b333sOOHTuwaNEi1KpVC7GxsXrPgAkPD8fMmTMxefJkjB8/XsTUVBp79+7FrFmzYGdnh02bNqFhw4YAnl+hPnPmTPz3v/+Fvb095s6di06dOomctnxcv34dfn5+uHPnjl5JqVWrFnbt2oW6desiPz8fy5Ytw5YtW6DVatG7d28sW7ZMxNRv5ty5cxg+fDiePHkCS0tLWFpaIjMzE9bW1ti+fTveeecdZGdnw9/fH9HR0TA1NcWoUaMwdepUsaOXyfbt2zFnzhyMGDEC06ZNe+ldfxqNBnPnzkVISAgWLFiAfv36GTlp+QkNDS3T+17calNKrly5gs8++wxXrlyBtbU1WrVqhdq1a0Or1eLBgwc4e/YscnNzYW9vj9WrV0OtVosduVy86u6KqVOnyuruCiIiIqVg95Y/dm92b3Zvdm+pYvdm95YCLoCLqLitMUpCqltjEJE8aDQajBo1CklJSVCpVBAEAebm5li1apVue8mYmBhs27YNiYmJaNy4MUJCQmBpaSlyciqNo0ePYsqUKbCxscH69etx6NAhrF27Fvn5+RgyZAimTZuGypUrix2z3EybNg2RkZGYOnUq+vfvDysrKxw9ehTz5s1Du3btsGTJEowdOxbJycmwt7dHQECA7s+7VE2YMAG///47Fi9ejN69ewMA0tLS8MUXX8De3h5Lly6Fn58f/vzzT7Rp0waBgYFFnjMoJQMGDIC1tTW2bNny2rGCIKB///6wsLDA9u3bjZCOypNGo8Evv/yCffv24fz588jPzwfwfGvBdu3awcvLC4MGDdI7aSxVSry7gqgs2L2JSIrYvZWB3Zvdm92b3Vuq2L3ZvSs6LoCLqHBrjMItL15H6ltjEJF8aLVaREZGIjU1FTY2NvD29kazZs10r69YsQIbN25Er169MGvWLFSvXl3EtFRWp0+fxoQJE/DkyRMIgoBGjRohMDAQHTp0EDtauevcuTPee+89BAUF6R0PDQ1FQEAAOnfujIMHD2LIkCGYMWMGrK2tRUpaft577z307NkT/v7+esejo6MxdepUtGvXDmlpaZg8eTI+/fRTyV+56ujoiMmTJ2PEiBElGr9u3TqsWbNGt0Wd1OXm5hZ7MvTSpUuoWrUq7OzsREhlHA8fPoSpqakstot8kRLvriAqC3ZvIpIqdm9lYPdm92b3ZveWA3Zvdu+KxkzsAEr24g96IiKpMDU1hbe3N7y9vYt9ffz48Zg8ebLkP7QrnZOTE7Zs2YLRo0fj4cOHmDdvniwLOAA8evQIjo6ORY47OztDo9Hg6NGjWLlyJbp37y5COsPIysoqdguqNm3aQKvV4sKFC9i6dSvatWtn/HAGYGZmVqqrjqtWrVrkGVZSpNFosHjxYkRERODYsWNFivjy5ctx7Ngx9O/fHzNnzpTFCaYX1ahRQ+wIBvPbb7/BxcUFs2bNeuU4CwsLBAYG4ty5c9i5cydLOCkOuzcRSRW7tzKwe7N7s3uze8sBuze7d0XDBXARSfkZD0SkXH5+fpgwYQI6duyoO5afn4+UlBSo1WpUqVIFVlZWutcKn0XGO2ikSa1W49///jdGjhyJCRMmYPXq1XBzcxM7VrnLy8vT+3NbqHCruZEjR8qqgAPP/95WqlSpyPHCkjZ27FjZFHAAaNSoEc6ePVvi8WfPnkXdunUNmMjw/r5tplqtxqNHj4rM6YMPPsDdu3exY8cOXLx4EVu2bIGZmTQrwqpVq8r0vokTJ5ZzEuP53//+h8mTJ5dorEqlQo8ePbBmzRoDpyKqeNi9iUiK2L2Vhd2b3Vsu2L3ZvV+G3ZuMTZp/wxRKq9Vi3bp1mDBhgthRiEjBEhMTMXDgQL1j2dnZ8PPzw8aNG/XKOUnP7Nmziz3eqFEj3LhxA+PGjUPPnj31tg9VqVRYuHChsSKKwsXFRewIRte6dWuxI5SrDz/8EMuWLcPIkSPRvHnzV469ePEiIiIi4OfnZ6R0hrFp0yYkJSXB398fH3/8cbFjBg4ciIEDB2LVqlVYtWoVtm3bVuKt6iqakpbwF7c/lnIJV+rdFUSGxu5NRBUBu7e8sXsXj91b+ti92b0LsXuze4uNC+Aiy87Oxq5du5CamgpBENCyZUsMGzYMVatW1Rv3n//8B/7+/vjvf//LEk5EFZIgCGJHoHIQGhr6ytefPXuGsLAwvWNKKOFK/NBakmekSslHH32E7du3Y/jw4fjqq6/Qu3fvIl/X/Px87N27F0uXLkWVKlUkX8IjIiLg4eHx0gL+dxMnTkRiYiL27Nkj2RJ+6NCh147Jzs7G999/jyNHjsDMzEzyX2Ml3l1BVFbs3kQkF+ze8sDuXTx2b+lj9341dm9pYveWJi6Ai+j69evw8/PDnTt3dB9eY2Ji8Msvv2DXrl2oW7cu8vPzsWzZMmzZsgVarRa9e/cWOTUREclZST7EylVmZiZu3bqldywrKwsA8PDhwyKvAYC9vb1RshnK5cuXkZSUpHcsOzsbAHDhwoVit+NydnY2SrbyZm1tjTVr1uCzzz7DzJkzMXfuXLRq1Qq1a9eGVqvFgwcPcPbsWeTm5sLe3h6rV69G7dq1xY79Rq5evYrBgweXePz777+PlStXGjCRYdWrV++Vr0dGRmLRokXIyMhA+/btMWfOHLzzzjtGSmcYSry7gqgs2L2JiKiiYfdm92b3ZveWKnZvdm+p4AK4iL7//nvcuXMHU6dORf/+/WFlZYWjR49i3rx5mDdvHpYsWYKxY8ciOTkZ9vb2CAgIQJcuXcSOTUREMva6D7FytnDhwpdeTT99+vQix1QqFdLT0w0dy6DWrl2LtWvXFvva4sWLiz0u5WcKNm7cGGFhYfjll1+wb98+JCcnIz8/HwBgbm6Odu3awcvLC4MGDSrV1lYVlbW1NbRabYnHV6pUSfccOjm5du0a5s6di7i4OFSrVg2BgYEYMGCA2LHKhRLvriAqC3ZvIiKqaNi92b0LsXuze8sFuze7d0XDBXARJSUlwcfHB2PHjtUd69mzJ3JzcxEQEIBZs2YhOTkZQ4YMwYwZM2BtbS1iWiIioqLWrl2L6OhohISEiB3ljfj6+oodweik/OylN2FhYYGRI0di5MiRAJ7fYWBqaopq1aqJnKz8NWnSBMnJySUuXadPn5bViTiNRoN169Zh/fr10Gg08PX1xYwZM1C9enWxo5UbJd5dQVQW7N5ERCR17N7Sxe7N7v0idm/pYfeWJi6Ai+jRo0dwdHQsctzZ2RkajQZHjx7FypUr0b17dxHSERERvd7t27clfVVyoaCgILEjGJ1SS/iLatSoIXYEg/H19UVAQADi4+Ph5ub2yrEJCQmIjo7GpEmTjJTOsOLi4jB37lxcvXoVzZs3R0BAADp06CB2LINQ2t0VRGXB7k1ERFLH7i1d7N7PsXs/x+4tXeze0sMFcBHl5eXBysqqyPHKlSsDAEaOHMkCTkQV0ovPa3rVs5oePXpk1GxERMVZtWpVmd4n5ZMVPj4+2L17N8aPH49x48Zh4MCBqFWrlt6YjIwM7Nq1Cxs2bED9+vUxdOhQkdKWj/v37yMoKAiRkZGwtLTEtGnTMHLkyGKfqScnSrq7gqgs2L2JSKrYvYlIati92b3ljN1bWlSCIAhih1AqtVqNJUuWwNvbW+/4o0eP0LFjR2zYsAH/+Mc/REpHRFQ8tVoNlUpV5LggCMUeLySHK5WpqICAAOzcuVPyX18lFrTZs2eX+j0qleqlz2qr6NRqdYnGvfh9TOp/th88eIAvvvgCCQkJUKlUsLe319ui6/bt2xAEAe3atcOKFStQt25dsSOX2bZt27By5Uo8efIEXbt2hb+/v6TnQ0Tlh92biKSI3Zv+jt2b3Vsq2L3ZvYkqCnlfjiFxpqamYkcgIipCic9rIvkraQl/saBJuYSHhoaWeOzf5y3VEn7o0KHXjsnOzsb333+PI0eOwMzMrMTP76rIatasic2bNyM6Ohr79u1Deno6Lly4ABMTE9SqVQs+Pj7o1q0bunbtKnbUNxYYGKj799jYWMTGxr72PSqVCunp6YaMZVBKPIFIZAjs3kRUEbF7kxyxe78au7d0sXu/Grs3iYEL4CJ7cSsj4NXbGQGAvb29UbIRERVHic9rIvlTYkE7f/78a8fcvHkT8+fPx5EjR1ClShVMmTLF8MEMpF69eq98PTIyEosWLUJGRgbat2+POXPm4J133jFSOsPz8vKCl5dXkeNZWVmwtLQUIVH5U+JJYiWeQCQqK3ZvIpIadm+SI3bv4rF7s3tLCbv3y7F7VyzcAl1EL9vKCHj5dkZSv1KGiIgqttJe0Xj48GGkp6dLfquq15F7QXuRVqvFxo0b8dNPPyE3Nxe9evXC7NmzizzDSg6uXbuGuXPnIi4uDtWqVcP06dMxYMAAsWOVm7y8PISEhCA1NVXvJGpiYiLmzJmDK1euQKVSwd3dHd9++y0aNmwoYto3M3v2bAwePBht27YVO4rR3Lx587VjijuB+OWXXxohHVHFwe5NREQVDbt38di92b2lit1b3ti9pYkL4CIqy/M/AF4BSkREhlPSZzX9nUqlkm0Jl3tBK86pU6cwd+5cXLx4EW+//TYCAgLQsWNHsWOVO41Gg3Xr1mH9+vXQaDTw9fXFjBkzUL16dbGjlZu8vDx8+umnSEpKgrm5OVJSUmBmZoYrV66gb9++0Gg06Ny5M5o1a4YDBw7g6dOnCA8Pl+zJlpc941fJlHYCkehl2L2JiKiiYffWx+7N7i1l7N7E7l0xcQt0EbFMExFRRbNlyxaxI1QISihoL3r06BG+++47hIWFwcLCApMmTcKYMWNgYWEhdrRyFxcXh7lz5+Lq1ato3rw5AgIC0KFDB7Fjlbtt27bh1KlTmDFjBoYNGwYzs+cf/X/88UdoNBr06dMH3333HQBg7Nix8Pb2xtq1a+Hv7y9mbCoHL55ADAwMlP0JRKJXYfcmIqKKht37OXZvdm85YPdWLnbvio0L4BXA06dPsXv3bvz+++84f/48MjMzoVKpUKNGDajVanh4eMDb21uWPwSJiKhicXFxKfV7Tp06ZYAk4lFKQfu7Xbt2YenSpcjKysJ7772HgIAASW/H9TL3799HUFAQIiMjYWlpiWnTpmHkyJG6cio3e/fuRffu3TFq1CjdMY1Gg9jYWKhUKr3jtra26NevH/bt28cSLmFKPIFIVBrs3kREVFGwe7N7s3vLB7u38rB7S4M8v+NIyOnTpzF58mTcv38fFhYWaNiwIerVq4f8/HxkZmbi8OHDiI2NxapVq7Bs2TK0b99e7MhERES4ffs2QkNDERYWhuvXr8tiGzalFTQAuHDhAubMmYPU1FTUqlULy5cvR69evcSOZRDbtm3DypUr8eTJE3Tt2hX+/v6oW7eu2LEM6s8//4Svr6/esdOnTyM3Nxd2dnZwcHDQe61hw4bIyMgwZsRyd+rUKWi12lK9x8fHxzBhjEyJJxCJSoPdm4iIpIjdWx7Yvdm9/47dW9rYvaVDvj9VJOB///sfRo0aBRsbGyxduhReXl5FrjR/8uQJoqKi8MMPP2D06NEIDQ1Fo0aNREpMRERK9uzZM0RHRyMkJAQJCQkQBAEqlQqdO3cWO9obU2JBW7x4MbZu3QqtVosPPvgAU6ZMgY2NDW7duvXK99nb2xspYfkKDAzU/XtsbCxiY2Nf+x6VSoX09HRDxjKogoICmJqa6h2Lj48HALi7uxcZn52dDSsrK6NkM5SdO3di586dJRpb+D1M6iVciScQiUqL3ZuIiKSE3Vte2L3ZvV/E7i1N7N7Sw6+MiH766SdYWVlh9+7deOutt4odY2NjgwEDBqBz587o27cvNmzYgPnz5xs5KRERKVlqaipCQkKwf/9+PHnyBABQo0YN9O/fH4MGDUK9evVETvjmlFjQgoODdf9++PBhHD58uETvk+odBy9eja0EDRs2LPL1iomJgUqlwvvvv19k/PHjxyW//d5HH32Edu3aiR3DaJR4ApGoLNi9iYhICti9i8fuLS3s3s+xe8sLu7c0cQFcRElJSejXr99LC/jf2dnZwcfHB8ePHzdCMiIiUrqMjAyEhYUhNDQUf/75JwRBgJWVFdzd3REXF4d58+bBw8ND7JjlxsfHByqVSuwYRjVx4sRSv0cQBAMkMZ7Bgwejbdu2Yscwmt69e2P16tXo3Lkz3nvvPezYsQOXL19GrVq10LVrV72x4eHhOHHiBCZPnixS2vLRoUMHeHt7ix3DaJR4ApGoLNi9iYioomL3lj92b/lj95Y/dm9p4gK4iB49elSqLdWaNGmCXbt2GTAREREp3f79+xESEoK4uDhotVpUrVoV3t7e8PLyQqdOnXDv3j14enqKHbPcLVq0CACQl5eHS5cuIT8/H82aNZP8llSvYm9vj379+pV4/M2bN/HVV18ZMJFhhYaGwt3dXVElfMSIEfj9998xceJEqFQqCIIAc3NzLFiwQLf1b0xMDLZt24bExEQ0btwYI0aMEDc0lYoS764gKgt2byIiqmjYvdm9X4bdW3rYveWP3VuauAAuory8vFL9cK9UqRJycnIMmIiIiJRu6tSpsLa2xtChQ+Hh4QFnZ2e95xjJ+Urtf/3rX1izZo3uZ62FhQWGDh2KadOmyfJ5Pv7+/nj69CmGDRv22rG7du3C4sWL+TlEYiwsLLBp0yZERkYiNTUVNjY28Pb2RrNmzXRjzp49i+TkZPTp0wezZs2CpaWliImpLJR2dwVRWbB7ExFRRcPuze5dHHZvaWL3VgZ2b+mR308UIiIiKrP69evjxo0bCAkJwZUrV/Cf//wHnp6eaNy4sdjRDGr37t1YsmQJ6tWrBx8fH5iYmCAhIQGbNm2CVquV9NXXL/P2228jMDAQT58+xejRo4sdc+/ePfj7++PYsWMwNzeX/BZdSmRqagpvb++Xbk02fvx4TJ48GSYmJkZOVv58fX0l/xy10lLi3RVEREREcsDuze79d+ze0sfuLW/s3tLEBXCRZWZm4tatWyUa++jRIwOnISIipTt48CDOnDmD8PBwREVF4fjx41i+fDmaNGkCLy8vtGrVSuyIBrFjxw60a9cOmzdvRqVKlQA8f+bW1KlTsWPHDkyfPl23bZVc/Prrrxg9ejSWLVuGp0+fYtKkSXqv7927F/Pnz0dWVhYcHR0RGBiIpk2bipS2fJw6dQparbZU7/Hx8TFMmApCTlsNBgUFiR2BiCowdm8iIqpI2L3ZvQuxez/H7i0d7N4kFSpBEASxQyiVWq0u03Y2586dM0AaIiIifVqtFsePH0dERAQOHTqEp0+f6n5u9e/fHxMmTEC9evVETlk+nJyc8MUXXxTZkiw1NRVDhgxBaGgo1Gq1SOkM56+//sI///lPJCQkYMSIEZg5cyYePXqEgIAAxMTEwNLSElOnTsXw4cMlvwVfaT93CYIAlUrFz11UoanVaixZsuSldxkQ0XPs3kREVJGxe7N7s3uze1PFxu4tTbwDXES+vr5iRyAiInopU1NTdOnSBV26dEFubi5iYmKwd+9enDhxAr/99htCQkLg6uqK/v3748MPPxQ77ht5+vQpqlSpUuR4/fr1IQgCHj9+LEIqw7O2tsa6devwxRdfYNOmTbhx4waSk5Px4MEDvPfee5g3b55sTrQAwEcffYR27dqJHYOoXPHuCqLXY/cmIqKKjN2b3Zvdm6jiY/eWHt4BTkRERDpjx46Fm5sbXFxc0KpVq2Kv2n306BEiIyMRERGB1NRUWVyp+7IrOR89eoSOHTsiODgYHTt2FCmd4RUUFMDf3x8hISEwMTHBvHnzMGDAALFjlSterUtyxLsriIiIiKSJ3Zvdm92bSDrYvaWJd4ATERGRTnx8PI4dOwaVSgUbGxt06NABrq6ucHNz021DVr16dQwbNgzDhg3D9evXsW/fPpFT05syMTHBwoULYWtri40bNyIuLg4+Pj4wM+NHRaKKjndXEBEREUkPu7cysXsTSRe7t/TwOysRERHpJCcnIz09HcnJyUhJSUFqaioOHz4MlUqFqlWrwtnZGa6urnB1dcU777yDBg0aYPz48WLHLheZmZm4deuW3rGsrCwAwMOHD4u8BgD29vZGyWYIxc3n448/xl9//YUdO3YgJycH33zzDUxMTPTGSHnORHLUoUMH3l1BREREJDHs3uze7N5E0sLuLT3cAp2IiIhe6fbt23ql/Pz589BqtbC1tYWLiwtcXV0xdOhQsWO+kVdtZVS4bdGLVCoV0tPTDR3NYF43ZwBFXpfynGfPno3Bgwejbdu2YkchKjfcXpCIiIhIPti92b0LSXnO7N4kR+ze0sQ7wImIiOiV6tati969e6N3794AgOzsbISHhyMkJAQHDhxAdHS05Eu4r6+v2BGMzsfHp1TPL5K6oKAgsSMQERERERG9FLu3PLF7ExGJgwvgRERE9Eq5ublISkpCYmIiTp8+jbNnzyIvLw8WFha6LdmkTokFbdGiRWJHIKI35Ovri4YNG4odg4iIiIjKAbu3PLF7E0kfu7c0cQt0IiIi0pOfn4/U1FTEx8cjPj4eZ86cQV5eHszNzfHuu+/qirejoyMsLCzEjktEREREREQkOezeREREhsMFcCIiItIZM2YMTp06hdzcXJiYmKBVq1Zwc3ODq6srnJycYGlpKXZEIiIiIiIiIklj9yYiIjIsLoATERGRjlqthrm5OT788EOMGzcOb7/9ttiRiIiIiIiIiGSF3ZuIiMiwuABOREREOt988w0SEhJw7do1qFQqNGnSBB07doSbmxucnZ1RrVo1sSMSERERERERSRq7NxERkWFxAZyIiIiKuHXrFuLi4nTPIrt//z5MTEygVqvh6uqqK+XW1tZiRyUiIiIiIiKSJHZvIiIiw+ACOBEREb3WxYsXER8fj5MnT+LUqVN4/PgxzMzM0Lp1a3Ts2BGTJ08WOyIRERERERGRpLF7ExERlQ8ugBMREVGpaDQaREVF4ddff0VqaipUKhXOnTsndiwiIiIiIiIi2WD3JiIiKjszsQMQERFRxXbt2jWcOXMGZ86cQVpaGs6fP4+8vDxUrlwZnTt3hrOzs9gRiYiIiIiIiCSN3ZuIiKj88A5wIiIi0snKykJaWpqucKelpSErKwuCIKBatWpo3749XFxc4OzsjJYtW8LExETsyERERERERESSwu5NRERkWFwAJyIiIh21Wg2VSgVBEFC9enU4Ozvr/nFwcIBKpRI7IhEREREREZGksXsTEREZFrdAJyIiIp0ePXrAxcUFLi4uaNasmdhxiIiIiIiIiGSH3ZuIiMiweAc4ERERERERERERERERERHJAh8eQkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGTBTOwARERESvDjjz9i1apVpXrPoUOHUL9+fQMlKruuXbvi5s2bAICvv/4afn5+rxw/atQoHD9+HAAQHBwMd3d3g+aKjo5Go0aNDPJ7EBERERERUcXF7s3uTUREBHABnIiIyCgcHBzg7e2td+zBgweIi4uDtbU1PDw8irzH2traWPHKLCoq6pUl/OHDh4iPjzdiIiIiIiIiIlIqdm8iIiICuABORERkFF5eXvDy8tI7lpCQgLi4OFSvXh1Lly4VKVnZVa1aFcnJybh79y7eeuutYsdER0cjPz8f5ubmyMvLM3JCIiIiIiIiUhJ2b3ZvIiIigM8AJyIiojLy9PSEIAiIjo5+6Zh9+/bB1tYWbdq0MWIyIiIiIiIiInlg9yYiIio9LoATERFVYEeOHMGoUaPg4uKCNm3aoHv37liyZAkyMzP1xt24cQMODg7o3Llzsf+d4cOHw8HBAQkJCbpjs2bNgoODAxITEzFp0iS8++67cHNzw9atW0uUrUePHgCeb8VWnIyMDJw6dQrdu3eHmdnLN53Zs2cPhg4divbt2+Pdd9+Ft7c31qxZg6dPnxY7/uTJkxg5ciScnZ3RoUMHTJkyRfdctOJotVr8+9//xsCBA+Ho6AhHR0cMGjQIoaGhEAShRHMlIiIiIiIi+WL3Lordm4iIpIxboBMREVVQS5cuxfr162FqagonJydUr14dqamp2LBhA/bv34/NmzejQYMGb/z7fPPNN3jw4AE6deqEixcvQq1Wl+h9b7/9Nlq0aIHk5GRkZGTAzs5O7/WoqCgUFBSgd+/eWLVqVZH3FxQUYMaMGdi7dy8sLCzg4uICKysrJCUl4fvvv8eBAwcQHByM6tWr696za9cufPvttwCADh06oGrVqjh+/DhOnToFjUZT5PfIy8vDP//5Txw7dgw2NjZwdHSEubk5EhMTMWvWLCQkJGDRokWl+d9FREREREREMsLuze5NRETywwVwIiKiCig2Nhbr16+Hra0tNmzYoNvGTKPRYN68edi1axcmT56M3bt3Q6VSvdHvlZGRgfDwcDRo0AAFBQUwMSn5BjG9evXCuXPnEB0djY8//ljvtcjISNjZ2cHZ2bnY927btg179+5FgwYNsHHjRjRs2BAA8OTJE0ybNg1HjhzBt99+ix9//BEAcPv2bQQGBsLMzAzr1q1Dx44dAQAPHz7EqFGjkJ6eXuT3+Omnn3Ds2DG4uLhg5cqVqFGjBgDg/v37GDNmDEJDQ+Hk5ISBAweWeM5EREREREQkD+ze7N5ERCRP3AKdiIioAtq0aRMA4Msvv9R7hpeFhQXmzJmDRo0a4Y8//kB8fPwb/14eHh66q9lLU8ABoGfPngCKbsV269YtpKamomfPni/9b27evBkAEBgYqCvgAGBjY4OlS5eiSpUqiI6OxtWrVwEAoaGhyM3NxeDBg3UFHABq1KiBhQsXFvnvazQabN26Febm5li6dKmugANArVq1MG/ePADAv/71r1LNmYiIiIiIiOSB3Zvdm4iI5IkL4ERERBVMfn4+kpOToVKp0L179yKvm5mZwcvLCwD0nitWVu+8806Z39ugQQO0atUKp0+fRkZGhu54ZGQkBEHAhx9+WOz7bt++jRs3bqB69epwc3Mr8nqVKlXQqVMnAEBiYiIAICkpCQDQpUuXIuNbtGiB+vXr6x37448/kJ2djSZNmuCtt94q8p42bdqgZs2auHLlCu7du1fCGRMREREREZEcsHuzexMRkXxxC3QiIqIKJjMzE3l5eahevTpsbGyKHVNYOMujPFarVu2N3t+rVy/88ccfiImJwbBhwwA8L+ENGjTAu+++W+x7Cgt7vXr1XvrffXGOhe+pU6fOS8ffuHFD9+vbt28DAC5cuAAHB4dXzuH27duoXbv2K8cQERERERGRfLB7P8fuTUREcsQFcCIiogpGEAQAeOXzxQrHWFhYlOi/qdVqX/paabdee1HPnj2xZMkS7N+/H8OGDcPVq1fxxx9/YNy4cS99T1nm+LrnrZmZ6X+sKSgoAADY29vDycnple+tXLnyK18nIiIiIiIieWH31h/D7k1ERHLCBXAiIqIKxtbWFubm5sjMzMSTJ0+KvRL9+vXrAICaNWsC+P8iXVg8X5SVlWWgtM+vJH/33Xdx+vRp3Lt3D5GRkQCA3r17v/Q9dnZ2AKB31fiLCudYq1YtAMBbb72Fixcv4ubNm2jWrFmR8X/fBg6A7qryOnXqYOnSpaWYEREREREREckdu/dz7N5ERCRHfAY4ERFRBWNubg5HR0cUFBQgJiamyOv5+fm6466urgAAa2trAM/Ldl5ent74R48e4cqVKwbN3KtXLxQUFCA6Ohr79+9Hs2bNXrn1mb29PerVq4dHjx7pnjP2d9nZ2Th+/DgAwNnZGQDg7u4OAMX+P7l+/TouXbqkd6xNmzawtLTE+fPnixR0ALh79y569uyJkSNHIicnp+STJSIiIiIiIslj92b3JiIi+eICOBERUQX0ySefAAC+++47pKen647n5eVh7ty5uHbtGlq0aKHbXszW1hZ16tSBRqPB9u3bdeOfPXuGb7/99pXbsJWHHj16QKVSYdu2bbhw4cIrr0AvVDhHf39/3RXnAJCTk4MZM2bgyZMn+OCDD3TPKvP19YWtrS12796NAwcO6MY/efIEX331VZEr8K2trfHRRx/hr7/+wowZM/DgwQO932P27Nm4fPkyrK2tuQ0bERERERGRArF7s3sTEZE8cQt0IiKiCsjT0xOffvopNm7ciAEDBsDJyQnVq1fHmTNncOfOHdSrVw8rVqzQe4bY6NGjERgYiMDAQOzbtw+1atVCcnIytFotPvjgAxw+fNhgeevWrYt27dohJSUFwKu3YCs0fPhwpKSkYP/+/ejduzecnZ1hZWWFU6dO4dGjR1Cr1Vi4cKFufI0aNbBw4UJMmTIFn3/+ORwdHWFnZ4ekpCRotVo0bty4yNX206ZNw7lz5xAfH49u3bqhTZs2sLKyQkpKCjIzM/H2229j7ty55fs/g4iIiIiIiCSB3Zvdm4iI5Il3gBMREVVQM2fOxE8//QRXV1ecP38eR44cQeXKlTFhwgSEhoaicePGeuOHDx+OxYsXo3Xr1khPT0dSUhJcXV3x22+/FRlrCD179gQAtGrVCo0aNXrteBMTE6xYsQJBQUFo1aoVkpOTceLECdSpUwczZszAzp07UaNGDb33eHh44Ndff4WHhweuXLmC33//HS1btsQvv/yCOnXqFPk9LC0tsXHjRnz99ddo0qQJ0tLSkJCQADs7O0yaNAm7du3SPeeMiIiIiIiIlIfdm92biIjkRyUIgiB2CCIiIiIiIiIiIiIiIiIiojfFO8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZOH/AGcw68uQID11AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 177 coefficients adjusted\n", - "\t 670 coefficients converged\n", - "\t 87 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACboUlEQVR4nOzdeZyVdd0//tecoWERJpAEVNQQG8kVFwxN01C0UlOkMhVTMwXXzARzuVMzXJIsl9xRcUG0QHPJ29S01FtN7EuZG2oIgiGGC+ICMnN+f/hjYgR0zmGAGeb5fDx4yLmuz3XO+5zPNXi953Wu66ooFovFAAAAAAAA0CiFlV0AAAAAAABASyJcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBWAbFYjEDBgzIhhtumIsvvrikbSdMmJANN9wwEyZMqF+24YYb5sADD2zqMhcza9asvPfee8v9dZpCbW1tXnnllU8dd9FFF2XDDTf8xD8DBgxY7vW+/PLLy/01AABovh544IEcc8wxGTBgQDbZZJN86Utfyg9+8IP86U9/WmE1zJ8/P6eddlq22WabbLbZZvn5z3++xGU/+clPsuGGG2b69OklPf/CY+/HH398Ob2Dhj7tGPu0007LhhtumPHjx3/iuOnTp6dPnz456KCDGv3ajz/+eDbccMNcdNFFjd5mZXrsscey4YYb5otf/OIn9lHvvPNOjjvuuGy55ZbZYostMnr06CTJvHnzMnPmzBVVbpJl66sTvXVjNba3BhqvzcouAKAle+yxxzJjxox06NAht9xyS4444ohUVlaW/Xy/+MUv8rnPfa4JK1zcbbfdljPOOCN33HFHOnTosFxfa1m9+uqrGTp0aHbdddccc8wxjdpm3333zVZbbbXEdauttlpTlreYI444InPnzs3111+/XF8HAIDmZ+7cuTn55JNzzz33ZOONN84+++yTbt26ZebMmbnttttyxBFH5Pvf/35OPPHE5V7LLbfcknHjxuXLX/5yvv71r+cLX/jCEpcVi8Vsu+22WX311Ut6/oEDB2bddddN7969l9M7+K/GHGN/61vfyrhx43LHHXdk8ODBSx132223pVgs5lvf+tbyKLVZGD9+fDp06JD33nsvN998c0444YQljrvkkkty9913Z/fdd8+2226bvn375plnnsnRRx+do48+Ovvss88Kq7mp++pEb/1x5fTWwKcTrgAsg9/97nf5zGc+k4MPPjiXXHJJHnjggeyyyy5lP99ee+3VhNUt2WOPPdZivlnzyiuvZPLkydl1110bvU3fvn1XyOe4JH/605+yzTbbrJTXBgBg5Tr11FNzzz33ZMSIETn00EMbrBs2bFgOPfTQXH311Vl//fXz7W9/e7nW8vzzzydJRowYkT59+iRJ/Vkdiy5Lki222KLk5+/Tp0+D51ieGnOMvemmm9afSfPaa6+le/fuSxz3+9//Pp/97GdL6i9akrlz5+bee+/NzjvvnGeffTYTJkzIsccem6qqqsXGLtxHzjjjjHTq1CnJR2eAzJgxY4XWnDR9X53orT+unN4a+HQuCwZQpnfeeSf33XdfNttss3zzm99Mktx0000ruSoAAGBFe/jhh3P33Xdnt912WyxYSZKqqqqcddZZqayszHXXXbfc6/nwww+TJB07dvzEZauSwYMHp66uLn/4wx+WuP7JJ5/MtGnTsueee6Zt27YruLoV46677sr777+f/v37Z5dddsns2bNz7733LnHswv1hYbCysuirgZZMuAJQpjvvvDMffPBBvvzlL6dXr17ZcMMN88gjjyzxGqaPP/54vve972XLLbdM//798/Of/3yJ33D5+HVhl3YN5OnTp2fDDTfMT37yk/pl77//fs4+++x87Wtfy2abbZYvfelLGTp0aJ588sn6MQMGDMitt96aJNl5553rX+snP/lJtthii0ybNi1HH310ttpqq2y55ZY54ogjMnPmzMyYMSPHHntsttpqq/Tv3z/HHXdcZs2a1aCmurq6XH/99dlrr72y2WabZeutt84PfvCDBq+f/Pf6zC+99FJOPfXUfPnLX86mm26avfbaK3fccUeDcd/73veSJBdffHFZ14L+JMViMb/97W+z//77Z+utt87GG2+c7bffPscff3ymTp262Pg//OEPOeCAA7LVVlvlS1/6Ug466KA8+uijSf57HeYk+etf/7rY9X7//Oc/56CDDsqWW26ZzTbbLHvttVeuu+661NXV1Y9ZOKe/+c1v8qMf/Sibbrpptttuuzz11FOpra3NxRdfnD333DN9+/bN1ltvnQMPPHCFXrcbAIClu+2225LkE+/xsM466+SOO+6oPx5f6KWXXsrxxx+f7bbbLptsskl23nnnnHPOOXn77bcXe45//etfOf7447Pttttmk002ya677ppf//rX+eCDD5L895hy0WP+hfcf/PiyZMn9RrFYzE033ZR99tknffv2zXbbbZdhw4bl6aefrh+ztHuuPPTQQ/V9z+abb5599tmnwXFx8t9j57vuuiuXXXZZBg4cmE022SQDBgzIBRdckAULFjQYlyz5GPvjvvnNb+Yzn/lMg55iUQvnaOElwT788MOMHj06gwcPzhZbbJFNNtkkO+20U0499dTMnj17qa+TfNRXLel+jku690eS/OMf/8iwYcOyzTbbZNNNN80ee+yRq6++OrW1tQ3GPfPMMxk2bFh22GGH+n3h5z//ed56661PrGehhWcnffnLX87Xvva1JIsHFQs/17/+9a9JUn9vyp/85Cc56aSTkiQnnXRS/WeflN7r/fnPf87Xv/71bLLJJhkyZMgn1lxKX72wfr11w897ZffW0Jq5LBhAmRYeuH79619Pkuy+++55/vnnM27cuAwfPrx+3IMPPpijjjoq3bp1y9ChQ1MoFPK73/3uExuDchx//PF55JFHcsABB2T99dfPf/7zn9x444056KCD8rvf/S59+vTJySefnGuuuSYTJ07MSSedlC984Qv123/44YfZf//9s80222TEiBGZNGlSJkyYkNdeey3/+c9/0q9fv4wYMSJ///vfM378+MydOzdXXXVV/fYnnHBC7rrrruy22275zne+k7fffjsTJkzIgQcemPPPP7/+4H6hww8/vP4zmT9/fsaMGZMTTjgha6yxRvr375+BAwdmwYIF9Q3XwIEDG3Ut6Pfeey9vvPHGYssrKyvz2c9+tv7x2WefnTFjxmSXXXbJj370oyTJxIkT84c//CHPPPNM/vCHP6RQ+Og7CBdeeGF+85vfpE+fPhk2bFiqqqoyduzYHHroobn00kuz8cYb5xe/+EVGjBiR9ddfP8OGDcuWW26ZJLn66qtz7rnnZr311sthhx2WDh065L777svIkSPz+OOP56KLLqp/nSS56qqrUlNTk1NPPTUvv/xyNtpoo5x99tm58cYb853vfCff+9738s4772TcuHE58sgjc/nll2fHHXdszC4CAMBy8o9//CNt2rTJ5ptv/onjPn6PkokTJ+bQQw9NZWVl9ttvv6y99tqZNGlSrr322vzpT3/KuHHj6o+B//GPf+Tggw9Ox44dc8ABB2T11VfPpEmTctlll+XRRx/Nddddl9VXXz2/+MUvcsstt9Qf83/2s59NoVBosKxLly5LrfHEE0/M73//+2y99dY57rjjMn/+/Fx//fUZMmRIbrzxxmy00UZL3O7GG2/MmWeemU033TRHH310CoVC7r///px00kl59tlnc8oppzQYf/7556dYLGbfffdNdXV1JkyYkEsuuSQVFRU59thj07t376UeYy9Jly5dsvPOO+d///d/89JLLzX4rOfNm5e77747G2+8cb74xS8mSY477rjcf//9GTRoUL7zne9k3rx5+ctf/pLf/va3efXVV3P11Vd/4lw21v33358f/vCH6dmzZ37wgx+kQ4cOeeSRR3Luuefmb3/7Wy666KJUVFTklVdeyUEHHZQ11lgjBx98cKqrq/P3v/89N9xwQ/7xj3/k5ptvTkVFxVJf56WXXsrf//73bLHFFllrrbWy1lpr5fOf/3yeeOKJBp/Hws/1sssuy7/+9a/84he/yGqrrZauXbumqqoqN99882L3sSy11zvuuOPyrW99K5///OeXeEmyRTW2r0701iu6twYaoQhAySZPnlysqakp7r333vXLpk2bVqypqSn279+/OG/evGKxWCzW1dUVBwwYUNx6662L//nPf+rHzpkzp7jrrrsWa2pqiuPHj69fXlNTUxwyZEj94xNPPLFYU1NTfOWVVxq8/iuvvFKsqakpnnjiicVisVicPXt2saampnjaaac1GDdp0qTirrvuWrzllls+8TkXLvv49nvttVexpqameOaZZzZY/u1vf7vYp0+f+vf5hz/8oVhTU1O88sorG4ybO3du8Wtf+1rxS1/6UvG9994rFovF4oUXXlisqakpHnbYYcW6urr6sU888USxpqamePzxx9cve+yxx4o1NTXFCy+8sPhpFj7v0v589atfrR/7xhtvFDfaaKPi0KFDF3ueY489tlhTU1P85z//WSwWi8WXX365+MUvfrE4ZMiQ+vdbLBaL//nPf4pbbbVVcZ999qlf9vH5mzZtWnGjjTYqfuMb3yi+++679cvr6uqKJ5xwQrGmpqY4YcKEYrH43znt27dv8fXXX29QU9++fYs/+MEPGiz797//Xdxll12KF1100ad+NgAALF+bb755cbvttitpm9ra2uLAgQOLm2yySfHFF19ssO6WW24p1tTUFH/yk58Ui8WPjh9333334o477lh88803lzj2iiuuqF/2Scf8n7Ts0UcfrT8mX/RY/cUXXyz26dOneMwxxxSLxf8eez/22GPFYvGjY9ONN964OHTo0Abb1dXVFYcPH16sqakp/v3vfy8Wi/89xv/yl79cfPvtt+vHvvvuu8WtttqquP322zd4fx8/xv4kf/7zn4s1NTXFX/3qVw2W33XXXcWamprijTfeWCwWi8Vnn312iX1OsVgsDh48uFhTU1P/OS+pJ/nqV7/aoL9YaPz48Q16vPfee6/4pS99qTho0KAGvUSxWCz+6le/KtbU1BTvuuuuYrFYLF511VUNPqeFzj777OKgQYOKM2fO/MT3fs455xRramqKY8aMqV+2cJ6W9D6HDBlSrKmp+cT6i8Xyer1jjz32E2tdqLF9dbGot16RvTXQeC4LBlCGhd+u2X333euXrbPOOunbt2/eeOON/PGPf0ySPPvss5k+fXr22muvdO3atX5sp06dst9++zVZPR07dkynTp1y991355Zbbsnrr7+eJNl8881zzz33NPqGmXvssUeDxwu/3fSNb3yjwfJ11103dXV1+c9//pPko2v7Jsluu+2WN954o/7PvHnzsuuuu+bNN9/ME0880eA59txzzwbfvNpss82SpP45y3XooYfmmmuuWezPeeedVz+mS5cumThxYkaNGtVg2zlz5qR9+/ZJUn9q+Z/+9KfU1tbmoIMOavCtq65du2bs2LG56KKLllrLvffemwULFuTwww9Phw4d6pdXVFTkxz/+cZIsdk3ozTffPJ/73OcaLOvRo0f++te/ZvTo0fWnb/fo0SP33ntvjj766EZ/NgAALB+VlZX1l7NqrGeeeSZTp07NN7/5zcXOaPnWt76V9dZbL/fcc09qa2vz/PPP54UXXsiOO+6Yurq6BsfcX/3qV9O2bdul3lujFPfdd1+S5Ac/+EGDY/XevXvnd7/7Xf7nf/5nidv98Y9/zIcffpivf/3refPNN+tre/PNN+t7poU90kJf/epXU11dXf+4Q4cO6d2796dekuuTbL/99llzzTVz5513Nlh+6623pl27dtlzzz2TJH369MmTTz6Z448/vsG42bNn19fUFDcq/7//+7+8+eab2W233TJ37twG87awx1o4b2uuuWaS5Lzzzsujjz6a+fPnJ/noMlMTJkxI9+7dl/o6CxYsyO23355CoVB/Bkjy337197//fd5///2y3kM5vd6SLpm2JI3tqxO99crorYFP57JgACX68MMPc/vttyf56ABr0WuV9u/fP5MmTcpNN92UPfbYI9OmTUvy0QHTx22wwQZNVlNVVVXOOeecnHTSSfUNT01NTbbffvvsueeeSz11/+M+/kv9z3zmM0mSNdZYo8HyNm0++t/HwnuGTJkyJUmyyy67LPW5Z8yY8YmvtTC4WPQ+JOXYYIMNst12233quLZt2+b+++/PAw88kGnTpmX69On597//XX9QurCOhfO7/vrrL/YcNTU1n/gaC+d/0VPEF+rRo0c6deq02LVuP/65JMnIkSNz3HHH5Re/+EV+8YtfZN11182Xv/zl7L777unXr9+nvlcAAJav7t27Z8qUKZk/f/6nXgZpoU86VqyoqMgGG2yQqVOn5s0336w/3h43blzGjRu3xOf7+PF2ORYem3487EmSjTfeeKnbLaxvxIgRSx3zaf1A8lFP8PH7kJSiUChk0KBBueSSS/L//t//yxZbbJHXX389jzzySPbYY48GN2+vqqrKH/7wh/r7e0yfPj2vv/76Yv3Aslj4uZx//vk5//zzlzhm4eey2267ZfDgwZkwYUIOPvjgtGvXLltttVV23HHH7L333g0ucfxxDz74YP7zn/9k0003zbx58+rnsaqqKp///Ofz8ssv56677qq/30w576GUXu/j/eOSlNJXJ9FbL2JF9dbApxOuAJTowQcfrP821dJuzjdx4sS8+OKL9Y+LxeJiY5blQGdJDccuu+ySL3/5y3nooYfy8MMP5/HHH8/VV1+da665JieffHL9Dew+ycIDu4/7pGv7LqxntdVWy8UXX7zUMb169WrweNH7jKxoH374YY4++ug8+OCD2WSTTbLJJptkt912y0YbbZQ///nPufzyyxuMTT79M1iShfO+tG3r6uoWa76XNAdbbrll7rvvvjz22GN56KGH8vjjj2fcuHG56aabcsghhzS4+SIAACtev3798tJLL+Vvf/tb+vfvv9RxJ510Uj788MNPDCEWWtgvVFVV1f/9gAMOWOovXZd2LF+Khce+pVrYn5x55pnp2bPnEsd8/B4Py6sf2GeffXLppZfmjjvuyBZbbJE77rgjtbW1DYKFuXPn5qCDDsrTTz+drbbaKptsskn22muvbLrpphkzZkz9L/1L9fE+beG8HXvssdliiy2WuM1qq62W5KOzn84666wceeSReeCBB/J///d/mThxYh555JFcfvnlGTdu3BKDheS/Z4A89dRT2XnnnZc4Zty4cWWFK+X0epWVlZ/6vKX01YuGJ3rr5tVbQ2snXAEo0cID16FDh9afbruo3/72t3nwwQcbHLy+9NJLi42bOnXqp77WwoPSefPmNVi+8NTkhebOnZvnn38+PXv2zK677ppdd901SfLcc8/loIMOym9+85tGHQCWq2fPnpkyZUr69OmzWNP07LPPZtasWfWX22oO/vCHP+TBBx/M4YcfXn95roVuvfXWBo8XNodTpkxZ7CD22muvzYsvvphTTz017dq1W+x1FjY/kydPrr9x5kKvvvpq3n333frT/5dm3rx5ef755/PZz342X/nKV/KVr3wlSfLKK6/k+9//fsaMGZOjjz46HTt2bMQ7BwBgedhjjz0ybty4jB07dqnhyr///e/cfvvtqa6uTufOnbPOOuskSV544YXFxhaLxbz00kvp2LFjqqurGwQWHz9Lu66uLvfcc0/98y2LRY99N9xwwwbrzj///HzwwQc5+eSTl7pddXX1YvXNmjUr//jHP5qkvsZYZ5118qUvfSl33313Tj311Nxxxx1Zb731ss0229SPue666/LPf/4zZ5xxRr773e822L4xl1KqrKzMu+++u9jyj/dpCz+Xdu3aLfa5zJ07Nw8//HD9mQwzZszItGnTsu222+bAAw/MgQcemAULFmT06NE5//zzc9NNN+XEE09c7DVnz56dv/zlL1lttdVy7rnnLvbL+7q6upx44ol56qmn8vTTT3/iGUhLsrx6vVL66lNPPTWf//znk+itm1tvDa2daBOgBK+//noeeuihdO7cOUcddVR22WWXxf4ce+yxSZLbbrst6623Xnr16pXbb7+9wWnOH3zwQW644YZPfb1u3bol+egbSIu67bbbGjyePHly9t9//1xyySUNlm+wwQbp1KlTg2/NLPxWy5K+8VOu3XbbLUny61//usHyuXPn5rjjjstRRx212EFsYyw8AG7q05nffPPNJFmsYZw6dWruueeeJP/9BtPOO++cioqK3HjjjQ2uo/3WW2/lyiuvzD/+8Y/6YKVQKDSodeDAgamsrMzll1/e4JrNxWIxF1xwQZLka1/72qfWuu++++bMM89ssHydddZJ9+7dU1FR4ZtKAAArWb9+/TJw4MDcc889ueaaaxZb/8477+SHP/xhFixYkKOPPjpVVVXZaKONss466+T2229f7BfG48ePz7Rp0+p/sbvJJptk7bXXzq233lp/eaSFbr755hx33HH1v6xeFgvPihkzZkyD5dOmTcu1116bV155ZYnb7brrrikUCrnsssvywQcfNFh3zjnn5Kijjso///nPsmr6+DF2YwwePDhvvPFGbrvttjzzzDOLnbGxtH7g//2//1d/P4tPujxZt27d8sYbbzS4PNP8+fNz9913Nxi3/fbbZ7XVVsu1115b/5oLXXbZZfnhD3+YP//5z/WPDz744Pz973+vH9OmTZtsvvnmSZZ+Nshtt92WBQsWZK+99srAgQMX60933XXXDB48OEly0003LfU9Jf/tFRf9vJdHr1dqX/3++++nT58+eutm2FtDa+fMFYASLDxw3WeffdK2bdsljtl4443Tr1+/PPHEE7nzzjvz85//PN///vfz7W9/OwcccEA6duyY8ePH55133vnU1xs0aFAuv/zy/PznP8/06dOzxhpr5IEHHsjkyZMbvP6WW26Z7bffPuPGjcucOXOyzTbbpLa2Nvfcc09eeeWVBt9wWng91quuuio77LDDJ17LtbH22Wef/O///m9uvvnmTJs2LQMGDMiCBQvy29/+Ni+//HKGDx/+iTdgXJqFNyr805/+lLXWWisDBw5M586dl7neHXbYIb/85S8zcuTITJs2LWussUZeeOGFjB8/vj5AmTNnTpKPrjd9+OGH5/LLL89+++2X3XffPXV1dbnlllvy9ttv14ckC+t97rnnMnbs2Gy99dapqanJcccdl1/+8pfZe++9s88++6RDhw65//7789hjj+WrX/1qvvnNb35irT169Mi3v/3t3HzzzTn00EMzYMCAVFRU5OGHH84TTzyRIUOGpEOHDsv8mQAAsGzOOuusvP322znnnHNyxx13ZNddd83qq6+el19+ObfeemveeOONHHDAATnggAOSfPTLzp///Oc5/PDD8+1vfzv77bdfevbsmX/84x+59dZbs/baa+eEE05oMHbo0KHZZ5998t3vfjfrrrtunnrqqYwfPz7rrrtujjzyyGV+DzvssEP22GOPjB8/PjNnzsyAAQMyd+7c3HjjjWnbtm2GDx++xO0+//nP55hjjskFF1yQvfbaK4MGDUp1dXXuv//+PPzww/nqV79aHxSVaknH2J9mt912y5lnnplzzz03bdq0yd57791g/YABA3L99dfnhBNOyP77759OnTrln//8Z2699dZUVlbmww8/rO8HlmTw4MGZOHFiDj300Oy///6pq6vL+PHjFwtkqqur89Of/jQnnXRS9txzz+y7777p1q1bHnvssfzhD3/IZpttlv333z9JcvDBB+fuu+/O4Ycfnu9+97vp2bNnXnvttdx0003p1KlTvvOd7yyxlgkTJiRJ/fMsyfe+973ceOONueuuu/KTn/xkqWe9L+wVb7/99hSLxfoepql7vXL66m9/+9t662bYW0NrJ1wBKMGtt96aioqKTzxwTT46MH7iiScybty4jB8/PmPHjs2FF16Ya6+9NslH3wjbaaed8sMf/vATn2fdddfNlVdemYsvvjhXXHFF2rdvnx122CE33XRTdt999wZjL7zwwlx99dX1l7xKkj59+mTUqFHZc88968ftt99++etf/5rx48fnsccea5IDwMrKylx22WUZM2ZMfv/732fUqFFp3759evfunYsuuqjsRqpXr1455JBD8rvf/S4jR45Mz549s+222y5zvb17984VV1yRCy+8MKNHj06SrLnmmhkyZEi+9rWvZe+9985DDz1Uf1bJ8ccfn/XXXz833HBDfvWrX6V9+/bZdNNNc95552XTTTetf94RI0Zk1KhROeusszJs2LDU1NTk8MMPz/rrr59rr722/l4uvXr1yk9/+tPst99+jTrr5Kc//WnWX3/93HrrrTn//PNTW1ub9ddfP//zP//zqfsiAAArRnV1dUaPHp0//OEPmTBhQsaOHZs33ngjHTt2zOabb54DDjig/hKvC/Xv3z+33HJLLrnkkowfPz5z587NWmutle9///sZNmxYqqur68dut912ueWWW3LppZfW/0K5R48e2X///TN06NBG3US8Mc4777xsttlm+d3vfpdzzz03n/3sZ7P11lvnhz/84WKXyV3UkUcemQ022CDXXXddrrjiitTV1WWdddbJiBEjcuCBBzbqPhxLsqRj7E/Ttm3b7LHHHhk7dmwGDBhQf9bCQttuu23OP//8+l6rqqoqa621Vo477rhssMEGOfzww/PQQw81ONZf1D777JN33303Y8eOzS9+8Yt87nOfy1577ZWvfvWr2XfffRuM3XvvvbPmmmvmqquuynXXXZd58+ZlrbXWyhFHHJFDDz20/otSvXv3zg033JBLL700t912W2bPnp3OnTunf//+Oeqoo5Z4v5W///3vefHFF9OvX7984QtfWOrnse666+arX/1q7r///vz+97+vD/g+rn///tlzzz1z33335amnnsrWW2+dXr16NXmvV05f/e1vfztbb7213rqZ9dbQ2lUUm/LcNQDKViwW06dPn3zpS1/Kddddt7LLAQAAgBZHbw2sKC7SDtBMLDztfLXVVlvJlQAAAEDLpLcGVhSXBQNoBi6//PI8/fTTST66tiwAAABQGr01sCIJVwBWsjlz5mTMmDH58MMPs8cee+SQQw5Z2SUBAABAi6K3BlY091wBAAAAAAAogXuuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAla/Q3ti8Vi6urcdqa5KhQqzA8ls99QDvsN5bDfUI6Vud8UChWpqKhYKa9Ny9VSeib/Jq8azOOqwTyuGszjqsE8rhrM44rV2L6p1YcrdXXFvPHGuyu7DJagTZtCunRZLXPmvJcFC+pWdjm0EPYbymG/oRz2G8qxsveb1VdfLZWVwhVK0xJ6ppX9s0XTMI+rBvO4ajCPqwbzuGowjyteY/smlwUDAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIAStFnZBQDA8lQoVKRQqPjEMZWVhfr/1tUVU1dXXBGlAQAAQJP5eP+7aK+7NHpgKJ9wBYBVVqFQkc6dO3zigeSiqqvbp7a2Lm+99Z6DSwAAAFqMT+p/q6vbL3U7PTCUT7gCwCqrUKhIZWUho258MtNfe+dTx/fs3iknHLBVCoUKB5YArBSzZ8/OOeeck4ceeijz5s1Lv379MmLEiGywwQZJkmeffTYjR47MP//5z3Tu3DkHHnhgDj300Prt6+rqcvHFF+e3v/1t5syZk6222iqnnXZa1ltvvZX1lgCAFaDU/jfRA8OyEq4AsMqb/to7eWnG2yu7DAD4VEcccUQKhUKuvPLKdOjQIRdccEEOPvjg3Hvvvfnggw9yyCGHZJdddskZZ5yRSZMm5Ywzzkjnzp0zePDgJMkll1yScePG5eyzz0737t1z3nnn5bDDDsudd96ZqqqqlfzuAIDlTf8LK45wBQAAoBl4880307NnzxxxxBH5whe+kCQ58sgjs9dee+WFF17Io48+mqqqqpx++ulp06ZNevfunalTp+bKK6/M4MGDM3/+/Fx99dUZPnx4dtxxxyTJr371q+ywww659957s/vuu6/MtwcAAKuUxl2EHgAAgOWqS5cuOf/88+uDlf/85z8ZPXp0evTokQ022CATJ05Mv3790qbNf78j179//0yZMiWzZ8/Oc889l3fffTf9+/evX19dXZ2NNtooTzzxxAp/PwAAsCpz5goAAEAz8z//8z+55ZZbUlVVlUsvvTQdOnTIzJkzU1NT02Bct27dkiSvvvpqZs6cmSRZc801Fxvz73//e8UUDgAArYRwBQAAoJk56KCDsu++++amm27KUUcdlbFjx+aDDz5Y7L4pbdu2TZLMmzcv77//fpIscczbby/btdfbtGneFz2orCw0+C8tk3lcNZjHVYN5bHmWZa7Mc/Pm57H5Eq4AAAA0MxtssEGS5Mwzz8ykSZNyww03pF27dpk/f36DcfPmzUuSdOjQIe3atUuSzJ8/v/7vC8e0b9++7FoKhYp06bJa2duvSNXV5b9Pmg/zuGowj6sG89g6mOeWwTw1P8IVAACAZmD27Nl59NFH8/Wvfz2VlZVJkkKhkN69e2fWrFnp0aNHZs2a1WCbhY+7d++eBQsW1C9bd911G4zp06dP2XXV1RUzZ857ZW+/IlRWFlJd3T5z5ryf2tq6lV0OZTKPqwbzuGowjy3Pwjkrh3lu3vw8rnjV1e0bdaaQcAUAAKAZmDVrVn784x+na9eu2XbbbZMkH374YZ555pkMGDAgn/vc5zJu3LjU1tbWhy+PPvpoevXqla5du6ZTp07p2LFjHn/88fpwZc6cOXnmmWcyZMiQZaptwYKW0cjX1ta1mFpZOvO4ajCPqwbz2DqY55bBPDU/LtQGAADQDPTp0yfbb799zjjjjEycODGTJ0/OiSeemDlz5uTggw/O4MGDM3fu3Jxyyil58cUXM2HChIwZMyZDhw5N8tG9VoYMGZJRo0bl/vvvz3PPPZcf/ehH6dGjRwYOHLiS3x0AAKxanLkCAADQDFRUVOTXv/51fvnLX+a4447LO++8k6233jo33nhj1lprrSTJVVddlZEjR2bQoEFZY401MmLEiAwaNKj+OY499tgsWLAgp556aj744IP069cvo0ePXuwm9wAAwLIRrgAAADQTnTp1yumnn57TTz99ies322yz3HzzzUvdvrKyMsOHD8/w4cOXU4UAAEDismAAAAAAAAAlEa4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACZpVuDJjxoxsuOGGi/357W9/myR59tlnM2TIkPTt2zc77bRTRo8evZIrBgAAAAAAWps2K7uART3//PNp27Zt7rvvvlRUVNQv79SpU958880ccsgh2WWXXXLGGWdk0qRJOeOMM9K5c+cMHjx4JVYNAAAAAAC0Js0qXJk8eXJ69eqVbt26LbZuzJgxqaqqyumnn542bdqkd+/emTp1aq688krhCgAAAAAAsMI0q8uCPf/889lggw2WuG7ixInp169f2rT5bx7Uv3//TJkyJbNnz15RJQIAAAAAAK1cswpXJk+enNmzZ2f//ffPdtttl/322y8PPfRQkmTmzJnp0aNHg/ELz3B59dVXV3itAAAAAABA69RsLgs2f/78vPzyy2nfvn1GjBiRDh065Pbbb89hhx2Wa665Jh988EGqqqoabNO2bdskybx585bptdu0aVYZE/+/yspCg/9CY9hvWFS5+4H9h8bw7w3lsN8AAACsGppNuFJVVZUnnngibdq0qQ9RNtlkk7z00ksZPXp02rVrl/nz5zfYZmGo0qFDh7Jft1CoSJcuq5VfOMtddXX7lV0CLZD9hmVh/6EU9hfKYb8BAABo2ZpNuJIsOSSpqanJww8/nB49emTWrFkN1i183L1797Jfs66umDlz3it7e5afyspCqqvbZ86c91NbW7eyy6GFsN+wqIX7Q6nsPzSGf28ox8reb6qr2ztrBgAAoAk0m3Dlueeey3777Zcrr7wyW2+9df3yf/7zn9lggw3yxS9+MePGjUttbW0qKyuTJI8++mh69eqVrl27LtNrL1jgFyLNWW1tnTmiZPYbloX9h1LYXyiH/QYAAKBlazZfW6upqckXvvCFnHHGGZk4cWJeeumlnH322Zk0aVKGDRuWwYMHZ+7cuTnllFPy4osvZsKECRkzZkyGDh26sksHAAAAAABakWZz5kqhUMhll12WUaNG5bjjjsucOXOy0UYb5ZprrsmGG26YJLnqqqsycuTIDBo0KGussUZGjBiRQYMGreTKAQAAAACA1qTZhCtJsvrqq+ess85a6vrNNtssN9988wqsCAAAAAAAoKFmc1kwAAAAAACAlkC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAADQTLz11lv56U9/mq985SvZcssts99++2XixIn160866aRsuOGGDf585StfqV9fV1eXCy+8MDvssEM233zzfP/738/UqVNXxlsBAIBVWpuVXQAAAAAfOf744zN79uycf/75WX311TN27NgceuihmTBhQnr37p3nn38+w4YNy5AhQ+q3qaysrP/7JZdcknHjxuXss89O9+7dc9555+Wwww7LnXfemaqqqpXxlgAAYJXkzBUAAIBmYOrUqXnkkUdy2mmnZeutt87666+fU045Jd27d8+dd96Z2travPjii9l0002zxhpr1P9ZffXVkyTz58/P1VdfnWOOOSY77rhj+vTpk1/96ld57bXXcu+9967kdwcAAKsW4QoAAEAz0KVLl1xxxRXZZJNN6pdVVFSkWCzm7bffzssvv5x58+ald+/eS9z+ueeey7vvvpv+/fvXL6uurs5GG22UJ554YrnXDwAArYnLggEAADQD1dXV2XHHHRssu/vuuzNt2rRsv/32mTx5cioqKjJmzJj85S9/SaFQyI477pjjjjsunTp1ysyZM5Mka665ZoPn6NatW/79738vU21t2jTv7+VVVhYa/JeWyTyuGszjqsE8tjzLMlfmuXnz89h8CVcAAACaoSeffDInn3xydt555wwYMCAXXnhhCoVC1l577Vx22WWZOnVqzj333EyePDljxozJ+++/nySL3Vulbdu2efvtt8uuo1CoSJcuqy3Te1lRqqvbr+wSaALmcdVgHlcN5rF1MM8tg3lqfoQrAAAAzcx9992XE044IZtvvnnOP//8JMkxxxyTgw8+ONXV1UmSmpqarLHGGtl3333z1FNPpV27dkk+uvfKwr8nybx589K+ffnNeF1dMXPmvLcM72b5q6wspLq6febMeT+1tXUruxzKZB5XDeZx1WAeW56Fc1YO89y8+Xlc8aqr2zfqTCHhCgAAQDNyww03ZOTIkRk4cGBGjRpVfyZKRUVFfbCyUE1NTZJk5syZ9ZcDmzVrVtZdd936MbNmzUqfPn2WqaYFC1pGI19bW9diamXpzOOqwTyuGsxj62CeWwbz1Py4UBsAAEAzMXbs2Jx55pk54IAD8utf/7rBJb5+/OMf59BDD20w/qmnnkqSbLDBBunTp086duyYxx9/vH79nDlz8swzz2TrrbdeMW8AAABaCWeuAAAANANTpkzJWWedlYEDB2bo0KGZPXt2/bp27dpljz32yBFHHJFLL700u+++e6ZMmZKf/exn2WOPPdK7d+8kyZAhQzJq1KisvvrqWXvttXPeeeelR48eGThw4Mp6WwAAsEoSrgAAADQD99xzTz788MPce++9uffeexusGzRoUM4555xccMEFueyyy3LZZZelU6dO2XPPPXPcccfVjzv22GOzYMGCnHrqqfnggw/Sr1+/jB49erGb3AMAAMtGuAIAANAMDBs2LMOGDfvEMbvttlt22223pa6vrKzM8OHDM3z48KYuDwAAWIR7rgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACVotuHKlClTssUWW2TChAn1y5599tkMGTIkffv2zU477ZTRo0evxAoBAAAAAIDWqFmGKx9++GFOOOGEvPfee/XL3nzzzRxyyCH5/Oc/n/Hjx+eYY47JBRdckPHjx6/ESgEAAAAAgNamzcouYEkuuuiirLbaag2W3XLLLamqqsrpp5+eNm3apHfv3pk6dWquvPLKDB48eCVVCgAAAAAAtDbN7syVJ554IjfffHPOPffcBssnTpyYfv36pU2b/+ZB/fv3z5QpUzJ79uwVXSYAAAAAANBKNatwZc6cORkxYkROPfXUrLnmmg3WzZw5Mz169GiwrFu3bkmSV199dYXVCAAAAAAAtG7N6rJgp59+evr27Zs999xzsXUffPBBqqqqGixr27ZtkmTevHnL9Lpt2jSrjIn/X2VlocF/oTHsNyyq3P3A/kNj+PeGcthvAAAAVg3NJly57bbbMnHixNxxxx1LXN+uXbvMnz+/wbKFoUqHDh3Kft1CoSJduqz26QNZaaqr26/sEmiB7DcsC/sPpbC/UA77DQAAQMvWbMKV8ePHZ/bs2dlpp50aLD/ttNMyevTorLXWWpk1a1aDdQsfd+/evezXrasrZs6c98renuWnsrKQ6ur2mTPn/dTW1q3scmgh7DcsauH+UCr7D43h3xvKsbL3m+rq9s6aAQAAaALNJlwZNWpUPvjggwbLdt111xx77LH5xje+kbvuuivjxo1LbW1tKisrkySPPvpoevXqla5duy7Tay9Y4BcizVltbZ05omT2G5aF/YdS2F8oh/0GAACgZWs2X1vr3r171ltvvQZ/kqRr165Ze+21M3jw4MydOzennHJKXnzxxUyYMCFjxozJ0KFDV3LlAAAAAABAa9JswpVP07Vr11x11VWZMmVKBg0alIsvvjgjRozIoEGDVnZpAAAAAABAK9JsLgu2JM8//3yDx5tttlluvvnmlVQNAAAAAABAE5+58u677y523xQAAIDWQk8EAACtQ9nhyl/+8pdccskl9Y/PPffcbLPNNtl6660zcuTIJikOAACgudITAQBA61VWuPLAAw9k6NCh+f3vf58kmThxYq655pqsvfba2WKLLXLDDTdk7NixTVooAABAc6EnAgCA1q2scOWaa67Juuuum+uuuy5Jctddd6VQKOSaa67J9ddfn69+9asZP358kxYKAADQXOiJAACgdSsrXHn22Wez3377pXv37kmSRx55JDU1NVl77bWTJDvssEP+9a9/NV2VAAAAzYieCAAAWreywpUFCxakY8eOSZIZM2Zk2rRp+dKXvlS/vq6uLm3atGmaCgEAAJoZPREAALRuZYUrPXv2zDPPPJMkueeee1JRUZEddtihfv0DDzyQnj17Nk2FAAAAzYyeCAAAWreyvkq122675dJLL82MGTPy17/+Nd27d0///v0zbdq0/PznP88jjzySn/zkJ01dKwAAQLOgJwIAgNatrHDlyCOPzFtvvZXx48dnzTXXzMiRI9OmTZu89dZbefjhh/Od73wnQ4YMaepaAQAAmgU9EQAAtG5lhSuFQiGnnnpqTj311AbL+/TpkwceeKD+po4AAACrIj0RAAC0bmXdc+V73/teHn300cWWV1VVpXv37rnvvvvyta99bZmLAwAAaI70RAAA0Lo16syV999/P2+++Wb947/+9a8ZOHBg1ltvvcXG1tXV5eGHH86rr77adFUCAACsRHoiAABgUY0KV+bOnZs99tgj77//fv2ys846K2edddZSt+nbt+8yFwcAANAc6IkAAIBFNSpcWWONNfLTn/40jz/+eIrFYm677bZstdVWWWeddRYbWygU8rnPfS777bdfkxcLAACwMuiJAACARTX6hvZ777139t577yQfnQJ/yCGHZOedd15edQEAADQreiIAAGChRocri/rTn/7U1HUAAAC0GHoiAABo3coKV5KkWCzmsccey+uvv566uroljln4rS4AAIBVjZ4IAABar7LClalTp+awww7LK6+8ssT1xWIxFRUVGgkAAGCVpCcCAIDWraxwZdSoUXnllVcyePDgbLrppqmqqmrqugAAAJotPREAALRuZYUrjz32WPbbb7/89Kc/bep6AAAAmj09EQAAtG6FcjZasGBBvvjFLzZ1LQAAAC2CnggAAFq3ssKVjTfeOE8//XRT1wIAANAi6IkAAKB1KytcOfbYY/P73/8+99xzT4rFYlPXBAAA0KzpiQAAoHUr654rV199dT772c/muOOOS7t27dKlS5dUVFQ0GFNRUZH77ruvSYoEAABoTvREAADQupV15srkyZNTKBSy5pprpkuXLkmSYrHY4E9dXV2TFgoAANBcLK+e6K233spPf/rTfOUrX8mWW26Z/fbbLxMnTqxf/+yzz2bIkCHp27dvdtppp4wePbrB9nV1dbnwwguzww47ZPPNN8/3v//9TJ06ddneLAAAsJiyzlz505/+1NR1AAAAtBjLqyc6/vjjM3v27Jx//vlZffXVM3bs2Bx66KGZMGFCVl999RxyyCHZZZddcsYZZ2TSpEk544wz0rlz5wwePDhJcskll2TcuHE5++yz071795x33nk57LDDcuedd6aqqmq51AwAAK1RWeHKx82fPz9t2rRJoVDWiTAAAAAtWlP0RFOnTs0jjzySm266KVtuuWWS5JRTTslf/vKX3HnnnWnXrl2qqqpy+umnp02bNundu3emTp2aK6+8MoMHD878+fNz9dVXZ/jw4dlxxx2TJL/61a+yww475N57783uu+/eJO8VAAAo87JgyUenq//sZz/L9ttvn759++bxxx/PxIkTM2zYsEyZMqUpawQAAGh2mron6tKlS6644opssskm9csqKipSLBbz9ttvZ+LEienXr1/atPnvd+T69++fKVOmZPbs2Xnuuefy7rvvpn///vXrq6urs9FGG+WJJ55YtjcLAAA0UFa48tZbb2XffffN2LFj0759+xSLxSTJ22+/nQcffDAHHHBAXnnllSYtFAAAoLlYHj1RdXV1dtxxxwaX77r77rszbdq0bL/99pk5c2Z69OjRYJtu3bolSV599dXMnDkzSbLmmmsuNubf//53ye8RAABYurIuC3bxxRdnxowZueaaa7Lhhhtmu+22S5LsvPPOueKKK3Lsscfmkksuydlnn92kxQIAADQHK6InevLJJ3PyySdn5513zoABA3L22Wcvdt+Utm3bJknmzZuX999/P0mWOObtt98uu44kadOmeV8CurKy0OC/tEzmcdVgHlcN5rHlWZa5Ms/Nm5/H5qvsG9p/5zvfybbbbps333yzwbqvfOUr2XfffXPvvfc2SYEAAADNzfLuie67776ccMIJ2XzzzXP++ecnSdq1a5f58+c3GDdv3rwkSYcOHdKuXbskH93/ZeHfF45p37592bUUChXp0mW1srdfkaqry3+fNB/mcdVgHlcN5rF1MM8tg3lqfsoKV2bNmpU+ffosdX3v3r0zduzYsosCAABozpZnT3TDDTdk5MiRGThwYEaNGlV/JkqPHj0ya9asxepIku7du2fBggX1y9Zdd91G1/pp6uqKmTPnvbK3XxEqKwuprm6fOXPeT21t3couhzKZx1WDeVw1mMeWZ+GclcM8N29+Hle86ur2jTpTqKxwpWvXrpkxY8ZS10+ePDldunQp56kBAACaveXVE40dOzZnnnlmDjzwwJx88skpFP7b1PXr1y/jxo1LbW1tKisrkySPPvpoevXqla5du6ZTp07p2LFjHn/88fpwZc6cOXnmmWcyZMiQkmtZ1IIFLaORr62tazG1snTmcdVgHlcN5rF1MM8tg3lqfsq6UNtXvvKVjBs3LtOnT19s3d/+9rfccsst2X777Ze5OAAAgOZoefREU6ZMyVlnnZWBAwdm6NChmT17dl5//fW8/vrreeeddzJ48ODMnTs3p5xySl588cVMmDAhY8aMydChQ5N8dK+VIUOGZNSoUbn//vvz3HPP5Uc/+lF69OiRgQMHNsn7BgAAPlLWmStHH310HnjggQwaNChbbbVVKioqMm7cuIwZMyYPPfRQOnbsmCOPPLKpawUAAGgWlkdPdM899+TDDz/Mvffeu9j9WgYNGpRzzjknV111VUaOHJlBgwZljTXWyIgRIzJo0KD6cccee2wWLFiQU089NR988EH69euX0aNHL3aTewAAYNmUFa50794948aNy89+9rP85S9/SbFYzD333JMk2WqrrXLaaaelZ8+eTVooAABAc7E8eqJhw4Zl2LBhnzhms802y80337zU9ZWVlRk+fHiGDx9e0msDAAClKStcSZKePXvmiiuuyDvvvJOXX345dXV16dmzZ7p27dqU9QEAADRLeiIAAGi9yg5XFurUqVM23XTTpqgFAACgxdETAQBA69OocOWkk07Kd7/73Wy++eb1jz9NRUVFzjrrrGWrDgAAoBnQEwEAAItqVLhy6623ZrvttqtvJG699dZP3UYjAQAArCr0RAAAwKIaFa7cf//9WX311Rs8BgAAaC30RAAAwKIaFa6svfbaS3w8Z86cdOzYMYVCIUnywgsvZI011kjnzp2btkoAAICVSE8EAAAsqlDuhr/61a+yww47ZNq0afXLrrzyymy//fa5+uqrm6Q4AACA5kpPBAAArVejzlz5uFtuuSWXX355ttpqq7Rt27Z++d57753//Oc/Oe+887Lmmmvm61//epMVCgAA0FzoiQAAoHUr68yVsWPH5stf/nJuvPHGrLnmmvXLt9tuu1x99dXZdtttc8011zRZkQAAAM2JnggAAFq3ssKVqVOnZtddd13q+oEDB+all14quygAAIDmTE8EAACtW1nhSvv27fP6668vdf2bb76ZysrKsosCAABozvREAADQupUVrmy11VYZO3bsEpuJN954I+PGjcuWW265zMUBAAA0R3oiAABo3cq6of3hhx+e/fffP9/85jez1157Zf31109FRUX+9a9/5Y477shbb72VI488sqlrBQAAaBb0RAAA0LqVFa5suummueSSS3Laaafl2muvbbCuR48e+c1vfpPNNtusKeoDAABodvREAADQupUVriTJDjvskD/96U955plnMn369CxYsCA9e/bMxhtv7NrCAADAKk9PBAAArVfZ4cpCG220UTbaaKOmqAUAAKDF0RMBAEDr06hw5eKLL86uu+6ampqa+sefpqKiIkcdddSyVQcAANAM6IkAAIBFNTpcWW+99TQSAABAq6QnAgAAFtWocGX06NH54he/WP/4uuuuW24FAQAANDd6IgAAYFGNCldOPvnkHH/88dlrr72SJK+++mq23nrr9OzZc7kWBwAA0BzoiQAAgEUVGjPojTfeyNy5c+sfn3TSSZk0adLyqgkAAKBZ0RMBAACLatSZK2uttVYuueSSTJ8+PauttlqKxWL++Mc/5uWXX17qNq4vDAAArCr0RAAAwKIaFa4cd9xxOfHEE3PNNdck+ahJ+OMf/5g//vGPS91GIwEAAKwq9EQAAMCiGhWuDBw4MP3798/LL7+c+fPn56CDDsqwYcOy3XbbLe/6AAAAVjo9EQAAsKhGhSs777xzg5s3rrXWWllrrbWyzTbbLNfiAAAAmgM9EQAAsKiybmj/6quvpn379sutKAAAgOZETwQAACyqrBvaJ8m9996bqVOnLnUb1xcGAABWFXoiAABgUW5oDwAA8Cn0RAAAwKIaFa58/etfd/NGAACg1dITAQAAi2pUuJIkXbp0SZcuXZIk/fr1y5e+9CU3bwQAAFoNPREAALBQo8OVRV1//fX1f58yZUpmzJiRjTfeOO3bt0+hUEhVVVWTFQgAANDc6IkAAKB1K5S74aRJk7LnnnvmG9/4Rg477LA899xz+dvf/paddtopd999d1PWCAAA0OzoiQAAoPUqK1x54YUXcsghh+Q///lPvvnNb9Yvb9++fWpra3PCCSfkiSeeaLIiAQAAmhM9EQAAtG5lhSsXXXRROnTokDvvvDMnnnhiisVikmSLLbbI7bffnjXWWCNXXnllkxYKAADQXOiJAACgdSsrXPnrX/+a7373u+natWsqKioarOvevXv23XffPPPMM01SIAAAQHOjJwIAgNatrHDl3XffTffu3Ze6/rOf/WzmzJlTdlEAAADNmZ4IAABat7LClZ49e+app55a6vrHHnssa6+9dtlFAQAANGd6IgAAaN3KClf22GOP3HrrrfnjH/9Yv6yioiJ1dXW54oorcu+992a33XZrsiIBAACaEz0RAAC0bm3K2eiwww7L//3f/+WHP/xhqqurU1FRkdNOOy1vvfVW3n777fTp0ydDhw5t6loBAACaBT0RAAC0bmWduVJVVZVrr702P/7xj7PWWmulXbt2+fe//52uXbvmiCOOyNixY9O+ffumrhUAAKBZ0BMBAEDrVtaZK0nymc98Jj/4wQ/ygx/8oCnrAQAAaBH0RAAA0HqVHa4kydy5c/Pwww9n+vTpqaqqylprrZXtt98+7dq1a6r6AAAAmi09EQAAtE5lhyv33HNPfvrTn2bOnDkpFotJPrqB42qrrZaf/exn+cY3vtFkRQIAADQ3eiIAAGi9ygpX/v73v+fHP/5xOnXqlGOPPTZf+MIXUldXl8mTJ+eGG27IiBEj0rNnz2y22WZNXS8AAMBKpycCAIDWraxw5dJLL03nzp3z+9//Pl27dq1fvuuuu2a//fbLXnvtlauuuioXXnhhkxUKAADQXOiJAACgdSuUs9H/+3//L/vuu2+DJmKhrl27Zt99982TTz65zMUBAAA0R3oiAABo3coKV957770lNhELrb766nnnnXdKft7Zs2dn+PDh6d+/f7bYYoscfvjhefHFF+vXP/vssxkyZEj69u2bnXbaKaNHjy6nfAAAgGWyvHoiAACgZSgrXOnZs2cee+yxpa5/7LHHstZaa5X8vEcccUReeeWVXHnllfnd736Xdu3a5eCDD87777+fN998M4ccckg+//nPZ/z48TnmmGNywQUXZPz48eW8BQAAgLItr54IAABoGcoKV/bYY4/ce++9ufjiizN//vz65fPnz8/FF1+c++67L9/4xjdKes4333wzPXv2zJlnnplNN900vXv3zpFHHpnXX389L7zwQm655ZZUVVXl9NNPT+/evTN48OAcfPDBufLKK8t5CwAAAGVbHj0RAADQcpR1Q/vDDjssf/7zn3PxxRfn6quvzrrrrpuKiopMnTo17733XjbaaKMcfvjhJT1nly5dcv7559c//s9//pPRo0enR48e2WCDDXLRRRelX79+adPmvyX3798/l19+eWbPnv2Jp+QDAAA0peXREwEAAC1HWeFKVVVVrrvuuowePTr/+7//m5dffjnFYjHrrrtudttttxx66KFp165d2UX9z//8T/2ZKpdeemk6dOiQmTNnpqampsG4bt26JUleffXVZQpX2rQp6wQelrPKykKD/0Jj2G9YVLn7gf2HxvDvDeWw36w6lndPBAAANG9lhStJ0q5duxx11FE56qijmrKeJMlBBx2UfffdNzfddFOOOuqojB07Nh988EGqqqoajGvbtm2SZN68eWW/VqFQkS5dVlumelm+qqvbr+wSaIHsNywL+w+lsL9QDvvNqmF59kQAAEDzVnK48vTTT2fjjTdebPn999+fioqKDBgwYJmL2mCDDZIkZ555ZiZNmpQbbrgh7dq1a3At4+S/oUqHDh3Kfq26umLmzHmv/GJZbiorC6mubp85c95PbW3dyi6HFsJ+w6IW7g+lsv/QGP69oRwre7+prm7vrJkmsCJ6IgAAoHlrdLjyxhtv5Nhjj83f/va3PPbYY6murm6w/oYbbshjjz2WzTffPBdccEG6d+9eUiGzZ8/Oo48+mq9//euprKxMkhQKhfTu3TuzZs1Kjx49MmvWrAbbLHxc6mt93IIFfiHSnNXW1pkjSma/YVnYfyiF/YVy2G9apuXdEwEAAC1Ho7629t577+Wggw7KxIkT069fv7z//vuLjTnggAOy3XbbZdKkSfn+979f8qW6Zs2alR//+Mf561//Wr/sww8/zDPPPJPevXunX79+efLJJ1NbW1u//tFHH02vXr3czB4AAFiuVkRPBAAAtByNClfGjBmTF154IT/72c8yZsyYJX4Da5dddsno0aNz/PHH56WXXsr1119fUiF9+vTJ9ttvnzPOOCMTJ07M5MmTc+KJJ2bOnDk5+OCDM3jw4MydOzennHJKXnzxxUyYMCFjxozJ0KFDS3odAACAUq2InggAAGg5GhWu3HPPPdlxxx3zne9851PHHn744dlyyy3zhz/8oaRCKioq8utf/zr9+/fPcccdl29/+9t5++23c+ONN2attdZK165dc9VVV2XKlCkZNGhQLr744owYMSKDBg0q6XUAAABKtSJ6IgAAoOVo1D1Xpk6dmr333rvRT7rTTjvl0ksvLbmYTp065fTTT8/pp5++xPWbbbZZbr755pKfFwAAYFmsqJ4IAABoGRp15kqhUEi7du0a/aSdO3dORUVF2UUBAAA0J3oiAABgUY0KV9Zaa63861//avSTvvjii0u8BjEAAEBLpCcCAAAW1ahwZYcddsjvf//7vPvuu586ds6cObn99tuzxRZbLHNxrPoKhYq0aVNY4p/Kyo92z8rKhssLBd8ABABgxdITAQAAi2pUuPLd73438+bNy9ChQ/Pmm28uddzs2bNz1FFHZc6cOTnggAOarEhWTYVCRTp37pAuXVZb4p/q6vZJkurq9g2Wd+7cQcACAMAKpScCAAAW1agb2q+77ro55ZRT8j//8z/Zeeed841vfCNbbrllunXrltra2rz++ut58skn88c//jHvvvtufvKTn2TjjTde3rXTwhUKFamsLGTUjU9m+mvvNGqbnt075YQDtkqhUJG6uuJyrhAAAD6iJwIAABbVqHAlSb797W+nW7du+elPf5rf/e53GT9+fIP1xWIx66yzTs4777wMGDCgyQtl1TX9tXfy0oy3V3YZAADwifREAADAQo0OV5Jkxx13zIMPPpjHHnssf//73zNr1qxUVlame/fu2WabbbLZZpstrzoBAABWOj0RAACQlBiuJElFRUW23XbbbLvttsujHgAAgGZNTwQAADTqhvYAAAAAAAB8RLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJWhUuHLNNdfkpZdeWt61AAAANEt6IgAAYFGNClcuvPDCTJo0qf7xzjvvnPvvv3951QQAANCs6IkAAIBFNSpcKRQKefTRR/Puu+8mSWbMmJH3339/uRYGAADQXOiJAACARbVpzKAddtghd955Z+66664kSUVFRYYPH57hw4cvdZuKioo888wzTVMlAADASrQyeqJLLrkkjz76aK6//vr6ZSeddFImTJjQYFz37t3zl7/8JUlSV1eXiy++OL/97W8zZ86cbLXVVjnttNOy3nrrlV0HAACwuEaFKz//+c+z5pprZvLkyZk/f34mTpyYXr16pWvXrsu7PgAAgJVuRfdE1157bS688ML069evwfLnn38+w4YNy5AhQ+qXVVZW1v/9kksuybhx43L22Wene/fuOe+883LYYYflzjvvTFVV1XKpFQAAWqNGhSsdO3bMiSeeWP+4T58+OeKII7Lnnnsut8IAAACaixXVE7322ms55ZRT8uSTT6ZXr14N1tXW1ubFF1/MkUcemTXWWGOxbefPn5+rr746w4cPz4477pgk+dWvfpUddtgh9957b3bfffcmrRUAAFqzRt1z5eOuu+66bLfddk1dCwAAQIuwvHqip59+Op/97Gdz++23Z/PNN2+w7uWXX868efPSu3fvJW773HPP5d13303//v3rl1VXV2ejjTbKE0880eS1AgBAa9aoM1c+bptttkmS3Hbbbbn77rszffr0VFVVZc0118zXvva1fPOb32zSIgEAAJqT5dUTDRgwIAMGDFjiusmTJ6eioiJjxozJX/7ylxQKhey444457rjj0qlTp8ycOTNJsuaaazbYrlu3bvn3v/9dVj0LtWlT1vfyVpjKykKD/9IymcdVg3lcNZjHlmdZ5so8N29+HpuvssKVYrGYY489Nvfdd1+KxWI6deqUurq6PPvss3nggQfyv//7v7nkkkuaulYAAIBmYWX0RC+88EIKhULWXnvtXHbZZZk6dWrOPffcTJ48OWPGjMn777+fJIvdW6Vt27Z5++23y37dQqEiXbqstky1ryjV1e1Xdgk0AfO4ajCPqwbz2DqY55bBPDU/ZYUrN9xwQ+69995885vfzI9//ON07949SfLvf/87v/71r3P77bfnpptuyn777dekxQIAADQHK6MnOuaYY3LwwQenuro6SVJTU5M11lgj++67b5566qm0a9cuyUf3Xln49ySZN29e2rcvvxmvqytmzpz3lq345ayyspDq6vaZM+f91NbWrexyKJN5XDWYx1WDeWx5Fs5ZOcxz8+bnccWrrm7fqDOFygpXxo8fn2222Sa/+MUvGixfc801c+6552bmzJkZP368cAUAAFglrYyeqKKioj5YWaimpiZJMnPmzPrLgc2aNSvrrrtu/ZhZs2alT58+y/TaCxa0jEa+trauxdTK0pnHVYN5XDWYx9bBPLcM5qn5KetCbVOmTMnAgQOXun6XXXbJv/71r7KLAgAAaM5WRk/04x//OIceemiDZU899VSSZIMNNkifPn3SsWPHPP744/Xr58yZk2eeeSZbb711k9YCAACtXVnhSps2bfLee0s/Lfy9995LRUVF2UUBAAA0ZyujJ9pjjz3yyCOP5NJLL820adPy5z//OSeffHL22GOP9O7dO1VVVRkyZEhGjRqV+++/P88991x+9KMfpUePHp8YBAEAAKUrK1zZZJNNMmHChMybN2+xde+//34mTJiQjTbaaJmLAwAAaI5WRk/01a9+NRdccEH++Mc/Zs8998wpp5ySXXfdNWeddVb9mGOPPTbf+ta3cuqpp2a//fZLZWVlRo8evdhN7gEAgGVT1j1Xvv/972fo0KH51re+laFDh2aDDTZIkrzwwgu5/PLLM23atJx44olNWigAAEBzsSJ6onPOOWexZbvttlt22223pW5TWVmZ4cOHZ/jw4cv02gAAwCcrK1zZcccdM2LEiJx//vmLHbQXCoX86Ec/yoABA5qkQAAAgOZGTwQAAK1bWeFK8tE3tQYOHJj77rsv06ZNS7FYzLrrrpuBAwdmnXXWacoaAQAAmh09EQAAtF5lhytJss466+SQQw5pqloAAABaFD0RAAC0TmXd0B4AAAAAAKC1Eq4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACcoKV2666aa8/PLLTVwKAABAy6AnAgCA1q2scGXUqFG54447mroWAACAFkFPBAAArVtZ4UqhUEiXLl2auhYAAIAWQU8EAACtW1nhyqGHHporrrgiDz30UOrq6pq6JgAAgGZNTwQAAK1bm3I2mjRpUubOnZvDDz88VVVV6dKlSyorKxuMqaioyH333dckRQIAADQneiIAAGjdygpXJk+enM6dO6dz5871y4rFYoMxH38MAACwqtATAQBA61ZWuPKnP/2pqesAAABoMfREAADQupV1z5WPmz9/vusMAwAArZaeCAAAWpeyw5W33norP/vZz7L99tunb9++efzxxzNx4sQMGzYsU6ZMacoaAQAAmh09EQAAtF5lhStvvfVW9t1334wdOzbt27evv5bw22+/nQcffDAHHHBAXnnllSYtFAAAoLnQEwEAQOtWVrhy8cUXZ8aMGbnmmmty88031zcSO++8c6644oq89957ueSSS5q0UAAAgOZCTwQAAK1bWeHKn/70p3znO9/Jtttum4qKigbrvvKVr2TffffN448/3iQFAgAANDd6IgAAaN3KCldmzZqVPn36LHV979698/rrr5ddFAAAQHOmJwIAgNatrHCla9eumTFjxlLXT548OV26dCm7KAAAgOZMTwQAAK1bWeHKV77ylYwbNy7Tp09fbN3f/va33HLLLdl+++2XuTgAAIDmSE8EAACtW5tyNjr66KPzwAMPZNCgQdlqq61SUVGRcePGZcyYMXnooYfSsWPHHHnkkU1dKwAAQLOgJwIAgNatrDNXunfvnnHjxmWLLbbIX/7ylxSLxdxzzz158MEH07dv31x//fXp2bNnU9cKAADQLOiJAACgdSvrzJUk6dmzZ6644oq88847efnll1NXV5eePXuma9euTVkfAABAs6QnAgCA1qusM1cWtWDBghSLxbRp0yZt27ZtipoAAABaDD0RAAC0PmWfufLUU0/lF7/4RZ588skUi8UkSaFQyJe//OWccsopWW+99ZqsSAAAgOZGTwQAAK1XWeHK008/nQMPPDDz58/PDjvskM9//vOpq6vLv/71rzz00EP57ne/m1tuuSXrrLNOU9cLAACw0umJAACgdSsrXLnwwgtTVVWVcePGpU+fPg3WTZo0KYccckjOP//8/OpXv2qSIgEAAJoTPREAALRuZd1zZeLEiTnwwAMXayKSpG/fvhkyZEgeeeSRZS4OAACgOdITAQBA61ZWuFJRUZHq6uqlru/Zs2cWLFhQdlEAAADNmZ4IAABat7LClR133DG///3vM3/+/CWuv/vuu7P99tsvU2EAAADNlZ4IAABat0bdc+WJJ55o8HjnnXfOqaeemgMOOCCHH3541l9//RQKhUybNi033HBDXnjhhfz6179eHvUCAACscHoiAABgUY0KVw488MBUVFQ0WFYsFvPUU0/l2GOPXWx5knzve9/Ls88+20RlAgAArDx6IgAAYFGNCleOOuqoxRoJAACA1kJPBAAALKpR4coxxxyzvOsAAABotvREAADAosq6oT0AAAAAAEBr1agzVz5u7ty5+eUvf5kHH3wwr732Wv01hRdVUVGRZ555ZpkLBAAAaG70RAAA0LqVFa784he/yC233JJu3bqlb9++qaysbOq6AAAAmi09EQAAtG5lhSsPPPBAdtlll1x44YUpFFxZDAAAaF30RAAA0LqV1QXMnTs3O+64oyYCAABolfREAADQupXVCWy55ZZ5+umnm7oWAACAFkFPBAAArVtZ4crw4cNz9913Z8yYMXn99debuiYAAIBmTU8EAACtW1n3XFl77bWz4YYb5pxzzsk555yzxDEVFRV55plnlqk4AACA5khPBAAArVtZ4crIkSPz17/+NauvvnrWW2+9tGlT1tMAAAC0SHoiAABo3crqAB544IHsvPPOueCCCzQRAABAq6MnAgCA1q2se67Mnz8/O+20kyYCAABolfREAADQupUVrmyxxRZ5+umnm7oWAACAFkFPBAAArVtZ4cqPf/zj3HXXXbn66qvz2muvpba2tqnrAgAAaLb0RAAA0LqVdQ77T37ykxQKhZx33nk577zzljimoqIizzzzzDIVBwAA0BzpiQAAoHUrK1zp3LlzOnfu3MSlAAAAtAx6IgAAaN3KCleuv/76pq4DAACgxdATAQBA61bWPVcAAAAAAABaq7LOXDnppJM+dUxFRUXOOuuscp4eAACgWdMTAQBA61ZWuHLrrbcudV1FRUWqqqrStm3bkhuJt956K+eff34efPDBzJ07NxtuuGF+/OMfZ+utt06SPPvssxk5cmT++c9/pnPnzjnwwANz6KGHlvMWAAAAyra8eiIAAKBlKCtcuf/++xdbVltbm9dffz233nprHnvssYwdO7bk5z3++OMze/bsnH/++Vl99dUzduzYHHrooZkwYUJWX331HHLIIdlll11yxhlnZNKkSTnjjDPSuXPnDB48uJy3AQAAUJbl1RMBAAAtQ1nhytprr73E5euuu2622mqrDBs2LL/85S9z7rnnNvo5p06dmkceeSQ33XRTttxyyyTJKaeckr/85S+58847065du1RVVeX0009PmzZt0rt370ydOjVXXnmlcAUAAFihlkdPBAAAtBzL5Yb2AwYMyJ///OeStunSpUuuuOKKbLLJJvXLKioqUiwW8/bbb2fixInp169f2rT5bx7Uv3//TJkyJbNnz26y2gEAAJZVOT0RAADQciyXcOX111/PBx98UNI21dXV2XHHHVNVVVW/7O677860adOy/fbbZ+bMmenRo0eDbbp165YkefXVV5e9aAAAgCZSTk8EAAC0HGVdFmxpYcYHH3yQf/7znxkzZkw23njjZSrsySefzMknn5ydd945AwYMyNlnn90geEmStm3bJknmzZu3TK/Vps1yyZj4FJWV5X/uy7Itq7aF+4Z9hKT8/eAzn6ksadu6umKKxWJZr0XL5d8bymG/WXWsiJ4IAABovsoKVwYMGJCKioqlri8UCjn66KPLLuq+++7LCSeckM033zznn39+kqRdu3aZP39+g3ELQ5UOHTqU/VqFQkW6dFmt7O1ZOaqr26/sEmjm7COUo3OntqmrK6Zjx3YlbVdXV0yhsPT/L7Jq8+8N5bDftHzLuycCAACat7LClb333nuJjURlZWW6deuWQYMGZZ111imroBtuuCEjR47MwIEDM2rUqPqzVXr06JFZs2Y1GLvwcffu3ct6reSjX4jNmfNe2dtTvsrKQtm/WJgz5/3U1tY1cUWsChbuV/YRktL/nenY/jMpFCoy6sYnM/21dxq1Tc/unXLCAVvZ51oh/95QjpW931RXt3fWTBNZnj0RAADQ/JUVrpxzzjlNXUeSZOzYsTnzzDNz4IEH5uSTT06h8N/Gr1+/fhk3blxqa2tTWVmZJHn00UfTq1evdO3adZled8ECvxBpaWpr68wbn8g+wrKY/to7eWnG2yVtY59rvcw95bDftHzLqycCAABahmbztbUpU6bkrLPOysCBAzN06NDMnj07r7/+el5//fW88847GTx4cObOnZtTTjklL774YiZMmJAxY8Zk6NChK7t0AAAAAACgFWnUmSsXX3xxWU9eyjWG77nnnnz44Ye59957c++99zZYN2jQoJxzzjm56qqrMnLkyAwaNChrrLFGRowYkUGDBpVVGwAAQGOtiJ4IAABoOZo8XFn0usOlNBLDhg3LsGHDPnHMZpttlptvvrnRzwkAANAUVkRPBAAAtByNCleuu+66Tx1TLBZz44035o9//GOSZMcdd1y2ygAAAJoJPREAALCoRoUr22yzzSeuf/XVV3PyySfn8ccfT6dOnfKTn/wkgwcPbpICAQAAVjY9EQAAsKhGhSufZNy4cTnvvPPy7rvvZvvtt8/IkSPTvXv3pqgNAACg2dMTAQBA61N2uDJz5syccsop+b//+7+sttpqOfPMM/Ptb3+7KWsDAABotvREAADQepUVrvz2t7/Nueeem7lz52a77bbLyJEjs+aaazZ1bQAAAM2SnggAAFq3ksKV1157LaeeemoefvjhtG/fPqeffnq++93vLq/aAAAAmhU9EQAAkCSFxg689dZbs+eee+ahhx7Kl770pdxxxx2aCAAAoNVY0T3RJZdckgMPPLDBsmeffTZDhgxJ3759s9NOO2X06NEN1tfV1eXCCy/MDjvskM033zzf//73M3Xq1OVWIwAAtFaNOnNl2LBh+fOf/5wk+drXvpb9998/r776al599dVP3K5fv37LXiEAAMBKtqJ7omuvvTYXXnhhg+3ffPPNHHLIIdlll11yxhlnZNKkSTnjjDPSuXPnDB48OMlHgcy4ceNy9tlnp3v37jnvvPNy2GGH5c4770xVVVVZtQAAAItrVLjy4IMP1v/9nnvuyT333NOoJ3/22WfLKgoAAKA5WVE90WuvvZZTTjklTz75ZHr16tVg3S233JKqqqqcfvrpadOmTXr37p2pU6fmyiuvzODBgzN//vxcffXVGT58eHbcccckya9+9avssMMOuffee7P77ruXVAsAALB0jQpXjj766OVdBwAAQLO1onqip59+Op/97Gdz++235ze/+U1mzJhRv27ixInp169f2rT5bxvXv3//XH755Zk9e3ZmzJiRd999N/37969fX11dnY022ihPPPGEcAUAAJqQcAUAAOBTrKieaMCAARkwYMAS182cOTM1NTUNlnXr1i1J8uqrr2bmzJlJkjXXXHOxMf/+97+Xqa42bRp9u86VorKy0OC/tEzmcdVgHlcN5rHlWZa5Ms/Nm5/H5qtR4QoAAAAr1wcffLDYfVPatm2bJJk3b17ef//9JFnimLfffrvs1y0UKtKly2plb78iVVe3X9kl0ATM46rBPK4azGPrYJ5bBvPU/AhXAAAAWoB27dpl/vz5DZbNmzcvSdKhQ4e0a9cuSTJ//vz6vy8c0759+c14XV0xc+a8V/b2K0JlZSHV1e0zZ877qa2tW9nlUCbzuGowj6sG89jyLJyzcpjn5s3P44pXXd2+UWcKCVcAAABagB49emTWrFkNli183L179yxYsKB+2brrrttgTJ8+fZbptRcsaBmNfG1tXYuplaUzj6sG87hqMI+tg3luGcxT8+NCbQAAAC1Av3798uSTT6a2trZ+2aOPPppevXqla9eu6dOnTzp27JjHH3+8fv2cOXPyzDPPZOutt14ZJQMAwCpLuAIAANACDB48OHPnzs0pp5ySF198MRMmTMiYMWMydOjQJB/da2XIkCEZNWpU7r///jz33HP50Y9+lB49emTgwIEruXoAAFi1uCwYAABAC9C1a9dcddVVGTlyZAYNGpQ11lgjI0aMyKBBg+rHHHvssVmwYEFOPfXUfPDBB+nXr19Gjx692E3uAQCAZSNcAQAAaIbOOeecxZZtttlmufnmm5e6TWVlZYYPH57hw4cvz9IAAKDVc1kwAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoARuaA8AAAAA0MwUChUpFCoaNbay0nfoYUUTrgAAAAAANCOFQkU6d+4gNIFmTLgCAAAAANCMFAoVqawsZNSNT2b6a+986vgt+3TL976x0QqoDFhIuAIAAAAA0AxNf+2dvDTj7U8d17NbxxVQDbAo55UBAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACVos7ILAIDGKhQqUihUNHp8ZaXvEAAAAADQ9IQrALQIhUJFOnfuIDABAAAAYKUTrgDQIhQKFamsLGTUjU9m+mvvNGqbLft0y/e+sdFyrgwAAACA1ka4AkCLMv21d/LSjLcbNbZnt47LuRoAAAAAWiPXVgEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIAStFnZBQDQvBQKFSkUKkrapq6umLq64nKqqGWorCzt+wo+MwAAAICWS7gCQL1CoSKdO3coOSiora3LW2+91yrDgs6d2qaurpjq6vYlbdeaPzMAAACAlk64AkC9QqEilZWFjLrxyUx/7Z1GbdOze6eccMBWKRQqWmVQ0LH9Z1IoVPjMAAAAAFoR4QoAi5n+2jt5acbbK7uMFsVnBgAAANB6NNsb2l9yySU58MADGyx79tlnM2TIkPTt2zc77bRTRo8evZKqAwAAAAAAWqtmGa5ce+21ufDCCxsse/PNN3PIIYfk85//fMaPH59jjjkmF1xwQcaPH7+SqgQAAAAAAFqjZnVZsNdeey2nnHJKnnzyyfTq1avBultuuSVVVVU5/fTT06ZNm/Tu3TtTp07NlVdemcGDB6+kigEAAAAAgNamWZ258vTTT+ezn/1sbr/99my++eYN1k2cODH9+vVLmzb/zYP69++fKVOmZPbs2Su6VAAAAAAAoJVqVmeuDBgwIAMGDFjiupkzZ6ampqbBsm7duiVJXn311XTt2nW51wcAAAAAANCswpVP8sEHH6SqqqrBsrZt2yZJ5s2bt0zP3aZNszqBp9WorCz/c1+WbVm1Ldw37CPlac4/l6vinK6K76k18e8N5bDfAAAArBpaTLjSrl27zJ8/v8GyhaFKhw4dyn7eQqEiXbqstky1seJVV7df2SXQzNlHVjyfeel8ZqsG80g57DcAAAAtW4sJV3r06JFZs2Y1WLbwcffu3ct+3rq6YubMeW+ZaqM8lZWFsn+xMGfO+6mtrWviilgVLNyv7CPlac4/l8tSW3NlP23Z/HtDOVb2flNd3d5ZMwAAAE2gxYQr/fr1y7hx41JbW5vKysokyaOPPppevXot8/1WFizwC5GWpra2zrzxiewjK57PvHQ+s1WDeaQc9hsAAICWrcV8bW3w4MGZO3duTjnllLz44ouZMGFCxowZk6FDh67s0gAAAFaYGTNmZMMNN1zsz29/+9skybPPPpshQ4akb9++2WmnnTJ69OiVXDEAAKx6WsyZK127ds1VV12VkSNHZtCgQVljjTUyYsSIDBo0aGWXBgAAsMI8//zzadu2be67775UVFTUL+/UqVPefPPNHHLIIdlll11yxhlnZNKkSTnjjDPSuXPnDB48eCVWDQAAq5ZmG66cc845iy3bbLPNcvPNN6+EagAAAJqHyZMnp1evXunWrdti68aMGZOqqqqcfvrpadOmTXr37p2pU6fmyiuvFK4AAEATajGXBQMAAOCjM1c22GCDJa6bOHFi+vXrlzZt/vs9uv79+2fKlCmZPXv2iioRAABWecIVAACAFmTy5MmZPXt29t9//2y33XbZb7/98tBDDyVJZs6cmR49ejQYv/AMl1dffXWF1woAAKuqZntZMAAAABqaP39+Xn755bRv3z4jRoxIhw4dcvvtt+ewww7LNddckw8++CBVVVUNtmnbtm2SZN68eWW/bps2zft7eZWVhQb/pWUyj6sG87hqMI8r34r87D/zmcqSXq+urphisbgcK2JRfh6bL+EKAABAC1FVVZUnnngibdq0qQ9RNtlkk7z00ksZPXp02rVrl/nz5zfYZmGo0qFDh7Jes1CoSJcuqy1b4StIdXX7lV0CTcA8rhrM46rBPK7aOndqm7q6Yjp2bFfSdnV1xRQKFcupKpbGz2PzI1wBAABoQZYUktTU1OThhx9Ojx49MmvWrAbrFj7u3r17Wa9XV1fMnDnvlbXtilJZWUh1dfvMmfN+amvrVnY5lMk8rhrM46rBPK58C+dgeerY/jMpFCoy6sYnM/21dxq1Tc/unXLCAVvZN1YgP48rXnV1+0adKSRcAQAAaCGee+657Lfffrnyyiuz9dZb1y//5z//mQ022CBf/OIXM27cuNTW1qaysjJJ8uijj6ZXr17p2rVr2a+7YEHLaORra+taTK0snXlcNZjHVYN5bB2mv/ZOXprxdknb2DdWPJ958+NCbQAAAC1ETU1NvvCFL+SMM87IxIkT89JLL+Xss8/OpEmTMmzYsAwePDhz587NKaeckhdffDETJkzImDFjMnTo0JVdOgAArFKcuQIAANBCFAqFXHbZZRk1alSOO+64zJkzJxtttFGuueaabLjhhkmSq666KiNHjsygQYOyxhprZMSIERk0aNBKrhwAAFYtwhUAAIAWZPXVV89ZZ5211PWbbbZZbr755hVYEQAAtD4uCwYAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAnarOwCAAAAAABWZYVCRQqFikaPr6z0nXho7oQrAAAAAADLSaFQkc6dOwhMYBUjXAEAAAAAWE4KhYpUVhYy6sYnM/21dxq1zZZ9uuV739hoOVcGLAvhCgAAAADAcjb9tXfy0oy3GzW2Z7eOy7kaYFk5Fw0AAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoARtVnYBAAAAAAArQ6FQkUKhoqRt6uqKqasrLqeKgJZCuAIAAAAAtDqFQkU6d+6QysrSLu5TW1uXt956T8ACrZxwBQAAAABodQqFilRWFjLqxicz/bV3GrVNz+6dcsIBW6VQqBCuQCsnXAEAAAAAWq3pr72Tl2a8vbLLAFoYN7QHAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoARtVnYBAAAAAAC0HJWVpX1nv66umLq64nKqBlYO4QoAAAAAAJ+qc6e2qasrprq6fUnb1dbW5a233hOwsEoRrgAAAAAA8Kk6tv9MCoWKjLrxyUx/7Z1GbdOze6eccMBWKRQqhCusUoQrAAAAAAA02vTX3slLM95e2WXASuWG9gAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC91wBaEEKhYoUChUlbVNXV1whN4yrrCwtr19RdVG6UvczcwkAAAC0NsIVgBaiUKhI584dSg4xamvr8tZb7y23X3537tQ2dXXFVFe3b1Z1UZ5y9jNzCQAAALQ2whWAFqJQqEhlZSGjbnwy0197p1Hb9OzeKSccsFUKhYrl9ovvju0/k0KhotnVRXlK3c/MJQAA0FyUehZ+qV9eBFiUcAWghZn+2jt56f9r797joqz2PY5/GRTUAG+JN9TKGkjxjvfMpNCTmia4s1LKkylaom52Ypq77KVZXo4etWNW6PYW4gVR8bLNSyfTjMLd1kztgqZiKuUtvIHCc/7wzOTIRWYEZgY/79er1yueWeuZ33rWDDw/13rWOnHB2WHk4apxwTH0JwAAAAB34uhqDwDgKAZXAAAAAAAAALg1R1Z7aBnkrxe6NyrhyACUVQyuAAAAAAAAACgT7HkKP8Dfp4SjAVCW8ZwcAAAAAAAAAACAHXhyBQAAAAAAAADsYM/eLuwDA5RNDK4AAAAAAAAAQBFU8fVWbq4hP7+Kzg4FgJMxuAIAxcBk8pDJ5GFXndxcQ7m5RglF5B6Y6QPA3dn7+5/fZQAAAO7Np2J5mUwemv7JHqWfzixSnZZB/nqhe6MSjgxAaWNwBQDukMnkoSpVKtn9D2Y5Obk6f/7yXTnAwkwfAGWBo7//c3MNeXjYNyAPAAAA15J+OlNpJy4UqWyAv08JRwPAGRhcAYA7ZDJ5yNPTZNeslYCavnqtfyuZTB535eAKM30AlAV3+vsfAAAAAOC+GFwBgGJiz6wV3MBMHwBlAb//AQAAAODuw6LPAAAAAAAAAAAAduDJFQAAAAAAAAAlymTysHtp1Nxc465cShuAe2BwBQAAAAAAAECJMZk8VKVKJXl62reITk5Ors6fv8wACwCXxOAKAAAAAAAAgBJjMnnI09Ok6Z/sUfrpzCLVCajpq9f6t5LJ5MHgCgCXxOAKAAAAAAAAgBKXfjpTaScuODsMACgWbGgPAAAAAAAAAABgB55cAeA0rrqZnb1x2btmrDMUNUZ3aEtZ4orX2xVjAgAAAO5GrpozAwBuYHAFgFO46mZ2jsblqqr4eis315CfX0Vnh4KbONovObmGPO1MrhypAwAAAMC5XDVndgYmCwJwVQyuAHAKV93MzpG4Wgb564XujUoknjvlU7G8TCaPIrfHldtSltjbL9KffVNadQAAAAA4j6vmzKWJyYIAXB2DKwCcylU3s7MnrgB/nxKO5s4VtT3u0JayxJHPWWnVAQAAAFCw0lqyy1Vz5tLAZEEAro7BFQAAAAAAAKCIWLKrdDFZEICrYnAFAAAAAAAAKCKW7AIASAyuAAAAAAAAlBmltVxVWWLvNbM8sXI3L9kFAGBwBQAAAAAAoExguSr7OXrNAABgcAUAAAAAAKAMYLkq+zlyzVx94/TiGCiynKO4Bp0YvAJQFjG44mQ8rgvYr7CbsvxuAPnOACWvNJKl0vouF/Vvs6XNHh72/R0HAAAoaSxXZT97rpmrbpxexddbubmG/Pwq2lUvJ9eQZwH3vwWdq7A6AHC3YHDFiXhcF7CPPTeKN5fhOwOUnJJI4AqsUwrfZUf+Nvv6VuB3DAAAAJzOp2J5mUweDj2FU1p1AFfDxHfcCQZXnIjHdQH7OHKjyHcGKFmllcCV1nfZ3r/N/I4BAABwLY5uTl+WOPIUTmnVwd3N3u9bSQ9iMPEdd4rBFRfA47qAffjOAK6npJOx0ubKsQEAACB/bE4PuCaHVzwo4UEMJr7jTjG4AgAAAAAAUArsfarClZeeKagtxbkRur3tL4ub0wNlgauvRMLkOjjK7QZXcnNz9f7772vlypX6448/1KpVK7311ltq0KCBs0MDAAAAAKcjZwJckyNPVbjq0jNFaUt+M9Tt3XfP0fazXBXgmhjEQFnjdoMrc+fOVUJCgt59913VrFlT06ZN0+DBg7V+/Xp5eXk5OzwAAAAAcKqyljMVZab/rTPlXXm2P+5eju7tVr68p3Jycov0HnfytIg9dT09TQ4/IeKq7Qfg/thzyX72XjOJ+6ybudXgSnZ2thYsWKDRo0erc+fOkqSZM2eqU6dO2rJli3r06OHkCAEAAADAecpazmTvTH/LTHlXne0PSEWfue3oHgX2upP3Kcl990qr/QDKBvZcsp+j14z7rD+51eDKoUOHdOnSJbVr1856zM/PT40aNdI333zjdokCAAAAABSnspYz3clGs/bMdncUMzdLnivPqC3pGdKO7FHgyP4hpfU+9nLVuAC4JvZccuzvkqP3WfbuhePKf8/vhIdhGK4d4U0+/fRTRUdHa+/evapQoYL1+MiRI3X16lV9+OGHdp/TMJzXSR4ekslk0vnMLF0v4k1/OU/T/8/eKNkkobTc7e2/29nb/95envKt5FXinxlXjas0YnOkLWWpjqvG5cp1Siuu0vz9b8/3jL9LuJN7GWfchZtMHvLwsC+pgXshZ5K8ypvkW8nL7s+6YRgO1XGjlNotmEwmm7+rHh72/94qrX5xJDZJLnef5ap1XDUuR+u4am5aluq4alylVcdV43K0jqt+Z5yVA9769zE/Jf13SXK8/Y7+PXfWPWhR8ya3enLlypUrkpRnnWBvb29duODYZkgeHh7y9HRuglnF19vuOiZT2XnE7W5v/93Okf4vjc+Mq8bl6PvYW6e02u+qdVw1Lleu48rfGUfYGxt/l+5urvxZxt2HnMlxjvxjhKP/iIHC3envSFfvF1e9z3LVOq4al6N1XDU3LUt1XDWu0qrjqnE5WsdVvzPOuJ8vqfd01fa7wj3o7bhVVmeZeZWdnW1zPCsrSxUrsgYnAAAAgLsbORMAAABQOtxqcKV27dqSpIyMDJvjGRkZqlWrljNCAgAAAACXQc4EAAAAlA63GlwJCgqSj4+PUlJSrMf++OMPHThwQCEhIU6MDAAAAACcj5wJAAAAKB1uteeKl5eXBgwYoOnTp6tatWqqW7eupk2bplq1aiksLMzZ4QEAAACAU5EzAQAAAKXDrQZXJGnEiBG6fv26xo8fr6tXr6p169aaP39+ng0bAQAAAOBuRM4EAAAAlDwPwzAMZwcBAAAAAAAAAADgLtxqzxUAAAAAAAAAAABnY3AFAAAAAAAAAADADgyuAAAAAAAAAAAA2IHBFQAAAAAAAAAAADswuAIAAAAAAAAAAGAHBlcAAAAAAAAAAADswOAKAAAAAAAAAACAHRhcgcs7efKkYmJi1LFjR7Vu3VqDBg3STz/95Oyw4EbeeOMNvf76684OAy4oNzdXs2fPVqdOndSsWTO99NJLOnr0qLPDghuZO3euIiMjnR0G3MD58+f15ptv6tFHH1XLli313HPPKTU11dlhAWVKamqqHn74YaWkpNgc3717t8LDw9W0aVN17dpVa9ascU6AKNCxY8c0bNgwhYSEKCQkRH/961916tQpmzL0o+srSu5OP7qXgnJp+tE9kO+6t/xyzYMHD2rAgAFq3ry5HnvsMc2fP99J0cGCwRW4tOzsbA0ZMkRnzpzRhx9+qPj4ePn6+urFF1/U2bNnnR0eXFxOTo6mTJmiVatWOTsUuKi5c+cqISFBkyZN0vLly+Xh4aHBgwcrOzvb2aHBDSxcuFCzZ892dhhwEzExMdq7d69mzJihVatWqXHjxho0aJDS0tKcHRpQJmRmZio2Nla5ubk2x9PS0hQVFaXOnTtrzZo16tevn8aNG6fdu3c7KVLcKisrSwMHDpQkLVu2TEuWLNFvv/2mqKgoGYYhiX50B0XJ3elH91FYLk0/ug/yXfeVX6557tw5/ed//qfuu+8+JSYmKjo6WrNmzVJiYqKTooQklXN2AEBhUlNT9eOPP2rHjh2qWbOmJGnq1Klq06aNtm/frr59+zo5QriqtLQ0jR07VsePH1edOnWcHQ5cUHZ2thYsWKDRo0erc+fOkqSZM2eqU6dO2rJli3r06OHkCOGqTp8+rTfeeEN79uzR/fff7+xw4AaOHj2qXbt2admyZWrZsqWkGzNBd+zYofXr12vkyJFOjhBwfxMmTFC9evV04sQJm+OLFi1SUFCQ9Xv2wAMP6MCBA4qLi1P79u2dESpu8euvv6pJkyZ66623VK1aNUnSwIED9eqrr+rcuXOqVq0a/egGipK704/u4Xa5NP3oHsh33VNhueaKFSvk5eWlCRMmqFy5cmrYsKGOHj2qjz/+WBEREU6KGDy5Apf20EMP6aOPPrLenFkYhqELFy44KSq4g6+//loPP/yw1q9fr4CAAGeHAxd06NAhXbp0Se3atbMe8/PzU6NGjfTNN984MTK4uu+//16VK1fWunXr1KxZM2eHAzdQtWpVffTRRwoODrYe8/Dw4H4GKCZr167Vt99+q3HjxuV5LTU11eZvvSS1a9dOe/bssT4VAee6//77NWvWLOvASnp6uuLj49W4cWNVrVpVEv3oDoqSu9OP7uF2uTT96B7Id91TYblmamqqWrdurXLl/nxWol27djpy5IjOnDlT2qHi//HkClxajRo1rCPsFosXL1ZWVpY6duzopKjgDp577jlnhwAXZ1nHu3bt2jbH/f39dfLkSWeEBDcRGhqq0NBQZ4cBN+Ln55fnfmbTpk06duyYHnnkESdFBZQN6enpeueddzR37lzdc889eV4/deqUatWqZXPM399fV65csT4VAdfx0ksvadeuXapcubIWLVokDw8PSfSjOyhK7k4/uofb5dL0o3sg33VPheWap06dktlstjnm7+8v6cZToNWrVy/x+JAXgytwqvT0dD3++OMFvr5z507VqFHD+vOnn36qmTNnKjIyUkFBQaURIlyQvZ8bID9XrlyRJHl5edkc9/b2ZiY5gBK1Z88ejRs3To8//jgDdUAhbnfPt2PHDsXGxqpfv34KCQlRenp6njJXr17N87fe8jNrzpcOe+7dR48erZEjR+qDDz7QwIEDtWbNGtWuXZt+dAHFkbvTj85XHLk0/egeyHfLnvy+e97e3pJu7F8G52BwBU5Vs2ZNbdy4scDXb57xsGzZMk2cOFHdu3fX2LFjSyM8uCh7PjdAQSpUqCDpRgJg+X/pxk1JxYoVnRUWgDJu69ateu2119SsWTPNmDHD2eEALu1293wrV67U5cuXFR0dXWAZb2/vPP/YZ/mZv/elw55794cffljSjX0BHnvsMSUmJmr48OH0owsojtydfnS+4sil6Uf3QL5b9lSoUCHPd88yqFKpUiVnhAQxuAInK1++vBo2bHjbctOnT9fHH3+syMhIvfHGG9bHw3F3KurnBiiM5fHojIwM1a9f33o8IyODJ+MAlIilS5fqnXfeUVhYmKZPn55n5hkAW7e751u9erUyMjLUtm1bSbKu9T948GC1adNGcXFxql27tjIyMmzqZWRkqFKlSvL19S254GF1u348ceKE9u/fr27dulmPVaxYUQEBAda+ox+drzhyd/rR+Yojl6Yf3QP5btlTq1atfL97kvLsd4XSw+AKXN60adMUFxen2NhYDRo0yNnhACgjgoKC5OPjo5SUFOvN5h9//KEDBw5owIABTo4OQFkTHx+viRMnKjIyUuPGjZPJZHJ2SIDbW7Jkia5fv279+fTp04qMjNSkSZOsAy4hISH6+uuvbert3r1bLVu25HvoIg4ePKgRI0Zoy5YtNvdkR44cUa9evSTRj+7idrk7/Vg20I/ugXy37GndurUSEhKUk5MjT09PSTe+e/fffz/7rTgRv/Xg0lJSUhQXF6fIyEj16tVLv/32m/W/S5cuOTs8AG7My8tLAwYM0PTp07Vt2zYdOnRIf/3rX1WrVi2FhYU5OzwAZciRI0c0efJkhYWFKSoqSmfOnLHez2RmZjo7PMBt1a1bVw0aNLD+V6dOHUk3Zm9aZnBGRkZq3759mj59utLS0rRgwQJt3rxZL7/8sjNDx00effRRBQYGKjY2Vt9//73279+v6OhoVa1aVREREZLoR3dQlNydfiwb6Ef3QL5b9kREROjixYt644039PPPP2v16tVatGiRoqKinB3aXY0nV+DS1q9fL+nGrLQlS5bYvDZ8+PBC11cGgNsZMWKErl+/rvHjx+vq1atq3bq15s+fz1I9AIrV5s2bde3aNW3ZskVbtmyxea1Pnz567733nBQZUPY99NBDmjt3rqZNm6ZFixYpICBA06ZNU/v27Z0dGv6fl5eX4uLiNGXKFA0aNEjZ2dl65JFH9N5778nHx0cS/egOipK7049lA/3oPsh3y5bq1asrLi5O77zzjvr06aMaNWooNjZWffr0cXZodzUPw7IwLQAAAAAAAAAAAG6LZcEAAAAAAAAAAADswOAKAAAAAAAAAACAHRhcAQAAAAAAAAAAsAODKwAAAAAAAAAAAHZgcAUAAAAAAAAAAMAODK4AAAAAAAAAAADYgcEVAAAAAAAAAAAAOzC4AsCtffbZZ4qOjlZoaKiCg4PVtm1bvfzyy9q+fXupxZCdna233npLbdq0UdOmTTVp0qR8j73++usKDAxUenq6XeefM2eOAgMDlZKSUkItsPXLL7/YVT41NVWxsbEKCwtT06ZNFRISosjISK1Zs0aGYdiUdfQauKvQ0FAFBgYqMDBQISEhkqSUlBQFBgbq9ddfL7Beenq6AgMDFRkZmee1W/vn1nIlfY3feecda5tK83MJAACAkkVuVfxul1u99dZbCgwMVGJiYqHl0tPTFRQUpBdffLHI723JO+bMmVPkOsXJ0keW/w4ePCjpRv4SGhpaaF1LHnWro0eP2vwcGRlpU2716tUKDAzU6tWri6EFeW3dutWmTc66tgBcRzlnBwAAjrh48aLGjRunzZs3q3HjxgoPD5e/v79OnTqlNWvWaNiwYXrppZc0ZsyYEo9lxYoVSkhIUMeOHfXkk0/qoYceyveYYRhq3769qlWrZtf5w8LCVL9+fTVs2LCEWvCnYcOG6eLFi1qyZMlty167dk2TJ09WfHy87rvvPvXo0UN16tTR2bNntWHDBo0ZM0Y7duzQtGnT5OnpWeKxu6qqVatq7NixKl++/B2fK7/+mTp1qu699947PndR9e7dW8HBwdqyZYu2bNlSau8LAACAkkFuVTKKklv17dtXCQkJSk5OVkRERIHlLBPX+vbtWxKhlqixY8eqatWqqlOnzh2d5+OPP9asWbO0f/9+67GhQ4eW6jUJDg7W1KlTdfjwYc2bN6/U3heA62JwBYBbGj9+vDZv3qzY2FgNGjTI5rWhQ4dq0KBBWrBggR544AH95S9/KdFYfvjhB0lSbGysgoKCJMk68+jmY5LUokULu88fFBRkc46StH37drVp06ZIZWfOnKn4+HhFRkZq3LhxMpn+fBhyyJAhGj16tNavX6/69etr1KhRJRSx66tUqZJ69+5dLOfKr3+K69xFFRwcrODgYB07dozBFQAAgDKA3KpkFCW3atKkifVJmtOnT6tmzZr5llu7dq0qV66srl27lkSoJeqJJ55QQEDAHZ9nx44dunbtms2xjh073vF57VGrVi317t1bKSkpDK4AkMSyYADc0M6dO7Vp0yZ169Ytz82/JHl5eWny5Mny9PTU4sWLSzweyw2ej49PocfKksOHD2vBggVq0qSJxo8fbzOwIkkmk0lvv/22fH19tXz5cmVlZTkpUgAAAAAFIbdyvoiICOXm5mrjxo35vr5nzx4dO3ZMTz31lLy9vUs5OgBAYRhcAeB21qxZI0n57kdhUa9ePSUnJyspKcnmeFpammJiYtShQwcFBwfr8ccf13vvvacLFy7kOcfhw4cVExOj9u3bKzg4WF27dtV///d/6+rVq5L+3BfD8h6PP/64de3VW49J+e+FYRiGli1bpvDwcDVv3lwdOnTQ0KFD9f3331vLFLQu8BdffKEXXnhBLVu2VLNmzRQeHp5nbVnLOrsbNmzQvHnzFBYWpuDgYIWGhmrWrFm6fv26TTlJ+vrrr2+7Tu3atWtlGIYGDBhQYBkfHx+tXLlS//u//5snCThx4oRiYmLUpk0bNW/eXM8++6x27dqV5xwpKSkaNmyYOnTooMaNG6t169Z68cUX9eWXX9qUCw0NVVRUlFJSUtS/f3+1aNFCISEhGj58eL7rHK9fv956zTt16qTp06dr5cqV+V7n5ORkPfPMM2revLlatGih/v37l+q601Lh/VPQ3iy3Kmo7Nm7cqGeffdbaN71799aCBQuUm5tbvI0CAACA05Fb3eDM3KpXr14qX768kpOT833d0keW5a+uXbum+fPnKyIiQi1atFBwcLAee+wxjR8/XmfOnCnwfaQbeVN++50UtFfJvn37NHToULVp00ZNmjRRz549tWDBAuXk5BT6PsUtMDBQX3/9tfX/LftX3rrnSkGK2o4DBw5o6NCh6tSpk/UzPWnSJJ0/f77Y2wSgbGBZMABuZ9++fSpXrpyaNWtWaLlb19FNTU3VoEGD5Onpqeeee05169bVv//9by1cuFDbt29XQkKCdc3effv2aeDAgfLx8VH//v1VrVo1/fvf/9a8efO0e/duLV68WNWqVdPUqVO1YsUKpaamauzYsapcubJMJpPNsapVqxYY45gxY7R27VqFhIRo1KhRys7O1pIlSzRgwAB98sknatSoUb71PvnkE02cOFFNmjTR8OHDZTKZtG3bNo0dO1YHDx7UG2+8YVN+xowZMgxD/fr1k5+fn1avXq25c+fKw8NDI0aMUMOGDTV16lTFxsbqgQce0NChQ9WyZctC+0CSWrVqVWgf3H///fkeHzp0qEJCQhQTE6OMjAwtWrRIUVFRSkpK0kMPPSRJ2rJli0aMGKGgoCANHjxYPj4++vHHH7Vq1SoNHjxYn376qerWrWs956FDhxQVFaVevXqpd+/eOnDggBISEnTo0CFt3rzZuu9LXFycpk2bpsaNG2vUqFHKzMzU0qVL841z2rRpiouLU8eOHRUTE6OsrCxt2LBBw4YN09ixYzVw4MBC219c7O2fWxW1HZ9++qliYmLUsWNHjRw5UiaTSf/85z81ZcoUnTlzRqNHjy6hFgIAAMAZyK2cn1tVrVpVjz/+uP75z38qLS3N5lpnZWVp06ZNaty4sR5++GFJ0qhRo7Rt2zb16dNHzzzzjLKysrRjxw6tXLlSv/76qxYsWFBoXxbVtm3bNHLkSAUEBOjll19WpUqVtGvXLk2ZMkX/+te/NGfOHHl4eBTLe93O1KlTNW/ePB0+fFhTp05V/fr1i1y3qO04fvy4XnzxRdWoUUMDBw6Un5+f9u7dq6VLl2rfvn1avnx5qbUXgBsxAMDNNGvWzOjQoYNddXJycoywsDAjODjY+Pnnn21eW7FihWE2m43XX3/dMAzDyM3NNXr06GF07tzZOHfuXL5lP/roI+uxMWPGGGaz2Th+/Lhdx3bv3m2YzWYjJibGyM3NtZb7+eefjaCgICM6OtowDMOYPXu2YTabja+++sowDMM4efKk0bhxYyMqKsqmXm5urjF69GjDbDYbe/fuNQzDML766ivDbDYbHTt2NC5cuGAte+nSJaNVq1bGI488YtM+s9lsDBgw4LbXs3v37obZbDauXr1627I3s1yDcePG2RxftWqVYTabjTlz5liPPf3000bHjh2NS5cu2ZRdunSpYTabjQULFliPdenSxTCbzcaGDRtsyo4bN84wm83Gzp07DcMwjFOnThnBwcFGeHi4kZWVZS139OhRo2nTpjbXee/evYbZbDYmTJhgc87s7GwjMjLSaNy4sXHy5MlC29ulSxejS5cuNscsfTJmzJgC6x0/fjzfvijKsVs/Z/a0Y8iQIUbz5s2NnJwca7nr168bAwYMMKKiomzq3/q5BAAAgPsht3J+bmUYhvH5558bZrPZmDlzps3xDRs2GGaz2fjkk08MwzCMgwcPGmaz2Zg4cWKec0RERBhms9l6nS3xzp4921omv/zEMAwjMTHRMJvNRmJiomEYhnH58mWjbdu2Rp8+fWzyJsMwjJkzZ+abe90qv34zjBvXJb8YbmbJ7242YMCA2x67k3bExcXZ9LfFu+++a/Tp08c4deqU9Vh+1xbA3YllwQC4HU9PT+sj10V14MABHT16VL169coz66pv375q0KCBNm/erJycHP3www/66aef1LlzZ+Xm5urs2bPW/7p06SJvb+9i2ch769atkqSXX37ZZgZMw4YNtWrVKv3973/Pt96nn36qa9eu6cknn9S5c+essZ07d049evSwlrlZly5d5OfnZ/25UqVKatiw4W0fGy+I5SkQe/vBIjw83Obn5s2bS5IyMjKsx1auXKl169apUqVK1mPZ2dnWa3Xp0iWbc1SoUEHdunWzOdakSRNJ0m+//SbpxjXPzs7WoEGD5OXlZS1Xv3599erVy6buhg0bJEndu3e3+QxkZmaqe/fuunbtmj777DO7217a7GlHrVq1dPnyZb399ts6cOCADMOQp6enlixZwoaNAAAAZRC5lfNzK0l65JFHVLt2ba1fv97meFJSkipUqKCnnnpKkhQUFKQ9e/YoJibGptyZM2esMV2+fNnhOCy+/PJLnTt3Tt26ddPFixdt+q179+6SVCz9VtLsaUft2rUl3Xjqf/fu3crOzpZ0Ywm61atXq2bNms5pBACXxrJgANxOzZo1deTIEWVnZ9v8A3lhjh07JknWJadu5uHhoQcffFBHjx7VuXPndOTIEUlSQkKCEhIS8j3fiRMnHIz+T5b1gW9NSCSpcePGBdazxBcbG1tgmVvju/fee/OU8fLycnit3Jo1a+qHH37Q77//rnvuucfu+jVq1LD52bIni+UGVpLKlSun9PR0zZ07V0eOHFF6errS09OtMRuGYXOOqlWrWgd9LCyfD8t+IZZr98ADD+SJ6dZ+sJQtbF8ZRz4HFSpUkFT4wJSljZayd8KedkRHR+vgwYPWz361atXUrl07PfHEE+rWrZvKleO2AQAAoCwht3J+biVJJpNJffr00dy5c/Xtt9+qRYsW+u2337Rr1y717NlTvr6+Nu+1ceNG7dq1S8ePH1d6erp+++0366BSceyVaLkuM2bM0IwZM/It42i/eXt733ZA7/r168WaCxWlHd26dVNERIRWr16tgQMHqkKFCmrVqpU6d+6sp59+WpUrV77jeACUPfwrCQC307p1a6Wlpelf//qX2rVrV2C5sWPH6tq1a4XeKFtYbkC9vLys/9+/f3898cQT+ZYvjn9kvnbtmkP1LDftEydOVEBAQL5lLOsbW5hMxfugYuvWrbVjxw6lpqaqQYMGBZabOXOmjhw5oujoaJvkqyjxfPjhh5oxY4bq1q2rkJAQtW3bVoGBgbp+/bpeeeWVPOWLck7L4E1+iaNlgMfCcp3nzp2rihUr5ns+y+wme1huyi9evFhgGcsmoDfPiHOUPe249957tWLFCn333Xf6/PPP9dVXX2nLli3auHGjmjdvrqVLl6p8+fJ3HBMAAABcA7mV83Mri/DwcH3wwQdKTk5WixYtlJycrJycHOtG9tKNHOLFF1/U999/r1atWik4OFi9e/dWkyZNtGjRIq1bt86h9751YMjSbyNGjFCLFi3yrePIJDvpRj6UmZlZ4OuGYeiPP/4ollzInnZ4enpq8uTJeuWVV/TZZ5/pyy+/VGpqqnbt2qUPP/xQCQkJdu31AuDuwOAKALfTs2dPJSQkKD4+vsAE4OTJk1q3bp38/PxUpUoV1atXT5L0008/5SlrGIbS0tLk4+MjPz8/m5vqDh062JTNzc3V5s2bree7E5b3OXLkiAIDA21emzFjhq5evapx48YVWM/Pzy9PfBkZGdq3b1+xxFeYJ598UrNmzdKyZcsUHh6e78Z+ly5dUkJCgi5duqQ333zTrvOfPHlSM2fOVOvWrbVgwQKbwRBHEwZJuv/++yVJhw8fzvP0imVWk4XlOvv7+1uXF7M4evSoDh8+bLNkWVEFBATIx8dHhw4dKrDMgQMHJKnATTftfT/p9u0wDEM//fSTrl69qqZNm1o39Lx48aLGjBmjrVu3aufOnerSpcsdxwQAAADXQG7l/NzKol69emrbtq02bdqk8ePHKzk5WQ0aNFCbNm2sZRYvXqz9+/fr7bff1rPPPmtT//fff7/te3h6euZZXln6cxllC8t1qVChQp7rcvHiRe3cuTPPagRFFRQUpB07duj48eP5XtsjR47oypUratu2rUPnv5k97Thx4oSOHTum9u3bKzIyUpGRkbp+/brmz5+vGTNmaNmyZRozZswdxwSgbGHPFQBup3Xr1goLC9PmzZv1j3/8I8/rmZmZGjlypK5fv67hw4fLy8tLjRo1Ur169bRu3TqlpaXZlE9MTNSxY8fUtWtXSVJwcLDq1q2rpKQk6yPvFsuXL9eoUaOUmJh4x+2wzNxatGiRzfFjx45p4cKFOn78eL71unbtKpPJpHnz5unq1as2r7333nt69dVXtX//fodiMplMRXqMvF69ehowYIC+++47TZ48OU+drKwsjR49WufPn9cLL7yQ76PzhTl//rwMw9ADDzxgM7By5coVLVmyRJJj+7107dpV5cqV09KlS23qZ2RkKDk52absf/zHf0iS5syZYzOT69q1axo7dqyGDh2q06dP2x1DuXLlFBYWppMnT+a7NMKlS5e0dOlSeXl5WT+TFkXtH0fa4eHhoejoaA0bNsxmJpmPj481Qb112TUAAAC4N3Ir5+dWN4uIiNDZs2e1Zs0aHThwwOapFUk6d+6cJOUZQPr222/1zTffSMr7FMrN/P39dfbsWZslvbKzs7Vp0yabco888ojuueceLVy40PqeFvPmzdPIkSP1+eef29U2iyeffFKSNGvWrDzXxzAMffTRR5JuDPzdzPLEkD3X1J52zJs3TwMHDtTevXutZcqVK6dmzZpJIhcCkD+eXAHgliZPnqwLFy7ovffeU3Jysrp27apq1arpl19+UVJSks6ePav+/furf//+km7cCE2aNElDhgzRX/7yFz333HMKCAjQvn37lJSUpLp16+q1116zKRsVFaXw8HA9++yzql+/vr777jslJiaqfv36+S5LZa9OnTqpZ8+eSkxM1KlTpxQaGqqLFy/qk08+kbe3t0aPHp1vvfvuu0/R0dGaNWuWevfurT59+sjPz0/btm2zPllw6z/KF1X16tV16NAhxcfHKyQkRGazucCyf/vb33T69GktXrxYX3zxhXr06KGaNWvq119/1bp163TixAmFhYVp1KhRdsfx4IMPqkGDBkpMTJS3t7fMZrMyMjKUlJRknVVV2KPkBalbt66GDRumOXPm6LnnnlOPHj10+fJlxcfHWzd+tDyF0759e/Xt21erVq3SM888o+7du8vLy0vr1q3Tvn379Pzzz6tp06Z2xyBJo0eP1rfffqsJEyZo586dateunSpWrKhjx44pOTlZp06d0ptvvplnJpc9/WNhTzuio6P1t7/9Tf369VN4eLgqV66sQ4cOafny5Xr44YfzzPYCAACA+yO3cn5uZdGtWzdNnDhRU6ZMUbly5fT000/bvB4aGqolS5botdde0/PPPy9fX1/t379fSUlJ8vT01LVr1/THH38UeP6IiAilpqZq0KBBev7555Wbm6vExMQ8AzJ+fn568803NXbsWD311FPq16+f/P399dVXX2njxo1q2rSpnn/+eYeuS58+fbR9+3YlJyfrl19+Ubdu3VS9enX9/vvv2r59u7799lv17t1bTz31lE09y4S92bNnq02bNkXKTexpx8CBA7Vp0yYNGTJEzz77rAICAnT69GktW7ZMvr6+euaZZxxqL4CyjcEVAG7Jz89P8+fP18aNG7V69WrFx8fr7Nmz8vHxUbNmzdS/f389+uijNnXatWunFStWaO7cuUpMTNTFixdVp04dvfTSSxo6dKjNmq4dOnTQihUr9MEHHygxMVGZmZmqVauWnn/+eUVFRTn8CPStpk2bpqZNm2rVqlWaMmWKKleurJCQEI0cOdK6hFV+XnnlFT344INavHixPvroI+Xm5qpevXqKjY1VZGSkw7NqYmNjNX36dE2ePFlDhw4tNAHw8vLSzJkz1aNHD61cuVJJSUnKyMhQxYoV1ahRI8XExOSZbVRU5cuXV1xcnKZPn64NGzZoxYoV8vf3V0hIiF599VX1799fO3fudOjcw4cP17333qulS5dq+vTpqlq1qiIiIpSVlaV//OMfNk/KTJo0Sc2bN9fy5cs1Z84ceXp66r777tOkSZPyzCKzR/Xq1ZWYmKglS5Zoy5Ytmj17tq5cuaIaNWqoefPmeuGFF9S8efM89ezpn5sVtR09e/ZUxYoVtXDhQs2fP1+ZmZmqXbu2IiMjNWzYMDa0BwAAKIPIrZyfW1l4e3urZ8+eio+PV2hoqPz9/W1eb9++vWbMmKGPP/5Y77//vry8vFSnTh2NGjVKDz74oIYMGaIvvvgiz3LAFuHh4bp06ZLi4+M1depU3Xvvverdu7e6dOmifv362ZR9+umnVbt2bcXFxWnx4sXKyspSnTp1NGzYMA0aNMihJZKlG5PZ5syZo6SkJK1du1YLFy7UhQsXVKVKFT344IOaMWOGevTokafe4MGD9eOPPyouLk579+4t8sSvorajYcOGWrp0qT744AOtWbNGZ86cUZUqVdSuXTu9+uqr7LcCIF8ehmEYzg4CAIDScPnyZeXk5MjX1zfPa3//+9+1YsUKbdu2rcDNLO0VGhoqSdq+fXuxnM+VzJkzR++//74WL15cLOshAwAAACg7Xn/9dSUlJRVrfuUqUlJS9MILL2j48OGKjo52djgAnIg9VwAAd42ffvpJISEh+p//+R+b45mZmfrss89Uo0YN1a1b10nRAQAAAAAAwF2wvgcA4K4RHByswMBAzZs3T2fPnlVQUJDOnz+v1atX68yZM/qv//ov654rxeXy5ctau3atypcvr+7duxfruZ1h//79SktL0w8//ODsUAAAAAC4uK1bt6pq1ap67LHHVLlyZWeHc0dOnTqllJQUHT582NmhAHARDK4AAO4anp6eWrhwoeLi4rR161atXLlSFStWVNOmTTVhwoQSWd7q3Llzio2Nla+vb5kYXFm7dq0WL17s7DAAAAAAuIF3331XkrRmzRq3H1zZv3+/YmNjnR0GABfCnisAAAAAAAAAAAB2YM8VAAAAAAAAAAAAOzC4AgAAAAAAAAAAYAcGVwAAAAAAAAAAAOzA4AoAAAAAAAAAAIAdGFwBAAAAAAAAAACwA4MrAAAAAAAAAAAAdmBwBQAAAAAAAAAAwA4MrgAAAAAAAAAAANiBwRUAAAAAAAAAAAA7/B/LF3Fb9xSYNgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-38.865285124.00.0-2-40.865285False
541coef_calib_zeroautohhindivtou_SHARED3_atwork-39.9348700.00.0<NA>-39.934870True
543coef_calib_zeroautohhindivtou_BIKE_atwork-39.39056264.00.0<NA>-39.390562True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-37.37244184.029.0-1.063521-38.435962True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-26.875688112.00.0-2-28.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-26.24625596.00.0<NA>-26.246255True
675coef_calib_autodeficienthhjoi_TAXI_maint-22.970666207.00.0-2-24.970666False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-24.97066624.00.0<NA>-24.970666True
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-24.97066656.00.0<NA>-24.970666True
471coef_calib_zeroautohhindivtou_WALK_univ-23.8833000.00.0<NA>-23.883300True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -38.865285 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -39.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -39.390562 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -37.372441 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -26.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -26.246255 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -22.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -24.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -24.970666 \n", - "471 coef_calib_zeroautohhindivtou_WALK_univ -23.883300 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 124.0 0.0 -2 -40.865285 False \n", - "541 0.0 0.0 -39.934870 True \n", - "543 64.0 0.0 -39.390562 True \n", - "544 84.0 29.0 -1.063521 -38.435962 True \n", - "698 112.0 0.0 -2 -28.875688 False \n", - "695 96.0 0.0 -26.246255 True \n", - "675 207.0 0.0 -2 -24.970666 False \n", - "676 24.0 0.0 -24.970666 True \n", - "677 56.0 0.0 -24.970666 True \n", - "471 0.0 0.0 -23.883300 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_7\n", - "ActivitySim run started at: 2023-09-13 04:26:45.337503\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 05:12:15.645622\n", - "Run Time: 2730.31 secs = 45.50516666666667 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN5f/H8fc5s5gNM8ZYG0vDjH0ZQmVPyNIqhcI3S5FIqeiLlK3SZkmyJJQlhPimULKkEFmSsc8Yk3XMGMOMWc79+8PvnBwzw8yc2Zx5PR8Pj3Lf131fn/s+9znO53zu+7pMhmEYAgAAAAAAAAAAAADgDmfO7wAAAAAAAAAAAAAAAMgJFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABZNq3336rkJCQLP959tln8zv0TJs6dWqGx1G9enXVrVtXrVu31ksvvaQNGzbkd7j4f3/++aftderbt+9t2w8fPlwhISEaNmyY3XLrPrZt25bjMfbp08e2/7179+b4/m+UkpKiEydO5GofNwsLC9O4cePUsWNHNWzYULVr11aLFi3Ut29fffXVV0pMTMzxPs+fP69hw4bpvvvuU61atdSsWTNt3rxZkrRy5Uo98sgjqlu3rho2bKg+ffpo+/btttcgJSUl2/2eOnXKtp+IiIicOhxAsbGxOn/+fI7sK6PPudzaDgCAwogcmRy5oCJHtkeOTI5cGBmGoWPHjuVZfzn9eWEYhubOnav27durdu3aaty4sf773//a/u1t3ry5Q/vPqes/pxw5ciTNstatWyskJERLly7N0r6yux3gbFzzOwAAdw5/f3+FhoamWX769GmdPn1a7u7uqlWrVpr1wcHBeRFejkrvWAzDUGJiok6dOqV169Zp3bp16ty5syZNmiSTyZRPkUKSli9fbvv/rVu3KjIyUoGBgfkYkb3Tp0/bJQCLFi1S3bp1c6WvrVu3aty4cWrXrp2GDh2aK33cbMqUKfrss89ksVjk4+OjChUqyM3NTefPn9eWLVu0ZcsWzZ49W59++qlq1qyZI31aLBb17dtXYWFhcnV1VdWqVZWcnKzy5cvrxx9/1BtvvCFJCggIUOnSpQvU9QCk58svv9T06dP1ySefKCAgIL/DAQAAmUCOTI5cUJEj/4scmRy5MNq3b5/Gjh2rihUr6oMPPsjvcLJl7ty5eu+99yRJ5cuXl6+vr+666658jirnnTt3Tu+9957++OMPbdq0Kb/DAZwKBXAAmdaiRQu1aNEizfKpU6dq2rRpCggI0KJFi/Ihspx3q2NJSkrSJ598ojlz5mj16tVq1KiRunbtmscRwiohIUFr166VyWRS06ZNtWXLFi1ZsqRAPb347bffymKxqEWLFtq0aZPWrl2rESNGqHjx4jne1+eff56nd7YvX75cn376qby8vDRx4kQ9+OCDcnFxsa0/duyY3nzzTe3Zs0d9+vTR999/rxIlSjjc74kTJxQWFiZJmjFjhpo1a2ZbN3XqVElSgwYNNH/+fLm6Xv+6k5CQoO+//16SbMuyo3Tp0rb9lCtXLtv7AW40ceLE/A4BAABkETnydeTIBQs5sj1yZHLkwmjhwoXat2+fKlasmN+hZNvatWslSR07dtRHH31kW3758mXVrVtXbm5uDu2/Tp06OXL9O2rr1q1as2aNSpcunW8xAM6KIdABIIvc3d31+uuvq06dOpKkBQsW5HNEhdsPP/yg+Ph4Va1aVY8++qik68l0UlJS/gb2/wzD0IoVKyRJTzzxhCpVqqTExETbsjvdjBkzJEmvv/662rdvb5fYS1JQUJA+++wz+fv7KyYmRvPnz8+RfmNiYmz/37hx43TXNWjQwC6J8fT0VFBQkIKCghzq283NzbYfRxMuAAAA4E5HjlywkCPnL3JkcmTkDOt126hRI7vlRYsWVVBQkCpUqODQ/nPq+gdQcFEAB4BsatOmjSTp8OHDunr1aj5HU3h9++23kqTmzZurVatW8vDwUHR0tNavX5/PkV23Y8cORUZGys3NTffdd58eeughSdKSJUvyOTLHxcXF6eTJk5J0y+HqSpQoYXu/7Nu3L0f6Tk1Ntf2/u7u73TqLxZLucgAAAAC5hxy5YCBHzj/kyEDO4boF4CgK4ADyzI8//qi+ffuqSZMmqlWrlpo2baqXXnpJv/32W7rtQ0JCFBISYjcv1I2effZZhYSE2IZykqRTp04pJCRE999/v86ePav+/furTp06atSokV599dUcPR4fHx/b/1+5csWu/5CQEEVERKS7XevWrRUSEmJLSiVp+/btCgkJUdeuXXXs2DF169ZNtWvX1r333mub78a63cGDB/XLL7/o6aefVv369dW4cWP17NlTGzZsyDDW1NRULV26VM8++6zuuece1apVSy1bttRrr72mAwcOpLtNYmKiZs6cqaefflr33nuvateurVatWunVV1/Vrl27MuwrLCxMb7zxhlq2bKlatWqpcePG6tOnj3788cd02994zm48J5lx8uRJ7dy5U5LUtm1beXt7q1WrVpJUYIYatM691qRJExUtWlSdO3eWJB0/fly///57uttk5zr69ttvFRISoh07dki6ftd5SEiIhg8fbrfdpUuXNG3aND366KOqX7++6tatq4ceekjvvfeezp07l6Vju/HO8Y0bN96y7UsvvaT//e9/+vDDD+2WDx8+XCEhIRkOx2c9rtatW0v699z07NnT1sZ6rqz7sp6DadOm2dZJ/77PQkJClJKSkqavsLAwjRo1Sm3atFHt2rV1zz33qFevXvrhhx/s2t3u9YmMjNSYMWP04IMPqnbt2mrYsKG6d++upUuX2v0ocfM5WLRokU6dOqURI0aoefPmqlWrlpo3b67//ve/OnXqVIbn9o8//tCrr76qVq1aqVatWmrSpIleeOEFu8/WLVu2KCQkRDVr1lR0dHS6+0lMTFSDBg0UEhKivXv3pjnWzL4/p06datvmdn9uPq4LFy7o/fffV4cOHVS3bl3Vr19fTzzxhL744gtdu3Ytw74++OADbdiwQe3atVOtWrXUunVr/e9//7M7ti+//FJdu3ZVaGioateurTZt2mj06NEKDw/P8FgOHjyoUaNG6aGHHlJoaKhq1aql++67T/369UtzXUj/Xq/NmzdPd383nk/rsVtff6v//Oc/6Z7vEydO6K233tKDDz6oWrVqqUGDBuratau+/PJLJSYmZngMkhQVFaVRo0apRYsWqlWrlpo1a6bhw4ff8tgd2Q4AAGQOOfJ15Mj2yJHTIkf+FznynZcjW8XFxWnmzJnq0aOHGjdurJo1a6phw4Z6/PHHNXXqVF26dCnNNln93Le+ptYRFVavXq2QkBA9++yzaY4tOzlyRESERo0apdatW6t27dpq27atpk+fftsRJuLj4/Xpp5/a3mf16tVT586dNWXKFMXFxaV7TFFRUZKkESNG2F3zt8u7M/P633iubnX9Z+Wz2xr35s2bFRYWpiFDhui+++5TrVq19MADD2jChAm6ePGi3TYhISEaMWKEJOns2bN278+b7dq1Sy+88IIaN26sOnXqqF27dvrwww8VHx+fbntHtwOcAQVwALkuOTlZgwYN0uDBg7Vlyxa5urqqWrVqSklJ0bp169S7d29NmDAhR/tMSkpSnz59tG3bNgUFBclkMql8+fI52of1S72Hh4f8/PxyZJ8XL15Ur169dPDgQVWpUkXXrl1TpUqV7NosX75czz//vA4cOKDKlSurSJEi2r59u1588UWNGzcuzT7j4+PVo0cPjRw5Ujt27FDRokUVEhKiy5cv67vvvlOXLl00d+5cu22SkpLUu3dvffjhh9q3b598fX1VtWpVxcfHa82aNerRo4eWLl2apq+vv/5ajz/+uFauXKlLly6patWq8vLy0tatWzV48GC9+uqr6SY32bV8+XIZhqEKFSrY7q7u1KmTJGnnzp06duxYjvWVHfHx8Vq3bp2kf+MKCgpS9erVJUmLFy/Osb78/f0VGhpq+9GpbNmyCg0Ntbt+Dh06pE6dOmnq1Kk6dOiQypcvr8qVK+vkyZP64osv1KlTJ23fvj3TfXp5eSk0NFTS9ULkG2+8oZ07d6b7GgcEBKhKlSoOv1eKFCmi0NBQBQcH25aFhobajjW9c2CN8Va+/vprdenSRd98840uXrxou3Z///13DRkyRB9//HGm4lu/fr06deqkRYsW6dy5c7r77rtVokQJ7dq1SyNHjlSfPn1sPwbe7O+//9YjjzyilStXytPTUxUrVtTZs2e1bNkyPfnkkzp9+nSabT766CM988wzWrNmja5evaqQkBCZzWZt3LhRvXv3tj1Fcf/996ts2bJKSUnRmjVrMow9Pj5eQUFBt3xa4XZuPO/p/fH09JR0fdiyokWL2rbbtWuXOnbsqDlz5ujkyZMKDAxUuXLldODAAb333nvq2rWrzp8/n26fO3fu1ODBgxUXF6egoCCdO3fO9j47c+aMHnvsMU2cOFF79+5VQECAqlatqvPnz2vJkiV6+OGHbfN+3WjhwoV6/PHH9c033yg6OloVK1ZUYGCgLl++rM2bN2fpurgV63VrFRwcrNDQUPn7+9uWfffdd3r44Ye1ePFinTt3TsHBwSpZsqT27t2riRMn6sknn9SZM2fS3f+hQ4f06KOPaunSpfL29lZgYKCio6O1YsUKPfbYYzp69GiObgcAAG6PHDnzyJGzhhz5X+TI5MgFJUeWpPDwcD388MP68MMPtWfPHpUoUUIhISFycXHRgQMHNG3aND311FMZnovMKlq0qF0+WaJEiTTXR3Zz5N9++02PPfaYvvnmG8XExCg4OFgJCQmaPHmy+vbtm2FMx44d08MPP6wpU6bo8OHDKlWqlCpWrKjjx4/biuI3fjZZc2Lrk9/W67hWrVq3Pf7Mvv6348hn9+bNm9WlSxdt2LBBfn5+Klu2rE6dOqV58+bp6aeftis83/iZ5ObmluH7c8WKFerRo4e2bdumsmXLqkSJEgoPD7fdlJXRTfHZ3Q5wGgYAOGjKlClGcHCw0apVq3TXv/POO0ZwcLBRr149Y+3atbblKSkpxldffWXUqFHDCA4ONubOnWu3XXBwsBEcHGz8+uuv6e73mWeeMYKDg40pU6bYlkVGRtq2a9SokXHkyBHDMAzj2rVrxuXLlx0+Fqvo6GijUaNGRnBwsDFgwIB0+w8PD09321atWhnBwcHG8uXLbct+//1323Zt2rQxzpw5YxiGYcTHxxuJiYl22wUHBxu9e/c2Lly4YBiGYVgsFmPJkiW287h69Wq7/p5//nkjODjYuP/++43ff//dtvzatWvGJ598Ytvnjz/+aFu3cOFCIzg42Gjbtq0RFRVlW56YmGi8/fbbRnBwsNGgQQNbbIZhGJs2bTJCQkKMmjVrGvPmzTNSUlJs67Zt22bce++9RnBwsPHxxx/bxZeUlGQcPXrUOHr0qBEXF3fL836j1NRUo0WLFkZwcLAxefJku/1ZX5uxY8emu+0bb7xhBAcHG6+++qrd8ttdc1m1ePFiIzg42Khbt64RHx9vWz5nzhwjODjYqFmzpnH+/Pk022X3OjKMf98XH330kd3yy5cvG02bNjWCg4ONp556yjh58qRt3fnz523XSYMGDezW3c6BAweMevXq2eINDg42QkNDjX79+hmff/65sWfPHiM1NTXD7TN6LayWL1+e7nvyxvfMzdL7bLh5m+TkZNvyXbt2GdWqVTOCg4ONDz74wO66Xr58uW3dli1bDMPI+PU5ePCgUatWLSMkJMT4+OOP7fZz4MABo23btkZwcLAxbNiwdM9BcHCw0bVrV+P48eO2dbt37zbq169vBAcHG+PGjbPbbs2aNUZwcLBRvXp148svv7S951JSUozp06fb1h09etQwDMP4+OOPjeDgYOOxxx5L91w/99xzRnBwsDFr1izbsuy+PzOyatUqIzg42KhRo4axdetW2/IzZ87Y3rcjR440Ll26ZFsXERFhPPnkk0ZwcLDRvXt3u/1ZP7ODg4ONF1980bh27ZphGNc/o63n4pFHHjGCg4ONdu3aGQcPHrRte/nyZeO///2v7b24Z88e27oTJ04YNWvWNIKDg43p06cbSUlJtnUxMTHGkCFDbNvFxsba1lmv12bNmqV7/DdeO5GRkXbrMvr82bNnj+3zfeTIkXb/lv3999+26+qxxx6zu65vvK4effRR49ixY7Z1Bw8eNBo3bmwEBwcbQ4YMsesvu9sBAIB/kSOTIxsGOXJ6yJHJkW88T4UpR7a+Bl27djXOnj1rW26xWIwVK1bYzulXX31lt112PvcNI+PrKLs58qVLl4wmTZoYwcHBxtChQ+3+/fj2229t+fPNsV65csV48MEHbf82WD/LDcMwzp07Z/Tv39/22ZqQkGAXa0bv6Yzy7qy+/hld/9n97La+FsHBwUb//v3tXucNGzYY1atXT/ff9lv9jnDjv3OvvvqqERMTY1tn/X0lODjY+Prrr3NkO8DZ8AQ4gFx15swZ2x28Y8eOVfv27W3rXFxc1KNHDw0ZMkTS9aGYHL3T8Ubdu3dXlSpVJF2fL+bG4diywzAMxcTE6Oeff9Zzzz2n2NhYubm5afDgwTkRrs3zzz+v0qVLS5K8vb1VpEgRu/XlypXTp59+arub02QyqWvXrurTp4+k6+fRas+ePbZht6ZMmaLGjRvb1rm7u2vIkCF66qmnJEkffPCBbV1YWJik63OGlStXzra8SJEiGj58uJo2baoHH3xQsbGxtnUfffSRDMPQsGHD1LNnT7m4uNjW3XvvvZo4caIkae7cuYqJibGtc3NzU1BQkIKCguyeBr2drVu32u72ffjhh+32Z73OVq1ala93M1qHdnvggQfk7e1tW96pUyeZzWYlJyfb2uS2hQsX6ty5cypZsqQ+//xzBQYG2taVLFlSU6ZMUXBwsC5fvqwZM2Zker81atTQ0qVL1aBBA9uy+Ph4bdq0SR9++KG6du2qpk2b6uOPP1ZCQkKOHlNOmT59uiwWix566CG9+uqrdu+5xx9/XF26dJGk2w5vNnXqVCUlJemZZ57Ryy+/bLefGjVqaMqUKXJxcdHq1avTfXrWzc1N06ZNU+XKlW3L6tevr8cff1yStHv3brv21vf6f/7zH/Xq1cv2nnNxcdGAAQN0//33KzU1VStXrpQkPfHEEzKZTDpw4ECaJz/Onj2rbdu2ycXFRY888ohdTNl5f6Zn586devPNNyVJb775pu6//37bujlz5ig2NlatW7fW2LFjVaxYMdu6ChUqaPr06fLx8dEff/yhTZs2pbv/N954w3aHeIkSJSRJP/zwgw4ePKgiRYpo1qxZqlatmq29j4+Pxo0bp2bNmik5OdnuCYZff/1VLi4uqlmzpgYMGCA3NzfbOl9fX73xxhuSrj+9deLECYfOy+1MmTJFKSkpatq0qcaOHWv3b1n16tU1e/ZseXh46MCBA3bDvlu5urrq008/1d13321bVq1aNfXu3VvS9eHh0pPd7QAAwK2RI2cdOXLmkCNnDTlyxsiRczZHjo6O1pEjRyRd/9wvVaqUbZ3JZNKjjz6qRo0aSbo+KkFuym6OvHjxYl28eFGVKlXSe++9Z/fvx2OPPaYXXngh3f6WLl2qiIgI1axZU1OnTrV9lkvXR0GYPHmyypcvr/Dw8CwPKX+zrL7+GcnuZ7eVv7+/pkyZYvc6P/DAA7Yh22++bjMjKChI7733nnx9fW3LHn74YdvvKhlNw5Hd7QBnQQEcQK7avHmzUlJSFBAQoA4dOqTb5plnnpGbm5suX75sm5coJ9yYbGRVVFRUmrlqq1WrpiZNmmjAgAE6ePCgihYtqk8++cTuy2JOuF3cXbt2lZeXV5rlTz/9tKTr88QeP35c0r9zTtWpUyfDIa6ee+45SdeHqzt8+LAk2YbfWbZsmRYuXGg3R427u7vmzJmjiRMn2r64njp1SgcPHpRkn2jfqEWLFvLz81NiYmKGc9plhfWLcZ06ddIMgWeNIS4uLt2CUF44duyYbY6om89JqVKl1KRJE0nSkiVLZLFYcj2en3/+WZL06KOPqnjx4mnWu7u72+aE+vnnn2UYRqb3XaVKFS1cuFArV67UoEGDVL9+fbuCYXR0tGbMmKGHH344w2Ga80tCQoJtnjnrD103e/nll/XDDz/Y5hpMT1JSkjZv3iwp4/eA9XPEMIx054OrVauWAgIC0iy3FiAvX75sWxYREWF7n1vf+zcbP368NmzYoKFDh0qSAgMDdc8990hSmoRv1apVslgsat68eboxOOr48eMaNGiQkpOT9eyzz6pHjx52663zM2Z07kqWLGlL0NI7dwEBAXY/WFlZr/vWrVunu166nhxL0o4dO2znuEePHtq7d68WLlyY7jYeHh62/8/NH62uXr1qG3Lxxjn9bhQYGKg2bdpIkn766ac062vVqmX3I62VdV6xG3+kzYntAADArZEjZx05cuaQI2cNOXL6yJGvy8kc2d/fX7///rv27t1rNxS5VWpqqq2gnNs3qGQ3R7beiN65c2e7a9mqW7du6e7Lmut36NDBrpBs5eHhoXbt2klKP9fPrOy8/unJic/ue++9N82NWtL1YrRkf91m1gMPPJDu+bPm5zfPLe7odoCzcM3vAAA4N+uXj+rVq8tsTv+eGy8vL1WuXFmHDx/WiRMn1KpVqxzp25EvqO7u7mnmljGbzfL29lbp0qVVt25dtW/f3uE75tNzu7jr1KmT7vJy5cqpaNGiunz5ssLDw3X33Xfbzn/NmjUz3F+lSpXk4+Oj+Ph4nThxQsHBwXryySe1bNkyHT16VG+//bbeeecdVa9eXffee6+aNWume+65R66u//4TYr2TVZJefPHFDPu6du2apH+vi+yKjY21FXrS+0LaoEEDBQYGKjIyUosWLdITTzzhUH/ZsWzZMknXE50bn3S1euSRR7Rt2zZFRUVpy5YtatGiRa7GY31K9VbXgnXdxYsXFRsbm+W5yKpXr67q1avrpZdeUkJCgnbv3q2tW7dq1apVio6O1smTJzVkyJBMz7mUF/755x8lJydLUoY/1Pn7+9vNx5ye8PBwJSUlSZLefvtt25PI6fUnpf8euPFO6BtZi60pKSm2Zdb5Fb28vDJMWsuWLZtm2RNPPKEdO3Zo9erVeuWVV2QymSRdT+4l2e6kz0kXL15U//79FRsbq6ZNm2rEiBF2669cuaKoqChJ1580mD9/frr7sbZJ79zdeGf1jbJy3aempioiIsLus79IkSLat2+fDh8+rMjISJ08eVKHDx+2iyErP4RlVWRkpO36vNV8Z7Vq1dKaNWvSfRo9o+vK+iNxcnKyUlJS7D7THdkOAADcGjly1pEj3x45ctaRI6ePHDn3cmQPDw+dPn1ae/fu1cmTJxUZGaljx47p4MGDunr1qiTl+s0f2c2RrdtVrVo13W38/f1VqlQpnTt3zm659SaipUuXpnvDtiRduHBBkmOfg9l9/W+WE5/dWbluM+t2+XlGN05kdzvAWfCLFYBcFR8fL0m3HRbImiTn5PBuNz6hl1UBAQFatGhRjsWSFbeLO707k628vLx0+fJlxcXFScr8+ff29lZ8fLzt/Pv4+GjJkiX64osvtGbNGkVEROjvv//W33//rTlz5sjf318vv/yyunbtKsn+7sXMDOWTnbsdb7R69WpbIjVu3DiNGzcuw7b79+/XgQMHbvnlPqelpKTou+++k3T9zu7b9b1o0aJcT+4zcy3c+GPVlStXspzc38jT01P333+/7r//fg0ZMkRvvvmm/ve//2nPnj15/nrcyo1Psd44BF9W3XhN//XXX1lqb5XeXdQZscad1Zjbt2+vsWPH6vTp09q+fbuaNGmi/fv36+jRo/Lz88uxH1etrl27pgEDBigyMlJVqlTRJ598kubuY+u1Kf2bHN9Keucuvburb9x3Vq57q1WrVmn69OkKDw+3a3/XXXepS5cu+uabb24bq6NuPDeZOYb0/g3N6Iem28nudgAA4NbIkbOOHPn2yJGzjhw5feTIuZMjHz9+XO+//742bdpkV+T28fFRw4YNde7cOdtUC7kpuzmy9TM0vdE2rIoXL56mAG7tLzw8PE1ufTNHPgez+/rfKobsfnZn5brNrIx+88it7QBnQQEcQK6yfvG43ZcY6xep9L6oZPR0nfXuyIIqt+K+1XC71i+W1jtxM3v+retvPP8+Pj4aPHiwBg8erIiICG3fvl3bt2/Xpk2bFB0drVGjRsnX11dt27a1fQH29fW1Ddebm6xzgnl5ed3yS/u5c+dkGIYWL16ssWPH5npcVr/88ovtDtZSpUrZ7iC+2dWrV3X58mVt3rxZp0+fTvdu1Jy6jry9vXXp0qVbXguXLl2ya387o0eP1u+//67HHntMAwYMyLCdh4eH3nnnHa1bt842Z/LNyX1Gx5nbc6LdmLzFx8fb5o52ZD+7d+92OOnKbH9Z/UHUw8NDHTt21JIlS7R69Wo1adLEdmd7RkOZZZdhGHrttde0Z88e+fn5acaMGem+Xz09PW3/v3r16nSHhMuuzHwGWv/9ubH9ihUrNHz4cElSs2bN9OCDD6pq1aoKCgpS8eLFlZycfMsCeE5dzzdeR5cvX87wKQvreze3rzsAAOA4cuS0yJEdR45MjpxTyJFzPkeOjo7WM888o+joaJUrV05du3ZVjRo1dPfdd+uuu+6SyWTSq6++essCeE5e91LWc2RfX1+dP3/e7ibtm6X3NLGnp6cuX76sGTNm5PgN9zfK7uuf0X7y6rMbQO5iDnAAuco6L8/BgwczHMYnPj7edhdgxYoVbcutTwla72K+2c13FRYENw55ll7ciYmJDt/ZndETkidPnrR90atSpYqkf8//gQMHMtzfsWPHbF+Yrec/Ojpaf/zxh20umIoVK6pr16768MMPtWnTJtvQd9akoHLlypKu33F5/vz5DPv6448/dOzYMYeG2AkLC7PNxzNx4kRt3rw5wz/WO8bXrFlzyy/pOc0691rVqlW1ZcuWDOObO3eupOvDSt1YTMuN6ygz14L1ruzixYtn6s72a9euKSIiwjan0634+PjYEqcbE2jr+9w6xNrNcvt9HhgYaIvhxqGubrR//35169ZNI0aMyDDpvHE/R48ezbC/ffv26dChQw4nZdY5/a5evapTp06l2+ann37Ss88+q/fff99uuXW4w59++kmpqam2YchyehjE999/Xz/++KPc3Nw0bdq0DIchK1asmEqWLCnp1ufu0KFDOnjwoN2PULeTmet+//79kiSTyaQKFSpIkj7//HNJ1+cDnD17tp566imFhobani7KaJ6+nP53q0KFCrYfXG711IR13Y3/hgIAgIKJHNkeOTI5MjkyObKz58jLly9XdHS0fH19tXz5cg0YMEAtWrRQYGCg7WaQs2fPprttTn/uZzdHtn6mWT9rbnblyhXbcPY3sm6X0bUkXX86fP/+/Q7NR+3I659evHnx2Q0g91EAB5CrmjdvLldXV50/f17ff/99um2++uorpaSkyNPTU40aNbIttyYX6c2nsm/fvgKZ3Pv6+tq+vKYX988//5ytuV5u9O2336b7Q4l1OLp69erZ7pK23l25b9++DIfu+fLLLyVJZcqUUUhIiCSpT58+6tGjh1asWJGmvbe3t+rVqyfpelIqSUFBQbYfBr766qt0+9m1a5d69OihDh06aM+ePZk40vRZ5w3z8/NT69atb9m2W7dukq5/Abb+EJHboqOjtWnTJkm3T5Zq165t+6Fk6dKltmvDkesoozvprdfCypUr0y0gJiUl2a6hZs2a3TJuK+vccn/99ZftB42MbN26VbGxsfL19VXdunVty2/1Pk9NTdXPP/+cqViyy8fHRw0aNJD071MTN1uzZo12796tU6dOZXh+fXx8bJ9fGc1hHRkZqe7du+vhhx/WDz/84FDcQUFBKl++/C3jXrFihXbs2JEmiaxbt66qVq2qmJgYLViwQP/8849q1KiR4fxu2bFo0SJ98cUXkq4PwdiwYcNbtm/ZsqWk658f6X2+Xb58Wb169dKjjz6qefPmZToO63X/888/KzIyMt021terXr16KlasmCTZEuaMhiG0fg5J9vN3Wa/nS5cuKTo6Os1269evzzBW67V14w9IXl5eaty4sV2cN4uMjLS9T5o3b57h/gEAQMFAjmyPHJkc+UbkyOTI2VWQc2RrflmuXLl0n6g/evSo7TPA+hlild3P/fTySyn7OXLbtm0lXb/JJ72bFb799ts0sd/Y37Jly9ItFqekpGjgwIHq0qWL3nvvvXTjyQxHXv+b95NXn91WZvP1El1GN5MAyD4K4AByVdmyZW1zYI0aNcruC63FYtHChQs1depUSdLAgQPthuqyfuGeO3eujh07Zlu+f/9+vfLKK3kRfpZ5eHioRo0akqSpU6fa3cG5detWvfPOOw738ddff2nUqFG2Ya8sFou++uorW5I+dOhQW9v69evb7vAePHiw3fA9SUlJmjJliu2u6tdff932BfmRRx6RJE2bNk2bN2+26/+PP/6wJco3zsk1ZMgQSdLMmTM1a9Ysu7tT//jjD9v6evXqqUmTJrZ1ycnJOnbsmI4dO3bbO7aTkpK0evVqSdeHorrdHLXNmze3fQFevHjxLdveyj///KNjx46lezfrzVauXKmUlBS5ubnZzuOtWH+AOH/+vO0uY0euI+twTVFRUWn6KV26tC5cuKDnn3/eLtGJjo7WkCFDdPjwYXl7e+ull166bdySdP/996tdu3aSpJEjR2r8+PFp7rS9du2ali9frpdfflnS9evkxqHPrO/zI0eOaP78+bYv/JcuXdKbb76ZqTmhHTVw4ECZTCatWrVKM2bMsPvhZOXKlVqwYIEkqW/fvrfcz0svvSQXFxetWbNGEydOtEsKDx8+rP79+ys5OVnly5dX586dHYrZZDJp4MCBkqRZs2Zp6dKltnOXmpqqmTNnav369XJ1dVXv3r3TbG/94Wny5MmSpMcffzzdfrLy/rTatGmTbTjFwYMH69FHH73tNv3795eXl5d27dql1157zS4hjYqKUv/+/RUTE6OiRYuqR48emYpDuj6fW0hIiK5du6Z+/frZDSkXHx+vUaNGaevWrXJ1ddWwYcNs66x3xS9ZssTu/RcfH6+pU6dq5syZtmU3JvF169aVm5ubDMPQhAkTbOuSk5M1b968Ww6bbn3v3vw5M2jQILm6umrr1q0aNWqU3ZM6YWFh6tevn65du6Zq1apl6lwDAID8RY5Mjmzdhhw5feTI5MjZUZBzZGt+GRYWph9//NG23DAMbd68WX379rU98X/zEPfZ/dy3XlM3v0ezmyM/+eSTqlixos6cOaPBgwfb3fC9bt06ffjhh+nG0aNHDwUEBCgiIkIDBgywi+fixYt6+eWXdezYMbm5uem5557L8Hhux9HX/0bZ/ezOLutnVFxcXJ6OzAEUBswBDiDXjRgxQmfPntVPP/2kIUOGqFSpUipTpowiIyMVExMjSXrmmWfUr18/u+0GDBigLVu26Pz58+rcubOqVKmia9euKTw8XIGBgXriiScyvKsvP7388ssaMGCAjh49qjZt2qhKlSq6dOmSoqKiVLt2bYWGhtqSuOwIDg7WsmXLtHbtWt199906c+aMzp8/L7PZrBEjRqT58vX+++/rhRde0J9//qmePXuqfPnyKlGihE6cOKH4+Hi5uLjo5ZdfVseOHW3b9OzZU9u2bdPmzZvVr18/lSpVSqVKlVJMTIwtaWzdurWefPJJ2zYdO3ZUeHi4pk6dqg8++ECff/65KlWqpIsXL9q2qVy5sqZPn24X39mzZ9WhQwdJ14dryyjJkKQNGzYoNjZWUuaGojKbzXrqqaf00Ucf6fDhw9q1a5cteciKN954Qzt27FCjRo1siV5GrHd5t2zZMlNzZXXs2FHvvfee4uLitHjxYluynN3rqEaNGtq4caNWr16tQ4cOqWHDhnrrrbdUrFgxzZgxQ/3799eff/6ptm3bqkqVKnJ1ddWRI0eUnJwsX19fffDBB7ahozLjgw8+kJeXl1auXKn58+dr/vz5KleunPz9/W3v16SkJLm5uenVV19V9+7d7bZv0aKFGjZsqD/++EPjx4/XF198IT8/Px0/flzJycl66aWXbD8A5pZ7771XI0aM0LvvvquPP/5YX3zxhQIDA3XmzBnbPHUvvvii3Y9Z6WnQoIHGjh2rt956S19++aUWL16soKAgXblyRRERETIMQyVLltScOXNu+8NUZnTp0kVHjx7V3LlzNXLkSH3yyScqU6aMTp06pdjYWLm4uGjMmDHp3rX+yCOP6MMPP9TVq1fl5uamTp06pdtHVt6fVkOHDlVqaqo8PDz0999/q0+fPkpMTEz3qZwnnnhCXbp0UcWKFfXJJ59o6NChWrNmjX788UdVqVJFycnJCg8PV0pKiry8vDRz5swM58FOj6urq6ZPn65+/frp+PHjeuSRR1SpUiV5e3vbhivz8PDQ22+/bfeU+tChQzVw4EAdPXpUDzzwgG0YtIiICF27ds02VN3JkyfthkMvXry4+vTpoxkzZmjNmjXasmWL7rrrLkVFRSk2NlbdunXTzz//nO7wdjVq1NDOnTv1zjvvaNGiRerevbu6dOmi+vXra/z48Ro5cqS++eYbfffddwoKCtLVq1d14sQJSdf/XZg2bVqOXFcAACD3kSOTI5MjZ4wcmRw5uwpqjtylSxctXLhQERERGjx4sMqXLy8/Pz+dPn1a0dHRcnNzU6NGjbRjx440uWJ2P/erV68u6fr86+3bt1eVKlU0bdq0bOfIHh4emjJlivr27autW7eqZcuWqlq1qmJjY23vwfPnz6eZLqx48eL67LPPNGDAAG3btk0PPPCAqlSpIpPJpBMnTigpKUmurq766KOPbCNuZJcjr/+NsvvZnV0hISEym81KTExU+/btVapUKc2ZMydT0y4AuDWeAAeQ69zd3fXpp5/q448/VtOmTZWUlKSDBw/K09NTHTt21Pz58zVq1Kg0wyZVr15dy5YtU+fOnVWiRAkdP35cqampeu6557RixQoFBATk0xHdWvPmzbVw4UK1adNGXl5eOnr0qIoUKaLBgwdr4cKFtjv7sqtnz5766KOPVLlyZdudv+3atdPixYvTvYvR19dXCxYs0NixY3XPPffo8uXLOnTokPz8/NSlSxctW7ZM/fv3t9vGxcVFn376qd58803Vr19fiYmJCgsLU0JCgpo2bar3339f06dPt5uHS7qeAC1ZskSdO3eWj4+PwsLCFBMToxo1amjIkCFavnx5lopXN7MmzjVr1sz0UFRdunSxzaHryB3umbF3717b3FaZnSvK09PT9tTmb7/9ZpvrL7vXUb9+/fTkk0/K19dX4eHhOnTokG1djRo1tGbNGg0cOFBVq1ZVZGSkwsPDVblyZb3wwgv67rvvMj20m5W7u7veffddLV26VM8995xq1qyppKQkhYWF6cyZM6pcubL69Omj7777Ls11Jl3/AWbOnDl6+eWXVbVqVUVHR+uff/7Rvffeq0WLFjl8F3hm9erVS0uWLFGnTp1UpEgRHTp0SCkpKWrRooXmzp2rwYMHZ2o/TzzxhFatWqWnnnpKAQEBOnLkiE6fPq2goCD17dtX3333na2YmhOGDx+uuXPn6oEHHpBhGAoLC5OLi4vat2+vJUuW2P0Ad6MSJUrYhstu3bp1jiZW1rv6ExMTtWHDBm3dulV//PGHdu/enebP6dOnbdu1aNFC//vf/9S7d29VqFBBJ06cUEREhMqXL6/u3bvru+++U2hoaJbjueuuu7R8+XK9/vrrqlOnjs6fP69jx46pbNmy6tmzp1atWpXmyelWrVpp2bJlatOmjQICAnT8+HGdPn1awcHBevXVV7Vq1Srbtblx40a7bYcOHaoPPvhADRo0UHJysk6cOKHKlStr0qRJGjNmTIZxTpgwQffff79cXV114sQJ22eBdH0u8lWrVqlr164qWbKkjhw5opiYGIWGhmr06NFatmxZhnOsAwCAgoccmRyZHDlj5MjkyI4oiDmyj4+P7XOlatWqunjxoo4cOSIfHx9bAXvChAmSrj8lfuNT0tn93H/00UfVt29fBQQE6NSpUzp48KDtpvTs5MiSVK1aNa1YsULPPfecypYtqyNHjshisah379768ssvM7yJoXbt2lq9erVefPFFhYSE6NSpUzp+/LhKliypRx99VMuXL7cNse6o7L7+N8vtz+4bVaxYURMnTlSlSpUUGxur06dPpxmxAkD2mAwmFwCAO0Lr1q0VFRWlcePGZfoLG3LO2LFjdfLkSc2aNSu/QwFyxOOPP64DBw5o5syZt71zHwAAAChoyJHzFzkynA05MgA4F54ABwDgNiwWi/744w9VqVIlv0MBcsSBAwd04MABlS1bVk2bNs3vcAAAAADcQciR4WzIkQHA+TAHOAAAt/HOO+8oOjpazz77bH6HAmRbZGSkJOnChQsaPny4pOvDRbq4uORnWAAAAADuMOTIcAbkyADg3CiAAwBwG08//bQGDx6sEiVK5HcoQLZ9//33+uijj2x/Dw4O1jPPPJOPEQEAAAC4E5EjwxmQIwOAc2MIdAAAbqNatWok9rjjVatWTaVKlZKXl5fatGmjL774Qu7u7vkdFgAAAIA7DDkynAE5MgA4N5NhGEZ+BwEAAAAAAAAAAAAAgKN4AhwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnIJrfgdwpzAMQxYLo8UDAAAAAOyZzSaZTKb8DsMpkHsDAAAAANKTldybAngmWSyGLl68kt9hAAAAAAAKmBIlvOXiQgE8J5B7AwAAAADSk5XcmyHQAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BRc8zsAAAAAAEBaFotFqakp+R1Goefi4iqzmXvHAQAAAMAZkXsXDDmde1MABwAAAIACxDAMxcVdVEJCfH6Hgv/n6emjYsVKyGQy5XcoAAAAAIAcQO5d8ORk7k0BHAAAAAAKEGsC7uPjJ3f3IhRd85FhGEpKuqb4+BhJUvHi/vkcEQAAAAAgJ5B7Fxy5kXtTAAcAAACAAsJiSbUl4D4+xfI7HEhydy8iSYqPj1HRon4Mhw4AAAAAdzhy74Inp3NvMncAAAAAKCBSU1Ml/Zv4oWCwvh7MCwcAAAAAdz5y74IpJ3NvCuAAAAAAUMAw9FrBwusBAAAAAM6HXK9gycnXgwI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BRc8zsAAAAAAED+OXQoTNOnT1ZY2N+yWAzVqFFL/fsPVM2atSRJO3f+rrlzZ+vYsSNycXFVo0ZNNGDASypduowk6fvvV2vChLe1dOl3Klu2nG2/Xbp0Vv36DfTf/46RJDVt2lDPPddf27ZtVWRkhLp1e1a9e/dVVNQpffbZVO3atVOGYahWrdoaOHCI7r47SJJ07do1zZkzQxs2rFNMzEVVqFBRPXs+pwceaJu3JwoAAAAAgGwi985bPAEOAAAAAIXUlSvxevXVl1S8uK/GjXtPb789QYmJCXr11UGKj4/Xjz9+r6FDBykgIEBjxozXSy8N1YED+/XCC88pJuZilvubN2+OWrZsrTFjxqtZs5a6cOGC+vXrpYiIE3r11Tf01ltjFRcXp5dfHqjY2FgZhqE333xNK1d+q6ee6q533/1ItWrV0Vtvvam1a9fkwhkBAAAAACBnkXvnPZ4ABwAAAIBC6sSJE4qNjVGXLk+pTp16kqSKFStp1arlio+/rOnTJ6thw0Z6++2Jtm3q1KmnZ555UosWfaWBAwdnqb8aNWrpmWd62/7+6aeTde1aoj75ZLr8/UtKkqpWrabnn++tv/7apyJF3LV9+za9/fYE213njRvfq8TEBM2YMU0PPtherq6ktQAAAACAgovcO+/xBDgAAAAAFFJ33x0kX18/vfHGK/rgg4naunWz/P1LauDAIUpMTFR0dLTatn3Ibpvy5e9SzZq19eeff2S5v6CgKnZ/37v3T9WqVceWgEtSyZIltXz5GjVt2lx//LFTJpNJ997bVCkpKbY/99/fQtHRF3TixLHsHTgAAAAAAHmE3Dvv3VnlegAAAABAjvHy8tL06bM0b94cbdiwTitXLpeHh4fatn1I7dt3lCSVKOGfZjt/f38dOnQoy/35+ZWw+3tc3CW7uctuFhd3SYZhqG3b5umuv3DhvKpWDclyHAAAAAAA5BVy77xHARwAAAAACrEKFSpp1KixSk1N1cGDB/TDD99r5cplKlkyQJJ08WJ0mm2io6Pl6+srSTKZTJIki8Vi1yYh4ept+/bxKarY2Ng0y3ft2qkyZcrKx6eoPD29NHXqjHS3L18+8LZ9AAAAAACQ38i98xZDoAMAAABAIbVx4wZ16tRG0dEX5OLiolq16mjYsOHy8Smqixcvyt/fX+vWrbXbJirqlP76a5/q1KkrSfLy8pYknT17xtbm5MlwXbp06bb9161bTwcO7FNMzEXbstjYWA0bNli//rpZ9eqFKiHhqgzDULVqNWx/jh8/pi++mKXU1NScOA0AAAAAAOQacu+8xxPgAOyYzSaZzaZc7cNiMWSxGLnaBwAAAG6vdu16Sk21aMSIYXrmmd7y9vbWTz+t05Ur8Wrduo1q1KipCRPe1ltvjVD79p106VKsvvhipooVK66nnuohSWrQ4B55eHho2rSP1a/fQF29elVz515vcztdu3bX2rX/0yuvDFLPns/J3b2IFiyYK3//kmrfvqN8fIqqXr1QDR/+qnr37quKFSvp4MEDmjNnpho3bmK7Ex7OL7fzFHIUAAAAALmF3DvvmQzDIMPLhNRUiy5evJLfYQC5ymw2ydfXSy4uuTs4RGqqRbGxV/mBCQAA4CbJyUmKjj4tf/+ycnNzz5M+Dx48oFmzPlNY2EElJibq7ruD9Oyz/1GLFq0kSb/88pMWLPhSx48flbe3txo3vlf9+7+o0qXL2Pbx++/bNGPGNEVEnFCZMmX1n//01w8//E/+/v7673/HSJKaNm2o//ynn/r0ed6u/4iIcE2fPlm7d++Sm5ub6tcP1cCBQ1S+/F2SpISEBM2e/Zk2bvxJMTEXVbJkKbVp01a9e/dVkSJF8uQc3e51KVHCO9e/QxcW6eXeeZGnkKMAAAAAhQe5t/Pn3hTAM4kCOAoDV1ez/Py89emiXxV17vbDZmRH+VLF9WK3+xUTc0UpKZbbbwAAAFCI5EcSjtujAJ530su9cztPIUcBAAAAChdy74IpJ3NvhkAHkEbUuUsKj4rJ7zAAAAAAwIY8BQAAAACQGdyiDgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgF1/wOAAAAAAAA5I/k5GQtWLBAK1asUHh4uLy8vFS7dm316tVLzZo1S9O+cePGio2NzXB/+/btU5EiRXIxYgAAAAAAbo0COAAAAAAAhZBhGBo6dKjWr1+vYsWK6b777tO1a9f0+++/a8uWLXr55Zc1YMAAW/uoqCjFxsaqdOnSatSoUbr7NJsZaA4AAAAAkL8ogAMAAAAAUAgtXrxY69evV/Xq1TV37lz5+flJksLCwtSjRw9NnjxZbdu2VVBQkCTp4MGDkqT27dvrzTffzLe4AQAAAAC4FW7NBgAAAACgEFq1apUkafjw4bbityRVq1ZNnTt3lmEY2rx5s235gQMHJEk1a9bM20ABAAAAAMgCngAHAAAAgDuA2WyS2WzK834tFkMWi5Hn/SL3zZs3TydOnFDVqlXTrLt69aokycXFxbbM+gR4rVq18iZAAAAAAMhj5N7OgQI4AAAAABRwZrNJvr5ecnHJ+0G8UlMtio29mq1EfN26H7R8+RIdP35UklSxYmV16vSIHn30iZwOE9lQpEgRVatWLc3yDRs26IcffpCnp6fatm1rW37gwAF5eHjor7/+0siRI3XkyBGZTCaFhoZq4MCBqlu3bl6GDwAAAAA5itzbeVAABwAAAIACzmw2ycXFrE8X/aqoc5fyrN/ypYrrxW73y2w2ZTkJX7NmlT75ZJIGD35V9eqFSjK0c+cOTZnyoWJiLuo//+mXO0EjWy5duqSRI0fq6NGjOn78uMqWLauJEyeqTJkykqTo6GidO3dOkvT666+rXr16aty4sQ4fPqxffvlFW7du1aRJk9ShQ4f8PAwAAAAAyDZyb+dBARwAAAAA7hBR5y4pPComv8PIlBUrlqlTp0f08MOP2ZZVqFBJ58+f0zffLCq0SXhBFRkZqXXr1tn+bjKZdPToUd17772S/p3/28/PT5999pnq168vSTIMQ/PmzdPEiRM1YsQIhYaG2orm2eXqav+0RV49fZEfT3kAAAAAyHsWy62HOCf3zl8uLqY0eWFWUQAHAAAAAOQ4s9mk/fv3KS4uTsWKFbMt79Gjlzp06CxJ6tKlsx56qJP69Hnetn7QoP4qW7ac/vvfMdq9+w8NHvyCBgx4SV9/PV9lypSRh4enSpYM0DvvTLRts2/fHg0c2FeLF6/QXXcF6tdft2jOnM8VHn5CAQEBatOmnXr16iN3d3dNnvyhfv11s775ZpVt+/j4eD38cDu9884ENW3aIg/OTsFTuXJl7dixQ4ZhaNu2bRo/frzGjRun+Ph4DRgwQM2aNdOWLVtkGIZKly5t285kMql3797auXOnNmzYoGXLlmnQoEHZjsNsNsnPzzsnDinLihXzzJd+AQAAAOStxEQXXbhgTlNoze+bYrPTv4uLWX/9tU9Xr8bb5d69ev1HDz/8iFxdzXr00Y7q2LGz+vV7wbZ+wIB+Klu2nEaPflu7dv2hF1/srxdfHKwFC+apTJmy8vT0UMmSARo//j3bNnv37tHzzz+npUtXKjCwgrZu3axZs2bYcu8HH2yv//ynr9zd3fXxx5O0desWLV/+nW37+PjL6tixrcaOfVfNm6fNvS0Wk8xms4oX95KHh0eWz8WNKIADAAAAAHJcjx69NHr0CD322EMKDW2oOnXqq0GDhqpevaaKFi2apX1t27ZVn38+V4mJCTpy5LA+/PBdXb16RV5e1wul69atVe3adXXXXYH6/fdtGjVquAYPHqp77mmiqKhT+vjj93XyZITGjn1XnTo9oqVLF2nv3j2qW7eeJOmnn9bJ29tbTZrcn9On4Y7h7f1v0blDhw4qU6aMunfvrpkzZ6pnz57y9vZWqVKlMty+VatW2rBhg/766y+H4rBYDMXFXbVb5uJizpPidFxcglJTLbneDwAAAID8lZR0TRaLRamphlJSCk4OkJpqyXI83bv31OjRI9S5c7s0uXe5ct62/Vks9sdqGIYM4/oyax60deuWNLl3XNxlW+69du3/VLt2XZUte5e2bt2qN998I03uHR4errFj31WHDo9oyZJF2rVrty33/vHHH+Xl5a1Gje5N9zhTUw1ZLBZdunRVCQmpadYXK+aZ6ZsEKIADAAAAAHJcy5YP6PPP52rZssXavv13/fbbr5KkwMAKGjFitOrUqZfpfXXr9owCAytIku66q4I+/niSNm3aqIce6qTk5GT9/PMGDRjwkiRp/vwv1KnTw3r00S6SpPLl79Jrr72pwYNf0OnT/ygoqIpCQqrrxx//Z0vCf/hhjdq16yBXV1Jkq9DQUFWoUEEREREKDw9XzZo1b9k+ICBAkpSQkOBw3wXpB6icYrEYWZ7LDwAAAEDuSE11nu/mzph758SNCWT3AAAAAIBcUb16TY0aNVaGYej48WP67betWrp0sYYNG6IlS1Zkej933VXB9v+enp5q1eoBrVu3Vg891Em//farrl1LVOvWbSRJhw+H6eDBA1q7do1tG8O4/uNGePgJlS1bTh07PqyZM6fr5Zdf07lzZ7V//z699tqbOXTUd4aEhARNnjxZFy5c0KRJk2QypZ0Dz93dXZKUkpKiJUuW6LffflOnTp3Upk2bNG0jIyMlyeH5v/ND8aIeMiyWXH3K3GJJVUxMAkVwAAAAADmO3DstCuAAAAAAgBx17txZff31PD3zTG8FBJSSyWRSUFAVBQVVUdOmLfTMM09qz57d6W6bmpqSZlmRIkXs/t6hQ2cNGTJA0dEXtG7d92revJW8vX0kXX/Stnv3nnrooU5p9uPvX1KS9OCD7TVt2ifatm2Ljh07qurVa+juu6s4eth3FA8PD61YsUKxsbHq2rWrGjVqZLc+MjJSJ06ckLu7u6pWrapNmzZp7dq1SkhISFMANwxDq1Zdn1O9adOmeXYMOcXbw10ms1kn1sxSQvTpHN+/p39ZVe7UT2aziQI4AAAAgBxD7p2x/J3NHQAAAADgdNzdi2jVqm+1bt3aNOusc02XKOEvV1c3xcfH29ZZLBb980/Ubfdfr16oypQpqx9++J+2bfvVLuG+++4gRUSE6667Am1/zp8/p08/nayrV69IkooWLarmzVvql19+1ubNG9Whw8OOHvIdx2Qy6amnnpIkjRkzRufOnbOtO3PmjF555RWlpKSoW7du8vLy0mOPPSZ3d3f98ssv+uabb2xtLRaLpkyZon379qlKlSpq3759nh9LTkmIPq2Esydz/k8uFNUBAAAAgNw7YzwBDgAAAADIUb6+vurRo5dmzpyu+Ph4tW7dRl5e3goPP6Evv5yt0NCGqlu3vurUqaufflqnFi1aqUQJfy1e/JVdUn4rDz3USfPmfaHixYurYcN/n17u0aOnRo8eoTlzPteDD7bX+fPn9O6741S6dGnbXeiS1LHjwxo+/BUZhtSmTbscPwd3goEDB2r37t3auXOn2rVrpwYNGig5OVn79u3T1atX1bRpUw0bNkySFBgYqDFjxmjkyJEaNWqUvvrqK1WqVElhYWGKiIhQyZIlNXXqVLm5ueXzUQEAAABA4UDunTEK4AAAAABwhyhfqvgd01+/fgN0112BWr16pVasWKrExESVLl1GrVs/qJ49n5Mk9e//oi5fjtOwYYPl4eGpzp0f1QMPtLXNG3Yr7dt30hdfzNTjjz8ps/nfwc1atWqjt9+WFiz4Ql999aWKFi2m++9vpgEDBttt37BhIxUv7qvateuqaNGi2T7OO5mHh4fmzp2r+fPna9WqVdq+fbtcXV1VtWpVPf7443ryySfl4uJia//EE0+ocuXKmjVrlnbv3q3jx4+rVKlSevbZZzVgwAD5+/vn49EAAAAAQM4g9/7XnZp7m4zMHF0+SE5O1oIFC7RixQqFh4fLy8tLtWvXVq9evdSsWbM07S9cuKDp06dry5YtOnv2rAICAtS+fXsNHDjQ9pi/I1JTLbp48YrD+wEKMldXs/z8vPXm5O8VHhWTK31UKu+nCUM6KCbmilJSLLnSBwAAwJ0qOTlJ0dGn5e9fVm5u7rblZrNJvr5ecnHJ+1msUlMtio296nRzFyckJOiRR9pr/Pj3dc89jW/ZNqPXxapECe98eW2cUXq5d27nKffVq6hB3Zvq73nvKOHsyRzfv2fpCqrRazQ5EAAAAFBAkHvnnfzKvQvkE+CGYWjo0KFav369ihUrpvvuu0/Xrl3T77//ri1btujll1/WgAEDbO3PnTunp59+WlFRUQoODlbLli21f/9+zZ49W1u2bNHChQvl4+OTj0cEAAAAANlnsRiKjb0qs9mUL307UwIeFxen3bt36uefN6h06dJ2Q7gBAAAAAAovcu+ck9+5d4EsgC9evFjr169X9erVNXfuXPn5+UmSwsLC1KNHD02ePFlt27ZVUFCQJGncuHGKiopS//799eqrr0qSkpKS9Prrr2vt2rWaNm2ahg8fnm/HAwAAAACOcrZkOL+kpqbo3XfHytfXT++8M1EmU97/sAEAAAAAKJjIvXNGfufeBXKMtlWrVkmShg8fbit+S1K1atXUuXNnGYahzZs3S5JOnjyp9evXq2zZsho8+N9x5d3d3TV27Fh5e3tryZIlSkxMzNuDAAAAAAAUOH5+JfTDD79o8eIVCg6ult/hAAAAAADgdPI79y6QBfB58+Zp1apVuueee9Ksu3r1qiTJxcVFkrR582ZZLBa1aNFCbm5udm2LFi2qJk2a6OrVq9q+fXvuBw4AAAAAAAAAAAAAyDcFsgBepEgRVatWzVbkttqwYYN++OEHeXp6qm3btpKkw4cPS5KCg4PT3VeVKlXs2gEAAAAAAAAAAAAAnFOBnAP8RpcuXdLIkSN19OhRHT9+XGXLltXEiRNVpkwZSdL58+clSQEBAelub11+4cKFvAkYAAAAAAAAAAAAAJAvCnwBPDIyUuvWrbP93WQy6ejRo7r33nsl/TskuoeHR7rbW5db2znC1bVAPjAP5BgXl7y7xvOyLwAAgDuFxWLK7xBwCy4uJvJCAAAAAAAKuAJfAK9cubJ27NghwzC0bds2jR8/XuPGjVN8fLwGDBhgGybdZEr/hyLDMOz+m11ms0l+ft4O7QPAv4oV88zvEAAAAAqcxEQXXbhgptBawFgsJpnNZhUv7pXhzdcAAAAAAKBgKPAFcG/vf4vOHTp0UJkyZdS9e3fNnDlTPXv2lJeXlyTp2rVr6W5vXe7p6VixzWIxFBfn+FPkQEHm4mLO9cJ08aIeMiwWmcy594OuxZKquLhrDt/4AgAAkNeSkq7JYrEoNdVQSoolv8PB/0tNNWSxWHTp0lUlJKSmWV+smCcjHAEAAAAAUEAU+AL4zUJDQ1WhQgVFREQoPDxcpUqVkvTvXOA3u90c4VnBD1CA47w93GUym3VizSwlRJ/O8f17+pdV5U79ZBj8aAwAAO48qakZ38BnNptkNuf9EOkWiyGLJes3Fnbp0llnzpzWoEEv6+mnn0mzftKkCVq16lv95z/91KfP89mKrUuXznrooU6Z3j6r7W/GjQkAAAAA4NzIvdPvIy9z75xQ4ArgCQkJmjx5si5cuKBJkyalO7S5u7u7JCklJUXBwcGSpGPHjqW7vyNHjkiSQkJCciliANmREH1aCWdP5ncYAAAAd4TrUzJ5ymx2yfO+LZZUxcQkZCsRd3V11caNP6VJwlNSUrRp088ZTmUFAAAAAEBeI/d2HgWuAO7h4aEVK1YoNjZWXbt2VaNGjezWR0ZG6sSJE3J3d1fVqlVVsmRJSdLGjRs1YsQI25zgknT58mVt375dXl5eatCgQZ4eBwAAAADklOt3oLvk2ig6GbGOrmM2m7KVhDds2Ejbt/+ms2fPqHTpMrblu3f/IQ8PTxUpwnzaAAAAAICCgdzbeRS4ArjJZNJTTz2lzz//XGPGjNGXX35pG+b8zJkzeuWVV5SSkqJevXrJy8tLXl5eatWqlTZu3KhJkybpjTfekMlkUlJSkkaPHq0rV67oueeek4+PTz4fGQAAAAA45k4bRad69ZqKiAjXxo0b7O5E/+mndWrd+kH9/PN627K//tqnmTOn69Chg3J1dVXTpi304osvq1ixYpKk+Ph4ffLJJG3dukmurm7q2fM/afrbv3+vZsyYpoMH/5avr6/uv7+5XnjhRXl7kw8CAAAAADKH3PvOz73N+R1AegYOHKh77rlHx44dU7t27dS3b1/16tVLDz30kPbt26emTZtq2LBhtvajRo1SqVKlNHfuXHXo0EGDBw9Wu3bt9P3336tmzZoaNGhQPh4NAAAAABRerVq10caNP9n+npycrM2bf1GbNm1ty/7++y+99NLzqlSpsmbMmKuxY9/T33//pVdeGSSL5fqc26NHD9fBgwf03nsf6+OPp+nXX7fozJl/78g/evSIhgwZqHvuaax58xbprbfG69Chgxo6dJAMI+t30AMAAAAAcKcg97ZXIAvgHh4emjt3rl5//XUFBgZq+/bt2rdvn6pWraq3335bM2fOtM0DLknly5fXsmXL9OSTT+ry5cvauHGj3N3d9cILL2j+/Pny9vbOx6MBAAAAgMKrdesH9ffff+ns2TOSpB07fpevr6+Cg6vZ2ixe/LWCgqrqlVfeUOXKdys0tKHGjJmgsLC/tX37bzp5Mlw7dvyuoUNfV9269VW1aojeemucXV64aNF8NWx4j3r37qvAwAqqW7eexowZr7///kt//rkrz48bAAAAAIC8Qu5tr8ANgW7l5uamPn36qE+fPplqX7p0aY0bNy6XowIA4M5wfb4aU67t32IxsjUfDQCg8KlWrbrKlStvG4rt55/XqU2bdnZtjh8/qnvuaWK3LCioinx8iurYsSNKTEyQJFWvXsO2vkQJf5UrV97290OHDunUqZN68MFmaWKIiAhXaGjDnDwsAAAAAAAKDHJvewW2AA4AALLHbDbJ19dLLi65N9BLaqpFsbFXKYIDADKldesHtXHjT3rssSe1ZctmzZo1z269YRgypXPflmFY5Or6b9p68787Li6udm3btn1IPXs+l2Y/vr5+Dh4BAAAAAAAFG7n3vyiAAwDgZMxmk1xczPp00a+KOncpx/dfvlRxvdjtfpnNJgrgAIBMad26jb766kutWbNK5cqVV8WKlezW3313Fe3du8du2ZEjh3XlyhVVqnS3AgMrSJL279+r++5rKkm6fPmyoqIibe0rVw7SiRPHdNddgbZlJ0+Ga9q0yXrhhRfl41Mldw4OAAAAAIACgNz7XxTAAQBwUlHnLik8Kia/wwAAQFWrhuiuuwI1c+aneuaZ/6RZ/9RT3fXii/300Ufv6fHHuyom5qI++ug9BQeHqGHDRnJ1dVWrVm308cfvy83NTf7+/pox41MlJyfb9vH008/oxRf7atKkCerS5WldvXpVH374rq5evaq77qqQl4cLAAAAAECeI/f+FwVwAAAAALhDePqXvWP7a936Qc2bN0dt2rRNs65WrTr64IPJmjVrhp57roe8vLzVrFlLDRgwyDYM28iRY/Tpp5P11ltvymKx6JFHHldsbMwN+6itjz6aptmzP1OfPs/K09NDoaH36MUXX5a7u3uOHQcAAAAAwLmRe9/5ubfJMAzGLs2E1FSLLl68kt9hALnK1dUsPz9vvTn5+1x7avS+ehU1qHtT/T3vHSWcPZnj+/csXUE1eo1WTMwVpaRYcnz/wJ0gt9/Llcr7acKQDrzPACAXJCcnKTr6tPz9y8rN7d/E0Ww2yc/PU2azS57HZLGkKiYmoVBPe5HR62JVooS3XFzM+RCZ80kv987t7zbkKAAAAEDhQu5dMOVk7s0T4AAAAABQwFkshmJiEmQ2m/Kl78KcgAMAAAAACgdyb+dBARwAAAAA7gAkwwAAAAAA5C5yb+fAGG0AAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAoYAyD+cYKEl4PAAAAAHA+5HoFS06+HhTAAQAAAKCAcHFxkSQlJV3L50hwI+vr4eLims+RAAAAAAAcRe5dMOVk7k32DgAAAAAFhNnsIk9PH8XHx0iS3N2LyGQy5XNUhZdhGEpKuqb4+Bh5evrIbOYecgAAAAC405F7Fyy5kXtTAAcAAACAAqRYsRKSZEvEkf88PX1srwsAAAAA4M5H7l3w5GTuTQEcAAAAAAoQk8mk4sX9VbSon1JTU/I7nELPxcWVJ78BAAAAwMmQexcsOZ17UwAHAAAAgALIbDbLbHbP7zAAAAAAAHBa5N7OidvYAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKfgmt8BAAAAAACA/JGcnKwFCxZoxYoVCg8Pl5eXl2rXrq1evXqpWbNmadpfuHBB06dP15YtW3T27FkFBASoffv2GjhwoLy9vfPhCAAAAAAAsMcT4AAAAAAAFEKGYWjo0KF67733dObMGd13332qXr26fv/9d/Xt21efffaZXftz586pa9eu+vrrr+Xh4aGWLVvKYrFo9uzZ6tatm+Lj4/PpSAAAAAAA+BcFcAAAAAAACqHFixdr/fr1ql69utatW6fPP/9cX375pZYtWyYfHx9NnjxZx44ds7UfN26coqKi1L9/f61evVpTpkzRjz/+qIceekiHDh3StGnT8vFoAAAAAAC4jgI4AAAAAACF0KpVqyRJw4cPl5+fn215tWrV1LlzZxmGoc2bN0uSTp48qfXr16ts2bIaPHiwra27u7vGjh0rb29vLVmyRImJiXl7EAAAAAAA3IQCOAAAAAAAhdC8efO0atUq3XPPPWnWXb16VZLk4uIiSdq8ebMsFotatGghNzc3u7ZFixZVkyZNdPXqVW3fvj33AwcAAAAA4BYogAMAAAAAUAgVKVJE1apVsxW5rTZs2KAffvhBnp6eatu2rSTp8OHDkqTg4OB091WlShW7dgAAAAAA5BfX/A4AAAAAAADkr0uXLmnkyJE6evSojh8/rrJly2rixIkqU6aMJOn8+fOSpICAgHS3ty6/cOFC3gQMAAAAAEAGKIADAAAAAFDIRUZGat26dba/m0wmHT16VPfee6+kf4dE9/DwSHd763JrO0e4utoPVufi4hyD1znLcQAAAABAQUcBHAAAAACAQq5y5crasWOHDMPQtm3bNH78eI0bN07x8fEaMGCAbZh0k8mU7vaGYdj9N7vMZpP8/Lwd2kdBVayYZ36HAAAAAACFAgVwAAAAAAAKOW/vf4vOHTp0UJkyZdS9e3fNnDlTPXv2lJeXlyTp2rVr6W5vXe7p6ViR12IxFBdn/xS5i4vZKYrHcXEJSk215HcYAAAAAHBHKlbMM9Mja1EABwAAAAAAdkJDQ1WhQgVFREQoPDxcpUqVkvTvXOA3u90c4VmRkuKcReLUVIvTHhsAAAAAFCRMQAUAAAAAQCGTkJCgd999V8OGDctw2HJ3d3dJUkpKioKDgyVJx44dS7ftkSNHJEkhISG5EC0AAAAAAJlHARwAAAAAgELGw8NDK1as0OrVq7Vz58406yMjI3XixAm5u7uratWqatasmSRp48aNSk1NtWt7+fJlbd++XV5eXmrQoEGexA8AAAAAQEYogAMAAAAAUMiYTCY99dRTkqQxY8bo3LlztnVnzpzRK6+8opSUFHXr1k1eXl4qX768WrVqpVOnTmnSpEm2p8aTkpI0evRoXblyRU8//bR8fHzy5XgAAAAAALBiDnAAAAAAAAqhgQMHavfu3dq5c6fatWunBg0aKDk5Wfv27dPVq1fVtGlTDRs2zNZ+1KhROnDggObOnatNmzapatWq2r9/v/755x/VrFlTgwYNysejAQAAAADgOp4ABwAAAACgEPLw8NDcuXP1+uuvKzAwUNu3b9e+fftUtWpVvf3225o5c6ZtHnBJKl++vJYtW6Ynn3xSly9f1saNG+Xu7q4XXnhB8+fPl7e3dz4eDQAAAAAA1/EEOAAAAAAAhZSbm5v69OmjPn36ZKp96dKlNW7cuFyOCgAAAACA7OMJcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BRc8zsAAAAAAAAA/MtsNslsNuXa/i0WQxaLkWv7BwAAAID8VGAL4BaLRUuXLtW3336rI0eOKDk5WeXKlVObNm30/PPPq1ixYnbtGzdurNjY2Az3t2/fPhUpUiSXowYAAAAAAMg+s9kkX18vubjk3qB9qakWxcZepQgOAAAAwCkVyAK4xWLR4MGDtX79enl4eKhOnTry8vLSvn37NHv2bK1fv14LFy5UyZIlJUlRUVGKjY1V6dKl1ahRo3T3aTYz2jsAAAAAACjYzGaTXFzM+nTRr4o6dynH91++VHG92O1+mc0mCuAAAAAAnFKBLIAvX75c69evV6VKlTR79mwFBgZKkuLj4zVs2DBt3LhR48aN0yeffCJJOnjwoCSpffv2evPNN/MrbAAAAAAAgBwRde6SwqNi8jsMAAAAALjjFMjHopcvXy5JGj58uK34LUk+Pj6aMGGCTCaTNmzYoMTEREnSgQMHJEk1a9bM+2ABAAAAAAAAAAAAAAVCgSyA+/r66u6771a9evXSrCtRooSKFy+u5ORkxcRcvxPa+gR4rVq18jJMAAAAAAAAAAAAAEABUiCHQJ8xY0aG6yIjIxUbGys3NzeVKFFC0vUnwD08PPTXX39p5MiROnLkiEwmk0JDQzVw4EDVrVs3r0IHAAAAAAAAAAAAAOSTAvkE+K1Y5/1u2bKlihQpoujoaJ07d06JiYl6/fXXZbFY1LhxY/n6+uqXX35R9+7d9f333+dv0AAAAAAAAAAAAACAXFcgnwDPyIIFC7RmzRp5enpq6NChkv6d/9vPz0+fffaZ6tevL0kyDEPz5s3TxIkTNWLECIWGhqpMmTIO9e/qesfdLwBkiYuL81zjznQsQFbl1fXP+wwAAAAAAAAAUNDcMQXw+fPna8KECTKZTBo/fryCgoIkSc2aNdOWLVtkGIZKly5ta28ymdS7d2/t3LlTGzZs0LJlyzRo0KBs9282m+Tn5+3wcQDIG8WKeeZ3CIDT430GAAAAAAAAAChoCnwB3DAMffDBB5o9e7ZcXFw0fvx4dezY0bbeZDKpVKlSGW7fqlUrbdiwQX/99ZdDcVgshuLirjq0D6Cgc3ExO01BKy4uQamplvwOA8gXuf1eLl7UQ4bFIpM5d58At1hSFRd3TYZh5Go/AAA4qlgxT0ZGAQAAAACggCjQBfDExES99tprWrdunTw8PPThhx+qTZs2WdpHQECAJCkhIcHheFJSKKYBd4rUVAvvWSCXeHu4y2Q268SaWUqIPp0rfXj6l1XlTv1kGAbvZQAAAAAAAABAphXYAnh8fLz69u2rP//8U/7+/vrss89Ut27dNO2WLFmi3377TZ06dUq3OB4ZGSlJDs//DQAA7CVEn1bC2ZP5HQYAAAAAAAAAADYFsgCenJys/v37688//1TFihU1Z84cBQYGptv27NmzWrt2rRISEtIUwA3D0KpVqyRJTZs2zfW4AQAAAAAAAAAAAAD5p0BOUjZt2jTt2rVLAQEBWrBgQYbFb0l67LHH5O7url9++UXffPONbbnFYtGUKVO0b98+ValSRe3bt8+L0AEAAAAAAAAAAAAA+aTAPQF+6dIlzZs3T5Lk7++vSZMmZdh2+PDhCgwM1JgxYzRy5EiNGjVKX331lSpVqqSwsDBFRESoZMmSmjp1qtzc3PLqEAAAAAAAAAAAAAAA+aDAFcD37t2rhIQESVJYWJjCwsIybPvSSy+pZMmSeuKJJ1S5cmXNmjVLu3fv1vHjx1WqVCk9++yzGjBggPz9/fMqfAAAAAAAAAAAAABAPilwBfDmzZvr0KFDWd4uNDRUn332WS5EBAAAAAAAAAAAAAC4ExTIOcABAAAAAAAAAAAAAMgqCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApuOZ3AAAAAAAAAEBuMptNMptNubZ/i8WQxWLk2v4BAAAAZB4FcAAAAAAAADgts9kkPz9Pmc0uudaHxZKqmJgEiuAAAABAAUABHAAAAAAAAE7r+tPfLjqxZpYSok/n+P49/cuqcqd+MptNFMABAACAAoACOAAAAAAAhZTFYtHSpUv17bff6siRI0pOTla5cuXUpk0bPf/88ypWrJhd+8aNGys2NjbD/e3bt09FihTJ5aiB7EmIPq2EsyfzOwwAAAAAuYwCOAAAAAAAhZDFYtHgwYO1fv16eXh4qE6dOvLy8tK+ffs0e/ZsrV+/XgsXLlTJkiUlSVFRUYqNjVXp0qXVqFGjdPdpNpvz8hAAAAAAAEiDAjgAAAAAAIXQ8uXLtX79elWqVEmzZ89WYGCgJCk+Pl7Dhg3Txo0bNW7cOH3yySeSpIMHD0qS2rdvrzfffDO/wgYAAAAA4Ja4NRsAAAAAgEJo+fLlkqThw4fbit+S5OPjowkTJshkMmnDhg1KTEyUJB04cECSVLNmzbwPFgAAAACATKIADgAAAABAIeTr66u7775b9erVS7OuRIkSKl68uJKTkxUTEyPp3yfAa9WqlZdhAgAAAACQJQyBDgAAAABAITRjxowM10VGRio2NlZubm4qUaKEpOtPgHt4eOivv/7SyJEjdeTIEZlMJoWGhmrgwIGqW7duXoUOAAAAAECGeAIcAAAAAADYsc773bJlSxUpUkTR0dE6d+6cEhMT9frrr8tisahx48by9fXVL7/8ou7du+v777/P36ABAAAAABBPgAMAAAAAgBssWLBAa9askaenp4YOHSrp3/m//fz89Nlnn6l+/fqSJMMwNG/ePE2cOFEjRoxQaGioypQp41D/rq729+q7uDjHvfuZPY68Ol5nOa+ZwTkFAAAAChcK4AAAAAAAQJI0f/58TZgwQSaTSePHj1dQUJAkqVmzZtqyZYsMw1Dp0qVt7U0mk3r37q2dO3dqw4YNWrZsmQYNGpTt/s1mk/z8vB0+joKoWDHP/A7BTkGLxxlwTgEAAICCgQI4AAAAAACFnGEY+uCDDzR79my5uLho/Pjx6tixo229yWRSqVKlMty+VatW2rBhg/766y+H4rBYDMXFXbVb5uJidorCYlxcglJTLbdtl1fHm9l4nAHnFAAAALjzFSvmmelRlyiAAwAAAABQiCUmJuq1117TunXr5OHhoQ8//FBt2rTJ0j4CAgIkSQkJCQ7Hk5LinAXE1FRLgTq2ghaPM+CcAgAAAAUDBXAAAAAAAAqp+Ph49e3bV3/++af8/f312WefqW7dumnaLVmyRL/99ps6deqUbnE8MjJSkhye/xsAAAAAAEdRAAcAAAAAoBBKTk5W//799eeff6pixYqaM2eOAgMD02179uxZrV27VgkJCWkK4IZhaNWqVZKkpk2b5nrcAAAAAADcSuYGSgcAAAAAAE5l2rRp2rVrlwICArRgwYIMi9+S9Nhjj8nd3V2//PKLvvnmG9tyi8WiKVOmaN++fapSpYrat2+fF6EjB7i4mOXqmnt/zGZTfh8iAAAAgEKKJ8ABAAAAAChkLl26pHnz5kmS/P39NWnSpAzbDh8+XIGBgRozZoxGjhypUaNG6auvvlKlSpUUFhamiIgIlSxZUlOnTpWbm1teHQKyqXhRDxkWi4oV88zVfiyWVMXEJMhiMXK1HwAAAAC4GQVwAAAAAAAKmb179yohIUGSFBYWprCwsAzbvvTSSypZsqSeeOIJVa5cWbNmzdLu3bt1/PhxlSpVSs8++6wGDBggf3//vAofDvD2cJfJbNaJNbOUEH06V/rw9C+ryp36yWw2UQAHAAAAkOcogAMAAAAAUMg0b95chw4dyvJ2oaGh+uyzz3IhIuS1hOjTSjh7Mr/DAAAAAIAcxxzgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACn4JrfAWTEYrFo6dKl+vbbb3XkyBElJyerXLlyatOmjZ5//nkVK1bMrv2FCxc0ffp0bdmyRWfPnlVAQIDat2+vgQMHytvbO5+OAgAAAAAAAAAAAACQVwrkE+AWi0WDBw/W6NGjFRYWppo1a+q+++5TXFycZs+erS5duujChQu29ufOnVPXrl319ddfy8PDQy1btpTFYtHs2bPVrVs3xcfH5+PRAAAAAAAAAAAAAADyQoEsgC9fvlzr169XpUqVtGbNGi1YsECff/651q9fr1atWikiIkLjxo2ztR83bpyioqLUv39/rV69WlOmTNGPP/6ohx56SIcOHdK0adPy8WgAAAAAAAAAAAAAAHmhwBbAJWn48OEKDAy0Lffx8dGECRNkMpm0YcMGJSYm6uTJk1q/fr3Kli2rwYMH29q6u7tr7Nix8vb21pIlS5SYmJjnxwEAAAAAAAAAAAAAyDsFsgDu6+uru+++W/Xq1UuzrkSJEipevLiSk5MVExOjzZs3y2KxqEWLFnJzc7NrW7RoUTVp0kRXr17V9u3b8yh6AAAAAAAAAAAAAEB+KJAF8BkzZmjt2rXy8/NLsy4yMlKxsbFyc3NTiRIldPjwYUlScHBwuvuqUqWKJNnaAQAAAAAAAAAAAACcU4EsgN/KJ598Iklq2bKlihQpovPnz0uSAgIC0m1vXX7hwoU8iQ8AAAAAAAAAAAAAkD9c8zuArFiwYIHWrFkjT09PDR06VJJ09epVSZKHh0e621iXW9s5wtX1jrtfAMgSFxfnucad6ViArHKm69+ZjgUAAAAAAAAAkPvumAL4/PnzNWHCBJlMJo0fP15BQUGSJBcXF0mSyWRKdzvDMOz+m11ms0l+ft4O7QNA3ilWzDO/QwCQA3gvAwAAAAAAAACyosAXwA3D0AcffKDZs2fLxcVF48ePV8eOHW3rvby8JEnXrl1Ld3vrck9Px35At1gMxcU5/hQ5UJC5uJidptgUF5eg1FRLfocB5AveywAA5K1ixTwZtQQAAAAAgAKiQBfAExMT9dprr2ndunXy8PDQhx9+qDZt2ti1KVWqlCTZ5gK/2e3mCM+KlBR+gAfuFKmpFt6zgBPgvQwAAAAAAAAAyIoCWwCPj49X37599eeff8rf31+fffaZ6tatm6ZdcHCwJOnYsWPp7ufIkSOSpJCQkNwLFgAAAAAAAAAAAACQ7wrkGG3Jycnq37+//vzzT1WsWFFLlixJt/gtSc2aNZMkbdy4UampqXbrLl++rO3bt8vLy0sNGjTI9bgBAAAAAAAAAAAAAPmnQBbAp02bpl27dikgIEALFixQYGBghm3Lly+vVq1a6dSpU5o0aZIMw5AkJSUlafTo0bpy5Yqefvpp+fj45FX4AAAAAAAAAAAAAIB8UOCGQL906ZLmzZsnSfL399ekSZMybDt8+HCVLFlSo0aN0oEDBzR37lxt2rRJVatW1f79+/XPP/+oZs2aGjRoUF6FDwAAAAAAAAAAAADIJwWuAL53714lJCRIksLCwhQWFpZh25deekklS5ZU+fLltWzZMk2dOlW//PKLNm7cqHLlyumFF15Qv3795O3tnVfhAwAAAAAAAAAAAADySYErgDdv3lyHDh3K8nalS5fWuHHjciEiAAAAAAAAAAAAAMCdoEDOAQ4AAAAAAAAAAAAAQFYVuCfAAQAAAAAAULiYzSaZzaZc2beLC89/AAAAAIUJBXAAAAAAAADkG7PZJF9fLwrVAAAAAHIEBXAAAAAAAADkG7PZJBcXsz5d9Kuizl3K8f3XDSmnp9rXy/H9AgAAACiYKIADAAAAAAAg30Wdu6TwqJgc32+5gGI5vk8AAAAABRdjSwEAAAAAAAAAAAAAnIJDBfCVK1dq165dt233008/acqUKY50BQAAAABAoUTuDQAAAABA5jlUAB8+fLi++eab27ZbtWqV5s6d60hXAAAAAAAUSuTeAAAAAABkXpbmAF+5cqVSUlLslkVERGjZsmUZbhMfH6/ffvtNbm5u2YsQAAAAAIBChNwbAAAAAIDsy1IB/MCBA1qwYIFMJpMkyWQyae/evdq7d+8ttzMMQ4899lj2owQAAAAAoJAg9wYAAAAAIPuyVAAfPHiw4uPjbX9fsWKFKlSooAYNGmS4TZEiRVSpUiV169Yt+1ECAAAAAFBIkHsDAAAAAJB9WSqAFy1aVBMnTrT9fcWKFapXr57dMgAAAAAAkH3k3gAAAAAAZF+WCuA3CwsLy6k4AAAAAABAOsi9AQAAAADIPIcK4DeKjo5WQkKCDMPIsE1gYGBOdQcAAAAAQKFD7g0AAAAAwK05XAD/8ssvNWvWLF28ePGW7Uwmk/7++29HuwMAAAAAoNAh9wYAAAAAIHMcKoB/++23evfddyVJ7u7u8vPzk4uLS44EBgAAAAAAyL0BAAAAAMgKhwrgX331lUwmk0aOHKmuXbvKzc0tp+ICAAAAAAAi9wYAAAAAICscKoAfO3ZM9erVU48ePXIqHgAAAAAAcANybwAAAAAAMs+hArinp6f8/PxyKhYAAAAAAHCT3My9LRaLli5dqm+//VZHjhxRcnKyypUrpzZt2uj5559XsWLF7NpfuHBB06dP15YtW3T27FkFBASoffv2GjhwoLy9vXMlRgAAAAAAssLsyMaNGjXSvn37lJCQkFPxAAAAAACAG+RW7m2xWDR48GCNHj1aYWFhqlmzpu677z7FxcVp9uzZ6tKliy5cuGBrf+7cOXXt2lVff/21PDw81LJlS1ksFs2ePVvdunVTfHx8jsYHAAAAAEB2OFQAHzp0qBISEvTmm2/q0qVLORUTAAAAAAD4f7mVey9fvlzr169XpUqVtGbNGi1YsECff/651q9fr1atWikiIkLjxo2ztR83bpyioqLUv39/rV69WlOmTNGPP/6ohx56SIcOHdK0adNyLDYAAAAAALLLoSHQFy9erDp16uiHH36wJc3FihWTyWRK09ZkMumrr75ypDsAAAAAAAqd3Mq9ly9fLkkaPny4AgMDbct9fHw0YcIE3XfffdqwYYMSExN17tw5rV+/XmXLltXgwYNtbd3d3TV27Fht3rxZS5Ys0csvvywPDw8HjxgAAAAAgOxzqAA+b9482/+npKTo6NGjGbZNLzEHAAAAAAC3llu5t6+vr+6++27Vq1cvzboSJUqoePHiio2NVUxMjDZv3iyLxaIWLVrIzc3Nrm3RokXVpEkT/fTTT9q+fbtatGiR6RgAAAAAAMhpDhXA58+fn1NxAAAAAACAdORW7j1jxowM10VGRio2NlZubm4qUaKEDh8+LEkKDg5Ot32VKlX0008/6fDhwxTAAQAAAAD5yqECeKNGjXIqDgAAAAAAkI78yL0/+eQTSVLLli1VpEgRnT9/XpIUEBCQbnvr8gsXLuRJfAAAAAAAZMShAviNkpOTdfDgQZ0+fVolS5ZUgwYN9M8//6hcuXI51QUAAAAAAIVaXuTeCxYs0Jo1a+Tp6amhQ4dKkq5evSpJGc7vbV1ubecIV1ez3d9dXMwZtLyzZPY4nOV4pcJ3zM5yHAAAAMCdzuECeEpKij799FN9/fXXunz5siSpc+fOatCggd544w1duXJFH3/8sSpWrOhwsAAAAAAAFEZ5lXvPnz9fEyZMkMlk0vjx4xUUFCRJcnFxkZTxHOOGYdj9N7vMZpP8/Lwd2kdBVayYZ36HkOcK2zEXtuMFAAAACiqHCuApKSl6/vnntW3bNrm6uqpWrVrav3+/bf2VK1f0999/q0ePHlq5cqVKlizpcMAAAAAAABQmeZF7G4ahDz74QLNnz5aLi4vGjx+vjh072tZ7eXlJkq5du5bu9tblnp6OFQAtFkNxcfZPkbu4mJ2isBgXl6DUVMtt2znL8UqF75gze7wAAAAAsq5YMc9Mj7rkUAH866+/1q+//qqmTZtqwoQJKlWqlKpVq2Zbv3DhQo0ZM0YrV67UnDlz9MYbbzjSHQAAAAAAhU5u596JiYl67bXXtG7dOnl4eOjDDz9UmzZt7NqUKlVKkmxzgd/sdnOEZ0VKinMWEFNTLU57bBkpbMdc2I4XAAAAKKgcmpxoxYoV8vX11eTJk23J8I08PDw0duxYlSpVSps3b3akKwAAAAAACqXczL3j4+PVu3dvrVu3Tv7+/po/f36a4rckBQcHS5KOHTuW7n6OHDkiSQoJCclS/wAAAAAA5DSHCuDh4eFq2LChvL0znp/Lzc1NderU0T///ONIVwAAAAAAFEq5lXsnJyerf//++vPPP1WxYkUtWbJEdevWTbdts2bNJEkbN25Uamqq3brLly9r+/bt8vLyUoMGDTLdPwAAAAAAucGhArirq6vi4uJu2y42Nlaurg6Ntg4AAAAAQKGUW7n3tGnTtGvXLgUEBGjBggUKDAzMsG358uXVqlUrnTp1SpMmTZJhGJKkpKQkjR49WleuXNHTTz8tHx+fTPcPAAAAAEBucKgqXb16de3fv19RUVEqX758um0iIyO1f/9+1alTx5GuAAAAAAAolHIj97506ZLmzZsnSfL399ekSZMybDt8+HCVLFlSo0aN0oEDBzR37lxt2rRJVatW1f79+/XPP/+oZs2aGjRoUNYPDgAAAACAHObQE+DdunVTQkKCBg4cqL///jvN+kOHDumll15SUlKSunTp4khXAAAAAAAUSrmRe+/du1cJCQmSpLCwMK1evTrDP1euXJF0/SnwZcuW6cknn9Tly5e1ceNGubu764UXXtD8+fNvOUQ7AAAAAAB5xaEnwDt06KBt27Zp2bJleuKJJ1S0aFGZTCZt2bJFLVu21NmzZ2UYhjp27KhHHnkkp2IGAAAAAKDQyI3cu3nz5jp06FCWYyldurTGjRuX5e0AAAAAAMgrDk/MPW7cONWrV09z5szRiRMnJEkxMTGSpHLlyqlXr17q2bOno90AAAAAAFBokXsDAAAAAJA5DhfAJalLly7q0qWLzp8/r9OnT8tisSggICDDuckAAAAAAEDWkHsDAAAAAHB7Ds0BbhUTE6MdO3YoICBAderUUb169ZSQkKCvv/5a58+fz4kuAAAAAAAo1Mi9AQAAAAC4PYcL4N98842aN2+ud99912753r17NXbsWLVr107ff/+9o90AAAAAAFBokXsDAAAAAJA5DhXAf/31V40ePVqurq5q0qSJ3boGDRqoT58+MgxDw4YN0++//+5QoAAAAAAAFEbk3gAAAAAAZJ5DBfDZs2fL1dVV8+fP1+uvv263rlKlSnrttdc0f/58mUwmzZo1y6FAAQAAAAAojMi9AQAAAADIPIcK4IcPH1bjxo1Vu3btDNvUrl1bDRo00J49exzpCgAAAACAQoncGwAAAACAzHOoAJ6QkCBPT8/btvP19VVKSoojXQEAAAAAUCiRewMAAAAAkHkOFcArVaqknTt3Kj4+PsM2165d065du1ShQgVHugIAAAAAoFAi9wYAAAAAIPMcKoA//PDDunTpkgYPHqwLFy6kWR8TE6NXXnlFFy9eVOfOnR3pCgAAAACAQoncGwAAAACAzHN1ZOMePXro+++/17Zt29SyZUvVqlVLZcuWlSSdOXNGBw4cUFJSkurUqaPevXvnRLwAAAAAABQq5N4AAAAAAGSeQwVwNzc3zZ07Vx9//LG+/fZb7dmzR3v27LGtL1KkiLp166bXXntN7u7ujsYKAAAAAEChQ+4NAAAAAEDmOVQAlyRvb2+NHDlSr7/+uv766y+dP39eqampCggIUM2aNeXl5ZUTcQIAAAAAUGiRewMAAAAAkDkOFcB79uypSpUq6Z133pG7u7tCQ0NzKi4AAAAAACBybwAAAAAAssKhAvi+fftkNptzKhYAAAAAAHATcm8AAAAAADLPoQza29tbhmHkVCwAAAAAAOAm5N4AAAAAAGSeQwXwAQMGaMeOHfriiy+UlJSUUzEBAAAAAID/R+4NAAAAAEDmOTQEemRkpCpWrKhJkybpo48+UsWKFVWsWLF0h2YzmUz66quvHOkOAAAAAIBCh9wbAAAAAIDMc6gAPm/ePNv/p6Sk6NixYxm2NZlMjnQFAAAAAEChRO4NAAAAAEDmOVQAnz9/fk7FAQAAAAAA0kHuDQAAAABA5jlUAG/UqFFOxQEAAAAAANJB7g0AAAAAQOY5VAC/UXJysg4ePKjTp0+rZMmSatCggf755x+VK1cup7oAAAAAAKBQI/cGAAAAAODWHC6Ap6Sk6NNPP9XXX3+ty5cvS5I6d+6sBg0a6I033tCVK1f08ccfq2LFig4HCwAAAABAYUTuDQAAAABA5pgd2TglJUXPP/+8ZsyYoYSEBNWqVUuGYdjWX7lyRX///bd69OihCxcuOBwsAAAAAACFDbk3AAAAAACZ51AB/Ouvv9avv/6q+++/Xz/99JOWLl1qt37hwoV69NFHdeHCBc2ZM8ehQAEAAAAAKIzIvQEAAAAAyDyHCuArVqyQr6+vJk+erFKlSqVZ7+HhobFjx6pUqVLavHmzI10BAAAAAFAokXsDAAAAAJB5DhXAw8PD1bBhQ3l7e2fYxs3NTXXq1NE///zjSFdauXKlQkJCtG3b/7F33+FRlfnfxz8zCZAECL2DhZYoKr0qooA0pURAEDQWpEgTXJfigsiCIIiwKggiP5DigihJqELoSg81SlNBKQETaoBACEnm+YMnWWMCpM2cmXPer+vyWj3nzsz33jPtc76nbMtwff369RUQEHDHf27evJmj5wcAAAAAwAiuzN4AAAAAAHg67xz9sbe3rly5cs9xly9flrd39p8qMjJSY8aMueP6qKgoXb58WaVKlVK9evUyHGO356jXDwAAAACAIVyVvQEAAAAAMIMcJeOHHnpIP/30k6KiolSuXLkMx5w6dUo//fSTHnvssWw9x4YNGzR06FBdu3btjmMOHz4sSWrVqpXefffdbD2Pu7LbbbLbbU57/ORkh5KTHU57fAAAAABAzrgiewMAAAAAYBY5Oi36xRdf1I0bN9S3b18dOnQo3fqjR49qwIABSkhIUKdOnbL02NHR0Ro+fLj69u2rW7duqXjx4ncce/DgQUlStWrVsjYBN2e321SkiK+KFMnvxH98ndpgBwAAAADkjDOzNwAAAAAAZpOjM8DbtGmjbdu26bvvvlPHjh1VsGBB2Ww2/fjjj3rqqacUHR0th8OhZ599Vu3bt8/SY0+ZMkWhoaF65JFHNG7cOI0dO1bnz5/PcGzKGeCPPPJITqbjdm6f/e2l31d8qRsXzub64/sWK6MHn+spu93GWeAAAAAA4Kacmb0BAAAAADCbHN8cbOzYsapRo4b+7//+T7///rsk6dKlS5KksmXL6pVXXlFwcHCWH7dixYqaMGGC2rVrd8/7dx88eFA+Pj76+eefNWLECP3666+y2WyqVauW+vbtq+rVq2d9Ym7kxoWzuhF90ugyAAAAAAAGcVb2BgAAAADAbHLcAJekTp06qVOnTjp37pzOnj2r5ORklShR4o73JsuMXr16ZWrchQsXFBMTI0kaMmSIatSoofr16+uXX37Rpk2btGXLFn300Udq06ZNtmsBAAAAAMBozsjeAAAAAACYTZYb4ElJSfrvf/+r8PBwnT9/XmXLllXbtm3VoUMHlShRQiVKlHBGnXeUcv/vIkWKaPr06apZs6YkyeFwaO7cuRo/fryGDx+uWrVqqXTp0jl6Lm/vHN0yPcu8vFzzfK56Hrg/M70WzDQXIKvM9Po301wAAMgKd8veAAAAAAB4iiw1wBMSEtSjRw/t3r1bDsfte0b//vvv2rZtmzZu3KhPPvnEKUXeTePGjfXjjz/K4XCoVKlSqcttNpteffVVRUREaN26dfruu+/Uv3//bD+P3W5TkSL5c6Nkt+Pv72t0CUCu43UNmAPvZQCAFblj9gYAAAAAwFNkqQG+aNEiRUREqFSpUurZs6cqVKigX375RbNmzVJ4eLiWLl2q9u3bO6vWDNlsNpUsWfKO659++mmtW7dOP//8c46eJznZoStXrufoMbLKy8vukh3/V67cUFJSstOfB+7PVa85V+B1DSvjvQwAgGv5+/vm6lVL3DF7AwAAAADgKbLUAF+9erV8fHy0cOFClS1bVpLUpEkTNW7cWEFBQVq5cqXbhfCUy8LduHEjx4+VmGjOHfBJScmmnRusi9c1YA68lwEAVuSJ2RsAAAAAAHeRpUPUjx07pjp16qQG8BSBgYGqVq2ajhw5kqvFZcY333yjQYMGad26dRmuP3XqlCTl+P7fAAAAAAC4gjtmbwAAAAAAPEWWGuBxcXEqVKhQhuvKly+vy5cv50ZNWRIdHa3vv/9e3377bbp1DodDS5culSQ98cQTri4NAAAAAIAsc8fsDQAAAACAp8hSAzwxMVFeXl4ZrsuTJ49u3bqVK0VlRVBQkPLmzatNmzZp8eLFqcuTk5P16aefKjIyUpUrV1arVq1cXhsAAAAAAFnljtkbAAAAAABPkaV7gLujChUq6P3339eIESM0cuRILViwQA888ICOHDmiEydOqHjx4vrss8+UJ08eo0sFAAAAAAAAAAAAADhRls4Ad1cdO3bU119/raZNmyo6OlobNmxQYmKiXn75ZS1btkwVK1Y0ukQAAAAAAAAAAAAAgJN5zBng8+fPv+v6WrVqafr06S6qBgAAAAAAAAAAAADgbrLcAF+3bp2aNWuWbvmlS5ckKcN1kmSz2bRu3bqsPh0AAAAAAJZD9gYAAAAAIHuy3AC/fv26rl+/fsf1UVFRGS632WxZfSoAAAAAACyJ7A0AAAAAQPZkqQE+b948Z9UBAAAAAABE9gYAAAAAICey1ACvV6+es+oAAAAAAAAiewMAAAAAkBN2owsAAAAAAAAAAAAAACA30AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYgrfRBQAAAAAAAPcQFhamoUOHas6cOWrUqFG69fXr19fly5fv+PeRkZHKly+fEysEAAAAAODuaIADAAAAAABFRkZqzJgxd1wfFRWly5cvq1SpUqpXr16GY+x2LjQHAAAAADAWDXAAAAAAACxuw4YNGjp0qK5du3bHMYcPH5YktWrVSu+++66rSgMAAAAAIEtogAMAAAAAYFHR0dH6z3/+o9DQUPn4+Kh48eI6f/58hmMPHjwoSapWrZorSwQAAAAAIEu4NhkAAAAAABY1ZcoUhYSEqFq1avrmm29UsWLFO45NOQP8kUcecVV5AAAAAABkGWeAAwAAAABgURUrVtSECRPUrl27e96/++DBg/Lx8dHPP/+sESNG6Ndff5XNZlOtWrXUt29fVa9e3UVVAwAAAABwZ5wBDgAAAACARfXq1UsdOnS4Z/P7woULiomJUXx8vIYMGaLk5GTVr19fhQsX1qZNm9StWzetWrXKRVUDAAAAAHBnnAEOAAAAAADuKuX+30WKFNH06dNVs2ZNSZLD4dDcuXM1fvx4DR8+XLVq1VLp0qVz9Fze3mmb8V5e5jh2P7PzMMt8JevN2SzzAAAAADwdDXAAAAAAAHBXjRs31o8//iiHw6FSpUqlLrfZbHr11VcVERGhdevW6bvvvlP//v2z/Tx2u01FiuTPjZLdjr+/r9EluJzV5my1+QIAAADuigY4AAAAAAC4K5vNppIlS95x/dNPP61169bp559/ztHzJCc7dOXK9TTLvLzspmgsXrlyQ0lJyfccZ5b5Stabc2bnCwAAACDr/P19M33VJRrgAAAAAAAgR0qUKCFJunHjRo4fKzHRnA3EpKRk087tTqw2Z6vNFwAAAHBX3JwIAAAAAADc1TfffKNBgwZp3bp1Ga4/deqUJOX4/t8AAAAAAOQUZ4ADAAAAAIC7io6O1vfff68bN26oefPmadY5HA4tXbpUkvTEE08YUR4AAAAAAKk4AxwAAAAAANxVUFCQ8ubNq02bNmnx4sWpy5OTk/Xpp58qMjJSlStXVqtWrQysEgAAAAAAzgAHAAAAAAD3UKFCBb3//vsaMWKERo4cqQULFuiBBx7QkSNHdOLECRUvXlyfffaZ8uTJY3SpAAAAAACL4wxwAAAAAABwTx07dtTXX3+tpk2bKjo6Whs2bFBiYqJefvllLVu2TBUrVjS6RAAAAAAAOAMcAAAAAADcNn/+/Luur1WrlqZPn+6iagAAAAAAyDrOAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJiCt9EFAAAAAIAr2O022e02pz5HcrJDyckOpz4HAAAAAAAA7owGOAAAAADTs9ttKlLEV3a7l1OfJzk5SZcu3aAJDgAAAAAAYBAa4AAAAABM7/bZ3176fcWXunHhrFOew7dYGT34XE/Z7TYa4AAAAAAAAAahAQ4AAADAMm5cOKsb0SeNLgMAAAAAAABOQgM8h5x5H0EvL7tTHhcAAAAAAAAAAAAAzMhjGuBhYWEaOnSo5syZo0aNGqVbf/78eX3++ef68ccfFR0drRIlSqhVq1bq27ev8ufP75Sa7HabChf2o1ENAAAAAAAAAAAAAG7AIxrgkZGRGjNmzB3Xx8TEqGvXroqKilLVqlX11FNP6aefftKsWbP0448/6r///a8KFCiQ63XZ7TZ5edk1beFWRcXE5vrjVw8oqy6tauT64wIAAAAAAAAAAACAGbl9A3zDhg0aOnSorl27dscxY8eOVVRUlHr16qV//OMfkqSEhAQNGTJE33//vaZOnaphw4Y5rcaomFj9EXUp1x+3bAn/XH9MAAAAAAAAAAAAADArt712d3R0tIYPH66+ffvq1q1bKl68eIbjTp48qbVr16pMmTIaOHBg6vK8efNqzJgxyp8/v7755hvFx8e7qnQAAAAAAAAAAAAAgAHctgE+ZcoUhYSEqFq1avrmm29UsWLFDMf98MMPSk5OVpMmTZQnT5406woWLKgGDRro+vXr2rlzpyvKBgAAAAAAAAAAAAAYxG0b4BUrVtSECRP07bffKiAg4I7jfvnlF0lS1apVM1xfuXLlNOMAAAAAuCe73SZvb7tT/vHyctvoAwAAAAAAgFzktvcA79WrV6bGnTt3TpJUokSJDNenLD9//nzuFAYAAAAg19ntNhUu7EejGgAAAAAAADnitg3wzLp+/bokycfHJ8P1KctTxuWEt3fanXFm2Tlnlnkg58z0WjDTXICsMtPr30xzAXB3Xl63z9KetnCromJic/3xqweUVZdWNXL9cTPCZxcAAAAAAIBxPL4B7uXlJUmy2WwZrnc4HGn+N7vsdpuKFMmfo8dwV/7+vkaXAOQ6XteAOfBeBqwnKiZWf0RdyvXHLVvCP9cf80747AIAAAAAADCOxzfA/fz8JEk3b97McH3Kcl/fnO2ESk526MqVtGeRe3nZTbFz68qVG0pKSja6DLgBs7ymJV7XsDbeywA8EZ9d8GT+/r6c+Q8AAAAAgJvw+AZ4yZIlJf3vXuB/d697hGdFYqI5d2IlJSWbdm6wLl7XgDnwXgbgifjsAgAAAAAAMI7HH6JetWpVSdKxY8cyXP/rr79KkgICAlxWEwAAAAAAAAAAAADA9Ty+Ad64cWNJ0saNG5WUlJRm3dWrV7Vz5075+fmpdu3aRpQHAAAAAAAAAAAAAHARj2+AlytXTk8//bROnz6tjz76SA6HQ5KUkJCg9957T3FxceratasKFChgcKUAAAAAAAAAAAAAAGfy+HuAS9LIkSN18OBBzZkzR5s3b1aVKlX0008/6cyZM6pWrZr69+9vdIkAAAAAAAAAAAAAACfz+DPApdtngX/33Xfq3Lmzrl69qo0bNypv3rzq06eP5s2bp/z58xtdIgAAAAAAAAAAAADAyTzmDPD58+ffdX2pUqU0duxYF1UDAAAAAAAAAAAAAHA3pjgDHAAAAAAAAAAAAAAAGuAAAAAAAECSFBYWpoCAAG3bti3D9efPn9e///1vPfPMM3rsscfUrFkzffTRR4qLi3NxpQAAAAAAZIwGOAAAAAAAUGRkpMaMGXPH9TExMXrhhRf09ddfy8fHR0899ZSSk5M1a9Ysvfjii7p27ZoLqwUAAAAAIGM0wAEAAAAAsLgNGzaoR48ed21ijx07VlFRUerVq5eWL1+uTz/9VGvWrFHr1q119OhRTZ061YUVAwAAAACQMRrgAAAAAABYVHR0tIYPH66+ffvq1q1bKl68eIbjTp48qbVr16pMmTIaOHBg6vK8efNqzJgxyp8/v7755hvFx8e7qnQAAAAAADJEAxwAAAAAAIuaMmWKQkJCVK1aNX3zzTeqWLFihuN++OEHJScnq0mTJsqTJ0+adQULFlSDBg10/fp17dy50xVlAwAAAABwRzTAAQAAAACwqIoVK2rChAn69ttvFRAQcMdxv/zyiySpatWqGa6vXLlymnEAAAAAABjF2+gCAAAAAACAMXr16pWpcefOnZMklShRIsP1KcvPnz+fO4UBAAAAAJBNNMABAAAAAMBdXb9+XZLk4+OT4fqU5SnjcsLbO+3F6ry8zHHxuszOwyzzlaw3Z7PMAwAAAPB0NMABAAAAAMBdeXl5SZJsNluG6x0OR5r/zS673aYiRfLn6DHclb+/r9EluJzV5my1+QIAAADuigY4AAAAAAC4Kz8/P0nSzZs3M1yfstzXN2cNwORkh65cSXsWuZeX3RSNxStXbigpKfme48wyX8l6c87sfAEAAABknb+/b6avukQDHAAAAAAA3FXJkiUl/e9e4H93r3uEZ0ViojkbiElJyaad251Ybc5Wmy8AAADgrrg5EQAAAAAAuKuqVatKko4dO5bh+l9//VWSFBAQ4LKaAAAAAADICA1wAAAAAABwV40bN5Ykbdy4UUlJSWnWXb16VTt37pSfn59q165tRHkAAAAAAKSiAQ4AAAAAAO6qXLlyevrpp3X69Gl99NFHcjgckqSEhAS99957iouLU9euXVWgQAGDKwUAAAAAWB33AAcAAAAAAPc0cuRIHTx4UHPmzNHmzZtVpUoV/fTTTzpz5oyqVaum/v37G10igL+w222y221Oe/zkZIeSkx1Oe3wAAAAgu2iAAwAAAACAeypXrpy+++47ffbZZ9q0aZM2btyosmXLqk+fPurZs6fy589vdIkA/j+73aYiRXxlt3s57TmSk5N06dINmuAAAABwOzTAAQAAAACAJGn+/Pl3XV+qVCmNHTvWRdUAyK7bZ3976fcVX+rGhbO5/vi+xcrowed6ym630QAHAACA26EBDgAAAAAAAJjQjQtndSP6pNFlAAAAAC5lN7oAAAAAAAAAAAAAAAByA2eAI0tuX0LL5rTHT052cOksAAAAAAAAAAAAANlCAxyZZrfbVLiwn7y8nHfhgKSkZF2+fJ0mOAAAAAAAAAAAAIAsowGOTLPbbfLysmvawq2KionN9ccvV7KQ+r34uOx2Gw1wAAAAAAAAAAAAAFlGAxxZFhUTqz+iLhldBgAAAAAAAAAAAACk4bxrWQMAAAAAAAAAAAAA4EI0wAEAAAAAAAAAAAAApsAl0OF2vLyce1xGcrKDe4wDAAAAAAAAAAAAJkQDHG6jUEEfOZKT5e/v69TnSU5O0qVLN2iCAwAAAAAAAAAAACZDAxxuI79PXtnsdv2+4kvduHDWKc/hW6yMHnyup+x2Gw1wAAAAAAAAAAAAwGRogMPt3LhwVjeiTxpdBgAAAAAAgFPY7TbZ7TanPb6zby8HAAAAuDMa4AAAAAAAAICL2O02FS7sR5MaAAAAcBIa4AAAAAAAAICL2O02eXnZNW3hVkXFxDrlOaoHlFWXVjWc8tgAAACAu6MBDgAAAAAAALhYVEys/oi65JTHLlvC3ymPCwAAAHgCrrUEAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU/A2uoDctGHDBr355pt3XN+mTRtNmTLFhRUBAAAAAAAAAAAAAFzFVA3wQ4cOSZLq1q2r0qVLp1tfs2ZNV5cEAAAAAAAAAAAAAHARUzbAR4wYocDAQIOrAQAAAAAAAAAAAAC4kqnuAX7o0CHly5dPlStXNroUAAAAAAAAAAAAAICLmaYBfunSJZ09e1YBAQHy9jbVie0AAAAAAAAAAAAAgEwwTac45fLnZcqU0UcffaT169frzJkzKl68uFq2bKk+ffqoUKFCBlcJAAAAAAAAAAAAAHAW05wBfvDgQUnSmjVrtHDhQj3wwAOqVauWYmNjNXv2bL3wwgs6d+6cwVUCAAAAAAAAAAAAAJzFNGeAHz58WJL01FNPadKkSSpYsKAk6eLFixo8eLB27NihkSNHasaMGdl+Dm/vtMcLeHmZ4/iBzM7DLPOVzDWX3GSm/1/MNBcgq8z0+jfTXADcnZne72aaCwAAAAAAgKcxTQN8woQJeuutt1S6dGn5+PikLi9atKgmTpyoVq1aaePGjTp9+rTKly+f5ce3220qUiR/bpbsNvz9fY0uweWsOGerYRsD5sB7GYAn4rMLAAAAAADAOKZpgOfNm1cPPPBAhutKlSqlhx9+WLt379bBgwez1QBPTnboypXraZZ5edlNsXPrypUbSkpKvuc4s8xXyvycrYZtDJgD72UAnojPLngyf39fS535v2HDBr355pt3XN+mTRtNmTLFhRUBAAAAAPA/pmmA30vx4sUlSTdu3Mj2YyQmmnMnVlJSsmnndidWnLPVsI0Bc+C9DMAT8dkFszt06JAkqW7duipdunS69TVr1nR1SQAAAAAApDJFAzwhIUGjR4/WpUuXNGnSJPn5+aUbc+rUKUnKMJwDAAAAAIDMSWmAjxgxQoGBgQZXAwAAAABAWqa4RlvevHm1bds2rV+/Xj/88EO69UeOHNGRI0dUsGBB1ahRw/UFAgAAAABgEocOHVK+fPlUuXJlo0sBAAAAACAdUzTAJalLly6SpA8//FAnT55MXX7+/Hm9++67SkpKUo8ePeTj42NUiQAAAAAAeLRLly7p7NmzCggIkLe3KS4qBwAAAAAwGdOk1ddff10RERHasmWLnnvuOdWpU0d58+bVzp07df36dbVs2VK9evUyukwAAAAAADxWyuXPy5Qpo48++kjr16/XmTNnVLx4cbVs2VJ9+vRRoUKFDK4SAAAAAGBlpmmA582bVzNnztTXX3+t0NBQ7dmzR3a7XVWqVFHnzp3VqVMn2Ww2o8sEAAAAAMBjHTx4UJK0Zs0a5c+fX/Xq1VPp0qX1008/afbs2dqwYYMWLFigEiVKGFwpAAAAAMCqTNMAlyQvLy8FBwcrODjY6FIAAAAAADCdw4cPS5KeeuopTZo0SQULFpQkXbx4UYMHD9aOHTs0cuRIzZgxI9vP4e2d9m5tXl7muHtbZudhlvlK1puz1eYrmWsuAAAAMA9TNcABAAAAAIDzTJgwQW+99ZZKly4tHx+f1OVFixbVxIkT1apVK23cuFGnT59W+fLls/z4drtNRYrkz82S3Ya/v6/RJbic1eZstflK1pwzAAAA3B8NcAAAAAAAkCl58+bVAw88kOG6UqVK6eGHH9bu3bt18ODBbDXAk5MdunLlepplXl52UzTZrly5oaSk5HuOM8t8JevN2WrzlTI/ZwAAACCn/P19M30FIhrgAAAAAAAgVxQvXlySdOPGjWw/RmKiOZtpSUnJpp3bnVhtzlabr2TNOQMAAMD9caMeAAAAAABwTwkJCfrXv/6lvn376vr16xmOOXXqlCSpdOnSriwNAAAAAIBUNMABAAAAAMA95c2bV9u2bdP69ev1ww8/pFt/5MgRHTlyRAULFlSNGjVcXyAAAAAAAKIBDgAAAAAAMqlLly6SpA8//FAnT55MXX7+/Hm9++67SkpKUo8ePeTj42NUiQAAAAAAi+Me4AAAAAAAIFNef/11RUREaMuWLXruuedUp04d5c2bVzt37tT169fVsmVL9erVy+gyAQAAAAAWRgMcAAAAAABkSt68eTVz5kx9/fXXCg0N1Z49e2S321WlShV17txZnTp1ks1mM7pMAAAAAICF0QAHAAAAAACZ5uXlpeDgYAUHBxtdCgAAAAAA6XAPcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJiCt9EFAO7ObrfJbrc57fGTkx1KTnY47fEBAAAAAAAAAAAAq6ABDtyF3W5T4cJ+8vJy3sUSkpKSdfnydZrgAAAAAAAAAAAAQA7RAAfuwm63ycvLrmkLtyoqJjbXH79cyULq9+LjstttNMABAAAAAAAAAACAHKIBDmRCVEys/oi6ZHQZAAAAAAAAAAAAAO7Cedd1BgAAAAAAAAAAAADAhWiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEzB2+gCAAAwA7vdJrvd5rTHT052KDnZ4bTHBwAAAAAAAADADGiAAwCQQ3a7TUWK+Mpu93LacyQnJ+nSpRs0weFSHNgBAAAAAAAAwNPQAAcAIIduNwm99PuKL3Xjwtlcf3zfYmX04HM9ZbfbaBYilbOb0zabTf7++TiwAwAAAAAAAIBHoQEOAEAuuXHhrG5EnzS6DFiA3W5T4cJ+8vKyO/25OLADAAAAAAAAgCehAQ64AWc2MLi8LACYj91uk5eXXdMWblVUTKxTnqN6QFl1aVWDAzsAAAAAAAAAeBQa4ICBChX0kSM5Wf7+vk57Di4vCwDmFRUTqz+iLjnlscuW8HfK4wIAAAAAMsfZt76SOHkGAGBONMABA+X3ySub3c7lZQEAAAAAAAAP48wGtc1mk79/PtntXk55/BScPAMAMCMa4IAb4PKyAAAAAAAAgOew220qXNjPqbc2lOS0E2ckTp4BAJgXDXAAAAAAgGk4+1KhXCYUAABIt39zeHnZNW3hVkXFxOb641cPKKsurWpw4gwAANlAAxwAAAAAYAp2u01Fivg69VKhXCYUAAD8VVRMrP6IupTrj1u2hH+uPyYAAFZBAxwAAAAA4BLOPjvby8suu93LaZcK5TKhAAAAAAC4PxrgAAAAAACnc9V9MiVxqVAAAAAAACyMBjgAAAAAwOmcfZ9M6X/3ygQAAAAAANZFAxwAAAAA4DLOuk+mxL0yAQAAAACA5PxrzwEAAAAAAAAAAAAA4AI0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCtwDHACczG63yW63OfU5kpMdSk52OPU5AAAAAAAAAAAA3B0NcABwIrvdpiJFfGW3ezn1eZKTk3Tp0g2a4ABgMs4+iIoDqAAAAAAAAGA2NMABWJ4zmwteXnbZ7V76fcWXunHhrFOew7dYGT34XE/Z7Ta3aWLQsAGAnLPbbSpc2E9eXs67a1FSUrIuX77OZyoAAAAAAABMgwY4AEtzRXNBkm5cOKsb0Sed+hzuwhVnvXPGOwArsNtt8vKya9rCrYqKic31xy9XspD6vfi48uTxUlJScq4/vsQBSwAAAAAAAHA9GuAALM3ZzYXqAWXVpVWNXH9cd3b77G/nnfXujme8A4AzRcXE6o+oS7n+uIUK+siRnCx/f99cf+wUHLAEAAAAAAAAV6MBDgByXnOhbAn/XH9MT2Gls94BwBPl98krm93OAUsAAMAlnH2rLFfg6jYAAACegQY4AAAAYGEcsAQAAJzNFbcfcyQny2Z37u3NuLoNAACAZ6ABDgAAAAAAAMBpXHX7MWdd2Ubi6jYAAACehAY4AAAAAAAAAKdz9u3HuLINAAAAJMm51wUCAAAAAAAAAAAAAMBFOAMcAGB6drtNdrvNaY/vzPvYAQAAAAAAAACAzDNdA3zXrl2aMWOGDh8+rPj4eAUEBOiVV15R69atjS4NAGAAu92mwoX9aFIDAADkIrI3AAAAAFiXs086S052KDnZke2/N1UDfPny5frnP/8pb29v1a9fX15eXtq+fbsGDRqkY8eOqX///kaXCABuwZlfTu7WaLbbbfLysmvawq2Kiol1ynNUDyirLq1qOOWxAQAA3A3ZGwAAIPe4exMJ5uPs15wr8Lq+O2dvY5vNJn//fLLbvZz2HMnJSbp06Ua2t7NpGuAXLlzQiBEj5Ovrq3nz5unRRx+VJB07dkzBwcGaOnWqmjdvrsDAQIMrBQBjWfWM6KiYWP0Rdckpj122hL9THhcAAMDdkL0BAICV0ESC2bhi37AjOVk2u3P3PfO6vjNX7v//fcWXunHhbK4/rm+xMnrwuZ6y2200wL/++mvFx8erZ8+eqQFckipVqqS3335b7777rubOnavx48cbWCUAGM/ZZ0RzNjQAAIB5kb0BwH1w1ijgXDSRYEau2jfsrNe0xOv6Xlx5RdQbF87qRvRJpzxHTpmmAb5p0yZJ0jPPPJNuXbNmzWSz2bR582YXVwUA7stZZ0RzNjQAAIB5kb0BwD3Y7TYVKeLLWaOAE9FEsg5PvyR4dg5Ycva+YV7TxrP6FVFN0wD/7bffJEmVK1dOt65w4cIqXry4zp07pwsXLqhYsWKuLg8AAAAAAI9H9gYA93C7WePFWaOAC1i9iWR2ZrgkOAcsAemZogEeGxurmzdvKn/+/MqfP3+GY0qWLKlz587p3LlzhHAAAEyIy/8BAOBcZG8AcD/udIadp59BKZH7MsPTtzPbGH/n6ZcE54AlIGM2h8Ph8e+Is2fP6qmnnlLx4sW1devWDMe8+OKL2rt3rxYuXKhatWpl+TkcjvRfjDabZLfbFXstXklJydmq/W7y5vFSAb98uhV3RY7kpFx/fJvdS3ny+ys5OVmZeRV4+nwl683Z3eYrWW/OvK7Nv40l683ZHV/X0u3AYrM5L4Q7HA4582dTVh7aiq/r1L/z3P0sWZqn5PnvZT67svB3Fnldm/mzy9nfQe6C7J09fB5mYryHz9nd5itZb87u+LpO/Tsnfj3Y7Xa32ca363H+96HD4XB67stsA8mqr2tXZG+rbGPJ/T6vU//Og3/akr3vMd7D5yvxur4XM392ZeU7yBRngNv//6Uj7jbplB3W2d1xbbPZ5OWV8eMXKuCTrcfMrDz5nXsZFHsWL73h6fOVrDdnd5uvZL0587rOfe42X8l6c3bH17Uz2Wzu19yw4uvaijz9vcxnF/6Ozy7PRfbOGT4P783T5+xu85WsN2d3fF07m7ttY2dzdia72/fQnfC6zl1W3MaS9d7L7sjT38t8J+PvrP7ZZYpXR8ql1+Lj4+84JiEhQZLk5+fnkpoAAAAAADATsjcAAAAAwBOYpgHu5+enq1ev3jGIx8TESJJKlCjhytIAAAAAADAFsjcAAAAAwBOYogFus9lUtWpVSdKxY8fSrb98+bLOnz+vokWLqnjx4q4uDwAAAAAAj0f2BgAAAAB4AlM0wCWpcePGkqR169alW7du3To5HA41adLE1WUBAAAAAGAaZG8AAAAAgLszTQO8Y8eO8vX11VdffaW9e/emLj9+/Lj+85//yGaz6bXXXjOwQgAAAAAAPBvZGwAAAADg7mwOh8NhdBG5ZfHixRo5cqS8vLxUv3595c2bV9u3b9fNmzf1j3/8Q7169TK6RAAAAAAAPBrZGwAAAADgzkzVAJekH374QV9++aV+/vlneXl5qXLlynr99dfVokULo0sDAAAAAMAUyN4AAAAAAHdlugY4AAAAAAAAAAAAAMCaTHMPcAAAAAAAAAAAAACAtdEABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAC55urVq1n+m507dzqhEgDZNXXqVP3yyy9GlwEAAADgDsjegOcjewMA4Fw0wOFyCQkJ+vnnn3XkyBElJibecdzFixcVERHhwspcb+fOnZozZ47++9//6tSpU0aXk2PBwcG6fPlypsbevHlTY8eO1WuvvebcogBkydSpU3X06FGjywByXbNmzbR+/XqjyzBEcnKyTp48mWaZw+HQqlWrNHbsWH388cc6cOCAQdXlnjNnzig+Pj7T40+dOqWwsDDnFWSAixcvavv27Vq1apW+//577dy5M9O/zQCYD9n7f8jeZG/A3ZC9YVZkb7L335G9YRRvowtA5sXHx+vixYsqW7as0aVk27x58/TJJ5/o+vXrkqSCBQvqjTfe0BtvvCG7Pe3xGFu2bNHQoUN1+PBhI0rNNUePHtUXX3yho0ePqmzZsurdu7dq1aqlgQMHav369XI4HJIkb29vDRgwQL179za44uw7fPiwXnrpJX311VcqXrz4HccdOHBAQ4cO1R9//HHXcWZ18eJFHTt2THXr1jW6FJe4evWqJkyYoLFjxxpdistYbRubQbNmzfTuu++qWbNmRpfiMg899JAmTpyotm3bGl2KS0RFRaX+/rCSTZs2afTo0Tp37px+/vlnSbdDed++fbV58+bU3yGzZs1ScHCwhg8fbmS5OdKsWbN0r+nr169rzJgxeuONN1SpUqU04/ft26fhw4erQ4cOLq40961Zs0ZffPFFhr+bbTabatWqpTfeeENPPfWU64vLRYGBgbLZbFn6G5vNpkOHDjmpIpgV2dszkb3TI3tbK5eRveEJyN7mR/Yme5O9yd7ugjPADZTR0VAJCQkKCwvT+fPn040PDw/36B8HYWFhGjdunAICAjR8+HD17t1bPj4+mjJlil5//XVdu3bN6BJz3c8//6wXXnhBmzZtkq+vrw4cOKBXX31V48aN0/r169WjRw+FhoZqwYIFatKkif7zn//o+++/N7rsbBs5cqSOHz+u7t276+zZs+nW37p1Sx9//LG6deumP/74Q+3bt9fKlSsNqDR3PfTQQ1q+fHmaZfHx8Zo6dapOnz6dbvyWLVsUHBzsqvKc4vTp0xozZoyef/55Pf/88xoxYoROnDiRblx4eLjatGmjJUuWGFBl7rHiNrYaKwa0lPAF8zpy5Ij69esnh8OhHj16KDk5WZK0cOFCbdq0SSVKlNDixYu1b98+DRkyRPPmzfPo3yEZvaZv3rypsLAwxcTEGFCRa4wdO1aDBg1SVFSUOnTooHfeeUf//ve/9d5772ngwIFq1qyZDh48qDfffFMffvih0eXmSN26dVWnTp0s/VO7dm2jy4YbIHuTvcneZG9PRfY2/za2GrI3zIjsTfYme7tn9uYMcANl9IUfFxen4cOHa/bs2aY7OnfOnDmqW7eu5s+fn7qsb9++ev/99xUSEqJXX31VX331lQoUKGBglblrypQpKl++vObPn6+iRYvq+vXr6t27t77++mt16dJF77zzTurYOnXq6KWXXtL//d//qXXr1gZWnX3du3dXoUKFNGzYMHXv3l1fffWV7rvvPkm3j1AfOnSofvnlF5UtW1ajR49W48aNDa44d2T0pX/jxg1NmzZNtWvXVvny5Q2oynkOHz6sl19+WdeuXZOPj498fHx06NAhrVq1SosWLVLVqlV19epVjRgxQuHh4fLy8lKvXr2MLjtHrLaNjx8/nuXLYHLEPeB+vvzyS5UsWVJLly6Vv79/6vKvv/5aNptNb7/9th577DFJ0muvvaZdu3Zp4cKFHvs75E7MvMNp2bJlWrBggTp06KD33ntPfn5+GY6Li4vTBx98oLlz56pmzZpq2bKliyvNHX/NEUBWkL3J3mRvsrcnInvfZuZtTPYGzIHsfRvZm+ztbmiAuyGzflD8/vvvGjZsWJplefPm1bhx41S4cGHNnj1bb7zxhmbPnn3HDxBPs2/fPr399tsqWrSoJMnPz09vvfWWXnrpJT3xxBPpxrdu3VoTJ050dZm56rnnnlPBggU1aNAgde/eXV9++aXWr1+vGTNmKDExUd26ddM//vEP5c+f3+hSnc6s7+VPP/1U8fHx+vjjj/Xss89KkiIjI/X2229r7NixmjRpkoKDg/XHH3/o0Ucf1dixYxUQEGBw1c5h1m08Y8YMzZgxI0t/4+mXzLSqrF7OyNMtXrxY27Zty/R4m82mcePGObEi54qIiNALL7yQJoCfOnVKx48fl7e3t5555pk04x9//HF9+umnri4TObBw4ULVqFHjnkeX58+fX+PGjdOxY8f07bffemwIv3XrlvLkyZOlvzlw4ICqV6/upIrg6cz6W47sTfYme5sD2ft/zLqNyd7WQfa+O7I33B3Z+97cMXvTAIfL+Pr66vLlyxmuGzJkiK5fv65FixapT58++vLLL11bnJMUKFBAV65cSbMsICBATZo0kbd3+rffpUuXlC9fPleV5zRNmjTRrFmz9Oabb+r555+Xw+HQ/fffr7Fjx6pOnTpGl4ccioyMVNeuXVMDuCQ99thjGjJkiAYPHqzBgwcrKipK77zzjl5//fV09xiE+2vevLlpd5zcjdUCmiRNnz5dixcvzvR4m82muXPnOrEi54qIiMjSGRaevo0vXbqk0qVLp1m2Y8cOSVL16tXT7RD38fHRzZs3XVYfcu63337L0j1smzVrpm+++caJFTnX888/r0mTJmXqOyohIUFTpkzRvHnzdPDgQRdUB7gPsvdtZG+yt6cje5sf2TtzPD2XSWTve/H0bUz2Nj+y9525c/amAQ6XqV+/vubNm6dnnnlGVapUSbd+1KhRunbtmlasWKHXX39dTZo0MaDK3PX444/rq6++Us2aNdWwYUNJUsGCBfXFF1+kG3vgwAHNnz8/dZynq127tubNm6c33nhDFy9e1L///W8CuEnExsYqMDAw3fJHH31USUlJOnr0qObPn68aNWq4vjjkihYtWqht27ZGl+FyVgtoknTs2DEdO3Ys0+M9/aj1d99916Pv6ZpVhQoV0sWLF9Ms27Jli2w2mx5//PF0448dO5Z65hw8w/Xr11WsWLFMjy9RooRH35Pt/Pnz6tSpkwYMGKCePXve8TNpz549evfdd3XixAndf//9Lq4SMB7Zm+xN9jYHsrf5kb0zh+ztecjeZG+zIXt7ZvamAQ6Xefvtt9WtWzcFBQXp4Ycf1kcffZTmTWGz2TRx4kTlzZtXISEh2rt3r4HV5o533nlHkZGRev3111WnTp073jvh5Zdf1p49e1S0aNE09ybzdIGBgVq4cKFee+01vfnmm5o2bZoaNGhgdFnIocTExAzPlvDx8ZEk9erViwAOj2S1gCZJH330kaV2uBQpUkTlypUzugyXqVWrllatWqUePXrIy8tL58+f16ZNmyRJrVq1SjP26tWrWr58uerXr29ApciupKSkDM9svBMvLy8lJiY6sSLnWrFihYYPH67Jkydr06ZNmjBhgipUqJC6PuUysSn32uvRo4cGDhxoYMWAMcjeZG+ytzmQvWFWZG/zI3uTvc2G7O2Z2ZsGOFzmgQce0MqVKzVt2jTt3r079Qf7X9ntdo0bN041a9bUJ598ogsXLhhQae4pVqyYlixZokWLFikhIeGO43x8fNSpUye99dZbWTqSyN0MHz48w+X333+/Tp8+rd69e6t169Zpjhgyw1GcSOuRRx4xugQgW6wW0GB+PXv2VNeuXdWlSxfVq1dP69ev182bN/Xss8+qYsWKkm7vWN2/f78mTJigixcvqnv37gZXnTNr167ViRMnUv87Pj5eNptNS5cu1Z49e9KM/eWXX1xdHnKoWLFimjlzpr7++mt99NFHat++vYYNG6YXXnhBu3bt0r/+9S+dOnVKAQEB+uCDD/hNAssie5O9yd7WwPccPBXZG2ZD9iZ7m41ZsjcNcIMdP348zSVfrl69Kkk6evRouiNKsnKZFHdVpEgRjRgx4p7jOnfurKCgoDQfop7Kx8dHr7766l3HmOW+a6GhoXddf/PmTYWFhaVZZpYQvnv3biUlJaX+d1xcnCRp69atio6OTjPWDGdY3I2nX6bpTqyyjevWravixYsbXQaAXPDoo49q+vTp+uCDDzR79mx5eXmpbdu2Gj16dOqYiRMnat68ebLb7Ro+fLhq1aplYMU5Fx4ervDw8HTL//77I4UZvrP+vuPhbsyy46F79+5q0KCBRo4cqVGjRmn+/Pk6duyYvL29NXDgQPXq1StLR+fDGsjeGSN7eyayt/lzWWaY4XdMRqyyjcnegHmQvf+H7H0b2ds92BwOh8PoIqwqMDAwwze+w+G46/LDhw+7ojynczgcOnXqlC5fvixJKlq0qMqXL29sUU5m9jlHRUVl6+88/ajPjN7Lf/1ozWidJ7+XAwMD9eabb6pRo0Zpll+9elV9+/bVsGHDVK1atXR/V7duXVeVmOusto2tKDAw0HKXJLPanENDQ1WnTp00l2yykkuXLsnX1zfdWYCbN2/WwYMH9eyzz7rl/ZqyYteuXdn6u3r16uVyJa6T0X1B78VM308RERHq27evrl69KpvNpr59+2rAgAFGlwU3RPY2dw7NiNnnTPb+HzPnMrL3bWbexlZktRwqWW/OZG+y952QvT2Xp2ZvGuAGmjp1arb+rn///rlciWtFRkZq1qxZ2rp1q65fv55mXYECBdS0aVO99tpr2fpQcVdWnLOV3Ovo+zsJCgrK5Upc4047EKU770SU5NFf+Fbaxn89MyorPHkni2TNgLZr1y5VqlTJoy//CVidFXc8SNK1a9c0ceJEfffdd8qXL5969uypNWvW6JdfflHDhg01duxYlS1b1ugy4UbI3tbJoVacs5VYKZdJZO+s8MRtTPYmewPwHGRvz8zeNMDhUrNnz9akSZNkt9tVs2ZNValSRf7+/kpMTNTly5d16NAhHT58WHa7XUOHDlVwcLDRJeeYFeecWTNmzFB4eLhCQkKMLsXlEhISlDdvXqPLyBar7kDMKk/dxnfbyXI3nryTBdZwp3tl3o1ZLhWKjC1atEhbtmzJ9vcajLFp0yaNGjVK0dHRatCggcaMGaMKFSro1q1b+vTTTzV79mz5+Pjon//8p7p27Wp0uYBhrJhDrTjnzCJ7e14uk8jemeWp25jsDbMie+PvyN6eyQzZmwY4XGbz5s3q3bu3GjZsqHHjxqlMmTIZjjt58qRGjx6tbdu2afbs2WrYsKGLK809VpxzVowaNUqLFy/2+B/vU6dOzVLAjIyM1PDhw7Vy5UonVoXcZKVt/Nlnn2UrhHv6ThYrBrTs7PS12WyaO3euE6pxPiterupeO9Xy5cunggULqmrVqmrRooU6d+4su93uwgqNZYbfIWfOnFHRokXTXV7vTk6dOqU9e/aoQ4cOzi3MSd555x2tXLlSfn5+GjJkiLp06ZJuzL59+zR06FCdOnVK9erV0wcffGCqyx4DmWHFHGrFOWeFGb7zJGvlMquy0jYme2ce2duzkL3TI3t7/u8QsrdnZm8a4Aay2hf+a6+9pvPnzyskJER58uS569jExER16NBB999/v6ZNm+aiCnOfFeecFWb48pNu/8jp0aOH/vnPf951XGJioqZOnapZs2YpKSnJ4+edWfHx8bp48aJbXw7lXtjG5mfVgJZVnjxnK94r8+WXX77r+qSkJF25ckUnT57UrVu39Pjjj2vGjBny9vZ2UYXGMsPvkIceekgTJ05Mcz/B69eva8yYMXrjjTdUqVKlNOOXLVumoUOHeuycAwMD1bhxY40ZM0alS5e+47j4+Hh9+OGHWrRokfz8/LR3714XVgl3RPa+M7PkUCvOOSvM8J0nkcvuhewNT2C1HCpZb85k7/TI3p7/O4TsnTF3z97WeIe5qazc1+avRxB5agg/dOiQXn311XuGUUny9vZW69attWzZMhdU5jxWnLMV1alTR7Nnz9aNGzf03nvvZTjm6NGjGjp0qI4ePapChQrpX//6l4urzD3NmjXTu+++q2bNmqUuS0hI0KpVq/TEE0+oePHiacaHh4d79Be+ZL1tbEXr1683ugSXO3LkiNEluJQnh+nsmj9/fqbGxcfHa+HChZo4caIWLlx4z/AO95HRscw3b95UWFiY2rVrly6Ee7rx48dn6h6fPj4+ev/99/XMM8/wfQxJZO+7MUsOteKcrchquYzsbf5tbEVkb/Mje98Z2dtzkb0z5u7Zmwa4gTLz5RcVFaUxY8Zo06ZNKliwoAYNGuT8wpwkLi5OJUuWzPT4MmXK6M8//3RiRc5nxTlb0ezZszVw4EAtXLhQN27c0Lhx41J3nDkcDs2cOVPTpk1TQkKC2rRpoxEjRqho0aIGV519UVFRun79epplcXFxGj58uGbPnp0uhJuB1baxJB0/flz79u1Tx44dU5edP39eU6dO1d69e+Xr66tmzZrp1Vdf9cj7rf2dFQMa0kpISNBvv/0mHx8fVaxY0ehyXMrHx0evvfaaDhw4oNDQUEK4CZj1Il+ZCeB/9eCDD6pz585OqgaehOx9d2bIoVacsxVZLZeRvc2/jSWyN6yH7E32NhOy923umr1pgLuppKQkzZ49W59//rni4+P17LPPavjw4R794zYxMTFLP9S8vb2VkJDgxIqcz4pztqK8efNq2rRpGj58uEJDQxUfH69Jkybp5MmTGjZsmCIjI1WiRAm9//77atq0qdHlOo1Zv/Al623jSZMmafbs2XI4HAoKCpLdbtfVq1fVpUsXnTlzRoULF1a5cuX0ySefaMOGDZo/f36mzrbxZFYMaNHR0YqMjJSPj4/q1q2b6fscubOrV6/qyy+/1L59+9Icob18+XKNHTtWV65ckXT7h/u4ceNUo0YNgyo1Rv369bV161ajywBy5ObNm1qzZo1CQkK0a9cuORwO9evXz+iy4MbI3ubIoVacsxVZLZfdCdnbPNuY7J0e2ZvsbQVkb5iBJ2RvGuBuaPfu3Ro9erR+/fVXPfDAAxo1apQaNmxodFnAPU2dOjVL43/++WcnVeJ6Xl5emjhxovz9/bVgwQKdPn1av/76q+Lj49W5c2cNHTpUBQoUMLpM5IBVtvHatWs1a9YsPfXUUwoODpbdbpckff7554qKilL16tX11VdfydfXV5GRkXr55Zf11VdfqWfPngZXnnNWDGhRUVGaPHmy9u3bpw0bNqQunzlzpj799FMlJSXJ4XCoUKFCGjNmjFq0aGFgtTkTFxenLl266Pjx4ypdurQSExPl7e2tyMhIDR06VA6HQ126dFGVKlUUFham1157TWFhYbr//vuNLt1lvLy8lJycbHQZ2RYWFpal8b///rtzCoEh9u3bp5CQEH3//feKi4uTw+HQfffdpy5duhhdGtwY2Rueiuxt/lxmZVbZxmRvsrdE9iZ7eyayt7V5UvamAe5GLl26pIkTJyosLEx58+bVgAED1LNnT1Nc3ibF7t27lZSUlKmxe/fudXI1rmGlOWc1hEtp77FnBiNGjFDhwoU1depU2e12ffHFF2rSpInRZSEXmX0bL1q0SNWrV9eMGTNSlzkcDi1btkw2m01vvfWWfH19JUmPPfaY2rdvr5UrV3p8CLdiQLtw4YK6dOmiS5cu6bHHHkud848//qjJkyfL29tbb7/9tqpWrarFixfr7bff1jfffKNq1aoZXXq2zJ49WydPntR//vMftWrVKnX5tGnT5HA49Morr2jYsGGSpE6dOqldu3aaMWOGxo8fb1TJLnfgwAGVKVPG6DKybdiwYVn6XeFwOEz3O8RqoqOjtXTpUoWEhOjEiROpZ8TVr19fPXv21BNPPGFwhXBXZO+0PD2HprDSnMne5s9lMP82JnuTvcneZG9PRfa2Hk/N3jTA3cS3336rSZMmKTY2Vo8//rhGjRql++67z+iyct3ixYu1ePHiTI01ywejleY8b948o0twC/3791eRIkU0duxYzZo1S7Vr1zbF0cn4HzNv44MHD6YL1IcOHdKFCxdUoEAB1a9fP826Rx99VMuXL3dliU5hxYA2c+ZMxcXF6euvv05zRP3MmTNls9nUr1+/1NfCk08+qY4dO+rLL7/Uf/7zH2MKzqHw8HC1b98+zfaNi4tLvexYt27dUpfny5dP7dq107fffuvyOo2yevVqLV26VG+88YbRpWSbJ78fkXkJCQlat26dQkJCtH37diUlJcnLy0v16tVT7dq1NX36dAUHB7ttAIfxyN7peXoOTWGlOZO9bzNzLsNtZt7GZG+yN9mb7O2pPPn9iMwzQ/amAW6wo0eP6v3339f+/ftVvHhxTZ48WW3atDG6LKew4gej1eZcr169LP/N7t27nVCJa0VERKRbVrVqVXXu3FmLFy/WK6+8oiFDhqRezipF3bp1XVUicshK2/j69esqVKhQmmU7duyQdHs+Xl5eadYlJiZ69M7DFFYMaJs2bVLHjh3TBPDLly9rz549kqTnn38+dbnNZlPr1q01d+5cV5eZa06fPp1mO0q339uJiYmqUKFCuuZHmTJldOHCBVeWmOuGDx9+1/VJSUmKi4vTb7/9ppMnT+qBBx7w6BAeFBRkdAmGWLt2rU6cOJH63/Hx8bLZbFq6dGnq+znFL7/84uryctXo0aO1atUqxcbGKl++fGrcuLGaN2+uZs2aqUiRIoqKitLnn39udJlwU2Rvc7PanMne/2PWXGZVVtrGZG+yN9n7NrK35yF730b2dv/sTQPcQBMmTND8+fOVlJSkp59+WoMGDVKBAgV05syZu/5d2bJlXVRh7rLiB6MV55wZZ8+eVWhoqMLCwnTq1CkdPnzY6JJy5OWXX75rCDl48KBeffXVdMs9ed7Hjx9PE0yvXr0q6faORW/vtF8tx44dc2ltzmClbVyyZEmdOnUqzbJNmzbJZrPpySefTDc+MjJSpUqVclV5TmPFgPbnn3+qatWqaZbt3LlTycnJqly5crrtWqxYMcXGxrqyxFxlt9vT3WNr+/btkqRGjRqlG3/x4kWPP7skNDQ0U+MqVKigV155RX379vX4Od9JRr+vy5QpY5qdiOHh4emW3+m+bJ4854ULF8rPz099+vTRG2+8YdrXK3If2dv8rDjnzCB73+bJ8yZ7p2WmbUz2/h+yN9nb03/Xk73/h+z9P548Z7NkbxrgBpozZ07qv2/cuFEbN27M1N954o+67Lh48aKOHTvmkUdxZpeZ53zz5k2Fh4crJCREO3fuTL3kXEY/6j1Nv379PPoLLTtmzJiR5j5VKSZMmJBumadfXlCy1jZ+8skntWTJEnXr1k2lSpXSvn37tHv3buXJk0ctW7ZMM/bXX3/VypUr9cILLxhUbe6xYkDLly+fbty4kWbZtm3bZLPZ9Pjjj6cb/+eff8rf399V5eW6ypUra9++ferevbuk259Na9eulc1mU9OmTdONX79+vSpVquTqMnPV+vXr77o+X7588vf3N9U9byVpyZIl+vbbb/X555+raNGiunTpkpo2bZruc3zgwIF68803Daoyd1jtErhBQUFat26dvvjiC82dO1d16tRJPQq9ePHiRpcHN0b2vjsz59A7MfOcyd7mQvY2L7L3/5C90yJ7ex6yN9nbbMySvWmAG6h///5Gl+BSDz30kCZOnKi2bdumLouPj9esWbPUoUMHlS9fPs34LVu2aOjQoR6908GKc/67/fv3KyQkRN9//72uXbsmSSpatKg6duyoLl26qFy5cgZXmHMDBgwwugSXslIgTWGlbdy3b1+Fh4erdevWqlixon755Rc5HA7169dPRYsWlXQ7fIeHh2vevHnKkyePevToYXDVOWfFgBYYGKjt27frlVdekfS/e/tIUvPmzdOMdTgcWr16tQIDA11eZ27p0KGDPvjgAz366KN6/PHHtXjxYp05c0b33XefGjdunGbsjBkztH//fo0YMcKganOHGb5js+qtt97SmjVrVLZsWZ05cyb1c0uS2rVrpwoVKkiSli5dqunTp6tTp04qUaKEUeXmWHYugZuYmOiESlxj/PjxGj16tDZu3Kjly5frhx9+0I8//qjRo0erZs2aqlWrluV+oyBzyN7mz6FWnPPfkb3Nh+xtbmRvsrdE9iZ7ey6y972RvY1HA9xAVgvhDocj3bIbN25o2rRpql27drpAagZWnLMkxcTEKCwsTKGhofrjjz/kcDjk6+urRo0aadu2bfr3v/+tZs2aGV0msslKgdSKihcvru+++07Tpk3T/v379fDDD6tjx47q3Llz6pjQ0FDNnj1b5cqV08cff6wyZcoYWHHusGJA69q1q95++22NGzdOjz/+uJYsWaILFy7o4YcfTnM2VHx8vD788EP9+uuvHr3DpWvXrtqzZ4/Gjx8vm80mh8OhQoUKadKkSan3EPzuu+80c+ZMnTp1SrVr19aLL75ocNXOFRkZqX379slut6tevXoKCAgwuqQcWbZsmdasWaPevXtr4MCB6e6b2KFDBzVs2FCS1KRJE73wwgv65ptvTPObPC4uTg6H465nyOzbt08jR47UihUrXFhZ7sqbN69atmypli1b6urVq1q9erWWLVumPXv2aM+ePbLZbPriiy907do1tWzZUj4+PkaXDDdglvd5Zlkxh1pxzhLZ2+zI3uZG9iZ7k73J3p6K7E329pTsTQPcjSQkJOjIkSOKiYmRw+FQyZIlFRgYqHz58hldmlNlFFTNzqxz/v777xUSEqJt27YpKSlJ/v7+atu2rVq0aKHGjRvr3Llz6Y5sNIOpU6dm+W9sNpv69evnhGqcLzg4WG+++WbqDxkrsNo2Ll26tMaMGXPH9R07dlTTpk1Vq1at1PDi6awY0Nq0aaOjR49q1qxZmj9/vhwOh8qXL68pU6akjvm///s/ff7554qLi1OrVq3Uvn17AyvOGZvNpkmTJql79+7at2+fChQooObNm6c5SvnPP/+Uw+HQm2++qd69e5vi9X3o0CF98cUXOnbsmO677z716dNHjz32mP71r38pJCQk9TeJzWbTc889p/Hjx6e7n6SnCA0NVc2aNTV48OB7jk3Z4bZ582aPD+Fr1qzR1KlT9dtvv0m6fV+5gQMH6rnnnksdc/36dU2ePFkLFy5Md8lJTzJ8+HB17dpV1atXlyQVLFhQnTt3VufOnRUdHa0VK1ZoxYoVioyM1E8//aQxY8aoTZs2+ve//21w5XA3ZG/rMOucyd6Z58m5jOydOZ68jcneZO8UZG/Pf32TvTNG9vZMZsnenvkOM5nz589r8uTJCg8PV1xcXJp1vr6+atmypQYPHqySJUsaVCGQOYMHD5afn5+6deumZs2aqW7dummOAPOEy2Jkh9UC2q5du9IckWwFVtvG9+Lplx/LiFUD2uDBg/Xiiy/qwIEDKlCggOrVq6c8efKkrs+XL58effRRtW3bVs8//7yBleaemjVrqmbNmhmu69+/v8cHsr/at2+fgoOD5e3trapVq+rgwYPq3r27Xn75ZS1ZskTt2rVTq1atdP36dW3YsEErVqzQQw89pNdff93o0rPl0KFD6tOnT6bHP/HEE5o2bZoTK3K+VatW6e2331a+fPn0xBNPyNfXV7t379Y///nP1PtH/vTTTxo8eLBOnz6t8uXLa/To0UaXnW2hoaFq1KhRagj/q1KlSqlHjx7q0aOHjh07pmXLlmn58uX69ttv3S6Ewzhkb5gF2TvzPDmXkb0zx5O38b2QvcnenozsTfZOQfb2PGbJ3jTADbZ//3717t1bsbGxql69uho0aKCSJUvK29tbMTExioiIUFhYmDZs2KDp06erVq1aRpcM3FH58uV1+vRphYSE6Pfff9dPP/2k5s2b68EHHzS6NKeaN2+e0SXAyay0jSMiIrL1d3+9bJcns1JAS1G6dGmVLl06w3UvvfSSXnrpJRdXhNwybdo0PfDAA5o3b56KFCkih8Ohd999V3PmzFG7du00ceLE1LHPPfecrly5ohUrVnhsCI+Pj5e/v3+65QULFtSMGTP00EMPpVmeP39+j74nlyQtWLBAxYoV06JFi1LvsXbjxg29+eab+uyzz1SyZEm9/vrrunnzpl577TW99dZbbnlZstxWqVIlDR48WIMHD9bevXuNLgduguwNMyF7w6ystI3J3mTvvyJ7ezay921kb7K3u6EBbqALFy6oX79+yp8/vz7//HPVrl07w3GHDh3SoEGDNHDgQC1dulTFihVzcaVA5qxbt04HDhzQsmXLtHr1am3ZskWTJ09WxYoV1aJFC1WrVs3oEp2iXr169xxz9epV2Wy2u94bBO4rM9vYLF5++eUsnzFis9l06NAhJ1UE5I7hw4dn+W9sNpvGjRvnhGpc46efftIbb7yhIkWKSLo9nx49eig0NFRPPfVUuvEtWrTQhx9+6OIqc0+pUqV05syZdMu9vb0znO8ff/zh8fdRPHbsmF5++eXUAC7dPou1f//+eumllzR48GAVK1ZMkyZNUo0aNYwr1EA0MSGRvWE+ZO87I3t7NrL33ZG94QnI3mTvvyN7W4M7Zm8a4AZasGCB4uLi0hw1kpGHH35Yc+bMUdu2bfXf//5XAwYMcGGVQNZUr15d1atX17vvvqstW7Zo+fLlWr9+vaZPny6bzSabzaaNGzcqMDBQ5cqVM7rcXONwOPTDDz/ot99+0/3336+nnnpK3t7e2r59u8aOHavjx49Lkh566CG9/fbbeuKJJwyuOGfWrl2rEydOZHq8mS9JlsIsO1rGjx+fqXFr1qzRpk2bJEmPPfaYEytyDSsGtODg4Cz/jc1m09y5c51QjfOFhoZmeuxfd0R58ja+cuWKihcvnmZZyqUFCxcunG68j4+Pbty44YrSnOKxxx7TqlWr1K9fv3teJjEhIUGrVq1SkyZNXFSdc1y9elXly5dPt/y+++6TdPtSiosWLUrdEWMGu3fvVlJSUpb+pkOHDs4pBh6D7A0zInuTvTNC9vYcZO/MI3t7FrL3bWTv28jenssM2ZsGuIHWrVundu3a3TWApyhXrpyCgoIUHh7u0SH872+alPuubd26VdHR0WnGuuMlE7LDinOWJC8vLzVp0kRNmjRRfHy81q5dqxUrVmjr1q367rvvFBISovr166tjx4567rnnjC43R65cuaJevXrpwIEDcjgckqRHH31UI0eOVK9eveTr66vmzZvr+vXrOnDggHr37q05c+Z49JHNa9euVXh4eKbHmyGE/3VHy3333aenn37alDtagoKC7ro+KipKY8aM0aZNm+Tv76+3335bXbp0cVF1zmPFgHb69OlMjUtOTlZ0dLQcDodH30/yyJEj9xzz19d3wYIFNWjQIOcX5kQOh0Pe3ml/7qdsQ0/elnfStWtXvfTSS/r3v/+tESNGpJt7iuTkZL333nuKiYlR165dXVxl7kpOTk5zz9cUKfcT7NWrl6kCuCQtXrxYixcvztTYlM8tdwvhcD2ytzVyqBXnLJG9yd5pkb09B9n73sjenonsfRvZm+zt6cyQvWmAG+j06dNZurdHYGBgln4kuKO/v2lSAsusWbPSfRl4+pd9CivNuVevXmrQoIHq1aunatWqpc7Fx8dHbdu2Vdu2bXXp0iWtWrVKy5cv1/bt27Vjxw6PD+Gffvqpjhw5ovfee0/169dXVFSUPvjgA73yyit64IEHNH/+/NSj/S5evKhOnTpp9uzZHh3Ce/furUaNGhldhstYcUfL3yUmJur//u//NGPGDN24cUPt2rXTsGHDUo9o9XRWDGgbNmy455gDBw7o/fff159//qny5ctr5MiRLqjM9ZKSkjR79mx9/vnnio+P17PPPqvhw4enO4Ib7q1OnTrq0aOH/u///k87duzQ66+/rvr166t06dJyOBw6d+6cdu7cqa+//lpHjhzR4MGDFRgYaHTZTlW2bFmjS8h1L7zwgmUvKYfsI3ubO4emsNKcyd5kb7Mie5O9JbI32RvujuydHtnbPdEAN1CePHl08+bNTI+Pj4+Xn5+fEytyrsxe2sdMrDbnHTt26Icffki9FFWdOnVUv359NWjQIPVLrkiRIurevbu6d++uU6dOaeXKlQZXnXMbNmxQ165d9eKLL0qSKlasqPfee0+vv/66unfvnuZSN0WLFtULL7yg+fPnG1Rt7qhUqZKpAua9WHFHy1/t2rVLo0eP1rFjx1SxYkWNGjVK9evXN7osl7FiQLt69ao+/vhjLV68WHa7Xb1791bfvn2VL18+o0vLdbt379bo0aP166+/6oEHHtCoUaPUsGFDo8vKNX+/bGZ8fLxsNpuWLl2qPXv2pBn7yy+/uLq8XPfPf/5T5cqV0+TJk/Xee+9l2PDw8/PT+++/b4ozaKyoTp06atu2rdFlwMOQvc3PanMme5O9zYrsTfYme5O9PRXZm+xtNmbI3jTADVS1alVt3rw50/cB2bRpkypXruzkqpznXpf2MSOrzXnv3r06dOiQ9u7dq3379mn//v3auHGjbDab/P39VbduXdWvX1/169dX1apVVaFCBfXp08fosnPs3LlzqlSpUpplKe/VjI7+KlOmjGJjY11SG3KHFXe0SLd3KEyYMEHLli1Tvnz59NZbb+mNN95IvbyPFZg9oGVk6dKlmjhxoi5cuKB69epp1KhR6T7jzODSpUuaOHGiwsLClDdvXg0YMEA9e/ZU3rx5jS4tV4WHh2d42cywsLAMx3vy2XApunXrpqCgIG3cuFERERH6888/5XA4VLJkSdWqVUvNmzf3+HtG/lVG9wa9284WM1waFcgqsrf5WW3OZO//IXubC9mb7E32Jnt7KrI32Zvs7X5ogBuoffv2eu+997Rq1Sq1adPmrmPDwsK0bds2TZ482UXVGe/06dN67733NHv2bKNLcRlPn7O3t7cee+wxPfbYY3r11VclSWfPnk0TyidMmKCkpCQVLlxY9erVU/369dWtWzdjC8+hW7duycfHJ82ylJCSUVix2Wxp7k0H92fFHS3ffPONJk+erNjYWD355JMaOXJkpu6baRZWCWh/dfz4cY0ePVq7du1SkSJF9OGHH7rdvXtyy7fffqtJkyYpNjZWjz/+uEaNGqX77rvP6LJy3bx584wuwTC+vr5q06bNPX9jm8GddrRIGe9sIYTDisjed+fpOTQ7PH3OZO//IXubC9mb7E32Nheyt/mRvW8je7snGuAG6tixo8LCwjRkyBAdPXpU3bt3V8mSJdOMiYmJ0Zw5czRv3jw1adJErVu3Nqja3HHgwAFNnz5d+/btkyQ9/PDD6tevn+rUqZM6xuFw6KuvvtKnn36q+Ph4o0rNNVac81+VKVNGzz77rJ599llJty/ts2zZMoWEhGjNmjUKDw/3+BBuNf3791dAQIDRZbiUlXa0HDlyRKNGjVJkZKRKlSqlMWPGqEWLFkaX5VJWCWgpEhISNG3aNM2ePVuJiYnq3Lmz3nnnHfn7+xtdWq47evSo3n//fe3fv1/FixfX5MmTTR3SzHIpSNyZ1Xa0BAUFmfrzGM5D9rZGDrXinP+K7G0+ZO/byN7mRfYme5sF2dv8yN6eiQa4gex2u2bMmKF33nlHX3zxhWbOnKkyZcqoRIkS8vLy0oULF3Ty5Ek5HA61bt1aH3zwgdEl58j27dvVs2dPJSUl6cEHH5Svr68iIiL06quvas6cOapbt65Onz6tf/zjH4qMjFSBAgU0evRoo8vOESvO+e/i4+MVERGhXbt2ac+ePfr5559169Yt5c2bN/WSbGZw+fJlnTlzJvW/U45AvnjxYprl0u2jWz1Z//790/x3QkKCjhw5opiYmNTL3AQGBpryfkVW0LFjRyUnJ0uSihUrpgULFmjBggV3/Rubzaa5c+e6ojynslpAk6TNmzdrzJgxioqKUkBAgEaPHq3q1asbXZZTTJgwQfPnz1dSUpKefvppDRo0SAUKFEj3Gf13GZ1pYlaLFi3Sli1bNHXqVKNLyZbMXtr4rzz98ys7O1p2797thEpcw2r3+EXuIXubP4dacc5/R/Yme8OzkL3J3mTvtMjenoPsnTlkb+PZHA6Hw+giIP34449aunSpIiMjde7cudQfsrVr11b79u3VoEEDo0vMsddee02RkZGaNWuWatasKUmKjo5Wnz59lCdPHo0fP17BwcG6cOGCWrRooZEjR6pEiRIGV50zVpxzYmKi9u/frx07dmjHjh06cOCAbt26pTx58uixxx5LDd41a9Y0zeWMAgMDM7xvi8PhuOv9XA4fPuzMspzu/Pnzmjx5ssLDwxUXF5dmna+vr1q2bKnBgwenO7vGEwUGBupf//qXmjVrlrosNjZWQUFB+vjjj1Pf3ynWrl2rDz/80CO3cdOmTbP1dxs2bMjlSlzrTgHtXjw5oA0cOFBr166VJD399NMKDg6Wl5fXPf+ubt26zi7NKQIDA1P/PSv32vLE93F2jRo1SosXL/bYOWf28ys5OVnR0dGp39OeOt+sOHv2rEJDQxUWFqZTp05ZYs7AnZC9zZlDrThnsvf/kL3J3p64jcneZO97IXubF9nbvMje7oUGOFymQYMG6tSpk9555500y7ds2aKePXuqUqVKOnfunN5//32Pv9xcCqvNuWfPntq9e7fi4+Nlt9tVrVo1NWjQQPXr11ft2rXTXcbKLIYPH56tv/PkI6n279+v3r17KzY2VtWrV1eDBg1UsmRJeXt7KyYmRhEREYqIiJC/v7+mT5+uWrVqGV1yjlh1R4uVWDGg/XXO0r3n7emBJbtHVv/9zBsz8/QQnhkHDhzQ+++/r8OHD6t8+fIaOXKkmjRpYnRZTnHz5k2Fh4crJCREO3fuTH0PN27cWF988YXR5QFwIqvlUMl6cyZ7Zw3Z23OQvc2P7E32vhOyt7mQvcne7oBLoHuQnTt36ujRo9m6xIQ7uHr1qipVqpRueZUqVeRwOHT58mV9++23pri3QAqrzfnHH39Unjx51KFDB/Xu3VsPPPCA0SW5hCeH6ey4cOGC+vXrp/z58+vzzz9X7dq1Mxx36NAhDRo0SAMHDtTSpUtVrFgxF1eaezp06JClYGYlu3fvVmhoqMdfKtRKQSuF1T67srONzXZvUCu7evWqPv74Yy1evFh2u129e/dW3759TXnJ0P379yskJETff/+9rl27JkkqWrSoOnbsqC5duqhcuXIGVwi4P7K357HanMne1kD2xl+RvT2X1T67yN7WRvYme7sTGuAeZNWqVVq8eLHHhvCkpCR5e6d/yaVciqtPnz6mCaMprDbnzp07a+fOnamX+ahYsaIaNmyoBg0aqG7duipUqJDRJSIXLFiwQHFxcVq0aJEqVKhwx3EPP/yw5syZo7Zt2+q///2vBgwY4MIqc9eHH35odAlu5c8//1RoaKhCQ0N16tQpSbJkCPf0gBYUFJTlv4mKinJCJe4nZefSmjVrPPqeTbht6dKlmjhxoi5cuKB69epp1KhRGTZJPFlMTIzCwsIUGhqqP/74Qw6HQ76+vmrUqJG2bdumf//732kuJQrg7sjensdqcyZ7WwPZG2Tv28je5kX2NheyN9nb3dAAh9sw24dhZphtzmPGjJEknTlzRtu2bdOOHTu0evVqLViwQHa7XYGBgapfv35qKPfz8zO4YmTHunXr1K5du7sG8BTlypVTUFCQwsPDPTqEBwcH680331TDhg1TlyUmJmrfvn0KDAxUwYIF04xftmyZhg0bpkOHDrm6VKdJSEhIvZzPjh075HA45HA4VL9+fb344otGl+dSVgtoN2/e1OrVqxUaGqqIiAgdPHjQ6JKcImXnUlhYmE6ePCmHw6HChQsbXRZy4Pjx4xo9erR27dqlIkWK6MMPP1SHDh2MLitXff/99woJCdG2bduUlJQkf39/tW3bVi1atFDjxo117tw5NW/e3OgyAbgZs+XQzDDbnMne1kD2vo3sTfYme5sL2dt8yN5kb3dFAxxAritbtqw6deqkTp06SZJ+/fVX7dixQ9u3b9eSJUs0Z84ceXt765FHHlHDhg311ltvGVwxsuL06dN66aWXMj0+MDBQoaGhTqzI+Xbt2qXOnTunWXb16lUFBwdr9uzZacJ5CofD4arynOrvl/NJmdezzz6rfv36qWLFigZX6BpWDGh79+5VSEiIVq9erbi4ODkcDlWpUsXosnJVys6l0NBQ7dixQ8nJyXI4HKpRo4a6du2qNm3aGF1ijoSFhWVp/O+//+6cQlwsISFB06ZN0+zZs5WYmKjOnTvrnXfekb+/v9Gl5brBgwfLz89P3bp1U7NmzVS3bl15eXmlrucSogBgbmRvcyN730b2JnuTvT0f2TstsrfnIXt7JhrgcKndu3crKSkpzbK4uDhJ0tatWxUdHZ3ubzz9aCErzvnvqlSpoipVqujll19WQkKCVq9erf/+97/av3+/Dhw4QAj3MHny5NHNmzczPT4+Pt60ZxyYJWj/XUaX8ylcuLCCgoJUo0YNjRo1Sm3atDF9ADd7QMtIdHR06rY/ceKEJMnb21tt2rTRiy++qDp16hhcYe44cOCAlixZkmbnkr+/v65evaoxY8ak2+nmqYYNG5alEOZwODw+tG3evFljxoxRVFSUAgICNHr0aFWvXt3ospymfPnyOn36tEJCQvT777/rp59+UvPmzfXggw8aXRoAg1kxh1pxzn9H9jYXsvf/kL3J3mZD9iZ7k709C9nbM9EAh0stXrxYixcvTrMs5UfsrFmz0nzwp3wReHogteKc/+rkyZM6cOCADhw4oMjISB05ckS3bt1S/vz59eSTT6pu3bpGl4gsqlq1qjZv3pzpeyJu2rRJlStXdnJVyC29evXS1q1blZSUpDJlyqhbt25q3ry56tevL7vdrqioKNPufEhhlYCWIiEhQevWrdOSJUu0Y8eO1B3HlSpV0vHjx/XRRx+pVatWBleZczExMVq6dKlCQ0P1+++/y+FwqGzZsgoKClKLFi1UqlQpPfPMMypatKjRpeaa8ePHG12CSw0cOFBr166VJD399NMKDg5WQkKCIiIi7vp3nvxbZN26dTpw4ICWLVum1atXa8uWLZo8ebIqVqyoFi1aqFq1akaXCMAgVsyhVpzzX5G9zYfsbW5kb7I32Zvs7anI3mRvT0ED3EBnzpzJ0viUI5c9ldW+CCTrzTk2NlaRkZGpgTsyMlKxsbFyOBwqVKiQatWqpcGDB6tu3bp6+OGHZbfbjS4Z2dC+fXu99957WrVq1T2Pwg0LC9O2bds0efJkF1WHnPrhhx/k5+en4OBgde/eXSVKlDC6JJewYkCLjIxUSEiIVq1apStXrshut6tmzZpq0aKFWrRooaSkJDVv3lx58uQxutRc0bRpUyUnJyswMFB9+vRRs2bN9Mgjj6Suj4qKMrA65wgKCjK6BJcKDw9P/fcNGzZo48aNdx2f0vw4fPiws0tzqurVq6t69ep69913tWXLFi1fvlzr16/X9OnTZbPZZLPZtHHjRgUGBqpcuXJGlwsYguxtflabM9nbGsje5kb2JnuTvc2D7E32Jnu7JxrgBmratKmlLo2RnS8CT/9CtNqc69evL5vNJofDoSJFiqhevXqqW7eu6tatq4CAAI9+/eJ/OnbsqLCwMA0ZMkRHjx5V9+7dVbJkyTRjYmJiNGfOHM2bN09NmjRR69atDaoWWdW/f3+tXLlSM2bM0BdffKEHH3xQzZs3V/PmzfXYY48ZXZ7TWDGgvfDCC/L19VXjxo315JNPqmnTpml2MphtzomJifL19VXx4sXl6+ub7hKpVhAdHa09e/YoJiZGklSyZEnVrFlTZcqUMbiy3GG15sffeXl5qUmTJmrSpIni4+O1du1arVixQlu3btV3332nkJAQ1a9fXx07dtRzzz1ndLmAS5G9783Tv/etNmeytzWQvc2N7E32TmG2OZO9yd5mR/b2HDTADdShQwdCSQZu3ryp1atXKzQ0VBERETp48KDRJTmdWebcqlUr1atXT/Xq1eOyWyZmt9s1Y8YMvfPOO/riiy80c+ZMlSlTRiVKlJCXl5cuXLigkydPyuFwqHXr1vrggw+MLhlZ0L9/f/Xv318///yzli9frlWrVmnmzJn68ssvVaZMGdWuXduU311WDGi+vr66ceOGjh07piJFisjPz09PPvmkChQoYHRpTrFx40YtX75cy5cv1+TJk2Wz2VS8eHE988wzeuaZZ0x9dO6vv/6qsWPHKiIiQg6HI82lFO12u2rXrq0RI0YoICDAwCpzzmpH3d+Nj4+P2rZtq7Zt2+rSpUtatWqVli9fru3bt2vHjh2EcFgO2TtjZsmhWWGWOZO9rYHsbW5kb7I32dt8yN7WQ/Z2bzaH2W8mAo+xd+9ehYSEaPXq1YqLi5PD4VCVKlW0fPlyo0tzGivOGeby448/aunSpYqMjNS5c+fkcDhUsmRJ1a5dW+3bt1eDBg2MLjFXBAYG6l//+peaNWuWuiw2NlZBQUH6+OOPVbNmzTTj165dqw8//NDjL+0j3T4Davv27Vq+fLnWrl2ra9euSZLKlSunjh07qkOHDipbtqzBVebc2bNnUwPar7/+mmFAa9GihaZNm5bmdeDJ4uPjtWHDBi1btkxbtmxRUlKS8uTJo4YNG+qZZ55RYGCgOnXqZKo5pzhy5EjqTqazZ8/KZrOl7pQYNmyYXnnlFaNLzDXr16/XoEGDZLPZ1Lx5czVo0EAlS5aUt7e3YmJiFBERodWrVysxMVFTpkxR8+bNjS4ZTnTq1CmtXLlSffr0MboUAAayYg614pxhLmRvsjfZ23ORvcneZG/rIXu7BxrgHuLs2bMKDQ1VWFhYmnsseLro6GiFhYUpNDRUJ06ckCR5e3urRYsWevHFF1WnTh2DK8x9Vpwz4OkCAwMzPPL6XpfHNEMI/6uEhARt2LBBK1as0ObNm3Xr1i3Z7XY1bNhQ//d//2d0ebnGSgEtxeXLl1OPUt2/f3+adb169VKfPn3k6+trTHFOtmvXLi1fvlzh4eGKjY2VzWZT+fLl9fzzzysoKEilS5c2usRsO336tNq2basHH3xQn3zyiSpUqJDhuD///FMDBw7Ub7/9pqVLl95xnLsbPnx4lv/GZrNp3LhxTqgGgKcie5uHFecMeDqy921kb7K3GZG9yd5kb7gaDXA3dvPmTa1Zs0ahoaHauXOnkpOT5e3trZ9//tno0nIkISFB69at05IlS7Rjx47US91UqlRJx48f15QpU9SqVSuDq8xdVpwzrCMhIUFHjhxRTExM6lHogYGBypcvn9Gl5Zrs/LCTzH1PnCtXrmj16tVavny59uzZo0OHDhldklOYOaDdSVRUlJYvX64VK1bot99+k81mk5+fn1q3bq2OHTumO+vCLG7duqUffvhBy5Yt06ZNm3Tz5k2P/931wQcfaOnSpVq9enWae8xl5PLly2rTpo3atWunYcOGuajC3BUYGJjlv7HZbB69wzQ7Z4jYbDatW7fOCdUAnovsbR5WnDOsg+x9Z2Rvz0f2Jnt78u8usve9kb1hBBrgbmjfvn0KDQ3VqlWrUi/NVbp0aXXu3FkvvPCCSpQoYXSJ2RIZGamQkBCtWrVKV65ckd1uV82aNdWiRQu1aNFCSUlJat68uaku92LFOcM6zp8/r8mTJys8PFxxcXFp1vn6+qply5YaPHiwSpYsaVCFcJXdu3eb/gwaMwa0zDhy5IiWLVumVatW6c8///T4wJJZ165dU3h4uFasWKHZs2cbXU62tW7dWk8++WSmdyROnDhRGzdu1Pfff+/kypwjKioqW3/nyfega9q0abplDodDZ8+eVfHixZU3b94M/27Dhg3OLg3wCGRv8+RQK84Z1kH2Rgqyt3mRvcnenoTsfRvZ2/15G10AbouOjtbSpUsVEhKiEydOyOFwyG63S5IGDRqkXr16pf63p3rhhRfk6+urxo0b68knn1TTpk3THBGV3Q9Od2bFOcMa9u/fr969eys2NlbVq1fP8L42YWFh2rBhg6ZPn65atWoZXTKy6Oeff9b+/fvlcDj00EMPZRiyr127pkmTJunbb7/VwYMHDajSdfLkyaNmzZqpWbNmaQKa2QUGBiowMFBDhgzRzp07LTFnSSpQoICaN2+uvXv3Gl1Kjpw9e1aVK1fO9PiKFStq4cKFTqzIuTw5TGdXRmH64sWLatSokT766CM1bNjQgKoA90b2NmcOteKcYQ1kb/Mje6dF9iZ7eyKyt/mRvT0TDXADpVyaKyQkRNu3b1dSUpLy5cunpk2b6plnnlFAQICCgoJUpUoVjw/gklLv4XLs2DEVKVJEfn5+evLJJ1WgQAGjS3MaK84Z5nfhwgX169dP+fPn1+eff67atWtnOO7QoUMaNGiQBg4cqKVLl6pYsWIurhTZcf36db399tvavHmzUi4SY7PZ1KhRI02fPj31iMZNmzZp1KhRio6O1n333WdkyS5nloCWVWXLlvX4ncenT5/WnDlztG/fPknSww8/rJ49e+r+++9PMy48PFxjxozR+fPnNXbsWCNKzRU+Pj66cuVKpsdfuXJF/v7+TqzIWAkJCfrtt9/k4+OjihUrGl2O09zt/piAVZG9zZ9DrThnmB/Z29zI3vdG9vZcZO+7I3ubA9nb/dEAN1Djxo115coVFSpUSM8++6yaNWumJ598Ur6+vpLMd4Ty9u3btWHDBi1btkxLlizR4sWLlSdPHjVs2FDPPPNMtu4d4e6sOGeY34IFCxQXF6dFixapQoUKdxz38MMPa86cOWrbtq3++9//asCAAS6sEtn12WefadOmTWrcuLGCgoLk5+enzZs365tvvtHEiRM1YsQITZgwQV999ZW8vLzUo0cPDRw40Oiyc4XVApokHThwQNOnT08z5379+qU568DhcOirr77Sp59+qvj4eKNKzbHDhw/r5Zdf1rVr1+Tj4yMfHx8dOnRIq1at0qJFi1S1alVdvXpVI0aMUHh4uLy8vNSrVy+jy86RRx55ROHh4erRo0emxq9Zs0YPPfSQk6tyrqtXr+rLL7/Uvn37NH/+/NTly5cv19ixY1N3Sjz44IMaN26catSoYVClAFyJ7G3+HGrFOcP8yN7mRvYme5O9yd6ejOwNT0AD3ECxsbHy8/NTy5YtVb9+fdWqVSs1gJuRj4+P2rRpozZt2ujy5ctatWqVli9frh9++EE//PCDpNtHzURGRqpRo0am+P/CinOG+a1bt07t2rW7awBPUa5cOQUFBSk8PJwQ7iE2bNigevXq6csvv0xd9tRTT6lYsWKaP3++ChcurDlz5igwMFDjx4/3+B/sKawY0LZv366ePXsqKSlJDz74oHx9fRUREaFXX31Vc+bMUd26dXX69Gn94x//UGRkpAoUKKDRo0cbXXa2pexE+Pjjj/Xss89Kun2/0Lfffltjx47VpEmTFBwcrD/++EOPPvqoxo4dq4CAAIOrzplOnTpp0KBBmjNnjl577bW7jp0xY4YiIyPTvPc9TVxcnLp06aLjx4+rdOnSSkxMlLe3tyIjIzV06FA5HA516dJFVapUUVhYmF577TWFhYWl29EGwHzI3ubPoVacM8yP7G1uZG+yN9mb7O2pyN7wGA4YJiIiwvHee+856tWr5wgMDHQ89NBDjhdeeMExa9Ysx4kTJxynT592BAQEONatW2d0qU51+vRpx/Tp0x3PPvusIyAgwBEYGOioVauW41//+pdj7969RpfnFFacM8yjRo0ajkWLFmV6/OLFix01a9Z0YkXITTVq1HB89dVX6Zb/9ttvjoCAAMdDDz3kGDNmjCMhIcGA6pynT58+jmrVqjlWrFiRuuzAgQOOZs2aOV5++WVHdHS0o2XLlo6AgABHp06dHEeOHDGw2tzx6quvOmrVqpXme+fPP/90dOjQwdG5c2fHb7/95mjUqJEjICDAMWDAAEdMTIyB1eZco0aNHGPGjEm3fM2aNY6HH37Y0a1bN8cjjzzi+PLLLx1JSUkGVOgcAwYMcAQGBjr+8Y9/OPbt25fmvZuUlOTYt29f6piRI0caWGnOffrpp45q1ao5vv/++zTLe/Xq5QgMDHSMHz8+dVl8fLyjRYsWjmHDhrm6TKe7ePGiIyAgwLFt2zajSwHcBtn7NivmUCvOGeZB9jY3sjfZm+xN9vZUZO/byN7ujzPADVSnTh3VqVNHI0eO1ObNm7V8+XJt2rRJBw4c0KRJk1ShQgXZbDZdv37d6FKdqly5curTp4/69OmjI0eOaNmyZVq1apW+++47LVmyRIcPHza6xFxnxTnDPPLkyaObN29menx8fLz8/PycWBFy040bN1S0aNF0y4sUKSJJeuaZZzRixAhXl+V0kZGR6tq1a+rRyZL02GOPaciQIRo8eLAGDx6sqKgovfPOO3r99ddNcX/Qw4cP68UXX1TNmjVTl5UqVUr/+Mc/1LNnT7311ltKTEzUlClT1Lp1awMrzR2xsbEZXv700UcfVVJSko4ePar58+eb7rJckyZN0vjx47Vo0SKtXLlSXl5eKly4sLy8vHT58mUlJCTIbrerR48eGjx4sNHl5kh4eLjat2+vVq1apS6Li4vT1q1bJUndunVLXZ4vXz61a9dO3377rcvrBOB6ZO/brJhDrThnmAfZ29zI3mRvsncN1xfnRGRvsjfcDw1wN+Dt7a1mzZqpWbNmiouLU3h4uJYvX66dO3fK4XBo6NChWrJkiZ5//nm1bNlS+fLlM7pkpwkMDFRgYKCGDBminTt3asWKFUaX5HRWnDM8W9WqVbV582YFBwdnavymTZtUuXJlJ1cFZ7PZbJKkDh06GFuIk1gxoF29elWVKlVKt7xKlSpyOBy6fPmyvv32W913330GVJf7EhMTM/wN5ePjI0nq1auXqbZvirx582rUqFEKDg5WWFiYIiMjde7cOTkcDlWsWFG1a9dW27ZtTXEpstOnT6cJ2pIUERGhxMREVahQId1ruUyZMrpw4YIrS8x1U6dOTbcsPj5eNptNS5cu1Z49e9Ktt9ls6tevnyvKA9wO2ft/rJhDrThneDaytzWRvcneno7sTfYme99G9jYeDXA3kz9/fgUFBSkoKEgXLlzQihUrtHz5cu3YsUM7duzQmDFjFBERYXSZLlG/fn3Vr1/f6DJcyopzhudp37693nvvPa1atUpt2rS569iwsDBt27ZNkydPdlF1cLaUwGI2VgxoSUlJ8vZO/1Mwb968kqQ+ffqYJoBnxiOPPGJ0CU714IMPevxR5vdit9uVnJycZtn27dslSY0aNUo3/uLFiypQoIBLanOWjEJ4irCwsAyXE8KB28je/2PFHGrFOcPzkL2tjextHmTvtMjeno/snRbZ233RAHdjxYoV0yuvvKJXXnlFJ06c0LJlyzz6COXMHrH6VzabTXPnznVCNa5hxTnD/Dp27KiwsDANGTJER48eVffu3VWyZMk0Y2JiYjRnzhzNmzdPTZo0McUlnKwk5YjzrK4zM7MHtIxkdIS6mVnhtR0dHa09e/YoJiZGklSyZEnVrFlTZcqUMbiy3FG5cmXt27dP3bt3lyQ5HA6tXbtWNptNTZs2TTd+/fr1Hv86nzdvntElAKZA9vb8HGrFOcP8yN7mR/ZOj+xtflZ4bZO90yJ7wyg0wD3E/fffrwEDBmjAgAFGl5Jtu3btynC5zWaTw+G44zpPZsU5w/zsdrtmzJihd955R1988YVmzpypMmXKqESJEvLy8tKFCxd08uRJORwOtW7dWh988IHRJSOLxo0bpylTpqRZ5nA4ZLPZ9M4776Q7Wttms2ndunWuLNHl+Gw2h+PHj6c7m+/q1auSpKNHj2Z4VH7dunVdUpsz/frrrxo7dqwiIiLkcDjS/Aax2+2qXbu2RowYoYCAAAOrzLkOHTrogw8+0KOPPqrHH39cixcv1pkzZ3TfffepcePGacbOmDFD+/fv9/j7KtarV8/oEgDTIXt7JivOGeZH9jY/snd6fDabA9mb7J2C7A0j0QA3UHBwsN588001bNgwdVliYqL27dunwMBAFSxYMM34ZcuWadiwYTp06JCrS80VR44cSbfs4sWLatSokebMmZPm/wezsOKcYQ0FCxbUF198oR9//FFLly5VZGSkfvnlFzkcDpUsWVIdOnRQ+/bt1aBBA6NLRRaVLVtWkjLcUZhypOrf191pp6KnsWJA2717t5KSktIsi4uLkyRt3bpV0dHR6f7Gk+9FN2PGDM2YMSPDdRMmTMhw+eHDh51ZktOtX79egwYNks1mU6tWrdSgQQOVLFlS3t7eiomJUUREhFavXq1OnTppypQpat68udElZ1vXrl21Z88ejR8/PrXhUahQIU2aNEl2u12S9N1332nmzJk6deqUateurRdffNHgqp0rISFBv/32m3x8fFSxYkWjywEMQ/Y2fw614pxhDWRv8yJ7k73J3mmRvT0H2Ts9srd7sjnM8s3pgQIDA/XRRx+pbdu2qcsuXbqkRo0aafbs2ekC2rJlyzR06FCP/zL4q0uXLqlhw4aWCqRWnDMAuLvAwMA7HmmecgR+Rjz5O/lOc/7rT8O/rk/5/8FT5/zZZ59l62yC/v37O6Ea1zh9+rTatm2rBx98UJ988okqVKiQ4bg///xTAwcO1G+//aalS5fecZyn2Ldvn/bt26cCBQqoefPmKlq0aOq6qVOnaunSpWrbtq169+6d4f0HPc3Vq1f15Zdfat++fZo/f37q8uXLl2vs2LG6cuWKpNv3ohs3bpzp7qkIZAbZ25o51IpzBgB3R/b+H7J3WmRvz0P2vo3s7b44A9wNcUwCAE8RHx8vHx+fdMt/++03+fv7p7s/GdxfWFiY6tSpo/Llyxtdikv169fPcpdaGz9+vNEluJQnX8o2u+bOnas8efJo1qxZaYLo35UuXVozZ85UmzZt9PXXX2vYsGEurDL31axZUzVr1sxwXf/+/e+4Y+XWrVvav39/hmeDuqu4uDh16dJFx48fV+nSpZWYmChvb29FRkZq6NChcjgc6tKli6pUqaKwsDC99tprCgsL0/3332906YBbIHsD8BRkb/Mhe1sH2dv8yN7pkb3J3u6ABjgAIMsSEhI0YcIELV++XD/88EO6ID558mT98MMP6tixo4YOHSo/Pz+DKkVWDR8+XBMnTrRcCLdiQAsKCjK6BJfK6PK3ZrdlyxYFBQXdNYCnKFy4sDp06KCNGzd6fAjPrtjYWAUHB2d4Nqi7mj17tk6ePKn//Oc/atWqVeryadOmyeFw6JVXXkndnp06dVK7du00Y8YMy+2EAwDAU5G9zYvsbR1kb/Mje2cN2RuuYje6AACAZ0lISFCPHj309ddfq2zZsrp06VK6MU8//bQCAgL0zTff6I033lBiYqIBlSI7rHomVHBwsLZv3250GS7VrFkzrV+/3ugyXGbXrl06f/680WW41NmzZ1W5cuVMj69YsaL+/PNPJ1bk/jztMzA8PFzt27dPE8Dj4uK0detWSVK3bt1Sl+fLl0/t2rWz3GcdAACeiuxtbp72uzO3kL3Nj+x9b2Rvz/sMJHt7JhrgAIAs+eqrrxQREaERI0YoLCxMZcqUSTemc+fOWrJkifr376+9e/dqwYIFBlQKZJ4VA1pUVJSuX79udBlwIh8fn9R7UGXGlStX5O/v78SKkNtOnz6tRx55JM2yiIgIJSYmqnz58rrvvvvSrCtTpowuXLjgyhIBAEA2kb1hRmRvmBHZ2/zI3p6JS6DDZcLCwtIti4uLkyRt3bpV0dHRGf5dhw4dnFiVc1lxzjC/5cuXq1mzZnrppZfuObZ///7atWuXli5dqldffdX5xSFXXL58WWfOnMnS35QtW9ZJ1QDIrkceeUTh4eHq0aNHpsavWbNGDz30kJOrQm6y2+1KTk5OsyzlKPNGjRqlG3/x4kUVKFDAJbUBMI4Vc6gV5wzzI3ubH9kbMAeyt/mRvT0TDXCD/f2HTmxsrKTbb5C//wDK6FJHnmTYsGGy2WxplqVc6mLWrFmy2Wyp/53y7zabzaMDqRXnDPM7ceKEunbtmunxTz31lD755BMnVoTcNm7cOI0bNy7T4202mw4dOuTEioDcsXbtWp04cSLT4202m/r16+fEipyrU6dOGjRokObMmaPXXnvtrmNnzJihyMhIffnlly6qDrmhcuXK2rdvn7p37y7p9u/MtWvXymazqWnTpunGr1+/XpUqVXJ1mYBbIHubO4dacc4wP7K3+ZG9YVZk7zsje3smsrdnogFusDv90HnnnXcMqMa5xo8fb3QJLmfFOcP8/Pz8lJSUlOnx+fLlk4+PjxMrQm6rXbu2KlSoYHQZLme1gCZJixcv1rZt2zI93mazZWkHjbtZu3atwsPDMz3e07dxq1at1KJFC02cOFEHDx7USy+9pGrVqilPnjySpOTkZEVGRmr27Nlau3atOnfurCeeeMLgqpEVHTp00AcffKBHH31Ujz/+uBYvXqwzZ87ovvvuU+PGjdOMnTFjhvbv368RI0YYVC1gLLK3uVlxzjA/srf5kb0zx9NzmUT2vhdP38Zkb/Mje3smGuAG6tChQ7ojlM0sKCjonmNiY2Pl4+OjfPnyuaAi57PinGF+FStW1N69exUcHJyp8Xv27FG5cuWcXBVyU5cuXdS2bVujy3A5qwU06fb9iiIiIjI93tNDeO/evTO8NJWZTZo0SePHj9eiRYu0cuVKeXl5qXDhwvLy8tLly5eVkJAgu92uHj16aPDgwUaXiyzq2rWr9uzZo/Hjx6ee0VioUCFNmjRJdrtdkvTdd99p5syZOnXqlGrXrq0XX3zR4KoB1yN7p2e2HGrFOcP8yN7mR/bOHLK35yF7k73NhuztmWiAG+jDDz80ugSXu3XrlkJCQrR///40R2jv2rVL77//vn7//XfZbDY1atRIo0aNMsVRkFacM8wtKChIo0aN0o4dO9SgQYO7jt25c6fCw8M1YMAAF1UHZJ8VA9q7776rZs2aGV2Gy1SqVEn16tUzugyXyps3r0aNGqXg4GCFhYUpMjJS586dk8PhUMWKFVW7dm21bdtW999/v9GlIhtsNpsmTZqk7t27a9++fSpQoICaN2+uokWLpo75888/5XA49Oabb6p3796p4RywErK3NXKoFecMcyN7w6zI3uZH9iZ7mw3Z2zPRADfQG2+8oQ4dOqh58+aWuETRrVu39PrrrysiIkJ58uTRmDFj5O3trd9//11vvPGGbt26pcaNG6ty5cpas2aNunTpomXLlql48eJGl55tVpwzzK9Dhw5asmSJ+vTpo969e6tz587pXrMxMTH69ttvNWvWLJUvX17dunUzqFog86wY0IoUKcJZIhbx4IMPcpS5idWsWVM1a9bMcF3//v3Vv3//DNfdunVL+/fvV2BgoAoWLOjMEgFDkb3Nn0OtOGeYH9kbZkX2hpmRvc2N7O1ZOATBQLt27dI///lPNWrUSMOGDdO2bdvkcDiMLstpFixYoN27d+uf//ynIiIi5O19+/iLzz77TAkJCWrbtq1mzpypIUOGaMmSJfLy8tKMGTMMrjpnrDhnmF+ePHk0bdo0Va9eXZ988okaN26sZs2aqWvXrurcubOaNm2qJk2a6LPPPlNAQIDmzJnDF7sHKVu2rPz8/IwuAwDgArGxsQoODtbPP/9sdCmAU5G9zZ9DrThnmB/Z29zI3gBgHWRvY3AGuIG2b9+udevW6fvvv9fKlSu1dOlSFS9eXG3btlW7du0UGBhodIm5asWKFWrZsqV69OiRuiwhIUEbNmyQzWZLs7xw4cJ6/vnntXLlSo0YMcKIcnOFFecMayhWrJjmzp2r8PBwrVy5UocOHdLRo0dlt9tVvHhxdejQQc8884yaNm1qdKnIog0bNtx1fXJysv78808VL15cefPmdVFVQM71799fAQEBRpfhUpm9X+Rf2Ww2zZ071wnVuIdz586pcOHCypMnT7p1hQoV0rx58/TQQw8ZUJlxzNwEBFKQvc2fQ604Z1gD2du8yN4wK7J35pC9yd5wPhrgBsqfP7/at2+v9u3b6+rVq1qzZo1WrVqluXPnas6cOapcubLat2///9i77/AoqreN4/emkQYk9F6kJPTemxTpUbrSQRAFpQkq8AMBQREFFQFBULoCUkIHA9JFepMqJVSBUEIJJKTsvn/wZmVJAklIstnN93NdXMrMmZ1ntrH3OTNn5Ofnp+zZs1u73Jd24cIFtWzZ0mLZgQMHFBYWpmzZssX4hzFfvnwKCgpKyRKTXFo8ZqQtDRs2VMOGDa1dBlLQnTt3VL9+fc2aNUvVqlWzdjlJJi0GtHHjxsU5bZM9imsaqmiPHj3SrFmz1KJFC+XJkyeFqkpee/fujXW5wWCIM3gZDIbkLClFzJ49W7/99ptWrVoVI2x/8cUX2rVrl3r06KGePXta3JPL2dk5zU3FCKQVZG/7z6Fp8ZiRtpC90x6yt/0ge1sie/+3ztaRvZHaMQCeSqRPn15t2rRRmzZtdOfOHW3YsEHr16/XN998o2+++UaVKlVSixYt1LBhQ3l4eFi73EQxGo1ydHS0WLZ7925JUvXq1WO0f/Dggdzc3FKktuSSFo8ZkJ5M6+Lq6qp06dJZuxQkA3s8YzEtBrRnO4mfFRISos8//1w9e/ZUoUKFUqgq63n06JGmTp2qChUq2M1rfOrUqRjL7ty5o+rVq2v27Nl21ZEmPfluGjx4sNauXavMmTPr+vXryps3r0WbQoUK6eDBg/r222917Ngxff/991aqFoC1kL3tM4emxWMGJLK3vSN720cuI3tbInvbPrI3bAX3AE+FMmXKpA4dOmj+/PnaunWr/ve//8nBwUGffvqpatasae3yEi1fvnw6efKkxbKNGzfKYDDo1VdfjdF+586dypcvXwpVlzzS4jEjbYiIiNDixYs1dOhQi+V79+5V06ZNVbVqVZUrV049e/bUpUuXrFQlkHSiA9rly5etXUqKCQsL04oVK9LU1VH22MH0LHs4yzwuixcv1tq1a9WtWzdt3bo1RgCXnnS4bdy4Ua1atdLGjRu1fPlyK1QKILUgez9hDzk0LR4z0gayN9IasnfaQPa2bWRv2AoGwFM5Z2dnubq6ytPTU05OTgoPD7d2SYnWrFkzrVy5Ups2bVJoaKjmzJmj8+fPK3PmzDHuVbRq1Sr9+eefql+/vpWqTRpp8Zhh/yIiIvT2229r5MiRWrNmjSIjIyVJgYGB6tmzpwIDA1WrVi1169ZNgYGBeuutt3Tr1i0rVw28vLQQ0J6VFo8Ztmvp0qWqXLmyhgwZEut9xqK5uLho7NixKlasmH777bcUrBBAakb2tu0cmhaPGfaP7I20Ki3m0LR4zLBdZG/YCqZAT4Xu3LmjjRs3asOGDdq3b58iIyNVvHhx9e/fX82aNbN2eYnWrVs37dixQx988IH5/hfOzs76/PPP5eLiIunJGdoLFizQ3r17VbBgQXXr1s26Rb+ktHjMsH8LFizQ/v379dFHH6ljx45ycnryT8nkyZMVHh6u119/XV999ZUkqVevXvLz89P06dM1fPhwa5aNJOLs7KxKlSopY8aM1i4FACycO3dO/fv3j1dbg8Ggxo0ba9q0aclcFYDUjOxtPzk0LR4z7B/ZO20jewNIrcjesBUMgKcSt27dUkBAgDZs2KADBw4oKipKuXPnVo8ePfT666/bxf0/XFxcNGfOHK1bt06HDx+Wp6en/Pz8VLhwYXObY8eO6eDBg3r99dc1ZMgQubq6WrHil5cWjxn2b82aNWrUqJF69OhhXhYeHq7NmzfLYDBYLPfy8lKrVq20du1aQriNePDggdKnTx/n+owZM2r+/PkWy/bs2aMqVaokd2lAskqfPr3GjRunIkWKWLsUJJKTk5N5kCM+MmTIEON+sQDsH9n7CXvLoWnxmGH/yN72jeyNtIrsbfvI3rAVDIBbUVBQkAICAvT777/r4MGDioqKUsaMGdWmTRv5+fmpYsWK1i4xyTk6OsrPz09+fn6xrn/vvffUv39/OTjYz+z8afGYYd8uXLigli1bWiw7cOCAwsLClC1bNvn4+Fisy5cvX5q6j5Gt69Kli2bPni0vL68Xtn38+LG+/vpr/frrrzpx4kTyF2dFaTGgZcyYUfPmzVOxYsWsXUqKSJcunWrWrMkVFjYsf/78OnbsWLzbHzt2TDlz5kzGigCkFmTvmOwxh6bFY4Z9I3vbN7J37Mje9o/sbfvI3rAVDIBbUZ06dSQ9OVO5QYMGy0cf0gABAABJREFU8vPzU506dZ573wR75+bmZu0SUlxaPGbYNqPRGOOsvd27d0uSqlevHqP9gwcPeJ/bkJMnT6pTp06aM2eOsmTJEme7I0eO6JNPPtGFCxee285epEuXzqLzKSoqSjNmzFDv3r2tWFXycnZ2VuXKlc1/f/DggcaPH6+xY8dasaqXN3v2bP32229atWpVjN9cX3zxhXbt2qUePXqoZ8+eNt9BvmLFihjLHj58KEn6888/dePGjVi3a9GiRTJWlXyaN2+uiRMnqnv37i/sMDtz5oxWr16tLl26pFB1AKyJ7B1TWvx9nhaPGbaN7G3fyN6xI3uTvW0R2TtuZG9Yk8FkMpmsXURa1blzZ73xxhtq3LixPD09rV0OAMTLG2+8oTJlyuizzz4zL2vatKkCAwP17bffqnHjxhbte/bsqXv37mnJkiUpXSoS4ZdfftHnn3+uvHnzas6cOTHO0IyIiND333+vWbNmKSoqSm+88YaGDRtmF2fuPnjwQEuWLNHhw4dlMplUvHhxdezYURkyZLBo9/fff2v48OH6559/dPLkSStVmzSuXLmi2bNn69ChQ5Kk4sWL65133lH+/Pkt2gUEBGjMmDG6deuWzR6zyWTS4MGDtXbtWmXOnFmLFi1S3rx5LdpMmTJFS5YsUVBQkF577TV9//33Vqo2afj6+spgMFgse/qnf2zrDAaDzb7Gjx49UqtWrXT37l0NGzZMzZo1i9FpHBkZqTVr1mjChAmSJH9/f2XNmtUa5aaYmzdvysvLK9aBvoiICB06dEjFihV77hScgK0jewOwRWRv+0b2JnuTvcnetvoak71jR/ZOfRgABwAkyIwZMzR16lRNnDhRNWrU0OLFi/Xll18qS5Ys2rx5s8U9YFatWqVPPvlE/fv313vvvWfFqpEQa9as0ZAhQ5QtWzbNmTNH+fLlk/TkDPVPPvlE//zzj3LlyqXRo0erVq1aVq42aVy+fFldunTR9evXLUJKlixZtGTJEuXMmVORkZGaOHGi5s2bp6ioKDVr1kwTJ060YtUv5+TJk+rcubNCQkLk6uoqV1dX3b17V+7u7lq0aJGKFi2qBw8eaPjw4QoICJCjo6N69OihgQMHWrv0RFm0aJFGjRqlbt26adCgQXFe9RceHq7Ro0dr+fLl+vzzz9WqVasUrjTp+Pv7J2q7Z6fatCWBgYF6//33FRgYKHd3d5UoUUJZs2ZVVFSUbt++rWPHjiksLEy5cuXS1KlT5evra+2Sk8Tzrq4YOHCgXV1dAQBAWkH2tn9kb7I32ZvsbavI3mRvW8AAuBXFNjVGfNjq1BgA7EN4eLh69Oihffv2yWAwyGQyydnZWVOmTDFPL7lx40YtWLBAe/fuVcGCBbV8+XK5urpauXIkxLZt2zRgwAB5enpq5syZ+uOPPzR9+nRFRkaqffv2GjRokDw8PKxdZpIZNGiQ1q1bp4EDB6p169Zyc3PTtm3b9Nlnn6ls2bL6+uuv1atXLx08eFC5cuXSyJEjze93W9W7d2/t2LFD48ePV7NmzSRJR48e1YcffqhcuXJpwoQJ6tKliy5cuKBSpUpp7NixMe4zaEvatGkjd3d3zZs374VtTSaTWrduLRcXFy1atCgFqkNSCg8P1y+//KK1a9fq1KlTioyMlPRkasGyZcuqYcOGevPNNy06jW1VWry6AkgMsjcAW0T2ThvI3mRvsjfZ21aRvcneqR0D4FYUPTVG9JQXL2LrU2MAsB9RUVFat26dDh8+LE9PT/n5+alw4cLm9d9++61mzZqlpk2basiQIfL29rZitUisAwcOqHfv3goJCZHJZFL+/Pk1duxYVaxY0dqlJbnatWurRo0aGjdunMVyf39/jRw5UrVr19amTZvUvn17ffTRR3J3d7dSpUmnRo0aatKkiYYPH26xPCAgQAMHDlTZsmV19OhR9e/fX2+//bbNn7larlw59e/fX926dYtX+xkzZmjatGnmKepsXVhYWKydoWfPnlWGDBmULVs2K1SVMu7cuSNHR0e7mC7yWWnx6gogMcjeAGwV2TttIHuTvcneZG97QPYme6c2TtYuIC179h96ALAVjo6O8vPzk5+fX6zr33vvPfXv39/mf7SndRUqVNC8efPUs2dP3blzR5999pldBnBJCg4OVrly5WIsr1SpksLDw7Vt2zZNmjRJjRo1skJ1yePevXuxTkFVqlQpRUVF6fTp05o/f77Kli2b8sUlAycnpwSddZwhQ4YY97CyReHh4Ro/frxWr16t7du3xwji33zzjbZv367WrVvrk08+sYsOpmdlypTJ2iUkm6VLl6py5coaMmTIc9u5uLho7NixOnnypH777TdCONIcsjcAW0X2ThvI3mRvsjfZ2x6QvcneqQ0D4FZky/d4AJB2denSRb1791a1atXMyyIjI3Xo0CH5+voqffr0cnNzM6+LvhcZV9DYJl9fXy1cuFDdu3dX7969NXXqVFWtWtXaZSW5iIgIi/dttOip5rp3725XAVx68rlNly5djOXRIa1Xr152E8AlKX/+/Dp27Fi82x87dkw5c+ZMxoqS39PTZvr6+io4ODjGMdWtW1c3btzQ4sWLdebMGc2bN09OTrYZEaZMmZKo7T744IMkriTlnDt3Tv37949XW4PBoMaNG2vatGnJXBWQ+pC9AdgisnfaQvYme9sLsjfZOy5kb6Q02/yEpVFRUVGaMWOGevfube1SAKRhe/fuVdu2bS2WPXjwQF26dNGsWbMswjlsz9ChQ2Ndnj9/fl25ckXvvvuumjRpYjF9qMFg0BdffJFSJVpF5cqVrV1CiitZsqS1S0hSzZs318SJE9W9e3cVKVLkuW3PnDmj1atXq0uXLilUXfKYM2eO9u3bp+HDh6tTp06xtmnbtq3atm2rKVOmaMqUKVqwYEG8p6pLbeIbwp+d/tiWQ3havboCSG5kbwCpAdnbvpG9Y0f2tn1kb7J3NLI32dvaGAC3sgcPHmjJkiU6fPiwTCaTihcvro4dOypDhgwW7f7++28NHz5c//zzDyEcQKpkMpmsXQKSgL+//3PXP378WCtWrLBYlhZCeFr80Rqfe6Taknbt2mnRokXq3Lmzhg0bpmbNmsV4XSMjI7VmzRpNmDBB6dOnt/kQvnr1atWvXz/OAP60Dz74QHv37tXKlSttNoT/8ccfL2zz4MEDfffdd9q6daucnJxs/jVOi1dXAIlF9gZgL8je9oHsHTuyt+0jez8f2ds2kb1tEwPgVnT58mV16dJF169fN/943bhxo3755RctWbJEOXPmVGRkpCZOnKh58+YpKipKzZo1s3LVAAB7Fp8fsfbq7t27+vfffy2W3bt3T5J0586dGOskKVeuXClSW3I5f/689u3bZ7HswYMHkqTTp0/HOh1XpUqVUqS2pObu7q5p06bp/fff1yeffKLRo0erRIkSypo1q6KionT79m0dO3ZMYWFhypUrl6ZOnaqsWbNau+yXcvHiRb311lvxbv/qq69q0qRJyVhR8sqdO/dz169bt05ffvmlgoKCVL58eY0aNUpFixZNoeqSR1q8ugJIDLI3ACC1IXuTvcneZG9bRfYme9sKBsCt6LvvvtP169c1cOBAtW7dWm5ubtq2bZs+++wzffbZZ/r666/Vq1cvHTx4ULly5dLIkSNVp04da5cNALBjL/oRa8+++OKLOM+mHzx4cIxlBoNBJ06cSO6yktX06dM1ffr0WNeNHz8+1uW2fE/BggULasWKFfrll1+0du1aHTx4UJGRkZIkZ2dnlS1bVg0bNtSbb76ZoKmtUit3d3dFRUXFu326dOnM96GzJ5cuXdLo0aO1a9cuZcyYUWPHjlWbNm2sXVaSSItXVwCJQfYGAKQ2ZG+ydzSyN9nbXpC9yd6pDQPgVrRv3z61aNFCvXr1Mi9r0qSJwsLCNHLkSA0ZMkQHDx5U+/bt9dFHH8nd3d2K1QIAENP06dMVEBCg5cuXW7uUl9KyZUtrl5DibPneSy/DxcVF3bt3V/fu3SU9ucLA0dFRGTNmtHJlSe+VV17RwYMH4x26Dhw4YFcdceHh4ZoxY4Zmzpyp8PBwtWzZUh999JG8vb2tXVqSSYtXVwCJQfYGANg6srftInuTvZ9F9rY9ZG/bxAC4FQUHB6tcuXIxlleqVEnh4eHatm2bJk2apEaNGlmhOgAAXuzatWs2fVZytHHjxlm7hBSXVkP4szJlymTtEpJNy5YtNXLkSO3evVtVq1Z9bts9e/YoICBAffv2TaHqkteuXbs0evRoXbx4UUWKFNHIkSNVsWJFa5eVLNLa1RVAYpC9AQC2juxtu8jeT5C9nyB72y6yt+1hANyKIiIi5ObmFmO5h4eHJKl79+4EcACp0rP3a3revZqCg4NTtDYAiM2UKVMStZ0td1a0aNFCy5Yt03vvvad3331Xbdu2VZYsWSzaBAUFacmSJfrpp5+UJ08edejQwUrVJo1bt25p3LhxWrdunVxdXTVo0CB179491nvq2ZO0dHUFkBhkbwC2iuwNwNaQvcne9ozsbVsMJpPJZO0i0ipfX199/fXX8vPzs1geHBysatWq6aefflLNmjWtVB0AxM7X11cGgyHGcpPJFOvyaPZwpjJiGjlypH777Tebf33TYkAbOnRogrcxGAxx3qsttfP19Y1Xu2e/x2z9vX379m19+OGH2rNnjwwGg3LlymUxRde1a9dkMplUtmxZffvtt8qZM6e1S060BQsWaNKkSQoJCVG9evU0fPhwmz4eAEmH7A3AFpG98TSyN9nbVpC9yd5AamHfp2PYOEdHR2uXAAAxpMX7NcH+xTeEPxvQbDmE+/v7x7vt08dtqyH8jz/+eGGbBw8e6LvvvtPWrVvl5OQU7/t3pWaZM2fW3LlzFRAQoLVr1+rEiRM6ffq0HBwclCVLFrVo0UKvvfaa6tWrZ+1SX9rYsWPN/79582Zt3rz5hdsYDAadOHEiOctKVmmxAxFIDmRvAKkR2Rv2iOz9fGRv20X2fj6yN6yBAXAre3YqI+n50xlJUq5cuVKkNgCITVq8XxPsX1oMaKdOnXphm6tXr2rMmDHaunWr0qdPrwEDBiR/Yckkd+7cz12/bt06ffnllwoKClL58uU1atQoFS1aNIWqS34NGzZUw4YNYyy/d++eXF1drVBR0kuLncRpsQMRSCyyNwBbQ/aGPSJ7x47sTfa2JWTvuJG9UxemQLeiuKYykuKezsjWz5QBAKRuCT2jccuWLTpx4oTNT1X1IvYe0J4VFRWlWbNm6YcfflBYWJiaNm2qoUOHxriHlT24dOmSRo8erV27diljxowaPHiw2rRpY+2ykkxERISWL1+uw4cPW3Si7t27V6NGjVJgYKAMBoOqV6+uTz/9VPny5bNitS9n6NCheuutt1SmTBlrl5Jirl69+sI2sXUgfvzxxylQHZB6kL0BAKkN2Tt2ZG+yt60ie9s3srdtYgDcihJz/w+JM0ABAMknvvdqeprBYLDbEG7vAS02+/fv1+jRo3XmzBkVKFBAI0eOVLVq1axdVpILDw/XjBkzNHPmTIWHh6tly5b66KOP5O3tbe3SkkxERITefvtt7du3T87Ozjp06JCcnJwUGBioN954Q+Hh4apdu7YKFy6s33//XaGhoVq1apXNdrbEdY/ftCytdSACcSF7AwBSG7K3JbI32duWkb1B9k6dmALdigjTAIDUZt68edYuIVVICwHtWcHBwfrqq6+0YsUKubi4qG/fvnrnnXfk4uJi7dKS3K5duzR69GhdvHhRRYoU0ciRI1WxYkVrl5XkFixYoP379+ujjz5Sx44d5eT05Kf/5MmTFR4ertdff11fffWVJKlXr17y8/PT9OnTNXz4cGuWjSTwbAfi2LFj7b4DEXgesjcAILUhez9B9iZ72wOyd9pF9k7dGABPBUJDQ7Vs2TLt2LFDp06d0t27d2UwGJQpUyb5+vqqfv368vPzs8t/BAEAqUvlypUTvM3+/fuToRLrSSsB7WlLlizRhAkTdO/ePdWoUUMjR4606em44nLr1i2NGzdO69atk6urqwYNGqTu3bubw6m9WbNmjRo1aqQePXqYl4WHh2vz5s0yGAwWy728vNSqVSutXbuWEG7D0mIHIpAQZG8AQGpB9iZ7k73tB9k77SF72wb7/MaxIQcOHFD//v1169Ytubi4KF++fMqdO7ciIyN19+5dbdmyRZs3b9aUKVM0ceJElS9f3tolAwCga9euyd/fXytWrNDly5ftYhq2tBbQJOn06dMaNWqUDh8+rCxZsuibb75R06ZNrV1WsliwYIEmTZqkkJAQ1atXT8OHD1fOnDmtXVayunDhglq2bGmx7MCBAwoLC1O2bNnk4+NjsS5fvnwKCgpKyRKT3P79+xUVFZWgbVq0aJE8xaSwtNiBCCQE2RsAYIvI3vaB7E32fhrZ27aRvW2H/f6rYgPOnTunHj16yNPTUxMmTFDDhg1jnGkeEhKiDRs26Pvvv1fPnj3l7++v/PnzW6liAEBa9vjxYwUEBGj58uXas2ePTCaTDAaDateube3SXlpaDGjjx4/X/PnzFRUVpbp162rAgAHy9PTUv//++9ztcuXKlUIVJq2xY8ea/3/z5s3avHnzC7cxGAw6ceJEcpaVrIxGoxwdHS2W7d69W5JUvXr1GO0fPHggNze3FKktufz222/67bff4tU2+jvM1kN4WuxABBKK7A0AsCVkb/tC9iZ7P4vsbZvI3raHV8aKfvjhB7m5uWnZsmXKnj17rG08PT3Vpk0b1a5dW2+88YZ++uknjRkzJoUrBQCkZYcPH9by5cu1fv16hYSESJIyZcqk1q1b680331Tu3LmtXOHLS4sBbfbs2eb/37Jli7Zs2RKv7Wz1ioNnz8ZOC/Llyxfj9dq4caMMBoNeffXVGO137txp89PvtWvXTmXLlrV2GSkmLXYgAolB9gYA2AKyd+zI3raF7P0E2du+kL1tEwPgVrRv3z61atUqzgD+tGzZsqlFixbauXNnClQGAEjrgoKCtGLFCvn7++vChQsymUxyc3NT9erVtWvXLn322WeqX7++tctMMi1atJDBYLB2GSnqgw8+SPA2JpMpGSpJOW+99ZbKlClj7TJSTLNmzTR16lTVrl1bNWrU0OLFi3X+/HllyZJF9erVs2i7atUq/fnnn+rfv7+Vqk0aFStWlJ+fn7XLSDFpsQMRSAyyNwAgtSJ72z+yt/0je9s/srdtYgDcioKDgxM0pdorr7yiJUuWJGNFAIC0bv369Vq+fLl27dqlqKgoZciQQX5+fmrYsKFq1aqlmzdvqkGDBtYuM8l9+eWXkqSIiAidPXtWkZGRKly4sM1PSfU8uXLlUqtWreLd/urVqxo2bFgyVpS8/P39Vb169TQVwrt166YdO3bogw8+kMFgkMlkkrOzsz7//HPz1L8bN27UggULtHfvXhUsWFDdunWzbtFIkLR4dQWQGGRvAEBqQ/Yme8eF7G17yN72j+xtmxgAt6KIiIgE/eOeLl06PXz4MBkrAgCkdQMHDpS7u7s6dOig+vXrq1KlShb3MbLnM7V//vlnTZs2zfxvrYuLizp06KBBgwbZ5f18hg8frtDQUHXs2PGFbZcsWaLx48fzO8TGuLi4aM6cOVq3bp0OHz4sT09P+fn5qXDhwuY2x44d08GDB/X6669ryJAhcnV1tWLFSIy0dnUFkBhkbwBAakP2JnvHhuxtm8jeaQPZ2/bY378oAAAg0fLkyaMrV65o+fLlCgwM1N9//60GDRqoYMGC1i4tWS1btkxff/21cufOrRYtWsjBwUF79uzRnDlzFBUVZdNnX8elQIECGjt2rEJDQ9WzZ89Y29y8eVPDhw/X9u3b5ezsbPNTdKVFjo6O8vPzi3Nqsvfee0/9+/eXg4NDCleW9Fq2bGnz91FLqLR4dQUAAIA9IHuTvZ9G9rZ9ZG/7Rva2TQyAW9ndu3f177//xqttcHBwMlcDAEjrNm3apCNHjmjVqlXasGGDdu7cqW+++UavvPKKGjZsqBIlSli7xGSxePFilS1bVnPnzlW6dOkkPbnn1sCBA7V48WINHjzYPG2Vvfj111/Vs2dPTZw4UaGhoerbt6/F+jVr1mjMmDG6d++eypUrp7Fjx6pQoUJWqjZp7N+/X1FRUQnapkWLFslTTCphT1MNjhs3ztolAEjFyN4AgNSE7E32jkb2foLsbTvI3rAVBpPJZLJ2EWmVr69voqazOXnyZDJUAwCApaioKO3cuVOrV6/WH3/8odDQUPO/W61bt1bv3r2VO3duK1eZNCpUqKAPP/wwxpRkhw8fVvv27eXv7y9fX18rVZd8Hj16pD59+mjPnj3q1q2bPvnkEwUHB2vkyJHauHGjXF1dNXDgQHXu3Nnmp+BL6O8uk8kkg8HA7y6kar6+vvr666/jvMoAwBNkbwBAakb2JnuTvcneSN3I3raJK8CtqGXLltYuAQCAODk6OqpOnTqqU6eOwsLCtHHjRq1Zs0Z//vmnli5dquXLl6tKlSpq3bq1mjdvbu1yX0poaKjSp08fY3mePHlkMpl0//59K1SV/Nzd3TVjxgx9+OGHmjNnjq5cuaKDBw/q9u3bqlGjhj777DO76WiRpHbt2qls2bLWLgNIUlxdAbwY2RsAkJqRvcneZG8g9SN72x6uAAcAAGa9evVS1apVVblyZZUoUSLWs3aDg4O1bt06rV69WocPH7aLM3XjOpMzODhY1apV0+zZs1WtWjUrVZf8jEajhg8fruXLl8vBwUGfffaZ2rRpY+2ykhRn68IecXUFAACAbSJ7k73J3oDtIHvbJq4ABwAAZrt379b27dtlMBjk6empihUrqkqVKqpatap5GjJvb2917NhRHTt21OXLl7V27VorV42X5eDgoC+++EJeXl6aNWuWdu3apRYtWsjJiZ+KQGrH1RUAAAC2h+ydNpG9AdtF9rY9fLMCAACzgwcP6sSJEzp48KAOHTqkw4cPa8uWLTIYDMqQIYMqVaqkKlWqqEqVKipatKjy5s2r9957z9plJ4m7d+/q33//tVh27949SdKdO3dirJOkXLlypUhtySG24+nUqZMePXqkxYsX6+HDhxoxYoQcHBws2tjyMQP2qGLFilxdAQAAYGPI3mRvsjdgW8jetocp0AEAwHNdu3bNIpSfOnVKUVFR8vLyUuXKlVWlShV16NDB2mW+lOdNZRQ9bdGzDAaDTpw4kdylJZsXHbOkGOtt+ZiHDh2qt956S2XKlLF2KUCSYXpBAAAA+0H2JntHs+VjJnvDHpG9bRNXgAMAgOfKmTOnmjVrpmbNmkmSHjx4oFWrVmn58uX6/fffFRAQYPMhvGXLltYuIcW1aNEiQfcvsnXjxo2zdgkAAAAAECeyt30iewOAdTAADgAAnissLEz79u3T3r17deDAAR07dkwRERFycXExT8lm69JiQPvyyy+tXQKAl9SyZUvly5fP2mUAAAAgCZC97RPZG7B9ZG/bxBToAADAQmRkpA4fPqzdu3dr9+7dOnLkiCIiIuTs7KzSpUubg3e5cuXk4uJi7XIBAAAAALA5ZG8AAJIPA+AAAMDsnXfe0f79+xUWFiYHBweVKFFCVatWVZUqVVShQgW5urpau0QAAAAAAGwa2RsAgOTFADgAADDz9fWVs7OzmjdvrnfffVcFChSwdkkAAAAAANgVsjcAAMmLAXAAAGA2YsQI7dmzR5cuXZLBYNArr7yiatWqqWrVqqpUqZIyZsxo7RIBAAAAALBpZG8AAJIXA+AAACCGf//9V7t27TLfi+zWrVtycHCQr6+vqlSpYg7l7u7u1i4VAAAAAACbRPYGACB5MAAOAABe6MyZM9q9e7f++usv7d+/X/fv35eTk5NKliypatWqqX///tYuEQAAAAAAm0b2BgAgaTAADgAAEiQ8PFwbNmzQr7/+qsOHD8tgMOjkyZPWLgsAAAAAALtB9gYAIPGcrF0AAABI3S5duqQjR47oyJEjOnr0qE6dOqWIiAh5eHiodu3aqlSpkrVLBAAAAADAppG9AQBIOlwBDgAAzO7du6ejR4+aA/fRo0d17949mUwmZcyYUeXLl1flypVVqVIlFS9eXA4ODtYuGQAAAAAAm0L2BgAgeTEADgAAzHx9fWUwGGQymeTt7a1KlSqZ//j4+MhgMFi7RAAAAAAAbBrZGwCA5MUU6AAAwKxx48aqXLmyKleurMKFC1u7HAAAAAAA7A7ZGwCA5MUV4AAAAAAAAAAAAAAAu8DNQwAAAAAAAAAAAAAAdoEBcAAAAAAAAAAAAACAXWAAHAAAAAAAAAAAAABgFxgABwAAAAAAAAAAAADYBSdrFwAAQFowefJkTZkyJUHb/PHHH8qTJ08yVZR49erV09WrVyVJ//vf/9SlS5fntu/Ro4d27twpSZo9e7aqV6+erHUFBAQof/78ybIPAAAAAEDqRfYmewMAIDEADgBAivDx8ZGfn5/Fstu3b2vXrl1yd3dX/fr1Y2zj7u6eUuUl2oYNG54bwu/cuaPdu3enYEUAAAAAgLSK7A0AACQGwAEASBENGzZUw4YNLZbt2bNHu3btkre3tyZMmGClyhIvQ4YMOnjwoG7cuKHs2bPH2iYgIECRkZFydnZWREREClcIAAAAAEhLyN5kbwAAJO4BDgAAEqlBgwYymUwKCAiIs83atWvl5eWlUqVKpWBlAAAAAADYB7I3AAAJxwA4AACp2NatW9WjRw9VrlxZpUqVUqNGjfT111/r7t27Fu2uXLkiHx8f1a5dO9bH6dy5s3x8fLRnzx7zsiFDhsjHx0d79+5V3759Vbp0aVWtWlXz58+PV22NGzeW9GQqttgEBQVp//79atSokZyc4p50ZuXKlerQoYPKly+v0qVLy8/PT9OmTVNoaGis7f/66y91795dlSpVUsWKFTVgwADzfdFiExUVpYULF6pt27YqV66cypUrpzfffFP+/v4ymUzxOlYAAAAAgP0ie8dE9gYA2DKmQAcAIJWaMGGCZs6cKUdHR1WoUEHe3t46fPiwfvrpJ61fv15z585V3rx5X3o/I0aM0O3bt1WrVi2dOXNGvr6+8dquQIECKlasmA4ePKigoCBly5bNYv2GDRtkNBrVrFkzTZkyJcb2RqNRH330kdasWSMXFxdVrlxZbm5u2rdvn7777jv9/vvvmj17try9vc3bLFmyRJ9++qkkqWLFisqQIYN27typ/fv3Kzw8PMY+IiIi1KdPH23fvl2enp4qV66cnJ2dtXfvXg0ZMkR79uzRl19+mZCnCwAAAABgR8jeZG8AgP1hABwAgFRo8+bNmjlzpry8vPTTTz+ZpzELDw/XZ599piVLlqh///5atmyZDAbDS+0rKChIq1atUt68eWU0GuXgEP8JYpo2baqTJ08qICBAnTp1sli3bt06ZcuWTZUqVYp12wULFmjNmjXKmzevZs2apXz58kmSQkJCNGjQIG3dulWffvqpJk+eLEm6du2axo4dKycnJ82YMUPVqlWTJN25c0c9evTQiRMnYuzjhx9+0Pbt21W5cmVNmjRJmTJlkiTdunVL77zzjvz9/VWhQgW1bds23scMAAAAALAPZG+yNwDAPjEFOgAAqdCcOXMkSR9//LHFPbxcXFw0atQo5c+fX8ePH9fu3btfel/169c3n82ekAAuSU2aNJEUcyq2f//9V4cPH1aTJk3ifMy5c+dKksaOHWsO4JLk6empCRMmKH369AoICNDFixclSf7+/goLC9Nbb71lDuCSlClTJn3xxRcxHj88PFzz58+Xs7OzJkyYYA7gkpQlSxZ99tlnkqSff/45QccMAAAAALAPZG+yNwDAPjEADgBAKhMZGamDBw/KYDCoUaNGMdY7OTmpYcOGkmRxX7HEKlq0aKK3zZs3r0qUKKEDBw4oKCjIvHzdunUymUxq3rx5rNtdu3ZNV65ckbe3t6pWrRpjffr06VWrVi1J0t69eyVJ+/btkyTVqVMnRvtixYopT548FsuOHz+uBw8e6JVXXlH27NljbFOqVCllzpxZgYGBunnzZjyPGAAAAABgD8jeZG8AgP1iCnQAAFKZu3fvKiIiQt7e3vL09Iy1TXTgTIrwmDFjxpfavmnTpjp+/Lg2btyojh07SnoSwvPmzavSpUvHuk10YM+dO3ecj/vsMUZvkyNHjjjbX7lyxfz3a9euSZJOnz4tHx+f5x7DtWvXlDVr1ue2AQAAAADYD7L3E2RvAIA9YgAcAIBUxmQySdJz7y8W3cbFxSVejxkVFRXnuoROvfasJk2a6Ouvv9b69evVsWNHXbx4UcePH9e7774b5zaJOcYX3W/NycnyZ43RaJQk5cqVSxUqVHjuth4eHs9dDwAAAACwL2RvyzZkbwCAPWEAHACAVMbLy0vOzs66e/euQkJCYj0T/fLly5KkzJkzS/ovSEcHz2fdu3cvmap9ciZ56dKldeDAAd28eVPr1q2TJDVr1izObbJlyyZJFmeNPyv6GLNkySJJyp49u86cOaOrV6+qcOHCMdo/PQ2cJPNZ5Tly5NCECRMScEQAAAAAAHtH9n6C7A0AsEfcAxwAgFTG2dlZ5cqVk9Fo1MaNG2Osj4yMNC+vUqWKJMnd3V3Sk7AdERFh0T44OFiBgYHJWnPTpk1lNBoVEBCg9evXq3Dhws+d+ixXrlzKnTu3goODzfcZe9qDBw+0c+dOSVKlSpUkSdWrV5ekWJ+Ty5cv6+zZsxbLSpUqJVdXV506dSpGQJekGzduqEmTJurevbsePnwY/4MFAAAAANg8sjfZGwBgvxgABwAgFeratask6auvvtKJEyfMyyMiIjR69GhdunRJxYoVM08v5uXlpRw5cig8PFyLFi0yt3/8+LE+/fTT507DlhQaN24sg8GgBQsW6PTp0889Az1a9DEOHz7cfMa5JD18+FAfffSRQkJCVLduXfO9ylq2bCkvLy8tW7ZMv//+u7l9SEiIhg0bFuMMfHd3d7Vr106PHj3SRx99pNu3b1vsY+jQoTp//rzc3d2Zhg0AAAAA0iCyN9kbAGCfmAIdAIBUqEGDBnr77bc1a9YstWnTRhUqVJC3t7eOHDmi69evK3fu3Pr2228t7iHWs2dPjR07VmPHjtXatWuVJUsWHTx4UFFRUapbt662bNmSbPXmzJlTZcuW1aFDhyQ9fwq2aJ07d9ahQ4e0fv16NWvWTJUqVZKbm5v279+v4OBg+fr66osvvjC3z5Qpk7744gsNGDBA/fr1U7ly5ZQtWzbt27dPUVFRKliwYIyz7QcNGqSTJ09q9+7deu2111SqVCm5ubnp0KFDunv3rgoUKKDRo0cn7ZMBAAAAALAJZG+yNwDAPnEFOAAAqdQnn3yiH374QVWqVNGpU6e0detWeXh4qHfv3vL391fBggUt2nfu3Fnjx49XyZIldeLECe3bt09VqlTR0qVLY7RNDk2aNJEklShRQvnz539hewcHB3377bcaN26cSpQooYMHD+rPP/9Ujhw59NFHH+m3335TpkyZLLapX7++fv31V9WvX1+BgYHasWOHihcvrl9++UU5cuSIsQ9XV1fNmjVL//vf//TKK6/o6NGj2rNnj7Jly6a+fftqyZIl5vucAQAAAADSHrI32RsAYH8MJpPJZO0iAAAAAAAAAAAAAAB4WVwBDgAAAAAAAAAAAACwCwyAAwAAAAAAAAAAAADsAgPgAAAAAAAAAAAAAAC7wAA4AAAAAAAAAAAAAMAuMAAOAAAAAAAAAAAAALALDIADAAAAAAAAAAAAAOwCA+AAAAAAAAAAAAAAALvAADgAAAAAAAAAAAAAwC4wAA4AAAAAAAAAAAAAsAsMgAMAAAAAAAAAAAAA7AID4AAAAAAAAAAAAAAAu8AAOAAAAAAAAAAAAADALjAADgAAAAAAAAAAAACwCwyAAwAAAAAAAAAAAADsAgPgAAAAAAAAAAAAAAC7wAA4AAAAAAAAAAAAAMAuMAAOAAAAAAAAAAAAALALDIADAAAAAAAAAAAAAOwCA+AAAAAAAAAAAAAAALvAADgAAAAAAAAAAAAAwC4wAA4AAAAAAAAAAAAAsAsMgAN2ZPny5fLx8Unwn86dO1u79HibPHlynMdRrFgxlSlTRvXq1VPfvn21adMma5eL/3fo0CHz69SzZ88Xth8yZIh8fHw0ePBgi+XRj7Fr164kr7FHjx7mxz9y5EiSP/7TIiMjFRgYmKz7eNapU6c0duxYNWvWTBUrVlSpUqVUp04d9ezZUwsWLFBYWFiS7/PmzZsaPHiwqlevrpIlS6pWrVravn27JGnFihV64403VKZMGVWsWFE9evTQnj17zK9BZGRkovd75coV8+NcvHgxqQ4HL8lkMuncuXPWLiNRzp8/r969e6tKlSoqVaqUXn31VZ0+fVomk0mzZ89W48aNVapUKVWpUkX/+9//zP8e165d+6X2m1SfiaRy5syZGMvq1asnHx8fLVmyJEGPldjtAACA7aCPgj6K1Io+Ckv0UdBHkZrYwucTgG1wsnYBAJJO5syZVb58+RjLr127pmvXrsnFxUUlS5aMsb5o0aIpUV6Siu1YTCaTwsLCdOXKFQUEBCggIEB+fn76+uuvZTAYrFQpJGnZsmXm/9+5c6cuX76svHnzWrEiS9euXbP4Qbxw4UKVKVMmWfa1c+dOjR07Vo0aNdLAgQOTZR/P+v777zVt2jQZjUZ5enoqX758cnZ21s2bN7Vjxw7t2LFDP/30k6ZOnaoSJUokyT6NRqN69uypU6dOycnJSUWKFFFERIRy586t33//XZ988okkKWvWrMqePXuqej8g6R09elRjxoxR/vz5NWHCBGuXkyAPHz5U165dFRQUJFdXVxUpUkShoaHKkyePZs+erfHjx0uScufOLS8vL+XJk8fKFSe9oKAgjR8/Xvv379e2bdusXQ4AALAR9FHQR5Fa0UfxH/oo6KNIbVL75xOA7WAAHLAjderUUZ06dWIsnzx5sqZMmaKsWbNq4cKFVqgs6T3vWMLDw/Xdd9/p559/1urVq1W5cmW1a9cuhStEtNDQUK1fv14Gg0E1a9bUjh07tHjx4hhnZlrT8uXLZTQaVadOHW3btk3r16/X0KFDlTFjxiTf148//piiZ1YvW7ZMU6dOlbu7u8aNG6fXXntNjo6O5vXnzp3TsGHDdPjwYfXo0UPr1q1TpkyZXnq/gYGBOnXqlCRp+vTpqlWrlnnd5MmTJUkVKlTQvHnz5OT05OdIaGio1q1bJ0nmZYmRPXt28+PkypUr0Y+DpPPrr7/q6NGjyp8/v7VLSbD9+/crKChIBoNBy5cvV6FChczr1q9fL0lq1qyZvvnmG/PyBw8eqEyZMnJ2dn6pfZcuXTpJPhMva+fOnVqzZo2yZ89utRoAAIDtoY/iCfooUhf6KCzRR0EfRWpiC59PALaDKdAB2B0XFxd9/PHHKl26tCRp/vz5Vq4obduwYYNCQkJUpEgRtWjRQtKTMBceHm7dwv6fyWSSv7+/JKl169YqUKCAwsLCzMts3fTp0yVJH3/8sRo3bmwRLCWpUKFCmjZtmjJnzqzg4GDNmzcvSfYbHBxs/v8qVarEuq5ChQoWIdLNzU2FChWyGGBMDGdnZ/PjvOwAJBD9fs2SJUuM92b0usqVK1ssT58+vQoVKqR8+fK91L6T6jMBAAAA66GPInWhj8K66KOgj+J5UvvnE4BtYQAcgN1q0KCBJOmff/7Ro0ePrFxN2rV8+XJJUu3atVW3bl25urrq9u3b2rhxo5Ure2Lv3r26fPmynJ2dVb16dTVp0kSStHjxYitX9vLu37+vS5cuSdJzp0vLlCmT+fNy9OjRJNl3VFSU+f9dXFws1hmNxliXA6nR896vvJcBAAAQX/RRpA70UVgPfRR4kdT++QRgWxgAB2D2+++/q2fPnqpatapKliypmjVrqm/fvvrrr79ibe/j4yMfHx+L+xI9rXPnzvLx8TFPJSRJV65ckY+Pj2rUqKEbN26oV69eKl26tCpXrqxBgwYl6fF4enqa///hw4cW+/fx8dHFixdj3a5evXry8fEx/+iSpD179sjHx0ft2rXTuXPn1L59e5UqVUrVqlUz3/81eruTJ09q69ateuutt1SuXDlVqVJFXbp00aZNm+KsNSoqSkuWLFHnzp1VqVIllSxZUq+++qo++ugjHT9+PNZtwsLCNGPGDL311luqVq2aSpUqpbp162rQoEE6cOBAnPs6deqUPvnkE7366qsqWbKkqlSpoh49euj333+Ptf3Tz9nTz0l8XLp0Sfv27ZMkNWzYUB4eHqpbt64kpZqp7qLvLVS1alWlT59efn5+kqTz589r9+7dsW6TmPfR8uXL5ePjo71790p6ctazj4+PhgwZYrHdvXv3NGXKFLVo0ULlypVTmTJl1KRJE40fP15BQUEJOranz1zesmXLc9v27dtXa9eu1cSJEy2WDxkyRD4+PnFONxV9XPXq1ZP033PTpUsXc5vo5yr6saKfgylTppjXSf99znx8fBQZGRljX6dOndKIESPUoEEDlSpVSpUqVVLXrl21YcMGi3Yven0uX76sUaNG6bXXXlOpUqVUsWJFdejQQUuWLLEIxc8+BwsXLtSVK1c0dOhQ1a5dWyVLllTt2rX1v//9T1euXInzud2/f78GDRqkunXrqmTJkqpataree+89i+/WHTt2yMfHRyVKlNDt27djfZywsDBVqFBBPj4+OnLkSIxjTejn8/79+5oxY4Y6duyoKlWqqESJEqpYsaJatWqlyZMn6969ezG2Sej3fvRrGn21wurVq+Xj46POnTvHOLY5c+aoXbt2Kl++vEqVKqUGDRro008/1YULF2Ld17179/Ttt9+qVatWqly5ssqUKaPXXntN//vf/3T69Ok4a/v2229jfbzJkydb1BZd+9ChQyVJV69eNR9/9Of76tWrkqShQ4dafA6iPxe1a9eOdV/xeU88XcPzPhMJ+T6Pfg62b9+uU6dOqX///qpevbpKliyp+vXr64svvtCdO3cstnn6Obhx44bFZ/ZZBw4c0HvvvacqVaqodOnSatSokSZOnKiQkJBY27/sdgAAwL7RR/EEfRSW6KOIiT6K/9BHYbt9FLbw+QRgWxgAB6CIiAh98MEH6tevn3bs2CEnJyf5+voqMjJSAQEB6tatm7744osk3Wd4eLh69OihXbt2qVChQjIYDMqdO3eS7iP6R6Wrq6u8vb2T5DHv3Lmjrl276uTJkypcuLAeP36sAgUKWLRZtmyZ3n33XR0/flwFCxZUunTptGfPHr3//vsaO3ZsjMcMCQlRx44dNXz4cO3du1fp06eXj4+PHjx4oFWrVqlNmzaaPXu2xTbh4eHq1q2bJk6cqKNHj8rLy0tFihRRSEiI1qxZo44dO2rJkiUx9vXLL7+oVatWWrFihe7du6ciRYrI3d1dO3fuVL9+/TRo0KBYf1wn1rJly2QymZQvXz7z2b3NmzeXJO3bt0/nzp1Lsn0lRkhIiAICAiT9V1ehQoVUrFgxSdKiRYuSbF+ZM2dW+fLlzZ0eOXPmVPny5S3eP6dPn1bz5s01efJknT59Wrlz51bBggV16dIlzZo1S82bN9eePXvivU93d3eVL19e0pPBvU8++UT79u2L9TXOmjWrChcu/NKflXTp0ql8+fIqWrSoeVn58uXNxxrbcxBd4/P88ssvatOmjX777TfduXPH/N7dvXu3+vfvH+eg5rM2btyo5s2ba+HChQoKCtIrr7yiTJky6cCBAxo+fLh69Ohh7ox61okTJ/TGG29oxYoVcnNzU/78+XXjxg0tXbpUbdu21bVr12Js880336hTp05as2aNHj16JB8fHzk4OGjLli3q1q2b+Sz+GjVqKGfOnIqMjNSaNWvirD0kJESFChV67tny8XHhwgW9/vrrmjhxog4fPqxMmTLJx8dHjo6OOn78uKZMmaI333wzzucivtKnT6/y5csrc+bMkp6cyf/s++P69etq2bKlxo0bpyNHjihr1qwqUqSIbt68qcWLF+v111833y8t2t27d9W2bVtNnz5dZ86cUdasWVWwYEHdunVLS5cuVevWrbV9+/YkqT36M+ri4mJ+vzo5Oal8+fLmKwSi39slS5Z84ePG9z3xIi/zfb59+3a1adNGmzZtkre3t3LmzKkrV65o7ty5euuttywGnp9+DpydneP8zPr7+6tjx47atWuXcubMqUyZMunChQvmTtCwsLBYa0nsdgAAwH7RRxF/9FEkDH0U/6GPgj6K1NRHIaX+zycA28MAOAB9+eWX2rhxo9zd3TVp0iTt3LlTS5cu1Z9//qlPP/1UTk5Omjt3rubMmZNk+7x//75u3rypFStWyN/fXzt27FCvXr2S7PHv3LmjlStXSnryo+3ps0xfxuXLl+Xm5qbff//dXHf0PWmizZ8/X9WrV9fWrVu1fPlybdu2TWPGjJGTk5Pmz58f44fj4MGDdejQIWXNmlXz5s3T5s2btWzZMv3111/q06ePjEajvvzyS3MIkp78KDx06JAKFCigTZs2af369Vq+fLl27typjh07ymQyafz48Xr8+LF5m+3bt2vMmDFycHDQ//73P+3fv1/+/v7asmWL5syZo8yZM2vNmjUWZ8NLUvbs2bVu3TqtW7dOr732WryfK6PRaH4Nos9YlqQ6derIy8tLkvXP4Fy7dq1CQ0Pl5uZmcWyvv/66JGnTpk26detWkuyrTp06WrhwoYoXLy5JeuONN7Rw4UK99957kp4E3Z49eyooKEjlypVTQECA1qxZoxUrVmjbtm2qW7eu7t27p/fff1+XL1+O935HjBghd3d3mUwmrVixQp06dVLlypXVq1cvzZgxQ0eOHDFP95UUsmbNqoULF2r48OHmZQsXLjQf69PPQevWrc3rnufgwYMaO3asIiIi1KtXL/3111/mz9a4cePk4OCg6dOna+fOnc99nFOnTunDDz/U48eP1bt3b+3du1crV65UQECA/P39VaBAAf31118aNWpUrNv/9ttvKly4sNatW6fff/9da9eu1aJFi+Th4aE7d+5o1qxZFu3Xrl2rH3/8UQ4ODho2bJh27dqlZcuWaceOHRowYIAkafTo0Tp37pwcHBzM3yXRn5tnrVixQpLUqlUr87LEfj5HjBiha9euqWzZstqyZYv5O2T37t0aP368HBwcFBgYaN5nYhUvXlwLFy40Xwldo0YNLVy4UCNGjJD05MqS9957T+fPn1fBggW1cuVK/f7771q+fLn+/PNPtW3bVo8fP9bHH39sPqNckn766SddvHhR5cuX17Zt27R27VqtWLFC27dvV8OGDRUREfHSnaLRtb/77ruS/ntvL1y4UAEBAVq4cKGyZs0qSXr33Xe1cOFCff/99899zIS8J54nsd/n0ebPn68aNWpoy5YtWrt2rTZu3KgffvhBjo6OunjxopYuXWpu+/RzkClTpjg/swcOHFDz5s21fft2rVixQlu3btXXX38tSTpz5kycZ/8ndjsAAGC/6KOIP/oo6KNILPoo6KNITX0UtvD5BGB7GAAH0rjr16+bzyAdM2aMGjdubF7n6Oiojh07qn///pKeTAX0slcDPq1Dhw4qXLiwpCdX1j09HVhimEwmBQcHa/PmzXr77bd19+5dOTs7q1+/fklRrtm7776r7NmzS5I8PDyULl06i/W5cuXS1KlTzVc8GgwGtWvXTj169JD05HmMdvjwYfO0T99//72qVKliXufi4qL+/fvrzTfflCRNmDDBvO7UqVOSntwTJ1euXObl6dKl05AhQ1SzZk299tprunv3rnndN998I5PJpMGDB6tLly5ydHQ0r6tWrZrGjRsnSZo9e7aCg4PN65ydnVWoUCEVKlRI6dOnj/fztHPnTvPZptFhLfrxot9nK1eutOrVfdFTi9WvX18eHh7m5c2bN5eDg4MiIiLMbZLbr7/+qqCgIGXJkkU//vij8ubNa16XJUsWff/99ypatKgePHig6dOnx/txixcvriVLlqhChQrmZSEhIdq2bZsmTpyodu3aqWbNmvr2228VGhqapMeUVH744QcZjUY1adJEgwYNsvjMtWrVSm3atJGkFw6UTZ48WeHh4erUqZMGDBhg8TjFixfX999/L0dHR61evVpnz56Nsb2zs7OmTJmiggULmpeVK1fOHPYOHjxo0T76s969e3d17drV/JlzdHRU7969VaNGDUVFRZlDY+vWrWUwGHT8+PEYA6A3btzQrl275OjoqDfeeMOipoR+Pm/fvq0zZ85IevK9ny1bNvM6g8GgFi1aqHLlypIU61TiSWnDhg06efKk0qVLp5kzZ8rX19e8ztPTU2PHjlWtWrUUERFhcQZ99Hdgo0aNlClTJvPy9OnTa/jw4apevboqVaqU6q4eTuh7Ii6J/T6PljlzZn3//fcWr339+vXNJyo8+16Oj0KFCmn8+PHmzgnpyXd/jRo1JCnOaS8Tux0AALBP9FEkHH0U8UMfRcLQRxE3+iiSto9Cso3PJwDbwwA4kMZt375dkZGRypo1q5o2bRprm06dOsnZ2VkPHjww3xcnKTz9Yzehnr4Xa/QfX19fVa1aVb1799bJkyeVPn16fffddxYDKknhRXW3a9dO7u7uMZa/9dZbkqTAwECdP39e0n/3PCpdunScUyy9/fbbkp5Ml/bPP/9IknlKqqVLl+rXX3+1uGeri4uLfv75Z40bN84cgq9cuaKTJ09Ksvwh+bQ6derI29tbYWFhcd5TLSGif+iXLl06xhRs0TXcv39fa9eufel9Jca5c+fMV5Q++5xky5ZNVatWlSQtXrw4Sc8+jsvmzZslSS1atFDGjBljrHdxcTHfm3jz5s0ymUzxfuzChQvr119/1YoVK/TBBx+oXLlycnZ2Nq+/ffu2pk+frtdff13Xr19/ySNJWqGhoeb7nEV3tDxrwIAB2rBhg/led7EJDw83T4kd12cg+nvEZDLFej+ykiVLmq/4fdorr7wiSXrw4IF52cWLF82f8+jP/rM+//xzbdq0SQMHDpQk5c2bV5UqVZKkGAOgK1eulNFoVO3atWOtISEyZ86s3bt368iRIxbTwEWLiooyd/Yld7iMft/Xq1fPokPlad27d5ck7d271/wcR3+n/PTTT1q1apXFc589e3bNnj1bY8aMkaurazJWnzCJeU/EJim+z6tVqxajY1R6MhgtWb6X46t+/foWnZbRou+f9+y9xV92OwAAYJ/oo0g4+ijihz6KhKGPInb0UTyRlH0UUur/fAKwTUkz3w4AmxX946dYsWJycIj9nBh3d3cVLFhQ//zzjwIDA1W3bt0k2ffL/EBycXGJca9VBwcHeXh4KHv27CpTpowaN2780mdsx+ZFdZcuXTrW5bly5VL69On14MEDXbhwQa+88or5+S9RokScj1egQAF5enoqJCREgYGBKlq0qNq2baulS5fq7NmzGj16tD777DMVK1ZM1apVU61atVSpUiWLKdWir/aUpPfffz/OfUVPRxZdV2LdvXtXf/zxh6TYf8hXqFBBefPm1eXLl7Vw4UK1bt36pfaXGNFT/GbOnNl8peHT3njjDe3atUtXr17Vjh07VKdOnWStJzAwUNLz3wvR6+7cuaO7d+8m+F5YxYoVU7FixdS3b1+Fhobq4MGD2rlzp1auXKnbt2/r0qVL6t+/f7zvQZwS/v33X0VEREhSnB1FmTNnNl/NEJcLFy4oPDxc0pMpvaLv3Rzb/qTYPwPRnTXPih5kjYyMNC+Lvr+fu7t7nAO7OXPmjLGsdevW2rt3r1avXq0PP/xQBoNB0n9Tjj09tdjLcnV11bVr13TkyBFdunRJly9f1rlz53Ty5Ek9evRIkpK9YyUh7/uoqChdvHhRJUuWVI8ePbRhwwbdvHlTH330kZycnFSqVClVr15dtWvXVpkyZczPXWqR2PfEs5Li+zwh7+X4iusxoztb4zqZIrHbAQAA+0QfRcLRR/Fi9FEkHH0UsaOPIun7KGzh8wnANjEADqRxISEhkvTCaWmiQ1pSTi/2MlfmRd/DxxpeVHdsZ8ZGc3d314MHD3T//n1J8X/+PTw8FBISYn7+PT09tXjxYs2aNUtr1qzRxYsXdeLECZ04cUI///yzMmfOrAEDBqhdu3aSLM/6jM/Utom5+u9pq1evNv+QHzt2rMaOHRtn27///lvHjx9/bqhKapGRkVq1apWkJ2cWv2jfCxcuTPZwGZ/3wtOdJQ8fPkxwuHyam5ubatSooRo1aqh///4aNmyY1q5dq8OHD6f46/E8T0+R9/QUcAn19Hv62LFjCWof7ekz0l8kuu6E1ty4cWONGTNG165d0549e1S1alX9/fffOnv2rLy9vZOsc+/8+fP66quvtG3bNotBbk9PT1WsWFFBQUHmaQyTU2Le99KTYL5y5Ur9+OOP2rBhg27cuKFDhw7p0KFDmjp1qnLnzq1hw4apQYMGyXsACZDY98SzkuL7PCHv5fiK7Yry5NwOAADYJ/ooEo4+ihejjyLh6KOIHX0USd9Hkdo/nwBsFwPgQBoX/cPnRWEiOgzF9kMprmmOoq8gTK2Sq+7n3aMoOkBEnwka3+c/ev3Tz7+np6f69eunfv366eLFi9qzZ4/27Nmjbdu26fbt2xoxYoS8vLzUsGFD85V0Xl5e2rNnT+IPLp6i70nl7u7+3LAUFBQkk8mkRYsWacyYMcleV7StW7fq1q1bkp5MJRbXlaKPHj3SgwcPtH37dl27di3Ws2GT6n3k4eGhe/fuPfe9cO/ePYv2L/Lpp59q9+7datmypXr37h1nO1dXV3322WcKCAhQRESEAgMDY4SJuI4zue/J9fRUfSEhIRb3e07s4xw8ePClByHju7+Edsi5urqqWbNmWrx4sVavXq2qVauaz6z28/NLkoHL27dvq1OnTrp9+7Zy5cqldu3aqXjx4nrllVeUJ08eGQwGDRo06LkD4En5vpee/x0Y/e/P0+2lJ9+jw4YN07Bhw3T69Gnt3btXu3fv1s6dO3X16lX169dPixYtivOKl5etPaES+56I63FS6vscAAAgJdFHERN9FC+PPgr6KJIKfRRJ30eR2j+fAGwX9wAH0rjo+8KcPHkyzqluQ0JCdOHCBUlS/vz5zcuj79kZfZbes4KCgpKw0qTx9JRbsdUdFhb20mcWR98D61mXLl0y/9AsXLiwpP+e/+PHj8f5eOfOnTMHlejn//bt29q/f7/5vlr58+dXu3btNHHiRG3bts089Vr0j9KCBQtKenLG582bN+Pc1/79+3Xu3LmXmnL21KlT5nt5jRs3Ttu3b4/zT/QZy2vWrDEH75QQfW+hIkWKaMeOHXHWN3v2bElPpl7+7bffzNsnx/soPu+F6LOCM2bMGK8zqx8/fqyLFy9q06ZNL2zr6elpDlxPB7joz3n0FF/PSu7Ped68ec01PD1N3tP+/vtvtW/fXkOHDo0zBD/9OGfPno1zf0ePHtXp06dfepAy+p5Vjx490pUrV2Jt88cff6hz58766quvLJZHT+f1xx9/KCoqyjwVWFJN87Vs2TLdvn1bXl5eWrZsmXr37q06deoob9685o6WGzduxLptUn/vx+d9//fff0uSDAaD8uXLZ65v9+7d5u8qHx8fde7cWVOnTtUff/yh3LlzKyoqSmvWrEm22hPqZd4TT0vJ73MAAICURh+FJfoo6KOgj4I+Cnvuo7CFzycA28UAOJDG1a5dW05OTrp586bWrVsXa5sFCxYoMjJSbm5uqly5snl59I/b2O5Dc/To0VQZLr28vMwDPLHVvXnz5kTd+/Rpy5cvjzWoR0+HVrZsWfNZutFTBR09ejTOab/mzJkjScqRI4d8fHwkST169FDHjh3l7+8fo72Hh4fKli0r6UkokqRChQqZg+mCBQti3c+BAwfUsWNHNW3aVIcPH47HkcYu+r5V3t7eqlev3nPbtm/fXtKTH+DRQTi53b59W9u2bZP04h/rpUqVMgf1JUuWmN8bL/M+iutM7uj3wooVKyzOoo4WHh5ufg/VqlXruXVHi7530rFjx8yBOi47d+7U3bt35eXlpTJlypiXP+9zHhUVpc2bN8erlsTy9PRUhQoVJP13VvCz1qxZo4MHD+rKlStxPr+enp7m76958+bF2uby5cvq0KGDXn/9dW3YsOGl6i5UqJBy58793Lr9/f21d+9ecydRtDJlyqhIkSIKDg7W/Pnz9e+//6p48eJx3l8soaLDbq5cuWI9W/3s2bPm74Do75Boif3ej35dng3/0e/7zZs36/Lly7FuG/16lS1bVhkyZFBkZKRatGihrl27auvWrTHaZ8mSRUWLFpVkeQ/z59X+8OFD/fXXX7HuP6m8zHvi2cdJqe/zaNH334yr8wYAACCp0EdhiT4K+iieRh8FfRSJlVr7KFL75xOAbWMAHEjjcubMab4H04gRIyx+UBmNRv3666+aPHmyJKlPnz4WU9FE/+CbPXu2zp07Z17+999/68MPP0yJ8hPM1dVVxYsXlyRNnjzZ4irHnTt36rPPPnvpfRw7dkwjRowwT7tkNBq1YMECc0gcOHCguW25cuXMZzD269fPYuqv8PBwff/99+azej/++GPzD+c33nhDkjRlyhRt377dYv/79+83/xB8+p5Q/fv3lyTNmDFDM2fOtDgreP/+/eb1ZcuWVdWqVc3rIiIidO7cOZ07d+6FZwyHh4dr9erVkp5MheTi4vLc9rVr1zb/AF+0aNFz2z7Pv//+q3Pnzunff/99YdsVK1YoMjJSzs7O5ufxeaJ/YN+8edN8luvLvI+ip526evVqjP1kz55dt27d0rvvvmsxGHj79m31799f//zzjzw8PNS3b98X1i1JNWrUUKNGjSRJw4cP1+effx7jTN/Hjx9r2bJlGjBggKQn75Onp96K/pyfOXNG8+bNMw+A3bt3T8OGDYvzaoKk1KdPHxkMBq1cuVLTp0+3CO4rVqzQ/PnzJUk9e/Z87uP07dtXjo6OWrNmjcaNG2dxBvU///yjXr16KSIiQrlz55afn99L1WwwGNSnTx9J0syZM7VkyRLzcxcVFaUZM2Zo48aNcnJyUrdu3WJsH93xMWnSJElSq1atYt1PQj6f0aLP5D916pR+//1383KTyaTt27erZ8+e5rPpn50+LrHf+9HvqWc/o40bN5aPj48eP36sd955x2La9ZCQEI0YMUI7d+6Uk5OTBg8eLOnJ1Q3NmjWTJH3++ec6evSoxWMGBARo586dkp58xzxb+44dOxQQEGBeHhQUpH79+un27dtx1p8UXvY98bTEfp8nVvT31v379znTHgAAJCv6KOijiN6GPorY0UdBH0VipMY+Cmt9PgGkHdwDHICGDh2qGzdu6I8//lD//v2VLVs25ciRQ5cvX1ZwcLAkqVOnTnrnnXcstuvdu7d27Nihmzdvys/PT4ULF9bjx4914cIF5c2bV61bt47zrEJrGjBggHr37q2zZ8+qQYMGKly4sO7du6erV6+qVKlSKl++vDlEJEbRokW1dOlSrV+/Xq+88oquX7+umzdvysHBQUOHDo0xGPHVV1/pvffe06FDh9SlSxflzp1bmTJlUmBgoEJCQuTo6KgBAwaYB3wkqUuXLtq1a5e2b9+ud955R9myZVO2bNkUHBxsDi316tVT27Ztzds0a9ZMFy5c0OTJkzVhwgT9+OOPKlCggO7cuWPepmDBgvrhhx8s6rtx44aaNm0q6cl0RHH9yJWkTZs26e7du5LiNxWSg4OD3nzzTX3zzTf6559/dODAAXOYSYhPPvlEe/fuVeXKlc1BIy7RZxm/+uqr8bpXU7NmzTR+/Hjdv39fixYtMoe1xL6Pihcvri1btmj16tU6ffq0KlasqJEjRypDhgyaPn26evXqpUOHDqlhw4YqXLiwnJycdObMGUVERMjLy0sTJkwwT10VHxMmTJC7u7tWrFihefPmad68ecqVK5cyZ85s/ryGh4fL2dlZgwYNUocOHSy2r1OnjipWrKj9+/fr888/16xZs+Tt7a3z588rIiJCffv2NXdAJZdq1app6NCh+vLLL/Xtt99q1qxZyps3r65fv26+T9r7779v0ZkSmwoVKmjMmDEaOXKk5syZo0WLFqlQoUJ6+PChLl68KJPJpCxZsujnn39+YfCKjzZt2ujs2bOaPXu2hg8fru+++045cuTQlStXdPfuXTk6OmrUqFGxnjX9xhtvaOLEiXr06JGcnZ3VvHnzWPeRkM/n03X9+uuvunjxovr166fcuXPL29tb165d0+3bt+Xs7KzKlStr7969MaZCT+z3frFixSQ9ubdZ48aNVbhwYU2ZMkVOTk764Ycf9M477+j8+fN64403VKBAAXl4eJinOnR1ddXo0aNVsWJF8+MNHDhQBw4c0IkTJ9S2bVvzMQQFBZmv7Gnfvr3FAHjLli21YMECBQYGqm/fvsqXL5/c3d117tw5OTo66r333tP06dNf+Py9jJd5Tzwtsd/nieXj4yMHBweFhYWpcePGypYtm37++ed4TXMIAACQUPRR0EdBH0Xc6KOgjyKxUlsfhbU+nwDSDq4AByAXFxdNnTpV3377rWrWrKnw8HCdPHlSbm5uatasmebNm6cRI0bEmLanWLFiWrp0qfz8/JQpUyadP39eUVFRevvtt+Xv76+sWbNa6Yier3bt2vr111/VoEEDubu76+zZs0qXLp369eunX3/91Xz2a2J16dJF33zzjQoWLGg+87RRo0ZatGhRrGdRenl5af78+RozZowqVaqkBw8e6PTp0/L29labNm20dOlS9erVy2IbR0dHTZ06VcOGDVO5cuUUFhamU6dOKTQ0VDVr1tRXX32lH374weI+UNKTH+CLFy+Wn5+fPD09derUKQUHB6t48eLq37+/li1bpsyZMyf62KODW4kSJeI9FVKbNm3k7OwsKfnP4Dxy5Ij53krxvVeRm5ubWrRoIUn666+/zPeaS+z76J133lHbtm3l5eWlCxcu6PTp0+Z1xYsX15o1a9SnTx8VKVJEly9f1oULF1SwYEG99957WrVqVbynFovm4uKiL7/8UkuWLNHbb7+tEiVKKDw8XKdOndL169dVsGBB9ejRQ6tWrYrxPpOeBIyff/5ZAwYMUJEiRXT79m39+++/qlatmhYuXPjSZyHHV9euXbV48WI1b95c6dKl0+nTpxUZGak6depo9uzZ6tevX7wep3Xr1lq5cqXefPNNZc2aVWfOnNG1a9dUqFAh9ezZU6tWrTLfjy4pDBkyRLNnz1b9+vVlMpl06tQpOTo6qnHjxlq8eLFFB9DTMmXKZB68rVevXpIONHp6epq/V4oUKaI7d+7ozJkz8vT0NHcKfvHFF5KeXCX+9FULif3eb9GihXr27KmsWbPqypUrFvd0zJMnj5YtW6aPP/5YpUuX1s2bN3Xu3DnlzJlTXbp00cqVK82fwWgeHh6aP3+++vXrpxIlSuju3bs6deqUTCaT6tevrx9//FGjRo2Ksc3ixYvVo0cP5c+fX9euXdOtW7fUqFEj+fv7q0qVKkn2HD9PYt8Tz0ru7/On5c+fX+PGjVOBAgV09+5dXbt2LcYVIgAAAEmFPgr6KOijiBt9FPRRvIzU1EeR2j+fAGyfwcTN/AAgSdSrV09Xr17V2LFj4z2AgaQzZswYXbp0STNnzrR2KUCSaNWqlY4fP64ZM2a88MxxAAAAAHgafRTWRR8F7A19FABsDVeAAwBsntFo1P79+1W4cGFrlwIkiePHj+v48ePKmTOnatasae1yAAAAAADxRB8F7A19FABsEfcABwDYvM8++0y3b99W586drV0KkGiXL1+WJN26dUtDhgyR9GS6QkdHR2uWBQAAAABIAPooYA/oowBg6xgABwDYvLfeekv9+vVTpkyZrF0KkGjr1q3TN998Y/570aJF1alTJytWBAAAAABIKPooYA/oowBg65gCHQBg83x9fQmWsHm+vr7Kli2b3N3d1aBBA82aNUsuLi7WLgsAAAAAkAD0UcAe0EcBwNYZTCaTydpFAAAAAAAAAAAAAADwsrgCHAAAAAAAAAAAAABgFxgABwAAAAAAAAAAAADYBSdrF2ArTCaTjEZmiwcAAAAAWHJwMMhgMFi7DLtA9gYAAAAAxCYh2ZsB8HgyGk26c+ehtcsAAAAAAKQymTJ5yNGRAfCkQPYGAAAAAMQmIdmbKdABAAAAAAAAAAAAAHaBAXAAAAAAAAAAAAAAgF1gABwAAAAAAAAAAAAAYBcYAAcAAAAAAAAAAAAA2AUGwAEAAAAAAAAAAAAAdsHJ2gUAAAAAAGIyGo2Kioq0dhlpnqOjkxwcOHccAAAAAOwR2Tt1SOrszQA4AAAAAKQiJpNJ9+/fUWhoiLVLwf9zc/NUhgyZZDAYrF0KAAAAACAJkL1Tn6TM3gyAAwAAAEAqEh3APT295eKSjkFXKzKZTAoPf6yQkGBJUsaMma1cEQAAAAAgKZC9U4/kyN4MgAMAAABAKmE0RpkDuKdnBmuXA0kuLukkSSEhwUqf3pvp0AEAAADAxpG9U5+kzt4kdwAAAABIJaKioiT9F/yQOkS/HtwXDgAAAABsH9k7dUrK7M0AOAAAAACkMky9lrrwegAAAACA/SHrpS5J+XowAA4AAAAAAAAAAAAAsAsMgAMAAAAAAAAAAAAA7AID4AAAAAAAAAAAAAAAu8AAOAAAAAAAAAAAAADALjhZuwAAAAAAgPWcPn1KP/wwSadOnZDRaFLx4iXVq1cflShRUpK0b99uzZ79k86dOyNHRydVrlxVvXv3VfbsOSRJ69at1hdfjNaSJauUM2cu8+O2aeOncuUq6H//GyVJqlmzot5+u5d27dqpy5cvqn37zurWraeuXr2iadMm68CBfTKZTCpZspT69OmvV14pJEl6/Pixfv55ujZtClBw8B3ly5dfXbq8rfr1G6bsEwUAAAAAQCKRvVMWV4ADAAAAQBr18GGIBg3qq4wZvTR27HiNHv2FwsJCNWjQBwoJCdHvv6/TwIEfKGvWrBo16nP17TtQx4//rffee1vBwXcSvL+5c3/Wq6/W06hRn6tWrVd169YtvfNOV128GKhBgz7RyJFjdP/+fQ0Y0Ed3796VyWTSsGEfacWK5XrzzQ768stvVLJkaY0cOUzr169JhmcEAAAAAICkRfZOeVwBDgAAAABpVGBgoO7eDVabNm+qdOmykqT8+Qto5cplCgl5oB9+mKSKFStr9Ohx5m1Kly6rTp3aauHCBerTp1+C9le8eEl16tTN/PepUyfp8eMwfffdD8qcOYskqUgRX737bjcdO3ZU6dK5aM+eXRo9+gvzWedVqlRTWFiopk+fotdeaywnJ2ItAAAAACD1InunPK4ABwAAAIA06pVXCsnLy1uffPKhJkwYp507tytz5izq06e/wsLCdPv2bTVs2MRim9y586hEiVI6dGh/gvdXqFBhi78fOXJIJUuWNgdwScqSJYuWLVujmjVra//+fTIYDKpWraYiIyPNf2rUqKPbt28pMPBc4g4cAAAAAIAUQvZOebY1XA8AAAAASDLu7u764YeZmjv3Z23aFKAVK5bJ1dVVDRs2UePGzSRJmTJljrFd5syZdfr06QTvz9s7k8Xf79+/Z3Hvsmfdv39PJpNJDRvWjnX9rVs3VaSIT4LrAAAAAAAgpZC9Ux4D4AAAAACQhuXLV0AjRoxRVFSUTp48rg0b1mnFiqXKkiWrJOnOndsxtrl9+7a8vLwkSQaDQZJkNBot2oSGPnrhvj090+vu3bsxlh84sE85cuSUp2d6ubm5a/Lk6bFunzt33hfuAwAAAAAAayN7pyymQAcAAACANGrLlk1q3ryBbt++JUdHR5UsWVqDBw+Rp2d63blzR5kzZ1ZAwHqLba5evaJjx46qdOkykiR3dw9J0o0b181tLl26oHv37r1w/2XKlNXx40cVHHzHvOzu3bsaPLif/vxzu8qWLa/Q0EcymUzy9S1u/nP+/DnNmjVTUVFRSfE0AAAAAACQbMjeKY8rwF+Sg4NBDg6GZHt8o9Eko9GUbI8PAAAAIO0qVaqsoqKMGjp0sDp16iYPDw/98UeAHj4MUb16DVS8eAl98cVojRw5VI0bN9e9e3c1a9YMZciQUW++2VGSVKFCJbm6umrKlG/1zjt99OjRI82e/aTNi7Rr10Hr16/Vhx9+oC5d3paLSzrNnz9bmTNnUePGzeTpmV5ly5bXkCGD1K1bT+XPX0AnTx7Xzz/PUJUqVc1nwiPxIiIiNH/+fPn7++vChQtyd3dXqVKl1LVrV9WqVStG+ypVqsR65UC0o0ePKl26dEleJ9kbAAAAgK0ie6c8g8lkIuHFQ1SUUXfuPLRY5uBgkJeXuxwdk+9C+qgoo+7efUQQBwAAANKAiIhw3b59TZkz55Szs0uK7PPkyeOaOXOaTp06qbCwML3ySiF17txdderUlSRt3fqH5s+fo/Pnz8rDw0NVqlRTr17vK3v2HObH2L17l6ZPn6KLFwOVI0dOde/eSxs2rFXmzJn1v/+NkiTVrFlR3bu/ox493rXY/8WLF/TDD5N08OABOTs7q1y58urTp79y584jSQoNDdVPP03Tli1/KDj4jrJkyaYGDRqqW7eeyTLQGpsXvS6ZMnkkay5MLiaTSX379tXGjRuVIUMGlS9fXo8fP9b+/fsVERGhAQMGqHfv3ub2V69eVb169ZQ9e3ZVrlw51sccN26cnJ2dE10T2RsAAABAciN723/2ZgA8nmIL4U5ODvL29tDUhX/qatCLpxhIqNzZMur99jUUHPxQkZHGF28AAAAAwKZZI4Tjxex1AHzhwoUaNWqUihUrptmzZ8vb21uSdOrUKXXs2FEPHz7U2rVrVahQIUnSpk2b9P7776tr164aNmxYstRE9gYAAACQ3MjeqVNSZm+mQE8CV4Pu6cLVYGuXAQAAAABAvK1cuVKSNGTIEPPgtyT5+vrKz89PCxcu1Pbt280D4MePH5cklShRIuWLFdkbAAAAABA/DIADAAAAAJAGzZ07V4GBgSpSpEiMdY8ePZIkOTo6mpedPHlSklSyZMmUKRAAAAAAgESwvTnaAAAAAADAS0uXLp18fX0tBrmlJ1Odb9iwQW5ubmrYsKF5+fHjx+Xq6qpjx46pffv2qlixoipVqqR3331XR44cSenyAQAAAACIFQPgNsDR0UFOTsnzx8HBYO3DAwAAAABY2b1799S3b181adJE77//vjJlyqRp06YpR44ckqTbt28rKChIYWFh+vjjj2U0GlWlShV5eXlp69at6tChg9atW2flowAAAAAAgCnQU7WM6V1lMhqVIYNbsu3DaIxScHCojEZTsu0DAAAAAJC6Xb58WQEBAea/GwwGnT17VtWqVZP03/2/vb29NW3aNJUrV06SZDKZNHfuXI0bN05Dhw5V+fLlzYPmieXkZHmuvqNjypy77+zsmGz7MhpNMpnI3QAAAEBqYDRycWhq5uhoiJELE4oB8FTMw9VFBgcHBa6ZqdDb15L88d0y51TB5u/IwcHAADgAAAAApGEFCxbU3r17ZTKZtGvXLn3++ecaO3asQkJC1Lt3b9WqVUs7duyQyWRS9uzZzdsZDAZ169ZN+/bt06ZNm7R06VJ98MEHia7DwcEgb2+PpDikeIs++dzT0zXZ9mEyGmVwYBI+AAAAIDUIC3PUrVsOSTLQiqRjNBrk4OCgjBnd5er6cvmMAXAbEHr7mkJvXLJ2GQAAAAAAO+Xh8d+gc9OmTZUjRw516NBBM2bMUJcuXeTh4aFs2bLFuX3dunW1adMmHTt27KXqMBpNun//kcUyR0eHZJ0ZLaVOPr9/P1RRUcYkf3wAAAAACRMe/lhGo1FRUSZFRvIbPbWIijLJaDTq3r1HCg2NirE+Qwa3eM/axQA4AAAAAACwUL58eeXLl08XL17UhQsXVKJEiee2z5o1qyQpNDT0pfdtrQ6o5D75PCrKSOcaAAAAkApERTErcmqWFCcmcF0/AAAAAABpTGhoqL788ksNHjw4zntTu7i4SJIiIyO1ePFiDRgwQJs2bYq17eXLlyXppe//DQAAAADAy0q1V4BHRERo/vz58vf314ULF+Tu7q5SpUqpa9euqlWrVoz2VapU0d27d+N8vKNHjypdunTJWDEAAAAAJB8HB4McHAwpvl+j0SSjkbPj7Y2rq6v8/f119+5dtWvXTpUrV7ZYf/nyZQUGBsrFxUVFihTRtm3btH79eoWGhqpBgwYWbU0mk1auXClJqlmzZoodAwAAAAAkNbK3fUiVA+Amk0kDBw7Uxo0blSFDBlWvXl2PHz/W7t27tWPHDg0YMEC9e/c2t7969aru3r2r7Nmzxwjt0RwcuNgdAAAAgG1ycDDIy8s93ve6SkpRUUbdvfsoUUE8IGCDli1brPPnz0qS8ucvqObN31CLFq2TukwkkMFg0Jtvvqkff/xRo0aN0pw5c8z3+L5+/bo+/PBDRUZGqmvXrnJ3d1fLli01c+ZMbd26Vb/99pvatWsnSTIajZo8ebKOHj2qwoULq3HjxtY8LAAAAABINLK3/UiVA+CLFi3Sxo0bVaxYMc2ePVve3t6SpFOnTqljx46aNGmSGjZsqEKFCkmSTp48KUlq3Lixhg0bZrW6AQAAACA5ODgY5OjooKkL/9TVoHsptt/c2TLq/fY15OBgSHAIX7Nmpb777mv16zdIZcuWl2TSvn179f33ExUcfEfdu7+TPEUj3vr06aODBw9q3759atSokSpUqKCIiAgdPXpUjx49Us2aNTV48GBJUt68eTVq1CgNHz5cI0aM0IIFC1SgQAGdOnVKFy9eVJYsWTR58mQ5Oztb+agAAAAAIHHI3vYjVQ6AR0+dNmTIEPPgtyT5+vrKz89PCxcu1Pbt280D4MePH5cklShRIuWLBQAAAIAUcjXoni5cDbZ2GfHi779UzZu/oddfb2leli9fAd28GaTffluYZkN4auLq6qrZs2dr3rx5Wrlypfbs2SMnJycVKVJErVq1Utu2beXo6Ghu37p1axUsWFAzZ87UwYMHdf78eWXLlk2dO3dW7969lTlzZiseDQAAAAAkDbK37UuV84LPnTtXK1euVKVKlWKse/TokSRZhPDoK8BLliyZMgUCAAAAAJ7LwcGgv/8+qvv371ss79ixq378cbYkqU0bP/38848W6z/4oJc+/3yUJOngwf2qWbOifvllrpo2ra+33+6oPn166tNPh1psc/ToYdWsWVFXrlyWJP355w69/XYn1atXQ2++2UIzZ05TeHi4JGnSpIlq1+4Ni+1DQkJUr14N7dy5LcmO31Y4OzurR48eWrVqlf7++28dOnRIv/32m9566y2L3B2tfPnymjZtmvbs2aNjx45p8+bNGj58OIPfAAAAAGAFZO/YpcoB8HTp0snX1zdG2N60aZM2bNggNzc3NWzY0Lz8+PHjcnV11bFjx9S+fXtVrFhRlSpV0rvvvqsjR46kdPkAAAAAkOZ17NhVZ86cVsuWTfTRR/01f/4cnThxTJ6ensqXL3+CHmvXrp368cfZGjr0UzVv/ob+/HO7Hj16aF4fELBepUqVUZ48ebV79y6NGDFEr7/eQvPnL9agQUO0efNGjRnzqSSpefM39O+/V3XkyGHz9n/8ESAPDw9VrVojSY4dAAAAAICUQPaOXaocAH/avXv31LdvXzVp0kTvv/++MmXKpGnTpilHjhySpNu3bysoKEhhYWH6+OOPZTQaVaVKFXl5eWnr1q3q0KGD1q1bZ+WjAAAAAIC05dVX6+vHH2fr1Vfr6eTJE/rxxynq1aubOnRoraNHDyfosdq376S8efOpSBEf1a3bQA4Ojtq2bYskKSIiQps3b1LTpn6SpHnzZql589fVokUb5c6dR5UrV9VHHw3Tli2bdO3avypUqLB8fIrp99/Xmh9/w4Y1atSoqZycUuVdwgAAAAAAiBXZO3apPt1fvnxZAQEB5r8bDAadPXtW1apVk/Tf/b+9vb01bdo0lStXTpJkMpk0d+5cjRs3TkOHDlX58uXNg+aJ5eRkeb6Ao2OqP38gXuzlOAAAAABbZzQarF1CkipWrIRGjBgjk8mk8+fP6a+/dmrJkkUaPLi/Fi/2j/fj5MmTz/z/bm5uqlu3vgIC1qtJk+b6668/9fhxmOrVayBJ+uefUzp58rjWr19j3sZkMkmSLlwIVM6cudSs2euaMeMHDRjwkYKCbujvv4/qo4+GvbAOR0dDjFwIAAAAAIA12Vv2TgqpfgC8YMGC2rt3r0wmk3bt2qXPP/9cY8eOVUhIiHr37q1atWppx44dMplMyp49u3k7g8Ggbt26ad++fdq0aZOWLl2qDz74INF1ODgY5O3tkRSHlOpkyOBm7RIAAAAASAoLc9StWw4xBlqtfdJqQvcfFHRD8+bNUZcu3ZUtWzZJko9PUfn4FFWdOq+qffs2+vvvw5IkBwfLk42joqJkMDw5/uj9uru7WbTx83tdH3zwnu7du6ONG9erTp16ypgxg6QngbtTp65q2rR5jLqyZMkqJycHNWnSVFOnfqfdu//UuXNnVLx4CRUtWjTO4zEaDXJwcFDGjO5ydXVN0HMBAAAAAEByCAq6oV9+matOnbopa9ZsMhgMKlSosAoVKqyaNeuoU6e2Onz4YKzbRkVFxliWLl06i783beqn/v176/btWwoIWKfatevKw8NTkmQ0mtShQxc1aRIze2fOnEWS9NprjTVlynfatWuHzp07q2LFiuuVVwq/7GHHS6ofAPfw+G/QuWnTpsqRI4c6dOigGTNmqEuXLvLw8DB3qMSmbt262rRpk44dO/ZSdRiNJt2//8himaOjg10MHt+/H6qoKKO1ywAAAADSvPDwxzIajYqKMikyMvX8Ro+KMiaoHgcHZ61YsUxZs2ZTx45dLda5urpLkjJm9JaTk7Pu3w8xP7bRaNS//15Rnjx5FRlpNOeUZ/dfqlQ55ciRU2vWrNaff+7Ul19ONK8vWLCQAgMDlTNnHnP7Q4cO6LffFmrw4CFydk4nNzcP1ar1qjZv3qTAwHNq0aLNc48vKsoko9Goe/ceKTQ0Ksb6DBncrH6SAgAAAAAgbXFxSaeVK5crW7bsMbJ39PhqpkyZ5eTkrJCQEPO6J9n7qsUV37EpW7a8cuTIqQ0b1mrXrj/15ZcTzeteeaWQLl68oDx58pqXPZ293dzclD59etWu/aq2bt1szt4pJdUPgD+rfPnyypcvny5evKgLFy6oRIkSz22fNWtWSVJoaOhL7zs1dUAlpYR2ZgEAAABIHlFRJmuXkCS8vLzUsWNXzZjxg0JCQlSvXgO5u3vowoVAzZnzk8qXr6gyZcqpdOky+uOPANWpU1eZMmXWokULLEL58zRp0lxz585SxowZVbFiZfPyjh276NNPh+rnn3/Ua6811s2bQfryy7HKnj27+Sx0SWrW7HUNGfKhTCapQYNG8dpnajsxAQAAAACQdtlr9k4KqW4APDQ0VJMmTdKtW7f09ddfy2CIeQ88FxcXSVJkZKQWL16sv/76S82bN1eDBg1itL18+bIkvfT9vwEAAADA2nJny2gz+3vnnd7KkyevVq9eIX//JQoLC1P27DlUr95r6tLlbUlSr17v68GD+xo8uJ9cXd3k59dC9es3NN837HkaN26uWbNmqFWrtnJw+O/q67p1G2j0aGn+/FlasGCO0qfPoBo1aql3734W21esWFkZM3qpVKkySp8+faKPEwAAAABgX8je/7HV7J3qBsBdXV3l7++vu3fvql27dqpcubLF+suXLyswMFAuLi4qUqSItm3bpvXr1ys0NDTGALjJZNLKlSslSTVr1kyxYwAAAACApGQ0mhQVZdT77Wuk+L6joowyGhN3ZXqTJs1jvR9YtCxZsmjcuIlxri9fvqJ27twf67ocOXJo+/a9sa6rV6+B6tWLeYL008LCwhQSEqLmzd94bjsAAAAAQNpA9o7JVrN3qhsANxgMevPNN/Xjjz9q1KhRmjNnjvke39evX9eHH36oyMhIde3aVe7u7mrZsqVmzpyprVu36rffflO7du0kPZm/fvLkyTp69KgKFy6sxo0bW/OwAAAAACDRjEaT7t59JAeHmDNkpcS+ExvCU6P79+/r4MF92rx5k7Jnz24xhRsAAAAAIO0ieycda2fvVDcALkl9+vTRwYMHtW/fPjVq1EgVKlRQRESEjh49qkePHqlmzZoaPHiwJClv3rwaNWqUhg8frhEjRmjBggUqUKCATp06pYsXLypLliyaPHmynJ2drXxUAAAAAJB49haGrSUqKlJffjlGXl7e+uyzcbHedgsAAAAAkDaRvZOGtbN3qhwAd3V11ezZszVv3jytXLlSe/bskZOTk4oUKaJWrVqpbdu2cnR0NLdv3bq1ChYsqJkzZ+rgwYM6f/68smXLps6dO6t3797KnDmzFY8GAAAAAJBaeHtn0oYNW61dBgAAAAAAdsva2TtVDoBLkrOzs3r06KEePXrEq3358uU1bdq0ZK4KAAAAAAAAAAAAAJBaOVi7AAAAAAAAAAAAAAAAkgID4AAAAAAAAAAAAAAAu8AAOAAAAAAAAAAAAADALjAADgAAAAAAAAAAAACwCwyAAwAAAAAAAAAAAADsAgPgAAAAAGADHBwMcnJySPE/Dg6GRNXbpo2fatasqEWLFsS6/uuvv1DNmhX1888/Jvo5adPGL0HbJ7Q9AAAAACBtIXvHvg9by95OVt07AAAAAOCFHBwM8vZ2k4ODY4rv22iMUnBwqIxGU4K3dXJy0pYtf+ittzpZLI+MjNS2bZtlMCQu4AMAAAAAkNTI3vaDAXAAAAAASOUcHAxycHBU4JqZCr19LcX265Y5pwo2f0cODoZEhfCKFStrz56/dOPGdWXPnsO8/ODB/XJ1dVO6dK5JWS4AAAAAAIlG9rYfDIADAAAAgI0IvX1NoTcuWbuMeCtWrIQuXrygLVs2WZyJ/scfAapX7zVt3rzRvOzYsaOaMeMHnT59Uk5OTqpZs47ef3+AMmTIIEkKCQnRd999rZ07t8nJyVldunSPsb+//z6i6dOn6OTJE/Ly8lKNGrX13nvvy8PDM/kPFgAAAABgF8jetp+9uQc4AAAAACDZ1K3bQFu2/GH+e0REhLZv36oGDRqal504cUx9+76rAgUKavr02RozZrxOnDimDz/8QEajUZL06adDdPLkcY0f/62+/XaK/vxzh65f/++M/LNnz6h//z6qVKmK5s5dqJEjP9fp0yc1cOAHMpkSfgY9AAAAAAC2guxtiQFwAAAAAECyqVfvNZ04cUw3blyXJO3du1teXl4qWtTX3GbRol9UqFARffjhJypY8BWVL19Ro0Z9oVOnTmjPnr906dIF7d27WwMHfqwyZcqpSBEfjRw5Vi4uLubHWLhwnipWrKRu3Xoqb958KlOmrEaN+lwnThzToUMHUvy4AQAAAABIKWRvS0yBDgAAAABINr6+xZQrV27zVGybNweoQYNGFm3Onz+rSpWqWiwrVKiwPD3T69y5MwoLC5UkFStW3Lw+U6bMypUrt/nvp0+f1pUrl/Taa7Vi1HDx4gWVL18xKQ8LAAAAAIBUg+xtiQFwAAAAAECyqlfvNW3Z8odatmyrHTu2a+bMuRbrTSaTDIaY25lMRjk5/RdbjUbL6dQcHZ0s2jZs2ERdurwd43G8vLxf8ggAAAAAAEjdyN7/YQp0AAAAAECyqlevgU6cOKY1a1YqV67cyp+/gMX6V14prCNHDlssO3PmHz18+FAFCrxinrLt77+PmNc/ePBAV69eNv+9YMFCCgw8pzx58pr/GI1R+v77bxQUdD3Zjg0AAAAAgNSA7P0fBsABAAAAAMmqSBEf5cmTVzNmTFX9+g1jrH/zzQ46e/YfffPNeF24EKhDhw7os8+Gq2hRH1WsWFm5c+dR3boN9O23X2nfvj06f/6sxoz5VBEREebHeOutTvrnn9P6+usvFBh4XsePH9OoUcN16dJF5cmTLyUPFwAAAACAFEf2/g9ToAMAAACAjXDLnNNm91ev3muaO/dnNWgQM4SXLFlaEyZM0syZ0/X22x3l7u6hWrVeVe/eH5inYRs+fJSmTp2kkSOHyWg06o03Wunu3eCnHqOUvvlmin76aZp69OgsNzdXlS9fSe+/P0AuLi5JdhwAAAAAAPtG9rb97G0wmUymFzdDVJRRd+48tFjm5OQgb28PDZu0TheuBsexZeJVL5tfH3SoqRNzP1PojUtJ/vhu2fOpeNdPFRz8UJGRxiR/fAAAAAAJExERrtu3rylz5pxydv4vODo4GOTt7SYHB8cUr8lojFJwcGiMe4ClJXG9LtEyZfKQoyMTrCUFsjcAAACA5Eb2Tp2SMntzBTgAAAAApHJGo0nBwaFycDBYZd9pOYADAAAAANIGsrf9YAAcAAAAAGwAYRgAAAAAgORF9rYPzNEGAAAAAAAAAAAAALALDIADAAAAAAAAAAAAAOwCA+AAAAAAAAAAAAAAALvAADgAAAAApDImE/cbS014PQAAAADA/pD1UpekfD0YAAcAAACAVMLR0VGSFB7+2MqV4GnRr4ejo5OVKwEAAAAAvCyyd+qUlNmb9A4AAAAAqYSDg6Pc3DwVEhIsSXJxSSeDwWDlqtIuk8mk8PDHCgkJlpubpxwcOIccAAAAAGwd2Tt1SY7szQA4AAAAAKQiGTJkkiRzEIf1ubl5ml8XAAAAAIDtI3unPkmZvRkABwAAAIBUxGAwKGPGzEqf3ltRUZHWLifNc3R04spvAAAAALAzZO/UJamzNwPgAAAAAJAKOTg4yMHBxdplAAAAAABgt8je9onT2AEAAAAAAAAAAAAAdoEBcAAAAAAAAAAAAACAXWAAHAAAAAAAAAAAAABgFxgABwAAAAAAAAAAAADYBQbAAQAAAAAAAAAAAAB2gQFwAAAAAAAAAAAAAIBdYAAcAAAAAAAAAAAAAGAXGAAHAAAAAAAAAAAAANgFBsABAAAAAAAAAAAAAHaBAXAAAAAAAAAAAAAAgF1gABwAAAAAAAAAAAAAYBcYAAcAAAAAAAAAAAAA2AUGwAEAAAAAAAAAAAAAdsHJ2gUAAAAAAADriIiI0Pz58+Xv768LFy7I3d1dpUqVUteuXVWrVq0Y7W/duqUffvhBO3bs0I0bN5Q1a1Y1btxYffr0kYeHhxWOAAAAAAAAS1wBDgAAAABAGmQymTRw4ECNHz9e169fV/Xq1VWsWDHt3r1bPXv21LRp0yzaBwUFqV27dvrll1/k6uqqV199VUajUT/99JPat2+vkJAQKx0JAAAAAAD/YQAcAAAAAIA0aNGiRdq4caOKFSumgIAA/fjjj5ozZ46WLl0qT09PTZo0SefOnTO3Hzt2rK5evapevXpp9erV+v777/X777+rSZMmOn36tKZMmWLFowEAAAAA4AkGwAEAAAAASINWrlwpSRoyZIi8vb3Ny319feXn5yeTyaTt27dLki5duqSNGzcqZ86c6tevn7mti4uLxowZIw8PDy1evFhhYWEpexAAAAAAADyDAXAAAAAAANKguXPnauXKlapUqVKMdY8ePZIkOTo6SpK2b98uo9GoOnXqyNnZ2aJt+vTpVbVqVT169Eh79uxJ/sIBAAAAAHgOBsABAAAAAEiD0qVLJ19fX/Mgd7RNmzZpw4YNcnNzU8OGDSVJ//zzjySpaNGisT5W4cKFLdoBAAAAAGAtTtYuAAAAAAAAWNe9e/c0fPhwnT17VufPn1fOnDk1btw45ciRQ5J08+ZNSVLWrFlj3T56+a1bt1KmYAAAAAAA4sAAOAAAAAAAadzly5cVEBBg/rvBYNDZs2dVrVo1Sf9Nie7q6hrr9tHLo9u9DCcny8nqHB3tY/I6ezkOAAAAAEjtGAAHAAAAACCNK1iwoPbu3SuTyaRdu3bp888/19ixYxUSEqLevXubp0k3GAyxbm8ymSz+m1gODgZ5e3u81GOkVhkyuFm7BAAAAABIExgABwAAAAAgjfPw+G/QuWnTpsqRI4c6dOigGTNmqEuXLnJ3d5ckPX78ONbto5e7ub3cIK/RaNL9+5ZXkTs6OtjF4PH9+6GKijJauwwAAAAAsEkZMrjFe2YtBsABAAAAAICF8uXLK1++fLp48aIuXLigbNmySfrvXuDPetE9whMiMtI+B4mjoox2e2wAAAAAkJqk2gHwiIgIzZ8/X/7+/rpw4YLc3d1VqlQpde3aVbVq1YrR/tatW/rhhx+0Y8cO3bhxQ1mzZlXjxo3Vp08fizPZAQAAAABI60JDQzVp0iTdunVLX3/9daxTm7u4uEiSIiMjVbRoUUnSuXPnYn28M2fOSJJ8fHySqWIAAAAAAOInfteJpzCTyaSBAwdq/Pjxun79uqpXr65ixYpp9+7d6tmzp6ZNm2bRPigoSO3atdMvv/wiV1dXvfrqqzIajfrpp5/Uvn17hYSEWOlIAAAAAABIfVxdXeXv76/Vq1dr3759MdZfvnxZgYGBcnFxUZEiRcwnom/ZskVRUVEWbR88eKA9e/bI3d1dFSpUSJH6AQAAAACIS6ocAF+0aJE2btyoYsWKKSAgQD/++KPmzJmjpUuXytPTU5MmTbI463zs2LG6evWqevXqpdWrV+v777/X77//riZNmuj06dOaMmWKFY8GAAAAAIDUxWAw6M0335QkjRo1SkFBQeZ1169f14cffqjIyEi1b99e7u7uyp07t+rWrasrV67o66+/lslkkiSFh4fr008/1cOHD/XWW2/J09PTKscDAAAAAEC0VDkF+sqVKyVJQ4YMkbe3t3m5r6+v/Pz8tHDhQm3fvl2FChXSpUuXtHHjRuXMmVP9+vUzt3VxcdGYMWO0fft2LV68WAMGDJCrq2uKHwsAAAAAAKlRnz59dPDgQe3bt0+NGjVShQoVFBERoaNHj+rRo0eqWbOmBg8ebG4/YsQIHT9+XLNnz9a2bdtUpEgR/f333/r3339VokQJffDBB1Y8GgAAAAAAnkiVV4DPnTtXK1euVKVKlWKse/TokSTJ0dFRkrR9+3YZjUbVqVNHzs7OFm3Tp0+vqlWr6tGjR9qzZ0/yFw4AAAAAgI1wdXXV7Nmz9fHHHytv3rzas2ePjh49qiJFimj06NGaMWOG+T7gkpQ7d24tXbpUbdu21YMHD7Rlyxa5uLjovffe07x58+Th4WHFowEAAAAA4IlUeQV4unTp5OvrG2P5pk2btGHDBrm5ualhw4aSpH/++UeSVLRo0Vgfq3Dhwvrjjz/0zz//qE6dOslXNAAAAAAANsbZ2Vk9evRQjx494tU+e/bsGjt2bDJXBQAAAABA4qXKAfCn3bt3T8OHD9fZs2d1/vx55cyZU+PGjVOOHDkkSTdv3pQkZc2aNdbto5ffunUrZQoGAAAAAAAAAAAAAFhFqh8Av3z5sgICAsx/NxgMOnv2rKpVqybpvynR47q/d/Ty6HYvw8nJcsZ4R8dUOYN8gtnLcQAAAAAAAAAAAABI21L9AHjBggW1d+9emUwm7dq1S59//rnGjh2rkJAQ9e7d23wvcIPBEOv2JpPJ4r+J5eBgkLe3fd7PLEMGN2uXAAAAAAAAAAAAAAAvLdUPgHt4/Dfo3LRpU+XIkUMdOnTQjBkz1KVLF7m7u0uSHj9+HOv20cvd3F5ukNdoNOn+fcuryB0dHexi8Pj+/VBFRRmtXQYAAAAA2KQMGdyYWQsAAAAAgFQi1Q+AP6t8+fLKly+fLl68qAsXLihbtmyS/rsX+LNedI/whIiMtM9B4qgoo90eGwAAAAAAAAAAAIC0I9Wdoh4aGqovv/xSgwcPjnPachcXF0lSZGSkihYtKkk6d+5crG3PnDkjSfLx8UmGagEAAAAAAAAAAAAAqUWqGwB3dXWVv7+/Vq9erX379sVYf/nyZQUGBsrFxUVFihRRrVq1JElbtmxRVFSURdsHDx5oz549cnd3V4UKFVKkfgAAAAAAAAD4P/buPM6u+f4f+OvOZA+RyIKgUntrjyVaFKWltlI7pWqJXfG1Ra1NRC2lVUorqMS+JLGUSkKCotZIbEGjJUITSxKRRZaZ3x9+SZsmYZJZ7sy9z+fj0Uc553PPfX/cOzP3dd/nfA4AAMXR6BrghUIh+++/f5LkggsuyMSJE+fv+/e//51TTz01c+bMyYEHHpg2bdpk5ZVXzvbbb5/3338/l1122fyrxmfNmpXzzjsv06ZNywEHHJBlllmmKPMBAAAAAAAAoGE0ynuAH3fccXnppZfy/PPPZ6eddsqmm26a2bNnZ/To0Zk+fXq23nrrnHbaafPHn3vuuXnttddy00035fHHH89aa62VV155JR988EHWW2+9nHDCCUWcDQAAAAAAAAANodFdAZ58uQz6TTfdlDPOOCOrrrpqnn322YwePTprrbVWLrzwwvzpT3+afx/wJFl55ZVzzz33ZN99983UqVMzfPjwtGjRIsccc0z69++ftm3bFnE2AAAAAAAAADSERnkFeJI0b948RxxxRI444ogajV9hhRXSp0+feq4KAAAAAAAAgMaqUV4BDgAAAAAAAABLSgMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJLQrNgFAAAAAPAfFRWFVFQU6u34VVXVqaqqrrfjAwAAFJMGOAAAAEAjUVFRSPv2bVJZWX+L9s2dW5XJk6drggMAACVJAxwAAACgkaioKKSysiLX3P5Uxk+cUufHX7nLcjn+wK1SUVHQAAcAAEqSBjgAAABAIzN+4pT8a/ykYpcBAADQ5NTfeloAAAAAAAAA0IA0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJLQrNgF0LRUVBRSUVGot+NXVVWnqqq63o4PAAAAAAAAlC4NcGqsoqKQ9u3bpLKy/hYOmDu3KpMnT9cEBwAAAAAAAJaYBjg1VlFRSGVlRa65/amMnzilzo+/cpflcvyBW6WioqABDgAAAAAAACwxDXCW2PiJU/Kv8ZOKXQYAAAAAAADAAupvLWsAAAAAAAAAaEAa4AAAAAAAAACUBEugAwAAQJmqqqrK3XffnYEDB+btt9/O7Nmz07Vr1+y44445+uij065duwXG9+jRI5MnT17s8UaPHp2WLVvWc9UAAACweBrgAAAAUIaqqqpy0kknZejQoWnVqlU23HDDtGnTJqNHj06/fv0ydOjQ3HbbbenUqVOSZPz48Zk8eXJWWGGFbLHFFos8ZkWFheYAAAAoLg1wAAAAKEP33ntvhg4dmm7duqVfv35ZddVVkySff/55TjvttAwfPjx9+vTJb3/72yTJG2+8kSTZeeedc/bZZxerbAAAAPhKTs0GAACAMnTvvfcmSc4666z5ze8kWWaZZdK3b98UCoUMGzYsM2fOTJK89tprSZL11luv4YsFAACAGtIABwAAgDLUvn37rL766tl4440X2rf88stnueWWy+zZszNp0qQk/7kCfP3112/IMgEAAGCJWAIdAAAAytB111232H3jxo3L5MmT07x58yy//PJJvrwCvFWrVnn11Vdzzjnn5O23306hUEj37t1z3HHHZaONNmqo0gEAAGCxXAEOAAAALGDefb+32267tGzZMp988kkmTpyYmTNn5owzzkhVVVV69OiR9u3bZ8SIETnooIPy0EMPFbdoAAAAiCvAAQAAgP8yYMCAPPjgg2ndunVOOeWUJP+5/3eHDh1y7bXXZpNNNkmSVFdX5+abb87FF1+cXr16pXv37llxxRVr9fzNmi14rn5lZWmcu1/TeTTUfEvlvysAAMD/0gAHAAAAkiT9+/dP3759UygUctFFF2WNNdZIkmyzzTZ58sknU11dnRVWWGH++EKhkMMOOyzPP/98hg0blnvuuScnnHDCUj9/RUUhHTq0rfU8GqN27VoXu4QFNLZ6AAAA6ooGOAAAAJS56urqXH755enXr18qKytz0UUXZdddd52/v1AopEuXLot9/Pbbb59hw4bl1VdfrVUdVVXV+eyz6Qtsq6ysKIlm7WefzcjcuVVfO66h5lvTegAAABqDdu1a13glq0bbAK+qqsrdd9+dgQMH5u23387s2bPTtWvX7Ljjjjn66KPTrl27Bcb36NEjkydPXuzxRo8enZYtW9Zz1QAAANC0zJw5M6effnqGDBmSVq1a5Te/+U123HHHJTpG586dkyQzZsyodT1z5pRmU3bu3KpGNbfGVg8AAEBdaZQN8Kqqqpx00kkZOnRoWrVqlQ033DBt2rTJ6NGj069fvwwdOjS33XZbOnXqlCQZP358Jk+enBVWWCFbbLHFIo9ZUeHeVgAAAPDfPv/88xx55JEZOXJkOnbsmGuvvTYbbbTRQuPuvPPOPPPMM9ltt90W2RwfN25cktT6/t8AAABQW42yAX7vvfdm6NCh6datW/r165dVV101yZfB/LTTTsvw4cPTp0+f/Pa3v02SvPHGG0mSnXfeOWeffXaxygYAAIAmY/bs2enZs2dGjhyZ1VZbLTfccMP8/P2/JkyYkIcffjgzZsxYqAFeXV2d++67L0my9dZb13vdAAAA8FUa5WXR9957b5LkrLPOWiB8L7PMMunbt28KhUKGDRuWmTNnJklee+21JMl6663X8MUCAABAE3T11VfnxRdfTOfOnTNgwIDFNr+TZK+99kqLFi0yYsSI3HXXXfO3V1VV5aqrrsro0aOz5pprZuedd26I0gEAAGCxGuUV4O3bt8/qq6+ejTfeeKF9yy+/fJZbbrlMnjw5kyZNykorrTT/CvD111+/gSsFAACApmfKlCm5+eabkyQdO3bMZZddttix805Ov+CCC3LOOefk3HPPzS233JJu3bplzJgxeffdd9OpU6f8/ve/T/PmzRtqCgAAALBIjbIBft111y1237hx4zJ58uQ0b948yy+/fJIvrwBv1apVXn311Zxzzjl5++23UygU0r179xx33HGLvH8ZAAAAlKtRo0ZlxowZSZIxY8ZkzJgxix174oknplOnTtl7773zzW9+M9dff31eeumlvPPOO+nSpUsOOeSQHHvssenYsWNDlQ8AAACL1Sgb4F9l3n2/t9tuu7Rs2TKffPJJJk6cmCQ544wzsvHGG6dHjx556623MmLEiPztb3/LZZddll122aWIVQMAAEDj8b3vfS9vvvnmEj+ue/fuufbaa+uhIgAAAKgbTaoBPmDAgDz44INp3bp1TjnllCT/uf93hw4dcu2112aTTTZJklRXV+fmm2/OxRdfnF69eqV79+5ZccUVa/X8zZoteMv0yspGeQv1JVbTeTTUfEvlvysAAAAAAADQsJpMA7x///7p27dvCoVCLrrooqyxxhpJkm222SZPPvlkqqurs8IKK8wfXygUcthhh+X555/PsGHDcs899+SEE05Y6uevqCikQ4e2tZ5HY9SuXetil7CAxlYPAAAAAAAA0DQ0+gZ4dXV1Lr/88vTr1y+VlZW56KKLsuuuu87fXygU0qVLl8U+fvvtt8+wYcPy6quv1qqOqqrqfPbZ9AW2VVZWlESz9rPPZmTu3KqvHddQ8/3885mpqqqut+NXVVWnurr+jg8AAJSXdu1aW8mKJqe+37NVVdX1mu0BAAAWp1E3wGfOnJnTTz89Q4YMSatWrfKb3/wmO+644xIdo3PnzkmSGTNm1LqeOXO+vkncFM2dW9Uo5rbcsq1SXVWVZZZpVa/PU1U1N5MmzRDEAQAAKDvzsnd9n+AuewMAAMXSaBvgn3/+eY488siMHDkyHTt2zLXXXpuNNtpooXF33nlnnnnmmey2226LbI6PGzcuSWp9/2/qX9tWLVKoqMg/H7w+Mz75sF6eo3XHlfLN3Y5KRUVBCAcAAKDsyN4AAECpa5QN8NmzZ6dnz54ZOXJkVltttdxwww1ZddVVFzl2woQJefjhhzNjxoyFGuDV1dW57777kiRbb711vddN3ZjxyYeZMeG9YpcBAAAAJUv2BgAASlWjvEnZ1VdfnRdffDGdO3fOgAEDFtv8TpK99torLVq0yIgRI3LXXXfN315VVZWrrroqo0ePzpprrpmdd965IUoHAAAAAAAAoEga3RXgU6ZMyc0335wk6dixYy677LLFjj3rrLOy6qqr5oILLsg555yTc889N7fccku6deuWMWPG5N13302nTp3y+9//Ps2bN2+oKQAAAAAAAABQBI2uAT5q1KjMmDEjSTJmzJiMGTNmsWNPPPHEdOrUKXvvvXe++c1v5vrrr89LL72Ud955J126dMkhhxySY489Nh07dmyo8gEAAAAAAAAokkbXAP/e976XN998c4kf171791x77bX1UBEAAAAAAAAATUGjvAc4AAAAAAAAACwpDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKzYhcAAAAAAPWpoqKQiopCvR2/qqo6VVXV9XZ8AACg5jTAAQAAAChZFRWFdOjQOhUVlfX2HFVVczNp0gxNcAAAaAQ0wAEAAAAoWV9e/V2Zfz54fWZ88mGdH791x5Xyzd2OSkVFQQMcAAAaAQ1wAAAAAErejE8+zIwJ7xW7DAAAoJ5VFLsAAAAAAAAAAKgLGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0K3YBUO4qKgqpqCjU2/GrqqpTVVVdb8cHAAAAAACAxkIDHIqooqKQDh1ap6Kist6eo6pqbiZNmqEJDgAAAAAAQMnTAIci+vLq78r888HrM+OTD+v8+K07rpRv7nZUKioKGuAAAAAAAACUPA1waARmfPJhZkx4r9hlAAAAAAAAQJNWUewCAAAAAAAAAKAuaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCbVqgA8ePDgvvvji14579NFHc9VVV9XmqQAAAKAsyd4AAABQc7VqgJ911lm56667vnbcfffdl5tuuqk2TwUAAABlSfYGAACAmmu2JIMHDx6cOXPmLLDt3XffzT333LPYx3z++ed55pln0rx586WrEAAAAMqI7E05qqgopKKiUC/Hrqx0B0AAACgnS9QAf+211zJgwIAUCl8GkkKhkFGjRmXUqFFf+bjq6urstddeS18lFJEQDgAANCTZm3JTUVFI+/ZtZGQAAKBOLFED/KSTTsrnn38+/98HDRqUb3zjG9l0000X+5iWLVumW7duOfDAA5e+SigSIRwAAGhosjflpqKikMrKilxz+1MZP3FKnR9/o3W6Zv+dN67z4wIAAI3TEjXAl1122Vx88cXz/33QoEHZeOONF9gGpUQIBwAAGprsTbkaP3FK/jV+Up0ft2vndnV+TAAAoPFaogb4/xozZkxd1QGNmhAOAAAUi+wNAAAANVerBvh/++STTzJjxoxUV1cvdsyqq65aV08HAAAAZUf2BgAAgK9W6wb4n//851x//fX59NNPv3JcoVDI66+/XtunAwAAgLJTX9m7qqoqd999dwYOHJi33347s2fPTteuXbPjjjvm6KOPTrt2C65a9fHHH+cPf/hDnnzyyUyYMCGdO3fOzjvvnOOOOy5t27ZdqrkBAABAXapVA3zgwIH59a9/nSRp0aJFOnTokMrKyjopDAAAAKi/7F1VVZWTTjopQ4cOTatWrbLhhhumTZs2GT16dPr165ehQ4fmtttuS6dOnZIkEydOzAEHHJDx48dn7bXXznbbbZdXXnkl/fr1y5NPPpnbbrstyyyzTK3rAgAAgNqoVQP8lltuSaFQyDnnnJP99tsvzZs3r6u6AAAAgNRf9r733nszdOjQdOvWLf369Zu/dPrnn3+e0047LcOHD0+fPn3y29/+NknSp0+fjB8/Pj179sz//d//JUlmzZqVM844Iw8//HCuvvrqnHXWWXVSGwAAACytito8eOzYsdl4441z8MEHa34DAABAPaiv7H3vvfcmSc4666wF7hu+zDLLpG/fvikUChk2bFhmzpyZ9957L0OHDs1KK62Uk046af7YFi1apHfv3mnbtm3uvPPOzJw5s87qAwAAgKVRqwZ469at06FDh7qqBQAAAPgf9ZW927dvn9VXXz0bb7zxQvuWX375LLfccpk9e3YmTZqUJ554IlVVVdl2220XasIvu+yy2XLLLTN9+vQ8++yzdV4nAAAALIlaNcC32GKLjB49OjNmzKiregAAAID/Ul/Z+7rrrsvDDz+8yOb6uHHjMnny5DRv3jzLL7983nrrrSTJ2muvvchjrbnmmkkyfxwAAAAUS60a4KecckpmzJiRs88+O1OmTKmrmgAAAID/rxjZe959v7fbbru0bNkyH330UZKkc+fOixw/b/vHH3/cIPUBAADA4jSrzYPvuOOObLjhhvnrX/+aoUOHplu3bmnXrl0KhcJCYwuFQm655ZYaH7uqqip33313Bg4cmLfffjuzZ89O165ds+OOO+boo49Ou3btFhj/8ccf5w9/+EOefPLJTJgwIZ07d87OO++c4447Lm3btq3NNAEAAKBo6jN7L8qAAQPy4IMPpnXr1jnllFOSJNOnT0+StGrVapGPmbd93rjaaNZswXP1Kytrde5+o1HTeZTKfJPym3OpzAMAAJq6WjXAb7755vn/PGfOnPzjH/9Y7NhFBfPFqaqqykknnZShQ4emVatW2XDDDdOmTZuMHj06/fr1y9ChQ3PbbbelU6dOSZKJEyfmgAMOyPjx47P22mtnu+22yyuvvJJ+/frlySefzG233ZZllllm6ScKAAAARVJf2XtR+vfvn759+6ZQKOSiiy7KGmuskSSprKz8yuNXV1cv8P9Lq6KikA4dSvMk9nbtWhe7hAZXbnMut/kCAEBjVasGeP/+/euqjgXce++9889q79evX1ZdddUkyeeff57TTjstw4cPT58+feYvydanT5+MHz8+PXv2zP/93/8lSWbNmpUzzjgjDz/8cK6++uqcddZZ9VIrAAAA1Kf6yt7/rbq6Opdffnn69euXysrKXHTRRdl1113n72/Tpk2S5Isvvljk4+dtb926dg3AqqrqfPbZgleRV1ZWlERj8bPPZmTu3KqvHVcq803Kb841nS8AALDk2rVrXeNVl2rVAN9iiy1q8/DFuvfee5MkZ5111vzmd5Iss8wy6du3b7773e9m2LBhmTlzZiZOnJihQ4dmpZVWykknnTR/bIsWLdK7d+888cQTufPOO3PyyScvdqk2AAAAaKzqK3vPM3PmzJx++ukZMmRIWrVqld/85jfZcccdFxjTpUuXJJl/L/D/9XX3CF8Sc+aUZgNx7tyqkp3b4pTbnMttvgAA0FjV2c2JZs+endGjR+eRRx7Jiy++mCT54IMPlupY7du3z+qrr56NN954oX3LL798lltuucyePTuTJk3KE088kaqqqmy77bZp3rz5AmOXXXbZbLnllpk+fXqeffbZpaoFAAAAGou6zN7JlyutHXbYYRkyZEg6duyY/v37L9T8TpK11147STJ27NhFHuftt99OkqyzzjpLXQsAAADUhVo3wOfMmZPf/e532WqrrbL//vvn5JNPzp133pkkOfPMM/OTn/wk77777hId87rrrsvDDz+cDh06LLRv3LhxmTx5cpo3b57ll18+b731VpL/hPH/teaaaybJ/HEAAADQ1NRH9p49e3Z69uyZkSNHZrXVVsudd96ZjTbaaJFjt9lmmyTJ8OHDM3fu3AX2TZ06Nc8++2zatGmTTTfddClmBwAAAHWnVg3wOXPm5Oijj851112XGTNmZP311091dfX8/dOmTcvrr7+egw8+OB9//HGti00y/77f2223XVq2bPm1y6zN215Xzw8AAAANqb6y99VXX50XX3wxnTt3zoABAxa4Bdn/WnnllbP99tvn/fffz2WXXTb/+WfNmpXzzjsv06ZNywEHHJBllllm6ScKAAAAdaBW9wC/9dZb89RTT2XrrbdO375906VLl6y77rrz999222254IILMnjw4Nxwww0588wza1XsgAED8uCDD6Z169Y55ZRTkiTTp09PksXe33ve9nnjaqNZswXPF6jpjdYbu5rOo1Tmm5TfnEtlHgAAUI7qI3tPmTIlN998c5KkY8eOueyyyxY79qyzzkqnTp1y7rnn5rXXXstNN92Uxx9/PGuttVZeeeWVfPDBB1lvvfVywgkn1H6yAAAAUEu1aoAPGjQo7du3z+9+97u0bdt2of2tWrVK79698/TTT+eJJ56oVQO8f//+6du3bwqFQi666KKsscYaSZLKysokSaFQWOTj5p2V/t9nxy+NiopCOnRYeI6loF271sUuocGV25zLbb4AAFBK6iN7jxo1KjNmzEiSjBkzJmPGjFns2BNPPDGdOnXKyiuvnHvuuSe///3vM2LEiAwfPjxdu3bNMccck6OOOmqRtQEAAEBDq1UD/F//+le23nrrrwy5zZs3z4YbbpinnnpqqZ6juro6l19+efr165fKyspcdNFF2XXXXefvb9OmTZLkiy++WOTj521v3bp2DcCqqup89tmCV5FXVlaURGPxs89mZO7cqq8dVyrzTcpvzjWdLwAAsOTatWtdr6su1Uf2/t73vpc333xziWtZYYUV0qdPnyV+HAAAADSUWjXAmzVrls8+++xrx02ePDnNmi35U82cOTOnn356hgwZklatWuU3v/lNdtxxxwXGdOnSJUnm3wv8f33dPcKXxJw5pdlAnDu3qmTntjjlNudymy8AAJSS+s7eAAAAUEpqdYr6t771rbzyyisZP378YseMGzcur7zyygL3J6uJzz//PIcddliGDBmSjh07pn///gs1v5Nk7bXXTpKMHTt2kcd5++23kyTrrLPOEj0/AAAANAb1mb0BAACg1NSqAX7ggQdmxowZOe644/L6668vtP/NN9/MiSeemFmzZmWfffap8XFnz56dnj17ZuTIkVlttdVy5513ZqONNlrk2G222SZJMnz48MydO3eBfVOnTs2zzz6bNm3aZNNNN12CmQEAAEDjUF/ZGwAAAEpRrdZG22WXXfL000/nnnvuyd57751ll102hUIhTz75ZLbbbrtMmDAh1dXV2XXXXfPjH/+4xse9+uqr8+KLL6Zz584ZMGBAVlhhhcWOXXnllbP99ttn+PDhueyyy3LmmWemUChk1qxZOe+88zJt2rQcfvjhWWaZZWozVQAAACiK+sreAAAAUIpqfXOwPn36ZOONN84NN9yQf/7zn0mSSZMmJUm6du2an/3sZzn00ENrfLwpU6bk5ptvTpJ07Ngxl1122WLHnnXWWenUqVPOPffcvPbaa7npppvy+OOPZ6211sorr7ySDz74IOutt15OOOGEWswQAAAAiquuszcAAACUqlo3wJNkn332yT777JOPPvooH374YaqqqtK5c+esvPLKS3ysUaNGZcaMGUmSMWPGZMyYMYsde+KJJ6ZTp05ZeeWVc8899+T3v/99RowYkeHDh6dr16455phjctRRR6Vt27ZLPTcAAABoDOoyewMAAECpqpMG+KRJk/L2229niy22SOfOnZMk//jHP3Lrrbfmhz/84fxtNfG9730vb7755hLXsMIKK6RPnz5L/DgAAABoCuoyewMAAECpqqjtAe66665873vfy69//esFto8aNSq9e/fOTjvtlIceeqi2TwMAAABlS/YGAACAmqlVA/ypp57Keeedl2bNmmXLLbdcYN+mm26aI444ItXV1TnttNPy97//vVaFAgAAQDmSvQEAAKDmatUA79evX5o1a5b+/fvnjDPOWGBft27dcvrpp6d///4pFAq5/vrra1UoAAAAlCPZGwAAAGquVg3wt956Kz169MgGG2yw2DEbbLBBNt1007z88su1eSoAAAAoS7I3AAAA1FytGuAzZsxI69atv3Zc+/btM2fOnNo8FQAAAJQl2RsAAABqrlYN8G7duuX555/P559/vtgxX3zxRV588cV84xvfqM1TAQAAQFmSvQEAAKDmatUA32OPPTJlypScdNJJ+fjjjxfaP2nSpJx66qn59NNPs/vuu9fmqQAAAKAsyd4AAABQc81q8+CDDz44Dz30UJ5++ulst912WX/99bPSSislSf7973/ntddey6xZs7LhhhvmsMMOq4t6AQAAoKzI3gAAAFBztWqAN2/ePDfddFOuvPLKDBw4MC+//HJefvnl+ftbtmyZAw88MKeffnpatGhR21oBAACg7MjeAAAAUHO1aoAnSdu2bXPOOefkjDPOyKuvvpqPPvooc+fOTefOnbPeeuulTZs2dVEnAAAAlC3ZGwAAAGqmVg3wQw89NN26dcuvfvWrtGjRIt27d6+rugAAAIDI3gAAALAkatUAHz16dCoqKuqqFgAAAOB/yN4AAABQc7VK0G3btk11dXVd1QIAAAD8D9kbAAAAaq5WDfBjjz02zz33XG688cbMmjWrrmoCAAAA/j/ZGwAAAGquVkugjxs3Lquttlouu+yyXHHFFVlttdXSrl27RS7NVigUcsstt9Tm6QAAAKDsyN4AAABQc7VqgN98883z/3nOnDkZO3bsYscWCoXaPBUAAACUJdkbAAAAaq5WDfD+/fvXVR0AAADAIsjeAAAAUHO1aoBvscUWdVUHAAAAsAiyNwAAANRcrRrg/2327Nl544038uGHH6ZTp07ZdNNN88EHH6Rr16519RQAAABQ1mRvAAAA+Gq1boDPmTMn11xzTW699dZMnTo1SbL77rtn0003zZlnnplp06blyiuvzGqrrVbrYgEAAKAcyd4AAABQMxW1efCcOXNy9NFH57rrrsuMGTOy/vrrp7q6ev7+adOm5fXXX8/BBx+cjz/+uNbFAgAAQLmRvQEAAKDmatUAv/XWW/PUU09lq622yqOPPpq77757gf233XZb9txzz3z88ce54YYbalUoAAAAlCPZGwAAAGquVg3wQYMGpX379vnd736XLl26LLS/VatW6d27d7p06ZInnniiNk8FAAAAZUn2BgAAgJqrVQP8X//6VzbbbLO0bdt2sWOaN2+eDTfcMB988EFtngoAAADKkuwNAAAANVerBnizZs3y2Weffe24yZMnp1mzZrV5KgAAAChLsjcAAADUXK0a4N/61rfyyiuvZPz48YsdM27cuLzyyitZd911a/NUAAAAUJZkbwAAAKi5WjXADzzwwMyYMSPHHXdcXn/99YX2v/nmmznxxBMza9as7LPPPrV5KgAAAChLsjcAAADUXK3WRttll13y9NNP55577snee++dZZddNoVCIU8++WS22267TJgwIdXV1dl1113z4x//uK5qBgAAgLIhewMAAEDN1frmYH369MnGG2+cG264If/85z+TJJMmTUqSdO3aNT/72c9y6KGH1vZpAAAAoGzJ3gAAAFAztW6AJ8k+++yTffbZJx999FE+/PDDVFVVpXPnzll55ZXr4vAAAABQ9mRvAAAA+HpL3ACfO3dubrvttgwZMiQff/xxunbtmt133z177rlnOnfunM6dO9dHnQAAAFA2ZG8AAABYOkvUAJ81a1aOOOKIvPDCC6murk6S/POf/8zTTz+d4cOH53e/+129FAkAAADlQvYGAACApbdEDfA77rgjzz//fFZYYYUcddRRWXXVVfPWW2+lX79+GTJkSO677778+Mc/rq9aAQAAoOTJ3gAAALD0lqgB/te//jWtWrXK7bffnq5duyZJtt1222yzzTbZa6+98pe//EUIBwAAgFqQvQEAAGDpVSzJ4LFjx2azzTabH8DnWXfddbPeeutlzJgxdVocAAAAlBvZGwAAAJbeEjXAp02bluWWW26R+1ZZZZVMnjy5LmoCAACAsiV7AwAAwNJbogb4nDlzUllZuch9zZs3z+zZs+ukKAAAAChXsjcAAAAsvSVqgAMAAAAAAABAY6UBDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0W9IHDBs2LDvssMNC2ydNmpQki9yXJIVCIcOGDVvSpwMAAICyI3sDAADA0lniBvj06dMzffr0xe4fP378IrcXCoUlfSoAAAAoS7I3AAAALJ0laoD379+/vuoAAAAAInsDAABAbSxRA3yLLbaorzoAAACAyN4AAABQGxXFLgAAAAAAAAAA6oIGOAAAAAAAAAAlYYmWQAcAAABK1+DBg3PmmWfmpptuyne/+92F9vfo0SOTJ09e7ONHjx6dli1b1mOFAAAA8NU0wAEAAICMHj06vXv3Xuz+8ePHZ/LkyVlhhRUWe5/yigoLzQEAAFBcGuAAAABQ5h577LGceeaZ+fzzzxc75o033kiS7Lzzzjn77LMbqjQAAABYIhrgAAAAUKYmTJiQ3/72txk0aFBatWqVTp065eOPP17k2Ndeey1Jst566zVkiQAAALBErE0GAAAAZerKK6/MwIEDs9566+XOO+/M6quvvtix864AX3/99RuqPAAAAFhirgAHAACAMrX66qvnkksuyR577PG19+9+7bXX0qpVq7z66qs555xz8vbbb6dQKKR79+457rjjstFGGzVQ1QAAALB4TeYK8MGDB2edddbJ008/vcj9PXr0yDrrrLPY/33xxRcNXDEAAAA0bj179syee+75tc3vTz75JBMnTszMmTNzxhlnpKqqKj169Ej79u0zYsSIHHTQQXnooYcaqGoAAABYvCZxBfjo0aPTu3fvxe4fP358Jk+enBVWWCFbbLHFIsd8XZgHAAAAFm3e/b87dOiQa6+9NptsskmSpLq6OjfffHMuvvji9OrVK927d8+KK65Yq+dq1mzB/F5ZWRp5vqbzKJX5JuU351KZBwAANHWNvgH+2GOP5cwzz8znn3++2DHz7kO288475+yzz26o0gAAAKAsbLPNNnnyySdTXV2dFVZYYf72QqGQww47LM8//3yGDRuWe+65JyeccMJSP09FRSEdOrSti5IbnXbtWhe7hAZXbnMut/kCAEBj1Wgb4BMmTMhvf/vbDBo0KK1atUqnTp3y8ccfL3LsvDPR11tvvYYsEQAAAMpCoVBIly5dFrt/++23z7Bhw/Lqq6/W6nmqqqrz2WfTF9hWWVlREo3Fzz6bkblzq752XKnMNym/Odd0vgAAwJJr1651jVddarQN8CuvvDKDBg3K+uuvn759+6ZPnz6LbYDPuwJ8/fXXb8gSAQAAgCSdO3dOksyYMaPWx5ozpzQbiHPnVpXs3Ban3OZcbvMFAIDGqtE2wFdfffVccskl2WOPPb72/t2vvfZaWrVqlVdffTXnnHNO3n777RQKhXTv3j3HHXdcNtpoowaqGgAAAErPnXfemWeeeSa77bZbdtxxx4X2jxs3Lklqff9vAAAAqK2aXSdeBD179syee+75tc3vTz75JBMnTszMmTNzxhlnpKqqKj169Ej79u0zYsSIHHTQQXnooYcaqGoAAAAoPRMmTMjDDz+cu+++e6F91dXVue+++5IkW2+9dUOXBgAAAAtotFeA19S8+3936NAh1157bTbZZJMkXwbwm2++ORdffHF69eqV7t271/pM9GbNFmzG13Sd+caupvMolfkm5TfnUpkHAABQHHvttVeuv/76jBgxInfddVf222+/JElVVVV+//vfZ/To0VlzzTWz8847F7lSAAAAyl2Tb4Bvs802efLJJ1NdXZ0VVlhh/vZCoZDDDjsszz//fIYNG5Z77rknJ5xwwlI/T0VFIR06tK2Lkhuddu1aF7uEBlducy63+QIAAHVr1VVXzQUXXJBzzjkn5557bm655ZZ069YtY8aMybvvvptOnTrl97//fZo3b17sUgEAAChzTb4BXigU0qVLl8Xu33777TNs2LC8+uqrtXqeqqrqfPbZ9AW2VVZWlERj8bPPZmTu3KqvHVcq803Kb841nS8AALDk2rVrXRarLu2999755je/meuvvz4vvfRS3nnnnXTp0iWHHHJIjj322HTs2LHYJQIAAEDTb4B/nc6dOydJZsyYUetjzZlTmg3EuXOrSnZui1Nucy63+QIAAEtnwIABX7m/e/fuufbaaxuoGgAAAFhyTf4U9TvvvDMnn3xyhg0btsj948aNS5Ja3/8bAAAAAAAAgMatyV8BPmHChDz88MOZMWNGdtxxxwX2VVdX57777kuSbL311sUoDwAAAAAAAIAG0uSvAN9rr73SokWLjBgxInfdddf87VVVVbnqqqsyevTorLnmmtl5552LWCUAAAAAAAAA9a3JXwG+6qqr5oILLsg555yTc889N7fccku6deuWMWPG5N13302nTp3y+9//Ps2bNy92qQAAAAAAAADUoyZ/BXiS7L333rn11lvz/e9/PxMmTMhjjz2WOXPm5JBDDsn999+f1VdfvdglAgAAAAAAAFDPmswV4AMGDPjK/d27d8+1117bQNUAAAAAAAAA0NiUxBXgAAAAAAAAAKABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEpoVuwCg/FRUFFJRUai341dVVaeqqrrejg8AAAAAAEDjpAEONKiKikI6dGidiorKenuOqqq5mTRphiY4AAAAAABAmdEABxrUl1d/V+afD16fGZ98WOfHb91xpXxzt6NSUVHQAAcAAAAAACgzGuBAUcz45MPMmPBescsAAACAkuT2YwAAlCsNcAAAAAAoIW4/BgBAOdMABwAAAIAS4vZjAACUMw1wAAAAAChBbj8GAEA5qih2AQAAAAAAAABQFzTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKQrNiFwA0LhUVhVRUFOrt+JWVzrsBAAAAAACgfmiAA/NVVBTSvn0bTWoAAAAAAACaJA1wYL6KikIqKytyze1PZfzEKfXyHBut0zX777xxvRwbAAAAAACA8qYBDixk/MQp+df4SfVy7K6d29XLcQEAAKCpcPsxAACoPxrgAAAAANBA3H4MAADqlwY4AAAAADQQtx8DAID6pQEOAAAAAA3M7ccAAKB+WGsJAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAJIkgwcPzjrrrJOnn356kfs//vjj/OpXv8oPfvCDbLjhhtlhhx1y2WWXZdq0aQ1cKQAAACyaBjgAAACQ0aNHp3fv3ovdP3HixOy333659dZb06pVq2y33XapqqpKv379cuCBB+bzzz9vwGoBAABg0TTAAQAAoMw99thjOeKII76yid2nT5+MHz8+PXv2zAMPPJCrrroqjzzySH70ox/lzTffzNVXX92AFQMAAMCiNZkGuGXYAAAAoG5NmDAhvXr1ynHHHZfZs2enU6dOixz33nvvZejQoVlppZVy0kknzd/eokWL9O7dO23bts2dd96ZmTNnNlTpAAAAsEhNogFuGTYAAACoe1deeWUGDhyY9dZbL3feeWdWX331RY574oknUlVVlW233TbNmzdfYN+yyy6bLbfcMtOnT8+zzz7bEGUDAADAYjX6Brhl2AAAAKB+rL766rnkkkty9913Z5111lnsuLfeeitJsvbaay9y/5prrrnAOAAAACiWRtsAtwwbAAAA1K+ePXtmzz33TEXFV3898NFHHyVJOnfuvMj987Z//PHHdVsgAAAALKFmxS5gca688soMGjQo66+/fvr27Zs+ffosMkjXZBm2Rx99NM8++2y23XbbhiofAAAASsb06dOTJK1atVrk/nnb542rjWbNFmzGV1Y22nP3l0hN51Eq803Kb87lNt+ktOYCAEDpaLQN8HnLsO2xxx5feSZ6TZZhe/TRR/PWW29pgAMAAMBSqKysTJIUCoVF7q+url7g/5dWRUUhHTq0rdUxGqt27VoXu4QGV25zLrf5JuU5ZwAAGr9G2wDv2bNnjcZZhg0AAADqV5s2bZIkX3zxxSL3z9veunXtmmFVVdX57LMFryKvrKwoiSbbZ5/NyNy5VV87rlTmm5TfnMttvknN5wwAALXVrl3rGq9A1Ggb4DVlGbbas0RX7cc1duU236S05gIAAMXWpUuXJP85Cf1/fd3J6UtizpzSbKbNnVtVsnNbnHKbc7nNNynPOQMA0Pg1+Qa4Zdhqr1TOOl4S5TbncptvUp5zBgCA+jLvtmNjx45d5P633347SbLOOus0WE0AAACwKE2+AW4ZttqzRNfilcqcy22+iWXYAABoOEuyDFtTtc022yRJhg8fnl69es0/GT1Jpk6dmmeffTZt2rTJpptuWqwSAQAAIEkJNMAtw1Z75bhcVbnNudzmm5TnnAEAoL6svPLK2X777TN8+PBcdtllOfPMM1MoFDJr1qycd955mTZtWg4//PAss8wyxS4VAACAMtfkG+CWYQMAAID6d+655+a1117LTTfdlMcffzxrrbVWXnnllXzwwQdZb731csIJJxS7RAAAAEiTX6Ptv5dhmzt37gL7LMMGAAAAdWPllVfOPffck3333TdTp07N8OHD06JFixxzzDHp379/2rZtW+wSAQAAoOlfAW4ZNgAAAKgbAwYM+Mr9K6ywQvr06dNA1QAAAMCSa/IN8MQybAAAAAAAAACUwBLoiWXYAAAAAAAAAGhCV4Bbhg0AAAAAAACAr1ISV4ADAAAAAAAAgAY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACWhWbELAAAAAJqOxx57LMcee+xi9++yyy658sorG7AiAAAA+A8NcAAAAKDGXn/99STJ5ptvnhVXXHGh/ZtssklDlwQAAADzlVQD3FnoAAAAUL/mNcDPOeecrLvuukWuBgAAABZUUg1wZ6EDAABA/Xr99dfTsmXLrLnmmsUuBQAAABZSkg1wZ6EDAABA3Zs0aVI+/PDDbLjhhmnWrKS+UgAAAKBElFRadRY6AAAA1J95J56vtNJKueyyy/Loo4/mgw8+SKdOnbLTTjvlmGOOyXLLLVfkKgEAAChnFcUuoK7MOwt9nXXWcRY6AAAA1IPXXnstSfLII4/k9ttvT7du3dK9e/dMmTIlN954Y/bbb7989NFHRa4SAACAclYynWJnoQMAAED9euONN5Ik2223XS6//PIsu+yySZJPP/00p5xySv7+97/n3HPPzXXXXbfUz9Gs2YLn6ldWlsa5+zWdR6nMNym/OZfbfJPSmgsAAKWjZBrg/30Wetu2bbPFFltkxRVXzCuvvJIbb7wxjz32WG655ZZ07ty5yJUCAABA03TJJZfkF7/4RVZcccW0atVq/vbll18+l156aXbeeecMHz4877//flZZZZUlPn5FRSEdOrSty5IbjXbtWhe7hAZXbnMut/km5TlnAAAav5JpgDsLfek5Q7n24xq7cptvUlpzAQCAxqJFixbp1q3bIvetsMIK+fa3v50XXnghr7322lI1wKuqqvPZZ9MX2FZZWVESTbbPPpuRuXOrvnZcqcw3Kb85l9t8k5rPGQAAaqtdu9Y17v2UTAPcWehLr1RC15IotzmX23yT8pwzAAAUW6dOnZIkM2bMWOpjzJlTms20uXOrSnZui1Nucy63+SblOWcAABq/kmmAOwt96TlDefFKZc7lNt/EWegAADScJTkLvSmbNWtWLrzwwkyaNCmXX3552rRps9CYcePGJUlWXHHFhi4PAAAAkpRQA/zrOAt98crxbN1ym3O5zTcpzzkDAEB9atGiRZ5++ul88MEHeeKJJ7LzzjsvsH/MmDEZM2ZMll122Wy88cbFKRIAAICyVxKnqM+aNSu//OUvc9xxx2X69OmLHOMsdAAAAKid/fffP0ny61//Ou+999787R9//HHOPvvszJ07N0ccccQCtyYDAACAhlQSV4A7Cx0AAADq3+GHH57nn38+f/vb37Lbbrtls802S4sWLfLss89m+vTp2WmnndKzZ89ilwkAAEAZK4krwBNnoQMAAEB9a9GiRf70pz/ll7/8ZdZYY428+OKLefbZZ7PWWmulT58++d3vfpfKyspilwkAAEAZK4krwBNnoQMAAEBDqKyszKGHHppDDz202KUAAADAQkqmAT7vLPRbb701gwYNyosvvpiKioqstdZa2XfffbPPPvukUCgUu0wAAAAAAAAA6knJNMATZ6EDAAAAAAAAlLOSuQc4AAAAAAAAAOVNAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJzYpdAECxVVQUUlFRKHYZtVJVVZ2qqupilwEAAAAAAFBUGuBAWauoKKR9+zaprKy/BTGqq6pSqKjfBTeqquZm0qQZmuAAAAAAAEBZ0wAHylpFRSGVlRW55vanMn7ilDo//kbrdM3+O2+cfz54fWZ88mGdHz9JWndcKd/c7ahUVBQ0wAEAAAAAgLKmAQ6QZPzEKfnX+El1ftyundslSWZ88mFmTHivzo8PAAAAAADAf2iAAwAAAAD1qqKikIqKQrHLqJWqqmorr7GA+n5fe88BwNLRAAcAAAAA6k1FRSHt27dJZWVFvT1HdVVVChX1d/wkqaqam0mTZmhIkqRh3tdz51Zl8uTp3nMAsIQ0wAEAAACAelNRUUhlZUWuuf2pjJ84pc6Pv9E6XbP/zhvnnw9enxmffFjnx0+S1h1Xyjd3OyoVFQXNSJLU//t65S7L5fgDt0rz5pWZO7eqzo8/j6vMAShFGuAAAAAAQL0bP3FK/jV+Up0ft2vndkmSGZ98mBkT3qvz48NXqa/39XLLtkp1VVXatWtd58f+b1Y2AKAUaYADAAAAAEAj0rZVixQqKqxsAABLQQMcAAAAAAAaISsbAMCSqyh2AQAAAAAAAABQFzTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJzYpdAAAAAAAAAND0VVQUUlFRqNfnqKqqTlVVdb0+B01byTXAn3vuuVx33XV54403MnPmzKyzzjr52c9+lh/96EfFLg0AAABKguwNAABNU302qAuFQtq1a5mKisp6Of48VVVzM2nSDE1wFqukGuAPPPBATj/99DRr1iw9evRIZWVlnnnmmZx88skZO3ZsTjjhhGKXCAAAAE2a7A0AAE1TRUUh7du3SWVl/d4h+Z8PXp8Zn3xYL8du3XGlfHO3o1JRUdAAZ7FKpgH+ySef5Jxzzknr1q3Tv3//bLDBBkmSsWPH5tBDD83VV1+dHXfcMeuuu26RKwWgFNX30j6W9QEAGgPZG4Bikr0BaqeiopDKyopcc/tTGT9xSp0ff6N1umb/nTfOjE8+zIwJ79X58aGmSqYBfuutt2bmzJk56qij5gfwJFljjTVy6qmn5uyzz87NN9+ciy++uIhVAlAM9R2QG2JpH8v6AACNgewNQLFUVBTSoUNr2ZuS48QOimH8xCn51/hJdX7crp3b1fkxYWmUTAN8xIgRSZIf/OAHC+3bYYcdUigU8vjjjzdwVQAUW0Mt65PU39I+jXFZn/oOZ4mABgCNkewNwOLUd06srKxIRUVlWWVvis9FFQCL1thP3imZBvg//vGPJMmaa6650L727dunU6dO+eijj/LJJ5+kY8eODV0eAEVS38v6JI1zaZ/6/ADSEOEsEdAAoDGSvQEaj8b0xXNDnnzemLI3pc1FFUBT5eSdEmmAT5kyJV988UXatm2btm3bLnJMly5d8tFHH+Wjjz4SwgHKUH0t65M0vqV9Giqg1Vc4SxpnQGtMXy41RD0NodzmbFWDr9fUX+PE60xpk70BGo/Gthx4Q558TnE19c/sS3piRzleVFGOyul9Telz8s6XCtXV1U3+p+LDDz/Mdtttl06dOuWpp55a5JgDDzwwL730Um6//fZ07959iZ+junrhXyCFQlJRUZEpn8/M3LlVS1X7V2nRvDLLtGmZ2dM+S3XV3Do/fqGiMs3btktVVVVq8i5o6vNNym/OjW2+SfnNuTG+r+c/rul+plvieZbr+3ra9FmZW1X3c27erDKtWzUvu/d1oVBIoR6fYFGfNb5KRUX91pN8WVM5zbmxzXeecvl9nTT913jecyzp61xOr3HStOebLHrODfE7uTGQvZeOjFKD8U18zo1tvkn5zbkxvq/nP64e/zxUVFRkzsxpqa6H3FeoqEizVm0bzWuceF/Xh6V5Xzf1z+xL8nm9HN/X8x/XhD/aLk1G8b6uO431d1dSPu/r+v5uOKn/74cX9xovyc9qSVwBXlHx5VkMXzXpeX3+pe33FwqFVFYu+vjLLdNqqY5ZU83b1u+VhfP++9VUU59vUn5zbmzzTcpvzo3xfV1uyvF93bZNi3qq5Eve13Xrqz5rFEt9N3Ma25zLbb7lqCEalF5nSpnsXTsyytdr6nNubPNNym/OjfF9Xd+atVr0ihx1pbG9xon3dX1oTO/rxpjLyvF9Td0qx/d1uf3uaozq+7vhpHH/7iqJd8e8pddmzpy52DGzZs1KkrRp06ZBagIAAIBSInsDAADQFJRMA7xNmzaZOnXqYoP4xIkTkySdO3duyNIAAACgJMjeAAAANAUl0QAvFApZe+21kyRjx45daP/kyZPz8ccfZ/nll0+nTp0aujwAAABo8mRvAAAAmoKSaIAnyTbbbJMkGTZs2EL7hg0blurq6my77bYNXRYAAACUDNkbAACAxq5kGuB77713WrdunT//+c956aWX5m9/55138tvf/jaFQiE///nPi1ghAAAANG2yNwAAAI1dobq6urrYRdSVu+66K+eee24qKyvTo0ePtGjRIs8880y++OKL/N///V969uxZ7BIBAACgSZO9AQAAaMxKqgGeJE888USuv/76vPrqq6msrMyaa66Zww8/PD/84Q+LXRoAAACUBNkbAACAxqrkGuAAAAAAAAAAlKeSuQc4AAAAAAAAAOVNAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuBAnZk6deoSP+bZZ5+th0qApXX11VfnrbfeKnYZAADAYsje0PTJ3gBQvzTAaXCzZs3Kq6++mjFjxmTOnDmLHffpp5/m+eefb8DKGt6zzz6bm266KbfddlvGjRtX7HJq7dBDD83kyZNrNPaLL75Inz598vOf/7x+iwKWyNVXX50333yz2GVAndthhx3y6KOPFruMoqiqqsp77723wLbq6uo89NBD6dOnT37zm99k1KhRRaqu7nzwwQeZOXNmjcePGzcugwcPrr+CiuDTTz/NM888k4ceeigPP/xwnn322Rp/NgNKj+z9H7K37A2NjexNqZK9Ze//JXtTLM2KXQA1N3PmzHz66afp2rVrsUtZav3798/vfve7TJ8+PUmy7LLL5sgjj8yRRx6ZiooFz8f429/+ljPPPDNvvPFGMUqtM2+++Wb++Mc/5s0330zXrl1z9NFHp3v37jnppJPy6KOPprq6OknSrFmznHjiiTn66KOLXPHSe+ONN/LTn/40f/7zn9OpU6fFjhs1alTOPPPM/Otf//rKcaXq008/zdixY7P55psXu5QGMXXq1FxyySXp06dPsUtpMOX2GpeCHXbYIWeffXZ22GGHYpfSYL71rW/l0ksvze67717sUhrE+PHj53/+KCcjRozIhRdemI8++iivvvpqki9D+XHHHZfHH398/ueQfv365dBDD02vXr2KWW6t7LDDDgu9p6dPn57evXvnyCOPzBprrLHA+JEjR6ZXr17Zc889G7jSuvfII4/kj3/84yI/NxcKhXTv3j1HHnlktttuu4Yvrg6tu+66KRQKS/SYQqGQ119/vZ4qolTJ3k2T7L0w2bu8cpnsTVMge5c+2Vv2lr1l78bCFeBFtKizoWbNmpXBgwfn448/Xmj8kCFDmvSHg8GDB6dv375ZZ5110qtXrxx99NFp1apVrrzyyhx++OH5/PPPi11inXv11Vez3377ZcSIEWndunVGjRqVww47LH379s2jjz6aI444IoMGDcott9ySbbfdNr/97W/z8MMPF7vspXbuuefmnXfeycEHH5wPP/xwof2zZ8/Ob37zmxx00EH517/+lR//+Mf5y1/+UoRK69a3vvWtPPDAAwtsmzlzZq6++uq8//77C43/29/+lkMPPbShyqsX77//fnr37p2f/OQn+clPfpJzzjkn77777kLjhgwZkl122SX33ntvEaqsO+X4Gpebcgxo88IXpWvMmDE5/vjjU11dnSOOOCJVVVVJkttvvz0jRoxI586dc9ddd2XkyJE544wz0r9//yb9OWRR7+kvvvgigwcPzsSJE4tQUcPo06dPTj755IwfPz577rlnTjvttPzqV7/Keeedl5NOOik77LBDXnvttRx77LH59a9/Xexya2XzzTfPZptttkT/23TTTYtdNo2A7C17y96yd1Mle5f+a1xuZG9Kkewte8vejTN7uwK8iBb1B3/atGnp1atXbrzxxpI7O/emm27K5ptvngEDBszfdtxxx+WCCy7IwIEDc9hhh+XPf/5zlllmmSJWWbeuvPLKrLLKKhkwYECWX375TJ8+PUcffXRuvfXW7L///jnttNPmj91ss83y05/+NDfccEN+9KMfFbHqpXfwwQdnueWWy1lnnZWDDz44f/7zn/ONb3wjyZdnqJ955pl566230rVr11x44YXZZpttilxx3VjUH/0ZM2bkmmuuyaabbppVVlmlCFXVnzfeeCOHHHJIPv/887Rq1SqtWrXK66+/noceeih33HFH1l577UydOjXnnHNOhgwZksrKyvTs2bPYZddKub3G77zzzhIvg+mMe2h8rr/++nTp0iX33Xdf2rVrN3/7rbfemkKhkFNPPTUbbrhhkuTnP/95nnvuudx+++1N9nPI4pTyF073339/brnlluy5554577zz0qZNm0WOmzZtWi666KLcfPPN2WSTTbLTTjs1cKV1479zBCwJ2Vv2lr1l76ZI9v5SKb/GsjeUBtn7S7K37N3YaIA3QqX6i+Kf//xnzjrrrAW2tWjRIn379k379u1z44035sgjj8yNN9642F8gTc3IkSNz6qmnZvnll0+StGnTJr/4xS/y05/+NFtvvfVC43/0ox/l0ksvbegy69Ruu+2WZZddNieffHIOPvjgXH/99Xn00Udz3XXXZc6cOTnooIPyf//3f2nbtm2xS613pfqzfNVVV2XmzJn5zW9+k1133TVJMnr06Jx66qnp06dPLr/88hx66KH517/+lQ022CB9+vTJOuusU+Sq60epvsbXXXddrrvuuiV6TFNfMrNcLelyRk3dXXfdlaeffrrG4wuFQvr27VuPFdWv559/Pvvtt98CAXzcuHF555130qxZs/zgBz9YYPxWW22Vq666qqHLpBZuv/32bLzxxl97dnnbtm3Tt2/fjB07NnfffXeTDeGzZ89O8+bNl+gxo0aNykYbbVRPFdHUlepnOdlb9pa9S4Ps/R+l+hrL3uVD9v5qsjeNnez99Rpj9tYAp8G0bt06kydPXuS+M844I9OnT88dd9yRY445Jtdff33DFldPlllmmXz22WcLbFtnnXWy7bbbplmzhX/8Jk2alJYtWzZUefVm2223Tb9+/XLsscfmJz/5Saqrq7PaaqulT58+2WyzzYpdHrU0evToHHDAAfMDeJJsuOGGOeOMM3LKKafklFNOyfjx43Paaafl8MMPX+gegzR+O+64Y8l+cfJVyi2gJcm1116bu+66q8bjC4VCbr755nqsqH49//zzS3SFRVN/jSdNmpQVV1xxgW1///vfkyQbbbTRQl+It2rVKl988UWD1Uft/eMf/1iie9jusMMOufPOO+uxovr1k5/8JJdffnmN/kbNmjUrV155Zfr375/XXnutAaqDxkP2/pLsLXs3dbJ36ZO9a6ap57JE9v46Tf01lr1Ln+y9eI05e2uA02B69OiR/v375wc/+EHWWmuthfaff/75+fzzz/Pggw/m8MMPz7bbbluEKuvWVlttlT//+c/ZZJNN8p3vfCdJsuyyy+aPf/zjQmNHjRqVAQMGzB/X1G266abp379/jjzyyHz66af51a9+JYCXiClTpmTdddddaPsGG2yQuXPn5s0338yAAQOy8cYbN3xx1Ikf/vCH2X333YtdRoMrt4CWJGPHjs3YsWNrPL6pn7V+9tlnN+l7ui6p5ZZbLp9++ukC2/72t7+lUChkq622Wmj82LFj5185R9Mwffr0dOzYscbjO3fu3KTvyfbxxx9nn332yYknnpijjjpqsb+TXnzxxZx99tl59913s9pqqzVwlVB8srfsLXuXBtm79MneNSN7Nz2yt+xdamTvppm9NcBpMKeeemoOOuig7LXXXvn2t7+dyy67bIEfikKhkEsvvTQtWrTIwIED89JLLxWx2rpx2mmnZfTo0Tn88MOz2WabLfbeCYccckhefPHFLL/88gvcm6ypW3fddXP77bfn5z//eY499thcc8012XLLLYtdFrU0Z86cRV4t0apVqyRJz549BXCapHILaEly2WWXldUXLh06dMjKK69c7DIaTPfu3fPQQw/liCOOSGVlZT7++OOMGDEiSbLzzjsvMHbq1Kl54IEH0qNHjyJUytKaO3fuIq9sXJzKysrMmTOnHiuqXw8++GB69eqVK664IiNGjMgll1ySVVdddf7+ecvEzrvX3hFHHJGTTjqpiBVDccjesrfsXRpkb0qV7F36ZG/Zu9TI3k0ze2uA02C6deuWv/zlL7nmmmvywgsvzP/A/t8qKirSt2/fbLLJJvnd736XTz75pAiV1p2OHTvm3nvvzR133JFZs2YtdlyrVq2yzz775Be/+MUSnUnU2PTq1WuR21dbbbW8//77Ofroo/OjH/1ogTOGSuEsTha0/vrrF7sEWCrlFtAofUcddVQOOOCA7L///tliiy3y6KOP5osvvsiuu+6a1VdfPcmXX6y+/PLLueSSS/Lpp5/m4IMPLnLVtTN06NC8++678/995syZKRQKue+++/Liiy8uMPatt95q6PKopY4dO+ZPf/pTbr311lx22WX58Y9/nLPOOiv77bdfnnvuufzyl7/MuHHjss466+Siiy7ymYSyJXvL3rJ3efB3jqZK9qbUyN6yd6kpleytAV5k77zzzgJLvkydOjVJ8uabby50RsmSLJPSWHXo0CHnnHPO147bd999s9deey3wS7SpatWqVQ477LCvHFMq910bNGjQV+7/4osvMnjw4AW2lUoIf+GFFzJ37tz5/z5t2rQkyVNPPZUJEyYsMLYUrrD4Kk19mabFKZfXePPNN0+nTp2KXQZQBzbYYINce+21ueiii3LjjTemsrIyu+++ey688ML5Yy699NL0798/FRUV6dWrV7p3717EimtvyJAhGTJkyELb//fzxzyl8Dfrf794+Cql8sXDwQcfnC233DLnnntuzj///AwYMCBjx45Ns2bNctJJJ6Vnz55LdHY+5UH2XjTZu2mSvUs/l9VEKXyOWZRyeY1lbygdsvd/yN5fkr0bh0J1dXV1sYsoV+uuu+4if/Crq6u/cvsbb7zREOXVu+rq6owbNy6TJ09Okiy//PJZZZVViltUPSv1OY8fP36pHtfUz/pc1M/yf/9qXdS+pvyzvO666+bYY4/Nd7/73QW2T506Nccdd1zOOuusrLfeegs9bvPNN2+oEutcub3G5WjdddctuyXJym3OgwYNymabbbbAkk3lZNKkSWnduvVCVwE+/vjjee2117Lrrrs2yvs1LYnnnntuqR63xRZb1HElDWdR9wX9OqX09+n555/Pcccdl6lTp6ZQKOS4447LiSeeWOyyaIRk79LOoYtS6nOWvf+jlHOZ7P2lUn6Ny1G55dCk/OYse8veiyN7N11NNXtrgBfR1VdfvVSPO+GEE+q4koY1evTo9OvXL0899VSmT5++wL5lllkm3//+9/Pzn/98qX6pNFblOOdy8nVn3y/OXnvtVceVNIzFfYGYLP5LxCRN+g9+Ob3G/31l1JJoyl+yJOUZ0J577rmsscYaTXr5Tyh35fjFQ5J8/vnnufTSS3PPPfekZcuWOeqoo/LII4/krbfeyne+85306dMnXbt2LXaZNCKyd/nk0HKcczkpp1yWyN5Loim+xrK37A00HbJ308zeGuA0qBtvvDGXX355Kioqsskmm2SttdZKu3btMmfOnEyePDmvv/563njjjVRUVOTMM8/MoYceWuySa60c51xT1113XYYMGZKBAwcWu5QGN2vWrLRo0aLYZSyVcv0CcUk11df4q75k+SpN+UsWysPi7pX5VUplqVAW7Y477sjf/va3pf67RnGMGDEi559/fiZMmJAtt9wyvXv3zqqrrprZs2fnqquuyo033phWrVrl9NNPzwEHHFDscqFoyjGHluOca0r2bnq5LJG9a6qpvsayN6VK9uZ/yd5NUylkbw1wGszjjz+eo48+Ot/5znfSt2/frLTSSosc99577+XCCy/M008/nRtvvDHf+c53GrjSulOOc14S559/fu66664m/+H96quvXqKAOXr06PTq1St/+ctf6rEq6lI5vca///3vlyqEN/UvWcoxoC3Nl76FQiE333xzPVRT/8pxuaqv+1KtZcuWWXbZZbP22mvnhz/8Yfbdd99UVFQ0YIXFVQqfQz744IMsv/zyCy2vtzjjxo3Liy++mD333LN+C6snp512Wv7yl7+kTZs2OeOMM7L//vsvNGbkyJE588wzM27cuGyxxRa56KKLSmrZY6iJcsyh5TjnJVEKf/OS8spl5aqcXmPZu+Zk76ZF9l6Y7N30P4fI3k0ze2uAF1G5/cH/+c9/no8//jgDBw5M8+bNv3LsnDlzsueee2a11VbLNddc00AV1r1ynPOSKIU/fsmXH3KOOOKInH766V85bs6cObn66qvTr1+/zJ07t8nPu6ZmzpyZTz/9tFEvh/J1vMalr1wD2pJqynMux3tlHnLIIV+5f+7cufnss8/y3nvvZfbs2dlqq61y3XXXpVmzZg1UYXGVwueQb33rW7n00ksXuJ/g9OnT07t37xx55JFZY401Fhh///3358wzz2yyc1533XWzzTbbpHfv3llxxRUXO27mzJn59a9/nTvuuCNt2rTJSy+91IBV0hjJ3otXKjm0HOe8JErhb14il30d2ZumoNxyaFJ+c5a9FyZ7N/3PIbL3ojX27F0eP2GN1JLc1+a/zyBqqiH89ddfz2GHHfa1YTRJmjVrlh/96Ee5//77G6Cy+lOOcy5Hm222WW688cbMmDEj55133iLHvPnmmznzzDPz5ptvZrnllssvf/nLBq6y7uywww45++yzs8MOO8zfNmvWrDz00EPZeuut06lTpwXGDxkypEn/wU/K7zUuR48++mixS2hwY8aMKXYJDaoph+mlNWDAgBqNmzlzZm6//fZceumluf322782vNN4LOpc5i+++CKDBw/OHnvssVAIb+ouvvjiGt3js1WrVrngggvygx/8wN9jksjeX6VUcmg5zrkclVsuk71L/zUuR7J36ZO9F0/2brpk70Vr7NlbA7yIavLHb/z48endu3dGjBiRZZddNieffHL9F1ZPpk2bli5dutR4/EorrZR///vf9VhR/SvHOZejG2+8MSeddFJuv/32zJgxI3379p3/xVl1dXX+9Kc/5ZprrsmsWbOyyy675Jxzzsnyyy9f5KqX3vjx4zN9+vQFtk2bNi29evXKjTfeuFAILwXl9honyTvvvJORI0dm7733nr/t448/ztVXX52XXnoprVu3zg477JDDDjusSd5v7X+VY0BjQbNmzco//vGPtGrVKquvvnqxy2lQrVq1ys9//vOMGjUqgwYNEsJLQKku8lWTAP7fvvnNb2bfffetp2poSmTvr1YKObQc51yOyi2Xyd6l/xonsjflR/aWvUuJ7P2lxpq9NcAbqblz5+bGG2/MH/7wh8ycOTO77rprevXq1aQ/3M6ZM2eJPqg1a9Yss2bNqseK6l85zrkctWjRItdcc0169eqVQYMGZebMmbn88svz3nvv5ayzzsro0aPTuXPnXHDBBfn+979f7HLrTan+wU/K7zW+/PLLc+ONN6a6ujp77bVXKioqMnXq1Oy///754IMP0r59+6y88sr53e9+l8ceeywDBgyo0dU2TVk5BrQJEyZk9OjRadWqVTbffPMa3+eoMZs6dWquv/76jBw5coEztB944IH06dMnn332WZIvP7j37ds3G2+8cZEqLY4ePXrkqaeeKnYZUCtffPFFHnnkkQwcODDPPfdcqqurc/zxxxe7LBox2bs0cmg5zrkclVsuWxzZu3ReY9l7YbK37F0OZG9KQVPI3hrgjdALL7yQCy+8MG+//Xa6deuW888/P9/5zneKXRZ8rauvvnqJxr/66qv1VEnDq6yszKWXXpp27drllltuyfvvv5+33347M2fOzL777pszzzwzyyyzTLHLpBbK5TUeOnRo+vXrl+222y6HHnpoKioqkiR/+MMfMn78+Gy00Ub585//nNatW2f06NE55JBD8uc//zlHHXVUkSuvvXIMaOPHj88VV1yRkSNH5rHHHpu//U9/+lOuuuqqzJ07N9XV1VluueXSu3fv/PCHPyxitbUzbdq07L///nnnnXey4oorZs6cOWnWrFlGjx6dM888M9XV1dl///2z1lprZfDgwfn5z3+ewYMHZ7XVVit26Q2msrIyVVVVxS5jqQ0ePHiJxv/zn/+sn0IoipEjR2bgwIF5+OGHM23atFRXV+cb3/hG9t9//2KXRiMme9NUyd6ln8vKWbm8xrK37J3I3rJ30yR7l7emlL01wBuRSZMm5dJLL83gwYPTokWLnHjiiTnqqKNKYnmbeV544YXMnTu3RmNfeumleq6mYZTTnJc0hCcL3mOvFJxzzjlp3759rr766lRUVOSPf/xjtt1222KXRR0q9df4jjvuyEYbbZTrrrtu/rbq6urcf//9KRQK+cUvfpHWrVsnSTbccMP8+Mc/zl/+8pcmH8LLMaB98skn2X///TNp0qRsuOGG8+f85JNP5oorrkizZs1y6qmnZu21185dd92VU089NXfeeWfWW2+9Ype+VG688ca89957+e1vf5udd955/vZrrrkm1dXV+dnPfpazzjorSbLPPvtkjz32yHXXXZeLL764WCU3uFGjRmWllVYqdhlL7ayzzlqizxXV1dUl9zmk3EyYMCH33XdfBg4cmHfffXf+FXE9evTIUUcdla233rrIFdJYyd4Lauo5dJ5ymrPsXfq5jNJ/jWVv2Vv2lr2bKtm7/DTV7K0B3kjcfffdufzyyzNlypRstdVWOf/88/ONb3yj2GXVubvuuit33XVXjcaWyi/Gcppz//79i11Co3DCCSekQ4cO6dOnT/r165dNN920JM5O5j9K+TV+7bXXFgrUr7/+ej755JMss8wy6dGjxwL7NthggzzwwAMNWWK9KMeA9qc//SnTpk3LrbfeusAZ9X/6059SKBRy/PHHz38vfO9738vee++d66+/Pr/97W+LU3AtDRkyJD/+8Y8XeH2nTZs2f9mxgw46aP72li1bZo899sjdd9/d4HUWy1//+tfcd999OfLII4tdylJryj+P1NysWbMybNiwDBw4MM8880zmzp2bysrKbLHFFtl0001z7bXX5tBDD220AZzik70X1tRz6DzlNGfZ+0ulnMv4Uim/xrK37C17y95NVVP+eaTmSiF7a4AX2ZtvvpkLLrggL7/8cjp16pQrrrgiu+yyS7HLqhfl+Iux3Oa8xRZbLPFjXnjhhXqopGE9//zzC21be+21s+++++auu+7Kz372s5xxxhnzl7OaZ/PNN2+oEqmlcnqNp0+fnuWWW26BbX//+9+TfDmfysrKBfbNmTOnSX95OE85BrQRI0Zk7733XiCAT548OS+++GKS5Cc/+cn87YVCIT/60Y9y8803N3SZdeb9999f4HVMvvzZnjNnTlZdddWFmh8rrbRSPvnkk4Yssc716tXrK/fPnTs306ZNyz/+8Y+899576datW5MO4XvttVexSyiKoUOH5t13353/7zNnzkyhUMh99903/+d5nrfeequhy6tTF154YR566KFMmTIlLVu2zDbbbJMdd9wxO+ywQzp06JDx48fnD3/4Q7HLpJGSvUtbuc1Z9v6PUs1l5aqcXmPZW/aWvb8kezc9sveXZO/Gn701wIvokksuyYABAzJ37txsv/32Ofnkk7PMMsvkgw8++MrHde3atYEqrFvl+IuxHOdcEx9++GEGDRqUwYMHZ9y4cXnjjTeKXVKtHHLIIV8ZQl577bUcdthhC21vyvN+5513FgimU6dOTfLlF4vNmi34p2Xs2LENWlt9KKfXuEuXLhk3btwC20aMGJFCoZDvfe97C40fPXp0VlhhhYYqr96UY0D797//nbXXXnuBbc8++2yqqqqy5pprLvS6duzYMVOmTGnIEutURUXFQvfYeuaZZ5Ik3/3udxca/+mnnzb5q0sGDRpUo3Grrrpqfvazn+W4445r8nNenEV9vl5ppZVK5kvEIUOGLLR9cfdla8pzvv3229OmTZscc8wxOfLII0v2/Urdk71LXznOuSZk7y815XnL3gsqpddY9v4P2Vv2buqf62Xv/5C9/6Mpz7lUsrcGeBHddNNN8/95+PDhGT58eI0e1xQ/1C2NTz/9NGPHjm2SZ3EurVKe8xdffJEhQ4Zk4MCBefbZZ+cvObeoD/VNzfHHH9+k/6Atjeuuu26B+1TNc8kllyy0rakvL5iU12v8ve99L/fee28OOuigrLDCChk5cmReeOGFNG/ePDvttNMCY99+++385S9/yX777VekautOOQa0li1bZsaMGQtse/rpp1MoFLLVVlstNP7f//532rVr11Dl1bk111wzI0eOzMEHH5zky99NQ4cOTaFQyPe///2Fxj/66KNZY401GrrMOvXoo49+5f6WLVumXbt2JXXP2yS59957c/fdd+cPf/hDll9++UyaNCnf//73F/o9ftJJJ+XYY48tUpV1o9yWwN1rr70ybNiw/PGPf8zNN9+czTbbbP5Z6J06dSp2eTRisvdXK+UcujilPGfZu7TI3qVL9v4P2XtBsnfTI3vL3qWmVLK3BngRnXDCCcUuoUF961vfyqWXXprdd999/raZM2emX79+2XPPPbPKKqssMP5vf/tbzjzzzCb9pUM5zvl/vfzyyxk4cGAefvjhfP7550mS5ZdfPnvvvXf233//rLzyykWusPZOPPHEYpfQoMopkM5TTq/xcccdlyFDhuRHP/pRVl999bz11luprq7O8ccfn+WXXz7Jl+F7yJAh6d+/f5o3b54jjjiiyFXXXjkGtHXXXTfPPPNMfvaznyX5z719kmTHHXdcYGx1dXX++te/Zt11123wOuvKnnvumYsuuigbbLBBttpqq9x111354IMP8o1vfCPbbLPNAmOvu+66vPzyyznnnHOKVG3dKIW/sUvqF7/4RR555JF07do1H3zwwfzfW0myxx57ZNVVV02S3Hfffbn22muzzz77pHPnzsUqt9aWZgncOXPm1EMlDePiiy/OhRdemOHDh+eBBx7IE088kSeffDIXXnhhNtlkk3Tv3r3sPqNQM7J36efQcpzz/5K9S4/sXdpkb9k7kb1l76ZL9v56snfxaYAXUbmF8Orq6oW2zZgxI9dcc0023XTThQJpKSjHOSfJxIkTM3jw4AwaNCj/+te/Ul1dndatW+e73/1unn766fzqV7/KDjvsUOwyWUrlFEjLUadOnXLPPffkmmuuycsvv5xvf/vb2XvvvbPvvvvOHzNo0KDceOONWXnllfOb3/wmK620UhErrhvlGNAOOOCAnHrqqenbt2+22mqr3Hvvvfnkk0/y7W9/e4GroWbOnJlf//rXefvtt5v0Fy4HHHBAXnzxxVx88cUpFAqprq7Ocsstl8svv3z+PQTvueee/OlPf8q4ceOy6aab5sADDyxy1fVr9OjRGTlyZCoqKrLFFltknXXWKXZJtXL//ffnkUceydFHH52TTjppofsm7rnnnvnOd76TJNl2222z33775c477yyZz+TTpk1LdXX1V14hM3LkyJx77rl58MEHG7CyutWiRYvstNNO2WmnnTJ16tT89a9/zf33358XX3wxL774YgqFQv74xz/m888/z0477ZRWrVoVu2QagVL5Oa+pcsyh5TjnRPYudbJ3aZO9ZW/ZW/ZuqmRv2bupZG8N8EZk1qxZGTNmTCZOnJjq6up06dIl6667blq2bFns0urVooJqqSvVOT/88MMZOHBgnn766cydOzft2rXL7rvvnh/+8IfZZptt8tFHHy10ZmMpuPrqq5f4MYVCIccff3w9VFP/Dj300Bx77LHzP8iUg3J7jVdcccX07t17sfv33nvvfP/730/37t3nh5emrhwD2i677JI333wz/fr1y4ABA1JdXZ1VVlklV1555fwxN9xwQ/7whz9k2rRp2XnnnfPjH/+4iBXXTqFQyOWXX56DDz44I0eOzDLLLJMdd9xxgbOU//3vf6e6ujrHHntsjj766JJ4f7/++uv54x//mLFjx+Yb3/hGjjnmmGy44Yb55S9/mYEDB87/TFIoFLLbbrvl4osvXuh+kk3FoEGDsskmm+SUU0752rHzvnB7/PHHm3wIf+SRR3L11VfnH//4R5Iv7yt30kknZbfddps/Zvr06bniiity++23L7TkZFPSq1evHHDAAdloo42SJMsuu2z23Xff7LvvvpkwYUIefPDBPPjggxk9enReeeWV9O7dO7vsskt+9atfFblyGhvZu3yU6pxl75pryrlM9q6Zpvway96y9zyyd9N/f8veiyZ7N02lkr2b5k9Yifn4449zxRVXZMiQIZk2bdoC+1q3bp2ddtopp5xySrp06VKkCqFmTjnllLRp0yYHHXRQdthhh2y++eYLnAHWFJbFWBrlFtCee+65Bc5ILgfl9hp/naa+/NiilGtAO+WUU3LggQdm1KhRWWaZZbLFFlukefPm8/e3bNkyG2ywQXbffff85Cc/KWKldWeTTTbJJptsssh9J5xwQpMPZP9t5MiROfTQQ9OsWbOsvfbaee2113LwwQfnkEMOyb333ps99tgjO++8c6ZPn57HHnssDz74YL71rW/l8MMPL3bpS+X111/PMcccU+PxW2+9da655pp6rKj+PfTQQzn11FPTsmXLbL311mndunVeeOGFnH766fPvH/nKK6/klFNOyfvvv59VVlklF154YbHLXmqDBg3Kd7/73fkh/L+tsMIKOeKII3LEEUdk7Nixuf/++/PAAw/k7rvvbnQhnOKRvSkVsnfNNeVcJnvXTFN+jb+O7C17N2Wyt+w9j+zd9JRK9tYAL7KXX345Rx99dKZMmZKNNtooW265Zbp06ZJmzZpl4sSJef755zN48OA89thjufbaa9O9e/dilwyLtcoqq+T999/PwIED889//jOvvPJKdtxxx3zzm98sdmn1qn///sUugXpWTq/x888/v1SP++9lu5qycgpo86y44opZccUVF7nvpz/9aX760582cEXUlWuuuSbdunVL//7906FDh1RXV+fss8/OTTfdlD322COXXnrp/LG77bZbPvvsszz44INNNoTPnDkz7dq1W2j7sssum+uuuy7f+ta3Ftjetm3bJn1PriS55ZZb0rFjx9xxxx3z77E2Y8aMHHvssfn973+fLl265PDDD88XX3yRn//85/nFL37RKJclq2trrLFGTjnllJxyyil56aWXil0OjYTsTSmRvSlV5fQay96y93+TvZs22ftLsrfs3dhogBfRJ598kuOPPz5t27bNH/7wh2y66aaLHPf666/n5JNPzkknnZT77rsvHTt2bOBKoWaGDRuWUaNG5f77789f//rX/O1vf8sVV1yR1VdfPT/84Q+z3nrrFbvEerHFFlt87ZipU6emUCh85b1BaLxq8hqXikMOOWSJrxgpFAp5/fXX66kiqBu9evVa4scUCoX07du3HqppGK+88kqOPPLIdOjQIcmX8zniiCMyaNCgbLfddguN/+EPf5hf//rXDVxl3VlhhRXywQcfLLS9WbNmi5zvv/71ryZ/H8WxY8fmkEMOmR/Aky+vYj3hhBPy05/+NKeccko6duyYyy+/PBtvvHHxCi0iTUwS2ZvSI3svnuzdtMneX032pimQvWXv/yV7l4fGmL01wIvolltuybRp0xY4a2RRvv3tb+emm27K7rvvnttuuy0nnnhiA1YJS2ajjTbKRhttlLPPPjt/+9vf8sADD+TRRx/Ntddem0KhkEKhkOHDh2fdddfNyiuvXOxy60x1dXWeeOKJ/OMf/8hqq62W7bbbLs2aNcszzzyTPn365J133kmSfOtb38qpp56arbfeusgV187QoUPz7rvv1nh8KS9JNk+pfNFy8cUX12jcI488khEjRiRJNtxww3qsqGGUY0A79NBDl/gxhUIhN998cz1UU/8GDRpU47H//UVUU36NP/vss3Tq1GmBbfOWFmzfvv1C41u1apUZM2Y0RGn1YsMNN8xDDz2U448//muXSZw1a1YeeuihbLvttg1UXf2YOnVqVllllYW2f+Mb30jy5VKKd9xxx/wvYkrBCy+8kLlz5y7RY/bcc8/6KYYmQ/amFMnesveiyN5Nh+xdc7J30yJ7f0n2/pLs3XSVQvbWAC+iYcOGZY899vjKAD7PyiuvnL322itDhgxp0iH8f39o5t137amnnsqECRMWGNsYl0xYGuU45ySprKzMtttum2233TYzZ87M0KFD8+CDD+app57KPffck4EDB6ZHjx7Ze++9s9tuuxW73Fr57LPP0rNnz4waNSrV1dVJkg022CDnnntuevbsmdatW2fHHXfM9OnTM2rUqBx99NG56aabmvSZzUOHDs2QIUNqPL4UQvh/f9HyjW98I9tvv31JftGy1157feX+8ePHp3fv3hkxYkTatWuXU089Nfvvv38DVVd/yjGgvf/++zUaV1VVlQkTJqS6urpJ309yzJgxXzvmv9/fyy67bE4++eT6L6weVVdXp1mzBT/uz3sNm/JruTgHHHBAfvrTn+ZXv/pVzjnnnIXmPk9VVVXOO++8TJw4MQcccEADV1m3qqqqFrjn6zzz7ifYs2fPkgrgSXLXXXflrrvuqtHYeb+3GlsIp+HJ3uWRQ8txzonsLXsvSPZuOmTvryd7N02y95dkb9m7qSuF7K0BXkTvv//+Et3bY911112iDwmN0f/+0MwLLP369Vvoj0FT/2M/TznNuWfPntlyyy2zxRZbZL311ps/l1atWmX33XfP7rvvnkmTJuWhhx7KAw88kGeeeSZ///vfm3wIv+qqqzJmzJicd9556dGjR8aPH5+LLrooP/vZz9KtW7cMGDBg/tl+n376afbZZ5/ceOONTTqEH3300fnud79b7DIaTDl+0fK/5syZkxtuuCHXXXddZsyYkT322CNnnXXW/DNam7pyDGiPPfbY144ZNWpULrjggvz73//OKqusknPPPbcBKmt4c+fOzY033pg//OEPmTlzZnbdddf06tVroTO4adw222yzHHHEEbnhhhvy97//PYcffnh69OiRFVdcMdXV1fnoo4/y7LPP5tZbb82YMWNyyimnZN111y122fWqa9euxS6hzu23335lu6QcS0/2Lu0cOk85zVn2lr1Llewteyeyt+xNYyd7L0z2bpw0wIuoefPm+eKLL2o8fubMmWnTpk09VlS/arq0Tykptzn//e9/zxNPPDF/KarNNtssPXr0yJZbbjn/j1yHDh1y8MEH5+CDD864cePyl7/8pchV195jjz2WAw44IAceeGCSZPXVV895552Xww8/PAcffPACS90sv/zy2W+//TJgwIAiVVs31lhjjZIKmF+nHL9o+W/PPfdcLrzwwowdOzarr756zj///PTo0aPYZTWYcgxoU6dOzW9+85vcddddqaioyNFHH53jjjsuLVu2LHZpde6FF17IhRdemLfffjvdunXL+eefn+985zvFLqvO/O+ymTNnzkyhUMh9992XF198cYGxb731VkOXV+dOP/30rLzyyrniiity3nnnLbLh0aZNm1xwwQUlcQVNOdpss82y++67F7sMmhjZu/SV25xlb9m7VMnesrfsLXs3VbK37F1qSiF7a4AX0dprr53HH3+8xvcBGTFiRNZcc816rqr+fN3SPqWo3Ob80ksv5fXXX89LL72UkSNH5uWXX87w4cNTKBTSrl27bL755unRo0d69OiRtddeO6uuumqOOeaYYpddax999FHWWGONBbbN+1ld1NlfK620UqZMmdIgtVE3yvGLluTLLxQuueSS3H///WnZsmV+8Ytf5Mgjj5y/vE85KPWAtij33XdfLr300nzyySfZYostcv755y/0O64UTJo0KZdeemkGDx6cFi1a5MQTT8xRRx2VFi1aFLu0OjVkyJBFLps5ePDgRY5vylfDzXPQQQdlr732yvDhw/P888/n3//+d6qrq9OlS5d07949O+64Y5O/Z+R/W9S9Qb/qy5ZSWBoVlpTsXfrKbc6y93/I3qVF9pa9ZW/Zu6mSvWVv2bvx0QAvoh//+Mc577zz8tBDD2WXXXb5yrGDBw/O008/nSuuuKKBqiu+999/P+edd15uvPHGYpfSYJr6nJs1a5YNN9wwG264YQ477LAkyYcffrhAKL/kkksyd+7ctG/fPltssUV69OiRgw46qLiF19Ls2bPTqlWrBbbNCymLCiuFQmGBe9PR+JXjFy133nlnrrjiikyZMiXf+973cu6559bovpmlolwC2n975513cuGFF+a5555Lhw4d8utf/7rR3bunrtx99925/PLLM2XKlGy11VY5//zz841vfKPYZdW5/v37F7uEomndunV22WWXr/2MXQoW90VLsugvW4RwypHs/dWaeg5dGk19zrL3f8jepUX2lr1l79Iie5c+2ftLsnfjpAFeRHvvvXcGDx6cM844I2+++WYOPvjgdOnSZYExEydOzE033ZT+/ftn2223zY9+9KMiVVs3Ro0alWuvvTYjR45Mknz729/O8ccfn80222z+mOrq6vz5z3/OVVddlZkzZxar1DpTjnP+byuttFJ23XXX7Lrrrkm+XNrn/vvvz8CBA/PII49kyJAhTT6El5sTTjgh66yzTrHLaFDl9EXLmDFjcv7552f06NFZYYUV0rt37/zwhz8sdlkNqlwC2v9r787DoioXP4B/h01AVNxIccstxi1FZJGuWoK4hYJLbkma+01TU1OLwgVFc8vSNPWKW12XBARFBMUlRRYF5Brq1au5K24gkjgwnN8fPsyvEVRAZg7nnO/neXqePPNOft9QmO95z3lPIY1Gg9WrV2Pjxo3Iz8/HwIEDMX36dFStWlXsaOXuwoULmDNnDlJTU1GrVi0sX75c1iVNLltB0ssp7USLr6+vrL8fk+Gweyujhypxzn/H7i0/7N7PsXvLF7s3u7dcsHvLH7u3NHEBXEQmJiZYu3Ytpk+fjp9//hnr1q1D3bp1Ubt2bZiamuLBgwe4du0aBEFAz549sWDBArEjv5GTJ09izJgx0Gq1aNy4MaysrJCUlIQRI0YgODgYzs7OuHHjBqZNm4a0tDTY2Nhg7ty5Ysd+I0qc84tyc3ORlJSExMREnD59GmfPnkVeXh4sLCx0W7LJQWZmJm7duqX7deEVyA8fPtQ7Djy/ulXKJk6cqPdrjUaD8+fPIyMjQ7fNjVqtluXzipSgf//+KCgoAADUrFkT27Ztw7Zt2175HpVKhc2bNxsjnkEpraABwNGjRzF//nzcvHkTDg4OmDt3Ltq2bSt2LINYvHgxtm7dCq1Wiw8++ABTpkyBjY1Nke/RLyruThO52r59O44fP45Vq1aJHaVMSrq18d9J/ftXWU60nDp1ygBJjENpz/il8sPuLf8eqsQ5v4jdm92bpIXdm92b3Vsfu7d0sHuXDLu3+FSCIAhihyDg999/x549e5CWloZ79+7pPsg6OTmhb9++cHNzEzviGxs5ciTS0tKwYcMGODo6AgDu3r2L8ePHw9zcHEFBQfDz88ODBw/g5eWFb775BrVr1xY59ZtR4pzz8/ORmpqK+Ph4xMfH48yZM8jLy4O5uTneffddXfF2dHSUzXZGarW62Oe2CILwyue5nDt3zpCxDO7+/ftYvnw5oqOjkZOTo/ealZUVunfvjqlTpxa5u0aK1Go1vv76a3h4eOiOZWVlwdfXF8uWLdP9/S4UExODRYsWSfJr3LVr1zK9LzY2tpyTGNfLCtrrSLmgff7554iJiQEAfPDBB/Dz84Opqelr3+fs7GzoaAahVqt1/16aZ21J8e9xWQUEBGDnzp2SnXNJv38VFBTg7t27up/TUp1vady+fRuhoaEICwvD9evXFTFnopdh95ZnD1XinNm9/x+7N7u3FL/G7N7s3q/D7i1f7N7yxe5dsXABnIzGzc0NAwYMwPTp0/WOHz9+HGPGjEHTpk1x7949zJkzR/LbzRVS2pzHjBmDU6dOITc3FyYmJmjVqhXc3Nzg6uoKJyenIttYycXs2bPL9D4pX0mVmpqKcePGISsrC23btoWbmxvs7OxgZmaGjIwMJCUlISkpCVWrVsWaNWvQvn17sSO/EaWeaFESJRa0v88ZeP28pV5Yynpl9Yt33siZ1Et4SZw5cwZz5szBuXPnUL9+fXzzzTfo0qWL2LEM4tmzZ4iOjkZISAgSEhJ0f4c7deqEn3/+Wex4RGRASuuhgPLmzO5dOuze0sHuLX/s3uzeL8PuLS/s3uzeFQG3QJeQhIQEXLhwoUxbTFQE2dnZaNq0aZHjzZs3hyAIyMzMxK5du2TxbIFCSpvz77//DnNzc/j4+GDcuHF4++23xY5kFFIu02Xx4MEDfPbZZ6hcuTJ++uknODk5FTsuPT0dU6ZMweeff449e/agZs2aRk5afnx8fEpVzJTk1KlTCA0NlfxWoUoqWoWU9r2rLF9juT0bVMmys7OxbNky7Ny5EyYmJhg3bhz++c9/ynLL0NTUVISEhGD//v148uQJAKBGjRro378/Bg0ahHr16omckKjiY/eWHqXNmd1bGdi96e/YvaVLad+72L2Vjd2b3bsi4QK4hERGRmLnzp2SLeFarRZmZkX/yBVuxTV+/HjZlNFCSpvzwIEDkZCQoNvmo0mTJujYsSPc3Nzg7OyMatWqiR2RysG2bduQk5OD7du3o0GDBi8d17JlSwQHB8Pb2xu//vorJk2aZMSU5WvRokViR6hQ7ty5g9DQUISGhuL69esAoMgSLvWC5uvrW+r33Lx50wBJKp7Ck0sHDhyQ9DOb6Lk9e/bgu+++w4MHD+Di4oKAgIBiF0mkLCMjA2FhYQgNDcWff/4JQRBgZWUFd3d3xMXFYd68eXpbiRLRq7F7S4/S5szurQzs3sTu/Ry7t3yxe8sLuze7d0XDBXCqMOT2zbAk5Dbn+fPnAwBu3bqFuLg4xMfHIyoqCtu2bYOJiQnUajVcXV11pdza2lrkxFQWBw8eRJ8+fV5ZwAvVq1cPvr6+iI6OlnQJ9/Pzw4QJE9CxY0fdsfz8fKSkpECtVqNKlSp648PDwzFr1iykp6cbO6rBaDQa3XY+8fHxEAQBgiDA1dUVQ4YMETueUSmtoD179gxRUVEIDQ1FUlIS/vjjD7EjGUThyaWwsDBcu3YNgiDA1tZW7Fj0Bi5fvoy5c+ciMTER1atXx6JFi+Dj4yN2rHK1f/9+hISEIC4uDlqtFlWrVoW3tze8vLzQqVMn3Lt3D56enmLHJKIKRm49tCTkNmd2b2Vg936O3Zvdm91bXti95Yfdm927ouICOBGVO3t7ewwYMAADBgwAAFy8eBHx8fE4efIkdu/ejeDgYJiZmaF169bo2LEjJk+eLHJiKo0bN27g448/LvF4tVqN0NBQAyYyvMTERAwcOFDvWHZ2Nvz8/LBx40a9cl5IEARjxTOoF7fzKZxX79698dlnn6FJkyYiJzQOJRa05ORkhISEICoqCjk5ORAEAc2bNxc7VrkqPLkUGhqK+Ph4FBQUQBAEtGvXDoMHD0avXr3EjvhGwsLCSjX+ypUrhgliZBqNBqtXr8bGjRuRn5+PgQMHYvr06ahatarY0crd1KlTYW1tjaFDh8LDwwPOzs4wNTXVvc4tRImI5I3dW97YvZ9j92b3ZveWPnZvfeze0sPuLU1cACejOnXqFLRard6xnJwcAMCJEydw9+7dIu+R+tVCSpzzi5o3b47mzZtj+PDh0Gg0iIqKwq+//orU1FScOXOGJVxizM3N8ezZsxKPz83Nle0dB3Ip2i8qbjsfW1tb+Pr6ol27dggICECvXr1kX8DlXtCKc/fuXd3X/urVqwAAMzMz9OrVC0OGDEGHDh1ETlg+zpw5g927d+udXKpatSqys7Mxf/78IifdpGrWrFmlKmGCIEi+tB09ehTz58/HzZs34eDggLlz56Jt27ZixzKY+vXr48aNGwgJCcGVK1fwn//8B56enmjcuLHY0YhIZErsoUqc84vYveWF3fv/sXuze8sNuze7N7u3tLB7SxMXwMmodu7ciZ07d+odK/wQu2HDBr1v/IU/CKReSJU457+7du0azpw5gzNnziAtLQ3nz59HXl4eKleujM6dO8PZ2VnsiFRK77zzDo4ePVriZyIeOXIEzZo1M3AqKi9jx47FiRMnoNVqUbduXQwdOhSenp5wdXWFiYkJbt68KduTD4WUUtAKaTQaHDx4ELt370Z8fLzuxHHTpk1x+fJlLFmyBD169BA55ZvLyMjAnj17EBoaiitXrkAQBNjb28PX1xdeXl5466230K1bN9SoUUPsqOUmKChI7AhG9fnnnyMmJgYA8MEHH8DPzw8ajQZJSUmvfJ+UP4scPHgQZ86cQXh4OKKionD8+HEsX74cTZo0gZeXF1q1aiV2RCISiRJ7qBLn/Hfs3vLD7i1v7N7s3uze7N5Sxe7N7i0VXAAX0a1bt0o1vvDKZalS2g8CQHlzzsrKQlpamq5wp6WlISsrC4IgoFq1amjfvj2mTp0KZ2dntGzZEiYmJmJHpjLo27cvvv32W0RGRr72KtywsDDExcVh+fLlRkpHb+rYsWOwtraGn58fhg0bhtq1a4sdySiUWNDS0tIQEhKCyMhIPH78GCYmJnB0dISXlxe8vLyg1Wrh6ekJc3NzsaOWi65du6KgoABqtRrjx4+Hh4cHWrdurXv95s2bIqYzDF9fX7EjGFV0dLTu32NjY3H48OFXji9c/Dh37pyhoxlU27Zt0bZtW3z11Vc4fvw4IiIicOjQIaxZswYqlQoqlQqHDx+GWq1GvXr1xI5LJAp2b/lT2pzZvZWB3Vve2L3Zvdm95YPdm92b3bti4gK4iLp27aqorTHK8oNA6j8QlTZnV1dXqFQqCIKA6tWrw8XFBc7OznB2doaDg4Ok//zS/+vfvz/CwsLw5Zdf4sKFCxg2bBjs7Oz0xmRkZCA4OBhbtmxBly5d0LNnT5HSUmlNnDgR+/btw9q1a/Hzzz+jcePG8PT0hKenJ959912x4xmMEgvaRx99BCsrK3Tq1AmdO3dG165d9U4yyG3O+fn5sLKyQq1atWBlZVVki1QluHv3Lk6fPo2MjAwAgJ2dHRwdHVG3bl2Rk5UPpS1+vMjU1BRdunRBly5dkJubi5iYGOzduxcnTpzAb7/9hpCQELi6uqJ///748MMPxY5LZFTs3q8n9Z/7Spszu7cysHvLG7s3u3chuc2Z3ZvdW+7YvaWDC+Ai8vHxYSkpxrNnzxAVFYXQ0FAkJSXhjz/+EDuSwcllzj169ICLiwtcXFy47ZaMmZiYYO3atZg+fTp+/vlnrFu3DnXr1kXt2rVhamqKBw8e4Nq1axAEAT179sSCBQvEjkylMHHiREycOBFnz55FREQEIiMjsW7dOqxfvx5169aFk5OTLH92KbGgWVlZ4enTp/jf//6H6tWrw9raGp07d4aNjY3Y0Qzi8OHDiIiIQEREBJYvXw6VSoVatWqhW7du6Natm6yvzr148SICAwORlJQEQRD0tlI0MTGBk5MT/P394eDgIGLKN6e0q+5fxdLSEt7e3vD29sajR48QGRmJiIgInDx5EvHx8SzhpDjs3sWTSw8tDbnMmd1bGdi95Y3dm92b3Vt+2L2Vh927YlMJcn+YCElGcnIyQkJCEBUVhZycHAiCgObNmyMiIkLsaAajxDmTvPz+++/Ys2cP0tLScO/ePQiCADs7Ozg5OaFv375wc3MTO2K5UKvV+Prrr+Hh4aE7lpWVBV9fXyxbtgyOjo5642NiYrBo0SLJb+0DPL8D6uTJk4iIiEBMTAyePHkCAKhXrx769+8PHx8f2Nvbi5zyzd2+fVtX0C5evFhsQfPy8sLq1av1/hxIWW5uLmJjYxEeHo7jx49Dq9XC3NwcHTt2RLdu3aBWqzFgwABZzbnQ+fPndSeZbt++DZVKpTspMWvWLHzyySdiRyw3hw4dwpQpU6BSqeDp6Qk3NzfY2dnBzMwMGRkZSEpKQlRUFPLz87FixQp4enqKHZkM6Pr169i3bx/Gjx8vdhQiEpESe6gS50zywu7N7s3uLV3s3uze7N7Kw+5dMXABXCJu376N0NBQhIWF6T1jQeru3r2LsLAwhIaG4urVqwAAMzMzeHl5YciQIejQoYPICcufEudMJHVqtbrYK69ftz2mHEr432k0GsTGxmLv3r04evQo8vLyYGJigo4dO+Jf//qX2PHKjZIKWqHMzEzdVaqpqal6r40dOxbjx4+HlZWVOOEMLDExEREREYiOjkZWVhZUKhXq16+Pfv36wdfXF3Xq1BE7YpnduHED3t7eaNy4MVauXIkGDRoUO+7OnTv4/PPPcenSJezZs+el4yq62bNnl/o9KpUKCxcuNEAaIpIqdm/5UOKciaSO3fs5dm92bzli92b3ZvcmY+MCeAX27NkzHDhwAKGhoUhISEBBQQHMzMxw9uxZsaO9EY1Gg4MHD2L37t2Ij4/XbXXTtGlTXL58GStWrECPHj1ETlm+lDhnUg6NRoPz588jIyNDdxW6Wq1GpUqVxI5WbsrywQ6Q9zNxHj9+jKioKEREROD06dNIT08XO5JByLmgvczNmzcRERGBvXv34tKlS1CpVLC2tkbPnj3Rv3//InddyEVeXh6OHTuG8PBwHDlyBM+ePZP8564FCxZgz549iIqK0nvGXHEyMzPRq1cv9OnTB7NmzTJSwvKlVqtL/R6VSiXpE6ZluUNEpVLh4MGDBkhDJF3s3vKhxDmTcrB7vxy7t/Sxe7N7S/lzF7v367F7kxi4AF4BpaSkIDQ0FJGRkbqtuerUqYOBAwfio48+Qu3atcWOWCZpaWkICQlBZGQkHj9+DBMTEzg6OsLLywteXl7QarXw9PSU1XYvSpwzKcf9+/exfPlyREdHIycnR+81KysrdO/eHVOnToWdnZ1ICclYTp06Jfs7aORY0Eri/PnzCA8PR2RkJO7cuSP5wlJST548QXR0NPbu3YuNGzeKHafMevbsic6dO5f4ROJ3332Hw4cPY//+/QZOZhg3b94s0/uk/Ay6rl27FjkmCAJu376NWrVqwcLCotj3xcbGGjoakSSwe8unhypxzqQc7N5UiN1bvti92b2lhN37OXbvis9M7AD03N27d7Fnzx6EhITg6tWrEAQBJiYmAIApU6Zg7Nixul9L1UcffQQrKyt06tQJnTt3RteuXfWuiCrrN3Fk2U8AAEW6SURBVM6KTIlzJmVITU3FuHHjkJWVhbZt2xb7XJuwsDDExsZizZo1aN++vdiRqZTOnj2L1NRUCIKAFi1aFFuynzx5gqVLl2LXrl34448/REhpPObm5vDw8ICHh4deQZM7tVoNtVqNL7/8EgkJCYqYMwDY2NjA09MTycnJYkd5I7dv30azZs1KPL5Jkyb497//bcBEhiXlMl1WxZXphw8fwt3dHUuWLEHHjh1FSEVUsbF7y7OHKnHOpAzs3vLH7q2P3ZvdW4rYveWP3VuauAAuosKtuUJCQnDy5ElotVpUqlQJXbt2Rbdu3eDg4ABfX180b95c8gUcgO4ZLv/73/9QvXp1WFtbo3PnzrCxsRE7msEocc4kfw8ePMBnn32GypUr46effoKTk1Ox49LT0zFlyhR8/vnn2LNnD2rWrGnkpFQWf/31F7744gscPXoUhZvEqFQquLu7Y82aNborGo8cOYKAgADcvXsXDRs2FDOy0cmloJWWvb295E8e37hxA8HBwUhJSQEAtGzZEmPGjEGjRo30xkVHR2P+/Pm4f/8+AgMDxYhaLiwtLfH48eMSj3/8+DGqVq1qwETi0mg0uHTpEiwtLdGkSROx4xjMq56PSaRU7N7y76FKnDPJH7u3vLF7vx67t3Sxe78au7c8sHtXfFwAF1GnTp3w+PFjVKtWDb1794aHhwc6d+4MKysrAPK7QvnkyZOIjY1FeHg4du/ejZ07d8Lc3BwdO3ZEt27dyvTsiIpOiXMm+du2bRtycnKwfft2NGjQ4KXjWrZsieDgYHh7e+PXX3/FpEmTjJiSyurHH3/EkSNH0KlTJ/j6+sLa2hpHjx7Fjh078N1338Hf3x+LFy/Gpk2bYGpqilGjRuHzzz8XO3a5UFpBA4AzZ85gzZo1enP+7LPP9O46EAQBmzZtwg8//IDc3Fyxor6xc+fOYfjw4Xjy5AksLS1haWmJ9PR0REZGYvv27XjnnXeQnZ0Nf39/REdHw9TUFGPHjhU79htp3bo1oqOjMWrUqBKNP3DgAFq0aGHgVIaVnZ2N9evXIyUlBVu3btUdj4iIQGBgoO6kROPGjbFw4UK0a9dOpKREZEzs3vLvoUqcM8kfu7e8sXuze7N7s3tLGbs3SQEXwEWUlZUFa2trdO/eHa6urmjfvr2ugMuRpaUlevXqhV69eiEzMxORkZGIiIjAsWPHcOzYMQDPr5pJS0uDu7u7LP5fKHHOJH8HDx5Enz59XlnAC9WrVw++vr6Ijo5mCZeI2NhYuLi4YP369bpj77//PmrWrImtW7fC1tYWwcHBUKvVCAoKkvwH9kJKLGgnT57EmDFjoNVq0bhxY1hZWSEpKQkjRoxAcHAwnJ2dcePGDUybNg1paWmwsbHB3LlzxY5dZoUnEZYtW4bevXsDeP680C+++AKBgYFYunQp/Pz88Oeff6JNmzYIDAyEg4ODyKnfzIABAzBlyhQEBwdj5MiRrxy7du1apKWl6f3dl5qcnBwMGjQIly9fRp06dZCfnw8zMzOkpaVh5syZEAQBgwYNQvPmzREWFoaRI0ciLCysyIk2IpIfdm/591Alzpnkj91b3ti92b3Zvdm9pYrdmyRDINEkJSUJ3377reDi4iKo1WqhRYsWwkcffSRs2LBBuHr1qnDjxg3BwcFBOHjwoNhRDerGjRvCmjVrhN69ewsODg6CWq0W2rdvL3z99ddCcnKy2PEMQolzJvlo166dsH379hKP37lzp+Do6GjARFSe2rVrJ2zatKnI8UuXLgkODg5CixYthPnz5wsajUaEdIYzfvx4oVWrVsLevXt1x86cOSN4eHgIw4cPF+7evSt0795dcHBwEAYMGCCcP39exLTlY8SIEUL79u31fu7cuXNH8PHxEQYOHChcunRJcHd3FxwcHIRJkyYJGRkZIqZ9c+7u7sL8+fOLHD9w4IDQsmVLYejQoULr1q2F9evXC1qtVoSEhjFp0iRBrVYL06ZNE1JSUvT+7mq1WiElJUU35ptvvhEx6Zv74YcfhFatWgn79+/XOz527FhBrVYLQUFBumO5ubmCl5eXMGvWLGPHNLiHDx8KDg4OQlxcnNhRiCoMdu/nlNhDlThnkg92b3lj92b3Zvdm95Yqdu/n2L0rPt4BLqIOHTqgQ4cO+Oabb3D06FFERETgyJEjOHPmDJYuXYoGDRpApVLhr7/+EjuqQdWrVw/jx4/H+PHjcf78eYSHhyMyMhK//fYbdu/ejXPnzokdsdwpcc4kH+bm5nj27FmJx+fm5sLa2tqAiag8PX36FDVq1ChyvHr16gCAbt26wd/f39ixDC4tLQ2DBw/WXZ0MAO+++y6+/PJLTJ06FVOnTsXNmzcxffp0fPrpp7J4Pui5c+cwZMgQODo66o699dZbmDZtGsaMGYPJkycjPz8fK1asQM+ePUVMWj6ysrKK3f60TZs20Gq1uHDhArZu3Sq7bbmWLl2KoKAgbN++Hfv27YOpqSlsbW1hamqKzMxMaDQamJiYYNSoUZg6darYcd9IdHQ0+vbtix49euiO5eTk4MSJEwCAoUOH6o5XqlQJffr0wa5du4yek4iMj937OSX2UCXOmeSD3Vve2L3Zvdm92xk/nAGxe7N7U8XDBfAKwMzMDB4eHvDw8EBOTg6io6MRERGBhIQECIKAmTNnYvfu3ejXrx+6d++OSpUqiR3ZYNRqNdRqNb788kskJCRg7969YkcyOCXOmaTtnXfewdGjR+Hn51ei8UeOHEGzZs0MnIoMTaVSAQB8fHzEDWIgSixo2dnZaNq0aZHjzZs3hyAIyMzMxK5du9CwYUMR0pW//Pz8Yj9DWVpaAgDGjh0rq69vIQsLCwQEBMDPzw9hYWFIS0vDvXv3IAgCmjRpAicnJ3h7e8tiK7IbN27oFW0ASEpKQn5+Pho0aFDkz3LdunXx4MEDY0Ysd6tWrSpyLDc3FyqVCnv27MHp06eLvK5SqfDZZ58ZIx5RhcPu/f+U2EOVOGeSNnZvZWL3ZveWOnZvdm927+fYvcXHBfAKpnLlyvD19YWvry8ePHiAvXv3IiIiAvHx8YiPj8f8+fORlJQkdkyjcHV1haurq9gxjEqJcybp6du3L7799ltERkaiV69erxwbFhaGuLg4LF++3EjpyNAKC4vcKLGgabVamJkV/ShoYWEBABg/frxsCnhJtG7dWuwIBtW4cWPJX2X+OiYmJigoKNA7dvLkSQCAu7t7kfEPHz6EjY2NUbIZSnElvFBYWFixx1nCiZ5j9/5/SuyhSpwzSQ+7t7Kxe8sHu7c+dm/pY/fWx+5dcXEBvAKrWbMmPvnkE3zyySe4evUqwsPDJX2FckmvWP07lUqFzZs3GyCNcShxziR//fv3R1hYGL788ktcuHABw4YNg52dnd6YjIwMBAcHY8uWLejSpYsstnBSksIrzkv7mpzJvaAVp7gr1OVMCX+27969i9OnTyMjIwMAYGdnB0dHR9StW1fkZOWjWbNmSElJwbBhwwAAgiAgJiYGKpUKXbt2LTL+0KFDkv9zvmXLFrEjEMkCu7f0e6gS50zyx+4tf+zeRbF7y58S/myze+tj9yaxcAFcIho1aoRJkyZh0qRJYkcps8TExGKPq1QqCILw0tekTIlzJvkzMTHB2rVrMX36dPz8889Yt24d6tati9q1a8PU1BQPHjzAtWvXIAgCevbsiQULFogdmUpp4cKFWLFihd4xQRCgUqkwffr0Ildrq1QqHDx40JgRjY7fm+Xh8uXLRe7my87OBgBcuHCh2KvynZ2djZLNkC5evIjAwEAkJSVBEAS9zyAmJiZwcnKCv78/HBwcREz55nx8fLBgwQK0adMG7733Hnbu3Ilbt26hYcOG6NSpk97YtWvXIjU1VfLPVXRxcRE7ApHssHtLkxLnTPLH7i1/7N5F8XuzPLB7s3sXYvcmMXEBXER+fn6YMGECOnbsqDuWn5+PlJQUqNVqVKlSRW98eHg4Zs2ahfT0dGNHLRfnz58vcuzhw4dwd3dHcHCw3v8HuVDinEkZqlSpgp9//hm///479uzZg7S0NPz3v/+FIAiws7ODj48P+vbtCzc3N7GjUinZ29sDQLEnCguvVH3xtZedVJQaJRa0U6dOQavV6h3LyckBAJw4cQJ3794t8h4pP4tu7dq1WLt2bbGvLV68uNjj586dM2Qkgzt06BCmTJkClUqFHj16wM3NDXZ2djAzM0NGRgaSkpIQFRWFAQMGYMWKFfD09BQ7cpkNHjwYp0+fRlBQkG7Bo1q1ali6dClMTEwAAL/99hvWrVuH69evw8nJCUOGDBE5tWFpNBpcunQJlpaWaNKkidhxiETD7i3/HqrEOZMysHvLF7s3uze7tz52b+lg9y6K3btiUgly+ckpQWq1GkuWLIG3t7fu2KNHj+Du7o6NGzcWKWjh4eGYOXOm5H8Y/N2jR4/QsWNHRRVSJc6ZiKiiU6vVL73SvPAK/OJI+Wfyy+b894+Gf3+98P+DVOf8448/lulugokTJxogjXHcuHED3t7eaNy4MVauXIkGDRoUO+7OnTv4/PPPcenSJezZs+el46QiJSUFKSkpsLGxgaenJ2rUqKF7bdWqVdizZw+8vb0xbty4Yp8/KDXZ2dlYv349UlJSsHXrVt3xiIgIBAYG4vHjxwCeP4tu4cKFsnumIlFJsHsrs4cqcc5ERBUdu/f/Y/fWx+4tPezez7F7V1y8A7wC4jUJRCQVubm5sLS0LHL80qVLqFq1apHnk1HFFxYWhg4dOqB+/fpiRzGqzz77THFbrQUFBYkdwaikvJVtWW3evBnm5ubYsGGDXhF9UZ06dbBu3Tr06tULv/zyC2bNmmXElOXP0dERjo6Oxb42ceLEl55YycvLQ2pqarF3g1ZUOTk5GDRoEC5fvow6deogPz8fZmZmSEtLw8yZMyEIAgYNGoTmzZsjLCwMI0eORFhYGBo1aiR2dKIKgd2biKSC3Vt+2L2Vg91b/ti9i2L3ZveuCLgATkREpabRaLB48WJERETg2LFjRYr48uXLcezYMfTv3x8zZ86EtbW1SEmptGbPno3vvvtOcSVciQXN19dX7AhGVdz2t3J3/Phx+Pr6vrKAF7K1tYWPjw8OHz4s+RJeVllZWfDz8yv2btCKauPGjbh27Rq+//579OjRQ3d89erVEAQBn3zyie7rOWDAAPTp0wdr165V3Ek4IiIiqWL3li92b+Vg95Y/du/SYfcmYzEROwAREUmLRqPBqFGj8Msvv8De3h6PHj0qMuaDDz6Ag4MDduzYgdGjRyM/P1+EpFQWSr0Tys/PDydPnhQ7hlF5eHjg0KFDYscwmsTERNy/f1/sGEZ1+/ZtNGvWrMTjmzRpgjt37hgwUcUnte+B0dHR6Nu3r14Bz8nJwYkTJwAAQ4cO1R2vVKkS+vTpo7jvdURERFLF7i1vUvvcWV7YveWP3fv12L2l9z2Q3VuauABORESlsmnTJiQlJcHf3x9hYWGoW7dukTEDBw7E7t27MXHiRCQnJ2Pbtm0iJCUqOSUWtJs3b+Kvv/4SOwYZkKWlpe4ZVCXx+PFjVK1a1YCJqLzduHEDrVu31juWlJSE/Px81K9fHw0bNtR7rW7dunjw4IExIxIREVEZsXuTHLF7kxyxe8sfu7c0cQt0MpqwsLAix3JycgAAJ06cwN27d4t9n4+PjwFTGZYS50zyFxERAQ8PD3z88cevHTtx4kQkJiZiz549GDFihOHDUbnIzMzErVu3SvUee3t7A6UhorJq3bo1oqOjMWrUqBKNP3DgAFq0aGHgVFSeTExMUFBQoHes8Cpzd3f3IuMfPnwIGxsbo2QjIvEosYcqcc4kf+ze8sfuTSQP7N7yx+4tTVwAF9mLH3SysrIAPP8L8uIHoOK2OpKSWbNmQaVS6R0r3Opiw4YNUKlUul8X/rtKpZJ0IVXinEn+rl69isGDB5d4/Pvvv4+VK1caMBGVt4ULF2LhwoUlHq9SqZCenm7ARETlIyYmBlevXi3xeJVKhc8++8yAiQxrwIABmDJlCoKDgzFy5MhXjl27di3S0tKwfv16I6Wj8tCsWTOkpKRg2LBhAJ5/zoyJiYFKpULXrl2LjD906BCaNm1q7JhEFQK7t7x7qBLnTPLH7i1/7N4kV+zeL8fuLU3s3tLEBXCRveyDzvTp00VIY1hBQUFiRzA6Jc6Z5M/a2hparbbE4ytVqgRLS0sDJqLy5uTkhAYNGogdw+iUVtAAYOfOnYiLiyvxeJVKVaoTNBVNTEwMoqOjSzxe6l/jHj16wMvLC9999x3++OMPfPzxx2jVqhXMzc0BAAUFBUhLS8PGjRsRExODgQMH4h//+IfIqak0fHx8sGDBArRp0wbvvfcedu7ciVu3bqFhw4bo1KmT3ti1a9ciNTUV/v7+IqUlEhe7t7wpcc4kf+ze8sfuXTJS72UAu/frSP1rzO4tf+ze0sQFcBH5+PgUuUJZznx9fV87JisrC5aWlqhUqZIREhmeEudM8tekSRMkJyfDz8+vRONPnz6NevXqGTgVladBgwbB29tb7BhGp7SCBjx/XlFSUlKJx0u9hI8bN67YrankbOnSpQgKCsL27duxb98+mJqawtbWFqampsjMzIRGo4GJiQlGjRqFqVOnih2XSmnw4ME4ffo0goKCdHc0VqtWDUuXLoWJiQkA4LfffsO6detw/fp1ODk5YciQISKnJjI+du+i5NZDlThnkj92b/lj9y4Zdm/pYfdm95Ybdm9p4gK4iBYtWiR2BKPLy8tDSEgIUlNT9a7QTkxMxJw5c3DlyhWoVCq4u7sjICBAFldBKnHOJG++vr4ICAhAfHw83NzcXjk2ISEB0dHRmDRpkpHSEZWdEgvaV199BQ8PD7FjGE3Tpk3h4uIidgyjsrCwQEBAAPz8/BAWFoa0tDTcu3cPgiCgSZMmcHJygre3Nxo1aiR2VCoDlUqFpUuXYtiwYUhJSYGNjQ08PT1Ro0YN3Zg7d+5AEARMmDAB48aN05VzIiVh91ZGD1XinEne2L1Jrti95Y/dm91bbti9pYkL4CIaPXo0fHx84OnpqYgtivLy8vDpp58iKSkJ5ubmmD9/PszMzHDlyhWMHj0aeXl56NSpE5o1a4YDBw5g0KBBCA8PR61atcSOXmZKnDPJn4+PD3bv3o3x48dj3LhxGDhwYJE/sxkZGdi1axc2bNiA+vXrY+jQoSKlJSo5JRa06tWr8y4RhWjcuDGvMpcxR0dHODo6FvvaxIkTMXHixGJfy8vLQ2pqKtRqNapUqWLIiESiYveWfw9V4pxJ/ti9Sa7YvUnO2L3ljd1bWngJgogSExMxY8YMuLu7Y9asWYiLi4MgCGLHMpht27bh1KlTmDFjBpKSkmBm9vz6ix9//BEajQbe3t5Yt24dvvzyS+zevRumpqZYu3atyKnfjBLnTPJnbm6O1atXo23btli5ciU6deoEDw8PDB48GAMHDkTXrl3RpUsX/Pjjj3BwcEBwcDB/sEuIvb09rK2txY5BRERGkJWVBT8/P5w9e1bsKEQGxe4t/x6qxDmT/LF7yxu7NxGRcrB7i4N3gIvo5MmTOHjwIPbv3499+/Zhz549qFWrFry9vdGnTx+o1WqxI5arvXv3onv37hg1apTumEajQWxsLFQqld5xW1tb9OvXD/v27YO/v78YccuFEudMylCzZk1s3rwZ0dHR2LdvH9LT03HhwgWYmJigVq1a8PHxQbdu3dC1a1exo1IpxcbGvvL1goIC3LlzB7Vq1YKFhYWRUhG9uYkTJ8LBwUHsGEZV0udF/p1KpcLmzZsNkKZiuHfvHmxtbWFubl7ktWrVqmHLli1o0aKFCMnEI+dFQKJC7N7y76FKnDMpA7u3fLF7k1yxe5cMuze7NxkeF8BFVLlyZfTt2xd9+/ZFdnY2Dhw4gMjISGzevBnBwcFo1qwZ+vbtC29vb7z11ltix31jf/75J3x9ffWOnT59Grm5ubCzsyvyg7Fhw4bIyMgwZsRyp8Q5k7J4eXnBy8tL7BhkRA8fPoSHhwc2btyIjh07ih2n3CixoAUFBb102yY5etk2VIX++usvbNy4ET4+Pqhfv76RUhlWYmJiscdVKtVLi5dKpTJkJKMIDg7Gzp07ER4eXqRsL1y4EHFxcRg1ahRGjx6t90wuc3NzxW3FSKQU7N7y76FKnDMpC7u38rB7ywe7tz527/9/TerYvami4wJ4BVGlShUMGDAAAwYMwMOHDxEVFYX9+/dj+fLlWL58OZydneHj4wMvLy9UrlxZ7LhlUlBQAFNTU71j8fHxAAB3d/ci47Ozs2FlZWWUbIaixDkTAc+3dbG0tESlSpXEjkIGIMcrFpVY0F48SfyiJ0+eYMGCBRg9ejSaNm1qpFTi+euvv7B69Wo4OTnJ5mt8/vz5IscePnwId3d3BAcHy+pEGvD8e9P06dOxb98+1KxZE3fu3EGDBg30xjRt2hTJyclYsWIFzp49ix9++EGktEQkFnZvefZQJc6ZCGD3ljt2b3n0MnZvfeze0sfuTVLBZ4BXQDVq1MDQoUOxdetWHDlyBF9//TVMTEzw7bff4h//+IfY8cqsYcOGOHfunN6xmJgYqFQqvP/++0XGHz9+HA0bNjRSOsNQ4pxJGfLy8rBjxw7Mnj1b73hiYiJ69eoFNzc3ODo6YvTo0bh27ZpIKYnKT2FBu379uthRjCY3NxdhYWGKujtKjieYXiSHq8xfZseOHdi3bx9GjBiBI0eOFCngwPMTbjExMejXrx9iYmIQEhIiQlIiqijYvZ+TQw9V4pxJGdi9SWnYvZWB3Vva2L1JKrgAXsGZm5vD0tISNjY2MDMzg0ajETtSmfXu3Rt79uzBwYMH8fTpU2zatAmXL19GzZo1izyrKDw8HCdOnICHh4dIacuHEudM8peXl4dPP/0UAQEB2Lt3L/Lz8wEAV65cwejRo3HlyhV06tQJI0aMwJUrVzB48GDcv39f5NREb04JBe1FSpwzSddvv/0GFxcXzJo1q9jnjBWysLBAYGAgWrRogZ07dxoxIRFVZOze0u6hSpwzyR+7NymVEnuoEudM0sXuTVLBLdAroIcPHyImJgZRUVFISkpCfn4+WrZsicmTJ6N3795ixyuzESNG4Pfff8fEiRN1z78wNzfHggULYGFhAeD5Fdrbtm1DYmIiGjdujBEjRogb+g0pcc4kf9u2bcOpU6cwY8YMDBs2DGZmz3+U/Pjjj9BoNOjTpw++++47AMDYsWPh7e2NtWvXwt/fX8zYVE7Mzc3h7OyMatWqiR2FiEjP//73P0yePLlEY1UqFXr06IE1a9YYOBURVWTs3vLpoUqcM8kfu7eysXsTUUXF7k1SwQXwCuL+/fuIjo5GVFQUTp8+Da1Wi3r16mHUqFHo06ePLJ7/YWFhgU2bNiEyMhKpqamwsbGBt7c3mjVrphtz9uxZJCcno0+fPpg1axYsLS1FTPzmlDhnkr+9e/eie/fuGDVqlO6YRqNBbGwsVCqV3nFbW1v069cP+/btYwmXiOzsbFSpUuWlr1erVg1bt27VO5aQkABXV1dDRyMyqCpVqiAoKAjNmzcXOwqVkZmZmW6RoySqVq1a5HmxRCR/7N7Pya2HKnHOJH/s3vLG7k1Kxe4tfezeJBVcABdRRkYGoqOjceDAASQnJ0Or1aJatWoYMGAAvL290aFDB7EjljtTU1N4e3vD29u72NfHjx+PyZMnw8REPrvzK3HOJG9//vknfH199Y6dPn0aubm5sLOzg4ODg95rDRs2VNRzjKTOz88PwcHBsLW1fe3YZ8+eYcmSJfj111+Rnp5u+HAiUmJBq1atGrZs2YIWLVqIHcUoKlWqhH/84x+8w0LCGjVqhLNnz5Z4/NmzZ1G3bl0DJiKiioLduyg59lAlzpnkjd1b3ti9i8fuLX/s3tLH7k1SwQVwEXXp0gXA8yuVPT094e3tjS5durzyuQlyZ2VlJXYEo1PinEnaCgoKily1Fx8fDwBwd3cvMj47O5t/ziXk3Llz+Pjjj7Fp0ybUqlXrpePOnDmDmTNn4s8//3zlOLmoVKmS3sknrVaLdevWYcKECSKmMixzc3O4uLjofp2dnY3FixcjMDBQxFRvLjg4GDt37kR4eHiRz1wLFy5EXFwcRo0ahdGjR0v+BHlYWFiRYzk5OQCAEydO4O7du8W+z8fHx4CpDOfDDz/EsmXLMHLkyNeeMLt48SIiIiLg5+dnpHREJCZ276KU+PlciXMmaWP3ljd27+Kxe7N7SxG798uxe5OYVIIgCGKHUKrhw4ejb9++6NGjB2xsbMSOQ0RUIn379kXbtm0xb9483bFevXrhypUrWLFiBXr06KE3fvTo0cjKysKuXbuMHZXK4JdffsGCBQvQoEEDbNq0qcgVmnl5efjhhx+wceNGaLVa9O3bF1999ZUsrtzNzs7Grl27kJqaCkEQ0LJlSwwbNgxVq1bVG/ef//wH/v7++O9//4tz586JlLZ83LhxA8HBwUhJSQEAtGzZEmPGjEGjRo30xkVHR2P+/Pm4f/++ZOcsCAKmT5+Offv2oWbNmti+fTsaNGigN2bVqlXYtWsXMjIy0K1bN/zwww8ipS0farUaKpVK79jfP/oX95pKpZLs1/ivv/5Cv379kJmZia+++gq9e/cuctI4Pz8fe/fuxdKlSwEAoaGhqF27thhxjebevXuwtbUtdqEvLy8PKSkpaNGixSu34CSSOnZvIpIidm95Y/dm92b3ZveW6teY3bt47N4VDxfAiYioVNatW4fVq1dj2bJleO+997Bjxw4sWrQItWrVQmxsrN4zYMLDwzFz5kxMnjwZ48ePFzE1lcbevXsxa9Ys2NnZYdOmTWjYsCGA51eoz5w5E//9739hb2+PuXPnolOnTiKnLR/Xr1+Hn58f7ty5o1dSatWqhV27dqFu3brIz8/HsmXLsGXLFmi1WvTu3RvLli0TMfWbOXfuHIYPH44nT57A0tISlpaWyMzMhLW1NbZv34533nkH2dnZ8Pf3R3R0NExNTTFq1ChMnTpV7Ohlsn37dsyZMwcjRozAtGnTXnrXn0ajwdy5cxESEoIFCxagX79+Rk5afkJDQ8v0vhe32pSSK1eu4LPPPsOVK1dgbW2NVq1aoXbt2tBqtXjw4AHOnj2L3Nxc2NvbY/Xq1VCr1WJHLhevurti6tSpsrq7goiISCnYveWP3Zvdm92b3Vuq2L3ZvaWAC+AiKm5rjJKQ6tYYRCQPGo0Go0aNQlJSElQqFQRBgLm5OVatWqXbXjImJgbbtm1DYmIiGjdujJCQEFhaWoqcnErj6NGjmDJlCmxsbLB+/XocOnQIa9euRX5+PoYMGYJp06ahcuXKYscsN9OmTUNkZCSmTp2K/v37w8rKCkePHsW8efPQrl07LFmyBGPHjkVycjLs7e0REBCg+/MuVRMmTMDvv/+OxYsXo3fv3gCAtLQ0fPHFF7C3t8fSpUvh5+eHP//8E23atEFgYGCR5wxKyYABA2BtbY0tW7a8dqwgCOjfvz8sLCywfft2I6Sj8qTRaPDLL79g3759OH/+PPLz8wE831qwXbt28PLywqBBg/ROGkuVEu+uICoLdm8ikiJ2b2Vg92b3Zvdm95Yqdm9274qOC+AiKtwao3DLi9eR+tYYRCQfWq0WkZGRSE1NhY2NDby9vdGsWTPd6ytWrMDGjRvRq1cvzJo1C9WrVxcxLZXV6dOnMWHCBDx58gSCIKBRo0YIDAxEhw4dxI5W7jp37oz33nsPQUFBesdDQ0MREBCAzp074+DBgxgyZAhmzJgBa2trkZKWn/feew89e/aEv7+/3vHo6GhMnToV7dq1Q1paGiZPnoxPP/1U8leuOjo6YvLkyRgxYkSJxq9btw5r1qzRbVEndbm5ucWeDL106RKqVq0KOzs7EVIZx8OHD2FqaiqL7SJfpMS7K4jKgt2biKSK3VsZ2L3Zvdm92b3lgN2b3buiMRM7gJK9+IOeiEgqTE1N4e3tDW9v72JfHz9+PCZPniz5D+1K5+TkhC1btmD06NF4+PAh5s2bJ8sCDgCPHj2Co6NjkePOzs7QaDQ4evQoVq5cie7du4uQzjCysrKK3YKqTZs20Gq1uHDhArZu3Yp27doZP5wBmJmZleqq46pVqxZ5hpUUaTQaLF68GBERETh27FiRIr58+XIcO3YM/fv3x8yZM2VxgulFNWrUEDuCwfz2229wcXHBrFmzXjnOwsICgYGBOHfuHHbu3MkSTorD7k1EUsXurQzs3uze7N7s3nLA7s3uXdFwAVxEUn7GAxEpl5+fHyZMmICOHTvqjuXn5yMlJQVqtRpVqlSBlZWV7rXCZ5HxDhppUqvV+Pe//42RI0diwoQJWL16Ndzc3MSOVe7y8vL0/twWKtxqbuTIkbIq4MDzv7eVKlUqcrywpI0dO1Y2BRwAGjVqhLNnz5Z4/NmzZ1G3bl0DJjK8v2+bqVar8ejRoyJz+uCDD3D37l3s2LEDFy9exJYtW2BmJs2KsGrVqjK9b+LEieWcxHj+97//YfLkySUaq1Kp0KNHD6xZs8bAqYgqHnZvIpIidm9lYfdm95YLdm9275dh9yZjk+bfMIXSarVYt24dJkyYIHYUIlKwxMREDBw4UO9YdnY2/Pz8sHHjRr1yTtIze/bsYo83atQIN27cwLhx49CzZ0+97UNVKhUWLlxorIiicHFxETuC0bVu3VrsCOXqww8/xLJlyzBy5Eg0b978lWMvXryIiIgI+Pn5GSmdYWzatAlJSUnw9/fHxx9/XOyYgQMHYuDAgVi1ahVWrVqFbdu2lXiruoqmpCX8xe2PpVzClXp3BZGhsXsTUUXA7i1v7N7FY/eWPnZvdu9C7N7s3mLjArjIsrOzsWvXLqSmpkIQBLRs2RLDhg1D1apV9cb95z//gb+/P/773/+yhBNRhSQIgtgRqByEhoa+8vVnz54hLCxM75gSSrgSP7SW5BmpUvLRRx9h+/btGD58OL766iv07t27yNc1Pz8fe/fuxdKlS1GlShXJl/CIiAh4eHi8tID/3cSJE5GYmIg9e/ZItoQfOnTotWOys7Px/fff48iRIzAzM5P811iJd1cQlRW7NxHJBbu3PLB7F4/dW/rYvV+N3Vua2L2liQvgIrp+/Tr8/Pxw584d3YfXmJgY/PLLL9i1axfq1q2L/Px8LFu2DFu2bIFWq0Xv3r1FTk1ERHJWkg+xcpWZmYlbt27pHcvKygIAPHz4sMhrAGBvb2+UbIZy+fJlJCUl6R3Lzs4GAFy4cKHY7bicnZ2Nkq28WVtbY82aNfjss88wc+ZMzJ07F61atULt2rWh1Wrx4MEDnD17Frm5ubC3t8fq1atRu3ZtsWO/katXr2Lw4MElHv/+++9j5cqVBkxkWPXq1Xvl65GRkVi0aBEyMjLQvn17zJkzB++8846R0hmGEu+uICoLdm8iIqpo2L3Zvdm92b2lit2b3VsquAAuou+//x537tzB1KlT0b9/f1hZWeHo0aOYN28e5s2bhyVLlmDs2LFITk6Gvb09AgIC0KVLF7FjExGRjL3uQ6ycLVy48KVX00+fPr3IMZVKhfT0dEPHMqi1a9di7dq1xb62ePHiYo9L+ZmCjRs3RlhYGH755Rfs27cPycnJyM/PBwCYm5ujXbt28PLywqBBg0q1tVVFZW1tDa1WW+LxlSpV0j2HTk6uXbuGuXPnIi4uDtWqVUNgYCAGDBggdqxyocS7K4jKgt2biIgqGnZvdu9C7N7s3nLB7s3uXdFwAVxESUlJ8PHxwdixY3XHevbsidzcXAQEBGDWrFlITk7GkCFDMGPGDFhbW4uYloiIqKi1a9ciOjoaISEhYkd5I76+vmJHMDopP3vpTVhYWGDkyJEYOXIkgOd3GJiamqJatWoiJyt/TZo0QXJycolL1+nTp2V1Ik6j0WDdunVYv349NBoNfH19MWPGDFSvXl3saOVGiXdXEJUFuzcREUkdu7d0sXuze7+I3Vt62L2liQvgInr06BEcHR2LHHd2doZGo8HRo0excuVKdO/eXYR0REREr3f79m1JX5VcKCgoSOwIRqfUEv6iGjVqiB3BYHx9fREQEID4+Hi4ubm9cmxCQgKio6MxadIkI6UzrLi4OMydOxdXr15F8+bNERAQgA4dOogdyyCUdncFUVmwexMRkdSxe0sXu/dz7N7PsXtLF7u39HABXER5eXmwsrIqcrxy5coAgJEjR7KAE1GF9OLzml71rKZHjx4ZNRsRUXFWrVpVpvdJ+WSFj48Pdu/ejfHjx2PcuHEYOHAgatWqpTcmIyMDu3btwoYNG1C/fn0MHTpUpLTl4/79+wgKCkJkZCQsLS0xbdo0jBw5sthn6smJku6uICoLdm8ikip2byKSGnZvdm85Y/eWFpUgCILYIZRKrVZjyZIl8Pb21jv+6NEjdOzYERs2bMA//vEPkdIRERVPrVZDpVIVOS4IQrHHC8nhSmUqKiAgADt37pT811eJBW327Nmlfo9KpXrps9oqOrVaXaJxL34fk/qf7QcPHuCLL75AQkICVCoV7O3t9bboun37NgRBQLt27bBixQrUrVtX7Mhltm3bNqxcuRJPnjxB165d4e/vL+n5EFH5YfcmIili96a/Y/dm95YKdm92b6KKQt6XY0icqamp2BGIiIpQ4vOaSP5KWsJfLGhSLuGhoaElHvv3eUu1hB86dOi1Y7Kzs/H999/jyJEjMDMzK/HzuyqymjVrYvPmzYiOjsa+ffuQnp6OCxcuwMTEBLVq1YKPjw+6deuGrl27ih31jQUGBur+PTY2FrGxsa99j0qlQnp6uiFjGZQSTyASGQK7NxFVROzeJEfs3q/G7i1d7N6vxu5NYuACuMhe3MoIePV2RgBgb29vlGxERMVR4vOaSP6UWNDOnz//2jE3b97E/PnzceTIEVSpUgVTpkwxfDADqVev3itfj4yMxKJFi5CRkYH27dtjzpw5eOedd4yUzvC8vLzg5eVV5HhWVhYsLS1FSFT+lHiSWIknEInKit2biKSG3ZvkiN27eOze7N5Swu79cuzeFQu3QBfRy7YyAl6+nZHUr5QhIqKKrbRXNB4+fBjp6emS36rqdeRe0F6k1WqxceNG/PTTT8jNzUWvXr0we/bsIs+wkoNr165h7ty5iIuLQ7Vq1TB9+nQMGDBA7FjlJi8vDyEhIUhNTdU7iZqYmIg5c+bgypUrUKlUcHd3x7fffouGDRuKmPbNzJ49G4MHD0bbtm3FjmI0N2/efO2Y4k4gfvnll0ZIR1RxsHsTEVFFw+5dPHZvdm+pYveWN3ZvaeICuIjK8vwPgFeAEhGR4ZT0WU1/p1KpZFvC5V7QinPq1CnMnTsXFy9exNtvv42AgAB07NhR7FjlTqPRYN26dVi/fj00Gg18fX0xY8YMVK9eXexo5SYvLw+ffvopkpKSYG5ujpSUFJiZmeHKlSvo27cvNBoNOnfujGbNmuHAgQN4+vQpwsPDJXuy5WXP+FUypZ1AJHoZdm8iIqpo2L31sXuze0sZuzexe1dM3AJdRCzTRERU0WzZskXsCBWCEgraix49eoTvvvsOYWFhsLCwwKRJkzBmzBhYWFiIHa3cxcXFYe7cubh69SqaN2+OgIAAdOjQQexY5W7btm04deoUZsyYgWHDhsHM7PlH/x9//BEajQZ9+vTBd999BwAYO3YsvL29sXbtWvj7+4sZm8rBiycQAwMDZX8CkehV2L2JiKiiYfd+jt2b3VsO2L2Vi927YuMCeAXw9OlT7N69G7///jvOnz+PzMxMqFQq1KhRA2q1Gh4eHvD29pblD0EiIqpYXFxcSv2eU6dOGSCJeJRS0P5u165dWLp0KbKysvDee+8hICBA0ttxvcz9+/cRFBSEyMhIWFpaYtq0aRg5cqSunMrN3r170b17d4waNUp3TKPRIDY2FiqVSu+4ra0t+vXrh3379rGES5gSTyASlQa7NxERVRTs3uze7N7ywe6tPOze0iDP7zgScvr0aUyePBn379+HhYUFGjZsiHr16iE/Px+ZmZk4fPgwYmNjsWrVKixbtgzt27cXOzIRERFu376N0NBQhIWF4fr167LYhk1pBQ0ALly4gDlz5iA1NRW1atXC8uXL0atXL7FjGcS2bduwcuVKPHnyBF27doW/vz/q1q0rdiyD+vPPP+Hr66t37PTp08jNzYWdnR0cHBz0XmvYsCEyMjKMGbHcnTp1ClqttlTv8fHxMUwYI1PiCUSi0mD3JiIiKWL3lgd2b3bvv2P3ljZ2b+mQ708VCfjf//6HUaNGwcbGBkuXLoWXl1eRK82fPHmCqKgo/PDDDxg9ejRCQ0PRqFEjkRITEZGSPXv2DNHR0QgJCUFCQgIEQYBKpULnzp3FjvbGlFjQFi9ejK1bt0Kr1eKDDz7AlClTYGNjg1u3br3yffb29kZKWL4CAwN1/x4bG4vY2NjXvkelUiE9Pd2QsQyqoKAApqamesfi4+MBAO7u7kXGZ2dnw8rKyijZDGXnzp3YuXNnicYWfg+TeglX4glEotJi9yYiIilh95YXdm927xexe0sTu7f08Csjop9++glWVlbYvXs33nrrrWLH2NjYYMCAAejcuTP69u2LDRs2YP78+UZOSkRESpaamoqQkBDs378fT548AQDUqFED/fv3x6BBg1CvXj2RE745JRa04OBg3b8fPnwYhw8fLtH7pHrHwYtXYytBw4YNi3y9YmJioFKp8P777xcZf/z4cclvv/fRRx+hXbt2YscwGiWeQCQqC3ZvIiKSAnbv4rF7Swu793Ps3vLC7i1NXAAXUVJSEvr16/fSAv53dnZ28PHxwfHjx42QjIiIlC4jIwNhYWEIDQ3Fn3/+CUEQYGVlBXd3d8TFxWHevHnw8PAQO2a58fHxgUqlEjuGUU2cOLHU7xEEwQBJjGfw4MFo27at2DGMpnfv3li9ejU6d+6M9957Dzt27MDly5dRq1YtdO3aVW9seHg4Tpw4gcmTJ4uUtnx06NAB3t7eYscwGiWeQCQqC3ZvIiKqqNi95Y/dW/7YveWP3VuauAAuokePHpVqS7UmTZpg165dBkxERERKt3//foSEhCAuLg5arRZVq1aFt7c3vLy80KlTJ9y7dw+enp5ixyx3ixYtAgDk5eXh0qVLyM/PR7NmzSS/JdWr2Nvbo1+/fiUef/PmTXz11VcGTGRYoaGhcHd3V1QJHzFiBH7//XdMnDgRKpUKgiDA3NwcCxYs0G39GxMTg23btiExMRGNGzfGiBEjxA1NpaLEuyuIyoLdm4iIKhp2b3bvl2H3lh52b/lj95YmLoCLKC8vr1Q/3CtVqoScnBwDJiIiIqWbOnUqrK2tMXToUHh4eMDZ2VnvOUZyvlL7X//6F9asWaP7WWthYYGhQ4di2rRpsnyej7+/P54+fYphw4a9duyuXbuwePFifg6RGAsLC2zatAmRkZFITU2FjY0NvL290axZM92Ys2fPIjk5GX369MGsWbNgaWkpYmIqC6XdXUFUFuzeRERU0bB7s3sXh91bmti9lYHdW3rk9xOFiIiIyqx+/fq4ceMGQkJCcOXKFfznP/+Bp6cnGjduLHY0g9q9ezeWLFmCevXqwcfHByYmJkhISMCmTZug1WolffX1y7z99tsIDAzE06dPMXr06GLH3Lt3D/7+/jh27BjMzc0lv0WXEpmamsLb2/ulW5ONHz8ekydPhomJiZGTlT9fX1/JP0ettJR4dwURERGRHLB7s3v/Hbu39LF7yxu7tzRxAVxkmZmZuHXrVonGPnr0yMBpiIhI6Q4ePIgzZ84gPDwcUVFROH78OJYvX44mTZrAy8sLrVq1EjuiQezYsQPt2rXD5s2bUalSJQDPn7k1depU7NixA9OnT9dtWyUXv/76K0aPHo1ly5bh6dOnmDRpkt7re/fuxfz585GVlQVHR0cEBgaiadOmIqUtH6dOnYJWqy3Ve3x8fAwTpoKQ01aDQUFBYkcgogqM3ZuIiCoSdm9270Ls3s+xe0sHuzdJhUoQBEHsEEqlVqvLtJ3NuXPnDJCGiIhIn1arxfHjxxEREYFDhw7h6dOnup9b/fv3x4QJE1CvXj2RU5YPJycnfPHFF0W2JEtNTcWQIUMQGhoKtVotUjrD+euvv/DPf/4TCQkJGDFiBGbOnIlHjx4hICAAMTExsLS0xNSpUzF8+HDJb8FX2s9dgiBApVLxcxdVaGq1GkuWLHnpXQZE9By7NxERVWTs3uze7N7s3lSxsXtLE+8AF5Gvr6/YEYiIiF7K1NQUXbp0QZcuXZCbm4uYmBjs3bsXJ06cwG+//YaQkBC4urqif//++PDDD8WO+0aePn2KKlWqFDlev359CIKAx48fi5DK8KytrbFu3Tp88cUX2LRpE27cuIHk5GQ8ePAA7733HubNmyebEy0A8NFHH6Fdu3ZixyAqV7y7guj12L2JiKgiY/dm92b3Jqr42L2lh3eAExERkc7YsWPh5uYGFxcXtGrVqtirdh89eoTIyEhEREQgNTVVFlfqvuxKzkePHqFjx44IDg5Gx44dRUpneAUFBfD390dISAhMTEwwb948DBgwQOxY5YpX65Ic8e4KIiIiImli92b3Zvcmkg52b2niHeBERESkEx8fj2PHjkGlUsHGxgYdOnSAq6sr3NzcdNuQVa9eHcOGDcOwYcNw/fp17Nu3T+TU9KZMTEywcOFC2NraYuPGjYiLi4OPjw/MzPhRkaii490VRERERNLD7q1M7N5E0sXuLT38zkpEREQ6ycnJSE9PR3JyMlJSUpCamorDhw9DpVKhatWqcHZ2hqurK1xdXfHOO++gQYMGGD9+vNixy0VmZiZu3bqldywrKwsA8PDhwyKvAYC9vb1RshlCcfP5+OOP8ddff2HHjh3IycnBN998AxMTE70xUp4zkRx16NCBd1cQERERSQy7N7s3uzeRtLB7Sw+3QCciIqJXun37tl4pP3/+PLRaLWxtbeHi4gJXV1cMHTpU7Jhv5FVbGRVuW/QilUqF9PR0Q0czmNfNGUCR16U859mzZ2Pw4MFo27at2FGIyg23FyQiIiKSD3Zvdu9CUp4zuzfJEbu3NPEOcCIiInqlunXronfv3ujduzcAIDs7G+Hh4QgJCcGBAwcQHR0t+RLu6+srdgSj8/HxKdXzi6QuKChI7AhEREREREQvxe4tT+zeRETi4AI4ERERvVJubi6SkpKQmJiI06dP4+zZs8jLy4OFhYVuSzapU2JBW7RokdgRiOgN+fr6omHDhmLHICIiIqJywO4tT+zeRNLH7i1N3AKdiIiI9OTn5yM1NRXx8fGIj4/HmTNnkJeXB3Nzc7z77ru64u3o6AgLCwux4xIRERERERFJDrs3ERGR4XABnIiIiHTGjBmDU6dOITc3FyYmJmjVqhXc3Nzg6uoKJycnWFpaih2RiIiIiIiISNLYvYmIiAyLC+BERESko1arYW5ujg8//BDjxo3D22+/LXYkIiIiIiIiIllh9yYiIjIsLoATERGRzjfffIOEhARcu3YNKpUKTZo0QceOHeHm5gZnZ2dUq1ZN7IhEREREREREksbuTUREZFhcACciIqIibt26hbi4ON2zyO7fvw8TExOo1Wq4urrqSrm1tbXYUYmIiIiIiIgkid2biIjIMLgATkRERK918eJFxMfH4+TJkzh16hQeP34MMzMztG7dGh07dsTkyZPFjkhEREREREQkaezeRERE5YML4ERERFQqGo0GUVFR+PXXX5GamgqVSoVz586JHYuIiIiIiIhINti9iYiIys5M7ABERERUsV27dg1nzpzBmTNnkJaWhvPnzyMvLw+VK1dG586d4ezsLHZEIiIiIiIiIklj9yYiIio/vAOciIiIdLKyspCWlqYr3GlpacjKyoIgCKhWrRrat28PFxcXODs7o2XLljAxMRE7MhEREREREZGksHsTEREZFhfAiYiISEetVkOlUkEQBFSvXh3Ozs66fxwcHKBSqcSOSERERERERCRp7N5ERESGxS3QiYiISKdHjx5wcXGBi4sLmjVrJnYcIiIiIiIiItlh9yYiIjIs3gFORERERERERERERERERESywIeHEBERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlkwEzsAERGREvz4449YtWpVqd5z6NAh1K9f30CJyq5r1664efMmAODrr7+Gn5/fK8ePGjUKx48fBwAEBwfD3d3doLmio6PRqFEjg/weREREREREVHGxe7N7ExERAVwAJyIiMgoHBwd4e3vrHXvw4AHi4uJgbW0NDw+PIu+xtrY2Vrwyi4qKemUJf/jwIeLj442YiIiIiIiIiJSK3ZuIiIgALoATEREZhZeXF7y8vPSOJSQkIC4uDtWrV8fSpUtFSlZ2VatWRXJyMu7evYu33nqr2DHR0dHIz8+Hubk58vLyjJyQiIiIiIiIlITdm92biIgI4DPAiYiIqIw8PT0hCAKio6NfOmbfvn2wtbVFmzZtjJiMiIiIiIiISB7YvYmIiEqPC+BEREQV2JEjRzBq1Ci4uLigTZs26N69O5YsWYLMzEy9cTdu3ICDgwM6d+5c7H9n+PDhcHBwQEJCgu7YrFmz4ODggMTEREyaNAnvvvsu3NzcsHXr1hJl69GjB4DnW7EVJyMjA6dOnUL37t1hZvbyTWf27NmDoUOHon379nj33Xfh7e2NNWvW4OnTp8WOP3nyJEaOHAlnZ2d06NABU6ZM0T0XrTharRb//ve/MXDgQDg6OsLR0RGDBg1CaGgoBEEo0VyJiIiIiIhIvti9i2L3JiIiKeMW6ERERBXU0qVLsX79epiamsLJyQnVq1dHamoqNmzYgP3792Pz5s1o0KDBG/8+33zzDR48eIBOnTrh4sWLUKvVJXrf22+/jRYtWiA5ORkZGRmws7PTez0qKgoFBQXo3bs3Vq1aVeT9BQUFmDFjBvbu3QsLCwu4uLjAysoKSUlJ+P7773HgwAEEBwejevXquvfs2rUL3377LQCgQ4cOqFq1Ko4fP45Tp05Bo9EU+T3y8vLwz3/+E8eOHYONjQ0cHR1hbm6OxMREzJo1CwkJCVi0aFFp/ncRERERERGRjLB7s3sTEZH8cAGciIioAoqNjcX69etha2uLDRs26LYx02g0mDdvHnbt2oXJkydj9+7dUKlUb/R7ZWRkIDw8HA0aNEBBQQFMTEq+QUyvXr1w7tw5REdH4+OPP9Z7LTIyEnZ2dnB2di72vdu2bcPevXvRoEEDbNy4EQ0bNgQAPHnyBNOmTcORI0fw7bff4scffwQA3L59G4GBgTAzM8O6devQsWNHAMDDhw8xatQopKenF/k9fvrpJxw7dgwuLi5YuXIlatSoAQC4f/8+xowZg9DQUDg5OWHgwIElnjMRERERERHJA7s3uzcREckTt0AnIiKqgDZt2gQA+PLLL/We4WVhYYE5c+agUaNG+OOPPxAfH//Gv5eHh4fuavbSFHAA6NmzJ4CiW7HdunULqamp6Nmz50v/m5s3bwYABAYG6go4ANjY2GDp0qWoUqUKoqOjcfXqVQBAaGgocnNzMXjwYF0BB4AaNWpg4cKFRf77Go0GW7duhbm5OZYuXaor4ABQq1YtzJs3DwDwr3/9q1RzJiIiIiIiInlg92b3JiIieeICOBERUQWTn5+P5ORkqFQqdO/evcjrZmZm8PLyAgC954qV1TvvvFPm9zZo0ACtWrXC6dOnkZGRoTseGRkJQRDw4YcfFvu+27dv48aNG6hevTrc3NyKvF6lShV06tQJAJCYmAgASEpKAgB06dKlyPgWLVqgfv36esf++OMPZGdno0mTJnjrrbeKvKdNmzaoWbMmrly5gnv37pVwxkRERERERCQH7N7s3kREJF/cAp2IiKiCyczMRF5eHqpXrw4bG5tixxQWzvIoj9WqVXuj9/fq1Qt//PEHYmJiMGzYMADPS3iDBg3w7rvvFvuewsJer169l/53X5xj4Xvq1Knz0vE3btzQ/fr27dsAgAsXLsDBweGVc7h9+zZq1679yjFEREREREQkH+zez7F7ExGRHHEBnIiIqIIRBAEAXvl8scIxFhYWJfpvarXal75W2q3XXtSzZ08sWbIE+/fvx7Bhw3D16lX88ccfGDdu3EvfU5Y5vu55a2Zm+h9rCgoKAAD29vZwcnJ65XsrV678yteJiIiIiIhIXti99cewexMRkZxwAZyIiKiCsbW1hbm5OTIzM/HkyZNir0S/fv06AKBmzZoA/r9IFxbPF2VlZRko7fMryd99912cPn0a9+7dQ2RkJACgd+/eL32PnZ0dAOhdNf6iwjnWqlULAPDWW2/h4sWLuHnzJpo1a1Zk/N+3gQOgu6q8Tp06WLp0aSlmRERERERERHLH7v0cuzcREckRnwFORERUwZibm8PR0REFBQWIiYkp8np+fr7uuKurKwDA2toawPOynZeXpzf+0aNHuHLlikEz9+rVCwUFBYiOjsb+/fvRrFmzV259Zm9vj3r16uHRo0e654z9XXZ2No4fPw4AcHZ2BgC4u7sDQLH/T65fv45Lly7pHWvTpg0sLS1x/vz5IgUdAO7evYuePXti5MiRyMnJKflkiYiIiIiISPLYvdm9iYhIvrgATkREVAF98sknAIDvvvsO6enpuuN5eXmYO3curl27hhYtWui2F7O1tUWdOnWg0Wiwfft23fhnz57h22+/feU2bOWhR48eUKlU2LZtGy5cuPDKK9ALFc7R399fd8U5AOTk5GDGjBl48uQJPvjgA92zynx9fWFra4vdu3fjwIEDuvFPnjzBV199VeQKfGtra3z00Uf466+/MGPGDDx48EDv95g9ezYuX74Ma2trbsNGRERERESkQOze7N5ERCRP3AKdiIioAvL09MSnn36KjRs3YsCAAXByckL16tVx5swZ3LlzB/Xq1cOKFSv0niE2evRoBAYGIjAwEPv27UOtWrWQnJwMrVaLDz74AIcPHzZY3rp166Jdu3ZISUkB8Oot2AoNHz4cKSkp2L9/P3r37g1nZ2dYWVnh1KlTePToEdRqNRYuXKgbX6NGDSxcuBBTpkzB559/DkdHR9jZ2SEpKQlarRaNGzcucrX9tGnTcO7cOcTHx6Nbt25o06YNrKyskJKSgszMTLz99tuYO3du+f7PICIiIiIiIklg92b3JiIieeId4ERERBXUzJkz8dNPP8HV1RXnz5/HkSNHULlyZUyYMAGhoaFo3Lix3vjhw4dj8eLFaN26NdLT05GUlARXV1f89ttvRcYaQs+ePQEArVq1QqNGjV473sTEBCtWrEBQUBBatWqF5ORknDhxAnXq1MGMGTOwc+dO1KhRQ+89Hh4e+PXXX+Hh4YErV67g999/R8uWLfHLL7+gTp06RX4PS0tLbNy4EV9//TWaNGmCtLQ0JCQkwM7ODpMmTcKuXbt0zzkjIiIiIiIi5WH3ZvcmIiL5UQmCIIgdgoiIiIiIiIiIiIiIiIiI6E3xDnAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkgQvgREREREREREREREREREQkC1wAJyIiIiIiIiIiIiIiIiIiWeACOBERERERERERERERERERyQIXwImIiIiIiIiIiIiIiIiISBa4AE5ERERERERERERERERERLLABXAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkgQvgREREREREREREREREREQkC1wAJyIiIiIiIiIiIiIiIiIiWfg/On3QcXhzNP0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 175 coefficients adjusted\n", - "\t 679 coefficients converged\n", - "\t 78 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgs0lEQVR4nOzdf3zN9f//8fs5Z+/ZhoW92TCiaZbfv6YRKT8rpNlbkgkpv3l7CyUqqqF48yZvCaOVH6OGpLyF6NcHmfdbv5Bo5ldMCzM/Nts53z/67uTYaOe1X+fs3K6Xi4vO68d5Pc55Pq3z2P28Xi+TzWazCQAAAAAAAAAAAPliLukCAAAAAAAAAAAA3AnhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJxAuAIAAAAAAAAAAOAEwhUAAAAAAAAAAAAnEK4AAAAAAAAAAAA4gXAFAAAAAAAAAADACYQrAAAAAAAAAAAATiBcAQAAAAAAAAAAcALhCgAUgM1mU/v27VW3bl3Nnz/fqX3Xrl2runXrau3atfZldevWVb9+/Qq7zFxSUlJ0+fLlIj9OYcjOztbx48f/dLs33nhDdevWveWf9u3bF3m9R48eLfJjAAAAwHVt375do0aNUvv27dWgQQPdfffdeuqpp/Tpp58WWw2ZmZl66aWX1LJlSzVq1Eivvvpqnsuee+451a1bVydOnHDq+XM+e+/evbuIXoGjP/uM/dJLL6lu3bpKSEi45XYnTpxQWFiY+vfvn+9j7969W3Xr1tUbb7yR731K0q5du1S3bl3dddddt+yjLl68qDFjxqhZs2Zq2rSpYmNjJUkZGRk6ffp0cZUrqWB9tURvnV/57a0B5J9XSRcAAO5s165dOnnypPz8/LRmzRoNGzZMFovF8PO9/vrr+utf/1qIFea2fv16TZ06VR9++KH8/PyK9FgFderUKQ0ZMkSdO3fWqFGj8rVP79691bx58zzXlS1btjDLy2XYsGFKT0/Xu+++W6THAQAAgOtJT0/X888/r82bN6t+/frq2bOnqlSpotOnT2v9+vUaNmyYnnzyST377LNFXsuaNWsUHx+ve+65Rw8++KDuvPPOPJfZbDa1atVKlSpVcur5O3XqpJo1ayokJKSIXsEf8vMZ+29/+5vi4+P14YcfKioq6qbbrV+/XjabTX/729+KolSXkJCQID8/P12+fFmrV6/WuHHj8txuwYIF2rRpk7p27apWrVqpSZMm2r9/v0aOHKmRI0eqZ8+exVZzYffVEr31jYz01gD+HOEKABTA+++/r7/85S8aMGCAFixYoO3bt6tjx46Gn69Hjx6FWF3edu3a5TbfrDl+/LgOHTqkzp0753ufJk2aFMv7mJdPP/1ULVu2LJFjAwAAoGRNnjxZmzdv1oQJEzRo0CCHdUOHDtWgQYO0dOlS3XHHHerVq1eR1vLjjz9KkiZMmKCwsDBJsp/Vcf0ySWratKnTzx8WFubwHEUpP5+xGzZsaD+T5syZMwoMDMxzuw8++EC33XabU/2FO0lPT9eWLVvUoUMHHThwQGvXrtXo0aPl7e2da9ucOTJ16lSVL19e0u9ngJw8ebJYa5YKv6+W6K1vZKS3BvDnuCwYABh08eJFbd26VY0aNdLDDz8sSVq1alUJVwUAAACguH355ZfatGmTunTpkitYkSRvb29NmzZNFotF77zzTpHXc+3aNUlSuXLlbrmsNImKipLVatXHH3+c5/q9e/fq2LFj6t69u8qUKVPM1RWPjz76SFeuXFFERIQ6duyo1NRUbdmyJc9tc+ZDTrBSUuirAbgzwhUAMGjjxo26evWq7rnnHtWuXVt169bVV199lec1THfv3q0nnnhCzZo1U0REhF599dU8v+Fy43Vhb3YN5BMnTqhu3bp67rnn7MuuXLmi6dOn64EHHlCjRo109913a8iQIdq7d699m/bt22vdunWSpA4dOtiP9dxzz6lp06Y6duyYRo4cqebNm6tZs2YaNmyYTp8+rZMnT2r06NFq3ry5IiIiNGbMGKWkpDjUZLVa9e6776pHjx5q1KiRWrRooaeeesrh+NIf12c+cuSIJk+erHvuuUcNGzZUjx499OGHHzps98QTT0iS5s+fb+ha0Ldis9n03nvv6fHHH1eLFi1Uv359tWnTRmPHjlVycnKu7T/++GP17dtXzZs31913363+/ftr586dkv64DrMkff3117mu9/vZZ5+pf//+atasmRo1aqQePXronXfekdVqtW+TM6b//ve/9Y9//EMNGzZU69at9d133yk7O1vz589X9+7d1aRJE7Vo0UL9+vUr1ut2AwAA4ObWr18vSbe8x0ONGjX04Ycf2j+P5zhy5IjGjh2r1q1bq0GDBurQoYNmzJihCxcu5HqOn3/+WWPHjlWrVq3UoEEDde7cWf/617909epVSX98prz+M3/O/QdvXCbl3W/YbDatWrVKPXv2VJMmTdS6dWsNHTpUP/zwg32bm91z5YsvvrD3PY0bN1bPnj0dPhdLf3x2/uijj7Rw4UJ16tRJDRo0UPv27TV37lxlZWU5bCfl/Rn7Rg8//LD+8pe/OPQU18sZo5xLgl27dk2xsbGKiopS06ZN1aBBA913332aPHmyUlNTb3oc6fe+Kq/7OeZ17w9J+vbbbzV06FC1bNlSDRs2VLdu3bR06VJlZ2c7bLd//34NHTpUbdu2tc+FV199VefPn79lPTlyzk6655579MADD0jKHVTkvK9ff/21JNnvTfncc89p4sSJkqSJEyfa33vJ+V7vs88+04MPPqgGDRooOjr6ljU701fn1E9v7fh+l3RvDXgyLgsGAAblfHB98MEHJUldu3bVjz/+qPj4eI0fP96+3Y4dOzRixAhVqVJFQ4YMkdls1vvvv3/LxsCIsWPH6quvvlLfvn11xx136Ndff9WKFSvUv39/vf/++woLC9Pzzz+vZcuWKTExURMnTtSdd95p3//atWt6/PHH1bJlS02YMEH79u3T2rVrdebMGf36668KDw/XhAkT9M033yghIUHp6elasmSJff9x48bpo48+UpcuXfToo4/qwoULWrt2rfr166fZs2fbP9znGDx4sP09yczMVFxcnMaNG6fKlSsrIiJCnTp1UlZWlr3h6tSpU76uBX358mX99ttvuZZbLBbddttt9sfTp09XXFycOnbsqH/84x+SpMTERH388cfav3+/Pv74Y5nNv38HYd68efr3v/+tsLAwDR06VN7e3lq5cqUGDRqkN998U/Xr19frr7+uCRMm6I477tDQoUPVrFkzSdLSpUv12muv6fbbb9fTTz8tPz8/bd26VTExMdq9e7feeOMN+3EkacmSJQoNDdXkyZN19OhR1atXT9OnT9eKFSv06KOP6oknntDFixcVHx+v4cOH66233lK7du3yM0UAAABQRL799lt5eXmpcePGt9zuxnuUJCYmatCgQbJYLOrTp4+qV6+uffv26e2339ann36q+Ph4+2fgb7/9VgMGDFC5cuXUt29fVapUSfv27dPChQu1c+dOvfPOO6pUqZJef/11rVmzxv6Z/7bbbpPZbHZYVrFixZvW+Oyzz+qDDz5QixYtNGbMGGVmZurdd99VdHS0VqxYoXr16uW534oVK/TKK6+oYcOGGjlypMxms7Zt26aJEyfqwIEDmjRpksP2s2fPls1mU+/eveXv76+1a9dqwYIFMplMGj16tEJCQm76GTsvFStWVIcOHfSf//xHR44ccXivMzIytGnTJtWvX1933XWXJGnMmDHatm2bIiMj9eijjyojI0Off/653nvvPZ06dUpLly695Vjm17Zt2/T3v/9dwcHBeuqpp+Tn56evvvpKr732mv773//qjTfekMlk0vHjx9W/f39VrlxZAwYMkL+/v7755hstX75c3377rVavXi2TyXTT4xw5ckTffPONmjZtqmrVqqlatWqqVauW9uzZ4/B+5LyvCxcu1M8//6zXX39dZcuWVUBAgLy9vbV69epc97F0ttcbM2aM/va3v6lWrVp5XpLsevntqyV66+LurQHkgw0A4LRDhw7ZQkNDbY888oh92bFjx2yhoaG2iIgIW0ZGhs1ms9msVqutffv2thYtWth+/fVX+7ZpaWm2zp0720JDQ20JCQn25aGhobbo6Gj742effdYWGhpqO378uMPxjx8/bgsNDbU9++yzNpvNZktNTbWFhobaXnrpJYft9u3bZ+vcubNtzZo1t3zOnGU37t+jRw9baGio7ZVXXnFY3qtXL1tYWJj9dX788ce20NBQ2+LFix22S09Ptz3wwAO2u+++23b58mWbzWazzZs3zxYaGmp7+umnbVar1b7tnj17bKGhobaxY8fal+3atcsWGhpqmzdvnu3P5Dzvzf7cf//99m1/++03W7169WxDhgzJ9TyjR4+2hYaG2r7//nubzWazHT161HbXXXfZoqOj7a/XZrPZfv31V1vz5s1tPXv2tC+7cfyOHTtmq1evnu2hhx6yXbp0yb7carXaxo0bZwsNDbWtXbvWZrP9MaZNmjSxnT171qGmJk2a2J566imHZb/88outY8eOtjfeeONP3xsAAAAUrcaNG9tat27t1D7Z2dm2Tp062Ro0aGA7fPiww7o1a9bYQkNDbc8995zNZvv982PXrl1t7dq1s507dy7PbRctWmRfdqvP/LdatnPnTvtn8us/qx8+fNgWFhZmGzVqlM1m++Oz965du2w22++fTevXr28bMmSIw35Wq9U2fvx4W2hoqO2bb76x2Wx/fMa/5557bBcuXLBve+nSJVvz5s1tbdq0cXh9N37GvpXPPvvMFhoaapszZ47D8o8++sgWGhpqW7Fihc1ms9kOHDiQZ59js9lsUVFRttDQUPv7nFdPcv/99zv0FzkSEhIcerzLly/b7r77bltkZKRDL2Gz2Wxz5syxhYaG2j766CObzWazLVmyxOF9yjF9+nRbZGSk7fTp07d87TNmzLCFhoba4uLi7Mtyximv1xkdHW0LDQ29Zf02m7Feb/To0besNUd++2qbjd66OHtrAPnHZcEAwICcb9d07drVvqxGjRpq0qSJfvvtN33yySeSpAMHDujEiRPq0aOHAgIC7NuWL19effr0KbR6ypUrp/Lly2vTpk1as2aNzp49K0lq3LixNm/enO8bZnbr1s3hcc63mx566CGH5TVr1pTVatWvv/4q6fdr+0pSly5d9Ntvv9n/ZGRkqHPnzjp37pz27Nnj8Bzdu3d3+OZVo0aNJMn+nEYNGjRIy5Yty/Vn5syZ9m0qVqyoxMREzZo1y2HftLQ0+fr6SpL91PJPP/1U2dnZ6t+/v8O3rgICArRy5Uq98cYbN61ly5YtysrK0uDBg+Xn52dfbjKZ9Mwzz0hSrmtCN27cWH/9618dlgUFBenrr79WbGys/fTtoKAgbdmyRSNHjsz3ewMAAICiYbFY7Jezyq/9+/crOTlZDz/8cK4zWv72t7/p9ttv1+bNm5Wdna0ff/xRP/30k9q1ayer1erwmfv+++9XmTJlbnpvDWds3bpVkvTUU085fFYPCQnR+++/rxdeeCHP/T755BNdu3ZNDz74oM6dO2ev7dy5c/aeKadHynH//ffL39/f/tjPz08hISF/ekmuW2nTpo2qVq2qjRs3Oixft26dfHx81L17d0lSWFiY9u7dq7Fjxzpsl5qaaq+pMG5U/n//9386d+6cunTpovT0dIdxy+mxcsatatWqkqSZM2dq586dyszMlPT7ZabWrl2rwMDAmx4nKytLGzZskNlstp8BIv3Rr37wwQe6cuWKoddgpNfL65JpeclvXy3RW5dEbw3gz3FZMABw0rVr17RhwwZJv3/Auv5apREREdq3b59WrVqlbt266dixY5J+/8B0ozp16hRaTd7e3poxY4YmTpxob3hCQ0PVpk0bde/e/aan7t/oxl/q/+Uvf5EkVa5c2WG5l9fv//vIuWdIUlKSJKljx443fe6TJ0/e8lg5wcX19yExok6dOmrduvWfblemTBlt27ZN27dv17Fjx3TixAn98ssv9g+lOXXkjO8dd9yR6zlCQ0NveYyc8b/+FPEcQUFBKl++fK5r3d74vkhSTEyMxowZo9dff12vv/66atasqXvuuUddu3ZVeHj4n75WAAAAFK3AwEAlJSUpMzPzTy+DlONWnxVNJpPq1Kmj5ORknTt3zv55Oz4+XvHx8Xk+342ft43I+Wx6Y9gjSfXr17/pfjn1TZgw4abb/Fk/IP3eE9x4HxJnmM1mRUZGasGCBfrf//6npk2b6uzZs/rqq6/UrVs3h5u3e3t76+OPP7bf3+PEiRM6e/Zsrn6gIHLel9mzZ2v27Nl5bpPzvnTp0kVRUVFau3atBgwYIB8fHzVv3lzt2rXTI4884nCJ4xvt2LFDv/76qxo2bKiMjAz7OHp7e6tWrVo6evSoPvroI/v9Zoy8Bmd6vRv7x7w401dLore+TnH11gD+HOEKADhpx44d9m9T3ezmfImJiTp8+LD9sc1my7VNQT7o5NVwdOzYUffcc4+++OILffnll9q9e7eWLl2qZcuW6fnnn7ffwO5Wcj7Y3ehW1/bNqads2bKaP3/+TbepXbu2w+Pr7zNS3K5du6aRI0dqx44datCggRo0aKAuXbqoXr16+uyzz/TWW285bCv9+XuQl5xxv9m+Vqs1V/Od1xg0a9ZMW7du1a5du/TFF19o9+7dio+P16pVqzRw4ECHmy8CAACg+IWHh+vIkSP673//q4iIiJtuN3HiRF27du2WIUSOnH7B29vb/t99+/a96S9db/ZZ3hk5n32dldOfvPLKKwoODs5zmxvv8VBU/UDPnj315ptv6sMPP1TTpk314YcfKjs72yFYSE9PV//+/fXDDz+oefPmatCggXr06KGGDRsqLi7O/kt/Z93Yp+WM2+jRo9W0adM89ylbtqyk389+mjZtmoYPH67t27fr//7v/5SYmKivvvpKb731luLj4/MMFqQ/zgD57rvv1KFDhzy3iY+PNxSuGOn1LBbLnz6vM3319eEJvbVr9daApyNcAQAn5XxwHTJkiP102+u999572rFjh8OH1yNHjuTaLjk5+U+PlfOhNCMjw2F5zqnJOdLT0/Xjjz8qODhYnTt3VufOnSVJBw8eVP/+/fXvf/87Xx8AjQoODlZSUpLCwsJyNU0HDhxQSkqK/XJbruDjjz/Wjh07NHjwYPvluXKsW7fO4XFOc5iUlJTrQ+zbb7+tw4cPa/LkyfLx8cl1nJzm59ChQ/YbZ+Y4deqULl26ZD/9/2YyMjL0448/6rbbbtO9996re++9V5J0/PhxPfnkk4qLi9PIkSNVrly5fLxyAAAAFIVu3bopPj5eK1euvGm48ssvv2jDhg3y9/dXhQoVVKNGDUnSTz/9lGtbm82mI0eOqFy5cvL393cILG48S9tqtWrz5s325yuI6z/71q1b12Hd7NmzdfXqVT3//PM33c/f3z9XfSkpKfr2228Lpb78qFGjhu6++25t2rRJkydP1ocffqjbb79dLVu2tG/zzjvv6Pvvv9fUqVP12GOPOeyfn0spWSwWXbp0KdfyG/u0nPfFx8cn1/uSnp6uL7/80n4mw8mTJ3Xs2DG1atVK/fr1U79+/ZSVlaXY2FjNnj1bq1at0rPPPpvrmKmpqfr8889VtmxZvfbaa7l+eW+1WvXss8/qu+++0w8//HDLM5DyUlS9njN99eTJk1WrVi1J9Nau1lsDno5oEwCccPbsWX3xxReqUKGCRowYoY4dO+b6M3r0aEnS+vXrdfvtt6t27drasGGDw2nOV69e1fLly//0eFWqVJH0+zeQrrd+/XqHx4cOHdLjjz+uBQsWOCyvU6eOypcv7/CtmZxvteT1jR+junTpIkn617/+5bA8PT1dY8aM0YgRI3J9iM2PnA/AhX0687lz5yQpV8OYnJyszZs3S/rjG0wdOnSQyWTSihUrHK6jff78eS1evFjffvutPVgxm80OtXbq1EkWi0VvvfWWwzWbbTab5s6dK0l64IEH/rTW3r1765VXXnFYXqNGDQUGBspkMvFNJQAAgBIWHh6uTp06afPmzVq2bFmu9RcvXtTf//53ZWVlaeTIkfL29la9evVUo0YNbdiwIdcvjBMSEnTs2DH7L3YbNGig6tWra926dfbLI+VYvXq1xowZY/9ldUHknBUTFxfnsPzYsWN6++23dfz48Tz369y5s8xmsxYuXKirV686rJsxY4ZGjBih77//3lBNN37Gzo+oqCj99ttvWr9+vfbv35/rjI2b9QP/+9//7PezuNXlyapUqaLffvvN4fJMmZmZ2rRpk8N2bdq0UdmyZfX222/bj5lj4cKF+vvf/67PPvvM/njAgAH65ptv7Nt4eXmpcePGkm5+Nsj69euVlZWlHj16qFOnTrn6086dOysqKkqStGrVqpu+JumPXvH697soej1n++orV64oLCyM3toFe2vA03HmCgA4IeeDa8+ePVWmTJk8t6lfv77Cw8O1Z88ebdy4Ua+++qqefPJJ9erVS3379lW5cuWUkJCgixcv/unxIiMj9dZbb+nVV1/ViRMnVLlyZW3fvl2HDh1yOH6zZs3Upk0bxcfHKy0tTS1btlR2drY2b96s48ePO3zDKed6rEuWLFHbtm1veS3X/OrZs6f+85//aPXq1Tp27Jjat2+vrKwsvffeezp69KjGjx9/yxsw3kzOjQo//fRTVatWTZ06dVKFChUKXG/btm31z3/+UzExMTp27JgqV66sn376SQkJCfYAJS0tTdLv15sePHiw3nrrLfXp00ddu3aV1WrVmjVrdOHCBXtIklPvwYMHtXLlSrVo0UKhoaEaM2aM/vnPf+qRRx5Rz5495efnp23btmnXrl26//779fDDD9+y1qCgIPXq1UurV6/WoEGD1L59e5lMJn355Zfas2ePoqOj5efnV+D3BAAAAAUzbdo0XbhwQTNmzNCHH36ozp07q1KlSjp69KjWrVun3377TX379lXfvn0l/f7LzldffVWDBw9Wr1691KdPHwUHB+vbb7/VunXrVL16dY0bN85h2yFDhqhnz5567LHHVLNmTX333XdKSEhQzZo1NXz48AK/hrZt26pbt25KSEjQ6dOn1b59e6Wnp2vFihUqU6aMxo8fn+d+tWrV0qhRozR37lz16NFDkZGR8vf317Zt2/Tll1/q/vvvtwdFzsrrM/af6dKli1555RW99tpr8vLy0iOPPOKwvn379nr33Xc1btw4Pf744ypfvry+//57rVu3ThaLRdeuXbP3A3mJiopSYmKiBg0apMcff1xWq1UJCQm5Ahl/f3+9+OKLmjhxorp3767evXurSpUq2rVrlz7++GM1atRIjz/+uCRpwIAB2rRpkwYPHqzHHntMwcHBOnPmjFatWqXy5cvr0UcfzbOWtWvXSpL9efLyxBNPaMWKFfroo4/03HPP3fSs95xeccOGDbLZbPYeprB7PSN9da9eveitXbC3Bjwd4QoAOGHdunUymUy3/OAq/f7BeM+ePYqPj1dCQoJWrlypefPm6e2335b0+zfC7rvvPv3973+/5fPUrFlTixcv1vz587Vo0SL5+vqqbdu2WrVqlbp27eqw7bx587R06VL7Ja8kKSwsTLNmzVL37t3t2/Xp00dff/21EhIStGvXrkL5AGixWLRw4ULFxcXpgw8+0KxZs+Tr66uQkBC98cYbhhup2rVra+DAgXr//fcVExOj4OBgtWrVqsD1hoSEaNGiRZo3b55iY2MlSVWrVlV0dLQeeOABPfLII/riiy/sZ5WMHTtWd9xxh5YvX645c+bI19dXDRs21MyZM9WwYUP7806YMEGzZs3StGnTNHToUIWGhmrw4MG644479Pbbb9vv5VK7dm29+OKL6tOnT77OOnnxxRd1xx13aN26dZo9e7ays7N1xx136IUXXvjTuQgAAIDi4e/vr9jYWH388cdau3atVq5cqd9++03lypVT48aN1bdvX/slXnNERERozZo1WrBggRISEpSenq5q1arpySef1NChQ+Xv72/ftnXr1lqzZo3efPNN+y+Ug4KC9Pjjj2vIkCH5uol4fsycOVONGjXS+++/r9dee0233XabWrRoob///e+5LpN7veHDh6tOnTp65513tGjRIlmtVtWoUUMTJkxQv3798nUfjrzk9Rn7z5QpU0bdunXTypUr1b59e/tZCzlatWql2bNn23stb29vVatWTWPGjFGdOnU0ePBgffHFFw6f9a/Xs2dPXbp0SStXrtTrr7+uv/71r+rRo4fuv/9+9e7d22HbRx55RFWrVtWSJUv0zjvvKCMjQ9WqVdOwYcM0aNAg+xelQkJCtHz5cr355ptav369UlNTVaFCBUVERGjEiBF53m/lm2++0eHDhxUeHq4777zzpu9HzZo1df/992vbtm364IMP7AHfjSIiItS9e3dt3bpV3333nVq0aKHatWsXeq9npK/u1auXWrRoQW/tYr014OlMtsI8dw0AYJjNZlNYWJjuvvtuvfPOOyVdDgAAAAAAbofeGkBx4SLtAOAick47L1u2bAlXAgAAAACAe6K3BlBcuCwYALiAt956Sz/88IOk368tCwAAAAAAnENvDaA4Ea4AQAlLS0tTXFycrl27pm7dumngwIElXRIAAAAAAG6F3hpAceOeKwAAAAAAAAAAAE7gnisAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEzz+hvY2m01WK7edcTVms4lxgSHMHRjBvIFRzB0YUZLzxmw2yWQylcix4b5Ka8/Ez3D3xdi5N8bPvTF+7ouxc2+MX/HKb9/k8eGK1WrTb79dKukycB0vL7MqViyrtLTLysqylnQ5cCPMHRjBvIFRzB0YUdLzplKlsrJYCFfgnNLYM5X0v0UYx9i5N8bPvTF+7ouxc2+MX/HLb9/EZcEAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJ7jMPVd2796tJ554Is91wcHB2rZtmw4cOKCYmBh9//33qlChgvr166dBgwYVc6UAAAAAAAAAAMCTuUy40rRpU3355ZcOyw4dOqTBgwdr6NChOnfunAYOHKiOHTtq6tSp2rdvn6ZOnaoKFSooKiqqhKoGAAAAAAAAAACexmXCFW9vb1WuXNn++Nq1a5o+fbo6d+6sXr166a233pK3t7emTJkiLy8vhYSEKDk5WYsXLyZcAQAAAAAAAAAAxcZl77myYsUK/fLLL5o4caIkKTExUeHh4fLy+iMPioiIUFJSklJTU0uqTAAAAAAAAAAA4GFcMlzJyMjQwoUL1b9/f1WpUkWSdPr0aQUFBTlsl7Pu1KlTxV4jAAAAAAAAAADwTC5zWbDrffDBB8rIyFC/fv3sy65evSpvb2+H7cqUKSPp9zCmILy8XDJj8lgWi9nhbyC/mDswgnkDo5g7MIJ5AwAAAAClg0uGK+vXr1fnzp1VsWJF+zIfHx9lZmY6bJcTqvj5+Rk+ltlsUsWKZQ3vj6Lj7+9b0iXATTF3YATzBkYxd2AE8wYAAAAA3JvLhSu//fab/ve//2nIkCEOy4OCgpSSkuKwLOdxYGCg4eNZrTalpV02vD8Kn8Vilr+/r9LSrig721rS5cCNMHdgBPMGRjF3YERJzxt/f1/OmgEAAACAQuBy4cp///tfmUwmtWzZ0mF5eHi44uPjlZ2dLYvFIknauXOnateurYCAgAIdMyuLX4i4ouxsK2MDQ5g7MIJ5A6OYOzCCeQMAAAAA7s3lvrZ28OBB1ahRQ76+jpdKiIqKUnp6uiZNmqTDhw9r7dq1iouLy3WGCwAAAAAAAAAAQFFyuXDl119/VYUKFXItDwgI0JIlS5SUlKTIyEjNnz9fEyZMUGRkZPEXCQAAAAAAAAAAPJbLXRZsypQpN13XqFEjrV69uviKAQAAAAAAAAAAuIHLnbkCAAAAAAAAAADgyghXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwgldJFwAAQFEym00ym003XW+xmB3+tlptslptxVIbAAAAAACF5Wb974197/XogQHjCFcAAKWW2WxShQp+eX6AvJG/v68kKTvbqvPnL/PhEgAAAADgNvLT/+b0vdejBwaMI1wBAJRaZrNJFotZs1bs1YkzF/90++DA8hrXt7nMZhMfLAEAAAAAbsPZ/leiBwYKinAFAFDqnThzUUdOXijpMgAAAAAAKFL0v0Dx4Yb2AAAAAAAAAAAATiBcAQAAAAAAAAAAcALhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJxAuAIAAAAAAAAAAOAEwhUAAAAAcBGpqakaP368IiIi1LRpUw0ePFiHDx+2rz9w4ICio6PVpEkT3XfffYqNjXXY32q1at68eWrbtq0aN26sJ598UsnJycX9MgAAAIBSj3AFAAAAAFzEsGHDdPz4cS1evFjvv/++fHx8NGDAAF25ckXnzp3TwIEDVatWLSUkJGjUqFGaO3euEhIS7PsvWLBA8fHxevXVV7V69WqZTCY9/fTTyszMLMFXBQAAAJQ+XiVdAAAAAABAOnfunIKDgzVs2DDdeeedkqThw4erR48e+umnn7Rz5055e3trypQp8vLyUkhIiJKTk7V48WJFRUUpMzNTS5cu1fjx49WuXTtJ0pw5c9S2bVtt2bJFXbt2LcmXBwAAAJQqnLkCAAAAAC6gYsWKmj17tj1Y+fXXXxUbG6ugoCDVqVNHiYmJCg8Pl5fXH9+Ri4iIUFJSklJTU3Xw4EFdunRJERER9vX+/v6qV6+e9uzZU+yvBwAAACjNOHMFAAAAAFzMCy+8oDVr1sjb21tvvvmm/Pz8dPr0aYWGhjpsV6VKFUnSqVOndPr0aUlS1apVc23zyy+/FKgeL6/S9b08i8Xs8DfcB2Pn3hg/98b4ubaCjAtj6tr4t+e6CFcAAAAAwMX0799fvXv31qpVqzRixAitXLlSV69elbe3t8N2ZcqUkSRlZGToypUrkpTnNhcuXDBci9lsUsWKZQ3v78r8/X1LugQYxNi5N8bPvTF+pQ9j6h4YJ9dDuAIAAAAALqZOnTqSpFdeeUX79u3T8uXL5ePjk+vG9BkZGZIkPz8/+fj4SJIyMzPt/52zja+v8WbcarUpLe2y4f1dkcVilr+/r9LSrig721rS5cAJjJ17Y/zcG+Pn2nLGxwjG1LXxb6/4+fv75utMIcIVAAAAAHABqamp2rlzpx588EFZLBZJktlsVkhIiFJSUhQUFKSUlBSHfXIeBwYGKisry76sZs2aDtuEhYUVqLasrNLZyGdnW0vtayvtGDv3xvi5N8av9GFM3QPj5Hq4UBsAAAAAuICUlBQ988wz+vrrr+3Lrl27pv379yskJETh4eHau3evsrOz7et37typ2rVrKyAgQGFhYSpXrpx2795tX5+Wlqb9+/erRYsWxfpaAAAAgNKOcAUAAAAAXEBYWJjatGmjqVOnKjExUYcOHdKzzz6rtLQ0DRgwQFFRUUpPT9ekSZN0+PBhrV27VnFxcRoyZIik3++1Eh0drVmzZmnbtm06ePCg/vGPfygoKEidOnUq4VcHAAAAlC5cFgwAAAAAXIDJZNK//vUv/fOf/9SYMWN08eJFtWjRQitWrFC1atUkSUuWLFFMTIwiIyNVuXJlTZgwQZGRkfbnGD16tLKysjR58mRdvXpV4eHhio2NzXWTewAAAAAFQ7gCAAAAAC6ifPnymjJliqZMmZLn+kaNGmn16tU33d9isWj8+PEaP358EVUIAAAAQOKyYAAAAAAAAAAAAE4hXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATXC5cWb9+vR566CE1bNhQXbt21aZNm+zrDhw4oOjoaDVp0kT33XefYmNjS7BSAAAAAAAAAADgiVwqXPnggw/0/PPPq3fv3tq4caMeeughjR07Vv/73/907tw5DRw4ULVq1VJCQoJGjRqluXPnKiEhoaTLBgAAAAAAAAAAHsSrpAvIYbPZNHfuXPXv31/9+/eXJI0YMUL//e9/9fXXX+vrr7+Wt7e3pkyZIi8vL4WEhCg5OVmLFy9WVFRUCVcPAAAAAAAAAAA8hcucufLzzz/r5MmT6t69u8Py2NhYDRkyRImJiQoPD5eX1x95UEREhJKSkpSamlrc5QIAAAAAAAAAAA/lMmeuHD16VJJ0+fJlDRo0SPv371dwcLCGDRum9u3b6/Tp0woNDXXYp0qVKpKkU6dOKSAgwPCxvbxcJmOCJIvF7PA3kF/MHdzI6FxgDiE/+JkDI5g3AAAAAFA6uEy4kp6eLkl69tlnNXLkSI0bN06bN2/W8OHDtWzZMl29elXe3t4O+5QpU0aSlJGRYfi4ZrNJFSuWNV44ioy/v29JlwA3xdxBQTGH4AzmC4xg3gAAAACAe3OZcOUvf/mLJGnQoEGKjIyUJN11113av3+/li1bJh8fH2VmZjrskxOq+Pn5GT6u1WpTWtplw/uj8FksZvn7+yot7Yqys60lXQ7cCHMHN8qZE85iDiE/+JkDI0p63vj7+3LWDAAAAAAUApcJV4KCgiQp16W/6tSpox07dqh69epKSUlxWJfzODAwsEDHzsriFyKuKDvbytjAEOYOCoo5BGcwX2AE8wYAAAAA3JvLfG2tXr16Klu2rL755huH5YcOHVLNmjUVHh6uvXv3Kjs7275u586dql27doHutwIAAAAAAAAAAOAMlwlXfHx89NRTT+nf//63Nm7cqGPHjunNN9/UV199pYEDByoqKkrp6emaNGmSDh8+rLVr1youLk5Dhgwp6dIBAAAAAAAAAIAHcZnLgknS8OHD5evrqzlz5ujMmTMKCQnRG2+8obvvvluStGTJEsXExCgyMlKVK1fWhAkT7PdnAQAAAAAAAAAAKA4uFa5I0sCBAzVw4MA81zVq1EirV68u5ooAAAAAAAAAAAD+4DKXBQMAAAAAAAAAAHAHhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAXMT58+f14osv6t5771WzZs3Up08fJSYm2tdPnDhRdevWdfhz77332tdbrVbNmzdPbdu2VePGjfXkk08qOTm5JF4KAAAAUKp5lXQBAAAAAIDfjR07VqmpqZo9e7YqVaqklStXatCgQVq7dq1CQkL0448/aujQoYqOjrbvY7FY7P+9YMECxcfHa/r06QoMDNTMmTP19NNPa+PGjfL29i6JlwQAAACUSpy5AgAAAAAuIDk5WV999ZVeeukltWjRQnfccYcmTZqkwMBAbdy4UdnZ2Tp8+LAaNmyoypUr2/9UqlRJkpSZmamlS5dq1KhRateuncLCwjRnzhydOXNGW7ZsKeFXBwAAAJQuhCsAAAAA4AIqVqyoRYsWqUGDBvZlJpNJNptNFy5c0NGjR5WRkaGQkJA89z948KAuXbqkiIgI+zJ/f3/Vq1dPe/bsKfL6AQAAAE/CZcEAAAAAwAX4+/urXbt2Dss2bdqkY8eOqU2bNjp06JBMJpPi4uL0+eefy2w2q127dhozZozKly+v06dPS5KqVq3q8BxVqlTRL7/8UmyvAwAAAPAEhCsAAAAA4IL27t2r559/Xh06dFD79u01b948mc1mVa9eXQsXLlRycrJee+01HTp0SHFxcbpy5Yok5bq3SpkyZXThwoUC1eLlVbouemCxmB3+hvtg7Nwb4+feGD/XVpBxYUxdG//2XBfhCgAAAAC4mK1bt2rcuHFq3LixZs+eLUkaNWqUBgwYIH9/f0lSaGioKleurN69e+u7776Tj4+PpN/vvZLz35KUkZEhX19fw7WYzSZVrFi2AK/Gdfn7G39fULIYO/fG+Lk3xq/0YUzdA+PkeghXAAAAAMCFLF++XDExMerUqZNmzZplPxPFZDLZg5UcoaGhkqTTp0/bLweWkpKimjVr2rdJSUlRWFiY4XqsVpvS0i4b3t8VWSxm+fv7Ki3tirKzrSVdDpzA2Lk3xs+9MX6uLWd8jGBMXRv/9oqfv79vvs4UIlwBAAAAABexcuVKvfLKK+rXr5+ef/55mc1/NHXPPPOMzp8/r9jYWPuy7777TpJUp04d1ahRQ+XKldPu3bvt4UpaWpr279+v6OjoAtWVlVU6G/nsbGupfW2lHWPn3hg/98b4lT6MqXtgnFwP4QoAAAAAuICkpCRNmzZNnTp10pAhQ5Sammpf5+Pjo27dumnYsGF688031bVrVyUlJenll19Wt27dFBISIkmKjo7WrFmzVKlSJVWvXl0zZ85UUFCQOnXqVFIvCwAAACiVCFcAAAAAwAVs3rxZ165d05YtW7RlyxaHdZGRkZoxY4bmzp2rhQsXauHChSpfvry6d++uMWPG2LcbPXq0srKyNHnyZF29elXh4eGKjY3NdZN7AAAAAAVDuAIAAAAALmDo0KEaOnToLbfp0qWLunTpctP1FotF48eP1/jx4wu7PAAAAADX+fO7sgAAAAAAAAAAAMCOcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOcKlw5eTJk6pbt26uP++9954k6cCBA4qOjlaTJk103333KTY2toQrBgAAAAAAAAAAnsarpAu43o8//qgyZcpo69atMplM9uXly5fXuXPnNHDgQHXs2FFTp07Vvn37NHXqVFWoUEFRUVElWDUAAAAAAAAAAPAkLhWuHDp0SLVr11aVKlVyrYuLi5O3t7emTJkiLy8vhYSEKDk5WYsXLyZcAQAAAAAAAAAAxcalLgv2448/qk6dOnmuS0xMVHh4uLy8/siDIiIilJSUpNTU1OIqEQAAAAAAAAAAeDiXClcOHTqk1NRUPf7442rdurX69OmjL774QpJ0+vRpBQUFOWyfc4bLqVOnir1WAAAAAAAAAADgmVzmsmCZmZk6evSofH19NWHCBPn5+WnDhg16+umntWzZMl29elXe3t4O+5QpU0aSlJGRUaBje3m5VMbk8SwWs8PfQH4xd3Ajo3OBOYT84GcOjGDeAAAAAEDp4DLhire3t/bs2SMvLy97iNKgQQMdOXJEsbGx8vHxUWZmpsM+OaGKn5+f4eOazSZVrFjWeOEoMv7+viVdAtwUcwcFxRyCM5gvMIJ5AwAAAADuzWXCFSnvkCQ0NFRffvmlgoKClJKS4rAu53FgYKDhY1qtNqWlXTa8PwqfxWKWv7+v0tKuKDvbWtLlwI0wd3CjnDnhLOYQ8oOfOTCipOeNv78vZ80AAAAAQCFwmXDl4MGD6tOnjxYvXqwWLVrYl3///feqU6eO7rrrLsXHxys7O1sWi0WStHPnTtWuXVsBAQEFOnZWFr8QcUXZ2VbGBoYwd1BQzCE4g/kCI5g3AAAAAODeXOZra6Ghobrzzjs1depUJSYm6siRI5o+fbr27dunoUOHKioqSunp6Zo0aZIOHz6stWvXKi4uTkOGDCnp0gEAAAAAAAAAgAdxmTNXzGazFi5cqFmzZmnMmDFKS0tTvXr1tGzZMtWtW1eStGTJEsXExCgyMlKVK1fWhAkTFBkZWcKVAwAAAAAAAAAAT+Iy4YokVapUSdOmTbvp+kaNGmn16tXFWBEAAAAAAAAAAIAjl7ksGAAAAAAAAAAAgDsgXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcUKjhyqVLl3T16tXCfEoAAAAAcBv0RAAAAIBnMByufP7551qwYIH98WuvvaaWLVuqRYsWiomJKZTiAAAAAMBV0RMBAAAAnstQuLJ9+3YNGTJEH3zwgSQpMTFRy5YtU/Xq1dW0aVMtX75cK1euLNRCAQAAAMBV0BMBAAAAns1QuLJs2TLVrFlT77zzjiTpo48+ktls1rJly/Tuu+/q/vvvV0JCQqEWCgAAAACugp4IAAAA8GyGwpUDBw6oT58+CgwMlCR99dVXCg0NVfXq1SVJbdu21c8//1x4VQIAAACAC6EnAgAAADyboXAlKytL5cqVkySdPHlSx44d0913321fb7Va5eXlVTgVAgAAAICLoScCAAAAPJuhcCU4OFj79++XJG3evFkmk0lt27a1r9++fbuCg4MLp0IAAAAAcDH0RAAAAIBnM/RVqi5duujNN9/UyZMn9fXXXyswMFARERE6duyYXn31VX311Vd67rnnCrtWAAAAAHAJ9EQAAACAZzMUrgwfPlznz59XQkKCqlatqpiYGHl5een8+fP68ssv9eijjyo6OrqwawUAAAAAl0BPBAAAAHg2Q+GK2WzW5MmTNXnyZIflYWFh2r59u/2mjgAAAABQGtETAQAAAJ7N0D1XnnjiCe3cuTPXcm9vbwUGBmrr1q164IEHClwcAAAAALgieiIAAADAs+XrzJUrV67o3Llz9sdff/21OnXqpNtvvz3XtlarVV9++aVOnTpVeFUCAAAAQAmiJwIAAABwvXyFK+np6erWrZuuXLliXzZt2jRNmzbtpvs0adKkwMUBAAAAgCugJwIAAABwvXyFK5UrV9aLL76o3bt3y2azaf369WrevLlq1KiRa1uz2ay//vWv6tOnT6EXCwAAAAAlgZ4IAAAAwPXyfUP7Rx55RI888oik30+BHzhwoDp06FBUdQEAAACAS6EnAgAAAJAj3+HK9T799NPCrgMAAAAA3AY9EQAAAODZDIUrkmSz2bRr1y6dPXtWVqs1z21yvtUFAAAAAKUNPREAAADguQyFK8nJyXr66ad1/PjxPNfbbDaZTCYaCQAAAAClEj0RAAAA4NkMhSuzZs3S8ePHFRUVpYYNG8rb27uw6wIAAAAAl0VPBAAAAHg2Q+HKrl271KdPH7344ouFXQ8AAAAAuDx6IgAAAMCzmY3slJWVpbvuuquwawEAAAAAt0BPBAAAAHg2Q+FK/fr19cMPPxR2LQAAAADgFuiJAAAAAM9mKFwZPXq0PvjgA23evFk2m62wawIAAAAAl0ZPBAAAAHg2Q/dcWbp0qW677TaNGTNGPj4+qlixokwmk8M2JpNJW7duLZQiAQAAAMCV0BMBAAAAns1QuHLo0CGZzWZVrVrVvuzGb2vx7S0AAAAApRU9EQAAAODZDIUrn376aWHXAQAAAABug54IAAAA8GyG7rlyo8zMTFmt1sJ4KgAAAABwO/REAAAAgGcxHK6cP39eL7/8stq0aaMmTZpo9+7dSkxM1NChQ5WUlFSYNQIAAACAy6EnAgAAADyXoXDl/Pnz6t27t1auXClfX1/7tYQvXLigHTt2qG/fvjp+/HihFgoAAAAArqKoeqLz58/rxRdf1L333qtmzZqpT58+SkxMtK8/cOCAoqOj1aRJE913332KjY112N9qtWrevHlq27atGjdurCeffFLJyckFe7EAAAAAcjEUrsyfP18nT57UsmXLtHr1ansj0aFDBy1atEiXL1/WggULCrVQAAAAAHAVRdUTjR07Vt98841mz56t999/X/Xr19egQYN05MgRnTt3TgMHDlStWrWUkJCgUaNGae7cuUpISLDvv2DBAsXHx+vVV1/V6tWrZTKZ9PTTTyszM7PQXjsAAACAAtzQ/tFHH1WrVq107tw5h3X33nuvevfurS1bthRKgQAAAADgaoqiJ0pOTtZXX32lVatWqVmzZpKkSZMm6fPPP9fGjRvl4+Mjb29vTZkyRV5eXgoJCVFycrIWL16sqKgoZWZmaunSpRo/frzatWsnSZozZ47atm2rLVu2qGvXroXz4gEAAAAYO3MlJSVFYWFhN10fEhKis2fPGi4KAAAAAFxZUfREFStW1KJFi9SgQQP7MpPJJJvNpgsXLigxMVHh4eHy8vrjO3IRERFKSkpSamqqDh48qEuXLikiIsK+3t/fX/Xq1dOePXucqgUAAADArRkKVwICAnTy5Mmbrj906JAqVqxouCgAAAAAcGVF0RP5+/urXbt28vb2ti/btGmTjh07pjZt2uj06dMKCgpy2KdKlSqSpFOnTun06dOSpKpVq+ba5pdffnGqFgAAAAC3ZuiyYPfee6/i4+PVq1cvlS1b1mHdf//7X61Zs0bdunUrlAIBAAAAwNUUR0+0d+9ePf/88+rQoYPat2+v6dOnOwQvklSmTBlJUkZGhq5cuSJJeW5z4cKFAtXi5WXoe3kuy2IxO/wN98HYuTfGz70xfq6tIOPCmLo2/u25LkPhysiRI7V9+3ZFRkaqefPmMplMio+PV1xcnL744guVK1dOw4cPL+xaAQAAAMAlFHVPtHXrVo0bN06NGzfW7NmzJUk+Pj65bkyfkZEhSfLz85OPj48kKTMz0/7fOdv4+voarsVsNqlixbJ/vqEb8vc3/r6gZDF27o3xc2+MX+nDmLoHxsn1GApXAgMDFR8fr5dfflmff/65bDabNm/eLElq3ry5XnrpJQUHBxdqoQAAAADgKoqyJ1q+fLliYmLUqVMnzZo1y34mSlBQkFJSUhy2zXkcGBiorKws+7KaNWs6bHOr+8P8GavVprS0y4b3d0UWi1n+/r5KS7ui7GxrSZcDJzB27o3xc2+Mn2vLGR8jGFPXxr+94ufv75uvM4UMhSuSFBwcrEWLFunixYs6evSorFargoODFRAQYPQpAQAAAMBtFEVPtHLlSr3yyivq16+fnn/+eZnNfzR14eHhio+PV3Z2tiwWiyRp586dql27tgICAlS+fHmVK1dOu3fvtocraWlp2r9/v6Kjowv0WrOySmcjn51tLbWvrbRj7Nwb4+feGL/ShzF1D4yT6zEcruQoX768GjZsWBi1AAAAAIDbKayeKCkpSdOmTVOnTp00ZMgQpaam2tf5+PgoKipKS5Ys0aRJk/TUU0/p22+/VVxcnKZOnSrp93utREdHa9asWapUqZKqV6+umTNnKigoSJ06dSpwfQAAAAD+kK9wZeLEiXrsscfUuHFj++M/YzKZNG3atIJVBwAAAAAuoDh6os2bN+vatWvasmWLtmzZ4rAuMjJSM2bM0JIlSxQTE6PIyEhVrlxZEyZMUGRkpH270aNHKysrS5MnT9bVq1cVHh6u2NjYXDe5BwAAAFAw+QpX1q1bp9atW9sbiXXr1v3pPoQrAAAAAEqL4uiJhg4dqqFDh95ym0aNGmn16tU3XW+xWDR+/HiNHz8+38cFAAAA4Lx8hSvbtm1TpUqVHB4DAAAAgKegJwIAAABwvXyFK9WrV8/zcVpamsqVK2e/yeJPP/2kypUrq0KFCoVbJQAAAACUIHoiAAAAANczG91xzpw5atu2rY4dO2ZftnjxYrVp00ZLly4tlOIAAAAAwFXREwEAAACeK19nrtxozZo1euutt9S8eXOVKVPGvvyRRx7Rr7/+qpkzZ6pq1ap68MEHC61QAAAAAHAV9EQAAACAZzN05srKlSt1zz33aMWKFapatap9eevWrbV06VK1atVKy5YtK7QiAQAAAMCV0BMBAAAAns1QuJKcnKzOnTvfdH2nTp105MgRw0UBAAAAgCujJwIAAAA8m6FwxdfXV2fPnr3p+nPnzslisRguCgAAAABcGT0RAAAA4NkMhSvNmzfXypUr82wmfvvtN8XHx6tZs2YFLg4AAAAAXBE9EQAAAODZDN3QfvDgwXr88cf18MMPq0ePHrrjjjtkMpn0888/68MPP9T58+c1fPjwwq4VAAAAAFwCPREAAADg2QyFKw0bNtSCBQv00ksv6e2333ZYFxQUpH//+99q1KhRYdQHAAAAAC6HnggAAADwbIbCFUlq27atPv30U+3fv18nTpxQVlaWgoODVb9+fa4tDAAAAKDUoycCAAAAPJfhcCVHvXr1VK9evcKoBQAAAADcDj0RAAAA4HnyFa7Mnz9fnTt3VmhoqP3xnzGZTBoxYkTBqgMAAAAAF0BPBAAAAOB6+Q5Xbr/9dhoJAAAAAB6JnggAAADA9fIVrsTGxuquu+6yP37nnXeKrCAAAAAAcDX0RAAAAACul69w5fnnn9fYsWPVo0cPSdKpU6fUokULBQcHF2lxAAAAAOAK6IkAAAAAXM+cn41+++03paen2x9PnDhR+/btK6qaAAAAAMCl0BMBAAAAuF6+zlypVq2aFixYoBMnTqhs2bKy2Wz65JNPdPTo0Zvuw/WFAQAAAJQW9EQAAAAArpevcGXMmDF69tlntWzZMkm/NwmffPKJPvnkk5vuQyMBAAAAoLSgJwIAAABwvXyFK506dVJERISOHj2qzMxM9e/fX0OHDlXr1q2Luj4AAAAAKHH0RAAAAACul69wpUOHDg43b6xWrZqqVaumli1bFllhSUlJ6tmzp1544QX17NlTknTgwAHFxMTo+++/V4UKFdSvXz8NGjSoyGoAAAAAAKlkeiIAAAAArsvQDe1PnTolX1/fIivq2rVrGjdunC5fvmxfdu7cOQ0cOFC1atVSQkKCRo0apblz5yohIaHI6gAAAAAAqfh7IgAAAACuzdAN7SVpy5YtSk5Ovuk+Bbm+8BtvvGE/To41a9bI29tbU6ZMkZeXl0JCQpScnKzFixcrKirK0HEAAAAAID+KuycCAAAA4Npc7ob2e/bs0erVq7V+/Xrdd9999uWJiYkKDw+Xl9cfJUdEROitt95SamqqAgICnD4WAAAAAOQHN7QHAAAAcL18hSsPPvhgsdy8MS0tTRMmTNDkyZNVtWpVh3WnT59WaGiow7IqVapI+v2U/IKEK15e+bo6GoqJxWJ2+BvIL+YObmR0LjCHkB/8zIERzBv3VVw9EQAAAAD3kK9wRZIqVqyoihUrSpLCw8N19913F/rNG6dMmaImTZqoe/fuudZdvXpV3t7eDsvKlCkjScrIyDB8TLPZpIoVy/75hih2/v5cwxrGMHdQUMwhOIP5AiOYN+6pOHoiAAAAAO4h3+HK9d599137fyclJenkyZOqX7++fH19ZTabc4Ug+bF+/XolJibqww8/zHO9j4+PMjMzHZblhCp+fn5OHy+H1WpTWtplw/uj8FksZvn7+yot7Yqys60lXQ7cCHMHN8qZE85iDiE/+JkDI0p63vj7+3LWTCEpip4IAAAAgPswFK5I0r59+/TCCy/o8OHDkqSlS5fKZrNp3LhxeuGFF/Tggw869XwJCQlKTU11uM+KJL300kuKjY1VtWrVlJKS4rAu53FgYKDRlyFJysriFyKuKDvbytjAEOYOCoo5BGcwX2AE86Z0KOyeCAAAAID7MBSu/PTTTxo4cKB8fHz08MMPa8OGDZIkX19fZWdna9y4cfrrX/+q8PDwfD/nrFmzdPXqVYdlnTt31ujRo/XQQw/po48+Unx8vLKzs2WxWCRJO3fuVO3atbmZPQAAAIBiVRQ9EQAAAAD3YeiaAG+88Yb8/Py0ceNGPfvss7LZbJKkpk2basOGDapcubIWL17s1HMGBgbq9ttvd/gjSQEBAapevbqioqKUnp6uSZMm6fDhw1q7dq3i4uI0ZMgQIy8BAAAAAAwrip4IAAAAgPswFK58/fXXeuyxxxQQECCTyeSwLjAwUL1799b+/fsLpcAcAQEBWrJkiZKSkhQZGan58+drwoQJioyMLNTjAAAAAMCfKYmeCAAAAIDrMHRZsEuXLt3yPie33Xab0tLSDBeV48cff3R43KhRI61evbrAzwsAAAAABVFcPREAAAAA12TozJXg4GB99913N12/a9cuVa9e3XBRAAAAAODK6IkAAAAAz2YoXOnWrZvWrVunTz75xL7MZDLJarVq0aJF2rJli7p06VJoRQIAAACAK6EnAgAAADybocuCPf300/q///s//f3vf5e/v79MJpNeeuklnT9/XhcuXFBYWBg3mgcAAABQatETAQAAAJ7N0Jkr3t7eevvtt/XMM8+oWrVq8vHx0S+//KKAgAANGzZMK1eulK+vb2HXCgAAAAAugZ4IAAAA8GyGzlyRpL/85S966qmn9NRTTxVmPQAAAADgFuiJAAAAAM9lOFyRpPT0dH355Zc6ceKEvL29Va1aNbVp00Y+Pj6FVR8AAAAAuCx6IgAAAMAzGQ5XNm/erBdffFFpaWmy2WySfr+BY9myZfXyyy/roYceKrQiAQAAAMDV0BMBAAAAnstQuPLNN9/omWeeUfny5TV69GjdeeedslqtOnTokJYvX64JEyYoODhYjRo1Kux6AQAAAKDE0RMBAAAAns1QuPLmm2+qQoUK+uCDDxQQEGBf3rlzZ/Xp00c9evTQkiVLNG/evEIrFAAAAABcBT0RAAAA4NnMRnb63//+p969ezs0ETkCAgLUu3dv7d27t8DFAQAAAIAroicCAAAAPJuhcOXy5ct5NhE5KlWqpIsXLxouCgAAAABcGT0RAAAA4NkMhSvBwcHatWvXTdfv2rVL1apVM1wUAAAAALgyeiIAAADAsxkKV7p166YtW7Zo/vz5yszMtC/PzMzU/PnztXXrVj300EOFViQAAAAAuBJ6IgAAAMCzGbqh/dNPP63PPvtM8+fP19KlS1WzZk2ZTCYlJyfr8uXLqlevngYPHlzYtQIAAACAS6AnAgAAADyboXDF29tb77zzjmJjY/Wf//xHR48elc1mU82aNdWlSxcNGjRIPj4+hV0rAAAAALgEeiIAAADAsxkKVyTJx8dHI0aM0IgRIwqzHgAAAABwC/REAAAAgOdy+p4rP/zwQ57Lt23bpk8//bTABQEAAACAK6MnAgAAAJDvcOW3335TdHS0evXqpbS0tFzrly9frhEjRuixxx7TmTNnCrVIAAAAAChp9EQAAAAAcuQrXLl8+bL69++vxMREhYeH68qVK7m26du3r1q3bq19+/bpySefVEZGRqEXCwAAAAAlgZ4IAAAAwPXyFa7ExcXpp59+0ssvv6y4uDgFBgbm2qZjx46KjY3V2LFjdeTIEb377ruFXiwAAAAAlAR6IgAAAADXy1e4snnzZrVr106PPvron247ePBgNWvWTB9//HGBiwMAAAAAV0BPBAAAAOB6+QpXkpOT1apVq3w/6X333aekpCTDRQEAAACAK6EnAgAAAHC9fIUrZrNZPj4++X7SChUqyGQyGS4KAAAAAFwJPREAAACA6+UrXKlWrZp+/vnnfD/p4cOH87wGMQAAAAC4I3oiAAAAANfLV7jStm1bffDBB7p06dKfbpuWlqYNGzaoadOmBS4OAAAAAFwBPREAAACA6+UrXHnssceUkZGhIUOG6Ny5czfdLjU1VSNGjFBaWpr69u1baEUCAAAAQEmiJwIAAABwPa/8bFSzZk1NmjRJL7zwgjp06KCHHnpIzZo1U5UqVZSdna2zZ89q7969+uSTT3Tp0iU999xzql+/flHXDgAAAADFgp4IAAAAwPXyFa5IUq9evVSlShW9+OKLev/995WQkOCw3mazqUaNGpo5c6bat29f6IUCAAAAQEmiJwIAAACQI9/hiiS1a9dOO3bs0K5du/TNN98oJSVFFotFgYGBatmypRo1alRUdQIAAABAiaMnAgAAACA5Ga5IkslkUqtWrdSqVauiqAcAAAAAXBo9EQAAAIB83dAeAAAAAAAAAAAAvyNcAQAAAAAAAAAAcALhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJyQr3Bl2bJlOnLkSFHXAgAAAAAuiZ4IAAAAwPXyFa7MmzdP+/btsz/u0KGDtm3bVlQ1AQAAAIBLoScCAAAAcL18hStms1k7d+7UpUuXJEknT57UlStXirQwAAAAAHAV9EQAAAAArueVn43atm2rjRs36qOPPpIkmUwmjR8/XuPHj7/pPiaTSfv37y+cKgEAAACgBNETAQAAALhevsKVV199VVWrVtWhQ4eUmZmpxMRE1a5dWwEBAUVdHwAAAACUOHoiAAAAANfLV7hSrlw5Pfvss/bHYWFhGjZsmLp3715khQEAAACAq6AnAgAAAHC9fN1z5UbvvPOOWrduXdi1AAAAAIBbKI6eaMGCBerXr5/DsokTJ6pu3boOf+699177eqvVqnnz5qlt27Zq3LixnnzySSUnJxdpnQAAAIAnyteZKzdq2bKlJGn9+vXatGmTTpw4IW9vb1WtWlUPPPCAHn744UItEgAAAABcSVH3RG+//bbmzZun8PBwh+U//vijhg4dqujoaPsyi8Vi/+8FCxYoPj5e06dPV2BgoGbOnKmnn35aGzdulLe3d4FqAgAAAPAHQ+GKzWbT6NGjtXXrVtlsNpUvX15Wq1UHDhzQ9u3b9Z///EcLFiwo7FoBAAAAwCUUVU905swZTZo0SXv37lXt2rUd1mVnZ+vw4cMaPny4KleunGvfzMxMLV26VOPHj1e7du0kSXPmzFHbtm21ZcsWde3a1diLBQAAAJCLocuCLV++XFu2bFH37t312Wefac+ePdq7d6+2b9+uhx9+WNu3b9eqVasKu1YAAAAAcAlF1RP98MMPuu2227RhwwY1btzYYd3Ro0eVkZGhkJCQPPc9ePCgLl26pIiICPsyf39/1atXT3v27HG6FgAAAAA3Z+jMlYSEBLVs2VKvv/66w/KqVavqtdde0+nTp5WQkKA+ffoUSpEAAAAA4EqKqidq37692rdvn+e6Q4cOyWQyKS4uTp9//rnMZrPatWunMWPGqHz58jp9+rS9hutVqVJFv/zyi1N13MjLy9D38lyWxWJ2+Bvug7Fzb4yfe2P8XFtBxoUxdW3823NdhsKVpKQkjRs37qbrO3bsqDlz5hguCgAAAABcWUn0RD/99JPMZrOqV6+uhQsXKjk5Wa+99poOHTqkuLg4XblyRZJy3VulTJkyunDhguHjms0mVaxYtkC1uyp/f9+SLgEGMXbujfFzb4xf6cOYugfGyfUYCle8vLx0+fLlm66/fPmyTCaT4aIAAAAAwJWVRE80atQoDRgwQP7+/pKk0NBQVa5cWb1799Z3330nHx8fSb/feyXnvyUpIyNDvr7Gm3Gr1aa0tJu/VndksZjl7++rtLQrys62lnQ5cAJj594YP/fG+Lm2nPExgjF1bfzbK37+/r75OlPIULjSoEEDrV27VgMGDFCZMmUc1l25ckVr165VvXr1jDw1AAAAALi8kuiJTCaTPVjJERoaKkk6ffq0/XJgKSkpqlmzpn2blJQUhYWFFejYWVmls5HPzraW2tdW2jF27o3xc2+MX+nDmLoHxsn1GLpQ25NPPqnk5GT97W9/08aNG3Xw4EEdPHhQH374oXr16qVjx45p4MCBhV0rAAAAALiEkuiJnnnmGQ0aNMhh2XfffSdJqlOnjsLCwlSuXDnt3r3bvj4tLU379+9XixYtCrUWAAAAwNMZOnOlXbt2mjBhgmbPnq3x48c7rDObzfrHP/5x05swAgAAAIC7K4meqFu3bho2bJjefPNNde3aVUlJSXr55ZfVrVs3hYSESJKio6M1a9YsVapUSdWrV9fMmTMVFBSkTp06FWotAAAAgKczFK5Iv39Tq1OnTtq6dauOHTsmm82mmjVrqlOnTqpRo0Zh1ggAAAAALqe4e6L7779fc+fO1cKFC7Vw4UKVL19e3bt315gxY+zbjB49WllZWZo8ebKuXr2q8PBwxcbG5rrJPQAAAICCMRyuSFKNGjW4/BcAAAAAj1WUPdGMGTNyLevSpYu6dOly030sFovGjx+f62waAAAAAIXL0D1XAAAAAAAAAAAAPBXhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJxAuAIAAAAAAAAAAOAEQ+HKqlWrdPTo0UIuBQAAAADcAz0RAAAA4NkMhSuzZs3Shx9+WNi1AAAAAIBboCcCAAAAPJuhcMVsNqtixYqFXQsAAAAAuAV6IgAAAMCzGQpXBg0apEWLFumLL76Q1Wot7JoAAAAAwKXREwEAAACezcvITvv27VN6eroGDx4sb29vVaxYURaLxWEbk8mkrVu3FkqRAAAAAOBK6IkAAAAAz2YoXDl06JAqVKigChUq2JfZbDaHbW58DAAAAAClBT0RAAAA4NkMhSuffvppYdcBAAAAAG6DnggAAADwbIbuuXKjzMzMQrnOcGpqqsaPH6+IiAg1bdpUgwcP1uHDh+3rDxw4oOjoaDVp0kT33XefYmNjC3xMAAAAACiowuqJAAAAALgHw+HK+fPn9fLLL6tNmzZq0qSJdu/ercTERA0dOlRJSUmGnnPYsGE6fvy4Fi9erPfff18+Pj4aMGCArly5onPnzmngwIGqVauWEhISNGrUKM2dO1cJCQlGXwIAAAAAGFYUPREAAAAA92DosmDnz59X7969lZycrBo1ativJXzhwgXt2LFD3377rVavXq0aNWrk+znPnTun4OBgDRs2THfeeackafjw4erRo4d++ukn7dy5U97e3poyZYq8vLwUEhKi5ORkLV68WFFRUUZeBgAAAAAYUhQ9EQAAAAD3YejMlfnz5+vkyZNatmyZVq9ebW8kOnTooEWLFuny5ctasGCBU89ZsWJFzZ492x6s/Prrr4qNjVVQUJDq1KmjxMREhYeHy8vrjzwoIiJCSUlJSk1NNfIyAAAAAMCQouiJAAAAALgPQ+HKp59+qkcffVStWrWSyWRyWHfvvfeqd+/e2r17t+GiXnjhBd1zzz36z3/+o5iYGPn5+en06dMKCgpy2K5KlSqSpFOnThk+FgAAAAA4q6h7IgAAAACuzdBlwVJSUhQWFnbT9SEhIVq5cqXhovr376/evXtr1apVGjFihFauXKmrV6/K29vbYbsyZcpIkjIyMgwfS5K8vAzfegZFwGIxO/wN5BdzBzcyOheYQ8gPfubACOZN6VHUPREAAAAA12YoXAkICNDJkydvuv7QoUOqWLGi4aLq1KkjSXrllVe0b98+LV++XD4+PsrMzHTYLidU8fPzM3wss9mkihXLGt4fRcff37ekS4CbYu6goJhDcAbzBUYwb9xfUfdEAAAAAFyboXDl3nvvVXx8vHr16qWyZR2Dif/+979as2aNunXr5tRzpqamaufOnXrwwQdlsVgkSWazWSEhIUpJSVFQUJBSUlIc9sl5HBgYaORlSJKsVpvS0i4b3h+Fz2Ixy9/fV2lpV5SdbS3pcuBGmDu4Uc6ccBZzCPnBzxwYUdLzxt/fl7NmCklR9EQAAAAA3IehcGXkyJHavn27IiMj1bx5c5lMJsXHxysuLk5ffPGFypUrp+HDhzv1nCkpKXrmmWcUEBCgVq1aSZKuXbum/fv3q3379vrrX/+q+Ph4ZWdn28OXnTt3qnbt2goICDDyMuyysviFiCvKzrYyNjCEuYOCYg7BGcwXGMG8cX9F0RMBAAAAcB+GvrYWGBio+Ph4NW3aVJ9//rlsNps2b96sHTt2qEmTJnr33XcVHBzs1HOGhYWpTZs2mjp1qhITE3Xo0CE9++yzSktL04ABAxQVFaX09HRNmjRJhw8f1tq1axUXF6chQ4YYeQkAAAAAYFhR9EQAAAAA3IehM1ckKTg4WIsWLdLFixd19OhRWa1WBQcHGz6LxGQy6V//+pf++c9/asyYMbp48aJatGihFStWqFq1apKkJUuWKCYmRpGRkapcubImTJigyMhIoy8BAAAAAAwr7J4IAAAAgPswHK7kyMrKks1mk5eXl8qUKVOg5ypfvrymTJmiKVOm5Lm+UaNGWr16dYGOAQAAAACFqTB7IgAAAADuwXC48t133+n111/X3r17ZbPZJP1+A/p77rlHkyZN0u23315oRQIAAACAq6EnAgAAADyXoXDlhx9+UL9+/ZSZmam2bduqVq1aslqt+vnnn/XFF1/oscce05o1a1SjRo3CrhcAAAAAShw9EQAAAODZDIUr8+bNk7e3t+Lj4xUWFuawbt++fRo4cKBmz56tOXPmFEqRAAAAAOBK6IkAAAAAz2Y2slNiYqL69euXq4mQpCZNmig6OlpfffVVgYsDAAAAAFdETwQAAAB4NkPhislkkr+//03XBwcHKysry3BRAAAAAODK6IkAAAAAz2YoXGnXrp0++OADZWZm5rl+06ZNatOmTYEKAwAAAABXRU8EAAAAeLZ83XNlz549Do87dOigyZMnq2/fvho8eLDuuOMOmc1mHTt2TMuXL9dPP/2kf/3rX0VRLwAAAAAUO3oiAAAAANfLV7jSr18/mUwmh2U2m03fffedRo8enWu5JD3xxBM6cOBAIZUJAAAAACWHnggAAADA9fIVrowYMSJXIwEAAAAAnoKeCAAAAMD18hWujBo1qqjrAAAAAACXRU8EAAAA4HqGbmgPAAAAAAAAAADgqfJ15sqN0tPT9c9//lM7duzQmTNn7NcUvp7JZNL+/fsLXCAAAAAAuBp6IgAAAMCzGQpXXn/9da1Zs0ZVqlRRkyZNZLFYCrsuAAAAAHBZ9EQAAACAZzMUrmzfvl0dO3bUvHnzZDZzZTEAAAAAnoWeCAAAAPBshrqA9PR0tWvXjiYCAAAAgEeiJwIAAAA8m6FOoFmzZvrhhx8KuxZ4ILPZJC8vs8Mfi+X3aWmxmHOt8/Iyy2w2lXDVAAAA8HT0RAAAAIBnM3RZsPHjx6t///6qXbu2HnroIVWuXLmw64IHMJtNqlDBzx6m3Mjf3zfP5dnZVp0/f1lWa+6bhgIAAADFgZ4IAAAA8GyGwpXq1aurbt26mjFjhmbMmJHnNiaTSfv37y9QcSjdzGaTLBazZq3YqxNnLuZrn+DA8hrXt7nMZhPhCgAAAEoMPREAAADg2QyFKzExMfr6669VqVIl3X777fLyMvQ0gCTpxJmLOnLyQkmXAQAAAOQbPREAAADg2Qx1ANu3b1eHDh00d+5cmggAAAAAHoeeCAAAAPBshm5on5mZqfvuu48mAgAAAIBHoicCAAAAPJuhcKVp06b64YcfCrsWAAAAAHAL9EQAAACAZzMUrjzzzDP66KOPtHTpUp05c0bZ2dmFXRcAAAAAuCx6IgAAAMCzGTqH/bnnnpPZbNbMmTM1c+bMPLcxmUzav39/gYoDAAAAAFdETwQAAAB4NkPhSoUKFVShQoVCLgUAAAAA3AM9EQAAAODZDIUr7777bmHXAQAAAABug54IAAAA8GyG7rkCAAAAAAAAAADgqQyduTJx4sQ/3cZkMmnatGlGnh4AAAAAXBo9EQAAAODZDIUr69atu+k6k8kkb29vlSlThkYCAAAAQKlETwQAAAB4NkPhyrZt23Ity87O1tmzZ7Vu3Trt2rVLK1euLHBxAAAAAOCK6IkAAAAAz2YoXKlevXqey2vWrKnmzZtr6NCh+uc//6nXXnutQMUBAAAAgCuiJwIAAAA8W5Hc0L59+/b67LPPiuKpAQAAAMDl0RMBAAAApVuRhCtnz57V1atXi+KpAQAAAMDl0RMBAAAApZuhy4KdOnUqz+VXr17V999/r7i4ONWvX79AhQEAAACAq6InAgAAADyboXClffv2MplMN11vNps1cuRIw0UBAAAAgCujJwIAAAA8m6Fw5ZFHHsmzkbBYLKpSpYoiIyNVo0aNAhcHAAAAAK6InggAAADwbIbClRkzZhR2HQAAAADgNuiJAAAAAM9WJDe0BwAAAAAAAAAAKK3ydebK/PnzDT051xgGAAAAUBrQEwEAAAC4XqGHK9dfd5hGAgAAAEBpQE8EAAAA4Hr5ClfeeeedP93GZrNpxYoV+uSTTyRJ7dq1K1hlAAAAAOAi6IkAAAAAXC9f4UrLli1vuf7UqVN6/vnntXv3bpUvX17PPfecoqKiCqVAAAAAAChp9EQAAAAArpevcOVW4uPjNXPmTF26dElt2rRRTEyMAgMDC6M2AAAAAHB59EQAAACA5zEcrpw+fVqTJk3S//3f/6ls2bJ65ZVX1KtXr8KsDQAAAABcFj0RAAAA4LkMhSvvvfeeXnvtNaWnp6t169aKiYlR1apVC7s2AAAAAHBJ9EQAAACAZ3MqXDlz5owmT56sL7/8Ur6+vpoyZYoee+yxoqoNAAAAAFwKPREAAAAAyYlwZd26dZo+fbrS0tIUERGhmJgYVa9evShrAwAAAACXQU8EAAAAIEe+wpWhQ4fqs88+kyQ98MADevzxx3Xq1CmdOnXqlvuFh4cXvEIAAAAAKGH0RAAAAACul69wZceOHfb/3rx5szZv3pyvJz9w4IChogAAAADAlZRET7RgwQLt3LlT7777rsPzxcTE6Pvvv1eFChXUr18/DRo0yL7earVq/vz5eu+995SWlqbmzZvrpZde0u233264DgAAAAC55StcGTlyZFHXAQAAAAAuq7h7orffflvz5s1zOPPl3LlzGjhwoDp27KipU6dq3759mjp1qipUqKCoqChJvwcy8fHxmj59ugIDAzVz5kw9/fTT2rhxo7y9vYv1NQAAAAClGeEKAAAAAPyJ4uqJzpw5o0mTJmnv3r2qXbu2w7o1a9bI29tbU6ZMkZeXl0JCQpScnKzFixcrKipKmZmZWrp0qcaPH6927dpJkubMmaO2bdtqy5Yt6tq1a7G8BgAAAMATmEu6AAAAAADA73744Qfddttt2rBhgxo3buywLjExUeHh4fLy+uM7chEREUpKSlJqaqoOHjyoS5cuKSIiwr7e399f9erV0549e4rtNQAAAACeIF9nrgAAAAAAil779u3Vvn37PNedPn1aoaGhDsuqVKkiSTp16pROnz4tSapatWqubX755ZciqBYAAADwXIQrAAAAAOAGrl69muu+KWXKlJEkZWRk6MqVK5KU5zYXLlwo0LG9vErXRQ8sFrPD33AfjJ17Y/zcG+Pn2goyLoypa+PfnusiXAEAAAAAN+Dj46PMzEyHZRkZGZIkPz8/+fj4SJIyMzPt/52zja+vr+Hjms0mVaxY1vD+rszf3/j7gpLF2Lk3xs+9MX6lD2PqHhgn10O4AgAAAABuICgoSCkpKQ7Lch4HBgYqKyvLvqxmzZoO24SFhRk+rtVqU1raZcP7uyKLxSx/f1+lpV1Rdra1pMuBExg798b4uTfGz7XljI8RjKlr499e8fP3983XmUKEKwAAAADgBsLDwxUfH6/s7GxZLBZJ0s6dO1W7dm0FBASofPnyKleunHbv3m0PV9LS0rR//35FR0cX6NhZWaWzkc/Otpba11baMXbujfFzb4xf6cOYugfGyfVwoTYAAAAAcANRUVFKT0/XpEmTdPjwYa1du1ZxcXEaMmSIpN/vtRIdHa1Zs2Zp27ZtOnjwoP7xj38oKChInTp1KuHqAQAAgNKFM1cAAAAAwA0EBARoyZIliomJUWRkpCpXrqwJEyYoMjLSvs3o0aOVlZWlyZMn6+rVqwoPD1dsbGyum9wDAAAAKBjCFQAAAABwQTNmzMi1rFGjRlq9evVN97FYLBo/frzGjx9flKUBAAAAHo/LggEAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwgkuFK+fPn9eLL76oe++9V82aNVOfPn2UmJhoX3/gwAFFR0erSZMmuu+++xQbG1uC1QIAAAAAAAAAAE/kUuHK2LFj9c0332j27Nl6//33Vb9+fQ0aNEhHjhzRuXPnNHDgQNWqVUsJCQkaNWqU5s6dq4SEhJIuGwAAAAAAAAAAeBCvki4gR3Jysr766iutWrVKzZo1kyRNmjRJn3/+uTZu3CgfHx95e3trypQp8vLyUkhIiJKTk7V48WJFRUWVcPUAAAAAAAAAAMBTuMyZKxUrVtSiRYvUoEED+zKTySSbzaYLFy4oMTFR4eHh8vL6Iw+KiIhQUlKSUlNTS6JkAAAAAAAAAADggVzmzBV/f3+1a9fOYdmmTZt07NgxtWnTRnPmzFFoaKjD+ipVqkiSTp06pYCAAMPH9vJymYzJo1gsxt/3guyL0itnXjA/kMPoXGAOIT/4mQMjmDcAAAAAUDq4TLhyo7179+r5559Xhw4d1L59e02fPl3e3t4O25QpU0aSlJGRYfg4ZrNJFSuWLVCtKH7+/r4lXQJcGPMDBcUcgjOYLzCCeQMAAAAA7s0lw5WtW7dq3Lhxaty4sWbPni1J8vHxUWZmpsN2OaGKn5+f4WNZrTalpV02XiwMs1jMhn+xkJZ2RdnZ1kKuCO4uZ04xP5DD6M8Z5hDyg585MKKk542/vy9nzQAAAABAIXC5cGX58uWKiYlRp06dNGvWLPvZKkFBQUpJSXHYNudxYGBggY6ZlcUvRNxNdraVccNNMT9QUMwhOIP5AiOYNwAAAADg3lzqa2srV67UK6+8or59++pf//qXw2XAwsPDtXfvXmVnZ9uX7dy5U7Vr1y7Q/VYAAAAAAAAAAACc4TLhSlJSkqZNm6ZOnTppyJAhSk1N1dmzZ3X27FldvHhRUVFRSk9P16RJk3T48GGtXbtWcXFxGjJkSEmXDgAAAAAAAAAAPIjLXBZs8+bNunbtmrZs2aItW7Y4rIuMjNSMGTO0ZMkSxcTEKDIyUpUrV9aECRMUGRlZQhUDAAAAAAAAAABP5DLhytChQzV06NBbbtOoUSOtXr26mCoCAAAAAAAAAADIzWUuCwYAAAAAAAAAAOAOCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACc4FXSBQAAAAAAAAAAHJnNJpnNpnxta7HwHXqguBGuAAAAAAAAAIALMZtNqlDBj9AEcGGEKwAAAAAAAADgQsxmkywWs2at2KsTZy7+6fbNwqroiYfqFUNlAHIQrgAAAAAAAACACzpx5qKOnLzwp9sFVylXDNUAuB7nlQEAAAAAAAAAADiBM1cAALiBs9e0tVptslptRVQNAAAAAAAAXA3hCgAA/1+F8mVktdrk7+/r1H7Z2VadP3+ZgAUAAAAAAMBDEK4AAPD/lfP9i8xmU75vGChJwYHlNa5vc5nNJsIVAAAAAAAAD0G4AgDADfJ7w0AAAAAAAAB4Jm5oDwAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnOBV0gUAAAAAAAAAAEqGxeLc9++tVpusVlsRVQO4D8IVAAAAAAAAAPAwFcqXkdVqk7+/r1P7ZWdbdf78ZQIWeDzCFQAAAAAAAADwMOV8/yKz2aRZK/bqxJmL+donOLC8xvVtLrPZRLgCj0e4AgAAAAAAAAAe6sSZizpy8kJJlwG4HW5oDwAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAABu5OTJk6pbt26uP++9954k6cCBA4qOjlaTJk103333KTY2toQrBgAAAEofr5IuAAAAAACQfz/++KPKlCmjrVu3ymQy2ZeXL19e586d08CBA9WxY0dNnTpV+/bt09SpU1WhQgVFRUWVYNUAAABA6UK4AgAAAABu5NChQ6pdu7aqVKmSa11cXJy8vb01ZcoUeXl5KSQkRMnJyVq8eDHhCgAAAFCIuCwYAAAAALiRH3/8UXXq1MlzXWJiosLDw+Xl9cf36CIiIpSUlKTU1NTiKhEAAAAo9QhXAAAAAMCNHDp0SKmpqXr88cfVunVr9enTR1988YUk6fTp0woKCnLYPucMl1OnThV7rQAAAEBpxWXBAAAAAMBNZGZm6ujRo/L19dWECRPk5+enDRs26Omnn9ayZct09epVeXt7O+xTpkwZSVJGRobh43p5la7v5VksZoe/4T4YO/fG+Lk3xq94ufr77Or1lSb823NdhCsAAAAA4Ca8vb21Z88eeXl52UOUBg0a6MiRI4qNjZWPj48yMzMd9skJVfz8/Awd02w2qWLFsgUr3EX5+/uWdAkwiLFzb4yfe2P8IDEPSgLvueshXAEAAAAAN5JXSBIaGqovv/xSQUFBSklJcViX8zgwMNDQ8axWm9LSLhva11VZLGb5+/sqLe2KsrOtJV0OnMDYuTfGz70xfsUr5/12VcyD4sO/veLn7++brzOFXDZcWbBggXbu3Kl3333XvuzAgQOKiYnR999/rwoVKqhfv34aNGhQCVYJAAAAAMXn4MGD6tOnjxYvXqwWLVrYl3///feqU6eO7rrrLsXHxys7O1sWi0WStHPnTtWuXVsBAQGGj5uVVTob+exsa6l9baUdY+feGD/3xvhBYh6UBN5z1+OSF2p7++23NW/ePIdl586d08CBA1WrVi0lJCRo1KhRmjt3rhISEkqoSgAAAAAoXqGhobrzzjs1depUJSYm6siRI5o+fbr27dunoUOHKioqSunp6Zo0aZIOHz6stWvXKi4uTkOGDCnp0gEAAIBSxaXOXDlz5owmTZqkvXv3qnbt2g7r1qxZI29vb02ZMkVeXl4KCQlRcnKyFi9erKioqBKqGAAAAACKj9ls1sKFCzVr1iyNGTNGaWlpqlevnpYtW6a6detKkpYsWaKYmBhFRkaqcuXKmjBhgiIjI0u4cgAAAKB0calw5YcfftBtt92mDRs26N///rdOnjxpX5eYmKjw8HB5ef1RckREhN566y2lpqYW6BR3AAAAAHAXlSpV0rRp0266vlGjRlq9enUxVgQAAAB4HpcKV9q3b6/27dvnue706dMKDQ11WFalShVJ0qlTpwhXAAAAAAAAAABAsXCpcOVWrl69Km9vb4dlZcqUkSRlZGQU6Lm9vFzy1jOlnsVi/H0vyL4ovXLmBfOjYEwmk8xmk1P7WK022Wy2IqrIuOKcC8w7z8PPHBjBvAEAAACA0sFtwhUfHx9lZmY6LMsJVfz8/Aw/r9lsUsWKZQtUG4qfv79vSZcAF8b8KBir1WYoXHF2n9KGeee5GHsYwbwBAAAAAPfmNuFKUFCQUlJSHJblPA4MDDT8vFarTWlplwtUG4yxWMyGf7GQlnZF2dnWQq4I7i5nTjE/jMt5D2et2KsTZy7ma5/gwPIa17e5S77vBfk54yxXfP0oWvzMgRElPW/8/X05awYAAAAACoHbhCvh4eGKj49Xdna2LBaLJGnnzp2qXbt2ge+3kpXFL0TcTXa2lXHDTTE/Cu7EmYs6cvKCU/t4+vvu6a/fkzH2MIJ5AwAAAADuzW2+thYVFaX09HRNmjRJhw8f1tq1axUXF6chQ4aUdGkAAAAAAAAAAMCDuE24EhAQoCVLligpKUmRkZGaP3++JkyYoMjIyJIuDQAAAAAAAAAAeBCXvSzYjBkzci1r1KiRVq9eXQLVAAAAAAAAAAAA/M5lwxUAANyJszeItlptslptRVQNAAAAAAAAihLhCgAABVChfBlZrTb5+/s6tV92tlXnz18mYAEAAAAAAHBDhCsAABRAOd+/yGw2adaKvTpx5mK+9gkOLK9xfZvLbDYRrgAAAAAAALghwhUAAArBiTMXdeTkhZIuAwAAAAAAAMXAuQvEAwAAAAAAAAAAeDjOXAEAAAAA/L/27js8qmrd4/gvE0gAk1CU0AKoaBIh9NBFJApcAUGCR1QIckWaEuBwJAhyLA+IUi5cwIuogUMzhBJ6OUjxiiCi4XhABCwBgSAQpRlaApl9/+DOyJAEZg/JlOT7eR6eh+xZe8+79pqy17x7rQUAAAqRxeIni8XP6fL+/twTD3g7kisAAAAAAAAAUEgsFj+VK1eGhAlQxJBcAQAAAAAAAIBCYrH4yd/fosmf7Fb6qUyn9mkUGareHWsXcmQA7gTJFQAAAAAAAAAoZOmnMpV2/LxTZcNCgwo5GgB3irFoAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSK4AAAAAAAAAAACYQHIFAAAAAAAAAADABJIrAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSng6AAAAnGWx+Mli8XO6vL8/9xAAAAAAAACg4JFcAQD4BIvFT+XKlSFhAgAAAAAAAI8juQIA8AkWi5/8/S2a/MlupZ/KdGqfRpGh6t2xdiFHBgAAAAAoTphVwXydrFZDVqtRSNEAnkFyBQDgU9JPZSrt+HmnyoaFBhVyNAAAAACA4qS4z6pQLjhQVquhkJDSpvbLybHq3LlLJFhQpJBcAQAAAAAAAAAnFPdZFYJKl5TF4meq/mGVgvVqz8ayWPxIrqBIIbkCAAAAAAAAACYU91kVzNQfKKqK5/g1AAAAAAAAAAAAF5FcAQAAAAAAAAAAMIFpwQDAh1gsfrJY/EztY7UazGkKU8y+zniNAQAAAACA4obkCgD4CIvFT+XKlZG/v7lBhzk5Vp07d4kfv+EUV15nvMYAAAAAAEBxQ3IFAHyExeInf3+LJn+yW+mnMp3aJ6xSsF7t2VgWix8/fMMpZl9nvMYAAAAAAEBxRHIFAHxM+qlMpR0/7+kwUMTxOgMAAAAAAMgfyRUAAAAAAAAAPo91SgG4E8kVAAAAAAAAAD6NdUoBuBvJFQAAAAAAAAA+7U7WKS1Z0l85OVan9jGbvAFQdJFcAQB4hNnh2lzAAgAAAABux8z6keWCA2W1GgoJKV3IUQEoikiuAADcztXh2gAAAAAAFJSg0iVlsfiZGu3SKDJUvTvWLuTIAPgCkisAALdzZbg2F7AAAAAAgMJgZrRLWGhQIUcDwFeQXAEAeAwXsAAAAAAAAPBFzMcCAAAAAAAAAABgAskVAAAAAAAAAAAAE0iuAAAAAAAAAAAAmEByBQAAAAAAAAAAwAQWtAeAm1gsfrJY/EztY7UaslqNQorIN/j7O5+vN1MWd8bs65m2AQAAAAAAuD2SKwBwA4vFT+XKlTH9A3NOjlXnzl0qlgmWcsGBsloNhYSU9nQouImrr2cAAAAAAADcGskVALiBxeInf3+LJn+yW+mnMp3aJ6xSsF7t2VgWi1+xTK4ElS4pi8XP1DlrFBmq3h1rF3JkcOX1TNsAAAAAKAzMEgGgqCG5AgB5SD+VqbTj5z0dhk8xc87CQoMKORrciLYBAAAA4EnMEgGgKCK5AgAAAAAAAMBprqzt6OosESVL+isnx+rUcwCAO5FcAQAAAAAAAOAUPz8/lStX2qVkhplR9azvCcDbkVwBAAAAAABAscVaIOa4a21Hs+t7sn4kAHcjuQIAHuLKMGpXObsvw6jdq7DPN+0JFD53fpYDAICCx1ogrnPX2o7OPg/rRwJwN5IrAOABrl7Am8Uwau/karvkWA35m7yjDkDhcfWz3Go15OfHexkAAG/gyigM21ogFotfsU6uAEBxR3IFADyAYdTFm9l2kf5sm8J+zQBw3p3+GAMAALyHmVEYAABIJFcAwKMYRl28udL+7nrNAHAeP8YAAAAAQPFDcgUAAAAAAAAwyZWpQQt7GjGz68FJ7okLAIoikisAAAAAAACAk1xeQzHHqnPnLhVaIsPV9eBycqzKzLwiw7h1XLbjMr0pAFxHcgUAAAAAAABwkitrKN647lphJlfMrgf30H0V1K9rXZUrV8bp5wkKKuVqiABQpJBcAQAAAAAAKCKYFsp9vHXdNbPrNJpNFDWKDFXvjrXvJEQAKBJIrngYFz3eiXYBgOLL2e8A27QIfn7umRbBle8mV/B9BgCA77qTaaEKc7oqeD+zCRkAAMkVj+KixzvRLgBQfLnyHRAcXKrQP/9d/m6yGvI3mZDh+wwAAO9h9uYKf3+L6Wmh3DFdlY3tphRnr2mK4k0fZq7nimL9UbyZ7c+44z3ADda4EyRXPMiVuTDdedFTXNEuAFB8mf0OcNfnvyvfTbbpGvg+AwDAN7l6c4XkndNVWSx+Cg6+vlaHswvBO7vQ+o289UfPcsGBsloNp+sucdMLig5XXv9S4b8HuMEad8rnkitWq1Xvv/++li5dqj/++EONGzfWm2++qZo1a3o6NJd540UPaBcAKM689TvAlekavLUuAApPUewzAcXRndxc4Y3M1seVhdYl7/3RM6h0SVNrm3DTC4oSs69/yT3vAW6wxp3yueTKzJkzlZycrHfffVeVKlXSpEmT1K9fP61du1YBAQGeDg8AAAAAPKqo9ZncNV0H04IUHd7clmZis91J7a61MFwZIePK8Z2tjysLrdt+9CxZ0l85OVZTcbmL2RtfzMTn7roAZrly41dhvq5d+ZwFbuRTyZXs7GzNmTNHI0aMUJs2bSRJU6dOVevWrbVp0yZ16tTJwxECAAAAgOcUtT6Tu6brYFqQosOb2/JOpvkqTC5P1+PC2m6uMPOjp6t18UZFqS6AK1yaSs9Nn0uAjU8lVw4ePKiLFy+qefPm9m0hISGqXbu2vvnmG5/rKAAAAABAQSpqfSZ3TdfBtCBFhzvbsrAXm3fXFF+uTNfjytpu7qjPndTF2xSlugCuMPsecPfnktlEuTtGSLoyctOb+cIIYT/DzKpgHvbpp58qPj5ee/bsUalSpezbhw4dqitXrujDDz80fUzD8Fwj+flJFotF5zKzdM3J4aol/C3/n7l1rry389b6e2tcuD2LxXLH7eCu9jf7PIEB/gouE1Co+7jjObx5H2+Ny5v3KYqff2bem+6svzs+M4piexa2O/nO8MRVuMXiJz+/otPhQm70mZz/LLv5upE+gO+43TW/u9rSz8+1z1SuTak/9eecFcY+3hqXu/ZxV1wBJS0KLhNg+vPfMAzdyc/wzvze5cr3kmEYXr2Pp65Bne03+dTIlcuXL0tSrnmCAwMDdf68a/Pi+fn5yd/fsx3McsGBpvexWLxrGPGd8Nb6e2tcuL2CaAd3tb8rz+OOfbw1Lnft461xefM+Re3zz1vr7672L2rtWdg4x/Am9Jn+5Mz77OYyvJ99x+3Ouze3Jdem1N/bnqOo7eOtcblrH2+Ny137uCsus1xNyN+oML6nXInJnft4+hr0dnzqKtB251V2drbD9qysLJUuzRyUAAAAAIo3+kwAAACAe/hUcqVKlSqSpIyMDIftGRkZqly5sidCAgAAAACvQZ8JAAAAcA+fSq5ERkYqKChIu3btsm/7448/tH//fkVHR3swMgAAAADwPPpMAAAAgHv41JorAQEB6tWrlyZPnqwKFSqoWrVqmjRpkipXrqx27dp5OjwAAAAA8Cj6TAAAAIB7+FRyRZKGDBmia9euacyYMbpy5YqaNGmi2bNn51qwEQAAAACKI/pMAAAAQOHzMwzD8HQQAAAAAAAAAAAAvsKn1lwBAAAAAAAAAADwNJIrAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSK7Aq504cULDhw9Xq1at1KRJE/Xt21c//fSTp8OCD3n99df12muveToMeCmr1arp06erdevWql+/vl588UUdOXLE02HBh8ycOVNxcXGeDgM+4Ny5c3rjjTf0yCOPqFGjRnruueeUmprq6bCAYi01NVUPPfSQdu3a5bB9586dio2NVb169dS+fXutXLnSMwHCwdGjRzVo0CBFR0crOjpaf/3rX3Xy5EmHMrSd93Kmb0/7+Yb8+ti0n/ei3+ub8uprHjhwQL169VKDBg306KOPavbs2R6KDjYkV+C1srOz1b9/f50+fVoffvihkpKSFBwcrBdeeEFnzpzxdHjwcjk5OZowYYKWLVvm6VDgxWbOnKnk5GSNGzdOixcvlp+fn/r166fs7GxPhwYfMHfuXE2fPt3TYcBHDB8+XHv27NGUKVO0bNky1alTR3379lVaWpqnQwOKpczMTCUkJMhqtTpsT0tL04ABA9SmTRutXLlSPXr00OjRo7Vz504PRQpJysrKUp8+fSRJixYt0oIFC/Tbb79pwIABMgxDEm3nzZzp29N+3u9WfWzaz7vR7/U9efU1z549q//8z//Uvffeq5SUFMXHx2vatGlKSUnxUJSQpBKeDgDIT2pqqn788Udt27ZNlSpVkiRNnDhRTZs21datW/X00097OEJ4q7S0NI0aNUrHjh1T1apVPR0OvFR2drbmzJmjESNGqE2bNpKkqVOnqnXr1tq0aZM6derk4QjhrU6dOqXXX39du3fv1n333efpcOADjhw5oh07dmjRokVq1KiRpOt3fW7btk1r167V0KFDPRwhUPy89dZbql69uo4fP+6wfd68eYqMjLS/L++//37t379fiYmJatGihSdChaRff/1VdevW1ZtvvqkKFSpIkvr06aNXXnlFZ8+eVYUKFWg7L+ZM3572826362PTft6Lfq9vuVVfc8mSJQoICNBbb72lEiVKqFatWjpy5Ig+/vhjde/e3UMRg5Er8FoPPvigPvroI/vFl41hGDp//ryHooIv+Prrr/XQQw9p7dq1CgsL83Q48FIHDx7UxYsX1bx5c/u2kJAQ1a5dW998840HI4O3+/7771W2bFmtXr1a9evX93Q48AHly5fXRx99pKioKPs2Pz8/rmkAD1m1apW+/fZbjR49OtdjqampDtcGktS8eXPt3r3bPkIC7nffffdp2rRp9sRKenq6kpKSVKdOHZUvX14SbefNnOnb037e7XZ9bNrPe9Hv9S236mumpqaqSZMmKlHiz7ESzZs31+HDh3X69Gl3h4r/x8gVeK2KFSvas+o28+fPV1ZWllq1auWhqOALnnvuOU+HAB9gm6O7SpUqDttDQ0N14sQJT4QEHxETE6OYmBhPhwEfEhISkuuaZsOGDTp69KgefvhhD0UFFE/p6el65513NHPmTN111125Hj958qQqV67ssC00NFSXL1+2j5CAZ7344ovasWOHypYtq3nz5snPz08SbefNnOnb037e7XZ9bNrPe9Hv9S236muePHlS4eHhDttCQ0MlXR/heffddxd6fMiN5Ao8Jj09XY899li+j2/fvl0VK1a0//3pp59q6tSpiouLU2RkpDtChBcy+7oB8nP58mVJUkBAgMP2wMBA7iQHUKh2796t0aNH67HHHiNRBxSg210nbtu2TQkJCerRo4eio6OVnp6eq8yVK1dyXRvY/mZu+sJj5hp/xIgRGjp0qD744AP16dNHK1euVJUqVWg7DyqIvj3t5zkF0cem/bwX/d6iI6/3WWBgoKTra5PBM0iuwGMqVaqk9evX5/v4jXc2LFq0SGPHjlXHjh01atQod4QHL2XmdQPcSqlSpSRdv9i3/V+6flFSunRpT4UFoIjbvHmzXn31VdWvX19TpkzxdDhAkXK768SlS5fq0qVLio+Pz7dMYGBgrh8CbX9zfVB4zFzjP/TQQ5Kurxnw6KOPKiUlRYMHD6btPKgg+va0n+cURB+b9vNe9HuLjlKlSuV6n9mSKmXKlPFESBDJFXhQyZIlVatWrduWmzx5sj7++GPFxcXp9ddftw/7RvHk7OsGuB3bsOiMjAzVqFHDvj0jI4PRcQAKxcKFC/XOO++oXbt2mjx5cq47zwDcmdtdJy5fvlwZGRlq1qyZJNnXAejXr5+aNm2qxMREValSRRkZGQ77ZWRkqEyZMgoODi684Iu527Xd8ePHtW/fPnXo0MG+rXTp0goLC7O3F23nOQXRt6f9PKcg+ti0n/ei31t0VK5cOc/3maRca1rBfUiuwKtNmjRJiYmJSkhIUN++fT0dDoAiJDIyUkFBQdq1a5f9IvOPP/7Q/v371atXLw9HB6CoSUpK0tixYxUXF6fRo0fLYrF4OiSg2FmwYIGuXbtm//vUqVOKi4vTuHHj7AmX6Ohoff311w777dy5U40aNeJ960EHDhzQkCFDtGnTJofrtsOHD6tLly6SaDtvd7u+Pe3n22g/70W/t+ho0qSJkpOTlZOTI39/f0nX32f33Xcf6614EJ9w8Fq7du1SYmKi4uLi1KVLF/3222/2fxcvXvR0eAB8XEBAgHr16qXJkydry5YtOnjwoP7617+qcuXKateunafDA1CEHD58WOPHj1e7du00YMAAnT592n5Nk5mZ6enwgGKjWrVqqlmzpv1f1apVJV2/29N2x2dcXJz27t2ryZMnKy0tTXPmzNHGjRv10ksveTL0Yu+RRx5RRESEEhIS9P3332vfvn2Kj49X+fLl1b17d0m0nTdzpm9P+/k22s970e8tOrp3764LFy7o9ddf188//6zly5dr3rx5GjBggKdDK9YYuQKvtXbtWknX7zBbsGCBw2ODBw++5VzJAOCMIUOG6Nq1axozZoyuXLmiJk2aaPbs2UzVA6BAbdy4UVevXtWmTZu0adMmh8e6deum9957z0ORAbjZgw8+qJkzZ2rSpEmaN2+ewsLCNGnSJLVo0cLToRVrAQEBSkxM1IQJE9S3b19lZ2fr4Ycf1nvvvaegoCBJtJ03c6ZvT/v5NtrPu9HvLRruvvtuJSYm6p133lG3bt1UsWJFJSQkqFu3bp4OrVjzM2wTzQIAAAAAAAAAAOC2mBYMAAAAAAAAAADABJIrAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSK4A8GmfffaZ4uPjFRMTo6ioKDVr1kwvvfSStm7d6rYYsrOz9eabb6pp06aqV6+exo0bl+e21157TREREUpPTzd1/BkzZigiIkK7du0qpBo4+uWXX0yVT01NVUJCgtq1a6d69eopOjpacXFxWrlypQzDcCjr6jnwVTExMYqIiFBERISio6MlSbt27VJERIRee+21fPdLT09XRESE4uLicj12c/vcXK6wz/E777xjr5M7X5cAAAAoXPStCt7t+lZvvvmmIiIilJKScsty6enpioyM1AsvvOD0c9v6HTNmzHB6n4JkayPbvwMHDki63n+JiYm55b62ftTNjhw54vB3XFycQ7nly5crIiJCy5cvL4Aa5LZ582aHOnnq3ALwHiU8HQAAuOLChQsaPXq0Nm7cqDp16ig2NlahoaE6efKkVq5cqUGDBunFF1/UyJEjCz2WJUuWKDk5Wa1atdITTzyhBx98MM9thmGoRYsWqlChgqnjt2vXTjVq1FCtWrUKqQZ/GjRokC5cuKAFCxbctuzVq1c1fvx4JSUl6d5771WnTp1UtWpVnTlzRuvWrdPIkSO1bds2TZo0Sf7+/oUeu7cqX768Ro0apZIlS97xsfJqn4kTJ+qee+6542M7q2vXroqKitKmTZu0adMmtz0vAAAACgd9q8LhTN/q6aefVnJystasWaPu3bvnW85249rTTz9dGKEWqlGjRql8+fKqWrXqHR3n448/1rRp07Rv3z77toEDB7r1nERFRWnixIk6dOiQZs2a5bbnBeC9SK4A8EljxozRxo0blZCQoL59+zo8NnDgQPXt21dz5szR/fffr7/85S+FGssPP/wgSUpISFBkZKQk2e88unGbJDVs2ND08SMjIx2OUZi2bt2qpk2bOlV26tSpSkpKUlxcnEaPHi2L5c/BkP3799eIESO0du1a1ahRQ8OGDSukiL1fmTJl1LVr1wI5Vl7tU1DHdlZUVJSioqJ09OhRkisAAABFAH2rwuFM36pu3br2kTSnTp1SpUqV8iy3atUqlS1bVu3bty+MUAvV448/rrCwsDs+zrZt23T16lWHba1atbrj45pRuXJlde3aVbt27SK5AkAS04IB8EHbt2/Xhg0b1KFDh1wX/5IUEBCg8ePHy9/fX/Pnzy/0eGwXeEFBQbfcVpQcOnRIc+bMUd26dTVmzBiHxIokWSwWvf322woODtbixYuVlZXloUgBAAAA5Ie+led1795dVqtV69evz/Px3bt36+jRo3ryyScVGBjo5ugAALdCcgWAz1m5cqUk5bkehU316tW1Zs0arVixwmF7Wlqahg8frpYtWyoqKkqPPfaY3nvvPZ0/fz7XMQ4dOqThw4erRYsWioqKUvv27fXf//3funLliqQ/18WwPcdjjz1mn3v15m1S3mthGIahRYsWKTY2Vg0aNFDLli01cOBAff/99/Yy+c0L/MUXX6h3795q1KiR6tevr9jY2Fxzy9rm2V23bp1mzZqldu3aKSoqSjExMZo2bZquXbvmUE6Svv7669vOU7tq1SoZhqFevXrlWyYoKEhLly7V//7v/+bqBBw/flzDhw9X06ZN1aBBAz377LPasWNHrmPs2rVLgwYNUsuWLVWnTh01adJEL7zwgr788kuHcjExMRowYIB27dqlnj17qmHDhoqOjtbgwYPznOd47dq19nPeunVrTZ48WUuXLs3zPK9Zs0bPPPOMGjRooIYNG6pnz55unXdaunX75Lc2y82crcf69ev17LPP2tuma9eumjNnjqxWa8FWCgAAAB5H3+o6T/atunTpopIlS2rNmjV5Pm5rI9v0V1evXtXs2bPVvXt3NWzYUFFRUXr00Uc1ZswYnT59Ot/nka73m/Ja7yS/tUr27t2rgQMHqmnTpqpbt646d+6sOXPmKCcn55bPU9AiIiL09ddf2/9vW7/y5jVX8uNsPfbv36+BAweqdevW9tf0uHHjdO7cuQKvE4CigWnBAPicvXv3qkSJEqpfv/4ty908j25qaqr69u0rf39/Pffcc6pWrZr+/e9/a+7cudq6dauSk5Ptc/bu3btXffr0UVBQkHr27KkKFSro3//+t2bNmqWdO3dq/vz5qlChgiZOnKglS5YoNTVVo0aNUtmyZWWxWBy2lS9fPt8YR44cqVWrVik6OlrDhg1Tdna2FixYoF69eumTTz5R7dq189zvk08+0dixY1W3bl0NHjxYFotFW7Zs0ahRo3TgwAG9/vrrDuWnTJkiwzDUo0cPhYSEaPny5Zo5c6b8/Pw0ZMgQ1apVSxMnTlRCQoLuv/9+DRw4UI0aNbplG0hS48aNb9kG9913X57bBw4cqOjoaA0fPlwZGRmaN2+eBgwYoBUrVujBBx+UJG3atElDhgxRZGSk+vXrp6CgIP34449atmyZ+vXrp08//VTVqlWzH/PgwYMaMGCAunTpoq5du2r//v1KTk7WwYMHtXHjRvu6L4mJiZo0aZLq1KmjYcOGKTMzUwsXLswzzkmTJikxMVGtWrXS8OHDlZWVpXXr1mnQoEEaNWqU+vTpc8v6FxSz7XMzZ+vx6aefavjw4WrVqpWGDh0qi8Wif/7zn5owYYJOnz6tESNGFFINAQAA4An0rTzftypfvrwee+wx/fOf/1RaWprDuc7KytKGDRtUp04dPfTQQ5KkYcOGacuWLerWrZueeeYZZWVladu2bVq6dKl+/fVXzZkz55Zt6awtW7Zo6NChCgsL00svvaQyZcpox44dmjBhgv71r39pxowZ8vPzK5Dnup2JEydq1qxZOnTokCZOnKgaNWo4va+z9Th27JheeOEFVaxYUX369FFISIj27NmjhQsXau/evVq8eLHb6gvAhxgA4GPq169vtGzZ0tQ+OTk5Rrt27YyoqCjj559/dnhsyZIlRnh4uPHaa68ZhmEYVqvV6NSpk9GmTRvj7NmzeZb96KOP7NtGjhxphIeHG8eOHTO1befOnUZ4eLgxfPhww2q12sv9/PPPRmRkpBEfH28YhmFMnz7dCA8PN7766ivDMAzjxIkTRp06dYwBAwY47Ge1Wo0RI0YY4eHhxp49ewzDMIyvvvrKCA8PN1q1amWcP3/eXvbixYtG48aNjYcfftihfuHh4UavXr1uez47duxohIeHG1euXLlt2RvZzsHo0aMdti9btswIDw83ZsyYYd/21FNPGa1atTIuXrzoUHbhwoVGeHi4MWfOHPu2tm3bGuHh4ca6descyo4ePdoIDw83tm/fbhiGYZw8edKIiooyYmNjjaysLHu5I0eOGPXq1XM4z3v27DHCw8ONt956y+GY2dnZRlxcnFGnTh3jxIkTt6xv27ZtjbZt2zpss7XJyJEj893v2LFjebaFM9tufp2ZqUf//v2NBg0aGDk5OfZy165dM3r16mUMGDDAYf+bX5cAAADwPfStPN+3MgzD+Pzzz43w8HBj6tSpDtvXrVtnhIeHG5988olhGIZx4MABIzw83Bg7dmyuY3Tv3t0IDw+3n2dbvNOnT7eXyat/YhiGkZKSYoSHhxspKSmGYRjGpUuXjGbNmhndunVz6DcZhmFMnTo1z77XzfJqN8O4fl7yiuFGtv7djXr16nXbbXdSj8TERIf2tnn33XeNbt26GSdPnrRvy+vcAiiemBYMgM/x9/e3D7l21v79+3XkyBF16dIl111XTz/9tGrWrKmNGzcqJydHP/zwg3766Se1adNGVqtVZ86csf9r27atAgMDC2Qh782bN0uSXnrpJYc7YGrVqqVly5bp73//e577ffrpp7p69aqeeOIJnT171h7b2bNn1alTJ3uZG7Vt21YhISH2v8uUKaNatWrddth4fmyjQMy2g01sbKzD3w0aNJAkZWRk2LctXbpUq1evVpkyZezbsrOz7efq4sWLDscoVaqUOnTo4LCtbt26kqTffvtN0vVznp2drb59+yogIMBerkaNGurSpYvDvuvWrZMkdezY0eE1kJmZqY4dO+rq1av67LPPTNfd3czUo3Llyrp06ZLefvtt7d+/X4ZhyN/fXwsWLGDBRgAAgCKIvpXn+1aS9PDDD6tKlSpau3atw/YVK1aoVKlSevLJJyVJkZGR2r17t4YPH+5Q7vTp0/aYLl265HIcNl9++aXOnj2rDh066MKFCw7t1rFjR0kqkHYrbGbqUaVKFUnXR/3v3LlT2dnZkq5PQbd8+XJVqlTJM5UA4NWYFgyAz6lUqZIOHz6s7Oxshx/Ib+Xo0aOSZJ9y6kZ+fn564IEHdOTIEZ09e1aHDx+WJCUnJys5OTnP4x0/ftzF6P9kmx/45g6JJNWpUyff/WzxJSQk5Fvm5vjuueeeXGUCAgJcniu3UqVK+uGHH/T777/rrrvuMr1/xYoVHf62rcliu4CVpBIlSig9PV0zZ87U4cOHlZ6ervT0dHvMhmE4HKN8+fL2pI+N7fVhWy/Edu7uv//+XDHd3A62srdaV8aV10GpUqUk3ToxZaujreydMFOP+Ph4HThwwP7ar1Chgpo3b67HH39cHTp0UIkSXDYAAAAUJfStPN+3kiSLxaJu3bpp5syZ+vbbb9WwYUP99ttv2rFjhzp37qzg4GCH51q/fr127NihY8eOKT09Xb/99ps9qVQQayXazsuUKVM0ZcqUPMu42m6BgYG3Tehdu3atQPtCztSjQ4cO6t69u5YvX64+ffqoVKlSaty4sdq0aaOnnnpKZcuWveN4ABQ9/EoCwOc0adJEaWlp+te//qXmzZvnW27UqFG6evXqLS+UbWwXoAEBAfb/9+zZU48//nie5QviR+arV6+6tJ/ton3s2LEKCwvLs4xtfmMbi6VgByo2adJE27ZtU2pqqmrWrJlvualTp+rw4cOKj4936Hw5E8+HH36oKVOmqFq1aoqOjlazZs0UERGha9eu6eWXX85V3plj2pI3eXUcbQkeG9t5njlzpkqXLp3n8Wx3N5lhuyi/cOFCvmVsi4DeeEecq8zU45577tGSJUv03Xff6fPPP9dXX32lTZs2af369WrQoIEWLlyokiVL3nFMAAAA8A70rTzft7KJjY3VBx98oDVr1qhhw4Zas2aNcnJy7AvZS9f7EC+88IK+//57NW7cWFFRUeratavq1q2refPmafXq1S49982JIVu7DRkyRA0bNsxzH1duspOu94cyMzPzfdwwDP3xxx8F0hcyUw9/f3+NHz9eL7/8sj777DN9+eWXSk1N1Y4dO/Thhx8qOTnZ1FovAIoHkisAfE7nzp2VnJyspKSkfDsAJ06c0OrVqxUSEqJy5cqpevXqkqSffvopV1nDMJSWlqagoCCFhIQ4XFS3bNnSoazVatXGjRvtx7sTtuc5fPiwIiIiHB6bMmWKrly5otGjR+e7X0hISK74MjIytHfv3gKJ71aeeOIJTZs2TYsWLVJsbGyeC/tdvHhRycnJunjxot544w1Txz9x4oSmTp2qJk2aaM6cOQ7JEFc7DJJ03333SZIOHTqUa/SK7a4mG9t5Dg0NtU8vZnPkyBEdOnTIYcoyZ4WFhSkoKEgHDx7Mt8z+/fslKd9FN80+n3T7ehiGoZ9++klXrlxRvXr17At6XrhwQSNHjtTmzZu1fft2tW3b9o5jAgAAgHegb+X5vpVN9erV1axZM23YsEFjxozRmjVrVLNmTTVt2tReZv78+dq3b5/efvttPfvssw77//7777d9Dn9//1zTK0t/TqNsYzsvpUqVynVeLly4oO3bt+eajcBZkZGR2rZtm44dO5bnuT18+LAuX76sZs2auXT8G5mpx/Hjx3X06FG1aNFCcXFxiouL07Vr1zR79mxNmTJFixYt0siRI+84JgBFC2uuAPA5TZo0Ubt27bRx40b94x//yPV4Zmamhg4dqmvXrmnw4MEKCAhQ7dq1Vb16da1evVppaWkO5VNSUnT06FG1b99ekhQVFaVq1appxYoV9iHvNosXL9awYcOUkpJyx/Ww3bk1b948h+1Hjx7V3LlzdezYsTz3a9++vSwWi2bNmqUrV644PPbee+/plVde0b59+1yKyWKxODWMvHr16urVq5e+++47jR8/Ptc+WVlZGjFihM6dO6fevXvnOXT+Vs6dOyfDMHT//fc7JFYuX76sBQsWSHJtvZf27durRIkSWrhwocP+GRkZWrNmjUPZ//iP/5AkzZgxw+FOrqtXr2rUqFEaOHCgTp06ZTqGEiVKqF27djpx4kSeUyNcvHhRCxcuVEBAgP01aeNs+7hSDz8/P8XHx2vQoEEOd5IFBQXZO6g3T7sGAAAA30bfyvN9qxt1795dZ86c0cqVK7V//36HUSuSdPbsWUnKlUD69ttv9c0330jKPQrlRqGhoTpz5ozDlF7Z2dnasGGDQ7mHH35Yd911l+bOnWt/TptZs2Zp6NCh+vzzz03VzeaJJ56QJE2bNi3X+TEMQx999JGk64m/G9lGDJk5p2bqMWvWLPXp00d79uyxlylRooTq168vib4QgLwxcgWATxo/frzOnz+v9957T2vWrFH79u1VoUIF/fLLL1qxYoXOnDmjnj17qmfPnpKuXwiNGzdO/fv311/+8hc999xzCgsL0969e7VixQpVq1ZNr776qkPZAQMGKDY2Vs8++6xq1Kih7777TikpKapRo0ae01KZ1bp1a3Xu3FkpKSk6efKkYmJidOHCBX3yyScKDAzUiBEj8tzv3nvvVXx8vKZNm6auXbuqW7duCgkJ0ZYtW+wjC27+Ud5Zd999tw4ePKikpCRFR0crPDw837J/+9vfdOrUKc2fP19ffPGFOnXqpEqVKunXX3/V6tWrdfz4cbVr107Dhg0zHccDDzygmjVrKiUlRYGBgQoPD1dGRoZWrFhhv6vqVkPJ81OtWjUNGjRIM2bM0HPPPadOnTrp0qVLSkpKsi/8aBuF06JFCz399NNatmyZnnnmGXXs2FEBAQFavXq19u7dq+eff1716tUzHYMkjRgxQt9++63eeustbd++Xc2bN1fp0qV19OhRrVmzRidPntQbb7yR604uM+1jY6Ye8fHx+tvf/qYePXooNjZWZcuW1cGDB7V48WI99NBDue72AgAAgO+jb+X5vpVNhw4dNHbsWE2YMEElSpTQU0895fB4TEyMFixYoFdffVXPP/+8goODtW/fPq1YsUL+/v66evWq/vjjj3yP3717d6Wmpqpv3756/vnnZbValZKSkishExISojfeeEOjRo3Sk08+qR49eig0NFRfffWV1q9fr3r16un555936bx069ZNW7du1Zo1a/TLL7+oQ4cOuvvuu/X7779r69at+vbbb9W1a1c9+eSTDvvZbtibPn26mjZt6lTfxEw9+vTpow0bNqh///569tlnFRYWplOnTmnRokUKDg7WM88841J9ARRtJFcA+KSQkBDNnj1b69ev1/Lly5WUlKQzZ84oKChI9evXV8+ePfXII4847NO8eXMtWbJEM2fOVEpKii5cuKCqVavqxRdf1MCBAx3mdG3ZsqWWLFmiDz74QCkpKcrMzFTlypX1/PPPa8CAAS4Pgb7ZpEmTVK9ePS1btkwTJkxQ2bJlFR0draFDh9qnsMrLyy+/rAceeEDz58/XRx99JKvVqurVqyshIUFxcXEu31WTkJCgyZMna/z48Ro4cOAtOwABAQGaOnWqOnXqpKVLl2rFihXKyMhQ6dKlVbt2bQ0fPjzX3UbOKlmypBITEzV58mStW7dOS5YsUWhoqKKjo/XKK6+oZ8+e2r59u0vHHjx4sO655x4tXLhQkydPVvny5dW9e3dlZWXpH//4h8NImXHjxqlBgwZavHixZsyYIX9/f917770aN25crrvIzLj77ruVkpKiBQsWaNOmTZo+fbouX76sihUrqkGDBurdu7caNGiQaz8z7XMjZ+vRuXNnlS5dWnPnztXs2bOVmZmpKlWqKC4uToMGDWJBewAAgCKIvpXn+1Y2gYGB6ty5s5KSkhQTE6PQ0FCHx1u0aKEpU6bo448/1vvvv6+AgABVrVpVw4YN0wMPPKD+/fvriy++yDUdsE1sbKwuXryopKQkTZw4Uffcc4+6du2qtm3bqkePHg5ln3rqKVWpUkWJiYmaP3++srKyVLVqVQ0aNEh9+/Z1aYpk6frNbDNmzNCKFSu0atUqzZ07V+fPn1e5cuX0wAMPaMqUKerUqVOu/fr166cff/xRiYmJ2rNnj9M3fjlbj1q1amnhwoX64IMPtHLlSp0+fVrlypVT8+bN9corr7DeCoA8+RmGYXg6CAAA3OHSpUvKyclRcHBwrsf+/ve/a8mSJdqyZUu+i1maFRMTI0naunVrgRzPm8yYMUPvv/++5s+fXyDzIQMAAAAoOl577TWtWLGiQPtX3mLXrl3q3bu3Bg8erPj4eE+HA8CDWHMFAFBs/PTTT4qOjtb//M//OGzPzMzUZ599pooVK6patWoeig4AAAAAAAC+gvk9AADFRlRUlCIiIjRr1iydOXNGkZGROnfunJYvX67Tp0/rv/7rv+xrrhSUS5cuadWqVSpZsqQ6duxYoMf2hH379iktLU0//PCDp0MBAAAA4OU2b96s8uXL69FHH1XZsmU9Hc4dOXnypHbt2qVDhw55OhQAXoLkCgCg2PD399fcuXOVmJiozZs3a+nSpSpdurTq1aunt956q1Cmtzp79qwSEhIUHBxcJJIrq1at0vz58z0dBgAAAAAf8O6770qSVq5c6fPJlX379ikhIcHTYQDwIqy5AgAAAAAAAAAAYAJrrgAAAAAAAAAAAJhAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSRXAAAAAAAAAAAATCC5AgAAAAAAAAAAYALJFQAAAAAAAAAAABNIrgAAAAAAAAAAAJjwf4I9ergHlwqHAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
541coef_calib_zeroautohhindivtou_SHARED3_atwork-39.934870104.00.0-2-41.934870False
540coef_calib_zeroautohhindivtou_SHARED2_atwork-40.8652858.00.0<NA>-40.865285True
543coef_calib_zeroautohhindivtou_BIKE_atwork-39.39056284.00.0<NA>-39.390562True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-38.43596268.029.0-0.852212-39.288174True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-28.87568872.00.0<NA>-28.875688True
695coef_calib_zeroautohhjointtou_SHARED3_disc-26.246255131.00.0-2-28.246255False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-24.970666143.00.0-2-26.970666False
675coef_calib_autodeficienthhjoi_TAXI_maint-24.97066624.00.0<NA>-24.970666True
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-24.97066668.00.0<NA>-24.970666True
717coef_calib_autodeficienthhjoi_TNC_SHARED_disc-22.715984143.00.0-2-24.715984False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -39.934870 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -40.865285 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -39.390562 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -38.435962 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -28.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -26.246255 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -24.970666 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -24.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -24.970666 \n", - "717 coef_calib_autodeficienthhjoi_TNC_SHARED_disc -22.715984 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "541 104.0 0.0 -2 -41.934870 False \n", - "540 8.0 0.0 -40.865285 True \n", - "543 84.0 0.0 -39.390562 True \n", - "544 68.0 29.0 -0.852212 -39.288174 True \n", - "698 72.0 0.0 -28.875688 True \n", - "695 131.0 0.0 -2 -28.246255 False \n", - "677 143.0 0.0 -2 -26.970666 False \n", - "675 24.0 0.0 -24.970666 True \n", - "676 68.0 0.0 -24.970666 True \n", - "717 143.0 0.0 -2 -24.715984 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_8\n", - "ActivitySim run started at: 2023-09-13 05:12:45.784381\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 05:58:00.925618\n", - "Run Time: 2715.14 secs = 45.25233333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN5f/H8fc5s5gNM8ZYG0vDjH0ZQmVPyNIqhcI3S5FGSkVfpGyVNkuSJaEsIcQ3hZIlhciSjH3GmKxjBsOMWc79+8PvnBwzw8yc2Zx5PR8Pj3Lf131fn/uc+9zO53zu+7pMhmEYAgAAAAAAAAAAAADgDmfO7wAAAAAAAAAAAAAAAMgJFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABZNq3336rkJCQLP959tln8zv0TJsyZUqGx1G9enXVrVtXrVu31ksvvaT169fnd7j4f3/++aftferbt+9t2w8bNkwhISEaOnSo3XLrPrZu3ZrjMfbp08e2/z179uT4/m+UkpKi48eP52ofNwsPD9fYsWPVsWNHNWzYULVr11aLFi3Ut29fffXVV0pMTMzxPs+dO6ehQ4fqvvvuU61atdSsWTNt2rRJkrRixQo98sgjqlu3rho2bKg+ffpo27ZttvcgJSUl2/2ePHnStp/IyMicOhxAcXFxOnfuXI7sK6PrXG5tBwBAYUSOTI5cUJEj2yNHJkcujAzD0NGjR/Osv5y+XhiGoTlz5qh9+/aqXbu2GjdurP/+97+2f3ubN2/u0P5z6vzPKYcPH06zrHXr1goJCdGSJUuytK/sbgc4G9f8DgDAncPf31+hoaFplp86dUqnTp2Su7u7atWqlWZ9cHBwXoSXo9I7FsMwlJiYqJMnT2rt2rVau3atOnfurIkTJ8pkMuVTpJCkZcuW2f5/y5YtioqKUmBgYD5GZO/UqVN2CcDChQtVt27dXOlry5YtGjt2rNq1a6chQ4bkSh83mzx5sj777DNZLBb5+PioQoUKcnNz07lz57R582Zt3rxZs2bN0qeffqqaNWvmSJ8Wi0V9+/ZVeHi4XF1dVbVqVSUnJ6t8+fL68ccf9cYbb0iSAgICVLp06QJ1PgDp+fLLLzVt2jR98sknCggIyO9wAABAJpAjkyMXVOTI/yJHJkcujPbu3asxY8aoYsWK+uCDD/I7nGyZM2eO3nvvPUlS+fLl5evrq7vuuiufo8p5Z8+e1Xvvvac//vhDGzduzO9wAKdCARxAprVo0UItWrRIs3zKlCmaOnWqAgICtHDhwnyILOfd6liSkpL0ySefaPbs2Vq1apUaNWqkrl275nGEsEpISNCaNWtkMpnUtGlTbd68WYsXLy5QTy9+++23slgsatGihTZu3Kg1a9Zo+PDhKl68eI739fnnn+fpne3Lli3Tp59+Ki8vL02YMEEPPvigXFxcbOuPHj2qN998U7t371afPn30/fffq0SJEg73e/z4cYWHh0uSpk+frmbNmtnWTZkyRZLUoEEDzZs3T66u17/uJCQk6Pvvv5ck27LsKF26tG0/5cqVy/Z+gBtNmDAhv0MAAABZRI58HTlywUKObI8cmRy5MFqwYIH27t2rihUr5nco2bZmzRpJUseOHfXRRx/Zll++fFl169aVm5ubQ/uvU6dOjpz/jtqyZYtWr16t0qVL51sMgLNiCHQAyCJ3d3e9/vrrqlOnjiRp/vz5+RxR4fbDDz8oPj5eVatW1aOPPirpejKdlJSUv4H9P8MwtHz5cknSE088oUqVKikxMdG27E43ffp0SdLrr7+u9u3b2yX2khQUFKTPPvtM/v7+io2N1bx583Kk39jYWNv/N27cON11DRo0sEtiPD09FRQUpKCgIIf6dnNzs+3H0YQLAAAAuNORIxcs5Mj5ixyZHBk5w3reNmrUyG550aJFFRQUpAoVKji0/5w6/wEUXBTAASCb2rRpI0k6dOiQrl69ms/RFF7ffvutJKl58+Zq1aqVPDw8FBMTo3Xr1uVzZNdt375dUVFRcnNz03333aeHHnpIkrR48eJ8jsxxly5d0okTJyTplsPVlShRwvZ52bt3b470nZqaavt/d3d3u3UWiyXd5QAAAAByDzlywUCOnH/IkYGcw3kLwFEUwAHkmR9//FF9+/ZVkyZNVKtWLTVt2lQvvfSSfvvtt3Tbh4SEKCQkxG5eqBs9++yzCgkJsQ3lJEknT55USEiI7r//fp05c0b9+/dXnTp11KhRI7366qs5ejw+Pj62/79y5Ypd/yEhIYqMjEx3u9atWyskJMSWlErStm3bFBISoq5du+ro0aPq1q2bateurXvvvdc23411uwMHDuiXX37R008/rfr166tx48bq2bOn1q9fn2GsqampWrJkiZ599lndc889qlWrllq2bKnXXntN+/fvT3ebxMREzZgxQ08//bTuvfde1a5dW61atdKrr76qnTt3ZthXeHi43njjDbVs2VK1atVS48aN1adPH/3444/ptr/xNbvxNcmMEydOaMeOHZKktm3bytvbW61atZKkAjPUoHXutSZNmqho0aLq3LmzJOnYsWP6/fff090mO+fRt99+q5CQEG3fvl3S9bvOQ0JCNGzYMLvtLl68qKlTp+rRRx9V/fr1VbduXT300EN67733dPbs2Swd2413jm/YsOGWbV966SX973//04cffmi3fNiwYQoJCclwOD7rcbVu3VrSv69Nz549bW2sr5V1X9bXYOrUqbZ10r+fs5CQEKWkpKTpKzw8XCNHjlSbNm1Uu3Zt3XPPPerVq5d++OEHu3a3e3+ioqI0evRoPfjgg6pdu7YaNmyo7t27a8mSJXY/Stz8GixcuFAnT57U8OHD1bx5c9WqVUvNmzfXf//7X508eTLD1/aPP/7Qq6++qlatWqlWrVpq0qSJXnjhBbtr6+bNmxUSEqKaNWsqJiYm3f0kJiaqQYMGCgkJ0Z49e9Ica2Y/n1OmTLFtc7s/Nx/X+fPn9f7776tDhw6qW7eu6tevryeeeEJffPGFrl27lmFfH3zwgdavX6927dqpVq1aat26tf73v//ZHduXX36prl27KjQ0VLVr11abNm00atQoRUREZHgsBw4c0MiRI/XQQw8pNDRUtWrV0n333ad+/fqlOS+kf8/X5s2bp7u/G19P67Fb33+r//znP+m+3sePH9dbb72lBx98ULVq1VKDBg3UtWtXffnll0pMTMzwGCQpOjpaI0eOVIsWLVSrVi01a9ZMw4YNu+WxO7IdAADIHHLk68iR7ZEjp0WO/C9y5DsvR7a6dOmSZsyYoR49eqhx48aqWbOmGjZsqMcff1xTpkzRxYsX02yT1eu+9T21jqiwatUqhYSE6Nlnn01zbNnJkSMjIzVy5Ei1bt1atWvXVtu2bTVt2rTbjjARHx+vTz/91PY5q1evnjp37qzJkyfr0qVL6R5TdHS0JGn48OF25/zt8u7MvP83vla3Ov+zcu22xr1p0yaFh4dr8ODBuu+++1SrVi098MADGj9+vC5cuGC3TUhIiIYPHy5JOnPmjN3n82Y7d+7UCy+8oMaNG6tOnTpq166dPvzwQ8XHx6fb3tHtAGdAARxArktOTtagQYMUFhamzZs3y9XVVdWqVVNKSorWrl2r3r17a/z48TnaZ1JSkvr06aOtW7cqKChIJpNJ5cuXz9E+rF/qPTw85OfnlyP7vHDhgnr16qUDBw6oSpUqunbtmipVqmTXZtmyZXr++ee1f/9+Va5cWUWKFNG2bdv04osvauzYsWn2GR8frx49emjEiBHavn27ihYtqpCQEF2+fFnfffedunTpojlz5thtk5SUpN69e+vDDz/U3r175evrq6pVqyo+Pl6rV69Wjx49tGTJkjR9ff3113r88ce1YsUKXbx4UVWrVpWXl5e2bNmisLAwvfrqq+kmN9m1bNkyGYahChUq2O6u7tSpkyRpx44dOnr0aI71lR3x8fFau3atpH/jCgoKUvXq1SVJixYtyrG+/P39FRoaavvRqWzZsgoNDbU7fw4ePKhOnTppypQpOnjwoMqXL6/KlSvrxIkT+uKLL9SpUydt27Yt0316eXkpNDRU0vVC5BtvvKEdO3ak+x4HBASoSpUqDn9WihQpotDQUAUHB9uWhYaG2o41vdfAGuOtfP311+rSpYu++eYbXbhwwXbu/v777xo8eLA+/vjjTMW3bt06derUSQsXLtTZs2d19913q0SJEtq5c6dGjBihPn362H4MvNnff/+tRx55RCtWrJCnp6cqVqyoM2fOaOnSpXryySd16tSpNNt89NFHeuaZZ7R69WpdvXpVISEhMpvN2rBhg3r37m17iuL+++9X2bJllZKSotWrV2cYe3x8vIKCgm75tMLt3Pi6p/fH09NT0vVhy4oWLWrbbufOnerYsaNmz56tEydOKDAwUOXKldP+/fv13nvvqWvXrjp37ly6fe7YsUNhYWG6dOmSgoKCdPbsWdvn7PTp03rsscc0YcIE7dmzRwEBAapatarOnTunxYsX6+GHH7bN+3WjBQsW6PHHH9c333yjmJgYVaxYUYGBgbp8+bI2bdqUpfPiVqznrVVwcLBCQ0Pl7+9vW/bdd9/p4Ycf1qJFi3T27FkFBwerZMmS2rNnjyZMmKAnn3xSp0+fTnf/Bw8e1KOPPqolS5bI29tbgYGBiomJ0fLly/XYY4/pyJEjObodAAC4PXLkzCNHzhpy5H+RI5MjF5QcWZIiIiL08MMP68MPP9Tu3btVokQJhYSEyMXFRfv379fUqVP11FNPZfhaZFbRokXt8skSJUqkOT+ymyP/9ttveuyxx/TNN98oNjZWwcHBSkhI0KRJk9S3b98MYzp69KgefvhhTZ48WYcOHVKpUqVUsWJFHTt2zFYUv/HaZM2JrU9+W8/jWrVq3fb4M/v+344j1+5NmzapS5cuWr9+vfz8/FS2bFmdPHlSc+fO1dNPP21XeL7xmuTm5pbh53P58uXq0aOHtm7dqrJly6pEiRKKiIiw3ZSV0U3x2d0OcBoGADho8uTJRnBwsNGqVat017/zzjtGcHCwUa9ePWPNmjW25SkpKcZXX31l1KhRwwgODjbmzJljt11wcLARHBxs/Prrr+nu95lnnjGCg4ONyZMn25ZFRUXZtmvUqJFx+PBhwzAM49q1a8bly5cdPharmJgYo1GjRkZwcLAxYMCAdPuPiIhId9tWrVoZwcHBxrJly2zLfv/9d9t2bdq0MU6fPm0YhmHEx8cbiYmJdtsFBwcbvXv3Ns6fP28YhmFYLBZj8eLFttdx1apVdv09//zzRnBwsHH//fcbv//+u235tWvXjE8++cS2zx9//NG2bsGCBUZwcLDRtm1bIzo62rY8MTHRePvtt43g4GCjQYMGttgMwzA2btxohISEGDVr1jTmzp1rpKSk2NZt3brVuPfee43g4GDj448/tosvKSnJOHLkiHHkyBHj0qVLt3zdb5Sammq0aNHCCA4ONiZNmmS3P+t7M2bMmHS3feONN4zg4GDj1VdftVt+u3MuqxYtWmQEBwcbdevWNeLj423LZ8+ebQQHBxs1a9Y0zp07l2a77J5HhvHv5+Kjjz6yW3758mWjadOmRnBwsPHUU08ZJ06csK07d+6c7Txp0KCB3brb2b9/v1GvXj1bvMHBwUZoaKjRr18/4/PPPzd2795tpKamZrh9Ru+F1bJly9L9TN74mblZeteGm7dJTk62Ld+5c6dRrVo1Izg42Pjggw/szutly5bZ1m3evNkwjIzfnwMHDhi1atUyQkJCjI8//thuP/v37zfatm1rBAcHG0OHDk33NQgODja6du1qHDt2zLZu165dRv369Y3g4GBj7NixdtutXr3aCA4ONqpXr258+eWXts9cSkqKMW3aNNu6I0eOGIZhGB9//LERHBxsPPbYY+m+1s8995wRHBxszJw507Ysu5/PjKxcudIIDg42atSoYWzZssW2/PTp07bP7YgRI4yLFy/a1kVGRhpPPvmkERwcbHTv3t1uf9ZrdnBwsPHiiy8a165dMwzj+jXa+lo88sgjRnBwsNGuXTvjwIEDtm0vX75s/Pe//7V9Fnfv3m1bd/z4caNmzZpGcHCwMW3aNCMpKcm2LjY21hg8eLBtu7i4ONs66/narFmzdI//xnMnKirKbl1G15/du3fbru8jRoyw+7fs77//tp1Xjz32mN15feN59eijjxpHjx61rTtw4IDRuHFjIzg42Bg8eLBdf9ndDgAA/IscmRzZMMiR00OOTI584+tUmHJk63vQtWtX48yZM7blFovFWL58ue01/eqrr+y2y8513zAyPo+ymyNfvHjRaNKkiREcHGwMGTLE7t+Pb7/91pY/3xzrlStXjAcffND2b4P1Wm4YhnH27Fmjf//+tmtrQkKCXawZfaYzyruz+v5ndP5n99ptfS+Cg4ON/v37273P69evN6pXr57uv+23+h3hxn/nXn31VSM2Nta2zvr7SnBwsPH111/nyHaAs+EJcAC56vTp07Y7eMeMGaP27dvb1rm4uKhHjx4aPHiwpOtDMTl6p+ONunfvripVqki6Pl/MjcOxZYdhGIqNjdXPP/+s5557TnFxcXJzc1NYWFhOhGvz/PPPq3Tp0pIkb29vFSlSxG59uXLl9Omnn9ru5jSZTOratav69Okj6frraLV7927bsFuTJ09W48aNbevc3d01ePBgPfXUU5KkDz74wLYuPDxc0vU5w8qVK2dbXqRIEQ0bNkxNmzbVgw8+qLi4ONu6jz76SIZhaOjQoerZs6dcXFxs6+69915NmDBBkjRnzhzFxsba1rm5uSkoKEhBQUF2T4PezpYtW2x3+z788MN2+7OeZytXrszXuxmtQ7s98MAD8vb2ti3v1KmTzGazkpOTbW1y24IFC3T27FmVLFlSn3/+uQIDA23rSpYsqcmTJys4OFiXL1/W9OnTM73fGjVqaMmSJWrQoIFtWXx8vDZu3KgPP/xQXbt2VdOmTfXxxx8rISEhR48pp0ybNk0Wi0UPPfSQXn31VbvP3OOPP64uXbpI0m2HN5syZYqSkpL0zDPP6OWXX7bbT40aNTR58mS5uLho1apV6T496+bmpqlTp6py5cq2ZfXr19fjjz8uSdq1a5dde+tn/T//+Y969epl+8y5uLhowIABuv/++5WamqoVK1ZIkp544gmZTCbt378/zZMfZ86c0datW+Xi4qJHHnnELqbsfD7Ts2PHDr355puSpDfffFP333+/bd3s2bMVFxen1q1ba8yYMSpWrJhtXYUKFTRt2jT5+Pjojz/+0MaNG9Pd/xtvvGG7Q7xEiRKSpB9++EEHDhxQkSJFNHPmTFWrVs3W3sfHR2PHjlWzZs2UnJxs9wTDr7/+KhcXF9WsWVMDBgyQm5ubbZ2vr6/eeOMNSdef3jp+/LhDr8vtTJ48WSkpKWratKnGjBlj929Z9erVNWvWLHl4eGj//v12w75bubq66tNPP9Xdd99tW1atWjX17t1b0vXh4dKT3e0AAMCtkSNnHTly5pAjZw05csbIkXM2R46JidHhw4clXb/ulypVyrbOZDLp0UcfVaNGjSRdH5UgN2U3R160aJEuXLigSpUq6b333rP79+Oxxx7TCy+8kG5/S5YsUWRkpGrWrKkpU6bYruXS9VEQJk2apPLlyysiIiLLQ8rfLKvvf0aye+228vf31+TJk+3e5wceeMA2ZPvN521mBAUF6b333pOvr69t2cMPP2z7XSWjaTiyux3gLCiAA8hVmzZtUkpKigICAtShQ4d02zzzzDNyc3PT5cuXbfMS5YQbk42sio6OTjNXbbVq1dSkSRMNGDBABw4cUNGiRfXJJ5/YfVnMCbeLu2vXrvLy8kqz/Omnn5Z0fZ7YY8eOSfp3zqk6depkOMTVc889J+n6cHWHDh2SJNvwO0uXLtWCBQvs5qhxd3fX7NmzNWHCBNsX15MnT+rAgQOS7BPtG7Vo0UJ+fn5KTEzMcE67rLB+Ma5Tp06aIfCsMVy6dCndglBeOHr0qG2OqJtfk1KlSqlJkyaSpMWLF8tiseR6PD///LMk6dFHH1Xx4sXTrHd3d7fNCfXzzz/LMIxM77tKlSpasGCBVqxYoUGDBql+/fp2BcOYmBhNnz5dDz/8cIbDNOeXhIQE2zxz1h+6bvbyyy/rhx9+sM01mJ6kpCRt2rRJUsafAet1xDCMdOeDq1WrlgICAtIstxYgL1++bFsWGRlp+5xbP/s3GzdunNavX68hQ4ZIkgIDA3XPPfdIUpqEb+XKlbJYLGrevHm6MTjq2LFjGjRokJKTk/Xss8+qR48eduut8zNm9NqVLFnSlqCl99oFBATY/WBlZT3vW7dune566XpyLEnbt2+3vcY9evTQnj17tGDBgnS38fDwsP1/bv5odfXqVduQizfO6XejwMBAtWnTRpL0008/pVlfq1Ytux9prazzit34I21ObAcAAG6NHDnryJEzhxw5a8iR00eOfF1O5sj+/v76/ffftWfPHruhyK1SU1NtBeXcvkEluzmy9Ub0zp07253LVt26dUt3X9Zcv0OHDnaFZCsPDw+1a9dOUvq5fmZl5/1PT05cu++99940N2pJ14vRkv15m1kPPPBAuq+fNT+/eW5xR7cDnIVrfgcAwLlZv3xUr15dZnP699x4eXmpcuXKOnTokI4fP65WrVrlSN+OfEF1d3dPM7eM2WyWt7e3Spcurbp166p9+/YO3zGfntvFXadOnXSXlytXTkWLFtXly5cVERGhu+++2/b616xZM8P9VapUST4+PoqPj9fx48cVHBysJ598UkuXLtWRI0f09ttv65133lH16tV17733qlmzZrrnnnvk6vrvPyHWO1kl6cUXX8ywr2vXrkn697zIrri4OFuhJ70vpA0aNFBgYKCioqK0cOFCPfHEEw71lx1Lly6VdD3RufFJV6tHHnlEW7duVXR0tDZv3qwWLVrkajzWp1RvdS5Y1124cEFxcXFZnousevXqql69ul566SUlJCRo165d2rJli1auXKmYmBidOHFCgwcPzvScS3nhn3/+UXJysiRl+EOdv7+/3XzM6YmIiFBSUpIk6e2337Y9iZxef1L6n4Eb74S+kbXYmpKSYltmnV/Ry8srw6S1bNmyaZY98cQT2r59u1atWqVXXnlFJpNJ0vXkXpLtTvqcdOHCBfXv319xcXFq2rSphg8fbrf+ypUrio6OlnT9SYN58+alux9rm/ReuxvvrL5RVs771NRURUZG2l37ixQpor179+rQoUOKiorSiRMndOjQIbsYsvJDWFZFRUXZzs9bzXdWq1YtrV69Ot2n0TM6r6w/EicnJyslJcXumu7IdgAA4NbIkbOOHPn2yJGzjhw5feTIuZcje3h46NSpU9qzZ49OnDihqKgoHT16VAcOHNDVq1clKddv/shujmzdrmrVqulu4+/vr1KlSuns2bN2y603ES1ZsiTdG7Yl6fz585Icuw5m9/2/WU5cu7Ny3mbW7fLzjG6cyO52gLPgFysAuSo+Pl6SbjsskDVJzsnh3W58Qi+rAgICtHDhwhyLJStuF3d6dyZbeXl56fLly7p06ZKkzL/+3t7eio+Pt73+Pj4+Wrx4sb744gutXr1akZGR+vvvv/X3339r9uzZ8vf318svv6yuXbtKsr97MTND+WTnbscbrVq1ypZIjR07VmPHjs2w7b59+7R///5bfrnPaSkpKfruu+8kXb+z+3Z9L1y4MNeT+8ycCzf+WHXlypUsJ/c38vT01P3336/7779fgwcP1ptvvqn//e9/2r17d56/H7dy41OsNw7Bl1U3ntN//fVXltpbpXcXdUascWc15vbt22vMmDE6deqUtm3bpiZNmmjfvn06cuSI/Pz8cuzHVatr165pwIABioqKUpUqVfTJJ5+kufvYem5K/ybHt5Lea5fe3dU37jsr573VypUrNW3aNEVERNi1v+uuu9SlSxd98803t43VUTe+Npk5hvT+Dc3oh6bbye52AADg1siRs44c+fbIkbOOHDl95Mi5kyMfO3ZM77//vjZu3GhX5Pbx8VHDhg119uxZ21QLuSm7ObL1GpreaBtWxYsXT1MAt/YXERGRJre+mSPXwey+/7eKIbvX7qyct5mV0W8eubUd4CwogAPIVdYvHrf7EmP9IpXeF5WMnq6z3h1ZUOVW3Lcabtf6xdJ6J25mX3/r+htffx8fH4WFhSksLEyRkZHatm2btm3bpo0bNyomJkYjR46Ur6+v2rZta/sC7OvraxuuNzdZ5wTz8vK65Zf2s2fPyjAMLVq0SGPGjMn1uKx++eUX2x2spUqVst1BfLOrV6/q8uXL2rRpk06dOpXu3ag5dR55e3vr4sWLtzwXLl68aNf+dkaNGqXff/9djz32mAYMGJBhOw8PD73zzjtau3atbc7km5P7jI4zt+dEuzF5i4+Pt80d7ch+du3a5XDSldn+svqDqIeHhzp27KjFixdr1apVatKkie3O9oyGMssuwzD02muvaffu3fLz89P06dPT/bx6enra/n/VqlXpDgmXXZm5Blr//bmx/fLlyzVs2DBJUrNmzfTggw+qatWqCgoKUvHixZWcnHzLAnhOnc83nkeXL1/O8CkL62c3t887AADgOHLktMiRHUeOTI6cU8iRcz5HjomJ0TPPPKOYmBiVK1dOXbt2VY0aNXT33Xfrrrvukslk0quvvnrLAnhOnvdS1nNkX19fnTt3zu4m7Zul9zSxp6enLl++rOnTp+f4Dfc3yu77n9F+8uraDSB3MQc4gFxlnZfnwIEDGQ7jEx8fb7sLsGLFirbl1qcErXcx3+zmuwoLghuHPEsv7sTERIfv7M7oCckTJ07YvuhVqVJF0r+v//79+zPc39GjR21fmK2vf0xMjP744w/bXDAVK1ZU165d9eGHH2rjxo22oe+sSUHlypUlXb/j8ty5cxn29ccff+jo0aMODbETHh5um49nwoQJ2rRpU4Z/rHeMr169+pZf0nOade61qlWravPmzRnGN2fOHEnXh5W6sZiWG+dRZs4F613ZxYsXz9Sd7deuXVNkZKRtTqdb8fHxsSVONybQ1s+5dYi1m+X25zwwMNAWw41DXd1o37596tatm4YPH55h0nnjfo4cOZJhf3v37tXBgwcdTsqsc/pdvXpVJ0+eTLfNTz/9pGeffVbvv/++3XLrcIc//fSTUlNTbcOQ5fQwiO+//75+/PFHubm5aerUqRkOQ1asWDGVLFlS0q1fu4MHD+rAgQN2P0LdTmbO+3379kmSTCaTKlSoIEn6/PPPJV2fD3DWrFl66qmnFBoaanu6KKN5+nL6360KFSrYfnC51VMT1nU3/hsKAAAKJnJke+TI5MjkyOTIzp4jL1u2TDExMfL19dWyZcs0YMAAtWjRQoGBgbabQc6cOZPutjl93c9ujmy9plmvNTe7cuWKbTj7G1m3y+hckq4/Hb5v3z6H5qN25P1PL968uHYDyH0UwAHkqubNm8vV1VXnzp3T999/n26br776SikpKfL09FSjRo1sy63JRXrzqezdu7dAJve+vr62L6/pxf3zzz9na66XG3377bfp/lBiHY6uXr16trukrXdX7t27N8Ohe7788ktJUpkyZRQSEiJJ6tOnj3r06KHly5enae/t7a169epJup6USlJQUJDth4Gvvvoq3X527typHj16qEOHDtq9e3cmjjR91nnD/Pz81Lp161u27datm6TrX4CtP0TktpiYGG3cuFHS7ZOl2rVr234oWbJkie3ccOQ8yuhOeuu5sGLFinQLiElJSbZzqFmzZreM28o6t9xff/1l+0EjI1u2bFFcXJx8fX1Vt25d2/Jbfc5TU1P1888/ZyqW7PLx8VGDBg0k/fvUxM1Wr16tXbt26eTJkxm+vj4+PrbrV0ZzWEdFRal79+56+OGH9cMPPzgUd1BQkMqXL3/LuJcvX67t27enSSLr1q2rqlWrKjY2VvPnz9c///yjGjVqZDi/W3YsXLhQX3zxhaTrQzA2bNjwlu1btmwp6fr1I73r2+XLl9WrVy89+uijmjt3bqbjsJ73P//8s6KiotJtY32/6tWrp2LFikmSLWHOaBhC63VIsp+/y3o+X7x4UTExMWm2W7duXYaxWs+tG39A8vLyUuPGje3ivFlUVJTtc9K8efMM9w8AAAoGcmR75MjkyDciRyZHzq6CnCNb88ty5cql+0T9kSNHbNcA6zXEKrvX/fTySyn7OXLbtm0lXb/JJ72bFb799ts0sd/Y39KlS9MtFqekpGjgwIHq0qWL3nvvvXTjyQxH3v+b95NX124rs/l6iS6jm0kAZB8FcAC5qmzZsrY5sEaOHGn3hdZisWjBggWaMmWKJGngwIF2Q3VZv3DPmTNHR48etS3ft2+fXnnllbwIP8s8PDxUo0YNSdKUKVPs7uDcsmWL3nnnHYf7+OuvvzRy5EjbsFcWi0VfffWVLUkfMmSIrW39+vVtd3iHhYXZDd+TlJSkyZMn2+6qfv31121fkB955BFJ0tSpU7Vp0ya7/v/44w9bonzjnFyDBw+WJM2YMUMzZ860uzv1jz/+sK2vV6+emjRpYluXnJyso0eP6ujRo7e9YzspKUmrVq2SdH0oqtvNUdu8eXPbF+BFixbdsu2t/PPPPzp69Gi6d7PebMWKFUpJSZGbm5vtdbwV6w8Q586ds91l7Mh5ZB2uKTo6Ok0/pUuX1vnz5/X888/bJToxMTEaPHiwDh06JG9vb7300ku3jVuS7r//frVr106SNGLECI0bNy7NnbbXrl3TsmXL9PLLL0u6fp7cOPSZ9XN++PBhzZs3z/aF/+LFi3rzzTczNSe0owYOHCiTyaSVK1dq+vTpdj+crFixQvPnz5ck9e3b95b7eemll+Ti4qLVq1drwoQJdknhoUOH1L9/fyUnJ6t8+fLq3LmzQzGbTCYNHDhQkjRz5kwtWbLE9tqlpqZqxowZWrdunVxdXdW7d+8021t/eJo0aZIk6fHHH0+3n6x8Pq02btxoG04xLCxMjz766G236d+/v7y8vLRz50699tprdglpdHS0+vfvr9jYWBUtWlQ9evTIVBzS9fncQkJCdO3aNfXr189uSLn4+HiNHDlSW7Zskaurq4YOHWpbZ70rfvHixXafv/j4eE2ZMkUzZsywLbsxia9bt67c3NxkGIbGjx9vW5ecnKy5c+fecth062f35uvMoEGD5Orqqi1btmjkyJF2T+qEh4erX79+unbtmqpVq5ap1xoAAOQvcmRyZOs25MjpI0cmR86OgpwjW/PL8PBw/fjjj7blhmFo06ZN6tu3r+2J/5uHuM/udd96Tt38Gc1ujvzkk0+qYsWKOn36tMLCwuxu+F67dq0+/PDDdOPo0aOHAgICFBkZqQEDBtjFc+HCBb388ss6evSo3Nzc9Nxzz2V4PLfj6Pt/o+xeu7PLeo26dOlSno7MARQGzAEOINcNHz5cZ86c0U8//aTBgwerVKlSKlOmjKKiohQbGytJeuaZZ9SvXz+77QYMGKDNmzfr3Llz6ty5s6pUqaJr164pIiJCgYGBeuKJJzK8qy8/vfzyyxowYICOHDmiNm3aqEqVKrp48aKio6NVu3ZthYaG2pK47AgODtbSpUu1Zs0a3X333Tp9+rTOnTsns9ms4cOHp/ny9f777+uFF17Qn3/+qZ49e6p8+fIqUaKEjh8/rvj4eLm4uOjll19Wx44dbdv07NlTW7du1aZNm9SvXz+VKlVKpUqVUmxsrC1pbN26tZ588knbNh07dlRERISmTJmiDz74QJ9//rkqVaqkCxcu2LapXLmypk2bZhffmTNn1KFDB0nXh2vLKMmQpPXr1ysuLk5S5oaiMpvNeuqpp/TRRx/p0KFD2rlzpy15yIo33nhD27dvV6NGjWyJXkasd3m3bNkyU3NldezYUe+9954uXbqkRYsW2ZLl7J5HNWrU0IYNG7Rq1SodPHhQDRs21FtvvaVixYpp+vTp6t+/v/7880+1bdtWVapUkaurqw4fPqzk5GT5+vrqgw8+sA0dlRkffPCBvLy8tGLFCs2bN0/z5s1TuXLl5O/vb/u8JiUlyc3NTa+++qq6d+9ut32LFi3UsGFD/fHHHxo3bpy++OIL+fn56dixY0pOTtZLL71k+wEwt9x7770aPny43n33XX388cf64osvFBgYqNOnT9vmqXvxxRftfsxKT4MGDTRmzBi99dZb+vLLL7Vo0SIFBQXpypUrioyMlGEYKlmypGbPnn3bH6Yyo0uXLjpy5IjmzJmjESNG6JNPPlGZMmV08uRJxcXFycXFRaNHj073rvVHHnlEH374oa5evSo3Nzd16tQp3T6y8vm0GjJkiFJTU+Xh4aG///5bffr0UWJiYrpP5TzxxBPq0qWLKlasqE8++URDhgzR6tWr9eOPP6pKlSpKTk5WRESEUlJS5OXlpRkzZmQ4D3Z6XF1dNW3aNPXr10/Hjh3TI488okqVKsnb29s2XJmHh4fefvttu6fUhwwZooEDB+rIkSN64IEHbMOgRUZG6tq1a7ah6k6cOGE3HHrx4sXVp08fTZ8+XatXr9bmzZt11113KTo6WnFxcerWrZt+/vnndIe3q1Gjhnbs2KF33nlHCxcuVPfu3dWlSxfVr19f48aN04gRI/TNN9/ou+++U1BQkK5evarjx49Luv7vwtSpU3PkvAIAALmPHJkcmRw5Y+TI5MjZVVBz5C5dumjBggWKjIxUWFiYypcvLz8/P506dUoxMTFyc3NTo0aNtH379jS5Ynav+9WrV5d0ff719u3bq0qVKpo6dWq2c2QPDw9NnjxZffv21ZYtW9SyZUtVrVpVcXFxts/guXPn0kwXVrx4cX322WcaMGCAtm7dqgceeEBVqlSRyWTS8ePHlZSUJFdXV3300Ue2ETeyy5H3/0bZvXZnV0hIiMxmsxITE9W+fXuVKlVKs2fPztS0CwBujSfAAeQ6d3d3ffrpp/r444/VtGlTJSUl6cCBA/L09FTHjh01b948jRw5Ms2wSdWrV9fSpUvVuXNnlShRQseOHVNqaqqee+45LV++XAEBAfl0RLfWvHlzLViwQG3atJGXl5eOHDmiIkWKKCwsTAsWLLDd2ZddPXv21EcffaTKlSvb7vxt166dFi1alO5djL6+vpo/f77GjBmje+65R5cvX9bBgwfl5+enLl26aOnSperfv7/dNi4uLvr000/15ptvqn79+kpMTFR4eLgSEhLUtGlTvf/++5o2bZrdPFzS9QRo8eLF6ty5s3x8fBQeHq7Y2FjVqFFDgwcP1rJly7JUvLqZNXGuWbNmpoei6tKli20OXUfucM+MPXv22Oa2yuxcUZ6enranNn/77TfbXH/ZPY/69eunJ598Ur6+voqIiNDBgwdt62rUqKHVq1dr4MCBqlq1qqKiohQREaHKlSvrhRde0HfffZfpod2s3N3d9e6772rJkiV67rnnVLNmTSUlJSk8PFynT59W5cqV1adPH3333XdpzjPp+g8ws2fP1ssvv6yqVasqJiZG//zzj+69914tXLjQ4bvAM6tXr15avHixOnXqpCJFiujgwYNKSUlRixYtNGfOHIWFhWVqP0888YRWrlypp556SgEBATp8+LBOnTqloKAg9e3bV999952tmJoThg0bpjlz5uiBBx6QYRgKDw+Xi4uL2rdvr8WLF9v9AHejEiVK2IbLbt26dY4mVta7+hMTE7V+/Xpt2bJFf/zxh3bt2pXmz6lTp2zbtWjRQv/73//Uu3dvVahQQcePH1dkZKTKly+v7t2767vvvlNoaGiW47nrrru0bNkyvf7666pTp47OnTuno0ePqmzZsurZs6dWrlyZ5snpVq1aaenSpWrTpo0CAgJ07NgxnTp1SsHBwXr11Ve1cuVK27m5YcMGu22HDBmiDz74QA0aNFBycrKOHz+uypUra+LEiRo9enSGcY4fP17333+/XF1ddfz4cdu1QLo+F/nKlSvVtWtXlSxZUocPH1ZsbKxCQ0M1atQoLV26NMM51gEAQMFDjkyOTI6cMXJkcmRHFMQc2cfHx3ZdqVq1qi5cuKDDhw/Lx8fHVsAeP368pOtPid/4lHR2r/uPPvqo+vbtq4CAAJ08eVIHDhyw3ZSenRxZkqpVq6bly5frueeeU9myZXX48GFZLBb17t1bX375ZYY3MdSuXVurVq3Siy++qJCQEJ08eVLHjh1TyZIl9eijj2rZsmW2IdYdld33/2a5fe2+UcWKFTVhwgRVqlRJcXFxOnXqVJoRKwBkj8lgcgEAuCO0bt1a0dHRGjt2bKa/sCHnjBkzRidOnNDMmTPzOxQgRzz++OPav3+/ZsyYcds79wEAAICChhw5f5Ejw9mQIwOAc+EJcAAAbsNiseiPP/5QlSpV8jsUIEfs379f+/fvV9myZdW0adP8DgcAAADAHYQcGc6GHBkAnA9zgAMAcBvvvPOOYmJi9Oyzz+Z3KEC2RUVFSZLOnz+vYcOGSbo+XKSLi0t+hgUAAADgDkOODGdAjgwAzo0COAAAt/H0008rLCxMJUqUyO9QgGz7/vvv9dFHH9n+HhwcrGeeeSYfIwIAAABwJyJHhjMgRwYA58YQ6AAA3Ea1atVI7HHHq1atmkqVKiUvLy+1adNGX3zxhdzd3fM7LAAAAAB3GHJkOANyZABwbibDMIz8DgIAAAAAAAAAAAAAAEfxBDgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAXX/A7gTmEYhiwWRosHAAAAANgzm00ymUz5HYZTIPcGAAAAAKQnK7k3BfBMslgMXbhwJb/DAAAAAAAUMCVKeMvFhQJ4TiD3BgAAAACkJyu5N0OgAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwCm45ncAAAAAAIC0LBaLUlNT8juMQs/FxVVmM/eOAwAAAIAzIvcuGHI696YADgAAAAAFiGEYunTpghIS4vM7FPw/T08fFStWQiaTKb9DAQAAAADkAHLvgicnc28K4AAAAABQgFgTcB8fP7m7F6Homo8Mw1BS0jXFx8dKkooX98/niAAAAAAAOYHcu+DIjdybAjgAAAAAFBAWS6otAffxKZbf4UCSu3sRSVJ8fKyKFvVjOHQAAAAAuMORexc8OZ17k7kDAAAAQAGRmpoq6d/EDwWD9f1gXjgAAAAAuPORexdMOZl7UwAHAAAAgAKGodcKFt4PAAAAAHA+5HoFS06+HxTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKfgmt8BAAAAAADyz8GD4Zo2bZLCw/+WxWKoRo1a6t9/oGrWrCVJ2rHjd82ZM0tHjx6Wi4urGjVqogEDXlLp0mUkSd9/v0rjx7+tJUu+U9my5Wz77dKls+rXb6D//ne0JKlp04Z67rn+2rp1i6KiItWt27Pq3buvoqNP6rPPpmjnzh0yDEO1atXWwIGDdffdQZKka9euafbs6Vq/fq1iYy+oQoWK6tnzOT3wQNu8faEAAAAAAMgmcu+8xRPgAAAAAFBIXbkSr1dffUnFi/tq7Nj39Pbb45WYmKBXXx2k+Ph4/fjj9xoyZJACAgI0evQ4vfTSEO3fv08vvPCcYmMvZLm/uXNnq2XL1ho9epyaNWup8+fPq1+/XoqMPK5XX31Db701RpcuXdLLLw9UXFycDMPQm2++phUrvtVTT3XXu+9+pFq16uitt97UmjWrc+EVAQAAAAAgZ5F75z2eAAcAAACAQur48eOKi4tVly5PqU6depKkihUraeXKZYqPv6xp0yapYcNGevvtCbZt6tSpp2eeeVILF36lgQPDstRfjRq19MwzvW1///TTSbp2LVGffDJN/v4lJUlVq1bT88/31l9/7VWRIu7atm2r3n57vO2u88aN71ViYoKmT5+qBx9sL1dX0loAAAAAQMFF7p33eAIcAAAAAAqpu+8Okq+vn9544xV98MEEbdmySf7+JTVw4GAlJiYqJiZGbds+ZLdN+fJ3qWbN2vrzzz+y3F9QUBW7v+/Z86dq1apjS8AlqWTJklq2bLWaNm2uP/7YIZPJpHvvbaqUlBTbn/vvb6GYmPM6fvxo9g4cAAAAAIA8Qu6d9+6scj0AAAAAIMd4eXlp2rSZmjt3ttavX6sVK5bJw8NDbds+pPbtO0qSSpTwT7Odv7+/Dh48mOX+/PxK2P390qWLdnOX3ezSpYsyDENt2zZPd/358+dUtWpIluMAAAAAACCvkHvnPQrgAAAAAFCIVahQSSNHjlFqaqoOHNivH374XitWLFXJkgGSpAsXYtJsExMTI19fX0mSyWSSJFksFrs2CQlXb9u3j09RxcXFpVm+c+cOlSlTVj4+ReXp6aUpU6anu3358oG37QMAAAAAgPxG7p23GAIdAAAAAAqpDRvWq1OnNoqJOS8XFxfVqlVHQ4cOk49PUV24cEH+/v5au3aN3TbR0Sf11197VadOXUmSl5e3JOnMmdO2NidOROjixYu37b9u3Xrav3+vYmMv2JbFxcVp6NAw/frrJtWrF6qEhKsyDEPVqtWw/Tl27Ki++GKmUlNTc+JlAAAAAAAg15B75z2eAAdgx2w2yWw25WofFoshi8XI1T4AAABwe7Vr11NqqkXDhw/VM8/0lre3t376aa2uXIlX69ZtVKNGTY0f/7beemu42rfvpIsX4/TFFzNUrFhxPfVUD0lSgwb3yMPDQ1Onfqx+/Qbq6tWrmjPnepvb6dq1u9as+Z9eeWWQevZ8Tu7uRTR//hz5+5dU+/Yd5eNTVPXqhWrYsFfVu3dfVaxYSQcO7Nfs2TPUuHET253wcH65naeQowAAAADILeTeec9kGAYZXiakplp04cKV/A4DyFVms0m+vl5yccndwSFSUy2Ki7vKD0wAAAA3SU5OUkzMKfn7l5Wbm3ue9HngwH7NnPmZwsMPKDExUXffHaRnn/2PWrRoJUn65ZefNH/+lzp27Ii8vb3VuPG96t//RZUuXca2j99/36rp06cqMvK4ypQpq//8p79++OF/8vf313//O1qS1LRpQ/3nP/3Up8/zdv1HRkZo2rRJ2rVrp9zc3FS/fqgGDhys8uXvkiQlJCRo1qzPtGHDT4qNvaCSJUupTZu26t27r4oUKZInr9Ht3pcSJbxz/Tt0YZFe7p0XeQo5CgAAAFB4kHs7f+5NATyTKICjMHB1NcvPz1ufLvxV0WdvP2xGdpQvVVwvdrtfsbFXlJJiuf0GAAAAhUh+JOG4PQrgeSe93Du38xRyFAAAAKBwIfcumHIy92YIdABpRJ+9qIjo2PwOAwAAAABsyFMAAAAAAJnBLeoAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU3DN7wAAAAAAAED+SE5O1vz587V8+XJFRETIy8tLtWvXVq9evdSsWbM07Rs3bqy4uLgM97d3714VKVIkFyMGAAAAAODWKIADAAAAAFAIGYahIUOGaN26dSpWrJjuu+8+Xbt2Tb///rs2b96sl19+WQMGDLC1j46OVlxcnEqXLq1GjRqlu0+zmYHmAAAAAAD5iwI4AAAAAACF0KJFi7Ru3TpVr15dc+bMkZ+fnyQpPDxcPXr00KRJk9S2bVsFBQVJkg4cOCBJat++vd588818ixsAAAAAgFvh1mwAAAAAAAqhlStXSpKGDRtmK35LUrVq1dS5c2cZhqFNmzbZlu/fv1+SVLNmzbwNFAAAAACALOAJcAAAAAC4A5jNJpnNpjzv12IxZLEYed4vct/cuXN1/PhxVa1aNc26q1evSpJcXFxsy6xPgNeqVStvAgQAAACAPEbu7RwogAMAAABAAWc2m+Tr6yUXl7wfxCs11aK4uKvZSsTXrv1By5Yt1rFjRyRJFStWVqdOj+jRR5/I6TCRDUWKFFG1atXSLF+/fr1++OEHeXp6qm3btrbl+/fvl4eHh/766y+NGDFChw8flslkUmhoqAYOHKi6devmZfgAAAAAkKPIvZ0HBXAAAAAAKODMZpNcXMz6dOGvij57Mc/6LV+quF7sdr/MZlOWk/DVq1fqk08mKizsVdWrFyrJ0I4d2zV58oeKjb2g//ynX+4EjWy5ePGiRowYoSNHjujYsWMqW7asJkyYoDJlykiSYmJidPbsWUnS66+/rnr16qlx48Y6dOiQfvnlF23ZskUTJ05Uhw4d8vMwAAAAACDbyL2dBwVwAAAAALhDRJ+9qIjo2PwOI1OWL1+qTp0e0cMPP2ZbVqFCJZ07d1bffLOw0CbhBVVUVJTWrl1r+7vJZNKRI0d07733Svp3/m8/Pz999tlnql+/viTJMAzNnTtXEyZM0PDhwxUaGmormmeXq6v90xZ59fRFfjzlAQAAACDvWSy3HuKc3Dt/ubiY0uSFWUUBHAAAAACQ48xmk/bt26tLly6pWLFituU9evRShw6dJUldunTWQw91Up8+z9vWDxrUX2XLltN//ztau3b9obCwFzRgwEv6+ut5KlOmjDw8PFWyZIDeeWeCbZu9e3dr4MC+WrRoue66K1C//rpZs2d/roiI4woICFCbNu3Uq1cfubu7a9KkD/Xrr5v0zTcrbdvHx8fr4Yfb6Z13xqtp0xZ58OoUPJUrV9b27dtlGIa2bt2qcePGaezYsYqPj9eAAQPUrFkzbd68WYZhqHTp0rbtTCaTevfurR07dmj9+vVaunSpBg0alO04zGaT/Py8c+KQsqxYMc986RcAAABA3kpMdNH58+Y0hdb8vik2O/27uJj11197dfVqvF3u3avXf/Tww4/I1dWsRx/tqI4dO6tfvxds6wcM6KeyZctp1Ki3tXPnH3rxxf568cUwzZ8/V2XKlJWnp4dKlgzQuHHv2bbZs2e3nn/+OS1ZskKBgRW0ZcsmzZw53ZZ7P/hge/3nP33l7u6ujz+eqC1bNmvZsu9s28fHX1bHjm01Zsy7at48be5tsZhkNptVvLiXPDw8svxa3IgCOAAAAAAgx/Xo0UujRg3XY489pNDQhqpTp74aNGio6tVrqmjRolna19atW/T553OUmJigw4cP6cMP39XVq1fk5XW9ULp27RrVrl1Xd90VqN9/36qRI4cpLGyI7rmniaKjT+rjj9/XiRORGjPmXXXq9IiWLFmoPXt2q27depKkn35aK29vbzVpcn9Ovwx3DG/vf4vOHTp0UJkyZdS9e3fNmDFDPXv2lLe3t0qVKpXh9q1atdL69ev1119/ORSHxWLo0qWrdstcXMy5WpwuXtRDhsUikzn3fuyyWFJ16dI1GUbW5/MDAAAAkLOSkq7JYrEoNdVQSoolv8OxSU21ZDme7t17atSo4ercuV2a3LtcOW/b/iwW+2M1DEOGcX1Zaur15Vu2bE6Te1+6dNmWe69Z8z/Vrl1XZcvepS1btujNN99Ik3tHRERozJh31aHDI1q8eKF27txly71//PFHeXl5q1Gje9M9ztRUQxaLRRcvXlVCQmqa9cWKeWb6JgEK4AAAAACAHNey5QP6/PM5Wrp0kbZt+12//farJCkwsIKGDx+lOnXqZXpf3bo9o8DACpKku+6qoI8/nqiNGzfooYc6KTk5WT//vF4DBrwkSZo37wt16vSwHn20iySpfPm79Nprbyos7AWdOvWPgoKqKCSkun788X+2JPyHH1arXbsOcnUlRbYKDQ1VhQoVFBkZqYiICNWsWfOW7QMCAiRJCQkJDved1z9AeXu4y2Q26/jqmUqIOZXj+/f0L6vKnfrZflwCAAAAkL9SU53nxlRnzL1z4sYEsnsAAAAAQK6oXr2mRo4cI8MwdOzYUf322xYtWbJIQ4cO1uLFyzO9n7vuqmD7f09PT7Vq9YDWrl2jhx7qpN9++1XXriWqdes2kqRDh8J14MB+rVmz2raN9anbiIjjKlu2nDp2fFgzZkzTyy+/prNnz2jfvr167bU3c+io7wwJCQmaNGmSzp8/r4kTJ8pkSjsHnru7uyQpJSVFixcv1m+//aZOnTqpTZs2adpGRUVJksPzf+enhJhTSjhzIr/DAAAAAIAsIfdOiwI4AAAAACBHnT17Rl9/PVfPPNNbAQGlZDKZFBRURUFBVdS0aQs988yT2r17V7rbpqampFlWpEgRu7936NBZgwcPUEzMea1d+72aN28lb28fSdeHdevevaceeqhTmv34+5eUJD34YHtNnfqJtm7drKNHj6h69Rq6++4qjh72HcXDw0PLly9XXFycunbtqkaNGtmtj4qK0vHjx+Xu7q6qVatq48aNWrNmjRISEtIUwA3D0MqV1+dUb9q0aZ4dAwAAAAAUZuTeGcvf2dwBAAAAAE7H3b2IVq78VmvXrkmzzjrXdIkS/nJ1dVN8fLxtncVi0T//RN92//XqhapMmbL64Yf/aevWX+0S7rvvDlJkZITuuivQ9ufcubP69NNJunr1iiSpaNGiat68pX755Wdt2rRBHTo87Ogh33FMJpOeeuopSdLo0aN19uxZ27rTp0/rlVdeUUpKirp16yYvLy899thjcnd31y+//KJvvvnG1tZisWjy5Mnau3evqlSpovbt2+f5sQAAAABAYUTunTGeAAcAAAAA5ChfX1/16NFLM2ZMU3x8vFq3biMvL29FRBzXl1/OUmhoQ9WtW1916tTVTz+tVYsWrVSihL8WLfrKLim/lYce6qS5c79Q8eLF1bDhv08v9+jRU6NGDdfs2Z/rwQfb69y5s3r33bEqXbq07S50SerY8WENG/aKDENq06Zdjr8Gd4KBAwdq165d2rFjh9q1a6cGDRooOTlZe/fu1dWrV9W0aVMNHTpUkhQYGKjRo0drxIgRGjlypL766itVqlRJ4eHhioyMVMmSJTVlyhS5ubnl81EBAAAAQOFA7p0xCuAAAAAAcIcoX6r4HdNfv34DdNddgVq1aoWWL1+ixMRElS5dRq1bP6iePZ+TJPXv/6IuX76koUPD5OHhqc6dH9UDD7S1zRt2K+3bd9IXX8zQ448/KbP538HNWrVqo7fflubP/0JfffWlihYtpvvvb6YBA8Lstm/YsJGKF/dV7dp1VbRo0Wwf553Mw8NDc+bM0bx587Ry5Upt27ZNrq6uqlq1qh5//HE9+eSTcnFxsbV/4oknVLlyZc2cOVO7du3SsWPHVKpUKT377LMaMGCA/P398/FoAAAAACBnkHv/607NvU1GZo4uHyQnJ2v+/Plavny5IiIi5OXlpdq1a6tXr15q1qxZmvbnz5/XtGnTtHnzZp05c0YBAQFq3769Bg4caHvM3xGpqRZduHDF4f0ABZmrq1l+ft56c9L3ioiOzZU+KpX30/jBHRQbe0UpKZZc6QMAAOBOlZycpJiYU/L3Lys3N3fbcrPZJF9fL7m45P0sVqmpFsXFXZXFUiBTx2xLSEjQI4+017hx7+ueexrfsm1G74tViRLe+fLeOKP0cu/czlPuq1dRg7o31d9z31HCmRM5vn/P0hVUo9cociAAAACggCD3zjv5lXsXyCfADcPQkCFDtG7dOhUrVkz33Xefrl27pt9//12bN2/Wyy+/rAEDBtjanz17Vk8//bSio6MVHBysli1bat++fZo1a5Y2b96sBQsWyMfHJx+PCAAAAACyz2IxFBd3VWazKV/6dqYE/NKlS9q1a4d+/nm9SpcubTeEGwAAAACg8CL3zjn5nXsXyAL4okWLtG7dOlWvXl1z5syRn5+fJCk8PFw9evTQpEmT1LZtWwUFBUmSxo4dq+joaPXv31+vvvqqJCkpKUmvv/661qxZo6lTp2rYsGH5djwAAAAA4ChnS4bzS2pqit59d4x8ff30zjsTZDLl/Q8bAAAAAICCidw7Z+R37l0gx2hbuXKlJGnYsGG24rckVatWTZ07d5ZhGNq0aZMk6cSJE1q3bp3Kli2rsLB/x5V3d3fXmDFj5O3trcWLFysxMTFvDwIAAAAAUOD4+ZXQDz/8okWLlis4uFp+hwMAAAAAgNPJ79y7QBbA586dq5UrV+qee+5Js+7q1auSJBcXF0nSpk2bZLFY1KJFC7m5udm1LVq0qJo0aaKrV69q27ZtuR84AAAAAAAAAAAAACDfFMgCeJEiRVStWjVbkdtq/fr1+uGHH+Tp6am2bdtKkg4dOiRJCg4OTndfVapUsWsHAAAAAAAAAAAAAHBOBXIO8BtdvHhRI0aM0JEjR3Ts2DGVLVtWEyZMUJkyZSRJ586dkyQFBASku711+fnz5/MmYAAAAAAAAAAAAABAvijwBfCoqCitXbvW9neTyaQjR47o3nvvlfTvkOgeHh7pbm9dbm3nCFfXAvnAPJBjXFzy7hzPy74AAADuFBaLKb9DwC24uJjICwEAAAAAKOAKfAG8cuXK2r59uwzD0NatWzVu3DiNHTtW8fHxGjBggG2YdJMp/R+KDMOw+292mc0m+fl5O7QPAP8qVswzv0MAAAAocBITXXT+vJlCawFjsZhkNptVvLhXhjdfAwAAAACAgqHAF8C9vf8tOnfo0EFlypRR9+7dNWPGDPXs2VNeXl6SpGvXrqW7vXW5p6djxTaLxdClS44/RQ4UZC4u5jwrTF+6lKDUVEue9AUAAHCnSEq6JovFotRUQykpfFcqKFJTDVksFl28eFUJCalp1hcr5skIRwAAAAAAFBAFvgB+s9DQUFWoUEGRkZGKiIhQqVKlJP07F/jNbjdHeFbwAxRwZ7BYDFksjo36AAAAkB9SUzP+DmM2m2Q25/0Q6dn9btWlS2edPn1Kgwa9rKeffibN+okTx2vlym/1n//0U58+z2crti5dOuuhhzplevustr8ZNyYAAAAAgHMj906/j7zMvXNCgSuAJyQkaNKkSTp//rwmTpyY7tDm7u7ukqSUlBQFBwdLko4ePZru/g4fPixJCgkJyaWIAWRF8aIeMiyWXH3S3GJJVWxsAkVwAADgNK5PyeQps9klz/t25LuVq6urNmz4KU0SnpKSoo0bf85wKisAAAAAAPIaubfzKHAFcA8PDy1fvlxxcXHq2rWrGjVqZLc+KipKx48fl7u7u6pWraqSJUtKkjZs2KDhw4fb5gSXpMuXL2vbtm3y8vJSgwYN8vQ4AKTP28NdJrNZx1fPVELMqRzfv6d/WVXu1E9ms4kCOAAAcBrX70B3ybXvUBlx9LtVw4aNtG3bbzpz5rRKly5jW75r1x/y8PBUkSLMpw0AAAAAKBjIvZ1HgSuAm0wmPfXUU/r88881evRoffnll7Zhzk+fPq1XXnlFKSkp6tWrl7y8vOTl5aVWrVppw4YNmjhxot544w2ZTCYlJSVp1KhRunLlip577jn5+Pjk85EBuFFCzCklnDmR32EAAADcUe6071DVq9dUZGSENmxYb3cn+k8/rVXr1g/q55/X2Zb99ddezZgxTQcPHpCrq6uaNm2hF198WcWKFZMkxcfH65NPJmrLlo1ydXVTz57/SdPfvn17NH36VB048Ld8fX11//3N9cILL8rbm3wQAAAAAJA55N53fu5tzu8A0jNw4EDdc889Onr0qNq1a6e+ffuqV69eeuihh7R37141bdpUQ4cOtbUfOXKkSpUqpTlz5qhDhw4KCwtTu3bt9P3336tmzZoaNGhQPh4NAAAAABRerVq10YYNP9n+npycrE2bflGbNm1ty/7++y+99NLzqlSpsqZPn6MxY97T33//pVdeGSSL5fqc26NGDdOBA/v13nsf6+OPp+rXXzfr9Ol/78g/cuSwBg8eqHvuaay5cxfqrbfG6eDBAxoyZJAMg5GBAAAAAADOi9zbXoEsgHt4eGjOnDl6/fXXFRgYqG3btmnv3r2qWrWq3n77bc2YMcM2D7gklS9fXkuXLtWTTz6py5cva8OGDXJ3d9cLL7ygefPmydvbOx+PBgAAAAAKr9atH9Tff/+lM2dOS5K2b/9dvr6+Cg6uZmuzaNHXCgqqqldeeUOVK9+t0NCGGj16vMLD/9a2bb/pxIkIbd/+u4YMeV1169ZX1aoheuutsXZ54cKF89Sw4T3q3buvAgMrqG7deho9epz+/vsv/fnnzjw/bgAAAAAA8gq5t70CNwS6lZubm/r06aM+ffpkqn3p0qU1duzYXI4KAIA7w/X5aky5tn+LxcjWfDQAgMKnWrXqKleuvG0otp9/Xqs2bdrZtTl27IjuuaeJ3bKgoCry8Smqo0cPKzExQZJUvXoN2/oSJfxVrlx5298PHjyokydP6MEHm6WJITIyQqGhDXPysAAAAAAAKDDIve0V2AI4AADIHrPZJF9fL7m45N5AL6mpFsXFXaUIDgDIlNatH9SGDT/pscee1ObNmzRz5ly79YZhyJTOfVuGYZGr679p683/7ri4uNq1bdv2IfXs+Vya/fj6+jl4BAAAAAAAFGzk3v+iAA4AgJMxm01ycTHr04W/KvrsxRzff/lSxfVit/tlNpsogAMAMqV16zb66qsvtXr1SpUrV14VK1ayW3/33VW0Z89uu2WHDx/SlStXVKnS3QoMrCBJ2rdvj+67r6kk6fLly4qOjrK1r1w5SMePH9VddwXalp04EaGpUyfphRdelI9Pldw5OAAAAAAACgBy739RAAcAwElFn72oiOjY/A4DAABVrRqiu+4K1IwZn+qZZ/6TZv1TT3XXiy/200cfvafHH++q2NgL+uij9xQcHKKGDRvJ1dVVrVq10ccfvy83Nzf5+/tr+vRPlZycbNvH008/oxdf7KuJE8erS5endfXqVX344bu6evWq7rqrQl4eLgAAAAAAeY7c+18UwAEAAADgDuHpX/aO7a916wc1d+5stWnTNs26WrXq6IMPJmnmzOl67rke8vLyVrNmLTVgwCDbMGwjRozWp59O0ltvvSmLxaJHHnlccXGxN+yjtj76aKpmzfpMffo8K09PD4WG3qMXX3xZ7u7uOXYcAAAAAADnRu595+feJsMwGLs0E1JTLbpw4Up+hwHkKldXs/z8vPXmpO9z7anR++pV1KDuTfX33HeUcOZEju/fs3QF1eg1SrGxV5SSYsnx/QN3gtz+LFcq76fxgzvwOQOAXJCcnKSYmFPy9y8rN7d/E0ez2SQ/P0+ZzS55HpPFkqrY2IRCPe1FRu+LVYkS3nJxMedDZM4nvdw7t7/bkKMAAAAAhQu5d8GUk7k3T4ADAAAAQAFnsRiKjU2Q2WzKl74LcwIOAAAAACgcyL2dBwVwAAAAALgDkAwDAAAAAJC7yL2dA2O0AQAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAoIAxDOYbK0h4PwAAAADA+ZDrFSw5+X5QAAcAAACAAsLFxUWSlJR0LZ8jwY2s74eLi2s+RwIAAAAAcBS5d8GUk7k32TsAAAAAFBBms4s8PX0UHx8rSXJ3LyKTyZTPURVehmEoKema4uNj5enpI7OZe8gBAAAA4E5H7l2w5EbuTQEcAAAAAAqQYsVKSJItEUf+8/T0sb0vAAAAAIA7H7l3wZOTuTcFcAAAAAAoQEwmk4oX91fRon5KTU3J73AKPRcXV578BgAAAAAnQ+5dsOR07k0BHAAAAAAKILPZLLPZPb/DAAAAAADAaZF7OyduYwcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcgmt+BwAAAAAAAPJHcnKy5s+fr+XLlysiIkJeXl6qXbu2evXqpWbNmqVpf/78eU2bNk2bN2/WmTNnFBAQoPbt22vgwIHy9vbOhyMAAAAAAMAeT4ADAAAAAFAIGYahIUOG6L333tPp06d13333qXr16vr999/Vt29fffbZZ3btz549q65du+rrr7+Wh4eHWrZsKYvFolmzZqlbt26Kj4/PpyMBAAAAAOBfFMABAAAAACiEFi1apHXr1ql69epau3atPv/8c3355ZdaunSpfHx8NGnSJB09etTWfuzYsYqOjlb//v21atUqTZ48WT/++KMeeughHTx4UFOnTs3HowEAAAAA4DoK4AAAAAAAFEIrV66UJA0bNkx+fn625dWqVVPnzp1lGIY2bdokSTpx4oTWrVunsmXLKiwszNbW3d1dY8aMkbe3txYvXqzExMS8PQgAAAAAAG5CARwAAAAAgEJo7ty5Wrlype655540665evSpJcnFxkSRt2rRJFotFLVq0kJubm13bokWLqkmTJrp69aq2bduW+4EDAAAAAHALFMABAAAAACiEihQpomrVqtmK3Fbr16/XDz/8IE9PT7Vt21aSdOjQIUlScHBwuvuqUqWKXTsAAAAAAPKLa34HAAAAAAAA8tfFixc1YsQIHTlyRMeOHVPZsmU1YcIElSlTRpJ07tw5SVJAQEC621uXnz9/Pm8CBgAAAAAgAxTAAQAAAAAo5KKiorR27Vrb300mk44cOaJ7771X0r9Dont4eKS7vXW5tZ0jXF3tB6tzcXGOweuc5TgAAAAAoKCjAA4AAAAAQCFXuXJlbd++XYZhaOvWrRo3bpzGjh2r+Ph4DRgwwDZMuslkSnd7wzDs/ptdZrNJfn7eDu2joCpWzDO/QwAAAACAQoECOAAAAAAAhZy3979F5w4dOqhMmTLq3r27ZsyYoZ49e8rLy0uSdO3atXS3ty739HSsyGuxGLp0yf4pchcXs1MUjy9dSlBqqiW/wwAAAACAO1KxYp6ZHlmLAjgAAAAAALATGhqqChUqKDIyUhERESpVqpSkf+cCv9nt5gjPipQU5ywSp6ZanPbYAAAAAKAgYQIqAAAAAAAKmYSEBL377rsaOnRohsOWu7u7S5JSUlIUHBwsSTp69Gi6bQ8fPixJCgkJyYVoAQAAAADIPArgAAAAAAAUMh4eHlq+fLlWrVqlHTt2pFkfFRWl48ePy93dXVWrVlWzZs0kSRs2bFBqaqpd28uXL2vbtm3y8vJSgwYN8iR+AAAAAAAyQgEcAAAAAIBCxmQy6amnnpIkjR49WmfPnrWtO336tF555RWlpKSoW7du8vLyUvny5dWqVSudPHlSEydOtD01npSUpFGjRunKlSt6+umn5ePjky/HAwAAAACAFXOAAwAAAABQCA0cOFC7du3Sjh071K5dOzVo0EDJycnau3evrl69qqZNm2ro0KG29iNHjtT+/fs1Z84cbdy4UVWrVtW+ffv0zz//qGbNmho0aFA+Hg0AAAAAANfxBDgAAAAAAIWQh4eH5syZo9dff12BgYHatm2b9u7dq6pVq+rtt9/WjBkzbPOAS1L58uW1dOlSPfnkk7p8+bI2bNggd3d3vfDCC5o3b568vb3z8WgAAAAAALiOJ8ABAAAAACik3Nzc1KdPH/Xp0ydT7UuXLq2xY8fmclQAAAAAAGQfT4ADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACn4JrfAQAAgDuTi0vu3kdnsRiyWIxc7QMAAKAgMptNMptNubZ/vmcBAAAAcGYFtgBusVi0ZMkSffvttzp8+LCSk5NVrlw5tWnTRs8//7yKFStm175x48aKi4vLcH979+5VkSJFcjlqAACcX/GiHjIsFhUr5pmr/VgsqYqNTeDHWQAAUKiYzSb5+nrl6s2GqakWxcVd5XsWAAAAAKdUIAvgFotFYWFhWrdunTw8PFSnTh15eXlp7969mjVrltatW6cFCxaoZMmSkqTo6GjFxcWpdOnSatSoUbr7NJsZ7R0AgJzg7eEuk9ms46tnKiHmVK704elfVpU79ZPZbOKHWQAAUKiYzSa5uJj16cJfFX32Yo7vv3yp4nqx2/18zwIAAADgtApkAXzZsmVat26dKlWqpFmzZikwMFCSFB8fr6FDh2rDhg0aO3asPvnkE0nSgQMHJEnt27fXm2++mV9hAwBQqCTEnFLCmRP5HQYAAIBTij57URHRsfkdBgAAAADccQrkY9HLli2TJA0bNsxW/JYkHx8fjR8/XiaTSevXr1diYqIkaf/+/ZKkmjVr5n2wAAAAAAAAAAAAAIACoUAWwH19fXX33XerXr16adaVKFFCxYsXV3JysmJjr98JbX0CvFatWnkZJgAAAAAAAAAAAACgACmQQ6BPnz49w3VRUVGKi4uTm5ubSpQoIen6E+AeHh7666+/NGLECB0+fFgmk0mhoaEaOHCg6tatm1ehAwAAAAAAAAAAAADySYF8AvxWrPN+t2zZUkWKFFFMTIzOnj2rxMREvf7667JYLGrcuLF8fX31yy+/qHv37vr+++/zN2gAAAAAAAAAAAAAQK4rkE+AZ2T+/PlavXq1PD09NWTIEEn/zv/t5+enzz77TPXr15ckGYahuXPnasKECRo+fLhCQ0NVpkwZh/p3db3j7hcAssTFxXnOcWc6FiCrnOn8d6ZjAQAAAAAAAADkvjumAD5v3jyNHz9eJpNJ48aNU1BQkCSpWbNm2rx5swzDUOnSpW3tTSaTevfurR07dmj9+vVaunSpBg0alO3+zWaT/Py8HT4OAHmjWDHP/A4BQA7gswwAAAAAAAAAyIoCXwA3DEMffPCBZs2aJRcXF40bN04dO3a0rTeZTCpVqlSG27dq1Urr16/XX3/95VAcFouhS5euOrQPoKBzcTE7TbHp0qUEpaZa8jsMIF/wWQYAIG8VK+bJqCUAAAAAABQQBboAnpiYqNdee01r166Vh4eHPvzwQ7Vp0yZL+wgICJAkJSQkOBxPSgo/wAN3itRUC59ZwAnwWQYAAAAAAAAAZEWBLYDHx8erb9+++vPPP+Xv76/PPvtMdevWTdNu8eLF+u2339SpU6d0i+NRUVGS5PD83wAAAAAAAAAAAACAgq1AFsCTk5PVv39//fnnn6pYsaJmz56twMDAdNueOXNGa9asUUJCQpoCuGEYWrlypSSpadOmuR43AAAAAAAAAAAAACD/FMhJyqZOnaqdO3cqICBA8+fPz7D4LUmPPfaY3N3d9csvv+ibb76xLbdYLJo8ebL27t2rKlWqqH379nkROgAAAAAAAAAAAAAgnxS4J8AvXryouXPnSpL8/f01ceLEDNsOGzZMgYGBGj16tEaMGKGRI0fqq6++UqVKlRQeHq7IyEiVLFlSU6ZMkZubW14dAgAAAAAAAAAAAAAgHxS4AviePXuUkJAgSQoPD1d4eHiGbV966SWVLFlSTzzxhCpXrqyZM2dq165dOnbsmEqVKqVnn31WAwYMkL+/f16FDwAAAAAAAAAAAADIJwWuAN68eXMdPHgwy9uFhobqs88+y4WIAAAAAAAAAAAAAAB3ggI5BzgAAAAAAAAAAAAAAFlFARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKfgmt8BAAAAAAAAIG+5uOTuMxEWiyGLxcjVPgAAAAAgPRTAAQAAAAAAConiRT1kWCwqVswzV/uxWFIVG5tAERwAAABAnqMADgAAAABAIWWxWLRkyRJ9++23Onz4sJKTk1WuXDm1adNGzz//vIoVK2bXvnHjxoqLi8twf3v37lWRIkVyOWo4wtvDXSazWcdXz1RCzKlc6cPTv6wqd+ons9lEARwAAABAnqMADgAAAABAIWSxWBQWFqZ169bJw8NDderUkZeXl/bu3atZs2Zp3bp1WrBggUqWLClJio6OVlxcnEqXLq1GjRqlu0+zOXeH1UbOSYg5pYQzJ/I7DAAAAADIcRTAAQAAAAAohJYtW6Z169apUqVKmjVrlgIDAyVJ8fHxGjp0qDZs2KCxY8fqk08+kSQdOHBAktS+fXu9+eab+RU2AAAAAAC3xK3ZAAAAAAAUQsuWLZMkDRs2zFb8liQfHx+NHz9eJpNJ69evV2JioiRp//79kqSaNWvmfbAAAAAAAGQSBXAAAAAAAAohX19f3X333apXr16adSVKlFDx4sWVnJys2NhYSf8+AV6rVq28DBMAAAAAgCxhCHQAAAAAAAqh6dOnZ7guKipKcXFxcnNzU4kSJSRdfwLcw8NDf/31l0aMGKHDhw/LZDIpNDRUAwcOVN26dfMqdAAAAAAAMsQT4AAAAAAAwI513u+WLVuqSJEiiomJ0dmzZ5WYmKjXX39dFotFjRs3lq+vr3755Rd1795d33//ff4GDQAAAACAeAIcAAAAAADcYP78+Vq9erU8PT01ZMgQSf/O/+3n56fPPvtM9evXlyQZhqG5c+dqwoQJGj58uEJDQ1WmTBmH+nd1tb9X38XFOe7dz+xxOMvxSs51LAAAAADuHBTAAQAAAACAJGnevHkaP368TCaTxo0bp6CgIElSs2bNtHnzZhmGodKlS9vam0wm9e7dWzt27ND69eu1dOlSDRo0KNv9m80m+fl5O3wcBVGxYp75HUKeK4zHDAAAACD/UQAHAAAAAKCQMwxDH3zwgWbNmiUXFxeNGzdOHTt2tK03mUwqVapUhtu3atVK69ev119//eVQHBaLoUuXrtotc3ExO0Uh9dKlBKWmWm7bzlmOV8r8MQMAAADA7RQr5pnpUaYogAMAAAAAUIglJibqtdde09q1a+Xh4aEPP/xQbdq0ydI+AgICJEkJCQkOx5OS4pwF09RUi9MeW0YK4zEDAAAAyH8UwAEAAAAAKKTi4+PVt29f/fnnn/L399dnn32munXrpmm3ePFi/fbbb+rUqVO6xfGoqChJcnj+byC3mM0mmc2mXNu/xWLIYjFybf8AAAAAMo8COAAAAAAAhVBycrL69++vP//8UxUrVtTs2bMVGBiYbtszZ85ozZo1SkhISFMANwxDK1eulCQ1bdo01+MGsur63PKeMptdcq0PiyVVsbEJFMEBAACAAoACOAAAAAAAhdDUqVO1c+dOBQQEaP78+SpdunSGbR977DHNnDlTv/zyi7755ht17dpVkmSxWDRlyhTt3btXVapUUfv27fMqfCDTrj/97aLjq2cqIeZUju/f07+sKnfqJ7PZRAEcAAAAKAAogAMAAAAAUMhcvHhRc+fOlST5+/tr4sSJGbYdNmyYAgMDNXr0aI0YMUIjR47UV199pUqVKik8PFyRkZEqWbKkpkyZIjc3t7w6BCDLEmJOKeHMifwOAwAAAEAuowAOAAAAAEAhs2fPHiUkJEiSwsPDFR4enmHbl156SSVLltQTTzyhypUra+bMmdq1a5eOHTumUqVK6dlnn9WAAQPk7++fV+EDAAAAAJAhCuAAAAAAABQyzZs318GDB7O8XWhoqD777LNciAgAAAAAgJxhzu8AAAAAAAAAAAAAAADICRTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwCq75HUBGLBaLlixZom+//VaHDx9WcnKyypUrpzZt2uj5559XsWLF7NqfP39e06ZN0+bNm3XmzBkFBASoffv2GjhwoLy9vfPpKAAAAAAAAAAAAAAAeaVAPgFusVgUFhamUaNGKTw8XDVr1tR9992nS5cuadasWerSpYvOnz9va3/27Fl17dpVX3/9tTw8PNSyZUtZLBbNmjVL3bp1U3x8fD4eDQAAAAAAAAAAAAAgLxTIAviyZcu0bt06VapUSatXr9b8+fP1+eefa926dWrVqpUiIyM1duxYW/uxY8cqOjpa/fv316pVqzR58mT9+OOPeuihh3Tw4EFNnTo1H48GAAAAAAAAAAAAAJAXCmwBXJKGDRumwMBA23IfHx+NHz9eJpNJ69evV2Jiok6cOKF169apbNmyCgsLs7V1d3fXmDFj5O3trcWLFysxMTHPjwMAAAAAAAAAAAAAkHcKZAHc19dXd999t+rVq5dmXYkSJVS8eHElJycrNjZWmzZtksViUYsWLeTm5mbXtmjRomrSpImuXr2qbdu25VH0AAAAAAAAAAAAAID8UCAL4NOnT9eaNWvk5+eXZl1UVJTi4uLk5uamEiVK6NChQ5Kk4ODgdPdVpUoVSbK1AwAAAAAAAAAAAAA4pwJZAL+VTz75RJLUsmVLFSlSROfOnZMkBQQEpNveuvz8+fN5Eh8AAAAAAAAAAAAAIH+45ncAWTF//nytXr1anp6eGjJkiCTp6tWrkiQPD490t7Eut7ZzhKvrHXe/AJAlLi7Oc44707EAWeVM578zHQsAAAAAAAAAIPfdMQXwefPmafz48TKZTBo3bpyCgoIkSS4uLpIkk8mU7naGYdj9N7vMZpP8/Lwd2geAvFOsmGd+hwAgB/BZBgAAAAAAAABkRYEvgBuGoQ8++ECzZs2Si4uLxo0bp44dO9rWe3l5SZKuXbuW7vbW5Z6ejv2AbrEYunTJ8afIgYLMxcXsNMWmS5cSlJpqye8wgHzBZxkAgLxVrJgno5YAAAAAAFBAFOgCeGJiol577TWtXbtWHh4e+vDDD9WmTRu7NqVKlZIk21zgN7vdHOFZkZLCD/DAnSI11cJnFnACfJYBAAAAAAAAAFlRYAvg8fHx6tu3r/7880/5+/vrs88+U926ddO0Cw4OliQdPXo03f0cPnxYkhQSEpJ7wQIAAAAAAAAAAAAA8l2BHKMtOTlZ/fv3159//qmKFStq8eLF6Ra/JalZs2aSpA0bNig1NdVu3eXLl7Vt2zZ5eXmpQYMGuR43AAAAAAAAAAAAACD/FMgC+NSpU7Vz504FBARo/vz5CgwMzLBt+fLl1apVK508eVITJ06UYRiSpKSkJI0aNUpXrlzR008/LR8fn7wKHwAAAAAAAAAAAACQDwrcEOgXL17U3LlzJUn+/v6aOHFihm2HDRumkiVLauTIkdq/f7/mzJmjjRs3qmrVqtq3b5/++ecf1axZU4MGDcqr8AEAAAAAAAAAAAAA+aTAFcD37NmjhIQESVJ4eLjCw8MzbPvSSy+pZMmSKl++vJYuXaopU6bol19+0YYNG1SuXDm98MIL6tevn7y9vfMqfAAAAAAAAAAAAABAPilwBfDmzZvr4MGDWd6udOnSGjt2bC5EBAAAAAAAAAAAAAC4ExTIOcABAAAAAAAAAAAAAMiqAvcEOAAAAAAAAAoXs9kks9mUK/t2ceH5DwAAAKAwoQAOAAAAAACAfGM2m+Tr60WhGgAAAECOoAAOAAAAAACAfGM2m+TiYtanC39V9NmLOb7/uiHl9FT7ejm+XwAAAAAFEwVwAAAAAAAA5LvosxcVER2b4/stF1Asx/cJAAAAoOBibCkAAAAAAAAAAAAAgFNwqAC+YsUK7dy587btfvrpJ02ePNmRrgAAAAAAKJTIvQEAAAAAyDyHCuDDhg3TN998c9t2K1eu1Jw5cxzpCgAAAACAQoncGwAAAACAzMvSHOArVqxQSkqK3bLIyEgtXbo0w23i4+P122+/yc3NLXsRAgAAAABQiJB7AwAAAACQfVkqgO/fv1/z58+XyWSSJJlMJu3Zs0d79uy55XaGYeixxx7LfpQAAAAAABQS5N4AAAAAAGRflgrgYWFhio+Pt/19+fLlqlChgho0aJDhNkWKFFGlSpXUrVu37EcJAAAAAEAhQe4NAAAAAED2ZakAXrRoUU2YMMH29+XLl6tevXp2ywAAAAAAQPaRewMAAAAAkH1ZKoDfLDw8PKfiAAAAAAAA6SD3BgAAAAAg8xwqgN8oJiZGCQkJMgwjwzaBgYE51R0AAAAAAIUOuTcAAAAAALfmcAH8yy+/1MyZM3XhwoVbtjOZTPr7778d7Q4AAAAAgEKH3BsAAAAAgMxxqAD+7bff6t1335Ukubu7y8/PTy4uLjkSGAAAAAAAIPcGAAAAACArHCqAf/XVVzKZTBoxYoS6du0qNze3nIoLAAAAAACI3BsAAAAAgKxwqAB+9OhR1atXTz169MipeAAAAAAAwA3IvQEAAAAAyDyHCuCenp7y8/PLqVgAAAAAAMBNcjP3tlgsWrJkib799lsdPnxYycnJKleunNq0aaPnn39exYoVs2t//vx5TZs2TZs3b9aZM2cUEBCg9u3ba+DAgfL29s6VGAEAAAAAyAqzIxs3atRIe/fuVUJCQk7FAwAAAAAAbpBbubfFYlFYWJhGjRql8PBw1axZU/fdd58uXbqkWbNmqUuXLjp//ryt/dmzZ9W1a1d9/fXX8vDwUMuWLWWxWDRr1ix169ZN8fHxORofAAAAAADZ4VABfMiQIUpISNCbb76pixcv5lRMAAAAAADg/+VW7r1s2TKtW7dOlSpV0urVqzV//nx9/vnnWrdunVq1aqXIyEiNHTvW1n7s2LGKjo5W//79tWrVKk2ePFk//vijHnroIR08eFBTp07NsdgAAAAAAMguh4ZAX7RokerUqaMffvjBljQXK1ZMJpMpTVuTyaSvvvrKke4AAAAAACh0civ3XrZsmSRp2LBhCgwMtC338fHR+PHjdd9992n9+vVKTEzU2bNntW7dOpUtW1ZhYWG2tu7u7hozZow2bdqkxYsX6+WXX5aHh4eDRwwAAAAAQPY5VACfO3eu7f9TUlJ05MiRDNuml5gDAAAAAIBby63c29fXV3fffbfq1auXZl2JEiVUvHhxxcXFKTY2Vps2bZLFYlGLFi3k5uZm17Zo0aJq0qSJfvrpJ23btk0tWrTIdAwAAAAAAOQ0hwrg8+bNy6k4AAAAAABAOnIr954+fXqG66KiohQXFyc3NzeVKFFChw4dkiQFBwen275KlSr66aefdOjQIQrgAAAAAIB85VABvFGjRjkVBwAAAAAASEd+5N6ffPKJJKlly5YqUqSIzp07J0kKCAhIt711+fnz5/MkPgAAAAAAMuJQAfxGycnJOnDggE6dOqWSJUuqQYMG+ueff1SuXLmc6gIAAAAAgEItL3Lv+fPna/Xq1fL09NSQIUMkSVevXpWkDOf3ti63tnOEq6vZ7u8uLuYMWt5ZMnscznK8UuE7Zmc5DgAAAOBO53ABPCUlRZ9++qm+/vprXb58WZLUuXNnNWjQQG+88YauXLmijz/+WBUrVnQ4WAAAAAAACqO8yr3nzZun8ePHy2Qyady4cQoKCpIkubi4SMp4jnHDMOz+m11ms0l+ft4O7aOgKlbMM79DyHOF7ZgL2/ECAAAABZVDBfCUlBQ9//zz2rp1q1xdXVWrVi3t27fPtv7KlSv6+++/1aNHD61YsUIlS5Z0OGAAAAAAAAqTvMi9DcPQBx98oFmzZsnFxUXjxo1Tx44dbeu9vLwkSdeuXUt3e+tyT0/HCoAWi6FLl+yfIndxMTtFYfHSpQSlplpu285ZjlcqfMec2eMFAAAAkHXFinlmetQlhwrgX3/9tX799Vc1bdpU48ePV6lSpVStWjXb+gULFmj06NFasWKFZs+erTfeeMOR7gAAAAAAKHRyO/dOTEzUa6+9prVr18rDw0Mffvih2rRpY9emVKlSkmSbC/xmt5sjPCtSUpyzgJiaanHaY8tIYTvmwna8AAAAQEHl0OREy5cvl6+vryZNmmRLhm/k4eGhMWPGqFSpUtq0aZMjXQEAAAAAUCjlZu4dHx+v3r17a+3atfL399e8efPSFL8lKTg4WJJ09OjRdPdz+PBhSVJISEiW+gcAAAAAIKc5VACPiIhQw4YN5e2d8fxcbm5uqlOnjv755x9HugIAAAAAoFDKrdw7OTlZ/fv3159//qmKFStq8eLFqlu3brptmzVrJknasGGDUlNT7dZdvnxZ27Ztk5eXlxo0aJDp/gEAAAAAyA0OFcBdXV116dKl27aLi4uTq6tDo60DAAAAAFAo5VbuPXXqVO3cuVMBAQGaP3++AgMDM2xbvnx5tWrVSidPntTEiRNlGIYkKSkpSaNGjdKVK1f09NNPy8fHJ9P9AwAAAACQGxyqSlevXl379u1TdHS0ypcvn26bqKgo7du3T3Xq1HGkKwAAAAAACqXcyL0vXryouXPnSpL8/f01ceLEDNsOGzZMJUuW1MiRI7V//37NmTNHGzduVNWqVbVv3z79888/qlmzpgYNGpT1gwMAAAAAIIc59AR4t27dlJCQoIEDB+rvv/9Os/7gwYN66aWXlJSUpC5dujjSFQAAAAAAhVJu5N579uxRQkKCJCk8PFyrVq3K8M+VK1ckXX8KfOnSpXryySd1+fJlbdiwQe7u7nrhhRc0b968Ww7RDgAAAABAXnHoCfAOHTpo69atWrp0qZ544gkVLVpUJpNJmzdvVsuWLXXmzBkZhqGOHTvqkUceyamYAQAAAAAoNHIj927evLkOHjyY5VhKly6tsWPHZnk7AAAAAADyisMTc48dO1b16tXT7Nmzdfz4cUlSbGysJKlcuXLq1auXevbs6Wg3AAAAAAAUWuTeAAAAAABkjsMFcEnq0qWLunTponPnzunUqVOyWCwKCAjIcG4yAAAAAACQNeTeAAAAAADcnkNzgFvFxsZq+/btCggIUJ06dVSvXj0lJCTo66+/1rlz53KiCwAAAAAACjVybwAAAAAAbs/hAvg333yj5s2b691337VbvmfPHo0ZM0bt2rXT999/72g3AAAAAAAUWuTeAAAAAABkjkMF8F9//VWjRo2Sq6urmjRpYreuQYMG6tOnjwzD0NChQ/X77787FCgAAAAAAIURuTcAAAAAAJnnUAF81qxZcnV11bx58/T666/bratUqZJee+01zZs3TyaTSTNnznQoUAAAAAAACiNybwAAAAAAMs+hAvihQ4fUuHFj1a5dO8M2tWvXVoMGDbR7925HugIAAAAAoFAi9wYAAAAAIPMcKoAnJCTI09Pztu18fX2VkpLiSFcAAAAAABRK5N4AAAAAAGSeQwXwSpUqaceOHYqPj8+wzbVr17Rz505VqFDBka4AAAAAACiUyL0BAAAAAMg8hwrgDz/8sC5evKiwsDCdP38+zfrY2Fi98sorunDhgjp37uxIVwAAAAAAFErk3gAAAAAAZJ6rIxv36NFD33//vbZu3aqWLVuqVq1aKlu2rCTp9OnT2r9/v5KSklSnTh317t07J+IFAAAAAKBQIfcGAAAAACDzHCqAu7m5ac6cOfr444/17bffavfu3dq9e7dtfZEiRdStWze99tprcnd3dzRWAAAAAAAKHXJvAAAAAAAyz6ECuCR5e3trxIgRev311/XXX3/p3LlzSk1NVUBAgGrWrCkvL6+ciBMAAAAAgEKL3BsAAAAAgMxxqADes2dPVapUSe+8847c3d0VGhqaU3EBAAAAAACRewMAAAAAkBUOFcD37t0rs9mcU7EAAAAAAICbkHsDAAAAAJB5DmXQ3t7eMgwjp2IBAAAAAAA3IfcGAAAAACDzHCqADxgwQNu3b9cXX3yhpKSknIoJAAAAAAD8P3JvAAAAAAAyz6Eh0KOiolSxYkVNnDhRH330kSpWrKhixYqlOzSbyWTSV1995Uh3AAAAAAAUOuTeAAAAAABknkMF8Llz59r+PyUlRUePHs2wrclkcqQrAAAAAAAKJXJvAAAAAAAyz6EC+Lx583IqDgAAAAAAkA5ybwAAAAAAMs+hAnijRo1yKg4AAAAAAJAOcm8AAAAAADLPoQL4jZKTk3XgwAGdOnVKJUuWVIMGDfTPP/+oXLlyOdUFAAAAAACFGrk3AAAAAAC35nABPCUlRZ9++qm+/vprXb58WZLUuXNnNWjQQG+88YauXLmijz/+WBUrVnQ4WAAAAAAACiNybwAAAAAAMsfsyMYpKSl6/vnnNX36dCUkJKhWrVoyDMO2/sqVK/r777/Vo0cPnT9/3uFgAQAAAAAobMi9AQAAAADIPIcK4F9//bV+/fVX3X///frpp5+0ZMkSu/ULFizQo48+qvPnz2v27NkOBQoAAAAAQGFE7g0AAAAAQOY5VABfvny5fH19NWnSJJUqVSrNeg8PD40ZM0alSpXSpk2bHOkKAAAAAIBCidwbAAAAAIDMc6gAHhERoYYNG8rb2zvDNm5ubqpTp47++ecfR7rSihUrFBISoq1bt6a7vnHjxgoJCcnwz7Vr1xzqHwAAAP/H3n2HR1Xmfx//zCSEJEDoHSy0RFHpVREFpCklAoKgsSBFmuC6FBdEFgRBhFVBEPmBFBdESUIVQld6qFGaCkoJmNBLIIQk8/zBk6wxAdJmzsw579d17bV6zp2Z7+2Z9jnfUwAARnBl9gYAAAAAwNN55+iPvb115cqVe467dOmSvL2z/1RRUVEaPXr0HddHR0fr0qVLKlmypOrWrZvhGLs9R71+AAAAAAAM4arsDQAAAACAGeQoGT/00EP66aefFB0drbJly2Y45uTJk/rpp5/02GOPZes51q9fryFDhujatWt3HHPo0CFJUsuWLfXuu+9m63kAAAAAAHBHrsjeAAAAAACYRY5Oi37xxRd148YN9enTRwcPHky3/siRI+rfv78SEhLUsWPHLD12TEyMhg0bpj59+ujWrVsqVqzYHcceOHBAklS1atWsTQAAAAAAADfnzOwNAAAAAIDZ5OgM8NatW2vr1q367rvv1KFDBxUoUEA2m00//vijnnrqKcXExMjhcOjZZ59Vu3btsvTYkydPVlhYmB555BGNHTtWY8aM0blz5zIcm3IG+COPPJKT6QAAAAAA4Hacmb0BAAAAADCbHN8cbMyYMapevbr+7//+T7///rsk6eLFi5KkMmXK6JVXXlFISEiWH7dChQoaP3682rZte8/7dx84cEC+vr76+eefNXz4cP3666+y2WyqWbOm+vTpo2rVqmV9YgAAAAAAuAlnZW8AAAAAAMwmxw1wSerYsaM6duyos2fP6syZM0pOTlbx4sXveG+yzOjZs2emxp0/f16xsbGSpMGDB6t69eqqV6+efvnlF23cuFGbN2/WRx99pNatW2e7FgAAAAAAjOaM7A0AAAAAgNlkuQGelJSk//73v4qIiNC5c+dUpkwZtWnTRu3bt1fx4sVVvHhxZ9R5Ryn3/y5cuLCmTZumGjVqSJIcDofmzJmjcePGadiwYapZs6ZKlSqVo+fy9s7RLdOzxWazyW63Oe3xk5MdcjgcTnt8eBYvL9e/xp3FTHMBsspMr38zzQUAgKxwt+wNAAAAAICnyFIDPCEhQd27d9euXbtSm6a///67tm7dqg0bNuiTTz5xSpF306hRI/34449yOBwqWbJk6nKbzaZXX31VkZGRWrt2rb777jv169cv289jt9tUuHC+3Cg5SxzJybLd4xLw7vz4gFECAvyMLgFALuC9DACwInfM3gAAAAAAeIosNcAXLlyoyMhIlSxZUj169FD58uX1yy+/aObMmYqIiNCSJUvUrl07Z9WaIZvNphIlStxx/dNPP621a9fq559/ztHzJCc7dOXK9Rw9RlZ5edkVEOCn35d/qRvnz+T64/sVLa0Hn+uhK1duKCkpOdcfH54n5TVnBryuYWW8lwEAcK2AAL9cvWqJO2ZvAAAAAAA8RZYa4KtWrZKvr68WLFigMmXKSJIaN26sRo0aKTg4WCtWrHC7EJ5yWbgbN27k+LESE43ZAX/j/BndiDnhtMdPSko2bG6As/C6BsyB9zIAwIo8MXsDAAAAAOAusnSI+tGjR1W7du3UAJ4iKChIVatW1eHDh3O1uMz45ptvNHDgQK1duzbD9SdPnpSkHN//GwAAAAAAV3DH7A0AAAAAgKfIUgM8Li5OBQsWzHBduXLldOnSpdyoKUtiYmL0/fff69tvv023zuFwaMmSJZKkJ554wtWlAQAAAACQZe6YvQEAAAAA8BRZaoAnJibKy8srw3V58uTRrVu3cqWorAgODpaPj482btyoRYsWpS5PTk7Wp59+qqioKFWqVEktW7Z0eW0AAAAAAGSVO2ZvAAAAAAA8RZbuAe6Oypcvr/fff1/Dhw/XiBEjNH/+fD3wwAM6fPiwjh8/rmLFiumzzz5Tnjx5jC4VAAAAAAAAAAAAAOBEWToD3F116NBBX3/9tZo0aaKYmBitX79eiYmJevnll7V06VJVqFDB6BIBAAAAAAAAAAAAAE7mMWeAz5s3767ra9asqWnTprmoGgAAAAAAAAAAAACAu8lyA3zt2rVq2rRpuuUXL16UpAzXSZLNZtPatWuz+nQAAAAAAFgO2RsAAAAAgOzJcgP8+vXrun79+h3XR0dHZ7jcZrNl9akAAAAAALAksjcAAAAAANmTpQb43LlznVUHAAAAAAAQ2RsAAAAAgJzIUgO8bt26zqoDAAAAAACI7A0AAAAAQE7YjS4AAAAAAAAAAAAAAIDcQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GFwAAAAAAANxDeHi4hgwZotmzZ6thw4bp1terV0+XLl26499HRUUpb968TqwQAAAAAIC7owEOAAAAAAAUFRWl0aNH33F9dHS0Ll26pJIlS6pu3boZjrHbudAcAAAAAMBYNMABAAAAALC49evXa8iQIbp27dodxxw6dEiS1LJlS7377ruuKg0AAAAAgCyhAQ4AAAAAgEXFxMToP//5j8LCwuTr66tixYrp3LlzGY49cOCAJKlq1aquLBEAAAAAgCzh2mQAAAAAAFjU5MmTFRoaqqpVq+qbb75RhQoV7jg25QzwRx55xFXlAQAAAACQZZwBDgAAAACARVWoUEHjx49X27Zt73n/7gMHDsjX11c///yzhg8frl9//VU2m001a9ZUnz59VK1aNRdVDQAAAADAnXEGOAAAAAAAFtWzZ0+1b9/+ns3v8+fPKzY2VvHx8Ro8eLCSk5NVr149FSpUSBs3blTXrl21cuVKF1UNAAAAAMCdcQY4AAAAAAC4q5T7fxcuXFjTpk1TjRo1JEkOh0Nz5szRuHHjNGzYMNWsWVOlSpXK0XN5e6dtxnt5mePY/czOwyzzlaw3Z7PMAwAAAPB0NMABAAAAAMBdNWrUSD/++KMcDodKliyZutxms+nVV19VZGSk1q5dq++++079+vXL9vPY7TYVLpwvN0p2OwEBfkaX4HJWm7PV5gsAAAC4KxrgAAAAAADgrmw2m0qUKHHH9U8//bTWrl2rn3/+OUfPk5zs0JUr19Ms8/Kym6KxeOXKDSUlJd9znFnmK1lvzpmdLwAAAICsCwjwy/RVl2iAAwAAAACAHClevLgk6caNGzl+rMREczYQk5KSTTu3O7HanK02XwAAAMBdcXMiAAAAAABwV998840GDhyotWvXZrj+5MmTkpTj+38DAAAAAJBTnAEOAAAAAADuKiYmRt9//71u3LihZs2apVnncDi0ZMkSSdITTzxhRHkAAAAAAKTiDHAAAAAAAHBXwcHB8vHx0caNG7Vo0aLU5cnJyfr0008VFRWlSpUqqWXLlgZWCQAAAAAAZ4ADAAAAAIB7KF++vN5//30NHz5cI0aM0Pz58/XAAw/o8OHDOn78uIoVK6bPPvtMefLkMbpUAAAAAIDFcQY4AAAAAAC4pw4dOujrr79WkyZNFBMTo/Xr1ysxMVEvv/yyli5dqgoVKhhdIgAAAAAAnAEOAAAAAABumzdv3l3X16xZU9OmTXNRNQAAAAAAZB1ngAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLyNLgAAAAAAXMFut8lutzn1OZKTHUpOdjj1OQAAAAAAAHBnNMBzyJk70by8OEEfAAAAyA12u02FC/vJbvdy6vMkJyfp4sUbNMEBAAAAAAAM4jEN8PDwcA0ZMkSzZ89Ww4YN060/d+6cPv/8c/3444+KiYlR8eLF1bJlS/Xp00f58uVzSk12u02FCvnTqAYAAADc3O0DV730+/IvdeP8Gac8h1/R0nrwuR6y2200wAEAAAAAAAziEQ3wqKgojR49+o7rY2Nj1aVLF0VHR6tKlSp66qmn9NNPP2nmzJn68ccf9d///lf58+fP9brsdpu8vOyaumCLomMv5/rjVwsso84tq+f64wIAAABWdeP8Gd2IOWF0GQAAAAAAAHASt2+Ar1+/XkOGDNG1a9fuOGbMmDGKjo5Wz5499Y9//EOSlJCQoMGDB+v777/XlClTNHToUKfVGB17WX9EX8z1xy1TPCDXHxMAAAAAAAAAAAAAzMptr90dExOjYcOGqU+fPrp165aKFSuW4bgTJ05ozZo1Kl26tAYMGJC63MfHR6NHj1a+fPn0zTffKD4+3lWlAwAAAAAAAAAAAAAM4LYN8MmTJys0NFRVq1bVN998owoVKmQ47ocfflBycrIaN26sPHnypFlXoEAB1a9fX9evX9eOHTtcUTYAAAAAAAAAAAAAwCBu2wCvUKGCxo8fr2+//VaBgYF3HPfLL79IkqpUqZLh+kqVKqUZBwAAAMA92e02eXvbnfI/Ly+3jT4AAAAAAADIRW57D/CePXtmatzZs2clScWLF89wfcryc+fO5U5hAAAAAHKd3W5ToUL+NKoBAAAAAACQI27bAM+s69evS5J8fX0zXJ+yPGVcTnh7p90ZZ5adc2aZB3LOTK8FM80FyCozvf7NNBcAd+fldfss7akLtig69nKuP361wDLq3LJ6rj9uRvjsAgAAAAAAMI7HN8C9vLwkSTabLcP1Docjzf9nl91uU+HC+XL0GO4qIMDP6BKAXMfrGjAH3suA9UTHXtYf0Rdz/XHLFA/I9ce8Ez67AAAAAAAAjOPxDXB/f39J0s2bNzNcn7Lczy9nO6GSkx26ciXtWeReXnZT7Ny6cuWGkpKSjS4DbsAsr2mJ1zWsjfcyAE/EZxc8WUCAH2f+AwAAAADgJjy+AV6iRAlJ/7sX+N/d6x7hWZGYaM6dWElJyaadG6yL1zVgDryXAXgiPrsAAAAAAACM4/GHqFepUkWSdPTo0QzX//rrr5KkwMBAl9UEAAAAAAAAAAAAAHA9j2+AN2rUSJK0YcMGJSUlpVl39epV7dixQ/7+/qpVq5YR5QEAAAAAAAAAAAAAXMTjG+Bly5bV008/rVOnTumjjz6Sw+GQJCUkJOi9995TXFycunTpovz58xtcKQAAAAAAAAAAAADAmTz+HuCSNGLECB04cECzZ8/Wpk2bVLlyZf300086ffq0qlatqn79+hldIgAAAAAAAAAAAADAyTz+DHDp9lng3333nTp16qSrV69qw4YN8vHxUe/evTV37lzly5fP6BIBAAAAAAAAAAAAAE7mMWeAz5s3767rS5YsqTFjxrioGgAAAAAAAAAAAACAuzHFGeAAAAAAAAAAAAAAANAABwAAAAAAkqTw8HAFBgZq69atGa4/d+6c/v3vf+uZZ57RY489pqZNm+qjjz5SXFyciysFAAAAACBjNMABAAAAAICioqI0evToO66PjY3VCy+8oK+//lq+vr566qmnlJycrJkzZ+rFF1/UtWvXXFgtAAAAAAAZowEOAAAAAIDFrV+/Xt27d79rE3vMmDGKjo5Wz549tWzZMn366adavXq1WrVqpSNHjmjKlCkurBgAAAAAgIzRAAcAAAAAwKJiYmI0bNgw9enTR7du3VKxYsUyHHfixAmtWbNGpUuX1oABA1KX+/j4aPTo0cqXL5+++eYbxcfHu6p0AAAAAAAyRAMcAAAAAACLmjx5skJDQ1W1alV98803qlChQobjfvjhByUnJ6tx48bKkydPmnUFChRQ/fr1df36de3YscMVZQMAAAAAcEc0wAEAAAAAsKgKFSpo/Pjx+vbbbxUYGHjHcb/88oskqUqVKhmur1SpUppxAAAAAAAYxdvoAgAAAAAAgDF69uyZqXFnz56VJBUvXjzD9SnLz507lzuFAQAAAACQTTTAAQAAAADAXV2/fl2S5Ovrm+H6lOUp43LC2zvtxeq8vMxx8brMzsMs85WsN2ezzAMAAADwdDTAAQAAAADAXXl5eUmSbDZbhusdDkea/88uu92mwoXz5egx3FVAgJ/RJbic1eZstfkCAAAA7ooGOAAAAAAAuCt/f39J0s2bNzNcn7Lczy9nDcDkZIeuXEl7FrmXl90UjcUrV24oKSn5nuPMMl/JenPO7HwBAAAAZF1AgF+mr7pEAxwAAAAAANxViRIlJP3vXuB/d697hGdFYqI5G4hJScmmndudWG3OVpsvAAAA4K64OREAAAAAALirKlWqSJKOHj2a4fpff/1VkhQYGOiymgAAAAAAyAgNcAAAAAAAcFeNGjWSJG3YsEFJSUlp1l29elU7duyQv7+/atWqZUR5AAAAAACkogEOAAAAAADuqmzZsnr66ad16tQpffTRR3I4HJKkhIQEvffee4qLi1OXLl2UP39+gysFAAAAAFgd9wAHAAAAAAD3NGLECB04cECzZ8/Wpk2bVLlyZf300086ffq0qlatqn79+hldIgAAAAAAnAEOAAAAAADurWzZsvruu+/UqVMnXb16VRs2bJCPj4969+6tuXPnKl++fEaXCOAv7HabvL3tTvuf3W4zeooAAABAhjgDHAAAAAAASJLmzZt31/UlS5bUmDFjXFQNgOyy220qXNhPdruX054jOTlJFy/eUHKyw2nPAQAAAGQHDXAAAAAAAADAROx2m+x2L/2+/EvdOH8m1x/fr2hpPfhcD9ntNhrgAAAAcDs0wAEAAAAAAAATunH+jG7EnDC6DAAAAMClaIAjS24fQey8ezwlJzs4chgAAAAAAAAAAABAttAAR6bZ7TYVKuQvLy+7054jKSlZly5dpwkOAAAAAAAAAAAAIMtogCPT7HabvLzsmrpgi6JjL+f645ctUVB9X3yc+0cBAAAAAAAAAAAAyBYa4Miy6NjL+iP6otFlAAAAAAAAAAAAAEAazruWNQAAAAAAAAAAAAAALkQDHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKbgbXQBAAAAAAAAgJXY7TbZ7TanPb6XF+e8AAAAwLpogAMAAAAAAAAuYrfbVKiQP01qAAAAwElogAMAAAAAAAAuYrfb5OVl19QFWxQde9kpz1EtsIw6t6zulMcGAAAA3B0NcAAAAAAAAMDFomMv64/oi0557DLFA5zyuAAAAIAn4FpLAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABT8Da6AODvvLyce1xGcrJDyckOpz4HAAAAAAAAAAAAANejAQ63UbCArxzJyQoI8HPq8yQnJ+nixRs0wQEAAAAAAAAAAACToQEOt5HP10c2u12/L/9SN86fccpz+BUtrQef6yG73UYDHAAAAAAAAAAAADAZGuBwOzfOn9GNmBNGlwEAAAAAAAAAAADAwzj3ZssAAAAAAAAAAAAAALgIDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYgrfRBeSm9evX680337zj+tatW2vy5MkurAgAAAAAAAAAAAAA4CqmaoAfPHhQklSnTh2VKlUq3foaNWq4uiQAAAAAAAAAAAAAgIuYsgE+fPhwBQUFGVwNAAAAAAAAAAAAAMCVTHUP8IMHDypv3ryqVKmS0aUAAAAAAAAAAAAAAFzMNA3wixcv6syZMwoMDJS3t6lObAcAAAAAAAAAAAAAZIJpOsUplz8vXbq0PvroI61bt06nT59WsWLF1KJFC/Xu3VsFCxY0uEoAAAAAAAAAAAAAgLOY5gzwAwcOSJJWr16tBQsW6IEHHlDNmjV1+fJlzZo1Sy+88ILOnj1rcJUAAAAAAAAAAAAAAGcxzRnghw4dkiQ99dRTmjhxogoUKCBJunDhggYNGqTt27drxIgRmj59erafw9s77fECXl7mOH4gs/Mwy3wlc80lN5npv4uZ5gJklZle/2aaC4C7M9P73UxzAQAAAAAA8DSmaYCPHz9eb731lkqVKiVfX9/U5UWKFNGECRPUsmVLbdiwQadOnVK5cuWy/Ph2u02FC+fLzZLdRkCAn9EluJwV52w1bGPAHHgvA/BEfHYBAAAAAAAYxzQNcB8fHz3wwAMZritZsqQefvhh7dq1SwcOHMhWAzw52aErV66nWeblZTfFzq0rV24oKSn5nuPMMl8p83O2GrYxYA68lwF4Ij674MkCAvwsdeb/+vXr9eabb95xfevWrTV58mQXVgQAAAAAwP+YpgF+L8WKFZMk3bhxI9uPkZhozp1YSUnJpp3bnVhxzlbDNgbMgfcyAE/EZxfM7uDBg5KkOnXqqFSpUunW16hRw9UlAQAAAACQyhQN8ISEBI0aNUoXL17UxIkT5e/vn27MyZMnJSnDcA4AAAAAADInpQE+fPhwBQUFGVwNAAAAAABpmeIabT4+Ptq6davWrVunH374Id36w4cP6/DhwypQoICqV6/u+gIBAAAAADCJgwcPKm/evKpUqZLRpQAAAAAAkI4pGuCS1LlzZ0nShx9+qBMnTqQuP3funN59910lJSWpe/fu8vX1NapEAAAAAAA82sWLF3XmzBkFBgbK29sUF5UDAAAAAJiMadLq66+/rsjISG3evFnPPfecateuLR8fH+3YsUPXr19XixYt1LNnT6PLBAAAAADAY6Vc/rx06dL66KOPtG7dOp0+fVrFihVTixYt1Lt3bxUsWNDgKgEAAAAAVmaaBriPj49mzJihr7/+WmFhYdq9e7fsdrsqV66sTp06qWPHjrLZbEaXCQAAAACAxzpw4IAkafXq1cqXL5/q1q2rUqVK6aefftKsWbO0fv16zZ8/X8WLFze4UgAAAACAVZmmAS5JXl5eCgkJUUhIiNGlAAAAAABgOocOHZIkPfXUU5o4caIKFCggSbpw4YIGDRqk7du3a8SIEZo+fXq2n8PbO+3d2ry8zHH3tszOwyzzlaw3Z6vNVzLXXAAAAGAepmqAAwAAAAAA5xk/frzeeustlSpVSr6+vqnLixQpogkTJqhly5basGGDTp06pXLlymX58e12mwoXzpebJbuNgAA/o0twOavN2Wrzlaw5ZwAAALg/GuAAAAAAACBTfHx89MADD2S4rmTJknr44Ye1a9cuHThwIFsN8ORkh65cuZ5mmZeX3RRNtitXbigpKfme48wyX8l6c7bafKXMzxkAAADIqYAAv0xfgYgGOAAAAAAAyBXFihWTJN24cSPbj5GYaM5mWlJSsmnndidWm7PV5itZc84AAABwf9yoBwAAAAAA3FNCQoL+9a9/qU+fPrp+/XqGY06ePClJKlWqlCtLAwAAAAAgFQ1wAAAAAABwTz4+Ptq6davWrVunH374Id36w4cP6/DhwypQoICqV6/u+gIBAAAAABANcAAAAAAAkEmdO3eWJH344Yc6ceJE6vJz587p3XffVVJSkrp37y5fX1+jSgQAAAAAWBz3AAcAAAAAAJny+uuvKzIyUps3b9Zzzz2n2rVry8fHRzt27ND169fVokUL9ezZ0+gyAQAAAAAWRgMcAAAAAABkio+Pj2bMmKGvv/5aYWFh2r17t+x2uypXrqxOnTqpY8eOstlsRpcJAAAAALAwGuAAAAAAACDTvLy8FBISopCQEKNLAQAAAAAgHe4BDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU/A2ugDA6ux2m+x2m9MePznZoeRkh9MeHwAAAAAAAAAAAHAXNMABA9ntNhUu7Ce73ctpz5GcnKSLF2/QBAcAAAAAAAAAAIDp0QAHDHT77G8v/b78S904fybXH9+vaGk9+FwP2e02GuAAAAAAAAAAAAAwPRrggBu4cf6MbsScMLoMAAAAAAAAAAAAwKPZjS4AAAAAAAAAAAAAAIDcQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GFwC4O7vdJrvd5pTH9vLiGBQAAAAAAAAAAAAgt9AAB+7CbrepUCF/GtUAAAAAAAAAAACAB6ABDtyF3W6Tl5ddUxdsUXTs5Vx//GqBZdS5ZfVcf1wAAAAAAAAAAADAimiAA5kQHXtZf0RfzPXHLVM8INcfEwAAAAAAAAAAALAqrusMAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBW+jCwAAAIB7stttstttTnv85GSHkpMdTnt8AAAAAAAAANZDAxwAgFxAoxCu5uzXnM1mU0BAXtntXk57juTkJF28eIPXNgAAAAAAAIBcQwMcAIAcstttKlzYj0YhXMZut6lQIX95eTn/bja/L/9SN86fyfXH9StaWg8+10N2u43XNQAAAAAAAIBcQwMcAIAcun0mrheNQriM3W6Tl5ddUxdsUXTsZac8R7XAMurcsrpunD+jGzEnnPIcAAAAAAAAAJDbaIADAJBLaBTC1aJjL+uP6ItOeewyxQOc8rgAAAAAgMxx9q2vJG65BgAwJxrgAAAAAAAAAABkkTMb1DabTQEBeZ16uzWJW64BAMyJBjgAAAAAwDScfaYUZ0kBAADp9m+OQoX85eVld+rzOOt2axK3XAMAmBcNcAAAAACAKdjtNhUu7OfUM6U4SwoAAEi3f3d4edk1dcEWRcdezvXHrxZYRp1bVud2awAAZAMNcAAAAACAKdw++9vLaWdKcZYUAAD4u+jYy/oj+mKuP26Z4gG5/pgAAFgFDXAAAAAAgEs4+/LkKZcg5UwpAAAAAACsiwY4AAAAAMDpXHWfTAAAAAAAYG00wAEAAAAATufs+2RK/7tXJgAAAAAAsC4a4AAAAAAAl3HWfTIl7pUJAAAAAAAkrj0HAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAXuAQ4ATma322S325z6HMnJDiUnO5z6HAAAAAAAAAAAAO6OBjgAOJHdblPhwn6y272c+jzJyUm6ePEGTXAAMBlnH0TFAVQAAAAAAAAwGxrgACzPmc0FLy+77HYv/b78S904f8Ypz+FXtLQefK6H7HYbTQwAMBG73aZChfzl5eW8uxYlJSXr0qXrfH8AAAAAAADANGiAA7A0VzQXJOnG+TO6EXPCqc/hTjhjEQByzm63ycvLrqkLtig69nKuP37ZEgXV98XHOYAKAAAAAAAApkIDHIClObu5UC2wjDq3rJ7rj+vOXHHZdy75DsBKomMv64/oi057fGceBMYBSwAAAAAAAHA1GuAAIOc1F8oUD8j1x3R3t8/+dt5l37nkOwDkjoIFfOVITlZAgJ/TnoMDlgAAQApnXynMFTi4DwAAwDPQAAcAOIXVLvsOAJ4mn6+PbHY7BywBAACnc8XtxxzJybLZnXt7Mw7uAwAA8Aw0wAEAAAAL44AlAADgbK66/ZizDuyTOLgPAADAk9AABwAAAAAAAOB0zr79GAf2AQAAQJKce10gAAAAAAAAAAAAAABchDPAAQCmZ7fbZLfbnPb4zryPHQAAAAAAAAAAyDzTNcB37typ6dOn69ChQ4qPj1dgYKBeeeUVtWrVyujSAAAGsNttKlTInyY1AABALiJ7AwAAAMiIs09GkqTkZIeSkx1OfQ7cnbO3c063saka4MuWLdM///lPeXt7q169evLy8tK2bds0cOBAHT16VP369TO6RABwC878cnK3RrPdbpOXl11TF2xRdOxlpzxHtcAy6tyyulMeGwAAwN2QvQEAAADP5cx9wzabTQEBeWW3eznl8VMkJyfp4sUbNMHvwNnNaVds55xuY9M0wM+fP6/hw4fLz89Pc+fO1aOPPipJOnr0qEJCQjRlyhQ1a9ZMQUFBBlcKAMay6hnR0bGX9Uf0Rac8dpniAU55XAAAAHdD9gYAAFbiijNZnY0zZfFXrto3/PvyL3Xj/BmnPLZf0dJ68LkestttvLYz4Mr9/87azrmxjU3TAP/6668VHx+vHj16pAZwSapYsaLefvttvfvuu5ozZ47GjRtnYJUAYDxnnxHN2dAAAADmRfYGAABW4aomkiM5WTa7856DM2XxV67aN3zj/BndiDmR64+Pe3PlFVHdeTubpgG+ceNGSdIzzzyTbl3Tpk1ls9m0adMmF1cFAO7LWWdEczY0AACAeZG9AQCAVbiyieTOZ1Fagaef6Z+ds/zZN2x+Vr8iqmka4L/99pskqVKlSunWFSpUSMWKFdPZs2d1/vx5FS1a1NXlAQAAAADg8cjeAOA+nN2w4bLJMII7vq5d0URy57Mozc4VZ/pzlj/geqZogF++fFk3b95Uvnz5lC9fvgzHlChRQmfPntXZs2cJ4QAAmJA7hmQAAMyE7A0A7sNut6lwYT/Z7V5Oe46sNlQ8/QxKidyXGc7czjabTQEBed3qdQ3zc9UlwTnLH3Atm8Ph8Ph3xJkzZ/TUU0+pWLFi2rJlS4ZjXnzxRe3Zs0cLFixQzZo1s/wcDkf6Hz82m2S323X5WrySkpKzVfvd+OTxUn7/vLoVd0WO5KRcf3yb3Ut58gUoOTlZmXkVePp8JevN2d3mK1lvzryuzb+NJevN2R1f19LtwGKzOW9ni8PhkDN/NmXloa34uk79Ow/en5bVl4+nv5f57MrC31nkdW3mzy5nfwe5C7J39vB5mInxHj5nd5uvZL05u+PrOvXvnPj1YLfblRgfJ0dy7v83tdnt8vbN51aZTLr9PeHs3JfZBpJVX9eu2M7u8rq24ud16t958E9bsvc9xnv4fCVe1/di5s+urHwHmeIMcPv/v3TE3SadssM6uzuubTabvLwyfvyC+X2z9ZiZlSefc6+lb8/ipTc8fb6S9ebsbvOVrDdnXte5z93mK1lvzu74unYmm839mhtWfF1bkae/l/nswt/x2eW5yN45w+fhvXn6nN1tvpL15uyOr2tn8/bN+IocucXd5uvsTHa376E74XWd+9ztdW3Fz2sr8vT3sru9rq342eVurP7ZZYpXR8ql1+Lj4+84JiEhQZLk7+/vkpoAAAAAADATsjcAAAAAwBOYpgHu7++vq1ev3jGIx8bGSpKKFy/uytIAAAAAADAFsjcAAAAAwBOYogFus9lUpUoVSdLRo0fTrb906ZLOnTunIkWKqFixYq4uDwAAAAAAj0f2BgAAAAB4AlM0wCWpUaNGkqS1a9emW7d27Vo5HA41btzY1WUBAAAAAGAaZG8AAAAAgLszTQO8Q4cO8vPz01dffaU9e/akLj927Jj+85//yGaz6bXXXjOwQgAAAAAAPBvZGwAAAADg7mwOh8NhdBG5ZdGiRRoxYoS8vLxUr149+fj4aNu2bbp586b+8Y9/qGfPnkaXCAAAAACARyN7AwAAAADcmaka4JL0ww8/6Msvv9TPP/8sLy8vVapUSa+//rqaN29udGkAAAAAAJgC2RsAAAAA4K5M1wAHAAAAAAAAAAAAAFiTae4BDgAAAAAAAAAAAACwNhrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDiDXXL16Nct/s2PHDidUAiC7pkyZol9++cXoMgAAAADcAdkb8HxkbwAAnIsGOFwuISFBP//8sw4fPqzExMQ7jrtw4YIiIyNdWJnr7dixQ7Nnz9Z///tfnTx50uhyciwkJESXLl3K1NibN29qzJgxeu2115xbFIAsmTJlio4cOWJ0GUCua9q0qdatW2d0GYZITk7WiRMn0ixzOBxauXKlxowZo48//lj79+83qLrcc/r0acXHx2d6/MmTJxUeHu68ggxw4cIFbdu2TStXrtT333+vHTt2ZPq3GQDzIXv/D9mb7A24G7I3zIrsTfb+O7I3jOJtdAHIvPj4eF24cEFlypQxupRsmzt3rj755BNdv35dklSgQAG98cYbeuONN2S3pz0eY/PmzRoyZIgOHTpkRKm55siRI/riiy905MgRlSlTRr169VLNmjU1YMAArVu3Tg6HQ5Lk7e2t/v37q1evXgZXnH2HDh3SSy+9pK+++krFihW747j9+/dryJAh+uOPP+46zqwuXLigo0ePqk6dOkaX4hJXr17V+PHjNWbMGKNLcRmrbWMzaNq0qd599101bdrU6FJc5qGHHtKECRPUpk0bo0txiejo6NTfH1ayceNGjRo1SmfPntXPP/8s6XYo79OnjzZt2pT6O2TmzJkKCQnRsGHDjCw3R5o2bZruNX39+nWNHj1ab7zxhipWrJhm/N69ezVs2DC1b9/exZXmvtWrV+uLL77I8HezzWZTzZo19cYbb+ipp55yfXG5KCgoSDabLUt/Y7PZdPDgQSdVBLMie3smsnd6ZG9r5TKyNzwB2dv8yN5kb7I32dtdcAa4gTI6GiohIUHh4eE6d+5cuvEREREe/eMgPDxcY8eOVWBgoIYNG6ZevXrJ19dXkydP1uuvv65r164ZXWKu+/nnn/XCCy9o48aN8vPz0/79+/Xqq69q7NixWrdunbp3766wsDDNnz9fjRs31n/+8x99//33RpedbSNGjNCxY8fUrVs3nTlzJt36W7du6eOPP1bXrl31xx9/qF27dlqxYoUBleauhx56SMuWLUuzLD4+XlOmTNGpU6fSjd+8ebNCQkJcVZ5TnDp1SqNHj9bzzz+v559/XsOHD9fx48fTjYuIiFDr1q21ePFiA6rMPVbcxlZjxYCWEr5gXocPH1bfvn3lcDjUvXt3JScnS5IWLFigjRs3qnjx4lq0aJH27t2rwYMHa+7cuR79OySj1/TNmzcVHh6u2NhYAypyjTFjxmjgwIGKjo5W+/bt9c477+jf//633nvvPQ0YMEBNmzbVgQMH9Oabb+rDDz80utwcqVOnjmrXrp2l/9WqVcvosuEGyN5kb7I32dtTkb3Nv42thuwNMyJ7k73J3u6ZvTkD3EAZfeHHxcVp2LBhmjVrlumOzp09e7bq1KmjefPmpS7r06eP3n//fYWGhurVV1/VV199pfz58xtYZe6aPHmyypUrp3nz5qlIkSK6fv26evXqpa+//lqdO3fWO++8kzq2du3aeumll/R///d/atWqlYFVZ1+3bt1UsGBBDR06VN26ddNXX32l++67T9LtI9SHDBmiX375RWXKlNGoUaPUqFEjgyvOHRl96d+4cUNTp05VrVq1VK5cOQOqcp5Dhw7p5Zdf1rVr1+Tr6ytfX18dPHhQK1eu1MKFC1WlShVdvXpVw4cPV0REhLy8vNSzZ0+jy84Rq23jY8eOZfkymBxxD7ifL7/8UiVKlNCSJUsUEBCQuvzrr7+WzWbT22+/rccee0yS9Nprr2nnzp1asGCBx/4OuRMz73BaunSp5s+fr/bt2+u9996Tv79/huPi4uL0wQcfaM6cOapRo4ZatGjh4kpzx19zBJAVZG+yN9mb7O2JyN63mXkbk70BcyB730b2Jnu7GxrgbsisHxS///67hg4dmmaZj4+Pxo4dq0KFCmnWrFl64403NGvWrDt+gHiavXv36u2331aRIkUkSf7+/nrrrbf00ksv6Yknnkg3vlWrVpowYYKry8xVzz33nAoUKKCBAweqW7du+vLLL7Vu3TpNnz5diYmJ6tq1q/7xj38oX758RpfqdGZ9L3/66aeKj4/Xxx9/rGeffVaSFBUVpbfffltjxozRxIkTFRISoj/++EOPPvqoxowZo8DAQIOrdg6zbuPp06dr+vTpWfobT79kplVl9XJGnm7RokXaunVrpsfbbDaNHTvWiRU5V2RkpF544YU0AfzkyZM6duyYvL299cwzz6QZ//jjj+vTTz91dZnIgQULFqh69er3PLo8X758Gjt2rI4ePapvv/3WY0P4rVu3lCdPniz9zf79+1WtWjUnVQRPZ9bfcmRvsjfZ2xzI3v9j1m1M9rYOsvfdkb3h7sje9+aO2ZsGOFzGz89Ply5dynDd4MGDdf36dS1cuFC9e/fWl19+6drinCR//vy6cuVKmmWBgYFq3LixvL3Tv/0uXryovHnzuqo8p2ncuLFmzpypN998U88//7wcDofuv/9+jRkzRrVr1za6PORQVFSUunTpkhrAJemxxx7T4MGDNWjQIA0aNEjR0dF655139Prrr6e7xyDcX7NmzUy74+RurBbQJGnatGlatGhRpsfbbDbNmTPHiRU5V2RkZJbOsPD0bXzx4kWVKlUqzbLt27dLkqpVq5Zuh7ivr69u3rzpsvqQc7/99luW7mHbtGlTffPNN06syLmef/55TZw4MVPfUQkJCZo8ebLmzp2rAwcOuKA6wH2QvW8je5O9PR3Z2/zI3pnj6blMInvfi6dvY7K3+ZG978ydszcNcLhMvXr1NHfuXD3zzDOqXLlyuvUjR47UtWvXtHz5cr3++utq3LixAVXmrscff1xfffWVatSooQYNGkiSChQooC+++CLd2P3792vevHmp4zxdrVq1NHfuXL3xxhu6cOGC/v3vfxPATeLy5csKCgpKt/zRRx9VUlKSjhw5onnz5ql69equLw65onnz5mrTpo3RZbic1QKaJB09elRHjx7N9HhPP2r93Xff9eh7umZVwYIFdeHChTTLNm/eLJvNpscffzzd+KNHj6aeOQfPcP36dRUtWjTT44sXL+7R92Q7d+6cOnbsqP79+6tHjx53/EzavXu33n33XR0/flz333+/i6sEjEf2JnuTvc2B7G1+ZO/MIXt7HrI32dtsyN6emb1pgMNl3n77bXXt2lXBwcF6+OGH9dFHH6V5U9hsNk2YMEE+Pj4KDQ3Vnj17DKw2d7zzzjuKiorS66+/rtq1a9/x3gkvv/yydu/erSJFiqS5N5mnCwoK0oIFC/Taa6/pzTff1NSpU1W/fn2jy0IOJSYmZni2hK+vrySpZ8+eBHB4JKsFNEn66KOPLLXDpXDhwipbtqzRZbhMzZo1tXLlSnXv3l1eXl46d+6cNm7cKElq2bJlmrFXr17VsmXLVK9ePQMqRXYlJSVleGbjnXh5eSkxMdGJFTnX8uXLNWzYME2aNEkbN27U+PHjVb58+dT1KZeJTbnXXvfu3TVgwAADKwaMQfYme5O9zYHsDbMie5sf2ZvsbTZkb8/M3jTA4TIPPPCAVqxYoalTp2rXrl2pP9j/ym63a+zYsapRo4Y++eQTnT9/3oBKc0/RokW1ePFiLVy4UAkJCXcc5+vrq44dO+qtt97K0pFE7mbYsGEZLr///vt16tQp9erVS61atUpzxJAZjuJEWo888ojRJQDZYrWABvPr0aOHunTpos6dO6tu3bpat26dbt68qWeffVYVKlSQdHvH6r59+zR+/HhduHBB3bp1M7jqnFmzZo2OHz+e+u/x8fGy2WxasmSJdu/enWbsL7/84urykENFixbVjBkz9PXXX+ujjz5Su3btNHToUL3wwgvauXOn/vWvf+nkyZMKDAzUBx98wG8SWBbZm+xN9rYGvufgqcjeMBuyN9nbbMySvWmAG+zYsWNpLvly9epVSdKRI0fSHVGSlcukuKvChQtr+PDh9xzXqVMnBQcHp/kQ9VS+vr569dVX7zrGLPddCwsLu+v6mzdvKjw8PM0ys4TwXbt2KSkpKfXf4+LiJElbtmxRTExMmrFmOMPibjz9Mk13YpVtXKdOHRUrVszoMgDkgkcffVTTpk3TBx98oFmzZsnLy0tt2rTRqFGjUsdMmDBBc+fOld1u17Bhw1SzZk0DK865iIgIRUREpFv+998fKczwnfX3HQ93Y5YdD926dVP9+vU1YsQIjRw5UvPmzdPRo0fl7e2tAQMGqGfPnlk6Oh/WQPbOGNnbM5G9zZ/LMsMMv2MyYpVtTPYGzIPs/T9k79vI3u7B5nA4HEYXYVVBQUEZvvEdDsddlx86dMgV5Tmdw+HQyZMndenSJUlSkSJFVK5cOWOLcjKzzzk6Ojpbf+fpR31m9F7+60drRus8+b0cFBSkN998Uw0bNkyz/OrVq+rTp4+GDh2qqlWrpvu7OnXquKrEXGe1bWxFQUFBlrskmdXmHBYWptq1a6e5ZJOVXLx4UX5+funOAty0aZMOHDigZ5991i3v15QVO3fuzNbf1a1bN5crcZ2M7gt6L2b6foqMjFSfPn109epV2Ww29enTR/379ze6LLghsre5c2hGzD5nsvf/mDmXkb1vM/M2tiKr5VDJenMme5O974Ts7bk8NXvTADfQlClTsvV3/fr1y+VKXCsqKkozZ87Uli1bdP369TTr8ufPryZNmui1117L1oeKu7LinK3kXkff30lwcHAuV+Iad9qBKN15J6Ikj/7Ct9I2/uuZUVnhyTtZJGsGtJ07d6pixYoefflPwOqsuONBkq5du6YJEybou+++U968edWjRw+tXr1av/zyixo0aKAxY8aoTJkyRpcJN0L2tk4OteKcrcRKuUwie2eFJ25jsjfZG4DnIHt7ZvamAQ6XmjVrliZOnCi73a4aNWqocuXKCggIUGJioi5duqSDBw/q0KFDstvtGjJkiEJCQowuOcesOOfMmj59uiIiIhQaGmp0KS6XkJAgHx8fo8vIFqvuQMwqT93Gd9vJcjeevJMF1nCne2XejVkuFYqMLVy4UJs3b8729xqMsXHjRo0cOVIxMTGqX7++Ro8erfLly+vWrVv69NNPNWvWLPn6+uqf//ynunTpYnS5gGGsmEOtOOfMInt7Xi6TyN6Z5anbmOwNsyJ74+/I3p7JDNmbBjhcZtOmTerVq5caNGigsWPHqnTp0hmOO3HihEaNGqWtW7dq1qxZatCggYsrzT1WnHNWjBw5UosWLfL4H+9TpkzJUsCMiorSsGHDtGLFCidWhdxkpW382WefZSuEe/pOFisGtOzs9LXZbJozZ44TqnE+K16u6l471fLmzasCBQqoSpUqat68uTp16iS73e7CCo1lht8hp0+fVpEiRdJdXu9OTp48qd27d6t9+/bOLcxJ3nnnHa1YsUL+/v4aPHiwOnfunG7M3r17NWTIEJ08eVJ169bVBx98YKrLHgOZYcUcasU5Z4UZvvMka+Uyq7LSNiZ7Zx7Z27OQvdMje3v+7xCyt2dmbxrgBrLaF/5rr72mc+fOKTQ0VHny5Lnr2MTERLVv317333+/pk6d6qIKc58V55wVZvjyk27/yOnevbv++c9/3nVcYmKipkyZopkzZyopKcnj551Z8fHxunDhgltfDuVe2MbmZ9WAllWePGcr3ivz5Zdfvuv6pKQkXblyRSdOnNCtW7f0+OOPa/r06fL29nZRhcYyw++Qhx56SBMmTEhzP8Hr169r9OjReuONN1SxYsU045cuXaohQ4Z47JyDgoLUqFEjjR49WqVKlbrjuPj4eH344YdauHCh/P39tWfPHhdWCXdE9r4zs+RQK845K8zwnSeRy+6F7A1PYLUcKllvzmTv9Mjenv87hOydMXfP3tZ4h7mprNzX5q9HEHlqCD948KBeffXVe4ZRSfL29larVq20dOlSF1TmPFacsxXVrl1bs2bN0o0bN/Tee+9lOObIkSMaMmSIjhw5ooIFC+pf//qXi6vMPU2bNtW7776rpk2bpi5LSEjQypUr9cQTT6hYsWJpxkdERHj0F75kvW1sRevWrTO6BJc7fPiw0SW4lCeH6eyaN29epsbFx8drwYIFmjBhghYsWHDP8A73kdGxzDdv3lR4eLjatm2bLoR7unHjxmXqHp++vr56//339cwzz/B9DElk77sxSw614pytyGq5jOxt/m1sRWRv8yN73xnZ23ORvTPm7tmbBriBMvPlFx0drdGjR2vjxo0qUKCABg4c6PzCnCQuLk4lSpTI9PjSpUvrzz//dGJFzmfFOVvRrFmzNGDAAC1YsEA3btzQ2LFjU3ecORwOzZgxQ1OnTlVCQoJat26t4cOHq0iRIgZXnX3R0dG6fv16mmVxcXEaNmyYZs2alS6Em4HVtrEkHTt2THv37lWHDh1Sl507d05TpkzRnj175Ofnp6ZNm+rVV1/1yPut/Z0VAxrSSkhI0G+//SZfX19VqFDB6HJcytfXV6+99pr279+vsLAwQrgJmPUiX5kJ4H/14IMPqlOnTk6qBp6E7H13ZsihVpyzFVktl5G9zb+NJbI3rIfsTfY2E7L3be6avWmAu6mkpCTNmjVLn3/+ueLj4/Xss89q2LBhHv3jNjExMUs/1Ly9vZWQkODEipzPinO2Ih8fH02dOlXDhg1TWFiY4uPjNXHiRJ04cUJDhw5VVFSUihcvrvfff19NmjQxulynMesXvmS9bTxx4kTNmjVLDodDwcHBstvtunr1qjp37qzTp0+rUKFCKlu2rD755BOtX79e8+bNy9TZNp7MigEtJiZGUVFR8vX1VZ06dTJ9nyN3dvXqVX355Zfau3dvmiO0ly1bpjFjxujKlSuSbv9wHzt2rKpXr25QpcaoV6+etmzZYnQZQI7cvHlTq1evVmhoqHbu3CmHw6G+ffsaXRbcGNnbHDnUinO2Iqvlsjshe5tnG5O90yN7k72tgOwNM/CE7E0D3A3t2rVLo0aN0q+//qoHHnhAI0eOVIMGDYwuC7inKVOmZGn8zz//7KRKXM/Ly0sTJkxQQECA5s+fr1OnTunXX39VfHy8OnXqpCFDhih//vxGl4kcsMo2XrNmjWbOnKmnnnpKISEhstvtkqTPP/9c0dHRqlatmr766iv5+fkpKipKL7/8sr766iv16NHD4MpzzooBLTo6WpMmTdLevXu1fv361OUzZszQp59+qqSkJDkcDhUsWFCjR49W8+bNDaw2Z+Li4tS5c2cdO3ZMpUqVUmJiory9vRUVFaUhQ4bI4XCoc+fOqly5ssLDw/Xaa68pPDxc999/v9Glu4yXl5eSk5ONLiPbwsPDszT+999/d04hMMTevXsVGhqq77//XnFxcXI4HLrvvvvUuXNno0uDGyN7w1ORvc2fy6zMKtuY7E32lsjeZG/PRPa2Nk/K3jTA3cjFixc1YcIEhYeHy8fHR/3791ePHj1McXmbFLt27VJSUlKmxu7Zs8fJ1biGleac1RAupb3HnhkMHz5chQoV0pQpU2S32/XFF1+ocePGRpeFXGT2bbxw4UJVq1ZN06dPT13mcDi0dOlS2Ww2vfXWW/Lz85MkPfbYY2rXrp1WrFjh8SHcigHt/Pnz6ty5sy5evKjHHnssdc4//vijJk2aJG9vb7399tuqUqWKFi1apLffflvffPONqlatanTp2TJr1iydOHFC//nPf9SyZcvU5VOnTpXD4dArr7yioUOHSpI6duyotm3bavr06Ro3bpxRJbvc/v37Vbp0aaPLyLahQ4dm6XeFw+Ew3e8Qq4mJidGSJUsUGhqq48ePp54RV69ePfXo0UNPPPGEwRXCXZG90/L0HJrCSnMme5s/l8H825jsTfYme5O9PRXZ23o8NXvTAHcT3377rSZOnKjLly/r8ccf18iRI3XfffcZXVauW7RokRYtWpSpsWb5YLTSnOfOnWt0CW6hX79+Kly4sMaMGaOZM2eqVq1apjg6Gf9j5m184MCBdIH64MGDOn/+vPLnz6969eqlWffoo49q2bJlrizRKawY0GbMmKG4uDh9/fXXaY6onzFjhmw2m/r27Zv6WnjyySfVoUMHffnll/rPf/5jTME5FBERoXbt2qXZvnFxcamXHevatWvq8rx586pt27b69ttvXV6nUVatWqUlS5bojTfeMLqUbPPk9yMyLyEhQWvXrlVoaKi2bdumpKQkeXl5qW7duqpVq5amTZumkJAQtw3gMB7ZOz1Pz6EprDRnsvdtZs5luM3M25jsTfYme5O9PZUnvx+ReWbI3jTADXbkyBG9//772rdvn4oVK6ZJkyapdevWRpflFFb8YLTanOvWrZvlv9m1a5cTKnGtyMjIdMuqVKmiTp06adGiRXrllVc0ePDg1MtZpahTp46rSkQOWWkbX79+XQULFkyzbPv27ZJuz8fLyyvNusTERI/eeZjCigFt48aN6tChQ5oAfunSJe3evVuS9Pzzz6cut9lsatWqlebMmePqMnPNqVOn0mxH6fZ7OzExUeXLl0/X/ChdurTOnz/vyhJz3bBhw+66PikpSXFxcfrtt9904sQJPfDAAx4dwoODg40uwRBr1qzR8ePHU/89Pj5eNptNS5YsSX0/p/jll19cXV6uGjVqlFauXKnLly8rb968atSokZo1a6amTZuqcOHCio6O1ueff250mXBTZG9zs9qcyd7/Y9ZcZlVW2sZkb7I32fs2srfnIXvfRvZ2/+xNA9xA48eP17x585SUlKSnn35aAwcOVP78+XX69Om7/l2ZMmVcVGHusuIHoxXnnBlnzpxRWFiYwsPDdfLkSR06dMjoknLk5ZdfvmsIOXDggF599dV0yz153seOHUsTTK9evSrp9o5Fb++0Xy1Hjx51aW3OYKVtXKJECZ08eTLNso0bN8pms+nJJ59MNz4qKkolS5Z0VXlOY8WA9ueff6pKlSpplu3YsUPJycmqVKlSuu1atGhRXb582ZUl5iq73Z7uHlvbtm2TJDVs2DDd+AsXLnj82SVhYWGZGle+fHm98sor6tOnj8fP+U4y+n1dunRp0+xEjIiISLf8Tvdl8+Q5L1iwQP7+/urdu7feeOMN075ekfvI3uZnxTlnBtn7Nk+eN9k7LTNtY7L3/5C9yd6e/rue7P0/ZO//8eQ5myV70wA30OzZs1P/ecOGDdqwYUOm/s4Tf9Rlx4ULF3T06FGPPIozu8w855s3byoiIkKhoaHasWNH6iXnMvpR72n69u3r0V9o2TF9+vQ096lKMX78+HTLPP3ygpK1tvGTTz6pxYsXq2vXripZsqT27t2rXbt2KU+ePGrRokWasb/++qtWrFihF154waBqc48VA1revHl148aNNMu2bt0qm82mxx9/PN34P//8UwEBAa4qL9dVqlRJe/fuVbdu3STd/mxas2aNbDabmjRpkm78unXrVLFiRVeXmavWrVt31/V58+ZVQECAqe55K0mLFy/Wt99+q88//1xFihTRxYsX1aRJk3Sf4wMGDNCbb75pUJW5w2qXwA0ODtbatWv1xRdfaM6cOapdu3bqUejFihUzujy4MbL33Zk5h96JmedM9jYXsrd5kb3/h+ydFtnb85C9yd5mY5bsTQPcQP369TO6BJd66KGHNGHCBLVp0yZ1WXx8vGbOnKn27durXLlyacZv3rxZQ4YM8eidDlac89/t27dPoaGh+v7773Xt2jVJUpEiRdShQwd17txZZcuWNbjCnOvfv7/RJbiUlQJpCitt4z59+igiIkKtWrVShQoV9Msvv8jhcKhv374qUqSIpNvhOyIiQnPnzlWePHnUvXt3g6vOOSsGtKCgIG3btk2vvPKKpP/d20eSmjVrlmasw+HQqlWrFBQU5PI6c0v79u31wQcf6NFHH9Xjjz+uRYsW6fTp07rvvvvUqFGjNGOnT5+uffv2afjw4QZVmzvM8B2bVW+99ZZWr16tMmXK6PTp06mfW5LUtm1blS9fXpK0ZMkSTZs2TR07dlTx4sWNKjfHsnMJ3MTERCdU4hrjxo3TqFGjtGHDBi1btkw//PCDfvzxR40aNUo1atRQzZo1LfcbBZlD9jZ/DrXinP+O7G0+ZG9zI3uTvSWyN9nbc5G9743sbTwa4AayWgh3OBzplt24cUNTp05VrVq10gVSM7DinCUpNjZW4eHhCgsL0x9//CGHwyE/Pz81bNhQW7du1b///W81bdrU6DKRTVYKpFZUrFgxfffdd5o6dar27dunhx9+WB06dFCnTp1Sx4SFhWnWrFkqW7asPv74Y5UuXdrAinOHFQNaly5d9Pbbb2vs2LF6/PHHtXjxYp0/f14PP/xwmrOh4uPj9eGHH+rXX3/16B0uXbp00e7duzVu3DjZbDY5HA4VLFhQEydOTL2H4HfffacZM2bo5MmTqlWrll588UWDq3auqKgo7d27V3a7XXXr1lVgYKDRJeXI0qVLtXr1avXq1UsDBgxId9/E9u3bq0GDBpKkxo0b64UXXtA333xjmt/kcXFxcjgcdz1DZu/evRoxYoSWL1/uwspyl4+Pj1q0aKEWLVro6tWrWrVqlZYuXardu3dr9+7dstls+uKLL3Tt2jW1aNFCvr6+RpcMN2CW93lmWTGHWnHOEtnb7Mje5kb2JnuTvcnenorsTfb2lOxNA9yNJCQk6PDhw4qNjZXD4VCJEiUUFBSkvHnzGl2aU2UUVM3OrHP+/vvvFRoaqq1btyopKUkBAQFq06aNmjdvrkaNGuns2bPpjmw0gylTpmT5b2w2m/r27euEapwvJCREb775ZuoPGSuw2jYuVaqURo8efcf1HTp0UJMmTVSzZs3U8OLprBjQWrdurSNHjmjmzJmaN2+eHA6HypUrp8mTJ6eO+b//+z99/vnniouLU8uWLdWuXTsDK84Zm82miRMnqlu3btq7d6/y58+vZs2apTlK+c8//5TD4dCbb76pXr16meL1ffDgQX3xxRc6evSo7rvvPvXu3VuPPfaY/vWvfyk0NDT1N4nNZtNzzz2ncePGpbufpKcICwtTjRo1NGjQoHuOTdnhtmnTJo8P4atXr9aUKVP022+/Sbp9X7kBAwboueeeSx1z/fp1TZo0SQsWLEh3yUlPMmzYMHXp0kXVqlWTJBUoUECdOnVSp06dFBMTo+XLl2v58uWKiorSTz/9pNGjR6t169b697//bXDlcDdkb+sw65zJ3pnnybmM7J05nryNyd5k7xRkb89/fZO9M0b29kxmyd6e+Q4zmXPnzmnSpEmKiIhQXFxcmnV+fn5q0aKFBg0apBIlShhUIZA5gwYNkr+/v7p27aqmTZuqTp06aY4A84TLYmSH1QLazp070xyRbAVW28b34umXH8uIVQPaoEGD9OKLL2r//v3Knz+/6tatqzx58qSuz5s3rx599FG1adNGzz//vIGV5p4aNWqoRo0aGa7r16+fxweyv9q7d69CQkLk7e2tKlWq6MCBA+rWrZtefvllLV68WG3btlXLli11/fp1rV+/XsuXL9dDDz2k119/3ejSs+XgwYPq3bt3psc/8cQTmjp1qhMrcr6VK1fq7bffVt68efXEE0/Iz89Pu3bt0j//+c/U+0f+9NNPGjRokE6dOqVy5cpp1KhRRpedbWFhYWrYsGFqCP+rkiVLqnv37urevbuOHj2qpUuXatmyZfr222/dLoTDOGRvmAXZO/M8OZeRvTPHk7fxvZC9yd6ejOxN9k5B9vY8ZsneNMANtm/fPvXq1UuXL19WtWrVVL9+fZUoUULe3t6KjY1VZGSkwsPDtX79ek2bNk01a9Y0umTgjsqVK6dTp04pNDRUv//+u3766Sc1a9ZMDz74oNGlOdXcuXONLgFOZqVtHBkZma2/++tluzyZlQJailKlSqlUqVIZrnvppZf00ksvubgi5JapU6fqgQce0Ny5c1W4cGE5HA69++67mj17ttq2basJEyakjn3uued05coVLV++3GNDeHx8vAICAtItL1CggKZPn66HHnoozfJ8+fJ59D25JGn+/PkqWrSoFi5cmHqPtRs3bujNN9/UZ599phIlSuj111/XzZs39dprr+mtt95yy8uS5baKFStq0KBBGjRokPbs2WN0OXATZG+YCdkbZmWlbUz2Jnv/Fdnbs5G9byN7k73dDQ1wA50/f159+/ZVvnz59Pnnn6tWrVoZjjt48KAGDhyoAQMGaMmSJSpatKiLKwUyZ+3atdq/f7+WLl2qVatWafPmzZo0aZIqVKig5s2bq2rVqkaX6BR169a955irV6/KZrPd9d4gcF+Z2cZm8fLLL2f5jBGbzaaDBw86qSIgdwwbNizLf2Oz2TR27FgnVOMaP/30k9544w0VLlxY0u35dO/eXWFhYXrqqafSjW/evLk+/PBDF1eZe0qWLKnTp0+nW+7t7Z3hfP/44w+Pv4/i0aNH9fLLL6cGcOn2Waz9+vXTSy+9pEGDBqlo0aKaOHGiqlevblyhBqKJCYnsDfMhe98Z2duzkb3vjuwNT0D2Jnv/HdnbGtwxe9MAN9D8+fMVFxeX5qiRjDz88MOaPXu22rRpo//+97/q37+/C6sEsqZatWqqVq2a3n33XW3evFnLli3TunXrNG3aNNlsNtlsNm3YsEFBQUEqW7as0eXmGofDoR9++EG//fab7r//fj311FPy9vbWtm3bNGbMGB07dkyS9NBDD+ntt9/WE088YXDFObNmzRodP3480+PNfEmyFGbZ0TJu3LhMjVu9erU2btwoSXrsscecWJFrWDGghYSEZPlvbDab5syZ44RqnC8sLCzTY/+6I8qTt/GVK1dUrFixNMtSLi1YqFChdON9fX1148YNV5TmFI899phWrlypvn373vMyiQkJCVq5cqUaN27souqc4+rVqypXrly65ffdd5+k25dSXLhwYeqOGDPYtWuXkpKSsvQ37du3d04x8Bhkb5gR2ZvsnRGyt+cge2ce2duzkL1vI3vfRvb2XGbI3jTADbR27Vq1bdv2rgE8RdmyZRUcHKyIiAiPDuF/f9Ok3Hdty5YtiomJSTPWHS+ZkB1WnLMkeXl5qXHjxmrcuLHi4+O1Zs0aLV++XFu2bNF3332n0NBQ1atXTx06dNBzzz1ndLk5cuXKFfXs2VP79++Xw+GQJD366KMaMWKEevbsKT8/PzVr1kzXr1/X/v371atXL82ePdujj2xes2aNIiIiMj3eDCH8rzta7rvvPj399NOm3NESHBx81/XR0dEaPXq0Nm7cqICAAL399tvq3Lmzi6pzHisGtFOnTmVqXHJysmJiYuRwODz6fpKHDx++55i/vr4LFCiggQMHOr8wJ3I4HPL2TvtzP2UbevK2vJMuXbropZde0r///W8NHz483dxTJCcn67333lNsbKy6dOni4ipzV3Jycpp7vqZIuZ9gz549TRXAJWnRokVatGhRpsamfG65WwiH65G9rZFDrThniexN9k6L7O05yN73Rvb2TGTv28jeZG9PZ4bsTQPcQKdOncrSvT2CgoKy9CPBHf39TZMSWGbOnJnuy8DTv+xTWGnOPXv2VP369VW3bl1VrVo1dS6+vr5q06aN2rRpo4sXL2rlypVatmyZtm3bpu3bt3t8CP/00091+PBhvffee6pXr56io6P1wQcf6JVXXtEDDzygefPmpR7td+HCBXXs2FGzZs3y6BDeq1cvNWzY0OgyXMaKO1r+LjExUf/3f/+n6dOn68aNG2rbtq2GDh2aekSrp7NiQFu/fv09x+zfv1/vv/++/vzzT5UrV04jRoxwQWWul5SUpFmzZunzzz9XfHy8nn32WQ0bNizdEdxwb7Vr11b37t31f//3f9q+fbtef/111atXT6VKlZLD4dDZs2e1Y8cOff311zp8+LAGDRqkoKAgo8t2qjJlyhhdQq574YUXLHtJOWQf2dvcOTSFleZM9iZ7mxXZm+wtkb3J3nB3ZO/0yN7uiQa4gfLkyaObN29menx8fLz8/f2dWJFzZfbSPmZitTlv375dP/zwQ+qlqGrXrq169eqpfv36qV9yhQsXVrdu3dStWzedPHlSK1asMLjqnFu/fr26dOmiF198UZJUoUIFvffee3r99dfVrVu3NJe6KVKkiF544QXNmzfPoGpzR8WKFU0VMO/Fijta/mrnzp0aNWqUjh49qgoVKmjkyJGqV6+e0WW5jBUD2tWrV/Xxxx9r0aJFstvt6tWrl/r06aO8efMaXVqu27Vrl0aNGqVff/1VDzzwgEaOHKkGDRoYXVau+ftlM+Pj42Wz2bRkyRLt3r07zdhffvnF1eXlun/+858qW7asJk2apPfeey/Dhoe/v7/ef/99U5xBY0W1a9dWmzZtjC4DHobsbX5WmzPZm+xtVmRvsjfZm+ztqcjeZG+zMUP2pgFuoCpVqmjTpk2Zvg/Ixo0bValSJSdX5Tz3urSPGVltznv27NHBgwe1Z88e7d27V/v27dOGDRtks9kUEBCgOnXqqF69eqpXr56qVKmi8uXLq3fv3kaXnWNnz55VxYoV0yxLea9mdPRX6dKldfnyZZfUhtxhxR0t0u0dCuPHj9fSpUuVN29evfXWW3rjjTdSL+9jBWYPaBlZsmSJJkyYoPPnz6tu3boaOXJkus84M7h48aImTJig8PBw+fj4qH///urRo4d8fHyMLi1XRUREZHjZzPDw8AzHe/LZcCm6du2q4OBgbdiwQZGRkfrzzz/lcDhUokQJ1axZU82aNfP4e0b+VUb3Br3bzhYzXBoVyCqyt/lZbc5k7/8he5sL2ZvsTfYme3sqsjfZm+ztfmiAG6hdu3Z67733tHLlSrVu3fquY8PDw7V161ZNmjTJRdUZ79SpU3rvvfc0a9Yso0txGU+fs7e3tx577DE99thjevXVVyVJZ86cSRPKx48fr6SkJBUqVEh169ZVvXr11LVrV2MLz6Fbt27J19c3zbKUkJJRWLHZbGnuTQf3Z8UdLd98840mTZqky5cv68knn9SIESMydd9Ms7BKQPurY8eOadSoUdq5c6cKFy6sDz/80O3u3ZNbvv32W02cOFGXL1/W448/rpEjR+q+++4zuqxcN3fuXKNLMIyfn59at259z9/YZnCnHS1SxjtbCOGwIrL33Xl6Ds0OT58z2ft/yN7mQvYme5O9zYXsbX5k79vI3u6JBriBOnTooPDwcA0ePFhHjhxRt27dVKJEiTRjYmNjNXv2bM2dO1eNGzdWq1atDKo2d+zfv1/Tpk3T3r17JUkPP/yw+vbtq9q1a6eOcTgc+uqrr/Tpp58qPj7eqFJzjRXn/FelS5fWs88+q2effVbS7Uv7LF26VKGhoVq9erUiIiI8PoRbTb9+/RQYGGh0GS5lpR0thw8f1siRIxUVFaWSJUtq9OjRat68udFluZRVAlqKhIQETZ06VbNmzVJiYqI6deqkd955RwEBAUaXluuOHDmi999/X/v27VOxYsU0adIkU4c0s1wKEndmtR0twcHBpv48hvOQva2RQ604578ie5sP2fs2srd5kb3J3mZB9jY/srdnogFuILvdrunTp+udd97RF198oRkzZqh06dIqXry4vLy8dP78eZ04cUIOh0OtWrXSBx98YHTJObJt2zb16NFDSUlJevDBB+Xn56fIyEi9+uqrmj17turUqaNTp07pH//4h6KiopQ/f36NGjXK6LJzxIpz/rv4+HhFRkZq586d2r17t37++WfdunVLPj4+qZdkM4NLly7p9OnTqf+ecgTyhQsX0iyXbh/d6sn69euX5t8TEhJ0+PBhxcbGpl7mJigoyJT3K7KCDh06KDk5WZJUtGhRzZ8/X/Pnz7/r39hsNs2ZM8cV5TmV1QKaJG3atEmjR49WdHS0AgMDNWrUKFWrVs3ospxi/PjxmjdvnpKSkvT0009r4MCByp8/f7rP6L/L6EwTs1q4cKE2b96sKVOmGF1KtmT20sZ/5emfX9nZ0bJr1y4nVOIaVrvHL3IP2dv8OdSKc/47sjfZG56F7E32JnunRfb2HGTvzCF7G8/mcDgcRhcB6ccff9SSJUsUFRWls2fPpv6QrVWrltq1a6f69esbXWKOvfbaa4qKitLMmTNVo0YNSVJMTIx69+6tPHnyaNy4cQoJCdH58+fVvHlzjRgxQsWLFze46pyx4pwTExO1b98+bd++Xdu3b9f+/ft169Yt5cmTR4899lhq8K5Ro4ZpLmcUFBSU4X1bHA7HXe/ncujQIWeW5XTnzp3TpEmTFBERobi4uDTr/Pz81KJFCw0aNCjd2TWeKCgoSP/617/UtGnT1GWXL19WcHCwPv7449T3d4o1a9boww8/9Mht3KRJk2z93fr163O5Ete6U0C7F08OaAMGDNCaNWskSU8//bRCQkLk5eV1z7+rU6eOs0tziqCgoNR/zsq9tjzxfZxdI0eO1KJFizx2zpn9/EpOTlZMTEzq97Snzjcrzpw5o7CwMIWHh+vkyZOWmDNwJ2Rvc+ZQK86Z7P0/ZG+ytyduY7I32fteyN7mRfY2L7K3e6EBDpepX7++OnbsqHfeeSfN8s2bN6tHjx6qWLGizp49q/fff9/jLzeXwmpz7tGjh3bt2qX4+HjZ7XZVrVpV9evXV7169VSrVq10l7Eyi2HDhmXr7zz5SKp9+/apV69eunz5sqpVq6b69eurRIkS8vb2VmxsrCIjIxUZGamAgABNmzZNNWvWNLrkHLHqjhYrsWJA++ucpXvP29MDS3aPrP77mTdm5ukhPDP279+v999/X4cOHVK5cuU0YsQINW7c2OiynOLmzZuKiIhQaGioduzYkfoebtSokb744gujywPgRFbLoZL15kz2zhqyt+cge5sf2ZvsfSdkb3Mhe5O93QGXQPcgO3bs0JEjR7J1iQl3cPXqVVWsWDHd8sqVK8vhcOjSpUv69ttvTXFvgRRWm/OPP/6oPHnyqH379urVq5ceeOABo0tyCU8O09lx/vx59e3bV/ny5dPnn3+uWrVqZTju4MGDGjhwoAYMGKAlS5aoaNGiLq4097Rv3z5LwcxKdu3apbCwMI+/VKiVglYKq312ZWcbm+3eoFZ29epVffzxx1q0aJHsdrt69eqlPn36mPKSofv27VNoaKi+//57Xbt2TZJUpEgRdejQQZ07d1bZsmUNrhBwf2Rvz2O1OZO9rYHsjb8ie3suq312kb2tjexN9nYnNMA9yMqVK7Vo0SKPDeFJSUny9k7/kku5FFfv3r1NE0ZTWG3OnTp10o4dO1Iv81GhQgU1aNBA9evXV506dVSwYEGjS0QumD9/vuLi4rRw4UKVL1/+juMefvhhzZ49W23atNF///tf9e/f34VV5q4PP/zQ6BLcyp9//qmwsDCFhYXp5MmTkmTJEO7pAS04ODjLfxMdHe2EStxPys6l1atXe/Q9m3DbkiVLNGHCBJ0/f15169bVyJEjM2ySeLLY2FiFh4crLCxMf/zxhxwOh/z8/NSwYUNt3bpV//73v9NcShTA3ZG9PY/V5kz2tgayN8jet5G9zYvsbS5kb7K3u6EBDrdhtg/DzDDbnEePHi1JOn36tLZu3art27dr1apVmj9/vux2u4KCglSvXr3UUO7v729wxciOtWvXqm3btncN4CnKli2r4OBgRUREeHQIDwkJ0ZtvvqkGDRqkLktMTNTevXsVFBSkAgUKpBm/dOlSDR06VAcPHnR1qU6TkJCQejmf7du3y+FwyOFwqF69enrxxReNLs+lrBbQbt68qVWrViksLEyRkZE6cOCA0SU5RcrOpfDwcJ04cUIOh0OFChUyuizkwLFjxzRq1Cjt3LlThQsX1ocffqj27dsbXVau+v777xUaGqqtW7cqKSlJAQEBatOmjZo3b65GjRrp7NmzatasmdFlAnAzZsuhmWG2OZO9rYHsfRvZm+xN9jYXsrf5kL3J3u6KBjiAXFemTBl17NhRHTt2lCT9+uuv2r59u7Zt26bFixdr9uzZ8vb21iOPPKIGDRrorbfeMrhiZMWpU6f00ksvZXp8UFCQwsLCnFiR8+3cuVOdOnVKs+zq1asKCQnRrFmz0oTzFA6Hw1XlOdXfL+eTMq9nn31Wffv2VYUKFQyu0DWsGND27Nmj0NBQrVq1SnFxcXI4HKpcubLRZeWqlJ1LYWFh2r59u5KTk+VwOFS9enV16dJFrVu3NrrEHAkPD8/S+N9//905hbhYQkKCpk6dqlmzZikxMVGdOnXSO++8o4CAAKNLy3WDBg2Sv7+/unbtqqZNm6pOnTry8vJKXc8lRAHA3Mje5kb2vo3sTfYme3s+sndaZG/PQ/b2TDTA4VK7du1SUlJSmmVxcXGSpC1btigmJibd33j60UJWnPPfVa5cWZUrV9bLL7+shIQErVq1Sv/973+1b98+7d+/nxDuYfLkyaObN29menx8fLxpzzgwS9D+u4wu51OoUCEFBwerevXqGjlypFq3bm36AG72gJaRmJiY1G1//PhxSZK3t7dat26tF198UbVr1za4wtyxf/9+LV68OM3OpYCAAF29elWjR49Ot9PNUw0dOjRLIczhcHh8aNu0aZNGjx6t6OhoBQYGatSoUapWrZrRZTlNuXLldOrUKYWGhur333/XTz/9pGbNmunBBx80ujQABrNiDrXinP+O7G0uZO//IXuTvc2G7E32Jnt7FrK3Z6IBDpdatGiRFi1alGZZyo/YmTNnpvngT/ki8PRAasU5/9WJEye0f/9+7d+/X1FRUTp8+LBu3bqlfPny6cknn1SdOnWMLhFZVKVKFW3atCnT90TcuHGjKlWq5OSqkFt69uypLVu2KCkpSaVLl1bXrl3VrFkz1atXT3a7XdHR0abd+ZDCKgEtRUJCgtauXavFixdr+/btqTuOK1asqGPHjumjjz5Sy5YtDa4y52JjY7VkyRKFhYXp999/l8PhUJkyZRQcHKzmzZurZMmSeuaZZ1SkSBGjS80148aNM7oElxowYIDWrFkjSXr66acVEhKihIQERUZG3vXvPPm3yNq1a7V//34tXbpUq1at0ubNmzVp0iRVqFBBzZs3V9WqVY0uEYBBrJhDrTjnvyJ7mw/Z29zI3mRvsjfZ21ORvcnenoIGuIFOnz6dpfEpRy57Kqt9EUjWm/Ply5cVFRWVGrijoqJ0+fJlORwOFSxYUDVr1tSgQYNUp04dPfzww7Lb7UaXjGxo166d3nvvPa1cufKeR+GGh4dr69atmjRpkouqQ0798MMP8vf3V0hIiLp166bixYsbXZJLWDGgRUVFKTQ0VCtXrtSVK1dkt9tVo0YNNW/eXM2bN1dSUpKaNWumPHnyGF1qrmjSpImSk5MVFBSk3r17q2nTpnrkkUdS10dHRxtYnXMEBwcbXYJLRUREpP7z+vXrtWHDhruOT2l+HDp0yNmlOVW1atVUrVo1vfvuu9q8ebOWLVumdevWadq0abLZbLLZbNqwYYOCgoJUtmxZo8sFDEH2Nj+rzZnsbQ1kb3Mje5O9yd7mQfYme5O93RMNcAM1adLEUpfGyM4Xgad/IVptzvXq1ZPNZpPD4VDhwoVVt25d1alTR3Xq1FFgYKBHv37xPx06dFB4eLgGDx6sI0eOqFu3bipRokSaMbGxsZo9e7bmzp2rxo0bq1WrVgZVi6zq16+fVqxYoenTp+uLL77Qgw8+qGbNmqlZs2Z67LHHjC7PaawY0F544QX5+fmpUaNGevLJJ9WkSZM0OxnMNufExET5+fmpWLFi8vPzS3eJVCuIiYnR7t27FRsbK0kqUaKEatSoodKlSxtcWe6wWvPj77y8vNS4cWM1btxY8fHxWrNmjZYvX64tW7bou+++U2hoqOrVq6cOHTroueeeM7pcwKXI3vfm6d/7Vpsz2dsayN7mRvYme6cw25zJ3mRvsyN7ew4a4AZq3749oSQDN2/e1KpVqxQWFqbIyEgdOHDA6JKczixzbtmyperWrau6dety2S0Ts9vtmj59ut555x198cUXmjFjhkqXLq3ixYvLy8tL58+f14kTJ+RwONSqVSt98MEHRpeMLOjXr5/69eunn3/+WcuWLdPKlSs1Y8YMffnllypdurRq1aplyu8uKwY0Pz8/3bhxQ0ePHlXhwoXl7++vJ598Uvnz5ze6NKfYsGGDli1bpmXLlmnSpEmy2WwqVqyYnnnmGT3zzDOmPjr3119/1ZgxYxQZGSmHw5HmUop2u121atXS8OHDFRgYaGCVOWe1o+7vxtfXV23atFGbNm108eJFrVy5UsuWLdO2bdu0fft2Qjgsh+ydMbPk0Kwwy5zJ3tZA9jY3sjfZm+xtPmRv6yF7uzebw+w3E4HH2LNnj0JDQ7Vq1SrFxcXJ4XCocuXKWrZsmdGlOY0V5wxz+fHHH7VkyRJFRUXp7NmzcjgcKlGihGrVqqV27dqpfv36RpeYK4KCgvSvf/1LTZs2TV12+fJlBQcH6+OPP1aNGjXSjF+zZo0+/PBDj7+0j3T7DKht27Zp2bJlWrNmja5duyZJKlu2rDp06KD27durTJkyBleZc2fOnEkNaL/++muGAa158+aaOnVqmteBJ4uPj9f69eu1dOlSbd68WUlJScqTJ48aNGigZ555RkFBQerYsaOp5pzi8OHDqTuZzpw5I5vNlrpTYujQoXrllVeMLjHXrFu3TgMHDpTNZlOzZs1Uv359lShRQt7e3oqNjVVkZKRWrVqlxMRETZ48Wc2aNTO6ZDjRyZMntWLFCvXu3dvoUgAYyIo51IpzhrmQvcneZG/PRfYme5O9rYfs7R5ogHuIM2fOKCwsTOHh4WnuseDpYmJiFB4errCwMB0/flyS5O3trebNm+vFF19U7dq1Da4w91lxzoCnCwoKyvDI63tdHtMMIfyvEhIStH79ei1fvlybNm3SrVu3ZLfb1aBBA/3f//2f0eXlGisFtBSXLl1KPUp13759adb17NlTvXv3lp+fnzHFOdnOnTu1bNkyRURE6PLly7LZbCpXrpyef/55BQcHq1SpUkaXmG2nTp1SmzZt9OCDD+qTTz5R+fLlMxz3559/asCAAfrtt9+0ZMmSO45zd8OGDcvy39hsNo0dO9YJ1QDwVGRv87DinAFPR/a+jexN9jYjsjfZm+wNV6MB7sZu3ryp1atXKywsTDt27FBycrK8vb31888/G11ajiQkJGjt2rVavHixtm/fnnqpm4oVK+rYsWOaPHmyWrZsaXCVucuKc4Z1JCQk6PDhw4qNjU09Cj0oKEh58+Y1urRck50fdpK574lz5coVrVq1SsuWLdPu3bt18OBBo0tyCjMHtDuJjo7WsmXLtHz5cv3222+y2Wzy9/dXq1at1KFDh3RnXZjFrVu39MMPP2jp0qXauHGjbt686fG/uz744AMtWbJEq1atSnOPuYxcunRJrVu3Vtu2bTV06FAXVZi7goKCsvw3NpvNo3eYZucMEZvNprVr1zqhGsBzkb3Nw4pzhnWQve+M7O35yN5kb0/+3UX2vjeyN4xAA9wN7d27V2FhYVq5cmXqpblKlSqlTp066YUXXlDx4sWNLjFboqKiFBoaqpUrV+rKlSuy2+2qUaOGmjdvrubNmyspKUnNmjUz1eVerDhnWMe5c+c0adIkRUREKC4uLs06Pz8/tWjRQoMGDVKJEiUMqhCusmvXLtOfQWPGgJYZhw8f1tKlS7Vy5Ur9+eefHh9YMuvatWuKiIjQ8uXLNWvWLKPLybZWrVrpySefzPSOxAkTJmjDhg36/vvvnVyZc0RHR2fr7zz5HnRNmjRJt8zhcOjMmTMqVqyYfHx8Mvy79evXO7s0wCOQvc2TQ604Z1gH2RspyN7mRfYme3sSsvdtZG/35210AbgtJiZGS5YsUWhoqI4fPy6HwyG73S5JGjhwoHr27Jn6757qhRdekJ+fnxo1aqQnn3xSTZo0SXNEVHY/ON2ZFecMa9i3b5969eqly5cvq1q1ahne1yY8PFzr16/XtGnTVLNmTaNLRhb9/PPP2rdvnxwOhx566KEMQ/a1a9c0ceJEffvttzpw4IABVbpOnjx51LRpUzVt2jRNQDO7oKAgBQUFafDgwdqxY4cl5ixJ+fPnV7NmzbRnzx6jS8mRM2fOqFKlSpkeX6FCBS1YsMCJFTmXJ4fp7MooTF+4cEENGzbURx99pAYNGhhQFeDeyN7mzKFWnDOsgextfmTvtMjeZG9PRPY2P7K3Z6IBbqCUS3OFhoZq27ZtSkpKUt68edWkSRM988wzCgwMVHBwsCpXruzxAVxS6j1cjh49qsKFC8vf319PPvmk8ufPb3RpTmPFOcP8zp8/r759+ypfvnz6/PPPVatWrQzHHTx4UAMHDtSAAQO0ZMkSFS1a1MWVIjuuX7+ut99+W5s2bVLKRWJsNpsaNmyoadOmpR7RuHHjRo0cOVIxMTG67777jCzZ5cwS0LKqTJkyHr/z+NSpU5o9e7b27t0rSXr44YfVo0cP3X///WnGRUREaPTo0Tp37pzGjBljRKm5wtfXV1euXMn0+CtXriggIMCJFRkrISFBv/32m3x9fVWhQgWjy3Gau90fE7Aqsrf5c6gV5wzzI3ubG9n73sjenovsfXdkb3Mge7s/GuAGatSoka5cuaKCBQvq2WefVdOmTfXkk0/Kz89PkvmOUN62bZvWr1+vpUuXavHixVq0aJHy5MmjBg0a6JlnnsnWvSPcnRXnDPObP3++4uLitHDhQpUvX/6O4x5++GHNnj1bbdq00X//+1/179/fhVUiuz777DNt3LhRjRo1UnBwsPz9/bVp0yZ98803mjBhgoYPH67x48frq6++kpeXl7p3764BAwYYXXausFpAk6T9+/dr2rRpaebct2/fNGcdOBwOffXVV/r0008VHx9vVKk5dujQIb388su6du2afH195evrq4MHD2rlypVauHChqlSpoqtXr2r48OGKiIiQl5eXevbsaXTZOfLII48oIiJC3bt3z9T41atX66GHHnJyVc519epVffnll9q7d6/mzZuXunzZsmUaM2ZM6k6JBx98UGPHjlX16tUNqhSAK5G9zZ9DrThnmB/Z29zI3mRvsjfZ25ORveEJaIAb6PLly/L391eLFi1Ur1491axZMzWAm5Gvr69at26t1q1b69KlS1q5cqWWLVumH374QT/88IOk20fNREVFqWHDhqb4b2HFOcP81q5dq7Zt2941gKcoW7asgoODFRERQQj3EOvXr1fdunX15Zdfpi576qmnVLRoUc2bN0+FChXS7NmzFRQUpHHjxnn8D/YUVgxo27ZtU48ePZSUlKQHH3xQfn5+ioyM1KuvvqrZs2erTp06OnXqlP7xj38oKipK+fPn16hRo4wuO9tSdiJ8/PHHevbZZyXdvl/o22+/rTFjxmjixIkKCQnRH3/8oUcffVRjxoxRYGCgwVXnTMeOHTVw4EDNnj1br7322l3HTp8+XVFRUWne+54mLi5OnTt31rFjx1SqVCklJibK29tbUVFRGjJkiBwOhzp37qzKlSsrPDxcr732msLDw9PtaANgPmRv8+dQK84Z5kf2NjeyN9mb7E329lRkb3gMBwwTGRnpeO+99xx169Z1BAUFOR566CHHCy+84Jg5c6bj+PHjjlOnTjkCAwMda9euNbpUpzp16pRj2rRpjmeffdYRGBjoCAoKctSsWdPxr3/9y7Fnzx6jy3MKK84Z5lG9enXHwoULMz1+0aJFjho1ajixIuSm6tWrO7766qt0y3/77TdHYGCg46GHHnKMHj3akZCQYEB1ztO7d29H1apVHcuXL09dtn//fkfTpk0dL7/8siMmJsbRokULR2BgoKNjx46Ow4cPG1ht7nj11VcdNWvWTPO98+effzrat2/v6NSpk+O3335zNGzY0BEYGOjo37+/IzY21sBqc65hw4aO0aNHp1u+evVqx8MPP+zo2rWr45FHHnF8+eWXjqSkJAMqdI7+/fs7goKCHP/4xz8ce/fuTfPeTUpKcuzduzd1zIgRIwysNOc+/fRTR9WqVR3ff/99muU9e/Z0BAUFOcaNG5e6LD4+3tG8eXPH0KFDXV2m0124cMERGBjo2Lp1q9GlAG6D7H2bFXOoFecM8yB7mxvZm+xN9iZ7eyqy921kb/fHGeAGql27tmrXrq0RI0Zo06ZNWrZsmTZu3Kj9+/dr4sSJKl++vGw2m65fv250qU5VtmxZ9e7dW71799bhw4e1dOlSrVy5Ut99950WL16sQ4cOGV1irrPinGEeefLk0c2bNzM9Pj4+Xv7+/k6sCLnpxo0bKlKkSLrlhQsXliQ988wzGj58uKvLcrqoqCh16dIl9ehkSXrsscc0ePBgDRo0SIMGDVJ0dLTeeecdvf7666a4P+ihQ4f04osvqkaNGqnLSpYsqX/84x/q0aOH3nrrLSUmJmry5Mlq1aqVgZXmjsuXL2d4+dNHH31USUlJOnLkiObNm2e6y3JNnDhR48aN08KFC7VixQp5eXmpUKFC8vLy0qVLl5SQkCC73a7u3btr0KBBRpebIxEREWrXrp1atmyZuiwuLk5btmyRJHXt2jV1ed68edW2bVt9++23Lq8TgOuRvW+zYg614pxhHmRvcyN7k73J3tVdX5wTkb3J3nA/NMDdgLe3t5o2baqmTZsqLi5OERERWrZsmXbs2CGHw6EhQ4Zo8eLFev7559WiRQvlzZvX6JKdJigoSEFBQRo8eLB27Nih5cuXG12S01lxzvBsVapU0aZNmxQSEpKp8Rs3blSlSpWcXBWczWazSZLat29vbCFOYsWAdvXqVVWsWDHd8sqVK8vhcOjSpUv69ttvdd999xlQXe5LTEzM8DeUr6+vJKlnz56m2r4pfHx8NHLkSIWEhCg8PFxRUVE6e/asHA6HKlSooFq1aqlNmzamuBTZqVOn0gRtSYqMjFRiYqLKly+f7rVcunRpnT9/3pUl5ropU6akWxYfHy+bzaYlS5Zo9+7d6dbbbDb17dvXFeUBbofs/T9WzKFWnDM8G9nbmsjeZG9PR/Yme5O9byN7G48GuJvJly+fgoODFRwcrPPnz2v58uVatmyZtm/fru3bt2v06NGKjIw0ukyXqFevnurVq2d0GS5lxTnD87Rr107vvfeeVq5cqdatW991bHh4uLZu3apJkya5qDo4W0pgMRsrBrSkpCR5e6f/Kejj4yNJ6t27t2kCeGY88sgjRpfgVA8++KDHH2V+L3a7XcnJyWmWbdu2TZLUsGHDdOMvXLig/Pnzu6Q2Z8kohKcIDw/PcDkhHLiN7P0/VsyhVpwzPA/Z29rI3uZB9k6L7O35yN5pkb3dFw1wN1a0aFG98soreuWVV3T8+HEtXbrUo49QzuwRq39ls9k0Z84cJ1TjGlacM8yvQ4cOCg8P1+DBg3XkyBF169ZNJUqUSDMmNjZWs2fP1ty5c9W4cWNTXMLJSlKOOM/qOjMze0DLSEZHqJuZFV7bMTEx2r17t2JjYyVJJUqUUI0aNVS6dGmDK8sdlSpV0t69e9WtWzdJksPh0Jo1a2Sz2dSkSZN049etW+fxr/O5c+caXQJgCmRvz8+hVpwzzI/sbX5k7/TI3uZnhdc22TstsjeMQgPcQ9x///3q37+/+vfvb3Qp2bZz584Ml9tsNjkcjjuu82RWnDPMz263a/r06XrnnXf0xRdfaMaMGSpdurSKFy8uLy8vnT9/XidOnJDD4VCrVq30wQcfGF0ysmjs2LGaPHlymmUOh0M2m03vvPNOuqO1bTab1q5d68oSXY7PZnM4duxYurP5rl69Kkk6cuRIhkfl16lTxyW1OdOvv/6qMWPGKDIyUg6HI81vELvdrlq1amn48OEKDAw0sMqca9++vT744AM9+uijevzxx7Vo0SKdPn1a9913nxo1apRm7PTp07Vv3z6Pv69i3bp1jS4BMB2yt2ey4pxhfmRv8yN7p8dnszmQvcneKcjeMBINcAOFhITozTffVIMGDVKXJSYmau/evQoKClKBAgXSjF+6dKmGDh2qgwcPurrUXHH48OF0yy5cuKCGDRtq9uzZaf47mIUV5wxrKFCggL744gv9+OOPWrJkiaKiovTLL7/I4XCoRIkSat++vdq1a6f69esbXSqyqEyZMpKU4Y7ClCNV/77uTjsVPY0VA9quXbuUlJSUZllcXJwkacuWLYqJiUn3N558L7rp06dr+vTpGa4bP358hssPHTrkzJKcbt26dRo4cKBsNptatmyp+vXrq0SJEvL29lZsbKwiIyO1atUqdezYUZMnT1azZs2MLjnbunTpot27d2vcuHGpDY+CBQtq4sSJstvtkqTvvvtOM2bM0MmTJ1WrVi29+OKLBlftXAkJCfrtt9/k6+urChUqGF0OYBiyt/lzqBXnDGsge5sX2ZvsTfZOi+ztOcje6ZG93ZPNYZZvTg8UFBSkjz76SG3atElddvHiRTVs2FCzZs1KF9CWLl2qIUOGePyXwV9dvHhRDRo0sFQgteKcAcDdBQUF3fFI85Qj8DPiyd/Jd5rzX38a/nV9yn8HT53zZ599lq2zCfr16+eEalzj1KlTatOmjR588EF98sknKl++fIbj/vzzTw0YMEC//fablixZcsdxnmLv3r3au3ev8ufPr2bNmqlIkSKp66ZMmaIlS5aoTZs26tWrV4b3H/Q0V69e1Zdffqm9e/dq3rx5qcuXLVumMWPG6MqVK5Ju34tu7NixprunIpAZZG9r5lArzhkA3B3Z+3/I3mmRvT0P2fs2srf74gxwN8QxCQA8RXx8vHx9fdMt/+233xQQEJDu/mRwf+Hh4apdu7bKlStndCku1bdvX8tdam3cuHFGl+BSnnwp2+yaM2eO8uTJo5kzZ6YJon9XqlQpzZgxQ61bt9bXX3+toUOHurDK3FejRg3VqFEjw3X9+vW7446VW7duad++fRmeDequ4uLi1LlzZx07dkylSpVSYmKivL29FRUVpSFDhsjhcKhz586qXLmywsPD9dprryk8PFz333+/0aUDboHsDcBTkL3Nh+xtHWRv8yN7p0f2Jnu7AxrgAIAsS0hI0Pjx47Vs2TL98MMP6YL4pEmT9MMPP6hDhw4aMmSI/P39DaoUWTVs2DBNmDDBciHcigEtODjY6BJcKqPL35rd5s2bFRwcfNcAnqJQoUJq3769NmzY4PEhPLsuX76skJCQDM8GdVezZs3SiRMn9J///EctW7ZMXT516lQ5HA698sorqduzY8eOatu2raZPn265nXAAAHgqsrd5kb2tg+xtfmTvrCF7w1XsRhcAAPAsCQkJ6t69u77++muVKVNGFy9eTDfm6aefVmBgoL755hu98cYbSkxMNKBSZIdVz4QKCQnRtm3bjC7DpZo2bap169YZXYbL7Ny5U+fOnTO6DJc6c+aMKlWqlOnxFSpU0J9//unEityfp30GRkREqF27dmkCeFxcnLZs2SJJ6tq1a+ryvHnzqm3btpb7rAMAwFORvc3N03535hayt/mRve+N7O15n4Fkb89EAxwAkCVfffWVIiMjNXz4cIWHh6t06dLpxnTq1EmLFy9Wv379tGfPHs2fP9+ASoHMs2JAi46O1vXr140uA07k6+ubeg+qzLhy5YoCAgKcWBFy26lTp/TII4+kWRYZGanExESVK1dO9913X5p1pUuX1vnz511ZIgAAyCayN8yI7A0zInubH9nbM3EJdLhMeHh4umVxcXGSpC1btigmJibDv2vfvr0Tq3IuK84Z5rds2TI1bdpUL7300j3H9uvXTzt37tSSJUv06quvOr845IpLly7p9OnTWfqbMmXKOKkaANn1yCOPKCIiQt27d8/U+NWrV+uhhx5yclXITXa7XcnJyWmWpRxl3rBhw3TjL1y4oPz587ukNgDGsWIOteKcYX5kb/MjewPmQPY2P7K3Z6IBbrC//9C5fPmypNtvkL//AMroUkeeZOjQobLZbGmWpVzqYubMmbLZbKn/nvLPNpvNowOpFecM8zt+/Li6dOmS6fFPPfWUPvnkEydWhNw2duxYjR07NtPjbTabDh486MSKgNyxZs0aHT9+PNPjbTab+vbt68SKnKtjx44aOHCgZs+erddee+2uY6dPn66oqCh9+eWXLqoOuaFSpUrau3evunXrJun278w1a9bIZrOpSZMm6cavW7dOFStWdHWZgFsge5s7h1pxzjA/srf5kb1hVmTvOyN7eyayt2eiAW6wO/3QeeeddwyoxrnGjRtndAkuZ8U5w/z8/f2VlJSU6fF58+aVr6+vEytCbqtVq5bKly9vdBkuZ7WAJkmLFi3S1q1bMz3eZrNlaQeNu1mzZo0iIiIyPd7Tt3HLli3VvHlzTZgwQQcOHNBLL72kqlWrKk+ePJKk5ORkRUVFadasWVqzZo06deqkJ554wuCqkRXt27fXBx98oEcffVSPP/64Fi1apNOnT+u+++5To0aN0oydPn269u3bp+HDhxtULWAssre5WXHOMD+yt/mRvTPH03OZRPa+F0/fxmRv8yN7eyYa4AZq3759uiOUzSw4OPieYy5fvixfX1/lzZvXBRU5nxXnDPOrUKGC9uzZo5CQkEyN3717t8qWLevkqpCbOnfurDZt2hhdhstZLaBJt+9XFBkZmenxnh7Ce/XqleGlqcxs4sSJGjdunBYuXKgVK1bIy8tLhQoVkpeXly5duqSEhATZ7XZ1795dgwYNMrpcZFGXLl20e/dujRs3LvWMxoIFC2rixImy2+2SpO+++04zZszQyZMnVatWLb344osGVw24Htk7PbPlUCvOGeZH9jY/snfmkL09D9mb7G02ZG/PRAPcQB9++KHRJbjcrVu3FBoaqn379qU5Qnvnzp16//339fvvv8tms6lhw4YaOXKkKY6CtOKcYW7BwcEaOXKktm/frvr169917I4dOxQREaH+/fu7qDog+6wY0N599101bdrU6DJcpmLFiqpbt67RZbiUj4+PRo4cqZCQEIWHhysqKkpnz56Vw+FQhQoVVKtWLbVp00b333+/0aUiG2w2myZOnKhu3bpp7969yp8/v5o1a6YiRYqkjvnzzz/lcDj05ptvqlevXqnhHLASsrc1cqgV5wxzI3vDrMje5kf2JnubDdnbM9EAN9Abb7yh9u3bq1mzZpa4RNGtW7f0+uuvKzIyUnny5NHo0aPl7e2t33//XW+88YZu3bqlRo0aqVKlSlq9erU6d+6spUuXqlixYkaXnm1WnDPMr3379lq8eLF69+6tXr16qVOnTules7Gxsfr22281c+ZMlStXTl27djWoWiDzrBjQChcuzFkiFvHggw9ylLmJ1ahRQzVq1MhwXb9+/dSvX78M1926dUv79u1TUFCQChQo4MwSAUORvc2fQ604Z5gf2RtmRfaGmZG9zY3s7Vk4BMFAO3fu1D//+U81bNhQQ4cO1datW+VwOIwuy2nmz5+vXbt26Z///KciIyPl7X37+IvPPvtMCQkJatOmjWbMmKHBgwdr8eLF8vLy0vTp0w2uOmesOGeYX548eTR16lRVq1ZNn3zyiRo1aqSmTZuqS5cu6tSpk5o0aaLGjRvrs88+U2BgoGbPns0XuwcpU6aM/P39jS4DAOACly9fVkhIiH7++WejSwGciuxt/hxqxTnD/Mje5kb2BgDrIHsbgzPADbRt2zatXbtW33//vVasWKElS5aoWLFiatOmjdq2baugoCCjS8xVy5cvV4sWLdS9e/fUZQkJCVq/fr1sNlua5YUKFdLzzz+vFStWaPjw4UaUmyusOGdYQ9GiRTVnzhxFRERoxYoVOnjwoI4cOSK73a5ixYqpffv2euaZZ9SkSROjS0UWrV+//q7rk5OT9eeff6pYsWLy8fFxUVVAzvXr10+BgYFGl+FSmb1f5F/ZbDbNmTPHCdW4h7Nnz6pQoULKkydPunUFCxbU3Llz9dBDDxlQmXHM3AQEUpC9zZ9DrThnWAPZ27zI3jArsnfmkL3J3nA+GuAGypcvn9q1a6d27drp6tWrWr16tVauXKk5c+Zo9v9j777Do6jeNo7fm0YaJfRepCT03psU6ZGOSkcQBaUJKvADqYoIqAgIgtIVkBI6GJAu0ptUKaEKBEICBBLS9v2DNytLEkhCks1uvp/r8hJmzuw8s429z5k5M2+eihQpopYtW8rb21s5cuSwdLmv7PLly2rdurXZssOHDys0NFTZs2eP8Q9j/vz55e/vn5IlJrm0eMxIWxo1aqRGjRpZugykoHv37qlBgwaaO3euqlevbulykkxaDGgTJkyIc9omWxTXNFTRHj9+rLlz56pVq1bKmzdvClWVvA4cOBDrcoPBEGfwMhgMyVlSipg3b55+++03rV27NkbY/vLLL7V371717NlTvXr1Mrsnl6OjY5qbihFIK8jetp9D0+IxI20he6c9ZG/bQfY2R/b+b521I3sjtWMAPJVInz692rVrp3bt2unevXvavHmzNm3apG+++UbffPONKleurFatWqlRo0Zyc3OzdLmJEhUVJXt7e7Nl+/btkyTVqFEjRvuHDx/KxcUlRWpLLmnxmAHp6bQuzs7OSpcunaVLQTKwxTMW02JAe76T+HnBwcH64osv1KtXLxUuXDiFqrKcx48fa8aMGapYsaLNvMZnz56NsezevXuqUaOG5s2bZ1MdadLT76YhQ4Zow4YNypIli27duqV8+fKZtSlcuLCOHDmib7/9VidPntT3339voWoBWArZ2zZzaFo8ZkAie9s6srdt5DKytzmyt/Uje8NacA/wVChz5szq2LGjFi1apB07duh///uf7Ozs9Pnnn6tWrVqWLi/R8ufPrzNnzpgt27JliwwGg15//fUY7ffs2aP8+fOnUHXJIy0eM9KG8PBwLVu2TMOGDTNbfuDAATVr1kzVqlVT+fLl1atXL129etVCVQJJJzqgXbt2zdKlpJjQ0FCtXr06TV0dZYsdTM+zhbPM47Js2TJt2LBB3bt3144dO2IEcOlph9uWLVvUpk0bbdmyRatWrbJApQBSC7L3U7aQQ9PiMSNtIHsjrSF7pw1kb+tG9oa1YAA8lXN0dJSzs7Pc3d3l4OCgsLAwS5eUaM2bN9eaNWu0detWhYSEaP78+bp06ZKyZMkS415Fa9eu1Z9//qkGDRpYqNqkkRaPGbYvPDxc7777rkaNGqX169crIiJCkuTn56devXrJz89PtWvXVvfu3eXn56e3335bd+/etXDVwKtLCwHteWnxmGG9VqxYoSpVqmjo0KGx3mcsmpOTk8aPH6/ixYvrt99+S8EKAaRmZG/rzqFp8Zhh+8jeSKvSYg5Ni8cM60X2hrVgCvRU6N69e9qyZYs2b96sgwcPKiIiQiVKlNCAAQPUvHlzS5eXaN27d9fu3bv10Ucfme5/4ejoqC+++EJOTk6Snp6hvXjxYh04cECFChVS9+7dLVv0K0qLxwzbt3jxYh06dEiffPKJOnXqJAeHp/+UTJs2TWFhYXrzzTf19ddfS5J69+4tb29vzZo1SyNGjLBk2Ugijo6Oqly5sjJmzGjpUgDAzMWLFzVgwIB4tTUYDGrSpIlmzpyZzFUBSM3I3raTQ9PiMcP2kb3TNrI3gNSK7A1rwQB4KnH37l35+vpq8+bNOnz4sCIjI5UnTx717NlTb775pk3c/8PJyUnz58/Xxo0bdezYMbm7u8vb21tFihQxtTl58qSOHDmiN998U0OHDpWzs7MFK351afGYYfvWr1+vxo0bq2fPnqZlYWFh2rZtmwwGg9nyTJkyqU2bNtqwYQMh3Eo8fPhQ6dOnj3N9xowZtWjRIrNl+/fvV9WqVZO7NCBZpU+fXhMmTFDRokUtXQoSycHBwTTIER8ZMmSIcb9YALaP7P2UreXQtHjMsH1kb9tG9kZaRfa2fmRvWAsGwC3I399fvr6++v3333XkyBFFRkYqY8aMateunby9vVWpUiVLl5jk7O3t5e3tLW9v71jXf/DBBxowYIDs7Gxndv60eMywbZcvX1br1q3Nlh0+fFihoaHKnj27PD09zdblz58/Td3HyNp17dpV8+bNU6ZMmV7a9smTJ5o0aZJ+/fVXnT59OvmLs6C0GNAyZsyohQsXqnjx4pYuJUWkS5dOtWrV4goLK1agQAGdPHky3u1PnjypXLlyJWNFAFILsndMtphD0+Ixw7aRbiFPQQABAABJREFUvW0b2Tt2ZG/bR/a2fmRvWAsGwC2obt26kp6eqdywYUN5e3urbt26L7xvgq1zcXGxdAkpLi0eM6xbVFRUjLP29u3bJ0mqUaNGjPYPHz7kfW5Fzpw5o86dO2v+/PnKmjVrnO2OHz+uzz77TJcvX35hO1uRLl06s86nyMhIzZ49W3369LFgVcnL0dFRVapUMf394cOHmjhxosaPH2/Bql7dvHnz9Ntvv2nt2rUxfnN9+eWX2rt3r3r27KlevXpZfQf56tWrYyx79OiRJOnPP//U7du3Y92uVatWyVhV8mnRooWmTJmiHj16vLTD7Pz581q3bp26du2aQtUBsCSyd0xp8fd5WjxmWDeyt20je8eO7E32tkZk77iRvWFJBqPRaLR0EWlVly5d1LJlSzVp0kTu7u6WLgcA4qVly5YqW7asxo4da1rWrFkz+fn56dtvv1WTJk3M2vfq1Uv379/X8uXLU7pUJMIvv/yiL774Qvny5dP8+fNjnKEZHh6u77//XnPnzlVkZKRatmyp4cOH28SZuw8fPtTy5ct17NgxGY1GlShRQp06dVKGDBnM2v39998aMWKE/vnnH505c8ZC1SaN69eva968eTp69KgkqUSJEnrvvfdUoEABs3a+vr4aN26c7t69a7XHbDQaNWTIEG3YsEFZsmTR0qVLlS9fPrM206dP1/Lly+Xv76833nhD33//vYWqTRpeXl4yGAxmy5796R/bOoPBYLWv8ePHj9WmTRsFBQVp+PDhat68eYxO44iICK1fv16TJ0+WJPn4+ChbtmyWKDfF3LlzR5kyZYp1oC88PFxHjx5V8eLFXzgFJ2DtyN4ArBHZ27aRvcneZG+yt7W+xmTv2JG9Ux8GwAEACTJ79mzNmDFDU6ZMUc2aNbVs2TJ99dVXypo1q7Zt22Z2D5i1a9fqs88+04ABA/TBBx9YsGokxPr16zV06FBlz55d8+fPV/78+SU9PUP9s88+0z///KPcuXNrzJgxql27toWrTRrXrl1T165ddevWLbOQkjVrVi1fvly5cuVSRESEpkyZooULFyoyMlLNmzfXlClTLFj1qzlz5oy6dOmi4OBgOTs7y9nZWUFBQXJ1ddXSpUtVrFgxPXz4UCNGjJCvr6/s7e3Vs2dPDRo0yNKlJ8rSpUs1evRode/eXYMHD47zqr+wsDCNGTNGq1at0hdffKE2bdqkcKVJx8fHJ1HbPT/VpjXx8/PThx9+KD8/P7m6uqpkyZLKli2bIiMjFRAQoJMnTyo0NFS5c+fWjBkz5OXlZemSk8SLrq4YNGiQTV1dAQBAWkH2tn1kb7I32Zvsba3I3mRva8AAuAXFNjVGfFjr1BgAbENYWJh69uypgwcPymAwyGg0ytHRUdOnTzdNL7llyxYtXrxYBw4cUKFChbRq1So5OztbuHIkxM6dOzVw4EC5u7trzpw5+uOPPzRr1ixFRETonXfe0eDBg+Xm5mbpMpPM4MGDtXHjRg0aNEht27aVi4uLdu7cqbFjx6pcuXKaNGmSevfurSNHjih37twaNWqU6f1urfr06aPdu3dr4sSJat68uSTpxIkT+vjjj5U7d25NnjxZXbt21eXLl1W6dGmNHz8+xn0GrUm7du3k6uqqhQsXvrSt0WhU27Zt5eTkpKVLl6ZAdUhKYWFh+uWXX7RhwwadPXtWERERkp5OLViuXDk1atRIb731llmnsbVKi1dXAIlB9gZgjcjeaQPZm+xN9iZ7WyuyN9k7tWMA3IKip8aInvLiZax9agwAtiMyMlIbN27UsWPH5O7uLm9vbxUpUsS0/ttvv9XcuXPVrFkzDR06VB4eHhasFol1+PBh9enTR8HBwTIajSpQoIDGjx+vSpUqWbq0JFenTh3VrFlTEyZMMFvu4+OjUaNGqU6dOtq6daveeecdffLJJ3J1dbVQpUmnZs2aatq0qUaMGGG23NfXV4MGDVK5cuV04sQJDRgwQO+++67Vn7lavnx5DRgwQN27d49X+9mzZ2vmzJmmKeqsXWhoaKydoRcuXFCGDBmUPXt2C1SVMu7duyd7e3ubmC7yeWnx6gogMcjeAKwV2TttIHuTvcneZG9bQPYme6c2DpYuIC17/h96ALAW9vb28vb2lre3d6zrP/jgAw0YMMDqf7SndRUrVtTChQvVq1cv3bt3T2PHjrXJAC5JgYGBKl++fIzllStXVlhYmHbu3KmpU6eqcePGFqguedy/fz/WKahKly6tyMhInTt3TosWLVK5cuVSvrhk4ODgkKCzjjNkyBDjHlbWKCwsTBMnTtS6deu0a9euGEH8m2++0a5du9S2bVt99tlnNtHB9LzMmTNbuoRks2LFClWpUkVDhw59YTsnJyeNHz9eZ86c0W+//UYIR5pD9gZgrcjeaQPZm+xN9iZ72wKyN9k7tWEA3IKs+R4PANKurl27qk+fPqpevbppWUREhI4ePSovLy+lT59eLi4upnXR9yLjChrr5OXlpSVLlqhHjx7q06ePZsyYoWrVqlm6rCQXHh5u9r6NFj3VXI8ePWwqgEtPP7fp0qWLsTw6pPXu3dtmArgkFShQQCdPnox3+5MnTypXrlzJWFHye3baTC8vLwUGBsY4pnr16un27dtatmyZzp8/r4ULF8rBwTojwvTp0xO13UcffZTElaScixcvasCAAfFqazAY1KRJE82cOTOZqwJSH7I3AGtE9k5byN5kb1tB9iZ7x4XsjZRmnZ+wNCoyMlKzZ89Wnz59LF0KgDTswIEDat++vdmyhw8fqmvXrpo7d65ZOIf1GTZsWKzLCxQooOvXr+v9999X06ZNzaYPNRgM+vLLL1OqRIuoUqWKpUtIcaVKlbJ0CUmqRYsWmjJlinr06KGiRYu+sO358+e1bt06de3aNYWqSx7z58/XwYMHNWLECHXu3DnWNu3bt1f79u01ffp0TZ8+XYsXL473VHWpTXxD+PPTH1tzCE+rV1cAyY3sDSA1IHvbNrJ37Mje1o/sTfaORvYme1saA+AW9vDhQy1fvlzHjh2T0WhUiRIl1KlTJ2XIkMGs3d9//60RI0bon3/+IYQDSJWMRqOlS0AS8PHxeeH6J0+eaPXq1WbL0kIIT4s/WuNzj1Rr0qFDBy1dulRdunTR8OHD1bx58xiva0REhNavX6/Jkycrffr0Vh/C161bpwYNGsQZwJ/10Ucf6cCBA1qzZo3VhvA//vjjpW0ePnyo7777Tjt27JCDg4PVv8Zp8eoKILHI3gBsBdnbNpC9Y0f2tn5k7xcje1snsrd1YgDcgq5du6auXbvq1q1bph+vW7Zs0S+//KLly5crV65cioiI0JQpU7Rw4UJFRkaqefPmFq4aAGDL4vMj1lYFBQXp33//NVt2//59SdK9e/dirJOk3Llzp0htyeXSpUs6ePCg2bKHDx9Kks6dOxfrdFyVK1dOkdqSmqurq2bOnKkPP/xQn332mcaMGaOSJUsqW7ZsioyMVEBAgE6ePKnQ0FDlzp1bM2bMULZs2Sxd9iu5cuWK3n777Xi3f/311zV16tRkrCh55cmT54XrN27cqK+++kr+/v6qUKGCRo8erWLFiqVQdckjLV5dASQG2RsAkNqQvcneZG+yt7Uie5O9rQUD4Bb03Xff6datWxo0aJDatm0rFxcX7dy5U2PHjtXYsWM1adIk9e7dW0eOHFHu3Lk1atQo1a1b19JlAwBs2Mt+xNqyL7/8Ms6z6YcMGRJjmcFg0OnTp5O7rGQ1a9YszZo1K9Z1EydOjHW5Nd9TsFChQlq9erV++eUXbdiwQUeOHFFERIQkydHRUeXKlVOjRo301ltvJWhqq9TK1dVVkZGR8W6fLl06033obMnVq1c1ZswY7d27VxkzZtT48ePVrl07S5eVJNLi1RVAYpC9AQCpDdmb7B2N7E32thVkb7J3asMAuAUdPHhQrVq1Uu/evU3LmjZtqtDQUI0aNUpDhw7VkSNH9M477+iTTz6Rq6urBasFACCmWbNmydfXV6tWrbJ0Ka+kdevWli4hxVnzvZdehZOTk3r06KEePXpIenqFgb29vTJmzGjhypLea6+9piNHjsQ7dB0+fNimOuLCwsI0e/ZszZkzR2FhYWrdurU++eQTeXh4WLq0JJMWr64AEoPsDQCwdmRv60X2Jns/j+xtfcje1okBcAsKDAxU+fLlYyyvXLmywsLCtHPnTk2dOlWNGze2QHUAALzczZs3rfqs5GgTJkywdAkpLq2G8OdlzpzZ0iUkm9atW2vUqFHat2+fqlWr9sK2+/fvl6+vr/r165dC1SWvvXv3asyYMbpy5YqKFi2qUaNGqVKlSpYuK1mktasrgMQgewMArB3Z23qRvZ8iez9F9rZeZG/rwwC4BYWHh8vFxSXGcjc3N0lSjx49COAAUqXn79f0ons1BQYGpmhtABCb6dOnJ2o7a+6saNWqlVauXKkPPvhA77//vtq3b6+sWbOatfH399fy5cv1008/KW/evOrYsaOFqk0ad+/e1YQJE7Rx40Y5Oztr8ODB6tGjR6z31LMlaenqCiAxyN4ArBXZG4C1IXuTvW0Z2du6GIxGo9HSRaRVXl5emjRpkry9vc2WBwYGqnr16vrpp59Uq1YtC1UHALHz8vKSwWCIsdxoNMa6PJotnKmMmEaNGqXffvvN6l/ftBjQhg0bluBtDAZDnPdqS+28vLzi1e757zFrf28HBATo448/1v79+2UwGJQ7d26zKbpu3rwpo9GocuXK6dtvv1WuXLksXXKiLV68WFOnTlVwcLDq16+vESNGWPXxAEg6ZG8A1ojsjWeRvcne1oLsTfYGUgvbPh3Dytnb21u6BACIIS3erwm2L74h/PmAZs0h3MfHJ95tnz1uaw3hf/zxx0vbPHz4UN9995127NghBweHeN+/KzXLkiWLFixYIF9fX23YsEGnT5/WuXPnZGdnp6xZs6pVq1Z64403VL9+fUuX+srGjx9v+vO2bdu0bdu2l25jMBh0+vTp5CwrWaXFDkQgOZC9AaRGZG/YIrL3i5G9rRfZ+8XI3rAEBsAt7PmpjKQXT2ckSblz506R2gAgNmnxfk2wfWkxoJ09e/albW7cuKFx48Zpx44dSp8+vQYOHJj8hSWTPHnyvHD9xo0b9dVXX8nf318VKlTQ6NGjVaxYsRSqLvk1atRIjRo1irH8/v37cnZ2tkBFSS8tdhKnxQ5EILHI3gCsDdkbtojsHTuyN9nbmpC940b2Tl2YAt2C4prKSIp7OiNrP1MGAJC6JfSMxu3bt+v06dNWP1XVy9h6QHteZGSk5s6dqx9++EGhoaFq1qyZhg0bFuMeVrbg6tWrGjNmjPbu3auMGTNqyJAhateunaXLSjLh4eFatWqVjh07ZtaJeuDAAY0ePVp+fn4yGAyqUaOGPv/8c+XPn9+C1b6aYcOG6e2331bZsmUtXUqKuXHjxkvbxNaB+Omnn6ZAdUDqQfYGAKQ2ZO/Ykb3J3taK7G3byN7WiQFwC0rM/T8kzgAFACSf+N6r6VkGg8FmQ7itB7TYHDp0SGPGjNH58+dVsGBBjRo1StWrV7d0WUkuLCxMs2fP1pw5cxQWFqbWrVvrk08+kYeHh6VLSzLh4eF69913dfDgQTk6Ouro0aNycHCQn5+fWrZsqbCwMNWpU0dFihTR77//rpCQEK1du9ZqO1viusdvWpbWOhCBuJC9AQCpDdnbHNmb7G3NyN4ge6dOTIFuQYRpAEBqs3DhQkuXkCqkhYD2vMDAQH399ddavXq1nJyc1K9fP7333ntycnKydGlJbu/evRozZoyuXLmiokWLatSoUapUqZKly0pyixcv1qFDh/TJJ5+oU6dOcnB4+tN/2rRpCgsL05tvvqmvv/5aktS7d295e3tr1qxZGjFihCXLRhJ4vgNx/PjxNt+BCLwI2RsAkNqQvZ8ie5O9bQHZO+0ie6duDICnAiEhIVq5cqV2796ts2fPKigoSAaDQZkzZ5aXl5caNGggb29vm/xHEACQulSpUiXB2xw6dCgZKrGctBLQnrV8+XJNnjxZ9+/fV82aNTVq1Cirno4rLnfv3tWECRO0ceNGOTs7a/DgwerRo4cpnNqa9evXq3HjxurZs6dpWVhYmLZt2yaDwWC2PFOmTGrTpo02bNhACLdiabEDEUgIsjcAILUge5O9yd62g+yd9pC9rYNtfuNYkcOHD2vAgAG6e/eunJyclD9/fuXJk0cREREKCgrS9u3btW3bNk2fPl1TpkxRhQoVLF0yAAC6efOmfHx8tHr1al27ds0mpmFLawFNks6dO6fRo0fr2LFjypo1q7755hs1a9bM0mUli8WLF2vq1KkKDg5W/fr1NWLECOXKlcvSZSWry5cvq3Xr1mbLDh8+rNDQUGXPnl2enp5m6/Lnzy9/f/+ULDHJHTp0SJGRkQnaplWrVslTTApLix2IQEKQvQEA1ojsbRvI3mTvZ5G9rRvZ23rY7r8qVuDixYvq2bOn3N3dNXnyZDVq1CjGmebBwcHavHmzvv/+e/Xq1Us+Pj4qUKCAhSoGAKRlT548ka+vr1atWqX9+/fLaDTKYDCoTp06li7tlaXFgDZx4kQtWrRIkZGRqlevngYOHCh3d3f9+++/L9wud+7cKVRh0ho/frzpz9u2bdO2bdteuo3BYNDp06eTs6xkFRUVJXt7e7Nl+/btkyTVqFEjRvuHDx/KxcUlRWpLLr/99pt+++23eLWN/g6z9hCeFjsQgYQiewMArAnZ27aQvcnezyN7Wyeyt/XhlbGgH374QS4uLlq5cqVy5MgRaxt3d3e1a9dOderUUcuWLfXTTz9p3LhxKVwpACAtO3bsmFatWqVNmzYpODhYkpQ5c2a1bdtWb731lvLkyWPhCl9dWgxo8+bNM/15+/bt2r59e7y2s9YrDp4/GzstyJ8/f4zXa8uWLTIYDHr99ddjtN+zZ4/VT7/XoUMHlStXztJlpJi02IEIJAbZGwBgDcjesSN7Wxey91Nkb9tC9rZODIBb0MGDB9WmTZs4A/izsmfPrlatWmnPnj0pUBkAIK3z9/fX6tWr5ePjo8uXL8toNMrFxUU1atTQ3r17NXbsWDVo0MDSZSaZVq1ayWAwWLqMFPXRRx8leBuj0ZgMlaSct99+W2XLlrV0GSmmefPmmjFjhurUqaOaNWtq2bJlunTpkrJmzar69eubtV27dq3+/PNPDRgwwELVJo1KlSrJ29vb0mWkmLTYgQgkBtkbAJBakb1tH9nb9pG9bR/Z2zoxAG5BgYGBCZpS7bXXXtPy5cuTsSIAQFq3adMmrVq1Snv37lVkZKQyZMggb29vNWrUSLVr19adO3fUsGFDS5eZ5L766itJUnh4uC5cuKCIiAgVKVLE6qekepHcuXOrTZs28W5/48YNDR8+PBkrSl4+Pj6qUaNGmgrh3bt31+7du/XRRx/JYDDIaDTK0dFRX3zxhWnq3y1btmjx4sU6cOCAChUqpO7du1u2aCRIWry6AkgMsjcAILUhe5O940L2tj5kb9tH9rZODIBbUHh4eIL+cU+XLp0ePXqUjBUBANK6QYMGydXVVR07dlSDBg1UuXJls/sY2fKZ2j///LNmzpxp+rfWyclJHTt21ODBg23yfj4jRoxQSEiIOnXq9NK2y5cv18SJE/kdYmWcnJw0f/58bdy4UceOHZO7u7u8vb1VpEgRU5uTJ0/qyJEjevPNNzV06FA5OztbsGIkRlq7ugJIDLI3ACC1IXuTvWND9rZOZO+0gextfWzvXxQAAJBoefPm1fXr17Vq1Sr5+fnp77//VsOGDVWoUCFLl5asVq5cqUmTJilPnjxq1aqV7OzstH//fs2fP1+RkZFWffZ1XAoWLKjx48crJCREvXr1irXNnTt3NGLECO3atUuOjo5WP0VXWmRvby9vb+84pyb74IMPNGDAANnZ2aVwZUmvdevWVn8ftYRKi1dXAAAA2AKyN9n7WWRv60f2tm1kb+vEALiFBQUF6d9//41X28DAwGSuBgCQ1m3dulXHjx/X2rVrtXnzZu3Zs0fffPONXnvtNTVq1EglS5a0dInJYtmyZSpXrpwWLFigdOnSSXp6z61BgwZp2bJlGjJkiGnaKlvx66+/qlevXpoyZYpCQkLUr18/s/Xr16/XuHHjdP/+fZUvX17jx49X4cKFLVRt0jh06JAiIyMTtE2rVq2Sp5hUwpamGpwwYYKlSwCQipG9AQCpCdmb7B2N7P0U2dt6kL1hLQxGo9Fo6SLSKi8vr0RNZ3PmzJlkqAYAAHORkZHas2eP1q1bpz/++EMhISGmf7fatm2rPn36KE+ePBauMmlUrFhRH3/8cYwpyY4dO6Z33nlHPj4+8vLyslB1yefx48fq27ev9u/fr+7du+uzzz5TYGCgRo0apS1btsjZ2VmDBg1Sly5drH4KvoT+7jIajTIYDPzuQqrm5eWlSZMmxXmVAYCnyN4AgNSM7E32JnuTvZG6kb2tE1eAW1Dr1q0tXQIAAHGyt7dX3bp1VbduXYWGhmrLli1av369/vzzT61YsUKrVq1S1apV1bZtW7Vo0cLS5b6SkJAQpU+fPsbyvHnzymg06sGDBxaoKvm5urpq9uzZ+vjjjzV//nxdv35dR44cUUBAgGrWrKmxY8faTEeLJHXo0EHlypWzdBlAkuLqCuDlyN4AgNSM7E32JnsDqR/Z2/pwBTgAADDp3bu3qlWrpipVqqhkyZKxnrUbGBiojRs3at26dTp27JhNnKkb15mcgYGBql69uubNm6fq1atbqLrkFxUVpREjRmjVqlWys7PT2LFj1a5dO0uXlaQ4Wxe2iKsrAAAArBPZm+xN9gasB9nbOnEFOAAAMNm3b5927dolg8Egd3d3VapUSVWrVlW1atVM05B5eHioU6dO6tSpk65du6YNGzZYuGq8Kjs7O3355ZfKlCmT5s6dq71796pVq1ZycOCnIpDacXUFAACA9SF7p01kb8B6kb2tD9+sAADA5MiRIzp9+rSOHDmio0eP6tixY9q+fbsMBoMyZMigypUrq2rVqqpataqKFSumfPny6YMPPrB02UkiKChI//77r9my+/fvS5Lu3bsXY50k5c6dO0VqSw6xHU/nzp31+PFjLVu2TI8ePdLIkSNlZ2dn1saajxmwRZUqVeLqCgAAACtD9iZ7k70B60L2tj5MgQ4AAF7o5s2bZqH87NmzioyMVKZMmVSlShVVrVpVHTt2tHSZr+RFUxlFT1v0PIPBoNOnTyd3acnmZccsKcZ6az7mYcOG6e2331bZsmUtXQqQZJheEAAAwHaQvcne0az5mMnesEVkb+vEFeAAAOCFcuXKpebNm6t58+aSpIcPH2rt2rVatWqVfv/9d/n6+lp9CG/durWlS0hxrVq1StD9i6zdhAkTLF0CAAAAAMSJ7G2byN4AYBkMgAMAgBcKDQ3VwYMHdeDAAR0+fFgnT55UeHi4nJycTFOyWbu0GNC++uorS5cA4BW1bt1a+fPnt3QZAAAASAJkb9tE9gasH9nbOjEFOgAAMBMREaFjx45p37592rdvn44fP67w8HA5OjqqTJkypuBdvnx5OTk5WbpcAAAAAACsDtkbAIDkwwA4AAAwee+993To0CGFhobKzs5OJUuWVLVq1VS1alVVrFhRzs7Oli4RAAAAAACrRvYGACB5MQAOAABMvLy85OjoqBYtWuj9999XwYIFLV0SAAAAAAA2hewNAEDyYgAcAACYjBw5Uvv379fVq1dlMBj02muvqXr16qpWrZoqV66sjBkzWrpEAAAAAACsGtkbAIDkxQA4AACI4d9//9XevXtN9yK7e/eu7Ozs5OXlpapVq5pCuaurq6VLBQAAAADAKpG9AQBIHgyAAwCAlzp//rz27dunv/76S4cOHdKDBw/k4OCgUqVKqXr16howYIClSwQAAAAAwKqRvQEASBoMgAMAgAQJCwvT5s2b9euvv+rYsWMyGAw6c+aMpcsCAAAAAMBmkL0BAEg8B0sXAAAAUrerV6/q+PHjOn78uE6cOKGzZ88qPDxcbm5uqlOnjipXrmzpEgEAAAAAsGpkbwAAkg5XgAMAAJP79+/rxIkTpsB94sQJ3b9/X0ajURkzZlSFChVUpUoVVa5cWSVKlJCdnZ2lSwYAAAAAwKqQvQEASF4MgAMAABMvLy8ZDAYZjUZ5eHiocuXKpv88PT1lMBgsXSIAAAAAAFaN7A0AQPJiCnQAAGDSpEkTValSRVWqVFGRIkUsXQ4AAAAAADaH7A0AQPLiCnAAAAAAAAAAAAAAgE3g5iEAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbIKDpQsAACAtmDZtmqZPn56gbf744w/lzZs3mSpKvPr16+vGjRuSpP/973/q2rXrC9v37NlTe/bskSTNmzdPNWrUSNa6fH19VaBAgWTZBwAAAAAg9SJ7k70BAJAYAAcAIEV4enrK29vbbFlAQID27t0rV1dXNWjQIMY2rq6uKVVeom3evPmFIfzevXvat29fClYEAAAAAEiryN4AAEBiABwAgBTRqFEjNWrUyGzZ/v37tXfvXnl4eGjy5MkWqizxMmTIoCNHjuj27dvKkSNHrG18fX0VEREhR0dHhYeHp3CFAAAAAIC0hOxN9gYAQOIe4AAAIJEaNmwoo9EoX1/fONts2LBBmTJlUunSpVOwMgAAAAAAbAPZGwCAhGMAHACAVGzHjh3q2bOnqlSpotKlS6tx48aaNGmSgoKCzNpdv35dnp6eqlOnTqyP06VLF3l6emr//v2mZUOHDpWnp6cOHDigfv36qUyZMqpWrZoWLVoUr9qaNGki6elUbLHx9/fXoUOH1LhxYzk4xD3pzJo1a9SxY0dVqFBBZcqUkbe3t2bOnKmQkJBY2//111/q0aOHKleurEqVKmngwIGm+6LFJjIyUkuWLFH79u1Vvnx5lS9fXm+99ZZ8fHxkNBrjdawAAAAAANtF9o6J7A0AsGZMgQ4AQCo1efJkzZkzR/b29qpYsaI8PDx07Ngx/fTTT9q0aZMWLFigfPnyvfJ+Ro4cqYCAANWuXVvnz5+Xl5dXvLYrWLCgihcvriNHjsjf31/Zs2c3W79582ZFRUWpefPmmj59eozto6Ki9Mknn2j9+vVycnJSlSpV5OLiooMHD+q7777T77//rnnz5snDw8O0zfLly/X5559LkipVqqQMGTJoz549OnTokMLCwmLsIzw8XH379tWuXbvk7u6u8uXLy9HRUQcOHNDQoUO1f/9+ffXVVwl5ugAAAAAANoTsTfYGANgeBsABAEiFtm3bpjlz5ihTpkz66aefTNOYhYWFaezYsVq+fLkGDBiglStXymAwvNK+/P39tXbtWuXLl09RUVGys4v/BDHNmjXTmTNn5Ovrq86dO5ut27hxo7Jnz67KlSvHuu3ixYu1fv165cuXT3PnzlX+/PklScHBwRo8eLB27Nihzz//XNOmTZMk3bx5U+PHj5eDg4Nmz56t6tWrS5Lu3bunnj176vTp0zH28cMPP2jXrl2qUqWKpk6dqsyZM0uS7t69q/fee08+Pj6qWLGi2rdvH+9jBgAAAADYBrI32RsAYJuYAh0AgFRo/vz5kqRPP/3U7B5eTk5OGj16tAoUKKBTp05p3759r7yvBg0amM5mT0gAl6SmTZtKijkV27///qtjx46padOmcT7mggULJEnjx483BXBJcnd31+TJk5U+fXr5+vrqypUrkiQfHx+Fhobq7bffNgVwScqcObO+/PLLGI8fFhamRYsWydHRUZMnTzYFcEnKmjWrxo4dK0n6+eefE3TMAAAAAADbQPYmewMAbBMD4AAApDIRERE6cuSIDAaDGjduHGO9g4ODGjVqJElm9xVLrGLFiiV623z58qlkyZI6fPiw/P39Tcs3btwoo9GoFi1axLrdzZs3df36dXl4eKhatWox1qdPn161a9eWJB04cECSdPDgQUlS3bp1Y7QvXry48ubNa7bs1KlTevjwoV577TXlyJEjxjalS5dWlixZ5Ofnpzt37sTziAEAAAAAtoDsTfYGANgupkAHACCVCQoKUnh4uDw8POTu7h5rm+jAmRThMWPGjK+0fbNmzXTq1Clt2bJFnTp1kvQ0hOfLl09lypSJdZvowJ4nT544H/f5Y4zeJmfOnHG2v379uunvN2/elCSdO3dOnp6eLzyGmzdvKlu2bC9sAwAAAACwHWTvp8jeAABbxAA4AACpjNFolKQX3l8suo2Tk1O8HjMyMjLOdQmdeu15TZs21aRJk7Rp0yZ16tRJV65c0alTp/T+++/HuU1ijvFl91tzcDD/WRMVFSVJyp07typWrPjCbd3c3F64HgAAAABgW8je5m3I3gAAW8IAOAAAqUymTJnk6OiooKAgBQcHx3om+rVr1yRJWbJkkfRfkI4Ons+7f/9+MlX79EzyMmXK6PDhw7pz5442btwoSWrevHmc22TPnl2SzM4af170MWbNmlWSlCNHDp0/f143btxQkSJFYrR/dho4SaazynPmzKnJkycn4IgAAAAAALaO7P0U2RsAYIu4BzgAAKmMo6Ojypcvr6ioKG3ZsiXG+oiICNPyqlWrSpJcXV0lPQ3b4eHhZu0DAwPl5+eXrDU3a9ZMUVFR8vX11aZNm1SkSJEXTn2WO3du5cmTR4GBgab7jD3r4cOH2rNnjySpcuXKkqQaNWpIUqzPybVr13ThwgWzZaVLl5azs7POnj0bI6BL0u3bt9W0aVP16NFDjx49iv/BAgAAAACsHtmb7A0AsF0MgAMAkAp169ZNkvT111/r9OnTpuXh4eEaM2aMrl69quLFi5umF8uUKZNy5sypsLAwLV261NT+yZMn+vzzz184DVtSaNKkiQwGgxYvXqxz58698Az0aNHHOGLECNMZ55L06NEjffLJJwoODla9evVM9ypr3bq1MmXKpJUrV+r33383tQ8ODtbw4cNjnIHv6uqqDh066PHjx/rkk08UEBBgto9hw4bp0qVLcnV1ZRo2AAAAAEiDyN5kbwCAbWIKdAAAUqGGDRvq3Xff1dy5c9WuXTtVrFhRHh4eOn78uG7duqU8efLo22+/NbuHWK9evTR+/HiNHz9eGzZsUNasWXXkyBFFRkaqXr162r59e7LVmytXLpUrV05Hjx6V9OIp2KJ16dJFR48e1aZNm9S8eXNVrlxZLi4uOnTokAIDA+Xl5aUvv/zS1D5z5sz68ssvNXDgQPXv31/ly5dX9uzZdfDgQUVGRqpQoUIxzrYfPHiwzpw5o3379umNN95Q6dKl5eLioqNHjyooKEgFCxbUmDFjkvbJAAAAAABYBbI32RsAYJu4AhwAgFTqs88+0w8//KCqVavq7Nmz2rFjh9zc3NSnTx/5+PioUKFCZu27dOmiiRMnqlSpUjp9+rQOHjyoqlWrasWKFTHaJoemTZtKkkqWLKkCBQq8tL2dnZ2+/fZbTZgwQSVLltSRI0f0559/KmfOnPrkk0/022+/KXPmzGbbNGjQQL/++qsaNGggPz8/7d69WyVKlNAvv/yinDlzxtiHs7Oz5s6dq//973967bXXdOLECe3fv1/Zs2dXv379tHz5ctN9zgAAAAAAaQ/Zm+wNALA9BqPRaLR0EQAAAAAAAAAAAAAAvCquAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABG7Jq1Sp5enom+L8uXbpYuvR4mzZtWpzHUbx4cZUtW1b169dXv379tHXrVkuXi/939OhR0+vUq1evl7YfOnSoPD09NWTIELPl0Y+xd+/eJK+xZ8+epsc/fvx4kj/+syIiIuTn55es+3je2bNnNX78eDVv3lyVKlVS6dKlVbduXfXq1UuLFy9WaGhoku/zzp07GjJkiGrUqKFSpUqpdu3a2rVrlyRp9erVatmypcqWLatKlSqpZ8+e2r9/v+k1iIiISPR+r1+/bnqcK1euJNXh4BUZjUZdvHjR0mUkyqVLl9SnTx9VrVpVpUuX1uuvv65z587JaDRq3rx5atKkiUqXLq2qVavqf//7n+nf4zp16rzSfpPqM5FUzp8/H2NZ/fr15enpqeXLlyfosRK7HQAAsB70UdBHkVrRR2GOPgr6KFITa/h8ArAODpYuAEDSyZIliypUqBBj+c2bN3Xz5k05OTmpVKlSMdYXK1YsJcpLUrEdi9FoVGhoqK5fvy5fX1/5+vrK29tbkyZNksFgsFClkKSVK1ea/rxnzx5du3ZN+fLls2BF5m7evGn2g3jJkiUqW7Zssuxrz549Gj9+vBo3bqxBgwYlyz6e9/3332vmzJmKioqSu7u78ufPL0dHR925c0e7d+/W7t279dNPP2nGjBkqWbJkkuwzKipKvXr10tmzZ+Xg4KCiRYsqPDxcefLk0e+//67PPvtMkpQtWzblyJEjVb0fkPROnDihcePGqUCBApo8ebKly0mQR48eqVu3bvL395ezs7OKFi2qkJAQ5c2bV/PmzdPEiRMlSXny5FGmTJmUN29eC1ec9Pz9/TVx4kQdOnRIO3futHQ5AADAStBHQR9FakUfxX/oo6CPIrVJ7Z9PANaDAXDAhtStW1d169aNsXzatGmaPn26smXLpiVLlligsqT3omMJCwvTd999p59//lnr1q1TlSpV1KFDhxSuENFCQkK0adMmGQwG1apVS7t379ayZctinJlpSatWrVJUVJTq1q2rnTt3atOmTRo2bJgyZsyY5Pv68ccfU/TM6pUrV2rGjBlydXXVhAkT9MYbb8je3t60/uLFixo+fLiOHTumnj17auPGjcqcOfMr79fPz09nz56VJM2aNUu1a9c2rZs2bZokqWLFilq4cKEcHJ7+HAkJCdHGjRslybQsMXLkyGF6nNy5cyf6cZB0fv31V504cUIFChSwdCkJdujQIfn7+8tgMGjVqlUqXLiwad2mTZskSc2bN9c333xjWv7w4UOVLVtWjo6Or7TvMmXKJMln4lXt2bNH69evV44cOSxWAwAAsD70UTxFH0XqQh+FOfoo6KNITazh8wnAejAFOgCb4+TkpE8//VRlypSRJC1atMjCFaVtmzdvVnBwsIoWLapWrVpJehrmwsLCLFvY/zMajfLx8ZEktW3bVgULFlRoaKhpmbWbNWuWJOnTTz9VkyZNzIKlJBUuXFgzZ85UlixZFBgYqIULFybJfgMDA01/rlq1aqzrKlasaBYiXVxcVLhwYbMBxsRwdHQ0Pc6rDkAC0e/XrFmzxnhvRq+rUqWK2fL06dOrcOHCyp8//yvtO6k+EwAAALAc+ihSF/ooLIs+CvooXiS1fz4BWBcGwAHYrIYNG0qS/vnnHz1+/NjC1aRdq1atkiTVqVNH9erVk7OzswICArRlyxYLV/bUgQMHdO3aNTk6OqpGjRpq2rSpJGnZsmUWruzVPXjwQFevXpWkF06XljlzZtPn5cSJE0my78jISNOfnZyczNZFRUXFuhxIjV70fuW9DAAAgPiijyJ1oI/CcuijwMuk9s8nAOvCADgAk99//129evVStWrVVKpUKdWqVUv9+vXTX3/9FWt7T09PeXp6mt2X6FldunSRp6enaSohSbp+/bo8PT1Vs2ZN3b59W71791aZMmVUpUoVDR48OEmPx93d3fTnR48eme3f09NTV65ciXW7+vXry9PT0/SjS5L2798vT09PdejQQRcvXtQ777yj0qVLq3r16qb7v0Zvd+bMGe3YsUNvv/22ypcvr6pVq6pr167aunVrnLVGRkZq+fLl6tKliypXrqxSpUrp9ddf1yeffKJTp07Fuk1oaKhmz56tt99+W9WrV1fp0qVVr149DR48WIcPH45zX2fPntVnn32m119/XaVKlVLVqlXVs2dP/f7777G2f/Y5e/Y5iY+rV6/q4MGDkqRGjRrJzc1N9erVk6RUM9Vd9L2FqlWrpvTp08vb21uSdOnSJe3bty/WbRLzPlq1apU8PT114MABSU/Pevb09NTQoUPNtrt//76mT5+uVq1aqXz58ipbtqyaNm2qiRMnyt/fP0HH9uyZy9u3b39h2379+mnDhg2aMmWK2fKhQ4fK09Mzzummoo+rfv36kv57brp27WpqE/1cRT9W9HMwffp00zrpv8+Zp6enIiIiYuzr7NmzGjlypBo2bKjSpUurcuXK6tatmzZv3mzW7mWvz7Vr1zR69Gi98cYbKl26tCpVqqSOHTtq+fLlZqH4+edgyZIlun79uoYNG6Y6deqoVKlSqlOnjv73v//p+vXrcT63hw4d0uDBg1WvXj2VKlVK1apV0wcffGD23bp79255enqqZMmSCggIiPVxQkNDVbFiRXl6eur48eMxjjWhn88HDx5o9uzZ6tSpk6pWraqSJUuqUqVKatOmjaZNm6b79+/H2Cah3/vRr2n01Qrr1q2Tp6enunTpEuPY5s+frw4dOqhChQoqXbq0GjZsqM8//1yXL1+OdV/379/Xt99+qzZt2qhKlSoqW7as3njjDf3vf//TuXPn4qzt22+/jfXxpk2bZlZbdO3Dhg2TJN24ccN0/NGf7xs3bkiShg0bZvY5iP5c1KlTJ9Z9xec98WwNL/pMJOT7PPo52LVrl86ePasBAwaoRo0aKlWqlBo0aKAvv/xS9+7dM9vm2efg9u3bZp/Z5x0+fFgffPCBqlatqjJlyqhx48aaMmWKgoODY23/qtsBAADbRh/FU/RRmKOPIib6KP5DH4X19lFYw+cTgHVhAByAwsPD9dFHH6l///7avXu3HBwc5OXlpYiICPn6+qp79+768ssvk3SfYWFh6tmzp/bu3avChQvLYDAoT548SbqP6B+Vzs7O8vDwSJLHvHfvnrp166YzZ86oSJEievLkiQoWLGjWZuXKlXr//fd16tQpFSpUSOnSpdP+/fv14Ycfavz48TEeMzg4WJ06ddKIESN04MABpU+fXp6ennr48KHWrl2rdu3aad68eWbbhIWFqXv37poyZYpOnDihTJkyqWjRogoODtb69evVqVMnLV++PMa+fvnlF7Vp00arV6/W/fv3VbRoUbm6umrPnj3q37+/Bg8eHOuP68RauXKljEaj8ufPbzq7t0WLFpKkgwcP6uLFi0m2r8QIDg6Wr6+vpP/qKly4sIoXLy5JWrp0aZLtK0uWLKpQoYKp0yNXrlyqUKGC2fvn3LlzatGihaZNm6Zz584pT548KlSokK5evaq5c+eqRYsW2r9/f7z36erqqgoVKkh6Orj32Wef6eDBg7G+xtmyZVORIkVe+bOSLl06VahQQcWKFTMtq1ChgulYY3sOomt8kV9++UXt2rXTb7/9pnv37pneu/v27dOAAQPiHNR83pYtW9SiRQstWbJE/v7+eu2115Q5c2YdPnxYI0aMUM+ePU2dUc87ffq0WrZsqdWrV8vFxUUFChTQ7du3tWLFCrVv3143b96Msc0333yjzp07a/369Xr8+LE8PT1lZ2en7du3q3v37qaz+GvWrKlcuXIpIiJC69evj7P24OBgFS5c+IVny8fH5cuX9eabb2rKlCk6duyYMmfOLE9PT9nb2+vUqVOaPn263nrrrTifi/hKnz69KlSooCxZskh6eib/8++PW7duqXXr1powYYKOHz+ubNmyqWjRorpz546WLVumN99803S/tGhBQUFq3769Zs2apfPnzytbtmwqVKiQ7t69qxUrVqht27batWtXktQe/Rl1cnIyvV8dHBxUoUIF0xUC0e/tUqVKvfRx4/ueeJlX+T7ftWuX2rVrp61bt8rDw0O5cuXS9evXtWDBAr399ttmA8/PPgeOjo5xfmZ9fHzUqVMn7d27V7ly5VLmzJl1+fJlUydoaGhorLUkdjsAAGC76KOIP/ooEoY+iv/QR0EfRWrqo5BS/+cTgPVhAByAvvrqK23ZskWurq6aOnWq9uzZoxUrVujPP//U559/LgcHBy1YsEDz589Psn0+ePBAd+7c0erVq+Xj46Pdu3erd+/eSfb49+7d05o1ayQ9/dH27Fmmr+LatWtycXHR77//bqo7+p400RYtWqQaNWpox44dWrVqlXbu3Klx48bJwcFBixYtivHDcciQITp69KiyZcumhQsXatu2bVq5cqX++usv9e3bV1FRUfrqq69MIUh6+qPw6NGjKliwoLZu3apNmzZp1apV2rNnjzp16iSj0aiJEyfqyZMnpm127dqlcePGyc7OTv/73/906NAh+fj4aPv27Zo/f76yZMmi9evXm50NL0k5cuTQxo0btXHjRr3xxhvxfq6ioqJMr0H0GcuSVLduXWXKlEmS5c/g3LBhg0JCQuTi4mJ2bG+++aYkaevWrbp7926S7Ktu3bpasmSJSpQoIUlq2bKllixZog8++EDS06Dbq1cv+fv7q3z58vL19dX69eu1evVq7dy5U/Xq1dP9+/f14Ycf6tq1a/He78iRI+Xq6iqj0ajVq1erc+fOqlKlinr37q3Zs2fr+PHjpum+kkK2bNm0ZMkSjRgxwrRsyZIlpmN99jlo27atad2LHDlyROPHj1d4eLh69+6tv/76y/TZmjBhguzs7DRr1izt2bPnhY9z9uxZffzxx3ry5In69OmjAwcOaM2aNfL19ZWPj48KFiyov/76S6NHj451+99++01FihTRxo0b9fvvv2vDhg1aunSp3NzcdO/ePc2dO9es/YYNG/Tjjz/Kzs5Ow4cP1969e7Vy5Urt3r1bAwcOlCSNGTNGFy9elJ2dnem7JPpz87zVq1dLktq0aWNaltjP58iRI3Xz5k2VK1dO27dvN32H7Nu3TxMnTpSdnZ38/PxM+0ysEiVKaMmSJaYroWvWrKklS5Zo5MiRkp5eWfLBBx/o0qVLKlSokNasWaPff/9dq1at0p9//qn27dvryZMn+vTTT01nlEvSTz/9pCtXrqhChQrauXOnNmzYoNWrV2vXrl1q1KiRwsPDX7lTNLr2999/X9J/7+0lS5bI19dXS5YsUbZs2SRJ77//vpYsWaLvv//+hY+ZkPfEiyT2+zzaokWLVLNmTW3fvl0bNmzQli1b9MMPP8je3l5XrlzRihUrTG2ffQ4yZ84c52f28OHDatGihXbt2qXVq1drx44dmjRpkiTp/PnzcZ79n9jtAACA7aKPIv7oo6CPIrHoo6CPIjX1UVjD5xOA9WEAHEjjbt26ZTqDdNy4cWrSpIlpnb29vTp16qQBAwZIejoV0KteDfisjh07qkiRIpKeXln37HRgiWE0GhUYGKht27bp3XffVVBQkBwdHdW/f/+kKNfk/fffV44cOSRJbm5uSpcundn63Llza8aMGaYrHg0Ggzp06KCePXtKevo8Rjt27Jhp2qfvv/9eVatWNa1zcnLSgAED9NZbb0mSJk+ebFp39uxZSU/viZM7d27T8nTp0mno0KGqVauW3njjDQUFBZnWffPNNzIajRoyZIi6du0qe3t707rq1atrwoQJkqR58+YpMDDQtM7R0VGFCxdW4cKFlT59+ng/T3v27DGdbRod1qIfL/p9tmbNGote3Rc9tViDBg3k5uZmWt6iRQvZ2dkpPDzc1Ca5/frrr/L391fWrFn1448/Kl++fKZ1WbNm1ffff69ixYrp4cOHmjVrVrwft0SJElq+fLkqVqxoWhYcHKydO3dqypQp6tChg2rVqqVvv/1WISEhSXpMSeWHH35QVFSUmjZtqsGDB5t95tq0aaN27dpJ0ksHyqZNm6awsDB17txZAwcONHucEiVK6Pvvv5e9vb3WrVunCxcuxNje0dFR06dPV6FChUzLypcvbwp7R44cMWsf/Vnv0aOHunXrZvrM2dvbq0+fPqpZs6YiIyNNobFt27YyGAw6depUjAHQ27dva+/evbK3t1fLli3Nakro5zMgIEDnz5+X9PR7P3v27KZ1BoNBrVq1UpUqVSQp1qnEk9LmzZt15swZpUuXTnPmzJGXl5dpnbu7u8aPH6/atWsrPDzc7Az66O/Axo0bK3PmzKbl6dOn14gRI1SjRg1Vrlw51V09nND3RFwS+30eLUuWLPr+++/NXvsGDRqYTlR4/r0cH4ULF9bEiRNNnRPS0+/+mjVrSlKc014mdjsAAGCb6KNIOPoo4oc+ioShjyJu9FEkbR+FZB2fTwDWhwFwII3btWuXIiIilC1bNjVr1izWNp07d5ajo6MePnxoui9OUnj2x25CPXsv1uj/vLy8VK1aNfXp00dnzpxR+vTp9d1335kNqCSFl9XdoUMHubq6xlj+9ttvS5L8/Px06dIlSf/d86hMmTJxTrH07rvvSno6Xdo///wjSaYpqVasWKFff/3V7J6tTk5O+vnnnzVhwgRTCL5+/brOnDkjyfyH5LPq1q0rDw8PhYaGxnlPtYSI/qFfpkyZGFOwRdfw4MEDbdiw4ZX3lRgXL140XVH6/HOSPXt2VatWTZK0bNmyJD37OC7btm2TJLVq1UoZM2aMsd7Jycl0b+Jt27bJaDTG+7GLFCmiX3/9VatXr9ZHH32k8uXLy9HR0bQ+ICBAs2bN0ptvvqlbt2694pEkrZCQENN9zqI7Wp43cOBAbd682XSvu9iEhYWZpsSO6zMQ/T1iNBpjvR9ZqVKlTFf8Puu1116TJD18+NC07MqVK6bPefRn/3lffPGFtm7dqkGDBkmS8uXLp8qVK0tSjAHQNWvWKCoqSnXq1Im1hoTIkiWL9u3bp+PHj5tNAxctMjLS1NmX3OEy+n1fv359sw6VZ/Xo0UOSdODAAdNzHP2d8tNPP2nt2rVmz32OHDk0b948jRs3Ts7OzslYfcIk5j0Rm6T4Pq9evXqMjlHp6WC0ZP5ejq8GDRqYdVpGi75/3vP3Fn/V7QAAgG2ijyLh6KOIH/ooEoY+itjRR/FUUvZRSKn/8wnAOiXNfDsArFb0j5/ixYvLzi72c2JcXV1VqFAh/fPPP/Lz81O9evWSZN+v8gPJyckpxr1W7ezs5Obmphw5cqhs2bJq0qTJK5+xHZuX1V2mTJlYl+fOnVvp06fXw4cPdfnyZb322mum579kyZJxPl7BggXl7u6u4OBg+fn5qVixYmrfvr1WrFihCxcuaMyYMRo7dqyKFy+u6tWrq3bt2qpcubLZlGrRV3tK0ocffhjnvqKnI4uuK7GCgoL0xx9/SIr9h3zFihWVL18+Xbt2TUuWLFHbtm1faX+JET3Fb5YsWUxXGj6rZcuW2rt3r27cuKHdu3erbt26yVqPn5+fpBe/F6LX3bt3T0FBQQm+F1bx4sVVvHhx9evXTyEhITpy5Ij27NmjNWvWKCAgQFevXtWAAQPifQ/ilPDvv/8qPDxckuLsKMqSJYvpaoa4XL58WWFhYZKeTukVfe/m2PYnxf4ZiO6seV70IGtERIRpWfT9/VxdXeMc2M2VK1eMZW3bttWBAwe0bt06ffzxxzIYDJL+m3Ls2anFXpWzs7Nu3ryp48eP6+rVq7p27ZouXryoM2fO6PHjx5KU7B0rCXnfR0ZG6sqVKypVqpR69uypzZs3686dO/rkk0/k4OCg0qVLq0aNGqpTp47Kli1reu5Si8S+J56XFN/nCXkvx1dcjxnd2RrXyRSJ3Q4AANgm+igSjj6Kl6OPIuHoo4gdfRRJ30dhDZ9PANaJAXAgjQsODpakl05LEx3SknJ6sVe5Mi/6Hj6W8LK6YzszNpqrq6sePnyoBw8eSIr/8+/m5qbg4GDT8+/u7q5ly5Zp7ty5Wr9+va5cuaLTp0/r9OnT+vnnn5UlSxYNHDhQHTp0kGR+1md8prZNzNV/z1q3bp3ph/z48eM1fvz4ONv+/fffOnXq1AtDVVKLiIjQ2rVrJT09s/hl+16yZEmyh8v4vBee7Sx59OhRgsPls1xcXFSzZk3VrFlTAwYM0PDhw7VhwwYdO3YsxV+PF3l2irxnp4BLqGff0ydPnkxQ+2jPnpH+MtF1J7TmJk2aaNy4cbp586b279+vatWq6e+//9aFCxfk4eGRZJ17ly5d0tdff62dO3eaDXK7u7urUqVK8vf3N01jmJwS876XngbzNWvW6Mcff9TmzZt1+/ZtHT16VEePHtWMGTOUJ08eDR8+XA0bNkzeA0iAxL4nnpcU3+cJeS/HV2xXlCfndgAAwDbRR5Fw9FG8HH0UCUcfRezoo0j6PorU/vkEYL0YAAfSuOgfPi8LE9FhKLYfSnFNcxR9BWFqlVx1v+geRdEBIvpM0Pg+/9Hrn33+3d3d1b9/f/Xv319XrlzR/v37tX//fu3cuVMBAQEaOXKkMmXKpEaNGpmupMuUKZP279+f+IOLp+h7Urm6ur4wLPn7+8toNGrp0qUaN25cstcVbceOHbp7966kp1OJxXWl6OPHj/Xw4UPt2rVLN2/ejPVs2KR6H7m5uen+/fsvfC/cv3/frP3LfP7559q3b59at26tPn36xNnO2dlZY8eOla+vr8LDw+Xn5xcjTMR1nMl9T65np+oLDg42u99zYh/nyJEjrzwIGd/9JbRDztnZWc2bN9eyZcu0bt06VatWzXRmtbe3d5IMXAYEBKhz584KCAhQ7ty51aFDB5UoUUKvvfaa8ubNK4PBoMGDB79wADwp3/fSi78Do//9eba99PR7dPjw4Ro+fLjOnTunAwcOaN++fdqzZ49u3Lih/v37a+nSpXFe8fKqtSdUYt8TcT1OSn2fAwAApCT6KGKij+LV0UdBH0VSoY8i6fsoUvvnE4D14h7gQBoXfV+YM2fOxDnVbXBwsC5fvixJKlCggGl59D07o8/Se56/v38SVpo0np1yK7a6Q0NDX/nM4uh7YD3v6tWrph+aRYoUkfTf83/q1Kk4H+/ixYumoBL9/AcEBOjQoUOm+2oVKFBAHTp00JQpU7Rz507T1GvRP0oLFSok6ekZn3fu3IlzX4cOHdLFixdfacrZs2fPmu7lNWHCBO3atSvO/6LPWF6/fr0peKeE6HsLFS1aVLt3746zvnnz5kl6OvXyb7/9Zto+Od5H8XkvRJ8VnDFjxnidWf3kyRNduXJFW7dufWlbd3d3U+B6NsBFf86jp/h6XnJ/zvPly2eq4dlp8p71999/65133tGwYcPiDMHPPs6FCxfi3N+JEyd07ty5Vx6kjL5n1ePHj3X9+vVY2/zxxx/q0qWLvv76a7Pl0dN5/fHHH4qMjDRNBZZU03ytXLlSAQEBypQpk1auXKk+ffqobt26ypcvn6mj5fbt27Fum9Tf+/F53//999+SJIPBoPz585vq27dvn+m7ytPTU126dNGMGTP0xx9/KE+ePIqMjNT69euTrfaEepX3xLNS8vscAAAgpdFHYY4+Cvoo6KOgj8KW+yis4fMJwHoxAA6kcXXq1JGDg4Pu3LmjjRs3xtpm8eLFioiIkIuLi6pUqWJaHv3jNrb70Jw4cSJVhstMmTKZBnhiq3vbtm2Juvfps1atWhVrUI+eDq1cuXKms3Sjpwo6ceJEnNN+zZ8/X5KUM2dOeXp6SpJ69uypTp06ycfHJ0Z7Nzc3lStXTtLTUCRJhQsXNgXTxYsXx7qfw4cPq1OnTmrWrJmOHTsWjyONXfR9qzw8PFS/fv0Xtn3nnXckPf0BHh2Ek1tAQIB27twp6eU/1kuXLm0K6suXLze9N17lfRTXmdzR74XVq1ebnUUdLSwszPQeql279gvrjhZ976STJ0+aAnVc9uzZo6CgIGXKlElly5Y1LX/R5zwyMlLbtm2LVy2J5e7urooVK0r676zg561fv15HjhzR9evX43x+3d3dTd9fCxcujLXNtWvX1LFjR7355pvavHnzK9VduHBh5cmT54V1+/j46MCBA6ZOomhly5ZV0aJFFRgYqEWLFunff/9ViRIl4ry/WEJFh93cuXPHerb6hQsXTN8B0d8h0RL7vR/9ujwf/qPf99u2bdO1a9di3Tb69SpXrpwyZMigiIgItWrVSt26ddOOHTtitM+aNauKFSsmyfwe5i+q/dGjR/rrr79i3X9SeZX3xPOPk1Lf59Gi778ZV+cNAABAUqGPwhx9FPRRPIs+CvooEiu19lGk9s8nAOvGADiQxuXKlct0D6aRI0ea/aCKiorSr7/+qmnTpkmS+vbtazYVTfQPvnnz5unixYum5X///bc+/vjjlCg/wZydnVWiRAlJ0rRp08yuctyzZ4/Gjh37yvs4efKkRo4caZp2KSoqSosXLzaFxEGDBpnali9f3nQGY//+/c2m/goLC9P3339vOqv3008/Nf1wbtmypSRp+vTp2rVrl9n+Dx06ZPoh+Ow9oQYMGCBJmj17tubMmWN2VvChQ4dM68uVK6dq1aqZ1oWHh+vixYu6ePHiS88YDgsL07p16yQ9nQrJycnphe3r1Klj+gG+dOnSF7Z9kX///VcXL17Uv//++9K2q1evVkREhBwdHU3P44tE/8C+c+eO6SzXV3kfRU87dePGjRj7yZEjh+7evav333/fbDAwICBAAwYM0D///CM3Nzf169fvpXVLUs2aNdW4cWNJ0ogRI/TFF1/EONP3yZMnWrlypQYOHCjp6fvk2am3oj/n58+f18KFC00DYPfv39fw4cPjvJogKfXt21cGg0Fr1qzRrFmzzIL76tWrtWjRIklSr169Xvg4/fr1k729vdavX68JEyaYnUH9zz//qHfv3goPD1eePHnk7e39SjUbDAb17dtXkjRnzhwtX77c9NxFRkZq9uzZ2rJlixwcHNS9e/cY20d3fEydOlWS1KZNm1j3k5DPZ7ToM/nPnj2r33//3bTcaDRq165d6tWrl+ls+uenj0vs9370e+r5z2iTJk3k6empJ0+e6L333jObdj04OFgjR47Unj175ODgoCFDhkh6enVD8+bNJUlffPGFTpw4YfaYvr6+2rNnj6Sn3zHP17579275+vqalvv7+6t///4KCAiIs/6k8KrviWcl9vs8saK/tx48eMCZ9gAAIFnRR0EfRfQ29FHEjj4K+igSIzX2UVjq8wkg7eAe4AA0bNgw3b59W3/88YcGDBig7NmzK2fOnLp27ZoCAwMlSZ07d9Z7771ntl2fPn20e/du3blzR97e3ipSpIiePHmiy5cvK1++fGrbtm2cZxVa0sCBA9WnTx9duHBBDRs2VJEiRXT//n3duHFDpUuXVoUKFUwhIjGKFSumFStWaNOmTXrttdd069Yt3blzR3Z2dho2bFiMwYivv/5aH3zwgY4ePaquXbsqT548ypw5s/z8/BQcHCx7e3sNHDjQNOAjSV27dtXevXu1a9cuvffee8qePbuyZ8+uwMBAU2ipX7++2rdvb9qmefPmunz5sqZNm6bJkyfrxx9/VMGCBXXv3j3TNoUKFdIPP/xgVt/t27fVrFkzSU+nI4rrR64kbd26VUFBQZLiNxWSnZ2d3nrrLX3zzTf6559/dPjwYVOYSYjPPvtMBw4cUJUqVUxBIy7RZxm//vrr8bpXU/PmzTVx4kQ9ePBAS5cuNYW1xL6PSpQooe3bt2vdunU6d+6cKlWqpFGjRilDhgyaNWuWevfuraNHj6pRo0YqUqSIHBwcdP78eYWHhytTpkyaPHmyaeqq+Jg8ebJcXV21evVqLVy4UAsXLlTu3LmVJUsW0+c1LCxMjo6OGjx4sDp27Gi2fd26dVWpUiUdOnRIX3zxhebOnSsPDw9dunRJ4eHh6tevn6kDKrlUr15dw4YN01dffaVvv/1Wc+fOVb58+XTr1i3TfdI+/PBDs86U2FSsWFHjxo3TqFGjNH/+fC1dulSFCxfWo0ePdOXKFRmNRmXNmlU///zzS4NXfLRr104XLlzQvHnzNGLECH333XfKmTOnrl+/rqCgINnb22v06NGxnjXdsmVLTZkyRY8fP5ajo6NatGgR6z4S8vl8tq5ff/1VV65cUf/+/ZUnTx55eHjo5s2bCggIkKOjo6pUqaIDBw7EmAo9sd/7xYsXl/T03mZNmjRRkSJFNH36dDk4OOiHH37Qe++9p0uXLqlly5YqWLCg3NzcTFMdOjs7a8yYMapUqZLp8QYNGqTDhw/r9OnTat++vekY/P39TVf2vPPOO2YD4K1bt9bixYvl5+enfv36KX/+/HJ1ddXFixdlb2+vDz74QLNmzXrp8/cqXuU98azEfp8nlqenp+zs7BQaGqomTZooe/bs+vnnn+M1zSEAAEBC0UdBHwV9FHGjj4I+isRKbX0Ulvp8Akg7uAIcgJycnDRjxgx9++23qlWrlsLCwnTmzBm5uLioefPmWrhwoUaOHBlj2p7ixYtrxYoV8vb2VubMmXXp0iVFRkbq3XfflY+Pj7Jly2ahI3qxOnXq6Ndff1XDhg3l6uqqCxcuKF26dOrfv79+/fVX09mvidW1a1d98803KlSokOnM08aNG2vp0qWxnkWZKVMmLVq0SOPGjVPlypX18OFDnTt3Th4eHmrXrp1WrFih3r17m21jb2+vGTNmaPjw4SpfvrxCQ0N19uxZhYSEqFatWvr666/1ww8/mN0HSnr6A3zZsmXy9vaWu7u7zp49q8DAQJUoUUIDBgzQypUrlSVLlkQfe3RwK1myZLynQmrXrp0cHR0lJf8ZnMePHzfdWym+9ypycXFRq1atJEl//fWX6V5ziX0fvffee2rfvr0yZcqky5cv69y5c6Z1JUqU0Pr169W3b18VLVpU165d0+XLl1WoUCF98MEHWrt2bbynFovm5OSkr776SsuXL9e7776rkiVLKiwsTGfPntWtW7dUqFAh9ezZU2vXro3xPpOeBoyff/5ZAwcOVNGiRRUQEKB///1X1atX15IlS175LOT46tatm5YtW6YWLVooXbp0OnfunCIiIlS3bl3NmzdP/fv3j9fjtG3bVmvWrNFbb72lbNmy6fz587p586YKFy6sXr16ae3atab70SWFoUOHat68eWrQoIGMRqPOnj0re3t7NWnSRMuWLTPrAHpW5syZTYO39evXT9KBRnd3d9P3StGiRXXv3j2dP39e7u7upk7BL7/8UtLTq8SfvWohsd/7rVq1Uq9evZQtWzZdv37d7J6OefPm1cqVK/Xpp5+qTJkyunPnji5evKhcuXKpa9euWrNmjekzGM3NzU2LFi1S//79VbJkSQUFBens2bMyGo1q0KCBfvzxR40ePTrGNsuWLVPPnj1VoEAB3bx5U3fv3lXjxo3l4+OjqlWrJtlz/CKJfU88L7m/z59VoEABTZgwQQULFlRQUJBu3rwZ4woRAACApEIfBX0U9FHEjT4K+iheRWrqo0jtn08A1s9g5GZ+AJAk6tevrxs3bmj8+PHxHsBA0hk3bpyuXr2qOXPmWLoUIEm0adNGp06d0uzZs1965jgAAAAAPIs+CsuijwK2hj4KANaGK8ABAFYvKipKhw4dUpEiRSxdCpAkTp06pVOnTilXrlyqVauWpcsBAAAAAMQTfRSwNfRRALBG3AMcAGD1xo4dq4CAAHXp0sXSpQCJdu3aNUnS3bt3NXToUElPpyu0t7e3ZFkAAAAAgASgjwK2gD4KANaOAXAAgNV7++231b9/f2XOnNnSpQCJtnHjRn3zzTemvxcrVkydO3e2YEUAAAAAgISijwK2gD4KANaOKdABAFbPy8uLYAmr5+XlpezZs8vV1VUNGzbU3Llz5eTkZOmyAAAAAAAJQB8FbAF9FACsncFoNBotXQQAAAAAAAAAAAAAAK+KK8ABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1wsHQB1sJoNCoqitniAQAAAADm7OwMMhgMli7DJpC9AQAAAACxSUj2ZgA8nqKijLp375GlywAAAAAApDKZM7vJ3p4B8KRA9gYAAAAAxCYh2Zsp0AEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2wcHSBQAAAAAAYoqKilJkZISly0jz7O0dZGfHueMAAAAAYIvI3qlDUmdvBsABAAAAIBUxGo168OCeQkKCLV0K/p+Li7syZMgsg8Fg6VIAAAAAAEmA7J36JGX2ZgAcAAAAAFKR6ADu7u4hJ6d0DLpakNFoVFjYEwUHB0qSMmbMYuGKAAAAAABJgeydeiRH9mYAHAAAAABSiaioSFMAd3fPYOlyIMnJKZ0kKTg4UOnTezAdOgAAAABYObJ36pPU2ZvkDgAAAACpRGRkpKT/gh9Sh+jXg/vCAQAAAID1I3unTkmZvRkABwAAAIBUhqnXUhdeDwAAAACwPWS91CUpXw8GwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAdLFwAAAAAAsJxz587qhx+m6uzZ04qKMqpEiVLq3buvSpYsJUk6eHCf5s37SRcvnpe9vYOqVKmmPn36KUeOnJKkjRvX6csvx2j58rXKlSu36XHbtfNW+fIV9b//jZYk1apVSe++21t79+7RtWtX9M47XdS9ey/duHFdM2dO0+HDB2U0GlWqVGn17TtAr71WWJL05MkT/fzzLG3d6qvAwHvKn7+AunZ9Vw0aNErZJwoAAAAAgEQie6csrgAHAAAAgDTq0aNgDR7cTxkzZtL48RM1ZsyXCg0N0eDBHyk4OFi//75RgwZ9pGzZsmn06C/Ur98gnTr1tz744F0FBt5L8P4WLPhZr79eX6NHf6HatV/X3bt39d573XTlip8GD/5Mo0aN04MHDzRwYF8FBQXJaDRq+PBPtHr1Kr31Vkd99dU3KlWqjEaNGq5Nm9YnwzMCAAAAAEDSInunPK4ABwAAAIA0ys/PT0FBgWrX7i2VKVNOklSgQEGtWbNSwcEP9cMPU1WpUhWNGTPBtE2ZMuXUuXN7LVmyWH379k/Q/kqUKKXOnbub/j5jxlQ9eRKq7777QVmyZJUkFS3qpfff766TJ08oXTon7d+/V2PGfGk667xq1eoKDQ3RrFnT9cYbTeTgQKwFAAAAAKReZO+UxxXgAAAAAJBGvfZaYWXK5KHPPvtYkydP0J49u5QlS1b17TtAoaGhCggIUKNGTc22yZMnr0qWLK2jRw8leH+FCxcx+/vx40dVqlQZUwCXpKxZs2rlyvWqVauODh06KIPBoOrVaykiIsL0X82adRUQcFd+fhcTd+AAAAAAAKQQsnfKs67hegAAAABAknF1ddUPP8zRggU/a+tWX61evVLOzs5q1KipmjRpLknKnDlLjO2yZMmic+fOJXh/Hh6Zzf7+4MF9s3uXPe/Bg/syGo1q1KhOrOvv3r2jokU9E1wHAAAAAAApheyd8hgABwAAAIA0LH/+gho5cpwiIyN15swpbd68UatXr1DWrNkkSffuBcTYJiAgQJkyZZIkGQwGSVJUVJRZm5CQxy/dt7t7egUFBcVYfvjwQeXMmUvu7unl4uKqadNmxbp9njz5XroPAAAAAAAsjeydspgCHQAAAADSqO3bt6pFi4YKCLgre3t7lSpVRkOGDJW7e3rdu3dPWbJkka/vJrNtbty4rpMnT6hMmbKSJFdXN0nS7du3TG2uXr2s+/fvv3T/ZcuW06lTJxQYeM+0LCgoSEOG9Neff+5SuXIVFBLyWEajUV5eJUz/Xbp0UXPnzlFkZGRSPA0AAAAAACQbsnfK4wrwV2RnZ5CdnSHZHj8qyqioKGOyPT4AAACAtKt06XKKjIzSsGFD1Llzd7m5uemPP3z16FGw6tdvqBIlSurLL8do1KhhatKkhe7fD9LcubOVIUNGvfVWJ0lSxYqV5ezsrOnTv9V77/XV48ePNW/e0zYv06FDR23atEEff/yRunZ9V05O6bRo0TxlyZJVTZo0l7t7epUrV0FDhw5W9+69VKBAQZ05c0o//zxbVatWM50Jj8QLDw/XokWL5OPjo8uXL8vV1VWlS5dWt27dVLt27Rjtq1atGuuVA9FOnDihdOnSJXmdZG8AAAAA1orsnfIMRqORhBcPkZFRunfvkdkyOzuDMmVylb198l1IHxkZpaCgxwRxAAAAIA0IDw9TQMBNZcmSS46OTimyzzNnTmnOnJk6e/aMQkND9dprhdWlSw/VrVtPkrRjxx9atGi+Ll26IDc3N1WtWl29e3+oHDlymh5j3769mjVruq5c8VPOnLnUo0dvbd68QVmyZNH//jdaklSrViX16PGeevZ832z/V65c1g8/TNWRI4fl6Oio8uUrqG/fAcqTJ68kKSQkRD/9NFPbt/+hwMB7ypo1uxo2bKTu3Xsly0BrbF72umTO7JasuTC5GI1G9evXT1u2bFGGDBlUoUIFPXnyRIcOHVJ4eLgGDhyoPn36mNrfuHFD9evXV44cOVSlSpVYH3PChAlydHRMdE1kbwAAAADJjext+9mbAfB4ii2EOzjYycPDTTOW/Kkb/i+fYiCh8mTPqA/fqanAwEeKiIh6+QYAAAAArJolQjhezlYHwJcsWaLRo0erePHimjdvnjw8PCRJZ8+eVadOnfTo0SNt2LBBhQsXliRt3bpVH374obp166bhw4cnS01kbwAAAADJjeydOiVl9mYK9CRww/++Lt8ItHQZAAAAAADE25o1ayRJQ4cONQ1+S5KXl5e8vb21ZMkS7dq1yzQAfurUKUlSyZIlU75Ykb0BAAAAAPHDALgVSM4rCbjPGQAAAACkTQsWLJCfn5+KFi0aY93jx48lSfb29qZlZ86ckSSVKlUqZQoEAAAAACARGABPxTKmd5YxKkoZMrgk2z6ioiIVGBjCIDgAAAAApDHp0qWTl5dXjOVbt27V5s2b5eLiokaNGpmWnzp1Ss7Ozjp58qRGjBih8+fPy2AwqEKFCurbt6/Kli2bkuUnOU4+BwAAAADbwAB4Kubm7CSDnZ381s9RSMDNJH98lyy5VKjFe7KzMxDEAQAAACANu3//vkaMGKELFy7o0qVLypUrlyZMmKCcOXNKkgICAuTv7y9J+vTTT1WuXDlVrVpV//zzj3bs2KE9e/Zo0qRJatasmSUPI1E4+RwAAAAAbAsD4FYgJOCmQm5ftXQZAAAAAAAbde3aNfn6+pr+bjAYdOHCBVWvXl3Sf/f/9vDw0MyZM1W+fHlJktFo1IIFCzRhwgQNGzZMFSpUMA2aJ5aDg/mV2Ml5ZbaUciefOzraKzIyKskfHwAAAEDCREUZLF0CXsDe3hAjFyYUA+AAAAAAAKRxhQoV0oEDB2Q0GrV371598cUXGj9+vIKDg9WnTx/Vrl1bu3fvltFoVI4cOUzbGQwGde/eXQcPHtTWrVu1YsUKffTRR4muw87OIA8Pt6Q4pARL7pPPk/MKcwAAAADxFxpqr7t37ZJkoBVJJyrKIDs7O2XM6CpnZ+dXeiwGwAEAAAAASOPc3P4bdG7WrJly5sypjh07avbs2eratavc3NyUPXv2OLevV6+etm7dqpMnT75SHVFRRj148Nhsmb29nU0MHj94EMIV4AAAAEAqEBb2RFFRUYqMNCoigt/oqUVkpFFRUVG6f/+xQkIiY6zPkMEl3jOEMQAOAAAAAADMVKhQQfnz59eVK1d0+fJllSxZ8oXts2XLJkkKCQl55X3bagdUZGSUzR4bAAAAYE0iI42WLgEvkBQnJnBdPwAAAAAAaUxISIi++uorDRkyREZj7J0/Tk5OkqSIiAgtW7ZMAwcO1NatW2Nte+3aNUl65ft/AwAAAADwqlLtFeDh4eFatGiRfHx8dPnyZbm6uqp06dLq1q2bateuHaN91apVFRQUFOfjnThxQunSpUvGigEAAAAg+djZGWRnZ0jx/UZFGRUVxdnxtsbZ2Vk+Pj4KCgpShw4dVKVKFbP1165dk5+fn5ycnFS0aFHt3LlTmzZtUkhIiBo2bGjW1mg0as2aNZKkWrVqpdgxAAAAAEBSI3vbhlQ5AG40GjVo0CBt2bJFGTJkUI0aNfTkyRPt27dPu3fv1sCBA9WnTx9T+xs3bigoKEg5cuSIEdqj2dlxsTsAAAAA62RnZ1CmTK7xvtdVUoqMjFJQ0ONEBXFf381auXKZLl26IEkqUKCQWrRoqVat2iZ1mUggg8Ggt956Sz/++KNGjx6t+fPnm+7xfevWLX388ceKiIhQt27d5OrqqtatW2vOnDnasWOHfvvtN3Xo0EGSFBUVpWnTpunEiRMqUqSImjRpYsnDAgAAAIBEI3vbjlQ5AL506VJt2bJFxYsX17x58+Th4SFJOnv2rDp16qSpU6eqUaNGKly4sCTpzJkzkqQmTZpo+PDhFqsbAAAAAJKDnZ1B9vZ2mrHkT93wv59i+82TPaM+fKem7OwMCQ7h69ev0XffTVL//oNVrlwFSUYdPHhA338/RYGB99Sjx3vJUzTirW/fvjpy5IgOHjyoxo0bq2LFigoPD9eJEyf0+PFj1apVS0OGDJEk5cuXT6NHj9aIESM0cuRILV68WAULFtTZs2d15coVZc2aVdOmTZOjo6OFjwoAAAAAEofsbTtS5QB49NRpQ4cONQ1+S5KXl5e8vb21ZMkS7dq1yzQAfurUKUlSyZIlU75YAAAAAEghN/zv6/KNQEuXES8+PivUokVLvflma9Oy/PkL6s4df/3225I0G8JTE2dnZ82bN08LFy7UmjVrtH//fjk4OKho0aJq06aN2rdvL3t7e1P7tm3bqlChQpozZ46OHDmiS5cuKXv27OrSpYv69OmjLFmyWPBoAAAAACBpkL2tX6qcF3zBggVas2aNKleuHGPd48ePJckshEdfAV6qVKmUKRAAAAAA8EJ2dgb9/fcJPXjwwGx5p07d9OOP8yRJ7dp56+effzRb/9FHvfXFF6MlSUeOHFKtWpX0yy8L1KxZA737bif17dtLn38+zGybEyeOqVatSrp+/Zok6c8/d+vddzurfv2aeuutVpozZ6bCwsIkSVOnTlGHDi3Ntg8ODlb9+jW1Z8/OJDt+a+Ho6KiePXtq7dq1+vvvv3X06FH99ttvevvtt81yd7QKFSpo5syZ2r9/v06ePKlt27ZpxIgRDH4DAAAAgAWQvWOXKgfA06VLJy8vrxhhe+vWrdq8ebNcXFzUqFEj0/JTp07J2dlZJ0+e1DvvvKNKlSqpcuXKev/993X8+PGULh8AAAAA0rxOnbrp/Plzat26qT75ZIAWLZqv06dPyt3dXfnzF0jQY+3du0c//jhPw4Z9rhYtWurPP3fp8eNHpvW+vptUunRZ5c2bT/v27dXIkUP15puttGjRMg0ePFTbtm3RuHGfS5JatGipf/+9oePHj5m2/+MPX7m5ualatZpJcuwAAAAAAKQEsnfsUuUA+LPu37+vfv36qWnTpvrwww+VOXNmzZw5Uzlz5pQkBQQEyN/fX6Ghofr0008VFRWlqlWrKlOmTNqxY4c6duyojRs3WvgoAAAAACBtef31Bvrxx3l6/fX6OnPmtH78cbp69+6ujh3b6sSJYwl6rHfe6ax8+fKraFFP1avXUHZ29tq5c7skKTw8XNu2bVWzZt6SpIUL56pFizfVqlU75cmTV1WqVNMnnwzX9u1bdfPmvypcuIg8PYvr9983mB5/8+b1aty4mRwcUuVdwgAAAAAAiBXZO3apPt1fu3ZNvr6+pr8bDAZduHBB1atXl/Tf/b89PDw0c+ZMlS9fXpJkNBq1YMECTZgwQcOGDVOFChVMg+aJ5eBgfr6AvX2qP38gXmzlOAAAAABrFxVlsHQJSap48ZIaOXKcjEajLl26qL/+2qPly5dqyJABWrbMJ96PkzdvftOfXVxcVK9eA/n6blLTpi30119/6smTUNWv31CS9M8/Z3XmzClt2rTetI3RaJQkXb7sp1y5cqt58zc1e/YPGjjwE/n739bff5/QJ58Mf2kd9vaGGLkQAAAAAABLsrXsnRRS/QB4oUKFdODAARmNRu3du1dffPGFxo8fr+DgYPXp00e1a9fW7t27ZTQalSNHDtN2BoNB3bt318GDB7V161atWLFCH330UaLrsLMzyMPDLSkOKdXJkMHF0iUAAAAAkBQaaq+7d+1iDLRa+qTVhO7f3/+2Fi6cr65deyh79uySJE/PYvL0LKa6dV/XO++0099/H5Mk2dmZn2wcGRkpg+Hp8Ufv19XVxayNt/eb+uijD3T//j1t2bJJdevWV8aMGSQ9DdydO3dTs2YtYtSVNWs2OTjYqWnTZpox4zvt2/enLl48rxIlSqpYsWJxHk9UlEF2dnbKmNFVzs7OCXouAAAAAABIDv7+t/XLLwvUuXN3ZcuWXQaDQYULF1HhwkVUq1Zdde7cXseOHYl128jIiBjL0qVLZ/b3Zs28NWBAHwUE3JWv70bVqVNPbm7ukqSoKKM6duyqpk1jZu8sWbJKkt54o4mmT/9Oe/fu1sWLF1S8eAm99lqRVz3seEn1A+Bubv8NOjdr1kw5c+ZUx44dNXv2bHXt2lVubm6mDpXY1KtXT1u3btXJkydfqY6oKKMePHhstsze3s4mBo8fPAhRZGSUpcsAAAAA0rywsCeKiopSZKRRERGp5zd6ZGRUguqxs3PU6tUrlS1bdnXq1M1snbOzqyQpY0YPOTg46sGDYNNjR0VF6d9/rytv3nyKiIgy5ZTn91+6dHnlzJlL69ev059/7tFXX00xrS9UqLD8/PyUK1deU/ujRw/rt9+WaMiQoXJ0TCcXFzfVrv26tm3bKj+/i2rVqt0Ljy8y0qioqCjdv/9YISGRMdZnyOBi8ZMUAAAAAABpi5NTOq1Zs0rZs+eIkb2jx1czZ84iBwdHBQcHm9Y9zd43zK74jk25chWUM2cubd68QXv3/qmvvppiWvfaa4V15cpl5c2bz7Ts2ezt4uKi9OnTq06d17VjxzZT9k4pqX4A/HkVKlRQ/vz5deXKFV2+fFklS5Z8Yfts2bJJkkJCQl5536mpAyopJbQzCwAAAEDyiIw0WrqEJJEpUyZ16tRNs2f/oODgYNWv31Curm66fNlP8+f/pAoVKqls2fIqU6as/vjDV3Xr1lPmzFm0dOlis1D+Ik2bttCCBXOVMWNGVapUxbS8U6eu+vzzYfr55x/1xhtNdOeOv776arxy5MhhOgtdkpo3f1NDh34so1Fq2LBxvPaZ2k5MAAAAAACkXbaavZNCqhsADwkJ0dSpU3X37l1NmjRJBkPMe+A5OTlJkiIiIrRs2TL99ddfatGihRo2bBij7bVr1yTple//DQAAAACWlid7RqvZ33vv9VHevPm0bt1q+fgsV2hoqHLkyKn69d9Q167vSpJ69/5QDx8+0JAh/eXs7CJv71Zq0KCR6b5hL9KkSQvNnTtbbdq0l53df1df16vXUGPGSIsWzdXixfOVPn0G1axZW3369DfbvlKlKsqYMZNKly6r9OnTJ/o4AQAAAAC2hez9H2vN3qluANzZ2Vk+Pj4KCgpShw4dVKVKFbP1165dk5+fn5ycnFS0aFHt3LlTmzZtUkhISIwBcKPRqDVr1kiSatWqlWLHAAAAAABJKSrKqMjIKH34Ts0U33dkZJSiohJ3ZXrTpi1ivR9YtKxZs2rChClxrq9QoZL27DkU67qcOXNq164Dsa6rX7+h6tePeYL0s0JDQxUcHKwWLVq+sB0AAAAAIG0ge8dkrdk71Q2AGwwGvfXWW/rxxx81evRozZ8/33SP71u3bunjjz9WRESEunXrJldXV7Vu3Vpz5szRjh079Ntvv6lDhw6Sns5fP23aNJ04cUJFihRRkyZNLHlYAAAAAJBoUVFGBQU9lp1dzBmyUmLfiQ3hqdGDBw905MhBbdu2VTly5DCbwg0AAAAAkHaRvZOOpbN3qhsAl6S+ffvqyJEjOnjwoBo3bqyKFSsqPDxcJ06c0OPHj1WrVi0NGTJEkpQvXz6NHj1aI0aM0MiRI7V48WIVLFhQZ8+e1ZUrV5Q1a1ZNmzZNjo6OFj4qAAAAAEg8WwvDlhIZGaGvvhqnTJk8NHbshFhvuwUAAAAASJvI3knD0tk7VQ6AOzs7a968eVq4cKHWrFmj/fv3y8HBQUWLFlWbNm3Uvn172dvbm9q3bdtWhQoV0pw5c3TkyBFdunRJ2bNnV5cuXdSnTx9lyZLFgkcDAAAAAEgtPDwya/PmHZYuAwAAAAAAm2Xp7J0qB8AlydHRUT179lTPnj3j1b5ChQqaOXNmMlcFAAAAAAAAAAAAAEit7CxdAAAAAAAAAAAAAAAASYEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAALACdnYGOTjYpfh/dnaGRNXbrp23atWqpKVLF8e6ftKkL1WrViX9/POPiX5O2rXzTtD2CW0PAAAAAEhbyN6x78PasreDRfcOAAAAAHgpOzuDPDxcZGdnn+L7joqKVGBgiKKijAne1sHBQdu3/6G33+5stjwiIkI7d26TwZC4gA8AAAAAQFIje9sOBsABAAAAIJWzszPIzs5efuvnKCTgZort1yVLLhVq8Z7s7AyJCuGVKlXR/v1/6fbtW8qRI6dp+ZEjh+Ts7KJ06ZyTslwAAAAAABKN7G07GAAHAAAAACsREnBTIbevWrqMeCtevKSuXLms7du3mp2J/scfvqpf/w1t27bFtOzkyROaPfsHnTt3Rg4ODqpVq64+/HCgMmTIIEkKDg7Wd99N0p49O+Xg4KiuXXvE2N/ffx/XrFnTdebMaWXKlEk1a9bRBx98KDc39+Q/WAAAAACATSB7W3/25h7gAAAAAIBkU69eQ23f/ofp7+Hh4dq1a4caNmxkWnb69En16/e+ChYspFmz5mncuIk6ffqkPv74I0VFRUmSPv98qM6cOaWJE7/Vt99O159/7tatW/+dkX/hwnkNGNBXlStX1YIFSzRq1Bc6d+6MBg36SEZjws+gBwAAAADAWpC9zTEADgAAAABINvXrv6HTp0/q9u1bkqQDB/YpU6ZMKlbMy9Rm6dJfVLhwUX388WcqVOg1VahQSaNHf6mzZ09r//6/dPXqZR04sE+DBn2qsmXLq2hRT40aNV5OTk6mx1iyZKEqVaqs7t17KV++/CpbtpxGj/5Cp0+f1NGjh1P8uAEAAAAASClkb3NMgQ4AAAAASDZeXsWVO3ce01Rs27b5qmHDxmZtLl26oMqVq5ktK1y4iNzd0+vixfMKDQ2RJBUvXsK0PnPmLMqdO4/p7+fOndP161f1xhu1Y9Rw5cplVahQKSkPCwAAAACAVIPsbY4BcAAAAABAsqpf/w1t3/6HWrdur927d2nOnAVm641GowyGmNsZjVFycPgvtkZFmU+nZm/vYNa2UaOm6tr13RiPkymTxyseAQAAAAAAqRvZ+z9MgQ4AAAAASFb16zfU6dMntX79GuXOnUcFChQ0W//aa0V0/Pgxs2Xnz/+jR48eqWDB10xTtv3993HT+ocPH+rGjWumvxcqVFh+fheVN28+039RUZH6/vtv5O9/K9mODQAAAACA1IDs/R8GwAEAAAAAyapoUU/lzZtPs2fPUIMGjWKsf+utjrpw4R99881EXb7sp6NHD2vs2BEqVsxTlSpVUZ48eVWvXkN9++3XOnhwvy5duqBx4z5XeHi46THefruz/vnnnCZN+lJ+fpd06tRJjR49QlevXlHevPlT8nABAAAAAEhxZO//MAU6AAAAAFgJlyy5rHZ/9eu/oQULflbDhjFDeKlSZTR58lTNmTNL777bSa6ubqpd+3X16fORaRq2ESNGa8aMqRo1ariioqLUsmUbBQUFPvMYpfXNN9P1008z1bNnF7m4OKtChcr68MOBcnJySrLjAAAAAADYNrK39Wdvg9FoNL68GSIjo3Tv3iOzZQ4OdvLwcNPwqRt1+UZgHFsmXo1yBfRRx1o6vWCsQm5fTfLHd8mRXyW6fa7AwEeKiIhK8scHAAAAkDDh4WEKCLipLFlyydHxv+BoZ2eQh4eL7OzsU7ymqKhIBQaGxLgHWFoS1+sSLXNmN9nbM8FaUiB7AwAAAEhuZO/UKSmzN1eAAwAAAEAqFxVlVGBgiOzsDBbZd1oO4AAAAACAtIHsbTsYAAcAAAAAK0AYBgAAAAAgeZG9bQNztAEAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAACpjNHI/cZSE14PAAAAALA9ZL3UJSlfDwbAAQAAACCVsLe3lySFhT2xcCV4VvTrYW/vYOFKAAAAAACviuydOiVl9ia9AwAAAEAqYWdnLxcXdwUHB0qSnJzSyWAwWLiqtMtoNCos7ImCgwPl4uIuOzvOIQcAAAAAa0f2Tl2SI3szAA4AAAAAqUiGDJklyRTEYXkuLu6m1wUAAAAAYP3I3qlPUmZvBsABAAAAIBUxGAzKmDGL0qf3UGRkhKXLSfPs7R248hsAAAAAbAzZO3VJ6uzNADgAAAAApEJ2dnays3OydBkAAAAAANgssrdt4jR2AAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNcLB0AQAAAAAAwDLCw8O1aNEi+fj46PLly3J1dVXp0qXVrVs31a5dO0b7u3fv6ocfftDu3bt1+/ZtZcuWTU2aNFHfvn3l5uZmgSMAAAAAAMAcV4ADAAAAAJAGGY1GDRo0SBMnTtStW7dUo0YNFS9eXPv27VOvXr00c+ZMs/b+/v7q0KGDfvnlFzk7O+v1119XVFSUfvrpJ73zzjsKDg620JEAAAAAAPAfBsABAAAAAEiDli5dqi1btqh48eLy9fXVjz/+qPnz52vFihVyd3fX1KlTdfHiRVP78ePH68aNG+rdu7fWrVun77//Xr///ruaNm2qc+fOafr06RY8GgAAAAAAnmIAHAAAAACANGjNmjWSpKFDh8rDw8O03MvLS97e3jIajdq1a5ck6erVq9qyZYty5cql/v37m9o6OTlp3LhxcnNz07JlyxQaGpqyBwEAAAAAwHMYAAcAAAAAIA1asGCB1qxZo8qVK8dY9/jxY0mSvb29JGnXrl2KiopS3bp15ejoaNY2ffr0qlatmh4/fqz9+/cnf+EAAAAAALwAA+AAAAAAAKRB6dKlk5eXl2mQO9rWrVu1efNmubi4qFGjRpKkf/75R5JUrFixWB+rSJEiZu0AAAAAALAUB0sXAAAAAAAALOv+/fsaMWKELly4oEuXLilXrlyaMGGCcubMKUm6c+eOJClbtmyxbh+9/O7duylTMAAAAAAAcWAAHAAAAACANO7atWvy9fU1/d1gMOjChQuqXr26pP+mRHd2do51++jl0e1ehYOD+WR19va2MXmdrRwHAAAAAKR2DIADAAAAAJDGFSpUSAcOHJDRaNTevXv1xRdfaPz48QoODlafPn1M06QbDIZYtzcajWb/Tyw7O4M8PNxe6TFSqwwZXCxdAgAAAACkCQyAAwAAAACQxrm5/Tfo3KxZM+XMmVMdO3bU7Nmz1bVrV7m6ukqSnjx5Euv20ctdXF5tkDcqyqgHD8yvIre3t7OJweMHD0IUGRll6TIAAAAAwCplyOAS75m1GAAHAAAAAABmKlSooPz58+vKlSu6fPmysmfPLum/e4E/72X3CE+IiAjbHCSOjIyy2WMDAAAAgNQk1Q6Ah4eHa9GiRfLx8dHly5fl6uqq0qVLq1u3bqpdu3aM9nfv3tUPP/yg3bt36/bt28qWLZuaNGmivn37mp3JDgAAAABAWhcSEqKpU6fq7t27mjRpUqxTmzs5OUmSIiIiVKxYMUnSxYsXY3288+fPS5I8PT2TqWIAAAAAAOInfteJpzCj0ahBgwZp4sSJunXrlmrUqKHixYtr37596tWrl2bOnGnW3t/fXx06dNAvv/wiZ2dnvf7664qKitJPP/2kd955R8HBwRY6EgAAAAAAUh9nZ2f5+Pho3bp1OnjwYIz1165dk5+fn5ycnFS0aFHTiejbt29XZGSkWduHDx9q//79cnV1VcWKFVOkfgAAAAAA4pIqB8CXLl2qLVu2qHjx4vL19dWPP/6o+fPna8WKFXJ3d9fUqVPNzjofP368bty4od69e2vdunX6/vvv9fvvv6tp06Y6d+6cpk+fbsGjAQAAAAAgdTEYDHrrrbckSaNHj5a/v79p3a1bt/Txxx8rIiJC77zzjlxdXZUnTx7Vq1dP169f16RJk2Q0GiVJYWFh+vzzz/Xo0SO9/fbbcnd3t8jxAAAAAAAQLVVOgb5mzRpJ0tChQ+Xh4WFa7uXlJW9vby1ZskS7du1S4cKFdfXqVW3ZskW5cuVS//79TW2dnJw0btw47dq1S8uWLdPAgQPl7Oyc4scCAAAAAEBq1LdvXx05ckQHDx5U48aNVbFiRYWHh+vEiRN6/PixatWqpSFDhpjajxw5UqdOndK8efO0c+dOFS1aVH///bf+/fdflSxZUh999JEFjwYAAAAAgKdS5RXgCxYs0Jo1a1S5cuUY6x4/fixJsre3lyTt2rVLUVFRqlu3rhwdHc3apk+fXtWqVdPjx4+1f//+5C8cAAAAAAAr4ezsrHnz5unTTz9Vvnz5tH//fp04cUJFixbVmDFjNHv2bNN9wCUpT548WrFihdq3b6+HDx9q+/btcnJy0gcffKCFCxfKzc3NgkcDAAAAAMBTqfIK8HTp0snLyyvG8q1bt2rz5s1ycXFRo0aNJEn//POPJKlYsWKxPlaRIkX0xx9/6J9//lHdunWTr2gAAAAAAKyMo6OjevbsqZ49e8arfY4cOTR+/PhkrgoAAAAAgMRLlQPgz7p//75GjBihCxcu6NKlS8qVK5cmTJignDlzSpLu3LkjScqWLVus20cvv3v3bsoUDAAAAAAAAAAAAACwiFQ/AH7t2jX5+vqa/m4wGHThwgVVr15d0n9Tosd1f+/o5dHtXoWDg/mM8fb2qXIG+QSzleMAAAAAAAAAAAAAkLal+gHwQoUK6cCBAzIajdq7d6+++OILjR8/XsHBwerTp4/pXuAGgyHW7Y1Go9n/E8vOziAPD9u8n1mGDC6WLgEAAAAAAAAAAAAAXlmqHwB3c/tv0LlZs2bKmTOnOnbsqNmzZ6tr165ydXWVJD158iTW7aOXu7i82iBvVJRRDx6YX0Vub29nE4PHDx6EKDIyytJlAAAAAIBVypDBhZm1AAAAAABIJVL9APjzKlSooPz58+vKlSu6fPmysmfPLum/e4E/72X3CE+IiAjbHCSOjIyy2WMDAAAAAAAAAAAAkHakulPUQ0JC9NVXX2nIkCFxTlvu5OQkSYqIiFCxYsUkSRcvXoy17fnz5yVJnp6eyVAtAAAAAAAAAAAAACC1SHUD4M7OzvLx8dG6det08ODBGOuvXbsmPz8/OTk5qWjRoqpdu7Ykafv27YqMjDRr+/DhQ+3fv1+urq6qWLFiitQPAAAAAAAAAACA/2PvzuPsmu//gb/uTPYQiSwISu2tPZZoUZSW2krtlKp9L762qLUiaimtUloRldiXJJZSSUhQ1BpiCxotEZoISUQykWXm94df0qZJmGSWO3Pv8/l4eJRzPvfc96f3zsx93fc5nwNQHE2uAV4oFLLffvslSS644IJMmDBh3r5///vfOfXUUzN79uwccMABadeuXVZcccVst912+eCDD3L55ZfPu2p85syZOe+88zJt2rTsv//+WWqppYoyHwAAAAAAAAAaR5O8B/hxxx2Xl156Kc8//3x23HHHbLLJJpk1a1ZGjRqV6dOnZ6uttsppp502b/y5556b119/PTfddFMef/zxrLnmmnn11Vfz4YcfZt11180JJ5xQxNkAAAAAAAAA0Bia3BXgyZfLoN90000544wzsvLKK+fZZ5/NqFGjsuaaa+bCCy/Mn/70p3n3AU+SFVdcMffcc0/22WefTJ06NcOHD0+rVq1yzDHHpH///mnfvn0RZwMAAAAAAABAY2iSV4AnScuWLXP44Yfn8MMPr9X45ZZbLr17927gqgAAAAAAAABoqprkFeAAAAAAAAAAsLg0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCS2KXQAAAAAA/1FRUUhFRaHBjl9dXZPq6poGOz4AAEAxaYADAAAANBEVFYV07NgulZUNt2jfnDnVmTx5uiY4AABQkjTAAQAAAJqIiopCKisrcu3tT2XchCn1fvwVuy2T4w/YMhUVBQ1wAACgJGmAAwAAADQx4yZMyb/GTSp2GQAAAM1Ow62nBQAAAAAAAACNSAMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCS2KXQDNS0VFIRUVhQY7fnV1Taqraxrs+AAAAAAAAEDp0gCn1ioqCunYsV0qKxtu4YA5c6ozefJ0TXAAAAAAAABgsWmAU2sVFYVUVlbk2tufyrgJU+r9+Ct2WybHH7BlKioKGuAAAAAAAADAYtMAZ7GNmzAl/xo3qdhlAAAAAAAAAMyn4dayBgAAAAAAAIBGpAEOAAAAAAAAQEmwBDoAAACUqerq6tx9990ZOHBg3nnnncyaNSvdu3fPDjvskKOPPjodOnSYb3zPnj0zefLkRR5v1KhRad26dQNXDQAAAIumAQ4AAABlqLq6OieddFKGDh2aNm3aZIMNNki7du0yatSo9O3bN0OHDs1tt92WLl26JEnGjRuXyZMnZ7nllsvmm2++0GNWVFhoDgAAgOLSAAcAAIAydO+992bo0KFZddVV07dv36y88spJks8//zynnXZahg8fnt69e+e3v/1tkuTNN99Mkuy00045++yzi1U2AAAAfCWnZgMAAEAZuvfee5MkZ5111rzmd5IstdRS6dOnTwqFQoYNG5YZM2YkSV5//fUkybrrrtv4xQIAAEAtaYADAABAGerYsWNWW221bLTRRgvsW3bZZbPMMstk1qxZmTRpUpL/XAG+3nrrNWaZAAAAsFgsgQ4AAABl6Prrr1/kvrFjx2by5Mlp2bJlll122SRfXgHepk2bvPbaaznnnHPyzjvvpFAopEePHjnuuOOy4YYbNlbpAAAAsEiuAAcAAADmM/e+39tuu21at26dTz75JBMmTMiMGTNyxhlnpLq6Oj179kzHjh0zYsSIHHjggXnooYeKWzQAAADEFeAAAADAfxkwYEAefPDBtG3bNqecckqS/9z/u1OnTrnuuuuy8cYbJ0lqampy880355JLLkmvXr3So0ePLL/88nV6/hYt5j9Xv7KyNM7dr+08Gmu+pfL/KwAAwP/SAAcAAACSJP3790+fPn1SKBRy8cUXZ/XVV0+SbL311nnyySdTU1OT5ZZbbt74QqGQQw89NM8//3yGDRuWe+65JyeccMISP39FRSGdOrWv8zyaog4d2ha7hPk0tXoAAADqiwY4AAAAlLmamppcccUV6du3byorK3PxxRdnl112mbe/UCikW7dui3z8dtttl2HDhuW1116rUx3V1TX57LPp822rrKwoiWbtZ59VZc6c6q8d11jzrW09AAAATUGHDm1rvZJVk22AV1dX5+67787AgQPzzjvvZNasWenevXt22GGHHH300enQocN843v27JnJkycv8nijRo1K69atG7hqAAAAaF5mzJiR008/PUOGDEmbNm3ym9/8JjvssMNiHaNr165JkqqqqjrXM3t2aTZl58ypblJza2r1AAAA1Jcm2QCvrq7OSSedlKFDh6ZNmzbZYIMN0q5du4waNSp9+/bN0KFDc9ttt6VLly5JknHjxmXy5MlZbrnlsvnmmy/0mBUV7m0FAAAA/+3zzz/PEUcckZEjR6Zz58657rrrsuGGGy4w7s4778wzzzyTXXfddaHN8bFjxyZJne//DQAAAHXVJBvg9957b4YOHZpVV101ffv2zcorr5zky2B+2mmnZfjw4endu3d++9vfJknefPPNJMlOO+2Us88+u1hlAwAAQLMxa9asHHXUURk5cmRWWWWV3HjjjfPy9/8aP358Hn744VRVVS3QAK+pqcl9992XJNlqq60avG4AAAD4Kk3ysuh77703SXLWWWfNF76XWmqp9OnTJ4VCIcOGDcuMGTOSJK+//nqSZN111238YgEAAKAZuuaaa/Liiy+ma9euGTBgwCKb30my5557plWrVhkxYkTuuuuuedurq6tz9dVXZ9SoUVljjTWy0047NUbp1IPKyoq0aNFw/1RUFIo9RQAAoEw1ySvAO3bsmNVWWy0bbbTRAvuWXXbZLLPMMpk8eXImTZqUFVZYYd4V4Outt14jVwoAAADNz5QpU3LzzTcnSTp37pzLL798kWPnnpx+wQUX5Jxzzsm5556bW265JauuumpGjx6d9957L126dMnvf//7tGzZsrGmwBJaZuk2qamuTocObRv0eaqr52TSpKpUV9c06PMAAAD8rybZAL/++usXuW/s2LGZPHlyWrZsmWWXXTbJl1eAt2nTJq+99lrOOeecvPPOOykUCunRo0eOO+64hd6/DAAAAMrVK6+8kqqqqiTJ6NGjM3r06EWOPfHEE9OlS5fstdde+eY3v5kbbrghL730Ut59991069YtBx98cI499th07ty5scqnDtq3aZVCRUX++eANqfrkowZ5jradV8g3dz0yFRUFDXAAAKDRNckG+FeZe9/vbbfdNq1bt84nn3ySCRMmJEnOOOOMbLTRRunZs2fefvvtjBgxIn/7299y+eWXZ+eddy5i1SyOysqGXZm/urpGAAcAAMra9773vbz11luL/bgePXrkuuuua4CKaGxVn3yUqvHvF7sMAACAetesGuADBgzIgw8+mLZt2+aUU05J8p/7f3fq1CnXXXddNt544yRJTU1Nbr755lxyySXp1atXevTokeWXX75Oz9+ixfyN2YZu1DaW2s6joefbmMuwffbZF6mp0QQHAAAAAACAUtJsGuD9+/dPnz59UigUcvHFF2f11VdPkmy99dZ58sknU1NTk+WWW27e+EKhkEMPPTTPP/98hg0blnvuuScnnHDCEj9/RUUhnTq1r/M8mqKGbjjXVmMuw9axY7sGOT4AAAAAAABQPE2+AV5TU5Mrrrgiffv2TWVlZS6++OLssssu8/YXCoV069ZtkY/fbrvtMmzYsLz22mt1qqO6uiaffTZ9vm2VlRVNpnlcF599VpU5c6q/dlxjzbcxlmGr7ZwBAAC+TocObUtmhTAAAABo7pp0A3zGjBk5/fTTM2TIkLRp0ya/+c1vssMOOyzWMbp27ZokqaqqqnM9s2eXZsN0zpzqkp3bopTjnAEAAAAAAKDUNdkG+Oeff54jjjgiI0eOTOfOnXPddddlww03XGDcnXfemWeeeSa77rrrQpvjY8eOTZI63/8bAAAAAAAAgKatSTbAZ82alaOOOiojR47MKquskhtvvDErr7zyQseOHz8+Dz/8cKqqqhZogNfU1OS+++5Lkmy11VYNXjcAAAAAAAAAxdMkb1J2zTXX5MUXX0zXrl0zYMCARTa/k2TPPfdMq1atMmLEiNx1113ztldXV+fqq6/OqFGjssYaa2SnnXZqjNIBAAAAAAAAKJImdwX4lClTcvPNNydJOnfunMsvv3yRY88666ysvPLKueCCC3LOOefk3HPPzS233JJVV101o0ePznvvvZcuXbrk97//fVq2bNlYUwAAAAAAAACgCJpcA/yVV15JVVVVkmT06NEZPXr0IseeeOKJ6dKlS/baa69885vfzA033JCXXnop7777brp165aDDz44xx57bDp37txY5QMAAAAAAABQJE2uAf69730vb7311mI/rkePHrnuuusaoCIAAAAAAAAAmoMmeQ9wAAAAAAAAAFhcGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEloUuwAAAAAAaEgVFYVUVBQa7PjV1TWprq5psOMDAAC1pwEOAAAAQMmqqCikU6e2qaiobLDnqK6ek0mTqjTBAQCgCdAABwAAAKBkfXn1d2X++eANqfrko3o/ftvOK+Sbux6ZioqCBjgAADQBGuAAAAAAlLyqTz5K1fj3i10GAADQwCqKXQAAAAAAAAAA1AcNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KHYBUO4qKgqpqCg02PGrq2tSXV3TYMcHAAAAAACApkIDHIqooqKQTp3apqKissGeo7p6TiZNqtIEBwAAAAAAoORpgEMRfXn1d2X++eANqfrko3o/ftvOK+Sbux6ZioqCBjgAAAAAAAAlTwMcmoCqTz5K1fj3i10GAAAAAAAANGsVxS4AAAAAAAAAAOqDBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFAS6tQAHzx4cF588cWvHffoo4/m6quvrstTAQAAQFmSvQEAAKD26tQAP+uss3LXXXd97bj77rsvN910U12eCgAAAMqS7A0AAAC112JxBg8ePDizZ8+eb9t7772Xe+65Z5GP+fzzz/PMM8+kZcuWS1YhAAAAlBHZm3JUUVFIRUWhQY5dWekOgAAAUE4WqwH++uuvZ8CAASkUvgwkhUIhr7zySl555ZWvfFxNTU323HPPJa8SikgIBwAAGpPsTbmpqCikY8d2MjIAAFAvFqsBftJJJ+Xzzz+f99+DBg3KN77xjWyyySaLfEzr1q2z6qqr5oADDljyKqFIhHAAAKCxyd6Um4qKQiorK3Lt7U9l3IQp9X78Ddfunv122qjejwsAADRNi9UAX3rppXPJJZfM++9BgwZlo402mm8blBIhHAAAaGyyN+Vq3IQp+de4SfV+3O5dO9T7MQEAgKZrsRrg/2v06NH1VQc0aUI4AABQLLI3AAAA1F6dGuD/7ZNPPklVVVVqamoWOWbllVeur6cDAACAsiN7AwAAwFercwP8z3/+c2644YZ8+umnXzmuUCjkjTfeqOvTAQAAQNlpqOxdXV2du+++OwMHDsw777yTWbNmpXv37tlhhx1y9NFHp0OH+VetmjhxYv7whz/kySefzPjx49O1a9fstNNOOe6449K+ffslmhsAAADUpzo1wAcOHJhf//rXSZJWrVqlU6dOqaysrJfCAAAAgIbL3tXV1TnppJMydOjQtGnTJhtssEHatWuXUaNGpW/fvhk6dGhuu+22dOnSJUkyYcKE7L///hk3blzWWmutbLvttnn11VfTt2/fPPnkk7ntttuy1FJL1bkuAAAAqIs6NcBvueWWFAqFnHPOOdl3333TsmXL+qoLAAAASMNl73vvvTdDhw7Nqquumr59+85bOv3zzz/PaaedluHDh6d379757W9/myTp3bt3xo0bl6OOOir/93//lySZOXNmzjjjjDz88MO55pprctZZZ9VLbQAAALCkKury4DFjxmSjjTbKQQcdpPkNAAAADaChsve9996bJDnrrLPmu2/4UkstlT59+qRQKGTYsGGZMWNG3n///QwdOjQrrLBCTjrppHljW7VqlYsuuijt27fPnXfemRkzZtRbfQAAALAk6tQAb9u2bTp16lRftQAAAAD/o6Gyd8eOHbPaaqtlo402WmDfsssum2WWWSazZs3KpEmT8sQTT6S6ujrbbLPNAk34pZdeOltssUWmT5+eZ599tt7rBAAAgMVRpwb45ptvnlGjRqWqqqq+6gEAAAD+S0Nl7+uvvz4PP/zwQpvrY8eOzeTJk9OyZcssu+yyefvtt5Mka6211kKPtcYaayTJvHEAAABQLHVqgJ9yyimpqqrK2WefnSlTptRXTQAAAMD/V4zsPfe+39tuu21at26djz/+OEnStWvXhY6fu33ixImNUh8AAAAsSou6PPiOO+7IBhtskL/+9a8ZOnRoVl111XTo0CGFQmGBsYVCIbfcckutj11dXZ277747AwcOzDvvvJNZs2ale/fu2WGHHXL00UenQ4cO842fOHFi/vCHP+TJJ5/M+PHj07Vr1+y000457rjj0r59+7pMEwAAAIqmIbP3wgwYMCAPPvhg2rZtm1NOOSVJMn369CRJmzZtFvqYudvnjquLFi3mP1e/srJO5+43GbWdR6nMNym/OZfKPAAAoLmrUwP85ptvnvfvs2fPzj/+8Y9Fjl1YMF+U6urqnHTSSRk6dGjatGmTDTbYIO3atcuoUaPSt2/fDB06NLfddlu6dOmSJJkwYUL233//jBs3LmuttVa23XbbvPrqq+nbt2+efPLJ3HbbbVlqqaWWfKIAAABQJA2VvRemf//+6dOnTwqFQi6++OKsvvrqSZLKysqvPH5NTc18/7ukKioK6dSpNE9i79ChbbFLaHTlNudymy8AADRVdWqA9+/fv77qmM+9994776z2vn37ZuWVV06SfP755znttNMyfPjw9O7de96SbL179864ceNy1FFH5f/+7/+SJDNnzswZZ5yRhx9+ONdcc03OOuusBqkVAAAAGlJDZe//VlNTkyuuuCJ9+/ZNZWVlLr744uyyyy7z9rdr1y5J8sUXXyz08XO3t21btwZgdXVNPvts/qvIKysrSqKx+NlnVZkzp/prx5XKfJPym3Nt5wsAACy+Dh3a1nrVpTo1wDfffPO6PHyR7r333iTJWWedNa/5nSRLLbVU+vTpk+9+97sZNmxYZsyYkQkTJmTo0KFZYYUVctJJJ80b26pVq1x00UV54okncuedd+bkk09e5FJtAAAA0FQ1VPaea8aMGTn99NMzZMiQtGnTJr/5zW+yww47zDemW7duSTLvXuD/6+vuEb44Zs8uzQbinDnVJTu3RSm3OZfbfAEAoKmqt5sTzZo1K6NGjcojjzySF198MUny4YcfLtGxOnbsmNVWWy0bbbTRAvuWXXbZLLPMMpk1a1YmTZqUJ554ItXV1dlmm23SsmXL+cYuvfTS2WKLLTJ9+vQ8++yzS1QLAAAANBX1mb2TL1daO/TQQzNkyJB07tw5/fv3X6D5nSRrrbVWkmTMmDELPc4777yTJFl77bWXuBYAAACoD3VugM+ePTu/+93vsuWWW2a//fbLySefnDvvvDNJcuaZZ+YnP/lJ3nvvvcU65vXXX5+HH344nTp1WmDf2LFjM3ny5LRs2TLLLrts3n777ST/CeP/a4011kiSeeMAAACguWmI7D1r1qwcddRRGTlyZFZZZZXceeed2XDDDRc6duutt06SDB8+PHPmzJlv39SpU/Pss8+mXbt22WSTTZZgdgAAAFB/6tQAnz17do4++uhcf/31qaqqynrrrZeampp5+6dNm5Y33ngjBx10UCZOnFjnYpPMu+/3tttum9atW3/tMmtzt9fX8wMAAEBjaqjsfc011+TFF19M165dM2DAgPluQfa/VlxxxWy33Xb54IMPcvnll897/pkzZ+a8887LtGnTsv/++2eppZZa8okCAABAPajTPcBvvfXWPPXUU9lqq63Sp0+fdOvWLeuss868/bfddlsuuOCCDB48ODfeeGPOPPPMOhU7YMCAPPjgg2nbtm1OOeWUJMn06dOTZJH39567fe64umjRYv7zBWp7o/WmrrbzKJX5JuU351KZBwAAlKOGyN5TpkzJzTffnCTp3LlzLr/88kWOPeuss9KlS5ece+65ef3113PTTTfl8ccfz5prrplXX301H374YdZdd92ccMIJdZ8sAAAA1FGdGuCDBg1Kx44d87vf/S7t27dfYH+bNm1y0UUX5emnn84TTzxRpwZ4//7906dPnxQKhVx88cVZffXVkySVlZVJkkKhsNDHzT0r/b/Pjl8SFRWFdOq04BxLQYcObYtdQqMrtzmX23wBAKCUNET2fuWVV1JVVZUkGT16dEaPHr3IsSeeeGK6dOmSFVdcMffcc09+//vfZ8SIERk+fHi6d++eY445JkceeeRCawMAAIDGVqcG+L/+9a9stdVWXxlyW7ZsmQ022CBPPfXUEj1HTU1NrrjiivTt2zeVlZW5+OKLs8suu8zb365duyTJF198sdDHz93etm3dGoDV1TX57LP5ryKvrKwoicbiZ59VZc6c6q8dVyrzTcpvzrWdLwAAsPg6dGjboKsuNUT2/t73vpe33nprsWtZbrnl0rt378V+HAAAADSWOjXAW7Rokc8+++xrx02ePDktWiz+U82YMSOnn356hgwZkjZt2uQ3v/lNdthhh/nGdOvWLUnm3Qv8f33dPcIXx+zZpdlAnDOnumTntijlNudymy8AAJSShs7eAAAAUErqdIr6t771rbz66qsZN27cIseMHTs2r7766nz3J6uNzz//PIceemiGDBmSzp07p3///gs0v5NkrbXWSpKMGTNmocd55513kiRrr732Yj0/AAAANAUNmb0BAACg1NSpAX7AAQekqqoqxx13XN54440F9r/11ls58cQTM3PmzOy99961Pu6sWbNy1FFHZeTIkVlllVVy5513ZsMNN1zo2K233jpJMnz48MyZM2e+fVOnTs2zzz6bdu3aZZNNNlmMmQEAAEDT0FDZGwAAAEpRndZG23nnnfP000/nnnvuyV577ZWll146hUIhTz75ZLbddtuMHz8+NTU12WWXXfLjH/+41se95ppr8uKLL6Zr164ZMGBAlltuuUWOXXHFFbPddttl+PDhufzyy3PmmWemUChk5syZOe+88zJt2rQcdthhWWqppeoyVQAAACiKhsreAAAAUIrqfHOw3r17Z6ONNsqNN96Yf/7zn0mSSZMmJUm6d++en/3sZznkkENqfbwpU6bk5ptvTpJ07tw5l19++SLHnnXWWenSpUvOPffcvP7667npppvy+OOPZ80118yrr76aDz/8MOuuu25OOOGEOswQAAAAiqu+szcAAACUqjo3wJNk7733zt57752PP/44H330Uaqrq9O1a9esuOKKi32sV155JVVVVUmS0aNHZ/To0Ysce+KJJ6ZLly5ZccUVc8899+T3v/99RowYkeHDh6d79+455phjcuSRR6Z9+/ZLPDcAAABoCuozewMAAECpqpcG+KRJk/LOO+9k8803T9euXZMk//jHP3Lrrbfmhz/84bxttfG9730vb7311mLXsNxyy6V3796L/TgAAABoDuozewMAAECpqqjrAe66665873vfy69//ev5tr/yyiu56KKLsuOOO+ahhx6q69MAAABA2ZK9AQAAoHbq1AB/6qmnct5556VFixbZYost5tu3ySab5PDDD09NTU1OO+20/P3vf69ToQAAAFCOZG8AAACovTo1wPv27ZsWLVqkf//+OeOMM+bbt+qqq+b0009P//79UygUcsMNN9SpUAAAAChHsjcAAADUXp0a4G+//XZ69uyZ9ddff5Fj1l9//WyyySZ5+eWX6/JUAAAAUJZkbwAAAKi9OjXAq6qq0rZt268d17Fjx8yePbsuTwUAAABlSfYGAACA2qtTA3zVVVfN888/n88//3yRY7744ou8+OKL+cY3vlGXpwIAAICyJHsDAABA7dWpAb777rtnypQpOemkkzJx4sQF9k+aNCmnnnpqPv300+y22251eSoAAAAoS7I3AAAA1F6Lujz4oIMOykMPPZSnn3462267bdZbb72ssMIKSZJ///vfef311zNz5sxssMEGOfTQQ+ujXgAAACgrsjcAAADUXp0a4C1btsxNN92Uq666KgMHDszLL7+cl19+ed7+1q1b54ADDsjpp5+eVq1a1bVWAAAAKDuyNwAAANRenRrgSdK+ffucc845OeOMM/Laa6/l448/zpw5c9K1a9esu+66adeuXX3UCQAAAGVL9gYAAIDaqVMD/JBDDsmqq66aX/3qV2nVqlV69OhRX3UBAAAAkb0BAABgcdSpAT5q1KhUVFTUVy0AAADA/5C9AQAAoPbqlKDbt2+fmpqa+qoFAAAA+B+yNwAAANRenRrgxx57bJ577rn069cvM2fOrK+aAAAAgP9P9gYAAIDaq9MS6GPHjs0qq6ySyy+/PFdeeWVWWWWVdOjQYaFLsxUKhdxyyy11eToAAAAoO7I3AAAA1F6dGuA333zzvH+fPXt2xowZs8ixhUKhLk8FAAAAZUn2BgAAgNqrUwO8f//+9VUHAAAAsBCyNwAAANRenRrgm2++eX3VAQAAACyE7A0AAAC1V6cG+H+bNWtW3nzzzXz00Ufp0qVLNtlkk3z44Yfp3r17fT0FAAAAlDXZGwAAAL5anRvgs2fPzrXXXptbb701U6dOTZLstttu2WSTTXLmmWdm2rRpueqqq7LKKqvUuVgAAAAoR7I3AAAA1E5FXR48e/bsHH300bn++utTVVWV9dZbLzU1NfP2T5s2LW+88UYOOuigTJw4sc7FAgAAQLmRvQEAAKD26tQAv/XWW/PUU09lyy23zKOPPpq77757vv233XZb9thjj0ycODE33nhjnQoFAACAciR7AwAAQO3VqQE+aNCgdOzYMb/73e/SrVu3Bfa3adMmF110Ubp165YnnniiLk8FAAAAZUn2BgAAgNqrUwP8X//6VzbddNO0b99+kWNatmyZDTbYIB9++GFdngoAAADKkuwNAAAAtVenBniLFi3y2Weffe24yZMnp0WLFnV5KgAAAChLsjcAAADUXp0a4N/61rfy6quvZty4cYscM3bs2Lz66qtZZ5116vJUAAAAUJZkbwAAAKi9OjXADzjggFRVVeW4447LG2+8scD+t956KyeeeGJmzpyZvffeuy5PBQAAAGVJ9gYAAIDaq9PaaDvvvHOefvrp3HPPPdlrr72y9NJLp1Ao5Mknn8y2226b8ePHp6amJrvsskt+/OMf11fNAAAAUDZkbwAAAKi9Ot8crHfv3tloo41y44035p///GeSZNKkSUmS7t2752c/+1kOOeSQuj4NAAAAlC3ZGwAAAGqnzg3wJNl7772z99575+OPP85HH32U6urqdO3aNSuuuGJ9HB4AAADKnuwNAAAAX2+xG+Bz5szJbbfdliFDhmTixInp3r17dtttt+yxxx7p2rVrunbt2hB1AgAAQNmQvQEAAGDJLFYDfObMmTn88MPzwgsvpKamJknyz3/+M08//XSGDx+e3/3udw1SJAAAAJQL2RsAAACW3GI1wO+44448//zzWW655XLkkUdm5ZVXzttvv52+fftmyJAhue+++/LjH/+4oWoFAACAkid7AwAAwJJbrAb4X//617Rp0ya33357unfvniTZZpttsvXWW2fPPffMX/7yFyEcAAAA6kD2BgAAgCVXsTiDx4wZk0033XReAJ9rnXXWybrrrpvRo0fXa3EAAABQbmRvAAAAWHKL1QCfNm1alllmmYXuW2mllTJ58uT6qAkAAADKluwNAAAAS26xGuCzZ89OZWXlQve1bNkys2bNqpeiAAAAoFzJ3gAAALDkFqsBDgAAAAAAAABNlQY4AAAAAAAAACVBAxwAAAAAAACAktBicR8wbNiwbL/99gtsnzRpUpIsdF+SFAqFDBs2bHGfDgAAAMqO7A0AAABLZrEb4NOnT8/06dMXuX/cuHEL3V4oFBb3qQAAAKAsyd4AAACwZBarAd6/f/+GqgMAAACI7A0AAAB1sVgN8M0337yh6gAAAAAiewMAAEBdVBS7AAAAAAAAAACoDxrgAAAAAAAAAJSExVoCHQAAAChdgwcPzplnnpmbbrop3/3udxfY37Nnz0yePHmRjx81alRat27dgBUCAADAV9MABwAAADJq1KhcdNFFi9w/bty4TJ48Ocstt9wi71NeUWGhOQAAAIpLAxwAAADK3GOPPZYzzzwzn3/++SLHvPnmm0mSnXbaKWeffXZjlQYAAACLRQMcAAAAytT48ePz29/+NoMGDUqbNm3SpUuXTJw4caFjX3/99STJuuuu25glAgAAwGKxNhkAAACUqauuuioDBw7MuuuumzvvvDOrrbbaIsfOvQJ8vfXWa6zyAAAAYLG5AhwAAADK1GqrrZZLL700u++++9fev/v1119PmzZt8tprr+Wcc87JO++8k0KhkB49euS4447Lhhtu2EhVAwAAwKI1myvABw8enLXXXjtPP/30Qvf37Nkza6+99iL/+eKLLxq5YgAAAGjajjrqqOyxxx5f2/z+5JNPMmHChMyYMSNnnHFGqqur07Nnz3Ts2DEjRozIgQcemIceeqiRqgYAAIBFaxZXgI8aNSoXXXTRIvePGzcukydPznLLLZfNN998oWO+LswDAAAACzf3/t+dOnXKddddl4033jhJUlNTk5tvvjmXXHJJevXqlR49emT55Zev03O1aDF/fq+sLI08X9t5lMp8k/Kbc6nMAwAAmrsm3wB/7LHHcuaZZ+bzzz9f5Ji59yHbaaedcvbZZzdWaQAAAFAWtt566zz55JOpqanJcsstN297oVDIoYcemueffz7Dhg3LPffckxNOOGGJn6eiopBOndrXR8lNTocObYtdQqMrtzmX23wBAKCparIN8PHjx+e3v/1tBg0alDZt2qRLly6ZOHHiQsfOPRN93XXXbcwSAQAAoCwUCoV069Ztkfu32267DBs2LK+99lqdnqe6uiaffTZ9vm2VlRUl0Vj87LOqzJlT/bXjSmW+SfnNubbzBQAAFl+HDm1rvepSk22AX3XVVRk0aFDWW2+99OnTJ717915kA3zuFeDrrbdeY5YIAAAAJOnatWuSpKqqqs7Hmj27NBuIc+ZUl+zcFqXc5lxu8wUAgKaqyTbAV1tttVx66aXZfffdv/b+3a+//nratGmT1157Leecc07eeeedFAqF9OjRI8cdd1w23HDDRqoaAAAASs+dd96ZZ555Jrvuumt22GGHBfaPHTs2Sep8/28AAACoq9pdJ14ERx11VPbYY4+vbX5/8sknmTBhQmbMmJEzzjgj1dXV6dmzZzp27JgRI0bkwAMPzEMPPdRIVQMAAEDpGT9+fB5++OHcfffdC+yrqanJfffdlyTZaqutGrs0AAAAmE+TvQK8tube/7tTp0657rrrsvHGGyf5MoDffPPNueSSS9KrV6/06NGjzmeit2gxfzO+tuvMN3W1nUepzDcpvzmXyjwAAIDi2HPPPXPDDTdkxIgRueuuu7LvvvsmSaqrq/P73/8+o0aNyhprrJGddtqpyJUCAABQ7pp9A3zrrbfOk08+mZqamiy33HLzthcKhRx66KF5/vnnM2zYsNxzzz054YQTlvh5KioK6dSpfX2U3OR06NC22CU0unKbc7nNFwAAqF8rr7xyLrjggpxzzjk599xzc8stt2TVVVfN6NGj895776VLly75/e9/n5YtWxa7VAAAAMpcs2+AFwqFdOvWbZH7t9tuuwwbNiyvvfZanZ6nuromn302fb5tlZUVJdFY/OyzqsyZU/2140plvkn5zbm28wUAABZfhw5ty2LVpb322ivf/OY3c8MNN+Sll17Ku+++m27duuXggw/Osccem86dOxe7RAAAAGj+DfCv07Vr1yRJVVVVnY81e3ZpNhDnzKku2bktSrnNudzmCwAALJkBAwZ85f4ePXrkuuuua6RqAAAAYPE1+1PU77zzzpx88skZNmzYQvePHTs2Sep8/28AAAAAAAAAmrZmfwX4+PHj8/DDD6eqqio77LDDfPtqampy3333JUm22mqrYpQHAAAAAAAAQCNp9leA77nnnmnVqlVGjBiRu+66a9726urqXH311Rk1alTWWGON7LTTTkWsEgAAAAAAAICG1uyvAF955ZVzwQUX5Jxzzsm5556bW265JauuumpGjx6d9957L126dMnvf//7tGzZstilAgAAAAAAANCAmv0V4Emy11575dZbb833v//9jB8/Po899lhmz56dgw8+OPfff39WW221YpcIAAAAAAAAQANrNleADxgw4Cv39+jRI9ddd10jVQMAAAAAAABAU1MSV4ADAAAAAAAAgAY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAoDyU1FRSEVFocGOX11dk+rqmgY7PgAAAAAAAE2TBjjQqCoqCunUqW0qKiob7Dmqq+dk0qQqTXAAAAAAAIAyowEONKovr/6uzD8fvCFVn3xU78dv23mFfHPXI1NRUdAABwAAAAAAKDMa4EBRVH3yUarGv1/sMgAAAAAAACghGuAAAAAAUGK+XIGt0GDHr66usfIaAABNkgY4AAAAAJSQiopCOnVqm4qKygZ7jurqOZk0qUoTHACAJkcDHAAAAABKyJdXf1fmnw/ekKpPPqr347ftvEK+ueuRqagoaIADANDkaIADAAAAQAmq+uSjVI1/v9hlAABAo6oodgEAAAAAAAAAUB80wAEAAAAAAAAoCRrgAAAAAAAAAJQE9wAH5lNRUUhFRaHBjl9Z6bwbAAAAAAAAGoYGODBPRUUhHTu206QGAAAAAACgWdIAB+apqCiksrIi197+VMZNmNIgz7Hh2t2z304bNcixAQAAAAAAKG8a4MACxk2Ykn+Nm9Qgx+7etUODHBcAAACaC7cfAwCAhqMBDgAAAACNxO3HAACgYWmAAwAAAEAjcfsxAABoWBrgAAAAANDI3H4MAAAahrWWAAAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAACBJMnjw4Ky99tp5+umnF7p/4sSJ+dWvfpUf/OAH2WCDDbL99tvn8ssvz7Rp0xq5UgAAAFg4DXAAAAAgo0aNykUXXbTI/RMmTMi+++6bW2+9NW3atMm2226b6urq9O3bNwcccEA+//zzRqwWAAAAFk4DHAAAAMrcY489lsMPP/wrm9i9e/fOuHHjctRRR+WBBx7I1VdfnUceeSQ/+tGP8tZbb+Waa65pxIoBAABg4ZpNA9wybAAAAFC/xo8fn169euW4447LrFmz0qVLl4WOe//99zN06NCssMIKOemkk+Ztb9WqVS666KK0b98+d955Z2bMmNFYpQMAAMBCNYsGuGXYAAAAoP5dddVVGThwYNZdd93ceeedWW211RY67oknnkh1dXW22WabtGzZcr59Sy+9dLbYYotMnz49zz77bGOUDQAAAIvU5BvglmEDAACAhrHaaqvl0ksvzd1335211157kePefvvtJMlaa6210P1rrLHGfOMAAACgWJpsA9wybAAAANCwjjrqqOyxxx6pqPjqrwc+/vjjJEnXrl0Xun/u9okTJ9ZvgQAAALCYWhS7gEW56qqrMmjQoKy33nrp06dPevfuvdAgXZtl2B599NE8++yz2WabbRqrfAAAACgZ06dPT5K0adNmofvnbp87ri5atJi/GV9Z2WTP3V8stZ1Hqcw3Kb85l9t8k9KaCwAApaPJNsDnLsO2++67f+WZ6LVZhu3RRx/N22+/rQEOAAAAS6CysjJJUigUFrq/pqZmvv9dUhUVhXTq1L5Ox2iqOnRoW+wSGl25zbnc5puU55wBAGj6mmwD/KijjqrVOMuwAQAAQMNq165dkuSLL75Y6P6529u2rVszrLq6Jp99Nv9V5JWVFSXRZPvss6rMmVP9teNKZb5J+c253Oab1H7OAABQVx06tK31CkRNtgFeW5ZhqztLdNV9XFNXbvNNSmsuAABQbN26dUvyn5PQ/9fXnZy+OGbPLs1m2pw51SU7t0UptzmX23yT8pwzAABNX7NvgFuGre5K5azjxVFucy63+SblOWcAAGgoc287NmbMmIXuf+edd5Ika6+9dqPVBAAAAAvT7BvglmGrO0t0LVqpzLnc5ptYhg0AgMazOMuwNVdbb711kmT48OHp1avXvJPRk2Tq1Kl59tln065du2yyySbFKhEAAACSlEAD3DJsdVeOy1WV25zLbb5Jec4ZAAAayoorrpjtttsuw4cPz+WXX54zzzwzhUIhM2fOzHnnnZdp06blsMMOy1JLLVXsUgEAAChzzb4Bbhk2AAAAaHjnnntuXn/99dx00015/PHHs+aaa+bVV1/Nhx9+mHXXXTcnnHBCsUsEAACANPs12v57GbY5c+bMt88ybAAAAFA/Vlxxxdxzzz3ZZ599MnXq1AwfPjytWrXKMccck/79+6d9+/bFLhEAAACa/xXglmEDAACA+jFgwICv3L/ccsuld+/ejVQNAAAALL5m3wBPLMMGAAAAAAAAQAksgZ5Yhg0AAAAAAACAZnQFuGXYAAAAAAAAAPgqJXEFOAAAAAAAAABogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEloUuwAAAACg+Xjsscdy7LHHLnL/zjvvnKuuuqoRKwIAAID/0AAHAAAAau2NN95Ikmy22WZZfvnlF9i/8cYbN3ZJAAAAME9JNcCdhQ4AAAANa24D/Jxzzsk666xT5GoAAABgfiXVAHcWOgAAADSsN954I61bt84aa6xR7FIAAABgASXZAHcWOgAAANS/SZMm5aOPPsoGG2yQFi1K6isFAAAASkRJpVVnoQMAAEDDmXvi+QorrJDLL788jz76aD788MN06dIlO+64Y4455pgss8wyRa4SAACAclZR7ALqy9yz0Ndee21noQMAAEADeP3115MkjzzySG6//fasuuqq6dGjR6ZMmZJ+/fpl3333zccff1zkKgEAAChnJdMpdhY6AAAANKw333wzSbLtttvmiiuuyNJLL50k+fTTT3PKKafk73//e84999xcf/31S/wcLVrMf65+ZWVpnLtf23mUynyT8ptzuc03Ka25AABQOkqmAf7fZ6G3b98+m2++eZZffvm8+uqr6devXx577LHccsst6dq1a5ErBQAAgObp0ksvzS9+8Yssv/zyadOmzbztyy67bC677LLstNNOGT58eD744IOstNJKi338iopCOnVqX58lNxkdOrQtdgmNrtzmXG7zTcpzzgAANH0l0wB3FvqSc4Zy3cc1deU236S05gIAAE1Fq1atsuqqqy5033LLLZdvf/vbeeGFF/L6668vUQO8uromn302fb5tlZUVJdFk++yzqsyZU/2140plvkn5zbnc5pvUfs4AAFBXHTq0rXXvp2Qa4M5CX3KlEroWR7nNudzmm5TnnAEAoNi6dOmSJKmqqlriY8yeXZrNtDlzqkt2botSbnMut/km5TlnAACavpJpgDsLfck5Q3nRSmXO5TbfxFnoAAA0nsU5C705mzlzZi688MJMmjQpV1xxRdq1a7fAmLFjxyZJll9++cYuDwAAAJKUUAP86zgLfdHK8Wzdcptzuc03Kc85AwBAQ2rVqlWefvrpfPjhh3niiSey0047zbd/9OjRGT16dJZeeulstNFGxSkSAACAslcSp6jPnDkzv/zlL3Pcccdl+vTpCx3jLHQAAACom/322y9J8utf/zrvv//+vO0TJ07M2WefnTlz5uTwww+f79ZkAAAA0JhK4gpwZ6EDAABAwzvssMPy/PPP529/+1t23XXXbLrppmnVqlWeffbZTJ8+PTvuuGOOOuqoYpcJAABAGSuJK8ATZ6EDAABAQ2vVqlX+9Kc/5Ze//GVWX331vPjii3n22Wez5pprpnfv3vnd736XysrKYpcJAABAGSuJK8ATZ6EDAABAY6isrMwhhxySQw45pNilAAAAwAJKpgE+9yz0W2+9NYMGDcqLL76YioqKrLnmmtlnn32y9957p1AoFLtMAAAAAAAAABpIyTTAE2ehAwAAAAAAAJSzkrkHOAAAAAAAAADlTQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCS2KXQBAsVVUFFJRUSh2GXVSXV2T6uqaYpcBAAAAAABQVBrgQFmrqCikY8d2qaxsuAUxaqqrU6ho2AU3qqvnZNKkKk1wAAAAAACgrGmAA2WtoqKQysqKXHv7Uxk3YUq9H3/Dtbtnv502yj8fvCFVn3xU78dPkradV8g3dz0yFRUFDXAAAAAAAKCsaYADJBk3YUr+NW5SvR+3e9cOSZKqTz5K1fj36/34AAAAAAAA/IcGOAAAAADQoCoqCqmoKBS7jDqprq6x8hrzaej3tfccACwZDXAAAAAAoMFUVBTSsWO7VFZWNNhz1FRXp1DRcMdPkurqOZk0qUpDkiSN876eM6c6kydP954DgMWkAQ4AAAAANJiKikIqKyty7e1PZdyEKfV+/A3X7p79dtoo/3zwhlR98lG9Hz9J2nZeId/c9chUVBQ0I0nS8O/rFbstk+MP2DItW1Zmzpzqej/+XK4yB6AUaYADAAAAAA1u3IQp+de4SfV+3O5dOyRJqj75KFXj36/348NXaaj39TJLt0lNdXU6dGhb78f+b1Y2AKAUaYADAAAAAEAT0r5NqxQqKqxsAABLQAMcAAAAAACaICsbAMDiqyh2AQAAAAAAAABQHzTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJLYpdAAAAAAAAAND8VVQUUlFRaNDnqK6uSXV1TYM+B81byTXAn3vuuVx//fV58803M2PGjKy99tr52c9+lh/96EfFLg0AAABKguwNAADNU0M2qAuFQjp0aJ2KisoGOf5c1dVzMmlSlSY4i1RSDfAHHnggp59+elq0aJGePXumsrIyzzzzTE4++eSMGTMmJ5xwQrFLBAAAgGZN9gYAgOapoqKQjh3bpbKyYe+Q/M8Hb0jVJx81yLHbdl4h39z1yFRUFDTAWaSSaYB/8sknOeecc9K2bdv0798/66+/fpJkzJgxOeSQQ3LNNddkhx12yDrrrFPkSgEoRQ29tI9lfQCApkD2BqCYZG+AuqmoKKSysiLX3v5Uxk2YUu/H33Dt7tlvp41S9clHqRr/fr0fH2qrZBrgt956a2bMmJEjjzxyXgBPktVXXz2nnnpqzj777Nx888255JJLilglAMXQ0AG5MZb2sawPANAUyN4AFEtFRSGdOrWVvQHqwbgJU/KvcZPq/bjdu3ao92PCkiiZBviIESOSJD/4wQ8W2Lf99tunUCjk8ccfb+SqACi2xlrWJ2m4pX0s6wMANBWyNwCL0tAnn1dWVqSiolL2plE19Pu6MVjZAGgITX1VlpJpgP/jH/9IkqyxxhoL7OvYsWO6dOmSjz/+OJ988kk6d+7c2OUBUCQNvaxP0jSX9hHQAICGIHsDsDCNefJ5U8relLbGel/XVFenUNFwz2FlAyg/VkQtkQb4lClT8sUXX6R9+/Zp3779Qsd069YtH3/8cT7++GMhHKAMNdSyPknTW9qnMQJaQ4ezpOkFtKZ2VmM5nuTQ3OfspI6v19xf48TrTGmTvQGalqaUURrz5HOKq7l/Zm+q72srGxRXOb2vKX1WRP1Soaamptn/VHz00UfZdttt06VLlzz11FMLHXPAAQfkpZdeyu23354ePXos9nPU1Cz4C6RQSCoqKjLl8xmZM6d6iWr/Kq1aVmapdq0za9pnqameU+/HL1RUpmX7Dqmurk5t3gXNfb5J+c25qc03Kb85N8X39bzHNd/PdIs9z3J9X0+bPjNzqut/zi1bVKZtm5aZPWNaahrg+ElSqKhIizbtm9T7ulAopNCAT7CwzxpfpaKiYetJvqypnObc1OY7V7n8vk6a/2s89zkW93Uup9c4ad7zTRY+58b4ndwUyN5LRkapxfhmPuemNt+k/ObcFN/X8x5XJhnF+7p83tfN/TO793UtH9eMP9ouSUbxvq4/TfV3V1I+7+uG/m44+c/3w439u2txflZL4grwiv9/BdpXTXpun39J+/2FQiGVlQs//jJLtVmiY9ZWy/YNe2VhxWJewdfc55uU35yb2nyT8ptzU3xfl5tyfF+3b9eqgSr5Uos2C7/yqz6V0/v6qz5rFEtDN3Oa2pzLbb7lqDEalF5nSpnsXTcyytdr7nNuavNNym/OTfF93Zwtyeca7+v6V27v66aYy8rxfU39Ksf3dbn97mqKGvq74aRp/+4qiXfH3KXXZsyYscgxM2fOTJK0a9euUWoCAACAUiJ7AwAA0ByUTAO8Xbt2mTp16iKD+IQJE5IkXbt2bczSAAAAoCTI3gAAADQHJdEALxQKWWuttZIkY8aMWWD/5MmTM3HixCy77LLp0qVLY5cHAAAAzZ7sDQAAQHNQEg3wJNl6662TJMOGDVtg37Bhw1JTU5NtttmmscsCAACAkiF7AwAA0NSVTAN8r732Stu2bfPnP/85L7300rzt7777bn7729+mUCjk5z//eRErBAAAgOZN9gYAAKCpK9TU1NQUu4j6ctddd+Xcc89NZWVlevbsmVatWuWZZ57JF198kf/7v//LUUcdVewSAQAAoFmTvQEAAGjKSqoBniRPPPFEbrjhhrz22muprKzMGmuskcMOOyw//OEPi10aAAAAlATZGwAAgKaq5BrgAAAAAAAAAJSnkrkHOAAAAAAAAADlTQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgQL2ZOnXqYj/m2WefbYBKgCV1zTXX5O233y52GQAAwCLI3tD8yd4A0LA0wGl0M2fOzGuvvZbRo0dn9uzZixz36aef5vnnn2/Eyhrfs88+m5tuuim33XZbxo4dW+xy6uyQQw7J5MmTazX2iy++SO/evfPzn/+8YYsCFss111yTt956q9hlQL3bfvvt8+ijjxa7jKKorq7O+++/P9+2mpqaPPTQQ+ndu3d+85vf5JVXXilSdfXnww8/zIwZM2o9fuzYsRk8eHDDFVQEn376aZ555pk89NBDefjhh/Pss8/W+rMZUHpk7/+QvWVvaGpkb0qV7C17/y/Zm2JpUewCqL0ZM2bk008/Tffu3YtdyhLr379/fve732X69OlJkqWXXjpHHHFEjjjiiFRUzH8+xt/+9receeaZefPNN4tRar1566238sc//jFvvfVWunfvnqOPPjo9evTISSedlEcffTQ1NTVJkhYtWuTEE0/M0UcfXeSKl9ybb76Zn/70p/nzn/+cLl26LHLcK6+8kjPPPDP/+te/vnJcqfr0008zZsyYbLbZZsUupVFMnTo1l156aXr37l3sUhpNub3GpWD77bfP2Wefne23377YpTSab33rW7nsssuy2267FbuURjFu3Lh5nz/KyYgRI3LhhRfm448/zmuvvZbky1B+3HHH5fHHH5/3OaRv37455JBD0qtXr2KWWyfbb7/9Au/p6dOn56KLLsoRRxyR1Vdffb7xI0eOTK9evbLHHns0cqX175FHHskf//jHhX5uLhQK6dGjR4444ohsu+22jV9cPVpnnXVSKBQW6zGFQiFvvPFGA1VEqZK9myfZe0Gyd3nlMtmb5kD2Ln2yt+wte8veTYUrwItoYWdDzZw5M4MHD87EiRMXGD9kyJBm/eFg8ODB6dOnT9Zee+306tUrRx99dNq0aZOrrroqhx12WD7//PNil1jvXnvttey7774ZMWJE2rZtm1deeSWHHnpo+vTpk0cffTSHH354Bg0alFtuuSXbbLNNfvvb3+bhhx8udtlL7Nxzz827776bgw46KB999NEC+2fNmpXf/OY3OfDAA/Ovf/0rP/7xj/OXv/ylCJXWr29961t54IEH5ts2Y8aMXHPNNfnggw8WGP+3v/0thxxySGOV1yA++OCDXHTRRfnJT36Sn/zkJznnnHPy3nvvLTBuyJAh2XnnnXPvvfcWocr6U46vcbkpx4A2N3xRukaPHp3jjz8+NTU1Ofzww1NdXZ0kuf322zNixIh07do1d911V0aOHJkzzjgj/fv3b9afQxb2nv7iiy8yePDgTJgwoQgVNY7evXvn5JNPzrhx47LHHnvktNNOy69+9aucd955Oemkk7L99tvn9ddfz7HHHptf//rXxS63TjbbbLNsuummi/XPJptsUuyyaQJkb9lb9pa9myvZu/Rf43Ije1OKZG/ZW/ZumtnbFeBFtLA/+NOmTUuvXr3Sr1+/kjs796abbspmm22WAQMGzNt23HHH5YILLsjAgQNz6KGH5s9//nOWWmqpIlZZv6666qqstNJKGTBgQJZddtlMnz49Rx99dG699dbst99+Oe200+aN3XTTTfPTn/40N954Y370ox8Vseold9BBB2WZZZbJWWedlYMOOih//vOf841vfCPJl2eon3nmmXn77bfTvXv3XHjhhdl6662LXHH9WNgf/aqqqlx77bXZZJNNstJKKxWhqobz5ptv5uCDD87nn3+eNm3apE2bNnnjjTfy0EMP5Y477shaa62VqVOn5pxzzsmQIUNSWVmZo446qthl10m5vcbvvvvuYi+D6Yx7aHpuuOGGdOvWLffdd186dOgwb/utt96aQqGQU089NRtssEGS5Oc//3mee+653H777c32c8iilPIXTvfff39uueWW7LHHHjnvvPPSrl27hY6bNm1aLr744tx8883ZeOONs+OOOzZypfXjv3MELA7ZW/aWvWXv5kj2/lIpv8ayN5QG2ftLsrfs3dRogDdBpfqL4p///GfOOuus+ba1atUqffr0SceOHdOvX78cccQR6dev3yJ/gTQ3I0eOzKmnnppll102SdKuXbv84he/yE9/+tNstdVWC4z/0Y9+lMsuu6yxy6xXu+66a5ZeeumcfPLJOeigg3LDDTfk0UcfzfXXX5/Zs2fnwAMPzP/93/+lffv2xS61wZXqz/LVV1+dGTNm5De/+U122WWXJMmoUaNy6qmnpnfv3rniiityyCGH5F//+lfWX3/99O7dO2uvvXaRq24YpfoaX3/99bn++usX6zHNfcnMcrW4yxk1d3fddVeefvrpWo8vFArp06dPA1bUsJ5//vnsu+++8wXwsWPH5t13302LFi3ygx/8YL7xW265Za6++urGLpM6uP3227PRRht97dnl7du3T58+fTJmzJjcfffdzTaEz5o1Ky1btlysx7zyyivZcMMNG6gimrtS/Swne8vesndpkL3/o1RfY9m7fMjeX032pqmTvb9eU8zeGuA0mrZt22by5MkL3XfGGWdk+vTpueOOO3LMMcfkhhtuaNziGshSSy2Vzz77bL5ta6+9drbZZpu0aLHgj9+kSZPSunXrxiqvwWyzzTbp27dvjj322PzkJz9JTU1NVllllfTu3TubbrppscujjkaNGpX9999/XgBPkg022CBnnHFGTjnllJxyyikZN25cTjvttBx22GEL3GOQpm+HHXYo2S9Ovkq5BbQkue6663LXXXfVenyhUMjNN9/cgBU1rOeff36xrrBo7q/xpEmTsvzyy8+37e9//3uSZMMNN1zgC/E2bdrkiy++aLT6qLt//OMfi3UP2+233z533nlnA1bUsH7yk5/kiiuuqNXfqJkzZ+aqq65K//798/rrrzdCddB0yN5fkr1l7+ZO9i59snftNPdclsjeX6e5v8ayd+mTvRetKWdvDXAaTc+ePdO/f//84Ac/yJprrrnA/vPPPz+ff/55HnzwwRx22GHZZpttilBl/dpyyy3z5z//ORtvvHG+853vJEmWXnrp/PGPf1xg7CuvvJIBAwbMG9fcbbLJJunfv3+OOOKIfPrpp/nVr34lgJeIKVOmZJ111llg+/rrr585c+bkrbfeyoABA7LRRhs1fnHUix/+8IfZbbfdil1Goyu3gJYkY8aMyZgxY2o9vrmftX722Wc363u6Lq5lllkmn3766Xzb/va3v6VQKGTLLbdcYPyYMWPmXTlH8zB9+vR07ty51uO7du3arO/JNnHixOy999458cQTc+SRRy7yd9KLL76Ys88+O++9915WWWWVRq4Sik/2lr1l79Ige5c+2bt2ZO/mR/aWvUuN7N08s7cGOI3m1FNPzYEHHpg999wz3/72t3P55ZfP90NRKBRy2WWXpVWrVhk4cGBeeumlIlZbP0477bSMGjUqhx12WDbddNNF3jvh4IMPzosvvphll112vnuTNXfrrLNObr/99vz85z/Psccem2uvvTZbbLFFscuijmbPnr3QqyXatGmTJDnqqKMEcJqlcgtoSXL55ZeX1RcunTp1yoorrljsMhpNjx498tBDD+Xwww9PZWVlJk6cmBEjRiRJdtppp/nGTp06NQ888EB69uxZhEpZUnPmzFnolY2LUllZmdmzZzdgRQ3rwQcfTK9evXLllVdmxIgRufTSS7PyyivP2z93mdi599o7/PDDc9JJJxWxYigO2Vv2lr1Lg+xNqZK9S5/sLXuXGtm7eWZvDXAazaqrrpq//OUvufbaa/PCCy/M+8D+3yoqKtKnT59svPHG+d3vfpdPPvmkCJXWn86dO+fee+/NHXfckZkzZy5yXJs2bbL33nvnF7/4xWKdSdTU9OrVa6HbV1lllXzwwQc5+uij86Mf/Wi+M4ZK4SxO5rfeeusVuwRYIuUW0Ch9Rx55ZPbff//st99+2XzzzfPoo4/miy++yC677JLVVlstyZdfrL788su59NJL8+mnn+aggw4qctV1M3To0Lz33nvz/nvGjBkpFAq577778uKLL8439u23327s8qijzp07509/+lNuvfXWXH755fnxj3+cs846K/vuu2+ee+65/PKXv8zYsWOz9tpr5+KLL/aZhLIle8vesnd58HeO5kr2ptTI3rJ3qSmV7K0BXmTvvvvufEu+TJ06NUny1ltvLXBGyeIsk9JUderUKeecc87Xjttnn32y5557zvdLtLlq06ZNDj300K8cUyr3XRs0aNBX7v/iiy8yePDg+baVSgh/4YUXMmfOnHn/PW3atCTJU089lfHjx883thSusPgqzX2ZpkUpl9d4s802S5cuXYpdBlAP1l9//Vx33XW5+OKL069fv1RWVma33XbLhRdeOG/MZZddlv79+6eioiK9evVKjx49ilhx3Q0ZMiRDhgxZYPv/fv6YqxT+Zv3vFw9fpVS+eDjooIOyxRZb5Nxzz83555+fAQMGZMyYMWnRokVOOumkHHXUUYt1dj7lQfZeONm7eZK9Sz+X1UYpfI5ZmHJ5jWVvKB2y93/I3l+SvZuGQk1NTU2xiyhX66yzzkJ/8Gtqar5y+5tvvtkY5TW4mpqajB07NpMnT06SLLvssllppZWKW1QDK/U5jxs3boke19zP+lzYz/J//2pd2L7m/LO8zjrr5Nhjj813v/vd+bZPnTo1xx13XM4666ysu+66Czxus802a6wS6125vcblaJ111im7JcnKbc6DBg3KpptuOt+STeVk0qRJadu27QJXAT7++ON5/fXXs8suuzTJ+zUtjueee26JHrf55pvXcyWNZ2H3Bf06pfT36fnnn89xxx2XqVOnplAo5LjjjsuJJ55Y7LJogmTv0s6hC1Pqc5a9/6OUc5ns/aVSfo3LUbnl0KT85ix7y96LIns3X801e2uAF9E111yzRI874YQT6rmSxjVq1Kj07ds3Tz31VKZPnz7fvqWWWirf//738/Of/3yJfqk0VeU453LydWffL8qee+5Zz5U0jkV9gZgs+kvEJM36D345vcb/fWXU4mjOX7Ik5RnQnnvuuay++urNevlPKHfl+MVDknz++ee57LLLcs8996R169Y58sgj88gjj+Ttt9/Od77znfTu3Tvdu3cvdpk0IbJ3+eTQcpxzOSmnXJbI3oujOb7GsrfsDTQfsnfzzN4a4DSqfv365YorrkhFRUU23njjrLnmmunQoUNmz56dyZMn54033sibb76ZioqKnHnmmTnkkEOKXXKdleOca+v666/PkCFDMnDgwGKX0uhmzpyZVq1aFbuMJVKuXyAurub6Gn/VlyxfpTl/yUJ5WNS9Mr9KqSwVysLdcccd+dvf/rbEf9cojhEjRuT888/P+PHjs8UWW+Siiy7KyiuvnFmzZuXqq69Ov3790qZNm5x++unZf//9i10uFE055tBynHNtyd7NL5clsndtNdfXWPamVMne/C/Zu3kqheytAU6jefzxx3P00UfnO9/5Tvr06ZMVVlhhoePef//9XHjhhXn66afTr1+/fOc732nkSutPOc55cZx//vm56667mv2H92uuuWaxAuaoUaPSq1ev/OUvf2nAqqhP5fQa//73v1+iEN7cv2Qpx4C2JF/6FgqF3HzzzQ1QTcMrx+Wqvu5LtdatW2fppZfOWmutlR/+8IfZZ599UlFR0YgVFlcpfA758MMPs+yyyy6wvN6ijB07Ni+++GL22GOPhi2sgZx22mn5y1/+knbt2uWMM87Ifvvtt8CYkSNH5swzz8zYsWOz+eab5+KLLy6pZY+hNsoxh5bjnBdHKfzNS8orl5WrcnqNZe/ak72bF9l7QbJ38/8cIns3z+ytAV5E5fYH/+c//3kmTpyYgQMHpmXLll85dvbs2dljjz2yyiqr5Nprr22kCutfOc55cZTCH7/kyw85hx9+eE4//fSvHDd79uxcc8016du3b+bMmdPs511bM2bMyKefftqkl0P5Ol7j0leuAW1xNec5l+O9Mg8++OCv3D9nzpx89tlnef/99zNr1qxsueWWuf7669OiRYtGqrC4SuFzyLe+9a1cdtll891PcPr06bnoootyxBFHZPXVV59v/P33358zzzyz2c55nXXWydZbb52LLrooyy+//CLHzZgxI7/+9a9zxx13pF27dnnppZcasUqaItl70Uolh5bjnBdHKfzNS+SyryN70xyUWw5Nym/OsveCZO/m/zlE9l64pp69y+MnrIlanPva/PcZRM01hL/xxhs59NBDvzaMJkmLFi3yox/9KPfff38jVNZwynHO5WjTTTdNv379UlVVlfPOO2+hY956662ceeaZeeutt7LMMsvkl7/8ZSNXWX+23377nH322dl+++3nbZs5c2YeeuihbLXVVunSpct844cMGdKs/+An5fcal6NHH3202CU0utGjRxe7hEbVnMP0khowYECtxs2YMSO33357Lrvsstx+++1fG95pOhZ2LvMXX3yRwYMHZ/fdd18ghDd3l1xySa3u8dmmTZtccMEF+cEPfuDvMUlk769SKjm0HOdcjsotl8nepf8alyPZu/TJ3osmezdfsvfCNfXsrQFeRLX54zdu3LhcdNFFGTFiRJZeeumcfPLJDV9YA5k2bVq6detW6/ErrLBC/v3vfzdgRQ2vHOdcjvr165eTTjopt99+e6qqqtKnT595X5zV1NTkT3/6U6699trMnDkzO++8c84555wsu+yyRa56yY0bNy7Tp0+fb9u0adPSq1ev9OvXb4EQXgrK7TVOknfffTcjR47MXnvtNW/bxIkTc8011+Sll15K27Zts/322+fQQw9tlvdb+1/lGNCY38yZM/OPf/wjbdq0yWqrrVbschpVmzZt8vOf/zyvvPJKBg0aJISXgFJd5Ks2Afy/ffOb38w+++zTQNXQnMjeX60Ucmg5zrkclVsuk71L/zVOZG/Kj+wte5cS2ftLTTV7a4A3UXPmzEm/fv3yhz/8ITNmzMguu+ySXr16NesPt7Nnz16sD2otWrTIzJkzG7CihleOcy5HrVq1yrXXXptevXpl0KBBmTFjRq644oq8//77OeusszJq1Kh07do1F1xwQb7//e8Xu9wGU6p/8JPye42vuOKK9OvXLzU1Ndlzzz1TUVGRqVOnZr/99suHH36Yjh07ZsUVV8zvfve7PPbYYxkwYECtrrZpzsoxoI0fPz6jRo1KmzZtstlmm9X6PkdN2dSpU3PDDTdk5MiR852h/cADD6R379757LPPknz5wb1Pnz7ZaKONilRpcfTs2TNPPfVUscuAOvniiy/yyCOPZODAgXnuuedSU1OT448/vthl0YTJ3qWRQ8txzuWo3HLZosjepfMay94Lkr1l73Ige1MKmkP21gBvgl544YVceOGFeeedd7Lqqqvm/PPPz3e+851ilwVf65prrlms8a+99loDVdL4Kisrc9lll6VDhw655ZZb8sEHH+Sdd97JjBkzss8+++TMM8/MUkstVewyqYNyeY2HDh2avn37Ztttt80hhxySioqKJMkf/vCHjBs3LhtuuGH+/Oc/p23bthk1alQOPvjg/PnPf86RRx5Z5MrrrhwD2rhx43LllVdm5MiReeyxx+Zt/9Of/pSrr746c+bMSU1NTZZZZplcdNFF+eEPf1jEautm2rRp2W+//fLuu+9m+eWXz+zZs9OiRYuMGjUqZ555ZmpqarLffvtlzTXXzODBg/Pzn/88gwcPziqrrFLs0htNZWVlqquri13GEhs8ePBijf/nP//ZMIVQFCNHjszAgQPz8MMPZ9q0aampqck3vvGN7LfffsUujSZM9qa5kr1LP5eVs3J5jWVv2TuRvWXv5kn2Lm/NKXtrgDchkyZNymWXXZbBgwenVatWOfHEE3PkkUeWxPI2c73wwguZM2dOrca+9NJLDVxN4yinOS9uCE/mv8deKTjnnHPSsWPHXHPNNamoqMgf//jHbLPNNsUui3pU6q/xHXfckQ033DDXX3/9vG01NTW5//77UygU8otf/CJt27ZNkmywwQb58Y9/nL/85S/NPoSXY0D75JNPst9++2XSpEnZYIMN5s35ySefzJVXXpkWLVrk1FNPzVprrZW77rorp556au68886su+66xS59ifTr1y/vv/9+fvvb32annXaat/3aa69NTU1Nfvazn+Wss85Kkuy9997Zfffdc/311+eSSy4pVsmN7pVXXskKK6xQ7DKW2FlnnbVYnytqampK7nNIuRk/fnzuu+++DBw4MO+99968K+J69uyZI488MltttVWRK6Spkr3n19xz6FzlNGfZu/RzGaX/GsvesrfsLXs3V7J3+Wmu2VsDvIm4++67c8UVV2TKlCnZcsstc/755+cb3/hGscuqd3fddVfuuuuuWo0tlV+M5TTn/v37F7uEJuGEE05Ip06d0rt37/Tt2zebbLJJSZydzH+U8mv8+uuvLxCo33jjjXzyySdZaqml0rNnz/n2rb/++nnggQcas8QGUY4B7U9/+lOmTZuWW2+9db4z6v/0pz+lUCjk+OOPn/de+N73vpe99torN9xwQ377298Wp+A6GjJkSH784x/P9/pOmzZt3rJjBx544LztrVu3zu67756777670esslr/+9a+57777csQRRxS7lCXWnH8eqb2ZM2dm2LBhGThwYJ555pnMmTMnlZWV2XzzzbPJJpvkuuuuyyGHHNJkAzjFJ3svqLnn0LnKac6y95dKOZfxpVJ+jWVv2Vv2lr2bq+b880jtlUL21gAvsrfeeisXXHBBXn755XTp0iVXXnlldt5552KX1SDK8Rdjuc158803X+zHvPDCCw1QSeN6/vnnF9i21lprZZ999sldd92Vn/3sZznjjDPmLWc112abbdZYJVJH5fQaT58+Pcsss8x82/7+978n+XI+lZWV8+2bPXt2s/7ycK5yDGgjRozIXnvtNV8Anzx5cl588cUkyU9+8pN52wuFQn70ox/l5ptvbuwy680HH3ww3+uYfPmzPXv27Ky88soLND9WWGGFfPLJJ41ZYr3r1avXV+6fM2dOpk2bln/84x95//33s+qqqzbrEL7nnnsWu4SiGDp0aN577715/z1jxowUCoXcd999836e53r77bcbu7x6deGFF+ahhx7KlClT0rp162y99dbZYYcdsv3226dTp04ZN25c/vCHPxS7TJoo2bu0lducZe//KNVcVq7K6TWWvWVv2ftLsnfzI3t/SfZu+tlbA7yILr300gwYMCBz5szJdtttl5NPPjlLLbVUPvzww698XPfu3RupwvpVjr8Yy3HOtfHRRx9l0KBBGTx4cMaOHZs333yz2CXVycEHH/yVIeT111/PoYceusD25jzvd999d75gOnXq1CRffrHYosX8f1rGjBnTqLU1hHJ6jbt165axY8fOt23EiBEpFAr53ve+t8D4UaNGZbnllmus8hpMOQa0f//731lrrbXm2/bss8+muro6a6yxxgKva+fOnTNlypTGLLFeVVRULHCPrWeeeSZJ8t3vfneB8Z9++mmzv7pk0KBBtRq38sor52c/+1mOO+64Zj/nRVnY5+sVVlihZL5EHDJkyALbF3VftuY859tvvz3t2rXLMccckyOOOKJk36/UP9m79JXjnGtD9v5Sc5637D2/UnqNZe//kL1l7+b+uV72/g/Z+z+a85xLJXtrgBfRTTfdNO/fhw8fnuHDh9fqcc3xQ92S+PTTTzNmzJhmeRbnkirlOX/xxRcZMmRIBg4cmGeffXbeknML+1Df3Bx//PHN+g/akrj++uvnu0/VXJdeeukC25r78oJJeb3G3/ve93LvvffmwAMPzHLLLZeRI0fmhRdeSMuWLbPjjjvON/add97JX/7yl+y7775Fqrb+lGNAa926daqqqubb9vTTT6dQKGTLLbdcYPy///3vdOjQobHKq3drrLFGRo4cmYMOOijJl7+bhg4dmkKhkO9///sLjH/00Uez+uqrN3aZ9erRRx/9yv2tW7dOhw4dSuqet0ly77335u67784f/vCHLLvsspk0aVK+//3vL/B7/KSTTsqxxx5bpCrrR7ktgbvnnntm2LBh+eMf/5ibb745m2666byz0Lt06VLs8mjCZO+vVso5dFFKec6yd2mRvUuX7P0fsvf8ZO/mR/aWvUtNqWRvDfAiOuGEE4pdQqP61re+lcsuuyy77bbbvG0zZsxI3759s8cee2SllVaab/zf/va3nHnmmc36S4dynPP/evnllzNw4MA8/PDD+fzzz5Mkyy67bPbaa6/st99+WXHFFYtcYd2deOKJxS6hUZVTIJ2rnF7j4447LkOGDMmPfvSjrLbaann77bdTU1OT448/Pssuu2ySL8P3kCFD0r9//7Rs2TKHH354kauuu3IMaOuss06eeeaZ/OxnP0vyn3v7JMkOO+ww39iampr89a9/zTrrrNPoddaXPfbYIxdffHHWX3/9bLnllrnrrrvy4Ycf5hvf+Ea23nrr+cZef/31efnll3POOecUqdr6UQp/YxfXL37xizzyyCPp3r17Pvzww3m/t5Jk9913z8orr5wkue+++3Lddddl7733TteuXYtVbp0tyRK4s2fPboBKGscll1ySCy+8MMOHD88DDzyQJ554Ik8++WQuvPDCbLzxxunRo0fZfUahdmTv0s+h5Tjn/yV7lx7Zu7TJ3rJ3InvL3s2X7P31ZO/i0wAvonIL4TU1NQtsq6qqyrXXXptNNtlkgUBaCspxzkkyYcKEDB48OIMGDcq//vWv1NTUpG3btvnud7+bp59+Or/61a+y/fbbF7tMllA5BdJy1KVLl9xzzz259tpr8/LLL+fb3/529tprr+yzzz7zxgwaNCj9+vXLiiuumN/85jdZYYUVilhx/SjHgLb//vvn1FNPTZ8+fbLlllvm3nvvzSeffJJvf/vb810NNWPGjPz617/OO++806y/cNl///3z4osv5pJLLkmhUEhNTU2WWWaZXHHFFfPuIXjPPffkT3/6U8aOHZtNNtkkBxxwQJGrblijRo3KyJEjU1FRkc033zxrr712sUuqk/vvvz+PPPJIjj766Jx00kkL3Ddxjz32yHe+850kyTbbbJN99903d955Z8l8Jp82bVpqamq+8gqZkSNH5txzz82DDz7YiJXVr1atWmXHHXfMjjvumKlTp+avf/1r7r///rz44ot58cUXUygU8sc//jGff/55dtxxx7Rp06bYJdMElMrPeW2VYw4txzknsnepk71Lm+wte8vesndzJXvL3s0le2uANyEzZ87M6NGjM2HChNTU1KRbt25ZZ5110rp162KX1qAWFlRLXanO+eGHH87AgQPz9NNPZ86cOenQoUN22223/PCHP8zWW2+djz/+eIEzG0vBNddcs9iPKRQKOf744xugmoZ3yCGH5Nhjj533QaYclNtrvPzyy+eiiy5a5P699tor3//+99OjR4954aW5K8eAtvPOO+ett95K3759M2DAgNTU1GSllVbKVVddNW/MjTfemD/84Q+ZNm1adtppp/z4xz8uYsV1UygUcsUVV+Sggw7KyJEjs9RSS2WHHXaY7yzlf//736mpqcmxxx6bo48+uiTe32+88Ub++Mc/ZsyYMfnGN76RY445JhtssEF++ctfZuDAgfM+kxQKhey666655JJLFrifZHMxaNCgbLzxxjnllFO+duzcL9wef/zxZh/CH3nkkVxzzTX5xz/+keTL+8qddNJJ2XXXXeeNmT59eq688srcfvvtCyw52Zz06tUr+++/fzbccMMkydJLL5199tkn++yzT8aPH58HH3wwDz74YEaNGpVXX301F110UXbeeef86le/KnLlNDWyd/ko1TnL3rXXnHOZ7F07zfk1lr1l77lk7+b//pa9F072bp5KJXs3z5+wEjNx4sRceeWVGTJkSKZNmzbfvrZt22bHHXfMKaeckm7duhWpQqidU045Je3atcuBBx6Y7bffPpttttl8Z4A1h2UxlkS5BbTnnntuvjOSy0G5vcZfp7kvP7Yw5RrQTjnllBxwwAF55ZVXstRSS2XzzTdPy5Yt5+1v3bp11l9//ey22275yU9+UsRK68/GG2+cjTfeeKH7TjjhhGYfyP7byJEjc8ghh6RFixZZa6218vrrr+eggw7KwQcfnHvvvTe77757dtppp0yfPj2PPfZYHnzwwXzrW9/KYYcdVuzSl8gbb7yRY445ptbjt9pqq1x77bUNWFHDe+ihh3LqqaemdevW2WqrrdK2bdu88MILOf300+fdP/LVV1/NKaeckg8++CArrbRSLrzwwmKXvcQGDRqU7373u/NC+H9bbrnlcvjhh+fwww/PmDFjcv/99+eBBx7I3Xff3eRCOMUje1MqZO/aa865TPauneb8Gn8d2Vv2bs5kb9l7Ltm7+SmV7K0BXmQvv/xyjj766EyZMiUbbrhhtthii3Tr1i0tWrTIhAkT8vzzz2fw4MF57LHHct1116VHjx7FLhkWaaWVVsoHH3yQgQMH5p///GdeffXV7LDDDvnmN79Z7NIaVP/+/YtdAg2snF7j559/foke99/LdjVn5RTQ5lp++eWz/PLLL3TfT3/60/z0pz9t5IqoL9dee21WXXXV9O/fP506dUpNTU3OPvvs3HTTTdl9991z2WWXzRu766675rPPPsuDDz7YbEP4jBkz0qFDhwW2L7300rn++uvzrW99a77t7du3b9b35EqSW265JZ07d84dd9wx7x5rVVVVOfbYY/P73/8+3bp1y2GHHZYvvvgiP//5z/OLX/yiSS5LVt9WX331nHLKKTnllFPy0ksvFbscmgjZm1Iie1Oqyuk1lr1l7/8mezdvsveXZG/Zu6nRAC+iTz75JMcff3zat2+fP/zhD9lkk00WOu6NN97IySefnJNOOin33XdfOnfu3MiVQu0MGzYsr7zySu6///789a9/zd/+9rdceeWVWW211fLDH/4w6667brFLbBCbb775146ZOnVqCoXCV94bhKarNq9xqTj44IMX+4qRQqGQN954o4EqgvrRq1evxX5MoVBInz59GqCaxvHqq6/miCOOSKdOnZJ8OZ/DDz88gwYNyrbbbrvA+B/+8If59a9/3chV1p/lllsuH3744QLbW7RosdD5/utf/2r291EcM2ZMDj744HkBPPnyKtYTTjghP/3pT3PKKaekc+fOueKKK7LRRhsVr9Ai0sQkkb0pPbL3osnezZvs/dVkb5oD2Vv2/l+yd3loitlbA7yIbrnllkybNm2+s0YW5tvf/nZuuumm7Lbbbrntttty4oknNmKVsHg23HDDbLjhhjn77LPzt7/9LQ888EAeffTRXHfddSkUCikUChk+fHjWWWedrLjiisUut97U1NTkiSeeyD/+8Y+sssoq2XbbbdOiRYs888wz6d27d959990kybe+9a2ceuqp2WqrrYpccd0MHTo07733Xq3Hl/KSZHOVyhctl1xySa3GPfLIIxkxYkSSZIMNNmjAihpHOQa0Qw45ZLEfUygUcvPNNzdANQ1v0KBBtR77319ENefX+LPPPkuXLl3m2zZ3acGOHTsuML5NmzapqqpqjNIaxAYbbJCHHnooxx9//Ncukzhz5sw89NBD2WabbRqpuoYxderUrLTSSgts/8Y3vpHky6UU77jjjnlfxJSCF154IXPmzFmsx+yxxx4NUwzNhuxNKZK9Ze+Fkb2bD9m79mTv5kX2/pLs/SXZu/kqheytAV5Ew4YNy+677/6VAXyuFVdcMXvuuWeGDBnSrEP4//7QzL3v2lNPPZXx48fPN7YpLpmwJMpxzklSWVmZbbbZJttss01mzJiRoUOH5sEHH8xTTz2Ve+65JwMHDkzPnj2z1157Zddddy12uXXy2Wef5aijjsorr7ySmpqaJMn666+fc889N0cddVTatm2bHXbYIdOnT88rr7ySo48+OjfddFOzPrN56NChGTJkSK3Hl0II/+8vWr7xjW9ku+22K8kvWvbcc8+v3D9u3LhcdNFFGTFiRDp06JBTTz01++23XyNV13DKMaB98MEHtRpXXV2d8ePHp6amplnfT3L06NFfO+a/399LL710Tj755IYvrAHV1NSkRYv5P+7PfQ2b82u5KPvvv39++tOf5le/+lXOOeecBeY+V3V1dc4777xMmDAh+++/fyNXWb+qq6vnu+frXHPvJ3jUUUeVVABPkrvuuit33XVXrcbO/b3V1EI4jU/2Lo8cWo5zTmRv2Xt+snfzIXt/Pdm7eZK9vyR7y97NXSlkbw3wIvrggw8W694e66yzzmJ9SGiK/veHZm5g6du37wJ/DJr7H/u5ymnORx11VLbYYotsvvnmWXfddefNpU2bNtltt92y2267ZdKkSXnooYfywAMP5Jlnnsnf//73Zh/Cr7766owePTrnnXdeevbsmXHjxuXiiy/Oz372s6y66qoZMGDAvLP9Pv300+y9997p169fsw7hRx99dL773e8Wu4xGU45ftPyv2bNn58Ybb8z111+fqqqq7L777jnrrLPmndHa3JVjQHvssce+dswrr7ySCy64IP/+97+z0kor5dxzz22EyhrfnDlz0q9fv/zhD3/IjBkzsssuu6RXr14LnMFN07bpppvm8MMPz4033pi///3vOeyww9KzZ88sv/zyqampyccff5xnn302t956a0aPHp1TTjkl66yzTrHLblDdu3cvdgn1bt999y3bJeVYcrJ3aefQucppzrK37F2qZG/ZO5G9ZW+aOtl7QbJ306QBXkQtW7bMF198UevxM2bMSLt27RqwooZV26V9Skm5zfnvf/97nnjiiXlLUW266abp2bNntthii3l/5Dp16pSDDjooBx10UMaOHZu//OUvRa667h577LHsv//+OeCAA5Ikq622Ws4777wcdthhOeigg+Zb6mbZZZfNvvvumwEDBhSp2vqx+uqrl1TA/Drl+EXLf3vuuedy4YUXZsyYMVlttdVy/vnnp2fPnsUuq9GUY0CbOnVqfvOb3+Suu+5KRUVFjj766Bx33HFp3bp1sUurdy+88EIuvPDCvPPOO1l11VVz/vnn5zvf+U6xy6o3/7ts5owZM1IoFHLfffflxRdfnG/s22+/3djl1bvTTz89K664Yq688sqcd955C214tGvXLhdccEFJXEFTjjbddNPstttuxS6DZkb2Ln3lNmfZW/YuVbK37C17y97Nlewte5eaUsjeGuBFtNZaa+Xxxx+v9X1ARowYkTXWWKOBq2o4X7e0Tykqtzm/9NJLeeONN/LSSy9l5MiRefnllzN8+PAUCoV06NAhm222WXr27JmePXtmrbXWysorr5xjjjmm2GXX2ccff5zVV199vm1zf1YXdvbXCiuskClTpjRKbdSPcvyiJfnyC4VLL700999/f1q3bp1f/OIXOeKII+Yt71MOSj2gLcx9992Xyy67LJ988kk233zznH/++Qv8jisFkyZNymWXXZbBgwenVatWOfHEE3PkkUemVatWxS6tXg0ZMmShy2YOHjx4oeOb89Vwcx144IHZc889M3z48Dz//PP597//nZqamnTr1i09evTIDjvs0OzvGfnfFnZv0K/6sqUUlkaFxSV7l75ym7Ps/R+yd2mRvWVv2Vv2bq5kb9lb9m56NMCL6Mc//nHOO++8PPTQQ9l5552/cuzgwYPz9NNP58orr2yk6orvgw8+yHnnnZd+/foVu5RG09zn3KJFi2ywwQbZYIMNcuihhyZJPvroo/lC+aWXXpo5c+akY8eO2XzzzdOzZ88ceOCBxS28jmbNmpU2bdrMt21uSFlYWCkUCvPdm46mrxy/aLnzzjtz5ZVXZsqUKfne976Xc889t1b3zSwV5RLQ/tu7776bCy+8MM8991w6deqUX//6103u3j315e67784VV1yRKVOmZMstt8z555+fb3zjG8Uuq97179+/2CUUTdu2bbPzzjt/7WfsUrCoL1qShX/ZIoRTjmTvr9bcc+iSaO5zlr3/Q/YuLbK37C17lxbZu/TJ3l+SvZsmDfAi2muvvTJ48OCcccYZeeutt3LQQQelW7du842ZMGFCbrrppvTv3z/bbLNNfvSjHxWp2vrxyiuv5LrrrsvIkSOTJN/+9rdz/PHHZ9NNN503pqamJn/+859z9dVXZ8aMGcUqtd6U45z/2worrJBddtklu+yyS5Ivl/a5//77/197dx4WVbn4Afw7bAKi4kaKW24xbikii3TVEsQtFFxyS9Lcb5qamloULiiaW5amqVfc6rokICgiKC4psigg11CvXs1dcQORxIHh/P7wYX6NoAIyczjnfD/P0/PkmXfy+4bCfM97znsQEhKCAwcOIDo6WvIlXGkmTpwIBwcHsWMYlZJOtJw/fx4BAQFIS0vDW2+9hfnz58PLy0vsWEallIJWSKPRYPXq1di4cSPy8/MxcOBATJ8+HVWrVhU7Wrm7cOEC5syZg9TUVNSqVQvLly+XdUmTy1aQ9HJKO9Hi6+sr6+/HZDjs3srooUqc89+xe8sPu/dz7N7yxe7N7i0X7N7yx+4tTVwAF5GJiQnWrl2L6dOn4+eff8a6detQt25d1K5dG6ampnjw4AGuXbsGQRDQs2dPLFiwQOzIb+TkyZMYM2YMtFotGjduDCsrKyQlJWHEiBEIDg6Gs7Mzbty4gWnTpiEtLQ02NjaYO3eu2LHfiBLn/KLc3FwkJSUhMTERp0+fxtmzZ5GXlwcLCwvdlmxykJmZiVu3bul+XXgF8sOHD/WOA8+vbpWyiRMn6v1ao9Hg/PnzyMjI0G1zo1arZfm8IiXo378/CgoKAAA1a9bEtm3bsG3btle+R6VSYfPmzcaIZ1BKK2gAcPToUcyfPx83b96Eg4MD5s6di7Zt24odyyAWL16MrVu3QqvV4oMPPsCUKVNgY2NT5Hv0i4q700Sutm/fjuPHj2PVqlViRymTkm5t/HdS//5VlhMtp06dMkAS41DaM36p/LB7y7+HKnHOL2L3ZvcmaWH3Zvdm99bH7i0d7N4lw+4tPpUgCILYIQj4/fffsWfPHqSlpeHevXu6D7JOTk7o27cv3NzcxI74xkaOHIm0tDRs2LABjo6OAIC7d+9i/PjxMDc3R1BQEPz8/PDgwQN4eXnhm2++Qe3atUVO/WaUOOf8/HykpqYiPj4e8fHxOHPmDPLy8mBubo53331XV7wdHR1ls52RWq0u9rktgiC88nku586dM2Qsg7t//z6WL1+O6Oho5OTk6L1mZWWF7t27Y+rUqUXurpEitVqNr7/+Gh4eHrpjWVlZ8PX1xbJly3R/vwvFxMRg0aJFkvwad+3atUzvi42NLeckxvWygvY6Ui5on3/+OWJiYgAAH3zwAfz8/GBqavra9zk7Oxs6mkGo1Wrdv5fmWVtS/HtcVgEBAdi5c6dk51zS718FBQW4e/eu7ue0VOdbGrdv30ZoaCjCwsJw/fp1RcyZ6GXYveXZQ5U4Z3bv/8fuze4txa8xuze79+uwe8sXu7d8sXtXLFwAJ6Nxc3PDgAEDMH36dL3jx48fx5gxY9C0aVPcu3cPc+bMkfx2c4WUNucxY8bg1KlTyM3NhYmJCVq1agU3Nze4urrCycmpyDZWcjF79uwyvU/KV1KlpqZi3LhxyMrKQtu2beHm5gY7OzuYmZkhIyMDSUlJSEpKQtWqVbFmzRq0b99e7MhvRKknWpREiQXt73MGXj9vqReWsl5Z/eKdN3Im9RJeEmfOnMGcOXNw7tw51K9fH9988w26dOkidiyDePbsGaKjoxESEoKEhATd3+FOnTrh559/FjseERmQ0noooLw5s3uXDru3dLB7yx+7N7v3y7B7ywu7N7t3RcAt0CUkISEBFy5cKNMWExVBdnY2mjZtWuR48+bNIQgCMjMzsWvXLlk8W6CQ0ub8+++/w9zcHD4+Phg3bhzefvttsSMZhZTLdFk8ePAAn332GSpXroyffvoJTk5OxY5LT0/HlClT8Pnnn2PPnj2oWbOmkZOWHx8fn1IVMyU5deoUQkNDJb9VqJKKViGlfe8qy9dYbs8GVbLs7GwsW7YMO3fuhImJCcaNG4d//vOfstwyNDU1FSEhIdi/fz+ePHkCAKhRowb69++PQYMGoV69eiInJKr42L2lR2lzZvdWBnZv+jt2b+lS2vcudm9lY/dm965IuAAuIZGRkdi5c6dkS7hWq4WZWdE/coVbcY0fP142ZbSQ0uY8cOBAJCQk6Lb5aNKkCTp27Ag3Nzc4OzujWrVqYkekcrBt2zbk5ORg+/btaNCgwUvHtWzZEsHBwfD29savv/6KSZMmGTFl+Vq0aJHYESqUO3fuIDQ0FKGhobh+/ToAKLKES72g+fr6lvo9N2/eNECSiqfw5NKBAwck/cwmem7Pnj347rvv8ODBA7i4uCAgIKDYRRIpy8jIQFhYGEJDQ/Hnn39CEARYWVnB3d0dcXFxmDdvnt5WokT0auze0qO0ObN7KwO7N7F7P8fuLV/s3vLC7s3uXdFwAZwqDLl9MywJuc15/vz5AIBbt24hLi4O8fHxiIqKwrZt22BiYgK1Wg1XV1ddKbe2thY5MZXFwYMH0adPn1cW8EL16tWDr68voqOjJV3C/fz8MGHCBHTs2FF3LD8/HykpKVCr1ahSpYre+PDwcMyaNQvp6enGjmowGo1Gt51PfHw8BEGAIAhwdXXFkCFDxI5nVEoraM+ePUNUVBRCQ0ORlJSEP/74Q+xIBlF4ciksLAzXrl2DIAiwtbUVOxa9gcuXL2Pu3LlITExE9erVsWjRIvj4+Igdq1zt378fISEhiIuLg1arRdWqVeHt7Q0vLy906tQJ9+7dg6enp9gxiaiCkVsPLQm5zZndWxnYvZ9j92b3ZveWF3Zv+WH3ZveuqLgATkTlzt7eHgMGDMCAAQMAABcvXkR8fDxOnjyJ3bt3Izg4GGZmZmjdujU6duyIyZMni5yYSuPGjRv4+OOPSzxerVYjNDTUgIkMLzExEQMHDtQ7lp2dDT8/P2zcuFGvnBcSBMFY8Qzqxe18CufVu3dvfPbZZ2jSpInICY1DiQUtOTkZISEhiIqKQk5ODgRBQPPmzcWOVa4KTy6FhoYiPj4eBQUFEAQB7dq1w+DBg9GrVy+xI76RsLCwUo2/cuWKYYIYmUajwerVq7Fx40bk5+dj4MCBmD59OqpWrSp2tHI3depUWFtbY+jQofDw8ICzszNMTU11r3MLUSIieWP3ljd27+fYvdm92b2lj91bH7u39LB7SxMXwMmoTp06Ba1Wq3csJycHAHDixAncvXu3yHukfrWQEuf8oubNm6N58+YYPnw4NBoNoqKi8OuvvyI1NRVnzpxhCZcYc3NzPHv2rMTjc3NzZXvHgVyK9ouK287H1tYWvr6+aNeuHQICAtCrVy/ZF3C5F7Ti3L17V/e1v3r1KgDAzMwMvXr1wpAhQ9ChQweRE5aPM2fOYPfu3Xonl6pWrYrs7GzMnz+/yEk3qZo1a1apSpggCJIvbUePHsX8+fNx8+ZNODg4YO7cuWjbtq3YsQymfv36uHHjBkJCQnDlyhX85z//gaenJxo3bix2NCISmRJ7qBLn/CJ2b3lh9/5/7N7s3nLD7s3uze4tLeze0sQFcDKqnTt3YufOnXrHCj/EbtiwQe8bf+EPAqkXUiXO+e+uXbuGM2fO4MyZM0hLS8P58+eRl5eHypUro3PnznB2dhY7IpXSO++8g6NHj5b4mYhHjhxBs2bNDJyKysvYsWNx4sQJaLVa1K1bF0OHDoWnpydcXV1hYmKCmzdvyvbkQyGlFLRCGo0GBw8exO7duxEfH687cdy0aVNcvnwZS5YsQY8ePURO+eYyMjKwZ88ehIaG4sqVKxAEAfb29vD19YWXlxfeeustdOvWDTVq1BA7arkJCgoSO4JRff7554iJiQEAfPDBB/Dz84NGo0FSUtIr3yflzyIHDx7EmTNnEB4ejqioKBw/fhzLly9HkyZN4OXlhVatWokdkYhEosQeqsQ5/x27t/ywe8sbuze7N7s3u7dUsXuze0sFF8BFdOvWrVKNL7xyWaqU9oMAUN6cs7KykJaWpivcaWlpyMrKgiAIqFatGtq3b4+pU6fC2dkZLVu2hImJidiRqQz69u2Lb7/9FpGRka+9CjcsLAxxcXFYvny5kdLRmzp27Bisra3h5+eHYcOGoXbt2mJHMgolFrS0tDSEhIQgMjISjx8/homJCRwdHeHl5QUvLy9otVp4enrC3Nxc7KjlomvXrigoKIBarcb48ePh4eGB1q1b616/efOmiOkMw9fXV+wIRhUdHa3799jYWBw+fPiV4wsXP86dO2foaAbVtm1btG3bFl999RWOHz+OiIgIHDp0CGvWrIFKpYJKpcLhw4ehVqtRr149seMSiYLdW/6UNmd2b2Vg95Y3dm92b3Zv+WD3Zvdm966YuAAuoq5duypqa4yy/CCQ+g9Epc3Z1dUVKpUKgiCgevXqcHFxgbOzM5ydneHg4CDpP7/0//r374+wsDB8+eWXuHDhAoYNGwY7Ozu9MRkZGQgODsaWLVvQpUsX9OzZU6S0VFoTJ07Evn37sHbtWvz8889o3LgxPD094enpiXfffVfseAajxIL20UcfwcrKCp06dULnzp3RtWtXvZMMcptzfn4+rKysUKtWLVhZWRXZIlUJ7t69i9OnTyMjIwMAYGdnB0dHR9StW1fkZOVDaYsfLzI1NUWXLl3QpUsX5ObmIiYmBnv37sWJEyfw22+/ISQkBK6urujfvz8+/PBDseMSGRW79+tJ/ee+0ubM7q0M7N7yxu7N7l1IbnNm92b3ljt2b+ngAriIfHx8WEqK8ezZM0RFRSE0NBRJSUn4448/xI5kcHKZc48ePeDi4gIXFxduuyVjJiYmWLt2LaZPn46ff/4Z69atQ926dVG7dm2YmpriwYMHuHbtGgRBQM+ePbFgwQKxI1MpTJw4ERMnTsTZs2cRERGByMhIrFu3DuvXr0fdunXh5OQky59dSixoVlZWePr0Kf73v/+hevXqsLa2RufOnWFjYyN2NIM4fPgwIiIiEBERgeXLl0OlUqFWrVro1q0bunXrJuurcy9evIjAwEAkJSVBEAS9rRRNTEzg5OQEf39/ODg4iJjyzSntqvtXsbS0hLe3N7y9vfHo0SNERkYiIiICJ0+eRHx8PEs4KQ67d/Hk0kNLQy5zZvdWBnZveWP3Zvdm95Yfdm/lYfeu2FSC3B8mQpKRnJyMkJAQREVFIScnB4IgoHnz5oiIiBA7msEocc4kL7///jv27NmDtLQ03Lt3D4IgwM7ODk5OTujbty/c3NzEjlgu1Go1vv76a3h4eOiOZWVlwdfXF8uWLYOjo6Pe+JiYGCxatEjyW/sAz++AOnnyJCIiIhATE4MnT54AAOrVq4f+/fvDx8cH9vb2Iqd8c7dv39YVtIsXLxZb0Ly8vLB69Wq9PwdSlpubi9jYWISHh+P48ePQarUwNzdHx44d0a1bN6jVagwYMEBWcy50/vx53Umm27dvQ6VS6U5KzJo1C5988onYEcvNoUOHMGXKFKhUKnh6esLNzQ12dnYwMzNDRkYGkpKSEBUVhfz8fKxYsQKenp5iRyYDun79Ovbt24fx48eLHYWIRKTEHqrEOZO8sHuze7N7Sxe7N7s3u7fysHtXDFwAl4jbt28jNDQUYWFhes9YkLq7d+8iLCwMoaGhuHr1KgDAzMwMXl5eGDJkCDp06CBywvKnxDkTSZ1arS72yuvXbY8phxL+dxqNBrGxsdi7dy+OHj2KvLw8mJiYoGPHjvjXv/4ldrxyo6SCVigzM1N3lWpqaqrea2PHjsX48eNhZWUlTjgDS0xMREREBKKjo5GVlQWVSoX69eujX79+8PX1RZ06dcSOWGY3btyAt7c3GjdujJUrV6JBgwbFjrtz5w4+//xzXLp0CXv27HnpuIpu9uzZpX6PSqXCwoULDZCGiKSK3Vs+lDhnIqlj936O3ZvdW47Yvdm92b3J2LgAXoE9e/YMBw4cQGhoKBISElBQUAAzMzOcPXtW7GhvRKPR4ODBg9i9ezfi4+N1W900bdoUly9fxooVK9CjRw+RU5YvJc6ZlEOj0eD8+fPIyMjQXYWuVqtRqVIlsaOVm7J8sAPk/Uycx48fIyoqChERETh9+jTS09PFjmQQci5oL3Pz5k1ERERg7969uHTpElQqFaytrdGzZ0/079+/yF0XcpGXl4djx44hPDwcR44cwbNnzyT/uWvBggXYs2cPoqKi9J4xV5zMzEz06tULffr0waxZs4yUsHyp1epSv0elUkn6hGlZ7hBRqVQ4ePCgAdIQSRe7t3wocc6kHOzeL8fuLX3s3uzeUv7cxe79euzeJAYugFdAKSkpCA0NRWRkpG5rrjp16mDgwIH46KOPULt2bbEjlklaWhpCQkIQGRmJx48fw8TEBI6OjvDy8oKXlxe0Wi08PT1ltd2LEudMynH//n0sX74c0dHRyMnJ0XvNysoK3bt3x9SpU2FnZydSQjKWU6dOyf4OGjkWtJI4f/48wsPDERkZiTt37ki+sJTUkydPEB0djb1792Ljxo1ixymznj17onPnziU+kfjdd9/h8OHD2L9/v4GTGcbNmzfL9D4pP4Oua9euRY4JgoDbt2+jVq1asLCwKPZ9sbGxho5GJAns3vLpoUqcMykHuzcVYveWL3Zvdm8pYfd+jt274jMTOwA9d8y0lWwAAEXzSURBVPfuXezZswchISG4evUqBEGAiYkJAGDKlCkYO3as7tdS9dFHH8HKygqdOnVC586d0bVrV70rosr6jbMiU+KcSRlSU1Mxbtw4ZGVloW3btsU+1yYsLAyxsbFYs2YN2rdvL3ZkKqWzZ88iNTUVgiCgRYsWxZbsJ0+eYOnSpdi1axf++OMPEVIaj7m5OTw8PODh4aFX0OROrVZDrVbjyy+/REJCgiLmDAA2Njbw9PREcnKy2FHeyO3bt9GsWbMSj2/SpAn+/e9/GzCRYUm5TJdVcWX64cOHcHd3x5IlS9CxY0cRUhFVbOze8uyhSpwzKQO7t/yxe+tj92b3liJ2b/lj95YmLoCLqHBrrpCQEJw8eRJarRaVKlVC165d0a1bNzg4OMDX1xfNmzeXfAEHoHuGy//+9z9Ur14d1tbW6Ny5M2xsbMSOZjBKnDPJ34MHD/DZZ5+hcuXK+Omnn+Dk5FTsuPT0dEyZMgWff/459uzZg5o1axo5KZXFX3/9hS+++AJHjx5F4SYxKpUK7u7uWLNmje6KxiNHjiAgIAB3795Fw4YNxYxsdHIpaKVlb28v+ZPHN27cQHBwMFJSUgAALVu2xJgxY9CoUSO9cdHR0Zg/fz7u37+PwMBAMaKWC0tLSzx+/LjE4x8/foyqVasaMJG4NBoNLl26BEtLSzRp0kTsOAbzqudjEikVu7f8e6gS50zyx+4tb+zer8fuLV3s3q/G7i0P7N4VHxfARdSpUyc8fvwY1apVQ+/eveHh4YHOnTvDysoKgPyuUD558iRiY2MRHh6O3bt3Y+fOnTA3N0fHjh3RrVu3Mj07oqJT4pxJ/rZt24acnBxs374dDRo0eOm4li1bIjg4GN7e3vj1118xadIkI6aksvrxxx9x5MgRdOrUCb6+vrC2tsbRo0exY8cOfPfdd/D398fixYuxadMmmJqaYtSoUfj888/Fjl0ulFbQAODMmTNYs2aN3pw/++wzvbsOBEHApk2b8MMPPyA3N1esqG/s3LlzGD58OJ48eQJLS0tYWloiPT0dkZGR2L59O9555x1kZ2fD398f0dHRMDU1xdixY8WO/UZat26N6OhojBo1qkTjDxw4gBYtWhg4lWFlZ2dj/fr1SElJwdatW3XHIyIiEBgYqDsp0bhxYyxcuBDt2rUTKSkRGRO7t/x7qBLnTPLH7i1v7N7s3uze7N5Sxu5NUsAFcBFlZWXB2toa3bt3h6urK9q3b68r4HJkaWmJXr16oVevXsjMzERkZCQiIiJw7NgxHDt2DMDzq2bS0tLg7u4ui/8XSpwzyd/BgwfRp0+fVxbwQvXq1YOvry+io6NZwiUiNjYWLi4uWL9+ve7Y+++/j5o1a2Lr1q2wtbVFcHAw1Go1goKCJP+BvZASC9rJkycxZswYaLVaNG7cGFZWVkhKSsKIESMQHBwMZ2dn3LhxA9OmTUNaWhpsbGwwd+5csWOXWeFJhGXLlqF3794Anj8v9IsvvkBgYCCWLl0KPz8//Pnnn2jTpg0CAwPh4OAgcuo3M2DAAEyZMgXBwcEYOXLkK8euXbsWaWlpen/3pSYnJweDBg3C5cuXUadOHeTn58PMzAxpaWmYOXMmBEHAoEGD0Lx5c4SFhWHkyJEICwsrcqKNiOSH3Vv+PVSJcyb5Y/eWN3Zvdm92b3ZvqWL3JskQSDRJSUnCt99+K7i4uAhqtVpo0aKF8NFHHwkbNmwQrl69Kty4cUNwcHAQDh48KHZUg7px44awZs0aoXfv3oKDg4OgVquF9u3bC19//bWQnJwsdjyDUOKcST7atWsnbN++vcTjd+7cKTg6OhowEZWndu3aCZs2bSpy/NKlS4KDg4PQokULYf78+YJGoxEhneGMHz9eaNWqlbB3717dsTNnzggeHh7C8OHDhbt37wrdu3cXHBwchAEDBgjnz58XMW35GDFihNC+fXu9nzt37twRfHx8hIEDBwqXLl0S3N3dBQcHB2HSpElCRkaGiGnfnLu7uzB//vwixw8cOCC0bNlSGDp0qNC6dWth/fr1glarFSGhYUyaNElQq9XCtGnThJSUFL2/u1qtVkhJSdGN+eabb0RM+uZ++OEHoVWrVsL+/fv1jo8dO1ZQq9VCUFCQ7lhubq7g5eUlzJo1y9gxDe7hw4eCg4ODEBcXJ3YUogqD3fs5JfZQJc6Z5IPdW97Yvdm92b3ZvaWK3fs5du+Kj3eAi6hDhw7o0KEDvvnmGxw9ehQRERE4cuQIzpw5g6VLl6JBgwZQqVT466+/xI5qUPXq1cP48eMxfvx4nD9/HuHh4YiMjMRvv/2G3bt349y5c2JHLHdKnDPJh7m5OZ49e1bi8bm5ubC2tjZgIipPT58+RY0aNYocr169OgCgW7du8Pf3N3Ysg0tLS8PgwYN1VycDwLvvvosvv/wSU6dOxdSpU3Hz5k1Mnz4dn376qSyeD3ru3DkMGTIEjo6OumNvvfUWpk2bhjFjxmDy5MnIz8/HihUr0LNnTxGTlo+srKxitz9t06YNtFotLly4gK1bt8puW66lS5ciKCgI27dvx759+2BqagpbW1uYmpoiMzMTGo0GJiYmGDVqFKZOnSp23DcSHR2Nvn37okePHrpjOTk5OHHiBABg6NChuuOVKlVCnz59sGvXLqPnJCLjY/d+Tok9VIlzJvlg95Y3dm92b3bvdsYPZ0Ds3uzeVPFwAbwCMDMzg4eHBzw8PJCTk4Po6GhEREQgISEBgiBg5syZ2L17N/r164fu3bujUqVKYkc2GLVaDbVajS+//BIJCQnYu3ev2JEMTolzJml75513cPToUfj5+ZVo/JEjR9CsWTMDpyJDU6lUAAAfHx9xgxiIEgtadnY2mjZtWuR48+bNIQgCMjMzsWvXLjRs2FCEdOUvPz+/2M9QlpaWAICxY8fK6utbyMLCAgEBAfDz80NYWBjS0tJw7949CIKAJk2awMnJCd7e3rLYiuzGjRt6RRsAkpKSkJ+fjwYNGhT5s1y3bl08ePDAmBHL3apVq4ocy83NhUqlwp49e3D69Okir6tUKnz22WfGiEdU4bB7/z8l9lAlzpmkjd1bmdi92b2ljt2b3Zvd+zl2b/FxAbyCqVy5Mnx9feHr64sHDx5g7969iIiIQHx8POLj4zF//nwkJSWJHdMoXF1d4erqKnYMo1LinEl6+vbti2+//RaRkZHo1avXK8eGhYUhLi4Oy5cvN1I6MrTCwiI3SixoWq0WZmZFPwpaWFgAAMaPHy+bAl4SrVu3FjuCQTVu3FjyV5m/jomJCQoKCvSOnTx5EgDg7u5eZPzDhw9hY2NjlGyGUlwJLxQWFlbscZZwoufYvf+fEnuoEudM0sPurWzs3vLB7q2P3Vv62L31sXtXXFwAr8Bq1qyJTz75BJ988gmuXr2K8PBwSV+hXNIrVv9OpVJh8+bNBkhjHEqcM8lf//79ERYWhi+//BIXLlzAsGHDYGdnpzcmIyMDwcHB2LJlC7p06SKLLZyUpPCK89K+JmdyL2jFKe4KdTlTwp/tu3fv4vTp08jIyAAA2NnZwdHREXXr1hU5Wflo1qwZUlJSMGzYMACAIAiIiYmBSqVC165di4w/dOiQ5P+cb9myRewIRLLA7i39HqrEOZP8sXvLH7t3Ueze8qeEP9vs3vrYvUksXACXiEaNGmHSpEmYNGmS2FHKLDExsdjjKpUKgiC89DUpU+KcSf5MTEywdu1aTJ8+HT///DPWrVuHunXronbt2jA1NcWDBw9w7do1CIKAnj17YsGCBWJHplJauHAhVqxYoXdMEASoVCpMnz69yNXaKpUKBw8eNGZEo+P3Znm4fPlykbv5srOzAQAXLlwo9qp8Z2dno2QzpIsXLyIwMBBJSUkQBEHvM4iJiQmcnJzg7+8PBwcHEVO+OR8fHyxYsABt2rTBe++9h507d+LWrVto2LAhOnXqpDd27dq1SE1NlfxzFV1cXMSOQCQ77N7SpMQ5k/yxe8sfu3dR/N4sD+ze7N6F2L1JTFwAF5Gfnx8mTJiAjh076o7l5+cjJSUFarUaVapU0RsfHh6OWbNmIT093dhRy8X58+eLHHv48CHc3d0RHBys9/9BLpQ4Z1KGKlWq4Oeff8bvv/+OPXv2IC0tDf/9738hCALs7Ozg4+ODvn37ws3NTeyoVEr29vYAUOyJwsIrVV987WUnFaVGiQXt1KlT0Gq1esdycnIAACdOnMDdu3eLvEfKz6Jbu3Yt1q5dW+xrixcvLvb4uXPnDBnJ4A4dOoQpU6ZApVKhR48ecHNzg52dHczMzJCRkYGkpCRERUVhwIABWLFiBTw9PcWOXGaDBw/G6dOnERQUpFvwqFatGpYuXQoTExMAwG+//YZ169bh+vXrcHJywpAhQ0RObVgajQaXLl2CpaUlmjRpInYcItGwe8u/hypxzqQM7N7yxe7N7s3urY/dWzrYvYti966YVIJcfnJKkFqtxpIlS+Dt7a079ujRI7i7u2Pjxo1FClp4eDhmzpwp+R8Gf/fo0SN07NhRUYVUiXMmIqro1Gr1S680L7wCvzhS/pn8sjn//aPh318v/P8g1Tn/+OOPZbqbYOLEiQZIYxw3btyAt7c3GjdujJUrV6JBgwbFjrtz5w4+//xzXLp0CXv27HnpOKlISUlBSkoKbGxs4OnpiRo1auheW7VqFfbs2QNvb2+MGzeu2OcPSk12djbWr1+PlJQUbN26VXc8IiICgYGBePz4MYDnz6JbuHCh7J6pSFQS7N7K7KFKnDMRUUXH7v3/2L31sXtLD7v3c+zeFRfvAK+AeE0CEUlFbm4uLC0tixy/dOkSqlatWuT5ZFTxhYWFoUOHDqhfv77YUYzqs88+U9xWa0FBQWJHMCopb2VbVps3b4a5uTk2bNigV0RfVKdOHaxbtw69evXCL7/8glmzZhkxZflzdHSEo6Njsa9NnDjxpSdW8vLykJqaWuzdoBVVTk4OBg0ahMuXL6NOnTrIz8+HmZkZ0tLSMHPmTAiCgEGDBqF58+YICwvDyJEjERYWhkaNGokdnahCYPcmIqlg95Yfdm/lYPeWP3bvoti92b0rAi6AExFRqWk0GixevBgRERE4duxYkSK+fPlyHDt2DP3798fMmTNhbW0tUlIqrdmzZ+O7775TXAlXYkHz9fUVO4JRFbf9rdwdP34cvr6+ryzghWxtbeHj44PDhw9LvoSXVVZWFvz8/Iq9G7Si2rhxI65du4bvv/8ePXr00B1fvXo1BEHAJ598ovt6DhgwAH369MHatWsVdxKOiIhIqti95YvdWznYveWP3bt02L3JWEzEDkBERNKi0WgwatQo/PLLL7C3t8ejR4+KjPnggw/g4OCAHTt2YPTo0cjPzxchKZWFUu+E8vPzw8mTJ8WOYVQeHh44dOiQ2DGMJjExEffv3xc7hlHdvn0bzZo1K/H4Jk2a4M6dOwZMVPFJ7XtgdHQ0+vbtq1fAc3JycOLECQDA0KFDdccrVaqEPn36KO57HRERkVSxe8ub1D53lhd2b/lj9349dm/pfQ9k95YmLoATEVGpbNq0CUlJSfD390dYWBjq1q1bZMzAgQOxe/duTJw4EcnJydi2bZsISYlKTokF7ebNm/jrr7/EjkEGZGlpqXsGVUk8fvwYVatWNWAiKm83btxA69at9Y4lJSUhPz8f9evXR8OGDfVeq1u3Lh48eGDMiERERFRG7N4kR+zeJEfs3vLH7i1N3AKdjCYsLKzIsZycHADAiRMncPfu3WLf5+PjY8BUhqXEOZP8RUREwMPDAx9//PFrx06cOBGJiYnYs2cPRowYYfhwVC4yMzNx69atUr3H3t7eQGmIqKxat26N6OhojBo1qkTjDxw4gBYtWhg4FZUnExMTFBQU6B0rvMrc3d29yPiHDx/CxsbGKNmISDxK7KFKnDPJH7u3/LF7E8kDu7f8sXtLExfARfbiB52srCwAz/+CvPgBqLitjqRk1qxZUKlUescKt7rYsGEDVCqV7teF/65SqSRdSJU4Z5K/q1evYvDgwSUe//7772PlypUGTETlbeHChVi4cGGJx6tUKqSnpxswEVH5iImJwdWrV0s8XqVS4bPPPjNgIsMaMGAApkyZguDgYIwcOfKVY9euXYu0tDSsX7/eSOmoPDRr1gwpKSkYNmwYgOefM2NiYqBSqdC1a9ci4w8dOoSmTZsaOyZRhcDuLe8eqsQ5k/yxe8sfuzfJFbv3y7F7SxO7tzRxAVxkL/ugM336dBHSGFZQUJDYEYxOiXMm+bO2toZWqy3x+EqVKsHS0tKAiai8OTk5oUGDBmLHMDqlFTQA2LlzJ+Li4ko8XqVSleoETUUTExOD6OjoEo+X+te4R48e8PLywnfffYc//vgDH3/8MVq1agVzc3MAQEFBAdLS0rBx40bExMRg4MCB+Mc//iFyaioNHx8fLFiwAG3atMF7772HnTt34tatW2jYsCE6deqkN3bt2rVITU2Fv7+/SGmJxMXuLW9KnDPJH7u3/LF7l4zUexnA7v06Uv8as3vLH7u3NHEBXEQ+Pj5FrlCWM19f39eOycrKgqWlJSpVqmSERIanxDmT/DVp0gTJycnw8/Mr0fjTp0+jXr16Bk5F5WnQoEHw9vYWO4bRKa2gAc+fV5SUlFTi8VIv4ePGjSt2ayo5W7p0KYKCgrB9+3bs27cPpqamsLW1hampKTIzM6HRaGBiYoJRo0Zh6tSpYselUho8eDBOnz6NoKAg3R2N1apVw9KlS2FiYgIA+O2337Bu3Tpcv34dTk5OGDJkiMipiYyP3bsoufVQJc6Z5I/dW/7YvUuG3Vt62L3ZveWG3VuauAAuokWLFokdwejy8vIQEhKC1NRUvSu0ExMTMWfOHFy5cgUqlQru7u4ICAiQxVWQSpwzyZuvry8CAgIQHx8PNze3V45NSEhAdHQ0Jk2aZKR0RGWnxIL21VdfwcPDQ+wYRtO0aVO4uLiIHcOoLCwsEBAQAD8/P4SFhSEtLQ337t2DIAho0qQJnJyc4O3tjUaNGokdlcpApVJh6dKlGDZsGFJSUmBjYwNPT0/UqFFDN+bOnTsQBAETJkzAuHHjdOWcSEnYvZXRQ5U4Z5I3dm+SK3Zv+WP3ZveWG3ZvaeICuIhGjx4NHx8feHp6KmKLory8PHz66adISkqCubk55s+fDzMzM1y5cgWjR49GXl4eOnXqhGbNmuHAgQMYNGgQwsPDUatWLbGjl5kS50zy5+Pjg927d2P8+PEYN24cBg4cWOTPbEZGBnbt2oUNGzagfv36GDp0qEhpiUpOiQWtevXqvEtEIRo3bsyrzGXM0dERjo6Oxb42ceJETJw4sdjX8vLykJqaCrVajSpVqhgyIpGo2L3l30OVOGeSP3Zvkit2b5Izdm95Y/eWFl6CIKLExETMmDED7u7umDVrFuLi4iAIgtixDGbbtm04deoUZsyYgaSkJJiZPb/+4scff4RGo4G3tzfWrVuHL7/8Ert374apqSnWrl0rcuo3o8Q5k/yZm5tj9erVaNu2LVauXIlOnTrBw8MDgwcPxsCBA9G1a1d06dIFP/74IxwcHBAcHMwf7BJib28Pa2trsWMQEZERZGVlwc/PD2fPnhU7CpFBsXvLv4cqcc4kf+ze8sbuTUSkHOze4uAd4CI6efIkDh48iP3792Pfvn3Ys2cPatWqBW9vb/Tp0wdqtVrsiOVq79696N69O0aNGqU7ptFoEBsbC5VKpXfc1tYW/fr1w759++Dv7y9G3HKhxDmTMtSsWRObN29GdHQ09u3bh/T0dFy4cAEmJiaoVasWfHx80K1bN3Tt2lXsqFRKsbGxr3y9oKAAd+7cQa1atWBhYWGkVERvbuLEiXBwcBA7hlGV9HmRf6dSqbB582YDpKkY7t27B1tbW5ibmxd5rVq1atiyZQtatGghQjLxyHkRkKgQu7f8e6gS50zKwO4tX+zeJFfs3iXD7s3uTYbHBXARVa5cGX379kXfvn2RnZ2NAwcOIDIyEps3b0ZwcDCaNWuGvn37wtvbG2+99ZbYcd/Yn3/+CV9fX71jp0+fRm5uLuzs7Ir8YGzYsCEyMjKMGbHcKXHOpCxeXl7w8vISOwYZ0cOHD+Hh4YGNGzeiY8eOYscpN0osaEFBQS/dtkmOXrYNVaG//voLGzduhI+PD+rXr2+kVIaVmJhY7HGVSvXS4qVSqQwZySiCg4Oxc+dOhIeHFynbCxcuRFxcHEaNGoXRo0frPZPL3NxccVsxEikFu7f8e6gS50zKwu6tPOze8sHurY/d+/9fkzp2b6rouABeQVSpUgUDBgzAgAED8PDhQ0RFRWH//v1Yvnw5li9fDmdnZ/j4+MDLywuVK1cWO26ZFBQUwNTUVO9YfHw8AMDd3b3I+OzsbFhZWRklm6Eocc5EwPNtXSwtLVGpUiWxo5AByPGKRSUWtBdPEr/oyZMnWLBgAUaPHo2mTZsaKZV4/vrrL6xevRpOTk6y+RqfP3++yLGHDx/C3d0dwcHBsjqRBjz/3jR9+nTs27cPNWvWxJ07d9CgQQO9MU2bNkVycjJWrFiBs2fP4ocffhApLRGJhd1bnj1UiXMmAti95Y7dWx69jN1bH7u39LF7k1TwGeAVUI0aNTB06FBs3boVR44cwddffw0TExN8++23+Mc//iF2vDJr2LAhzp07p3csJiYGKpUK77//fpHxx48fR8OGDY2UzjCUOGdShry8POzYsQOzZ8/WO56YmIhevXrBzc0Njo6OGD16NK5duyZSSqLyU1jQrl+/LnYUo8nNzUVYWJii7o6S4wmmF8nhKvOX2bFjB/bt24cRI0bgyJEjRQo48PyEW0xMDPr164eYmBiEhISIkJSIKgp27+fk0EOVOGdSBnZvUhp2b2Vg95Y2dm+SCi6AV3Dm5uawtLSEjY0NzMzMoNFoxI5UZr1798aePXtw8OBBPH36FJs2bcLly5dRs2bNIs8qCg8Px4kTJ+Dh4SFS2vKhxDmT/OXl5eHTTz9FQEAA9u7di/z8fADAlStXMHr0aFy5cgWdOnXCiBEjcOXKFQwePBj3798XOTXRm1NCQXuREudM0vXbb7/BxcUFs2bNKvY5Y4UsLCwQGBiIFi1aYOfOnUZMSEQVGbu3tHuoEudM8sfuTUqlxB6qxDmTdLF7k1RwC/QK6OHDh4iJiUFUVBSSkpKQn5+Pli1bYvLkyejdu7fY8cpsxIgR+P333zFx4kTd8y/Mzc2xYMECWFhYAHh+hfa2bduQmJiIxo0bY8SIEeKGfkNKnDPJ37Zt23Dq1CnMmDEDw4YNg5nZ8x8lP/74IzQaDfr06YPvvvsOADB27Fh4e3tj7dq18Pf3FzM2lRNzc3M4OzujWrVqYkchItLzv//9D5MnTy7RWJVKhR49emDNmjUGTkVEFRm7t3x6qBLnTPLH7q1s7N5EVFGxe5NUcAG8grh//z6io6MRFRWF06dPQ6vVol69ehg1ahT69Okji+d/WFhYYNOmTYiMjERqaipsbGzg7e2NZs2a6cacPXsWycnJ6NOnD2bNmgVLS0sRE785Jc6Z5G/v3r3o3r07Ro0apTum0WgQGxsLlUqld9zW1hb9+vXDvn37WMIlIjs7G1WqVHnp69WqVcPWrVv1jiUkJMDV1dXQ0YgMqkqVKggKCkLz5s3FjkJlZGZmplvkKImqVasWeV4sEckfu/dzcuuhSpwzyR+7t7yxe5NSsXtLH7s3SQUXwEWUkZGB6OhoHDhwAMnJydBqtahWrRoGDBgAb29vdOjQQeyI5c7U1BTe3t7w9vYu9vXx48dj8uTJMDGRz+78Spwzyduff/4JX19fvWOnT59Gbm4u7Ozs4ODgoPdaw4YNFfUcI6nz8/NDcHAwbG1tXzv22bNnWLJkCX799Vekp6cbPpyIlFjQqlWrhi1btqBFixZiRzGKSpUq4R//+AfvsJCwRo0a4ezZsyUef/bsWdStW9eAiYioomD3LkqOPVSJcyZ5Y/eWN3bv4rF7yx+7t/Sxe5NUcAFcRF26dAHw/EplT09PeHt7o0uXLq98boLcWVlZiR3B6JQ4Z5K2goKCIlftxcfHAwDc3d2LjM/Ozuafcwk5d+4cPv74Y2zatAm1atV66bgzZ85g5syZ+PPPP185Ti4qVaqkd/JJq9Vi3bp1mDBhgoipDMvc3BwuLi66X2dnZ2Px4sUIDAwUMdWbCw4Oxs6dOxEeHl7kM9fChQsRFxeHUaNGYfTo0ZI/QR4WFlbkWE5ODgDgxIkTuHv3brHv8/HxMWAqw/nwww+xbNkyjBw58rUnzC5evIiIiAj4+fkZKR0RiYnduyglfj5X4pxJ2ti95Y3du3js3uzeUsTu/XLs3iQmlSAIgtghlGr48OHo27cvevToARsbG7HjEBGVSN++fdG2bVvMmzdPd6xXr164cuUKVqxYgR49euiNHz16NLKysrBr1y5jR6Uy+OWXX7BgwQI0aNAAmzZtKnKFZl5eHn744Qds3LgRWq0Wffv2xVdffSWLK3ezs7Oxa9cupKamQhAEtGzZEsOGDUPVqlX1xv3nP/+Bv78//vvf/+LcuXMipS0fN27cQHBwMFJSUgAALVu2xJgxY9CoUSO9cdHR0Zg/fz7u378v2TkLgoDp06dj3759qFmzJrZv344GDRrojVm1ahV27dqFjIwMdOvWDT/88INIacuHWq2GSqXSO/b3j/7FvaZSqST7Nf7rr7/Qr18/ZGZm4quvvkLv3r2LnDTOz8/H3r17sXTpUgBAaGgoateuLUZco7l37x5sbW2LXejLy8tDSkoKWrRo8cotOImkjt2biKSI3Vve2L3Zvdm92b2l+jVm9y4eu3fFwwVwIiIqlXXr1mH16tVYtmwZ3nvvPezYsQOLFi1CrVq1EBsbq/cMmPDwcMycOROTJ0/G+PHjRUxNpbF3717MmjULdnZ22LRpExo2bAjg+RXqM2fOxH//+1/Y29tj7ty56NSpk8hpy8f169fh5+eHO3fu6JWUWrVqYdeuXahbty7y8/OxbNkybNmyBVqtFr1798ayZctETP1mzp07h+HDh+PJkyewtLSEpaUlMjMzYW1tje3bt+Odd95BdnY2/P39ER0dDVNTU4waNQpTp04VO3qZbN++HXPmzMGIESMwbdq0l971p9FoMHfuXISEhGDBggXo16+fkZOWn9DQ0DK978WtNqXkypUr+Oyzz3DlyhVYW1ujVatWqF27NrRaLR48eICzZ88iNzcX9vb2WL16NdRqtdiRy8Wr7q6YOnWqrO6uICIiUgp2b/lj92b3Zvdm95Yqdm92byngAriIitsaoySkujUGEcmDRqPBqFGjkJSUBJVKBUEQYG5ujlWrVum2l4yJicG2bduQmJiIxo0bIyQkBJaWliInp9I4evQopkyZAhsbG6xfvx6HDh3C2rVrkZ+fjyFDhmDatGmoXLmy2DHLzbRp0xAZGYmpU6eif//+sLKywtGjRzFv3jy0a9cOS5YswdixY5GcnAx7e3sEBATo/rxL1YQJE/D7779j8eLF6N27NwAgLS0NX3zxBezt7bF06VL4+fnhzz//RJs2bRAYGFjkOYNSMmDAAFhbW2PLli2vHSsIAvr37w8LCwts377dCOmoPGk0Gvzyyy/Yt28fzp8/j/z8fADPtxZs164dvLy8MGjQIL2TxlKlxLsriMqC3ZuIpIjdWxnYvdm92b3ZvaWK3Zvdu6LjAriICrfGKNzy4nWkvjUGEcmHVqtFZGQkUlNTYWNjA29vbzRr1kz3+ooVK7Bx40b06tULs2bNQvXq1UVMS2V1+vRpTJgwAU+ePIEgCGjUqBECAwPRoUMHsaOVu86dO+O9995DUFCQ3vHQ0FAEBASgc+fOOHjwIIYMGYIZM2bA2tpapKTl57333kPPnj3h7++vdzw6OhpTp05Fu3btkJaWhsmTJ+PTTz+V/JWrjo6OmDx5MkaMGFGi8evWrcOaNWt0W9RJXW5ubrEnQy9duoSqVavCzs5OhFTG8fDhQ5iamspiu8gXKfHuCqKyYPcmIqli91YGdm92b3Zvdm85YPdm965ozMQOoGQv/qAnIpIKU1NTeHt7w9vbu9jXx48fj8mTJ0v+Q7vSOTk5YcuWLRg9ejQePnyIefPmybKAA8CjR4/g6OhY5LizszM0Gg2OHj2KlStXonv37iKkM4ysrKxit6Bq06YNtFotLly4gK1bt6Jdu3bGD2cAZmZmpbrquGrVqkWeYSVFGo0GixcvRkREBI4dO1akiC9fvhzHjh1D//79MXPmTFmcYHpRjRo1xI5gML/99htcXFwwa9asV46zsLBAYGAgzp07h507d7KEk+KwexORVLF7KwO7N7s3uze7txywe7N7VzRcABeRlJ/xQETK5efnhwkTJqBjx466Y/n5+UhJSYFarUaVKlVgZWWle63wWWS8g0aa1Go1/v3vf2PkyJGYMGECVq9eDTc3N7Fjlbu8vDy9P7eFCreaGzlypKwKOPD8722lSpWKHC8saWPHjpVNAQeARo0a4ezZsyUef/bsWdStW9eAiQzv79tmqtVqPHr0qMicPvjgA9y9exc7duzAxYsXsWXLFpiZSbMirFq1qkzvmzhxYjknMZ7//e9/mDx5conGqlQq9OjRA2vWrDFwKqKKh92biKSI3VtZ2L3ZveWC3Zvd+2XYvcnYpPk3TKG0Wi3WrVuHCRMmiB2FiBQsMTERAwcO1DuWnZ0NPz8/bNy4Ua+ck/TMnj272OONGjXCjRs3MG7cOPTs2VNv+1CVSoWFCxcaK6IoXFxcxI5gdK1btxY7Qrn68MMPsWzZMowcORLNmzd/5diLFy8iIiICfn5+RkpnGJs2bUJSUhL8/f3x8ccfFztm4MCBGDhwIFatWoVVq1Zh27ZtJd6qrqIpaQl/cftjKZdwpd5dQWRo7N5EVBGwe8sbu3fx2L2lj92b3bsQuze7t9i4AC6y7Oxs7Nq1C6mpqRAEAS1btsSwYcNQtWpVvXH/+c9/4O/vj//+978s4URUIQmCIHYEKgehoaGvfP3Zs2cICwvTO6aEEq7ED60leUaqlHz00UfYvn07hg8fjq+++gq9e/cu8nXNz8/H3r17sXTpUlSpUkXyJTwiIgIeHh4vLeB/N3HiRCQmJmLPnj2SLeGHDh167Zjs7Gx8//33OHLkCMzMzCT/NVbi3RVEZcXuTURywe4tD+zexWP3lj5271dj95Ymdm9p4gK4iK5fvw4/Pz/cuXNH9+E1JiYGv/zyC3bt2oW6desiPz8fy5Ytw5YtW6DVatG7d2+RUxMRkZyV5EOsXGVmZuLWrVt6x7KysgAADx8+LPIaANjb2xslm6FcvnwZSUlJeseys7MBABcuXCh2Oy5nZ2ejZCtv1tbWWLNmDT777DPMnDkTc+fORatWrVC7dm1otVo8ePAAZ8+eRW5uLuzt7bF69WrUrl1b7Nhv5OrVqxg8eHCJx7///vtYuXKlARMZVr169V75emRkJBYtWoSMjAy0b98ec+bMwTvvvGOkdIahxLsriMqC3ZuIiCoadm92b3Zvdm+pYvdm95YKLoCL6Pvvv8edO3cwdepU9O/fH1ZWVjh69CjmzZuHefPmYcmSJRg7diySk5Nhb2+PgIAAdOnSRezYREQkY6/7ECtnCxcufOnV9NOnTy9yTKVSIT093dCxDGrt2rVYu3Ztsa8tXry42ONSfqZg48aNERYWhl9++QX79u1DcnIy8vPzAQDm5uZo164dvLy8MGjQoFJtbVVRWVtbQ6vVlnh8pUqVdM+hk5Nr165h7ty5iIuLQ7Vq1RAYGIgBAwaIHatcKPHuCqKyYPcmIqKKht2b3bsQuze7t1ywe7N7VzRcABdRUlISfHx8MHbsWN2xnj17Ijc3FwEBAZg1axaSk5MxZMgQzJgxA9bW1iKmJSIiKmrt2rWIjo5GSEiI2FHeiK+vr9gRjE7Kz156ExYWFhg5ciRGjhwJ4PkdBqampqhWrZrIycpfkyZNkJycXOLSdfr0aVmdiNNoNFi3bh3Wr18PjUYDX19fzJgxA9WrVxc7WrlR4t0VRGXB7k1ERFLH7i1d7N7s3i9i95Yedm9p4gK4iB49egRHR8cix52dnaHRaHD06FGsXLkS3bt3FyEdERHR692+fVvSVyUXCgoKEjuC0Sm1hL+oRo0aYkcwGF9fXwQEBCA+Ph5ubm6vHJuQkIDo6GhMmjTJSOkMKy4uDnPnzsXVq1fRvHlzBAQEoEOHDmLHMgil3V1BVBbs3kREJHXs3tLF7v0cu/dz7N7Sxe4tPVwAF1FeXh6srKyKHK9cuTIAYOTIkSzgRFQhvfi8plc9q+nRo0dGzUZEVJxVq1aV6X1SPlnh4+OD3bt3Y/z48Rg3bhwGDhyIWrVq6Y3JyMjArl27sGHDBtSvXx9Dhw4VKW35uH//PoKCghAZGQlLS0tMmzYNI0eOLPaZenKipLsriMqC3ZuIpIrdm4ikht2b3VvO2L2lRSUIgiB2CKVSq9VYsmQJvL299Y4/evQIHTt2xIYNG/CPf/xDpHRERMVTq9VQqVRFjguCUOzxQnK4UpmKCggIwM6dOyX/9VViQZs9e3ap36NSqV76rLaKTq1Wl2jci9/HpP5n+8GDB/jiiy+QkJAAlUoFe3t7vS26bt++DUEQ0K5dO6xYsQJ169YVO3KZbdu2DStXrsSTJ0/QtWtX+Pv7S3o+RFR+2L2JSIrYvenv2L3ZvaWC3Zvdm6iikPflGBJnamoqdgQioiKU+Lwmkr+SlvAXC5qUS3hoaGiJx/593lIt4YcOHXrtmOzsbHz//fc4cuQIzMzMSvz8roqsZs2a2Lx5M6Kjo7Fv3z6kp6fjwoULMDExQa1ateDj44Nu3bqha9euYkd9Y4GBgbp/j42NRWxs7Gvfo1KpkJ6ebshYBqXEE4hEhsDuTUQVEbs3yRG796uxe0sXu/ersXuTGLgALrIXtzICXr2dEQDY29sbJRsRUXGU+Lwmkj8lFrTz58+/dszNmzcxf/58HDlyBFWqVMGUKVMMH8xA6tWr98rXIyMjsWjRImRkZKB9+/aYM2cO3nnnHSOlMzwvLy94eXkVOZ6VlQVLS0sREpU/JZ4kVuIJRKKyYvcmIqlh9yY5YvcuHrs3u7eUsHu/HLt3xcIt0EX0sq2MgJdvZyT1K2WIiKhiK+0VjYcPH0Z6errkt6p6HbkXtBdptVps3LgRP/30E3Jzc9GrVy/Mnj27yDOs5ODatWuYO3cu4uLiUK1aNUyfPh0DBgwQO1a5ycvLQ0hICFJTU/VOoiYmJmLOnDm4cuUKVCoV3N3d8e2336Jhw4Yipn0zs2fPxuDBg9G2bVuxoxjNzZs3XzumuBOIX375pRHSEVUc7N5ERFTRsHsXj92b3Vuq2L3ljd1bmrgALqKyPP8D4BWgRERkOCV9VtPfqVQq2ZZwuRe04pw6dQpz587FxYsX8fbbbyMgIAAdO3YUO1a502g0WLduHdavXw+NRgNfX1/MmDED1atXFztaucnLy8Onn36KpKQkmJubIyUlBWZmZrhy5Qr69u0LjUaDzp07o1mzZjhw4ACePn2K8PBwyZ5sedkzfpVMaScQiV6G3ZuIiCoadm997N7s3lLG7k3s3hUTt0AXEcs0ERFVNFu2bBE7QoWghIL2okePHuG7775DWFgYLCwsMGnSJIwZMwYWFhZiRyt3cXFxmDt3Lq5evYrmzZsjICAAHTp0EDtWudu2bRtOnTqFGTNmYNiwYTAze/7R/8cff4RGo0GfPn3w3XffAQDGjh0Lb29vrF27Fv7+/mLGpnLw4gnEwMBA2Z9AJHoVdm8iIqpo2L2fY/dm95YDdm/lYveu2LgAXgE8ffoUu3fvxu+//47z588jMzMTKpUKNWrUgFqthoeHB7y9vWX5Q5CIiCoWFxeXUr/n1KlTBkgiHqUUtL/btWsXli5diqysLLz33nsICAiQ9HZcL3P//n0EBQUhMjISlpaWmDZtGkaOHKkrp3Kzd+9edO/eHaNGjdId02g0iI2NhUql0jtua2uLfv36Yd++fSzhEqbEE4hEpcHuTUREFQW7N7s3u7d8sHsrD7u3NMjzO46EnD59GpMnT8b9+/dhYWGBhg0bol69esjPz0dmZiYOHz6M2NhYrFq1CsuWLUP79u3FjkxERITbt28jNDQUYWFhuH79uiy2YVNaQQOACxcuYM6cOUhNTUWtWrWwfPly9OrVS+xYBrFt2zasXLkST548QdeuXeHv74+6deuKHcug/vzzT/j6+uodO336NHJzc2FnZwcHBwe91xo2bIiMjAxjRix3p06dglarLdV7fHx8DBPGyJR4ApGoNNi9iYhIiti95YHdm93779i9pY3dWzrk+1NFAv73v/9h1KhRsLGxwdKlS+Hl5VXkSvMnT54gKioKP/zwA0aPHo3Q0FA0atRIpMRERKRkz549Q3R0NEJCQpCQkABBEKBSqdC5c2exo70xJRa0xYsXY+vWrdBqtfjggw8wZcoU2NjY4NatW698n729vZESlq/AwEDdv8fGxiI2Nva171GpVEhPTzdkLIMqKCiAqamp3rH4+HgAgLu7e5Hx2dnZsLKyMko2Q9m5cyd27txZorGF38OkXsKVeAKRqLTYvYmISErYveWF3Zvd+0Xs3tLE7i09/MqI6KeffoKVlRV2796Nt956q9gxNjY2GDBgADp37oy+fftiw4YNmD9/vpGTEhGRkqWmpiIkJAT79+/HkydPAAA1atRA//79MWjQINSrV0/khG9OiQUtODhY9++HDx/G4cOHS/Q+qd5x8OLV2ErQsGHDIl+vmJgYqFQqvP/++0XGHz9+XPLb73300Udo166d2DGMRoknEInKgt2biIikgN27eOze0sLu/Ry7t7ywe0sTF8BFlJSUhH79+r20gP+dnZ0dfHx8cPz4cSMkIyIipcvIyEBYWBhCQ0Px559/QhAEWFlZwd3dHXFxcZg3bx48PDzEjllufHx8oFKpxI5hVBMnTiz1ewRBMEAS4xk8eDDatm0rdgyj6d27N1avXo3OnTvjvffew44dO3D58mXUqlULXbt21RsbHh6OEydOYPLkySKlLR8dOnSAt7e32DGMRoknEInKgt2biIgqKnZv+WP3lj92b/lj95YmLoCL6NGjR6XaUq1JkybYtWuXARMREZHS7d+/HyEhIYiLi4NWq0XVqlXh7e0NLy8vdOrUCffu3YOnp6fYMcvdokWLAAB5eXm4dOkS8vPz0axZM8lvSfUq9vb26NevX4nH37x5E1999ZUBExlWaGgo3N3dFVXCR4wYgd9//x0TJ06ESqWCIAgwNzfHggULdFv/xsTEYNu2bUhMTETjxo0xYsQIcUNTqSjx7gqismD3JiKiiobdm937Zdi9pYfdW/7YvaWJC+AiysvLK9UP90qVKiEnJ8eAiYiISOmmTp0Ka2trDB06FB4eHnB2dtZ7jpGcr9T+17/+hTVr1uh+1lpYWGDo0KGYNm2aLJ/n4+/vj6dPn2LYsGGvHbtr1y4sXryYn0MkxsLCAps2bUJkZCRSU1NhY2MDb29vNGvWTDfm7NmzSE5ORp8+fTBr1ixYWlqKmJjKQml3VxCVBbs3ERFVNOze7N7FYfeWJnZvZWD3lh75/UQhIiKiMqtfvz5u3LiBkJAQXLlyBf/5z3/g6emJxo0bix3NoHbv3o0lS5agXr168PHxgYmJCRISErBp0yZotVpJX339Mm+//TYCAwPx9OlTjB49utgx9+7dg7+/P44dOwZzc3PJb9GlRKampvD29n7p1mTjx4/H5MmTYWJiYuRk5c/X11fyz1ErLSXeXUFEREQkB+ze7N5/x+4tfeze8sbuLU1cABdZZmYmbt26VaKxjx49MnAaIiJSuoMHD+LMmTMIDw9HVFQUjh8/juXLl6NJkybw8vJCq1atxI5oEDt27EC7du2wefNmVKpUCcDzZ25NnToVO3bswPTp03XbVsnFr7/+itGjR2PZsmV4+vQpJk2apPf63r17MX/+fGRlZcHR0RGBgYFo2rSpSGnLx6lTp6DVakv1Hh8fH8OEqSDktNVgUFCQ2BGIqAJj9yYiooqE3ZvduxC793Ps3tLB7k1SoRIEQRA7hFKp1eoybWdz7tw5A6QhIiLSp9Vqcfz4cURERODQoUN4+vSp7udW//79MWHCBNSrV0/klOXDyckJX3zxRZEtyVJTUzFkyBCEhoZCrVaLlM5w/vrrL/zzn/9EQkICRowYgZkzZ+LRo0cICAhATEwMLC0tMXXqVAwfPlzyW/CV9nOXIAhQqVT83EUVmlqtxpIlS156lwERPcfuTUREFRm7N7s3uze7N1Vs7N7SxDvAReTr6yt2BCIiopcyNTVFly5d0KVLF+Tm5iImJgZ79+7FiRMn8NtvvyEkJASurq7o378/PvzwQ7HjvpGnT5+iSpUqRY7Xr18fgiDg8ePHIqQyPGtra6xbtw5ffPEFNm3ahBs3biA5ORkPHjzAe++9h3nz5snmRAsAfPTRR2jXrp3YMYjKFe+uIHo9dm8iIqrI2L3Zvdm9iSo+dm/p4R3gREREpDN27Fi4ubnBxcUFrVq1Kvaq3UePHiEyMhIRERFITU2VxZW6L7uS89GjR+jYsSOCg4PRsWNHkdIZXkFBAfz9/RESEgITExPMmzcPAwYMEDtWueLVuiRHvLuCiIiISJrYvdm92b2JpIPdW5p4BzgRERHpxMfH49ixY1CpVLCxsUGHDh3g6uoKNzc33TZk1atXx7BhwzBs2DBcv34d+/btEzk1vSkTExMsXLgQtra22LhxI+Li4uDj4wMzM35UJKroeHcFERERkfSweysTuzeRdLF7Sw+/sxIREZFOcnIy0tPTkZycjJSUFKSmpuLw4cNQqVSoWrUqnJ2d4erqCldXV7zzzjto0KABxo8fL3bscpGZmYlbt27pHcvKygIAPHz4sMhrAGBvb2+UbIZQ3Hw+/vhj/PXXX9ixYwdycnLwzTffwMTERG+MlOdMJEcdOnTg3RVEREREEsPuze7N7k0kLeze0sMt0ImIiOiVbt++rVfKz58/D61WC1tbW7i4uMDV1RVDhw4VO+YbedVWRoXbFr1IpVIhPT3d0NEM5nVzBlDkdSnPefbs2Rg8eDDatm0rdhSicsPtBYmIiIjkg92b3buQlOfM7k1yxO4tTbwDnIiIiF6pbt266N27N3r37g0AyM7ORnh4OEJCQnDgwAFER0dLvoT7+vqKHcHofHx8SvX8IqkLCgoSOwIREREREdFLsXvLE7s3EZE4uABOREREr5Sbm4ukpCQkJibi9OnTOHv2LPLy8mBhYaHbkk3qlFjQFi1aJHYEInpDvr6+aNiwodgxiIiIiKgcsHvLE7s3kfSxe0sTt0AnIiIiPfn5+UhNTUV8fDzi4+Nx5swZ5OXlwdzcHO+++66ueDs6OsLCwkLsuERERERERESSw+5NRERkOFwAJyIiIp0xY8bg1KlTyM3NhYmJCVq1agU3Nze4urrCyckJlpaWYkckIiIiIiIikjR2byIiIsPiAjgRERHpqNVqmJub48MPP8S4cePw9ttvix2JiIiIiIiISFbYvYmIiAyLC+BERESk88033yAhIQHXrl2DSqVCkyZN0LFjR7i5ucHZ2RnVqlUTOyIRERERERGRpLF7ExERGRYXwImIiKiIW7duIS4uTvcssvv378PExARqtRqurq66Um5tbS12VCIiIiIiIiJJYvcmIiIyDC6AExER0WtdvHgR8fHxOHnyJE6dOoXHjx/DzMwMrVu3RseOHTF58mSxIxIRERERERFJGrs3ERFR+eACOBEREZWKRqNBVFQUfv31V6SmpkKlUuHcuXNixyIiIiIiIiKSDXZvIiKisjMTOwARERFVbNeuXcOZM2dw5swZpKWl4fz588jLy0PlypXRuXNnODs7ix2RiIiIiIiISNLYvYmIiMoP7wAnIiIinaysLKSlpekKd1paGrKysiAIAqpVq4b27dvDxcUFzs7OaNmyJUxMTMSOTERERERERCQp7N5ERESGxQVwIiIi0lGr1VCpVBAEAdWrV4ezs7PuHwcHB6hUKrEjEhEREREREUkauzcREZFhcQt0IiIi0unRowdcXFzg4uKCZs2aiR2HiIiIiIiISHbYvYmIiAyLd4ATEREREREREREREREREZEs8OEhREREREREREREREREREQkC1wAJyIiIiIiIiIiIiIiIiIiWeACOBERERERERERERERERERyQIXwImIiIiIiIiIiIiIiIiISBbMxA5ARESkBD/++CNWrVpVqvccOnQI9evXN1CisuvatStu3rwJAPj666/h5+f3yvGjRo3C8ePHAQDBwcFwd3c3aK7o6Gg0atTIIL8HERERERERVVzs3uzeREREABfAiYiIjMLBwQHe3t56xx48eIC4uDhYW1vDw8OjyHusra2NFa/MoqKiXlnCHz58iPj4eCMmIiIiIiIiIqVi9yYiIiKAC+BERERG4eXlBS8vL71jCQkJiIuLQ/Xq1bF06VKRkpVd1apVkZycjLt37+Ktt94qdkx0dDTy8/Nhbm6OvLw8IyckIiIiIiIiJWH3ZvcmIiIC+AxwIiIiKiNPT08IgoDo6OiXjtm3bx9sbW3Rpk0bIyYjIiIiIiIikgd2byIiotLjAjgREVEFduTIEYwaNQouLi5o06YNunfvjiVLliAzM1Nv3I0bN+Dg4IDOnTsX+98ZPnw4HBwckJCQoDs2a9YsODg4IDExEZMmTcK7774LNzc3bN26tUTZevToAeD5VmzFycjIwKlTp9C9e3eYmb1805k9e/Zg6NChaN++Pd599114e3tjzZo1ePr0abHjT548iZEjR8LZ2RkdOnTAlClTdM9FK45Wq8W///1vDBw4EI6OjnB0dMSgQYMQGhoKQRBKNFciIiIiIiKSL3bvoti9iYhIyrgFOhERUQW1dOlSrF+/HqampnByckL16tWRmpqKDRs2YP/+/di8eTMaNGjwxr/PN998gwcPHqBTp064ePEi1Gp1id739ttvo0WLFkhOTkZGRgbs7Oz0Xo+KikJBQQF69+6NVatWFXl/QUEBZsyYgb1798LCwgIuLi6wsrJCUlISvv/+exw4cADBwcGoXr267j27du3Ct99+CwDo0KEDqlatiuPHj+PUqVPQaDRFfo+8vDz885//xLFjx2BjYwNHR0eYm5sjMTERs2bNQkJCAhYtWlSa/11EREREREQkI+ze7N5ERCQ/XAAnIiKqgGJjY7F+/XrY2tpiw4YNum3MNBoN5s2bh127dmHy5MnYvXs3VCrVG/1eGRkZCA8PR4MGDVBQUAATk5JvENOrVy+cO3cO0dHR+Pjjj/Vei4yMhJ2dHZydnYt977Zt27B37140aNAAGzduRMOGDQEAT548wbRp03DkyBF8++23+PHHHwEAt2/fRmBgIMzMzLBu3Tp07NgRAPDw4UOMGjUK6enpRX6Pn376CceOHYOLiwtWrlyJGjVqAADu37+PMWPGIDQ0FE5OThg4cGCJ50xERERERETywO7N7k1ERPLELdCJiIgqoE2bNgEAvvzyS71neFlYWGDOnDlo1KgR/vjjD8THx7/x7+Xh4aG7mr00BRwAevbsCaDoVmy3bt1Camoqevbs+dL/5ubNmwEAgYGBugIOADY2Nli6dCmqVKmC6OhoXL16FQAQGhqK3NxcDB48WFfAAaBGjRpYuHBhkf++RqPB1q1bYW5ujqVLl+oKOADUqlUL8+bNAwD861//KtWciYiIiIiISB7Yvdm9iYhInrgATkREVMHk5+cjOTkZKpUK3bt3L/K6mZkZvLy8AEDvuWJl9c4775T5vQ0aNECrVq1w+vRpZGRk6I5HRkZCEAR8+OGHxb7v9u3buHHjBqpXrw43N7cir1epUgWdOnUCACQmJgIAkpKSAABdunQpMr5FixaoX7++3rE//vgD2dnZaNKkCd56660i72nTpg1q1qyJK1eu4N69eyWcMREREREREckBuze7NxERyRe3QCciIqpgMjMzkZeXh+rVq8PGxqbYMYWFszzKY7Vq1d7o/b169cIff/yBmJgYDBs2DMDzEt6gQQO8++67xb6nsLDXq1fvpf/dF+dY+J46deq8dPyNGzd0v759+zYA4MKFC3BwcHjlHG7fvo3atWu/cgwRERERERHJB7v3c+zeREQkR1wAJyIiqmAEQQCAVz5frHCMhYVFif6bWq32pa+Vduu1F/Xs2RNLlizB/v37MWzYMFy9ehV//PEHxo0b99L3lGWOr3vempmZ/seagoICAIC9vT2cnJxe+d7KlSu/8nUiIiIiIiKSF3Zv/THs3kREJCdcACciIqpgbG1tYW5ujszMTDx58qTYK9GvX78OAKhZsyaA/y/ShcXzRVlZWQZK+/xK8nfffRenT5/GvXv3EBkZCQDo3bv3S99jZ2cHAHpXjb+ocI61atUCALz11lu4ePEibt68iWbNmhUZ//dt4ADoriqvU6cOli5dWooZERERERERkdyxez/H7k1ERHLEZ4ATERFVMObm5nB0dERBQQFiYmKKvJ6fn6877urqCgCwtrYG8Lxs5+Xl6Y1/9OgRrly5YtDMvXr1QkFBAaKjo7F//340a9bslVuf2dvbo169enj06JHuOWN/l52djePHjwMAnJ2dAQDu7u4AUOz/k+vXr+PSpUt6x9q0aQNLS0ucP3++SEEHgLt376Jnz54YOXIkcnJySj5ZIiIiIiIikjx2b3ZvIiKSLy6AExERVUCffPIJAOC7775Denq67nheXh7mzp2La9euoUWLFrrtxWxtbVGnTh1oNBps375dN/7Zs2f49ttvX7kNW3no0aMHVCoVtm3bhgsXLrzyCvRChXP09/fXXXEOADk5OZgxYwaePHmCDz74QPesMl9fX9ja2mL37t04cOCAbvyTJ0/w1VdfFbkC39raGh999BH++usvzJgxAw8ePND7PWbPno3Lly/D2tqa27AREREREREpELs3uzcREckTt0AnIiKqgDw9PfHpp59i48aNGDBgAJycnFC9enWcOXMGd+7cQb169bBixQq9Z4iNHj0agYGBCAwMxL59+1CrVi0kJydDq9Xigw8+wOHDhw2Wt27dumjXrh1SUlIAvHoLtkLDhw9HSkoK9u/fj969e8PZ2RlWVlY4deoUHj16BLVajYULF+rG16hRAwsXLsSUKVPw+eefw9HREXZ2dkhKSoJWq0Xjxo2LXG0/bdo0nDt3DvHx8ejWrRvatGkDKysrpKSkIDMzE2+//Tbmzp1bvv8ziIiIiIiISBLYvdm9iYhInngHOBERUQU1c+ZM/PTTT3B1dcX58+dx5MgRVK5cGRMmTEBoaCgaN26sN3748OFYvHgxWrdujfT0dCQlJcHV1RW//fZbkbGG0LNnTwBAq1at0KhRo9eONzExwYoVKxAUFIRWrVohOTkZJ06cQJ06dTBjxgzs3LkTNWrU0HuPh4cHfv31V3h4eODKlSv4/fff0bJlS/zyyy+oU6dOkd/D0tISGzduxNdff40mTZogLS0NCQkJsLOzw6RJk7Br1y7dc86IiIiIiIhIedi92b2JiEh+VIIgCGKHICIiIiIiIiIiIiIiIiIielO8A5yIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFv4PBil5lObl8QwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 173 coefficients adjusted\n", - "\t 684 coefficients converged\n", - "\t 73 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACb7ElEQVR4nOzdeZyVdd0//tecoWFRJpAEVFwQG8l9w9A0DUUrNUUyUzE1U3DNTDCXOzXDJbk1zVtNRcUF0QLNJW9zLfVWE/ta5kYagkuIoYK4gMyc3x/+mBgBnXMY4AzzfD4ePOBc1+c6533O5xq43rzOdV1VxWKxGAAAAAAAAJqlsLwLAAAAAAAAaE2EKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAEugWCxmwIABWX/99XPxxReXtO2ECROy/vrrZ8KECY3L1l9//Rx44IEtXeZCpk+fnvfff3+pv05LqK+vzyuvvPKZ4371q19l/fXX/9RfAwYMWOr1vvzyy0v9NQAAqFwPPPBAjjnmmAwYMCAbbbRRvvzlL+cHP/hB7r///mVWw9y5c3Paaadl6623ziabbJKf//zni1z2k5/8JOuvv35effXVkp5//rH3448/vpTeQVOfdYx92mmnZf3118/48eM/ddyrr76avn375qCDDmr2az/++ONZf/3186tf/arZ2yxPjz32WNZff/186Utf+tQ+6t13381xxx2XLbbYIptvvnlGjx6dJJkzZ06mTZu2rMpNsmR9daK3bq7m9tZA87Vb3gUAtGaPPfZYXnvttXTq1Ck333xzjjjiiFRXV5f9fL/4xS/yhS98oQUrXNitt96aM844I7fffns6deq0VF9rSb3++usZOnRodtlllxxzzDHN2mbffffNlltuuch1K620UkuWt5Ajjjgis2fPznXXXbdUXwcAgMoze/bsnHzyybn77ruz4YYbZu+990737t0zbdq03HrrrTniiCPy/e9/PyeeeOJSr+Xmm2/OuHHj8pWvfCXf+MY38sUvfnGRy4rFYrbZZpusssoqJT3/wIEDs9Zaa6VPnz5L6R38R3OOsb/97W9n3Lhxuf322zN48ODFjrv11ltTLBbz7W9/e2mUWhHGjx+fTp065f33389NN92UE044YZHjLrnkktx1113Zbbfdss0222SzzTbLs88+m6OPPjpHH3109t5772VWc0v31Yne+pPK6a2BzyZcAVgCv/3tb/O5z30uBx98cC655JI88MAD2Xnnnct+vj333LMFq1u0xx57rNV8s+aVV17JpEmTsssuuzR7m80222yZfI6Lcv/992frrbdeLq8NAMDydeqpp+buu+/OiBEjcuihhzZZN2zYsBx66KG56qqrsu6662afffZZqrW88MILSZIRI0akb9++SdJ4VseCy5Jk8803L/n5+/bt2+Q5lqbmHGNvvPHGjWfSvPHGG+nRo8cix/3ud7/L5z//+ZL6i9Zk9uzZueeee7LTTjvlueeey4QJE3LsscempqZmobHz95EzzjgjnTt3TvLxGSCvvfbaMq05afm+OtFbf1I5vTXw2VwWDKBM7777bu69995ssskm+da3vpUkufHGG5dzVQAAwLL28MMP56677squu+66ULCSJDU1NTnrrLNSXV2da6+9dqnX89FHHyVJVl555U9dtiIZPHhwGhoa8vvf/36R65988slMnTo1e+yxR9q3b7+Mq1s27rzzznzwwQfp379/dt5558yYMSP33HPPIsfO3x/mByvLi74aaM2EKwBluuOOO/Lhhx/mK1/5Snr37p31118/jzzyyCKvYfr444/ne9/7XrbYYov0798/P//5zxf5DZdPXhd2cddAfvXVV7P++uvnJz/5SeOyDz74IGeffXa+/vWvZ5NNNsmXv/zlDB06NE8++WTjmAEDBuSWW25Jkuy0006Nr/WTn/wkm2++eaZOnZqjjz46W265ZbbYYoscccQRmTZtWl577bUce+yx2XLLLdO/f/8cd9xxmT59epOaGhoact1112XPPffMJptskq222io/+MEPmrx+8p/rM7/00ks59dRT85WvfCUbb7xx9txzz9x+++1Nxn3ve99Lklx88cVlXQv60xSLxfzmN7/J/vvvn6222iobbrhhtttuuxx//PGZMmXKQuN///vf54ADDsiWW26ZL3/5yznooIPy6KOPJvnPdZiT5M9//vNC1/v94x//mIMOOihbbLFFNtlkk+y555659tpr09DQ0Dhm/pz+z//8T370ox9l4403zrbbbpunn3469fX1ufjii7PHHntks802y1ZbbZUDDzxwmV63GwCAxbv11luT5FPv8bDmmmvm9ttvbzwen++ll17K8ccfn2233TYbbbRRdtppp5xzzjmZOXPmQs/xz3/+M8cff3y22WabbLTRRtlll13yy1/+Mh9++GGS/xxTLnjMP//+g59cliy63ygWi7nxxhuz9957Z7PNNsu2226bYcOG5Zlnnmkcs7h7rjz00EONfc+mm26avffeu8lxcfKfY+c777wzl112WQYOHJiNNtooAwYMyIUXXph58+Y1GZcs+hj7k771rW/lc5/7XJOeYkHz52j+JcE++uijjB49OoMHD87mm2+ejTbaKDvuuGNOPfXUzJgxY7Gvk3zcVy3qfo6LuvdHkvztb3/LsGHDsvXWW2fjjTfO7rvvnquuuir19fVNxj377LMZNmxYtt9++8Z94ec//3neeeedT61nvvlnJ33lK1/J17/+9SQLBxXzP9c///nPSdJ4b8qf/OQnOemkk5IkJ510UuNnn5Te6/3xj3/MN77xjWy00UYZMmTIp9ZcSl89v369ddPPe3n31tCWuSwYQJnmH7h+4xvfSJLstttueeGFFzJu3LgMHz68cdyDDz6Yo446Kt27d8/QoUNTKBTy29/+9lMbg3Icf/zxeeSRR3LAAQdk3XXXzb///e/ccMMNOeigg/Lb3/42ffv2zcknn5yrr746EydOzEknnZQvfvGLjdt/9NFH2X///bP11ltnxIgReeqppzJhwoS88cYb+fe//51+/fplxIgR+etf/5rx48dn9uzZufLKKxu3P+GEE3LnnXdm1113zXe+853MnDkzEyZMyIEHHpjzzz+/8eB+vsMPP7zxM5k7d27GjBmTE044Iauuumr69++fgQMHZt68eY0N18CBA5t1Lej3338/b7311kLLq6ur8/nPf77x8dlnn50xY8Zk5513zo9+9KMkycSJE/P73/8+zz77bH7/+9+nUPj4OwgXXXRR/ud//id9+/bNsGHDUlNTk7Fjx+bQQw/NpZdemg033DC/+MUvMmLEiKy77roZNmxYtthiiyTJVVddlXPPPTdrr712DjvssHTq1Cn33ntvRo4cmccffzy/+tWvGl8nSa688srU1dXl1FNPzcsvv5wNNtggZ599dm644YZ85zvfyfe+9728++67GTduXI488sj8+te/zg477NCcXQQAgKXkb3/7W9q1a5dNN930U8d98h4lEydOzKGHHprq6urst99+WWONNfLUU0/lmmuuyf33359x48Y1HgP/7W9/y8EHH5yVV145BxxwQFZZZZU89dRTueyyy/Loo4/m2muvzSqrrJJf/OIXufnmmxuP+T//+c+nUCg0Wda1a9fF1njiiSfmd7/7Xbbaaqscd9xxmTt3bq677roMGTIkN9xwQzbYYINFbnfDDTfkzDPPzMYbb5yjjz46hUIh9913X0466aQ899xzOeWUU5qMP//881MsFrPvvvumtrY2EyZMyCWXXJKqqqoce+yx6dOnz2KPsRela9eu2WmnnfK///u/eemll5p81nPmzMldd92VDTfcMF/60peSJMcdd1zuu+++DBo0KN/5zncyZ86c/OlPf8pvfvObvP7667nqqqs+dS6b67777ssPf/jD9OrVKz/4wQ/SqVOnPPLIIzn33HPzl7/8Jb/61a9SVVWVV155JQcddFBWXXXVHHzwwamtrc1f//rXXH/99fnb3/6Wm266KVVVVYt9nZdeeil//etfs/nmm2f11VfP6quvnnXWWSdPPPFEk89j/ud62WWX5Z///Gd+8YtfZKWVVkq3bt1SU1OTm266aaH7WJba6x133HH59re/nXXWWWeRlyRbUHP76kRvvax7a6AZigCUbNKkScW6urriXnvt1bhs6tSpxbq6umL//v2Lc+bMKRaLxWJDQ0NxwIABxa222qr473//u3HsrFmzirvsskuxrq6uOH78+MbldXV1xSFDhjQ+PvHEE4t1dXXFV155pcnrv/LKK8W6urriiSeeWCwWi8UZM2YU6+rqiqeddlqTcU899VRxl112Kd58882f+pzzl31y+z333LNYV1dXPPPMM5ss32effYp9+/ZtfJ+///3vi3V1dcUrrriiybjZs2cXv/71rxe//OUvF99///1isVgsXnTRRcW6urriYYcdVmxoaGgc+8QTTxTr6uqKxx9/fOOyxx57rFhXV1e86KKLip9l/vMu7tfXvva1xrFvvfVWcYMNNigOHTp0oec59thji3V1dcW///3vxWKxWHz55ZeLX/rSl4pDhgxpfL/FYrH473//u7jlllsW995778Zln5y/qVOnFjfYYIPiN7/5zeJ7773XuLyhoaF4wgknFOvq6ooTJkwoFov/mdPNNtus+OabbzapabPNNiv+4Ac/aLLsX//6V3HnnXcu/upXv/rMzwYAgKVr0003LW677bYlbVNfX18cOHBgcaONNiq++OKLTdbdfPPNxbq6uuJPfvKTYrH48fHjbrvtVtxhhx2Kb7/99iLHXn755Y3LPu2Y/9OWPfroo43H5Aseq7/44ovFvn37Fo855phisfifY+/HHnusWCx+fGy64YYbFocOHdpku4aGhuLw4cOLdXV1xb/+9a/FYvE/x/hf+cpXijNnzmwc+9577xW33HLL4nbbbdfk/X3yGPvT/PGPfyzW1dUVL7jggibL77zzzmJdXV3xhhtuKBaLxeJzzz23yD6nWCwWBw8eXKyrq2v8nBfVk3zta19r0l/MN378+CY93vvvv1/88pe/XBw0aFCTXqJYLBYvuOCCYl1dXfHOO+8sFovF4pVXXtnkc5rv7LPPLg4aNKg4bdq0T33v55xzTrGurq44ZsyYxmXz52lR73PIkCHFurq6T62/WCyv1zv22GM/tdb5mttXF4t662XZWwPN57JgAGWY/+2a3XbbrXHZmmuumc022yxvvfVW/vCHPyRJnnvuubz66qvZc889061bt8axnTt3zn777ddi9ay88srp3Llz7rrrrtx888158803kySbbrpp7r777mbfMHP33Xdv8nj+t5u++c1vNlm+1lprpaGhIf/+97+TfHxt3yTZdddd89ZbbzX+mjNnTnbZZZe8/fbbeeKJJ5o8xx577NHkm1ebbLJJkjQ+Z7kOPfTQXH311Qv9Ou+88xrHdO3aNRMnTsyoUaOabDtr1qx07NgxSRpPLb///vtTX1+fgw46qMm3rrp165axY8fmV7/61WJrueeeezJv3rwcfvjh6dSpU+Pyqqqq/PjHP06Sha4Jvemmm+YLX/hCk2U9e/bMn//854wePbrx9O2ePXvmnnvuydFHH93szwYAgKWjurq68XJWzfXss89mypQp+da3vrXQGS3f/va3s/baa+fuu+9OfX19XnjhhfzjH//IDjvskIaGhibH3F/72tfSvn37xd5boxT33ntvkuQHP/hBk2P1Pn365Le//W3+67/+a5Hb/eEPf8hHH32Ub3zjG3n77bcba3v77bcbe6b5PdJ8X/va11JbW9v4uFOnTunTp89nXpLr02y33XZZbbXVcscddzRZfsstt6RDhw7ZY489kiR9+/bNk08+meOPP77JuBkzZjTW1BI3Kv+///u/vP3229l1110ze/bsJvM2v8eaP2+rrbZakuS8887Lo48+mrlz5yb5+DJTEyZMSI8ePRb7OvPmzcttt92WQqHQeAZI8p9+9Xe/+10++OCDst5DOb3eoi6ZtijN7asTvfXy6K2Bz+ayYAAl+uijj3Lbbbcl+fgAa8Frlfbv3z9PPfVUbrzxxuy+++6ZOnVqko8PmD5pvfXWa7Gaampqcs455+Skk05qbHjq6uqy3XbbZY899ljsqfuf9Mn/1P/c5z6XJFl11VWbLG/X7uN/PubfM2Ty5MlJkp133nmxz/3aa6996mvNDy4WvA9JOdZbb71su+22nzmuffv2ue+++/LAAw9k6tSpefXVV/Ovf/2r8aB0fh3z53fddddd6Dnq6uo+9TXmz/+Cp4jP17Nnz3Tu3Hmha91+8nNJkpEjR+a4447LL37xi/ziF7/IWmutla985SvZbbfd0q9fv898rwAALF09evTI5MmTM3fu3M+8DNJ8n3asWFVVlfXWWy9TpkzJ22+/3Xi8PW7cuIwbN26Rz/fJ4+1yzD82/WTYkyQbbrjhYrebX9+IESMWO+az+oHk457gk/chKUWhUMigQYNyySWX5P/9v/+XzTffPG+++WYeeeSR7L777k1u3l5TU5Pf//73jff3ePXVV/Pmm28u1A8sifmfy/nnn5/zzz9/kWPmfy677rprBg8enAkTJuTggw9Ohw4dsuWWW2aHHXbIXnvt1eQSx5/04IMP5t///nc23njjzJkzp3Eea2pqss466+Tll1/OnXfe2Xi/mXLeQym93if7x0Uppa9OordewLLqrYHPJlwBKNGDDz7Y+G2qxd2cb+LEiXnxxRcbHxeLxYXGLMmBzqIajp133jlf+cpX8tBDD+Xhhx/O448/nquuuipXX311Tj755MYb2H2a+Qd2n/Rp1/adX89KK62Uiy++eLFjevfu3eTxgvcZWdY++uijHH300XnwwQez0UYbZaONNsquu+6aDTbYIH/84x/z61//usnY5LM/g0WZP++L27ahoWGh5ntRc7DFFlvk3nvvzWOPPZaHHnoojz/+eMaNG5cbb7wxhxxySJObLwIAsOz169cvL730Uv7yl7+kf//+ix130kkn5aOPPvrUEGK++f1CTU1N458POOCAxf6n6+KO5Usx/9i3VPP7kzPPPDO9evVa5JhP3uNhafUDe++9dy699NLcfvvt2XzzzXP77benvr6+SbAwe/bsHHTQQXnmmWey5ZZbZqONNsqee+6ZjTfeOGPGjGn8T/9SfbJPmz9vxx57bDbffPNFbrPSSisl+fjsp7POOitHHnlkHnjggfzf//1fJk6cmEceeSS//vWvM27cuEUGC8l/zgB5+umns9NOOy1yzLhx48oKV8rp9aqrqz/zeUvpqxcMT/TWldVbQ1snXAEo0fwD16FDhzaebrug3/zmN3nwwQebHLy+9NJLC42bMmXKZ77W/IPSOXPmNFk+/9Tk+WbPnp0XXnghvXr1yi677JJddtklSfL888/noIMOyv/8z/806wCwXL169crkyZPTt2/fhZqm5557LtOnT2+83FYl+P3vf58HH3wwhx9+eOPluea75ZZbmjye3xxOnjx5oYPYa665Ji+++GJOPfXUdOjQYaHXmd/8TJo0qfHGmfO9/vrree+99xpP/1+cOXPm5IUXXsjnP//5fPWrX81Xv/rVJMkrr7yS73//+xkzZkyOPvrorLzyys145wAALA277757xo0bl7Fjxy42XPnXv/6V2267LbW1tenSpUvWXHPNJMk//vGPhcYWi8W89NJLWXnllVNbW9sksPjkWdoNDQ25++67G59vSSx47Lv++us3WXf++efnww8/zMknn7zY7Wpraxeqb/r06fnb3/7WIvU1x5prrpkvf/nLueuuu3Lqqafm9ttvz9prr52tt966ccy1116bv//97znjjDPy3e9+t8n2zbmUUnV1dd57772Fln+yT5v/uXTo0GGhz2X27Nl5+OGHG89keO211zJ16tRss802OfDAA3PggQdm3rx5GT16dM4///zceOONOfHEExd6zRkzZuRPf/pTVlpppZx77rkL/ed9Q0NDTjzxxDz99NN55plnPvUMpEVZWr1eKX31qaeemnXWWSeJ3rrSemto60SbACV4880389BDD6VLly456qijsvPOOy/069hjj02S3HrrrVl77bXTu3fv3HbbbU1Oc/7www9z/fXXf+brde/ePcnH30Ba0K233trk8aRJk7L//vvnkksuabJ8vfXWS+fOnZt8a2b+t1oW9Y2fcu26665Jkl/+8pdNls+ePTvHHXdcjjrqqIUOYptj/gFwS5/O/PbbbyfJQg3jlClTcvfddyf5zzeYdtppp1RVVeWGG25och3td955J1dccUX+9re/NQYrhUKhSa0DBw5MdXV1fv3rXze5ZnOxWMyFF16YJPn617/+mbXuu+++OfPMM5ssX3PNNdOjR49UVVX5phIAwHLWr1+/DBw4MHfffXeuvvrqhda/++67+eEPf5h58+bl6KOPTk1NTTbYYIOsueaaue222xb6D+Px48dn6tSpjf+xu9FGG2WNNdbILbfc0nh5pPluuummHHfccY3/Wb0k5p8VM2bMmCbLp06dmmuuuSavvPLKIrfbZZddUigUctlll+XDDz9ssu6cc87JUUcdlb///e9l1fTJY+zmGDx4cN56663ceuutefbZZxc6Y2Nx/cD/+3//r/F+Fp92ebLu3bvnrbfeanJ5prlz5+auu+5qMm677bbLSiutlGuuuabxNee77LLL8sMf/jB//OMfGx8ffPDB+etf/9o4pl27dtl0002TLP5skFtvvTXz5s3LnnvumYEDBy7Un+6yyy4ZPHhwkuTGG29c7HtK/tMrLvh5L41er9S++oMPPkjfvn311hXYW0Nb58wVgBLMP3Dde++90759+0WO2XDDDdOvX7888cQTueOOO/Lzn/883//+97PPPvvkgAMOyMorr5zx48fn3Xff/czXGzRoUH7961/n5z//eV599dWsuuqqeeCBBzJp0qQmr7/FFltku+22y7hx4zJr1qxsvfXWqa+vz913351XXnmlyTec5l+P9corr8z222//qddyba699947//u//5ubbropU6dOzYABAzJv3rz85je/ycsvv5zhw4d/6g0YF2f+jQrvv//+rL766hk4cGC6dOmyxPVuv/32+e///u+MHDkyU6dOzaqrrpp//OMfGT9+fGOAMmvWrCQfX2/68MMPz69//evst99+2W233dLQ0JCbb745M2fObAxJ5tf7/PPPZ+zYsdlqq61SV1eX4447Lv/93/+dvfbaK3vvvXc6deqU++67L4899li+9rWv5Vvf+tan1tqzZ8/ss88+uemmm3LooYdmwIABqaqqysMPP5wnnngiQ4YMSadOnZb4MwEAYMmcddZZmTlzZs4555zcfvvt2WWXXbLKKqvk5Zdfzi233JK33norBxxwQA444IAkH/9n589//vMcfvjh2WeffbLffvulV69e+dvf/pZbbrkla6yxRk444YQmY4cOHZq999473/3ud7PWWmvl6aefzvjx47PWWmvlyCOPXOL3sP3222f33XfP+PHjM23atAwYMCCzZ8/ODTfckPbt22f48OGL3G6dddbJMccckwsvvDB77rlnBg0alNra2tx33315+OGH87Wvfa0xKCrVoo6xP8uuu+6aM888M+eee27atWuXvfbaq8n6AQMG5LrrrssJJ5yQ/fffP507d87f//733HLLLamurs5HH33U2A8syuDBgzNx4sQceuih2X///dPQ0JDx48cvFMjU1tbmpz/9aU466aTsscce2XfffdO9e/c89thj+f3vf59NNtkk+++/f5Lk4IMPzl133ZXDDz883/3ud9OrV6+88cYbufHGG9O5c+d85zvfWWQtEyZMSJLG51mU733ve7nhhhty55135ic/+cliz3qf3yvedtttKRaLjT1MS/d65fTV++yzj966AntraOuEKwAluOWWW1JVVfWpB67JxwfGTzzxRMaNG5fx48dn7Nixueiii3LNNdck+fgbYTvuuGN++MMffurzrLXWWrniiity8cUX5/LLL0/Hjh2z/fbb58Ybb8xuu+3WZOxFF12Uq666qvGSV0nSt2/fjBo1KnvssUfjuP322y9//vOfM378+Dz22GMtcgBYXV2dyy67LGPGjMnvfve7jBo1Kh07dkyfPn3yq1/9quxGqnfv3jnkkEPy29/+NiNHjkyvXr2yzTbbLHG9ffr0yeWXX56LLrooo0ePTpKsttpqGTJkSL7+9a9nr732ykMPPdR4Vsnxxx+fddddN9dff30uuOCCdOzYMRtvvHHOO++8bLzxxo3PO2LEiIwaNSpnnXVWhg0blrq6uhx++OFZd911c8011zTey6V379756U9/mv32269ZZ5389Kc/zbrrrptbbrkl559/furr67Puuuvmv/7rvz5zXwQAYNmora3N6NGj8/vf/z4TJkzI2LFj89Zbb2XllVfOpptumgMOOKDxEq/z9e/fPzfffHMuueSSjB8/PrNnz87qq6+e73//+xk2bFhqa2sbx2677ba5+eabc+mllzb+h3LPnj2z//77Z+jQoc26iXhznHfeedlkk03y29/+Nueee24+//nPZ6uttsoPf/jDhS6Tu6Ajjzwy6623Xq699tpcfvnlaWhoyJprrpkRI0bkwAMPbNZ9OBZlUcfYn6V9+/bZfffdM3bs2AwYMKDxrIX5ttlmm5x//vmNvVZNTU1WX331HHfccVlvvfVy+OGH56GHHmpyrL+gvffeO++9917Gjh2bX/ziF/nCF76QPffcM1/72tey7777Nhm71157ZbXVVsuVV16Za6+9NnPmzMnqq6+eI444IoceemjjF6X69OmT66+/PpdeemluvfXWzJgxI126dEn//v1z1FFHLfJ+K3/961/z4osvpl+/fvniF7+42M9jrbXWyte+9rXcd999+d3vftcY8H1S//79s8cee+Tee+/N008/na222iq9e/du8V6vnL56n332yVZbbaW3rrDeGtq6qmJLnrsGQNmKxWL69u2bL3/5y7n22muXdzkAAADQ6uitgWXFRdoBKsT8085XWmml5VwJAAAAtE56a2BZcVkwgArw61//Os8880ySj68tCwAAAJRGbw0sS8IVgOVs1qxZGTNmTD766KPsvvvuOeSQQ5Z3SQAAANCq6K2BZc09VwAAAAAAAErgnisAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQgjZ/Q/tisZiGBredqRSFQpX5oFnsKzSH/YTmsq/QHCvCflIoVKWqqmp5l0Ers6L2TCvCz3RbZe5aL3PXupm/1svctV7mbvlobt/U5sOVhoZi3nrrveVdBknatSuka9eVMmvW+5k3r2F5l0MFs6/QHPYTmsu+QnOsKPvJKquslOpq4QqlWRF7phXlZ7otMnetl7lr3cxf62XuWi9zt/w0t29yWTAAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAAChBu+VdAAA0V6FQlUKhqlljq6s//v5AVVXzxgMAAEBrtqieeX5vPP/3T2poKKahobjUa4MVkXAFgFahUKhKly6dFntAuDidO3fIO++872ARAACAFdZn9cy1tR0Xuby+vkHPDGUSrgDQKhQKVamuLmTUDU/m1TfebdY2vXp0zgkHbJlCocqBIgAAACssPTMse8IVAFqVV994Ny+9NnN5lwEAAAAVR88My44b2gMAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAVYsaMGRk+fHj69++fzTffPIcffnhefPHFxvXPPfdchgwZks022yw77rhjRo8e3WT7hoaGXHTRRdl+++2z6aab5vvf/36mTJmyrN8GAACs8IQrAAAAFeKII47IK6+8kiuuuCK//e1v06FDhxx88MH54IMP8vbbb+eQQw7JOuusk/Hjx+eYY47JhRdemPHjxzduf8kll2TcuHH5+c9/nptuuilVVVU57LDDMnfu3OX4rgAAYMXTbnkXAAAAQPL222+nV69eOeKII/LFL34xSXLkkUdmzz33zD/+8Y88+uijqampyemnn5527dqlT58+mTJlSq644ooMHjw4c+fOzVVXXZXhw4dnhx12SJJccMEF2X777XPPPfdkt912W55vDwAAVijOXAEAAKgAXbt2zfnnn98YrPz73//O6NGj07Nnz6y33nqZOHFi+vXrl3bt/vMduf79+2fy5MmZMWNGnn/++bz33nvp379/4/ra2tpssMEGeeKJJ5b5+wEAgBWZM1cAAAAqzH/913/l5ptvTk1NTS699NJ06tQp06ZNS11dXZNx3bt3T5K8/vrrmTZtWpJktdVWW2jMv/71r2VTOAAAtBHCFQAAgApz0EEHZd99982NN96Yo446KmPHjs2HH36YmpqaJuPat2+fJJkzZ04++OCDJFnkmJkzZy5RPe3arVgXPaiuLjT5ndbD3LVe5q51M3+Vb0nmxrxWJj93lU+4AgAAUGHWW2+9JMmZZ56Zp556Ktdff306dOiw0I3p58yZkyTp1KlTOnTokCSZO3du45/nj+nYsWPZtRQKVenadaWyt69ktbXlfy4sX+au9TJ3rZv5WzGZ18pmfiqXcAUAAKACzJgxI48++mi+8Y1vpLq6OklSKBTSp0+fTJ8+PT179sz06dObbDP/cY8ePTJv3rzGZWuttVaTMX379i27roaGYmbNer/s7StRdXUhtbUdM2vWB6mvb1je5VACc9d6mbvWzfxVvvlzVA7zWpn83C0/tbUdm3XGkHAFAACgAkyfPj0//vGP061bt2yzzTZJko8++ijPPvtsBgwYkC984QsZN25c6uvrG8OXRx99NL179063bt3SuXPnrLzyynn88ccbw5VZs2bl2WefzZAhQ5aotnnzVsyGvr6+YYV9bys6c9d6mbvWzfytmMxrZTM/lcsF2wAAACpA3759s9122+WMM87IxIkTM2nSpJx44omZNWtWDj744AwePDizZ8/OKaeckhdffDETJkzImDFjMnTo0CQf32tlyJAhGTVqVO677748//zz+dGPfpSePXtm4MCBy/ndAQDAisWZKwAAABWgqqoqv/zlL/Pf//3fOe644/Luu+9mq622yg033JDVV189SXLllVdm5MiRGTRoUFZdddWMGDEigwYNanyOY489NvPmzcupp56aDz/8MP369cvo0aMXusk9AACwZIQrAAAAFaJz5845/fTTc/rppy9y/SabbJKbbrppsdtXV1dn+PDhGT58+FKqEAAASFwWDAAAAAAAoCTCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASlBR4cprr72W9ddff6Ffv/nNb5Ikzz33XIYMGZLNNtssO+64Y0aPHr2cKwYAAAAAANqadsu7gAW98MILad++fe69995UVVU1Lu/cuXPefvvtHHLIIdl5551zxhln5KmnnsoZZ5yRLl26ZPDgwcuxagAAAAAAoC2pqHBl0qRJ6d27d7p3777QujFjxqSmpiann3562rVrlz59+mTKlCm54oorhCsAAAAAAMAyU1GXBXvhhRey3nrrLXLdxIkT069fv7Rr9588qH///pk8eXJmzJixrEoEAAAAAADauIoKVyZNmpQZM2Zk//33z7bbbpv99tsvDz30UJJk2rRp6dmzZ5Px889wef3115d5rQAAAAAAQNtUMZcFmzt3bl5++eV07NgxI0aMSKdOnXLbbbflsMMOy9VXX50PP/wwNTU1TbZp3759kmTOnDlL9Nrt2lVUxtRmVVcXmvwOi2NfaZuWZL7tK3waf6fQHPYTAAAAFlQx4UpNTU2eeOKJtGvXrjFE2WijjfLSSy9l9OjR6dChQ+bOndtkm/mhSqdOncp+3UKhKl27rlR+4bS42tqOy7sEWgn7Cs1lX6E57Cc0h/0EAACApILClWTRIUldXV0efvjh9OzZM9OnT2+ybv7jHj16lP2aDQ3FzJr1ftnb03Kqqwupre2YWbM+SH19w/IuhwpmX2mb5s97OewrfBp/p9AcK8p+Ulvb0dk3AAAALaBiwpXnn38+++23X6644opstdVWjcv//ve/Z7311suXvvSljBs3LvX19amurk6SPProo+ndu3e6deu2RK89b17rbZBXRPX1DeaEZrGv0Fz2FZrDfkJz2E8AAABIKuiG9nV1dfniF7+YM844IxMnTsxLL72Us88+O0899VSGDRuWwYMHZ/bs2TnllFPy4osvZsKECRkzZkyGDh26vEsHAAAAAADakIo5c6VQKOSyyy7LqFGjctxxx2XWrFnZYIMNcvXVV2f99ddPklx55ZUZOXJkBg0alFVXXTUjRozIoEGDlnPlAAAAAABAW1Ix4UqSrLLKKjnrrLMWu36TTTbJTTfdtAwrAgAAAAAAaKpiLgsGAAAAAADQGghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAKsQ777yTn/70p/nqV7+aLbbYIvvtt18mTpzYuP6kk07K+uuv3+TXV7/61cb1DQ0Nueiii7L99ttn0003zfe///1MmTJlebwVAABYobVb3gUAAADwseOPPz4zZszI+eefn1VWWSVjx47NoYcemgkTJqRPnz554YUXMmzYsAwZMqRxm+rq6sY/X3LJJRk3blzOPvvs9OjRI+edd14OO+yw3HHHHampqVkebwkAAFZIzlwBAACoAFOmTMkjjzyS0047LVtttVXWXXfdnHLKKenRo0fuuOOO1NfX58UXX8zGG2+cVVddtfHXKquskiSZO3durrrqqhxzzDHZYYcd0rdv31xwwQV54403cs899yzndwcAACsW4QoAAEAF6Nq1ay6//PJstNFGjcuqqqpSLBYzc+bMvPzyy5kzZ0769OmzyO2ff/75vPfee+nfv3/jstra2mywwQZ54oknlnr9AADQlrgsGAAAQAWora3NDjvs0GTZXXfdlalTp2a77bbLpEmTUlVVlTFjxuRPf/pTCoVCdthhhxx33HHp3Llzpk2bliRZbbXVmjxH9+7d869//WuJamvXbsX6Xl51daHJ77Qe5q71Mnetm/mrfEsyN+a1Mvm5q3zCFQAAgAr05JNP5uSTT85OO+2UAQMG5KKLLkqhUMgaa6yRyy67LFOmTMm5556bSZMmZcyYMfnggw+SZKF7q7Rv3z4zZ84su45CoSpdu660RO+lUtXWdlzeJVAmc9d6mbvWzfytmMxrZTM/lUu4AgAAUGHuvffenHDCCdl0001z/vnnJ0mOOeaYHHzwwamtrU2S1NXVZdVVV82+++6bp59+Oh06dEjy8b1X5v85SebMmZOOHctvyhsaipk16/0leDeVp7q6kNrajpk164PU1zcs73Iogblrvcxd62b+Kt/8OSqHea1Mfu6Wn9rajs06Y0i4AgAAUEGuv/76jBw5MgMHDsyoUaMaz0SpqqpqDFbmq6urS5JMmzat8XJg06dPz1prrdU4Zvr06enbt+8S1TRv3orZ0NfXN6yw721FZ+5aL3PXupm/FZN5rWzmp3K5YBsAAECFGDt2bM4888wccMAB+eUvf9nkEl8//vGPc+ihhzYZ//TTTydJ1ltvvfTt2zcrr7xyHn/88cb1s2bNyrPPPputttpq2bwBAABoI5y5AgAAUAEmT56cs846KwMHDszQoUMzY8aMxnUdOnTI7rvvniOOOCKXXnppdtttt0yePDk/+9nPsvvuu6dPnz5JkiFDhmTUqFFZZZVVssYaa+S8885Lz549M3DgwOX1tgAAYIUkXAEAAKgAd999dz766KPcc889ueeee5qsGzRoUM4555xceOGFueyyy3LZZZelc+fO2WOPPXLcccc1jjv22GMzb968nHrqqfnwww/Tr1+/jB49eqGb3AMAAEtGuAIAAFABhg0blmHDhn3qmF133TW77rrrYtdXV1dn+PDhGT58eEuXBwAALMA9VwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAElRsuDJ58uRsvvnmmTBhQuOy5557LkOGDMlmm22WHXfcMaNHj16OFQIAAAAAAG1RRYYrH330UU444YS8//77jcvefvvtHHLIIVlnnXUyfvz4HHPMMbnwwgszfvz45VgpAAAAAADQ1rRb3gUsyq9+9austNJKTZbdfPPNqampyemnn5527dqlT58+mTJlSq644ooMHjx4OVUKAAAAAAC0NRV35soTTzyRm266Keeee26T5RMnTky/fv3Srt1/8qD+/ftn8uTJmTFjxrIuEwAAAAAAaKMqKlyZNWtWRowYkVNPPTWrrbZak3XTpk1Lz549myzr3r17kuT1119fZjUCAAAAAABtW0VdFuz000/PZpttlj322GOhdR9++GFqamqaLGvfvn2SZM6cOUv0uu3aVVTG1GZVVxea/A6LY19pm5Zkvu0rfBp/p9Ac9hMAAAAWVDHhyq233pqJEyfm9ttvX+T6Dh06ZO7cuU2WzQ9VOnXqVPbrFgpV6dp1pc8eyDJTW9txeZdAK2FfobnsKzSH/YTmsJ8AAACQVFC4Mn78+MyYMSM77rhjk+WnnXZaRo8endVXXz3Tp09vsm7+4x49epT9ug0Nxcya9X7Z29NyqqsLqa3tmFmzPkh9fcPyLocKZl9pm+bPeznsK3waf6fQHCvKflJb29HZNwAAAC2gYsKVUaNG5cMPP2yybJdddsmxxx6bb37zm7nzzjszbty41NfXp7q6Okny6KOPpnfv3unWrdsSvfa8ea23QV4R1dc3mBOaxb5Cc9lXaA77Cc1hPwEAACCpoBva9+jRI2uvvXaTX0nSrVu3rLHGGhk8eHBmz56dU045JS+++GImTJiQMWPGZOjQocu5cgAAAAAAoC2pmHDls3Tr1i1XXnllJk+enEGDBuXiiy/OiBEjMmjQoOVdGgAAAAAA0IZUzGXBFuWFF15o8niTTTbJTTfdtJyqAQAAAAAAaOEzV957772F7psCAADQVuiJAACgbSg7XPnTn/6USy65pPHxueeem6233jpbbbVVRo4c2SLFAQAAVCo9EQAAtF1lhSsPPPBAhg4dmt/97ndJkokTJ+bqq6/OGmuskc033zzXX399xo4d26KFAgAAVAo9EQAAtG1lhStXX3111lprrVx77bVJkjvvvDOFQiFXX311rrvuunzta1/L+PHjW7RQAACASqEnAgCAtq2scOW5557Lfvvtlx49eiRJHnnkkdTV1WWNNdZIkmy//fb55z//2XJVAgAAVBA9EQAAtG1lhSvz5s3LyiuvnCR57bXXMnXq1Hz5y19uXN/Q0JB27dq1TIUAAAAVRk8EAABtW1nhSq9evfLss88mSe6+++5UVVVl++23b1z/wAMPpFevXi1TIQAAQIXREwEAQNtW1lepdt1111x66aV57bXX8uc//zk9evRI//79M3Xq1Pz85z/PI488kp/85CctXSsAAEBF0BMBAEDbVla4cuSRR+add97J+PHjs9pqq2XkyJFp165d3nnnnTz88MP5zne+kyFDhrR0rQAAABVBTwQAAG1bWeFKoVDIqaeemlNPPbXJ8r59++aBBx5ovKkjAADAikhPBAAAbVtZ91z53ve+l0cffXSh5TU1NenRo0fuvffefP3rX1/i4gAAACqRnggAANq2Zp258sEHH+Ttt99ufPznP/85AwcOzNprr73Q2IaGhjz88MN5/fXXW65KAACA5UhPBAAALKhZ4crs2bOz++6754MPPmhcdtZZZ+Wss85a7DabbbbZEhcHAABQCfREAADAgpoVrqy66qr56U9/mscffzzFYjG33nprttxyy6y55poLjS0UCvnCF76Q/fbbr8WLBQAAWB70RAAAwIKafUP7vfbaK3vttVeSj0+BP+SQQ7LTTjstrboAAAAqip4IAACYr9nhyoLuv//+lq4DAACg1dATAQBA21ZWuJIkxWIxjz32WN588800NDQscsz8b3UBAACsaPREAADQdpUVrkyZMiWHHXZYXnnllUWuLxaLqaqq0kgAAAArJD0RAAC0bWWFK6NGjcorr7ySwYMHZ+ONN05NTU1L1wUAAFCx9EQAANC2lRWuPPbYY9lvv/3y05/+tKXrAQAAqHh6IgAAaNsK5Ww0b968fOlLX2rpWgAAAFoFPREAALRtZYUrG264YZ555pmWrgUAAKBV0BMBAEDbVla4cuyxx+Z3v/td7r777hSLxZauCQAAoKLpiQAAoG0r654rV111VT7/+c/nuOOOS4cOHdK1a9dUVVU1GVNVVZV77723RYoEAACoJHoiAABo28oKVyZNmpRCoZDVVlutcdknv63l21sAAMCKSk8EAABtW1nhyv3339/SdQAAALQaeiIAAGjbyrrnyifNnTs3DQ0NLfFUAAAArY6eCAAA2payw5V33nknP/vZz7Lddttls802y+OPP56JEydm2LBhmTx5ckvWCAAAUHGWRk/0zjvv5Kc//Wm++tWvZosttsh+++2XiRMnNq5/7rnnMmTIkGy22WbZcccdM3r06CbbNzQ05KKLLsr222+fTTfdNN///vczZcqUJXqfAADAwsoKV955553su+++GTt2bDp27Nh4LeGZM2fmwQcfzAEHHJBXXnmlRQsFAACoFEurJzr++OPz17/+Neeff35++9vfZsMNN8yhhx6al156KW+//XYOOeSQrLPOOhk/fnyOOeaYXHjhhRk/fnzj9pdccknGjRuXn//857nppptSVVWVww47LHPnzm2x9w4AAJQZrlx88cV57bXXcvXVV+emm25qbCR22mmnXH755Xn//fdzySWXtGihAAAAlWJp9ERTpkzJI488ktNOOy1bbbVV1l133Zxyyinp0aNH7rjjjtx8882pqanJ6aefnj59+mTw4ME5+OCDc8UVVyT5+NJkV111VY455pjssMMO6du3by644IK88cYbueeee1r8MwAAgLasrHDl/vvvz3e+851ss802qaqqarLuq1/9avbdd988/vjjLVIgAABApVkaPVHXrl1z+eWXZ6ONNmpcVlVVlWKxmJkzZ2bixInp169f2rVr17i+f//+mTx5cmbMmJHnn38+7733Xvr379+4vra2NhtssEGeeOKJMt8pAACwKGWFK9OnT0/fvn0Xu75Pnz558803yy4KAACgki2Nnqi2tjY77LBDampqGpfdddddmTp1arbbbrtMmzYtPXv2bLJN9+7dkySvv/56pk2bliRZbbXVFhrzr3/9q6RaAACAT9fus4csrFu3bnnttdcWu37SpEnp2rVr2UUBAABUsmXREz355JM5+eSTs9NOO2XAgAE5++yzmwQvSdK+ffskyZw5c/LBBx8kySLHzJw5c4lqadeurO/lVazq6kKT32k9zF3rZe5aN/NX+ZZkbsxrZfJzV/nKCle++tWvZty4cdlnn32y0korNVn3l7/8JTfffHN23333FikQAACg0iztnujee+/NCSeckE033TTnn39+kqRDhw4L3Zh+zpw5SZJOnTqlQ4cOST6+98r8P88f07Fjx7JrKRSq0rXrSp89sBWqrS3/c2H5Mnetl7lr3czfism8VjbzU7nKCleOPvroPPDAAxk0aFC23HLLVFVVZdy4cRkzZkweeuihrLzyyjnyyCNbulYAAICKsDR7ouuvvz4jR47MwIEDM2rUqMYzUXr27Jnp06c3GTv/cY8ePTJv3rzGZWuttVaTMZ92CbPP0tBQzKxZ75e9fSWqri6ktrZjZs36IPX1Dcu7HEpg7lovc9e6mb/KN3+OymFeK5Ofu+WntrZjs84YKitc6dGjR8aNG5ef/exn+dOf/pRisZi77747SbLlllvmtNNOS69evcp5agAAgIq3tHqisWPH5swzz8yBBx6Yk08+OYXCf5q6fv36Zdy4camvr091dXWS5NFHH03v3r3TrVu3dO7cOSuvvHIef/zxxnBl1qxZefbZZzNkyJAler/z5q2YDX19fcMK+95WdOau9TJ3rZv5WzGZ18pmfipXWeFKkvTq1SuXX3553n333bz88stpaGhIr1690q1bt5asDwAAoCK1dE80efLknHXWWRk4cGCGDh2aGTNmNK7r0KFDBg8enCuvvDKnnHJKfvCDH+Rvf/tbxowZkzPOOCPJx/daGTJkSEaNGpVVVlkla6yxRs4777z07NkzAwcObJH3DAAAfKzscGW+zp07Z+ONN26JWgAAAFqdluqJ7r777nz00Ue55557cs899zRZN2jQoJxzzjm58sorM3LkyAwaNCirrrpqRowYkUGDBjWOO/bYYzNv3ryceuqp+fDDD9OvX7+MHj16oZvcAwAAS6ZZ4cpJJ52U7373u9l0000bH3+WqqqqnHXWWUtWHQAAQAVYFj3RsGHDMmzYsE8ds8kmm+Smm25a7Prq6uoMHz48w4cPb/brAgAApWtWuHLLLbdk2223bWwkbrnlls/cRrgCAACsKPREAADAgpoVrtx3331ZZZVVmjwGAABoK/REAADAgpoVrqyxxhqLfDxr1qysvPLKKRQKSZJ//OMfWXXVVdOlS5eWrRIAAGA50hMBAAALKpS74QUXXJDtt98+U6dObVx2xRVXZLvttstVV13VIsUBAABUKj0RAAC0Xc06c+WTbr755vz617/Olltumfbt2zcu32uvvfLvf/875513XlZbbbV84xvfaLFCAQAAKoWeCAAA2rayzlwZO3ZsvvKVr+SGG27Iaqut1rh82223zVVXXZVtttkmV199dYsVCQAAUEn0RAAA0LaVFa5MmTIlu+yyy2LXDxw4MC+99FLZRQEAAFQyPREAALRtZYUrHTt2zJtvvrnY9W+//Xaqq6vLLgoAAKCS6YkAAKBtKytc2XLLLTN27NhFNhNvvfVWxo0bly222GKJiwMAAKhEeiIAAGjbyrqh/eGHH579998/3/rWt7Lnnntm3XXXTVVVVf75z3/m9ttvzzvvvJMjjzyypWsFAACoCHoiAABo28oKVzbeeONccsklOe2003LNNdc0WdezZ8/8z//8TzbZZJOWqA8AAKDi6IkAAKBtKytcSZLtt98+999/f5599tm8+uqrmTdvXnr16pUNN9zQtYUBAIAVnp4IAADarrLDlfk22GCDbLDBBi1RCwAAQKujJwIAgLanWeHKxRdfnF122SV1dXWNjz9LVVVVjjrqqCWrDgAAoALoiQAAgAU1O1xZe+21NRIAAECbpCcCAAAW1KxwZfTo0fnSl77U+Pjaa69dagUBAABUGj0RAACwoGaFKyeffHKOP/747LnnnkmS119/PVtttVV69eq1VIsDAACoBHoiAABgQYXmDHrrrbcye/bsxscnnXRSnnrqqaVVEwAAQEXREwEAAAtq1pkrq6++ei655JK8+uqrWWmllVIsFvOHP/whL7/88mK3cX1hAABgRaEnAgAAFtSscOW4447LiSeemKuvvjrJx03CH/7wh/zhD39Y7DYaCQAAYEWhJwIAABbUrHBl4MCB6d+/f15++eXMnTs3Bx10UIYNG5Ztt912adcHAACw3OmJAACABTUrXNlpp52a3Lxx9dVXz+qrr56tt956qRYHAABQCfREAADAgsq6of3rr7+ejh07LrWiAAAAKomeCAAAWFBZN7RPknvuuSdTpkxZ7DauLwwAAKwo9EQAAMCC3NAeAADgM+iJAACABTUrXPnGN77h5o0AAECbpScCAAAW1KxwJUm6du2arl27Jkn69euXL3/5y27eCAAAtBl6IgAAYL5mhysLuu666xr/PHny5Lz22mvZcMMN07FjxxQKhdTU1LRYgQAAAJVGTwQAAG1bodwNn3rqqeyxxx755je/mcMOOyzPP/98/vKXv2THHXfMXXfd1ZI1AgAAVBw9EQAAtF1lhSv/+Mc/csghh+Tf//53vvWtbzUu79ixY+rr63PCCSfkiSeeaLEiAQAAKomeCAAA2raywpVf/epX6dSpU+64446ceOKJKRaLSZLNN988t912W1ZdddVcccUVLVooAABApdATAQBA21ZWuPLnP/853/3ud9OtW7dUVVU1WdejR4/su+++efbZZ1ukQAAAgEqjJwIAgLatrHDlvffeS48ePRa7/vOf/3xmzZpVdlEAAACVTE8EAABtW1nhSq9evfL0008vdv1jjz2WNdZYo+yiAAAAKpmeCAAA2raywpXdd989t9xyS/7whz80LquqqkpDQ0Muv/zy3HPPPdl1111brEgAAIBKoicCAIC2rV05Gx122GH5v//7v/zwhz9MbW1tqqqqctppp+Wdd97JzJkz07dv3wwdOrSlawUAAKgIeiIAAGjbyjpzpaamJtdcc01+/OMfZ/XVV0+HDh3yr3/9K926dcsRRxyRsWPHpmPHji1dKwAAQEXQEwEAQNtW1pkrSfK5z30uP/jBD/KDH/ygJesBAABoFfREAADQdpUdriTJ7Nmz8/DDD+fVV19NTU1NVl999Wy33Xbp0KFDS9UHAABQsfREAADQNpUdrtx999356U9/mlmzZqVYLCb5+AaOK620Un72s5/lm9/8ZosVCQAAUGn0RAAA0HaVFa789a9/zY9//ON07tw5xx57bL74xS+moaEhkyZNyvXXX58RI0akV69e2WSTTVq6XgAAgOVOTwQAAG1bWeHKpZdemi5duuR3v/tdunXr1rh8l112yX777Zc999wzV155ZS666KIWKxQAAKBS6IkAAKBtK5Sz0f/7f/8v++67b5MmYr5u3bpl3333zZNPPrnExQEAAFQiPREAALRtZYUr77///iKbiPlWWWWVvPvuuyU/74wZMzJ8+PD0798/m2++eQ4//PC8+OKLjeufe+65DBkyJJtttll23HHHjB49upzyAQAAlsjS6okAAIDWoaxwpVevXnnssccWu/6xxx7L6quvXvLzHnHEEXnllVdyxRVX5Le//W06dOiQgw8+OB988EHefvvtHHLIIVlnnXUyfvz4HHPMMbnwwgszfvz4ct4CAABA2ZZWTwQAALQOZYUru+++e+65555cfPHFmTt3buPyuXPn5uKLL869996bb37zmyU959tvv51evXrlzDPPzMYbb5w+ffrkyCOPzJtvvpl//OMfufnmm1NTU5PTTz89ffr0yeDBg3PwwQfniiuuKOctAAAAlG1p9EQAAEDrUdYN7Q877LD88Y9/zMUXX5yrrroqa621VqqqqjJlypS8//772WCDDXL44YeX9Jxdu3bN+eef3/j43//+d0aPHp2ePXtmvfXWy69+9av069cv7dr9p+T+/fvn17/+dWbMmPGpp+QDAAC0pKXREwEAAK1HWeFKTU1Nrr322owePTr/+7//m5dffjnFYjFrrbVWdt111xx66KHp0KFD2UX913/9V+OZKpdeemk6deqUadOmpa6ursm47t27J0lef/31JQpX2rUr6wQeWlh1daHJ77A49pW2aUnm277Cp/F3Cs1hP+GTlnZPBAAAVLaywpUk6dChQ4466qgcddRRLVlPkuSggw7KvvvumxtvvDFHHXVUxo4dmw8//DA1NTVNxrVv3z5JMmfOnLJfq1CoSteuKy1RvbSs2tqOy7sEWgn7Cs1lX6E57Cc0h/2EBS3NnggAAKhsJYcrzzzzTDbccMOFlt93332pqqrKgAEDlrio9dZbL0ly5pln5qmnnsr111+fDh06NLmWcfKfUKVTp05lv1ZDQzGzZr1ffrG0mOrqQmprO2bWrA9SX9+wvMuhgtlX2qb5814O+wqfxt8pNMeKsp/U1nZ09k0LWBY9EQAAUNmaHa689dZbOfbYY/OXv/wljz32WGpra5usv/766/PYY49l0003zYUXXpgePXqUVMiMGTPy6KOP5hvf+Eaqq6uTJIVCIX369Mn06dPTs2fPTJ8+vck28x+X+lqfNG9e622QV0T19Q3mhGaxr9Bc9hWaw35Cc9hP2ral3RMBAACtR7O+tvb+++/noIMOysSJE9OvX7988MEHC4054IADsu222+app57K97///ZIv1TV9+vT8+Mc/zp///OfGZR999FGeffbZ9OnTJ/369cuTTz6Z+vr6xvWPPvpoevfu7Wb2AADAUrUseiIAAKD1aFa4MmbMmPzjH//Iz372s4wZM2aR38DaeeedM3r06Bx//PF56aWXct1115VUSN++fbPddtvljDPOyMSJEzNp0qSceOKJmTVrVg4++OAMHjw4s2fPzimnnJIXX3wxEyZMyJgxYzJ06NCSXgcAAKBUy6InAgAAWo9mhSt33313dthhh3znO9/5zLGHH354tthii/z+978vqZCqqqr88pe/TP/+/XPcccdln332ycyZM3PDDTdk9dVXT7du3XLllVdm8uTJGTRoUC6++OKMGDEigwYNKul1AAAASrUseiIAAKD1aNY9V6ZMmZK99tqr2U+644475tJLLy25mM6dO+f000/P6aefvsj1m2yySW666aaSnxcAAGBJLKueCAAAaB2adeZKoVBIhw4dmv2kXbp0SVVVVdlFAQAAVBI9EQAAsKBmhSurr756/vnPfzb7SV988cVFXoMYAACgNdITAQAAC2pWuLL99tvnd7/7Xd57773PHDtr1qzcdttt2XzzzZe4OAAAgEqgJwIAABbUrHDlu9/9bubMmZOhQ4fm7bffXuy4GTNm5KijjsqsWbNywAEHtFiRAAAAy5OeCAAAWFCzbmi/1lpr5ZRTTsl//dd/Zaeddso3v/nNbLHFFunevXvq6+vz5ptv5sknn8wf/vCHvPfee/nJT36SDTfccGnXDgAAsEzoiQAAgAU1K1xJkn322Sfdu3fPT3/60/z2t7/N+PHjm6wvFotZc801c95552XAgAEtXigAAMDypCcCAADma3a4kiQ77LBDHnzwwTz22GP561//munTp6e6ujo9evTI1ltvnU022WRp1QkAALDc6YkAAICkxHAlSaqqqrLNNttkm222WRr1AAAAVDQ9EQAA0Kwb2gMAAAAAAPAx4QoAAAAAAEAJhCsAAAAAAAAlKPmeKwDQ2lRXN/+7BA0NxTQ0FJdiNQAAAAC0ds0KV66++up89atfTZ8+fZZ2PQDQYrp0bp+GhmJqazs2e5v6+oa88877AhYAmtATAQAAC2pWuHLRRReltra2sZHYaaedcvLJJ2ennXZaqsUBwJJYuePnUihUZdQNT+bVN979zPG9enTOCQdsmUKhSrgCQBN6IgAAYEHNClcKhUIeffTRfP3rX89KK62U1157LR988MHSrg0AWsSrb7ybl16bubzLAKAV0xMBAAALala4sv322+eOO+7InXfemSSpqqrK8OHDM3z48MVuU1VVlWeffbZlqgQAAFiO9EQAAMCCmhWu/PznP89qq62WSZMmZe7cuZk4cWJ69+6dbt26Le36AAAAljs9EQAAsKBmhSsrr7xyTjzxxMbHffv2zRFHHJE99thjqRUGAABQKZZHT3TJJZfk0UcfzXXXXde47KSTTsqECROajOvRo0f+9Kc/JUkaGhpy8cUX5ze/+U1mzZqVLbfcMqeddlrWXnvtpVYnAAC0Rc0KVz7p2muvbbyRIwAAQFuztHuia665JhdddFH69evXZPkLL7yQYcOGZciQIY3LqqurG/98ySWXZNy4cTn77LPTo0ePnHfeeTnssMNyxx13pKamZqnVCwAAbU1Z4crWW2+dJLn11ltz11135dVXX01NTU1WW221fP3rX8+3vvWtFi0SAACgkiytnuiNN97IKaeckieffDK9e/dusq6+vj4vvvhijjzyyKy66qoLbTt37txcddVVGT58eHbYYYckyQUXXJDtt98+99xzT3bbbbeyagIAABZWVrhSLBZz7LHH5t57702xWEznzp3T0NCQ5557Lg888ED+93//N5dccklL1woAAFARllZP9Mwzz+Tzn/98brvttvzP//xPXnvttcZ1L7/8cubMmbPYM2aef/75vPfee+nfv3/jstra2mywwQZ54oknhCsAANCCygpXrr/++txzzz351re+lR//+Mfp0aNHkuRf//pXfvnLX+a2227LjTfemP32269FiwUAAKgES6snGjBgQAYMGLDIdZMmTUpVVVXGjBmTP/3pTykUCtlhhx1y3HHHpXPnzpk2bVqSZLXVVmuyXffu3fOvf/2rjHf5H+3aFZZo+0pTXV1o8juth7lrvcxd62b+Kt+SzI15rUx+7ipfWeHK+PHjs/XWW+cXv/hFk+WrrbZazj333EybNi3jx48XrgAAACuk5dET/eMf/0ihUMgaa6yRyy67LFOmTMm5556bSZMmZcyYMfnggw+SZKF7q7Rv3z4zZ84s+3ULhap07brSEtVeqWprOy7vEiiTuWu9zF3rZv5WTOa1spmfylVWuDJ58uSccMIJi12/884754ILLii7KAAAgEq2PHqiY445JgcffHBqa2uTJHV1dVl11VWz77775umnn06HDh2SfHzvlfl/TpI5c+akY8fym/KGhmJmzXp/yYqvMNXVhdTWdsysWR+kvr5heZdDCcxd62XuWjfzV/nmz1E5zGtl8nO3/NTWdmzWGUNlhSvt2rXL++8v/uD6/fffT1VVVTlPDQAAUPGWR09UVVXVGKzMV1dXlySZNm1a4+XApk+fnrXWWqtxzPTp09O3b98leu1581bMhr6+vmGFfW8rOnPXepm71s38rZjMa2UzP5WrrAu2bbTRRpkwYULmzJmz0LoPPvggEyZMyAYbbLDExQEAAFSi5dET/fjHP86hhx7aZNnTTz+dJFlvvfXSt2/frLzyynn88ccb18+aNSvPPvtsttpqqxatBQAA2rqywpXvf//7mTJlSr797W/njjvuyPPPP5/nn38+t99+e/bZZ59MnTo1hxxySEvXCgAAUBGWR0+0++6755FHHsmll16aqVOn5o9//GNOPvnk7L777unTp09qamoyZMiQjBo1Kvfdd1+ef/75/OhHP0rPnj0zcODAFq0FAADaurIuC7bDDjtkxIgROf/88zN8+PAm6wqFQn70ox9lwIABLVIgAABApVkePdHXvva1XHjhhbnsssty2WWXpXPnztljjz1y3HHHNY459thjM2/evJx66qn58MMP069fv4wePXqhm9wDAABLpqxwJfn4m1oDBw7Mvffem6lTp6ZYLGattdbKwIEDs+aaa7ZkjQAAABVnafdE55xzzkLLdt111+y6666L3aa6ujrDhw9fKPABAABaVtnhSpKsueaaLv8FAAC0WXoiAABom8q65woAAAAAAEBbJVwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEpQVrtx44415+eWXW7gUAACA1kFPBAAAbVtZ4cqoUaNy++23t3QtAAAArYKeCAAA2raywpVCoZCuXbu2dC0AAACtgp4IAADatrLClUMPPTSXX355HnrooTQ0NLR0TQAAABVNTwQAAG1bu3I2euqppzJ79uwcfvjhqampSdeuXVNdXd1kTFVVVe69994WKRIAAKCS6IkAAKBtKytcmTRpUrp06ZIuXbo0LisWi03GfPIxLEqhUJVCoSpJUl1daPL74jQ0FNPQYP8CAGD50RMBAEDbVla4cv/997d0HbRBhUJVunTptFCYUlvb8VO3q69vyDvvvC9gAQBgudETAQBA21ZWuPJJc+fOTbt27VIolHULF9qoQqEq1dWFjLrhybz6xrvN2qZXj8454YAtUyhUCVcAAKgYeiIAAGhbyg5X3nnnnVx00UX5wx/+kLfeeiujR4/O5z73uVx55ZU58cQT07t375askxXYq2+8m5dem7m8ywAAgJLoiQAAoO0q62tV77zzTvbdd9+MHTs2HTt2bLyW8MyZM/Pggw/mgAMOyCuvvNKihQIAAFQKPREAALRtZYUrF198cV577bVcffXVuemmmxobiZ122imXX3553n///VxyySUtWigAAECl0BMBAEDbVla4cv/99+c73/lOttlmm1RVVTVZ99WvfjX77rtvHn/88RYpEAAAoNLoiQAAoG0rK1yZPn16+vbtu9j1ffr0yZtvvll2UQAAAJVMTwQAAG1bWeFKt27d8tprry12/aRJk9K1a9eyiwIAAKhkeiIAAGjbygpXvvrVr2bcuHF59dVXF1r3l7/8JTfffHO22267JS4OAACgEumJAACgbWtXzkZHH310HnjggQwaNChbbrllqqqqMm7cuIwZMyYPPfRQVl555Rx55JEtXSsAAEBF0BMBAEDbVtaZKz169Mi4ceOy+eab509/+lOKxWLuvvvuPPjgg9lss81y3XXXpVevXi1dKwAAQEXQEwEAQNtW1pkrSdKrV69cfvnleffdd/Pyyy+noaEhvXr1Srdu3VqyPgAAgIqkJwIAgLarrDNXFjRv3rwUi8W0a9cu7du3b4maAAAAWg09EQAAtD1ln7ny9NNP5xe/+EWefPLJFIvFJEmhUMhXvvKVnHLKKVl77bVbrEgAAIBKoycCAIC2q6xw5ZlnnsmBBx6YuXPnZvvtt88666yThoaG/POf/8xDDz2U7373u7n55puz5pprtnS9AAAAy52eCAAA2raywpWLLrooNTU1GTduXPr27dtk3VNPPZVDDjkk559/fi644IIWKRIAAKCS6IkAAKBtK+ueKxMnTsyBBx64UBORJJtttlmGDBmSRx55ZImLAwAAqER6IgAAaNvKCleqqqpSW1u72PW9evXKvHnzyi4KAACgkumJAACgbSsrXNlhhx3yu9/9LnPnzl3k+rvuuivbbbfdEhUGAABQqfREAADQtjXrnitPPPFEk8c77bRTTj311BxwwAE5/PDDs+6666ZQKGTq1Km5/vrr849//CO//OUvl0a9AAAAy5yeCAAAWFCzwpUDDzwwVVVVTZYVi8U8/fTTOfbYYxdaniTf+9738txzz7VQmQAAAMuPnggAAFhQs8KVo446aqFGAgAAoK3QEwEAAAtqVrhyzDHHLO06AAAAKpaeCAAAWFBZN7QHAAAAAABoq5p15sonzZ49O//93/+dBx98MG+88UbjNYUXVFVVlWeffXaJCwQAAKg0eiIAAGjbygpXfvGLX+Tmm29O9+7ds9lmm6W6urql6wIAAKhYeiIAAGjbygpXHnjggey888656KKLUii4shgAANC26IkAAKBtK6sLmD17dnbYYQdNBAAA0CbpiQAAoG0rqxPYYost8swzz7R0LQAAAK2CnggAANq2ssKV4cOH56677sqYMWPy5ptvtnRNAAAAFU1PBAAAbVtZ91xZY401sv766+ecc87JOeecs8gxVVVVefbZZ5eoOAAAgEqkJwIAgLatrHBl5MiR+fOf/5xVVlkla6+9dtq1K+tpAAAAWiU9EQAAtG1ldQAPPPBAdtppp1x44YWaCAAAoM3REwEAQNtW1j1X5s6dmx133FETAQAAtEl6IgAAaNvKClc233zzPPPMMy1dCwAAQKugJwIAgLatrHDlxz/+ce68885cddVVeeONN1JfX9/SdQEAAFQsPREAALRtZZ3D/pOf/CSFQiHnnXdezjvvvEWOqaqqyrPPPrtExQEAAFQiPREAALRtZYUrXbp0SZcuXVq4FAAAgNZBTwQAAG1bWeHKdddd19J1AAAAtBp6IgAAaNvKuucKAAAAAABAW1XWmSsnnXTSZ46pqqrKWWedVc7TAwAAVDQ9EQAAtG1lhSu33HLLYtdVVVWlpqYm7du3L7mReOedd3L++efnwQcfzOzZs7P++uvnxz/+cbbaaqskyXPPPZeRI0fm73//e7p06ZIDDzwwhx56aDlvAQAAoGxLqycCAABah7LClfvuu2+hZfX19XnzzTdzyy235LHHHsvYsWNLft7jjz8+M2bMyPnnn59VVlklY8eOzaGHHpoJEyZklVVWySGHHJKdd945Z5xxRp566qmcccYZ6dKlSwYPHlzO2wAAACjL0uqJAACA1qGscGWNNdZY5PK11lorW265ZYYNG5b//u//zrnnntvs55wyZUoeeeSR3Hjjjdliiy2SJKecckr+9Kc/5Y477kiHDh1SU1OT008/Pe3atUufPn0yZcqUXHHFFcIVAABgmVoaPREAANB6LJUb2g8YMCB//OMfS9qma9euufzyy7PRRhs1LquqqkqxWMzMmTMzceLE9OvXL+3a/ScP6t+/fyZPnpwZM2a0WO0AAABLqpyeCAAAaD2WSrjy5ptv5sMPPyxpm9ra2uywww6pqalpXHbXXXdl6tSp2W677TJt2rT07NmzyTbdu3dPkrz++utLXjQAAEALKacnAgAAWo+yLgu2uDDjww8/zN///veMGTMmG2644RIV9uSTT+bkk0/OTjvtlAEDBuTss89uErwkSfv27ZMkc+bMWaLXatduqWRMfIbq6vI/9yXZltZv/vzbD9qWZTnf9q22xd8pNIf9hE9aFj0RAABQucoKVwYMGJCqqqrFri8UCjn66KPLLuree+/NCSeckE033TTnn39+kqRDhw6ZO3duk3HzQ5VOnTqV/VqFQlW6dl2p7O1ZPmprOy7vEqgA9gOWFvtW22TeaQ77CfMt7Z4IAACobGWFK3vttdciG4nq6up07949gwYNypprrllWQddff31GjhyZgQMHZtSoUY1nq/Ts2TPTp09vMnb+4x49epT1WknS0FDMrFnvl7095auuLpT9HxSzZn2Q+vqGFq6I1mL+vmM/aFuW5O+MUtm32hZ/p9AcK8p+Ulvb0dk3LWRp9kQAAEDlKytcOeecc1q6jiTJ2LFjc+aZZ+bAAw/MySefnELhP41fv379Mm7cuNTX16e6ujpJ8uijj6Z3797p1q3bEr3uvHmtt0Fuq+rrG8wb9gOWGvtW22TeaQ77CfMtrZ4IAABoHSrma2uTJ0/OWWedlYEDB2bo0KGZMWNG3nzzzbz55pt59913M3jw4MyePTunnHJKXnzxxUyYMCFjxozJ0KFDl3fpAAAAAABAG9KsM1cuvvjisp68lGsM33333fnoo49yzz335J577mmybtCgQTnnnHNy5ZVXZuTIkRk0aFBWXXXVjBgxIoMGDSqrNgAAgOZaFj0RAADQerR4uLLgdYdLaSSGDRuWYcOGfeqYTTbZJDfddFOznxMAAKAlLIueCAAAaD2aFa5ce+21nzmmWCzmhhtuyB/+8IckyQ477LBklQEAAFQIPREAALCgZoUrW2+99aeuf/3113PyySfn8ccfT+fOnfOTn/wkgwcPbpECAQAAljc9EQAAsKBmhSufZty4cTnvvPPy3nvvZbvttsvIkSPTo0ePlqgNAACg4umJAACg7Sk7XJk2bVpOOeWU/N///V9WWmmlnHnmmdlnn31asjYAAICKpScCAIC2q6xw5Te/+U3OPffczJ49O9tuu21GjhyZ1VZbraVrAwAAqEh6IgAAaNtKClfeeOONnHrqqXn44YfTsWPHnH766fnud7+7tGoDAACoKHoiAAAgKSFcueWWW3L22Wdn1qxZ6d+/f0aOHJk11lhjadYGAABQMfREAADAfM0KV4YNG5Y//vGPSZKvf/3r2X///fP666/n9ddf/9Tt+vXrt+QVAgAALGd6IgAAYEHNClcefPDBxj/ffffdufvuu5v15M8991xZRQEAAFSS5dETXXLJJXn00Udz3XXXNXm+kSNH5u9//3u6dOmSAw88MIceemjj+oaGhlx88cX5zW9+k1mzZmXLLbfMaaedlrXXXrvsOgAAgIU1K1w5+uijl3YdAAAAFWtZ90TXXHNNLrrooiZnvrz99ts55JBDsvPOO+eMM87IU089lTPOOCNdunTJ4MGDk3wcyIwbNy5nn312evTokfPOOy+HHXZY7rjjjtTU1CzT9wAAACsy4QoAAMBnWFY90RtvvJFTTjklTz75ZHr37t1k3c0335yampqcfvrpadeuXfr06ZMpU6bkiiuuyODBgzN37txcddVVGT58eHbYYYckyQUXXJDtt98+99xzT3bbbbdl8h4AAKAtKCzvAgAAAPjYM888k89//vO57bbbsummmzZZN3HixPTr1y/t2v3nO3L9+/fP5MmTM2PGjDz//PN577330r9//8b1tbW12WCDDfLEE08ss/cAAABtQbPOXAEAAGDpGzBgQAYMGLDIddOmTUtdXV2TZd27d0+SvP7665k2bVqSZLXVVltozL/+9a8lqqtduxXre3nV1YUmv9N6mLvWy9y1buav8i3J3JjXyuTnrvIJVwAAAFqBDz/8cKH7prRv3z5JMmfOnHzwwQdJssgxM2fOLPt1C4WqdO26UtnbV7La2o7LuwTKZO5aL3PXupm/FZN5rWzmp3IJVwAAAFqBDh06ZO7cuU2WzZkzJ0nSqVOndOjQIUkyd+7cxj/PH9OxY/lNeUNDMbNmvV/29pWourqQ2tqOmTXrg9TXNyzvciiBuWu9zF3rZv4q3/w5Kod5rUx+7paf2tqOzTpjSLgCAADQCvTs2TPTp09vsmz+4x49emTevHmNy9Zaa60mY/r27btErz1v3orZ0NfXN6yw721FZ+5aL3PXupm/FZN5rWzmp3K5YBsAAEAr0K9fvzz55JOpr69vXPboo4+md+/e6datW/r27ZuVV145jz/+eOP6WbNm5dlnn81WW221PEoGAIAVlnAFAACgFRg8eHBmz56dU045JS+++GImTJiQMWPGZOjQoUk+vtfKkCFDMmrUqNx33315/vnn86Mf/Sg9e/bMwIEDl3P1AACwYnFZMAAAgFagW7duufLKKzNy5MgMGjQoq666akaMGJFBgwY1jjn22GMzb968nHrqqfnwww/Tr1+/jB49eqGb3AMAAEtGuAIAAFCBzjnnnIWWbbLJJrnpppsWu011dXWGDx+e4cOHL83SAACgzXNZMAAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATtlncBAAAAAAA0VShUpVCoatbY6mrfoYdlTbgCAAAAAFBBCoWqdOnSSWgCFUy4AgAAAABQQQqFqlRXFzLqhifz6hvvfub4Lfp2z/e+ucEyqAyYT7gCAAAAAFCBXn3j3bz02szPHNer+8rLoBpgQc4rAwAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAAChBu+VdAACVpVCoSqFQVdI2DQ3FNDQUl1JFAAAAAFBZhCsANCoUqtKlS6dUV5d2YmN9fUPeeed9AQsAAAAAbYJwBYBGhUJVqqsLGXXDk3n1jXebtU2vHp1zwgFbplCoEq4AAAAA0CYIVwBYyKtvvJuXXpu5vMsAAAAAgIpUsTe0v+SSS3LggQc2Wfbcc89lyJAh2WyzzbLjjjtm9OjRy6k6AAAAAACgrarIcOWaa67JRRdd1GTZ22+/nUMOOSTrrLNOxo8fn2OOOSYXXnhhxo8fv5yqBAAAAAAA2qKKuizYG2+8kVNOOSVPPvlkevfu3WTdzTffnJqampx++ulp165d+vTpkylTpuSKK67I4MGDl1PFAAAAAABAW1NRZ64888wz+fznP5/bbrstm266aZN1EydOTL9+/dKu3X/yoP79+2fy5MmZMWPGsi4VAAAAAABooyrqzJUBAwZkwIABi1w3bdq01NXVNVnWvXv3JMnrr7+ebt26LfX6AAAAAAAAKipc+TQffvhhampqmixr3759kmTOnDlL9Nzt2lXUCTxtRnV1+Z/7kmxL6zd//u0HLa+Sfy6X5Xzbt9oWf6fQHPYTAAAAFtRqwpUOHTpk7ty5TZbND1U6depU9vMWClXp2nWlJaqNZa+2tuPyLoEKYD+oLCvSfKxI74XmM+80h/0EAIAVTalfIGpoKKahobiUqoHWo9WEKz179sz06dObLJv/uEePHmU/b0NDMbNmvb9EtVGe6upC2f9BMWvWB6mvb2jhimgt5u879oOWV8k/l0tSW6nsW22Lv1NojhVlP6mt7ejsGwAAkiRdOrdPQ0Ox5F67vr4h77zzvoCFNq/VhCv9+vXLuHHjUl9fn+rq6iTJo48+mt69ey/x/VbmzWu9DXJbVV/fYN6wH1SYFWk+VqT3QvOZd5rDfgIAwIpi5Y6fS6FQlVE3PJlX33i3Wdv06tE5JxywZQqFKuEKbV6rCVcGDx6cK6+8Mqecckp+8IMf5G9/+1vGjBmTM844Y3mXBgAAAADQKr36xrt56bWZy7sMaHVazTUBunXrliuvvDKTJ0/OoEGDcvHFF2fEiBEZNGjQ8i4NAABgmXnttdey/vrrL/TrN7/5TZLkueeey5AhQ7LZZptlxx13zOjRo5dzxQAAsOKp2DNXzjnnnIWWbbLJJrnpppuWQzUAAACV4YUXXkj79u1z7733pqqqqnF5586d8/bbb+eQQw7JzjvvnDPOOCNPPfVUzjjjjHTp0iWDBw9ejlUDAMCKpWLDFQAAABY2adKk9O7dO927d19o3ZgxY1JTU5PTTz897dq1S58+fTJlypRcccUVwhUAAGhBreayYAAAAHx85sp66623yHUTJ05Mv3790q7df75H179//0yePDkzZsxYViUCAMAKT7gCAJ9QXV1Iu3bN/1UoVH32kwJAC5k0aVJmzJiR/fffP9tuu23222+/PPTQQ0mSadOmpWfPnk3Gzz/D5fXXX1/mtQIAwIrKZcEA4P/XpXP7NDQUU1vbsaTt6usb8s4776ehobiUKgOAj82dOzcvv/xyOnbsmBEjRqRTp0657bbbcthhh+Xqq6/Ohx9+mJqamibbtG/fPkkyZ86csl+3XbsV63t51dWFJr/Tepi71svctW7mb9mr9M+60utbEfi5q3zCFQD4/63c8XMpFKoy6oYn8+ob7zZrm149OueEA7ZMoVAlXAFgqaupqckTTzyRdu3aNYYoG220UV566aWMHj06HTp0yNy5c5tsMz9U6dSpU1mvWShUpWvXlZas8ApV6hcqqBzmrvUyd62b+WM++8Ky47OuXMIVAPiEV994Ny+9NnN5lwEAi7SokKSuri4PP/xwevbsmenTpzdZN/9xjx49ynq9hoZiZs16v6xtK1V1dSG1tR0za9YHqa9vWN7lUAJz13qZu9bN/C178z/zSmVfWPr83C0/tbUdm3XGkHAFAACglXj++eez33775YorrshWW23VuPzvf/971ltvvXzpS1/KuHHjUl9fn+rq6iTJo48+mt69e6dbt25lv+68eStmQ19f37DCvrcVnblrvcxd62b+mM++sOz4rCuXC7YBAAC0EnV1dfniF7+YM844IxMnTsxLL72Us88+O0899VSGDRuWwYMHZ/bs2TnllFPy4osvZsKECRkzZkyGDh26vEsHAIAVijNXAAAAWolCoZDLLrsso0aNynHHHZdZs2Zlgw02yNVXX531118/SXLllVdm5MiRGTRoUFZdddWMGDEigwYNWs6VAwDAikW4AgAA0IqsssoqOeussxa7fpNNNslNN920DCsCAIC2x2XBAAAAAAAASiBcAQAAAAAAKIHLggGwXBQKVSkUqpo9vrra9wEAAAAAqAzCFQCWuUKhKl26dBKYAAAAANAqCVcAWOYKhapUVxcy6oYn8+ob7zZrmy36ds/3vrnBUq4MAAAAAD6bcAWA5ebVN97NS6/NbNbYXt1XXsrVAAAAAEDzuB4LAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlMA9VwAAAAAAlqJCoSqFQlWzx1dX+048VDrhCgAAAADAUlIoVKVLl04CE1jBCFcAAAAAAJaSQqEq1dWFjLrhybz6xrvN2maLvt3zvW9usJQrA5aEcAUAAAAAYCl79Y1389JrM5s1tlf3lZdyNcCSci4aAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJSg3fIuAIClq1CoSqFQ1ayx1dUy93KV+tk1NBTT0FBcStUAAAAAsDQJVwBWYIVCVbp06SQ0WYq6dG6fhoZiams7lrRdfX1D3nnnfQELAAAAQCskXAFYgRUKVamuLmTUDU/m1Tfe/czxW/Ttnu99c4NlUNmKY+WOn0uhUNXszzhJevXonBMO2DKFQpVwBQAAAKAVEq4AtAGvvvFuXnpt5meO69V95WVQzYqpuZ8xAAAAAK2f68QAAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJXBDewAAAACgTSoUqlIoVJW0TUNDMQ0NxaVUEdBaCFcAAAAAgDanUKhKly6dUl1d2sV96usb8s477wtYoI0TrgDACsy3sAAAABatUKhKdXUho254Mq++8W6ztunVo3NOOGDLFApV+iZo44QrALCC8i0sAACAz/bqG+/mpddmLu8ygFZGuAIAKyjfwgIAAABYOoQrALCC8y0sAAAAWlKpV0hw+WlWRMIVAAAAAAA+U5fO7dPQUExtbceStnP5aVZEwhUAAAAAAD7Tyh0/l0KhyuWnIcIVAAAAAABK4PLTkJR2cTwAAAAAAIA2TrgCAAAAAABQApcFAwAAAABavUKhKoVCVbPHV1f73jlQPuEKAAAAANCqFQpV6dKlk8AEWGaEKwAAAABAq1YoVKW6upBRNzyZV994t1nbbNG3e773zQ2WcmX8f+3de1xU1f7/8TeDghrgpcQbamYBKt7xnpkU+k1NEzpZKeU3U7REPZzENE/ZQ7O8HP2qfc0KPd5CvCAqXo556ZtpRuHpaKZ2QVMxlfIW3kBl//7wN5MjoAwyMxt8PR8PH4/Ys/aez9prz7Q/s/ZaCyit6FwBAAAAAAAAUCpknMxS+rFzhSob4O/j5GgAlGaMkwMAAAAAAAAAAHAAnSsAAAAAAAAAAAAOoHMFAAAAAAAAAADAAXSuAAAAAAAAAAAAOIDOFQAAAAAAAAAAAAeUcXcAAGA2FouHLBYPh/bJzTWUm2s4KaI/ORqbpyd96AAAAAAAAEBxo3MFAG5gsXioUqUKDndKXLuWq7NnLzq1g6WosQEAAAAAAAAoXnSuAMANLBYPeXpaNPWTXco4mVWofQKq+eq1vi1lsXg4vXPF0dhaBPvrhW4NnRYTAAAAAAAAcDeicwUA8pFxMkvpx865O4x8ORJbgL+Pk6MBAAAAAODu48isEsxAAZROdK4AAAAAAAAAQCFU8vVWbq4hP7/y7g4FgJvRuQIAAAAAAADAqSwWD1ksHg7tk5trOHX67aLwKV9WFosHU3YDoHMFAAAAAAAAgPNYLB6qVKmCw9NjXbuWq7NnL5qug0Viym4AdK4AAAAAAAAAcCKLxUOenhaHRnsEVPPVa31bymLxMGXnCgDQuQIAAAAAAADA6RwZ7QEAZufYWDwAAAAAAAAAAIC7HCNXAJR6jiya5+j8r3fC0cX8XBkbzIlrBnC+gj5n1s/TzZ8rMy6yCgAAAABwPjpXAJRqRV00z9nMGhfMi2sGcL7CfM78/Mrb/W3mRVYBAAAAAM5D5wqAUs3RRfNaBPvrhW4NTReX5LrYYE5cM4DzOfo5Y5FVAAAAALh70bkC4K5Q2EXzAvx9XBDNnxxZzM/VscGcuGYA52OhVQAA7i6OTr8rMTWoK6csLuy+jPIH4Gp0rgAAAAAAAOCuVNTpd+/mqUFdNWVxJV9v5eYaeaZlBQCzoHMFAAAAAAAApuOKESVFmX73bp8a1FVTFvuULyuLxcN003wDgBWdKwAAAAAAADAVV48oYVpQx7lqymKzTvMNAHSuAAAAAAAAwFQYUVI0rB8DAK5D5woAAAAAAABMiRElhXcno32ysi7LMAruYLEek0XjAeBPdK64GU8UwNm4xgDzciQxcXUS48j7mfk7ozDfgTcnimauD8zJ0c8n1xgAAHCGooz2aVCvigb2aqxKlSoUqjyLywPAn+hccSNXzx+Kuw/XGGBOlXy9lZtrmDIxKUpsZv3OcPQ70Fpns9YH5lPUzzLXGAAAcCZH10JxZNF4iYXjUbrwUDLuBJ0rbsT8oXA2rjHAnHzKlzVtAuNobGb+zuA7EM5WlM8y1xgAADAjVy1OD5gJDyXjTtG5YgLMHwpn4xoDzMnMCUxp+t4oTXWBOXGNAQAKqyhPSDvK7E9UF/ZHzDuZFtdV0+86e2pQR68X1kMBHMMDebhTdK4AAAAAAEyL6TpQWhTlCelruYY8Hbz+C7M4eXFw9HPm4eHh9KlxXTX9riumBi3qE/WAmZl1rUIelkJRlbjOldzcXL3//vtavny5/vjjD7Vs2VJvvfWW6tat6+7QAAAAAMDtSlPOxHQdKE0cfULaOi2sMxcntypqJ44jnzNrR6mj9XeEq6bfdcXUoEV5op61UGBWrFWI0qrEda7Mnj1biYmJevfdd1WtWjVNmTJFAwcO1Nq1a+Xl5eXu8AAAAADArUpTzsR0HXAVV46QKuwT0tZpYV21OLmrPmeO1r8oXDX9riuedjfzVMJAYd1Jh2TZsp66di3XKXExMgx3qkR1ruTk5GjevHkaOXKkOnXqJEmaPn26OnbsqE2bNql79+5ujhAAAAAA3Ke05kxM1wFnKo0jpIrygzyfMwDO5sj3TFFGuxRlFB5wJ0pU58qBAwd04cIFtW3b1rbNz89PDRs21DfffFNiEwUAAAAAKA7kTH+61Q/l1tduLMM6La7h6AiRorRLURYBZ4RU0TjSIeXoyKDSqrDnjCfqcbdzdLRLUUbhlbap9IoyCtPMSsK9mYfh7BXOitGnn36qmJgY7d69W+XKlbNtHz58uC5fvqwPP/zQ4WMahvsaycNDslgsOpuVrauFHN5WxtPy/3tunTMcztXu9vq7Qmk9xxaLpdAxOnIOvL085VvByyXnzNG2KUpsju5D/Z3/HqVtH7N/Z5TW70A4jyv/n+GOu3CLxUMeHqUn4UJe5EySV1mLfCt4OXytG4bh9AXAcX1Rc0faJr92uV0u4Oh7WJntHtis939S0T9nUuHPs5nr78pzZsa6mHUfs8blqn3MGper9nFVXK7OGR35/aso//8zDMPU+7jrHrSweVOJGrly6dIlScozT7C3t7fOnSva0FUPDw95ero3wazk6+3wPhZL6XmC4W6vvyuU1nPsSIyOngNXnbOivI8r9qH+5ozLzPuY+TujtH4HwnnM+p0JFAY5U9EV9Qd5OFdB7eKM71Gz3gOb9f6vqEpT/V1xzsxcF7PuY9a4XLWPWeNy1T6uisuV9/POfK+i3Pu4ch9334PeTonK6qxPXuXk5Nhtz87OVvnyhZ9/DwAAAABKI3ImAAAAwDVKVOdKjRo1JEmZmZl22zMzM1W9enV3hAQAAAAApkHOBAAAALhGiepcCQ4Olo+Pj1JTU23b/vjjD+3bt0+hoaFujAwAAAAA3I+cCQAAAHCNErXmipeXl/r166epU6eqSpUqqlWrlqZMmaLq1asrPDzc3eEBAAAAgFuRMwEAAACuUaI6VyRp2LBhunr1qsaOHavLly+rVatWmjt3bp4FGwEAAADgbkTOBAAAADifh2EYhruDAAAAAAAAAAAAKClK1JorAAAAAAAAAAAA7kbnCgAAAAAAAAAAgAPoXAEAAAAAAAAAAHAAnSsAAAAAAAAAAAAOoHMFAAAAAAAAAADAAXSuAAAAAAAAAAAAOIDOFQAAAAAAAAAAAAfQuQJTOn78uGJjY9WhQwe1atVKAwYM0E8//eTusGBib7zxhl5//XV3hwGTyM3N1cyZM9WxY0c1bdpUL730kg4fPuzusGBis2fPVlRUlLvDgAmdPXtWb775ph555BG1aNFCzz33nNLS0twdFoBikJaWpgYNGig1NdVu+86dOxUREaEmTZqoS5cuWrVqlXsChJ0jR45oyJAhCg0NVWhoqP7617/qxIkTdmVoO3MqTH5P25lfQTk3bWde5MUlU3656f79+9WvXz81a9ZMjz76qObOneum6HAzOldgOjk5ORo0aJBOnTqlDz/8UAkJCfL19dWLL76o06dPuzs8mMy1a9c0adIkrVixwt2hwERmz56txMRETZgwQUuXLpWHh4cGDhyonJwcd4cGE5o/f75mzpzp7jBgUrGxsdq9e7emTZumFStWqFGjRhowYIDS09PdHRqAO5CVlaW4uDjl5ubabU9PT1d0dLQ6deqkVatWqU+fPhozZox27tzppkghSdnZ2erfv78kacmSJVq0aJF+++03RUdHyzAMSbSdWRUmv6ftzO1WOTdtZ27kxSVPfrnpmTNn9N///d+6//77lZSUpJiYGM2YMUNJSUluihI3KuPuAICbpaWl6ccff9S2bdtUrVo1SdLkyZPVunVrbd26VU8//bSbI4RZpKena/To0Tp69Khq1qzp7nBgEjk5OZo3b55GjhypTp06SZKmT5+ujh07atOmTerevbubI4RZnDx5Um+88YZ27dqlevXquTscmNDhw4e1Y8cOLVmyRC1atJB0/anNbdu2ae3atRo+fLibIwRQVOPGjVPt2rV17Ngxu+0LFixQcHCw7fP9wAMPaN++fYqPj1e7du3cESok/frrr2rcuLHeeustValSRZLUv39/vfrqqzpz5oyqVKlC25lUYfJ72s68bpdz03bmRV5cstwqN122bJm8vLw0btw4lSlTRvXr19fhw4f18ccfKzIy0k0Rw4qRKzCdhx56SB999JHtxsvKMAydO3fOTVHBjL7++ms1aNBAa9euVUBAgLvDgUkcOHBAFy5cUNu2bW3b/Pz81LBhQ33zzTdujAxm8/3336tixYpas2aNmjZt6u5wYEKVK1fWRx99pJCQENs2Dw8P7kmAEm716tX69ttvNWbMmDyvpaWl2d1DSFLbtm21a9cu2wgJuF69evU0Y8YMW8dKRkaGEhIS1KhRI1WuXFkSbWdWhcnvaTvzul3OTduZF3lxyXKr3DQtLU2tWrVSmTJ/jpFo27atDh06pFOnTrk6VNyEkSswnapVq9p61a0WLlyo7OxsdejQwU1RwYyee+45d4cAE7LOvV2jRg277f7+/jp+/Lg7QoJJhYWFKSwszN1hwMT8/Pzy3JNs2LBBR44c0cMPP+ymqADciYyMDL3zzjuaPXu27rnnnjyvnzhxQtWrV7fb5u/vr0uXLtlGSMC9XnrpJe3YsUMVK1bUggUL5OHhIYm2M6vC5Pe0nXndLuem7cyLvLhkuVVueuLECQUGBtpt8/f3l3R9ZOe9997r9PhQMDpX4HIZGRl67LHHCnx9+/btqlq1qu3vTz/9VNOnT1dUVJSCg4NdESJMwNHrBLC6dOmSJMnLy8tuu7e3N0+aA7gju3bt0pgxY/TYY4/RMQeY0O3uH7dt26a4uDj16dNHoaGhysjIyFPm8uXLee4hrH8zR73zOHLvP3LkSA0fPlwffPCB+vfvr1WrVqlGjRq0nZsUR35P27lHceTctJ15kReXHvl9zry9vSVdX5MM7kXnClyuWrVqWr9+fYGv3/hkw5IlSzR+/Hh169ZNo0ePdkV4MAlHrhPgRuXKlZN0/Wbe+t/S9ZuO8uXLuyssACXc5s2b9dprr6lp06aaNm2au8MBkI/b3T8uX75cFy9eVExMTIFlvL298/wgaP2b+wjnceTev0GDBpKurx3w6KOPKikpSUOHDqXt3KQ48nvazj2KI+em7cyLvLj0KFeuXJ7PmbVTpUKFCu4ICTegcwUuV7ZsWdWvX/+25aZOnaqPP/5YUVFReuONN2zDvXF3KOx1AtzMOuw5MzNTderUsW3PzMxk9BuAIlm8eLHeeecdhYeHa+rUqXmeHANgDre7f1y5cqUyMzPVpk0bSbKtBzBw4EC1bt1a8fHxqlGjhjIzM+32y8zMVIUKFeTr6+u84O9yt2u7Y8eOae/everatattW/ny5RUQEGBrL9rOPYojv6ft3KM4cm7azrzIi0uP6tWr5/s5k5RnPSu4Hp0rMKUpU6YoPj5ecXFxGjBggLvDAVCCBAcHy8fHR6mpqbabyD/++EP79u1Tv3793BwdgJImISFB48ePV1RUlMaMGSOLxeLukAAU0aJFi3T16lXb3ydPnlRUVJQmTJhg63AJDQ3V119/bbffzp071aJFCz7/brR//34NGzZMmzZtsru/O3TokHr27CmJtjOz2+X3tF3JRduZF3lx6dGqVSslJibq2rVr8vT0lHT9c1avXj3WWzEBvulgOqmpqYqPj1dUVJR69uyp3377zfbvwoUL7g4PgMl5eXmpX79+mjp1qrZs2aIDBw7or3/9q6pXr67w8HB3hwegBDl06JAmTpyo8PBwRUdH69SpU7Z7kqysLHeHB8BBtWrVUt26dW3/atasKen6U5/WJz+joqK0Z88eTZ06Venp6Zo3b542btyol19+2Z2h3/UeeeQRBQUFKS4uTt9//7327t2rmJgYVa5cWZGRkZJoO7MqTH5P25VctJ15kReXHpGRkTp//rzeeOMN/fzzz1q5cqUWLFig6Ohod4cGMXIFJrR27VpJ158sW7Rokd1rQ4cOveUcyQAgScOGDdPVq1c1duxYXb58Wa1atdLcuXOZygeAQzZu3KgrV65o06ZN2rRpk91rvXv31nvvveemyAA4y0MPPaTZs2drypQpWrBggQICAjRlyhS1a9fO3aHd1by8vBQfH69JkyZpwIABysnJ0cMPP6z33ntPPj4+kmg7sypMfk/blVy0nbmRF5cO9957r+Lj4/XOO++od+/eqlq1quLi4tS7d293hwZJHoZ1olkAAAAAAAAAAADcFtOCAQAAAAAAAAAAOIDOFQAAAAAAAAAAAAfQuQIAAAAAAAAAAOAAOlcAAAAAAAAAAAAcQOcKAAAAAAAAAACAA+hcAQAAAAAAAAAAcACdKwAAAAAAAAAAAA6gcwVAifbZZ58pJiZGYWFhCgkJUZs2bfTyyy9r69atLoshJydHb731llq3bq0mTZpowoQJ+W57/fXXFRQUpIyMDIeOP2vWLAUFBSk1NdVJNbD3yy+/OFQ+LS1NcXFxCg8PV5MmTRQaGqqoqCitWrVKhmHYlS3qOSipwsLCFBQUpKCgIIWGhkqSUlNTFRQUpNdff73A/TIyMhQUFKSoqKg8r93cPjeXc/Y5fuedd2x1cuV1CQAAAOcityp+t8ut3nrrLQUFBSkpKemW5TIyMhQcHKwXX3yx0O9tzTtmzZpV6H2Kk7WNrP/2798v6Xr+EhYWdst9rXnUzQ4fPmz3d1RUlF25lStXKigoSCtXriyGGuS1efNmuzq569wCMI8y7g4AAIri/PnzGjNmjDZu3KhGjRopIiJC/v7+OnHihFatWqUhQ4bopZde0qhRo5wey7Jly5SYmKgOHTroiSee0EMPPZTvNsMw1K5dO1WpUsWh44eHh6tOnTqqX7++k2rwpyFDhuj8+fNatGjRbcteuXJFEydOVEJCgu6//351795dNWvW1OnTp7Vu3TqNGjVK27Zt05QpU+Tp6en02M2qcuXKGj16tMqWLXvHx8qvfSZPnqz77rvvjo9dWL169VJISIg2bdqkTZs2uex9AQAA4BzkVs5RmNzq6aefVmJiolJSUhQZGVlgOeuDa08//bQzQnWq0aNHq3LlyqpZs+YdHefjjz/WjBkztHfvXtu2wYMHu/SchISEaPLkyTp48KDmzJnjsvcFYF50rgAokcaOHauNGzcqLi5OAwYMsHtt8ODBGjBggObNm6cHHnhAf/nLX5wayw8//CBJiouLU3BwsCTZnjy6cZskNW/e3OHjBwcH2x3DmbZu3arWrVsXquz06dOVkJCgqKgojRkzRhbLn4MhBw0apJEjR2rt2rWqU6eORowY4aSIza9ChQrq1atXsRwrv/YprmMXVkhIiEJCQnTkyBE6VwAAAEoBcivnKExu1bhxY9tImpMnT6patWr5llu9erUqVqyoLl26OCNUp3r88ccVEBBwx8fZtm2brly5YretQ4cOd3xcR1SvXl29evVSamoqnSsAJDEtGIASaPv27dqwYYO6du2a5+Zfkry8vDRx4kR5enpq4cKFTo/HeoPn4+Nzy22lycGDBzVv3jw1btxYY8eOtetYkSSLxaK3335bvr6+Wrp0qbKzs90UKQAAAICCkFu5X2RkpHJzc7V+/fp8X9+1a5eOHDmiJ598Ut7e3i6ODgBwK3SuAChxVq1aJUn5rkdhVbt2baWkpCg5Odlue3p6umJjY9W+fXuFhIToscce03vvvadz587lOcbBgwcVGxurdu3aKSQkRF26dNH//M//6PLly5L+XBfD+h6PPfaYbe7Vm7dJ+a+FYRiGlixZooiICDVr1kzt27fX4MGD9f3339vKFDQv8BdffKEXXnhBLVq0UNOmTRUREZFnblnrPLvr1q3TnDlzFB4erpCQEIWFhWnGjBm6evWqXTlJ+vrrr287T+3q1atlGIb69etXYBkfHx8tX75c//d//5cnCTh27JhiY2PVunVrNWvWTM8++6x27NiR5xipqakaMmSI2rdvr0aNGqlVq1Z68cUX9eWXX9qVCwsLU3R0tFJTU9W3b181b95coaGhGjp0aL7zHK9du9Z2zjt27KipU6dq+fLl+Z7nlJQUPfPMM2rWrJmaN2+uvn37unTeaenW7VPQ2iw3K2w91q9fr2effdbWNr169dK8efOUm5tbvJUCAACA25FbXefO3Kpnz54qW7asUlJS8n3d2kbW6a+uXLmiuXPnKjIyUs2bN1dISIgeffRRjR07VqdOnSrwfaTreVN+650UtFbJnj17NHjwYLVu3VqNGzdWjx49NG/ePF27du2W71PcgoKC9PXXX9v+27p+5c1rrhSksPXYt2+fBg8erI4dO9qu6QkTJujs2bPFXicApQPTggEocfbs2aMyZcqoadOmtyx38zy6aWlpGjBggDw9PfXcc8+pVq1a+s9//qP58+dr69atSkxMtM3Zu2fPHvXv318+Pj7q27evqlSpov/85z+aM2eOdu7cqYULF6pKlSqaPHmyli1bprS0NI0ePVoVK1aUxWKx21a5cuUCYxw1apRWr16t0NBQjRgxQjk5OVq0aJH69eunTz75RA0bNsx3v08++UTjx49X48aNNXToUFksFm3ZskWjR4/W/v379cYbb9iVnzZtmgzDUJ8+feTn56eVK1dq9uzZ8vDw0LBhw1S/fn1NnjxZcXFxeuCBBzR48GC1aNHilm0gSS1btrxlG9SrVy/f7YMHD1ZoaKhiY2OVmZmpBQsWKDo6WsnJyXrooYckSZs2bdKwYcMUHBysgQMHysfHRz/++KNWrFihgQMH6tNPP1WtWrVsxzxw4ICio6PVs2dP9erVS/v27VNiYqIOHDigjRs32tZ9iY+P15QpU9SoUSONGDFCWVlZWrx4cb5xTpkyRfHx8erQoYNiY2OVnZ2tdevWaciQIRo9erT69+9/y/oXF0fb52aFrcenn36q2NhYdejQQcOHD5fFYtG//vUvTZo0SadOndLIkSOdVEMAAAC4A7mV+3OrypUr67HHHtO//vUvpaen253r7OxsbdiwQY0aNVKDBg0kSSNGjNCWLVvUu3dvPfPMM8rOzta2bdu0fPly/frrr5o3b94t27KwtmzZouHDhysgIEAvv/yyKlSooB07dmjSpEn697//rVmzZsnDw6NY3ut2Jk+erDlz5ujgwYOaPHmy6tSpU+h9C1uPo0eP6sUXX1TVqlXVv39/+fn5affu3Vq8eLH27NmjpUuXuqy+AEoQAwBKmKZNmxrt27d3aJ9r164Z4eHhRkhIiPHzzz/bvbZs2TIjMDDQeP311w3DMIzc3Fyje/fuRqdOnYwzZ87kW/ajjz6ybRs1apQRGBhoHD161KFtO3fuNAIDA43Y2FgjNzfXVu7nn382goODjZiYGMMwDGPmzJlGYGCg8dVXXxmGYRjHjx83GjVqZERHR9vtl5uba4wcOdIIDAw0du/ebRiGYXz11VdGYGCg0aFDB+PcuXO2shcuXDBatmxpPPzww3b1CwwMNPr163fb89mtWzcjMDDQuHz58m3L3sh6DsaMGWO3fcWKFUZgYKAxa9Ys27annnrK6NChg3HhwgW7sosXLzYCAwONefPm2bZ17tzZCAwMNNatW2dXdsyYMUZgYKCxfft2wzAM48SJE0ZISIgRERFhZGdn28odPnzYaNKkid153r17txEYGGiMGzfO7pg5OTlGVFSU0ahRI+P48eO3rG/nzp2Nzp07222ztsmoUaMK3O/o0aP5tkVhtt18nTlSj0GDBhnNmjUzrl27Zit39epVo1+/fkZ0dLTd/jdflwAAACh5yK3cn1sZhmF8/vnnRmBgoDF9+nS77evWrTMCAwONTz75xDAMw9i/f78RGBhojB8/Ps8xIiMjjcDAQNt5tsY7c+ZMW5n88hPDMIykpCQjMDDQSEpKMgzDMC5evGi0adPG6N27t13eZBiGMX369Hxzr5vl126Gcf285BfDjaz53Y369et32213Uo/4+Hi79rZ69913jd69exsnTpywbcvv3AK4OzEtGIASx9PT0zbkurD27dunw4cPq2fPnnmeunr66adVt25dbdy4UdeuXdMPP/ygn376SZ06dVJubq5Onz5t+9e5c2d5e3sXy0LemzdvliS9/PLLdk/A1K9fXytWrNDf//73fPf79NNPdeXKFT3xxBM6c+aMLbYzZ86oe/futjI36ty5s/z8/Gx/V6hQQfXr17/tsPGCWEeBONoOVhEREXZ/N2vWTJKUmZlp27Z8+XKtWbNGFSpUsG3LycmxnasLFy7YHaNcuXLq2rWr3bbGjRtLkn777TdJ1895Tk6OBgwYIC8vL1u5OnXqqGfPnnb7rlu3TpLUrVs3u2sgKytL3bp105UrV/TZZ585XHdXc6Qe1atX18WLF/X2229r3759MgxDnp6eWrRoEQs2AgAAlELkVu7PrSTp4YcfVo0aNbR27Vq77cnJySpXrpyefPJJSVJwcLB27dql2NhYu3KnTp2yxXTx4sUix2H15Zdf6syZM+ratavOnz9v127dunWTpGJpN2dzpB41atSQdH3U/86dO5WTkyPp+hR0K1euVLVq1dxTCQCmxrRgAEqcatWq6dChQ8rJybH7gfxWjhw5Ikm2Kadu5OHhoQcffFCHDx/WmTNndOjQIUlSYmKiEhMT8z3esWPHihj9n6zzA9+ckEhSo0aNCtzPGl9cXFyBZW6O77777stTxsvLq8hz5VarVk0//PCDfv/9d91zzz0O71+1alW7v61rslhvYCWpTJkyysjI0OzZs3Xo0CFlZGQoIyPDFrNhGHbHqFy5sq3Tx8p6fVjXC7GeuwceeCBPTDe3g7XsrdaVKcp1UK5cOUm37piy1tFa9k44Uo+YmBjt37/fdu1XqVJFbdu21eOPP66uXbuqTBluGwAAAEoTciv351aSZLFY1Lt3b82ePVvffvutmjdvrt9++007duxQjx495Ovra/de69ev144dO3T06FFlZGTot99+s3UqFcdaidbzMm3aNE2bNi3fMkVtN29v79t26F29erVYc6HC1KNr166KjIzUypUr1b9/f5UrV04tW7ZUp06d9NRTT6lixYp3HA+A0odfSQCUOK1atVJ6err+/e9/q23btgWWGz16tK5cuXLLG2Ur6w2ol5eX7b/79u2rxx9/PN/yxfEj85UrV4q0n/Wmffz48QoICMi3jHV+YyuLpXgHKrZq1Urbtm1TWlqa6tatW2C56dOn69ChQ4qJibFLvgoTz4cffqhp06apVq1aCg0NVZs2bRQUFKSrV6/qlVdeyVO+MMe0dt7klzhaO3isrOd59uzZKl++fL7Hsz7d5AjrTfn58+cLLGNdBPTGJ+KKypF63HfffVq2bJm+++47ff755/rqq6+0adMmrV+/Xs2aNdPixYtVtmzZO44JAAAA5kBu5f7cyioiIkIffPCBUlJS1Lx5c6WkpOjatWu2heyl6znEiy++qO+//14tW7ZUSEiIevXqpcaNG2vBggVas2ZNkd775o4ha7sNGzZMzZs3z3efojxkJ13Ph7Kysgp83TAM/fHHH8WSCzlSD09PT02cOFGvvPKKPvvsM3355ZdKS0vTjh079OGHHyoxMdGhtV4A3B3oXAFQ4vTo0UOJiYlKSEgoMAE4fvy41qxZIz8/P1WqVEm1a9eWJP300095yhqGofT0dPn4+MjPz8/uprp9+/Z2ZXNzc7Vx40bb8e6E9X0OHTqkoKAgu9emTZumy5cva8yYMQXu5+fnlye+zMxM7dmzp1jiu5UnnnhCM2bM0JIlSxQREZHvwn4XLlxQYmKiLly4oDfffNOh4x8/flzTp09Xq1atNG/ePLvOkKImDJJUr149SdLBgwfzjF6xPtVkZT3P/v7+tunFrA4fPqyDBw/aTVlWWAEBAfLx8dGBAwcKLLNv3z5JKnDRTUffT7p9PQzD0E8//aTLly+rSZMmtgU9z58/r1GjRmnz5s3avn27OnfufMcxAQAAwBzIrdyfW1nVrl1bbdq00YYNGzR27FilpKSobt26at26ta3MwoULtXfvXr399tt69tln7fb//fffb/senp6eeaZXlv6cRtnKel7KlSuX57ycP39e27dvzzMbQWEFBwdr27ZtOnr0aL7n9tChQ7p06ZLatGlTpOPfyJF6HDt2TEeOHFG7du0UFRWlqKgoXb16VXPnztW0adO0ZMkSjRo16o5jAlC6sOYKgBKnVatWCg8P18aNG/XPf/4zz+tZWVkaPny4rl69qqFDh8rLy0sNGzZU7dq1tWbNGqWnp9uVT0pK0pEjR9SlSxdJUkhIiGrVqqXk5GTbkHerpUuXasSIEUpKSrrjelif3FqwYIHd9iNHjmj+/Pk6evRovvt16dJFFotFc+bM0eXLl+1ee++99/Tqq69q7969RYrJYrEUahh57dq11a9fP3333XeaOHFinn2ys7M1cuRInT17Vi+88EK+Q+dv5ezZszIMQw888IBdx8qlS5e0aNEiSUVb76VLly4qU6aMFi9ebLd/ZmamUlJS7Mr+13/9lyRp1qxZdk9yXblyRaNHj9bgwYN18uRJh2MoU6aMwsPDdfz48XynRrhw4YIWL14sLy8v2zVpVdj2KUo9PDw8FBMToyFDhtg9Sebj42NLUG+edg0AAAAlG7mV+3OrG0VGRur06dNatWqV9u3bZzdqRZLOnDkjSXk6kL799lt98803kvKOQrmRv7+/Tp8+bTelV05OjjZs2GBX7uGHH9Y999yj+fPn297Tas6cORo+fLg+//xzh+pm9cQTT0iSZsyYkef8GIahjz76SNL1jr8bWUcMOXJOHanHnDlz1L9/f+3evdtWpkyZMmratKkkciEA+WPkCoASaeLEiTp37pzee+89paSkqEuXLqpSpYp++eUXJScn6/Tp0+rbt6/69u0r6fqN0IQJEzRo0CD95S9/0XPPPaeAgADt2bNHycnJqlWrll577TW7stHR0YqIiNCzzz6rOnXq6LvvvlNSUpLq1KmT77RUjurYsaN69OihpKQknThxQmFhYTp//rw++eQTeXt7a+TIkfnud//99ysmJkYzZsxQr1691Lt3b/n5+WnLli22kQU3/yhfWPfee68OHDighIQEhYaGKjAwsMCyf/vb33Ty5EktXLhQX3zxhbp3765q1arp119/1Zo1a3Ts2DGFh4drxIgRDsfx4IMPqm7dukpKSpK3t7cCAwOVmZmp5ORk21NVtxpKXpBatWppyJAhmjVrlp577jl1795dFy9eVEJCgm3hR+sonHbt2unpp5/WihUr9Mwzz6hbt27y8vLSmjVrtGfPHj3//PNq0qSJwzFI0siRI/Xtt99q3Lhx2r59u9q2bavy5cvryJEjSklJ0YkTJ/Tmm2/meZLLkfaxcqQeMTEx+tvf/qY+ffooIiJCFStW1IEDB7R06VI1aNAgz9NeAAAAKPnIrdyfW1l17dpV48eP16RJk1SmTBk99dRTdq+HhYVp0aJFeu211/T888/L19dXe/fuVXJysjw9PXXlyhX98ccfBR4/MjJSaWlpGjBggJ5//nnl5uYqKSkpT4eMn5+f3nzzTY0ePVpPPvmk+vTpI39/f3311Vdav369mjRpoueff75I56V3797aunWrUlJS9Msvv6hr166699579fvvv2vr1q369ttv1atXLz355JN2+1kf2Js5c6Zat25dqNzEkXr0799fGzZs0KBBg/Tss88qICBAJ0+e1JIlS+Tr66tnnnmmSPUFULrRuQKgRPLz89PcuXO1fv16rVy5UgkJCTp9+rR8fHzUtGlT9e3bV4888ojdPm3bttWyZcs0e/ZsJSUl6fz586pZs6ZeeuklDR482G5O1/bt22vZsmX64IMPlJSUpKysLFWvXl3PP/+8oqOjizwE+mZTpkxRkyZNtGLFCk2aNEkVK1ZUaGiohg8fbpvCKj+vvPKKHnzwQS1cuFAfffSRcnNzVbt2bcXFxSkqKqrIT9XExcVp6tSpmjhxogYPHnzLBMDLy0vTp09X9+7dtXz5ciUnJyszM1Ply5dXw4YNFRsbm+dpo8IqW7as4uPjNXXqVK1bt07Lli2Tv7+/QkND9eqrr6pv377avn17kY49dOhQ3XfffVq8eLGmTp2qypUrKzIyUtnZ2frnP/9pN1JmwoQJatasmZYuXapZs2bJ09NT999/vyZMmJDnKTJH3HvvvUpKStKiRYu0adMmzZw5U5cuXVLVqlXVrFkzvfDCC2rWrFme/RxpnxsVth49evRQ+fLlNX/+fM2dO1dZWVmqUaOGoqKiNGTIEBa0BwAAKIXIrdyfW1l5e3urR48eSkhIUFhYmPz9/e1eb9eunaZNm6aPP/5Y77//vry8vFSzZk2NGDFCDz74oAYNGqQvvvgiz3TAVhEREbpw4YISEhI0efJk3XffferVq5c6d+6sPn362JV96qmnVKNGDcXHx2vhwoXKzs5WzZo1NWTIEA0YMKBIUyRL1x9mmzVrlpKTk7V69WrNnz9f586dU6VKlfTggw9q2rRp6t69e579Bg4cqB9//FHx8fHavXt3oR/8Kmw96tevr8WLF+uDDz7QqlWrdOrUKVWqVElt27bVq6++ynorAPLlYRiG4e4gAABwhYsXL+ratWvy9fXN89rf//53LVu2TFu2bClwMUtHhYWFSZK2bt1aLMczk1mzZun999/XwoULi2U+ZAAAAAClx+uvv67k5ORiza/MIjU1VS+88IKGDh2qmJgYd4cDwI1YcwUAcNf46aefFBoaqv/93/+1256VlaXPPvtMVatWVa1atdwUHQAAAAAAAEoK5vcAANw1QkJCFBQUpDlz5uj06dMKDg7W2bNntXLlSp06dUr/+Mc/bGuuFJeLFy9q9erVKlu2rLp161asx3aHvXv3Kj09XT/88IO7QwEAAABgcps3b1blypX16KOPqmLFiu4O546cOHFCqampOnjwoLtDAWASdK4AAO4anp6emj9/vuLj47V582YtX75c5cuXV5MmTTRu3DinTG915swZxcXFydfXt1R0rqxevVoLFy50dxgAAAAASoB3331XkrRq1aoS37myd+9excXFuTsMACbCmisAAAAAAAAAAAAOYM0VAAAAAAAAAAAAB9C5AgAAAAAAAAAA4AA6VwAAAAAAAAAAABxA5woAAAAAAAAAAIAD6FwBAAAAAAAAAABwAJ0rAAAAAAAAAAAADqBzBQAAAAAAAAAAwAF0rgAAAAAAAAAAADiAzhUAAAAAAAAAAAAH/D+GlWZYRlkoLgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
541coef_calib_zeroautohhindivtou_SHARED3_atwork-41.9348700.00.0<NA>-41.934870True
543coef_calib_zeroautohhindivtou_BIKE_atwork-39.390562112.00.0-2-41.390562False
540coef_calib_zeroautohhindivtou_SHARED2_atwork-40.865285100.00.0<NA>-40.865285True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-39.28817448.029.0-0.503905-39.792080True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-28.875688112.00.0-2-30.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-28.24625592.00.0<NA>-28.246255True
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-26.97066620.00.0<NA>-26.970666True
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-24.970666155.00.0-2-26.970666False
675coef_calib_autodeficienthhjoi_TAXI_maint-24.97066664.00.0<NA>-24.970666True
717coef_calib_autodeficienthhjoi_TNC_SHARED_disc-24.71598420.00.0<NA>-24.715984True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -41.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -39.390562 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -40.865285 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -39.288174 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -28.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -28.246255 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -26.970666 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -24.970666 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -24.970666 \n", - "717 coef_calib_autodeficienthhjoi_TNC_SHARED_disc -24.715984 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "541 0.0 0.0 -41.934870 True \n", - "543 112.0 0.0 -2 -41.390562 False \n", - "540 100.0 0.0 -40.865285 True \n", - "544 48.0 29.0 -0.503905 -39.792080 True \n", - "698 112.0 0.0 -2 -30.875688 False \n", - "695 92.0 0.0 -28.246255 True \n", - "677 20.0 0.0 -26.970666 True \n", - "676 155.0 0.0 -2 -26.970666 False \n", - "675 64.0 0.0 -24.970666 True \n", - "717 20.0 0.0 -24.715984 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_9\n", - "ActivitySim run started at: 2023-09-13 05:58:30.385875\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 06:44:00.485939\n", - "Run Time: 2730.1 secs = 45.501666666666665 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUZdfH8d9uCmmEhBCqoRhI6CUgoNJFQIoVUUCBR4qCGEBRwQew0FRsFBEpIqAU6cIjCihSRAFBqoSeECI1JEAgIWXn/YN3V5YkkJ6w+X6uKxdk5p6ZM7Ozkz17Zu7bZBiGIQAAAAAAAAAAAAAA7nLm/A4AAAAAAAAAAAAAAICcQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcQIYtW7ZMwcHBmf55/vnn8zv0DJs8eXK6+1GtWjXVqVNHrVq10iuvvKL169fnd7j4f3/99ZftderTp88d2w8bNkzBwcEaOnSo3XTrOrZu3ZrjMfbu3du2/j179uT4+m+WnJysEydO5Oo2bhUWFqYxY8aoQ4cOatCggWrVqqXmzZurT58++uabb5SQkJDj2zx//ryGDh2qBx54QDVr1lTTpk21adMmSdKKFSv02GOPqU6dOmrQoIF69+6tbdu22V6D5OTkLG/31KlTtvVERETk1O4Aio2N1fnz53NkXeld53JrOQAACiNyZHLkgooc2R45MjlyYWQYho4dO5Zn28vp64VhGJo9e7batWunWrVqqVGjRvrvf/9r+9vbrFmzbK0/p87/nHLkyJFU01q1aqXg4GAtXrw4U+vK6nKAo3HO7wAA3D38/PwUEhKSavrp06d1+vRpubq6qmbNmqnmBwUF5UV4OSqtfTEMQwkJCTp16pTWrl2rtWvXqlOnTpowYYJMJlM+RQpJWrp0qe3/W7ZsUWRkpAICAvIxInunT5+2SwAWLFigOnXq5Mq2tmzZojFjxqht27YaMmRIrmzjVpMmTdIXX3whi8UiLy8vlS9fXi4uLjp//rw2b96szZs3a+bMmfr8889Vo0aNHNmmxWJRnz59FBYWJmdnZ1WpUkVJSUkqV66cfvrpJ7355puSJH9/f5UqVapAnQ9AWr7++mtNnTpVn332mfz9/fM7HAAAkAHkyOTIBRU58r/IkcmRC6O9e/dq9OjRqlChgj766KP8DidLZs+erQ8++ECSVK5cOfn4+Oiee+7J56hy3rlz5/TBBx/ozz//1MaNG/M7HMChUAAHkGHNmzdX8+bNU02fPHmypkyZIn9/fy1YsCAfIst5t9uXxMREffbZZ5o1a5ZWrVqlhg0bqkuXLnkcIazi4+O1Zs0amUwmNWnSRJs3b9aiRYsK1NOLy5Ytk8ViUfPmzbVx40atWbNGw4cPV7FixXJ8W19++WWe3tm+dOlSff755/Lw8ND48eP18MMPy8nJyTb/2LFjeuutt7R792717t1bP/zwg4oXL57t7Z44cUJhYWGSpGnTpqlp06a2eZMnT5Yk1a9fX3PnzpWz842PO/Hx8frhhx8kyTYtK0qVKmVbT9myZbO8HuBm48ePz+8QAABAJpEj30COXLCQI9sjRyZHLozmz5+vvXv3qkKFCvkdSpatWbNGktShQwd98skntulXrlxRnTp15OLikq31165dO0fO/+zasmWLVq9erVKlSuVbDICjogt0AMgkV1dXvfHGG6pdu7Ykad68efkcUeH2448/Ki4uTlWqVNHjjz8u6UYynZiYmL+B/T/DMLR8+XJJ0lNPPaWKFSsqISHBNu1uN23aNEnSG2+8oXbt2tkl9pIUGBioL774Qn5+foqJidHcuXNzZLsxMTG2/zdq1CjNefXr17dLYtzd3RUYGKjAwMBsbdvFxcW2nuwmXAAAAMDdjhy5YCFHzl/kyOTIyBnW87Zhw4Z204sWLarAwECVL18+W+vPqfMfQMFFARwAsqh169aSpMOHD+vatWv5HE3htWzZMklSs2bN1LJlS7m5uSk6Olrr1q3L58hu2L59uyIjI+Xi4qIHHnhAjzzyiCRp0aJF+RxZ9l2+fFknT56UpNt2V1e8eHHb+2Xv3r05su2UlBTb/11dXe3mWSyWNKcDAAAAyD3kyAUDOXL+IUcGcg7nLYDsogAOIM/89NNP6tOnjxo3bqyaNWuqSZMmeuWVV/T777+n2T44OFjBwcF240Ld7Pnnn1dwcLCtKydJOnXqlIKDg/Xggw/q7Nmz6tevn2rXrq2GDRvqtddey9H98fLysv3/6tWrdtsPDg5WREREmsu1atVKwcHBtqRUkrZt26bg4GB16dJFx44dU9euXVWrVi3df//9tvFurMsdPHhQv/76q5599lnVq1dPjRo1Uo8ePbR+/fp0Y01JSdHixYv1/PPP67777lPNmjXVokULvf766zpw4ECayyQkJGj69Ol69tlndf/996tWrVpq2bKlXnvtNe3cuTPdbYWFhenNN99UixYtVLNmTTVq1Ei9e/fWTz/9lGb7m4/ZzcckI06ePKkdO3ZIktq0aSNPT0+1bNlSkgpMV4PWsdcaN26sokWLqlOnTpKk48eP648//khzmaycR8uWLVNwcLC2b98u6cZd58HBwRo2bJjdcpcuXdKUKVP0+OOPq169eqpTp44eeeQRffDBBzp37lym9u3mO8c3bNhw27avvPKK/ve//+njjz+2mz5s2DAFBwen2x2fdb9atWol6d9j06NHD1sb67Gyrst6DKZMmWKbJ/37PgsODlZycnKqbYWFhWnkyJFq3bq1atWqpfvuu089e/bUjz/+aNfuTq9PZGSk3nnnHT388MOqVauWGjRooG7dumnx4sV2X0rcegwWLFigU6dOafjw4WrWrJlq1qypZs2a6b///a9OnTqV7rH9888/9dprr6lly5aqWbOmGjdurJdeesnu2rp582YFBwerRo0aio6OTnM9CQkJql+/voKDg7Vnz55U+5rR9+fkyZNty9zp59b9unDhgj788EO1b99ederUUb169fTUU0/pq6++0vXr19Pd1kcffaT169erbdu2qlmzplq1aqX//e9/dvv29ddfq0uXLgoJCVGtWrXUunVrjRo1SuHh4enuy8GDBzVy5Eg98sgjCgkJUc2aNfXAAw+ob9++qc4L6d/ztVmzZmmu7+bjad136+tv9Z///CfN433ixAm9/fbbevjhh1WzZk3Vr19fXbp00ddff62EhIR090GSoqKiNHLkSDVv3lw1a9ZU06ZNNWzYsNvue3aWAwAAGUOOfAM5sj1y5NTIkf9Fjnz35chWly9f1vTp09W9e3c1atRINWrUUIMGDfTkk09q8uTJunTpUqplMnvdt76m1h4VVq1apeDgYD3//POp9i0rOXJERIRGjhypVq1aqVatWmrTpo2mTp16xx4m4uLi9Pnnn9veZ3Xr1lWnTp00adIkXb58Oc19ioqKkiQNHz7c7py/U96dkdf/5mN1u/M/M9dua9ybNm1SWFiYBg0apAceeEA1a9bUQw89pHHjxunixYt2ywQHB2v48OGSpLNnz9q9P2+1c+dOvfTSS2rUqJFq166ttm3b6uOPP1ZcXFya7bO7HOAIKIADyHVJSUkaOHCgQkNDtXnzZjk7O6tq1apKTk7W2rVr1atXL40bNy5Ht5mYmKjevXtr69atCgwMlMlkUrly5XJ0G9YP9W5ubvL19c2RdV68eFE9e/bUwYMHVblyZV2/fl0VK1a0a7N06VK9+OKLOnDggCpVqqQiRYpo27ZtevnllzVmzJhU64yLi1P37t01YsQIbd++XUWLFlVwcLCuXLmi77//Xp07d9bs2bPtlklMTFSvXr308ccfa+/evfLx8VGVKlUUFxen1atXq3v37lq8eHGqbX377bd68skntWLFCl26dElVqlSRh4eHtmzZotDQUL322mtpJjdZtXTpUhmGofLly9vuru7YsaMkaceOHTp27FiObSsr4uLitHbtWkn/xhUYGKhq1apJkhYuXJhj2/Lz81NISIjtS6cyZcooJCTE7vw5dOiQOnbsqMmTJ+vQoUMqV66cKlWqpJMnT+qrr75Sx44dtW3btgxv08PDQyEhIZJuFCLffPNN7dixI83X2N/fX5UrV872e6VIkSIKCQlRUFCQbVpISIhtX9M6BtYYb+fbb79V586d9d133+nixYu2c/ePP/7QoEGD9Omnn2YovnXr1qljx45asGCBzp07p3vvvVfFixfXzp07NWLECPXu3dv2ZeCt/v77bz322GNasWKF3N3dVaFCBZ09e1ZLlizR008/rdOnT6da5pNPPtFzzz2n1atX69q1awoODpbZbNaGDRvUq1cv21MUDz74oMqUKaPk5GStXr063djj4uIUGBh426cV7uTm457Wj7u7u6Qb3ZYVLVrUttzOnTvVoUMHzZo1SydPnlRAQIDKli2rAwcO6IMPPlCXLl10/vz5NLe5Y8cOhYaG6vLlywoMDNS5c+ds77MzZ87oiSee0Pjx47Vnzx75+/urSpUqOn/+vBYtWqRHH33UNu7XzebPn68nn3xS3333naKjo1WhQgUFBAToypUr2rRpU6bOi9uxnrdWQUFBCgkJkZ+fn23a999/r0cffVQLFy7UuXPnFBQUpBIlSmjPnj0aP368nn76aZ05cybN9R86dEiPP/64Fi9eLE9PTwUEBCg6OlrLly/XE088oaNHj+bocgAA4M7IkTOOHDlzyJH/RY5MjlxQcmRJCg8P16OPPqqPP/5Yu3fvVvHixRUcHCwnJycdOHBAU6ZM0TPPPJPusciookWL2uWTxYsXT3V+ZDVH/v333/XEE0/ou+++U0xMjIKCghQfH6+JEyeqT58+6cZ07NgxPfroo5o0aZIOHz6skiVLqkKFCjp+/LitKH7ztcmaE1uf/LaexzVr1rzj/mf09b+T7Fy7N23apM6dO2v9+vXy9fVVmTJldOrUKc2ZM0fPPvusXeH55muSi4tLuu/P5cuXq3v37tq6davKlCmj4sWLKzw83HZTVno3xWd1OcBhGACQTZMmTTKCgoKMli1bpjn/vffeM4KCgoy6desaa9assU1PTk42vvnmG6N69epGUFCQMXv2bLvlgoKCjKCgIOO3335Lc73PPfecERQUZEyaNMk2LTIy0rZcw4YNjSNHjhiGYRjXr183rly5ku19sYqOjjYaNmxoBAUFGf37909z++Hh4Wku27JlSyMoKMhYunSpbdoff/xhW65169bGmTNnDMMwjLi4OCMhIcFuuaCgIKNXr17GhQsXDMMwDIvFYixatMh2HFetWmW3vRdffNEICgoyHnzwQeOPP/6wTb9+/brx2Wef2db5008/2ebNnz/fCAoKMtq0aWNERUXZpickJBjvvvuuERQUZNSvX98Wm2EYxsaNG43g4GCjRo0axpw5c4zk5GTbvK1btxr333+/ERQUZHz66ad28SUmJhpHjx41jh49aly+fPm2x/1mKSkpRvPmzY2goCBj4sSJduuzvjajR49Oc9k333zTCAoKMl577TW76Xc65zJr4cKFRlBQkFGnTh0jLi7ONn3WrFlGUFCQUaNGDeP8+fOplsvqeWQY/74vPvnkE7vpV65cMZo0aWIEBQUZzzzzjHHy5EnbvPPnz9vOk/r169vNu5MDBw4YdevWtcUbFBRkhISEGH379jW+/PJLY/fu3UZKSkq6y6f3WlgtXbo0zffkze+ZW6V1bbh1maSkJNv0nTt3GlWrVjWCgoKMjz76yO68Xrp0qW3e5s2bDcNI//U5ePCgUbNmTSM4ONj49NNP7dZz4MABo02bNkZQUJAxdOjQNI9BUFCQ0aVLF+P48eO2ebt27TLq1atnBAUFGWPGjLFbbvXq1UZQUJBRrVo14+uvv7a955KTk42pU6fa5h09etQwDMP49NNPjaCgIOOJJ55I81i/8MILRlBQkDFjxgzbtKy+P9OzcuVKIygoyKhevbqxZcsW2/QzZ87Y3rcjRowwLl26ZJsXERFhPP3000ZQUJDRrVs3u/VZr9lBQUHGyy+/bFy/ft0wjBvXaOuxeOyxx4ygoCCjbdu2xsGDB23LXrlyxfjvf/9rey/u3r3bNu/EiRNGjRo1jKCgIGPq1KlGYmKibV5MTIwxaNAg23KxsbG2edbztWnTpmnu/83nTmRkpN289K4/u3fvtl3fR4wYYfe37O+//7adV0888YTdeX3zefX4448bx44ds807ePCg0ahRIyMoKMgYNGiQ3fayuhwAAPgXOTI5smGQI6eFHJkc+ebjVJhyZOtr0KVLF+Ps2bO26RaLxVi+fLntmH7zzTd2y2Xlum8Y6Z9HWc2RL126ZDRu3NgICgoyhgwZYvf3Y9myZbb8+dZYr169ajz88MO2vw3Wa7lhGMa5c+eMfv362a6t8fHxdrGm955OL+/O7Ouf3vmf1Wu39bUICgoy+vXrZ/c6r1+/3qhWrVqaf9tv9z3CzX/nXnvtNSMmJsY2z/r9SlBQkPHtt9/myHKAo+EJcAC56syZM7Y7eEePHq127drZ5jk5Oal79+4aNGiQpBtdMWX3TsebdevWTZUrV5Z0Y7yYm7tjywrDMBQTE6NffvlFL7zwgmJjY+Xi4qLQ0NCcCNfmxRdfVKlSpSRJnp6eKlKkiN38smXL6vPPP7fdzWkymdSlSxf17t1b0o3jaLV7925bt1uTJk1So0aNbPNcXV01aNAgPfPMM5Kkjz76yDYvLCxM0o0xw8qWLWubXqRIEQ0bNkxNmjTRww8/rNjYWNu8Tz75RIZhaOjQoerRo4ecnJxs8+6//36NHz9ekjR79mzFxMTY5rm4uCgwMFCBgYF2T4PeyZYtW2x3+z766KN267OeZytXrszXuxmtXbs99NBD8vT0tE3v2LGjzGazkpKSbG1y2/z583Xu3DmVKFFCX375pQICAmzzSpQooUmTJikoKEhXrlzRtGnTMrze6tWra/Hixapfv75tWlxcnDZu3KiPP/5YXbp0UZMmTfTpp58qPj4+R/cpp0ydOlUWi0WPPPKIXnvtNbv33JNPPqnOnTtL0h27N5s8ebISExP13HPPafDgwXbrqV69uiZNmiQnJyetWrUqzadnXVxcNGXKFFWqVMk2rV69enryySclSbt27bJrb32v/+c//1HPnj1t7zknJyf1799fDz74oFJSUrRixQpJ0lNPPSWTyaQDBw6kevLj7Nmz2rp1q5ycnPTYY4/ZxZSV92daduzYobfeekuS9NZbb+nBBx+0zZs1a5ZiY2PVqlUrjR49Wt7e3rZ55cuX19SpU+Xl5aU///xTGzduTHP9b775pu0O8eLFi0uSfvzxRx08eFBFihTRjBkzVLVqVVt7Ly8vjRkzRk2bNlVSUpLdEwy//fabnJycVKNGDfXv318uLi62eT4+PnrzzTcl3Xh668SJE9k6LncyadIkJScnq0mTJho9erTd37Jq1app5syZcnNz04EDB+y6fbdydnbW559/rnvvvdc2rWrVqurVq5ekG93DpSWrywEAgNsjR848cuSMIUfOHHLk9JEj52yOHB0drSNHjki6cd0vWbKkbZ7JZNLjjz+uhg0bSrrRK0FuymqOvHDhQl28eFEVK1bUBx98YPf344knntBLL72U5vYWL16siIgI1ahRQ5MnT7Zdy6UbvSBMnDhR5cqVU3h4eKa7lL9VZl//9GT12m3l5+enSZMm2b3ODz30kK3L9lvP24wIDAzUBx98IB8fH9u0Rx991Pa9SnrDcGR1OcBRUAAHkKs2bdqk5ORk+fv7q3379mm2ee655+Ti4qIrV67YxiXKCTcnG5kVFRWVaqzaqlWrqnHjxurfv78OHjyookWL6rPPPrP7sJgT7hR3ly5d5OHhkWr6s88+K+nGOLHHjx+X9O+YU7Vr1063i6sXXnhB0o3u6g4fPixJtu53lixZovnz59uNUePq6qpZs2Zp/Pjxtg+up06d0sGDByXZJ9o3a968uXx9fZWQkJDumHaZYf1gXLt27VRd4FljuHz5cpoFobxw7Ngx2xhRtx6TkiVLqnHjxpKkRYsWyWKx5Ho8v/zyiyTp8ccfV7FixVLNd3V1tY0J9csvv8gwjAyvu3Llypo/f75WrFihgQMHql69enYFw+joaE2bNk2PPvpout0055f4+HjbOHPWL7puNXjwYP3444+2sQbTkpiYqE2bNklK/z1gvY4YhpHmeHA1a9aUv79/qunWAuSVK1ds0yIiImzvc+t7/1Zjx47V+vXrNWTIEElSQECA7rvvPklKlfCtXLlSFotFzZo1SzOG7Dp+/LgGDhyopKQkPf/88+revbvdfOv4jOkduxIlStgStLSOnb+/v90XVlbW875Vq1ZpzpduJMeStH37dtsx7t69u/bs2aP58+enuYybm5vt/7n5pdW1a9dsXS7ePKbfzQICAtS6dWtJ0s8//5xqfs2aNe2+pLWyjit285e0ObEcAAC4PXLkzCNHzhhy5MwhR04bOfINOZkj+/n56Y8//tCePXvsuiK3SklJsRWUc/sGlazmyNYb0Tt16mR3Llt17do1zXVZc/327dvbFZKt3Nzc1LZtW0lp5/oZlZXXPy05ce2+//77U92oJd0oRkv2521GPfTQQ2keP2t+fuvY4tldDnAUzvkdAADHZv3wUa1aNZnNad9z4+HhoUqVKunw4cM6ceKEWrZsmSPbzs4HVFdX11Rjy5jNZnl6eqpUqVKqU6eO2rVrl+075tNyp7hr166d5vSyZcuqaNGiunLlisLDw3Xvvffajn+NGjXSXV/FihXl5eWluLg4nThxQkFBQXr66ae1ZMkSHT16VO+++67ee+89VatWTffff7+aNm2q++67T87O//4Jsd7JKkkvv/xyutu6fv26pH/Pi6yKjY21FXrS+kBav359BQQEKDIyUgsWLNBTTz2Vre1lxZIlSyTdSHRuftLV6rHHHtPWrVsVFRWlzZs3q3nz5rkaj/Up1dudC9Z5Fy9eVGxsbKbHIqtWrZqqVaumV155RfHx8dq1a5e2bNmilStXKjo6WidPntSgQYMyPOZSXvjnn3+UlJQkSel+Uefn52c3HnNawsPDlZiYKEl69913bU8ip7U9Ke33wM13Qt/MWmxNTk62TbOOr+jh4ZFu0lqmTJlU05566ilt375dq1at0quvviqTySTpRnIvyXYnfU66ePGi+vXrp9jYWDVp0kTDhw+3m3/16lVFRUVJuvGkwdy5c9Ncj7VNWsfu5jurb5aZ8z4lJUURERF21/4iRYpo7969Onz4sCIjI3Xy5EkdPnzYLobMfBGWWZGRkbbz83bjndWsWVOrV69O82n09M4r65fESUlJSk5OtrumZ2c5AABwe+TImUeOfGfkyJlHjpw2cuTcy5Hd3Nx0+vRp7dmzRydPnlRkZKSOHTumgwcP6tq1a5KU6zd/ZDVHti5XpUqVNJfx8/NTyZIlde7cObvp1puIFi9enOYN25J04cIFSdm7Dmb19b9VTly7M3PeZtSd8vP0bpzI6nKAo+AbKwC5Ki4uTpLu2C2QNUnOye7dbn5CL7P8/f21YMGCHIslM+4Ud1p3Jlt5eHjoypUrunz5sqSMH39PT0/FxcXZjr+Xl5cWLVqkr776SqtXr1ZERIT+/vtv/f3335o1a5b8/Pw0ePBgdenSRZL93YsZ6conK3c73mzVqlW2RGrMmDEaM2ZMum337dunAwcO3PbDfU5LTk7W999/L+nGnd132vaCBQtyPbnPyLlw85dVV69ezXRyfzN3d3c9+OCDevDBBzVo0CC99dZb+t///qfdu3fn+etxOzc/xXpzF3yZdfM5vX///ky1t0rrLur0WOPObMzt2rXT6NGjdfr0aW3btk2NGzfWvn37dPToUfn6+ubYl6tW169fV//+/RUZGanKlSvrs88+S3X3sfXclP5Njm8nrWOX1t3VN687M+e91cqVKzV16lSFh4fbtb/nnnvUuXNnfffdd3eMNbtuPjYZ2Ye0/oam90XTnWR1OQAAcHvkyJlHjnxn5MiZR46cNnLk3MmRjx8/rg8//FAbN260K3J7eXmpQYMGOnfunG2ohdyU1RzZeg1Nq7cNq2LFiqUqgFu3Fx4eniq3vlV2roNZff1vF0NWr92ZOW8zKr3vPHJrOcBRUAAHkKusHzzu9CHG+kEqrQ8q6T1dZ707sqDKrbhv192u9YOl9U7cjB5/6/ybj7+Xl5dCQ0MVGhqqiIgIbdu2Tdu2bdPGjRsVHR2tkSNHysfHR23atLF9APbx8bF115ubrGOCeXh43PZD+7lz52QYhhYuXKjRo0fnelxWv/76q+0O1pIlS9ruIL7VtWvXdOXKFW3atEmnT59O827UnDqPPD09denSpdueC5cuXbJrfyejRo3SH3/8oSeeeEL9+/dPt52bm5vee+89rV271jZm8q3JfXr7mdtjot2cvMXFxdnGjs7Oenbt2pXtpCuj28vsF6Jubm7q0KGDFi1apFWrVqlx48a2O9vT68osqwzD0Ouvv67du3fL19dX06ZNS/P96u7ubvv/qlWr0uwSLqsycg20/v25uf3y5cs1bNgwSVLTpk318MMPq0qVKgoMDFSxYsWUlJR02wJ4Tp3PN59HV65cSfcpC+t7N7fPOwAAkH3kyKmRI2cfOTI5ck4hR875HDk6OlrPPfecoqOjVbZsWXXp0kXVq1fXvffeq3vuuUcmk0mvvfbabQvgOXneS5nPkX18fHT+/Hm7m7RvldbTxO7u7rpy5YqmTZuW4zfc3yyrr39668mrazeA3MUY4ABylXVcnoMHD6bbjU9cXJztLsAKFSrYplufErTexXyrW+8qLAhu7vIsrbgTEhKyfWd3ek9Injx50vZBr3LlypL+Pf4HDhxId33Hjh2zfWC2Hv/o6Gj9+eeftrFgKlSooC5duujjjz/Wxo0bbV3fWZOCSpUqSbpxx+X58+fT3daff/6pY8eOZauLnbCwMNt4POPHj9emTZvS/bHeMb569erbfkjPadax16pUqaLNmzenG9/s2bMl3ehW6uZiWm6cRxk5F6x3ZRcrVixDd7Zfv35dERERtjGdbsfLy8uWON2cQFvf59Yu1m6V2+/zgIAAWww3d3V1s3379qlr164aPnx4uknnzes5evRoutvbu3evDh06lO2kzDqm37Vr13Tq1Kk02/z88896/vnn9eGHH9pNt3Z3+PPPPyslJcXWDVlOd4P44Ycf6qeffpKLi4umTJmSbjdk3t7eKlGihKTbH7tDhw7p4MGDdl9C3UlGzvt9+/ZJkkwmk8qXLy9J+vLLLyXdGA9w5syZeuaZZxQSEmJ7uii9cfpy+u9W+fLlbV+43O6pCeu8m/+GAgCAgokc2R45MjkyOTI5sqPnyEuXLlV0dLR8fHy0dOlS9e/fX82bN1dAQIDtZpCzZ8+muWxOX/ezmiNbr2nWa82trl69auvO/mbW5dI7l6QbT4fv27cvW+NRZ+f1TyvevLh2A8h9FMAB5KpmzZrJ2dlZ58+f1w8//JBmm2+++UbJyclyd3dXw4YNbdOtyUVa46ns3bu3QCb3Pj4+tg+vacX9yy+/ZGmsl5stW7YszS9KrN3R1a1b13aXtPXuyr1796bbdc/XX38tSSpdurSCg4MlSb1791b37t21fPnyVO09PT1Vt25dSTeSUkkKDAy0fTHwzTffpLmdnTt3qnv37mrfvr12796dgT1Nm3XcMF9fX7Vq1eq2bbt27Srpxgdg6xcRuS06OlobN26UdOdkqVatWrYvShYvXmw7N7JzHqV3J731XFixYkWaBcTExETbOdS0adPbxm1lHVtu//79ti800rNlyxbFxsbKx8dHderUsU2/3fs8JSVFv/zyS4ZiySovLy/Vr19f0r9PTdxq9erV2rVrl06dOpXu8fXy8rJdv9IbwzoyMlLdunXTo48+qh9//DFbcQcGBqpcuXK3jXv58uXavn17qiSyTp06qlKlimJiYjRv3jz9888/ql69errju2XFggUL9NVXX0m60QVjgwYNbtu+RYsWkm5cP9K6vl25ckU9e/bU448/rjlz5mQ4Dut5/8svvygyMjLNNtbXq27duvL29pYkW8KcXjeE1uuQZD9+l/V8vnTpkqKjo1Mtt27dunRjtZ5bN3+B5OHhoUaNGtnFeavIyEjb+6RZs2bprh8AABQM5Mj2yJHJkW9GjkyOnFUFOUe25pdly5ZN84n6o0eP2q4B1muIVVav+2nll1LWc+Q2bdpIunGTT1o3KyxbtixV7Ddvb8mSJWkWi5OTkzVgwAB17txZH3zwQZrxZER2Xv9b15NX124rs/lGiS69m0kAZB0FcAC5qkyZMrYxsEaOHGn3gdZisWj+/PmaPHmyJGnAgAF2XXVZP3DPnj1bx44ds03ft2+fXn311bwIP9Pc3NxUvXp1SdLkyZPt7uDcsmWL3nvvvWxvY//+/Ro5cqSt2yuLxaJvvvnGlqQPGTLE1rZevXq2O7xDQ0Ptuu9JTEzUpEmTbHdVv/HGG7YPyI899pgkacqUKdq0aZPd9v/8809bonzzmFyDBg2SJE2fPl0zZsywuzv1zz//tM2vW7euGjdubJuXlJSkY8eO6dixY3e8YzsxMVGrVq2SdKMrqjuNUdusWTPbB+CFCxfetu3t/PPPPzp27Fiad7PeasWKFUpOTpaLi4vtON6O9QuI8+fP2+4yzs55ZO2uKSoqKtV2SpUqpQsXLujFF1+0S3Sio6M1aNAgHT58WJ6ennrllVfuGLckPfjgg2rbtq0kacSIERo7dmyqO22vX7+upUuXavDgwZJunCc3d31mfZ8fOXJEc+fOtX3gv3Tpkt56660MjQmdXQMGDJDJZNLKlSs1bdo0uy9OVqxYoXnz5kmS+vTpc9v1vPLKK3JyctLq1as1fvx4u6Tw8OHD6tevn5KSklSuXDl16tQpWzGbTCYNGDBAkjRjxgwtXrzYduxSUlI0ffp0rVu3Ts7OzurVq1eq5a1fPE2cOFGS9OSTT6a5ncy8P602btxo604xNDRUjz/++B2X6devnzw8PLRz5069/vrrdglpVFSU+vXrp5iYGBUtWlTdu3fPUBzSjfHcgoODdf36dfXt29euS7m4uDiNHDlSW7ZskbOzs4YOHWqbZ70rftGiRXbvv7i4OE2ePFnTp0+3Tbs5ia9Tp45cXFxkGIbGjRtnm5eUlKQ5c+bcttt063v31uvMwIED5ezsrC1btmjkyJF2T+qEhYWpb9++un79uqpWrZqhYw0AAPIXOTI5snUZcuS0kSOTI2dFQc6RrfllWFiYfvrpJ9t0wzC0adMm9enTx/bE/61d3Gf1um89p259j2Y1R3766adVoUIFnTlzRqGhoXY3fK9du1Yff/xxmnF0795d/v7+ioiIUP/+/e3iuXjxogYPHqxjx47JxcVFL7zwQrr7cyfZff1vltVrd1ZZr1GXL1/O0545gMKAMcAB5Lrhw4fr7Nmz+vnnnzVo0CCVLFlSpUuXVmRkpGJiYiRJzz33nPr27Wu3XP/+/bV582adP39enTp1UuXKlXX9+nWFh4crICBATz31VLp39eWnwYMHq3///jp69Khat26typUr69KlS4qKilKtWrUUEhJiS+KyIigoSEuWLNGaNWt077336syZMzp//rzMZrOGDx+e6sPXhx9+qJdeekl//fWXevTooXLlyql48eI6ceKE4uLi5OTkpMGDB6tDhw62ZXr06KGtW7dq06ZN6tu3r0qWLKmSJUsqJibGljS2atVKTz/9tG2ZDh06KDw8XJMnT9ZHH32kL7/8UhUrVtTFixdty1SqVElTp061i+/s2bNq3769pBvdtaWXZEjS+vXrFRsbKyljXVGZzWY988wz+uSTT3T48GHt3LnTljxkxptvvqnt27erYcOGtkQvPda7vFu0aJGhsbI6dOigDz74QJcvX9bChQttyXJWz6Pq1atrw4YNWrVqlQ4dOqQGDRro7bfflre3t6ZNm6Z+/frpr7/+Ups2bVS5cmU5OzvryJEjSkpKko+Pjz766CNb11EZ8dFHH8nDw0MrVqzQ3LlzNXfuXJUtW1Z+fn6292tiYqJcXFz02muvqVu3bnbLN2/eXA0aNNCff/6psWPH6quvvpKvr6+OHz+upKQkvfLKK7YvAHPL/fffr+HDh+v999/Xp59+qq+++koBAQE6c+aMbZy6l19+2e7LrLTUr19fo0eP1ttvv62vv/5aCxcuVGBgoK5evaqIiAgZhqESJUpo1qxZd/xiKiM6d+6so0ePavbs2RoxYoQ+++wzlS5dWqdOnVJsbKycnJz0zjvvpHnX+mOPPaaPP/5Y165dk4uLizp27JjmNjLz/rQaMmSIUlJS5Obmpr///lu9e/dWQkJCmk/lPPXUU+rcubMqVKigzz77TEOGDNHq1av1008/qXLlykpKSlJ4eLiSk5Pl4eGh6dOnpzsOdlqcnZ01depU9e3bV8ePH9djjz2mihUrytPT09ZdmZubm9599127p9SHDBmiAQMG6OjRo3rooYds3aBFRETo+vXrtq7qTp48adcderFixdS7d29NmzZNq1ev1ubNm3XPPfcoKipKsbGx6tq1q3755Zc0u7erXr26duzYoffee08LFixQt27d1LlzZ9WrV09jx47ViBEj9N133+n7779XYGCgrl27phMnTki68XdhypQpOXJeAQCA3EeOTI5Mjpw+cmRy5KwqqDly586dNX/+fEVERCg0NFTlypWTr6+vTp8+rejoaLm4uKhhw4bavn17qlwxq9f9atWqSbox/nq7du1UuXJlTZkyJcs5spubmyZNmqQ+ffpoy5YtatGihapUqaLY2Fjbe/D8+fOphgsrVqyYvvjiC/Xv319bt27VQw89pMqVK8tkMunEiRNKTEyUs7OzPvnkE1uPG1mVndf/Zlm9dmdVcHCwzGazEhIS1K5dO5UsWVKzZs3K0LALAG6PJ8AB5DpXV1d9/vnn+vTTT9WkSRMlJibq4MGDcnd3V4cOHTR37lyNHDkyVbdJ1apV05IlS9SpUycVL15cx48fV0pKil544QUtX75c/v7++bRHt9esWTPNnz9frVu3loeHh44ePaoiRYooNDRU8+fPt93Zl1U9evTQJ598okqVKtnu/G3btq0WLlyY5l2MPj4+mjdvnkaPHq377rtPV65c0aFDh+Tr66vOnTtryZIl6tevn90yTk5O+vzzz/XWW2+pXr16SkhIUFhYmOLj49WkSRN9+OGHmjp1qt04XNKNBGjRokXq1KmTvLy8FBYWppiYGFWvXl2DBg3S0qVLM1W8upU1ca5Ro0aGu6Lq3LmzbQzd7NzhnhF79uyxjW2V0bGi3N3dbU9t/v7777ax/rJ6HvXt21dPP/20fHx8FB4erkOHDtnmVa9eXatXr9aAAQNUpUoVRUZGKjw8XJUqVdJLL72k77//PsNdu1m5urrq/fff1+LFi/XCCy+oRo0aSkxMVFhYmM6cOaNKlSqpd+/e+v7771OdZ9KNL2BmzZqlwYMHq0qVKoqOjtY///yj+++/XwsWLMj2XeAZ1bNnTy1atEgdO3ZUkSJFdOjQISUnJ6t58+aaPXu2QkNDM7Sep556SitXrtQzzzwjf39/HTlyRKdPn1ZgYKD69Omj77//3lZMzQnDhg3T7Nmz9dBDD8kwDIWFhcnJyUnt2rXTokWL7L6Au1nx4sVt3WW3atUqRxMr6139CQkJWr9+vbZs2aI///xTu3btSvVz+vRp23LNmzfX//73P/Xq1Uvly5fXiRMnFBERoXLlyqlbt276/vvvFRISkul47rnnHi1dulRvvPGGateurfPnz+vYsWMqU6aMevTooZUrV6Z6crply5ZasmSJWrduLX9/fx0/flynT59WUFCQXnvtNa1cudJ2bm7YsMFu2SFDhuijjz5S/fr1lZSUpBMnTqhSpUqaMGGC3nnnnXTjHDdunB588EE5OzvrxIkTtmuBdGMs8pUrV6pLly4qUaKEjhw5opiYGIWEhGjUqFFasmRJumOsAwCAgoccmRyZHDl95MjkyNlREHNkLy8v23WlSpUqunjxoo4cOSIvLy9bAXvcuHGSbjwlfvNT0lm97j/++OPq06eP/P39derUKR08eNB2U3pWcmRJqlq1qpYvX64XXnhBZcqU0ZEjR2SxWNSrVy99/fXX6d7EUKtWLa1atUovv/yygoODderUKR0/flwlSpTQ448/rqVLl9q6WM+urL7+t8rta/fNKlSooPHjx6tixYqKjY3V6dOnU/VYASBrTAaDCwDAXaFVq1aKiorSmDFjMvyBDTln9OjROnnypGbMmJHfoQA54sknn9SBAwc0ffr0O965DwAAABQ05Mj5ixwZjoYcGQAcC0+AAwBwBxaLRX/++acqV66c36EAOeLAgQM6cOCAypQpoyZNmuR3OAAAAADuIuTIcDTkyADgeBgDHACAO3jvvfcUHR2t559/Pr9DAbIsMjJSknThwgUNGzZM0o3uIp2cnPIzLAAAAAB3GXJkOAJyZABwbBTAAQC4g2effVahoaEqXrx4focCZNkPP/ygTz75xPZ7UFCQnnvuuXyMCAAAAMDdiBwZjoAcGQAcG12gAwBwB1WrViWxx12vatWqKlmypDw8PNS6dWt99dVXcnV1ze+wAAAAANxlyJHhCMiRAcCxmQzDMPI7CAAAAAAAAAAAAAAAsosnwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAITjndwB3C8MwZLHQWzwAAAAAwJ7ZbJLJZMrvMBwCuTcAAAAAIC2Zyb0pgGeQxWLo4sWr+R0GAAAAAKCAKV7cU05OFMBzArk3AAAAACAtmcm96QIdAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADsE5vwMAAAAAAKRmsViUkpKc32EUek5OzjKbuXccAAAAABwRuXfBkNO5NwVwAAAAAChADMPQ5csXFR8fl9+h4P+5u3vJ27u4TCZTfocCAAAAAMgB5N4FT07m3hTAAQAAAKAAsSbgXl6+cnUtQtE1HxmGocTE64qLi5EkFSvml88RAQAAAAByArl3wZEbuTcFcAAAAAAoICyWFFsC7uXlnd/hQJKraxFJUlxcjIoW9aU7dAAAAAC4y5F7Fzw5nXuTuQMAAABAAZGSkiLp38QPBYP19WBcOAAAAAC4+5F7F0w5mXtTAAcAAACAAoau1woWXg8AAAAAcDzkegVLTr4eFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh+Cc3wEAAAAAAPLPoUNhmjp1osLC/pbFYqh69Zrq12+AatSoKUnaseMPzZ49U8eOHZGTk7MaNmys/v1fUalSpSVJP/ywSuPGvavFi79XmTJlbevt3LmT6tWrr//+9x1JUpMmDfTCC/20desWRUZGqGvX59WrVx9FRZ3SF19M1s6dO2QYhmrWrKUBAwbp3nsDJUnXr1/XrFnTtH79WsXEXFT58hXUo8cLeuihNnl7oAAAAAAAyCJy77zFE+AAAAAAUEhdvRqn1157RcWK+WjMmA/07rvjlJAQr9deG6i4uDj99NMPGjJkoPz9/fXOO2P1yitDdODAPr300guKibmY6e3NmTNLLVq00jvvjFXTpi104cIF9e3bUxERJ/Taa2/q7bdH6/Llyxo8eIBiY2NlGIbeeut1rVixTM88003vv/+Jatasrbfffktr1qzOhSMCAAAAAEDOIvfOezwBDgAAAACF1IkTJxQbG6POnZ9R7dp1JUkVKlTUypVLFRd3RVOnTlSDBg317rvjbcvUrl1Xzz33tBYs+EYDBoRmanvVq9fUc8/1sv3++ecTdf16gj77bKr8/EpIkqpUqaoXX+yl/fv3qkgRV23btlXvvjvOdtd5o0b3KyEhXtOmTdHDD7eTszNpLQAAAACg4CL3zns8AQ4AAAAAhdS99wbKx8dXb775qj76aLy2bNkkP78SGjBgkBISEhQdHa02bR6xW6ZcuXtUo0Yt/fXXn5neXmBgZbvf9+z5SzVr1rYl4JJUokQJLV26Wk2aNNOff+6QyWTS/fc3UXJysu3nwQebKzr6gk6cOJa1HQcAAAAAII+Qe+e9u6tcDwAAAADIMR4eHpo6dYbmzJml9evXasWKpXJzc1ObNo+oXbsOkqTixf1SLefn56dDhw5lenu+vsXtfr98+ZLd2GW3unz5kgzDUJs2zdKcf+HCeVWpEpzpOAAAAAAAyCvk3nmPAjgAAAAAFGLly1fUyJGjlZKSooMHD+jHH3/QihVLVKKEvyTp4sXoVMtER0fLx8dHkmQymSRJFovFrk18/LU7btvLq6hiY2NTTd+5c4dKly4jL6+icnf30OTJ09Jcvly5gDtuAwAAAACA/EbunbfoAh0AAAAACqkNG9arY8fWio6+ICcnJ9WsWVtDhw6Tl1dRXbx4UX5+flq7do3dMlFRp7R//17Vrl1HkuTh4SlJOnv2jK3NyZPhunTp0h23X6dOXR04sFcxMRdt02JjYzV0aKh++22T6tYNUXz8NRmGoapVq9t+jh8/pq++mqGUlJScOAwAAAAAAOQacu+8xxPgAOyYzSaZzaZc3YbFYshiMXJ1GwAAALizWrXqKiXFouHDh+q553rJ09NTP/+8VlevxqlVq9aqXr2Gxo17V2+/PVzt2nXUpUux+uqr6fL2LqZnnukuSapf/z65ublpypRP1bfvAF27dk2zZ99ocyddunTTmjX/06uvDlSPHi/I1bWI5s2bLT+/EmrXroO8vIqqbt0QDRv2mnr16qMKFSrq4MEDmjVruho1amy7Ex6OL7fzFHIUAAAAALmF3DvvmQzDIMPLgJQUiy5evJrfYQC5ymw2ycfHQ05Ouds5REqKRbGx1/iCCQAA4BZJSYmKjj4tP78ycnFxzZNtHjx4QDNmfKGwsINKSEjQvfcG6vnn/6PmzVtKkn799WfNm/e1jh8/Kk9PTzVqdL/69XtZpUqVtq3jjz+2atq0KYqIOKHSpcvoP//ppx9//J/8/Pz03/++I0lq0qSB/vOfvurd+0W77UdEhGvq1InatWunXFxcVK9eiAYMGKRy5e6RJMXHx2vmzC+0YcPPiom5qBIlSqp16zbq1auPihQpkifH6E6vS/Hinrn+GbqwSCv3zos8hRwFAAAAKDzIvR0/96YAnkEUwFEYODub5evrqc8X/Kaoc3fuNiMrypUsppe7PqiYmKtKTrbceQEAAIBCJD+ScNwZBfC8k1bundt5CjkKAAAAULiQexdMOZl70wU6gFSizl1SeFRMfocBAAAAADbkKQAAAACAjOAWdQAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhOOd3AAAAAAAAIH8kJSVp3rx5Wr58ucLDw+Xh4aFatWqpZ8+eatq0aar2jRo1UmxsbLrr27t3r4oUKZKLEQMAAAAAcHsUwAEAAAAAKIQMw9CQIUO0bt06eXt764EHHtD169f1xx9/aPPmzRo8eLD69+9vax8VFaXY2FiVKlVKDRs2THOdZjMdzQEAAAAA8hcFcAAAAAAACqGFCxdq3bp1qlatmmbPni1fX19JUlhYmLp3766JEyeqTZs2CgwMlCQdPHhQktSuXTu99dZb+RY3AAAAAAC3w63ZAAAAAAAUQitXrpQkDRs2zFb8lqSqVauqU6dOMgxDmzZtsk0/cOCAJKlGjRp5G2gecXIyy9k5d37MZlN+7x4AAAAAFBo8AQ4AAAAAdwGz2ZQvRTSLxZDFYuT5dpH75syZoxMnTqhKlSqp5l27dk2S5OTkZJtmfQK8Zs2aeRNgHilW1E2GxSJvb/dc24bFkqKYmHjeSwAAAEABR+7tGCiAAwAAAEABZzab5OPjISenvO/EKyXFotjYa1lKxNeu/VFLly7S8eNHJUkVKlRSx46P6fHHn8rpMJEFRYoUUdWqVVNNX79+vX788Ue5u7urTZs2tukHDhyQm5ub9u/frxEjRujIkSMymUwKCQnRgAEDVKdOnbwMP8d4urnKZDbrxOoZio8+nePrd/cro0od+8psNvGFFgAAAFCAkXs7DgrgAAAAAFDAmc0mOTmZ9fmC3xR17lKebbdcyWJ6ueuDWSrcrV69Up99NkGhoa+pbt0QSYZ27NiuSZM+VkzMRf3nP31zJ2hkyaVLlzRixAgdPXpUx48fV5kyZTR+/HiVLl1akhQdHa1z585Jkt544w3VrVtXjRo10uHDh/Xrr79qy5YtmjBhgtq3b5+fu5Et8dGnFX/2ZH6HAQAAACCfkHs7DgrgAAAAAHCXiDp3SeFRMfkdRoYsX75EHTs+pkcffcI2rXz5ijp//py++25BoU3CC6rIyEitXbvW9rvJZNLRo0d1//33S/p3/G9fX1998cUXqlevniTJMAzNmTNH48eP1/DhwxUSEmIrmmeVs7P90xb58fRFbnCU/QAAAADudhbL7bs4J/fOX05OplR5YWZRAAcAAAAA5Diz2aR9+/bq8uXL8vb2tk3v3r2n2rfvJEnq3LmTHnmko3r3ftE2f+DAfipTpqz++993tGvXnwoNfUn9+7+ib7+dq9KlS8vNzV0lSvjrvffG25bZu3e3Bgzoo4ULl+ueewL022+bNWvWlwoPPyF/f3+1bt1WPXv2lqurqyZO/Fi//bZJ33230rZ8XFycHn20rd57b5yaNGmeB0en4KlUqZK2b98uwzC0detWjR07VmPGjFFcXJz69++vpk2bavPmzTIMQ6VKlbItZzKZ1KtXL+3YsUPr16/XkiVLNHDgwCzHYTab5OvrmRO7VODk5hjjAAAAADIuIcFJFy6YUxVa8/um1axs38nJrP379+ratTi73Ltnz//o0Ucfk7OzWY8/3kEdOnRS374v2eb3799XZcqU1ahR72rnzj/18sv99PLLoZo3b45Kly4jd3c3lSjhr7FjP7Ats2fPbr344gtavHiFAgLKa8uWTZoxY5ot93744Xb6z3/6yNXVVZ9+OkFbtmzW0qXf25aPi7uiDh3aaPTo99WsWerc22IxyWw2q1gxD7m5uWX6WNyMAjgAAAAAIMd1795To0YN1xNPPKKQkAaqXbue6tdvoGrVaqho0aKZWtfWrVv05ZezlZAQryNHDuvjj9/XtWtX5eFxo1C6du0a1apVR/fcE6A//tiqkSOHKTR0iO67r7Giok7p008/1MmTERo9+n117PiYFi9eoD17dqtOnbqSpJ9/XitPT081bvxgTh+Gu4an579F5/bt26t06dLq1q2bpk+frh49esjT01MlS5ZMd/mWLVtq/fr12r9/f7bisFgMXb58zW6ak5PZIYrHly/HKyXFkt9hAAAAAIVeYuJ1WSwWpaQYSk4uOJ/RU1IsmY6nW7ceGjVquDp1apsq9y5b1tO2PovFfl8Nw5Bh3JhmzVO2bNmcKve+fPmKLfdes+Z/qlWrjsqUuUdbtmzRW2+9mSr3Dg8P1+jR76t9+8e0aNEC7dy5y5Z7//TTT/Lw8FTDhvenuZ8pKYYsFosuXbqm+PiUVPO9vd0zfJMABXAAAAAAQI5r0eIhffnlbC1ZslDbtv2h33//TZIUEFBew4ePUu3adTO8rq5dn1NAQHlJ0j33lNenn07Qxo0b9MgjHZWUlKRfflmv/v1fkSTNnfuVOnZ8VI8/3lmSVK7cPXr99bcUGvqSTp/+R4GBlRUcXE0//fQ/WxL+44+r1bZtezk7kyJbhYSEqHz58oqIiFB4eLhq1Khx2/b+/v6SpPj4+GxvuyB9AZWTsvJlFgAAAICcl5KSuXG2CzJHzL1z4sYEsnsAAAAAQK6oVq2GRo4cLcMwdPz4Mf3++xYtXrxQQ4cO0qJFyzO8nnvuKW/7v7u7u1q2fEhr167RI4901O+//6br1xPUqlVrSdLhw2E6ePCA1qxZbVvGMG58uREefkJlypRVhw6Pavr0qRo8+HWdO3dW+/bt1euvv5VDe313iI+P18SJE3XhwgVNmDBBJlPqMfBcXV0lScnJyVq0aJF+//13dezYUa1bt07VNjIyUpKyPf43AAAAACBzyL1TowAOAAAAAMhR586d1bffztFzz/WSv39JmUwmBQZWVmBgZTVp0lzPPfe0du/eleayKSnJqaYVKVLE7vf27Ttp0KD+io6+oLVrf1CzZi3l6ekl6Ua3bt269dAjj3RMtR4/vxKSpIcfbqcpUz7T1q2bdezYUVWrVl333ls5u7t9V3Fzc9Py5csVGxurLl26qGHDhnbzIyMjdeLECbm6uqpKlSrauHGj1qxZo/j4+FQFcMMwtHLljTHVmzRpkmf7AAAAAACFGbl3+vJ3NHcAAAAAgMNxdS2ilSuXae3aNanmWceaLl7cT87OLoqLi7PNs1gs+uefqDuuv27dEJUuXUY//vg/bd36m13Cfe+9gYqICNc99wTYfs6fP6fPP5+oa9euSpKKFi2qZs1a6Ndff9GmTRvUvv2j2d3lu47JZNIzzzwjSXrnnXd07tw527wzZ87o1VdfVXJysrp27SoPDw898cQTcnV11a+//qrvvvvO1tZisWjSpEnau3evKleurHbt2uX5vgAAAABAYUTunT6eAAcAAAAA5CgfHx91795T06dPVVxcnFq1ai0PD0+Fh5/Q11/PVEhIA9WpU0+1a9fRzz+vVfPmLVW8uJ8WLvzGLim/nUce6ag5c75SsWLF1KDBv08vd+/eQ6NGDdesWV/q4Yfb6fz5c3r//TEqVaqU7S50SerQ4VENG/aqDENq3bptjh+Du8GAAQO0a9cu7dixQ23btlX9+vWVlJSkvXv36tq1a2rSpImGDh0qSQoICNA777yjESNGaOTIkfrmm29UsWJFhYWFKSIiQiVKlNDkyZPl4uKSz3sFAAAAAIUDuXf6KIADAAAAwF2iXMlid832+vbtr3vuCdCqVSu0fPliJSQkqFSp0mrV6mH16PGCJKlfv5d15cplDR0aKjc3d3Xq9LgeeqiNbdyw22nXrqO++mq6nnzyaZnN/3Zu1rJla737rjRv3lf65puvVbSotx58sKn69w+1W75Bg4YqVsxHtWrVUdGiRbO8n3czNzc3zZ49W3PnztXKlSu1bds2OTs7q0qVKnryySf19NNPy8nJydb+qaeeUqVKlTRjxgzt2rVLx48fV8mSJfX888+rf//+8vPzy8e9AQAAAICcQe79r7s19zYZGdm7fJCUlKR58+Zp+fLlCg8Pl4eHh2rVqqWePXuqadOmqdpfuHBBU6dO1ebNm3X27Fn5+/urXbt2GjBggO0x/+xISbHo4sWr2V4PUJA5O5vl6+uptyb+oPComFzZRsVyvho3qL1iYq4qOdmSK9sAAAC4WyUlJSo6+rT8/MrIxcXVNt1sNsnHx0NOTnk/ilVKikWxsddksRTI1DHL4uPj9dhj7TR27Ie6775Gt22b3utiVby4Z768No4ordw7t/OUB+pW0MBuTfT3nPcUf/Zkjq/fvVR5Ve85ihwIAAAAKCDIvfNOfuXeBfIJcMMwNGTIEK1bt07e3t564IEHdP36df3xxx/avHmzBg8erP79+9vanzt3Ts8++6yioqIUFBSkFi1aaN++fZo5c6Y2b96s+fPny8vLKx/3CMCtcvMPiMViONwfCQAAULhZLIZiY6/JbDbly7Yd6bPV5cuXtWvXDv3yy3qVKlXKrgs3AAAAAEDhRe6dc/I79y6QBfCFCxdq3bp1qlatmmbPni1fX19JUlhYmLp3766JEyeqTZs2CgwMlCSNGTNGUVFR6tevn1577TVJUmJiot544w2tWbNGU6ZM0bBhw/JtfwD8q1hRNxkWi7y93XNtGxZLimJi4h3qjwUAAICjJcP5JSUlWe+/P1o+Pr56773xMpny/osNAAAAAEDBRO6dM/I79y6QBfCVK1dKkoYNG2YrfktS1apV1alTJy1YsECbNm1SYGCgTp48qXXr1qlMmTIKDf23X3lXV1eNHj1amzZt0qJFizR48GC5ubnl+b4AsOfp5iqT2awTq2coPvp0jq/f3a+MKnXsK7PZxB8pAAAApOLrW1w//vhrfocBAAAAAIDDyu/cu0AWwOfMmaMTJ06oSpUqqeZdu3ZNkuTk5CRJ2rRpkywWi5o3by4XFxe7tkWLFlXjxo31888/a9u2bWrevHnuBw8gQ+KjT+fK+HoAAAAAAAAAAAAovPJ+FPcMKFKkiKpWrWorclutX79eP/74o9zd3dWmTRtJ0uHDhyVJQUFBaa6rcuXKdu0AAAAAAAAAAAAAAI6pQD4BfrNLly5pxIgROnr0qI4fP64yZcpo/PjxKl26tCTp/PnzkiR/f/80l7dOv3DhQt4EDAAAAAAAAAAAAADIFwW+AB4ZGam1a9fafjeZTDp69Kjuv/9+Sf92iZ7e+N7W6dZ22eHsXCAfmAdyjJOT45zjjrQvAACg8LBYTPkdAm7DyclEXggAAAAAQAFX4AvglSpV0vbt22UYhrZu3aqxY8dqzJgxiouLU//+/W3dpJtMaX9RZBiG3b9ZZTab5Ovrma11AMg73t7u+R0CAABApiUkOOnCBTOF1gLGYjHJbDarWDGPdG++BgAAAAAABUOBL4B7ev5bdG7fvr1Kly6tbt26afr06erRo4c8PDwkSdevX09zeet0d/fsFcMsFkOXL2f/KXKgIHNyMjtM4fjy5XilpFjyOwwAAIBMSUy8LovFopQUQ8nJfJYpKFJSDFksFl26dE3x8Smp5nt7u9MDEQAAAAAABUSBL4DfKiQkROXLl1dERITCw8NVsmRJSf+OBX6rO40Rnhl8AQXcPVJSLLxnAQDAXSclJf2eq8xmk8zmvO8i3WIxZLFkvketzp076cyZ0xo4cLCeffa5VPMnTBinlSuX6T//6avevV/MUmydO3fSI490zPDymW1/K25MAAAAAADHRu6d9jbyMvfOCQWuAB4fH6+JEyfqwoULmjBhQppdm7u6ukqSkpOTFRQUJEk6duxYmus7cuSIJCk4ODiXIgYAAACA3HVjSCZ3mc1Oeb5tiyVFMTHxWUrEnZ2dtWHDz6mS8OTkZG3c+Eu6Q1kBAAAAAJDXyL0dR4ErgLu5uWn58uWKjY1Vly5d1LBhQ7v5kZGROnHihFxdXVWlShWVKFFCkrRhwwYNHz7cNia4JF25ckXbtm2Th4eH6tevn6f7AQAAAAA55cYd6E46sXqG4qNP59l23f3KqFLHvjKbTVlKwhs0aKht237X2bNnVKpUadv0Xbv+lJubu4oUYTxtAAAAAEDBQO7tOApcAdxkMumZZ57Rl19+qXfeeUdff/21rZvzM2fO6NVXX1VycrJ69uwpDw8PeXh4qGXLltqwYYMmTJigN998UyaTSYmJiRo1apSuXr2qF154QV5eXvm8ZwAAAACQPfHRpxV/9mR+h5Fh1arVUEREuDZsWG93J/rPP69Vq1YP65df1tmm7d+/V9OnT9WhQwfl7OysJk2a6+WXB8vb21uSFBcXp88+m6AtWzbK2dlFPXr8J9X29u3bo2nTpujgwb/l4+OjBx9sppdeelmenuSDAAAAAICMIfe++3Nvc34HkJYBAwbovvvu07Fjx9S2bVv16dNHPXv21COPPKK9e/eqSZMmGjp0qK39yJEjVbJkSc2ePVvt27dXaGio2rZtqx9++EE1atTQwIED83FvAAAAAKDwatmytTZs+Nn2e1JSkjZt+lWtW7exTfv77/165ZUXVbFiJU2bNlujR3+gv//er1dfHSiL5caY26NGDdPBgwf0wQef6tNPp+i33zbrzJl/78g/evSIBg0aoPvua6Q5cxbo7bfH6tChgxoyZKAMI/N30AMAAAAAcLcg97ZXIAvgbm5umj17tt544w0FBARo27Zt2rt3r6pUqaJ3331X06dPt40DLknlypXTkiVL9PTTT+vKlSvasGGDXF1d9dJLL2nu3Lny9PTMx70BAAAAgMKrVauH9fff+3X27BlJ0vbtf8jHx0dBQVVtbRYu/FaBgVX06qtvqlKlexUS0kDvvDNOYWF/a9u233XyZLi2b/9DQ4a8oTp16qlKlWC9/fYYu7xwwYK5atDgPvXq1UcBAeVVp05dvfPOWP3993799dfOPN9vAAAAAADyCrm3vQLXBbqVi4uLevfurd69e2eofalSpTRmzJhcjgoAgLvDjfFqTLm2fovFyNJ4NACAwqdq1WoqW7acrSu2X35Zq9at29q1OX78qO67r7HdtMDAyvLyKqpjx44oISFeklStWnXb/OLF/VS2bDnb74cOHdKpUyf18MNNU8UQERGukJAGOblbAAAAAAAUGOTe9gpsARwAAGSN2WySj4+HnJxyr6OXlBSLYmOvUQQHAGRIq1YPa8OGn/XEE09r8+ZNmjFjjt18wzBkSuO+LcOwyNn537T11r87Tk7Odm3btHlEPXq8kGo9Pj6+2dwDAAAAAAAKNnLvf1EABwDAwZjNJjk5mfX5gt8Ude5Sjq+/XMliernrgzKbTRTAAQAZ0qpVa33zzddavXqlypYtpwoVKtrNv/feytqzZ7fdtCNHDuvq1auqWPFeBQSUlyTt27dHDzzQRJJ05coVRUVF2tpXqhSoEyeO6Z57AmzTTp4M15QpE/XSSy/Ly6ty7uwcAAAAAAAFALn3vyiAAwDgoKLOXVJ4VEx+hwEAgKpUCdY99wRo+vTP9dxz/0k1/5lnuunll/vqk08+0JNPdlFMzEV98skHCgoKVoMGDeXs7KyWLVvr008/lIuLi/z8/DRt2udKSkqyrePZZ5/Tyy/30YQJ49S587O6du2aPv74fV27dk333FM+L3cXAAAAAIA8R+79LwrgAAAAAHCXcPcrc9dur1WrhzVnziy1bt0m1byaNWvro48masaMaXrhhe7y8PBU06Yt1L//QFs3bCNGvKPPP5+ot99+SxaLRY899qRiY2NuWkctffLJFM2c+YV6935e7u5uCgm5Ty+/PFiurq45th8AAAAAAMdG7n33594mwzDouzQDUlIsunjxan6HAeQqZ2ezfH099dbEH3LtqdEH6lbQwG5N9Pec9xR/9mSOr9+9VHlV7zlKMTFXlZxsyfH1A3eD3H4vVyznq3GD2vM+A4BckJSUqOjo0/LzKyMXl38TR7PZJF9fd5nNTnkek8WSopiY+EI97EV6r4tV8eKecnIy50Nkjiet3Du3P9uQowAAAACFC7l3wZSTuTdPgAMAAABAAWexGIqJiZfZbMqXbRfmBBwAAAAAUDiQezsOCuAAAAAAcBcgGQYAAAAAIHeRezsG+mgDAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAABAAWMYjDdWkPB6AAAAAIDjIdcrWHLy9aAADgAAAAAFhJOTkyQpMfF6PkeCm1lfDycn53yOBAAAAACQXeTeBVNO5t5k7wAAAABQQJjNTnJ391JcXIwkydW1iEwmUz5HVXgZhqHExOuKi4uRu7uXzGbuIQcAAACAux25d8GSG7k3BXAAAAAAKEC8vYtLki0RR/5zd/eyvS4AAAAAgLsfuXfBk5O5NwVwAAAAAChATCaTihXzU9GivkpJSc7vcAo9JydnnvwGAAAAAAdD7l2w5HTuTQEcAAAAAAogs9kss9k1v8MAAAAAAMBhkXs7Jm5jBwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAAByCc34HAAAAAAAA8kdSUpLmzZun5cuXKzw8XB4eHqpVq5Z69uyppk2bpmp/4cIFTZ06VZs3b9bZs2fl7++vdu3aacCAAfL09MyHPQAAAAAAwB5PgAMAAAAAUAgZhqEhQ4bogw8+0JkzZ/TAAw+oWrVq+uOPP9SnTx998cUXdu3PnTunLl266Ntvv5Wbm5tatGghi8WimTNnqmvXroqLi8unPQEAAAAA4F8UwAEAAAAAKIQWLlyodevWqVq1alq7dq2+/PJLff3111qyZIm8vLw0ceJEHTt2zNZ+zJgxioqKUr9+/bRq1SpNmjRJP/30kx555BEdOnRIU6ZMyce9AQAAAADgBgrgAAAAAAAUQitXrpQkDRs2TL6+vrbpVatWVadOnWQYhjZt2iRJOnnypNatW6cyZcooNDTU1tbV1VWjR4+Wp6enFi1apISEhLzdCQAAAAAAbkEBHAAAAACAQmjOnDlauXKl7rvvvlTzrl27JklycnKSJG3atEkWi0XNmzeXi4uLXduiRYuqcePGunbtmrZt25b7gQMAAAAAcBsUwAEAAAAAKISKFCmiqlWr2orcVuvXr9ePP/4od3d3tWnTRpJ0+PBhSVJQUFCa66pcubJdOwAAAAAA8otzfgcAAAAAAADy16VLlzRixAgdPXpUx48fV5kyZTR+/HiVLl1aknT+/HlJkr+/f5rLW6dfuHAhbwIGAAAAACAdFMABAAAAACjkIiMjtXbtWtvvJpNJR48e1f333y/p3y7R3dzc0lzeOt3aLjucne07q3NycozO6xxlPwAAAACgoKMADgAAAABAIVepUiVt375dhmFo69atGjt2rMaMGaO4uDj179/f1k26yWRKc3nDMOz+zSqz2SRfX89sraOg8vZ2z+8QAAAAAKBQoAAOAAAAAEAh5+n5b9G5ffv2Kl26tLp166bp06erR48e8vDwkCRdv349zeWt093ds1fktVgMXb5s/xS5k5PZIYrHly/HKyXFkt9hAAAAAMBdydvbPcM9a1EABwAAAAAAdkJCQlS+fHlFREQoPDxcJUuWlPTvWOC3utMY4ZmRnOyYReKUFIvD7hsAAAAAFCQMQAUAAAAAQCETHx+v999/X0OHDk2323JXV1dJUnJysoKCgiRJx44dS7PtkSNHJEnBwcG5EC0AAAAAABlHARwAAAAAgELGzc1Ny5cv16pVq7Rjx45U8yMjI3XixAm5urqqSpUqatq0qSRpw4YNSklJsWt75coVbdu2TR4eHqpfv36exA8AAAAAQHoogAMAAAAAUMiYTCY988wzkqR33nlH586ds807c+aMXn31VSUnJ6tr167y8PBQuXLl1LJlS506dUoTJkywPTWemJioUaNG6erVq3r22Wfl5eWVL/sDAAAAAIAVY4ADAAAAAFAIDRgwQLt27dKOHTvUtm1b1a9fX0lJSdq7d6+uXbumJk2aaOjQobb2I0eO1IEDBzR79mxt3LhRVapU0b59+/TPP/+oRo0aGjhwYD7uDQAAAAAAN/AEOAAAAAAAhZCbm5tmz56tN954QwEBAdq2bZv27t2rKlWq6N1339X06dNt44BLUrly5bRkyRI9/fTTunLlijZs2CBXV1e99NJLmjt3rjw9PfNxbwAAAAAAuIEnwAEAAAAAKKRcXFzUu3dv9e7dO0PtS5UqpTFjxuRyVAAAAAAAZB0FcAAAkCVOTrnbkYzFYshiMXJ1GwAAAAAAAAAAx0IBHAAAZEqxom4yLBZ5e7vn6nYslhTFxMRTBAcAAAAAAAAAZBgFcAAAkCmebq4ymc06sXqG4qNP58o23P3KqFLHvjKbTRTAAQAAAAAAAAAZRgEcAABkSXz0acWfPZnfYQAAAAAAAAAAYJO7g3cCAAAAAAAAAAAAAJBHKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgENgDHAAAAAAAIACxGw2yWw25dr6LRZDFouRa+sHAAAAgPxUYAvgFotFixcv1rJly3TkyBElJSWpbNmyat26tV588UV5e3vbtW/UqJFiY2PTXd/evXtVpEiRXI4aAAAAAAAg68xmk3x8POTklHud9qWkWBQbe40iOAAAAACHVCAL4BaLRaGhoVq3bp3c3NxUu3ZteXh4aO/evZo5c6bWrVun+fPnq0SJEpKkqKgoxcbGqlSpUmrYsGGa6zSb6e0dAAAAAAAUbGazSU5OZn2+4DdFnbuU4+svV7KYXu76oMxmEwVwAAAAAA6pQBbAly5dqnXr1qlixYqaOXOmAgICJElxcXEaOnSoNmzYoDFjxuizzz6TJB08eFCS1K5dO7311lv5FTYAAAAAAECOiDp3SeFRMfkdBgAAAADcdQrkY9FLly6VJA0bNsxW/JYkLy8vjRs3TiaTSevXr1dCQoIk6cCBA5KkGjVq5H2wAAAAAAAAAAAAAIACoUAWwH18fHTvvfeqbt26qeYVL15cxYoVU1JSkmJibtwJbX0CvGbNmnkZJgAAAAAAAAAAAACgACmQXaBPmzYt3XmRkZGKjY2Vi4uLihcvLunGE+Bubm7av3+/RowYoSNHjshkMikkJEQDBgxQnTp18ip0AAAAAAAAAAAAAEA+KZBPgN+OddzvFi1aqEiRIoqOjta5c+eUkJCgN954QxaLRY0aNZKPj49+/fVXdevWTT/88EP+Bg0AAAAAAAAAAAAAyHUF8gnw9MybN0+rV6+Wu7u7hgwZIunf8b99fX31xRdfqF69epIkwzA0Z84cjR8/XsOHD1dISIhKly6dre07O9919wsAmeLk5DjnuCPtC5BZjnT+O9K+AAAAAAAAAABy311TAJ87d67GjRsnk8mksWPHKjAwUJLUtGlTbd68WYZhqFSpUrb2JpNJvXr10o4dO7R+/XotWbJEAwcOzPL2zWaTfH09s70fAPKGt7d7focAIAfwXgYAAAAAAAAAZEaBL4AbhqGPPvpIM2fOlJOTk8aOHasOHTrY5ptMJpUsWTLd5Vu2bKn169dr//792YrDYjF0+fK1bK0DKOicnMwOU2y6fDleKSmW/A4DyBe8lwEAyFve3u70WgIAAAAAQAFRoAvgCQkJev3117V27Vq5ubnp448/VuvWrTO1Dn9/f0lSfHx8tuNJTuYLeOBukZJi4T0LOADeywAAAAAAAACAzCiwBfC4uDj16dNHf/31l/z8/PTFF1+oTp06qdotWrRIv//+uzp27JhmcTwyMlKSsj3+NwAAAAAAAAAAAACgYCuQBfCkpCT169dPf/31lypUqKBZs2YpICAgzbZnz57VmjVrFB8fn6oAbhiGVq5cKUlq0qRJrscNAAAAAAAAAAAAAMg/BXKQsilTpmjnzp3y9/fXvHnz0i1+S9ITTzwhV1dX/frrr/ruu+9s0y0WiyZNmqS9e/eqcuXKateuXV6EDgAAAAAAAAAAAADIJwXuCfBLly5pzpw5kiQ/Pz9NmDAh3bbDhg1TQECA3nnnHY0YMUIjR47UN998o4oVKyosLEwREREqUaKEJk+eLBcXl7zaBQAAAAAAAAAAAABAPihwBfA9e/YoPj5ekhQWFqawsLB0277yyisqUaKEnnrqKVWqVEkzZszQrl27dPz4cZUsWVLPP/+8+vfvLz8/v7wKHwAAAAAAAAAAAACQTwpcAbxZs2Y6dOhQppcLCQnRF198kQsRAQAAAAAAAAAAAADuBgVyDHAAAAAAAAAAAAAAADKLAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDcM7vAAAAAAAAAIDcZDabZDabcm39Foshi8XItfUDAAAAyDgK4AAAAAAAAHBYZrNJvr7uMpudcm0bFkuKYmLiKYIDAAAABQAFcAAAAAAAADisG09/O+nE6hmKjz6d4+t39yujSh37ymw2UQAHAAAACgAK4AAAAAAAAHB48dGnFX/2ZH6HAQAAACCXUQAHAAAAAKCQslgsWrx4sZYtW6YjR44oKSlJZcuWVevWrfXiiy/K29vbrn2jRo0UGxub7vr27t2rIkWK5HLUAAAAAACkjwI4AAAAAACFkMViUWhoqNatWyc3NzfVrl1bHh4e2rt3r2bOnKl169Zp/vz5KlGihCQpKipKsbGxKlWqlBo2bJjmOs1mc17uAgAAAAAAqVAABwAAAACgEFq6dKnWrVunihUraubMmQoICJAkxcXFaejQodqwYYPGjBmjzz77TJJ08OBBSVK7du301ltv5VfYAAAAAADcFrdmAwAAAABQCC1dulSSNGzYMFvxW5K8vLw0btw4mUwmrV+/XgkJCZKkAwcOSJJq1KiR98ECAAAAAJBBFMABAAAAACiEfHx8dO+996pu3bqp5hUvXlzFihVTUlKSYmJiJP37BHjNmjXzMkwAAAAAADKFLtABAAAAACiEpk2blu68yMhIxcbGysXFRcWLF5d04wlwNzc37d+/XyNGjNCRI0dkMpkUEhKiAQMGqE6dOnkVOgAAAAAA6eIJcAAAAAAAYMc67neLFi1UpEgRRUdH69y5c0pISNAbb7whi8WiRo0aycfHR7/++qu6deumH374IX+DBgAAAABAPAEOAAAAAABuMm/ePK1evVru7u4aMmSIpH/H//b19dUXX3yhevXqSZIMw9CcOXM0fvx4DR8+XCEhISpdunS2tu/sbH+vvpOTY9y7n9H9yKv9dZTjmhEcUwAAAKBwoQAOAAAAAAAkSXPnztW4ceNkMpk0duxYBQYGSpKaNm2qzZs3yzAMlSpVytbeZDKpV69e2rFjh9avX68lS5Zo4MCBWd6+2WySr69ntvejIPL2ds/vEOwUtHgcAccUAAAAKBgogAMAAAAAUMgZhqGPPvpIM2fOlJOTk8aOHasOHTrY5ptMJpUsWTLd5Vu2bKn169dr//792YrDYjF0+fI1u2lOTmaHKCxevhyvlBTLHdvl1f5mNB5HwDEFAAAA7n7e3u4Z7nWJAjgAAAAAAIVYQkKCXn/9da1du1Zubm76+OOP1bp160ytw9/fX5IUHx+f7XiSkx2zgJiSYilQ+1bQ4nEEHFMAAACgYKAADgAAAABAIRUXF6c+ffror7/+kp+fn7744gvVqVMnVbtFixbp999/V8eOHdMsjkdGRkpStsf/BgAAAAAguyiAAwAAAABQCCUlJalfv37666+/VKFCBc2aNUsBAQFptj179qzWrFmj+Pj4VAVwwzC0cuVKSVKTJk1yPW4AAAAAAG4nYx2lAwAAAAAAhzJlyhTt3LlT/v7+mjdvXrrFb0l64okn5Orqql9//VXfffedbbrFYtGkSZO0d+9eVa5cWe3atcuL0AEAAAAASBdPgAMAAAAAUMhcunRJc+bMkST5+flpwoQJ6bYdNmyYAgIC9M4772jEiBEaOXKkvvnmG1WsWFFhYWGKiIhQiRIlNHnyZLm4uOTVLgAAAAAAkCYK4AAAAAAAFDJ79uxRfHy8JCksLExhYWHptn3llVdUokQJPfXUU6pUqZJmzJihXbt26fjx4ypZsqSef/559e/fX35+fnkVPnKAk1PudgposRiyWIxc3QYAAAAApIUCOAAAAAAAhUyzZs106NChTC8XEhKiL774IhciQl4pVtRNhsUib2/3XN2OxZKimJh4iuAAAAAA8hwFcAAAAAAAgELC081VJrNZJ1bPUHz06VzZhrtfGVXq2Fdms4kCOAAAAIA8RwEcAAAAAACgkImPPq34syfzOwwAAAAAyHG5O+ATAAAAAAAAAAAAAAB5hAI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ3DO7wDSY7FYtHjxYi1btkxHjhxRUlKSypYtq9atW+vFF1+Ut7e3XfsLFy5o6tSp2rx5s86ePSt/f3+1a9dOAwYMkKenZz7tBQAAAAAAAAAAAAAgrxTIJ8AtFotCQ0M1atQohYWFqUaNGnrggQd0+fJlzZw5U507d9aFCxds7c+dO6cuXbro22+/lZubm1q0aCGLxaKZM2eqa9euiouLy8e9AQAAAAAAAAAAAADkhQJZAF+6dKnWrVunihUravXq1Zo3b56+/PJLrVu3Ti1btlRERITGjBljaz9mzBhFRUWpX79+WrVqlSZNmqSffvpJjzzyiA4dOqQpU6bk494AAAAAAAAAAAAAAPJCgS2AS9KwYcMUEBBgm+7l5aVx48bJZDJp/fr1SkhI0MmTJ7Vu3TqVKVNGoaGhtraurq4aPXq0PD09tWjRIiUkJOT5fgAAAAAAAAAAAAAA8k6BLID7+Pjo3nvvVd26dVPNK168uIoVK6akpCTFxMRo06ZNslgsat68uVxcXOzaFi1aVI0bN9a1a9e0bdu2PIoeAAAAAAAAAAAAAJAfCmQBfNq0aVqzZo18fX1TzYuMjFRsbKxcXFxUvHhxHT58WJIUFBSU5roqV64sSbZ2AAAAAAAAAAAAAADHVCAL4Lfz2WefSZJatGihIkWK6Pz585Ikf3//NNtbp1+4cCFP4gMAAAAAAAAAAAAA5A/n/A4gM+bNm6fVq1fL3d1dQ4YMkSRdu3ZNkuTm5pbmMtbp1nbZ4ex8190vAGSKk5PjnOOOtC9AZjnS+e9I+wIAAAAAAAAAyH13TQF87ty5GjdunEwmk8aOHavAwEBJkpOTkyTJZDKluZxhGHb/ZpXZbJKvr2e21gEg73h7u+d3CAByAO9lAAAAAAAAAEBmFPgCuGEY+uijjzRz5kw5OTlp7Nix6tChg22+h4eHJOn69etpLm+d7u6evS/QLRZDly9n/ylyoCBzcjI7TLHp8uV4paRY8jsMIF/wXgYAIG95e7vTawkAAAAAAAVEgS6AJyQk6PXXX9fatWvl5uamjz/+WK1bt7ZrU7JkSUmyjQV+qzuNEZ4Zycl8AQ/cLVJSLLxnAQfAexkAAAAAAAAAkBkFtgAeFxenPn366K+//pKfn5+++OIL1alTJ1W7oKAgSdKxY8fSXM+RI0ckScHBwbkXLAAAAAAAAAAAAAAg3xXIPtqSkpLUr18//fXXX6pQoYIWLVqUZvFbkpo2bSpJ2rBhg1JSUuzmXblyRdu2bZOHh4fq16+f63EDAAAAAAAAAAAAAPJPgSyAT5kyRTt37pS/v7/mzZungICAdNuWK1dOLVu21KlTpzRhwgQZhiFJSkxM1KhRo3T16lU9++yz8vLyyqvwAQAAAAAAAAAAAAD5oMB1gX7p0iXNmTNHkuTn56cJEyak23bYsGEqUaKERo4cqQMHDmj27NnauHGjqlSpon379umff/5RjRo1NHDgwLwKHwAAAAAAAAAAAACQTwpcAXzPnj2Kj4+XJIWFhSksLCzdtq+88opKlCihcuXKacmSJZo8ebJ+/fVXbdiwQWXLltVLL72kvn37ytPTM6/CBwAAAAAAAAAAAADkkwJXAG/WrJkOHTqU6eVKlSqlMWPG5EJEAAAAAAAAAAAAAIC7QYEcAxwAAAAAAAAAAAAAgMwqcE+AAwAAAAAAoHAxm00ym025sm4nJ57/AAAAAAoTCuAAAAAAAADIN2azST4+HhSqAQAAAOQICuAAAAAAAADIN2azSU5OZn2+4DdFnbuU4+uvE1xWz7Srm+PrBQAAAFAwUQAHAAAAAABAvos6d0nhUTE5vt6y/t45vk4AAAAABRd9SwEAAAAAAAAAAAAAHEK2CuArVqzQzp0779ju559/1qRJk7KzKQAAAAAACiVybwAAAAAAMi5bBfBhw4bpu+++u2O7lStXavbs2dnZFAAAAAAAhRK5NwAAAAAAGZepMcBXrFih5ORku2kRERFasmRJusvExcXp999/l4uLS9YiBAAAAACgECH3BgAAAAAg6zJVAD9w4IDmzZsnk8kkSTKZTNqzZ4/27Nlz2+UMw9ATTzyR9SgBAAAAACgkyL0BAAAAAMi6TBXAQ0NDFRcXZ/t9+fLlKl++vOrXr5/uMkWKFFHFihXVtWvXrEcJAAAAAEAhQe4NAAAAAEDWZaoAXrRoUY0fP972+/Lly1W3bl27aQAAAAAAIOvIvQEAAAAAyLpMFcBvFRYWllNxAAAAAACANJB7AwAAAACQcdkqgN8sOjpa8fHxMgwj3TYBAQE5tTkAAAAAAAodcm8AAAAAAG4v2wXwr7/+WjNmzNDFixdv285kMunvv//O7uYAAAAAACh0yL0BAAAAAMiYbBXAly1bpvfff1+S5OrqKl9fXzk5OeVIYAAAAAAAgNwbAAAAAIDMyFYB/JtvvpHJZNKIESPUpUsXubi45FRcAAAAAABA5N4AAAAAAGRGtgrgx44dU926ddW9e/ecigcAAAAAANyE3BsAAAAAgIzLVgHc3d1dvr6+ORULAAAAAAC4RW7m3haLRYsXL9ayZct05MgRJSUlqWzZsmrdurVefPFFeXt727W/cOGCpk6dqs2bN+vs2bPy9/dXu3btNGDAAHl6euZKjAAAAAAAZIY5Ows3bNhQe/fuVXx8fE7FAwAAAAAAbpJbubfFYlFoaKhGjRqlsLAw1ahRQw888IAuX76smTNnqnPnzrpw4YKt/blz59SlSxd9++23cnNzU4sWLWSxWDRz5kx17dpVcXFxORofAAAAAABZka0C+JAhQxQfH6+33npLly5dyqmYAAAAAADA/8ut3Hvp0qVat26dKlasqNWrV2vevHn68ssvtW7dOrVs2VIREREaM2aMrf2YMWMUFRWlfv36adWqVZo0aZJ++uknPfLIIzp06JCmTJmSY7EBAAAAAJBV2eoCfeHChapdu7Z+/PFHW9Ls7e0tk8mUqq3JZNI333yTnc0BAAAAAFDo5FbuvXTpUknSsGHDFBAQYJvu5eWlcePG6YEHHtD69euVkJCgc+fOad26dSpTpoxCQ0NtbV1dXTV69Ght2rRJixYt0uDBg+Xm5pbNPQYAAAAAIOuyVQCfM2eO7f/Jyck6evRoum3TSswBAAAAAMDt5Vbu7ePjo3vvvVd169ZNNa948eIqVqyYYmNjFRMTo02bNslisah58+ZycXGxa1u0aFE1btxYP//8s7Zt26bmzZtnOAYAAAAAAHJatgrgc+fOzak4AAAAAABAGnIr9542bVq68yIjIxUbGysXFxcVL15chw8fliQFBQWl2b5y5cr6+eefdfjwYQrgAAAAAIB8la0CeMOGDXMqDgAAAAAAkIb8yL0/++wzSVKLFi1UpEgRnT9/XpLk7++fZnvr9AsXLuRJfAAAAAAApCdbBfCbJSUl6eDBgzp9+rRKlCih+vXr659//lHZsmVzahMAAAAAABRqeZF7z5s3T6tXr5a7u7uGDBkiSbp27ZokpTu+t3W6tV12ODub7X53cjKn0/LuktH9cJT9lQrfPjvKfgAAAAB3u2wXwJOTk/X555/r22+/1ZUrVyRJnTp1Uv369fXmm2/q6tWr+vTTT1WhQoVsBwsAAAAAQGGUV7n33LlzNW7cOJlMJo0dO1aBgYGSJCcnJ0npjzFuGIbdv1llNpvk6+uZrXUUVN7e7vkdQp4rbPtc2PYXAAAAKKiyVQBPTk7Wiy++qK1bt8rZ2Vk1a9bUvn37bPOvXr2qv//+W927d9eKFStUokSJbAcMAAAAAEBhkhe5t2EY+uijjzRz5kw5OTlp7Nix6tChg22+h4eHJOn69etpLm+d7u6evQKgxWLo8mX7p8idnMwOUVi8fDleKSmWO7ZzlP2VCt8+Z3R/AQAAAGSet7d7hntdylYB/Ntvv9Vvv/2mJk2aaNy4cSpZsqSqVq1qmz9//ny98847WrFihWbNmqU333wzO5sDAAAAAKDQye3cOyEhQa+//rrWrl0rNzc3ffzxx2rdurVdm5IlS0qSbSzwW91pjPDMSE52zAJiSorFYfctPYVtnwvb/gIAAAAFVbYGJ1q+fLl8fHw0ceJEWzJ8Mzc3N40ePVolS5bUpk2bsrMpAAAAAAAKpdzMvePi4tSrVy+tXbtWfn5+mjt3bqrityQFBQVJko4dO5bmeo4cOSJJCg4OztT2AQAAAADIadkqgIeHh6tBgwby9Ex/fC4XFxfVrl1b//zzT3Y2BQAAAABAoZRbuXdSUpL69eunv/76SxUqVNCiRYtUp06dNNs2bdpUkrRhwwalpKTYzbty5Yq2bdsmDw8P1a9fP8PbBwAAAAAgN2SrAO7s7KzLly/fsV1sbKycnbPV2zoAAAAAAIVSbuXeU6ZM0c6dO+Xv76958+YpICAg3bblypVTy5YtderUKU2YMEGGYUiSEhMTNWrUKF29elXPPvusvLy8Mrx9AAAAAAByQ7aq0tWqVdO+ffsUFRWlcuXKpdkmMjJS+/btU+3atbOzKQAAAAAACqXcyL0vXbqkOXPmSJL8/Pw0YcKEdNsOGzZMJUqU0MiRI3XgwAHNnj1bGzduVJUqVbRv3z79888/qlGjhgYOHJj5nQMAAAAAIIdl6wnwrl27Kj4+XgMGDNDff/+dav6hQ4f0yiuvKDExUZ07d87OpgAAAAAAKJRyI/fes2eP4uPjJUlhYWFatWpVuj9Xr16VdOMp8CVLlujpp5/WlStXtGHDBrm6uuqll17S3Llzb9tFOwAAAAAAeSVbT4C3b99eW7du1ZIlS/TUU0+paNGiMplM2rx5s1q0aKGzZ8/KMAx16NBBjz32WE7FDAAAAABAoZEbuXezZs106NChTMdSqlQpjRkzJtPLAQAAAACQV7I9MPeYMWNUt25dzZo1SydOnJAkxcTESJLKli2rnj17qkePHtndDAAAAAAAhRa5NwAAAAAAGZPtArgkde7cWZ07d9b58+d1+vRpWSwW+fv7pzs2GQAAAAAAyBxybwAAAAAA7ixbY4BbxcTEaPv27fL391ft2rVVt25dxcfH69tvv9X58+dzYhMAAAAAABRq5N4AAAAAANxZtgvg3333nZo1a6b333/fbvqePXs0evRotW3bVj/88EN2NwMAAAAAQKFF7g0AAAAAQMZkqwD+22+/adSoUXJ2dlbjxo3t5tWvX1+9e/eWYRgaOnSo/vjjj2wFCgAAAABAYUTuDQAAAABAxmWrAD5z5kw5Oztr7ty5euONN+zmVaxYUa+//rrmzp0rk8mkGTNmZCtQAAAAAAAKI3JvAAAAAAAyLlsF8MOHD6tRo0aqVatWum1q1aql+vXra/fu3dnZFAAAAAAAhRK5NwAAAAAAGZetAnh8fLzc3d3v2M7Hx0fJycnZ2RQAAAAAAIUSuTcAAAAAABmXrQJ4xYoVtWPHDsXFxaXb5vr169q5c6fKly+fnU0BAAAAAFAokXsDAAAAAJBx2SqAP/roo7p06ZJCQ0N14cKFVPNjYmL06quv6uLFi+rUqVN2NgUAAAAAQKFE7g0AAAAAQMY5Z2fh7t2764cfftDWrVvVokUL1axZU2XKlJEknTlzRgcOHFBiYqJq166tXr165US8AAAAAAAUKuTeAAAAAABkXLYK4C4uLpo9e7Y+/fRTLVu2TLt379bu3btt84sUKaKuXbvq9ddfl6ura3ZjBQAAAACg0CH3BgAAAAAg47JVAJckT09PjRgxQm+88Yb279+v8+fPKyUlRf7+/qpRo4Y8PDxyIk4AAAAAAAotcm8AAAAAADImWwXwHj16qGLFinrvvffk6uqqkJCQnIoLAAAAAACI3BsAAAAAgMzIVgF87969MpvNORULAAAAAAC4Bbk3AAAAAAAZl60M2tPTU4Zh5FQsAAAAAADgFuTeAAAAAABkXLYK4P3799f27dv11VdfKTExMadiAgAAAAAA/4/cGwAAAACAjMtWF+iRkZGqUKGCJkyYoE8++UQVKlSQt7d3ml2zmUwmffPNN9nZHAAAAAAAhQ65NwAAAAAAGZetAvicOXNs/09OTtaxY8fSbWsymbKzKQAAAAAACiVybwAAAAAAMi5bBfC5c+fmVBwAAAAAACAN5N4AAAAAAGRctgrgDRs2zKk4AAAAAABAGsi9AQAAAADIuGwVwG+WlJSkgwcP6vTp0ypRooTq16+vf/75R2XLls2pTQAAAAAAUKiRewMAAAAAcHvZLoAnJyfr888/17fffqsrV65Ikjp16qT69evrzTff1NWrV/Xpp5+qQoUK2Q4WAAAAAIDCiNwbAAAAAICMMWdn4eTkZL344ouaNm2a4uPjVbNmTRmGYZt/9epV/f333+revbsuXLiQ7WABAAAAAChsyL0BAAAAAMi4bBXAv/32W/3222968MEH9fPPP2vx4sV28+fPn6/HH39cFy5c0KxZs7IVKAAAAAAAhRG5NwAAAAAAGZetAvjy5cvl4+OjiRMnqmTJkqnmu7m5afTo0SpZsqQ2bdqUnU0BAAAAAFAokXsDAAAAAP6PvfsOj6Lc/z7+2U2AJEDoHSy0RFF6V0QBaUqJgCBoLEiRJng8FA+ICIIgwlFBEPiBAh4QJQlVCF3poUZpKiglYEIvgRCS7PMHT6IxAdJ2Z3fm/bqucx2dubP7vZ1tn/lOQcZlqwH+xx9/qHbt2sqbN+8dx+TKlUtVq1bV6dOns/NUCgsLU0BAgLZu3Zru+nr16ikgIOCO/7t582a2nh8AAAAAACO4MnsDAAAAAODpvLP1x97eunLlyj3HXbp0Sd7eWX+qyMhIjR49+o7ro6KidOnSJZUoUUJ169ZNd4zdnq1ePwAAAAAAhnBV9gYAAAAAwAyylYwfeugh/fTTT4qKilKZMmXSHXPy5En99NNPqlq1apaeY/369RoyZIiuXbt2xzGHDh2SJLVs2VLvvPNOlp4HAAAAAAB35IrsDQAAAACAWWTrtOgXXnhBN27cUJ8+fXTw4ME0648cOaL+/fsrPj5eHTt2zNRjR0dHa9iwYerTp49u3bqlokWL3nHsgQMHJElVqlTJ3AQAAAAAAHBzzszeAAAAAACYTbbOAG/durW2bt2q7777Th06dFD+/Plls9n0448/6sknn1R0dLQcDoeeeeYZtWvXLlOPPXnyZIWGhuqRRx7R2LFjNWbMGJ07dy7dsclngD/yyCPZmQ4AAAAAAG7HmdkbAAAAAACzyfbNwcaMGaPq1avr//7v//T7779Lki5evChJKl26tF5++WUFBwdn+nHLly+v8ePHq23btve8f/eBAwfk4+Ojn3/+WcOHD9evv/4qm82mmjVrqk+fPqpWrVrmJwYAAAAAgJtwVvYGAAAAAMBsst0Al6SOHTuqY8eOOnv2rM6cOaOkpCQVK1bsjvcmy4iePXtmaNz58+cVExMjSRo8eLCqV6+uevXq6ZdfftHGjRu1efNmffTRR2rdunWWawEAAAAAwGjOyN4AAAAAAJhNphvgiYmJ+t///qfw8HCdO3dOpUuXVps2bdS+fXsVK1ZMxYoVc0add5R8/+9ChQpp2rRpqlGjhiTJ4XDoq6++0rhx4zRs2DDVrFlTJUuWzNZzeXtn65bpgNvz8jLPa9xMcwEyy0yvfzPNBQCAzHC37A0AAAAAgKfIVAM8Pj5e3bt3165du+RwOCRJv//+u7Zu3aoNGzbok08+cUqRd9OoUSP9+OOPcjgcKlGiRMpym82mV155RREREVq7dq2+++479evXL8vPY7fbVKhQ3pwoGYAL+Pv7Gl0CgBzAexkAYEXumL0BAAAAAPAUmWqAL1y4UBERESpRooR69OihcuXK6ZdfftGsWbMUHh6uJUuWqF27ds6qNV02m03Fixe/4/qnnnpKa9eu1c8//5yt50lKcujKlevZegzA3Xl52U3TbLpy5YYSE5OMLgMwBO9lAABcy9/fN0evWuKO2RsAAAAAAE+RqQb4qlWr5OPjowULFqh06dKSpMaNG6tRo0YKCgrSihUr3C6EJ18W7saNG9l+rIQE1++At9ttstttTnv8pCSHkpIcTnt8wCiJiUmGvGcB5CzeywAAK/LE7A0AAAAAgLvIVAP86NGjql27dkoATxYYGKgqVaro8OHDOVpcRnzzzTfatm2bnn32WTVr1izN+pMnT0pStu//bYTbl133ld3u5bTnSEpK1MWLN2iCAwAAAICbcMfsDQAAAACAp8hUAzw2NlYFChRId13ZsmX1yy+/5EhRmREdHa3vv/9eN27cSNMAdzgcWrJkiSTp8ccfd3lt2XX77G8v/b58pm6cP5Pjj+9bpJQefLaH7HYbDXAAAAAAcBPumL0BAAAAAPAUmWqAJyQkyMsr/bORc+XKpVu3buVIUZkRFBSkmTNnauPGjVq0aJGef/55SVJSUpI+++wzRUZGqmLFimrZsqXLa8spN86f0Y3oE0aXAQAAAABwAXfM3gAAAAAAeIpMNcDdUbly5fTee+9p+PDhGjFihObPn68HHnhAhw8f1vHjx1W0aFF99tlnypUrl9GlAgAAAAAAAAAAAACcyG50ATmhQ4cO+vrrr9WkSRNFR0dr/fr1SkhI0EsvvaSlS5eqfPnyRpcIAAAAAAAAAAAAAHAyjzkDfN68eXddX7NmTU2bNs1F1QAAAAAAAAAAAAAA3E2mG+Br165V06ZN0yy/ePGiJKW7TpJsNpvWrl2b2acDAAAAAMByyN4AAAAAAGRNphvg169f1/Xr1++4PioqKt3lNpsts08FAAAAAIAlkb0BAAAAAMiaTDXA586d66w6AAAAAACAyN4AAAAAAGRHphrgdevWdVYdAAAAAABAZG8AAAAAALLDbnQBAAAAAAAAAAAAAADkBBrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU/A2ugAAAAAAAOAewsLCNGTIEM2ZM0cNGzZMs75evXq6dOnSHf8+MjJSefLkcWKFAAAAAADcHQ1wAAAAAACgyMhIjR49+o7ro6KidOnSJZUoUUJ169ZNd4zdzoXmAAAAAADGogEOAAAAAIDFrV+/XkOGDNG1a9fuOObQoUOSpJYtW+qdd95xVWkAAAAAAGQKDXAAAAAAACwqOjpa//3vfxUaGiofHx8VLVpU586dS3fsgQMHJElVqlRxZYkAAAAAAGQK1yYDAAAAAMCiJk+erJCQEFWpUkXffPONypcvf8exyWeAP/LII64qDwAAAACATOMMcAAAAAAALKp8+fIaP3682rZte8/7dx84cEA+Pj76+eefNXz4cP3666+y2WyqWbOm+vTpo2rVqrmoagAAAAAA7owzwAEAAAAAsKiePXuqffv292x+nz9/XjExMYqLi9PgwYOVlJSkevXqqWDBgtq4caO6du2qlStXuqhqAAAAAADujDPAAQAAAADAXSXf/7tQoUKaNm2aatSoIUlyOBz66quvNG7cOA0bNkw1a9ZUyZIls/Vc3t6pm/FeXuY4dj+j8zDLfCXrzdks8wAAAAA8HQ1wAAAAAABwV40aNdKPP/4oh8OhEiVKpCy32Wx65ZVXFBERobVr1+q7775Tv379svw8drtNhQrlzYmS3Y6/v6/RJbic1eZstfkCAAAA7ooGOAAAAAAAuCubzabixYvfcf1TTz2ltWvX6ueff87W8yQlOXTlyvVUy7y87KZoLF65ckOJiUn3HGeW+UrWm3NG5wsAAAAg8/z9fTN81SUa4AAAAAAAIFuKFSsmSbpx40a2HyshwZwNxMTEJNPO7U6sNmerzRcAAABwV9ycCAAAAAAA3NU333yjgQMHau3atemuP3nypCRl+/7fAAAAAABkF2eAAwAAAACAu4qOjtb333+vGzduqFmzZqnWORwOLVmyRJL0+OOPG1EeAAAAAAApOAMcAAAAAADcVVBQkHLnzq2NGzdq0aJFKcuTkpL06aefKjIyUhUrVlTLli0NrBIAAAAAAM4ABwAAAAAA91CuXDm99957Gj58uEaMGKH58+frgQce0OHDh3X8+HEVLVpUn332mXLlymV0qQAAAAAAi+MMcAAAAAAAcE8dOnTQ119/rSZNmig6Olrr169XQkKCXnrpJS1dulTly5c3ukQAAAAAADgDHAAAAAAA3DZv3ry7rq9Zs6amTZvmomoAAAAAAMg8zgAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJiCt9EFAAAAAIAr2O022e02pz5HUpJDSUkOpz4HAAAAAAAA7owGOAAAAADTs9ttKlTIV3a7l1OfJykpURcv3qAJDgAAAAAAYBAa4NnkzLNIvLy4Qj0AAACQE27/bvfS78tn6sb5M055Dt8ipfTgsz1kt9togAMAAAAAABjEYxrgYWFhGjJkiObMmaOGDRumWX/u3Dl9/vnn+vHHHxUdHa1ixYqpZcuW6tOnj/LmzeuUmux2mwoW9KNRDQAAAHiIG+fP6Eb0CaPLAAAAAAAAgJN4RAM8MjJSo0ePvuP6mJgYdenSRVFRUapcubKefPJJ/fTTT5o1a5Z+/PFH/e9//1O+fPlyvC673SYvL7umLtiiqJjLOf741QJKq3PL6jn+uAAAAAAAAAAAAABgRm7fAF+/fr2GDBmia9eu3XHMmDFjFBUVpZ49e+pf//qXJCk+Pl6DBw/W999/rylTpmjo0KFOqzEq5rL+iLqY449buph/jj8mAAAAAAAAAAAAAJiV2167Ozo6WsOGDVOfPn1069YtFS1aNN1xJ06c0Jo1a1SqVCkNGDAgZXnu3Lk1evRo5c2bV998843i4uJcVToAAAAAAAAAAAAAwABu2wCfPHmyQkJCVKVKFX3zzTcqX758uuN++OEHJSUlqXHjxsqVK1eqdfnz51f9+vV1/fp17dixwxVlAwAAAAAAAAAAAAAM4rYN8PLly2v8+PH69ttvFRAQcMdxv/zyiySpcuXK6a6vWLFiqnEAAAAA3JPdbpO3t90p//PyctvoAwAAAAAAgBzktvcA79mzZ4bGnT17VpJUrFixdNcnLz937lzOFAYAAAAgx9ntNhUs6EejGgAAAAAAANnitg3wjLp+/bokycfHJ931ycuTx2WHt3fqnXFm2Tlnlnkg+8z0WjDTXIDMMtPr30xzAXB3Xl63z9KeumCLomIu5/jjVwsorc4tq+f446aHzy4AAAAAAADjeHwD3MvLS5Jks9nSXe9wOFL9f1bZ7TYVKpQ3W4/hrvz9fY0uAchxvK4Bc+C9DFhPVMxl/RF1Mccft3Qx/xx/zDvhswsAAAAAAMA4Ht8A9/PzkyTdvHkz3fXJy319s7cTKinJoStXUp9F7uVlN8XOrStXbigxMcnoMuAGzPKalnhdw9p4LwPwRHx2wZP5+/ty5j8AAAAAAG7C4xvgxYsXl/TXvcD/6V73CM+MhARz7sRKTEwy7dxgXbyuAXPgvQzAE/HZBQAAAAAAYByPP0S9cuXKkqSjR4+mu/7XX3+VJAUEBLisJgAAAAAAAAAAAACA63l8A7xRo0aSpA0bNigxMTHVuqtXr2rHjh3y8/NTrVq1jCgPAAAAAAAAAAAAAOAiHt8AL1OmjJ566imdOnVKH330kRwOhyQpPj5e7777rmJjY9WlSxfly5fP4EoBAAAAAAAAAAAAAM7k8fcAl6QRI0bowIEDmjNnjjZt2qRKlSrpp59+0unTp1WlShX169fP6BIBAAAAAAAAAAAAAE7m8WeAS7fPAv/uu+/UqVMnXb16VRs2bFDu3LnVu3dvzZ07V3nz5jW6RAAAAAAAAAAAAACAk3nMGeDz5s276/oSJUpozJgxLqoGAAAAAAAAAAAAAOBuTHEGOAAAAAAAAAAAAAAANMABAAAAAIAkKSwsTAEBAdq6dWu668+dO6f3339fTz/9tKpWraqmTZvqo48+UmxsrIsrBQAAAAAgfTTAAQAAAACAIiMjNXr06Duuj4mJ0fPPP6+vv/5aPj4+evLJJ5WUlKRZs2bphRde0LVr11xYLQAAAAAA6aMBDgAAAACAxa1fv17du3e/axN7zJgxioqKUs+ePbVs2TJ9+umnWr16tVq1aqUjR45oypQpLqwYAAAAAID00QAHAAAAAMCioqOjNWzYMPXp00e3bt1S0aJF0x134sQJrVmzRqVKldKAAQNSlufOnVujR49W3rx59c033yguLs5VpQMAAAAAkC4a4AAAAAAAWNTkyZMVEhKiKlWq6JtvvlH58uXTHffDDz8oKSlJjRs3Vq5cuVKty58/v+rXr6/r169rx44drigbAAAAAIA7ogEOAAAAAIBFlS9fXuPHj9e3336rgICAO4775ZdfJEmVK1dOd33FihVTjQMAAAAAwCjeRhcAAAAAAACM0bNnzwyNO3v2rCSpWLFi6a5PXn7u3LmcKQwAAAAAgCyiAQ4AAAAAAO7q+vXrkiQfH5901ycvTx6XHd7eqS9W5+VljovXZXQeZpmvZL05m2UeAAAAgKejAQ4AAAAAAO7Ky8tLkmSz2dJd73A4Uv1/VtntNhUqlDdbj+Gu/P19jS7B5aw2Z6vNFwAAAHBXNMABAAAAAMBd+fn5SZJu3ryZ7vrk5b6+2WsAJiU5dOVK6rPIvbzspmgsXrlyQ4mJSfccZ5b5Stabc0bnCwAAACDz/P19M3zVJRrgAAAAAADgrooXLy7pr3uB/9O97hGeGQkJ5mwgJiYmmXZud2K1OVttvgAAAIC74uZEAAAAAADgripXrixJOnr0aLrrf/31V0lSQECAy2oCAAAAACA9NMABAAAAAMBdNWrUSJK0YcMGJSYmplp39epV7dixQ35+fqpVq5YR5QEAAAAAkIIGOAAAAAAAuKsyZcroqaee0qlTp/TRRx/J4XBIkuLj4/Xuu+8qNjZWXbp0Ub58+QyuFAAAAABgddwDHAAAAAAA3NOIESN04MABzZkzR5s2bVKlSpX0008/6fTp06pSpYr69etndIkAAAAAAHAGOAAAAAAAuLcyZcrou+++U6dOnXT16lVt2LBBuXPnVu/evTV37lzlzZvX6BIBAAAAAOAMcAAAAAAAcNu8efPuur5EiRIaM2aMi6oBkB12u012u81pj5+U5FBSksNpjw8AAABkFQ1wAAAAAAAAwETsdpsKFfKV3e7ltOdISkrUxYs3aIIDAADA7dAABwAAAAAAAEzk9tnfXvp9+UzdOH8mxx/ft0gpPfhsD9ntNhrgAAAAcDs0wJEpXD4LAAAAAADAM9w4f0Y3ok8YXQYAAADgUjTAkWF2u00FC/rJy8vutOdITEzSpUvXaYIDAAAAAAAAAAAAyDQa4Mgwu90mLy+7pi7YoqiYyzn++GWKF1DfFx7j8lkAAAAAAAAAAAAAsoQGODItKuay/oi66LTHd+YZ5hKXWQcAAAAAAAAAAADMigY43EaB/D5yJCXJ39/Xqc+TlJSoixdv0AQHAAAAAAAAAAAATIYGONxGXp/cstnt+n35TN04f8Ypz+FbpJQefLYHl1kHAAAAAAAAAAAATIgGONzOjfNndCP6hNFlAAAAAAAAAAAAAPAwzr3ZMgAAAAAAAAAAAAAALkIDHAAAAAAAAAAAAABgClwCHQAAAAAAAHAhu90mu93mtMf38uKcFwAAAFgXDXAAAAAAAADARex2mwoW9KNJDQAAADgJDXAAAAAAAADARex2m7y87Jq6YIuiYi475TmqBZRW55bVnfLYAAAAgLujAQ4AAAAAAAC4WFTMZf0RddEpj126mL9THhcAAADwBFxrCQAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKbgbXQBOWn9+vV644037ri+devWmjx5sgsrAgAAAAAAAAAAAAC4iqka4AcPHpQk1alTRyVLlkyzvkaNGq4uCQAAAAAAAAAAAADgIqZsgA8fPlyBgYEGVwMAAAAAAAAAAAAAcCVT3QP84MGDypMnjypWrGh0KQAAAAAAAAAAAAAAFzNNA/zixYs6c+aMAgIC5O1tqhPbAQAAAAAAAAAAAAAZYJpOcfLlz0uVKqWPPvpI69at0+nTp1W0aFG1aNFCvXv3VoECBQyuEgAAAAAAAAAAAADgLKY5A/zAgQOSpNWrV2vBggV64IEHVLNmTV2+fFmzZ8/W888/r7NnzxpcJQAAAAAAAAAAAADAWUxzBvihQ4ckSU8++aQmTpyo/PnzS5IuXLigQYMGafv27RoxYoSmT5+e5efw9k59vICXlzmOH8joPMwyX8lcc8lJZvrvYqa5AJllpte/meYC4O7M9H4301wAAAAAAAA8jWka4OPHj9ebb76pkiVLysfHJ2V54cKFNWHCBLVs2VIbNmzQqVOnVLZs2Uw/vt1uU6FCeXOyZLfh7+9rdAkuZ8U5Ww3bGDAH3ssAPBGfXQAAAAAAAMYxTQM8d+7ceuCBB9JdV6JECT388MPatWuXDhw4kKUGeFKSQ1euXE+1zMvLboqdW1eu3FBiYtI9x5llvlLG52w1bGPAHHgvA/BEfHbBk/n7+1rqzP/169frjTfeuOP61q1ba/LkyS6sCAAAAACAv5imAX4vRYsWlSTduHEjy4+RkGDOnViJiUmmndudWHHOVsM2BsyB9zIAT8RnF8zu4MGDkqQ6deqoZMmSadbXqFHD1SUBAAAAAJDCFA3w+Ph4jRo1ShcvXtTEiRPl5+eXZszJkyclKd1wDgAAAAAAMia5AT58+HAFBgYaXA0AAAAAAKmZ4hptuXPn1tatW7Vu3Tr98MMPadYfPnxYhw8fVv78+VW9enXXFwgAAAAAgEkcPHhQefLkUcWKFY0uBQAAAACANEzRAJekzp07S5I+/PBDnThxImX5uXPn9M477ygxMVHdu3eXj4+PUSUCAAAAAODRLl68qDNnziggIEDe3qa4qBwAAAAAwGRMk1Zfe+01RUREaPPmzXr22WdVu3Zt5c6dWzt27ND169fVokUL9ezZ0+gyAQAAAADwWMmXPy9VqpQ++ugjrVu3TqdPn1bRokXVokUL9e7dWwUKFDC4SgAAAACAlZmmAZ47d27NmDFDX3/9tUJDQ7V7927Z7XZVqlRJnTp1UseOHWWz2YwuEwAAAAAAj3XgwAFJ0urVq5U3b17VrVtXJUuW1E8//aTZs2dr/fr1mj9/vooVK2ZwpQAAAAAAqzJNA1ySvLy8FBwcrODgYKNLAQAAAADAdA4dOiRJevLJJzVx4kTlz59fknThwgUNGjRI27dv14gRIzR9+vQsP4e3d+q7tXl5mePubRmdh1nmK1lvzlabr2SuuQAAAMA8TNUABwAAAAAAzjN+/Hi9+eabKlmypHx8fFKWFy5cWBMmTFDLli21YcMGnTp1SmXLls3049vtNhUqlDcnS3Yb/v6+Rpfgclabs9XmK1lzzgAAAHB/NMABAAAAAECG5M6dWw888EC660qUKKGHH35Yu3bt0oEDB7LUAE9KcujKleuplnl52U3RZLty5YYSE5PuOc4s85WsN2erzVfK+JwBAACA7PL3983wFYhogAMAAAAAgBxRtGhRSdKNGzey/BgJCeZspiUmJpl2bnditTlbbb6SNecMAAAA98eNegAAAAAAwD3Fx8frP//5j/r06aPr16+nO+bkyZOSpJIlS7qyNAAAAAAAUtAABwAAAAAA95Q7d25t3bpV69at0w8//JBm/eHDh3X48GHlz59f1atXd32BAAAAAACIBjgAAAAAAMigzp07S5I+/PBDnThxImX5uXPn9M477ygxMVHdu3eXj4+PUSUCAAAAACyOe4ADAAAAAIAMee211xQREaHNmzfr2WefVe3atZU7d27t2LFD169fV4sWLdSzZ0+jywQAAAAAWBgNcAAAAAAAkCG5c+fWjBkz9PXXXys0NFS7d++W3W5XpUqV1KlTJ3Xs2FE2m83oMgEAAAAAFkYDHAAAAAAAZJiXl5eCg4MVHBxsdCkAAAAAAKTBPcABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GFwC4O7vdJrvd5rTHT0pyKCnJ4bTHBwAAAAAAAAAAAKyCBjhwF3a7TQUL+snLy3kXS0hMTNKlS9dpggMAAAAAAAAAAADZRAMcuAu73SYvL7umLtiiqJjLOf74ZYoXUN8XHpPdbqMBDgAAAAAAAAAAAGQTDXAgA6JiLuuPqItGlwEAAAAAAAAAAADgLpx3XWcAAAAAAAAAAAAAAFyIBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMwdvoAgAAAOCe7Hab7Hab0x4/KcmhpCSH0x4fAAAAAAAAgPXQAAcAAPBAzm5O22w2+fvnkd3u5bTnSEpK1MWLN2iCAwAAAAAAAMgxNMABAAA8jN1uU8GCfvLycv7dbH5fPlM3zp/J8cf1LVJKDz7bQ3a7jQY4AAAAAAAAgBxDAxxwA85sYHB5WQAwH7vdJi8vu6Yu2KKomMtOeY5qAaXVuWV13Th/RjeiTzjlOQAAAAAAAAAgp9EABwxUIL+PHElJ8vf3ddpzcHlZADCvqJjL+iPqolMeu3Qxf6c8LgAAAAAgY5x96yuJk2cAAOZEAxwwUF6f3LLZ7VxeFgAAAAAAAPAwzmxQ22w2+fvnkd3u5ZTHT8bJMwAAM6IBDrgBLi8LAAAAAAAAeA673aaCBf2cemtDSU47cUbi5BkAgHnRAAcAAAAAmIazLxXKZUIBAIB0+zeHl5ddUxdsUVTM5Rx//GoBpdW5ZXVOnAEAIAtogAMAAAAATMFut6lQIV+nXiqUy4QCAIC/i4q5rD+iLub445Yu5p/jjwkAgFXQAAcAAAAAuISzz8728rLLbvdy2qVCuUwoAAAAAADujwY4AAAAAMDpXHWfTElcKhQAAAAAAAujAQ4AQA7gfqMAANyds++TKf11r0wAAAAAAGBdNMABAMgm7jcKAEDGOes+mRL3ygQAAAAAADTAAQDItttnf3O/UQAAAAAAAAAAjEYDHACAHML9RgEAAAAAAAAAMJbd6AIAAAAAAAAAAAAAAMgJnAEOAE52+/LYNqc+R1KSg0tjAwAAAAAAAAAAy6MBDgBOZLfbVKiQr+x2L6c+T1JSoi5evEETHABMxtkHUXEAFQAAAAAAAMyGBjgAy3Nmc8HLyy673Uu/L5+pG+fPOOU5fIuU0oPP9pDdbqOJAQAmYrfbVLCgn7y8nHfXosTEJF26dJ3vDwAAAAAAAJgGDXAAluaK5oIk3Th/RjeiTzj1OQAA5mK32+TlZdfUBVsUFXM5xx+/TPEC6vvCYxxABQAAAAAAAFOhAQ7A0pzdXKgWUFqdW1bP8ccFAFhHVMxl/RF10WmP78yDwLjEOgAAAAAAAFyNBjgAyHnNhdLF/HP8MQEAyAkF8vvIkZQkf39fpz1HUlKiLl68QRMcAAA49fZjEgfeAQAA4C80wAEAOY4dGwDg/vL65JbNbtfvy2fqxvkzOf74vkVK6cFne3CJdQAA4JLbjyUmJunq1Tg5HM773UEWBQAA8Aw0wAEAOcput6lQIV/Z7V5Oew7OKASAnHPj/BndiD5hdBkAAMDEnH37sYAHiim4TS0VLOiX44/9d2RRAAAAz0ADHACQo26f/e3FGYUAAAAAgFScefsxZ17ZRiKLAgAAeBIa4AAAp+CMQgAAAACAK5FDAQAAINEABwBYgLPvSe7M+9gBAAAAAAAAAICMM10DfOfOnZo+fboOHTqkuLg4BQQE6OWXX1arVq2MLg0AYAC73aaCBf1oUgMAAOQgsjcAAAAAWJezTzpLSnJk67YzpmqAL1u2TP/+97/l7e2tevXqycvLS9u2bdPAgQN19OhR9evXz+gSAcAtOPPLyd0azXa7TV5edk1dsEVRMZed8hzVAkqrc8vqTnlsAAAAd0P2BgAAyDnu3kSC+Tj7NecKvK7vztnb2Gazyd8/j+x2L6c9R1JSoi5evJHl7WyaBvj58+c1fPhw+fr6au7cuXr00UclSUePHlVwcLCmTJmiZs2aKTAw0OBKAcBYVj0jOirmsv6IuuiUxy5dzN8pjwsAAOBuyN4AAMBKaCLBbFyxb9iRlCSb3bn7nnld35kr9///vnymbpw/k+OP61uklB58tofsdhsN8K+//lpxcXHq0aNHSgCXpAoVKuitt97SO++8o6+++krjxo0zsEoAMJ6zz4jmbGgAAADzInsDAACroIkEM3LVvmFnvaYlXtf34sorot44f0Y3ok845TmyyzQN8I0bN0qSnn766TTrmjZtKpvNpk2bNrm4KgBwX846I5qzoQEAAMyL7A0AAKyCJpJ1ePolwbNyOXBn7xvmNW08q18R1TQN8N9++02SVLFixTTrChYsqKJFi+rs2bM6f/68ihQp4uryAAAAAADweGRvAABgNVZvIpmdGS4JzuXAgbRM0QC/fPmybt68qbx58ypv3rzpjilevLjOnj2rs2fPEsIBADAhZx+tm5WjaQEAMBOyNwC4F3fLQJ5+BqVE7ssIT9/ObGP8k6dfEpzLgQPpszkcDo9/R5w5c0ZPPvmkihYtqi1btqQ75oUXXtCePXu0YMEC1axZM9PP4XCk/WK02SS73a7L1+KUmJiUpdrvJncuL+Xzy6NbsVfkSErM8ce32b2UK6+/kpKSlJFXgafPV7LenN1tvpL15szr2vzbWLLenN3xdS3dDiw2m/NCuMPhkDN/NmXmoa34uk75O8/dz5KpeUqe/17msysTf2eR17WZP7uc/R3kLsjeWcPnYQbGe/ic3W2+kvXm7I6v65S/c+LXg83m/AyU2Qa4s78PHQ6H28zZqq9rV2Rvq2xjyf0+r1P+zoN/2pK97zHew+cr8bq+FzN/dmXmO8gUZ4Db//+lI+426eQd1lndcW2z2eTllf7jF8jnk6XHzKhceZ17GRR7Ji+94enzlaw3Z3ebr2S9OfO6znnuNl/JenN2x9e1Mzl751JWWPF1bUWe/l7mswv/xGeX5yJ7Zw+fh/fm6XN2t/lK1puzO76uPdndPpON4uxMlpU587rOWVbcxpL7fV5bkae/l/lOxj9Z/bPLFK+O5EuvxcXF3XFMfHy8JMnPz88lNQEAAAAAYCZkbwAAAACAJzBNA9zPz09Xr169YxCPiYmRJBUrVsyVpQEAAAAAYApkbwAAAACAJzBFA9xms6ly5cqSpKNHj6ZZf+nSJZ07d06FCxdW0aJFXV0eAAAAAAAej+wNAAAAAPAEpmiAS1KjRo0kSWvXrk2zbu3atXI4HGrcuLGrywIAAAAAwDTI3gAAAAAAd2eaBniHDh3k6+urL7/8Unv27ElZfuzYMf33v/+VzWbTq6++amCFAAAAAAB4NrI3AAAAAMDd2RwOh8PoInLKokWLNGLECHl5ealevXrKnTu3tm3bpps3b+pf//qXevbsaXSJAAAAAAB4NLI3AAAAAMCdmaoBLkk//PCDZs6cqZ9//lleXl6qWLGiXnvtNTVv3tzo0gAAAAAAMAWyNwAAAADAXZmuAQ4AAAAAAAAAAAAAsCbT3AMcAAAAAAAAAAAAAGBtNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcQI65evVqpv9mx44dTqgEQFZNmTJFv/zyi9FlAAAAALgDsjfg+cjeAAA4Fw1wuFx8fLx+/vlnHT58WAkJCXccd+HCBUVERLiwMtfbsWOH5syZo//97386efKk0eVkW3BwsC5dupShsTdv3tSYMWP06quvOrcoAJkyZcoUHTlyxOgygBzXtGlTrVu3zugyDJGUlKQTJ06kWuZwOLRy5UqNGTNGH3/8sfbv329QdTnn9OnTiouLy/D4kydPKiwszHkFGeDChQvatm2bVq5cqe+//147duzI8G8zAOZD9v4L2ZvsDbgbsjfMiuxN9v4nsjeM4m10Aci4uLg4XbhwQaVLlza6lCybO3euPvnkE12/fl2SlD9/fr3++ut6/fXXZbenPh5j8+bNGjJkiA4dOmREqTnmyJEj+uKLL3TkyBGVLl1avXr1Us2aNTVgwACtW7dODodDkuTt7a3+/furV69eBlecdYcOHdKLL76oL7/8UkWLFr3juP3792vIkCH6448/7jrOrC5cuKCjR4+qTp06RpfiElevXtX48eM1ZswYo0txGattYzNo2rSp3nnnHTVt2tToUlzmoYce0oQJE9SmTRujS3GJqKiolN8fVrJx40aNGjVKZ8+e1c8//yzpdijv06ePNm3alPI7ZNasWQoODtawYcOMLDdbmjZtmuY1ff36dY0ePVqvv/66KlSokGr83r17NWzYMLVv397Flea81atX64svvkj3d7PNZlPNmjX1+uuv68knn3R9cTkoMDBQNpstU39js9l08OBBJ1UEsyJ7eyayd1pkb2vlMrI3PAHZ2/zI3mRvsjfZ211wBriB0jsaKj4+XmFhYTp37lya8eHh4R794yAsLExjx45VQECAhg0bpl69esnHx0eTJ0/Wa6+9pmvXrhldYo77+eef9fzzz2vjxo3y9fXV/v379corr2js2LFat26dunfvrtDQUM2fP1+NGzfWf//7X33//fdGl51lI0aM0LFjx9StWzedOXMmzfpbt27p448/VteuXfXHH3+oXbt2WrFihQGV5qyHHnpIy5YtS7UsLi5OU6ZM0alTp9KM37x5s4KDg11VnlOcOnVKo0eP1nPPPafnnntOw4cP1/Hjx9OMCw8PV+vWrbV48WIDqsw5VtzGVmPFgJYcvmBehw8fVt++feVwONS9e3clJSVJkhYsWKCNGzeqWLFiWrRokfbu3avBgwdr7ty5Hv07JL3X9M2bNxUWFqaYmBgDKnKNMWPGaODAgYqKilL79u319ttv6/3339e7776rAQMGqGnTpjpw4IDeeOMNffjhh0aXmy116tRR7dq1M/W/WrVqGV023ADZm+xN9iZ7eyqyt/m3sdWQvWFGZG+yN9nbPbM3Z4AbKL0v/NjYWA0bNkyzZ8823dG5c+bMUZ06dTRv3ryUZX369NF7772nkJAQvfLKK/ryyy+VL18+A6vMWZMnT1bZsmU1b948FS5cWNevX1evXr309ddfq3Pnznr77bdTxtauXVsvvvii/u///k+tWrUysOqs69atmwoUKKChQ4eqW7du+vLLL3XfffdJun2E+pAhQ/TLL7+odOnSGjVqlBo1amRwxTkjvS/9GzduaOrUqapVq5bKli1rQFXOc+jQIb300ku6du2afHx85OPjo4MHD2rlypVauHChKleurKtXr2r48OEKDw+Xl5eXevbsaXTZ2WK1bXzs2LFMXwaTI+4B9zNz5kwVL15cS5Yskb+/f8ryr7/+WjabTW+99ZaqVq0qSXr11Ve1c+dOLViwwGN/h9yJmXc4LV26VPPnz1f79u317rvvys/PL91xsbGx+uCDD/TVV1+pRo0aatGihYsrzRl/zxFAZpC9yd5kb7K3JyJ732bmbUz2BsyB7H0b2Zvs7W5ogLshs35Q/P777xo6dGiqZblz59bYsWNVsGBBzZ49W6+//rpmz559xw8QT7N371699dZbKly4sCTJz89Pb775pl588UU9/vjjaca3atVKEyZMcHWZOerZZ59V/vz5NXDgQHXr1k0zZ87UunXrNH36dCUkJKhr167617/+pbx58xpdqtOZ9b386aefKi4uTh9//LGeeeYZSVJkZKTeeustjRkzRhMnTlRwcLD++OMPPfrooxozZowCAgIMrto5zLqNp0+frunTp2fqbzz9kplWldnLGXm6RYsWaevWrRkeb7PZNHbsWCdW5FwRERF6/vnnUwXwkydP6tixY/L29tbTTz+davxjjz2mTz/91NVlIhsWLFig6tWr3/Po8rx582rs2LE6evSovv32W48N4bdu3VKuXLky9Tf79+9XtWrVnFQRPJ1Zf8uRvcneZG9zIHv/xazbmOxtHWTvuyN7w92Rve/NHbM3DXC4jK+vry5dupTuusGDB+v69etauHChevfurZkzZ7q2OCfJly+frly5kmpZQECAGjduLG/vtG+/ixcvKk+ePK4qz2kaN26sWbNm6Y033tBzzz0nh8Oh+++/X2PGjFHt2rWNLg/ZFBkZqS5duqQEcEmqWrWqBg8erEGDBmnQoEGKiorS22+/rddeey3NPQbh/po1a2baHSd3Y7WAJknTpk3TokWLMjzeZrPpq6++cmJFzhUREZGpMyw8fRtfvHhRJUuWTLVs+/btkqRq1aql2SHu4+Ojmzdvuqw+ZN9vv/2WqXvYNm3aVN98840TK3Ku5557ThMnTszQd1R8fLwmT56suXPn6sCBAy6oDnAfZO/byN5kb09H9jY/snfGeHouk8je9+Lp25jsbX5k7ztz5+xNAxwuU69ePc2dO1dPP/20KlWqlGb9yJEjde3aNS1fvlyvvfaaGjdubECVOeuxxx7Tl19+qRo1aqhBgwaSpPz58+uLL75IM3b//v2aN29eyjhPV6tWLc2dO1evv/66Lly4oPfff58AbhKXL19WYGBgmuWPPvqoEhMTdeTIEc2bN0/Vq1d3fXHIEc2bN1ebNm2MLsPlrBbQJOno0aM6evRohsd7+lHr77zzjkff0zWzChQooAsXLqRatnnzZtlsNj322GNpxh89ejTlzDl4huvXr6tIkSIZHl+sWDGPvifbuXPn1LFjR/Xv3189evS442fS7t279c477+j48eO6//77XVwlYDyyN9mb7G0OZG/zI3tnDNnb85C9yd5mQ/b2zOxNAxwu89Zbb6lr164KCgrSww8/rI8++ijVm8Jms2nChAnKnTu3QkJCtGfPHgOrzRlvv/22IiMj9dprr6l27dp3vHfCSy+9pN27d6tw4cKp7k3m6QIDA7VgwQK9+uqreuONNzR16lTVr1/f6LKQTQkJCemeLeHj4yNJ6tmzJwEcHslqAU2SPvroI0vtcClUqJDKlCljdBkuU7NmTa1cuVLdu3eXl5eXzp07p40bN0qSWrZsmWrs1atXtWzZMtWrV8+ASpFViYmJ6Z7ZeCdeXl5KSEhwYkXOtXz5cg0bNkyTJk3Sxo0bNX78eJUrVy5lffJlYpPvtde9e3cNGDDAwIoBY5C9yd5kb3Mge8OsyN7mR/Yme5sN2dszszcNcLjMAw88oBUrVmjq1KnatWtXyg/2v7Pb7Ro7dqxq1KihTz75ROfPnzeg0pxTpEgRLV68WAsXLlR8fPwdx/n4+Khjx4568803M3UkkbsZNmxYusvvv/9+nTp1Sr169VKrVq1SHTFkhqM4kdojjzxidAlAllgtoMH8evTooS5duqhz586qW7eu1q1bp5s3b+qZZ55R+fLlJd3esbpv3z6NHz9eFy5cULdu3QyuOnvWrFmj48ePp/x7XFycbDablixZot27d6ca+8svv7i6PGRTkSJFNGPGDH399df66KOP1K5dOw0dOlTPP/+8du7cqf/85z86efKkAgIC9MEHH/CbBJZF9iZ7k72tge85eCqyN8yG7E32NhuzZG8a4AY7duxYqku+XL16VZJ05MiRNEeUZOYyKe6qUKFCGj58+D3HderUSUFBQak+RD2Vj4+PXnnllbuOMct910JDQ++6/ubNmwoLC0u1zCwhfNeuXUpMTEz599jYWEnSli1bFB0dnWqsGc6wuBtPv0zTnVhlG9epU0dFixY1ugwAOeDRRx/VtGnT9MEHH2j27Nny8vJSmzZtNGrUqJQxEyZM0Ny5c2W32zVs2DDVrFnTwIqzLzw8XOHh4WmW//P3RzIzfGf9c8fD3Zhlx0O3bt1Uv359jRgxQiNHjtS8efN09OhReXt7a8CAAerZs2emjs6HNZC900f29kxkb/Pnsowww++Y9FhlG5O9AfMge/+F7H0b2ds92BwOh8PoIqwqMDAw3Te+w+G46/JDhw65ojynczgcOnnypC5duiRJKly4sMqWLWtsUU5m9jlHRUVl6e88/ajP9N7Lf/9oTW+dJ7+XAwMD9cYbb6hhw4apll+9elV9+vTR0KFDVaVKlTR/V6dOHVeVmOOsto2tKDAw0HKXJLPanENDQ1W7du1Ul2yykosXL8rX1zfNWYCbNm3SgQMH9Mwzz7jl/ZoyY+fOnVn6u7p16+ZwJa6T3n1B78VM308RERHq06ePrl69KpvNpj59+qh///5GlwU3RPY2dw5Nj9nnTPb+i5lzGdn7NjNvYyuyWg6VrDdnsjfZ+07I3p7LU7M3DXADTZkyJUt/169fvxyuxLUiIyM1a9YsbdmyRdevX0+1Ll++fGrSpIleffXVLH2ouCsrztlK7nX0/Z0EBQXlcCWucacdiNKddyJK8ugvfCtt47+fGZUZnryTRbJmQNu5c6cqVKjg0Zf/BKzOijseJOnatWuaMGGCvvvuO+XJk0c9evTQ6tWr9csvv6hBgwYaM2aMSpcubXSZcCNkb+vkUCvO2UqslMsksndmeOI2JnuTvQF4DrK3Z2ZvGuBwqdmzZ2vixImy2+2qUaOGKlWqJH9/fyUkJOjSpUs6ePCgDh06JLvdriFDhig4ONjokrPNinPOqOnTpys8PFwhISFGl+Jy8fHxyp07t9FlZIlVdyBmlqdu47vtZLkbT97JAmu4070y78YslwpF+hYuXKjNmzdn+XsNxti4caNGjhyp6Oho1a9fX6NHj1a5cuV069Ytffrpp5o9e7Z8fHz073//W126dDG6XMAwVsyhVpxzRpG9PS+XSWTvjPLUbUz2hlmRvfFPZG/PZIbsTQMcLrNp0yb16tVLDRo00NixY1WqVKl0x504cUKjRo3S1q1bNXv2bDVo0MDFleYcK845M0aOHKlFixZ5/I/3KVOmZCpgRkZGatiwYVqxYoUTq0JOstI2/uyzz7IUwj19J4sVA1pWdvrabDZ99dVXTqjG+ax4uap77VTLkyeP8ufPr8qVK6t58+bq1KmT7Ha7Cys0lhl+h5w+fVqFCxdOc3m9Ozl58qR2796t9u3bO7cwJ3n77be1YsUK+fn5afDgwercuXOaMXv37tWQIUN08uRJ1a1bVx988IGpLnsMZIQVc6gV55wZZvjOk6yVy6zKStuY7J1xZG/PQvZOi+zt+b9DyN6emb1pgBvIal/4r776qs6dO6eQkBDlypXrrmMTEhLUvn173X///Zo6daqLKsx5VpxzZpjhy0+6/SOne/fu+ve//33XcQkJCZoyZYpmzZqlxMREj593RsXFxenChQtufTmUe2Ebm59VA1pmefKcrXivzJdeeumu6xMTE3XlyhWdOHFCt27d0mOPPabp06fL29vbRRUaywy/Qx566CFNmDAh1f0Er1+/rtGjR+v1119XhQoVUo1funSphgwZ4rFzDgwMVKNGjTR69GiVLFnyjuPi4uL04YcfauHChfLz89OePXtcWCXcEdn7zsySQ60458www3eeRC67F7I3PIHVcqhkvTmTvdMie3v+7xCyd/rcPXtb4x3mpjJzX5u/H0HkqSH84MGDeuWVV+4ZRiXJ29tbrVq10tKlS11QmfNYcc5WVLt2bc2ePVs3btzQu+++m+6YI0eOaMiQITpy5IgKFCig//znPy6uMuc0bdpU77zzjpo2bZqyLD4+XitXrtTjjz+uokWLphofHh7u0V/4kvW2sRWtW7fO6BJc7vDhw0aX4FKeHKazat68eRkaFxcXpwULFmjChAlasGDBPcM73Ed6xzLfvHlTYWFhatu2bZoQ7unGjRuXoXt8+vj46L333tPTTz/N9zEkkb3vxiw51IpztiKr5TKyt/m3sRWRvc2P7H1nZG/PRfZOn7tnbxrgBsrIl19UVJRGjx6tjRs3Kn/+/Bo4cKDzC3OS2NhYFS9ePMPjS5UqpT///NOJFTmfFedsRbNnz9aAAQO0YMEC3bhxQ2PHjk3ZceZwODRjxgxNnTpV8fHxat26tYYPH67ChQsbXHXWRUVF6fr166mWxcbGatiwYZo9e3aaEG4GVtvGknTs2DHt3btXHTp0SFl27tw5TZkyRXv27JGvr6+aNm2qV155xSPvt/ZPVgxoSC0+Pl6//fabfHx8VL58eaPLcSkfHx+9+uqr2r9/v0JDQwnhJmDWi3xlJID/3YMPPqhOnTo5qRp4ErL33Zkhh1pxzlZktVxG9jb/NpbI3rAesjfZ20zI3re5a/amAe6mEhMTNXv2bH3++eeKi4vTM888o2HDhnn0j9uEhIRM/VDz9vZWfHy8EytyPivO2Ypy586tqVOnatiwYQoNDVVcXJwmTpyoEydOaOjQoYqMjFSxYsX03nvvqUmTJkaX6zRm/cKXrLeNJ06cqNmzZ8vhcCgoKEh2u11Xr15V586ddfr0aRUsWFBlypTRJ598ovXr12vevHkZOtvGk1kxoEVHRysyMlI+Pj6qU6dOhu9z5M6uXr2qmTNnau/evamO0F62bJnGjBmjK1euSLr9w33s2LGqXr26QZUao169etqyZYvRZQDZcvPmTa1evVohISHauXOnHA6H+vbta3RZcGNkb3PkUCvO2YqslsvuhOxtnm1M9k6L7E32tgKyN8zAE7I3DXA3tGvXLo0aNUq//vqrHnjgAY0cOVINGjQwuizgnqZMmZKp8T///LOTKnE9Ly8vTZgwQf7+/po/f75OnTqlX3/9VXFxcerUqZOGDBmifPnyGV0mssEq23jNmjWaNWuWnnzySQUHB8tut0uSPv/8c0VFRalatWr68ssv5evrq8jISL300kv68ssv1aNHD4Mrzz4rBrSoqChNmjRJe/fu1fr161OWz5gxQ59++qkSExPlcDhUoEABjR49Ws2bNzew2uyJjY1V586ddezYMZUsWVIJCQny9vZWZGSkhgwZIofDoc6dO6tSpUoKCwvTq6++qrCwMN1///1Gl+4yXl5eSkpKMrqMLAsLC8vU+N9//905hcAQe/fuVUhIiL7//nvFxsbK4XDovvvuU+fOnY0uDW6M7A1PRfY2fy6zMqtsY7I32Vsie5O9PRPZ29o8KXvTAHcjFy9e1IQJExQWFqbcuXOrf//+6tGjhykub5Ns165dSkxMzNDYPXv2OLka17DSnDMbwqXU99gzg+HDh6tgwYKaMmWK7Ha7vvjiCzVu3NjospCDzL6NFy5cqGrVqmn69OkpyxwOh5YuXSqbzaY333xTvr6+kqSqVauqXbt2WrFihceHcCsGtPPnz6tz5866ePGiqlatmjLnH3/8UZMmTZK3t7feeustVa5cWYsWLdJbb72lb775RlWqVDG69CyZPXu2Tpw4of/+979q2bJlyvKpU6fK4XDo5Zdf1tChQyVJHTt2VNu2bTV9+nSNGzfOqJJdbv/+/SpVqpTRZWTZ0KFDM/W7wuFwmO53iNVER0dryZIlCgkJ0fHjx1POiKtXr5569Oihxx9/3OAK4a7I3ql5eg5NZqU5k73Nn8tg/m1M9iZ7k73J3p6K7G09npq9aYC7iW+//VYTJ07U5cuX9dhjj2nkyJG67777jC4rxy1atEiLFi3K0FizfDBaac5z5841ugS30K9fPxUqVEhjxozRrFmzVKtWLVMcnYy/mHkbHzhwIE2gPnjwoM6fP698+fKpXr16qdY9+uijWrZsmStLdAorBrQZM2YoNjZWX3/9daoj6mfMmCGbzaa+ffumvBaeeOIJdejQQTNnztR///tfYwrOpvDwcLVr1y7V9o2NjU257FjXrl1TlufJk0dt27bVt99+6/I6jbJq1SotWbJEr7/+utGlZJknvx+RcfHx8Vq7dq1CQkK0bds2JSYmysvLS3Xr1lWtWrU0bdo0BQcHu20Ah/HI3ml5eg5NZqU5k71vM3Muw21m3sZkb7I32Zvs7ak8+f2IjDND9qYBbrAjR47ovffe0759+1S0aFFNmjRJrVu3Nrosp7DiB6PV5ly3bt1M/82uXbucUIlrRUREpFlWuXJlderUSYsWLdLLL7+swYMHp1zOKlmdOnVcVSKyyUrb+Pr16ypQoECqZdu3b5d0ez5eXl6p1iUkJHj0zsNkVgxoGzduVIcOHVIF8EuXLmn37t2SpOeeey5luc1mU6tWrfTVV1+5uswcc+rUqVTbUbr93k5ISFC5cuXSND9KlSql8+fPu7LEHDds2LC7rk9MTFRsbKx+++03nThxQg888IBHh/CgoCCjSzDEmjVrdPz48ZR/j4uLk81m05IlS1Lez8l++eUXV5eXo0aNGqWVK1fq8uXLypMnjxo1aqRmzZqpadOmKlSokKKiovT5558bXSbcFNnb3Kw2Z7L3X8yay6zKStuY7E32JnvfRvb2PGTv28je7p+9aYAbaPz48Zo3b54SExP11FNPaeDAgcqXL59Onz59178rXbq0iyrMWVb8YLTinDPizJkzCg0NVVhYmE6ePKlDhw4ZXVK2vPTSS3cNIQcOHNArr7ySZrknz/vYsWOpgunVq1cl3d6x6O2d+qvl6NGjLq3NGay0jYsXL66TJ0+mWrZx40bZbDY98cQTacZHRkaqRIkSrirPaawY0P78809Vrlw51bIdO3YoKSlJFStWTLNdixQposuXL7uyxBxlt9vT3GNr27ZtkqSGDRumGX/hwgWPP7skNDQ0Q+PKlSunl19+WX369PH4Od9Jer+vS5UqZZqdiOHh4WmW3+m+bJ485wULFsjPz0+9e/fW66+/btrXK3Ie2dv8rDjnjCB73+bJ8yZ7p2ambUz2/gvZm+zt6b/ryd5/IXv/xZPnbJbsTQPcQHPmzEn55w0bNmjDhg0Z+jtP/FGXFRcuXNDRo0c98ijOrDLznG/evKnw8HCFhIRox44dKZecS+9Hvafp27evR3+hZcX06dNT3acq2fjx49Ms8/TLC0rW2sZPPPGEFi9erK5du6pEiRLau3evdu3apVy5cqlFixapxv76669asWKFnn/+eYOqzTlWDGh58uTRjRs3Ui3bunWrbDabHnvssTTj//zzT/n7+7uqvBxXsWJF7d27V926dZN0+7NpzZo1stlsatKkSZrx69atU4UKFVxdZo5at27dXdfnyZNH/v7+prrnrSQtXrxY3377rT7//HMVLlxYFy9eVJMmTdJ8jg8YMEBvvPGGQVXmDKtdAjcoKEhr167VF198oa+++kq1a9dOOQq9aNGiRpcHN0b2vjsz59A7MfOcyd7mQvY2L7L3X8jeqZG9PQ/Zm+xtNmbJ3jTADdSvXz+jS3Cphx56SBMmTFCbNm1SlsXFxWnWrFlq3769ypYtm2r85s2bNWTIEI/e6WDFOf/Tvn37FBISou+//17Xrl2TJBUuXFgdOnRQ586dVaZMGYMrzL7+/fsbXYJLWSmQJrPSNu7Tp4/Cw8PVqlUrlS9fXr/88oscDof69u2rwoULS7odvsPDwzV37lzlypVL3bt3N7jq7LNiQAsMDNS2bdv08ssvS/rr3j6S1KxZs1RjHQ6HVq1apcDAQJfXmVPat2+vDz74QI8++qgee+wxLVq0SKdPn9Z9992nRo0apRo7ffp07du3T8OHDzeo2pxhhu/YzHrzzTe1evVqlS5dWqdPn0753JKktm3bqly5cpKkJUuWaNq0aerYsaOKFStmVLnZlpVL4CYkJDihEtcYN26cRo0apQ0bNmjZsmX64Ycf9OOPP2rUqFGqUaOGatasabnfKMgYsrf5c6gV5/xPZG/zIXubG9mb7C2RvcnenovsfW9kb+PRADeQ1UK4w+FIs+zGjRuaOnWqatWqlSaQmoEV5yxJMTExCgsLU2hoqP744w85HA75+vqqYcOG2rp1q95//301bdrU6DKRRVYKpFZUtGhRfffdd5o6dar27dunhx9+WB06dFCnTp1SxoSGhmr27NkqU6aMPv74Y5UqVcrAinOGFQNaly5d9NZbb2ns2LF67LHHtHjxYp0/f14PP/xwqrOh4uLi9OGHH+rXX3/16B0uXbp00e7duzVu3DjZbDY5HA4VKFBAEydOTLmH4HfffacZM2bo5MmTqlWrll544QWDq3auyMhI7d27V3a7XXXr1lVAQIDRJWXL0qVLtXr1avXq1UsDBgxIc9/E9u3bq0GDBpKkxo0b6/nnn9c333xjmt/ksbGxcjgcdz1DZu/evRoxYoSWL1/uwspyVu7cudWiRQu1aNFCV69e1apVq7R06VLt3r1bu3fvls1m0xdffKFr166pRYsW8vHxMbpkuAGzvM8zyoo51IpzlsjeZkf2NjeyN9mb7E329lRkb7K3p2RvGuBuJD4+XocPH1ZMTIwcDoeKFy+uwMBA5cmTx+jSnCq9oGp2Zp3z999/r5CQEG3dulWJiYny9/dXmzZt1Lx5czVq1Ehnz55Nc2SjGUyZMiXTf2Oz2dS3b18nVON8wcHBeuONN1J+yFiB1bZxyZIlNXr06Duu79Chg5o0aaKaNWumhBdPZ8WA1rp1ax05ckSzZs3SvHnz5HA4VLZsWU2ePDllzP/93//p888/V2xsrFq2bKl27doZWHH22Gw2TZw4Ud26ddPevXuVL18+NWvWLNVRyn/++accDofeeOMN9erVyxSv74MHD+qLL77Q0aNHdd9996l3796qWrWq/vOf/ygkJCTlN4nNZtOzzz6rcePGpbmfpKcIDQ1VjRo1NGjQoHuOTd7htmnTJo8P4atXr9aUKVP022+/Sbp9X7kBAwbo2WefTRlz/fp1TZo0SQsWLEhzyUlPMmzYMHXp0kXVqlWTJOXPn1+dOnVSp06dFB0dreXLl2v58uWKjIzUTz/9pNGjR6t169Z6//33Da4c7obsbR1mnTPZO+M8OZeRvTPGk7cx2ZvsnYzs7fmvb7J3+sjensks2dsz32Emc+7cOU2aNEnh4eGKjY1Ntc7X11ctWrTQoEGDVLx4cYMqBDJm0KBB8vPzU9euXdW0aVPVqVMn1RFgnnBZjKywWkDbuXNnqiOSrcBq2/hePP3yY+mxakAbNGiQXnjhBe3fv1/58uVT3bp1lStXrpT1efLk0aOPPqo2bdroueeeM7DSnFOjRg3VqFEj3XX9+vXz+ED2d3v37lVwcLC8vb1VuXJlHThwQN26ddNLL72kxYsXq23btmrZsqWuX7+u9evXa/ny5XrooYf02muvGV16lhw8eFC9e/fO8PjHH39cU6dOdWJFzrdy5Uq99dZbypMnjx5//HH5+vpq165d+ve//51y/8iffvpJgwYN0qlTp1S2bFmNGjXK6LKzLDQ0VA0bNkwJ4X9XokQJde/eXd27d9fRo0e1dOlSLVu2TN9++63bhXAYh+wNsyB7Z5wn5zKyd8Z48ja+F7I32duTkb3J3snI3p7HLNmbBrjB9u3bp169euny5cuqVq2a6tevr+LFi8vb21sxMTGKiIhQWFiY1q9fr2nTpqlmzZpGlwzcUdmyZXXq1CmFhITo999/108//aRmzZrpwQcfNLo0p5o7d67RJcDJrLSNIyIisvR3f79slyezUkBLVrJkSZUsWTLddS+++KJefPFFF1eEnDJ16lQ98MADmjt3rgoVKiSHw6F33nlHc+bMUdu2bTVhwoSUsc8++6yuXLmi5cuXe2wIj4uLk7+/f5rl+fPn1/Tp0/XQQw+lWp43b16PvieXJM2fP19FihTRwoULU+6xduPGDb3xxhv67LPPVLx4cb322mu6efOmXn31Vb355ptueVmynFahQgUNGjRIgwYN0p49e4wuB26C7A0zIXvDrKy0jcneZO+/I3t7NrL3bWRvsre7oQFuoPPnz6tv377KmzevPv/8c9WqVSvdcQcPHtTAgQM1YMAALVmyREWKFHFxpUDGrF27Vvv379fSpUu1atUqbd68WZMmTVL58uXVvHlzValSxegSnaJu3br3HHP16lXZbLa73hsE7isj29gsXnrppUyfMWKz2XTw4EEnVQTkjGHDhmX6b2w2m8aOHeuEalzjp59+0uuvv65ChQpJuj2f7t27KzQ0VE8++WSa8c2bN9eHH37o4ipzTokSJXT69Ok0y729vdOd7x9//OHx91E8evSoXnrppZQALt0+i7Vfv3568cUXNWjQIBUpUkQTJ05U9erVjSvUQDQxIZG9YT5k7zsje3s2svfdkb3hCcjeZO9/IntbgztmbxrgBpo/f75iY2NTHTWSnocfflhz5sxRmzZt9L///U/9+/d3YZVA5lSrVk3VqlXTO++8o82bN2vZsmVat26dpk2bJpvNJpvNpg0bNigwMFBlypQxutwc43A49MMPP+i3337T/fffryeffFLe3t7atm2bxowZo2PHjkmSHnroIb311lt6/PHHDa44e9asWaPjx49neLyZL0mWzCw7WsaNG5ehcatXr9bGjRslSVWrVnViRa5hxYAWHByc6b+x2Wz66quvnFCN84WGhmZ47N93RHnyNr5y5YqKFi2aalnypQULFiyYZryPj49u3LjhitKcomrVqlq5cqX69u17z8skxsfHa+XKlWrcuLGLqnOOq1evqmzZsmmW33fffZJuX0px4cKFKTtizGDXrl1KTEzM1N+0b9/eOcXAY5C9YUZkb7J3esjenoPsnXFkb89C9r6N7H0b2dtzmSF70wA30Nq1a9W2bdu7BvBkZcqUUVBQkMLDwz06hP/zTZN837UtW7YoOjo61Vh3vGRCVlhxzpLk5eWlxo0bq3HjxoqLi9OaNWu0fPlybdmyRd99951CQkJUr149dejQQc8++6zR5WbLlStX1LNnT+3fv18Oh0OS9Oijj2rEiBHq2bOnfH191axZM12/fl379+9Xr169NGfOHI8+snnNmjUKDw/P8HgzhPC/72i577779NRTT5lyR0tQUNBd10dFRWn06NHauHGj/P399dZbb6lz584uqs55rBjQTp06laFxSUlJio6OlsPh8Oj7SR4+fPieY/7++s6fP78GDhzo/MKcyOFwyNs79c/95G3oydvyTrp06aIXX3xR77//voYPH55m7smSkpL07rvvKiYmRl26dHFxlTkrKSkp1T1fkyXfT7Bnz56mCuCStGjRIi1atChDY5M/t9wthMP1yN7WyKFWnLNE9iZ7p0b29hxk73sje3smsvdtZG+yt6czQ/amAW6gU6dOZereHoGBgZn6keCO/vmmSQ4ss2bNSvNl4Olf9smsNOeePXuqfv36qlu3rqpUqZIyFx8fH7Vp00Zt2rTRxYsXtXLlSi1btkzbtm3T9u3bPT6Ef/rppzp8+LDeffdd1atXT1FRUfrggw/08ssv64EHHtC8efNSjva7cOGCOnbsqNmzZ3t0CO/Vq5caNmxodBkuY8UdLf+UkJCg//u//9P06dN148YNtW3bVkOHDk05otXTWTGgrV+//p5j9u/fr/fee09//vmnypYtqxEjRrigMtdLTEzU7Nmz9fnnnysuLk7PPPOMhg0bluYIbri32rVrq3v37vq///s/bd++Xa+99prq1aunkiVLyuFw6OzZs9qxY4e+/vprHT58WIMGDVJgYKDRZTtV6dKljS4hxz3//POWvaQcso7sbe4cmsxKcyZ7k73NiuxN9pbI3mRvuDuyd1pkb/dEA9xAuXLl0s2bNzM8Pi4uTn5+fk6syLkyemkfM7HanLdv364ffvgh5VJUtWvXVr169VS/fv2UL7lChQqpW7du6tatm06ePKkVK1YYXHX2rV+/Xl26dNELL7wgSSpfvrzeffddvfbaa+rWrVuqS90ULlxYzz//vObNm2dQtTmjQoUKpgqY92LFHS1/t3PnTo0aNUpHjx5V+fLlNXLkSNWrV8/oslzGigHt6tWr+vjjj7Vo0SLZ7Xb16tVLffr0UZ48eYwuLcft2rVLo0aN0q+//qoHHnhAI0eOVIMGDYwuK8f887KZcXFxstlsWrJkiXbv3p1q7C+//OLq8nLcv//9b5UpU0aTJk3Su+++m27Dw8/PT++9954pzqCxotq1a6tNmzZGlwEPQ/Y2P6vNmexN9jYrsjfZm+xN9vZUZG+yt9mYIXvTADdQ5cqVtWnTpgzfB2Tjxo2qWLGik6tynntd2seMrDbnPXv26ODBg9qzZ4/27t2rffv2acOGDbLZbPL391edOnVUr1491atXT5UrV1a5cuXUu3dvo8vOtrNnz6pChQqpliW/V9M7+qtUqVK6fPmyS2pDzrDijhbp9g6F8ePHa+nSpcqTJ4/efPNNvf766ymX97ECswe09CxZskQTJkzQ+fPnVbduXY0cOTLNZ5wZXLx4URMmTFBYWJhy586t/v37q0ePHsqdO7fRpeWo8PDwdC+bGRYWlu54Tz4bLlnXrl0VFBSkDRs2KCIiQn/++accDoeKFy+umjVrqlmzZh5/z8i/S+/eoHfb2WKGS6MCmUX2Nj+rzZns/Reyt7mQvcneZG+yt6cie5O9yd7uhwa4gdq1a6d3331XK1euVOvWre86NiwsTFu3btWkSZNcVJ3xTp06pXfffVezZ882uhSX8fQ5e3t7q2rVqqpatapeeeUVSdKZM2dShfLx48crMTFRBQsWVN26dVWvXj117drV2MKz6datW/Lx8Um1LDmkpBdWbDZbqnvTwf1ZcUfLN998o0mTJuny5ct64oknNGLEiAzdN9MsrBLQ/u7YsWMaNWqUdu7cqUKFCunDDz90u3v35JRvv/1WEydO1OXLl/XYY49p5MiRuu+++4wuK8fNnTvX6BIM4+vrq9atW9/zN7YZ3GlHi5T+zhZCOKyI7H13np5Ds8LT50z2/gvZ21zI3mRvsre5kL3Nj+x9G9nbPdEAN1CHDh0UFhamwYMH68iRI+rWrZuKFy+eakxMTIzmzJmjuXPnqnHjxmrVqpVB1eaM/fv3a9q0adq7d68k6eGHH1bfvn1Vu3btlDEOh0NffvmlPv30U8XFxRlVao6x4pz/rlSpUnrmmWf0zDPPSLp9aZ+lS5cqJCREq1evVnh4uMeHcKvp16+fAgICjC7Dpay0o+Xw4cMaOXKkIiMjVaJECY0ePVrNmzc3uiyXskpASxYfH6+pU6dq9uzZSkhIUKdOnfT222/L39/f6NJy3JEjR/Tee+9p3759Klq0qCZNmmTqkGaWS0Hizqy2oyUoKMjUn8dwHrK3NXKoFef8d2Rv8yF730b2Ni+yN9nbLMje5kf29kw0wA1kt9s1ffp0vf322/riiy80Y8YMlSpVSsWKFZOXl5fOnz+vEydOyOFwqFWrVvrggw+MLjlbtm3bph49eigxMVEPPvigfH19FRERoVdeeUVz5sxRnTp1dOrUKf3rX/9SZGSk8uXLp1GjRhlddrZYcc7/FBcXp4iICO3cuVO7d+/Wzz//rFu3bil37twpl2Qzg0uXLun06dMp/558BPKFCxdSLZduH93qyfr165fq3+Pj43X48GHFxMSkXOYmMDDQlPcrsoIOHTooKSlJklSkSBHNnz9f8+fPv+vf2Gw2ffXVV64oz6msFtAkadOmTRo9erSioqIUEBCgUaNGqVq1akaX5RTjx4/XvHnzlJiYqKeeekoDBw5Uvnz50nxG/1N6Z5qY1cKFC7V582ZNmTLF6FKyJKOXNv47T//8ysqOll27djmhEtew2j1+kXPI3ubPoVac8z+Rvcne8Cxkb7I32Ts1srfnIHtnDNnbeDaHw+EwughIP/74o5YsWaLIyEidPXs25YdsrVq11K5dO9WvX9/oErPt1VdfVWRkpGbNmqUaNWpIkqKjo9W7d2/lypVL48aNU3BwsM6fP6/mzZtrxIgRKlasmMFVZ48V55yQkKB9+/Zp+/bt2r59u/bv369bt24pV65cqlq1akrwrlGjhmkuZxQYGJjufVscDsdd7+dy6NAhZ5bldOfOndOkSZMUHh6u2NjYVOt8fX3VokULDRo0KM3ZNZ4oMDBQ//nPf9S0adOUZZcvX1ZQUJA+/vjjlPd3sjVr1ujDDz/0yG3cpEmTLP3d+vXrc7gS17pTQLsXTw5oAwYM0Jo1ayRJTz31lIKDg+Xl5XXPv6tTp46zS3OKwMDAlH/OzL22PPF9nFUjR47UokWLPHbOGf38SkpKUnR0dMr3tKfONzPOnDmj0NBQhYWF6eTJk5aYM3AnZG9z5lArzpns/ReyN9nbE7cx2ZvsfS9kb/Mie5sX2du90ACHy9SvX18dO3bU22+/nWr55s2b1aNHD1WoUEFnz57Ve++95/GXm0tmtTn36NFDu3btUlxcnOx2u6pUqaL69eurXr16qlWrVprLWJnFsGHDsvR3nnwk1b59+9SrVy9dvnxZ1apVU/369VW8eHF5e3srJiZGERERioiIkL+/v6ZNm6aaNWsaXXK2WHVHi5VYMaD9fc7Sveft6YElq0dW//PMGzPz9BCeEfv379d7772nQ4cOqWzZshoxYoQaN25sdFlOcfPmTYWHhyskJEQ7duxIeQ83atRIX3zxhdHlAXAiq+VQyXpzJntnDtnbc5C9zY/sTfa+E7K3uZC9yd7ugEuge5AdO3boyJEjWbrEhDu4evWqKlSokGZ5pUqV5HA4dOnSJX377bemuLdAMqvN+ccff1SuXLnUvn179erVSw888IDRJbmEJ4fprDh//rz69u2rvHnz6vPPP1etWrXSHXfw4EENHDhQAwYM0JIlS1SkSBEXV5pz2rdvn6lgZiW7du1SaGiox18q1EpBK5nVPruyso3Ndm9QK7t69ao+/vhjLVq0SHa7Xb169VKfPn1MecnQffv2KSQkRN9//72uXbsmSSpcuLA6dOigzp07q0yZMgZXCLg/srfnsdqcyd7WQPbG35G9PZfVPrvI3tZG9iZ7uxMa4B5k5cqVWrRokceG8MTERHl7p33JJV+Kq3fv3qYJo8msNudOnTppx44dKZf5KF++vBo0aKD69eurTp06KlCggNElIgfMnz9fsbGxWrhwocqVK3fHcQ8//LDmzJmjNm3a6H//+5/69+/vwipz1ocffmh0CW7lzz//VGhoqEJDQ3Xy5ElJsmQI9/SAFhQUlOm/iYqKckIl7id559Lq1as9+p5NuG3JkiWaMGGCzp8/r7p162rkyJHpNkk8WUxMjMLCwhQaGqo//vhDDodDvr6+atiwobZu3ar3338/1aVEAdwd2dvzWG3OZG9rIHuD7H0b2du8yN7mQvYme7sbGuBwG2b7MMwIs8159OjRkqTTp09r69at2r59u1atWqX58+fLbrcrMDBQ9erVSwnlfn5+BleMrFi7dq3atm171wCerEyZMgoKClJ4eLhHh/Dg4GC98cYbatCgQcqyhIQE7d27V4GBgcqfP3+q8UuXLtXQoUN18OBBV5fqNPHx8SmX89m+fbscDoccDofq1aunF154wejyXMpqAe3mzZtatWqVQkNDFRERoQMHDhhdklMk71wKCwvTiRMn5HA4VLBgQaPLQjYcO3ZMo0aN0s6dO1WoUCF9+OGHat++vdFl5ajvv/9eISEh2rp1qxITE+Xv7682bdqoefPmatSokc6ePatmzZoZXSYAN2O2HJoRZpsz2dsayN63kb3J3mRvcyF7mw/Zm+ztrmiAA8hxpUuXVseOHdWxY0dJ0q+//qrt27dr27ZtWrx4sebMmSNvb2898sgjatCggd58802DK0ZmnDp1Si+++GKGxwcGBio0NNSJFTnfzp071alTp1TLrl69quDgYM2ePTtVOE/mcDhcVZ5T/fNyPsnzeuaZZ9S3b1+VL1/e4Apdw4oBbc+ePQoJCdGqVasUGxsrh8OhSpUqGV1WjkreuRQaGqrt27crKSlJDodD1atXV5cuXdS6dWujS8yWsLCwTI3//fffnVOIi8XHx2vq1KmaPXu2EhIS1KlTJ7399tvy9/c3urQcN2jQIPn5+alr165q2rSp6tSpIy8vr5T1XEIUAMyN7G1uZO/byN5kb7K35yN7p0b29jxkb89EAxwutWvXLiUmJqZaFhsbK0nasmWLoqOj0/yNpx8tZMU5/1OlSpVUqVIlvfTSS4qPj9eqVav0v//9T/v27dP+/fsJ4R4mV65cunnzZobHx8XFmfaMA7ME7X9K73I+BQsWVFBQkKpXr66RI0eqdevWpg/gZg9o6YmOjk7Z9sePH5ckeXt7q3Xr1nrhhRdUu3ZtgyvMGfv379fixYtT7Vzy9/fX1atXNXr06DQ73TzV0KFDMxXCHA6Hx4e2TZs2afTo0YqKilJAQIBGjRqlatWqGV2W05QtW1anTp1SSEiIfv/9d/30009q1qyZHnzwQaNLA2AwK+ZQK875n8je5kL2/gvZm+xtNmRvsjfZ27OQvT0TDXC41KJFi7Ro0aJUy5J/xM6aNSvVB3/yF4GnB1IrzvnvTpw4of3792v//v2KjIzU4cOHdevWLeXNm1dPPPGE6tSpY3SJyKTKlStr06ZNGb4n4saNG1WxYkUnV4Wc0rNnT23ZskWJiYkqVaqUunbtqmbNmqlevXqy2+2Kiooy7c6HZFYJaMni4+O1du1aLV68WNu3b0/ZcVyhQgUdO3ZMH330kVq2bGlwldkXExOjJUuWKDQ0VL///rscDodKly6toKAgNW/eXCVKlNDTTz+twoULG11qjhk3bpzRJbjUgAEDtGbNGknSU089peDgYMXHxysiIuKuf+fJv0XWrl2r/fv3a+nSpVq1apU2b96sSZMmqXz58mrevLmqVKlidIkADGLFHGrFOf8d2dt8yN7mRvYme5O9yd6eiuxN9vYUNMANdPr06UyNTz5y2VNZ7YtAst6cL1++rMjIyJTAHRkZqcuXL8vhcKhAgQKqWbOmBg0apDp16ujhhx+W3W43umRkQbt27fTuu+9q5cqV9zwKNywsTFu3btWkSZNcVB2y64cffpCfn5+Cg4PVrVs3FStWzOiSXMKKAS0yMlIhISFauXKlrly5Irvdrho1aqh58+Zq3ry5EhMT1axZM+XKlcvoUnNEkyZNlJSUpMDAQPXu3VtNmzbVI488krI+KirKwOqcIygoyOgSXCo8PDzln9evX68NGzbcdXxy8+PQoUPOLs2pqlWrpmrVqumdd97R5s2btWzZMq1bt07Tpk2TzWaTzWbThg0bFBgYqDJlyhhdLmAIsrf5WW3OZG9rIHubG9mb7E32Ng+yN9mb7O2eaIAbqEmTJpa6NEZWvgg8/QvRanOuV6+ebDabHA6HChUqpLp166pOnTqqU6eOAgICPPr1i7906NBBYWFhGjx4sI4cOaJu3bqpePHiqcbExMRozpw5mjt3rho3bqxWrVoZVC0yq1+/flqxYoWmT5+uL774Qg8++KCaNWumZs2aqWrVqkaX5zRWDGjPP/+8fH191ahRIz3xxBNq0qRJqp0MZptzQkKCfH19VbRoUfn6+qa5RKoVREdHa/fu3YqJiZEkFS9eXDVq1FCpUqUMrixnWK358U9eXl5q3LixGjdurLi4OK1Zs0bLly/Xli1b9N133ykkJET16tVThw4d9OyzzxpdLuBSZO978/TvfavNmextDWRvcyN7k72TmW3OZG+yt9mRvT0HDXADtW/fnlCSjps3b2rVqlUKDQ1VRESEDhw4YHRJTmeWObds2VJ169ZV3bp1ueyWidntdk2fPl1vv/22vvjiC82YMUOlSpVSsWLF5OXlpfPnz+vEiRNyOBxq1aqVPvjgA6NLRib069dP/fr1088//6xly5Zp5cqVmjFjhmbOnKlSpUqpVq1apvzusmJA8/X11Y0bN3T06FEVKlRIfn5+euKJJ5QvXz6jS3OKDRs2aNmyZVq2bJkmTZokm82mokWL6umnn9bTTz9t6qNzf/31V40ZM0YRERFyOBypLqVot9tVq1YtDR8+XAEBAQZWmX1WO+r+bnx8fNSmTRu1adNGFy9e1MqVK7Vs2TJt27ZN27dvJ4TDcsje6TNLDs0Ms8yZ7G0NZG9zI3uTvcne5kP2th6yt3uzOcx+MxF4jD179igkJESrVq1SbGysHA6HKlWqpGXLlhldmtNYcc4wlx9//FFLlixRZGSkzp49K4fDoeLFi6tWrVpq166d6tevb3SJOSIwMFD/+c9/1LRp05Rlly9fVlBQkD7++GPVqFEj1fg1a9boww8/9PhL+0i3z4Datm2bli1bpjVr1ujatWuSpDJlyqhDhw5q3769SpcubXCV2XfmzJmUgPbrr7+mG9CaN2+uqVOnpnodeLK4uDitX79eS5cu1ebNm5WYmKhcuXKpQYMGevrppxUYGKiOHTuaas7JDh8+nLKT6cyZM7LZbCk7JYYOHaqXX37Z6BJzzLp16zRw4EDZbDY1a9ZM9evXV/HixeXt7a2YmBhFRERo1apVSkhI0OTJk9WsWTOjS4YTnTx5UitWrFDv3r2NLgWAgayYQ604Z5gL2ZvsTfb2XGRvsjfZ23rI3u6BBriHOHPmjEJDQxUWFpbqHgueLjo6WmFhYQoNDdXx48clSd7e3mrevLleeOEF1a5d2+AKc54V5wx4usDAwHSPvL7X5THNEML/Lj4+XuvXr9fy5cu1adMm3bp1S3a7XQ0aNND//d//GV1ejrFSQEt26dKllKNU9+3bl2pdz5491bt3b/n6+hpTnJPt3LlTy5YtU3h4uC5fviybzaayZcvqueeeU1BQkEqWLGl0iVl26tQptWnTRg8++KA++eQTlStXLt1xf/75pwYMGKDffvtNS5YsueM4dzds2LBM/43NZtPYsWOdUA0AT0X2Ng8rzhnwdGTv28jeZG8zInuTvcnecDUa4G7s5s2bWr16tUJDQ7Vjxw4lJSXJ29tbP//8s9GlZUt8fLzWrl2rxYsXa/v27SmXuqlQoYKOHTumyZMnq2XLlgZXmbOsOGdYR3x8vA4fPqyYmJiUo9ADAwOVJ08eo0vLMVn5YSeZ+544V65c0apVq7Rs2TLt3r1bBw8eNLokpzBzQLuTqKgoLVu2TMuXL9dvv/0mm80mPz8/tWrVSh06dEhz1oVZ3Lp1Sz/88IOWLl2qjRs36ubNmx7/u+uDDz7QkiVLtGrVqlT3mEvPpUuX1Lp1a7Vt21ZDhw51UYU5KzAwMNN/Y7PZPHqHaVbOELHZbFq7dq0TqgE8F9nbPKw4Z1gH2fvOyN6ej+xN9vbk311k73sje8MINMDd0N69exUaGqqVK1emXJqrZMmS6tSpk55//nkVK1bM6BKzJDIyUiEhIVq5cqWuXLkiu92uGjVqqHnz5mrevLkSExPVrFkzU13uxYpzhnWcO3dOkyZNUnh4uGJjY1Ot8/X1VYsWLTRo0CAVL17coArhKrt27TL9GTRmDGgZcfjwYS1dulQrV67Un3/+6fGBJaOuXbum8PBwLV++XLNnzza6nCxr1aqVnnjiiQzvSJwwYYI2bNig77//3smVOUdUVFSW/s6T70HXpEmTNMscDofOnDmjokWLKnfu3On+3fr1651dGuARyN7myaFWnDOsg+yNZGRv8yJ7k709Cdn7NrK3+/M2ugDcFh0drSVLligkJETHjx+Xw+GQ3W6XJA0cOFA9e/ZM+XdP9fzzz8vX11eNGjXSE088oSZNmqQ6IiqrH5zuzIpzhjXs27dPvXr10uXLl1WtWrV072sTFham9evXa9q0aapZs6bRJSOTfv75Z+3bt08Oh0MPPfRQuiH72rVrmjhxor799lsdOHDAgCpdJ1euXGratKmaNm2aKqCZXWBgoAIDAzV48GDt2LHDEnOWpHz58qlZs2bas2eP0aVky5kzZ1SxYsUMjy9fvrwWLFjgxIqcy5PDdFalF6YvXLighg0b6qOPPlKDBg0MqApwb2Rvc+ZQK84Z1kD2Nj+yd2pkb7K3JyJ7mx/Z2zPRADdQ8qW5QkJCtG3bNiUmJipPnjxq0qSJnn76aQUEBCgoKEiVKlXy+AAuKeUeLkePHlWhQoXk5+enJ554Qvny5TO6NKex4pxhfufPn1ffvn2VN29eff7556pVq1a64w4ePKiBAwdqwIABWrJkiYoUKeLiSpEV169f11tvvaVNmzYp+SIxNptNDRs21LRp01KOaNy4caNGjhyp6Oho3XfffUaW7HJmCWiZVbp0aY/feXzq1CnNmTNHe/fulSQ9/PDD6tGjh+6///5U48LDwzV69GidO3dOY8aMMaLUHOHj46MrV65kePyVK1fk7+/vxIqMFR8fr99++00+Pj4qX7680eU4zd3ujwlYFdnb/DnUinOG+ZG9zY3sfW9kb89F9r47src5kL3dHw1wAzVq1EhXrlxRgQIF9Mwzz6hp06Z64okn5OvrK8l8Ryhv27ZN69ev19KlS7V48WItWrRIuXLlUoMGDfT0009n6d4R7s6Kc4b5zZ8/X7GxsVq4cKHKlSt3x3EPP/yw5syZozZt2uh///uf+vfv78IqkVWfffaZNm7cqEaNGikoKEh+fn7atGmTvvnmG02YMEHDhw/X+PHj9eWXX8rLy0vdu3fXgAEDjC47R1gtoEnS/v37NW3atFRz7tu3b6qzDhwOh7788kt9+umniouLM6rUbDt06JBeeuklXbt2TT4+PvLx8dHBgwe1cuVKLVy4UJUrV9bVq1c1fPhwhYeHy8vLSz179jS67Gx55JFHFB4eru7du2do/OrVq/XQQw85uSrnunr1qmbOnKm9e/dq3rx5KcuXLVumMWPGpOyUePDBBzV27FhVr17doEoBuBLZ2/w51IpzhvmRvc2N7E32JnuTvT0Z2RuegAa4gS5fviw/Pz+1aNFC9erVU82aNVMCuBn5+PiodevWat26tS5duqSVK1dq2bJl+uGHH/TDDz9Iun3UTGRkpBo2bGiK/xZWnDPMb+3atWrbtu1dA3iyMmXKKCgoSOHh4YRwD7F+/XrVrVtXM2fOTFn25JNPqkiRIpo3b54KFiyoOXPmKDAwUOPGjfP4H+zJrBjQtm3bph49eigxMVEPPvigfH19FRERoVdeeUVz5sxRnTp1dOrUKf3rX/9SZGSk8uXLp1GjRhlddpYl70T4+OOP9cwzz0i6fb/Qt956S2PGjNHEiRMVHBysP/74Q48++qjGjBmjgIAAg6vOno4dO2rgwIGaM2eOXn311buOnT59uiIjI1O99z1NbGysOnfurGPHjqlkyZJKSEiQt7e3IiMjNWTIEDkcDnXu3FmVKlVSWFiYXn31VYWFhaXZ0QbAfMje5s+hVpwzzI/sbW5kb7I32Zvs7anI3vAYDhgmIiLC8e677zrq1q3rCAwMdDz00EOO559/3jFr1izH8ePHHadOnXIEBAQ41q5da3SpTnXq1CnHtGnTHM8884wjICDAERgY6KhZs6bjP//5j2PPnj1Gl+cUVpwzzKN69eqOhQsXZnj8okWLHDVq1HBiRchJ1atXd3z55Zdplv/222+OgIAAx0MPPeQYPXq0Iz4+3oDqnKd3796OKlWqOJYvX56ybP/+/Y6mTZs6XnrpJUd0dLSjRYsWjoCAAEfHjh0dhw8fNrDanPHKK684atasmep7588//3S0b9/e0alTJ8dvv/3maNiwoSMgIMDRv39/R0xMjIHVZl/Dhg0do0ePTrN89erVjocfftjRtWtXxyOPPOKYOXOmIzEx0YAKnaN///6OwMBAx7/+9S/H3r17U713ExMTHXv37k0ZM2LECAMrzb5PP/3UUaVKFcf333+fannPnj0dgYGBjnHjxqUsi4uLczRv3twxdOhQV5fpdBcuXHAEBAQ4tm7danQpgNsge99mxRxqxTnDPMje5kb2JnuTvcnenorsfRvZ2/1xBriBateurdq1a2vEiBHatGmTli1bpo0bN2r//v2aOHGiypUrJ5vNpuvXrxtdqlOVKVNGvXv3Vu/evXX48GEtXbpUK1eu1HfffafFixfr0KFDRpeY46w4Z5hHrly5dPPmzQyPj4uLk5+fnxMrQk66ceOGChcunGZ5oUKFJElPP/20hg8f7uqynC4yMlJdunRJOTpZkqpWrarBgwdr0KBBGjRokKKiovT222/rtddeM8X9QQ8dOqQXXnhBNWrUSFlWokQJ/etf/1KPHj305ptvKiEhQZMnT1arVq0MrDRnXL58Od3Lnz766KNKTEzUkSNHNG/ePNNdlmvixIkaN26cFi5cqBUrVsjLy0sFCxaUl5eXLl26pPj4eNntdnXv3l2DBg0yutxsCQ8PV7t27dSyZcuUZbGxsdqyZYskqWvXrinL8+TJo7Zt2+rbb791eZ0AXI/sfZsVc6gV5wzzIHubG9mb7E32ru764pyI7E32hvuhAe4GvL291bRpUzVt2lSxsbEKDw/XsmXLtGPHDjkcDg0ZMkSLFy/Wc889pxYtWihPnjxGl+w0gYGBCgwM1ODBg7Vjxw4tX77c6JKczopzhmerXLmyNm3apODg4AyN37hxoypWrOjkquBsNptNktS+fXtjC3ESKwa0q1evqkKFCmmWV6pUSQ6HQ5cuXdK3336r++67z4Dqcl5CQkK6v6F8fHwkST179jTV9k2WO3dujRw5UsHBwQoLC1NkZKTOnj0rh8Oh8uXLq1atWmrTpo0pLkV26tSpVEFbkiIiIpSQkKBy5cqleS2XKlVK58+fd2WJOW7KlClplsXFxclms2nJkiXavXt3mvU2m019+/Z1RXmA2yF7/8WKOdSKc4ZnI3tbE9mb7O3pyN5kb7L3bWRv49EAdzN58+ZVUFCQgoKCdP78eS1fvlzLli3T9u3btX37do0ePVoRERFGl+kS9erVU7169Ywuw6WsOGd4nnbt2undd9/VypUr1bp167uODQsL09atWzVp0iQXVQdnSw4sZmPFgJaYmChv77Q/BXPnzi1J6t27t2kCeEY88sgjRpfgVA8++KDHH2V+L3a7XUlJSamWbdu2TZLUsGHDNOMvXLigfPnyuaQ2Z0kvhCcLCwtLdzkhHLiN7P0XK+ZQK84ZnofsbW1kb/Mge6dG9vZ8ZO/UyN7uiwa4GytSpIhefvllvfzyyzp+/LiWLl3q0UcoZ/SI1b+z2Wz66quvnFCNa1hxzjC/Dh06KCwsTIMHD9aRI0fUrVs3FS9ePNWYmJgYzZkzR3PnzlXjxo1NcQknK0k+4jyz68zM7AEtPekdoW5mVnhtR0dHa/fu3YqJiZEkFS9eXDVq1FCpUqUMrixnVKxYUXv37lW3bt0kSQ6HQ2vWrJHNZlOTJk3SjF+3bp3Hv87nzp1rdAmAKZC9PT+HWnHOMD+yt/mRvdMie5ufFV7bZO/UyN4wCg1wD3H//ferf//+6t+/v9GlZNnOnTvTXW6z2eRwOO64zpNZcc4wP7vdrunTp+vtt9/WF198oRkzZqhUqVIqVqyYvLy8dP78eZ04cUIOh0OtWrXSBx98YHTJyKSxY8dq8uTJqZY5HA7ZbDa9/fbbaY7WttlsWrt2rStLdDk+m83h2LFjac7mu3r1qiTpyJEj6R6VX6dOHZfU5ky//vqrxowZo4iICDkcjlS/Qex2u2rVqqXhw4crICDAwCqzr3379vrggw/06KOP6rHHHtOiRYt0+vRp3XfffWrUqFGqsdOnT9e+ffs8/r6KdevWNboEwHTI3p7JinOG+ZG9zY/snRafzeZA9iZ7JyN7w0g0wA0UHBysN954Qw0aNEhZlpCQoL179yowMFD58+dPNX7p0qUaOnSoDh486OpSc8Thw4fTLLtw4YIaNmyoOXPmpPrvYBZWnDOsIX/+/Priiy/0448/asmSJYqMjNQvv/wih8Oh4sWLq3379mrXrp3q169vdKnIpNKlS0tSujsKk49U/ee6O+1U9DRWDGi7du1SYmJiqmWxsbGSpC1btig6OjrN33jyveimT5+u6dOnp7tu/Pjx6S4/dOiQM0tyunXr1mngwIGy2Wxq2bKl6tevr+LFi8vb21sxMTGKiIjQqlWr1LFjR02ePFnNmjUzuuQs69Kli3bv3q1x48alNDwKFCigiRMnym63S5K+++47zZgxQydPnlStWrX0wgsvGFy1c8XHx+u3336Tj4+Pypcvb3Q5gGHI3ubPoVacM6yB7G1eZG+yN9k7NbK35yB7p0X2dk82h1m+OT1QYGCgPvroI7Vp0yZl2cWLF9WwYUPNnj07TUBbunSphgwZ4vFfBn938eJFNWjQwFKB1IpzBgB3FxgYeMcjzZOPwE+PJ38n32nOf/9p+Pf1yf8dPHXOn332WZbOJujXr58TqnGNU6dOqU2bNnrwwQf1ySefqFy5cumO+/PPPzVgwAD99ttvWrJkyR3HeYq9e/dq7969ypcvn5o1a6bChQunrJsyZYqWLFmiNm3aqFevXunef9DTXL16VTNnztTevXs1b968lOXLli3TmDFjdOXKFUm370U3duxY091TEcgIsrc1c6gV5wwA7o7s/Reyd2pkb89D9r6N7O2+OAPcDXFMAgBPERcXJx8fnzTLf/vtN/n7+6e5PxncX1hYmGrXrq2yZcsaXYpL9e3b13KXWhs3bpzRJbiUJ1/KNqu++uor5cqVS7NmzUoVRP+pZMmSmjFjhlq3bq2vv/5aQ4cOdWGVOa9GjRqqUaNGuuv69et3xx0rt27d0r59+9I9G9RdxcbGqnPnzjp27JhKliyphIQEeXt7KzIyUkOGDJHD4VDnzp1VqVIlhYWF6dVXX1VYWJjuv/9+o0sH3ALZG4CnIHubD9nbOsje5kf2TovsTfZ2BzTAAQCZFh8fr/Hjx2vZsmX64Ycf0gTxSZMm6YcfflCHDh00ZMgQ+fn5GVQpMmvYsGGaMGGC5UK4FQNaUFCQ0SW4VHqXvzW7zZs3Kygo6K4BPFnBggXVvn17bdiwweNDeFZdvnxZwcHB6Z4N6q5mz56tEydO6L///a9atmyZsnzq1KlyOBx6+eWXU7Znx44d1bZtW02fPt1yO+EAAPBUZG/zIntbB9nb/MjemUP2hqvYjS4AAOBZ4uPj1b17d3399dcqXbq0Ll68mGbMU089pYCAAH3zzTd6/fXXlZCQYEClyAqrngkVHBysbdu2GV2GSzVt2lTr1q0zugyX2blzp86dO2d0GS515swZVaxYMcPjy5cvrz///NOJFbk/T/sMDA8PV7t27VIF8NjYWG3ZskWS1LVr15TlefLkUdu2bS33WQcAgKcie5ubp/3uzClkb/Mje98b2dvzPgPJ3p6JBjgAIFO+/PJLRUREaPjw4QoLC1OpUqXSjOnUqZMWL16sfv36ac+ePZo/f74BlQIZZ8WAFhUVpevXrxtdBpzIx8cn5R5UGXHlyhX5+/s7sSLktFOnTumRRx5JtSwiIkIJCQkqW7as7rvvvlTrSpUqpfPnz7uyRAAAkEVkb5gR2RtmRPY2P7K3Z+IS6HCZsLCwNMtiY2MlSVu2bFF0dHS6f9e+fXsnVuVcVpwzzG/ZsmVq2rSpXnzxxXuO7devn3bu3KklS5bolVdecX5xyBGXLl3S6dOnM/U3pUuXdlI1ALLqkUceUXh4uLp3756h8atXr9ZDDz3k5KqQk+x2u5KSklItSz7KvGHDhmnGX7hwQfny5XNJbQCMY8UcasU5w/zI3uZH9gbMgextfmRvz0QD3GD//KFz+fJlSbffIP/8AZTepY48ydChQ2Wz2VItS77UxaxZs2Sz2VL+PfmfbTabRwdSK84Z5nf8+HF16dIlw+OffPJJffLJJ06sCDlt7NixGjt2bIbH22w2HTx40IkVATljzZo1On78eIbH22w29e3b14kVOVfHjh01cOBAzZkzR6+++updx06fPl2RkZGaOXOmi6pDTqhYsaL27t2rbt26Sbr9O3PNmjWy2Wxq0qRJmvHr1q1ThQoVXF0m4BbI3ubOoVacM8yP7G1+ZG+YFdn7zsjenons7ZlogBvsTj903n77bQOqca5x48YZXYLLWXHOMD8/Pz8lJiZmeHyePHnk4+PjxIqQ02rVqqVy5coZXYbLWS2gSdKiRYu0devWDI+32WyZ2kHjbtasWaPw8PAMj/f0bdyyZUs1b95cEyZM0IEDB/Tiiy+qSpUqypUrlyQpKSlJkZGRmj17ttasWaNOnTrp8ccfN7hqZEb79u31wQcf6NFHH9Vjjz2mRYsW6fTp07rvvvvUqFGjVGOnT5+uffv2afjw4QZVCxiL7G1uVpwzzI/sbX5k74zx9Fwmkb3vxdO3Mdnb/MjenokGuIHat2+f5ghlMwsKCrrnmMuXL8vHx0d58uRxQUXOZ8U5w/zKly+vPXv2KDg4OEPjd+/erTJlyji5KuSkzp07q02bNkaX4XJWC2jS7fsVRUREZHi8p4fwXr16pXtpKjObOHGixo0bp4ULF2rFihXy8vJSwYIF5eXlpUuXLik+Pl52u13du3fXoEGDjC4XmdSlSxft3r1b48aNSzmjsUCBApo4caLsdrsk6bvvvtOMGTN08uRJ1apVSy+88ILBVQOuR/ZOy2w51IpzhvmRvc2P7J0xZG/PQ/Yme5sN2dsz0QA30Icffmh0CS5369YthYSEaN++famO0N65c6fee+89/f7777LZbGrYsKFGjhxpiqMgrThnmFtQUJBGjhyp7du3q379+ncdu2PHDoWHh6t///4uqg7IOisGtHfeeUdNmzY1ugyXqVChgurWrWt0GS6VO3dujRw5UsHBwQoLC1NkZKTOnj0rh8Oh8uXLq1atWmrTpo3uv/9+o0tFFthsNk2cOFHdunXT3r17lS9fPjVr1kyFCxdOGfPnn3/K4XDojTfeUK9evVLCOWAlZG9r5FArzhnmRvaGWZG9zY/sTfY2G7K3Z6IBbqDXX39d7du3V7NmzSxxiaJbt27ptddeU0REhHLlyqXRo0fL29tbv//+u15//XXdunVLjRo1UsWKFbV69Wp17txZS5cuVdGiRY0uPcusOGeYX/v27bV48WL17t1bvXr1UqdOndK8ZmNiYvTtt99q1qxZKlu2rLp27WpQtUDGWTGgFSpUiLNELOLBBx/kKHMTq1GjhmrUqJHuun79+qlfv37prrt165b27dunwMBA5c+f35klAoYie5s/h1pxzjA/sjfMiuwNMyN7mxvZ27NwCIKBdu7cqX//+99q2LChhg4dqq1bt8rhcBhdltPMnz9fu3bt0r///W9FRETI2/v28RefffaZ4uPj1aZNG82YMUODBw/W4sWL5eXlpenTpxtcdfZYcc4wv1y5cmnq1KmqVq2aPvnkEzVq1EhNmzZVly5d1KlTJzVp0kSNGzfWZ599poCAAM2ZM4cvdg9SunRp+fn5GV0GAMAFLl++rODgYP38889GlwI4Fdnb/DnUinOG+ZG9zY3sDQDWQfY2BmeAG2jbtm1au3atvv/+e61YsUJLlixR0aJF1aZNG7Vt21aBgYFGl5ijli9frhYtWqh79+4py+Lj47V+/XrZbLZUywsWLKjnnntOK1as0PDhw40oN0dYcc6whiJFiuirr75SeHi4VqxYoYMHD+rIkSOy2+0qWrSo2rdvr6efflpNmjQxulRk0vr16++6PikpSX/++aeKFi2q3Llzu6gqIPv69eungIAAo8twqYzeL/LvbDabvvrqKydU4x7Onj2rggULKleuXGnWFShQQHPnztVDDz1kQGXGMXMTEEhG9jZ/DrXinGENZG/zInvDrMjeGUP2JnvD+WiAGyhv3rxq166d2rX7f+zdd3gU1dvG8XvTSKOE3ouUhN57kyI90lHpCKKgNEEFfiAgKCKgIiAISldASuglIF2kN6lSQhUIhAQIJKTt+wdvVpYkkIQkm918P9flJcyc2XlmG3ufM3OmpR4+fKjNmzdrw4YNmj9/vubOnasiRYqoZcuW8vb2Vo4cOSxd7iu7fPmyWrdubbbs8OHDCg0NVfbs2WP8w5g/f375+/unZIlJLi0eM9KWRo0aqVGjRpYuAyno3r17atCggebMmaPq1atbupwkkxYD2vjx4+OctskWxTUNVbTHjx9rzpw5atWqlfLmzZtCVSWvAwcOxLrcYDDEGbwMBkNylpQi5s6dq99//11r1qyJEba/+uor7d27Vz179lSvXr3M7snl6OiY5qZiBNIKsrft59C0eMxIW8jeaQ/Z23aQvc2Rvf9bZ+3I3kjtGABPJdKnT6927dqpXbt2unfvnjZt2qSNGzfq22+/1bfffqvKlSurVatWatSokdzc3CxdbqJERUXJ3t7ebNm+ffskSTVq1IjR/uHDh3JxcUmR2pJLWjxmQHo6rYuzs7PSpUtn6VKQDGzxjMW0GNCe7yR+XnBwsL788kv16tVLhQsXTqGqLOfx48eaPn26KlasaDOv8dmzZ2Msu3fvnmrUqKG5c+faVEea9PS7aciQIVq/fr2yZMmiW7duKV++fGZtChcurCNHjui7777TyZMn9cMPP1ioWgCWQva2zRyaFo8ZkMjeto7sbRu5jOxtjuxt/cjesBbcAzwVypw5szp27KiFCxdqx44d+t///ic7Ozt9/vnnqlWrlqXLS7T8+fPrzJkzZsu2bNkig8Gg119/PUb7PXv2KH/+/ClUXfJIi8eMtCE8PFxLly7VsGHDzJYfOHBAzZo1U7Vq1VS+fHn16tVLV69etVCVQNKJDmjXrl2zdCkpJjQ0VKtWrUpTV0fZYgfT82zhLPO4LF26VOvXr1f37t21Y8eOGAFcetrhtmXLFrVp00ZbtmzRypUrLVApgNSC7P2ULeTQtHjMSBvI3khryN5pA9nbupG9YS0YAE/lHB0d5ezsLHd3dzk4OCgsLMzSJSVa8+bNtXr1am3dulUhISGaN2+eLl26pCxZssS4V9GaNWv0559/qkGDBhaqNmmkxWOG7QsPD9e7776rUaNGad26dYqIiJAk+fn5qVevXvLz81Pt2rXVvXt3+fn56e2339bdu3ctXDXw6tJCQHteWjxmWK/ly5erSpUqGjp0aKz3GYvm5OSkcePGqXjx4vr9999TsEIAqRnZ27pzaFo8Ztg+sjfSqrSYQ9PiMcN6kb1hLZgCPRW6d++etmzZok2bNungwYOKiIhQiRIlNGDAADVv3tzS5SVa9+7dtXv3bn300Uem+184Ojrqyy+/lJOTk6SnZ2gvWrRIBw4cUKFChdS9e3fLFv2K0uIxw/YtWrRIhw4d0ieffKJOnTrJweHpPyVTp05VWFiY3nzzTX3zzTeSpN69e8vb21szZ87UiBEjLFk2koijo6MqV66sjBkzWroUADBz8eJFDRgwIF5tDQaDmjRpohkzZiRzVQBSM7K37eTQtHjMsH1k77SN7A0gtSJ7w1owAJ5K3L17V76+vtq0aZMOHz6syMhI5cmTRz179tSbb75pE/f/cHJy0rx587RhwwYdO3ZM7u7u8vb2VpEiRUxtTp48qSNHjujNN9/U0KFD5ezsbMGKX11aPGbYvnXr1qlx48bq2bOnaVlYWJi2bdsmg8FgtjxTpkxq06aN1q9fTwi3Eg8fPlT69OnjXJ8xY0YtXLjQbNn+/ftVtWrV5C4NSFbp06fX+PHjVbRoUUuXgkRycHAwDXLER4YMGWLcLxaA7SN7P2VrOTQtHjNsH9nbtpG9kVaRva0f2RvWggFwC/L395evr682b96sI0eOKDIyUhkzZlS7du3k7e2tSpUqWbrEJGdvby9vb295e3vHuv6DDz7QgAEDZGdnO7Pzp8Vjhm27fPmyWrdubbbs8OHDCg0NVfbs2eXp6Wm2Ln/+/GnqPkbWrmvXrpo7d64yZcr00rZPnjzRxIkT9dtvv+n06dPJX5wFpcWAljFjRi1YsEDFixe3dCkpIl26dKpVqxZXWFixAgUK6OTJk/Fuf/LkSeXKlSsZKwKQWpC9Y7LFHJoWjxm2jextubrO1gABAABJREFU28jesSN72z6yt/Uje8NaMABuQXXr1pX09Ezlhg0bytvbW3Xr1n3hfRNsnYuLi6VLSHFp8Zhh3aKiomKctbdv3z5JUo0aNWK0f/jwIe9zK3LmzBl17txZ8+bNU9asWeNsd/z4cX322We6fPnyC9vZinTp0pl1PkVGRmrWrFnq06ePBatKXo6OjqpSpYrp7w8fPtSECRM0btw4C1b16ubOnavff/9da9asifGb66uvvtLevXvVs2dP9erVy+o7yFetWhVj2aNHjyRJf/75p27fvh3rdq1atUrGqpJPixYtNHnyZPXo0eOlHWbnz5/X2rVr1bVr1xSqDoAlkb1jSou/z9PiMcO6kb1tG9k7dmRvsrc1InvHjewNSzIYjUajpYtIq7p06aKWLVuqSZMmcnd3t3Q5ABAvLVu2VNmyZfXFF1+YljVr1kx+fn767rvv1KRJE7P2vXr10v3797Vs2bKULhWJ8Ouvv+rLL79Uvnz5NG/evBhnaIaHh+uHH37QnDlzFBkZqZYtW2r48OE2cebuw4cPtWzZMh07dkxGo1ElSpRQp06dlCFDBrN2f//9t0aMGKF//vlHZ86csVC1SeP69euaO3eujh49KkkqUaKE3nvvPRUoUMCsna+vr8aOHau7d+9a7TEbjUYNGTJE69evV5YsWbRkyRLly5fPrM20adO0bNky+fv764033tAPP/xgoWqThpeXlwwGg9myZ3/6x7bOYDBY7Wv8+PFjtWnTRkFBQRo+fLiaN28eo9M4IiJC69at06RJkyRJPj4+ypYtmyXKTTF37txRpkyZYh3oCw8P19GjR1W8ePEXTsEJWDuyNwBrRPa2bWRvsjfZm+xtra8x2Tt2ZO/UhwFwAECCzJo1S9OnT9fkyZNVs2ZNLV26VF9//bWyZs2qbdu2md0DZs2aNfrss880YMAAffDBBxasGgmxbt06DR06VNmzZ9e8efOUP39+SU/PUP/ss8/0zz//KHfu3BozZoxq165t4WqTxrVr19S1a1fdunXLLKRkzZpVy5YtU65cuRQREaHJkydrwYIFioyMVPPmzTV58mQLVv1qzpw5oy5duig4OFjOzs5ydnZWUFCQXF1dtWTJEhUrVkwPHz7UiBEj5OvrK3t7e/Xs2VODBg2ydOmJsmTJEo0ePVrdu3fX4MGD47zqLywsTGPGjNHKlSv15Zdfqk2bNilcadLx8fFJ1HbPT7VpTfz8/PThhx/Kz89Prq6uKlmypLJly6bIyEgFBATo5MmTCg0NVe7cuTV9+nR5eXlZuuQk8aKrKwYNGmRTV1cAAJBWkL1tH9mb7E32JntbK7I32dsaMABuQbFNjREf1jo1BgDbEBYWpp49e+rgwYMyGAwyGo1ydHTUtGnTTNNLbtmyRYsWLdKBAwdUqFAhrVy5Us7OzhauHAmxc+dODRw4UO7u7po9e7b++OMPzZw5UxEREXrnnXc0ePBgubm5WbrMJDN48GBt2LBBgwYNUtu2beXi4qKdO3fqiy++ULly5TRx4kT17t1bR44cUe7cuTVq1CjT+91a9enTR7t379aECRPUvHlzSdKJEyf08ccfK3fu3Jo0aZK6du2qy5cvq3Tp0ho3blyM+wxak3bt2snV1VULFix4aVuj0ai2bdvKyclJS5YsSYHqkJTCwsL066+/av369Tp79qwiIiIkPZ1asFy5cmrUqJHeeusts05ja5UWr64AEoPsDcAakb3TBrI32ZvsTfa2VmRvsndqxwC4BUVPjRE95cXLWPvUGABsR2RkpDZs2KBjx47J3d1d3t7eKlKkiGn9d999pzlz5qhZs2YaOnSoPDw8LFgtEuvw4cPq06ePgoODZTQaVaBAAY0bN06VKlWydGlJrk6dOqpZs6bGjx9vttzHx0ejRo1SnTp1tHXrVr3zzjv65JNP5OrqaqFKk07NmjXVtGlTjRgxwmy5r6+vBg0apHLlyunEiRMaMGCA3n33Xas/c7V8+fIaMGCAunfvHq/2s2bN0owZM0xT1Fm70NDQWDtDL1y4oAwZMih79uwWqCpl3Lt3T/b29jYxXeTz0uLVFUBikL0BWCuyd9pA9iZ7k73J3raA7E32Tm0cLF1AWvb8P/QAYC3s7e3l7e0tb2/vWNd/8MEHGjBggNX/aE/rKlasqAULFqhXr166d++evvjiC5sM4JIUGBio8uXLx1heuXJlhYWFaefOnZoyZYoaN25sgeqSx/3792Odgqp06dKKjIzUuXPntHDhQpUrVy7li0sGDg4OCTrrOEOGDDHuYWWNwsLCNGHCBK1du1a7du2KEcS//fZb7dq1S23bttVnn31mEx1Mz8ucObOlS0g2y5cvV5UqVTR06NAXtnNyctK4ceN05swZ/f7774RwpDlkbwDWiuydNpC9yd5kb7K3LSB7k71TGwbALcia7/EAIO3q2rWr+vTpo+rVq5uWRURE6OjRo/Ly8lL69Onl4uJiWhd9LzKuoLFOXl5eWrx4sXr06KE+ffpo+vTpqlatmqXLSnLh4eFm79to0VPN9ejRw6YCuPT0c5suXboYy6NDWu/evW0mgEtSgQIFdPLkyXi3P3nypHLlypWMFSW/Z6fN9PLyUmBgYIxjqlevnm7fvq2lS5fq/PnzWrBggRwcrDMiTJs2LVHbffTRR0lcScq5ePGiBgwYEK+2BoNBTZo00YwZM5K5KiD1IXsDsEZk77SF7E32thVkb7J3XMjeSGnW+QlLoyIjIzVr1iz16dPH0qUASMMOHDig9u3bmy17+PChunbtqjlz5piFc1ifYcOGxbq8QIECun79ut5//301bdrUbPpQg8Ggr776KqVKtIgqVapYuoQUV6pUKUuXkKRatGihyZMnq0ePHipatOgL254/f15r165V165dU6i65DFv3jwdPHhQI0aMUOfOnWNt0759e7Vv317Tpk3TtGnTtGjRonhPVZfaxDeEPz/9sTWH8LR6dQWQ3MjeAFIDsrdtI3vHjuxt/cjeZO9oZG+yt6UxAG5hDx8+1LJly3Ts2DEZjUaVKFFCnTp1UoYMGcza/f333xoxYoT++ecfQjiAVMloNFq6BCQBHx+fF65/8uSJVq1aZbYsLYTwtPijNT73SLUmHTp00JIlS9SlSxcNHz5czZs3j/G6RkREaN26dZo0aZLSp09v9SF87dq1atCgQZwB/FkfffSRDhw4oNWrV1ttCP/jjz9e2ubhw4f6/vvvtWPHDjk4OFj9a5wWr64AEovsDcBWkL1tA9k7dmRv60f2fjGyt3Uie1snBsAt6Nq1a+ratatu3bpl+vG6ZcsW/frrr1q2bJly5cqliIgITZ48WQsWLFBkZKSaN29u4aoBALYsPj9ibVVQUJD+/fdfs2X379+XJN27dy/GOknKnTt3itSWXC5duqSDBw+aLXv48KEk6dy5c7FOx1W5cuUUqS2pubq6asaMGfrwww/12WefacyYMSpZsqSyZcumyMhIBQQE6OTJkwoNDVXu3Lk1ffp0ZcuWzdJlv5IrV67o7bffjnf7119/XVOmTEnGipJXnjx5Xrh+w4YN+vrrr+Xv768KFSpo9OjRKlasWApVlzzS4tUVQGKQvQEAqQ3Zm+xN9iZ7WyuyN9nbWjAAbkHff/+9bt26pUGDBqlt27ZycXHRzp079cUXX+iLL77QxIkT1bt3bx05ckS5c+fWqFGjVLduXUuXDQCwYS/7EWvLvvrqqzjPph8yZEiMZQaDQadPn07uspLVzJkzNXPmzFjXTZgwIdbl1nxPwUKFCmnVqlX69ddftX79eh05ckQRERGSJEdHR5UrV06NGjXSW2+9laCprVIrV1dXRUZGxrt9unTpTPehsyVXr17VmDFjtHfvXmXMmFHjxo1Tu3btLF1WkkiLV1cAiUH2BgCkNmRvsnc0sjfZ21aQvcneqQ0D4BZ08OBBtWrVSr179zYta9q0qUJDQzVq1CgNHTpUR44c0TvvvKNPPvlErq6uFqwWAICYZs6cKV9fX61cudLSpbyS1q1bW7qEFGfN9156FU5OTurRo4d69Ogh6ekVBvb29sqYMaOFK0t6r732mo4cORLv0HX48GGb6ogLCwvTrFmzNHv2bIWFhal169b65JNP5OHhYenSkkxavLoCSAyyNwDA2pG9rRfZm+z9PLK39SF7WycGwC0oMDBQ5cuXj7G8cuXKCgsL086dOzVlyhQ1btzYAtUBAPByN2/etOqzkqONHz/e0iWkuLQawp+XOXNmS5eQbFq3bq1Ro0Zp3759qlat2gvb7t+/X76+vurXr18KVZe89u7dqzFjxujKlSsqWrSoRo0apUqVKlm6rGSR1q6uABKD7A0AsHZkb+tF9n6K7P0U2dt6kb2tDwPgFhQeHi4XF5cYy93c3CRJPXr0IIADSJWev1/Ti+7VFBgYmKK1AUBspk2blqjtrLmzolWrVlqxYoU++OADvf/++2rfvr2yZs1q1sbf31/Lli3Tzz//rLx586pjx44WqjZp3L17V+PHj9eGDRvk7OyswYMHq0ePHrHeU8+WpKWrK4DEIHsDsFZkbwDWhuxN9rZlZG/rYjAajUZLF5FWeXl5aeLEifL29jZbHhgYqOrVq+vnn39WrVq1LFQdAMTOy8tLBoMhxnKj0Rjr8mi2cKYyYho1apR+//13q39902JAGzZsWIK3MRgMcd6rLbXz8vKKV7vnv8es/b0dEBCgjz/+WPv375fBYFDu3LnNpui6efOmjEajypUrp++++065cuWydMmJtmjRIk2ZMkXBwcGqX7++RowYYdXHAyDpkL0BWCOyN55F9iZ7WwuyN9kbSC1s+3QMK2dvb2/pEgAghrR4vybYvviG8OcDmjWHcB8fn3i3ffa4rTWE//HHHy9t8/DhQ33//ffasWOHHBwc4n3/rtQsS5Ysmj9/vnx9fbV+/XqdPn1a586dk52dnbJmzapWrVrpjTfeUP369S1d6isbN26c6c/btm3Ttm3bXrqNwWDQ6dOnk7OsZJUWOxCB5ED2BpAakb1hi8jeL0b2tl5k7xcje8MSGAC3sOenMpJePJ2RJOXOnTtFagOA2KTF+zXB9qXFgHb27NmXtrlx44bGjh2rHTt2KH369Bo4cGDyF5ZM8uTJ88L1GzZs0Ndffy1/f39VqFBBo0ePVrFixVKouuTXqFEjNWrUKMby+/fvy9nZ2QIVJb202EmcFjsQgcQiewOwNmRv2CKyd+zI3mRva0L2jhvZO3VhCnQLimsqIynu6Yys/UwZAEDqltAzGrdv367Tp09b/VRVL2PrAe15kZGRmjNnjn788UeFhoaqWbNmGjZsWIx7WNmCq1evasyYMdq7d68yZsyoIUOGqF27dpYuK8mEh4dr5cqVOnbsmFkn6oEDBzR69Gj5+fnJYDCoRo0a+vzzz5U/f34LVvtqhg0bprfffltly5a1dCkp5saNGy9tE1sH4qeffpoC1QGpB9kbAJDakL1jR/Yme1srsrdtI3tbJwbALSgx9/+QOAMUAJB84nuvpmcZDAabDeG2HtBic+jQIY0ZM0bnz59XwYIFNWrUKFWvXt3SZSW5sLAwzZo1S7Nnz1ZYWJhat26tTz75RB4eHpYuLcmEh4fr3Xff1cGDB+Xo6KijR4/KwcFBfn5+atmypcLCwlSnTh0VKVJEmzdvVkhIiNasWWO1nS1x3eM3LUtrHYhAXMjeAIDUhuxtjuxN9rZmZG+QvVMnpkC3IMI0ACC1WbBggaVLSBXSQkB7XmBgoL755hutWrVKTk5O6tevn9577z05OTlZurQkt3fvXo0ZM0ZXrlxR0aJFNWrUKFWqVMnSZSW5RYsW6dChQ/rkk0/UqVMnOTg8/ek/depUhYWF6c0339Q333wjSerdu7e8vb01c+ZMjRgxwpJlIwk834E4btw4m+9ABF6E7A0ASG3I3k+RvcnetoDsnXaRvVM3BsBTgZCQEK1YsUK7d+/W2bNnFRQUJIPBoMyZM8vLy0sNGjSQt7e3Tf4jCABIXapUqZLgbQ4dOpQMlVhOWgloz1q2bJkmTZqk+/fvq2bNmho1apRVT8cVl7t372r8+PHasGGDnJ2dNXjwYPXo0cMUTm3NunXr1LhxY/Xs2dO0LCwsTNu2bZPBYDBbnilTJrVp00br168nhFuxtNiBCCQE2RsAkFqQvcneZG/bQfZOe8je1sE2v3GsyOHDhzVgwADdvXtXTk5Oyp8/v/LkyaOIiAgFBQVp+/bt2rZtm6ZNm6bJkyerQoUKli4ZAADdvHlTPj4+WrVqla5du2YT07CltYAmSefOndPo0aN17NgxZc2aVd9++62aNWtm6bKSxaJFizRlyhQFBwerfv36GjFihHLlymXpspLV5cuX1bp1a7Nlhw8fVmhoqLJnzy5PT0+zdfnz55e/v39KlpjkDh06pMjIyARt06pVq+QpJoWlxQ5EICHI3gAAa0T2tg1kb7L3s8je1o3sbT1s918VK3Dx4kX17NlT7u7umjRpkho1ahTjTPPg4GBt2rRJP/zwg3r16iUfHx8VKFDAQhUDANKyJ0+eyNfXVytXrtT+/ftlNBplMBhUp04dS5f2ytJiQJswYYIWLlyoyMhI1atXTwMHDpS7u7v+/fffF26XO3fuFKowaY0bN870523btmnbtm0v3cZgMOj06dPJWVayioqKkr29vdmyffv2SZJq1KgRo/3Dhw/l4uKSIrUll99//12///57vNpGf4dZewhPix2IQEKRvQEA1oTsbVvI3mTv55G9rRPZ2/rwyljQjz/+KBcXF61YsUI5cuSItY27u7vatWunOnXqqGXLlvr55581duzYFK4UAJCWHTt2TCtXrtTGjRsVHBwsScqcObPatm2rt956S3ny5LFwha8uLQa0uXPnmv68fft2bd++PV7bWesVB8+fjZ0W5M+fP8brtWXLFhkMBr3++usx2u/Zs8fqp9/r0KGDypUrZ+kyUkxa7EAEEoPsDQCwBmTv2JG9rQvZ+ymyt20he1snBsAt6ODBg2rTpk2cAfxZ2bNnV6tWrbRnz54UqAwAkNb5+/tr1apV8vHx0eXLl2U0GuXi4qIaNWpo7969+uKLL9SgQQNLl5lkWrVqJYPBYOkyUtRHH32U4G2MRmMyVJJy3n77bZUtW9bSZaSY5s2ba/r06apTp45q1qyppUuX6tKlS8qaNavq169v1nbNmjX6888/NWDAAAtVmzQqVaokb29vS5eRYtJiByKQGGRvAEBqRfa2fWRv20f2tn1kb+vEALgFBQYGJmhKtddee03Lli1LxooAAGndxo0btXLlSu3du1eRkZHKkCGDvL291ahRI9WuXVt37txRw4YNLV1mkvv6668lSeHh4bpw4YIiIiJUpEgRq5+S6kVy586tNm3axLv9jRs3NHz48GSsKHn5+PioRo0aaSqEd+/eXbt379ZHH30kg8Ego9EoR0dHffnll6apf7ds2aJFixbpwIEDKlSokLp3727ZopEgafHqCiAxyN4AgNSG7E32jgvZ2/qQvW0f2ds6MQBuQeHh4Qn6xz1dunR69OhRMlYEAEjrBg0aJFdXV3Xs2FENGjRQ5cqVze5jZMtnav/yyy+aMWOG6d9aJycndezYUYMHD7bJ+/mMGDFCISEh6tSp00vbLlu2TBMmTOB3iJVxcnLSvHnztGHDBh07dkzu7u7y9vZWkSJFTG1OnjypI0eO6M0339TQoUPl7OxswYqRGGnt6gogMcjeAIDUhuxN9o4N2ds6kb3TBrK39bG9f1EAAECi5c2bV9evX9fKlSvl5+env//+Ww0bNlShQoUsXVqyWrFihSZOnKg8efKoVatWsrOz0/79+zVv3jxFRkZa9dnXcSlYsKDGjRunkJAQ9erVK9Y2d+7c0YgRI7Rr1y45Ojpa/RRdaZG9vb28vb3jnJrsgw8+0IABA2RnZ5fClSW91q1bW/191BIqLV5dAQAAYAvI3mTvZ5G9rR/Z27aRva0TA+AWFhQUpH///TdebQMDA5O5GgBAWrd161YdP35ca9as0aZNm7Rnzx59++23eu2119SoUSOVLFnS0iUmi6VLl6pcuXKaP3++0qVLJ+npPbcGDRqkpUuXasiQIaZpq2zFb7/9pl69emny5MkKCQlRv379zNavW7dOY8eO1f3791W+fHmNGzdOhQsXtlC1SePQoUOKjIxM0DatWrVKnmJSCVuaanD8+PGWLgFAKkb2BgCkJmRvsnc0svdTZG/rQfaGtTAYjUajpYtIq7y8vBI1nc2ZM2eSoRoAAMxFRkZqz549Wrt2rf744w+FhISY/t1q27at+vTpozx58li4yqRRsWJFffzxxzGmJDt27Jjeeecd+fj4yMvLy0LVJZ/Hjx+rb9++2r9/v7p3767PPvtMgYGBGjVqlLZs2SJnZ2cNGjRIXbp0sfop+BL6u8toNMpgMPC7C6mal5eXJk6cGOdVBgCeInsDAFIzsjfZm+xN9kbqRva2TlwBbkGtW7e2dAkAAMTJ3t5edevWVd26dRUaGqotW7Zo3bp1+vPPP7V8+XKtXLlSVatWVdu2bdWiRQtLl/tKQkJClD59+hjL8+bNK6PRqAcPHligquTn6uqqWbNm6eOPP9a8efN0/fp1HTlyRAEBAapZs6a++OILm+lokaQOHTqoXLlyli4DSFJcXQG8HNkbAJCakb3J3mRvIPUje1sfrgAHAAAmvXv3VrVq1VSlShWVLFky1rN2AwMDtWHDBq1du1bHjh2ziTN14zqTMzAwUNWrV9fcuXNVvXp1C1WX/KKiojRixAitXLlSdnZ2+uKLL9SuXTtLl5WkOFsXtoirKwAAAKwT2ZvsTfYGrAfZ2zpxBTgAADDZt2+fdu3aJYPBIHd3d1WqVElVq1ZVtWrVTNOQeXh4qFOnTurUqZOuXbum9evXW7hqvCo7Ozt99dVXypQpk+bMmaO9e/eqVatWcnDgpyKQ2nF1BQAAgPUhe6dNZG/AepG9rQ/frAAAwOTIkSM6ffq0jhw5oqNHj+rYsWPavn27DAaDMmTIoMqVK6tq1aqqWrWqihUrpnz58umDDz6wdNlJIigoSP/++6/Zsvv370uS7t27F2OdJOXOnTtFaksOsR1P586d9fjxYy1dulSPHj3SyJEjZWdnZ9bGmo8ZsEWVKlXi6goAAAArQ/Yme5O9AetC9rY+TIEOAABe6ObNm2ah/OzZs4qMjFSmTJlUpUoVVa1aVR07drR0ma/kRVMZRU9b9DyDwaDTp08nd2nJ5mXHLCnGems+5mHDhuntt99W2bJlLV0KkGSYXhAAAMB2kL3J3tGs+ZjJ3rBFZG/rxBXgAADghXLlyqXmzZurefPmkqSHDx9qzZo1WrlypTZv3ixfX1+rD+GtW7e2dAkprlWrVgm6f5G1Gz9+vKVLAAAAAIA4kb1tE9kbACyDAXAAAPBCoaGhOnjwoA4cOKDDhw/r5MmTCg8Pl5OTk2lKNmuXFgPa119/bekSALyi1q1bK3/+/JYuAwAAAEmA7G2byN6A9SN7WyemQAcAAGYiIiJ07Ngx7du3T/v27dPx48cVHh4uR0dHlSlTxhS8y5cvLycnJ0uXCwAAAACA1SF7AwCQfBgABwAAJu+9954OHTqk0NBQ2dnZqWTJkqpWrZqqVq2qihUrytnZ2dIlAgAAAABg1cjeAAAkLwbAAQCAiZeXlxwdHdWiRQu9//77KliwoKVLAgAAAADAppC9AQBIXgyAAwAAk5EjR2r//v26evWqDAaDXnvtNVWvXl3VqlVT5cqVlTFjRkuXCAAAAACAVSN7AwCQvBgABwAAMfz777/au3ev6V5kd+/elZ2dnby8vFS1alVTKHd1dbV0qQAAAAAAWCWyNwAAyYMBcAAA8FLnz5/Xvn379Ndff+nQoUN68OCBHBwcVKpUKVWvXl0DBgywdIkAAAAAAFg1sjcAAEmDAXAAAJAgYWFh2rRpk3777TcdO3ZMBoNBZ86csXRZAAAAAADYDLI3AACJ52DpAgAAQOp29epVHT9+XMePH9eJEyd09uxZhYeHy83NTXXq1FHlypUtXSIAAAAAAFaN7A0AQNLhCnAAAGBy//59nThxwhS4T5w4ofv378toNCpjxoyqUKGCqlSposqVK6tEiRKys7OzdMkAAAAAAFgVsjcAAMmLAXAAAGDi5eUlg8Ego9EoDw8PVa5c2fSfp6enDAaDpUsEAAAAAMCqkb0BAEheTIEOAABMmjRpoipVqqhKlSoqUqSIpcsBAAAAAMDmkL0BAEheXAEOAAAAAAAAAAAAALAJ3DwEAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1wsHQBAACkBVOnTtW0adMStM0ff/yhvHnzJlNFiVe/fn3duHFDkvS///1PXbt2fWH7nj17as+ePZKkuXPnqkaNGslal6+vrwoUKJAs+wAAAAAApF5kb7I3AAASA+AAAKQIT09PeXt7my0LCAjQ3r175erqqgYNGsTYxtXVNaXKS7RNmza9MITfu3dP+/btS8GKAAAAAABpFdkbAABIDIADAJAiGjVqpEaNGpkt279/v/bu3SsPDw9NmjTJQpUlXoYMGXTkyBHdvn1bOXLkiLWNr6+vIiIi5OjoqPDw8BSuEAAAAACQlpC9yd4AAEjcAxwAACRSw4YNZTQa5evrG2eb9evXK1OmTCpdunQKVgYAAAAAgG0gewMAkHAMgAMAkIrt2LFDPXv2VJUqVVS6dGk1btxYEydOVFBQkFm769evy9PTU3Xq1In1cbp06SJPT0/t37/ftGzo0KHy9PTUgQMH1K9fP5UpU0bVqlXTwoUL41VbkyZNJD2dii02/v7+OnTokBo3biwHh7gnnVm9erU6duyoChUqqEyZMvL29taMGTMUEhISa/u//vpLPXr0UOXKlVWpUiUNHDjQdF+02ERGRmrx4sVq3769ypcvr/Lly+utt96Sj4+PjEZjvI4VAAAAAGC7yN4xkb0BANaMKdABAEilJk2apNmzZ8ve3l4VK1aUh4eHjh07pp9//lkbN27U/PnzlS9fvlfez8iRIxUQEKDatWvr/Pnz8vLyitd2BQsWVPHixXXkyBH5+/sre/bsZus3bdqkqKgoNW/eXNOmTYuxfVRUlD755BOtW7dOTk5OqlKlilxcXHTw4EF9//332rx5s+bOnSsPDw/TNsuWLdPnn38uSapUqZIyZMigPXv26NChQwoLC4uxj/DwcPXt21e7du2Su7u7ypcvL0dHRx04cEBDhw7V/v379fXXXyfk6QIAAAAA2BCyN9kbAGB7GAAHACAV2rZtm2bPnq1MmTLp559/Nk1jFhYWpi+++ELLli3TgAEDtGLFChkMhlfal7+/v9asWaN8+fIpKipKdnbxnyCmWbNmOnPmjHx9fdW5c2ezdRs2bFD27NlVuXLlWLddtGiR1q1bp3z58mnOnDnKnz+/JCk4OFiDBw/Wjh079Pnnn2vq1KmSpJs3b2rcuHFycHDQrFmzVL16dUnSvXv31LNnT50+fTrGPn788Uft2rVLVapU0ZQpU5Q5c2ZJ0t27d/Xee+/Jx8dHFStWVPv27eN9zAAAAAAA20D2JnsDAGwTU6ADAJAKzZs3T5L06aefmt3Dy8nJSaNHj1aBAgV06tQp7du375X31aBBA9PZ7AkJ4JLUtGlTSTGnYvv333917NgxNW3aNM7HnD9/viRp3LhxpgAuSe7u7po0aZLSp08vX19fXblyRZLk4+Oj0NBQvf3226YALkmZM2fWV199FePxw8LCtHDhQjk6OmrSpEmmAC5JWbNm1RdffCFJ+uWXXxJ0zAAAAAAA20D2JnsDAGwTA+AAAKQyEREROnLkiAwGgxo3bhxjvYODgxo1aiRJZvcVS6xixYolett8+fKpZMmSOnz4sPz9/U3LN2zYIKPRqBYtWsS63c2bN3X9+nV5eHioWrVqMdanT59etWvXliQdOHBAknTw4EFJUt26dWO0L168uPLmzWu27NSpU3r48KFee+015ciRI8Y2pUuXVpYsWeTn56c7d+7E84gBAAAAALaA7E32BgDYLqZABwAglQkKClJ4eLg8PDzk7u4ea5vowJkU4TFjxoyvtH2zZs106tQpbdmyRZ06dZL0NITny5dPZcqUiXWb6MCeJ0+eOB/3+WOM3iZnzpxxtr9+/brp7zdv3pQknTt3Tp6eni88hps3bypbtmwvbAMAAAAAsB1k76fI3gAAW8QAOAAAqYzRaJSkF95fLLqNk5NTvB4zMjIyznUJnXrteU2bNtXEiRO1ceNGderUSVeuXNGpU6f0/vvvx7lNYo7xZfdbc3Aw/1kTFRUlScqdO7cqVqz4wm3d3NxeuB4AAAAAYFvI3uZtyN4AAFvCADgAAKlMpkyZ5OjoqKCgIAUHB8d6Jvq1a9ckSVmyZJH0X5CODp7Pu3//fjJV+/RM8jJlyujw4cO6c+eONmzYIElq3rx5nNtkz55dkszOGn9e9DFmzZpVkpQjRw6dP39eN27cUJEiRWK0f3YaOEmms8pz5sypSZMmJeCIAAAAAAC2juz9FNkbAGCLuAc4AACpjKOjo8qXL6+oqCht2bIlxvqIiAjT8qpVq0qSXF1dJT0N2+Hh4WbtAwMD5efnl6w1N2vWTFFRUfL19dXGjRtVpEiRF059ljt3buXJk0eBgYGm+4w96+HDh9qzZ48kqXLlypKkGjVqSFKsz8m1a9d04cIFs2WlS5eWs7Ozzp49GyOgS9Lt27fVtGlT9ejRQ48ePYr/wQIAAAAArB7Zm+wNALBdDIADAJAKdevWTZL0zTff6PTp06bl4eHhGjNmjK5evarixYubphfLlCmTcubMqbCwMC1ZssTU/smTJ/r8889fOA1bUmjSpIkMBoMWLVqkc+fOvfAM9GjRxzhixAjTGeeS9OjRI33yyScKDg5WvXr1TPcqa926tTJlyqQVK1Zo8+bNpvbBwcEaPnx4jDPwXV1d1aFDBz1+/FiffPKJAgICzPYxbNgwXbp0Sa6urkzDBgAAAABpENmb7A0AsE1MgQ4AQCrUsGFDvfvuu5ozZ47atWunihUrysPDQ8ePH9etW7eUJ08efffdd2b3EOvVq5fGjRuncePGaf369cqaNauOHDmiyMhI1atXT9u3b0+2enPlyqVy5crp6NGjkl48BVu0Ll266OjRo9q4caOaN2+uypUry8XFRYcOHVJgYKC8vLz01VdfmdpnzpxZX331lQYOHKj+/furfPnyyp49uw4ePKjIyEgVKlQoxtn2gwcP1pkzZ7Rv3z698cYbKl26tFxcXHT06FEFBQWpYMGCGjNmTNI+GQAAAAAAq0D2JnsDAGwTV4ADAJBKffbZZ/rxxx9VtWpVnT17Vjt27JCbm5v69OkjHx8fFSpUyKx9ly5dNGHCBJUqVUqnT5/WwYMHVbVqVS1fvjxG2+TQtGlTSVLJkiVVoECBl7a3s7PTd999p/Hjx6tkyZI6cuSI/vzzT+XMmVOffPKJfv/9d2XOnNlsmwYNGui3335TgwYN5Ofnp927d6tEiRL69ddflTNnzhj7cHZ21pw5c/S///1Pr732mk6cOKH9+/cre/bs6tevn5YtW2a6zxkAAAAAIO0he5O9AQC2x2A0Go2WLgIAAAAAAAAAAAAAgFfFFeAAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4YENWrlwpT0/PBP/XpUsXS5ceb1OnTo3zOIoXL66yZcuqfv366tevn7Zu3WrpcvH/jh49anqdevXq9dL2Q4cOlaenp4YMGWK2PPox9u7dm+Q19uzZ0/T4x48fT/LHf1ZERIT8/PySdR/PO3v2rMaNG6fmzZurUqVKKl26tOrWratevXpp0aJFCg0NTfJ93rlzR0OGDFGNGjVUqlQp1a5dW7t27ZIkrVq1Si1btlTZsmVVqVIl9ezZU/v37ze9BhEREYne7/Xr102Pc+XKlaQ6HLwio9GoixcvWrqMRLl06ZL69OmjqlWrqnTp0nr99dd17tw5GY1GzZ07V02aNFHp0qVVtWpV/e9//zP9e1ynTp1X2m9SfSaSyvnz52Msq1+/vjw9PbVs2bIEPVZitwMAANaDPgr6KFIr+ijM0UdBH0VqYg2fTwDWwcHSBQBIOlmyZFGFChViLL9586Zu3rwpJycnlSpVKsb6YsWKpUR5SSq2YzEajQoNDdX169fl6+srX19feXt7a+LEiTIYDBaqFJK0YsUK05/37Nmja9euKV++fBasyNzNmzfNfhAvXrxYZcuWTZZ97dmzR+PGjVPjxo01aNCgZNnH83744QfNmDFDUVFRcnd3V/78+eXo6Kg7d+5o9+7d2r17t37++WdNnz5dJUuWTJJ9RkVFqVevXjp79qwcHBxUtGhRhYeHK0+ePNq8ebM+++wzSVK2bNmUI0eOVPV+QNI7ceKExo4dqwIFCmjSpEmWLidBHj16pG7dusnf31/Ozs4qWrSoQkJClDdvXs2dO1cTJkyQJOXJk0eZMmVS3rx5LVxx0vP399eECRN06NAh7dy509LlAAAAK0EfBX0UqRV9FP+hj4I+itQmtX8+AVgPBsABG1K3bl3VrVs3xvKpU6dq2rRpypYtmxYvXmyBypLei44lLCxM33//vX755RetXbtWVapUUYcOHVK4QkQLCQnRxo0bZTAYVKtWLe3evVtLly6NcWamJa1cuVJRUVGqW7eudu7cqY0bN2rYsGHKmDFjku/rp59+StEzq1esWKHp06fL1dVV48eP1xtvvCF7e3vT+osXL2r48OE6duyYevbsqQ0bNihz5syvvF8/Pz+dPXtWkjRz5kzVrl3btG7q1KmSpIoVK2rBggVycHj6cyQkJEQbNmyQJNOyxMiRI4fpcXLnzp3ox0HS+e2333TixAkVKFDA0qUk2KFDh+Tv7y+DwaCVK1eqcOHCpnUbN26UJDVv3lzffvutafnDhw9VtmxZOTo6vtK+y5QpkySfiVe1Z88erVu3Tjly5LBYDQAAwPrQR/EUfRSpC30U5uijoI8iNbGGzycA68EU6ABsjpOTkz799FOVKVNGkrRw4UILV5S2bdq0ScHBwSpatKhatWol6WmYCwsLs2xh/89oNMrHx0eS1LZtWxUsWFChoaGmZdZu5syZkqRPP/1UTZo0MQuWklS4cGHNmDFDWbJkUWBgoBYsWJAk+w0MDDT9uWrVqrGuq1ixolmIdHFxUeHChc0GGBPD0dHR9DivOgAJRL9fs2bNGuO9Gb2uSpUqZsvTp0+vwoULK3/+/K+076T6TAAAAMBy6KNIXeijsCz6KOijeJHU/vkEYF0YAAdgsxo2bChJ+ueff/T48WMLV5N2rVy5UpJUp04d1atXT87OzgoICNCWLVssXNlTBw4c0LVr1+To6KgaNWqoadOmkqSlS5dauLJX9+DBA129elWSXjhdWubMmU2flxMnTiTJviMjI01/dnJyMlsXFRUV63IgNXrR+5X3MgAAAOKLPorUgT4Ky6GPAi+T2j+fAKwLA+AATDZv3qxevXqpWrVqKlWqlGrVqqV+/frpr7/+irW9p6enPD09ze5L9KwuXbrI09PTNJWQJF2/fl2enp6qWbOmbt++rd69e6tMmTKqUqWKBg8enKTH4+7ubvrzo0ePzPbv6empK1euxLpd/fr15enpafrRJUn79++Xp6enOnTooIsXL+qdd95R6dKlVb16ddP9X6O3O3PmjHbs2KG3335b5cuXV9WqVdW1a1dt3bo1zlojIyO1bNkydenSRZUrV1apUqX0+uuv65NPPtGpU6di3SY0NFSzZs3S22+/rerVq6t06dKqV6+eBg8erMOHD8e5r7Nnz+qzzz7T66+/rlKlSqlq1arq2bOnNm/eHGv7Z5+zZ5+T+Lh69aoOHjwoSWrUqJHc3NxUr149SUo1U91F31uoWrVqSp8+vby9vSVJly5d0r59+2LdJjHvo5UrV8rT01MHDhyQ9PSsZ09PTw0dOtRsu/v372vatGlq1aqVypcvr7Jly6pp06aaMGGC/P39E3Rsz565vH379he27devn9avX6/JkyebLR86dKg8PT3jnG4q+rjq168v6b/npmvXrqY20c9V9GNFPwfTpk0zrZP++5x5enoqIiIixr7Onj2rkSNHqmHDhipdurQqV66sbt26adOmTWbtXvb6XLt2TaNHj9Ybb7yh0qVLq1KlSurYsaOWLVtmFoqffw4WL16s69eva9iwYapTp45KlSqlOnXq6H//+5+uX78e53N76NAhDR48WPXq1VOpUqVUrVo1ffDBB2bfrbt375anp6dKliypgICAWB8nNDRUFStWlKenp44fPx7jWBP6+Xzw4IFmzZqlTp06qWrVqipZsqQqVaqkNm3aaOrUqbp//36MbRL6vR/9mkZfrbB27Vp5enqqS5cuMY5t3rx56tChgypUqKDSpUurYcOG+vzzz3X58uVY93X//n199913atOmjapUqaKyZcvqjTfe0P/+9z+dO3cuztq+++67WB9v6tSpZrVF1z5s2DBJ0o0bN0zHH/35vnHjhiRp2LBhZp+D6M9FnTp1Yt1XfN4Tz9bwos9EQr7Po5+DXbt26ezZsxowYIBq1KihUqVKqUGDBvrqq6907949s22efQ5u375t9pl93uHDh/XBBx+oatWqKlOmjBo3bqzJkycrODg41vavuh0AALBt9FE8RR+FOfooYqKP4j/0UVhvH4U1fD4BWBcGwAEoPDxcH330kfr376/du3fLwcFBXl5eioiIkK+vr7p3766vvvoqSfcZFhamnj17au/evSpcuLAMBoPy5MmTpPuI/lHp7OwsDw+PJHnMe/fuqVu3bjpz5oyKFCmiJ0+eqGDBgmZtVqxYoffff1+nTp1SoUKFlC5dOu3fv18ffvihxo0bF+Mxg4OD1alTJ40YMUIHDhxQ+vTp5enpqYcPH2rNmjVq166d5s6da7ZNWFiYunfvrsmTJ+vEiRPKlCmTihYtquDgYK1bt06dOnXSsmXLYuzr119/VZs2bbRq1Srdv39fRYsWlaurq/bs2aP+/ftr8ODBsf64TqwVK1bIaDQqf/78prN7W7RoIUk6ePCgLl68mGT7Sozg4GD5+vpK+q+uwoULq3jx4pKkJUuWJNm+smTJogoVKpg6PXLlyqUKFSqYvX/OnTunFi1aaOrUqTp37pzy5MmjQoUK6erVq5ozZ45atGih/fv3x3ufrq6uqlChgqSng3ufffaZDh48GOtrnC1bNhUpUuSVPyvp0qVThQoVVKxYMdOyChUqmI41tucgusYX+fXXX9WuXTv9/vvvunfvnum9u2/fPg0YMCDOQc3nbdmyRS1atNDixYvl7++v1157TZkzZ9bhw4c1YsQI9ezZ09QZ9bzTp0+rZcuWWrVqlVxcXFSgQAHdvn1by5cvV/v27XXz5s0Y23z77bfq3Lmz1q1bp8ePH8vT01N2dnbavn27unfvbjqLv2bNmsqVK5ciIiK0bt26OGsPDg5W4cKFX3i2fHxcvnxZb775piZPnqxjx44pc+bM8vT0lL29vU6dOqVp06bprbfeivO5iK/06dOrQoUKypIli6SnZ/I///64deuWWrdurfHjx+v48ePKli2bihYtqjt37mjp0qV68803TfdLixYUFKT27dtr5syZOn/+vLJly6ZChQrp7t27Wr58udq2batdu3YlSe3Rn1EnJyfT+9XBwUEVKlQwXSEQ/d4uVarUSx83vu+Jl3mV7/Ndu3apXbt22rp1qzw8PJQrVy5dv35d8+fP19tvv2028Pzsc+Do6BjnZ9bHx0edOnXS3r17lStXLmXOnFmXL182dYKGhobGWktitwMAALaLPor4o48iYeij+A99FPRRpKY+Cin1fz4BWB8GwAHo66+/1pYtW+Tq6qopU6Zoz549Wr58uf788099/vnncnBw0Pz58zVv3rwk2+eDBw90584drVq1Sj4+Ptq9e7d69+6dZI9/7949rV69WtLTH23PnmX6Kq5duyYXFxdt3rzZVHf0PWmiLVy4UDVq1NCOHTu0cuVK7dy5U2PHjpWDg4MWLlwY44fjkCFDdPToUWXLlk0LFizQtm3btGLFCv3111/q27evoqKi9PXXX5tCkPT0R+HRo0dVsGBBbd26VRs3btTKlSu1Z88ederUSUajURMmTNCTJ09M2+zatUtjx46VnZ2d/ve//+nQoUPy8fHR9u3bNW/ePGXJkkXr1q0zOxteknLkyKENGzZow4YNeuONN+L9XEVFRZleg+gzliWpbt26ypQpkyTLn8G5fv16hYSEyMXFxezY3nzzTUnS1q1bdffu3STZV926dbV48WKVKFFCktSyZUstXrxYH3zwgaSnQbdXr17y9/dX+fLl5evrq3Xr1mnVqlXauXOn6tWrp/v37+vDDz/UtWvX4r3fkSNHytXVVUajUatWrVLnzp1VpUoV9e7dW7NmzdLx48dN030lhWzZsmnx4sUaMWKEadnixYtNx/rsc9C2bVvTuhc5cuSIxo0bp/DwcPXu3Vt//fWX6bM1fvx42dnZaebMmdqzZ88LH+fs2bP6+OOP9eTJE/Xp00cHDhzQ6tWr5evrKx8fHxUsWFB//fWXRo8eHev2v//+u4oUKaINGzZo8+bNWr9+vZYsWSI3Nzfdu3dPc+bMMWu/fv16/fTTT7Kzs9Pw4cO1d+9erVixQrt379bAgQMlSWPGjNHFixdlZ2dn+i6J/tw8b9WqVZKkNm3amJYl9vM5cuRI3bx5U+XKldP27dtN3yH79u3ThAkTZGdnJz8/P9M+E6tEiRJavHix6UromjVravHixRo5cqSkp1eWfPDBB7p06ZIKFSqk1atXa/PmzVq5cqX+/PNPtW/fXk+ePNGnn35qOqNckn7++WdduXJFFSpU0M6dO7V+/XqtWrVKu3btUqNGjRQeHv7KnaLRtb///vuS/ntvL168WL6+vlq8eLGyZcsmSXr//fe1ePFi/fDDDy98zIS8J14ksd/n0RYuXKiaNWtq+/btWr9+vbZs2aIff/xR9vb2unLlipYvX25q++xzkDlz5jg/s4cPH1aLFi20a9curVq1Sjt27NDEiRMlSefPn4/z7P/EbgcAAGwXfRTxRx8FfRSJRR8FfRSpqY/CGj6fAKwPA+BAGnfr1i3TGaRjx45VkyZNTOvs7e3VqVMnDRgwQNLTqYBe9WrAZ3Xs2FFFihSR9PTKumenA0sMo9GowMBAbdu2Te+++66CgoLk6Oio/v37J0W5Ju+//75y5MghSXJzc1O6dOnM1ufOnVvTp083XfFoMBjUoUMH9ezZU9LT5zHasWPHTNM+/fDDD6patappnZOTkwYMGKC33npLkjRp0iTTurNnz0p6ek+c3Llzm5anS5dOQ4cOVa1atfTGG28oKCjItO7bb7+V0WjUkCFD1LVrV9nb25vWVa9eXePHj5ckzZ07V4GBgaZ1jo6OKly4sAoXLqz06dPH+3nas2eP6WzT6LAW/XjR77PVq1db9Oq+6KnFGjRoIDc3N9PyFi1ayM7OTuHh4aY2ye23336Tv7+/smbNqp9++kn58uUzrcuaNat++OEHFStWTA8fPtTMmTPj/bglSpTQsmXLVLFiRdOy4OBg7dy5U5MnT1aHDh1Uq1YtfffddwoJCUnSY0oqP/74o6KiotS0aVMNHjzY7DPXpk0btWvXTpJeOlA2depUhYWFqXPnzho4cKDZ45QoUUI//PCD7O3ttXbtWl24cCHG9o6Ojpo2bZoKFSpkWla+fHlT2Dty5IhZ++jPeo8ePdStWzfTZ87e3l59+vRRzZo1FRkZaQqNbdu2lcFg0KlTp2IMgN6+fVt79+6Vvb29WrZsaVZTQj+fAQEBOn/+vKSn3/vZs2c3rTMYDGrVqpWqVKkiSbFOJZ6UNm3apDNnzihdunSaPXu2vLy8TOvc3d01btw41a5dW+Hh4WZn0Ed/BzZu3FiZM2c2LU+fPr1GjBihGjVqqHLlyqnu6uGEvifiktjv82hZsmTRDz/8YPbaN2jQwHSiwvPv5fgoXLiwJkyYYOqckJ5+99esWVOS4pz2MrHbAQAA20QfRcLRRxE/9FEkDH0UcaOPImn7KCTr+HwCsD4MgANp3K5duxQREaFs2bKpWbNmsbbp3LmzHB0d9fDhQ9N9cZLCsz92E+rZe7FG/+fl5aVq1aqpT58+OnPmjNKnT6/vv//ebEAlKbys7g4dOsjV1TXG8rfffluS5Ofnp0uXLkn6755HZcqUiXOKpXfffVfS0+nS/vnnH0kyTUm1fPly/fbbb2b3bHVyctIvv/yi8ePHm0Lw9evXdebMGUnmPySfVbduXXl4eCg0NDTOe6olRPQP/TJlysSYgi26hgcPHmj9+vWvvK/EuHjxoumK0uefk+zZs6tatWqSpKVLlybp2cdx2bZtmySpVatWypgxY4z1Tk5OpnsTb9u2TUajMd6PXaRIEf32229atWqVPvroI5UvX16Ojo6m9QEBAZo5c6befPNN3bp16xWPJGmFhISY7nMW3dHyvIEDB2rTpk2me93FJiwszDQldlyfgejvEaPRGOv9yEqVKmW64vdZr732miTp4cOHpmVXrlwxfc6jP/vP+/LLL7V161YNGjRIkpQvXz5VrlxZkmIMgK5evVpRUVGqU6dOrDUkRJYsWbRv3z4dP37cbBq4aJGRkabOvuQOl9Hv+/r165t1qDyrR48ekqQDBw6YnuPo75Sff/5Za9asMXvuc+TIoblz52rs2LFydnZOxuoTJjHvidgkxfd59erVY3SMSk8HoyXz93J8NWjQwKzTMlr0/fOev7f4q24HAABsE30UCUcfRfzQR5Ew9FHEjj6Kp5Kyj0JK/Z9PANYpaebbAWC1on/8FC9eXHZ2sZ8T4+rqqkKFCumff/6Rn5+f6tWrlyT7fpUfSE5OTjHutWpnZyc3NzflyJFDZcuWVZMmTV75jO3YvKzuMmXKxLo8d+7cSp8+vR4+fKjLly/rtddeMz3/JUuWjPPxChYsKHd3dwUHB8vPz0/FihVT+/bttXz5cl24cEFjxozRF198oeLFi6t69eqqXbu2KleubDalWvTVnpL04Ycfxrmv6OnIoutKrKCgIP3xxx+SYv8hX7FiReXLl0/Xrl3T4sWL1bZt21faX2JET/GbJUsW05WGz2rZsqX27t2rGzduaPfu3apbt26y1uPn5yfpxe+F6HX37t1TUFBQgu+FVbx4cRUvXlz9+vVTSEiIjhw5oj179mj16tUKCAjQ1atXNWDAgHjfgzgl/PvvvwoPD5ekODuKsmTJYrqaIS6XL19WWFiYpKdTekXfuzm2/UmxfwaiO2ueFz3IGhERYVoWfX8/V1fXOAd2c+XKFWNZ27ZtdeDAAa1du1Yff/yxDAaDpP+mHHt2arFX5ezsrJs3b+r48eO6evWqrl27posXL+rMmTN6/PixJCV7x0pC3veRkZG6cuWKSpUqpZ49e2rTpk26c+eOPvnkEzk4OKh06dKqUaOG6tSpo7Jly5qeu9Qise+J5yXF93lC3svxFddjRne2xnUyRWK3AwAAtok+ioSjj+Ll6KNIOPooYkcfRdL3UVjD5xOAdWIAHEjjgoODJeml09JEh7SknF7sVa7Mi76HjyW8rO7YzoyN5urqqocPH+rBgweS4v/8u7m5KTg42PT8u7u7a+nSpZozZ47WrVunK1eu6PTp0zp9+rR++eUXZcmSRQMHDlSHDh0kmZ/1GZ+pbRNz9d+z1q5da/ohP27cOI0bNy7Otn///bdOnTr1wlCV1CIiIrRmzRpJT88sftm+Fy9enOzhMj7vhWc7Sx49epTgcPksFxcX1axZUzVr1tSAAQM0fPhwrV+/XseOHUvx1+NFnp0i79kp4BLq2ff0yZMnE9Q+2rNnpL9MdN0JrblJkyYaO3asbt68qf3796tatWr6+++/deHCBXl4eCRZ596lS5f0zTffaOfOnWaD3O7u7qpUqZL8/f1N0xgmp8S876WnwXz16tX66aeftGnTJt2+fVtHjx7V0aNHNX36dOXJk0fDhw9Xw4YNk/cAEiCx74nnJcX3eULey/EV2xXlybkdAACwTfRRJBx9FC9HH0XC0UcRO/ookr6PIrV/PgFYLwbAgTQu+ofPy8JEdBiK7YdSXNMcRV9BmFolV90vukdRdICIPhM0vs9/9Ppnn393d3f1799f/fv315UrV7R//37t379fO3fuVEBAgEaOHKlMmTKpUaNGpivpMmXKpP379yf+4OIp+p5Urq6uLwxL/v7+MhqNWrJkicaOHZvsdUXbsWOH7t69K+npVGJxXSn6+PFjPXz4ULt27dLNmzdjPRs2qd5Hbm5uun///gvfC/fv3zdr/zKff/659u3bp9atW6tPnz5xtnN2dtYXX3whX19fhYeHy8/PL0aYiOs4k/ueXM9O1RccHGx2v+fEPs6RI0deeRAyvvtLaIecs7OzmjdvrqVLl2rt2rWqVq2a6cxqb2/vJBm4DAgIUOfOnRUQEKDcuXOrQ4cOKlGihF577TXlzZtXBoNBgwcPfuEAeFK+76UXfwdG//vzbHvp6ffo8OHDNXz4cJ07d04HDhzQvn37tGfPHt24cUP9+/fXkiVL4rzi5VVrT6jEvifiepyU+j4HAABISfRRxEQfxaujj4I+iqRCH0XS91Gk9s8nAOvFPcCBNC76vjBnzpyJc6rb4OBgXb58WZJUoEAB0/Loe3ZGn6X3PH9//ySsNGk8O+VWbHWHhoa+8pnF0ffAet7Vq1dNPzSLFCki6b/n/9SpU3E+3sWLF01BJfr5DwgI0KFDh0z31SpQoIA6dOigyZMna+fOnaap16J/lBYqVEjS0zM+79y5E+e+Dh06pIsXL77SlLNnz5413ctr/Pjx2rVrV5z/RZ+xvG7dOlPwTgnR9xYqWrSodu/eHWd9c+fOlfR06uXff//dtH1yvI/i816IPis4Y8aM8Tqz+smTJ7py5Yq2bt360rbu7u6mwPVsgIv+nEdP8fW85P6c58uXz1TDs9PkPevvv//WO++8o2HDhsUZgp99nAsXLsS5vxMnTujcuXOvPEgZfc+qx48f6/r167G2+eOPP9SlSxd98803Zsujp/P6448/FBkZaZoKLKmm+VqxYoUCAgKUKVMmrVixQn369FHdunWVL18+U0fL7du3Y902qb/34/O+//vvvyVJBoNB+fPnN9W3b98+03eVp6enunTpounTp+uPP/5Qnjx5FBkZqXXr1iVb7Qn1Ku+JZ6Xk9zkAAEBKo4/CHH0U9FHQR0EfhS33UVjD5xOA9WIAHEjj6tSpIwcHB925c0cbNmyItc2iRYsUEREhFxcXValSxbQ8+sdtbPehOXHiRKoMl5kyZTIN8MRW97Zt2xJ179NnrVy5MtagHj0dWrly5Uxn6UZPFXTixIk4p/2aN2+eJClnzpzy9PSUJPXs2VOdOnWSj49PjPZubm4qV66cpKehSJIKFy5sCqaLFi2KdT+HDx9Wp06d1KxZMx07diweRxq76PtWeXh4qH79+i9s+84770h6+gM8Oggnt4CAAO3cuVPSy3+sly5d2hTUly1bZnpvvMr7KK4zuaPfC6tWrTI7izpaWFiY6T1Uu3btF9YdLfreSSdPnjQF6rjs2bNHQUFBypQpk8qWLWta/qLPeWRkpLZt2xavWhLL3d1dFStWlPTfWcHPW7dunY4cOaLr16/H+fy6u7ubvr8WLFgQa5tr166pY8eOevPNN7Vp06ZXqrtw4cLKkyfPC+v28fHRgQMHTJ1E0cqWLauiRYsqMDBQCxcu1L///qsSJUrEeX+xhIoOu7lz5471bPULFy6YvgOiv0OiJfZ7P/p1eT78R7/vt23bpmvXrsW6bfTrVa5cOWXIkEERERFq1aqVunXrph07dsRonzVrVhUrVkyS+T3MX1T7o0eP9Ndff8W6/6TyKu+J5x8npb7Po0XffzOuzhsAAICkQh+FOfoo6KN4Fn0U9FEkVmrto0jtn08A1o0BcCCNy5Url+keTCNHjjT7QRUVFaXffvtNU6dOlST17dvXbCqa6B98c+fO1cWLF03L//77b3388ccpUX6COTs7q0SJEpKkqVOnml3luGfPHn3xxRevvI+TJ09q5MiRpmmXoqKitGjRIlNIHDRokKlt+fLlTWcw9u/f32zqr7CwMP3www+ms3o//fRT0w/nli1bSpKmTZumXbt2me3/0KFDph+Cz94TasCAAZKkWbNmafbs2WZnBR86dMi0vly5cqpWrZppXXh4uC5evKiLFy++9IzhsLAwrV27VtLTqZCcnJxe2L5OnTqmH+BLlix5YdsX+ffff3Xx4kX9+++/L227atUqRUREyNHR0fQ8vkj0D+w7d+6YznJ9lfdR9LRTN27ciLGfHDly6O7du3r//ffNBgMDAgI0YMAA/fPPP3Jzc1O/fv1eWrck1axZU40bN5YkjRgxQl9++WWMM32fPHmiFStWaODAgZKevk+enXor+nN+/vx5LViwwDQAdv/+fQ0fPjzOqwmSUt++fWUwGLR69WrNnDnTLLivWrVKCxculCT16tXrhY/Tr18/2dvba926dRo/frzZGdT//POPevfurfDwcOXJk0fe3t6vVLPBYFDfvn0lSbNnz9ayZctMz11kZKRmzZqlLVu2yMHBQd27d4+xfXTHx5QpUyRJbdq0iXU/Cfl8Ros+k//s2bPavHmzabnRaNSuXbvUq1cv09n0z08fl9jv/ej31POf0SZNmsjT01NPnjzRe++9ZzbtenBwsEaOHKk9e/bIwcFBQ4YMkfT06obmzZtLkr788kudOHHC7DF9fX21Z88eSU+/Y56vfffu3fL19TUt9/f3V//+/RUQEBBn/UnhVd8Tz0rs93liRX9vPXjwgDPtAQBAsqKPgj6K6G3oo4gdfRT0USRGauyjsNTnE0DawT3AAWjYsGG6ffu2/vjjDw0YMEDZs2dXzpw5de3aNQUGBkqSOnfurPfee89suz59+mj37t26c+eOvL29VaRIET158kSXL19Wvnz51LZt2zjPKrSkgQMHqk+fPrpw4YIaNmyoIkWK6P79+7px44ZKly6tChUqmEJEYhQrVkzLly/Xxo0b9dprr+nWrVu6c+eO7OzsNGzYsBiDEd98840++OADHT16VF27dlWePHmUOXNm+fn5KTg4WPb29ho4cKBpwEeSunbtqr1792rXrl167733lD17dmXPnl2BgYGm0FK/fn21b9/etE3z5s11+fJlTZ06VZMmTdJPP/2kggUL6t69e6ZtChUqpB9//NGsvtu3b6tZs2aSnk5HFNePXEnaunWrgoKCJMVvKiQ7Ozu99dZb+vbbb/XPP//o8OHDpjCTEJ999pkOHDigKlWqmIJGXKLPMn799dfjda+m5s2ba8KECXrw4IGWLFliCmuJfR+VKFFC27dv19q1a3Xu3DlVqlRJo0aNUoYMGTRz5kz17t1bR48eVaNGjVSkSBE5ODjo/PnzCg8PV6ZMmTRp0iTT1FXxMWnSJLm6umrVqlVasGCBFixYoNy5cytLliymz2tYWJgcHR01ePBgdezY0Wz7unXrqlKlSjp06JC+/PJLzZkzRx4eHrp06ZLCw8PVr18/UwdUcqlevbqGDRumr7/+Wt99953mzJmjfPny6datW6b7pH344YdmnSmxqVixosaOHatRo0Zp3rx5WrJkiQoXLqxHjx7pypUrMhqNypo1q3755ZeXBq/4aNeunS5cuKC5c+dqxIgR+v7775UzZ05dv35dQUFBsre31+jRo2M9a7ply5aaPHmyHj9+LEdHR7Vo0SLWfSTk8/lsXb/99puuXLmi/v37K0+ePPLw8NDNmzcVEBAgR0dHValSRQcOHIgxFXpiv/eLFy8u6em9zZo0aaIiRYpo2rRpcnBw0I8//qj33ntPly5dUsuWLVWwYEG5ubmZpjp0dnbWmDFjVKlSJdPjDRo0SIcPH9bp06fVvn170zH4+/ubrux55513zAbAW7durUWLFsnPz0/9+vVT/vz55erqqosXL8re3l4ffPCBZs6c+dLn71W8ynviWYn9Pk8sT09P2dnZKTQ0VE2aNFH27Nn1yy+/xGuaQwAAgISij4I+Cvoo4kYfBX0UiZXa+igs9fkEkHZwBTgAOTk5afr06fruu+9Uq1YthYWF6cyZM3JxcVHz5s21YMECjRw5Msa0PcWLF9fy5cvl7e2tzJkz69KlS4qMjNS7774rHx8fZcuWzUJH9GJ16tTRb7/9poYNG8rV1VUXLlxQunTp1L9/f/3222+ms18Tq2vXrvr2229VqFAh05mnjRs31pIlS2I9izJTpkxauHChxo4dq8qVK+vhw4c6d+6cPDw81K5dOy1fvly9e/c228be3l7Tp0/X8OHDVb58eYWGhurs2bMKCQlRrVq19M033+jHH380uw+U9PQH+NKlS+Xt7S13d3edPXtWgYGBKlGihAYMGKAVK1YoS5YsiT726OBWsmTJeE+F1K5dOzk6OkpK/jM4jx8/brq3UnzvVeTi4qJWrVpJkv766y/TveYS+z5677331L59e2XKlEmXL1/WuXPnTOtKlCihdevWqW/fvipatKiuXbumy5cvq1ChQvrggw+0Zs2aeE8tFs3JyUlff/21li1bpnfffVclS5ZUWFiYzp49q1u3bqlQoULq2bOn1qxZE+N9Jj0NGL/88osGDhyookWLKiAgQP/++6+qV6+uxYsXv/JZyPHVrVs3LV26VC1atFC6dOl07tw5RUREqG7dupo7d6769+8fr8dp27atVq9erbfeekvZsmXT+fPndfPmTRUuXFi9evXSmjVrTPejSwpDhw7V3Llz1aBBAxmNRp09e1b29vZq0qSJli5datYB9KzMmTObBm/r16+fpAON7u7upu+VokWL6t69ezp//rzc3d1NnYJfffWVpKdXiT971UJiv/dbtWqlXr16KVu2bLp+/brZPR3z5s2rFStW6NNPP1WZMmV0584dXbx4Ubly5VLXrl21evVq02cwmpubmxYuXKj+/furZMmSCgoK0tmzZ2U0GtWgQQP99NNPGj16dIxtli5dqp49e6pAgQK6efOm7t69q8aNG8vHx0dVq1ZNsuf4RRL7nnhecn+fP6tAgQIaP368ChYsqKCgIN28eTPGFSIAAABJhT4K+ijoo4gbfRT0UbyK1NRHkdo/nwCsn8HIzfwAIEnUr19fN27c0Lhx4+I9gIGkM3bsWF29elWzZ8+2dClAkmjTpo1OnTqlWbNmvfTMcQAAAAB4Fn0UlkUfBWwNfRQArA1XgAMArF5UVJQOHTqkIkWKWLoUIEmcOnVKp06dUq5cuVSrVi1LlwMAAAAAiCf6KGBr6KMAYI24BzgAwOp98cUXCggIUJcuXSxdCpBo165dkyTdvXtXQ4cOlfR0ukJ7e3tLlgUAAAAASAD6KGAL6KMAYO0YAAcAWL23335b/fv3V+bMmS1dCpBoGzZs0Lfffmv6e7FixdS5c2cLVgQAAAAASCj6KGAL6KMAYO2YAh0AYPW8vLwIlrB6Xl5eyp49u1xdXdWwYUPNmTNHTk5Oli4LAAAAAJAA9FHAFtBHAcDaGYxGo9HSRQAAAAAAAAAAAAAA8Kq4AhwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQHSxdgLYxGo6KimC0eAAAAAGDOzs4gg8Fg6TJsAtkbAAAAABCbhGRvBsDjKSrKqHv3Hlm6DAAAAABAKpM5s5vs7RkATwpkbwAAAABAbBKSvZkCHQAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATHCxdAAAAAAAgpqioKEVGRli6jDTP3t5BdnacOw4AAAAAtojsnTokdfZmABwAAAAAUhGj0agHD+4pJCTY0qXg/7m4uCtDhswyGAyWLgUAAAAAkATI3qlPUmZvBsABAAAAIBWJDuDu7h5yckrHoKsFGY1GhYU9UXBwoCQpY8YsFq4IAAAAAJAUyN6pR3JkbwbAAQAAACCViIqKNAVwd/cMli4Hkpyc0kmSgoMDlT69B9OhAwAAAICVI3unPkmdvUnuAAAAAJBKREZGSvov+CF1iH49uC8cAAAAAFg/snfqlJTZmwFwAAAAAEhlmHotdeH1AAAAAADbQ9ZLXZLy9WAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNcLB0AQAAAAAAyzl37qx+/HGKzp49ragoo0qUKKXevfuqZMlSkqSDB/dp7tyfdfHiednbO6hKlWrq06efcuTIKUnasGGtvvpqjJYtW6NcuXKbHrddO2+VL19R//vfaElSrVqV9O67vbV37x5du3ZF77zTRd2799KNG9c1Y8ZUHT58UEajUaVKlVbfvgP02muFJUlPnjzRL7/M1NatvgoMvKf8+Quoa9d31aBBo5R9ogAAAAAASCSyd8riCnAAAAAASKMePQrW4MH9lDFjJo0bN0Fjxnyl0NAQDR78kYKDg7V58wYNGvSRsmXLptGjv1S/foN06tTf+uCDdxUYeC/B+5s//xe9/np9jR79pWrXfl13797Ve+9105Urfho8+DONGjVWDx480MCBfRUUFCSj0ajhwz/RqlUr9dZbHfX119+qVKkyGjVquDZuXJcMzwgAAAAAAEmL7J3yuAIcAAAAANIoPz8/BQUFql27t1SmTDlJUoECBbV69QoFBz/Ujz9OUaVKVTRmzHjTNmXKlFPnzu21ePEi9e3bP0H7K1GilDp37m76+/TpU/TkSai+//5HZcmSVZJUtKiX3n+/u06ePKF06Zy0f/9ejRnzlems86pVqys0NEQzZ07TG280kYMDsRYAAAAAkHqRvVMeV4ADAAAAQBr12muFlSmThz777GNNmjRee/bsUpYsWdW37wCFhoYqICBAjRo1NdsmT568KlmytI4ePZTg/RUuXMTs78ePH1WpUmVMAVySsmbNqhUr1qlWrTo6dOigDAaDqlevpYiICNN/NWvWVUDAXfn5XUzcgQMAAAAAkELI3inPuobrAQAAAABJxtXVVT/+OFvz5/+irVt9tWrVCjk7O6tRo6Zq0qS5JClz5iwxtsuSJYvOnTuX4P15eGQ2+/uDB/fN7l32vAcP7stoNKpRozqxrr97946KFvVMcB0AAAAAAKQUsnfKYwAcAAAAANKw/PkLauTIsYqMjNSZM6e0adMGrVq1XFmzZpMk3bsXEGObgIAAZcqUSZJkMBgkSVFRUWZtQkIev3Tf7u7pFRQUFGP54cMHlTNnLrm7p5eLi6umTp0Z6/Z58uR76T4AAAAAALA0snfKYgp0AAAAAEijtm/fqhYtGiog4K7s7e1VqlQZDRkyVO7u6XXv3j1lyZJFvr4bzba5ceO6Tp48oTJlykqSXF3dJEm3b98ytbl69bLu37//0v2XLVtOp06dUGDgPdOyoKAgDRnSX3/+uUvlylVQSMhjGY1GeXmVMP136dJFzZkzW5GRkUnxNAAAAAAAkGzI3imPK8BfkZ2dQXZ2hmR7/Kgoo6KijMn2+AAAAADSrtKlyykyMkrDhg1R587d5ebmpj/+8NWjR8GqX7+hSpQoqa++GqNRo4apSZMWun8/SHPmzFKGDBn11ludJEkVK1aWs7Ozpk37Tu+911ePHz/W3LlP27xMhw4dtXHjen388Ufq2vVdOTml08KFc5UlS1Y1adJc7u7pVa5cBQ0dOljdu/dSgQIFdebMKf3yyyxVrVrNdCY8Ei88PFwLFy6Uj4+PLl++LFdXV5UuXVrdunVT7dq1Y7SvWrVqrFcORDtx4oTSpUuX5HWSvQEAAABYK7J3yjMYjUYSXjxERkbp3r1HZsvs7AzKlMlV9vbJdyF9ZGSUgoIeE8QBAACANCA8PEwBATeVJUsuOTo6pcg+z5w5pdmzZ+js2TMKDQ3Va68VVpcuPVS3bj1J0o4df2jhwnm6dOmC3NzcVLVqdfXu/aFy5Mhpeox9+/Zq5sxpunLFTzlz5lKPHr21adN6ZcmSRf/732hJUq1aldSjx3vq2fN9s/1fuXJZP/44RUeOHJajo6PKl6+gvn0HKE+evJKkkJAQ/fzzDG3f/ocCA+8pa9bsatiwkbp375UsA62xednrkjmzW7LmwuRiNBrVr18/bdmyRRkyZFCFChX05MkTHTp0SOHh4Ro4cKD69Oljan/jxg3Vr19fOXLkUJUqVWJ9zPHjx8vR0THRNZG9AQAAACQ3srftZ28GwOMpthDu4GAnDw83TV/8p274v3yKgYTKkz2jPnynpgIDHykiIurlGwAAAACwapYI4Xg5Wx0AX7x4sUaPHq3ixYtr7ty58vDwkCSdPXtWnTp10qNHj7R+/XoVLlxYkrR161Z9+OGH6tatm4YPH54sNZG9AQAAACQ3snfqlJTZmynQk8AN//u6fCMw2R4/OTtSmOYNAAAAANKm1atXS5KGDh1qGvyWJC8vL3l7e2vx4sXatWuXaQD81KlTkqSSJUumfLEiewMAAAAA4ocB8FQsY3pnGaOilCGDS7LtIyoqUoGBIQRxAAAAAEhj5s+fLz8/PxUtWjTGusePH0uS7O3tTcvOnDkjSSpVqlTKFJhCyN4AAAAAYFsYAE/F3JydZLCzk9+62QoJuJnkj++SJZcKtXhPdnYGQjgAAAAApDHp0qWTl5dXjOVbt27Vpk2b5OLiokaNGpmWnzp1Ss7Ozjp58qRGjBih8+fPy2AwqEKFCurbt6/Kli2bkuUnGbI3AAAAANgWBsCtQEjATYXcvmrpMgAAAAAANur+/fsaMWKELly4oEuXLilXrlwaP368cubMKUkKCAiQv7+/JOnTTz9VuXLlVLVqVf3zzz/asWOH9uzZo4kTJ6pZs2aWPIxXQvYGAAAAANvAADgAAAAAAGnctWvX5Ovra/q7wWDQhQsXVL16dUn/3f/bw8NDM2bMUPny5SVJRqNR8+fP1/jx4zVs2DBVqFDBNGieWA4O5vfiTs57c6ckWzkOAAAAwNpFRRksXQJewN7eECMXJhQD4AAAAAAApHGFChXSgQMHZDQatXfvXn355ZcaN26cgoOD1adPH9WuXVu7d++W0WhUjhw5TNsZDAZ1795dBw8e1NatW7V8+XJ99NFHia7Dzs4gDw+3pDikVCc57zEOAAAAIP5CQ+11965dkgy0IulERRlkZ2enjBld5ezs/EqPxQA4AAAAAABpnJvbf4POzZo1U86cOdWxY0fNmjVLXbt2lZubm7Jnzx7n9vXq1dPWrVt18uTJV6ojKsqoBw8emy2zt7ezicHjBw9CFBkZZekyAAAAgDQvLOyJoqKiFBlpVEQEv9FTi8hIo6KionT//mOFhETGWJ8hg0u8Z9ZiABwAAAAAAJipUKGC8ufPrytXrujy5csqWbLkC9tny5ZNkhQSEvLK+7bVDqjIyCibPTYAAADAmkRGGi1dAl4gKU5M4Lp+AAAAAADSmJCQEH399dcaMmSIjMbYO3+cnJwkSREREVq6dKkGDhyorVu3xtr22rVrkvTK9/8GAAAAAOBVpdorwMPDw7Vw4UL5+Pjo8uXLcnV1VenSpdWtWzfVrl07RvuqVasqKCgozsc7ceKE0qVLl4wVAwAAAEDysbMzyM7OkOL7jYoyKiqKs+NtjbOzs3x8fBQUFKQOHTqoSpUqZuuvXbsmPz8/OTk5qWjRotq5c6c2btyokJAQNWzY0Kyt0WjU6tWrJUm1atVKsWMAAAAAgKRG9rYNqXIA3Gg0atCgQdqyZYsyZMigGjVq6MmTJ9q3b592796tgQMHqk+fPqb2N27cUFBQkHLkyBEjtEezs+NidwAAAADWyc7OoEyZXON9r6ukFBkZpaCgx4kK4r6+m7RixVJdunRBklSgQCG1aNFSrVq1TeoykUAGg0FvvfWWfvrpJ40ePVrz5s0z3eP71q1b+vjjjxUREaFu3brJ1dVVrVu31uzZs7Vjxw79/vvv6tChgyQpKipKU6dO1YkTJ1SkSBE1adLEkocFAAAAAIlG9rYdqXIAfMmSJdqyZYuKFy+uuXPnysPDQ5J09uxZderUSVOmTFGjRo1UuHBhSdKZM2ckSU2aNNHw4cMtVjcAAAAAJAc7O4Ps7e00ffGfuuF/P8X2myd7Rn34Tk3Z2RkSHMLXrVut77+fqP79B6tcuQqSjDp48IB++GGyAgPvqUeP95KnaMRb3759deTIER08eFCNGzdWxYoVFR4erhMnTujx48eqVauWhgwZIknKly+fRo8erREjRmjkyJFatGiRChYsqLNnz+rKlSvKmjWrpk6dKkdHRwsfFQAAAAAkDtnbdqTKAfDoqdOGDh1qGvyWJC8vL3l7e2vx4sXatWuXaQD81KlTkqSSJUumfLEAAAAAkEJu+N/X5RuBli4jXnx8lqtFi5Z6883WpmX58xfUnTv++v33xWk2hKcmzs7Omjt3rhYsWKDVq1dr//79cnBwUNGiRdWmTRu1b99e9vb2pvZt27ZVoUKFNHv2bB05ckSXLl1S9uzZ1aVLF/Xp00dZsmSx4NEAAAAAQNIge1u/VDkv+Pz587V69WpVrlw5xrrHjx9LklkIj74CvFSpUilTIAAAAADghezsDPr77xN68OCB2fJOnbrpp5/mSpLatfPWL7/8ZLb+o49668svR0uSjhw5pFq1KunXX+erWbMGevfdTurbt5c+/3yY2TYnThxTrVqVdP36NUnSn3/u1rvvdlb9+jX11lutNHv2DIWFhUmSpkyZrA4dWpptHxwcrPr1a2rPnp1JdvzWwtHRUT179tSaNWv0999/6+jRo/r999/19ttvm+XuaBUqVNCMGTO0f/9+nTx5Utu2bdOIESMY/AYAAAAACyB7xy5VDoCnS5dOXl5eMcL21q1btWnTJrm4uKhRo0am5adOnZKzs7NOnjypd955R5UqVVLlypX1/vvv6/jx4yldPgAAAACkeZ06ddP58+fUunVTffLJAC1cOE+nT5+Uu7u78ucvkKDH2rt3j376aa6GDftcLVq01J9/7tLjx49M6319N6p06bLKmzef9u3bq5Ejh+rNN1tp4cKlGjx4qLZt26KxYz+XJLVo0VL//ntDx48fM23/xx++cnNzU7VqNZPk2AEAAAAASAlk79ilygHwZ92/f1/9+vVT06ZN9eGHHypz5syaMWOGcubMKUkKCAiQv7+/QkND9emnnyoqKkpVq1ZVpkyZtGPHDnXs2FEbNmyw8FEAAAAAQNry+usN9NNPc/X66/V15sxp/fTTNPXu3V0dO7bViRPHEvRY77zTWfny5VfRop6qV6+h7OzstXPndklSeHi4tm3bqmbNvCVJCxbMUYsWb6pVq3bKkyevqlSppk8+Ga7t27fq5s1/VbhwEXl6FtfmzetNj79p0zo1btxMDg6p8i5hAAAAAADEiuwdu1Sf7q9duyZfX1/T3w0Ggy5cuKDq1atL+u/+3x4eHpoxY4bKly8vSTIajZo/f77Gjx+vYcOGqUKFCqZB88RycDA/X8DePtWfPxAvtnIcAAAAgLWLijJYuoQkVbx4SY0cOVZGo1GXLl3UX3/t0bJlSzRkyAAtXeoT78fJmze/6c8uLi6qV6+BfH03qmnTFvrrrz/15Emo6tdvKEn655+zOnPmlDZuXGfaxmg0SpIuX/ZTrly51bz5m5o160cNHPiJ/P1v6++/T+iTT4a/tA57e0OMXAgAAAAAgCXZWvZOCql+ALxQoUI6cOCAjEaj9u7dqy+//FLjxo1TcHCw+vTpo9q1a2v37t0yGo3KkSOHaTuDwaDu3bvr4MGD2rp1q5YvX66PPvoo0XXY2Rnk4eGWFIeU6mTI4GLpEgAAAABICg211927djEGWi190mpC9+/vf1sLFsxT1649lD17dkmSp2cxeXoWU926r+udd9rp77+PSZLs7MxPNo6MjJTB8PT4o/fr6upi1sbb+0199NEHun//nrZs2ai6desrY8YMkp4G7s6du6lZsxYx6sqaNZscHOzUtGkzTZ/+vfbt+1MXL55XiRIlVaxYsTiPJyrKIDs7O2XM6CpnZ+cEPRcAAAAAACQHf//b+vXX+ercubuyZcsug8GgwoWLqHDhIqpVq646d26vY8eOxLptZGREjGXp0qUz+3uzZt4aMKCPAgLuytd3g+rUqSc3N3dJUlSUUR07dlXTpjGzd5YsWSVJb7zRRNOmfa+9e3fr4sULKl68hF57rcirHna8pPoBcDe3/wadmzVrppw5c6pjx46aNWuWunbtKjc3N1OHSmzq1aunrVu36uTJk69UR1SUUQ8ePDZbZm9vZxODxw8ehCgyMsrSZQAAAABpXljYE0VFRSky0qiIiNTzGz0yMipB9djZOWrVqhXKli27OnXqZrbO2dlVkpQxo4ccHBz14EGw6bGjoqL077/XlTdvPkVERJlyyvP7L126vHLmzKV169bqzz/36OuvJ5vWFypUWH5+fsqVK6+p/dGjh/X774s1ZMhQOTqmk4uLm2rXfl3btm2Vn99FtWrV7oXHFxlpVFRUlO7ff6yQkMgY6zNkcLH4SQoAAAAAgLTFySmdVq9eqezZc8TI3tHjq5kzZ5GDg6OCg4NN655m7xtmV3zHply5CsqZM5c2bVqvvXv/1NdfTzate+21wrpy5bLy5s1nWvZs9nZxcVH69OlVp87r2rFjmyl7p5RUPwD+vAoVKih//vy6cuWKLl++rJIlS76wfbZs2SRJISEhr7zv1NQBlZQS2pkFAAAAIHlERhotXUKSyJQpkzp16qZZs35UcHCw6tdvKFdXN12+7Kd5835WhQqVVLZseZUpU1Z//OGrunXrKXPmLFqyZJFZKH+Rpk1baP78OcqYMaMqVapiWt6pU1d9/vkw/fLLT3rjjSa6c8dfX389Tjly5DCdhS5JzZu/qaFDP5bRKDVs2Dhe+0xtJyYAAAAAANIuW83eSSHVDYCHhIRoypQpunv3riZOnCiDIeY98JycnCRJERERWrp0qf766y+1aNFCDRs2jNH22rVrkvTK9/8GAAAAAEvLkz2j1ezvvff6KG/efFq7dpV8fJYpNDRUOXLkVP36b6hr13clSb17f6iHDx9oyJD+cnZ2kbd3KzVo0Mh037AXadKkhebMmaU2bdrLzu6/q6/r1WuoMWOkhQvnaNGieUqfPoNq1qytPn36m21fqVIVZcyYSaVLl1X69OkTfZwAAAAAANtC9v6PtWbvVDcA7uzsLB8fHwUFBalDhw6qUqWK2fpr167Jz89PTk5OKlq0qHbu3KmNGzcqJCQkxgC40WjU6tWrJUm1atVKsWMAAAAAgKQUFWVUZGSUPnynZorvOzIySlFRibsyvWnTFrHeDyxa1qxZNX785DjXV6hQSXv2HIp1Xc6cObVr14FY19Wv31D168c8QfpZoaGhCg4OVosWLV/YDgAAAACQNpC9Y7LW7J3qBsANBoPeeust/fTTTxo9erTmzZtnusf3rVu39PHHHysiIkLdunWTq6urWrdurdmzZ2vHjh36/fff1aFDB0lP56+fOnWqTpw4oSJFiqhJkyaWPCwAAAAASLSoKKOCgh7Lzi7mDFkpse/EhvDU6MGDBzpy5KC2bduqHDlymE3hBgAAAABIu8jeScfS2TvVDYBLUt++fXXkyBEdPHhQjRs3VsWKFRUeHq4TJ07o8ePHqlWrloYMGSJJypcvn0aPHq0RI0Zo5MiRWrRokQoWLKizZ8/qypUrypo1q6ZOnSpHR0cLHxUAAAAAJJ6thWFLiYyM0Ndfj1WmTB764ovxsd52CwAAAACQNpG9k4als3eqHAB3dnbW3LlztWDBAq1evVr79++Xg4ODihYtqjZt2qh9+/ayt7c3tW/btq0KFSqk2bNn68iRI7p06ZKyZ8+uLl26qE+fPsqSJYsFjwYAAAAAkFp4eGTWpk07LF0GAAAAAAA2y9LZO1UOgEuSo6OjevbsqZ49e8arfYUKFTRjxoxkrgoAAAAAAAAAAAAAkFrZWboAAAAAAAAAAAAAAACSAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAYAXs7AxycLBL8f/s7AyJqrddO2/VqlVJS5YsinX9xIlfqVatSvrll58S/Zy0a+edoO0T2h4AAAAAkLaQvWPfh7VlbweL7h0AAAAA8FJ2dgZ5eLjIzs4+xfcdFRWpwMAQRUUZE7ytg4ODtm//Q2+/3dlseUREhHbu3CaDIXEBHwAAAACApEb2th0MgAMAAABAKmdnZ5Cdnb381s1WSMDNFNuvS5ZcKtTiPdnZGRIVwitVqqL9+//S7du3lCNHTtPyI0cOydnZRenSOSdluQAAAAAAJBrZ23YwAA4AAAAAViIk4KZCbl+1dBnxVrx4SV25clnbt281OxP9jz98Vb/+G9q2bYtp2cmTJzRr1o86d+6MHBwcVKtWXX344UBlyJBBkhQcHKzvv5+oPXt2ysHBUV279oixv7//Pq6ZM6fpzJnTypQpk2rWrKMPPvhQbm7uyX+wAAAAAACbQPa2/uzNPcABAAAAAMmmXr2G2r79D9Pfw8PDtWvXDjVs2Mi07PTpk+rX730VLFhIM2fO1dixE3T69El9/PFHioqKkiR9/vlQnTlzShMmfKfvvpumP//crVu3/jsj/8KF8xowoK8qV66q+fMXa9SoL3Xu3BkNGvSRjMaEn0EPAAAAAIC1IHubYwAcAAAAAJBs6td/Q6dPn9Tt27ckSQcO7FOmTJlUrJiXqc2SJb+qcOGi+vjjz1So0GuqUKGSRo/+SmfPntb+/X/p6tXLOnBgnwYN+lRly5ZX0aKeGjVqnJycnEyPsXjxAlWqVFndu/dSvnz5VbZsOY0e/aVOnz6po0cPp/hxAwAAAACQUsje5pgCHQAAAACQbLy8iit37jymqdi2bfNVw4aNzdpcunRBlStXM1tWuHARubun18WL5xUaGiJJKl68hGl95sxZlDt3HtPfz507p+vXr+qNN2rHqOHKlcuqUKFSUh4WAAAAAACpBtnbHAPgAAAAAIBkVb/+G9q+/Q+1bt1eu3fv0uzZ883WG41GGQwxtzMao+Tg8F9sjYoyn07N3t7BrG2jRk3Vteu7MR4nUyaPVzwCAAAAAABSN7L3f5gCHQAAAACQrOrXb6jTp09q3brVyp07jwoUKGi2/rXXiuj48WNmy86f/0ePHj1SwYKvmaZs+/vv46b1Dx8+1I0b10x/L1SosPz8Lipv3nym/6KiIvXDD9/K3/9Wsh0bAAAAAACpAdn7PwyAAwAAAACSVdGinsqbN59mzZquBg0axVj/1lsddeHCP/r22wm6fNlPR48e1hdfjFCxYp6qVKmK8uTJq3r1Guq7777RwYP7denSBY0d+7nCw8NNj/H22531zz/nNHHiV/Lzu6RTp05q9OgRunr1ivLmzZ+ShwsAAAAAQIoje/+HKdABAAAAwEq4ZMlltfurX/8NzZ//ixo2jBnCS5Uqo0mTpmj27Jl6991OcnV1U+3ar6tPn49M07CNGDFa06dP0ahRwxUVFaWWLdsoKCjwmccorW+/naaff56hnj27yMXFWRUqVNaHHw6Uk5NTkh0HAAAAAMC2kb2tP3sbjEaj8eXNEBkZpXv3Hpktc3Cwk4eHm4ZP2aDLNwLj2DLxapQroI861tLp+V8o5PbVJH98lxz5VaLb5woMfKSIiKgkf3wAAAAACRMeHqaAgJvKkiWXHB3/C452dgZ5eLjIzs4+xWuKiopUYGBIjHuApSVxvS7RMmd2k709E6wlBbI3AAAAgORG9k6dkjJ7cwU4AAAAAKRyUVFGBQaGyM7OYJF9p+UADgAAAABIG8jetoMBcAAAAACwAoRhAAAAAACSF9nbNjBHGwAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAJDKGI3cbyw14fUAAAAAANtD1ktdkvL1YAAcAAAAAFIJe3t7SVJY2BMLV4JnRb8e9vYOFq4EAAAAAPCqyN6pU1Jmb9I7AAAAAKQSdnb2cnFxV3BwoCTJySmdDAaDhatKu4xGo8LCnig4OFAuLu6ys+MccgAAAACwdmTv1CU5sjcD4AAAAACQimTIkFmSTEEclufi4m56XQAAAAAA1o/snfokZfZmABwAAAAAUhGDwaCMGbMofXoPRUZGWLqcNM/e3oErvwEAAADAxpC9U5ekzt4MgAMAAABAKmRnZyc7OydLlwEAAAAAgM0ie9smTmMHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEB0sXAAAAAAAALCM8PFwLFy6Uj4+PLl++LFdXV5UuXVrdunVT7dq1Y7S/e/eufvzxR+3evVu3b99WtmzZ1KRJE/Xt21dubm4WOAIAAAAAAMxxBTgAAAAAAGmQ0WjUoEGDNGHCBN26dUs1atRQ8eLFtW/fPvXq1UszZswwa+/v768OHTro119/lbOzs15//XVFRUXp559/1jvvvKPg4GALHQkAAAAAAP9hABwAAAAAgDRoyZIl2rJli4oXLy5fX1/99NNPmjdvnpYvXy53d3dNmTJFFy9eNLUfN26cbty4od69e2vt2rX64YcftHnzZjVt2lTnzp3TtGnTLHg0AAAAAAA8xQA4AAAAAABp0OrVqyVJQ4cOlYeHh2m5l5eXvL29ZTQatWvXLknS1atXtWXLFuXKlUv9+/c3tXVyctLYsWPl5uampUuXKjQ0NGUPAgAAAACA5zAADgAAAABAGjR//nytXr1alStXjrHu8ePHkiR7e3tJ0q5duxQVFaW6devK0dHRrG369OlVrVo1PX78WPv370/+wgEAAAAAeAEGwAEAAAAASIPSpUsnLy8v0yB3tK1bt2rTpk1ycXFRo0aNJEn//POPJKlYsWKxPlaRIkXM2gEAAAAAYCkOli4AAAAAAABY1v379zVixAhduHBBly5dUq5cuTR+/HjlzJlTknTnzh1JUrZs2WLdPnr53bt3U6ZgAAAAAADiwAA4AAAAAABp3LVr1+Tr62v6u8Fg0IULF1S9enVJ/02J7uzsHOv20cuj270KBwfzyers7W1j8jpbOQ4AAAAASO0YAAcAAAAAII0rVKiQDhw4IKPRqL179+rLL7/UuHHjFBwcrD59+pimSTcYDLFubzQazf6fWHZ2Bnl4uL3SY6RWGTK4WLoEAAAAAEgTGAAHAAAAACCNc3P7b9C5WbNmypkzpzp27KhZs2apa9eucnV1lSQ9efIk1u2jl7u4vNogb1SUUQ8emF9Fbm9vZxODxw8ehCgyMsrSZQAAAACAVcqQwSXeM2sxAA4AAAAAAMxUqFBB+fPn15UrV3T58mVlz55d0n/3An/ey+4RnhAREbY5SBwZGWWzxwYAAAAAqUmqHQAPDw/XwoUL5ePjo8uXL8vV1VWlS5dWt27dVLt27Rjt7969qx9//FG7d+/W7du3lS1bNjVp0kR9+/Y1O5MdAAAAAIC0LiQkRFOmTNHdu3c1ceLEWKc2d3JykiRFRESoWLFikqSLFy/G+njnz5+XJHl6eiZTxQAAAAAAxE/8rhNPYUajUYMGDdKECRN069Yt1ahRQ8WLF9e+ffvUq1cvzZgxw6y9v7+/OnTooF9//VXOzs56/fXXFRUVpZ9//lnvvPOOgoODLXQkAAAAAACkPs7OzvLx8dHatWt18ODBGOuvXbsmPz8/OTk5qWjRoqYT0bdv367IyEiztg8fPtT+/fvl6uqqihUrpkj9AAAAAADEJVUOgC9ZskRbtmxR8eLF5evrq59++knz5s3T8uXL5e7urilTppiddT5u3DjduHFDvXv31tq1a/XDDz9o8+bNatq0qc6dO6dp06ZZ8GgAAAAAAEhdDAaD3nrrLUnS6NGj5e/vb1p369Ytffzxx4qIiNA777wjV1dX5cmTR/Xq1dP169c1ceJEGY1GSVJYWJg+//xzPXr0SG+//bbc3d0tcjwAAAAAAERLlVOgr169WpI0dOhQeXh4mJZ7eXnJ29tbixcv1q5du1S4cGFdvXpVW7ZsUa5cudS/f39TWycnJ40dO1a7du3S0qVLNXDgQDk7O6f4sQAAAAAAkBr17dtXR44c0cGDB9W4cWNVrFhR4eHhOnHihB4/fqxatWppyJAhpvYjR47UqVOnNHfuXO3cuVNFixbV33//rX///VclS5bURx99ZMGjAQAAAADgqVR5Bfj8+fO1evVqVa5cOca6x48fS5Ls7e0lSbt27VJUVJTq1q0rR0dHs7bp06dXtWrV9PjxY+3fvz/5CwcAAAAAwEo4Oztr7ty5+vTTT5UvXz7t379fJ06cUNGiRTVmzBjNmjXLdB9wScqTJ4+WL1+u9u3b6+HDh9q+fbucnJz0wQcfaMGCBXJzc7Pg0QAAAAAA8FSqvAI8Xbp08vLyirF869at2rRpk1xcXNSoUSNJ0j///CNJKlasWKyPVaRIEf3xxx/6559/VLdu3eQrGgAAAAAAK+Po6KiePXuqZ8+e8WqfI0cOjRs3LpmrAgAAAAAg8VLlAPiz7t+/rxEjRujChQu6dOmScuXKpfHjxytnzpySpDt37kiSsmXLFuv20cvv3r2bMgUDAAAAAAAAAAAAACwi1Q+AX7t2Tb6+vqa/GwwGXbhwQdWrV5f035Tocd3fO3p5dLtX4eBgPmO8vX2qnEE+wWzlOAAAAAAAAAAAAACkbal+ALxQoUI6cOCAjEaj9u7dqy+//FLjxo1TcHCw+vTpY7oXuMFgiHV7o9Fo9v/EsrMzyMPDNu9nliGDi6VLAAAAAAAAAAAAAIBXluoHwN3c/ht0btasmXLmzKmOHTtq1qxZ6tq1q1xdXSVJT548iXX76OUuLq82yBsVZdSDB+ZXkdvb29nE4PGDByGKjIyydBkAAAAAYJUyZHBhZi0AAAAAAFKJVD8A/rwKFSoof/78unLlii5fvqzs2bNL+u9e4M972T3CEyIiwjYHiSMjo2z22AAAAAAAAAAAAACkHanuFPWQkBB9/fXXGjJkSJzTljs5OUmSIiIiVKxYMUnSxYsXY217/vx5SZKnp2cyVAsAAAAAAAAAAAAASC1S3QC4s7OzfHx8tHbtWh08eDDG+mvXrsnPz09OTk4qWrSoateuLUnavn27IiMjzdo+fPhQ+/fvl6urqypWrJgi9QMAAAAA8H/s3XmcXfP9P/DXnckeIpEFQam9tccSLYrSUlupnVK178XXFrVWRC2lVUorqMS+JLGUSkKCotYQW9BoidDEkkQkE1lmfn/4Je00CZPMcmfufT4fD49yzuee+/703pm5r/s+53MAAACA4mh2DfBCoZB99tknSXLeeedl4sSJ8/b9+9//zsknn5zZs2dnv/32S4cOHbL88stnm222yfvvv59LL7103lXjM2fOzDnnnJNp06Zl3333zRJLLFGU+QAAAAAAAADQNJrlPcCPOeaYvPjii3nuueey/fbbZ6ONNsqsWbMyevToTJ8+PVtssUVOOeWUeePPPvvsvPbaa7nxxhvz2GOPZfXVV88rr7ySDz74IGuvvXaOO+64Is4GAAAAAAAAgKbQ7K4AT75cBv3GG2/MaaedlhVXXDHPPPNMRo8endVXXz3nn39+/vSnP827D3iSLL/88rn77ruz1157ZerUqRkxYkTatGmTo446KgMGDEjHjh2LOBsAAAAAAAAAmkKzvAI8SVq3bp1DDz00hx56aJ3GL7PMMunbt28jVwUAAAAAAABAc9UsrwAHAAAAAAAAgEWlAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASWhV7AIAAAAA+I+KikIqKgqNdvzq6ppUV9c02vEBAACKSQMcAAAAoJmoqCikc+cOqaxsvEX75sypzuTJ0zXBAQCAkqQBDgAAANBMVFQUUllZkatvezLjJ05p8OMv32OpHLvf5qmoKGiAAwAAJUkDHAAAAKCZGT9xSv41flKxywAAAGhxGm89LQAAAAAAAABoQhrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASWhV7AJoWSoqCqmoKDTa8aura1JdXdNoxwcAAAAAAABKlwY4dVZRUUjnzh1SWdl4CwfMmVOdyZOna4IDAAAAAAAAi0wDnDqrqCiksrIiV9/2ZMZPnNLgx1++x1I5dr/NU1FR0AAHAAAAAAAAFpkGOIts/MQp+df4ScUuAwAAAAAAAKCWxlvLGgAAAAAAAACakAY4AAAAAAAAACXBEugAAABQpqqrq3PXXXdl0KBBefvttzNr1qz07Nkz2223XY488sh06tSp1vjevXtn8uTJCz3e6NGj07Zt20auGgAAABZOAxwAAADKUHV1dU444YQMGzYs7dq1y3rrrZcOHTpk9OjR6d+/f4YNG5Zbb7013bp1S5KMHz8+kydPzjLLLJNNN910gcesqLDQHAAAAMWlAQ4AAABl6J577smwYcOy8sorp3///llxxRWTJJ9//nlOOeWUjBgxIn379s1vf/vbJMkbb7yRJNlhhx1y5plnFqtsAAAA+EpOzQYAAIAydM899yRJzjjjjHnN7yRZYokl0q9fvxQKhQwfPjwzZsxIkrz22mtJkrXXXrvpiwUAAIA60gAHAACAMtS5c+esssoq2WCDDebbt/TSS2eppZbKrFmzMmnSpCT/uQJ8nXXWacoyAQAAYJFYAh0AAADK0LXXXrvQfePGjcvkyZPTunXrLL300km+vAK8Xbt2efXVV3PWWWfl7bffTqFQSK9evXLMMcdk/fXXb6rSAQAAYKFcAQ4AAADUMve+31tvvXXatm2bTz75JBMnTsyMGTNy2mmnpbq6Or17907nzp0zcuTI7L///nnwwQeLWzQAAADEFeAAAADAfxk4cGAeeOCBtG/fPieddFKS/9z/u0uXLrnmmmuy4YYbJklqampy00035aKLLkqfPn3Sq1evLLvssvV6/latap+rX1lZGufu13UeTTXfUvn/FQAA4H9pgAMAAABJkgEDBqRfv34pFAq58MILs+qqqyZJttxyyzzxxBOpqanJMsssM298oVDIwQcfnOeeey7Dhw/P3XffneOOO26xn7+iopAuXTrWex7NUadO7YtdQi3NrR4AAICGogEOAAAAZa6mpiaXXXZZ+vfvn8rKylx44YXZaaed5u0vFArp0aPHQh+/zTbbZPjw4Xn11VfrVUd1dU0++2x6rW2VlRUl0az97LOqzJlT/bXjmmq+da0HAACgOejUqX2dV7Jqtg3w6urq3HXXXRk0aFDefvvtzJo1Kz179sx2222XI488Mp06dao1vnfv3pk8efJCjzd69Oi0bdu2kasGAACAlmXGjBk59dRTM3To0LRr1y6/+c1vst122y3SMbp3754kqaqqqnc9s2eXZlN2zpzqZjW35lYPAABAQ2mWDfDq6uqccMIJGTZsWNq1a5f11lsvHTp0yOjRo9O/f/8MGzYst956a7p165YkGT9+fCZPnpxlllkmm2666QKPWVHh3lYAAADw3z7//PMcdthhGTVqVLp27Zprrrkm66+//nzj7rjjjjz99NPZeeedF9gcHzduXJLU+/7fAAAAUF/NsgF+zz33ZNiwYVl55ZXTv3//rLjiikm+DOannHJKRowYkb59++a3v/1tkuSNN95Ikuywww4588wzi1U2AAAAtBizZs3KEUcckVGjRmWllVbK9ddfPy9//68JEybkoYceSlVV1XwN8Jqamtx7771Jki222KLR6wYAAICv0iwvi77nnnuSJGeccUat8L3EEkukX79+KRQKGT58eGbMmJEkee2115Ika6+9dtMXCwAAAC3QVVddlRdeeCHdu3fPwIEDF9r8TpLdd989bdq0yciRI3PnnXfO215dXZ0rr7wyo0ePzmqrrZYddtihKUoHAACAhWqWV4B37tw5q6yySjbYYIP59i299NJZaqmlMnny5EyaNCnLLbfcvCvA11lnnSauFAAAAFqeKVOm5KabbkqSdO3aNZdeeulCx849Of28887LWWedlbPPPjs333xzVl555YwZMybvvvtuunXrlt///vdp3bp1U00BAAAAFqhZNsCvvfbahe4bN25cJk+enNatW2fppZdO8uUV4O3atcurr76as846K2+//XYKhUJ69eqVY445ZoH3LwMAAIBy9fLLL6eqqipJMmbMmIwZM2ahY48//vh069Yte+yxR775zW/muuuuy4svvph33nknPXr0yIEHHpijjz46Xbt2baryAQAAYKGaZQP8q8y97/fWW2+dtm3b5pNPPsnEiROTJKeddlo22GCD9O7dO2+99VZGjhyZv/3tb7n00kuz4447FrFqAAAAaD6+973v5c0331zkx/Xq1SvXXHNNI1QEAAAADaNFNcAHDhyYBx54IO3bt89JJ52U5D/3/+7SpUuuueaabLjhhkmSmpqa3HTTTbnooovSp0+f9OrVK8suu2y9nr9Vq9q3TK+sbJa3UF9kdZ1HU823VP5/BQAAAAAAAJpWi2mADxgwIP369UuhUMiFF16YVVddNUmy5ZZb5oknnkhNTU2WWWaZeeMLhUIOPvjgPPfccxk+fHjuvvvuHHfccYv9/BUVhXTp0rHe82iOOnVqX+wSamlu9QAAAAAAAAAtQ7NvgNfU1OSyyy5L//79U1lZmQsvvDA77bTTvP2FQiE9evRY6OO32WabDB8+PK+++mq96qiurslnn02vta2ysqIkmrWffVaVOXOqv3ZcU833889npLq6ptGOX11dk5qaxjs+AABQXjp1am8lK1qcxn7PVlfXNGq2BwAAWJhm3QCfMWNGTj311AwdOjTt2rXLb37zm2y33XaLdIzu3bsnSaqqqupdz+zZX98kbonmzKluFnNbasl2qamuzhJLtGvU56munpNJk6oEcQAAAMrO3Ozd2Ce4y94AAECxNNsG+Oeff57DDjsso0aNSteuXXPNNddk/fXXn2/cHXfckaeffjo777zzApvj48aNS5J63/+bxtexXZsUKiryzweuS9UnHzbKc7Tvuly+ufPhqagoCOEAAACUHdkbAAAodc2yAT5r1qwcccQRGTVqVFZaaaVcf/31WXHFFRc4dsKECXnooYdSVVU1XwO8pqYm9957b5Jkiy22aPS6aRhVn3yYqgnvFbsMAAAAKFmyNwAAUKqa5U3Krrrqqrzwwgvp3r17Bg4cuNDmd5LsvvvuadOmTUaOHJk777xz3vbq6upceeWVGT16dFZbbbXssMMOTVE6AAAAAAAAAEXS7K4AnzJlSm666aYkSdeuXXPppZcudOwZZ5yRFVdcMeedd17OOuusnH322bn55puz8sorZ8yYMXn33XfTrVu3/P73v0/r1q2bagoAAAAAAAAAFEGza4C//PLLqaqqSpKMGTMmY8aMWejY448/Pt26dcsee+yRb37zm7nuuuvy4osv5p133kmPHj1y4IEH5uijj07Xrl2bqnwAAAAAAAAAiqTZNcC/973v5c0331zkx/Xq1SvXXHNNI1QEAAAAAAAAQEvQLO8BDgAAAAAAAACLSgMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAktCp2AQAAAADQmCoqCqmoKDTa8aura1JdXdNoxwcAAOpOAxwAAACAklVRUUiXLu1TUVHZaM9RXT0nkyZVaYIDAEAzoAEOAAAAQMn68urvyvzzgetS9cmHDX789l2Xyzd3PjwVFQUNcAAAaAY0wAEAAAAoeVWffJiqCe8VuwwAAKCRVRS7AAAAAAAAAABoCBrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBJaFbsAKHcVFYVUVBQa7fjV1TWprq5ptOMDAAAAAABAc6EBDkVUUVFIly7tU1FR2WjPUV09J5MmVWmCAwAAAAAAUPI0wKGIvrz6uzL/fOC6VH3yYYMfv33X5fLNnQ9PRUVBAxwAAAAAAICSpwEOzUDVJx+masJ7xS4DAAAAAAAAWrSKYhcAAAAAAAAAAA1BAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKQr0a4EOGDMkLL7zwteMeeeSRXHnllfV5KgAAAChLsjcAAADUXb0a4GeccUbuvPPOrx1377335sYbb6zPUwEAAEBZkr0BAACg7lotyuAhQ4Zk9uzZtba9++67ufvuuxf6mM8//zxPP/10WrduvXgVAgAAQBmRvSlHFRWFVFQUGuXYlZXuAAgAAOVkkRrgr732WgYOHJhC4ctAUigU8vLLL+fll1/+ysfV1NRk9913X/wqoYiEcAAAoCnJ3pSbiopCOnfuICMDAAANYpEa4CeccEI+//zzef89ePDgfOMb38hGG2200Me0bds2K6+8cvbbb7/FrxKKRAgHAACamuxNuamoKKSysiJX3/Zkxk+c0uDHX3/Nntlnhw0a/LgAAEDztEgN8CWXXDIXXXTRvP8ePHhwNthgg1rboJQI4QAAQFOTvSlX4ydOyb/GT2rw4/bs3qnBjwkAADRfi9QA/19jxoxpqDqgWRPCAQCAYpG9AQAAoO7q1QD/b5988kmqqqpSU1Oz0DErrrhiQz0dAAAAlB3ZGwAAAL5avRvgf/7zn3Pdddfl008//cpxhUIhr7/+en2fDgAAAMpOY2Xv6urq3HXXXRk0aFDefvvtzJo1Kz179sx2222XI488Mp061V616uOPP84f/vCHPPHEE5kwYUK6d++eHXbYIcccc0w6duy4WHMDAACAhlSvBvigQYPy61//OknSpk2bdOnSJZWVlQ1SGAAAANB42bu6ujonnHBChg0blnbt2mW99dZLhw4dMnr06PTv3z/Dhg3Lrbfemm7duiVJJk6cmH333Tfjx4/PGmuska233jqvvPJK+vfvnyeeeCK33nprllhiiXrXBQAAAPVRrwb4zTffnEKhkLPOOit77713Wrdu3VB1AQAAAGm87H3PPfdk2LBhWXnlldO/f/95S6d//vnnOeWUUzJixIj07ds3v/3tb5Mkffv2zfjx43PEEUfk//7v/5IkM2fOzGmnnZaHHnooV111Vc4444wGqQ0AAAAWV0V9Hjx27NhssMEGOeCAAzS/AQAAoBE0Vva+5557kiRnnHFGrfuGL7HEEunXr18KhUKGDx+eGTNm5L333suwYcOy3HLL5YQTTpg3tk2bNrngggvSsWPH3HHHHZkxY0aD1QcAAACLo14N8Pbt26dLly4NVQsAAADwPxore3fu3DmrrLJKNthgg/n2Lb300llqqaUya9asTJo0KY8//niqq6uz1VZbzdeEX3LJJbPZZptl+vTpeeaZZxq8TgAAAFgU9WqAb7rpphk9enSqqqoaqh4AAADgvzRW9r722mvz0EMPLbC5Pm7cuEyePDmtW7fO0ksvnbfeeitJssYaayzwWKuttlqSzBsHAAAAxVKvBvhJJ52UqqqqnHnmmZkyZUpD1QQAAAD8f8XI3nPv+7311lunbdu2+eijj5Ik3bt3X+D4uds//vjjJqkPAAAAFqZVfR58++23Z7311stf//rXDBs2LCuvvHI6deqUQqEw39hCoZCbb765zseurq7OXXfdlUGDBuXtt9/OrFmz0rNnz2y33XY58sgj06lTp1rjP/744/zhD3/IE088kQkTJqR79+7ZYYcdcswxx6Rjx471mSYAAAAUTWNm7wUZOHBgHnjggbRv3z4nnXRSkmT69OlJknbt2i3wMXO3zx1XH61a1T5Xv7KyXufuNxt1nUepzDcpvzmXyjwAAKClq1cD/Kabbpr377Nnz84//vGPhY5dUDBfmOrq6pxwwgkZNmxY2rVrl/XWWy8dOnTI6NGj079//wwbNiy33nprunXrliSZOHFi9t1334wfPz5rrLFGtt5667zyyivp379/nnjiidx6661ZYoklFn+iAAAAUCSNlb0XZMCAAenXr18KhUIuvPDCrLrqqkmSysrKrzx+TU1Nrf9dXBUVhXTpUponsXfq1L7YJTS5cptzuc0XAACaq3o1wAcMGNBQddRyzz33zDurvX///llxxRWTJJ9//nlOOeWUjBgxIn379p23JFvfvn0zfvz4HHHEEfm///u/JMnMmTNz2mmn5aGHHspVV12VM844o1FqBQAAgMbUWNn7v9XU1OSyyy5L//79U1lZmQsvvDA77bTTvP0dOnRIknzxxRcLfPzc7e3b168BWF1dk88+q30VeWVlRUk0Fj/7rCpz5lR/7bhSmW9SfnOu63wBAIBF16lT+zqvulSvBvimm25an4cv1D333JMkOeOMM+Y1v5NkiSWWSL9+/fLd7343w4cPz4wZMzJx4sQMGzYsyy23XE444YR5Y9u0aZMLLrggjz/+eO64446ceOKJC12qDQAAAJqrxsrec82YMSOnnnpqhg4dmnbt2uU3v/lNtttuu1pjevTokSTz7gX+v77uHuGLYvbs0mwgzplTXbJzW5hym3O5zRcAAJqrBrs50axZszJ69Og8/PDDeeGFF5IkH3zwwWIdq3PnzllllVWywQYbzLdv6aWXzlJLLZVZs2Zl0qRJefzxx1NdXZ2tttoqrVu3rjV2ySWXzGabbZbp06fnmWeeWaxaAAAAoLloyOydfLnS2sEHH5yhQ4ema9euGTBgwHzN7yRZY401kiRjx45d4HHefvvtJMmaa6652LUAAABAQ6h3A3z27Nn53e9+l8033zz77LNPTjzxxNxxxx1JktNPPz0/+clP8u677y7SMa+99to89NBD6dKly3z7xo0bl8mTJ6d169ZZeuml89ZbbyX5Txj/X6uttlqSzBsHAAAALU1jZO9Zs2bliCOOyKhRo7LSSivljjvuyPrrr7/AsVtuuWWSZMSIEZkzZ06tfVOnTs0zzzyTDh06ZKONNlqM2QEAAEDDqVcDfPbs2TnyyCNz7bXXpqqqKuuss05qamrm7Z82bVpef/31HHDAAfn444/rXWySeff93nrrrdO2bduvXWZt7vaGen4AAABoSo2Vva+66qq88MIL6d69ewYOHFjrFmT/a/nll88222yT999/P5deeum85585c2bOOeecTJs2Lfvuu2+WWGKJxZ8oAAAANIB63QP8lltuyZNPPpktttgi/fr1S48ePbLWWmvN23/rrbfmvPPOy5AhQ3L99dfn9NNPr1exAwcOzAMPPJD27dvnpJNOSpJMnz49SRZ6f++52+eOq49WrWqfL1DXG603d3WdR6nMNym/OZfKPAAAoBw1RvaeMmVKbrrppiRJ165dc+mlly507BlnnJFu3brl7LPPzmuvvZYbb7wxjz32WFZfffW88sor+eCDD7L22mvnuOOOq/9kAQAAoJ7q1QAfPHhwOnfunN/97nfp2LHjfPvbtWuXCy64IE899VQef/zxejXABwwYkH79+qVQKOTCCy/MqquumiSprKxMkhQKhQU+bu5Z6f99dvziqKgopEuX+edYCjp1al/sEppcuc253OYLAAClpDGy98svv5yqqqokyZgxYzJmzJiFjj3++OPTrVu3LL/88rn77rvz+9//PiNHjsyIESPSs2fPHHXUUTn88MMXWBsAAAA0tXo1wP/1r39liy22+MqQ27p166y33np58sknF+s5ampqctlll6V///6prKzMhRdemJ122mne/g4dOiRJvvjiiwU+fu729u3r1wCsrq7JZ5/Vvoq8srKiJBqLn31WlTlzqr92XKnMNym/Odd1vgAAwKLr1Kl9o6661BjZ+3vf+17efPPNRa5lmWWWSd++fRf5cQAAANBU6tUAb9WqVT777LOvHTd58uS0arXoTzVjxoyceuqpGTp0aNq1a5ff/OY32W677WqN6dGjR5LMuxf4//q6e4QvitmzS7OBOGdOdcnObWHKbc7lNl8AACgljZ29AQAAoJTU6xT1b33rW3nllVcyfvz4hY4ZN25cXnnllVr3J6uLzz//PAcffHCGDh2arl27ZsCAAfM1v5NkjTXWSJKMHTt2gcd5++23kyRrrrnmIj0/AAAANAeNmb0BAACg1NSrAb7ffvulqqoqxxxzTF5//fX59r/55ps5/vjjM3PmzOy55551Pu6sWbNyxBFHZNSoUVlppZVyxx13ZP3111/g2C233DJJMmLEiMyZM6fWvqlTp+aZZ55Jhw4dstFGGy3CzAAAAKB5aKzsDQAAAKWoXmuj7bjjjnnqqady9913Z4899siSSy6ZQqGQJ554IltvvXUmTJiQmpqa7LTTTvnxj39c5+NeddVVeeGFF9K9e/cMHDgwyyyzzELHLr/88tlmm20yYsSIXHrppTn99NNTKBQyc+bMnHPOOZk2bVoOOeSQLLHEEvWZKgAAABRFY2VvAAAAKEX1vjlY3759s8EGG+T666/PP//5zyTJpEmTkiQ9e/bMz372sxx00EF1Pt6UKVNy0003JUm6du2aSy+9dKFjzzjjjHTr1i1nn312Xnvttdx444157LHHsvrqq+eVV17JBx98kLXXXjvHHXdcPWYIAAAAxdXQ2RsAAABKVb0b4Emy5557Zs8998xHH32UDz/8MNXV1enevXuWX375RT7Wyy+/nKqqqiTJmDFjMmbMmIWOPf7449OtW7csv/zyufvuu/P73/8+I0eOzIgRI9KzZ88cddRROfzww9OxY8fFnhsAAAA0Bw2ZvQEAAKBUNUgDfNKkSXn77bez6aabpnv37kmSf/zjH7nlllvywx/+cN62uvje976XN998c5FrWGaZZdK3b99FfhwAAAC0BA2ZvQEAAKBUVdT3AHfeeWe+973v5de//nWt7S+//HIuuOCCbL/99nnwwQfr+zQAAABQtmRvAAAAqJt6NcCffPLJnHPOOWnVqlU222yzWvs22mijHHrooampqckpp5ySv//97/UqFAAAAMqR7A0AAAB1V68GeP/+/dOqVasMGDAgp512Wq19K6+8ck499dQMGDAghUIh1113Xb0KBQAAgHIkewMAAEDd1asB/tZbb6V3795Zd911Fzpm3XXXzUYbbZSXXnqpPk8FAAAAZUn2BgAAgLqrVwO8qqoq7du3/9pxnTt3zuzZs+vzVAAAAFCWZG8AAACou3o1wFdeeeU899xz+fzzzxc65osvvsgLL7yQb3zjG/V5KgAAAChLsjcAAADUXb0a4LvuumumTJmSE044IR9//PF8+ydNmpSTTz45n376aXbZZZf6PBUAAACUJdkbAAAA6q5VfR58wAEH5MEHH8xTTz2VrbfeOuuss06WW265JMm///3vvPbaa5k5c2bWW2+9HHzwwQ1RLwAAAJQV2RsAAADqrl4N8NatW+fGG2/MFVdckUGDBuWll17KSy+9NG9/27Zts99+++XUU09NmzZt6lsrAAAAlB3ZGwAAAOquXg3wJOnYsWPOOuusnHbaaXn11Vfz0UcfZc6cOenevXvWXnvtdOjQoSHqBAAAgLIlewMAAEDd1KsBftBBB2XllVfOr371q7Rp0ya9evVqqLoAAACAyN4AAACwKOrVAB89enQqKioaqhYAAADgf8jeAAAAUHf1StAdO3ZMTU1NQ9UCAAAA/A/ZGwAAAOquXg3wo48+Os8++2xuuOGGzJw5s6FqAgAAAP4/2RsAAADqrl5LoI8bNy4rrbRSLr300lx++eVZaaWV0qlTpwUuzVYoFHLzzTfX5+kAAACg7MjeAAAAUHf1aoDfdNNN8/599uzZGTt27ELHFgqF+jwVAAAAlCXZGwAAAOquXg3wAQMGNFQdAAAAwALI3gAAAFB39WqAb7rppg1VBwAAALAAsjcAAADUXb0a4P9t1qxZeeONN/Lhhx+mW7du2WijjfLBBx+kZ8+eDfUUAAAAUNZkbwAAAPhq9W6Az549O1dffXVuueWWTJ06NUmyyy67ZKONNsrpp5+eadOm5YorrshKK61U72IBAACgHMneAAAAUDcV9Xnw7Nmzc+SRR+baa69NVVVV1llnndTU1MzbP23atLz++us54IAD8vHHH9e7WAAAACg3sjcAAADUXb0a4LfcckuefPLJbL755nnkkUdy11131dp/6623ZrfddsvHH3+c66+/vl6FAgAAQDmSvQEAAKDu6tUAHzx4cDp37pzf/e536dGjx3z727VrlwsuuCA9evTI448/Xp+nAgAAgLIkewMAAEDd1asB/q9//Ssbb7xxOnbsuNAxrVu3znrrrZcPPvigPk8FAAAAZUn2BgAAgLqrVwO8VatW+eyzz7523OTJk9OqVav6PBUAAACUJdkbAAAA6q5eDfBvfetbeeWVVzJ+/PiFjhk3blxeeeWVrLXWWvV5KgAAAChLsjcAAADUXb0a4Pvtt1+qqqpyzDHH5PXXX59v/5tvvpnjjz8+M2fOzJ577lmfpwIAAICyJHsDAABA3dVrbbQdd9wxTz31VO6+++7sscceWXLJJVMoFPLEE09k6623zoQJE1JTU5OddtopP/7xjxuqZgAAACgbsjcAAADUXb1vDta3b99ssMEGuf766/PPf/4zSTJp0qQkSc+ePfOzn/0sBx10UH2fBgAAAMqW7A0AAAB1U+8GeJLsueee2XPPPfPRRx/lww8/THV1dbp3757ll1++IQ4PAAAAZU/2BgAAgK+3yA3wOXPm5NZbb83QoUPz8ccfp2fPntlll12y2267pXv37unevXtj1AkAAABlQ/YGAACAxbNIDfCZM2fm0EMPzfPPP5+ampokyT//+c889dRTGTFiRH73u981SpEAAABQLmRvAAAAWHyL1AC//fbb89xzz2WZZZbJ4YcfnhVXXDFvvfVW+vfvn6FDh+bee+/Nj3/848aqFQAAAEqe7A0AAACLb5Ea4H/961/Trl273HbbbenZs2eSZKuttsqWW26Z3XffPX/5y1+EcAAAAKgH2RsAAAAWX8WiDB47dmw23njjeQF8rrXWWitrr712xowZ06DFAQAAQLmRvQEAAGDxLVIDfNq0aVlqqaUWuG+FFVbI5MmTG6ImAAAAKFuyNwAAACy+RWqAz549O5WVlQvc17p168yaNatBigIAAIByJXsDAADA4lukBjgAAAAAAAAANFca4AAAAAAAAACUBA1wAAAAAAAAAEpCq0V9wPDhw7PtttvOt33SpElJssB9SVIoFDJ8+PBFfToAAAAoO7I3AAAALJ5FboBPnz4906dPX+j+8ePHL3B7oVBY1KcCAACAsiR7AwAAwOJZpAb4gAEDGqsOAAAAILI3AAAA1MciNcA33XTTxqoDAAAAiOwNAAAA9VFR7AIAAAAAAAAAoCFogAMAAAAAAABQEhZpCXQAAACgdA0ZMiSnn356brzxxnz3u9+db3/v3r0zefLkhT5+9OjRadu2bSNWCAAAAF9NAxwAAADI6NGjc8EFFyx0//jx4zN58uQss8wyC71PeUWFheYAAAAoLg1wAAAAKHOPPvpoTj/99Hz++ecLHfPGG28kSXbYYYeceeaZTVUaAAAALBINcAAAAChTEyZMyG9/+9sMHjw47dq1S7du3fLxxx8vcOxrr72WJFl77bWbskQAAABYJNYmAwAAgDJ1xRVXZNCgQVl77bVzxx13ZJVVVlno2LlXgK+zzjpNVR4AAAAsMleAAwAAQJlaZZVVcvHFF2fXXXf92vt3v/baa2nXrl1effXVnHXWWXn77bdTKBTSq1evHHPMMVl//fWbqGoAAABYuBZzBfiQIUOy5ppr5qmnnlrg/t69e2fNNddc6D9ffPFFE1cMAAAAzdsRRxyR3Xbb7Wub35988kkmTpyYGTNm5LTTTkt1dXV69+6dzp07Z+TIkdl///3z4IMPNlHVAAAAsHAt4grw0aNH54ILLljo/vHjx2fy5MlZZpllsummmy5wzNeFeQAAAGDB5t7/u0uXLrnmmmuy4YYbJklqampy00035aKLLkqfPn3Sq1evLLvssvV6rlatauf3ysrSyPN1nUepzDcpvzmXyjwAAKCla/YN8EcffTSnn356Pv/884WOmXsfsh122CFnnnlmU5UGAAAAZWHLLbfME088kZqamiyzzDLzthcKhRx88MF57rnnMnz48Nx999057rjjFvt5KioK6dKlY0OU3Ox06tS+2CU0uXKbc7nNFwAAmqtm2wCfMGFCfvvb32bw4MFp165dunXrlo8//niBY+eeib722ms3ZYkAAABQFgqFQnr06LHQ/dtss02GDx+eV199tV7PU11dk88+m15rW2VlRUk0Fj/7rCpz5lR/7bhSmW9SfnOu63wBAIBF16lT+zqvutRsG+BXXHFFBg8enHXWWSf9+vVL3759F9oAn3sF+DrrrNOUJQIAAABJunfvniSpqqqq97Fmzy7NBuKcOdUlO7eFKbc5l9t8AQCguWq2DfBVVlklF198cXbdddevvX/3a6+9lnbt2uXVV1/NWWedlbfffjuFQiG9evXKMccck/XXX7+JqgYAAIDSc8cdd+Tpp5/OzjvvnO22226+/ePGjUuSet//GwAAAOqrbteJF8ERRxyR3Xbb7Wub35988kkmTpyYGTNm5LTTTkt1dXV69+6dzp07Z+TIkdl///3z4IMPNlHVAAAAUHomTJiQhx56KHfdddd8+2pqanLvvfcmSbbYYoumLg0AAABqabZXgNfV3Pt/d+nSJddcc0023HDDJF8G8JtuuikXXXRR+vTpk169etX7TPRWrWo34+u6znxzV9d5lMp8k/Kbc6nMAwAAKI7dd9891113XUaOHJk777wze++9d5Kkuro6v//97zN69Oisttpq2WGHHYpcKQAAAOWuxTfAt9xyyzzxxBOpqanJMsssM297oVDIwQcfnOeeey7Dhw/P3XffneOOO26xn6eiopAuXTo2RMnNTqdO7YtdQpMrtzmX23wBAICGteKKK+a8887LWWedlbPPPjs333xzVl555YwZMybvvvtuunXrlt///vdp3bp1sUsFAACgzLX4BnihUEiPHj0Wun+bbbbJ8OHD8+qrr9breaqra/LZZ9NrbausrCiJxuJnn1Vlzpzqrx1XKvNNym/OdZ0vAACw6Dp1al8Wqy7tscce+eY3v5nrrrsuL774Yt5555306NEjBx54YI4++uh07dq12CUCAABAy2+Af53u3bsnSaqqqup9rNmzS7OBOGdOdcnObWHKbc7lNl8AAGDxDBw48Cv39+rVK9dcc00TVQMAAACLrsWfon7HHXfkxBNPzPDhwxe4f9y4cUlS7/t/AwAAAAAAANC8tfgrwCdMmJCHHnooVVVV2W677Wrtq6mpyb333psk2WKLLYpRHgAAAAAAAABNpMVfAb777runTZs2GTlyZO68885526urq3PllVdm9OjRWW211bLDDjsUsUoAAAAAAAAAGluLvwJ8xRVXzHnnnZezzjorZ599dm6++easvPLKGTNmTN59991069Ytv//979O6detilwoAAAAAAABAI2rxV4AnyR577JFbbrkl3//+9zNhwoQ8+uijmT17dg488MDcd999WWWVVYpdIgAAAAAAAACNrMVcAT5w4MCv3N+rV69cc801TVQNAAAAAAAAAM1NSVwBDgAAAAAAAAAa4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJaFVsQsAyk9FRSEVFYVGO351dU2qq2sa7fgAAAAAAAA0TxrgQJOqqCikS5f2qaiobLTnqK6ek0mTqjTBAQAAAAAAyowGONCkvrz6uzL/fOC6VH3yYYMfv33X5fLNnQ9PRUVBAxwAAAAAAKDMaIADRVH1yYepmvBescsAAAAAAACghGiAAwAAAECJ+XIFtkKjHb+6usbKawAANEsa4AAAAABQQioqCunSpX0qKiob7Tmqq+dk0qQqTXAAAJodDXAAAAAAKCFfXv1dmX8+cF2qPvmwwY/fvuty+ebOh6eioqABDgBAs6MBDgAAAAAlqOqTD1M14b1ilwEAAE2qotgFAAAAAAAAAEBD0AAHAAAAAAAAoCRogAMAAAAAAABQEtwDHKiloqKQiopCox2/stJ5NwAAAAAAADQODXBgnoqKQjp37qBJDQAAAAAAQIukAQ7MU1FRSGVlRa6+7cmMnzilUZ5j/TV7Zp8dNmiUYwMAAAAAAFDeNMCB+YyfOCX/Gj+pUY7ds3unRjkuAAAAtBRuPwYAAI1HAxwAAAAAmojbjwEAQOPSAAcAAACAJuL2YwAA0Lg0wAEAAACgibn9GAAANA5rLQEAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAABAkmTIkCFZc80189RTTy1w/8cff5xf/epX+cEPfpD11lsv2267bS699NJMmzatiSsFAACABdMABwAAADJ69OhccMEFC90/ceLE7L333rnlllvSrl27bL311qmurk7//v2z33775fPPP2/CagEAAGDBNMABAACgzD366KM59NBDv7KJ3bdv34wfPz5HHHFE7r///lx55ZV5+OGH86Mf/ShvvvlmrrrqqiasGAAAABasxTTALcMGAAAADWvChAnp06dPjjnmmMyaNSvdunVb4Lj33nsvw4YNy3LLLZcTTjhh3vY2bdrkggsuSMeOHXPHHXdkxowZTVU6AAAALFCLaIBbhg0AAAAa3hVXXJFBgwZl7bXXzh133JFVVlllgeMef/zxVFdXZ6uttkrr1q1r7VtyySWz2WabZfr06XnmmWeaomwAAABYqGbfALcMGwAAADSOVVZZJRdffHHuuuuurLnmmgsd99ZbbyVJ1lhjjQXuX2211WqNAwAAgGJptg1wy7ABAABA4zriiCOy2267paLiq78e+Oijj5Ik3bt3X+D+uds//vjjhi0QAAAAFlGrYhewMFdccUUGDx6cddZZJ/369Uvfvn0XGKTrsgzbI488kmeeeSZbbbVVU5UPAAAAJWP69OlJknbt2i1w/9ztc8fVR6tWtZvxlZXN9tz9RVLXeZTKfJPym3O5zTcprbkAAFA6mm0DfO4ybLvuuutXnolel2XYHnnkkbz11lsa4AAAALAYKisrkySFQmGB+2tqamr97+KqqCikS5eO9TpGc9WpU/til9Dkym3O5TbfpDznDABA89dsG+BHHHFEncZZhg0AAAAaV4cOHZIkX3zxxQL3z93evn39mmHV1TX57LPaV5FXVlaURJPts8+qMmdO9deOK5X5JuU353Kbb1L3OQMAQH116tS+zisQNdsGeF1Zhq3+LNFV/3HNXbnNNymtuQAAQLH16NEjyX9OQv9fX3dy+qKYPbs0m2lz5lSX7NwWptzmXG7zTcpzzgAANH8tvgFuGbb6K5WzjhdFuc253OablOecAQCgscy97djYsWMXuP/tt99Okqy55ppNVhMAAAAsSItvgFuGrf4s0bVwpTLncptvYhk2AACazqIsw9ZSbbnllkmSESNGpE+fPvNORk+SqVOn5plnnkmHDh2y0UYbFatEAAAASFICDXDLsNVfOS5XVW5zLrf5JuU5ZwAAaCzLL798ttlmm4wYMSKXXnppTj/99BQKhcycOTPnnHNOpk2blkMOOSRLLLFEsUsFAACgzLX4Brhl2AAAAKDxnX322Xnttddy44035rHHHsvqq6+eV155JR988EHWXnvtHHfcccUuEQAAANLi12j772XY5syZU2ufZdgAAACgYSy//PK5++67s9dee2Xq1KkZMWJE2rRpk6OOOioDBgxIx44di10iAAAAtPwrwC3DBgAAAA1j4MCBX7l/mWWWSd++fZuoGgAAAFh0Lb4BnliGDQAAAAAAAIASWAI9sQwbAAAAAAAAAC3oCnDLsAEAAAAAAADwVUriCnAAAAAAAAAA0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KnYBAAAAQMvx6KOP5uijj17o/h133DFXXHFFE1YEAAAA/6EBDgAAANTZ66+/niTZZJNNsuyyy863f8MNN2zqkgAAAGCekmqAOwsdAAAAGtfcBvhZZ52VtdZaq8jVAAAAQG0l1QB3FjoAAAA0rtdffz1t27bNaqutVuxSAAAAYD4l2QB3FjoAAAA0vEmTJuXDDz/Meuutl1atSuorBQAAAEpESaVVZ6EDAABA45l74vlyyy2XSy+9NI888kg++OCDdOvWLdtvv32OOuqoLLXUUkWuEgAAgHJWUewCGsrcs9DXXHNNZ6EDAABAI3jttdeSJA8//HBuu+22rLzyyunVq1emTJmSG264IXvvvXc++uijIlcJAABAOSuZTrGz0AEAAKBxvfHGG0mSrbfeOpdddlmWXHLJJMmnn36ak046KX//+99z9tln59prr13s52jVqva5+pWVpXHufl3nUSrzTcpvzuU236S05gIAQOkomQb4f5+F3rFjx2y66aZZdtll88orr+SGG27Io48+mptvvjndu3cvcqUAAADQMl188cX5xS9+kWWXXTbt2rWbt33ppZfOJZdckh122CEjRozI+++/nxVWWGGRj19RUUiXLh0bsuRmo1On9sUuocmV25zLbb5Jec4ZAIDmr2Qa4M5CX3zOUK7/uOau3OablNZcAACguWjTpk1WXnnlBe5bZpll8u1vfzvPP/98XnvttcVqgFdX1+Szz6bX2lZZWVESTbbPPqvKnDnVXzuuVOablN+cy22+Sd3nDAAA9dWpU/s6935KpgHuLPTFVyqha1GU25zLbb5Jec4ZAACKrVu3bkmSqqqqxT7G7Nml2UybM6e6ZOe2MOU253Kbb1KecwYAoPkrmQa4s9AXnzOUF65U5lxu802chQ4AQNNZlLPQW7KZM2fm/PPPz6RJk3LZZZelQ4cO840ZN25ckmTZZZdt6vIAAAAgSQk1wL+Os9AXrhzP1i23OZfbfJPynDMAADSmNm3a5KmnnsoHH3yQxx9/PDvssEOt/WPGjMmYMWOy5JJLZoMNNihOkQAAAJS9kjhFfebMmfnlL3+ZY445JtOnT1/gGGehAwAAQP3ss88+SZJf//rXee+99+Zt//jjj3PmmWdmzpw5OfTQQ2vdmgwAAACaUklcAe4sdAAAAGh8hxxySJ577rn87W9/y84775yNN944bdq0yTPPPJPp06dn++23zxFHHFHsMgEAAChjJXEFeOIsdAAAAGhsbdq0yZ/+9Kf88pe/zKqrrpoXXnghzzzzTFZfffX07ds3v/vd71JZWVnsMgEAAChjJXEFeOIsdAAAAGgKlZWVOeigg3LQQQcVuxQAAACYT8k0wOeehX7LLbdk8ODBeeGFF1JRUZHVV189e+21V/bcc88UCoVilwkAAAAAAABAIymZBnjiLHQAAAAAAACAclYy9wAHAAAAAAAAoLxpgAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACWhVbELACi2iopCKioKxS6jXqqra1JdXVPsMgAAAAAAAIpKAxwoaxUVhXTu3CGVlY23IEZNdXUKFY274EZ19ZxMmlSlCQ4AAAAAAJQ1DXCgrFVUFFJZWZGrb3sy4ydOafDjr79mz+yzwwb55wPXpeqTDxv8+EnSvuty+ebOh6eioqABDgAAAAAAlDUNcIAk4ydOyb/GT2rw4/bs3ilJUvXJh6ma8F6DHx8AAAAAAID/0AAHAAAAABpVRUUhFRWFYpdRL9XVNVZeo5bGfl97zwHA4tEABwAAAAAaTUVFIZ07d0hlZUWjPUdNdXUKFY13/CSprp6TSZOqNCRJ0jTv6zlzqjN58nTvOQBYRBrgAAAAAECjqagopLKyIlff9mTGT5zS4Mdff82e2WeHDfLPB65L1ScfNvjxk6R91+XyzZ0PT0VFQTOSJI3/vl6+x1I5dr/N07p1ZebMqW7w48/lKnMASpEGOAAAAADQ6MZPnJJ/jZ/U4Mft2b1TkqTqkw9TNeG9Bj8+fJXGel8vtWS71FRXp1On9g1+7P9mZQMASpEGOAAAAAAANCMd27VJoaLCygYAsBg0wAEAAAAAoBmysgEALLqKYhcAAAAAAAAAAA1BAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFXsAhras88+m2uvvTZvvPFGZsyYkTXXXDM/+9nP8qMf/ajYpQEAAEBJkL0BAKBlqqgopKKiUOwy6qW6uibV1TXFLoNmrKQa4Pfff39OPfXUtGrVKr17905lZWWefvrpnHjiiRk7dmyOO+64YpcIAAAALZrsDQAALVNFRSGdO3dIZWXjLRBdU12dQkXjLkBdXT0nkyZVaYKzUCXTAP/kk09y1llnpX379hkwYEDWXXfdJMnYsWNz0EEH5aqrrsp2222XtdZaq8iVAlCKGvvMSWc1AgDNgewNQDHJ3gD1U1FRSGVlRa6+7cmMnzilwY+//po9s88OG+SfD1yXqk8+bPDjJ0n7rsvlmzsfnoqKgt/ZLFTJNMBvueWWzJgxI4cffvi8AJ4kq666ak4++eSceeaZuemmm3LRRRcVsUoAiqGxA3KhUEinTm1TUVHZaM/hrEYAoDmQvQEoloqKQrp0aS97AzSA8ROn5F/jJzX4cXt275Qkqfrkw1RNeK/Bjw91VTIN8JEjRyZJfvCDH8y3b9ttt02hUMhjjz3WxFUBUGxNsazPXI11ZmNzPKuxKe4V5Mx7AGh+ZG8AFqaxc2JlZUUqKirLKntTfO6VDLBgzX1VlpJpgP/jH/9Ikqy22mrz7evcuXO6deuWjz76KJ988km6du3a1OUBUCSNvaxP8p+lfZrTmY2N+QGkKa54T5x5DwDNkewNwII05cnnzSl7U9qa6n3d2PdL9v0KlB8ropZIA3zKlCn54osv0rFjx3Ts2HGBY3r06JGPPvooH330kRAOUIYaa1mf5D9L+zQXTRXQyu1ePs3trMZyPAu9pc/ZWfdfr6W/xonXmdImewM0L80pozTlyecUV0v/zN5c39dWNiiucnpfU/qsiPqlQk1NTYv/qfjwww+z9dZbp1u3bnnyyScXOGa//fbLiy++mNtuuy29evVa5OeoqZn/F0ihkFRUVGTK5zMyZ071YtX+Vdq0rswSHdpm1rTPUlM9p8GPX6ioTOuOnVJdXZ26vAta+nyT8ptzc5tvUn5zbo7v63mPa7mf6RZ5nuX6vp42fWbmVDf8nFu3qkz7dq3L7n1dKBRSaMQnWNBnja9SUdG49SRf1lROc25u852rXH5fJy3/NZ77HIv6OpfTa5y07PkmC55zU/xObg5k78Ujo9RhfAufc3Obb1J+c26O7+t5jyuTjOJ9XT7v65b+md37uo6Pa8EfbRcno3hfN5zm+rsrKZ/3dWN/N5w0/vfDC3uNF+VntSSuAK/4/8uDfNWk5/b5F7ffXygUUlm54OMvtUS7xTpmXbXu2LhXFlYs4vIqLX2+SfnNubnNNym/OTfH93W5Kcf3dccObRqpki95Xzesr/qsUSyN3cxpbnMut/mWo6ZoUHqdKWWyd/3IKF+vpc+5uc03Kb85N8f3dUu2OJ9rvK8bXrm9r5tjLivH9zUNqxzf1+X2u6s5auzvhpPm/burJN4dc5demzFjxkLHzJw5M0nSoUOHJqkJAAAASonsDQAAQEtQMg3wDh06ZOrUqQsN4hMnTkySdO/evSlLAwAAgJIgewMAANASlEQDvFAoZI011kiSjB07dr79kydPzscff5yll1463bp1a+ryAAAAoMWTvQEAAGgJSqIBniRbbrllkmT48OHz7Rs+fHhqamqy1VZbNXVZAAAAUDJkbwAAAJq7kmmA77HHHmnfvn3+/Oc/58UXX5y3/Z133slvf/vbFAqF/PznPy9ihQAAANCyyd4AAAA0d4WampqaYhfRUO68886cffbZqaysTO/evdOmTZs8/fTT+eKLL/J///d/OeKII4pdIgAAALRosjcAAADNWUk1wJPk8ccfz3XXXZdXX301lZWVWW211XLIIYfkhz/8YbFLAwAAgJIgewMAANBclVwDHAAAAAAAAIDyVDL3AAcAAAAAAACgvGmAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHGgwU6dOXeTHPPPMM41QCbC4rrrqqrz11lvFLgMAAFgI2RtaPtkbABqXBjhNbubMmXn11VczZsyYzJ49e6HjPv300zz33HNNWFnTe+aZZ3LjjTfm1ltvzbhx44pdTr0ddNBBmTx5cp3GfvHFF+nbt29+/vOfN25RwCK56qqr8uabbxa7DGhw2267bR555JFil1EU1dXVee+992ptq6mpyYMPPpi+ffvmN7/5TV5++eUiVddwPvjgg8yYMaPO48eNG5chQ4Y0XkFF8Omnn+bpp5/Ogw8+mIceeijPPPNMnT+bAaVH9v4P2Vv2huZG9qZUyd6y9/+SvSmWVsUugLqbMWNGPv300/Ts2bPYpSy2AQMG5He/+12mT5+eJFlyySVz2GGH5bDDDktFRe3zMf72t7/l9NNPzxtvvFGMUhvMm2++mT/+8Y95880307Nnzxx55JHp1atXTjjhhDzyyCOpqalJkrRq1SrHH398jjzyyCJXvPjeeOON/PSnP82f//zndOvWbaHjXn755Zx++un517/+9ZXjStWnn36asWPHZpNNNil2KU1i6tSpufjii9O3b99il9Jkyu01LgXbbrttzjzzzGy77bbFLqXJfOtb38oll1ySXXbZpdilNInx48fP+/xRTkaOHJnzzz8/H330UV599dUkX4byY445Jo899ti8zyH9+/fPQQcdlD59+hSz3HrZdttt53tPT58+PRdccEEOO+ywrLrqqrXGjxo1Kn369Mluu+3WxJU2vIcffjh//OMfF/i5uVAopFevXjnssMOy9dZbN31xDWittdZKoVBYpMcUCoW8/vrrjVQRpUr2bplk7/nJ3uWVy2RvWgLZu/TJ3rK37C17NxeuAC+iBZ0NNXPmzAwZMiQff/zxfOOHDh3aoj8cDBkyJP369cuaa66ZPn365Mgjj0y7du1yxRVX5JBDDsnnn39e7BIb3Kuvvpq99947I0eOTPv27fPyyy/n4IMPTr9+/fLII4/k0EMPzeDBg3PzzTdnq622ym9/+9s89NBDxS57sZ199tl55513csABB+TDDz+cb/+sWbPym9/8Jvvvv3/+9a9/5cc//nH+8pe/FKHShvWtb30r999/f61tM2bMyFVXXZX3339/vvF/+9vfctBBBzVVeY3i/fffzwUXXJCf/OQn+clPfpKzzjor77777nzjhg4dmh133DH33HNPEapsOOX4Gpebcgxoc8MXpWvMmDE59thjU1NTk0MPPTTV1dVJkttuuy0jR45M9+7dc+edd2bUqFE57bTTMmDAgBb9OWRB7+kvvvgiQ4YMycSJE4tQUdPo27dvTjzxxIwfPz677bZbTjnllPzqV7/KOeeckxNOOCHbbrttXnvttRx99NH59a9/Xexy62WTTTbJxhtvvEj/bLTRRsUum2ZA9pa9ZW/Zu6WSvUv/NS43sjelSPaWvWXv5pm9XQFeRAv6gz9t2rT06dMnN9xwQ8mdnXvjjTdmk002ycCBA+dtO+aYY3Leeedl0KBBOfjgg/PnP/85SyyxRBGrbFhXXHFFVlhhhQwcODBLL710pk+fniOPPDK33HJL9tlnn5xyyinzxm688cb56U9/muuvvz4/+tGPilj14jvggAOy1FJL5YwzzsgBBxyQP//5z/nGN76R5Msz1E8//fS89dZb6dmzZ84///xsueWWRa64YSzoj35VVVWuvvrqbLTRRllhhRWKUFXjeeONN3LggQfm888/T7t27dKuXbu8/vrrefDBB3P77bdnjTXWyNSpU3PWWWdl6NChqayszBFHHFHssuul3F7jd955Z5GXwXTGPTQ/1113XXr06JF77703nTp1mrf9lltuSaFQyMknn5z11lsvSfLzn/88zz77bG677bYW+zlkYUr5C6f77rsvN998c3bbbbecc8456dChwwLHTZs2LRdeeGFuuummbLjhhtl+++2buNKG8d85AhaF7C17y96yd0ske3+plF9j2RtKg+z9Jdlb9m5uNMCboVL9RfHPf/4zZ5xxRq1tbdq0Sb9+/dK5c+fccMMNOeyww3LDDTcs9BdISzNq1KicfPLJWXrppZMkHTp0yC9+8Yv89Kc/zRZbbDHf+B/96Ee55JJLmrrMBrXzzjtnySWXzIknnpgDDjgg1113XR555JFce+21mT17dvbff//83//9Xzp27FjsUhtdqf4sX3nllZkxY0Z+85vfZKeddkqSjB49OieffHL69u2byy67LAcddFD+9a9/Zd11103fvn2z5pprFrnqxlGqr/G1116ba6+9dpEe09KXzCxXi7qcUUt355135qmnnqrz+EKhkH79+jViRY3rueeey957710rgI8bNy7vvPNOWrVqlR/84Ae1xm+++ea58sorm7pM6uG2227LBhts8LVnl3fs2DH9+vXL2LFjc9ddd7XYED5r1qy0bt16kR7z8ssvZ/3112+kimjpSvWznOwte8vepUH2/o9SfY1l7/Ihe3812ZvmTvb+es0xe2uA02Tat2+fyZMnL3DfaaedlunTp+f222/PUUcdleuuu65pi2skSyyxRD777LNa29Zcc81stdVWadVq/h+/SZMmpW3btk1VXqPZaqut0r9//xx99NH5yU9+kpqamqy00krp27dvNt5442KXRz2NHj06++6777wAniTrrbdeTjvttJx00kk56aSTMn78+Jxyyik55JBD5rvHIM3fdtttV7JfnHyVcgtoSXLNNdfkzjvvrPP4QqGQm266qREralzPPffcIl1h0dJf40mTJmXZZZette3vf/97kmT99def7wvxdu3a5Ysvvmiy+qi/f/zjH4t0D9ttt902d9xxRyNW1Lh+8pOf5LLLLqvT36iZM2fmiiuuyIABA/Laa681QXXQfMjeX5K9Ze+WTvYufbJ33bT0XJbI3l+npb/Gsnfpk70Xrjlnbw1wmkzv3r0zYMCA/OAHP8jqq68+3/5zzz03n3/+eR544IEccsgh2WqrrYpQZcPafPPN8+c//zkbbrhhvvOd7yRJllxyyfzxj3+cb+zLL7+cgQMHzhvX0m200UYZMGBADjvssHz66af51a9+JYCXiClTpmSttdaab/u6666bOXPm5M0338zAgQOzwQYbNH1xNIgf/vCH2WWXXYpdRpMrt4CWJGPHjs3YsWPrPL6ln7V+5plntuh7ui6qpZZaKp9++mmtbX/7299SKBSy+eabzzd+7Nix866co2WYPn16unbtWufx3bt3b9H3ZPv444+z55575vjjj8/hhx++0N9JL7zwQs4888y8++67WWmllZq4Sig+2Vv2lr1Lg+xd+mTvupG9Wx7ZW/YuNbJ3y8zeGuA0mZNPPjn7779/dt9993z729/OpZdeWuuHolAo5JJLLkmbNm0yaNCgvPjii0WstmGccsopGT16dA455JBsvPHGC713woEHHpgXXnghSy+9dK17k7V0a621Vm677bb8/Oc/z9FHH52rr746m222WbHLop5mz569wKsl2rVrlyQ54ogjBHBapHILaEly6aWXltUXLl26dMnyyy9f7DKaTK9evfLggw/m0EMPTWVlZT7++OOMHDkySbLDDjvUGjt16tTcf//96d27dxEqZXHNmTNngVc2LkxlZWVmz57diBU1rgceeCB9+vTJ5ZdfnpEjR+biiy/OiiuuOG//3GVi595r79BDD80JJ5xQxIqhOGRv2Vv2Lg2yN6VK9i59srfsXWpk75aZvTXAaTIrr7xy/vKXv+Tqq6/O888/P+8D+3+rqKhIv379suGGG+Z3v/tdPvnkkyJU2nC6du2ae+65J7fffntmzpy50HHt2rXLnnvumV/84heLdCZRc9OnT58Fbl9ppZXy/vvv58gjj8yPfvSjWmcMlcJZnNS2zjrrFLsEWCzlFtAofYcffnj23Xff7LPPPtl0003zyCOP5IsvvshOO+2UVVZZJcmXX6y+9NJLufjii/Ppp5/mgAMOKHLV9TNs2LC8++678/57xowZKRQKuffee/PCCy/UGvvWW281dXnUU9euXfOnP/0pt9xySy699NL8+Mc/zhlnnJG99947zz77bH75y19m3LhxWXPNNXPhhRf6TELZkr1lb9m7PPg7R0sle1NqZG/Zu9SUSvbWAC+yd955p9aSL1OnTk2SvPnmm/OdUbIoy6Q0V126dMlZZ531teP22muv7L777rV+ibZU7dq1y8EHH/yVY0rlvmuDBw/+yv1ffPFFhgwZUmtbqYTw559/PnPmzJn339OmTUuSPPnkk5kwYUKtsaVwhcVXaenLNC1MubzGm2yySbp161bsMoAGsO666+aaa67JhRdemBtuuCGVlZXZZZddcv75588bc8kll2TAgAGpqKhInz590qtXryJWXH9Dhw7N0KFD59v+v58/5iqFv1n/+8XDVymVLx4OOOCAbLbZZjn77LNz7rnnZuDAgRk7dmxatWqVE044IUccccQinZ1PeZC9F0z2bplk79LPZXVRCp9jFqRcXmPZG0qH7P0fsveXZO/moVBTU1NT7CLK1VprrbXAH/yampqv3P7GG280RXmNrqamJuPGjcvkyZOTJEsvvXRWWGGF4hbVyEp9zuPHj1+sx7X0sz4X9LP8379aF7SvJf8sr7XWWjn66KPz3e9+t9b2qVOn5phjjskZZ5yRtddee77HbbLJJk1VYoMrt9e4HK211lpltyRZuc158ODB2XjjjWst2VROJk2alPbt2893FeBjjz2W1157LTvttFOzvF/Tonj22WcX63GbbrppA1fSdBZ0X9CvU0p/n5577rkcc8wxmTp1agqFQo455pgcf/zxxS6LZkj2Lu0cuiClPmfZ+z9KOZfJ3l8q5de4HJVbDk3Kb86yt+y9MLJ3y9VSs7cGeBFdddVVi/W44447roEraVqjR49O//798+STT2b69Om19i2xxBL5/ve/n5///OeL9UuluSrHOZeTrzv7fmF23333Bq6kaSzsC8Rk4V8iJmnRf/DL6TX+7yujFkVL/pIlKc+A9uyzz2bVVVdt0ct/Qrkrxy8ekuTzzz/PJZdckrvvvjtt27bN4YcfnocffjhvvfVWvvOd76Rv377p2bNnscukGZG9yyeHluOcy0k55bJE9l4ULfE1lr1lb6DlkL1bZvbWAKdJ3XDDDbnssstSUVGRDTfcMKuvvno6deqU2bNnZ/LkyXn99dfzxhtvpKKiIqeffnoOOuigYpdcb+U457q69tprM3To0AwaNKjYpTS5mTNnpk2bNsUuY7GU6xeIi6qlvsZf9SXLV2nJX7JQHhZ2r8yvUipLhbJgt99+e/72t78t9t81imPkyJE599xzM2HChGy22Wa54IILsuKKK2bWrFm58sorc8MNN6Rdu3Y59dRTs++++xa7XCiacsyh5TjnupK9W14uS2Tvumqpr7HsTamSvflfsnfLVArZWwOcJvPYY4/lyCOPzHe+853069cvyy233ALHvffeezn//PPz1FNP5YYbbsh3vvOdJq604ZTjnBfFueeemzvvvLPFf3i/6qqrFilgjh49On369Mlf/vKXRqyKhlROr/Hvf//7xQrhLf1LlnIMaIvzpW+hUMhNN93UCNU0vnJcrurrvlRr27Ztllxyyayxxhr54Q9/mL322isVFRVNWGFxlcLnkA8++CBLL730fMvrLcy4cePywgsvZLfddmvcwhrJKaeckr/85S/p0KFDTjvttOyzzz7zjRk1alROP/30jBs3LptuumkuvPDCklr2GOqiHHNoOc55UZTC37ykvHJZuSqn11j2rjvZu2WRvecne7f8zyGyd8vM3hrgRVRuf/B//vOf5+OPP86gQYPSunXrrxw7e/bs7LbbbllppZVy9dVXN1GFDa8c57woSuGPX/Llh5xDDz00p5566leOmz17dq666qr0798/c+bMafHzrqsZM2bk008/bdbLoXwdr3HpK9eAtqha8pzL8V6ZBx544FfunzNnTj777LO89957mTVrVjbffPNce+21adWqVRNVWFyl8DnkW9/6Vi655JJa9xOcPn16Lrjgghx22GFZddVVa42/7777cvrpp7fYOa+11lrZcsstc8EFF2TZZZdd6LgZM2bk17/+dW6//fZ06NAhL774YhNWSXMkey9cqeTQcpzzoiiFv3mJXPZ1ZG9agnLLoUn5zVn2np/s3fI/h8jeC9bcs3d5/IQ1U4tyX5v/PoOopYbw119/PQcffPDXhtEkadWqVX70ox/lvvvua4LKGk85zrkcbbzxxrnhhhtSVVWVc845Z4Fj3nzzzZx++ul58803s9RSS+WXv/xlE1fZcLbddtuceeaZ2XbbbedtmzlzZh588MFsscUW6datW63xQ4cObdF/8JPye43L0SOPPFLsEprcmDFjil1Ck2rJYXpxDRw4sE7jZsyYkdtuuy2XXHJJbrvttq8N7zQfCzqX+YsvvsiQIUOy6667zhfCW7qLLrqoTvf4bNeuXc4777z84Ac/8PeYJLL3VymVHFqOcy5H5ZbLZO/Sf43Lkexd+mTvhZO9Wy7Ze8Gae/bWAC+iuvzxGz9+fC644IKMHDkySy65ZE488cTGL6yRTJs2LT169Kjz+OWWWy7//ve/G7GixleOcy5HN9xwQ0444YTcdtttqaqqSr9+/eZ9cVZTU5M//elPufrqqzNz5szsuOOOOeuss7L00ksXuerFN378+EyfPr3WtmnTpqVPnz654YYb5gvhpaDcXuMkeeeddzJq1Kjsscce87Z9/PHHueqqq/Liiy+mffv22XbbbXPwwQe3yPut/a9yDGjUNnPmzPzjH/9Iu3btssoqqxS7nCbVrl27/PznP8/LL7+cwYMHC+EloFQX+apLAP9v3/zmN7PXXns1UjW0JLL3VyuFHFqOcy5H5ZbLZO/Sf40T2ZvyI3vL3qVE9v5Sc83eGuDN1Jw5c3LDDTfkD3/4Q2bMmJGddtopffr0adEfbmfPnr1IH9RatWqVmTNnNmJFja8c51yO2rRpk6uvvjp9+vTJ4MGDM2PGjFx22WV57733csYZZ2T06NHp3r17zjvvvHz/+98vdrmNplT/4Cfl9xpfdtllueGGG1JTU5Pdd989FRUVmTp1avbZZ5988MEH6dy5c5Zffvn87ne/y6OPPpqBAwfW6WqblqwcA9qECRMyevTotGvXLptsskmd73PUnE2dOjXXXXddRo0aVesM7fvvvz99+/bNZ599luTLD+79+vXLBhtsUKRKi6N379558skni10G1MsXX3yRhx9+OIMGDcqzzz6bmpqaHHvsscUui2ZM9i6NHFqOcy5H5ZbLFkb2Lp3XWPaen+wte5cD2ZtS0BKytwZ4M/T888/n/PPPz9tvv52VV1455557br7zne8Uuyz4WlddddUijX/11VcbqZKmV1lZmUsuuSSdOnXKzTffnPfffz9vv/12ZsyYkb322iunn356llhiiWKXST2Uy2s8bNiw9O/fP1tvvXUOOuigVFRUJEn+8Ic/ZPz48Vl//fXz5z//Oe3bt8/o0aNz4IEH5s9//nMOP/zwIldef+UY0MaPH5/LL788o0aNyqOPPjpv+5/+9KdceeWVmTNnTmpqarLUUkvlggsuyA9/+MMiVls/06ZNyz777JN33nknyy67bGbPnp1WrVpl9OjROf3001NTU5N99tknq6++eoYMGZKf//znGTJkSFZaaaVil95kKisrU11dXewyFtuQIUMWafw///nPximEohg1alQGDRqUhx56KNOmTUtNTU2+8Y1vZJ999il2aTRjsjctlexd+rmsnJXLayx7y96J7C17t0yyd3lrSdlbA7wZmTRpUi655JIMGTIkbdq0yfHHH5/DDz+8JJa3mev555/PnDlz6jT2xRdfbORqmkY5zXlRQ3hS+x57peCss85K586dc9VVV6WioiJ//OMfs9VWWxW7LBpQqb/Gt99+e9Zff/1ce+2187bV1NTkvvvuS6FQyC9+8Yu0b98+SbLeeuvlxz/+cf7yl7+0+BBejgHtk08+yT777JNJkyZlvfXWmzfnJ554IpdffnlatWqVk08+OWussUbuvPPOnHzyybnjjjuy9tprF7v0xXLDDTfkvffey29/+9vssMMO87ZfffXVqampyc9+9rOcccYZSZI999wzu+66a6699tpcdNFFxSq5yb388stZbrnlil3GYjvjjDMW6XNFTU1NyX0OKTcTJkzIvffem0GDBuXdd9+dd0Vc7969c/jhh2eLLbYocoU0V7J3bS09h85VTnOWvUs/l1H6r7HsLXvL3rJ3SyV7l5+Wmr01wJuJu+66K5dddlmmTJmSzTffPOeee26+8Y1vFLusBnfnnXfmzjvvrNPYUvnFWE5zHjBgQLFLaBaOO+64dOnSJX379k3//v2z0UYblcTZyfxHKb/Gr7322nyB+vXXX88nn3ySJZZYIr179661b911183999/flCU2inIMaH/6058ybdq03HLLLbXOqP/Tn/6UQqGQY489dt574Xvf+1722GOPXHfddfntb39bnILraejQofnxj39c6/WdNm3avGXH9t9//3nb27Ztm1133TV33XVXk9dZLH/9619z77335rDDDit2KYutJf88UnczZ87M8OHDM2jQoDz99NOZM2dOKisrs+mmm2ajjTbKNddck4MOOqjZBnCKT/aeX0vPoXOV05xl7y+Vci7jS6X8GsvesrfsLXu3VC3555G6K4XsrQFeZG+++WbOO++8vPTSS+nWrVsuv/zy7LjjjsUuq1GU4y/GcpvzpptuusiPef755xuhkqb13HPPzbdtjTXWyF577ZU777wzP/vZz3LaaafNW85qrk022aSpSqSeyuk1nj59epZaaqla2/7+978n+XI+lZWVtfbNnj27RX95OFc5BrSRI0dmjz32qBXAJ0+enBdeeCFJ8pOf/GTe9kKhkB/96Ee56aabmrrMBvP+++/Xeh2TL3+2Z8+enRVXXHG+5sdyyy2XTz75pClLbHB9+vT5yv1z5szJtGnT8o9//CPvvfdeVl555RYdwnffffdil1AUw4YNy7vvvjvvv2fMmJFCoZB777133s/zXG+99VZTl9egzj///Dz44IOZMmVK2rZtmy233DLbbbddtt1223Tp0iXjx4/PH/7wh2KXSTMle5e2cpuz7P0fpZrLylU5vcayt+wte39J9m55ZO8vyd7NP3trgBfRxRdfnIEDB2bOnDnZZpttcuKJJ2aJJZbIBx988JWP69mzZxNV2LDK8RdjOc65Lj788MMMHjw4Q4YMybhx4/LGG28Uu6R6OfDAA78yhLz22ms5+OCD59vekuf9zjvv1AqmU6dOTfLlF4utWtX+0zJ27Ngmra0xlNNr3KNHj4wbN67WtpEjR6ZQKOR73/vefONHjx6dZZZZpqnKazTlGND+/e9/Z4011qi17Zlnnkl1dXVWW221+V7Xrl27ZsqUKU1ZYoOqqKiY7x5bTz/9dJLku9/97nzjP/300xZ/dcngwYPrNG7FFVfMz372sxxzzDEtfs4Ls6DP18stt1zJfIk4dOjQ+bYv7L5sLXnOt912Wzp06JCjjjoqhx12WMm+X2l4snfpK8c514Xs/aWWPG/Zu7ZSeo1l7/+QvWXvlv65Xvb+D9n7P1rynEsle2uAF9GNN944799HjBiRESNG1OlxLfFD3eL49NNPM3bs2BZ5FufiKuU5f/HFFxk6dGgGDRqUZ555Zt6Scwv6UN/SHHvssS36D9riuPbaa2vdp2quiy++eL5tLX15waS8XuPvfe97ueeee7L//vtnmWWWyahRo/L888+ndevW2X777WuNffvtt/OXv/wle++9d5GqbTjlGNDatm2bqqqqWtueeuqpFAqFbL755vON//e//51OnTo1VXkNbrXVVsuoUaNywAEHJPnyd9OwYcNSKBTy/e9/f77xjzzySFZdddWmLrNBPfLII1+5v23btunUqVNJ3fM2Se65557cdddd+cMf/pCll146kyZNyve///35fo+fcMIJOfroo4tUZcMotyVwd9999wwfPjx//OMfc9NNN2XjjTeedxZ6t27dil0ezZjs/dVKOYcuTCnPWfYuLbJ36ZK9/0P2rk32bnlkb9m71JRK9tYAL6Ljjjuu2CU0qW9961u55JJLsssuu8zbNmPGjPTv3z+77bZbVlhhhVrj//a3v+X0009v0V86lOOc/9dLL72UQYMG5aGHHsrnn3+eJFl66aWzxx57ZJ999snyyy9f5Arr7/jjjy92CU2qnALpXOX0Gh9zzDEZOnRofvSjH2WVVVbJW2+9lZqamhx77LFZeumlk3wZvocOHZoBAwakdevWOfTQQ4tcdf2VY0Bba6218vTTT+dnP/tZkv/c2ydJtttuu1pja2pq8te//jVrrbVWk9fZUHbbbbdceOGFWXfddbP55pvnzjvvzAcffJBvfOMb2XLLLWuNvfbaa/PSSy/lrLPOKlK1DaMU/sYuql/84hd5+OGH07Nnz3zwwQfzfm8lya677poVV1wxSXLvvffmmmuuyZ577pnu3bsXq9x6W5wlcGfPnt0IlTSNiy66KOeff35GjBiR+++/P48//nieeOKJnH/++dlwww3Tq1evsvuMQt3I3qWfQ8txzv9L9i49sndpk71l70T2lr1bLtn768nexacBXkTlFsJramrm21ZVVZWrr746G2200XyBtBSU45yTZOLEiRkyZEgGDx6cf/3rX6mpqUn79u3z3e9+N0899VR+9atfZdttty12mSymcgqk5ahbt265++67c/XVV+ell17Kt7/97eyxxx7Za6+95o0ZPHhwbrjhhiy//PL5zW9+k+WWW66IFTeMcgxo++67b04++eT069cvm2++ee6555588skn+fa3v13raqgZM2bk17/+dd5+++0W/YXLvvvumxdeeCEXXXRRCoVCampqstRSS+Wyyy6bdw/Bu+++O3/6058ybty4bLTRRtlvv/2KXHXjGj16dEaNGpWKiopsuummWXPNNYtdUr3cd999efjhh3PkkUfmhBNOmO++ibvttlu+853vJEm22mqr7L333rnjjjtK5jP5tGnTUlNT85VXyIwaNSpnn312HnjggSasrGG1adMm22+/fbbffvtMnTo1f/3rX3PfffflhRdeyAsvvJBCoZA//vGP+fzzz7P99tunXbt2xS6ZZqBUfs7rqhxzaDnOOZG9S53sXdpkb9lb9pa9WyrZW/ZuKdlbA7wZmTlzZsaMGZOJEyempqYmPXr0yFprrZW2bdsWu7RGtaCgWupKdc4PPfRQBg0alKeeeipz5sxJp06dsssuu+SHP/xhttxyy3z00UfzndlYCq666qpFfkyhUMixxx7bCNU0voMOOihHH330vA8y5aDcXuNll102F1xwwUL377HHHvn+97+fXr16zQsvLV05BrQdd9wxb775Zvr375+BAwempqYmK6ywQq644op5Y66//vr84Q9/yLRp07LDDjvkxz/+cRErrp9CoZDLLrssBxxwQEaNGpUlllgi2223Xa2zlP/973+npqYmRx99dI488siSeH+//vrr+eMf/5ixY8fmG9/4Ro466qist956+eUvf5lBgwbN+0xSKBSy884756KLLprvfpItxeDBg7PhhhvmpJNO+tqxc79we+yxx1p8CH/44Ydz1VVX5R//+EeSL+8rd8IJJ2TnnXeeN2b69Om5/PLLc9ttt8235GRL0qdPn+y7775Zf/31kyRLLrlk9tprr+y1116ZMGFCHnjggTzwwAMZPXp0XnnllVxwwQXZcccd86tf/arIldPcyN7lo1TnLHvXXUvOZbJ33bTk11j2lr3nkr1b/vtb9l4w2btlKpXs3TJ/wkrMxx9/nMsvvzxDhw7NtGnTau1r3759tt9++5x00knp0aNHkSqEujnppJPSoUOH7L///tl2222zySab1DoDrCUsi7E4yi2gPfvss7XOSC4H5fYaf52WvvzYgpRrQDvppJOy33775eWXX84SSyyRTTfdNK1bt563v23btll33XWzyy675Cc/+UkRK204G264YTbccMMF7jvuuONafCD7b6NGjcpBBx2UVq1aZY011shrr72WAw44IAceeGDuueee7Lrrrtlhhx0yffr0PProo3nggQfyrW99K4ccckixS18sr7/+eo466qg6j99iiy1y9dVXN2JFje/BBx/MySefnLZt22aLLbZI+/bt8/zzz+fUU0+dd//IV155JSeddFLef//9rLDCCjn//POLXfZiGzx4cL773e/OC+H/bZlllsmhhx6aQw89NGPHjs19992X+++/P3fddVezC+EUj+xNqZC9664l5zLZu25a8mv8dWRv2bslk71l77lk75anVLK3BniRvfTSSznyyCMzZcqUrL/++tlss83So0ePtGrVKhMnTsxzzz2XIUOG5NFHH80111yTXr16FbtkWKgVVlgh77//fgYNGpR//vOfeeWVV7Lddtvlm9/8ZrFLa1QDBgwodgk0snJ6jZ977rnFetx/L9vVkpVTQJtr2WWXzbLLLrvAfT/96U/z05/+tIkroqFcffXVWXnllTNgwIB06dIlNTU1OfPMM3PjjTdm1113zSWXXDJv7M4775zPPvssDzzwQIsN4TNmzEinTp3m277kkkvm2muvzbe+9a1a2zt27Nii78mVJDfffHO6du2a22+/fd491qqqqnL00Ufn97//fXr06JFDDjkkX3zxRX7+85/nF7/4RbNclqyhrbrqqjnppJNy0kkn5cUXXyx2OTQTsjelRPamVJXTayx7y97/TfZu2WTvL8nesndzowFeRJ988kmOPfbYdOzYMX/4wx+y0UYbLXDc66+/nhNPPDEnnHBC7r333nTt2rWJK4W6GT58eF5++eXcd999+etf/5q//e1vufzyy7PKKqvkhz/8YdZee+1il9goNt10068dM3Xq1BQKha+8NwjNV11e41Jx4IEHLvIVI4VCIa+//nojVQQNo0+fPov8mEKhkH79+jVCNU3jlVdeyWGHHZYuXbok+XI+hx56aAYPHpytt956vvE//OEP8+tf/7qJq2w4yyyzTD744IP5trdq1WqB8/3Xv/7V4u+jOHbs2Bx44IHzAnjy5VWsxx13XH7605/mpJNOSteuXXPZZZdlgw02KF6hRaSJSSJ7U3pk74WTvVs22furyd60BLK37P2/ZO/y0ByztwZ4Ed18882ZNm1arbNGFuTb3/52brzxxuyyyy659dZbc/zxxzdhlbBo1l9//ay//vo588wz87e//S33339/HnnkkVxzzTUpFAopFAoZMWJE1lprrSy//PLFLrfB1NTU5PHHH88//vGPrLTSStl6663TqlWrPP300+nbt2/eeeedJMm3vvWtnHzyydliiy2KXHH9DBs2LO+++26dx5fykmRzlcoXLRdddFGdxj388MMZOXJkkmS99dZrxIqaRjkGtIMOOmiRH1MoFHLTTTc1QjWNb/DgwXUe+99fRLXk1/izzz5Lt27dam2bu7Rg586d5xvfrl27VFVVNUVpjWK99dbLgw8+mGOPPfZrl0mcOXNmHnzwwWy11VZNVF3jmDp1alZYYYX5tn/jG99I8uVSirfffvu8L2JKwfPPP585c+Ys0mN22223ximGFkP2phTJ3rL3gsjeLYfsXXeyd8sie39J9v6S7N1ylUL21gAvouHDh2fXXXf9ygA+1/LLL5/dd989Q4cObdEh/H9/aObed+3JJ5/MhAkTao1tjksmLI5ynHOSVFZWZquttspWW22VGTNmZNiwYXnggQfy5JNP5u67786gQYPSu3fv7LHHHtl5552LXW69fPbZZzniiCPy8ssvp6amJkmy7rrr5uyzz84RRxyR9u3bZ7vttsv06dPz8ssv58gjj8yNN97Yos9sHjZsWIYOHVrn8aUQwv/7i5ZvfOMb2WabbUryi5bdd9/9K/ePHz8+F1xwQUaOHJlOnTrl5JNPzj777NNE1TWecgxo77//fp3GVVdXZ8KECampqWnR95McM2bM14757/f3kksumRNPPLHxC2tENTU1adWq9sf9ua9hS34tF2bffffNT3/60/zqV7/KWWedNd/c56qurs4555yTiRMnZt99923iKhtWdXV1rXu+zjX3foJHHHFESQXwJLnzzjtz55131mns3N9bzS2E0/Rk7/LIoeU450T2lr1rk71bDtn768neLZPs/SXZW/Zu6Uohe2uAF9H777+/SPf2WGuttRbpQ0Jz9L8/NHMDS//+/ef7Y9DS/9jPVU5zPuKII7LZZptl0003zdprrz1vLu3atcsuu+ySXXbZJZMmTcqDDz6Y+++/P08//XT+/ve/t/gQfuWVV2bMmDE555xz0rt374wfPz4XXnhhfvazn2XllVfOwIED553t9+mnn2bPPffMDTfc0KJD+JFHHpnvfve7xS6jyZTjFy3/a/bs2bn++utz7bXXpqqqKrvuumvOOOOMeWe0tnTlGNAeffTRrx3z8ssv57zzzsu///3vrLDCCjn77LOboLKmN2fOnNxwww35wx/+kBkzZmSnnXZKnz595juDm+Zt4403zqGHHprrr78+f//733PIIYekd+/eWXbZZVNTU5OPPvoozzzzTG655ZaMGTMmJ510UtZaa61il92oevbsWewSGtzee+9dtkvKsfhk79LOoXOV05xlb9m7VMnesncie8veNHey9/xk7+ZJA7yIWrdunS+++KLO42fMmJEOHTo0YkWNq65L+5SScpvz3//+9zz++OPzlqLaeOON07t372y22Wbz/sh16dIlBxxwQA444ICMGzcuf/nLX4pcdf09+uij2XfffbPffvslSVZZZZWcc845OeSQQ3LAAQfUWupm6aWXzt57752BAwcWqdqGseqqq5ZUwPw65fhFy3979tlnc/7552fs2LFZZZVVcu6556Z3797FLqvJlGNAmzp1an7zm9/kzjvvTEVFRY488sgcc8wxadu2bbFLa3DPP/98zj///Lz99ttZeeWVc+655+Y73/lOsctqMP+7bOaMGTNSKBRy77335oUXXqg19q233mrq8hrcqaeemuWXXz6XX355zjnnnAU2PDp06JDzzjuvJK6gKUcbb7xxdtlll2KXQQsje5e+cpuz7C17lyrZW/aWvWXvlkr2lr1LTSlkbw3wIlpjjTXy2GOP1fk+ICNHjsxqq63WyFU1nq9b2qcUlducX3zxxbz++ut58cUXM2rUqLz00ksZMWJECoVCOnXqlE022SS9e/dO7969s8Yaa2TFFVfMUUcdVeyy6+2jjz7KqquuWmvb3J/VBZ39tdxyy2XKlClNUhsNoxy/aEm+/ELh4osvzn333Ze2bdvmF7/4RQ477LB5y/uUg1IPaAty77335pJLLsknn3ySTTfdNOeee+58v+NKwaRJk3LJJZdkyJAhadOmTY4//vgcfvjhadOmTbFLa1BDhw5d4LKZQ4YMWeD4lnw13Fz7779/dt9994wYMSLPPfdc/v3vf6empiY9evRIr169st1227X4e0b+twXdG/SrvmwphaVRYVHJ3qWv3OYse/+H7F1aZG/ZW/aWvVsq2Vv2lr2bHw3wIvrxj3+cc845Jw8++GB23HHHrxw7ZMiQPPXUU7n88subqLrie//993POOefkhhtuKHYpTaalz7lVq1ZZb731st566+Xggw9Oknz44Ye1QvnFF1+cOXPmpHPnztl0003Tu3fv7L///sUtvJ5mzZqVdu3a1do2N6QsKKwUCoVa96aj+SvHL1ruuOOOXH755ZkyZUq+973v5eyzz67TfTNLRbkEtP/2zjvv5Pzzz8+zzz6bLl265Ne//nWzu3dPQ7nrrrty2WWXZcqUKdl8881z7rnn5hvf+Eaxy2pwAwYMKHYJRdO+ffvsuOOOX/sZuxQs7IuWZMFftgjhlCPZ+6u19By6OFr6nGXv/5C9S4vsLXvL3qVF9i59sveXZO/mSQO8iPbYY48MGTIkp512Wt58880ccMAB6dGjR60xEydOzI033pgBAwZkq622yo9+9KMiVdswXn755VxzzTUZNWpUkuTb3/52jj322Gy88cbzxtTU1OTPf/5zrrzyysyYMaNYpTaYcpzzf1tuueWy0047Zaeddkry5dI+9913XwYNGpSHH344Q/9fe3ceFlW5+AH8O2wCouJGiltuMW4pIot01RLELRRcckvS3G+amppaFC4omluWpqlX3Oq6JCAoIiguKbIoINdQr17NXXEDkcSB4fz+8GF+jaACMnM453w/z9Pz5Jl38vuGwnzPe857oqMlX8KVZuLEiXBwcBA7hlEp6UTL+fPnERAQgLS0NLz11luYP38+vLy8xI5lVEopaIU0Gg1Wr16NjRs3Ij8/HwMHDsT06dNRtWpVsaOVuwsXLmDOnDlITU1FrVq1sHz5clmXNLlsBUkvp7QTLb6+vrL+fkyGw+6tjB6qxDn/Hbu3/LB7P8fuLV/s3uzecsHuLX/s3tLEBXARmZiYYO3atZg+fTp+/vlnrFu3DnXr1kXt2rVhamqKBw8e4Nq1axAEAT179sSCBQvEjvxGTp48iTFjxkCr1aJx48awsrJCUlISRowYgeDgYDg7O+PGjRuYNm0a0tLSYGNjg7lz54od+40occ4vys3NRVJSEhITE3H69GmcPXsWeXl5sLCw0G3JJgeZmZm4deuW7teFVyA/fPhQ7zjw/OpWKZs4caLerzUaDc6fP4+MjAzdNjdqtVqWzytSgv79+6OgoAAAULNmTWzbtg3btm175XtUKhU2b95sjHgGpbSCBgBHjx7F/PnzcfPmTTg4OGDu3Llo27at2LEMYvHixdi6dSu0Wi0++OADTJkyBTY2NkW+R7+ouDtN5Gr79u04fvw4Vq1aJXaUMinp1sZ/J/XvX2U50XLq1CkDJDEOpT3jl8oPu7f8e6gS5/widm92b5IWdm92b3Zvfeze0sHuXTLs3uJTCYIgiB2CgN9//x179uxBWloa7t27p/sg6+TkhL59+8LNzU3siG9s5MiRSEtLw4YNG+Do6AgAuHv3LsaPHw9zc3MEBQXBz88PDx48gJeXF7755hvUrl1b5NRvRolzzs/PR2pqKuLj4xEfH48zZ84gLy8P5ubmePfdd3XF29HRUTbbGanV6mKf2yIIwiuf53Lu3DlDxjK4+/fvY/ny5YiOjkZOTo7ea1ZWVujevTumTp1a5O4aKVKr1fj666/h4eGhO5aVlQVfX18sW7ZM9/e7UExMDBYtWiTJr3HXrl3L9L7Y2NhyTmJcLytoryPlgvb5558jJiYGAPDBBx/Az88Ppqamr32fs7OzoaMZhFqt1v17aZ61JcW/x2UVEBCAnTt3SnbOJf3+VVBQgLt37+p+Tkt1vqVx+/ZthIaGIiwsDNevX1fEnIleht1bnj1UiXNm9/5/7N7s3lL8GrN7s3u/Dru3fLF7yxe7d8XCBXAyGjc3NwwYMADTp0/XO378+HGMGTMGTZs2xb179zBnzhzJbzdXSGlzHjNmDE6dOoXc3FyYmJigVatWcHNzg6urK5ycnIpsYyUXs2fPLtP7pHwlVWpqKsaNG4esrCy0bdsWbm5usLOzg5mZGTIyMpCUlISkpCRUrVoVa9asQfv27cWO/EaUeqJFSZRY0P4+Z+D185Z6YSnrldUv3nkjZ1Iv4SVx5swZzJkzB+fOnUP9+vXxzTffoEuXLmLHMohnz54hOjoaISEhSEhI0P0d7tSpE37++Wex4xGRASmthwLKmzO7d+mwe0sHu7f8sXuze78Mu7e8sHuze1cE3AJdQhISEnDhwoUybTFREWRnZ6Np06ZFjjdv3hyCICAzMxO7du2SxbMFCiltzr///jvMzc3h4+ODcePG4e233xY7klFIuUyXxYMHD/DZZ5+hcuXK+Omnn+Dk5FTsuPT0dEyZMgWff/459uzZg5o1axo5afnx8fEpVTFTklOnTiE0NFTyW4UqqWgVUtr3rrJ8jeX2bFAly87OxrJly7Bz506YmJhg3Lhx+Oc//ynLLUNTU1MREhKC/fv348mTJwCAGjVqoH///hg0aBDq1asnckKiio/dW3qUNmd2b2Vg96a/Y/eWLqV972L3VjZ2b3bvioQL4BISGRmJnTt3SraEa7VamJkV/SNXuBXX+PHjZVNGCyltzgMHDkRCQoJum48mTZqgY8eOcHNzg7OzM6pVqyZ2RCoH27ZtQ05ODrZv344GDRq8dFzLli0RHBwMb29v/Prrr5g0aZIRU5avRYsWiR2hQrlz5w5CQ0MRGhqK69evA4AiS7jUC5qvr2+p33Pz5k0DJKl4Ck8uHThwQNLPbKLn9uzZg++++w4PHjyAi4sLAgICil0kkbKMjAyEhYUhNDQUf/75JwRBgJWVFdzd3REXF4d58+bpbSVKRK/G7i09Spszu7cysHsTu/dz7N7yxe4tL+ze7N4VDRfAqcKQ2zfDkpDbnOfPnw8AuHXrFuLi4hAfH4+oqChs27YNJiYmUKvVcHV11ZVya2trkRNTWRw8eBB9+vR5ZQEvVK9ePfj6+iI6OlrSJdzPzw8TJkxAx44ddcfy8/ORkpICtVqNKlWq6I0PDw/HrFmzkJ6ebuyoBqPRaHTb+cTHx0MQBAiCAFdXVwwZMkTseEaltIL27NkzREVFITQ0FElJSfjjjz/EjmQQhSeXwsLCcO3aNQiCAFtbW7Fj0Ru4fPky5s6di8TERFSvXh2LFi2Cj4+P2LHK1f79+xESEoK4uDhotVpUrVoV3t7e8PLyQqdOnXDv3j14enqKHZOIKhi59dCSkNuc2b2Vgd37OXZvdm92b3lh95Yfdm9274qKC+BEVO7s7e0xYMAADBgwAABw8eJFxMfH4+TJk9i9ezeCg4NhZmaG1q1bo2PHjpg8ebLIiak0bty4gY8//rjE49VqNUJDQw2YyPASExMxcOBAvWPZ2dnw8/PDxo0b9cp5IUEQjBXPoF7czqdwXr1798Znn32GJk2aiJzQOJRY0JKTkxESEoKoqCjk5ORAEAQ0b95c7FjlqvDkUmhoKOLj41FQUABBENCuXTsMHjwYvXr1EjviGwkLCyvV+CtXrhgmiJFpNBqsXr0aGzduRH5+PgYOHIjp06ejatWqYkcrd1OnToW1tTWGDh0KDw8PODs7w9TUVPc6txAlIpI3dm95Y/d+jt2b3ZvdW/rYvfWxe0sPu7c0cQGcjOrUqVPQarV6x3JycgAAJ06cwN27d4u8R+pXCylxzi9q3rw5mjdvjuHDh0Oj0SAqKgq//vorUlNTcebMGZZwiTE3N8ezZ89KPD43N1e2dxzIpWi/qLjtfGxtbeHr64t27dohICAAvXr1kn0Bl3tBK87du3d1X/urV68CAMzMzNCrVy8MGTIEHTp0EDlh+Thz5gx2796td3KpatWqyM7Oxvz584ucdJOqWbNmlaqECYIg+dJ29OhRzJ8/Hzdv3oSDgwPmzp2Ltm3bih3LYOrXr48bN24gJCQEV65cwX/+8x94enqicePGYkcjIpEpsYcqcc4vYveWF3bv/8fuze4tN+ze7N7s3tLC7i1NXAAno9q5cyd27typd6zwQ+yGDRv0vvEX/iCQeiFV4pz/7tq1azhz5gzOnDmDtLQ0nD9/Hnl5eahcuTI6d+4MZ2dnsSNSKb3zzjs4evRoiZ+JeOTIETRr1szAqai8jB07FidOnIBWq0XdunUxdOhQeHp6wtXVFSYmJrh586ZsTz4UUkpBK6TRaHDw4EHs3r0b8fHxuhPHTZs2xeXLl7FkyRL06NFD5JRvLiMjA3v27EFoaCiuXLkCQRBgb28PX19feHl54a233kK3bt1Qo0YNsaOWm6CgILEjGNXnn3+OmJgYAMAHH3wAPz8/aDQaJCUlvfJ9Uv4scvDgQZw5cwbh4eGIiorC8ePHsXz5cjRp0gReXl5o1aqV2BGJSCRK7KFKnPPfsXvLD7u3vLF7s3uze7N7SxW7N7u3VHABXES3bt0q1fjCK5elSmk/CADlzTkrKwtpaWm6wp2WloasrCwIgoBq1aqhffv2mDp1KpydndGyZUuYmJiIHZnKoG/fvvj2228RGRn52qtww8LCEBcXh+XLlxspHb2pY8eOwdraGn5+fhg2bBhq164tdiSjUGJBS0tLQ0hICCIjI/H48WOYmJjA0dERXl5e8PLyglarhaenJ8zNzcWOWi66du2KgoICqNVqjB8/Hh4eHmjdurXu9Zs3b4qYzjB8fX3FjmBU0dHRun+PjY3F4cOHXzm+cPHj3Llzho5mUG3btkXbtm3x1Vdf4fjx44iIiMChQ4ewZs0aqFQqqFQqHD58GGq1GvXq1RM7LpEo2L3lT2lzZvdWBnZveWP3Zvdm95YPdm92b3bviokL4CLq2rWrorbGKMsPAqn/QFTanF1dXaFSqSAIAqpXrw4XFxc4OzvD2dkZDg4Okv7zS/+vf//+CAsLw5dffokLFy5g2LBhsLOz0xuTkZGB4OBgbNmyBV26dEHPnj1FSkulNXHiROzbtw9r167Fzz//jMaNG8PT0xOenp549913xY5nMEosaB999BGsrKzQqVMndO7cGV27dtU7ySC3Oefn58PKygq1atWClZVVkS1SleDu3bs4ffo0MjIyAAB2dnZwdHRE3bp1RU5WPpS2+PEiU1NTdOnSBV26dEFubi5iYmKwd+9enDhxAr/99htCQkLg6uqK/v3748MPPxQ7LpFRsXu/ntR/7ittzuzeysDuLW/s3uzeheQ2Z3Zvdm+5Y/eWDi6Ai8jHx4elpBjPnj1DVFQUQkNDkZSUhD/++EPsSAYnlzn36NEDLi4ucHFx4bZbMmZiYoK1a9di+vTp+Pnnn7Fu3TrUrVsXtWvXhqmpKR48eIBr165BEAT07NkTCxYsEDsylcLEiRMxceJEnD17FhEREYiMjMS6deuwfv161K1bF05OTrL82aXEgmZlZYWnT5/if//7H6pXrw5ra2t07twZNjY2YkcziMOHDyMiIgIRERFYvnw5VCoVatWqhW7duqFbt26yvjr34sWLCAwMRFJSEgRB0NtK0cTEBE5OTvD394eDg4OIKd+c0q66fxVLS0t4e3vD29sbjx49QmRkJCIiInDy5EnEx8ezhJPisHsXTy49tDTkMmd2b2Vg95Y3dm92b3Zv+WH3Vh5274pNJcj9YSIkGcnJyQgJCUFUVBRycnIgCAKaN2+OiIgIsaMZjBLnTPLy+++/Y8+ePUhLS8O9e/cgCALs7Ozg5OSEvn37ws3NTeyI5UKtVuPrr7+Gh4eH7lhWVhZ8fX2xbNkyODo66o2PiYnBokWLJL+1D/D8DqiTJ08iIiICMTExePLkCQCgXr166N+/P3x8fGBvby9yyjd3+/ZtXUG7ePFisQXNy8sLq1ev1vtzIGW5ubmIjY1FeHg4jh8/Dq1WC3Nzc3Ts2BHdunWDWq3GgAEDZDXnQufPn9edZLp9+zZUKpXupMSsWbPwySefiB2x3Bw6dAhTpkyBSqWCp6cn3NzcYGdnBzMzM2RkZCApKQlRUVHIz8/HihUr4OnpKXZkMqDr169j3759GD9+vNhRiEhESuyhSpwzyQu7N7s3u7d0sXuze7N7Kw+7d8XABXCJuH37NkJDQxEWFqb3jAWpu3v3LsLCwhAaGoqrV68CAMzMzODl5YUhQ4agQ4cOIicsf0qcM5HUqdXqYq+8ft32mHIo4X+n0WgQGxuLvXv34ujRo8jLy4OJiQk6duyIf/3rX2LHKzdKKmiFMjMzdVeppqam6r02duxYjB8/HlZWVuKEM7DExEREREQgOjoaWVlZUKlUqF+/Pvr16wdfX1/UqVNH7IhlduPGDXh7e6Nx48ZYuXIlGjRoUOy4O3fu4PPPP8elS5ewZ8+el46r6GbPnl3q96hUKixcuNAAaYhIqti95UOJcyaSOnbv59i92b3liN2b3Zvdm4yNC+AV2LNnz3DgwAGEhoYiISEBBQUFMDMzw9mzZ8WO9kY0Gg0OHjyI3bt3Iz4+XrfVTdOmTXH58mWsWLECPXr0EDll+VLinEk5NBoNzp8/j4yMDN1V6Gq1GpUqVRI7Wrkpywc7QN7PxHn8+DGioqIQERGB06dPIz09XexIBiHngvYyN2/eREREBPbu3YtLly5BpVLB2toaPXv2RP/+/YvcdSEXeXl5OHbsGMLDw3HkyBE8e/ZM8p+7FixYgD179iAqKkrvGXPFyczMRK9evdCnTx/MmjXLSAnLl1qtLvV7VCqVpE+YluUOEZVKhYMHDxogDZF0sXvLhxLnTMrB7v1y7N7Sx+7N7i3lz13s3q/H7k1i4AJ4BZSSkoLQ0FBERkbqtuaqU6cOBg4ciI8++gi1a9cWO2KZpKWlISQkBJGRkXj8+DFMTEzg6OgILy8veHl5QavVwtPTU1bbvShxzqQc9+/fx/LlyxEdHY2cnBy916ysrNC9e3dMnToVdnZ2IiUkYzl16pTs76CRY0ErifPnzyM8PByRkZG4c+eO5AtLST158gTR0dHYu3cvNm7cKHacMuvZsyc6d+5c4hOJ3333HQ4fPoz9+/cbOJlh3Lx5s0zvk/Iz6Lp27VrkmCAIuH37NmrVqgULC4ti3xcbG2voaESSwO4tnx6qxDmTcrB7UyF2b/li92b3lhJ27+fYvSs+M7ED0HN3797Fnj17EBISgqtXr0IQBJiYmAAApkyZgrFjx+p+LVUffZ3QykEAAEXRSURBVPQRrKys0KlTJ3Tu3Bldu3bVuyKqrN84KzIlzpmUITU1FePGjUNWVhbatm1b7HNtwsLCEBsbizVr1qB9+/ZiR6ZSOnv2LFJTUyEIAlq0aFFsyX7y5AmWLl2KXbt24Y8//hAhpfGYm5vDw8MDHh4eegVN7tRqNdRqNb788kskJCQoYs4AYGNjA09PTyQnJ4sd5Y3cvn0bzZo1K/H4Jk2a4N///rcBExmWlMt0WRVXph8+fAh3d3csWbIEHTt2FCEVUcXG7i3PHqrEOZMysHvLH7u3PnZvdm8pYveWP3ZvaeICuIgKt+YKCQnByZMnodVqUalSJXTt2hXdunWDg4MDfH190bx5c8kXcAC6Z7j873//Q/Xq1WFtbY3OnTvDxsZG7GgGo8Q5k/w9ePAAn332GSpXroyffvoJTk5OxY5LT0/HlClT8Pnnn2PPnj2oWbOmkZNSWfz111/44osvcPToURRuEqNSqeDu7o41a9bormg8cuQIAgICcPfuXTRs2FDMyEYnl4JWWvb29pI/eXzjxg0EBwcjJSUFANCyZUuMGTMGjRo10hsXHR2N+fPn4/79+wgMDBQjarmwtLTE48ePSzz+8ePHqFq1qgETiUuj0eDSpUuwtLREkyZNxI5jMK96PiaRUrF7y7+HKnHOJH/s3vLG7v167N7Sxe79auze8sDuXfFxAVxEnTp1wuPHj1GtWjX07t0bHh4e6Ny5M6ysrADI7wrlkydPIjY2FuHh4di9ezd27twJc3NzdOzYEd26dSvTsyMqOiXOmeRv27ZtyMnJwfbt29GgQYOXjmvZsiWCg4Ph7e2NX3/9FZMmTTJiSiqrH3/8EUeOHEGnTp3g6+sLa2trHD16FDt27MB3330Hf39/LF68GJs2bYKpqSlGjRqFzz//XOzY5UJpBQ0Azpw5gzVr1ujN+bPPPtO760AQBGzatAk//PADcnNzxYr6xs6dO4fhw4fjyZMnsLS0hKWlJdLT0xEZGYnt27fjnXfeQXZ2Nvz9/REdHQ1TU1OMHTtW7NhvpHXr1oiOjsaoUaNKNP7AgQNo0aKFgVMZVnZ2NtavX4+UlBRs3bpVdzwiIgKBgYG6kxKNGzfGwoUL0a5dO5GSEpExsXvLv4cqcc4kf+ze8sbuze7N7s3uLWXs3iQFXAAXUVZWFqytrdG9e3e4urqiffv2ugIuR5aWlujVqxd69eqFzMxMREZGIiIiAseOHcOxY8cAPL9qJi0tDe7u7rL4f6HEOZP8HTx4EH369HllAS9Ur149+Pr6Ijo6miVcImJjY+Hi4oL169frjr3//vuoWbMmtm7dCltbWwQHB0OtViMoKEjyH9gLKbGgnTx5EmPGjIFWq0Xjxo1hZWWFpKQkjBgxAsHBwXB2dsaNGzcwbdo0pKWlwcbGBnPnzhU7dpkVnkRYtmwZevfuDeD580K/+OILBAYGYunSpfDz88Off/6JNm3aIDAwEA4ODiKnfjMDBgzAlClTEBwcjJEjR75y7Nq1a5GWlqb3d19qcnJyMGjQIFy+fBl16tRBfn4+zMzMkJaWhpkzZ0IQBAwaNAjNmzdHWFgYRo4cibCwsCIn2ohIfti95d9DlThnkj92b3lj92b3Zvdm95Yqdm+SDIFEk5SUJHz77beCi4uLoFarhRYtWggfffSRsGHDBuHq1avCjRs3BAcHB+HgwYNiRzWoGzduCGvWrBF69+4tODg4CGq1Wmjfvr3w9ddfC8nJyWLHMwglzpnko127dsL27dtLPH7nzp2Co6OjARNReWrXrp2wadOmIscvXbokODg4CC1atBDmz58vaDQaEdIZzvjx44VWrVoJe/fu1R07c+aM4OHhIQwfPly4e/eu0L17d8HBwUEYMGCAcP78eRHTlo8RI0YI7du31/u5c+fOHcHHx0cYOHCgcOnSJcHd3V1wcHAQJk2aJGRkZIiY9s25u7sL8+fPL3L8wIEDQsuWLYWhQ4cKrVu3FtavXy9otVoREhrGpEmTBLVaLUybNk1ISUnR+7ur1WqFlJQU3ZhvvvlGxKRv7ocffhBatWol7N+/X+/42LFjBbVaLQQFBemO5ebmCl5eXsKsWbOMHdPgHj58KDg4OAhxcXFiRyGqMNi9n1NiD1XinEk+2L3ljd2b3Zvdm91bqti9n2P3rvh4B7iIOnTogA4dOuCbb77B0aNHERERgSNHjuDMmTNYunQpGjRoAJVKhb/++kvsqAZVr149jB8/HuPHj8f58+cRHh6OyMhI/Pbbb9i9ezfOnTsndsRyp8Q5k3yYm5vj2bNnJR6fm5sLa2trAyai8vT06VPUqFGjyPHq1asDALp16wZ/f39jxzK4tLQ0DB48WHd1MgC8++67+PLLLzF16lRMnToVN2/exPTp0/Hpp5/K4vmg586dw5AhQ+Do6Kg79tZbb2HatGkYM2YMJk+ejPz8fKxYsQI9e/YUMWn5yMrKKnb70zZt2kCr1eLChQvYunWr7LblWrp0KYKCgrB9+3bs27cPpqamsLW1hampKTIzM6HRaGBiYoJRo0Zh6tSpYsd9I9HR0ejbty969OihO5aTk4MTJ04AAIYOHao7XqlSJfTp0we7du0yek4iMj527+eU2EOVOGeSD3ZveWP3Zvdm925n/HAGxO7N7k0VDxfAKwAzMzN4eHjAw8MDOTk5iI6ORkREBBISEiAIAmbOnIndu3ejX79+6N69OypVqiR2ZINRq9VQq9X48ssvkZCQgL1794odyeCUOGeStnfeeQdHjx6Fn59ficYfOXIEzZo1M3AqMjSVSgUA8PHxETeIgSixoGVnZ6Np06ZFjjdv3hyCICAzMxO7du1Cw4YNRUhX/vLz84v9DGVpaQkAGDt2rKy+voUsLCwQEBAAPz8/hIWFIS0tDffu3YMgCGjSpAmcnJzg7e0ti63Ibty4oVe0ASApKQn5+flo0KBBkT/LdevWxYMHD4wZsdytWrWqyLHc3FyoVCrs2bMHp0+fLvK6SqXCZ599Zox4RBUOu/f/U2IPVeKcSdrYvZWJ3ZvdW+rYvdm92b2fY/cWHxfAK5jKlSvD19cXvr6+ePDgAfbu3YuIiAjEx8cjPj4e8+fPR1JSktgxjcLV1RWurq5ixzAqJc6ZpKdv37749ttvERkZiV69er1ybFhYGOLi4rB8+XIjpSNDKywscqPEgqbVamFmVvSjoIWFBQBg/PjxsingJdG6dWuxIxhU48aNJX+V+euYmJigoKBA79jJkycBAO7u7kXGP3z4EDY2NkbJZijFlfBCYWFhxR5nCSd6jt37/ymxhypxziQ97N7Kxu4tH+ze+ti9pY/dWx+7d8XFBfAKrGbNmvjkk0/wySef4OrVqwgPD5f0FcolvWL171QqFTZv3myANMahxDmT/PXv3x9hYWH48ssvceHCBQwbNgx2dnZ6YzIyMhAcHIwtW7agS5custjCSUkKrzgv7WtyJveCVpzirlCXMyX82b579y5Onz6NjIwMAICdnR0cHR1Rt25dkZOVj2bNmiElJQXDhg0DAAiCgJiYGKhUKnTt2rXI+EOHDkn+z/mWLVvEjkAkC+ze0u+hSpwzyR+7t/yxexfF7i1/Svizze6tj92bxMIFcIlo1KgRJk2ahEmTJokdpcwSExOLPa5SqSAIwktfkzIlzpnkz8TEBGvXrsX06dPx888/Y926dahbty5q164NU1NTPHjwANeuXYMgCOjZsycWLFggdmQqpYULF2LFihV6xwRBgEqlwvTp04tcra1SqXDw4EFjRjQ6fm+Wh8uXLxe5my87OxsAcOHChWKvynd2djZKNkO6ePEiAgMDkZSUBEEQ9D6DmJiYwMnJCf7+/nBwcBAx5Zvz8fHBggUL0KZNG7z33nvYuXMnbt26hYYNG6JTp056Y9euXYvU1FTJP1fRxcVF7AhEssPuLU1KnDPJH7u3/LF7F8XvzfLA7s3uXYjdm8TEBXAR+fn5YcKECejYsaPuWH5+PlJSUqBWq1GlShW98eHh4Zg1axbS09ONHbVcnD9/vsixhw8fwt3dHcHBwXr/H+RCiXMmZahSpQp+/vln/P7779izZw/S0tLw3//+F4IgwM7ODj4+Pujbty/c3NzEjkqlZG9vDwDFnigsvFL1xddedlJRapRY0E6dOgWtVqt3LCcnBwBw4sQJ3L17t8h7pPwsurVr12Lt2rXFvrZ48eJij587d86QkQzu0KFDmDJlClQqFXr06AE3NzfY2dnBzMwMGRkZSEpKQlRUFAYMGIAVK1bA09NT7MhlNnjwYJw+fRpBQUG6BY9q1aph6dKlMDExAQD89ttvWLduHa5fvw4nJycMGTJE5NSGpdFocOnSJVhaWqJJkyZixyESDbu3/HuoEudMysDuLV/s3uze7N762L2lg927KHbvikklyOUnpwSp1WosWbIE3t7eumOPHj2Cu7s7Nm7cWKSghYeHY+bMmZL/YfB3jx49QseOHRVVSJU4ZyKiik6tVr/0SvPCK/CLI+WfyS+b898/Gv799cL/D1Kd848//limuwkmTpxogDTGcePGDXh7e6Nx48ZYuXIlGjRoUOy4O3fu4PPPP8elS5ewZ8+el46TipSUFKSkpMDGxgaenp6oUaOG7rVVq1Zhz5498Pb2xrhx44p9/qDUZGdnY/369UhJScHWrVt1xyMiIhAYGIjHjx8DeP4suoULF8rumYpEJcHurcweqsQ5ExFVdOze/4/dWx+7t/Swez/H7l1x8Q7wCojXJBCRVOTm5sLS0rLI8UuXLqFq1apFnk9GFV9YWBg6dOiA+vXrix3FqD777DPFbbUWFBQkdgSjkvJWtmW1efNmmJubY8OGDXpF9EV16tTBunXr0KtXL/zyyy+YNWuWEVOWP0dHRzg6Ohb72sSJE196YiUvLw+pqanF3g1aUeXk5GDQoEG4fPky6tSpg/z8fJiZmSEtLQ0zZ86EIAgYNGgQmjdvjrCwMIwcORJhYWFo1KiR2NGJKgR2byKSCnZv+WH3Vg52b/lj9y6K3ZvduyLgAjgREZWaRqPB4sWLERERgWPHjhUp4suXL8exY8fQv39/zJw5E9bW1iIlpdKaPXs2vvvuO8WVcCUWNF9fX7EjGFVx29/K3fHjx+Hr6/vKAl7I1tYWPj4+OHz4sORLeFllZWXBz8+v2LtBK6qNGzfi2rVr+P7779GjRw/d8dWrV0MQBHzyySe6r+eAAQPQp08frF27VnEn4YiIiKSK3Vu+2L2Vg91b/ti9S4fdm4zFROwAREQkLRqNBqNGjcIvv/wCe3t7PHr0qMiYDz74AA4ODtixYwdGjx6N/Px8EZJSWSj1Tig/Pz+cPHlS7BhG5eHhgUOHDokdw2gSExNx//59sWMY1e3bt9GsWbMSj2/SpAnu3LljwEQVn9S+B0ZHR6Nv3756BTwnJwcnTpwAAAwdOlR3vFKlSujTp4/ivtcRERFJFbu3vEntc2d5YfeWP3bv12P3lt73QHZvaeICOBERlcqmTZuQlJQEf39/hIWFoW7dukXGDBw4ELt378bEiRORnJyMbdu2iZCUqOSUWNBu3ryJv/76S+wYZECWlpa6Z1CVxOPHj1G1alUDJqLyduPGDbRu3VrvWFJSEvLz81G/fn00bNhQ77W6deviwYMHxoxIREREZcTuTXLE7k1yxO4tf+ze0sQt0MlowsLCihzLyckBAJw4cQJ3794t9n0+Pj4GTGVYSpwzyV9ERAQ8PDzw8ccfv3bsxIkTkZiYiD179mDEiBGGD0flIjMzE7du3SrVe+zt7Q2UhojKqnXr1oiOjsaoUaNKNP7AgQNo0aKFgVNReTIxMUFBQYHescKrzN3d3YuMf/jwIWxsbIySjYjEo8QeqsQ5k/yxe8sfuzeRPLB7yx+7tzRxAVxkL37QycrKAvD8L8iLH4CK2+pISmbNmgWVSqV3rHCriw0bNkClUul+XfjvKpVK0oVUiXMm+bt69SoGDx5c4vHvv/8+Vq5cacBEVN4WLlyIhQsXlni8SqVCenq6ARMRlY+YmBhcvXq1xONVKhU+++wzAyYyrAEDBmDKlCkIDg7GyJEjXzl27dq1SEtLw/r1642UjspDs2bNkJKSgmHDhgF4/jkzJiYGKpUKXbt2LTL+0KFDaNq0qbFjElUI7N7y7qFKnDPJH7u3/LF7k1yxe78cu7c0sXtLExfARfayDzrTp08XIY1hBQUFiR3B6JQ4Z5I/a2traLXaEo+vVKkSLC0tDZiIypuTkxMaNGggdgyjU1pBA4CdO3ciLi6uxONVKlWpTtBUNDExMYiOji7xeKl/jXv06AEvLy989913+OOPP/Dxxx+jVatWMDc3BwAUFBQgLS0NGzduRExMDAYOHIh//OMfIqem0vDx8cGCBQvQpk0bvPfee9i5cydu3bqFhg0bolOnTnpj165di9TUVPj7+4uUlkhc7N7ypsQ5k/yxe8sfu3fJSL2XAezeryP1rzG7t/yxe0sTF8BF5OPjU+QKZTnz9fV97ZisrCxYWlqiUqVKRkhkeEqcM8lfkyZNkJycDD8/vxKNP336NOrVq2fgVFSeBg0aBG9vb7FjGJ3SChrw/HlFSUlJJR4v9RI+bty4YremkrOlS5ciKCgI27dvx759+2BqagpbW1uYmpoiMzMTGo0GJiYmGDVqFKZOnSp2XCqlwYMH4/Tp0wgKCtLd0VitWjUsXboUJiYmAIDffvsN69atw/Xr1+Hk5IQhQ4aInJrI+Ni9i5JbD1XinEn+2L3lj927ZNi9pYfdm91bbti9pYkL4CJatGiR2BGMLi8vDyEhIUhNTdW7QjsxMRFz5szBlStXoFKp4O7ujoCAAFlcBanEOZO8+fr6IiAgAPHx8XBzc3vl2ISEBERHR2PSpElGSkdUdkosaF999RU8PDzEjmE0TZs2hYuLi9gxjMrCwgIBAQHw8/NDWFgY0tLScO/ePQiCgCZNmsDJyQne3t5o1KiR2FGpDFQqFZYuXYphw4YhJSUFNjY28PT0RI0aNXRj7ty5A0EQMGHCBIwbN05XzomUhN1bGT1UiXMmeWP3Jrli95Y/dm92b7lh95YmLoCLaPTo0fDx8YGnp6citijKy8vDp59+iqSkJJibm2P+/PkwMzPDlStXMHr0aOTl5aFTp05o1qwZDhw4gEGDBiE8PBy1atUSO3qZKXHOJH8+Pj7YvXs3xo8fj3HjxmHgwIFF/sxmZGRg165d2LBhA+rXr4+hQ4eKlJao5JRY0KpXr867RBSicePGvMpcxhwdHeHo6FjsaxMnTsTEiROLfS0vLw+pqalQq9WoUqWKISMSiYrdW/49VIlzJvlj9ya5YvcmOWP3ljd2b2nhJQgiSkxMxIwZM+Du7o5Zs2YhLi4OgiCIHctgtm3bhlOnTmHGjBlISkqCmdnz6y9+/PFHaDQaeHt7Y926dfjyyy+xe/dumJqaYu3atSKnfjNKnDPJn7m5OVavXo22bdti5cqV6NSpEzw8PDB48GAMHDgQXbt2RZcuXfDjjz/CwcEBwcHB/MEuIfb29rC2thY7BhERGUFWVhb8/Pxw9uxZsaMQGRS7t/x7qBLnTPLH7i1v7N5ERMrB7i0O3gEuopMnT+LgwYPYv38/9u3bhz179qBWrVrw9vZGnz59oFarxY5Yrvbu3Yvu3btj1KhRumMajQaxsbFQqVR6x21tbdGvXz/s27cP/v7+YsQtF0qcMylDzZo1sXnzZkRHR2Pfvn1IT0/HhQsXYGJiglq1asHHxwfdunVD165dxY5KpRQbG/vK1wsKCnDnzh3UqlULFhYWRkpF9OYmTpwIBwcHsWMYVUmfF/l3KpUKmzdvNkCaiuHevXuwtbWFubl5kdeqVauGLVu2oEWLFiIkE4+cFwGJCrF7y7+HKnHOpAzs3vLF7k1yxe5dMuze7N5keFwAF1HlypXRt29f9O3bF9nZ2Thw4AAiIyOxefNmBAcHo1mzZujbty+8vb3x1ltviR33jf3555/w9fXVO3b69Gnk5ubCzs6uyA/Ghg0bIiMjw5gRy50S50zK4uXlBS8vL7FjkBE9fPgQHh4e2LhxIzp27Ch2nHKjxIIWFBT00m2b5Ohl21AV+uuvv7Bx40b4+Pigfv36RkplWImJicUeV6lULy1eKpXKkJGMIjg4GDt37kR4eHiRsr1w4ULExcVh1KhRGD16tN4zuczNzRW3FSORUrB7y7+HKnHOpCzs3srD7i0f7N762L3//zWpY/emio4L4BVElSpVMGDAAAwYMAAPHz5EVFQU9u/fj+XLl2P58uVwdnaGj48PvLy8ULlyZbHjlklBQQFMTU31jsXHxwMA3N3di4zPzs6GlZWVUbIZihLnTAQ839bF0tISlSpVEjsKGYAcr1hUYkF78STxi548eYIFCxZg9OjRaNq0qZFSieevv/7C6tWr4eTkJJuv8fnz54sce/jwIdzd3REcHCyrE2nA8+9N06dPx759+1CzZk3cuXMHDRo00BvTtGlTJCcnY8WKFTh79ix++OEHkdISkVjYveXZQ5U4ZyKA3Vvu2L3l0cvYvfWxe0sfuzdJBZ8BXgHVqFEDQ4cOxdatW3HkyBF8/fXXMDExwbfffot//OMfYscrs4YNG+LcuXN6x2JiYqBSqfD+++8XGX/8+HE0bNjQSOkMQ4lzJmXIy8vDjh07MHv2bL3jiYmJ6NWrF9zc3ODo6IjRo0fj2rVrIqUkKj+FBe369etiRzGa3NxchIWFKeruKDmeYHqRHK4yf5kdO3Zg3759GDFiBI4cOVKkgAPPT7jFxMSgX79+iImJQUhIiAhJiaiiYPd+Tg49VIlzJmVg9yalYfdWBnZvaWP3JqngAngFZ25uDktLS9jY2MDMzAwajUbsSGXWu3dv7NmzBwcPHsTTp0+xadMmXL58GTVr1izyrKLw8HCcOHECHh4eIqUtH0qcM8lfXl4ePv30UwQEBGDv3r3Iz88HAFy5cgWjR4/GlStX0KlTJ4wYMQJXrlzB4MGDcf/+fZFTE705JRS0FylxziRdv/32G1xcXDBr1qxinzNWyMLCAoGBgWjRogV27txpxIREVJGxe0u7hypxziR/7N6kVErsoUqcM0kXuzdJBbdAr4AePnyImJgYREVFISkpCfn5+WjZsiUmT56M3r17ix2vzEaMGIHff/8dEydO1D3/wtzcHAsWLICFhQWA51dob9u2DYmJiWjcuDFGjBghbug3pMQ5k/xt27YNp06dwowZMzBs2DCYmT3/UfLjjz9Co9GgT58++O677wAAY8eOhbe3N9auXQt/f38xY1M5MTc3h7OzM6pVqyZ2FCIiPf/73/8wefLkEo1VqVTo0aMH1qxZY+BURFSRsXvLp4cqcc4kf+zeysbuTUQVFbs3SQUXwCuI+/fvIzo6GlFRUTh9+jS0Wi3q1auHUaNGoU+fPrJ4/oeFhQU2bdqEyMhIpKamwsbGBt7e3mjWrJluzNmzZ5GcnIw+ffpg1qxZsLS0FDHxm1PinEn+9u7di+7du2PUqFG6YxqNBrGxsVCpVHrHbW1t0a9fP+zbt48lXCKys7NRpUqVl75erVo1bN26Ve9YQkICXF1dDR2NyKCqVKmCoKAgNG/eXOwoVEZmZma6RY6SqFq1apHnxRKR/LF7Pye3HqrEOZP8sXvLG7s3KRW7t/Sxe5NUcAFcRBkZGYiOjsaBAweQnJwMrVaLatWqYcCAAfD29kaHDh3EjljuTE1N4e3tDW9v72JfHz9+PCZPngwTE/nszq/EOZO8/fnnn/D19dU7dvr0aeTm5sLOzg4ODg56rzVs2FBRzzGSOj8/PwQHB8PW1va1Y589e4YlS5bg119/RXp6uuHDiUiJBa1atWrYsmULWrRoIXYUo6hUqRL+8Y9/8A4LCWvUqBHOnj1b4vFnz55F3bp1DZiIiCoKdu+i5NhDlThnkjd2b3lj9y4eu7f8sXtLH7s3SQUXwEXUpUsXAM+vVPb09IS3tze6dOnyyucmyJ2VlZXYEYxOiXMmaSsoKChy1V58fDwAwN3dvcj47Oxs/jmXkHPnzuHjjz/Gpk2bUKtWrZeOO3PmDGbOnIk///zzlePkolKlSnonn7RaLdatW4cJEyaImMqwzM3N4eLiovt1dnY2Fi9ejMDAQBFTvbng4GDs3LkT4eHhRT5zLVy4EHFxcRg1ahRGjx4t+RPkYWFhRY7l5OQAAE6cOIG7d+8W+z4fHx8DpjKcDz/8EMuWLcPIkSNfe8Ls4sWLiIiIgJ+fn5HSEZGY2L2LUuLncyXOmaSN3Vve2L2Lx+7N7i1F7N4vx+5NYlIJgiCIHUKphg8fjr59+6JHjx6wsbEROw4RUYn07dsXbdu2xbx583THevXqhStXrmDFihXo0aOH3vjRo0cjKysLu3btMnZUKoNffvkFCxYsQIMGDbBp06YiV2jm5eXhhx9+wMaNG6HVatG3b1989dVXsrhyNzs7G7t27UJqaioEQUDLli0xbNgwVK1aVW/cf/7zH/j7++O///0vzp07J1La8nHjxg0EBwcjJSUFANCyZUuMGTMGjRo10hsXHR2N+fPn4/79+5KdsyAImD59Ovbt24eaNWti+/btaNCggd6YVatWYdeuXcjIyEC3bt3www8/iJS2fKjVaqhUKr1jf//oX9xrKpVKsl/jv/76C/369UNmZia++uor9O7du8hJ4/z8fOzduxdLly4FAISGhqJ27dpixDWae/fuwdbWttiFvry8PKSkpKBFixav3IKTSOrYvYlIiti95Y3dm92b3ZvdW6pfY3bv4rF7VzxcACciolJZt24dVq9ejWXLluG9997Djh07sGjRItSqVQuxsbF6z4AJDw/HzJkzMXnyZIwfP17E1FQae/fuxaxZs2BnZ4dNmzahYcOGAJ5foT5z5kz897//hb29PebOnYtOnTqJnLZ8XL9+HX5+frhz545eSalVqxZ27dqFunXrIj8/H8uWLcOWLVug1WrRu3dvLFu2TMTUb+bcuXMYPnw4njx5AktLS1haWiIzMxPW1tbYvn073nnnHWRnZ8Pf3x/R0dEwNTXFqFGjMHXqVLGjl8n27dsxZ84cjBgxAtOmTXvpXX8ajQZz585FSEgIFixYgH79+hk5afkJDQ0t0/te3GpTSq5cuYLPPvsMV65cgbW1NVq1aoXatWtDq9XiwYMHOHv2LHJzc2Fvb4/Vq1dDrVaLHblcvOruiqlTp8rq7goiIiKlYPeWP3Zvdm92b3ZvqWL3ZveWAi6Ai6i4rTFKQqpbYxCRPGg0GowaNQpJSUlQqVQQBAHm5uZYtWqVbnvJmJgYbNu2DYmJiWjcuDFCQkJgaWkpcnIqjaNHj2LKlCmwsbHB+vXrcejQIaxduxb5+fkYMmQIpk2bhsqVK4sds9xMmzYNkZGRmDp1Kvr37w8rKyscPXoU8+bNQ7t27bBkyRKMHTsWycnJsLe3R0BAgO7Pu1RNmDABv//+OxYvXozevXsDANLS0vDFF1/A3t4eS5cuhZ+fH/7880+0adMGgYGBRZ4zKCUDBgyAtbU1tmzZ8tqxgiCgf//+sLCwwPbt242QjsqTRqPBL7/8gn379uH8+fPIz88H8HxrwXbt2sHLywuDBg3SO2ksVUq8u4KoLNi9iUiK2L2Vgd2b3Zvdm91bqti92b0rOi6Ai6hwa4zCLS9eR+pbYxCRfGi1WkRGRiI1NRU2Njbw9vZGs2bNdK+vWLECGzduRK9evTBr1ixUr15dxLRUVqdPn8aECRPw5MkTCIKARo0aITAwEB06dBA7Wrnr3Lkz3nvvPQQFBekdDw0NRUBAADp37oyDBw9iyJAhmDFjBqytrUVKWn7ee+899OzZE/7+/nrHo6OjMXXqVLRr1w5paWmYPHkyPv30U8lfuero6IjJkydjxIgRJRq/bt06rFmzRrdFndTl5uYWezL00qVLqFq1Kuzs7ERIZRwPHz6EqampLLaLfJES764gKgt2byKSKnZvZWD3Zvdm92b3lgN2b3bvisZM7ABK9uIPeiIiqTA1NYW3tze8vb2LfX38+PGYPHmy5D+0K52TkxO2bNmC0aNH4+HDh5g3b54sCzgAPHr0CI6OjkWOOzs7Q6PR4OjRo1i5ciW6d+8uQjrDyMrKKnYLqjZt2kCr1eLChQvYunUr2rVrZ/xwBmBmZlaqq46rVq1a5BlWUqTRaLB48WJERETg2LFjRYr48uXLcezYMfTv3x8zZ86UxQmmF9WoUUPsCAbz22+/wcXFBbNmzXrlOAsLCwQGBuLcuXPYuXMnSzgpDrs3EUkVu7cysHuze7N7s3vLAbs3u3dFwwVwEUn5GQ9EpFx+fn6YMGECOnbsqDuWn5+PlJQUqNVqVKlSBVZWVrrXCp9FxjtopEmtVuPf//43Ro4ciQkTJmD16tVwc3MTO1a5y8vL0/tzW6hwq7mRI0fKqoADz//eVqpUqcjxwpI2duxY2RRwAGjUqBHOnj1b4vFnz55F3bp1DZjI8P6+baZarcajR4+KzOmDDz7A3bt3sWPHDly8eBFbtmyBmZk0K8KqVavK9L6JEyeWcxLj+d///ofJkyeXaKxKpUKPHj2wZs0aA6ciqnjYvYlIiti9lYXdm91bLti92b1fht2bjE2af8MUSqvVYt26dZgwYYLYUYhIwRITEzFw4EC9Y9nZ2fDz88PGjRv1yjlJz+zZs4s93qhRI9y4cQPjxo1Dz5499bYPValUWLhwobEiisLFxUXsCEbXunVrsSOUqw8//BDLli3DyJEj0bx581eOvXjxIiIiIuDn52ekdIaxadMmJCUlwd/fHx9//HGxYwYOHIiBAwdi1apVWLVqFbZt21bireoqmpKW8Be3P5ZyCVfq3RVEhsbuTUQVAbu3vLF7F4/dW/rYvdm9C7F7s3uLjQvgIsvOzsauXbuQmpoKQRDQsmVLDBs2DFWrVtUb95///Af+/v7473//yxJORBWSIAhiR6ByEBoa+srXnz17hrCwML1jSijhSvzQWpJnpErJRx99hO3bt2P48OH46quv0Lt37yJf1/z8fOzduxdLly5FlSpVJF/CIyIi4OHh8dIC/ncTJ05EYmIi9uzZI9kSfujQodeOyc7Oxvfff48jR47AzMxM8l9jJd5dQVRW7N5EJBfs3vLA7l08dm/pY/d+NXZvaWL3liYugIvo+vXr8PPzw507d3QfXmNiYvDLL79g165dqFu3LvLz87Fs2TJs2bIFWq0WvXv3Fjk1ERHJWUk+xMpVZmYmbt26pXcsKysLAPDw4cMirwGAvb29UbIZyuXLl5GUlKR3LDs7GwBw4cKFYrfjcnZ2Nkq28mZtbY01a9bgs88+w8yZMzF37ly0atUKtWvXhlarxYMHD3D27Fnk5ubC3t4eq1evRu3atcWO/UauXr2KwYMHl3j8+++/j5UrVxowkWHVq1fvla9HRkZi0aJFyMjIQPv27TFnzhy88847RkpnGEq8u4KoLNi9iYioomH3Zvdm92b3lip2b3ZvqeACuIi+//573LlzB1OnTkX//v1hZWWFo0ePYt68eZg3bx6WLFmCsWPHIjk5Gfb29ggICECXLl3Ejk1ERDL2ug+xcrZw4cKXXk0/ffr0IsdUKhXS09MNHcug1q5di7Vr1xb72uLFi4s9LuVnCjZu3BhhYWH45ZdfsG/fPiQnJyM/Px8AYG5ujnbt2sHLywuDBg0q1dZWFZW1tTW0Wm2Jx1eqVEn3HDo5uXbtGubOnYu4uDhUq1YNgYGBGDBggNixyoUS764gKgt2byIiqmjYvdm9C7F7s3vLBbs3u3dFwwVwESUlJcHHxwdjx47VHevZsydyc3MREBCAWbNmITk5GUOGDMGMGTNgbW0tYloiIqKi1q5di+joaISEhIgd5Y34+vqKHcHopPzspTdhYWGBkSNHYuTIkQCe32FgamqKatWqiZys/DVp0gTJycklLl2nT5+W1Yk4jUaDdevWYf369dBoNPD19cWMGTNQvXp1saOVGyXeXUFUFuzeREQkdeze0sXuze79InZv6WH3liYugIvo0aNHcHR0LHLc2dkZGo0GR48excqVK9G9e3cR0hEREb3e7du3JX1VcqGgoCCxIxidUkv4i2rUqCF2BIPx9fVFQEAA4uPj4ebm9sqxCQkJiI6OxqRJk4yUzrDi4uIwd+5cXL16Fc2bN0dAQAA6dOggdiyDUNrdFURlwe5NRERSx+4tXezez7F7P8fuLV3s3tLDBXAR5eXlwcrKqsjxypUrAwBGjhzJAk5EFdKLz2t61bOaHj16ZNRsRETFWbVqVZneJ+WTFT4+Pti9ezfGjx+PcePGYeDAgahVq5bemIyMDOzatQsbNmxA/fr1MXToUJHSlo/79+8jKCgIkZGRsLS0xLRp0zBy5Mhin6knJ0q6u4KoLNi9iUiq2L2JSGrYvdm95YzdW1pUgiAIYodQKrVajSVLlsDb21vv+KNHj9CxY0ds2LAB//jHP0RKR0RUPLVaDZVKVeS4IAjFHi8khyuVqaiAgADs3LlT8l9fJRa02bNnl/o9KpXqpc9qq+jUanWJxr34fUzqf7YfPHiAL774AgkJCVCpVLC3t9fbouv27dsQBAHt2rXDihUrULduXbEjl9m2bduwcuVKPHnyBF27doW/v7+k50NE5Yfdm4ikiN2b/o7dm91bKti92b2JKgp5X44hcaampmJHICIqQonPayL5K2kJf7GgSbmEh4aGlnjs3+ct1RJ+6NCh147Jzs7G999/jyNHjsDMzKzEz++qyGrWrInNmzcjOjoa+/btQ3p6Oi5cuAATExPUqlULPj4+6NatG7p27Sp21DcWGBio+/fY2FjExsa+9j0qlQrp6emGjGVQSjyBSGQI7N5EVBGxe5McsXu/Gru3dLF7vxq7N4mBC+Aie3ErI+DV2xkBgL29vVGyEREVR4nPayL5U2JBO3/+/GvH3Lx5E/Pnz8eRI0dQpUoVTJkyxfDBDKRevXqvfD0yMhKLFi1CRkYG2rdvjzlz5uCdd94xUjrD8/LygpeXV5HjWVlZsLS0FCFR+VPiSWIlnkAkKit2byKSGnZvkiN27+Kxe7N7Swm798uxe1cs3AJdRC/bygh4+XZGUr9ShoiIKrbSXtF4+PBhpKenS36rqteRe0F7kVarxcaNG/HTTz8hNzcXvXr1wuzZs4s8w0oOrl27hrlz5yIuLg7VqlXD9OnTMWDAALFjlZu8vDyEhIQgNTVV7yRqYmIi5syZgytXrkClUsHd3R3ffvstGjZsKGLaNzN79mwMHjwYbdu2FTuK0dy8efO1Y4o7gfjll18aIR1RxcHuTUREFQ27d/HYvdm9pYrdW97YvaWJC+AiKsvzPwBeAUpERIZT0mc1/Z1KpZJtCZd7QSvOqVOnMHfuXFy8eBFvv/02AgIC0LFjR7FjlTuNRoN169Zh/fr10Gg08PX1xYwZM1C9enWxo5WbvLw8fPrpp0hKSoK5uTlSUlJgZmaGK1euoG/fvtBoNOjcuTOaNWuGAwcO4OnTpwgPD5fsyZaXPeNXyZR2ApHoZdi9iYioomH31sfuze4tZezexO5dMXELdBGxTBMRUUWzZcsWsSNUCEooaC969OgRvvvuO4SFhcHCwgKTJk3CmDFjYGFhIXa0chcXF4e5c+fi6tWraN68OQICAtChQwexY5W7bdu24dSpU5gxYwaGDRsGM7PnH/1//PFHaDQa9OnTB9999x0AYOzYsfD29sbatWvh7+8vZmwqBy+eQAwMDJT9CUSiV2H3JiKiiobd+zl2b3ZvOWD3Vi5274qNC+AVwNOnT7F79278/vvvOH/+PDIzM6FSqVCjRg2o1Wp4eHjA29tblj8EiYioYnFxcSn1e06dOmWAJOJRSkH7u127dmHp0qXIysrCe++9h4CAAElvx/Uy9+/fR1BQECIjI2FpaYlp06Zh5MiRunIqN3v37kX37t0xatQo3TGNRoPY2FioVCq947a2tujXrx/27dvHEi5hSjyBSFQa7N5ERFRRsHuze7N7ywe7t/Kwe0uDPL/jSMjp06cxefJk3L9/HxYWFmjYsCHq1auH/Px8ZGZm4vDhw4iNjcWqVauwbNkytG/fXuzIREREuH37NkJDQxEWFobr16/LYhs2pRU0ALhw4QLmzJmD1NRU1KpVC8uXL0evXr3EjmUQ27Ztw8qVK/HkyRN07doV/v7+qFu3rtixDOrPP/+Er6+v3rHTp08jNzcXdnZ2cHBw0HutYcOGyMjIMGbEcnfq1ClotdpSvcfHx8cwYYxMiScQiUqD3ZuIiKSI3Vse2L3Zvf+O3Vva2L2lQ74/VSTgf//7H0aNGgUbGxssXboUXl5eRa40f/LkCaKiovDDDz9g9OjRCA0NRaNGjURKTERESvbs2TNER0cjJCQECQkJEAQBKpUKnTt3FjvaG1NiQVu8eDG2bt0KrVaLDz74AFOmTIGNjQ1u3br1yvfZ29sbKWH5CgwM1P17bGwsYmNjX/selUqF9PR0Q8YyqIKCApiamuodi4+PBwC4u7sXGZ+dnQ0rKyujZDOUnTt3YufOnSUaW/g9TOolXIknEIlKi92biIikhN1bXti92b1fxO4tTeze0sOvjIh++uknWFlZYffu3XjrrbeKHWNjY4MBAwagc+fO6Nu3LzZs2ID58+cbOSkRESlZamoqQkJCsH//fjx58gQAUKNGDfTv3x+DBg1CvXr1RE745pRY0IKDg3X/fvjwYRw+fLhE75PqHQcvXo2tBA0bNizy9YqJiYFKpcL7779fZPzx48clv/3eRx99hHbt2okdw2iUeAKRqCzYvYmISArYvYvH7i0t7N7PsXvLC7u3NHEBXERJSUno16/fSwv439nZ2cHHxwfHjx83QjIiIlK6jIwMhIWFITQ0FH/++ScEQYCVlRXc3d0RFxeHefPmwcPDQ+yY5cbHxwcqlUrsGEY1ceLEUr9HEAQDJDGewYMHo23btmLHMJrevXtj9erV6Ny5M9577z3s2LEDly9fRq1atdC1a1e9seHh4Thx4gQmT54sUtry0aFDB3h7e4sdw2iUeAKRqCzYvYmIqKJi95Y/dm/5Y/eWP3ZvaeICuIgePXpUqi3VmjRpgl27dhkwERERKd3+/fsREhKCuLg4aLVaVK1aFd7e3vDy8kKnTp1w7949eHp6ih2z3C1atAgAkJeXh0uXLiE/Px/NmjWT/JZUr2Jvb49+/fqVePzNmzfx1VdfGTCRYYWGhsLd3V1RJXzEiBH4/fffMXHiRKhUKgiCAHNzcyxYsEC39W9MTAy2bduGxMRENG7cGCNGjBA3NJWKEu+uICoLdm8iIqpo2L3ZvV+G3Vt62L3lj91bmrgALqK8vLxS/XCvVKkScnJyDJiIiIiUburUqbC2tsbQoUPh4eEBZ2dnvecYyflK7X/9619Ys2aN7methYUFhg4dimnTpsnyeT7+/v54+vQphg0b9tqxu3btwuLFi/k5RGIsLCywadMmREZGIjU1FTY2NvD29kazZs10Y86ePYvk5GT06dMHs2bNgqWlpYiJqSyUdncFUVmwexMRUUXD7s3uXRx2b2li91YGdm/pkd9PFCIiIiqz+vXr48aNGwgJCcGVK1fwn//8B56enmjcuLHY0Qxq9+7dWLJkCerVqwcfHx+YmJggISEBmzZtglarlfTV1y/z9ttvIzAwEE+fPsXo0aOLHXPv3j34+/vj2LFjMDc3l/wWXUpkamoKb2/vl25NNn78eEyePBkmJiZGTlb+fH19Jf8ctdJS4t0VRERERHLA7s3u/Xfs3tLH7i1v7N7SxAVwkWVmZuLWrVslGvvo0SMDpyEiIqU7ePAgzpw5g/DwcERFReH48eNYvnw5mjRpAi8vL7Rq1UrsiAaxY8cOtGvXDps3b0alSpUAPH/m1tSpU7Fjxw5Mnz5dt22VXPz6668YPXo0li1bhqdPn2LSpEl6r+/duxfz589HVlYWHB0dERgYiKZNm4qUtnycOnUKWq22VO/x8fExTJgKQk5bDQYFBYkdgYgqMHZvIiKqSNi92b0LsXs/x+4tHezeJBUqQRAEsUMolVqtLtN2NufOnTNAGiIiIn1arRbHjx9HREQEDh06hKdPn+p+bvXv3x8TJkxAvXr1RE5ZPpycnPDFF18U2ZIsNTUVQ4YMQWhoKNRqtUjpDOevv/7CP//5TyQkJGDEiBGYOXMmHj16hICAAMTExMDS0hJTp07F8OHDJb8FX2k/dwmCAJVKxc9dVKGp1WosWbLkpXcZENFz7N5ERFSRsXuze7N7s3tTxcbuLU28A1xEvr6+YkcgIiJ6KVNTU3Tp0gVdunRBbm4uYmJisHfvXpw4cQK//fYbQkJC4Orqiv79++PDDz8UO+4befr0KapUqVLkeP369SEIAh4/fixCKsOztrbGunXr8MUXX2DTpk24ceMGkpOT8eDBA7z33nuYN2+ebE60AMBHH32Edu3aiR2DqFzx7gqi12P3JiKiiozdm92b3Zuo4mP3lh7eAU5EREQ6Y8eOhZubG1xcXNCqVatir9p99OgRIiMjERERgdTUVFlcqfuyKzkfPXqEjh07Ijg4GB07dhQpneEVFBTA398fISEhMDExwbx58zBgwACxY5UrXq1LcsS7K4iIiIikid2b3Zvdm0g62L2liXeAExERkU58fDyOHTsGlUoFGxsbdOjQAa6urnBzc9NtQ1a9enUMGzYMw4YNw/Xr17Fv3z6RU9ObMjExwcKFC2Fra4uNGzciLi4OPj4+MDPjR0Wiio53VxARERFJD7u3MrF7E0kXu7f08DsrERER6SQnJyM9PR3JyclISUlBamoqDh8+DJVKhapVq8LZ2Rmurq5wdXXFO++8gwYNGmD8+PFixy4XmZmZuHXrlt6xrKwsAMDDhw+LvAYA9vb2RslmCMXN5+OPP8Zff/2FHTt2ICcnB9988w1MTEz0xkh5zkRy1KFDB95dQURERCQx7N7s3uzeRNLC7i093AKdiIiIXun27dt6pfz8+fPQarWwtbWFi4sLXF1dMXToULFjvpFXbWVUuG3Ri1QqFdLT0w0dzWBeN2cARV6X8pxnz56NwYMHo23btmJHISo33F6QiIiISD7Yvdm9C0l5zuzeJEfs3tLEO8CJiIjolerWrYvevXujd+/eAIDs7GyEh4cjJCQEBw4cQHR0tORLuK+vr9gRjM7Hx6dUzy+SuqCgILEjEBERERERvRS7tzyxexMRiYML4ERERPRKubm5SEpKQmJiIk6fPo2zZ88iLy8PFhYWui3ZpE6JBW3RokViRyCiN+Tr64uGDRuKHYOIiIiIygG7tzyxexNJH7u3NHELdCIiItKTn5+P1NRUxMfHIz4+HmfOnEFeXh7Mzc3x7rvv6oq3o6MjLCwsxI5LREREREREJDns3kRERIbDBXAiIiLSGTNmDE6dOoXc3FyYmJigVatWcHNzg6urK5ycnGBpaSl2RCIiIiIiIiJJY/cmIiIyLC6AExERkY5arYa5uTk+/PBDjBs3Dm+//bbYkYiIiIiIiIhkhd2biIjIsLgATkRERDrffPMNEhIScO3aNahUKjRp0gQdO3aEm5sbnJ2dUa1aNbEjEhEREREREUkauzcREZFhcQGciIiIirh16xbi4uJ0zyK7f/8+TExMoFar4erqqivl1tbWYkclIiIiIiIikiR2byIiIsPgAjgRERG91sWLFxEfH4+TJ0/i1KlTePz4MczMzNC6dWt07NgRkydPFjsiERERERERkaSxexMREZUPLoATERFRqWg0GkRFReHXX39FamoqVCoVzp07J3YsIiIiIiIiItlg9yYiIio7M7EDEBERUcV27do1nDlzBmfOnEFaWhrOnz+PvLw8VK5cGZ07d4azs7PYEYmIiIiIiIgkjd2biIio/PAOcCIiItLJyspCWlqarnCnpaUhKysLgiCgWrVqaN++PVxcXODs7IyWLVvCxMRE7MhEREREREREksLuTUREZFhcACciIiIdtVoNlUoFQRBQvXp1ODs76/5xcHCASqUSOyIRERERERGRpLF7ExERGRa3QCciIiKdHj16wMXFBS4uLmjWrJnYcYiIiIiIiIhkh92biIjIsHgHOBERERERERERERERERERyQIfHkJERERERERERERERERERLLABXAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkwUzsAERERErw448/YtWqVaV6z6FDh1C/fn0DJSq7rl274ubNmwCAr7/+Gn5+fq8cP2rUKBw/fhwAEBwcDHd3d4Pmio6ORqNGjQzyexAREREREVHFxe7N7k1ERARwAZyIiMgoHBwc4O3trXfswYMHiIuLg7W1NTw8PIq8x9ra2ljxyiwqKuqVJfzhw4eIj483YiIiIiIiIiJSKnZvIiIiArgATkREZBReXl7w8vLSO5aQkIC4uDhUr14dS5cuFSlZ2VWtWhXJycm4e/cu3nrrrWLHREdHIz8/H+bm5sjLyzNyQiIiIiIiIlISdm92byIiIoDPACciIqIy8vT0hCAIiI6OfumYffv2wdbWFm3atDFiMiIiIiIiIiJ5YPcmIiIqPS6AExERVWBHjhzBqFGj4OLigjZt2qB79+5YsmQJMjMz9cbduHEDDg4O6Ny5c7H/neHDh8PBwQEJCQm6Y7NmzYKDgwMSExMxadIkvPvuu3Bzc8PWrVtLlK1Hjx4Anm/FVpyMjAycOnUK3bt3h5nZyzed2bNnD4YOHYr27dvj3Xffhbe3N9asWYOnT58WO/7kyZMYOXIknJ2d0aFDB0yZMkX3XLTiaLVa/Pvf/8bAgQPh6OgIR0dHDBo0CKGhoRAEoURzJSIiIiIiIvli9y6K3ZuIiKSMW6ATERFVUEuXLsX69ethamoKJycnVK9eHampqdiwYQP279+PzZs3o0GDBm/8+3zzzTd48OABOnXqhIsXL0KtVpfofW+//TZatGiB5ORkZGRkwM7OTu/1qKgoFBQUoHfv3li1alWR9xcUFGDGjBnYu3cvLCws4OLiAisrKyQlJeH777/HgQMHEBwcjOrVq+ves2vXLnz77bcAgA4dOqBq1ao4fvw4Tp06BY1GU+T3yMvLwz//+U8cO3YMNjY2cHR0hLm5ORITEzFr1iwkJCRg0aJFpfnfRURERERERDLC7s3uTURE8sMFcCIiogooNjYW69evh62tLTZs2KDbxkyj0WDevHnYtWsXJk+ejN27d0OlUr3R75WRkYHw8HA0aNAABQUFMDEp+QYxvXr1wrlz5xAdHY2PP/5Y77XIyEjY2dnB2dm52Pdu27YNe/fuRYMGDbBx40Y0bNgQAPDkyRNMmzYNR44cwbfffosff/wRAHD79m0EBgbCzMwM69atQ8eOHQEADx8+xKhRo5Cenl7k9/jpp59w7NgxuLi4YOXKlahRowYA4P79+xgzZgxCQ0Ph5OSEgQMHlnjOREREREREJA/s3uzeREQkT9wCnYiIqALatGkTAODLL7/Ue4aXhYUF5syZg0aNGuGPP/5AfHz8G/9eHh4euqvZS1PAAaBnz54Aim7FduvWLaSmpqJnz54v/W9u3rwZABAYGKgr4ABgY2ODpUuXokqVKoiOjsbVq1cBAKGhocjNzcXgwYN1BRwAatSogYULFxb572s0GmzduhXm5uZYunSproADQK1atTBv3jwAwL/+9a9SzZmIiIiIiIjkgd2b3ZuIiOSJC+BEREQVTH5+PpKTk6FSqdC9e/cir5uZmcHLywsA9J4rVlbvvPNOmd/boEEDtGrVCqdPn0ZGRobueGRkJARBwIcffljs+27fvo0bN26gevXqcHNzK/J6lSpV0KlTJwBAYmIiACApKQkA0KVLlyLjW7Rogfr16+sd++OPP5CdnY0mTZrgrbfeKvKeNm3aoGbNmrhy5Qru3btXwhkTERERERGRHLB7s3sTEZF8cQt0IiKiCiYzMxN5eXmoXr06bGxsih1TWDjLozxWq1btjd7fq1cv/PHHH4iJicGwYcMAPC/hDRo0wLvvvlvsewoLe7169V76331xjoXvqVOnzkvH37hxQ/fr27dvAwAuXLgABweHV87h9u3bqF279ivHEBERERERkXywez/H7k1ERHLEBXAiIqIKRhAEAHjl88UKx1hYWJTov6nVal/6Wmm3XntRz549sWTJEuzfvx/Dhg3D1atX8ccff2DcuHEvfU9Z5vi6562Zmel/rCkoKAAA2Nvbw8nJ6ZXvrVy58itfJyIiIiIiInlh99Yfw+5NRERywgVwIiKiCsbW1hbm5ubIzMzEkydPir0S/fr16wCAmjVrAvj/Il1YPF+UlZVloLTPryR/9913cfr0ady7dw+RkZEAgN69e7/0PXZ2dgCgd9X4iwrnWKtWLQDAW2+9hYsXL+LmzZto1qxZkfF/3wYOgO6q8jp16mDp0qWlmBERERERERHJHbv3c+zeREQkR3wGOBERUQVjbm4OR0dHFBQUICYmpsjr+fn5uuOurq4AAGtrawDPy3ZeXp7e+EePHuHKlSsGzdyrVy8UFBQgOjoa+/fvR7NmzV659Zm9vT3q1auHR48e6Z4z9nfZ2dk4fvw4AMDZ2RkA4O7uDgDF/j+5fv06Ll26pHesTZs2sLS0xPnz54sUdAC4e/cuevbsiZEjRyInJ6fkkyUiIiIiIiLJY/dm9yYiIvniAjgREVEF9MknnwAAvvvuO6Snp+uO5+XlYe7cubh27RpatGih217M1tYWderUgUajwfbt23Xjnz17hm+//faV27CVhx49ekClUmHbtm24cOHCK69AL1Q4R39/f90V5wCQk5ODGTNm4MmTJ/jggw90zyrz9fWFra0tdu/ejQMHDujGP3nyBF999VWRK/Ctra3x0Ucf4a+//sKMGTPw4MEDvd9j9uzZuHz5MqytrbkNGxERERERkQKxe7N7ExGRPHELdCIiogrI09MTn376KTZu3IgBAwbAyckJ1atXx5kzZ3Dnzh3Uq1cPK1as0HuG2OjRoxEYGIjAwEDs27cPtWrVQnJyMrRaLT744AMcPnzYYHnr1q2Ldu3aISUlBcCrt2ArNHz4cKSkpGD//v3o3bs3nJ2dYWVlhVOnTuHRo0dQq9VYuHChbnyNGjWwcOFCTJkyBZ9//jkcHR1hZ2eHpKQkaLVaNG7cuMjV9tOmTcO5c+cQHx+Pbt26oU2bNrCyskJKSgoyMzPx9ttvY+7cueX7P4OIiIiIiIgkgd2b3ZuIiOSJd4ATERFVUDNnzsRPP/0EV1dXnD9/HkeOHEHlypUxYcIEhIaGonHjxnrjhw8fjsWLF6N169ZIT09HUlISXF1d8dtvvxUZawg9e/YEALRq1QqNGjV67XgTExOsWLECQUFBaNWqFZKTk3HixAnUqVMHM2bMwM6dO1GjRg2993h4eODXX3+Fh4cHrly5gt9//x0tW7bEL7/8gjp16hT5PSwtLbFx40Z8/fXXaNKkCdLS0pCQkAA7OztMmjQJu3bt0j3njIiIiIiIiJSH3Zvdm4iI5EclCIIgdggiIiIiIiIiIiIiIiIiIqI3xTvAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGTh/wAfQqSGxD+04wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 171 coefficients adjusted\n", - "\t 687 coefficients converged\n", - "\t 70 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgqklEQVR4nOzdeXiM9/7/8dfMpNmQihwShFajkdq3aCjVIrRFNXJUVRRV+3IctbTltJyWajkc6qgiNK0ltEFV6yhKty8qenRDlUZstTSWiCWRzPz+6C9TI6GZO9uMeT6uy6VzL3O/Zz4f6bzzmvu+TTabzSYAAAAAAAAAAAAUiLm0CwAAAAAAAAAAAHAnhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAUAg2m01t2rRRrVq1NGfOHKf2XbVqlWrVqqVVq1bZl9WqVUu9evUq6jLzOHXqlC5dulTsxykKOTk5OnLkyJ9u98Ybb6hWrVo3/dOmTZtir/fQoUPFfgwAAAC4ri1btmj48OFq06aN6tatq3vvvVfPPPOMPv300xKrISsrSy+99JKaNWum+vXr65VXXsl32XPPPadatWrp6NGjTj1/7mfvHTt2FNMrcPRnn7Ffeukl1apVS0lJSTfd7ujRo4qIiFDv3r0LfOwdO3aoVq1aeuONNwq8T2navn27atWqpXvuueemfdSFCxc0cuRINW7cWI0aNVJ8fLwkKTMzUydOnCipciUVrq+W6K0LqqC9NYCC8yrtAgDAnW3fvl3Hjh2Tv7+/Vq5cqcGDB8tisRh+vtdff11/+ctfirDCvNasWaNJkybpww8/lL+/f7Eeq7COHz+ugQMHqn379ho+fHiB9unevbuaNGmS77oyZcoUZXl5DB48WBkZGXr33XeL9TgAAABwPRkZGXrhhRe0YcMG1alTR127dlWlSpV04sQJrVmzRoMHD9bTTz+tcePGFXstK1euVGJiou677z49/PDDuvvuu/NdZrPZ1Lx5c1WoUMGp54+Ojlb16tUVFhZWTK/gDwX5jP3Xv/5ViYmJ+vDDDxUbG3vD7dasWSObzaa//vWvxVGqS0hKSpK/v78uXbqkFStWaPTo0fluN3fuXK1fv14dO3ZU8+bN1bBhQ+3Zs0fDhg3TsGHD1LVr1xKruaj7aone+npGemsAf45wBQAK4f3339dtt92mPn36aO7cudqyZYvatWtn+Pm6dOlShNXlb/v27W7zzZojR45o//79at++fYH3adiwYYm8j/n59NNP1axZs1I5NgAAAErXhAkTtGHDBo0dO1b9+vVzWDdo0CD169dPixYt0l133aVu3boVay0//fSTJGns2LGKiIiQJPtZHdcuk6RGjRo5/fwREREOz1GcCvIZu169evYzaU6ePKng4OB8t/vggw90++23O9VfuJOMjAxt3LhRbdu21d69e7Vq1SqNGDFC3t7eebbNnSOTJk1SuXLlJP1+BsixY8dKtGap6Ptqid76ekZ6awB/jsuCAYBBFy5c0KZNm1S/fn09+uijkqTly5eXclUAAAAAStqXX36p9evXq0OHDnmCFUny9vbWlClTZLFY9M477xR7PVevXpUklS1b9qbLbiWxsbGyWq36+OOP812/a9cuHT58WJ07d5aPj08JV1cyPvroI12+fFlRUVFq166d0tLStHHjxny3zZ0PucFKaaGvBuDOCFcAwKB169bpypUruu+++1SjRg3VqlVLX331Vb7XMN2xY4eeeuopNW7cWFFRUXrllVfy/YbL9deFvdE1kI8ePapatWrpueeesy+7fPmyXn31VT300EOqX7++7r33Xg0cOFC7du2yb9OmTRutXr1aktS2bVv7sZ577jk1atRIhw8f1rBhw9SkSRM1btxYgwcP1okTJ3Ts2DGNGDFCTZo0UVRUlEaOHKlTp0451GS1WvXuu++qS5cuql+/vpo2bapnnnnG4fjSH9dnPnjwoCZMmKD77rtP9erVU5cuXfThhx86bPfUU09JkubMmWPoWtA3Y7PZ9N577+nJJ59U06ZNVadOHbVs2VKjRo1Sampqnu0//vhj9ezZU02aNNG9996r3r17a9u2bZL+uA6zJH399dd5rvf72WefqXfv3mrcuLHq16+vLl266J133pHVarVvkzum//nPf/T3v/9d9erVU4sWLfT9998rJydHc+bMUefOndWwYUM1bdpUvXr1KtHrdgMAAODG1qxZI0k3vcdDtWrV9OGHH9o/j+c6ePCgRo0apRYtWqhu3bpq27atpk6dqvPnz+d5jl9++UWjRo1S8+bNVbduXbVv317//ve/deXKFUl/fKa89jN/7v0Hr18m5d9v2Gw2LV++XF27dlXDhg3VokULDRo0SD/++KN9mxvdc+WLL76w9z0NGjRQ165dHT4XS398dv7oo480b948RUdHq27dumrTpo1mzZql7Oxsh+2k/D9jX+/RRx/Vbbfd5tBTXCt3jHIvCXb16lXFx8crNjZWjRo1Ut26dfXAAw9owoQJSktLu+FxpN/7qvzu55jfvT8k6bvvvtOgQYPUrFkz1atXT506ddKiRYuUk5PjsN2ePXs0aNAgtWrVyj4XXnnlFZ07d+6m9eTKPTvpvvvu00MPPSQpb1CR+75+/fXXkmS/N+Vzzz2n559/XpL0/PPP2997yfle77PPPtPDDz+sunXrKi4u7qY1O9NX59ZPb+34fpd2bw14Mi4LBgAG5X5wffjhhyVJHTt21E8//aTExESNGTPGvt3WrVs1dOhQVapUSQMHDpTZbNb7779/08bAiFGjRumrr75Sz549ddddd+m3337T0qVL1bt3b73//vuKiIjQCy+8oMWLFys5OVnPP/+87r77bvv+V69e1ZNPPqlmzZpp7Nix2r17t1atWqWTJ0/qt99+U2RkpMaOHatvv/1WSUlJysjI0MKFC+37jx49Wh999JE6dOigxx9/XOfPn9eqVavUq1cvzZgxw/7hPteAAQPs70lWVpYSEhI0evRoVaxYUVFRUYqOjlZ2dra94YqOji7QtaAvXbqkM2fO5FlusVh0++232x+/+uqrSkhIULt27fT3v/9dkpScnKyPP/5Ye/bs0ccffyyz+ffvIMyePVv/+c9/FBERoUGDBsnb21vLli1Tv3799Oabb6pOnTp6/fXXNXbsWN11110aNGiQGjduLElatGiRXnvtNd1xxx3q37+//P39tWnTJk2ePFk7duzQG2+8YT+OJC1cuFDh4eGaMGGCDh06pNq1a+vVV1/V0qVL9fjjj+upp57ShQsXlJiYqCFDhuitt95S69atCzJFAAAAUEy+++47eXl5qUGDBjfd7vp7lCQnJ6tfv36yWCzq0aOHqlatqt27d+vtt9/Wp59+qsTERPtn4O+++059+vRR2bJl1bNnT1WoUEG7d+/WvHnztG3bNr3zzjuqUKGCXn/9da1cudL+mf/222+X2Wx2WBYYGHjDGseNG6cPPvhATZs21ciRI5WVlaV3331XcXFxWrp0qWrXrp3vfkuXLtXLL7+sevXqadiwYTKbzdq8ebOef/557d27V+PHj3fYfsaMGbLZbOrevbsCAgK0atUqzZ07VyaTSSNGjFBYWNgNP2PnJzAwUG3bttV///tfHTx40OG9zszM1Pr161WnTh3dc889kqSRI0dq8+bNiomJ0eOPP67MzEx9/vnneu+993T8+HEtWrTopmNZUJs3b9bf/vY3hYaG6plnnpG/v7+++uorvfbaa/rmm2/0xhtvyGQy6ciRI+rdu7cqVqyoPn36KCAgQN9++62WLFmi7777TitWrJDJZLrhcQ4ePKhvv/1WjRo1UpUqVVSlShXdeeed2rlzp8P7kfu+zps3T7/88otef/11lSlTRkFBQfL29taKFSvy3MfS2V5v5MiR+utf/6o777wz30uSXaugfbVEb13SvTWAArABAJy2f/9+W3h4uO2xxx6zLzt8+LAtPDzcFhUVZcvMzLTZbDab1Wq1tWnTxta0aVPbb7/9Zt82PT3d1r59e1t4eLgtKSnJvjw8PNwWFxdnfzxu3DhbeHi47ciRIw7HP3LkiC08PNw2btw4m81ms6WlpdnCw8NtL730ksN2u3fvtrVv3962cuXKmz5n7rLr9+/SpYstPDzc9vLLLzss79atmy0iIsL+Oj/++GNbeHi4bcGCBQ7bZWRk2B566CHbvffea7t06ZLNZrPZZs+ebQsPD7f179/fZrVa7dvu3LnTFh4ebhs1apR92fbt223h4eG22bNn2/5M7vPe6M+DDz5o3/bMmTO22rVr2wYOHJjneUaMGGELDw+3/fDDDzabzWY7dOiQ7Z577rHFxcXZX6/NZrP99ttvtiZNmti6du1qX3b9+B0+fNhWu3Zt2yOPPGK7ePGifbnVarWNHj3aFh4eblu1apXNZvtjTBs2bGg7ffq0Q00NGza0PfPMMw7Lfv31V1u7du1sb7zxxp++NwAAACheDRo0sLVo0cKpfXJycmzR0dG2unXr2g4cOOCwbuXKlbbw8HDbc889Z7PZfv/82LFjR1vr1q1tZ8+ezXfb+fPn25fd7DP/zZZt27bN/pn82s/qBw4csEVERNiGDx9us9n++Oy9fft2m832+2fTOnXq2AYOHOiwn9VqtY0ZM8YWHh5u+/bbb2022x+f8e+77z7b+fPn7dtevHjR1qRJE1vLli0dXt/1n7Fv5rPPPrOFh4fbZs6c6bD8o48+soWHh9uWLl1qs9lstr179+bb59hsNltsbKwtPDzc/j7n15M8+OCDDv1FrqSkJIce79KlS7Z7773XFhMT49BL2Gw228yZM23h4eG2jz76yGaz2WwLFy50eJ9yvfrqq7aYmBjbiRMnbvrap06dagsPD7clJCTYl+WOU36vMy4uzhYeHn7T+m02Y73eiBEjblprroL21TYbvXVJ9tYACo7LggGAAbnfrunYsaN9WbVq1dSwYUOdOXNGn3zyiSRp7969Onr0qLp06aKgoCD7tuXKlVOPHj2KrJ6yZcuqXLlyWr9+vVauXKnTp09Lkho0aKANGzYU+IaZnTp1cnic++2mRx55xGF59erVZbVa9dtvv0n6/dq+ktShQwedOXPG/iczM1Pt27fX2bNntXPnTofn6Ny5s8M3r+rXry9J9uc0ql+/flq8eHGeP9OmTbNvExgYqOTkZE2fPt1h3/T0dPn5+UmS/dTyTz/9VDk5Oerdu7fDt66CgoK0bNkyvfHGGzesZePGjcrOztaAAQPk7+9vX24ymfTss89KUp5rQjdo0EB/+ctfHJaFhITo66+/Vnx8vP307ZCQEG3cuFHDhg0r8HsDAACA4mGxWOyXsyqoPXv2KDU1VY8++mieM1r++te/6o477tCGDRuUk5Ojn376ST///LNat24tq9Xq8Jn7wQcflI+Pzw3vreGMTZs2SZKeeeYZh8/qYWFhev/99/WPf/wj3/0++eQTXb16VQ8//LDOnj1rr+3s2bP2nim3R8r14IMPKiAgwP7Y399fYWFhf3pJrptp2bKlKleurHXr1jksX716tXx9fdW5c2dJUkREhHbt2qVRo0Y5bJeWlmavqShuVP5///d/Onv2rDp06KCMjAyHccvtsXLHrXLlypKkadOmadu2bcrKypL0+2WmVq1apeDg4BseJzs7W2vXrpXZbLafASL90a9+8MEHunz5sqHXYKTXy++SafkpaF8t0VuXRm8N4M9xWTAAcNLVq1e1du1aSb9/wLr2WqVRUVHavXu3li9frk6dOunw4cOSfv/AdL2aNWsWWU3e3t6aOnWqnn/+eXvDEx4erpYtW6pz5843PHX/etf/Uv+2226TJFWsWNFhuZfX7//7yL1nSEpKiiSpXbt2N3zuY8eO3fRYucHFtfchMaJmzZpq0aLFn27n4+OjzZs3a8uWLTp8+LCOHj2qX3/91f6hNLeO3PG966678jxHeHj4TY+RO/7XniKeKyQkROXKlctzrdvr3xdJmjx5skaOHKnXX39dr7/+uqpXr6777rtPHTt2VGRk5J++VgAAABSv4OBgpaSkKCsr608vg5TrZp8VTSaTatasqdTUVJ09e9b+eTsxMVGJiYn5Pt/1n7eNyP1sen3YI0l16tS54X659Y0dO/aG2/xZPyD93hNcfx8SZ5jNZsXExGju3Ln63//+p0aNGun06dP66quv1KlTJ4ebt3t7e+vjjz+239/j6NGjOn36dJ5+oDBy35cZM2ZoxowZ+W6T+7506NBBsbGxWrVqlfr06SNfX181adJErVu31mOPPeZwiePrbd26Vb/99pvq1aunzMxM+zh6e3vrzjvv1KFDh/TRRx/Z7zdj5DU40+td3z/mx5m+WhK99TVKqrcG8OcIVwDASVu3brV/m+pGN+dLTk7WgQMH7I9tNluebQrzQSe/hqNdu3a677779MUXX+jLL7/Ujh07tGjRIi1evFgvvPCC/QZ2N5P7we56N7u2b249ZcqU0Zw5c264TY0aNRweX3ufkZJ29epVDRs2TFu3blXdunVVt25ddejQQbVr19Znn32mt956y2Fb6c/fg/zkjvuN9rVarXma7/zGoHHjxtq0aZO2b9+uL774Qjt27FBiYqKWL1+uvn37Otx8EQAAACUvMjJSBw8e1DfffKOoqKgbbvf888/r6tWrNw0hcuX2C97e3vb/7tmz5w1/6Xqjz/LOyP3s66zc/uTll19WaGhovttcf4+H4uoHunbtqjfffFMffvihGjVqpA8//FA5OTkOwUJGRoZ69+6tH3/8UU2aNFHdunXVpUsX1atXTwkJCfZf+jvr+j4td9xGjBihRo0a5btPmTJlJP1+9tOUKVM0ZMgQbdmyRf/3f/+n5ORkffXVV3rrrbeUmJiYb7Ag/XEGyPfff6+2bdvmu01iYqKhcMVIr2exWP70eZ3pq68NT+itXau3Bjwd4QoAOCn3g+vAgQPtp9te67333tPWrVsdPrwePHgwz3apqal/eqzcD6WZmZkOy3NPTc6VkZGhn376SaGhoWrfvr3at28vSdq3b5969+6t//znPwX6AGhUaGioUlJSFBERkadp2rt3r06dOmW/3JYr+Pjjj7V161YNGDDAfnmuXKtXr3Z4nNscpqSk5PkQ+/bbb+vAgQOaMGGCfH198xwnt/nZv3+//caZuY4fP66LFy/aT/+/kczMTP3000+6/fbbdf/99+v++++XJB05ckRPP/20EhISNGzYMJUtW7YArxwAAADFoVOnTkpMTNSyZctuGK78+uuvWrt2rQICAlS+fHlVq1ZNkvTzzz/n2dZms+ngwYMqW7asAgICHAKL68/Stlqt2rBhg/35CuPaz761atVyWDdjxgxduXJFL7zwwg33CwgIyFPfqVOn9N133xVJfQVRrVo13XvvvVq/fr0mTJigDz/8UHfccYeaNWtm3+add97RDz/8oEmTJumJJ55w2L8gl1KyWCy6ePFinuXX92m574uvr2+e9yUjI0Nffvml/UyGY8eO6fDhw2revLl69eqlXr16KTs7W/Hx8ZoxY4aWL1+ucePG5TlmWlqaPv/8c5UpU0avvfZanl/eW61WjRs3Tt9//71+/PHHm56BlJ/i6vWc6asnTJigO++8UxK9tav11oCnI9oEACecPn1aX3zxhcqXL6+hQ4eqXbt2ef6MGDFCkrRmzRrdcccdqlGjhtauXetwmvOVK1e0ZMmSPz1epUqVJP3+DaRrrVmzxuHx/v379eSTT2ru3LkOy2vWrKly5co5fGsm91st+X3jx6gOHTpIkv797387LM/IyNDIkSM1dOjQPB9iCyL3A3BRn8589uxZScrTMKampmrDhg2S/vgGU9u2bWUymbR06VKH62ifO3dOCxYs0HfffWcPVsxms0Ot0dHRslgseuuttxyu2Wyz2TRr1ixJ0kMPPfSntXbv3l0vv/yyw/Jq1aopODhYJpOJbyoBAACUssjISEVHR2vDhg1avHhxnvUXLlzQ3/72N2VnZ2vYsGHy9vZW7dq1Va1aNa1duzbPL4yTkpJ0+PBh+y9269atq6pVq2r16tX2yyPlWrFihUaOHGn/ZXVh5J4Vk5CQ4LD88OHDevvtt3XkyJF892vfvr3MZrPmzZunK1euOKybOnWqhg4dqh9++MFQTdd/xi6I2NhYnTlzRmvWrNGePXvynLFxo37gf//7n/1+Fje7PFmlSpV05swZh8szZWVlaf369Q7btWzZUmXKlNHbb79tP2auefPm6W9/+5s+++wz++M+ffro22+/tW/j5eWlBg0aSLrx2SBr1qxRdna2unTpoujo6Dz9afv27RUbGytJWr58+Q1fk/RHr3jt+10cvZ6zffXly5cVERFBb+2CvTXg6ThzBQCckPvBtWvXrvLx8cl3mzp16igyMlI7d+7UunXr9Morr+jpp59Wt27d1LNnT5UtW1ZJSUm6cOHCnx4vJiZGb731ll555RUdPXpUFStW1JYtW7R//36H4zdu3FgtW7ZUYmKi0tPT1axZM+Xk5GjDhg06cuSIwzeccq/HunDhQrVq1eqm13ItqK5du+q///2vVqxYocOHD6tNmzbKzs7We++9p0OHDmnMmDE3vQHjjeTeqPDTTz9VlSpVFB0drfLlyxe63latWulf//qXJk+erMOHD6tixYr6+eeflZSUZA9Q0tPTJf1+vekBAwborbfeUo8ePdSxY0dZrVatXLlS58+ft4ckufXu27dPy5YtU9OmTRUeHq6RI0fqX//6lx577DF17dpV/v7+2rx5s7Zv364HH3xQjz766E1rDQkJUbdu3bRixQr169dPbdq0kclk0pdffqmdO3cqLi5O/v7+hX5PAAAAUDhTpkzR+fPnNXXqVH344Ydq3769KlSooEOHDmn16tU6c+aMevbsqZ49e0r6/Zedr7zyigYMGKBu3bqpR48eCg0N1XfffafVq1eratWqGj16tMO2AwcOVNeuXfXEE0+oevXq+v7775WUlKTq1atryJAhhX4NrVq1UqdOnZSUlKQTJ06oTZs2ysjI0NKlS+Xj46MxY8bku9+dd96p4cOHa9asWerSpYtiYmIUEBCgzZs368svv9SDDz5oD4qcld9n7D/ToUMHvfzyy3rttdfk5eWlxx57zGF9mzZt9O6772r06NF68sknVa5cOf3www9avXq1LBaLrl69au8H8hMbG6vk5GT169dPTz75pKxWq5KSkvIEMgEBAXrxxRf1/PPPq3PnzurevbsqVaqk7du36+OPP1b9+vX15JNPSpL69Omj9evXa8CAAXriiScUGhqqkydPavny5SpXrpwef/zxfGtZtWqVJNmfJz9PPfWUli5dqo8++kjPPffcDc96z+0V165dK5vNZu9hirrXM9JXd+vWjd7aBXtrwNMRrgCAE1avXi2TyXTTD67S7x+Md+7cqcTERCUlJWnZsmWaPXu23n77bUm/fyPsgQce0N/+9rebPk/16tW1YMECzZkzR/Pnz5efn59atWql5cuXq2PHjg7bzp49W4sWLbJf8kqSIiIiNH36dHXu3Nm+XY8ePfT1118rKSlJ27dvL5IPgBaLRfPmzVNCQoI++OADTZ8+XX5+fgoLC9Mbb7xhuJGqUaOG+vbtq/fff1+TJ09WaGiomjdvXuh6w8LCNH/+fM2ePVvx8fGSpMqVKysuLk4PPfSQHnvsMX3xxRf2s0pGjRqlu+66S0uWLNHMmTPl5+enevXqadq0aapXr579eceOHavp06drypQpGjRokMLDwzVgwADdddddevvtt+33cqlRo4ZefPFF9ejRo0Bnnbz44ou66667tHr1as2YMUM5OTm666679I9//ONP5yIAAABKRkBAgOLj4/Xxxx9r1apVWrZsmc6cOaOyZcuqQYMG6tmzp/0Sr7mioqK0cuVKzZ07V0lJScrIyFCVKlX09NNPa9CgQQoICLBv26JFC61cuVJvvvmm/RfKISEhevLJJzVw4MAC3US8IKZNm6b69evr/fff12uvvabbb79dTZs21d/+9rc8l8m91pAhQ1SzZk298847mj9/vqxWq6pVq6axY8eqV69eBboPR37y+4z9Z3x8fNSpUyctW7ZMbdq0sZ+1kKt58+aaMWOGvdfy9vZWlSpVNHLkSNWsWVMDBgzQF1984fBZ/1pdu3bVxYsXtWzZMr3++uv6y1/+oi5duujBBx9U9+7dHbZ97LHHVLlyZS1cuFDvvPOOMjMzVaVKFQ0ePFj9+vWzf1EqLCxMS5Ys0Ztvvqk1a9YoLS1N5cuXV1RUlIYOHZrv/Va+/fZbHThwQJGRkbr77rtv+H5Ur15dDz74oDZv3qwPPvjAHvBdLyoqSp07d9amTZv0/fffq2nTpqpRo0aR93pG+upu3bqpadOm9NYu1lsDns5kK8pz1wAAhtlsNkVEROjee+/VO++8U9rlAAAAAADgduitAZQULtIOAC4i97TzMmXKlHIlAAAAAAC4J3prACWFy4IBgAt466239OOPP0r6/dqyAAAAAADAOfTWAEoS4QoAlLL09HQlJCTo6tWr6tSpk/r27VvaJQEAAAAA4FborQGUNO65AgAAAAAAAAAA4ATuuQIAAAAAAAAAAOAEl7ks2I4dO/TUU0/luy40NFSbN2/W3r17NXnyZP3www8qX768evXqpX79+pVwpQAAAAAAAAAAwJO5TLjSqFEjffnllw7L9u/frwEDBmjQoEE6e/as+vbtq3bt2mnSpEnavXu3Jk2apPLlyys2NraUqgYAAAAAAAAAAJ7GZe+5cvXqVcXExOjuu+/WzJkz9dZbb2np0qX69NNP5eX1eyY0Y8YMffLJJ/rvf/9r+Dg2m01Wq0u+BR7NbDYxLjCEuQMjmDcwirkDI0pz3pjNJplMplI5NtyXp/dM/Kx3P4yZ+2HM3A9j5n4YM/fDmJWegvZNLnPmyvWWLl2qX3/9VYsWLZIkJScnKzIy0h6sSFJUVJTeeustpaWlKSgoyNBxrFabzpy5WCQ1o2h4eZkVGFhG6emXlJ1tLe1y4EaYOzCCeQOjmDsworTnTYUKZWSxEK7AOZ7cM5X2v1k4jzFzP4yZ+2HM3A9j5n4Ys9JV0L7JJcOVzMxMzZs3T71791alSpUkSSdOnFB4eLjDdrnrjh8/bjhckX6frHAdFovZ4W+goJg7MIJ5A6OYOzCCeQMAAAAAtwaXDFc++OADZWZmqlevXvZlV65ckbe3t8N2Pj4+kn4PY4wym00KDCxjeH8Un4AAv9IuAW6KuQMjmDcwirkDI5g3AAAAAODeXDJcWbNmjdq3b6/AwED7Ml9fX2VlZTlslxuq+Pv7Gz6W1WpTevolw/uj6FksZgUE+Ck9/bJycjjtDQXH3IERzBsYxdyBEaU9bwIC/DhrBgAAAACKgMuFK2fOnNH//vc/DRw40GF5SEiITp065bAs93FwcHChjsl161xTTo6VsYEhzB0YwbyBUcwdGMG8AQAAAAD35nJfW/vmm29kMpnUrFkzh+WRkZHatWuXcnJy7Mu2bdumGjVqFOp+KwAAAAAAAAAAAM5wuXBl3759qlatmvz8HK9DHRsbq4yMDI0fP14HDhzQqlWrlJCQkOcMFwAAAAAAAAAAgOLkcuHKb7/9pvLly+dZHhQUpIULFyolJUUxMTGaM2eOxo4dq5iYmJIvEgAAAAAAAAAAeCyXu+fKxIkTb7iufv36WrFiRckVAwAAAAAAAAAAcB2XO3MFAAAAAAAAAADAlRGuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACc4FXaBQAAUJzMZpPMZtMN11ssZoe/rVabrFZbidQGAAAAAEBRuVH/e33fey16YMA4whUAwC3LbDapfHn/fD9AXi8gwE+SlJNj1blzl/hwCQAAAABwGwXpf3P73mvRAwPGEa4AAG5ZZrNJFotZ05fu0tGTF/50+9Dgchrds4nMZhMfLAEAAAAAbsPZ/leiBwYKi3AFAHDLO3rygg4eO1/aZQAAAAAAUKzof4GSww3tAQAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAA4CLS0tI0ZswYRUVFqVGjRhowYIAOHDhgX793717FxcWpYcOGeuCBBxQfH++wv9Vq1ezZs9WqVSs1aNBATz/9tFJTU0v6ZQAAAAC3PMIVAAAAAHARgwcP1pEjR7RgwQK9//778vX1VZ8+fXT58mWdPXtWffv21Z133qmkpCQNHz5cs2bNUlJSkn3/uXPnKjExUa+88opWrFghk8mk/v37KysrqxRfFQAAAHDr8SrtAgAAAAAA0tmzZxUaGqrBgwfr7rvvliQNGTJEXbp00c8//6xt27bJ29tbEydOlJeXl8LCwpSamqoFCxYoNjZWWVlZWrRokcaMGaPWrVtLkmbOnKlWrVpp48aN6tixY2m+PAAAAOCWwpkrAAAAAOACAgMDNWPGDHuw8ttvvyk+Pl4hISGqWbOmkpOTFRkZKS+vP74jFxUVpZSUFKWlpWnfvn26ePGioqKi7OsDAgJUu3Zt7dy5s8RfDwAAAHAr48wVAAAAAHAx//jHP7Ry5Up5e3vrzTfflL+/v06cOKHw8HCH7SpVqiRJOn78uE6cOCFJqly5cp5tfv3110LV4+Xlmd/Ls1jMDn/D9TFm7ocxcz+MmWsqzHgwlq6Hf2fugXAFAAAAAFxM79691b17dy1fvlxDhw7VsmXLdOXKFXl7ezts5+PjI0nKzMzU5cuXJSnfbc6fP2+4FrPZpMDAMob3vxUEBPiVdglwEmPmfhgz98OY3ToYS9fF2Lg2whUAAAAAcDE1a9aUJL388svavXu3lixZIl9f3zw3ps/MzJQk+fv7y9fXV5KUlZVl/+/cbfz8jDfmVqtN6emXDO/vziwWswIC/JSeflk5OdbSLgcFwJi5H8bM/TBmril3XIxgLF0P/85KV0CAX4HOGiJcAQAAAAAXkJaWpm3btunhhx+WxWKRJJnNZoWFhenUqVMKCQnRqVOnHPbJfRwcHKzs7Gz7surVqztsExERUajasrM9u6nPybF6/Hvgbhgz98OYuR/G7NbBWLouxsa1cdE2AAAAAHABp06d0rPPPquvv/7avuzq1avas2ePwsLCFBkZqV27diknJ8e+ftu2bapRo4aCgoIUERGhsmXLaseOHfb16enp2rNnj5o2bVqirwUAAAC41RGuAAAAAIALiIiIUMuWLTVp0iQlJydr//79GjdunNLT09WnTx/FxsYqIyND48eP14EDB7Rq1SolJCRo4MCBkn6/10pcXJymT5+uzZs3a9++ffr73/+ukJAQRUdHl/KrAwAAAG4tXBYMAAAAAFyAyWTSv//9b/3rX//SyJEjdeHCBTVt2lRLly5VlSpVJEkLFy7U5MmTFRMTo4oVK2rs2LGKiYmxP8eIESOUnZ2tCRMm6MqVK4qMjFR8fHyem9wDAAAAKBzCFQAAAABwEeXKldPEiRM1ceLEfNfXr19fK1asuOH+FotFY8aM0ZgxY4qpQgAAAAASlwUDAAAAAAAAAABwCuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ASXC1fWrFmjRx55RPXq1VPHjh21fv16+7q9e/cqLi5ODRs21AMPPKD4+PhSrBQAAAAAAAAAAHgilwpXPvjgA73wwgvq3r271q1bp0ceeUSjRo3S//73P509e1Z9+/bVnXfeqaSkJA0fPlyzZs1SUlJSaZcNAAAAAAAAAAA8iFdpF5DLZrNp1qxZ6t27t3r37i1JGjp0qL755ht9/fXX+vrrr+Xt7a2JEyfKy8tLYWFhSk1N1YIFCxQbG1vK1QMAAAAAAAAAAE/hMmeu/PLLLzp27Jg6d+7ssDw+Pl4DBw5UcnKyIiMj5eX1Rx4UFRWllJQUpaWllXS5AAAAAAAAAADAQ7lMuHLo0CFJ0qVLl9SvXz81b95c3bp106effipJOnHihEJCQhz2qVSpkiTp+PHjJVorAAAAAAAAAADwXC5zWbCMjAxJ0rhx4zRs2DCNHj1aGzZs0JAhQ7R48WJduXJF3t7eDvv4+PhIkjIzMwt1bC8vl8mYIMliMTv8DRQUcwfXMzoXmEMoCH7mwAjmDQAAAADcGlwmXLntttskSf369VNMTIwk6Z577tGePXu0ePFi+fr6Kisry2Gf3FDF39/f8HHNZpMCA8sY3h/FJyDAr7RLgJti7qCwmENwBvMFRjBvAAAAAMC9uUy4knvJr/DwcIflNWvW1NatW1W1alWdOnXKYV3u4+DgYMPHtVptSk+/ZHh/FD2LxayAAD+lp19WTo61tMuBG2Hu4Hq5c8JZzCEUBD9zYERpz5uAAD/OmgEAAACAIuAy4Urt2rVVpkwZffvtt2ratKl9+f79+1W9enU1btxYiYmJysnJkcVikSRt27ZNNWrUUFBQUKGOnZ3NL0RcUU6OlbGBIcwdFBZzCM5gvsAI5g0AAAAAuDeX+dqar6+vnnnmGf3nP//RunXrdPjwYb355pv66quv1LdvX8XGxiojI0Pjx4/XgQMHtGrVKiUkJGjgwIGlXToAAAAAAAAAAPAgLnPmiiQNGTJEfn5+mjlzpk6ePKmwsDC98cYbuvfeeyVJCxcu1OTJkxUTE6OKFStq7Nix9vuzAAAAAAAAAAAAlASXClckqW/fvurbt2++6+rXr68VK1aUcEUAAAAAAAAAAAB/cJnLggEAAAAAAAAAALgDwhUAAAAAAAAAAAAnEK4AAAAAAAAAAAA4gXAFAAAAAAAAAADACYQrAAAAAAAAAAAATiBcAQAAAAAAAAAAcALhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJxAuAIAAAAAAAAAAOAEwhUAAAAAAAAAAAAnEK4AAAAAAAAAAAA4gXAFAAAAAAAAAADACYQrAAAAAAAAAAAATiBcAQAAAAAAAAAAcALhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJxAuAIAAAAAAAAAAOAEwhUAAAAAAAAAAAAnEK4AAAAAAAAAAAA4gXAFAAAAAAAAAADACYQrAAAAAAAAAAAATiBcAQAAAAAAAAAAcALhCgAAAAAAAAAAgBMIVwAAAAAAAAAAAJxAuAIAAAAAAAAAAOAEwhUAAAAAAAAAAAAnEK4AAAAAAAAAAAA4gXAFAAAAAAAAAADACYQrAAAAAAAAAAAATiBcAQAAAAAAAAAAcALhCgAAAAAAAAAAgBMIVwAAAADARZw7d04vvvii7r//fjVu3Fg9evRQcnKyff3zzz+vWrVqOfy5//777eutVqtmz56tVq1aqUGDBnr66aeVmppaGi8FAAAAuKV5lXYBAAAAAIDfjRo1SmlpaZoxY4YqVKigZcuWqV+/flq1apXCwsL0008/adCgQYqLi7PvY7FY7P89d+5cJSYm6tVXX1VwcLCmTZum/v37a926dfL29i6NlwQAAADckjhzBQAAAABcQGpqqr766iu99NJLatq0qe666y6NHz9ewcHBWrdunXJycnTgwAHVq1dPFStWtP+pUKGCJCkrK0uLFi3S8OHD1bp1a0VERGjmzJk6efKkNm7cWMqvDgAAALi1EK4AAAAAgAsIDAzU/PnzVbduXfsyk8kkm82m8+fP69ChQ8rMzFRYWFi+++/bt08XL15UVFSUfVlAQIBq166tnTt3Fnv9AAAAgCfhsmAAAAAA4AICAgLUunVrh2Xr16/X4cOH1bJlS+3fv18mk0kJCQn6/PPPZTab1bp1a40cOVLlypXTiRMnJEmVK1d2eI5KlSrp119/LbHXAQAAAHgCwhUAAAAAcEG7du3SCy+8oLZt26pNmzaaPXu2zGazqlatqnnz5ik1NVWvvfaa9u/fr4SEBF2+fFmS8txbxcfHR+fPny9ULV5ennnRA4vF7PA3XB9j5n4YM/fDmLmmwowHY+l6+HfmHghXAAAAAMDFbNq0SaNHj1aDBg00Y8YMSdLw4cPVp08fBQQESJLCw8NVsWJFde/eXd9//718fX0l/X7vldz/lqTMzEz5+fkZrsVsNikwsEwhXo37Cwgw/v6hdDBm7ocxcz+M2a2DsXRdjI1rI1wBAAAAABeyZMkSTZ48WdHR0Zo+fbr9TBSTyWQPVnKFh4dLkk6cOGG/HNipU6dUvXp1+zanTp1SRESE4XqsVpvS0y8Z3t+dWSxmBQT4KT39snJyrKVdDgqAMXM/jJn7YcxcU+64GMFYuh7+nZWugAC/Ap01RLgCAAAAAC5i2bJlevnll9WrVy+98MILMpv/aOqeffZZnTt3TvHx8fZl33//vSSpZs2aqlatmsqWLasdO3bYw5X09HTt2bNHcXFxhaorO9uzm/qcHKvHvwfuhjFzP4yZ+2HMbh2MpetibFwb4QoAAAAAuICUlBRNmTJF0dHRGjhwoNLS0uzrfH191alTJw0ePFhvvvmmOnbsqJSUFP3zn/9Up06dFBYWJkmKi4vT9OnTVaFCBVWtWlXTpk1TSEiIoqOjS+tlAQAAALckwhUAAAAAcAEbNmzQ1atXtXHjRm3cuNFhXUxMjKZOnapZs2Zp3rx5mjdvnsqVK6fOnTtr5MiR9u1GjBih7OxsTZgwQVeuXFFkZKTi4+Pz3OQeAAAAQOEQrgAAAACACxg0aJAGDRp00206dOigDh063HC9xWLRmDFjNGbMmKIuDwAAAMA1/vyuLAAAAAAAAAAAALAjXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJ7hUuHLs2DHVqlUrz5/33ntPkrR3717FxcWpYcOGeuCBBxQfH1/KFQMAAAAAAAAAAE/jVdoFXOunn36Sj4+PNm3aJJPJZF9erlw5nT17Vn379lW7du00adIk7d69W5MmTVL58uUVGxtbilUDAAAAAAAAAABP4lLhyv79+1WjRg1VqlQpz7qEhAR5e3tr4sSJ8vLyUlhYmFJTU7VgwQLCFQAAAAAAAAAAUGJc6rJgP/30k2rWrJnvuuTkZEVGRsrL6488KCoqSikpKUpLSyupEgEAAAAAAAAAgIdzuTNXKlasqCeffFKHDh3SHXfcoSFDhqhVq1Y6ceKEwsPDHbbPPcPl+PHjCgoKMnxcLy+Xypg8nsVidvgbKCjmDq5ndC4wh1AQ/MyBEcwbAAAAALg1uEy4kpWVpUOHDsnPz09jx46Vv7+/1q5dq/79+2vx4sW6cuWKvL29Hfbx8fGRJGVmZho+rtlsUmBgmULVjuIREOBX2iXATTF3UFjMITiD+QIjmDcAAAAA4N5cJlzx9vbWzp075eXlZQ9R6tatq4MHDyo+Pl6+vr7Kyspy2Cc3VPH39zd8XKvVpvT0S8YLR5GzWMwKCPBTevpl5eRYS7scuBHmDq6XOyecxRxCQfAzB0aU9rwJCPDjrBkAAAAAKAIuE65I+Yck4eHh+vLLLxUSEqJTp045rMt9HBwcXKjjZmfzCxFXlJNjZWxgCHMHhcUcgjOYLzCCeQMAAAAA7s1lvra2b98+NWrUSMnJyQ7Lf/jhB9WsWVORkZHatWuXcnJy7Ou2bdumGjVqFOp+KwAAAAAAAAAAAM5wmXAlPDxcd999tyZNmqTk5GQdPHhQr776qnbv3q1BgwYpNjZWGRkZGj9+vA4cOKBVq1YpISFBAwcOLO3SAQAAAAAAAACAB3GZy4KZzWbNmzdP06dP18iRI5Wenq7atWtr8eLFqlWrliRp4cKFmjx5smJiYlSxYkWNHTtWMTExpVw5AAAAAAAAAADwJC4TrkhShQoVNGXKlBuur1+/vlasWFGCFQEAAAAAAAAAADhymcuCAQAAAAAAAAAAuAPCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4IQiDVcuXryoK1euFOVTAgAAAIDboCcCAAAAPIPhcOXzzz/X3Llz7Y9fe+01NWvWTE2bNtXkyZOLpDgAAAAAcFX0RAAAAIDnMhSubNmyRQMHDtQHH3wgSUpOTtbixYtVtWpVNWrUSEuWLNGyZcuKtFAAAAAAcBX0RAAAAIBnMxSuLF68WNWrV9c777wjSfroo49kNpu1ePFivfvuu3rwwQeVlJRUpIUCAAAAgKugJwIAAAA8m6FwZe/everRo4eCg4MlSV999ZXCw8NVtWpVSVKrVq30yy+/FF2VAAAAAOBC6IkAAAAAz2YoXMnOzlbZsmUlSceOHdPhw4d177332tdbrVZ5eXkVTYUAAAAA4GLoiQAAAADPZihcCQ0N1Z49eyRJGzZskMlkUqtWrezrt2zZotDQ0KKpEAAAAABcDD0RAAAA4NkMfZWqQ4cOevPNN3Xs2DF9/fXXCg4OVlRUlA4fPqxXXnlFX331lZ577rmirhUAAAAAXAI9EQAAAODZDIUrQ4YM0blz55SUlKTKlStr8uTJ8vLy0rlz5/Tll1/q8ccfV1xcXFHXCgAAAAAugZ4IAAAA8GyGwhWz2awJEyZowoQJDssjIiK0ZcsW+00dAQAAAOBWRE8EAAAAeDZD91x56qmntG3btjzLvb29FRwcrE2bNumhhx4qdHEAAAAA4IroiQAAAADPVqAzVy5fvqyzZ8/aH3/99deKjo7WHXfckWdbq9WqL7/8UsePHy+6KgEAAACgFNETAQAAALhWgcKVjIwMderUSZcvX7YvmzJliqZMmXLDfRo2bFjo4gAAAADAFdATAQAAALhWgcKVihUr6sUXX9SOHTtks9m0Zs0aNWnSRNWqVcuzrdls1l/+8hf16NGjyIsFAAAAgNJATwQAAADgWgW+of1jjz2mxx57TNLvp8D37dtXbdu2La66AAAAAMCl0BMBAAAAyFXgcOVan376aVHXAQAAAABug54IAAAA8GyGwhVJstls2r59u06fPi2r1ZrvNrnf6gIAAACAWw09EQAAAOC5DIUrqamp6t+/v44cOZLvepvNJpPJRCMBAAAA4JZETwQAAAB4NkPhyvTp03XkyBHFxsaqXr168vb2Luq6AAAAAMBl0RMBAAAAns1QuLJ9+3b16NFDL774YlHXAwAAAAAuj54IAAAA8GxmIztlZ2frnnvuKepaAAAAAMAt0BMBAAAAns1QuFKnTh39+OOPRV0LAAAAALgFeiIAAADAsxkKV0aMGKEPPvhAGzZskM1mK+qaAAAAAMCl0RMBAAAAns3QPVcWLVqk22+/XSNHjpSvr68CAwNlMpkctjGZTNq0aVORFAkAAAAAroSeCAAAAPBshsKV/fv3y2w2q3LlyvZl139bi29vAQAAALhV0RMBAAAAns1QuPLpp58WdR0AAAAA4DboiQAAAADPZuieK9fLysqS1WotiqcCAAAAALdDTwQAAAB4FsPhyrlz5/TPf/5TLVu2VMOGDbVjxw4lJydr0KBBSklJKcoaAQAAAMDl0BMBAAAAnstQuHLu3Dl1795dy5Ytk5+fn/1awufPn9fWrVvVs2dPHTlypEgLBQAAAABXUVw90blz5/Tiiy/q/vvvV+PGjdWjRw8lJyfb1+/du1dxcXFq2LChHnjgAcXHxzvsb7VaNXv2bLVq1UoNGjTQ008/rdTU1MK9WAAAAAB5GApX5syZo2PHjmnx4sVasWKFvZFo27at5s+fr0uXLmnu3LlFWigAAAAAuIri6olGjRqlb7/9VjNmzND777+vOnXqqF+/fjp48KDOnj2rvn376s4771RSUpKGDx+uWbNmKSkpyb7/3LlzlZiYqFdeeUUrVqyQyWRS//79lZWVVWSvHQAAAEAhbmj/+OOPq3nz5jp79qzDuvvvv1/du3fXxo0bi6RAAAAAAHA1xdETpaam6quvvtLy5cvVuHFjSdL48eP1+eefa926dfL19ZW3t7cmTpwoLy8vhYWFKTU1VQsWLFBsbKyysrK0aNEijRkzRq1bt5YkzZw5U61atdLGjRvVsWPHonnxAAAAAIyduXLq1ClFRETccH1YWJhOnz5tuCgAAAAAcGXF0RMFBgZq/vz5qlu3rn2ZyWSSzWbT+fPnlZycrMjISHl5/fEduaioKKWkpCgtLU379u3TxYsXFRUVZV8fEBCg2rVra+fOnU7VAgAAAODmDIUrQUFBOnbs2A3X79+/X4GBgYaLAgAAAABXVhw9UUBAgFq3bi1vb2/7svXr1+vw4cNq2bKlTpw4oZCQEId9KlWqJEk6fvy4Tpw4IUmqXLlynm1+/fVXp2oBAAAAcHOGLgt2//33KzExUd26dVOZMmUc1n3zzTdauXKlOnXqVCQFAgAAAICrKYmeaNeuXXrhhRfUtm1btWnTRq+++qpD8CJJPj4+kqTMzExdvnxZkvLd5vz584WqxcvL0Pfy3J7FYnb4G66PMXM/jJn7YcxcU2HGg7F0Pfw7cw+GwpVhw4Zpy5YtiomJUZMmTWQymZSYmKiEhAR98cUXKlu2rIYMGVLUtQIAAACASyjunmjTpk0aPXq0GjRooBkzZkiSfH1989yYPjMzU5Lk7+8vX19fSVJWVpb9v3O38fPzM1yL2WxSYGCZP9/wFhYQYPz9Q+lgzNwPY+Z+GLNbB2Ppuhgb12YoXAkODlZiYqL++c9/6vPPP5fNZtOGDRskSU2aNNFLL72k0NDQIi0UAAAAAFxFcfZES5Ys0eTJkxUdHa3p06fbz0QJCQnRqVOnHLbNfRwcHKzs7Gz7surVqztsc7P7w/wZq9Wm9PRLhvd3ZxaLWQEBfkpPv6ycHGtpl4MCYMzcD2Pmfhgz15Q7LkYwlq6Hf2elKyDAr0BnDRkKVyQpNDRU8+fP14ULF3To0CFZrVaFhoYqKCjI6FMCAAAAgNsojp5o2bJlevnll9WrVy+98MILMpv/aOoiIyOVmJionJwcWSwWSdK2bdtUo0YNBQUFqVy5cipbtqx27NhhD1fS09O1Z88excXFFeq1Zmd7dlOfk2P1+PfA3TBm7ocxcz+M2a2DsXRdjI1rMxyu5CpXrpzq1atXFLUAAAAAgNspqp4oJSVFU6ZMUXR0tAYOHKi0tDT7Ol9fX8XGxmrhwoUaP368nnnmGX333XdKSEjQpEmTJP1+r5W4uDhNnz5dFSpUUNWqVTVt2jSFhIQoOjq60PUBAAAA+EOBwpXnn39eTzzxhBo0aGB//GdMJpOmTJlSuOoAAAAAwAWURE+0YcMGXb16VRs3btTGjRsd1sXExGjq1KlauHChJk+erJiYGFWsWFFjx45VTEyMfbsRI0YoOztbEyZM0JUrVxQZGan4+Pg8N7kHAAAAUDgFCldWr16tFi1a2BuJ1atX/+k+hCsAAAAAbhUl0RMNGjRIgwYNuuk29evX14oVK2643mKxaMyYMRozZkyBjwsAAADAeQUKVzZv3qwKFSo4PAYAAAAAT0FPBAAAAOBaBQpXqlatmu/j9PR0lS1b1n6TxZ9//lkVK1ZU+fLli7ZKAAAAAChF9EQAAAAArmU2uuPMmTPVqlUrHT582L5swYIFatmypRYtWlQkxQEAAACAq6InAgAAADxXgc5cud7KlSv11ltvqUmTJvLx8bEvf+yxx/Tbb79p2rRpqly5sh5++OEiKxQAAAAAXAU9EQAAAODZDJ25smzZMt13331aunSpKleubF/eokULLVq0SM2bN9fixYuLrEgAAAAAcCX0RAAAAIBnMxSupKamqn379jdcHx0drYMHDxouCgAAAABcGT0RAAAA4NkMhSt+fn46ffr0DdefPXtWFovFcFEAAAAA4MroiQAAAADPZihcadKkiZYtW5ZvM3HmzBklJiaqcePGhS4OAAAAAFwRPREAAADg2Qzd0H7AgAF68skn9eijj6pLly666667ZDKZ9Msvv+jDDz/UuXPnNGTIkKKuFQAAAABcAj0RAAAA4NkMhSv16tXT3Llz9dJLL+ntt992WBcSEqL//Oc/ql+/flHUBwAAAAAuh54IAAAA8GyGwhVJatWqlT799FPt2bNHR48eVXZ2tkJDQ1WnTh2uLQwAAADglkdPBAAAAHguw+FKrtq1a6t27dpFUQsAAAAAuB16IgAAAMDzFChcmTNnjtq3b6/w8HD74z9jMpk0dOjQwlUHAAAAAC6AnggAAADAtQocrtxxxx00EgAAAAA8Ej0RAAAAgGsVKFyJj4/XPffcY3/8zjvvFFtBAAAAAOBq6IkAAAAAXKtA4coLL7ygUaNGqUuXLpKk48ePq2nTpgoNDS22wlJSUtS1a1f94x//UNeuXSVJe/fu1eTJk/XDDz+ofPny6tWrl/r161dsNQAAAACAVDo9EQAAAADXZS7IRmfOnFFGRob98fPPP6/du3cXV026evWqRo8erUuXLtmXnT17Vn379tWdd96ppKQkDR8+XLNmzVJSUlKx1QEAAAAAUsn3RAAAAABcW4HOXKlSpYrmzp2ro0ePqkyZMrLZbPrkk0906NChG+5TmOsLv/HGGypTpozDspUrV8rb21sTJ06Ul5eXwsLClJqaqgULFig2NtbQcQAAAACgIEq6JwIAAADg2goUrowcOVLjxo3T4sWLJf3eJHzyySf65JNPbriP0UZi586dWrFihdasWaMHHnjAvjw5OVmRkZHy8vqj5KioKL311ltKS0tTUFCQ08cCAAAAgIIoyZ4IAAAAgOsrULgSHR2tqKgoHTp0SFlZWerdu7cGDRqkFi1aFGkx6enpGjt2rCZMmKDKlSs7rDtx4oTCw8MdllWqVEnS79c7JlwBAAAAUFxKqicCAAAA4B4KFK60bdvW4eaNVapUUZUqVdSsWbMiLWbixIlq2LChOnfunGfdlStX5O3t7bDMx8dHkpSZmVmo43p5FejWMyghFovZ4W+goJg7uJ7RucAcQkHwMwdGMG/cV0n1RAAAAADcQ4HCletv3nj8+HH5+fkVaSFr1qxRcnKyPvzww3zX+/r6Kisry2FZbqji7+9v+Lhms0mBgWX+fEOUuICAop1j8BzMHRQWcwjOYL7ACOaN+ymJnggAAACA+zB0Q3tJ2rhxo1JTU2+4j7PXF05KSlJaWprDfVYk6aWXXlJ8fLyqVKmiU6dOOazLfRwcHFzg41zParUpPf2S4f1R9CwWswIC/JSeflk5OdbSLgduhLmD6+XOCWcxh1AQ/MyBEaU9bwIC/DhrxqCS6IkAAAAAuA+XuaH99OnTdeXKFYdl7du314gRI/TII4/oo48+UmJionJycmSxWCRJ27ZtU40aNQp9v5XsbH4h4opycqyMDQxh7qCwmENwBvMFRjBv3A83tAcAAABwrQKFKw8//HCx37zxRmefBAUFqWrVqoqNjdXChQs1fvx4PfPMM/ruu++UkJCgSZMmFVkNAAAAAJCfkuiJAAAAALiPAoUrkhQYGKjAwEBJUmRkpO69994SvXljUFCQFi5cqMmTJysmJkYVK1bU2LFjFRMTU2I1AAAAAPBcpd0TAQAAAHAdBQ5XrvXuu+/a/zslJUXHjh1TnTp15OfnJ7PZLG9v7yIp7qeffnJ4XL9+fa1YsaJInhsAAAAAjCqpnggAAACAazJ8N8vdu3erc+fOeuSRR9S/f3/t27dP33zzjR544AGtX7++KGsEAAAAAJdDTwQAAAB4LkPhys8//6y+ffvqt99+06OPPmpf7ufnp5ycHI0ePVo7d+4ssiIBAAAAwJXQEwEAAACezVC48sYbb8jf31/r1q3TuHHjZLPZJEmNGjXS2rVrVbFiRS1YsKBICwUAAAAAV0FPBAAAAHg2Q+HK119/rSeeeEJBQUEymUwO64KDg9W9e3ft2bOnSAoEAAAAAFdDTwQAAAB4NkPhysWLFxUcHHzD9bfffrvS09MNFwUAAAAAroyeCAAAAPBshsKV0NBQff/99zdcv337dlWtWtVwUQAAAADgyuiJAAAAAM9mKFzp1KmTVq9erU8++cS+zGQyyWq1av78+dq4caM6dOhQZEUCAAAAgCuhJwIAAAA8m5eRnfr376//+7//09/+9jcFBATIZDLppZde0rlz53T+/HlFRERo4MCBRV0rAAAAALgEeiIAAADAsxk6c8Xb21tvv/22nn32WVWpUkW+vr769ddfFRQUpMGDB2vZsmXy8/Mr6loBAAAAwCXQEwEAAACezdCZK5J022236ZlnntEzzzxTlPUAAAAAgFugJwIAAAA8l+FwRZIyMjL05Zdf6ujRo/L29laVKlXUsmVL+fr6FlV9AAAAAOCy6IkAAAAAz2Q4XNmwYYNefPFFpaeny2azSfr9Bo5lypTRP//5Tz3yyCNFViQAAAAAuBp6IgAAAMBzGQpXvv32Wz377LMqV66cRowYobvvvltWq1X79+/XkiVLNHbsWIWGhqp+/fpFXS8AAAAAlDp6IgAAAMCzGQpX3nzzTZUvX14ffPCBgoKC7Mvbt2+vHj16qEuXLlq4cKFmz55dZIUCAAAAgKugJwIAAAA8m9nITv/73//UvXt3hyYiV1BQkLp3765du3YVujgAAAAAcEX0RAAAAIBnMxSuXLp0Kd8mIleFChV04cIFw0UBAAAAgCujJwIAAAA8m6FwJTQ0VNu3b7/h+u3bt6tKlSqGiwIAAAAAV0ZPBAAAAHg2Q+FKp06dtHHjRs2ZM0dZWVn25VlZWZozZ442bdqkRx55pMiKBAAAAABXQk8EAAAAeDZDN7Tv37+/PvvsM82ZM0eLFi1S9erVZTKZlJqaqkuXLql27doaMGBAUdcKAAAAAC6BnggAAADwbIbCFW9vb73zzjuKj4/Xf//7Xx06dEg2m03Vq1dXhw4d1K9fP/n6+hZ1rQAAAADgEuiJAAAAAM9mKFyRJF9fXw0dOlRDhw4tynoAAAAAwC3QEwEAAACey+l7rvz444/5Lt+8ebM+/fTTQhcEAAAAAK6MnggAAABAgcOVM2fOKC4uTt26dVN6enqe9UuWLNHQoUP1xBNP6OTJk0VaJAAAAACUNnoiAAAAALkKFK5cunRJvXv3VnJysiIjI3X58uU82/Ts2VMtWrTQ7t279fTTTyszM7PIiwUAAACA0kBPBAAAAOBaBQpXEhIS9PPPP+uf//ynEhISFBwcnGebdu3aKT4+XqNGjdLBgwf17rvvFnmxAAAAAFAa6IkAAAAAXKtA4cqGDRvUunVrPf7443+67YABA9S4cWN9/PHHhS4OAAAAAFwBPREAAACAaxUoXElNTVXz5s0L/KQPPPCAUlJSDBcFAAAAAK6EnggAAADAtQoUrpjNZvn6+hb4ScuXLy+TyWS4KAAAAABwJfREAAAAAK5VoHClSpUq+uWXXwr8pAcOHMj3GsQAAAAA4I7oiQAAAABcq0DhSqtWrfTBBx/o4sWLf7ptenq61q5dq0aNGhW6OAAAAABwBfREAAAAAK5VoHDliSeeUGZmpgYOHKizZ8/ecLu0tDQNHTpU6enp6tmzZ5EVCQAAAACliZ4IAAAAwLW8CrJR9erVNX78eP3jH/9Q27Zt9cgjj6hx48aqVKmScnJydPr0ae3atUuffPKJLl68qOeee0516tQp7toBAAAAoETQEwEAAAC4VoHCFUnq1q2bKlWqpBdffFHvv/++kpKSHNbbbDZVq1ZN06ZNU5s2bYq8UAAAAAAoTfREAAAAAHIVOFyRpNatW2vr1q3avn27vv32W506dUoWi0XBwcFq1qyZ6tevX1x1AgAAAECpoycCAAAAIDkZrkiSyWRS8+bN1bx58+KoBwAAAABcGj0RAAAAgALd0B4AAAAAAAAAAAC/I1wBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnFCgcGXx4sU6ePBgcdcCAAAAAC6JnggAAADAtQoUrsyePVu7d++2P27btq02b95cXDUBAAAAgEuhJwIAAABwrQKFK2azWdu2bdPFixclSceOHdPly5eLtTAAAAAAcBX0RAAAAACu5VWQjVq1aqV169bpo48+kiSZTCaNGTNGY8aMueE+JpNJe/bsKZoqAQAAAKAU0RMBAAAAuFaBwpVXXnlFlStX1v79+5WVlaXk5GTVqFFDQUFBxV0fAAAAAJQ6eiIAAAAA1ypQuFK2bFmNGzfO/jgiIkKDBw9W586di60wAAAAAHAV9EQAAAAArlWge65c75133lGLFi2KuhYAAAAAcAsl0RPNnTtXvXr1clj2/PPPq1atWg5/7r//fvt6q9Wq2bNnq1WrVmrQoIGefvpppaamFmudAAAAgCcq0Jkr12vWrJkkac2aNVq/fr2OHj0qb29vVa5cWQ899JAeffTRIi0SAAAAAFxJcfdEb7/9tmbPnq3IyEiH5T/99JMGDRqkuLg4+zKLxWL/77lz5yoxMVGvvvqqgoODNW3aNPXv31/r1q2Tt7d3oWoCAAAA8AdD4YrNZtOIESO0adMm2Ww2lStXTlarVXv37tWWLVv03//+V3Pnzi3qWgEAAADAJRRXT3Ty5EmNHz9eu3btUo0aNRzW5eTk6MCBAxoyZIgqVqyYZ9+srCwtWrRIY8aMUevWrSVJM2fOVKtWrbRx40Z17NjR2IsFAAAAkIehy4ItWbJEGzduVOfOnfXZZ59p586d2rVrl7Zs2aJHH31UW7Zs0fLly4u6VgAAAABwCcXVE/3444+6/fbbtXbtWjVo0MBh3aFDh5SZmamwsLB89923b58uXryoqKgo+7KAgADVrl1bO3fudLoWAAAAADdm6MyVpKQkNWvWTK+//rrD8sqVK+u1117TiRMnlJSUpB49ehRJkQAAAADgSoqrJ2rTpo3atGmT77r9+/fLZDIpISFBn3/+ucxms1q3bq2RI0eqXLlyOnHihL2Ga1WqVEm//vqrU3Vcz8vL0Pfy3J7FYnb4G66PMXM/jJn7YcxcU2HGg7F0Pfw7cw+GwpWUlBSNHj36huvbtWunmTNnGi4KAAAAAFxZafREP//8s8xms6pWrap58+YpNTVVr732mvbv36+EhARdvnxZkvLcW8XHx0fnz583fFyz2aTAwDKFqt3dBQT4lXYJcBJj5n4YM/fDmN06GEvXxdi4NkPhipeXly5dunTD9ZcuXZLJZDJcFAAAAAC4stLoiYYPH64+ffooICBAkhQeHq6KFSuqe/fu+v777+Xr6yvp93uv5P63JGVmZsrPz3hjbrXalJ5+49d6K7NYzAoI8FN6+mXl5FhLuxwUAGPmfhgz98OYuabccTGCsXQ9/DsrXQEBfgU6a8hQuFK3bl2tWrVKffr0kY+Pj8O6y5cva9WqVapdu7aRpwYAAAAAl1caPZHJZLIHK7nCw8MlSSdOnLBfDuzUqVOqXr26fZtTp04pIiKiUMfOzvbspj4nx+rx74G7YczcD2PmfhizWwdj6boYG9dm6KJtTz/9tFJTU/XXv/5V69at0759+7Rv3z59+OGH6tatmw4fPqy+ffsWda0AAAAA4BJKoyd69tln1a9fP4dl33//vSSpZs2aioiIUNmyZbVjxw77+vT0dO3Zs0dNmzYt0loAAAAAT2fozJXWrVtr7NixmjFjhsaMGeOwzmw26+9///sNb8IIAAAAAO6uNHqiTp06afDgwXrzzTfVsWNHpaSk6J///Kc6deqksLAwSVJcXJymT5+uChUqqGrVqpo2bZpCQkIUHR1dpLUAAAAAns5QuCL9/k2t6Ohobdq0SYcPH5bNZlP16tUVHR2tatWqFWWNAAAAAOBySronevDBBzVr1izNmzdP8+bNU7ly5dS5c2eNHDnSvs2IESOUnZ2tCRMm6MqVK4qMjFR8fHyem9wDAAAAKBzD4YokVatWjct/AQAAAPBYxdkTTZ06Nc+yDh06qEOHDjfcx2KxaMyYMXnOpgEAAABQtAzdcwUAAAAAAAAAAMBTEa4AAAAAAAAAAAA4gXAFAAAAAAAAAADACYQrAAAAAAAAAAAATjAUrixfvlyHDh0q4lIAAAAAwD3QEwEAAACezVC4Mn36dH344YdFXQsAAAAAuAV6IgAAAMCzGQpXzGazAgMDi7oWAAAAAHAL9EQAAACAZzMUrvTr10/z58/XF198IavVWtQ1AQAAAIBLoycCAAAAPJuXkZ12796tjIwMDRgwQN7e3goMDJTFYnHYxmQyadOmTU49b1pamqZOnaovvvhCmZmZioyM1NixY1WzZk1J0t69ezV58mT98MMPKl++vHr16qV+/foZeQkAAAAAYFhx9UQAAAAA3IOhM1f279+v8uXLq3LlygoKCpLZbJbNZnP4Y+TbW4MHD9aRI0e0YMECvf/++/L19VWfPn10+fJlnT17Vn379tWdd96ppKQkDR8+XLNmzVJSUpKRlwAAAAAAhhVXTwQAAADAPRg6c+XTTz8t6jp09uxZhYaGavDgwbr77rslSUOGDFGXLl30888/a9u2bfL29tbEiRPl5eWlsLAwpaamasGCBYqNjS3yegAAAADgRoqjJwIAAADgPgyduXK9rKysQn8rKzAwUDNmzLAHK7/99pvi4+MVEhKimjVrKjk5WZGRkfLy+iMPioqKUkpKitLS0gp1bAAAAAAojKLoiQAAAAC4D0NnrkjSuXPnNHv2bH3yySc6c+aM4uPjddttt2nhwoUaN26catSoYbiof/zjH1q5cqW8vb315ptvyt/fXydOnFB4eLjDdpUqVZIkHT9+XEFBQYaP5+VVJBkTiojFYnb4Gygo5g6uZ3QuMIdQEPzMgRHMm1tLcfZEAAAAAFyboXDl3Llz6t69u1JTU1WtWjXZbDZJ0vnz57V161Z99913WrFihapVq2aoqN69e6t79+5avny5hg4dqmXLlunKlSvy9vZ22M7Hx0eSlJmZaeg4kmQ2mxQYWMbw/ig+AQF+pV0C3BRzB4XFHIIzmC8wgnnj/oq7JwIAAADg2gyFK3PmzNGxY8e0ePFi1apVSy1atJAktW3bVvPnz9eIESM0d+5cvfrqq4aKqlmzpiTp5Zdf1u7du7VkyRL5+voqKyvLYbvcUMXf39/QcSTJarUpPf2S4f1R9CwWswIC/JSeflk5OVxaAQXH3MH1cueEs5hDKAh+5sCI0p43AQF+nDVTRIq7JwIAAADg2gzf0P7xxx9X8+bNdfbsWYd1999/v7p3766NGzc69ZxpaWnatm2bHn74YVksFkmS2WxWWFiYTp06pZCQEJ06dcphn9zHwcHBRl6GXXY2vxBxRTk5VsYGhjB3UFjMITiD+QIjmDfurzh6IgAAAADuw9DX1k6dOqWIiIgbrg8LC9Pp06edfs5nn31WX3/9tX3Z1atXtWfPHoWFhSkyMlK7du1STk6Off22bdtUo0aNQt1vBQAAAACcVRw9EQAAAAD3YShcCQoK0rFjx264fv/+/QoMDHTqOSMiItSyZUtNmjRJycnJ2r9/v8aNG6f09HT16dNHsbGxysjI0Pjx43XgwAGtWrVKCQkJGjhwoJGXAAAAAACGFUdPBAAAAMB9GApX7r//fiUmJuro0aN51n3zzTdauXKlWrZs6dRzmkwm/fvf/1ZUVJRGjhypbt266fz581q6dKmqVKmioKAgLVy4UCkpKYqJidGcOXM0duxYxcTEGHkJAAAAAGBYcfREAAAAANyHoXuuDBs2TFu2bFFMTIyaNGkik8mkxMREJSQk6IsvvlDZsmU1ZMgQp5+3XLlymjhxoiZOnJjv+vr162vFihVGSgYAAACAIlNcPREAAAAA92DozJXg4GAlJiaqUaNG+vzzz2Wz2bRhwwZt3bpVDRs21LvvvqvQ0NCirhUAAAAAXAI9EQAAAODZDJ25IkmhoaGaP3++Lly4oEOHDslqtSo0NJSbywMAAADwCPREAAAAgOcydObKtbKzs2Wz2eTl5SUfH5+iqAkAAAAA3AY9EQAAAOB5DJ+58v333+v111/Xrl27ZLPZJElms1n33Xefxo8frzvuuKPIigQAAAAAV0NPBAAAAHguQ+HKjz/+qF69eikrK0utWrXSnXfeKavVql9++UVffPGFnnjiCa1cuVLVqlUr6noBAAAAoNTREwEAAACezVC4Mnv2bHl7eysxMVEREREO63bv3q2+fftqxowZmjlzZpEUCQAAAACuhJ4IAAAA8GyG7rmSnJysXr165WkiJKlhw4aKi4vTV199VejiAAAAAMAV0RMBAAAAns1QuGIymRQQEHDD9aGhocrOzjZcFAAAAAC4MnoiAAAAwLMZCldat26tDz74QFlZWfmuX79+vVq2bFmowgAAAADAVdETAQAAAJ6tQPdc2blzp8Pjtm3basKECerZs6cGDBigu+66S2azWYcPH9aSJUv0888/69///ndx1AsAAAAAJY6eCAAAAMC1ChSu9OrVSyaTyWGZzWbT999/rxEjRuRZLklPPfWU9u7dW0RlAgAAAEDpoScCAAAAcK0ChStDhw7N00gAAAAAgKegJwIAAABwrQKFK8OHDy/uOgAAAADAZdETAQAAALiWoRvaAwAAAAAAAAAAeKoCnblyvYyMDP3rX//S1q1bdfLkSfs1ha9lMpm0Z8+eQhcIAAAAAK6GnggAAADwbIbClddff10rV65UpUqV1LBhQ1kslqKuCwAAAABcFj0RAAAA4NkMhStbtmxRu3btNHv2bJnNXFkMAAAAgGehJwIAAAA8m6EuICMjQ61bt6aJAAAAAOCR6IkAAAAAz2aoE2jcuLF+/PHHoq4FAAAAANwCPREAAADg2QyFK2PGjNH69euVkJCg06dPF3VNAAAAAODS6IkAAAAAz2bonitVq1ZVrVq1NHXqVE2dOjXfbUwmk/bs2VOo4gAAAADAFdETAQAAAJ7NULgyefJkff3116pQoYLuuOMOeXkZehoAAAAAcEv0RAAAAIBnM9QBbNmyRW3bttWsWbNoIgAAAAB4HHoiAAAAwLMZuudKVlaWHnjgAZoIAAAAAB6JnggAAADwbIbClUaNGunHH38s6loAAAAAwC3QEwEAAACezVC48uyzz+qjjz7SokWLdPLkSeXk5BR1XQAAAADgsuiJAAAAAM9m6Bz25557TmazWdOmTdO0adPy3cZkMmnPnj2FKg4AAAAAXBE9EQAAAODZDIUr5cuXV/ny5Yu4FAAAAABwD/REAAAAgGczFK68++67RV0HAAAAALgNeiIAAADAsxm65woAAAAAAAAAAICnMnTmyvPPP/+n25hMJk2ZMsXI0wMAAACAS6MnAgAAADyboXBl9erVN1xnMpnk7e0tHx8fGgkAAAAAtyR6IgAAAMCzGQpXNm/enGdZTk6OTp8+rdWrV2v79u1atmxZoYsDAAAAAFdETwQAAAB4NkPhStWqVfNdXr16dTVp0kSDBg3Sv/71L7322muFKg4AAAAAXBE9EQAAAODZiuWG9m3atNFnn31WHE8NAAAAAC6PnggAAAC4tRVLuHL69GlduXKlOJ4aAAAAAFwePREAAABwazN0WbDjx4/nu/zKlSv64YcflJCQoDp16hSqMAAAAABwVfREAAAAgGczFK60adNGJpPphuvNZrOGDRtmuCgAAAAAcGX0RAAAAIBnMxSuPPbYY/k2EhaLRZUqVVJMTIyqVatW6OIAAAAAwBXREwEAAACezVC4MnXq1KKuAwAAAADcBj0RAAAA4NmK5Yb2AAAAAAAAAAAAt6oCnbkyZ84cQ0/ONYYBAAAA3AroiQAAAABcq8jDlWuvO0wjAQAAAOBWQE8EAAAA4FoFClfeeeedP93GZrNp6dKl+uSTTyRJrVu3LlxlAAAAAOAi6IkAAAAAXKtA4UqzZs1uuv748eN64YUXtGPHDpUrV07PPfecYmNji6RAAAAAACht9EQAAAAArlWgcOVmEhMTNW3aNF28eFEtW7bU5MmTFRwcXBS1AQAAAIDLoycCAAAAPI/hcOXEiRMaP368/u///k9lypTRyy+/rG7duhVlbfAAZrNJZrPJYZnFYnb4+3pWq01Wq63YawMAAABuhp4IAAAA8FyGwpX33ntPr732mjIyMtSiRQtNnjxZlStXLuracIszm00qX97/hiFKQIBfvstzcqw6d+4SAQsAAABKDT0RAAAA4NmcCldOnjypCRMm6Msvv5Sfn58mTpyoJ554orhqwy3ObDbJYjFr+tJdOnryQoH2CQ0up9E9m8hsNhGuAAAAoMTREwEAAACQnAhXVq9erVdffVXp6emKiorS5MmTVbVq1eKsDR7i6MkLOnjsfGmXAQAAANwUPREAAACAXAUKVwYNGqTPPvtMkvTQQw/pySef1PHjx3X8+PGb7hcZGVn4CgEAAACglNETAQAAALhWgcKVrVu32v97w4YN2rBhQ4GefO/evYaKAgAAAABXUho90dy5c7Vt2za9++67Ds83efJk/fDDDypfvrx69eqlfv362ddbrVbNmTNH7733ntLT09WkSRO99NJLuuOOOwzXAQAAACCvAoUrw4YNK+46AAAAAMBllXRP9Pbbb2v27NkOZ76cPXtWffv2Vbt27TRp0iTt3r1bkyZNUvny5RUbGyvp90AmMTFRr776qoKDgzVt2jT1799f69atk7e3d4m+BgAAAOBWRrgCAAAAAH+ipHqikydPavz48dq1a5dq1KjhsG7lypXy9vbWxIkT5eXlpbCwMKWmpmrBggWKjY1VVlaWFi1apDFjxqh169aSpJkzZ6pVq1bauHGjOnbsWCKvAQAAAPAE5tIuAAAAAADwux9//FG333671q5dqwYNGjisS05OVmRkpLy8/viOXFRUlFJSUpSWlqZ9+/bp4sWLioqKsq8PCAhQ7dq1tXPnzhJ7DQAAAIAnKNCZKwAAAACA4temTRu1adMm33UnTpxQeHi4w7JKlSpJko4fP64TJ05IkipXrpxnm19//bUYqgUAAAA8F+EKAAAAALiBK1eu5Llvio+PjyQpMzNTly9flqR8tzl//nyhju3l5ZkXPbBYzA5/w/UxZu6HMXM/jJlrKsx4MJauh39n7oFwBQAAAADcgK+vr7KyshyWZWZmSpL8/f3l6+srScrKyrL/d+42fn5+ho9rNpsUGFjG8P63goAA4+8fSgdj5n4YM/fDmN06GEvXxdi4NsIVAAAAAHADISEhOnXqlMOy3MfBwcHKzs62L6tevbrDNhEREYaPa7XalJ5+yfD+7sxiMSsgwE/p6ZeVk2Mt7XJQAIyZ+2HM3A9j5ppyx8UIxtL18O+sdAUE+BXorCHCFQAAAABwA5GRkUpMTFROTo4sFoskadu2bapRo4aCgoJUrlw5lS1bVjt27LCHK+np6dqzZ4/i4uIKdezsbM9u6nNyrB7/Hrgbxsz9MGbuhzG7dTCWrouxcW1ctA0AAAAA3EBsbKwyMjI0fvx4HThwQKtWrVJCQoIGDhwo6fd7rcTFxWn69OnavHmz9u3bp7///e8KCQlRdHR0KVcPAAAA3Fo4cwUAAAAA3EBQUJAWLlyoyZMnKyYmRhUrVtTYsWMVExNj32bEiBHKzs7WhAkTdOXKFUVGRio+Pj7PTe4BAAAAFA7hCgAAAAC4oKlTp+ZZVr9+fa1YseKG+1gsFo0ZM0ZjxowpztIAAAAAj8dlwQAAAAAAAAAAAJxAuAIAAAAAAAAAAOAElwpXzp07pxdffFH333+/GjdurB49eig5Odm+fu/evYqLi1PDhg31wAMPKD4+vhSrBQAAAAAAAAAAnsilwpVRo0bp22+/1YwZM/T++++rTp066tevnw4ePKizZ8+qb9++uvPOO5WUlKThw4dr1qxZSkpKKu2yAQAAAAAAAACAB3GZG9qnpqbqq6++0vLly9W4cWNJ0vjx4/X5559r3bp18vX1lbe3tyZOnCgvLy+FhYUpNTVVCxYsUGxsbClXDwAAAAAAAAAAPIXLnLkSGBio+fPnq27duvZlJpNJNptN58+fV3JysiIjI+Xl9UceFBUVpZSUFKWlpZVGyQAAAAAAAAAAwAO5zJkrAQEBat26tcOy9evX6/Dhw2rZsqVmzpyp8PBwh/WVKlWSJB0/flxBQUGGj+3l5TIZk0exWIy/74XZF7eu3HnB/EAuo3OBOYSC4GcOjGDeAAAAAMCtwWXClevt2rVLL7zwgtq2bas2bdro1Vdflbe3t8M2Pj4+kqTMzEzDxzGbTQoMLFOoWlHyAgL8SrsEuDDmBwqLOQRnMF9gBPMGAAAAANybS4YrmzZt0ujRo9WgQQPNmDFDkuTr66usrCyH7XJDFX9/f8PHslptSk+/ZLxYGGaxmA3/YiE9/bJycqxFXBHcXe6cYn4gl9GfM8whFAQ/c2BEac+bgAA/zpoBAAAAgCLgcuHKkiVLNHnyZEVHR2v69On2s1VCQkJ06tQph21zHwcHBxfqmNnZ/ELE3eTkWBk33BDzA4XFHIIzmC8wgnkDAAAAAO7Npb62tmzZMr388svq2bOn/v3vfztcBiwyMlK7du1STk6Ofdm2bdtUo0aNQt1vBQAAAAAAAAAAwBkuE66kpKRoypQpio6O1sCBA5WWlqbTp0/r9OnTunDhgmJjY5WRkaHx48frwIEDWrVqlRISEjRw4MDSLh0AAAAAAAAAAHgQl7ks2IYNG3T16lVt3LhRGzdudFgXExOjqVOnauHChZo8ebJiYmJUsWJFjR07VjExMaVUMQAAAAAAAAAA8EQuE64MGjRIgwYNuuk29evX14oVK0qoIgAAAAAAAAAAgLxc5rJgAAAAAAAAAAAA7oBwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBK/SLgAAAFdjsTj33QOr1Sar1VZM1QAAAAAAAMDVEK4AAPD/lS/nI6vVpoAAP6f2y8mx6ty5SwQsAAAAAAAAHoJwBQCA/6+s320ym02avnSXjp68UKB9QoPLaXTPJjKbTYQrAAAAAIAiYzabZDabCrSts1dgAFB4hCsAAFzn6MkLOnjsfGmXAQAAAADwUGazSeXL+xOaAC6McAUAAAAAAAAAXIjZbJLFYi7wlRUaR1TSU4/ULoHKAOQiXAEAAAAAAAAAF1TQKyuEVipbAtUAuBbnlQEAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnOBV2gUAAAAAAAAAAEqHxeLc9++tVpusVlsxVQO4D8IVAAAAAAAAAPAw5cv5yGq1KSDAz6n9cnKsOnfuEgELPB7hCgAAAAAAAAB4mLJ+t8lsNmn60l06evJCgfYJDS6n0T2byGw2Ea7A4xGuAAAAAAAAAICHOnrygg4eO1/aZQBuhxvaAwAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAAAAAAAAAE4gXAEAAAAAAAAAAHAC4QoAAAAAAAAAAIATCFcAAAAAAAAAAACcQLgCAAAAAAAAAADgBMIVAAAAAAAAAAAAJxCuAAAAAAAAAAAAOIFwBQAAAAAAAAAAwAmEKwAAAADgRo4dO6ZatWrl+fPee+9Jkvbu3au4uDg1bNhQDzzwgOLj40u5YgAAAODW41XaBQAAAAAACu6nn36Sj4+PNm3aJJPJZF9erlw5nT17Vn379lW7du00adIk7d69W5MmTVL58uUVGxtbilUDAAAAtxbCFQAAAABwI/v371eNGjVUqVKlPOsSEhLk7e2tiRMnysvLS2FhYUpNTdWCBQsIVwAAAIAixGXBAAAAAMCN/PTTT6pZs2a+65KTkxUZGSkvrz++RxcVFaWUlBSlpaWVVIkAAADALY9wBQAAAADcyP79+5WWlqYnn3xSLVq0UI8ePfTFF19Ikk6cOKGQkBCH7XPPcDl+/HiJ1woAAADcqrgsGAAAAAC4iaysLB06dEh+fn4aO3as/P39tXbtWvXv31+LFy/WlStX5O3t7bCPj4+PJCkzM9Pwcb28PPN7eRaL2eFvuD7GzP0wZu6HMSsZrv7+unp97o5/Z+6BcAUAAAAA3IS3t7d27twpLy8ve4hSt25dHTx4UPHx8fL19VVWVpbDPrmhir+/v6Fjms0mBQaWKVzhbi4gwK+0S4CTGDP3w5i5H8bMszH+JYP32bW5bLgyd+5cbdu2Te+++6592d69ezV58mT98MMPKl++vHr16qV+/fqVYpUAAAAAULLyC0nCw8P15ZdfKiQkRKdOnXJYl/s4ODjY0PGsVpvS0y8Z2tfdWSxmBQT4KT39snJyrKVdDgqAMXM/jJn7YcxKRu777KoY/+LFv7PSFRDgV6CzhlwyXHn77bc1e/ZsRUZG2pedPXtWffv2Vbt27TRp0iTt3r1bkyZNUvny5RUbG1uK1QIAAABAydi3b5969OihBQsWqGnTpvblP/zwg2rWrKl77rlHiYmJysnJkcVikSRt27ZNNWrUUFBQkOHjZmd7dlOfk2P1+PfA3TBm7ocxcz+MmWdj/EsG77Nrc6lw5eTJkxo/frx27dqlGjVqOKxbuXKlvL29NXHiRHl5eSksLEypqalasGAB4QoAAAAAjxAeHq67775bkyZN0ksvvaTAwECtXLlSu3fv1vvvv6+//OUvWrhwocaPH69nnnlG3333nRISEjRp0qTSLh0AAAC4pbjUHXF+/PFH3X777Vq7dq0aNGjgsC45OVmRkZHy8vojD4qKilJKSorS0tJKulQAAAAAKHFms1nz5s1TvXr1NHLkSMXExOjbb7/V4sWLVatWLQUFBWnhwoVKSUlRTEyM5syZo7FjxyomJqa0SwcAAABuKS515kqbNm3Upk2bfNedOHFC4eHhDssqVaokSTp+/HihTnEHAAAAAHdRoUIFTZky5Ybr69evrxUrVpRgRQAAAIDncalw5WauXLkib29vh2U+Pj6SpMzMzEI9t5eXS53A4zEKclOg4tgXt67cecH8KByTySSz2eTUPlarTTabrZgqMq4k58Jtt1mcOp6rvmcoOH7mwAjmDQAAAADcGtwmXPH19VVWVpbDstxQxd/f3/Dzms0mBQaWKVRtKHkBAX6lXQJcGPOjcKxWm6Fwxdl9bhXly/nIarWpbFlfp/bz5PfsVsPPHBjBvAEAAAAA9+Y24UpISIhOnTrlsCz3cXBwsOHntVptSk+/VKjaYIzFYjb8i4X09MvKybEWcUVwd7lzivlhXO57OH3pLh09eaFA+4QGl9Ponk1c8n0vzM+Zgirrd5vMZtMt856h4PiZAyNKe94EBPhx1gwAAAAAFAG3CVciIyOVmJionJwcWSwWSdK2bdtUo0aNQt9vJTubX4i4m5wcK+OGG2J+FN7Rkxd08Nh5p/bx9Ped98xzMY4wgnkDAAAAAO7Nbb62Fhsbq4yMDI0fP14HDhzQqlWrlJCQoIEDB5Z2aQAAAAAAAAAAwIO4TbgSFBSkhQsXKiUlRTExMZozZ47Gjh2rmJiY0i4NAAAAAAAAAAB4EJe9LNjUqVPzLKtfv75WrFhRCtUAAAAAAAAAAAD8zm3OXAEAAAAAAAAAAHAFhCsAAAAAAAAAAABOIFwBAAAAAAAAAABwAuEKAAAAAAAAAACAEwhXAAAAAAAAAAAAnEC4AgAAAAAAAAAA4ATCFQAAAAAAAAAAACcQrgAAAAAAAAAAADiBcAUAAAAAAAAAAMAJXqVdAAAAAAAA/6+9O4+rqtz3OP5loyAGOJQ4oVYWkOKMc2Za6k1NEztZKebNnErUw0lM8zS8NMvh6lW7ZoUepxQHRMXhmEM304zS09FMbUBTMZVyCidQ9rp/ePfOLSCsLewBP+/Xy9dL1n6etX9rPWtv1sNvPc8DAEBJZrH4yGLxKXR5X1+eiQc8HckVAAAAAAAAACgmFouPypcvS8IEKGFIrgAAAAAAAABAMbFYfOTra9GUT3Yr/VRmoeo0jghR3851ijkyALeD5AoAAAAAAAAAFLP0U5lKO36+UGVDQwKLORoAt4uxaAAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMILkCAAAAAAAAAABgAskVAAAAAAAAAAAAE0iuAAAAAAAAAAAAmEByBQAAAAAAAAAAwASSKwAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMILkCAAAAAAAAAABgQil3BwAAAAAAAAAA3sJi8ZHF4lPo8r6+PN8OlEQkVwAAAAAAAACgECwWH5UvX5aECQCSKwAAAAAAAABQGBaLj3x9LZryyW6ln8osVJ3GESHq27lOMUfmWmaTS1arIavVKKZoAPcguQIAAAAAAAAAJqSfylTa8fOFKhsaEljM0bhO+SB/Wa2GgoMDTNXLybHq3LlLJFhQopBcAQAAAAAAAAAUKDCgtCwWH1Mjd0IrB+nV3k1ksfiQXEGJQnIFALyI2UXzJM8deuvMsZjFHLgAAAAAABQ9MyN3gJKK5AoAeAlnF83zxKG3Th+L1ZBvMSdkAAAAAAAAgIKQXAEAL+HMonmeOvT2dhYAvNMXDQQAAAAAAID7kVwBAC9TkobeOrMA4J26aCAAAAAA4NZK0lTaADwfyRUAAAAAAAAAXq0kTaUNwDuQXAEAAAAAAADg1UrSVNoAvAPJFQAAAAAAAAAlQkmaShuAZyO5AgAAAAAAAOCOZWYqMbPTjgEouUiuAADgJVy1OKPZ92EBSAAAAADeqHyQv6xWQ8HBAe4OBYAXIrkCAIAXcNXijM68DwtAAgAAAPBGgQGlZbH4mFqnpXFEiPp2rlPMkQHwBiRXAADwAq5anNHs+7AAJAAAAABvZ2adltCQwGKOBoC3ILkCAIAXcdXijCwCCQAAAAAAkD9WYAIAAAAAAAAAADCBkSsAAAAAAAAAipXF4iOLxcdUHavVYPphAB6L5AoAAAAAAACAYmOx+Kh8+bLy9TU3iU5OjlXnzl0iwQLAI5FcAYCb8DQNShozHRiznR0AAAAAKIjF4iNfX4umfLJb6acyC1UntHKQXu3dRBaLD/1tAB6J5AoA3ICnaVCSlA/yl9VqKDg4wN2hAAAAAIDST2Uq7fh5d4cBAEWC5AoA3ICnaVCSBAaUlsXiY+p6bhwRor6d6xRzZAAAAAAAAN6N5AoA5IGnaVCSmLmeQ0MCizkaAAAAAAAA78fE6gAAAAAAAAAAACaQXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMYEF7ACWexeIji8WnUGV9fZ3POZuta7UasloNp98P3s/MNXM71yaA4mPmd4zEZxkAAHgeZ+9n6M8AuNORXAFQolksPipfvmyx3siVD/KX1WooODjAVL2cHKvOnbtEguUO5Ow1A8CzOPs7xmo15ONT+D9gAAAAFBdn72dy6M8AAMkVACWbxeIjX1+LpnyyW+mnMgss3zgiRH071zH1HoEBpWWx+BT6PSQptHKQXu3dRBaLD8mVO5Az14wz1yaA4mX2d4zk+P0PAMCdJq8RErcaBcFo/+LnzP2MrW/iqv5MYRM/jI4B4GokVwDcEdJPZSrt+PkCy4WGBBb7ewA2Zq6Z27k2ARQvvv8BAChYQSMk8hoFwWh/13Gmb1Lc/RlG/APwdCRXAAAAAAAAUKzMjpBwdrS/2fVDJEbIeCqzI/4Z7Q/A1UiuAAAAAAAAeKCSmCgozhGfTq8fkmNVZuYVGUbhz5unn+eSxBUzUQCAM0iuAAAAAAAAeJjbSRTcqVNpObN+yEP3VdSA7vVUvnxZU+91J59nAMB1JFcAAAAAAAA8jDOJAmen0ippzK4FYmbqKYnzDAC4juSKm5XEIb4lAe2CkqawT7uZfSoOsDF77dzp35me/HvGbGx3elsCAFDcinMaLfyJ8wwAMIvkihsxxNcz0S4oScoH+ctqNRQcHODuUFBCOXuN3cnfmZ78e8aZ2O7ktgQAAMXPzH0JD4uZf1CGc4Y7nSc/+AbPR3LFjRji65loF5QkgQGlTQ1xbxwRor6d67ggMpQUZq8xie9MT/49Yza2O70tAQB3Nk/+g5wr/mBe3MdSEh8UK+4Rws4+xAO4SnHPeGD2M+bj46OgoDIe+eAbvIPXJVesVqvef/99LV++XH/88YeaNGmiN998U7Vq1XJ3aE5j6Klnol1QkhT2eg4NCXRBNCiJ+M40z5PPmSfHBqBgJbHPBHgaTx2J6vSoYqshX5OJouI+Fmce4vHkh8VcMULYmYd4PPmcoeRwxYwHt5Nc9MQH3+AdvC65MmvWLCUmJurdd99V5cqVNXnyZA0YMEBr166Vn5+fu8MDAAAAALcqaX0mZ0YHOIMpPjyTp05x5KkjUW8nIeHMsZQu7aucHGuh6jjbNmYXp3cls1OWuWqEsCefM9yZbmfGg8J+z5j9jEl/fv/xcBmc5VXJlezsbM2dO1cjR45U27ZtJUnTpk1TmzZttGnTJnXp0sXNEQIAAACA+5S0PpPTowM88Cl8mOds+1uthnx8ij8hJ3nuaE9n/rhupk5JnLLLjNs5fk+9ZgBXcMX3DMlFuJJXJVcOHjyoixcvqkWLFvZtwcHBqlOnjr755huv6ygAAAAAQFEqaX2m25nixtNGFMC82x0d4qkKmyzy5HUzStqUXWa58vjNjo4BSgpPX0O2uNePcYarRvu6ijeMKvYxDMOzI7zBp59+qtjYWO3Zs0dlypSxbx8+fLiuXLmiDz/80PQ+DcN9jeTjI1ksFp3LzNK1Qg6jLeVr+f/MbeHKezpPPX5PjQsFs1gsudrBTHv6+/kqqKyfqfZ3po6z14zZa9NsbCXpWJyp46r2L0l1XHnNeKK8vnMKW89Tz5mZ2EpSWzrrdtrSHXfhFouPy57mhnvQZyr6303OftejaDj/PWtIKu4/YpmLza+0RUFl/Ux/D3va/Z+r6nhqXK6q4+z1InHNeFpcrqrjqXG5qo6r4nL2s2kYhsz+Gd7sPYiPj/l7fcMwP9rTlXXcdQ9a2H6TV41cuXz5siTlmifY399f5887N6TSx8dHvr7u7WCWD/I3XcdiKTlPI3jq8XtqXChYXu1gtj2daX9XXTOuiK0kHYszdTw1Lk+ucyd/Zzp7HJ58zszGVlLa0lme3Ja489Bnur06+X02+cy6l3Nt6SOp+K9bZ2JzxXuUpDqeGpcr67jiPUpSHU+Ny1V1PDUuV9Xx1M+lM4kPqfjvQZyJyZV13H0PWhCvukO0PXmVnZ3tsD0rK0sBAXfmPJ8AAAAAYEOfCQAAAHANr0quVK1aVZKUkZHhsD0jI0NVqlRxR0gAAAAA4DHoMwEAAACu4VXJlYiICAUGBio1NdW+7Y8//tD+/fsVFRXlxsgAAAAAwP3oMwEAAACu4VVrrvj5+alPnz6aMmWKKlasqOrVq2vy5MmqUqWKOnTo4O7wAAAAAMCt6DMBAAAAruFVyRVJGjZsmK5du6axY8fqypUratq0qebMmZNrwUYAAAAAuBPRZwIAAACKn49hGIa7gwAAAAAAAAAAAPAWXrXmCgAAAAAAAAAAgLuRXAEAAAAAAAAAADCB5AoAAAAAAAAAAIAJJFcAAAAAAAAAAABMILkCAAAAAAAAAABgAskVAAAAAAAAAAAAE0iuAAAAAAAAAAAAmEByBR7txIkTiouLU+vWrdW0aVP1799fP/30k7vDghd5/fXX9dprr7k7DHgoq9WqGTNmqE2bNmrQoIFefPFFHTlyxN1hwYvMmjVLMTEx7g4DXuDcuXN644039Mgjj6hx48Z67rnntGvXLneHBaAAu3bt0kMPPaTU1FSH7Tt37lR0dLTq16+vjh07atWqVe4JEHZHjx7VkCFDFBUVpaioKP31r3/VyZMnHcrQbp6lMP192sxz5dfXps08D/1e75FX//LAgQPq06ePGjZsqEcffVRz5sxxU3TIC8kVeKzs7GwNHDhQp0+f1ocffqjFixcrKChIL7zwgs6cOePu8ODhcnJyNHHiRK1YscLdocCDzZo1S4mJiRo/fryWLl0qHx8fDRgwQNnZ2e4ODV5g3rx5mjFjhrvDgJeIi4vTnj17NHXqVK1YsUJ169ZV//79lZaW5u7QAOQjMzNT8fHxslqtDtvT0tI0aNAgtW3bVqtWrVKvXr00ZswY7dy5002RIisrS/369ZMkLVmyRAsXLtRvv/2mQYMGyTAMSbSbpylMf58280y36mvTZp6Jfq93yKt/efbsWf3nf/6n7r33XiUlJSk2NlbTp09XUlKSm6LEzUq5OwAgP7t27dKPP/6obdu2qXLlypKkSZMmqVmzZtq6dauefvppN0cIT5WWlqbRo0fr2LFjqlatmrvDgYfKzs7W3LlzNXLkSLVt21aSNG3aNLVp00abNm1Sly5d3BwhPNWpU6f0+uuva/fu3brvvvvcHQ68wJEjR7Rjxw4tWbJEjRs3lnT9ac9t27Zp7dq1Gj58uJsjBJCXt956SzVq1NDx48cdts+fP18RERH2z+7999+v/fv3KyEhQS1btnRHqHe8X3/9VfXq1dObb76pihUrSpL69eunV155RWfPnlXFihVpNw9TmP4+beZ5Cupr02aeh36v57tV/3LZsmXy8/PTW2+9pVKlSql27do6cuSIPv74Y/Xs2dNNEeNGjFyBx3rwwQf10Ucf2W+0bAzD0Pnz590UFbzB119/rYceekhr165VaGiou8OBhzp48KAuXryoFi1a2LcFBwerTp06+uabb9wYGTzd999/r3LlymnNmjVq0KCBu8OBF6hQoYI++ugjRUZG2rf5+PhwTwN4sNWrV+vbb7/VmDFjcr22a9cuh/sHSWrRooV2795tHyUB17rvvvs0ffp0e2IlPT1dixcvVt26dVWhQgVJtJunKUx/nzbzPAX1tWkzz0O/1/Pdqn+5a9cuNW3aVKVK/Tk+okWLFjp8+LBOnz7t6lCRB0auwGNVqlTJnlW3WbBggbKystS6dWs3RQVv8Nxzz7k7BHgB2xzcVatWddgeEhKiEydOuCMkeIn27durffv27g4DXiQ4ODjXPc2GDRt09OhRPfzww26KCkB+0tPT9c4772jWrFm66667cr1+8uRJValSxWFbSEiILl++bB8lAfd58cUXtWPHDpUrV07z58+Xj4+PJNrN0xSmv0+beZ6C+tq0meeh3+v5btW/PHnypMLCwhy2hYSESLo+avPuu+8u9vhwayRX4Dbp6el67LHH8n19+/btqlSpkv3nTz/9VNOmTVNMTIwiIiJcESI8kNnrBsjP5cuXJUl+fn4O2/39/XmSHECx2r17t8aMGaPHHnuMRB3gYgXdS27btk3x8fHq1auXoqKilJ6enqvMlStXct0/2H5m/vriYaYPMHLkSA0fPlwffPCB+vXrp1WrVqlq1aq0m4sVRX+fNnOtouhr02aeh36vd8vrM+Xv7y/p+npjcD+SK3CbypUra/369fm+fuMTDUuWLNG4cePUuXNnjR492hXhwUOZuW6AWylTpoyk6zf5tv9L129QAgIC3BUWgBJu8+bNevXVV9WgQQNNnTrV3eEAd5yC7iWXL1+uS5cuKTY2Nt8y/v7+uf5IaPuZe4jiYaYP8NBDD0m6vqbAo48+qqSkJA0dOpR2c7Gi6O/TZq5VFH1t2szz0O/1bmXKlMn1mbIlVcqWLeuOkHATkitwm9KlS6t27doFlpsyZYo+/vhjxcTE6PXXX7cP68adqbDXDVAQ27DojIwM1axZ0749IyOD0XEAisWiRYv0zjvvqEOHDpoyZUqup9AAFL+C7iVXrlypjIwMNW/eXJLsawQMGDBAzZo1U0JCgqpWraqMjAyHehkZGSpbtqyCgoKKL/g7WEHtdvz4ce3bt0+dOnWybwsICFBoaKi9rWg31yqK/j5t5lpF0demzTwP/V7vVqVKlTw/U5JyrVkF9yC5Ao82efJkJSQkKD4+Xv3793d3OABKkIiICAUGBio1NdV+k/nHH39o//796tOnj5ujA1DSLF68WOPGjVNMTIzGjBkji8Xi7pAA5GHhwoW6du2a/edTp04pJiZG48ePtydcoqKi9PXXXzvU27lzpxo3bsxn200OHDigYcOGadOmTQ73dYcPH1a3bt0k0W6eqKD+Pm3mfWgzz0O/17s1bdpUiYmJysnJka+vr6Trn6n77ruP9VY8BN9s8FipqalKSEhQTEyMunXrpt9++83+7+LFi+4OD4CX8/PzU58+fTRlyhRt2bJFBw8e1F//+ldVqVJFHTp0cHd4AEqQw4cPa8KECerQoYMGDRqk06dP2+9pMjMz3R0egBtUr15dtWrVsv+rVq2apOtPh9qeEI2JidHevXs1ZcoUpaWlae7cudq4caNeeukld4Z+R3vkkUcUHh6u+Ph4ff/999q3b59iY2NVoUIF9ezZUxLt5mkK09+nzbwPbeZ56Pd6t549e+rChQt6/fXX9fPPP2vlypWaP3++Bg0a5O7Q8P8YuQKPtXbtWknXnx5buHChw2tDhw695TzIAFAYw4YN07Vr1zR27FhduXJFTZs21Zw5c5iqB0CR2rhxo65evapNmzZp06ZNDq/16NFD7733npsiA+CMBx98ULNmzdLkyZM1f/58hYaGavLkyWrZsqW7Q7tj+fn5KSEhQRMnTlT//v2VnZ2thx9+WO+9954CAwMl0W6epjD9fdrM+9Bmnol+r/e6++67lZCQoHfeeUc9evRQpUqVFB8frx49erg7NPw/H8M2iSwAAAAAAAAAAAAKxLRgAAAAAAAAAAAAJpBcAQAAAAAAAAAAMIHkCgAAAAAAAAAAgAkkVwAAAAAAAAAAAEwguQIAAAAAAAAAAGACyRUAAAAAAAAAAAATSK4AAAAAAAAAAACYQHIFgFf77LPPFBsbq/bt2ysyMlLNmzfXSy+9pK1bt7oshuzsbL355ptq1qyZ6tevr/Hjx+e57bXXXlN4eLjS09NN7X/mzJkKDw9XampqMR2Bo19++cVU+V27dik+Pl4dOnRQ/fr1FRUVpZiYGK1atUqGYTiUdfYceKv27dsrPDxc4eHhioqKkiSlpqYqPDxcr732Wr710tPTFR4erpiYmFyv3dw+N5cr7nP8zjvv2I/JldclAAAAihd9q6JXUN/qzTffVHh4uJKSkm5ZLj09XREREXrhhRcK/d62fsfMmTMLXaco2drI9u/AgQOSrvdf2rdvf8u6tn7UzY4cOeLwc0xMjEO5lStXKjw8XCtXriyCI8ht8+bNDsfkrnMLwHOUcncAAOCMCxcuaMyYMdq4caPq1q2r6OhohYSE6OTJk1q1apWGDBmiF198UaNGjSr2WJYtW6bExES1bt1aTzzxhB588ME8txmGoZYtW6pixYqm9t+hQwfVrFlTtWvXLqYj+NOQIUN04cIFLVy4sMCyV69e1YQJE7R48WLde++96tKli6pVq6YzZ85o3bp1GjVqlLZt26bJkyfL19e32GP3VBUqVNDo0aNVunTp295XXu0zadIk3XPPPbe978Lq3r27IiMjtWnTJm3atMll7wsAAIDiQd+qeBSmb/X0008rMTFRKSkp6tmzZ77lbA+uPf3008URarEaPXq0KlSooGrVqt3Wfj7++GNNnz5d+/bts28bPHiwS89JZGSkJk2apEOHDmn27Nkue18AnovkCgCvNHbsWG3cuFHx8fHq37+/w2uDBw9W//79NXfuXN1///36y1/+Uqyx/PDDD5Kk+Ph4RURESJL9yaMbt0lSo0aNTO8/IiLCYR/FaevWrWrWrFmhyk6bNk2LFy9WTEyMxowZI4vlz8GQAwcO1MiRI7V27VrVrFlTI0aMKKaIPV/ZsmXVvXv3ItlXXu1TVPsurMjISEVGRuro0aMkVwAAAEoA+lbFozB9q3r16tlH0pw6dUqVK1fOs9zq1atVrlw5dezYsThCLVaPP/64QkNDb3s/27Zt09WrVx22tW7d+rb3a0aVKlXUvXt3paamklwBIIlpwQB4oe3bt2vDhg3q1KlTrpt/SfLz89OECRPk6+urBQsWFHs8thu8wMDAW24rSQ4dOqS5c+eqXr16Gjt2rENiRZIsFovefvttBQUFaenSpcrKynJTpAAAAADyQ9/K/Xr27Cmr1ar169fn+fru3bt19OhRPfnkk/L393dxdACAWyG5AsDrrFq1SpLyXI/CpkaNGkpJSVFycrLD9rS0NMXFxalVq1aKjIzUY489pvfee0/nz5/PtY9Dhw4pLi5OLVu2VGRkpDp27Kj//u//1pUrVyT9uS6G7T0ee+wx+9yrN2+T8l4LwzAMLVmyRNHR0WrYsKFatWqlwYMH6/vvv7eXyW9e4C+++EJ9+/ZV48aN1aBBA0VHR+eaW9Y2z+66des0e/ZsdejQQZGRkWrfvr2mT5+ua9euOZSTpK+//rrAeWpXr14twzDUp0+ffMsEBgZq+fLl+t///d9cnYDjx48rLi5OzZo1U8OGDfXss89qx44dufaRmpqqIUOGqFWrVqpbt66aNm2qF154QV9++aVDufbt22vQoEFKTU1V79691ahRI0VFRWno0KF5znO8du1a+zlv06aNpkyZouXLl+d5nlNSUvTMM8+oYcOGatSokXr37u3SeaelW7dPfmuz3Kywx7F+/Xo9++yz9rbp3r275s6dK6vVWrQHBQAAALejb3WdO/tW3bp1U+nSpZWSkpLn67Y2sk1/dfXqVc2ZM0c9e/ZUo0aNFBkZqUcffVRjx47V6dOn830f6Xq/Ka/1TvJbq2Tv3r0aPHiwmjVrpnr16qlr166aO3eucnJybvk+RS08PFxff/21/f+29StvXnMlP4U9jv3792vw4MFq06aN/ZoeP368zp07V+THBKBkYFowAF5n7969KlWqlBo0aHDLcjfPo7tr1y71799fvr6+eu6551S9enX9+9//1rx587R161YlJiba5+zdu3ev+vXrp8DAQPXu3VsVK1bUv//9b82ePVs7d+7UggULVLFiRU2aNEnLli3Trl27NHr0aJUrV04Wi8VhW4UKFfKNcdSoUVq9erWioqI0YsQIZWdna+HCherTp48++eQT1alTJ896n3zyicaNG6d69epp6NChslgs2rJli0aPHq0DBw7o9ddfdyg/depUGYahXr16KTg4WCtXrtSsWbPk4+OjYcOGqXbt2po0aZLi4+N1//33a/DgwWrcuPEt20CSmjRpcss2uO+++/LcPnjwYEVFRSkuLk4ZGRmaP3++Bg0apOTkZD344IOSpE2bNmnYsGGKiIjQgAEDFBgYqB9//FErVqzQgAED9Omnn6p69er2fR48eFCDBg1St27d1L17d+3fv1+JiYk6ePCgNm7caF/3JSEhQZMnT1bdunU1YsQIZWZmatGiRXnGOXnyZCUkJKh169aKi4tTVlaW1q1bpyFDhmj06NHq16/fLY+/qJhtn5sV9jg+/fRTxcXFqXXr1ho+fLgsFov++c9/auLEiTp9+rRGjhxZTEcIAAAAd6Bv5f6+VYUKFfTYY4/pn//8p9LS0hzOdVZWljZs2KC6devqoYcekiSNGDFCW7ZsUY8ePfTMM88oKytL27Zt0/Lly/Xrr79q7ty5t2zLwtqyZYuGDx+u0NBQvfTSSypbtqx27NihiRMn6l//+pdmzpwpHx+fInmvgkyaNEmzZ8/WoUOHNGnSJNWsWbPQdQt7HMeOHdMLL7ygSpUqqV+/fgoODtaePXu0aNEi7d27V0uXLnXZ8QLwIgYAeJkGDRoYrVq1MlUnJyfH6NChgxEZGWn8/PPPDq8tW7bMCAsLM1577TXDMAzDarUaXbp0Mdq2bWucPXs2z7IfffSRfduoUaOMsLAw49ixY6a27dy50wgLCzPi4uIMq9VqL/fzzz8bERERRmxsrGEYhjFjxgwjLCzM+OqrrwzDMIwTJ04YdevWNQYNGuRQz2q1GiNHjjTCwsKMPXv2GIZhGF999ZURFhZmtG7d2jh//ry97MWLF40mTZoYDz/8sMPxhYWFGX369CnwfHbu3NkICwszrly5UmDZG9nOwZgxYxy2r1ixwggLCzNmzpxp3/bUU08ZrVu3Ni5evOhQdtGiRUZYWJgxd+5c+7Z27doZYWFhxrp16xzKjhkzxggLCzO2b99uGIZhnDx50oiMjDSio6ONrKwse7kjR44Y9evXdzjPe/bsMcLCwoy33nrLYZ/Z2dlGTEyMUbduXePEiRO3PN527doZ7dq1c9hma5NRo0blW+/YsWN5tkVhtt18nZk5joEDBxoNGzY0cnJy7OWuXbtm9OnTxxg0aJBD/ZuvSwAAAHgf+lbu71sZhmF8/vnnRlhYmDFt2jSH7evWrTPCwsKMTz75xDAMwzhw4IARFhZmjBs3Ltc+evbsaYSFhdnPsy3eGTNm2Mvk1T8xDMNISkoywsLCjKSkJMMwDOPSpUtG8+bNjR49ejj0mwzDMKZNm5Zn3+tmebWbYVw/L3nFcCNb/+5Gffr0KXDb7RxHQkKCQ3vbvPvuu0aPHj2MkydP2rfldW4B3JmYFgyA1/H19bUPuS6s/fv368iRI+rWrVuup66efvpp1apVSxs3blROTo5++OEH/fTTT2rbtq2sVqvOnDlj/9euXTv5+/sXyULemzdvliS99NJLDk/A1K5dWytWrNDf//73POt9+umnunr1qp544gmdPXvWHtvZs2fVpUsXe5kbtWvXTsHBwfafy5Ytq9q1axc4bDw/tlEgZtvBJjo62uHnhg0bSpIyMjLs25YvX641a9aobNmy9m3Z2dn2c3Xx4kWHfZQpU0adOnVy2FavXj1J0m+//Sbp+jnPzs5W//795efnZy9Xs2ZNdevWzaHuunXrJEmdO3d2uAYyMzPVuXNnXb16VZ999pnpY3c1M8dRpUoVXbp0SW+//bb2798vwzDk6+urhQsXsmAjAABACUTfyv19K0l6+OGHVbVqVa1du9Zhe3JyssqUKaMnn3xSkhQREaHdu3crLi7Oodzp06ftMV26dMnpOGy+/PJLnT17Vp06ddKFCxcc2q1z586SVCTtVtzMHEfVqlUlXR/1v3PnTmVnZ0u6PgXdypUrVblyZfccBACPxrRgALxO5cqVdfjwYWVnZzv8gfxWjh49Kkn2Kadu5OPjowceeEBHjhzR2bNndfjwYUlSYmKiEhMT89zf8ePHnYz+T7b5gW/ukEhS3bp1861niy8+Pj7fMjfHd8899+Qq4+fn5/RcuZUrV9YPP/yg33//XXfddZfp+pUqVXL42bYmi+0GVpJKlSql9PR0zZo1S4cPH1Z6errS09PtMRuG4bCPChUq2JM+Nrbrw7ZeiO3c3X///bliurkdbGVvta6MM9dBmTJlJN06MWU7RlvZ22HmOGJjY3XgwAH7tV+xYkW1aNFCjz/+uDp16qRSpbhtAAAAKEnoW7m/byVJFotFPXr00KxZs/Ttt9+qUaNG+u2337Rjxw517dpVQUFBDu+1fv167dixQ8eOHVN6erp+++03e1KpKNZKtJ2XqVOnaurUqXmWcbbd/P39C0zoXbt2rUj7QoU5jk6dOqlnz55auXKl+vXrpzJlyqhJkyZq27atnnrqKZUrV+624wFQ8vBXEgBep2nTpkpLS9O//vUvtWjRIt9yo0eP1tWrV295o2xjuwH18/Oz/7937956/PHH8yxfFH9kvnr1qlP1bDft48aNU2hoaJ5lbPMb21gsRTtQsWnTptq2bZt27dqlWrVq5Vtu2rRpOnz4sGJjYx06X4WJ58MPP9TUqVNVvXp1RUVFqXnz5goPD9e1a9f08ssv5ypfmH3akjd5dRxtCR4b23meNWuWAgIC8tyf7ekmM2w35RcuXMi3jG0R0BufiHOWmeO45557tGzZMn333Xf6/PPP9dVXX2nTpk1av369GjZsqEWLFql06dK3HRMAAAA8A30r9/etbKKjo/XBBx8oJSVFjRo1UkpKinJycuwL2UvX+xAvvPCCvv/+ezVp0kSRkZHq3r276tWrp/nz52vNmjVOvffNiSFbuw0bNkyNGjXKs44zD9lJ1/tDmZmZ+b5uGIb++OOPIukLmTkOX19fTZgwQS+//LI+++wzffnll9q1a5d27NihDz/8UImJiabWegFwZyC5AsDrdO3aVYmJiVq8eHG+HYATJ05ozZo1Cg4OVvny5VWjRg1J0k8//ZSrrGEYSktLU2BgoIKDgx1uqlu1auVQ1mq1auPGjfb93Q7b+xw+fFjh4eEOr02dOlVXrlzRmDFj8q0XHBycK76MjAzt3bu3SOK7lSeeeELTp0/XkiVLFB0dnefCfhcvXlRiYqIuXryoN954w9T+T5w4oWnTpqlp06aaO3euQzLE2Q6DJN13332SpEOHDuUavWJ7qsnGdp5DQkLs04vZHDlyRIcOHXKYsqywQkNDFRgYqIMHD+ZbZv/+/ZKU76KbZt9PKvg4DMPQTz/9pCtXrqh+/fr2BT0vXLigUaNGafPmzdq+fbvatWt32zEBAADAM9C3cn/fyqZGjRpq3ry5NmzYoLFjxyolJUW1atVSs2bN7GUWLFigffv26e2339azzz7rUP/3338v8D18fX1zTa8s/TmNso3tvJQpUybXeblw4YK2b9+eazaCwoqIiNC2bdt07NixPM/t4cOHdfnyZTVv3typ/d/IzHEcP35cR48eVcuWLRUTE6OYmBhdu3ZNc+bM0dSpU7VkyRKNGjXqtmMCULKw5goAr9O0aVN16NBBGzdu1D/+8Y9cr2dmZmr48OG6du2ahg4dKj8/P9WpU0c1atTQmjVrlJaW5lA+KSlJR48eVceOHSVJkZGRql69upKTk+1D3m2WLl2qESNGKCkp6baPw/bk1vz58x22Hz16VPPmzdOxY8fyrNexY0dZLBbNnj1bV65ccXjtvffe0yuvvKJ9+/Y5FZPFYinUMPIaNWqoT58++u677zRhwoRcdbKysjRy5EidO3dOffv2zXPo/K2cO3dOhmHo/vvvd0isXL58WQsXLpTk3HovHTt2VKlSpbRo0SKH+hkZGUpJSXEo+x//8R+SpJkzZzo8yXX16lWNHj1agwcP1qlTp0zHUKpUKXXo0EEnTpzIc2qEixcvatGiRfLz87NfkzaFbR9njsPHx0exsbEaMmSIw5NkgYGB9g7qzdOuAQAAwLvRt3J/3+pGPXv21JkzZ7Rq1Srt37/fYdSKJJ09e1aSciWQvv32W33zzTeSco9CuVFISIjOnDnjMKVXdna2NmzY4FDu4Ycf1l133aV58+bZ39Nm9uzZGj58uD7//HNTx2bzxBNPSJKmT5+e6/wYhqGPPvpI0vXE341sI4bMnFMzxzF79mz169dPe/bssZcpVaqUGjRoIIm+EIC8MXIFgFeaMGGCzp8/r/fee08pKSnq2LGjKlasqF9++UXJyck6c+aMevfurd69e0u6fiM0fvx4DRw4UH/5y1/03HPPKTQ0VHv37lVycrKqV6+uV1991aHsoEGDFB0drWeffVY1a9bUd999p6SkJNWsWTPPaanMatOmjbp27aqkpCSdPHlS7du314ULF/TJJ5/I399fI0eOzLPevffeq9jYWE2fPl3du3dXjx49FBwcrC1btthHFtz8R/nCuvvuu3Xw4EEtXrxYUVFRCgsLy7fs3/72N506dUoLFizQF198oS5duqhy5cr69ddftWbNGh0/flwdOnTQiBEjTMfxwAMPqFatWkpKSpK/v7/CwsKUkZGh5ORk+1NVtxpKnp/q1atryJAhmjlzpp577jl16dJFly5d0uLFi+0LP9pG4bRs2VJPP/20VqxYoWeeeUadO3eWn5+f1qxZo7179+r5559X/fr1TccgSSNHjtS3336rt956S9u3b1eLFi0UEBCgo0ePKiUlRSdPntQbb7yR60kuM+1jY+Y4YmNj9be//U29evVSdHS0ypUrp4MHD2rp0qV66KGHcj3tBQAAAO9H38r9fSubTp06ady4cZo4caJKlSqlp556yuH19u3ba+HChXr11Vf1/PPPKygoSPv27VNycrJ8fX119epV/fHHH/nuv2fPntq1a5f69++v559/XlarVUlJSbkSMsHBwXrjjTc0evRoPfnkk+rVq5dCQkL01Vdfaf369apfv76ef/55p85Ljx49tHXrVqWkpOiXX35Rp06ddPfdd+v333/X1q1b9e2336p79+568sknHerZHtibMWOGmjVrVqi+iZnj6NevnzZs2KCBAwfq2WefVWhoqE6dOqUlS5YoKChIzzzzjFPHC6BkI7kCwCsFBwdrzpw5Wr9+vVauXKnFixfrzJkzCgwMVIMGDdS7d2898sgjDnVatGihZcuWadasWUpKStKFCxdUrVo1vfjiixo8eLDDnK6tWrXSsmXL9MEHHygpKUmZmZmqUqWKnn/+eQ0aNMjpIdA3mzx5surXr68VK1Zo4sSJKleunKKiojR8+HD7FFZ5efnll/XAAw9owYIF+uijj2S1WlWjRg3Fx8crJibG6adq4uPjNWXKFE2YMEGDBw++ZQfAz89P06ZNU5cuXbR8+XIlJycrIyNDAQEBqlOnjuLi4nI9bVRYpUuXVkJCgqZMmaJ169Zp2bJlCgkJUVRUlF555RX17t1b27dvd2rfQ4cO1T333KNFixZpypQpqlChgnr27KmsrCz94x//cBgpM378eDVs2FBLly7VzJkz5evrq3vvvVfjx4/P9RSZGXfffbeSkpK0cOFCbdq0STNmzNDly5dVqVIlNWzYUH379lXDhg1z1TPTPjcq7HF07dpVAQEBmjdvnubMmaPMzExVrVpVMTExGjJkCAvaAwAAlED0rdzft7Lx9/dX165dtXjxYrVv314hISEOr7ds2VJTp07Vxx9/rPfff19+fn6qVq2aRowYoQceeEADBw7UF198kWs6YJvo6GhdvHhRixcv1qRJk3TPPfeoe/fuateunXr16uVQ9qmnnlLVqlWVkJCgBQsWKCsrS9WqVdOQIUPUv39/p6ZIlq4/zDZz5kwlJydr9erVmjdvns6fP6/y5cvrgQce0NSpU9WlS5dc9QYMGKAff/xRCQkJ2rNnT6Ef/CrscdSuXVuLFi3SBx98oFWrVun06dMqX768WrRooVdeeYX1VgDkyccwDMPdQQAA4AqXLl1STk6OgoKCcr3297//XcuWLdOWLVvyXczSrPbt20uStm7dWiT78yQzZ87U+++/rwULFhTJfMgAAAAASo7XXntNycnJRdq/8hSpqanq27evhg4dqtjYWHeHA8CNWHMFAHDH+OmnnxQVFaX/+Z//cdiemZmpzz77TJUqVVL16tXdFB0AAAAAAAC8BfN7AADuGJGRkQoPD9fs2bN15swZRURE6Ny5c1q5cqVOnz6t//qv/7KvuVJULl26pNWrV6t06dLq3Llzke7bHfbt26e0tDT98MMP7g4FAAAAgIfbvHmzKlSooEcffVTlypVzdzi35eTJk0pNTdWhQ4fcHQoAD0FyBQBwx/D19dW8efOUkJCgzZs3a/ny5QoICFD9+vX11ltvFcv0VmfPnlV8fLyCgoJKRHJl9erVWrBggbvDAAAAAOAF3n33XUnSqlWrvD65sm/fPsXHx7s7DAAehDVXAAAAAAAAAAAATGDNFQAAAAAAAAAAABNIrgAAAAAAAAAAAJhAcgUAAAAAAAAAAMAEkisAAAAAAAAAAAAmkFwBAAAAAAAAAAAwgeQKAAAAAAAAAACACSRXAAAAAAAAAAAATCC5AgAAAAAAAAAAYALJFQAAAAAAAAAAABP+D5bKwRCijEvmAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-40.865285116.00.0-2-42.865285False
541coef_calib_zeroautohhindivtou_SHARED3_atwork-41.9348700.00.0<NA>-41.934870True
543coef_calib_zeroautohhindivtou_BIKE_atwork-41.39056268.00.0<NA>-41.390562True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-39.79208068.029.0-0.852212-40.644291True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-30.87568888.00.0<NA>-30.875688True
695coef_calib_zeroautohhjointtou_SHARED3_disc-28.246255139.00.0-2-30.246255False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-26.97066612.00.0<NA>-26.970666True
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-26.97066640.00.0<NA>-26.970666True
675coef_calib_autodeficienthhjoi_TAXI_maint-24.970666155.00.0-2-26.970666False
671coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint-24.69116092.042.0-0.784119-25.475279True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -40.865285 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -41.934870 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -41.390562 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -39.792080 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -30.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -28.246255 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -26.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -26.970666 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -24.970666 \n", - "671 coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint -24.691160 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 116.0 0.0 -2 -42.865285 False \n", - "541 0.0 0.0 -41.934870 True \n", - "543 68.0 0.0 -41.390562 True \n", - "544 68.0 29.0 -0.852212 -40.644291 True \n", - "698 88.0 0.0 -30.875688 True \n", - "695 139.0 0.0 -2 -30.246255 False \n", - "676 12.0 0.0 -26.970666 True \n", - "677 40.0 0.0 -26.970666 True \n", - "675 155.0 0.0 -2 -26.970666 False \n", - "671 92.0 42.0 -0.784119 -25.475279 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - " Final coefficient table written to: C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_9\\tour_mode_choice_coefficients.csv\n" - ] - } - ], - "source": [ - "calibration_iterations_to_run = 8\n", - "start_iter_num = 2\n", - "\n", - "for i in range(start_iter_num, calibration_iterations_to_run+start_iter_num):\n", - " asim_calib_util.run_activitysim(\n", - " data_dir=data_dir, # data inputs for ActivitySim\n", - " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", - " configs_common_dir=configs_common_dir, # just the location of the common config, these files will be used from the original location\n", - " run_dir=activitysim_run_dir, # ActivitySim run directory\n", - " output_dir=iteration_output_dir, # location to store run model outputs\n", - " settings_file=warm_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", - " tour_mc_coef_file=tour_mc_coef_file # optional: tour_mode_choice_coefficients.csv to replace the one in configs_dir\n", - " )\n", - " \n", - " _ = asim_calib_util.perform_tour_mode_choice_model_calibration(\n", - " asim_output_dir=iteration_output_dir, # folder containing the activitysim model output\n", - " asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim tour mode choice config files\n", - " tour_mode_choice_calib_targets_file=tour_mode_choice_calib_targets_file, # folder containing tour mode choice calibration tables\n", - " max_ASC_adjust=max_ASC_adjust, # maximum allowed adjustment per iteration\n", - " damping_factor=damping_factor, # constant multiplied to all adjustments\n", - " adjust_when_zero_counts=adjust_when_zero_counts,\n", - " output_dir=iteration_output_dir, # location to write model calibration steps\n", - " )\n", - " tour_mc_coef_file = os.path.join(iteration_output_dir, 'tour_mode_choice_coefficients.csv')\n", - " iteration_output_dir = iteration_output_dir.strip('_'+str(i)) + '_' + str(i+1)\n", - "\n", - "print(\"\\n\\n\", \"Final coefficient table written to: \", tour_mc_coef_file)" - ] - }, - { - "cell_type": "code", - "execution_count": 65, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_9\\tour_mode_choice_coefficients_UPDATED.csv\n", - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_10\n" - ] - } - ], - "source": [ - "tour_mc_coef_file = r'C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_9\\tour_mode_choice_coefficients_UPDATED.csv'\n", - "iteration_output_dir = r'C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_10'\n", - "\n", - "print(tour_mc_coef_file)\n", - "print(iteration_output_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": 66, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_10\n", - "ActivitySim run started at: 2023-09-13 14:37:43.903139\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-13 15:25:25.378209\n", - "Run Time: 2861.48 secs = 47.69133333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:732: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:750: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " total_tour_per_source_df = data.groupby('source').sum()\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmlAQgjVUAwk9BIQUOkiIMWKKKDAI0VBDGIFH0CUpiIiRUSKSJEiXXhEAUWKKCBIldATQqSGBAgkpOy8f/DuypIE0hM23891eQkzZ+bcszs77L33zDkmwzAMAQAAAAAAAAAAAABwjzPndQAAAAAAAAAAAAAAAGQHCuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAA0m358uUKCgrK8H8vvvhiXoeebpMnT07zOKpWraratWurZcuWeu2117Rhw4a8Dhf/76+//rK9T717975r+8GDBysoKEhvvfWW3XLrPrZt25btMfbq1cu2/71792b7/m+VlJSkkydP5mgftwsNDdWoUaPUvn171a9fXzVr1lSzZs3Uu3dvzZ8/X/Hx8dne54ULF/TWW2/poYceUo0aNdSkSRNt3rxZkrRy5Uo98cQTql27turXr69evXpp+/bttvcgKSkp0/2ePn3atp/w8PDsOhxAMTExunDhQrbsK63rXE5tBwBAQUSOTI6cX5Ej2yNHJkcuiAzD0PHjx3Otv+y+XhiGodmzZ6tt27aqWbOmGjZsqP/+97+2f3ubNm2apf1n1/mfXY4ePZpiWcuWLRUUFKQlS5ZkaF+Z3Q5wNM55HQCAe4evr6+Cg4NTLD9z5ozOnDkjV1dX1ahRI8X6wMDA3AgvW6V2LIZhKD4+XqdPn9a6deu0bt06dezYUePGjZPJZMqjSCFJy5Yts/1569atioiIkL+/fx5GZO/MmTN2CcDChQtVu3btHOlr69atGjVqlNq0aaNBgwblSB+3mzRpkr788ktZLBZ5eXmpXLlycnFx0YULF7RlyxZt2bJFM2fO1BdffKHq1atnS58Wi0W9e/dWaGionJ2dVblyZSUmJqps2bL66aef9O6770qS/Pz8VLJkyXx1PgCp+eabbzR16lR9/vnn8vPzy+twAABAOpAjkyPnV+TI/yJHJkcuiPbt26eRI0eqfPny+vTTT/M6nEyZPXu2Pv74Y0lS2bJl5e3trfvuuy+Po8p+58+f18cff6w///xTmzZtyutwAIdCARxAujVr1kzNmjVLsXzy5MmaMmWK/Pz8tHDhwjyILPvd6VgSEhL0+eefa9asWVq9erUaNGigzp0753KEsIqLi9PatWtlMpnUuHFjbdmyRYsXL85XTy8uX75cFotFzZo106ZNm7R27VoNGTJERYsWzfa+vvrqq1y9s33ZsmX64osv5OHhobFjx+rRRx+Vk5OTbf3x48f13nvvac+ePerVq5d++OEHFStWLMv9njx5UqGhoZKkadOmqUmTJrZ1kydPliTVq1dPc+fOlbPzza87cXFx+uGHHyTJtiwzSpYsadtPmTJlMr0f4FZjx47N6xAAAEAGkSPfRI6cv5Aj2yNHJkcuiBYsWKB9+/apfPnyeR1Kpq1du1aS1L59e3322We25VevXlXt2rXl4uKSpf3XqlUrW87/rNq6davWrFmjkiVL5lkMgKNiCHQAyCBXV1e98847qlWrliRp3rx5eRxRwfbjjz8qNjZWlStX1pNPPinpZjKdkJCQt4H9P8MwtGLFCknSM888owoVKig+Pt627F43bdo0SdI777yjtm3b2iX2khQQEKAvv/xSvr6+io6O1ty5c7Ol3+joaNufGzZsmOq6evXq2SUx7u7uCggIUEBAQJb6dnFxse0nqwkXAAAAcK8jR85fyJHzFjkyOTKyh/W8bdCggd3ywoULKyAgQOXKlcvS/rPr/AeQf1EAB4BMatWqlSTpyJEjun79eh5HU3AtX75cktS0aVO1aNFCbm5uioqK0vr16/M4spt27NihiIgIubi46KGHHtJjjz0mSVq8eHEeR5Z1V65c0alTpyTpjsPVFStWzPZ52bdvX7b0nZycbPuzq6ur3TqLxZLqcgAAAAA5hxw5fyBHzjvkyED24bwFkFUUwAHkmp9++km9e/dWo0aNVKNGDTVu3Fivvfaafv/991TbBwUFKSgoyG5eqFu9+OKLCgoKsg3lJEmnT59WUFCQHn74YZ07d059+/ZVrVq11KBBA7355pvZejxeXl62P1+7ds2u/6CgIIWHh6e6XcuWLRUUFGRLSiVp+/btCgoKUufOnXX8+HF16dJFNWvW1IMPPmib78a63aFDh/Trr7/q+eefV926ddWwYUN1795dGzZsSDPW5ORkLVmyRC+++KIeeOAB1ahRQ82bN9fbb7+tgwcPprpNfHy8pk+frueff14PPvigatasqRYtWujNN9/Url270uwrNDRU7777rpo3b64aNWqoYcOG6tWrl3766adU29/6mt36mqTHqVOntHPnTklS69at5enpqRYtWkhSvhlq0Dr3WqNGjVS4cGF17NhRknTixAn98ccfqW6TmfNo+fLlCgoK0o4dOyTdvOs8KChIgwcPttvu8uXLmjJlip588knVrVtXtWvX1mOPPaaPP/5Y58+fz9Cx3Xrn+MaNG+/Y9rXXXtP//vc/jR8/3m754MGDFRQUlOZwfNbjatmypaR/X5vu3bvb2lhfK+u+rK/BlClTbOukfz9nQUFBSkpKStFXaGiohg0bplatWqlmzZp64IEH1KNHD/3444927e72/kRERGjEiBF69NFHVbNmTdWvX19du3bVkiVL7H6UuP01WLhwoU6fPq0hQ4aoadOmqlGjhpo2bar//ve/On36dJqv7Z9//qk333xTLVq0UI0aNdSoUSO98sordtfWLVu2KCgoSNWrV1dUVFSq+4mPj1e9evUUFBSkvXv3pjjW9H4+J0+ebNvmbv/dflwXL17UJ598onbt2ql27dqqW7eunnnmGX399de6ceNGmn19+umn2rBhg9q0aaMaNWqoZcuW+t///md3bN988406d+6s4OBg1axZU61atdLw4cMVFhaW5rEcOnRIw4YN02OPPabg4GDVqFFDDz30kPr06ZPivJD+PV+bNm2a6v5ufT2tx259/63+85//pPp6nzx5Uu+//74effRR1ahRQ/Xq1VPnzp31zTffKD4+Ps1jkKTIyEgNGzZMzZo1U40aNdSkSRMNHjz4jseele0AAED6kCPfRI5sjxw5JXLkf5Ej33s5stWVK1c0ffp0devWTQ0bNlT16tVVv359Pf3005o8ebIuX76cYpuMXvet76l1RIXVq1crKChIL774Yopjy0yOHB4ermHDhqlly5aqWbOmWrduralTp951hInY2Fh98cUXts9ZnTp11LFjR02aNElXrlxJ9ZgiIyMlSUOGDLE75++Wd6fn/b/1tbrT+Z+Ra7c17s2bNys0NFQDBw7UQw89pBo1auiRRx7RmDFjdOnSJbttgoKCNGTIEEnSuXPn7D6ft9u1a5deeeUVNWzYULVq1VKbNm00fvx4xcbGpto+q9sBjoACOIAcl5iYqAEDBigkJERbtmyRs7OzqlSpoqSkJK1bt049e/bUmDFjsrXPhIQE9erVS9u2bVNAQIBMJpPKli2brX1Yv9S7ubnJx8cnW/Z56dIl9ejRQ4cOHVKlSpV048YNVahQwa7NsmXL9PLLL+vgwYOqWLGiChUqpO3bt+vVV1/VqFGjUuwzNjZW3bp109ChQ7Vjxw4VLlxYQUFBunr1qr7//nt16tRJs2fPttsmISFBPXv21Pjx47Vv3z55e3urcuXKio2N1Zo1a9StWzctWbIkRV/ffvutnn76aa1cuVKXL19W5cqV5eHhoa1btyokJERvvvlmqslNZi1btkyGYahcuXK2u6s7dOggSdq5c6eOHz+ebX1lRmxsrNatWyfp37gCAgJUtWpVSdKiRYuyrS9fX18FBwfbfnQqXbq0goOD7c6fw4cPq0OHDpo8ebIOHz6ssmXLqmLFijp16pS+/vprdejQQdu3b093nx4eHgoODpZ0sxD57rvvaufOnam+x35+fqpUqVKWPyuFChVScHCwAgMDbcuCg4Ntx5raa2CN8U6+/fZbderUSd99950uXbpkO3f/+OMPDRw4UBMmTEhXfOvXr1eHDh20cOFCnT9/Xvfff7+KFSumXbt2aejQoerVq5ftx8Db/f3333riiSe0cuVKubu7q3z58jp37pyWLl2qZ599VmfOnEmxzWeffaYXXnhBa9as0fXr1xUUFCSz2ayNGzeqZ8+etqcoHn74YZUuXVpJSUlas2ZNmrHHxsYqICDgjk8r3M2tr3tq/7m7u0u6OWxZ4cKFbdvt2rVL7du316xZs3Tq1Cn5+/urTJkyOnjwoD7++GN17txZFy5cSLXPnTt3KiQkRFeuXFFAQIDOnz9v+5ydPXtWTz31lMaOHau9e/fKz89PlStX1oULF7R48WI9/vjjtnm/brVgwQI9/fTT+u677xQVFaXy5cvL399fV69e1ebNmzN0XtyJ9by1CgwMVHBwsHx9fW3Lvv/+ez3++ONatGiRzp8/r8DAQBUvXlx79+7V2LFj9eyzz+rs2bOp7v/w4cN68skntWTJEnl6esrf319RUVFasWKFnnrqKR07dixbtwMAAHdHjpx+5MgZQ478L3JkcuT8kiNLUlhYmB5//HGNHz9ee/bsUbFixRQUFCQnJycdPHhQU6ZM0XPPPZfma5FehQsXtssnixUrluL8yGyO/Pvvv+upp57Sd999p+joaAUGBiouLk4TJ05U796904zp+PHjevzxxzVp0iQdOXJEJUqUUPny5XXixAlbUfzWa5M1J7Y++W09j2vUqHHX40/v+383Wbl2b968WZ06ddKGDRvk4+Oj0qVL6/Tp05ozZ46ef/55u8LzrdckFxeXND+fK1asULdu3bRt2zaVLl1axYoVU1hYmO2mrLRuis/sdoDDMAAgiyZNmmQEBgYaLVq0SHX9hx9+aAQGBhp16tQx1q5da1uelJRkzJ8/36hWrZoRGBhozJ492267wMBAIzAw0Pjtt99S3e8LL7xgBAYGGpMmTbIti4iIsG3XoEED4+jRo4ZhGMaNGzeMq1evZvlYrKKioowGDRoYgYGBRr9+/VLtPywsLNVtW7RoYQQGBhrLli2zLfvjjz9s27Vq1co4e/asYRiGERsba8THx9ttFxgYaPTs2dO4ePGiYRiGYbFYjMWLF9tex9WrV9v19/LLLxuBgYHGww8/bPzxxx+25Tdu3DA+//xz2z5/+ukn27oFCxYYgYGBRuvWrY3IyEjb8vj4eOODDz4wAgMDjXr16tliMwzD2LRpkxEUFGRUr17dmDNnjpGUlGRbt23bNuPBBx80AgMDjQkTJtjFl5CQYBw7dsw4duyYceXKlTu+7rdKTk42mjVrZgQGBhoTJ06025/1vRk5cmSq27777rtGYGCg8eabb9otv9s5l1GLFi0yAgMDjdq1axuxsbG25bNmzTICAwON6tWrGxcuXEixXWbPI8P493Px2Wef2S2/evWq0bhxYyMwMNB47rnnjFOnTtnWXbhwwXae1KtXz27d3Rw8eNCoU6eOLd7AwEAjODjY6NOnj/HVV18Ze/bsMZKTk9PcPq33wmrZsmWpfiZv/czcLrVrw+3bJCYm2pbv2rXLqFKlihEYGGh8+umnduf1smXLbOu2bNliGEba78+hQ4eMGjVqGEFBQcaECRPs9nPw4EGjdevWRmBgoPHWW2+l+hoEBgYanTt3Nk6cOGFbt3v3bqNu3bpGYGCgMWrUKLvt1qxZYwQGBhpVq1Y1vvnmG9tnLikpyZg6dapt3bFjxwzDMIwJEyYYgYGBxlNPPZXqa/3SSy8ZgYGBxowZM2zLMvv5TMuqVauMwMBAo1q1asbWrVtty8+ePWv73A4dOtS4fPmybV14eLjx7LPPGoGBgUbXrl3t9me9ZgcGBhqvvvqqcePGDcMwbl6jra/FE088YQQGBhpt2rQxDh06ZNv26tWrxn//+1/bZ3HPnj22dSdPnjSqV69uBAYGGlOnTjUSEhJs66Kjo42BAwfatouJibGts56vTZo0SfX4bz13IiIi7Naldf3Zs2eP7fo+dOhQu3/L/v77b9t59dRTT9md17eeV08++aRx/Phx27pDhw4ZDRs2NAIDA42BAwfa9ZfZ7QAAwL/IkcmRDYMcOTXkyOTIt75OBSlHtr4HnTt3Ns6dO2dbbrFYjBUrVthe0/nz59ttl5nrvmGkfR5lNke+fPmy0ahRIyMwMNAYNGiQ3b8fy5cvt+XPt8d67do149FHH7X922C9lhuGYZw/f97o27ev7doaFxdnF2tan+m08u6Mvv9pnf+ZvXZb34vAwECjb9++du/zhg0bjKpVq6b6b/udfke49d+5N99804iOjrats/6+EhgYaHz77bfZsh3gaHgCHECOOnv2rO0O3pEjR6pt27a2dU5OTurWrZsGDhwo6eZQTFm90/FWXbt2VaVKlSTdnC/m1uHYMsMwDEVHR+uXX37RSy+9pJiYGLm4uCgkJCQ7wrV5+eWXVbJkSUmSp6enChUqZLe+TJky+uKLL2x3c5pMJnXu3Fm9evWSdPN1tNqzZ49t2K1JkyapYcOGtnWurq4aOHCgnnvuOUnSp59+alsXGhoq6eacYWXKlLEtL1SokAYPHqzGjRvr0UcfVUxMjG3dZ599JsMw9NZbb6l79+5ycnKyrXvwwQc1duxYSdLs2bMVHR1tW+fi4qKAgAAFBATYPQ16N1u3brXd7fv444/b7c96nq1atSpP72a0Du32yCOPyNPT07a8Q4cOMpvNSkxMtLXJaQsWLND58+dVvHhxffXVV/L397etK168uCZNmqTAwEBdvXpV06ZNS/d+q1WrpiVLlqhevXq2ZbGxsdq0aZPGjx+vzp07q3HjxpowYYLi4uKy9Ziyy9SpU2WxWPTYY4/pzTfftPvMPf300+rUqZMk3XV4s8mTJyshIUEvvPCCXn/9dbv9VKtWTZMmTZKTk5NWr16d6tOzLi4umjJliipWrGhbVrduXT399NOSpN27d9u1t37W//Of/6hHjx62z5yTk5P69eunhx9+WMnJyVq5cqUk6ZlnnpHJZNLBgwdTPPlx7tw5bdu2TU5OTnriiSfsYsrM5zM1O3fu1HvvvSdJeu+99/Twww/b1s2aNUsxMTFq2bKlRo4cqSJFitjWlStXTlOnTpWXl5f+/PNPbdq0KdX9v/vuu7Y7xIsVKyZJ+vHHH3Xo0CEVKlRIM2bMUJUqVWztvby8NGrUKDVp0kSJiYl2TzD89ttvcnJyUvXq1dWvXz+5uLjY1nl7e+vdd9+VdPPprZMnT2bpdbmbSZMmKSkpSY0bN9bIkSPt/i2rWrWqZs6cKTc3Nx08eNBu2HcrZ2dnffHFF7r//vtty6pUqaKePXtKujk8XGoyux0AALgzcuSMI0dOH3LkjCFHThs5cvbmyFFRUTp69Kikm9f9EiVK2NaZTCY9+eSTatCggaSboxLkpMzmyIsWLdKlS5dUoUIFffzxx3b/fjz11FN65ZVXUu1vyZIlCg8PV/Xq1TV58mTbtVy6OQrCxIkTVbZsWYWFhWV4SPnbZfT9T0tmr91Wvr6+mjRpkt37/Mgjj9iGbL/9vE2PgIAAffzxx/L29rYte/zxx22/q6Q1DUdmtwMcBQVwADlq8+bNSkpKkp+fn9q1a5dqmxdeeEEuLi66evWqbV6i7HBrspFRkZGRKeaqrVKliho1aqR+/frp0KFDKly4sD7//HO7L4vZ4W5xd+7cWR4eHimWP//885JuzhN74sQJSf/OOVWrVq00h7h66aWXJN0cru7IkSOSZBt+Z+nSpVqwYIHdHDWurq6aNWuWxo4da/vievr0aR06dEiSfaJ9q2bNmsnHx0fx8fFpzmmXEdYvxrVq1UoxBJ41hitXrqRaEMoNx48ft80RdftrUqJECTVq1EiStHjxYlkslhyP55dffpEkPfnkkypatGiK9a6urrY5oX755RcZhpHufVeqVEkLFizQypUrNWDAANWtW9euYBgVFaVp06bp8ccfT3OY5rwSFxdnm2fO+kPX7V5//XX9+OOPtrkGU5OQkKDNmzdLSvszYL2OGIaR6nxwNWrUkJ+fX4rl1gLk1atXbcvCw8Ntn3PrZ/92o0eP1oYNGzRo0CBJkr+/vx544AFJSpHwrVq1ShaLRU2bNk01hqw6ceKEBgwYoMTERL344ovq1q2b3Xrr/IxpvXbFixe3JWipvXZ+fn52P1hZWc/7li1bprpeupkcS9KOHTtsr3G3bt20d+9eLViwINVt3NzcbH/OyR+trl+/bhty8dY5/W7l7++vVq1aSZJ+/vnnFOtr1Khh9yOtlXVesVt/pM2O7QAAwJ2RI2ccOXL6kCNnDDly6siRb8rOHNnX11d//PGH9u7dazcUuVVycrKtoJzTN6hkNke23ojesWNHu3PZqkuXLqnuy5rrt2vXzq6QbOXm5qY2bdpISj3XT6/MvP+pyY5r94MPPpjiRi3pZjFasj9v0+uRRx5J9fWz5ue3zy2e1e0AR+Gc1wEAcGzWLx9Vq1aV2Zz6PTceHh6qWLGijhw5opMnT6pFixbZ0ndWvqC6urqmmFvGbDbL09NTJUuWVO3atdW2bdss3zGfmrvFXatWrVSXlylTRoULF9bVq1cVFham+++/3/b6V69ePc39VahQQV5eXoqNjdXJkycVGBioZ599VkuXLtWxY8f0wQcf6MMPP1TVqlX14IMPqkmTJnrggQfk7PzvPyHWO1kl6dVXX02zrxs3bkj697zIrJiYGFuhJ7UvpPXq1ZO/v78iIiK0cOFCPfPMM1nqLzOWLl0q6Waic+uTrlZPPPGEtm3bpsjISG3ZskXNmjXL0XisT6ne6Vywrrt06ZJiYmIyPBdZ1apVVbVqVb322muKi4vT7t27tXXrVq1atUpRUVE6deqUBg4cmO45l3LDP//8o8TERElK84c6X19fu/mYUxMWFqaEhARJ0gcffGB7Ejm1/qTUPwO33gl9K2uxNSkpybbMOr+ih4dHmklr6dKlUyx75plntGPHDq1evVpvvPGGTCaTpJvJvSTbnfTZ6dKlS+rbt69iYmLUuHFjDRkyxG79tWvXFBkZKenmkwZz585NdT/WNqm9drfeWX2rjJz3ycnJCg8Pt7v2FypUSPv27dORI0cUERGhU6dO6ciRI3YxZOSHsIyKiIiwnZ93mu+sRo0aWrNmTapPo6d1Xll/JE5MTFRSUpLdNT0r2wEAgDsjR844cuS7I0fOOHLk1JEj51yO7ObmpjNnzmjv3r06deqUIiIidPz4cR06dEjXr1+XpBy/+SOzObJ1u8qVK6e6ja+vr0qUKKHz58/bLbfeRLRkyZJUb9iWpIsXL0rK2nUws+//7bLj2p2R8za97pafp3XjRGa3AxwFv1gByFGxsbGSdNdhgaxJcnYO73brE3oZ5efnp4ULF2ZbLBlxt7hTuzPZysPDQ1evXtWVK1ckpf/19/T0VGxsrO319/Ly0uLFi/X1119rzZo1Cg8P199//62///5bs2bNkq+vr15//XV17txZkv3di+kZyiczdzveavXq1bZEatSoURo1alSabffv36+DBw/e8ct9dktKStL3338v6ead3Xfre+HChTme3KfnXLj1x6pr165lOLm/lbu7ux5++GE9/PDDGjhwoN577z3973//0549e3L9/biTW59ivXUIvoy69Zw+cOBAhtpbpXYXdVqscWc05rZt22rkyJE6c+aMtm/frkaNGmn//v06duyYfHx8su3HVasbN26oX79+ioiIUKVKlfT555+nuPvYem5K/ybHd5Laa5fa3dW37jsj573VqlWrNHXqVIWFhdm1v++++9SpUyd99913d401q259bdJzDKn9G5rWD013k9ntAADAnZEjZxw58t2RI2ccOXLqyJFzJkc+ceKEPvnkE23atMmuyO3l5aX69evr/PnztqkWclJmc2TrNTS10TasihYtmqIAbu0vLCwsRW59u6xcBzP7/t8phsxeuzNy3qZXWr955NR2gKOgAA4gR1m/eNztS4z1i1RqX1TSerrOendkfpVTcd9puF3rF0vrnbjpff2t6299/b28vBQSEqKQkBCFh4dr+/bt2r59uzZt2qSoqCgNGzZM3t7eat26te0LsLe3t2243pxknRPMw8Pjjl/az58/L8MwtGjRIo0cOTLH47L69ddfbXewlihRwnYH8e2uX7+uq1evavPmzTpz5kyqd6Nm13nk6empy5cv3/FcuHz5sl37uxk+fLj++OMPPfXUU+rXr1+a7dzc3PThhx9q3bp1tjmTb0/u0zrOnJ4T7dbkLTY21jZ3dFb2s3v37iwnXentL6M/iLq5ual9+/ZavHixVq9erUaNGtnubE9rKLPMMgxDb7/9tvbs2SMfHx9NmzYt1c+ru7u77c+rV69OdUi4zErPNdD678+t7VesWKHBgwdLkpo0aaJHH31UlStXVkBAgIoWLarExMQ7FsCz63y+9Ty6evVqmk9ZWD+7OX3eAQCArCNHTokcOevIkcmRsws5cvbnyFFRUXrhhRcUFRWlMmXKqHPnzqpWrZruv/9+3XfffTKZTHrzzTfvWADPzvNeyniO7O3trQsXLtjdpH271J4mdnd319WrVzVt2rRsv+H+Vpl9/9PaT25duwHkLOYAB5CjrPPyHDp0KM1hfGJjY213AZYvX9623PqUoPUu5tvdfldhfnDrkGepxR0fH5/lO7vTekLy1KlTti96lSpVkvTv63/w4ME093f8+HHbF2br6x8VFaU///zTNhdM+fLl1blzZ40fP16bNm2yDX1nTQoqVqwo6eYdlxcuXEizrz///FPHjx/P0hA7oaGhtvl4xo4dq82bN6f5n/WO8TVr1tzxS3p2s869VrlyZW3ZsiXN+GbPni3p5rBStxbTcuI8Ss+5YL0ru2jRoum6s/3GjRsKDw+3zel0J15eXrbE6dYE2vo5tw6xdruc/pz7+/vbYrh1qKtb7d+/X126dNGQIUPSTDpv3c+xY8fS7G/fvn06fPhwlpMy65x+169f1+nTp1Nt8/PPP+vFF1/UJ598YrfcOtzhzz//rOTkZNswZNk9DOInn3yin376SS4uLpoyZUqaw5AVKVJExYsXl3Tn1+7w4cM6dOiQ3Y9Qd5Oe837//v2SJJPJpHLlykmSvvrqK0k35wOcOXOmnnvuOQUHB9ueLkprnr7s/nerXLlyth9c7vTUhHXdrf+GAgCA/Ikc2R45MjkyOTI5sqPnyMuWLVNUVJS8vb21bNky9evXT82aNZO/v7/tZpBz586lum12X/czmyNbr2nWa83trl27ZhvO/lbW7dI6l6SbT4fv378/S/NRZ+X9Ty3e3Lh2A8h5FMAB5KimTZvK2dlZFy5c0A8//JBqm/nz5yspKUnu7u5q0KCBbbk1uUhtPpV9+/bly+Te29vb9uU1tbh/+eWXTM31cqvly5en+kOJdTi6OnXq2O6Stt5duW/fvjSH7vnmm28kSaVKlVJQUJAkqVevXurWrZtWrFiRor2np6fq1Kkj6WZSKkkBAQG2Hwbmz5+faj+7du1St27d1K5dO+3ZsycdR5o667xhPj4+atmy5R3bdunSRdLNL8DWHyJyWlRUlDZt2iTp7slSzZo1bT+ULFmyxHZuZOU8SutOeuu5sHLlylQLiAkJCbZzqEmTJneM28o6t9yBAwdsP2ikZevWrYqJiZG3t7dq165tW36nz3lycrJ++eWXdMWSWV5eXqpXr56kf5+auN2aNWu0e/dunT59Os3X18vLy3b9SmsO64iICHXt2lWPP/64fvzxxyzFHRAQoLJly94x7hUrVmjHjh0pksjatWurcuXKio6O1rx58/TPP/+oWrVqac7vlhkLFy7U119/LenmEIz169e/Y/vmzZtLunn9SO36dvXqVfXo0UNPPvmk5syZk+44rOf9L7/8ooiIiFTbWN+vOnXqqEiRIpJkS5jTGobQeh2S7Ofvsp7Ply9fVlRUVIrt1q9fn2as1nPr1h+QPDw81LBhQ7s4bxcREWH7nDRt2jTN/QMAgPyBHNkeOTI58q3IkcmRMys/58jW/LJMmTKpPlF/7Ngx2zXAeg2xyux1P7X8Usp8jty6dWtJN2/ySe1mheXLl6eI/db+li5dmmqxOCkpSf3791enTp308ccfpxpPemTl/b99P7l17bYym2+W6NK6mQRA5lEAB5CjSpcubZsDa9iwYXZfaC0WixYsWKDJkydLkvr37283VJf1C/fs2bN1/Phx2/L9+/frjTfeyI3wM8zNzU3VqlWTJE2ePNnuDs6tW7fqww8/zHIfBw4c0LBhw2zDXlksFs2fP9+WpA8aNMjWtm7durY7vENCQuyG70lISNCkSZNsd1W/8847ti/ITzzxhCRpypQp2rx5s13/f/75py1RvnVOroEDB0qSpk+frhkzZtjdnfrnn3/a1tepU0eNGjWyrUtMTNTx48d1/Pjxu96xnZCQoNWrV0u6ORTV3eaobdq0qe0L8KJFi+7Y9k7++ecfHT9+PNW7WW+3cuVKJSUlycXFxfY63on1B4gLFy7Y7jLOynlkHa4pMjIyRT8lS5bUxYsX9fLLL9slOlFRURo4cKCOHDkiT09Pvfbaa3eNW5IefvhhtWnTRpI0dOhQjR49OsWdtjdu3NCyZcv0+uuvS7p5ntw69Jn1c3706FHNnTvX9oX/8uXLeu+999I1J3RW9e/fXyaTSatWrdK0adPsfjhZuXKl5s2bJ0nq3bv3Hffz2muvycnJSWvWrNHYsWPtksIjR46ob9++SkxMVNmyZdWxY8csxWwymdS/f39J0owZM7RkyRLba5ecnKzp06dr/fr1cnZ2Vs+ePVNsb/3haeLEiZKkp59+OtV+MvL5tNq0aZNtOMWQkBA9+eSTd92mb9++8vDw0K5du/T222/bJaSRkZHq27evoqOjVbhwYXXr1i1dcUg353MLCgrSjRs31KdPH7sh5WJjYzVs2DBt3bpVzs7Oeuutt2zrrHfFL1682O7zFxsbq8mTJ2v69Om2Zbcm8bVr15aLi4sMw9CYMWNs6xITEzVnzpw7Dptu/ezefp0ZMGCAnJ2dtXXrVg0bNszuSZ3Q0FD16dNHN27cUJUqVdL1WgMAgLxFjkyObN2GHDl15MjkyJmRn3Nka34ZGhqqn376ybbcMAxt3rxZvXv3tj3xf/sQ95m97lvPqds/o5nNkZ999lmVL19eZ8+eVUhIiN0N3+vWrdP48eNTjaNbt27y8/NTeHi4+vXrZxfPpUuX9Prrr+v48eNycXHRSy+9lObx3E1W3/9bZfbanVnWa9SVK1dydWQOoCBgDnAAOW7IkCE6d+6cfv75Zw0cOFAlSpRQqVKlFBERoejoaEnSCy+8oD59+tht169fP23ZskUXLlxQx44dValSJd24cUNhYWHy9/fXM888k+ZdfXnp9ddfV79+/XTs2DG1atVKlSpV0uXLlxUZGamaNWsqODjYlsRlRmBgoJYuXaq1a9fq/vvv19mzZ3XhwgWZzWYNGTIkxZevTz75RK+88or++usvde/eXWXLllWxYsV08uRJxcbGysnJSa+//rrat29v26Z79+7atm2bNm/erD59+qhEiRIqUaKEoqOjbUljy5Yt9eyzz9q2ad++vcLCwjR58mR9+umn+uqrr1ShQgVdunTJtk3FihU1depUu/jOnTundu3aSbo5XFtaSYYkbdiwQTExMZLSNxSV2WzWc889p88++0xHjhzRrl27bMlDRrz77rvasWOHGjRoYEv00mK9y7t58+bpmiurffv2+vjjj3XlyhUtWrTIlixn9jyqVq2aNm7cqNWrV+vw4cOqX7++3n//fRUpUkTTpk1T37599ddff6l169aqVKmSnJ2ddfToUSUmJsrb21uffvqpbeio9Pj000/l4eGhlStXau7cuZo7d67KlCkjX19f2+c1ISFBLi4uevPNN9W1a1e77Zs1a6b69evrzz//1OjRo/X111/Lx8dHJ06cUGJiol577TXbD4A55cEHH9SQIUP00UcfacKECfr666/l7++vs2fP2uape/XVV+1+zEpNvXr1NHLkSL3//vv65ptvtGjRIgUEBOjatWsKDw+XYRgqXry4Zs2addcfptKjU6dOOnbsmGbPnq2hQ4fq888/V6lSpXT69GnFxMTIyclJI0aMSPWu9SeeeELjx4/X9evX5eLiog4dOqTaR0Y+n1aDBg1ScnKy3Nzc9Pfff6tXr16Kj49P9amcZ555Rp06dVL58uX1+eefa9CgQVqzZo1++uknVapUSYmJiQoLC1NSUpI8PDw0ffr0NOfBTo2zs7OmTp2qPn366MSJE3riiSdUoUIFeXp62oYrc3Nz0wcffGD3lPqgQYPUv39/HTt2TI888ohtGLTw8HDduHHDNlTdqVOn7IZDL1q0qHr16qVp06ZpzZo12rJli+677z5FRkYqJiZGXbp00S+//JLq8HbVqlXTzp079eGHH2rhwoXq2rWrOnXqpLp162r06NEaOnSovvvuO33//fcKCAjQ9evXdfLkSUk3/12YMmVKtpxXAAAg55EjkyOTI6eNHJkcObPya47cqVMnLViwQOHh4QoJCVHZsmXl4+OjM2fOKCoqSi4uLmrQoIF27NiRIlfM7HW/atWqkm7Ov962bVtVqlRJU6ZMyXSO7ObmpkmTJql3797aunWrmjdvrsqVKysmJsb2Gbxw4UKK6cKKFi2qL7/8Uv369dO2bdv0yCOPqFKlSjKZTDp58qQSEhLk7Oyszz77zDbiRmZl5f2/VWav3ZkVFBQks9ms+Ph4tW3bViVKlNCsWbPSNe0CgDvjCXAAOc7V1VVffPGFJkyYoMaNGyshIUGHDh2Su7u72rdvr7lz52rYsGEphk2qWrWqli5dqo4dO6pYsWI6ceKEkpOT9dJLL2nFihXy8/PLoyO6s6ZNm2rBggVq1aqVPDw8dOzYMRUqVEghISFasGCB7c6+zOrevbs+++wzVaxY0Xbnb5s2bbRo0aJU72L09vbWvHnzNHLkSD3wwAO6evWqDh8+LB8fH3Xq1ElLly5V37597bZxcnLSF198offee09169ZVfHy8QkNDFRcXp8aNG+uTTz7R1KlT7ebhkm4mQIsXL1bHjh3l5eWl0NBQRUdHq1q1aho4cKCWLVuWoeLV7ayJc/Xq1dM9FFWnTp1sc+hm5Q739Ni7d69tbqv0zhXl7u5ue2rz999/t831l9nzqE+fPnr22Wfl7e2tsLAwHT582LauWrVqWrNmjfr376/KlSsrIiJCYWFhqlixol555RV9//336R7azcrV1VUfffSRlixZopdeeknVq1dXQkKCQkNDdfbsWVWsWFG9evXS999/n+I8k27+ADNr1iy9/vrrqly5sqKiovTPP//owQcf1MKFC7N8F3h69ejRQ4sXL1aHDh1UqFAhHT58WElJSWrWrJlmz56tkJCQdO3nmWee0apVq/Tcc8/Jz89PR48e1ZkzZxQQEKDevXvr+++/txVTs8PgwYM1e/ZsPfLIIzIMQ6GhoXJyclLbtm21ePFiux/gblWsWDHbcNktW7bM1sTKeld/fHy8NmzYoK1bt+rPP//U7t27U/x35swZ23bNmjXT//73P/Xs2VPlypXTyZMnFR4errJly6pr1676/vvvFRwcnOF47rvvPi1btkzvvPOOatWqpQsXLuj48eMqXbq0unfvrlWrVqV4crpFixZaunSpWrVqJT8/P504cUJnzpxRYGCg3nzzTa1atcp2bm7cuNFu20GDBunTTz9VvXr1lJiYqJMnT6pixYoaN26cRowYkWacY8aM0cMPPyxnZ2edPHnSdi2Qbs5FvmrVKnXu3FnFixfX0aNHFR0dreDgYA0fPlxLly5Nc451AACQ/5AjkyOTI6eNHJkcOSvyY47s5eVlu65UrlxZly5d0tGjR+Xl5WUrYI8ZM0bSzafEb31KOrPX/SeffFK9e/eWn5+fTp8+rUOHDtluSs9MjixJVapU0YoVK/TSSy+pdOnSOnr0qCwWi3r27KlvvvkmzZsYatasqdWrV+vVV19VUFCQTp8+rRMnTqh48eJ68skntWzZMtsQ61mV2ff/djl97b5V+fLlNXbsWFWoUEExMTE6c+ZMihErAGSOyWByAQC4J7Rs2VKRkZEaNWpUur+wIfuMHDlSp06d0owZM/I6FCBbPP300zp48KCmT59+1zv3AQAAgPyGHDlvkSPD0ZAjA4Bj4QlwAADuwmKx6M8//1SlSpXyOhQgWxw8eFAHDx5U6dKl1bhx47wOBwAAAMA9hBwZjoYcGQAcD3OAAwBwFx9++KGioqL04osv5nUoQKZFRERIki5evKjBgwdLujlcpJOTU16GBQAAAOAeQ44MR0CODACOjQI4AAB38fzzzyskJETFihXL61CATPvhhx/02Wef2f4eGBioF154IQ8jAgAAAHAvIkeGIyBHBgDHxhDoAADcRZUqVUjscc+rUqWKSpQoIQ8PD7Vq1Upff/21XF1d8zosAAAAAPcYcmQ4AnJkAHBsJsMwjLwOAgAAAAAAAAAAAACArOIJcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCM55HcC9wjAMWSyMFg8AAAAAsGc2m2QymfI6DIdA7g0AAAAASE1Gcm8K4OlksRi6dOlaXocBAAAAAMhnihXzlJMTBfDsQO4NAAAAAEhNRnJvhkAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ3DO6wAAAAAAAClZLBYlJyfldRgFnpOTs8xm7h0HAAAAAEdE7p0/ZHfuTQEcAAAAAPIRwzB05colxcXF5nUo+H/u7l4qUqSYTCZTXocCAAAAAMgG5N75T3bm3hTAAQAAACAfsSbgXl4+cnUtRNE1DxmGoYSEG4qNjZYkFS3qm8cRAQAAAACyA7l3/pETuTcFcAAAAADIJyyWZFsC7uVVJK/DgSRX10KSpNjYaBUu7MNw6AAAAABwjyP3zn+yO/cmcwcAAACAfCI5OVnSv4kf8gfr+8G8cAAAAABw7yP3zp+yM/emAA4AAAAA+QxDr+UvvB8AAAAA4HjI9fKX7Hw/KIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADsE5rwMAAAAAAOSdw4dDNXXqRIWG/i2LxVC1ajXUt29/Va9eQ5K0c+cfmj17po4fPyonJ2c1aNBI/fq9ppIlS0mSfvhhtcaM+UBLlnyv0qXL2PbbqVNH1a1bT//97whJUuPG9fXSS321bdtWRUSEq0uXF9WzZ29FRp7Wl19O1q5dO2UYhmrUqKn+/Qfq/vsDJEk3btzQrFnTtGHDOkVHX1K5cuXVvftLeuSR1rn7QgEAAAAAkEnk3rmLJ8ABAAAAoIC6di1Wb775mooW9daoUR/rgw/GKD4+Tm++OUCxsbH66acfNGjQAPn5+WnEiNF67bVBOnhwv1555SVFR1/KcH9z5sxS8+YtNWLEaDVp0lwXL15Unz49FB5+Um+++a7ef3+krly5otdf76+YmBgZhqH33ntbK1cu13PPddVHH32mGjVq6f3339PatWty4BUBAAAAACB7kXvnPp4ABwAAAIAC6uTJk4qJiVanTs+pVq06kqTy5Sto1aplio29qqlTJ6p+/Qb64IOxtm1q1aqjF154VgsXzlf//iEZ6q9atRp64YWetr9/8cVE3bgRr88/nypf3+KSpMqVq+jll3vqwIF9KlTIVdu3b9MHH4yx3XXesOGDio+P07RpU/Too23l7ExaCwAAAADIv8i9cx9PgAMAAABAAXX//QHy9vbRu+++oU8/HautWzfL17e4+vcfqPj4eEVFRal168fstilb9j5Vr15Tf/31Z4b7CwioZPf3vXv/Uo0atWwJuCQVL15cy5atUePGTfXnnztlMpn04IONlZSUZPvv4YebKSrqok6ePJ65AwcAAAAAIJeQe+e+e6tcDwAAAADINh4eHpo6dYbmzJmlDRvWaeXKZXJzc1Pr1o+pbdv2kqRixXxTbOfr66vDhw9nuD8fn2J2f79y5bLd3GW3u3LlsgzDUOvWTVNdf/HiBVWuHJThOAAAAAAAyC3k3rmPAjgAAAAAFGDlylXQsGEjlZycrEOHDurHH3/QypVLVby4nyTp0qWoFNtERUXJ29tbkmQymSRJFovFrk1c3PW79u3lVVgxMTEplu/atVOlSpWWl1dhubt7aPLkaaluX7as/137AAAAAAAgr5F75y6GQAcAAACAAmrjxg3q0KGVoqIuysnJSTVq1NJbbw2Wl1dhXbp0Sb6+vlq3bq3dNpGRp3XgwD7VqlVbkuTh4SlJOnfurK3NqVNhunz58l37r127jg4e3Kfo6Eu2ZTExMXrrrRD99ttm1akTrLi46zIMQ1WqVLP9d+LEcX399QwlJydnx8sAAAAAAECOIffOfTwBDsCO2WyS2WzK0T4sFkMWi5GjfQAAAODuataso+Rki4YMeUsvvNBTnp6e+vnndbp2LVYtW7ZStWrVNWbMB3r//SFq27aDLl+O0ddfT1eRIkX13HPdJEn16j0gNzc3TZkyQX369Nf169c1e/bNNnfTuXNXrV37P73xxgB17/6SXF0Lad682fL1La62bdvLy6uw6tQJ1uDBb6pnz94qX76CDh06qFmzpqthw0a2O+Hh+HI6TyFHAQAAAJBTyL1zn8kwDDK8dEhOtujSpWt5HQaQo8xmk7y9PeTklLODQyQnWxQTc50fmAAAAG6TmJigqKgz8vUtLRcX11zp89Chg5ox40uFhh5SfHy87r8/QC+++B81a9ZCkvTrrz9r3rxvdOLEMXl6eqphwwfVt++rKlmylG0ff/yxTdOmTVF4+EmVKlVa//lPX/344//k6+ur//53hCSpceP6+s9/+qhXr5ft+g8PD9PUqRO1e/cuubi4qG7dYPXvP1Bly94nSYqLi9PMmV9q48afFR19ScWLl1CrVq3Vs2dvFSpUKFdeo7u9L8WKeeb4d+iCIrXcOzfyFHIUAAAAoOAg93b83JsCeDpRAEdB4Oxslo+Pp75Y+Jsiz9992IzMKFuiqF7t8rCio68pKcly9w0AAAAKkLxIwnF3FMBzT2q5d07nKeQoAAAAQMFC7p0/ZWfuzRDoAFKIPH9ZYZHReR0GAAAAANiQpwAAAAAA0oNb1AEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACH4JzXAQAAAAAAgLyRmJioefPmacWKFQoLC5OHh4dq1qypHj16qEmTJinaN2zYUDExMWnub9++fSpUqFAORgwAAAAAwJ1RAAcAAAAAoAAyDEODBg3S+vXrVaRIET300EO6ceOG/vjjD23ZskWvv/66+vXrZ2sfGRmpmJgYlSxZUg0aNEh1n2YzA80BAAAAAPIWBXAAAAAAAAqgRYsWaf369apatapmz54tHx8fSVJoaKi6deumiRMnqnXr1goICJAkHTp0SJLUtm1bvffee3kWNwAAAAAAd8Kt2QAAAAAAFECrVq2SJA0ePNhW/JakKlWqqGPHjjIMQ5s3b7YtP3jwoCSpevXquRsoAAAAAAAZwBPgAAAAAHAPMJtNMptNud6vxWLIYjFyvV/kvDlz5ujkyZOqXLlyinXXr1+XJDk5OdmWWZ8Ar1GjRu4EmMucnHLuGQE+RwAAAMC9gdzbMVAAB5An+HEJAAAg/cxmk7y9PXL0O1RakpMtiom5nqnvV+vW/ahlyxbrxIljkqTy5SuqQ4cn9OSTz2R3mMiEQoUKqUqVKimWb9iwQT/++KPc3d3VunVr2/KDBw/Kzc1NBw4c0NChQ3X06FGZTCYFBwerf//+ql27dm6Gn22KFnaTYbGoSBH3HOvDYklWdHQceQoAAACQj5F7Ow4K4AByFT8uAQAAZJzZbJKTk1lfLPxNkecv51q/ZUsU1atdHpbZbMrwd6s1a1bp88/HKSTkTdWpEyzJ0M6dOzRp0nhFR1/Sf/7TJ2eCRqZcvnxZQ4cO1bFjx3TixAmVLl1aY8eOValSpSRJUVFROn/+vCTpnXfeUZ06ddSwYUMdOXJEv/76q7Zu3apx48apXbt2eXkYmeLp5iqT2ayTa2YoLupMtu/f3be0Knbok6nPEQAAAIDcQ+7tOCiAA8hV/LgEAACQeZHnLyssMjqvw0iXFSuWqkOHJ/T440/ZlpUrV0EXLpzXd98tLLBJeH4VERGhdevW2f5uMpl07NgxPfjgg5L+nf/bx8dHX375perWrStJMgxDc+bM0dixYzVkyBAFBwfbiuaZ5exs/7RFbj19ERd1RnHnTuXY/vPiKRIAAAAAKVksdx7inNw7bzk5mVLkhRlFARxAnsjpH5cAAACQt8xmk/bv36crV66oSJEituXduvVQu3YdJUmdOnXUY491UK9eL9vWDxjQV6VLl9F//ztCu3f/qZCQV9Sv32v69tu5KlWqlNzc3FW8uJ8+/HCsbZt9+/aof//eWrRohe67z1+//bZFs2Z9pbCwk/Lz81OrVm3Uo0cvubq6auLE8frtt8367rtVtu1jY2P1+ONt9OGHY9S4cbNceHXyn4oVK2rHjh0yDEPbtm3T6NGjNWrUKMXGxqpfv35q0qSJtmzZIsMwVLJkSdt2JpNJPXv21M6dO7VhwwYtXbpUAwYMyHQcZrNJPj6e2XFI+U5OjoIFAAAAIP3i45108aI5RaE1r29azUz/Tk5mHTiwT9evx9rl3j16/EePP/6EnJ3NevLJ9mrfvqP69HnFtr5fvz4qXbqMhg//QLt2/alXX+2rV18N0bx5c1SqVGm5u7upeHE/jR79sW2bvXv36OWXX9KSJSvl719OW7du1owZ02y596OPttV//tNbrq6umjBhnLZu3aJly763bR8be1Xt27fWyJEfqWnTlLm3xWKS2WxW0aIecnNzy/BrcSsK4AAAAACAbNetWw8NHz5ETz31mIKD66tWrbqqV6++qlatrsKFC2doX9u2bdVXX81WfHycjh49ovHjP9L169fk4XGzULpu3VrVrFlb993nrz/+2KZhwwYrJGSQHnigkSIjT2vChE906lS4Ro78SB06PKElSxZq7949ql27jiTp55/XydPTU40aPZzdL8M9w9Pz36Jzu3btVKpUKXXt2lXTp09X9+7d5enpqRIlSqS5fYsWLbRhwwYdOHAgS3FYLIauXLlut8zJyewQxeMrV+KUnGzJ6zAAAACAAi8h4YYsFouSkw0lJeWf7+jJyZYMx9O1a3cNHz5EHTu2SZF7lynjadufxWJ/rIZhyDBuLrPmKVu3bkmRe1+5ctWWe69d+z/VrFlbpUvfp61bt+q9995NkXuHhYVp5MiP1K7dE1q8eKF27dpty71/+ukneXh4qkGDB1M9zuRkQxaLRZcvX1dcXHKK9UWKuKf7JgEK4AAAAACAbNe8+SP66qvZWrp0kbZv/0O///6bJMnfv5yGDBmuWrXqpHtfXbq8IH//cpKk++4rpwkTxmnTpo167LEOSkxM1C+/bFC/fq9JkubO/VodOjyuJ5/sJEkqW/Y+vf32ewoJeUVnzvyjgIBKCgqqqp9++p8tCf/xxzVq06adnJ1Jka2Cg4NVrlw5hYeHKywsTNWrV79jez8/P0lSXFxclvvOTz9AZafM/JgFAAAAIPslJzvO9KmOmHtnx40JZPcAAAAAgBxRtWp1DRs2UoZh6MSJ4/r9961asmSR3nproBYvXpHu/dx3Xznbn93d3dWixSNat26tHnusg37//TfduBGvli1bSZKOHAnVoUMHtXbtGts2hnHzx42wsJMqXbqM2rd/XNOnT9Xrr7+t8+fPaf/+fXr77fey6ajvDXFxcZo4caIuXryocePGyWRKOQeeq6urJCkpKUmLFy/W77//rg4dOqhVq1Yp2kZEREhSluf/BgAAAABkDLl3ShTAAQAAAADZ6vz5c/r22zl64YWe8vMrIZPJpICASgoIqKTGjZvphRee1Z49u1PdNjk5KcWyQoUK2f29XbuOGjiwn6KiLmrduh/UtGkLeXp6Sbo5rFvXrt312GMdUuzH17e4JOnRR9tqypTPtW3bFh0/fkxVq1bT/fdXyuph31Pc3Ny0YsUKxcTEqHPnzmrQoIHd+oiICJ08eVKurq6qXLmyNm3apLVr1youLi5FAdwwDK1adXNO9caNG+faMQAAAABAQUbunba8nc0dAAAAAOBwXF0LadWq5Vq3bm2Kdda5posV85Wzs4tiY2Nt6ywWi/75J/Ku+69TJ1ilSpXWjz/+T9u2/WaXcN9/f4DCw8N0333+tv8uXDivL76YqOvXr0mSChcurKZNm+vXX3/R5s0b1a7d41k95HuOyWTSc889J0kaMWKEzp8/b1t39uxZvfHGG0pKSlKXLl3k4eGhp556Sq6urvr111/13Xff2dpaLBZNmjRJ+/btU6VKldS2bdtcPxYAAAAAKIjIvdPGE+AAAAAAgGzl7e2tbt16aPr0qYqNjVXLlq3k4eGpsLCT+uabmQoOrq/ateuqVq3a+vnndWrWrIWKFfPVokXz7ZLyO3nssQ6aM+drFS1aVPXr//v0crdu3TV8+BDNmvWVHn20rS5cOK+PPhqlkiVL2u5Cl6T27R/X4MFvyDCkVq3aZPtrcC/o37+/du/erZ07d6pNmzaqV6+eEhMTtW/fPl2/fl2NGzfWW2+9JUny9/fXiBEjNHToUA0bNkzz589XhQoVFBoaqvDwcBUvXlyTJ0+Wi4tLHh8VAAAAABQM5N5powAOAAAAAPeIsiWK3jP99enTT/fd56/Vq1dqxYolio+PV8mSpdSy5aPq3v0lSVLfvq/q6tUreuutELm5uatjxyf1yCOtbfOG3Unbth309dfT9fTTz8ps/ndwsxYtWumDD6R5877W/PnfqHDhInr44Sbq1y/Ebvv69RuoaFFv1axZW4ULF870cd7L3NzcNHv2bM2dO1erVq3S9u3b5ezsrMqVK+vpp5/Ws88+KycnJ1v7Z555RhUrVtSMGTO0e/dunThxQiVKlNCLL76ofv36ydfXNw+PBgAAAACyB7n3v+7V3NtkpOfo8kBiYqLmzZunFStWKCwsTB4eHqpZs6Z69OihJk2apGh/8eJFTZ06VVu2bNG5c+fk5+entm3bqn///rbH/LMiOdmiS5euZXk/QH7m7GyWj4+n3pv4g8Iio3Okj4fqlNeAro3195wPFXfuVLbv371kOVXrMVzR0deUlGTJ9v0DAADkpMTEBEVFnZGvb2m5uLjalpvNJnl7e8jJKfdnsUpOtigm5roslnyZOmZaXFycnniirUaP/kQPPNDwjm3Tel+sihXzzJP3xhGllnvndJ5CjgIAAAAULOTeuSevcu98+QS4YRgaNGiQ1q9fryJFiuihhx7SjRs39Mcff2jLli16/fXX1a9fP1v78+fP6/nnn1dkZKQCAwPVvHlz7d+/XzNnztSWLVu0YMECeXl55eERAQAAAEDmWSyGYmKuy2w25UnfjpSAX7lyRbt379Qvv2xQyZIl7YZwAwAAAAAUXOTe2Sevc+98WQBftGiR1q9fr6pVq2r27Nny8fGRJIWGhqpbt26aOHGiWrdurYCAAEnSqFGjFBkZqb59++rNN9+UJCUkJOidd97R2rVrNWXKFA0ePDjPjgcAAAAAssrRkuG8kpycpI8+Gilvbx99+OFYmUy5/8MGAAAAACB/IvfOHnmde+fLMdpWrVolSRo8eLCt+C1JVapUUceOHWUYhjZv3ixJOnXqlNavX6/SpUsrJOTfceVdXV01cuRIeXp6avHixYqPj8/dgwAAAAAA5Ds+PsX044+/atGiFQoMrJLX4QAAAAAA4HDyOvfOlwXwOXPmaNWqVXrggQdSrLt+/bokycnJSZK0efNmWSwWNWvWTC4uLnZtCxcurEaNGun69evavn17zgcOAAAAAAAAAAAAAMgz+bIAXqhQIVWpUsVW5LbasGGDfvzxR7m7u6t169aSpCNHjkiSAgMDU91XpUqV7NoBAAAAAAAAAAAAABxTvpwD/FaXL1/W0KFDdezYMZ04cUKlS5fW2LFjVapUKUnShQsXJEl+fn6pbm9dfvHixdwJGAAAAAAAAAAAAACQJ/J9ATwiIkLr1q2z/d1kMunYsWN68MEHJf07JLqbm1uq21uXW9tlhbNzvnxgHsg2Tk6Oc4470rEAAICCw2Ix5XUIuAMnJxN5IQAAAAAA+Vy+L4BXrFhRO3bskGEY2rZtm0aPHq1Ro0YpNjZW/fr1sw2TbjKl/kORYRh2/88ss9kkHx/PLO0DQO4pUsQ9r0MAAADIsPh4J128aKbQms9YLCaZzWYVLeqR5s3XAAAAAAAgf8j3BXBPz3+Lzu3atVOpUqXUtWtXTZ8+Xd27d5eHh4ck6caNG6lub13u7p61YpjFYujKlaw/RQ7kZ05OZocpHF+5EqfkZEtehwEAAJAhCQk3ZLFYlJxsKCmJ7zL5RXKyIYvFosuXrysuLjnF+iJF3BmBCAAAAACAfCLfF8BvFxwcrHLlyik8PFxhYWEqUaKEpH/nAr/d3eYIzwh+gALuHcnJFj6zAADgnpOcnPbIVWazSWZz7g+RbrEYslgyPqJWp04ddfbsGQ0Y8Lqef/6FFOvHjRujVauW6z//6aNevV7OVGydOnXUY491SPf2GW1/O25MAAAAAADHRu6deh+5mXtnh3xXAI+Li9PEiRN18eJFjRs3LtWhzV1dXSVJSUlJCgwMlCQdP3481f0dPXpUkhQUFJRDEQMAAABAzro5JZO7zGanXO/bYklWdHRcphJxZ2dnbdz4c4okPCkpSZs2/ZLmVFYAAAAAAOQ2cm/Hke8K4G5ublqxYoViYmLUuXNnNWjQwG59RESETp48KVdXV1WuXFnFixeXJG3cuFFDhgyxzQkuSVevXtX27dvl4eGhevXq5epxAAAAAEB2uXkHupNOrpmhuKgzudavu29pVezQR2azKVNJeP36DbR9++86d+6sSpYsZVu+e/efcnNzV6FCzKcNAAAAAMgfyL0dR74rgJtMJj333HP66quvNGLECH3zzTe2Yc7Pnj2rN954Q0lJSerRo4c8PDzk4eGhFi1aaOPGjRo3bpzeffddmUwmJSQkaPjw4bp27ZpeeukleXl55fGRAQAAAEDWxEWdUdy5U3kdRrpVrVpd4eFh2rhxg92d6D//vE4tWz6qX35Zb1t24MA+TZ8+VYcPH5Kzs7MaN26mV199XUWKFJEkxcbG6vPPx2nr1k1ydnZR9+7/SdHf/v17NW3aFB069Le8vb318MNN9corr8rTk3wQAAAAAJA+5N73fu5tzusAUtO/f3898MADOn78uNq0aaPevXurR48eeuyxx7Rv3z41btxYb731lq39sGHDVKJECc2ePVvt2rVTSEiI2rRpox9++EHVq1fXgAED8vBoAAAAAKDgatGilTZu/Nn298TERG3e/KtatWptW/b33wf02msvq0KFipo2bbZGjvxYf/99QG+8MUAWy805t4cPH6xDhw7q448naMKEKfrtty06e/bfO/KPHTuqgQP764EHGmrOnIV6//3ROnz4kAYNGiDDyPgd9AAAAAAA3CvIve3lywK4m5ubZs+erXfeeUf+/v7avn279u3bp8qVK+uDDz7Q9OnTbfOAS1LZsmW1dOlSPfvss7p69ao2btwoV1dXvfLKK5o7d648PT3z8GgAAAAAoOBq2fJR/f33AZ07d1aStGPHH/L29lZgYBVbm0WLvlVAQGW98ca7qljxfgUH19eIEWMUGvq3tm//XadOhWnHjj80aNA7ql27ripXDtL774+yywsXLpyr+vUfUM+eveXvX061a9fRiBGj9fffB/TXX7ty/bgBAAAAAMgt5N728t0Q6FYuLi7q1auXevXqla72JUuW1KhRo3I4KgAA7g0356sx5dj+LRYjU/PRAAAKnipVqqpMmbK2odh++WWdWrVqY9fmxIljeuCBRnbLAgIqycursI4fP6r4+DhJUtWq1WzrixXzVZkyZW1/P3z4sE6fPqVHH22SIobw8DAFB9fPzsMCAAAAACDfIPe2l28L4AAAIHPMZpO8vT3k5JRzA70kJ1sUE3OdIjgAIF1atnxUGzf+rKeeelZbtmzWjBlz7NYbhiFTKvdtGYZFzs7/pq23/7vj5ORs17Z168fUvftLKfbj7e2TxSMAAAAAACB/I/f+FwVwAAAcjNlskpOTWV8s/E2R5y9n+/7LliiqV7s8LLPZRAEcAJAuLVu20vz532jNmlUqU6asypevYLf+/vsrae/ePXbLjh49omvXrqlChfvl719OkrR//1499FBjSdLVq1cVGRlha1+xYoBOnjyu++7zty07dSpMU6ZM1CuvvCovr0o5c3AAAAAAAOQD5N7/ogAOAICDijx/WWGR0XkdBgAAqlw5SPfd56/p07/QCy/8J8X6557rqldf7aPPPvtYTz/dWdHRl/TZZx8rMDBI9es3kLOzs1q0aKUJEz6Ri4uLfH19NW3aF0pMTLTt4/nnX9Crr/bWuHFj1KnT87p+/brGj/9I169f1333lcvNwwUAAAAAINeRe/+LAjgAAAAA3CPcfUvfs/21bPmo5syZpVatWqdYV6NGLX366UTNmDFNL73UTR4enmrSpLn69RtgG4Zt6NAR+uKLiXr//fdksVj0xBNPKyYm+pZ91NRnn03RzJlfqlevF+Xu7qbg4Af06quvy9XVNduOAwAAAADg2Mi97/3c22QYBmOXpkNyskWXLl3L6zCAHOXsbJaPj6fem/hDjj01+lCd8hrQtbH+nvOh4s6dyvb9u5csp2o9his6+pqSkizZvn/gXpDTn+UKZX00ZmA7PmcAkAMSExMUFXVGvr6l5eLyb+JoNpvk4+Mus9kp12OyWJIVHR1XoKe9SOt9sSpWzFNOTuY8iMzxpJZ75/R3G3IUAAAAoGAh986fsjP35glwAAAAAMjnLBZD0dFxMptNedJ3QU7AAQAAAAAFA7m346AADgAAAAD3AJJhAAAAAAByFrm3Y2CMNgAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAOQzhsF8Y/kJ7wcAAAAAOB5yvfwlO98PCuAAAAAAkE84OTlJkhISbuRxJLiV9f1wcnLO40gAAAAAAFlF7p0/ZWfuTfYOAAAAAPmE2ewkd3cvxcZGS5JcXQvJZDLlcVQFl2EYSki4odjYaLm7e8ls5h5yAAAAALjXkXvnLzmRe1MABwAAAIB8pEiRYpJkS8SR99zdvWzvCwAAAADg3kfunf9kZ+5NARwAAAAA8hGTyaSiRX1VuLCPkpOT8jqcAs/JyZknvwEAAADAwZB75y/ZnXtTAAcAAACAfMhsNstsds3rMAAAAAAAcFjk3o6J29gBAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh+Cc1wEAAAAAAIC8kZiYqHnz5mnFihUKCwuTh4eHatasqR49eqhJkyYp2l+8eFFTp07Vli1bdO7cOfn5+alt27bq37+/PD098+AIAAAAAACwxxPgAAAAAAAUQIZhaNCgQfr444919uxZPfTQQ6patar++OMP9e7dW19++aVd+/Pnz6tz58769ttv5ebmpubNm8tisWjmzJnq0qWLYmNj8+hIAAAAAAD4FwVwAAAAAAAKoEWLFmn9+vWqWrWq1q1bp6+++krffPONli5dKi8vL02cOFHHjx+3tR81apQiIyPVt29frV69WpMmTdJPP/2kxx57TIcPH9aUKVPy8GgAAAAAALiJAjgAAAAAAAXQqlWrJEmDBw+Wj4+PbXmVKlXUsWNHGYahzZs3S5JOnTql9evXq3Tp0goJCbG1dXV11ciRI+Xp6anFixcrPj4+dw8CAAAAAIDbUAAHAAAAAKAAmjNnjlatWqUHHnggxbrr169LkpycnCRJmzdvlsViUbNmzeTi4mLXtnDhwmrUqJGuX7+u7du353zgAAAAAADcAQVwAAAAAAAKoEKFCqlKlSq2IrfVhg0b9OOPP8rd3V2tW7eWJB05ckSSFBgYmOq+KlWqZNcOAAAAAIC84pzXAQAAAAAAgLx1+fJlDR06VMeOHdOJEydUunRpjR07VqVKlZIkXbhwQZLk5+eX6vbW5RcvXsydgAEAAAAASAMFcAAAAAAACriIiAitW7fO9neTyaRjx47pwQcflPTvkOhubm6pbm9dbm2XFc7O9oPVOTk5xuB1jnIcAAAAAJDfUQAHAAAAAKCAq1ixonbs2CHDMLRt2zaNHj1ao0aNUmxsrPr162cbJt1kMqW6vWEYdv/PLLPZJB8fzyztI78qUsQ9r0MAAAAAgAKBAjgAAAAAAAWcp+e/Red27dqpVKlS6tq1q6ZPn67u3bvLw8NDknTjxo1Ut7cud3fPWpHXYjF05Yr9U+ROTmaHKB5fuRKn5GRLXocBAAAAAPekIkXc0z2yFgVwAAAAAABgJzg4WOXKlVN4eLjCwsJUokQJSf/OBX67u80RnhFJSY5ZJE5OtjjssQEAAABAfkIBHAAAZEpOz2NpsRiyWLI2jCoAAEhdXFycJk6cqIsXL2rcuHGpDm3u6uoqSUpKSlJgYKAk6fjx46nu7+jRo5KkoKCgHIoYAAAAAID0oQAOAAAypGhhNxkWS44PRWqxJCs6Oo4iOAAAOcDNzU0rVqxQTEyMOnfurAYNGtitj4iI0MmTJ+Xq6qrKlSurePHikqSNGzdqyJAhtjnBJenq1avavn27PDw8VK9evVw9DgAAAAAAbkcBHAAAZIinm6tMZrNOrpmhuKgzOdKHu29pVezQR2aziQI4AAA5wGQy6bnnntNXX32lESNG6JtvvrENc3727Fm98cYbSkpKUo8ePeTh4SEPDw+1aNFCGzdu1Lhx4/Tuu+/KZDIpISFBw4cP17Vr1/TSSy/Jy8srj48MAAAAAFDQUQAHAACZEhd1RnHnTuV1GAAAIJP69++v3bt3a+fOnWrTpo3q1aunxMRE7du3T9evX1fjxo311ltv2doPGzZMBw8e1OzZs7Vp0yZVrlxZ+/fv1z///KPq1atrwIABeXg0AAAAAADclLOTdwIAAAAAgHzJzc1Ns2fP1jvvvCN/f39t375d+/btU+XKlfXBBx9o+vTptnnAJals2bJaunSpnn32WV29elUbN26Uq6urXnnlFc2dO1eenp55eDQAAAAAANzEE+AAAAAAABRQLi4u6tWrl3r16pWu9iVLltSoUaNyOCoAAAAAADKPJ8ABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDcM7rAAAAAAAAAPAvs9kks9mUY/u3WAxZLEaO7R8AAAAA8lK+LYBbLBYtWbJEy5cv19GjR5WYmKgyZcqoVatWevnll1WkSBG79g0bNlRMTEya+9u3b58KFSqUw1EDAAAAAABkntlskre3h5yccm7QvuRki2JirlMEBwAAAOCQ8mUB3GKxKCQkROvXr5ebm5tq1aolDw8P7du3TzNnztT69eu1YMECFS9eXJIUGRmpmJgYlSxZUg0aNEh1n2Yzo70DAAAAAID8zWw2ycnJrC8W/qbI85ezff9lSxTVq10eltlsogAOAAAAwCHlywL4smXLtH79elWoUEEzZ86Uv7+/JCk2NlZvvfWWNm7cqFGjRunzzz+XJB06dEiS1LZtW7333nt5FTYAAAAAAEC2iDx/WWGR0XkdBgAAAADcc/LlY9HLli2TJA0ePNhW/JYkLy8vjRkzRiaTSRs2bFB8fLwk6eDBg5Kk6tWr536wAAAAAAAAAAAAAIB8IV8WwL29vXX//ferTp06KdYVK1ZMRYsWVWJioqKjb94JbX0CvEaNGrkZJgAAAAAAAAAAAAAgH8mXQ6BPmzYtzXURERGKiYmRi4uLihUrJunmE+Bubm46cOCAhg4dqqNHj8pkMik4OFj9+/dX7dq1cyt0AAAAAAAAAAAAAEAeyZdPgN+Jdd7v5s2bq1ChQoqKitL58+cVHx+vd955RxaLRQ0bNpS3t7d+/fVXde3aVT/88EPeBg0AAAAAAAAAAAAAyHH58gnwtMybN09r1qyRu7u7Bg0aJOnf+b99fHz05Zdfqm7dupIkwzA0Z84cjR07VkOGDFFwcLBKlSqVpf6dne+5+wWADHFycpxz3JGOBcgoRzr/HelYAAAAAAAAAAA5754pgM+dO1djxoyRyWTS6NGjFRAQIElq0qSJtmzZIsMwVLJkSVt7k8mknj17aufOndqwYYOWLl2qAQMGZLp/s9kkHx/PLB8HgNxRpIh7XocAIBvwWQYAAAAAAAAAZES+L4AbhqFPP/1UM2fOlJOTk0aPHq327dvb1ptMJpUoUSLN7Vu0aKENGzbowIEDWYrDYjF05cr1LO0DyO+cnMwOU2y6ciVOycmWvA4DyBN8lgEAyF1FirgzagkAAAAAAPlEvi6Ax8fH6+2339a6devk5uam8ePHq1WrVhnah5+fnyQpLi4uy/EkJfEDPHCvSE628JkFHACfZQAAAAAAAABARuTbAnhsbKx69+6tv/76S76+vvryyy9Vu3btFO0WL16s33//XR06dEi1OB4RESFJWZ7/GwAAAAAAAAAAAACQv+XLAnhiYqL69u2rv/76S+XLl9esWbPk7++fattz585p7dq1iouLS1EANwxDq1atkiQ1btw4x+MGAAAAAAAAAAAAAOSdfDlJ2ZQpU7Rr1y75+flp3rx5aRa/Jempp56Sq6urfv31V3333Xe25RaLRZMmTdK+fftUqVIltW3bNjdCBwAAAAAAAAAAAADkkXz3BPjly5c1Z84cSZKvr6/GjRuXZtvBgwfL399fI0aM0NChQzVs2DDNnz9fFSpUUGhoqMLDw1W8eHFNnjxZLi4uuXUIAAAAAAAAAAAAAIA8kO8K4Hv37lVcXJwkKTQ0VKGhoWm2fe2111S8eHE988wzqlixombMmKHdu3frxIkTKlGihF588UX169dPvr6+uRU+AAAAAAAAAAAAACCP5LsCeNOmTXX48OEMbxccHKwvv/wyByICAAAAAAAAAAAAANwL8uUc4AAAAAAAAAAAAAAAZBQFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ3DO6wAAAAAAAACQu5yccvaZCIvFkMVi5GgfAAAAAJAaCuAAAAAAABRQFotFS5Ys0fLly3X06FElJiaqTJkyatWqlV5++WUVKVLErn3Dhg0VExOT5v727dunQoUK5XDUyIqihd1kWCwqUsQ9R/uxWJIVHR1HERwAAABArqMADgAAAABAAWSxWBQSEqL169fLzc1NtWrVkoeHh/bt26eZM2dq/fr1WrBggYoXLy5JioyMVExMjEqWLKkGDRqkuk+zmZnW8jtPN1eZzGadXDNDcVFncqQPd9/Sqtihj8xmEwVwAAAAALmOAjgAAAAAAAXQsmXLtH79elWoUEEzZ86Uv7+/JCk2NlZvvfWWNm7cqFGjRunzzz+XJB06dEiS1LZtW7333nt5FTaySVzUGcWdO5XXYQAAAABAtuPWbAAAAAAACqBly5ZJkgYPHmwrfkuSl5eXxowZI5PJpA0bNig+Pl6SdPDgQUlS9erVcz9YAAAAAADSiQI4AAAAAAAFkLe3t+6//37VqVMnxbpixYqpaNGiSkxMVHR0tKR/nwCvUaNGboYJAAAAAECGMAQ6AAAAAAAF0LRp09JcFxERoZiYGLm4uKhYsWKSbj4B7ubmpgMHDmjo0KE6evSoTCaTgoOD1b9/f9WuXTu3QgcAAAAAIE08AQ4AAAAAAOxY5/1u3ry5ChUqpKioKJ0/f17x8fF65513ZLFY1LBhQ3l7e+vXX39V165d9cMPP+Rt0AAAAAAAiCfAAQAAAADALebNm6c1a9bI3d1dgwYNkvTv/N8+Pj768ssvVbduXUmSYRiaM2eOxo4dqyFDhig4OFilSpXKUv/Ozvb36js5Oca9++k9Dkc5XsmxjgUAAADAvYMCOAAAAAAAkCTNnTtXY8aMkclk0ujRoxUQECBJatKkibZs2SLDMFSyZElbe5PJpJ49e2rnzp3asGGDli5dqgEDBmS6f7PZJB8fzywfR35UpIh7XoeQ6wriMQMAAADIexTAAQAAAAAo4AzD0KeffqqZM2fKyclJo0ePVvv27W3rTSaTSpQokeb2LVq00IYNG3TgwIEsxWGxGLpy5brdMicns0MUUq9ciVNysuWu7RzleKX0HzMAAAAA3E2RIu7pHmWKAjgAAAAAAAVYfHy83n77ba1bt05ubm4aP368WrVqlaF9+Pn5SZLi4uKyHE9SkmMWTJOTLQ57bGkpiMcMAAAAIO9RAAcAAAAAoICKjY1V79699ddff8nX11dffvmlateunaLd4sWL9fvvv6tDhw6pFscjIiIkKcvzfwMAAAAAkFUUwAEAAAAAKIASExPVt29f/fXXXypfvrxmzZolf3//VNueO3dOa9euVVxcXIoCuGEYWrVqlSSpcePGOR43AAAAAAB3kr6B0gEAAAAAgEOZMmWKdu3aJT8/P82bNy/N4rckPfXUU3J1ddWvv/6q7777zrbcYrFo0qRJ2rdvnypVqqS2bdvmRugAAAAAAKSJJ8ABAAAAAChgLl++rDlz5kiSfH19NW7cuDTbDh48WP7+/hoxYoSGDh2qYcOGaf78+apQoYJCQ0MVHh6u4sWLa/LkyXJxccmtQwAAAAAAIFUUwAEAAAAAKGD27t2ruLg4SVJoaKhCQ0PTbPvaa6+pePHieuaZZ1SxYkXNmDFDu3fv1okTJ1SiRAm9+OKL6tevn3x9fXMrfAAAAAAA0kQBHAAAAACAAqZp06Y6fPhwhrcLDg7Wl19+mQMRAQAAAACQPZgDHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIznkdAAAAAAAAAJCTzGaTzGZTju3fYjFksRg5tn8AAAAA6UcBHAAAAAAAAA7LbDbJx8ddZrNTjvVhsSQrOjqOIjgAAACQD1AABwAAAAAAgMO6+fS3k06umaG4qDPZvn9339Kq2KGPzGYTBXAAAAAgH6AADgAAAAAAAIcXF3VGcedO5XUYAAAAAHKYOa8DAAAAAAAAAAAAAAAgO1AABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAITjndQBpsVgsWrJkiZYvX66jR48qMTFRZcqUUatWrfTyyy+rSJEidu0vXryoqVOnasuWLTp37pz8/PzUtm1b9e/fX56ennl0FAAAAAAAAAAAAACA3JIvnwC3WCwKCQnR8OHDFRoaqurVq+uhhx7SlStXNHPmTHXq1EkXL160tT9//rw6d+6sb7/9Vm5ubmrevLksFotmzpypLl26KDY2Ng+PBgAAAAAAAAAAAACQG/JlAXzZsmVav369KlSooDVr1mjevHn66quvtH79erVo0ULh4eEaNWqUrf2oUaMUGRmpvn37avXq1Zo0aZJ++uknPfbYYzp8+LCmTJmSh0cDAAAAAAAAAAAAAMgN+bYALkmDBw+Wv7+/bbmXl5fGjBkjk8mkDRs2KD4+XqdOndL69etVunRphYSE2Nq6urpq5MiR8vT01OLFixUfH5/rxwEAAAAAAAAAAAAAyD35sgDu7e2t+++/X3Xq1EmxrlixYipatKgSExMVHR2tzZs3y2KxqFmzZnJxcbFrW7hwYTVq1EjXr1/X9u3bcyl6AAAAAAAAAAAAAEBeyJcF8GnTpmnt2rXy8fFJsS4iIkIxMTFycXFRsWLFdOTIEUlSYGBgqvuqVKmSJNnaAQAAAAAAAAAAAAAcU74sgN/J559/Lklq3ry5ChUqpAsXLkiS/Pz8Um1vXX7x4sVciQ8AAAAAAAAAAAAAkDec8zqAjJg3b57WrFkjd3d3DRo0SJJ0/fp1SZKbm1uq21iXW9tlhbPzPXe/AJAhTk6Oc4470rEAGeVI578jHQsAAAAAAAAAIOfdMwXwuXPnasyYMTKZTBo9erQCAgIkSU5OTpIkk8mU6naGYdj9P7PMZpN8fDyztA8AuadIEfe8DgFANuCzDAAAAAAAAADIiHxfADcMQ59++qlmzpwpJycnjR49Wu3bt7et9/DwkCTduHEj1e2ty93ds/YDusVi6MqVrD9FDuRnTk5mhyk2XbkSp+RkS16HAeQJPssAAOSuIkXcGbUEAAAAAIB8Il8XwOPj4/X2229r3bp1cnNz0/jx49WqVSu7NiVKlJAk21zgt7vbHOEZkZTED/DAvSI52cJnFnAAfJYBAAAAAAAAABmRbwvgsbGx6t27t/766y/5+vrqyy+/VO3atVO0CwwMlCQdP3481f0cPXpUkhQUFJRzwQIAAAAAAAAAAAAA8ly+HKMtMTFRffv21V9//aXy5ctr8eLFqRa/JalJkyaSpI0bNyo5Odlu3dWrV7V9+3Z5eHioXr16OR43AAAAAAAAAAAAACDv5MsC+JQpU7Rr1y75+flp3rx58vf3T7Nt2bJl1aJFC50+fVrjxo2TYRiSpISEBA0fPlzXrl3T888/Ly8vr9wKHwAAAAAAAAAAAACQB/LdEOiXL1/WnDlzJEm+vr4aN25cmm0HDx6s4sWLa9iwYTp48KBmz56tTZs2qXLlytq/f7/++ecfVa9eXQMGDMit8AEAAAAAAAAAAAAAeSTfFcD37t2ruLg4SVJoaKhCQ0PTbPvaa6+pePHiKlu2rJYuXarJkyfr119/1caNG1WmTBm98sor6tOnjzw9PXMrfAAAAAAAAAAAAABAHsl3BfCmTZvq8OHDGd6uZMmSGjVqVA5EBAAAAAAAAAAAAAC4F+TLOcABAAAAAAAAAAAAAMiofPcEOAAAAAAAAAoWs9kks9mUI/t2cuL5DwAAAKAgoQAOAAAAAACAPGM2m+Tt7UGhGgAAAEC2oAAOAAAAAACAPGM2m+TkZNYXC39T5PnL2b7/2kFl9FzbOtm+XwAAAAD5EwVwAAAAAAAA5LnI85cVFhmd7fst41ck2/cJAAAAIP9ibCkAAAAAAAAAAAAAgEPIUgF85cqV2rVr113b/fzzz5o0aVJWugIAAAAAoEAi9wYAAAAAIP2yVAAfPHiwvvvuu7u2W7VqlWbPnp2VrgAAAAAAKJDIvQEAAAAASL8MzQG+cuVKJSUl2S0LDw/X0qVL09wmNjZWv//+u1xcXDIXIQAAAAAABQi5NwAAAAAAmZehAvjBgwc1b948mUwmSZLJZNLevXu1d+/eO25nGIaeeuqpzEcJAAAAAEABQe4NAAAAAEDmZagAHhISotjYWNvfV6xYoXLlyqlevXppblOoUCFVqFBBXbp0yXyUAAAAAAAUEOTeAAAAAABkXoYK4IULF9bYsWNtf1+xYoXq1KljtwwAAAAAAGQeuTcAAAAAAJmXoQL47UJDQ7MrDgAAAAAAkApybwAAAAAA0i9LBfBbRUVFKS4uToZhpNnG398/u7oDAAAAAKDAIfcGAAAAAODOslwA/+abbzRjxgxdunTpju1MJpP+/vvvrHYHAAAAAECBQ+4NAAAAAED6ZKkAvnz5cn300UeSJFdXV/n4+MjJySlbAgMAAAAAAOTeAAAAAABkRJYK4PPnz5fJZNLQoUPVuXNnubi4ZFdcAAAAAABA5N4AAAAAAGRElgrgx48fV506ddStW7fsigcAAAAAANyC3BsAAAAAgPTLUgHc3d1dPj4+2RULAAAAAAC4TU7m3haLRUuWLNHy5ct19OhRJSYmqkyZMmrVqpVefvllFSlSxK79xYsXNXXqVG3ZskXnzp2Tn5+f2rZtq/79+8vT0zNHYgQAAAAAICPMWdm4QYMG2rdvn+Li4rIrHgAAAAAAcIucyr0tFotCQkI0fPhwhYaGqnr16nrooYd05coVzZw5U506ddLFixdt7c+fP6/OnTvr22+/lZubm5o3by6LxaKZM2eqS5cuio2Nzdb4AAAAAADIjCwVwAcNGqS4uDi99957unz5cnbFBAAAAAAA/l9O5d7Lli3T+vXrVaFCBa1Zs0bz5s3TV199pfXr16tFixYKDw/XqFGjbO1HjRqlyMhI9e3bV6tXr9akSZP0008/6bHHHtPhw4c1ZcqUbIsNAAAAAIDMytIQ6IsWLVKtWrX0448/2pLmIkWKyGQypWhrMpk0f/78rHQHAAAAAECBk1O597JlyyRJgwcPlr+/v225l5eXxowZo4ceekgbNmxQfHy8zp8/r/Xr16t06dIKCQmxtXV1ddXIkSO1efNmLV68WK+//rrc3NyyeMQAAAAAAGRelgrgc+bMsf05KSlJx44dS7Ntaok5AAAAAAC4s5zKvb29vXX//ferTp06KdYVK1ZMRYsWVUxMjKKjo7V582ZZLBY1a9ZMLi4udm0LFy6sRo0a6eeff9b27dvVrFmzdMcAAAAAAEB2y1IBfO7cudkVBwAAAAAASEVO5d7Tpk1Lc11ERIRiYmLk4uKiYsWK6ciRI5KkwMDAVNtXqlRJP//8s44cOUIBHAAAAACQp7JUAG/QoEF2xQEAAAAAAFKRF7n3559/Lklq3ry5ChUqpAsXLkiS/Pz8Um1vXX7x4sVciQ8AAAAAgLRkqQB+q8TERB06dEhnzpxR8eLFVa9ePf3zzz8qU6ZMdnUBAAAAAECBlhu597x587RmzRq5u7tr0KBBkqTr169LUprze1uXW9tlhbOz2e7vTk7mNFreW9J7HI5yvFLBO2ZHOQ4AAADgXpflAnhSUpK++OILffvtt7p69aokqWPHjqpXr57effddXbt2TRMmTFD58uWzHCwAAAAAAAVRbuXec+fO1ZgxY2QymTR69GgFBARIkpycnCSlPce4YRh2/88ss9kkHx/PLO0jvypSxD2vQ8h1Be2YC9rxAgAAAPlVlgrgSUlJevnll7Vt2zY5OzurRo0a2r9/v239tWvX9Pfff6tbt25auXKlihcvnuWAAQAAAAAoSHIj9zYMQ59++qlmzpwpJycnjR49Wu3bt7et9/DwkCTduHEj1e2ty93ds1YAtFgMXbli/xS5k5PZIQqLV67EKTnZctd2jnK8UsE75vQeLwAAAICMK1LEPd2jLmWpAP7tt9/qt99+U+PGjTVmzBiVKFFCVapUsa1fsGCBRowYoZUrV2rWrFl69913s9IdAAAAAAAFTk7n3vHx8Xr77be1bt06ubm5afz48WrVqpVdmxIlSkiSbS7w291tjvCMSEpyzAJicrLFYY8tLQXtmAva8QIAAAD5VZYmJ1qxYoW8vb01ceJEWzJ8Kzc3N40cOVIlSpTQ5s2bs9IVAAAAAAAFUk7m3rGxserZs6fWrVsnX19fzZ07N0XxW5ICAwMlScePH091P0ePHpUkBQUFZah/AAAAAACyW5YK4GFhYapfv748PdOen8vFxUW1atXSP//8k5WuAAAAAAAokHIq905MTFTfvn31119/qXz58lq8eLFq166datsmTZpIkjZu3Kjk5GS7dVevXtX27dvl4eGhevXqpbt/AAAAAAByQpYK4M7Ozrpy5cpd28XExMjZOUujrQMAAAAAUCDlVO49ZcoU7dq1S35+fpo3b578/f3TbFu2bFm1aNFCp0+f1rhx42QYhiQpISFBw4cP17Vr1/T888/Ly8sr3f0DAAAAAJATslSVrlq1qvbv36/IyEiVLVs21TYRERHav3+/atWqlZWuAAAAAAAokHIi9758+bLmzJkjSfL19dW4cePSbDt48GAVL15cw4YN08GDBzV79mxt2rRJlStX1v79+/XPP/+oevXqGjBgQMYPDgAAAACAbJalJ8C7dOmiuLg49e/fX3///XeK9YcPH9Zrr72mhIQEderUKStdAQAAAABQIOVE7r13717FxcVJkkJDQ7V69eo0/7t27Zqkm0+BL126VM8++6yuXr2qjRs3ytXVVa+88ormzp17xyHaAQAAAADILVl6Arxdu3batm2bli5dqmeeeUaFCxeWyWTSli1b1Lx5c507d06GYah9+/Z64oknsitmAAAAAAAKjJzIvZs2barDhw9nOJaSJUtq1KhRGd4OAAAAAIDckuWJuUeNGqU6depo1qxZOnnypCQpOjpaklSmTBn16NFD3bt3z2o3AAAAAAAUWOTeAAAAAACkT5YL4JLUqVMnderUSRcuXNCZM2dksVjk5+eX5txkAAAAAAAgY8i9AQAAAAC4uyzNAW4VHR2tHTt2yM/PT7Vq1VKdOnUUFxenb7/9VhcuXMiOLgAAAAAAKNDIvQEAAAAAuLssF8C/++47NW3aVB999JHd8r1792rkyJFq06aNfvjhh6x2AwAAAABAgUXuDQAAAABA+mSpAP7bb79p+PDhcnZ2VqNGjezW1atXT7169ZJhGHrrrbf0xx9/ZClQAAAAAAAKInJvAAAAAADSL0sF8JkzZ8rZ2Vlz587VO++8Y7euQoUKevvttzV37lyZTCbNmDEjS4ECAAAAAFAQkXsDAAAAAJB+WSqAHzlyRA0bNlTNmjXTbFOzZk3Vq1dPe/bsyUpXAAAAAAAUSOTeAAAAAACkX5YK4HFxcXJ3d79rO29vbyUlJWWlKwAAAAAACiRybwAAAAAA0i9LBfAKFSpo586dio2NTbPNjRs3tGvXLpUrVy4rXQEAAAAAUCCRewMAAAAAkH5ZKoA//vjjunz5skJCQnTx4sUU66Ojo/XGG2/o0qVL6tixY1a6AgAAAACgQCL3BgAAAAAg/ZyzsnG3bt30ww8/aNu2bWrevLlq1Kih0qVLS5LOnj2rgwcPKiEhQbVq1VLPnj2zI14AAAAAAAoUcm8AAAAAANIvSwVwFxcXzZ49WxMmTNDy5cu1Z88e7dmzx7a+UKFC6tKli95++225urpmNVYAAAAAAAoccm8AAAAAANIvSwVwSfL09NTQoUP1zjvv6MCBA7pw4YKSk5Pl5+en6tWry8PDIzviBAAAAACgwCL3BgAAAAAgfbJUAO/evbsqVKigDz/8UK6urgoODs6uuAAAAAAAgMi9AQAAAADIiCwVwPft2yez2ZxdsQAAAAAAgNuQewMAAAAAkH5ZyqA9PT1lGEZ2xQIAAAAAAG5D7g0AAAAAQPplqQDer18/7dixQ19//bUSEhKyKyYAAAAAAPD/yL0BAAAAAEi/LA2BHhERofLly2vcuHH67LPPVL58eRUpUiTVodlMJpPmz5+fle4AAAAAAChwyL0BAAAAAEi/LBXA58yZY/tzUlKSjh8/nmZbk8mUla4AAAAAACiQyL0BAAAAAEi/LBXA586dm11xAAAAAACAVJB7AwAAAACQflkqgDdo0CC74gAAAAAAAKkg9wYAAAAAIP2yVAC/VWJiog4dOqQzZ86oePHiqlevnv755x+VKVMmu7oAAAAAAKBAI/cGAAAAAODOslwAT0pK0hdffKFvv/1WV69elSR17NhR9erV07vvvqtr165pwoQJKl++fJaDBQAAAACgICL3BgAAAAAgfcxZ2TgpKUkvv/yypk2bpri4ONWoUUOGYdjWX7t2TX///be6deumixcvZjlYAAAAAAAKGnJvAAAAAADSL0sF8G+//Va//fabHn74Yf38889asmSJ3foFCxboySef1MWLFzVr1qwsBQoAAAAAQEFE7g0AAAAAQPplqQC+YsUKeXt7a+LEiSpRokSK9W5ubho5cqRKlCihzZs3Z6UrAAAAAAAKJHJvAAAAAADSL0sF8LCwMNWvX1+enp5ptnFxcVGtWrX0zz//ZKUrrVy5UkFBQdq2bVuq6xs2bPh/7N13eBTl/vfxz25CSAKE3kGlJopKr4ooIE0pERAEjQUp0gSPh+IBEUEQRDgqCAI/UMADoiShCqErPdQoTQWlBEzoJRBCkn3+4Ek0JkASsju7M+/XdZ3r6My9m+/tbPvMd4oCAwNv+78bN27c098HAAAAAMAIrszeAAAAAAB4Ou97erC3ty5fvnzXcRcvXpS3d/b/VFRUlEaNGnXb9dHR0bp48aKKFy+uOnXqZDjGbr+nXj8AAAAAAIZwVfYGAAAAAMAM7ikZP/jgg/rpp58UHR2t0qVLZzjmxIkT+umnn/Too49m62+sW7dOgwcP1tWrV2875uDBg5KkFi1a6J133snW3wEAAAAAwB25InsDAAAAAGAW93Ra9AsvvKDr16+rd+/eOnDgQLr1hw8fVr9+/ZSQkKAOHTpk6bljYmI0dOhQ9e7dWzdv3lSRIkVuO3b//v2SpCpVqmRtAgAAAAAAuDlnZm8AAAAAAMzmns4Ab9WqlbZs2aLvvvtO7du3V758+WSz2fTjjz/qySefVExMjBwOh5555hm1bds2S889adIkhYWF6eGHH9aYMWM0evRonT17NsOxKWeAP/zww/cyHQAAAAAA3I4zszcAAAAAAGZzzzcHGz16tKpVq6b/+7//0++//y5JunDhgiSpVKlSevnllxUSEpLl5y1fvrzGjRunNm3a3PX+3fv375evr69+/vlnDRs2TL/++qtsNptq1Kih3r17q2rVqlmfGAAAAAAAbsJZ2RsAAAAAALO55wa4JHXo0EEdOnTQmTNndPr0aSUnJ6to0aK3vTdZZvTo0SNT486dO6fY2FhJ0qBBg1StWjXVrVtXv/zyizZs2KBNmzbpo48+UqtWrbJdCwAAAAAARnNG9gYAAAAAwGyy3ABPSkrS//73P0VEROjs2bMqVaqUWrdurXbt2qlo0aIqWrSoM+q8rZT7fxcsWFBTp05V9erVJUkOh0NfffWVxo4dq6FDh6pGjRoqUaLEPf0tb+97umU64Pa8vMzzGjfTXICsMtPr30xzAQAgK9wtewMAAAAA4Cmy1ABPSEhQt27dtHPnTjkcDknS77//ri1btmj9+vX65JNPnFLknTRs2FA//vijHA6HihcvnrrcZrPplVdeUWRkpNasWaPvvvtOffv2zfbfsdttKlgwT06UDMAFAgL8jC4BQA7gvQwAsCJ3zN4AAAAAAHiKLDXAFyxYoMjISBUvXlzdu3dX2bJl9csvv2jmzJmKiIjQ4sWL1bZtW2fVmiGbzaZixYrddv1TTz2lNWvW6Oeff76nv5Oc7NDly9fu6TkAd+flZTdNs+ny5etKSko2ugzAELyXAQBwrYAAvxy9aok7Zm8AAAAAADxFlhrgK1eulK+vr+bPn69SpUpJkho1aqSGDRsqODhYy5cvd7sQnnJZuOvXr9/zcyUmsgMe8BRJScm8ZwET4L0MALAiT8zeAAAAAAC4iywdon7kyBHVqlUrNYCnCAoKUpUqVXTo0KEcLS4zvvnmGw0YMEBr1qzJcP2JEyck6Z7v/w0AAAAAgCu4Y/YGAAAAAMBTZKkBHhcXp/z582e4rkyZMrp48WJO1JQlMTEx+v777/Xtt9+mW+dwOLR48WJJ0uOPP+7q0gAAAAAAyDJ3zN4AAAAAAHiKLDXAExMT5eXlleG6XLly6ebNmzlSVFYEBwfLx8dHGzZs0MKFC1OXJycn69NPP1VUVJQqVqyoFi1auLy2nGC32+TtbXfa/+x2m9FTBAAAAAD8jTtmbwAAAAAAPEWW7gHujsqWLav33ntPw4YN0/DhwzVv3jw98MADOnTokI4dO6YiRYros88+U65cuYwuNcvsdpsKFvST3Z7xjo+ckJycpAsXris52eG0vwEAAAAAAAAAAAAAruDxDXBJat++vcqVK6cZM2Zo9+7dOnr0qIoVK6aXXnpJb7zxhgoXLmx0idlit9tkt3vp92UzdP3c6Rx/fr/CJVXu2e6y2200wAEAAAAAAAAAAAB4PI9pgM+dO/eO62vUqKGpU6e6qBrXun7utK7HHDe6DAAAAAAAAAAAAABwa1lugK9Zs0ZNmjRJt/zChQuSlOE6SbLZbFqzZk1W/xwAAAAAAJZD9gYAAAAAIHuy3AC/du2arl27dtv10dHRGS632WxZ/VMAAAAAAFgS2RsAAAAAgOzJUgN8zpw5zqoDAAAAAACI7A0AAAAAwL3IUgO8Tp06zqoDAAAAAACI7A0AAAAAwL2wG10AAAAAAAAAAAAAAAA5gQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLyNLgAAAAAAALiH8PBwDR48WLNnz1aDBg3Sra9bt64uXrx428dHRUUpd+7cTqwQAAAAAIA7owEOAAAAAAAUFRWlUaNG3XZ9dHS0Ll68qOLFi6tOnToZjrHbudAcAAAAAMBYNMABAAAAALC4devWafDgwbp69eptxxw8eFCS1KJFC73zzjuuKg0AAAAAgCyhAQ4AAAAAgEXFxMTov//9r8LCwuTr66siRYro7NmzGY7dv3+/JKlKlSquLBEAAAAAgCzh2mQAAAAAAFjUpEmTFBoaqipVquibb75R+fLlbzs25Qzwhx9+2FXlAQAAAACQZZwBDgAAAACARZUvX17jxo1TmzZt7nr/7v3798vX11c///yzhg0bpl9//VU2m001atRQ7969VbVqVRdVDQAAAADA7XEGOAAAAAAAFtWjRw+1a9furs3vc+fOKTY2VvHx8Ro0aJCSk5NVt25dFShQQBs2bFCXLl20YsUKF1UNAAAAAMDtcQY4AAAAAAC4o5T7fxcsWFBTp05V9erVJUkOh0NfffWVxo4dq6FDh6pGjRoqUaLEPf0tb++0zXgvL3Mcu5/ZeZhlvpL15myWeQAAAACejgY4AAAAAAC4o4YNG+rHH3+Uw+FQ8eLFU5fbbDa98sorioyM1Jo1a/Tdd9+pb9++2f47drtNBQvmyYmS3U5AgJ/RJbic1eZstfkCAAAA7ooGOAAAAAAAuCObzaZixYrddv1TTz2lNWvW6Oeff76nv5Oc7NDly9fSLPPyspuisXj58nUlJSXfdZxZ5itZb86ZnS8AAACArAsI8Mv0VZdogAMAAAAAgHtStGhRSdL169fv+bkSE83ZQExKSjbt3G7HanO22nwBAAAAd8XNiQAAAAAAwB198803GjBggNasWZPh+hMnTkjSPd//GwAAAACAe8UZ4AAAAAAA4I5iYmL0/fff6/r162ratGmadQ6HQ4sXL5YkPf7440aUBwAAAABAKs4ABwAAAAAAdxQcHCwfHx9t2LBBCxcuTF2enJysTz/9VFFRUapYsaJatGhhYJUAAAAAAHAGOAAAAAAAuIuyZcvqvffe07BhwzR8+HDNmzdPDzzwgA4dOqRjx46pSJEi+uyzz5QrVy6jSwUAAAAAWBxngAMAAAAAgLtq3769vv76azVu3FgxMTFat26dEhMT9dJLL2nJkiUqX7680SUCAAAAAMAZ4AAAAAAA4Ja5c+fecX2NGjU0depUF1UDAAAAAEDWcQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBS8jS7A09ntNtntNqc8t5cXxycAAAAAOcWZv91TJCc7lJzscOrfAAAAAAAAwO15TAM8PDxcgwcP1uzZs9WgQYN068+ePavPP/9cP/74o2JiYlS0aFG1aNFCvXv3Vp48eZxSk91uU4EC/jSqAQAAADdnt9tUsKCf7HYvp/6d5OQkXbhwnSY4AAAAAACAQTyiAR4VFaVRo0bddn1sbKw6d+6s6OhoVa5cWU8++aR++uknzZw5Uz/++KP+97//KW/evDlel91uk5eXXVPmb1Z07KUcf/6qgaXUqUW1HH9eAAAAwGpunf3tpd+XzdD1c6ed8jf8CpdUuWe7y2630QAHAAAAAAAwiNs3wNetW6fBgwfr6tWrtx0zevRoRUdHq0ePHvrXv/4lSUpISNCgQYP0/fffa/LkyRoyZIjTaoyOvaQ/oi/k+POWKhqQ488JAAAAWNn1c6d1Pea40WUAAAAAAADASdz22t0xMTEaOnSoevfurZs3b6pIkSIZjjt+/LhWr16tkiVLqn///qnLfXx8NGrUKOXJk0fffPON4uPjXVU6AAAAAAAAAAAAAMAAbtsAnzRpkkJDQ1WlShV98803Kl++fIbjfvjhByUnJ6tRo0bKlStXmnX58uVTvXr1dO3aNW3fvt0VZQMAAAAAAAAAAAAADOK2DfDy5ctr3Lhx+vbbbxUYGHjbcb/88oskqXLlyhmur1ixYppxAAAAANyT3W6Tt7fdKf/z8nLb6AMAAAAAAIAc5Lb3AO/Ro0emxp05c0aSVLRo0QzXpyw/e/ZszhQGAAAAIMfZ7TYVKOBPoxoAAAAAAAD3xG0b4Jl17do1SZKvr2+G61OWp4y7F97eaXfGmWXnnFnmgXtnpteCmeYCZJWZXv9mmguAO/PyunWW9pT5mxUdeynHn79qYCl1alEtx583I3x2AQAAAAAAGMfjG+BeXl6SJJvNluF6h8OR5v+zy263qWDBPPf0HO4qIMDP6BKAHMfrGjAH3suA9UTHXtIf0Rdy/HlLFQ3I8ee8HT67AAAAAAAAjOPxDXB/f39J0o0bNzJcn7Lcz+/edkIlJzt0+XLas8i9vOym2Ll1+fJ1JSUlG10G3IBZXtMSr2tYG+9lAJ6Izy54soAAP878BwAAAADATXh8A7xYsWKS/roX+D/d7R7hWZGYaM6dWElJyaadG6yL1zVgDryXAXgiPrsAAAAAAACM4/GHqFeuXFmSdOTIkQzX//rrr5KkwMBAl9UEAAAAAAAAAAAAAHA9j2+AN2zYUJK0fv16JSUlpVl35coVbd++Xf7+/qpZs6YR5QEAAAAAAAAAAAAAXMTjG+ClS5fWU089pZMnT+qjjz6Sw+GQJCUkJOjdd99VXFycOnfurLx58xpcKQAAAAAAAAAAAADAmTz+HuCSNHz4cO3fv1+zZ8/Wxo0bValSJf300086deqUqlSpor59+xpdIgAAAAAAAAAAAADAyTz+DHDp1lng3333nTp27KgrV65o/fr18vHxUa9evTRnzhzlyZPH6BIBAAAAAAAAAAAAAE7mMWeAz507947rixcvrtGjR7uoGgAAAAAAAAAAAACAuzHFGeAAAAAAAAAAAAAAANAABwAAAAAAkqTw8HAFBgZqy5YtGa4/e/as3n//fT399NN69NFH1aRJE3300UeKi4tzcaUAAAAAAGSMBjgAAAAAAFBUVJRGjRp12/WxsbF6/vnn9fXXX8vX11dPPvmkkpOTNXPmTL3wwgu6evWqC6sFAAAAACBjNMABAAAAALC4devWqVu3bndsYo8ePVrR0dHq0aOHli5dqk8//VSrVq1Sy5YtdfjwYU2ePNmFFQMAAAAAkDEa4AAAAAAAWFRMTIyGDh2q3r176+bNmypSpEiG444fP67Vq1erZMmS6t+/f+pyHx8fjRo1Snny5NE333yj+Ph4V5UOAAAAAECGaIADAAAAAGBRkyZNUmhoqKpUqaJvvvlG5cuXz3DcDz/8oOTkZDVq1Ei5cuVKsy5fvnyqV6+erl27pu3bt7uibAAAAAAAbosGOAAAAAAAFlW+fHmNGzdO3377rQIDA2877pdffpEkVa5cOcP1FStWTDMOAAAAAACjeBtdAAAAAAAAMEaPHj0yNe7MmTOSpKJFi2a4PmX52bNnc6YwAAAAAACyiQY4AAAAAAC4o2vXrkmSfH19M1yfsjxl3L3w9k57sTovL3NcvC6z8zDLfCXrzdks8wAAAAA8HQ1wAAAAAABwR15eXpIkm82W4XqHw5Hm/7PLbrepYME89/Qc7iogwM/oElzOanO22nwBAAAAd0UDHAAAAAAA3JG/v78k6caNGxmuT1nu53dvDcDkZIcuX057FrmXl90UjcXLl68rKSn5ruPMMl/JenPO7HwBAAAAZF1AgF+mr7pEAxwAAAAAANxRsWLFJP11L/B/uts9wrMiMdGcDcSkpGTTzu12rDZnd5uv3W6T3Z7xVRtyQnKyQ8nJ93bVBwAAAMAZaIADAAAAAIA7qly5siTpyJEjGa7/9ddfJUmBgYEuqwnA7d26nYCf7HYvp/2N5OQkXbhwnSY4AAAA3A4NcAAAAAAAcEcNGzaUJK1fv15Dhw5NvSe4JF25ckXbt2+Xv7+/atasaVSJAP7m1tnfXvp92QxdP3c6x5/fr3BJlXu2u+x2Gw1wAAAAuB0a4AAAAAAA4I5Kly6tp556SuvXr9dHH32kwYMHy2azKSEhQe+++67i4uL02muvKW/evEaXCuBvrp87resxx40uAwAAAHApGuAAAAAAAOCuhg8frv3792v27NnauHGjKlWqpJ9++kmnTp1SlSpV1LdvX6NLBAAAAABAdqMLAAAAAAAA7q906dL67rvv1LFjR125ckXr16+Xj4+PevXqpTlz5ihPnjxGlwgAAAAAAGeAAwAAAACAW+bOnXvH9cWLF9fo0aNdVA0AAAAAAFnHGeAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUugY4ssdttstttTnv+5GSHkpMdTnt+AAAAAAAAAAAAAOZFAxyZZrfbVKCAv7y8nHfhgKSkZF28eI0mOAAAAAAAAAAAAIAsowGOTLPbbfLysmvK/M2Kjr2U489fulh+9XnhMdntNhrgAAAAAAAAAAAAALKMBjiyLDr2kv6IvmB0GQAAAAAAAAAAAACQhvOuZQ0AAAAAAAAAAAAAgAvRAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIApeBtdAAAAAAAAAGAldrtNdrvNac/v5cU5LwAAALAuGuAAAAAAAACAi9jtNhUo4E+TGgAAAHASGuAAAAAAAACAi9jtNnl52TVl/mZFx15yyt+oGlhKnVpUc8pzAwAAAO6OBjgAAAAAAADgYtGxl/RH9AWnPHepogFOeV4AAADAE3CtJQAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYgrfRBQD/5OXl3OMykpMdSk52OPVvAAAAAAAAAAAAAHA9GuBwG/nz+cqRnKyAAD+n/p3k5CRduHCdJjgAAAAAAAAAAABgMjTA4Tby+PrIZrfr92UzdP3caaf8Db/CJVXu2e6y2200wAEAAAAAAAAAAACToQEOt3P93GldjzludBkAAAAAAAAAAAAAPIxzb7YMAAAAAAAAAAAAAICL0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmIK30QXkpHXr1umNN9647fpWrVpp0qRJLqwIAAAAAAAAAAAAAOAqpmqAHzhwQJJUu3ZtlShRIt366tWru7okAAAAAAAAAAAAAICLmLIBPmzYMAUFBRlcDQAAAAAAAAAAAADAlUx1D/ADBw4od+7cqlixotGlAAAAAAAAAAAAAABczDQN8AsXLuj06dMKDAyUt7epTmwHAAAAAAAAAAAAAGSCaTrFKZc/L1mypD766COtXbtWp06dUpEiRdS8eXP16tVL+fPnN7hKAAAAAAAAAAAAAICzmOYM8P3790uSVq1apfnz5+uBBx5QjRo1dOnSJc2aNUvPP/+8zpw5Y3CVAAAAAAAAAAAAAABnMc0Z4AcPHpQkPfnkk5owYYLy5csnSTp//rwGDhyobdu2afjw4Zo2bVq2/4a3d9rjBby8zHH8QGbnYZb5SuaaS04y038XM80FyCozvf7NNBcAd2am97uZ5gIAAAAAAOBpTNMAHzdunN58802VKFFCvr6+qcsLFSqk8ePHq0WLFlq/fr1OnjypMmXKZPn57XabChbMk5Mlu42AAD+jS3A5K87ZatjGgDnwXgbgifjsAgAAAAAAMI5pGuA+Pj564IEHMlxXvHhxPfTQQ9q5c6f279+frQZ4crJDly9fS7PMy8tuip1bly9fV1JS8l3HmWW+UubnbDVsY8AceC8D8ER8dsGTBQT4WerM/3Xr1umNN9647fpWrVpp0qRJLqwIAAAAAIC/mKYBfjdFihSRJF2/fj3bz5GYaM6dWElJyaad2+1Ycc5WwzYGzIH3MgBPxGcXzO7AgQOSpNq1a6tEiRLp1levXt3VJQEAAAAAkMoUDfCEhASNHDlSFy5c0IQJE+Tv759uzIkTJyQpw3AOAAAAAAAyJ6UBPmzYMAUFBRlcDQAAAAAAaZniGm0+Pj7asmWL1q5dqx9++CHd+kOHDunQoUPKly+fqlWr5voCAQAAAAAwiQMHDih37tyqWLGi0aUAAAAAAJCOKRrgktSpUydJ0ocffqjjx4+nLj979qzeeecdJSUlqVu3bvL19TWqRAAAAAAAPNqFCxd0+vRpBQYGytvbFBeVAwAAAACYjGnS6muvvabIyEht2rRJzz77rGrVqiUfHx9t375d165dU/PmzdWjRw+jywQAAAAAwGOlXP68ZMmS+uijj7R27VqdOnVKRYoUUfPmzdWrVy/lz5/f4CoBAAAAAFZmmga4j4+Ppk+frq+//lphYWHatWuX7Ha7KlWqpI4dO6pDhw6y2WxGlwkAAAAAgMfav3+/JGnVqlXKkyeP6tSpoxIlSuinn37SrFmztG7dOs2bN09FixY1uFIAAAAAgFWZpgEuSV5eXgoJCVFISIjRpQAAAAAAYDoHDx6UJD355JOaMGGC8uXLJ0k6f/68Bg4cqG3btmn48OGaNm1atv+Gt3fau7V5eZnj7m2ZnYdZ5itZb85Wm69krrkAAADAPEzVAAcAAAAAAM4zbtw4vfnmmypRooR8fX1TlxcqVEjjx49XixYttH79ep08eVJlypTJ8vPb7TYVLJgnJ0t2GwEBfkaX4HJWm7PV5itZc84AAABwfzTAAQAAAABApvj4+OiBBx7IcF3x4sX10EMPaefOndq/f3+2GuDJyQ5dvnwtzTIvL7spmmyXL19XUlLyXceZZb6S9eZstflKmZ8zAAAAcK8CAvwyfQUiGuAAAAAAACBHFClSRJJ0/fr1bD9HYqI5m2lJScmmndvtWG3OVpuvZM05AwAAwP1xox4AAAAAAHBXCQkJ+s9//qPevXvr2rVrGY45ceKEJKlEiRKuLA0AAAAAgFQ0wAEAAAAAwF35+Phoy5YtWrt2rX744Yd06w8dOqRDhw4pX758qlatmusLBAAAAABANMABAAAAAEAmderUSZL04Ycf6vjx46nLz549q3feeUdJSUnq1q2bfH19jSoRAAAAAGBx3AMcAAAAAABkymuvvabIyEht2rRJzz77rGrVqiUfHx9t375d165dU/PmzdWjRw+jywQAAAAAWBgNcAAAAAAAkCk+Pj6aPn26vv76a4WFhWnXrl2y2+2qVKmSOnbsqA4dOshmsxldJgAAAADAwmiAAwAAAACATPPy8lJISIhCQkKMLgUAAAAAgHS4BzgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLgHOGAwu90mu93mtOdPTnYoOdnhtOcHAAAAAAAAAAAA3AUNcMBAdrtNBQv6yW73ctrfSE5O0oUL12mCAwAAAAAAAAAAwPRogAMGunX2t5d+XzZD18+dzvHn9ytcUuWe7S673UYDHAAAAAAAAAAAAKZHAxxwA9fPndb1mONGlwEAAAAAAAAAAAB4NLvRBQAAAAAAAAAAAAAAkBNogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLyNLgBwd3a7TXa7zSnP7eXFMSgAAAAAAAAAAABATqEBDtyB3W5TgQL+NKoBAAAAAAAAAAAAD0ADHLgDu90mLy+7pszfrOjYSzn+/FUDS6lTi2o5/rwAAAAAAAAAAACAFdEABzIhOvaS/oi+kOPPW6poQI4/JwAAAAAAAAAAAGBVXNcZAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GFwAAAAD3ZLfbZLfbnPb8yckOJSc7nPb8AAAAAAAAAKyHBjgAAIAHcnZz2mazKSAgt+x2L6f9jeTkJF24cJ0mOAAAAAAAAIAcQwMcAADAw9jtNhUo4C8vL+ffzeb3ZTN0/dzpHH9ev8IlVe7Z7rLbbTTAAQAAAAAAAOQYGuAAAAAexm63ycvLrinzNys69pJT/kbVwFLq1KKarp87resxx53yNwAAAAAAAAAgp9EABwAA8FDRsZf0R/QFpzx3qaIBTnleAAAAAEDmOPvWV5KUnOzgqlwAANOhAQ4AAAAAAAAAQBY5s0Fts9kUEJBbdruXU54/RXJyki5cuE4THABgKjTAAQAAAACm4ewzpThLCgAASLd+cxQo4C8vL7tT/87vy2bo+rnTTnluv8IlVe7Z7rLbbfy+AQCYCg1wAAAAAIAp2O02FSzo59QzpThLCgAASLd+d3h52TVl/mZFx17K8eevGlhKnVpU0/Vzp3U95niOPz8AAGZGAxwAAAAAYAq3zv72ctqZUpwlBQAA/ik69pL+iL6Q489bqmhAjj8nAABWQQMcAAAAAOASzr48ecolSDlTCgAAAAAA66IBDgAAAABwOlfdJxMAAAAAAFgbDXAAAAAAgNM5+z6Z0l/3ygQAAAAAANZFAxwAAAAA4DLOuk+mxL0yAQAAAACAxLXnAAAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAreRhcAAGZnt9tkt9uc+jeSkx1KTnY49W8AAFzP2d8hfH8AAAAAAADAbGiAA7A8ZzYXbDabAgJyy273csrzp0hOTtKFC9dpYgCAidjtNhUo4C8vL+ddtCkpKVkXL17j+wMAAAAAAACmQQMcgKW5orkgSb8vm6Hr50475bn9CpdUuWe7y2630cAAABOx223y8rJryvzNio69lOPPX7pYfvV54THlyuWlpKTkHH9+iTPMAQAAAAAA4Ho0wAFYmrObC1UDS6lTi2q6fu60rsccz/HnBwCYX3TsJf0RfSHHnzd/Pl85kpMVEOCX48+dgiuUAAAAAAAAwNVogAOAnNdcKFU0IMefEwCAnJDH10c2u91pVynhCiUAAODvnHn7MYkrzwAAAOAvNMABAAAAC+MqJQAAwNlccfuxpKRkXbkSL4fDeU1wmuwAAACegQY4AAA5gLMZAAAAACBjzr79WOADRRXSuqYKFPDP8ef+O27vAgAA4BlogAMAcI/sdpsKFvST3e7ltL/BjhYAAAAAns6Ztx9z5q1dJG7vAgAA4ElogAMAcI9unf3txX10AQAAAMBA3NoFAAAAEg1wAIATuNvlwJ1dT8p97NjZAgAAAAAAAACAsUzXAN+xY4emTZumgwcPKj4+XoGBgXr55ZfVsmVLo0sDAEtwt8uB2+02FSjgn9qkBgAAwL0jewMAAACAdbnbSXD/ZKoG+NKlS/Xvf/9b3t7eqlu3rry8vLR161YNGDBAR44cUd++fY0uEQDcgjO/nLy87G51OXC73SYvL7umzN+s6NhLOV6PJFUNLKVOLao55bkBAADcDdkbAAAg57h7Ewnm4+zXnCvwur4zZ29jm82mgIDcbnMSXEZM0wA/d+6chg0bJj8/P82ZM0ePPPKIJOnIkSMKCQnR5MmT1bRpUwUFBRlcKQAYy1VnRLvb5cCjYy/pj+gLTnnuUkUDnPK8AAAA7obsDQAArIQmEszGFfuGHcnJstmdu++Z1/XtufKKqO5yElxGTNMA//rrrxUfH6/u3bunBnBJqlChgt566y298847+uqrrzR27FgDqwQA4zn7jGjOhgYAADAvsjcAALAKmkgwI1ftG3bWa1ridX03rrwiqrudBPd3pmmAb9iwQZL09NNPp1vXpEkT2Ww2bdy40cVVAYD7ctYZ0ZwNDQAAYF5kbwAAYBU0kazD0y8Jnp3LgTt73zCvaeNZ/YqopmmA//bbb5KkihUrpltXoEABFSlSRGfOnNG5c+dUuHBhV5cHAAAAAIDHI3sDAABncsf7YVu9iWR2ZrgkOJcDB9IzRQP80qVLunHjhvLkyaM8efJkOKZYsWI6c+aMzpw5QwgHAMCE3DEkAwBgJmRvAHAv7paBPP0MSonclxnO3M7cDxtG8PRLgnM5cPfgbt/JkGwOh8Pj/4udPn1aTz75pIoUKaLNmzdnOOaFF17Q7t27NX/+fNWoUSPLf8PhSP/istkku92uS1fjlZSUnK3a78Qnl5fy+ufWzbjLciQn5fjz2+xeypUnQMnJycrMq8DT5ytZb87uNl/JenPmdW3+bSxZb87u+LqWbv3QtNmc90PT4XDImT+bsvLUVnxdpz7Og/enZfXl4+nvZT67svA4i7yuzfzZ5ezvIHdB9s4ePg8zMd7D5+xu85WsN2d3fF2nPs6JXw82m/MzUFYb4M7+PnQ4HG4zZ6u+rl2xnRPj4+RIzvn/pja7Xd6+edzms0tyv8/r1Md58E9bsvddxnv4fCX3fF2703eymT+7svIdZIozwO3//9IRd5p0yg7r7O64ttls8vLK+Pnz5/XN1nNmVq48zr0Mij2Ll97w9PlK1puzu81Xst6ceV3nPHebr2S9Obvj69qZnP1DNjus+Lq2Ik9/L/PZhX/is8tzkb3vDZ+Hd+fpc3a3+UrWm7M7vq492Z0+k43i7EyWnTnzus553r4ZX2kmp7jbZ5fkfp/XVuTp72V3e11b8bPLmdzx+0lyv9d1msfmYB2GSbn0Wnx8/G3HJCQkSJL8/f1dUhMAAAAAAGZC9gYAAAAAeALTNMD9/f115cqV2wbx2NhYSVLRokVdWRoAAAAAAKZA9gYAAAAAeAJTNMBtNpsqV64sSTpy5Ei69RcvXtTZs2dVqFAhFSlSxNXlAQAAAADg8cjeAAAAAABPYIoGuCQ1bNhQkrRmzZp069asWSOHw6FGjRq5uiwAAAAAAEyD7A0AAAAAcHemaYC3b99efn5++vLLL7V79+7U5UePHtV///tf2Ww2vfrqqwZWCAAAAACAZyN7AwAAAADcnc3hcDiMLiKnLFy4UMOHD5eXl5fq1q0rHx8fbd26VTdu3NC//vUv9ejRw+gSAQAAAADwaGRvAAAAAIA7M1UDXJJ++OEHzZgxQz///LO8vLxUsWJFvfbaa2rWrJnRpQEAAAAAYApkbwAAAACAuzJdAxwAAAAAAAAAAAAAYE2muQc4AAAAAAAAAAAAAMDaaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4gBxz5cqVLD9m+/btTqgEQHZNnjxZv/zyi9FlAAAAALgNsjfg+cjeAAA4Fw1wuFxCQoJ+/vlnHTp0SImJibcdd/78eUVGRrqwMtfbvn27Zs+erf/97386ceKE0eXcs5CQEF28eDFTY2/cuKHRo0fr1VdfdW5RALJk8uTJOnz4sNFlADmuSZMmWrt2rdFlGCI5OVnHjx9Ps8zhcGjFihUaPXq0Pv74Y+3bt8+g6nLOqVOnFB8fn+nxJ06cUHh4uPMKMsD58+e1detWrVixQt9//722b9+e6d9mAMyH7P0XsjfZG3A3ZG+YFdmb7P1PZG8YxdvoApB58fHxOn/+vEqVKmV0Kdk2Z84cffLJJ7p27ZokKV++fHr99df1+uuvy25PezzGpk2bNHjwYB08eNCIUnPM4cOH9cUXX+jw4cMqVaqUevbsqRo1aqh///5au3atHA6HJMnb21v9+vVTz549Da44+w4ePKgXX3xRX375pYoUKXLbcfv27dPgwYP1xx9/3HGcWZ0/f15HjhxR7dq1jS7FJa5cuaJx48Zp9OjRRpfiMlbbxmbQpEkTvfPOO2rSpInRpbjMgw8+qPHjx6t169ZGl+IS0dHRqb8/rGTDhg0aOXKkzpw5o59//lnSrVDeu3dvbdy4MfV3yMyZMxUSEqKhQ4caWe49adKkSbrX9LVr1zRq1Ci9/vrrqlChQprxe/bs0dChQ9WuXTsXV5rzVq1apS+++CLD3802m001atTQ66+/rieffNL1xeWgoKAg2Wy2LD3GZrPpwIEDTqoIZkX29kxk7/TI3tbKZWRveAKyt/mRvcneZG+yt7vgDHADZXQ0VEJCgsLDw3X27Nl04yMiIjz6x0F4eLjGjBmjwMBADR06VD179pSvr68mTZqk1157TVevXjW6xBz3888/6/nnn9eGDRvk5+enffv26ZVXXtGYMWO0du1adevWTWFhYZo3b54aNWqk//73v/r++++NLjvbhg8frqNHj6pr1646ffp0uvU3b97Uxx9/rC5duuiPP/5Q27ZttXz5cgMqzVkPPvigli5dmmZZfHy8Jk+erJMnT6Ybv2nTJoWEhLiqPKc4efKkRo0apeeee07PPfechg0bpmPHjqUbFxERoVatWmnRokUGVJlzrLiNrcaKAS0lfMG8Dh06pD59+sjhcKhbt25KTk6WJM2fP18bNmxQ0aJFtXDhQu3Zs0eDBg3SnDlzPPp3SEav6Rs3big8PFyxsbEGVOQao0eP1oABAxQdHa127drp7bff1vvvv693331X/fv3V5MmTbR//3698cYb+vDDD40u957Url1btWrVytL/atasaXTZcANkb7I32Zvs7anI3ubfxlZD9oYZkb3J3mRv98zenAFuoIy+8OPi4jR06FDNmjXLdEfnzp49W7Vr19bcuXNTl/Xu3VvvvfeeQkND9corr+jLL79U3rx5DawyZ02aNEllypTR3LlzVahQIV27dk09e/bU119/rU6dOuntt99OHVurVi29+OKL+r//+z+1bNnSwKqzr2vXrsqfP7+GDBmirl276ssvv9R9990n6dYR6oMHD9Yvv/yiUqVKaeTIkWrYsKHBFeeMjL70r1+/rilTpqhmzZoqU6aMAVU5z8GDB/XSSy/p6tWr8vX1la+vrw4cOKAVK1ZowYIFqly5sq5cuaJhw4YpIiJCXl5e6tGjh9Fl3xOrbeOjR49m+TKYHHEPuJ8ZM2aoWLFiWrx4sQICAlKXf/3117LZbHrrrbf06KOPSpJeffVV7dixQ/Pnz/fY3yG3Y+YdTkuWLNG8efPUrl07vfvuu/L3989wXFxcnD744AN99dVXql69upo3b+7iSnPG33MEkBVkb7I32Zvs7YnI3reYeRuTvQFzIHvfQvYme7sbGuBuyKwfFL///ruGDBmSZpmPj4/GjBmjAgUKaNasWXr99dc1a9as236AeJo9e/borbfeUqFChSRJ/v7+evPNN/Xiiy/q8ccfTze+ZcuWGj9+vKvLzFHPPvus8uXLpwEDBqhr166aMWOG1q5dq2nTpikxMVFdunTRv/71L+XJk8foUp3OrO/lTz/9VPHx8fr444/1zDPPSJKioqL01ltvafTo0ZowYYJCQkL0xx9/6JFHHtHo0aMVGBhocNXOYdZtPG3aNE2bNi1Lj/H0S2ZaVVYvZ+TpFi5cqC1btmR6vM1m05gxY5xYkXNFRkbq+eefTxPAT5w4oaNHj8rb21tPP/10mvGPPfaYPv30U1eXiXswf/58VatW7a5Hl+fJk0djxozRkSNH9O2333psCL9586Zy5cqVpcfs27dPVatWdVJF8HRm/S1H9iZ7k73Ngez9F7NuY7K3dZC974zsDXdH9r47d8zeNMDhMn5+frp48WKG6wYNGqRr165pwYIF6tWrl2bMmOHa4pwkb968unz5cpplgYGBatSokby907/9Lly4oNy5c7uqPKdp1KiRZs6cqTfeeEPPPfecHA6H7r//fo0ePVq1atUyujzco6ioKHXu3Dk1gEvSo48+qkGDBmngwIEaOHCgoqOj9fbbb+u1115Ld49BuL+mTZuadsfJnVgtoEnS1KlTtXDhwkyPt9ls+uqrr5xYkXNFRkZm6QwLT9/GFy5cUIkSJdIs27ZtmySpatWq6XaI+/r66saNGy6rD/fut99+y9I9bJs0aaJvvvnGiRU513PPPacJEyZk6jsqISFBkyZN0pw5c7R//34XVAe4D7L3LWRvsrenI3ubH9k7czw9l0lk77vx9G1M9jY/svftuXP2pgEOl6lbt67mzJmjp59+WpUqVUq3fsSIEbp69aqWLVum1157TY0aNTKgypz12GOP6csvv1T16tVVv359SVK+fPn0xRdfpBu7b98+zZ07N3Wcp6tZs6bmzJmj119/XefPn9f7779PADeJS5cuKSgoKN3yRx55RElJSTp8+LDmzp2ratWqub445IhmzZqpdevWRpfhclYLaJJ05MgRHTlyJNPjPf2o9Xfeecej7+maVfnz59f58+fTLNu0aZNsNpsee+yxdOOPHDmSeuYcPMO1a9dUuHDhTI8vWrSoR9+T7ezZs+rQoYP69eun7t273/YzadeuXXrnnXd07Ngx3X///S6uEjAe2ZvsTfY2B7K3+ZG9M4fs7XnI3mRvsyF7e2b2pgEOl3nrrbfUpUsXBQcH66GHHtJHH32U5k1hs9k0fvx4+fj4KDQ0VLt37zaw2pzx9ttvKyoqSq+99ppq1ap123snvPTSS9q1a5cKFSqU5t5kni4oKEjz58/Xq6++qjfeeENTpkxRvXr1jC4L9ygxMTHDsyV8fX0lST169CCAwyNZLaBJ0kcffWSpHS4FCxZU6dKljS7DZWrUqKEVK1aoW7du8vLy0tmzZ7VhwwZJUosWLdKMvXLlipYuXaq6desaUCmyKykpKcMzG2/Hy8tLiYmJTqzIuZYtW6ahQ4dq4sSJ2rBhg8aNG6eyZcumrk+5TGzKvfa6deum/v37G1gxYAyyN9mb7G0OZG+YFdnb/MjeZG+zIXt7ZvamAQ6XeeCBB7R8+XJNmTJFO3fuTP3B/nd2u11jxoxR9erV9cknn+jcuXMGVJpzChcurEWLFmnBggVKSEi47ThfX1916NBBb775ZpaOJHI3Q4cOzXD5/fffr5MnT6pnz55q2bJlmiOGzHAUJ9J6+OGHjS4ByBarBTSYX/fu3dW5c2d16tRJderU0dq1a3Xjxg0988wzKl++vKRbO1b37t2rcePG6fz58+ratavBVd+b1atX69ixY6n/Hh8fL5vNpsWLF2vXrl1pxv7yyy+uLg/3qHDhwpo+fbq+/vprffTRR2rbtq2GDBmi559/Xjt27NB//vMfnThxQoGBgfrggw/4TQLLInuTvcne1sD3HDwV2RtmQ/Yme5uNWbI3DXCDHT16NM0lX65cuSJJOnz4cLojSrJymRR3VbBgQQ0bNuyu4zp27Kjg4OA0H6KeytfXV6+88sodx5jlvmthYWF3XH/jxg2Fh4enWWaWEL5z504lJSWl/ntcXJwkafPmzYqJiUkz1gxnWNyJp1+m6Xasso1r166tIkWKGF0GgBzwyCOPaOrUqfrggw80a9YseXl5qXXr1ho5cmTqmPHjx2vOnDmy2+0aOnSoatSoYWDF9y4iIkIRERHplv/z90cKM3xn/XPHw52YZcdD165dVa9ePQ0fPlwjRozQ3LlzdeTIEXl7e6t///7q0aNHlo7OhzWQvTNG9vZMZG/z57LMMMPvmIxYZRuTvQHzIHv/hex9C9nbPdgcDofD6CKsKigoKMM3vsPhuOPygwcPuqI8p3M4HDpx4oQuXrwoSSpUqJDKlCljbFFOZvY5R0dHZ+txnn7UZ0bv5b9/tGa0zpPfy0FBQXrjjTfUoEGDNMuvXLmi3r17a8iQIapSpUq6x9WuXdtVJeY4q21jKwoKCrLcJcmsNuewsDDVqlUrzSWbrOTChQvy8/NLdxbgxo0btX//fj3zzDNueb+mrNixY0e2HlenTp0crsR1Mrov6N2Y6fspMjJSvXv31pUrV2Sz2dS7d2/169fP6LLghsje5s6hGTH7nMnefzFzLiN732LmbWxFVsuhkvXmTPYme98O2dtzeWr2pgFuoMmTJ2frcX379s3hSlwrKipKM2fO1ObNm3Xt2rU06/LmzavGjRvr1VdfzdaHiruy4pyt5G5H399OcHBwDlfiGrfbgSjdfieiJI/+wrfSNv77mVFZ4ck7WSRrBrQdO3aoQoUKHn35T8DqrLjjQZKuXr2q8ePH67vvvlPu3LnVvXt3rVq1Sr/88ovq16+v0aNHq1SpUkaXCTdC9rZODrXinK3ESrlMIntnhSduY7I32RuA5yB7e2b2pgEOl5o1a5YmTJggu92u6tWrq1KlSgoICFBiYqIuXryoAwcO6ODBg7Lb7Ro8eLBCQkKMLvmeWXHOmTVt2jRFREQoNDTU6FJcLiEhQT4+PkaXkS1W3YGYVZ66je+0k+VOPHknC6zhdvfKvBOzXCoUGVuwYIE2bdqU7e81GGPDhg0aMWKEYmJiVK9ePY0aNUply5bVzZs39emnn2rWrFny9fXVv//9b3Xu3NnocgHDWDGHWnHOmUX29rxcJpG9M8tTtzHZG2ZF9sY/kb09kxmyNw1wuMzGjRvVs2dP1a9fX2PGjFHJkiUzHHf8+HGNHDlSW7Zs0axZs1S/fn0XV5pzrDjnrBgxYoQWLlzo8T/eJ0+enKWAGRUVpaFDh2r58uVOrAo5yUrb+LPPPstWCPf0nSxWDGjZ2elrs9n01VdfOaEa57Pi5arutlMtd+7cypcvnypXrqxmzZqpY8eOstvtLqzQWGb4HXLq1CkVKlQo3eX1bufEiRPatWuX2rVr59zCnOTtt9/W8uXL5e/vr0GDBqlTp07pxuzZs0eDBw/WiRMnVKdOHX3wwQemuuwxkBlWzKFWnHNWmOE7T7JWLrMqK21jsnfmkb09C9k7PbK35/8OIXt7ZvamAW4gq33hv/rqqzp79qxCQ0OVK1euO45NTExUu3btdP/992vKlCkuqjDnWXHOWWGGLz/p1o+cbt266d///vcdxyUmJmry5MmaOXOmkpKSPH7emRUfH6/z58+79eVQ7oZtbH5WDWhZ5clztuK9Ml966aU7rk9KStLly5d1/Phx3bx5U4899pimTZsmb29vF1VoLDP8DnnwwQc1fvz4NPcTvHbtmkaNGqXXX39dFSpUSDN+yZIlGjx4sMfOOSgoSA0bNtSoUaNUokSJ246Lj4/Xhx9+qAULFsjf31+7d+92YZVwR2Tv2zNLDrXinLPCDN95Ernsbsje8ARWy6GS9eZM9k6P7O35v0PI3hlz9+xtjXeYm8rKfW3+fgSRp4bwAwcO6JVXXrlrGJUkb29vtWzZUkuWLHFBZc5jxTlbUa1atTRr1ixdv35d7777boZjDh8+rMGDB+vw4cPKnz+//vOf/7i4ypzTpEkTvfPOO2rSpEnqsoSEBK1YsUKPP/64ihQpkmZ8RESER3/hS9bbxla0du1ao0twuUOHDhldgkt5cpjOrrlz52ZqXHx8vObPn6/x48dr/vz5dw3vcB8ZHct848YNhYeHq02bNulCuKcbO3Zspu7x6evrq/fee09PP/0038eQRPa+E7PkUCvO2YqslsvI3ubfxlZE9jY/svftkb09F9k7Y+6evWmAGygzX37R0dEaNWqUNmzYoHz58mnAgAHOL8xJ4uLiVKxYsUyPL1mypP78808nVuR8VpyzFc2aNUv9+/fX/Pnzdf36dY0ZMyZ1x5nD4dD06dM1ZcoUJSQkqFWrVho2bJgKFSpkcNXZFx0drWvXrqVZFhcXp6FDh2rWrFnpQrgZWG0bS9LRo0e1Z88etW/fPnXZ2bNnNXnyZO3evVt+fn5q0qSJXnnlFY+839o/WTGgIa2EhAT99ttv8vX1Vfny5Y0ux6V8fX316quvat++fQoLCyOEm4BZL/KVmQD+d+XKlVPHjh2dVA08Cdn7zsyQQ604ZyuyWi4je5t/G0tkb1gP2ZvsbSZk71vcNXvTAHdTSUlJmjVrlj7//HPFx8frmWee0dChQz36x21iYmKWfqh5e3srISHBiRU5nxXnbEU+Pj6aMmWKhg4dqrCwMMXHx2vChAk6fvy4hgwZoqioKBUtWlTvvfeeGjdubHS5TmPWL3zJett4woQJmjVrlhwOh4KDg2W323XlyhV16tRJp06dUoECBVS6dGl98sknWrdunebOnZups208mRUDWkxMjKKiouTr66vatWtn+j5H7uzKlSuaMWOG9uzZk+YI7aVLl2r06NG6fPmypFs/3MeMGaNq1aoZVKkx6tatq82bNxtdBnBPbty4oVWrVik0NFQ7duyQw+FQnz59jC4LbozsbY4casU5W5HVctntkL3Ns43J3umRvcneVkD2hhl4QvamAe6Gdu7cqZEjR+rXX3/VAw88oBEjRqh+/fpGlwXc1eTJk7M0/ueff3ZSJa7n5eWl8ePHKyAgQPPmzdPJkyf166+/Kj4+Xh07dtTgwYOVN29eo8vEPbDKNl69erVmzpypJ598UiEhIbLb7ZKkzz//XNHR0apataq+/PJL+fn5KSoqSi+99JK+/PJLde/e3eDK750VA1p0dLQmTpyoPXv2aN26danLp0+frk8//VRJSUlyOBzKnz+/Ro0apWbNmhlY7b2Ji4tTp06ddPToUZUoUUKJiYny9vZWVFSUBg8eLIfDoU6dOqlSpUoKDw/Xq6++qvDwcN1///1Gl+4yXl5eSk5ONrqMbAsPD8/S+N9//905hcAQe/bsUWhoqL7//nvFxcXJ4XDovvvuU6dOnYwuDW6M7A1PRfY2fy6zMqtsY7I32Vsie5O9PRPZ29o8KXvTAHcjFy5c0Pjx4xUeHi4fHx/169dP3bt3N8XlbVLs3LlTSUlJmRq7e/duJ1fjGlaac1ZDuJT2HntmMGzYMBUoUECTJ0+W3W7XF198oUaNGhldFnKQ2bfxggULVLVqVU2bNi11mcPh0JIlS2Sz2fTmm2/Kz89PkvToo4+qbdu2Wr58uceHcCsGtHPnzqlTp066cOGCHn300dQ5//jjj5o4caK8vb311ltvqXLlylq4cKHeeustffPNN6pSpYrRpWfLrFmzdPz4cf33v/9VixYtUpdPmTJFDodDL7/8soYMGSJJ6tChg9q0aaNp06Zp7NixRpXscvv27VPJkiWNLiPbhgwZkqXfFQ6Hw3S/Q6wmJiZGixcvVmhoqI4dO5Z6RlzdunXVvXt3Pf744wZXCHdF9k7L03NoCivNmext/lwG829jsjfZm+xN9vZUZG/r8dTsTQPcTXz77beaMGGCLl26pMcee0wjRozQfffdZ3RZOW7hwoVauHBhpsaa5YPRSnOeM2eO0SW4hb59+6pgwYIaPXq0Zs6cqZo1a5ri6GT8xczbeP/+/ekC9YEDB3Tu3DnlzZtXdevWTbPukUce0dKlS11ZolNYMaBNnz5dcXFx+vrrr9McUT99+nTZbDb16dMn9bXwxBNPqH379poxY4b++9//GlPwPYqIiFDbtm3TbN+4uLjUy4516dIldXnu3LnVpk0bffvtty6v0ygrV67U4sWL9frrrxtdSrZ58vsRmZeQkKA1a9YoNDRUW7duVVJSkry8vFSnTh3VrFlTU6dOVUhIiNsGcBiP7J2ep+fQFFaaM9n7FjPnMtxi5m1M9iZ7k73J3p7Kk9+PyDwzZG8a4AY7fPiw3nvvPe3du1dFihTRxIkT1apVK6PLcgorfjBabc516tTJ8mN27tzphEpcKzIyMt2yypUrq2PHjlq4cKFefvllDRo0KPVyVilq167tqhJxj6y0ja9du6b8+fOnWbZt2zZJt+bj5eWVZl1iYqJH7zxMYcWAtmHDBrVv3z5NAL948aJ27dolSXruuedSl9tsNrVs2VJfffWVq8vMMSdPnkyzHaVb7+3ExESVLVs2XfOjZMmSOnfunCtLzHFDhw694/qkpCTFxcXpt99+0/Hjx/XAAw94dAgPDg42ugRDrF69WseOHUv99/j4eNlsNi1evDj1/Zzil19+cXV5OWrkyJFasWKFLl26pNy5c6thw4Zq2rSpmjRpooIFCyo6Olqff/650WXCTZG9zc1qcyZ7/8WsucyqrLSNyd5kb7L3LWRvz0P2voXs7f7Zmwa4gcaNG6e5c+cqKSlJTz31lAYMGKC8efPq1KlTd3xcqVKlXFRhzrLiB6MV55wZp0+fVlhYmMLDw3XixAkdPHjQ6JLuyUsvvXTHELJ//3698sor6ZZ78ryPHj2aJpheuXJF0q0di97eab9ajhw54tLanMFK27hYsWI6ceJEmmUbNmyQzWbTE088kW58VFSUihcv7qrynMaKAe3PP/9U5cqV0yzbvn27kpOTVbFixXTbtXDhwrp06ZIrS8xRdrs93T22tm7dKklq0KBBuvHnz5/3+LNLwsLCMjWubNmyevnll9W7d2+Pn/PtZPT7umTJkqbZiRgREZFu+e3uy+bJc54/f778/f3Vq1cvvf7666Z9vSLnkb3Nz4pzzgyy9y2ePG+yd1pm2sZk77+Qvcnenv67nuz9F7L3Xzx5zmbJ3jTADTR79uzUf16/fr3Wr1+fqcd54o+67Dh//ryOHDnikUdxZpeZ53zjxg1FREQoNDRU27dvT73kXEY/6j1Nnz59PPoLLTumTZuW5j5VKcaNG5dumadfXlCy1jZ+4okntGjRInXp0kXFixfXnj17tHPnTuXKlUvNmzdPM/bXX3/V8uXL9fzzzxtUbc6xYkDLnTu3rl+/nmbZli1bZLPZ9Nhjj6Ub/+effyogIMBV5eW4ihUras+ePerataukW59Nq1evls1mU+PGjdONX7t2rSpUqODqMnPU2rVr77g+d+7cCggIMNU9byVp0aJF+vbbb/X555+rUKFCunDhgho3bpzuc7x///564403DKoyZ1jtErjBwcFas2aNvvjiC3311VeqVatW6lHoRYoUMbo8uDGy952ZOYfejpnnTPY2F7K3eZG9/0L2Tovs7XnI3mRvszFL9qYBbqC+ffsaXYJLPfjggxo/frxat26duiw+Pl4zZ85Uu3btVKZMmTTjN23apMGDB3v0Tgcrzvmf9u7dq9DQUH3//fe6evWqJKlQoUJq3769OnXqpNKlSxtc4b3r16+f0SW4lJUCaQorbePevXsrIiJCLVu2VPny5fXLL7/I4XCoT58+KlSokKRb4TsiIkJz5sxRrly51K1bN4OrvndWDGhBQUHaunWrXn75ZUl/3dtHkpo2bZpmrMPh0MqVKxUUFOTyOnNKu3bt9MEHH+iRRx7RY489poULF+rUqVO677771LBhwzRjp02bpr1792rYsGEGVZszzPAdm1VvvvmmVq1apVKlSunUqVOpn1uS1KZNG5UtW1aStHjxYk2dOlUdOnRQ0aJFjSr3nmXnEriJiYlOqMQ1xo4dq5EjR2r9+vVaunSpfvjhB/34448aOXKkqlevrho1aljuNwoyh+xt/hxqxTn/E9nbfMje5kb2JntLZG+yt+cie98d2dt4NMANZLUQ7nA40i27fv26pkyZopo1a6YLpGZgxTlLUmxsrMLDwxUWFqY//vhDDodDfn5+atCggbZs2aL3339fTZo0MbpMZJOVAqkVFSlSRN99952mTJmivXv36qGHHlL79u3VsWPH1DFhYWGaNWuWSpcurY8//lglS5Y0sOKcYcWA1rlzZ7311lsaM2aMHnvsMS1atEjnzp3TQw89lOZsqPj4eH344Yf69ddfPXqHS+fOnbVr1y6NHTtWNptNDodD+fPn14QJE1LvIfjdd99p+vTpOnHihGrWrKkXXnjB4KqdKyoqSnv27JHdbledOnUUGBhodEn3ZMmSJVq1apV69uyp/v37p7tvYrt27VS/fn1JUqNGjfT888/rm2++Mc1v8ri4ODkcjjueIbNnzx4NHz5cy5Ytc2FlOcvHx0fNmzdX8+bNdeXKFa1cuVJLlizRrl27tGvXLtlsNn3xxRe6evWqmjdvLl9fX6NLhhswy/s8s6yYQ604Z4nsbXZkb3Mje5O9yd5kb09F9iZ7e0r2pgHuRhISEnTo0CHFxsbK4XCoWLFiCgoKUu7cuY0uzakyCqpmZ9Y5f//99woNDdWWLVuUlJSkgIAAtW7dWs2aNVPDhg115syZdEc2msHkyZOz/BibzaY+ffo4oRrnCwkJ0RtvvJH6Q8YKrLaNS5QooVGjRt12ffv27dW4cWPVqFEjNbx4OisGtFatWunw4cOaOXOm5s6dK4fDoTJlymjSpEmpY/7v//5Pn3/+ueLi4tSiRQu1bdvWwIrvjc1m04QJE9S1a1ft2bNHefPmVdOmTdMcpfznn3/K4XDojTfeUM+ePU3x+j5w4IC++OILHTlyRPfdd5969eqlRx99VP/5z38UGhqa+pvEZrPp2Wef1dixY9PdT9JThIWFqXr16ho4cOBdx6bscNu4caPHh/BVq1Zp8uTJ+u233yTduq9c//799eyzz6aOuXbtmiZOnKj58+enu+SkJxk6dKg6d+6sqlWrSpLy5cunjh07qmPHjoqJidGyZcu0bNkyRUVF6aefftKoUaPUqlUrvf/++wZXDndD9rYOs86Z7J15npzLyN6Z48nbmOxN9k5B9vb81zfZO2Nkb89kluztme8wkzl79qwmTpyoiIgIxcXFpVnn5+en5s2ba+DAgSpWrJhBFQKZM3DgQPn7+6tLly5q0qSJateuneYIME+4LEZ2WC2g7dixI80RyVZgtW18N55++bGMWDWgDRw4UC+88IL27dunvHnzqk6dOsqVK1fq+ty5c+uRRx5R69at9dxzzxlYac6pXr26qlevnuG6vn37enwg+7s9e/YoJCRE3t7eqly5svbv36+uXbvqpZde0qJFi9SmTRu1aNFC165d07p167Rs2TI9+OCDeu2114wuPVsOHDigXr16ZXr8448/rilTpjixIudbsWKF3nrrLeXOnVuPP/64/Pz8tHPnTv373/9OvX/kTz/9pIEDB+rkyZMqU6aMRo4caXTZ2RYWFqYGDRqkhvC/K168uLp166Zu3brpyJEjWrJkiZYuXapvv/3W7UI4jEP2hlmQvTPPk3MZ2TtzPHkb3w3Zm+ztycjeZO8UZG/PY5bsTQPcYHv37lXPnj116dIlVa1aVfXq1VOxYsXk7e2t2NhYRUZGKjw8XOvWrdPUqVNVo0YNo0sGbqtMmTI6efKkQkND9fvvv+unn35S06ZNVa5cOaNLc6o5c+YYXQKczErbODIyMluP+/tluzyZlQJaihIlSqhEiRIZrnvxxRf14osvurgi5JQpU6bogQce0Jw5c1SwYEE5HA698847mj17ttq0aaPx48enjn322Wd1+fJlLVu2zGNDeHx8vAICAtItz5cvn6ZNm6YHH3wwzfI8efJ49D25JGnevHkqXLiwFixYkHqPtevXr+uNN97QZ599pmLFium1117TjRs39Oqrr+rNN990y8uS5bQKFSpo4MCBGjhwoHbv3m10OXATZG+YCdkbZmWlbUz2Jnv/Hdnbs5G9byF7k73dDQ1wA507d059+vRRnjx59Pnnn6tmzZoZjjtw4IAGDBig/v37a/HixSpcuLCLKwUyZ82aNdq3b5+WLFmilStXatOmTZo4caLKly+vZs2aqUqVKkaX6BR16tS565grV67IZrPd8d4gcF+Z2cZm8dJLL2X5jBGbzaYDBw44qSIgZwwdOjTLj7HZbBozZowTqnGNn376Sa+//roKFiwo6dZ8unXrprCwMD355JPpxjdr1kwffvihi6vMOcWLF9epU6fSLff29s5wvn/88YfH30fxyJEjeumll1IDuHTrLNa+ffvqxRdf1MCBA1W4cGFNmDBB1apVM65QA9HEhET2hvmQvW+P7O3ZyN53RvaGJyB7k73/iextDe6YvWmAG2jevHmKi4tLc9RIRh566CHNnj1brVu31v/+9z/169fPhVUCWVO1alVVrVpV77zzjjZt2qSlS5dq7dq1mjp1qmw2m2w2m9avX6+goCCVLl3a6HJzjMPh0A8//KDffvtN999/v5588kl5e3tr69atGj16tI4ePSpJevDBB/XWW2/p8ccfN7jie7N69WodO3Ys0+PNfEmyFGbZ0TJ27NhMjVu1apU2bNggSXr00UedWJFrWDGghYSEZPkxNptNX331lROqcb6wsLBMj/37jihP3saXL19WkSJF0ixLubRggQIF0o339fXV9evXXVGaUzz66KNasWKF+vTpc9fLJCYkJGjFihVq1KiRi6pzjitXrqhMmTLplt93332Sbl1KccGCBak7Ysxg586dSkpKytJj2rVr55xi4DHI3jAjsjfZOyNkb89B9s48srdnIXvfQva+heztucyQvWmAG2jNmjVq06bNHQN4itKlSys4OFgREREeHcL/+aZJue/a5s2bFRMTk2asO14yITusOGdJ8vLyUqNGjdSoUSPFx8dr9erVWrZsmTZv3qzvvvtOoaGhqlu3rtq3b69nn33W6HLvyeXLl9WjRw/t27dPDodDkvTII49o+PDh6tGjh/z8/NS0aVNdu3ZN+/btU8+ePTV79myPPrJ59erVioiIyPR4M4Twv+9oue+++/TUU0+ZckdLcHDwHddHR0dr1KhR2rBhgwICAvTWW2+pU6dOLqrOeawY0E6ePJmpccnJyYqJiZHD4fDo+0keOnTormP+/vrOly+fBgwY4PzCnMjhcMjbO+3P/ZRt6Mnb8nY6d+6sF198Ue+//76GDRuWbu4pkpOT9e677yo2NladO3d2cZU5Kzk5Oc09X1Ok3E+wR48epgrgkrRw4UItXLgwU2NTPrfcLYTD9cje1sihVpyzRPYme6dF9vYcZO+7I3t7JrL3LWRvsrenM0P2pgFuoJMnT2bp3h5BQUFZ+pHgjv75pkkJLDNnzkz3ZeDpX/YprDTnHj16qF69eqpTp46qVKmSOhdfX1+1bt1arVu31oULF7RixQotXbpUW7du1bZt2zw+hH/66ac6dOiQ3n33XdWtW1fR0dH64IMP9PLLL+uBBx7Q3LlzU4/2O3/+vDp06KBZs2Z5dAjv2bOnGjRoYHQZLmPFHS3/lJiYqP/7v//TtGnTdP36dbVp00ZDhgxJPaLV01kxoK1bt+6uY/bt26f33ntPf/75p8qUKaPhw4e7oDLXS0pK0qxZs/T5558rPj5ezzzzjIYOHZruCG64t1q1aqlbt276v//7P23btk2vvfaa6tatqxIlSsjhcOjMmTPavn27vv76ax06dEgDBw5UUFCQ0WU7ValSpYwuIcc9//zzlr2kHLKP7G3uHJrCSnMme5O9zYrsTfaWyN5kb7g7snd6ZG/3RAPcQLly5dKNGzcyPT4+Pl7+/v5OrMi5MntpHzOx2py3bdumH374IfVSVLVq1VLdunVVr1691C+5ggULqmvXruratatOnDih5cuXG1z1vVu3bp06d+6sF154QZJUvnx5vfvuu3rttdfUtWvXNJe6KVSokJ5//nnNnTvXoGpzRoUKFUwVMO/Gijta/m7Hjh0aOXKkjhw5ovLly2vEiBGqW7eu0WW5jBUD2pUrV/Txxx9r4cKFstvt6tmzp3r37q3cuXMbXVqO27lzp0aOHKlff/1VDzzwgEaMGKH69esbXVaO+edlM+Pj42Wz2bR48WLt2rUrzdhffvnF1eXluH//+98qXbq0Jk6cqHfffTfDhoe/v7/ee+89U5xBY0W1atVS69atjS4DHobsbX5WmzPZm+xtVmRvsjfZm+ztqcjeZG+zMUP2pgFuoMqVK2vjxo2Zvg/Ihg0bVLFiRSdX5Tx3u7SPGVltzrt379aBAwe0e/du7dmzR3v37tX69etls9kUEBCg2rVrq27duqpbt64qV66ssmXLqlevXkaXfc/OnDmjChUqpFmW8l7N6OivkiVL6tKlSy6pDTnDijtapFs7FMaNG6clS5Yod+7cevPNN/X666+nXt7HCswe0DKyePFijR8/XufOnVOdOnU0YsSIdJ9xZnDhwgWNHz9e4eHh8vHxUb9+/dS9e3f5+PgYXVqOioiIyPCymeHh4RmO9+Sz4VJ06dJFwcHBWr9+vSIjI/Xnn3/K4XCoWLFiqlGjhpo2berx94z8u4zuDXqnnS1muDQqkFVkb/Oz2pzJ3n8he5sL2ZvsTfYme3sqsjfZm+ztfmiAG6ht27Z69913tWLFCrVq1eqOY8PDw7VlyxZNnDjRRdUZ7+TJk3r33Xc1a9Yso0txGU+fs7e3tx599FE9+uijeuWVVyRJp0+fThPKx40bp6SkJBUoUEB16tRR3bp11aVLF2MLv0c3b96Ur69vmmUpISWjsGKz2dLcmw7uz4o7Wr755htNnDhRly5d0hNPPKHhw4dn6r6ZZmGVgPZ3R48e1ciRI7Vjxw4VLFhQH374odvduyenfPvtt5owYYIuXbqkxx57TCNGjNB9991ndFk5bs6cOUaXYBg/Pz+1atXqrr+xzeB2O1qkjHe2EMJhRWTvO/P0HJodnj5nsvdfyN7mQvYme5O9zYXsbX5k71vI3u6JBriB2rdvr/DwcA0aNEiHDx9W165dVaxYsTRjYmNjNXv2bM2ZM0eNGjVSy5YtDao2Z+zbt09Tp07Vnj17JEkPPfSQ+vTpo1q1aqWOcTgc+vLLL/Xpp58qPj7eqFJzjBXn/HclS5bUM888o2eeeUbSrUv7LFmyRKGhoVq1apUiIiI8PoRbTd++fRUYGGh0GS5lpR0thw4d0ogRIxQVFaXixYtr1KhRatasmdFluZRVAlqKhIQETZkyRbNmzVJiYqI6duyot99+WwEBAUaXluMOHz6s9957T3v37lWRIkU0ceJEU4c0s1wKErdntR0twcHBpv48hvOQva2RQ604578je5sP2fsWsrd5kb3J3mZB9jY/srdnogFuILvdrmnTpuntt9/WF198oenTp6tkyZIqWrSovLy8dO7cOR0/flwOh0MtW7bUBx98YHTJ92Tr1q3q3r27kpKSVK5cOfn5+SkyMlKvvPKKZs+erdq1a+vkyZP617/+paioKOXNm1cjR440uux7YsU5/1N8fLwiIyO1Y8cO7dq1Sz///LNu3rwpHx+f1EuymcHFixd16tSp1H9POQL5/PnzaZZLt45u9WR9+/ZN8+8JCQk6dOiQYmNjUy9zExQUZMr7FVlB+/btlZycLEkqXLiw5s2bp3nz5t3xMTabTV999ZUrynMqqwU0Sdq4caNGjRql6OhoBQYGauTIkapatarRZTnFuHHjNHfuXCUlJempp57SgAEDlDdv3nSf0f+U0ZkmZrVgwQJt2rRJkydPNrqUbMnspY3/ztM/v7Kzo2Xnzp1OqMQ1rHaPX+Qcsrf5c6gV5/xPZG+yNzwL2ZvsTfZOi+ztOcjemUP2Np7N4XA4jC4C0o8//qjFixcrKipKZ86cSf0hW7NmTbVt21b16tUzusR79uqrryoqKkozZ85U9erVJUkxMTHq1auXcuXKpbFjxyokJETnzp1Ts2bNNHz4cBUtWtTgqu+NFeecmJiovXv3atu2bdq2bZv27dunmzdvKleuXHr00UdTg3f16tVNczmjoKCgDO/b4nA47ng/l4MHDzqzLKc7e/asJk6cqIiICMXFxaVZ5+fnp+bNm2vgwIHpzq7xREFBQfrPf/6jJk2apC67dOmSgoOD9fHHH6e+v1OsXr1aH374oUdu48aNG2frcevWrcvhSlzrdgHtbjw5oPXv31+rV6+WJD311FMKCQmRl5fXXR9Xu3ZtZ5fmFEFBQan/nJV7bXni+zi7RowYoYULF3rsnDP7+ZWcnKyYmJjU72lPnW9WnD59WmFhYQoPD9eJEycsMWfgdsje5syhVpwz2fsvZG+ytyduY7I32ftuyN7mRfY2L7K3e6EBDpepV6+eOnTooLfffjvN8k2bNql79+6qUKGCzpw5o/fee8/jLzeXwmpz7t69u3bu3Kn4+HjZ7XZVqVJF9erVU926dVWzZs10l7Eyi6FDh2brcZ58JNXevXvVs2dPXbp0SVWrVlW9evVUrFgxeXt7KzY2VpGRkYqMjFRAQICmTp2qGjVqGF3yPbHqjhYrsWJA+/ucpbvP29MDS3aPrP7nmTdm5ukhPDP27dun9957TwcPHlSZMmU0fPhwNWrUyOiynOLGjRuKiIhQaGiotm/fnvoebtiwob744gujywPgRFbLoZL15kz2zhqyt+cge5sf2ZvsfTtkb3Mhe5O93QGXQPcg27dv1+HDh7N1iQl3cOXKFVWoUCHd8kqVKsnhcOjixYv69ttvTXFvgRRWm/OPP/6oXLlyqV27durZs6ceeOABo0tyCU8O09lx7tw59enTR3ny5NHnn3+umjVrZjjuwIEDGjBggPr376/FixercOHCLq4057Rr1y5LwcxKdu7cqbCwMI+/VKiVglYKq312ZWcbm+3eoFZ25coVffzxx1q4cKHsdrt69uyp3r17m/KSoXv37lVoaKi+//57Xb16VZJUqFAhtW/fXp06dVLp0qUNrhBwf2Rvz2O1OZO9rYHsjb8je3suq312kb2tjexN9nYnNMA9yIoVK7Rw4UKPDeFJSUny9k7/kku5FFevXr1ME0ZTWG3OHTt21Pbt21Mv81G+fHnVr19f9erVU+3atZU/f36jS0QOmDdvnuLi4rRgwQKVLVv2tuMeeughzZ49W61bt9b//vc/9evXz4VV5qwPP/zQ6BLcyp9//qmwsDCFhYXpxIkTkmTJEO7pAS04ODjLj4mOjnZCJe4nZefSqlWrPPqeTbhl8eLFGj9+vM6dO6c6depoxIgRGTZJPFlsbKzCw8MVFhamP/74Qw6HQ35+fmrQoIG2bNmi999/P82lRAHcGdnb81htzmRvayB7g+x9C9nbvMje5kL2Jnu7GxrgcBtm+zDMDLPNedSoUZKkU6dOacuWLdq2bZtWrlypefPmyW63KygoSHXr1k0N5f7+/gZXjOxYs2aN2rRpc8cAnqJ06dIKDg5WRESER4fwkJAQvfHGG6pfv37qssTERO3Zs0dBQUHKly9fmvFLlizRkCFDdODAAVeX6jQJCQmpl/PZtm2bHA6HHA6H6tatqxdeeMHo8lzKagHtxo0bWrlypcLCwhQZGan9+/cbXZJTpOxcCg8P1/Hjx+VwOFSgQAGjy8I9OHr0qEaOHKkdO3aoYMGC+vDDD9WuXTujy8pR33//vUJDQ7VlyxYlJSUpICBArVu3VrNmzdSwYUOdOXNGTZs2NbpMAG7GbDk0M8w2Z7K3NZC9byF7k73J3uZC9jYfsjfZ213RAAeQ40qVKqUOHTqoQ4cOkqRff/1V27Zt09atW7Vo0SLNnj1b3t7eevjhh1W/fn29+eabBleMrDh58qRefPHFTI8PCgpSWFiYEytyvh07dqhjx45pll25ckUhISGaNWtWmnCewuFwuKo8p/rn5XxS5vXMM8+oT58+Kl++vMEVuoYVA9ru3bsVGhqqlStXKi4uTg6HQ5UqVTK6rByVsnMpLCxM27ZtU3JyshwOh6pVq6bOnTurVatWRpd4T8LDw7M0/vfff3dOIS6WkJCgKVOmaNasWUpMTFTHjh319ttvKyAgwOjSctzAgQPl7++vLl26qEmTJqpdu7a8vLxS13MJUQAwN7K3uZG9byF7k73J3p6P7J0W2dvzkL09Ew1wuNTOnTuVlJSUZllcXJwkafPmzYqJiUn3GE8/WsiKc/6nSpUqqVKlSnrppZeUkJCglStX6n//+5/27t2rffv2EcI9TK5cuXTjxo1Mj4+PjzftGQdmCdr/lNHlfAoUKKDg4GBVq1ZNI0aMUKtWrUwfwM0e0DISExOTuu2PHTsmSfL29larVq30wgsvqFatWgZXmDP27dunRYsWpdm5FBAQoCtXrmjUqFHpdrp5qiFDhmQphDkcDo8PbRs3btSoUaMUHR2twMBAjRw5UlWrVjW6LKcpU6aMTp48qdDQUP3+++/66aef1LRpU5UrV87o0gAYzIo51Ipz/ieyt7mQvf9C9iZ7mw3Zm+xN9vYsZG/PRAMcLrVw4UItXLgwzbKUH7EzZ85M88Gf8kXg6YHUinP+u+PHj2vfvn3at2+foqKidOjQId28eVN58uTRE088odq1axtdIrKocuXK2rhxY6bvibhhwwZVrFjRyVUhp/To0UObN29WUlKSSpYsqS5duqhp06aqW7eu7Ha7oqOjTbvzIYVVAlqKhIQErVmzRosWLdK2bdtSdxxXqFBBR48e1UcffaQWLVoYXOW9i42N1eLFixUWFqbff/9dDodDpUqVUnBwsJo1a6bixYvr6aefVqFChYwuNceMHTvW6BJcqn///lq9erUk6amnnlJISIgSEhIUGRl5x8d58m+RNWvWaN++fVqyZIlWrlypTZs2aeLEiSpfvryaNWumKlWqGF0iAINYMYdacc5/R/Y2H7K3uZG9yd5kb7K3pyJ7k709BQ1wA506dSpL41OOXPZUVvsikKw350uXLikqKio1cEdFRenSpUtyOBzKnz+/atSooYEDB6p27dp66KGHZLfbjS4Z2dC2bVu9++67WrFixV2Pwg0PD9eWLVs0ceJEF1WHe/XDDz/I399fISEh6tq1q4oWLWp0SS5hxYAWFRWl0NBQrVixQpcvX5bdblf16tXVrFkzNWvWTElJSWratKly5cpldKk5onHjxkpOTlZQUJB69eqlJk2a6OGHH05dHx0dbWB1zhEcHGx0CS4VERGR+s/r1q3T+vXr7zg+pflx8OBBZ5fmVFWrVlXVqlX1zjvvaNOmTVq6dKnWrl2rqVOnymazyWazaf369QoKClLp0qWNLhcwBNnb/Kw2Z7K3NZC9zY3sTfYme5sH2ZvsTfZ2TzTADdS4cWNLXRojO18Env6FaLU5161bVzabTQ6HQwULFlSdOnVUu3Zt1a5dW4GBgR79+sVf2rdvr/DwcA0aNEiHDx9W165dVaxYsTRjYmNjNXv2bM2ZM0eNGjVSy5YtDaoWWdW3b18tX75c06ZN0xdffKFy5cqpadOmatq0qR599FGjy3MaKwa0559/Xn5+fmrYsKGeeOIJNW7cOM1OBrPNOTExUX5+fipSpIj8/PzSXSLVCmJiYrRr1y7FxsZKkooVK6bq1aurZMmSBleWM6zW/PgnLy8vNWrUSI0aNVJ8fLxWr16tZcuWafPmzfruu+8UGhqqunXrqn379nr22WeNLhdwKbL33Xn6977V5kz2tgayt7mRvcneKcw2Z7I32dvsyN6egwa4gdq1a0coycCNGze0cuVKhYWFKTIyUvv37ze6JKczy5xbtGihOnXqqE6dOlx2y8TsdrumTZumt99+W1988YWmT5+ukiVLqmjRovLy8tK5c+d0/PhxORwOtWzZUh988IHRJSML+vbtq759++rnn3/W0qVLtWLFCk2fPl0zZsxQyZIlVbNmTVN+d1kxoPn5+en69es6cuSIChYsKH9/fz3xxBPKmzev0aU5xfr167V06VItXbpUEydOlM1mU5EiRfT000/r6aefNvXRub/++qtGjx6tyMhIORyONJdStNvtqlmzpoYNG6bAwEADq7x3Vjvq/k58fX3VunVrtW7dWhcuXNCKFSu0dOlSbd26Vdu2bSOEw3LI3hkzSw7NCrPMmextDWRvcyN7k73J3uZD9rYesrd7sznMfjMReIzdu3crNDRUK1euVFxcnBwOhypVqqSlS5caXZrTWHHOMJcff/xRixcvVlRUlM6cOSOHw6FixYqpZs2aatu2rerVq2d0iTkiKChI//nPf9SkSZPUZZcuXVJwcLA+/vhjVa9ePc341atX68MPP/T4S/tIt86A2rp1q5YuXarVq1fr6tWrkqTSpUurffv2ateunUqVKmVwlffu9OnTqQHt119/zTCgNWvWTFOmTEnzOvBk8fHxWrdunZYsWaJNmzYpKSlJuXLlUv369fX0008rKChIHTp0MNWcUxw6dCh1J9Pp06dls9lSd0oMGTJEL7/8stEl5pi1a9dqwIABstlsatq0qerVq6dixYrJ29tbsbGxioyM1MqVK5WYmKhJkyapadOmRpcMJzpx4oSWL1+uXr16GV0KAANZMYdacc4wF7I32Zvs7bnI3mRvsrf1kL3dAw1wD3H69GmFhYUpPDw8zT0WPF1MTIzCw8MVFhamY8eOSZK8vb3VrFkzvfDCC6pVq5bBFeY8K84Z8HRBQUEZHnl9t8tjmiGE/11CQoLWrVunZcuWaePGjbp586bsdrvq16+v//u//zO6vBxjpYCW4uLFi6lHqe7duzfNuh49eqhXr17y8/Mzpjgn27Fjh5YuXaqIiAhdunRJNptNZcqU0XPPPafg4GCVKFHC6BKz7eTJk2rdurXKlSunTz75RGXLls1w3J9//qn+/fvrt99+0+LFi287zt0NHTo0y4+x2WwaM2aME6oB4KnI3uZhxTkDno7sfQvZm+xtRmRvsjfZG65GA9yN3bhxQ6tWrVJYWJi2b9+u5ORkeXt76+effza6tHuSkJCgNWvWaNGiRdq2bVvqpW4qVKigo0ePatKkSWrRooXBVeYsK84Z1pGQkKBDhw4pNjY29Sj0oKAg5c6d2+jSckx2fthJ5r4nzuXLl7Vy5UotXbpUu3bt0oEDB4wuySnMHNBuJzo6WkuXLtWyZcv022+/yWazyd/fXy1btlT79u3TnXVhFjdv3tQPP/ygJUuWaMOGDbpx44bH/+764IMPtHjxYq1cuTLNPeYycvHiRbVq1Upt2rTRkCFDXFRhzgoKCsryY2w2m0fvMM3OGSI2m01r1qxxQjWA5yJ7m4cV5wzrIHvfHtnb85G9yd6e/LuL7H13ZG8YgQa4G9qzZ4/CwsK0YsWK1EtzlShRQh07dtTzzz+vokWLGl1itkRFRSk0NFQrVqzQ5cuXZbfbVb16dTVr1kzNmjVTUlKSmjZtaqrLvVhxzrCOs2fPauLEiYqIiFBcXFyadX5+fmrevLkGDhyoYsWKGVQhXGXnzp2mP4PGjAEtMw4dOqQlS5ZoxYoV+vPPPz0+sGTW1atXFRERoWXLlmnWrFlGl5NtLVu21BNPPJHpHYnjx4/X+vXr9f333zu5MueIjo7O1uM8+R50jRs3TrfM4XDo9OnTKlKkiHx8fDJ83Lp165xdGuARyN7myaFWnDOsg+yNFGRv8yJ7k709Cdn7FrK3+/M2ugDcEhMTo8WLFys0NFTHjh2Tw+GQ3W6XJA0YMEA9evRI/XdP9fzzz8vPz08NGzbUE088ocaNG6c5Iiq7H5zuzIpzhjXs3btXPXv21KVLl1S1atUM72sTHh6udevWaerUqapRo4bRJSOLfv75Z+3du1cOh0MPPvhghiH76tWrmjBhgr799lvt37/fgCpdJ1euXGrSpImaNGmSJqCZXVBQkIKCgjRo0CBt377dEnOWpLx586pp06bavXu30aXck9OnT6tixYqZHl++fHnNnz/fiRU5lyeH6ezKKEyfP39eDRo00EcffaT69esbUBXg3sje5syhVpwzrIHsbX5k77TI3mRvT0T2Nj+yt2eiAW6glEtzhYaGauvWrUpKSlLu3LnVuHFjPf300woMDFRwcLAqVark8QFcUuo9XI4cOaKCBQvK399fTzzxhPLmzWt0aU5jxTnD/M6dO6c+ffooT548+vzzz1WzZs0Mxx04cEADBgxQ//79tXjxYhUuXNjFlSI7rl27prfeeksbN25UykVibDabGjRooKlTp6Ye0bhhwwaNGDFCMTExuu+++4ws2eXMEtCyqlSpUh6/8/jkyZOaPXu29uzZI0l66KGH1L17d91///1pxkVERGjUqFE6e/asRo8ebUSpOcLX11eXL1/O9PjLly8rICDAiRUZKyEhQb/99pt8fX1Vvnx5o8txmjvdHxOwKrK3+XOoFecM8yN7mxvZ++7I3p6L7H1nZG9zIHu7PxrgBmrYsKEuX76s/Pnz65lnnlGTJk30xBNPyM/PT5L5jlDeunWr1q1bpyVLlmjRokVauHChcuXKpfr16+vpp5/O1r0j3J0V5wzzmzdvnuLi4rRgwQKVLVv2tuMeeughzZ49W61bt9b//vc/9evXz4VVIrs+++wzbdiwQQ0bNlRwcLD8/f21ceNGffPNNxo/fryGDRumcePG6csvv5SXl5e6deum/v37G112jrBaQJOkffv2aerUqWnm3KdPnzRnHTgcDn355Zf69NNPFR8fb1Sp9+zgwYN66aWXdPXqVfn6+srX11cHDhzQihUrtGDBAlWuXFlXrlzRsGHDFBERIS8vL/Xo0cPosu/Jww8/rIiICHXr1i1T41etWqUHH3zQyVU515UrVzRjxgzt2bNHc+fOTV2+dOlSjR49OnWnRLly5TRmzBhVq1bNoEoBuBLZ2/w51IpzhvmRvc2N7E32JnuTvT0Z2RuegAa4gS5duiR/f381b95cdevWVY0aNVIDuBn5+vqqVatWatWqlS5evKgVK1Zo6dKl+uGHH/TDDz9IunXUTFRUlBo0aGCK/xZWnDPMb82aNWrTps0dA3iK0qVLKzg4WBEREYRwD7Fu3TrVqVNHM2bMSF325JNPqnDhwpo7d64KFCig2bNnKygoSGPHjvX4H+wprBjQtm7dqu7duyspKUnlypWTn5+fIiMj9corr2j27NmqXbu2Tp48qX/961+KiopS3rx5NXLkSKPLzraUnQgff/yxnnnmGUm37hf61ltvafTo0ZowYYJCQkL0xx9/6JFHHtHo0aMVGBhocNX3pkOHDhowYIBmz56tV1999Y5jp02bpqioqDTvfU8TFxenTp066ejRoypRooQSExPl7e2tqKgoDR48WA6HQ506dVKlSpUUHh6uV199VeHh4el2tAEwH7K3+XOoFecM8yN7mxvZm+xN9iZ7eyqyNzyGA4aJjIx0vPvuu446deo4goKCHA8++KDj+eefd8ycOdNx7Ngxx8mTJx2BgYGONWvWGF2qU508edIxdepUxzPPPOMIDAx0BAUFOWrUqOH4z3/+49i9e7fR5TmFFecM86hWrZpjwYIFmR6/cOFCR/Xq1Z1YEXJStWrVHF9++WW65b/99psjMDDQ8eCDDzpGjRrlSEhIMKA65+nVq5ejSpUqjmXLlqUu27dvn6NJkyaOl156yRETE+No3ry5IzAw0NGhQwfHoUOHDKw2Z7zyyiuOGjVqpPne+fPPPx3t2rVzdOzY0fHbb785GjRo4AgMDHT069fPERsba2C1965BgwaOUaNGpVu+atUqx0MPPeTo0qWL4+GHH3bMmDHDkZSUZECFztGvXz9HUFCQ41//+pdjz549ad67SUlJjj179qSOGT58uIGV3rtPP/3UUaVKFcf333+fZnmPHj0cQUFBjrFjx6Yui4+PdzRr1swxZMgQV5fpdOfPn3cEBgY6tmzZYnQpgNsge99ixRxqxTnDPMje5kb2JnuTvcnenorsfQvZ2/1xBriBatWqpVq1amn48OHauHGjli5dqg0bNmjfvn2aMGGCypYtK5vNpmvXrhldqlOVLl1avXr1Uq9evXTo0CEtWbJEK1as0HfffadFixbp4MGDRpeY46w4Z5hHrly5dOPGjUyPj4+Pl7+/vxMrQk66fv26ChUqlG55wYIFJUlPP/20hg0b5uqynC4qKkqdO3dOPTpZkh599FENGjRIAwcO1MCBAxUdHa23335br732minuD3rw4EG98MILql69euqy4sWL61//+pe6d++uN998U4mJiZo0aZJatmxpYKU549KlSxle/vSRRx5RUlKSDh8+rLlz55ruslwTJkzQ2LFjtWDBAi1fvlxeXl4qUKCAvLy8dPHiRSUkJMhut6tbt24aOHCg0eXek4iICLVt21YtWrRIXRYXF6fNmzdLkrp06ZK6PHfu3GrTpo2+/fZbl9cJwPXI3rdYMYdacc4wD7K3uZG9yd5k72quL86JyN5kb7gfGuBuwNvbW02aNFGTJk0UFxeniIgILV26VNu3b5fD4dDgwYO1aNEiPffcc2revLly585tdMlOExQUpKCgIA0aNEjbt2/XsmXLjC7J6aw4Z3i2ypUra+PGjQoJCcnU+A0bNqhixYpOrgrOZrPZJEnt2rUzthAnsWJAu3LliipUqJBueaVKleRwOHTx4kV9++23uu+++wyoLuclJiZm+BvK19dXktSjRw9Tbd8UPj4+GjFihEJCQhQeHq6oqCidOXNGDodD5cuXV82aNdW6dWtTXIrs5MmTaYK2JEVGRioxMVFly5ZN91ouWbKkzp0758oSc9zkyZPTLYuPj5fNZtPixYu1a9eudOttNpv69OnjivIAt0P2/osVc6gV5wzPRva2JrI32dvTkb3J3mTvW8jexqMB7mby5Mmj4OBgBQcH69y5c1q2bJmWLl2qbdu2adu2bRo1apQiIyONLtMl6tatq7p16xpdhktZcc7wPG3bttW7776rFStWqFWrVnccGx4eri1btmjixIkuqg7OlhJYzMaKAS0pKUne3ul/Cvr4+EiSevXqZZoAnhkPP/yw0SU4Vbly5Tz+KPO7sdvtSk5OTrNs69atkqQGDRqkG3/+/HnlzZvXJbU5S0YhPEV4eHiGywnhwC1k779YMYdacc7wPGRvayN7mwfZOy2yt+cje6dF9nZfNMDdWOHChfXyyy/r5Zdf1rFjx7RkyRKPPkI5s0es/p3NZtNXX33lhGpcw4pzhvm1b99e4eHhGjRokA4fPqyuXbuqWLFiacbExsZq9uzZmjNnjho1amSKSzhZScoR51ldZ2ZmD2gZyegIdTOzwms7JiZGu3btUmxsrCSpWLFiql69ukqWLGlwZTmjYsWK2rNnj7p27SpJcjgcWr16tWw2mxo3bpxu/Nq1az3+dT5nzhyjSwBMgezt+TnUinOG+ZG9zY/snR7Z2/ys8Nome6dF9oZRaIB7iPvvv1/9+vVTv379jC4l23bs2JHhcpvNJofDcdt1nsyKc4b52e12TZs2TW+//ba++OILTZ8+XSVLllTRokXl5eWlc+fO6fjx43I4HGrZsqU++OADo0tGFo0ZM0aTJk1Ks8zhcMhms+ntt99Od7S2zWbTmjVrXFmiy/HZbA5Hjx5NdzbflStXJEmHDx/O8Kj82rVru6Q2Z/r11181evRoRUZGyuFwpPkNYrfbVbNmTQ0bNkyBgYEGVnnv2rVrpw8++ECPPPKIHnvsMS1cuFCnTp3Sfffdp4YNG6YZO23aNO3du9fj76tYp04do0sATIfs7ZmsOGeYH9nb/Mje6fHZbA5kb7J3CrI3jEQD3EAhISF64403VL9+/dRliYmJ2rNnj4KCgpQvX74045csWaIhQ4bowIEDri41Rxw6dCjdsvPnz6tBgwaaPXt2mv8OZmHFOcMa8uXLpy+++EI//vijFi9erKioKP3yyy9yOBwqVqyY2rVrp7Zt26pevXpGl4osKlWqlCRluKMw5UjVf6673U5FT2PFgLZz504lJSWlWRYXFydJ2rx5s2JiYtI9xpPvRTdt2jRNmzYtw3Xjxo3LcPnBgwedWZLTrV27VgMGDJDNZlOLFi1Ur149FStWTN7e3oqNjVVkZKRWrlypDh06aNKkSWratKnRJWdb586dtWvXLo0dOza14ZE/f35NmDBBdrtdkvTdd99p+vTpOnHihGrWrKkXXnjB4KqdKyEhQb/99pt8fX1Vvnx5o8sBDEP2Nn8OteKcYQ1kb/Mie5O9yd5pkb09B9k7PbK3e7I5zPLN6YGCgoL00UcfqXXr1qnLLly4oAYNGmjWrFnpAtqSJUs0ePBgj/8y+LsLFy6ofv36lgqkVpwzALi7oKCg2x5pnnIEfkY8+Tv5dnP++0/Dv69P+e/gqXP+7LPPsnU2Qd++fZ1QjWucPHlSrVu3Vrly5fTJJ5+obNmyGY77888/1b9/f/32229avHjxbcd5ij179mjPnj3KmzevmjZtqkKFCqWumzx5shYvXqzWrVurZ8+eGd5/0NNcuXJFM2bM0J49ezR37tzU5UuXLtXo0aN1+fJlSbfuRTdmzBjT3VMRyAyytzVzqBXnDADujuz9F7J3WmRvz0P2voXs7b44A9wNcUwCAE8RHx8vX1/fdMt/++03BQQEpLs/GdxfeHi4atWqpTJlyhhdikv16dPHcpdaGzt2rNEluJQnX8o2u7766ivlypVLM2fOTBNE/6lEiRKaPn26WrVqpa+//lpDhgxxYZU5r3r16qpevXqG6/r27XvbHSs3b97U3r17Mzwb1F3FxcWpU6dOOnr0qEqUKKHExER5e3srKipKgwcPlsPhUKdOnVSpUiWFh4fr1VdfVXh4uO6//36jSwfcAtkbgKcge5sP2ds6yN7mR/ZOj+xN9nYHNMABAFmWkJCgcePGaenSpfrhhx/SBfGJEyfqhx9+UPv27TV48GD5+/sbVCmyaujQoRo/frzlQrgVA1pwcLDRJbhURpe/NbtNmzYpODj4jgE8RYECBdSuXTutX7/e40N4dl26dEkhISEZng3qrmbNmqXjx4/rv//9r1q0aJG6fMqUKXI4HHr55ZdTt2eHDh3Upk0bTZs2zXI74QAA8FRkb/Mie1sH2dv8yN5ZQ/aGq9iNLgAA4FkSEhLUrVs3ff311ypVqpQuXLiQbsxTTz2lwMBAffPNN3r99deVmJhoQKXIDqueCRUSEqKtW7caXYZLNWnSRGvXrjW6DJfZsWOHzp49a3QZLnX69GlVrFgx0+PLly+vP//804kVuT9P+wyMiIhQ27Zt0wTwuLg4bd68WZLUpUuX1OW5c+dWmzZtLPdZBwCApyJ7m5un/e7MKWRv8yN73x3Z2/M+A8nenokGOAAgS7788ktFRkZq2LBhCg8PV8mSJdON6dixoxYtWqS+fftq9+7dmjdvngGVAplnxYAWHR2ta9euGV0GnMjX1zf1HlSZcfnyZQUEBDixIuS0kydP6uGHH06zLDIyUomJiSpTpozuu+++NOtKliypc+fOubJEAACQTWRvmBHZG2ZE9jY/srdn4hLocJnw8PB0y+Li4iRJmzdvVkxMTIaPa9eunROrci4rzhnmt3TpUjVp0kQvvvjiXcf27dtXO3bs0OLFi/XKK684vzjkiIsXL+rUqVNZekypUqWcVA2A7Hr44YcVERGhbt26ZWr8qlWr9OCDDzq5KuQku92u5OTkNMtSjjJv0KBBuvHnz59X3rx5XVIbAONYMYdacc4wP7K3+ZG9AXMge5sf2dsz0QA32D9/6Fy6dEnSrTfIP38AZXSpI08yZMgQ2Wy2NMtSLnUxc+ZM2Wy21H9P+WebzebRgdSKc4b5HTt2TJ07d870+CeffFKffPKJEytCThszZozGjBmT6fE2m00HDhxwYkVAzli9erWOHTuW6fE2m019+vRxYkXO1aFDBw0YMECzZ8/Wq6++esex06ZNU1RUlGbMmOGi6pATKlasqD179qhr166Sbv3OXL16tWw2mxo3bpxu/Nq1a1WhQgVXlwm4BbK3uXOoFecM8yN7mx/ZG2ZF9r49srdnInt7JhrgBrvdD523337bgGqca+zYsUaX4HJWnDPMz9/fX0lJSZkenzt3bvn6+jqxIuS0mjVrqmzZskaX4XJWC2iStHDhQm3ZsiXT4202W5Z20Lib1atXKyIiItPjPX0bt2jRQs2aNdP48eO1f/9+vfjii6pSpYpy5colSUpOTlZUVJRmzZql1atXq2PHjnr88ccNrhpZ0a5dO33wwQd65JFH9Nhjj2nhwoU6deqU7rvvPjVs2DDN2GnTpmnv3r0aNmyYQdUCxiJ7m5sV5wzzI3ubH9k7czw9l0lk77vx9G1M9jY/srdnogFuoHbt2qU7QtnMgoOD7zrm0qVL8vX1Ve7cuV1QkfNZcc4wv/Lly2v37t0KCQnJ1Phdu3apdOnSTq4KOalTp05q3bq10WW4nNUCmnTrfkWRkZGZHu/pIbxnz54ZXprKzCZMmKCxY8dqwYIFWr58uby8vFSgQAF5eXnp4sWLSkhIkN1uV7du3TRw4ECjy0UWde7cWbt27dLYsWNTz2jMnz+/JkyYILvdLkn67rvvNH36dJ04cUI1a9bUCy+8YHDVgOuRvdMzWw614pxhfmRv8yN7Zw7Z2/OQvcneZkP29kw0wA304YcfGl2Cy928eVOhoaHau3dvmiO0d+zYoffee0+///67bDabGjRooBEjRpjiKEgrzhnmFhwcrBEjRmjbtm2qV6/eHcdu375dERER6tevn4uqA7LPigHtnXfeUZMmTYwuw2UqVKigOnXqGF2GS/n4+GjEiBEKCQlReHi4oqKidObMGTkcDpUvX141a9ZU69atdf/99xtdKrLBZrNpwoQJ6tq1q/bs2aO8efOqadOmKlSoUOqYP//8Uw6HQ2+88YZ69uyZGs4BKyF7WyOHWnHOMDeyN8yK7G1+ZG+yt9mQvT0TDXADvf7662rXrp2aNm1qiUsU3bx5U6+99poiIyOVK1cujRo1St7e3vr999/1+uuv6+bNm2rYsKEqVqyoVatWqVOnTlqyZImKFClidOnZZsU5w/zatWunRYsWqVevXurZs6c6duyY7jUbGxurb7/9VjNnzlSZMmXUpUsXg6oFMs+KAa1gwYKcJWIR5cqV4yhzE6tevbqqV6+e4bq+ffuqb9++Ga67efOm9u7dq6CgIOXLl8+ZJQKGInubP4dacc4wP7I3zIrsDTMje5sb2duzcAiCgXbs2KF///vfatCggYYMGaItW7bI4XAYXZbTzJs3Tzt37tS///1vRUZGytv71vEXn332mRISEtS6dWtNnz5dgwYN0qJFi+Tl5aVp06YZXPW9seKcYX65cuXSlClTVLVqVX3yySdq2LChmjRpos6dO6tjx45q3LixGjVqpM8++0yBgYGaPXs2X+wepFSpUvL39ze6DACAC1y6dEkhISH6+eefjS4FcCqyt/lzqBXnDPMje5sb2RsArIPsbQzOADfQ1q1btWbNGn3//fdavny5Fi9erCJFiqh169Zq06aNgoKCjC4xRy1btkzNmzdXt27dUpclJCRo3bp1stlsaZYXKFBAzz33nJYvX65hw4YZUW6OsOKcYQ2FCxfWV199pYiICC1fvlwHDhzQ4cOHZbfbVaRIEbVr105PP/20GjdubHSpyKJ169bdcX1ycrL+/PNPFSlSRD4+Pi6qCrh3ffv2VWBgoNFluFRm7xf5dzabTV999ZUTqnEPZ86cUYECBZQrV6506/Lnz685c+bowQcfNKAy45i5CQikIHv/P/buOzyK6m3j+L1ppFFC70VKQu+9SZEe6ah0BFFQmqACPxAQFBFQERAEpSsgJfQSkC7Sm1QpoQoEQgIEEtL2/YM3K0sSSEKSzW6+n+vyEmbO7Dyzjb3PmTlj+zk0LR4z0gayt+0ie8NWkb3jh+xN9kbyYwDcgtzc3NSyZUu1bNlSDx8+1ObNm7VhwwbNnz9fc+fOVZEiRdSyZUt5e3srR44cli73lV2+fFmtW7c2W3b48GGFhoYqe/bsMf5hzJ8/v/z9/VOyxCSXFo8ZaUujRo3UqFEjS5eBFHTv3j01aNBAc+bMUfXq1S1dTpJJiwFt/PjxcU7bZIvimoYq2uPHjzVnzhy1atVKefPmTaGqkteBAwdiXW4wGOIMXgaDITlLShFz587V77//rjVr1sQI21999ZX27t2rnj17qlevXmb35HJ0dExzUzECaQXZ2/ZzaFo8ZqQtZO+0h+xtO8je5sje/62zdmRvpHYMgKcS6dOnV7t27dSuXTvdu3dPmzZt0saNG/Xtt9/q22+/VeXKldWqVSs1atRIbm5uli43UaKiomRvb2+2bN++fZKkGjVqxGj/8OFDubi4pEhtySUtHjMgPZ3WxdnZWenSpbN0KUgGtnjGYloMaM93Ej8vODhYX375pXr16qXChQunUFWW8/jxY02fPl0VK1a0mdf47NmzMZbdu3dPNWrU0Ny5c22qI016+t00ZMgQrV+/XlmyZNGtW7eUL18+szaFCxfWkSNH9N133+nkyZP64YcfLFQtAEshe9tmDk2LxwxIZG9bR/a2jVxG9jZH9rZ+ZG9YC+4BngplzpxZHTt21MKFC7Vjxw7973//k52dnT7//HPVqlXL0uUlWv78+XXmzBmzZVu2bJHBYNDrr78eo/2ePXuUP3/+FKoueaTFY0baEB4erqVLl2rYsGFmyw8cOKBmzZqpWrVqKl++vHr16qWrV69aqEog6UQHtGvXrlm6lBQTGhqqVatWpamro2yxg+l5tnCWeVyWLl2q9evXq3v37tqxY0eMAC497XDbsmWL2rRpoy1btmjlypUWqBRAakH2fsoWcmhaPGakDWRvpDVk77SB7G3dyN6wFgyAp3KOjo5ydnaWu7u7HBwcFBYWZumSEq158+ZavXq1tm7dqpCQEM2bN0+XLl1SlixZYtyraM2aNfrzzz/VoEEDC1WbNNLiMcP2hYeH691339WoUaO0bt06RURESJL8/PzUq1cv+fn5qXbt2urevbv8/Pz09ttv6+7duxauGnh1aSGgPS8tHjOs1/Lly1WlShUNHTo01vuMRXNyctK4ceNUvHhx/f777ylYIYDUjOxt3Tk0LR4zbB/ZG2lVWsyhafGYYb3I3rAWTIGeCt27d09btmzRpk2bdPDgQUVERKhEiRIaMGCAmjdvbunyEq179+7avXu3PvroI9P9LxwdHfXll1/KyclJ0tMztBctWqQDBw6oUKFC6t69u2WLfkVp8Zhh+xYtWqRDhw7pk08+UadOneTg8PSfkqlTpyosLExvvvmmvvnmG0lS79695e3trZkzZ2rEiBGWLBtJxNHRUZUrV1bGjBktXQoAmLl48aIGDBgQr7YGg0FNmjTRjBkzkrkqAKkZ2dt2cmhaPGbYPrJ32kb2BpBakb1hLRgATyXu3r0rX19fbdq0SYcPH1ZkZKTy5Mmjnj176s0337SJ+384OTlp3rx52rBhg44dOyZ3d3d5e3urSJEipjYnT57UkSNH9Oabb2ro0KFydna2YMWvLi0eM2zfunXr1LhxY/Xs2dO0LCwsTNu2bZPBYDBbnilTJrVp00br168nhFuJhw8fKn369HGuz5gxoxYuXGi2bP/+/apatWpylwYkq/Tp02v8+PEqWrSopUtBIjk4OJgGOeIjQ4YMMe4XC8D2kb2fsrUcmhaPGbaP7G3byN5Iq8je1o/sDWvBALgF+fv7y9fXV5s3b9aRI0cUGRmpjBkzql27dvL29lalSpUsXWKSs7e3l7e3t7y9vWNd/8EHH2jAgAGys7Od2fnT4jHDtl2+fFmtW7c2W3b48GGFhoYqe/bs8vT0NFuXP3/+NHUfI2vXtWtXzZ07V5kyZXpp2ydPnmjixIn67bffdPr06eQvzoLSYkDLmDGjFixYoOLFi1u6lBSRLl061apViyssrFiBAgV08uTJeLc/efKkcuXKhJhkyAABAABJREFUlYwVAUgtyN4x2WIOTYvHDNtG9rZtZO/Ykb1tH9nb+pG9YS0YALegunXrSnp6pnLDhg3l7e2tunXrvvC+CbbOxcXF0iWkuLR4zLBuUVFRMc7a27dvnySpRo0aMdo/fPiQ97kVOXPmjDp37qx58+Ypa9ascbY7fvy4PvvsM12+fPmF7WxFunTpzDqfIiMjNWvWLPXp08eCVSUvR0dHValSxfT3hw8fasKECRo3bpwFq3p1c+fO1e+//641a9bE+M311Vdfae/everZs6d69epl9R3kq1atirHs0aNHkqQ///xTt2/fjnW7Vq1aJWNVyadFixaaPHmyevTo8dIOs/Pnz2vt2rXq2rVrClUHwJLI3jGlxd/nafGYYd3I3raN7B07sjfZ2xqRveNG9oYlGYxGo9HSRaRVXbp0UcuWLdWkSRO5u7tbuhwAiJeWLVuqbNmy+uKLL0zLmjVrJj8/P3333Xdq0qSJWftevXrp/v37WrZsWUqXikT49ddf9eWXXypfvnyaN29ejDM0w8PD9cMPP2jOnDmKjIxUy5YtNXz4cJs4c/fhw4datmyZjh07JqPRqBIlSqhTp07KkCGDWbu///5bI0aM0D///KMzZ85YqNqkcf36dc2dO1dHjx6VJJUoUULvvfeeChQoYNbO19dXY8eO1d27d632mI1Go4YMGaL169crS5YsWrJkifLly2fWZtq0aVq2bJn8/f31xhtv6IcffrBQtUnDy8tLBoPBbNmzP/1jW2cwGKz2NX78+LHatGmjoKAgDR8+XM2bN4/RaRwREaF169Zp0qRJkiQfHx9ly5bNEuWmmDt37ihTpkyxDvSFh4fr6NGjKl68+Aun4ASsHdkbgDUie9s2sjfZm+xN9rbW15jsHTuyd+rDADgAIEFmzZql6dOna/LkyapZs6aWLl2qr7/+WlmzZtW2bdvM7gGzZs0affbZZxowYIA++OADC1aNhFi3bp2GDh2q7Nmza968ecqfP7+kp2eof/bZZ/rnn3+UO3dujRkzRrVr17ZwtUnj2rVr6tq1q27dumUWUrJmzaply5YpV65cioiI0OTJk7VgwQJFRkaqefPmmjx5sgWrfjVnzpxRly5dFBwcLGdnZzk7OysoKEiurq5asmSJihUrpocPH2rEiBHy9fWVvb29evbsqUGDBlm69ERZsmSJRo8ere7du2vw4MFxXvUXFhamMWPGaOXKlfryyy/Vpk2bFK406fj4+CRqu+en2rQmfn5++vDDD+Xn5ydXV1eVLFlS2bJlU2RkpAICAnTy5EmFhoYqd+7cmj59ury8vCxdcpJ40dUVgwYNsqmrKwAASCvI3raP7E32JnuTva0V2ZvsbQ0YALeg2KbGiA9rnRoDgG0ICwtTz549dfDgQRkMBhmNRjk6OmratGmm6SW3bNmiRYsW6cCBAypUqJBWrlwpZ2dnC1eOhNi5c6cGDhwod3d3zZ49W3/88YdmzpypiIgIvfPOOxo8eLDc3NwsXWaSGTx4sDZs2KBBgwapbdu2cnFx0c6dO/XFF1+oXLlymjhxonr37q0jR44od+7cGjVqlOn9bq369Omj3bt3a8KECWrevLkk6cSJE/r444+VO3duTZo0SV27dtXly5dVunRpjRs3LsZ9Bq1Ju3bt5OrqqgULFry0rdFoVNu2beXk5KQlS5akQHVISmFhYfr111+1fv16nT17VhEREZKeTi1Yrlw5NWrUSG+99ZZZp7G1SotXVwCJQfYGYI3I3mkD2ZvsTfYme1srsjfZO7VjANyCoqfGiJ7y4mWsfWoMALYjMjJSGzZs0LFjx+Tu7i5vb28VKVLEtP67777TnDlz1KxZMw0dOlQeHh4WrBaJdfjwYfXp00fBwcEyGo0qUKCAxo0bp0qVKlm6tCRXp04d1axZU+PHjzdb7uPjo1GjRqlOnTraunWr3nnnHX3yySdydXW1UKVJp2bNmmratKlGjBhhttzX11eDBg1SuXLldOLECQ0YMEDvvvuu1Z+5Wr58eQ0YMEDdu3ePV/tZs2ZpxowZpinqrF1oaGisnaEXLlxQhgwZlD17dgtUlTLu3bsne3t7m5gu8nlp8eoKIDHI3gCsFdk7bSB7k73J3mRvW0D2JnunNg6WLiAte/4fegCwFvb29vL29pa3t3es6z/44AMNGDDA6n+0p3UVK1bUggUL1KtXL927d09ffPGFTQZwSQoMDFT58uVjLK9cubLCwsK0c+dOTZkyRY0bN7ZAdcnj/v37sU5BVbp0aUVGRurcuXNauHChypUrl/LFJQMHB4cEnXWcIUOGGPewskZhYWGaMGGC1q5dq127dsUI4t9++6127dqltm3b6rPPPrOJDqbnZc6c2dIlJJvly5erSpUqGjp06AvbOTk5ady4cTpz5ox+//13QjjSHLI3AGtF9k4byN5kb7I32dsWkL3J3qkNA+AWZM33eACQdnXt2lV9+vRR9erVTcsiIiJ09OhReXl5KX369HJxcTGti74XGVfQWCcvLy8tXrxYPXr0UJ8+fTR9+nRVq1bN0mUlufDwcLP3bbToqeZ69OhhUwFcevq5TZcuXYzl0SGtd+/eNhPAJalAgQI6efJkvNufPHlSuXLlSsaKkt+z02Z6eXkpMDAwxjHVq1dPt2/f1tKlS3X+/HktWLBADg7WGRGmTZuWqO0++uijJK4k5Vy8eFEDBgyIV1uDwaAmTZpoxowZyVwVkPqQvQFYI7J32kL2JnvbCrI32TsuZG+kNOv8hKVRkZGRmjVrlvr06WPpUgCkYQcOHFD79u3Nlj18+FBdu3bVnDlzzMI5rM+wYcNiXV6gQAFdv35d77//vpo2bWo2fajBYNBXX32VUiVaRJUqVSxdQoorVaqUpUtIUi1atNDkyZPVo0cPFS1a9IVtz58/r7Vr16pr164pVF3ymDdvng4ePKgRI0aoc+fOsbZp37692rdvr2nTpmnatGlatGhRvKeqS23iG8Kfn/7YmkN4Wr26AkhuZG8AqQHZ27aRvWNH9rZ+ZG+ydzSyN9nb0hgAt7CHDx9q2bJlOnbsmIxGo0qUKKFOnTopQ4YMZu3+/vtvjRgxQv/88w8hHECqZDQaLV0CkoCPj88L1z958kSrVq0yW5YWQnha/NEan3ukWpMOHTpoyZIl6tKli4YPH67mzZvHeF0jIiK0bt06TZo0SenTp7f6EL527Vo1aNAgzgD+rI8++kgHDhzQ6tWrrTaE//HHHy9t8/DhQ33//ffasWOHHBwcrP41TotXVwCJRfYGYCvI3raB7B07srf1I3u/GNnbOpG9rRMD4BZ07do1de3aVbdu3TL9eN2yZYt+/fVXLVu2TLly5VJERIQmT56sBQsWKDIyUs2bN7dw1QAAWxafH7G2KigoSP/++6/Zsvv370uS7t27F2OdJOXOnTtFaksuly5d0sGDB82WPXz4UJJ07ty5WKfjqly5corUltRcXV01Y8YMffjhh/rss880ZswYlSxZUtmyZVNkZKQCAgJ08uRJhYaGKnfu3Jo+fbqyZctm6bJfyZUrV/T222/Hu/3rr7+uKVOmJGNFyStPnjwvXL9hwwZ9/fXX8vf3V4UKFTR69GgVK1YshapLHmnx6gogMcjeAIDUhuxN9iZ7k72tFdmb7G0tGAC3oO+//163bt3SoEGD1LZtW7m4uGjnzp364osv9MUXX2jixInq3bu3jhw5oty5c2vUqFGqW7eupcsGANiwl/2ItWVfffVVnGfTDxkyJMYyg8Gg06dPJ3dZyWrmzJmaOXNmrOsmTJgQ63JrvqdgoUKFtGrVKv36669av369jhw5ooiICEmSo6OjypUrp0aNGumtt95K0NRWqZWrq6siIyPj3T5dunSm+9DZkqtXr2rMmDHau3evMmbMqHHjxqldu3aWLitJpMWrK4DEIHsDAFIbsjfZOxrZm+xtK8jeZO/UhgFwCzp48KBatWql3r17m5Y1bdpUoaGhGjVqlIYOHaojR47onXfe0SeffCJXV1cLVgsAQEwzZ86Ur6+vVq5caelSXknr1q0tXUKKs+Z7L70KJycn9ejRQz169JD09AoDe3t7ZcyY0cKVJb3XXntNR44ciXfoOnz4sE11xIWFhWnWrFmaPXu2wsLC1Lp1a33yySfy8PCwdGlJJi1eXQEkBtkbAGDtyN7Wi+xN9n4e2dv6kL2tEwPgFhQYGKjy5cvHWF65cmWFhYVp586dmjJliho3bmyB6gAAeLmbN29a9VnJ0caPH2/pElJcWg3hz8ucObOlS0g2rVu31qhRo7Rv3z5Vq1bthW33798vX19f9evXL4WqS1579+7VmDFjdOXKFRUtWlSjRo1SpUqVLF1WskhrV1cAiUH2BgBYO7K39SJ7P0X2forsbb3I3taHAXALCg8Pl4uLS4zlbm5ukqQePXoQwAGkSs/fr+lF92oKDAxM0doAIDbTpk1L1HbW3FnRqlUrrVixQh988IHef/99tW/fXlmzZjVr4+/vr2XLlunnn39W3rx51bFjRwtVmzTu3r2r8ePHa8OGDXJ2dtbgwYPVo0ePWO+pZ0vS0tUVQGKQvQFYK7I3AGtD9iZ72zKyt3UxGI1Go6WLSKu8vLw0ceJEeXt7my0PDAxU9erV9fPPP6tWrVoWqg4AYufl5SWDwRBjudFojHV5NFs4UxkxjRo1Sr///rvVv75pMaANGzYswdsYDIY479WW2nl5ecWr3fPfY9b+3g4ICNDHH3+s/fv3y2AwKHfu3GZTdN28eVNGo1HlypXTd999p1y5clm65ERbtGiRpkyZouDgYNWvX18jRoyw6uMBkHTI3gCsEdkbzyJ7k72tBdmb7A2kFrZ9OoaVs7e3t3QJABBDWrxfE2xffEP48wHNmkO4j49PvNs+e9zWGsL/+OOPl7Z5+PChvv/+e+3YsUMODg7xvn9XapYlSxbNnz9fvr6+Wr9+vU6fPq1z587Jzs5OWbNmVatWrfTGG2+ofv36li71lY0bN870523btmnbtm0v3cZgMOj06dPJWVaySosdiEByIHsDSI3I3rBFZO8XI3tbL7L3i5G9YQkMgFvY81MZSS+ezkiScufOnSK1AUBs0uL9mmD70mJAO3v27Evb3LhxQ2PHjtWOHTuUPn16DRw4MPkLSyZ58uR54foNGzbo66+/lr+/vypUqKDRo0erWLFiKVRd8mvUqJEaNWoUY/n9+/fl7OxsgYqSXlrsJE6LHYhAYpG9AVgbsjdsEdk7dmRvsrc1IXvHjeydujAFugXFNZWRFPd0RtZ+pgwAIHVL6BmN27dv1+nTp61+qqqXsfWA9rzIyEjNmTNHP/74o0JDQ9WsWTMNGzYsxj2sbMHVq1c1ZswY7d27VxkzZtSQIUPUrl07S5eVZMLDw7Vy5UodO3bMrBP1wIEDGj16tPz8/GQwGFSjRg19/vnnyp8/vwWrfTXDhg3T22+/rbJly1q6lBRz48aNl7aJrQPx008/TYHqgNSD7A0ASG3I3rEje5O9rRXZ27aRva0TA+AWlJj7f0icAQoASD7xvVfTswwGg82GcFsPaLE5dOiQxowZo/Pnz6tgwYIaNWqUqlevbumyklxYWJhmzZql2bNnKywsTK1bt9Ynn3wiDw8PS5eWZMLDw/Xuu+/q4MGDcnR01NGjR+Xg4CA/Pz+1bNlSYWFhqlOnjooUKaLNmzcrJCREa9assdrOlrju8ZuWpbUORCAuZG8AQGpD9jZH9iZ7WzOyN8jeqRNToFsQYRoAkNosWLDA0iWkCmkhoD0vMDBQ33zzjVatWiUnJyf169dP7733npycnCxdWpLbu3evxowZoytXrqho0aIaNWqUKlWqZOmyktyiRYt06NAhffLJJ+rUqZMcHJ7+9J86darCwsL05ptv6ptvvpEk9e7dW97e3po5c6ZGjBhhybKRBJ7vQBw3bpzNdyACL0L2BgCkNmTvp8jeZG9bQPZOu8jeqRsD4KlASEiIVqxYod27d+vs2bMKCgqSwWBQ5syZ5eXlpQYNGsjb29sm/xEEAKQuVapUSfA2hw4dSoZKLCetBLRnLVu2TJMmTdL9+/dVs2ZNjRo1yqqn44rL3bt3NX78eG3YsEHOzs4aPHiwevToYQqntmbdunVq3LixevbsaVoWFhambdu2yWAwmC3PlCmT2rRpo/Xr1xPCrVha7EAEEoLsDQBILcjeZG+yt+0ge6c9ZG/rYJvfOFbk8OHDGjBggO7evSsnJyflz59fefLkUUREhIKCgrR9+3Zt27ZN06ZN0+TJk1WhQgVLlwwAgG7evCkfHx+tWrVK165ds4lp2NJaQJOkc+fOafTo0Tp27JiyZs2qb7/9Vs2aNbN0Wcli0aJFmjJlioKDg1W/fn2NGDFCuXLlsnRZyery5ctq3bq12bLDhw8rNDRU2bNnl6enp9m6/Pnzy9/fPyVLTHKHDh1SZGRkgrZp1apV8hSTwtJiByKQEGRvAIA1InvbBrI32ftZZG/rRva2Hrb7r4oVuHjxonr27Cl3d3dNmjRJjRo1inGmeXBwsDZt2qQffvhBvXr1ko+PjwoUKGChigEAadmTJ0/k6+urlStXav/+/TIajTIYDKpTp46lS3tlaTGgTZgwQQsXLlRkZKTq1aungQMHyt3dXf/+++8Lt8udO3cKVZi0xo0bZ/rztm3btG3btpduYzAYdPr06eQsK1lFRUXJ3t7ebNm+ffskSTVq1IjR/uHDh3JxcUmR2pLL77//rt9//z1ebaO/w6w9hKfFDkQgocjeAABrQva2LWRvsvfzyN7WiextfXhlLOjHH3+Ui4uLVqxYoRw5csTaxt3dXe3atVOdOnXUsmVL/fzzzxo7dmwKVwoASMuOHTumlStXauPGjQoODpYkZc6cWW3bttVbb72lPHnyWLjCV5cWA9rcuXNNf96+fbu2b98er+2s9YqD58/GTgvy588f4/XasmWLDAaDXn/99Rjt9+zZY/XT73Xo0EHlypWzdBkpJi12IAKJQfYGAFgDsnfsyN7Whez9FNnbtpC9rRMD4BZ08OBBtWnTJs4A/qzs2bOrVatW2rNnTwpUBgBI6/z9/bVq1Sr5+Pjo8uXLMhqNcnFxUY0aNbR371598cUXatCggaXLTDKtWrWSwWCwdBkp6qOPPkrwNkajMRkqSTlvv/22ypYta+kyUkzz5s01ffp01alTRzVr1tTSpUt16dIlZc2aVfXr1zdru2bNGv35558aMGCAhapNGpUqVZK3t7ely0gxabEDEUgMsjcAILUie9s+srftI3vbPrK3dWIA3IICAwMTNKXaa6+9pmXLliVjRQCAtG7jxo1auXKl9u7dq8jISGXIkEHe3t5q1KiRateurTt37qhhw4aWLjPJff3115Kk8PBwXbhwQRERESpSpIjVT0n1Irlz51abNm3i3f7GjRsaPnx4MlaUvHx8fFSjRo00FcK7d++u3bt366OPPpLBYJDRaJSjo6O+/PJL09S/W7Zs0aJFi3TgwAEVKlRI3bt3t2zRSJC0eHUFkBhkbwBAakP2JnvHhextfcjeto/sbZ0YALeg8PDwBP3jni5dOj169CgZKwIApHWDBg2Sq6urOnbsqAYNGqhy5cpm9zGy5TO1f/nlF82YMcP0b62Tk5M6duyowYMH2+T9fEaMGKGQkBB16tTppW2XLVumCRMm8DvEyjg5OWnevHnasGGDjh07Jnd3d3l7e6tIkSKmNidPntSRI0f05ptvaujQoXJ2drZgxUiMtHZ1BZAYZG8AQGpD9iZ7x4bsbZ3I3mkD2dv62N6/KAAAINHy5s2r69eva+XKlfLz89Pff/+thg0bqlChQpYuLVmtWLFCEydOVJ48edSqVSvZ2dlp//79mjdvniIjI6367Ou4FCxYUOPGjVNISIh69eoVa5s7d+5oxIgR2rVrlxwdHa1+iq60yN7eXt7e3nFOTfbBBx9owIABsrOzS+HKkl7r1q2t/j5qCZUWr64AAACwBWRvsvezyN7Wj+xt28je1okBcAsLCgrSv//+G6+2gYGByVwNACCt27p1q44fP641a9Zo06ZN2rNnj7799lu99tpratSokUqWLGnpEpPF0qVLVa5cOc2fP1/p0qWT9PSeW4MGDdLSpUs1ZMgQ07RVtuK3335Tr169NHnyZIWEhKhfv35m69etW6exY8fq/v37Kl++vMaNG6fChQtbqNqkcejQIUVGRiZom1atWiVPMamELU01OH78eEuXACAVI3sDAFITsjfZOxrZ+ymyt/Uge8NaGIxGo9HSRaRVXl5eiZrO5syZM8lQDQAA5iIjI7Vnzx6tXbtWf/zxh0JCQkz/brVt21Z9+vRRnjx5LFxl0qhYsaI+/vjjGFOSHTt2TO+88458fHzk5eVloeqSz+PHj9W3b1/t379f3bt312effabAwECNGjVKW7ZskbOzswYNGqQuXbpY/RR8Cf3dZTQaZTAY+N2FVM3Ly0sTJ06M8yoDAE+RvQEAqRnZm+xN9iZ7I3Uje1snrgC3oNatW1u6BAAA4mRvb6+6deuqbt26Cg0N1ZYtW7Ru3Tr9+eefWr58uVauXKmqVauqbdu2atGihaXLfSUhISFKnz59jOV58+aV0WjUgwcPLFBV8nN1ddWsWbP08ccfa968ebp+/bqOHDmigIAA1axZU1988YXNdLRIUocOHVSuXDlLlwEkKa6uAF6O7A0ASM3I3mRvsjeQ+pG9rQ9XgAMAAJPevXurWrVqqlKlikqWLBnrWbuBgYHasGGD1q5dq2PHjtnEmbpxnckZGBio6tWra+7cuapevbqFqkt+UVFRGjFihFauXCk7Ozt98cUXateunaXLSlKcrQtbxNUVAAAA1onsTfYmewPWg+xtnbgCHAAAmOzbt0+7du2SwWCQu7u7KlWqpKpVq6patWqmacg8PDzUqVMnderUSdeuXdP69estXDVelZ2dnb766itlypRJc+bM0d69e9WqVSs5OPBTEUjtuLoCAADA+pC90yayN2C9yN7Wh29WAABgcuTIEZ0+fVpHjhzR0aNHdezYMW3fvl0Gg0EZMmRQ5cqVVbVqVVWtWlXFihVTvnz59MEHH1i67CQRFBSkf//912zZ/fv3JUn37t2LsU6ScufOnSK1JYfYjqdz5856/Pixli5dqkePHmnkyJGys7Mza2PNxwzYokqVKnF1BQAAgJUhe5O9yd6AdSF7Wx+mQAcAAC908+ZNs1B+9uxZRUZGKlOmTKpSpYqqVq2qjh07WrrMV/KiqYyipy16nsFg0OnTp5O7tGTzsmOWFGO9NR/zsGHD9Pbbb6ts2bKWLgVIMkwvCAAAYDvI3mTvaNZ8zGRv2CKyt3XiCnAAAPBCuXLlUvPmzdW8eXNJ0sOHD7VmzRqtXLlSmzdvlq+vr9WH8NatW1u6hBTXqlWrBN2/yNqNHz/e0iUAAAAAQJzI3raJ7A0AlsEAOAAAeKHQ0FAdPHhQBw4c0OHDh3Xy5EmFh4fLycnJNCWbtUuLAe3rr7+2dAkAXlHr1q2VP39+S5cBAACAJED2tk1kb8D6kb2tE1OgAwAAMxERETp27Jj27dunffv26fjx4woPD5ejo6PKlCljCt7ly5eXk5OTpcsFAAAAAMDqkL0BAEg+DIADAACT9957T4cOHVJoaKjs7OxUsmRJVatWTVWrVlXFihXl7Oxs6RIBAAAAALBqZG8AAJIXA+AAAMDEy8tLjo6OatGihd5//30VLFjQ0iUBAAAAAGBTyN4AACQvBsABAIDJyJEjtX//fl29elUGg0GvvfaaqlevrmrVqqly5crKmDGjpUsEAAAAAMCqkb0BAEheDIADAIAY/v33X+3du9d0L7K7d+/Kzs5OXl5eqlq1qimUu7q6WrpUAAAAAACsEtkbAIDkwQA4AAB4qfPnz2vfvn3666+/dOjQIT148EAODg4qVaqUqlevrgEDBli6RAAAAAAArBrZGwCApMEAOAAASJCwsDBt2rRJv/32m44dOyaDwaAzZ85YuiwAAAAAAGwG2RsAgMRzsHQBAAAgdbt69aqOHz+u48eP68SJEzp79qzCw8Pl5uamOnXqqHLlypYuEQAAAAAAq0b2BgAg6XAFOAAAMLl//75OnDhhCtwnTpzQ/fv3ZTQalTFjRlWoUEFVqlRR5cqVVaJECdnZ2Vm6ZAAAAAAArArZGwCA5MUAOAAAMPHy8pLBYJDRaJSHh4cqV65s+s/T01MGg8HSJQIAAAAAYNXI3gAAJC+mQAcAACZNmjRRlSpVVKVKFRUpUsTS5QAAAAAAYHPI3gAAJC+uAAcAAAAAAAAAAAAA2ARuHgIAAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjhYugAAANKCqVOnatq0aQna5o8//lDevHmTqaLEq1+/vm7cuCFJ+t///qeuXbu+sH3Pnj21Z88eSdLcuXNVo0aNZK3L19dXBQoUSJZ9AAAAAABSL7I32RsAAIkBcAAAUoSnp6e8vb3NlgUEBGjv3r1ydXVVgwYNYmzj6uqaUuUl2qZNm14Ywu/du6d9+/alYEUAAAAAgLSK7A0AACQGwAEASBGNGjVSo0aNzJbt379fe/fulYeHhyZNmmShyhIvQ4YMOnLkiG7fvq0cOXLE2sbX11cRERFydHRUeHh4ClcIAAAAAEhLyN5kbwAAJO4BDgAAEqlhw4YyGo3y9fWNs8369euVKVMmlS5dOgUrAwAAAADANpC9AQBIOAbAAQBIxXbs2KGePXuqSpUqKl26tBo3bqyJEycqKCjIrN3169fl6empOnXqxPo4Xbp0kaenp/bv329aNnToUHl6eurAgQPq16+fypQpo2rVqmnhwoXxqq1JkyaSnk7FFht/f38dOnRIjRs3loND3JPOrF69Wh07dlSFChVUpkwZeXt7a8aMGQoJCYm1/V9//aUePXqocuXKqlSpkgYOHGi6L1psIiMjtXjxYrVv317ly5dX+fLl9dZbb8nHx0dGozFexwoAAAAAsF1k75jI3gAAa8YU6AAApFKTJk3S7NmzZW9vr4oVK8rDw0PHjh3Tzz//rI0bN2r+/PnKly/fK+9n5MiRCggIUO3atXX+/Hl5eXnFa7uCBQuqePHiOnLkiPz9/ZU9e3az9Zs2bVJUVJSaN2+uadOmxdg+KipKn3zyidatWycnJydVqVJFLi4uOnjwoL7//ntt3rxZc+fOlYeHh2mbZcuW6fPPP5ckVapUSRkyZNCePXt06NAhhYWFxdhHeHi4+vbtq127dsnd3V3ly5eXo6OjDhw4oKFDh2r//v36+uuvE/J0AQAAAABsCNmb7A0AsD0MgAMAkApt27ZNs2fPVqZMmfTzzz+bpjELCwvTF198oWXLlmnAgAFasWKFDAbDK+3L399fa9asUb58+RQVFSU7u/hPENOsWTOdOXNGvr6+6ty5s9m6DRs2KHv27KpcuXKs2y5atEjr1q1Tvnz5NGfOHOXPn1+SFBwcrMGDB2vHjh36/PPPNXXqVEnSzZs3NW7cODk4OGjWrFmqXr26JOnevXvq2bOnTp8+HWMfP/74o3bt2qUqVapoypQpypw5syTp7t27eu+99+Tj46OKFSuqffv28T5mAAAAAIBtIHuTvQEAtokp0AEASIXmzZsnSfr000/N7uHl5OSk0aNHq0CBAjp16pT27dv3yvtq0KCB6Wz2hARwSWratKmkmFOx/fvvvzp27JiaNm0a52POnz9fkjRu3DhTAJckd3d3TZo0SenTp5evr6+uXLkiSfLx8VFoaKjefvttUwCXpMyZM+urr76K8fhhYWFauHChHB0dNWnSJFMAl6SsWbPqiy++kCT98ssvCTpmAAAAAIBtIHuTvQEAtokBcAAAUpmIiAgdOXJEBoNBjRs3jrHewcFBjRo1kiSz+4olVrFixRK9bb58+VSyZEkdPnxY/v7+puUbNmyQ0WhUixYtYt3u5s2bun79ujw8PFStWrUY69OnT6/atWtLkg4cOCBJOnjwoCSpbt26MdoXL15cefPmNVt26tQpPXz4UK+99ppy5MgRY5vSpUsrS5Ys8vPz0507d+J5xAAAAAAAW0D2JnsDAGwXU6ADAJDKBAUFKTw8XB4eHnJ3d4+1TXTgTIrwmDFjxlfavlmzZjp16pS2bNmiTp06SXoawvPly6cyZcrEuk10YM+TJ0+cj/v8MUZvkzNnzjjbX79+3fT3mzdvSpLOnTsnT0/PFx7DzZs3lS1bthe2AQAAAADYDrL3U2RvAIAtYgAcAIBUxmg0StIL7y8W3cbJySlejxkZGRnnuoROvfa8pk2bauLEidq4caM6deqkK1eu6NSpU3r//ffj3CYxx/iy+605OJj/rImKipIk5c6dWxUrVnzhtm5ubi9cDwAAAACwLWRv8zZkbwCALWEAHACAVCZTpkxydHRUUFCQgoODYz0T/dq1a5KkLFmySPovSEcHz+fdv38/map9eiZ5mTJldPjwYd25c0cbNmyQJDVv3jzObbJnzy5JZmeNPy/6GLNmzSpJypEjh86fP68bN26oSJEiMdo/Ow2cJNNZ5Tlz5tSkSZMScEQAAAAAAFtH9n6K7A0AsEXcAxwAgFTG0dFR5cuXV1RUlLZs2RJjfUREhGl51apVJUmurq6Snobt8PBws/aBgYHy8/NL1pqbNWumqKgo+fr6auPGjSpSpMgLpz7LnTu38uTJo8DAQNN9xp718OFD7dmzR5JUuXJlSVKNGjUkKdbn5Nq1a7pw4YLZstKlS8vZ2Vlnz56NEdAl6fbt22ratKl69OihR48exf9gAQAAAABWj+xN9gYA2C4GwAEASIW6desmSfrmm290+vRp0/Lw8HCNGTNGV69eVfHixU3Ti2XKlEk5c+ZUWFiYlixZYmr/5MkTff755y+chi0pNGnSRAaDQYsWLdK5c+deeAZ6tOhjHDFihOmMc0l69OiRPvnkEwUHB6tevXqme5W1bt1amTJl0ooVK7R582ZT++DgYA0fPjzGGfiurq7q0KGDHj9+rE8++UQBAQFm+xg2bJguXbokV1dXpmEDAAAAgDSI7E32BgDYJqZABwAgFWrYsKHeffddzZkzR+3atVPFihXl4eGh48eP69atW8qTJ4++++47s3uI9erVS+PGjdO4ceO0fv16Zc2aVUeOHFFkZKTq1aun7du3J1u9uXLlUrly5XT06FFJL56CLVqXLl109OhRbdy4Uc2bN1flypXl4uKiQ4cOKTAwUF5eXvrqq69M7TNnzqyvvvpKAwcOVP/+/VW+fHllz55dBw8eVGRkpAoVKhTjbPvBgwfrzJkz2rdvn9544w2VLl1aLi4uOnr0qIKCglSwYEGNGTMmaZ8MAAAAAIBVIHuTvQEAtokrwAEASKU+++wz/fjjj6patarOnj2rHTt2yM3NTX369JGPj48KFSpk1r5Lly6aMGGCSpUqpdOnT+vgwYOqWrWqli9fHqNtcmjatKkkqWTJkipQoMBL29vZ2em7777T+PHjVbJkSR05ckR//vmncubMqU8++US///67MmfObLZNgwYN9Ntvv6lBgwby8/PT7t27VaJECf3666/KmTNnjH04Oztrzpw5+t///qfXXntNJ06c0P79+5U9e3b169dPy5YtM93nDAAAAACQ9pC9yd4AANtjMBqNRksXAQAAAAAAAAAAAADAq+IKcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABywIStXrpSnp2eC/+vSpYulS4+3qVOnxnkcxYsXV9myZVW/fn3169dPW7dutXS5+H9Hjx41vU69evV6afuhQ4fK09NTQ4YMMVse/Rh79+5N8hp79uxpevzjx48n+eM/KyIiQn5+fsm6j+edPXtW48aNU/PmzVWpUiWVLl1adevWVa9evbRo0SKFhoYm+T7v3LmjIUOGqEaNGipVqpRq166tXbt2SZJWrVqlli1bqmzZsqpUqZJ69uyp/fv3m16DiIiIRO/3+vXrpse5cuVKUh0OXpHRaNTFixctXUaiXLp0SX369FHVqlVVunRpvf766zp37pyMRqPmzp2rJk2aqHTp0qpatar+97//mf49rlOnzivtN6k+E0nl/PnzMZbVr19fnp6eWrZsWYIeK7HbAQAA60EfBX0UqRV9FOboo6CPIjWxhs8nAOvgYOkCACSdLFmyqEKFCjGW37x5Uzdv3pSTk5NKlSoVY32xYsVSorwkFduxGI1GhYaG6vr16/L19ZWvr6+8vb01ceJEGQwGC1UKSVqxYoXpz3v27NG1a9eUL18+C1Zk7ubNm2Y/iBcvXqyyZcsmy7727NmjcePGqXHjxho0aFCy7ON5P/zwg2bMmKGoqCi5u7srf/78cnR01J07d7R7927t3r1bP//8s6ZPn66SJUsmyT6joqLUq1cvnT17Vg4ODipatKjCw8OVJ08ebd68WZ999pkkKVu2bMqRI0eqej8g6Z04cUJjx45VgQIFNGnSJEuXkyCPHj1St27d5O/vL2dnZxUtWlQhISHKmzev5s6dqwkTJkiS8uTJo0yZMilv3rwWrjjp+fv7a8KECTp06JB27txp6XIAAICVoI+CPorUij6K/9BHQR9FapPaP58ArAcD4IANqVu3rurWrRtj+dSpUzVt2jRly5ZNixcvtkBlSe9FxxIWFqbvv/9ev/zyi9auXasqVaqoQ4cOKVwhooWEhGjjxo0yGAyqVauWdu/eraVLl8Y4M9OSVq5cqaioKNWtW1c7d+7Uxo0bNWzYMGXMmDHJ9/XTTz+l6JnVK1as0PTp0+Xq6qrx48frjTfekL29vWn9xYsXNXz4cB07dkw9e/bUhg0blDlz5lfer5+fn86ePStJmjlzpmrXrm1aN3XqVElSxYoVtWDBAjk4PP05EhISog0bNkiSaVli5MiRw/Q4uXPnTvTjIOn89ttvOnHihAoUKGDpUhLs0KFD8vf3l8Fg0MqVK1W4cGHTuo0bN0qSmjdvrm+//da0/OHDhypbtqwcHR1fad9lypRJks/Eq9qzZ4/WrVunHDlyWKwGAABgfeijeIo+itSFPgpz9FHQR5GaWMPnE4D1YAp0ADbHyclJn376qcqUKSNJWrhwoYUrSts2bdqk4OBgFS1aVK1atZL0NMyFhYVZtrD/ZzQa5ePjI0lq27atChYsqNDQUNMyazdz5kxJ0qeffqomTZqYBUtJKly4sGbMmKEsWbIoMDBQCxYsSJL9BgYGmv5ctWrVWNdVrFjRLES6uLiocOHCZgOMieHo6Gh6nFcdgASi369Zs2aN8d6MXlelShWz5enTp1fhwoWVP3/+V9p3Un0mAAAAYDn0UaQu9FFYFn0U9FG8SGr/fAKwLgyAA7BZDRs2lCT9888/evz4sYWrSbtWrlwpSapTp47q1asnZ2dnBQQEaMuWLRau7KkDBw7o2rVrcnR0VI0aNdS0aVNJ0tKlSy1c2at78OCBrl69KkkvnC4tc+bMps/LiRMnkmTfkZGRpj87OTmZrYuKiop1OZAavej9ynsZAAAA8UUfRepAH4Xl0EeBl0ntn08A1oUBcAAmmzdvVq9evVStWjWVKlVKtWrVUr9+/fTXX3/F2t7T01Oenp5m9yV6VpcuXeTp6WmaSkiSrl+/Lk9PT9WsWVO3b99W7969VaZMGVWpUkWDBw9O0uNxd3c3/fnRo0dm+/f09NSVK1di3a5+/fry9PQ0/eiSpP3798vT01MdOnTQxYsX9c4776h06dKqXr266f6v0dudOXNGO3bs0Ntvv63y5curatWq6tq1q7Zu3RpnrZGRkVq2bJm6dOmiypUrq1SpUnr99df1ySef6NSpU7FuExoaqlmzZuntt99W9erVVbp0adWrV0+DBw/W4cOH49zX2bNn9dlnn+n1119XqVKlVLVqVfXs2VObN2+Otf2zz9mzz0l8XL16VQcPHpQkNWrUSG5ubqpXr54kpZqp7qLvLVStWjWlT59e3t7ekqRLly5p3759sW6TmPfRypUr5enpqQMHDkh6etazp6enhg4darbd/fv3NW3aNLVq1Urly5dX2bJl1bRpU02YMEH+/v4JOrZnz1zevn37C9v269dP69ev1+TJk82WDx06VJ6ennFONxV9XPXr15f033PTtWtXU5vo5yr6saKfg2nTppnWSf99zjw9PRURERFjX2fPntXIkSPVsGFDlS5dWpUrV1a3bt20adMms3Yve32uXbum0aNH64033lDp0qVVqVIldezYUcuWLTMLxc8/B4sXL9b169c1bNgw1alTR6VKlVKdOnX0v//9T9evX4/zuT106JAGDx6sevXqqVSpUqpWrZo++OADs+/W3bt3y9PTUyVLllRAQECsjxMaGqqKFSvK09NTx48fj3GsCf18PnjwQLNmzVKnTp1UtWpVlSxZUpUqVVKbNm00depU3b9/P8Y2Cf3ej35No69WWLt2rTw9PdWlS5cYxzZv3jx16NBBFSpUUOnSpdWwYUN9/vnnunz5cqz7un//vr777ju1adNGVapUUdmyZfXGG2/of//7n86dOxdnbd99912sjzd16lSz2qJrHzZsmCTpxo0bpuOP/nzfuHFDkjRs2DCzz0H056JOnTqx7is+74lna3jRZyIh3+fRz8GuXbt09uxZDRgwQDVq1FCpUqXUoEEDffXVV7p3757ZNs8+B7dv3zb7zD7v8OHD+uCDD1S1alWVKVNGjRs31uTJkxUcHBxr+1fdDgAA2Db6KJ6ij8IcfRQx0UfxH/oorLePwho+nwCsCwPgABQeHq6PPvpI/fv31+7du+Xg4CAvLy9FRETI19dX3bt311dffZWk+wwLC1PPnj21d+9eFS5cWAaDQXny5EnSfUT/qHR2dpaHh0eSPOa9e/fUrVs3nTlzRkWKFNGTJ09UsGBBszYrVqzQ+++/r1OnTqlQoUJKly6d9u/frw8//FDjxo2L8ZjBwcHq1KmTRowYoQMHDih9+vTy9PTUw4cPtWbNGrVr105z58412yYsLEzdu3fX5MmTdeLECWXKlElFixZVcHCw1q1bp06dOmnZsmUx9vXrr7+qTZs2WrVqle7fv6+iRYvK1dVVe/bsUf/+/TV48OBYf1wn1ooVK2Q0GpU/f37T2b0tWrSQJB08eFAXL15Msn0lRnBwsHx9fSX9V1fhwoVVvHhxSdKSJUuSbF9ZsmRRhQoVTJ0euXLlUoUKFczeP+fOnVOLFi00depUnTt3Tnny5FGhQoV09epVzZkzRy1atND+/fvjvU9XV1dVqFBB0tPBvc8++0wHDx6M9TXOli2bihQp8sqflXTp0qlChQoqVqyYaVmFChVMxxrbcxBd44v8+uuvateunX7//Xfdu3fP9N7dt2+fBgwYEOeg5vO2bNmiFi1aaPHixfL399drr72mzJkz6/DhwxoxYoR69uxp6ox63unTp9WyZUutWrVKLi4uKlCggG7fvq3ly5erffv2unnzZoxtvv32W3Xu3Fnr1q3T48eP5enpKTs7O23fvl3du3c3ncVfs2ZN5cqVSxEREVq3bl2ctQcHB6tw4cIvPFs+Pi5fvqw333xTkydP1rFjx5Q5c2Z5enrK3t5ep06d0rRp0/TWW2/F+VzEV/r06VWhQgVlyZJF0tMz+Z9/f9y6dUutW7fW+PHjdfz4cWXLlk1FixbVnTt3tHTpUr355pum+6VFCwoKUvv27TVz5kydP39e2bJlU6FChXT37l0tX75cbdu21a5du5Kk9ujPqJOTk+n96uDgoAoVKpiuEIh+b5cqVeqljxvf98TLvMr3+a5du9SuXTtt3bpVHh4eypUrl65fv6758+fr7bffNht4fvY5cHR0jPMz6+Pjo06dOmnv3r3KlSuXMmfOrMuXL5s6QUNDQ2OtJbHbAQAA20UfRfzRR5Ew9FH8hz4K+ihSUx+FlPo/nwCsDwPgAPT1119ry5YtcnV11ZQpU7Rnzx4tX75cf/75pz7//HM5ODho/vz5mjdvXpLt88GDB7pz545WrVolHx8f7d69W717906yx793755Wr14t6emPtmfPMn0V165dk4uLizZv3myqO/qeNNEWLlyoGjVqaMeOHVq5cqV27typsWPHysHBQQsXLozxw3HIkCE6evSosmXLpgULFmjbtm1asWKF/vrrL/Xt21dRUVH6+uuvTSFIevqj8OjRoypYsKC2bt2qjRs3auXKldqzZ486deoko9GoCRMm6MmTJ6Ztdu3apbFjx8rOzk7/+9//dOjQIfn4+Gj79u2aN2+esmTJonXr1pmdDS9JOXLk0IYNG7Rhwwa98cYb8X6uoqKiTK9B9BnLklS3bl1lypRJkuXP4Fy/fr1CQkLk4uJidmxvvvmmJGnr1q26e/dukuyrbt26Wrx4sUqUKCFJatmypRYvXqwPPvhA0tOg26tXL/n7+6t8+fLy9fXVunXrtGrVKu3cuVP16tXT/fv39eGHH+ratWvx3u/IkSPl6uoqo9GoVatWqXPnzqpSpYp69+6tWbNm6fjx46bpvpJCtmzZtHjxYo0YMcK0bPHixaZjffY5aNu2rWndixw5ckTjxo1TeHi4evfurb/++sv02Ro/frzs7Ow0c+ZM7dmz54WPc/bsWX388cd68uSJ+vTpowMHDmj16tXy9fWVj4+PChYsqL/++kujR4+Odfvff/9dRYoU0YYNG7R582atX79eS5YskZubm+7du6c5c+aYtV+/fr1++ukn2dnZafjw4dq7d69WrFih3bt3a+DAgZKkMWPG6OLFi7KzszN9l0R/bp63atUqSVKbNm1MyxL7+Rw5cqRu3rypcuXKafv27abvkH379mnChAmys7OTn5+faZ+JVaJECS1evNh0JXTNmjW1ePFijRw5UtLTK0s++OADXbp0SYUKFdLq1au1efNmrVy5Un/++afat2+vJ0+e6NNPPzWdUS5JP//8s65cuaIKFSpo586dWr9+vVatWqVdu3apUaNGCg8Pf+VO0eja33//fUn/vbcXL14sX19fLV68WNmyZZMkvf/++1q8eLF++OGHFz5mQt4TL5LY7/NoCxcuVM2aNbV9+3atX79eW7Zs0Y8//ih7e3tduXJFy5cvN7V99jnInDlznJ/Zw4cPq0WLFtq1a5dWrVqlHTt2aOLEiZKk8+fPx3n2f2K3AwAAtos+ivijj4I+isSij4I+itTUR2ENn08A1ocBcCCNu3XrlukM0rFjx6pJkyamdfb29urUqZMGDBgg6elUQK96NeCzOnbsqCJFikh6emXds9OBJYbRaFRgYKC2bdumd999V0FBQXJ0dFT//v2TolyT999/Xzly5JAkubm5KV26dGbrc+fOrenTp5uueDQYDOrQoYN69uwp6enzGO3YsWOmaZ9++OEHVa1a1bTOyclJAwYM0FtvvSVJmjRpkmnd2bNnJT29J07u3LlNy9OlS6ehQ4eqVq1aeuONNxQUFGRa9+2338poNGrIkCHq2rWr7O3tTeuqV6+u8ePHS5Lmzp2rwMBA0zpHR0cVLlxYhQsXVvr06eP9PO3Zs8d0tml0WIt+vOj32erVqy16dV/01GINGjSQm5ubaXmLFi1kZ2en8PBwU5vk9ttvv8nf319Zs2bVTz/9pHz58pnWZc2aVT/88IOKFSumhw8faubMmfF+3BIlSmjZsmWqWLGiaVlwcLB27typyZMnq0OHDqpVq5a+++47hYSEJOkxJZUff/xRUVFRatq0qQYPHmz2mWvTpo3atWsnSS8dKJs6darCwsLUuXNnDRw40OxxSpQooR9++EH29vZau3atLly4EGN7R0dHTZs2TYUKFTItK1++vCnsHTlyxKx99Ge9R48e6tatm+kzZ29vrz59+qhmzZqKjIw0hca2bdvKYDDo1KlTMQZAb9++rb1798re3l4tW7Y0qymhn8+AgACdP39e0tPv/ezZs5vWGQwGtWrVSlWqVJGkWKcST0qbNm3SmTNnlC5dOs2ePVteXl6mde7u7ho3bpxq166t8PBwszPoo78DGzdurMyZM5uWp0+fXiNGjFCNGjVUuXLlVHf1cELfE3FJ7Pd5tCxZsuiHH34we+0bNGhgOlHh+fdyfBQuXFgTJkwwdU5IT7/7a9asKUlxTnuZ2O0AAIBtoo8i4eijiB/6KBKGPoq40UeRtH0UknV8PgFYHwbAgTRu165dioiIULZs2dSsWbNY23Tu3FmOjo56+PCh6b44SeHZH7sJ9ey9WKP/8/LyUrVq1dSnTx+dOXNG6dOn1/fff282oJIUXlZ3hw4d5OrqGmP522+/LUny8/PTpUuXJP13z6MyZcrEOcXSu+++K+npdGn//POPJJmmpFq+fLl+++03s3u2Ojk56ZdfftH48eNNIfj69es6c+aMJPMfks+qW7euPDw8FBoaGuc91RIi+od+mTJlYkzBFl3DgwcPtH79+lfeV2JcvHjRdEXp889J9uzZVa1aNUnS0qVLk/Ts47hs27ZNktSqVStlzJgxxnonJyfTvYm3bdsmo9EY78cuUqSIfvvtN61atUofffSRypcvL0dHR9P6gIAAzZw5U2+++aZu3br1ikeStEJCQkz3OYvuaHnewIEDtWnTJtO97mITFhZmmhI7rs9A9PeI0WiM9X5kpUqVMl3x+6zXXntNkvTw4UPTsitXrpg+59Gf/ed9+eWX2rp1qwYNGiRJypcvnypXrixJMQZAV69eraioKNWpUyfWGhIiS5Ys2rdvn44fP242DVy0yMhIU2dfcofL6Pd9/fr1zTpUntWjRw9J0oEDB0zPcfR3ys8//6w1a9aYPfc5cuTQ3LlzNXbsWDk7Oydj9QmTmPdEbJLi+7x69eoxOkalp4PRkvl7Ob4aNGhg1mkZLfr+ec/fW/xVtwMAALaJPoqEo48ifuijSBj6KGJHH8VTSdlHIaX+zycA65Q08+0AsFrRP36KFy8uO7vYz4lxdXVVoUKF9M8//8jPz0/16tVLkn2/yg8kJyenGPdatbOzk5ubm3LkyKGyZcuqSZMmr3zGdmxeVneZMmViXZ47d26lT59eDx8+1OXLl/Xaa6+Znv+SJUvG+XgFCxaUu7u7goOD5efnp2LFiql9+/Zavny5Lly4oDFjxuiLL75Q8eLFVb16ddWuXVuVK1c2m1It+mpPSfrwww/j3Ff0dGTRdSVWUFCQ/vjjD0mx/5CvWLGi8uXLp2vXrmnx4sVq27btK+0vMaKn+M2SJYvpSsNntWzZUnv37tWNGze0e/du1a1bN1nr8fPzk/Ti90L0unv37ikoKCjB98IqXry4ihcvrn79+ikkJERHjhzRnj17tHr1agUEBOjq1asaMGBAvO9BnBL+/fdfhYeHS1KcHUVZsmQxXc0Ql8uXLyssLEzS0ym9ou/dHNv+pNg/A9GdNc+LHmSNiIgwLYu+v5+rq2ucA7u5cuWKsaxt27Y6cOCA1q5dq48//lgGg0HSf1OOPTu12KtydnbWzZs3dfz4cV29elXXrl3TxYsXdebMGT1+/FiSkr1jJSHv+8jISF25ckWlSpVSz549tWnTJt25c0effPKJHBwcVLp0adWoUUN16tRR2bJlTc9dapHY98TzkuL7PCHv5fiK6zGjO1vjOpkisdsBAADbRB9FwtFH8XL0USQcfRSxo48i6fsorOHzCcA6MQAOpHHBwcGS9NJpaaJDWlJOL/YqV+ZF38PHEl5Wd2xnxkZzdXXVw4cP9eDBA0nxf/7d3NwUHBxsev7d3d21dOlSzZkzR+vWrdOVK1d0+vRpnT59Wr/88ouyZMmigQMHqkOHDpLMz/qMz9S2ibn671lr1641/ZAfN26cxo0bF2fbv//+W6dOnXphqEpqERERWrNmjaSnZxa/bN+LFy9O9nAZn/fCs50ljx49SnC4fJaLi4tq1qypmjVrasCAARo+fLjWr1+vY8eOpfjr8SLPTpH37BRwCfXse/rkyZMJah/t2TPSXya67oTW3KRJE40dO1Y3b97U/v37Va1aNf3999+6cOGCPDw8kqxz79KlS/rmm2+0c+dOs0Fud3d3VapUSf7+/qZpDJNTYt730tNgvnr1av3000/atGmTbt++raNHj+ro0aOaPn268uTJo+HDh6thw4bJewAJkNj3xPOS4vs8Ie/l+IrtivLk3A4AANgm+igSjj6Kl6OPIuHoo4gdfRRJ30eR2j+fAKwXA+BAGhf9w+dlYSI6DMX2QymuaY6iryBMrZKr7hfdoyg6QESfCRrf5z96/bPPv7u7u/r376/+/fvrypUr2r9/v/bv36+dO3cqICBAI0eOVKZMmdSoUSPTlXSZMmXS/v37E39w8RR9TypXV9cXhiV/f38ZjUYtWbJEY8eOTfa6ou3YsUN3796V9HQqsbiuFH38+LEePnyoXbt26ebNm7GeDZtU7yM3Nzfdv3//he+F+/fvm7V/mc8//1z79u1T69at1adPnzjbOTs764svvpCvr6/Cw8Pl5+cXI0zEdZzJfU+uZ6fqCw4ONrvfc2If58iRI688CBnf/SW0Q87Z2VnNmzfX0qVLtXbtWlWrVs10ZrW3t3eSDFwGBASoc+fOCggIUO7cudWhQweVKFFCr732mvLmzSuDwaDBgwe/cAA8Kd/30ou/A6P//Xm2vfT0e3T48OEaPny4zp07pwMHDmjfvn3as2ePbty4of79+2vJkiVxXvHyqrUnVGLfE3E9Tkp9nwMAAKQk+ihioo/i1dFHQR9FUqGPIun7KFL75xOA9eIe4EAaF31fmDNnzsQ51W1wcLAuX74sSSpQoIBpefQ9O6PP0nuev79/ElaaNJ6dciu2ukNDQ1/5zOLoe2A97+rVq6YfmkWKFJH03/N/6tSpOB/v4sWLpqAS/fwHBATo0KFDpvtqFShQQB06dNDkyZO1c+dO09Rr0T9KCxUqJOnpGZ937tyJc1+HDh3SxYsXX2nK2bNnz5ru5TV+/Hjt2rUrzv+iz1het26dKXinhOh7CxUtWlS7d++Os765c+dKejr18u+//27aPjneR/F5L0SfFZwxY8Z4nVn95MkTXblyRVu3bn1pW3d3d1PgejbARX/Oo6f4el5yf87z5ctnquHZafKe9ffff+udd97RsGHD4gzBzz7OhQsX4tzfiRMndO7cuVcepIy+Z9Xjx491/fr1WNv88ccf6tKli7755huz5dHTef3xxx+KjIw0TQWWVNN8rVixQgEBAcqUKZNWrFihPn36qG7dusqXL5+po+X27duxbpvU3/vxed///fffkiSDwaD8+fOb6tu3b5/pu8rT01NdunTR9OnT9ccffyhPnjyKjIzUunXrkq32hHqV98SzUvL7HAAAIKXRR2GOPgr6KOijoI/ClvsorOHzCcB6MQAOpHF16tSRg4OD7ty5ow0bNsTaZtGiRYqIiJCLi4uqVKliWh794za2+9CcOHEiVYbLTJkymQZ4Yqt727Ztibr36bNWrlwZa1CPng6tXLlyprN0o6cKOnHiRJzTfs2bN0+SlDNnTnl6ekqSevbsqU6dOsnHxydGezc3N5UrV07S01AkSYULFzYF00WLFsW6n8OHD6tTp05q1qyZjh07Fo8jjV30fas8PDxUv379F7Z95513JD39AR4dhJNbQECAdu7cKenlP9ZLly5tCurLli0zvTde5X0U15nc0e+FVatWmZ1FHS0sLMz0Hqpdu/YL644Wfe+kkydPmgJ1XPbs2aOgoCBlypRJZcuWNS1/0ec8MjJS27Zti1ctieXu7q6KFStK+u+s4OetW7dOR44c0fXr1+N8ft3d3U3fXwsWLIi1zbVr19SxY0e9+eab2rRp0yvVXbhwYeXJk+eFdfv4+OjAgQOmTqJoZcuWVdGiRRUYGKiFCxfq33//VYkSJeK8v1hCRYfd3Llzx3q2+oULF0zfAdHfIdES+70f/bo8H/6j3/fbtm3TtWvXYt02+vUqV66cMmTIoIiICLVq1UrdunXTjh07YrTPmjWrihUrJsn8HuYvqv3Ro0f666+/Yt1/UnmV98Tzj5NS3+fRou+/GVfnDQAAQFKhj8IcfRT0UTyLPgr6KBIrtfZRpPbPJwDrxgA4kMblypXLdA+mkSNHmv2gioqK0m+//aapU6dKkvr27Ws2FU30D765c+fq4sWLpuV///23Pv7445QoP8GcnZ1VokQJSdLUqVPNrnLcs2ePvvjii1fex8mTJzVy5EjTtEtRUVFatGiRKSQOGjTI1LZ8+fKmMxj79+9vNvVXWFiYfvjhB9NZvZ9++qnph3PLli0lSdOmTdOuXbvM9n/o0CHTD8Fn7wk1YMAASdKsWbM0e/Zss7OCDx06ZFpfrlw5VatWzbQuPDxcFy9e1MWLF196xnBYWJjWrl0r6elUSE5OTi9sX6dOHdMP8CVLlryw7Yv8+++/unjxov7999+Xtl21apUiIiLk6Ohoeh5fJPoH9p07d0xnub7K+yh62qkbN27E2E+OHDl09+5dvf/++2aDgQEBARowYID++ecfubm5qV+/fi+tW5Jq1qypxo0bS5JGjBihL7/8MsaZvk+ePNGKFSs0cOBASU/fJ89OvRX9OT9//rwWLFhgGgC7f/++hg8fHufVBEmpb9++MhgMWr16tWbOnGkW3FetWqWFCxdKknr16vXCx+nXr5/s7e21bt06jR8/3uwM6n/++Ue9e/dWeHi48uTJI29v71eq2WAwqG/fvpKk2bNna9myZabnLjIyUrNmzdKWLVvk4OCg7t27x9g+uuNjypQpkqQ2bdrEup+EfD6jRZ/Jf/bsWW3evNm03Gg0ateuXerVq5fpbPrnp49L7Pd+9Hvq+c9okyZN5OnpqSdPnui9994zm3Y9ODhYI0eO1J49e+Tg4KAhQ4ZIenp1Q/PmzSVJX375pU6cOGH2mL6+vtqzZ4+kp98xz9e+e/du+fr6mpb7+/urf//+CggIiLP+pPCq74lnJfb7PLGiv7cePHjAmfYAACBZ0UdBH0X0NvRRxI4+CvooEiM19lFY6vMJIO3gHuAANGzYMN2+fVt//PGHBgwYoOzZsytnzpy6du2aAgMDJUmdO3fWe++9Z7Zdnz59tHv3bt25c0fe3t4qUqSInjx5osuXLytfvnxq27ZtnGcVWtLAgQPVp08fXbhwQQ0bNlSRIkV0//593bhxQ6VLl1aFChVMISIxihUrpuXLl2vjxo167bXXdOvWLd25c0d2dnYaNmxYjMGIb775Rh988IGOHj2qrl27Kk+ePMqcObP8/PwUHBwse3t7DRw40DTgI0ldu3bV3r17tWvXLr333nvKnj27smfPrsDAQFNoqV+/vtq3b2/apnnz5rp8+bKmTp2qSZMm6aefflLBggV179490zaFChXSjz/+aFbf7du31axZM0lPpyOK60euJG3dulVBQUGS4jcVkp2dnd566y19++23+ueff3T48GFTmEmIzz77TAcOHFCVKlVMQSMu0WcZv/766/G6V1Pz5s01YcIEPXjwQEuWLDGFtcS+j0qUKKHt27dr7dq1OnfunCpVqqRRo0YpQ4YMmjlzpnr37q2jR4+qUaNGKlKkiBwcHHT+/HmFh4crU6ZMmjRpkmnqqviYNGmSXF1dtWrVKi1YsEALFixQ7ty5lSVLFtPnNSwsTI6Ojho8eLA6duxotn3dunVVqVIlHTp0SF9++aXmzJkjDw8PXbp0SeHh4erXr5+pAyq5VK9eXcOGDdPXX3+t7777TnPmzFG+fPl069Yt033SPvzwQ7POlNhUrFhRY8eO1ahRozRv3jwtWbJEhQsX1qNHj3TlyhUZjUZlzZpVv/zyy0uDV3y0a9dOFy5c0Ny5czVixAh9//33ypkzp65fv66goCDZ29tr9OjRsZ413bJlS02ePFmPHz+Wo6OjWrRoEes+EvL5fLau3377TVeuXFH//v2VJ08eeXh46ObNmwoICJCjo6OqVKmiAwcOxJgKPbHf+8WLF5f09N5mTZo0UZEiRTRt2jQ5ODjoxx9/1HvvvadLly6pZcuWKliwoNzc3ExTHTo7O2vMmDGqVKmS6fEGDRqkw4cP6/Tp02rfvr3pGPz9/U1X9rzzzjtmA+CtW7fWokWL5Ofnp379+il//vxydXXVxYsXZW9vrw8++EAzZ8586fP3Kl7lPfGsxH6fJ5anp6fs7OwUGhqqJk2aKHv27Prll1/iNc0hAABAQtFHQR8FfRRxo4+CPorESm19FJb6fAJIO7gCHICcnJw0ffp0fffdd6pVq5bCwsJ05swZubi4qHnz5lqwYIFGjhwZY9qe4sWLa/ny5fL29lbmzJl16dIlRUZG6t1335WPj4+yZctmoSN6sTp16ui3335Tw4YN5erqqgsXLihdunTq37+/fvvtN9PZr4nVtWtXffvttypUqJDpzNPGjRtryZIlsZ5FmSlTJi1cuFBjx45V5cqV9fDhQ507d04eHh5q166dli9frt69e5ttY29vr+nTp2v48OEqX768QkNDdfbsWYWEhKhWrVr65ptv9OOPP5rdB0p6+gN86dKl8vb2lru7u86ePavAwECVKFFCAwYM0IoVK5QlS5ZEH3t0cCtZsmS8p0Jq166dHB0dJSX/GZzHjx833VspvvcqcnFxUatWrSRJf/31l+lec4l9H7333ntq3769MmXKpMuXL+vcuXOmdSVKlNC6devUt29fFS1aVNeuXdPly5dVqFAhffDBB1qzZk28pxaL5uTkpK+//lrLli3Tu+++q5IlSyosLExnz57VrVu3VKhQIfXs2VNr1qyJ8T6TngaMX375RQMHDlTRokUVEBCgf//9V9WrV9fixYtf+Szk+OrWrZuWLl2qFi1aKF26dDp37pwiIiJUt25dzZ07V/3794/X47Rt21arV6/WW2+9pWzZsun8+fO6efOmChcurF69emnNmjWm+9ElhaFDh2ru3Llq0KCBjEajzp49K3t7ezVp0kRLly416wB6VubMmU2Dt/Xr10/SgUZ3d3fT90rRokV17949nT9/Xu7u7qZOwa+++krS06vEn71qIbHf+61atVKvXr2ULVs2Xb9+3eyejnnz5tWKFSv06aefqkyZMrpz544uXryoXLlyqWvXrlq9erXpMxjNzc1NCxcuVP/+/VWyZEkFBQXp7NmzMhqNatCggX766SeNHj06xjZLly5Vz549VaBAAd28eVN3795V48aN5ePjo6pVqybZc/wiiX1PPC+5v8+fVaBAAY0fP14FCxZUUFCQbt68GeMKEQAAgKRCHwV9FPRRxI0+CvooXkVq6qNI7Z9PANbPYORmfgCQJOrXr68bN25o3Lhx8R7AQNIZO3asrl69qtmzZ1u6FCBJtGnTRqdOndKsWbNeeuY4AAAAADyLPgrLoo8CtoY+CgDWhivAAQBWLyoqSocOHVKRIkUsXQqQJE6dOqVTp04pV65cqlWrlqXLAQAAAADEE30UsDX0UQCwRtwDHABg9b744gsFBASoS5culi4FSLRr165Jku7evauhQ4dKejpdob29vSXLAgAAAAAkAH0UsAX0UQCwdgyAAwCs3ttvv63+/fsrc+bMli4FSLQNGzbo22+/Nf29WLFi6ty5swUrAgAAAAAkFH0UsAX0UQCwdkyBDgCwel5eXgRLWD0vLy9lz55drq6uatiwoebMmSMnJydLlwUAAAAASAD6KGAL6KMAYO0MRqPRaOkiAAAAAAAAAAAAAAB4VVwBDgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsgoOlC7AWRqNRUVHMFg8AAAAAMGdnZ5DBYLB0GTaB7A0AAAAAiE1CsjcD4PEUFWXUvXuPLF0GAAAAACCVyZzZTfb2DIAnBbI3AAAAACA2CcneTIEOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkOli4AAAAAABBTVFSUIiMjLF1Gmmdv7yA7O84dBwAAAABbRPZOHZI6ezMADgAAAACpiNFo1IMH9xQSEmzpUvD/XFzclSFDZhkMBkuXAgAAAABIAmTv1CcpszcD4AAAAACQikQHcHd3Dzk5pWPQ1YKMRqPCwp4oODhQkpQxYxYLVwQAAAAASApk79QjObI3A+AAAAAAkEpERUWaAri7ewZLlwNJTk7pJEnBwYFKn96D6dABAAAAwMqRvVOfpM7eJHcAAAAASCUiIyMl/Rf8kDpEvx7cFw4AAAAArB/ZO3VKyuzNADgAAAAApDJMvZa68HoAAAAAgO0h66UuSfl6MAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCY4WLoAAAAAAIDlnDt3Vj/+OEVnz55WVJRRJUqUUu/efVWyZClJ0sGD+zR37s+6ePG87O0dVKVKNfXp0085cuSUJG3YsFZffTVGy5atUa5cuU2P266dt8qXr6j//W+0JKlWrUp6993e2rt3j65du6J33umi7t176caN65oxY6oOHz4oo9GoUqVKq2/fAXrttcKSpCdPnuiXX2Zq61ZfBQbeU/78BdS167tq0KBRyj5RAAAAAAAkEtk7ZXEFOAAAAACkUY8eBWvw4H7KmDGTxo2boDFjvlJoaIgGD/5IwcHB2rx5gwYN+kjZsmXT6NFfql+/QTp16m998MG7Cgy8l+D9zZ//i15/vb5Gj/5StWu/rrt37+q997rpyhU/DR78mUaNGqsHDx5o4MC+CgoKktFo1PDhn2jVqpV6662O+vrrb1WqVBmNGjVcGzeuS4ZnBAAAAACApEX2TnlcAQ4AAAAAaZSfn5+CggLVrt1bKlOmnCSpQIGCWr16hYKDH+rHH6eoUqUqGjNmvGmbMmXKqXPn9lq8eJH69u2foP2VKFFKnTt3N/19+vQpevIkVN9//6OyZMkqSSpa1Evvv99dJ0+eULp0Ttq/f6/GjPnKdNZ51arVFRoaopkzp+mNN5rIwYFYCwAAAABIvcjeKY8rwAEAAAAgjXrttcLKlMlDn332sSZNGq89e3YpS5as6tt3gEJDQxUQEKBGjZqabZMnT16VLFlaR48eSvD+ChcuYvb348ePqlSpMqYALklZs2bVihXrVKtWHR06dFAGg0HVq9dSRESE6b+aNesqIOCu/PwuJu7AAQAAAABIIWTvlGddw/UAAAAAgCTj6uqqH3+crfnzf9HWrb5atWqFnJ2d1ahRUzVp0lySlDlzlhjbZcmSRefOnUvw/jw8Mpv9/cGD+2b3Lnvegwf3ZTQa1ahRnVjX3717R0WLeia4DgAAAAAAUgrZO+UxAA4AAAAAaVj+/AU1cuRYRUZG6syZU9q0aYNWrVqurFmzSZLu3QuIsU1AQIAyZcokSTIYDJKkqKgoszYhIY9fum939/QKCgqKsfzw4YPKmTOX3N3Ty8XFVVOnzox1+zx58r10HwAAAAAAWBrZO2UxBToAAAAApFHbt29VixYNFRBwV/b29ipVqoyGDBkqd/f0unfvnrJkySJf341m29y4cV0nT55QmTJlJUmurm6SpNu3b5naXL16Wffv33/p/suWLadTp04oMPCeaVlQUJCGDOmvP//cpXLlKigk5LGMRqO8vEqY/rt06aLmzJmtyMjIpHgaAAAAAABINmTvlMcV4K/Izs4gOztDsj1+VJRRUVHGZHt8AAAAAGlX6dLlFBkZpWHDhqhz5+5yc3PTH3/46tGjYNWv31AlSpTUV1+N0ahRw9SkSQvdvx+kOXNmKUOGjHrrrU6SpIoVK8vZ2VnTpn2n997rq8ePH2vu3KdtXqZDh47auHG9Pv74I3Xt+q6cnNJp4cK5ypIlq5o0aS539/QqV66Chg4drO7de6lAgYI6c+aUfvlllqpWrWY6Ex6JFx4eroULF8rHx0eXL1+Wq6urSpcurW7duql27dox2letWjXWKweinThxQunSpUvyOsneAAAAAKwV2TvlGYxGIwkvHiIjo3Tv3iOzZXZ2BmXK5Cp7++S7kD4yMkpBQY8J4gAAAEAaEB4epoCAm8qSJZccHZ1SZJ9nzpzS7NkzdPbsGYWGhuq11wqrS5ceqlu3niRpx44/tHDhPF26dEFubm6qWrW6evf+UDly5DQ9xr59ezVz5jRdueKnnDlzqUeP3tq0ab2yZMmi//1vtCSpVq1K6tHjPfXs+b7Z/q9cuawff5yiI0cOy9HRUeXLV1DfvgOUJ09eSVJISIh+/nmGtm//Q4GB95Q1a3Y1bNhI3bv3SpaB1ti87HXJnNktWXNhcjEajerXr5+2bNmiDBkyqEKFCnry5IkOHTqk8PBwDRw4UH369DG1v3HjhurXr68cOXKoSpUqsT7m+PHj5ejomOiayN4AAAAAkhvZ2/azNwPg8RRbCHdwsJOHh5umL/5TN/xfPsVAQuXJnlEfvlNTgYGPFBER9fINAAAAAFg1S4RwvJytDoAvXrxYo0ePVvHixTV37lx5eHhIks6ePatOnTrp0aNHWr9+vQoXLixJ2rp1qz788EN169ZNw4cPT5aayN4AAAAAkhvZO3VKyuzNFOhJ4Ib/fV2+EZhsj5+cHSlM8wYAAAAAadPq1aslSUOHDjUNfkuSl5eXvL29tXjxYu3atcs0AH7q1ClJUsmSJVO+WJG9AQAAAADxwwB4KpYxvbOMUVHKkMEl2fYRFRWpwMAQgjgAAAAApDHz58+Xn5+fihYtGmPd48ePJUn29vamZWfOnJEklSpVKmUKTCFkbwAAAACwLQyAp2Juzk4y2NnJb91shQTcTPLHd8mSS4VavCc7OwMhHAAAAADSmHTp0snLyyvG8q1bt2rTpk1ycXFRo0aNTMtPnTolZ2dnnTx5UiNGjND58+dlMBhUoUIF9e3bV2XLlk3J8pMM2RsAAAAAbAsD4FYgJOCmQm5ftXQZAAAAAAAbdf/+fY0YMUIXLlzQpUuXlCtXLo0fP145c+aUJAUEBMjf31+S9Omnn6pcuXKqWrWq/vnnH+3YsUN79uzRxIkT1axZM0sexishewMAAACAbWAAHAAAAACANO7atWvy9fU1/d1gMOjChQuqXr26pP/u/+3h4aEZM2aofPnykiSj0aj58+dr/PjxGjZsmCpUqGAaNE8sBwfze3En5725U5KtHAcAAABg7aKiDJYuAS9gb2+IkQsTigFwAAAAAADSuEKFCunAgQMyGo3au3evvvzyS40bN07BwcHq06ePateurd27d8toNCpHjhym7QwGg7p3766DBw9q69atWr58uT766KNE12FnZ5CHh1tSHFKqk5z3GAcAAAAQf6Gh9rp71y5JBlqRdKKiDLKzs1PGjK5ydnZ+pcdiABwAAAAAgDTOze2/QedmzZopZ86c6tixo2bNmqWuXbvKzc1N2bNnj3P7evXqaevWrTp58uQr1REVZdSDB4/Nltnb29nE4PGDByGKjIyydBkAAABAmhcW9kRRUVGKjDQqIoLf6KlFZKRRUVFRun//sUJCImOsz5DBJd4zazEADgAAAAAAzFSoUEH58+fXlStXdPnyZZUsWfKF7bNlyyZJCgkJeeV922oHVGRklM0eGwAAAGBNIiONli4BL5AUJyZwXT8AAAAAAGlMSEiIvv76aw0ZMkRGY+ydP05OTpKkiIgILV26VAMHDtTWrVtjbXvt2jVJeuX7fwMAAAAA8KpS7RXg4eHhWrhwoXx8fHT58mW5urqqdOnS6tatm2rXrh2jfdWqVRUUFBTn4504cULp0qVLxooBAAAAIPnY2RlkZ2dI8f1GRRkVFcXZ8bbG2dlZPj4+CgoKUocOHVSlShWz9deuXZOfn5+cnJxUtGhR7dy5Uxs3blRISIgaNmxo1tZoNGr16tWSpFq1aqXYMQAAAABAUiN724ZUOQBuNBo1aNAgbdmyRRkyZFCNGjX05MkT7du3T7t379bAgQPVp08fU/sbN24oKChIOXLkiBHao9nZcbE7AAAAAOtkZ2dQpkyu8b7XVVKKjIxSUNDjRAVxX99NWrFiqS5duiBJKlCgkFq0aKlWrdomdZlIIIPBoLfeeks//fSTRo8erXnz5pnu8X3r1i19/PHHioiIULdu3eTq6qrWrVtr9uzZ2rFjh37//Xd16NBBkhQVFaWpU6fqxIkTKlKkiJo0aWLJwwIAAACARCN7245UOQC+ZMkSbdmyRcWLF9fcuXPl4eEhSTp79qw6deqkKVOmqFGjRipcuLAk6cyZM5KkJk2aaPjw4RarGwAAAACSg52dQfb2dpq++E/d8L+fYvvNkz2jPnynpuzsDAkO4evWrdb3309U//6DVa5cBUlGHTx4QD/8MFmBgffUo8d7yVM04q1v3746cuSIDh48qMaNG6tixYoKDw/XiRMn9PjxY9WqVUtDhgyRJOXLl0+jR4/WiBEjNHLkSC1atEgFCxbU2bNndeXKFWXNmlVTp06Vo6OjhY8KAAAAABKH7G07UuUAePTUaUOHDjUNfkuSl5eXvL29tXjxYu3atcs0AH7q1ClJUsmSJVO+WAAAAABIITf87+vyjUBLlxEvPj7L1aJFS735ZmvTsvz5C+rOHX/9/vviNBvCUxNnZ2fNnTtXCxYs0OrVq7V//345ODioaNGiatOmjdq3by97e3tT+7Zt26pQoUKaPXu2jhw5okuXLil79uzq0qWL+vTpoyxZsljwaAAAAAAgaZC9rV+qnBd8/vz5Wr16tSpXrhxj3ePHjyXJLIRHXwFeqlSplCkQAAAAAPBCdnYG/f33CT148MBseadO3fTTT3MlSe3aeeuXX34yW//RR7315ZejJUlHjhxSrVqV9Ouv89WsWQO9+24n9e3bS59/PsxsmxMnjqlWrUq6fv2aJOnPP3fr3Xc7q379mnrrrVaaPXuGwsLCJElTpkxWhw4tzbYPDg5W/fo1tWfPziQ7fmvh6Oionj17as2aNfr777919OhR/f7773r77bfNcne0ChUqaMaMGdq/f79Onjypbdu2acSIEQx+AwAAAIAFkL1jlyoHwNOlSycvL68YYXvr1q3atGmTXFxc1KhRI9PyU6dOydnZWSdPntQ777yjSpUqqXLlynr//fd1/PjxlC4fAAAAANK8Tp266fz5c2rduqk++WSAFi6cp9OnT8rd3V358xdI0GPt3btHP/00V8OGfa4WLVrqzz936fHjR6b1vr4bVbp0WeXNm0/79u3VyJFD9eabrbRw4VINHjxU27Zt0dixn0uSWrRoqX//vaHjx4+Ztv/jD1+5ubmpWrWaSXLsAAAAAACkBLJ37FLlAPiz7t+/r379+qlp06b68MMPlTlzZs2YMUM5c+aUJAUEBMjf31+hoaH69NNPFRUVpapVqypTpkzasWOHOnbsqA0bNlj4KAAAAAAgbXn99Qb66ae5ev31+jpz5rR++mmaevfuro4d2+rEiWMJeqx33umsfPnyq2hRT9Wr11B2dvbauXO7JCk8PFzbtm1Vs2bekqQFC+aoRYs31apVO+XJk1dVqlTTJ58M1/btW3Xz5r8qXLiIPD2La/Pm9abH37RpnRo3biYHh1R5lzAAAAAAAGJF9o5dqk/3165dk6+vr+nvBoNBFy5cUPXq1SX9d/9vDw8PzZgxQ+XLl5ckGY1GzZ8/X+PHj9ewYcNUoUIF06B5Yjk4mJ8vYG+f6s8fiBdbOQ4AAADA2kVFGSxdQpIqXrykRo4cK6PRqEuXLuqvv/Zo2bIlGjJkgJYu9Yn34+TNm9/0ZxcXF9Wr10C+vhvVtGkL/fXXn3ryJFT16zeUJP3zz1mdOXNKGzeuM21jNBolSZcv+ylXrtxq3vxNzZr1owYO/ET+/rf1998n9Mknw19ah729IUYuBAAAAADAkmwteyeFVD8AXqhQIR04cEBGo1F79+7Vl19+qXHjxik4OFh9+vRR7dq1tXv3bhmNRuXIkcO0ncFgUPfu3XXw4EFt3bpVy5cv10cffZToOuzsDPLwcEuKQ0p1MmRwsXQJAAAAACSFhtrr7l27GAOtlj5pNaH79/e/rQUL5qlr1x7Knj27JMnTs5g8PYupbt3X9c477fT338ckSXZ25icbR0ZGymB4evzR+3V1dTFr4+39pj766APdv39PW7ZsVN269ZUxYwZJTwN3587d1KxZixh1Zc2aTQ4OdmratJmmT/9e+/b9qYsXz6tEiZIqVqxYnMcTFWWQnZ2dMmZ0lbOzc4KeCwAAAAAAkoO//239+ut8de7cXdmyZZfBYFDhwkVUuHAR1apVV507t9exY0di3TYyMiLGsnTp0pn9vVkzbw0Y0EcBAXfl67tBderUk5ubuyQpKsqojh27qmnTmNk7S5askqQ33miiadO+1969u3Xx4gUVL15Cr71W5FUPO15S/QC4m9t/g87NmjVTzpw51bFjR82aNUtdu3aVm5ubqUMlNvXq1dPWrVt18uTJV6ojKsqoBw8emy2zt7ezicHjBw9CFBkZZekyAAAAgDQvLOyJoqKiFBlpVERE6vmNHhkZlaB67OwctWrVCmXLll2dOnUzW+fs7CpJypjRQw4OjnrwINj02FFRUfr33+vKmzefIiKiTDnl+f2XLl1eOXPm0rp1a/Xnn3v09deTTesLFSosPz8/5cqV19T+6NHD+v33xRoyZKgcHdPJxcVNtWu/rm3btsrP76JatWr3wuOLjDQqKipK9+8/VkhIZIz1GTK4WPwkBQAAAABA2uLklE6rV69U9uw5YmTv6PHVzJmzyMHBUcHBwaZ1T7P3DbMrvmNTrlwF5cyZS5s2rdfevX/q668nm9a99lphXblyWXnz5jMtezZ7u7i4KH369KpT53Xt2LHNlL1TSqofAH9ehQoVlD9/fl25ckWXL19WyZIlX9g+W7ZskqSQkJBX3ndq6oBKSgntzAIAAACQPCIjjZYuIUlkypRJnTp106xZPyo4OFj16zeUq6ubLl/207x5P6tChUoqW7a8ypQpqz/+8FXduvWUOXMWLVmyyCyUv0jTpi00f/4cZcyYUZUqVTEt79Spqz7/fJh++eUnvfFGE92546+vvx6nHDlymM5Cl6Tmzd/U0KEfy2iUGjZsHK99prYTEwAAAAAAaZetZu+kkOoGwENCQjRlyhTdvXtXEydOlMEQ8x54Tk5OkqSIiAgtXbpUf/31l1q0aKGGDRvGaHvt2jVJeuX7fwMAAACApeXJntFq9vfee32UN28+rV27Sj4+yxQaGqocOXKqfv031LXru5Kk3r0/1MOHDzRkSH85O7vI27uVGjRoZLpv2Is0adJCc+bMUps27WVn99/V1/XqNdSYMdLChXO0aNE8pU+fQTVr1lafPv3Ntq9UqYoyZsyk0qXLKn369Ik+TgAAAACAbSF7/8das3eqGwB3dnaWj4+PgoKC1KFDB1WpUsVs/bVr1+Tn5ycnJycVLVpUO3fu1MaNGxUSEhJjANxoNGr16tWSpFq1aqXYMQAAAABAUoqKMioyMkofvlMzxfcdGRmlqKjEXZnetGmLWO8HFi1r1qwaP35ynOsrVKikPXsOxbouZ86c2rXrQKzr6tdvqPr1Y54g/azQ0FAFBwerRYuWL2wHAAAAAEgbyN4xWWv2TnUD4AaDQW+99ZZ++uknjR49WvPmzTPd4/vWrVv6+OOPFRERoW7dusnV1VWtW7fW7NmztWPHDv3+++/q0KGDpKfz10+dOlUnTpxQkSJF1KRJE0seFgAAAAAkWlSUUUFBj2VnF3OGrJTYd2JDeGr04MEDHTlyUNu2bVWOHDnMpnADAAAAAKRdZO+kY+nsneoGwCWpb9++OnLkiA4ePKjGjRurYsWKCg8P14kTJ/T48WPVqlVLQ4YMkSTly5dPo0eP1ogRIzRy5EgtWrRIBQsW1NmzZ3XlyhVlzZpVU6dOlaOjo4WPCgAAAAASz9bCsKVERkbo66/HKlMmD33xxfhYb7sFAAAAAEibyN5Jw9LZO1UOgDs7O2vu3LlasGCBVq9erf3798vBwUFFixZVmzZt1L59e9nb25vat23bVoUKFdLs2bN15MgRXbp0SdmzZ1eXLl3Up08fZcmSxYJHAwAAAABILTw8MmvTph2WLgMAAAAAAJtl6eydKgfAJcnR0VE9e/ZUz54949W+QoUKmjFjRjJXBQAAAAAAAAAAAABIrewsXQAAAAAAAAAAAAAAAEmBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAACwAnZ2Bjk42KX4f3Z2hkTV266dt2rVqqQlSxbFun7ixK9Uq1Yl/fLLT4l+Ttq1807Q9gltDwAAAABIW8jese/D2rK3g0X3DgAAAAB4KTs7gzw8XGRnZ5/i+46KilRgYIiioowJ3tbBwUHbt/+ht9/ubLY8IiJCO3duk8GQuIAPAAAAAEBSI3vbDgbAAQAAACCVs7MzyM7OXn7rZisk4GaK7dclSy4VavGe7OwMiQrhlSpV0f79f+n27VvKkSOnafmRI4fk7OyidOmck7JcAAAAAAASjextOxgABwAAAAArERJwUyG3r1q6jHgrXrykrly5rO3bt5qdif7HH76qX/8Nbdu2xbTs5MkTmjXrR507d0YODg6qVauuPvxwoDJkyCBJCg4O1vffT9SePTvl4OCorl17xNjf338f18yZ03TmzGllypRJNWvW0QcffCg3N/fkP1gAAAAAgE0ge1t/9uYe4AAAAACAZFOvXkNt3/6H6e/h4eHatWuHGjZsZFp2+vRJ9ev3vgoWLKSZM+dq7NgJOn36pD7++CNFRUVJkj7/fKjOnDmlCRO+03ffTdOff+7WrVv/nZF/4cJ5DRjQV5UrV9X8+Ys1atSXOnfujAYN+khGY8LPoAcAAAAAwFqQvc0xAA4AAAAASDb167+h06dP6vbtW5KkAwf2KVOmTCpWzMvUZsmSX1W4cFF9/PFnKlToNVWoUEmjR3+ls2dPa//+v3T16mUdOLBPgwZ9qrJly6toUU+NGjVOTk5OpsdYvHiBKlWqrO7deylfvvwqW7acRo/+UqdPn9TRo4dT/LgBAAAAAEgpZG9zTIEOAAAAAEg2Xl7FlTt3HtNUbNu2+aphw8ZmbS5duqDKlauZLStcuIjc3dPr4sXzCg0NkSQVL17CtD5z5izKnTuP6e/nzp3T9etX9cYbtWPUcOXKZVWoUCkpDwsAAAAAgFSD7G2OAXAAAAAAQLKqX/8Nbd/+h1q3bq/du3dp9uz5ZuuNRqMMhpjbGY1RcnD4L7ZGRZlPp2Zv72DWtlGjpura9d0Yj5Mpk8crHgEAAAAAAKkb2fs/TIEOAAAAAEhW9es31OnTJ7Vu3Wrlzp1HBQoUNFv/2mtFdPz4MbNl58//o0ePHqlgwddMU7b9/fdx0/qHDx/qxo1rpr8XKlRYfn4XlTdvPtN/UVGR+uGHb+XvfyvZjg0AAAAAgNSA7P0fBsABAAAAAMmqaFFP5c2bT7NmTVeDBo1irH/rrY66cOEfffvtBF2+7KejRw/riy9GqFgxT1WqVEV58uRVvXoN9d133+jgwf26dOmCxo79XOHh4abHePvtzvrnn3OaOPEr+fld0qlTJzV69AhdvXpFefPmT8nDBQAAAAAgxZG9/8MU6AAAAABgJVyy5LLa/dWv/4bmz/9FDRvGDOGlSpXRpElTNHv2TL37bie5urqpdu3X1afPR6Zp2EaMGK3p06do1KjhioqKUsuWbRQUFPjMY5TWt99O088/z1DPnl3k4uKsChUq68MPB8rJySnJjgMAAAAAYNvI3tafvQ1Go9H48maIjIzSvXuPzJY5ONjJw8NNw6ds0OUbgXFsmXg1yhXQRx1r6fT8LxRy+2qSP75Ljvwq0e1zBQY+UkREVJI/PgAAAICECQ8PU0DATWXJkkuOjv8FRzs7gzw8XGRnZ5/iNUVFRSowMCTGPcDSkrhel2iZM7vJ3p4J1pIC2RsAAABAciN7p05Jmb25AhwAAAAAUrmoKKMCA0NkZ2ewyL7TcgAHAAAAAKQNZG/bwQA4AAAAAFgBwjAAAAAAAMmL7G0bmKMNAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAASGWMRu43lprwegAAAACA7SHrpS5J+XowAA4AAAAAqYS9vb0kKSzsiYUrwbOiXw97ewcLVwIAAAAAeFVk79QpKbM36R0AAAAAUgk7O3u5uLgrODhQkuTklE4Gg8HCVaVdRqNRYWFPFBwcKBcXd9nZcQ45AAAAAFg7snfqkhzZmwFwAAAAAEhFMmTILEmmIA7Lc3FxN70uAAAAAADrR/ZOfZIyezMADgAAAACpiMFgUMaMWZQ+vYciIyMsXU6aZ2/vwJXfAAAAAGBjyN6pS1JnbwbAAQAAACAVsrOzk52dk6XLAAAAAADAZpG9bROnsQMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbIKDpQsAAAAAAACWER4eroULF8rHx0eXL1+Wq6urSpcurW7duql27dox2t+9e1c//vijdu/erdu3bytbtmxq0qSJ+vbtKzc3NwscAQAAAAAA5rgCHAAAAACANMhoNGrQoEGaMGGCbt26pRo1aqh48eLat2+fevXqpRkzZpi19/f3V4cOHfTrr7/K2dlZr7/+uqKiovTzzz/rnXfeUXBwsIWOBAAAAACA/zAADgAAAABAGrRkyRJt2bJFxYsXl6+vr3766SfNmzdPy5cvl7u7u6ZMmaKLFy+a2o8bN043btxQ7969tXbtWv3www/avHmzmjZtqnPnzmnatGkWPBoAAAAAAJ5iABwAAAAAgDRo9erVkqShQ4fKw8PDtNzLy0ve3t4yGo3atWuXJOnq1avasmWLcuXKpf79+5vaOjk5aezYsXJzc9PSpUsVGhqasgcBAAAAAMBzGAAHAAAAACANmj9/vlavXq3KlSvHWPf48WNJkr29vSRp165dioqKUt26deXo6GjWNn369KpWrZoeP36s/fv3J3/hAAAAAAC8AAPgAAAAAACkQenSpZOXl5dpkDva1q1btWnTJrm4uKhRo0aSpH/++UeSVKxYsVgfq0iRImbtAAAAAACwFAdLFwAAAAAAACzr/v37GjFihC5cuKBLly4pV65cGj9+vHLmzClJunPnjiQpW7ZssW4fvfzu3bspUzAAAAAAAHFgABwAAAAAgDTu2rVr8vX1Nf3dYDDowoULql69uqT/pkR3dnaOdfvo5dHtXoWDg/lkdfb2tjF5na0cBwAAAACkdgyAAwAAAACQxhUqVEgHDhyQ0WjU3r179eWXX2rcuHEKDg5Wnz59TNOkGwyGWLc3Go1m/08sOzuDPDzcXukxUqsMGVwsXQIAAAAApAkMgAMAAAAAkMa5uf036NysWTPlzJlTHTt21KxZs9S1a1e5urpKkp48eRLr9tHLXVxebZA3KsqoBw/MryK3t7ezicHjBw9CFBkZZekyAAAAAMAqZcjgEu+ZtRgABwAAAAAAZipUqKD8+fPrypUrunz5srJnzy7pv3uBP+9l9whPiIgI2xwkjoyMstljAwAAAIDUJNUOgIeHh2vhwoXy8fHR5cuX5erqqtKlS6tbt26qXbt2jPZ3797Vjz/+qN27d+v27dvKli2bmjRpor59+5qdyQ4AAAAAQFoXEhKiKVOm6O7du5o4cWKsU5s7OTlJkiIiIlSsWDFJ0sWLF2N9vPPnz0uSPD09k6liAAAAAADiJ37Xiacwo9GoQYMGacKECbp165Zq1Kih4sWLa9++ferVq5dmzJhh1t7f318dOnTQr7/+KmdnZ73++uuKiorSzz//rHfeeUfBwcEWOhIAAAAAAFIfZ2dn+fj4aO3atTp48GCM9deuXZOfn5+cnJxUtGhR04no27dvV2RkpFnbhw8fav/+/XJ1dVXFihVTpH4AAAAAAOKSKgfAlyxZoi1btqh48eLy9fXVTz/9pHnz5mn58uVyd3fXlClTzM46HzdunG7cuKHevXtr7dq1+uGHH7R582Y1bdpU586d07Rp0yx4NAAAAAAApC4Gg0FvvfWWJGn06NHy9/c3rbt165Y+/vhjRURE6J133pGrq6vy5MmjevXq6fr165o4caKMRqMkKSwsTJ9//rkePXqkt99+W+7u7hY5HgAAAAAAoqXKKdBXr14tSRo6dKg8PDxMy728vOTt7a3Fixdr165dKly4sK5evaotW7YoV65c6t+/v6mtk5OTxo4dq127dmnp0qUaOHCgnJ2dU/xYAAAAAABIjfr27asjR47o4MGDaty4sSpWrKjw8HCdOHFCjx8/Vq1atTRkyBBT+5EjR+rUqVOaO3eudu7cqaJFi+rvv//Wv//+q5IlS+qjjz6y4NEAAAAAAPBUqrwCfP78+Vq9erUqV64cY93jx48lSfb29pKkXbt2KSoqSnXr1pWjo6NZ2/Tp06tatWp6/Pix9u/fn/yFAwAAAABgJZydnTV37lx9+umnypcvn/bv368TJ06oaNGiGjNmjGbNmmW6D7gk5cmTR8uXL1f79u318OFDbd++XU5OTvrggw+0YMECubm5WfBoAAAAAAB4KlVeAZ4uXTp5eXnFWL5161Zt2rRJLi4uatSokSTpn3/+kSQVK1Ys1scqUqSI/vjjD/3zzz+qW7du8hUNAAAAAICVcXR0VM+ePdWzZ894tc+RI4fGjRuXzFUBAAAAAJB4qXIA/Fn379/XiBEjdOHCBV26dEm5cuXS+PHjlTNnTknSnTt3JEnZsmWLdfvo5Xfv3k2ZggEAAAAAAAAAAAAAFpHqB8CvXbsmX19f098NBoMuXLig6tWrS/pvSvS47u8dvTy63atwcDCfMd7ePlXOIJ9gtnIcAAAAAAAAAAAAANK2VD8AXqhQIR04cEBGo1F79+7Vl19+qXHjxik4OFh9+vQx3QvcYDDEur3RaDT7f2LZ2Rnk4WGb9zPLkMHF0iUAAAAAAAAAAAAAwCtL9QPgbm7/DTo3a9ZMOXPmVMeOHTVr1ix17dpVrq6ukqQnT57Eun30cheXVxvkjYoy6sED86vI7e3tbGLw+MGDEEVGRlm6DAAAAACwShkyuDCzFgAAAAAAqUSqHwB/XoUKFZQ/f35duXJFly9fVvbs2SX9dy/w573sHuEJERFhm4PEkZFRNntsAAAAAAAAAAAAANKOVHeKekhIiL7++msNGTIkzmnLnZycJEkREREqVqyYJOnixYuxtj1//rwkydPTMxmqBQAAAAAAAAAAAACkFqluANzZ2Vk+Pj5au3atDh48GGP9tWvX5OfnJycnJxUtWlS1a9eWJG3fvl2RkZFmbR8+fPh/7N15nF3z/T/w153JHiKRBbGl9tYeS7QoSkttpXZK1U5RfG1Ra0XUUlqltCIqsS9JLKWSkKCoNRJb0GiJ0ERIIrLIMvP7wy9p0yRMMsuduff5fDw8yjmfe+7703tn5r7u+5zPyXPPPZc2bdpks802a5D6AQAAAAAAACiORtcALxQKOeCAA5IkF154YSZMmDB/37///e+cdtppmTNnTg466KC0adMmK6+8cnbYYYd88MEHueKKK+ZfNT5r1qycf/75mTZtWg488MAss8wyRZkPAAAAAAAAAA2jUd4D/IQTTsjLL7+cF154ITvvvHM222yzzJ49O6NGjcr06dOzzTbb5PTTT58//rzzzsvrr7+em2++OU888UTWXnvtvPrqq/nwww+z/vrr58QTTyzibAAAAAAAAABoCI3uCvDky2XQb7755px55plZddVV89xzz2XUqFFZe+21c9FFF+VPf/rT/PuAJ8nKK6+ce++9N/vtt1+mTp2aYcOGpUWLFjnuuOPSr1+/tG3btoizAQAAAAAAAKAhNMorwJOkefPmOfLII3PkkUfWaPwKK6yQXr161XNVAAAAAAAAADRWjfIKcAAAAAAAAABYUhrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJSEZsUuAAAAAID/qKgopKKiUG/Hr6qqTlVVdb0dHwAAoJg0wAEAAAAaiYqKQtq3b5PKyvpbtG/u3KpMnjxdExwAAChJGuAAAAAAjURFRSGVlRW57o6nM27ClDo//spdlsvPD9o6FRUFDXAAAKAkaYADAAAANDLjJkzJv8ZNKnYZAAAATU79racFAAAAAAAAAA1IAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJzYpdAE1LRUUhFRWFejt+VVV1qqqq6+34AAAAAAAAQOnSAKfGKioKad++TSor62/hgLlzqzJ58nRNcAAAAAAAAGCJaYBTYxUVhVRWVuS6O57OuAlT6vz4K3dZLj8/aOtUVBQ0wAEAAAAAAIAlpgHOEhs3YUr+NW5SscsAAAAAAAAAWED9rWUNAAAAAAAAAA1IAxwAAAAAAACAkmAJdAAAAChTVVVVueeeezJgwIC88847mT17drp27Zqddtopxx57bNq1a7fA+B49emTy5MmLPd6oUaPSsmXLeq4aAAAAFk8DHAAAAMpQVVVVTj755AwZMiStWrXKRhttlDZt2mTUqFHp06dPhgwZkttvvz2dOnVKkowbNy6TJ0/OCiuskC233HKRx6yosNAcAAAAxaUBDgAAAGXovvvuy5AhQ9KtW7f06dMnq666apLk888/z+mnn55hw4alV69e+e1vf5skefPNN5Mku+yyS84555xilQ0AAABfyanZAAAAUIbuu+++JMnZZ589v/mdJMsss0x69+6dQqGQoUOHZubMmUmS119/PUmy/vrrN3yxAAAAUEMa4AAAAFCG2rdvnzXWWCObbLLJQvuWX375LLfccpk9e3YmTZqU5D9XgG+wwQYNWSYAAAAsEUugAwAAQBm64YYbFrtv7NixmTx5cpo3b57ll18+yZdXgLdq1SqvvfZazj333LzzzjspFArp3r17TjjhhGy88cYNVToAAAAslivAAQAAgAXMu+/39ttvn5YtW+aTTz7JhAkTMnPmzJx55pmpqqpKjx490r59+wwfPjwHH3xwHn744eIWDQAAAHEFOAAAAPBf+vfvn4ceeiitW7fOqaeemuQ/9//u0KFDrr/++my66aZJkurq6txyyy259NJL07Nnz3Tv3j0rrrhirZ6/WbMFz9WvrCyNc/drOo+Gmm+p/P8KAADwvzTAAQAAgCRJv3790rt37xQKhVxyySVZc801kyTbbrttnnrqqVRXV2eFFVaYP75QKOTwww/PCy+8kKFDh+bee+/NiSeeuNTPX1FRSIcObWs9j8aoXbvWxS5hAY2tHgAAgLqiAQ4AAABlrrq6OldeeWX69OmTysrKXHLJJdltt93m7y8UCunSpctiH7/DDjtk6NChee2112pVR1VVdT77bPoC2yorK0qiWfvZZzMyd27V145rqPnWtB4AAIDGoF271jVeyarRNsCrqqpyzz33ZMCAAXnnnXcye/bsdO3aNTvttFOOPfbYtGvXboHxPXr0yOTJkxd7vFGjRqVly5b1XDUAAAA0LTNnzswZZ5yRwYMHp1WrVvnNb36TnXbaaYmO0blz5yTJjBkzal3PnDml2ZSdO7eqUc2tsdUDAABQVxplA7yqqionn3xyhgwZklatWmWjjTZKmzZtMmrUqPTp0ydDhgzJ7bffnk6dOiVJxo0bl8mTJ2eFFVbIlltuuchjVlS4txUAAAD8t88//zxHHXVURowYkY4dO+b666/PxhtvvNC4u+66K88++2x23333RTbHx44dmyS1vv83AAAA1FajbIDfd999GTJkSLp165Y+ffpk1VVXTfJlMD/99NMzbNiw9OrVK7/97W+TJG+++WaSZJdddsk555xTrLIBAACgyZg9e3aOOeaYjBgxIquvvnpuuumm+fn7f40fPz6PPPJIZsyYsVADvLq6Ovfff3+SZJtttqn3ugEAAOCrNMrLou+7774kydlnn71A+F5mmWXSu3fvFAqFDB06NDNnzkySvP7660mS9ddfv+GLBQAAgCbo2muvzUsvvZTOnTunf//+i21+J8nee++dFi1aZPjw4bn77rvnb6+qqso111yTUaNGZa211souu+zSEKUDAADAYjXKK8Dbt2+fNdZYI5tssslC+5Zffvkst9xymTx5ciZNmpSVVlpp/hXgG2ywQQNXCgAAAE3PlClTcssttyRJOnbsmCuuuGKxY+ednH7hhRfm3HPPzXnnnZdbb7013bp1y+jRo/Pee++lU6dO+f3vf5/mzZs31BSopcrK+r0moqqqOlVV1fX6HAAAAIvSKBvgN9xww2L3jR07NpMnT07z5s2z/PLLJ/nyCvBWrVrltddey7nnnpt33nknhUIh3bt3zwknnLDI+5cBAABAuRo5cmRmzJiRJBk9enRGjx692LEnnXRSOnXqlH322Sff+MY3cuONN+bll1/Ou+++my5duuTQQw/N8ccfn44dOzZU+dTCcsu2SnVVVdq1a12vz1NVNTeTJs3QBAcAABpco2yAf5V59/3efvvt07Jly3zyySeZMGFCkuTMM8/MJptskh49euTtt9/O8OHD87e//S1XXHFFdt111yJWDQAAAI3Hd7/73bz11ltL/Lju3bvn+uuvr4eKaChtW7VIoaIi/3zoxsz45KN6eY7WHVfKN3Y/OhUVBQ1wAACgwTWpBnj//v3z0EMPpXXr1jn11FOT/Of+3x06dMj111+fTTfdNElSXV2dW265JZdeeml69uyZ7t27Z8UVV6zV8zdrtuDyYPW9XFhDqek8Gmq+zZtX1utzVVVVp7paAAcAAKB8zfjko8wY/36xywAAAKhzTaYB3q9fv/Tu3TuFQiGXXHJJ1lxzzSTJtttum6eeeirV1dVZYYUV5o8vFAo5/PDD88ILL2To0KG59957c+KJJy7181dUFNKhQ9taz6Mxqu9lz2pq3jJsyyzTql6fp7qqKoWK0jh5AQAAAAAAAPiPRt8Ar66uzpVXXpk+ffqksrIyl1xySXbbbbf5+wuFQrp06bLYx++www4ZOnRoXnvttVrVUVVVnc8+m77AtsrKikbTPK6Nzz6bkblzq752XH3PtyGXYavpnAEAAL5Ou3atS2aFMAAAAGjqGnUDfObMmTnjjDMyePDgtGrVKr/5zW+y0047LdExOnfunCSZMWNGreuZM6c0G6Zz51Y1qrk1xDJsjW3OAAAAAAAAQO012gb4559/nqOOOiojRoxIx44dc/3112fjjTdeaNxdd92VZ599Nrvvvvsim+Njx45Nklrf/xsAAAAAAACAxq1RNsBnz56dY445JiNGjMjqq6+em266Kauuuuoix44fPz6PPPJIZsyYsVADvLq6Ovfff3+SZJtttqn3ugEAAAAAAAAonkZ5k7Jrr702L730Ujp37pz+/fsvtvmdJHvvvXdatGiR4cOH5+67756/vaqqKtdcc01GjRqVtdZaK7vssktDlA4AAAAAAABAkTS6K8CnTJmSW265JUnSsWPHXHHFFYsde/bZZ2fVVVfNhRdemHPPPTfnnXdebr311nTr1i2jR4/Oe++9l06dOuX3v/99mjdv3lBTAAAAAAAAAKAIGl0DfOTIkZkxY0aSZPTo0Rk9evRix5500knp1KlT9tlnn3zjG9/IjTfemJdffjnvvvtuunTpkkMPPTTHH398Onbs2FDlAwAAAAAAAFAkja4B/t3vfjdvvfXWEj+ue/fuuf766+uhIgAAAAAAAACagkZ5D3AAAAAAAAAAWFIa4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUhGbFLgAAAAAA6lNFRSEVFYV6O35VVXWqqqrr7fgAAEDNaYADAAAAULIqKgrp0KF1Kioq6+05qqrmZtKkGZrgAADQCGiAAwAAAFCyvrz6uzL/fOjGzPjkozo/fuuOK+Ubux+dioqCBjgAADQCGuAAAAAAlLwZn3yUGePfL3YZAABAPasodgEAAAAAAAAAUBdcAQ5F9uVSbIV6O35VVbUl2AAAAAAAACgLGuBQRBUVhXTo0DoVFZX19hxVVXMzadIMTXAAAAAAAABKngY4FNGXV39X5p8P3ZgZn3xU58dv3XGlfGP3o1NRUdAABwAAAAAAoORpgEMjMOOTjzJj/PvFLgMAAAAAAACatIpiFwAAAAAAAAAAdUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJaFWDfBBgwblpZde+tpxjz32WK655praPBUAAACUJdkbAAAAaq5WDfCzzz47d99999eOu//++3PzzTfX5qkAAACgLMneAAAAUHPNlmTwoEGDMmfOnAW2vffee7n33nsX+5jPP/88zz77bJo3b750FQIAAEAZkb0pRxUVhVRUFOrl2JWV7gAIAADlZIka4K+//nr69++fQuHLQFIoFDJy5MiMHDnyKx9XXV2dvffee+mrhCISwgEAgIYke1NuKioKad++jYwMAADUiSVqgJ988sn5/PPP5//3wIEDs9pqq2WzzTZb7GNatmyZbt265aCDDlr6KqFIhHAAAKChyd6Um4qKQiorK3LdHU9n3IQpdX78jdftmgN22aTOjwsAADROS9QAX3bZZXPppZfO/++BAwdmk002WWAblBIhHAAAaGiyN+Vq3IQp+de4SXV+3K6d29X5MQEAgMZriRrg/2v06NF1VQc0akI4AABQLLI3AAAA1FytGuD/7ZNPPsmMGTNSXV292DGrrrpqXT0dAAAAlB3ZGwAAAL5arRvgf/7zn3PjjTfm008//cpxhUIhb7zxRm2fDgAAAMpOfWXvqqqq3HPPPRkwYEDeeeedzJ49O127ds1OO+2UY489Nu3aLbhq1cSJE/OHP/whTz31VMaPH5/OnTtnl112yQknnJC2bdsu1dwAAACgLtWqAT5gwID8+te/TpK0aNEiHTp0SGVlZZ0UBgAAANRf9q6qqsrJJ5+cIUOGpFWrVtloo43Spk2bjBo1Kn369MmQIUNy++23p1OnTkmSCRMm5MADD8y4ceOyzjrrZPvtt8+rr76aPn365Kmnnsrtt9+eZZZZptZ1AQAAQG3UqgF+6623plAo5Nxzz83++++f5s2b11VdAAAAQOove993330ZMmRIunXrlj59+sxfOv3zzz/P6aefnmHDhqVXr1757W9/myTp1atXxo0bl2OOOSb/93//lySZNWtWzjzzzDzyyCO59tprc/bZZ9dJbQAAALC0Kmrz4DFjxmSTTTbJIYccovkNAAAA9aC+svd9992XJDn77LMXuG/4Msssk969e6dQKGTo0KGZOXNm3n///QwZMiQrrbRSTj755PljW7RokYsvvjht27bNXXfdlZkzZ9ZZfQAAALA0atUAb926dTp06FBXtQAAAAD/o76yd/v27bPGGmtkk002WWjf8ssvn+WWWy6zZ8/OpEmT8uSTT6aqqirbbbfdQk34ZZddNltttVWmT5+e5557rs7rBAAAgCVRqwb4lltumVGjRmXGjBl1VQ8AAADwX+ore99www155JFHFtlcHzt2bCZPnpzmzZtn+eWXz9tvv50kWWeddRZ5rLXWWitJ5o8DAACAYqlVA/zUU0/NjBkzcs4552TKlCl1VRMAAADw/xUje8+77/f222+fli1b5uOPP06SdO7ceZHj522fOHFig9QHAAAAi9OsNg++8847s9FGG+Wvf/1rhgwZkm7duqVdu3YpFAoLjS0UCrn11ltrfOyqqqrcc889GTBgQN55553Mnj07Xbt2zU477ZRjjz027dq1W2D8xIkT84c//CFPPfVUxo8fn86dO2eXXXbJCSeckLZt29ZmmgAAAFA09Zm9F6V///556KGH0rp165x66qlJkunTpydJWrVqtcjHzNs+b1xtNGu24Ln6lZW1One/0ajpPEplvkn5zblU5gEAAE1drRrgt9xyy/x/nzNnTv7xj38sduyigvniVFVV5eSTT86QIUPSqlWrbLTRRmnTpk1GjRqVPn36ZMiQIbn99tvTqVOnJMmECRNy4IEHZty4cVlnnXWy/fbb59VXX02fPn3y1FNP5fbbb88yyyyz9BMFAACAIqmv7L0o/fr1S+/evVMoFHLJJZdkzTXXTJJUVlZ+5fGrq6sX+N+lVVFRSIcOpXkSe7t2rYtdQoMrtzmX23wBAKCxqlUDvF+/fnVVxwLuu++++We19+nTJ6uuumqS5PPPP8/pp5+eYcOGpVevXvOXZOvVq1fGjRuXY445Jv/3f/+XJJk1a1bOPPPMPPLII7n22mtz9tln10utAAAAUJ/qK3v/t+rq6lx55ZXp06dPKisrc8kll2S33Xabv79NmzZJki+++GKRj5+3vXXr2jUAq6qq89lnC15FXllZURKNxc8+m5G5c6u+dlypzDcpvznXdL4AAMCSa9eudY1XXapVA3zLLbeszcMX67777kuSnH322fOb30myzDLLpHfv3vnOd76ToUOHZubMmZkwYUKGDBmSlVZaKSeffPL8sS1atMjFF1+cJ598MnfddVdOOeWUxS7VBgAAAI1VfWXveWbOnJkzzjgjgwcPTqtWrfKb3/wmO+200wJjunTpkiTz7wX+v77uHuFLYs6c0mwgzp1bVbJzW5xym3O5zRcAABqrOrs50ezZszNq1Kg8+uijeemll5IkH3744VIdq3379lljjTWyySabLLRv+eWXz3LLLZfZs2dn0qRJefLJJ1NVVZXtttsuzZs3X2Dssssum6222irTp0/Pc889t1S1AAAAQGNRl9k7+XKltcMPPzyDBw9Ox44d069fv4Wa30myzjrrJEnGjBmzyOO88847SZJ11113qWsBAACAulDrBvicOXPyu9/9LltvvXUOOOCAnHLKKbnrrruSJGeddVZ+/OMf57333luiY95www155JFH0qFDh4X2jR07NpMnT07z5s2z/PLL5+23307ynzD+v9Zaa60kmT8OAAAAmpr6yN6zZ8/OMccckxEjRmT11VfPXXfdlY033niRY7fddtskybBhwzJ37twF9k2dOjXPPfdc2rRpk80222wpZgcAAAB1p1YN8Dlz5uTYY4/NDTfckBkzZmSDDTZIdXX1/P3Tpk3LG2+8kUMOOSQTJ06sdbFJ5t/3e/vtt0/Lli2/dpm1edvr6vkBAACgIdVX9r722mvz0ksvpXPnzunfv/8CtyD7XyuvvHJ22GGHfPDBB7niiivmP/+sWbNy/vnnZ9q0aTnwwAOzzDLLLP1EAQAAoA7U6h7gt912W55++ulss8026d27d7p06ZL11ltv/v7bb789F154YQYNGpSbbropZ511Vq2K7d+/fx566KG0bt06p556apJk+vTpSbLY+3vP2z5vXG00a7bg+QI1vdF6Y1fTeZTKfJPym3OpzAMAAMpRfWTvKVOm5JZbbkmSdOzYMVdcccVix5599tnp1KlTzjvvvLz++uu5+eab88QTT2TttdfOq6++mg8//DDrr79+TjzxxNpPFgAAAGqpVg3wgQMHpn379vnd736Xtm3bLrS/VatWufjii/PMM8/kySefrFUDvF+/fundu3cKhUIuueSSrLnmmkmSysrKJEmhUFjk4+adlf7fZ8cvjYqKQjp0WHiOpaBdu9bFLqHBlducy22+AABQSuoje48cOTIzZsxIkowePTqjR49e7NiTTjopnTp1ysorr5x77703v//97zN8+PAMGzYsXbt2zXHHHZejjz56kbUBAABAQ6tVA/xf//pXttlmm68Muc2bN89GG22Up59+eqmeo7q6OldeeWX69OmTysrKXHLJJdltt93m72/Tpk2S5Isvvljk4+dtb926dg3AqqrqfPbZgleRV1ZWlERj8bPPZmTu3KqvHVcq803Kb841nS8AALDk2rVrXa+rLtVH9v7ud7+bt956a4lrWWGFFdKrV68lfhwAAAA0lFo1wJs1a5bPPvvsa8dNnjw5zZot+VPNnDkzZ5xxRgYPHpxWrVrlN7/5TXbaaacFxnTp0iVJ5t8L/H993T3Cl8ScOaXZQJw7t6pk57Y45TbncpsvAACUkvrO3gAAAFBKanWK+je/+c28+uqrGTdu3GLHjB07Nq+++uoC9yeric8//zyHH354Bg8enI4dO6Zfv34LNb+TZJ111kmSjBkzZpHHeeedd5Ik66677hI9PwAAADQG9Zm9AQAAoNTUqgF+0EEHZcaMGTnhhBPyxhtvLLT/rbfeykknnZRZs2Zl3333rfFxZ8+enWOOOSYjRozI6quvnrvuuisbb7zxIsduu+22SZJhw4Zl7ty5C+ybOnVqnnvuubRp0yabbbbZEswMAAAAGof6yt4AAABQimq1Ntquu+6aZ555Jvfee2/22WefLLvssikUCnnqqaey/fbbZ/z48amurs5uu+2WH/3oRzU+7rXXXpuXXnopnTt3Tv/+/bPCCissduzKK6+cHXbYIcOGDcsVV1yRs846K4VCIbNmzcr555+fadOm5YgjjsgyyyxTm6kCAABAUdRX9gYAAIBSVOubg/Xq1SubbLJJbrrppvzzn/9MkkyaNClJ0rVr1/z0pz/NYYcdVuPjTZkyJbfcckuSpGPHjrniiisWO/bss89Op06dct555+X111/PzTffnCeeeCJrr712Xn311Xz44YdZf/31c+KJJ9ZihgAAAFBcdZ29AQAAoFTVugGeJPvuu2/23XfffPzxx/noo49SVVWVzp07Z+WVV17iY40cOTIzZsxIkowePTqjR49e7NiTTjopnTp1ysorr5x77703v//97zN8+PAMGzYsXbt2zXHHHZejjz46bdu2Xeq5AQAAQGNQl9kbAAAASlWdNMAnTZqUd955J1tuuWU6d+6cJPnHP/6R2267LT/4wQ/mb6uJ7373u3nrrbeWuIYVVlghvXr1WuLHAQAAQFNQl9kbAAAASlVFbQ9w991357vf/W5+/etfL7B95MiRufjii7Pzzjvn4Ycfru3TAAAAQNmSvQEAAKBmatUAf/rpp3P++eenWbNm2WqrrRbYt9lmm+XII49MdXV1Tj/99Pz973+vVaEAAABQjmRvAAAAqLlaNcD79OmTZs2apV+/fjnzzDMX2NetW7ecccYZ6devXwqFQm688cZaFQoAAADlSPYGAACAmqtVA/ztt99Ojx49suGGGy52zIYbbpjNNtssr7zySm2eCgAAAMqS7A0AAAA1V6sG+IwZM9K6deuvHde+ffvMmTOnNk8FAAAAZUn2BgAAgJqrVQO8W7dueeGFF/L5558vdswXX3yRl156KauttlptngoAAADKkuwNAAAANVerBviee+6ZKVOm5OSTT87EiRMX2j9p0qScdtpp+fTTT7PHHnvU5qkAAACgLMneAAAAUHPNavPgQw45JA8//HCeeeaZbL/99tlggw2y0korJUn+/e9/5/XXX8+sWbOy0UYb5fDDD6+LegEAAKCsyN4AAABQc7VqgDdv3jw333xzrr766gwYMCCvvPJKXnnllfn7W7ZsmYMOOihnnHFGWrRoUdtaAQAAoOzI3gAAAFBztWqAJ0nbtm1z7rnn5swzz8xrr72Wjz/+OHPnzk3nzp2z/vrrp02bNnVRJwAAAJQt2RsAAABqplYN8MMOOyzdunXLr371q7Ro0SLdu3evq7oAAACAyN4AAACwJGrVAB81alQqKirqqhYAAADgf8jeAAAAUHO1StBt27ZNdXV1XdUCAAAA/A/ZGwAAAGquVg3w448/Ps8//3z69u2bWbNm1VVNAAAAwP8newMAAEDN1WoJ9LFjx2b11VfPFVdckauuuiqrr7562rVrt8il2QqFQm699dbaPB0AAACUHdkbAAAAaq5WDfBbbrll/r/PmTMnY8aMWezYQqFQm6cCAACAsiR7AwAAQM3VqgHer1+/uqoDAAAAWATZGwAAAGquVg3wLbfcsq7qAAAAABZB9gYAAICaq1UD/L/Nnj07b775Zj766KN06tQpm222WT788MN07dq1rp4CAAAAyprsDQAAAF+t1g3wOXPm5Lrrrsttt92WqVOnJkn22GOPbLbZZjnrrLMybdq0XH311Vl99dVrXSwAAACUI9kbAAAAaqaiNg+eM2dOjj322Nxwww2ZMWNGNthgg1RXV8/fP23atLzxxhs55JBDMnHixFoXCwAAAOVG9gYAAICaq1UD/LbbbsvTTz+drbfeOo899ljuueeeBfbffvvt2WuvvTJx4sTcdNNNtSoUAAAAypHsDQAAADVXqwb4wIED0759+/zud79Lly5dFtrfqlWrXHzxxenSpUuefPLJ2jwVAAAAlCXZGwAAAGquVg3wf/3rX9l8883Ttm3bxY5p3rx5Ntpoo3z44Ye1eSoAAAAoS7I3AAAA1FytGuDNmjXLZ5999rXjJk+enGbNmtXmqQAAAKAsyd4AAABQc7VqgH/zm9/Mq6++mnHjxi12zNixY/Pqq69mvfXWq81TAQAAQFmSvQEAAKDmatUAP+iggzJjxoyccMIJeeONNxba/9Zbb+Wkk07KrFmzsu+++9bmqQAAAKAsyd4AAABQc7VaG23XXXfNM888k3vvvTf77LNPll122RQKhTz11FPZfvvtM378+FRXV2e33XbLj370o7qqGQAAAMqG7A0AAAA1V+ubg/Xq1SubbLJJbrrppvzzn/9MkkyaNClJ0rVr1/z0pz/NYYcdVtunAQAAgLIlewMAAEDN1LoBniT77rtv9t1333z88cf56KOPUlVVlc6dO2fllVeui8MDAABA2ZO9AQAA4OstcQN87ty5uf322zN48OBMnDgxXbt2zR577JG99tornTt3TufOneujTgAAACgbsjcAAAAsnSVqgM+aNStHHnlkXnzxxVRXVydJ/vnPf+aZZ57JsGHD8rvf/a5eigQAAIByIXsDAADA0luiBvidd96ZF154ISussEKOPvrorLrqqnn77bfTp0+fDB48OPfff39+9KMf1VetAAAAUPJkbwAAAFh6S9QA/+tf/5pWrVrljjvuSNeuXZMk2223Xbbddtvsvffe+ctf/iKEAwAAQC3I3gAAALD0KpZk8JgxY7L55pvPD+DzrLfeell//fUzevToOi0OAAAAyo3sDQAAAEtviRrg06ZNy3LLLbfIfausskomT55cFzUBAABA2ZK9AQAAYOktUQN8zpw5qaysXOS+5s2bZ/bs2XVSFAAAAJQr2RsAAACW3hI1wAEAAAAAAACgsdIABwAAAAAAAKAkaIADAAAAAAAAUBKaLekDhg4dmh133HGh7ZMmTUqSRe5LkkKhkKFDhy7p0wEAAEDZkb0BAABg6SxxA3z69OmZPn36YvePGzdukdsLhcKSPhUAAACUJdkbAAAAls4SNcD79etXX3UAAAAAkb0BAACgNpaoAb7lllvWVx0AAABAZG8AAACojYpiFwAAAAAAAAAAdUEDHAAAAAAAAICSsERLoAMAAACla9CgQTnrrLNy88035zvf+c5C+3v06JHJkycv9vGjRo1Ky5Yt67FCAAAA+Goa4AAAAEBGjRqViy++eLH7x40bl8mTJ2eFFVZY7H3KKyosNAcAAEBxaYADAABAmXv88cdz1lln5fPPP1/smDfffDNJsssuu+Scc85pqNIAAABgiWiAAwAAQJkaP358fvvb32bgwIFp1apVOnXqlIkTJy5y7Ouvv54kWX/99RuyRAAAAFgi1iYDAACAMnX11VdnwIABWX/99XPXXXdljTXWWOzYeVeAb7DBBg1VHgAAACwxV4ADAABAmVpjjTVy2WWXZc899/za+3e//vrradWqVV577bWce+65eeedd1IoFNK9e/eccMIJ2XjjjRuoagAAAFi8JnMF+KBBg7LuuuvmmWeeWeT+Hj16ZN11113sP1988UUDVwwAAACN2zHHHJO99trra5vfn3zySSZMmJCZM2fmzDPPTFVVVXr06JH27dtn+PDhOfjgg/Pwww83UNUAAACweE3iCvBRo0bl4osvXuz+cePGZfLkyVlhhRWy5ZZbLnLM14V5AAAAYNHm3f+7Q4cOuf7667PpppsmSaqrq3PLLbfk0ksvTc+ePdO9e/esuOKKtXquZs0WzO+VlaWR52s6j1KZb1J+cy6VeQAAQFPX6Bvgjz/+eM4666x8/vnnix0z7z5ku+yyS84555yGKg0AAADKwrbbbpunnnoq1dXVWWGFFeZvLxQKOfzww/PCCy9k6NChuffee3PiiScu9fNUVBTSoUPbuii50WnXrnWxS2hw5TbncpsvAAA0Vo22AT5+/Pj89re/zcCBA9OqVat06tQpEydOXOTYeWeir7/++g1ZIgAAAJSFQqGQLl26LHb/DjvskKFDh+a1116r1fNUVVXns8+mL7CtsrKiJBqLn302I3PnVn3tuFKZb1J+c67pfAEAgCXXrl3rGq+61Ggb4FdffXUGDhyYDTbYIL17906vXr0W2wCfdwX4Bhts0JAlAgAAAEk6d+6cJJkxY0atjzVnTmk2EOfOrSrZuS1Ouc253OYLAACNVaNtgK+xxhq57LLLsueee37t/btff/31tGrVKq+99lrOPffcvPPOOykUCunevXtOOOGEbLzxxg1UNQAAAJSeu+66K88++2x233337LTTTgvtHzt2bJLU+v7fAAAAUFs1u068CI455pjstddeX9v8/uSTTzJhwoTMnDkzZ555ZqqqqtKjR4+0b98+w4cPz8EHH5yHH364gaoGAACA0jN+/Pg88sgjueeeexbaV11dnfvvvz9Jss022zR0aQAAALCARnsFeE3Nu/93hw4dcv3112fTTTdN8mUAv+WWW3LppZemZ8+e6d69e63PRG/WbMFmfE3XmW/sajqPUplvUn5zLpV5AAAAxbH33nvnxhtvzPDhw3P33Xdn//33T5JUVVXl97//fUaNGpW11loru+yyS5ErBQAAoNw1+Qb4tttum6eeeirV1dVZYYUV5m8vFAo5/PDD88ILL2To0KG59957c+KJJy7181RUFNKhQ9u6KLnRadeudbFLaHDlNudymy8AAFC3Vl111Vx44YU599xzc9555+XWW29Nt27dMnr06Lz33nvp1KlTfv/736d58+bFLhUAAIAy1+Qb4IVCIV26dFns/h122CFDhw7Na6+9VqvnqaqqzmefTV9gW2VlRUk0Fj/7bEbmzq362nGlMt+k/OZc0/kCAABLrl271mWx6tI+++yTb3zjG7nxxhvz8ssv5913302XLl1y6KGH5vjjj0/Hjh2LXSIAAAA0/Qb41+ncuXOSZMaMGbU+1pw5pdlAnDu3qmTntjjlNudymy8AALB0+vfv/5X7u3fvnuuvv76BqgEAAIAl1+RPUb/rrrtyyimnZOjQoYvcP3bs2CSp9f2/AQAAAAAAAGjcmvwV4OPHj88jjzySGTNmZKeddlpgX3V1de6///4kyTbbbFOM8gAAAAAAAABoIE3+CvC99947LVq0yPDhw3P33XfP315VVZVrrrkmo0aNylprrZVddtmliFUCAAAAAAAAUN+a/BXgq666ai688MKce+65Oe+883LrrbemW7duGT16dN5777106tQpv//979O8efNilwoAAAAAAABAPWryV4AnyT777JPbbrst3/ve9zJ+/Pg8/vjjmTNnTg499NA88MADWWONNYpdIgAAAAAAAAD1rMlcAd6/f/+v3N+9e/dcf/31DVQNAAAAAAAAAI1NSVwBDgAAAAAAAAAa4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAnNil0AUH4qKgqpqCjU2/GrqqpTVVVdb8cHAACAxk72BgCgXGmAAw2qoqKQDh1ap6Kist6eo6pqbiZNmiGIAwAAUJZkbwAAypkGONCgvjwDvTL/fOjGzPjkozo/fuuOK+Ubux+dioqCEA4AAEBZkr0BAChnGuBAUcz45KPMGP9+scsAAACAkiV7AwBQjiqKXQAAAAAAAAAA1AUNcAAAAAAAAABKgiXQgQV8eZ+wQr0dv7LSeTcAAAAAAADUDw1wYL6KikLat2+jSQ0AAAAAAECTpAEOzFdRUUhlZUWuu+PpjJswpV6eY+N1u+aAXTapl2MDAAAAAABQ3jTAgYWMmzAl/xo3qV6O3bVzu3o5LgAAADQVbj8GAAD1RwMcAAAAABqI248BAED90gAHAAAAgAbi9mMAAFC/NMABAAAAoIG5/RgAANQPay0BAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAQJJk0KBBWXfddfPMM88scv/EiRPzq1/9Kt///vez0UYbZccdd8wVV1yRadOmNXClAAAAsGga4AAAAEBGjRqViy++eLH7J0yYkP333z+33XZbWrVqle233z5VVVXp06dPDjrooHz++ecNWC0AAAAsmgY4AAAAlLnHH388Rx555Fc2sXv16pVx48blmGOOyYMPPphrrrkmjz76aH74wx/mrbfeyrXXXtuAFQMAAMCiNZkGuGXYAAAAoG6NHz8+PXv2zAknnJDZs2enU6dOixz3/vvvZ8iQIVlppZVy8sknz9/eokWLXHzxxWnbtm3uuuuuzJw5s6FKBwAAgEVqEg1wy7ABAABA3bv66qszYMCArL/++rnrrruyxhprLHLck08+maqqqmy33XZp3rz5AvuWXXbZbLXVVpk+fXqee+65higbAAAAFqvRN8AtwwYAAAD1Y4011shll12We+65J+uuu+5ix7399ttJknXWWWeR+9daa60FxgEAAECxNNoGuGXYAAAAoH4dc8wx2WuvvVJR8dVfD3z88cdJks6dOy9y/7ztEydOrNsCAQAAYAk1K3YBi3P11Vdn4MCB2WCDDdK7d+/06tVrkUG6JsuwPfbYY3nuueey3XbbNVT5AAAAUDKmT5+eJGnVqtUi98/bPm9cbTRrtmAzvrKy0Z67v0RqOo9SmW9SfnMut/kmpTUXAABKR6NtgM9bhm3PPff8yjPRa7IM22OPPZa3335bAxwAAACWQmVlZZKkUCgscn91dfUC/7u0KioK6dChba2O0Vi1a9e62CU0uHKbc7nNNynPOQMA0Pg12gb4McccU6NxlmEDAACA+tWmTZskyRdffLHI/fO2t25du2ZYVVV1PvtswavIKysrSqLJ9tlnMzJ3btXXjiuV+SblN+dym29S8zkDAEBttWvXusYrEDXaBnhNWYat9izRVftxjV25zTcprbkAAECxdenSJcl/TkL/X193cvqSmDOnNJtpc+dWlezcFqfc5lxu803Kc84AADR+Tb4Bbhm22iuVs46XRLnNudzmm5TnnAEAoL7Mu+3YmDFjFrn/nXfeSZKsu+66DVYTAAAALEqTb4Bbhq32LNG1eKUy53Kbb2IZNgAAGs6SLMPWVG277bZJkmHDhqVnz57zT0ZPkqlTp+a5555LmzZtstlmmxWrRAAAAEhSAg1wy7DVXjkuV1Vucy63+SblOWcAAKgvK6+8cnbYYYcMGzYsV1xxRc4666wUCoXMmjUr559/fqZNm5YjjjgiyyyzTLFLBQAAoMw1+Qa4ZdgAAACg/p133nl5/fXXc/PNN+eJJ57I2muvnVdffTUffvhh1l9//Zx44onFLhEAAADS5Ndo++9l2ObOnbvAPsuwAQAAQN1YeeWVc++992a//fbL1KlTM2zYsLRo0SLHHXdc+vXrl7Zt2xa7RAAAAGj6V4Bbhg0AAADqRv/+/b9y/worrJBevXo1UDUAAACw5Jp8AzyxDBsAAAAAAAAAJbAEemIZNgAAAAAAAACa0BXglmEDAAAAAAAA4KuUxBXgAAAAAAAAAKABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFbsAgAAAICm4/HHH8/xxx+/2P277rprrr766gasCAAAAP5DAxwAAACosTfeeCNJssUWW2TFFVdcaP+mm27a0CUBAADAfCXVAHcWOgAAANSveQ3wc889N+utt16RqwEAAIAFlVQD3FnoAAAAUL/eeOONtGzZMmuttVaxSwEAAICFlGQD3FnoAAAAUPcmTZqUjz76KBtttFGaNSuprxQAAAAoESWVVp2FDgAAAPVn3onnK620Uq644oo89thj+fDDD9OpU6fsvPPOOe6447LccssVuUoAAADKWUWxC6gr885CX3fddZ2FDgAAAPXg9ddfT5I8+uijueOOO9KtW7d07949U6ZMSd++fbP//vvn448/LnKVAAAAlLOS6RQ7Cx0AAADq15tvvpkk2X777XPllVdm2WWXTZJ8+umnOfXUU/P3v/895513Xm644Yalfo5mzRY8V7+ysjTO3a/pPEplvkn5zbnc5puU1lwAACgdJdMA/++z0Nu2bZstt9wyK664Yl599dX07ds3jz/+eG699dZ07ty5yJUCAABA03TZZZflF7/4RVZcccW0atVq/vbll18+l19+eXbZZZcMGzYsH3zwQVZZZZUlPn5FRSEdOrSty5IbjXbtWhe7hAZXbnMut/km5TlnAAAav5JpgDsLfek5Q7n24xq7cptvUlpzAQCAxqJFixbp1q3bIvetsMIK+da3vpUXX3wxr7/++lI1wKuqqvPZZ9MX2FZZWVESTbbPPpuRuXOrvnZcqcw3Kb85l9t8k5rPGQAAaqtdu9Y17v2UTAPcWehLr1RC15IotzmX23yT8pwzAAAUW6dOnZIkM2bMWOpjzJlTms20uXOrSnZui1Nucy63+SblOWcAABq/kmmAOwt96TlDefFKZc7lNt/EWegAADScJTkLvSmbNWtWLrrookyaNClXXnll2rRps9CYsWPHJklWXHHFhi4PAAAAkpRQA/zrOAt98crxbN1ym3O5zTcpzzkDAEB9atGiRZ555pl8+OGHefLJJ7PLLrsssH/06NEZPXp0ll122WyyySbFKRIAAICyVxKnqM+aNSu//OUvc8IJJ2T69OmLHOMsdAAAAKidAw44IEny61//Ou+///787RMnTsw555yTuXPn5sgjj1zg1mQAAADQkEriCnBnoQMAAED9O+KII/LCCy/kb3/7W3bfffdsvvnmadGiRZ577rlMnz49O++8c4455philwkAAEAZK4krwBNnoQMAAEB9a9GiRf70pz/ll7/8ZdZcc8289NJLee6557L22munV69e+d3vfpfKyspilwkAAEAZK4krwBNnoQMAAEBDqKyszGGHHZbDDjus2KUAAADAQkqmAT7vLPTbbrstAwcOzEsvvZSKioqsvfba2W+//bLvvvumUCgUu0wAAAAAAAAA6knJNMATZ6EDAAAAAAAAlLOSuQc4AAAAAAAAAOVNAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0K3YBAKWuoqKQiopCvT5HVVV1qqqq6/U5AAAAAAAAGjsNcIB6VFFRSIcOrVNRUVmvz1NVNTeTJs3QBAcAAAAAAMqaBjhQ9urzCu3KyopUVFTmnw/dmBmffFQvz9G640r5xu5Hp6KioAEOAAAAAACUNQ1woKxVVBTSvn2bVFZW1OvzzPjko8wY/369PgcAAAAAAEC50wAHylpFRSGVlRW57o6nM27ClDo//sbrds0Bu2xS58cFAAAAAABgYRrgAEnGTZiSf42bVOfH7dq5XZ0fEwAAAFhQfd7ebJ6qqmq3HgMAaAI0wAEAAACAelWfDepCoZB27VqmoqKyXo4/T1XV3EyaNEMTnPnq+8QLJ10AwNLRAAcAAAAA6k1FRSHt27dJZWVFvT7PPx+6MTM++ahejt2640r5xu5Hp6KioCFJkoZ5X8+dW5WpU2emurr+3nOa7ACUIg1wAAAAAKDeVFQUUllZkevueDrjJkyp8+NvvG7XHLDLJpnxyUeZMf79Oj8+LEp9v6/X7dY5h+2xWdq3b1Pnx/5vVjYAoBRpgAMAAAAA9W7chCn517hJdX7crp3b1fkxoabq831dqKiwsgEALAUNcAAAAAAAaISsbAAAS65+b7wDAAAAAAAAAA1EAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0K3YBde3555/PDTfckDfffDMzZ87Muuuum5/+9Kf54Q9/WOzSAAAAoCTI3gAA0DRVVBRSUVEodhm1UlVVnaqq6mKXQSNWUg3wBx98MGeccUaaNWuWHj16pLKyMs8++2xOOeWUjBkzJieeeGKxSwSgRNX3B0cf6gCAxkL2BgCApqmiopD27duksrL+FoiurqpKoaJ+F6CuqpqbSZNm+L6UxSqZBvgnn3ySc889N61bt06/fv2y4YYbJknGjBmTww47LNdee2122mmnrLfeekWuFIBSU1FRSIcOrVNRUVlvz+FDHQDQGMjeABSTk88BaqeiopDKyopcd8fTGTdhSp0ff+N1u+aAXTbJPx+6MTM++ajOj58krTuulG/sfnQqKgp+Z7NYJdMAv+222zJz5swcffTR8wN4kqy55po57bTTcs455+SWW27JpZdeWsQqASiG+g7IlZUVqaiorLcPdj7UAQCNhewNQLE4+ZxS5cQOimHchCn517hJdX7crp3bJUlmfPJRZox/v86PDzVVMg3w4cOHJ0m+//3vL7Rvxx13TKFQyBNPPNHAVQFQbA2xrM885fTBriHuFSSgAUDjI3sDsDhOPqcU1ff7ulAopF27lk7sAJqcxn7yTsk0wP/xj38kSdZaa62F9rVv3z6dOnXKxx9/nE8++SQdO3Zs6PIAKJL6XtYn+c/SPo1JfX4AaYhwlghoANAYyd4ALIqTzylFDfm+dmIHUJecvFMiDfApU6bkiy++SNu2bdO2bdtFjunSpUs+/vjjfPzxx0I4QBmqr2V9kv8s7dNYNFRAK7d7+TS2sxob4ir8+lZuc7aqwddr6q9x4nWmtMneACxOuZ58Xo6a+mf2Jfm83pDvayd2FFc5va8pfU7e+VKhurq6yf9UfPTRR9l+++3TqVOnPP3004scc9BBB+Xll1/OHXfcke7duy/xc1RXL/wLpFBIKioqMuXzmZk7t2qpav8qLZpXZpk2LTN72meprppb58cvVFSmedt2qaqqSk3eBU19vkn5zbmxzTcpvzk3xvf1/Mc13c90SzzPcn1fT5s+K3Or6n7OzZtVpnWr5mX3vi4UCinU4xMs6rPGV6moqN96ki9rKqc5N7b5zlMuv6+Tpv8az3uOJX2dy+k1Tpr2fJNFz7khfic3BrL30pFRajC+ic+5sc03Kb85N8b39fzHNeE/D7L314wv0/d1U//MviSf18vxfT3/cWXyu2se7+u601h/dyXl876u7++Gk/r/fnhxr/GS/KyWxBXgFRVfnsXwVZOe1+df2n5/oVBIZeWij7/cMq2W6pg11bxt/V5ZOO//v5pq6vNNym/OjW2+SfnNuTG+r8tNOb6v27ZpUU+VfMn7um591WeNYqnvZk5jm3O5zbccNUSD0utMKZO9a0dG+XpNfc6Nbb5J+c25Mb6vy433dd0rt/d1Y8xl5fi+pm6V4/u63H53NUb1/d1w0rh/d5XEu2Pe0mszZ85c7JhZs2YlSdq0adMgNQEAAEApkb0BAABoCkqmAd6mTZtMnTp1sUF8woQJSZLOnTs3ZGkAAABQEmRvAAAAmoKSaIAXCoWss846SZIxY8YstH/y5MmZOHFill9++XTq1KmhywMAAIAmT/YGAACgKSiJBniSbLvttkmSoUOHLrRv6NChqa6uznbbbdfQZQEAAEDJkL0BAABo7EqmAb7PPvukdevW+fOf/5yXX355/vZ33303v/3tb1MoFPKzn/2siBUCAABA0yZ7AwAA0NgVqqurq4tdRF25++67c95556WysjI9evRIixYt8uyzz+aLL77I//3f/+WYY44pdokAAADQpMneAAAANGYl1QBPkieffDI33nhjXnvttVRWVmattdbKEUcckR/84AfFLg0AAABKguwNAABAY1VyDXAAAAAAAAAAylPJ3AMcAAAAAAAAgPKmAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXCgzkydOnWJH/Pcc8/VQyXA0rr22mvz9ttvF7sMAABgMWRvaPpkbwCoXxrgNLhZs2bltddey+jRozNnzpzFjvv000/zwgsvNGBlDe+5557LzTffnNtvvz1jx44tdjm1dthhh2Xy5Mk1GvvFF1+kV69e+dnPfla/RQFL5Nprr81bb71V7DKgzu2444557LHHil1GUVRVVeX9999fYFt1dXUefvjh9OrVK7/5zW8ycuTIIlVXdz788MPMnDmzxuPHjh2bQYMG1V9BRfDpp5/m2WefzcMPP5xHHnkkzz33XI0/mwGlR/b+D9lb9obGRvamVMnesvf/kr0plmbFLoCamzlzZj799NN07dq12KUstX79+uV3v/tdpk+fniRZdtllc9RRR+Woo45KRcWC52P87W9/y1lnnZU333yzGKXWmbfeeit//OMf89Zbb6Vr16459thj071795x88sl57LHHUl1dnSRp1qxZTjrppBx77LFFrnjpvfnmm/nJT36SP//5z+nUqdNix40cOTJnnXVW/vWvf33luFL16aefZsyYMdliiy2KXUqDmDp1ai677LL06tWr2KU0mHJ7jUvBjjvumHPOOSc77rhjsUtpMN/85jdz+eWXZ4899ih2KQ1i3Lhx8z9/lJPhw4fnoosuyscff5zXXnstyZeh/IQTTsgTTzwx/3NInz59cthhh6Vnz57FLLdWdtxxx4Xe09OnT8/FF1+co446KmuuueYC40eMGJGePXtmr732auBK696jjz6aP/7xj4v83FwoFNK9e/ccddRR2X777Ru+uDq03nrrpVAoLNFjCoVC3njjjXqqiFIlezdNsvfCZO/yymWyN02B7F36ZG/ZW/aWvRsLV4AX0aLOhpo1a1YGDRqUiRMnLjR+8ODBTfrDwaBBg9K7d++su+666dmzZ4499ti0atUqV199dY444oh8/vnnxS6xzr322mvZf//9M3z48LRu3TojR47M4Ycfnt69e+exxx7LkUcemYEDB+bWW2/Ndtttl9/+9rd55JFHil32UjvvvPPy7rvv5pBDDslHH3200P7Zs2fnN7/5TQ4++OD861//yo9+9KP85S9/KUKldeub3/xmHnzwwQW2zZw5M9dee20++OCDhcb/7W9/y2GHHdZQ5dWLDz74IBdffHF+/OMf58c//nHOPffcvPfeewuNGzx4cHbdddfcd999Raiy7pTja1xuyjGgzQtflK7Ro0fn5z//eaqrq3PkkUemqqoqSXLHHXdk+PDh6dy5c+6+++6MGDEiZ555Zvr169ekP4cs6j39xRdfZNCgQZkwYUIRKmoYvXr1yimnnJJx48Zlr732yumnn55f/epXOf/883PyySdnxx13zOuvv57jjz8+v/71r4tdbq1sscUW2XzzzZfon80226zYZdMIyN6yt+wtezdVsnfpv8blRvamFMnesrfs3TiztyvAi2hRf/CnTZuWnj17pm/fviV3du7NN9+cLbbYIv3795+/7YQTTsiFF16YAQMG5PDDD8+f//znLLPMMkWssm5dffXVWWWVVdK/f/8sv/zymT59eo499tjcdtttOeCAA3L66afPH7v55pvnJz/5SW666ab88Ic/LGLVS++QQw7Jcsstl7PPPjuHHHJI/vznP2e11VZL8uUZ6meddVbefvvtdO3aNRdddFG23XbbIldcNxb1R3/GjBm57rrrstlmm2WVVVYpQlX1580338yhhx6azz//PK1atUqrVq3yxhtv5OGHH86dd96ZddZZJ1OnTs25556bwYMHp7KyMsccc0yxy66VcnuN33333SVeBtMZ99D43HjjjenSpUvuv//+tGvXbv722267LYVCIaeddlo22mijJMnPfvazPP/887njjjua7OeQxSnlL5weeOCB3Hrrrdlrr71y/vnnp02bNoscN23atFxyySW55ZZbsummm2bnnXdu4Errxn/nCFgSsrfsLXvL3k2R7P2lUn6NZW8oDbL3l2Rv2bux0QBvhEr1F8U///nPnH322Qtsa9GiRXr37p327dunb9++Oeqoo9K3b9/F/gJpakaMGJHTTjstyy+/fJKkTZs2+cUvfpGf/OQn2WabbRYa/8Mf/jCXX355Q5dZp3bfffcsu+yyOeWUU3LIIYfkxhtvzGOPPZYbbrghc+bMycEHH5z/+7//S9u2bYtdar0r1Z/la665JjNnzsxvfvOb7LbbbkmSUaNG5bTTTkuvXr1y5ZVX5rDDDsu//vWvbLjhhunVq1fWXXfdIlddP0r1Nb7hhhtyww03LNFjmvqSmeVqSZczauruvvvuPPPMMzUeXygU0rt373qsqH698MIL2X///RcI4GPHjs27776bZs2a5fvf//4C47feeutcc801DV0mtXDHHXdkk002+dqzy9u2bZvevXtnzJgxueeee5psCJ89e3aaN2++RI8ZOXJkNt5443qqiKauVD/Lyd6yt+xdGmTv/yjV11j2Lh+y91eTvWnsZO+v1xiztwY4DaZ169aZPHnyIvedeeaZmT59eu68884cd9xxufHGGxu2uHqyzDLL5LPPPltg27rrrpvtttsuzZot/OM3adKktGzZsqHKqzfbbbdd+vTpk+OPPz4//vGPU11dndVXXz29evXK5ptvXuzyqKVRo0blwAMPnB/Ak2SjjTbKmWeemVNPPTWnnnpqxo0bl9NPPz1HHHHEQvcYpPHbaaedSvaLk69SbgEtSa6//vrcfffdNR5fKBRyyy231GNF9euFF15YoissmvprPGnSpKy44ooLbPv73/+eJNl4440X+kK8VatW+eKLLxqsPmrvH//4xxLdw3bHHXfMXXfdVY8V1a8f//jHufLKK2v0N2rWrFm5+uqr069fv7z++usNUB00HrL3l2Rv2bupk71Ln+xdM009lyWy99dp6q+x7F36ZO/Fa8zZWwOcBtOjR4/069cv3//+97P22msvtP+CCy7I559/noceeihHHHFEtttuuyJUWbe23nrr/PnPf86mm26ab3/720mSZZddNn/84x8XGjty5Mj0799//rimbrPNNku/fv1y1FFH5dNPP82vfvUrAbxETJkyJeutt95C2zfccMPMnTs3b731Vvr3759NNtmk4YujTvzgBz/IHnvsUewyGly5BbQkGTNmTMaMGVPj8U39rPVzzjmnSd/TdUktt9xy+fTTTxfY9re//S2FQiFbb731QuPHjBkz/8o5mobp06enY8eONR7fuXPnJn1PtokTJ2bffffNSSedlKOPPnqxv5NeeumlnHPOOXnvvfey+uqrN3CVUHyyt+wte5cG2bv0yd41I3s3PbK37F1qZO+mmb01wGkwp512Wg4++ODsvffe+da3vpUrrrhigR+KQqGQyy+/PC1atMiAAQPy8ssvF7HaunH66adn1KhROeKII7L55psv9t4Jhx56aF566aUsv/zyC9ybrKlbb731cscdd+RnP/tZjj/++Fx33XXZaqutil0WtTRnzpxFXi3RqlWrJMkxxxwjgNMklVtAS5IrrriirL5w6dChQ1ZeeeVil9FgunfvnocffjhHHnlkKisrM3HixAwfPjxJsssuuywwdurUqXnwwQfTo0ePIlTK0po7d+4ir2xcnMrKysyZM6ceK6pfDz30UHr27Jmrrroqw4cPz2WXXZZVV111/v55y8TOu9fekUcemZNPPrmIFUNxyN6yt+xdGmRvSpXsXfpkb9m71MjeTTN7a4DTYLp165a//OUvue666/Liiy/O/8D+3yoqKtK7d+9suumm+d3vfpdPPvmkCJXWnY4dO+a+++7LnXfemVmzZi12XKtWrbLvvvvmF7/4xRKdSdTY9OzZc5HbV1999XzwwQc59thj88Mf/nCBM4ZK4SxOFrTBBhsUuwRYKuUW0Ch9Rx99dA488MAccMAB2XLLLfPYY4/liy++yG677ZY11lgjyZdfrL7yyiu57LLL8umnn+aQQw4pctW1M2TIkLz33nvz/3vmzJkpFAq5//7789JLLy0w9u23327o8qiljh075k9/+lNuu+22XHHFFfnRj36Us88+O/vvv3+ef/75/PKXv8zYsWOz7rrr5pJLLvGZhLIle8vesnd58HeOpkr2ptTI3rJ3qSmV7K0BXmTvvvvuAku+TJ06NUny1ltvLXRGyZIsk9JYdejQIeeee+7Xjttvv/2y9957L/BLtKlq1apVDj/88K8cUyr3XRs4cOBX7v/iiy8yaNCgBbaVSgh/8cUXM3fu3Pn/PW3atCTJ008/nfHjxy8wthSusPgqTX2ZpsUpl9d4iy22SKdOnYpdBlAHNtxww1x//fW55JJL0rdv31RWVmaPPfbIRRddNH/M5Zdfnn79+qWioiI9e/ZM9+7di1hx7Q0ePDiDBw9eaPv/fv6YpxT+Zv3vFw9fpVS+eDjkkEOy1VZb5bzzzssFF1yQ/v37Z8yYMWnWrFlOPvnkHHPMMUt0dj7lQfZeNNm7aZK9Sz+X1UQpfI5ZlHJ5jWVvKB2y93/I3l+SvRuHQnV1dXWxiyhX66233iJ/8Kurq79y+5tvvtkQ5dW76urqjB07NpMnT06SLL/88llllVWKW1Q9K/U5jxs3bqke19TP+lzUz/J//2pd1L6m/LO83nrr5fjjj893vvOdBbZPnTo1J5xwQs4+++ysv/76Cz1uiy22aKgS61y5vcblaL311iu7JcnKbc4DBw7M5ptvvsCSTeVk0qRJad269UJXAT7xxBN5/fXXs9tuuzXK+zUtieeff36pHrflllvWcSUNZ1H3Bf06pfT36YUXXsgJJ5yQqVOnplAo5IQTTshJJ51U7LJohGTv0s6hi1Lqc5a9/6OUc5ns/aVSfo3LUbnl0KT85ix7y96LI3s3XU01e2uAF9G11167VI878cQT67iShjVq1Kj06dMnTz/9dKZPn77AvmWWWSbf+9738rOf/Wypfqk0VuU453LydWffL87ee+9dx5U0jMV9gZgs/kvEJE36D345vcb/fWXUkmjKX7Ik5RnQnn/++ay55ppNevlPKHfl+MVDknz++ee5/PLLc++996Zly5Y5+uij8+ijj+btt9/Ot7/97fTq1Stdu3Ytdpk0IrJ3+eTQcpxzOSmnXJbI3kuiKb7GsrfsDTQdsnfTzN4a4DSovn375sorr0xFRUU23XTTrL322mnXrl3mzJmTyZMn54033sibb76ZioqKnHXWWTnssMOKXXKtleOca+qGG27I4MGDM2DAgGKX0uBmzZqVFi1aFLuMpVKuXyAuqab6Gn/VlyxfpSl/yUJ5WNy9Mr9KqSwVyqLdeeed+dvf/rbUf9cojuHDh+eCCy7I+PHjs9VWW+Xiiy/OqquumtmzZ+eaa65J375906pVq5xxxhk58MADi10uFE055tBynHNNyd5NL5clsndNNdXXWPamVMne/C/Zu2kqheytAU6DeeKJJ3Lsscfm29/+dnr37p2VVlppkePef//9XHTRRXnmmWfSt2/ffPvb327gSutOOc55SVxwwQW5++67m/yH92uvvXaJAuaoUaPSs2fP/OUvf6nHqqhL5fQa//73v1+qEN7Uv2Qpx4C2NF/6FgqF3HLLLfVQTf0rx+Wqvu5LtZYtW2bZZZfNOuuskx/84AfZb7/9UlFR0YAVFlcpfA758MMPs/zyyy+0vN7ijB07Ni+99FL22muv+i2snpx++un5y1/+kjZt2uTMM8/MAQccsNCYESNG5KyzzsrYsWOz5ZZb5pJLLimpZY+hJsoxh5bjnJdEKfzNS8orl5WrcnqNZe+ak72bFtl7YbJ30/8cIns3zeytAV5E5fYH/2c/+1kmTpyYAQMGpHnz5l85ds6cOdlrr72y+uqr57rrrmugCuteOc55SZTCH7/kyw85Rx55ZM4444yvHDdnzpxce+216dOnT+bOndvk511TM2fOzKefftqol0P5Ol7j0leuAW1JNeU5l+O9Mg899NCv3D937tx89tlnef/99zN79uxsvfXWueGGG9KsWbMGqrC4SuFzyDe/+c1cfvnlC9xPcPr06bn44otz1FFHZc0111xg/AMPPJCzzjqryc55vfXWy7bbbpuLL744K6644mLHzZw5M7/+9a9z5513pk2bNnn55ZcbsEoaI9l78Uolh5bjnJdEKfzNS+SyryN70xSUWw5Nym/OsvfCZO+m/zlE9l60xp69y+MnrJFakvva/PcZRE01hL/xxhs5/PDDvzaMJkmzZs3ywx/+MA888EADVFZ/ynHO5WjzzTdP3759M2PGjJx//vmLHPPWW2/lrLPOyltvvZXlllsuv/zlLxu4yrqz44475pxzzsmOO+44f9usWbPy8MMPZ5tttkmnTp0WGD948OAm/Qc/Kb/XuBw99thjxS6hwY0ePbrYJTSophyml1b//v1rNG7mzJm54447cvnll+eOO+742vBO47Goc5m/+OKLDBo0KHvuuedCIbypu/TSS2t0j89WrVrlwgsvzPe//31/j0kie3+VUsmh5TjnclRuuUz2Lv3XuBzJ3qVP9l482bvpkr0XrbFnbw3wIqrJH79x48bl4osvzvDhw7PsssvmlFNOqf/C6sm0adPSpUuXGo9faaWV8u9//7seK6p/5TjnctS3b9+cfPLJueOOOzJjxoz07t17/hdn1dXV+dOf/pTrrrsus2bNyq677ppzzz03yy+/fJGrXnrjxo3L9OnTF9g2bdq09OzZM3379l0ohJeCcnuNk+Tdd9/NiBEjss8++8zfNnHixFx77bV5+eWX07p16+y44445/PDDm+T91v5XOQY0FjRr1qz84x//SKtWrbLGGmsUu5wG1apVq/zsZz/LyJEjM3DgQCG8BJTqIl81CeD/7Rvf+Eb222+/eqqGpkT2/mqlkEPLcc7lqNxymexd+q9xIntTfmRv2buUyN5faqzZWwO8kZo7d2769u2bP/zhD5k5c2Z222239OzZs0l/uJ0zZ84SfVBr1qxZZs2aVY8V1b9ynHM5atGiRa677rr07NkzAwcOzMyZM3PllVfm/fffz9lnn51Ro0alc+fOufDCC/O9732v2OXWm1L9g5+U32t85ZVXpm/fvqmurs7ee++dioqKTJ06NQcccEA+/PDDtG/fPiuvvHJ+97vf5fHHH0///v1rdLVNU1aOAW38+PEZNWpUWrVqlS222KLG9zlqzKZOnZobb7wxI0aMWOAM7QcffDC9evXKZ599luTLD+69e/fOJptsUqRKi6NHjx55+umni10G1MoXX3yRRx99NAMGDMjzzz+f6urq/PznPy92WTRisndp5NBynHM5Krdctjiyd+m8xrL3wmRv2bscyN6UgqaQvTXAG6EXX3wxF110Ud55551069YtF1xwQb797W8Xuyz4Wtdee+0SjX/ttdfqqZKGV1lZmcsvvzzt2rXLrbfemg8++CDvvPNOZs6cmf322y9nnXVWlllmmWKXSS2Uy2s8ZMiQ9OnTJ9tvv30OO+ywVFRUJEn+8Ic/ZNy4cdl4443z5z//Oa1bt86oUaNy6KGH5s9//nOOPvroIldee+UY0MaNG5errroqI0aMyOOPPz5/+5/+9Kdcc801mTt3bqqrq7Pccsvl4osvzg9+8IMiVls706ZNywEHHJB33303K664YubMmZNmzZpl1KhROeuss1JdXZ0DDjgga6+9dgYNGpSf/exnGTRoUFZfffVil95gKisrU1VVVewyltqgQYOWaPw///nP+imEohgxYkQGDBiQRx55JNOmTUt1dXVWW221HHDAAcUujUZM9qapkr1LP5eVs3J5jWVv2TuRvWXvpkn2Lm9NKXtrgDcikyZNyuWXX55BgwalRYsWOemkk3L00UeXxPI287z44ouZO3dujca+/PLL9VxNwyinOS9pCE8WvMdeKTj33HPTvn37XHvttamoqMgf//jHbLfddsUuizpU6q/xnXfemY033jg33HDD/G3V1dV54IEHUigU8otf/CKtW7dOkmy00Ub50Y9+lL/85S9NPoSXY0D75JNPcsABB2TSpEnZaKON5s/5qaeeylVXXZVmzZrltNNOyzrrrJO77747p512Wu66666sv/76xS59qfTt2zfvv/9+fvvb32aXXXaZv/26665LdXV1fvrTn+bss89Okuy7777Zc889c8MNN+TSSy8tVskNbuTIkVlppZWKXcZSO/vss5foc0V1dXXJfQ4pN+PHj8/999+fAQMG5L333pt/RVyPHj1y9NFHZ5tttilyhTRWsveCmnoOnaec5ix7l34uo/RfY9lb9pa9Ze+mSvYuP001e2uANxL33HNPrrzyykyZMiVbb711Lrjggqy22mrFLqvO3X333bn77rtrNLZUfjGW05z79etX7BIahRNPPDEdOnRIr1690qdPn2y22WYlcXYy/1HKr/Hrr7++UKB+44038sknn2SZZZZJjx49Fti34YYb5sEHH2zIEutFOQa0P/3pT5k2bVpuu+22Bc6o/9Of/pRCoZCf//zn898L3/3ud7PPPvvkxhtvzG9/+9viFFxLgwcPzo9+9KMFXt9p06bNX3bs4IMPnr+9ZcuW2XPPPXPPPfc0eJ3F8te//jX3339/jjrqqGKXstSa8s8jNTdr1qwMHTo0AwYMyLPPPpu5c+emsrIyW265ZTbbbLNcf/31OeywwxptAKf4ZO+FNfUcOk85zVn2/lIp5zK+VMqvsewte8vesndT1ZR/Hqm5UsjeGuBF9tZbb+XCCy/MK6+8kk6dOuWqq67KrrvuWuyy6kU5/mIstzlvueWWS/yYF198sR4qaVgvvPDCQtvWWWed7Lfffrn77rvz05/+NGeeeeb85azm2WKLLRqqRGqpnF7j6dOnZ7nllltg29///vckX86nsrJygX1z5sxp0l8ezlOOAW348OHZZ599FgjgkydPzksvvZQk+fGPfzx/e6FQyA9/+MPccsstDV1mnfnggw8WeB2TL3+258yZk1VXXXWh5sdKK62UTz75pCFLrHM9e/b8yv1z587NtGnT8o9//CPvv/9+unXr1qRD+N57713sEopiyJAhee+99+b/98yZM1MoFHL//ffP/3me5+23327o8urURRddlIcffjhTpkxJy5Yts+2222annXbKjjvumA4dOmTcuHH5wx/+UOwyaaRk79JWbnOWvf+jVHNZuSqn11j2lr1l7y/J3k2P7P0l2bvxZ28N8CK67LLL0r9//8ydOzc77LBDTjnllCyzzDL58MMPv/JxXbt2baAK61Y5/mIsxznXxEcffZSBAwdm0KBBGTt2bN58881il1Qrhx566FeGkNdffz2HH374Qtub8rzffffdBYLp1KlTk3z5xWKzZgv+aRkzZkyD1lYfyuk17tKlS8aOHbvAtuHDh6dQKOS73/3uQuNHjRqVFVZYoaHKqzflGND+/e9/Z5111llg23PPPZeqqqqstdZaC72uHTt2zJQpUxqyxDpVUVGx0D22nn322STJd77znYXGf/rpp03+6pKBAwfWaNyqq66an/70pznhhBOa/JwXZ1Gfr1daaaWS+RJx8ODBC21f3H3ZmvKc77jjjrRp0ybHHXdcjjrqqJJ9v1L3ZO/SV45zrgnZ+0tNed6y94JK6TWWvf9D9pa9m/rnetn7P2Tv/2jKcy6V7K0BXkQ333zz/H8fNmxYhg0bVqPHNcUPdUvj008/zZgxY5rkWZxLq5Tn/MUXX2Tw4MEZMGBAnnvuuflLzi3qQ31T8/Of/7xJ/0FbGjfccMMC96ma57LLLltoW1NfXjApr9f4u9/9bu67774cfPDBWWGFFTJixIi8+OKLad68eXbeeecFxr7zzjv5y1/+kv33379I1dadcgxoLVu2zIwZMxbY9swzz6RQKGTrrbdeaPy///3vtGvXrqHKq3NrrbVWRowYkUMOOSTJl7+bhgwZkkKhkO9973sLjX/sscey5pprNnSZdeqxxx77yv0tW7ZMu3btSuqet0ly33335Z577skf/vCHLL/88pk0aVK+973vLfR7/OSTT87xxx9fpCrrRrktgbv33ntn6NCh+eMf/5hbbrklm2+++fyz0Dt16lTs8mjEZO+vVso5dHFKec6yd2mRvUuX7P0fsveCZO+mR/aWvUtNqWRvDfAiOvHEE4tdQoP65je/mcsvvzx77LHH/G0zZ85Mnz59stdee2WVVVZZYPzf/va3nHXWWU36S4dynPP/euWVVzJgwIA88sgj+fzzz5Mkyy+/fPbZZ58ccMABWXnllYtcYe2ddNJJxS6hQZVTIJ2nnF7jE044IYMHD84Pf/jDrLHGGnn77bdTXV2dn//851l++eWTfBm+Bw8enH79+qV58+Y58sgji1x17ZVjQFtvvfXy7LPP5qc//WmS/9zbJ0l22mmnBcZWV1fnr3/9a9Zbb70Gr7Ou7LXXXrnkkkuy4YYbZuutt87dd9+dDz/8MKuttlq23XbbBcbecMMNeeWVV3LuuecWqdq6UQp/Y5fUL37xizz66KPp2rVrPvzww/m/t5Jkzz33zKqrrpokuf/++3P99ddn3333TefOnYtVbq0tzRK4c+bMqYdKGsall16aiy66KMOGDcuDDz6YJ598Mk899VQuuuiibLrppunevXvZfUahZmTv0s+h5Tjn/yV7lx7Zu7TJ3rJ3InvL3k2X7P31ZO/i0wAvonIL4dXV1QttmzFjRq677rpsttlmCwXSUlCOc06SCRMmZNCgQRk4cGD+9a9/pbq6Oq1bt853vvOdPPPMM/nVr36VHXfcsdhlspTKKZCWo06dOuXee+/Nddddl1deeSXf+ta3ss8++2S//fabP2bgwIHp27dvVl555fzmN7/JSiutVMSK60Y5BrQDDzwwp512Wnr37p2tt9469913Xz755JN861vfWuBqqJkzZ+bXv/513nnnnSb9hcuBBx6Yl156KZdeemkKhUKqq6uz3HLL5corr5x/D8F77703f/rTnzJ27NhsttlmOeigg4pcdf0aNWpURowYkYqKimy55ZZZd911i11SrTzwwAN59NFHc+yxx+bkk09e6L6Je+21V7797W8nSbbbbrvsv//+ueuuu0rmM/m0adNSXV39lVfIjBgxIuedd14eeuihBqysbrVo0SI777xzdt5550ydOjV//etf88ADD+Sll17KSy+9lEKhkD/+8Y/5/PPPs/POO6dVq1bFLplGoFR+zmuqHHNoOc45kb1Lnexd2mRv2Vv2lr2bKtlb9m4q2VsDvBGZNWtWRo8enQkTJqS6ujpdunTJeuutl5YtWxa7tHq1qKBa6kp1zo888kgGDBiQZ555JnPnzk27du2yxx575Ac/+EG23XbbfPzxxwud2VgKrr322iV+TKFQyM9//vN6qKb+HXbYYTn++OPnf5ApB+X2Gq+44oq5+OKLF7t/n332yfe+97107959fnhp6soxoO26665566230qdPn/Tv3z/V1dVZZZVVcvXVV88fc9NNN+UPf/hDpk2bll122SU/+tGPilhx7RQKhVx55ZU55JBDMmLEiCyzzDLZaaedFjhL+d///neqq6tz/PHH59hjjy2J9/cbb7yRP/7xjxkzZkxWW221HHfccdloo43yy1/+MgMGDJj/maRQKGT33XfPpZdeutD9JJuKgQMHZtNNN82pp576tWPnfeH2xBNPNPkQ/uijj+baa6/NP/7xjyRf3lfu5JNPzu677z5/zPTp03PVVVfljjvuWGjJyaakZ8+eOfDAA7PxxhsnSZZddtnst99+2W+//TJ+/Pg89NBDeeihhzJq1Ki8+uqrufjii7PrrrvmV7/6VZErp7GRvctHqc5Z9q65ppzLZO+aacqvsewte88jezf997fsvWiyd9NUKtm7af6ElZiJEyfmqquuyuDBgzNt2rQF9rVu3To777xzTj311HTp0qVIFULNnHrqqWnTpk0OPvjg7Ljjjtliiy0WOAOsKSyLsTTKLaA9//zzC5yRXA7K7TX+Ok19+bFFKdeAduqpp+aggw7KyJEjs8wyy2TLLbdM8+bN5+9v2bJlNtxww+yxxx758Y9/XMRK686mm26aTTfddJH7TjzxxCYfyP7biBEjcthhh6VZs2ZZZ5118vrrr+eQQw7JoYcemvvuuy977rlndtlll0yfPj2PP/54HnrooXzzm9/MEUccUezSl8obb7yR4447rsbjt9lmm1x33XX1WFH9e/jhh3PaaaelZcuW2WabbdK6deu8+OKLOeOMM+bfP/LVV1/Nqaeemg8++CCrrLJKLrroomKXvdQGDhyY73znO/ND+H9bYYUVcuSRR+bII4/MmDFj8sADD+TBBx/MPffc0+hCOMUje1MqZO+aa8q5TPaumab8Gn8d2Vv2bspkb9l7Htm76SmV7K0BXmSvvPJKjj322EyZMiUbb7xxttpqq3Tp0iXNmjXLhAkT8sILL2TQoEF5/PHHc/3116d79+7FLhkWa5VVVskHH3yQAQMG5J///GdeffXV7LTTTvnGN75R7NLqVb9+/YpdAvWsnF7jF154Yake99/LdjVl5RTQ5llxxRWz4oorLnLfT37yk/zkJz9p4IqoK9ddd126deuWfv36pUOHDqmurs4555yTm2++OXvuuWcuv/zy+WN33333fPbZZ3nooYeabAifOXNm2rVrt9D2ZZddNjfccEO++c1vLrC9bdu2TfqeXEly6623pmPHjrnzzjvn32NtxowZOf744/P73/8+Xbp0yRFHHJEvvvgiP/vZz/KLX/yiUS5LVtfWXHPNnHrqqTn11FPz8ssvF7scGgnZm1Iie1Oqyuk1lr1l7/8mezdtsveXZG/Zu7HRAC+iTz75JD//+c/Ttm3b/OEPf8hmm222yHFvvPFGTjnllJx88sm5//7707FjxwauFGpm6NChGTlyZB544IH89a9/zd/+9rdcddVVWWONNfKDH/wg66+/frFLrBdbbrnl146ZOnVqCoXCV94bhMarJq9xqTj00EOX+IqRQqGQN954o54qgrrRs2fPJX5MoVBI796966GahvHqq6/mqKOOSocOHZJ8OZ8jjzwyAwcOzPbbb7/Q+B/84Af59a9/3cBV1p0VVlghH3744ULbmzVrtsj5/utf/2ry91EcM2ZMDj300PkBPPnyKtYTTzwxP/nJT3LqqaemY8eOufLKK7PJJpsUr9Ai0sQkkb0pPbL34sneTZvs/dVkb5oC2Vv2/l+yd3lojNlbA7yIbr311kybNm2Bs0YW5Vvf+lZuvvnm7LHHHrn99ttz0kknNWCVsGQ23njjbLzxxjnnnHPyt7/9LQ8++GAee+yxXH/99SkUCikUChk2bFjWW2+9rLzyysUut85UV1fnySefzD/+8Y+svvrq2X777dOsWbM8++yz6dWrV959990kyTe/+c2cdtpp2WabbYpcce0MGTIk7733Xo3Hl/KSZPOUyhctl156aY3GPfrooxk+fHiSZKONNqrHihpGOQa0ww47bIkfUygUcsstt9RDNfVv4MCBNR77319ENeXX+LPPPkunTp0W2DZvacH27dsvNL5Vq1aZMWNGQ5RWLzbaaKM8/PDD+fnPf/61yyTOmjUrDz/8cLbbbrsGqq5+TJ06NaussspC21dbbbUkXy6leOedd87/IqYUvPjii5k7d+4SPWavvfaqn2JoMmRvSpHsLXsviuzddMjeNSd7Ny2y95dk7y/J3k1XKWRvDfAiGjp0aPbcc8+vDODzrLzyytl7770zePDgJh3C//eHZt59155++umMHz9+gbGNccmEpVGOc06SysrKbLfddtluu+0yc+bMDBkyJA899FCefvrp3HvvvRkwYEB69OiRffbZJ7vvvnuxy62Vzz77LMccc0xGjhyZ6urqJMmGG26Y8847L8ccc0xat26dnXbaKdOnT8/IkSNz7LHH5uabb27SZzYPGTIkgwcPrvH4Ugjh//1Fy2qrrZYddtihJL9o2Xvvvb9y/7hx43LxxRdn+PDhadeuXU477bQccMABDVRd/SnHgPbBBx/UaFxVVVXGjx+f6urqJn0/ydGjR3/tmP9+fy+77LI55ZRT6r+welRdXZ1mzRb8uD/vNWzKr+XiHHjggfnJT36SX/3qVzn33HMXmvs8VVVVOf/88zNhwoQceOCBDVxl3aqqqlrgnq/zzLuf4DHHHFNSATxJ7r777tx99901Gjvv91ZjC+E0PNm7PHJoOc45kb1l7wXJ3k2H7P31ZO+mSfb+kuwtezd1pZC9NcCL6IMPPliie3ust956S/QhoTH63x+aeYGlT58+C/0xaOp/7Ocppzkfc8wx2WqrrbLllltm/fXXnz+XVq1aZY899sgee+yRSZMm5eGHH86DDz6YZ599Nn//+9+bfAi/5pprMnr06Jx//vnp0aNHxo0bl0suuSQ//elP061bt/Tv33/+2X6ffvpp9t133/Tt27dJh/Bjjz023/nOd4pdRoMpxy9a/tecOXNy00035YYbbsiMGTOy55575uyzz55/RmtTV44B7fHHH//aMSNHjsyFF16Yf//731lllVVy3nnnNUBlDW/u3Lnp27dv/vCHP2TmzJnZbbfd0rNnz4XO4KZx23zzzXPkkUfmpptuyt///vccccQR6dGjR1ZcccVUV1fn448/znPPPZfbbrsto0ePzqmnnpr11luv2GXXq65duxa7hDq3//77l+2Sciw92bu0c+g85TRn2Vv2LlWyt+ydyN6yN42d7L0w2btx0gAvoubNm+eLL76o8fiZM2emTZs29VhR/arp0j6lpNzm/Pe//z1PPvnk/KWoNt988/To0SNbbbXV/D9yHTp0yCGHHJJDDjkkY8eOzV/+8pciV117jz/+eA488MAcdNBBSZI11lgj559/fo444ogccsghCyx1s/zyy2f//fdP//79i1Rt3VhzzTVLKmB+nXL8ouW/Pf/887nooosyZsyYrLHGGrngggvSo0ePYpfVYMoxoE2dOjW/+c1vcvfdd6eioiLHHntsTjjhhLRs2bLYpdW5F198MRdddFHeeeeddOvWLRdccEG+/e1vF7usOvO/y2bOnDkzhUIh999/f1566aUFxr799tsNXV6dO+OMM7Lyyivnqquuyvnnn7/IhkebNm1y4YUXlsQVNOVo8803zx577FHsMmhiZO/SV25zlr1l71Ile8vesrfs3VTJ3rJ3qSmF7K0BXkTrrLNOnnjiiRrfB2T48OFZa6216rmq+vN1S/uUonKb88svv5w33ngjL7/8ckaMGJFXXnklw4YNS6FQSLt27bLFFlukR48e6dGjR9ZZZ52suuqqOe6444pddq19/PHHWXPNNRfYNu9ndVFnf6200kqZMmVKg9RG3SjHL1qSL79QuOyyy/LAAw+kZcuW+cUvfpGjjjpq/vI+5aDUA9qi3H///bn88svzySefZMstt8wFF1yw0O+4UjBp0qRcfvnlGTRoUFq0aJGTTjopRx99dFq0aFHs0urU4MGDF7ls5qBBgxY5vilfDTfPwQcfnL333jvDhg3LCy+8kH//+9+prq5Oly5d0r179+y0005N/p6R/21R9wb9qi9bSmFpVFhSsnfpK7c5y97/IXuXFtlb9pa9Ze+mSvaWvWXvxkcDvIh+9KMf5fzzz8/DDz+cXXfd9SvHDho0KM8880yuuuqqBqqu+D744IOcf/756du3b7FLaTBNfc7NmjXLRhttlI022iiHH354kuSjjz5aIJRfdtllmTt3btq3b58tt9wyPXr0yMEHH1zcwmtp9uzZadWq1QLb5oWURYWVQqGwwL3paPzK8YuWu+66K1dddVWmTJmS7373uznvvPNqdN/MUlEuAe2/vfvuu7nooovy/PPPp0OHDvn1r3/d6O7dU1fuueeeXHnllZkyZUq23nrrXHDBBVlttdWKXVad69evX7FLKJrWrVtn1113/drP2KVgcV+0JIv+skUIpxzJ3l+tqefQpdHU5yx7/4fsXVpkb9lb9i4tsnfpk72/JHs3ThrgRbTPPvtk0KBBOfPMM/PWW2/lkEMOSZcuXRYYM2HChNx8883p169ftttuu/zwhz8sUrV1Y+TIkbn++uszYsSIJMm3vvWt/PznP8/mm28+f0x1dXX+/Oc/55prrsnMmTOLVWqdKcc5/7eVVlopu+22W3bbbbckXy7t88ADD2TAgAF59NFHM3jw4CYfwsvNiSeemHXXXbfYZTSocvqiZfTo0bngggsyatSorLDCCrn44ovzgx/8oNhlNahyCWjzzJo1K9ddd1369u2bOXPmZL/99sv/a+/Ow6IqFz+Af4dNQFTcSHHLLcYtRWSRrlqCuIWCS25JmvtNU1NTi8IFRXPL0jT1iltdlwQERQTFJUUWBeQa6tWruStuIJI4MJzfHz7MrxFUQGYO55zv53l6njzzTn7fUJjvec95z/Tp01G1alWxo5W7CxcuYM6cOUhNTUWtWrWwfPlyWZc0uWwFSS+ntBMtvr6+sv5+TIbD7q2MHqrEOf8du7f8sHs/x+4tX+ze7N5ywe4tf+ze0sQFcBGZmJhg7dq1mD59On7++WesW7cOdevWRe3atWFqaooHDx7g2rVrEAQBPXv2xIIFC8SO/EZOnjyJMWPGQKvVonHjxrCyskJSUhJGjBiB4OBgODs748aNG5g2bRrS0tJgY2ODuXPnih37jShxzi/Kzc1FUlISEhMTcfr0aZw9exZ5eXmwsLDQbckmB5mZmbh165bu14VXID98+FDvOPD86lYpmzhxot6vNRoNzp8/j4yMDN02N2q1WpbPK1KC/v37o6CgAABQs2ZNbNu2Ddu2bXvle1QqFTZv3myMeAaltIIGAEePHsX8+fNx8+ZNODg4YO7cuWjbtq3YsQxi8eLF2Lp1K7RaLT744ANMmTIFNjY2Rb5Hv6i4O03kavv27Th+/DhWrVoldpQyKenWxn8n9e9fZTnRcurUKQMkMQ6lPeOXyg+7t/x7qBLn/CJ2b3ZvkhZ2b3Zvdm997N7Swe5dMuze4lMJgiCIHYKA33//HXv27EFaWhru3bun+yDr5OSEvn37ws3NTeyIb2zkyJFIS0vDhg0b4OjoCAC4e/cuxo8fD3NzcwQFBcHPzw8PHjyAl5cXvvnmG9SuXVvk1G9GiXPOz89Hamoq4uPjER8fjzNnziAvLw/m5uZ49913dcXb0dFRNtsZqdXqYp/bIgjCK5/ncu7cOUPGMrj79+9j+fLliI6ORk5Ojt5rVlZW6N69O6ZOnVrk7hopUqvV+Prrr+Hh4aE7lpWVBV9fXyxbtkz397tQTEwMFi1aJMmvcdeuXcv0vtjY2HJOYlwvK2ivI+WC9vnnnyMmJgYA8MEHH8DPzw+mpqavfZ+zs7OhoxmEWq3W/XtpnrUlxb/HZRUQEICdO3dKds4l/f5VUFCAu3fv6n5OS3W+pXH79m2EhoYiLCwM169fV8SciV6G3VuePVSJc2b3/n/s3uzeUvwas3uze78Ou7d8sXvLF7t3xcIFcDIaNzc3DBgwANOnT9c7fvz4cYwZMwZNmzbFvXv3MGfOHMlvN1dIaXMeM2YMTp06hdzcXJiYmKBVq1Zwc3ODq6srnJycimxjJRezZ88u0/ukfCVVamoqxo0bh6ysLLRt2xZubm6ws7ODmZkZMjIykJSUhKSkJFStWhVr1qxB+/btxY78RpR6okVJlFjQ/j5n4PXzlnphKeuV1S/eeSNnUi/hJXHmzBnMmTMH586dQ/369fHNN9+gS5cuYscyiGfPniE6OhohISFISEjQ/R3u1KkTfv75Z7HjEZEBKa2HAsqbM7t36bB7Swe7t/yxe7N7vwy7t7ywe7N7VwTcAl1CEhIScOHChTJtMVERZGdno2nTpkWON2/eHIIgIDMzE7t27ZLFswUKKW3Ov//+O8zNzeHj44Nx48bh7bffFjuSUUi5TJfFgwcP8Nlnn6Fy5cr46aef4OTkVOy49PR0TJkyBZ9//jn27NmDmjVrGjlp+fHx8SlVMVOSU6dOITQ0VPJbhSqpaBVS2veusnyN5fZsUCXLzs7GsmXLsHPnTpiYmGDcuHH45z//KcstQ1NTUxESEoL9+/fjyZMnAIAaNWqgf//+GDRoEOrVqydyQqKKj91bepQ2Z3ZvZWD3pr9j95YupX3vYvdWNnZvdu+KhAvgEhIZGYmdO3dKtoRrtVqYmRX9I1e4Fdf48eNlU0YLKW3OAwcOREJCgm6bjyZNmqBjx45wc3ODs7MzqlWrJnZEKgfbtm1DTk4Otm/fjgYNGrx0XMuWLREcHAxvb2/8+uuvmDRpkhFTlq9FixaJHaFCuXPnDkJDQxEaGorr168DgCJLuNQLmq+vb6nfc/PmTQMkqXgKTy4dOHBA0s9souf27NmD7777Dg8ePICLiwsCAgKKXSSRsoyMDISFhSE0NBR//vknBEGAlZUV3N3dERcXh3nz5ultJUpEr8buLT1KmzO7tzKwexO793Ps3vLF7i0v7N7s3hUNF8CpwpDbN8OSkNuc58+fDwC4desW4uLiEB8fj6ioKGzbtg0mJiZQq9VwdXXVlXJra2uRE1NZHDx4EH369HllAS9Ur149+Pr6Ijo6WtIl3M/PDxMmTEDHjh11x/Lz85GSkgK1Wo0qVarojQ8PD8esWbOQnp5u7KgGo9FodNv5xMfHQxAECIIAV1dXDBkyROx4RqW0gvbs2TNERUUhNDQUSUlJ+OOPP8SOZBCFJ5fCwsJw7do1CIIAW1tbsWPRG7h8+TLmzp2LxMREVK9eHYsWLYKPj4/YscrV/v37ERISgri4OGi1WlStWhXe3t7w8vJCp06dcO/ePXh6eoodk4gqGLn10JKQ25zZvZWB3fs5dm92b3ZveWH3lh92b3bviooL4ERU7uzt7TFgwAAMGDAAAHDx4kXEx8fj5MmT2L17N4KDg2FmZobWrVujY8eOmDx5ssiJqTRu3LiBjz/+uMTj1Wo1QkNDDZjI8BITEzFw4EC9Y9nZ2fDz88PGjRv1ynkhQRCMFc+gXtzOp3BevXv3xmeffYYmTZqInNA4lFjQkpOTERISgqioKOTk5EAQBDRv3lzsWOWq8ORSaGgo4uPjUVBQAEEQ0K5dOwwePBi9evUSO+IbCQsLK9X4K1euGCaIkWk0GqxevRobN25Efn4+Bg4ciOnTp6Nq1apiRyt3U6dOhbW1NYYOHQoPDw84OzvD1NRU9zq3ECUikjd2b3lj936O3Zvdm91b+ti99bF7Sw+7tzRxAZyM6tSpU9BqtXrHcnJyAAAnTpzA3bt3i7xH6lcLKXHOL2revDmaN2+O4cOHQ6PRICoqCr/++itSU1Nx5swZlnCJMTc3x7Nnz0o8Pjc3V7Z3HMilaL+ouO18bG1t4evri3bt2iEgIAC9evWSfQGXe0Erzt27d3Vf+6tXrwIAzMzM0KtXLwwZMgQdOnQQOWH5OHPmDHbv3q13cqlq1arIzs7G/Pnzi5x0k6pZs2aVqoQJgiD50nb06FHMnz8fN2/ehIODA+bOnYu2bduKHctg6tevjxs3biAkJARXrlzBf/7zH3h6eqJx48ZiRyMikSmxhypxzi9i95YXdu//x+7N7i037N7s3uze0sLuLU1cACej2rlzJ3bu3Kl3rPBD7IYNG/S+8Rf+IJB6IVXinP/u2rVrOHPmDM6cOYO0tDScP38eeXl5qFy5Mjp37gxnZ2exI1IpvfPOOzh69GiJn4l45MgRNGvWzMCpqLyMHTsWJ06cgFarRd26dTF06FB4enrC1dUVJiYmuHnzpmxPPhRSSkErpNFocPDgQezevRvx8fG6E8dNmzbF5cuXsWTJEvTo0UPklG8uIyMDe/bsQWhoKK5cuQJBEGBvbw9fX194eXnhrbfeQrdu3VCjRg2xo5aboKAgsSMY1eeff46YmBgAwAcffAA/Pz9oNBokJSW98n1S/ixy8OBBnDlzBuHh4YiKisLx48exfPlyNGnSBF5eXmjVqpXYEYlIJErsoUqc89+xe8sPu7e8sXuze7N7s3tLFbs3u7dUcAFcRLdu3SrV+MIrl6VKaT8IAOXNOSsrC2lpabrCnZaWhqysLAiCgGrVqqF9+/aYOnUqnJ2d0bJlS5iYmIgdmcqgb9+++PbbbxEZGfnaq3DDwsIQFxeH5cuXGykdvaljx47B2toafn5+GDZsGGrXri12JKNQYkFLS0tDSEgIIiMj8fjxY5iYmMDR0RFeXl7w8vKCVquFp6cnzM3NxY5aLrp27YqCggKo1WqMHz8eHh4eaN26te71mzdvipjOMHx9fcWOYFTR0dG6f4+NjcXhw4dfOb5w8ePcuXOGjmZQbdu2Rdu2bfHVV1/h+PHjiIiIwKFDh7BmzRqoVCqoVCocPnwYarUa9erVEzsukSjYveVPaXNm91YGdm95Y/dm92b3lg92b3Zvdu+KiQvgIuratauitsYoyw8Cqf9AVNqcXV1doVKpIAgCqlevDhcXFzg7O8PZ2RkODg6S/vNL/69///4ICwvDl19+iQsXLmDYsGGws7PTG5ORkYHg4GBs2bIFXbp0Qc+ePUVKS6U1ceJE7Nu3D2vXrsXPP/+Mxo0bw9PTE56ennj33XfFjmcwSixoH330EaysrNCpUyd07twZXbt21TvJILc55+fnw8rKCrVq1YKVlVWRLVKV4O7duzh9+jQyMjIAAHZ2dnB0dETdunVFTlY+lLb48SJTU1N06dIFXbp0QW5uLmJiYrB3716cOHECv/32G0JCQuDq6or+/fvjww8/FDsukVGxe7+e1H/uK23O7N7KwO4tb+ze7N6F5DZndm92b7lj95YOLoCLyMfHh6WkGM+ePUNUVBRCQ0ORlJSEP/74Q+xIBieXOffo0QMuLi5wcXHhtlsyZmJigrVr12L69On4+eefsW7dOtStWxe1a9eGqakpHjx4gGvXrkEQBPTs2RMLFiwQOzKVwsSJEzFx4kScPXsWERERiIyMxLp167B+/XrUrVsXTk5OsvzZpcSCZmVlhadPn+J///sfqlevDmtra3Tu3Bk2NjZiRzOIw4cPIyIiAhEREVi+fDlUKhVq1aqFbt26oVu3brK+OvfixYsIDAxEUlISBEHQ20rRxMQETk5O8Pf3h4ODg4gp35zSrrp/FUtLS3h7e8Pb2xuPHj1CZGQkIiIicPLkScTHx7OEk+KwexdPLj20NOQyZ3ZvZWD3ljd2b3Zvdm/5YfdWHnbvik0lyP1hIiQZycnJCAkJQVRUFHJyciAIApo3b46IiAixoxmMEudM8vL7779jz549SEtLw7179yAIAuzs7ODk5IS+ffvCzc1N7IjlQq1W4+uvv4aHh4fuWFZWFnx9fbFs2TI4OjrqjY+JicGiRYskv7UP8PwOqJMnTyIiIgIxMTF48uQJAKBevXro378/fHx8YG9vL3LKN3f79m1dQbt48WKxBc3LywurV6/W+3MgZbm5uYiNjUV4eDiOHz8OrVYLc3NzdOzYEd26dYNarcaAAQNkNedC58+f151kun37NlQqle6kxKxZs/DJJ5+IHbHcHDp0CFOmTIFKpYKnpyfc3NxgZ2cHMzMzZGRkICkpCVFRUcjPz8eKFSvg6ekpdmQyoOvXr2Pfvn0YP3682FGISERK7KFKnDPJC7s3uze7t3Sxe7N7s3srD7t3xcAFcIm4ffs2QkNDERYWpveMBam7e/cuwsLCEBoaiqtXrwIAzMzM4OXlhSFDhqBDhw4iJyx/SpwzkdSp1epir7x+3faYcijhf6fRaBAbG4u9e/fi6NGjyMvLg4mJCTp27Ih//etfYscrN0oqaIUyMzN1V6mmpqbqvTZ27FiMHz8eVlZW4oQzsMTERERERCA6OhpZWVlQqVSoX78++vXrB19fX9SpU0fsiGV248YNeHt7o3Hjxli5ciUaNGhQ7Lg7d+7g888/x6VLl7Bnz56XjqvoZs+eXer3qFQqLFy40ABpiEiq2L3lQ4lzJpI6du/n2L3ZveWI3Zvdm92bjI0L4BXYs2fPcODAAYSGhiIhIQEFBQUwMzPD2bNnxY72RjQaDQ4ePIjdu3cjPj5et9VN06ZNcfnyZaxYsQI9evQQOWX5UuKcSTk0Gg3Onz+PjIwM3VXoarUalSpVEjtauSnLBztA3s/Eefz4MaKiohAREYHTp08jPT1d7EgGIeeC9jI3b95EREQE9u7di0uXLkGlUsHa2ho9e/ZE//79i9x1IRd5eXk4duwYwsPDceTIETx79kzyn7sWLFiAPXv2ICoqSu8Zc8XJzMxEr1690KdPH8yaNctICcuXWq0u9XtUKpWkT5iW5Q4RlUqFgwcPGiANkXSxe8uHEudMysHu/XLs3tLH7s3uLeXPXezer8fuTWLgAngFlJKSgtDQUERGRuq25qpTpw4GDhyIjz76CLVr1xY7YpmkpaUhJCQEkZGRePz4MUxMTODo6AgvLy94eXlBq9XC09NTVtu9KHHOpBz379/H8uXLER0djZycHL3XrKys0L17d0ydOhV2dnYiJSRjOXXqlOzvoJFjQSuJ8+fPIzw8HJGRkbhz547kC0tJPXnyBNHR0di7dy82btwodpwy69mzJzp37lziE4nfffcdDh8+jP379xs4mWHcvHmzTO+T8jPounbtWuSYIAi4ffs2atWqBQsLi2LfFxsba+hoRJLA7i2fHqrEOZNysHtTIXZv+WL3ZveWEnbv59i9Kz4zsQPQc3fv3sWePXsQEhKCq1evQhAEmJiYAACmTJmCsWPH6n4tVR999BGsrKzQqVMndO7cGV27dtW7Iqqs3zgrMiXOmZQhNTUV48aNQ9eQgZwAAEWsSURBVFZWFtq2bVvsc23CwsIQGxuLNWvWoH379mJHplI6e/YsUlNTIQgCWrRoUWzJfvLkCZYuXYpdu3bhjz/+ECGl8Zibm8PDwwMeHh56BU3u1Go11Go1vvzySyQkJChizgBgY2MDT09PJCcnix3ljdy+fRvNmjUr8fgmTZrg3//+twETGZaUy3RZFVemHz58CHd3dyxZsgQdO3YUIRVRxcbuLc8eqsQ5kzKwe8sfu7c+dm92byli95Y/dm9p4gK4iAq35goJCcHJkyeh1WpRqVIldO3aFd26dYODgwN8fX3RvHlzyRdwALpnuPzvf/9D9erVYW1tjc6dO8PGxkbsaAajxDmT/D148ACfffYZKleujJ9++glOTk7FjktPT8eUKVPw+eefY8+ePahZs6aRk1JZ/PXXX/jiiy9w9OhRFG4So1Kp4O7ujjVr1uiuaDxy5AgCAgJw9+5dNGzYUMzIRieXglZa9vb2kj95fOPGDQQHByMlJQUA0LJlS4wZMwaNGjXSGxcdHY358+fj/v37CAwMFCNqubC0tMTjx49LPP7x48eoWrWqAROJS6PR4NKlS7C0tESTJk3EjmMwr3o+JpFSsXvLv4cqcc4kf+ze8sbu/Xrs3tLF7v1q7N7ywO5d8XEBXESdOnXC48ePUa1aNfTu3RseHh7o3LkzrKysAMjvCuWTJ08iNjYW4eHh2L17N3bu3Alzc3N07NgR3bp1K9OzIyo6Jc6Z5G/btm3IycnB9u3b0aBBg5eOa9myJYKDg+Ht7Y1ff/0VkyZNMmJKKqsff/wRR44cQadOneDr6wtra2scPXoUO3bswHfffQd/f38sXrwYmzZtgqmpKUaNGoXPP/9c7NjlQmkFDQDOnDmDNWvW6M35s88+07vrQBAEbNq0CT/88ANyc3PFivrGzp07h+HDh+PJkyewtLSEpaUl0tPTERkZie3bt+Odd95BdnY2/P39ER0dDVNTU4wdO1bs2G+kdevWiI6OxqhRo0o0/sCBA2jRooWBUxlWdnY21q9fj5SUFGzdulV3PCIiAoGBgbqTEo0bN8bChQvRrl07kZISkTGxe8u/hypxziR/7N7yxu7N7s3uze4tZezeJAVcABdRVlYWrK2t0b17d7i6uqJ9+/a6Ai5HlpaW6NWrF3r16oXMzExERkYiIiICx44dw7FjxwA8v2omLS0N7u7usvh/ocQ5k/wdPHgQffr0eWUBL1SvXj34+voiOjqaJVwiYmNj4eLigvXr1+uOvf/++6hZsya2bt0KW1tbBAcHQ61WIygoSPIf2AspsaCdPHkSY8aMgVarRePGjWFlZYWkpCSMGDECwcHBcHZ2xo0bNzBt2jSkpaXBxsYGc+fOFTt2mRWeRFi2bBl69+4N4PnzQr/44gsEBgZi6dKl8PPzw59//ok2bdogMDAQDg4OIqd+MwMGDMCUKVMQHByMkSNHvnLs2rVrkZaWpvd3X2pycnIwaNAgXL58GXXq1EF+fj7MzMyQlpaGmTNnQhAEDBo0CM2bN0dYWBhGjhyJsLCwIifaiEh+2L3l30OVOGeSP3ZveWP3Zvdm92b3lip2b5IMgUSTlJQkfPvtt4KLi4ugVquFFi1aCB999JGwYcMG4erVq8KNGzcEBwcH4eDBg2JHNagbN24Ia9asEXr37i04ODgIarVaaN++vfD1118LycnJYsczCCXOmeSjXbt2wvbt20s8fufOnYKjo6MBE1F5ateunbBp06Yixy9duiQ4ODgILVq0EObPny9oNBoR0hnO+PHjhVatWgl79+7VHTtz5ozg4eEhDB8+XLh7967QvXt3wcHBQRgwYIBw/vx5EdOWjxEjRgjt27fX+7lz584dwcfHRxg4cKBw6dIlwd3dXXBwcBAmTZokZGRkiJj2zbm7uwvz588vcvzAgQNCy5YthaFDhwqtW7cW1q9fL2i1WhESGsakSZMEtVotTJs2TUhJSdH7u6vVaoWUlBTdmG+++UbEpG/uhx9+EFq1aiXs379f7/jYsWMFtVotBAUF6Y7l5uYKXl5ewqxZs4wd0+AePnwoODg4CHFxcWJHIaow2L2fU2IPVeKcST7YveWN3Zvdm92b3Vuq2L2fY/eu+HgHuIg6dOiADh064JtvvsHRo0cRERGBI0eO4MyZM1i6dCkaNGgAlUqFv/76S+yoBlWvXj2MHz8e48ePx/nz5xEeHo7IyEj89ttv2L17N86dOyd2xHKnxDmTfJibm+PZs2clHp+bmwtra2sDJqLy9PTpU9SoUaPI8erVqwMAunXrBn9/f2PHMri0tDQMHjxYd3UyALz77rv48ssvMXXqVEydOhU3b97E9OnT8emnn8ri+aDnzp3DkCFD4OjoqDv21ltvYdq0aRgzZgwmT56M/Px8rFixAj179hQxafnIysoqdvvTNm3aQKvV4sKFC9i6davstuVaunQpgoKCsH37duzbtw+mpqawtbWFqakpMjMzodFoYGJiglGjRmHq1Klix30j0dHR6Nu3L3r06KE7lpOTgxMnTgAAhg4dqjteqVIl9OnTB7t27TJ6TiIyPnbv55TYQ5U4Z5IPdm95Y/dm92b3bmf8cAbE7s3uTRUPF8ArADMzM3h4eMDDwwM5OTmIjo5GREQEEhISIAgCZs6cid27d6Nfv37o3r07KlWqJHZkg1Gr1VCr1fjyyy+RkJCAvXv3ih3J4JQ4Z5K2d955B0ePHoWfn1+Jxh85cgTNmjUzcCoyNJVKBQDw8fERN4iBKLGgZWdno2nTpkWON2/eHIIgIDMzE7t27ULDhg1FSFf+8vPzi/0MZWlpCQAYO3asrL6+hSwsLBAQEAA/Pz+EhYUhLS0N9+7dgyAIaNKkCZycnODt7S2Lrchu3LihV7QBICkpCfn5+WjQoEGRP8t169bFgwcPjBmx3K1atarIsdzcXKhUKuzZswenT58u8rpKpcJnn31mjHhEFQ679/9TYg9V4pxJ2ti9lYndm91b6ti92b3ZvZ9j9xYfF8ArmMqVK8PX1xe+vr548OAB9u7di4iICMTHxyM+Ph7z589HUlKS2DGNwtXVFa6urmLHMColzpmkp2/fvvj2228RGRmJXr16vXJsWFgY4uLisHz5ciOlI0MrLCxyo8SCptVqYWZW9KOghYUFAGD8+PGyKeAl0bp1a7EjGFTjxo0lf5X565iYmKCgoEDv2MmTJwEA7u7uRcY/fPgQNjY2RslmKMWV8EJhYWHFHmcJJ3qO3fv/KbGHKnHOJD3s3srG7i0f7N762L2lj91bH7t3xcUF8AqsZs2a+OSTT/DJJ5/g6tWrCA8Pl/QVyiW9YvXvVCoVNm/ebIA0xqHEOZP89e/fH2FhYfjyyy9x4cIFDBs2DHZ2dnpjMjIyEBwcjC1btqBLly6y2MJJSQqvOC/ta3Im94JWnOKuUJczJfzZvnv3Lk6fPo2MjAwAgJ2dHRwdHVG3bl2Rk5WPZs2aISUlBcOGDQMACIKAmJgYqFQqdO3atcj4Q4cOSf7P+ZYtW8SOQCQL7N7S76FKnDPJH7u3/LF7F8XuLX9K+LPN7q2P3ZvEwgVwiWjUqBEmTZqESZMmiR2lzBITE4s9rlKpIAjCS1+TMiXOmeTPxMQEa9euxfTp0/Hzzz9j3bp1qFu3LmrXrg1TU1M8ePAA165dgyAI6NmzJxYsWCB2ZCqlhQsXYsWKFXrHBEGASqXC9OnTi1ytrVKpcPDgQWNGNDp+b5aHy5cvF7mbLzs7GwBw4cKFYq/Kd3Z2Nko2Q7p48SICAwORlJQEQRD0PoOYmJjAyckJ/v7+cHBwEDHlm/Px8cGCBQvQpk0bvPfee9i5cydu3bqFhg0bolOnTnpj165di9TUVMk/V9HFxUXsCESyw+4tTUqcM8kfu7f8sXsXxe/N8sDuze5diN2bxMQFcBH5+flhwoQJ6Nixo+5Yfn4+UlJSoFarUaVKFb3x4eHhmDVrFtLT040dtVycP3++yLGHDx/C3d0dwcHBev8f5EKJcyZlqFKlCn7++Wf8/vvv2LNnD9LS0vDf//4XgiDAzs4OPj4+6Nu3L9zc3MSOSqVkb28PAMWeKCy8UvXF1152UlFqlFjQTp06Ba1Wq3csJycHAHDixAncvXu3yHuk/Cy6tWvXYu3atcW+tnjx4mKPnzt3zpCRDO7QoUOYMmUKVCoVevToATc3N9jZ2cHMzAwZGRlISkpCVFQUBgwYgBUrVsDT01PsyGU2ePBgnD59GkFBQboFj2rVqmHp0qUwMTEBAPz2229Yt24drl+/DicnJwwZMkTk1Ial0Whw6dIlWFpaokmTJmLHIRINu7f8e6gS50zKwO4tX+ze7N7s3vrYvaWD3bsodu+KSSXI5SenBKnVaixZsgTe3t66Y48ePYK7uzs2btxYpKCFh4dj5syZkv9h8HePHj1Cx44dFVVIlThnIqKKTq1Wv/RK88Ir8Isj5Z/JL5vz3z8a/v31wv8PUp3zjz/+WKa7CSZOnGiANMZx48YNeHt7o3Hjxli5ciUaNGhQ7Lg7d+7g888/x6VLl7Bnz56XjpOKlJQUpKSkwMbGBp6enqhRo4butVWrVmHPnj3w9vbGuHHjin3+oNRkZ2dj/fr1SElJwdatW3XHIyIiEBgYiMePHwN4/iy6hQsXyu6ZikQlwe6tzB6qxDkTEVV07N7/j91bH7u39LB7P8fuXXHxDvAKiNckEJFU5ObmwtLSssjxS5cuoWrVqkWeT0YVX1hYGDp06ID69euLHcWoPvvsM8VttRYUFCR2BKOS8la2ZbV582aYm5tjw4YNekX0RXXq1MG6devQq1cv/PLLL5g1a5YRU5Y/R0dHODo6FvvaxIkTX3piJS8vD6mpqcXeDVpR5eTkYNCgQbh8+TLq1KmD/Px8mJmZIS0tDTNnzoQgCBg0aBCaN2+OsLAwjBw5EmFhYWjUqJHY0YkqBHZvIpIKdm/5YfdWDnZv+WP3Lordm927IuACOBERlZpGo8HixYsRERGBY8eOFSniy5cvx7Fjx9C/f3/MnDkT1tbWIiWl0po9eza+++47xZVwJRY0X19fsSMYVXHb38rd8ePH4evr+8oCXsjW1hY+Pj44fPiw5Et4WWVlZcHPz6/Yu0Erqo0bN+LatWv4/vvv0aNHD93x1atXQxAEfPLJJ7qv54ABA9CnTx+sXbtWcSfhiIiIpIrdW77YvZWD3Vv+2L1Lh92bjMVE7ABERCQtGo0Go0aNwi+//AJ7e3s8evSoyJgPPvgADg4O2LFjB0aPHo38/HwRklJZKPVOKD8/P5w8eVLsGEbl4eGBQ4cOiR3DaBITE3H//n2xYxjV7du30axZsxKPb9KkCe7cuWPARBWf1L4HRkdHo2/fvnoFPCcnBydOnAAADB06VHe8UqVK6NOnj+K+1xEREUkVu7e8Se1zZ3lh95Y/du/XY/eW3vdAdm9p4gI4ERGVyqZNm5CUlAR/f3+EhYWhbt26RcYMHDgQu3fvxsSJE5GcnIxt27aJkJSo5JRY0G7evIm//vpL7BhkQJaWlrpnUJXE48ePUbVqVQMmovJ248YNtG7dWu9YUlIS8vPzUb9+fTRs2FDvtbp16+LBgwfGjEhERERlxO5NcsTuTXLE7i1/7N7SxC3QyWjCwsKKHMvJyQEAnDhxAnfv3i32fT4+PgZMZVhKnDPJX0REBDw8PPDxxx+/duzEiRORmJiIPXv2YMSIEYYPR+UiMzMTt27dKtV77O3tDZSGiMqqdevWiI6OxqhRo0o0/sCBA2jRooWBU1F5MjExQUFBgd6xwqvM3d3di4x/+PAhbGxsjJKNiMSjxB6qxDmT/LF7yx+7N5E8sHvLH7u3NHEBXGQvftDJysoC8PwvyIsfgIrb6khKZs2aBZVKpXescKuLDRs2QKVS6X5d+O8qlUrShVSJcyb5u3r1KgYPHlzi8e+//z5WrlxpwERU3hYuXIiFCxeWeLxKpUJ6eroBExGVj5iYGFy9erXE41UqFT777DMDJjKsAQMGYMqUKQgODsbIkSNfOXbt2rVIS0vD+vXrjZSOykOzZs2QkpKCYcOGAXj+OTMmJgYqlQpdu3YtMv7QoUNo2rSpsWMSVQjs3vLuoUqcM8kfu7f8sXuTXLF7vxy7tzSxe0sTF8BF9rIPOtOnTxchjWEFBQWJHcHolDhnkj9ra2totdoSj69UqRIsLS0NmIjKm5OTExo0aCB2DKNTWkEDgJ07dyIuLq7E41UqValO0FQ0MTExiI6OLvF4qX+Ne/ToAS8vL3z33Xf4448/8PHHH6NVq1YwNzcHABQUFCAtLQ0bN25ETEwMBg4ciH/84x8ip6bS8PHxwYIFC9CmTRu899572LlzJ27duoWGDRuiU6dOemPXrl2L1NRU+Pv7i5SWSFzs3vKmxDmT/LF7yx+7d8lIvZcB7N6vI/WvMbu3/LF7SxMXwEXk4+NT5AplOfP19X3tmKysLFhaWqJSpUpGSGR4SpwzyV+TJk2QnJwMPz+/Eo0/ffo06tWrZ+BUVJ4GDRoEb29vsWMYndIKGvD8eUVJSUklHi/1Ej5u3Lhit6aSs6VLlyIoKAjbt2/Hvn37YGpqCltbW5iamiIzMxMajQYmJiYYNWoUpk6dKnZcKqXBgwfj9OnTCAoK0t3RWK1aNSxduhQmJiYAgN9++w3r1q3D9evX4eTkhCFDhoicmsj42L2LklsPVeKcSf7YveWP3btk2L2lh92b3Vtu2L2liQvgIlq0aJHYEYwuLy8PISEhSE1N1btCOzExEXPmzMGVK1egUqng7u6OgIAAWVwFqcQ5k7z5+voiICAA8fHxcHNze+XYhIQEREdHY9KkSUZKR1R2SixoX331FTw8PMSOYTRNmzaFi4uL2DGMysLCAgEBAfDz80NYWBjS0tJw7949CIKAJk2awMnJCd7e3mjUqJHYUakMVCoVli5dimHDhiElJQU2Njbw9PREjRo1dGPu3LkDQRAwYcIEjBs3TlfOiZSE3VsZPVSJcyZ5Y/cmuWL3lj92b3ZvuWH3liYugIto9OjR8PHxgaenpyK2KMrLy8Onn36KpKQkmJubY/78+TAzM8OVK1cwevRo5OXloVOnTmjWrBkOHDiAQYMGITw8HLVq1RI7epkpcc4kfz4+Pti9ezfGjx+PcePGYeDAgUX+zGZkZGDXrl3YsGED6tevj6FDh4qUlqjklFjQqlevzrtEFKJx48a8ylzGHB0d4ejoWOxrEydOxMSJE4t9LS8vD6mpqVCr1ahSpYohIxKJit1b/j1UiXMm+WP3Jrli9yY5Y/eWN3ZvaeElCCJKTEzEjBkz4O7ujlmzZiEuLg6CIIgdy2C2bduGU6dOYcaMGUhKSoKZ2fPrL3788UdoNBp4e3tj3bp1+PLLL7F7926Ymppi7dq1Iqd+M0qcM8mfubk5Vq9ejbZt22LlypXo1KkTPDw8MHjwYAwcOBBdu3ZFly5d8OOPP8LBwQHBwcH8wS4h9vb2sLa2FjsGEREZQVZWFvz8/HD27FmxoxAZFLu3/HuoEudM8sfuLW/s3kREysHuLQ7eAS6ikydP4uDBg9i/fz/27duHPXv2oFatWvD29kafPn2gVqvFjliu9u7di+7du2PUqFG6YxqNBrGxsVCpVHrHbW1t0a9fP+zbtw/+/v5ixC0XSpwzKUPNmjWxefNmREdHY9++fUhPT8eFCxdgYmKCWrVqwcfHB926dUPXrl3FjkqlFBsb+8rXCwoKcOfOHdSqVQsWFhZGSkX05iZOnAgHBwexYxhVSZ8X+XcqlQqbN282QJqK4d69e7C1tYW5uXmR16pVq4YtW7agRYsWIiQTj5wXAYkKsXvLv4cqcc6kDOze8sXuTXLF7l0y7N7s3mR4XAAXUeXKldG3b1/07dsX2dnZOHDgACIjI7F582YEBwejWbNm6Nu3L7y9vfHWW2+JHfeN/fnnn/D19dU7dvr0aeTm5sLOzq7ID8aGDRsiIyPDmBHLnRLnTMri5eUFLy8vsWOQET18+BAeHh7YuHEjOnbsKHaccqPEghYUFPTSbZvk6GXbUBX666+/sHHjRvj4+KB+/fpGSmVYiYmJxR5XqVQvLV4qlcqQkYwiODgYO3fuRHh4eJGyvXDhQsTFxWHUqFEYPXq03jO5zM3NFbcVI5FSsHvLv4cqcc6kLOzeysPuLR/s3vrYvf//Nalj96aKjgvgFUSVKlUwYMAADBgwAA8fPkRUVBT279+P5cuXY/ny5XB2doaPjw+8vLxQuXJlseOWSUFBAUxNTfWOxcfHAwDc3d2LjM/OzoaVlZVRshmKEudMBDzf1sXS0hKVKlUSOwoZgByvWFRiQXvxJPGLnjx5ggULFmD06NFo2rSpkVKJ56+//sLq1avh5OQkm6/x+fPnixx7+PAh3N3dERwcLKsTacDz703Tp0/Hvn37ULNmTdy5cwcNGjTQG9O0aVMkJydjxYoVOHv2LH744QeR0hKRWNi95dlDlThnIoDdW+7YveXRy9i99bF7Sx+7N0kFnwFeAdWoUQNDhw7F1q1bceTIEXz99dcwMTHBt99+i3/84x9ixyuzhg0b4ty5c3rHYmJioFKp8P777xcZf/z4cTRs2NBI6QxDiXMmZcjLy8OOHTswe/ZsveOJiYno1asX3Nzc4OjoiNGjR+PatWsipSQqP4UF7fr162JHMZrc3FyEhYUp6u4oOZ5gepEcrjJ/mR07dmDfvn0YMWIEjhw5UqSAA89PuMXExKBfv36IiYlBSEiICEmJqKJg935ODj1UiXMmZWD3JqVh91YGdm9pY/cmqeACeAVnbm4OS0tL2NjYwMzMDBqNRuxIZda7d2/s2bMHBw8exNOnT7Fp0yZcvnwZNWvWLPKsovDwcJw4cQIeHh4ipS0fSpwzyV9eXh4+/fRTBAQEYO/evcjPzwcAXLlyBaNHj8aVK1fQqVMnjBgxAleuXMHgwYNx//59kVMTvTklFLQXKXHOJF2//fYbXFxcMGvWrGKfM1bIwsICgYGBaNGiBXbu3GnEhERUkbF7S7uHKnHOJH/s3qRUSuyhSpwzSRe7N0kFt0CvgB4+fIiYmBhERUUhKSkJ+fn5aNmyJSZPnozevXuLHa/MRowYgd9//x0TJ07UPf/C3NwcCxYsgIWFBYDnV2hv27YNiYmJaNy4MUaMGCFu6DekxDmT/G3btg2nTp3CjBkzMGzYMJiZPf9R8uOPP0Kj0aBPnz747rvvAABjx46Ft7c31q5dC39/fzFjUzkxNzeHs7MzqlWrJnYUIiI9//vf/zB58uQSjVWpVOjRowfWrFlj4FREVJGxe8unhypxziR/7N7Kxu5NRBUVuzdJBRfAK4j79+8jOjoaUVFROH36NLRaLerVq4dRo0ahT58+snj+h4WFBTZt2oTIyEikpqbCxsYG3t7eaNasmW7M2bNnkZycjD59+mDWrFmwtLQUMfGbU+KcSf727t2L7t27Y9SoUbpjGo0GsbGxUKlUesdtbW3Rr18/7Nu3jyVcIrKzs1GlSpWXvl6tWjVs3bpV71hCQgJcXV0NHY3IoKpUqYKgoCA0b95c7ChURmZmZrpFjpKoWrVqkefFEpH8sXs/J7ceqsQ5k/yxe8sbuzcpFbu39LF7k1RwAVxEGRkZiI6OxoEDB5CcnAytVotq1aphwIAB8Pb2RocOHcSOWO5MTU3h7e0Nb2/vYl8fP348Jk+eDBMT+ezOr8Q5k7z9+eef8PX11Tt2+vRp5Obmws7ODg4ODnqvNWzYUFHPMZI6Pz8/BAcHw9bW9rVjnz17hiVLluDXX39Fenq64cOJSIkFrVq1atiyZQtatGghdhSjqFSpEv7xj3/wDgsJa9SoEc6ePVvi8WfPnkXdunUNmIiIKgp276Lk2EOVOGeSN3ZveWP3Lh67t/yxe0sfuzdJBRfARdSlSxcAz69U9vT0hLe3N7p06fLK5ybInZWVldgRjE6JcyZpKygoKHLVXnx8PADA3d29yPjs7Gz+OZeQc+fO4eOPP8amTZtQq1atl447c+YMZs6ciT///POV4+SiUqVKeieftFot1q1bhwkTJoiYyrDMzc3h4uKi+3V2djYWL16MwMBAEVO9ueDgYOzcuRPh4eFFPnMtXLgQcXFxGDVqFEaPHi35E+RhYWFFjuXk5AAATpw4gbt37xb7Ph8fHwOmMpwPP/wQy5Ytw8iRI197wuzixYuIiIiAn5+fkdIRkZjYvYtS4udzJc6ZpI3dW97YvYvH7s3uLUXs3i/H7k1iUgmCIIgdQqmGDx+Ovn37okePHrCxsRE7DhFRifTt2xdt27bFvHnzdMd69eqFK1euYMWKFejRo4fe+NGjRyMrKwu7du0ydlQqg19++QULFixAgwYNsGnTpiJXaObl5eGHH37Axo0bodVq0bdvX3z11VeyuHI3Ozsbu3btQmpqKgRBQMuWLTFs2DBUrVpVb9x//vMf+Pv747///S/OnTsnUtrycePGDQQHByMlJQUA0LJlS4wZMwaNGjXSGxcdHY358+fj/v37kp2zIAiYPn069u3bh5o1a2L79u1o0KCB3phVq1Zh165dyMjIQLdu3fDDDz+IlLZ8qNVqqFQqvWN//+hf3GsqlUqyX+O//voL/fr1Q2ZmJr766iv07t27yEnj/Px87N27F0uXLgUAhIaGonbt2mLENZp79+7B1ta22IW+vLw8pKSkoEWLFq/cgpNI6ti9iUiK2L3ljd2b3Zvdm91bql9jdu/isXtXPFwAJyKiUlm3bh1Wr16NZcuW4b333sOOHTuwaNEi1KpVC7GxsXrPgAkPD8fMmTMxefJkjB8/XsTUVBp79+7FrFmzYGdnh02bNqFhw4YAnl+hPnPmTPz3v/+Fvb095s6di06dOomctnxcv34dfn5+uHPnjl5JqVWrFnbt2oW6desiPz8fy5Ytw5YtW6DVatG7d28sW7ZMxNRv5ty5cxg+fDiePHkCS0tLWFpaIjMzE9bW1ti+fTveeecdZGdnw9/fH9HR0TA1NcWoUaMwdepUsaOXyfbt2zFnzhyMGDEC06ZNe+ldfxqNBnPnzkVISAgWLFiAfv36GTlp+QkNDS3T+17calNKrly5gs8++wxXrlyBtbU1WrVqhdq1a0Or1eLBgwc4e/YscnNzYW9vj9WrV0OtVosduVy86u6KqVOnyuruCiIiIqVg95Y/dm92b3Zvdm+pYvdm95YCLoCLqLitMUpCqltjEJE8aDQajBo1CklJSVCpVBAEAebm5li1apVue8mYmBhs27YNiYmJaNy4MUJCQmBpaSlyciqNo0ePYsqUKbCxscH69etx6NAhrF27Fvn5+RgyZAimTZuGypUrix2z3EybNg2RkZGYOnUq+vfvDysrKxw9ehTz5s1Du3btsGTJEowdOxbJycmwt7dHQECA7s+7VE2YMAG///47Fi9ejN69ewMA0tLS8MUXX8De3h5Lly6Fn58f/vzzT7Rp0waBgYFFnjMoJQMGDIC1tTW2bNny2rGCIKB///6wsLDA9u3bjZCOypNGo8Evv/yCffv24fz588jPzwfwfGvBdu3awcvLC4MGDdI7aSxVSry7gqgs2L2JSIrYvZWB3Zvdm92b3Vuq2L3ZvSs6LoCLqHBrjMItL15H6ltjEJF8aLVaREZGIjU1FTY2NvD29kazZs10r69YsQIbN25Er169MGvWLFSvXl3EtFRWp0+fxoQJE/DkyRMIgoBGjRohMDAQHTp0EDtauevcuTPee+89BAUF6R0PDQ1FQEAAOnfujIMHD2LIkCGYMWMGrK2tRUpaft577z307NkT/v7+esejo6MxdepUtGvXDmlpaZg8eTI+/fRTyV+56ujoiMmTJ2PEiBElGr9u3TqsWbNGt0Wd1OXm5hZ7MvTSpUuoWrUq7OzsREhlHA8fPoSpqakstot8kRLvriAqC3ZvIpIqdm9lYPdm92b3ZveWA3Zvdu+KxkzsAEr24g96IiKpMDU1hbe3N7y9vYt9ffz48Zg8ebLkP7QrnZOTE7Zs2YLRo0fj4cOHmDdvniwLOAA8evQIjo6ORY47OztDo9Hg6NGjWLlyJbp37y5COsPIysoqdguqNm3aQKvV4sKFC9i6dSvatWtn/HAGYGZmVqqrjqtWrVrkGVZSpNFosHjxYkRERODYsWNFivjy5ctx7Ngx9O/fHzNnzpTFCaYX1ahRQ+wIBvPbb7/BxcUFs2bNeuU4CwsLBAYG4ty5c9i5cydLOCkOuzcRSRW7tzKwe7N7s3uze8sBuze7d0XDBXARSfkZD0SkXH5+fpgwYQI6duyoO5afn4+UlBSo1WpUqVIFVlZWutcKn0XGO2ikSa1W49///jdGjhyJCRMmYPXq1XBzcxM7VrnLy8vT+3NbqHCruZEjR8qqgAPP/95WqlSpyPHCkjZ27FjZFHAAaNSoEc6ePVvi8WfPnkXdunUNmMjw/r5tplqtxqNHj4rM6YMPPsDdu3exY8cOXLx4EVu2bIGZmTQrwqpVq8r0vokTJ5ZzEuP53//+h8mTJ5dorEqlQo8ePbBmzRoDpyKqeNi9iUiK2L2Vhd2b3Vsu2L3ZvV+G3ZuMTZp/wxRKq9Vi3bp1mDBhgthRiEjBEhMTMXDgQL1j2dnZ8PPzw8aNG/XKOUnP7Nmziz3eqFEj3LhxA+PGjUPPnj31tg9VqVRYuHChsSKKwsXFRewIRte6dWuxI5SrDz/8EMuWLcPIkSPRvHnzV469ePEiIiIi4OfnZ6R0hrFp0yYkJSXB398fH3/8cbFjBg4ciIEDB2LVqlVYtWoVtm3bVuKt6iqakpbwF7c/lnIJV+rdFUSGxu5NRBUBu7e8sXsXj91b+ti92b0LsXuze4uNC+Aiy87Oxq5du5CamgpBENCyZUsMGzYMVatW1Rv3n//8B/7+/vjvf//LEk5EFZIgCGJHoHIQGhr6ytefPXuGsLAwvWNKKOFK/NBakmekSslHH32E7du3Y/jw4fjqq6/Qu3fvIl/X/Px87N27F0uXLkWVKlUkX8IjIiLg4eHx0gL+dxMnTkRiYiL27Nkj2RJ+6NCh147Jzs7G999/jyNHjsDMzEzyX2Ml3l1BVFbs3kQkF+ze8sDuXTx2b+lj9341dm9pYveWJi6Ai+j69evw8/PDnTt3dB9eY2Ji8Msvv2DXrl2oW7cu8vPzsWzZMmzZsgVarRa9e/cWOTUREclZST7EylVmZiZu3bqldywrKwsA8PDhwyKvAYC9vb1RshnK5cuXkZSUpHcsOzsbAHDhwoVit+NydnY2SrbyZm1tjTVr1uCzzz7DzJkzMXfuXLRq1Qq1a9eGVqvFgwcPcPbsWeTm5sLe3h6rV69G7dq1xY79Rq5evYrBgweXePz777+PlStXGjCRYdWrV++Vr0dGRmLRokXIyMhA+/btMWfOHLzzzjtGSmcYSry7gqgs2L2JiKiiYfdm92b3ZveWKnZvdm+p4AK4iL7//nvcuXMHU6dORf/+/WFlZYWjR49i3rx5mDdvHpYsWYKxY8ciOTkZ9vb2CAgIQJcuXcSOTUREMva6D7FytnDhwpdeTT99+vQix1QqFdLT0w0dy6DWrl2LtWvXFvva4sWLiz0u5WcKNm7cGGFhYfjll1+wb98+JCcnIz8/HwBgbm6Odu3awcvLC4MGDSrV1lYVlbW1NbRabYnHV6pUSfccOjm5du0a5s6di7i4OFSrVg2BgYEYMGCA2LHKhRLvriAqC3ZvIiKqaNi92b0LsXuze8sFuze7d0XDBXARJSUlwcfHB2PHjtUd69mzJ3JzcxEQEIBZs2YhOTkZQ4YMwYwZM2BtbS1iWiIioqLWrl2L6OhohISEiB3ljfj6+oodweik/OylN2FhYYGRI0di5MiRAJ7fYWBqaopq1aqJnKz8NWnSBMnJySUuXadPn5bViTiNRoN169Zh/fr10Gg08PX1xYwZM1C9enWxo5UbJd5dQVQW7N5ERCR17N7Sxe7N7v0idm/pYfeWJi6Ai+jRo0dwdHQsctzZ2RkajQZHjx7FypUr0b17dxHSERERvd7t27clfVVyoaCgILEjGJ1SS/iLatSoIXYEg/H19UVAQADi4+Ph5ub2yrEJCQmIjo7GpEmTjJTOsOLi4jB37lxcvXoVzZs3R0BAADp06CB2LINQ2t0VRGXB7k1ERFLH7i1d7N7PsXs/x+4tXeze0sMFcBHl5eXBysqqyPHKlSsDAEaOHMkCTkQV0ovPa3rVs5oePXpk1GxERMVZtWpVmd4n5ZMVPj4+2L17N8aPH49x48Zh4MCBqFWrlt6YjIwM7Nq1Cxs2bED9+vUxdOhQkdKWj/v37yMoKAiRkZGwtLTEtGnTMHLkyGKfqScnSrq7gqgs2L2JSKrYvYlIati92b3ljN1bWlSCIAhih1AqtVqNJUuWwNvbW+/4o0eP0LFjR2zYsAH/+Mc/REpHRFQ8tVoNlUpV5LggCMUeLySHK5WpqICAAOzcuVPyX18lFrTZs2eX+j0qleqlz2qr6NRqdYnGvfh9TOp/th88eIAvvvgCCQkJUKlUsLe319ui6/bt2xAEAe3atcOKFStQt25dsSOX2bZt27By5Uo8efIEXbt2hb+/v6TnQ0Tlh92biKSI3Zv+jt2b3Vsq2L3ZvYkqCnlfjiFxpqamYkcgIipCic9rIvkraQl/saBJuYSHhoaWeOzf5y3VEn7o0KHXjsnOzsb333+PI0eOwMzMrMTP76rIatasic2bNyM6Ohr79u1Deno6Lly4ABMTE9SqVQs+Pj7o1q0bunbtKnbUNxYYGKj799jYWMTGxr72PSqVCunp6YaMZVBKPIFIZAjs3kRUEbF7kxyxe78au7d0sXu/Grs3iYEL4CJ7cSsj4NXbGQGAvb29UbIRERVHic9rIvlTYkE7f/78a8fcvHkT8+fPx5EjR1ClShVMmTLF8MEMpF69eq98PTIyEosWLUJGRgbat2+POXPm4J133jFSOsPz8vKCl5dXkeNZWVmwtLQUIVH5U+JJYiWeQCQqK3ZvIpIadm+SI3bv4rF7s3tLCbv3y7F7VyzcAl1EL9vKCHj5dkZSv1KGiIgqttJe0Xj48GGkp6dLfquq15F7QXuRVqvFxo0b8dNPPyE3Nxe9evXC7NmzizzDSg6uXbuGuXPnIi4uDtWqVcP06dMxYMAAsWOVm7y8PISEhCA1NVXvJGpiYiLmzJmDK1euQKVSwd3dHd9++y0aNmwoYto3M3v2bAwePBht27YVO4rR3Lx587VjijuB+OWXXxohHVHFwe5NREQVDbt38di92b2lit1b3ti9pYkL4CIqy/M/AF4BSkREhlPSZzX9nUqlkm0Jl3tBK86pU6cwd+5cXLx4EW+//TYCAgLQsWNHsWOVO41Gg3Xr1mH9+vXQaDTw9fXFjBkzUL16dbGjlZu8vDx8+umnSEpKgrm5OVJSUmBmZoYrV66gb9++0Gg06Ny5M5o1a4YDBw7g6dOnCA8Pl+zJlpc941fJlHYCkehl2L2JiKiiYffWx+7N7i1l7N7E7l0xcQt0EbFMExFRRbNlyxaxI1QISihoL3r06BG+++47hIWFwcLCApMmTcKYMWNgYWEhdrRyFxcXh7lz5+Lq1ato3rw5AgIC0KFDB7Fjlbtt27bh1KlTmDFjBoYNGwYzs+cf/X/88UdoNBr06dMH3333HQBg7Nix8Pb2xtq1a+Hv7y9mbCoHL55ADAwMlP0JRKJXYfcmIqKKht37OXZvdm85YPdWLnbvio0L4BXA06dPsXv3bvz+++84f/48MjMzoVKpUKNGDajVanh4eMDb21uWPwSJiKhicXFxKfV7Tp06ZYAk4lFKQfu7Xbt2YenSpcjKysJ7772HgIAASW/H9TL3799HUFAQIiMjYWlpiWnTpmHkyJG6cio3e/fuRffu3TFq1CjdMY1Gg9jYWKhUKr3jtra26NevH/bt28cSLmFKPIFIVBrs3kREVFGwe7N7s3vLB7u38rB7S4M8v+NIyOnTpzF58mTcv38fFhYWaNiwIerVq4f8/HxkZmbi8OHDiI2NxapVq7Bs2TK0b99e7MhERES4ffs2QkNDERYWhuvXr8tiGzalFTQAuHDhAubMmYPU1FTUqlULy5cvR69evcSOZRDbtm3DypUr8eTJE3Tt2hX+/v6oW7eu2LEM6s8//4Svr6/esdOnTyM3Nxd2dnZwcHDQe61hw4bIyMgwZsRyd+rUKWi12lK9x8fHxzBhjEyJJxCJSoPdm4iIpIjdWx7Yvdm9/47dW9rYvaVDvj9VJOB///sfRo0aBRsbGyxduhReXl5FrjR/8uQJoqKi8MMPP2D06NEIDQ1Fo0aNREpMRERK9uzZM0RHRyMkJAQJCQkQBAEqlQqdO3cWO9obU2JBW7x4MbZu3QqtVosPPvgAU6ZMgY2NDW7duvXK99nb2xspYfkKDAzU/XtsbCxiY2Nf+x6VSoX09HRDxjKogoICmJqa6h2Lj48HALi7uxcZn52dDSsrK6NkM5SdO3di586dJRpb+D1M6iVciScQiUqL3ZuIiKSE3Vte2L3ZvV/E7i1N7N7Sw6+MiH766SdYWVlh9+7deOutt4odY2NjgwEDBqBz587o27cvNmzYgPnz5xs5KRERKVlqaipCQkKwf/9+PHnyBABQo0YN9O/fH4MGDUK9evVETvjmlFjQgoODdf9++PBhHD58uETvk+odBy9eja0EDRs2LPL1iomJgUqlwvvvv19k/PHjxyW//d5HH32Edu3aiR3DaJR4ApGoLNi9iYhICti9i8fuLS3s3s+xe8sLu7c0cQFcRElJSejXr99LC/jf2dnZwcfHB8ePHzdCMiIiUrqMjAyEhYUhNDQUf/75JwRBgJWVFdzd3REXF4d58+bBw8ND7JjlxsfHByqVSuwYRjVx4sRSv0cQBAMkMZ7Bgwejbdu2Yscwmt69e2P16tXo3Lkz3nvvPezYsQOXL19GrVq10LVrV72x4eHhOHHiBCZPnixS2vLRoUMHeHt7ix3DaJR4ApGoLNi9iYioomL3lj92b/lj95Y/dm9p4gK4iB49elSqLdWaNGmCXbt2GTAREREp3f79+xESEoK4uDhotVpUrVoV3t7e8PLyQqdOnXDv3j14enqKHbPcLVq0CACQl5eHS5cuIT8/H82aNZP8llSvYm9vj379+pV4/M2bN/HVV18ZMJFhhYaGwt3dXVElfMSIEfj9998xceJEqFQqCIIAc3NzLFiwQLf1b0xMDLZt24bExEQ0btwYI0aMEDc0lYoS764gKgt2byIiqmjYvdm9X4bdW3rYveWP3VuauAAuory8vFL9cK9UqRJycnIMmIiIiJRu6tSpsLa2xtChQ+Hh4QFnZ2e95xjJ+Urtf/3rX1izZo3uZ62FhQWGDh2KadOmyfJ5Pv7+/nj69CmGDRv22rG7du3C4sWL+TlEYiwsLLBp0yZERkYiNTUVNjY28Pb2RrNmzXRjzp49i+TkZPTp0wezZs2CpaWliImpLJR2dwVRWbB7ExFRRcPuze5dHHZvaWL3VgZ2b+mR308UIiIiKrP69evjxo0bCAkJwZUrV/Cf//wHnp6eaNy4sdjRDGr37t1YsmQJ6tWrBx8fH5iYmCAhIQGbNm2CVquV9NXXL/P2228jMDAQT58+xejRo4sdc+/ePfj7++PYsWMwNzeX/BZdSmRqagpvb++Xbk02fvx4TJ48GSYmJkZOVv58fX0l/xy10lLi3RVEREREcsDuze79d+ze0sfuLW/s3tLEBXCRZWZm4tatWyUa++jRIwOnISIipTt48CDOnDmD8PBwREVF4fjx41i+fDmaNGkCLy8vtGrVSuyIBrFjxw60a9cOmzdvRqVKlQA8f+bW1KlTsWPHDkyfPl23bZVc/Prrrxg9ejSWLVuGp0+fYtKkSXqv7927F/Pnz0dWVhYcHR0RGBiIpk2bipS2fJw6dQparbZU7/Hx8TFMmApCTlsNBgUFiR2BiCowdm8iIqpI2L3ZvQuxez/H7i0d7N4kFSpBEASxQyiVWq0u03Y2586dM0AaIiIifVqtFsePH0dERAQOHTqEp0+f6n5u9e/fHxMmTEC9evVETlk+nJyc8MUXXxTZkiw1NRVDhgxBaGgo1Gq1SOkM56+//sI///lPJCQkYMSIEZg5cyYePXqEgIAAxMTEwNLSElOnTsXw4cMlvwVfaT93CYIAlUrFz11UoanVaixZsuSldxkQ0XPs3kREVJGxe7N7s3uze1PFxu4tTbwDXES+vr5iRyAiInopU1NTdOnSBV26dEFubi5iYmKwd+9enDhxAr/99htCQkLg6uqK/v3748MPPxQ77ht5+vQpqlSpUuR4/fr1IQgCHj9+LEIqw7O2tsa6devwxRdfYNOmTbhx4waSk5Px4MEDvPfee5g3b55sTrQAwEcffYR27dqJHYOoXPHuCqLXY/cmIqKKjN2b3Zvdm6jiY/eWHt4BTkRERDpjx46Fm5sbXFxc0KpVq2Kv2n306BEiIyMRERGB1NRUWVyp+7IrOR89eoSOHTsiODgYHTt2FCmd4RUUFMDf3x8hISEwMTHBvHnzMGDAALFjlSterUtyxLsriIiIiKSJ3Zvdm92bSDrYvaWJd4ATERGRTnx8PI4dOwaVSgUbGxt06NABrq6ucHNz021DVr16dQwbNgzDhg3D9evXsW/fPpFT05syMTHBwoULYWtri40bNyIuLg4+Pj4wM+NHRaKKjndXEBEREUkPu7cysXsTSRe7t/TwOysRERHpJCcnIz09HcnJyUhJSUFqaioOHz4MlUqFqlWrwtnZGa6urnB1dcU777yDBg0aYPz48WLHLheZmZm4deuW3rGsrCwAwMOHD4u8BgD29vZGyWYIxc3n448/xl9//YUdO3YgJycH33zzDUxMTPTGSHnORHLUoUMH3l1BREREJDHs3uze7N5E0sLuLT3cAp2IiIhe6fbt23ql/Pz589BqtbC1tYWLiwtcXV0xdOhQsWO+kVdtZVS4bdGLVCoV0tPTDR3NYF43ZwBFXpfynGfPno3Bgwejbdu2YkchKjfcXpCIiIhIPti92b0LSXnO7N4kR+ze0sQ7wImIiOiV6tati969e6N3794AgOzsbISHhyMkJAQHDhxAdHS05Eu4r6+v2BGMzsfHp1TPL5K6oKAgsSMQERERERG9FLu3PLF7ExGJgwvgRERE9Eq5ublISkpCYmIiTp8+jbNnzyIvLw8WFha6LdmkTokFbdGiRWJHIKI35Ovri4YNG4odg4iIiIjKAbu3PLF7E0kfu7c0cQt0IiIi0pOfn4/U1FTEx8cjPj4eZ86cQV5eHszNzfHuu+/qirejoyMsLCzEjktEREREREQkOezeREREhsMFcCIiItIZM2YMTp06hdzcXJiYmKBVq1Zwc3ODq6srnJycYGlpKXZEIiIiIiIiIklj9yYiIjIsLoATERGRjlqthrm5OT788EOMGzcOb7/9ttiRiIiIiIiIiGSF3ZuIiMiwuABOREREOt988w0SEhJw7do1qFQqNGnSBB07doSbmxucnZ1RrVo1sSMSERERERERSRq7NxERkWFxAZyIiIiKuHXrFuLi4nTPIrt//z5MTEygVqvh6uqqK+XW1tZiRyUiIiIiIiKSJHZvIiIiw+ACOBEREb3WxYsXER8fj5MnT+LUqVN4/PgxzMzM0Lp1a3Ts2BGTJ08WOyIRERERERGRpLF7ExERlQ8ugBMREVGpaDQaREVF4ddff0VqaipUKhXOnTsndiwiIiIiIiIi2WD3JiIiKjszsQMQERFRxXbt2jWcOXMGZ86cQVpaGs6fP4+8vDxUrlwZnTt3hrOzs9gRiYiIiIiIiCSN3ZuIiKj88A5wIiIi0snKykJaWpqucKelpSErKwuCIKBatWpo3749XFxc4OzsjJYtW8LExETsyERERERERESSwu5NRERkWFwAJyIiIh21Wg2VSgVBEFC9enU4Ozvr/nFwcIBKpRI7IhEREREREZGksXsTEREZFrdAJyIiIp0ePXrAxcUFLi4uaNasmdhxiIiIiIiIiGSH3ZuIiMiweAc4ERERERERERERERERERHJAh8eQkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGTBTOwARERESvDjjz9i1apVpXrPoUOHUL9+fQMlKruuXbvi5s2bAICvv/4afn5+rxw/atQoHD9+HAAQHBwMd3d3g+aKjo5Go0aNDPJ7EBERERERUcXF7s3uTUREBHABnIiIyCgcHBzg7e2td+zBgweIi4uDtbU1PDw8irzH2traWPHKLCoq6pUl/OHDh4iPjzdiIiIiIiIiIlIqdm8iIiICuABORERkFF5eXvDy8tI7lpCQgLi4OFSvXh1Lly4VKVnZVa1aFcnJybh79y7eeuutYsdER0cjPz8f5ubmyMvLM3JCIiIiIiIiUhJ2b3ZvIiIigM8AJyIiojLy9PSEIAiIjo5+6Zh9+/bB1tYWbdq0MWIyIiIiIiIiInlg9yYiIio9LoATERFVYEeOHMGoUaPg4uKCNm3aoHv37liyZAkyMzP1xt24cQMODg7o3Llzsf+d4cOHw8HBAQkJCbpjs2bNgoODAxITEzFp0iS8++67cHNzw9atW0uUrUePHgCeb8VWnIyMDJw6dQrdu3eHmdnLN53Zs2cPhg4divbt2+Pdd9+Ft7c31qxZg6dPnxY7/uTJkxg5ciScnZ3RoUMHTJkyRfdctOJotVr8+9//xsCBA+Ho6AhHR0cMGjQIoaGhEAShRHMlIiIiIiIi+WL3Lordm4iIpIxboBMREVVQS5cuxfr162FqagonJydUr14dqamp2LBhA/bv34/NmzejQYMGb/z7fPPNN3jw4AE6deqEixcvQq1Wl+h9b7/9Nlq0aIHk5GRkZGTAzs5O7/WoqCgUFBSgd+/eWLVqVZH3FxQUYMaMGdi7dy8sLCzg4uICKysrJCUl4fvvv8eBAwcQHByM6tWr696za9cufPvttwCADh06oGrVqjh+/DhOnToFjUZT5PfIy8vDP//5Txw7dgw2NjZwdHSEubk5EhMTMWvWLCQkJGDRokWl+d9FREREREREMsLuze5NRETywwVwIiKiCig2Nhbr16+Hra0tNmzYoNvGTKPRYN68edi1axcmT56M3bt3Q6VSvdHvlZGRgfDwcDRo0AAFBQUwMSn5BjG9evXCuXPnEB0djY8//ljvtcjISNjZ2cHZ2bnY927btg179+5FgwYNsHHjRjRs2BAA8OTJE0ybNg1HjhzBt99+ix9//BEAcPv2bQQGBsLMzAzr1q1Dx44dAQAPHz7EqFGjkJ6eXuT3+Omnn3Ds2DG4uLhg5cqVqFGjBgDg/v37GDNmDEJDQ+Hk5ISBAweWeM5EREREREQkD+ze7N5ERCRP3AKdiIioAtq0aRMA4Msvv9R7hpeFhQXmzJmDRo0a4Y8//kB8fPwb/14eHh66q9lLU8ABoGfPngCKbsV269YtpKamomfPni/9b27evBkAEBgYqCvgAGBjY4OlS5eiSpUqiI6OxtWrVwEAoaGhyM3NxeDBg3UFHABq1KiBhQsXFvnvazQabN26Febm5li6dKmugANArVq1MG/ePADAv/71r1LNmYiIiIiIiOSB3Zvdm4iI5IkL4ERERBVMfn4+kpOToVKp0L179yKvm5mZwcvLCwD0nitWVu+8806Z39ugQQO0atUKp0+fRkZGhu54ZGQkBEHAhx9+WOz7bt++jRs3bqB69epwc3Mr8nqVKlXQqVMnAEBiYiIAICkpCQDQpUuXIuNbtGiB+vXr6x37448/kJ2djSZNmuCtt94q8p42bdqgZs2auHLlCu7du1fCGRMREREREZEcsHuzexMRkXxxC3QiIqIKJjMzE3l5eahevTpsbGyKHVNYOMujPFarVu2N3t+rVy/88ccfiImJwbBhwwA8L+ENGjTAu+++W+x7Cgt7vXr1XvrffXGOhe+pU6fOS8ffuHFD9+vbt28DAC5cuAAHB4dXzuH27duoXbv2K8cQERERERGRfLB7P8fuTUREcsQFcCIiogpGEAQAeOXzxQrHWFhYlOi/qdVqX/paabdee1HPnj2xZMkS7N+/H8OGDcPVq1fxxx9/YNy4cS99T1nm+LrnrZmZ6X+sKSgoAADY29vDycnple+tXLnyK18nIiIiIiIieWH31h/D7k1ERHLCBXAiIqIKxtbWFubm5sjMzMSTJ0+KvRL9+vXrAICaNWsC+P8iXVg8X5SVlWWgtM+vJH/33Xdx+vRp3Lt3D5GRkQCA3r17v/Q9dnZ2AKB31fiLCudYq1YtAMBbb72Fixcv4ubNm2jWrFmR8X/fBg6A7qryOnXqYOnSpaWYEREREREREckdu/dz7N5ERCRHfAY4ERFRBWNubg5HR0cUFBQgJiamyOv5+fm6466urgAAa2trAM/Ldl5ent74R48e4cqVKwbN3KtXLxQUFCA6Ohr79+9Hs2bNXrn1mb29PerVq4dHjx7pnjP2d9nZ2Th+/DgAwNnZGQDg7u4OAMX+P7l+/TouXbqkd6xNmzawtLTE+fPnixR0ALh79y569uyJkSNHIicnp+STJSIiIiIiIslj92b3JiIi+eICOBERUQX0ySefAAC+++47pKen647n5eVh7ty5uHbtGlq0aKHbXszW1hZ16tSBRqPB9u3bdeOfPXuGb7/99pXbsJWHHj16QKVSYdu2bbhw4cIrr0AvVDhHf39/3RXnAJCTk4MZM2bgyZMn+OCDD3TPKvP19YWtrS12796NAwcO6MY/efIEX331VZEr8K2trfHRRx/hr7/+wowZM/DgwQO932P27Nm4fPkyrK2tuQ0bERERERGRArF7s3sTEZE8cQt0IiKiCsjT0xOffvopNm7ciAEDBsDJyQnVq1fHmTNncOfOHdSrVw8rVqzQe4bY6NGjERgYiMDAQOzbtw+1atVCcnIytFotPvjgAxw+fNhgeevWrYt27dohJSUFwKu3YCs0fPhwpKSkYP/+/ejduzecnZ1hZWWFU6dO4dGjR1Cr1Vi4cKFufI0aNbBw4UJMmTIFn3/+ORwdHWFnZ4ekpCRotVo0bty4yNX206ZNw7lz5xAfH49u3bqhTZs2sLKyQkpKCjIzM/H2229j7ty55fs/g4iIiIiIiCSB3Zvdm4iI5Il3gBMREVVQM2fOxE8//QRXV1ecP38eR44cQeXKlTFhwgSEhoaicePGeuOHDx+OxYsXo3Xr1khPT0dSUhJcXV3x22+/FRlrCD179gQAtGrVCo0aNXrteBMTE6xYsQJBQUFo1aoVkpOTceLECdSpUwczZszAzp07UaNGDb33eHh44Ndff4WHhweuXLmC33//HS1btsQvv/yCOnXqFPk9LC0tsXHjRnz99ddo0qQJ0tLSkJCQADs7O0yaNAm7du3SPeeMiIiIiIiIlIfdm92biIjkRyUIgiB2CCIiIiIiIiIiIiIiIiIiojfFO8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZOH/AIpsfuSIxuhWAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 178 coefficients adjusted\n", - "\t 677 coefficients converged\n", - "\t 80 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABl0AAAJ4CAYAAADvOiUsAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgdElEQVR4nOzdeViU9f7/8dcMxKaSyFFQ0TIMyX3DsDQNRSs1I06ZiZmZ+3I85ZLLKT2lWXrsaB4zFY1yQQs0szympi1+1cSObWqmKW65hAviAsLM749+TI6MCsMN3MTzcV1eOfcy93vm85HmzWvu+7bY7Xa7AAAAAAAAAAAAUCjWki4AAAAAAAAAAADgz4DQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAKwW63KyoqSnXq1NGsWbMKtG9ycrLq1Kmj5ORkx7I6deqoZ8+eRpeZx8mTJ3Xx4sUiP44RcnJydPjw4Ztu9+abb6pOnTo3/BMVFVXk9R48eLDIjwEAAADz2rhxo4YOHaqoqCjVr19fd999t5599ll99tlnxVZDVlaWXnrpJbVo0UINGzbUK6+84nLZCy+8oDp16ujIkSMFev7cz97btm0rolfg7GafsV966SXVqVNHSUlJN9zuyJEjCg8PV69evfJ97G3btqlOnTp68803871PSdq6davq1Kmju+6664Z91Pnz5zV8+HA1bdpUTZo0UXx8vCQpMzNTx48fL65yJRWur5borfMrv701gMLzLOkCAKA027p1q44ePSo/Pz8tX75cAwcOlIeHh9vP9/rrr+svf/mLgRXmtXLlSk2cOFEfffSR/Pz8ivRYhXXs2DH1799fHTp00NChQ/O1T7du3dSsWTOX68qVK2dkeXkMHDhQGRkZeu+994r0OAAAADCfjIwMjR07VmvXrlW9evX06KOPqkqVKjp+/LhWrlypgQMH6plnntHo0aOLvJbly5crMTFR9957rx588EHdeeedLpfZ7Xa1bNlSlSpVKtDzR0dHq2bNmgoNDS2iV/CH/HzG/utf/6rExER99NFHio2Nve52K1eulN1u11//+teiKNUUkpKS5Ofnp4sXL2rZsmUaMWKEy+1mz56tNWvWqFOnTmrZsqUaN26sXbt2aciQIRoyZIgeffTRYqvZ6L5aore+lju9NQD3EboAQCF88MEHuuWWW/T0009r9uzZ2rhxo9q3b+/283Xt2tXA6lzbunVrqfkmzuHDh7V371516NAh3/s0bty4WN5HVz777DO1aNGiRI4NAACAkjV+/HitXbtWo0aNUp8+fZzWDRgwQH369NGCBQt0xx136LHHHivSWn766SdJ0qhRoxQeHi5JjrNArl4mSU2aNCnw84eHhzs9R1HKz2fsBg0aOM68OXHihIKCglxu9+GHH+rWW28tUH9RmmRkZGjdunVq166ddu/ereTkZA0bNkxeXl55ts2dIxMnTlSFChUk/X7GyNGjR4u1Zsn4vlqit76WO701APdxeTEAcNP58+e1fv16NWzYUA8//LAkaenSpSVcFQAAAIDi9tVXX2nNmjXq2LFjnsBFkry8vDR58mR5eHjo3XffLfJ6rly5IkkqX778DZf9mcTGxspms+mTTz5xuX7Hjh06dOiQunTpIm9v72Kurnh8/PHHunTpkiIjI9W+fXulpaVp3bp1LrfNnQ+5gUtJoa8G8GdE6AIAblq9erUuX76se++9V7Vq1VKdOnW0efNml9dI3bZtm5566ik1bdpUkZGReuWVV1x+I+ba685e7xrLR44cUZ06dfTCCy84ll26dEmvvvqqHnjgATVs2FB33323+vfvrx07dji2iYqK0ooVKyRJ7dq1cxzrhRdeUJMmTXTo0CENGTJEzZo1U9OmTTVw4EAdP35cR48e1bBhw9SsWTNFRkZq+PDhOnnypFNNNptN7733nrp27aqGDRuqefPmevbZZ52OL/1x/ef9+/dr/Pjxuvfee9WgQQN17dpVH330kdN2Tz31lCRp1qxZbl1r+kbsdrvef/99Pfnkk2revLnq1aunVq1a6bnnnlNqamqe7T/55BP16NFDzZo10913361evXppy5Ytkv64zrMkff3113muJ/z555+rV69eatq0qRo2bKiuXbvq3Xfflc1mc2yTO6b/+c9/9Pe//10NGjTQPffco++//145OTmaNWuWunTposaNG6t58+bq2bNnsV4XHAAAANe3cuVKSbrhPSRq1Kihjz76yPF5PNf+/fv13HPP6Z577lH9+vXVrl07TZkyRefOncvzHL/88ouee+45tWzZUvXr11eHDh3073//W5cvX5b0x2fKqz/z597f8Nplkut+w263a+nSpXr00UfVuHFj3XPPPRowYIB+/PFHxzbXu6fLl19+6eh7GjVqpEcffdTpc7H0x2fnjz/+WHPmzFF0dLTq16+vqKgozZgxQ9nZ2U7bSa4/Y1/r4Ycf1i233OLUU1wtd4xyLy125coVxcfHKzY2Vk2aNFH9+vXVtm1bjR8/Xmlpadc9jvR7X+XqfpGu7i0iSd99950GDBigFi1aqEGDBurcubMWLFignJwcp+127dqlAQMGqHXr1o658Morr+js2bM3rCdX7tlM9957rx544AFJeQOM3Pf166+/liTHvS9feOEFjRkzRpI0ZswYx3svFbzX+/zzz/Xggw+qfv36iouLu2HNBemrc+unt3Z+v0u6twaQF5cXAwA35X6gffDBByVJnTp10k8//aTExESNHDnSsd2mTZs0ePBgValSRf3795fVatUHH3xww4bBHc8995w2b96sHj166I477tBvv/2mxYsXq1evXvrggw8UHh6usWPHauHChUpJSdGYMWN05513Ova/cuWKnnzySbVo0UKjRo3Szp07lZycrBMnTui3335TRESERo0apW+//VZJSUnKyMjQ/PnzHfuPGDFCH3/8sTp27KjHH39c586dU3Jysnr27Knp06c7PvTn6tevn+M9ycrKUkJCgkaMGKHKlSsrMjJS0dHRys7OdjRi0dHR+brW9MWLF3X69Ok8yz08PHTrrbc6Hr/66qtKSEhQ+/bt9fe//12SlJKSok8++US7du3SJ598Iqv19+8mzJw5U//5z38UHh6uAQMGyMvLS0uWLFGfPn301ltvqV69enr99dc1atQo3XHHHRowYICaNm0qSVqwYIFee+013Xbbberbt6/8/Py0fv16TZo0Sdu2bdObb77pOI4kzZ8/X2FhYRo/frwOHjyounXr6tVXX9XixYv1+OOP66mnntL58+eVmJioQYMG6e2331abNm3yM0UAAABQRL777jt5enqqUaNGN9zu2nugpKSkqE+fPvLw8FD37t1VvXp17dy5U++8844+++wzJSYmOj4Df/fdd3r66adVvnx59ejRQ5UqVdLOnTs1Z84cbdmyRe+++64qVaqk119/XcuXL3d85r/11ltltVqdlgUEBFy3xtGjR+vDDz9U8+bNNXz4cGVlZem9995TXFycFi9erLp167rcb/HixXr55ZfVoEEDDRkyRFarVRs2bNCYMWO0e/dujRs3zmn76dOny263q1u3bvL391dycrJmz54ti8WiYcOGKTQ09LqfsV0JCAhQu3bt9N///lf79+93eq8zMzO1Zs0a1atXT3fddZckafjw4dqwYYNiYmL0+OOPKzMzU1988YXef/99HTt2TAsWLLjhWObXhg0b9Le//U0hISF69tln5efnp82bN+u1117TN998ozfffFMWi0WHDx9Wr169VLlyZT399NPy9/fXt99+q0WLFum7777TsmXLZLFYrnuc/fv369tvv1WTJk1UrVo1VatWTbfffru2b9/u9H7kvq9z5szRL7/8otdff13lypVTYGCgvLy8tGzZsjz3ySxorzd8+HD99a9/1e233+7y0mZXy29fLdFbF3dvDaAQ7ACAAtu7d689LCzM/sgjjziWHTp0yB4WFmaPjIy0Z2Zm2u12u91ms9mjoqLszZs3t//222+ObdPT0+0dOnSwh4WF2ZOSkhzLw8LC7HFxcY7Ho0ePtoeFhdkPHz7sdPzDhw/bw8LC7KNHj7bb7XZ7WlqaPSwszP7SSy85bbdz5057hw4d7MuXL7/hc+Yuu3b/rl272sPCwuwvv/yy0/LHHnvMHh4e7nidn3zyiT0sLMw+b948p+0yMjLsDzzwgP3uu++2X7x40W632+0zZ860h4WF2fv27Wu32WyObbdv324PCwuzP/fcc45lW7dutYeFhdlnzpxpv5nc573en/vvv9+x7enTp+1169a19+/fP8/zDBs2zB4WFmb/4Ycf7Ha73X7w4EH7XXfdZY+Li3O8Xrvdbv/tt9/szZo1sz/66KOOZdeO36FDh+x169a1P/TQQ/YLFy44lttsNvuIESPsYWFh9uTkZLvd/seYNm7c2H7q1Cmnmho3bmx/9tlnnZb9+uuv9vbt29vffPPNm743AAAAKFqNGjWy33PPPQXaJycnxx4dHW2vX7++fd++fU7rli9fbg8LC7O/8MILdrv998+PnTp1srdp08Z+5swZl9vOnTvXsexGn/lvtGzLli2Oz+RXf1bft2+fPTw83D506FC73f7HZ++tW7fa7fbfP5vWq1fP3r9/f6f9bDabfeTIkfawsDD7t99+a7fb//iMf++999rPnTvn2PbChQv2Zs2a2Vu1auX0+q79jH0jn3/+uT0sLMz+xhtvOC3/+OOP7WFhYfbFixfb7Xa7fffu3S77HLvdbo+NjbWHhYU53mdXPcn999/v1F/kSkpKcurxLl68aL/77rvtMTExTr2E3W63v/HGG/awsDD7xx9/bLfb7fb58+c7vU+5Xn31VXtMTIz9+PHjN3ztU6ZMsYeFhdkTEhIcy3LHydXrjIuLs4eFhd2wfrvdvV5v2LBhN6w1V377arud3ro4e2sAhcflxQDADbnfxunUqZNjWY0aNdS4cWOdPn1an376qSRp9+7dOnLkiLp27arAwEDHthUqVFD37t0Nq6d8+fKqUKGC1qxZo+XLl+vUqVOSpEaNGmnt2rX5vlFn586dnR7nfhvqoYceclpes2ZN2Ww2/fbbb5J+v3awJHXs2FGnT592/MnMzFSHDh105swZbd++3ek5unTp4vRNrYYNG0qS4znd1adPHy1cuDDPn6lTpzq2CQgIUEpKiqZNm+a0b3p6unx9fSXJcYr6Z599ppycHPXq1cvpW1qBgYFasmSJ3nzzzevWsm7dOmVnZ6tfv37y8/NzLLdYLHr++eclKc81pxs1aqS//OUvTsuCg4P19ddfKz4+3nEaeHBwsNatW6chQ4bk+70BAABA0fDw8HBcFiu/du3apdTUVD388MN5zoD561//qttuu01r165VTk6OfvrpJ/38889q06aNbDab02fu+++/X97e3te9d0dBrF+/XpL07LPPOn1WDw0N1QcffKB//OMfLvf79NNPdeXKFT344IM6c+aMo7YzZ844eqbcHinX/fffL39/f8djPz8/hYaG3vTSXjfSqlUrVa1aVatXr3ZavmLFCvn4+KhLly6SpPDwcO3YsUPPPfec03ZpaWmOmoy4Qfr//d//6cyZM+rYsaMyMjKcxi23x8odt6pVq0qSpk6dqi1btigrK0vS75erSk5OVlBQ0HWPk52drVWrVslqtTrOGJH+6Fc//PBDXbp0ya3X4E6v5+rSa67kt6+W6K1LorcG4D4uLwYABXTlyhWtWrVK0u8fvK6+FmpkZKR27typpUuXqnPnzjp06JCk3z9IXat27dqG1eTl5aUpU6ZozJgxjkYoLCxMrVq1UpcuXa57CYBrXfvL/ltuuUWSVLlyZaflnp6//+8j954kBw4ckCS1b9/+us999OjRGx4rN9C4+j4n7qhdu7buueeem27n7e2tDRs2aOPGjTp06JCOHDmiX3/91fFhNbeO3PG944478jxHWFjYDY+RO/5Xn2qeKzg4WBUqVMhzLd1r3xdJmjRpkoYPH67XX39dr7/+umrWrKl7771XnTp1UkRExE1fKwAAAIpWUFCQDhw4oKysrJteTinXjT4rWiwW1a5dW6mpqTpz5ozj83ZiYqISExNdPt+1n7fdkfvZ9NoQSJLq1at33f1y6xs1atR1t7lZPyD93hNce5+TgrBarYqJidHs2bP1v//9T02aNNGpU6e0efNmde7c2emm8V5eXvrkk08c9w85cuSITp06lacfKIzc92X69OmaPn26y21y35eOHTsqNjZWycnJevrpp+Xj46NmzZqpTZs2euSRR5wulXytTZs26bffflODBg2UmZnpGEcvLy/dfvvtOnjwoD7++GPH/WzceQ0F6fWu7R9dKUhfLYne+irF1VsDcB+hCwAU0KZNmxzfvrreTQFTUlK0b98+x2O73Z5nm8J8AHLViLRv31733nuvvvzyS3311Vfatm2bFixYoIULF2rs2LGOG+fdSO4Hvmvd6NrBufWUK1dOs2bNuu42tWrVcnp89X1MituVK1c0ZMgQbdq0SfXr11f9+vXVsWNH1a1bV59//rnefvttp22lm78HruSO+/X2tdlseZpyV2PQtGlTrV+/Xlu3btWXX36pbdu2KTExUUuXLlXv3r2dbvoIAACA4hcREaH9+/frm2++UWRk5HW3GzNmjK5cuXLDcCJXbr/g5eXl+HuPHj2u+8vY632WL4jcz74FldufvPzyywoJCXG5zbX3kCiqfuDRRx/VW2+9pY8++khNmjTRRx99pJycHKfAISMjQ7169dKPP/6oZs2aqX79+uratasaNGighIQERxhQUNf2abnjNmzYMDVp0sTlPuXKlZP0+9lSkydP1qBBg7Rx40b93//9n1JSUrR582a9/fbbSkxMdBk4SH+cMfL999+rXbt2LrdJTEx0K3Rxp9fz8PC46fMWpK++OlShtzZXbw3ANUIXACig3A+0/fv3d5y2e7X3339fmzZtcvpQu3///jzbpaam3vRYuR9WMzMznZbnnuKcKyMjQz/99JNCQkLUoUMHdejQQZK0Z88e9erVS//5z3/y9cHQXSEhITpw4IDCw8PzNFO7d+/WyZMnHZftMoNPPvlEmzZtUr9+/RyX+cq1YsUKp8e5TeOBAwfyfLh95513tG/fPo0fP14+Pj55jpPbFO3du9dxw85cx44d04ULFxyXEbiezMxM/fTTT7r11lt133336b777pMkHT58WM8884wSEhI0ZMgQlS9fPh+vHAAAAEWhc+fOSkxM1JIlS64buvz6669atWqV/P39VbFiRdWoUUOS9PPPP+fZ1m63a//+/Spfvrz8/f2dgoxrz+q22Wxau3at4/kK4+rPvnXq1HFaN336dF2+fFljx4697n7+/v556jt58qS+++47Q+rLjxo1aujuu+/WmjVrNH78eH300Ue67bbb1KJFC8c27777rn744QdNnDhRTzzxhNP++bkkk4eHhy5cuJBn+bV9Wu774uPjk+d9ycjI0FdffeU48+Ho0aM6dOiQWrZsqZ49e6pnz57Kzs5WfHy8pk+frqVLl2r06NF5jpmWlqYvvvhC5cqV02uvvZbnl/o2m02jR4/W999/rx9//PGGZyy5UlS9XkH66vHjx+v222+XRG9ttt4agGtEoQBQAKdOndKXX36pihUravDgwWrfvn2eP8OGDZMkrVy5Urfddptq1aqlVatWOZ0uffnyZS1atOimx6tSpYqk37+xdLWVK1c6Pd67d6+efPJJzZ4922l57dq1VaFCBadv2eR+C8bVN4Tc1bFjR0nSv//9b6flGRkZGj58uAYPHpznw21+5H4wNvq06DNnzkhSnkYyNTVVa9eulfTHN57atWsni8WixYsXO12n++zZs5o3b56+++47R+BitVqdao2OjpaHh4fefvttp2tC2+12zZgxQ5L0wAMP3LTWbt266eWXX3ZaXqNGDQUFBclisfDNJgAAgBIWERGh6OhorV27VgsXLsyz/vz58/rb3/6m7OxsDRkyRF5eXqpbt65q1KihVatW5flFclJSkg4dOuT4hW/9+vVVvXp1rVixwnGZpVzLli3T8OHDHb/ELozcs2gSEhKclh86dEjvvPOODh8+7HK/Dh06yGq1as6cObp8+bLTuilTpmjw4MH64Ycf3Krp2s/Y+REbG6vTp09r5cqV2rVrV54zPK7XD/zvf/9z3C/jRpc5q1Klik6fPu10maesrCytWbPGabtWrVqpXLlyeueddxzHzDVnzhz97W9/0+eff+54/PTTT+vbb791bOPp6alGjRpJuv7ZIytXrlR2dra6du2q6OjoPP1phw4dFBsbK0launTpdV+T9EevePX7XRS9XkH76kuXLik8PJze2oS9NQDXONMFAAog9wPto48+Km9vb5fb1KtXTxEREdq+fbtWr16tV155Rc8884wee+wx9ejRQ+XLl1dSUpLOnz9/0+PFxMTo7bff1iuvvKIjR46ocuXK2rhxo/bu3et0/KZNm6pVq1ZKTExUenq6WrRooZycHK1du1aHDx92+kZU7vVe58+fr9atW9/wWrH59eijj+q///2vli1bpkOHDikqKkrZ2dl6//33dfDgQY0cOfKGN368ntwbJH722WeqVq2aoqOjVbFixULX27p1a/3rX//SpEmTdOjQIVWuXFk///yzkpKSHMFKenq6pN+vZ92vXz+9/fbb6t69uzp16iSbzably5fr3LlzjvAkt949e/ZoyZIlat68ucLCwjR8+HD961//0iOPPKJHH31Ufn5+2rBhg7Zu3ar7779fDz/88A1rDQ4O1mOPPaZly5apT58+ioqKksVi0VdffaXt27crLi5Ofn5+hX5PAAAAUDiTJ0/WuXPnNGXKFH300Ufq0KGDKlWqpIMHD2rFihU6ffq0evTooR49ekj6/Zegr7zyivr166fHHntM3bt3V0hIiL777jutWLFC1atX14gRI5y27d+/vx599FE98cQTqlmzpr7//nslJSWpZs2aGjRoUKFfQ+vWrdW5c2clJSXp+PHjioqKUkZGhhYvXixvb2+NHDnS5X633367hg4dqhkzZqhr166KiYmRv7+/NmzYoK+++kr333+/I0AqKFefsW+mY8eOevnll/Xaa6/J09NTjzzyiNP6qKgovffeexoxYoSefPJJVahQQT/88INWrFghDw8PXblyxdEPuBIbG6uUlBT16dNHTz75pGw2m5KSkvIENf7+/nrxxRc1ZswYdenSRd26dVOVKlW0detWffLJJ2rYsKGefPJJSdLTTz+tNWvWqF+/fnriiScUEhKiEydOaOnSpapQoYIef/xxl7UkJydLkuN5XHnqqae0ePFiffzxx3rhhReue5Z8bq+4atUq2e12Rw9jdK/nTl/92GOP0VubsLcG4BqhCwAUwIoVK2SxWG74gVb6/QPz9u3blZiYqKSkJC1ZskQzZ87UO++8I+n3b5C1bdtWf/vb3274PDVr1tS8efM0a9YszZ07V76+vmrdurWWLl2qTp06OW07c+ZMLViwwHHpLEkKDw/XtGnT1KVLF8d23bt319dff62kpCRt3brVkA+GHh4emjNnjhISEvThhx9q2rRp8vX1VWhoqN588023G6xatWqpd+/e+uCDDzRp0iSFhISoZcuWha43NDRUc+fO1cyZMxUfHy9Jqlq1quLi4vTAAw/okUce0Zdffuk4C+W5557THXfcoUWLFumNN96Qr6+vGjRooKlTp6pBgwaO5x01apSmTZumyZMna8CAAQoLC1O/fv10xx136J133nHcK6ZWrVp68cUX1b1793ydpfLiiy/qjjvu0IoVKzR9+nTl5OTojjvu0D/+8Y+bzkUAAAAUD39/f8XHx+uTTz5RcnKylixZotOnT6t8+fJq1KiRevTo4bhUbK7IyEgtX75cs2fPVlJSkjIyMlStWjU988wzGjBggPz9/R3b3nPPPVq+fLneeustxy+ag4OD9eSTT6p///75unl5fkydOlUNGzbUBx98oNdee0233nqrmjdvrr/97W95Lrd7tUGDBql27dp69913NXfuXNlsNtWoUUOjRo1Sz54983WfD1dcfca+GW9vb3Xu3FlLlixRVFSU4yyHXC1bttT06dMdvZaXl5eqVaum4cOHq3bt2urXr5++/PJLp8/6V3v00Ud14cIFLVmyRK+//rr+8pe/qGvXrrr//vvVrVs3p20feeQRVa1aVfPnz9e7776rzMxMVatWTQMHDlSfPn0cX6AKDQ3VokWL9NZbb2nlypVKS0tTxYoVFRkZqcGDB7u8n8u3336rffv2KSIiQnfeeed134+aNWvq/vvv14YNG/Thhx86gr9rRUZGqkuXLlq/fr2+//57NW/eXLVq1TK813Onr37sscfUvHlzemuT9dYAXLPYjTwHDgDgNrvdrvDwcN1999169913S7ocAAAAAABKHXprACWNi8ADgEnknr5erly5Eq4EAAAAAIDSid4aQEnj8mIAYAJvv/22fvzxR0m/X7sWAAAAAAAUDL01ADMgdAGAEpaenq6EhARduXJFnTt3Vu/evUu6JAAAAAAAShV6awBmwT1dAAAAAAAAAAAADMA9XQAAAAAAAAAAAAxA6AIAAAAAAAAAAGAAQhcAAAAAAAAAAAADeJZ0ASXNbrfLZuO2NmZltVoYH+Qb8wUFxZxBQTFnUBBmnC9Wq0UWi6Wky0ApQ89kLDP+bMDvGBvzYmzMi7ExL8bGvBgb88odm8L2TWU+dLHZ7Dp9+kJJlwEXPD2tCggop/T0i8rOtpV0OTA55gsKijmDgmLOoCDMOl8qVSonDw9CFxQMPZNxzPqzAYyNmTE25sXYmBdjY16MjXldPTb+/r6F6pu4vBgAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAABMIi0tTSNHjlRkZKSaNGmifv36ad++fY71u3fvVlxcnBo3bqy2bdsqPj7eaX+bzaaZM2eqdevWatSokZ555hmlpqYW98sAAAAAyixCFwAAAAAwiYEDB+rw4cOaN2+ePvjgA/n4+Ojpp5/WpUuXdObMGfXu3Vu33367kpKSNHToUM2YMUNJSUmO/WfPnq3ExES98sorWrZsmSwWi/r27ausrKwSfFUAAABA2eFZ0gUAAAAAAKQzZ84oJCREAwcO1J133ilJGjRokLp27aqff/5ZW7ZskZeXlyZMmCBPT0+FhoYqNTVV8+bNU2xsrLKysrRgwQKNHDlSbdq0kSS98cYbat26tdatW6dOnTqV5MsDAAAAygTOdAEAAAAAEwgICND06dMdgctvv/2m+Ph4BQcHq3bt2kpJSVFERIQ8Pf/47lxkZKQOHDigtLQ07dmzRxcuXFBkZKRjvb+/v+rWravt27cX++sBAAAAyiLOdAEAAAAAk/nHP/6h5cuXy8vLS2+99Zb8/Px0/PhxhYWFOW1XpUoVSdKxY8d0/PhxSVLVqlXzbPPrr78WT+EAAABAGUfoAgAAAAAm06tXL3Xr1k1Lly7V4MGDtWTJEl2+fFleXl5O23l7e0uSMjMzdenSJUlyuc25c+cKVY+nJxdJMIKHh9XpvzAPxsa8GBvzYmzMi7ExL8bGvIwcG0IXAAAAADCZ2rVrS5Jefvll7dy5U4sWLZKPj4+ysrKctsvMzJQk+fn5ycfHR5KUlZXl+HvuNr6+vm7XYrVaFBBQzu39kZe/v/vjgaLF2JgXY2NejI15MTbmxdiYlxFjQ+gCAAAAACaQlpamLVu26MEHH5SHh4ckyWq1KjQ0VCdPnlRwcLBOnjzptE/u46CgIGVnZzuW1axZ02mb8PBwt+uy2exKT7/o9v74g4eHVf7+vkpPv6ScHFtJl4OrMDbmxdiYF2NjXoyNeTE25nX12JQr512oM14IXQAAAADABE6ePKnnn39egYGBatmypSTpypUr2rVrl6KiovSXv/xFiYmJysnJcYQyW7ZsUa1atRQYGKgKFSqofPny2rZtmyN0SU9P165duxQXF1eo2rKz+aWAkXJybLynJsXYmBdjY16MjXkxNubF2JiXEWEYF48DAAAAABMIDw9Xq1atNHHiRKWkpGjv3r0aPXq00tPT9fTTTys2NlYZGRkaN26c9u3bp+TkZCUkJKh///6Sfr+XS1xcnKZNm6YNGzZoz549+vvf/67g4GBFR0eX8KsDAAAAygbOdAEA/KlZrRZZrZY8y693gzSbzS6bzV4stQEAcDWLxaJ///vf+te//qXhw4fr/Pnzat68uRYvXqxq1apJkubPn69JkyYpJiZGlStX1qhRoxQTE+N4jmHDhik7O1vjx4/X5cuXFRERofj4eHl5eZXUywIAAMUkt/8tyA3B6YEB41nsdnuZ/leVk2PT6dMXSroMuODpaVVAQDmdOXOB0+1wU8wXuGK1WlSxol+BrsOZk2PT2bMX+dCJPPg5g4Iw63ypVKlcoa5NjLKJnsk4Zv3ZAMbGzBgb82JszMWd/leiBy5u/Lsxr6vHxt/fl3u6AADgSu43fKYt3qEjJ87fdPuQoAoa0aOZrFYLHzgBAAAAAKVGQftfiR4YKCqELgCAP70jJ85r/9FzJV0GAAAAAABFiv4XKHlcWwAAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwgGdJF5Br27Zteuqpp1yuCwkJ0YYNG7R7925NmjRJP/zwgypWrKiePXuqT58+xVwpAAAAAAAAAABAXqYJXZo0aaKvvvrKadnevXvVr18/DRgwQGfOnFHv3r3Vvn17TZw4UTt37tTEiRNVsWJFxcbGllDVAAAAAAAAAAAAvzNN6OLl5aXKlSs7Hl+5ckWvvvqqOnTooMcee0xvv/22vLy8NGHCBHl6eio0NFSpqamaN28eoQsAAAAAAAAAAChxpr2ny+LFi/Xrr79qzJgxkqSUlBRFRETI0/OPnCgyMlIHDhxQWlpaSZUJAAAAAAAAAAAgyaShS2ZmpubMmaNevXqpSpUqkqTjx48rODjYabvcdceOHSv2GgEAAAAAAAAAAK5mmsuLXe3DDz9UZmamevbs6Vh2+fJleXl5OW3n7e0t6feQpjA8PU2ZPZV5Hh5Wp/8CN8J8gSvuzgfmEVzh5wwKgvkCAAAAAGWTKUOXlStXqkOHDgoICHAs8/HxUVZWltN2uWGLn5+f28eyWi0KCCjn9v4oev7+viVdAkoR5guMwDzCjTA/UBDMFwAAAAAoW0wXupw+fVr/+9//1L9/f6flwcHBOnnypNOy3MdBQUFuH89msys9/aLb+6PoeHhY5e/vq/T0S8rJsZV0OTA55gtcyZ0XBcU8giv8nEFBmHW++Pv7cvYNAAAAABQh04Uu33zzjSwWi1q0aOG0PCIiQomJicrJyZGHh4ckacuWLapVq5YCAwMLdczsbPM0wsgrJ8fGGCHfmC8wAvMIN8L8QEEwXwAAAACgbDHd19z27NmjGjVqyNfX+ZvJsbGxysjI0Lhx47Rv3z4lJycrISEhzxkxAAAAAAAAAAAAJcF0octvv/2mihUr5lkeGBio+fPn68CBA4qJidGsWbM0atQoxcTEFH+RAAAAAAAAAAAA1zDd5cUmTJhw3XUNGzbUsmXLiq8YAAAAAAAAAACAfDLdmS4AAAAAAAAAAAClEaELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAMAkzp49qxdffFH33XefmjZtqu7duyslJcWxfsyYMapTp47Tn/vuu8+x3mazaebMmWrdurUaNWqkZ555RqmpqSXxUgAAAIAyybOkCwAAAAAA/O65555TWlqapk+frkqVKmnJkiXq06ePkpOTFRoaqp9++kkDBgxQXFycYx8PDw/H32fPnq3ExES9+uqrCgoK0tSpU9W3b1+tXr1aXl5eJfGSAAAAgDKFM10AAAAAwARSU1O1efNmvfTSS2revLnuuOMOjRs3TkFBQVq9erVycnK0b98+NWjQQJUrV3b8qVSpkiQpKytLCxYs0NChQ9WmTRuFh4frjTfe0IkTJ7Ru3boSfnUAAABA2UDoAgAAAAAmEBAQoLlz56p+/fqOZRaLRXa7XefOndPBgweVmZmp0NBQl/vv2bNHFy5cUGRkpGOZv7+/6tatq+3btxd5/QAAAAC4vBgAAAAAmIK/v7/atGnjtGzNmjU6dOiQWrVqpb1798pisSghIUFffPGFrFar2rRpo+HDh6tChQo6fvy4JKlq1apOz1GlShX9+uuvharN05Pv6xnBw8Pq9F+YB2NjXoyNeTE25lKYcWAMiw//bszLyLEhdAEAAAAAE9qxY4fGjh2rdu3aKSoqSjNnzpTValX16tU1Z84cpaam6rXXXtPevXuVkJCgS5cuSVKee7d4e3vr3LlzbtdhtVoUEFCuUK8Fzvz9fUu6BFwHY2NejI15MTalH2NY/HjPzcuIsSF0AQAAAACTWb9+vUaMGKFGjRpp+vTpkqShQ4fq6aeflr+/vyQpLCxMlStXVrdu3fT999/Lx8dH0u/3dsn9uyRlZmbK19f95tFmsys9/WIhXg1yeXhY5e/vq/T0S8rJsZV0ObgKY2NejI15MTbmkjse7mAMiw//bszr6rEpV867UGe8ELoAAAAAgIksWrRIkyZNUnR0tKZNm+Y4c8VisTgCl1xhYWGSpOPHjzsuK3by5EnVrFnTsc3JkycVHh5eqJqys/mlgJFycmy8pybF2JgXY2NejE3pxxgWP95z8zIiDOPicQAAAABgEkuWLNHLL7+sHj166N///rfTpcKef/559enTx2n777//XpJUu3ZthYeHq3z58tq2bZtjfXp6unbt2qXmzZsXzwsAAAAAyjjOdAEAAAAAEzhw4IAmT56s6Oho9e/fX2lpaY51Pj4+6ty5swYOHKi33npLnTp10oEDB/TPf/5TnTt3VmhoqCQpLi5O06ZNU6VKlVS9enVNnTpVwcHBio6OLqmXBQAAAJQphC4AAAAAYAJr167VlStXtG7dOq1bt85pXUxMjKZMmaIZM2Zozpw5mjNnjipUqKAuXbpo+PDhju2GDRum7OxsjR8/XpcvX1ZERITi4+OdzpgBAAAAUHQIXQAAAADABAYMGKABAwbccJuOHTuqY8eO113v4eGhkSNHauTIkUaXBwAAACAfuKcLAAAAAAAAAACAAQhdAAAAAAAAAAAADEDoAgAAAAAAAAAAYABCFwAAAAAAAAAAAAOYLnRZuXKlHnroITVo0ECdOnXSmjVrHOt2796tuLg4NW7cWG3btlV8fHwJVgoAAAAAAAAAAPAHU4UuH374ocaOHatu3bpp9erVeuihh/Tcc8/pf//7n86cOaPevXvr9ttvV1JSkoYOHaoZM2YoKSmppMsGAAAAAAAAAACQZ0kXkMtut2vGjBnq1auXevXqJUkaPHiwvvnmG3399df6+uuv5eXlpQkTJsjT01OhoaFKTU3VvHnzFBsbW8LVAwAAAAAAAACAss40Z7r88ssvOnr0qLp06eK0PD4+Xv3791dKSooiIiLk6flHThQZGakDBw4oLS2tuMsFAAAAAAAAAABwYpozXQ4ePChJunjxovr06aNdu3YpJCREAwcOVFRUlI4fP66wsDCnfapUqSJJOnbsmAIDA90+tqenabInXMXDw+r0X+BGmC9wxd35wDyCK/ycQUEwXwAAAACgbDJN6JKRkSFJGj16tIYMGaIRI0Zo7dq1GjRokBYuXKjLly/Ly8vLaR9vb29JUmZmptvHtVotCggo537hKHL+/r4lXQJKEeYLjMA8wo0wP1AQzBcAAAAAKFtME7rccsstkqQ+ffooJiZGknTXXXdp165dWrhwoXx8fJSVleW0T27Y4ufn5/ZxbTa70tMvur0/io6Hh1X+/r5KT7+knBxbSZcDk2O+wJXceVFQzCO4ws8ZFIRZ54u/vy9n3wAAAABAETJN6BIcHCxJeS4hVrt2bW3atEnVq1fXyZMnndblPg4KCirUsbOzzdMII6+cHBtjhHxjvsAIzCPcCPMDBcF8AQAAAICyxTRfc6tbt67KlSunb7/91mn53r17VbNmTUVERGjHjh3KyclxrNuyZYtq1apVqPu5AAAAAAAAAAAAGME0oYuPj4+effZZ/ec//9Hq1at16NAhvfXWW9q8ebN69+6t2NhYZWRkaNy4cdq3b5+Sk5OVkJCg/v37l3TpAAAAAAAAAAAA5rm8mCQNGjRIvr6+euONN3TixAmFhobqzTff1N133y1Jmj9/viZNmqSYmBhVrlxZo0aNctz/BQAAAAAAAAAAoCSZKnSRpN69e6t3794u1zVs2FDLli0r5ooAAAAAAAAAAABuzjSXFwMAAAAAAAAAACjNCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMYGjocuHCBV2+fNnIpwQAAACAUoOeCAAAACjb3A5dvvjiC82ePdvx+LXXXlOLFi3UvHlzTZo0yZDiAAAAAMCs6IkAAAAAXMut0GXjxo3q37+/PvzwQ0lSSkqKFi5cqOrVq6tJkyZatGiRlixZYmihAAAAAGAW9EQAAAAAXHErdFm4cKFq1qypd999V5L08ccfy2q1auHChXrvvfd0//33KykpydBCAQAAAMAs6IkAAAAAuOJW6LJ79251795dQUFBkqTNmzcrLCxM1atXlyS1bt1av/zyi3FVAgAAAICJ0BMBAAAAcMWt0CU7O1vly5eXJB09elSHDh3S3Xff7Vhvs9nk6elpTIUAAAAAYDL0RAAAAABccSt0CQkJ0a5duyRJa9eulcViUevWrR3rN27cqJCQEGMqBAAAAACToScCAAAA4IpbX73q2LGj3nrrLR09elRff/21goKCFBkZqUOHDumVV17R5s2b9cILLxhdKwAAAACYAj0RAAAAAFfcCl0GDRqks2fPKikpSVWrVtWkSZPk6emps2fP6quvvtLjjz+uuLg4o2sFAAAAAFOgJwIAAADgiluhi9Vq1fjx4zV+/Hin5eHh4dq4caPjZpIAAAAA8GdETwQAAADAFbfu6fLUU09py5YteZZ7eXkpKChI69ev1wMPPFDo4gAAAADAjOiJAAAAALiSrzNdLl26pDNnzjgef/3114qOjtZtt92WZ1ubzaavvvpKx44dM65KAAAAAChB9EQAAAAA8iNfoUtGRoY6d+6sS5cuOZZNnjxZkydPvu4+jRs3LnRxAAAAAGAG9EQAAAAA8iNfoUvlypX14osvatu2bbLb7Vq5cqWaNWumGjVq5NnWarXqL3/5i7p37254sQAAAABQEuiJAAAAAORHvkIXSXrkkUf0yCOPSPr9VPrevXurXbt2RVUXAAAAAJgKPREAAACAm8l36HK1zz77zOg6JElHjx5VVFRUnuWvvPKKHnvsMe3evVuTJk3SDz/8oIoVK6pnz57q06dPkdQCAAAAANdTVD0RAAAAgNLNrdBFkux2u7Zu3apTp07JZrO53Cb3W2D59dNPP8nb21vr16+XxWJxLK9QoYLOnDmj3r17q3379po4caJ27typiRMnqmLFioqNjXX3ZQAAAACAW4qiJzp79qymT5+uTZs2KSMjQ3Xq1NHzzz+v5s2bS9JNv4hms9k0a9Ysvf/++0pPT1ezZs300ksv6bbbbnP7dQIAAADIP7dCl9TUVPXt21eHDx92ud5ut8tisRS4wdi7d69q1aqlKlWq5FmXkJAgLy8vTZgwQZ6engoNDVVqaqrmzZtH6AIAAACgWBVVT/Tcc88pLS1N06dPV6VKlbRkyRL16dNHycnJqlSp0k2/iDZ79mwlJibq1VdfVVBQkKZOnaq+fftq9erV8vLyKuzLBgAAAHATboUu06ZN0+HDhxUbG6sGDRoY9uH9p59+Uu3atV2uS0lJUUREhDw9/yg5MjJSb7/9ttLS0hQYGGhIDQAAAABwM0XRE6Wmpmrz5s1aunSpmjZtKkkaN26cvvjiC61evVo+Pj43/CJaVlaWFixYoJEjR6pNmzaSpDfeeEOtW7fWunXr1KlTp0LXCAAAAODG3Apdtm7dqu7du+vFF180tJi9e/eqcuXKevLJJ3Xw4EHddtttGjRokFq3bq3jx48rLCzMafvcM2KOHTtWqNDF09NaqLpRNDw8rE7/BW6E+QJX3J0PzCO4ws8ZFATz5c+vKHqigIAAzZ07V/Xr13css1gsstvtOnfunH744YcbfhHt6NGjunDhgiIjIx3r/f39VbduXW3fvp3QBQAAACgGboUu2dnZuuuuuwwtJCsrSwcPHpSvr69GjRolPz8/rVq1Sn379tXChQt1+fLlPN8e8/b2liRlZma6fVyr1aKAgHKFqh1Fy9/ft6RLQCnCfIERmEe4EeYHCoL58udVFD2Rv7+/4wyVXGvWrNGhQ4fUqlUrvfHGGzf8Itrx48clSVWrVs2zza+//mporQAAAABccyt0qVevnn788Uc99thjhhXi5eWl7du3y9PT0xGu1K9fX/v371d8fLx8fHyUlZXltE9u2OLn5+f2cW02u9LTL7pfOIqMh4dV/v6+Sk+/pJwc1zcmBXIxX+BK7rwoKOYRXOHnDArCrPPF39+Xs28MUhQ90bV27NihsWPHql27doqKitKrr756wy+iXbp0SZJcbnPu3LlC1cLVAYzBWXDmxdiYF2NjXoyNuRRmHBjD4sO/G/MycmzcCl2GDRum/v37q2XLlurQoYMsFkuhC5FchydhYWH66quvFBwcrJMnTzqty30cFBRUqONmZ5unEUZeOTk2xgj5xnyBEZhHuBHmBwqC+fLnVVQ9Ua7169drxIgRatSokaZPny5JN/0imo+Pj6TfryKQ+/fcbXx93T/riqsDGI+z4MyLsTEvxsa8GJvSjzEsfrzn5mXE2LgVuixYsEC33nqrhg8fLh8fHwUEBORpMiwWi9avX5/v59yzZ4+6d++uefPmqXnz5o7lP/zwg2rXrq277rpLiYmJysnJkYeHhyRpy5YtqlWrVqHu5wIAAAAABVUUPVGuRYsWadKkSYqOjta0adMcZ67c7Ito2dnZjmU1a9Z02iY8PLzAdeTi6gDGMetZcGBszIyxMS/GxlzcvdKDxNUeihP/bszr6rEpV867UGe8uBW67N27V1ar1elawXa73Wmbax/fTFhYmO68805NnDhRL730kgICArR8+XLt3LlTH3zwgf7yl79o/vz5GjdunJ599ll99913SkhI0MSJE915CQAAAADgtqLoiSRpyZIlevnll9WzZ0+NHTtWVusfzV5ERMQNv4hWoUIFlS9fXtu2bXOELunp6dq1a5fi4uLceZkOnLFlLM6CMy/GxrwYG/NibEo/xrD48Z6blxFhmFuhy2effVboA1/LarVqzpw5mjZtmoYPH6709HTVrVtXCxcuVJ06dSRJ8+fP16RJkxQTE6PKlStr1KhRiomJMbwWAAAAALiRouiJDhw4oMmTJys6Olr9+/dXWlqaY52Pj49iY2Nv+EU0Ly8vxcXFadq0aapUqZKqV6+uqVOnKjg4WNHR0YbXCwAAACAvt0KXa2VlZcnT09PpW1juqFSpkiZPnnzd9Q0bNtSyZcsKdQwAAAAAMJoRPdHatWt15coVrVu3TuvWrXNaFxMToylTptz0i2jDhg1Tdna2xo8fr8uXLysiIkLx8fGOS5QBAAAAKFpuhy5nz57VzJkz9emnn+r06dOKj4/XLbfcovnz52v06NGqVauWkXUCAAAAgKkY3RMNGDBAAwYMuOE2N/simoeHh0aOHKmRI0cW6NgAAAAAjOHW17DOnj2rbt26acmSJfL19XVcq/jcuXPatGmTevToocOHDxtaKAAAAACYBT0RAAAAAFfcCl1mzZqlo0ePauHChVq2bJmjwWjXrp3mzp2rixcvavbs2YYWCgAAAABmQU8EAAAAwBW3QpfPPvtMjz/+uFq2bCmLxeK07r777lO3bt20bds2QwoEAAAAALOhJwIAAADgiluhy8mTJxUeHn7d9aGhoTp16pTbRQEAAACAmdETAQAAAHDFrdAlMDBQR48eve76vXv3KiAgwO2iAAAAAMDM6IkAAAAAuOJW6HLfffcpMTFRR44cybPum2++0fLly9WqVatCFwcAAAAAZkRPBAAAAMAVT3d2GjJkiDZu3KiYmBg1a9ZMFotFiYmJSkhI0Jdffqny5ctr0KBBRtcKAAAAAKZATwQAAADAFbfOdAkKClJiYqKaNGmiL774Qna7XWvXrtWmTZvUuHFjvffeewoJCTG6VgAAAAAwBXoiAAAAAK64daaLJIWEhGju3Lk6f/68Dh48KJvNppCQEAUGBhpZHwAAAACYEj0RAAAAgGu5HbrkqlChgho0aGBELQAAAABQ6tATAQAAAMiVr9BlzJgxeuKJJ9SoUSPH45uxWCyaPHly4aoDAAAAABOgJwIAAACQH/kKXVasWKF77rnH0WCsWLHipvvQYAAAAAD4s6AnAgAAAJAf+QpdNmzYoEqVKjk9BgAAAICygp4IAAAAQH7kK3SpXr26y8fp6ekqX768rFarJOnnn39W5cqVVbFiRWOrBAAAAIASRE8EAAAAID+s7u74xhtvqHXr1jp06JBj2bx589SqVSstWLDAkOIAAAAAwKzoiQAAAABcK19nulxr+fLlevvtt9WsWTN5e3s7lj/yyCP67bffNHXqVFWtWlUPPvigYYUCAAAAgFnQEwEAAABwxa0zXZYsWaJ7771XixcvVtWqVR3L77nnHi1YsEAtW7bUwoULDSsSAAAAAMyEnggAAACAK26FLqmpqerQocN110dHR2v//v1uFwUAAAAAZkZPBAAAAMAVt0IXX19fnTp16rrrz5w5Iw8PD7eLAgAAAAAzoycCAAAA4IpboUuzZs20ZMkSl03G6dOnlZiYqKZNmxa6OAAAAAAwI3oiAAAAAK54urNTv3799OSTT+rhhx9W165ddccdd8hiseiXX37RRx99pLNnz2rQoEFG1woAAAAApkBPBAAAAMAVt0KXBg0aaPbs2XrppZf0zjvvOK0LDg7Wf/7zHzVs2NCI+gAAAADAdOiJAAAAALjiVugiSa1bt9Znn32mXbt26ciRI8rOzlZISIjq1avHtYsBAAAA/OnREwEAAAC4ltuhS666deuqbt26RtQCAAAAAKUOPREAAACAXPkKXWbNmqUOHTooLCzM8fhmLBaLBg8eXLjqAAAAAMAE6IkAAAAA5Ee+Q5fbbruNBgMAAABAmURPBAAAACA/8hW6xMfH66677nI8fvfdd4usIAAAAAAwG3oiAAAAAPmRr9Bl7Nixeu6559S1a1dJ0rFjx9S8eXOFhIQUaXEAAAAAYAb0RAAAAADyw5qfjU6fPq2MjAzH4zFjxmjnzp1FVRMAAAAAmAo9EQAAAID8yNeZLtWqVdPs2bN15MgRlStXTna7XZ9++qkOHjx43X24fjEAAACAPwt6IgAAAAD5ka/QZfjw4Ro9erQWLlwo6ffm4dNPP9Wnn3563X1oMAAAAAD8WdATAQAAAMiPfIUu0dHRioyM1MGDB5WVlaVevXppwIABuueee4q6PgAAAAAocfREAAAAAPIjX6FLu3btnG4aWa1aNVWrVk0tWrQo0uIAAAAAwAzoiQAAAADkhzU/G11708hjx47J19e3yIoCAAAAADOhJwIAAACQH/k60+Xam0ZK0rp165Samnrdfbh+MQAAAIA/C3oiAAAAAPmRr9CFm0YCAAAAKMvoiQAAAADkR75ClwcffJCbRgIAAAAos+iJAAAAAORHvkIXSQoICFBAQIAkKSIiQnfffTc3jQQAAABQZtATAQAAALiZfIcuV3vvvfccfz9w4ICOHj2qevXqydfXV1arVV5eXoYVCAAAAABmQ08EAAAAwBWruzvu3LlTXbp00UMPPaS+fftqz549+uabb9S2bVutWbPGyBoBAAAAwHToiQAAAABcy63Q5eeff1bv3r3122+/6eGHH3Ys9/X1VU5OjkaMGKHt27cbViQAAAAAmAk9EQAAAABX3Apd3nzzTfn5+Wn16tUaPXq07Ha7JKlJkyZatWqVKleurHnz5hlaKAAAAACYBT0RAAAAAFfcCl2+/vprPfHEEwoMDJTFYnFaFxQUpG7dumnXrl2GFAgAAAAAZkNPBAAAAMAVt0KXCxcuKCgo6Lrrb731VqWnp7tdFAAAAACYGT0RAAAAAFfcCl1CQkL0/fffX3f91q1bVb16dbeLAgAAAAAzoycCAAAA4IpboUvnzp21YsUKffrpp45lFotFNptNc+fO1bp169SxY0fDigQAAAAAM6EnAgAAAOCKpzs79e3bV//3f/+nv/3tb/L395fFYtFLL72ks2fP6ty5cwoPD1f//v2NrhUAAAAATIGeCAAAAIArbp3p4uXlpXfeeUfPP/+8qlWrJh8fH/36668KDAzUwIEDtWTJEvn6+hpdKwAAAACYAj0RAAAAAFfcOtNFkm655RY9++yzevbZZ42sBwAAAABKBXoiAAAAANdyO3SRpIyMDH311Vc6cuSIvLy8VK1aNbVq1Uo+Pj5G1QcAAAAApkVPBAAAAOBqbocua9eu1Ysvvqj09HTZ7XZJv984sly5cvrnP/+phx56yLAiAQAAAMBs6IkAAAAAXMut0OXbb7/V888/rwoVKmjYsGG68847ZbPZtHfvXi1atEijRo1SSEiIGjZsaHS9AAAAAFDi6IkAAAAAuOJW6PLWW2+pYsWK+vDDDxUYGOhY3qFDB3Xv3l1du3bV/PnzNXPmTMMKBQAAAACzoCcCAAAA4IrVnZ3+97//qVu3bk7NRa7AwEB169ZNO3bsKHRxAAAAAGBG9EQAAAAAXHErdLl48aLL5iJXpUqVdP78ebeLAgAAAAAzoycCAAAA4IpboUtISIi2bt163fVbt25VtWrV3C4KAAAAAMyMnggAAACAK26FLp07d9a6des0a9YsZWVlOZZnZWVp1qxZWr9+vR566KFCFXbgwAE1adJEycnJjmW7d+9WXFycGjdurLZt2yo+Pr5QxwAAAAAAdxRHTwQAAACg9PF0Z6e+ffvq888/16xZs7RgwQLVrFlTFotFqampunjxourWrat+/fq5XdSVK1c0YsQIXbx40bHszJkz6t27t9q3b6+JEydq586dmjhxoipWrKjY2Fi3jwUAAAAABVXUPREAAACA0smt0MXLy0vvvvuu4uPj9d///lcHDx6U3W5XzZo11bFjR/Xp00c+Pj5uF/Xmm2+qXLlyTsuWL18uLy8vTZgwQZ6engoNDVVqaqrmzZtH6AIAAACgWBV1TwQAAACgdHIrdJEkHx8fDR48WIMHDzayHm3fvl3Lli3TypUr1bZtW8fylJQURUREyNPzj5IjIyP19ttvKy0t7YY3sQQAAAAAoxVVTwQAAACg9CrwPV1+/PFHl8s3bNigzz77rFDFpKena9SoURo/fryqVq3qtO748eMKDg52WlalShVJ0rFjxwp1XAAAAADIr6LsiQAAAACUbvk+0+X06dMaNmyYvvnmG23dulX+/v5O6xctWqStW7eqUaNGmjFjhoKCggpczIQJE9S4cWN16dIlz7rLly/Ly8vLaZm3t7ckKTMzs8DHupqnZ4GzJxQDDw+r03+BG2G+wBV35wPzCK7wcwYFwXz5cyqOnggAAABA6Zav0OXixYvq1auXfv75Z9199926dOlSngajR48eslqt2rx5s5555hklJyc7QpH8WLlypVJSUvTRRx+5XO/j46OsrCynZblhi5+fX76Pcy2r1aKAgHI33xAlxt/ft6RLQCnCfIERmEe4EeYHCoL58udRHD0RAAAAgNIvX6FLQkKCfv75Z/3zn//U448/7nKb9u3bq3379po7d66mT5+u9957T88++2y+C0lKSlJaWprTfVwk6aWXXlJ8fLyqVaumkydPOq3LfVyYb5DZbHalp190e38UHQ8Pq/z9fZWefkk5ObaSLgcmx3yBK7nzoqCYR3CFnzMoCLPOF39/X86+cVNx9EQAAAAASr98hS5r165VmzZtrttcXK1fv37atGmTPvnkkwI1GNOmTdPly5edlnXo0EHDhg3TQw89pI8//liJiYnKycmRh4eHJGnLli2qVauWAgMD830cV7KzzdMII6+cHBtjhHxjvsAIzCPcCPMDBcF8+fMojp4IAAAAQOmXr6+5paamqmXLlvl+0rZt2+rAgQMFKiQoKEi33Xab0x9JCgwMVPXq1RUbG6uMjAyNGzdO+/btU3JyshISEtS/f/8CHQcAAAAACqo4eiIAAAAApV++Qher1SofH598P2nFihVlsVjcLsqVwMBAzZ8/XwcOHFBMTIxmzZqlUaNGKSYmxtDjAAAAAMC1zNATAQAAADC/fF1erFq1avrll1/y/aT79u0r1H1Wcv30009Ojxs2bKhly5YV+nkBAAAAoCBKqicCAAAAULrk60yX1q1b68MPP9SFCxduum16erpWrVqlJk2aFLo4AAAAADADeiIAAAAA+ZGv0OWJJ55QZmam+vfvrzNnzlx3u7S0NA0ePFjp6enq0aOHYUUCAAAAQEmiJwIAAACQH/m6vFjNmjU1btw4/eMf/1C7du300EMPqWnTpqpSpYpycnJ06tQp7dixQ59++qkuXLigF154QfXq1Svq2gEAAACgWNATAQAAAMiPfIUukvTYY4+pSpUqevHFF/XBBx8oKSnJab3dbleNGjU0depURUVFGV4oAAAAAJQkeiIAAAAAN5Pv0EWS2rRpo02bNmnr1q369ttvdfLkSXl4eCgoKEgtWrRQw4YNi6pOAAAAAChx9EQAAAAAbqRAoYskWSwWtWzZUi1btiyKegAAAADA1OiJAAAAAFyPtaQLAAAAAAAAAAAA+DMgdAEAAAAAE5o9e7Z69uzptGzMmDGqU6eO05/77rvPsd5ms2nmzJlq3bq1GjVqpGeeeUapqanFXToAAABQZhG6AAAAAIDJvPPOO5o5c2ae5T/99JMGDBigr776yvFn5cqVjvWzZ89WYmKiXnnlFS1btkwWi0V9+/ZVVlZWMVYPAAAAlF2ELgAAAABgEidOnNCzzz6rGTNmqFatWk7rcnJytG/fPjVo0ECVK1d2/KlUqZIkKSsrSwsWLNDQoUPVpk0bhYeH64033tCJEye0bt26kng5AAAAQJmTr9Bl4cKF2r9/f1HXAgAAAACmVFw90Y8//qhbb71Vq1atUqNGjZzWHTx4UJmZmQoNDXW57549e3ThwgVFRkY6lvn7+6tu3bravn17kdYNAAAA4Hee+dlo5syZ8vf3d3y4b9euncaOHat27doVaXEAAAAAYAbF1RNFRUUpKirK5bq9e/fKYrEoISFBX3zxhaxWq9q0aaPhw4erQoUKOn78uCSpatWqTvtVqVJFv/76a6Hq8vTkIglG8PCwOv0X5sHYmBdjY16MjbkUZhwYw+LDvxvzMnJs8hW6WK1WbdmyRQ888IDKlSuno0eP6tKlS4U+OAAAAACUBmboiX7++WdZrVZVr15dc+bMUWpqql577TXt3btXCQkJjnq8vLyc9vP29ta5c+fcPq7ValFAQLlC1Q5n/v6+JV0CroOxMS/GxrwYm9KPMSx+vOfmZcTY5Ct0ad26tVavXq2PP/5YkmSxWDRy5EiNHDnyuvtYLBbt2rWr0AUCAAAAQEkzQ080dOhQPf300/L395ckhYWFqXLlyurWrZu+//57+fj4SPr93i65f5ekzMxM+fq63zzabHalp18sXPGQ9Ps3J/39fZWefkk5ObaSLgdXYWzMi7ExL8bGXHLHwx2MYfHh3415XT025cp5F+qMl3yFLq+88oqqVq2qvXv3KisrSykpKapVq5YCAwPdPjAAAAAAlBZm6IksFosjcMkVFhYmSTp+/LjjsmInT55UzZo1HducPHlS4eHhhTp2dja/FDBSTo6N99SkGBvzYmzMi7Ep/RjD4sd7bl5GhGH5Cl3Kly+v0aNHOx6Hh4dr4MCB6tKlS6ELAAAAAACzM0NP9Pzzz+vs2bOKj493LPv+++8lSbVr11aNGjVUvnx5bdu2zRG6pKena9euXYqLiyu2OgEAAICyLF+hy7Xeffddxw0kAQAAAKCsKYmeqHPnzho4cKDeeustderUSQcOHNA///lPde7c2VFLXFycpk2bpkqVKql69eqaOnWqgoODFR0dXay1AgAAAGWVW6FLixYtJEkrV67UmjVrdOTIEXl5ealq1ap64IEH9PDDDxtaJAAAAACYSUn0RPfff79mzJihOXPmaM6cOapQoYK6dOmi4cOHO7YZNmyYsrOzNX78eF2+fFkRERGKj4+Xl5eX4fUAAAAAyMut0MVut2vYsGFav3697Ha7KlSoIJvNpt27d2vjxo3673//q9mzZxtdKwAAAACYQnH0RFOmTMmzrGPHjurYseN19/Hw8NDIkSM1cuTIQh0bAAAAgHus7uy0aNEirVu3Tl26dNHnn3+u7du3a8eOHdq4caMefvhhbdy4UUuXLjW6VgAAAAAwBXoiAAAAAK64FbokJSWpRYsWev311xUUFORYXrVqVb322mtq0aKFkpKSDCsSAAAAAMyEnggAAACAK26FLgcOHLjhjRjbt2+vX375xe2iAAAAAMDM6IkAAAAAuOJW6OLp6amLFy9ed/3FixdlsVjcLgoAAAAAzIyeCAAAAIArboUu9evXV3JysjIzM/Osu3TpkpKTk1W3bt1CFwcAAAAAZkRPBAAAAMAVt0KXZ555RqmpqfrrX/+q1atXa8+ePdqzZ48++ugjPfbYYzp06JB69+5tdK0AAAAAYAr0RAAAAABc8XRnpzZt2mjUqFGaPn26Ro4c6bTOarXq73//u6KiogwpEAAAAADMhp4IAAAAgCtuhS7S79/sio6O1vr163Xo0CHZ7XbVrFlT0dHRqlGjhpE1AgAAAIDp0BMBAAAAuJbboYsk1ahRg1PmAQAAAJRZ9EQAAAAArubWPV0AAAAAAAAAAADgjNAFAAAAAAAAAADAAIQuAAAAAAAAAAAABiB0AQAAAAAAAAAAMIBbocvSpUt18OBBg0sBAAAAgNKBnggAAACAK26FLtOmTdNHH31kdC0AAAAAUCrQEwEAAABwxa3QxWq1KiAgwOhaAAAAAKBUoCcCAAAA4IpboUufPn00d+5cffnll7LZbEbXBAAAAACmRk8EAAAAwBVPd3bauXOnMjIy1K9fP3l5eSkgIEAeHh5O21gsFq1fv96QIgEAAADATOiJAAAAALjiVuiyd+9eVaxYURUrVnQss9vtTttc+xgAAAAA/izoiQAAAAC44lbo8tlnnxldBwAAAACUGvREAAAAAFxx654u18rKyuI6xgAAAADKLHoiAAAAAFIhQpezZ8/qn//8p1q1aqXGjRtr27ZtSklJ0YABA3TgwAEjawQAAAAA06EnAgAAAHAtt0KXs2fPqlu3blqyZIl8fX0d1yo+d+6cNm3apB49eujw4cOGFgoAAAAAZkFPBAAAAMAVt0KXWbNm6ejRo1q4cKGWLVvmaDDatWunuXPn6uLFi5o9e7ahhQIAAACAWdATAQAAAHDFrdDls88+0+OPP66WLVvKYrE4rbvvvvvUrVs3bdu2zZACAQAAAMBs6IkAAAAAuOJW6HLy5EmFh4dfd31oaKhOnTrldlEAAAAAYGb0RAAAAABccSt0CQwM1NGjR6+7fu/evQoICHC7KAAAAAAwM3oiAAAAAK64Fbrcd999SkxM1JEjR/Ks++abb7R8+XK1atWq0MUBAAAAgBnREwEAAABwxdOdnYYMGaKNGzcqJiZGzZo1k8ViUWJiohISEvTll1+qfPnyGjRokNG1AgAAAIAp0BMBAAAAcMWtM12CgoKUmJioJk2a6IsvvpDdbtfatWu1adMmNW7cWO+9955CQkKMrhUAAAAATIGeCAAAAIArbp3pIkkhISGaO3euzp8/r4MHD8pmsykkJESBgYFG1gcAAAAApkRPBAAAAOBabp3pcrXs7GzZ7XZ5enrK29vbiJoAAAAAoNSgJwIAAACQy+0zXb7//nu9/vrr2rFjh+x2uyTJarXq3nvv1bhx43TbbbcZViQAAAAAmA09EQAAAIBruRW6/Pjjj+rZs6eysrLUunVr3X777bLZbPrll1/05Zdf6oknntDy5ctVo0YNo+sFAAAAgBJHTwQAAADAFbdCl5kzZ8rLy0uJiYkKDw93Wrdz50717t1b06dP1xtvvGFIkQAAAABgJvREAAAAAFxx654uKSkp6tmzZ57mQpIaN26suLg4bd68udDFAQAAAIAZ0RMBAAAAcMWt0MViscjf3/+660NCQpSdne12UQAAAABgZvREAAAAAFxxK3Rp06aNPvzwQ2VlZblcv2bNGrVq1apQhQEAAACAWdETAQAAAHAlX/d02b59u9Pjdu3aafz48erRo4f69eunO+64Q1arVYcOHdKiRYv0888/69///ndR1AsAAAAAxY6eCAAAAEB+5Ct06dmzpywWi9Myu92u77//XsOGDcuzXJKeeuop7d69u0DFpKWlacqUKfryyy+VmZmpiIgIjRo1SrVr15Yk7d69W5MmTdIPP/ygihUrqmfPnurTp0+BjgEAAAAABVVcPREAAACA0i1focvgwYPzNBhFYeDAgbJarZo3b578/Pw0Y8YMPf3001q3bp0uX76s3r17q3379po4caJ27typiRMnqmLFioqNjS3y2gAAAACUXcXVEwEAAAAo3fIVugwdOrSo69CZM2cUEhKigQMH6s4775QkDRo0SF27dtXPP/+sLVu2yMvLSxMmTJCnp6dCQ0OVmpqqefPmEboAAAAAKFLF0RMBAAAAKP2sJV1AroCAAE2fPt0RuPz222+Kj49XcHCwateurZSUFEVERMjT84+cKDIyUgcOHFBaWlpJlQ0AAAAAAAAAACApn2e6XCsjI0P/+te/tGnTJp04ccJxzeKrWSwW7dq1y62i/vGPf2j58uXy8vLSW2+9JT8/Px0/flxhYWFO21WpUkWSdOzYMQUGBrp1LEny9DRN9lTmWCwWWa2uL9OQu/yWWzzk4fHHGNlsdpdzDmVb7hy5eq4A7s4H5hFc4ecMCoL58udX1D0RAAAAgNLJrdDl9ddf1/Lly1WlShU1btxYHh4ehhbVq1cvdevWTUuXLtXgwYO1ZMkSXb58WV5eXk7beXt7S5IyMzPdPpbValFAQLlC1Qv32Wz264YuucqX9ynwPii7/P19S7oE/Akwj3AjzA8UBPPlz6uoeyIAAAAApZNbocvGjRvVvn17zZw5U1ar8d/eq127tiTp5Zdf1s6dO7Vo0SL5+PgoKyvLabvcsMXPz8/tY9lsdqWnX3S/WLjNw8Mqf39fTVu8Q0dOnM/XPiFBFTSiRzOlp19STo6tiCtEaZI7n5gbuFruvCgo5hFc4ecMCsKs88Xf35ezbwxS1D0RAAAAgNLJ7cuLtWnTxtDmIi0tTVu2bNGDDz7o+JaY1WpVaGioTp48qeDgYJ08edJpn9zHQUFBhTp2drZ5GuGy6MiJ89p/9FyB9snJsTFucIm5ASMwj3AjzA8UBPPlz6soeiIAAAAApZ9bHULTpk31448/GlrIyZMn9fzzz+vrr792LLty5Yp27dql0NBQRUREaMeOHcrJyXGs37Jli2rVqlWo+7kAAAAAQEEVRU8EAAAAoPRzK3QZOXKk1qxZo4SEBJ06dcqQQsLDw9WqVStNnDhRKSkp2rt3r0aPHq309HQ9/fTTio2NVUZGhsaNG6d9+/YpOTlZCQkJ6t+/vyHHBwAAAID8KoqeCAAAAEDp59blxapXr646depoypQpmjJlisttLBaLdu3ale/ntFgs+ve//61//etfGj58uM6fP6/mzZtr8eLFqlatmiRp/vz5mjRpkmJiYlS5cmWNGjVKMTEx7rwEAAAAAHBbUfREAAAAAEo/t0KXSZMm6euvv1alSpV02223ydPTrafJo0KFCpowYYImTJjgcn3Dhg21bNkyQ44FAAAAAO4qqp4IAAAAQOnmVmewceNGtWvXTjNmzKC5AAAAAFDm0BMBAAAAcMWte7pkZWWpbdu2NBcAAAAAyiR6IgAAAACuuBW6NGnSRD/++KPRtQAAAABAqUBPBAAAAMAVt0KX559/Xh9//LEWLFigEydOKCcnx+i6AAAAAMC06IkAAAAAuOLWufAvvPCCrFarpk6dqqlTp7rcxmKxaNeuXYUqDgAAAADMiJ4IAAAAgCtuhS4VK1ZUxYoVDS4FAAAAAEoHeiIAAAAArrgVurz33ntG1wEAAAAApQY9EQAAAABX3LqnCwAAAAAAAAAAAJy5dabLmDFjbrqNxWLR5MmT3Xl6AAAAADA1eiIAAAAArrgVuqxYseK66ywWi7y8vOTt7U2DAQAAAOBPiZ4IAAAAgCtuhS4bNmzIsywnJ0enTp3SihUrtHXrVi1ZsqTQxQEAAACAGdETAQAAAHDFrdClevXqLpfXrFlTzZo104ABA/Svf/1Lr732WqGKAwAAAAAzoicCAAAA4Iq1KJ40KipKn3/+eVE8NQAAAACYHj0RAAAAUDYVSehy6tQpXb58uSieGgAAAABMj54IAAAAKJvcurzYsWPHXC6/fPmyfvjhByUkJKhevXqFKgwAAAAAzIqeCAAAAIArboUuUVFRslgs111vtVo1ZMgQt4sCAAAAADOjJwIAAEXNarXIar3+542reXgUyQWNALjBrdDlkUcecdlgeHh4qEqVKoqJiVGNGjUKXRwAAAAAmBE9EQAAKEpWq0UVK/oRpgClkFuhy5QpU4yuAwAAAABKDXoiAABQlKxWizw8rJq2eIeOnDh/0+2bhlfRUw/VLYbKANyMW6ELAAAAAAAAAKBoHTlxXvuPnrvpdiFVyhdDNQDyI1+hy6xZs9x6cq5hDAAAAODPgJ4IAAAAQH4YHrpcfV1jGgwAAAAAfwb0RAAAAADyI1+hy7vvvnvTbex2uxYvXqxPP/1UktSmTZvCVQYAAAAAJkFPBAAAACA/8hW6tGjR4obrjx07prFjx2rbtm2qUKGCXnjhBcXGxhpSIAAAAACUNHoiAAAAAPlhLewTJCYmqkuXLtq6davuvfderV69muYCAAAAQJlRVD3R7Nmz1bNnT6dlu3fvVlxcnBo3bqy2bdsqPj7eab3NZtPMmTPVunVrNWrUSM8884xSU1MLXQsAAACA/HE7dDl+/Lj69OmjiRMnymKx6OWXX9b8+fMVFBRkZH0AAAAAYEpF2RO98847mjlzptOyM2fOqHfv3rr99tuVlJSkoUOHasaMGUpKSnJsM3v2bCUmJuqVV17RsmXLZLFY1LdvX2VlZRW6JgAAAAA3l6/Li13r/fff12uvvaaMjAzdc889mjRpkqpWrWp0bQAAAABgSkXVE504cULjxo3Tjh07VKtWLad1y5cvl5eXlyZMmCBPT0+FhoYqNTVV8+bNU2xsrLKysrRgwQKNHDnScT+ZN954Q61bt9a6devUqVOnQtcHAAAA4MYKdKbLiRMn1LdvX7344ouy2WyaMGGCFixYQOACAAAAoEwo6p7oxx9/1K233qpVq1apUaNGTutSUlIUEREhT88/vjsXGRmpAwcOKC0tTXv27NGFCxcUGRnpWO/v76+6detq+/bthtQHAAAA4MbyfabLihUr9Oqrryo9PV2RkZGaNGmSqlevXpS1AQAAAIBpFEdPFBUVpaioKJfrjh8/rrCwMKdlVapUkSQdO3ZMx48fl6Q8AVCVKlX066+/FqouT89C3w4Ukjw8rE7/hXkwNubF2JgXY1O0ivN9ZQyLD/9uzMvIsclX6DJgwAB9/vnnkqQHHnhATz75pI4dO6Zjx47dcL+IiIhCFwgAAAAAJc0MPdHly5fl5eXltMzb21uSlJmZqUuXLkmSy23OnTvn9nGtVosCAsq5vT/y8vf3LekScB2MjXkxNubF2JR+jGHx4z03LyPGJl+hy6ZNmxx/X7t2rdauXZuvJ9+9e7dbRQEAAACAmZihJ/Lx8VFWVpbTsszMTEmSn5+ffHx8JElZWVmOv+du4+vrfvNos9mVnn7R7f3xBw8Pq/z9fZWefkk5ObaSLgdXYWzMi7ExL8amaOW+v8WBMSw+/Lsxr6vHplw570Kd8ZKv0GXIkCFuHwAAAAAASjsz9ETBwcE6efKk07Lcx0FBQcrOznYsq1mzptM24eHhhTp2dja/FDBSTo6N99SkGBvzYmzMi7Ep/RjD4sd7bl5GhGGELgAAAABwE2boiSIiIpSYmKicnBx5eHhIkrZs2aJatWopMDBQFSpUUPny5bVt2zZH6JKenq5du3YpLi6uJEsHAAAAygzu2AMAAAAApUBsbKwyMjI0btw47du3T8nJyUpISFD//v0l/X4vl7i4OE2bNk0bNmzQnj179Pe//13BwcGKjo4u4eoBAACAsiFfZ7oAAAAAAEpWYGCg5s+fr0mTJikmJkaVK1fWqFGjFBMT49hm2LBhys7O1vjx43X58mVFREQoPj5eXl5eJVg5AAAAUHYQugAAAACACU2ZMiXPsoYNG2rZsmXX3cfDw0MjR47UyJEji7I0AAAAANfB5cUAAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYwVehy9uxZvfjii7rvvvvUtGlTde/eXSkpKY71u3fvVlxcnBo3bqy2bdsqPj6+BKsFAAAAAAAAAAD4g6lCl+eee07ffvutpk+frg8++ED16tVTnz59tH//fp05c0a9e/fW7bffrqSkJA0dOlQzZsxQUlJSSZcNAAAAAAAAAAAgz5IuIFdqaqo2b96spUuXqmnTppKkcePG6YsvvtDq1avl4+MjLy8vTZgwQZ6engoNDVVqaqrmzZun2NjYEq4eAAAAAAAAAACUdaY50yUgIEBz585V/fr1HcssFovsdrvOnTunlJQURUREyNPzj5woMjJSBw4cUFpaWkmUDAAAAAAAAAAA4GCa0MXf319t2rSRl5eXY9maNWt06NAhtWrVSsePH1dwcLDTPlWqVJEkHTt2rFhrBQAAAAAAAAAAuJZpLi92rR07dmjs2LFq166doqKi9OqrrzoFMpLk7e0tScrMzCzUsTw9TZM9lSkeHu6/74XZF39OuXOCuYGruTsfmEdwhZ8zKAjmCwAAAACUTaYMXdavX68RI0aoUaNGmj59uiTJx8dHWVlZTtvlhi1+fn5uH8tqtSggoJz7xaJE+Pv7lnQJMCnmBozAPMKNMD9QEMwXAAAAAChbTBe6LFq0SJMmTVJ0dLSmTZvmOLslODhYJ0+edNo293FQUJDbx7PZ7EpPv+h+wXCbh4fV7V9EpKdfUk6OzeCKUJrlzifmBq7m7s8Z5hFc4ecMCsKs88Xf35ezbwAAAACgCJkqdFmyZIlefvll9ezZU2PHjpXV+kdDGBERocTEROXk5MjDw0OStGXLFtWqVUuBgYGFOm52tnkaYeRPTo6NcYNLzA0YgXmEG2F+oCCYLwAAAABQtpjma24HDhzQ5MmTFR0drf79+ystLU2nTp3SqVOndP78ecXGxiojI0Pjxo3Tvn37lJycrISEBPXv37+kSwcAAAAAAAAAADDPmS5r167VlStXtG7dOq1bt85pXUxMjKZMmaL58+dr0qRJiomJUeXKlTVq1CjFxMSUUMUAAAAAAAAAAAB/ME3oMmDAAA0YMOCG2zRs2FDLli0rpooAAAAAAAAAAADyzzSXFwMAAAAAAAAAACjNCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAEIXAAAAAAAAAAAAAxC6AAAAAAAAAAAAGIDQBQAAAAAAAAAAwACELgAAAAAAAAAAAAYgdAEAAAAAAAAAADAAoQsAAAAAAAAAAIABCF0AAAAAAAAAAAAMQOgCAAAAAAAAAABgAM+SLgAAALPx8CjYdxJsNrtsNnsRVQMAAAAAAIDSgtAFAID/r2IFb9lsdvn7+xZov5wcm86evUjwAgAAAAAAUMYRugAA8P+V971FVqtF0xbv0JET5/O1T0hQBY3o0UxWq4XQBQAAAAAAoIwjdAEA4BpHTpzX/qPnSroMAAAAAAAAlDIFu2g9AAAAAAAAAAAAXCJ0AQAAAAAAAAAAMACXFwMAAAAAAACAMsrDo2Dfy7fZ7NzTFLgBQhcAAAAAAAAAKGMqVvCWzWaXv79vgfbLybHp7NmLBC/AdRC6AAAAAAAAAEAZU973FlmtFk1bvENHTpzP1z4hQRU0okczWa0WQhfgOghdAAAAAAAAAKCMOnLivPYfPVfSZQB/GgW7YB8AAAAAAAAAAABcInQBAAAAAAAAAAAwAKELAAAAAAAAAACAAQhdAAAAAKAUOXr0qOrUqZPnz/vvvy9J2r17t+Li4tS4cWO1bdtW8fHxJVwxAAAAUHZ4lnQBAAAAAID8++mnn+Tt7a3169fLYrE4lleoUEFnzpxR79691b59e02cOFE7d+7UxIkTVbFiRcXGxpZg1QAAAEDZQOgCAAAAAKXI3r17VatWLVWpUiXPuoSEBHl5eWnChAny9PRUaGioUlNTNW/ePEIXAAAAoBhweTEAAAAAKEV++ukn1a5d2+W6lJQURUREyNPzj+/XRUZG6sCBA0pLSyuuEgEAAIAyi9AFAAAAAEqRvXv3Ki0tTU8++aTuuecede/eXV9++aUk6fjx4woODnbaPveMmGPHjhV7rQAAAEBZw+XFAAAAAKCUyMrK0sGDB+Xr66tRo0bJz89Pq1atUt++fbVw4UJdvnxZXl5eTvt4e3tLkjIzM90+rqcn39czgoeH1em/MA/GxrwYG/NibIqW2d9Xs9dnVvy7MS8jx4bQBQAAAABKCS8vL23fvl2enp6OcKV+/frav3+/4uPj5ePjo6ysLKd9csMWPz8/t45ptVoUEFCucIXDib+/b0mXgOtgbMyLsTEvxqZsYtwLh/fPvIwYG0IXAAAAAChFXIUnYWFh+uqrrxQcHKyTJ086rct9HBQU5NbxbDa70tMvurUvnHl4WOXv76v09EvKybGVdDm4CmNjXoyNeTE2RSv3/TUrxt09/Lsxr6vHplw570Kd8ULoAgAAAAClxJ49e9S9e3fNmzdPzZs3dyz/4YcfVLt2bd11111KTExUTk6OPDw8JElbtmxRrVq1FBgY6PZxs7P5pYCRcnJsvKcmxdiYF2NjXoxN2cS4Fw7vn3kZEYZx8TgAAAAAKCXCwsJ05513auLEiUpJSdH+/fv16quvaufOnRowYIBiY2OVkZGhcePGad++fUpOTlZCQoL69+9f0qUDAAAAZQJnugAAAABAKWG1WjVnzhxNmzZNw4cPV3p6uurWrauFCxeqTp06kqT58+dr0qRJiomJUeXKlTVq1CjFxMSUcOUAAABA2UDoAgAAAAClSKVKlTR58uTrrm/YsKGWLVtWjBUBAAAAyMXlxQAAAAAAAAAAAAzAmS4AAAAAAAAAUISsVousVku+t/fw4LvyQGlF6AIAAAAAAAAARcRqtahiRT+CFKCMIHQBAAAAAAAAgCJitVrk4WHVtMU7dOTE+Xzt0zS8ip56qG4RVwagKBC6AAAAAAAAAEARO3LivPYfPZevbUOqlC/iagAUFdOe0zZ79mz17NnTadnu3bsVFxenxo0bq23btoqPjy+h6gAAAAAAAAAAAJyZMnR55513NHPmTKdlZ86cUe/evXX77bcrKSlJQ4cO1YwZM5SUlFRCVQIAAAAAAAAAAPzBVJcXO3HihMaNG6cdO3aoVq1aTuuWL18uLy8vTZgwQZ6engoNDVVqaqrmzZun2NjYEqoYAAAAAAAAAADgd6Y60+XHH3/UrbfeqlWrVqlRo0ZO61JSUhQRESFPzz9yosjISB04cEBpaWnFXSoAAAAAAAAAAIATU53pEhUVpaioKJfrjh8/rrCwMKdlVapUkSQdO3ZMgYGBRV4fAAAAAAAAAADA9ZgqdLmRy5cvy8vLy2mZt7e3JCkzM7NQz+3paaoTfsoMDw/33/fC7Is/p9w5wdzA1YpzPjD3/vz4OYOCYL4AAAAAQNlUakIXHx8fZWVlOS3LDVv8/Pzcfl6r1aKAgHKFqg3Fz9/ft6RLgEkxN1BSmHtlB2ONgmC+AAAAAEDZUmpCl+DgYJ08edJpWe7joKAgt5/XZrMrPf1ioWqDezw8rG7/IiI9/ZJycmwGV4TSLHc+MTdwtcL8nCko5t6fHz9nUBBmnS/+/r6cfQMAAAAARajUhC4RERFKTExUTk6OPDw8JElbtmxRrVq1Cn0/l+xs8zTCyJ+cHBvjBpeYGygpzL2yg7FGQTBfAAAAAKBsKTVfc4uNjVVGRobGjRunffv2KTk5WQkJCerfv39JlwYAAAAAAAAAAFB6QpfAwEDNnz9fBw4cUExMjGbNmqVRo0YpJiampEsDAAAAAAAAAAAw7+XFpkyZkmdZw4YNtWzZshKoBgAAAAAAAAAA4MZKzZkuAAAAAAAAAAAAZkboAgAAAAAAAAAAYABCFwAAAAAAAAAAAAMQugAAAAAAAAAAABiA0AUAAAAAAAAAAMAAhC4AAAAAAAAAAAAGIHQBAAAAAOD/tXfn8THdff/H35mQoEksrdiCttokJfbYqyot7qJVy1VtibqrtlZwuSpKXV0eVGu5udBbVcNlqz2EWC619K5STRtXL6rogiKKtNbYEjLn94ffTI0kzIxJzkzyej4eHg85c86ZzznfyeR8zud8v18AAADAAyi6AAAAAAAAAAAAeABFFwAAAAAAAAAAAA+g6AIAAAAAAAAAAOABFF0AAAAAAAAAAAA8gKILAAAAAAAAAACAB1B0AQAAAAAAAAAA8ACKLgAAAAAAAAAAAB5QzOwAAABwlsXiJ4vFz+n1/f15tgAAAAAAAAAFh6ILAMAnWCx+KlOmFIUUAAAAAAAAeC2KLgAAn2Cx+Mnf36JJn+5S2qkMp7ZpEBmqXu1r5nNkAAAAAABf5eqICpJktRqyWo18igiAr6PoAgDwKWmnMnTw+Hmn1g0LDcrnaAAAAAAAvsrdERWys606d+4yhRcAuaLoAgAAAAAAAKDIcWdEhbAKwXq9R0NZLH4UXQDkiqILAAAAAAAAgCLLlREVAOBOmI0YAAAAAAAAAADAA+jpAgCAB7g6BjATLwIAAACAZ1ksfrJY/Jxe39U8DgCcQdEFAIC7UCY4UFaroZCQki5tx8SLAAAAAOA5FoufypQpRSEFgOkougAAcBeCShaXxeLHxIsAAAAAYCKLxU/+/haXcrMGkaHq1b5mPkcGoKih6AIAgAcw8SIAAAAAmM+V3CwsNCifowFQFNHfDgAAAAAAAAAAwAMougAAAAAAAAAAAHgARRcAAAAAAAAAAAAPYE4XALiFxeIni8XPpW2sVoMJ0V3k6nn29+c5AQAAAAAAAHg3ii4AcBOLxU9lypRy+QZ/drZV585dpvDiJHfPMwAAAAAAAODNKLoAwE0sFj/5+1s06dNdSjuV4dQ2YRWC9XqPhrJY/Ci6OMmd89wgMlS92tfM58gAAAAAAAAA91F0AYBcpJ3K0MHj580Oo9Bz5TyHhQblczQAAAAAADjHlZEbGOUBKFoougAAAAAAAACAE8oEB8pqNRQSUtLsUAB4KYouAAAAAAAAAOCEoJLFZbH4MVw2gDxRdAEAAAAAAAAAFzBcNoC8UHQBgELOYvGTxeKXr+9htRqyWo18fY/CyNVxfQvqPLv6maH9AQAAANyJO7kpuQYAX0TRBQAKMYvFT2XKlHLp5n621ZC/ixfC2dlWnTt3mYthJ7k7BnBBnGe3PjO0PwAAAIDbcCfPkMg1APgmii4AUIhZLH7y97c4PdasbZxZV8amDasQrNd7NJTF4seFsJPcGQO4oM6zq58Z2h8AAADAnbiaZ0jkGgB8F0UXACgCnB1r1jbOrCtj08J93nyevTk2AAAAAL6JPANAUeBanz4AAAAAAAAAAADkiqILAAAAAAAAAACABzC8mMksFj9ZXJyw2mo1GMsSKKJc/c5wdZJCeD9X25S/GUD+yut72fa7mtvvLL+XAAAAAFB4UXQxkcXipzJlSrl8Ay0726pz5y6TrANFjLvfGSgcygQHymo1FBJS0qXt+JsB5B9nvpdz+53l9xIAAAAACi+KLiayWPzk72/RpE93Ke1UhlPbhFUI1us9Gspi8SNRB4oYd74zGkSGqlf7mvkcGQpCUMnislj8+JsBeBGu5QAAAAAAt6Lo4gXSTmXo4PHzZocBwEe48p0RFhqUz9GgoPE3A/A+/F4CAAAAAGwougAAAAAAABQSzB0LAIC5KLoAAAAAAAAUAswdCwCA+Si6AAAAAAAAFALMN4bCyNkioqvFRgDILxRdABPR7dt1eZ0z28VVbhdZRf2cAQAAAChamG8MhUGZ4EBZrYZCQkqaHQpy4WqRi3szKEoougAmodu365w5Z7ldjBXlcwYAAAAAgC8KKllcFouf0z23GkSGqlf7mgUQWdHmbjGMezMoSii6ACah27frOGcAAAAAAJjPlp9LzvV4uJuhv5ztuRUWGuT2e8B5rhbDJO7NoOih6AKYjG7fruOcAQAAAABgjltHoWD4r6KJezNA3ii6AAAAAAAAFABX5/VkDgR4I3dGoWDoLwBFCUUXAAAAAACAfObOvJ7MgQBv5kpPB4b+AlCUUHQBAAAAAADIZ672DiiMcyC409OnILgal+ReL6SC6OnkzrG46m7mZwGAooCiC1DIeevFo7vvA+/lyoU3F+kFi7YBAADwHoVlHgRXc0A/Pz8FB5dwuadPRsZVd8Jzmjs9kCTXeyEVRE8nt4/Fasg/nws1gOR6vsl9I/gqii5AIebNF4/uvA+8U5ngQFmtBpMneiHaBgAAAPnB3RxQkls9ffKTO/OTuNMLqSB6Ot3NXCvMz4L85G5uyn0j+CqKLkAh5q0Xj+6+D7xTUMnislj8uEj3QrQNAKAwoEc1CoKf343PmCtFhIL6nHljr+W7ubnvrT193InLnbYpiON3Z64V5mdBfnInN3X3/hTXDPAGPld0sVqt+vDDD7V8+XJduHBBDRs21Ntvv63q1aubHRrgtQrqotZbL55RMLhI9160DQAULYUpZ6JHNQqCxXJj2CtJLj2Fnd+fM1/otVxUrzN9oW0Ab5Sf9424ZoA38bmiy4wZM7RkyRK9//77qlChgiZOnKi+fftq7dq1CggIMDs8AAAAADBVYcqZ6FGNguCtnzN6Ld9ge2o9v3rxuLPfgmwbb+zpBHiju/kuL17cX9nZ1nyNrzD1qKFH0Z35VNElKytLc+bM0fDhw9WqVStJ0pQpU9SyZUtt2rRJHTp0MDlCAAAAADBPYc2Z6FGNguCtn7Oi3pskKMi1XkgFOSl8frYNvWkA97jye+n2XDNufM/YetT4OnoUOcenii4HDhzQpUuX1LRpU/uykJAQ1axZU99++63PJhAAAAAA4AnkTO7jqc2C4c55dlVBtkth6oXgbcdyN71JCkPvIHo6ATc4+31T0L3W3O1R40q8rv49K4hrmYLsUeTL11l+hmH4TOSfffaZ4uLitHv3bpUoUcK+fMiQIbp69ao+/vhjl/dpGOY1np+fZLFYdC4jU9ed/MAV87f8/yps/nZ5Kygcf/4ff0Gd48L0Pt78uXQ1tsAAfwWXCnB6G1fXL2zbeGtc3rxNYftevhOLxVJkjhXOuZu/GWZchVssfvbJolE4kTO5/7fJz8/13w/DMORqSl3U/5a4ep4NwyiwdnHlcxZQ3KLgUgFufad627VpQRyLO7F56/VvQW3jrXF58zbeGldBbeOtcbm7jbvfTYXpWFz9e1aQ1zIFdfwFeQ1qu+60Wq1uncub+VRPlytXrkhSjnGIAwMDdf68e12A/fz85O9vbuJZJjjQ5W0sFu9+QsYVHH/+H39BnePC9D7e/Ll0JzZXtymI9/Dmbbw1Lm/epjB9L99JUTpWOMeb/2ag6CFn+lNB/J65m5DzHeA8d86vu+3izufMHd56beoOrs05fm/cxlvjKqhtvDUud7cpiPfw1mO52xv/+fkeBXX8ZlyDeuI6zaeu9GxPamVlZTksz8zMVMmSjHEJAAAAoGgjZwIAAADM5VNFl0qVKkmS0tPTHZanp6erYsWKZoQEAAAAAF6DnAkAAAAwl08VXSIjIxUUFKSUlBT7sgsXLmjfvn2Kjo42MTIAAAAAMB85EwAAAGAun5rTJSAgQD179tSkSZNUrlw5ValSRRMnTlTFihXVpk0bs8MDAAAAAFORMwEAAADm8qmiiyQNHjxY169f1+jRo3X16lU1atRIs2fPzjFRJAAAAAAUReRMAAAAgHn8DMMwzA4CAAAAAAAAAADA1/nUnC4AAAAAAAAAAADeiqILAAAAAAAAAACAB1B0AQAAAAAAAAAA8ACKLgAAAAAAAAAAAB5A0QUAAAAAAAAAAMADKLoAAAAAAAAAAAB4AEUXAAAAAAAAAAAAD6DoAq934sQJDRs2TC1atFCjRo3Up08f/fzzz2aHBR/x5ptv6o033jA7DHgRq9WqadOmqWXLlqpbt65efvllHTlyxOyw4CNmzJih2NhYs8OAFzt37pzeeustPfbYY2rQoIFeeOEFpaammh0WAC+SmpqqRx55RCkpKQ7Ld+7cqS5duqhOnTpq27atkpKSzAmwiDl69KgGDhyo6OhoRUdH669//atOnjzpsA5tYw5n7gXQNubLK+embcxBvuudcssj9+/fr549e6pevXp6/PHHNXv2bJOiK3rulLN5om0ousCrZWVlqV+/fjp9+rQ+/vhjLVq0SMHBwXrppZd05swZs8ODF8vOztb48eO1YsUKs0OBl5kxY4aWLFmisWPHaunSpfLz81Pfvn2VlZVldmjwcnPnztW0adPMDgNebtiwYdq9e7cmT56sFStWqFatWurTp48OHjxodmgAvEBGRobi4+NltVodlh88eFD9+/dXq1atlJSUpO7du2vUqFHauXOnSZEWDZmZmerdu7ckafHixVqwYIF+//139e/fX4ZhSKJtzOLMvQDaxly3y7lpG/OQ73qf3PLIs2fP6r//+791//33KzExUXFxcZo6daoSExNNirJouV3O5qm2KZZPsQMekZqaqp9++knbtm1ThQoVJEkTJkxQ48aNtXXrVnXr1s3kCOGNDh48qJEjR+rYsWOqXLmy2eHAi2RlZWnOnDkaPny4WrVqJUmaMmWKWrZsqU2bNqlDhw4mRwhvdOrUKb355pvatWuXHnjgAbPDgRc7cuSIduzYocWLF6tBgwaSbjz9uW3bNq1du1ZDhgwxOUIAZnvnnXdUtWpVHT9+3GH5vHnzFBkZaf+eePDBB7Vv3z4lJCSoWbNmZoRaJPz222+qXbu23n77bZUrV06S1Lt3b7322ms6e/asypUrR9uYxJl7AbSNee6Uc9M25iDf9S63yyOXLVumgIAAvfPOOypWrJhq1KihI0eO6JNPPlHXrl1NirhouFPOVqJECY+0DT1d4NUefvhhzZo1y36RZWMYhs6fP29SVPB233zzjR555BGtXbtWYWFhZocDL3LgwAFdunRJTZs2tS8LCQlRzZo19e2335oYGbzZDz/8oNKlS2vNmjWqW7eu2eHAi5UtW1azZs1SVFSUfZmfnx/XLQAkSatXr9Z3332nUaNG5XgtNTXV4fpEkpo2bapdu3bZe1zA8x544AFNnTrVXnBJS0vTokWLVKtWLZUtW1YSbWMWZ+4F0DbmuVPOTduYg3zXu9wuj0xNTVWjRo1UrNif/SGaNm2qw4cP6/Tp0wUdapFyp5zNU21DTxd4tfLly9ur8zbz589XZmamWrRoYVJU8HYvvPCC2SHAS9nG565UqZLD8tDQUJ04ccKMkOADYmJiFBMTY3YY8AEhISE5rls2bNigo0eP6tFHHzUpKgDeIC0tTe+9955mzJihe+65J8frJ0+eVMWKFR2WhYaG6sqVK/YeF8hfL7/8snbs2KHSpUtr3rx58vPzk0TbmMWZewG0jXnulHPTNuYg3/Uut8sjT548qfDwcIdloaGhkm70wrz33nvzPb6i6k4525QpUzzSNhRdYKq0tDQ98cQTeb6+fft2lS9f3v7zZ599pilTpig2NlaRkZEFESK8jKufGeBmV65ckSQFBAQ4LA8MDOQpdAAet2vXLo0aNUpPPPEEhTugELvT9em2bdsUHx+v7t27Kzo6WmlpaTnWuXr1ao7rE9vPjMPvPldyh+HDh2vIkCH66KOP1Lt3byUlJalSpUq0TT7xxL0A2iZ/eCLnpm3MQb7rO3L7HQkMDJR0Y74xFJxbc7b333/fI21D0QWmqlChgtavX5/n6zc//bB48WKNGTNG7du318iRIwsiPHghVz4zwK1KlCgh6caFvu3/0o0/nCVLljQrLACF0ObNm/X666+rbt26mjx5stnhAMhHd7o+Xb58uS5fvqy4uLg81wkMDMxxI9L2M9co7nMld3jkkUck3Zj/4PHHH1diYqIGDRpE2+QTT9wLoG3yhydybtrGHOS7vqNEiRI5fkdsN/RLlSplRkhFUm45m6fahqILTFW8eHHVqFHjjutNmjRJn3zyiWJjY/Xmm2/au3qj6HH2MwPkxtbNOj09XdWqVbMvT09Pp/ccAI9ZuHCh3nvvPbVp00aTJk3K8aQUgMLlTtenK1euVHp6upo0aSJJ9vkM+vbtq8aNGyshIUGVKlVSenq6w3bp6ekqVaqUgoOD8y/4Qu5ObXP8+HHt3btX7dq1sy8rWbKkwsLC7O1B2+QPT9wLoG3yhydybtrGHOS7vqNixYq5/o5IyjGXFfJHXjmbp9rG4rlQgfwxceJEffLJJ4qPj9fo0aMpuABwW2RkpIKCgpSSkmJfduHCBe3bt0/R0dEmRgagsFi0aJHGjBmjHj166B//+AcFFwBasGCB1q1bp6SkJCUlJWnWrFmSpLFjx+q9996TJEVHR+ubb75x2G7nzp1q0KCBLBbS9vyyf/9+DR48WEePHrUvu3Dhgg4fPmy/6UzbmOdO9wJoG+9F25iDfNd3NGrUSLt27VJ2drZ92c6dO/XAAw8wn0sBuF3O5qm24ZsOXi0lJUUJCQmKjY3VM888o99//93+79KlS2aHB8DHBAQEqGfPnpo0aZK2bNmiAwcO6K9//asqVqyoNm3amB0eAB93+PBhjRs3Tm3atFH//v11+vRp+3VLRkaG2eEBMEmVKlVUvXp1+7/KlStLuvG0pO2JydjYWO3Zs0eTJk3SwYMHNWfOHG3cuFGvvPKKmaEXeo899pgiIiIUHx+vH374QXv37lVcXJzKli2rrl27SqJtzOLMvQDaxnvRNuYg3/UdXbt21cWLF/Xmm2/ql19+0cqVKzVv3jz179/f7NAKvTvlbJ5qG4YXg1dbu3atpBtPhy1YsMDhtUGDBt12XGQAyM3gwYN1/fp1jR49WlevXlWjRo00e/ZsnkYHcNc2btyoa9euadOmTdq0aZPDa507d9YHH3xgUmQAvN3DDz+sGTNmaOLEiZo3b57CwsI0ceJENWvWzOzQCrWAgAAlJCRo/Pjx6tOnj7KysvToo4/qgw8+UFBQkCTaxizO3AugbbwXbWMe8l3fcO+99yohIUHvvfeeOnfurPLlyys+Pl6dO3c2O7RCz5mczRNt42fYBpQFAAAAAAAAAACA2xheDAAAAAAAAAAAwAMougAAAAAAAAAAAHgARRcAAAAAAAAAAAAPoOgCAAAAAAAAAADgARRdAAAAAAAAAAAAPICiCwAAAAAAAAAAgAdQdAEAAAAAAAAAAPAAii4AfNrnn3+uuLg4xcTEKCoqSk2aNNErr7yirVu3FlgMWVlZevvtt9W4cWPVqVNHY8eOzXXZG2+8oYiICKWlpbm0/+nTpysiIkIpKSn5dASOfv31V5fWT01NVXx8vNq0aaM6deooOjpasbGxSkpKkmEYDuu6ew58VUxMjCIiIhQREaHo6GhJUkpKiiIiIvTGG2/kuV1aWpoiIiIUGxub47Vb2+fW9fL7HL/33nv2YyrIzyUAAADyF7mV590pt3r77bcVERGhxMTE266XlpamyMhIvfTSS06/ty3vmD59utPbeJKtjWz/9u/fL+lG/hITE3PbbW151K2OHDni8HNsbKzDeitXrlRERIRWrlzpgSPIafPmzQ7HZNa5BeD9ipkdAAC44+LFixo1apQ2btyoWrVqqUuXLgoNDdXJkyeVlJSkgQMH6uWXX9aIESPyPZZly5ZpyZIlatGihZ566ik9/PDDuS4zDEPNmjVTuXLlXNp/mzZtVK1aNdWoUSOfjuBPAwcO1MWLF7VgwYI7rnvt2jWNGzdOixYt0v33368OHTqocuXKOnPmjNatW6cRI0Zo27Ztmjhxovz9/fM9dm9VtmxZjRw5UsWLF7/rfeXWPhMmTNB999131/t2VqdOnRQVFaVNmzZp06ZNBfa+AAAAyB/kVvnDmdyqW7duWrJkiZKTk9W1a9c817M90NatW7f8CDVfjRw5UmXLllXlypXvaj+ffPKJpk6dqr1799qXDRgwoEDPSVRUlCZMmKBDhw5p5syZBfa+AHwPRRcAPmn06NHauHGj4uPj1adPH4fXBgwYoD59+mjOnDl68MEH9Ze//CVfY/nxxx8lSfHx8YqMjJQk+5NKNy+TpPr167u8/8jISId95KetW7eqcePGTq07ZcoULVq0SLGxsRo1apQslj87T/br10/Dhw/X2rVrVa1aNQ0dOjSfIvZ+pUqVUqdOnTyyr9zax1P7dlZUVJSioqJ09OhRii4AAACFALlV/nAmt6pdu7a9582pU6dUoUKFXNdbvXq1SpcurbZt2+ZHqPnqySefVFhY2F3vZ9u2bbp27ZrDshYtWtz1fl1RsWJFderUSSkpKRRdANwWw4sB8Dnbt2/Xhg0b1K5duxxJgSQFBARo3Lhx8vf31/z58/M9HtuFX1BQ0G2XFSaHDh3SnDlzVLt2bY0ePdqh4CJJFotF7777roKDg7V06VJlZmaaFCkAAACAvJBbma9r166yWq1av359rq/v2rVLR48e1dNPP63AwMACjg4A4A6KLgB8TlJSkiTlOt+FTdWqVZWcnKxVq1Y5LD948KCGDRum5s2bKyoqSk888YQ++OADnT9/Psc+Dh06pGHDhqlZs2aKiopS27Zt9Y9//ENXr16V9Oe8G7b3eOKJJ+xju966TMp9rg3DMLR48WJ16dJF9erVU/PmzTVgwAD98MMP9nXyGnf4yy+/VK9evdSgQQPVrVtXXbp0yTF2rW0c33Xr1mnmzJlq06aNoqKiFBMTo6lTp+r69esO60nSN998c8dxcFevXi3DMNSzZ8881wkKCtLy5cv1f//3fzmSg+PHj2vYsGFq3Lix6tWrp+eff147duzIsY+UlBQNHDhQzZs3V61atdSoUSO99NJL+uqrrxzWi4mJUf/+/ZWSkqIePXqofv36io6O1qBBg3IdR3nt2rX2c96yZUtNmjRJy5cvz/U8Jycn67nnnlO9evVUv3599ejRo0DHtZZu3z55zf1yK2ePY/369Xr++eftbdOpUyfNmTNHVqvVswcFAAAA05Fb3WBmbvXMM8+oePHiSk5OzvV1WxvZhtG6du2aZs+era5du6p+/fqKiorS448/rtGjR+v06dN5vo90I2/KbT6VvOZC2bNnjwYMGKDGjRurdu3a6tixo+bMmaPs7Ozbvo+nRURE6JtvvrH/3zY/5q1zuuTF2ePYt2+fBgwYoJYtW9o/02PHjtW5c+c8fkwACjeGFwPgc/bs2aNixYqpbt26t13v1nF6U1NT1adPH/n7++uFF15QlSpV9J///Edz587V1q1btWTJEvuYwHv27FHv3r0VFBSkHj16qFy5cvrPf/6jmTNnaufOnZo/f77KlSunCRMmaNmyZUpNTdXIkSNVunRpWSwWh2Vly5bNM8YRI0Zo9erVio6O1tChQ5WVlaUFCxaoZ8+e+vTTT1WzZs1ct/v00081ZswY1a5dW4MGDZLFYtGWLVs0cuRI7d+/X2+++abD+pMnT5ZhGOrevbtCQkK0cuVKzZgxQ35+fho8eLBq1KihCRMmKD4+Xg8++KAGDBigBg0a3LYNJKlhw4a3bYMHHngg1+UDBgxQdHS0hg0bpvT0dM2bN0/9+/fXqlWr9PDDD0uSNm3apMGDBysyMlJ9+/ZVUFCQfvrpJ61YsUJ9+/bVZ599pipVqtj3eeDAAfXv31/PPPOMOnXqpH379mnJkiU6cOCANm7caJ9XJiEhQRMnTlStWrU0dOhQZWRkaOHChbnGOXHiRCUkJKhFixYaNmyYMjMztW7dOg0cOFAjR45U7969b3v8nuJq+9zK2eP47LPPNGzYMLVo0UJDhgyRxWLRv/71L40fP16nT5/W8OHD8+kIAQAAYAZyK/Nzq7Jly+qJJ57Qv/71Lx08eNDhXGdmZmrDhg2qVauWHnnkEUnS0KFDtWXLFnXu3FnPPfecMjMztW3bNi1fvly//fab5syZc9u2dNaWLVs0ZMgQhYWF6ZVXXlGpUqW0Y8cOjR8/Xv/+9781ffp0+fn5eeS97mTChAmaOXOmDh06pAkTJqhatWpOb+vscRw7dkwvvfSSypcvr969eyskJES7d+/WwoULtWfPHi1durTAjhdAIWAAgI+pW7eu0bx5c5e2yc7ONtq0aWNERUUZv/zyi8Nry5YtM8LDw4033njDMAzDsFqtRocOHYxWrVoZZ8+ezXXdWbNm2ZeNGDHCCA8PN44dO+bSsp07dxrh4eHGsGHDDKvVal/vl19+MSIjI424uDjDMAxj2rRpRnh4uPH1118bhmEYJ06cMGrVqmX079/fYTur1WoMHz7cCA8PN3bv3m0YhmF8/fXXRnh4uNGiRQvj/Pnz9nUvXbpkNGzY0Hj00Ucdji88PNzo2bPnHc9n+/btjfDwcOPq1at3XPdmtnMwatQoh+UrVqwwwsPDjenTp9uXPfvss0aLFi2MS5cuOay7cOFCIzw83JgzZ459WevWrY3w8HBj3bp1DuuOGjXKCA8PN7Zv324YhmGcPHnSiIqKMrp06WJkZmba1zty5IhRp04dh/O8e/duIzw83HjnnXcc9pmVlWXExsYatWrVMk6cOHHb423durXRunVrh2W2NhkxYkSe2x07dizXtnBm2a2fM1eOo1+/fka9evWM7Oxs+3rXr183evbsafTv399h+1s/lwAAAPA95Fbm51aGYRhffPGFER4ebkyZMsVh+bp164zw8HDj008/NQzDMPbv32+Eh4cbY8aMybGPrl27GuHh4fbzbIt32rRp9nVyy08MwzASExON8PBwIzEx0TAMw7h8+bLRpEkTo3Pnzg55k2EYxpQpU3LNvW6VW7sZxo3zklsMN7Pldzfr2bPnHZfdzXEkJCQ4tLfN+++/b3Tu3Nk4efKkfVlu5xYAbsbwYgB8jr+/v73rtrP27dunI0eO6JlnnsnxlFa3bt1UvXp1bdy4UdnZ2frxxx/1888/q1WrVrJarTpz5oz9X+vWrRUYGOiRCcQ3b94sSXrllVccnpipUaOGVqxYob///e+5bvfZZ5/p2rVreuqpp3T27Fl7bGfPnlWHDh3s69ysdevWCgkJsf9cqlQp1ahR447dz/Ni6zXiajvYdOnSxeHnevXqSZLS09Pty5YvX641a9aoVKlS9mVZWVn2c3Xp0iWHfZQoUULt2rVzWFa7dm1J0u+//y7pxjnPyspSnz59FBAQYF+vWrVqeuaZZxy2XbdunSSpffv2Dp+BjIwMtW/fXteuXdPnn3/u8rEXNFeOo2LFirp8+bLeffdd7du3T4ZhyN/fXwsWLGCiSAAAgEKI3Mr83EqSHn30UVWqVElr1651WL5q1SqVKFFCTz/9tCQpMjJSu3bt0rBhwxzWO336tD2my5cvux2HzVdffaWzZ8+qXbt2unjxokO7tW/fXpI80m75zZXjqFSpkqQbowTs3LlTWVlZkm4MZbdy5UpVqFDBnIMA4JMYXgyAz6lQoYIOHz6srKwshxvnt3P06FFJsg9ddTM/Pz899NBDOnLkiM6ePavDhw9LkpYsWaIlS5bkur/jx4+7Gf2fbOMP35qoSFKtWrXy3M4WX3x8fJ7r3Brffffdl2OdgIAAt8firVChgn788Uf98ccfuueee1zevnz58g4/2+Z8sV3YSlKxYsWUlpamGTNm6PDhw0pLS1NaWpo9ZsMwHPZRtmxZezHIxvb5sM1HYjt3Dz74YI6Ybm0H27q3m7fGnc9BiRIlJN2+YGU7Rtu6d8OV44iLi9P+/fvtn/1y5cqpadOmevLJJ9WuXTsVK8ZlAwAAQGFCbmV+biVJFotFnTt31owZM/Tdd9+pfv36+v3337Vjxw517NhRwcHBDu+1fv167dixQ8eOHVNaWpp+//13e7HJE3Mx2s7L5MmTNXny5FzXcbfdAgMD71jou379ukdzIWeOo127duratatWrlyp3r17q0SJEmrYsKFatWqlZ599VqVLl77reAAUHdw9AeBzGjVqpIMHD+rf//63mjZtmud6I0eO1LVr1257AW1juzANCAiw/79Hjx568sknc13fEzefr1275tZ2tov5MWPGKCwsLNd1bOMn21gsnu3Y2KhRI23btk2pqamqXr16nutNmTJFhw8fVlxcnENS5kw8H3/8sSZPnqwqVaooOjpaTZo0UUREhK5fv65XX301x/rO7NNW1MktobQVfmxs53nGjBkqWbJkrvuzPQ3lCtvF+sWLF/Ncxzb56M1P0LnLleO47777tGzZMn3//ff64osv9PXXX2vTpk1av3696tWrp4ULF6p48eJ3HRMAAAC8A7mV+bmVTZcuXfTRRx8pOTlZ9evXV3JysrKzs9WtWzf7OhcvXtRLL72kH374QQ0bNlRUVJQ6deqk2rVra968eVqzZo1b731rwcjWboMHD1b9+vVz3cadh++kG/lQRkZGnq8bhqELFy54JBdy5Tj8/f01btw4vfrqq/r888/11VdfKTU1VTt27NDHH3+sJUuWuDSXDICijaILAJ/TsWNHLVmyRIsWLcozMThx4oTWrFmjkJAQlSlTRlWrVpUk/fzzzznWNQxDBw8eVFBQkEJCQhwutps3b+6wrtVq1caNG+37uxu29zl8+LAiIiIcXps8ebKuXr2qUaNG5bldSEhIjvjS09O1Z88ej8R3O0899ZSmTp2qxYsXq0uXLrlOKHjp0iUtWbJEly5d0ltvveXS/k+cOKEpU6aoUaNGmjNnjkORxN1EQpIeeOABSdKhQ4dy9HaxPQVlYzvPoaGh9mHKbI4cOaJDhw45DH3mrLCwMAUFBenAgQN5rrNv3z5JynOyT1ffT7rzcRiGoZ9//llXr15VnTp17BOJXrx4USNGjNDmzZu1fft2tW7d+q5jAgAAgHcgtzI/t7KpWrWqmjRpog0bNmj06NFKTk5W9erV1bhxY/s68+fP1969e/Xuu+/q+eefd9j+jz/+uON7+Pv75ximWfpzOGYb23kpUaJEjvNy8eJFbd++PcfoBc6KjIzUtm3bdOzYsVzP7eHDh3XlyhU1adLErf3fzJXjOH78uI4ePapmzZopNjZWsbGxun79umbPnq3Jkydr8eLFGjFixF3HBKBoYE4XAD6nUaNGatOmjTZu3Kh//vOfOV7PyMjQkCFDdP36dQ0aNEgBAQGqWbOmqlatqjVr1ujgwYMO6ycmJuro0aNq27atJCkqKkpVqlTRqlWr7F3nbZYuXaqhQ4cqMTHxro/D9qTXvHnzHJYfPXpUc+fO1bFjx3Ldrm3btrJYLJo5c6auXr3q8NoHH3yg1157TXv37nUrJovF4lR39KpVq6pnz576/vvvNW7cuBzbZGZmavjw4Tp37px69eqVaxf82zl37pwMw9CDDz7oUHC5cuWKFixYIMm9+WTatm2rYsWKaeHChQ7bp6enKzk52WHd//qv/5IkTZ8+3eHJr2vXrmnkyJEaMGCATp065XIMxYoVU5s2bXTixIlch1i4dOmSFi5cqICAAPtn0sbZ9nHnOPz8/BQXF6eBAwc6PHkWFBRkT1xvHb4NAAAAvo3cyvzc6mZdu3bVmTNnlJSUpH379jn0cpGks2fPSlKOwtJ3332nb7/9VlLOXis3Cw0N1ZkzZxyGBsvKytKGDRsc1nv00Ud1zz33aO7cufb3tJk5c6aGDBmiL774wqVjs3nqqackSVOnTs1xfgzD0KxZsyTdKAjezNbDyJVz6spxzJw5U71799bu3bvt6xQrVkx169aVRC4EwDX0dAHgk8aNG6fz58/rgw8+UHJystq2baty5crp119/1apVq3TmzBn16NFDPXr0kHTjAmns2LHq16+f/vKXv+iFF15QWFiY9uzZo1WrVqlKlSp6/fXXHdbt37+/unTpoueff17VqlXT999/r8TERFWrVi3X4a1c1bJlS3Xs2FGJiYk6efKkYmJidPHiRX366acKDAzU8OHDc93u/vvvV1xcnKZOnapOnTqpc+fOCgkJ0ZYtW+w9EW69We+se++9VwcOHNCiRYsUHR2t8PDwPNf929/+plOnTmn+/Pn68ssv1aFDB1WoUEG//fab1qxZo+PHj6tNmzYaOnSoy3E89NBDql69uhITExUYGKjw8HClp6dr1apV9qewbtclPS9VqlTRwIEDNX36dL3wwgvq0KGDLl++rEWLFtknnLT12mnWrJm6deumFStW6LnnnlP79u0VEBCgNWvWaM+ePXrxxRdVp04dl2OQpOHDh+u7777TO++8o+3bt6tp06YqWbKkjh49quTkZJ08eVJvvfVWjie/XGkfG1eOIy4uTn/729/UvXt3denSRaVLl9aBAwe0dOlSPfLIIzmeDgMAAIDvI7cyP7eyadeuncaMGaPx48erWLFievbZZx1ej4mJ0YIFC/T666/rxRdfVHBwsPbu3atVq1bJ399f165d04ULF/Lcf9euXZWamqo+ffroxRdflNVqVWJiYo5CTUhIiN566y2NHDlSTz/9tLp3767Q0FB9/fXXWr9+verUqaMXX3zRrfPSuXNnbd26VcnJyfr111/Vrl073Xvvvfrjjz+0detWfffdd+rUqZOefvpph+1sD/JNmzZNjRs3dio3ceU4evfurQ0bNqhfv356/vnnFRYWplOnTmnx4sUKDg7Wc88959bxAiiaKLoA8EkhISGaPXu21q9fr5UrV2rRokU6c+aMgoKCVLduXfXo0UOPPfaYwzZNmzbVsmXLNGPGDCUmJurixYuqXLmyXn75ZQ0YMMBhzNjmzZtr2bJl+uijj5SYmKiMjAxVrFhRL774ovr37+92V+pbTZw4UXXq1NGKFSs0fvx4lS5dWtHR0RoyZIh9KKzcvPrqq3rooYc0f/58zZo1S1arVVWrVlV8fLxiY2PdfgonPj5ekyZN0rhx4zRgwIDbJgYBAQGaMmWKOnTooOXLl2vVqlVKT09XyZIlVbNmTQ0bNizH00nOKl68uBISEjRp0iStW7dOy5YtU2hoqKKjo/Xaa6+pR48e2r59u1v7HjRokO677z4tXLhQkyZNUtmyZdW1a1dlZmbqn//8p0PPmrFjx6pevXpaunSppk+fLn9/f91///0aO3ZsjqfOXHHvvfcqMTFRCxYs0KZNmzRt2jRduXJF5cuXV7169dSrVy/Vq1cvx3autM/NnD2Ojh07qmTJkpo7d65mz56tjIwMVapUSbGxsRo4cKBHxtsGAACAdyG3Mj+3sgkMDFTHjh21aNEixcTEKDQ01OH1Zs2aafLkyfrkk0/04YcfKiAgQJUrV9bQoUP10EMPqV+/fvryyy9zDCts06VLF126dEmLFi3ShAkTdN9996lTp05q3bq1unfv7rDus88+q0qVKikhIUHz589XZmamKleurIEDB6pPnz5uDbUs3XjIbfr06Vq1apVWr16tuXPn6vz58ypTpoweeughTZ48WR06dMixXd++ffXTTz8pISFBu3fvdvqBMGePo0aNGlq4cKE++ugjJSUl6fTp0ypTpoyaNm2q1157jflcALjEzzAMw+wgAAAoCJcvX1Z2draCg4NzvPb3v/9dy5Yt05YtW/KcRNNVMTExkqStW7d6ZH/eZPr06frwww81f/58j4y3DAAAAKDweOONN7Rq1SqP5lfeIiUlRb169dKgQYMUFxdndjgAvBBzugAAioyff/5Z0dHR+t///V+H5RkZGfr8889Vvnx5ValSxaToAAAAAAAA4OsYJwQAUGRERUUpIiJCM2fO1JkzZxQZGalz585p5cqVOn36tP7nf/7HPqeLp1y+fFmrV69W8eLF1b59e4/u2wx79+7VwYMH9eOPP5odCgAAAAAvt3nzZpUtW1aPP/64SpcubXY4d+XkyZNKSUnRoUOHzA4FgJej6AIAKDL8/f01d+5cJSQkaPPmzVq+fLlKliypOnXq6J133smXYbLOnj2r+Ph4BQcHF4qiy+rVqzV//nyzwwAAAADgA95//31JUlJSks8XXfbu3av4+HizwwDgA5jTBQAAAAAAAAAAwAOY0wUAAAAAAAAAAMADKLoAAAAAAAAAAAB4AEUXAAAAAAAAAAAAD6DoAgAAAAAAAAAA4AEUXQAAAAAAAAAAADyAogsAAAAAAAAAAIAHUHQBAAAAAAAAAADwAIouAAAAAAAAAAAAHkDRBQAAAAAAAAAAwAP+H1Zs6RwXdBS1AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000052.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000052.00.0<NA>-45.000000True
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000056.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-41.00000092.029.0-1.154493-42.154493True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-30.875688155.00.0-2-32.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-30.246255108.00.0-2-32.246255False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-26.970666151.00.0-2-28.970666False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-26.970666566.00.0-2-28.970666False
675coef_calib_autodeficienthhjoi_TAXI_maint-26.970666127.00.0-2-28.970666False
671coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint-25.475279518.042.0-2.512306-27.987585False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -41.000000 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -30.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -30.246255 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -26.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -26.970666 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -26.970666 \n", - "671 coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint -25.475279 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "543 52.0 0.0 -45.000000 True \n", - "541 52.0 0.0 -45.000000 True \n", - "540 56.0 0.0 -45.000000 True \n", - "544 92.0 29.0 -1.154493 -42.154493 True \n", - "698 155.0 0.0 -2 -32.875688 False \n", - "695 108.0 0.0 -2 -32.246255 False \n", - "676 151.0 0.0 -2 -28.970666 False \n", - "677 566.0 0.0 -2 -28.970666 False \n", - "675 127.0 0.0 -2 -28.970666 False \n", - "671 518.0 42.0 -2.512306 -27.987585 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - " Final coefficient table written to: C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_10\\tour_mode_choice_coefficients.csv\n" - ] - } - ], - "source": [ - "calibration_iterations_to_run = 1\n", - "start_iter_num = 10\n", - "\n", - "for i in range(start_iter_num, calibration_iterations_to_run+start_iter_num):\n", - " asim_calib_util.run_activitysim(\n", - " data_dir=data_dir, # data inputs for ActivitySim\n", - " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", - " configs_common_dir=configs_common_dir, # just the location of the common config, these files will be used from the original location\n", - " run_dir=activitysim_run_dir, # ActivitySim run directory\n", - " output_dir=iteration_output_dir, # location to store run model outputs\n", - " settings_file=warm_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", - " tour_mc_coef_file=tour_mc_coef_file # optional: tour_mode_choice_coefficients.csv to replace the one in configs_dir\n", - " )\n", - " \n", - " _ = asim_calib_util.perform_tour_mode_choice_model_calibration(\n", - " asim_output_dir=iteration_output_dir, # folder containing the activitysim model output\n", - " asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim tour mode choice config files\n", - " tour_mode_choice_calib_targets_file=tour_mode_choice_calib_targets_file, # folder containing tour mode choice calibration tables\n", - " max_ASC_adjust=max_ASC_adjust, # maximum allowed adjustment per iteration\n", - " damping_factor=damping_factor, # constant multiplied to all adjustments\n", - " adjust_when_zero_counts=adjust_when_zero_counts,\n", - " output_dir=iteration_output_dir, # location to write model calibration steps\n", - " )\n", - " tour_mc_coef_file = os.path.join(iteration_output_dir, 'tour_mode_choice_coefficients.csv')\n", - " iteration_output_dir = iteration_output_dir.strip('_'+str(i)) + '_' + str(i+1)\n", - "\n", - "print(\"\\n\\n\", \"Final coefficient table written to: \", tour_mc_coef_file)" - ] - }, { "cell_type": "code", - "execution_count": 71, + "execution_count": 3, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_10\\tour_mode_choice_coefficients_UPDATED_2.csv\n", - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_11\n" - ] - } - ], + "outputs": [], "source": [ - "tour_mc_coef_file = r'C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_10\\tour_mode_choice_coefficients_UPDATED_2.csv'\n", - "iteration_output_dir = r'C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_11'\n", - "\n", - "print(tour_mc_coef_file)\n", - "print(iteration_output_dir)" + "### Change directory to model setup\n", + "### i.e. the location of simulation.py script\n", + "os.chdir(simpy_dir)" ] }, { "cell_type": "code", - "execution_count": 72, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_11\n", - "ActivitySim run started at: 2023-09-14 13:45:16.633700\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-14 14:34:02.587656\n", - "Run Time: 2925.95 secs = 48.76583333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmlAQgjVUAwk9BIQUOkiIMWKKKDAI0VBDKKo4AOI0lREpIhIESlSpAuPKKBIEQUEKSKhJ4RIDQkQSEjZef/g3ZUlCaQnbL6f6/ISZs7MuWd2dtl775lzTIZhGAIAAAAAAAAAAAAA4B5nzusAAAAAAAAAAAAAAADIDhTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAaTbihUrFBQUlOH/XnzxxbwOPd2mTJmS5nFUrVpVtWvXVsuWLfXaa69p48aNeR0u/t+ff/5pe5169+591/ZDhgxRUFCQBg8ebLfcuo/t27dne4y9evWy7X/fvn3Zvv9bJSUl6eTJkznax+1CQ0M1evRotW/fXvXr11fNmjXVrFkz9e7dWwsWLFB8fHy293nhwgUNHjxYDz30kGrUqKEmTZpoy5YtkqRVq1bpiSeeUO3atVW/fn316tVLO3bssL0GSUlJme739OnTtv2Eh4dn1+EAiomJ0YULF7JlX2l9zuXUdgAAFETkyOTI+RU5sj1yZHLkgsgwDB0/fjzX+svuzwvDMDRnzhy1bdtWNWvWVMOGDfXf//7X9m9v06ZNs7T/7Lr+s8vRo0dTLGvZsqWCgoK0dOnSDO0rs9sBjsY5rwMAcO/w9fVVcHBwiuVnzpzRmTNn5Orqqho1aqRYHxgYmBvhZavUjsUwDMXHx+v06dNav3691q9fr44dO2r8+PEymUx5FCkkafny5bY/b9u2TREREfL398/DiOydOXPGLgFYtGiRateunSN9bdu2TaNHj1abNm00aNCgHOnjdpMnT9YXX3whi8UiLy8vlStXTi4uLrpw4YK2bt2qrVu3atasWfr8889VvXr1bOnTYrGod+/eCg0NlbOzsypXrqzExESVLVtWP/74o9555x1Jkp+fn0qWLJmvrgcgNV9//bWmTZumzz77TH5+fnkdDgAASAdyZHLk/Ioc+V/kyOTIBdH+/fs1atQolS9fXp988kleh5Mpc+bM0UcffSRJKlu2rLy9vXXfffflcVTZ7/z58/roo4/0xx9/aPPmzXkdDuBQKIADSLdmzZqpWbNmKZZPmTJFU6dOlZ+fnxYtWpQHkWW/Ox1LQkKCPvvsM82ePVtr1qxRgwYN1Llz51yOEFZxcXFat26dTCaTGjdurK1bt2rJkiX56unFFStWyGKxqFmzZtq8ebPWrVunoUOHqmjRotne15dffpmrd7YvX75cn3/+uTw8PDRu3Dg9+uijcnJysq0/fvy43n33Xe3du1e9evXS999/r2LFimW535MnTyo0NFSSNH36dDVp0sS2bsqUKZKkevXqad68eXJ2vvl1Jy4uTt9//70k2ZZlRsmSJW37KVOmTKb3A9xq3LhxeR0CAADIIHLkm8iR8xdyZHvkyOTIBdHChQu1f/9+lS9fPq9DybR169ZJktq3b69PP/3Utvzq1auqXbu2XFxcsrT/WrVqZcv1n1Xbtm3T2rVrVbJkyTyLAXBUDIEOABnk6uqqt99+W7Vq1ZIkzZ8/P48jKth++OEHxcbGqnLlynryyScl3UymExIS8jaw/2cYhlauXClJeuaZZ1ShQgXFx8fblt3rpk+fLkl6++231bZtW7vEXpICAgL0xRdfyNfXV9HR0Zo3b1629BsdHW37c8OGDVNdV69ePbskxt3dXQEBAQoICMhS3y4uLrb9ZDXhAgAAAO515Mj5Czly3iJHJkdG9rBetw0aNLBbXrhwYQUEBKhcuXJZ2n92Xf8A8i8K4ACQSa1atZIkHTlyRNevX8/jaAquFStWSJKaNm2qFi1ayM3NTVFRUdqwYUMeR3bTzp07FRERIRcXFz300EN67LHHJElLlizJ48iy7sqVKzp16pQk3XG4umLFitneL/v378+WvpOTk21/dnV1tVtnsVhSXQ4AAAAg55Aj5w/kyHmHHBnIPly3ALKKAjiAXPPjjz+qd+/eatSokWrUqKHGjRvrtdde02+//ZZq+6CgIAUFBdnNC3WrF198UUFBQbahnCTp9OnTCgoK0sMPP6xz586pb9++qlWrlho0aKA333wzW4/Hy8vL9udr167Z9R8UFKTw8PBUt2vZsqWCgoJsSakk7dixQ0FBQercubOOHz+uLl26qGbNmnrwwQdt891Ytzt06JB++eUXPf/886pbt64aNmyo7t27a+PGjWnGmpycrKVLl+rFF1/UAw88oBo1aqh58+Z66623dPDgwVS3iY+P14wZM/T888/rwQcfVM2aNdWiRQu9+eab2r17d5p9hYaG6p133lHz5s1Vo0YNNWzYUL169dKPP/6Yavtbz9mt5yQ9Tp06pV27dkmSWrduLU9PT7Vo0UKS8s1Qg9a51xo1aqTChQurY8eOkqQTJ07o999/T3WbzFxHK1asUFBQkHbu3Cnp5l3nQUFBGjJkiN12ly9f1tSpU/Xkk0+qbt26ql27th577DF99NFHOn/+fIaO7dY7xzdt2nTHtq+99pr+97//acKECXbLhwwZoqCgoDSH47MeV8uWLSX9e266d+9ua2M9V9Z9Wc/B1KlTbeukf99nQUFBSkpKStFXaGiohg8frlatWqlmzZp64IEH1KNHD/3www927e72+kRERGjkyJF69NFHVbNmTdWvX19du3bV0qVL7X6UuP0cLFq0SKdPn9bQoUPVtGlT1ahRQ02bNtV///tfnT59Os1z+8cff+jNN99UixYtVKNGDTVq1EivvPKK3Wfr1q1bFRQUpOrVqysqKirV/cTHx6tevXoKCgrSvn37Uhxret+fU6ZMsW1zt/9uP66LFy/q448/Vrt27VS7dm3VrVtXzzzzjL766ivduHEjzb4++eQTbdy4UW3atFGNGjXUsmVL/e9//7M7tq+//lqdO3dWcHCwatasqVatWmnEiBEKCwtL81gOHTqk4cOH67HHHlNwcLBq1Kihhx56SH369ElxXUj/Xq9NmzZNdX+3nk/rsVtff6v//Oc/qZ7vkydP6r333tOjjz6qGjVqqF69eurcubO+/vprxcfHp3kMkhQZGanhw4erWbNmqlGjhpo0aaIhQ4bc8dizsh0AAEgfcuSbyJHtkSOnRI78L3Lkey9Htrpy5YpmzJihbt26qWHDhqpevbrq16+vp59+WlOmTNHly5dTbJPRz33ra2odUWHNmjUKCgrSiy++mOLYMpMjh4eHa/jw4WrZsqVq1qyp1q1ba9q0aXcdYSI2Nlaff/657X1Wp04ddezYUZMnT9aVK1dSPabIyEhJ0tChQ+2u+bvl3el5/W89V3e6/jPy2W2Ne8uWLQoNDdXAgQP10EMPqUaNGnrkkUc0duxYXbp0yW6boKAgDR06VJJ07tw5u/fn7Xbv3q1XXnlFDRs2VK1atdSmTRtNmDBBsbGxqbbP6naAI6AADiDHJSYmasCAAQoJCdHWrVvl7OysKlWqKCkpSevXr1fPnj01duzYbO0zISFBvXr10vbt2xUQECCTyaSyZctmax/WL/Vubm7y8fHJln1eunRJPXr00KFDh1SpUiXduHFDFSpUsGuzfPlyvfzyyzp48KAqVqyoQoUKaceOHXr11Vc1evToFPuMjY1Vt27dNGzYMO3cuVOFCxdWUFCQrl69qu+++06dOnXSnDlz7LZJSEhQz549NWHCBO3fv1/e3t6qXLmyYmNjtXbtWnXr1k1Lly5N0dc333yjp59+WqtWrdLly5dVuXJleXh4aNu2bQoJCdGbb76ZanKTWcuXL5dhGCpXrpzt7uoOHTpIknbt2qXjx49nW1+ZERsbq/Xr10v6N66AgABVrVpVkrR48eJs68vX11fBwcG2H51Kly6t4OBgu+vn8OHD6tChg6ZMmaLDhw+rbNmyqlixok6dOqWvvvpKHTp00I4dO9Ldp4eHh4KDgyXdLES+88472rVrV6qvsZ+fnypVqpTl90qhQoUUHByswMBA27Lg4GDbsaZ2Dqwx3sk333yjTp066dtvv9WlS5ds1+7vv/+ugQMHauLEiemKb8OGDerQoYMWLVqk8+fP6/7771exYsW0e/duDRs2TL169bL9GHi7v//+W0888YRWrVold3d3lS9fXufOndOyZcv07LPP6syZMym2+fTTT/XCCy9o7dq1un79uoKCgmQ2m7Vp0yb17NnT9hTFww8/rNKlSyspKUlr165NM/bY2FgFBATc8WmFu7n1vKf2n7u7u6Sbw5YVLlzYtt3u3bvVvn17zZ49W6dOnZK/v7/KlCmjgwcP6qOPPlLnzp114cKFVPvctWuXQkJCdOXKFQUEBOj8+fO299nZs2f11FNPady4cdq3b5/8/PxUuXJlXbhwQUuWLNHjjz9um/frVgsXLtTTTz+tb7/9VlFRUSpfvrz8/f119epVbdmyJUPXxZ1Yr1urwMBABQcHy9fX17bsu+++0+OPP67Fixfr/PnzCgwMVPHixbVv3z6NGzdOzz77rM6ePZvq/g8fPqwnn3xSS5culaenp/z9/RUVFaWVK1fqqaee0rFjx7J1OwAAcHfkyOlHjpwx5Mj/IkcmR84vObIkhYWF6fHHH9eECRO0d+9eFStWTEFBQXJyctLBgwc1depUPffcc2mei/QqXLiwXT5ZrFixFNdHZnPk3377TU899ZS+/fZbRUdHKzAwUHFxcZo0aZJ69+6dZkzHjx/X448/rsmTJ+vIkSMqUaKEypcvrxMnTtiK4rd+NllzYuuT39bruEaNGnc9/vS+/neTlc/uLVu2qFOnTtq4caN8fHxUunRpnT59WnPnztXzzz9vV3i+9TPJxcUlzffnypUr1a1bN23fvl2lS5dWsWLFFBYWZrspK62b4jO7HeAwDADIosmTJxuBgYFGixYtUl3/wQcfGIGBgUadOnWMdevW2ZYnJSUZCxYsMKpVq2YEBgYac+bMsdsuMDDQCAwMNH799ddU9/vCCy8YgYGBxuTJk23LIiIibNs1aNDAOHr0qGEYhnHjxg3j6tWrWT4Wq6ioKKNBgwZGYGCg0a9fv1T7DwsLS3XbFi1aGIGBgcby5ctty37//Xfbdq1atTLOnj1rGIZhxMbGGvHx8XbbBQYGGj179jQuXrxoGIZhWCwWY8mSJbbzuGbNGrv+Xn75ZSMwMNB4+OGHjd9//922/MaNG8Znn31m2+ePP/5oW7dw4UIjMDDQaN26tREZGWlbHh8fb7z//vtGYGCgUa9ePVtshmEYmzdvNoKCgozq1asbc+fONZKSkmzrtm/fbjz44INGYGCgMXHiRLv4EhISjGPHjhnHjh0zrly5csfzfqvk5GSjWbNmRmBgoDFp0iS7/Vlfm1GjRqW67TvvvGMEBgYab775pt3yu11zGbV48WIjMDDQqF27thEbG2tbPnv2bCMwMNCoXr26ceHChRTbZfY6Mox/3xeffvqp3fKrV68ajRs3NgIDA43nnnvOOHXqlG3dhQsXbNdJvXr17NbdzcGDB406derY4g0MDDSCg4ONPn36GF9++aWxd+9eIzk5Oc3t03otrJYvX57qe/LW98ztUvtsuH2bxMRE2/Ldu3cbVapUMQIDA41PPvnE7rpevny5bd3WrVsNw0j79Tl06JBRo0YNIygoyJg4caLdfg4ePGi0bt3aCAwMNAYPHpzqOQgMDDQ6d+5snDhxwrZuz549Rt26dY3AwEBj9OjRdtutXbvWCAwMNKpWrWp8/fXXtvdcUlKSMW3aNNu6Y8eOGYZhGBMnTjQCAwONp556KtVz/dJLLxmBgYHGzJkzbcsy+/5My+rVq43AwECjWrVqxrZt22zLz549a3vfDhs2zLh8+bJtXXh4uPHss88agYGBRteuXe32Z/3MDgwMNF599VXjxo0bhmHc/Iy2nosnnnjCCAwMNNq0aWMcOnTItu3Vq1eN//73v7b34t69e23rTp48aVSvXt0IDAw0pk2bZiQkJNjWRUdHGwMHDrRtFxMTY1tnvV6bNGmS6vHfeu1ERETYrUvr82fv3r22z/dhw4bZ/Vv2999/266rp556yu66vvW6evLJJ43jx4/b1h06dMho2LChERgYaAwcONCuv8xuBwAA/kWOTI5sGOTIqSFHJke+9TwVpBzZ+hp07tzZOHfunG25xWIxVq5caTunCxYssNsuM5/7hpH2dZTZHPny5ctGo0aNjMDAQGPQoEF2/36sWLHClj/fHuu1a9eMRx991PZvg/Wz3DAM4/z580bfvn1tn61xcXF2sab1nk4r787o65/W9Z/Zz27raxEYGGj07dvX7nXeuHGjUbVq1VT/bb/T7wi3/jv35ptvGtHR0bZ11t9XAgMDjW+++SZbtgMcDU+AA8hRZ8+etd3BO2rUKLVt29a2zsnJSd26ddPAgQMl3RyKKat3Ot6qa9euqlSpkqSb88XcOhxbZhiGoejoaP3888966aWXFBMTIxcXF4WEhGRHuDYvv/yySpYsKUny9PRUoUKF7NaXKVNGn3/+ue1uTpPJpM6dO6tXr16Sbp5Hq71799qG3Zo8ebIaNmxoW+fq6qqBAwfqueeekyR98skntnWhoaGSbs4ZVqZMGdvyQoUKaciQIWrcuLEeffRRxcTE2NZ9+umnMgxDgwcPVvfu3eXk5GRb9+CDD2rcuHGSpDlz5ig6Otq2zsXFRQEBAQoICLB7GvRutm3bZrvb9/HHH7fbn/U6W716dZ7ezWgd2u2RRx6Rp6enbXmHDh1kNpuVmJhoa5PTFi5cqPPnz6t48eL68ssv5e/vb1tXvHhxTZ48WYGBgbp69aqmT5+e7v1Wq1ZNS5cuVb169WzLYmNjtXnzZk2YMEGdO3dW48aNNXHiRMXFxWXrMWWXadOmyWKx6LHHHtObb75p9557+umn1alTJ0m66/BmU6ZMUUJCgl544QW9/vrrdvupVq2aJk+eLCcnJ61ZsybVp2ddXFw0depUVaxY0basbt26evrppyVJe/bssWtvfa//5z//UY8ePWzvOScnJ/Xr108PP/ywkpOTtWrVKknSM888I5PJpIMHD6Z48uPcuXPavn27nJyc9MQTT9jFlJn3Z2p27dqld999V5L07rvv6uGHH7atmz17tmJiYtSyZUuNGjVKRYoUsa0rV66cpk2bJi8vL/3xxx/avHlzqvt/5513bHeIFytWTJL0ww8/6NChQypUqJBmzpypKlWq2Np7eXlp9OjRatKkiRITE+2eYPj111/l5OSk6tWrq1+/fnJxcbGt8/b21jvvvCPp5tNbJ0+ezNJ5uZvJkycrKSlJjRs31qhRo+z+LatatapmzZolNzc3HTx40G7YdytnZ2d9/vnnuv/++23LqlSpop49e0q6OTxcajK7HQAAuDNy5IwjR04fcuSMIUdOGzly9ubIUVFROnr0qKSbn/slSpSwrTOZTHryySfVoEEDSTdHJchJmc2RFy9erEuXLqlChQr66KOP7P79eOqpp/TKK6+k2t/SpUsVHh6u6tWra8qUKbbPcunmKAiTJk1S2bJlFRYWluEh5W+X0dc/LZn97Lby9fXV5MmT7V7nRx55xDZk++3XbXoEBAToo48+kre3t23Z448/bvtdJa1pODK7HeAoKIADyFFbtmxRUlKS/Pz81K5du1TbvPDCC3JxcdHVq1dt8xJlh1uTjYyKjIxMMVdtlSpV1KhRI/Xr10+HDh1S4cKF9dlnn9l9WcwOd4u7c+fO8vDwSLH8+eefl3RzntgTJ05I+nfOqVq1aqU5xNVLL70k6eZwdUeOHJEk2/A7y5Yt08KFC+3mqHF1ddXs2bM1btw42xfX06dP69ChQ5LsE+1bNWvWTD4+PoqPj09zTruMsH4xrlWrVooh8KwxXLlyJdWCUG44fvy4bY6o289JiRIl1KhRI0nSkiVLZLFYcjyen3/+WZL05JNPqmjRoinWu7q62uaE+vnnn2UYRrr3XalSJS1cuFCrVq3SgAEDVLduXbuCYVRUlKZPn67HH388zWGa80pcXJxtnjnrD123e/311/XDDz/Y5hpMTUJCgrZs2SIp7feA9XPEMIxU54OrUaOG/Pz8Uiy3FiCvXr1qWxYeHm57n1vf+7cbM2aMNm7cqEGDBkmS/P399cADD0hSioRv9erVslgsatq0aaoxZNWJEyc0YMAAJSYm6sUXX1S3bt3s1lvnZ0zr3BUvXtyWoKV27vz8/Ox+sLKyXvctW7ZMdb10MzmWpJ07d9rOcbdu3bRv3z4tXLgw1W3c3Nxsf87JH62uX79uG3Lx1jn9buXv769WrVpJkn766acU62vUqGH3I62VdV6xW3+kzY7tAADAnZEjZxw5cvqQI2cMOXLqyJFvys4c2dfXV7///rv27dtnNxS5VXJysq2gnNM3qGQ2R7beiN6xY0e7a9mqS5cuqe7Lmuu3a9fOrpBs5ebmpjZt2khKPddPr8y8/qnJjs/uBx98MMWNWtLNYrRkf92m1yOPPJLq+bPm57fPLZ7V7QBH4ZzXAQBwbNYvH1WrVpXZnPo9Nx4eHqpYsaKOHDmikydPqkWLFtnSd1a+oLq6uqaYW8ZsNsvT01MlS5ZU7dq11bZt2yzfMZ+au8Vdq1atVJeXKVNGhQsX1tWrVxUWFqb777/fdv6rV6+e5v4qVKggLy8vxcbG6uTJkwoMDNSzzz6rZcuW6dixY3r//ff1wQcfqGrVqnrwwQfVpEkTPfDAA3J2/vefEOudrJL06quvptnXjRs3JP17XWRWTEyMrdCT2hfSevXqyd/fXxEREVq0aJGeeeaZLPWXGcuWLZN0M9G59UlXqyeeeELbt29XZGSktm7dqmbNmuVoPNanVO90LVjXXbp0STExMRmei6xq1aqqWrWqXnvtNcXFxWnPnj3atm2bVq9eraioKJ06dUoDBw5M95xLueGff/5RYmKiJKX5Q52vr6/dfMypCQsLU0JCgiTp/ffftz2JnFp/UurvgVvvhL6VtdialJRkW2adX9HDwyPNpLV06dIplj3zzDPauXOn1qxZozfeeEMmk0nSzeReku1O+ux06dIl9e3bVzExMWrcuLGGDh1qt/7atWuKjIyUdPNJg3nz5qW6H2ub1M7drXdW3yoj131ycrLCw8PtPvsLFSqk/fv368iRI4qIiNCpU6d05MgRuxgy8kNYRkVERNiuzzvNd1ajRg2tXbs21afR07qurD8SJyYmKikpye4zPSvbAQCAOyNHzjhy5LsjR844cuTUkSPnXI7s5uamM2fOaN++fTp16pQiIiJ0/PhxHTp0SNevX5ekHL/5I7M5snW7ypUrp7qNr6+vSpQoofPnz9stt95EtHTp0lRv2JakixcvSsra52BmX//bZcdnd0au2/S6W36e1o0Tmd0OcBT8YgUgR8XGxkrSXYcFsibJ2Tm8261P6GWUn5+fFi1alG2xZMTd4k7tzmQrDw8PXb16VVeuXJGU/vPv6emp2NhY2/n38vLSkiVL9NVXX2nt2rUKDw/X33//rb///luzZ8+Wr6+vXn/9dXXu3FmS/d2L6RnKJzN3O95qzZo1tkRq9OjRGj16dJptDxw4oIMHD97xy312S0pK0nfffSfp5p3dd+t70aJFOZ7cp+dauPXHqmvXrmU4ub+Vu7u7Hn74YT388MMaOHCg3n33Xf3vf//T3r17c/31uJNbn2K9dQi+jLr1mv7rr78y1N4qtbuo02KNO6Mxt23bVqNGjdKZM2e0Y8cONWrUSAcOHNCxY8fk4+OTbT+uWt24cUP9+vVTRESEKlWqpM8++yzF3cfWa1P6Nzm+k9TOXWp3V9+674xc91arV6/WtGnTFBYWZtf+vvvuU6dOnfTtt9/eNdasuvXcpOcYUvs3NK0fmu4ms9sBAIA7I0fOOHLkuyNHzjhy5NSRI+dMjnzixAl9/PHH2rx5s12R28vLS/Xr19f58+dtUy3kpMzmyNbP0NRG27AqWrRoigK4tb+wsLAUufXtsvI5mNnX/04xZPazOyPXbXql9ZtHTm0HOAoK4ABylPWLx92+xFi/SKX2RSWtp+usd0fmVzkV952G27V+sbTeiZve829df+v59/LyUkhIiEJCQhQeHq4dO3Zox44d2rx5s6KiojR8+HB5e3urdevWti/A3t7etuF6c5J1TjAPD487fmk/f/68DMPQ4sWLNWrUqByPy+qXX36x3cFaokQJ2x3Et7t+/bquXr2qLVu26MyZM6nejZpd15Gnp6cuX758x2vh8uXLdu3vZsSIEfr999/11FNPqV+/fmm2c3Nz0wcffKD169fb5ky+PblP6zhzek60W5O32NhY29zRWdnPnj17spx0pbe/jP4g6ubmpvbt22vJkiVas2aNGjVqZLuzPa2hzDLLMAy99dZb2rt3r3x8fDR9+vRU36/u7u62P69ZsybVIeEyKz2fgdZ/f25tv3LlSg0ZMkSS1KRJEz366KOqXLmyAgICVLRoUSUmJt6xAJ5d1/Ot19HVq1fTfMrC+t7N6esOAABkHTlySuTIWUeOTI6cXciRsz9HjoqK0gsvvKCoqCiVKVNGnTt3VrVq1XT//ffrvvvuk8lk0ptvvnnHAnh2XvdSxnNkb29vXbhwwe4m7dul9jSxu7u7rl69qunTp2f7Dfe3yuzrn9Z+cuuzG0DOYg5wADnKOi/PoUOH0hzGJzY21nYXYPny5W3LrU8JWu9ivt3tdxXmB7cOeZZa3PHx8Vm+szutJyRPnTpl+6JXqVIlSf+e/4MHD6a5v+PHj9u+MFvPf1RUlP744w/bXDDly5dX586dNWHCBG3evNk29J01KahYsaKkm3dcXrhwIc2+/vjjDx0/fjxLQ+yEhoba5uMZN26ctmzZkuZ/1jvG165de8cv6dnNOvda5cqVtXXr1jTjmzNnjqSbw0rdWkzLiesoPdeC9a7sokWLpuvO9hs3big8PNw2p9OdeHl52RKnWxNo6/vcOsTa7XL6fe7v72+L4dahrm514MABdenSRUOHDk0z6bx1P8eOHUuzv/379+vw4cNZTsqsc/pdv35dp0+fTrXNTz/9pBdffFEff/yx3XLrcIc//fSTkpOTbcOQZfcwiB9//LF+/PFHubi4aOrUqWkOQ1akSBEVL15c0p3P3eHDh3Xo0CG7H6HuJj3X/YEDByRJJpNJ5cqVkyR9+eWXkm7OBzhr1iw999xzCg4Otj1dlNY8fdn971a5cuVsP7jc6akJ67pb/w0FAAD5EzmyPXJkcmRyZHJkR8+Rly9frqioKHl7e2v58uXq16+fmjVrJn9/f9vNIOfOnUt12+z+3M9sjmz9TLN+1tzu2rVrtuHsb2XdLq1rSbr5dPiBAweyNB91Vl7/1OLNjc9uADmPAjiAHNW0aVM5OzvrwoUL+v7771Nts2DBAiUlJcnd3V0NGjSwLbcmF6nNp7J///58mdx7e3vbvrymFvfPP/+cqblebrVixYpUfyixDkdXp04d213S1rsr9+/fn+bQPV9//bUkqVSpUgoKCpIk9erVS926ddPKlStTtPf09FSdOnUk3UxKJSkgIMD2w8CCBQtS7Wf37t3q1q2b2rVrp71796bjSFNnnTfMx8dHLVu2vGPbLl26SLr5Bdj6Q0ROi4qK0ubNmyXdPVmqWbOm7YeSpUuX2q6NrFxHad1Jb70WVq1alWoBMSEhwXYNNWnS5I5xW1nnlvvrr79sP2ikZdu2bYqJiZG3t7dq165tW36n93lycrJ+/vnndMWSWV5eXqpXr56kf5+auN3atWu1Z88enT59Os3z6+XlZfv8SmsO64iICHXt2lWPP/64fvjhhyzFHRAQoLJly94x7pUrV2rnzp0pksjatWurcuXKio6O1vz58/XPP/+oWrVqac7vlhmLFi3SV199JenmEIz169e/Y/vmzZtLuvn5kdrn29WrV9WjRw89+eSTmjt3brrjsF73P//8syIiIlJtY3296tSpoyJFikiSLWFOaxhC6+eQZD9/l/V6vnz5sqKiolJst2HDhjRjtV5bt/6A5OHhoYYNG9rFebuIiAjb+6Rp06Zp7h8AAOQP5Mj2yJHJkW9FjkyOnFn5OUe25pdlypRJ9Yn6Y8eO2T4DrJ8hVpn93E8tv5QynyO3bt1a0s2bfFK7WWHFihUpYr+1v2XLlqVaLE5KSlL//v3VqVMnffTRR6nGkx5Zef1v309ufXZbmc03S3Rp3UwCIPMogAPIUaVLl7bNgTV8+HC7L7QWi0ULFy7UlClTJEn9+/e3G6rL+oV7zpw5On78uG35gQMH9MYbb+RG+Bnm5uamatWqSZKmTJlidwfntm3b9MEHH2S5j7/++kvDhw+3DXtlsVi0YMECW5I+aNAgW9u6deva7vAOCQmxG74nISFBkydPtt1V/fbbb9u+ID/xxBOSpKlTp2rLli12/f/xxx+2RPnWObkGDhwoSZoxY4Zmzpxpd3fqH3/8YVtfp04dNWrUyLYuMTFRx48f1/Hjx+96x3ZCQoLWrFkj6eZQVHebo7Zp06a2L8CLFy++Y9s7+eeff3T8+PFU72a93apVq5SUlCQXFxfbebwT6w8QFy5csN1lnJXryDpcU2RkZIp+SpYsqYsXL+rll1+2S3SioqI0cOBAHTlyRJ6ennrttdfuGrckPfzww2rTpo0kadiwYRozZkyKO21v3Lih5cuX6/XXX5d08zq5degz6/v86NGjmjdvnu0L/+XLl/Xuu++ma07orOrfv79MJpNWr16t6dOn2/1wsmrVKs2fP1+S1Lt37zvu57XXXpOTk5PWrl2rcePG2SWFR44cUd++fZWYmKiyZcuqY8eOWYrZZDKpf//+kqSZM2dq6dKltnOXnJysGTNmaMOGDXJ2dlbPnj1TbG/94WnSpEmSpKeffjrVfjLy/rTavHmzbTjFkJAQPfnkk3fdpm/fvvLw8NDu3bv11ltv2SWkkZGR6tu3r6Kjo1W4cGF169YtXXFIN+dzCwoK0o0bN9SnTx+7IeViY2M1fPhwbdu2Tc7Ozho8eLBtnfWu+CVLlti9/2JjYzVlyhTNmDHDtuzWJL527dpycXGRYRgaO3asbV1iYqLmzp17x2HTre/d2z9nBgwYIGdnZ23btk3Dhw+3e1InNDRUffr00Y0bN1SlSpV0nWsAAJC3yJHJka3bkCOnjhyZHDkz8nOObM0vQ0ND9eOPP9qWG4ahLVu2qHfv3rYn/m8f4j6zn/vWa+r292hmc+Rnn31W5cuX19mzZxUSEmJ3w/f69es1YcKEVOPo1q2b/Pz8FB4ern79+tnFc+nSJb3++us6fvy4XFxc9NJLL6V5PHeT1df/Vpn97M4s62fUlStXcnVkDqAgYA5wADlu6NChOnfunH766ScNHDhQJUqUUKlSpRQREaHo6GhJ0gsvvKA+ffrYbdevXz9t3bpVFy5cUMeOHVWpUiXduHFDYWFh8vf31zPPPJPmXX156fXXX1e/fv107NgxtWrVSpUqVdLly5cVGRmpmjVrKjg42JbEZUZgYKCWLVumdevW6f7779fZs2d14cIFmc1mDR06NMWXr48//livvPKK/vzzT3Xv3l1ly5ZVsWLFdPLkScXGxsrJyUmvv/662rdvb9ume/fu2r59u7Zs2aI+ffqoRIkSKlGihKKjo21JY8uWLfXss8/atmnfvr3CwsI0ZcoUffLJJ/ryyy9VoUIFXbp0ybZNxYoVNW3aNLv4zp07p3bt2km6OVxbWkmGJG3cuFExMTGS0jcUldls1nPPPadPP/1UR44c0e7du23JQ0a888472rlzpxo0aGBL9NJivcu7efPm6Zorq3379vroo4905coVLV682JYsZ/Y6qlatmjZt2qQ1a9bo8OHDql+/vt577z0VKVJE06dPV9++ffXnn3+qdevWqlSpkpydnXX06FElJibK29tbn3zyiW3oqPT45JNP5OHhoVWrVmnevHmaN2+eypQpI19fX9v7NSEhQS4uLnrzzTfVtWtXu+2bNWum+vXr648//tCYMWP01VdfycfHRydOnFBiYqJee+012w+AOeXBBx/U0KFD9eGHH2rixIn66quv5O/vr7Nnz9rmqXv11VftfsxKTb169TRq1Ci99957+vrrr7V48WIFBATo2rVrCg8Pl2EYKl68uGbPnn3XH6bSo1OnTjp27JjmzJmjYcOG6bPPPlOpUqV0+vRpxcTEyMnJSSNHjkz1rvUnnnhCEyZM0PXr1+Xi4qIOHTqk2kdG3p9WgwYNUnJystzc3PT333+rV69eio+PT/WpnGeeeUadOnVS+fLl9dlnn2nQoEFau3atfvzxR1WqVEmJiYkKCwtTUlKSPDw8NGPGjDTnwU6Ns7Ozpk2bpj59+ujEiRN64oknVKFCBXl6etqGK3Nzc9P7779v95T6oEGD1L9/fx07dkyPPPKIbRi08PBw3bhxwzZU3alTp+yGQy9atKh69eql6dOna+3atdq6davuu+8+RUZGKiYmRl26dNHPP/+c6vB21apV065du/TBBx9o0aJF6tq1qzp16qS6detqzJgxGjZsmL799lt99913CggI0PXr13Xy5ElJN/9dmDp1arZcVwAAIOeRI5MjkyOnjRyZHDmz8muO3KlTJy1cuFDh4eEKCQlR2bJl5ePjozNnzigqKkouLi5q0KCBdu7cmSJXzOznftWqVSXdnH+9bdu2qlSpkqZOnZrpHNnNzU2TJ09W7969tW3bNjVv3lyVK1dWTEyM7T144cKFFNOFFS1aVF988YX69eun7du365FHHlGlSpVkMpl08uRJJSQkyNnZWZ9++qltxI3Mysrrf6vMfnZnVlBQkMxms+Lj49W2bVuVKFFCs2fPTte0CwDujCfAAeQ4V1dXff7555o4caIaN26shIQEHTp0SO7u7mrfvr3mzZun4cOHpxg2qWrVqlq2bJk6duyoYsWK6cSJE0pOTtZLL72klStXys/PL4+O6M6aNm2qhQsXqlWrVvLw8NCxY8dUqFAhhYSEaOHChbY7+zKre/fu+vTTT1WxYkXbnb9t2rTR4sWLU72L0dvbW/Pnz9eoUaP0wAMP6OrVqzp8+LB8fHzUqVMnLVu2TH379rXbxsnJSZ9//rneffdd1a1bV/Hx8QoNDVVcXJwaN26sjz/+WNOmTbObh0u6mQAtWbJEHTt2lJeXl0JDQxUdHa1q1app4MCBWr58eYaKV7ezJs7Vq1dP91BUnTp1ss2hm5U73NNj3759trmt0jtXlLu7u+2pzd9++802119mr6M+ffro2Weflbe3t8LCwnT48GHbumrVqmnt2rXq37+/KleurIiICIWFhalixYp65ZVX9N1336V7aDcrV1dXffjhh1q6dKleeuklVa9eXQkJCQoNDdXZs2dVsWJF9erVS999912K60y6+QPM7Nmz9frrr6ty5cqKiorSP//8owcffFCLFi3K8l3g6dWjRw8tWbJEHTp0UKFChXT48GElJSWpWbNmmjNnjkJCQtK1n2eeeUarV6/Wc889Jz8/Px09elRnzpxRQECAevfure+++85WTM0OQ4YM0Zw5c/TII4/IMAyFhobKyclJbdu21ZIlS+x+gLtVsWLFbMNlt2zZMlsTK+td/fHx8dq4caO2bdumP/74Q3v27Enx35kzZ2zbNWvWTP/73//Us2dPlStXTidPnlR4eLjKli2rrl276rvvvlNwcHCG47nvvvu0fPlyvf3226pVq5YuXLig48ePq3Tp0urevbtWr16d4snpFi1aaNmyZWrVqpX8/Px04sQJnTlzRoGBgXrzzTe1evVq27W5adMmu20HDRqkTz75RPXq1VNiYqJOnjypihUravz48Ro5cmSacY4dO1YPP/ywnJ2ddfLkSdtngXRzLvLVq1erc+fOKl68uI4eParo6GgFBwdrxIgRWrZsWZpzrAMAgPyHHJkcmRw5beTI5MhZkR9zZC8vL9vnSuXKlXXp0iUdPXpUXl5etgL22LFjJd18SvzWp6Qz+7n/5JNPqnfv3vLz89Pp06d16NAh203pmcmRJalKlSpauXKlXnrpJZUuXVpHjx6VxWJRz5499fXXX6d5E0PNmjW1Zs0avfrqqwoKCtLp06d14sQJFS9eXE8++aSWL19uG2I9qzL7+t8upz+7b1W+fHmNGzdOFSpUUExMjM6cOZNixAoAmWMymFwAAO4JLVu2VGRkpEaPHp3uL2zIPqNGjdKpU6c0c+bMvA4FyBZPP/20Dh48qBkzZtz1zn0AAAAgvyFHzlvkyHA05MgA4Fh4AhwAgLuwWCz6448/VKlSpbwOBcgWBw8e1MGDB1W6dGk1btw4r8MBAAAAcA8hR4ajIUcGAMfDHOAAANzFBx98oKioKL344ot5HQqQaREREZKkixcvasiQIZJuDhfp5OSUl2EBAAAAuMeQI8MRkCMDgGOjAA4AwF08//zzCgkJUbFixfI6FCDTvv/+e3366ae2vwcGBuqFF17Iw4gAAAAA3IvIkeEIyJEBwLExBDoAAHdRpUoVEnvc86pUqaISJUrIw8NDrVq10ldffSVXV9e8DgsAAADAPYYcGY6AHBkAHJvJMAwjr4MAAAAAAAAAAAAAACCreAIcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAAByCc14HcK8wDEMWC6PFAwAAAADsmc0mmUymvA7DIZB7AwAAAABSk5HcmwJ4Olkshi5dupbXYQAAAAAA8plixTzl5EQBPDuQewMAAAAAUpOR3Jsh0AEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQnPM6AAAAAABAShaLRcnJSXkdRoHn5OQss5l7xwEAAADAEZF75w/ZnXtTAAcAAACAfMQwDF25cklxcbF5HQr+n7u7l4oUKSaTyZTXoQAAAAAAsgG5d/6Tnbk3BXAAAAAAyEesCbiXl49cXQtRdM1DhmEoIeGGYmOjJUlFi/rmcUQAAAAAgOxA7p1/5ETuTQEcAAAAAPIJiyXZloB7eRXJ63AgydW1kCQpNjZahQv7MBw6AAAAANzjyL3zn+zOvcncAQAAACCfSE5OlvRv4of8wfp6MC8cAAAAANz7yL3zp+zMvSmAAwAAAEA+w9Br+QuvBwAAAAA4HnK9/CU7Xw8K4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDcM7rAAAAAAAAeefw4VBNmzZJoaF/y2IxVK1aDfXt21/Vq9eQJO3a9bvmzJml48ePysnJWQ0aNFK/fq+pZMlSkqTvv1+jsWPf19Kl36l06TK2/Xbq1FF169bTf/87UpLUuHF9vfRSX23fvk0REeHq0uVF9ezZW5GRp/XFF1O0e/cuGYahGjVqqn//gbr//gBJ0o0bNzR79nRt3Lhe0dGXVK5ceXXv/pIeeaR17p4oAAAAAAAyidw7d/EEOAAAAAAUUNeuxerNN19T0aLeGj36I73//ljFx8fpzTcHKDY2Vj/++L0GDRogPz8/jRw5Rq+9NkgHDx7QK6+8pOjoSxnub+7c2WrevKVGjhyjJk2a6+LFi+rTp4fCw0/qzTff0XvvjdKVK1f0+uv9FRMTI8Mw9O67b2nVqhV67rmu+vDDT1WjRi299967WrdubQ6cEQAAAAAAshe5d+7jCXAAAAAAKKBOnjypmJhoder0nGrVqiNJKl++glavXq7Y2KuaNm2S6tdvoPffH2fbplatOnrhhWe1aNEC9e8fkqH+qlWroRde6Gn7++efT9KNG/H67LNp8vUtLkmqXLmKXn65p/76a78KFXLVjh3b9f77Y213nTds+KDi4+M0ffpUPfpoWzk7k9YCAAAAAPIvcu/cxxPgAAAAAFBA3X9/gLy9ffTOO2/ok0/Gadu2LfL1La7+/QcqPj5eUVFRat36Mbttypa9T9Wr19Sff/6R4f4CAirZ/X3fvj9Vo0YtWwIuScWLF9fy5WvVuHFT/fHHLplMJj34YGMlJSXZ/nv44WaKirqokyePZ+7AAQAAAADIJeTeue/eKtcDAAAAALKNh4eHpk2bqblzZ2vjxvVatWq53Nzc1Lr1Y2rbtr0kqVgx3xTb+fr66vDhwxnuz8enmN3fr1y5bDd32e2uXLkswzDUunXTVNdfvHhBlSsHZTgOAAAAAAByC7l37qMADgAAAAAFWLlyFTR8+CglJyfr0KGD+uGH77Vq1TIVL+4nSbp0KSrFNlFRUfL29pYkmUwmSZLFYrFrExd3/a59e3kVVkxMTIrlu3fvUqlSpeXlVVju7h6aMmV6qtuXLet/1z4AAAAAAMhr5N65iyHQAQAAAKCA2rRpozp0aKWoqItycnJSjRq1NHjwEHl5FdalS5fk6+ur9evX2W0TGXlaf/21X7Vq1ZYkeXh4SpLOnTtra3PqVJguX7581/5r166jgwf3Kzr6km1ZTEyMBg8O0a+/blGdOsGKi7suwzBUpUo1238nThzXV1/NVHJycnacBgAAAAAAcgy5d+7jCXAAdsxmk8xmU472YbEYsliMHO0DAAAAd1ezZh0lJ1s0dOhgvfBCT3l6euqnn9br2rVYtWzZStWqVdfYse/rvfeGqm3bDrp8OUZffTVDRYoU1XPPdZMk1av3gNzc3DR16kT16dNf169f15w5N9vcTefOXbVu3f/0xhsD1L37S3J1LaT58+fI17e42rZtLy+vwqpTJ1hDhrypnj17q3z5Cjp06KBmz56hhg0b2e6Eh+PL6TyFHAUAAABATiH3zn0mwzDI8NIhOdmiS5eu5XUYQI4ym03y9vaQk1PODg6RnGxRTMx1fmACAAC4TWJigqKizsjXt7RcXFxzpc9Dhw5q5swvFBp6SPHx8br//gC9+OJ/1KxZC0nSL7/8pPnzv9aJE8fk6emphg0fVN++r6pkyVK2ffz++3ZNnz5V4eEnVapUaf3nP331ww//k6+vr/7735GSpMaN6+s//+mjXr1etus/PDxM06ZN0p49u+Xi4qK6dYPVv/9AlS17nyQpLi5Os2Z9oU2bflJ09CUVL15CrVq1Vs+evVWoUKFcOUd3e12KFfPM8e/QBUVquXdu5CnkKAAAAEDBQe7t+Lk3BfB0ogCOgsDZ2SwfH099vuhXRZ6/+7AZmVG2RFG92uVhRUdfU1KS5e4bAAAAFCB5kYTj7iiA557Ucu+czlPIUQAAAICChdw7f8rO3Jsh0AGkEHn+ssIio3O0j5z8gZDhCwEAAADHkxt5CgAAAADg3kcBHECuKlrYTYbFoiJF3HOsD4slWdHRcRTBAQAAAAAAAAAAChgK4ABylaebq0xms06unam4qDPZvn9339Kq2KGPzGYTBXAAAAAAAAAAAIAChgI4gDwRF3VGcedO5XUYAAAAAAAAAAAAcCA5NwkvAAAAAAAAAAAAAAC5iCfAAQAAAAAooBITEzV//nytXLlSYWFh8vDwUM2aNdWjRw81adIkRfuGDRsqJiYmzf3t379fhQoVysGIAQAAAAC4MwrgAAAAAAAUQIZhaNCgQdqwYYOKFCmihx56SDdu3NDvv/+urVu36vXXX1e/fv1s7SMjIxUTE6OSJUuqQYMGqe7TbGagOQAAAABA3qIADgAAAABAAbR48WJt2LBBVatW1Zw5c+Tj4yNJCg0NVbdu3TRp0iS1bt1aAQEBkqRDhw5Jktq2bat33303z+IGAAAAAOBOuDUbAAAAAIACaPXq1ZKkIUOG2IrfklSlShV17NhRhmFoy5YttuUHDx6UJFWvXj13AwUAAAAAIAN4AhwAAAAA7gFms0lmsynX+7VYDFksRq73i5w3d+5cnTx5UpUrV06x7vr165IkJycn2zLrE+A1atTInQBzmZNTzj0jwPsIAAAAuDeQezsGCuAAAAAAkM+ZzSZ5e3vkaIEuLcnJFsXEXM9UIr5+/Q9avnyJTpw4JkkqX76iOnR4Qk8++Ux2h4lMKFSokKpUqZJi+caNG/XDDz/I3d1drVu3ti0/ePCg3Nzc9Ndff2nYsGE6evSoTCaTgoOD1b9/f9WuXTs3w882RQu7ybBYVKSIe471YbEkKzo6jh+0AAAAgHyM3NtxUAAHAAAAgHzObDbJycmszxf9qsjzl3Ot37IliurVLg/LbDZlOAlfu3a1PvtsvEJC3lSdOsGSDO3atVOTJ09QdPQl/ec/fXImaGTK5cuXNWzYMB07dkwnTpxQ6dKlNW7cOJUqVUqSFBUVpfPnz0uS3n77bdWpU0cNGzbUkSNH9Msvv2jbtm0aP3682rVrl5eHkSmebq4ymc06uXam4qLOZPv+3X1Lq2KHPpl6HwEAAADIPeTejoMCOAAAAADcIyLPX1ZYZHReh5EuK1cuU4cOT+jxx5+yLStXroIuXDivb79dVGCT8PwqIiJC69evt/3dZDLp2LFjevDBByX9O/+3j4+PvvjiC9WtW1eSZBiG5s6dq3Hjxmno0KEKDg62Fc0zy9nZ/mmL3Hr6Ii7qjOLOncqx/efFUyQAAAAAUrJY7jzEObl33nJyMqXICzOKAjgAAAAAINuZzSYdOLBfV65cUZEiRWzLu3XroXbtOkqSOnXqqMce66BevV62rR8woK9Kly6j//53pPbs+UMhIa+oX7/X9M0381SqVCm5ubmreHE/ffDBONs2+/fvVf/+vbV48Urdd5+/fv11q2bP/lJhYSfl5+enVq3aqEePXnJ1ddWkSRP0669b9O23q23bx8bG6vHH2+iDD8aqceNmuXB28p+KFStq586dMgxD27dv15gxYzR69GjFxsaqX79+atKkibZu3SrDMFSyZEnbdiaTST179tSuXbu0ceNGLVu2TAMGDMh0HGazST4+ntlxSPlOTg6xDgAAACD94uOddPGiOUWhNa9vWs1M/05OZv31135dvx5rl3v36PEfPf74E3J2NuvJJ9urffuO6tPnFdv6fv36qHTpMhox4n3t3v2HXn21r159NUTz589VqVKl5e7upuLF/TRmzEe2bfbt26uXX35JS5eukr9/OW3btkUzZ0635d6PPtpW//lPb7m6umrixPHatm2rli//zrZ9bOxVtW/fWqNGfaimTVPm3haLSWazWUWLesjNzS3D5+JWFMABAAAAANmuW7ceGjFiqJ566jEFB9dXrVp1Va9efVWtWl2FCxfO0L62b9+mL7+co/j4OB09ekQTJnyo69evycPjZqF0/fp1qlmztu67z1+//75dw4cPUUjIID3wQCNFRp7WxIkf69SpcI0a9aE6dHhCS5cu0r59e1W7dh1J0k8/rZenp6caNXo4u0/DPcPT89+ic7t27VSqVCl17dpVM2bMUPfu3eXp6akSJUqkuX2LFi20ceNG/fXXX1mKw2IxdOXKdbtlTk5mhygeX7kSp+RkS16HAQAAABR4CQk3ZLFYlJxsKCkp/3xHT062ZDierl27a8SIoerYsU2K3LtMGU/b/iwW+2M1DEOGcXOZNU/Ztm1ritz7ypWrttx73br/qWbN2ipd+j5t27ZN7777TorcOywsTKNGfah27Z7QkiWLtHv3Hlvu/eOPP8rDw1MNGjyY6nEmJxuyWCy6fPm64uKSU6wvUsQ93TcJUAAHAAAAAGS75s0f0ZdfztGyZYu1Y8fv+u23XyVJ/v7lNHToCNWqVSfd++rS5QX5+5eTJN13XzlNnDhemzdv0mOPdVBiYqJ+/nmj+vV7TZI0b95X6tDhcT35ZCdJUtmy9+mtt95VSMgrOnPmHwUEVFJQUFX9+OP/bEn4Dz+sVZs27eTsTIpsFRwcrHLlyik8PFxhYWGqXr36Hdv7+flJkuLi4rLcd376ASo7ZebHLAAAAADZLzk5Y/Ns52eOmHtnx40JZPcAAAAAgBxRtWp1DR8+SoZh6MSJ4/rtt21aunSxBg8eqCVLVqZ7P/fdV872Z3d3d7Vo8YjWr1+nxx7roN9++1U3bsSrZctWkqQjR0J16NBBrVu31raNYdz8cSMs7KRKly6j9u0f14wZ0/T662/p/PlzOnBgv956691sOup7Q1xcnCZNmqSLFy9q/PjxMplSzoHn6uoqSUpKStKSJUv022+/qUOHDmrVqlWKthEREZKU5fm/AQAAAAAZQ+6dEgVwAAAAAEC2On/+nL75Zq5eeKGn/PxKyGQyKSCgkgICKqlx42Z64YVntXfvnlS3TU5OSrGsUKFCdn9v166jBg7sp6ioi1q//ns1bdpCnp5ekm4O69a1a3c99liHFPvx9S0uSXr00baaOvUzbd++VcePH1PVqtV0//2VsnrY9xQ3NzetXLlSMTEx6ty5sxo0aGC3PiIiQidPnpSrq6sqV66szZs3a926dYqLi0tRADcMQ6tX35xTvXHjxrl2DAAAAABQkJF7py1vZ3MHAAAAADgcV9dCWr16hdavX5dinXWu6WLFfOXs7KLY2FjbOovFon/+ibzr/uvUCVapUqX1ww//0/btv9ol3PffH6Dw8DDdd5+/7b8LF87r888n6fr1a5KkwoULq2nT5vrll5+1ZcsmtWv3eFYP+Z5jMpn03HPPSZJGjhyp8+fP29adPXtWb7zxhpKSktSlSxd5eHjoqaeekqurq3755Rd9++23trYWi0WTJ0/W/v37ValSJbVt2zbXjwUAAAAACiJy77TxBDgAAAAAIFt5e3urW7cemjFjmmJjY9WyZSt5eHgqLOykvv56loKD66t27bqqVau2fvppvZo1a6FixXy1ePECu6T8Th57rIPmzv1KRYsWVf36/z693K1bd40YMVSzZ3+pRx9tqwsXzuvDD0erZMmStrvQJal9+8c1ZMgbMgypVas22X4O7gX9+/fXnj17tGvXLrVp00b16tVTYmKi9u/fr+vXr6tx48YaPHiwJMnf318jR47UsGHDNHz4cC1YsEAVKlRQaGiowsPDVbx4cU2ZMkUuLi55fFQAAAAAUDCQe6eNAjgAAAAA3CPKlih6z/TXp08/3Xefv9asWaWVK5cqPj5eJUuWUsuWj6p795ckSX37vqqrV69o8OAQubm5q2PHJ/XII61t84bdSdu2HfTVVzP09NPPymz+d3CzFi1a6f33pfnzv9KCBV+rcOEievjhJurXL8Ru+/r1G6hoUW/VrFlbhQsXzvRx3svc3Nw0Z84czZs3T6tXr9aOHTvk7OysypUr6+mnn9azzz4rJycnW/tnnnlGFStW1MyZM7Vnzx6dOHFCJUqU0Isvvqh+/frJ19c3D48GAAAAALIHufe/7tXc22Sk5+jyQGJioubPn6+VK1cqLCxMHh4eqlmzpnr06KEmTZqkaH/x4kVNmzZNW7du1blz5+Tn56e2bduqf//+tsf8syI52aJLl65leT9AfubsbJaPj6fenfS9wiKjc6SPh+qU14CujfX33A8Ud+5Utu/fvWQ5VesxQtHR15SUZMn2/QMAAOSkxMQERUWdka9vabm4uNqWm80meXt7yMkp92exSk62KCbmuiyWfJk6ZlpcXJyeeKKtxoz5WA880PCObdN6XayKFfPMk9fGEaWWe+d0nkKOAgAAABQs5N65J69y73z5BLhhGBo0aJA2bNigIkWK6KGHHtKNGzf0+++/a+vWrXr99dfVr18/W/vz58/r+eefV2RkpAIDA9W8eXMdOHBAs2bN0tatW7Vw4UJ5eXnl4REBAAAAQOZZLIZiYq7LbDblSd+OlIBfuXJFe/bs0s8/b1TJkiXthnADAAAAABRc5N7ZJ69z73xZAF+8eLE2bNigqlWras6cOfLx8ZEkhYaGqlu3bpo0aZJat26tgIAASdLo0aMVGRmpvn376s0335QkJSQk6O2339a6des0depUDRkyJM+OBwAAAACyytGS4bySnJykDz8cJW9vH33wwTiZTLn/wwYAAAAAIH8i984eeZ1758sx2lavXi1JGjJkiK34LUlVqlRRx44dZRiGtmzZIkk6deqUNmzYoNKlSysk5N9x5V1dXTVq1Ch5enpqyZIlio+Pz92DAAAAAADkOz4+xfTDD79o8eKVCgysktfhAAAAAADgcPI6986XBfC5c+dq9erVeuCBB1Ksu379uiTJyclJkrRlyxZZLBY1a9ZMLi4udm0LFy6sRo0a6fr169qxY0fOBw4AAAAAAAAAAAAAyDP5sgBeqFAhValSxVbkttq4caN++OEHubu7q3Xr1pKkI0eOSJICAwNT3VelSpXs2gEAAAAAAAAAAAAAHFO+nAP8VpcvX9awYcN07NgxnThxQqVLl9a4ceNUqlQpSdKFCxckSX5+fqlub11+8eLF3AkYAAAAAAAAAAAAAJAn8n0BPCIiQuvXr7f93WQy6dixY3rwwQcl/TskupubW6rbW5db22WFs3O+fGAeyDZOTo5zjTvSsQAAgILDYjHldQi4AycnE3khAAAAAAD5XL4vgFesWFE7d+6UYRjavn27xowZo9GjRys2Nlb9+vWzDZNuMqX+Q5FhGHb/zyyz2SQfH88s7QNA7ilSxD2vQwAAAMiw+HgnXbxoptCaz1gsJpnNZhUt6pHmzdcAAAAAACB/yPcFcE/Pf4vO7dq1U6lSpdS1a1fNmDFD3bt3l4eHhyTpxo0bqW5vXe7unrVimMVi6MqVrD9FDuRnTk5mhykcX7kSp+RkS16HAQAAkCEJCTdksViUnGwoKYnvMvlFcrIhi8Wiy5evKy4uOcX6IkXcGYEIAAAAAIB8It8XwG8XHByscuXKKTw8XGFhYSpRooSkf+cCv93d5gjPCH6AAu4dyckW3rMAAOCek5yc9shVZrNJZnPuD5FusRiyWDI+olanTh119uwZDRjwup5//oUU68ePH6vVq1foP//po169Xs5UbJ06ddRjj3VI9/YZbX87bkwAAAAAAMdG7p16H7mZe2eHfFcAj4uL06RJk3Tx4kWNHz8+1aHNXV1dJUlJSUkKDAyUJB0/fjzV/R09elSSFBQUlEMRAwAAAEDOujklk7vMZqdc79tiSVZ0dFymEnFnZ2dt2vRTiiQ8KSlJmzf/nOZUVgAAAAAA5DZyb8eR7wrgbm5uWrlypWJiYtS5c2c1aNDAbn1ERIROnjwpV1dXVa5cWcWLF5ckbdq0SUOHDrXNCS5JV69e1Y4dO+Th4aF69erl6nEAAAAAQHa5eQe6k06unam4qDO51q+7b2lV7NBHZrMpU0l4/foNtGPHbzp37qxKlixlW75nzx9yc3NXoULMpw0AAAAAyB/IvR1HviuAm0wmPffcc/ryyy81cuRIff3117Zhzs+ePas33nhDSUlJ6tGjhzw8POTh4aEWLVpo06ZNGj9+vN555x2ZTCYlJCRoxIgRunbtml566SV5eXnl8ZEBAAAAQNbERZ1R3LlTeR1GulWtWl3h4WHatGmj3Z3oP/20Xi1bPqqff95gW/bXX/s1Y8Y0HT58SM7OzmrcuJleffV1FSlSRJIUGxurzz4br23bNsvZ2UXdu/8nRX8HDuzT9OlTdejQ3/L29tbDDzfVK6+8Kk9P8kEAAAAAQPqQe9/7ubc5rwNITf/+/fXAAw/o+PHjatOmjXr37q0ePXroscce0/79+9W4cWMNHjzY1n748OEqUaKE5syZo3bt2ikkJERt2rTR999/r+rVq2vAgAF5eDQAAAAAUHC1aNFKmzb9ZPt7YmKitmz5Ra1atbYt+/vvv/Taay+rQoWKmj59jkaN+kh///2X3nhjgCyWm3NujxgxRIcOHdRHH03UxIlT9euvW3X27L935B87dlQDB/bXAw801Ny5i/Tee2N0+PAhDRo0QIaR8TvoAQAAAAC4V5B728uXBXA3NzfNmTNHb7/9tvz9/bVjxw7t379flStX1vvvv68ZM2bY5gGXpLJly2rZsmV69tlndfXqVW3atEmurq565ZVXNG/ePHl6eubh0QAAAABAwdWy5aP6+++/dO7cWUnSzp2/y9vbW4GBVWxtFi/+RgEBlfXGG++oYsX7FRxcXyNHjlVo6N/aseM3nToVpp07f9egQW+rdu26qlw5SO+9N9ouL1y0aJ7q139APXv2lr9/OdWuXUcjR47R33//pT//3J3rxw0AAAAAQG4h97aX74ZAt3JxcVGvXr3Uq1evdLUvWbKkRo8encNRAQBwb7g5X40px/ZvsRiZmo8GAFDwVKlSVWXKlLUNxfbzz+vVqlUbuzYnThzTAw80slsWEFBJXl6Fdfz4UcXHx0mSqlatZltfrJivypQpa/v74cOHdfr0KT36aJMUMYSHhyk4uH52HhYAAAAAAPkGube9fFsABwAAmWM2m+Tt7SEnp5wb6CU52aKYmOsUwQEA6dKy5aPatOknPfXUs9q6dYtmzpxrt94wDJlSuW/LMCxydv43bb393x0nJ2e7tq1bP6bu3V9KsR9vb58sHgEAAAAAAPkbufe/KIADAOBgzGaTnJzM+nzRr4o8fznb91+2RFG92uVhmc0mCuAAgHRp2bKVFiz4WmvXrlaZMmVVvnwFu/X3319J+/bttVt29OgRXbt2TRUq3C9//3KSpAMH9umhhxpLkq5evarIyAhb+4oVA3Ty5HHdd5+/bdmpU2GaOnWSXnnlVXl5VcqZgwMAAAAAIB8g9/4XBXAAABxU5PnLCouMzuswAABQ5cpBuu8+f82Y8bleeOE/KdY/91xXvfpqH3366Ud6+unOio6+pE8//UiBgUGqX7+BnJ2d1aJFK02c+LFcXFzk6+ur6dM/V2Jiom0fzz//gl59tbfGjx+rTp2e1/Xr1zVhwoe6fv267ruvXG4eLgAAAAAAuY7c+18UwAEAAADgHuHuW/qe7a9ly0c1d+5stWrVOsW6GjVq6ZNPJmnmzOl66aVu8vDwVJMmzdWv3wDbMGzDho3U559P0nvvvSuLxaInnnhaMTHRt+yjpj79dKpmzfpCvXq9KHd3NwUHP6BXX31drq6u2XYcAAAAAADHRu597+feJsMwGLs0HZKTLbp06VpehwHkKGdns3x8PPXupO9z7KnRh+qU14CujfX33A8Ud+5Utu/fvWQ5VesxQtHR15SUZMn2/QP3gpx+L1co66OxA9vxPgOAHJCYmKCoqDPy9S0tF5d/E0ez2SQfH3eZzU65HpPFkqzo6LgCPe1FWq+LVbFinnJyMudBZI4ntdw7p7/bkKMAAAAABQu5d/6Unbk3T4ADAAAAQD5nsRiKjo6T2WzKk74LcgIOAAAAACgYyL0dBwVwAAAAALgHkAwDAAAAAJCzyL0dA2O0AQAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAIJ8xDOYby094PQAAAADA8ZDr5S/Z+XpQAAcAAACAfMLJyUmSlJBwI48jwa2sr4eTk3MeRwIAAAAAyCpy7/wpO3NvsncAAAAAyCfMZie5u3spNjZakuTqWkgmkymPoyq4DMNQQsINxcZGy93dS2Yz95ADAAAAwL2O3Dt/yYncmwI4AAAAAOQjRYoUkyRbIo685+7uZXtdAAAAAAD3PnLv/Cc7c28K4AAAAACQj5hMJhUt6qvChX2UnJyU1+EUeE5Ozjz5DQAAAAAOhtw7f8nu3JsCOAAAAADkQ2azWWaza16HAQAAAACAwyL3dkzcxg4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BOe8DgAAAAAAAOSNxMREzZ8/XytXrlRYWJg8PDxUs2ZN9ejRQ02aNEnR/uLFi5o2bZq2bt2qc+fOyc/PT23btlX//v3l6emZB0cAAAAAAIA9ngAHAAAAAKAAMgxDgwYN0kcffaSzZ8/qoYceUtWqVfX777+rd+/e+uKLL+zanz9/Xp07d9Y333wjNzc3NW/eXBaLRbNmzVKXLl0UGxubR0cCAAAAAMC/KIADAAAAAFAALV68WBs2bFDVqlW1fv16ffnll/r666+1bNkyeXl5adKkSTp+/Lit/ejRoxUZGam+fftqzZo1mjx5sn788Uc99thjOnz4sKZOnZqHRwMAAAAAwE0UwAEAAAAAKIBWr14tSRoyZIh8fHxsy6tUqaKOHTvKMAxt2bJFknTq1Clt2LBBpUuXVkhIiK2tq6urRo0aJU9PTy1ZskTx8fG5exAAAAAAANyGAjgAAAAAAAXQ3LlztXr1aj3wwAMp1l2/fl2S5OTkJEnasmWLLBaLmjVrJhcXF7u2hQsXVqNGjXT9+nXt2LEj5wMHAAAAAOAOKIADAAAAAFAAFSpUSFWqVLEVua02btyoH374Qe7u7mrdurUk6ciRI5KkwMDAVPdVqVIlu3YAAAAAAOQV57wOAAAAAAAA5K3Lly9r2LBhOnbsmE6cOKHSpUtr3LhxKlWqlCTpwoULkiQ/P79Ut7cuv3jxYu4EDAAAAABAGiiAAwCATHFyytmBZCwWQxaLkaN9AACAmyIiIrR+/Xrb300mk44dO6YHH3xQ0r9Doru5uaW6vXW5tV1WODvbf8fI6e8cucVRjgMAAAAA8jsK4AAAIEOKFnaTYbGoSBH3HO3HYklWdHQcRXAAAHJBxYoVtXPnThmGoe3bt2vMmDEaPXq0YmNj1a9fP9sw6SaTKdXtDcOw+39mmc0m+fh4Zmkf+VVOf3cCAAAAANxEARwAAGSIp5urTGazTq6dqbioMznSh7tvaVXs0Edms4kCOAAAucDT89+ic7t27VSqVCl17dpVM2bMUPfu3eXh4SFJunHjRqrbW5e7u2etyGuxGLpyxf4pcicns0MUj69ciVNysiWvwwAAAACAe1KRIu7pHlmLAjgAAMiUuKgzijt3Kq/DAAAAOSA4OFjlypVTeHi4wsLCVKJECUn/zgV+u7vNEZ4RSUmOWSROTrY47LEBAAAAQH7CBFQAAAAAABQwcXFx+vDDDzV48OA0hy13dXWVJCUlJSkwMFCSdPz48VTbHj16VJIUFBSUA9ECAAAAAJB+FMABAAAAAChg3NzctHLlSq1Zs0a7du1KsT4iIkInT56Uq6urKleurCZNmkiSNm3apOTkZLu2V69e1Y4dO+Th4aF69erlSvwAAAAAAKSFAjgAAAAAAAWMyWTSc889J0kaOXKkzp8/b1t39uxZvfHGG0pKSlKXLl3k4eGhsmXLqkWLFjp9+rTGjx9ve2o8ISFBI0aM0LVr1/T888/Ly8srT44HAAAAAAAr5gAHAAAAAKAA6t+/v/bs2aNdu3apTZs2qlevnhITE7V//35dv35djRs31uDBg23thw8froMHD2rOnDnavHmzKleurAMHDuiff/5R9erVNWDAgDw8GgAAAAAAbuIJcAAAAAAACiA3NzfNmTNHb7/9tvz9/bVjxw7t379flStX1vvvv68ZM2bY5gGXpLJly2rZsmV69tlndfXqVW3atEmurq565ZVXNG/ePHl6eubh0QAAAAAAcBNPgAMAAAAAUEC5uLioV69e6tWrV7ralyxZUqNHj87hqAAAAAAAyDyeAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA7BOa8DAAAAAAAAwL/MZpPMZlOO7d9iMWSxGDm2fwAAAADIS/m2AG6xWLR06VKtWLFCR48eVWJiosqUKaNWrVrp5ZdfVpEiRezaN2zYUDExMWnub//+/SpUqFAORw0AAAAAAJB5ZrNJ3t4ecnLKuUH7kpMtiom5ThEcAAAAgEPKlwVwi8WikJAQbdiwQW5ubqpVq5Y8PDy0f/9+zZo1Sxs2bNDChQtVvHhxSVJkZKRiYmJUsmRJNWjQINV9ms2M9g4AAAAAAPI3s9kkJyezPl/0qyLPX872/ZctUVSvdnlYZrOJAjgAAAAAh5QvC+DLly/Xhg0bVKFCBc2aNUv+/v6SpNjYWA0ePFibNm3S6NGj9dlnn0mSDh06JElq27at3n333bwKGwAAAAAAIFtEnr+ssMjovA4DAAAAAO45+fKx6OXLl0uShgwZYit+S5KXl5fGjh0rk8mkjRs3Kj4+XpJ08OBBSVL16tVzP1gAAAAAAAAAAAAAQL6QLwvg3t7euv/++1WnTp0U64oVK6aiRYsqMTFR0dE374S2PgFeo0aN3AwTAAAAAAAAAAAAAJCP5Msh0KdPn57muoiICMXExMjFxUXFihWTdPMJcDc3N/31118aNmyYjh49KpPJpODgYPXv31+1a9fOrdABAAAAAAAAAAAAAHkkXz4BfifWeb+bN2+uQoUKKSoqSufPn1d8fLzefvttWSwWNWzYUN7e3vrll1/UtWtXff/993kbNAAAAAAAAAAAAAAgx+XLJ8DTMn/+fK1du1bu7u4aNGiQpH/n//bx8dEXX3yhunXrSpIMw9DcuXM1btw4DR06VMHBwSpVqlSW+nd2vufuFwAyxMnJca5xRzoWIKMc6fp3pGMBAAAAAAAAAOS8e6YAPm/ePI0dO1Ymk0ljxoxRQECAJKlJkybaunWrDMNQyZIlbe1NJpN69uypXbt2aePGjVq2bJkGDBiQ6f7NZpN8fDyzfBwAckeRIu55HQKAbMB7GQAAAAAAAACQEfm+AG4Yhj755BPNmjVLTk5OGjNmjNq3b29bbzKZVKJEiTS3b9GihTZu3Ki//vorS3FYLIauXLmepX0A+Z2Tk9lhik1XrsQpOdmS12EAeYL3MgAAuatIEXdGLQEAAAAAIJ/I1wXw+Ph4vfXWW1q/fr3c3Nw0YcIEtWrVKkP78PPzkyTFxcVlOZ6kJH6AB+4VyckW3rOAA+C9DAAAAAAAAADIiHxbAI+NjVXv3r31559/ytfXV1988YVq166dot2SJUv022+/qUOHDqkWxyMiIiQpy/N/AwAAAAAAAAAAAADyt3xZAE9MTFTfvn31559/qnz58po9e7b8/f1TbXvu3DmtW7dOcXFxKQrghmFo9erVkqTGjRvneNwAAAAAAAAAAAAAgLyTLycpmzp1qnbv3i0/Pz/Nnz8/zeK3JD311FNydXXVL7/8om+//da23GKxaPLkydq/f78qVaqktm3b5kboAAAAAAAAAAAAAIA8ku+eAL98+bLmzp0rSfL19dX48ePTbDtkyBD5+/tr5MiRGjZsmIYPH64FCxaoQoUKCg0NVXh4uIoXL64pU6bIxcUltw4BAAAAAAAAAAAAAJAH8l0BfN++fYqLi5MkhYaGKjQ0NM22r732mooXL65nnnlGFStW1MyZM7Vnzx6dOHFCJUqU0Isvvqh+/frJ19c3t8IHAAAAAAAAAAAAAOSRfFcAb9q0qQ4fPpzh7YKDg/XFF1/kQEQAAAAAAAAAAAAAgHtBvpwDHAAAAAAAAAAAAACAjKIADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIfgnNcBAAAAAAAAADnJbDbJbDbl2P4tFkMWi5Fj+wcAAACQfhTAAQAAAAAA4LDMZpN8fNxlNjvlWB8WS7Kio+MoggMAAAD5AAVwAAAAAAAAOKybT3876eTamYqLOpPt+3f3La2KHfrIbDZRAAcAAADyAQrgAAAAAAAAcHhxUWcUd+5UXocBAAAAIIeZ8zoAAAAAAAAAAAAAAACyA0+AAwAAAABQQFksFi1dulQrVqzQ0aNHlZiYqDJlyqhVq1Z6+eWXVaRIEbv2DRs2VExMTJr7279/vwoVKpTDUQMAAAAAkDYK4AAAAAAAFEAWi0UhISHasGGD3NzcVKtWLXl4eGj//v2aNWuWNmzYoIULF6p48eKSpMjISMXExKhkyZJq0KBBqvs0mxloDgAAAACQtyiAAwAAAABQAC1fvlwbNmxQhQoVNGvWLPn7+0uSYmNjNXjwYG3atEmjR4/WZ599Jkk6dOiQJKlt27Z699138ypsAAAAAADuiFuzAQAAAAAogJYvXy5JGjJkiK34LUleXl4aO3asTCaTNm7cqPj4eEnSwYMHJUnVq1fP/WABAAAAAEgnCuAAAAAAABRA3t7euv/++1WnTp0U64oVK6aiRYsqMTFR0dHRkv59ArxGjRq5GSYAAAAAABnCEOgAAAAAABRA06dPT3NdRESEYmJi5OLiomLFikm6+QS4m5ub/vrrLw0bNkxHjx6VyWRScHCw+vfvr9q1a+dW6AAAAAAApIknwAEAAAAAgB3rvN/NmzdXoUKFFBUVpfPnzys+Pl5vv/22LBaLGjZsKG9vb/3yyy/q2rWrvv/++7wNGgAAAAAA8QQ4AAAAAAC4xfz587V27Vq5u7tr0KBBkv6d/9vHx0dffPGF6tatK0kyDENz587VuHHjNHToUAUHB6tUqVJZ6t/Z2f5efScnx7h3P73HkVvH6yjnNT04pwAAAEDBQgEcAAAAAABIkubNm6exY8fKZDJpzJgxCggIkCQ1adJEW7dulWEYKlmypK29yWRSz549tWvXLm3cuFHLli3TgAEDMt2/2WySj49nlo8jPypSxD2vQ7CT3+JxBJxTAAAAIH+gAA4AAAAAQAFnGIY++eQTzZo1S05OThozZozat29vW28ymVSiRIk0t2/RooU2btyov/76K0txWCyGrly5brfMycnsEIXFK1filJxsuWu73Dre9MbjCDinAAAAwL2vSBH3dI+6RAEcAAAAAIACLD4+Xm+99ZbWr18vNzc3TZgwQa1atcrQPvz8/CRJcXFxWY4nKckxC4jJyZZ8dWz5LR5HwDkFAAAA8gcK4AAAAAAAFFCxsbHq3bu3/vzzT/n6+uqLL75Q7dq1U7RbsmSJfvvtN3Xo0CHV4nhERIQkZXn+bwAAAAAAsooCOAAAAAAABVBiYqL69u2rP//8U+XLl9fs2bPl7++fattz585p3bp1iouLS1EANwxDq1evliQ1btw4x+MGAAAAAOBO0jdQOgAAAAAAcChTp07V7t275efnp/nz56dZ/Jakp556Sq6urvrll1/07bff2pZbLBZNnjxZ+/fvV6VKldS2bdvcCB0AAAAAgDTxBDgAAAAAAAXM5cuXNXfuXEmSr6+vxo8fn2bbIUOGyN/fXyNHjtSwYcM0fPhwLViwQBUqVFBoaKjCw8NVvHhxTZkyRS4uLrl1CAAAAAAApIoCOAAAAAAABcy+ffsUFxcnSQoNDVVoaGiabV977TUVL15czzzzjCpWrKiZM2dqz549OnHihEqUKKEXX3xR/fr1k6+vb26FDwAAAABAmiiAAwAAAABQwDRt2lSHDx/O8HbBwcH64osvciAiAAAAAACyB3OAAwAAAAAAAAAAAAAcAk+AAwAAAAAAFDBOTjn7TITFYshiMXK0DwAAAABIDQVwAAAAAACAAqJoYTcZFouKFHHP0X4slmRFR8dRBAcAAACQ6yiAAwAAAAAAFBCebq4ymc06uXam4qLO5Egf7r6lVbFDH5nNJgrgAAAAAHIdBXAAAAAAAIACJi7qjOLOncrrMAAAAAAg2+XshE8AAAAAAAAAAAAAAOQSCuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHIJzXgeQFovFoqVLl2rFihU6evSoEhMTVaZMGbVq1Uovv/yyihQpYtf+4sWLmjZtmrZu3apz587Jz89Pbdu2Vf/+/eXp6ZlHRwEAAAAAAAAAAAAAyC358glwi8WikJAQjRgxQqGhoapevboeeughXblyRbNmzVKnTp108eJFW/vz58+rc+fO+uabb+Tm5qbmzZvLYrFo1qxZ6tKli2JjY/PwaAAAAAAAAAAAAAAAuSFfFsCXL1+uDRs2qEKFClq7dq3mz5+vL7/8Uhs2bFCLFi0UHh6u0aNH29qPHj1akZGR6tu3r9asWaPJkyfrxx9/1GOPPabDhw9r6tSpeXg0AAAAAAAAAAAAAIDckG8L4JI0ZMgQ+fv725Z7eXlp7NixMplM2rhxo+Lj43Xq1Clt2LBBpUuXVkhIiK2tq6urRo0aJU9PTy1ZskTx8fG5fhwAAAAAAAAAAAAAgNyTLwvg3t7euv/++1WnTp0U64oVK6aiRYsqMTFR0dHR2rJliywWi5o1ayYXFxe7toULF1ajRo10/fp17dixI5eiBwAAAAAAAAAAAADkhXxZAJ8+fbrWrVsnHx+fFOsiIiIUExMjFxcXFStWTEeOHJEkBQYGprqvSpUqSZKtHQAAAAAAAAAAAADAMeXLAvidfPbZZ5Kk5s2bq1ChQrpw4YIkyc/PL9X21uUXL17MlfgAAAAAAAAAAAAAAHnDOa8DyIj58+dr7dq1cnd316BBgyRJ169flyS5ubmluo11ubVdVjg733P3CwAZ4uTkONe4Ix0LkFGOdP070rEAAAAAAAAAAHLePVMAnzdvnsaOHSuTyaQxY8YoICBAkuTk5CRJMplMqW5nGIbd/zPLbDbJx8czS/sAkHuKFHHP6xAAZAPeywAAAAAAAACAjMj3BXDDMPTJJ59o1qxZcnJy0pgxY9S+fXvbeg8PD0nSjRs3Ut3eutzdPWs/oFsshq5cyfpT5EB+5uRkdphi05UrcUpOtuR1GECe4L0MAEDuKlLEnVFLAAAAAADIJ/J1ATw+Pl5vvfWW1q9fLzc3N02YMEGtWrWya1OiRAlJss0Ffru7zRGeEUlJ/AAP3CuSky28ZwEHwHsZAAAAAAAAAJAR+bYAHhsbq969e+vPP/+Ur6+vvvjiC9WuXTtFu8DAQEnS8ePHU93P0aNHJUlBQUE5FywAAAAAAAAAAAAAIM/lyzHaEhMT1bdvX/35558qX768lixZkmrxW5KaNGkiSdq0aZOSk5Pt1l29elU7duyQh4eH6tWrl+NxAwAAAAAAAAAAAADyTr4sgE+dOlW7d++Wn5+f5s+fL39//zTbli1bVi1atNDp06c1fvx4GYYhSUpISNCIESN07do1Pf/88/Ly8sqt8AEAAAAAAAAAAAAAeSDfDYF++fJlzZ07V5Lk6+ur8ePHp9l2yJAhKl68uIYPH66DBw9qzpw52rx5sypXrqwDBw7on3/+UfXq1TVgwIDcCh8AAAAAAAAAAAAAkEfyXQF83759iouLkySFhoYqNDQ0zbavvfaaihcvrrJly2rZsmWaMmWKfvnlF23atEllypTRK6+8oj59+sjT0zO3wgcAAAAAAAAAAAAA5JF8VwBv2rSpDh8+nOHtSpYsqdGjR+dARAAAAAAAAAAAAACAe0G+nAMcAAAAAAAAAAAAAICMyndPgAMAAAAAAKBgMZtNMptNObJvJyee/wAAAAAKEgrgAAAAAAAAyDNms0ne3h4UqgEAAABkCwrgAAAAAAAAyDNms0lOTmZ9vuhXRZ6/nO37rx1URs+1rZPt+wUAAACQP1EABwAAAAAAQJ6LPH9ZYZHR2b7fMn5Fsn2fAAAAAPIvxpYCAAAAAAAAAAAAADiELBXAV61apd27d9+13U8//aTJkydnpSsAAAAAAAokcm8AAAAAANIvSwXwIUOG6Ntvv71ru9WrV2vOnDlZ6QoAAAAAgAKJ3BsAAAAAgPTL0Bzgq1atUlJSkt2y8PBwLVu2LM1tYmNj9dtvv8nFxSVzEQIAAAAAUICQewMAAAAAkHkZKoAfPHhQ8+fPl8lkkiSZTCbt27dP+/btu+N2hmHoqaeeynyUAAAAAAAUEOTeAAAAAABkXoYK4CEhIYqNjbX9feXKlSpXrpzq1auX5jaFChVShQoV1KVLl8xHCQAAAABAAUHuDQAAAABA5mWoAF64cGGNGzfO9veVK1eqTp06dssAAAAAAEDmkXsDAAAAAJB5GSqA3y40NDS74gAAAAAAAKkg9wYAAAAAIP2yVAC/VVRUlOLi4mQYRppt/P39s6s7AAAAAAAKHHJvAAAAAADuLMsF8K+//lozZ87UpUuX7tjOZDLp77//zmp3AAAAAAAUOOTeAAAAAACkT5YK4CtWrNCHH34oSXJ1dZWPj4+cnJyyJTAAAAAAAEDuDQAAAABARmSpAL5gwQKZTCYNGzZMnTt3louLS3bFBQAAAAAARO4NAAAAAEBGZKkAfvz4cdWpU0fdunXLrngAAAAAAMAtyL0BAAAAAEi/LBXA3d3d5ePjk12xAAAAAACA2+Rk7m2xWLR06VKtWLFCR48eVWJiosqUKaNWrVrp5ZdfVpEiRezaX7x4UdOmTdPWrVt17tw5+fn5qW3bturfv788PT1zJEYAAAAAADLCnJWNGzRooP379ysuLi674gEAAAAAALfIqdzbYrEoJCREI0aMUGhoqKpXr66HHnpIV65c0axZs9SpUyddvHjR1v78+fPq3LmzvvnmG7m5ual58+ayWCyaNWuWunTpotjY2GyNDwAAAACAzMhSAXzQoEGKi4vTu+++q8uXL2dXTAAAAAAA4P/lVO69fPlybdiwQRUqVNDatWs1f/58ffnll9qwYYNatGih8PBwjR492tZ+9OjRioyMVN++fbVmzRpNnjxZP/74ox577DEdPnxYU6dOzbbYAAAAAADIrCwNgb548WLVqlVLP/zwgy1pLlKkiEwmU4q2JpNJCxYsyEp3AAAAAAAUODmVey9fvlySNGTIEPn7+9uWe3l5aezYsXrooYe0ceNGxcfH6/z589qwYYNKly6tkJAQW1tXV1eNGjVKW7Zs0ZIlS/T666/Lzc0ti0cMAAAAAEDmZakAPnfuXNufk5KSdOzYsTTbppaYAwAAAACAO8up3Nvb21v333+/6tSpk2JdsWLFVLRoUcXExCg6OlpbtmyRxWJRs2bN5OLiYte2cOHCatSokX766Sft2LFDzZo1S3cMAAAAAABktywVwOfNm5ddcQAAAAAAgFTkVO49ffr0NNdFREQoJiZGLi4uKlasmI4cOSJJCgwMTLV9pUqV9NNPP+nIkSMUwAEAAAAAeSpLBfAGDRpkVxwAAAAAACAVeZF7f/bZZ5Kk5s2bq1ChQrpw4YIkyc/PL9X21uUXL17MlfgAAAAAAEhLlgrgt0pMTNShQ4d05swZFS9eXPXq1dM///yjMmXKZFcXAAAAAAAUaLmRe8+fP19r166Vu7u7Bg0aJEm6fv26JKU5v7d1ubVdVjg7m+3+7uRkTqPlvSW9x+EoxysVvGN2lOMAAAAA7nVZLoAnJSXp888/1zfffKOrV69Kkjp27Kh69erpnXfe0bVr1zRx4kSVL18+y8ECAAAAAFAQ5VbuPW/ePI0dO1Ymk0ljxoxRQECAJMnJyUlS2nOMG4Zh9//MMptN8vHxzNI+8qsiRdzzOoRcV9COuaAdLwAAAJBfZakAnpSUpJdfflnbt2+Xs7OzatSooQMHDtjWX7t2TX///be6deumVatWqXjx4lkOGAAAAACAgiQ3cm/DMPTJJ59o1qxZcnJy0pgxY9S+fXvbeg8PD0nSjRs3Ut3eutzdPWsFQIvF0JUr9k+ROzmZHaKweOVKnJKTLXdt5yjHKxW8Y07v8QIAAADIuCJF3NM96lKWCuDffPONfv31VzVu3Fhjx45ViRIlVKVKFdv6hQsXauTIkVq1apVmz56td955JyvdAQAAAABQ4OR07h0fH6+33npL69evl5ubmyZMmKBWrVrZtSlRooQk2eYCv93d5gjPiKQkxywgJidbHPbY0lLQjrmgHS8AAACQX2VpcqKVK1fK29tbkyZNsiXDt3Jzc9OoUaNUokQJbdmyJStdAQAAAABQIOVk7h0bG6uePXtq/fr18vX11bx581IUvyUpMDBQknT8+PFU93P06FFJUlBQUIb6BwAAAAAgu2WpAB4WFqb69evL0zPt+blcXFxUq1Yt/fPPP1npCgAAAACAAimncu/ExET17dtXf/75p8qXL68lS5aodu3aqbZt0qSJJGnTpk1KTk62W3f16lXt2LFDHh4eqlevXrr7BwAAAAAgJ2SpAO7s7KwrV67ctV1MTIycnbM02joAAAAAAAVSTuXeU6dO1e7du+Xn56f58+fL398/zbZly5ZVixYtdPr0aY0fP16GYUiSEhISNGLECF27dk3PP/+8vLy80t0/AAAAAAA5IUtV6apVq+rAgQOKjIxU2bJlU20TERGhAwcOqFatWlnpCgAAAACAAikncu/Lly9r7ty5kiRfX1+NHz8+zbZDhgxR8eLFNXz4cB08eFBz5szR5s2bVblyZR04cED//POPqlevrgEDBmT84AAAAAAAyGZZegK8S5cuiouLU//+/fX333+nWH/48GG99tprSkhIUKdOnbLSFQAAAAAABVJO5N779u1TXFycJCk0NFRr1qxJ879r165JuvkU+LJly/Tss8/q6tWr2rRpk1xdXfXKK69o3rx5dxyiHQAAAACA3JKlJ8DbtWun7du3a9myZXrmmWdUuHBhmUwmbd26Vc2bN9e5c+dkGIbat2+vJ554IrtiBgAAAACgwMiJ3Ltp06Y6fPhwhmMpWbKkRo8eneHtAAAAAADILVmemHv06NGqU6eOZs+erZMnT0qSoqOjJUllypRRjx491L1796x2AwAAAABAgUXuDQAAAABA+mS5AC5JnTp1UqdOnXThwgWdOXNGFotFfn5+ac5NBgAAAAAAMobcGwAAAACAu8vSHOBW0dHR2rlzp/z8/FSrVi3VqVNHcXFx+uabb3ThwoXs6AIAAAAAgAKN3BsAAAAAgLvLcgH822+/VdOmTfXhhx/aLd+3b59GjRqlNm3a6Pvvv89qNwAAAAAAFFjk3gAAAAAApE+WCuC//vqrRowYIWdnZzVq1MhuXb169dSrVy8ZhqHBgwfr999/z1KgAAAAAAAUROTeAAAAAACkX5YK4LNmzZKzs7PmzZunt99+225dhQoV9NZbb2nevHkymUyaOXNmlgIFAAAAAKAgIvcGAAAAACD9slQAP3LkiBo2bKiaNWum2aZmzZqqV6+e9u7dm5WuAAAAAAAokMi9AQAAAABIvywVwOPi4uTu7n7Xdt7e3kpKSspKVwAAAAAAFEjk3gAAAAAApF+WCuAVKlTQrl27FBsbm2abGzduaPfu3SpXrlxWugIAAAAAoEAi9wYAAAAAIP2yVAB//PHHdfnyZYWEhOjixYsp1kdHR+uNN97QpUuX1LFjx6x0BQAAAABAgUTuDQAAAABA+jlnZeNu3brp+++/1/bt29W8eXPVqFFDpUuXliSdPXtWBw8eVEJCgmrVqqWePXtmR7wAAAAAABQo5N4AAAAAAKRflgrgLi4umjNnjiZOnKgVK1Zo79692rt3r219oUKF1KVLF7311ltydXXNaqwAAAAAABQ45N4AAAAAAKRflgrgkuTp6alhw4bp7bff1l9//aULFy4oOTlZfn5+ql69ujw8PLIjTgAAAAAACixybwAAAAAA0idLBfDu3burQoUK+uCDD+Tq6qrg4ODsigsAAAAAAIjcGwAAAACAjMhSAXz//v0ym83ZFQsAAAAAALgNuTcAAAAAAOmXpQza09NThmFkVywAAAAAAOA25N4AAAAAAKRflgrg/fr1086dO/XVV18pISEhu2ICAAAAAAD/j9wbAAAAAID0y9IQ6BERESpfvrzGjx+vTz/9VOXLl1eRIkVSHZrNZDJpwYIFWekOAAAAAIACh9wbAAAAAID0y1IBfO7cubY/JyUl6fjx42m2NZlMWekKAAAAAIACidwbAAAAAID0y1IBfN68edkVBwAAAAAASAW5NwAAAAAA6ZelAniDBg2yKw4AAAAAAJAKcm8AAAAAANIvSwXwWyUmJurQoUM6c+aMihcvrnr16umff/5RmTJlsqsLAAAAAAAKNHJvAAAAAADuLMsF8KSkJH3++ef65ptvdPXqVUlSx44dVa9ePb3zzju6du2aJk6cqPLly2c5WAAAAAAACiJybwAAAAAA0seclY2TkpL08ssva/r06YqLi1ONGjVkGIZt/bVr1/T333+rW7duunjxYpaDBQAAAACgoCH3BgAAAAAg/bJUAP/mm2/066+/6uGHH9ZPP/2kpUuX2q1fuHChnnzySV28eFGzZ8/OUqAAAAAAABRE5N4AAAAAAKRflgrgK1eulLe3tyZNmqQSJUqkWO/m5qZRo0apRIkS2rJlS1a6AgAAAACgQCL3BgAAAAAg/bJUAA8LC1P9+vXl6fl/7N13eFRl+sbxeyYBkgChd7DQEkXpXREFpCklAoKgsSBFmuC6FBdEFgRBhFVBEFmQ4oIoSahC6EoPNUpTQSkBE3oJhJBkfn/wSzQmQNrMmTnn+7muvVbPeWfyvE69zzPnPXnvOCZXrlyqWrWqTp8+nZ0/pbCwMAUEBGjr1q3p7q9Xr54CAgLu+L+bN29m6+8DAAAAAGAEV2ZvAAAAAAA8nXe2buztrStXrtxz3KVLl+TtnfU/FRkZqdGjR99xf1RUlC5duqQSJUqobt266Y6x27PV6wcAAAAAwBCuyt4AAAAAAJhBtpLxQw89pB9//FFRUVEqU6ZMumNOnjypH3/8UVWrVs3S31i/fr2GDBmia9eu3XHMoUOHJEktW7bUO++8k6W/AwAAAACAO3JF9gYAAAAAwCyydVr0Cy+8oBs3bqhPnz46ePBgmv1HjhxR//79FR8fr44dO2bqvqOjozVs2DD16dNHt27dUtGiRe849sCBA5KkKlWqZG4CAAAAAAC4OWdmbwAAAAAAzCZbZ4C3bt1aW7du1bfffqsOHToof/78stls+uGHH/Tkk08qOjpaDodDzzzzjNq1a5ep+548ebJCQ0P1yCOPaOzYsRozZozOnTuX7tjkM8AfeeSR7EwHAAAAAAC348zsDQAAAACA2WT74mBjxoxR9erV9d///le//fabJOnixYuSpNKlS+vll19WcHBwpu+3fPnyGj9+vNq2bXvP63cfOHBAPj4++umnnzR8+HD98ssvstlsqlmzpvr06aNq1aplfmIAAAAAALgJZ2VvAAAAAADMJtsNcEnq2LGjOnbsqLNnz+rMmTNKSkpSsWLF7nhtsozo2bNnhsadP39eMTExkqTBgwerevXqqlevnn7++Wdt3LhRmzdv1ocffqjWrVtnuRYAAAAAAIzmjOwNAAAAAIDZZLoBnpiYqP/9738KDw/XuXPnVLp0abVp00bt27dXsWLFVKxYMWfUeUfJ1/8uVKiQpk2bpho1akiSHA6H5syZo3HjxmnYsGGqWbOmSpYsma2/5e2drUumA27Py8s8z3EzzQXILDM9/800FwAAMsPdsjcAAAAAAJ4iUw3w+Ph4de/eXbt27ZLD4ZAk/fbbb9q6das2bNigjz/+2ClF3k2jRo30ww8/yOFwqESJEinbbTabXnnlFUVERGjt2rX69ttv1a9fvyz/HbvdpkKF8uZEyQBcwN/f1+gSAOQAXssAACtyx+wNAAAAAICnyFQDfOHChYqIiFCJEiXUo0cPlStXTj///LNmzpyp8PBwLVmyRO3atXNWremy2WwqXrz4Hfc/9dRTWrt2rX766ads/Z2kJIeuXLmerfsA3J2Xl900zaYrV24oMTHJ6DIAQ/BaBgDAtfz9fXN01RJ3zN4AAAAAAHiKTDXAV61aJR8fHy1YsEClS5eWJDVu3FiNGjVSUFCQVqxY4XYhPHlZuBs3bmT7vhISOAAPeIrExCRes4AJ8FoGAFiRJ2ZvAAAAAADcRaZ+on706FHVrl07JYAnCwwMVJUqVXT48OEcLS4jvv76aw0cOFBr165Nd//JkyclKdvX/wYAAAAAwBXcMXsDAAAAAOApMtUAj42NVYECBdLdV7ZsWV26dCknasqU6Ohofffdd/rmm2/S7HM4HFqyZIkk6fHHH3d1aQAAAAAAZJo7Zm8AAAAAADxFphrgCQkJ8vLySndfrly5dOvWrRwpKjOCgoKUO3dubdy4UYsWLUrZnpSUpE8++USRkZGqWLGiWrZs6fLaAAAAAADILHfM3gAAAAAAeIpMXQPcHZUrV07vvfeehg8frhEjRmj+/Pl64IEHdPjwYR0/flxFixbVp59+qly5chldKgAAAAAAAAAAAADAiTJ1Bri76tChg7766is1adJE0dHRWr9+vRISEvTSSy9p6dKlKl++vNElAgAAAAAAAAAAAACczGPOAJ83b95d99esWVPTpk1zUTUAAAAAAAAAAAAAAHeT6Qb42rVr1bRp0zTbL168KEnp7pMkm82mtWvXZvbPAQAAAABgOWRvAAAAAACyJtMN8OvXr+v69et33B8VFZXudpvNltk/BQAAAACAJZG9AQAAAADImkw1wOfOneusOgAAAAAAgMjeAAAAAABkR6Ya4HXr1nVWHQAAAAAAQGRvAAAAAACyw250AQAAAAAAAAAAAAAA5AQa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFPwNroA3J3dbpPdbnPa/SclOZSU5HDa/QMAAAAAPEdYWJiGDBmi2bNnq2HDhmn216tXT5cuXbrj7SMjI5UnTx4nVggAAAAAwN3RAHdjdrtNhQr5ym73ctrfSEpK1MWLN2iCAwAAAIDFRUZGavTo0XfcHxUVpUuXLqlEiRKqW7duumPsdhaaAwAAAAAYiwa4G7t99reXflv+hW6cP5Pj9+9bpJQefLaH7HYbDXAAAAAAsLD169dryJAhunbt2h3HHDp0SJLUsmVLvfPOO64qDQAAAACATKEB7gFunD+jG9EnjC4DAAAAAGAy0dHR+s9//qPQ0FD5+PioaNGiOnfuXLpjDxw4IEmqUqWKK0sEAAAAACBTWJsMAAAAAACLmjx5skJCQlSlShV9/fXXKl++/B3HJp8B/sgjj7iqPAAAAAAAMo0zwAEAAAAAsKjy5ctr/Pjxatu27T2v333gwAH5+Pjop59+0vDhw/XLL7/IZrOpZs2a6tOnj6pVq+aiqgEAAAAAuDPOAAcAAAAAwKJ69uyp9u3b37P5ff78ecXExCguLk6DBw9WUlKS6tWrp4IFC2rjxo3q2rWrVq5c6aKqAQAAAAC4M84ABwAAAAAAd5V8/e9ChQpp2rRpqlGjhiTJ4XBozpw5GjdunIYNG6aaNWuqZMmS2fpb3t6pm/FeXub47X5G52GW+UrWm7NZ5gEAAAB4OhrgAAAAAADgrho1aqQffvhBDodDJUqUSNlus9n0yiuvKCIiQmvXrtW3336rfv36Zfnv2O02FSqUNydKdjv+/r5Gl+ByVpuz1eYLAAAAuCsa4AAAAAAA4K5sNpuKFy9+x/1PPfWU1q5dq59++ilbfycpyaErV66n2ublZTdFY/HKlRtKTEy65zizzFey3pwzOl8AAAAAmefv75vhVZdogAMAAAAAgGwpVqyYJOnGjRvZvq+EBHM2EBMTk0w7tzux2pytNl8AAADAXXFxIgAAAAAAcFdff/21Bg4cqLVr16a7/+TJk5KU7et/AwAAAACQXZwBDgAAAAAA7io6Olrfffedbty4oWbNmqXa53A4tGTJEknS448/bkR5AAAAAACk4AxwAAAAAABwV0FBQcqdO7c2btyoRYsWpWxPSkrSJ598osjISFWsWFEtW7Y0sEoAAAAAADgDHAAAAAAA3EO5cuX03nvvafjw4RoxYoTmz5+vBx54QIcPH9bx48dVtGhRffrpp8qVK5fRpQIAAAAALI4zwAEAAAAAwD116NBBX331lZo0aaLo6GitX79eCQkJeumll7R06VKVL1/e6BIBAAAAAOAMcAAAAAAAcNu8efPuur9mzZqaNm2ai6oBAAAAACDzOAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKbgbXQBAAAAAOAKdrtNdrvNqX8jKcmhpCSHU/8GAAAAAAAA7owGeDY58yCalxcn6AMAAAA5wW63qVAhX9ntXk79O0lJibp48QZNcAAAAAAAAIN4TAM8LCxMQ4YM0ezZs9WwYcM0+8+dO6fPPvtMP/zwg6Kjo1WsWDG1bNlSffr0Ud68eZ1Sk91uU8GCfjSqAQAAADd3+4erXvpt+Re6cf6MU/6Gb5FSevDZHrLbbTTAAQAAAAAADOIRDfDIyEiNHj36jvtjYmLUpUsXRUVFqXLlynryySf1448/aubMmfrhhx/0v//9T/ny5cvxuux2m7y87Jq6YIuiYi7n+P1XCyitzi2r5/j9AgAAAFZ14/wZ3Yg+YXQZAAAAAAAAcBK3b4CvX79eQ4YM0bVr1+44ZsyYMYqKilLPnj31j3/8Q5IUHx+vwYMH67vvvtOUKVM0dOhQp9UYFXNZv0ddzPH7LV3MP8fvEwAAAAAAAAAAAADMym3X7o6OjtawYcPUp08f3bp1S0WLFk133IkTJ7RmzRqVKlVKAwYMSNmeO3dujR49Wnnz5tXXX3+tuLg4V5UOAAAAAAAAAAAAADCA2zbAJ0+erJCQEFWpUkVff/21ypcvn+6477//XklJSWrcuLFy5cqVal/+/PlVv359Xb9+XTt27HBF2QAAAAAAAAAAAAAAg7htA7x8+fIaP368vvnmGwUEBNxx3M8//yxJqly5crr7K1asmGocAAAAAPdkt9vk7W13yv+8vNw2+gAAAAAAACAHue01wHv27JmhcWfPnpUkFStWLN39ydvPnTuXM4UBAAAAyHF2u00FC/rRqAYAAAAAAEC2uG0DPKOuX78uSfLx8Ul3f/L25HHZ4e2d+mCcWQ7OmWUeyD4zPRfMNBcgs8z0/DfTXADcnZfX7bO0py7YoqiYyzl+/9UCSqtzy+o5fr/p4b0LAAAAAADAOB7fAPfy8pIk2Wy2dPc7HI5U/59VdrtNhQrlzdZ9uCt/f1+jSwByHM9rwBx4LQPWExVzWb9HXczx+y1dzD/H7/NOeO8CAAAAAAAwjsc3wP38/CRJN2/eTHd/8nZf3+wdhEpKcujKldRnkXt52U1xcOvKlRtKTEwyugy4AbM8pyWe17A2XssAPBHvXfBk/v6+nPkPAAAAAICb8PgGePHixSX9eS3wv7vXNcIzIyHBnAexEhOTTDs3WBfPa8AceC0D8ES8dwEAAAAAABjH43+iXrlyZUnS0aNH093/yy+/SJICAgJcVhMAAAAAAAAAAAAAwPU8vgHeqFEjSdKGDRuUmJiYat/Vq1e1Y8cO+fn5qVatWkaUBwAAAAAAAAAAAABwEY9vgJcpU0ZPPfWUTp06pQ8//FAOh0OSFB8fr3fffVexsbHq0qWL8uXLZ3ClAAAAAAAAAAAAAABn8vhrgEvSiBEjdODAAc2ePVubNm1SpUqV9OOPP+r06dOqUqWK+vXrZ3SJAAAAAAAAAAAAAAAn8/gzwKXbZ4F/++236tSpk65evaoNGzYod+7c6t27t+bOnau8efMaXSIAAAAAAAAAAAAAwMk85gzwefPm3XV/iRIlNGbMGBdVAwAAAAAAAAAAAABwN6Y4AxwAAAAAAAAAAAAAABrgAAAAAABAkhQWFqaAgABt3bo13f3nzp3Tv//9bz399NOqWrWqmjZtqg8//FCxsbEurhQAAAAAgPTRAAcAAAAAAIqMjNTo0aPvuD8mJkbPP/+8vvrqK/n4+OjJJ59UUlKSZs6cqRdeeEHXrl1zYbUAAAAAAKSPBjgAAAAAABa3fv16de/e/a5N7DFjxigqKko9e/bUsmXL9Mknn2j16tVq1aqVjhw5oilTpriwYgAAAAAA0kcDHAAAAAAAi4qOjtawYcPUp08f3bp1S0WLFk133IkTJ7RmzRqVKlVKAwYMSNmeO3dujR49Wnnz5tXXX3+tuLg4V5UOAAAAAEC6aIADAAAAAGBRkydPVkhIiKpUqaKvv/5a5cuXT3fc999/r6SkJDVu3Fi5cuVKtS9//vyqX7++rl+/rh07driibAAAAAAA7ogGOAAAAAAAFlW+fHmNHz9e33zzjQICAu447ueff5YkVa5cOd39FStWTDUOAAAAAACjeBtdAAAAAAAAMEbPnj0zNO7s2bOSpGLFiqW7P3n7uXPncqYwAAAAAACyiAY4AAAAAAC4q+vXr0uSfHx80t2fvD15XHZ4e6derM7LyxyL12V0HmaZr2S9OZtlHgAAAICnowEOAAAAAADuysvLS5Jks9nS3e9wOFL9f1bZ7TYVKpQ3W/fhrvz9fY0uweWsNmerzRcAAABwVzTAAQAAAADAXfn5+UmSbt68me7+5O2+vtlrACYlOXTlSuqzyL287KZoLF65ckOJiUn3HGeW+UrWm3NG5wsAAAAg8/z9fTO86hINcAAAAAAAcFfFixeX9Oe1wP/uXtcIz4yEBHM2EBMTk0w7tzux2pytNl8AAADAXXFxIgAAAAAAcFeVK1eWJB09ejTd/b/88oskKSAgwGU1AQAAAACQHhrgAAAAAADgrho1aiRJ2rBhgxITE1Ptu3r1qnbs2CE/Pz/VqlXLiPIAAAAAAEhBAxwAAAAAANxVmTJl9NRTT+nUqVP68MMP5XA4JEnx8fF69913FRsbqy5duihfvnwGVwoAAAAAsDquAQ4AAAAAAO5pxIgROnDggGbPnq1NmzapUqVK+vHHH3X69GlVqVJF/fr1M7pEAH9ht9tkt9ucdv9JSQ4lJTmcdv8AAABAVtEABwAAAAAA91SmTBl9++23+vTTT7Vx40Zt2LBBpUuXVu/evdWjRw/lzZvX6BIB/D+73aZChXxlt3s57W8kJSXq4sUbNMEBAADgdmiAAwAAAAAASdK8efPuur9EiRIaM2aMi6oBkFW3z/720m/Lv9CN82dy/P59i5TSg8/2kN1uowEOAAAAt0MDHAAAAAAAADChG+fP6Eb0CaPLAAAAAFzKbnQBAAAAAAAAAAAAAADkBM4AR6bcXkLL5rT7T0pysHQWAAAAAAAAAAAAgCyhAY4Ms9ttKljQT15ezls4IDExSZcuXacJDgAAAAAAAAAAACDTaIAjw+x2m7y87Jq6YIuiYi7n+P2XKV5AfV94TLlyeSkxMSnH7z8ZZ5kDAAAAAAAAAAAA5kQDHJkWFXNZv0ddzPH7LZDfR46kJPn7++b4ff9VUlKiLl68QRMcAAAAAAAAAAAAMBka4HAbeX1yy2a367flX+jG+TNO+Ru+RUrpwWd7yG630QAHAAAAAAAAAAAATIYGONzOjfNndCP6hNFlAAAAAAAAAAAAAPAwdqMLAAAAAAAAAAAAAAAgJ9AABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIApcA1wAAAAAAAAwIXsdpvsdpvT7t/Li3NeAAAAYF00wAEAAAAAAAAXsdttKljQjyY1AAAA4CQ0wAEAAAAAAAAXsdtt8vKya+qCLYqKueyUv1EtoLQ6t6zulPsGAAAA3B0NcAAAAAAAAMDFomIu6/eoi06579LF/J1yvwAAAIAnYK0lAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmIK30QXkpPXr1+uNN9644/7WrVtr8uTJLqwIAAAAAAAAAAAAAOAqpmqAHzx4UJJUp04dlSxZMs3+GjVquLokAAAAAAAAAAAAAICLmLIBPnz4cAUGBhpcDQAAAAAAAAAAAADAlUx1DfCDBw8qT548qlixotGlAAAAAAAAAAAAAABczDQN8IsXL+rMmTMKCAiQt7epTmwHAAAAAAAAAAAAAGSAaTrFycuflypVSh9++KHWrVun06dPq2jRomrRooV69+6tAgUKGFwlAAAAAAAAAAAAAMBZTHMG+IEDByRJq1ev1oIFC/TAAw+oZs2aunz5smbNmqXnn39eZ8+eNbhKAAAAAAAAAAAAAICzmOYM8EOHDkmSnnzySU2cOFH58+eXJF24cEGDBg3S9u3bNWLECE2fPj3Lf8PbO/XvBby8zPH7gYzOwyzzlcw1l5xkpv8uZpoLkFlmev6baS4A7s5Mr3czzQUAAAAAAMDTmKYBPn78eL355psqWbKkfHx8UrYXLlxYEyZMUMuWLbVhwwadOnVKZcuWzfT92+02FSqUNydLdhv+/r5Gl+ByVpyz1fAYA+bAaxmAJ+K9CwAAAAAAwDimaYDnzp1bDzzwQLr7SpQooYcffli7du3SgQMHstQAT0py6MqV66m2eXnZTXFw68qVG0pMTLrnOLPMV8r4nK2GxxgwB17LADwR713wZP7+vpY683/9+vV644037ri/devWmjx5sgsrAgAAAADgT6ZpgN9L0aJFJUk3btzI8n0kJJjzIFZiYpJp53YnVpyz1fAYA+bAaxmAJ+K9C2Z38OBBSVKdOnVUsmTJNPtr1Kjh6pIAAAAAAEhhigZ4fHy8Ro0apYsXL2rixIny8/NLM+bkyZOSlG44BwAAAAAAGZPcAB8+fLgCAwMNrgYAAAAAgNRMsUZb7ty5tXXrVq1bt07ff/99mv2HDx/W4cOHlT9/flWvXt31BQIAAAAAYBIHDx5Unjx5VLFiRaNLAQAAAAAgDVM0wCWpc+fOkqQPPvhAJ06cSNl+7tw5vfPOO0pMTFT37t3l4+NjVIkAAAAAAHi0ixcv6syZMwoICJC3tykWlQMAAAAAmIxp0uprr72miIgIbd68Wc8++6xq166t3Llza8eOHbp+/bpatGihnj17Gl0mAAAAAAAeK3n581KlSunDDz/UunXrdPr0aRUtWlQtWrRQ7969VaBAAYOrBAAAAABYmWka4Llz59aMGTP01VdfKTQ0VLt375bdblelSpXUqVMndezYUTabzegyAQAAAADwWAcOHJAkrV69Wnnz5lXdunVVsmRJ/fjjj5o1a5bWr1+v+fPnq1ixYgZXCgAAAACwKtM0wCXJy8tLwcHBCg4ONroUAAAAAABM59ChQ5KkJ598UhMnTlT+/PklSRcuXNCgQYO0fft2jRgxQtOnT8/y3/D2Tn21Ni8vc1y9LaPzMMt8JevN2Wrzlcw1FwAAAJiHqRrgAAAAAADAecaPH68333xTJUuWlI+PT8r2woULa8KECWrZsqU2bNigU6dOqWzZspm+f7vdpkKF8uZkyW7D39/X6BJczmpzttp8JWvOGQAAAO6PBjgAAAAAAMiQ3Llz64EHHkh3X4kSJfTwww9r165dOnDgQJYa4ElJDl25cj3VNi8vuymabFeu3FBiYtI9x5llvpL15my1+UoZnzMAAACQXf7+vhlegYgGOAAAAAAAyBFFixaVJN24cSPL95GQYM5mWmJikmnndidWm7PV5itZc84AAABwf1yoBwAAAAAA3FN8fLz+9a9/qU+fPrp+/Xq6Y06ePClJKlmypCtLAwAAAAAgBQ1wAAAAAABwT7lz59bWrVu1bt06ff/992n2Hz58WIcPH1b+/PlVvXp11xcIAAAAAIBogAMAAAAAgAzq3LmzJOmDDz7QiRMnUrafO3dO77zzjhITE9W9e3f5+PgYVSIAAAAAwOK4BjgAAAAAAMiQ1157TREREdq8ebOeffZZ1a5dW7lz59aOHTt0/fp1tWjRQj179jS6TAAAAACAhdEABwAAAAAAGZI7d27NmDFDX331lUJDQ7V7927Z7XZVqlRJnTp1UseOHWWz2YwuEwAAAABgYTTAAQAAAABAhnl5eSk4OFjBwcFGlwIAAAAAQBpcAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACm4G10AYC7s9ttstttTrv/pCSHkpIcTrt/AAAAAAAAAAAAwCpogAN3YbfbVLCgn7y8nLdYQmJiki5duk4THAAAAAAAAAAAAMgmGuDAXdjtNnl52TV1wRZFxVzO8fsvU7yA+r7wmOx2Gw1wAAAAAAAAAAAAIJtogAMZEBVzWb9HXTS6DAAAAAAAAAAAAAB34bx1nQEAAAAAAAAAAAAAcCEa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFb6MLAAAAgHuy222y221Ou/+kJIeSkhxOu38AAAAAAAAA1kMDHAAAwAM5uzlts9nk759HdruX0/5GUlKiLl68QRMcAAAAAAAAQI6hAQ64AS8v512NgLPrAMB87HabChb0c+rnR7Lfln+hG+fP5Pj9+hYppQef7SG73cbnFAAAAAAAAIAcQwMcMFCB/D5yJCXJ39/XaX+Ds+sAwHzsdpu8vOyaumCLomIuO+VvVAsorc4tq+vG+TO6EX3CKX8DAAAAAAAAAHIaDXDAQHl9cstmt3N2HQAgS6JiLuv3qItOue/Sxfydcr8AAAAAgIxx9qWvJFaPBACYEw1wwA1wdh0AAAAAAADgWZzZoLbZbPL3zyO73csp95+M1SMBAGZEAxwAAAAAAAAAgEyw220qWNBPXl52p/4dZ60cKbF6JADAvGiAAwAAAABMw9lLhbJMKAAAkG5/5/Dysmvqgi2Kirmc4/dfLaC0OreszsqRAABkAQ1wAAAAAIAp2O02FSrk69SlQlkmFAAA/FVUzGX9HnUxx++3dDH/HL9PAACsggY4AAAAAMAlnH12tpeXXXa7l9OWCmWZUAAAAAAA3B8NcAAAAACA07nqOpmSWCoUAAAAAAALowEOAAAAAHA6Z18nU/rzWpkAAAAAAMC6aIADAAAAAFzGWdfJlLhWJgAAAAAAkJy/9hwAAAAAAAAAAAAAAC5AAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GFwAAZme322S325z6N5KSHEpKcjj1bwAAXM/ZnyF8fgAAAAAAAMBsaIADsDxnNhdsNpv8/fPIbvdyyv0nS0pK1MWLN2hiAICJ2O02FSzoJy8v5y3alJiYpEuXrvP5AQAAAAAAANOgAQ7A0lzRXJCk35Z/oRvnzzjlvn2LlNKDz/aQ3W6jgQEAJmK32+TlZdfUBVsUFXM5x++/TPEC6vvCY8qVy0uJiUk5fv8SZ5gDAAAAAADA9WiAA7A0ZzcXqgWUVueW1XXj/BndiD6R4/cPADC/qJjL+j3qYo7fb4H8PnIkJcnf3zfH7zsZK5QAAAAAAADA1WiAA4Cc11woXcw/x+8TAICckNcnt2x2u9NWKWGFEgAA8FfOvPyYxMozAAAA+BMNcAAAAMDCWKUEAAA4mysuP5aYmKSrV+PkcDivCU6THQAAwDPQAAcAIAdwNgMAAAAApM/Zlx8LeKCYgtvUUsGCfjl+33/F5V0AAAA8Aw1wAACyyW63qVAhX9ntXk77GxxoAQAAAODpnHn5MWde2kXi8i4AAACehAY4AADZdPvsby+uowsAAAAABuLSLgAAAJBogAMAnMDdlgN3dj3J17HjYAsAAAAAAAAAAMYyXQN8586dmj59ug4dOqS4uDgFBATo5ZdfVqtWrYwuDQAswd2WA7fbbSpY0C+lSQ0AAIDsI3sDAAAAgHW520lwf2eqBviyZcv0z3/+U97e3qpXr568vLy0bds2DRw4UEePHlW/fv2MLhEA3IIzP5y8vOxutRy43W6Tl5ddUxdsUVTM5RyvR5KqBZRW55bVnXLfAAAA7obsDQAAkHPcvYkE83H2c84VeF7fnbMfY5vNJn//PG5zElx6TNMAP3/+vIYPHy5fX1/NnTtXjz76qCTp6NGjCg4O1pQpU9SsWTMFBgYaXCkAGMtVZ0S723LgUTGX9XvURafcd+li/k65XwAAAHdD9gYAAFZCEwlm44pjw46kJNnszj32zPP6zly5Iqq7nASXHtM0wL/66ivFxcWpR48eKQFckipUqKC33npL77zzjubMmaNx48YZWCUAGM/ZZ0RzNjQAAIB5kb0BAIBV0ESCGbnq2LCzntMSz+t7ceWKqO52EtxfmaYBvnHjRknS008/nWZf06ZNZbPZtGnTJhdXBQDuy1lnRHM2NAAAgHmRvQEAgFXQRLIOT18SPCvLgTv72DDPaeNZfUVU0zTAf/31V0lSxYoV0+wrWLCgihYtqrNnz+r8+fMqUqSIq8sDAAAAAMDjkb0BAIAzueP1sK3eRDI7MywJznLgQFqmaIBfvnxZN2/eVN68eZU3b950xxQvXlxnz57V2bNnCeEAAJiQO4ZkAADMhOwNAO7F3TKQp59BKZH7MsKZjzPXw4YRPH1JcJYDB9JnczgcHv+KOHPmjJ588kkVLVpUW7ZsSXfMCy+8oD179mjBggWqWbNmpv+Gw5H2y4/NJtntdl2+FqfExKQs1X43uXN5KZ9fHt2KvSJHUmKO37/N7qVcef2VlJSkjDwLPH2+kvXm7G7zlaw3Z57X5n+MJevN2R2f19LtwGKzOe9gi8PhkDO/NmXmrq34vE65nQcfT8vs08fTX8u8d2XidhZ5Xpv5vcvZn0HuguydNbwfZmC8h8/Z3eYrWW/O7vi8TrmdEz8ebDbnZ6DMNsCd/XnocDjcZs5WfV674nFOiIuVIynn/5va7HZ5++R1m/cuyf3er1Nu58Ffbcne9xjv4fOVeF7fi5nfuzLzGWSKM8Dt/790xN0mnXzAOqsHrm02m7y80r//Avl8snSfGZUrr3OXQbFncukNT5+vZL05u9t8JevNmed1znO3+UrWm7M7Pq+dydkHl7LCis9rK/L01zLvXfg73rs8F9k7e3g/vDdPn7O7zVey3pzd8Xntye72nmwUZ2eyrMyZ53XO8/ZJf6WZnOJu712S+71fW5Gnv5bd7Xltxfcud2P19y5TPDuSl16Li4u745j4+HhJkp+fn0tqAgAAAADATMjeAAAAAABPYJoGuJ+fn65evXrHIB4TEyNJKlasmCtLAwAAAADAFMjeAAAAAABPYIoGuM1mU+XKlSVJR48eTbP/0qVLOnfunAoXLqyiRYu6ujwAAAAAADwe2RsAAAAA4AlM0QCXpEaNGkmS1q5dm2bf2rVr5XA41LhxY1eXBQAAAACAaZC9AQAAAADuzjQN8A4dOsjX11dffvml9uzZk7L92LFj+s9//iObzaZXX33VwAoBAAAAAPBsZG8AAAAAgLuzORwOh9FF5JRFixZpxIgR8vLyUr169ZQ7d25t27ZNN2/e1D/+8Q/17NnT6BIBAAAAAPBoZG8AAAAAgDszVQNckr7//nt98cUX+umnn+Tl5aWKFSvqtddeU/PmzY0uDQAAAAAAUyB7AwAAAADcleka4AAAAAAAAAAAAAAAazLNNcABAAAAAAAAAAAAANZGAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMAB5JirV69m+jY7duxwQiUAsmrKlCn6+eefjS4DAAAAwB2QvQHPR/YGAMC5aIDD5eLj4/XTTz/p8OHDSkhIuOO4CxcuKCIiwoWVud6OHTs0e/Zs/e9//9PJkyeNLifbgoODdenSpQyNvXnzpsaMGaNXX33VuUUByJQpU6boyJEjRpcB5LimTZtq3bp1RpdhiKSkJJ04cSLVNofDoZUrV2rMmDH66KOPtH//foOqyzmnT59WXFxchsefPHlSYWFhzivIABcuXNC2bdu0cuVKfffdd9qxY0eGv5sBMB+y95/I3mRvwN2QvWFWZG+y99+RvWEUb6MLQMbFxcXpwoULKl26tNGlZNncuXP18ccf6/r165Kk/Pnz6/XXX9frr78uuz317zE2b96sIUOG6NChQ0aUmmOOHDmizz//XEeOHFHp0qXVq1cv1axZUwMGDNC6devkcDgkSd7e3urfv7969eplcMVZd+jQIb344ov68ssvVbRo0TuO279/v4YMGaLff//9ruPM6sKFCzp69Kjq1KljdCkucfXqVY0fP15jxowxuhSXsdpjbAZNmzbVO++8o6ZNmxpdiss89NBDmjBhgtq0aWN0KS4RFRWV8v3DSjZu3KhRo0bp7Nmz+umnnyTdDuV9+vTRpk2bUr6HzJw5U8HBwRo2bJiR5WZL06ZN0zynr1+/rtGjR+v1119XhQoVUo3fu3evhg0bpvbt27u40py3evVqff755+l+b7bZbKpZs6Zef/11Pfnkk64vLgcFBgbKZrNl6jY2m00HDx50UkUwK7K3ZyJ7p0X2tlYuI3vDE5C9zY/sTfYme5O93QVngBsovV9DxcfHKywsTOfOnUszPjw83KO/HISFhWns2LEKCAjQsGHD1KtXL/n4+Gjy5Ml67bXXdO3aNaNLzHE//fSTnn/+eW3cuFG+vr7av3+/XnnlFY0dO1br1q1T9+7dFRoaqvnz56tx48b6z3/+o++++87osrNsxIgROnbsmLp166YzZ86k2X/r1i199NFH6tq1q37//Xe1a9dOK1asMKDSnPXQQw9p2bJlqbbFxcVpypQpOnXqVJrxmzdvVnBwsKvKc4pTp05p9OjReu655/Tcc89p+PDhOn78eJpx4eHhat26tRYvXmxAlTnHio+x1VgxoCWHL5jX4cOH1bdvXzkcDnXv3l1JSUmSpAULFmjjxo0qVqyYFi1apL1792rw4MGaO3euR38PSe85ffPmTYWFhSkmJsaAilxjzJgxGjhwoKKiotS+fXu9/fbb+ve//613331XAwYMUNOmTXXgwAG98cYb+uCDD4wuN1vq1Kmj2rVrZ+p/tWrVMrpsuAGyN9mb7E329lRkb/M/xlZD9oYZkb3J3mRv98zenAFuoPQ+8GNjYzVs2DDNmjXLdL/OnT17turUqaN58+albOvTp4/ee+89hYSE6JVXXtGXX36pfPnyGVhlzpo8ebLKli2refPmqXDhwrp+/bp69eqlr776Sp07d9bbb7+dMrZ27dp68cUX9d///letWrUysOqs69atmwoUKKChQ4eqW7du+vLLL3XfffdJuv0L9SFDhujnn39W6dKlNWrUKDVq1MjginNGeh/6N27c0NSpU1WrVi2VLVvWgKqc59ChQ3rppZd07do1+fj4yMfHRwcPHtTKlSu1cOFCVa5cWVevXtXw4cMVHh4uLy8v9ezZ0+iys8Vqj/GxY8cyvQwmv7gH3M8XX3yh4sWLa8mSJfL390/Z/tVXX8lms+mtt95S1apVJUmvvvqqdu7cqQULFnjs95A7MfMBp6VLl2r+/Plq37693n33Xfn5+aU7LjY2Vu+//77mzJmjGjVqqEWLFi6uNGf8NUcAmUH2JnuTvcnenojsfZuZH2OyN2AOZO/byN5kb3dDA9wNmfWN4rffftPQoUNTbcudO7fGjh2rggULatasWXr99dc1a9asO76BeJq9e/fqrbfeUuHChSVJfn5+evPNN/Xiiy/q8ccfTzO+VatWmjBhgqvLzFHPPvus8ufPr4EDB6pbt2764osvtG7dOk2fPl0JCQnq2rWr/vGPfyhv3rxGl+p0Zn0tf/LJJ4qLi9NHH32kZ555RpIUGRmpt956S2PGjNHEiRMVHBys33//XY8++qjGjBmjgIAAg6t2DrM+xtOnT9f06dMzdRtPXzLTqjK7nJGnW7RokbZu3Zrh8TabTWPHjnViRc4VERGh559/PlUAP3nypI4dOyZvb289/fTTqcY/9thj+uSTT1xdJrJhwYIFql69+j1/XZ43b16NHTtWR48e1TfffOOxIfzWrVvKlStXpm6zf/9+VatWzUkVwdOZ9bsc2ZvsTfY2B7L3n8z6GJO9rYPsfXdkb7g7sve9uWP2pgEOl/H19dWlS5fS3Td48GBdv35dCxcuVO/evfXFF1+4tjgnyZcvn65cuZJqW0BAgBo3bixv77Qvv4sXLypPnjyuKs9pGjdurJkzZ+qNN97Qc889J4fDofvvv19jxoxR7dq1jS4P2RQZGakuXbqkBHBJqlq1qgYPHqxBgwZp0KBBioqK0ttvv63XXnstzTUG4f6aNWtm2gMnd2O1gCZJ06ZN06JFizI83mazac6cOU6syLkiIiIydYaFpz/GFy9eVMmSJVNt2759uySpWrVqaQ6I+/j46ObNmy6rD9n366+/Zuoatk2bNtXXX3/txIqc67nnntPEiRMz9BkVHx+vyZMna+7cuTpw4IALqgPcB9n7NrI32dvTkb3Nj+ydMZ6eyySy9714+mNM9jY/sveduXP2pgEOl6lXr57mzp2rp59+WpUqVUqzf+TIkbp27ZqWL1+u1157TY0bNzagypz12GOP6csvv1SNGjXUoEEDSVL+/Pn1+eefpxm7f/9+zZs3L2Wcp6tVq5bmzp2r119/XRcuXNC///1vArhJXL58WYGBgWm2P/roo0pMTNSRI0c0b948Va9e3fXFIUc0b95cbdq0MboMl7NaQJOko0eP6ujRoxke7+m/Wn/nnXc8+pqumVWgQAFduHAh1bbNmzfLZrPpscceSzP+6NGjKWfOwTNcv35dRYoUyfD4YsWKefQ12c6dO6eOHTuqf//+6tGjxx3fk3bv3q133nlHx48f1/333+/iKgHjkb3J3mRvcyB7mx/ZO2PI3p6H7E32Nhuyt2dmbxrgcJm33npLXbt2VVBQkB5++GF9+OGHqV4UNptNEyZMUO7cuRUSEqI9e/YYWG3OePvttxUZGanXXntNtWvXvuO1E1566SXt3r1bhQsXTnVtMk8XGBioBQsW6NVXX9Ubb7yhqVOnqn79+kaXhWxKSEhI92wJHx8fSVLPnj0J4PBIVgtokvThhx9a6oBLoUKFVKZMGaPLcJmaNWtq5cqV6t69u7y8vHTu3Dlt3LhRktSyZctUY69evaply5apXr16BlSKrEpMTEz3zMY78fLyUkJCghMrcq7ly5dr2LBhmjRpkjZu3Kjx48erXLlyKfuTl4lNvtZe9+7dNWDAAAMrBoxB9iZ7k73NgewNsyJ7mx/Zm+xtNmRvz8zeNMDhMg888IBWrFihqVOnateuXSlf2P/Kbrdr7NixqlGjhj7++GOdP3/egEpzTpEiRbR48WItXLhQ8fHxdxzn4+Ojjh076s0338zUL4nczbBhw9Ldfv/99+vUqVPq1auXWrVqleoXQ2b4FSdSe+SRR4wuAcgSqwU0mF+PHj3UpUsXde7cWXXr1tW6det08+ZNPfPMMypfvryk2wdW9+3bp/Hjx+vChQvq1q2bwVVnz5o1a3T8+PGUf4+Li5PNZtOSJUu0e/fuVGN//vlnV5eHbCpSpIhmzJihr776Sh9++KHatWunoUOH6vnnn9fOnTv1r3/9SydPnlRAQIDef/99vpPAssjeZG+ytzXwOQdPRfaG2ZC9yd5mY5bsTQPcYMeOHUu15MvVq1clSUeOHEnzi5LMLJPirgoVKqThw4ffc1ynTp0UFBSU6k3UU/n4+OiVV1656xizXHctNDT0rvtv3rypsLCwVNvMEsJ37dqlxMTElH+PjY2VJG3ZskXR0dGpxprhDIu78fRlmu7EKo9xnTp1VLRoUaPLAJADHn30UU2bNk3vv/++Zs2aJS8vL7Vp00ajRo1KGTNhwgTNnTtXdrtdw4YNU82aNQ2sOPvCw8MVHh6eZvvfv38kM8Nn1t8PPNyNWQ48dOvWTfXr19eIESM0cuRIzZs3T0ePHpW3t7cGDBignj17ZurX+bAGsnf6yN6eiext/lyWEWb4HpMeqzzGZG/APMjefyJ730b2dg82h8PhMLoIqwoMDEz3he9wOO66/dChQ64oz+kcDodOnjypS5cuSZIKFy6ssmXLGluUk5l9zlFRUVm6naf/6jO91/Jf31rT2+fJr+XAwEC98cYbatiwYartV69eVZ8+fTR06FBVqVIlze3q1KnjqhJznNUeYysKDAy03JJkVptzaGioateunWrJJiu5ePGifH1905wFuGnTJh04cEDPPPOMW16vKTN27tyZpdvVrVs3hytxnfSuC3ovZvp8ioiIUJ8+fXT16lXZbDb16dNH/fv3N7osuCGyt7lzaHrMPmey95/MnMvI3reZ+TG2IqvlUMl6cyZ7k73vhOztuTw1e9MAN9CUKVOydLt+/frlcCWuFRkZqZkzZ2rLli26fv16qn358uVTkyZN9Oqrr2bpTcVdWXHOVnKvX9/fSVBQUA5X4hp3OoAo3fkgoiSP/sC30mP81zOjMsOTD7JI1gxoO3fuVIUKFTx6+U/A6qx44EGSrl27pgkTJujbb79Vnjx51KNHD61evVo///yzGjRooDFjxqh06dJGlwk3Qva2Tg614pytxEq5TCJ7Z4YnPsZkb7I3AM9B9vbM7E0DHC41a9YsTZw4UXa7XTVq1FClSpXk7++vhIQEXbp0SQcPHtShQ4dkt9s1ZMgQBQcHG11ytllxzhk1ffp0hYeHKyQkxOhSXC4+Pl65c+c2uowsseoBxMzy1Mf4bgdZ7saTD7LAGu50rcy7MctSoUjfwoULtXnz5ix/rsEYGzdu1MiRIxUdHa369etr9OjRKleunG7duqVPPvlEs2bNko+Pj/75z3+qS5cuRpcLGMaKOdSKc84osrfn5TKJ7J1RnvoYk71hVmRv/B3Z2zOZIXvTAIfLbNq0Sb169VKDBg00duxYlSpVKt1xJ06c0KhRo7R161bNmjVLDRo0cHGlOceKc86MkSNHatGiRR7/5X3KlCmZCpiRkZEaNmyYVqxY4cSqkJOs9Bh/+umnWQrhnn6QxYoBLSsHfW02m+bMmeOEapzPistV3eugWp48eZQ/f35VrlxZzZs3V6dOnWS3211YobHM8D3k9OnTKly4cJrl9e7k5MmT2r17t9q3b+/cwpzk7bff1ooVK+Tn56fBgwerc+fOacbs3btXQ4YM0cmTJ1W3bl29//77plr2GMgIK+ZQK845M8zwmSdZK5dZlZUeY7J3xpG9PQvZOy2yt+d/DyF7e2b2pgFuIKt94L/66qs6d+6cQkJClCtXrruOTUhIUPv27XX//fdr6tSpLqow51lxzplhhg8/6faXnO7du+uf//znXcclJCRoypQpmjlzphITEz1+3hkVFxenCxcuuPVyKPfCY2x+Vg1omeXJc7bitTJfeumlu+5PTEzUlStXdOLECd26dUuPPfaYpk+fLm9vbxdVaCwzfA956KGHNGHChFTXE7x+/bpGjx6t119/XRUqVEg1funSpRoyZIjHzjkwMFCNGjXS6NGjVbJkyTuOi4uL0wcffKCFCxfKz89Pe/bscWGVcEdk7zszSw614pwzwwyfeRK57F7I3vAEVsuhkvXmTPZOi+zt+d9DyN7pc/fsbY1XmJvKzHVt/voLIk8N4QcPHtQrr7xyzzAqSd7e3mrVqpWWLl3qgsqcx4pztqLatWtr1qxZunHjht599910xxw5ckRDhgzRkSNHVKBAAf3rX/9ycZU5p2nTpnrnnXfUtGnTlG3x8fFauXKlHn/8cRUtWjTV+PDwcI/+wJes9xhb0bp164wuweUOHz5sdAku5clhOqvmzZuXoXFxcXFasGCBJkyYoAULFtwzvMN9pPdb5ps3byosLExt27ZNE8I93bhx4zJ0jU8fHx+99957evrpp/k8hiSy992YJYdacc5WZLVcRvY2/2NsRWRv8yN73xnZ23ORvdPn7tmbBriBMvLhFxUVpdGjR2vjxo3Knz+/Bg4c6PzCnCQ2NlbFixfP8PhSpUrpjz/+cGJFzmfFOVvRrFmzNGDAAC1YsEA3btzQ2LFjUw6cORwOzZgxQ1OnTlV8fLxat26t4cOHq3DhwgZXnXVRUVG6fv16qm2xsbEaNmyYZs2alSaEm4HVHmNJOnbsmPbu3asOHTqkbDt37pymTJmiPXv2yNfXV02bNtUrr7zikddb+zsrBjSkFh8fr19//VU+Pj4qX7680eW4lI+Pj1599VXt379foaGhhHATMOsiXxkJ4H/14IMPqlOnTk6qBp6E7H13ZsihVpyzFVktl5G9zf8YS2RvWA/Zm+xtJmTv29w1e9MAd1OJiYmaNWuWPvvsM8XFxemZZ57RsGHDPPrLbUJCQqa+qHl7eys+Pt6JFTmfFedsRblz59bUqVM1bNgwhYaGKi4uThMnTtSJEyc0dOhQRUZGqlixYnrvvffUpEkTo8t1GrN+4EvWe4wnTpyoWbNmyeFwKCgoSHa7XVevXlXnzp11+vRpFSxYUGXKlNHHH3+s9evXa968eRk628aTWTGgRUdHKzIyUj4+PqpTp06Gr3Pkzq5evaovvvhCe/fuTfUL7WXLlmnMmDG6cuWKpNtf3MeOHavq1asbVKkx6tWrpy1bthhdBpAtN2/e1OrVqxUSEqKdO3fK4XCob9++RpcFN0b2NkcOteKcrchquexOyN7meYzJ3mmRvcneVkD2hhl4QvamAe6Gdu3apVGjRumXX37RAw88oJEjR6pBgwZGlwXc05QpUzI1/qeffnJSJa7n5eWlCRMmyN/fX/Pnz9epU6f0yy+/KC4uTp06ddKQIUOUL18+o8tENljlMV6zZo1mzpypJ598UsHBwbLb7ZKkzz77TFFRUapWrZq+/PJL+fr6KjIyUi+99JK+/PJL9ejRw+DKs8+KAS0qKkqTJk3S3r17tX79+pTtM2bM0CeffKLExEQ5HA4VKFBAo0ePVvPmzQ2sNntiY2PVuXNnHTt2TCVLllRCQoK8vb0VGRmpIUOGyOFwqHPnzqpUqZLCwsL06quvKiwsTPfff7/RpbuMl5eXkpKSjC4jy8LCwjI1/rfffnNOITDE3r17FRISou+++06xsbFyOBy677771LlzZ6NLgxsje8NTkb3Nn8uszCqPMdmb7C2RvcnenonsbW2elL1pgLuRixcvasKECQoLC1Pu3LnVv39/9ejRwxTL2yTbtWuXEhMTMzR2z549Tq7GNaw058yGcCn1NfbMYPjw4SpYsKCmTJkiu92uzz//XI0bNza6LOQgsz/GCxcuVLVq1TR9+vSUbQ6HQ0uXLpXNZtObb74pX19fSVLVqlXVrl07rVixwuNDuBUD2vnz59W5c2ddvHhRVatWTZnzDz/8oEmTJsnb21tvvfWWKleurEWLFumtt97S119/rSpVqhhdepbMmjVLJ06c0H/+8x+1bNkyZfvUqVPlcDj08ssva+jQoZKkjh07qm3btpo+fbrGjRtnVMkut3//fpUqVcroMrJs6NChmfpe4XA4TPc9xGqio6O1ZMkShYSE6Pjx4ylnxNWrV089evTQ448/bnCFcFdk79Q8PYcms9Kcyd7mz2Uw/2NM9iZ7k73J3p6K7G09npq9aYC7iW+++UYTJ07U5cuX9dhjj2nkyJG67777jC4rxy1atEiLFi3K0FizvDFaac5z5841ugS30K9fPxUqVEhjxozRzJkzVatWLVP8Ohl/MvNjfODAgTSB+uDBgzp//rzy5cunevXqpdr36KOPatmyZa4s0SmsGNBmzJih2NhYffXVV6l+UT9jxgzZbDb17ds35bnwxBNPqEOHDvriiy/0n//8x5iCsyk8PFzt2rVL9fjGxsamLDvWtWvXlO158uRR27Zt9c0337i8TqOsWrVKS5Ys0euvv250KVnmya9HZFx8fLzWrl2rkJAQbdu2TYmJifLy8lLdunVVq1YtTZs2TcHBwW4bwGE8sndanp5Dk1lpzmTv28ycy3CbmR9jsjfZm+xN9vZUnvx6RMaZIXvTADfYkSNH9N5772nfvn0qWrSoJk2apNatWxtdllNY8Y3RanOuW7dupm+za9cuJ1TiWhEREWm2Va5cWZ06ddKiRYv08ssva/DgwSnLWSWrU6eOq0pENlnpMb5+/boKFCiQatv27dsl3Z6Pl5dXqn0JCQkeffAwmRUD2saNG9WhQ4dUAfzSpUvavXu3JOm5555L2W6z2dSqVSvNmTPH1WXmmFOnTqV6HKXbr+2EhASVK1cuTfOjVKlSOn/+vCtLzHHDhg276/7ExETFxsbq119/1YkTJ/TAAw94dAgPCgoyugRDrFmzRsePH0/597i4ONlsNi1ZsiTl9Zzs559/dnV5OWrUqFFauXKlLl++rDx58qhRo0Zq1qyZmjZtqkKFCikqKkqfffaZ0WXCTZG9zc1qcyZ7/8msucyqrPQYk73J3mTv28jenofsfRvZ2/2zNw1wA40fP17z5s1TYmKinnrqKQ0cOFD58uXT6dOn73q70qVLu6jCnGXFN0Yrzjkjzpw5o9DQUIWFhenkyZM6dOiQ0SVly0svvXTXEHLgwAG98sorabZ78ryPHTuWKphevXpV0u0Di97eqT9ajh496tLanMFKj3Hx4sV18uTJVNs2btwom82mJ554Is34yMhIlShRwlXlOY0VA9off/yhypUrp9q2Y8cOJSUlqWLFimke1yJFiujy5cuuLDFH2e32NNfY2rZtmySpYcOGacZfuHDB488uCQ0NzdC4cuXK6eWXX1afPn08fs53kt7361KlSpnmIGJ4eHia7Xe6Lpsnz3nBggXy8/NT79699frrr5v2+YqcR/Y2PyvOOSPI3rd58rzJ3qmZ6TEme/+J7E329vTv9WTvP5G9/+TJczZL9qYBbqDZs2en/POGDRu0YcOGDN3OE7/UZcWFCxd09OhRj/wVZ1aZec43b95UeHi4QkJCtGPHjpQl59L7Uu9p+vbt69EfaFkxffr0VNepSjZ+/Pg02zx9eUHJWo/xE088ocWLF6tr164qUaKE9u7dq127dilXrlxq0aJFqrG//PKLVqxYoeeff96ganOOFQNanjx5dOPGjVTbtm7dKpvNpsceeyzN+D/++EP+/v6uKi/HVaxYUXv37lW3bt0k3X5vWrNmjWw2m5o0aZJm/Lp161ShQgVXl5mj1q1bd9f9efLkkb+/v6mueStJixcv1jfffKPPPvtMhQsX1sWLF9WkSZM07+MDBgzQG2+8YVCVOcNqS+AGBQVp7dq1+vzzzzVnzhzVrl075VfoRYsWNbo8uDGy992ZOYfeiZnnTPY2F7K3eZG9/0T2To3s7XnI3mRvszFL9qYBbqB+/foZXYJLPfTQQ5owYYLatGmTsi0uLk4zZ85U+/btVbZs2VTjN2/erCFDhnj0QQcrzvnv9u3bp5CQEH333Xe6du2aJKlw4cLq0KGDOnfurDJlyhhcYfb179/f6BJcykqBNJmVHuM+ffooPDxcrVq1Uvny5fXzzz/L4XCob9++Kly4sKTb4Ts8PFxz585Vrly51L17d4Orzj4rBrTAwEBt27ZNL7/8sqQ/r+0jSc2aNUs11uFwaNWqVQoMDHR5nTmlffv2ev/99/Xoo4/qscce06JFi3T69Gndd999atSoUaqx06dP1759+zR8+HCDqs0ZZviMzaw333xTq1evVunSpXX69OmU9y1Jatu2rcqVKydJWrJkiaZNm6aOHTuqWLFiRpWbbVlZAjchIcEJlbjGuHHjNGrUKG3YsEHLli3T999/rx9++EGjRo1SjRo1VLNmTct9R0HGkL3Nn0OtOOe/I3ubD9nb3MjeZG+J7E329lxk73sjexuPBriBrBbCHQ5Hmm03btzQ1KlTVatWrTSB1AysOGdJiomJUVhYmEJDQ/X777/L4XDI19dXDRs21NatW/Xvf/9bTZs2NbpMZJGVAqkVFS1aVN9++62mTp2qffv26eGHH1aHDh3UqVOnlDGhoaGaNWuWypQpo48++kilSpUysOKcYcWA1qVLF7311lsaO3asHnvsMS1evFjnz5/Xww8/nOpsqLi4OH3wwQf65ZdfPPqAS5cuXbR7926NGzdONptNDodDBQoU0MSJE1OuIfjtt99qxowZOnnypGrVqqUXXnjB4KqdKzIyUnv37pXdblfdunUVEBBgdEnZsnTpUq1evVq9evXSgAED0lw3sX379mrQoIEkqXHjxnr++ef19ddfm+Y7eWxsrBwOx13PkNm7d69GjBih5cuXu7CynJU7d261aNFCLVq00NWrV7Vq1SotXbpUu3fv1u7du2Wz2fT555/r2rVratGihXx8fIwuGW7ALK/zjLJiDrXinCWyt9mRvc2N7E32JnuTvT0V2Zvs7SnZmwa4G4mPj9fhw4cVExMjh8Oh4sWLKzAwUHny5DG6NKdKL6ianVnn/N133ykkJERbt25VYmKi/P391aZNGzVv3lyNGjXS2bNn0/yy0QymTJmS6dvYbDb17dvXCdU4X3BwsN54442ULzJWYLXHuGTJkho9evQd93fo0EFNmjRRzZo1U8KLp7NiQGvdurWOHDmimTNnat68eXI4HCpbtqwmT56cMua///2vPvvsM8XGxqply5Zq166dgRVnj81m08SJE9WtWzft3btX+fLlU7NmzVL9SvmPP/6Qw+HQG2+8oV69epni+X3w4EF9/vnnOnr0qO677z717t1bVatW1b/+9S+FhISkfCex2Wx69tlnNW7cuDTXk/QUoaGhqlGjhgYNGnTPsckH3DZt2uTxIXz16tWaMmWKfv31V0m3rys3YMAAPfvssyljrl+/rkmTJmnBggVplpz0JMOGDVOXLl1UrVo1SVL+/PnVqVMnderUSdHR0Vq+fLmWL1+uyMhI/fjjjxo9erRat26tf//73wZXDndD9rYOs86Z7J1xnpzLyN4Z48mPMdmb7J2M7O35z2+yd/rI3p7JLNnbM19hJnPu3DlNmjRJ4eHhio2NTbXP19dXLVq00KBBg1S8eHGDKgQyZtCgQfLz81PXrl3VtGlT1alTJ9UvwDxhWYyssFpA27lzZ6pfJFuB1R7je/H05cfSY9WANmjQIL3wwgvav3+/8uXLp7p16ypXrlwp+/PkyaNHH31Ubdq00XPPPWdgpTmnRo0aqlGjRrr7+vXr5/GB7K/27t2r4OBgeXt7q3Llyjpw4IC6deuml156SYsXL1bbtm3VsmVLXb9+XevXr9fy5cv10EMP6bXXXjO69Cw5ePCgevfuneHxjz/+uKZOnerEipxv5cqVeuutt5QnTx49/vjj8vX11a5du/TPf/4z5fqRP/74owYNGqRTp06pbNmyGjVqlNFlZ1loaKgaNmyYEsL/qkSJEurevbu6d++uo0ePaunSpVq2bJm++eYbtwvhMA7ZG2ZB9s44T85lZO+M8eTH+F7I3mRvT0b2JnsnI3t7HrNkbxrgBtu3b5969eqly5cvq1q1aqpfv76KFy8ub29vxcTEKCIiQmFhYVq/fr2mTZummjVrGl0ycEdly5bVqVOnFBISot9++00//vijmjVrpgcffNDo0pxq7ty5RpcAJ7PSYxwREZGl2/112S5PZqWAlqxkyZIqWbJkuvtefPFFvfjiiy6uCDll6tSpeuCBBzR37lwVKlRIDodD77zzjmbPnq22bdtqwoQJKWOfffZZXblyRcuXL/fYEB4XFyd/f/802/Pnz6/p06froYceSrU9b968Hn1NLkmaP3++ihQpooULF6ZcY+3GjRt644039Omnn6p48eJ67bXXdPPmTb366qt688033XJZspxWoUIFDRo0SIMGDdKePXuMLgduguwNMyF7w6ys9BiTvcnef0X29mxk79vI3mRvd0MD3EDnz59X3759lTdvXn322WeqVatWuuMOHjyogQMHasCAAVqyZImKFCni4kqBjFm7dq3279+vpUuXatWqVdq8ebMmTZqk8uXLq3nz5qpSpYrRJTpF3bp17znm6tWrstlsd702CNxXRh5js3jppZcyfcaIzWbTwYMHnVQRkDOGDRuW6dvYbDaNHTvWCdW4xo8//qjXX39dhQoVknR7Pt27d1doaKiefPLJNOObN2+uDz74wMVV5pwSJUro9OnTabZ7e3unO9/ff//d46+jePToUb300kspAVy6fRZrv3799OKLL2rQoEEqUqSIJk6cqOrVqxtXqIFoYkIie8N8yN53Rvb2bGTvuyN7wxOQvcnef0f2tgZ3zN40wA00f/58xcbGpvrVSHoefvhhzZ49W23atNH//vc/9e/f34VVAplTrVo1VatWTe+88442b96sZcuWad26dZo2bZpsNptsNps2bNigwMBAlSlTxuhyc4zD4dD333+vX3/9Vffff7+efPJJeXt7a9u2bRozZoyOHTsmSXrooYf01ltv6fHHHze44uxZs2aNjh8/nuHxZl6SLJlZDrSMGzcuQ+NWr16tjRs3SpKqVq3qxIpcw4oBLTg4ONO3sdlsmjNnjhOqcb7Q0NAMj/3rgShPfoyvXLmiokWLptqWvLRgwYIF04z38fHRjRs3XFGaU1StWlUrV65U375977lMYnx8vFauXKnGjRu7qDrnuHr1qsqWLZtm+3333Sfp9lKKCxcuTDkQYwa7du1SYmJipm7Tvn175xQDj0H2hhmRvcne6SF7ew6yd8aRvT0L2fs2svdtZG/PZYbsTQPcQGvXrlXbtm3vGsCTlSlTRkFBQQoPD/foEP73F03ydde2bNmi6OjoVGPdccmErLDinCXJy8tLjRs3VuPGjRUXF6c1a9Zo+fLl2rJli7799luFhISoXr166tChg5599lmjy82WK1euqGfPntq/f78cDock6dFHH9WIESPUs2dP+fr6qlmzZrp+/br279+vXr16afbs2R79y+Y1a9YoPDw8w+PNEML/eqDlvvvu01NPPWXKAy1BQUF33R8VFaXRo0dr48aN8vf311tvvaXOnTu7qDrnsWJAO3XqVIbGJSUlKTo6Wg6Hw6OvJ3n48OF7jvnr8zt//vwaOHCg8wtzIofDIW/v1F/3kx9DT34s76RLly568cUX9e9//1vDhw9PM/dkSUlJevfddxUTE6MuXbq4uMqclZSUlOqar8mSryfYs2dPUwVwSVq0aJEWLVqUobHJ71vuFsLhemRva+RQK85ZInuTvVMje3sOsve9kb09E9n7NrI32dvTmSF70wA30KlTpzJ1bY/AwMBMfUlwR39/0SQHlpkzZ6b5MPD0D/tkVppzz549Vb9+fdWtW1dVqlRJmYuPj4/atGmjNm3a6OLFi1q5cqWWLVumbdu2afv27R4fwj/55BMdPnxY7777rurVq6eoqCi9//77evnll/XAAw9o3rx5Kb/2u3Dhgjp27KhZs2Z5dAjv1auXGjZsaHQZLmPFAy1/l5CQoP/+97+aPn26bty4obZt22ro0KEpv2j1dFYMaOvXr7/nmP379+u9997TH3/8obJly2rEiBEuqMz1EhMTNWvWLH322WeKi4vTM888o2HDhqX5BTfcW+3atdW9e3f997//1fbt2/Xaa6+pXr16KlmypBwOh86ePasdO3boq6++0uHDhzVo0CAFBgYaXbZTlS5d2ugSctzzzz9v2SXlkHVkb3Pn0GRWmjPZm+xtVmRvsrdE9iZ7w92RvdMie7snGuAGypUrl27evJnh8XFxcfLz83NiRc6V0aV9zMRqc96+fbu+//77lKWoateurXr16ql+/fopH3KFChVSt27d1K1bN508eVIrVqwwuOrsW79+vbp06aIXXnhBklS+fHm9++67eu2119StW7dUS90ULlxYzz//vObNm2dQtTmjQoUKpgqY92LFAy1/tXPnTo0aNUpHjx5V+fLlNXLkSNWrV8/oslzGigHt6tWr+uijj7Ro0SLZ7Xb16tVLffr0UZ48eYwuLcft2rVLo0aN0i+//KIHHnhAI0eOVIMGDYwuK8f8fdnMuLg42Ww2LVmyRLt370419ueff3Z1eTnun//8p8qUKaNJkybp3XffTbfh4efnp/fee88UZ9BYUe3atdWmTRujy4CHIXubn9XmTPYme5sV2ZvsTfYme3sqsjfZ22zMkL1pgBuocuXK2rRpU4avA7Jx40ZVrFjRyVU5z72W9jEjq815z549OnjwoPbs2aO9e/dq37592rBhg2w2m/z9/VWnTh3Vq1dP9erVU+XKlVWuXDn17t3b6LKz7ezZs6pQoUKqbcmv1fR+/VWqVCldvnzZJbUhZ1jxQIt0+4DC+PHjtXTpUuXJk0dvvvmmXn/99ZTlfazA7AEtPUuWLNGECRN0/vx51a1bVyNHjkzzHmcGFy9e1IQJExQWFqbcuXOrf//+6tGjh3Lnzm10aTkqPDw83WUzw8LC0h3vyWfDJevatauCgoK0YcMGRURE6I8//pDD4VDx4sVVs2ZNNWvWzOOvGflX6V0b9G4HW8ywNCqQWWRv87PanMnefyJ7mwvZm+xN9iZ7eyqyN9mb7O1+aIAbqF27dnr33Xe1cuVKtW7d+q5jw8LCtHXrVk2aNMlF1Rnv1KlTevfddzVr1iyjS3EZT5+zt7e3qlatqqpVq+qVV16RJJ05cyZVKB8/frwSExNVsGBB1a1bV/Xq1VPXrl2NLTybbt26JR8fn1TbkkNKemHFZrOlujYd3J8VD7R8/fXXmjRpki5fvqwnnnhCI0aMyNB1M83CKgHtr44dO6ZRo0Zp586dKlSokD744AO3u3ZPTvnmm280ceJEXb58WY899phGjhyp++67z+iyctzcuXONLsEwvr6+at269T2/Y5vBnQ60SOkfbCGEw4rI3nfn6Tk0Kzx9zmTvP5G9zYXsTfYme5sL2dv8yN63kb3dEw1wA3Xo0EFhYWEaPHiwjhw5om7duql48eKpxsTExGj27NmaO3euGjdurFatWhlUbc7Yv3+/pk2bpr1790qSHn74YfXt21e1a9dOGeNwOPTll1/qk08+UVxcnFGl5hgrzvmvSpUqpWeeeUbPPPOMpNtL+yxdulQhISFavXq1wsPDPT6EW02/fv0UEBBgdBkuZaUDLYcPH9bIkSMVGRmpEiVKaPTo0WrevLnRZbmUVQJasvj4eE2dOlWzZs1SQkKCOnXqpLffflv+/v5Gl5bjjhw5ovfee0/79u1T0aJFNWnSJFOHNLMsBYk7s9qBlqCgIFO/H8N5yN7WyKFWnPNfkb3Nh+x9G9nbvMjeZG+zIHubH9nbM9EAN5Ddbtf06dP19ttv6/PPP9eMGTNUqlQpFStWTF5eXjp//rxOnDghh8OhVq1a6f333ze65GzZtm2bevToocTERD344IPy9fVVRESEXnnlFc2ePVt16tTRqVOn9I9//EORkZHKly+fRo0aZXTZ2WLFOf9dXFycIiIitHPnTu3evVs//fSTbt26pdy5c6csyWYGly5d0unTp1P+PfkXyBcuXEi1Xbr961ZP1q9fv1T/Hh8fr8OHDysmJiZlmZvAwEBTXq/ICjp06KCkpCRJUpEiRTR//nzNnz//rrex2WyaM2eOK8pzKqsFNEnatGmTRo8eraioKAUEBGjUqFGqVq2a0WU5xfjx4zVv3jwlJibqqaee0sCBA5UvX74079F/l96ZJma1cOFCbd68WVOmTDG6lCzJ6NLGf+Xp719ZOdCya9cuJ1TiGla7xi9yDtnb/DnUinP+O7I32RuehexN9iZ7p0b29hxk74whexvP5nA4HEYXAemHH37QkiVLFBkZqbNnz6Z8ka1Vq5batWun+vXrG11itr366quKjIzUzJkzVaNGDUlSdHS0evfurVy5cmncuHEKDg7W+fPn1bx5c40YMULFihUzuOrsseKcExIStG/fPm3fvl3bt2/X/v37devWLeXKlUtVq1ZNCd41atQwzXJGgYGB6V63xeFw3PV6LocOHXJmWU537tw5TZo0SeHh4YqNjU21z9fXVy1atNCgQYPSnF3jiQIDA/Wvf/1LTZs2Tdl2+fJlBQUF6aOPPkp5fSdbs2aNPvjgA498jJs0aZKl261fvz6HK3GtOwW0e/HkgDZgwACtWbNGkvTUU08pODhYXl5e97xdnTp1nF2aUwQGBqb8c2auteWJr+OsGjlypBYtWuSxc87o+1dSUpKio6NTPqc9db6ZcebMGYWGhiosLEwnT560xJyBOyF7mzOHWnHOZO8/kb3J3p74GJO9yd73QvY2L7K3eZG93QsNcLhM/fr11bFjR7399tuptm/evFk9evRQhQoVdPbsWb333nsev9xcMqvNuUePHtq1a5fi4uJkt9tVpUoV1a9fX/Xq1VOtWrXSLGNlFsOGDcvS7Tz5l1T79u1Tr169dPnyZVWrVk3169dX8eLF5e3trZiYGEVERCgiIkL+/v6aNm2aatasaXTJ2WLVAy1WYsWA9tc5S/eet6cHlqz+svrvZ96YmaeH8IzYv3+/3nvvPR06dEhly5bViBEj1LhxY6PLcoqbN28qPDxcISEh2rFjR8pruFGjRvr888+NLg+AE1kth0rWmzPZO3PI3p6D7G1+ZG+y952Qvc2F7E32dgcsge5BduzYoSNHjmRpiQl3cPXqVVWoUCHN9kqVKsnhcOjSpUv65ptvTHFtgWRWm/MPP/ygXLlyqX379urVq5ceeOABo0tyCU8O01lx/vx59e3bV3nz5tVnn32mWrVqpTvu4MGDGjhwoAYMGKAlS5aoSJEiLq4057Rv3z5TwcxKdu3apdDQUI9fKtRKQSuZ1d67svIYm+3aoFZ29epVffTRR1q0aJHsdrt69eqlPn36mHLJ0H379ikkJETfffedrl27JkkqXLiwOnTooM6dO6tMmTIGVwi4P7K357HanMne1kD2xl+RvT2X1d67yN7WRvYme7sTGuAeZOXKlVq0aJHHhvDExER5e6d9yiUvxdW7d2/ThNFkVptzp06dtGPHjpRlPsqXL68GDRqofv36qlOnjgoUKGB0icgB8+fPV2xsrBYuXKhy5crdcdzDDz+s2bNnq02bNvrf//6n/v37u7DKnPXBBx8YXYJb+eOPPxQaGqrQ0FCdPHlSkiwZwj09oAUFBWX6NlFRUU6oxP0kH1xavXq1R1+zCbctWbJEEyZM0Pnz51W3bl2NHDky3SaJJ4uJiVFYWJhCQ0P1+++/y+FwyNfXVw0bNtTWrVv173//O9VSogDujuzteaw2Z7K3NZC9Qfa+jextXmRvcyF7k73dDQ1wuA2zvRlmhNnmPHr0aEnS6dOntXXrVm3fvl2rVq3S/PnzZbfbFRgYqHr16qWEcj8/P4MrRlasXbtWbdu2vWsAT1amTBkFBQUpPDzco0N4cHCw3njjDTVo0CBlW0JCgvbu3avAwEDlz58/1filS5dq6NChOnjwoKtLdZr4+PiU5Xy2b98uh8Mhh8OhevXq6YUXXjC6PJeyWkC7efOmVq1apdDQUEVEROjAgQNGl+QUyQeXwsLCdOLECTkcDhUsWNDospANx44d06hRo7Rz504VKlRIH3zwgdq3b290WTnqu+++U0hIiLZu3arExET5+/urTZs2at68uRo1aqSzZ8+qWbNmRpcJwM2YLYdmhNnmTPa2BrL3bWRvsjfZ21zI3uZD9iZ7uysa4AByXOnSpdWxY0d17NhRkvTLL79o+/bt2rZtmxYvXqzZs2fL29tbjzzyiBo0aKA333zT4IqRGadOndKLL76Y4fGBgYEKDQ11YkXOt3PnTnXq1CnVtqtXryo4OFizZs1KFc6TORwOV5XnVH9fzid5Xs8884z69u2r8uXLG1yha1gxoO3Zs0chISFatWqVYmNj5XA4VKlSJaPLylHJB5dCQ0O1fft2JSUlyeFwqHr16urSpYtat25tdInZEhYWlqnxv/32m3MKcbH4+HhNnTpVs2bNUkJCgjp16qS3335b/v7+RpeW4wYNGiQ/Pz917dpVTZs2VZ06deTl5ZWynyVEAcDcyN7mRva+jexN9iZ7ez6yd2pkb89D9vZMNMDhUrt27VJiYmKqbbGxsZKkLVu2KDo6Os1tPP3XQlac899VqlRJlSpV0ksvvaT4+HitWrVK//vf/7Rv3z7t37+fEO5hcuXKpZs3b2Z4fFxcnGnPODBL0P679JbzKViwoIKCglS9enWNHDlSrVu3Nn0AN3tAS090dHTKY3/8+HFJkre3t1q3bq0XXnhBtWvXNrjCnLF//34tXrw41cElf39/Xb16VaNHj05z0M1TDR06NFMhzOFweHxo27Rpk0aPHq2oqCgFBARo1KhRqlatmtFlOU3ZsmV16tQphYSE6LffftOPP/6oZs2a6cEHHzS6NAAGs2IOteKc/47sbS5k7z+RvcneZkP2JnuTvT0L2dsz0QCHSy1atEiLFi1KtS35S+zMmTNTvfEnfxB4eiC14pz/6sSJE9q/f7/279+vyMhIHT58WLdu3VLevHn1xBNPqE6dOkaXiEyqXLmyNm3alOFrIm7cuFEVK1Z0clXIKT179tSWLVuUmJioUqVKqWvXrmrWrJnq1asnu92uqKgo0x58SGaVgJYsPj5ea9eu1eLFi7V9+/aUA8cVKlTQsWPH9OGHH6ply5YGV5l9MTExWrJkiUJDQ/Xbb7/J4XCodOnSCgoKUvPmzVWiRAk9/fTTKly4sNGl5phx48YZXYJLDRgwQGvWrJEkPfXUUwoODlZ8fLwiIiLuejtP/i6ydu1a7d+/X0uXLtWqVau0efNmTZo0SeXLl1fz5s1VpUoVo0sEYBAr5lArzvmvyN7mQ/Y2N7I32ZvsTfb2VGRvsrenoAFuoNOnT2dqfPIvlz2V1T4IJOvN+fLly4qMjEwJ3JGRkbp8+bIcDocKFCigmjVratCgQapTp44efvhh2e12o0tGFrRr107vvvuuVq5cec9f4YaFhWnr1q2aNGmSi6pDdn3//ffy8/NTcHCwunXrpmLFihldkktYMaBFRkYqJCREK1eu1JUrV2S321WjRg01b95czZs3V2Jiopo1a6ZcuXIZXWqOaNKkiZKSkhQYGKjevXuradOmeuSRR1L2R0VFGVidcwQFBRldgkuFh4en/PP69eu1YcOGu45Pbn4cOnTI2aU5VbVq1VStWjW988472rx5s5YtW6Z169Zp2rRpstlsstls2rBhgwIDA1WmTBmjywUMQfY2P6vNmextDWRvcyN7k73J3uZB9iZ7k73dEw1wAzVp0sRSS2Nk5YPA0z8QrTbnevXqyWazyeFwqFChQqpbt67q1KmjOnXqKCAgwKOfv/hThw4dFBYWpsGDB+vIkSPq1q2bihcvnmpMTEyMZs+erblz56px48Zq1aqVQdUis/r166cVK1Zo+vTp+vzzz/Xggw+qWbNmatasmapWrWp0eU5jxYD2/PPPy9fXV40aNdITTzyhJk2apDrIYLY5JyQkyNfXV0WLFpWvr2+aJVKtIDo6Wrt371ZMTIwkqXjx4qpRo4ZKlSplcGU5w2rNj7/z8vJS48aN1bhxY8XFxWnNmjVavny5tmzZom+//VYhISGqV6+eOnTooGeffdbocgGXInvfm6d/7lttzmRvayB7mxvZm+ydzGxzJnuTvc2O7O05aIAbqH379oSSdNy8eVOrVq1SaGioIiIidODAAaNLcjqzzLlly5aqW7eu6taty7JbJma32zV9+nS9/fbb+vzzzzVjxgyVKlVKxYoVk5eXl86fP68TJ07I4XCoVatWev/9940uGZnQr18/9evXTz/99JOWLVumlStXasaMGfriiy9UqlQp1apVy5SfXVYMaL6+vrpx44aOHj2qQoUKyc/PT0888YTy5ctndGlOsWHDBi1btkzLli3TpEmTZLPZVLRoUT399NN6+umnTf3r3F9++UVjxoxRRESEHA5HqqUU7Xa7atWqpeHDhysgIMDAKrPPar+6vxsfHx+1adNGbdq00cWLF7Vy5UotW7ZM27Zt0/bt2wnhsByyd/rMkkMzwyxzJntbA9nb3MjeZG+yt/mQva2H7O3ebA6zX0wEHmPPnj0KCQnRqlWrFBsbK4fDoUqVKmnZsmVGl+Y0VpwzzOWHH37QkiVLFBkZqbNnz8rhcKh48eKqVauW2rVrp/r16xtdYo4IDAzUv/71LzVt2jRl2+XLlxUUFKSPPvpINWrUSDV+zZo1+uCDDzx+aR/p9hlQ27Zt07Jly7RmzRpdu3ZNklSmTBl16NBB7du3V+nSpQ2uMvvOnDmTEtB++eWXdANa8+bNNXXq1FTPA08WFxen9evXa+nSpdq8ebMSExOVK1cuNWjQQE8//bQCAwPVsWNHU8052eHDh1MOMp05c0Y2my3loMTQoUP18ssvG11ijlm3bp0GDhwom82mZs2aqX79+ipevLi8vb0VExOjiIgIrVq1SgkJCZo8ebKaNWtmdMlwopMnT2rFihXq3bu30aUAMJAVc6gV5wxzIXuTvcnenovsTfYme1sP2ds90AD3EGfOnFFoaKjCwsJSXWPB00VHRyssLEyhoaE6fvy4JMnb21vNmzfXCy+8oNq1axtcYc6z4pwBTxcYGJjuL6/vtTymGUL4X8XHx2v9+vVavny5Nm3apFu3bslut6tBgwb673//a3R5OcZKAS3ZpUuXUn6lum/fvlT7evbsqd69e8vX19eY4pxs586dWrZsmcLDw3X58mXZbDaVLVtWzz33nIKCglSyZEmjS8yyU6dOqU2bNnrwwQf18ccfq1y5cumO++OPPzRgwAD9+uuvWrJkyR3Hubthw4Zl+jY2m01jx451QjUAPBXZ2zysOGfA05G9byN7k73NiOxN9iZ7w9VogLuxmzdvavXq1QoNDdWOHTuUlJQkb29v/fTTT0aXli3x8fFau3atFi9erO3bt6csdVOhQgUdO3ZMkydPVsuWLQ2uMmdZcc6wjvj4eB0+fFgxMTEpv0IPDAxUnjx5jC4tx2Tli51k7mviXLlyRatWrdKyZcu0e/duHTx40OiSnMLMAe1OoqKitGzZMi1fvly//vqrbDab/Pz81KpVK3Xo0CHNWRdmcevWLX3//fdaunSpNm7cqJs3b3r89673339fS5Ys0apVq1JdYy49ly5dUuvWrdW2bVsNHTrURRXmrMDAwEzfxmazefQB06ycIWKz2bR27VonVAN4LrK3eVhxzrAOsvedkb09H9mb7O3J37vI3vdG9oYRaIC7ob179yo0NFQrV65MWZqrZMmS6tSpk55//nkVK1bM6BKzJDIyUiEhIVq5cqWuXLkiu92uGjVqqHnz5mrevLkSExPVrFkzUy33YsU5wzrOnTunSZMmKTw8XLGxsan2+fr6qkWLFho0aJCKFy9uUIVwlV27dpn+DBozBrSMOHz4sJYuXaqVK1fqjz/+8PjAklHXrl1TeHi4li9frlmzZhldTpa1atVKTzzxRIYPJE6YMEEbNmzQd9995+TKnCMqKipLt/Pka9A1adIkzTaHw6EzZ86oaNGiyp07d7q3W79+vbNLAzwC2ds8OdSKc4Z1kL2RjOxtXmRvsrcnIXvfRvZ2f95GF4DboqOjtWTJEoWEhOj48eNyOByy2+2SpIEDB6pnz54p/+6pnn/+efn6+qpRo0Z64okn1KRJk1S/iMrqG6c7s+KcYQ379u1Tr169dPnyZVWrVi3d69qEhYVp/fr1mjZtmmrWrGl0ycikn376Sfv27ZPD4dBDDz2Ubsi+du2aJk6cqG+++UYHDhwwoErXyZUrl5o2baqmTZumCmhmFxgYqMDAQA0ePFg7duywxJwlKV++fGrWrJn27NljdCnZcubMGVWsWDHD48uXL68FCxY4sSLn8uQwnVXphekLFy6oYcOG+vDDD9WgQQMDqgLcG9nbnDnUinOGNZC9zY/snRrZm+zticje5kf29kw0wA2UvDRXSEiItm3bpsTEROXJk0dNmjTR008/rYCAAAUFBalSpUoeH8AlpVzD5ejRoypUqJD8/Pz0xBNPKF++fEaX5jRWnDPM7/z58+rbt6/y5s2rzz77TLVq1Up33MGDBzVw4EANGDBAS5YsUZEiRVxcKbLi+vXreuutt7Rp0yYlLxJjs9nUsGFDTZs2LeUXjRs3btTIkSMVHR2t++67z8iSXc4sAS2zSpcu7fEHj0+dOqXZs2dr7969kqSHH35YPXr00P33359qXHh4uEaPHq1z585pzJgxRpSaI3x8fHTlypUMj79y5Yr8/f2dWJGx4uPj9euvv8rHx0fly5c3uhynudv1MQGrInubP4dacc4wP7K3uZG9743s7bnI3ndH9jYHsrf7owFuoEaNGunKlSsqUKCAnnnmGTVt2lRPPPGEfH19JZnvF8rbtm3T+vXrtXTpUi1evFiLFi1Srly51KBBAz399NNZunaEu7PinGF+8+fPV2xsrBYuXKhy5crdcdzDDz+s2bNnq02bNvrf//6n/v37u7BKZNWnn36qjRs3qlGjRgoKCpKfn582bdqkr7/+WhMmTNDw4cM1fvx4ffnll/Ly8lL37t01YMAAo8vOEVYLaJK0f/9+TZs2LdWc+/btm+qsA4fDoS+//FKffPKJ4uLijCo12w4dOqSXXnpJ165dk4+Pj3x8fHTw4EGtXLlSCxcuVOXKlXX16lUNHz5c4eHh8vLyUs+ePY0uO1seeeQRhYeHq3v37hkav3r1aj300ENOrsq5rl69qi+++EJ79+7VvHnzUrYvW7ZMY8aMSTko8eCDD2rs2LGqXr26QZUCcCWyt/lzqBXnDPMje5sb2ZvsTfYme3sysjc8AQ1wA12+fFl+fn5q0aKF6tWrp5o1a6YEcDPy8fFR69at1bp1a126dEkrV67UsmXL9P333+v777+XdPtXM5GRkWrYsKEp/ltYcc4wv7Vr16pt27Z3DeDJypQpo6CgIIWHhxPCPcT69etVt25dffHFFynbnnzySRUpUkTz5s1TwYIFNXv2bAUGBmrcuHEe/4U9mRUD2rZt29SjRw8lJibqwQcflK+vryIiIvTKK69o9uzZqlOnjk6dOqV//OMfioyMVL58+TRq1Cijy86y5IMIH330kZ555hlJt68X+tZbb2nMmDGaOHGigoOD9fvvv+vRRx/VmDFjFBAQYHDV2dOxY0cNHDhQs2fP1quvvnrXsdOnT1dkZGSq176niY2NVefOnXXs2DGVLFlSCQkJ8vb2VmRkpIYMGSKHw6HOnTurUqVKCgsL06uvvqqwsLA0B9oAmA/Z2/w51IpzhvmRvc2N7E32JnuTvT0V2RsewwHDREREON59911H3bp1HYGBgY6HHnrI8fzzzztmzpzpOH78uOPUqVOOgIAAx9q1a40u1alOnTrlmDZtmuOZZ55xBAQEOAIDAx01a9Z0/Otf/3Ls2bPH6PKcwopzhnlUr17dsXDhwgyPX7RokaNGjRpOrAg5qXr16o4vv/wyzfZff/3VERAQ4HjooYcco0ePdsTHxxtQnfP07t3bUaVKFcfy5ctTtu3fv9/RtGlTx0svveSIjo52tGjRwhEQEODo2LGj4/DhwwZWmzNeeeUVR82aNVN97vzxxx+O9u3bOzp16uT49ddfHQ0bNnQEBAQ4+vfv74iJiTGw2uxr2LChY/To0Wm2r1692vHwww87unbt6njkkUccX3zxhSMxMdGACp2jf//+jsDAQMc//vEPx969e1O9dhMTEx179+5NGTNixAgDK82+Tz75xFGlShXHd999l2p7z549HYGBgY5x48albIuLi3M0b97cMXToUFeX6XQXLlxwBAQEOLZu3Wp0KYDbIHvfZsUcasU5wzzI3uZG9iZ7k73J3p6K7H0b2dv9cQa4gWrXrq3atWtrxIgR2rRpk5YtW6aNGzdq//79mjhxosqVKyebzabr168bXapTlSlTRr1791bv3r11+PBhLV26VCtXrtS3336rxYsX69ChQ0aXmOOsOGeYR65cuXTz5s0Mj4+Li5Ofn58TK0JOunHjhgoXLpxme6FChSRJTz/9tIYPH+7qspwuMjJSXbp0Sfl1siRVrVpVgwcP1qBBgzRo0CBFRUXp7bff1muvvWaK64MeOnRIL7zwgmrUqJGyrUSJEvrHP/6hHj166M0331RCQoImT56sVq1aGVhpzrh8+XK6y58++uijSkxM1JEjRzRv3jzTLcs1ceJEjRs3TgsXLtSKFSvk5eWlggULysvLS5cuXVJ8fLzsdru6d++uQYMGGV1utoSHh6tdu3Zq2bJlyrbY2Fht2bJFktS1a9eU7Xny5FHbtm31zTffuLxOAK5H9r7NijnUinOGeZC9zY3sTfYme1d3fXFORPYme8P90AB3A97e3mratKmaNm2q2NhYhYeHa9myZdqxY4ccDoeGDBmixYsX67nnnlOLFi2UJ08eo0t2msDAQAUGBmrw4MHasWOHli9fbnRJTmfFOcOzVa5cWZs2bVJwcHCGxm/cuFEVK1Z0clVwNpvNJklq3769sYU4iRUD2tWrV1WhQoU02ytVqiSHw6FLly7pm2++0X333WdAdTkvISEh3e9QPj4+kqSePXua6vFNljt3bo0cOVLBwcEKCwtTZGSkzp49K4fDofLly6tWrVpq06aNKZYiO3XqVKqgLUkRERFKSEhQuXLl0jyXS5UqpfPnz7uyxBw3ZcqUNNvi4uJks9m0ZMkS7d69O81+m82mvn37uqI8wO2Qvf9kxRxqxTnDs5G9rYnsTfb2dGRvsjfZ+zayt/FogLuZvHnzKigoSEFBQTp//ryWL1+uZcuWafv27dq+fbtGjx6tiIgIo8t0iXr16qlevXpGl+FSVpwzPE+7du307rvvauXKlWrduvVdx4aFhWnr1q2aNGmSi6qDsyUHFrOxYkBLTEyUt3far4K5c+eWJPXu3ds0ATwjHnnkEaNLcKoHH3zQ439lfi92u11JSUmptm3btk2S1LBhwzTjL1y4oHz58rmkNmdJL4QnCwsLS3c7IRy4jez9JyvmUCvOGZ6H7G1tZG/zIHunRvb2fGTv1Mje7osGuBsrUqSIXn75Zb388ss6fvy4li5d6tG/UM7oL1b/ymazac6cOU6oxjWsOGeYX4cOHRQWFqbBgwfryJEj6tatm4oXL55qTExMjGbPnq25c+eqcePGpljCyUqSf3Ge2X1mZvaAlp70fqFuZlZ4bkdHR2v37t2KiYmRJBUvXlw1atRQqVKlDK4sZ1SsWFF79+5Vt27dJEkOh0Nr1qyRzWZTkyZN0oxft26dxz/P586da3QJgCmQvT0/h1pxzjA/srf5kb3TInubnxWe22Tv1MjeMAoNcA9x//33q3///urfv7/RpWTZzp07091us9nkcDjuuM+TWXHOMD+73a7p06fr7bff1ueff64ZM2aoVKlSKlasmLy8vHT+/HmdOHFCDodDrVq10vvvv290yciksWPHavLkyam2ORwO2Ww2vf3222l+rW2z2bR27VpXluhyvDebw7Fjx9KczXf16lVJ0pEjR9L9VX6dOnVcUpsz/fLLLxozZowiIiLkcDhSfQex2+2qVauWhg8froCAAAOrzL727dvr/fff16OPPqrHHntMixYt0unTp3XfffepUaNGqcZOnz5d+/bt8/jrKtatW9foEgDTIXt7JivOGeZH9jY/sndavDebA9mb7J2M7A0j0QA3UHBwsN544w01aNAgZVtCQoL27t2rwMBA5c+fP9X4pUuXaujQoTp48KCrS80Rhw8fTrPtwoULatiwoWbPnp3qv4NZWHHOsIb8+fPr888/1w8//KAlS5YoMjJSP//8sxwOh4oXL6727durXbt2ql+/vtGlIpNKly4tSekeKEz+perf993poKKnsWJA27VrlxITE1Nti42NlSRt2bJF0dHRaW7jydeimz59uqZPn57uvvHjx6e7/dChQ84syenWrVungQMHymazqWXLlqpfv76KFy8ub29vxcTEKCIiQqtWrVLHjh01efJkNWvWzOiSs6xLly7avXu3xo0bl9LwKFCggCZOnCi73S5J+vbbbzVjxgydPHlStWrV0gsvvGBw1c4VHx+vX3/9VT4+PipfvrzR5QCGIXubP4dacc6wBrK3eZG9yd5k79TI3p6D7J0W2ds92Rxm+eT0QIGBgfrwww/Vpk2blG0XL15Uw4YNNWvWrDQBbenSpRoyZIjHfxj81cWLF9WgQQNLBVIrzhkA3F1gYOAdf2me/Av89HjyZ/Kd5vzXr4Z/3Z/838FT5/zpp59m6WyCfv36OaEa1zh16pTatGmjBx98UB9//LHKlSuX7rg//vhDAwYM0K+//qolS5bccZyn2Lt3r/bu3at8+fKpWbNmKly4cMq+KVOmaMmSJWrTpo169eqV7vUHPc3Vq1f1xRdfaO/evZo3b17K9mXLlmnMmDG6cuWKpNvXohs7dqzprqkIZATZ25o51IpzBgB3R/b+E9k7NbK35yF730b2dl+cAe6G+E0CAE8RFxcnHx+fNNt//fVX+fv7p7k+GdxfWFiYateurbJlyxpdikv17dvXckutjRs3zugSXMqTl7LNqjlz5ihXrlyaOXNmqiD6dyVLltSMGTPUunVrffXVVxo6dKgLq8x5NWrUUI0aNdLd169fvzseWLl165b27duX7tmg7io2NladO3fWsWPHVLJkSSUkJMjb21uRkZEaMmSIHA6HOnfurEqVKiksLEyvvvqqwsLCdP/99xtdOuAWyN4APAXZ23zI3tZB9jY/sndaZG+ytzugAQ4AyLT4+HiNHz9ey5Yt0/fff58miE+aNEnff/+9OnTooCFDhsjPz8+gSpFZw4YN04QJEywXwq0Y0IKCgowuwaXSW/7W7DZv3qygoKC7BvBkBQsWVPv27bVhwwaPD+FZdfnyZQUHB6d7Nqi7mjVrlk6cOKH//Oc/atmyZcr2qVOnyuFw6OWXX055PDt27Ki2bdtq+vTpljsIBwCApyJ7mxfZ2zrI3uZH9s4csjdcxW50AQAAzxIfH6/u3bvrq6++UunSpXXx4sU0Y5566ikFBATo66+/1uuvv66EhAQDKkVWWPVMqODgYG3bts3oMlyqadOmWrdundFluMzOnTt17tw5o8twqTNnzqhixYoZHl++fHn98ccfTqzI/Xnae2B4eLjatWuXKoDHxsZqy5YtkqSuXbumbM+TJ4/atm1rufc6AAA8Fdnb3Dzte2dOIXubH9n73sjenvceSPb2TDTAAQCZ8uWXXyoiIkLDhw9XWFiYSpUqlWZMp06dtHjxYvXr10979uzR/PnzDagUyDgrBrSoqChdv37d6DLgRD4+PinXoMqIK1euyN/f34kVIaedOnVKjzzySKptERERSkhIUNmyZXXfffel2leqVCmdP3/elSUCAIAsInvDjMjeMCOyt/mRvT0TS6DDZcLCwtJsi42NlSRt2bJF0dHR6d6uffv2TqzKuaw4Z5jfsmXL1LRpU7344ov3HNuvXz/t3LlTS5Ys0SuvvOL84pAjLl26pNOnT2fqNqVLl3ZSNQCy6pFHHlF4eLi6d++eofGrV6/WQw895OSqkJPsdruSkpJSbUv+lXnDhg3TjL9w4YLy5cvnktoAGMeKOdSKc4b5kb3Nj+wNmAPZ2/zI3p6JBrjB/v5F5/Lly5Juv0D+/gUovaWOPMnQoUNls9lSbUte6mLmzJmy2Wwp/578zzabzaMDqRXnDPM7fvy4unTpkuHxTz75pD7++GMnVoScNnbsWI0dOzbD4202mw4ePOjEioCcsWbNGh0/fjzD4202m/r27evEipyrY8eOGjhwoGbPnq1XX331rmOnT5+uyMhIffHFFy6qDjmhYsWK2rt3r7p16ybp9vfMNWvWyGazqUmTJmnGr1u3ThUqVHB1mYBbIHubO4dacc4wP7K3+ZG9YVZk7zsje3smsrdnogFusDt90Xn77bcNqMa5xo0bZ3QJLmfFOcP8/Pz8lJiYmOHxefLkkY+PjxMrQk6rVauWypUrZ3QZLme1gCZJixYt0tatWzM83mazZeoAjbtZs2aNwsPDMzze0x/jli1bqnnz5powYYIOHDigF198UVWqVFGuXLkkSUlJSYqMjNSsWbO0Zs0aderUSY8//rjBVSMz2rdvr/fff1+PPvqoHnvsMS1atEinT5/Wfffdp0aNGqUaO336dO3bt0/Dhw83qFrAWGRvc7PinGF+ZG/zI3tnjKfnMonsfS+e/hiTvc2P7O2ZaIAbqH379ml+oWxmQUFB9xxz+fJl+fj4KE+ePC6oyPmsOGeYX/ny5bVnzx4FBwdnaPzu3btVpkwZJ1eFnNS5c2e1adPG6DJczmoBTbp9vaKIiIgMj/f0EN6rV690l6Yys4kTJ2rcuHFauHChVqxYIS8vLxUsWFBeXl66dOmS4uPjZbfb1b17dw0aNMjocpFJXbp00e7duzVu3LiUMxoLFCigiRMnym63S5K+/fZbzZgxQydPnlStWrX0wgsvGFw14Hpk77TMlkOtOGeYH9nb/MjeGUP29jxkb7K32ZC9PRMNcAN98MEHRpfgcrdu3VJISIj27duX6hfaO3fu1HvvvafffvtNNptNDRs21MiRI03xK0grzhnmFhQUpJEjR2r79u2qX7/+Xcfu2LFD4eHh6t+/v4uqA7LOigHtnXfeUdOmTY0uw2UqVKigunXrGl2GS+XOnVsjR45UcHCwwsLCFBkZqbNnz8rhcKh8+fKqVauW2rRpo/vvv9/oUpEFNptNEydOVLdu3bR3717ly5dPzZo1U+HChVPG/PHHH3I4HHrjjTfUq1evlHAOWAnZ2xo51IpzhrmRvWFWZG/zI3uTvc2G7O2ZaIAb6PXXX1f79u3VrFkzSyxRdOvWLb322muKiIhQrly5NHr0aHl7e+u3337T66+/rlu3bqlRo0aqWLGiVq9erc6dO2vp0qUqWrSo0aVnmRXnDPNr3769Fi9erN69e6tXr17q1KlTmudsTEyMvvnmG82cOVNly5ZV165dDaoWyDgrBrRChQpxlohFPPjgg/zK3MRq1KihGjVqpLuvX79+6tevX7r7bt26pX379ikwMFD58+d3ZomAocje5s+hVpwzzI/sDbMie8PMyN7mRvb2LPwEwUA7d+7UP//5TzVs2FBDhw7V1q1b5XA4jC7LaebPn69du3bpn//8pyIiIuTtffv3F59++qni4+PVpk0bzZgxQ4MHD9bixYvl5eWl6dOnG1x19lhxzjC/XLlyaerUqapWrZo+/vhjNWrUSE2bNlWXLl3UqVMnNWnSRI0bN9ann36qgIAAzZ49mw92D1K6dGn5+fkZXQYAwAUuX76s4OBg/fTTT0aXAjgV2dv8OdSKc4b5kb3NjewNANZB9jYGZ4AbaNu2bVq7dq2+++47rVixQkuWLFHRokXVpk0btW3bVoGBgUaXmKOWL1+uFi1aqHv37inb4uPjtX79etlstlTbCxYsqOeee04rVqzQ8OHDjSg3R1hxzrCGIkWKaM6cOQoPD9eKFSt08OBBHTlyRHa7XUWLFlX79u319NNPq0mTJkaXikxav379XfcnJSXpjz/+UNGiRZU7d24XVQVkX79+/RQQEGB0GS6V0etF/pXNZtOcOXOcUI17OHv2rAoWLKhcuXKl2VegQAHNnTtXDz30kAGVGcfMTUAgGdnb/DnUinOGNZC9zYvsDbMie2cM2ZvsDeejAW6gvHnzql27dmrXrp2uXr2q1atXa+XKlZozZ45mz56tihUr/h979x0eRfW2cfzeNNIoofciJaH33qRIj3RUOoIoKE1QgR9IVURARUAQlK6AlNDBgHSR3qRKCVUgEBIgkJC27x+8WVmSQBKSbHbz/VyXlzBzZueZbex9zswZtWzZUt7e3sqRI4ely31lly9fVuvWrc2WHT58WKGhocqePXuMfxjz588vf3//lCwxyaXFY0ba0qhRIzVq1MjSZSAF3bt3Tw0aNNDcuXNVvXp1S5eTZNJiQJswYUKc0zbZorimoYr2+PFjzZ07V61atVLevHlTqKrkdeDAgViXGwyGOIOXwWBIzpJSxLx58/Tbb79p7dq1McL2l19+qb1796pnz57q1auX2T25HB0d09xUjEBaQfa2/RyaFo8ZaQvZO+0he9sOsrc5svd/66wd2RupHQPgqUT69OnVrl07tWvXTvfu3dPmzZu1adMmffPNN/rmm29UuXJltWrVSo0aNZKbm5uly02UqKgo2dvbmy3bt2+fJKlGjRox2j98+FAuLi4pUltySYvHDEhPp3VxdnZWunTpLF0KkoEtnrGYFgPa853EzwsODtYXX3yhXr16qXDhwilUleU8fvxYM2bMUMWKFW3mNT579myMZffu3VONGjU0b948m+pIk55+Nw0ZMkQbNmxQlixZdOvWLeXLl8+sTeHChXXkyBF9++23OnnypL7//nsLVQvAUsjetplD0+IxAxLZ29aRvW0jl5G9zZG9rR/ZG9aCe4CnQpkzZ1bHjh21aNEi7dixQ//73/9kZ2enzz//XLVq1bJ0eYmWP39+nTlzxmzZli1bZDAY9Prrr8dov2fPHuXPnz+FqkseafGYkTaEh4dr2bJlGjZsmNnyAwcOqFmzZqpWrZrKly+vXr166erVqxaqEkg60QHt2rVrli4lxYSGhmr16tVp6uooW+xgep4tnGUel2XLlmnDhg3q3r27duzYESOAS0873LZs2aI2bdpoy5YtWrVqlQUqBZBakL2fsoUcmhaPGWkD2RtpDdk7bSB7WzeyN6wFA+CpnKOjo5ydneXu7i4HBweFhYVZuqREa968udasWaOtW7cqJCRE8+fP16VLl5QlS5YY9ypau3at/vzzTzVo0MBC1SaNtHjMsH3h4eF69913NWrUKK1fv14RERGSJD8/P/Xq1Ut+fn6qXbu2unfvLj8/P7399tu6e/euhasGXl1aCGjPS4vHDOu1YsUKValSRUOHDo31PmPRnJycNH78eBUvXly//fZbClYIIDUje1t3Dk2LxwzbR/ZGWpUWc2haPGZYL7I3rAVToKdC9+7d05YtW7R582YdPHhQERERKlGihAYMGKDmzZtburxE6969u3bv3q2PPvrIdP8LR0dHffHFF3JycpL09AztxYsX68CBAypUqJC6d+9u2aJfUVo8Zti+xYsX69ChQ/rkk0/UqVMnOTg8/adk2rRpCgsL05tvvqmvv/5aktS7d295e3tr1qxZGjFihCXLRhJxdHRU5cqVlTFjRkuXAgBmLl68qAEDBsSrrcFgUJMmTTRz5sxkrgpAakb2tp0cmhaPGbaP7J22kb0BpFZkb1gLBsBTibt378rX11ebN2/W4cOHFRkZqTx58qhnz5568803beL+H05OTpo/f742btyoY8eOyd3dXd7e3ipSpIipzcmTJ3XkyBG9+eabGjp0qJydnS1Y8atLi8cM27d+/Xo1btxYPXv2NC0LCwvTtm3bZDAYzJZnypRJbdq00YYNGwjhVuLhw4dKnz59nOszZsyoRYsWmS3bv3+/qlatmtylAckqffr0mjBhgooWLWrpUpBIDg4OpkGO+MiQIUOM+8UCsH1k76dsLYemxWOG7SN72zayN9Iqsrf1I3vDWjAAbkH+/v7y9fXV77//riNHjigyMlIZM2ZUu3bt5O3trUqVKlm6xCRnb28vb29veXt7x7r+gw8+0IABA2RnZzuz86fFY4Ztu3z5slq3bm227PDhwwoNDVX27Nnl6elpti5//vxp6j5G1q5r166aN2+eMmXK9NK2T5480aRJk/Trr7/q9OnTyV+cBaXFgJYxY0YtXLhQxYsXt3QpKSJdunSqVasWV1hYsQIFCujkyZPxbn/y5EnlypUrGSsCkFqQvWOyxRyaFo8Zto3sbdvI3rEje9s+srf1I3vDWjAAbkF169aV9PRM5YYNG8rbj5YuiAABAABJREFU21t169Z94X0TbJ2Li4ulS0hxafGYYd2ioqJinLW3b98+SVKNGjVitH/48CHvcyty5swZde7cWfPnz1fWrFnjbHf8+HF99tlnunz58gvb2Yp06dKZdT5FRkZq9uzZ6tOnjwWrSl6Ojo6qUqWK6e8PHz7UxIkTNX78eAtW9ermzZun3377TWvXro3xm+vLL7/U3r171bNnT/Xq1cvqO8hXr14dY9mjR48kSX/++adu374d63atWrVKxqqST4sWLTRlyhT16NHjpR1m58+f17p169S1a9cUqg6AJZG9Y0qLv8/T4jHDupG9bRvZO3Zkb7K3NSJ7x43sDUsyGI1Go6WLSKu6dOmili1bqkmTJnJ3d7d0OQAQLy1btlTZsmU1duxY07JmzZrJz89P3377rZo0aWLWvlevXrp//76WL1+e0qUiEX755Rd98cUXypcvn+bPnx/jDM3w8HB9//33mjt3riIjI9WyZUsNHz7cJs7cffjwoZYvX65jx47JaDSqRIkS6tSpkzJkyGDW7u+//9aIESP0zz//6MyZMxaqNmlcv35d8+bN09GjRyVJJUqU0HvvvacCBQqYtfP19dW4ceN09+5dqz1mo9GoIUOGaMOGDcqSJYuWLl2qfPnymbWZPn26li9fLn9/f73xxhv6/vvvLVRt0vDy8pLBYDBb9uxP/9jWGQwGq32NHz9+rDZt2igoKEjDhw9X8+bNY3QaR0REaP369Zo8ebIkycfHR9myZbNEuSnmzp07ypQpU6wDfeHh4Tp69KiKFy/+wik4AWtH9gZgjcjeto3sTfYme5O9rfU1JnvHjuyd+jAADgBIkNmzZ2vGjBmaMmWKatasqWXLlumrr75S1qxZtW3bNrN7wKxdu1afffaZBgwYoA8++MCCVSMh1q9fr6FDhyp79uyaP3++8ufPL+npGeqfffaZ/vnnH+XOnVtjxoxR7dq1LVxt0rh27Zq6du2qW7dumYWUrFmzavny5cqVK5ciIiI0ZcoULVy4UJGRkWrevLmmTJliwapfzZkzZ9SlSxcFBwfL2dlZzs7OCgoKkqurq5YuXapixYrp4cOHGjFihHx9fWVvb6+ePXtq0KBBli49UZYuXarRo0ere/fuGjx4cJxX/YWFhWnMmDFatWqVvvjiC7Vp0yaFK006Pj4+idru+ak2rYmfn58+/PBD+fn5ydXVVSVLllS2bNkUGRmpgIAAnTx5UqGhocqdO7dmzJghLy8vS5ecJF50dcWgQYNs6uoKAADSCrK37SN7k73J3mRva0X2JntbAwbALSi2qTHiw1qnxgBgG8LCwtSzZ08dPHhQBoNBRqNRjo6Omj59uml6yS1btmjx4sU6cOCAChUqpFWrVsnZ2dnClSMhdu7cqYEDB8rd3V1z5szRH3/8oVmzZikiIkLvvPOOBg8eLDc3N0uXmWQGDx6sjRs3atCgQWrbtq1cXFy0c+dOjR07VuXKldOkSZPUu3dvHTlyRLlz59aoUaNM73dr1adPH+3evVsTJ05U8+bNJUknTpzQxx9/rNy5c2vy5Mnq2rWrLl++rNKlS2v8+PEx7jNoTdq1aydXV1ctXLjwpW2NRqPatm0rJycnLV26NAWqQ1IKCwvTL7/8og0bNujs2bOKiIiQ9HRqwXLlyqlRo0Z66623zDqNrVVavLoCSAyyNwBrRPZOG8jeZG+yN9nbWpG9yd6pHQPgFhQ9NUb0lBcvY+1TYwCwHZGRkdq4caOOHTsmd3d3eXt7q0iRIqb13377rebOnatmzZpp6NCh8vDwsGC1SKzDhw+rT58+Cg4OltFoVIECBTR+/HhVqlTJ0qUluTp16qhmzZqaMGGC2XIfHx+NGjVKderU0datW/XOO+/ok08+kaurq4UqTTo1a9ZU06ZNNWLECLPlvr6+GjRokMqVK6cTJ05owIABevfdd63+zNXy5ctrwIAB6t69e7zaz549WzNnzjRNUWftQkNDY+0MvXDhgjJkyKDs2bNboKqUce/ePdnb29vEdJHPS4tXVwCJQfYGYK3I3mkD2ZvsTfYme9sCsjfZO7VxsHQBadnz/9ADgLWwt7eXt7e3vL29Y13/wQcfaMCAAVb/oz2tq1ixohYuXKhevXrp3r17Gjt2rE0GcEkKDAxU+fLlYyyvXLmywsLCtHPnTk2dOlWNGze2QHXJ4/79+7FOQVW6dGlFRkbq3LlzWrRokcqVK5fyxSUDBweHBJ11nCFDhhj3sLJGYWFhmjhxotatW6ddu3bFCOLffPONdu3apbZt2+qzzz6ziQ6m52XOnNnSJSSbFStWqEqVKho6dOgL2zk5OWn8+PE6c+aMfvvtN0I40hyyNwBrRfZOG8jeZG+yN9nbFpC9yd6pDQPgFmTN93gAkHZ17dpVffr0UfXq1U3LIiIidPToUXl5eSl9+vRycXExrYu+FxlX0FgnLy8vLVmyRD169FCfPn00Y8YMVatWzdJlJbnw8HCz92206KnmevToYVMBXHr6uU2XLl2M5dEhrXfv3jYTwCWpQIECOnnyZLzbnzx5Urly5UrGipLfs9Nmenl5KTAwMMYx1atXT7dv39ayZct0/vx5LVy4UA4O1hkRpk+fnqjtPvrooySuJOVcvHhRAwYMiFdbg8GgJk2aaObMmclcFZD6kL0BWCOyd9pC9iZ72wqyN9k7LmRvpDTr/ISlUZGRkZo9e7b69Olj6VIApGEHDhxQ+/btzZY9fPhQXbt21dy5c83COazPsGHDYl1eoEABXb9+Xe+//76aNm1qNn2owWDQl19+mVIlWkSVKlUsXUKKK1WqlKVLSFItWrTQlClT1KNHDxUtWvSFbc+fP69169apa9euKVRd8pg/f74OHjyoESNGqHPnzrG2ad++vdq3b6/p06dr+vTpWrx4cbynqktt4hvCn5/+2JpDeFq9ugJIbmRvAKkB2du2kb1jR/a2fmRvsnc0sjfZ29IYALewhw8favny5Tp27JiMRqNKlCihTp06KUOGDGbt/v77b40YMUL//PMPIRxAqmQ0Gi1dApKAj4/PC9c/efJEq1evNluWFkJ4WvzRGp97pFqTDh06aOnSperSpYuGDx+u5s2bx3hdIyIitH79ek2ePFnp06e3+hC+bt06NWjQIM4A/qyPPvpIBw4c0Jo1a6w2hP/xxx8vbfPw4UN999132rFjhxwcHKz+NU6LV1cAiUX2BmAryN62gewdO7K39SN7vxjZ2zqRva0TA+AWdO3aNXXt2lW3bt0y/XjdsmWLfvnlFy1fvly5cuVSRESEpkyZooULFyoyMlLNmze3cNUAAFsWnx+xtiooKEj//vuv2bL79+9Lku7duxdjnSTlzp07RWpLLpcuXdLBgwfNlj18+FCSdO7cuVin46pcuXKK1JbUXF1dNXPmTH344Yf67LPPNGbMGJUsWVLZsmVTZGSkAgICdPLkSYWGhip37tyaMWOGsmXLZumyX8mVK1f09ttvx7v966+/rqlTpyZjRckrT548L1y/ceNGffXVV/L391eFChU0evRoFStWLIWqSx5p8eoKIDHI3gCA1IbsTfYme5O9rRXZm+xtLRgAt6DvvvtOt27d0qBBg9S2bVu5uLho586dGjt2rMaOHatJkyapd+/eOnLkiHLnzq1Ro0apbt26li4bAGDDXvYj1pZ9+eWXcZ5NP2TIkBjLDAaDTp8+ndxlJatZs2Zp1qxZsa6bOHFirMut+Z6ChQoV0urVq/XLL79ow4YNOnLkiCIiIiRJjo6OKleunBo1aqS33norQVNbpVaurq6KjIyMd/t06dKZ7kNnS65evaoxY8Zo7969ypgxo8aPH6927dpZuqwkkRavrgASg+wNAEhtyN5k72hkb7K3rSB7k71TGwbALejgwYNq1aqVevfubVrWtGlThYaGatSoURo6dKiOHDmid955R5988olcXV0tWC0AADHNmjVLvr6+WrVqlaVLeSWtW7e2dAkpzprvvfQqnJyc1KNHD/Xo0UPS0ysM7O3tlTFjRgtXlvRee+01HTlyJN6h6/DhwzbVERcWFqbZs2drzpw5CgsLU+vWrfXJJ5/Iw8PD0qUlmbR4dQWQGGRvAIC1I3tbL7I32ft5ZG/rQ/a2TgyAW1BgYKDKly8fY3nlypUVFhamnTt3aurUqWrcuLEFqgMA4OVu3rxp1WclR5swYYKlS0hxaTWEPy9z5syWLiHZtG7dWqNGjdK+fftUrVq1F7bdv3+/fH191a9fvxSqLnnt3btXY8aM0ZUrV1S0aFGNGjVKlSpVsnRZySKtXV0BJAbZGwBg7cje1ovs/RTZ+ymyt/Uie1sfBsAtKDw8XC4uLjGWu7m5SZJ69OhBAAeQKj1/v6YX3aspMDAwRWsDgNhMnz49UdtZc2dFq1attHLlSn3wwQd6//331b59e2XNmtWsjb+/v5YvX66ffvpJefPmVceOHS1UbdK4e/euJkyYoI0bN8rZ2VmDBw9Wjx49Yr2nni1JS1dXAIlB9gZgrcjeAKwN2ZvsbcvI3tbFYDQajZYuIq3y8vLSpEmT5O3tbbY8MDBQ1atX108//aRatWpZqDoAiJ2Xl5cMBkOM5UajMdbl0WzhTGXENGrUKP32229W//qmxYA2bNiwBG9jMBjivFdbaufl5RWvds9/j1n7ezsgIEAff/yx9u/fL4PBoNy5c5tN0XXz5k0ZjUaVK1dO3377rXLlymXpkhNt8eLFmjp1qoKDg1W/fn2NGDHCqo8HQNIhewOwRmRvPIvsTfa2FmRvsjeQWtj26RhWzt7e3tIlAEAMafF+TbB98Q3hzwc0aw7hPj4+8W777HFbawj/448/Xtrm4cOH+u6777Rjxw45ODjE+/5dqVmWLFm0YMEC+fr6asOGDTp9+rTOnTsnOzs7Zc2aVa1atdIbb7yh+vXrW7rUVzZ+/HjTn7dt26Zt27a9dBuDwaDTp08nZ1nJKi12IALJgewNIDUie8MWkb1fjOxtvcjeL0b2hiUwAG5hz09lJL14OiNJyp07d4rUBgCxSYv3a4LtS4sB7ezZsy9tc+PGDY0bN047duxQ+vTpNXDgwOQvLJnkyZPnhes3btyor776Sv7+/qpQoYJGjx6tYsWKpVB1ya9Ro0Zq1KhRjOX379+Xs7OzBSpKemmxkzgtdiACiUX2BmBtyN6wRWTv2JG9yd7WhOwdN7J36sIU6BYU11RGUtzTGVn7mTIAgNQtoWc0bt++XadPn7b6qapextYD2vMiIyM1d+5c/fDDDwoNDVWzZs00bNiwGPewsgVXr17VmDFjtHfvXmXMmFFDhgxRu3btLF1WkgkPD9eqVat07Ngxs07UAwcOaPTo0fLz85PBYFCNGjX0+eefK3/+/Bas9tUMGzZMb7/9tsqWLWvpUlLMjRs3Xtomtg7ETz/9NAWqA1IPsjcAILUhe8eO7E32tlZkb9tG9rZODIBbUGLu/yFxBigAIPnE915NzzIYDDYbwm09oMXm0KFDGjNmjM6fP6+CBQtq1KhRql69uqXLSnJhYWGaPXu25syZo7CwMLVu3VqffPKJPDw8LF1akgkPD9e7776rgwcPytHRUUePHpWDg4P8/PzUsmVLhYWFqU6dOipSpIh+//13hYSEaO3atVbb2RLXPX7TsrTWgQjEhewNAEhtyN7myN5kb2tG9gbZO3ViCnQLIkwDAFKbhQsXWrqEVCEtBLTnBQYG6uuvv9bq1avl5OSkfv366b333pOTk5OlS0tye/fu1ZgxY3TlyhUVLVpUo0aNUqVKlSxdVpJbvHixDh06pE8++USdOnWSg8PTn/7Tpk1TWFiY3nzzTX399deSpN69e8vb21uzZs3SiBEjLFk2ksDzHYjjx4+3+Q5E4EXI3gCA1Ibs/RTZm+xtC8jeaRfZO3VjADwVCAkJ0cqVK7V7926dPXtWQUFBMhgMypw5s7y8vNSgQQN5e3vb5D+CAIDUpUqVKgne5tChQ8lQieWklYD2rOXLl2vy5Mm6f/++atasqVGjRln1dFxxuXv3riZMmKCNGzfK2dlZgwcPVo8ePUzh1NasX79ejRs3Vs+ePU3LwsLCtG3bNhkMBrPlmTJlUps2bbRhwwZCuBVLix2IQEKQvQEAqQXZm+xN9rYdZO+0h+xtHWzzG8eKHD58WAMGDNDdu3fl5OSk/PnzK0+ePIqIiFBQUJC2b9+ubdu2afr06ZoyZYoqVKhg6ZIBANDNmzfl4+Oj1atX69q1azYxDVtaC2iSdO7cOY0ePVrHjh1T1qxZ9c0336hZs2aWLitZLF68WFOnTlVwcLDq16+vESNGKFeuXJYuK1ldvnxZrVu3Nlt2+PBhhYaGKnv27PL09DRblz9/fvn7+6dkiUnu0KFDioyMTNA2rVq1Sp5iUlha7EAEEoLsDQCwRmRv20D2Jns/i+xt3cje1sN2/1WxAhcvXlTPnj3l7u6uyZMnq1GjRjHONA8ODtbmzZv1/fffq1evXvLx8VGBAgUsVDEAIC178uSJfH19tWrVKu3fv19Go1EGg0F16tSxdGmvLC0GtIkTJ2rRokWKjIxUvXr1NHDgQLm7u+vff/994Xa5c+dOoQqT1vjx401/3rZtm7Zt2/bSbQwGg06fPp2cZSWrqKgo2dvbmy3bt2+fJKlGjRox2j98+FAuLi4pUlty+e233/Tbb7/Fq230d5i1h/C02IEIJBTZGwBgTcjetoXsTfZ+HtnbOpG9rQ+vjAX98MMPcnFx0cqVK5UjR45Y27i7u6tdu3aqU6eOWrZsqZ9++knjxo1L4UoBAGnZsWPHtGrVKm3atEnBwcGSpMyZM6tt27Z66623lCdPHgtX+OrSYkCbN2+e6c/bt2/X9u3b47WdtV5x8PzZ2GlB/vz5Y7xeW7ZskcFg0Ouvvx6j/Z49e6x++r0OHTqoXLlyli4jxaTFDkQgMcjeAABrQPaOHdnbupC9nyJ72xayt3ViANyCDh48qDZt2sQZwJ+VPXt2tWrVSnv27EmBygAAaZ2/v79Wr14tHx8fXb58WUajUS4uLqpRo4b27t2rsWPHqkGDBpYuM8m0atVKBoPB0mWkqI8++ijB2xiNxmSoJOW8/fbbKlu2rKXLSDHNmzfXjBkzVKdOHdWsWVPLli3TpUuXlDVrVtWvX9+s7dq1a/Xnn39qwIABFqo2aVSqVEne3t6WLiPFpMUORCAxyN4AgNSK7G37yN62j+xt+8je1okBcAsKDAxM0JRqr732mpYvX56MFQEA0rpNmzZp1apV2rt3ryIjI5UhQwZ5e3urUaNGql27tu7cuaOGDRtauswk99VXX0mSwsPDdeHCBUVERKhIkSJWPyXVi+TOnVtt2rSJd/sbN25o+PDhyVhR8vLx8VGNGjXSVAjv3r27du/erY8++kgGg0FGo1GOjo764osvTFP/btmyRYsXL9aBAwdUqFAhde/e3bJFI0HS4tUVQGKQvQEAqQ3Zm+wdF7K39SF72z6yt3ViANyCwsPDE/SPe7p06fTo0aNkrAgAkNYNGjRIrq6u6tixoxo0aKDKlSub3cfIls/U/vnnnzVz5kzTv7VOTk7q2LGjBg8ebJP38xkxYoRCQkLUqVOnl7Zdvny5Jk6cyO8QK+Pk5KT58+dr48aNOnbsmNzd3eXt7a0iRYqY2pw8eVJHjhzRm2++qaFDh8rZ2dmCFSMx0trVFUBikL0BAKkN2ZvsHRuyt3Uie6cNZG/rY3v/ogAAgETLmzevrl+/rlWrVsnPz09///23GjZsqEKFClm6tGS1cuVKTZo0SXny5FGrVq1kZ2en/fv3a/78+YqMjLTqs6/jUrBgQY0fP14hISHq1atXrG3u3LmjESNGaNeuXXJ0dLT6KbrSInt7e3l7e8c5NdkHH3ygAQMGyM7OLoUrS3qtW7e2+vuoJVRavLoCAADAFpC9yd7PIntbP7K3bSN7WycGwC0sKChI//77b7zaBgYGJnM1AIC0buvWrTp+/LjWrl2rzZs3a8+ePfrmm2/02muvqVGjRipZsqSlS0wWy5YtU7ly5bRgwQKlS5dO0tN7bg0aNEjLli3TkCFDTNNW2Ypff/1VvXr10pQpUxQSEqJ+/fqZrV+/fr3GjRun+/fvq3z58ho/frwKFy5soWqTxqFDhxQZGZmgbVq1apU8xaQStjTV4IQJEyxdAoBUjOwNAEhNyN5k72hk76fI3taD7A1rYTAajUZLF5FWeXl5JWo6mzNnziRDNQAAmIuMjNSePXu0bt06/fHHHwoJCTH9u9W2bVv16dNHefLksXCVSaNixYr6+OOPY0xJduzYMb3zzjvy8fGRl5eXhapLPo8fP1bfvn21f/9+de/eXZ999pkCAwM1atQobdmyRc7Ozho0aJC6dOli9VPwJfR3l9FolMFg4HcXUjUvLy9NmjQpzqsMADxF9gYApGZkb7I32ZvsjdSN7G2duALcglq3bm3pEgAAiJO9vb3q1q2runXrKjQ0VFu2bNH69ev1559/asWKFVq1apWqVq2qtm3bqkWLFpYu95WEhIQoffr0MZbnzZtXRqNRDx48sEBVyc/V1VWzZ8/Wxx9/rPnz5+v69es6cuSIAgICVLNmTY0dO9ZmOlokqUOHDipXrpylywCSFFdXAC9H9gYApGZkb7I32RtI/cje1ocrwAEAgEnv3r1VrVo1ValSRSVLloz1rN3AwEBt3LhR69at07Fjx2ziTN24zuQMDAxU9erVNW/ePFWvXt1C1SW/qKgojRgxQqtWrZKdnZ3Gjh2rdu3aWbqsJMXZurBFXF0BAABgncjeZG+yN2A9yN7WiSvAAQCAyb59+7Rr1y4ZDAa5u7urUqVKqlq1qqpVq2aahszDw0OdOnVSp06ddO3aNW3YsMHCVeNV2dnZ6csvv1SmTJk0d+5c7d27V61atZKDAz8VgdSOqysAAACsD9k7bSJ7A9aL7G19+GYFAAAmR44c0enTp3XkyBEdPXpUx44d0/bt22UwGJQhQwZVrlxZVatWVdWqVVWsWDHly5dPH3zwgaXLThJBQUH6999/zZbdv39fknTv3r0Y6yQpd+7cKVJbcojteDp37qzHjx9r2bJlevTokUaOHCk7OzuzNtZ8zIAtqlSpEldXAAAAWBmyN9mb7A1YF7K39WEKdAAA8EI3b940C+Vnz55VZGSkMmXKpCpVqqhq1arq2LGjpct8JS+ayih62qLnGQwGnT59OrlLSzYvO2ZJMdZb8zEPGzZMb7/9tsqWLWvpUoAkw/SCAAAAtoPsTfaOZs3HTPaGLSJ7WyeuAAcAAC+UK1cuNW/eXM2bN5ckPXz4UGvXrtWqVav0+++/y9fX1+pDeOvWrS1dQopr1apVgu5fZO0mTJhg6RIAAAAAIE5kb9tE9gYAy2AAHAAAvFBoaKgOHjyoAwcO6PDhwzp58qTCw8Pl5ORkmpLN2qXFgPbVV19ZugQAr6h169bKnz+/pcsAAABAEiB72yayN2D9yN7WiSnQAQCAmYiICB07dkz79u3Tvn37dPz4cYWHh8vR0VFlypQxBe/y5cvLycnJ0uUCAAAAAGB1yN4AACQfBsABAIDJe++9p0OHDik0NFR2dnYqWbKkqlWrpqpVq6pixYpydna2dIkAAAAAAFg1sjcAAMmLAXAAAGDi5eUlR0dHtWjRQu+//74KFixo6ZIAAAAAALApZG8AAJIXA+AAAMBk5MiR2r9/v65evSqDwaDXXntN1atXV7Vq1VS5cmVlzJjR0iUCAAAAAGDVyN4AACQvBsABAEAM//77r/bu3Wu6F9ndu3dlZ2cnLy8vVa1a1RTKXV1dLV0qAAAAAABWiewNAEDyYAAcAAC81Pnz57Vv3z799ddfOnTokB48eCAHBweVKlVK1atX14ABAyxdIgAAAAAAVo3sDQBA0mAAHAAAJEhYWJg2b96sX3/9VceOHZPBYNCZM2csXRYAAAAAADaD7A0AQOI5WLoAAACQul29elXHjx/X8ePHdeLECZ09e1bh4eFyc3NTnTp1VLlyZUuXCAAAAACAVSN7AwCQdLgCHAAAmNy/f18nTpwwBe4TJ07o/v37MhqNypgxoypUqKAqVaqocuXKKlGihOzs7CxdMgAAAAAAVoXsDQBA8mIAHAAAmHh5eclgMMhoNMrDw0OVK1c2/efp6SmDwWDpEgEAAAAAsGpkbwAAkhdToAMAAJMmTZqoSpUqqlKliooUKWLpcgAAAAAAsDlkbwAAkhdXgAMAAAAAAAAAAAAAbAI3DwEAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExwsXQAAAGnBtGnTNH369ARt88cffyhv3rzJVFHi1a9fXzdu3JAk/e9//1PXrl1f2L5nz57as2ePJGnevHmqUaNGstbl6+urAgUKJMs+AAAAAACpF9mb7A0AgMQAOAAAKcLT01Pe3t5mywICArR37165urqqQYMGMbZxdXVNqfISbfPmzS8M4ffu3dO+fftSsCIAAAAAQFpF9gYAABID4AAApIhGjRqpUaNGZsv279+vvXv3ysPDQ5MnT7ZQZYmXIUMGHTlyRLdv31aOHDlibePr66uIiAg5OjoqPDw8hSsEAAAAAKQlZG+yNwAAEvcABwAAidSwYUMZjUb5+vrG2WbDhg3KlCmTSpcunYKVAQAAAABgG8jeAAAkHAPgAACkYjt27FDPnj1VpUoVlS5dWo0bN9akSZMUFBRk1u769evy9PRUnTp1Yn2cLl26yNPTU/v37zctGzp0qDw9PXXgwAH169dPZcqUUbVq1bRo0aJ41dakSRNJT6dii42/v78OHTqkxo0by8Eh7kln1qxZo44dO6pChQoqU6aMvL29NXPmTIWEhMTa/q+//lKPHj1UuXJlVapUSQMHDjTdFy02kZGRWrJkidq3b6/y5curfPnyeuutt+Tj4yOj0RivYwUAAAAA2C6yd0xkbwCANWMKdAAAUqnJkydrzpw5sre3V8WKFeXh4aFjx47pp59+0qZNm7RgwQLly5fvlfczcuRIBQQEqHbt2jp//ry8vLzitV3BggVVvHhxHTlyRP7+/sqePbvZ+s2bNysqKkrNmzfX9OnTY2wfFRWlTz75ROvXr5eTk5OqVKkiFxcXHTx4UN99951+//13zZs3Tx4eHqZtli9frs8//1ySVKlSJWXIkEF79uzRoUOHFBYWFmMf4eHh6tu3r3bt2iV3d3eVL19ejo6OOnDggIYOHar9+/frq6++SsjTBQAAAACwIWRvsjcAwPYwAA4AQCq0bds2zZkzR5kyZdJPP/1kmsYsLCxMY8eO1fLlyzVgwACtXLlSBoPhlfbl7++vtWvXKl++fIqKipKdXfwniGnWrJnOnDkjX19fde7c2Wzdxo0blT17dlWuXDnWbRcvXqz169crX758mjt3rvLnzy9JCg4O1uDBg7Vjxw59/vnnmjZtmiTp5s2bGj9+vBwcHDR79mxVr15dknTv3j317NlTp0+fjrGPH374Qbt27VKVKlU0depUZc6cWZJ09+5dvffee/Lx8VHFihXVvn37eB8zAAAAAMA2kL3J3gAA28QU6AAApELz58+XJH366adm9/BycnLS6NGjVaBAAZ06dUr79u175X01aNDAdDZ7QgK4JDVt2lRSzKnY/v33Xx07dkxNmzaN8zEXLFggSRo/frwpgEuSu7u7Jk+erPTp08vX11dXrlyRJPn4+Cg0NFRvv/22KYBLUubMmfXll1/GePywsDAtWrRIjo6Omjx5simAS1LWrFk1duxYSdLPP/+coGMGAAAAANgGsjfZGwBgmxgABwAglYmIiNCRI0dkMBjUuHHjGOsdHBzUqFEjSTK7r1hiFStWLNHb5suXTyVLltThw4fl7+9vWr5x40YZjUa1aNEi1u1u3ryp69evy8PDQ9WqVYuxPn369Kpdu7Yk6cCBA5KkgwcPSpLq1q0bo33x4sWVN29es2WnTp3Sw4cP9dprrylHjhwxtildurSyZMkiPz8/3blzJ55HDAAAAACwBWRvsjcAwHYxBToAAKlMUFCQwsPD5eHhIXd391jbRAfOpAiPGTNmfKXtmzVrplOnTmnLli3q1KmTpKchPF++fCpTpkys20QH9jx58sT5uM8fY/Q2OXPmjLP99evXTX+/efOmJOncuXPy9PR84THcvHlT2bJle2EbAAAAAIDtIHs/RfYGANgiBsABAEhljEajJL3w/mLRbZycnOL1mJGRkXGuS+jUa89r2rSpJk2apE2bNqlTp066cuWKTp06pffffz/ObRJzjC+735qDg/nPmqioKElS7ty5VbFixRdu6+bm9sL1AAAAAADbQvY2b0P2BgDYEgbAAQBIZTJlyiRHR0cFBQUpODg41jPRr127JknKkiWLpP+CdHTwfN79+/eTqdqnZ5KXKVNGhw8f1p07d7Rx40ZJUvPmzePcJnv27JJkdtb486KPMWvWrJKkHDly6Pz587px44aKFCkSo/2z08BJMp1VnjNnTk2ePDkBRwQAAAAAsHVk76fI3gAAW8Q9wAEASGUcHR1Vvnx5RUVFacuWLTHWR0REmJZXrVpVkuTq6irpadgODw83ax8YGCg/P79krblZs2aKioqSr6+vNm3apCJFirxw6rPcuXMrT548CgwMNN1n7FkPHz7Unj17JEmVK1eWJNWoUUOSYn1Orl27pgsXLpgtK126tJydnXX27NkYAV2Sbt++raZNm6pHjx569OhR/A8WAAAAAGD1yN5kbwCA7WIAHACAVKhbt26SpK+//lqnT582LQ8PD9eYMWN09epVFS9e3DS9WKZMmZQzZ06FhYVp6dKlpvZPnjzR559//sJp2JJCkyZNZDAYtHjxYp07d+6FZ6BHiz7GESNGmM44l6RHjx7pk08+UXBwsOrVq2e6V1nr1q2VKVMmrVy5Ur///rupfXBwsIYPHx7jDHxXV1d16NBBjx8/1ieffKKAgACzfQwbNkyXLl2Sq6sr07ABAAAAQBpE9iZ7AwBsE1OgAwCQCjVs2FDvvvuu5s6dq3bt2qlixYry8PDQ8ePHdevWLeXJk0fffvut2T3EevXqpfHjx2v8+PHasGGDsmbNqiNHjigyMlL16tXT9u3bk63eXLlyqVy5cjp69KikF0/BFq1Lly46evSoNm3apObNm6ty5cpycXHRoUOHFBgYKC8vL3355Zem9pkzZ9aXX36pgQMHqn///ipfvryyZ8+ugwcPKjIyUoUKFYpxtv3gwYN15swZ7du3T2+88YZKly4tFxcXHT16VEFBQSpYsKDGjBmTtE8GAAAAAMAqkL3J3gAA28QV4AAApFKfffaZfvjhB1WtWlVnz57Vjh075Obmpj59+sjHx0eFChUya9+lSxdNnDhRpUqV0unTp3Xw4EFVrVpVK1asiNE2OTRt2lSSVLJkSRUoUOCl7e3s7PTtt99qwoQJKlmypI4cOaI///xTOXPm1CeffKLffvtNmTNnNtumQYMG+vXXX9WgQQP5+flp9+7dKlGihH755RflzJkzxj6cnZ01d+5c/e9//9Nrr72mEydOaP/+/cqePbv69eun5cuXm+5zBgAAAABIe8jeZG8AgO0xGI1Go6WLAAAAAAAAAAAAAADgVXEFOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA7YkFWrVsnT0zPB/3Xp0sXSpcfbtGnT4jyO4sWLq2zZsqpfv7769eunrVu3Wrpc/L+jR4+aXqdevXq9tP3QoUPl6empIUOGmC2Pfoy9e/cmeY09e/Y0Pf7x48eT/PGfFRERIT8/v2Tdx/POnj2r8ePHq3nz5qpUqZJKly6tunXrqlevXlq8eLFCQ0OTfJ937tzRkCFDVKNGDZUqVUq1a9fWrl27JEmrV69Wy5YtVbZsWVWqVEk9e/bU/v37Ta9BREREovd7/fp10+NcuXIlqQ4Hr8hoNOrixYuWLiNRLl26pD59+qhq1aoqXbq0Xn/9dZ07d05Go1Hz5s1TkyZNVLp0aVWtWlX/+9//TP8e16lT55X2m1SfiaRy/vz5GMvq168vT09PLV++PEGPldjtAACA9aCPgj6K1Io+CnP0UdBHkZpYw+cTgHVwsHQBAJJOlixZVKFChRjLb968qZs3b8rJyUmlSpWKsb5YsWIpUV6Siu1YjEajQkNDdf36dfn6+srX11fe3t6aNGmSDAaDhSqFJK1cudL05z179ujatWvKly+fBSsyd/PmTbMfxEuWLFHZsmWTZV979uzR+PHj1bhxYw0aNChZ9vG877//XjNnzlRUVJTc3d2VP39+OTo66s6dO9q9e7d2796tn376STNmzFDJkiWTZJ9RUVHq1auXzp49KwcHBxUtWlTh4eHKkyePfv/9d3322WeSpGzZsilHjhyp6v2ApHfixAmNGzdOBQoU0OTJky1dToI8evRI3bp1k7+/v5ydnVW0aFGFhIQob968mjdvniZOnChJypMnjzJlyqS8efNauOKk5+/vr4kTJ+rQoUPauXOnpcsBAABWgj4K+ihSK/oo/kMfBX0UqU1q/3wCsB4MgAM2pG7duqpbt26M5dOmTdP06dOVLVs2LVmyxAKVJb0XHUtYWJi+++47/fzzz1q3bp2qVKmiDh06pHCFiBYSEqJNmzbJYDCoVq1a2r17t5YtWxbjzExLWrVqlaKiolS3bl3t3LlTmzZt0rBhw5QxY8Yk39ePP/6YomdWr1y5UjNmzJCrq6smTJigN954Q/b29qb1Fy9e1PDhw3Xs2DH17NlTGzduVObMmV95v35+fjp79qwkadasWapdu7Zp3bRp0yRJFStW1MKFC+Xg8PTnSEhIiDZu3ChJpmWJkSNHDtPj5M6dO9GPg6Tz66+/6sSJEypQoIClS0mwQ4cOyd/fXwaDQatWrVLhwoVN6zZt2iRJat68ub755hvT8ocPH6ps2bJydHR8pX2XKVMmST4Tr2rPnj1av369cuTIYbEaAACA9aGP4in6KFIX+ijM0UdBH0VqYg2fTwDWgynQAdgcJycnffrppypTpowkadGiRRauKG3bvHmzgoODVbRoUbVq1UrS0zAXFhZm2cL+n9FolI+PjySpbdu2KliwoEJDQ03LrN2sWbMkSZ9++qmaNGliFiwlqXDhwpo5c6ayZMmiwMBALVy4MEn2GxgYaPpz1apVY11XsWJFsxDp4uKiwoULmw0wJoajo6PpcV51ABKIfr9mzZo1xnszel2VKlXMlqdPn16FCxdW/vz5X2nfSfWZAAAAgOXQR5G60EdhWfRR0EfxIqn98wnAujAADsBmNWzYUJL0zz//6PHjxxauJu1atWqVJKlOnTqqV6+enJ2dFRAQoC1btli4sqcOHDiga9euydHRUTVq1FDTpk0lScuWLbNwZa/uwYMHunr1qiS9cLq0zJkzmz4vJ06cSJJ9R0ZGmv7s5ORkti4qKirW5UBq9KL3K+9lAAAAxBd9FKkDfRSWQx8FXia1fz4BWBcGwAGY/P777+rVq5eqVaumUqVKqVatWurXr5/++uuvWNt7enrK09PT7L5Ez+rSpYs8PT1NUwlJ0vXr1+Xp6amaNWvq9u3b6t27t8qUKaMqVapo8ODBSXo87u7upj8/evTIbP+enp66cuVKrNvVr19fnp6eph9dkrR//355enqqQ4cOunjxot555x2VLl1a1atXN93/NXq7M2fOaMeOHXr77bdVvnx5Va1aVV27dtXWrVvjrDUyMlLLly9Xly5dVLlyZZUqVUqvv/66PvnkE506dSrWbUJDQzV79my9/fbbql69ukqXLq169epp8ODBOnz4cJz7Onv2rD777DO9/vrrKlWqlKpWraqePXvq999/j7X9s8/Zs89JfFy9elUHDx6UJDVq1Ehubm6qV6+eJKWaqe6i7y1UrVo1pU+fXt7e3pKkS5cuad++fbFuk5j30apVq+Tp6akDBw5IenrWs6enp4YOHWq23f379zV9+nS1atVK5cuXV9myZdW0aVNNnDhR/v7+CTq2Z89c3r59+wvb9uvXTxs2bNCUKVPMlg8dOlSenp5xTjcVfVz169eX9N9z07VrV1Ob6Ocq+rGin4Pp06eb1kn/fc48PT0VERERY19nz57VyJEj1bBhQ5UuXVqVK1dWt27dtHnzZrN2L3t9rl27ptGjR+uNN95Q6dKlValSJXXs2FHLly83C8XPPwdLlizR9evXNWzYMNWpU0elSpVSnTp19L///U/Xr1+P87k9dOiQBg8erHr16qlUqVKqVq2aPvjgA7Pv1t27d8vT01MlS5ZUQEBArI8TGhqqihUrytPTU8ePH49xrAn9fD548ECzZ89Wp06dVLVqVZUsWVKVKlVSmzZtNG3aNN2/fz/GNgn93o9+TaOvVli3bp08PT3VpUuXGMc2f/58dejQQRUqVFDp0qXVsGFDff7557p8+XKs+7p//76+/fZbtWnTRlWqVFHZsmX1xhtv6H//+5/OnTsXZ23ffvttrI83bdo0s9qiax82bJgk6caNG6bjj/5837hxQ5I0bNgws89B9OeiTp06se4rPu+JZ2t40WciId/n0c/Brl27dPbsWQ0YMEA1atRQqVKl1KBBA3355Ze6d++e2TbPPge3b982+8w+7/Dhw/rggw9UtWpVlSlTRo0bN9aUKVMUHBwca/tX3Q4AANg2+iieoo/CHH0UMdFH8R/6KKy3j8IaPp8ArAsD4AAUHh6ujz76SP3799fu3bvl4OAgLy8vRUREyNfXV927d9eXX36ZpPsMCwtTz549tXfvXhUuXFgGg0F58uRJ0n1E/6h0dnaWh4dHkjzmvXv31K1bN505c0ZFihTRkydPVLBgQbM2K1eu1Pvvv69Tp06pUKFCSpcunfbv368PP/xQ48ePj/GYwcHB6tSpk0aMGKEDBw4offr08vT01MOHD7V27Vq1a9dO8+bNM9smLCxM3bt315QpU3TixAllypRJRYsWVXBwsNavX69OnTpp+fLlMfb1yy+/qE2bNlq9erXu37+vokWLytXVVXv27FH//v01ePDgWH9cJ9bKlStlNBqVP39+09m9LVq0kCQdPHhQFy9eTLJ9JUZwcLB8fX0l/VdX4cKFVbx4cUnS0qVLk2xfWbJkUYUKFUydHrly5VKFChXM3j/nzp1TixYtNG3aNJ07d0558uRRoUKFdPXqVc2dO1ctWrTQ/v37471PV1dXVahQQdLTwb3PPvtMBw8ejPU1zpYtm4oUKfLKn5V06dKpQoUKKlasmGlZhQoVTMca23MQXeOL/PLLL2rXrp1+++033bt3z/Te3bdvnwYMGBDnoObztmzZohYtWmjJkiXy9/fXa6+9psyZM+vw4cMaMWKEevbsaeqMet7p06fVsmVLrV69Wi4uLipQoIBu376tFStWqH379rp582aMbb755ht17txZ69ev1+PHj+Xp6Sk7Oztt375d3bt3N53FX7NmTeXKlUsRERFav359nLUHBwercOHCLzxbPj4uX76sN998U1OmTNGxY8eUOXNmeXp6yt7eXqdOndL06dP11ltvxflcxFf69OlVoUIFZcmSRdLTM/mff3/cunVLrVu31oQJE3T8+HFly5ZNRYsW1Z07d7Rs2TK9+eabpvulRQsKClL79u01a9YsnT9/XtmyZVOhQoV09+5drVixQm3bttWuXbuSpPboz6iTk5Pp/erg4KAKFSqYrhCIfm+XKlXqpY8b3/fEy7zK9/muXbvUrl07bd26VR4eHsqVK5euX7+uBQsW6O233zYbeH72OXB0dIzzM+vj46NOnTpp7969ypUrlzJnzqzLly+bOkFDQ0NjrSWx2wEAANtFH0X80UeRMPRR/Ic+CvooUlMfhZT6P58ArA8D4AD01VdfacuWLXJ1ddXUqVO1Z88erVixQn/++ac+//xzOTg4aMGCBZo/f36S7fPBgwe6c+eOVq9eLR8fH+3evVu9e/dOsse/d++e1qxZI+npj7ZnzzJ9FdeuXZOLi4t+//13U93R96SJtmjRItWoUUM7duzQqlWrtHPnTo0bN04ODg5atGhRjB+OQ4YM0dGjR5UtWzYtXLhQ27Zt08qVK/XXX3+pb9++ioqK0ldffWUKQdLTH4VHjx5VwYIFtXXrVm3atEmrVq3Snj171KlTJxmNRk2cOFFPnjwxbbNr1y6NGzdOdnZ2+t///qdDhw7Jx8dH27dv1/z585UlSxatX7/e7Gx4ScqRI4c2btyojRs36o033oj3cxUVFWV6DaLPWJakunXrKlOmTJIsfwbnhg0bFBISIhcXF7Nje/PNNyVJW7du1d27d5NkX3Xr1tWSJUtUokQJSVLLli21ZMkSffDBB5KeBt1evXrJ399f5cuXl6+vr9avX6/Vq1dr586dqlevnu7fv68PP/xQ165di/d+R44cKVdXVxmNRq1evVqdO3dWlSpV1Lt3b82ePVvHjx83TfeVFLJly6YlS5ZoxIgRpmVLliwxHeuzz0Hbtm1N617kyJEjGj9+vMLDw9W7d2/99ddfps/WhAkTZGdnp1mzZmnPnj0vfJyzZ8/q448/1pMnT9SnTx8dOHBAa9aska+vr3x8fFSwYEH99ddfGj16dKzb//bbbypSpIg2btyo33//XRs2bNDSpUvl5uame/fuae7cuWbtN2zYoB9//FF2dnYaPny49u7dq5UrV2r37t0aOHCgJGnMmDG6ePGi7OzsTN8l0Z+b561evVqS1KZNG9OyxH4+R44cqZs3b6pcuXLavn276Ttk3759mjhxouzs7OTn52faZ2KVKFFCS5YsMV0JXbNmTS1ZskQjR46U9PTKkg8++ECXLl1SoUKFtGbNGv3+++9atWqV/vzzT7Vv315PnjzRp59+ajqjXJJ++uknXblyRRUqVNDOnTu1YcMGrV69Wrt27VKjRo0UHh7+yp2i0bW///77kv57by9ZskS+vr5asmSJsmXLJkl6//33tWTJEn3//fcvfMyEvCdeJLHf59EWLVqkmjVravv27dqwYYO2bNmiH374Qfb29rpy5YpWrFhhavvsc5A5c+Y4P7OHDx9WixYttGvXLq1evVo7duzQpEmTJEnnz5+P8+z/xG4HAABsF30U8UcfBX0UiUUfBX0UqamPwho+nwCsDwPgQBp369Yt0xmk48aNU5MmTUzr7O3t1alTJw0YMEDS06mAXvVqwGd17NhRRYoUkfT0yrpnpwNLDKPRqMDAQG3btk3vvvuugoKC5OjoqP79+ydFuSbvv/++cuTIIUlyc3NTunTpzNbnzp1bM2bMMF3xaDAY1KFDB/Xs2VPS0+cx2rFjx0zTPn3//feqWrWqaZ2Tk5MGDBigt956S5I0efJk07qzZ89KenpPnNy5c5uWp0uXTkOHDlWtWrX0xhtvKCgoyLTum2++kdFo1JAhQ9S1a1fZ29ub1lWvXl0TJkyQJM2bN0+BgYGmdY6OjipcuLAKFy6s9OnTx/t52rNnj+ls0+iwFv140e+zNWvWWPTqvuipxRo0aCA3NzfT8hYtWsjOzk7h4eGmNsnt119/lb+/v7Jmzaoff/xR+fLlM63LmjWrvv/+exUrVkwPHz7UrFmz4v24JUqU0PLly1WxYkXTsuDgYO3cuVNTpkxRhw4dVKtWLX377bcKCQlJ0mNKKj/88IOioqLUtGlTDR482Owz16ZNG7Vr106SXjpQNm3aNIWFhalz584aOHCg2eOUKFFC33//vezt7bVu3TpduHAhxvaOjo6aPn26ChUqZFpWvnx5U9g7cuSIWfvoz3qPHj3UrVs302fO3t5effr0Uc2aNRUZGWkKjW3btpXBYNCpU6diDIDevn1be/fulb29vVq2bGlWU0I/nwEBATp//rykp9/72bNnN60zGAxq1aqVqlSpIkmxTiWelDZv3qwzZ84oXbp0mjNnjry8vEzr3N3dNX78eNWuXVvh4eFmZ9BHfwc2btxYmTNnNi1Pnz69RowYoRo1aqhy5cqp7urhhL4n4pLY7/NoWbJk0ffff2/22jdo0MB0osLz7+X4KFy4sCZOnGjqnJCefvfXrFlTkuKc9jKx2wEAANtEH0XC0UcRP/RRJAx9FHGjjyJp+ygk6/h8ArA+DIADadyuXbsUERGhbNmyqVmzZrG26dy5sxwdHfXw4UPTfXGSwrM/dhPq2XuxRv/n5eWlatWqqU+fPjpz5ozSp0+v7777zmxAJSm8rO4OHTrI1dU1xvK3335bkuTn56dLly5J+u+eR2XKlIlziqV3331X0tPp0v755x9JMk1JtWLFCv36669m92x1cnLSzz//rAkTJphC8PXr13XmzBlJ5j8kn1W3bl15eHgoNDQ0znuqJUT0D/0yZcrEmIItuoYHDx5ow4YNr7yvxLh48aLpitLnn5Ps2bOrWrVqkqRly5Yl6dnHcdm2bZskqVWrVsqYMWOM9U5OTqZ7E2/btk1GozHej12kSBH9+uuvWr16tT766COVL19ejo6OpvUBAQGaNWuW3nzzTd26desVjyRphYSEmO5zFt3R8ryBAwdq8+bNpnvdxSYsLMw0JXZcn4Ho7xGj0Rjr/chKlSpluuL3Wa+99pok6eHDh6ZlV65cMX3Ooz/7z/viiy+0detWDRo0SJKUL18+Va5cWZJiDICuWbNGUVFRqlOnTqw1JESWLFm0b98+HT9+3GwauGiRkZGmzr7kDpfR7/v69eubdag8q0ePHpKkAwcOmJ7j6O+Un376SWvXrjV77nPkyKF58+Zp3LhxcnZ2TsbqEyYx74nYJMX3efXq1WN0jEpPB6Ml8/dyfDVo0MCs0zJa9P3znr+3+KtuBwAAbBN9FAlHH0X80EeRMPRRxI4+iqeSso9CSv2fTwDWKWnm2wFgtaJ//BQvXlx2drGfE+Pq6qpChQrpn3/+kZ+fn+rVq5ck+36VH0hOTk4x7rVqZ2cnNzc35ciRQ2XLllWTJk1e+Yzt2Lys7jJlysS6PHfu3EqfPr0ePnyoy5cv67XXXjM9/yVLlozz8QoWLCh3d3cFBwfLz89PxYoVU/v27bVixQpduHBBY8aM0dixY1W8eHFVr15dtWvXVuXKlc2mVIu+2lOSPvzwwzj3FT0dWXRdiRUUFKQ//vhDUuw/5CtWrKh8+fLp2rVrWrJkidq2bftK+0uM6Cl+s2TJYrrS8FktW7bU3r17dePGDe3evVt169ZN1nr8/Pwkvfi9EL3u3r17CgoKSvC9sIoXL67ixYurX79+CgkJ0ZEjR7Rnzx6tWbNGAQEBunr1qgYMGBDvexCnhH///Vfh4eGSFGdHUZYsWUxXM8Tl8uXLCgsLk/R0Sq/oezfHtj8p9s9AdGfN86IHWSMiIkzLou/v5+rqGufAbq5cuWIsa9u2rQ4cOKB169bp448/lsFgkPTflGPPTi32qpydnXXz5k0dP35cV69e1bVr13Tx4kWdOXNGjx8/lqRk71hJyPs+MjJSV65cUalSpdSzZ09t3rxZd+7c0SeffCIHBweVLl1aNWrUUJ06dVS2bFnTc5daJPY98byk+D5PyHs5vuJ6zOjO1rhOpkjsdgAAwDbRR5Fw9FG8HH0UCUcfRezoo0j6Pgpr+HwCsE4MgANpXHBwsCS9dFqa6JCWlNOLvcqVedH38LGEl9Ud25mx0VxdXfXw4UM9ePBAUvyffzc3NwUHB5uef3d3dy1btkxz587V+vXrdeXKFZ0+fVqnT5/Wzz//rCxZsmjgwIHq0KGDJPOzPuMztW1irv571rp160w/5MePH6/x48fH2fbvv//WqVOnXhiqklpERITWrl0r6emZxS/b95IlS5I9XMbnvfBsZ8mjR48SHC6f5eLiopo1a6pmzZoaMGCAhg8frg0bNujYsWMp/nq8yLNT5D07BVxCPfuePnnyZILaR3v2jPSXia47oTU3adJE48aN082bN7V//35Vq1ZNf//9ty5cuCAPD48k69y7dOmSvv76a+3cudNskNvd3V2VKlWSv7+/aRrD5JSY9730NJivWbNGP/74ozZv3qzbt2/r6NGjOnr0qGbMmKE8efJo+PDhatiwYfIeQAIk9j3xvKT4Pk/Iezm+YruiPDm3AwAAtok+ioSjj+Ll6KNIOPooYkcfRdL3UaT2zycA68UAOJDGRf/weVmYiA5Dsf1Qimuao+grCFOr5Kr7Rfcoig4Q0WeCxvf5j17/7PPv7u6u/v37q3///rpy5Yr279+v/fv3a+fOnQoICNDIkSOVKVMmNWrUyHQlXaZMmbR///7EH1w8Rd+TytXV9YVhyd/fX0ajUUuXLtW4ceOSva5oO3bs0N27dyU9nUosritFHz9+rIcPH2rXrl26efNmrGfDJtX7yM3NTffv33/he+H+/ftm7V/m888/1759+9S6dWv16dMnznbOzs4aO3asfH19FR4eLj8/vxhhIq7jTO57cj07VV9wcLDZ/Z4T+zhHjhx55UHI+O4voR1yzs7Oat68uZYtW6Z169apWrVqpjOrvb29k2TgMiAgQJ07d1ZAQIBy586tDh06qESJEnrttdeUN29eGQwGDR48+IUD4En5vpde/B0Y/e/Ps+2lp9+jw4cP1/Dhw3Xu3DkdOHBA+/bt0549e3Tjxg31799fS5cujfOKl1etPaES+56I63FS6vscAAAgJdFHERN9FK+OPgr6KJIKfRRJ30eR2j+fAKwX9wAH0rjo+8KcOXMmzqlug4ODdfnyZUlSgQIFTMuj79kZfZbe8/z9/ZOw0qTx7JRbsdUdGhr6ymcWR98D63lXr141/dAsUqSIpP+e/1OnTsX5eBcvXjQFlejnPyAgQIcOHTLdV6tAgQLq0KGDpkyZop07d5qmXov+UVqoUCFJT8/4vHPnTpz7OnTokC5evPhKU86ePXvWdC+vCRMmaNeuXXH+F33G8vr1603BOyVE31uoaNGi2r17d5z1zZs3T9LTqZd/++030/bJ8T6Kz3sh+qzgjBkzxuvM6idPnujKlSvaunXrS9u6u7ubAtezAS76cx49xdfzkvtzni9fPlMNz06T96y///5b77zzjoYNGxZnCH72cS5cuBDn/k6cOKFz58698iBl9D2rHj9+rOvXr8fa5o8//lCXLl309ddfmy2Pns7rjz/+UGRkpGkqsKSa5mvlypUKCAhQpkyZtHLlSvXp00d169ZVvnz5TB0tt2/fjnXbpP7ej8/7/u+//5YkGQwG5c+f31Tfvn37TN9Vnp6e6tKli2bMmKE//vhDefLkUWRkpNavX59stSfUq7wnnpWS3+cAAAApjT4Kc/RR0EdBHwV9FLbcR2ENn08A1osBcCCNq1OnjhwcHHTnzh1t3Lgx1jaLFy9WRESEXFxcVKVKFdPy6B+3sd2H5sSJE6kyXGbKlMk0wBNb3du2bUvUvU+ftWrVqliDevR0aOXKlTOdpRs9VdCJEyfinPZr/vz5kqScOXPK09NTktSzZ0916tRJPj4+Mdq7ubmpXLlykp6GIkkqXLiwKZguXrw41v0cPnxYnTp1UrNmzXTs2LF4HGnsou9b5eHhofr167+w7TvvvCPp6Q/w6CCc3AICArRz505JL/+xXrp0aVNQX758uem98Srvo7jO5I5+L6xevdrsLOpoYWFhpvdQ7dq1X1h3tOh7J508edIUqOOyZ88eBQUFKVOmTCpbtqxp+Ys+55GRkdq2bVu8akksd3d3VaxYUdJ/ZwU/b/369Tpy5IiuX78e5/Pr7u5u+v5auHBhrG2uXbumjh076s0339TmzZtfqe7ChQsrT548L6zbx8dHBw4cMHUSRStbtqyKFi2qwMBALVq0SP/++69KlCgR5/3FEio67ObOnTvWs9UvXLhg+g6I/g6Jltjv/ejX5fnwH/2+37Ztm65duxbrttGvV7ly5ZQhQwZFRESoVatW6tatm3bs2BGjfdasWVWsWDFJ5vcwf1Htjx490l9//RXr/pPKq7wnnn+clPo+jxZ9/824Om8AAACSCn0U5uijoI/iWfRR0EeRWKm1jyK1fz4BWDcGwIE0LleuXKZ7MI0cOdLsB1VUVJR+/fVXTZs2TZLUt29fs6loon/wzZs3TxcvXjQt//vvv/Xxxx+nRPkJ5uzsrBIlSkiSpk2bZnaV4549ezR27NhX3sfJkyc1cuRI07RLUVFRWrx4sSkkDho0yNS2fPnypjMY+/fvbzb1V1hYmL7//nvTWb2ffvqp6Ydzy5YtJUnTp0/Xrl27zPZ/6NAh0w/BZ+8JNWDAAEnS7NmzNWfOHLOzgg8dOmRaX65cOVWrVs20Ljw8XBcvXtTFixdfesZwWFiY1q1bJ+npVEhOTk4vbF+nTh3TD/ClS5e+sO2L/Pvvv7p48aL+/fffl7ZdvXq1IiIi5OjoaHoeXyT6B/adO3dMZ7m+yvsoetqpGzduxNhPjhw5dPfuXb3//vtmg4EBAQEaMGCA/vnnH7m5ualfv34vrVuSatasqcaNG0uSRowYoS+++CLGmb5PnjzRypUrNXDgQElP3yfPTr0V/Tk/f/68Fi5caBoAu3//voYPHx7n1QRJqW/fvjIYDFqzZo1mzZplFtxXr16tRYsWSZJ69er1wsfp16+f7O3ttX79ek2YMMHsDOp//vlHvXv3Vnh4uPLkySNvb+9XqtlgMKhv376SpDlz5mj58uWm5y4yMlKzZ8/Wli1b5ODgoO7du8fYPrrjY+rUqZKkNm3axLqfhHw+o0WfyX/27Fn9/vvvpuVGo1G7du1Sr169TGfTPz99XGK/96PfU89/Rps0aSJPT089efJE7733ntm068HBwRo5cqT27NkjBwcHDRkyRNLTqxuaN28uSfriiy904sQJs8f09fXVnj17JD39jnm+9t27d8vX19e03N/fX/3791dAQECc9SeFV31PPCux3+eJFf299eDBA860BwAAyYo+CvooorehjyJ29FHQR5EYqbGPwlKfTwBpB/cAB6Bhw4bp9u3b+uOPPzRgwABlz55dOXPm1LVr1xQYGChJ6ty5s9577z2z7fr06aPdu3frzp078vb2VpEiRfTkyRNdvnxZ+fLlU9u2beM8q9CSBg4cqD59+ujChQtq2LChihQpovv37+vGjRsqXbq0KlSoYAoRiVGsWDGtWLFCmzZt0muvvaZbt27pzp07srOz07Bhw2IMRnz99df64IMPdPToUXXt2lV58uRR5syZ5efnp+DgYNnb22vgwIGmAR9J6tq1q/bu3atdu3bpvffeU/bs2ZU9e3YFBgaaQkv9+vXVvn170zbNmzfX5cuXNW3aNE2ePFk//vijChYsqHv37pm2KVSokH744Qez+m7fvq1mzZpJejodUVw/ciVp69atCgoKkhS/qZDs7Oz01ltv6ZtvvtE///yjw4cPm8JMQnz22Wc6cOCAqlSpYgoacYk+y/j111+P172amjdvrokTJ+rBgwdaunSpKawl9n1UokQJbd++XevWrdO5c+dUqVIljRo1ShkyZNCsWbPUu3dvHT16VI0aNVKRIkXk4OCg8+fPKzw8XJkyZdLkyZNNU1fFx+TJk+Xq6qrVq1dr4cKFWrhwoXLnzq0sWbKYPq9hYWFydHTU4MGD1bFjR7Pt69atq0qVKunQoUP64osvNHfuXHl4eOjSpUsKDw9Xv379TB1QyaV69eoaNmyYvvrqK3377beaO3eu8uXLp1u3bpnuk/bhhx+adabEpmLFiho3bpxGjRql+fPna+nSpSpcuLAePXqkK1euyGg0KmvWrPr5559fGrzio127drpw4YLmzZunESNG6LvvvlPOnDl1/fp1BQUFyd7eXqNHj471rOmWLVtqypQpevz4sRwdHdWiRYtY95GQz+ezdf3666+6cuWK+vfvrzx58sjDw0M3b95UQECAHB0dVaVKFR04cCDGVOiJ/d4vXry4pKf3NmvSpImKFCmi6dOny8HBQT/88IPee+89Xbp0SS1btlTBggXl5uZmmurQ2dlZY8aMUaVKlUyPN2jQIB0+fFinT59W+/btTcfg7+9vurLnnXfeMRsAb926tRYvXiw/Pz/169dP+fPnl6urqy5evCh7e3t98MEHmjVr1kufv1fxKu+JZyX2+zyxPD09ZWdnp9DQUDVp0kTZs2fXzz//HK9pDgEAABKKPgr6KOijiBt9FPRRJFZq66Ow1OcTQNrBFeAA5OTkpBkzZujbb79VrVq1FBYWpjNnzsjFxUXNmzfXwoULNXLkyBjT9hQvXlwrVqyQt7e3MmfOrEuXLikyMlLvvvuufHx8lC1bNgsd0YvVqVNHv/76qxo2bChXV1dduHBB6dKlU//+/fXrr7+azn5NrK5du+qbb75RoUKFTGeeNm7cWEuXLo31LMpMmTJp0aJFGjdunCpXrqyHDx/q3Llz8vDwULt27bRixQr17t3bbBt7e3vNmDFDw4cPV/ny5RUaGqqzZ88qJCREtWrV0tdff60ffvjB7D5Q0tMf4MuWLZO3t7fc3d119uxZBQYGqkSJEhowYIBWrlypLFmyJPrYo4NbyZIl4z0VUrt27eTo6Cgp+c/gPH78uOneSvG9V5GLi4tatWolSfrrr79M95pL7PvovffeU/v27ZUpUyZdvnxZ586dM60rUaKE1q9fr759+6po0aK6du2aLl++rEKFCumDDz7Q2rVr4z21WDQnJyd99dVXWr58ud59912VLFlSYWFhOnv2rG7duqVChQqpZ8+eWrt2bYz3mfQ0YPz8888aOHCgihYtqoCAAP3777+qXr26lixZ8spnIcdXt27dtGzZMrVo0ULp0qXTuXPnFBERobp162revHnq379/vB6nbdu2WrNmjd566y1ly5ZN58+f182bN1W4cGH16tVLa9euNd2PLikMHTpU8+bNU4MGDWQ0GnX27FnZ29urSZMmWrZsmVkH0LMyZ85sGrytX79+kg40uru7m75XihYtqnv37un8+fNyd3c3dQp++eWXkp5eJf7sVQuJ/d5v1aqVevXqpWzZsun69etm93TMmzevVq5cqU8//VRlypTRnTt3dPHiReXKlUtdu3bVmjVrTJ/BaG5ublq0aJH69++vkiVLKigoSGfPnpXRaFSDBg30448/avTo0TG2WbZsmXr27KkCBQro5s2bunv3rho3biwfHx9VrVo1yZ7jF0nse+J5yf19/qwCBQpowoQJKliwoIKCgnTz5s0YV4gAAAAkFfoo6KOgjyJu9FHQR/EqUlMfRWr/fAKwfgYjN/MDgCRRv3593bhxQ+PHj4/3AAaSzrhx43T16lXNmTPH0qUASaJNmzY6deqUZs+e/dIzxwEAAADgWfRRWBZ9FLA19FEAsDZcAQ4AsHpRUVE6dOiQihQpYulSgCRx6tQpnTp1Srly5VKtWrUsXQ4AAAAAIJ7oo4CtoY8CgDXiHuAAAKs3duxYBQQEqEuXLpYuBUi0a9euSZLu3r2roUOHSno6XaG9vb0lywIAAAAAJAB9FLAF9FEAsHYMgAMArN7bb7+t/v37K3PmzJYuBUi0jRs36ptvvjH9vVixYurcubMFKwIAAAAAJBR9FLAF9FEAsHZMgQ4AsHpeXl4ES1g9Ly8vZc+eXa6urmrYsKHmzp0rJycnS5cFAAAAAEgA+ihgC+ijAGDtDEaj0WjpIgAAAAAAAAAAAAAAeFVcAQ4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbIKDpQuwFkajUVFRzBYPAAAAADBnZ2eQwWCwdBk2gewNAAAAAIhNQrI3A+DxFBVl1L17jyxdBgAAAAAglcmc2U329gyAJwWyNwAAAAAgNgnJ3kyBDgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDpYuAAAAAAAQU1RUlCIjIyxdRppnb+8gOzvOHQcAAAAAW0T2Th2SOnszAA4AAAAAqYjRaNSDB/cUEhJs6VLw/1xc3JUhQ2YZDAZLlwIAAAAASAJk79QnKbM3A+AAAAAAkIpEB3B3dw85OaVj0NWCjEajwsKeKDg4UJKUMWMWC1cEAAAAAEgKZO/UIzmyNwPgAAAAAJBKREVFmgK4u3sGS5cDSU5O6SRJwcGBSp/eg+nQAQAAAMDKkb1Tn6TO3iR3AAAAAEglIiMjJf0X/JA6RL8e3BcOAAAAAKwf2Tt1SsrszQA4AAAAAKQyTL2WuvB6AAAAAIDtIeulLkn5ejAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmOFi6AAAAAACA5Zw7d1Y//DBVZ8+eVlSUUSVKlFLv3n1VsmQpSdLBg/s0b95PunjxvOztHVSlSjX16dNPOXLklCRt3LhOX345RsuXr1WuXLlNj9uunbfKl6+o//1vtCSpVq1Kevfd3tq7d4+uXbuid97pou7de+nGjeuaOXOaDh8+KKPRqFKlSqtv3wF67bXCkqQnT57o559naetWXwUG3lP+/AXUteu7atCgUco+UQAAAAAAJBLZO2VxBTgAAAAApFGPHgVr8OB+ypgxk8aPn6gxY75UaGiIBg/+SMHBwfr9940aNOgjZcuWTaNHf6F+/Qbp1Km/9cEH7yow8F6C97dgwc96/fX6Gj36C9Wu/bru3r2r997rpitX/DR48GcaNWqcHjx4oIED+yooKEhGo1HDh3+i1atX6a23Ouqrr75RqVJlNGrUcG3atD4ZnhEAAAAAAJIW2TvlcQU4AAAAAKRRfn5+CgoKVLt2b6lMmXKSpAIFCmrNmpUKDn6oH36YqkqVqmjMmAmmbcqUKafOndtryZLF6tu3f4L2V6JEKXXu3N309xkzpurJk1B9990PypIlqySpaFEvvf9+d508eULp0jlp//69GjPmS9NZ51WrVldoaIhmzZquN95oIgcHYi0AAAAAIPUie6c8rgAHAAAAgDTqtdcKK1MmD3322ceaPHmC9uzZpSxZsqpv3wEKDQ1VQECAGjVqarZNnjx5VbJkaR09eijB+ytcuIjZ348fP6pSpcqYArgkZc2aVStXrletWnV06NBBGQwGVa9eSxEREab/atasq4CAu/Lzu5i4AwcAAAAAIIWQvVOedQ3XAwAAAACSjKurq374YY4WLPhZW7f6avXqlXJ2dlajRk3VpElzSVLmzFlibJclSxadO3cuwfvz8Mhs9vcHD+6b3bvseQ8e3JfRaFSjRnViXX/37h0VLeqZ4DoAAAAAAEgpZO+UxwA4AAAAAKRh+fMX1MiR4xQZGakzZ05p8+aNWr16hbJmzSZJuncvIMY2AQEBypQpkyTJYDBIkqKioszahIQ8fum+3d3TKygoKMbyw4cPKmfOXHJ3Ty8XF1dNmzYr1u3z5Mn30n0AAAAAAGBpZO+UxRToAAAAAJBGbd++VS1aNFRAwF3Z29urVKkyGjJkqNzd0+vevXvKkiWLfH03mW1z48Z1nTx5QmXKlJUkubq6SZJu375lanP16mXdv3//pfsvW7acTp06ocDAe6ZlQUFBGjKkv/78c5fKlaugkJDHMhqN8vIqYfrv0qWLmjt3jiIjI5PiaQAAAAAAINmQvVMeV4C/Ijs7g+zsDMn2+FFRRkVFGZPt8QEAAACkXaVLl1NkZJSGDRuizp27y83NTX/84atHj4JVv35DlShRUl9+OUajRg1TkyYtdP9+kObOna0MGTLqrbc6SZIqVqwsZ2dnTZ/+rd57r68eP36sefOetnmZDh06atOmDfr444/Uteu7cnJKp0WL5ilLlqxq0qS53N3Tq1y5Cho6dLC6d++lAgUK6syZU/r559mqWrWa6Ux4JF54eLgWLVokHx8fXb58Wa6uripdurS6deum2rVrx2hftWrVWK8ciHbixAmlS5cuyeskewMAAACwVmTvlGcwGo0kvHiIjIzSvXuPzJbZ2RmUKZOr7O2T70L6yMgoBQU9JogDAAAAaUB4eJgCAm4qS5ZccnR0SpF9njlzSnPmzNTZs2cUGhqq114rrC5deqhu3XqSpB07/tCiRfN16dIFubm5qWrV6urd+0PlyJHT9Bj79u3VrFnTdeWKn3LmzKUePXpr8+YNypIli/73v9GSpFq1KqlHj/fUs+f7Zvu/cuWyfvhhqo4cOSxHR0eVL19BffsOUJ48eSVJISEh+umnmdq+/Q8FBt5T1qzZ1bBhI3Xv3itZBlpj87LXJXNmt2TNhcnFaDSqX79+2rJlizJkyKAKFSroyZMnOnTokMLDwzVw4ED16dPH1P7GjRuqX7++cuTIoSpVqsT6mBMmTJCjo2OiayJ7AwAAAEhuZG/bz94MgMdTbCHcwcFOHh5umrHkT93wf/kUAwmVJ3tGffhOTT14EKLIyKiXb5AInOUOAAAApB6WCOF4OVsdAF+yZIlGjx6t4sWLa968efLw8JAknT17Vp06ddKjR4+0YcMGFS5cWJK0detWffjhh+rWrZuGDx+eLDVZMnsHBj5SRETyZG8AAAAAqQfZO3VKyuzNFOhJ4Ib/fV2+EZjkj5sxvbOMUVHKkMElyR87WlRUpAIDQxgEBwAAAIA0Zs2aNZKkoUOHmga/JcnLy0ve3t5asmSJdu3aZRoAP3XqlCSpZMmSKV+ski97R0vOkxg4+RwAAAAAUg4D4KmYm7OTDHZ28ls/RyEBN5P88V2y5FKhFu/Jzs5AEAcAAACANGbBggXy8/NT0aJFY6x7/PixJMne3t607MyZM5KkUqVKpUyBKYSTzwEAAADAtjAAbgVCAm4q5PZVS5cBAAAAALAh6dKlk5eXV4zlW7du1ebNm+Xi4qJGjRqZlp86dUrOzs46efKkRowYofPnz8tgMKhChQrq27evypYtm5LlJxlOPgcAAAAA28IAOAAAAAAAadz9+/c1YsQIXbhwQZcuXVKuXLk0YcIE5cyZU5IUEBAgf39/SdKnn36qcuXKqWrVqvrnn3+0Y8cO7dmzR5MmTVKzZs0seRivhJPPAQAAAMA2MAAOAAAAAEAad+3aNfn6+pr+bjAYdOHCBVWvXl3Sf/f/9vDw0MyZM1W+fHlJktFo1IIFCzRhwgQNGzZMFSpUMA2aJ5aDg/m9uJPz3twpyVaOAwAAALB2UVEGS5eAF7C3N8TIhQnFADgAAAAAAGlcoUKFdODAARmNRu3du1dffPGFxo8fr+DgYPXp00e1a9fW7t27ZTQalSNHDtN2BoNB3bt318GDB7V161atWLFCH330UaLrsLMzyMPDLSkOKdVJznuMAwAAAIi/0FB73b1rlyQDrUg6UVEG2dnZKWNGVzk7O7/SYzEADgAAAABAGufm9t+gc7NmzZQzZ0517NhRs2fPVteuXeXm5qbs2bPHuX29evW0detWnTx58pXqiIoy6sGDx2bL7O3tbGLw+MGDEEVGRlm6DAAAACDNCwt7oqioKEVGGhURwW/01CIy0qioqCjdv/9YISGRMdZnyOAS75m1GAAHAAAAAABmKlSooPz58+vKlSu6fPmySpYs+cL22bJlkySFhIS88r5ttQMqMjLKZo8NAAAAsCaRkUZLl4AXSIoTE7iuHwAAAACANCYkJERfffWVhgwZIqMx9s4fJycnSVJERISWLVumgQMHauvWrbG2vXbtmiS98v2/AQAAAAB4Van2CvDw8HAtWrRIPj4+unz5slxdXVW6dGl169ZNtWvXjtG+atWqCgoKivPxTpw4oXTp0iVjxQAAAACQfOzsDLKzM6T4fqOijIqK4ux4W+Ps7CwfHx8FBQWpQ4cOqlKlitn6a9euyc/PT05OTipatKh27typTZs2KSQkRA0bNjRrazQatWbNGklSrVq1UuwYAAAAACCpkb1tQ6ocADcajRo0aJC2bNmiDBkyqEaNGnry5In27dun3bt3a+DAgerTp4+p/Y0bNxQUFKQcOXLECO3R7Oy42B0AAACAdbKzMyhTJtd43+sqKUVGRiko6HGigriv72atXLlMly5dkCQVKFBILVq0VKtWbZO6TCSQwWDQW2+9pR9//FGjR4/W/PnzTff4vnXrlj7++GNFRESoW7ducnV1VevWrTVnzhzt2LFDv/32mzp06CBJioqK0rRp03TixAkVKVJETZo0seRhAQAAAECikb1tR6ocAF+6dKm2bNmi4sWLa968efLw8JAknT17Vp06ddLUqVPVqFEjFS5cWJJ05swZSVKTJk00fPhwi9UNAAAAAMnBzs4ge3s7zVjyp27430+x/ebJnlEfvlNTdnaGBIfw9evX6LvvJql//8EqV66CJKMOHjyg77+fosDAe+rR473kKRrx1rdvXx05ckQHDx5U48aNVbFiRYWHh+vEiRN6/PixatWqpSFDhkiS8uXLp9GjR2vEiBEaOXKkFi9erIIFC+rs2bO6cuWKsmbNqmnTpsnR0dHCRwUAAAAAiUP2th2pcgA8euq0oUOHmga/JcnLy0ve3t5asmSJdu3aZRoAP3XqlCSpZMmSKV8sAAAAAKSQG/73dflGoKXLiBcfnxVq0aKl3nyztWlZ/vwFdeeOv377bUmaDeGpibOzs+bNm6eFCxdqzZo12r9/vxwcHFS0aFG1adNG7du3l729val927ZtVahQIc2ZM0dHjhzRpUuXlD17dnXp0kV9+vRRlixZLHg0AAAAAJA0yN7WL1XOC75gwQKtWbNGlStXjrHu8ePHkmQWwqOvAC9VqlTKFAgAAAAAeCE7O4P+/vuEHjx4YLa8U6du+vHHeZKkdu289fPPP5qt/+ij3vrii9GSpCNHDqlWrUr65ZcFatasgd59t5P69u2lzz8fZrbNiRPHVKtWJV2/fk2S9Oefu/Xuu51Vv35NvfVWK82ZM1NhYWGSpKlTp6hDh5Zm2wcHB6t+/Zras2dnkh2/tXB0dFTPnj21du1a/f333zp69Kh+++03vf3222a5O1qFChU0c+ZM7d+/XydPntS2bds0YsQIBr8BAAAAwALI3rFLlQPg6dKlk5eXV4ywvXXrVm3evFkuLi5q1KiRafmpU6fk7OyskydP6p133lGlSpVUuXJlvf/++zp+/HhKlw8AAAAAaV6nTt10/vw5tW7dVJ98MkCLFs3X6dMn5e7urvz5CyTosfbu3aMff5ynYcM+V4sWLfXnn7v0+PEj03pf300qXbqs8ubNp3379mrkyKF6881WWrRomQYPHqpt27Zo3LjPJUktWrTUv//e0PHjx0zb//GHr9zc3FStWs0kOXYAAAAAAFIC2Tt2qXIA/Fn3799Xv3791LRpU3344YfKnDmzZs6cqZw5c0qSAgIC5O/vr9DQUH366aeKiopS1apVlSlTJu3YsUMdO3bUxo0bLXwUAAAAAJC2vP56A/344zy9/np9nTlzWj/+OF29e3dXx45tdeLEsQQ91jvvdFa+fPlVtKin6tVrKDs7e+3cuV2SFB4erm3btqpZM29J0sKFc9WixZtq1aqd8uTJqypVqumTT4Zr+/atunnzXxUuXESensX1++8bTI+/efN6NW7cTA4OqfIuYQAAAAAAxIrsHbtUn+6vXbsmX19f098NBoMuXLig6tWrS/rv/t8eHh6aOXOmypcvL0kyGo1asGCBJkyYoGHDhqlChQqmQfPEcnAwP1/A3j7Vnz8QL7ZyHAAAAIC1i4oyWLqEJFW8eEmNHDlORqNRly5d1F9/7dHy5Us1ZMgALVvmE+/HyZs3v+nPLi4uqlevgXx9N6lp0xb6668/9eRJqOrXbyhJ+uefszpz5pQ2bVpv2sZoNEqSLl/2U65cudW8+ZuaPfsHDRz4ifz9b+vvv0/ok0+Gv7QOe3tDjFwIAAAAAIAl2Vr2TgqpfgC8UKFCOnDggIxGo/bu3asvvvhC48ePV3BwsPr06aPatWtr9+7dMhqNypEjh2k7g8Gg7t276+DBg9q6datWrFihjz76KNF12NkZ5OHhlhSHlOpkyOBi6RIAAAAASAoNtdfdu3YxBlotfdJqQvfv739bCxfOV9euPZQ9e3ZJkqdnMXl6FlPduq/rnXfa6e+/j0mS7OzMTzaOjIyUwfD0+KP36+rqYtbG2/tNffTRB7p//562bNmkunXrK2PGDJKeBu7OnbupWbMWMerKmjWbHBzs1LRpM82Y8Z327ftTFy+eV4kSJVWsWLE4jycqyiA7OztlzOgqZ2fnBD0XAAAAAAAkB3//2/rllwXq3Lm7smXLLoPBoMKFi6hw4SKqVauuOndur2PHjsS6bWRkRIxl6dKlM/t7s2beGjCgjwIC7srXd6Pq1KknNzd3SVJUlFEdO3ZV06Yxs3eWLFklSW+80UTTp3+nvXt36+LFCypevIRee63Iqx52vKT6AXA3t/8GnZs1a6acOXOqY8eOmj17trp27So3NzdTh0ps6tWrp61bt+rkyZOvVEdUlFEPHjw2W2Zvb2cTg8cPHoQoMjLK0mUAAAAAaV5Y2BNFRUUpMtKoiIjU8xs9MjIqQfXY2Tlq9eqVypYtuzp16ma2ztnZVZKUMaOHHBwc9eBBsOmxo6Ki9O+/15U3bz5FRESZcsrz+y9durxy5syl9evX6c8/9+irr6aY1hcqVFh+fn7KlSuvqf3Ro4f1229LNGTIUDk6ppOLi5tq135d27ZtlZ/fRbVq1e6FxxcZaVRUVJTu33+skJDIGOszZHCx+EkKAAAAAIC0xckpndasWaXs2XPEyN7R46uZM2eRg4OjgoODTeueZu8bZld8x6ZcuQrKmTOXNm/eoL17/9RXX00xrXvttcK6cuWy8ubNZ1r2bPZ2cXFR+vTpVafO69qxY5spe6eUVD8A/rwKFSoof/78unLlii5fvqySJUu+sH22bNkkSSEhIa+879TUAZWUEtqZBQAAACB5REYaLV1CksiUKZM6deqm2bN/UHBwsOrXbyhXVzddvuyn+fN/UoUKlVS2bHmVKVNWf/zhq7p16ylz5ixaunSxWSh/kaZNW2jBgrnKmDGjKlWqYlreqVNXff75MP388496440munPHX199NV45cuQwnYUuSc2bv6mhQz+W0Sg1bNg4XvtMbScmAAAAAADSLlvN3kkh1Q2Ah4SEaOrUqbp7964mTZokgyHmPfCcnJwkSREREVq2bJn++usvtWjRQg0bNozR9tq1a5L0yvf/BgAAAABLy5M9o9Xs7733+ihv3nxat261fHyWKzQ0VDly5FT9+m+oa9d3JUm9e3+ohw8faMiQ/nJ2dpG3dys1aNDIdN+wF2nSpIXmzp2tNm3ay87uv6uv69VrqDFjpEWL5mrx4vlKnz6DatasrT59+pttX6lSFWXMmEmlS5dV+vTpE32cAAAAAADbQvb+j7Vm71Q3AO7s7CwfHx8FBQWpQ4cOqlKlitn6a9euyc/PT05OTipatKh27typTZs2KSQkJMYAuNFo1Jo1ayRJtWrVSrFjAAAAAICkFBVlVGRklD58p2aK7zsyMkpRUYm7Mr1p0xax3g8sWtasWTVhwpQ411eoUEl79hyKdV3OnDm1a9eBWNfVr99Q9evHPEH6WaGhoQoODlaLFi1f2A4AAAAAkDaQvWOy1uyd6gbADQaD3nrrLf34448aPXq05s+fb7rH961bt/Txxx8rIiJC3bp1k6urq1q3bq05c+Zox44d+u2339ShQwdJT+evnzZtmk6cOKEiRYqoSZMmljwsAAAAAEi0qCijgoIey84u5gxZKbHvxIbw1OjBgwc6cuSgtm3bqhw5cphN4QYAAAAASLvI3knH0tk71Q2AS1Lfvn115MgRHTx4UI0bN1bFihUVHh6uEydO6PHjx6pVq5aGDBkiScqXL59Gjx6tESNGaOTIkVq8eLEKFiyos2fP6sqVK8qaNaumTZsmR0dHCx8VAAAAACSerYVhS4mMjNBXX41TpkweGjt2Qqy33QIAAAAApE1k76Rh6eydKgfAnZ2dNW/ePC1cuFBr1qzR/v375eDgoKJFi6pNmzZq37697O3tTe3btm2rQoUKac6cOTpy5IguXbqk7Nmzq0uXLurTp4+yZMliwaMBAAAAAKQWHh6ZtXnzDkuXAQAAAACAzbJ09k6VA+CS5OjoqJ49e6pnz57xal+hQgXNnDkzmasCAAAAAAAAAAAAAKRWdpYuAAAAAAAAAAAAAACApMAAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAFgBOzuDHBzsUvw/OztDoupt185btWpV0tKli2NdP2nSl6pVq5J+/vnHRD8n7dp5J2j7hLYHAAAAAKQtZO/Y92Ft2dvBonsHAAAAALyUnZ1BHh4usrOzT/F9R0VFKjAwRFFRxgRv6+DgoO3b/9Dbb3c2Wx4REaGdO7fJYEhcwAcAAAAAIKmRvW0HA+AAAAAAkMrZ2RlkZ2cvv/VzFBJwM8X265Illwq1eE92doZEhfBKlapo//6/dPv2LeXIkdO0/MiRQ3J2dlG6dM5JWS4AAAAAAIlG9rYdDIADAAAAgJUICbipkNtXLV1GvBUvXlJXrlzW9u1bzc5E/+MPX9Wv/4a2bdtiWnby5AnNnv2Dzp07IwcHB9WqVVcffjhQGTJkkCQFBwfru+8mac+enXJwcFTXrj1i7O/vv49r1qzpOnPmtDJlyqSaNevogw8+lJube/IfLAAAAADAJpC9rT97cw9wAAAAAECyqVevobZv/8P09/DwcO3atUMNGzYyLTt9+qT69XtfBQsW0qxZ8zRu3ESdPn1SH3/8kaKioiRJn38+VGfOnNLEid/q22+n688/d+vWrf/OyL9w4bwGDOirypWrasGCJRo16gudO3dGgwZ9JKMx4WfQAwAAAABgLcje5hgABwAAAAAkm/r139Dp0yd1+/YtSdKBA/uUKVMmFSvmZWqzdOkvKly4qD7++DMVKvSaKlSopNGjv9TZs6e1f/9funr1sg4c2KdBgz5V2bLlVbSop0aNGi8nJyfTYyxZslCVKlVW9+69lC9ffpUtW06jR3+h06dP6ujRwyl+3AAAAAAApBSytzmmQAcAAAAAJBsvr+LKnTuPaSq2bdt81bBhY7M2ly5dUOXK1cyWFS5cRO7u6XXx4nmFhoZIkooXL2FanzlzFuXOncf093Pnzun69at6443aMWq4cuWyKlSolJSHBQAAAABAqkH2NscAOAAAAAAgWdWv/4a2b/9DrVu31+7duzRnzgKz9UajUQZDzO2Mxig5OPwXW6OizKdTs7d3MGvbqFFTde36bozHyZTJ4xWPAAAAAACA1I3s/R+mQAcAAAAAJKv69Rvq9OmTWr9+jXLnzqMCBQqarX/ttSI6fvyY2bLz5//Ro0ePVLDga6Yp2/7++7hp/cOHD3XjxjXT3wsVKiw/v4vKmzef6b+oqEh9//038ve/lWzHBgAAAABAakD2/g8D4AAAAACAZFW0qKfy5s2n2bNnqEGDRjHWv/VWR1248I+++WaiLl/209GjhzV27AgVK+apSpWqKE+evKpXr6G+/fZrHTy4X5cuXdC4cZ8rPDzc9Bhvv91Z//xzTpMmfSk/v0s6deqkRo8eoatXryhv3vwpebgAAAAAAKQ4svd/mAIdAAAAAKyES5ZcVru/+vXf0IIFP6thw5ghvFSpMpo8earmzJmld9/tJFdXN9Wu/br69PnINA3biBGjNWPGVI0aNVxRUVFq2bKNgoICn3mM0vrmm+n66aeZ6tmzi1xcnFWhQmV9+OFAOTk5JdlxAAAAAABsG9nb+rO3wWg0Gl/eDJGRUbp375HZMgcHO3l4uGn41I26fCMwji0Tr0a5AvqoYy2dXjBWIbevJvnju+TIrxLdPldg4CNFREQl+eMDAAAASJjw8DAFBNxUliy55Oj4X3C0szPIw8NFdnb2KV5TVFSkAgNDYtwDLC2J63WJljmzm+ztmWAtKZC9AQAAACQ3snfqlJTZmyvAAQAAACCVi4oyKjAwRHZ2BovsOy0HcAAAAABA2kD2th0MgAMAAACAFSAMAwAAAACQvMjetoE52gAAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAIBUxmjkfmOpCa8HAAAAANgesl7qkpSvBwPgAAAAAJBK2NvbS5LCwp5YuBI8K/r1sLd3sHAlAAAAAIBXRfZOnZIye5PeAQAAACCVsLOzl4uLu4KDAyVJTk7pZDAYLFxV2mU0GhUW9kTBwYFycXGXnR3nkAMAAACAtSN7py7Jkb0ZAAcAAACAVCRDhsySZArisDwXF3fT6wIAAAAAsH5k79QnKbM3A+AAAAAAkIoYDAZlzJhF6dN7KDIywtLlpHn29g5c+Q0AAAAANobsnbokdfZmABwAAAAAUiE7OzvZ2TlZugwAAAAAAGwW2ds2cRo7AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmOFi6AAAAAAAAYBnh4eFatGiRfHx8dPnyZbm6uqp06dLq1q2bateuHaP93bt39cMPP2j37t26ffu2smXLpiZNmqhv375yc3OzwBEAAAAAAGCOK8ABAAAAAEiDjEajBg0apIkTJ+rWrVuqUaOGihcvrn379qlXr16aOXOmWXt/f3916NBBv/zyi5ydnfX6668rKipKP/30k9555x0FBwdb6EgAAAAAAPgPA+AAAAAAAKRBS5cu1ZYtW1S8eHH5+vrqxx9/1Pz587VixQq5u7tr6tSpunjxoqn9+PHjdePGDfXu3Vvr1q3T999/r99//11NmzbVuXPnNH36dAseDQAAAAAATzEADgAAAABAGrRmzRpJ0tChQ+Xh4WFa7uXlJW9vbxmNRu3atUuSdPXqVW3ZskW5cuVS//79TW2dnJw0btw4ubm5admyZQoNDU3ZgwAAAAAA4DkMgAMAAAAAkAYtWLBAa9asUeXKlWOse/z4sSTJ3t5ekrRr1y5FRUWpbt26cnR0NGubPn16VatWTY8fP9b+/fuTv3AAAAAAAF6AAXAAAAAAANKgdOnSycvLyzTIHW3r1q3avHmzXFxc1KhRI0nSP//8I0kqVqxYrI9VpEgRs3YAAAAAAFiKg6ULAAAAAAAAlnX//n2NGDFCFy5c0KVLl5QrVy5NmDBBOXPmlCTduXNHkpQtW7ZYt49efvfu3ZQpGAAAAACAODAADgAAAABAGnft2jX5+vqa/m4wGHThwgVVr15d0n9Tojs7O8e6ffTy6HavwsHBfLI6e3vbmLzOVo4DAAAAAFI7BsABAAAAAEjjChUqpAMHDshoNGrv3r364osvNH78eAUHB6tPnz6madINBkOs2xuNRrP/J5adnUEeHm6v9BipVYYMLpYuAQAAAADSBAbAAQAAAABI49zc/ht0btasmXLmzKmOHTtq9uzZ6tq1q1xdXSVJT548iXX76OUuLq82yBsVZdSDB+ZXkdvb29nE4PGDByGKjIyydBkAAAAAYJUyZHCJ98xaDIADAAAAAAAzFSpUUP78+XXlyhVdvnxZ2bNnl/TfvcCf97J7hCdERIRtDhJHRkbZ7LEBAAAAQGqSagfAw8PDtWjRIvn4+Ojy5ctydXVV6dKl1a1bN9WuXTtG+7t37+qHH37Q7t27dfv2bWXLlk1NmjRR3759zc5kBwAAAAAgrQsJCdHUqVN19+5dTZo0KdapzZ2cnCRJERERKlasmCTp4sWLsT7e+fPnJUmenp7JVDEAAAAAAPETv+vEU5jRaNSgQYM0ceJE3bp1SzVq1FDx4sW1b98+9erVSzNnzjRr7+/vrw4dOuiXX36Rs7OzXn/9dUVFRemnn37SO++8o+DgYAsdCQAAAAAAqY+zs7N8fHy0bt06HTx4MMb6a9euyc/PT05OTipatKjpRPTt27crMjLSrO3Dhw+1f/9+ubq6qmLFiilSPwAAAAAAcUmVA+BLly7Vli1bVLx4cfn6+urHH3/U/PnztWLFCrm7u2vq1KlmZ52PHz9eN27cUO/evbVu3Tp9//33+v3339W0aVOdO3dO06dPt+DRAAAAAACQuhgMBr311luSpNGjR8vf39+07tatW/r4448VERGhd955R66ursqTJ4/q1aun69eva9KkSTIajZKksLAwff7553r06JHefvttubu7W+R4AAAAAACIliqnQF+zZo0kaejQofLw8DAt9/Lykre3t5YsWaJdu3apcOHCunr1qrZs2aJcuXKpf//+prZOTk4aN26cdu3apWXLlmngwIFydnZO8WMBAAAAACA16tu3r44cOaKDBw+qcePGqlixosLDw3XixAk9fvxYtWrV0pAhQ0ztR44cqVOnTmnevHnauXOnihYtqr///lv//vuvSpYsqY8++siCRwMAAAAAwFOp8grwBQsWaM2aNapcuXKMdY8fP5Yk2dvbS5J27dqlqKgo1a1bV46OjmZt06dPr2rVqunx48fav39/8hcOAAAAAICVcHZ21rx58/Tpp58qX7582r9/v06cOKGiRYtqzJgxmj17tuk+4JKUJ08erVixQu3bt9fDhw+1fft2OTk56YMPPtDChQvl5uZmwaMBAAAAAOCpVHkFeLp06eTl5RVj+datW7V582a5uLioUaNGkqR//vlHklSsWLFYH6tIkSL6448/9M8//6hu3brJVzQAAAAAAFbG0dFRPXv2VM+ePePVPkeOHBo/fnwyVwUAAAAAQOKlygHwZ92/f18jRozQhQsXdOnSJeXKlUsTJkxQzpw5JUl37tyRJGXLli3W7aOX3717N2UKBgAAAAAAAAAAAABYRKofAL927Zp8fX1NfzcYDLpw4YKqV68u6b8p0eO6v3f08uh2r8LBwXzGeHv7VDmDfILZynEAAAAAAAAAAAAASNtS/QB4oUKFdODAARmNRu3du1dffPGFxo8fr+DgYPXp08d0L3CDwRDr9kaj0ez/iWVnZ5CHh23ezyxDBhdLlwAAAAAAAAAAAAAAryzVD4C7uf036NysWTPlzJlTHTt21OzZs9W1a1e5urpKkp48eRLr9tHLXVxebZA3KsqoBw/MryK3t7ezicHjBw9CFBkZZekyAAAAAMAqZcjgwsxaAAAAAACkEql+APx5FSpUUP78+XXlyhVdvnxZ2bNnl/TfvcCf97J7hCdERIRtDhJHRkbZ7LEBAAAAAAAAAAAASDtS3SnqISEh+uqrrzRkyJA4py13cnKSJEVERKhYsWKSpIsXL8ba9vz585IkT0/PZKgWAAAAAAAAAAAAAJBapLoBcGdnZ/n4+GjdunU6ePBgjPXXrl2Tn5+fnJycVLRoUdWuXVuStH37dkVGRpq1ffjwofbv3y9XV1dVrFgxReoHAAAAAAAAAAAAAPwfe3ceZ9d8/w/8dWeyh8gegkpRtPZY0hZFaamt1E6p2vfia4taK6KW0iqlFVGJfUliKZWEBEXVkootaLREaGJJIrLIMvP7wy9pp0mYZJY7c+/z+Xh4lHM+99z3p/fOzH3d9zmfUxxNrgFeKBSy7777JknOP//8TJ48eeG+f//73znllFMyb9687L///mnXrl1WXnnlbLvttnn33Xdz2WWXLbxqfM6cOTn33HMzY8aM7LffflluueWKMh8AAAAAAAAAGkeTvAf4sccemxdeeCHPPvtsdthhh2yyySaZO3duxo4dm5kzZ2bLLbfMqaeeunD8Oeeck1deeSU33nhjHnvssXzta1/LSy+9lPfeey/rrrtujj/++CLOBgAAAAAAAIDG0OSuAE8+Xwb9xhtvzOmnn55VV101zzzzTMaOHZuvfe1rueCCC/KHP/xh4X3Ak2TllVfO3Xffnb333jvTp0/PqFGj0qpVqxx99NEZNGhQ2rdvX8TZAAAAAAAAANAYmuQV4EnSsmXLHHbYYTnssMNqNb5Hjx7p169fA1cFAAAAAAAAQFPVJK8ABwAAAAAAAIClpQEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloUewCAAAAAPiPiopCKioKDXb8qqrqVFVVN9jxAQAAikkDHAAAAKCJqKgopGPHdqmsbLhF++bPr8rUqTM1wQEAgJKkAQ4AAADQRFRUFFJZWZFrbnsyEydPq/fjr9x9hRy3/xapqChogAMAACVJAxwAAACgiZk4eVr+NXFKscsAAABodhpuPS0AAAAAAAAAaEQa4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloUewCaF4qKgqpqCg02PGrqqpTVVXdYMcHAAAAAAAASpcGOLVWUVFIx47tUlnZcAsHzJ9flalTZ2qCAwAAAAAAAEtNA5xaq6gopLKyItfc9mQmTp5W78dfufsKOW7/LVJRUdAABwAAAAAAAJaaBjhLbeLkafnXxCnFLgMAAAAAAACghoZbyxoAAAAAAAAAGpEGOAAAAAAAAAAlwRLoAAAAUKaqqqpy1113ZciQIXnzzTczd+7c9OzZM9tvv32OOuqodOjQocb4Pn36ZOrUqUs83tixY9O6desGrhoAAACWTAMcAAAAylBVVVVOPPHEjBgxIm3atMkGG2yQdu3aZezYsRkwYEBGjBiRW2+9NV27dk2STJw4MVOnTk2PHj2y+eabL/aYFRUWmgMAAKC4NMABAACgDN1zzz0ZMWJEevXqlQEDBmTVVVdNknz66ac59dRTM2rUqPTr1y+//vWvkySvvfZakmTHHXfMWWedVayyAQAA4As5NRsAAADK0D333JMkOfPMMxc2v5NkueWWS//+/VMoFDJy5MjMnj07SfLKK68kSdZdd93GLxYAAABqSQMcAAAAylDHjh2z+uqrZ6ONNlpkX+fOnbPCCitk7ty5mTJlSpL/XAG+3nrrNWaZAAAAsFQsgQ4AAABl6LrrrlvivgkTJmTq1Klp2bJlOnfunOTzK8DbtGmTl19+OWeffXbefPPNFAqF9O7dO8cee2w23HDDxiodAAAAlsgV4AAAAEANC+77vc0226R169b56KOPMnny5MyePTunn356qqqq0qdPn3Ts2DGjR4/OAQcckAcffLC4RQMAAEBcAQ4AAAD8l8GDB+eBBx5I27Ztc/LJJyf5z/2/O3XqlGuvvTYbb7xxkqS6ujo33XRTLr744vTt2ze9e/fOiiuuWKfnb9Gi5rn6lZWlce5+befRWPMtlf9fAQAA/pcGOAAAAJAkGTRoUPr3759CoZCLLrooa6yxRpJkq622yhNPPJHq6ur06NFj4fhCoZBDDjkkzz77bEaOHJm77747xx9//DI/f0VFIZ06ta/zPJqiDh3aFruEGppaPQAAAPVFAxwAAADKXHV1dS6//PIMGDAglZWVueiii7Lzzjsv3F8oFNK9e/clPn7bbbfNyJEj8/LLL9epjqqq6nzyycwa2yorK0qiWfvJJ7Myf37Vl45rrPnWth4AAICmoEOHtrVeyarJNsCrqqpy1113ZciQIXnzzTczd+7c9OzZM9tvv32OOuqodOjQocb4Pn36ZOrUqUs83tixY9O6desGrhoAAACal9mzZ+e0007L8OHD06ZNm/zqV7/K9ttvv1TH6NatW5Jk1qxZda5n3rzSbMrOn1/VpObW1OoBAACoL02yAV5VVZUTTzwxI0aMSJs2bbLBBhukXbt2GTt2bAYMGJARI0bk1ltvTdeuXZMkEydOzNSpU9OjR49svvnmiz1mRYV7WwEAAMB/+/TTT3P44YdnzJgx6dKlS6699tpsuOGGi4y744478vTTT2eXXXZZbHN8woQJSVLn+38DAABAXTXJBvg999yTESNGpFevXhkwYEBWXXXVJJ8H81NPPTWjRo1Kv3798utf/zpJ8tprryVJdtxxx5x11lnFKhsAAACajblz5+bII4/MmDFjstpqq+WGG25YmL//16RJk/LQQw9l1qxZizTAq6urc++99yZJttxyywavGwAAAL5Ik7ws+p577kmSnHnmmTXC93LLLZf+/funUChk5MiRmT17dpLklVdeSZKsu+66jV8sAAAANENXX311nn/++XTr1i2DBw9eYvM7SfbYY4+0atUqo0ePzp133rlwe1VVVa666qqMHTs2a665ZnbcccfGKB0AAACWqEleAd6xY8esvvrq2WijjRbZ17lz56ywwgqZOnVqpkyZkpVWWmnhFeDrrbdeI1cKAAAAzc+0adNy0003JUm6dOmSyy67bIljF5ycfv755+fss8/OOeeck5tvvjm9evXKuHHj8vbbb6dr16757W9/m5YtWzbWFAAAAGCxmmQD/LrrrlvivgkTJmTq1Klp2bJlOnfunOTzK8DbtGmTl19+OWeffXbefPPNFAqF9O7dO8cee+xi718GAAAA5erFF1/MrFmzkiTjxo3LuHHjljj2hBNOSNeuXbPnnnvmq1/9aq6//vq88MILeeutt9K9e/ccdNBBOeaYY9KlS5fGKh8AAACWqEk2wL/Igvt+b7PNNmndunU++uijTJ48OUly+umnZ6ONNkqfPn3yxhtvZPTo0fnLX/6Syy67LDvttFMRqwYAAICm4zvf+U5ef/31pX5c7969c+211zZARQAAAFA/mlUDfPDgwXnggQfStm3bnHzyyUn+c//vTp065dprr83GG2+cJKmurs5NN92Uiy++OH379k3v3r2z4oor1un5W7Soecv0ysomeQv1pVbbeTTWfEvl/1cAAAAAAACgcTWbBvigQYPSv3//FAqFXHTRRVljjTWSJFtttVWeeOKJVFdXp0ePHgvHFwqFHHLIIXn22WczcuTI3H333Tn++OOX+fkrKgrp1Kl9nefRFHXo0LbYJdTQ1OoBAAAAAAAAmocm3wCvrq7O5ZdfngEDBqSysjIXXXRRdt5554X7C4VCunfvvsTHb7vtthk5cmRefvnlOtVRVVWdTz6ZWWNbZWVFSTRrP/lkVubPr/rScY0139rWAwAA0BR06NDWSlYAAADQRDTpBvjs2bNz2mmnZfjw4WnTpk1+9atfZfvtt1+qY3Tr1i1JMmvWrDrXM29eaTZl58+vKtm5LU5VVXWqqqqLXQYAAAAUTUOftCF7AwAAxdJkG+CffvppDj/88IwZMyZdunTJtddemw033HCRcXfccUeefvrp7LLLLottjk+YMCFJ6nz/bxreCsu3SXVVVYNfZV5VNT9TpswSxAEAACg7sjcAAFDqmmQDfO7cuTnyyCMzZsyYrLbaarnhhhuy6qqrLnbspEmT8tBDD2XWrFmLNMCrq6tz7733Jkm23HLLBq+bumnfplUKFRX55wPXZ9ZH7zfIc7TtslK+ussRqagoCOEAAACUHdkbAAAodU2yAX711Vfn+eefT7du3TJ48OD06NFjiWP32GOPXH/99Rk9enTuvPPO7LPPPkmSqqqq/Pa3v83YsWOz5pprZscdd2ys8qmjWR+9n1mT3il2GQAAAFCyZG8AAKBUNbkG+LRp03LTTTclSbp06ZLLLrtsiWPPPPPMrLrqqjn//PNz9tln55xzzsnNN9+cXr16Zdy4cXn77bfTtWvX/Pa3v03Lli0bawoAAAAAAAAAFEGTa4C/+OKLmTVrVpJk3LhxGTdu3BLHnnDCCenatWv23HPPfPWrX83111+fF154IW+99Va6d++egw46KMccc0y6dOnSWOUDAAAAAAAAUCRNrgH+ne98J6+//vpSP65379659tprG6AiAAAAAAAAAJqDimIXAAAAAAAAAAD1QQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASWhR7AIAAAAAoCFVVBRSUVFosONXVVWnqqq6wY4PAADUngY4AAAAACWroqKQTp3apqKissGeo6pqfqZMmaUJDgAATYAGOAAAAAAl6/Orvyvzzweuz6yP3q/347ftslK+ussRqagoaIADAEAToAEOAAAAQMmb9dH7mTXpnWKXAQAANLCKYhcAAAAAAAAAAPVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKQotiFwDlrqKikIqKQoMdv6qqOlVV1Q12fAAAAAAAAGgqNMChiCoqCunUqW0qKiob7DmqquZnypRZmuAAAAAAAACUPA1wKKLPr/6uzD8fuD6zPnq/3o/ftstK+eouR6SioqABDgAAAAAAQMnTAIcmYNZH72fWpHeKXQYAAAAAAAA0axXFLgAAAAAAAAAA6oMGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKdGuDDhg3L888//6XjHnnkkVx11VV1eSoAAAAoS7I3AAAA1F6dGuBnnnlm7rzzzi8dd++99+bGG2+sy1MBAABAWZK9AQAAoPZaLM3gYcOGZd68eTW2vf3227n77ruX+JhPP/00Tz/9dFq2bLlsFQIAAEAZkb0pRxUVhVRUFBrk2JWV7gAIAADlZKka4K+88koGDx6cQuHzQFIoFPLiiy/mxRdf/MLHVVdXZ4899lj2KqGIhHAAAKAxyd6Um4qKQjp2bCcjAwAA9WKpGuAnnnhiPv3004X/PXTo0HzlK1/JJptsssTHtG7dOr169cr++++/7FVCkQjhAABAY5O9KTcVFYVUVlbkmtuezMTJ0+r9+Buu3TP77rhRvR8XAABompaqAb788svn4osvXvjfQ4cOzUYbbVRjG5QSIRwAAGhssjflauLkafnXxCn1ftye3TrU+zEBAICma6ka4P9r3Lhx9VUHNGlCOAAAUCyyNwAAANRenRrg/+2jjz7KrFmzUl1dvcQxq666an09HQAAAJQd2RsAAAC+WJ0b4H/84x9z/fXX5+OPP/7CcYVCIa+++mpdnw4AAADKTkNl76qqqtx1110ZMmRI3nzzzcydOzc9e/bM9ttvn6OOOiodOtRcterDDz/M7373uzzxxBOZNGlSunXrlh133DHHHnts2rdvv0xzAwAAgPpUpwb4kCFD8stf/jJJ0qpVq3Tq1CmVlZX1UhgAAADQcNm7qqoqJ554YkaMGJE2bdpkgw02SLt27TJ27NgMGDAgI0aMyK233pquXbsmSSZPnpz99tsvEydOzFprrZVtttkmL730UgYMGJAnnngit956a5Zbbrk61wUAAAB1UacG+M0335xCoZCzzz47++yzT1q2bFlfdQEAAABpuOx9zz33ZMSIEenVq1cGDBiwcOn0Tz/9NKeeempGjRqVfv365de//nWSpF+/fpk4cWKOPPLI/N///V+SZM6cOTn99NPz0EMP5eqrr86ZZ55ZL7UBAADAsqqoy4PHjx+fjTbaKAceeKDmNwAAADSAhsre99xzT5LkzDPPrHHf8OWWWy79+/dPoVDIyJEjM3v27LzzzjsZMWJEVlpppZx44okLx7Zq1SoXXnhh2rdvnzvuuCOzZ8+ut/oAAABgWdSpAd62bdt06tSpvmoBAAAA/kdDZe+OHTtm9dVXz0YbbbTIvs6dO2eFFVbI3LlzM2XKlDz++OOpqqrK1ltvvUgTfvnll883v/nNzJw5M88880y91wkAAABLo04N8M033zxjx47NrFmz6qseAAAA4L80VPa+7rrr8tBDDy22uT5hwoRMnTo1LVu2TOfOnfPGG28kSdZaa63FHmvNNddMkoXjAAAAoFjq1AA/+eSTM2vWrJx11lmZNm1afdUEAAAA/H/FyN4L7vu9zTbbpHXr1vnggw+SJN26dVvs+AXbP/zww0apDwAAAJakRV0efPvtt2eDDTbIn//854wYMSK9evVKhw4dUigUFhlbKBRy88031/rYVVVVueuuuzJkyJC8+eabmTt3bnr27Jntt98+Rx11VDp06FBj/Icffpjf/e53eeKJJzJp0qR069YtO+64Y4499ti0b9++LtMEAACAomnI7L04gwcPzgMPPJC2bdvm5JNPTpLMnDkzSdKmTZvFPmbB9gXj6qJFi5rn6ldW1unc/SajtvMolfkm5TfnUpkHAAA0d3VqgN90000L/33evHn5xz/+scSxiwvmS1JVVZUTTzwxI0aMSJs2bbLBBhukXbt2GTt2bAYMGJARI0bk1ltvTdeuXZMkkydPzn777ZeJEydmrbXWyjbbbJOXXnopAwYMyBNPPJFbb701yy233LJPFAAAAIqkobL34gwaNCj9+/dPoVDIRRddlDXWWCNJUllZ+YXHr66urvG/y6qiopBOnUrzJPYOHdoWu4RGV25zLrf5AgBAU1WnBvigQYPqq44a7rnnnoVntQ8YMCCrrrpqkuTTTz/NqaeemlGjRqVfv34Ll2Tr169fJk6cmCOPPDL/93//lySZM2dOTj/99Dz00EO5+uqrc+aZZzZIrQAAANCQGip7/7fq6upcfvnlGTBgQCorK3PRRRdl5513Xri/Xbt2SZLPPvtssY9fsL1t27o1AKuqqvPJJzWvIq+srCiJxuInn8zK/PlVXzquVOablN+caztfAABg6XXo0LbWqy7VqQG++eab1+XhS3TPPfckSc4888yFze8kWW655dK/f/98+9vfzsiRIzN79uxMnjw5I0aMyEorrZQTTzxx4dhWrVrlwgsvzOOPP5477rgjJ5100hKXagMAAICmqqGy9wKzZ8/OaaedluHDh6dNmzb51a9+le23377GmO7duyfJwnuB/68vu0f40pg3rzQbiPPnV5Xs3Jak3OZcbvMFAICmqt5uTjR37tyMHTs2Dz/8cJ5//vkkyXvvvbdMx+rYsWNWX331bLTRRovs69y5c1ZYYYXMnTs3U6ZMyeOPP56qqqpsvfXWadmyZY2xyy+/fL75zW9m5syZeeaZZ5apFgAAAGgq6jN7J5+vtHbIIYdk+PDh6dKlSwYNGrRI8ztJ1lprrSTJ+PHjF3ucN998M0my9tprL3MtAAAAUB/q3ACfN29efvOb32SLLbbIvvvum5NOOil33HFHkuSMM87Ij370o7z99ttLdczrrrsuDz30UDp16rTIvgkTJmTq1Klp2bJlOnfunDfeeCPJf8L4/1pzzTWTZOE4AAAAaG4aInvPnTs3Rx55ZMaMGZPVVlstd9xxRzbccMPFjt1qq62SJKNGjcr8+fNr7Js+fXqeeeaZtGvXLptssskyzA4AAADqT50a4PPmzctRRx2V6667LrNmzcp6662X6urqhftnzJiRV199NQceeGA+/PDDOhebZOF9v7fZZpu0bt36S5dZW7C9vp4fAAAAGlNDZe+rr746zz//fLp165bBgwfXuAXZ/1p55ZWz7bbb5t13381ll1228PnnzJmTc889NzNmzMh+++2X5ZZbbtknCgAAAPWgTvcAv+WWW/Lkk09myy23TP/+/dO9e/ess846C/ffeuutOf/88zNs2LDccMMNOeOMM+pU7ODBg/PAAw+kbdu2Ofnkk5MkM2fOTJIl3t97wfYF4+qiRYua5wvU9kbrTV1t51Eq803Kb86lMg8AAChHDZG9p02blptuuilJ0qVLl1x22WVLHHvmmWema9euOeecc/LKK6/kxhtvzGOPPZavfe1reemll/Lee+9l3XXXzfHHH1/3yQIAAEAd1akBPnTo0HTs2DG/+c1v0r59+0X2t2nTJhdeeGGeeuqpPP7443VqgA8aNCj9+/dPoVDIRRddlDXWWCNJUllZmSQpFAqLfdyCs9L/++z4ZVFRUUinTovOsRR06NC22CU0unKbc7nNFwAASklDZO8XX3wxs2bNSpKMGzcu48aNW+LYE044IV27ds3KK6+cu+++O7/97W8zevTojBo1Kj179szRRx+dI444YrG1AQAAQGOrUwP8X//6V7bccssvDLktW7bMBhtskCeffHKZnqO6ujqXX355BgwYkMrKylx00UXZeeedF+5v165dkuSzzz5b7OMXbG/btm4NwKqq6nzySc2ryCsrK0qisfjJJ7Myf37Vl44rlfkm5Tfn2s4XAABYeh06tG3QVZcaInt/5zvfyeuvv77UtfTo0SP9+vVb6scBAABAY6lTA7xFixb55JNPvnTc1KlT06LF0j/V7Nmzc9ppp2X48OFp06ZNfvWrX2X77bevMaZ79+5JsvBe4P/ry+4RvjTmzSvNBuL8+VUlO7clKbc5l9t8AQCglDR09gYAAIBSUqdT1L/+9a/npZdeysSJE5c4ZsKECXnppZdq3J+sNj799NMccsghGT58eLp06ZJBgwYt0vxOkrXWWitJMn78+MUe580330ySrL322kv1/AAAANAUNGT2BgAAgFJTpwb4/vvvn1mzZuXYY4/Nq6++usj+119/PSeccELmzJmTvfbaq9bHnTt3bo488siMGTMmq622Wu64445suOGGix271VZbJUlGjRqV+fPn19g3ffr0PPPMM2nXrl022WSTpZgZAAAANA0Nlb0BAACgFNVpbbSddtopTz31VO6+++7sueeeWX755VMoFPLEE09km222yaRJk1JdXZ2dd945P/zhD2t93KuvvjrPP/98unXrlsGDB6dHjx5LHLvyyitn2223zahRo3LZZZfljDPOSKFQyJw5c3LuuedmxowZOfTQQ7PccsvVZaoAAABQFA2VvQEAAKAU1fnmYP369ctGG22UG264If/85z+TJFOmTEmS9OzZMz/5yU9y8MEH1/p406ZNy0033ZQk6dKlSy677LIljj3zzDPTtWvXnHPOOXnllVdy44035rHHHsvXvva1vPTSS3nvvfey7rrr5vjjj6/DDAEAAKC46jt7AwAAQKmqcwM8Sfbaa6/stdde+eCDD/L++++nqqoq3bp1y8orr7zUx3rxxRcza9asJMm4ceMybty4JY494YQT0rVr16y88sq5++6789vf/jajR4/OqFGj0rNnzxx99NE54ogj0r59+2WeGwAAADQF9Zm9AQAAoFTVSwN8ypQpefPNN7P55punW7duSZJ//OMfueWWW/L9739/4bba+M53vpPXX399qWvo0aNH+vXrt9SPAwAAgOagPrM3AAAAlKqKuh7gzjvvzHe+85388pe/rLH9xRdfzIUXXpgddtghDz74YF2fBgAAAMqW7A0AAAC1U6cG+JNPPplzzz03LVq0yDe/+c0a+zbZZJMcdthhqa6uzqmnnpq//vWvdSoUAAAAypHsDQAAALVXpwb4gAED0qJFiwwaNCinn356jX29evXKaaedlkGDBqVQKOT666+vU6EAAABQjmRvAAAAqL06NcDfeOON9OnTJ+uvv/4Sx6y//vrZZJNN8ve//70uTwUAAABlSfYGAACA2qtTA3zWrFlp27btl47r2LFj5s2bV5enAgAAgLIkewMAAEDt1akB3qtXrzz77LP59NNPlzjms88+y/PPP5+vfOUrdXkqAAAAKEuyNwAAANRenRrgu+22W6ZNm5YTTzwxH3744SL7p0yZklNOOSUff/xxdt1117o8FQAAAJQl2RsAAABqr0VdHnzggQfmwQcfzFNPPZVtttkm6623XlZaaaUkyb///e+88sormTNnTjbYYIMccsgh9VEvAAAAlBXZGwAAAGqvTg3wli1b5sYbb8yVV16ZIUOG5O9//3v+/ve/L9zfunXr7L///jnttNPSqlWrutYKAAAAZUf2BgAAgNqrUwM8Sdq3b5+zzz47p59+el5++eV88MEHmT9/frp165Z111037dq1q486AQAAoGzJ3gAAAFA7dWqAH3zwwenVq1d+8YtfpFWrVundu3d91QUAAABE9gYAAIClUacG+NixY1NRUVFftQAAAAD/Q/YGAACA2qtTgm7fvn2qq6vrqxYAAADgf8jeAAAAUHt1aoAfc8wx+dvf/paBAwdmzpw59VUTAAAA8P/J3gAAAFB7dVoCfcKECVlttdVy2WWX5Yorrshqq62WDh06LHZptkKhkJtvvrkuTwcAAABlR/YGAACA2qtTA/ymm25a+O/z5s3L+PHjlzi2UCjU5akAAACgLMneAAAAUHt1aoAPGjSovuoAAAAAFkP2BgAAgNqrUwN88803r686AAAAgMWQvQEAAKD26tQA/29z587Na6+9lvfffz9du3bNJptskvfeey89e/asr6cAAACAsiZ7AwAAwBercwN83rx5ueaaa3LLLbdk+vTpSZJdd901m2yySc4444zMmDEjV155ZVZbbbU6FwsAAADlSPYGAACA2qmoy4PnzZuXo446Ktddd11mzZqV9dZbL9XV1Qv3z5gxI6+++moOPPDAfPjhh3UuFgAAAMqN7A0AAAC1V6cG+C233JInn3wyW2yxRR555JHcddddNfbfeuut2X333fPhhx/mhhtuqFOhAAAAUI5kbwAAAKi9OjXAhw4dmo4dO+Y3v/lNunfvvsj+Nm3a5MILL0z37t3z+OOP1+WpAAAAoCzJ3gAAAFB7dWqA/+tf/8qmm26a9u3bL3FMy5Yts8EGG+S9996ry1MBAABAWZK9AQAAoPbq1ABv0aJFPvnkky8dN3Xq1LRo0aIuTwUAAABlSfYGAACA2qtTA/zrX/96XnrppUycOHGJYyZMmJCXXnop66yzTl2eCgAAAMqS7A0AAAC1V6cG+P77759Zs2bl2GOPzauvvrrI/tdffz0nnHBC5syZk7322qsuTwUAAABlSfYGAACA2qvT2mg77bRTnnrqqdx9993Zc889s/zyy6dQKOSJJ57INttsk0mTJqW6ujo777xzfvjDH9ZXzQAAAFA2ZG8AAACovTrfHKxfv37ZaKONcsMNN+Sf//xnkmTKlClJkp49e+YnP/lJDj744Lo+DQAAAJQt2RsAAABqp84N8CTZa6+9stdee+WDDz7I+++/n6qqqnTr1i0rr7xyfRweAAAAyp7sDQAAAF9uqRvg8+fPz6233prhw4fnww8/TM+ePbPrrrtm9913T7du3dKtW7eGqBMAAADKhuwNAAAAy2apGuBz5szJYYcdlueeey7V1dVJkn/+85956qmnMmrUqPzmN79pkCIBAACgXMjeAAAAsOyWqgF+++2359lnn02PHj1yxBFHZNVVV80bb7yRAQMGZPjw4bn33nvzwx/+sKFqBQAAgJInewMAAMCyW6oG+J///Oe0adMmt912W3r27Jkk2XrrrbPVVltljz32yJ/+9CchHAAAAOpA9gYAAIBlV7E0g8ePH59NN910YQBfYJ111sm6666bcePG1WtxAAAAUG5kbwAAAFh2S9UAnzFjRlZYYYXF7ltllVUyderU+qgJAAAAypbsDQAAAMtuqRrg8+bNS2Vl5WL3tWzZMnPnzq2XogAAAKBcyd4AAACw7JaqAQ4AAAAAAAAATZUGOAAAAAAAAAAlQQMcAAAAAAAAgJLQYmkfMHLkyGy33XaLbJ8yZUqSLHZfkhQKhYwcOXJpnw4AAADKjuwNAAAAy2apG+AzZ87MzJkzl7h/4sSJi91eKBSW9qkAAACgLMneAAAAsGyWqgE+aNCghqoDAAAAiOwNAAAAdbFUDfDNN9+8oeoAAAAAInsDAABAXVQUuwAAAAAAAAAAqA8a4AAAAAAAAACUhKVaAh0AAAAoXcOGDcsZZ5yRG2+8Md/+9rcX2d+nT59MnTp1iY8fO3ZsWrdu3YAVAgAAwBfTAAcAAAAyduzYXHjhhUvcP3HixEydOjU9evRY4n3KKyosNAcAAEBxaYADAABAmXv00Udzxhln5NNPP13imNdeey1JsuOOO+ass85qrNIAAABgqWiAAwAAQJmaNGlSfv3rX2fo0KFp06ZNunbtmg8//HCxY1955ZUkybrrrtuYJQIAAMBSsTYZAAAAlKkrr7wyQ4YMybrrrps77rgjq6+++hLHLrgCfL311mus8gAAAGCpuQIcAAAAytTqq6+eSy65JLvtttuX3r/7lVdeSZs2bfLyyy/n7LPPzptvvplCoZDevXvn2GOPzYYbbthIVQMAAMCSNZsrwIcNG5a11147Tz311GL39+nTJ2uvvfYS//nss88auWIAAABo2o488sjsvvvuX9r8/uijjzJ58uTMnj07p59+eqqqqtKnT5907Ngxo0ePzgEHHJAHH3ywkaoGAACAJWsWV4CPHTs2F1544RL3T5w4MVOnTk2PHj2y+eabL3bMl4V5AAAAYPEW3P+7U6dOufbaa7PxxhsnSaqrq3PTTTfl4osvTt++fdO7d++suOKKdXquFi1q5vfKytLI87WdR6nMNym/OZfKPAAAoLlr8g3wRx99NGeccUY+/fTTJY5ZcB+yHXfcMWeddVZjlQYAAABlYauttsoTTzyR6urq9OjRY+H2QqGQQw45JM8++2xGjhyZu+++O8cff/wyP09FRSGdOrWvj5KbnA4d2ha7hEZXbnMut/kCAEBT1WQb4JMmTcqvf/3rDB06NG3atEnXrl3z4YcfLnbsgjPR11133cYsEQAAAMpCoVBI9+7dl7h/2223zciRI/Pyyy/X6XmqqqrzyScza2yrrKwoicbiJ5/Myvz5VV86rlTmm5TfnGs7XwAAYOl16NC21qsuNdkG+JVXXpmhQ4dmvfXWS//+/dOvX78lNsAXXAG+3nrrNWaJAAAAQJJu3bolSWbNmlXnY82bV5oNxPnzq0p2bktSbnMut/kCAEBT1WQb4KuvvnouueSS7Lbbbl96/+5XXnklbdq0ycsvv5yzzz47b775ZgqFQnr37p1jjz02G264YSNVDQAAAKXnjjvuyNNPP51ddtkl22+//SL7J0yYkCR1vv83AAAA1FXtrhMvgiOPPDK77777lza/P/roo0yePDmzZ8/O6aefnqqqqvTp0ycdO3bM6NGjc8ABB+TBBx9spKoBAACg9EyaNCkPPfRQ7rrrrkX2VVdX5957702SbLnllo1dGgAAANTQZK8Ar60F9//u1KlTrr322my88cZJPg/gN910Uy6++OL07ds3vXv3rvOZ6C1a1GzG13ad+aautvMolfkm5TfnUpkHAABQHHvssUeuv/76jB49OnfeeWf22WefJElVVVV++9vfZuzYsVlzzTWz4447FrlSAAAAyl2zb4BvtdVWeeKJJ1JdXZ0ePXos3F4oFHLIIYfk2WefzciRI3P33Xfn+OOPX+bnqagopFOn9vVRcpPToUPbYpfQ6MptzuU2XwAAoH6tuuqqOf/883P22WfnnHPOyc0335xevXpl3Lhxefvtt9O1a9f89re/TcuWLYtdKgAAAGWu2TfAC4VCunfvvsT92267bUaOHJmXX365Ts9TVVWdTz6ZWWNbZWVFSTQWP/lkVubPr/rScaUy36T85lzb+QIAAEuvQ4e2ZbHq0p577pmvfvWruf766/PCCy/krbfeSvfu3XPQQQflmGOOSZcuXYpdIgAAADT/BviX6datW5Jk1qxZdT7WvHml2UCcP7+qZOe2JOU253KbLwAAsGwGDx78hft79+6da6+9tpGqAQAAgKXX7E9Rv+OOO3LSSSdl5MiRi90/YcKEJKnz/b8BAAAAAAAAaNqa/RXgkyZNykMPPZRZs2Zl++23r7Gvuro69957b5Jkyy23LEZ5AAAAAAAAADSSZn8F+B577JFWrVpl9OjRufPOOxdur6qqylVXXZWxY8dmzTXXzI477ljEKgEAAAAAAABoaM3+CvBVV101559/fs4+++ycc845ufnmm9OrV6+MGzcub7/9drp27Zrf/va3admyZbFLBQAAAAAAAKABNfsrwJNkzz33zC233JLvfve7mTRpUh599NHMmzcvBx10UO67776svvrqxS4RAAAAAAAAgAbWbK4AHzx48Bfu7927d6699tpGqgYAAAAAAACApqYkrgAHAAAAAAAAAA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJLQodgFA+amoKKSiotBgx6+qqk5VVXWDHR8AAAAAAICmSQMcaFQVFYV06tQ2FRWVDfYcVVXzM2XKLE1wAAAAAACAMqMBDjSqz6/+rsw/H7g+sz56v96P37bLSvnqLkekoqKgAQ4AAEDZsvoaAADlSgMcKIpZH72fWZPeKXYZAAAAUHKsvgYAQDnTAAcAAACAEmL1NQAAypkGOAAAAACUIKuvAQBQjiqKXQAAAAAAAAAA1AcNcAAAAAAAAABKggY4AAAAAAAAACXBPcCBGioqCqmoKDTY8SsrnXcDAAAAAABAw9AABxaqqCikY8d2mtQAAAAAAAA0SxrgwEIVFYVUVlbkmtuezMTJ0xrkOTZcu2f23XGjBjk2AAAAAAAA5U0DHFjExMnT8q+JUxrk2D27dWiQ4wIAAEBz4fZjAADQcDTAAQAAAKCRuP0YAAA0LA1wAAAAAGgkbj8GAAANSwMcAAAAABqZ248BAEDDsNYSAAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAACRJhg0blrXXXjtPPfXUYvd/+OGH+cUvfpHvfe972WCDDbLddtvlsssuy4wZMxq5UgAAAFg8DXAAAAAgY8eOzYUXXrjE/ZMnT84+++yTW265JW3atMk222yTqqqqDBgwIPvvv38+/fTTRqwWAAAAFk8DHAAAAMrco48+msMOO+wLm9j9+vXLxIkTc+SRR+b+++/PVVddlYcffjg/+MEP8vrrr+fqq69uxIoBAABg8ZpNA9wybAAAAFC/Jk2alL59++bYY4/N3Llz07Vr18WOe+eddzJixIistNJKOfHEExdub9WqVS688MK0b98+d9xxR2bPnt1YpQMAAMBiNYsGuGXYAAAAoP5deeWVGTJkSNZdd93ccccdWX311Rc77vHHH09VVVW23nrrtGzZssa+5ZdfPt/85jczc+bMPPPMM41RNgAAACxRk2+AW4YNAAAAGsbqq6+eSy65JHfddVfWXnvtJY574403kiRrrbXWYvevueaaNcYBAABAsTTZBrhl2AAAAKBhHXnkkdl9991TUfHFXw988MEHSZJu3botdv+C7R9++GH9FggAAABLqUWxC1iSK6+8MkOHDs16662X/v37p1+/fosN0rVZhu2RRx7JM888k6233rqxygcAAICSMXPmzCRJmzZtFrt/wfYF4+qiRYuazfjKyiZ77v5Sqe08SmW+SfnNudzmm5TWXAAAKB1NtgG+YBm23Xbb7QvPRK/NMmyPPPJI3njjDQ1wAAAAWAaVlZVJkkKhsNj91dXVNf53WVVUFNKpU/s6HaOp6tChbbFLaHTlNudym29SnnMGAKDpa7IN8COPPLJW4yzDBgAAAA2rXbt2SZLPPvtssfsXbG/btm7NsKqq6nzySc2ryCsrK0qiyfbJJ7Myf37Vl44rlfkm5TfncptvUvs5AwBAXXXo0LbWKxA12QZ4bVmGre4s0VX3cU1duc03Ka25AABAsXXv3j3Jf05C/19fdnL60pg3rzSbafPnV5Xs3Jak3OZcbvNNynPOAAA0fc2+AW4ZtrorlbOOl0a5zbnc5puU55wBAKChLLjt2Pjx4xe7/80330ySrL322o1WEwAAACxOs2+AW4at7izRtWSlMudym29iGTYAABrP0izD1lxttdVWSZJRo0alb9++C09GT5Lp06fnmWeeSbt27bLJJpsUq0QAAABIUgINcMuw1V05LldVbnMut/km5TlnAABoKCuvvHK23XbbjBo1KpdddlnOOOOMFAqFzJkzJ+eee25mzJiRQw89NMstt1yxSwUAAKDMNfsGuGXYAAAAoOGdc845eeWVV3LjjTfmsccey9e+9rW89NJLee+997Luuuvm+OOPL3aJAAAAkGa/Rtt/L8M2f/78GvsswwYAAAD1Y+WVV87dd9+dvffeO9OnT8+oUaPSqlWrHH300Rk0aFDat29f7BIBAACg+V8Bbhk2AAAAqB+DBw/+wv09evRIv379GqkaAAAAWHrNvgGeWIYNAAAAAAAAgBJYAj2xDBsAAAAAAAAAzegKcMuwAQAAAAAAAPBFSuIKcAAAAAAAAADQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJLQodgEAAABA8/Hoo4/mmGOOWeL+nXbaKVdeeWUjVgQAAAD/oQEOAAAA1Nqrr76aJNlss82y4oorLrJ/4403buySAAAAYKGSaoA7Cx0AAAAa1oIG+Nlnn5111lmnyNUAAABATSXVAHcWOgAAADSsV199Na1bt86aa65Z7FIAAABgESXZAHcWOgAAANS/KVOm5P33388GG2yQFi1K6isFAAAASkRJpVVnoQMAAEDDWXDi+UorrZTLLrssjzzySN5777107do1O+ywQ44++uissMIKRa4SAACAclZR7ALqy4Kz0Ndee21noQMAAEADeOWVV5IkDz/8cG677bb06tUrvXv3zrRp0zJw4MDss88++eCDD4pcJQAAAOWsZDrFzkIHAACAhvXaa68lSbbZZptcfvnlWX755ZMkH3/8cU4++eT89a9/zTnnnJPrrrtumZ+jRYua5+pXVpbGufu1nUepzDcpvzmX23yT0poLAAClo2Qa4P99Fnr79u2z+eabZ8UVV8xLL72UgQMH5tFHH83NN9+cbt26FblSAAAAaJ4uueSS/OxnP8uKK66YNm3aLNzeuXPnXHrppdlxxx0zatSovPvuu1lllVWW+vgVFYV06tS+PktuMjp0aFvsEhpduc253OablOecAQBo+kqmAe4s9GXnDOW6j2vqym2+SWnNBQAAmopWrVqlV69ei93Xo0ePfOMb38hzzz2XV155ZZka4FVV1fnkk5k1tlVWVpREk+2TT2Zl/vyqLx1XKvNNym/O5TbfpPZzBgCAuurQoW2tez8l0wB3FvqyK5XQtTTKbc7lNt+kPOcMAADF1rVr1yTJrFmzlvkY8+aVZjNt/vyqkp3bkpTbnMttvkl5zhkAgKavZBrgzkJfds5QXrJSmXO5zTdxFjoAAI1nac5Cb87mzJmTCy64IFOmTMnll1+edu3aLTJmwoQJSZIVV1yxscsDAACAJCXUAP8yzkJfsnI8W7fc5lxu803Kc84AANCQWrVqlaeeeirvvfdeHn/88ey444419o8bNy7jxo3L8ssvn4022qg4RQIAAFD2SuIU9Tlz5uTnP/95jj322MycOXOxY5yFDgAAAHWz7777Jkl++ctf5p133lm4/cMPP8xZZ52V+fPn57DDDqtxazIAAABoTCVxBbiz0AEAAKDhHXrooXn22Wfzl7/8Jbvssks23XTTtGrVKs8880xmzpyZHXbYIUceeWSxywQAAKCMlcQV4Imz0AEAAKChtWrVKn/4wx/y85//PGussUaef/75PPPMM/na176Wfv365Te/+U0qKyuLXSYAAABlrCSuAE+chQ4AAACNobKyMgcffHAOPvjgYpcCAAAAiyiZBviCs9BvueWWDB06NM8//3wqKiryta99LXvvvXf22muvFAqFYpcJAAAAAAAAQAMpmQZ44ix0AAAAAAAAgHJWMvcABwAAAAAAAKC8aYADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKLYhcAUOoqKgqpqCg06HNUVVWnqqq6QZ8DAAAAAACgqdMAB8peQzaoC4VCOnRonYqKygY5/gJVVfMzZcosTXAAAAAAAKCsaYADZa2iopCOHdulsrJh7wjxzweuz6yP3m+QY7ftslK+ussRqagoaIADAAAAAABlTQMcKGsVFYVUVlbkmtuezMTJ0+r9+Buu3TP77rhRZn30fmZNeqfejw8AAAAAAMB/aIADJJk4eVr+NXFKvR+3Z7cO9X5MAAAAAAAAFk8DHAAAAABoUBUVhVRUFIpdRp1UVVW79Rg1NPT72nsOAJaNBjgAAAAA0GAqKgrp2LFdKisrGuw5qquqUqhouOMnSVXV/EyZMktDkiSN876eP78qU6fO9J4DgKWkAQ4AAAAANJiKikIqKytyzW1PZuLkafV+/A3X7pl9d9wo/3zg+sz66P16P36StO2yUr66yxGpqChoRpKk4d/XK3dfIcftv0VatqzM/PlV9X78BVxlDkAp0gAHAAAAABrcxMnT8q+JU+r9uD27dUiSzPro/cya9E69Hx++SEO9r1dYvk2qq6rSoUPbej/2f7OyAQClSAMcAAAAAACakPZtWqVQUWFlAwBYBhrgAAAAAADQBFnZAACWXkWxCwAAAAAAAACA+qABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCS0KHYB9e1vf/tbrrvuurz22muZPXt21l577fzkJz/JD37wg2KXBgAAACVB9gYAgOapoqKQiopCscuok6qq6lRVVRe7DJqwkmqA33///TnttNPSokWL9OnTJ5WVlXn66adz0kknZfz48Tn++OOLXSIAJaqhPzj6UAcANBWyNwAANE8VFYV07NgulZUNt0B0dVVVChUNuwB1VdX8TJkyy/elLFHJNMA/+uijnH322Wnbtm0GDRqU9ddfP0kyfvz4HHzwwbn66quz/fbbZ5111ilypQCUmoqKQjp1apuKisoGew4f6gCApkD2BqCYnHwOUDcVFYVUVlbkmtuezMTJ0+r9+Buu3TP77rhR/vnA9Zn10fv1fvwkadtlpXx1lyNSUVHwO5slKpkG+C233JLZs2fniCOOWBjAk2SNNdbIKaeckrPOOis33XRTLr744iJWCUAxNHRArqysSEVFZYN9sPOhDgBoKmRvAIrFyeeUKid2UAwTJ0/LvyZOqffj9uzWIUky66P3M2vSO/V+fKitkmmAjx49Oknyve99b5F92223XQqFQh577LFGrgqAYmuMZX0W8MEOACh1sjcAS+Lkc0pRQ7+vC4VCOnRo7cQOoNlp6ifvlEwD/B//+EeSZM0111xkX8eOHdO1a9d88MEH+eijj9KlS5fGLg+AImnoZX2S/yzt05Q09AeQxuAMZQBoemRvABbHyeeUosZ8XzuxA6hPTt4pkQb4tGnT8tlnn6V9+/Zp3779Ysd07949H3zwQT744AMhHKAMNdSyPsl/lvZpKhojoFVXVaVQ0bABsKmdodzUzmosx5McmvucndTx5Zr7a5x4nSltsjcAS1KuJ5+Xo+b+mX1pPq835vvaiR3FVU7va0qfk3c+V6iurm72PxXvv/9+ttlmm3Tt2jVPPvnkYsfsv//+eeGFF3Lbbbeld+/eS/0c1dWL/gIpFJKKiopM+3R25s+vWqbav0irlpVZrl3rzJ3xSaqr5tf78QsVlWnZvkOqqqpSm3dBc59vUn5zbmrzTcpvzk3xfb3wcc33M91Sz7Nc39czZs7J/Kr6n3PLFpVp26Zl5s2ekeoGOH6SFCoq0qJN+yb1vi4UCik04BMs7rPGF6moaNh6ks9rKqc5N7X5LlAuv6+T5v8aL3iOpX2dy+k1Tpr3fJPFz7kxfic3BbL3spFRajG+mc+5qc03Kb85N8X39cLHNeM/D7L3l4wv0/d1c//MvjSf18vxfb3wcWXyu2sB7+v601R/dyXl875u6O+Gk/98P9zYv7uW5me1JK4Ar/j/V6B90aQX9PmXtd9fKBRSWbn446+wXJtlOmZttWzfsFcWVizlFXzNfb5J+c25qc03Kb85N8X3dbkpx/d1+3atGqiSz7Vos/grv+pTOb2vv+izRrE0dDOnqc253OZbjhqjQel1ppTJ3nUjo3y55j7npjbfpPzm3BTf1+XG+7r+ldv7uinmsnJ8X1O/yvF9XW6/u5qihv5uOGnav7tK4t2xYOm12bNnL3HMnDlzkiTt2rVrlJoAAACglMjeAAAANAcl0wBv165dpk+fvsQgPnny5CRJt27dGrM0AAAAKAmyNwAAAM1BSTTAC4VC1lprrSTJ+PHjF9k/derUfPjhh+ncuXO6du3a2OUBAABAsyd7AwAA0ByURAM8SbbaaqskyciRIxfZN3LkyFRXV2frrbdu7LIAAACgZMjeAAAANHUl0wDfc88907Zt2/zxj3/MCy+8sHD7W2+9lV//+tcpFAr56U9/WsQKAQAAoHmTvQEAAGjqCtXV1dXFLqK+3HnnnTnnnHNSWVmZPn36pFWrVnn66afz2Wef5f/+7/9y5JFHFrtEAAAAaNZkbwAAAJqykmqAJ8njjz+e66+/Pi+//HIqKyuz5ppr5tBDD833v//9YpcGAAAAJUH2BgAAoKkquQY4AAAAAAAAAOWpZO4BDgAAAAAAAEB50wAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4UG+mT5++1I955plnGqASYFldffXVeeONN4pdBgAAsASyNzR/sjcANCwNcBrdnDlz8vLLL2fcuHGZN2/eEsd9/PHHefbZZxuxssb3zDPP5MYbb8ytt96aCRMmFLucOjv44IMzderUWo397LPP0q9fv/z0pz9t2KKApXL11Vfn9ddfL3YZUO+22267PPLII8Uuoyiqqqryzjvv1NhWXV2dBx98MP369cuvfvWrvPjii0Wqrv689957mT17dq3HT5gwIcOGDWu4gorg448/ztNPP50HH3wwDz30UJ555plafzYDSo/s/R+yt+wNTY3sTamSvWXv/yV7Uywtil0AtTd79ux8/PHH6dmzZ7FLWWaDBg3Kb37zm8ycOTNJsvzyy+fwww/P4YcfnoqKmudj/OUvf8kZZ5yR1157rRil1pvXX389v//97/P666+nZ8+eOeqoo9K7d++ceOKJeeSRR1JdXZ0kadGiRU444YQcddRRRa542b322mv58Y9/nD/+8Y/p2rXrEse9+OKLOeOMM/Kvf/3rC8eVqo8//jjjx4/PZpttVuxSGsX06dNzySWXpF+/fsUupdGU22tcCrbbbrucddZZ2W677YpdSqP5+te/nksvvTS77rprsUtpFBMnTlz4+aOcjB49OhdccEE++OCDvPzyy0k+D+XHHntsHnvssYWfQwYMGJCDDz44ffv2LWa5dbLddtst8p6eOXNmLrzwwhx++OFZY401aowfM2ZM+vbtm913372RK61/Dz/8cH7/+98v9nNzoVBI7969c/jhh2ebbbZp/OLq0TrrrJNCobBUjykUCnn11VcbqCJKlezdPMnei5K9yyuXyd40B7J36ZO9ZW/ZW/ZuKlwBXkSLOxtqzpw5GTZsWD788MNFxg8fPrxZfzgYNmxY+vfvn7XXXjt9+/bNUUcdlTZt2uTKK6/MoYcemk8//bTYJda7l19+Ofvss09Gjx6dtm3b5sUXX8whhxyS/v3755FHHslhhx2WoUOH5uabb87WW2+dX//613nooYeKXfYyO+ecc/LWW2/lwAMPzPvvv7/I/rlz5+ZXv/pVDjjggPzrX//KD3/4w/zpT38qQqX16+tf/3ruv//+Gttmz56dq6++Ou++++4i4//yl7/k4IMPbqzyGsS7776bCy+8MD/60Y/yox/9KGeffXbefvvtRcYNHz48O+20U+65554iVFl/yvE1LjflGNAWhC9K17hx43Lccceluro6hx12WKqqqpIkt912W0aPHp1u3brlzjvvzJgxY3L66adn0KBBzfpzyOLe05999lmGDRuWyZMnF6GixtGvX7+cdNJJmThxYnbfffeceuqp+cUvfpFzzz03J554Yrbbbru88sorOeaYY/LLX/6y2OXWyWabbZZNN910qf7ZZJNNil02TYDsLXvL3rJ3cyV7l/5rXG5kb0qR7C17y95NM3u7AryIFvcHf8aMGenbt28GDhxYcmfn3njjjdlss80yePDghduOPfbYnH/++RkyZEgOOeSQ/PGPf8xyyy1XxCrr15VXXplVVlklgwcPTufOnTNz5swcddRRueWWW7Lvvvvm1FNPXTh20003zY9//OPccMMN+cEPflDEqpfdgQcemBVWWCFnnnlmDjzwwPzxj3/MV77ylSSfn6F+xhln5I033kjPnj1zwQUXZKuttipyxfVjcX/0Z82alWuuuSabbLJJVllllSJU1XBee+21HHTQQfn000/Tpk2btGnTJq+++moefPDB3H777VlrrbUyffr0nH322Rk+fHgqKytz5JFHFrvsOim31/itt95a6mUwnXEPTc/111+f7t275957702HDh0Wbr/llltSKBRyyimnZIMNNkiS/PSnP83f/va33Hbbbc32c8iSlPIXTvfdd19uvvnm7L777jn33HPTrl27xY6bMWNGLrrootx0003ZeOONs8MOOzRypfXjv3MELA3ZW/aWvWXv5kj2/lwpv8ayN5QG2ftzsrfs3dRogDdBpfqL4p///GfOPPPMGttatWqV/v37p2PHjhk4cGAOP/zwDBw4cIm/QJqbMWPG5JRTTknnzp2TJO3atcvPfvaz/PjHP86WW265yPgf/OAHufTSSxu7zHq1yy67ZPnll89JJ52UAw88MNdff30eeeSRXHfddZk3b14OOOCA/N///V/at29f7FIbXKn+LF911VWZPXt2fvWrX2XnnXdOkowdOzannHJK+vXrl8svvzwHH3xw/vWvf2X99ddPv379svbaaxe56oZRqq/xddddl+uuu26pHtPcl8wsV0u7nFFzd+edd+app56q9fhCoZD+/fs3YEUN69lnn80+++xTI4BPmDAhb731Vlq0aJHvfe97NcZvscUWueqqqxq7TOrgtttuy0YbbfSlZ5e3b98+/fv3z/jx43PXXXc12xA+d+7ctGzZcqke8+KLL2bDDTdsoIpo7kr1s5zsLXvL3qVB9v6PUn2NZe/yIXt/Mdmbpk72/nJNMXtrgNNo2rZtm6lTpy523+mnn56ZM2fm9ttvz9FHH53rr7++cYtrIMstt1w++eSTGtvWXnvtbL311mnRYtEfvylTpqR169aNVV6D2XrrrTNgwIAcc8wx+dGPfpTq6uqsttpq6devXzbddNNil0cdjR07Nvvtt9/CAJ4kG2ywQU4//fScfPLJOfnkkzNx4sSceuqpOfTQQxe5xyBN3/bbb1+yX5x8kXILaEly7bXX5s4776z1+EKhkJtuuqkBK2pYzz777FJdYdHcX+MpU6ZkxRVXrLHtr3/9a5Jkww03XOQL8TZt2uSzzz5rtPqou3/84x9LdQ/b7bbbLnfccUcDVtSwfvSjH+Xyyy+v1d+oOXPm5Morr8ygQYPyyiuvNEJ10HTI3p+TvWXv5k72Ln2yd+0091yWyN5fprm/xrJ36ZO9l6wpZ28NcBpNnz59MmjQoHzve9/L1772tUX2n3feefn000/zwAMP5NBDD83WW29dhCrr1xZbbJE//vGP2XjjjfOtb30rSbL88svn97///SJjX3zxxQwePHjhuOZuk002yaBBg3L44Yfn448/zi9+8QsBvERMmzYt66yzziLb119//cyfPz+vv/56Bg8enI022qjxi6NefP/738+uu+5a7DIaXbkFtCQZP358xo8fX+vxzf2s9bPOOqtZ39N1aa2wwgr5+OOPa2z7y1/+kkKhkC222GKR8ePHj1945RzNw8yZM9OlS5daj+/WrVuzvifbhx9+mL322isnnHBCjjjiiCX+Tnr++edz1lln5e23385qq63WyFVC8cnesrfsXRpk79Ine9eO7N38yN6yd6mRvZtn9tYAp9GccsopOeCAA7LHHnvkG9/4Ri677LIaPxSFQiGXXnppWrVqlSFDhuSFF14oYrX149RTT83YsWNz6KGHZtNNN13ivRMOOuigPP/88+ncuXONe5M1d+uss05uu+22/PSnP80xxxyTa665Jt/85jeLXRZ1NG/evMVeLdGmTZskyZFHHimA0yyVW0BLkssuu6ysvnDp1KlTVl555WKX0Wh69+6dBx98MIcddlgqKyvz4YcfZvTo0UmSHXfcscbY6dOn5/7770+fPn2KUCnLav78+Yu9snFJKisrM2/evAasqGE98MAD6du3b6644oqMHj06l1xySVZdddWF+xcsE7vgXnuHHXZYTjzxxCJWDMUhe8vesndpkL0pVbJ36ZO9Ze9SI3s3z+ytAU6j6dWrV/70pz/lmmuuyXPPPbfwA/t/q6ioSP/+/bPxxhvnN7/5TT766KMiVFp/unTpknvuuSe333575syZs8Rxbdq0yV577ZWf/exnS3UmUVPTt2/fxW5fbbXV8u677+aoo47KD37wgxpnDJXCWZzUtN566xW7BFgm5RbQKH1HHHFE9ttvv+y7777ZfPPN88gjj+Szzz7LzjvvnNVXXz3J51+s/v3vf88ll1ySjz/+OAceeGCRq66bESNG5O23317437Nnz06hUMi9996b559/vsbYN954o7HLo466dOmSP/zhD7nlllty2WWX5Yc//GHOPPPM7LPPPvnb3/6Wn//855kwYULWXnvtXHTRRT6TULZkb9lb9i4P/s7RXMnelBrZW/YuNaWSvTXAi+ytt96qseTL9OnTkySvv/76ImeULM0yKU1Vp06dcvbZZ3/puL333jt77LFHjV+izVWbNm1yyCGHfOGYUrnv2tChQ79w/2effZZhw4bV2FYqIfy5557L/PnzF/73jBkzkiRPPvlkJk2aVGNsKVxh8UWa+zJNS1Iur/Fmm22Wrl27FrsMoB6sv/76ufbaa3PRRRdl4MCBqayszK677poLLrhg4ZhLL700gwYNSkVFRfr27ZvevXsXseK6Gz58eIYPH77I9v/9/LFAKfzN+t8vHr5IqXzxcOCBB+ab3/xmzjnnnJx33nkZPHhwxo8fnxYtWuTEE0/MkUceuVRn51MeZO/Fk72bJ9m79HNZbZTC55jFKZfXWPaG0iF7/4fs/TnZu2koVFdXVxe7iHK1zjrrLPYHv7q6+gu3v/baa41RXoOrrq7OhAkTMnXq1CRJ586ds8oqqxS3qAZW6nOeOHHiMj2uuZ/1ubif5f/+1bq4fc35Z3mdddbJMccck29/+9s1tk+fPj3HHntszjzzzKy77rqLPG6zzTZrrBLrXbm9xuVonXXWKbslycptzkOHDs2mm25aY8mmcjJlypS0bdt2kasAH3vssbzyyivZeeedm+T9mpbG3/72t2V63Oabb17PlTSexd0X9MuU0t+nZ599Nscee2ymT5+eQqGQY489NieccEKxy6IJkr1LO4cuTqnPWfb+j1LOZbL350r5NS5H5ZZDk/Kbs+wtey+J7N18NdfsrQFeRFdfffUyPe7444+v50oa19ixYzNgwIA8+eSTmTlzZo19yy23XL773e/mpz/96TL9UmmqynHO5eTLzr5fkj322KOeK2kcS/oCMVnyl4hJmvUf/HJ6jf/7yqil0Zy/ZEnKM6D97W9/yxprrNGsl/+EcleOXzwkyaeffppLL700d999d1q3bp0jjjgiDz/8cN54441861vfSr9+/dKzZ89il0kTInuXTw4txzmXk3LKZYnsvTSa42sse8veQPMhezfP7K0BTqMaOHBgLr/88lRUVGTjjTfO1772tXTo0CHz5s3L1KlT8+qrr+a1115LRUVFzjjjjBx88MHFLrnOynHOtXXddddl+PDhGTJkSLFLaXRz5sxJq1atil3GMinXLxCXVnN9jb/oS5Yv0py/ZKE8LOlemV+kVJYKZfFuv/32/OUvf1nmv2sUx+jRo3Peeedl0qRJ+eY3v5kLL7wwq666aubOnZurrroqAwcOTJs2bXLaaadlv/32K3a5UDTlmEPLcc61JXs3v1yWyN611VxfY9mbUiV7879k7+apFLK3BjiN5rHHHstRRx2Vb33rW+nfv39WWmmlxY575513csEFF+Spp57KwIED861vfauRK60/5TjnpXHeeeflzjvvbPYf3q+++uqlCphjx45N375986c//akBq6I+ldNr/Nvf/naZQnhz/5KlHAPasnzpWygUctNNNzVANQ2vHJer+rIv1Vq3bp3ll18+a621Vr7//e9n7733TkVFRSNWWFyl8DnkvffeS+fOnRdZXm9JJkyYkOeffz677757wxbWQE499dT86U9/Srt27XL66adn3333XWTMmDFjcsYZZ2TChAnZfPPNc9FFF5XUssdQG+WYQ8txzkujFP7mJeWVy8pVOb3Gsnftyd7Ni+y9KNm7+X8Okb2bZ/bWAC+icvuD/9Of/jQffvhhhgwZkpYtW37h2Hnz5mX33XfPaqutlmuuuaaRKqx/5TjnpVEKf/ySzz/kHHbYYTnttNO+cNy8efNy9dVXZ8CAAZk/f36zn3dtzZ49Ox9//HGTXg7ly3iNS1+5BrSl1ZznXI73yjzooIO+cP/8+fPzySef5J133sncuXOzxRZb5LrrrkuLFi0aqcLiKoXPIV//+tdz6aWX1rif4MyZM3PhhRfm8MMPzxprrFFj/H333Zczzjij2c55nXXWyVZbbZULL7wwK6644hLHzZ49O7/85S9z++23p127dnnhhRcasUqaItl7yUolh5bjnJdGKfzNS+SyLyN70xyUWw5Nym/OsveiZO/m/zlE9l68pp69y+MnrIlamvva/PcZRM01hL/66qs55JBDvjSMJkmLFi3ygx/8IPfdd18jVNZwynHO5WjTTTfNwIEDM2vWrJx77rmLHfP666/njDPOyOuvv54VVlghP//5zxu5yvqz3Xbb5ayzzsp22223cNucOXPy4IMPZsstt0zXrl1rjB8+fHiz/oOflN9rXI4eeeSRYpfQ6MaNG1fsEhpVcw7Ty2rw4MG1Gjd79uzcdtttufTSS3Pbbbd9aXin6VjcucyfffZZhg0blt12222REN7cXXzxxbW6x2ebNm1y/vnn53vf+56/xySRvb9IqeTQcpxzOSq3XCZ7l/5rXI5k79Iney+Z7N18yd6L19SztwZ4EdXmj9/EiRNz4YUXZvTo0Vl++eVz0kknNXxhDWTGjBnp3r17rcevtNJK+fe//92AFTW8cpxzORo4cGBOPPHE3HbbbZk1a1b69++/8Iuz6urq/OEPf8g111yTOXPmZKeddsrZZ5+dzp07F7nqZTdx4sTMnDmzxrYZM2akb9++GThw4CIhvBSU22ucJG+99VbGjBmTPffcc+G2Dz/8MFdffXVeeOGFtG3bNtttt10OOeSQZnm/tf9VjgGNmubMmZN//OMfadOmTVZfffVil9Oo2rRpk5/+9Kd58cUXM3ToUCG8BJTqIl+1CeD/7atf/Wr23nvvBqqG5kT2/mKlkEPLcc7lqNxymexd+q9xIntTfmRv2buUyN6fa6rZWwO8iZo/f34GDhyY3/3ud5k9e3Z23nnn9O3bt1l/uJ03b95SfVBr0aJF5syZ04AVNbxynHM5atWqVa655pr07ds3Q4cOzezZs3P55ZfnnXfeyZlnnpmxY8emW7duOf/88/Pd73632OU2mFL9g5+U32t8+eWXZ+DAgamurs4ee+yRioqKTJ8+Pfvuu2/ee++9dOzYMSuvvHJ+85vf5NFHH83gwYNrdbVNc1aOAW3SpEkZO3Zs2rRpk80226zW9zlqyqZPn57rr78+Y8aMqXGG9v33359+/frlk08+SfL5B/f+/ftno402KlKlxdGnT588+eSTxS4D6uSzzz7Lww8/nCFDhuRvf/tbqqurc9xxxxW7LJow2bs0cmg5zrkclVsuWxLZu3ReY9l7UbK37F0OZG9KQXPI3hrgTdBzzz2XCy64IG+++WZ69eqV8847L9/61reKXRZ8qauvvnqpxr/88ssNVEnjq6yszKWXXpoOHTrk5ptvzrvvvps333wzs2fPzt57750zzjgjyy23XLHLpA7K5TUeMWJEBgwYkG222SYHH3xwKioqkiS/+93vMnHixGy44Yb54x//mLZt22bs2LE56KCD8sc//jFHHHFEkSuvu3IMaBMnTswVV1yRMWPG5NFHH124/Q9/+EOuuuqqzJ8/P9XV1VlhhRVy4YUX5vvf/34Rq62bGTNmZN99981bb72VFVdcMfPmzUuLFi0yduzYnHHGGamurs6+++6br33taxk2bFh++tOfZtiwYVlttdWKXXqjqaysTFVVVbHLWGbDhg1bqvH//Oc/G6YQimLMmDEZMmRIHnroocyYMSPV1dX5yle+kn333bfYpdGEyd40V7J36eeyclYur7HsLXsnsrfs3TzJ3uWtOWVvDfAmZMqUKbn00kszbNiwtGrVKieccEKOOOKIkljeZoHnnnsu8+fPr9XYF154oYGraRzlNOelDeFJzXvslYKzzz47HTt2zNVXX52Kior8/ve/z9Zbb13ssqhHpf4a33777dlwww1z3XXXLdxWXV2d++67L4VCIT/72c/Stm3bJMkGG2yQH/7wh/nTn/7U7EN4OQa0jz76KPvuu2+mTJmSDTbYYOGcn3jiiVxxxRVp0aJFTjnllKy11lq58847c8opp+SOO+7IuuuuW+zSl8nAgQPzzjvv5Ne//nV23HHHhduvueaaVFdX5yc/+UnOPPPMJMlee+2V3XbbLdddd10uvvjiYpXc6F588cWstNJKxS5jmZ155plL9bmiurq65D6HlJtJkybl3nvvzZAhQ/L2228vvCKuT58+OeKII7LlllsWuUKaKtm7puaeQxcopznL3qWfyyj911j2lr1lb9m7uZK9y09zzd4a4E3EXXfdlcsvvzzTpk3LFltskfPOOy9f+cpXil1Wvbvzzjtz55131mpsqfxiLKc5Dxo0qNglNAnHH398OnXqlH79+mXAgAHZZJNNSuLsZP6jlF/jV155ZZFA/eqrr+ajjz7Kcsstlz59+tTYt/766+f+++9vzBIbRDkGtD/84Q+ZMWNGbrnllhpn1P/hD39IoVDIcccdt/C98J3vfCd77rlnrr/++vz6178uTsF1NHz48Pzwhz+s8frOmDFj4bJjBxxwwMLtrVu3zm677Za77rqr0esslj//+c+59957c/jhhxe7lGXWnH8eqb05c+Zk5MiRGTJkSJ5++unMnz8/lZWV2XzzzbPJJpvk2muvzcEHH9xkAzjFJ3svqrnn0AXKac6y9+dKOZfxuVJ+jWVv2Vv2lr2bq+b880jtlUL21gAvstdffz3nn39+/v73v6dr16654oorstNOOxW7rAZRjr8Yy23Om2+++VI/5rnnnmuAShrXs88+u8i2tdZaK3vvvXfuvPPO/OQnP8npp5++cDmrBTbbbLPGKpE6KqfXeObMmVlhhRVqbPvrX/+a5PP5VFZW1tg3b968Zv3l4QLlGNBGjx6dPffcs0YAnzp1ap5//vkkyY9+9KOF2wuFQn7wgx/kpptuauwy6827775b43VMPv/ZnjdvXlZdddVFmh8rrbRSPvroo8Yssd717dv3C/fPnz8/M2bMyD/+8Y+888476dWrV7MO4XvssUexSyiKESNG5O23317437Nnz06hUMi999678Od5gTfeeKOxy6tXF1xwQR588MFMmzYtrVu3zlZbbZXtt98+2223XTp16pSJEyfmd7/7XbHLpImSvUtbuc1Z9v6PUs1l5aqcXmPZW/aWvT8nezc/svfnZO+mn701wIvokksuyeDBgzN//vxsu+22Oemkk7Lccsvlvffe+8LH9ezZs5EqrF/l+IuxHOdcG++//36GDh2aYcOGZcKECXnttdeKXVKdHHTQQV8YQl555ZUccsghi2xvzvN+6623agTT6dOnJ/n8i8UWLWr+aRk/fnyj1tYQyuk17t69eyZMmFBj2+jRo1MoFPKd73xnkfFjx45Njx49Gqu8BlOOAe3f//531lprrRrbnnnmmVRVVWXNNddc5HXt0qVLpk2b1pgl1quKiopF7rH19NNPJ0m+/e1vLzL+448/bvZXlwwdOrRW41ZdddX85Cc/ybHHHtvs57wki/t8vdJKK5XMl4jDhw9fZPuS7svWnOd82223pV27djn66KNz+OGHl+z7lfone5e+cpxzbcjen2vO85a9ayql11j2/g/ZW/Zu7p/rZe//kL3/oznPuVSytwZ4Ed14440L/33UqFEZNWpUrR7XHD/ULYuPP/4448ePb5ZncS6rUp7zZ599luHDh2fIkCF55plnFi45t7gP9c3Ncccd16z/oC2L6667rsZ9qha45JJLFtnW3JcXTMrrNf7Od76Te+65JwcccEB69OiRMWPG5LnnnkvLli2zww471Bj75ptv5k9/+lP22WefIlVbf8oxoLVu3TqzZs2qse2pp55KoVDIFltsscj4f//73+nQoUNjlVfv1lxzzYwZMyYHHnhgks9/N40YMSKFQiHf/e53Fxn/yCOPZI011mjsMuvVI4888oX7W7dunQ4dOpTUPW+T5J577sldd92V3/3ud+ncuXOmTJmS7373u4v8Hj/xxBNzzDHHFKnK+lFuS+DuscceGTlyZH7/+9/npptuyqabbrrwLPSuXbsWuzyaMNn7i5VyDl2SUp6z7F1aZO/SJXv/h+xdk+zd/MjesnepKZXsrQFeRMcff3yxS2hUX//613PppZdm1113Xbht9uzZGTBgQHbfffesssoqNcb/5S9/yRlnnNGsv3Qoxzn/r7///e8ZMmRIHnrooXz66adJks6dO2fPPffMvvvum5VXXrnIFdbdCSecUOwSGlU5BdIFyuk1PvbYYzN8+PD84Ac/yOqrr5433ngj1dXVOe6449K5c+ckn4fv4cOHZ9CgQWnZsmUOO+ywIlddd+UY0NZZZ508/fTT+clPfpLkP/f2SZLtt9++xtjq6ur8+c9/zjrrrNPoddaX3XffPRdddFHWX3/9bLHFFrnzzjvz3nvv5Stf+Uq22mqrGmOvu+66/P3vf8/ZZ59dpGrrRyn8jV1aP/vZz/Lwww+nZ8+eee+99xb+3kqS3XbbLauuumqS5N577821116bvfbaK926dStWuXW2LEvgzps3rwEqaRwXX3xxLrjggowaNSr3339/Hn/88TzxxBO54IILsvHGG6d3795l9xmF2pG9Sz+HluOc/5fsXXpk79Ime8veiewtezdfsveXk72LTwO8iMothFdXVy+ybdasWbnmmmuyySabLBJIS0E5zjlJJk+enGHDhmXo0KH517/+lerq6rRt2zbf/va389RTT+UXv/hFtttuu2KXyTIqp0Bajrp27Zq7774711xzTf7+97/nG9/4Rvbcc8/svffeC8cMHTo0AwcOzMorr5xf/epXWWmllYpYcf0ox4C233775ZRTTkn//v2zxRZb5J577slHH32Ub3zjGzWuhpo9e3Z++ctf5s0332zWX7jst99+ef7553PxxRenUCikuro6K6ywQi6//PKF9xC8++6784c//CETJkzIJptskv3337/IVTessWPHZsyYMamoqMjmm2+etddeu9gl1cl9992Xhx9+OEcddVROPPHERe6buPvuu+db3/pWkmTrrbfOPvvskzvuuKNkPpPPmDEj1dXVX3iFzJgxY3LOOefkgQceaMTK6lerVq2yww47ZIcddsj06dPz5z//Offdd1+ef/75PP/88ykUCvn973+fTz/9NDvssEPatGlT7JJpAkrl57y2yjGHluOcE9m71MnepU32lr1lb9m7uZK9Ze/mkr01wJuQOXPmZNy4cZk8eXKqq6vTvXv3rLPOOmndunWxS2tQiwuqpa5U5/zQQw9lyJAheeqppzJ//vx06NAhu+66a77//e9nq622ygcffLDImY2l4Oqrr17qxxQKhRx33HENUE3DO/jgg3PMMccs/CBTDsrtNV5xxRVz4YUXLnH/nnvume9+97vp3bv3wvDS3JVjQNtpp53y+uuvZ8CAARk8eHCqq6uzyiqr5Morr1w45oYbbsjvfve7zJgxIzvuuGN++MMfFrHiuikUCrn88stz4IEHZsyYMVluueWy/fbb1zhL+d///neqq6tzzDHH5KijjiqJ9/err76a3//+9xk/fny+8pWv5Oijj84GG2yQn//85xkyZMjCzySFQiG77LJLLr744kXuJ9lcDB06NBtvvHFOPvnkLx274Au3xx57rNmH8IcffjhXX311/vGPfyT5/L5yJ554YnbZZZeFY2bOnJkrrrgit9122yJLTjYnffv2zX777ZcNN9wwSbL88stn7733zt57751JkyblgQceyAMPPJCxY8fmpZdeyoUXXpiddtopv/jFL4pcOU2N7F0+SnXOsnftNedcJnvXTnN+jWVv2XsB2bv5v79l78WTvZunUsnezfMnrMR8+OGHueKKKzJ8+PDMmDGjxr62bdtmhx12yMknn5zu3bsXqUKonZNPPjnt2rXLAQcckO222y6bbbZZjTPAmsOyGMui3ALa3/72txpnJJeDcnuNv0xzX35scco1oJ188snZf//98+KLL2a55ZbL5ptvnpYtWy7c37p166y//vrZdddd86Mf/aiIldafjTfeOBtvvPFi9x1//PHNPpD9tzFjxuTggw9OixYtstZaa+WVV17JgQcemIMOOij33HNPdtttt+y4446ZOXNmHn300TzwwAP5+te/nkMPPbTYpS+TV199NUcffXStx2+55Za55pprGrCihvfggw/mlFNOSevWrbPlllumbdu2ee6553LaaactvH/kSy+9lJNPPjnvvvtuVllllVxwwQXFLnuZDR06NN/+9rcXhvD/1qNHjxx22GE57LDDMn78+Nx33325//77c9dddzW5EE7xyN6UCtm79ppzLpO9a6c5v8ZfRvaWvZsz2Vv2XkD2bn5KJXtrgBfZ3//+9xx11FGZNm1aNtxww3zzm99M9+7d06JFi0yePDnPPvtshg0blkcffTTXXnttevfuXeySYYlWWWWVvPvuuxkyZEj++c9/5qWXXsr222+fr371q8UurUENGjSo2CXQwMrpNX722WeX6XH/vWxXc1ZOAW2BFVdcMSuuuOJi9/34xz/Oj3/840auiPpyzTXXpFevXhk0aFA6deqU6urqnHXWWbnxxhuz22675dJLL104dpdddsknn3ySBx54oNmG8NmzZ6dDhw6LbF9++eVz3XXX5etf/3qN7e3bt2/W9+RKkptvvjldunTJ7bffvvAea7NmzcoxxxyT3/72t+nevXsOPfTQfPbZZ/npT3+an/3sZ01yWbL6tsYaa+Tkk0/OySefnBdeeKHY5dBEyN6UEtmbUlVOr7HsLXv/N9m7eZO9Pyd7y95NjQZ4EX300Uc57rjj0r59+/zud7/LJptssthxr776ak466aSceOKJuffee9OlS5dGrhRqZ+TIkXnxxRdz33335c9//nP+8pe/5Iorrsjqq6+e73//+1l33XWLXWKD2Hzzzb90zPTp01MoFL7w3iA0XbV5jUvFQQcdtNRXjBQKhbz66qsNVBHUj759+y71YwqFQvr3798A1TSOl156KYcffng6deqU5PP5HHbYYRk6dGi22WabRcZ///vfzy9/+ctGrrL+9OjRI++9994i21u0aLHY+f7rX/9q9vdRHD9+fA466KCFATz5/CrW448/Pj/+8Y9z8sknp0uXLrn88suz0UYbFa/QItLEJJG9KT2y95LJ3s2b7P3FZG+aA9lb9v5fsnd5aIrZWwO8iG6++ebMmDGjxlkji/ONb3wjN954Y3bdddfceuutOeGEExqxSlg6G264YTbccMOcddZZ+ctf/pL7778/jzzySK699toUCoUUCoWMGjUq66yzTlZeeeVil1tvqqur8/jjj+cf//hHVltttWyzzTZp0aJFnn766fTr1y9vvfVWkuTrX/96TjnllGy55ZZFrrhuRowYkbfffrvW40t5SbIFSuWLlosvvrhW4x5++OGMHj06SbLBBhs0YEWNoxwD2sEHH7zUjykUCrnpppsaoJqGN3To0FqP/e8voprza/zJJ5+ka9euNbYtWFqwY8eOi4xv06ZNZs2a1RilNYgNNtggDz74YI477rgvXSZxzpw5efDBB7P11ls3UnUNY/r06VlllVUW2f6Vr3wlyedLKd5+++0Lv4gpBc8991zmz5+/VI/ZfffdG6YYmg3Zm1Ike8veiyN7Nx+yd+3J3s2L7P052ftzsnfzVQrZWwO8iEaOHJnddtvtCwP4AiuvvHL22GOPDB8+vFmH8P/9oVlw37Unn3wykyZNqjG2KS6ZsCzKcc5JUllZma233jpbb711Zs+enREjRuSBBx7Ik08+mbvvvjtDhgxJnz59sueee2aXXXYpdrl18sknn+TII4/Miy++mOrq6iTJ+uuvn3POOSdHHnlk2rZtm+233z4zZ87Miy++mKOOOio33nhjsz6zecSIERk+fHitx5dCCP/vL1q+8pWvZNttty3JL1r22GOPL9w/ceLEXHjhhRk9enQ6dOiQU045Jfvuu28jVddwyjGgvfvuu7UaV1VVlUmTJqW6urpZ309y3LhxXzrmv9/fyy+/fE466aSGL6wBVVdXp0WLmh/3F7yGzfm1XJL99tsvP/7xj/OLX/wiZ5999iJzX6CqqirnnntuJk+enP3226+Rq6xfVVVVNe75usCC+wkeeeSRJRXAk+TOO+/MnXfeWauxC35vNbUQTuOTvcsjh5bjnBPZW/auSfZuPmTvLyd7N0+y9+dkb9m7uSuF7K0BXkTvvvvuUt3bY5111lmqDwlN0f/+0CwILAMGDFjkj0Fz/2O/QDnN+cgjj8w3v/nNbL755ll33XUXzqVNmzbZdddds+uuu2bKlCl58MEHc//99+fpp5/OX//612Yfwq+66qqMGzcu5557bvr06ZOJEyfmoosuyk9+8pP06tUrgwcPXni238cff5y99torAwcObNYh/Kijjsq3v/3tYpfRaMrxi5b/NW/evNxwww257rrrMmvWrOy2224588wzF57R2tyVY0B79NFHv3TMiy++mPPPPz///ve/s8oqq+Scc85phMoa3/z58zNw4MD87ne/y+zZs7Pzzjunb9++i5zBTdO26aab5rDDDssNN9yQv/71rzn00EPTp0+frLjiiqmurs4HH3yQZ555JrfcckvGjRuXk08+Oeuss06xy25QPXv2LHYJ9W6fffYp2yXlWHayd2nn0AXKac6yt+xdqmRv2TuRvWVvmjrZe1Gyd9OkAV5ELVu2zGeffVbr8bNnz067du0asKKGVdulfUpJuc35r3/9ax5//PGFS1Ftuumm6dOnT775zW8u/CPXqVOnHHjggTnwwAMzYcKE/OlPfypy1XX36KOPZr/99sv++++fJFl99dVz7rnn5tBDD82BBx5YY6mbzp07Z5999sngwYOLVG39WGONNUoqYH6Zcvyi5b/97W9/ywUXXJDx48dn9dVXz3nnnZc+ffoUu6xGU44Bbfr06fnVr36VO++8MxUVFTnqqKNy7LHHpnXr1sUurd4999xzueCCC/Lmm2+mV69eOe+88/Ktb32r2GXVm/9dNnP27NkpFAq599578/zzz9cY+8YbbzR2efXutNNOy8orr5wrrrgi55577mIbHu3atcv5559fElfQlKNNN900u+66a7HLoJmRvUtfuc1Z9pa9S5XsLXvL3rJ3cyV7y96lphSytwZ4Ea211lp57LHHan0fkNGjR2fNNdds4Koazpct7VOKym3OL7zwQl599dW88MILGTNmTP7+979n1KhRKRQK6dChQzbbbLP06dMnffr0yVprrZVVV101Rx99dLHLrrMPPvgga6yxRo1tC35WF3f210orrZRp06Y1Sm3Uj3L8oiX5/AuFSy65JPfdd19at26dn/3sZzn88MMXLu9TDko9oC3Ovffem0svvTQfffRRNt9885x33nmL/I4rBVOmTMmll16aYcOGpVWrVjnhhBNyxBFHpFWrVsUurV4NHz58sctmDhs2bLHjm/PVcAsccMAB2WOPPTJq1Kg8++yz+fe//53q6up07949vXv3zvbbb9/s7xn53xZ3b9Av+rKlFJZGhaUle5e+cpuz7P0fsndpkb1lb9lb9m6uZG/ZW/ZuejTAi+iHP/xhzj333Dz44IPZaaedvnDssGHD8tRTT+WKK65opOqK79133825556bgQMHFruURtPc59yiRYtssMEG2WCDDXLIIYckSd5///0aofySSy7J/Pnz07Fjx2y++ebp06dPDjjggOIWXkdz585NmzZtamxbEFIWF1YKhUKNe9PR9JXjFy133HFHrrjiikybNi3f+c53cs4559TqvpmlolwC2n976623csEFF+Rvf/tbOnXqlF/+8pdN7t499eWuu+7K5ZdfnmnTpmWLLbbIeeedl6985SvFLqveDRo0qNglFE3btm2z0047feln7FKwpC9aksV/2SKEU45k7y/W3HPosmjuc5a9/0P2Li2yt+wte5cW2bv0yd6fk72bJg3wItpzzz0zbNiwnH766Xn99ddz4IEHpnv37jXGTJ48OTfeeGMGDRqUrbfeOj/4wQ+KVG39ePHFF3PttddmzJgxSZJvfOMbOe6447LpppsuHFNdXZ0//vGPueqqqzJ79uxilVpvynHO/22llVbKzjvvnJ133jnJ50v73HfffRkyZEgefvjhDB8+vNmH8HJz/PHHZ+211y52GY2qnL5oGTduXM4777yMHTs2PXr0yIUXXpjvf//7xS6rUZVLQFtgzpw5ueaaazJw4MDM+3/t3XlYVOXiB/DvsAmIihspbrnFuKWILNJVSxC3UHDJLUlzv2lqampRuKBoblmapl5xq+uSgKCIoLikyKKAXEO9ejV3xQ1EEgeG8/vDh/k1ggrIzOGc8/08T8+TZ97J7xsK8z3vOe/Jz8fAgQMxffp0VK1aVexo5e7ChQuYM2cOUlNTUatWLSxfvlzWJU0uW0HSyyntRIuvr6+svx+T4bB7K6OHKnHOf8fuLT/s3s+xe8sXuze7t1ywe8sfu7c0cQFcRCYmJli7di2mT5+On3/+GevWrUPdunVRu3ZtmJqa4sGDB7h27RoEQUDPnj2xYMECsSO/kZMnT2LMmDHQarVo3LgxrKyskJSUhBEjRiA4OBjOzs64ceMGpk2bhrS0NNjY2GDu3Llix34jSpzzi3Jzc5GUlITExEScPn0aZ8+eRV5eHiwsLHRbsslBZmYmbt26pft14RXIDx8+1DsOPL+6VcomTpyo92uNRoPz588jIyNDt82NWq2W5fOKlKB///4oKCgAANSsWRPbtm3Dtm3bXvkelUqFzZs3GyOeQSmtoAHA0aNHMX/+fNy8eRMODg6YO3cu2rZtK3Ysg1i8eDG2bt0KrVaLDz74AFOmTIGNjU2R79EvKu5OE7navn07jh8/jlWrVokdpUxKurXx30n9+1dZTrScOnXKAEmMQ2nP+KXyw+4t/x6qxDm/iN2b3Zukhd2b3ZvdWx+7t3Swe5cMu7f4VIIgCGKHIOD333/Hnj17kJaWhnv37uk+yDo5OaFv375wc3MTO+IbGzlyJNLS0rBhwwY4OjoCAO7evYvx48fD3NwcQUFB8PPzw4MHD+Dl5YVvvvkGtWvXFjn1m1HinPPz85Gamor4+HjEx8fjzJkzyMvLg7m5Od59911d8XZ0dJTNdkZqtbrY57YIgvDK57mcO3fOkLEM7v79+1i+fDmio6ORk5Oj95qVlRW6d++OqVOnFrm7RorUajW+/vpreHh46I5lZWXB19cXy5Yt0/39LhQTE4NFixZJ8mvctWvXMr0vNja2nJMY18sK2utIuaB9/vnniImJAQB88MEH8PPzg6mp6Wvf5+zsbOhoBqFWq3X/XppnbUnx73FZBQQEYOfOnZKdc0m/fxUUFODu3bu6n9NSnW9p3L59G6GhoQgLC8P169cVMWeil2H3lmcPVeKc2b3/H7s3u7cUv8bs3uzer8PuLV/s3vLF7l2xcAGcjMbNzQ0DBgzA9OnT9Y4fP34cY8aMQdOmTXHv3j3MmTNH8tvNFVLanMeMGYNTp04hNzcXJiYmaNWqFdzc3ODq6gonJ6ci21jJxezZs8v0PilfSZWamopx48YhKysLbdu2hZubG+zs7GBmZoaMjAwkJSUhKSkJVatWxZo1a9C+fXuxI78RpZ5oURIlFrS/zxl4/bylXljKemX1i3feyJnUS3hJnDlzBnPmzMG5c+dQv359fPPNN+jSpYvYsQzi2bNniI6ORkhICBISEnR/hzt16oSff/5Z7HhEZEBK66GA8ubM7l067N7Swe4tf+ze7N4vw+4tL+ze7N4VAbdAl5CEhARcuHChTFtMVATZ2dlo2rRpkePNmzeHIAjIzMzErl27ZPFsgUJKm/Pvv/8Oc3Nz+Pj4YNy4cXj77bfFjmQUUi7TZfHgwQN89tlnqFy5Mn766Sc4OTkVOy49PR1TpkzB559/jj179qBmzZpGTlp+fHx8SlXMlOTUqVMIDQ2V/FahSipahZT2vassX2O5PRtUybKzs7Fs2TLs3LkTJiYmGDduHP75z3/KcsvQ1NRUhISEYP/+/Xjy5AkAoEaNGujfvz8GDRqEevXqiZyQqOJj95Yepc2Z3VsZ2L3p79i9pUtp37vYvZWN3ZvduyLhAriEREZGYufOnZIt4VqtFmZmRf/IFW7FNX78eNmU0UJKm/PAgQORkJCg2+ajSZMm6NixI9zc3ODs7Ixq1aqJHZHKwbZt25CTk4Pt27ejQYMGLx3XsmVLBAcHw9vbG7/++ismTZpkxJTla9GiRWJHqFDu3LmD0NBQhIaG4vr16wCgyBIu9YLm6+tb6vfcvHnTAEkqnsKTSwcOHJD0M5vouT179uC7777DgwcP4OLigoCAgGIXSaQsIyMDYWFhCA0NxZ9//glBEGBlZQV3d3fExcVh3rx5eluJEtGrsXtLj9LmzO6tDOzexO79HLu3fLF7ywu7N7t3RcMFcKow5PbNsCTkNuf58+cDAG7duoW4uDjEx8cjKioK27Ztg4mJCdRqNVxdXXWl3NraWuTEVBYHDx5Enz59XlnAC9WrVw++vr6Ijo6WdAn38/PDhAkT0LFjR92x/Px8pKSkQK1Wo0qVKnrjw8PDMWvWLKSnpxs7qsFoNBrddj7x8fEQBAGCIMDV1RVDhgwRO55RKa2gPXv2DFFRUQgNDUVSUhL++OMPsSMZROHJpbCwMFy7dg2CIMDW1lbsWPQGLl++jLlz5yIxMRHVq1fHokWL4OPjI3ascrV//36EhIQgLi4OWq0WVatWhbe3N7y8vNCpUyfcu3cPnp6eYsckogpGbj20JOQ2Z3ZvZWD3fo7dm92b3Vte2L3lh92b3bui4gI4EZU7e3t7DBgwAAMGDAAAXLx4EfHx8Th58iR2796N4OBgmJmZoXXr1ujYsSMmT54scmIqjRs3buDjjz8u8Xi1Wo3Q0FADJjK8xMREDBw4UO9YdnY2/Pz8sHHjRr1yXkgQBGPFM6gXt/MpnFfv3r3x2WefoUmTJiInNA4lFrTk5GSEhIQgKioKOTk5EAQBzZs3FztWuSo8uRQaGor4+HgUFBRAEAS0a9cOgwcPRq9evcSO+EbCwsJKNf7KlSuGCWJkGo0Gq1evxsaNG5Gfn4+BAwdi+vTpqFq1qtjRyt3UqVNhbW2NoUOHwsPDA87OzjA1NdW9zi1EiYjkjd1b3ti9n2P3Zvdm95Y+dm997N7Sw+4tTVwAJ6M6deoUtFqt3rGcnBwAwIkTJ3D37t0i75H61UJKnPOLmjdvjubNm2P48OHQaDSIiorCr7/+itTUVJw5c4YlXGLMzc3x7NmzEo/Pzc2V7R0HcinaLypuOx9bW1v4+vqiXbt2CAgIQK9evWRfwOVe0Ipz9+5d3df+6tWrAAAzMzP06tULQ4YMQYcOHUROWD7OnDmD3bt3651cqlq1KrKzszF//vwiJ92katasWaUqYYIgSL60HT16FPPnz8fNmzfh4OCAuXPnom3btmLHMpj69evjxo0bCAkJwZUrV/Cf//wHnp6eaNy4sdjRiEhkSuyhSpzzi9i95YXd+/+xe7N7yw27N7s3u7e0sHtLExfAyah27tyJnTt36h0r/BC7YcMGvW/8hT8IpF5IlTjnv7t27RrOnDmDM2fOIC0tDefPn0deXh4qV66Mzp07w9nZWeyIVErvvPMOjh49WuJnIh45cgTNmjUzcCoqL2PHjsWJEyeg1WpRt25dDB06FJ6ennB1dYWJiQlu3rwp25MPhZRS0AppNBocPHgQu3fvRnx8vO7EcdOmTXH58mUsWbIEPXr0EDnlm8vIyMCePXsQGhqKK1euQBAE2Nvbw9fXF15eXnjrrbfQrVs31KhRQ+yo5SYoKEjsCEb1+eefIyYmBgDwwQcfwM/PDxqNBklJSa98n5Q/ixw8eBBnzpxBeHg4oqKicPz4cSxfvhxNmjSBl5cXWrVqJXZEIhKJEnuoEuf8d+ze8sPuLW/s3uze7N7s3lLF7s3uLRVcABfRrVu3SjW+8MplqVLaDwJAeXPOyspCWlqarnCnpaUhKysLgiCgWrVqaN++PaZOnQpnZ2e0bNkSJiYmYkemMujbty++/fZbREZGvvYq3LCwMMTFxWH58uVGSkdv6tixY7C2toafnx+GDRuG2rVrix3JKJRY0NLS0hASEoLIyEg8fvwYJiYmcHR0hJeXF7y8vKDVauHp6Qlzc3Oxo5aLrl27oqCgAGq1GuPHj4eHhwdat26te/3mzZsipjMMX19fsSMYVXR0tO7fY2Njcfjw4VeOL1z8OHfunKGjGVTbtm3Rtm1bfPXVVzh+/DgiIiJw6NAhrFmzBiqVCiqVCocPH4ZarUa9evXEjkskCnZv+VPanNm9lYHdW97Yvdm92b3lg92b3Zvdu2LiAriIunbtqqitMcryg0DqPxCVNmdXV1eoVCoIgoDq1avDxcUFzs7OcHZ2hoODg6T//NL/69+/P8LCwvDll1/iwoULGDZsGOzs7PTGZGRkIDg4GFu2bEGXLl3Qs2dPkdJSaU2cOBH79u3D2rVr8fPPP6Nx48bw9PSEp6cn3n33XbHjGYwSC9pHH30EKysrdOrUCZ07d0bXrl31TjLIbc75+fmwsrJCrVq1YGVlVWSLVCW4e/cuTp8+jYyMDACAnZ0dHB0dUbduXZGTlQ+lLX68yNTUFF26dEGXLl2Qm5uLmJgY7N27FydOnMBvv/2GkJAQuLq6on///vjwww/FjktkVOzeryf1n/tKmzO7tzKwe8sbuze7dyG5zZndm91b7ti9pYML4CLy8fFhKSnGs2fPEBUVhdDQUCQlJeGPP/4QO5LByWXOPXr0gIuLC1xcXLjtloyZmJhg7dq1mD59On7++WesW7cOdevWRe3atWFqaooHDx7g2rVrEAQBPXv2xIIFC8SOTKUwceJETJw4EWfPnkVERAQiIyOxbt06rF+/HnXr1oWTk5Msf3YpsaBZWVnh6dOn+N///ofq1avD2toanTt3ho2NjdjRDOLw4cOIiIhAREQEli9fDpVKhVq1aqFbt27o1q2brK/OvXjxIgIDA5GUlARBEPS2UjQxMYGTkxP8/f3h4OAgYso3p7Sr7l/F0tIS3t7e8Pb2xqNHjxAZGYmIiAicPHkS8fHxLOGkOOzexZNLDy0NucyZ3VsZ2L3ljd2b3ZvdW37YvZWH3btiUwlyf5gISUZycjJCQkIQFRWFnJwcCIKA5s2bIyIiQuxoBqPEOZO8/P7779izZw/S0tJw7949CIIAOzs7ODk5oW/fvnBzcxM7YrlQq9X4+uuv4eHhoTuWlZUFX19fLFu2DI6OjnrjY2JisGjRIslv7QM8vwPq5MmTiIiIQExMDJ48eQIAqFevHvr37w8fHx/Y29uLnPLN3b59W1fQLl68WGxB8/LywurVq/X+HEhZbm4uYmNjER4ejuPHj0Or1cLc3BwdO3ZEt27doFarMWDAAFnNudD58+d1J5lu374NlUqlOykxa9YsfPLJJ2JHLDeHDh3ClClToFKp4OnpCTc3N9jZ2cHMzAwZGRlISkpCVFQU8vPzsWLFCnh6eoodmQzo+vXr2LdvH8aPHy92FCISkRJ7qBLnTPLC7s3uze4tXeze7N7s3srD7l0xcAFcIm7fvo3Q0FCEhYXpPWNB6u7evYuwsDCEhobi6tWrAAAzMzN4eXlhyJAh6NChg8gJy58S50wkdWq1utgrr1+3PaYcSvjfaTQaxMbGYu/evTh69Cjy8vJgYmKCjh074l//+pfY8cqNkgpaoczMTN1VqqmpqXqvjR07FuPHj4eVlZU44QwsMTERERERiI6ORlZWFlQqFerXr49+/frB19cXderUETtimd24cQPe3t5o3LgxVq5ciQYNGhQ77s6dO/j8889x6dIl7Nmz56XjKrrZs2eX+j0qlQoLFy40QBoikip2b/lQ4pyJpI7d+zl2b3ZvOWL3Zvdm9yZj4wJ4Bfbs2TMcOHAAoaGhSEhIQEFBAczMzHD27Fmxo70RjUaDgwcPYvfu3YiPj9dtddO0aVNcvnwZK1asQI8ePUROWb6UOGdSDo1Gg/PnzyMjI0N3FbparUalSpXEjlZuyvLBDpD3M3EeP36MqKgoRERE4PTp00hPTxc7kkHIuaC9zM2bNxEREYG9e/fi0qVLUKlUsLa2Rs+ePdG/f/8id13IRV5eHo4dO4bw8HAcOXIEz549k/znrgULFmDPnj2IiorSe8ZccTIzM9GrVy/06dMHs2bNMlLC8qVWq0v9HpVKJekTpmW5Q0SlUuHgwYMGSEMkXeze8qHEOZNysHu/HLu39LF7s3tL+XMXu/frsXuTGLgAXgGlpKQgNDQUkZGRuq256tSpg4EDB+Kjjz5C7dq1xY5YJmlpaQgJCUFkZCQeP34MExMTODo6wsvLC15eXtBqtfD09JTVdi9KnDMpx/3797F8+XJER0cjJydH7zUrKyt0794dU6dOhZ2dnUgJyVhOnTol+zto5FjQSuL8+fMIDw9HZGQk7ty5I/nCUlJPnjxBdHQ09u7di40bN4odp8x69uyJzp07l/hE4nfffYfDhw9j//79Bk5mGDdv3izT+6T8DLquXbsWOSYIAm7fvo1atWrBwsKi2PfFxsYaOhqRJLB7y6eHKnHOpBzs3lSI3Vu+2L3ZvaWE3fs5du+Kz0zsAPTc3bt3sWfPHoSEhODq1asQBAEmJiYAgClTpmDs2LG6X0vVRx99BCsrK3Tq1AmdO3dG165d9a6IKus3zopMiXMmZUhNTcW4ceOQlZWFtm3bFvtcm7CwMMTGxri2SyoAAEWbSURBVGLNmjVo37692JGplM6ePYvU1FQIgoAWLVoUW7KfPHmCpUuXYteuXfjjjz9ESGk85ubm8PDwgIeHh15Bkzu1Wg21Wo0vv/wSCQkJipgzANjY2MDT0xPJycliR3kjt2/fRrNmzUo8vkmTJvj3v/9twESGJeUyXVbFlemHDx/C3d0dS5YsQceOHUVIRVSxsXvLs4cqcc6kDOze8sfurY/dm91biti95Y/dW5q4AC6iwq25QkJCcPLkSWi1WlSqVAldu3ZFt27d4ODgAF9fXzRv3lzyBRyA7hku//vf/1C9enVYW1ujc+fOsLGxETuawShxziR/Dx48wGeffYbKlSvjp59+gpOTU7Hj0tPTMWXKFHz++efYs2cPatasaeSkVBZ//fUXvvjiCxw9ehSFm8SoVCq4u7tjzZo1uisajxw5goCAANy9excNGzYUM7LRyaWglZa9vb3kTx7fuHEDwcHBSElJAQC0bNkSY8aMQaNGjfTGRUdHY/78+bh//z4CAwPFiFouLC0t8fjx4xKPf/z4MapWrWrAROLSaDS4dOkSLC0t0aRJE7HjGMyrno9JpFTs3vLvoUqcM8kfu7e8sXu/Hru3dLF7vxq7tzywe1d8XAAXUadOnfD48WNUq1YNvXv3hoeHBzp37gwrKysA8rtC+eTJk4iNjUV4eDh2796NnTt3wtzcHB07dkS3bt3K9OyIik6Jcyb527ZtG3JycrB9+3Y0aNDgpeNatmyJ4OBgeHt749dff8WkSZOMmJLK6scff8SRI0fQqVMn+Pr6wtraGkePHsWOHTvw3Xffwd/fH4sXL8amTZtgamqKUaNG4fPPPxc7drlQWkEDgDNnzmDNmjV6c/7ss8/07joQBAGbNm3CDz/8gNzcXLGivrFz585h+PDhePLkCSwtLWFpaYn09HRERkZi+/bteOedd5CdnQ1/f39ER0fD1NQUY8eOFTv2G2ndujWio6MxatSoEo0/cOAAWrRoYeBUhpWdnY3169cjJSUFW7du1R2PiIhAYGCg7qRE48aNsXDhQrRr106kpERkTOze8u+hSpwzyR+7t7yxe7N7s3uze0sZuzdJARfARZSVlQVra2t0794drq6uaN++va6Ay5GlpSV69eqFXr16ITMzE5GRkYiIiMCxY8dw7NgxAM+vmklLS4O7u7ss/l8occ4kfwcPHkSfPn1eWcAL1atXD76+voiOjmYJl4jY2Fi4uLhg/fr1umPvv/8+atasia1bt8LW1hbBwcFQq9UICgqS/Af2QkosaCdPnsSYMWOg1WrRuHFjWFlZISkpCSNGjEBwcDCcnZ1x48YNTJs2DWlpabCxscHcuXPFjl1mhScRli1bht69ewN4/rzQL774AoGBgVi6dCn8/Pzw559/ok2bNggMDISDg4PIqd/MgAEDMGXKFAQHB2PkyJGvHLt27VqkpaXp/d2XmpycHAwaNAiXL19GnTp1kJ+fDzMzM6SlpWHmzJkQBAGDBg1C8+bNERYWhpEjRyIsLKzIiTYikh92b/n3UCXOmeSP3Vve2L3Zvdm92b2lit2bJEMg0SQlJQnffvut4OLiIqjVaqFFixbCRx99JGzYsEG4evWqcOPGDcHBwUE4ePCg2FEN6saNG8KaNWuE3r17Cw4ODoJarRbat28vfP3110JycrLY8QxCiXMm+WjXrp2wffv2Eo/fuXOn4OjoaMBEVJ7atWsnbNq0qcjxS5cuCQ4ODkKLFi2E+fPnCxqNRoR0hjN+/HihVatWwt69e3XHzpw5I3h4eAjDhw8X7t69K3Tv3l1wcHAQBgwYIJw/f17EtOVjxIgRQvv27fV+7ty5c0fw8fERBg4cKFy6dElwd3cXHBwchEmTJgkZGRkipn1z7u7uwvz584scP3DggNCyZUth6NChQuvWrYX169cLWq1WhISGMWnSJEGtVgvTpk0TUlJS9P7uarVaISUlRTfmm2++ETHpm/vhhx+EVq1aCfv379c7PnbsWEGtVgtBQUG6Y7m5uYKXl5cwa9YsY8c0uIcPHwoODg5CXFyc2FGIKgx27+eU2EOVOGeSD3ZveWP3Zvdm92b3lip27+fYvSs+3gEuog4dOqBDhw745ptvcPToUURERODIkSM4c+YMli5digYNGkClUuGvv/4SO6pB1atXD+PHj8f48eNx/vx5hIeHIzIyEr/99ht2796Nc+fOiR2x3ClxziQf5ubmePbsWYnH5+bmwtra2oCJqDw9ffoUNWrUKHK8evXqAIBu3brB39/f2LEMLi0tDYMHD9ZdnQwA7777Lr788ktMnToVU6dOxc2bNzF9+nR8+umnsng+6Llz5zBkyBA4Ojrqjr311luYNm0axowZg8mTJyM/Px8rVqxAz549RUxaPrKysord/rRNmzbQarW4cOECtm7dKrttuZYuXYqgoCBs374d+/btg6mpKWxtbWFqaorMzExoNBqYmJhg1KhRmDp1qthx30h0dDT69u2LHj166I7l5OTgxIkTAIChQ4fqjleqVAl9+vTBrl27jJ6TiIyP3fs5JfZQJc6Z5IPdW97Yvdm92b3bGT+cAbF7s3tTxcMF8ArAzMwMHh4e8PDwQE5ODqKjoxEREYGEhAQIgoCZM2di9+7d6NevH7p3745KlSqJHdlg1Go11Go1vvzySyQkJGDv3r1iRzI4Jc6ZpO2dd97B0aNH4efnV6LxR44cQbNmzQycigxNpVIBAHx8fMQNYiBKLGjZ2dlo2rRpkePNmzeHIAjIzMzErl270LBhQxHSlb/8/PxiP0NZWloCAMaOHSurr28hCwsLBAQEwM/PD2FhYUhLS8O9e/cgCAKaNGkCJycneHt7y2Irshs3bugVbQBISkpCfn4+GjRoUOTPct26dfHgwQNjRix3q1atKnIsNzcXKpUKe/bswenTp4u8rlKp8NlnnxkjHlGFw+79/5TYQ5U4Z5I2dm9lYvdm95Y6dm92b3bv59i9xccF8AqmcuXK8PX1ha+vLx48eIC9e/ciIiIC8fHxiI+Px/z585GUlCR2TKNwdXWFq6ur2DGMSolzJunp27cvvv32W0RGRqJXr16vHBsWFoa4uDgsX77cSOnI0AoLi9wosaBptVqYmRX9KGhhYQEAGD9+vGwKeEm0bt1a7AgG1bhxY8lfZf46JiYmKCgo0Dt28uRJAIC7u3uR8Q8fPoSNjY1RshlKcSW8UFhYWLHHWcKJnmP3/n9K7KFKnDNJD7u3srF7ywe7tz52b+lj99bH7l1xcQG8AqtZsyY++eQTfPLJJ7h69SrCw8MlfYVySa9Y/TuVSoXNmzcbII1xKHHOJH/9+/dHWFgYvvzyS1y4cAHDhg2DnZ2d3piMjAwEBwdjy5Yt6NKliyy2cFKSwivOS/uanMm9oBWnuCvU5UwJf7bv3r2L06dPIyMjAwBgZ2cHR0dH1K1bV+Rk5aNZs2ZISUnBsGHDAACCICAmJgYqlQpdu3YtMv7QoUOS/3O+ZcsWsSMQyQK7t/R7qBLnTPLH7i1/7N5FsXvLnxL+bLN762P3JrFwAVwiGjVqhEmTJmHSpEliRymzxMTEYo+rVCoIgvDS16RMiXMm+TMxMcHatWsxffp0/Pzzz1i3bh3q1q2L2rVrw9TUFA8ePMC1a9cgCAJ69uyJBQsWiB2ZSmnhwoVYsWKF3jFBEKBSqTB9+vQiV2urVCocPHjQmBGNjt+b5eHy5ctF7ubLzs4GAFy4cKHYq/KdnZ2Nks2QLl68iMDAQCQlJUEQBL3PICYmJnBycoK/vz8cHBxETPnmfHx8sGDBArRp0wbvvfcedu7ciVu3bqFhw4bo1KmT3ti1a9ciNTVV8s9VdHFxETsCkeywe0uTEudM8sfuLX/s3kXxe7M8sHuzexdi9yYxcQFcRH5+fpgwYQI6duyoO5afn4+UlBSo1WpUqVJFb3x4eDhmzZqF9PR0Y0ctF+fPny9y7OHDh3B3d0dwcLDe/we5UOKcSRmqVKmCn3/+Gb///jv27NmDtLQ0/Pe//4UgCLCzs4OPjw/69u0LNzc3saNSKdnb2wNAsScKC69UffG1l51UlBolFrRTp05Bq9XqHcvJyQEAnDhxAnfv3i3yHik/i27t2rVYu3Ztsa8tXry42OPnzp0zZCSDO3ToEKZMmQKVSoUePXrAzc0NdnZ2MDMzQ0ZGBpKSkhAVFYUBAwZgxYoV8PT0FDtymQ0ePBinT59GUFCQbsGjWrVqWLp0KUxMTAAAv/32G9atW4fr16/DyckJQ4YMETm1YWk0Gly6dAmWlpZo0qSJ2HGIRMPuLf8eqsQ5kzKwe8sXuze7N7u3PnZv6WD3Lordu2JSCXL5ySlBarUaS5Ysgbe3t+7Yo0eP4O7ujo0bNxYpaOHh4Zg5c6bkfxj83aNHj9CxY0dFFVIlzpmIqKJTq9UvvdK88Ar84kj5Z/LL5vz3j4Z/f73w/4NU5/zjjz+W6W6CiRMnGiCNcdy4cQPe3t5o3LgxVq5ciQYNGhQ77s6dO/j8889x6dIl7Nmz56XjpCIlJQUpKSmwsbGBp6cnatSooXtt1apV2LNnD7y9vTFu3Lhinz8oNdnZ2Vi/fj1SUlKwdetW3fGIiAgEBgbi8ePHAJ4/i27hwoWye6YiUUmweyuzhypxzkREFR279/9j99bH7i097N7PsXtXXLwDvALiNQlEJBW5ubmwtLQscvzSpUuoWrVqkeeTUcUXFhaGDh06oH79+mJHMarPPvtMcVutBQUFiR3BqKS8lW1Zbd68Gebm5tiwYYNeEX1RnTp1sG7dOvTq1Qu//PILZs2aZcSU5c/R0RGOjo7FvjZx4sSXnljJy8tDampqsXeDVlQ5OTkYNGgQLl++jDp16iA/Px9mZmZIS0vDzJkzIQgCBg0ahObNmyMsLAwjR45EWFgYGjVqJHZ0ogqB3ZuIpILdW37YvZWD3Vv+2L2LYvdm964IuABORESlptFosHjxYkRERODYsWNFivjy5ctx7Ngx9O/fHzNnzoS1tbVISam0Zs+eje+++05xJVyJBc3X11fsCEZV3Pa3cnf8+HH4+vq+soAXsrW1hY+PDw4fPiz5El5WWVlZ8PPzK/Zu0Ipq48aNuHbtGr7//nv06NFDd3z16tUQBAGffPKJ7us5YMAA9OnTB2vXrlXcSTgiIiKpYveWL3Zv5WD3lj9279Jh9yZjMRE7ABERSYtGo8GoUaPwyy+/wN7eHo8ePSoy5oMPPoCDgwN27NiB0aNHIz8/X4SkVBZKvRPKz88PJ0+eFDuGUXl4eODQoUNixzCaxMRE3L9/X+wYRnX79m00a9asxOObNGmCO3fuGDBRxSe174HR0dHo27evXgHPycnBiRMnAABDhw7VHa9UqRL69OmjuO91REREUsXuLW9S+9xZXti95Y/d+/XYvaX3PZDdW5q4AE5ERKWyadMmJCUlwd/fH2FhYahbt26RMQMHDsTu3bsxceJEJCcnY9u2bSIkJSo5JRa0mzdv4q+//hI7BhmQpaWl7hlUJfH48WNUrVrVgImovN24cQOtW7fWO5aUlIT8/HzUr18fDRs21Hutbt26ePDggTEjEhERURmxe5McsXuTHLF7yx+7tzRxC3QymrCwsCLHcnJyAAAnTpzA3bt3i32fj4+PAVMZlhLnTPIXEREBDw8PfPzxx68dO3HiRCQmJmLPnj0YMWKE4cNRucjMzMStW7dK9R57e3sDpSGismrdujWio6MxatSoEo0/cOAAWrRoYeBUVJ5MTExQUFCgd6zwKnN3d/ci4x8+fAgbGxujZCMi8SixhypxziR/7N7yx+5NJA/s3vLH7i1NXAAX2YsfdLKysgA8/wvy4geg4rY6kpJZs2ZBpVLpHSvc6mLDhg1QqVS6Xxf+u0qlknQhVeKcSf6uXr2KwYMHl3j8+++/j5UrVxowEZW3hQsXYuHChSUer1KpkJ6ebsBEROUjJiYGV69eLfF4lUqFzz77zICJDGvAgAGYMmUKgoODMXLkyFeOXbt2LdLS0rB+/XojpaPy0KxZM6SkpGDYsGEAnn/OjImJgUqlQteuXYuMP3ToEJo2bWrsmEQVAru3vHuoEudM8sfuLX/s3iRX7N4vx+4tTeze0sQFcJG97IPO9OnTRUhjWEFBQWJHMDolzpnkz9raGlqttsTjK1WqBEtLSwMmovLm5OSEBg0aiB3D6JRW0ABg586diIuLK/F4lUpVqhM0FU1MTAyio6NLPF7qX+MePXrAy8sL3333Hf744w98/PHHaNWqFczNzQEABQUFSEtLw8aNGxETE4OBAwfiH//4h8ipqTR8fHywYMECtGnTBu+99x527tyJW7duoWHDhujUqZPe2LVr1yI1NRX+/v4ipSUSF7u3vClxziR/7N7yx+5dMlLvZQC79+tI/WvM7i1/7N7SxAVwEfn4+BS5QlnOfH19XzsmKysLlpaWqFSpkhESGZ4S50zy16RJEyQnJ8PPz69E40+fPo169eoZOBWVp0GDBsHb21vsGEantIIGPH9eUVJSUonHS72Ejxs3rtitqeRs6dKlCAoKwvbt27Fv3z6YmprC1tYWpqamyMzMhEajgYmJCUaNGoWpU6eKHZdKafDgwTh9+jSCgoJ0dzRWq1YNS5cuhYmJCQDgt99+w7p163D9+nU4OTlhyJAhIqcmMj5276Lk1kOVOGeSP3Zv+WP3Lhl2b+lh92b3lht2b2niAriIFi1aJHYEo8vLy0NISAhSU1P1rtBOTEzEnDlzcOXKFahUKri7uyMgIEAWV0Eqcc4kb76+vggICEB8fDzc3NxeOTYhIQHR0dGYNGmSkdIRlZ0SC9pXX30FDw8PsWMYTdOmTeHi4iJ2DKOysLBAQEAA/Pz8EBYWhrS0NNy7dw+CIKBJkyZwcnKCt7c3GjVqJHZUKgOVSoWlS5di2LBhSElJgY2NDTw9PVGjRg3dmDt37kAQBEyYMAHjxo3TlXMiJWH3VkYPVeKcSd7YvUmu2L3lj92b3Vtu2L2liQvgIho9ejR8fHzg6empiC2K8vLy8OmnnyIpKQnm5uaYP38+zMzMcOXKFYwePRp5eXno1KkTmjVrhgMHDmDQoEEIDw9HrVq1xI5eZkqcM8mfj48Pdu/ejfHjx2PcuHEYOHBgkT+zGRkZ2LVrFzZs2ID69etj6NChIqUlKjklFrTq1avzLhGFaNy4Ma8ylzFHR0c4OjoW+9rEiRMxceLEYl/Ly8tDamoq1Go1qlSpYsiIRKJi95Z/D1XinEn+2L1Jrti9Sc7YveWN3VtaeAmCiBITEzFjxgy4u7tj1qxZiIuLgyAIYscymG3btuHUqVOYMWMGkpKSYGb2/PqLH3/8ERqNBt7e3li3bh2+/PJL7N69G6ampli7dq3Iqd+MEudM8mdubo7Vq1ejbdu2WLlyJTp16gQPDw8MHjwYAwcORNeuXdGlSxf8+OOPcHBwQHBwMH+wS4i9vT2sra3FjkFEREaQlZUFPz8/nD17VuwoRAbF7i3/HqrEOZP8sXvLG7s3EZFysHuLg3eAi+jkyZM4ePAg9u/fj3379mHPnj2oVasWvL290adPH6jVarEjlqu9e/eie/fuGDVqlO6YRqNBbGwsVCqV3nFbW1v069cP+/btg7+/vxhxy4US50zKULNmTWzevBnR0dHYt28f0tPTceHCBZiYmKBWrVrw8fFBt27d0LVrV7GjUinFxsa+8vWCggLcuXMHtWrVgoWFhZFSEb25iRMnwsHBQewYRlXS50X+nUqlwubNmw2QpmK4d+8ebG1tYW5uXuS1atWqYcuWLWjRooUIycQj50VAokLs3vLvoUqcMykDu7d8sXuTXLF7lwy7N7s3GR4XwEVUuXJl9O3bF3379kV2djYOHDiAyMhIbN68GcHBwWjWrBn69u0Lb29vvPXWW2LHfWN//vknfH199Y6dPn0aubm5sLOzK/KDsWHDhsjIyDBmxHKnxDmTsnh5ecHLy0vsGGREDx8+hIeHBzZu3IiOHTuKHafcKLGgBQUFvXTbJjl62TZUhf766y9s3LgRPj4+qF+/vpFSGVZiYmKxx1Uq1UuLl0qlMmQkowgODsbOnTsRHh5epGwvXLgQcXFxGDVqFEaPHq33TC5zc3PFbcVIpBTs3vLvoUqcMykLu7fysHvLB7u3Pnbv/39N6ti9qaLjAngFUaVKFQwYMAADBgzAw4cPERUVhf3792P58uVYvnw5nJ2d4ePjAy8vL1SuXFnsuGVSUFAAU1NTvWPx8fEAAHd39yLjs7OzYWVlZZRshqLEORMBz7d1sbS0RKVKlcSOQgYgxysWlVjQXjxJ/KInT55gwYIFGD16NJo2bWqkVOL566+/sHr1ajg5Ocnma3z+/Pkixx4+fAh3d3cEBwfL6kQa8Px70/Tp07Fv3z7UrFkTd+7cQYMGDfTGNG3aFMnJyVixYgXOnj2LH374QaS0RCQWdm959lAlzpkIYPeWO3ZvefQydm997N7Sx+5NUsFngFdANWrUwNChQ7F161YcOXIEX3/9NUxMTPDtt9/iH//4h9jxyqxhw4Y4d+6c3rGYmBioVCq8//77RcYfP34cDRs2NFI6w1DinEkZ8vLysGPHDsyePVvveGJiInr16gU3Nzc4Ojpi9OjRuHbtmkgpicpPYUG7fv262FGMJjc3F2FhYYq6O0qOJ5heJIerzF9mx44d2LdvH0aMGIEjR44UKeDA8xNuMTEx6NevH2JiYhASEiJCUiKqKNi9n5NDD1XinEkZ2L1Jadi9lYHdW9rYvUkquABewZmbm8PS0hI2NjYwMzODRqMRO1KZ9e7dG3v27MHBgwfx9OlTbNq0CZcvX0bNmjWLPKsoPDwcJ06cgIeHh0hpy4cS50zyl5eXh08//RQBAQHYu3cv8vPzAQBXrlzB6NGjceXKFXTq1AkjRozAlStXMHjwYNy/f1/k1ERvTgkF7UVKnDNJ12+//QYXFxfMmjWr2OeMFbKwsEBgYCBatGiBnTt3GjEhEVVk7N7S7qFKnDPJH7s3KZUSe6gS50zSxe5NUsEt0Cughw8fIiYmBlFRUUhKSkJ+fj5atmyJyZMno3fv3mLHK7MRI0bg999/x8SJE3XPvzA3N8eCBQtgYWEB4PkV2tu2bUNiYiIaN26MESNGiBv6DSlxziR/27Ztw6lTpzBjxgwMGzYMZmbPf5T8+OOP0Gg06NOnD7777jsAwNixY+Ht7Y21a9fC399fzNhUTszNzeHs7Ixq1aqJHYWISM///vc/TJ48uURjVSoVevTogTVr1hg4FRFVZOze8umhSpwzyR+7t7KxexNRRcXuTVLBBfAK4v79+4iOjkZUVBROnz4NrVaLevXqYdSoUejTp48snv9hYWGBTZs2ITIyEqmpqbCxsYG3tzeaNWumG3P27FkkJyejT58+mDVrFiwtLUVM/OaUOGeSv71796J79+4YNWqU7phGo0FsbCxUKpXecVtbW/Tr1w/79u1jCZeI7OxsVKlS5aWvV6tWDVu3btU7lpCQAFdXV0NHIzKoKlWqICgoCM2bNxc7CpWRmZmZbpGjJKpWrVrkebFEJH/s3s/JrYcqcc4kf+ze8sbuTUrF7i197N4kFVwAF1FGRgaio6Nx4MABJCcnQ6vVolq1ahgwYAC8vb3RoUMHsSOWO1NTU3h7e8Pb27vY18ePH4/JkyfDxEQ+u/Mrcc4kb3/++Sd8fX31jp0+fRq5ubmws7ODg4OD3msNGzZU1HOMpM7Pzw/BwcGwtbV97dhnz55hyZIl+PXXX5Genm74cCJSYkGrVq0atmzZghYtWogdxSgqVaqEf/zjH7zDQsIaNWqEs2fPlnj82bNnUbduXQMmIqKKgt27KDn2UCXOmeSN3Vve2L2Lx+4tf+ze0sfuTVLBBXARdenSBcDzK5U9PT3h7e2NLl26vPK5CXJnZWUldgSjU+KcSdoKCgqKXLUXHx8PAHB3dy8yPjs7m3/OJeTcuXP4+OOPsWnTJtSqVeul486cOYOZM2fizz//fOU4uahUqZLeySetVot169ZhwoQJIqYyLHNzc7i4uOh+nZ2djcWLFyMwMFDEVG8uODgYO3fuRHh4eJHPXAsXLkRcXBxGjRqF0aNHS/4EeVhYWJFjOTk5AIATJ07g7t27xb7Px8fHgKkM58MPP8SyZcswcuTI154wu3jxIiIiIuDn52ekdEQkJnbvopT4+VyJcyZpY/eWN3bv4rF7s3tLEbv3y7F7k5hUgiAIYodQquHDh6Nv377o0aMHbGxsxI5DRFQiffv2Rdu2bTFv3jzdsV69euHKlStYsWIFevTooTd+9OjRyMrKwq5du4wdlcrgl19+wYIFC9CgQQNs2rSpyBWaeXl5+OGHH7Bx40ZotVr07dsXX331lSyu3M3OzsauXbuQmpoKQRDQsmVLDBs2DFWrVtUb95///Af+/v7473//i3PnzomUtnzcuHEDwcHBSElJAQC0bNkSY8aMQaNGjfTGRUdHY/78+bh//75k5ywIAqZPn459+/ahZs2a2L59Oxo0aKA3ZtWqVdi1axcyMjLQrVs3/PDDDyKlLR9qtRoqlUrv2N8/+hf3mkqlkuzX+K+//kK/fv2QmZmJr776Cr179y5y0jg/Px979+7F0qVLAQChoaGoXbu2GHGN5t69e7C1tS12oS8vLw8pKSlo0aLFK7fgJJI6dm8ikiJ2b3lj92b3Zvdm95bq15jdu3js3hUPF8CJiKhU1q1bh9WrV2PZsmV47733sGPHDixatAi1atVCbGys3jNgwsPDMXPmTEyePBnjx48XMTWVxt69ezFr1izY2dlh06ZNaNiwIYDnV6jPnDkT//3vf2Fvb4+5c+eiU6dOIqctH9evX4efnx/u3LmjV1Jq1aqFXbt2oW7dusjPz8eyZcuwZcsWaLVa9O7dG8uWLRMx9Zs5d+4chg8fjidPnsDS0hKWlpbIzMyEtbU1tm/fjnfeeQfZ2dnw9/dHdHQ0TE1NMWrUKEydOlXs6GWyfft2zJkzByNGjMC0adNeetefRqPB3LlzERISggULFqBfv35GTlp+QkNDy/S+F7falJIrV67gs88+w5UrV2BtbY1WrVqhdu3a0Gq1ePDgAc6ePYvc3FzY29tj9erVUKvVYkcuF6+6u2Lq1KmyuruCiIhIKdi95Y/dm92b3ZvdW6rYvdm9pYAL4CIqbmuMkpDq1hhEJA8ajQajRo1CUlISVCoVBEGAubk5Vq1apdteMiYmBtu2bUNiYiIaN26MkJAQWFpaipycSuPo0aOYMmUKbGxssH79ehw6dAhr165Ffn4+hgwZgmnTpqFy5cpixyw306ZNQ2RkJKZOnYr+/fvDysoKR48exbx589CuXTssWbIEY8eORXJyMuzt7REQEKD78y5VEyZMwO+//47Fixejd+/eAIC0tDR88cUXsLe3x9KlS+Hn54c///wTbdq0QWBgYJHnDErJgAEDYG1tjS1btrx2rCAI6N+/PywsLLB9+3YjpKPypNFo8Msvv2Dfvn04f/488vPzATzfWrBdu3bw8vLCoEGD9E4aS5US764gKgt2byKSInZvZWD3Zvdm92b3lip2b3bvio4L4CIq3BqjcMuL15H61hhEJB9arRaRkZFITU2FjY0NvL290axZM93rK1aswMaNG9GrVy/MmjUL1atXFzEtldXp06cxYcIEPHnyBIIgoFGjRggMDESHDh3EjlbuOnfujPfeew9BQUF6x0NDQxEQEIDOnTvj4MGDGDJkCGbMmAFra2uRkpaf9957Dz179oS/v7/e8ejoaEydOhXt2rVDWloaJk+ejE8//VTyV646Ojpi8uTJGDFiRInGr1u3DmvWrNFtUSd1ubm5xZ4MvXTpEqpWrQo7OzsRUhnHw4cPYWpqKovtIl+kxLsriMqC3ZuIpIrdWxnYvdm92b3ZveWA3Zvdu6IxEzuAkr34g56ISCpMTU3h7e0Nb2/vYl8fP348Jk+eLPkP7Urn5OSELVu2YPTo0Xj48CHmzZsnywIOAI8ePYKjo2OR487OztBoNDh69ChWrlyJ7t27i5DOMLKysordgqpNmzbQarW4cOECtm7dinbt2hk/nAGYmZmV6qrjqlWrFnmGlRRpNBosXrwYEREROHbsWJEivnz5chw7dgz9+/fHzJkzZXGC6UU1atQQO4LB/Pbbb3BxccGsWbNeOc7CwgKBgYE4d+4cdu7cyRJOisPuTURSxe6tDOze7N7s3uzecsDuze5d0XABXERSfsYDESmXn58fJkyYgI4dO+qO5efnIyUlBWq1GlWqVIGVlZXutcJnkfEOGmlSq9X497//jZEjR2LChAlYvXo13NzcxI5V7vLy8vT+3BYq3Gpu5MiRsirgwPO/t5UqVSpyvLCkjR07VjYFHAAaNWqEs2fPlnj82bNnUbduXQMmMry/b5upVqvx6NGjInP64IMPcPfuXezYsQMXL17Eli1bYGYmzYqwatWqMr1v4sSJ5ZzEeP73v/9h8uTJJRqrUqnQo0cPrFmzxsCpiCoedm8ikiJ2b2Vh92b3lgt2b3bvl2H3JmOT5t8whdJqtVi3bh0mTJggdhQiUrDExEQMHDhQ71h2djb8/PywceNGvXJO0jN79uxijzdq1Ag3btzAuHHj0LNnT73tQ1UqFRYuXGisiKJwcXERO4LRtW7dWuwI5erDDz/EsmXLMHLkSDRv3vyVYy9evIiIiAj4+fkZKZ1hbNq0CUlJSfD398fHH39c7JiBAwdi4MCBWLVqFVatWoVt27aVeKu6iqakJfzF7Y+lXMKVencFkaGxexNRRcDuLW/s3sVj95Y+dm9270Ls3uzeYuMCuMiys7Oxa9cupKamQhAEtGzZEsOGDUPVqlX1xv3nP/+Bv78//vvf/7KEE1GFJAiC2BGoHISGhr7y9WfPniEsLEzvmBJKuBI/tJbkGalS8tFHH2H79u0YPnw4vvrqK/Tu3bvI1zU/Px979+7F0qVLUaVKFcmX8IiICHh4eLy0gP/dxIkTkZiYiD179ki2hB86dOi1Y7Kzs/H999/jyJEjMDMzk/zXWIl3VxCVFbs3EckFu7c8sHsXj91b+ti9X43dW5rYvaWJC+Aiun79Ovz8/HDnzh3dh9eYmBj88ssv2LVrF+rWrYv8/HwsW7YMW7ZsgVarRe/evUVOTUREclaSD7FylZmZiVu3bukdy8rKAgA8fPiwyGsAYG9vb5RshnL58mUkJSXpHcvOzgYAXLhwodjtuJydnY2SrbxZW1tjzZo1+OyzzzBz5kzMnTsXrVq1Qu3ataHVavHgwQOcPXsWubm5sLe3x+rVq1G7dm2xY7+Rq1evYvDgwSUe//7772PlypUGTGRY9erVe+XrkZGRWLRoETIyMtC+fXvMmTMH77zzjpHSGYYS764gKgt2byIiqmjYvdm92b3ZvaWK3ZvdWyq4AC6i77//Hnfu3MHUqVPRv39/WFlZ4ejRo5g3bx7mzZuHJUuWYOzYsUhOToa9vT0CAgLQpUsXsWMTEZGMve5DrJwtXLjwpVfTT58+vcgxlUqF9PR0Q8cyqLVr12Lt2rXFvrZ48eJij0v5mYKNGzdGWFgYfvnlF+zbtw/JycnIz88HAJibm6Ndu3bw8vLCoEGDSrW1VUVlbW0NrVZb4vGVKlXSPYdOTq5du4a5c+ciLi4O1apVQ2BgIAYMGCB2rHKhxLsriMqC3ZuIiCoadm9270Ls3uzecsHuze5d0XABXERJSUnw8fHB2LFjdcd69uyJ3NxcBAQEYNasWUhOTsaQIUMwY8YMWFtbi5iWiIioqLVr1yI6OhohISFiR3kjvr6+YkcwOik/e+lNWFhYYOTIkRg5ciSA53cYmJqaolq1aiInK39NmjRBcnJyiUvX6dOnZXUiTqPRYN26dVi/fj00Gg18fX0xY8YMVK9eXexo5UaJd1cQlQW7NxERSR27t3Sxe7N7v4jdW3rYvaWJC+AievToERwdHYscd3Z2hkajwdGjR7Fy5Up0795dhHRERESvd/v2bUlflVwoKChI7AhGp9QS/qIaNWqIHcFgfH19ERAQgPj4eLi5ub1ybEJCAqKjozFp0iQjpTOsuLg4zJ07F1evXkXz5s0REBCADh06iB3LIJR2dwVRWbB7ExGR1LF7Sxe793Ps3s+xe0sXu7f0cAFcRHl5ebCysipyvHLlygCAkSNHsoATUYX04vOaXvWspkePHhk1GxFRcVatWlWm90n5ZIWPjw92796N8ePHY9y4cRg4cCBq1aqlNyYjIwO7du3Chg0bUL9+fQwdOlSktOXj/v37CAoKQmRkJCwtLTFt2jSMHDmy2GfqyYmS7q4gKgt2byKSKnZvIpIadm92bzlj95YWlSAIgtghlEqtVmPJkiXw9vbWO/7o0SN07NgRGzZswD/+8Q+R0hERFU+tVkOlUhU5LghCsccLyeFKZSoqICAAO3fulPzXV4kFbfbs2aV+j0qleumz2io6tVpdonEvfh+T+p/tBw8e4IsvvkBCQgJUKhXs7e31tui6ffs2BEFAu3btsGLFCtStW1fsyGW2bds2rFy5Ek+ePEHXrl3h7+8v6fkQUflh9yYiKWL3pr9j92b3lgp2b3ZvoopC3pdjSJypqanYEYiIilDi85pI/kpawl8saFIu4aGhoSUe+/d5S7WEHzp06LVjsrOz8f333+PIkSMwMzMr8fO7KrKaNWti8+bNiI6Oxr59+5Ceno4LFy7AxMQEtWrVgo+PD7p164auXbuKHfWNBQYG6v49NjYWsbGxr32PSqVCenq6IWMZlBJPIBIZArs3EVVE7N4kR+zer8buLV3s3q/G7k1i4AK4yF7cygh49XZGAGBvb2+UbERExVHi85pI/pRY0M6fP//aMTdv3sT8+fNx5MgRVKlSBVOmTDF8MAOpV6/eK1+PjIzEokWLkJGRgfbt22POnDl45513jJTO8Ly8vODl5VXkeFZWFiwtLUVIVP6UeJJYiScQicqK3ZuIpIbdm+SI3bt47N7s3lLC7v1y7N4VC7dAF9HLtjICXr6dkdSvlCEiooqttFc0Hj58GOnp6ZLfqup15F7QXqTVarFx40b89NNPyM3NRa9evTB79uwiz7CSg2vXrmHu3LmIi4tDtWrVMH36dAwYMEDsWOUmLy8PISEhSE1N1TuJmpiYiDlz5uDKlStQqVRwd3fHt99+i4YNG4qY9s3Mnj0bgwcPRtu2bcWOYjQ3b9587ZjiTiB++eWXRkhHVHGwexMRUUXD7l08dm92b6li95Y3dm9p4gK4iMry/A+AV4ASEZHhlPRZTX+nUqlkW8LlXtCKc+rUKcydOxcXL17E22+/jYCAAHTs2FHsWOVOo9Fg3bp1WL9+PTQaDXx9fTFjxgxUr15d7GjlJi8vD59++imSkpJgbm6OlJQUmJmZ4cqVK+jbty80Gg06d+6MZs2a4cCBA3j69CnCw8Mle7LlZc/4VTKlnUAkehl2byIiqmjYvfWxe7N7Sxm7N7F7V0zcAl1ELNNERFTRbNmyRewIFYISCtqLHj16hO+++w5hYWGwsLDApEmTMGbMGFhYWIgdrdzFxcVh7ty5uHr1Kpo3b46AgAB06NBB7Fjlbtu2bTh16hRmzJiBYcOGwczs+Uf/H3/8ERqNBn369MF3330HABg7diy8vb2xdu1a+Pv7ixmbysGLJxADAwNlfwKR6FXYvYmIqKJh936O3ZvdWw7YvZWL3bti4wJ4BfD06VPs3r0bv//+O86fP4/MzEyoVCrUqFEDarUaHh4e8Pb2luUPQSIiqlhcXFxK/Z5Tp04ZIIl4lFLQ/m7Xrl1YunQpsrKy8N577yEgIEDS23G9zP379xEUFITIyEhYWlpi2rRpGDlypK6cys3evXvRvXt3jBo1SndMo9EgNjYWKpVK77itrS369euHffv2sYRLmBJPIBKVBrs3ERFVFOze7N7s3vLB7q087N7SIM/vOBJy+vRpTJ48Gffv34eFhQUaNmyIevXqIT8/H5mZmTh8+DBiY2OxatUqLFu2DO3btxc7MhEREW7fvo3Q0FCEhYXh+vXrstiGTWkFDQAuXLiAOXPmIDU1FbVq1cLy5cvRq1cvsWMZxLZt27By5Uo8efIEXbt2hb+/P+rWrSt2LIP6888/4evrq3fs9OnTyM3NhZ2dHRwcHPRea9iwITIyMowZsdydOnUKWq22VO/x8fExTBgjU+IJRKLSYPcmIiIpYveWB3Zvdu+/Y/eWNnZv6ZDvTxUJ+N///odRo0bBxsYGS5cuhZeXV5ErzZ88eYKoqCj88MMPGD16NEJDQ9GoUSOREhMRkZI9e/YM0dHRCAkJQUJCAgRBgEqlQufOncWO9saUWNAWL16MrVu3QqvV4oMPPsCUKVNgY2ODW7duvfJ99vb2RkpYvgIDA3X/Hhsbi9jY2Ne+R6VSIT093ZCxDKqgoACmpqZ6x+Lj4wEA7u7uRcZnZ2fDysrKKNkMZefOndi5c2eJxhZ+D5N6CVfiCUSi0mL3JiIiKWH3lhd2b3bvF7F7SxO7t/TwKyOin376CVZWVti9ezfeeuutYsfY2NhgwIAB6Ny5M/r27YsNGzZg/vz5Rk5KRERKlpqaipCQEOzfvx9PnjwBANSoUQP9+/fHoEGDUK9ePZETvjklFrTg4GDdvx8+fBiHDx8u0fukesfBi1djK0HDhg2LfL1iYmKgUqnw/vvvFxl//PhxyW+/99FHH6Fdu3ZixzAaJZ5AJCoLdm8iIpICdu/isXtLC7v3c+ze8sLuLU1cABdRUlIS+vXr99IC/nd2dnbw8fHB8ePHjZCMiIiULiMjA2FhYQgNDcWff/4JQRBgZWUFd3d3xMXFYd68efDw8BA7Zrnx8fGBSqUSO4ZRTZw4sdTvEQTBAEmMZ/DgwWjbtq3YMYymd+/eWL16NTp37oz33nsPO3bswOXLl1GrVi107dpVb2x4eDhOnDiByZMni5S2fHTo0AHe3t5ixzAaJZ5AJCoLdm8iIqqo2L3lj91b/ti95Y/dW5q4AC6iR48elWpLtSZNmmDXrl0GTEREREq3f/9+hISEIC4uDlqtFlWrVoW3tze8vLzQqVMn3Lt3D56enmLHLHeLFi0CAOTl5eHSpUvIz89Hs2bNJL8l1avY29ujX79+JR5/8+ZNfPXVVwZMZFihoaFwd3dXVAkfMWIEfv/9d0ycOBEqlQqCIMDc3BwLFizQbf0bExODbdu2ITExEY0bN8aIESPEDU2losS7K4jKgt2biIgqGnZvdu+XYfeWHnZv+WP3liYugIsoLy+vVD/cK1WqhJycHAMmIiIipZs6dSqsra0xdOhQeHh4wNnZWe85RnK+Uvtf//oX1qxZo/tZa2FhgaFDh2LatGmyfJ6Pv78/nj59imHDhr127K5du7B48WJ+DpEYCwsLbNq0CZGRkUhNTYWNjQ28vb3RrFkz3ZizZ88iOTkZffr0waxZs2BpaSliYioLpd1dQVQW7N5ERFTRsHuzexeH3Vua2L2Vgd1beuT3E4WIiIjKrH79+rhx4wZCQkJw5coV/Oc//4GnpycaN24sdjSD2r17N5YsWYJ69erBx8cHJiYmSEhIwKZNm6DVaiV99fXLvP322wgMDMTTp08xevToYsfcu3cP/v7+OHbsGMzNzSW/RZcSmZqawtvb+6Vbk40fPx6TJ0+GiYmJkZOVP19fX8k/R620lHh3BREREZEcsHuze/8du7f0sXvLG7u3NHEBXGSZmZm4detWicY+evTIwGmIiEjpDh48iDNnziA8PBxRUVE4fvw4li9fjiZNmsDLywutWrUSO6JB7NixA+3atcPmzZtRqVIlAM+fuTV16lTs2LED06dP121bJRe//vorRo8ejWXLluHp06eYNGmS3ut79+7F/PnzkZWVBUdHRwQGBqJp06YipS0fp06dglarLdV7fHx8DBOmgpDTVoNBQUFiRyCiCozdm4iIKhJ2b3bvQuzez7F7Swe7N0mFShAEQewQSqVWq8u0nc25c+cMkIaIiEifVqvF8ePHERERgUOHDuHp06e6n1v9+/fHhAkTUK9ePZFTlg8nJyd88cUXRbYkS01NxZAhQxAaGgq1Wi1SOsP566+/8M9//hMJCQkYMWIEZs6ciUePHiEgIAAxMTGwtLTE1KlTMXz4cMlvwVfaz12CIEClUvFzF1VoarUaS5YseeldBkT0HLs3ERFVZOze7N7s3uzeVLGxe0sT7wAXka+vr9gRiIiIXsrU1BRdunRBly5dkJubi5iYGOzduxcnTpzAb7/9hpCQELi6uqJ///748MMPxY77Rp4+fYoqVaoUOV6/fn0IgoDHjx+LkMrwrK2tsW7dOnzxxRfYtGkTbty4geTkZDx48ADvvfce5s2bJ5sTLQDw0UcfoV27dmLHICpXvLuC6PXYvYmIqCJj92b3ZvcmqvjYvaWHd4ATERGRztixY+Hm5gYXFxe0atWq2Kt2Hz16hMjISERERCA1NVUWV+q+7ErOR48eoWPHjggODkbHjh1FSmd4BQUF8Pf3R0hICExMTDBv3jwMGDBA7Fjlilfrkhzx7goiIiIiaWL3Zvdm9yaSDnZvaeId4ERERKQTHx+PY8eOQaVSwcbGBh06dICrqyvc3Nx025BVr14dw4YNw7Bhw3D9+nXs27dP5NT0pkxMTLBw4ULY2tpi48aNiIuLg4+PD8zM+FGRqKLj3RVERERE0sPurUzs3kTSxe4tPfzOSkRERDrJyclIT09HcnIyUlJSkJqaisOHD0OlUqFq1apwdnaGq6srXF1d8c4776BBgwYYP3682LHLRWZmJm7duqV3LCsrCwDw8OHDIq8BgL29vVGyGUJx8/n444/x119/YceOHcjJycE333wDExMTvTFSnjORHHXo0IF3VxARERFJDLs3uze7N5G0sHtLD7dAJyIiole6ffu2Xik/f/48tFotbG1t4eLiAldXVwwdOlTsmG/kVVsZFW5b9CKVSoX09HRDRzOY180ZQJHXpTzn2bNnY/DgwWjbtq3YUYjKDbcXJCIiIpIPdm9270JSnjO7N8kRu7c08Q5wIiIieqW6deuid+/e6N27NwAgOzsb4eHhCAkJwYEDBxAdHS35Eu7r6yt2BKPz8fEp1fOLpC4oKEjsCERERERERC/F7i1P7N5EROLgAjgRERG9Um5uLpKSkpCYmIjTp0/j7NmzyMvLg4WFhW5LNqlTYkFbtGiR2BGI6A35+vqiYcOGYscgIiIionLA7i1P7N5E0sfuLU3cAp2IiIj05OfnIzU1FfHx8YiPj8eZM2eQl5cHc3NzvPvuu7ri7ejoCAsLC7HjEhEREREREUkOuzcREZHhcAGciIiIdMaMGYNTp04hNzcXJiYmaNWqFdzc3ODq6gonJydYWlqKHZGIiIiIiIhI0ti9iYiIDIsL4ERERKSjVqthbm6ODz/8EOPGjcPbb78tdiQiIiIiIiIiWWH3JiIiMiwugBMREZHON998g4SEBFy7dg0qlQpNmjRBx44d4ebmBmdnZ1SrVk3siERERERERESSxu5NRERkWFwAJyIioiJu3bqFuLg43bPI7t+/DxMTE6jVari6uupKubW1tdhRiYiIiIiIiCSJ3ZuIiMgwuABOREREr3Xx4kXEx8fj5MmTOHXqFB4/fgwzMzO0bt0aHTt2xOTJk8WOSERERERERCRp7N5ERETlgwvgREREVCoajQZRUVH49ddfkZqaCpVKhXPnzokdi4iIiIiIiEg22L2JiIjKzkzsAERERFSxXbt2DWfOnMGZM2eQlpaG8+fPIy8vD5UrV0bnzp3h7OwsdkQiIiIiIiIiSWP3JiIiKj+8A5yIiIh0srKykJaWpivcaWlpyMrKgiAIqFatGtq3bw8XFxc4OzujZcuWMDExETsyERERERERkaSwexMRERkWF8CJiIhIR61WQ6VSQRAEVK9eHc7Ozrp/HBwcoFKpxI5IREREREREJGns3kRERIbFLdCJiIhIp0ePHnBxcYGLiwuaNWsmdhwiIiIiIiIi2WH3JiIiMizeAU5ERERERERERERERERERLLAh4cQEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkgQvgREREREREREREREREREQkC1wAJyIiIiIiIiIiIiIiIiIiWTATOwAREZES/Pjjj1i1alWp3nPo0CHUr1/fQInKrmvXrrh58yYA4Ouvv4afn98rx48aNQrHjx8HAAQHB8Pd3d2guaKjo9GoUSOD/B5ERERERERUcbF7s3sTEREBXAAnIiIyCgcHB3h7e+sde/DgAeLi4mBtbQ0PD48i77G2tjZWvDKLiop6ZQl/+PAh4uPjjZiIiIiIiIiIlIrdm4iIiAAugBMRERmFl5cXvLy89I4lJCQgLi4O1atXx9KlS0VKVnZVq1ZFcnIy7t69i7feeqvYMdHR0cjPz4e5uTny8vKMnJCIiIiIiIiUhN2b3ZuIiAjgM8CJiIiojDw9PSEIAqKjo186Zt++fbC1tUWbNm2MmIyIiIiIiIhIHti9iYiISo8L4ERERBXYkSNHMGrUKLi4uKBNmzbo3r07lixZgszMTL1xN27cgIODAzp37lzsf2f48OFwcHBAQkKC7tisWbPg4OCAxMRETJo0Ce+++y7c3NywdevWEmXr0aMHgOdbsRUnIyMDp06dQvfu3WFm9vJNZ/bs2YOhQ4eiffv2ePfdd+Ht7Y01a9bg6dOnxY4/efIkRo4cCWdnZ3To0AFTpkzRPRetOFqtFv/+978xcOBAODo6wtHREYMGDUJoaCgEQSjRXImIiIiIiEi+2L2LYvcmIiIp4xboREREFdTSpUuxfv16mJqawsnJCdWrV0dqaio2bNiA/fv3Y/PmzWjQoMEb/z7ffPMNHjx4gE6dOuHixYtQq9Ulet/bb7+NFi1aIDk5GRkZGbCzs9N7PSoqCgUFBejduzdWrVpV5P0FBQWYMWMG9u7dCwsLC7i4uMDKygpJSUn4/vvvceDAAQQHB6N69eq69+zatQvffvstAKBDhw6oWrUqjh8/jlOnTkGj0RT5PfLy8vDPf/4Tx44dg42NDRwdHWFubo7ExETMmjULCQkJWLRoUWn+dxEREREREZGMsHuzexMRkfxwAZyIiKgCio2Nxfr162Fra4sNGzbotjHTaDSYN28edu3ahcmTJ2P37t1QqVRv9HtlZGQgPDwcDRo0QEFBAUxMSr5BTK9evXDu3DlER0fj448/1nstMjISdnZ2cHZ2Lva927Ztw969e9GgQQNs3LgRDRs2BAA8efIE06ZNw5EjR/Dtt9/ixx9/BADcvn0bgYGBMDMzw7p169CxY0cAwMOHDzFq1Cikp6cX+T1++uknHDt2DC4uLli5ciVq1KgBALh//z7GjBmD0NBQODk5YeDAgSWeMxEREREREckDuze7NxERyRO3QCciIqqANm3aBAD48ssv9Z7hZWFhgTlz5qBRo0b4448/EB8f/8a/l4eHh+5q9tIUcADo2bMngKJbsd26dQupqano2bPnS/+bmzdvBgAEBgbqCjgA2NjYYOnSpahSpQqio6Nx9epVAEBoaChyc3MxePBgXQEHgBo1amDhwoVF/vsajQZbt26Fubk5li5dqivgAFCrVi3MmzcPAPCvf/2rVHMmIiIiIiIieWD3ZvcmIiJ54gI4ERFRBZOfn4/k5GSoVCp07969yOtmZmbw8vICAL3nipXVO++8U+b3NmjQAK1atcLp06eRkZGhOx4ZGQlBEPDhhx8W+77bt2/jxo0bqF69Otzc3Iq8XqVKFXTq1AkAkJiYCABISkoCAHTp0qXI+BYtWqB+/fp6x/744w9kZ2ejSZMmeOutt4q8p02bNqhZsyauXLmCe/fulXDGREREREREJAfs3uzeREQkX9wCnYiIqILJzMxEXl4eqlevDhsbm2LHFBbO8iiP1apVe6P39+rVC3/88QdiYmIwbNgwAM9LeIMGDfDuu+8W+57Cwl6vXr2X/ndfnGPhe+rUqfPS8Tdu3ND9+vbt2wCACxcuwMHB4ZVzuH37NmrXrv3KMURERERERCQf7N7PsXsTEZEccQGciIioghEEAQBe+XyxwjEWFhYl+m9qtdqXvlbardde1LNnTyxZsgT79+/HsGHDcPXqVfzxxx8YN27cS99Tljm+7nlrZmb6H2sKCgoAAPb29nBycnrleytXrvzK14mIiIiIiEhe2L31x7B7ExGRnHABnIiIqIKxtbWFubk5MjMz8eTJk2KvRL9+/ToAoGbNmgD+v0gXFs8XZWVlGSjt8yvJ3333XZw+fRr37t1DZGQkAKB3794vfY+dnR0A6F01/qLCOdaqVQsA8NZbb+HixYu4efMmmjVrVmT837eBA6C7qrxOnTpYunRpKWZEREREREREcsfu/Ry7NxERyRGfAU5ERFTBmJubw9HREQUFBYiJiSnyen5+vu64q6srAMDa2hrA87Kdl5enN/7Ro0e4cuWKQTP36tULBQUFiI6Oxv79+9GsWbNXbn1mb2+PevXq4dGjR7rnjP1ddnY2jh8/DgBwdnYGALi7uwNAsf9Prl+/jkuXLukda9OmDSwtLXH+/PkiBR0A7t69i549e2LkyJHIyckp+WSJiIiIiIhI8ti92b2JiEi+uABORERUAX3yyScAgO+++w7p6em643l5eZg7dy6uXbuGFi1a6LYXs7W1RZ06daDRaLB9+3bd+GfPnuHbb7995TZs5aFHjx5QqVTYtm0bLly48Mor0AsVztHf3193xTkA5OTkYMaMGXjy5Ak++OAD3bPKfH19YWtri927d+PAgQO68U+ePMFXX31V5Ap8a2trfPTRR/jrr78wY8YMPHjwQO/3mD17Ni5fvgxra2tuw0ZERERERKRA7N7s3kREJE/cAp2IiKgC8vT0xKeffoqNGzdiwIABcHJyQvXq1XHmzBncuXMH9erVw4oVK/SeITZ69GgEBgYiMDAQ+/btQ61atZCcnAytVosPPvgAhw8fNljeunXrol27dkhJSQHw6i3YCg0fPhwpKSnYv38/evfuDWdnZ1hZWeHUqVN49OgR1Go1Fi5cqBtfo0YNLFy4EFOmTMHnn38OR0dH2NnZISkpCVqtFo0bNy5ytf20adNw7tw5xMfHo1u3bmjTpg2srKyQkpKCzMxMvP3225g7d275/s8gIiIiIiIiSWD3ZvcmIiJ54h3gREREFdTMmTPx008/wdXVFefPn8eRI0dQuXJlTJgwAaGhoWjcuLHe+OHDh2Px4sVo3bo10tPTkZSUBFdXV/z2229FxhpCz549AQCtWrVCo0aNXjvexMQEK1asQFBQEFq1aoXk5GScOHECderUwYwZM7Bz507UqFFD7z0eHh749ddf4eHhgStXruD3339Hy5Yt8csvv6BOnTpFfg9LS0ts3LgRX3/9NZo0aYK0tDQkJCTAzs4OkyZNwq5du3TPOSMiIiIiIiLlYfdm9yYiIvlRCYIgiB2CiIiIiIiIiIiIiIiIiIjoTfEOcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ+D/0b6yZNf9QWwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 61 coefficients adjusted\n", - "\t 696 coefficients converged\n", - "\t 61 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmgAAAJ4CAYAAABh4GxQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACqEklEQVR4nOzdeVxU5fv/8fcMhICKgikuqBl+kI/7EoalWSjaorllpmJm5r5kplZqi5W7aZmZ5YqmouWSLX7MNcuvG5ZlapKmuC+5IS4gzPz+8MfEyCIchmHA1/Px4CFzn/s+c83cN3WuueacY7JarVYBAAAAAAAAAADAacx5HQAAAAAAAAAAAMDdhgINAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE5GgQYAAAAAAAAAAMDJKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AOJnValVYWJiqVKmiadOmZWvs8uXLVaVKFS1fvtzWVqVKFXXp0sXRYaZx9uxZXbt2LdefxxGSk5N17NixO/b7+OOPVaVKlUx/wsLCcj3eI0eO5PpzAAAAwHVt3LhRAwYMUFhYmKpXr64HH3xQL730kjZs2OC0GBITE/X222+rfv36qlmzpt5///10215//XVVqVJFx48fz9b+U469t2/fnkuvwN6djrHffvttValSRcuWLcu03/HjxxUcHKyuXbtm+bm3b9+uKlWq6OOPP87ymLy0bds2ValSRf/9738zzaOuXLmiQYMGqW7duqpTp45mz54tSUpISNDp06edFa6knOXVErl1VmU1twZgnHteBwAAd5tt27bpxIkT8vb21tKlS9WnTx+5ubkZ3t+ECRN07733OjDCtFauXKlRo0bpm2++kbe3d64+V06dPHlSvXr1UrNmzTRgwIAsjenQoYPq1auX7rbChQs7Mrw0+vTpo/j4eC1YsCBXnwcAAACuJz4+XsOHD9eaNWtUrVo1tW3bVqVKldLp06e1cuVK9enTRy+++KJee+21XI9l6dKlioqK0sMPP6wnnnhC//nPf9Jts1qtatCggfz8/LK1//DwcFWoUEGBgYG59Ar+lZVj7GeeeUZRUVH65ptv1K5duwz7rVy5UlarVc8880xuhOoSli1bJm9vb127dk1LlizRkCFD0u03ffp0rV69Wk899ZQaNGig2rVra9++ferfv7/69++vtm3bOi1mR+fVErn17Yzk1gCyjwINADjZV199pXvuuUcvvPCCpk+fro0bN6pp06aG99eqVSsHRpe+bdu25Ztv+Bw7dkwxMTFq1qxZlsfUrl3bKe9jejZs2KD69evnyXMDAAAgb40cOVJr1qzRsGHD1L17d7ttvXv3Vvfu3TVnzhzdf//9at++fa7GcuDAAUnSsGHDFBwcLEm2s0tSt0lSnTp1sr3/4OBgu33kpqwcY9eoUcN2Rs+ZM2fk7++fbr+vv/5axYoVy1Z+kZ/Ex8dr7dq1atKkifbv36/ly5dr4MCB8vDwSNM3ZY2MGjVKRYsWlXTrTJQTJ044NWbJ8Xm1RG59OyO5NYDs4xJnAOBEV65c0bp161SzZk09/fTTkqTFixfncVQAAAAAnO3nn3/W6tWr1bx58zTFGUny8PDQmDFj5Obmpvnz5+d6PDdv3pQkFSlSJNO2gqRdu3ayWCz6/vvv092+a9cuHT16VC1btlShQoWcHJ1zfPfdd7p+/bpCQ0PVtGlTnT9/XmvXrk23b8p6SCnO5BXyagAFCQUaAHCib7/9Vjdu3NDDDz+sSpUqqUqVKtqyZUu613Tdvn27nn/+edWtW1ehoaF6//330/2mze3Xyc3omtDHjx9XlSpV9Prrr9varl+/rrFjx+rxxx9XzZo19eCDD6pXr17atWuXrU9YWJhWrFghSWrSpIntuV5//XXVqVNHR48eVf/+/VWvXj3VrVtXffr00enTp3XixAkNHDhQ9erVU2hoqAYNGqSzZ8/axWSxWLRgwQK1atVKNWvW1AMPPKCXXnrJ7vmlf69XfejQIY0cOVIPP/ywatSooVatWumbb76x6/f8889LkqZNm2bo2tiZsVqt+vLLL9WpUyc98MADqlatmho2bKjBgwcrNjY2Tf/vv/9enTt3Vr169fTggw+qa9eu2rp1q6R/r0stSTt27Ehz/eMff/xRXbt2Vd26dVWzZk21atVK8+fPl8VisfVJmdNPPvlEr7zyimrUqKGHHnpIe/bsUXJysqZNm6aWLVuqdu3aeuCBB9SlSxenXsccAAAAGVu5cqUkZXrPi/Lly+ubb76xHY+nOHTokAYPHqyHHnpI1atXV5MmTTRu3Dhdvnw5zT7+/vtvDR48WA0aNFD16tXVrFkzffjhh7px44akf48pUx/zp9yP8fY2Kf18w2q1avHixWrbtq1q166thx56SL1799bevXttfTK6B81PP/1ky3tq1aqltm3b2h0XS/8eO3/33XeaMWOGwsPDVb16dYWFhemjjz5SUlKSXT8p/WPs2z399NO655577HKK1FLmKOXyZjdv3tTs2bPVrl071alTR9WrV9ejjz6qkSNH6vz58xk+j3Qrr0rv/pbp3QtFkn7//Xf17t1b9evXV40aNdSiRQvNmTNHycnJdv327dun3r17q1GjRra18P777+vSpUuZxpMi5Syphx9+WI8//riktMWOlPd1x44dkmS7V+frr7+uN954Q5L0xhtv2N57Kfu53o8//qgnnnhC1atXV0RERKYxZyevTomf3Nr+/c7r3BrAv7jEGQA4UcrB7xNPPCFJeuqpp3TgwAFFRUVp6NChtn6bNm1Sv379VKpUKfXq1Utms1lfffVVpsmFEYMHD9aWLVvUuXNn3X///frnn3+0cOFCde3aVV999ZWCg4M1fPhwzZ07V9HR0XrjjTf0n//8xzb+5s2b6tSpk+rXr69hw4Zp9+7dWr58uc6cOaN//vlHISEhGjZsmH777TctW7ZM8fHxmjVrlm38kCFD9N1336l58+Z69tlndfnyZS1fvlxdunTR5MmTbQlCip49e9rek8TEREVGRmrIkCEqWbKkQkNDFR4erqSkJFvSFh4enqVrY1+7dk0XLlxI0+7m5qZixYrZHo8dO1aRkZFq2rSpXnnlFUlSdHS0vv/+e+3bt0/ff/+9zOZb332YOnWqPvnkEwUHB6t3797y8PDQokWL1L17d3366aeqVq2aJkyYoGHDhun+++9X7969VbduXUnSnDlzNH78eFWsWFE9evSQt7e31q1bp9GjR2v79u36+OOPbc8jSbNmzVJQUJBGjhypI0eOqGrVqho7dqwWLlyoZ599Vs8//7yuXLmiqKgo9e3bV5999pkaN26clSUCAACAXPL777/L3d1dtWrVyrTf7fdsiY6OVvfu3eXm5qaOHTuqXLly2r17t+bNm6cNGzYoKirKdgz8+++/64UXXlCRIkXUuXNn+fn5affu3ZoxY4a2bt2q+fPny8/PTxMmTNDSpUttx/zFihWT2Wy2a/P19c0wxtdee01ff/21HnjgAQ0aNEiJiYlasGCBIiIitHDhQlWtWjXdcQsXLtR7772nGjVqqH///jKbzVq/fr3eeOMN7d+/XyNGjLDrP3nyZFmtVnXo0EE+Pj5avny5pk+fLpPJpIEDByowMDDDY+z0+Pr6qkmTJvrf//6nQ4cO2b3XCQkJWr16tapVq6b//ve/kqRBgwZp/fr1atOmjZ599lklJCRo8+bN+vLLL3Xy5EnNmTMn07nMqvXr1+vll19WQECAXnrpJXl7e2vLli0aP368fvnlF3388ccymUw6duyYunbtqpIlS+qFF16Qj4+PfvvtN33xxRf6/ffftWTJEplMpgyf59ChQ/rtt99Up04dlS1bVmXLltV9992nnTt32r0fKe/rjBkz9Pfff2vChAkqXLiwSpQoIQ8PDy1ZsiTNfT2zm+sNGjRIzzzzjO677750L6+WWlbzaonc2tm5NQADrAAAp4iJibEGBQVZW7dubWs7evSoNSgoyBoaGmpNSEiwWq1Wq8VisYaFhVkfeOAB6z///GPrGxcXZ23WrJk1KCjIumzZMlt7UFCQNSIiwvb4tddeswYFBVmPHTtm9/zHjh2zBgUFWV977TWr1Wq1nj9/3hoUFGR9++237frt3r3b2qxZM+vSpUsz3WdK2+3jW7VqZQ0KCrK+9957du3t27e3BgcH217n999/bw0KCrLOnDnTrl98fLz18ccftz744IPWa9euWa1Wq3Xq1KnWoKAga48ePawWi8XWd+fOndagoCDr4MGDbW3btm2zBgUFWadOnWq9k5T9ZvTz2GOP2fpeuHDBWrVqVWuvXr3S7GfgwIHWoKAg6x9//GG1Wq3WI0eOWP/73/9aIyIibK/XarVa//nnH2u9evWsbdu2tbXdPn9Hjx61Vq1a1frkk09ar169amu3WCzWIUOGWIOCgqzLly+3Wq3/zmnt2rWt586ds4updu3a1pdeesmu7dSpU9amTZtaP/744zu+NwAAAMhdtWrVsj700EPZGpOcnGwNDw+3Vq9e3Xrw4EG7bUuXLrUGBQVZX3/9davVeuv48amnnrI2btzYevHixXT7fv7557a2zI75M2vbunWr7Zg89bH6wYMHrcHBwdYBAwZYrdZ/j723bdtmtVpvHZtWq1bN2qtXL7txFovFOnToUGtQUJD1t99+s1qt/x7jP/zww9bLly/b+l69etVar149a8OGDe1e3+3H2Jn58ccfrUFBQdYpU6bYtX/33XfWoKAg68KFC61Wq9W6f//+dPMcq9VqbdeunTUoKMj2PqeXkzz22GN2+UWKZcuW2eV4165dsz744IPWNm3a2OUSVqvVOmXKFGtQUJD1u+++s1qtVuusWbPs3qcUY8eOtbZp08Z6+vTpTF/7uHHjrEFBQdbIyEhbW8o8pfc6IyIirEFBQZnGb7Uay/UGDhyYaawpsppXW63k1s7MrQEYxyXOAMBJUr7l89RTT9naypcvr9q1a+vChQv64YcfJEn79+/X8ePH1apVK5UoUcLWt2jRourYsaPD4ilSpIiKFi2q1atXa+nSpTp37pwkqVatWlqzZk2Wb0LaokULu8cp37J68skn7dorVKggi8Wif/75R9Ktax1LUvPmzXXhwgXbT0JCgpo1a6aLFy9q586ddvto2bKl3TfAatasKUm2fRrVvXt3zZ07N83PxIkTbX18fX0VHR2tSZMm2Y2Ni4uTl5eXJNlOk9+wYYOSk5PVtWtXu29/lShRQosWLdLHH3+cYSxr165VUlKSevbsKW9vb1u7yWTSq6++KklprpFdq1Yt3XvvvXZtpUuX1o4dOzR79mzbqeilS5fW2rVr1b9//yy/NwAAAMgdbm5utktzZdW+ffsUGxurp59+Os2ZNc8884wqVqyoNWvWKDk5WQcOHNBff/2lxo0by2Kx2B1zP/bYYypUqFCG9xrJjnXr1kmSXnrpJbtj9cDAQH311Vd688030x33ww8/6ObNm3riiSd08eJFW2wXL1605UwpOVKKxx57TD4+PrbH3t7eCgwMvOPlxTLTsGFDlSlTRt9++61d+4oVK+Tp6amWLVtKkoKDg7Vr1y4NHjzYrt/58+dtMTni5u//93//p4sXL6p58+aKj4+3m7eUHCtl3sqUKSNJmjhxorZu3arExERJty6ZtXz5cvn7+2f4PElJSVq1apXMZrPtTBTp33z166+/1vXr1w29BiO5XnqXf0tPVvNqidw6L3JrANnHJc4AwAlu3rypVatWSbp1kJb62q2hoaHavXu3Fi9erBYtWujo0aOSbh103a5y5coOi8nDw0Pjxo3TG2+8YUuagoKC1LBhQ7Vs2TLDyxDc7vbCwD333CNJKlmypF27u/ut/+Wk3EPl8OHDkqSmTZtmuO8TJ05k+lwpxY/U92UxonLlynrooYfu2K9QoUJav369Nm7cqKNHj+r48eM6deqU7cA2JY6U+b3//vvT7CMoKCjT50iZ/9Snu6coXbq0ihYtmubav7e/L5I0evRoDRo0SBMmTNCECRNUoUIFPfzww3rqqacUEhJyx9cKAACA3OXv76/Dhw8rMTHxjpd0SpHZsaLJZFLlypUVGxurixcv2o63o6KiFBUVle7+bj/eNiLl2PT2gpEkVatWLcNxKfENGzYswz53ygekWznB7fdlyQ6z2aw2bdpo+vTp+vXXX1WnTh2dO3dOW7ZsUYsWLVS0aFG75/r+++9t9zs5fvy4zp07lyYfyImU92Xy5MmaPHlyun1S3pfmzZurXbt2Wr58uV544QV5enqqXr16aty4sVq3bm13uebbbdq0Sf/8849q1KihhIQE2zx6eHjovvvu05EjR/Tdd9/Z7r9j5DVkJ9e7PX9MT3byaknk1qk4K7cGkH0UaADACTZt2mT7VldGNzyMjo7WwYMHbY+tVmuaPjk5WEovaWnatKkefvhh/fTTT/r555+1fft2zZkzR3PnztXw4cNtNwXMTMrB4e0yu9ZxSjyFCxfWtGnTMuxTqVIlu8ep77vibDdv3lT//v21adMmVa9eXdWrV1fz5s1VtWpV/fjjj/rss8/s+kp3fg/SkzLvGY21WCxpEvj05qBu3bpat26dtm3bpp9++knbt29XVFSUFi9erG7dutnd0BIAAADOFxISokOHDumXX35RaGhohv3eeOMN3bx5M9NCRoqUfMHDw8P2e+fOnTP84DajY/nsSDn2za6U/OS9995TQEBAun1uv+dFbuUDbdu21aeffqpvvvlGderU0TfffKPk5GS74kR8fLy6du2qvXv3ql69eqpevbpatWqlGjVqKDIy0lY4yK7b87SUeRs4cKDq1KmT7pjChQtLunUW1pgxY9S3b19t3LhR//d//6fo6Ght2bJFn332maKiotItTkj/nomyZ88eNWnSJN0+UVFRhgo0RnI9Nze3O+43O3l16gIMubVr5dYA7FGgAQAnSDn47dWrl+3U4dS+/PJLbdq0ye4A+NChQ2n6xcbG3vG5Ug5sExIS7NpTTrNOER8frwMHDiggIEDNmjVTs2bNJEl//vmnunbtqk8++SRLB5FGBQQE6PDhwwoODk6TeO3fv19nz561XTrMFXz//ffatGmTevbsabvUWIoVK1bYPU5JMA8fPpzmQHjevHk6ePCgRo4cKU9PzzTPk5JAxcTE2G5GmuLkyZO6evWq7VIGGUlISNCBAwdUrFgxPfLII3rkkUckSceOHdOLL76oyMhI9e/fX0WKFMnCKwcAAEBuaNGihaKiorRo0aIMCzSnTp3SqlWr5OPjo+LFi6t8+fKSpL/++itNX6vVqkOHDqlIkSLy8fGxK3rcfra4xWLRmjVrbPvLidTHvlWqVLHbNnnyZN24cUPDhw/PcJyPj0+a+M6ePavff//dIfFlRfny5fXggw9q9erVGjlypL755htVrFhR9evXt/WZP3++/vjjD40aNUrPPfec3fisXBbKzc1NV69eTdN+e56W8r54enqmeV/i4+P1888/286oOHHihI4ePaoGDRqoS5cu6tKli5KSkjR79mxNnjxZixcv1muvvZbmOc+fP6/NmzercOHCGj9+fJoCgMVi0WuvvaY9e/Zo7969mZ4JlZ7cyvWyk1ePHDlS9913nyRya1fLrQHYo1wKALns3Llz+umnn1S8eHH169dPTZs2TfMzcOBASdLKlStVsWJFVapUSatWrbI7ZfvGjRv64osv7vh8pUqVknTrm1CprVy50u5xTEyMOnXqpOnTp9u1V65cWUWLFrX79k7Kt2vS++aRUc2bN5ckffjhh3bt8fHxGjRokPr165fmQDgrUg6iHX1q9sWLFyUpTdIZGxurNWvWSPr3m1RNmjSRyWTSwoUL7a4rfunSJc2cOVO///67rThjNpvtYg0PD5ebm5s+++wzu2tYW61WffTRR5Kkxx9//I6xdujQQe+9955de/ny5eXv7y+TycQ3pgAAAPJYSEiIwsPDtWbNGs2dOzfN9itXrujll19WUlKS+vfvLw8PD1WtWlXly5fXqlWr0nzovGzZMh09etT24XD16tVVrlw5rVixwnappxRLlizRoEGDbB9450TK2TmRkZF27UePHtW8efN07NixdMc1a9ZMZrNZM2bM0I0bN+y2jRs3Tv369dMff/xhKKbbj7Gzol27drpw4YJWrlypffv2pTlzJKN84Ndff7Xd3yOzS62VKlVKFy5csLvUVGJiolavXm3Xr2HDhipcuLDmzZtne84UM2bM0Msvv6wff/zR9viFF17Qb7/9Zuvj7u6uWrVqScr4rJSVK1cqKSlJrVq1Unh4eJr8tFmzZmrXrp0kafHixRm+JunfXDH1+50buV528+rr168rODiY3NoFc2sA9jiDBgByWcrBb9u2bVWoUKF0+1SrVk0hISHauXOnvv32W73//vt68cUX1b59e3Xu3FlFihTRsmXLdOXKlTs+X5s2bfTZZ5/p/fff1/Hjx1WyZElt3LhRMTExds9ft25dNWzYUFFRUYqLi1P9+vWVnJysNWvW6NixY3bftEq5Pu2sWbPUqFGjTK9tm1Vt27bV//73Py1ZskRHjx5VWFiYkpKS9OWXX+rIkSMaOnRopje1zEjKzR83bNigsmXLKjw8XMWLF89xvI0aNdIHH3yg0aNH6+jRoypZsqT++usvLVu2zFaEiYuLk3Tr+ts9e/bUZ599po4dO+qpp56SxWLR0qVLdfnyZVuhJSXeP//8U4sWLdIDDzygoKAgDRo0SB988IFat26ttm3bytvbW+vXr9e2bdv02GOP6emnn8401tKlS6t9+/ZasmSJunfvrrCwMJlMJv3888/auXOnIiIi5O3tneP3BAAAADkzZswYXb58WePGjdM333yjZs2ayc/PT0eOHNGKFSt04cIFde7cWZ07d5Z06wPT999/Xz179lT79u3VsWNHBQQE6Pfff9eKFStUrlw5DRkyxK5vr1691LZtWz333HOqUKGC9uzZo2XLlqlChQrq27dvjl9Do0aN1KJFCy1btkynT59WWFiY4uPjtXDhQhUqVEhDhw5Nd9x9992nAQMG6KOPPlKrVq3Upk0b+fj4aP369fr555/12GOP2YpN2ZXeMfadNG/eXO+9957Gjx8vd3d3tW7d2m57WFiYFixYoCFDhqhTp04qWrSo/vjjD61YsUJubm66efOmLR9IT7t27RQdHa3u3burU6dOslgsWrZsWZqijo+Pj9566y298cYbatmypTp06KBSpUpp27Zt+v7771WzZk116tRJkvTCCy9o9erV6tmzp5577jkFBATozJkzWrx4sYoWLapnn3023ViWL18uSbb9pOf555/XwoUL9d133+n111/P8Oz7lFxx1apVslqtthzG0bmekby6ffv25NYumFsDsEeBBgBy2YoVK2QymTI9+JVuHVzv3LlTUVFRWrZsmRYtWqSpU6dq3rx5km59M+3RRx/Vyy+/nOl+KlSooJkzZ2ratGn6/PPP5eXlpUaNGmnx4sV66qmn7PpOnTpVc+bMsV2+S5KCg4M1adIktWzZ0tavY8eO2rFjh5YtW6Zt27Y55CDSzc1NM2bMUGRkpL7++mtNmjRJXl5eCgwM1Mcff2w4GatUqZK6deumr776SqNHj1ZAQIAaNGiQ43gDAwP1+eefa+rUqZo9e7YkqUyZMoqIiNDjjz+u1q1b66effrKd3TJ48GDdf//9+uKLLzRlyhR5eXmpRo0amjhxomrUqGHb77BhwzRp0iSNGTNGvXv3VlBQkHr27Kn7779f8+bNs93bplKlSnrrrbfUsWPHLJ398tZbb+n+++/XihUrNHnyZCUnJ+v+++/Xm2++ece1CAAAAOfw8fHR7Nmz9f3332v58uVatGiRLly4oCJFiqhWrVrq3Lmz7XK1KUJDQ7V06VJNnz5dy5YtU3x8vMqWLasXX3xRvXv3lo+Pj63vQw89pKVLl+rTTz+1fShdunRpderUSb169crSjdmzYuLEiapZs6a++uorjR8/XsWKFdMDDzygl19+Oc0lf1Pr27evKleurPnz5+vzzz+XxWJR+fLlNWzYMHXp0iVL9yVJT3rH2HdSqFAhtWjRQosWLVJYWJjt7IkUDRo00OTJk225loeHh8qWLatBgwapcuXK6tmzp3766Se7Y/3U2rZtq6tXr2rRokWaMGGC7r33XrVq1UqPPfaYOnToYNe3devWKlOmjGbNmqX58+crISFBZcuWVZ8+fdS9e3fbl60CAwP1xRdf6NNPP9XKlSt1/vx5FS9eXKGhoerXr1+695/57bffdPDgQYWEhOg///lPhu9HhQoV9Nhjj2n9+vX6+uuvbUXC24WGhqply5Zat26d9uzZowceeECVKlVyeK5nJK9u3769HnjgAXJrF8utAdgzWR15Th0AwKmsVquCg4P14IMPav78+XkdDgAAAAAA+Q65NYC8wgXoASAfSzmFvnDhwnkcCQAAAAAA+RO5NYC8wiXOACCf+uyzz7R3715Jt661CwAAAAAAsofcGkBeokADAPlQXFycIiMjdfPmTbVo0ULdunXL65AAAAAAAMhXyK0B5DXuQQMAAAAAAAAAAOBk3IMGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACdzz+sA8iOr1SqLhVv35DWz2cQ8wDDWD4xi7SAnWD8wKi/XjtlskslkypPnRv5FzuQ4/L/DdTE3rou5cV3MjetiblwXc+OaUs9LTnImCjQGWCxWXbhwNa/DuKu5u5vl61tYcXHXlJRkyetwkM+wfmAUawc5wfqBUXm9dvz8CsvNjQINsoecyTHy+u8fGWNuXBdz47qYG9fF3Lgu5sY13T4vOcmZuMQZAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE5GgQYAAAAAAAAAAMDJKNAAAAAAQD52/vx5DR06VKGhoapTp4569uypgwcP2rbv379fERERql27th599FHNnj3bbrzFYtHUqVPVqFEj1apVSy+++KJiY2Od/TIAAACAuw4FGgAAAADIx/r06aNjx45p5syZ+uqrr+Tp6akXXnhB169f18WLF9WtWzfdd999WrZsmQYMGKCPPvpIy5Yts42fPn26oqKi9P7772vJkiUymUzq0aOHEhMT8/BVAQAAAAWfe14HAAAAAAAw5uLFiwoICFCfPn30n//8R5LUt29ftWrVSn/99Ze2bt0qDw8PvfPOO3J3d1dgYKBiY2M1c+ZMtWvXTomJiZozZ46GDh2qxo0bS5KmTJmiRo0aae3atXrqqafy8uUBAAAABRpn0AAAAABAPuXr66vJkyfbijP//POPZs+erdKlS6ty5cqKjo5WSEiI3N3//W5eaGioDh8+rPPnz+vPP//U1atXFRoaatvu4+OjqlWraufOnU5/PQAAAMDdhDNoAAAAAKAAePPNN7V06VJ5eHjo008/lbe3t06fPq2goCC7fqVKlZIknTx5UqdPn5YklSlTJk2fU6dOOSdwAAAA4C5FgQYAAAAACoCuXbuqQ4cOWrx4sfr166dFixbpxo0b8vDwsOtXqFAhSVJCQoKuX78uSen2uXz5co7icXfngg055eZmtvsXroO5cV3MjetiblwXc+O6mBvX5Mh5oUADAAAAAAVA5cqVJUnvvfeedu/erS+++EKenp5KTEy065eQkCBJ8vb2lqenpyQpMTHR9ntKHy8vL8OxmM0m+foWNjwe9nx8jM8Fchdz47qYG9fF3Lgu5sZ1MTeuyRHzQoEGAAAAAPKp8+fPa+vWrXriiSfk5uYmSTKbzQoMDNTZs2dVunRpnT171m5MymN/f38lJSXZ2ipUqGDXJzg42HBcFotVcXHXDI/HLW5uZvn4eCku7rqSky15HQ5SYW5cF3Pjupgb18XcuC7mxjXdPi8+Pl6Gz6ahQAMAAAAA+dTZs2f16quvqkSJEmrQoIEk6ebNm9q3b5/CwsJ07733KioqSsnJybYCztatW1WpUiWVKFFCRYsWVZEiRbR9+3ZbgSYuLk779u1TREREjmJLSuJDBEdJTrbwfroo5sZ1MTeui7lxXcyN62JuXJMj5oWL1wEAAABAPhUcHKyGDRtq1KhRio6OVkxMjF577TXFxcXphRdeULt27RQfH68RI0bo4MGDWr58uSIjI9WrVy9Jt+49ExERoUmTJmn9+vX6888/9corr6h06dIKDw/P41cHAAAAFGycQQMAAAAA+ZTJZNKHH36oDz74QIMGDdKVK1f0wAMPaOHChSpbtqwkadasWRo9erTatGmjkiVLatiwYWrTpo1tHwMHDlRSUpJGjhypGzduKCQkRLNnz5aHh0devSwAAADgrmCyWq3WvA4iv0lOtujChat5HcZdzd3dLF/fwrp48Sqn9yHbWD8wirWDnGD9wKi8Xjt+foUNX08Zdy9yJsfI679/ZIy5cV3MjetiblwXc+O6mBvXdPu85CRnItMCAAAAAAAAAABwMgo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMko0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnMw9rwMAsstsNsnN7VZtMeXfzFgsVlks1twOCwAAAAAAAMhXsvs5m8RnbYAjUaBBvmI2m1S8uLftfxg+Pl53HJOcbNGlS9f4HwcAAAAAAADw/xn5nE3iszbAkSjQIF9JqepPWrhLx89cuWP/AP+iGtK5nsxmE//TAAAAAAAAAP6/7H7OJvFZG+BoFGiQLx0/c0WHTlzO6zAAAAAAAACAfI3P2YC8k7ULCwIAAAAAAAAAAMBhKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AAAAAAAAAAICTUaABAAAAAAAAAABwMgo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMko0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABO5lIFmkuXLumtt97SI488orp166pjx46Kjo62bd+/f78iIiJUu3ZtPfroo5o9e/Yd97l69Wo9+eSTqlGjhlq2bKnNmzfn5ksAAAAAAAAAAAC4I5cq0AwePFi//fabJk+erK+++krVqlVT9+7ddejQIV28eFHdunXTfffdp2XLlmnAgAH66KOPtGzZsgz3t23bNg0dOlSdOnXSypUr1bBhQ/Xr10+HDh1y4qsCAAAAAAAAAACw557XAaSIjY3Vli1btHjxYtWtW1eSNGLECG3evFnffvutPD095eHhoXfeeUfu7u4KDAxUbGysZs6cqXbt2qW7z5kzZyo8PFwRERGSpNdee02//vqrIiMj9e677zrttQEAAAAAAAAAAKTmMmfQ+Pr66vPPP1f16tVtbSaTSVarVZcvX1Z0dLRCQkLk7v5vTSk0NFSHDx/W+fPn0+zPYrHol19+UWhoqF37gw8+aHfZNAAAAAAAAAAAAGdzmTNofHx81LhxY7u21atX6+jRo2rYsKGmTJmioKAgu+2lSpWSJJ08eVIlSpSw2xYXF6dr166pdOnSacacOnUqx/G6u7tMbeuu4uZm7H03Og4FU8p6YF0gu1g7yAnWD4xi7QAAAABAweQyBZrb7dq1S8OHD1eTJk0UFhamsWPHysPDw65PoUKFJEkJCQlpxt+4cUOS0h2TXv/sMJtN8vUtnKN9wLl8fLzyOgS4INYFjGLtICdYPzCKtQMAAAAABYtLFmjWrVunIUOGqFatWpo8ebIkydPTU4mJiXb9Ugot3t7eafaRUrxJb4yXV86SW4vFqri4aznaB4xxczMb+nAiLu66kpMtuRAR8qOUdcS6QHaxdpATrB8Ylddrx8fHi7N3AAAAACAXuFyB5osvvtDo0aMVHh6uSZMm2c6AKV26tM6ePWvXN+Wxv79/mv0UL15c3t7e6Y65/bJnRiQl8cFKfpKcbGHOkAbrAkaxdpATrB8YxdoBAAAAgILFpb4Kt2jRIr333nvq3LmzPvzwQ7vLk4WEhGjXrl1KTk62tW3dulWVKlVKc/8ZSTKZTKpbt6527Nhh1759+3bVq1cv914EAAAAAAAAAADAHbhMgebw4cMaM2aMwsPD1atXL50/f17nzp3TuXPndOXKFbVr107x8fEaMWKEDh48qOXLlysyMlK9evWy7ePKlSu6cOGC7XG3bt303Xffae7cuTp06JAmTJig/fv3q2vXrnnxEgEAAAAAAAAAACS50CXO1qxZo5s3b2rt2rVau3at3bY2bdpo3LhxmjVrlkaPHq02bdqoZMmSGjZsmNq0aWPrN3r0aO3YsUMbNmyQJDVs2FBjxozR9OnTNWXKFFWuXFkzZsxQYGCgU18bAAAAAAAAAABAai5ToOndu7d69+6daZ+aNWtqyZIlGW4fN25cmrbWrVurdevWOQ0PAAAAAAAAAADAYVzmEmcAAAAAAAAAAAB3Cwo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMko0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABORoEGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACejQAMAAAAAAAAAAOBkFGgAAAAAAAAAAACcjAINAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE5GgQYAAAAAAAAAAMDJKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AAAAAAAAAAICTUaABAAAAAAAAAABwMgo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMko0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABORoEGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACejQAMAAAAA+dilS5f01ltv6ZFHHlHdunXVsWNHRUdH27a/8cYbqlKlit3PI488YttusVg0depUNWrUSLVq1dKLL76o2NjYvHgpAAAAwF3FPa8DAAAAAAAYN3jwYJ0/f16TJ0+Wn5+fFi1apO7du2v58uUKDAzUgQMH1Lt3b0VERNjGuLm52X6fPn26oqKiNHbsWPn7+2vixInq0aOHvv32W3l4eOTFSwIAAADuCpxBAwAAAAD5VGxsrLZs2aK3335bDzzwgO6//36NGDFC/v7++vbbb5WcnKyDBw+qRo0aKlmypO3Hz89PkpSYmKg5c+ZowIABaty4sYKDgzVlyhSdOXNGa9euzeNXBwAAABRsFGgAAAAAIJ/y9fXV559/rurVq9vaTCaTrFarLl++rCNHjighIUGBgYHpjv/zzz919epVhYaG2tp8fHxUtWpV7dy5M9fjBwAAAO5mXOIMAAAAAPIpHx8fNW7c2K5t9erVOnr0qBo2bKiYmBiZTCZFRkZq8+bNMpvNaty4sQYNGqSiRYvq9OnTkqQyZcrY7aNUqVI6deqU014HAAAAcDeiQAMAAAAABcSuXbs0fPhwNWnSRGFhYZo6darMZrPKlSunGTNmKDY2VuPHj1dMTIwiIyN1/fp1SUpzr5lChQrp8uXLOYrF3Z0LNuSUm5vZ7l+4DubGdTE3rou5cT05mQvm0Tn4u3FNjpwXCjQAAAAAUACsW7dOQ4YMUa1atTR58mRJ0oABA/TCCy/Ix8dHkhQUFKSSJUuqQ4cO2rNnjzw9PSXduhdNyu+SlJCQIC8vL8OxmM0m+foWzsGrQWo+PsbnArmLuXFdzI3rYm4KBubRuXi/XZMj5oUCDQAAAADkc1988YVGjx6t8PBwTZo0yXZGjMlkshVnUgQFBUmSTp8+bbu02dmzZ1WhQgVbn7Nnzyo4ONhwPBaLVXFx1wyPxy1ubmb5+HgpLu66kpMteR0OUmFuXBdz47qYG9eTMidGMI/Owd+Na7p9Xnx8vAyfTUOBBgAAAADysUWLFum9995Tly5dNHz4cJnN/yaHr776qi5duqTZs2fb2vbs2SNJqly5ssqXL68iRYpo+/bttgJNXFyc9u3bp4iIiBzFlZTEhwiOkpxs4f10UcyN62JuXBdzUzAwj87F++2aHDEvFGgAAAAAIJ86fPiwxowZo/DwcPXq1Uvnz5+3bfP09FSLFi3Up08fffrpp3rqqad0+PBhvfvuu2rRooUCAwMlSREREZo0aZL8/PxUrlw5TZw4UaVLl1Z4eHhevSwAAADgrkCBBgAAAADyqTVr1ujmzZtau3at1q5da7etTZs2GjdunD766CPNmDFDM2bMUNGiRdWyZUsNGjTI1m/gwIFKSkrSyJEjdePGDYWEhGj27Nm2y6QBAAAAyB0UaAAAAAAgn+rdu7d69+6daZ/mzZurefPmGW53c3PT0KFDNXToUEeHBwAAACATLlugmT59urZu3aoFCxZIkrp06aIdO3ak23f8+PFq3bp1utvCwsJ04sQJu7aWLVtq0qRJDo0XAAAAAAAAAAAgq1yyQDNv3jxNnTpVISEhtraPP/5YN2/etOs3cuRIHT16VE2bNk13P/Hx8Tp58qQ+++wzVatWzdbu6emZO4EDAAAAAAAAAABkgUsVaM6cOaMRI0Zo165dqlSpkt224sWL2z3+9ttv9fPPP2v58uUqUqRIuvuLiYmR1WpV3bp15ePjk1thAwAAAAAAAAAAZIs5rwNIbe/evSpWrJhWrVqlWrVqZdjv2rVrmjBhgrp27aoqVapk2O/AgQMqWbIkxRkAAAAAAAAAAOBSXOoMmrCwMIWFhd2xX1RUlK5evao+ffpk2i8mJkbe3t4aMGCAfv31V/n5+alt27Z6/vnnZTbnrDbl7u5Sta27hpubsffd6DgUTCnrgXWB7GLtICdYPzCKtQMAAAAABZNLFWiyIjk5WQsWLFCnTp1UtGjRTPv+9ddfunLlip588kn1799f0dHRmjRpki5fvqyXX37ZcAxms0m+voUNj4fz+fh45XUIcEGsCxjF2kFOsH5gFGsHAAAAAAqWfFeg2bFjh06ePKlnn332jn3nzp2rhIQE2z1qqlSpoqtXr+rTTz/VgAEDDJ9FY7FYFRd3zdBY5Iybm9nQhxNxcdeVnGzJhYiQH6WsI9YFsou1g5xg/cCovF47Pj5enL0DAAAAALkg3xVo1q1bp5o1a6p8+fJ37HvPPffonnvusWsLCgrStWvXdPnyZfn6+hqOIymJD1byk+RkC3OGNFgXMIq1g5xg/cAo1g4AAAAAFCz57qtwu3btUmho6B37WSwWhYWF6dNPP7Vr37Nnj+69994cFWcAAAAAAAAAAAByIl8VaJKTk3Xw4EEFBQWlu/3KlSu6cOGCJMlsNqt58+aaNWuWVq9eraNHj2rJkiWaNWtWju4/AwAAAAAAAAAAkFP56hJnly5d0s2bN1W8ePF0t48ePVo7duzQhg0bJEmvvvqqfHx89MEHH+j06dMKCAjQiBEjsnT/GgAAAAAAAAAAgNzisgWacePGpWkrUaKEDhw4kOUx7u7u6tOnj/r06ePw+AAAAAAAAAAAAIzKV5c4AwAAAAAAAAAAKAgo0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABORoEGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACejQAMAAAAAAAAAAOBkFGgAAAAAAAAAAACcjAINAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE5GgQYAAAAAAAAAAMDJKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AAAAAAAAAAICTUaABAAAAAAAAAABwMgo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMko0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABORoEGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACejQAMAAAAAAAAAAOBkFGgAAAAAAAAAAACcjAINAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE5GgQYAAAAAAAAAAMDJKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AAAAAAAAAAICTUaABAAAAAAAAAABwMgo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMlctkAzffp0denSxa7tjTfeUJUqVex+HnnkkUz3s3r1aj355JOqUaOGWrZsqc2bN+dm2AAAAAAAAAAAAHfkntcBpGfevHmaOnWqQkJC7NoPHDig3r17KyIiwtbm5uaW4X62bdumoUOH6vXXX1eDBg301VdfqV+/flq5cqUCAwNzLX4AAAAAAAAAAIDMuNQZNGfOnNFLL72kjz76SJUqVbLblpycrIMHD6pGjRoqWbKk7cfPzy/D/c2cOVPh4eGKiIhQYGCgXnvtNVWrVk2RkZG5/VIAAAAAAAAAAAAy5FIFmr1796pYsWJatWqVatWqZbftyJEjSkhIyPKZLxaLRb/88otCQ0Pt2h988EFFR0c7LGYAAAAAAAAAAIDscqlLnIWFhSksLCzdbTExMTKZTIqMjNTmzZtlNpvVuHFjDRo0SEWLFk3TPy4uTteuXVPp0qXt2kuVKqVTp07lSvwAAAAAAAAAAABZ4dACzdWrV+Xm5iZPT09H7laS9Ndff8lsNqtcuXKaMWOGYmNjNX78eMXExCgyMlJms/3JQDdu3JAkeXh42LUXKlRICQkJOY7H3d2lTj66a7i5GXvfjY5DwZSyHlgXyC7WDnKC9QOjWDsFX27mUQAAAABcl+ECzebNm/XHH3+ob9++kqTx48dr/vz5MplM6tixo0aMGOGwICVpwIABeuGFF+Tj4yNJCgoKUsmSJdWhQwft2bMnzSXRChUqJElKTEy0a09ISJCXl1eOYjGbTfL1LZyjfcC5fHxyNucomFgXMIq1g5xg/cAo1k7B4Ow8CgAAAIDrMlSg2bhxo/r27asKFSqob9++io6O1ty5c1WhQgX5+/vriy++UKVKldSpUyeHBWoymWzFmRRBQUGSpNOnT6cp0BQvXlze3t46e/asXfvZs2fTXPYsuywWq+LiruVoHzDGzc1s6MOJuLjrSk625EJEyI9S1hHrAtnF2kFOsH5gVF6vHR8fL87ecZC8yKMAAAAAuC5DBZqUJGL+/PmSpO+++05ms1lz585VuXLl1LdvXy1btsyhicWrr76qS5cuafbs2ba2PXv2SJIqV66cpr/JZFLdunW1Y8cOtW/f3ta+fft21atXL8fxJCXxwUp+kpxsYc6QBusCRrF2kBOsHxjF2sn/8iKPAgAAAOC6DH0Vbv/+/erYsaP8/f0lSVu2bFFQUJDKlSsnSWrUqJH+/vtvx0UpqUWLFtqyZYs+/fRTHT16VD/++KOGDx+uFi1aKDAwUJJ05coVXbhwwTamW7du+u677zR37lwdOnRIEyZM0P79+9W1a1eHxgYAAAAAd5IXeRQAAAAA12WoQJOUlKQiRYpIkk6cOKGjR4/qwQcftG23WCxydzd8e5t0PfbYY/roo4/0ww8/qGXLlhoxYoSaNWumMWPG2PqMHj1azzzzjO1xw4YNNWbMGC1evFht2rTRtm3bNGPGDFtBBwAAAACcJS/yKAAAAACuy9DRf0BAgPbt2ydJWrNmjUwmkxo1amTbvnHjRgUEBOQosHHjxqVpa968uZo3b56tMa1bt1br1q1zFAsAAAAA5JQz8igAAAAA+YehAk3z5s316aef6sSJE9qxY4f8/f0VGhqqo0eP6v3339eWLVv0+uuvOzpWAAAAAMi3yKMAAAAApGaoQNO3b19dunRJy5YtU5kyZTR69Gi5u7vr0qVL+vnnn/Xss88qIiLC0bECAAAAQL5FHgUAAAAgNUMFGrPZrJEjR2rkyJF27cHBwdq4caPtppcAAAAAgFvIowAAAACkZjYy6Pnnn9fWrVvTtHt4eMjf31/r1q3T448/nuPgAAAAAKCgyK086tKlS3rrrbf0yCOPqG7duurYsaOio6Nt2/fv36+IiAjVrl1bjz76qGbPnm033mKxaOrUqWrUqJFq1aqlF198UbGxsdl/gQAAAACyJUtn0Fy/fl0XL160Pd6xY4fCw8NVsWLFNH0tFot+/vlnnTx50nFRAgAAAEA+46w8avDgwTp//rwmT54sPz8/LVq0SN27d9fy5cvl5+enbt26qWnTpho1apR2796tUaNGqXjx4mrXrp0kafr06YqKitLYsWPl7++viRMnqkePHvr222/l4eFh/A0AAAAAkKksFWji4+PVokULXb9+3dY2ZswYjRkzJsMxtWvXznFwAAAAAJBfOSOPio2N1ZYtW7R48WLVrVtXkjRixAht3rxZ3377rTw9PeXh4aF33nlH7u7uCgwMVGxsrGbOnKl27dopMTFRc+bM0dChQ9W4cWNJ0pQpU9SoUSOtXbtWTz31VPZfOAAAAIAsyVKBpmTJknrrrbe0fft2Wa1WrVy5UvXq1VP58uXT9DWbzbr33nvVsWNHhwcLAAAAAPmFM/IoX19fff7556pevbqtzWQyyWq16vLly/rjjz8UEhIid/d/U7/Q0FB99tlnOn/+vE6cOKGrV68qNDTUtt3Hx0dVq1bVzp07KdAAAAAAuShLBRpJat26tVq3bi3p1qn53bp1U5MmTXIrLgAAAADI93I7j/Lx8bGd+ZJi9erVOnr0qBo2bKgpU6YoKCjIbnupUqUkSSdPntTp06clSWXKlEnT59SpUw6LEwAAAEBaWS7QpLZhwwZHxwEAAAAABZoz8qhdu3Zp+PDhatKkicLCwjR27Ng095EpVKiQJCkhIcF2+bX0+ly+fDlHsbi7m3M0HpKbm9nuX7gO5sZ1MTeui7lxPTmZC+bROfi7cU2OnBdDBRpJslqt2rZtm86dOyeLxZJun5RvigEAAAAAcjePWrdunYYMGaJatWpp8uTJkiRPT08lJiba9UtISJAkeXt7y9PTU5KUmJho+z2lj5eXl6E4JMlsNsnXt7Dh8bDn42N8LpC7mBvXxdy4LuamYGAenYv32zU5Yl4MFWhiY2PVo0cPHTt2LN3tVqtVJpOJAg0AAAAA/H+5mUd98cUXGj16tMLDwzVp0iTbGTGlS5fW2bNn7fqmPPb391dSUpKtrUKFCnZ9goODsx1HCovFqri4a4bH4xY3N7N8fLwUF3ddycnpF/SQN5gb18XcuC7mxvWkzIkRzKNz8Hfjmm6fFx8fL8Nn0xgq0EyaNEnHjh1Tu3btVKNGjTSnwwMAAAAA7OVWHrVo0SK999576tKli4YPHy6z+d/kMCQkRFFRUUpOTpabm5skaevWrapUqZJKlCihokWLqkiRItq+fbutQBMXF6d9+/YpIiIiR3ElJfEhgqMkJ1t4P10Uc+O6mBvXxdwUDMyjc/F+uyZHzIuhAs22bdvUsWNHvfXWWzl6cgAAAAC4W+RGHnX48GGNGTNG4eHh6tWrl86fP2/b5unpqXbt2mnWrFkaMWKEXnrpJf3++++KjIzUqFGjJN2690xERIQmTZokPz8/lStXThMnTlTp0qUVHh7usDgBAAAApGWoQJOUlKT//ve/jo4FAAAAAAqs3Mij1qxZo5s3b2rt2rVau3at3bY2bdpo3LhxmjVrlkaPHq02bdqoZMmSGjZsmNq0aWPrN3DgQCUlJWnkyJG6ceOGQkJCNHv2bK6UAAAAAOQyQwWaatWqae/evWrfvr2j4wEAAACAAik38qjevXurd+/emfapWbOmlixZkuF2Nzc3DR06VEOHDnVYXAAAAADuzNCdawYOHKivv/5aa9askdVqdXRMAAAAAFDgkEcBAAAASM3QGTRz5sxRsWLFNGjQIHl6esrX11cmk8muj8lk0rp16xwSJAAAAADkd+RRAAAAAFIzVKCJiYmR2WxWmTJlbG23fwOMb4QBAAAAwL/IowAAAACkZqhAs2HDBkfHAQAAAAAFGnkUAAAAgNQM3YPmdomJibJYLI7YFQAAAADcFcijAAAAgLub4QLNpUuX9O6776phw4aqXbu2tm/frujoaPXu3VuHDx92ZIwAAAAAUCCQRwEAAABIYahAc+nSJXXo0EGLFi2Sl5eX7TrJly9f1qZNm9S5c2cdO3bMoYECAAAAQH5GHgUAAAAgNUMFmmnTpunEiROaO3eulixZYkssmjRpos8//1zXrl3T9OnTHRooAAAAAORn5FEAAAAAUjNUoNmwYYOeffZZNWjQQCaTyW7bI488og4dOmj79u0OCRAAAAAACgLyKAAAAACpGSrQnD17VsHBwRluDwwM1Llz5wwHBQAAAAAFDXkUAAAAgNQMFWhKlCihEydOZLg9JiZGvr6+hoMCAAAAgIKGPAoAAABAaoYKNI888oiioqJ0/PjxNNt++eUXLV26VA0bNsxxcAAAAABQUJBHAQAAAEjN3cig/v37a+PGjWrTpo3q1asnk8mkqKgoRUZG6qefflKRIkXUt29fR8cKAAAAAPkWeRQAAACA1AydQePv76+oqCjVqVNHmzdvltVq1Zo1a7Rp0ybVrl1bCxYsUEBAgKNjBQAAAIB8izwKAAAAQGqGzqCRpICAAH3++ee6cuWKjhw5IovFooCAAJUoUcKR8QEAAABAgUEeBQAAACCF4QJNiqJFi6pGjRqOiAUAAAAA7grkUQAAAACyVKB544039Nxzz6lWrVq2x3diMpk0ZsyYnEUHAAAAAPkUeRQAAACAzGSpQLNixQo99NBDtsRixYoVdxxDYgEAAADgbkYeBQAAACAzWSrQrF+/Xn5+fnaPAQAAAAAZI48CAAAAkJksFWjKlSuX7uO4uDgVKVJEZrNZkvTXX3+pZMmSKl68uGOjBAAAAIB8hjwKAAAAQGbMRgdOmTJFjRo10tGjR21tM2fOVMOGDTVnzhyHBAcAAAAABQl5FAAAAIAUWTqD5nZLly7VZ599pnr16qlQoUK29tatW+uff/7RxIkTVaZMGT3xxBMOCxQAAAAA8jPyKAAAAACpGTqDZtGiRXr44Ye1cOFClSlTxtb+0EMPac6cOWrQoIHmzp3rsCABAAAAIL8jjwIAAACQmqECTWxsrJo1a5bh9vDwcB06dMhwUAAAAABQ0JBHAQAAAEjNUIHGy8tL586dy3D7xYsX5ebmZjgoAAAAAChoyKMAAAAApGaoQFOvXj0tWrQo3eTiwoULioqKUt26dXMcHAAAAAAUFORRAAAAAFJzNzKoZ8+e6tSpk55++mm1atVK999/v0wmk/7++2998803unTpkvr27evoWAEAAAAg3yKPAgAAAJCaoQJNjRo1NH36dL399tuaN2+e3bbSpUvrk08+Uc2aNR0RHwAAAAAUCORRAAAAAFIzVKCRpEaNGmnDhg3at2+fjh8/rqSkJAUEBKhatWpcNxkAAAAA0kEeBQAAACCF4QJNiqpVq6pq1aqOiAUAAAAA7grkUQAAAACyVKCZNm2amjVrpqCgINvjOzGZTOrXr1/OogMAAACAfIo8CgAAAEBmslygqVixIokFAAAAAGQReRQAAACAzGSpQDN79mz997//tT2eP39+rgUEAAAAAAUBeRQAAACAzGSpQDN8+HANHjxYrVq1kiSdPHlSDzzwgAICAnI1OAAAAADIr8ijAAAAAGTGnJVOFy5cUHx8vO3xG2+8od27d+dWTJKk6dOnq0uXLnZtGzZsULt27VSnTh2FhYVp/PjxunHjRqb7CQsLU5UqVex+hgwZkpuhAwAAAECe5FEAAAAA8o8snUFTtmxZTZ8+XcePH1fhwoVltVr1ww8/6MiRIxmOycm1k+fNm6epU6cqJCTE1hYdHa3+/ftr0KBBat68uWJjY/XWW2/p0qVLGjt2bLr7iY+P18mTJ/XZZ5+pWrVqtnZPT09DcQEAAABAVjk7jwIAAACQv2SpQDNo0CC99tprmjt3rqRbScMPP/ygH374IcMxRhKLM2fOaMSIEdq1a5cqVapkty0qKkqhoaHq2bOnJKlixYp65ZVXNHz4cI0aNUoeHh5p9hcTEyOr1aq6devKx8cnW7EAAAAAQE44K48CAAAAkD9lqUATHh6u0NBQHTlyRImJieratat69+6thx56yKHB7N27V8WKFdOqVav0ySef6MSJE7ZtL774oszmtFdkS0pKUnx8vPz8/NJsO3DggEqWLElxBgAAAIDTOSuPAgAAAJA/ZalA06RJE7ubW5YtW1Zly5ZV/fr1HRpMWFiYwsLC0t1WtWpVu8eJiYmaO3euqlWrlm5xRrp1Bo23t7cGDBigX3/9VX5+fmrbtq2ef/75dIs9AAAAAOAozsqjAAAAAORPWSrQ3H5zy5MnT8rLyyvXgrqTpKQkDRs2TAcPHtTChQsz7PfXX3/pypUrevLJJ9W/f39FR0dr0qRJunz5sl5++eUcxeDuToEnL7i5GXvfjY5DwZSyHlgXyC7WDnKC9QOjWDv5l6vlUQAAAABcS5YKNLff3FKS1q5dq9jY2AzH5Na1k+Pj4zVo0CBt375dU6dOVa1atTLsO3fuXCUkJKhIkSKSpCpVqujq1av69NNPNWDAAMNn0ZjNJvn6FjY0FnnDx4dEGGmxLmAUawc5wfqBUayd/MeV8igAAAAAridLBRpXubnl2bNn1aNHDx0/flwzZ85UaGhopv3vuece3XPPPXZtQUFBunbtmi5fvixfX19DcVgsVsXFXTM0Fjnj5mY29OFEXNx1JSdbciEi5Ecp64h1gexi7SAnWD8wKq/Xjo+PF2fvGOQqeRQAAAAA15SlAs0TTzyR5ze3vHz5srp27ar4+HgtWrRIVapUybS/xWJR06ZN1b59e/Xp08fWvmfPHt17772GizMpkpL4YCU/SU62MGdIg3UBo1g7yAnWD4xi7eQ/rpBHAQAAAHBdWSrQSJKvr6+tqBESEqIHH3zQqTe3HDt2rI4dO6ZZs2bJz89P586ds23z8/OTm5ubrly5ops3b8rPz09ms1nNmzfXrFmzdN9996latWraunWrZs2apREjRjgtbgAAAAB3r7zOowAAAAC4riwXaFJbsGCB7ffDhw/rxIkTqlatmry8vGQ2m+Xh4eGwAKVbZ8N8//33unnzprp27Zpm+/r16xUQEKDRo0drx44d2rBhgyTp1VdflY+Pjz744AOdPn1aAQEBGjFihJ599lmHxgcAAAAAd+LsPAoAAACAazNUoJGk3bt3680339TBgwclSXPmzJHVatWQIUP05ptv6oknnshRYOPGjbP9bjab9fvvv2drjCS5u7urT58+dpc4AwAAAIC8ktt5FAAAAID8w9DdPv/66y9169ZN//zzj55++mlbu5eXl5KTkzVkyBDt3LnTYUECAAAAQH5HHgUAAAAgNUMFmo8//lje3t769ttv9dprr8lqtUqS6tSpo1WrVqlkyZKaOXOmQwMFAAAAgPyMPAoAAABAaoYKNDt27NBzzz2nEiVKyGQy2W3z9/dXhw4dtG/fPocECAAAAAAFAXkUAAAAgNQMFWiuXr0qf3//DLcXK1ZMcXFxhoMCAAAAgIKGPAoAAABAaoYKNAEBAdqzZ0+G27dt26Zy5coZDgoAAAAAChryKAAAAACpGSrQtGjRQitWrNAPP/xgazOZTLJYLPr888+1du1aNW/e3GFBAgAAAEB+Rx4FAAAAIDV3I4N69Oih//u//9PLL78sHx8fmUwmvf3227p06ZIuX76s4OBg9erVy9GxAgAAAEC+RR4FAAAAIDVDZ9B4eHho3rx5evXVV1W2bFl5enrq1KlTKlGihPr06aNFixbJy8vL0bECAAAAQL5FHgUAAAAgNUNn0EjSPffco5deekkvvfSSI+MBAAAAgAKLPAoAAABACsMFGkmKj4/Xzz//rOPHj8vDw0Nly5ZVw4YN5enp6aj4AAAAAKBAIY8CAAAAIOWgQLNmzRq99dZbiouLk9VqlXTrBpeFCxfWu+++qyeffNJhQQIAAABAQUAeBQAAACCFoQLNb7/9pldffVVFixbVwIED9Z///EcWi0UxMTH64osvNGzYMAUEBKhmzZqOjhcAAAAA8iXyKAAAAACpGSrQfPrppypevLi+/vprlShRwtberFkzdezYUa1atdKsWbM0depUhwUKAAAAAPkZeRQAAACA1MxGBv3666/q0KGDXVKRokSJEurQoYN27dqV4+AAAAAAoKAgjwIAAACQmqECzbVr19JNKlL4+fnpypUrhoMCAAAAgIKGPAoAAABAaoYKNAEBAdq2bVuG27dt26ayZcsaDgoAAAAAChryKAAAAACpGSrQtGjRQmvXrtW0adOUmJhoa09MTNS0adO0bt06Pfnkkw4LEgAAAADyO/IoAAAAAKm5GxnUo0cP/fjjj5o2bZrmzJmjChUqyGQyKTY2VteuXVPVqlXVs2dPR8cKAAAAAPkWeRQAAACA1AwVaDw8PDR//nzNnj1b//vf/3TkyBFZrVZVqFBBzZs3V/fu3eXp6enoWAEAAAAg3yKPAgAAAJCaoQKNJHl6eqpfv37q16+fI+MBAAAAgAKLPAoAAABAimzfg2bv3r3ptq9fv14bNmzIcUAAAAAAUNCQRwEAAAC4XZYLNBcuXFBERITat2+vuLi4NNu/+OIL9evXT88995zOnDnj0CABAAAAID8ijwIAAACQkSwVaK5du6auXbsqOjpaISEhun79epo+nTt31kMPPaTdu3frxRdfVEJCgsODBQAAAID8gjwKAAAAQGayVKCJjIzUX3/9pXfffVeRkZHy9/dP06dp06aaPXu2Bg8erEOHDmnBggUODxYAAAAA8gvyKAAAAACZyVKBZs2aNWrcuLGeffbZO/bt2bOn6tatq++//z7HwQEAAABAfkUeBQAAACAzWSrQxMbGqkGDBlne6aOPPqrDhw8bDgoAAAAA8jvyKAAAAACZyVKBxmw2y9PTM8s7LV68uEwmk+GgAAAAACC/I48CAAAAkJksFWjKli2rv//+O8s7PXjwYLrXVwYAAACAuwV5FAAAAIDMZKlA06hRI3399de6evXqHfvGxcVp1apVqlOnTo6DAwAAAID8ijwKAAAAQGayVKB57rnnlJCQoF69eunixYsZ9jt//rz69eunuLg4de7c2WFBAgAAAEB+Qx4FAAAAIDPuWelUoUIFjRgxQm+++aaaNGmiJ598UnXr1lWpUqWUnJysc+fOadeuXfrhhx909epVvf7666pWrVpuxw4AAAAALisv8qjp06dr69atWrBgga3tjTfe0PLly+36+fv7a/PmzZIki8WiadOm6csvv1RcXJzq1aunt99+WxUrVsxRLAAAAAAyl6UCjSS1b99epUqV0ltvvaWvvvpKy5Yts9tutVpVvnx5TZw4UWFhYQ4PFAAAAADyG2fmUfPmzdPUqVMVEhJi137gwAH17t1bERERtjY3Nzfb79OnT1dUVJTGjh0rf39/TZw4UT169NC3334rDw+PHMUEAAAAIGNZLtBIUuPGjbVp0yZt27ZNv/32m86ePSs3Nzf5+/urfv36qlmzZm7FCQAAAAD5Um7nUWfOnNGIESO0a9cuVapUyW5bcnKyDh48qL59+6pkyZJpxiYmJmrOnDkaOnSoGjduLEmaMmWKGjVqpLVr1+qpp57KUWwAAAAAMpatAo0kmUwmNWjQQA0aNMiNeAAAAACgwMnNPGrv3r0qVqyYVq1apU8++UQnTpywbTty5IgSEhIUGBiY7tg///xTV69eVWhoqK3Nx8dHVatW1c6dOynQAAAAALko2wUaAAAAAIDrCAsLy/DyaDExMTKZTIqMjNTmzZtlNpvVuHFjDRo0SEWLFtXp06clSWXKlLEbV6pUKZ06dSrXYwcAAADuZhRoAAAAAKCA+uuvv2Q2m1WuXDnNmDFDsbGxGj9+vGJiYhQZGanr169LUpp7zRQqVEiXL1/O0XO7u5tzNB6Sm5vZ7l+4DubGdTE3rou5cT05mQvm0Tn4u3FNjpwXCjQAAAAAUEANGDBAL7zwgnx8fCRJQUFBKlmypDp06KA9e/bI09NT0q170aT8LkkJCQny8vIy/Lxms0m+voVzFjxsfHyMzwVyF3Pjupgb18XcFAzMo3PxfrsmR8wLBRoAAAAAKKBMJpOtOJMiKChIknT69Gnbpc3Onj2rChUq2PqcPXtWwcHBhp/XYrEqLu6a4fG4xc3NLB8fL8XFXVdysiWvw0EqzI3rYm5cF3PjelLmxAjm0Tn4u3FNt8+Lj4+X4bNpslSgmTt3rh555JEMbywJAAAAALDnCnnUq6++qkuXLmn27Nm2tj179kiSKleurPLly6tIkSLavn27rUATFxenffv2KSIiIkfPnZTEhwiOkpxs4f10UcyN62JuXBdzUzAwj87F++2aHDEvWSrrTJ06Vbt377Y9btKkidavX5+jJwYAAACAgswV8qgWLVpoy5Yt+vTTT3X06FH9+OOPGj58uFq0aKHAwEB5eHgoIiJCkyZN0vr16/Xnn3/qlVdeUenSpRUeHu7UWAEAAIC7TZbOoDGbzdq6dasef/xxFS5cWCdOnLDdTBIAAAAAkJYr5FGPPfaYPvroI82YMUMzZsxQ0aJF1bJlSw0aNMjWZ+DAgUpKStLIkSN148YNhYSEaPbs2fLw8HBqrAAAAMDdxmS1Wq136jRo0CD973//k8lkyvqOTSbt27cvR8G5quRkiy5cuJrXYdyV3N3N8vUtrEGTN+nQict37B9Yrpg+HPyoLl68ymmAsElZR6wLZBdrBznB+oFReb12/PwKG76e8t3ubs6jyJkcI6///pEx5sZ1MTeui7lxPdn9nE3iszZn4+/GNd0+LznJmbJ0Bs3777+vMmXKKCYmRomJiYqOjlalSpVUokQJQ08KAAAAAAUdeRQAAACAzGSpQFOkSBG99tprtsfBwcHq06ePWrZsmWuBAQAAAEB+Rh4FAAAAIDNZKtDcbv78+QoMDHR0LAAAAABQYJFHAQAAAEjNUIGmfv36kqSVK1dq9erVOn78uDw8PFSmTBk9/vjjevrppx0aJAAAAADkd+RRAAAAAFIzVKCxWq0aOHCg1q1bJ6vVqqJFi8pisWj//v3auHGj/ve//2n69OmOjhUAAAAA8i3yKAAAAACpmY0M+uKLL7R27Vq1bNlSP/74o3bu3Kldu3Zp48aNevrpp7Vx40YtXrzY0bECAAAAQL5FHgUAAAAgNUMFmmXLlql+/fqaMGGC/P39be1lypTR+PHjVb9+fS1btsxhQQIAAABAfkceBQAAACA1QwWaw4cPKzw8PMPtTZs21d9//204KEmaPn26unTpYte2f/9+RUREqHbt2nr00Uc1e/bsO+5n9erVevLJJ1WjRg21bNlSmzdvzlFcAAAAAGCEM/IoAAAAAPmHoQKNu7u7rl27luH2a9euyWQyGQ5q3rx5mjp1ql3bxYsX1a1bN913331atmyZBgwYoI8++ijTb5ht27ZNQ4cOVadOnbRy5Uo1bNhQ/fr106FDhwzHBgAAAABG5HYeBQAAACB/MVSgqV69upYvX66EhIQ0265fv67ly5eratWq2d7vmTNn9NJLL+mjjz5SpUqV7LYtXbpUHh4eeueddxQYGKh27drphRde0MyZMzPc38yZMxUeHq6IiAgFBgbqtddeU7Vq1RQZGZnt2AAAAAAgJ3IrjwIAAACQPxkq0Lz44ouKjY3VM888o2+//VZ//vmn/vzzT33zzTdq3769jh49qm7dumV7v3v37lWxYsW0atUq1apVy25bdHS0QkJC5O7ubmsLDQ3V4cOHdf78+TT7slgs+uWXXxQaGmrX/uCDDyo6OjrbsQEAAABATuRWHgUAAAAgf3K/c5e0GjdurGHDhmny5MkaOnSo3Taz2axXXnlFYWFh2d5vWFhYhuNOnz6toKAgu7ZSpUpJkk6ePKkSJUrYbYuLi9O1a9dUunTpNGNOnTqV7dgAAAAAICdyK48CAAAAkD8ZKtBIt779FR4ernXr1uno0aOyWq2qUKGCwsPDVb58eUfGKEm6ceOGPDw87NoKFSokSeleIuDGjRuSlO6Y9Ppnl7u7oZOPkENubsbed6PjUDClrAfWBbKLtYOcYP3AKNZOweLsPAoAAACA6zJcoJGk8uXLO+0UfE9PTyUmJtq1pRRavL290/RPKd6kN8bLyytHsZjNJvn6Fs7RPuBcPj45m3MUTKwLGMXaQU6wfmAUa6fgcGYeBQAAAMB15ahA40ylS5fW2bNn7dpSHvv7+6fpX7x4cXl7e6c75vbLnmWXxWJVXNy1HO0Dxri5mQ19OBEXd13JyZZciAj5Uco6Yl0gu1g7yAnWD4zK67Xj4+PF2TsAAAAAkAvyTYEmJCREUVFRSk5OlpubmyRp69atqlSpUpr7z0iSyWRS3bp1tWPHDrVv397Wvn37dtWrVy/H8SQl8cFKfpKcbGHOkAbrAkaxdpATrB8YxdoBAAAAgIIl33wVrl27doqPj9eIESN08OBBLV++XJGRkerVq5etz5UrV3ThwgXb427duum7777T3LlzdejQIU2YMEH79+9X165d8+IlAAAAAAAAAAAASMpHBZoSJUpo1qxZOnz4sNq0aaNp06Zp2LBhatOmja3P6NGj9cwzz9geN2zYUGPGjNHixYvVpk0bbdu2TTNmzFBgYGBevAQAAAAAAAAAAABJBi9xtnjxYjVo0ED33Xefg8P517hx49K01axZU0uWLMnWmNatW6t169aODA0AAAAAss0ZeRQAAACA/MPQGTSTJk3SN9984+hYAAAAAKDAIo8CAAAAkJqhAo3ZbJavr6+jYwEAAACAAos8CgAAAEBqhgo03bt31+eff66ffvpJFovF0TEBAAAAQIFDHgUAAAAgNUP3oNm9e7fi4+PVs2dPeXh4yNfXV25ubnZ9TCaT1q1b55AgAQAAACC/I48CAAAAkJqhAk1MTIyKFy+u4sWL29qsVqtdn9sfAwAAAMDdjDwKAAAAQGqGCjQbNmxwdBwAAAAAUKCRRwEAAABIzdA9aG6XmJjINZQBAAAAIBvIowAAAIC7m+ECzaVLl/Tuu++qYcOGql27trZv367o6Gj17t1bhw8fdmSMAAAAAFAgkEcBAAAASGGoQHPp0iV16NBBixYtkpeXl+06yZcvX9amTZvUuXNnHTt2zKGBAgAAAEB+Rh4FAAAAIDVDBZpp06bpxIkTmjt3rpYsWWJLLJo0aaLPP/9c165d0/Tp0x0aKAAAAADkZ+RRAAAAAFIzVKDZsGGDnn32WTVo0EAmk8lu2yOPPKIOHTpo+/btDgkQAAAAAAoC8igAAAAAqRkq0Jw9e1bBwcEZbg8MDNS5c+cMBwUAAAAABQ15FAAAAIDUDBVoSpQooRMnTmS4PSYmRr6+voaDAgAAAICChjwKAAAAQGqGCjSPPPKIoqKidPz48TTbfvnlFy1dulQNGzbMcXAAAAAAUFCQRwEAAABIzd3IoP79+2vjxo1q06aN6tWrJ5PJpKioKEVGRuqnn35SkSJF1LdvX0fHCgAAAAD5FnkUAAAAgNQMnUHj7++vqKgo1alTR5s3b5bVatWaNWu0adMm1a5dWwsWLFBAQICjYwUAAACAfIs8CgAAAEBqhs6gkaSAgAB9/vnnunLlio4cOSKLxaKAgACVKFHCkfEBAAAAQIFBHgUAAAAghaEzaFJLSkqS1WqVu7u7ChUq5IiYAAAAAKBAI48CAAAAYPgMmj179mjChAnatWuXrFarJMlsNuvhhx/WiBEjVLFiRYcFCQAAAAAFAXkUAAAAgBSGCjR79+5Vly5dlJiYqEaNGum+++6TxWLR33//rZ9++knPPfecli5dqvLlyzs6XgAAAADIl8ijAAAAAKRmqEAzdepUeXh4KCoqSsHBwXbbdu/erW7dumny5MmaMmWKQ4IEAAAAgPyOPAoAAABAaobuQRMdHa0uXbqkSSokqXbt2oqIiNCWLVtyHBwAAAAAFBTkUQAAAABSM1SgMZlM8vHxyXB7QECAkpKSDAcFAAAAAAUNeRQAAACA1AwVaBo3bqyvv/5aiYmJ6W5fvXq1GjZsmKPAAAAAAKAgIY8CAAAAkFqW7kGzc+dOu8dNmjTRyJEj1blzZ/Xs2VP333+/zGazjh49qi+++EJ//fWXPvzww9yIFwAAAADyBfIoAAAAAJnJUoGmS5cuMplMdm1Wq1V79uzRwIED07RL0vPPP6/9+/c7KEwAAAAAyF/IowAAAABkJksFmn79+qVJLAAAAAAAGSOPAgAAAJCZLBVoBgwYkNtxAAAAAECBQh4FAAAAIDPmvA4AAAAAAAAAAADgbpOlM2huFx8frw8++ECbNm3SmTNnbNdLTs1kMmnfvn05DhAAAAAACgLyKAAAAACpGSrQTJgwQUuXLlWpUqVUu3Ztubm5OTouAAAAAChQyKMAAEBuMptNMpuzfv87NzcurgTkNUMFmo0bN6pp06aaOnWqzGb+kAEAAADgTsijAABAbjGbTSpe3JuiC5DPGL7EWePGjUkqAAAAACCLyKMAAEBuMZtNcnMza9LCXTp+5kqWxtQNLqXnn6yay5EByIyhAk3dunW1d+9etW/f3tHxAAAAAECBRB4FAABy2/EzV3ToxOUs9Q0oVSSXowFwJ4a+ujV06FCtXr1akZGROnfunKNjAgAAAIAChzwKAAAAQGqGzqApV66cqlSponHjxmncuHHp9jGZTNq3b1+OggMAAACAgoI8CgAAAEBqhgo0o0eP1o4dO+Tn56eKFSvK3d3QbgAAAADgrkEeBQAAACA1QxnBxo0b1aRJE3300UckFQAAAACQBeRRAAAAAFIzdA+axMREPfrooyQVAAAAAJBF5FEAAAAAUjNUoKlTp4727t3r6FgAAAAAoMAijwIAAACQmqECzauvvqrvvvtOc+bM0ZkzZ5ScnOzouAAAAACgQCGPAgAAAJCaoXPrX3/9dZnNZk2cOFETJ05Mt4/JZNK+fftyFBwAAAAAFBTkUQAAAABSM1SgKV68uIoXL+7gUAAAAACg4CKPAgAAAJCaoQLNggULHB0HAAAAABRo5FEAAAAAUjN0DxoAAAAAAAAAAAAYZ+gMmjfeeOOOfUwmk8aMGWNk9wAAAABQ4JBHAQAAAEjNUIFmxYoVGW4zmUzy8PBQoUKFSCwAAAAA4P8jjwIAAACQmqECzfr169O0JScn69y5c1qxYoW2bdumRYsW5Tg4AAAAACgoyKMAAAAApGaoQFOuXLl02ytUqKB69eqpd+/e+uCDDzR+/PgcBQcAAAAABQV5FAAAAIDUDBVo7iQsLEyTJ092+H63b9+u559/Pt1tAQEB6X4jbcWKFXr99dfTtP/www+qWLGiw2MEAAAAACNyK48CAAAA4JpypUBz7tw53bhxw+H7rVOnjn7++We7tpiYGPXs2VO9e/dOd8yBAwdUv379NImOn5+fw+MDAAAAAKNyK48CAAAA4JoMFWhOnjyZbvuNGzf0xx9/KDIyUtWqVctRYOnx8PBQyZIlbY9v3rypsWPHqlmzZmrfvn26Y2JiYhQcHGw3DgAAAACcLa/yKAAAAACuyVCBJiwsTCaTKcPtZrNZ/fv3NxxUVi1cuFCnTp3SnDlzMuxz4MABNW/ePNdjAQAAAIDMuEoeBQAAAMA1GCrQtG7dOt3Ews3NTaVKlVKbNm1Uvnz5HAeXmYSEBM2YMUNdu3ZVqVKl0u1z4cIF/fPPP9q5c6cWLFigS5cuqVatWhoyZIgqVaqUq/EBAAAAQGqukEcBAAAAcB2GCjTjxo1zdBzZ9vXXXyshIUFdunTJsE9MTIykWwnP+PHjde3aNU2fPl2dOnXSN998o3vvvdfw87u7mw2PhXFubsbed6PjUDClrAfWBbKLtYOcYP3AKNZOweEKeRQAAAAA12GoQOMKVq5cqWbNmsnX1zfDPqGhodqxY4eKFStma/vkk0/02GOPafny5erZs6eh5zabTfL1LWxoLPKGj49XXocAF8S6gFGsHeQE6wdGsXYAAAAAoGDJUoFm2rRphnaeW9dPvnDhgn799Vf16tXrjn1TF2ckydvbWwEBATpz5ozh57dYrIqLu2Z4PIxzczMb+nAiLu66kpMtuRAR8qOUdcS6QHaxdpATrB8Ylddrx8fHi7N3DHK1PAoAAACAa3F4gSb1NZVzK7H45ZdfZDKZVL9+/Uz7LVq0SB999JF+/PFHeXp6SpLi4+N15MgRPfPMMzmKISmJD1byk+RkC3OGNFgXMIq1g5xg/cAo1k7+kxd51PTp07V161YtWLDA1rZ//36NHj1af/zxh4oXL64uXbqoe/futu0Wi0XTpk3Tl19+qbi4ONWrV09vv/22KlasaDgOAAAAAHeWpQLN/Pnz79jHarVq4cKF+uGHHyRJjRs3zllkmfjzzz9Vvnx5eXnZn0mRnJysCxcuqGjRovL09NRjjz2mDz/8UMOGDdOAAQN048YNTZ48WX5+fmrTpk2uxQcAAAAAzs6j5s2bp6lTpyokJMTWdvHiRXXr1k1NmzbVqFGjtHv3bo0aNUrFixdXu3btJN0q6kRFRWns2LHy9/fXxIkT1aNHD3377bfy8PAwHA8AAACAzGWpQHOnM1VOnjyp4cOHa/v27SpatKhef/1128F+bvjnn39UvHjxNO2nTp1SkyZNNHbsWLVt21ZlypRRZGSkJk2apI4dO8pqterhhx/W/PnzbWfUAAAAAEBucFYedebMGY0YMUK7du1SpUqV7LYtXbpUHh4eeuedd+Tu7q7AwEDFxsZq5syZateunRITEzVnzhwNHTrUVhyaMmWKGjVqpLVr1+qpp57KdjwAAAAAsiZLBZrMREVFaeLEibp69aoaNmyo0aNHy9/f3xGxZeidd95Jtz0gIEAHDhywa/vvf/+r2bNn52o8AAAAAJAdjsyj9u7dq2LFimnVqlX65JNPdOLECdu26OhohYSEyN3939QvNDRUn332mc6fP68TJ07o6tWrCg0NtW338fFR1apVtXPnTgo0AAAAQC4yXKA5ffq0RowYof/7v/9T4cKF9d5776l9+/aOjA0AAAAACpTcyKPCwsIUFhaW4fMFBQXZtZUqVUrSrTN4Tp8+LUkqU6ZMmj6nTp3KUVzu7uYcjYfk5ma2+xeug7lxXcyN62Jucpez31fm0Tn4u3FNjpwXQwWaL7/8UuPHj1d8fLweeughjR49Os0BPQAAAADgX3mRR924cSPNfWQKFSokSUpISND169clKd0+ly9fNvy8ZrNJvr6FDY+HPR8frzt3Qp5gblwXc+O6mJuCgXl0Lt5v1+SIeclWgebMmTMaOXKkfv75Z3l5eemdd97Rc889l+MgAAAAAKCgyss8ytPTU4mJiXZtCQkJkiRvb2/bvTkTExPt7tOZkJAgLy/jCafFYlVc3DXD43GLm5tZPj5eiou7ruRkS16Hg1SYG9fF3Lgu5iZ3pby/zsI8Ogd/N67p9nnx8fEyfDZNlgs0K1as0NixYxUXF6fQ0FCNHj1a5cqVM/SkAAAAAHA3yOs8qnTp0jp79qxdW8pjf39/JSUl2doqVKhg1yc4ODhHz52UxIcIjpKcbOH9dFHMjetiblwXc1MwMI/OxfvtmhwxL1kq0PTu3Vs//vijJOnxxx9Xp06ddPLkSZ08eTLTcSEhITkKDgAAAADyK1fIo0JCQhQVFaXk5GS5ublJkrZu3apKlSqpRIkSKlq0qIoUKaLt27fbCjRxcXHat2+fIiIiHBYHAAAAgLSyVKDZtGmT7fc1a9ZozZo1Wdr5/v37DQUFAAAAAPmdK+RR7dq106xZszRixAi99NJL+v333xUZGalRo0ZJunXvmYiICE2aNEl+fn4qV66cJk6cqNKlSys8PNxhcQAAAABIK0sFmv79++d2HAAAAABQoLhCHlWiRAnNmjVLo0ePVps2bVSyZEkNGzZMbdq0sfUZOHCgkpKSNHLkSN24cUMhISGaPXu2PDw88jByAAAAoOCjQAMAAAAAuSAv8qhx48alaatZs6aWLFmS4Rg3NzcNHTpUQ4cOzc3QAAAAANzGnNcBAAAAAAAAAAAA3G0o0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABORoEGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACejQAMAAAAAAAAAAOBkFGgAAAAAAAAAAACcjAINAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE5GgQYAAAAAAAAAAMDJKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AAAAAAAAAAICTued1AAAA12I2m2Q2m7I1xmKxymKx5lJEAAAAAAAAQMFDgQYAYGM2m1S8uLfc3LJ3gmVyskWXLl2jSAMAAAAAAABkEQUaAICN2WySm5tZkxbu0vEzV7I0JsC/qIZ0riez2USBBgAAAAAAAMgiCjQAgDSOn7miQycu53UYAAAAAAAAQIGVvWvYAAAAAAAAAAAAIMco0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAyCjQAAAAAAAAAAABORoEGAAAAAAAAAADAySjQAAAAAAAAAAAAOBkFGgAAAAAAAAAAACejQAMAAAAAAAAAAOBkFGgAAAAAAAAAAACcjAINAAAAAAAAAACAk1GgAQAAAAAAAAAAcDIKNAAAAAAAAAAAAE6W7wo0J06cUJUqVdL8fPnll+n2v3jxol599VWFhIQoJCREb775pq5du+bkqAEAAAAAAAAAAP7lntcBZNeBAwdUqFAhrVu3TiaTydZetGjRdPsPHDhQCQkJmjdvnuLi4jRixAiNGjVK48ePd1bIAAAAAAAAAAAAdvJdgSYmJkaVKlVSqVKl7tj3119/1Y4dO/T9998rMDBQkvTuu+/qpZde0uDBg+Xv75/b4QIAAAAAAAAAAKSR7y5xduDAAVWuXDlLfaOjo1WyZElbcUaS6tevL5PJpF27duVWiAAAAAAAAAAAAJnKl2fQlCxZUp06ddKRI0dUsWJF9e3bV40aNUrT98yZMypTpoxdm4eHh4oXL65Tp07lKA5393xX2yoQ3NyMve9Gx6FgSlkPrIu0cvKe3A3vZ0Zrx2QyyWw2pTckQxaLVVar1WGxZSS7sTkrrrsR/+2BUawdAAAAACiY8lWBJjExUUeOHJGXl5eGDRsmb29vrVq1Sj169NDcuXPVoEEDu/7Xr1+Xh4dHmv0UKlRICQkJhuMwm03y9S1seDycz8fHK69DgAtiXTjW3fR+3v5aLRaroQJNdscYkd3ncVZcd7O76W8FjsXaAQAAAICCJV8VaDw8PLRz5065u7vbCi/Vq1fXoUOHNHv27DQFGk9PTyUmJqbZT0JCgry9vQ3HYbFYFRd3zfB4GOfmZjb04URc3HUlJ1tyISLkRynriHWRltG/Menu+DtLb+2ktE1auEvHz1zJ0n4C/ItqSOd6uf6eZTc2Z8V1t+K/PTAqr9eOj48XZ+8AAAAAQC7IVwUaSekWVoKCgvTzzz+naS9durTWrVtn15aYmKhLly7J398/R3EkJfHBSn6SnGxhzpAG68Kx7qb3M73XevzMFR06cTnH+8kN2Y3tbprLvMD7C6NYOwAAAABQsOSrr8L9+eefqlOnjqKjo+3a//jjD1WuXDlN/5CQEJ0+fVqxsbG2tu3bt0uS6tatm7vBAgAAAAAAAAAAZCBfFWiCgoL0n//8R6NGjVJ0dLQOHTqksWPHavfu3erdu7eSk5N17tw53bhxQ5JUq1Yt1a1bV6+88op+//13bdu2TW+//bZat26d4zNoAAAAAAAAAAAAjMpXBRqz2awZM2aoRo0aGjRokNq0aaPffvtNc+fOVZUqVXTq1Ck1bNhQ33//vSTJZDJp2rRpCggIUNeuXTVo0CA98sgjeuedd/L2hQAAAAAAAAAAgLtavrsHjZ+fn8aMGZPutoCAAB04cMCurUSJEpo6daozQgMAAAAAAAAAAMiSfHUGDQAAAAAAAAAAQEFAgQYAAAAAAAAAAMDJKNAAAAAAAAAAAAA4GQUaAAAAAAAAAAAAJ6NAAwAAAAAAAAAA4GQUaAAAAAAAAAAAAJyMAg0AAAAAAAAAAICTUaABAAAAAAAAAABwMgo0AAAAAAAAAAAATkaBBgAAAAAAAAAAwMko0AAAAAAAAAAAADgZBRoAAAAAAAAAAAAno0ADAAAAAAAAAADgZBRoAAAAAAAAAAAAnIwCDQAAAAAAAAAAgJNRoAEAAAAAAAAAAHAy97wOAACA3GQ2m2Q2m7Lc32KxymKx5mJEAAAAAAAAAAUaAEABZjabVLy4t9zcsn7CaHKyRZcuXaNIAwAAAAAAgFxFgQYAUGCZzSa5uZk1aeEuHT9z5Y79A/yLakjnejKbTRRoAAAAAAAAkKso0AAACrzjZ67o0InLeR0GAAAAAAAAYJP1a74AAAAAAAAAAADAISjQAAAAAAAAAAAAOBkFGgAAAAAowE6cOKEqVaqk+fnyyy8lSfv371dERIRq166tRx99VLNnz87jiAEAAIC7A/egAQAAAIAC7MCBAypUqJDWrVsnk8lkay9atKguXryobt26qWnTpho1apR2796tUaNGqXjx4mrXrl0eRg0AAAAUfBRoAAAAAKAAi4mJUaVKlVSqVKk02yIjI+Xh4aF33nlH7u7uCgwMVGxsrGbOnEmBBgAAAMhlXOIMAAAAAAqwAwcOqHLlyului46OVkhIiNzd//3uXmhoqA4fPqzz5887K0QAAADgrsQZNAAAAABQgMXExKhkyZLq1KmTjhw5oooVK6pv375q1KiRTp8+raCgILv+KWfanDx5UiVKlDD8vO7ufB8wp9zczHb/wnUwN66LuXFdzE3ucvb7yjw6B383rsmR80KBBgAAAAAKqMTERB05ckReXl4aNmyYvL29tWrVKvXo0UNz587VjRs35OHhYTemUKFCkqSEhATDz2s2m+TrWzhHseNfPj5eeR0CMsDcuC7mxnUxNwUD8+hcvN+uyRHzQoEGAAD8v/buPT7GO////3MmJJEmcWiJQ2iVJkGc41RaxYYtbRXdtkpa32oltpTNEkW3h49Di3xi1a6qhnVqHON8WKX6WWVVG9ulqrQNRSyijolDQub6/eE3sx0JZkYyh+Rxv93cblzzfs/1el/va8b1ntf1fl8AgFLK399fX3/9tcqVK2dLxERHRyszM1OzZ89WYGCg8vPz7epYEzNBQUEu79diMXTx4mXXA4ekG3dlhoZW0MWLV1RQYPF0OPgV+sZ70Tfei74pWdbj6y70o3vwufFON/dLaGgFl2fTkKABAAAAgFKsqERLRESEtm/frurVqys7O9vuNeu/w8LC7mq/16/zI0JxKSiwcDy9FH3jvegb70XflA70o3txvL1TcfQLi9cBAAAAQCl14MABNW/eXBkZGXbb9+3bp/r166tVq1bavXu3CgoKbK/t3LlTdevWvavnzwAAAAC4MxI0AAAAAFBKRURE6KGHHtK7776rjIwMZWZm6r333tO///1vJSQkqE+fPsrNzdXYsWP1008/acWKFZo3b57i4+M9HToAAABQ6rHEGQAAAACUUmazWTNnzlRycrKGDx+uixcvqmHDhvrb3/6myMhISVJqaqomTJigXr16qWrVqkpKSlKvXr08HDkAAABQ+pGgAQAAAIBSrEqVKpo4ceItX2/SpImWLFnixogAAIAjzGaTzGaTQ2VdfUC5q5zdn8ViyGIxSigawHeRoAEAAAAAAAAAL2I2m1SpUpDbEy93UikkQBaLodDQCk7VKyiw6Pz5yyRpgJuQoAEAAAAAAAAAL2I2m+TnZ1byJ7uVdSrnjuVbRFXTi90blnhcwRXKy2w2ORyXJIWHhWhEv5Yym00kaICbkKABAAAAAAAAAC+UdSpHmccv3LFceLVgN0TzX47GBeD2vGuOHAAAAAAAAAAAQBlAggYAAAAAAAAAAMDNSNAAAAAAAAAAAAC4GQkaAAAAAAAAAAAANyvn6QAAAACAssRsNslsNjlc3s+Pe6oAAAAAoDQiQQMAAAC4idlsUqVKQU4nXSwWQyaT40kdAAAAAID3I0EDAAAAuInZbJKfn1nJn+xW1qkch+qEh4VoRL+WTs26AQAAAAB4PxI0AAAAgJtlncpR5vELng4DAAAAAOBBLGgNAAAAAAAAAADgZiRoAAAAAAAAAAAA3IwEDQAAAAAAAAAAgJuRoAEAAAAAAAAAAHAzn0rQnD9/Xm+99ZYeffRRtWjRQn379lVGRsYty69cuVKRkZGF/hw5csSNUQMAAAAAAAAAANgr5+kAnJGYmKgzZ84oJSVFVapUUVpamgYOHKgVK1aoXr16hcofPHhQrVu3VkpKit32KlWquCtkAAAAAAAAAACAQnxmBs2RI0e0Y8cOvf3224qJidGDDz6osWPHKiwsTOvWrSuyzg8//KCoqChVrVrV7o+fn5+bowcAAAAAAAAAAPgvn0nQVK5cWbNmzVJ0dLRtm8lkkmEYunDhQpF1Dh48qPr167srRAAAAAAAAAAAAIf4zBJnoaGh6tixo922jRs36ujRo+rQoUOh8mfPntUvv/yir7/+WgsWLND58+fVtGlTjRgxQnXr1r3reMqV85ncVqni5+facXe1Hkon6/nAeVHY3RwTbzyexf2dUdS5483HjO9M78J3D6S763+z2cQ1KAAAAACUIj6ToLnZ7t27NWbMGHXp0kWdO3cu9PoPP/wgSfLz89OkSZN0+fJlzZgxQy+88ILWrl2r++67z+V9m80mVa58j8v14X6hoRU8HQK8EOdF8SpNx/NObSmutnrrMfPWuEoLji9cFRwc6OkQAAAAAADFyCcTNFu2bNGIESPUtGlTpaSkFFmmbdu2+uqrr1SxYkXbtr/+9a/q1KmTVqxYoUGDBrm8f4vF0MWLl12uD9f5+Zld+mHr4sUrKiiwlEBE8EXW84jzojBXP2OSd37Oivs7o6hzx5uPGd+Z3oXvHkh3952Rm3tV164VFHNEdxYaWoGZXwAAAABQAnwuQbNw4UJNmDBBsbGxSk5Olr+//y3L/jo5I0lBQUEKDw/XqVOn7jqO69f5YcWXFBRY6DMUwnlRvErT8bxTW4qrrd56zLw1rtKC4wtXWSwG5w4AAAAAlCI+dStcWlqaxo0bp379+unPf/7zbZMzaWlpatOmja5evWrblpubq59//ln169d3R7gAAAAAAAAAAABF8pkEzeHDhzVx4kTFxsYqPj5eZ86c0enTp3X69Gnl5OSooKBAp0+ftiVkOnXqJMMwlJSUpB9//FHffvuthg4dqipVqqhXr14ebg0AAAAAAAAAACjLfCZBs2nTJl27dk2bN29Whw4d7P5MmDBBJ06cUIcOHbRhwwZJUo0aNTRv3jxdunRJffv21YABAxQSEqL58+crMJAHrAIAAAAAAAAAAM/xmWfQJCQkKCEh4bZlDh48aPfvBg0aaPbs2SUZFgAAAAAAAIAyxGw2yWw2OVXHYjFksRglFBEAX+UzCRoAAAAAAAAA8CSz2aRKlYLk5+fcwkQFBRadP3+ZJA0AOyRoAAAAAAAAAMABZrNJfn5mJX+yW1mnchyqEx4WohH9WspsNpGgAWCHBA0AAAAAAAAAOCHrVI4yj1/wdBgAfJxzc/EAAAAAAAAAAABw15hBA8CnOPsgvtL2ED5XHkToDGfX0L0bJd0Wyb3tcUVJx+ft7QcAAAAAACjLSNAA8BmuPIivND2Ez+UHEVoM+ZVwIsRZpaktrqgUEiCLxVBoaAWn6pWW9gMAAAAAAIAEDQAf4uyD+ErbQ/hceRBhi6hqerF7Q4frWMuXNHe05dd1vE1whfIym01ltv0AAAAAAAAgQQPAB5X1B/E50/7wasFO1bGWd5eSbMuv63irst5+AAAAAACAsozF6QEAAAAAAAAAANyMBA0AAAAAAAAAAICbkaABAAAAAAAAAABwMxI0AAAAAAAAAAAAbkaCBgAAAAAAAAAAwM1I0AAAAAAAAAAAALgZCRoAAAAAAAAAAAA3K+fpAAAAAAAAAADAE8xmk8xmk8Pl/fy43x1A8SFBAwAAAAAAAKDMMZtNqlQpiKQLAI8hQQMAAAAAAACgzDGbTfLzMyv5k93KOpXjUJ0WUdX0YveGJRwZgLKCBA0AAAAAAACAMivrVI4yj19wqGx4tWCX9+PMTB1m9QBlAwkaAAAAAAAAACghlUICZLEYCg2t4OlQAHgZEjQAAAAAAAAAUEKCK5SX2WxiKTUAhZCgAQAAAAAAAIAS5q6l1AD4DhYzBAAAAAAAAAAAcDMSNAAAAAAAAAAAAG5GggYAAAAAAAAAAMDNSNAAAAAAAAAAAAC4GQkaAAAAAAAAAAAANyNBAwAAAAAAAAAA4GYkaAAAAAAAAAAAANysnKcDgPPMZpPMZpPD5S0WQxaLUYIR3eBsXJL7YgMAAN6DawYAAAAAAEjQ+Byz2aRKlYLk5+f45KeCAovOn79coj9quBKX5J7YAACA9+CaAQAAoGwymW7coOPodSA36AAoC0jQ+Biz2SQ/P7OSP9mtrFM5dywfHhaiEf1aymw2lXiCxpm43BkbAADwHlwzAAAAlD1ms0khIYGSpNDQCg7V4QYdAGUBCRoflXUqR5nHL3g6jEK8NS4AAOBduGYAAMB7sPwoSpqrNxyXL++nggKLw/vhvATga0jQAAAAAAAAlFEsPwp3cvQmnUohAbJYDIdn21hxXgLwNSRoAAAAAAAAyiiWH4U3Cq5QXmazifMSQKlHggYAAAAAAKCMY/lReCPOSwClnXPzVwEAAAAAAAAAAHDXSNAAAAAAAAAAAAC4GQkaAAAAAAAAAAAAN+MZNAAAAAAAAABKBT8/x+9Hd6YsAJQEEjQAAAAAAAAAfFqlkABZLIZCQyt4OhQAcBgJGgAAAAAAAMDLmM0mmc0mp+pYLIYsFqOEIvJuwRXKy2w2KfmT3co6leNQnRZR1fRi94YlHBmsnJ2xVJbPZ5QdJGgAAAAAAAAAL2I2m1SpUpDTP2gXFFh0/vzlMv2jdtapHGUev+BQ2fBqwSUcDSTXZzdxPqMsIEEDAAAAAAAAOKGkZ7eYzSb5+Zmdmg0SHhaiEf1aymw28YM2vIors5s4n1FWkKABAAAAAADwQixx5Z3cObvFmdkg7uTsuenssULp5K3nM+BJJGgAAAAAAAC8DEtcea+yPrvF1XMTAFAYCRoAAAAAAAAXlOQDr8t6EsAXlJbZAK7MhnH23GwRVU0vdm/oaoiAV2F2I4oTCRoAAAAAAAAnmEwmtz3wurQkAeCd7mY2jDPnZni1YKffH/BGzG5EcSNBAwAAAAAoVbizFSXNeo556+wWZ344dOcyVc5+NvlcljxXZmoxGwbu5Mx3lCvfGe6YQcbsRtyOzyVoLBaL/vKXv2jZsmW6ePGiWrZsqbffflv3339/keXPnTun8ePHa9u2bZKk3/72txo9erSCgoLcGTYAAAAAeC1nx1nejDtb4U7eNrulUkiASzN73MGVzyafS/dhNgy8jSvfZ85+Z7hrBhlwOz6XoJkxY4YWL16s9957T2FhYZoyZYpeffVVrVu3Tv7+/oXKv/7668rLy9PcuXN18eJFjR07Vu+++64mTZrkgegBAAAAwPs4O87yZjy3A97O0R8CXfnBMLhCeadn9tzNbAhnZ+o489m0fi7Ll/dTQYHF4f2YTM7NnpNcu4PeVSXZ/0Bp4uz3mSvfGTxPyX2Y3XxrPpWgyc/P15w5czRy5Eh17NhRkjR16lQ98sgj2rx5s3r06GFX/ptvvtFXX32lDRs2qF69epKk//mf/9Err7yixMREhYWFub0NAAAAAOBNnB1n+Qp33NnKck3OcdePM67sx1muvL87Z7eU9GyIu2mLo7G5ug/rD7OOJjhMJpNCQgJLPCHizv731iXuAFeU9HeGM/uQ3DuDzHrTiVRyn1V3XJvczezmnJyrMgzH4vPV6yyfStAcOHBAly5dUtu2bW3bQkND1bBhQ3399deFBg4ZGRmqWrWqLTkjSa1bt5bJZNLu3bvVvXt3t8UOAAAAAN7I2XEWbmC5Jue4a+k5l/djMeRXwkkdZ+8G9+a7tN0xU8eVfTSoW0Wv9mwsSU7/SFvSd9C7o/+9eYk7oKS5ewZhSbv5/zNHPteu/F/mjmsTV2Y3W7/PK1Vy/DElvnqdZTIcTUF5gU8//VRDhw7Vnj17FBgYaNs+bNgwXb16VR999JFd+fHjx2vPnj1atmyZ3fZ27drplVde0cCBA12KwzA8l40zmSSz2azzOXm67sB0vXJ+5v//P2jHpwO7ypm4JNdj89b2wz2Kq//NZrNPnhfOfs4C/P0UEuTvcB1ny0vu+Sy7GpuzdRxpS1Hnjje2xZU6fGeWPF/97ilu7rpm8FZ3035PXLmbzSaXlouB73B2nOUIXxozSXd3PZN7OV8FDrTVz2xScJC/S/soTd9/jh4v6e6OmTP7KV/OrKDA8i7V8bZr89JU52724W196Uod2u+d56U31/HWuNxVx1vjktxzneHK/2Wu/j/rCld/N3HlOssdYybr9aZ1f3czZvKpGTRXrlyRpEJrIAcEBOjChcLT0K5cuVLkeskBAQHKy8tzOQ6TySQ/P88OUiuFBDhV3mx2z5RVZ+OSXIvNW9sP9yiu/vfV88KVz5mzdbz1s+yuOndqS1Gve2tbXKnjq58NX8HxvcFd3zPeqqy3H97F2XGWI3xxzCS59jkLDnLuGT2u7KM0ff6dPV6Se/rF1Treem1emuq4sg9v7UtX6tB+74zLm+t4a1zuquOtcUnu+f/MXf/PusId32fuvmYqjv351FWe9W6u/Px8u+15eXmqUKHwNK/AwMBCZa3lg4Icnx4FAAAAAKWVs+MsAAAAAMXDpxI0NWrUkCRlZ2fbbc/Ozlb16tULla9evXqhsvn5+Tp//rzCwsJKLlAAAAAA8BHOjrMAAAAAFA+fStBERUUpODhYu3btsm27ePGi9u/fr5iYmELlW7VqpZMnT+rIkSO2bda6LVq0KPmAAQAAAMDLOTvOAgAAAFA8fOoZNP7+/urfv7+Sk5NVpUoV1apVS1OmTFH16tUVGxurgoICnT17ViEhIQoMDFTTpk3VokUL/eEPf9A777yjy5cv6+2339bTTz/NDBoAAAAA0J3HWQAAAABKhskwDMPTQTijoKBAKSkpWrFiha5evapWrVrprbfeUnh4uLKystSlSxe999576t27tyTpzJkzevfdd/XFF18oICBAv/3tbzV69GgFBDj/UCIAAAAAKI1uN84CAAAAUDJ8LkEDAAAAAAAAAADg63zqGTQAAAAAAAAAAAClAQkaAAAAAAAAAAAANyNBAwAAAAAAAAAA4GYkaAAAAAAAAAAAANyMBA0AAAAAAAAAAICbkaABAAAAAAAAAABwMxI0AAAAAAAAAAAAbkaCBj7vxIkTSkxMVPv27dWqVSsNHDhQP/74o6fDgo8ZO3as3njjDU+HAS9msVj0wQcf6JFHHlHTpk318ssv68iRI54OCz5mxowZiouL83QY8BHnz5/XW2+9pUcffVQtWrRQ3759lZGR4emwALhZRkaGGjRooF27dtlt37lzp3r37q0mTZqoa9euWrVqlWcCLGOOHj2qwYMHKyYmRjExMfrDH/6gkydP2pWhbzzDkd8G6BvPu9XYm77xDMa53qmoceP333+v/v37q1mzZnrsscc0e/ZsD0VXttxpTFYc/UKCBj4tPz9fgwYN0pkzZ/TRRx8pLS1NISEheumll3T27FlPhwcfUFBQoEmTJmn58uWeDgVebsaMGVq8eLHGjx+vJUuWyGQy6dVXX1V+fr6nQ4OPmDt3rj744ANPhwEfkpiYqD179iglJUXLly9Xo0aNNHDgQGVmZno6NABukpOTo6SkJFksFrvtmZmZio+PV8eOHbVq1So999xzGjNmjHbu3OmhSMuGvLw8DRgwQJK0aNEiLViwQKdPn1Z8fLwMw5BE33iKI78N0DeedbuxN33jOYxzvU9R48Zz587p//2//6cHHnhA6enpGjp0qKZNm6b09HQPRVl23G5MVlz9Uq6EYgfcIiMjQz/88IO2bdumsLAwSdLkyZPVunVrbd26Vc8884yHI4Q3y8zM1OjRo3Xs2DHVrFnT0+HAi+Xn52vOnDkaOXKkOnbsKEmaOnWqHnnkEW3evFk9evTwcITwZqdOndLYsWO1e/du1a1b19PhwEccOXJEO3bs0KJFi9SiRQtJN+443bZtm9atW6dhw4Z5OEIA7vDOO++odu3aOn78uN32efPmKSoqyvZd8OCDD2r//v1KTU1Vu3btPBFqmfCf//xHjRs31ttvv60qVapIkgYMGKDXXntN586dU5UqVegbD3HktwH6xnPuNPambzyDca53ud24cenSpfL399c777yjcuXKqV69ejpy5Ig+/vhj9enTx0MRl353GpMFBgYWS78wgwY+7aGHHtKsWbNsF2BWhmHowoULHooKvuKrr75SgwYNtG7dOoWHh3s6HHixAwcO6NKlS2rbtq1tW2hoqBo2bKivv/7ag5HBF3z33XeqWLGi1qxZo6ZNm3o6HPiIypUra9asWYqOjrZtM5lMXOMAZcjq1av1zTffaMyYMYVey8jIsLsukaS2bdtq9+7dtpkcKH5169bVtGnTbMmZrKwspaWlqVGjRqpcubIk+sZTHPltgL7xnDuNvekbz2Cc611uN27MyMhQq1atVK7cf+datG3bVocPH9aZM2fcHWqZcacxWXH1CzNo4NOqVq1qy/JbzZ8/X3l5eWrfvr2HooKv6Nu3r6dDgI+writeo0YNu+3VqlXTiRMnPBESfEjnzp3VuXNnT4cBHxMaGlroGmfjxo06evSoOnTo4KGoALhLVlaWJkyYoBkzZuiee+4p9PrJkydVvXp1u23VqlXTlStXbDM5ULJefvll7dixQxUrVtS8efNkMpkk0Tee4shvA/SN59xp7E3feAbjXO9yu3HjyZMnFRERYbetWrVqkm7M7rz33ntLPL6y6E5jsqlTpxZLv5CggVfLyspSly5dbvn69u3bVbVqVdu/P/30U02dOlVxcXGKiopyR4jwUs6eO8DtXLlyRZLk7+9vtz0gIIA72QG4xe7duzVmzBh16dKFhB/g4+50nbpt2zYlJSXpueeeU0xMjLKysgqVuXr1aqHrEuu/eW6A65wZQ4wcOVLDhg3Thx9+qAEDBmjVqlWqUaMGfVNCiuO3AfqmZBTH2Ju+8QzGub6jqM9IQECApBvPR4N73Dwme++994qlX0jQwKuFhYVpw4YNt3z913dRLFq0SOPGjVP37t01evRod4QHL+bMuQPcSWBgoKQbgwPr36Ub/+FWqFDBU2EBKCO2bNmiESNGqGnTpkpJSfF0OADu0p2uU5ctW6bLly9r6NChtywTEBBQ6EdL67+5NnGdM2OIBg0aSLrxvIbHHntM6enpGjJkCH1TQorjtwH6pmQUx9ibvvEMxrm+IzAwsNBnxJoACAoK8kRIZU5RY7Li6hcSNPBq5cuXV7169e5YLjk5WR9//LHi4uI0duxY2/RylF2OnjuAI6xTvrOzs1WnTh3b9uzsbGbrAShRCxcu1IQJExQbG6vk5ORCd2gB8D13uk5dsWKFsrOz1aZNG0myPX/h1VdfVevWrZWamqoaNWooOzvbrl52draCgoIUEhJScsGXcnfqm+PHj2vfvn3q1q2bbVuFChUUHh5u6w/6pmQUx28D9E3JKI6xN33jGYxzfUf16tWL/IxIKvTsLRS/W43JiqtfzMUXKuAZU6ZM0ccff6ykpCS9+eabJGcAFLuoqCgFBwdr165dtm0XL17U/v37FRMT48HIAJRmaWlpGjdunPr166c///nPJGeAMmLBggVav369Vq1apVWrVmnWrFmSpPHjx2vChAmSpJiYGH311Vd29Xbu3KkWLVrIbGaYX1K+//57vf766zp69Kht28WLF3X48GHbD9T0jefc6bcB+sZ70TeewTjXd7Rq1Uq7d+9WQUGBbdvOnTtVt25dnj9Twm43JiuufuFbDj5t165dSk1NVVxcnJ566imdPn3a9ufSpUueDg9AKeHv76/+/fsrOTlZn332mQ4cOKA//OEPql69umJjYz0dHoBS6PDhw5o4caJiY2MVHx+vM2fO2K5xcnJyPB0egBJUq1Yt3X///bY/NWvWlHTjTkzr3ZhxcXHau3evkpOTlZmZqTlz5mjTpk165ZVXPBl6qffoo48qMjJSSUlJ+u6777Rv3z4NHTpUlStXVp8+fSTRN57iyG8D9I33om88g3Gu7+jTp49yc3M1duxY/fTTT1qxYoXmzZun+Ph4T4dWqt1pTFZc/cISZ/Bp69atk3TjLrMFCxbYvTZkyJDbrtsMAM54/fXXdf36db355pu6evWqWrVqpdmzZ3NHO4ASsWnTJl27dk2bN2/W5s2b7V7r1auX3n//fQ9FBsAbPPTQQ5oxY4amTJmiefPmKTw8XFOmTFG7du08HVqp5u/vr9TUVE2aNEkDBw5Ufn6+OnTooPfff1/BwcGS6BtPceS3AfrGe9E3nsM41zfce++9Sk1N1YQJE9SrVy9VrVpVSUlJ6tWrl6dDK9UcGZMVR7+YDOuCtgAAAAAAAAAAAHALljgDAAAAAAAAAABwMxI0AAAAAAAAAAAAbkaCBgAAAAAAAAAAwM1I0AAAAAAAAAAAALgZCRoAAAAAAAAAAAA3I0EDAAAAAAAAAADgZiRoAAAAAAAAAAAA3IwEDYAy5/PPP9fQoUPVuXNnRUdHq02bNnrllVe0detWt8WQn5+vt99+W61bt1aTJk00fvz4Ire98cYbioyMVFZWllPvP336dEVGRmrXrl0l1AJ7P//8s1PlMzIylJSUpNjYWDVp0kQxMTGKi4vTqlWrZBiGXVlXj4Gv6ty5syIjIxUZGamYmBhJ0q5duxQZGak33njjlvWysrIUGRmpuLi4Qq/d3D83lyvpYzxhwgRbm9x5XgIAAKBkMbYqfncaW7399tuKjIxUenr6bctlZWUpKipKL730ksP7to47pk+f7nCd4mTtI+uf77//XtKN8Uvnzp1vW9c6jrrZkSNH7P4dFxdnV27FihWKjIzUihUriqEFhW3ZssWuTZ46tgC8VzlPBwAA7pKbm6sxY8Zo06ZNatSokXr37q1q1arp5MmTWrVqlQYPHqyXX35Zo0aNKvFYli5dqsWLF6t9+/Z6/PHH9dBDDxW5zTAMtWvXTlWqVHHq/WNjY1WnTh3Vq1evhFrwX4MHD1Zubq4WLFhwx7LXrl3TxIkTlZaWpgceeEA9evRQzZo1dfbsWa1fv16jRo3Stm3bNGXKFPn5+ZV47N6qcuXKGj16tMqXL3/X71VU/0yePFn33XffXb+3o3r27Kno6Ght3rxZmzdvdtt+AQAAUDIYW5UMR8ZWzzzzjBYvXqy1a9eqT58+tyxnvfntmWeeKYlQS9To0aNVuXJl1axZ867e5+OPP9a0adO0b98+27aEhAS3HpPo6GhNnjxZhw4d0syZM922XwC+gwQNgDLjzTff1KZNm5SUlKSBAwfavZaQkKCBAwdqzpw5evDBB/W73/2uRGM5ePCgJCkpKUlRUVGSZLsD6tfbJKl58+ZOv39UVJTde5SkrVu3qnXr1g6VnTp1qtLS0hQXF6cxY8bIbP7vRM5BgwZp5MiRWrdunerUqaPhw4eXUMTeLygoSD179iyW9yqqf4rrvR0VHR2t6OhoHT16lAQNAABAKcDYqmQ4MrZq3LixbUbPqVOnFBYWVmS51atXq2LFiuratWtJhFqifvOb3yg8PPyu32fbtm26du2a3bb27dvf9fs6o3r16urZs6d27dpFggZAkVjiDECZsH37dm3cuFHdunUrNICQJH9/f02cOFF+fn6aP39+icdjvUgMDg6+7bbS5NChQ5ozZ44aN26sN9980y45I0lms1nvvvuuQkJCtGTJEuXl5XkoUgAAAAC3wtjK8/r06SOLxaINGzYU+fru3bt19OhRPfnkkwoICHBzdAAAZ5CgAVAmrFq1SpKKfD6HVe3atbV27VqtXLnSbntmZqYSExP18MMPKzo6Wl26dNH777+vCxcuFHqPQ4cOKTExUe3atVN0dLS6du2qP//5z7p69aqk/z4nxLqPLl262NaivXmbVPSzQQzD0KJFi9S7d281a9ZMDz/8sBISEvTdd9/ZytxqneQvvvhCL774olq0aKGmTZuqd+/ehdbata47vH79es2cOVOxsbGKjo5W586dNW3aNF2/ft2unCR99dVXd1y3d/Xq1TIMQ/37979lmeDgYC1btkz/93//V2ggcfz4cSUmJqp169Zq1qyZnn/+ee3YsaPQe+zatUuDBw/Www8/rEaNGqlVq1Z66aWX9M9//tOuXOfOnRUfH69du3apX79+at68uWJiYjRkyJAi131et26d7Zg/8sgjSk5O1rJly4o8zmvXrtWzzz6rZs2aqXnz5urXr59b1+GWbt8/t3pWzc0cbceGDRv0/PPP2/qmZ8+emjNnjiwWS/E2CgAAAB7H2OoGT46tnnrqKZUvX15r164t8nVrH1mX8rp27Zpmz56tPn36qHnz5oqOjtZjjz2mN998U2fOnLnlfqQb46ainv9yq2e37N27VwkJCWrdurUaN26sJ554QnPmzFFBQcFt91PcIiMj9dVXX9n+bn2e583PoLkVR9uxf/9+JSQk6JFHHrGd0+PHj9f58+eLvU0ASieWOANQJuzdu1flypVT06ZNb1vu5nWFMzIyNHDgQPn5+alv376qVauW/v3vf2vu3LnaunWrFi9ebFvDeO/evRowYICCg4PVr18/ValSRf/+9781c+ZM7dy5U/Pnz1eVKlU0efJkLV26VBkZGRo9erQqVqwos9lst61y5cq3jHHUqFFavXq1YmJiNHz4cOXn52vBggXq37+/PvnkEzVs2LDIep988onGjRunxo0ba8iQITKbzfrss880evRoff/99xo7dqxd+ZSUFBmGoeeee06hoaFasWKFZsyYIZPJpNdff1316tXT5MmTlZSUpAcffFAJCQlq0aLFbftAklq2bHnbPqhbt26R2xMSEhQTE6PExERlZ2dr3rx5io+P18qVK/XQQw9JkjZv3qzXX39dUVFRevXVVxUcHKwffvhBy5cv16uvvqpPP/1UtWrVsr3ngQMHFB8fr6eeeko9e/bU/v37tXjxYh04cECbNm2yPQcnNTVVU6ZMUaNGjTR8+HDl5ORo4cKFRcY5ZcoUpaamqn379kpMTFReXp7Wr1+vwYMHa/To0RowYMBt219cnO2fmznajk8//VSJiYlq3769hg0bJrPZrL///e+aNGmSzpw5o5EjR5ZQCwEAAOAJjK08P7aqXLmyunTpor///e/KzMy0O9Z5eXnauHGjGjVqpAYNGkiShg8frs8++0y9evXSs88+q7y8PG3btk3Lli3Tf/7zH82ZM+e2femozz77TMOGDVN4eLheeeUVBQUFaceOHZo0aZL+9a9/afr06TKZTMWyrzuZPHmyZs6cqUOHDmny5MmqU6eOw3UdbcexY8f00ksvqWrVqhowYIBCQ0O1Z88eLVy4UHv37tWSJUvc1l4APswAgDKgadOmxsMPP+xUnYKCAiM2NtaIjo42fvrpJ7vXli5dakRERBhvvPGGYRiGYbFYjB49ehgdO3Y0zp07V2TZWbNm2baNGjXKiIiIMI4dO+bUtp07dxoRERFGYmKiYbFYbOV++uknIyoqyhg6dKhhGIbxwQcfGBEREcaXX35pGIZhnDhxwmjUqJERHx9vV89isRgjR440IiIijD179hiGYRhffvmlERERYbRv3964cOGCreylS5eMli1bGh06dLBrX0REhNG/f/87Hs/u3bsbERERxtWrV+9Y9tesx2DMmDF225cvX25EREQY06dPt217+umnjfbt2xuXLl2yK7tw4UIjIiLCmDNnjm1bp06djIiICGP9+vV2ZceMGWNEREQY27dvNwzDME6ePGlER0cbvXv3NvLy8mzljhw5YjRp0sTuOO/Zs8eIiIgw3nnnHbv3zM/PN+Li4oxGjRoZJ06cuG17O3XqZHTq1Mlum7VPRo0adct6x44dK7IvHNl283nmTDsGDRpkNGvWzCgoKLCVu379utG/f38jPj7erv7N5yUAAAB8D2Mrz4+tDMMw/vGPfxgRERHG1KlT7bavX7/eiIiIMD755BPDMAzj+++/NyIiIoxx48YVeo8+ffoYERERtuNsjfeDDz6wlSlqfGIYhpGenm5EREQY6enphmEYxuXLl402bdoYvXr1shs3GYZhTJ06tcix182K6jfDuHFciorh16zju1/r37//HbfdTTtSU1Pt+tvqvffeM3r16mWcPHnStq2oYwsAhmEYLHEGoEzw8/OzTR931P79+3XkyBE99dRThe7+euaZZ3T//fdr06ZNKigo0MGDB/Xjjz+qY8eOslgsOnv2rO1Pp06dFBAQUCwPR9+yZYsk6ZVXXrG7E6devXpavny5/vSnPxVZ79NPP9W1a9f0+OOP69y5c7bYzp07px49etjK/FqnTp0UGhpq+3dQUJDq1at3xynwt2KdjeJsP1j17t3b7t/NmjWTJGVnZ9u2LVu2TGvWrFFQUJBtW35+vu1YXbp0ye49AgMD1a1bN7ttjRs3liSdPn1a0o1jnp+fr4EDB8rf399Wrk6dOnrqqafs6q5fv16S1L17d7tzICcnR927d9e1a9f0+eefO912d3OmHdWrV9fly5f17rvvav/+/TIMQ35+flqwYAEPwQQAACiFGFt5fmwlSR06dFCNGjW0bt06u+0rV65UYGCgnnzySUlSVFSUdu/ercTERLtyZ86cscV0+fJll+Ow+uc//6lz586pW7duys3Nteu37t27S1Kx9FtJc6YdNWrUkHRj9YGdO3cqPz9f0o3l9FasWKGwsDDPNAKAT2GJMwBlQlhYmA4fPqz8/Hy7H9lv5+jRo5JkWz7r10wmk+rXr68jR47o3LlzOnz4sCRp8eLFWrx4cZHvd/z4cRej/y/resk3D2okqVGjRresZ40vKSnplmVuju++++4rVMbf39/ltYPDwsJ08OBB/fLLL7rnnnucrl+1alW7f1ufUWO9CJakcuXKKSsrSzNmzNDhw4eVlZWlrKwsW8yGYdi9R+XKlW2JIyvr+WF9for12D344IOFYrq5H6xlb/ecHVfOg8DAQEm3T25Z22gtezecacfQoUP1/fff2879KlWqqG3btvrNb36jbt26qVw5LjUAAABKE8ZWnh9bSZLZbFavXr00Y8YMffPNN2revLlOnz6tHTt26IknnlBISIjdvjZs2KAdO3bo2LFjysrK0unTp22JqeJ4dqT1uKSkpCglJaXIMq72W0BAwB2TgtevXy/WsZAj7ejWrZv69OmjFStWaMCAAQoMDFTLli3VsWNHPf3006pYseJdxwOg9ONXEwBlQqtWrZSZmal//etfatu27S3LjR49WteuXbvtxbaV9SLW39/f9vd+/frpN7/5TZHli+OH6mvXrrlUz3rhP27cOIWHhxdZxrres5XZXLyTLFu1aqVt27YpIyND999//y3LTZ06VYcPH9bQoUPtBnCOxPPRRx8pJSVFtWrVUkxMjNq0aaPIyEhdv35dv//97wuVd+Q9rQmgogaf1iSRlfU4z5gxQxUqVCjy/ax3WTnDemGfm5t7yzLWB6v++s48VznTjvvuu09Lly7Vt99+q3/84x/68ssvtXnzZm3YsEHNmjXTwoULVb58+buOCQAAAN6BsZXnx1ZWvXv31ocffqi1a9eqefPmWrt2rQoKCvTMM8/YyuTm5uqll17Sd999p5YtWyo6Olo9e/ZU48aNNW/ePK1Zs8alfd+cXLL22+uvv67mzZsXWceVG/WkG+OhnJycW75uGIYuXrxYLGMhZ9rh5+eniRMn6ve//70+//xz/fOf/1RGRoZ27Nihjz76SIsXL3bq2TcAyiYSNADKhCeeeEKLFy9WWlraLQcRJ06c0Jo1axQaGqpKlSqpdu3akqQff/yxUFnDMJSZmang4GCFhobaXZg//PDDdmUtFos2bdpke7+7Yd3P4cOHFRkZafdaSkqKrl69qjFjxtyyXmhoaKH4srOztXfv3mKJ73Yef/xxTZs2TYsWLVLv3r2LfFjipUuXtHjxYl26dElvvfWWU+9/4sQJTZ06Va1atdKcOXPsEiquDjokqW7dupKkQ4cOFZpFY727ysp6nKtVq2ZbKs3qyJEjOnTokN3ya44KDw9XcHCwDhw4cMsy+/fvl6RbPsjU2f1Jd26HYRj68ccfdfXqVTVp0sT2kNTc3FyNGjVKW7Zs0fbt29WpU6e7jgkAAADegbGV58dWVrVr11abNm20ceNGvfnmm1q7dq3uv/9+tW7d2lZm/vz52rdvn9599109//zzdvV/+eWXO+7Dz8+v0FLR0n+XhLayHpfAwMBCxyU3N1fbt28vtCqCo6KiorRt2zYdO3asyGN7+PBhXblyRW3atHHp/X/NmXYcP35cR48eVbt27RQXF6e4uDhdv35ds2fPVkpKihYtWqRRo0bddUwASjeeQQOgTGjVqpViY2O1adMm/e1vfyv0ek5OjoYNG6br169ryJAh8vf3V8OGDVW7dm2tWbNGmZmZduXT09N19OhRde3aVZIUHR2tWrVqaeXKlbbp+1ZLlizR8OHDlZ6eftftsN5BNm/ePLvtR48e1dy5c3Xs2LEi63Xt2lVms1kzZ87U1atX7V57//339dprr2nfvn0uxWQ2mx2aEl+7dm31799f3377rSZOnFioTl5enkaOHKnz58/rxRdfLHIZgNs5f/68DMPQgw8+aJecuXLlihYsWCDJteffdO3aVeXKldPChQvt6mdnZ2vt2rV2ZX/7299KkqZPn253R9m1a9c0evRoJSQk6NSpU07HUK5cOcXGxurEiRNFLvNw6dIlLVy4UP7+/rZz0srR/nGlHSaTSUOHDtXgwYPt7mgLDg62DXJvXkIOAAAAvo2xlefHVr/Wp08fnT17VqtWrdL+/fvtZs9I0rlz5ySpUBLqm2++0ddffy2p8GyYX6tWrZrOnj1rtzxZfn6+Nm7caFeuQ4cOuueeezR37lzbPq1mzpypYcOG6R//+IdTbbN6/PHHJUnTpk0rdHwMw9CsWbMk3Uge/pp15pIzx9SZdsycOVMDBgzQnj17bGXKlSunpk2bSmIsBMAxzKABUGZMnDhRFy5c0Pvvv6+1a9eqa9euqlKlin7++WetXLlSZ8+eVb9+/dSvXz9JNy6mxo8fr0GDBul3v/ud+vbtq/DwcO3du1crV65UrVq1NGLECLuy8fHx6t27t55//nnVqVNH3377rdLT01WnTp0il9hy1iOPPKInnnhC6enpOnnypDp37qzc3Fx98sknCggI0MiRI4us98ADD2jo0KGaNm2aevbsqV69eik0NFSfffaZbYbDzT/sO+ree+/VgQMHlJaWppiYGEVERNyy7B//+EedOnVK8+fP1xdffKEePXooLCxM//nPf7RmzRodP35csbGxGj58uNNx1K9fX/fff7/S09MVEBCgiIgIZWdna+XKlba7u243Lf5WatWqpcGDB2v69Onq27evevToocuXLystLc32ME3rbKB27drpmWee0fLly/Xss8+qe/fu8vf315o1a7R371698MILatKkidMxSNLIkSP1zTff6J133tH27dvVtm1bVahQQUePHtXatWt18uRJvfXWW4XuKHOmf6ycacfQoUP1xz/+Uc8995x69+6tihUr6sCBA1qyZIkaNGhQ6K4zAAAA+D7GVp4fW1l169ZN48aN06RJk1SuXDk9/fTTdq937txZCxYs0IgRI/TCCy8oJCRE+/bt08qVK+Xn56dr167p4sWLt3z/Pn36KCMjQwMHDtQLL7wgi8Wi9PT0Qkmd0NBQvfXWWxo9erSefPJJPffcc6pWrZq+/PJLbdiwQU2aNNELL7zg0nHp1auXtm7dqrVr1+rnn39Wt27ddO+99+qXX37R1q1b9c0336hnz5568skn7epZb/r74IMP1Lp1a4fGJs60Y8CAAdq4caMGDRqk559/XuHh4Tp16pQWLVqkkJAQPfvssy61F0DZQoIGQJkRGhqq2bNna8OGDVqxYoXS0tJ09uxZBQcHq2nTpurXr58effRRuzpt27bV0qVLNWPGDKWnpys3N1c1a9bUyy+/rISEBLs1bh9++GEtXbpUH374odLT05WTk6Pq1avrhRdeUHx8vMvTuW82ZcoUNWnSRMuXL9ekSZNUsWJFxcTEaNiwYbbluIry+9//XvXr19f8+fM1a9YsWSwW1a5dW0lJSYqLi3P57p6kpCQlJydr4sSJSkhIuO0gwt/fX1OnTlWPHj20bNkyrVy5UtnZ2apQoYIaNmyoxMTEQnc9Oap8+fJKTU1VcnKy1q9fr6VLl6patWqKiYnRa6+9pn79+mn79u0uvfeQIUN03333aeHChUpOTlblypXVp08f5eXl6W9/+5vdjJ3x48erWbNmWrJkiaZPny4/Pz898MADGj9+fKG72Zxx7733Kj09XQsWLNDmzZv1wQcf6MqVK6pataqaNWumF198Uc2aNStUz5n++TVH2/HEE0+oQoUKmjt3rmbPnq2cnBzVqFFDcXFxGjx4cLGsDw4AAADvwtjK82Mrq4CAAD3xxBNKS0tT586dVa1aNbvX27Vrp5SUFH388cf6y1/+In9/f9WsWVPDhw9X/fr1NWjQIH3xxReFlja26t27ty5duqS0tDRNnjxZ9913n3r27KlOnTrpueeesyv79NNPq0aNGkpNTdX8+fOVl5enmjVravDgwRo4cKBLyz1LN26Imz59ulauXKnVq1dr7ty5unDhgipVqqT69esrJSVFPXr0KFTv1Vdf1Q8//KDU1FTt2bPH4ZvHHG1HvXr1tHDhQn344YdatWqVzpw5o0qVKqlt27Z67bXXeP4MAIeYDMMwPB0EAADe6vLlyyooKFBISEih1/70pz9p6dKl+uyzz275gFBnde7cWZK0devWYnk/bzJ9+nT95S9/0fz584tlfWgAAAAApccbb7yhlStXFuv4ylvs2rVLL774ooYMGaKhQ4d6OhwAXoRn0AAAcBs//vijYmJi9Ne//tVue05Ojj7//HNVrVpVtWrV8lB0AAAAAAAA8FWsOwIAwG1ER0crMjJSM2fO1NmzZxUVFaXz589rxYoVOnPmjP73f//X9gya4nL58mWtXr1a5cuXV/fu3Yv1vT1h3759yszM1MGDBz0dCgAAAAAvt2XLFlWuXFmPPfaYKlas6Olw7srJkye1a9cuHTp0yNOhAPBSJGgAALgNPz8/zZ07V6mpqdqyZYuWLVumChUqqEmTJnrnnXdKZKmuc+fOKSkpSSEhIaUiQbN69WrNnz/f02EAAAAA8AHvvfeeJGnVqlU+n6DZt2+fkpKSPB0GAC/GM2gAAAAAAAAAAADcjGfQAAAAAAAAAAAAuBkJGgAAAAAAAAAAADcjQQMAAAAAAAAAAOBmJGgAAAAAAAAAAADcjAQNAAAAAAAAAACAm5GgAQAAAAAAAAAAcDMSNAAAAAAAAAAAAG5GggYAAAAAAAAAAMDNSNAAAAAAAAAAAAC42f8HcK6s0UaYqI4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000032.00.0<NA>-45.000000True
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000056.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000040.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-42.15449372.029.0<NA>-42.154493True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-32.875688147.00.0-2-34.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-32.24625596.00.0<NA>-32.246255True
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-28.970666155.00.0-2-30.970666False
519coef_calib_autodeficienthhind_WALK_TRANSIT_school-26.769537259.022.0-2.465786-29.235323False
503coef_calib_zeroautohhindivtou_SHARED2_school-27.000000311.00.0-2-29.000000False
675coef_calib_autodeficienthhjoi_TAXI_maint-28.97066636.00.0<NA>-28.970666True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -42.154493 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -32.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -32.246255 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -28.970666 \n", - "519 coef_calib_autodeficienthhind_WALK_TRANSIT_school -26.769537 \n", - "503 coef_calib_zeroautohhindivtou_SHARED2_school -27.000000 \n", - "675 coef_calib_autodeficienthhjoi_TAXI_maint -28.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "543 32.0 0.0 -45.000000 True \n", - "540 56.0 0.0 -45.000000 True \n", - "541 40.0 0.0 -45.000000 True \n", - "544 72.0 29.0 -42.154493 True \n", - "698 147.0 0.0 -2 -34.875688 False \n", - "695 96.0 0.0 -32.246255 True \n", - "677 155.0 0.0 -2 -30.970666 False \n", - "519 259.0 22.0 -2.465786 -29.235323 False \n", - "503 311.0 0.0 -2 -29.000000 False \n", - "675 36.0 0.0 -28.970666 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_12\n", - "ActivitySim run started at: 2023-09-14 14:34:30.084773\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-14 15:23:19.689578\n", - "Run Time: 2929.61 secs = 48.82683333333333 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmmEhBCqoRhI6CUgoNJFQIoVUUCBR4qCCKKo4AOI0lREpIhIESlSpAuPKKBIEQUEKSKhJ4RIDQkQSEjZef/g3ZUlCaQnbL6f6/ISZs7MuWd2dtl775lzTIZhGAIAAAAAAAAAAAAA4B5nzusAAAAAAAAAAAAAAADIDhTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAaTbihUrFBwcnOH/XnzxxbwOPd2mTJmS5nFUqVJFtWrVUosWLfTaa69p48aNeR0u/t+ff/5pe5169ep11/ZDhgxRcHCwBg8ebLfcuo/t27dne4w9e/a07X/fvn3Zvv9bJSUl6eTJkznax+1CQ0M1evRotWvXTvXq1VONGjXUtGlT9erVSwsWLFB8fHy293nhwgUNHjxYDz30kKpXr67GjRtry5YtkqRVq1bpiSeeUK1atVSvXj317NlTO3bssL0GSUlJme739OnTtv2Eh4dn1+EAiomJ0YULF7JlX2l9zuXUdgAAFETkyOTI+RU5sj1yZHLkgsgwDB0/fjzX+svuzwvDMDRnzhy1adNGNWrUUIMGDfTf//7X9m9vkyZNsrT/7Lr+s8vRo0dTLGvRooWCg4O1dOnSDO0rs9sBjsY5rwMAcO/w8/NTSEhIiuVnzpzRmTNn5OrqqurVq6dYHxQUlBvhZavUjsUwDMXHx+v06dNav3691q9frw4dOmj8+PEymUx5FCkkafny5bY/b9u2TREREQoICMjDiOydOXPGLgFYtGiRatWqlSN9bdu2TaNHj1br1q01aNCgHOnjdpMnT9YXX3whi8UiLy8vlS1bVi4uLrpw4YK2bt2qrVu3atasWfr8889VrVq1bOnTYrGoV69eCg0NlbOzsypVqqTExESVKVNGP/74o9555x1Jkr+/v0qUKJGvrgcgNV9//bWmTZumzz77TP7+/nkdDgAASAdyZHLk/Ioc+V/kyOTIBdH+/fs1atQolStXTp988kleh5Mpc+bM0UcffSRJKlOmjHx8fHTfffflcVTZ7/z58/roo4/0xx9/aPPmzXkdDuBQKIADSLemTZuqadOmKZZPmTJFU6dOlb+/vxYtWpQHkWW/Ox1LQkKCPvvsM82ePVtr1qxR/fr11alTp1yOEFZxcXFat26dTCaTGjVqpK1bt2rJkiX56unFFStWyGKxqGnTptq8ebPWrVunoUOHqkiRItne15dffpmrd7YvX75cn3/+uTw8PDRu3Dg9+uijcnJysq0/fvy43n33Xe3du1c9e/bU999/r6JFi2a535MnTyo0NFSSNH36dDVu3Ni2bsqUKZKkunXrat68eXJ2vvl1Jy4uTt9//70k2ZZlRokSJWz7KV26dKb3A9xq3LhxeR0CAADIIHLkm8iR8xdyZHvkyOTIBdHChQu1f/9+lStXLq9DybR169ZJktq1a6dPP/3Utvzq1auqVauWXFxcsrT/mjVrZsv1n1Xbtm3T2rVrVaJEiTyLAXBUDIEOABnk6uqqt99+WzVr1pQkzZ8/P48jKth++OEHxcbGqlKlSnryyScl3UymExIS8jaw/2cYhlauXClJeuaZZ1S+fHnFx8fblt3rpk+fLkl6++231aZNG7vEXpICAwP1xRdfyM/PT9HR0Zo3b1629BsdHW37c4MGDVJdV7duXbskxt3dXYGBgQoMDMxS3y4uLrb9ZDXhAgAAAO515Mj5Czly3iJHJkdG9rBet/Xr17dbXrhwYQUGBqps2bJZ2n92Xf8A8i8K4ACQSS1btpQkHTlyRNevX8/jaAquFStWSJKaNGmi5s2by83NTVFRUdqwYUMeR3bTzp07FRERIRcXFz300EN67LHHJElLlizJ48iy7sqVKzp16pQk3XG4uqJFi9reL/v378+WvpOTk21/dnV1tVtnsVhSXQ4AAAAg55Aj5w/kyHmHHBnIPly3ALKKAjiAXPPjjz+qV69eatiwoapXr65GjRrptdde02+//ZZq++DgYAUHB9vNC3WrF198UcHBwbahnCTp9OnTCg4O1sMPP6xz586pT58+qlmzpurXr68333wzW4/Hy8vL9udr167Z9R8cHKzw8PBUt2vRooWCg4NtSakk7dixQ8HBwerUqZOOHz+uzp07q0aNGnrwwQdt891Ytzt06JB++eUXPf/886pTp44aNGigbt26aePGjWnGmpycrKVLl+rFF1/UAw88oOrVq6tZs2Z66623dPDgwVS3iY+P14wZM/T888/rwQcfVI0aNdS8eXO9+eab2r17d5p9hYaG6p133lGzZs1UvXp1NWjQQD179tSPP/6Yavtbz9mt5yQ9Tp06pV27dkmSWrVqJU9PTzVv3lyS8s1Qg9a51xo2bKjChQurQ4cOkqQTJ07o999/T3WbzFxHK1asUHBwsHbu3Cnp5l3nwcHBGjJkiN12ly9f1tSpU/Xkk0+qTp06qlWrlh577DF99NFHOn/+fIaO7dY7xzdt2nTHtq+99pr+97//acKECXbLhwwZouDg4DSH47MeV4sWLST9e266detma2M9V9Z9Wc/B1KlTbeukf99nwcHBSkpKStFXaGiohg8frpYtW6pGjRp64IEH1L17d/3www927e72+kRERGjkyJF69NFHVaNGDdWrV09dunTR0qVL7X6UuP0cLFq0SKdPn9bQoUPVpEkTVa9eXU2aNNF///tfnT59Os1z+8cff+jNN99U8+bNVb16dTVs2FCvvPKK3Wfr1q1bFRwcrGrVqikqKirV/cTHx6tu3boKDg7Wvn37Uhxret+fU6ZMsW1zt/9uP66LFy/q448/Vtu2bVWrVi3VqVNHzzzzjL766ivduHEjzb4++eQTbdy4Ua1bt1b16tXVokUL/e9//7M7tq+//lqdOnVSSEiIatSooZYtW2rEiBEKCwtL81gOHTqk4cOH67HHHlNISIiqV6+uhx56SL17905xXUj/Xq9NmjRJdX+3nk/rsVtff6v//Oc/qZ7vkydP6r333tOjjz6q6tWrq27duurUqZO+/vprxcfHp3kMkhQZGanhw4eradOmql69uho3bqwhQ4bc8dizsh0AAEgfcuSbyJHtkSOnRI78L3Lkey9Htrpy5YpmzJihrl27qkGDBqpWrZrq1aunp59+WlOmTNHly5dTbJPRz33ra2odUWHNmjUKDg7Wiy++mOLYMpMjh4eHa/jw4WrRooVq1KihVq1aadq0aXcdYSI2Nlaff/657X1Wu3ZtdejQQZMnT9aVK1dSPabIyEhJ0tChQ+2u+bvl3el5/W89V3e6/jPy2W2Ne8uWLQoNDdXAgQP10EMPqXr16nrkkUc0duxYXbp0yW6b4OBgDR06VJJ07tw5u/fn7Xbv3q1XXnlFDRo0UM2aNdW6dWtNmDBBsbGxqbbP6naAI6AADiDHJSYmqn///howYIC2bt0qZ2dnVa5cWUlJSVq/fr169OihsWPHZmufCQkJ6tmzp7Zv367AwECZTCaVKVMmW/uwfql3c3OTr69vtuzz0qVL6t69uw4dOqSKFSvqxo0bKl++vF2b5cuX6+WXX9bBgwdVoUIFFSpUSDt27NCrr76q0aNHp9hnbGysunbtqmHDhmnnzp0qXLiwgoODdfXqVX333Xfq2LGj5syZY7dNQkKCevTooQkTJmj//v3y8fFRpUqVFBsbq7Vr16pr165aunRpir6++eYbPf3001q1apUuX76sSpUqycPDQ9u2bdOAAQP05ptvpprcZNby5ctlGIbKli1ru7u6ffv2kqRdu3bp+PHj2dZXZsTGxmr9+vWS/o0rMDBQVapUkSQtXrw42/ry8/NTSEiI7UenUqVKKSQkxO76OXz4sNq3b68pU6bo8OHDKlOmjCpUqKBTp07pq6++Uvv27bVjx4509+nh4aGQkBBJNwuR77zzjnbt2pXqa+zv76+KFStm+b1SqFAhhYSEKCgoyLYsJCTEdqypnQNrjHfyzTffqGPHjvr222916dIl27X7+++/a+DAgZo4cWK64tuwYYPat2+vRYsW6fz587r//vtVtGhR7d69W8OGDVPPnj1tPwbe7u+//9YTTzyhVatWyd3dXeXKldO5c+e0bNkyPfvsszpz5kyKbT799FO98MILWrt2ra5fv67g4GCZzWZt2rRJPXr0sD1F8fDDD6tUqVJKSkrS2rVr04w9NjZWgYGBd3xa4W5uPe+p/efu7i7p5rBlhQsXtm23e/dutWvXTrNnz9apU6cUEBCg0qVL6+DBg/roo4/UqVMnXbhwIdU+d+3apQEDBujKlSsKDAzU+fPnbe+zs2fP6qmnntK4ceO0b98++fv7q1KlSrpw4YKWLFmixx9/3Dbv160WLlyop59+Wt9++62ioqJUrlw5BQQE6OrVq9qyZUuGros7sV63VkFBQQoJCZGfn59t2XfffafHH39cixcv1vnz5xUUFKRixYpp3759GjdunJ599lmdPXs21f0fPnxYTz75pJYuXSpPT08FBAQoKipKK1eu1FNPPaVjx45l63YAAODuyJHTjxw5Y8iR/0WOTI6cX3JkSQoLC9Pjjz+uCRMmaO/evSpatKiCg4Pl5OSkgwcPaurUqXruuefSPBfpVbhwYbt8smjRoimuj8zmyL/99pueeuopffvtt4qOjlZQUJDi4uI0adIk9erVK82Yjh8/rscff1yTJ0/WkSNHVLx4cZUrV04nTpywFcVv/Wyy5sTWJ7+t13H16tXvevzpff3vJiuf3Vu2bFHHjh21ceNG+fr6qlSpUjp9+rTmzp2r559/3q7wfOtnkouLS5rvz5UrV6pr167avn27SpUqpaJFiyosLMx2U1ZaN8VndjvAYRgAkEWTJ082goKCjObNm6e6/oMPPjCCgoKM2rVrG+vWrbMtT0pKMhYsWGBUrVrVCAoKMubMmWO3XVBQkBEUFGT8+uuvqe73hRdeMIKCgozJkyfblkVERNi2q1+/vnH06FHDMAzjxo0bxtWrV7N8LFZRUVFG/fr1jaCgIKNv376p9h8WFpbqts2bNzeCgoKM5cuX25b9/vvvtu1atmxpnD171jAMw4iNjTXi4+PttgsKCjJ69OhhXLx40TAMw7BYLMaSJUts53HNmjV2/b388stGUFCQ8fDDDxu///67bfmNGzeMzz77zLbPH3/80bZu4cKFRlBQkNGqVSsjMjLStjw+Pt54//33jaCgIKNu3bq22AzDMDZv3mwEBwcb1apVM+bOnWskJSXZ1m3fvt148MEHjaCgIGPixIl28SUkJBjHjh0zjh07Zly5cuWO5/1WycnJRtOmTY2goCBj0qRJdvuzvjajRo1Kddt33nnHCAoKMt5880275Xe75jJq8eLFRlBQkFGrVi0jNjbWtnz27NlGUFCQUa1aNePChQsptsvsdWQY/74vPv30U7vlV69eNRo1amQEBQUZzz33nHHq1CnbugsXLtiuk7p169qtu5uDBw8atWvXtsUbFBRkhISEGL179za+/PJLY+/evUZycnKa26f1WlgtX7481ffkre+Z26X22XD7NomJibblu3fvNipXrmwEBQUZn3zyid11vXz5ctu6rVu3GoaR9utz6NAho3r16kZwcLAxceJEu/0cPHjQaNWqlREUFGQMHjw41XMQFBRkdOrUyThx4oRt3Z49e4w6deoYQUFBxujRo+22W7t2rREUFGRUqVLF+Prrr23vuaSkJGPatGm2dceOHTMMwzAmTpxoBAUFGU899VSq5/qll14ygoKCjJkzZ9qWZfb9mZbVq1cbQUFBRtWqVY1t27bZlp89e9b2vh02bJhx+fJl27rw8HDj2WefNYKCgowuXbrY7c/6mR0UFGS8+uqrxo0bNwzDuPkZbT0XTzzxhBEUFGS0bt3aOHTokG3bq1evGv/9739t78W9e/fa1p08edKoVq2aERQUZEybNs1ISEiwrYuOjjYGDhxo2y4mJsa2znq9Nm7cONXjv/XaiYiIsFuX1ufP3r17bZ/vw4YNs/u37O+//7ZdV0899ZTddX3rdfXkk08ax48ft607dOiQ0aBBAyMoKMgYOHCgXX+Z3Q4AAPyLHJkc2TDIkVNDjkyOfOt5Kkg5svU16NSpk3Hu3DnbcovFYqxcudJ2ThcsWGC3XWY+9w0j7esoszny5cuXjYYNGxpBQUHGoEGD7P79WLFihS1/vj3Wa9euGY8++qjt3wbrZ7lhGMb58+eNPn362D5b4+Li7GJN6z2dVt6d0dc/res/s5/d1tciKCjI6NOnj93rvHHjRqNKlSqp/tt+p98Rbv137s033zSio6Nt66y/rwQFBRnffPNNtmwHOBqeAAeQo86ePWu7g3fUqFFq06aNbZ2Tk5O6du2qgQMHSro5FFNW73S8VZcuXVSxYkVJN+eLuXU4tswwDEPR0dH6+eef9dJLLykmJkYuLi4aMGBAdoRr8/LLL6tEiRKSJE9PTxUqVMhufenSpfX555/b7uY0mUzq1KmTevbsKenmebTau3evbdityZMnq0GDBrZ1rq6uGjhwoJ577jlJ0ieffGJbFxoaKunmnGGlS5e2LS9UqJCGDBmiRo0a6dFHH1VMTIxt3aeffirDMDR48GB169ZNTk5OtnUPPvigxo0bJ0maM2eOoqOjbetcXFwUGBiowMBAu6dB72bbtm22u30ff/xxu/1Zr7PVq1fn6d2M1qHdHnnkEXl6etqWt2/fXmazWYmJibY2OW3hwoU6f/68ihUrpi+//FIBAQG2dcWKFdPkyZMVFBSkq1evavr06eneb9WqVbV06VLVrVvXtiw2NlabN2/WhAkT1KlTJzVq1EgTJ05UXFxcth5Tdpk2bZosFosee+wxvfnmm3bvuaefflodO3aUpLsObzZlyhQlJCTohRde0Ouvv263n6pVq2ry5MlycnLSmjVrUn161sXFRVOnTlWFChVsy+rUqaOnn35akrRnzx679tb3+n/+8x91797d9p5zcnJS37599fDDDys5OVmrVq2SJD3zzDMymUw6ePBgiic/zp07p+3bt8vJyUlPPPGEXUyZeX+mZteuXXr33XclSe+++64efvhh27rZs2crJiZGLVq00KhRo+Tt7W1bV7ZsWU2bNk1eXl76448/tHnz5lT3/84779juEC9atKgk6YcfftChQ4dUqFAhzZw5U5UrV7a19/Ly0ujRo9W4cWMlJibaPcHw66+/ysnJSdWqVVPfvn3l4uJiW+fj46N33nlH0s2nt06ePJml83I3kydPVlJSkho1aqRRo0bZ/VtWpUoVzZo1S25ubjp48KDdsO9Wzs7O+vzzz3X//ffbllWuXFk9evSQdHN4uNRkdjsAAHBn5MgZR46cPuTIGUOOnDZy5OzNkaOionT06FFJNz/3ixcvbltnMpn05JNPqn79+pJujkqQkzKbIy9evFiXLl1S+fLl9dFHH9n9+/HUU0/plVdeSbW/pUuXKjw8XNWqVdOUKVNsn+XSzVEQJk2apDJlyigsLCzDQ8rfLqOvf1oy+9lt5efnp8mTJ9u9zo888ohtyPbbr9v0CAwM1EcffSQfHx/bsscff9z2u0pa03BkdjvAUVAAB5CjtmzZoqSkJPn7+6tt27aptnnhhRfk4uKiq1ev2uYlyg63JhsZFRkZmWKu2sqVK6thw4bq27evDh06pMKFC+uzzz6z+7KYHe4Wd6dOneTh4ZFi+fPPPy/p5jyxJ06ckPTvnFM1a9ZMc4irl156SdLN4eqOHDkiSbbhd5YtW6aFCxfazVHj6uqq2bNna9y4cbYvrqdPn9ahQ4ck2Sfat2ratKl8fX0VHx+f5px2GWH9YlyzZs0UQ+BZY7hy5UqqBaHccPz4cdscUbefk+LFi6thw4aSpCVLlshiseR4PD///LMk6cknn1SRIkVSrHd1dbXNCfXzzz/LMIx077tixYpauHChVq1apf79+6tOnTp2BcOoqChNnz5djz/+eJrDNOeVuLg42zxz1h+6bvf666/rhx9+sM01mJqEhARt2bJFUtrvAevniGEYqc4HV716dfn7+6dYbi1AXr161bYsPDzc9j63vvdvN2bMGG3cuFGDBg2SJAUEBOiBBx6QpBQJ3+rVq2WxWNSkSZNUY8iqEydOqH///kpMTNSLL76orl272q23zs+Y1rkrVqyYLUFL7dz5+/vb/WBlZb3uW7Rokep66WZyLEk7d+60neOuXbtq3759WrhwYarbuLm52f6ckz9aXb9+3Tbk4q1z+t0qICBALVu2lCT99NNPKdZXr17d7kdaK+u8Yrf+SJsd2wEAgDsjR844cuT0IUfOGHLk1JEj35SdObKfn59+//137du3z24ocqvk5GRbQTmnb1DJbI5svRG9Q4cOdteyVefOnVPdlzXXb9u2rV0h2crNzU2tW7eWlHqun16Zef1Tkx2f3Q8++GCKG7Wkm8Voyf66Ta9HHnkk1fNnzc9vn1s8q9sBjsI5rwMA4NisXz6qVKkiszn1e248PDxUoUIFHTlyRCdPnlTz5s2zpe+sfEF1dXVNMbeM2WyWp6enSpQooVq1aqlNmzZZvmM+NXeLu2bNmqkuL126tAoXLqyrV68qLCxM999/v+38V6tWLc39lS9fXl5eXoqNjdXJkycVFBSkZ599VsuWLdOxY8f0/vvv64MPPlCVKlX04IMPqnHjxnrggQfk7PzvPyHWO1kl6dVXX02zrxs3bkj697rIrJiYGFuhJ7UvpHXr1lVAQIAiIiK0aNEiPfPMM1nqLzOWLVsm6Waic+uTrlZPPPGEtm/frsjISG3dulVNmzbN0XisT6ne6Vqwrrt06ZJiYmIyPBdZlSpVVKVKFb322muKi4vTnj17tG3bNq1evVpRUVE6deqUBg4cmO45l3LDP//8o8TERElK84c6Pz8/u/mYUxMWFqaEhARJ0vvvv297Ejm1/qTU3wO33gl9K2uxNSkpybbMOr+ih4dHmklrqVKlUix75plntHPnTq1Zs0ZvvPGGTCaTpJvJvSTbnfTZ6dKlS+rTp49iYmLUqFEjDR061G79tWvXFBkZKenmkwbz5s1LdT/WNqmdu1vvrL5VRq775ORkhYeH2332FypUSPv379eRI0cUERGhU6dO6ciRI3YxZOSHsIyKiIiwXZ93mu+sevXqWrt2bapPo6d1XVl/JE5MTFRSUpLdZ3pWtgMAAHdGjpxx5Mh3R46cceTIqSNHzrkc2c3NTWfOnNG+fft06tQpRURE6Pjx4zp06JCuX78uSTl+80dmc2TrdpUqVUp1Gz8/PxUvXlznz5+3W269iWjp0qWp3rAtSRcvXpSUtc/BzL7+t8uOz+6MXLfpdbf8PK0bJzK7HeAo+MUKQI6KjY2VpLsOC2RNkrNzeLdbn9DLKH9/fy1atCjbYsmIu8Wd2p3JVh4eHrp69aquXLkiKf3n39PTU7Gxsbbz7+XlpSVLluirr77S2rVrFR4err///lt///23Zs+eLT8/P73++uvq1KmTJPu7F9MzlE9m7na81Zo1a2yJ1OjRozV69Og02x44cEAHDx6845f77JaUlKTvvvtO0s07u+/W96JFi3I8uU/PtXDrj1XXrl3LcHJ/K3d3dz388MN6+OGHNXDgQL377rv63//+p7179+b663Entz7FeusQfBl16zX9119/Zai9VWp3UafFGndGY27Tpo1GjRqlM2fOaMeOHWrYsKEOHDigY8eOydfXN9t+XLW6ceOG+vbtq4iICFWsWFGfffZZiruPrdem9G9yfCepnbvU7q6+dd8Zue6tVq9erWnTpiksLMyu/X333aeOHTvq22+/vWusWXXruUnPMaT2b2haPzTdTWa3AwAAd0aOnHHkyHdHjpxx5MipI0fOmRz5xIkT+vjjj7V582a7IreXl5fq1aun8+fP26ZayEmZzZGtn6GpjbZhVaRIkRQFcGt/YWFhKXLr22XlczCzr/+dYsjsZ3dGrtv0Sus3j5zaDnAUFMAB5CjrF4+7fYmxfpFK7YtKWk/XWe+OzK9yKu47Dbdr/WJpvRM3veffuv7W8+/l5aUBAwZowIABCg8P144dO7Rjxw5t3rxZUVFRGj58uHx8fNSqVSvbF2AfHx/bcL05yTonmIeHxx2/tJ8/f16GYWjx4sUaNWpUjsdl9csvv9juYC1evLjtDuLbXb9+XVevXtWWLVt05syZVO9Gza7ryNPTU5cvX77jtXD58mW79nczYsQI/f7773rqqafUt2/fNNu5ubnpgw8+0Pr1621zJt+e3Kd1nDk9J9qtyVtsbKxt7uis7GfPnj1ZTrrS219GfxB1c3NTu3bttGTJEq1Zs0YNGza03dme1lBmmWUYht566y3t3btXvr6+mj59eqrvV3d3d9uf16xZk+qQcJmVns9A678/t7ZfuXKlhgwZIklq3LixHn30UVWqVEmBgYEqUqSIEhMT71gAz67r+dbr6OrVq2k+ZWF97+b0dQcAALKOHDklcuSsI0cmR84u5MjZnyNHRUXphRdeUFRUlEqXLq1OnTqpatWquv/++3XffffJZDLpzTffvGMBPDuveynjObKPj48uXLhgd5P27VJ7mtjd3V1Xr17V9OnTs/2G+1tl9vVPaz+59dkNIGcxBziAHGWdl+fQoUNpDuMTGxtruwuwXLlytuXWpwStdzHf7va7CvODW4c8Sy3u+Pj4LN/ZndYTkqdOnbJ90atYsaKkf8//wYMH09zf8ePHbV+Yrec/KipKf/zxh20umHLlyqlTp06aMGGCNm/ebBv6zpoUVKhQQdLNOy4vXLiQZl9//PGHjh8/nqUhdkJDQ23z8YwbN05btmxJ8z/rHeNr166945f07Gade61SpUraunVrmvHNmTNH0s1hpW4tpuXEdZSea8F6V3aRIkXSdWf7jRs3FB4ebpvT6U68vLxsidOtCbT1fW4dYu12Of0+DwgIsMVw61BXtzpw4IA6d+6soUOHppl03rqfY8eOpdnf/v37dfjw4SwnZdY5/a5fv67Tp0+n2uann37Siy++qI8//thuuXW4w59++knJycm2YciyexjEjz/+WD/++KNcXFw0derUNIch8/b2VrFixSTd+dwdPnxYhw4dsvsR6m7Sc90fOHBAkmQymVS2bFlJ0pdffinp5nyAs2bN0nPPPaeQkBDb00VpzdOX3f9ulS1b1vaDy52emrCuu/XfUAAAkD+RI9sjRyZHJkcmR3b0HHn58uWKioqSj4+Pli9frr59+6pp06YKCAiw3Qxy7ty5VLfN7s/9zObI1s8062fN7a5du2Ybzv5W1u3Supakm0+HHzhwIEvzUWfl9U8t3tz47AaQ8yiAA8hRTZo0kbOzsy5cuKDvv/8+1TYLFixQUlKS3N3dVb9+fdtya3KR2nwq+/fvz5fJvY+Pj+3La2px//zzz5ma6+VWK1asSPWHEutwdLVr17bdJW29u3L//v1pDt3z9ddfS5JKliyp4OBgSVLPnj3VtWtXrVy5MkV7T09P1a5dW9LNpFSSAgMDbT8MLFiwINV+du/era5du6pt27bau3dvOo40ddZ5w3x9fdWiRYs7tu3cubOkm1+ArT9E5LSoqCht3rxZ0t2TpRo1ath+KFm6dKnt2sjKdZTWnfTWa2HVqlWpFhATEhJs11Djxo3vGLeVdW65v/76y/aDRlq2bdummJgY+fj4qFatWrbld3qfJycn6+eff05XLJnl5eWlunXrSvr3qYnbrV27Vnv27NHp06fTPL9eXl62z6+05rCOiIhQly5d9Pjjj+uHH37IUtyBgYEqU6bMHeNeuXKldu7cmSKJrFWrlipVqqTo6GjNnz9f//zzj6pWrZrm/G6ZsWjRIn311VeSbg7BWK9evTu2b9asmaSbnx+pfb5dvXpV3bt315NPPqm5c+emOw7rdf/zzz8rIiIi1TbW16t27dry9vaWJFvCnNYwhNbPIcl+/i7r9Xz58mVFRUWl2G7Dhg1pxmq9tm79AcnDw0MNGjSwi/N2ERERtvdJkyZN0tw/AADIH8iR7ZEjkyPfihyZHDmz8nOObM0vS5cuneoT9ceOHbN9Blg/Q6wy+7mfWn4pZT5HbtWqlaSbN/mkdrPCihUrUsR+a3/Lli1LtViclJSkfv36qWPHjvroo49SjSc9svL6376f3PrstjKbb5bo0rqZBEDmUQAHkKNKlSplmwNr+PDhdl9oLRaLFi5cqClTpkiS+vXrZzdUl/UL95w5c3T8+HHb8gMHDuiNN97IjfAzzM3NTVWrVpUkTZkyxe4Ozm3btumDDz7Ich9//fWXhg8fbhv2ymKxaMGCBbYkfdCgQba2derUsd3hPWDAALvhexISEjR58mTbXdVvv/227QvyE088IUmaOnWqtmzZYtf/H3/8YUuUb52Ta+DAgZKkGTNmaObMmXZ3p/7xxx+29bVr11bDhg1t6xITE3X8+HEdP378rndsJyQkaM2aNZJuDkV1tzlqmzRpYvsCvHjx4ju2vZN//vlHx48fT/Vu1tutWrVKSUlJcnFxsZ3HO7H+AHHhwgXbXcZZuY6swzVFRkam6KdEiRK6ePGiXn75ZbtEJyoqSgMHDtSRI0fk6emp11577a5xS9LDDz+s1q1bS5KGDRumMWPGpLjT9saNG1q+fLlef/11STevk1uHPrO+z48ePap58+bZvvBfvnxZ7777brrmhM6qfv36yWQyafXq1Zo+fbrdDyerVq3S/PnzJUm9evW6435ee+01OTk5ae3atRo3bpxdUnjkyBH16dNHiYmJKlOmjDp06JClmE0mk/r16ydJmjlzppYuXWo7d8nJyZoxY4Y2bNggZ2dn9ejRI8X21h+eJk2aJEl6+umnU+0nI+9Pq82bN9uGUxwwYICefPLJu27Tp08feXh4aPfu3XrrrbfsEtLIyEj16dNH0dHRKly4sLp27ZquOKSb87kFBwfrxo0b6t27t92QcrGxsRo+fLi2bdsmZ2dnDR482LbOelf8kiVL7N5/sbGxmjJlimbMmGFbdmsSX6tWLbm4uMgwDI0dO9a2LjExUXPnzr3jsOnW9+7tnzP9+/eXs7Oztm3bpuHDh9s9qRMaGqrevXvrxo0bqly5crrONQAAyFvkyOTI1m3IkVNHjkyOnBn5OUe25pehoaH68ccfbcsNw9CWLVvUq1cv2xP/tw9xn9nPfes1dft7NLM58rPPPqty5crp7NmzGjBggN0N3+vXr9eECRNSjaNr167y9/dXeHi4+vbtaxfPpUuX9Prrr+v48eNycXHRSy+9lObx3E1WX/9bZfazO7Osn1FXrlzJ1ZE5gIKAOcAB5LihQ4fq3Llz+umnnzRw4EAVL15cJUuWVEREhKKjoyVJL7zwgnr37m23Xd++fbV161ZduHBBHTp0UMWKFXXjxg2FhYUpICBAzzzzTJp39eWl119/XX379tWxY8fUsmVLVaxYUZcvX1ZkZKRq1KihkJAQWxKXGUFBQVq2bJnWrVun+++/X2fPntWFCxdkNps1dOjQFF++Pv74Y73yyiv6888/1a1bN5UpU0ZFixbVyZMnFRsbKycnJ73++utq166dbZtu3bpp+/bt2rJli3r37q3ixYurePHiio6OtiWNLVq00LPPPmvbpl27dgoLC9OUKVP0ySef6Msvv1T58uV16dIl2zYVKlTQtGnT7OI7d+6c2rZtK+nmcG1pJRmStHHjRsXExEhK31BUZrNZzz33nD799FMdOXJEu3fvtiUPGfHOO+9o586dql+/vi3RS4v1Lu9mzZqla66sdu3a6aOPPtKVK1e0ePFiW7Kc2euoatWq2rRpk9asWaPDhw+rXr16eu+99+Tt7a3p06erT58++vPPP9WqVStVrFhRzs7OOnr0qBITE+Xj46NPPvnENnRUenzyySfy8PDQqlWrNG/ePM2bN0+lS5eWn5+f7f2akJAgFxcXvfnmm+rSpYvd9k2bNlW9evX0xx9/aMyYMfrqq6/k6+urEydOKDExUa+99prtB8Cc8uCDD2ro0KH68MMPNXHiRH311VcKCAjQ2bNnbfPUvfrqq3Y/ZqWmbt26GjVqlN577z19/fXXWrx4sQIDA3Xt2jWFh4fLMAwVK1ZMs2fPvusPU+nRsWNHHTt2THPmzNGwYcP02WefqWTJkjp9+rRiYmLk5OSkkSNHpnrX+hNPPKEJEybo+vXrcnFxUfv27VPtIyPvT6tBgwYpOTlZbm5u+vvvv9WzZ0/Fx8en+lTOM888o44dO6pcuXL67LPPNGjQIK1du1Y//vijKlasqMTERIWFhSkpKUkeHh6aMWNGmvNgp8bZ2VnTpk1T7969deLECT3xxBMqX768PD09bcOVubm56f3337d7Sn3QoEHq16+fjh07pkceecQ2DFp4eLhu3LhhG6ru1KlTdsOhFylSRD179tT06dO1du1abd26Vffdd58iIyMVExOjzp076+eff051eLuqVatq165d+uCDD7Ro0SJ16dJFHTt2VJ06dTRmzBgNGzZM3377rb777jsFBgbq+vXrOnnypKSb/y5MnTo1W64rAACQ88iRyZHJkdNGjkyOnFn5NUfu2LGjFi5cqPDwcA0YMEBlypSRr6+vzpw5o6ioKLm4uKh+/frauXNnilwxs5/7VapUkXRz/vU2bdqoYsWKmjp1aqZzZDc3N02ePFm9evXStm3b1KxZM1WqVEkxMTG29+CFCxdSTBdWpEgRffHFF+rbt6+2b9+uRx55RBUrVpTJZNLJkyeVkJAgZ2dnffrpp7YRNzIrK6//rTL72Z1ZwcHBMpvNio+PV5s2bVS8eHHNnj07XdMuALgzngAHkONcXV31+eefa+LEiWrUqJESEhJ06NAhubu7q127dpo3b56GDx+eYtikKlWqaNmyZerQoYOKFi2qEydOKDk5WS+99JJWrlwpf3//PDqiO2vSpIkWLlyoli1bysPDQ8eOHVOhQoU0YMAALVy40HZnX2Z169ZNn376qSpUqGC787d169ZavHhxqncx+vj4aP78+Ro1apQeeOABXb16VYcPH5avr686duyoZcuWqU+fPnbbODk56fPPP9e7776rOnXqKD4+XqGhoYqLi1OjRo308ccfa9q0aXbzcEk3E6AlS5aoQ4cO8vLyUmhoqKKjo1W1alUNHDhQy5cvz1Dx6nbWxLlatWrpHoqqY8eOtjl0s3KHe3rs27fPNrdVeueKcnd3tz21+dtvv9nm+svsddS7d289++yz8vHxUVhYmA4fPmxbV7VqVa1du1b9+vVTpUqVFBERobCwMFWoUEGvvPKKvvvuu3QP7Wbl6uqqDz/8UEuXLtVLL72katWqKSEhQaGhoTp79qwqVKignj176rvvvktxnUk3f4CZPXu2Xn/9dVWqVElRUVH6559/9OCDD2rRokVZvgs8vbp3764lS5aoffv2KlSokA4fPqykpCQ1bdpUc+bM0YABA9K1n2eeeUarV6/Wc889J39/fx09elRnzpxRYGCgevXqpe+++85WTM0OQ4YM0Zw5c/TII4/IMAyFhobKyclJbdq00ZIlS+x+gLtV0aJFbcNlt2jRIlsTK+td/fHx8dq4caO2bdumP/74Q3v27Enx35kzZ2zbNW3aVP/73//Uo0cPlS1bVidPnlR4eLjKlCmjLl266LvvvlNISEiG47nvvvu0fPlyvf3226pZs6YuXLig48ePq1SpUurWrZtWr16d4snp5s2ba9myZWrZsqX8/f114sQJnTlzRkFBQXrzzTe1evVq27W5adMmu20HDRqkTz75RHXr1lViYqJOnjypChUqaPz48Ro5cmSacY4dO1YPP/ywnJ2ddfLkSdtngXRzLvLVq1erU6dOKlasmI4eParo6GiFhIRoxIgRWrZsWZpzrAMAgPyHHJkcmRw5beTI5MhZkR9zZC8vL9vnSqVKlXTp0iUdPXpUXl5etgL22LFjJd18SvzWp6Qz+7n/5JNPqlevXvL399fp06d16NAh203pmcmRJaly5cpauXKlXnrpJZUqVUpHjx6VxWJRjx499PXXX6d5E0ONGjW0Zs0avfrqqwoODtbp06d14sQJFStWTE8++aSWL19uG2I9qzL7+t8upz+7b1WuXDmNGzdO5cuXV0xMjM6cOZNixAoAmWMymFwAAO4JLVq0UGRkpEaPHp3uL2zIPqNGjdKpU6c0c+bMvA4FyBZPP/20Dh48qBkzZtz1zn0AAAAgvyFHzlvkyHA05MgA4Fh4AhwAgLuwWCz6448/VLFixbwOBcgWBw8e1MGDB1WqVCk1atQor8MBAAAAcA8hR4ajIUcGAMfDHOAAANzFBx98oKioKL344ot5HQqQaREREZKkixcvasiQIZJuDhfp5OSUl2EBAAAAuMeQI8MRkCMDgGOjAA4AwF08//zzGjBggIoWLZrXoQCZ9v333+vTTz+1/T0oKEgvvPBCHkYEAAAA4F5EjgxHQI4MAI6NIdABALiLypUrk9jjnle5cmUVL15cHh4eatmypb766iu5urrmdVgAAAAA7jHkyHAE5MgA4NhMhmEYeR0EAAAAAAAAAAAAAABZxRPgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQnPM6gHuFYRiyWBgtHgAAAABgz2w2yWQy5XUYDoHcGwAAAACQmozk3hTA08liMXTp0rW8DgMAAAAAkM8ULeopJycK4NmB3BsAAAAAkJqM5N4MgQ4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACH4JzXAQAAAAAAUrJYLEpOTsrrMAo8Jydnmc3cOw4AAAAAjojcO3/I7tybAjgAAAAA5COGYejKlUuKi4vN61Dw/9zdveTtXVQmkymvQwEAAAAAZANy7/wnO3NvCuAAAAAAkI9YE3AvL1+5uhai6JqHDMNQQsINxcZGS5KKFPHL44gAAAAAANmB3Dv/yIncmwI4AAAAAOQTFkuyLQH38vLO63AgydW1kCQpNjZahQv7Mhw6AAAAANzjyL3zn+zOvcncAQAAACCfSE5OlvRv4of8wfp6MC8cAAAAANz7yL3zp+zMvSmAAwAAAEA+w9Br+QuvBwAAAAA4HnK9/CU7Xw8K4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDcM7rAAAAAAAAeefw4VBNmzZJoaF/y2IxVLVqdfXp00/VqlWXJO3a9bvmzJml48ePysnJWfXrN1Tfvq+pRImSkqTvv1+jsWPf19Kl36lUqdK2/Xbs2EF16tTVf/87UpLUqFE9vfRSH23fvk0REeHq3PlF9ejRS5GRp/XFF1O0e/cuGYah6tVrqF+/gbr//kBJ0o0bNzR79nRt3Lhe0dGXVLZsOXXr9pIeeaRV7p4oAAAAAAAyidw7d/EEOAAAAAAUUNeuxerNN19TkSI+Gj36I73//ljFx8fpzTf7KzY2Vj/++L0GDeovf39/jRw5Rq+9NkgHDx7QK6+8pOjoSxnub+7c2WrWrIVGjhyjxo2b6eLFi+rdu7vCw0/qzTff0XvvjdKVK1f0+uv9FBMTI8Mw9O67b2nVqhV67rku+vDDT1W9ek299967WrdubQ6cEQAAAAAAshe5d+7jCXAAAAAAKKBOnjypmJhodez4nGrWrC1JKleuvFavXq7Y2KuaNm2S6tWrr/ffH2fbpmbN2nrhhWe1aNEC9es3IEP9Va1aXS+80MP2988/n6QbN+L12WfT5OdXTJJUqVJlvfxyD/31134VKuSqHTu26/33x9ruOm/Q4EHFx8dp+vSpevTRNnJ2Jq0FAAAAAORf5N65jyfAAQAAAKCAuv/+QPn4+Oqdd97QJ5+M07ZtW+TnV0z9+g1UfHy8oqKi1KrVY3bblClzn6pVq6E///wjw/0FBla0+/u+fX+qevWatgRckooVK6bly9eqUaMm+uOPXTKZTHrwwUZKSkqy/ffww00VFXVRJ08ez9yBAwAAAACQS8i9c9+9Va4HAAAAAGQbDw8PTZs2U3PnztbGjeu1atVyubm5qVWrx9SmTTtJUtGifim28/Pz0+HDhzPcn69vUbu/X7ly2W7usttduXJZhmGoVasmqa6/ePGCKlUKznAcAAAAAADkFnLv3EcBHAAAAAAKsLJly2v48FFKTk7WoUMH9cMP32vVqmUqVsxfknTpUlSKbaKiouTj4yNJMplMkiSLxWLXJi7u+l379vIqrJiYmBTLd+/epZIlS8nLq7Dc3T00Zcr0VLcvUybgrn0AAAAAAJDXyL1zF0OgAwAAAEABtWnTRrVv31JRURfl5OSk6tVravDgIfLyKqxLly7Jz89P69evs9smMvK0/vprv2rWrCVJ8vDwlCSdO3fW1ubUqTBdvnz5rv3XqlVbBw/uV3T0JduymJgYDR48QL/+ukW1a4coLu66DMNQ5cpVbf+dOHFcX301U8nJydlxGgAAAAAAyDHk3rmPJ8AB2DGbTTKbTTnah8ViyGIxcrQPAAAA3F2NGrWVnGzR0KGD9cILPeTp6amfflqva9di1aJFS1WtWk1jx76v994bqjZt2uvy5Rh99dUMeXsX0XPPdZUk1a37gNzc3DR16kT17t1P169f15w5N9vcTadOXbRu3f/0xhv91a3bS3J1LaT58+fIz6+Y2rRpJy+vwqpdO0RDhrypHj16qVy58jp06KBmz56hBg0a2u6Eh+PL6TyFHAUAAABATiH3zn0mwzDI8NIhOdmiS5eu5XUYQI4ym03y8fGQk1PODg6RnGxRTMx1fmACAAC4TWJigqKizsjPr5RcXFxzpc9Dhw5q5swvFBp6SPHx8br//kC9+OJ/1LRpc0nSL7/8pPnzv9aJE8fk6empBg0eVJ8+r6pEiZK2ffz++3ZNnz5V4eEnVbJkKf3nP330ww//k5+fn/7735GSpEaN6uk//+mtnj1ftus/PDxM06ZN0p49u+Xi4qI6dULUr99AlSlznyQpLi5Os2Z9oU2bflJ09CUVK1ZcLVu2Uo8evVSoUKFcOUd3e12KFvXM8e/QBUVquXdu5CnkKAAAAEDBQe7t+Lk3BfB0ogCOgsDZ2SxfX099vuhXRZ6/+7AZmVGmeBG92vlhRUdfU1KS5e4bAAAAFCB5kYTj7iiA557Ucu+czlPIUQAAAICChdw7f8rO3Jsh0AGkEHn+ssIio/M6DAAAAACwIU8BAAAAAKQHBXAAeSInn5Bh/j4AAAAAAAAAAICCiQI4gFxVpLCbDItF3t7uOdaHxZKs6Og4iuAAAAAAAAAAAAAFDAVwALnK081VJrNZJ9fOVFzUmWzfv7tfKVVo31tms4kCOAAAAAAAAAAAQAFDARxAnoiLOqO4c6fyOgwAAAAAAAAAAAA4EArgAAAAAAAUUImJiZo/f75WrlypsLAweXh4qEaNGurevbsaN26con2DBg0UExOT5v7279+vQoUK5WDEAAAAAADcGQVwAAAAAAAKIMMwNGjQIG3YsEHe3t566KGHdOPGDf3+++/aunWrXn/9dfXt29fWPjIyUjExMSpRooTq16+f6j7NZnNuhZ/tnJxyLnaLxWCKJgAAAADIJRTAAQAAAAAogBYvXqwNGzaoSpUqmjNnjnx9fSVJoaGh6tq1qyZNmqRWrVopMDBQknTo0CFJUps2bfTuu+/mWdzZrUhhNxkWi7y93XOsD4slWdHRcRTBAQAAACAXUAAHAAAAAKAAWr16tSRpyJAhtuK3JFWuXFkdOnTQokWLtGXLFlsB/ODBg5KkatWq5X6wOcjTzVUms1kn185UXNSZbN+/u18pVWjfW2aziQI4AAAAAOQCCuAAAAAAcA8wm00ym0253i9DNzuuuXPn6uTJk6pUqVKKddevX5ckOTk52ZZZnwCvXr167gSYy+Kiziju3Km8DgMAAABAHiL3dgwUwAEAAAAgnzObTfLx8cjROYrTkpxsUUzM9Uwl4uvX/6Dly5foxIljkqRy5Sqoffsn9OSTz2R3mMiEQoUKqXLlyimWb9y4UT/88IPc3d3VqlUr2/KDBw/Kzc1Nf/31l4YNG6ajR4/KZDIpJCRE/fr1U61atXIzfAAAAADIVuTejoMCOAAAAADkc2azSU5OZn2+6FdFnr+ca/2WKV5Er3Z+OFNDN69du1qffTZeAwa8qdq1QyQZ2rVrpyZPnqDo6Ev6z39650zQyJTLly9r2LBhOnbsmE6cOKFSpUpp3LhxKlmypCQpKipK58+flyS9/fbbql27tho0aKAjR47ol19+0bZt2zR+/Hi1bds2Lw8DAAAAADKN3NtxUAAHAAAAgHtE5PnLCouMzusw0mXlymVq3/4JPf74U7ZlZcuW14UL5/Xtt4sKbBKeX0VERGj9+vW2v5tMJh07dkwPPvigpH/n//b19dUXX3yhOnXqSJIMw9DcuXM1btw4DR06VCEhIbaieWY5O9s/bZEXT1/kBEc5DgAAAOBeZ7HceYhzcu+85eRkSpEXZhQFcAAAAABAtjObTTpwYL+uXLkib29v2/KuXburbdsOkqSOHTvoscfaq2fPl23r+/fvo1KlSuu//x2pPXv+0IABr6hv39f0zTfzVLJkSbm5uatYMX998ME42zb79+9Vv369tHjxSt13X4B+/XWrZs/+UmFhJ+Xv76+WLVure/eecnV11aRJE/Trr1v07berbdvHxsbq8cdb64MPxqpRo6a5cHbynwoVKmjnzp0yDEPbt2/XmDFjNHr0aMXGxqpv375q3Lixtm7dKsMwVKJECdt2JpNJPXr00K5du7Rx40YtW7ZM/fv3z3QcZrNJvr6e2XFI+Y63t3tehwAAAABAUny8ky5eNKcotOb1TauZ6d/Jyay//tqv69dj7XLv7t3/o8cff0LOzmY9+WQ7tWvXQb17v2Jb37dvb5UqVVojRryv3bv/0Kuv9tGrrw7Q/PlzVbJkKbm7u6lYMX+NGfORbZt9+/bq5Zdf0tKlqxQQUFbbtm3RzJnTbbn3o4+20X/+00uurq6aOHG8tm3bquXLv7NtHxt7Ve3atdKoUR+qSZOUubfFYpLZbFaRIh5yc3PL8Lm4FQVwAAAAAEC269q1u0aMGKqnnnpMISH1VLNmHdWtW09VqlRT4cKFM7Sv7du36csv5yg+Pk5Hjx7RhAkf6vr1a/LwuFkoXb9+nWrUqKX77gvQ779v1/DhQzRgwCA98EBDRUae1sSJH+vUqXCNGvWh2rd/QkuXLtK+fXtVq1ZtSdJPP62Xp6enGjZ8OLtPwz3D0/PfonPbtm1VsmRJdenSRTNmzFC3bt3k6emp4sWLp7l98+bNtXHjRv31119ZisNiMXTlynW7ZU5OZocoHl+5EqfkZEtehwEAAAAUeAkJN2SxWJScbCgpKf98R09OtmQ4ni5dumnEiKHq0KF1ity7dGlP2/4sFvtjNQxDhnFzmTVP2bZta4rc+8qVq7bce926/6lGjVoqVeo+bdu2Te+++06K3DssLEyjRn2otm2f0JIli7R79x5b7v3jjz/Kw8NT9es/mOpxJicbslgsunz5uuLiklOs9/Z2T/dNAhTAAQAAAADZrlmzR/Tll3O0bNli7djxu3777VdJUkBAWQ0dOkI1a9ZO9746d35BAQFlJUn33VdWEyeO1+bNm/TYY+2VmJion3/eqL59X5MkzZv3ldq3f1xPPtlRklSmzH166613NWDAKzpz5h8FBlZUcHAV/fjj/2xJ+A8/rFXr1m3l7EyKbBUSEqKyZcsqPDxcYWFhqlat2h3b+/v7S5Li4uKy3Hd++gEqO2XmxywAAAAA2S85OWPzbOdnjph7Z8eNCWT3AAAAAIAcUaVKNQ0fPkqGYejEieP67bdtWrp0sQYPHqglS1amez/33VfW9md3d3c1b/6I1q9fp8cea6/ffvtVN27Eq0WLlpKkI0dCdejQQa1bt9a2jWHc/HEjLOykSpUqrXbtHteMGdP0+utv6fz5czpwYL/eeuvdbDrqe0NcXJwmTZqkixcvavz48TKZUs6B5+rqKklKSkrSkiVL9Ntvv6l9+/Zq2bJlirYRERGSlOX5vwEAAAAAGUPunRIFcAAAAABAtjp//py++WauXnihh/z9i8tkMikwsKICAyuqUaOmeuGFZ7V3755Ut01OTkqxrFChQnZ/b9u2gwYO7KuoqItav/57NWnSXJ6eXpJuDuvWpUs3PfZY+xT78fMrJkl69NE2mjr1M23fvlXHjx9TlSpVdf/9FbN62PcUNzc3rVy5UjExMerUqZPq169vtz4iIkInT56Uq6urKlWqpM2bN2vdunWKi4tLUQA3DEOrV9+cU71Ro0a5dgwAAAAAUJCRe6ctb2dzBwAAAAA4HFfXQlq9eoXWr1+XYp11rumiRf3k7Oyi2NhY2zqLxaJ//om86/5r1w5RyZKl9MMP/9P27b/aJdz33x+o8PAw3XdfgO2/CxfO6/PPJ+n69WuSpMKFC6tJk2b65ZeftWXLJrVt+3hWD/meYzKZ9Nxzz0mSRo4cqfPnz9vWnT17Vm+88YaSkpLUuXNneXh46KmnnpKrq6t++eUXffvtt7a2FotFkydP1v79+1WxYkW1adMm148FAAAAAAoicu+08QQ4AAAAACBb+fj4qGvX7poxY5piY2PVokVLeXh4KizspL7+epZCQuqpVq06qlmzln76ab2aNm2uokX9tHjxAruk/E4ee6y95s79SkWKFFG9ev8+vdy1azeNGDFUs2d/qUcfbaMLF87rww9Hq0SJEra70CWpXbvHNWTIGzIMqWXL1tl+Du4F/fr10549e7Rr1y61bt1adevWVWJiovbv36/r16+rUaNGGjx4sCQpICBAI0eO1LBhwzR8+HAtWLBA5cuXV2hoqMLDw1WsWDFNmTJFLi4ueXxUAAAAAFAwkHunjQI4AAAAANwjyhQvcs/017t3X913X4DWrFmllSuXKj4+XiVKlFSLFo+qW7eXJEl9+ryqq1evaPDgAXJzc1eHDk/qkUda2eYNu5M2bdrrq69m6Omnn5XZ/O/gZs2bt9T770vz53+lBQu+VuHC3nr44cbq23eA3fb16tVXkSI+qlGjlgoXLpzp47yXubm5ac6cOZo3b55Wr16tHTt2yNnZWZUqVdLTTz+tZ599Vk5OTrb2zzzzjCpUqKCZM2dqz549OnHihIoXL64XX3xRffv2lZ+fXx4eDQAAAABkD3Lvf92rubfJSM/R5YHExETNnz9fK1euVFhYmDw8PFSjRg11795djRs3TtH+4sWLmjZtmrZu3apz587J399fbdq0Ub9+/WyP+WdFcrJFly5dy/J+gPzM2dksX19PvTvpe4VFRudIHw/VLqf+XRrp77kfKO7cqWzfv3uJsqrafYSio68pKcmS7fsHAADISYmJCYqKOiM/v1JycXG1LTebTfLx8ZCTU+7PYpWcbFFMzHVZLPkydcy0uLg4PfFEG40Z87EeeKDBHdum9bpYFS3qmSevjSNKLffO6TyFHAUAAAAoWMi9c09e5d758glwwzA0aNAgbdiwQd7e3nrooYd048YN/f7779q6datef/119e3b19b+/Pnzev755xUZGamgoCA1a9ZMBw4c0KxZs7R161YtXLhQXl5eeXhEAAAAAJB5FouhmJjrMptNedK3IyXgV65c0Z49u/TzzxtVokQJuyHcAAAAAAAFF7l39snr3DtfFsAXL16sDRs2qEqVKpozZ458fX0lSaGhoeratasmTZqkVq1aKTAwUJI0evRoRUZGqk+fPnrzzTclSQkJCXr77be1bt06TZ06VUOGDMmz4wEAAACArHK0ZDivJCcn6cMPR8nHx1cffDBOJlPu/7ABAAAAAMifyL2zR17n3vlyjLbVq1dLkoYMGWIrfktS5cqV1aFDBxmGoS1btkiSTp06pQ0bNqhUqVIaMODfceVdXV01atQoeXp6asmSJYqPj8/dgwAAAAAA5Du+vkX1ww+/aPHilQoKqpzX4QAAAAAA4HDyOvfOlwXwuXPnavXq1XrggQdSrLt+/bokycnJSZK0ZcsWWSwWNW3aVC4uLnZtCxcurIYNG+r69evasWNHzgcOAAAAAAAAAAAAAMgz+bIAXqhQIVWuXNlW5LbauHGjfvjhB7m7u6tVq1aSpCNHjkiSgoKCUt1XxYoV7doBAAAAAAAAAAAAABxTvpwD/FaXL1/WsGHDdOzYMZ04cUKlSpXSuHHjVLJkSUnShQsXJEn+/v6pbm9dfvHixdwJGAAAAAAAAAAAAACQJ/J9ATwiIkLr16+3/d1kMunYsWN68MEHJf07JLqbm1uq21uXW9tlhbNzvnxgHsg2Tk6Oc4070rEAAICCw2Ix5XUIuAMnJxN5IQAAAAAA+Vy+L4BXqFBBO3fulGEY2r59u8aMGaPRo0crNjZWffv2tQ2TbjKl/kORYRh2/88ss9kkX1/PLO0DQO7x9nbP6xAAAAAyLD7eSRcvmim05jMWi0lms1lFinikefM1AAAAAADIH/J9AdzT89+ic9u2bVWyZEl16dJFM2bMULdu3eTh4SFJunHjRqrbW5e7u2etGGaxGLpyJetPkQP5mZOT2WEKx1euxCk52ZLXYQAAAGRIQsINWSwWJScbSkriu0x+kZxsyGKx6PLl64qLS06x3tvbnRGIAAAAAADIJ/J9Afx2ISEhKlu2rMLDwxUWFqbixYtL+ncu8NvdbY7wjOAHKODekZxs4T0LAADuOcnJaY9cZTabZDbn/hDpFoshiyXjI2p17NhBZ8+eUf/+r+v5519IsX78+LFavXqF/vOf3urZ8+VMxdaxYwc99lj7dG+f0fa348YEAAAAAHBs5N6p95GbuXd2yHcF8Li4OE2aNEkXL17U+PHjUx3a3NXVVZKUlJSkoKAgSdLx48dT3d/Ro0clScHBwTkUMQAAAADkrJtTMrnLbHbK9b4tlmRFR8dlKhF3dnbWpk0/pUjCk5KStHnzz2lOZQUAAAAAQG4j93Yc+a4A7ubmppUrVyomJkadOnVS/fr17dZHRETo5MmTcnV1VaVKlVSsWDFJ0qZNmzR06FDbnOCSdPXqVe3YsUMeHh6qW7durh4HAAAAAGSXm3egO+nk2pmKizqTa/26+5VShfa9ZTabMpWE16tXXzt2/KZz586qRImStuV79vwhNzd3FSrEfNoAAAAAgPyB3Ntx5LsCuMlk0nPPPacvv/xSI0eO1Ndff20b5vzs2bN64403lJSUpO7du8vDw0MeHh5q3ry5Nm3apPHjx+udd96RyWRSQkKCRowYoWvXrumll16Sl5dXHh8ZAAAAAGRNXNQZxZ07lddhpFuVKtUUHh6mTZs22t2J/tNP69WixaP6+ecNtmV//bVfM2ZM0+HDh+Ts7KxGjZrq1Vdfl7e3tyQpNjZWn302Xtu2bZazs4u6dftPiv4OHNin6dOn6tChv+Xj46OHH26iV155VZ6e5IMAAAAAgPQh9773c29zXgeQmn79+umBBx7Q8ePH1bp1a/Xq1Uvdu3fXY489pv3796tRo0YaPHiwrf3w4cNVvHhxzZkzR23bttWAAQPUunVrff/996pWrZr69++fh0cDAAAAAAVX8+YttWnTT7a/JyYmasuWX9SyZSvbsr///kuvvfayypevoOnT52jUqI/0999/6Y03+stiuTnn9ogRQ3To0EF99NFETZw4Vb/+ulVnz/57R/6xY0c1cGA/PfBAA82du0jvvTdGhw8f0qBB/WUYGb+DHgAAAACAewW5t718WQB3c3PTnDlz9PbbbysgIEA7duzQ/v37ValSJb3//vuaMWOGbR5wSSpTpoyWLVumZ599VlevXtWmTZvk6uqqV155RfPmzZOnp2ceHg0AAAAAFFwtWjyqv//+S+fOnZUk7dz5u3x8fBQUVNnWZvHibxQYWElvvPGOKlS4XyEh9TRy5FiFhv6tHTt+06lTYdq583cNGvS2atWqo0qVgvXee6Pt8sJFi+apXr0H1KNHLwUElFWtWrU1cuQY/f33X/rzz925ftwAAAAAAOQWcm97+W4IdCsXFxf17NlTPXv2TFf7EiVKaPTo0TkcFQAA94ab89WYcmz/FouRqfloAAAFT+XKVVS6dBnbUGw//7xeLVu2tmtz4sQxPfBAQ7tlgYEV5eVVWMePH1V8fJwkqUqVqrb1RYv6qXTpMra/Hz58WKdPn9KjjzZOEUN4eJhCQupl52EBAAAAAJBvkHvby7cFcAAAkDlms0k+Ph5ycsq5gV6Sky2KiblOERwAkC4tWjyqTZt+0lNPPautW7do5sy5dusNw5Aplfu2DMMiZ+d/09bb/91xcnK2a9uq1WPq1u2lFPvx8fHN4hEAAAAAAJC/kXv/iwI4AAAOxmw2ycnJrM8X/arI85ezff9lihfRq50fltlsogAOAEiXFi1aasGCr7V27WqVLl1G5cqVt1t///0VtW/fXrtlR48e0bVr11S+/P0KCCgrSTpwYJ8eeqiRJOnq1auKjIywta9QIVAnTx7XffcF2JadOhWmqVMn6ZVXXpWXV8WcOTgAAAAAAPIBcu9/UQAHAMBBRZ6/rLDI6LwOAwAAVaoUrPvuC9CMGZ/rhRf+k2L9c8910auv9tann36kp5/upOjoS/r0048UFBSsevXqy9nZWc2bt9TEiR/LxcVFfn5+mj79cyUmJtr28fzzL+jVV3tp/Pix6tjxeV2/fl0TJnyo69ev6777yubm4QIAAAAAkOvIvf9FARwAAAAA7hHufqXu2f5atHhUc+fOVsuWrVKsq169pj75ZJJmzpyul17qKg8PTzVu3Ex9+/a3DcM2bNhIff75JL333ruyWCx64omnFRMTfcs+aujTT6dq1qwv1LPni3J3d1NIyAN69dXX5erqmm3HAQAAAABwbOTe937ubTIMg7FL0yE52aJLl67ldRhAjnJ2NsvX11PvTvo+x54afah2OfXv0kh/z/1AcedOZfv+3UuUVdXuIxQdfU1JSZZs3z9wL8jp93L5Mr4aO7At7zMAyAGJiQmKijojP79ScnH5N3E0m03y9XWX2eyU6zFZLMmKjo4r0NNepPW6WBUt6iknJ3MeROZ4Usu9c/q7DTkKAAAAULCQe+dP2Zl78wQ4AAAAAORzFouh6Og4mc2mPOm7ICfgAAAAAICCgdzbcVAABwAAAIB7AMkwAAAAAAA5i9zbMTBGGwAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAPIZw2C+sfyE1wMAAAAAHA+5Xv6Sna8HBXAAAAAAyCecnJwkSQkJN/I4EtzK+no4OTnncSQAAAAAgKwi986fsjP3JnsHAAAAgHzCbHaSu7uXYmOjJUmuroVkMpnyOKqCyzAMJSTcUGxstNzdvWQ2cw85AAAAANzryL3zl5zIvSmAAwAAAEA+4u1dVJJsiTjynru7l+11AQAAAADc+8i985/szL0pgAMAAABAPmIymVSkiJ8KF/ZVcnJSXodT4Dk5OfPkNwAAAAA4GHLv/CW7c28K4AAAAACQD5nNZpnNrnkdBgAAAAAADovc2zFxGzsAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgEJzzOgAAAAAAAJA3EhMTNX/+fK1cuVJhYWHy8PBQjRo11L17dzVu3DhF+4sXL2ratGnaunWrzp07J39/f7Vp00b9+vWTp6dnHhwBAAAAAAD2eAIcAAAAAIACyDAMDRo0SB999JHOnj2rhx56SFWqVNHvv/+uXr166YsvvrBrf/78eXXq1EnffPON3Nzc1KxZM1ksFs2aNUudO3dWbGxsHh0JAAAAAAD/ogAOAAAAAEABtHjxYm3YsEFVqlTR+vXr9eWXX+rrr7/WsmXL5OXlpUmTJun48eO29qNHj1ZkZKT69OmjNWvWaPLkyfrxxx/12GOP6fDhw5o6dWoeHg0AAAAAADdRAAcAAAAAoABavXq1JGnIkCHy9fW1La9cubI6dOggwzC0ZcsWSdKpU6e0YcMGlSpVSgMGDLC1dXV11ahRo+Tp6aklS5YoPj4+dw8CAAAAAIDbUAAHAAAAAKAAmjt3rlavXq0HHnggxbrr169LkpycnCRJW7ZskcViUdOmTeXi4mLXtnDhwmrYsKGuX7+uHTt25HzgAAAAAADcAQVwAAAAAAAKoEKFCqly5cq2IrfVxo0b9cMPP8jd3V2tWrWSJB05ckSSFBQUlOq+KlasaNcOAAAAAIC84pzXAQAAgHuTk1PO3kdnsRiyWIwc7QMAANx0+fJlDRs2TMeOHdOJEydUqlQpjRs3TiVLlpQkXbhwQZLk7++f6vbW5RcvXsydgAEAAAAASAMFcAAAkCFFCrvJsFjk7e2eo/1YLMmKjo6jCA4AQC6IiIjQ+vXrbX83mUw6duyYHnzwQUn/Donu5uaW6vbW5dZ2WeHsbH+TXU7fdJdbHOU4AAAAACC/owAOAAAyxNPNVSazWSfXzlRc1Jkc6cPdr5QqtO8ts9lEARwAgFxQoUIF7dy5U4ZhaPv27RozZoxGjx6t2NhY9e3b1zZMuslkSnV7wzDs/p9ZZrNJvr6eWdpHfpXTNw8CAAAAAG6iAA4AADIlLuqM4s6dyuswAABANvD0/Lfo3LZtW5UsWVJdunTRjBkz1K1bN3l4eEiSbty4ker21uXu7lkr8loshq5csX+K3MnJ7BDF4ytX4pScbMnrMAAAAADgnuTt7Z7ukbUogAMAAAAAADshISEqW7aswsPDFRYWpuLFi0v6dy7w291tjvCMSEpyzCJxcrLFYY8NAAAAAPITJqACAAAAAKCAiYuL04cffqjBgwenOWy5q6urJCkpKUlBQUGSpOPHj6fa9ujRo5Kk4ODgHIgWAAAAAID0owAOAAAAAEAB4+bmppUrV2rNmjXatWtXivURERE6efKkXF1dValSJTVu3FiStGnTJiUnJ9u1vXr1qnbs2CEPDw/VrVs3V+IHAAAAACAtFMABAAAAAChgTCaTnnvuOUnSyJEjdf78edu6s2fP6o033lBSUpI6d+4sDw8PlSlTRs2bN9fp06c1fvx421PjCQkJGjFihK5du6bnn39eXl5eeXI8AAAAAABYMQc4AAAAAAAFUL9+/bRnzx7t2rVLrVu3Vt26dZWYmKj9+/fr+vXratSokQYPHmxrP3z4cB08eFBz5szR5s2bValSJR04cED//POPqlWrpv79++fh0QAAAAAAcBNPgAMAAAAAUAC5ublpzpw5evvttxUQEKAdO3Zo//79qlSpkt5//33NmDHDNg+4JJUpU0bLli3Ts88+q6tXr2rTpk1ydXXVK6+8onnz5snT0zMPjwYAAAAAgJt4AhwAAAAAgALKxcVFPXv2VM+ePdPVvkSJEho9enQORwUAAAAAQObxBDgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIznkdAAAAAAAAAP5lNptkNptybP8WiyGLxcix/QMAAABAXsq3BXCLxaKlS5dqxYoVOnr0qBITE1W6dGm1bNlSL7/8sry9ve3aN2jQQDExMWnub//+/SpUqFAORw0AAAAAAJB5ZrNJPj4ecnLKuUH7kpMtiom5ThEcAAAAgEPKlwVwi8WiAQMGaMOGDXJzc1PNmjXl4eGh/fv3a9asWdqwYYMWLlyoYsWKSZIiIyMVExOjEiVKqH79+qnu02xmtHcAAAAAAJC/mc0mOTmZ9fmiXxV5/nK2779M8SJ6tfPDMptNFMABAAAAOKR8WQBfvny5NmzYoPLly2vWrFkKCAiQJMXGxmrw4MHatGmTRo8erc8++0ySdOjQIUlSmzZt9O677+ZV2AAAAAAAANki8vxlhUVG53UYAAAAAHDPyZePRS9fvlySNGTIEFvxW5K8vLw0duxYmUwmbdy4UfHx8ZKkgwcPSpKqVauW+8ECAAAAAAAAAAAAAPKFfFkA9/Hx0f3336/atWunWFe0aFEVKVJEiYmJio6+eSe09Qnw6tWr52aYAAAAAAAAAAAAAIB8JF8OgT59+vQ010VERCgmJkYuLi4qWrSopJtPgLu5uemvv/7SsGHDdPToUZlMJoWEhKhfv36qVatWboUOAAAAAAAAAAAAAMgj+fIJ8DuxzvvdrFkzFSpUSFFRUTp//rzi4+P19ttvy2KxqEGDBvLx8dEvv/yiLl266Pvvv8/boAEAAAAAAAAAAAAAOS5fPgGelvnz52vt2rVyd3fXoEGDJP07/7evr6+++OIL1alTR5JkGIbmzp2rcePGaejQoQoJCVHJkiWz1L+z8z13vwCQIU5OjnONO9KxABnlSNe/Ix0LAAAAAAAAACDn3TMF8Hnz5mns2LEymUwaM2aMAgMDJUmNGzfW1q1bZRiGSpQoYWtvMpnUo0cP7dq1Sxs3btSyZcvUv3//TPdvNpvk6+uZ5eMAkDu8vd3zOgQA2YD3MgAAAAAAAAAgI/J9AdwwDH3yySeaNWuWnJycNGbMGLVr18623mQyqXjx4mlu37x5c23cuFF//fVXluKwWAxduXI9S/sA8jsnJ7PDFJuuXIlTcrIlr8MA8gTvZQAAcpe3tzujlgAAAAAAkE/k6wJ4fHy83nrrLa1fv15ubm6aMGGCWrZsmaF9+Pv7S5Li4uKyHE9SEj/AA/eK5GQL71nAAfBeBgAAAAAAAABkRL4tgMfGxqpXr176888/5efnpy+++EK1atVK0W7JkiX67bff1L59+1SL4xEREZKU5fm/AQAAAAAAAAAAAAD5W74sgCcmJqpPnz76888/Va5cOc2ePVsBAQGptj137pzWrVunuLi4FAVwwzC0evVqSVKjRo1yPG4AAAAAAAAAAAAAQN7Jl5OUTZ06Vbt375a/v7/mz5+fZvFbkp566im5urrql19+0bfffmtbbrFYNHnyZO3fv18VK1ZUmzZtciN0AAAAAAAAAAAAAEAeyXdPgF++fFlz586VJPn5+Wn8+PFpth0yZIgCAgI0cuRIDRs2TMOHD9eCBQtUvnx5hYaGKjw8XMWKFdOUKVPk4uKSW4cAAAAAAAAAAAAAAMgD+a4Avm/fPsXFxUmSQkNDFRoammbb1157TcWKFdMzzzyjChUqaObMmdqzZ49OnDih4sWL68UXX1Tfvn3l5+eXW+EDAAAAAAAAAAAAAPJIviuAN2nSRIcPH87wdiEhIfriiy9yICIAAAAAAAAAAAAAwL0gX84BDgAAAAAAAAAAAABARlEABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACH4JzXAQAAAAAAgLxhsVi0dOlSrVixQkePHlViYqJKly6tli1b6uWXX5a3t7dd+wYNGigmJibN/e3fv1+FChXK4agBAAAAAEgbBXAAAAAAAAogi8WiAQMGaMOGDXJzc1PNmjXl4eGh/fv3a9asWdqwYYMWLlyoYsWKSZIiIyMVExOjEiVKqH79+qnu02xmoDnkT2azSWazKcf2b7EYsliMHNs/AAAAgPSjAA4AAAAAQAG0fPlybdiwQeXLl9esWbMUEBAgSYqNjdXgwYO1adMmjR49Wp999pkk6dChQ5KkNm3a6N13382rsIEMM5tN8vV1l9nslGN9WCzJio6OowgOAAAA5AMUwAEAAAAAKICWL18uSRoyZIit+C1JXl5eGjt2rB566CFt3LhR8fHxcnNz08GDByVJ1apVy5N4gcy6+fS3k06unam4qDPZvn93v1Kq0L63zGYTBXAAAAAgH6AADgAAAABAAeTj46P7779ftWvXTrGuaNGiKlKkiGJiYhQdHa1SpUrZngCvXr16LkcKZI+4qDOKO3cqr8MAAAAAkMMogAMAAAAAUABNnz49zXURERGKiYmRi4uLihYtKkk6ePCg3Nzc9Ndff2nYsGE6evSoTCaTQkJC1K9fP9WqVSu3QgcAAAAAIE3mvA4AAAAAAADkL9Z5v5s1a6ZChQopKipK58+fV3x8vN5++21ZLBY1aNBAPj4++uWXX9SlSxd9//33eRs0AAAAAADiCXAAAAAAAHCL+fPna+3atXJ3d9egQYMkyTb/t6+vr7744gvVqVNHkmQYhubOnatx48Zp6NChCgkJUcmSJbPUv7Oz/b36Tk6Oce9+eo8jt47XUc5renBOAQAAgIKFAjgAAAAAAJAkzZs3T2PHjpXJZNKYMWMUGBgoSWrcuLG2bt0qwzBUokQJW3uTyaQePXpo165d2rhxo5YtW6b+/ftnun+z2SRfX88sH0d+5O3tntch2Mlv8TgCzikAAACQP1AABwAAAACggDMMQ5988olmzZolJycnjRkzRu3atbOtN5lMKl68eJrbN2/eXBs3btRff/2VpTgsFkNXrly3W+bkZHaIwuKVK3FKTrbctV1uHW9643EEnFMAAADg3uft7Z7uUZcogAMAAAAAUIDFx8frrbfe0vr16+Xm5qYJEyaoZcuWGdqHv7+/JCkuLi7L8SQlOWYBMTnZkq+OLb/F4wg4pwAAAED+QAEcAAAAAIACKjY2Vr169dKff/4pPz8/ffHFF6pVq1aKdkuWLNFvv/2m9u3bp1ocj4iIkKQsz/8NAAAAAEBWUQAHAAAAAKAASkxMVJ8+ffTnn3+qXLlymj17tgICAlJte+7cOa1bt05xcXEpCuCGYWj16tWSpEaNGuV43AAAAAAA3En6BkoHAAAAAAAOZerUqdq9e7f8/f01f/78NIvfkvTUU0/J1dVVv/zyi7799lvbcovFosmTJ2v//v2qWLGi2rRpkxuhAwAAAACQJp4ABwAAAACggLl8+bLmzp0rSfLz89P48ePTbDtkyBAFBARo5MiRGjZsmIYPH64FCxaofPnyCg0NVXh4uIoVK6YpU6bIxcUltw4BWeTklLPPRFgshiwWI0f7AAAAAIDUUAAHAAAAAKCA2bdvn+Li4iRJoaGhCg0NTbPta6+9pmLFiumZZ55RhQoVNHPmTO3Zs0cnTpxQ8eLF9eKLL6pv377y8/PLrfCRBUUKu8mwWOTt7Z6j/VgsyYqOjqMIDgAAACDXUQAHAAAAAKCAadKkiQ4fPpzh7UJCQvTFF1/kQETILZ5urjKZzTq5dqbios7kSB/ufqVUoX1vmc0mCuAAAAAAch0FcAAAAAAAgAImLuqM4s6dyuswAAAAACDb5eyETwAAAAAAAAAAAAAA5BIK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCE453UAabFYLFq6dKlWrFiho0ePKjExUaVLl1bLli318ssvy9vb2679xYsXNW3aNG3dulXnzp2Tv7+/2rRpo379+snT0zOPjgIAAAAAAAAAAAAAkFvy5RPgFotFAwYM0IgRIxQaGqpq1arpoYce0pUrVzRr1ix17NhRFy9etLU/f/68OnXqpG+++UZubm5q1qyZLBaLZs2apc6dOys2NjYPjwYAAAAAAAAAAAAAkBvyZQF8+fLl2rBhg8qXL6+1a9dq/vz5+vLLL7VhwwY1b95c4eHhGj16tK396NGjFRkZqT59+mjNmjWaPHmyfvzxRz322GM6fPiwpk6dmodHAwAAAAAAAAAAAADIDfm2AC5JQ4YMUUBAgG25l5eXxo4dK5PJpI0bNyo+Pl6nTp3Shg0bVKpUKQ0YMMDW1tXVVaNGjZKnp6eWLFmi+Pj4XD8OAAAAAAAAAAAAAEDuyZcFcB8fH91///2qXbt2inVFixZVkSJFlJiYqOjoaG3ZskUWi0VNmzaVi4uLXdvChQurYcOGun79unbs2JFL0QMAAAAAAAAAAAAA8kK+LIBPnz5d69atk6+vb4p1ERERiomJkYuLi4oWLaojR45IkoKCglLdV8WKFSXJ1g4AAAAAAAAAAAAA4JjyZQH8Tj777DNJUrNmzVSoUCFduHBBkuTv759qe+vyixcv5kp8AAAAAAAAAAAAAIC84ZzXAWTE/PnztXbtWrm7u2vQoEGSpOvXr0uS3NzcUt3GutzaLiucne+5+wWADHFycpxr3JGOBcgoR7r+HelYAAAAAAAAAAA5754pgM+bN09jx46VyWTSmDFjFBgYKElycnKSJJlMplS3MwzD7v+ZZTab5OvrmaV9AMg93t7ueR0CgGzAexkAAAAAAAAAkBH5vgBuGIY++eQTzZo1S05OThozZozatWtnW+/h4SFJunHjRqrbW5e7u2ftB3SLxdCVK1l/ihzIz5yczA5TbLpyJU7JyZa8DgPIE7yXAQDIXd7e7oxaAgAAAABAPpGvC+Dx8fF66623tH79erm5uWnChAlq2bKlXZvixYtLkm0u8NvdbY7wjEhK4gd44F6RnGzhPQs4AN7LAAAAAAAAAICMyLcF8NjYWPXq1Ut//vmn/Pz89MUXX6hWrVop2gUFBUmSjh8/nup+jh49KkkKDg7OuWABAAAAAAAAAAAAAHkuX47RlpiYqD59+ujPP/9UuXLltGTJklSL35LUuHFjSdKmTZuUnJxst+7q1avasWOHPDw8VLdu3RyPGwAAAAAAAAAAAACQd/JlAXzq1KnavXu3/P39NX/+fAUEBKTZtkyZMmrevLlOnz6t8ePHyzAMSVJCQoJGjBiha9eu6fnnn5eXl1duhQ8AAAAAAAAAAAAAyAP5bgj0y5cva+7cuZIkPz8/jR8/Ps22Q4YMUbFixTR8+HAdPHhQc+bM0ebNm1WpUiUdOHBA//zzj6pVq6b+/fvnVvgAAAAAAAAAAAAAgDyS7wrg+/btU1xcnCQpNDRUoaGhabZ97bXXVKxYMZUpU0bLli3TlClT9Msvv2jTpk0qXbq0XnnlFfXu3Vuenp65FT4AAAAAAAAAAAAAII/kuwJ4kyZNdPjw4QxvV6JECY0ePToHIgIAAAAAAAAAAAAA3Avy5RzgAAAAAAAAAAAAAABkVL57AhwAAAAAAAAFi9lsktlsypF9Oznx/AcAAABQkFAABwAAAAAAQJ4xm03y8fGgUA0AAAAgW1AABwAAAAAAQJ4xm01ycjLr80W/KvL85Wzff63g0nquTe1s3y8AAACA/IkCOAAAAAAAAPJc5PnLCouMzvb9lvb3zvZ9AgAAAMi/GFsKAAAAAAAAAAAAAOAQslQAX7VqlXbv3n3Xdj/99JMmT56cla4AAAAAACiQyL0BAAAAAEi/LBXAhwwZom+//fau7VavXq05c+ZkpSsAAAAAAAokcm8AAAAAANIvQ3OAr1q1SklJSXbLwsPDtWzZsjS3iY2N1W+//SYXF5fMRQgAAAAAQAFC7g0AAAAAQOZlqAB+8OBBzZ8/XyaTSZJkMpm0b98+7du3747bGYahp556KvNRAgAAAABQQJB7AwAAAACQeRkqgA8YMECxsbG2v69cuVJly5ZV3bp109ymUKFCKl++vDp37pz5KAEAAAAAKCDIvQEAAAAAyLwMFcALFy6scePG2f6+cuVK1a5d224ZAAAAAADIPHJvAAAAAAAyL0MF8NuFhoZmVxwAAAAAACAV5N4AAAAAAKRflgrgt4qKilJcXJwMw0izTUBAQHZ1BwAAAABAgUPuDQAAAADAnWW5AP71119r5syZunTp0h3bmUwm/f3331ntDgAAAACAAofcGwAAAACA9MlSAXzFihX68MMPJUmurq7y9fWVk5NTtgQGAAAAAADIvQEAAAAAyIgsFcAXLFggk8mkYcOGqVOnTnJxccmuuAAAAAAAgMi9AQAAAADIiCwVwI8fP67atWura9eu2RUPAAAAAAC4Bbk3AAAAAADpl6UCuLu7u3x9fbMrFgAAAAAAcJuczL0tFouWLl2qFStW6OjRo0pMTFTp0qXVsmVLvfzyy/L29rZrf/HiRU2bNk1bt27VuXPn5O/vrzZt2qhfv37y9PTMkRgBAAAAAMgIc1Y2rl+/vvbv36+4uLjsigcAAAAAANwip3Jvi8WiAQMGaMSIEQoNDVW1atX00EMP6cqVK5o1a5Y6duyoixcv2tqfP39enTp10jfffCM3Nzc1a9ZMFotFs2bNUufOnRUbG5ut8QEAAAAAkBlZKoAPGjRIcXFxevfdd3X58uXsigkAAAAAAPy/nMq9ly9frg0bNqh8+fJau3at5s+fry+//FIbNmxQ8+bNFR4ertGjR9vajx49WpGRkerTp4/WrFmjyZMn68cff9Rjjz2mw4cPa+rUqdkWGwAAAAAAmZWlIdAXL16smjVr6ocffrAlzd7e3jKZTCnamkwmLViwICvdAQAAAABQ4ORU7r18+XJJ0pAhQxQQEGBb7uXlpbFjx+qhhx7Sxo0bFR8fr/Pnz2vDhg0qVaqUBgwYYGvr6uqqUaNGacuWLVqyZIlef/11ubm5ZfGIAQAAAADIvCwVwOfOnWv7c1JSko4dO5Zm29QScwAAAAAAcGc5lXv7+Pjo/vvvV+3atVOsK1q0qIoUKaKYmBhFR0dry5Ytslgsatq0qVxcXOzaFi5cWA0bNtRPP/2kHTt2qGnTpumOAQAAAACA7JalAvi8efOyKw4AAAAAAJCKnMq9p0+fnua6iIgIxcTEyMXFRUWLFtWRI0ckSUFBQam2r1ixon766ScdOXKEAjgAAAAAIE9lqQBev3797IoDAAAAAACkIi9y788++0yS1KxZMxUqVEgXLlyQJPn7+6fa3rr84sWLuRIfAAAAAABpyVIB/FaJiYk6dOiQzpw5o2LFiqlu3br6559/VLp06ezqAgAAAACAAi03cu/58+dr7dq1cnd316BBgyRJ169fl6Q05/e2Lre2ywpnZ7Pd352czGm0vLek9zgc5XilgnfMjnIcAAAAwL0uywXwpKQkff755/rmm2909epVSVKHDh1Ut25dvfPOO7p27ZomTpyocuXKZTlYAAAAAAAKotzKvefNm6exY8fKZDJpzJgxCgwMlCQ5OTlJSnuOccMw7P6fWWazSb6+nlnaR37l7e2e1yHkuoJ2zAXteAEAAID8KksF8KSkJL388svavn27nJ2dVb16dR04cMC2/tq1a/r777/VtWtXrVq1SsWKFctywAAAAAAAFCS5kXsbhqFPPvlEs2bNkpOTk8aMGaN27drZ1nt4eEiSbty4ker21uXu7lkrAFoshq5csX+K3MnJ7BCFxStX4pScbLlrO0c5XqngHXN6jxcAAABAxnl7u6d71KUsFcC/+eYb/frrr2rUqJHGjh2r4sWLq3Llyrb1Cxcu1MiRI7Vq1SrNnj1b77zzTla6AwAAAACgwMnp3Ds+Pl5vvfWW1q9fLzc3N02YMEEtW7a0a1O8eHFJss0Ffru7zRGeEUlJjllATE62OOyxpaWgHXNBO14AAAAgv8rS5EQrV66Uj4+PJk2aZEuGb+Xm5qZRo0apePHi2rJlS1a6AgAAAACgQMrJ3Ds2NlY9evTQ+vXr5efnp3nz5qUofktSUFCQJOn48eOp7ufo0aOSpODg4Az1DwAAAABAdstSATwsLEz16tWTp2fa83O5uLioZs2a+ueff7LSFQAAAAAABVJO5d6JiYnq06eP/vzzT5UrV05LlixRrVq1Um3buHFjSdKmTZuUnJxst+7q1avasWOHPDw8VLdu3XT3DwAAAABATshSAdzZ2VlXrly5a7uYmBg5O2dptHUAAAAAAAqknMq9p06dqt27d8vf31/z589XQEBAmm3LlCmj5s2b6/Tp0xo/frwMw5AkJSQkaMSIEbp27Zqef/55eXl5pbt/AAAAAAByQpaq0lWqVNGBAwcUGRmpMmXKpNomIiJCBw4cUM2aNbPSFQAAAAAABVJO5N6XL1/W3LlzJUl+fn4aP358mm2HDBmiYsWKafjw4Tp48KDmzJmjzZs3q1KlSjpw4ID++ecfVatWTf3798/4wQEAAAAAkM2y9AR4586dFRcXp379+unvv/9Osf7w4cN67bXXlJCQoI4dO2alKwAAAAAACqScyL337dunuLg4SVJoaKjWrFmT5n/Xrl2TdPMp8GXLlunZZ5/V1atXtWnTJrm6uuqVV17RvHnz7jhEOwAAAAAAuSVLT4C3bdtW27dv17Jly/TMM8+ocOHCMplM2rp1q5o1a6Zz587JMAy1a9dOTzzxRHbFDAAAAABAgZETuXeTJk10+PDhDMdSokQJjR49OsPbAQAAAACQW7I8Mffo0aNVu3ZtzZ49WydPnpQkRUdHS5JKly6t7t27q1u3blntBgAAAACAAovcGwAAAACA9MlyAVySOnbsqI4dO+rChQs6c+aMLBaL/P3905ybDAAAAAAAZAy5NwAAAAAAd5elOcCtoqOjtXPnTvn7+6tmzZqqXbu24uLi9M033+jChQvZ0QUAAAAAAAUauTcAAAAAAHeX5QL4t99+qyZNmujDDz+0W75v3z6NGjVKrVu31vfff5/VbgAAAAAAKLDIvQEAAAAASJ8sFcB//fVXjRgxQs7OzmrYsKHdurp166pnz54yDEODBw/W77//nqVAAQAAAAAoiMi9AQAAAABIvywVwGfNmiVnZ2fNmzdPb7/9tt268uXL66233tK8efNkMpk0c+bMLAUKAAAAAEBBRO4NAAAAAED6ZakAfuTIETVo0EA1atRIs02NGjVUt25d7d27NytdAQAAAABQIJF7AwAAAACQflkqgMfFxcnd3f2u7Xx8fJSUlJSVrgAAAAAAKJDIvQEAAAAASL8sFcDLly+vXbt2KTY2Ns02N27c0O7du1W2bNmsdAUAAAAAQIFE7g0AAAAAQPplqQD++OOP6/LlyxowYIAuXryYYn10dLTeeOMNXbp0SR06dMhKVwAAAAAAFEjk3gAAAAAApJ9zVjbu2rWrvv/+e23fvl3NmjVT9erVVapUKUnS2bNndfDgQSUkJKhmzZrq0aNHdsQLAAAAAECBQu4NAAAAAED6ZakA7uLiojlz5mjixIlasWKF9u7dq71799rWFypUSJ07d9Zbb70lV1fXrMYKAAAAAECBQ+4NAAAAAED6ZakALkmenp4aNmyY3n77bf3111+6cOGCkpOT5e/vr2rVqsnDwyM74gQAAAAAoMAi9wYAAAAAIH2yVADv1q2bypcvrw8++ECurq4KCQnJrrgAAAAAAIDIvQEAAAAAyIgsFcD3798vs9mcXbEAAAAAAIDbkHsDAAAAAJB+WcqgPT09ZRhGdsUCAAAAAABuQ+4NAAAAAED6ZakA3rdvX+3cuVNfffWVEhISsismAAAAAADw/8i9AQAAAABIvywNgR4REaFy5cpp/Pjx+vTTT1WuXDl5e3unOjSbyWTSggULstIdAAAAAAAFDrk3AAAAAADpl6UC+Ny5c21/TkpK0vHjx9NsazKZstIVAAAAAAAFErk3AAAAAADpl6UC+Lx587IrDgAAAAAAkApybwAAAAAA0i9LBfD69etnVxwAAAAAACAV5N4AAAAAAKRflgrgt0pMTNShQ4d05swZFStWTHXr1tU///yj0qVLZ1cXAAAAAAAUaOTeAAAAAADcWZYL4ElJSfr888/1zTff6OrVq5KkDh06qG7dunrnnXd07do1TZw4UeXKlctysAAAAAAAFETk3gAAAAAApI85KxsnJSXp5Zdf1vTp0xUXF6fq1avLMAzb+mvXrunvv/9W165ddfHixSwHCwAAAABAQUPuDQAAAABA+mWpAP7NN9/o119/1cMPP6yffvpJS5cutVu/cOFCPfnkk7p48aJmz56dpUABAAAAACiIyL0BAAAAAEi/LBXAV65cKR8fH02aNEnFixdPsd7NzU2jRo1S8eLFtWXLlqx0BQAAAABAgUTuDQAAAABA+mWpAB4WFvZ/7N13eBV12sbx+5wESAKE3sFCSxSld0UUkKaUCAiCxoIUaYLrCrggsiAIIqwKgsiCAi6IQkIVQld6qFGaCkoJGHoLhJBk3j94E40JkIScM+fMfD/XtdfqzO9Mnp+n3vNMUc2aNZU7d+5bjsmRI4cqV66sEydO3M2fUnh4uIKCgrRp06Z019epU0dBQUG3/N/169fv6u8DAAAAAGAGd2ZvAAAAAAC8ne9dPdjXV5cuXbrjuAsXLsjXN+t/KioqSiNGjLjl+ujoaF24cEHFihVT7dq10x3jdN5Vrx8AAAAAAFO4K3sDAAAAAGAFd5WMH3jgAf3444+Kjo5WqVKl0h1z7Ngx/fjjj6pcuXKW/saaNWs0cOBAXbly5ZZj9u/fL0lq3ry53n777Sz9HQAAAAAAPJE7sjcAAAAAAFZxV6dFP/fcc7p27Zp69eqlffv2pVl/8OBB9e3bV/Hx8Wrfvn2mth0TE6PBgwerV69eunHjhgoXLnzLsXv37pUkVapUKXMTAAAAAADAw7kyewMAAAAAYDV3dQZ4y5YttWnTJn377bdq166d8ubNK4fDoR9++EGPP/64YmJiZBiGnnrqKbVp0yZT254wYYLCwsL00EMPadSoURo5cqTOnDmT7tjkM8Afeuihu5kOAAAAAAAex5XZGwAAAAAAq7nrm4ONHDlSVatW1X//+1/99ttvkqTz589LkkqWLKkXX3xRoaGhmd5u2bJlNWbMGLVu3fqO9+/eu3ev/Pz89NNPP2nIkCH65Zdf5HA4VL16dfXq1UtVqlTJ/MQAAAAAAPAQrsreAAAAAABYzV03wCWpffv2at++vU6fPq2TJ08qKSlJRYoUueW9yTKie/fuGRp39uxZnTp1SpL01ltvqWrVqqpTp45+/vlnrVu3Ths2bNAHH3ygli1bZrkWAAAAAADM5orsDQAAAACA1WS6AZ6YmKj//e9/ioiI0JkzZ1SyZEm1atVKbdu2VZEiRVSkSBFX1HlLyff/LlCggCZPnqxq1apJkgzD0JdffqnRo0dr8ODBql69uooXL35Xf8vX965umQ54PB8f67zGrTQXILOs9Pq30lwAAMgMT8veAAAAAAB4i0w1wOPj49W1a1dt375dhmFIkn777Tdt2rRJa9eu1UcffeSSIm+nQYMG+uGHH2QYhooVK5ay3OFw6KWXXlJkZKRWrVqlb7/9Vn369Mny33E6HSpQIHd2lAzADQID/c0uAUA24L0MALAjT8zeAAAAAAB4i0w1wOfOnavIyEgVK1ZM3bp1U5kyZfTzzz9r2rRpioiI0MKFC9WmTRtX1Zouh8OhokWL3nL9E088oVWrVumnn366q7+TlGTo0qWrd7UNwNP5+Dgt02y6dOmaEhOTzC4DMAXvZQAA3Csw0D9br1riidkbAAAAAABvkakG+PLly+Xn56c5c+aoZMmSkqSGDRuqQYMGCgkJ0dKlSz0uhCdfFu7atWt3va2EBHbAA94iMTGJ9yxgAbyXAQB25I3ZGwAAAAAAT5GpQ9QPHTqkmjVrpgTwZMHBwapUqZIOHDiQrcVlxNdff63+/ftr1apV6a4/duyYJN31/b8BAAAAAHAHT8zeAAAAAAB4i0w1wGNjY5UvX75015UuXVoXLlzIjpoyJSYmRt99952++eabNOsMw9DChQslSY8++qi7SwMAAAAAINM8MXsDAAAAAOAtMtUAT0hIkI+PT7rrcuTIoRs3bmRLUZkREhKinDlzat26dZo3b17K8qSkJH388ceKiopS+fLl1bx5c7fXBgAAAABAZnli9gYAAAAAwFtk6h7gnqhMmTJ69913NWTIEA0dOlSzZ8/WfffdpwMHDujIkSMqXLiwPvnkE+XIkcPsUgEAAAAAAAAAAAAALpSpM8A9Vbt27fTVV1+pUaNGiomJ0Zo1a5SQkKAXXnhBixYtUtmyZc0uEQAAAAAAAAAAAADgYl5zBvisWbNuu7569eqaPHmym6oBAAAAAAAAAAAAAHiaTDfAV61apcaNG6dZfv78eUlKd50kORwOrVq1KrN/DgAAAAAA2yF7AwAAAACQNZlugF+9elVXr1695fro6Oh0lzscjsz+KQAAAAAAbInsDQAAAABA1mSqAT5z5kxX1QEAAAAAAET2BgAAAADgbmSqAV67dm1X1QEAAAAAAET2BgAAAADgbjjNLgAAAAAAAAAAAAAAgOxAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJvmYXAAAAAAAAPEN4eLgGDhyoGTNmqH79+mnW16lTRxcuXLjl46OiopQrVy4XVggAAAAAwO3RAAcAAAAAAIqKitKIESNuuT46OloXLlxQsWLFVLt27XTHOJ1caA4AAAAAYC4a4B7O6XTI6XS4bPtJSYaSkgyXbR8AAAAA4PnWrFmjgQMH6sqVK7ccs3//fklS8+bN9fbbb7urNAAAAAAAMoUGuAdzOh0qUMBfTqePy/5GUlKizp+/RhMcAAAAAGwoJiZG//nPfxQWFiY/Pz8VLlxYZ86cSXfs3r17JUmVKlVyZ4kAAAAAAGQKDXAPdvPsbx/9tuRzXTt7Mtu371+ohO5/upucTgcNcAAAAACwoQkTJigsLEwPPfSQRo0apZEjR96yAZ58BvhDDz3kzhIBAAAAAMgUGuBe4NrZk7oWc9TsMgAAAAAAFlO2bFmNGTNGrVu3vuP9u/fu3Ss/Pz/99NNPGjJkiH755Rc5HA5Vr15dvXr1UpUqVdxUNQAAAAAAt3b7dAsAAAAAACyre/fuatu27R2b32fPntWpU6cUFxent956S0lJSapTp47y58+vdevWqXPnzlq2bJmbqgYAAAAA4NY4AxwAAAAAANxW8v2/CxQooMmTJ6tatWqSJMMw9OWXX2r06NEaPHiwqlevruLFi9/V3/L1Td2M9/GxxrH7GZ2HVeYr2W/OVpkHAAAA4O1ogAMAAAAAgNtq0KCBfvjhBxmGoWLFiqUsdzgceumllxQZGalVq1bp22+/VZ8+fbL8d5xOhwoUyJ0dJXucwEB/s0twO7vN2W7zBQAAADwVDXAAAAAAAHBbDodDRYsWveX6J554QqtWrdJPP/10V38nKcnQpUtXUy3z8XFaorF46dI1JSYm3XGcVeYr2W/OGZ0vAAAAgMwLDPTP8FWXaIADAAAAAIC7UqRIEUnStWvX7npbCQnWbCAmJiZZdm63Yrc5222+AAAAgKfi5kQAAAAAAOC2vv76a/Xv31+rVq1Kd/2xY8ck6a7v/w0AAAAAwN3iDHAAAAAAAHBbMTEx+u6773Tt2jU1adIk1TrDMLRw4UJJ0qOPPmpGeQAAAAAApOAMcAAAAAAAcFshISHKmTOn1q1bp3nz5qUsT0pK0scff6yoqCiVL19ezZs3N7FKAAAAAAA4AxwAAAAAANxBmTJl9O6772rIkCEaOnSoZs+erfvuu08HDhzQkSNHVLhwYX3yySfKkSOH2aUCAAAAAGyOM8ABAAAAAMAdtWvXTl999ZUaNWqkmJgYrVmzRgkJCXrhhRe0aNEilS1b1uwSAQAAAADgDHAAAAAAAHDTrFmzbru+evXqmjx5spuqAQAAAAAg8zgDHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJvmYX4O2cToecTodLtu3jw/EJAAAAQHZx5W/3ZElJhpKSDJf+DQAAAAAAANya1zTAw8PDNXDgQM2YMUP169dPs/7MmTP69NNP9cMPPygmJkZFihRR8+bN1atXL+XOndslNTmdDuXPH0CjGgAAAPBwTqdDBQr4y+n0cenfSUpK1Pnz12iCAwAAAAAAmMQrGuBRUVEaMWLELdefOnVKnTp1UnR0tCpWrKjHH39cP/74o6ZNm6YffvhB//vf/5QnT55sr8vpdMjHx6lJczYq+tTFbN9+laCS6ti8arZvFwAAALCbm2d/++i3JZ/r2tmTLvkb/oVK6P6nu8npdNAABwAAAAAAMInHN8DXrFmjgQMH6sqVK7ccM3LkSEVHR6t79+76xz/+IUmKj4/XW2+9pe+++04TJ07UoEGDXFZj9KmL+j36fLZvt2SRwGzfJgAAAGBn186e1LWYo2aXAQAAAAAAABfx2Gt3x8TEaPDgwerVq5du3LihwoULpzvu6NGjWrlypUqUKKF+/fqlLM+ZM6dGjBih3Llz6+uvv1ZcXJy7SgcAAAAAAAAAAAAAmMBjG+ATJkzQggULVKlSJX399dcqW7ZsuuO+//57JSUlqWHDhsqRI0eqdXnz5lXdunV19epVbd261R1lAwAAAAAAAAAAAABM4rEN8LJly2rMmDH65ptvFBQUdMtxP//8sySpYsWK6a4vX758qnEAAAAAPJPT6ZCvr9Ml//Px8djoAwAAAAAAgGzksfcA7969e4bGnT59WpJUpEiRdNcnLz9z5kz2FAYAAAAg2zmdDuXPH0CjGgAAAAAAAHfFYxvgGXX16lVJkp+fX7rrk5cnj7sbvr6pd8ZZZeecVeaBu2el14KV5gJklpVe/1aaC4Db8/G5eZb2pDkbFX3qYrZvv0pQSXVsXjXbt5sePrsAAAAAAADM4/UNcB8fH0mSw+FId71hGKn+P6ucTocKFMh9V9vwVIGB/maXAGQ7XteANfBeBuwn+tRF/R59Ptu3W7JIYLZv81b47AIAAAAAADCP1zfAAwICJEnXr19Pd33ycn//u9sJlZRk6NKl1GeR+/g4LbFz69Kla0pMTDK7DHgAq7ymJV7XsDfeywC8EZ9d8GaBgf6c+Q8AAAAAgIfw+gZ40aJFJf15L/C/u9M9wjMjIcGaO7ESE5MsOzfYF69rwBp4LwPwRnx2AQAAAAAAmMfrD1GvWLGiJOnQoUPprv/ll18kSUFBQW6rCQAAAAAAAAAAAADgfl7fAG/QoIEkae3atUpMTEy17vLly9q6dasCAgJUo0YNM8oDAAAAAAAAAAAAALiJ1zfAS5UqpSeeeELHjx/XBx98IMMwJEnx8fF65513FBsbq06dOilPnjwmVwoAAAAAAAAAAAAAcCWvvwe4JA0dOlR79+7VjBkztH79elWoUEE//vijTpw4oUqVKqlPnz5mlwgAAAAAAAAAAAAAcDGvPwNcunkW+LfffqsOHTro8uXLWrt2rXLmzKmePXtq5syZyp07t9klAgAAAAAAAAAAAABczGvOAJ81a9Zt1xcrVkwjR450UzUAAAAAAAAAAAAAAE9jiTPAAQAAAAAAAAAAAACgAQ4AAAAAACRJ4eHhCgoK0qZNm9Jdf+bMGf373//Wk08+qcqVK6tx48b64IMPFBsb6+ZKAQAAAABIHw1wAAAAAACgqKgojRgx4pbrT506pWeffVZfffWV/Pz89PjjjyspKUnTpk3Tc889pytXrrixWgAAAAAA0kcDHAAAAAAAm1uzZo26du162yb2yJEjFR0dre7du2vx4sX6+OOPtWLFCrVo0UIHDx7UxIkT3VgxAAAAAADpowEOAAAAAIBNxcTEaPDgwerVq5du3LihwoULpzvu6NGjWrlypUqUKKF+/fqlLM+ZM6dGjBih3Llz6+uvv1ZcXJy7SgcAAAAAIF00wAEAAAAAsKkJEyZowYIFqlSpkr7++muVLVs23XHff/+9kpKS1LBhQ+XIkSPVurx586pu3bq6evWqtm7d6o6yAQAAAAC4JRrgAAAAAADYVNmyZTVmzBh98803CgoKuuW4n3/+WZJUsWLFdNeXL18+1TgAAAAAAMzia3YBAAAAAADAHN27d8/QuNOnT0uSihQpku765OVnzpzJnsIAAAAAAMgiGuAAAAAAAOC2rl69Kkny8/NLd33y8uRxd8PXN/XF6nx8rHHxuozOwyrzlew3Z6vMAwAAAPB2NMABAAAAAMBt+fj4SJIcDke66w3DSPX/WeV0OlSgQO672oanCgz0N7sEt7PbnO02XwAAAMBT0QAHAAAAAAC3FRAQIEm6fv16uuuTl/v7310DMCnJ0KVLqc8i9/FxWqKxeOnSNSUmJt1xnFXmK9lvzhmdLwAAAIDMCwz0z/BVl2iAAwAAAACA2ypatKikP+8F/nd3ukd4ZiQkWLOBmJiYZNm53Yrd5my3+QIAAACeipsTAQAAAACA26pYsaIk6dChQ+mu/+WXXyRJQUFBbqsJAAAAAID00AAHAAAAAAC31aBBA0nS2rVrlZiYmGrd5cuXtXXrVgUEBKhGjRpmlAcAAAAAQAoa4AAAAAAA4LZKlSqlJ554QsePH9cHH3wgwzAkSfHx8XrnnXcUGxurTp06KU+ePCZXCgAAAACwO+4BDgAAAAAA7mjo0KHau3evZsyYofXr16tChQr68ccfdeLECVWqVEl9+vQxu0QAf+F0OuR0Oly2/aQkQ0lJhsu2DwAAAGQVDXAAAAAAAHBHpUqV0rfffqtPPvlE69at09q1a1WyZEn17NlT3bp1U+7cuc0uEcD/czodKlDAX06nj8v+RlJSos6fv0YTHAAAAB6HBjgAAAAAAJAkzZo167brixUrppEjR7qpGgBZdfPsbx/9tuRzXTt7Mtu371+ohO5/upucTgcNcAAAAHgcGuAAAAAAAACABV07e1LXYo6aXQYAAADgVk6zCwAAAAAAAAAAAAAAIDtwBjgy5eYltBwu235SksGlswAAAAAAAAAAAABkCQ1wZJjT6VD+/AHy8XHdhQMSE5N04cJVmuAAAAAAAAAAAAAAMo0GODLM6XTIx8epSXM2KvrUxWzffqmi+dT7uUfkdDpogAMAAAAAAAAAAADINBrgyLToUxf1e/R5s8sAAAAAAAAAAAAAgFRcdy1rAAAAAAAAAAAAAADciAY4AAAAAAAAAAAAAMASaIADAAAAAAAAAAAAACyBBjgAAAAAAAAAAAAAwBJogAMAAAAAAAAAAAAALMHX7AIAAAAAAAAAO3E6HXI6HS7bvo8P57wAAADAvmiAAwAAAAAAAG7idDqUP38ATWoAAADARWiAAwAAAAAAAG7idDrk4+PUpDkbFX3qokv+RpWgkurYvKpLtg0AAAB4OhrgAAAAAAAAgJtFn7qo36PPu2TbJYsEumS7AAAAgDfgWksAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsARfswsA/s7Hx7XHZSQlGUpKMlz6NwAAAAAAAAAAAAC4Hw1weIx8ef1kJCUpMNDfpX8nKSlR589fowkOAAAAAAAAAAAAWAwNcHiM3H455XA69duSz3Xt7EmX/A3/QiV0/9Pd5HQ6aIADAAAAAAAAAAAAFkMDHB7n2tmTuhZz1OwyAAAAAAAAAAAAAHgZ195sGQAAAAAAAAAAAAAAN6EBDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEGuAAAAAAAAAAAAAAAEugAQ4AAAAAAAAAAAAAsAQa4AAAAAAAAAAAAAAAS6ABDgAAAAAAAAAAAACwBBrgAAAAAAAAAAAAAABLoAEOAAAAAAAAAAAAALAEX7MLyE5r1qzRa6+9dsv1LVu21IQJE9xYEQAAAAAAAAAAAADAXSzVAN+3b58kqVatWipevHia9dWqVXN3SQAAAAAAAAAAAAAAN7FkA3zIkCEKDg42uRoAAAAAAAAAAAAAgDtZ6h7g+/btU65cuVS+fHmzSwEAAAAAAAAAAAAAuJllGuDnz5/XyZMnFRQUJF9fS53YDgAAAAAAAAAAAADIAMt0ipMvf16iRAl98MEHWr16tU6cOKHChQurWbNm6tmzp/Lly2dylQAAAAAAAAAAAAAAV7HMGeB79+6VJK1YsUJz5szRfffdp+rVq+vixYuaPn26nn32WZ0+fdrkKgEAAAAAAAAAAAAArmKZM8D3798vSXr88cc1btw45c2bV5J07tw5DRgwQFu2bNHQoUM1ZcqULP8NX9/Uxwv4+Fjj+IGMzsMq85WsNZfsZKX/LlaaC5BZVnr9W2kuAG7PSu93K80FAAAAAADA21imAT5mzBi9/vrrKl68uPz8/FKWFyxYUGPHjlXz5s21du1aHT9+XKVLl8709p1OhwoUyJ2dJXuMwEB/s0twOzvO2W54jgFr4L0MwBvx2QUAAAAAAGAeyzTAc+bMqfvuuy/ddcWKFdODDz6o7du3a+/evVlqgCclGbp06WqqZT4+Tkvs3Lp06ZoSE5PuOM4q85UyPme74TkGrIH3MgBvxGcXvFlgoL+tzvxfs2aNXnvttVuub9mypSZMmODGigAAAAAA+JNlGuB3UrhwYUnStWvXsryNhARr7sRKTEyy7NxuxY5zthueY8AaeC8D8EZ8dsHq9u3bJ0mqVauWihcvnmZ9tWrV3F0SAAAAAAApLNEAj4+P1/Dhw3X+/HmNGzdOAQEBacYcO3ZMktIN5wAAAAAAIGOSG+BDhgxRcHCwydUAAAAAAJCaJa7RljNnTm3atEmrV6/W999/n2b9gQMHdODAAeXNm1dVq1Z1f4EAAAAAAFjEvn37lCtXLpUvX97sUgAAAAAASMMSDXBJ6tixoyTp/fff19GjR1OWnzlzRm+//bYSExPVtWtX+fn5mVUiAAAAAABe7fz58zp58qSCgoLk62uJi8oBAAAAACzGMmn1lVdeUWRkpDZs2KCnn35aNWvWVM6cObV161ZdvXpVzZo1U/fu3c0uEwAAAAAAr5V8+fMSJUrogw8+0OrVq3XixAkVLlxYzZo1U8+ePZUvXz6TqwQAAAAA2JllGuA5c+bU1KlT9dVXXyksLEw7duyQ0+lUhQoV1KFDB7Vv314Oh8PsMgEAAAAA8Fp79+6VJK1YsUK5c+dW7dq1Vbx4cf3444+aPn261qxZo9mzZ6tIkSImVwoAAAAAsCvLNMAlycfHR6GhoQoNDTW7FAAAAAAALGf//v2SpMcff1zjxo1T3rx5JUnnzp3TgAEDtGXLFg0dOlRTpkzJ8t/w9U19tzYfH2vcvS2j87DKfCX7zdlu85WsNRcAAABYh6Ua4AAAAAAAwHXGjBmj119/XcWLF5efn1/K8oIFC2rs2LFq3ry51q5dq+PHj6t06dKZ3r7T6VCBArmzs2SPERjob3YJbme3OdttvpI95wwAAADPRwMcAAAAAABkSM6cOXXfffelu65YsWJ68MEHtX37du3duzdLDfCkJEOXLl1NtczHx2mJJtulS9eUmJh0x3FWma9kvznbbb5SxucMAAAA3K3AQP8MX4GIBjgAAAAAAMgWhQsXliRdu3Yty9tISLBmMy0xMcmyc7sVu83ZbvOV7DlnAAAAeD5u1AMAAAAAAO4oPj5e//rXv9SrVy9dvXo13THHjh2TJBUvXtydpQEAAAAAkIIGOAAAAAAAuKOcOXNq06ZNWr16tb7//vs06w8cOKADBw4ob968qlq1qvsLBAAAAABANMABAAAAAEAGdezYUZL0/vvv6+jRoynLz5w5o7fffluJiYnq2rWr/Pz8zCoRAAAAAGBz3AMcAAAAAABkyCuvvKLIyEht2LBBTz/9tGrWrKmcOXNq69atunr1qpo1a6bu3bubXSYAAAAAwMZogAMAAAAAgAzJmTOnpk6dqq+++kphYWHasWOHnE6nKlSooA4dOqh9+/ZyOBxmlwkAAAAAsDEa4AAAAAAAIMN8fHwUGhqq0NBQs0sBAAAAACANGuCAyZxOh5xO150hkZRkKCnJcNn2AQAAAAAAAAAAAE9BAxwwkdPpUIEC/nI6fVz2N5KSEnX+/DWa4AAAAAAAAAAAALA8GuCAiW6e/e2j35Z8rmtnT2b79v0LldD9T3eT0+mgAQ4AAAAAAAAAAADLowEOeIBrZ0/qWsxRs8sAAAAAAAAAAAAAvJrT7AIAAAAAAAAAAAAAAMgONMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACWQAMcAAAAAAAAAAAAAGAJNMABAAAAAAAAAAAAAJZAAxwAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACW4Gt2AYCnczodcjodLtm2jw/HoAAAAAAAAAAAAADZhQY4cBtOp0P58wfQqAYAAAAAAAAAAAC8AA1w4DacTod8fJyaNGejok9dzPbtVwkqqY7Nq2b7dgEAAAAAAAAAAAA7ogEOZED0qYv6Pfp8tm+3ZJHAbN8mAAAAAAAAAAAAYFdc1xkAAAAAAAAAAAAAYAk0wAEAAAAAAAAAAAAAlkADHAAAAAAAAAAAAABgCTTAAQAAAAAAAAAAAACW4Gt2AQAAAPBMTqdDTqfDZdtPSjKUlGS4bPsAAAAAAAAA7IcGOAAAANJwOh0qUMBfTqePy/5GUlKizp+/RhMcAAAAAAAAQLahAQ4AAOCFXH12to+PU06nj35b8rmunT2Z7dv3L1RC9z/dTU6ngwY4AAAAAAAAgGxDAxwAAMDLOJ0O5c8fIB8fp8v/1rWzJ3Ut5qjL/w4AAAAAAAAAZAca4AAAAF7G6XTIx8epSXM2KvrURZf8jSpBJdWxeVWXbBsAAAAAAAAAXIUGOAAAgJeKPnVRv0efd8m2SxYJdMl2AQAAAAAZ4+pbX0lSUpLBbakAAJZDAxwAAAAAAAAAgExyZYPa4XAoMDCXnE4fl2w/WVJSos6fv0YTHABgKTTAAQAAAAAAAADIBKfTofz5A+Tj43Tp3/ltyee6dvakS7btX6iE7n+6m5xOBw1wAICl0AAHAAAAAFiGqy8VymVCAQCAdPM3h4+PU5PmbFT0qYvZvv0qQSXVsXlVXTt7Utdijmb79gEAsDIa4AAAAAAAS3A6HSpQwN+llwrlMqEAAOCvok9d1O/R57N9uyWLBGb7NgEAsAsa4AAAAAAAt3D12dk+Pk45nT4uu1QolwkFAAAAAMDz0QAHAAAAALicu+6TKYlLhQIAAAAAYGM0wAEAAAAALufq+2RKf94rEwAAAAAA2BcNcAAAAACA27jqPpkS98oEAAAAAACS6689BwAAAAAAAAAAAACAG9AABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFiCr9kFAIDVOZ0OOZ0Ol/6NpCRDSUmGS/8GAMD9XP0dwvcHAAAAAAAArIYGOADbc2VzweFwKDAwl5xOH5dsP1lSUqLOn79GEwMALMTpdCh//gD5+Ljuok2JiUm6cOEq3x8AAAAAAACwDBrgAGzNHc0FSfptyee6dvakS7btX6iE7n+6m5xOBw0MALAQp9MhHx+nJs3ZqOhTF7N9+6WK5lPv5x7h+wMAAAAAAACWQgMcgK25urlQJaikOjavqmtnT+pazNFs3z4AwPqiT13U79HnXbZ9Vx4ExiXWAQAAAAAA4G40wAFArmsulCwSmO3bBAAgO+TL6ycjKUmBgf4u+xvcogMAACRz5e3HJA68AwAAwJ9ogAMAkA3YmQPA2+T2yymH0+my23Rwiw4AAJDMHbcfS0xM0uXLcTIM1/3uIJcBAAB4BxrgAADcJafToQIF/OV0+rjsb3AWJQBX4TYdAADA1Vx9+7Gg+4ootFUN5c8fkO3b/ityGQAAgHegAQ4AwF26efa3D2dRAgAAAMBtuPL2Y668so1ELgMAAPAmNMABAMgmnEUJAAAAAOYhkwEAAECiAQ4AcAFPux+2q+tx5X3sAAAAAAAAAABAxlmuAb5t2zZNmTJF+/fvV1xcnIKCgvTiiy+qRYsWZpcGALbgaffDdjodyp8/gCY1AABANiJ7AwAAAIB9edpJcH9nqQb44sWL9c9//lO+vr6qU6eOfHx8tHnzZvXv31+HDh1Snz59zC4RADyCK7+cfHycHnU/bKfTIR8fpybN2ajoUxezvR5JqhJUUh2bV3XJtgEAADwN2RsAAADwXq5uXLrD3TZHrc7Vz7HD4VBgYC6POQkuPZZpgJ89e1ZDhgyRv7+/Zs6cqYcffliSdOjQIYWGhmrixIlq0qSJgoODTa4UAMzlrjOiPe3ea9GnLur36PMu2XbJIoEu2S4AAICnIXsDAAA7oVEIq3HHvmEjKUkOp2v3Pd9tc9TK3HlFVE85CS49lmmAf/XVV4qLi1O3bt1SArgklStXTm+88Ybefvttffnllxo9erSJVQKA+Vx9RjRnQwMAAFgX2RsAANiFu5pIrm4W0ijEX7lr37CrGqNS9jRHrcydV0T1tJPg/soyDfB169ZJkp588sk06xo3biyHw6H169e7uSoA8FyuOiOas6EBAACsi+wNAADswp1NJE8+i9IOvP1M/6yc5e/qfcOe3Bi1C7tfEdUyDfBff/1VklS+fPk06/Lnz6/ChQvr9OnTOnv2rAoVKuTu8gAAAAAA8HpkbwAA4EqubkR6UqNQolnoCaxwSXDO8gfSskQD/OLFi7p+/bpy586t3LlzpzumaNGiOn36tE6fPk0IBwDAgjwxJAMAYCVkbwDwLJ6Wgbz9DEqJ3JcRrnyeHQ6HAgNzyen0ccn2JRqFSMvbLwnOWf5A+hyGYXj9O+LkyZN6/PHHVbhwYW3cuDHdMc8995x27typOXPmqHr16pn+G4aR9sePwyE5nU5dvBKnxMSkLNV+Ozlz+ChPQC7diL0kIykx27fvcPooR+5AJSUlKSOvAm+fr2S/OXvafCX7zZnXtfWfY8l+c/bE17V0M7A4HK7b2WIYhlz5sykzm7bj6zrlcV68Py2zLx9vfy/z2ZWJx9nkdW3lzy5Xfwd5CrJ31vB5mIHxXj5nT5uvZL85e+LrOuVxLvx6cDhcn4Ey2wB39fehYRgeM2e7vq7d8TwnxMXKSMr+/6YOp1O+frk95rNL8rzP65THefFPW7L3HcZ7+XwlXtd3YuXPrsx8B1niDHDn/1864naTTt5hndUd1w6HQz4+6W8/Xx6/LG0zo3Lkdu219J2ZvPSGt89Xst+cPW2+kv3mzOs6+3nafCX7zdkTX9eu5OqdS1lhx9e1HXn7e5nPLvwdn13ei+x9d/g8vDNvn7OnzVey35w98XXtzW73mWwWV2eyrMyZ13X28/VL/0oz2cXTPrskz/u8tiNvfy972uvajp9dnsbun12WeHUkX3otLi7ulmPi4+MlSQEBAW6pCQAAAAAAKyF7AwAAAAC8gWUa4AEBAbp8+fItg/ipU6ckSUWKFHFnaQAAAAAAWALZGwAAAADgDSzRAHc4HKpYsaIk6dChQ2nWX7hwQWfOnFHBggVVuHBhd5cHAAAAAIDXI3sDAAAAALyBJRrgktSgQQNJ0qpVq9KsW7VqlQzDUMOGDd1dFgAAAAAAlkH2BgAAAAB4Oss0wNu1ayd/f3998cUX2rlzZ8ryw4cP6z//+Y8cDodefvllEysEAAAAAMC7kb0BAAAAAJ7OYRiGYXYR2WXevHkaOnSofHx8VKdOHeXMmVObN2/W9evX9Y9//EPdu3c3u0QAAAAAALwa2RsAAAAA4Mks1QCXpO+//16ff/65fvrpJ/n4+Kh8+fJ65ZVX1LRpU7NLAwAAAADAEsjeAAAAAABPZbkGOAAAAAAAAAAAAADAnixzD3AAAAAAAAAAAAAAgL3RAAcAAAAAAAAAAAAAWAINcAAAAAAAAAAAAACAJdAABwAAAAAAAAAAAABYAg1wAAAAAAAAAAAAAIAl0AAHAAAAAAAAAAAAAFgCDXAA2eby5cuZfszWrVtdUAmArJo4caJ+/vlns8sAAAAAcAtkb8D7kb0BAHAtGuBwu/j4eP300086cOCAEhISbjnu3LlzioyMdGNl7rd161bNmDFD//vf/3Ts2DGzy7lroaGhunDhQobGXr9+XSNHjtTLL7/s2qIAZMrEiRN18OBBs8sAsl3jxo21evVqs8swRVJSko4ePZpqmWEYWrZsmUaOHKkPP/xQe/bsMam67HPixAnFxcVlePyxY8cUHh7uuoJMcO7cOW3evFnLli3Td999p61bt2b4txkA6yF7/4nsTfYGPA3ZG1ZF9iZ7/x3ZG2bxNbsAZFxcXJzOnTunkiVLml1Kls2cOVMfffSRrl69KknKmzevXn31Vb366qtyOlMfj7FhwwYNHDhQ+/fvN6PUbHPw4EF99tlnOnjwoEqWLKkePXqoevXq6tevn1avXi3DMCRJvr6+6tu3r3r06GFyxVm3f/9+Pf/88/riiy9UuHDhW47bs2ePBg4cqN9///2246zq3LlzOnTokGrVqmV2KW5x+fJljRkzRiNHjjS7FLex23NsBY0bN9bbb7+txo0bm12K2zzwwAMaO3asWrVqZXYpbhEdHZ3y+8NO1q1bp+HDh+v06dP66aefJN0M5b169dL69etTfodMmzZNoaGhGjx4sJnl3pXGjRuneU1fvXpVI0aM0Kuvvqpy5cqlGr9r1y4NHjxYbdu2dXOl2W/FihX67LPP0v3d7HA4VL16db366qt6/PHH3V9cNgoODpbD4cjUYxwOh/bt2+eiimBVZG/vRPZOi+xtr1xG9oY3IHtbH9mb7E32Jnt7Cs4AN1F6R0PFx8crPDxcZ86cSTM+IiLCq38chIeHa9SoUQoKCtLgwYPVo0cP+fn5acKECXrllVd05coVs0vMdj/99JOeffZZrVu3Tv7+/tqzZ49eeukljRo1SqtXr1bXrl0VFham2bNnq2HDhvrPf/6j7777zuyys2zo0KE6fPiwunTpopMnT6ZZf+PGDX344Yfq3Lmzfv/9d7Vp00ZLly41odLs9cADD2jx4sWplsXFxWnixIk6fvx4mvEbNmxQaGiou8pziePHj2vEiBF65pln9Mwzz2jIkCE6cuRImnERERFq2bKl5s+fb0KV2ceOz7Hd2DGgJYcvWNeBAwfUu3dvGYahrl27KikpSZI0Z84crVu3TkWKFNG8efO0a9cuvfXWW5o5c6ZX/w5J7zV9/fp1hYeH69SpUyZU5B4jR45U//79FR0drbZt2+rNN9/Uv//9b73zzjvq16+fGjdurL179+q1117T+++/b3a5d6VWrVqqWbNmpv5Xo0YNs8uGByB7k73J3mRvb0X2tv5zbDdkb1gR2ZvsTfb2zOzNGeAmSu8LPzY2VoMHD9b06dMtd3TujBkzVKtWLc2aNStlWa9evfTuu+9qwYIFeumll/TFF18oT548JlaZvSZMmKDSpUtr1qxZKliwoK5evaoePXroq6++UseOHfXmm2+mjK1Zs6aef/55/fe//1WLFi1MrDrrunTponz58mnQoEHq0qWLvvjiC91zzz2Sbh6hPnDgQP38888qWbKkhg8frgYNGphccfZI70v/2rVrmjRpkmrUqKHSpUubUJXr7N+/Xy+88IKuXLkiPz8/+fn5ad++fVq2bJnmzp2rihUr6vLlyxoyZIgiIiLk4+Oj7t27m132XbHbc3z48OFMXwaTI+4Bz/P555+raNGiWrhwoQIDA1OWf/XVV3I4HHrjjTdUuXJlSdLLL7+sbdu2ac6cOV77O+RWrLzDadGiRZo9e7batm2rd955RwEBAemOi42N1Xvvvacvv/xS1apVU7Nmzdxcafb4a44AMoPsTfYme5O9vRHZ+yYrP8dkb8AayN43kb3J3p6GBrgHsuoHxW+//aZBgwalWpYzZ06NGjVK+fPn1/Tp0/Xqq69q+vTpt/wA8Ta7du3SG2+8oYIFC0qSAgIC9Prrr+v555/Xo48+mmZ8ixYtNHbsWHeXma2efvpp5c2bV/3791eXLl30+eefa/Xq1ZoyZYoSEhLUuXNn/eMf/1Du3LnNLtXlrPpe/vjjjxUXF6cPP/xQTz31lCQpKipKb7zxhkaOHKlx48YpNDRUv//+ux5++GGNHDlSQUFBJlftGlZ9jqdMmaIpU6Zk6jHefslMu8rs5Yy83bx587Rp06YMj3c4HBo1apQLK3KtyMhIPfvss6kC+LFjx3T48GH5+vrqySefTDX+kUce0ccff+zuMnEX5syZo6pVq97x6PLcuXNr1KhROnTokL755huvDeE3btxQjhw5MvWYPXv2qEqVKi6qCN7Oqr/lyN5kb7K3NZC9/2TV55jsbR9k79sje8PTkb3vzBOzNw1wuI2/v78uXLiQ7rq33npLV69e1dy5c9WzZ099/vnn7i3ORfLkyaNLly6lWhYUFKSGDRvK1zft2+/8+fPKlSuXu8pzmYYNG2ratGl67bXX9Mwzz8gwDN17770aOXKkatasaXZ5uEtRUVHq1KlTSgCXpMqVK+utt97SgAEDNGDAAEVHR+vNN9/UK6+8kuYeg/B8TZo0seyOk9uxW0CTpMmTJ2vevHkZHu9wOPTll1+6sCLXioyMzNQZFt7+HJ8/f17FixdPtWzLli2SpCpVqqTZIe7n56fr16+7rT7cvV9//TVT97Bt3Lixvv76axdW5FrPPPOMxo0bl6HvqPj4eE2YMEEzZ87U3r173VAd4DnI3jeRvcne3o7sbX1k74zx9lwmkb3vxNufY7K39ZG9b82TszcNcLhNnTp1NHPmTD355JOqUKFCmvXDhg3TlStXtGTJEr3yyitq2LChCVVmr0ceeURffPGFqlWrpnr16kmS8ubNq88++yzN2D179mjWrFkp47xdjRo1NHPmTL366qs6d+6c/v3vfxPALeLixYsKDg5Os/zhhx9WYmKiDh48qFmzZqlq1aruLw7ZomnTpmrVqpXZZbid3QKaJB06dEiHDh3K8HhvP2r97bff9up7umZWvnz5dO7cuVTLNmzYIIfDoUceeSTN+EOHDqWcOQfvcPXqVRUqVCjD44sUKeLV92Q7c+aM2rdvr759+6pbt263/EzasWOH3n77bR05ckT33nuvm6sEzEf2JnuTva2B7G19ZO+MIXt7H7I32dtqyN7emb1pgMNt3njjDXXu3FkhISF68MEH9cEHH6R6UzgcDo0dO1Y5c+bUggULtHPnThOrzR5vvvmmoqKi9Morr6hmzZq3vHfCCy+8oB07dqhgwYKp7k3m7YKDgzVnzhy9/PLLeu211zRp0iTVrVvX7LJwlxISEtI9W8LPz0+S1L17dwI4vJLdApokffDBB7ba4VKgQAGVKlXK7DLcpnr16lq2bJm6du0qHx8fnTlzRuvWrZMkNW/ePNXYy5cva/HixapTp44JlSKrEhMT0z2z8VZ8fHyUkJDgwopca8mSJRo8eLDGjx+vdevWacyYMSpTpkzK+uTLxCbfa69r167q16+fiRUD5iB7k73J3tZA9oZVkb2tj+xN9rYasrd3Zm8a4HCb++67T0uXLtWkSZO0ffv2lB/sf+V0OjVq1ChVq1ZNH330kc6ePWtCpdmnUKFCmj9/vubOnav4+PhbjvPz81P79u31+uuvZ+pIIk8zePDgdJffe++9On78uHr06KEWLVqkOmLICkdxIrWHHnrI7BKALLFbQIP1devWTZ06dVLHjh1Vu3ZtrV69WtevX9dTTz2lsmXLSrq5Y3X37t0aM2aMzp07py5duphc9d1ZuXKljhw5kvLvcXFxcjgcWrhwoXbs2JFq7M8//+zu8nCXChUqpKlTp+qrr77SBx98oDZt2mjQoEF69tlntW3bNv3rX//SsWPHFBQUpPfee4/fJLAtsjfZm+xtD3zPwVuRvWE1ZG+yt9VYJXvTADfZ4cOHU13y5fLly5KkgwcPpjmiJDOXSfFUBQoU0JAhQ+44rkOHDgoJCUn1Ieqt/Pz89NJLL912jFXuuxYWFnbb9devX1d4eHiqZVYJ4du3b1diYmLKv8fGxkqSNm7cqJiYmFRjrXCGxe14+2WabsUuz3GtWrVUuHBhs8sAkA0efvhhTZ48We+9956mT58uHx8ftWrVSsOHD08ZM3bsWM2cOVNOp1ODBw9W9erVTaz47kVERCgiIiLN8r///khmhe+sv+94uB2r7Hjo0qWL6tatq6FDh2rYsGGaNWuWDh06JF9fX/Xr10/du3fP1NH5sAeyd/rI3t6J7G39XJYRVvgdkx67PMdkb8A6yN5/InvfRPb2DA7DMAyzi7Cr4ODgdN/4hmHcdvn+/fvdUZ7LGYahY8eO6cKFC5KkggULqnTp0uYW5WJWn3N0dHSWHuftR32m917+60dreuu8+b0cHBys1157TfXr10+1/PLly+rVq5cGDRqkSpUqpXlcrVq13FVitrPbc2xHwcHBtrskmd3mHBYWppo1a6a6ZJOdnD9/Xv7+/mnOAly/fr327t2rp556yiPv15QZ27Zty9Ljateunc2VuE969wW9Eyt9P0VGRqpXr166fPmyHA6HevXqpb59+5pdFjwQ2dvaOTQ9Vp8z2ftPVs5lZO+brPwc25HdcqhkvzmTvcnet0L29l7emr1pgJto4sSJWXpcnz59srkS94qKitK0adO0ceNGXb16NdW6PHnyqFGjRnr55Zez9KHiqew4Zzu509H3txISEpLNlbjHrXYgSrfeiSjJq7/w7fQc//XMqMzw5p0skj0D2rZt21SuXDmvvvwnYHd23PEgSVeuXNHYsWP17bffKleuXOrWrZtWrFihn3/+WfXq1dPIkSNVsmRJs8uEByF72yeH2nHOdmKnXCaRvTPDG59jsjfZG4D3IHt7Z/amAQ63mj59usaNGyen06lq1aqpQoUKCgwMVEJCgi5cuKB9+/Zp//79cjqdGjhwoEJDQ80u+a7Zcc4ZNWXKFEVERGjBggVml+J28fHxypkzp9llZIlddyBmlrc+x7fbyXI73ryTBfZwq3tl3o5VLhWK9M2dO1cbNmzI8vcazLFu3ToNGzZMMTExqlu3rkaMGKEyZcroxo0b+vjjjzV9+nT5+fnpn//8pzp16mR2uYBp7JhD7TjnjCJ7e18uk8jeGeWtzzHZG1ZF9sbfkb29kxWyNw1wuM369evVo0cP1atXT6NGjVKJEiXSHXf06FENHz5cmzZt0vTp01WvXj03V5p97DjnzBg2bJjmzZvn9T/eJ06cmKmAGRUVpcGDB2vp0qUurArZyU7P8SeffJKlEO7tO1nsGNCystPX4XDoyy+/dEE1rmfHy1Xdaadarly5lDdvXlWsWFFNmzZVhw4d5HQ63VihuazwO+TEiRMqWLBgmsvr3cqxY8e0Y8cOtW3b1rWFucibb76ppUuXKiAgQG+99ZY6duyYZsyuXbs0cOBAHTt2TLVr19Z7771nqcseAxlhxxxqxzlnhhW+8yR75TK7stNzTPbOOLK3dyF7p0X29v7fIWRv78zeNMBNZLcv/JdffllnzpzRggULlCNHjtuOTUhIUNu2bXXvvfdq0qRJbqow+9lxzplhhS8/6eaPnK5du+qf//znbcclJCRo4sSJmjZtmhITE71+3hkVFxenc+fOefTlUO6E59j67BrQMsub52zHe2W+8MILt12fmJioS5cu6ejRo7px44YeeeQRTZkyRb6+vm6q0FxW+B3ywAMPaOzYsanuJ3j16lWNGDFCr776qsqVK5dq/KJFizRw4ECvnXNwcLAaNGigESNGqHjx4rccFxcXp/fff19z585VQECAdu7c6cYq4YnI3rdmlRxqxzlnhhW+8yRy2Z2QveEN7JZDJfvNmeydFtnb+3+HkL3T5+nZ2x7vMA+Vmfva/PUIIm8N4fv27dNLL710xzAqSb6+vmrRooUWLVrkhspcx45ztqOaNWtq+vTpunbtmt555510xxw8eFADBw7UwYMHlS9fPv3rX/9yc5XZp3Hjxnr77bfVuHHjlGXx8fFatmyZHn30URUuXDjV+IiICK/+wpfs9xzb0erVq80uwe0OHDhgdglu5c1hOqtmzZqVoXFxcXGaM2eOxo4dqzlz5twxvMNzpHcs8/Xr1xUeHq7WrVunCeHebvTo0Rm6x6efn5/effddPfnkk3wfQxLZ+3askkPtOGc7slsuI3tb/zm2I7K39ZG9b43s7b3I3unz9OxNA9xEGfnyi46O1ogRI7Ru3TrlzZtX/fv3d31hLhIbG6uiRYtmeHyJEiX0xx9/uLAi17PjnO1o+vTp6tevn+bMmaNr165p1KhRKTvODMPQ1KlTNWnSJMXHx6tly5YaMmSIChYsaHLVWRcdHa2rV6+mWhYbG6vBgwdr+vTpaUK4FdjtOZakw4cPa9euXWrXrl3KsjNnzmjixInauXOn/P391bhxY7300kteeb+1v7NjQENq8fHx+vXXX+Xn56eyZcuaXY5b+fn56eWXX9aePXsUFhZGCLcAq17kKyMB/K/uv/9+dejQwUXVwJuQvW/PCjnUjnO2I7vlMrK39Z9jiewN+yF7k72thOx9k6dmbxrgHioxMVHTp0/Xp59+qri4OD311FMaPHiwV/+4TUhIyNQPNV9fX8XHx7uwItez45ztKGfOnJo0aZIGDx6ssLAwxcXFady4cTp69KgGDRqkqKgoFSlSRO+++64aNWpkdrkuY9UvfMl+z/G4ceM0ffp0GYahkJAQOZ1OXb58WR07dtSJEyeUP39+lSpVSh999JHWrFmjWbNmZehsG29mx4AWExOjqKgo+fn5qVatWhm+z5Enu3z5sj7//HPt2rUr1RHaixcv1siRI3Xp0iVJN3+4jxo1SlWrVjWpUnPUqVNHGzduNLsM4K5cv35dK1as0IIFC7Rt2zYZhqHevXubXRY8GNnbGjnUjnO2I7vlslshe1vnOSZ7p0X2JnvbAdkbVuAN2ZsGuAfavn27hg8frl9++UX33Xefhg0bpnr16pldFnBHEydOzNT4n376yUWVuJ+Pj4/Gjh2rwMBAzZ49W8ePH9cvv/yiuLg4dejQQQMHDlSePHnMLhN3wS7P8cqVKzVt2jQ9/vjjCg0NldPplCR9+umnio6OVpUqVfTFF1/I399fUVFReuGFF/TFF1+oW7duJld+9+wY0KKjozV+/Hjt2rVLa9asSVk+depUffzxx0pMTJRhGMqXL59GjBihpk2bmljt3YmNjVXHjh11+PBhFS9eXAkJCfL19VVUVJQGDhwowzDUsWNHVahQQeHh4Xr55ZcVHh6ue++91+zS3cbHx0dJSUlml5Fl4eHhmRr/22+/uaYQmGLXrl1asGCBvvvuO8XGxsowDN1zzz3q2LGj2aXBg5G94a3I3tbPZXZml+eY7E32lsjeZG/vRPa2N2/K3jTAPcj58+c1duxYhYeHK2fOnOrbt6+6detmicvbJNu+fbsSExMzNHbnzp0ursY97DTnzIZwKfU99qxgyJAhyp8/vyZOnCin06nPPvtMDRs2NLssZCOrP8dz585VlSpVNGXKlJRlhmFo0aJFcjgcev311+Xv7y9Jqly5stq0aaOlS5d6fQi3Y0A7e/asOnbsqPPnz6ty5copc/7hhx80fvx4+fr66o033lDFihU1b948vfHGG/r6669VqVIls0vPkunTp+vo0aP6z3/+o+bNm6csnzRpkgzD0IsvvqhBgwZJktq3b6/WrVtrypQpGj16tFklu92ePXtUokQJs8vIskGDBmXqd4VhGJb7HWI3MTExWrhwoRYsWKAjR46knBFXp04ddevWTY8++qjJFcJTkb1T8/YcmsxOcyZ7Wz+XwfrPMdmb7E32Jnt7K7K3/Xhr9qYB7iG++eYbjRs3ThcvXtQjjzyiYcOG6Z577jG7rGw3b948zZs3L0NjrfLBaKc5z5w50+wSPEKfPn1UoEABjRw5UtOmTVONGjUscXQy/mTl53jv3r1pAvW+fft09uxZ5cmTR3Xq1Em17uGHH9bixYvdWaJL2DGgTZ06VbGxsfrqq69SHVE/depUORwO9e7dO+W18Nhjj6ldu3b6/PPP9Z///Mecgu9SRESE2rRpk+r5jY2NTbnsWOfOnVOW58qVS61bt9Y333zj9jrNsnz5ci1cuFCvvvqq2aVkmTe/H5Fx8fHxWrVqlRYsWKDNmzcrMTFRPj4+ql27tmrUqKHJkycrNDTUYwM4zEf2Tsvbc2gyO82Z7H2TlXMZbrLyc0z2JnuTvcne3sqb34/IOCtkbxrgJjt48KDeffdd7d69W4ULF9b48ePVsmVLs8tyCTt+MNptzrVr1870Y7Zv3+6CStwrMjIyzbKKFSuqQ4cOmjdvnl588UW99dZbKZezSlarVi13lYi7ZKfn+OrVq8qXL1+qZVu2bJF0cz4+Pj6p1iUkJHj1zsNkdgxo69atU7t27VIF8AsXLmjHjh2SpGeeeSZlucPhUIsWLfTll1+6u8xsc/z48VTPo3TzvZ2QkKAyZcqkaX6UKFFCZ8+edWeJ2W7w4MG3XZ+YmKjY2Fj9+uuvOnr0qO677z6vDuEhISFml2CKlStX6siRIyn/HhcXJ4fDoYULF6a8n5P9/PPP7i4vWw0fPlzLli3TxYsXlStXLjVo0EBNmjRR48aNVaBAAUVHR+vTTz81u0x4KLK3tdltzmTvP1k1l9mVnZ5jsjfZm+x9E9nb+5C9byJ7e372pgFuojFjxmjWrFlKTEzUE088of79+ytPnjw6ceLEbR9XsmRJN1WYvez4wWjHOWfEyZMnFRYWpvDwcB07dkz79+83u6S78sILL9w2hOzdu1cvvfRSmuXePO/Dhw+nCqaXL1+WdHPHoq9v6q+WQ4cOubU2V7DTc1y0aFEdO3Ys1bJ169bJ4XDoscceSzM+KipKxYoVc1d5LmPHgPbHH3+oYsWKqZZt3bpVSUlJKl++fJrntVChQrp48aI7S8xWTqczzT22Nm/eLEmqX79+mvHnzp3z+rNLwsLCMjSuTJkyevHFF9WrVy+vn/OtpPf7ukSJEpbZiRgREZFm+a3uy+bNc54zZ44CAgLUs2dPvfrqq5Z9vSL7kb2tz45zzgiy903ePG+yd2pWeo7J3n8ie5O9vf13Pdn7T2TvP3nznK2SvWmAm2jGjBkp/7x27VqtXbs2Q4/zxh91WXHu3DkdOnTIK4/izCorz/n69euKiIjQggULtHXr1pRLzqX3o97b9O7d26u/0LJiypQpqe5TlWzMmDFplnn75QUlez3Hjz32mObPn6/OnTurWLFi2rVrl7Zv364cOXKoWbNmqcb+8ssvWrp0qZ599lmTqs0+dgxouXLl0rVr11It27RpkxwOhx555JE04//44w8FBga6q7xsV758ee3atUtdunSRdPOzaeXKlXI4HGrUqFGa8atXr1a5cuXcXWa2Wr169W3X58qVS4GBgZa6560kzZ8/X998840+/fRTFSxYUOfPn1ejRo3SfI7369dPr732mklVZg+7XQI3JCREq1at0meffaYvv/xSNWvWTDkKvXDhwmaXBw9G9r49K+fQW7HynMne1kL2ti6y95/I3qmRvb0P2ZvsbTVWyd40wE3Up08fs0twqwceeEBjx45Vq1atUpbFxcVp2rRpatu2rUqXLp1q/IYNGzRw4ECv3ulgxzn/3e7du7VgwQJ99913unLliiSpYMGCateunTp27KhSpUqZXOHd69u3r9kluJWdAmkyOz3HvXr1UkREhFq0aKGyZcvq559/lmEY6t27twoWLCjpZviOiIjQzJkzlSNHDnXt2tXkqu+eHQNacHCwNm/erBdffFHSn/f2kaQmTZqkGmsYhpYvX67g4GC315ld2rZtq/fee08PP/ywHnnkEc2bN08nTpzQPffcowYNGqQaO2XKFO3evVtDhgwxqdrsYYXv2Mx6/fXXtWLFCpUsWVInTpxI+dySpNatW6tMmTKSpIULF2ry5Mlq3769ihQpYla5dy0rl8BNSEhwQSXuMXr0aA0fPlxr167V4sWL9f333+uHH37Q8OHDVa1aNVWvXt12v1GQMWRv6+dQO87578je1kP2tjayN9lbInuTvb0X2fvOyN7mowFuIruFcMMw0iy7du2aJk2apBo1aqQJpFZgxzlL0qlTpxQeHq6wsDD9/vvvMgxD/v7+ql+/vjZt2qR///vfaty4sdllIovsFEjtqHDhwvr22281adIk7d69Ww8++KDatWunDh06pIwJCwvT9OnTVapUKX344YcqUaKEiRVnDzsGtE6dOumNN97QqFGj9Mgjj2j+/Pk6e/asHnzwwVRnQ8XFxen999/XL7/84tU7XDp16qQdO3Zo9OjRcjgcMgxD+fLl07hx41LuIfjtt99q6tSpOnbsmGrUqKHnnnvO5KpdKyoqSrt27ZLT6VTt2rUVFBRkdkl3ZdGiRVqxYoV69Oihfv36pblvYtu2bVWvXj1JUsOGDfXss8/q66+/tsxv8tjYWBmGcdszZHbt2qWhQ4dqyZIlbqwse+XMmVPNmjVTs2bNdPnyZS1fvlyLFi3Sjh07tGPHDjkcDn322We6cuWKmjVrJj8/P7NLhgewyvs8o+yYQ+04Z4nsbXVkb2sje5O9yd5kb29F9iZ7e0v2pgHuQeLj43XgwAGdOnVKhmGoaNGiCg4OVq5cucwuzaXSC6pWZ9U5f/fdd1qwYIE2bdqkxMREBQYGqlWrVmratKkaNGig06dPpzmy0QomTpyY6cc4HA717t3bBdW4XmhoqF577bWUHzJ2YLfnuHjx4hoxYsQt17dr106NGjVS9erVU8KLt7NjQGvZsqUOHjyoadOmadasWTIMQ6VLl9aECRNSxvz3v//Vp59+qtjYWDVv3lxt2rQxseK743A4NG7cOHXp0kW7du1Snjx51KRJk1RHKf/xxx8yDEOvvfaaevToYYnX9759+/TZZ5/p0KFDuueee9SzZ09VrlxZ//rXv7RgwYKU3yQOh0NPP/20Ro8eneZ+kt4iLCxM1apV04ABA+44NnmH2/r1670+hK9YsUITJ07Ur7/+KunmfeX69eunp59+OmXM1atXNX78eM2ZMyfNJSe9yeDBg9WpUydVqVJFkpQ3b1516NBBHTp0UExMjJYsWaIlS5YoKipKP/74o0aMGKGWLVvq3//+t8mVw9OQve3DqnMme2ecN+cysnfGePNzTPYmeycje3v/65vsnT6yt3eySvb2zneYxZw5c0bjx49XRESEYmNjU63z9/dXs2bNNGDAABUtWtSkCoGMGTBggAICAtS5c2c1btxYtWrVSnUEmDdcFiMr7BbQtm3bluqIZDuw23N8J95++bH02DWgDRgwQM8995z27NmjPHnyqHbt2sqRI0fK+ly5cunhhx9Wq1at9Mwzz5hYafapVq2aqlWrlu66Pn36eH0g+6tdu3YpNDRUvr6+qlixovbu3asuXbrohRde0Pz589W6dWs1b95cV69e1Zo1a7RkyRI98MADeuWVV8wuPUv27dunnj17Znj8o48+qkmTJrmwItdbtmyZ3njjDeXKlUuPPvqo/P39tX37dv3zn/9MuX/kjz/+qAEDBuj48eMqXbq0hg8fbnbZWRYWFqb69eunhPC/KlasmLp27aquXbvq0KFDWrRokRYvXqxvvvnG40I4zEP2hlWQvTPOm3MZ2TtjvPk5vhOyN9nbm5G9yd7JyN7exyrZmwa4yXbv3q0ePXro4sWLqlKliurWrauiRYvK19dXp06dUmRkpMLDw7VmzRpNnjxZ1atXN7tk4JZKly6t48ePa8GCBfrtt9/0448/qkmTJrr//vvNLs2lZs6caXYJcDE7PceRkZFZetxfL9vlzewU0JIVL15cxYsXT3fd888/r+eff97NFSG7TJo0Sffdd59mzpypAgUKyDAMvf3225oxY4Zat26tsWPHpox9+umndenSJS1ZssRrQ3hcXJwCAwPTLM+bN6+mTJmiBx54INXy3Llze/U9uSRp9uzZKlSokObOnZtyj7Vr167ptdde0yeffKKiRYvqlVde0fXr1/Xyyy/r9ddf98jLkmW3cuXKacCAARowYIB27txpdjnwEGRvWAnZG1Zlp+eY7E32/iuyt3cje99E9iZ7exoa4CY6e/asevfurdy5c+vTTz9VjRo10h23b98+9e/fX/369dPChQtVqFAhN1cKZMyqVau0Z88eLVq0SMuXL9eGDRs0fvx4lS1bVk2bNlWlSpXMLtElateufccxly9flsPhuO29QeC5MvIcW8ULL7yQ6TNGHA6H9u3b56KKgOwxePDgTD/G4XBo1KhRLqjGPX788Ue9+uqrKlCggKSb8+natavCwsL0+OOPpxnftGlTvf/++26uMvsUK1ZMJ06cSLPc19c33fn+/vvvXn8fxUOHDumFF15ICeDSzbNY+/Tpo+eff14DBgxQoUKFNG7cOFWtWtW8Qk1EExMS2RvWQ/a+NbK3dyN73x7ZG96A7E32/juytz14YvamAW6i2bNnKzY2NtVRI+l58MEHNWPGDLVq1Ur/+9//1LdvXzdWCWROlSpVVKVKFb399tvasGGDFi9erNWrV2vy5MlyOBxyOBxau3atgoODVapUKbPLzTaGYej777/Xr7/+qnvvvVePP/64fH19tXnzZo0cOVKHDx+WJD3wwAN644039Oijj5pc8d1ZuXKljhw5kuHxVr4kWTKr7GgZPXp0hsatWLFC69atkyRVrlzZhRW5hx0DWmhoaKYf43A49OWXX7qgGtcLCwvL8Ni/7ojy5uf40qVLKly4cKplyZcWzJ8/f5rxfn5+unbtmjtKc4nKlStr2bJl6t279x0vkxgfH69ly5apYcOGbqrONS5fvqzSpUunWX7PPfdIunkpxblz56bsiLGC7du3KzExMVOPadu2rWuKgdcge8OKyN5k7/SQvb0H2TvjyN7ehex9E9n7JrK397JC9qYBbqJVq1apdevWtw3gyUqVKqWQkBBFRER4dQj/+5sm+b5rGzduVExMTKqxnnjJhKyw45wlycfHRw0bNlTDhg0VFxenlStXasmSJdq4caO+/fZbLViwQHXq1FG7du309NNPm13uXbl06ZK6d++uPXv2yDAMSdLDDz+soUOHqnv37vL391eTJk109epV7dmzRz169NCMGTO8+sjmlStXKiIiIsPjrRDC/7qj5Z577tETTzxhyR0tISEht10fHR2tESNGaN26dQoMDNQbb7yhjh07uqk617FjQDt+/HiGxiUlJSkmJkaGYXj1/SQPHDhwxzF/fX3nzZtX/fv3d31hLmQYhnx9U//cT34Ovfm5vJVOnTrp+eef17///W8NGTIkzdyTJSUl6Z133tGpU6fUqVMnN1eZvZKSklLd8zVZ8v0Eu3fvbqkALknz5s3TvHnzMjQ2+XPL00I43I/sbY8casc5S2RvsndqZG/vQfa+M7K3dyJ730T2Jnt7OytkbxrgJjp+/Him7u0RHBycqR8Jnujvb5rkwDJt2rQ0Xwbe/mWfzE5z7t69u+rWravatWurUqVKKXPx8/NTq1at1KpVK50/f17Lli3T4sWLtXnzZm3ZssXrQ/jHH3+sAwcO6J133lGdOnUUHR2t9957Ty+++KLuu+8+zZo1K+Vov3Pnzql9+/aaPn26V4fwHj16qH79+maX4TZ23NHydwkJCfrvf/+rKVOm6Nq1a2rdurUGDRqUckSrt7NjQFuzZs0dx+zZs0fvvvuu/vjjD5UuXVpDhw51Q2Xul5iYqOnTp+vTTz9VXFycnnrqKQ0ePDjNEdzwbDVr1lTXrl313//+V1u2bNErr7yiOnXqqHjx4jIMQ6dPn9bWrVv11Vdf6cCBAxowYICCg4PNLtulSpYsaXYJ2e7ZZ5+17SXlkHVkb2vn0GR2mjPZm+xtVWRvsrdE9iZ7w9ORvdMie3smGuAmypEjh65fv57h8XFxcQoICHBhRa6V0Uv7WInd5rxlyxZ9//33KZeiqlmzpurUqaO6deumfMkVKFBAXbp0UZcuXXTs2DEtXbrU5Krv3po1a9SpUyc999xzkqSyZcvqnXfe0SuvvKIuXbqkutRNwYIF9eyzz2rWrFkmVZs9ypUrZ6mAeSd23NHyV9u2bdPw4cN16NAhlS1bVsOGDVOdOnXMLstt7BjQLl++rA8//FDz5s2T0+lUjx491KtXL+XKlcvs0rLd9u3bNXz4cP3yyy+67777NGzYMNWrV8/ssrLN3y+bGRcXJ4fDoYULF2rHjh2pxv7888/uLi/b/fOf/1SpUqU0fvx4vfPOO+k2PAICAvTuu+9a4gwaO6pZs6ZatWpldhnwMmRv67PbnMneZG+rInuTvcneZG9vRfYme1uNFbI3DXATVaxYUevXr8/wfUDWrVun8uXLu7gq17nTpX2syG5z3rlzp/bt26edO3dq165d2r17t9auXSuHw6HAwEDVqlVLderUUZ06dVSxYkWVKVNGPXv2NLvsu3b69GmVK1cu1bLk92p6R3+VKFFCFy9edEttyB523NEi3dyhMGbMGC1atEi5cuXS66+/rldffTXl8j52YPWAlp6FCxdq7NixOnv2rGrXrq1hw4al+YyzgvPnz2vs2LEKDw9Xzpw51bdvX3Xr1k05c+Y0u7RsFRERke5lM8PDw9Md781nwyXr3LmzQkJCtHbtWkVGRuqPP/6QYRgqWrSoqlevriZNmnj9PSP/Kr17g95uZ4sVLo0KZBbZ2/rsNmey95/I3tZC9iZ7k73J3t6K7E32Jnt7HhrgJmrTpo3eeecdLVu2TC1btrzt2PDwcG3atEnjx493U3XmO378uN555x1Nnz7d7FLcxtvn7Ovrq8qVK6ty5cp66aWXJEknT55MFcrHjBmjxMRE5c+fX7Vr11adOnXUuXNncwu/Szdu3JCfn1+qZckhJb2w4nA4Ut2bDp7Pjjtavv76a40fP14XL17UY489pqFDh2bovplWYZeA9leHDx/W8OHDtW3bNhUoUEDvv/++x927J7t88803GjdunC5evKhHHnlEw4YN0z333GN2Wdlu5syZZpdgGn9/f7Vs2fKOv7Gt4FY7WqT0d7YQwmFHZO/b8/YcmhXePmey95/I3tZC9iZ7k72thextfWTvm8jenokGuInatWun8PBwvfXWWzp48KC6dOmiokWLphpz6tQpzZgxQzNnzlTDhg3VokULk6rNHnv27NHkyZO1a9cuSdKDDz6o3r17q2bNmiljDMPQF198oY8//lhxcXFmlZpt7DjnvypRooSeeuopPfXUU5JuXtpn0aJFWrBggVasWKGIiAivD+F206dPHwUFBZldhlvZaUfLgQMHNGzYMEVFRalYsWIaMWKEmjZtanZZbmWXgJYsPj5ekyZN0vTp05WQkKAOHTrozTffVGBgoNmlZbuDBw/q3Xff1e7du1W4cGGNHz/e0iHNKpeCxK3ZbUdLSEiIpT+P4Tpkb3vkUDvO+a/I3tZD9r6J7G1dZG+yt1WQva2P7O2daICbyOl0asqUKXrzzTf12WefaerUqSpRooSKFCkiHx8fnT17VkePHpVhGGrRooXee+89s0u+K5s3b1a3bt2UmJio+++/X/7+/oqMjNRLL72kGTNmqFatWjp+/Lj+8Y9/KCoqSnny5NHw4cPNLvuu2HHOfxcXF6fIyEht27ZNO3bs0E8//aQbN24oZ86cKZdks4ILFy7oxIkTKf+efATyuXPnUi2Xbh7d6s369OmT6t/j4+N14MABnTp1KuUyN8HBwZa8X5EdtGvXTklJSZKkQoUKafbs2Zo9e/ZtH+NwOPTll1+6ozyXsltAk6T169drxIgRio6OVlBQkIYPH64qVaqYXZZLjBkzRrNmzVJiYqKeeOIJ9e/fX3ny5EnzGf136Z1pYlVz587Vhg0bNHHiRLNLyZKMXtr4r7z98ysrO1q2b9/ugkrcw273+EX2IXtbP4facc5/R/Yme8O7kL3J3mTv1Mje3oPsnTFkb/M5DMMwzC4C0g8//KCFCxcqKipKp0+fTvkhW6NGDbVp00Z169Y1u8S79vLLLysqKkrTpk1TtWrVJEkxMTHq2bOncuTIodGjRys0NFRnz55V06ZNNXToUBUpUsTkqu+OHeeckJCg3bt3a8uWLdqyZYv27NmjGzduKEeOHKpcuXJK8K5WrZplLmcUHByc7n1bDMO47f1c9u/f78qyXO7MmTMaP368IiIiFBsbm2qdv7+/mjVrpgEDBqQ5u8YbBQcH61//+pcaN26csuzixYsKCQnRhx9+mPL+TrZy5Uq9//77XvkcN2rUKEuPW7NmTTZX4l63Cmh34s0BrV+/flq5cqUk6YknnlBoaKh8fHzu+LhatWq5ujSXCA4OTvnnzNxryxvfx1k1bNgwzZs3z2vnnNHPr6SkJMXExKR8T3vrfDPj5MmTCgsLU3h4uI4dO2aLOQO3Qva2Zg6145zJ3n8ie5O9vfE5JnuTve+E7G1dZG/rInt7FhrgcJu6deuqffv2evPNN1Mt37Bhg7p166Zy5crp9OnTevfdd73+cnPJ7Dbnbt26afv27YqLi5PT6VSlSpVUt25d1alTRzVq1EhzGSurGDx4cJYe581HUu3evVs9evTQxYsXVaVKFdWtW1dFixaVr6+vTp06pcjISEVGRiowMFCTJ09W9erVzS75rth1R4ud2DGg/XXO0p3n7e2BJatHVv/9zBsr8/YQnhF79uzRu+++q/3796t06dIaOnSoGjZsaHZZLnH9+nVFRERowYIF2rp1a8p7uEGDBvrss8/MLg+AC9kth0r2mzPZO3PI3t6D7G19ZG+y962Qva2F7E329gRcAt2LbN26VQcPHszSJSY8weXLl1WuXLk0yytUqCDDMHThwgV98803lri3QDK7zfmHH35Qjhw51LZtW/Xo0UP33Xef2SW5hTeH6aw4e/asevfurdy5c+vTTz9VjRo10h23b98+9e/fX/369dPChQtVqFAhN1eafdq2bZupYGYn27dvV1hYmNdfKtROQSuZ3T67svIcW+3eoHZ2+fJlffjhh5o3b56cTqd69OihXr16WfKSobt379aCBQv03Xff6cqVK5KkggULql27durYsaNKlSplcoWA5yN7ex+7zZnsbQ9kb/wV2dt72e2zi+xtb2RvsrcnoQHuRZYtW6Z58+Z5bQhPTEyUr2/al1zypbh69uxpmTCazG5z7tChg7Zu3ZpymY+yZcuqXr16qlu3rmrVqqV8+fKZXSKywezZsxUbG6u5c+eqTJkytxz34IMPasaMGWrVqpX+97//qW/fvm6sMnu9//77ZpfgUf744w+FhYUpLCxMx44dkyRbhnBvD2ghISGZfkx0dLQLKvE8yTuXVqxY4dX3bMJNCxcu1NixY3X27FnVrl1bw4YNS7dJ4s1OnTql8PBwhYWF6ffff5dhGPL391f9+vW1adMm/fvf/051KVEAt0f29j52mzPZ2x7I3iB730T2ti6yt7WQvcnenoYGODyG1T4MM8Jqcx4xYoQk6cSJE9q0aZO2bNmi5cuXa/bs2XI6nQoODladOnVSQnlAQIDJFSMrVq1apdatW982gCcrVaqUQkJCFBER4dUhPDQ0VK+99prq1auXsiwhIUG7du1ScHCw8ubNm2r8okWLNGjQIO3bt8/dpbpMfHx8yuV8tmzZIsMwZBiG6tSpo+eee87s8tzKbgHt+vXrWr58ucLCwhQZGam9e/eaXZJLJO9cCg8P19GjR2UYhvLnz292WbgLhw8f1vDhw7Vt2zYVKFBA77//vtq2bWt2Wdnqu+++04IFC7Rp0yYlJiYqMDBQrVq1UtOmTdWgQQOdPn1aTZo0MbtMAB7Gajk0I6w2Z7K3PZC9byJ7k73J3tZC9rYesjfZ21PRAAeQ7UqWLKn27durffv2kqRffvlFW7Zs0ebNmzV//nzNmDFDvr6+euihh1SvXj29/vrrJleMzDh+/Lief/75DI8PDg5WWFiYCytyvW3btqlDhw6pll2+fFmhoaGaPn16qnCezDAMd5XnUn+/nE/yvJ566in17t1bZcuWNblC97BjQNu5c6cWLFig5cuXKzY2VoZhqEKFCmaXla2Sdy6FhYVpy5YtSkpKkmEYqlq1qjp16qSWLVuaXeJdCQ8Pz9T43377zTWFuFl8fLwmTZqk6dOnKyEhQR06dNCbb76pwMBAs0vLdgMGDFBAQIA6d+6sxo0bq1atWvLx8UlZzyVEAcDayN7WRva+iexN9iZ7ez+yd2pkb+9D9vZONMDhVtu3b1diYmKqZbGxsZKkjRs3KiYmJs1jvP1oITvO+e8qVKigChUq6IUXXlB8fLyWL1+u//3vf9q9e7f27NlDCPcyOXLk0PXr1zM8Pi4uzrJnHFglaP9depfzyZ8/v0JCQlS1alUNGzZMLVu2tHwAt3pAS09MTEzKc3/kyBFJkq+vr1q2bKnnnntONWvWNLnC7LFnzx7Nnz8/1c6lwMBAXb58WSNGjEiz081bDRo0KFMhzDAMrw9t69ev14gRIxQdHa2goCANHz5cVapUMbsslyldurSOHz+uBQsW6LffftOPP/6oJk2a6P777ze7NAAms2MOteOc/47sbS1k7z+RvcneVkP2JnuTvb0L2ds70QCHW82bN0/z5s1LtSz5R+y0adNSffAnfxF4eyC145z/6ujRo9qzZ4/27NmjqKgoHThwQDdu3FDu3Ln12GOPqVatWmaXiEyqWLGi1q9fn+F7Iq5bt07ly5d3cVXILt27d9fGjRuVmJioEiVKqHPnzmrSpInq1Kkjp9Op6Ohoy+58SGaXgJYsPj5eq1at0vz587Vly5aUHcflypXT4cOH9cEHH6h58+YmV3n3Tp06pYULFyosLEy//fabDMNQyZIlFRISoqZNm6pYsWJ68sknVbBgQbNLzTajR482uwS36tevn1auXClJeuKJJxQaGqr4+HhFRkbe9nHe/Ftk1apV2rNnjxYtWqTly5drw4YNGj9+vMqWLaumTZuqUqVKZpcIwCR2zKF2nPNfkb2th+xtbWRvsjfZm+ztrcjeZG9vQQPcRCdOnMjU+OQjl72V3b4IJPvN+eLFi4qKikoJ3FFRUbp48aIMw1C+fPlUvXp1DRgwQLVq1dKDDz4op9NpdsnIgjZt2uidd97RsmXL7ngUbnh4uDZt2qTx48e7qTrcre+//14BAQEKDQ1Vly5dVKRIEbNLcgs7BrSoqCgtWLBAy5Yt06VLl+R0OlWtWjU1bdpUTZs2VWJiopo0aaIcOXKYXWq2aNSokZKSkhQcHKyePXuqcePGeuihh1LWR0dHm1ida4SEhJhdgltFRESk/POaNWu0du3a245Pbn7s37/f1aW5VJUqVVSlShW9/fbb2rBhgxYvXqzVq1dr8uTJcjgccjgcWrt2rYKDg1WqVCmzywVMQfa2PrvNmextD2RvayN7k73J3tZB9iZ7k709Ew1wEzVq1MhWl8bIyheBt38h2m3OderUkcPhkGEYKlCggGrXrq1atWqpVq1aCgoK8urXL/7Url07hYeH66233tLBgwfVpUsXFS1aNNWYU6dOacaMGZo5c6YaNmyoFi1amFQtMqtPnz5aunSppkyZos8++0z333+/mjRpoiZNmqhy5cpml+cydgxozz77rPz9/dWgQQM99thjatSoUaqdDFabc0JCgvz9/VW4cGH5+/unuUSqHcTExGjHjh06deqUJKlo0aKqVq2aSpQoYXJl2cNuzY+/8/HxUcOGDdWwYUPFxcVp5cqVWrJkiTZu3Khvv/1WCxYsUJ06ddSuXTs9/fTTZpcLuBXZ+868/XvfbnMme9sD2dvayN5k72RWmzPZm+xtdWRv70ED3ERt27YllKTj+vXrWr58ucLCwhQZGam9e/eaXZLLWWXOzZs3V+3atVW7dm0uu2VhTqdTU6ZM0ZtvvqnPPvtMU6dOVYkSJVSkSBH5+Pjo7NmzOnr0qAzDUIsWLfTee++ZXTIyoU+fPurTp49++uknLV68WMuWLdPUqVP1+eefq0SJEqpRo4Ylv7vsGND8/f117do1HTp0SAUKFFBAQIAee+wx5cmTx+zSXGLt2rVavHixFi9erPHjx8vhcKhw4cJ68skn9eSTT1r66NxffvlFI0eOVGRkpAzDSHUpRafTqRo1amjIkCEKCgoyscq7Z7ej7m/Hz89PrVq1UqtWrXT+/HktW7ZMixcv1ubNm7VlyxZCOGyH7J0+q+TQzLDKnMne9kD2tjayN9mb7G09ZG/7IXt7Nodh9ZuJwGvs3LlTCxYs0PLlyxUbGyvDMFShQgUtXrzY7NJcxo5zhrX88MMPWrhwoaKionT69GkZhqGiRYuqRo0aatOmjerWrWt2idkiODhY//rXv9S4ceOUZRcvXlRISIg+/PBDVatWLdX4lStX6v333/f6S/tIN8+A2rx5sxYvXqyVK1fqypUrkqRSpUqpXbt2atu2rUqWLGlylXfv5MmTKQHtl19+STegNW3aVJMmTUr1OvBmcXFxWrNmjRYtWqQNGzYoMTFROXLkUL169fTkk08qODhY7du3t9Sckx04cCBlJ9PJkyflcDhSdkoMGjRIL774otklZpvVq1erf//+cjgcatKkierWrauiRYvK19dXp06dUmRkpJYvX66EhARNmDBBTZo0MbtkuNCxY8e0dOlS9ezZ0+xSAJjIjjnUjnOGtZC9yd5kb+9F9iZ7k73th+ztGWiAe4mTJ08qLCxM4eHhqe6x4O1iYmIUHh6usLAwHTlyRJLk6+urpk2b6rnnnlPNmjVNrjD72XHOgLcLDg5O98jrO10e0woh/K/i4+O1Zs0aLVmyROvXr9eNGzfkdDpVr149/fe//zW7vGxjp4CW7MKFCylHqe7evTvVuu7du6tnz57y9/c3pzgX27ZtmxYvXqyIiAhdvHhRDodDpUuX1jPPPKOQkBAVL17c7BKz7Pjx42rVqpXuv/9+ffTRRypTpky64/744w/169dPv/76qxYuXHjLcZ5u8ODBmX6Mw+HQqFGjXFANAG9F9rYOO84Z8HZk75vI3mRvKyJ7k73J3nA3GuAe7Pr161qxYoXCwsK0detWJSUlydfXVz/99JPZpd2V+Ph4rVq1SvPnz9eWLVtSLnVTrlw5HT58WBMmTFDz5s1NrjJ72XHOsI/4+HgdOHBAp06dSjkKPTg4WLly5TK7tGyTlR92krXviXPp0iUtX75cixcv1o4dO7Rv3z6zS3IJKwe0W4mOjtbixYu1ZMkS/frrr3I4HAoICFCLFi3Url27NGddWMWNGzf0/fffa9GiRVq3bp2uX7/u9b+73nvvPS1cuFDLly9PdY+59Fy4cEEtW7ZU69atNWjQIDdVmL2Cg4Mz/RiHw+HVO0yzcoaIw+HQqlWrXFAN4L3I3tZhxznDPsjet0b29n5kb7K3N//uInvfGdkbZqAB7oF27dqlsLAwLVu2LOXSXMWLF1eHDh307LPPqkiRImaXmCVRUVFasGCBli1bpkuXLsnpdKpatWpq2rSpmjZtqsTERDVp0sRSl3ux45xhH2fOnNH48eMVERGh2NjYVOv8/f3VrFkzDRgwQEWLFjWpQrjL9u3bLX8GjRUDWkYcOHBAixYt0rJly/THH394fWDJqCtXrigiIkJLlizR9OnTzS4ny1q0aKHHHnsswzsSx44dq7Vr1+q7775zcWWuER0dnaXHefM96Bo1apRmmWEYOnnypAoXLqycOXOm+7g1a9a4ujTAK5C9rZND7Thn2AfZG8nI3tZF9iZ7exOy901kb8/na3YBuCkmJkYLFy7UggULdOTIERmGIafTKUnq37+/unfvnvLv3urZZ5+Vv7+/GjRooMcee0yNGjVKdURUVj84PZkd5wx72L17t3r06KGLFy+qSpUq6d7XJjw8XGvWrNHkyZNVvXp1s0tGJv3000/avXu3DMPQAw88kG7IvnLlisaNG6dvvvlGe/fuNaFK98mRI4caN26sxo0bpwpoVhccHKzg4GC99dZb2rp1qy3mLEl58uRRkyZNtHPnTrNLuSsnT55U+fLlMzy+bNmymjNnjgsrci1vDtNZlV6YPnfunOrXr68PPvhA9erVM6EqwLORva2ZQ+04Z9gD2dv6yN6pkb3J3t6I7G19ZG/vRAPcRMmX5lqwYIE2b96sxMRE5cqVS40aNdKTTz6poKAghYSEqEKFCl4fwCWl3MPl0KFDKlCggAICAvTYY48pT548ZpfmMnacM6zv7Nmz6t27t3Lnzq1PP/1UNWrUSHfcvn371L9/f/Xr108LFy5UoUKF3FwpsuLq1at64403tH79eiVfJMbhcKh+/fqaPHlyyhGN69at07BhwxQTE6N77rnHzJLdzioBLbNKlizp9TuPjx8/rhkzZmjXrl2SpAcffFDdunXTvffem2pcRESERowYoTNnzmjkyJFmlJot/Pz8dOnSpQyPv3TpkgIDA11Ykbni4+P166+/ys/PT2XLljW7HJe53f0xAbsie1s/h9pxzrA+sre1kb3vjOztvcjet0f2tgayt+ejAW6iBg0a6NKlS8qXL5+eeuopNW7cWI899pj8/f0lWe8I5c2bN2vNmjVatGiR5s+fr3nz5ilHjhyqV6+ennzyySzdO8LT2XHOsL7Zs2crNjZWc+fOVZkyZW457sEHH9SMGTPUqlUr/e9//1Pfvn3dWCWy6pNPPtG6devUoEEDhYSEKCAgQOvXr9fXX3+tsWPHasiQIRozZoy++OIL+fj4qGvXrurXr5/ZZWcLuwU0SdqzZ48mT56cas69e/dOddaBYRj64osv9PHHHysuLs6sUu/a/v379cILL+jKlSvy8/OTn5+f9u3bp2XLlmnu3LmqWLGiLl++rCFDhigiIkI+Pj7q3r272WXflYceekgRERHq2rVrhsavWLFCDzzwgIurcq3Lly/r888/165duzRr1qyU5YsXL9bIkSNTdkrcf//9GjVqlKpWrWpSpQDciext/RxqxznD+sje1kb2JnuTvcne3ozsDW9AA9xEFy9eVEBAgJo1a6Y6deqoevXqKQHcivz8/NSyZUu1bNlSFy5c0LJly7R48WJ9//33+v777yXdPGomKipK9evXt8R/CzvOGda3atUqtW7d+rYBPFmpUqUUEhKiiIgIQriXWLNmjWrXrq3PP/88Zdnjjz+uQoUKadasWcqfP79mzJih4OBgjR492ut/sCezY0DbvHmzunXrpsTERN1///3y9/dXZGSkXnrpJc2YMUO1atXS8ePH9Y9//ENRUVHKkyePhg8fbnbZWZa8E+HDDz/UU089Jenm/ULfeOMNjRw5UuPGjVNoaKh+//13Pfzwwxo5cqSCgoJMrvrutG/fXv3799eMGTP08ssv33bslClTFBUVleq9721iY2PVsWNHHT58WMWLF1dCQoJ8fX0VFRWlgQMHyjAMdezYURUqVFB4eLhefvllhYeHp9nRBsB6yN7Wz6F2nDOsj+xtbWRvsjfZm+ztrcje8BoGTBMZGWm88847Ru3atY3g4GDjgQceMJ599llj2rRpxpEjR4zjx48bQUFBxqpVq8wu1aWOHz9uTJ482XjqqaeMoKAgIzg42Khevbrxr3/9y9i5c6fZ5bmEHecM66hataoxd+7cDI+fN2+eUa1aNRdWhOxUtWpV44svvkiz/NdffzWCgoKMBx54wBgxYoQRHx9vQnWu07NnT6NSpUrGkiVLUpbt2bPHaNy4sfHCCy8YMTExRrNmzYygoCCjffv2xoEDB0ysNnu89NJLRvXq1VN97/zxxx9G27ZtjQ4dOhi//vqrUb9+fSMoKMjo27evcerUKROrvXv169c3RowYkWb5ihUrjAcffNDo3Lmz8dBDDxmff/65kZiYaEKFrtG3b18jODjY+Mc//mHs2rUr1Xs3MTHR2LVrV8qYoUOHmljp3fv444+NSpUqGd99912q5d27dzeCg4ON0aNHpyyLi4szmjZtagwaNMjdZbrcuXPnjKCgIGPTpk1mlwJ4DLL3TXbMoXacM6yD7G1tZG+yN9mb7O2tyN43kb09H2eAm6hmzZqqWbOmhg4dqvXr12vx4sVat26d9uzZo3HjxqlMmTJyOBy6evWq2aW6VKlSpdSzZ0/17NlTBw4c0KJFi7Rs2TJ9++23mj9/vvbv3292idnOjnOGdeTIkUPXr1/P8Pi4uDgFBAS4sCJkp2vXrqlgwYJplhcoUECS9OSTT2rIkCHuLsvloqKi1KlTp5SjkyWpcuXKeuuttzRgwAANGDBA0dHRevPNN/XKK69Y4v6g+/fv13PPPadq1aqlLCtWrJj+8Y9/qFu3bnr99deVkJCgCRMmqEWLFiZWmj0uXryY7uVPH374YSUmJurgwYOaNWuW5S7LNW7cOI0ePVpz587V0qVL5ePjo/z588vHx0cXLlxQfHy8nE6nunbtqgEDBphd7l2JiIhQmzZt1Lx585RlsbGx2rhxoySpc+fOKctz5cql1q1b65tvvnF7nQDcj+x9kx1zqB3nDOsge1sb2ZvsTfau6v7iXIjsTfaG56EB7gF8fX3VuHFjNW7cWLGxsYqIiNDixYu1detWGYahgQMHav78+XrmmWfUrFkz5cqVy+ySXSY4OFjBwcF66623tHXrVi1ZssTsklzOjnOGd6tYsaLWr1+v0NDQDI1ft26dypcv7+Kq4GoOh0OS1LZtW3MLcRE7BrTLly+rXLlyaZZXqFBBhmHowoUL+uabb3TPPfeYUF32S0hISPc3lJ+fnySpe/fulnp+k+XMmVPDhg1TaGiowsPDFRUVpdOnT8swDJUtW1Y1atRQq1atLHEpsuPHj6cK2pIUGRmphIQElSlTJs1ruUSJEjp79qw7S8x2EydOTLMsLi5ODodDCxcu1I4dO9Ksdzgc6t27tzvKAzwO2ftPdsyhdpwzvBvZ257I3mRvb0f2JnuTvW8ie5uPBriHyZ07t0JCQhQSEqKzZ89qyZIlWrx4sbZs2aItW7ZoxIgRioyMNLtMt6hTp47q1KljdhluZcc5w/u0adNG77zzjpYtW6aWLVvedmx4eLg2bdqk8ePHu6k6uFpyYLEaOwa0xMRE+fqm/SmYM2dOSVLPnj0tE8Az4qGHHjK7BJe6//77vf4o8ztxOp1KSkpKtWzz5s2SpPr166cZf+7cOeXJk8cttblKeiE8WXh4eLrLCeHATWTvP9kxh9pxzvA+ZG97I3tbB9k7NbK39yN7p0b29lw0wD1YoUKF9OKLL+rFF1/UkSNHtGjRIq8+QjmjR6z+lcPh0JdffumCatzDjnOG9bVr107h4eF66623dPDgQXXp0kVFixZNNebUqVOaMWOGZs6cqYYNG1riEk52knzEeWbXWZnVA1p60jtC3crs8NqOiYnRjh07dOrUKUlS0aJFVa1aNZUoUcLkyrJH+fLltWvXLnXp0kWSZBiGVq5cKYfDoUaNGqUZv3r1aq9/nc+cOdPsEgBLIHt7fw6145xhfWRv6yN7p0X2tj47vLbJ3qmRvWEWGuBe4t5771Xfvn3Vt29fs0vJsm3btqW73OFwyDCMW67zZnacM6zP6XRqypQpevPNN/XZZ59p6tSpKlGihIoUKSIfHx+dPXtWR48elWEYatGihd577z2zS0YmjRo1ShMmTEi1zDAMORwOvfnmm2mO1nY4HFq1apU7S3Q7Pput4fDhw2nO5rt8+bIk6eDBg+kelV+rVi231OZKv/zyi0aOHKnIyEgZhpHqN4jT6VSNGjU0ZMgQBQUFmVjl3Wvbtq3ee+89Pfzww3rkkUc0b948nThxQvfcc48aNGiQauyUKVO0e/dur7+vYu3atc0uAbAcsrd3suOcYX1kb+sje6fFZ7M1kL3J3snI3jATDXAThYaG6rXXXlO9evVSliUkJGjXrl0KDg5W3rx5U41ftGiRBg0apH379rm71Gxx4MCBNMvOnTun+vXra8aMGan+O1iFHecMe8ibN68+++wz/fDDD1q4cKGioqL0888/yzAMFS1aVG3btlWbNm1Ut25ds0tFJpUsWVKS0t1RmHyk6t/X3WqnorexY0Dbvn27EhMTUy2LjY2VJG3cuFExMTFpHuPN96KbMmWKpkyZku66MWPGpLt8//79rizJ5VavXq3+/fvL4XCoefPmqlu3rooWLSpfX1+dOnVKkZGRWr58udq3b68JEyaoSZMmZpecZZ06ddKOHTs0evTolIZHvnz5NG7cODmdTknSt99+q6lTp+rYsWOqUaOGnnvuOZOrdq34+Hj9+uuv8vPzU9myZc0uBzAN2dv6OdSOc4Y9kL2ti+xN9iZ7p0b29h5k77TI3p7JYVjlm9MLBQcH64MPPlCrVq1Slp0/f17169fX9OnT0wS0RYsWaeDAgV7/ZfBX58+fV7169WwVSO04ZwDwdMHBwbc80jz5CPz0ePN38q3m/Nefhn9dn/zfwVvn/Mknn2TpbII+ffq4oBr3OH78uFq1aqX7779fH330kcqUKZPuuD/++EP9+vXTr7/+qoULF95ynLfYtWuXdu3apTx58qhJkyYqWLBgyrqJEydq4cKFatWqlXr06JHu/Qe9zeXLl/X5559r165dmjVrVsryxYsXa+TIkbp06ZKkm/eiGzVqlOXuqQhkBNnbnjnUjnMGAE9H9v4T2Ts1srf3IXvfRPb2XJwB7oE4JgGAt4iLi5Ofn1+a5b/++qsCAwPT3J8Mni88PFw1a9ZU6dKlzS7FrXr37m27S62NHj3a7BLcypsvZZtVX375pXLkyKFp06alCqJ/V7x4cU2dOlUtW7bUV199pUGDBrmxyuxXrVo1VatWLd11ffr0ueWOlRs3bmj37t3png3qqWJjY9WxY0cdPnxYxYsXV0JCgnx9fRUVFaWBAwfKMAx17NhRFSpUUHh4uF5++WWFh4fr3nvvNbt0wCOQvQF4C7K39ZC97YPsbX1k77TI3mRvT0ADHACQafHx8RozZowWL16s77//Pk0QHz9+vL7//nu1a9dOAwcOVEBAgEmVIrMGDx6ssWPH2i6E2zGghYSEmF2CW6V3+Vur27Bhg0JCQm4bwJPlz59fbdu21dq1a70+hGfVxYsXFRoamu7ZoJ5q+vTpOnr0qP7zn/+oefPmKcsnTZokwzD04osvpjyf7du3V+vWrTVlyhTb7YQDAMBbkb2ti+xtH2Rv6yN7Zw7ZG+7iNLsAAIB3iY+PV9euXfXVV1+pZMmSOn/+fJoxTzzxhIKCgvT111/r1VdfVUJCggmVIivseiZUaGioNm/ebHYZbtW4cWOtXr3a7DLcZtu2bTpz5ozZZbjVyZMnVb58+QyPL1u2rP744w8XVuT5vO0zMCIiQm3atEkVwGNjY7Vx40ZJUufOnVOW58qVS61bt7bdZx0AAN6K7G1t3va7M7uQva2P7H1nZG/v+wwke3snGuAAgEz54osvFBkZqSFDhig8PFwlSpRIM6ZDhw6aP3+++vTpo507d2r27NkmVApknB0DWnR0tK5evWp2GXAhPz+/lHtQZcSlS5cUGBjowoqQ3Y4fP66HHnoo1bLIyEglJCSodOnSuueee1KtK1GihM6ePevOEgEAQBaRvWFFZG9YEdnb+sje3olLoMNtwsPD0yyLjY2VJG3cuFExMTHpPq5t27YurMq17DhnWN/ixYvVuHFjPf/883cc26dPH23btk0LFy7USy+95PrikC0uXLigEydOZOoxJUuWdFE1ALLqoYceUkREhLp27Zqh8StWrNADDzzg4qqQnZxOp5KSklItSz7KvH79+mnGnzt3Tnny5HFLbQDMY8ccasc5w/rI3tZH9gasgextfWRv70QD3GR//6Fz8eJFSTffIH//AZTepY68yaBBg+RwOFItS77UxbRp0+RwOFL+PfmfHQ6HVwdSO84Z1nfkyBF16tQpw+Mff/xxffTRRy6sCNlt1KhRGjVqVIbHOxwO7du3z4UVAdlj5cqVOnLkSIbHOxwO9e7d24UVuVb79u3Vv39/zZgxQy+//PJtx06ZMkVRUVH6/PPP3VQdskP58uW1a9cudenSRdLN35krV66Uw+FQo0aN0oxfvXq1ypUr5+4yAY9A9rZ2DrXjnGF9ZG/rI3vDqsjet0b29k5kb+9EA9xkt/qh8+abb5pQjWuNHj3a7BLczo5zhvUFBAQoMTExw+Nz5colPz8/F1aE7FajRg2VKVPG7DLczm4BTZLmzZunTZs2ZXi8w+HI1A4aT7Ny5UpFRERkeLy3P8fNmzdX06ZNNXbsWO3du1fPP/+8KlWqpBw5ckiSkpKSFBUVpenTp2vlypXq0KGDHn30UZOrRma0bdtW7733nh5++GE98sgjmjdvnk6cOKF77rlHDRo0SDV2ypQp2r17t4YMGWJStYC5yN7WZsc5w/rI3tZH9s4Yb89lEtn7Trz9OSZ7Wx/Z2zvRADdR27Zt0xyhbGUhISF3HHPx4kX5+fkpV65cbqjI9ew4Z1hf2bJltXPnToWGhmZo/I4dO1SqVCkXV4Xs1LFjR7Vq1crsMtzObgFNunm/osjIyAyP9/YQ3qNHj3QvTWVl48aN0+jRozV37lwtXbpUPj4+yp8/v3x8fHThwgXFx8fL6XSqa9euGjBggNnlIpM6deqkHTt2aPTo0SlnNObLl0/jxo2T0+mUJH377beaOnWqjh07pho1aui5554zuWrA/cjeaVkth9pxzrA+srf1kb0zhuztfcjeZG+rIXt7JxrgJnr//ffNLsHtbty4oQULFmj37t2pjtDetm2b3n33Xf32229yOByqX7++hg0bZomjIO04Z1hbSEiIhg0bpi1btqhu3bq3Hbt161ZFRESob9++bqoOyDo7BrS3335bjRs3NrsMtylXrpxq165tdhlulTNnTg0bNkyhoaEKDw9XVFSUTp8+LcMwVLZsWdWoUUOtWrXSvffea3apyAKHw6Fx48apS5cu2rVrl/LkyaMmTZqoYMGCKWP++OMPGYah1157TT169EgJ54CdkL3tkUPtOGdYG9kbVkX2tj6yN9nbasje3okGuIleffVVtW3bVk2aNLHFJYpu3LihV155RZGRkcqRI4dGjBghX19f/fbbb3r11Vd148YNNWjQQOXLl9eKFSvUsWNHLVq0SIULFza79Cyz45xhfW3bttX8+fPVs2dP9ejRQx06dEjzmj116pS++eYbTZs2TaVLl1bnzp1NqhbIODsGtAIFCnCWiE3cf//9HGVuYdWqVVO1atXSXdenTx/16dMn3XU3btzQ7t27FRwcrLx587qyRMBUZG/r51A7zhnWR/aGVZG9YWVkb2sje3sXDkEw0bZt2/TPf/5T9evX16BBg7Rp0yYZhmF2WS4ze/Zsbd++Xf/85z8VGRkpX9+bx1988sknio+PV6tWrTR16lS99dZbmj9/vnx8fDRlyhSTq747dpwzrC9HjhyaNGmSqlSpoo8++kgNGjRQ48aN1alTJ3Xo0EGNGjVSw4YN9cknnygoKEgzZszgi92LlCxZUgEBAWaXAQBwg4sXLyo0NFQ//fST2aUALkX2tn4OteOcYX1kb2sjewOAfZC9zcEZ4CbavHmzVq1ape+++05Lly7VwoULVbhwYbVq1UqtW7dWcHCw2SVmqyVLlqhZs2bq2rVryrL4+HitWbNGDocj1fL8+fPrmWee0dKlSzVkyBAzys0Wdpwz7KFQoUL68ssvFRERoaVLl2rfvn06ePCgnE6nChcurLZt2+rJJ59Uo0aNzC4VmbRmzZrbrk9KStIff/yhwoULK2fOnG6qCrh7ffr8H3v3HV/j+f9x/H2yZCGx96iR2HuvGrVTW1tbqZbWKm3xpSitKtoqSmntFjVij1C7aq+aNWIWIWKERNb5/eGXU0cSkkhyck5ez8ejj3KPc3/us5z3dd33dX0kLy8vS5eRouI7X+SzDAaD5s2blwzVpA63b9+Wh4eHHB0dY6zLmDGj5s+fr2LFilmgMsux5U5AIBrZ2/ZzaFo8Z6QNZG/bRfaGrSJ7xw/Zm+yN5EcHuAW5ubmpRYsWatGihR4+fKhNmzZp/fr1mjdvnubMmaPChQurRYsW8vHxUfbs2S1d7iu7dOmSWrVqZbbs0KFDCg0NVbZs2WL8w5gvXz4FBASkZIlJLi2eM9KWhg0bqmHDhpYuAyno7t27ql+/vmbPnq1q1apZupwkkxYD2rhx4+IctskWxTUMVbTHjx9r9uzZatmypfLkyZNCVSWv/fv3x7rcYDDEGbwMBkNylpQi5syZo99//12rV6+OEba/+uor7dmzRz169FDPnj3N5uRydHRMc0MxAmkF2dv2c2haPGekLWTvtIfsbTvI3ubI3v+ts3Zkb6R2dICnEunTp1fbtm3Vtm1b3b17Vxs3btSGDRv07bff6ttvv1WlSpXUsmVLNWzYUG5ubpYuN1GioqJkb29vtmzv3r2SpOrVq8fY/uHDh3JxcUmR2pJLWjxnQHo6rIuzs7PSpUtn6VKQDGzxisW0GNCebyR+XnBwsL788kv17NlThQoVSqGqLOfx48eaNm2aKlSoYDOv8ZkzZ2Isu3v3rqpXr645c+bYVEOa9PS7afDgwVq3bp0yZ86smzdvKm/evGbbFCpUSIcPH9Z3332nEydO6IcffrBQtQAshextmzk0LZ4zIJG9bR3Z2zZyGdnbHNnb+pG9YS2YAzwVypQpkzp06KAFCxZo+/bt+t///ic7Ozt9/vnnqlmzpqXLS7R8+fLp9OnTZss2b94sg8Gg119/Pcb2u3fvVr58+VKouuSRFs8ZaUN4eLiWLFmioUOHmi3fv3+/mjZtqqpVq6pcuXLq2bOnrly5YqEqgaQTHdCuXr1q6VJSTGhoqFauXJmm7o6yxQam59nCVeZxWbJkidatW6du3bpp+/btMQK49LTBbfPmzWrdurU2b96sFStWWKBSAKkF2fspW8ihafGckTaQvZHWkL3TBrK3dSN7w1rQAZ7KOTo6ytnZWe7u7nJwcFBYWJilS0q0Zs2aadWqVdqyZYtCQkI0d+5cXbx4UZkzZ44xV9Hq1av1559/qn79+haqNmmkxXOG7QsPD9e7776rkSNHau3atYqIiJAk+fv7q2fPnvL391etWrXUrVs3+fv76+2339adO3csXDXw6tJCQHteWjxnWK9ly5apcuXKGjJkSKzzjEVzcnLS2LFjVaxYMf3+++8pWCGA1Izsbd05NC2eM2wf2RtpVVrMoWnxnGG9yN6wFgyBngrdvXtXmzdv1saNG3XgwAFFRESoePHi6t+/v5o1a2bp8hKtW7du2rVrlz766CPT/BeOjo768ssv5eTkJOnpFdoLFy7U/v37VbBgQXXr1s2yRb+itHjOsH0LFy7UwYMH9cknn6hjx45ycHj6T8mUKVMUFhamN998U998840kqVevXvLx8dGMGTM0fPhwS5aNJOLo6KhKlSopY8aMli4FAMxcuHBB/fv3j9e2BoNBjRs31vTp05O5KgCpGdnbdnJoWjxn2D6yd9pG9gaQWpG9YS3oAE8l7ty5Iz8/P23cuFGHDh1SZGSkcufOrR49eujNN9+0ifk/nJycNHfuXK1fv15Hjx6Vu7u7fHx8VLhwYdM2J06c0OHDh/Xmm29qyJAhcnZ2tmDFry4tnjNs39q1a9WoUSP16NHDtCwsLExbt26VwWAwW+7h4aHWrVtr3bp1hHAr8fDhQ6VPnz7O9RkzZtSCBQvMlu3bt09VqlRJ7tKAZJU+fXqNGzdORYoUsXQpSCQHBwdTJ0d8ZMiQIcZ8sQBsH9n7KVvLoWnxnGH7yN62jeyNtIrsbf3I3rAWdIBbUEBAgPz8/LRp0yYdPnxYkZGRypgxo9q2bSsfHx9VrFjR0iUmOXt7e/n4+MjHxyfW9R988IH69+8vOzvbGZ0/LZ4zbNulS5fUqlUrs2WHDh1SaGiosmXLJi8vL7N1+fLlS1PzGFm7Ll26aM6cOfLw8Hjptk+ePNGECRP022+/sewkCgABAABJREFU6dSpU8lfnAWlxYCWMWNGzZ8/X8WKFbN0KSkiXbp0qlmzJndYWLH8+fPrxIkT8d7+xIkTypkzZzJWBCC1IHvHZIs5NC2eM2wb2du2kb1jR/a2fWRv60f2hrWgA9yC6tSpI+nplcoNGjSQj4+P6tSp88J5E2ydi4uLpUtIcWnxnGHdoqKiYly1t3fvXklS9erVY2z/8OFD3udW5PTp0+rUqZPmzp2rLFmyxLndsWPH9Nlnn+nSpUsv3M5WpEuXzqzxKTIyUjNnzlTv3r0tWFXycnR0VOXKlU1/f/jwocaPH6+xY8dasKpXN2fOHP3+++9avXp1jN9cX331lfbs2aMePXqoZ8+eVt9AvnLlyhjLHj16JEn6888/devWrVj3a9myZTJWlXyaN2+uSZMmqXv37i9tMDt37pzWrFmjLl26pFB1ACyJ7B1TWvx9nhbPGdaN7G3byN6xI3uTva0R2TtuZG9YksFoNBotXURa1blzZ7Vo0UKNGzeWu7u7pcsBgHhp0aKFypQpoy+++MK0rGnTpvL399d3332nxo0bm23fs2dP3b9/X0uXLk3pUpEIv/76q7788kvlzZtXc+fOjXGFZnh4uH744QfNnj1bkZGRatGihYYNG2YTV+4+fPhQS5cu1dGjR2U0GlW8eHF17NhRGTJkMNvu77//1vDhw/XPP//o9OnTFqo2aVy7dk1z5szRkSNHJEnFixfXe++9p/z585tt5+fnpzFjxujOnTtWe85Go1GDBw/WunXrlDlzZi1evFh58+Y122bq1KlaunSpAgIC9MYbb+iHH36wULVJw9vbWwaDwWzZsz/9Y1tnMBis9jV+/PixWrdurXv37mnYsGFq1qxZjEbjiIgIrV27VhMnTpQk+fr6KmvWrJYoN8Xcvn1bHh4esXb0hYeH68iRIypWrNgLh+AErB3ZG4A1InvbNrI32ZvsTfa21teY7B07snfqQwc4ACBBZs6cqWnTpmnSpEmqUaOGlixZoq+//lpZsmTR1q1bzeaAWb16tT777DP1799fH3zwgQWrRkKsXbtWQ4YMUbZs2TR37lzly5dP0tMr1D/77DP9888/ypUrl0aPHq1atWpZuNqkcfXqVXXp0kU3b940CylZsmTR0qVLlTNnTkVERGjSpEmaP3++IiMj1axZM02aNMmCVb+a06dPq3PnzgoODpazs7OcnZ117949ubq6avHixSpatKgePnyo4cOHy8/PT/b29urRo4cGDhxo6dITZfHixRo1apS6deumQYMGxXnXX1hYmEaPHq0VK1boyy+/VOvWrVO40qTj6+ubqP2eH2rTmvj7++vDDz+Uv7+/XF1dVaJECWXNmlWRkZEKDAzUiRMnFBoaqly5cmnatGny9va2dMlJ4kV3VwwcONCm7q4AACCtIHvbPrI32ZvsTfa2VmRvsrc1oAPcgmIbGiM+rHVoDAC2ISwsTD169NCBAwdkMBhkNBrl6OioqVOnmoaX3Lx5sxYuXKj9+/erYMGCWrFihZydnS1cORJix44dGjBggNzd3TVr1iz98ccfmjFjhiIiIvTOO+9o0KBBcnNzs3SZSWbQoEFav369Bg4cqDZt2sjFxUU7duzQF198obJly2rChAnq1auXDh8+rFy5cmnkyJGm97u16t27t3bt2qXx48erWbNmkqTjx4/r448/Vq5cuTRx4kR16dJFly5dUqlSpTR27NgY8wxak7Zt28rV1VXz589/6bZGo1Ft2rSRk5OTFi9enALVISmFhYXp119/1bp163TmzBlFRERIejq0YNmyZdWwYUO99dZbZo3G1iot3l0BJAbZG4A1InunDWRvsjfZm+xtrcjeZO/Ujg5wC4oeGiN6yIuXsfahMQDYjsjISK1fv15Hjx6Vu7u7fHx8VLhwYdP67777TrNnz1bTpk01ZMgQeXp6WrBaJNahQ4fUu3dvBQcHy2g0Kn/+/Bo7dqwqVqxo6dKSXO3atVWjRg2NGzfObLmvr69Gjhyp2rVra8uWLXrnnXf0ySefyNXV1UKVJp0aNWqoSZMmGj58uNlyPz8/DRw4UGXLltXx48fVv39/vfvuu1Z/5Wq5cuXUv39/devWLV7bz5w5U9OnTzcNUWftQkNDY20MPX/+vDJkyKBs2bJZoKqUcffuXdnb29vEcJHPS4t3VwCJQfYGYK3I3mkD2ZvsTfYme9sCsjfZO7VxsHQBadnz/9ADgLWwt7eXj4+PfHx8Yl3/wQcfqH///lb/oz2tq1ChgubPn6+ePXvq7t27+uKLL2wygEtSUFCQypUrF2N5pUqVFBYWph07dmjy5Mlq1KiRBapLHvfv3491CKpSpUopMjJSZ8+e1YIFC1S2bNmULy4ZODg4JOiq4wwZMsSYw8oahYWFafz48VqzZo127twZI4h/++232rlzp9q0aaPPPvvMJhqYnpcpUyZLl5Bsli1bpsqVK2vIkCEv3M7JyUljx47V6dOn9fvvvxPCkeaQvQFYK7J32kD2JnuTvcnetoDsTfZObegAtyBrnuMBQNrVpUsX9e7dW9WqVTMti4iI0JEjR+Tt7a306dPLxcXFtC56LjLuoLFO3t7eWrRokbp3767evXtr2rRpqlq1qqXLSnLh4eFm79to0UPNde/e3aYCuPT0c5suXboYy6NDWq9evWwmgEtS/vz5deLEiXhvf+LECeXMmTMZK0p+zw6b6e3traCgoBjnVLduXd26dUtLlizRuXPnNH/+fDk4WGdEmDp1aqL2++ijj5K4kpRz4cIF9e/fP17bGgwGNW7cWNOnT0/mqoDUh+wNwBqRvdMWsjfZ21aQvcnecSF7I6VZ5ycsjYqMjNTMmTPVu3dvS5cCIA3bv3+/2rVrZ7bs4cOH6tKli2bPnm0WzmF9hg4dGuvy/Pnz69q1a3r//ffVpEkTs+FDDQaDvvrqq5Qq0SIqV65s6RJSXMmSJS1dQpJq3ry5Jk2apO7du6tIkSIv3PbcuXNas2aNunTpkkLVJY+5c+fqwIEDGj58uDp16hTrNu3atVO7du00depUTZ06VQsXLoz3UHWpTXxD+PPDH1tzCE+rd1cAyY3sDSA1IHvbNrJ37Mje1o/sTfaORvYme1saHeAW9vDhQy1dulRHjx6V0WhU8eLF1bFjR2XIkMFsu7///lvDhw/XP//8QwgHkCoZjUZLl4Ak4Ovr+8L1T5480cqVK82WpYUQnhZ/tMZnjlRr0r59ey1evFidO3fWsGHD1KxZsxiva0REhNauXauJEycqffr0Vh/C16xZo/r168cZwJ/10Ucfaf/+/Vq1apXVhvA//vjjpds8fPhQ33//vbZv3y4HBwerf43T4t0VQGKRvQHYCrK3bSB7x47sbf3I3i9G9rZOZG/rRAe4BV29elVdunTRzZs3TT9eN2/erF9//VVLly5Vzpw5FRERoUmTJmn+/PmKjIxUs2bNLFw1AMCWxedHrK26d++e/v33X7Nl9+/flyTdvXs3xjpJypUrV4rUllwuXryoAwcOmC17+PChJOns2bOxDsdVqVKlFKktqbm6umr69On68MMP9dlnn2n06NEqUaKEsmbNqsjISAUGBurEiRMKDQ1Vrly5NG3aNGXNmtXSZb+Sy5cv6+2334739q+//romT56cjBUlr9y5c79w/fr16/X1118rICBA5cuX16hRo1S0aNEUqi55pMW7K4DEIHsDAFIbsjfZm+xN9rZWZG+yt7WgA9yCvv/+e928eVMDBw5UmzZt5OLioh07duiLL77QF198oQkTJqhXr146fPiwcuXKpZEjR6pOnTqWLhsAYMNe9iPWln311VdxXk0/ePDgGMsMBoNOnTqV3GUlqxkzZmjGjBmxrhs/fnysy615TsGCBQtq5cqV+vXXX7Vu3TodPnxYERERkiRHR0eVLVtWDRs21FtvvZWgoa1SK1dXV0VGRsZ7+3Tp0pnmobMlV65c0ejRo7Vnzx5lzJhRY8eOVdu2bS1dVpJIi3dXAIlB9gYApDZkb7J3NLI32dtWkL3J3qkNHeAWdODAAbVs2VK9evUyLWvSpIlCQ0M1cuRIDRkyRIcPH9Y777yjTz75RK6urhasFgCAmGbMmCE/Pz+tWLHC0qW8klatWlm6hBRnzXMvvQonJyd1795d3bt3l/T0DgN7e3tlzJjRwpUlvddee02HDx+Od+g6dOiQTTXEhYWFaebMmZo1a5bCwsLUqlUrffLJJ/L09LR0aUkmLd5dASQG2RsAYO3I3taL7E32fh7Z2/qQva0THeAWFBQUpHLlysVYXqlSJYWFhWnHjh2aPHmyGjVqZIHqAAB4uRs3blj1VcnRxo0bZ+kSUlxaDeHPy5Qpk6VLSDatWrXSyJEjtXfvXlWtWvWF2+7bt09+fn7q27dvClWXvPbs2aPRo0fr8uXLKlKkiEaOHKmKFStauqxkkdburgASg+wNALB2ZG/rRfZ+iuz9FNnbepG9rQ8d4BYUHh4uFxeXGMvd3NwkSd27dyeAA0iVnp+v6UVzNQUFBaVobQAQm6lTpyZqP2turGjZsqWWL1+uDz74QO+//77atWunLFmymG0TEBCgpUuX6ueff1aePHnUoUMHC1WbNO7cuaNx48Zp/fr1cnZ21qBBg9S9e/dY59SzJWnp7gogMcjeAKwV2RuAtSF7k71tGdnbuhiMRqPR0kWkVd7e3powYYJ8fHzMlgcFBalatWr6+eefVbNmTQtVBwCx8/b2lsFgiLHcaDTGujyaLVypjJhGjhyp33//3epf37QY0IYOHZrgfQwGQ5xztaV23t7e8dru+e8xa39vBwYG6uOPP9a+fftkMBiUK1cusyG6bty4IaPRqLJly+q7775Tzpw5LV1yoi1cuFCTJ09WcHCw6tWrp+HDh1v1+QBIOmRvANaI7I1nkb3J3taC7E32BlIL274cw8rZ29tbugQAiCEtztcE2xffEP58QLPmEO7r6xvvbZ89b2sN4X/88cdLt3n48KG+//57bd++XQ4ODvGevys1y5w5s+bNmyc/Pz+tW7dOp06d0tmzZ2VnZ6csWbKoZcuWeuONN1SvXj1Ll/rKxo4da/rz1q1btXXr1pfuYzAYdOrUqeQsK1mlxQZEIDmQvQGkRmRv2CKy94uRva0X2fvFyN6wBDrALez5oYykFw9nJEm5cuVKkdoAIDZpcb4m2L60GNDOnDnz0m2uX7+uMWPGaPv27UqfPr0GDBiQ/IUlk9y5c79w/fr16/X1118rICBA5cuX16hRo1S0aNEUqi75NWzYUA0bNoyx/P79+3J2drZARUkvLTYSp8UGRCCxyN4ArA3ZG7aI7B07sjfZ25qQveNG9k5dGALdguIaykiKezgja79SBgCQuiX0isZt27bp1KlTVj9U1cvYekB7XmRkpGbPnq0ff/xRoaGhatq0qYYOHRpjDitbcOXKFY0ePVp79uxRxowZNXjwYLVt29bSZSWZ8PBwrVixQkePHjVrRN2/f79GjRolf39/GQwGVa9eXZ9//rny5ctnwWpfzdChQ/X222+rTJkyli4lxVy/fv2l28TWgPjpp5+mQHVA6kH2BgCkNmTv2JG9yd7Wiuxt28je1okOcAtKzPwfEleAAgCST3znanqWwWCw2RBu6wEtNgcPHtTo0aN17tw5FShQQCNHjlS1atUsXVaSCwsL08yZMzVr1iyFhYWpVatW+uSTT+Tp6Wnp0pJMeHi43n33XR04cECOjo46cuSIHBwc5O/vrxYtWigsLEy1a9dW4cKFtWnTJoWEhGj16tVW29gS1xy/aVlaa0AE4kL2BgCkNmRvc2Rvsrc1I3uD7J06MQS6BRGmAQCpzfz58y1dQqqQFgLa84KCgvTNN99o5cqVcnJyUt++ffXee+/JycnJ0qUluT179mj06NG6fPmyihQpopEjR6pixYqWLivJLVy4UAcPHtQnn3yijh07ysHh6U//KVOmKCwsTG+++aa++eYbSVKvXr3k4+OjGTNmaPjw4ZYsG0ng+QbEsWPH2nwDIvAiZG8AQGpD9n6K7E32tgVk77SL7J260QGeCoSEhGj58uXatWuXzpw5o3v37slgMChTpkzy9vZW/fr15ePjY5P/CAIAUpfKlSsneJ+DBw8mQyWWk1YC2rOWLl2qiRMn6v79+6pRo4ZGjhxp1cNxxeXOnTsaN26c1q9fL2dnZw0aNEjdu3c3hVNbs3btWjVq1Eg9evQwLQsLC9PWrVtlMBjMlnt4eKh169Zat24dIdyKpcUGRCAhyN4AgNSC7E32JnvbDrJ32kP2tg62+Y1jRQ4dOqT+/fvrzp07cnJyUr58+ZQ7d25FRETo3r172rZtm7Zu3aqpU6dq0qRJKl++vKVLBgBAN27ckK+vr1auXKmrV6/axDBsaS2gSdLZs2c1atQoHT16VFmyZNG3336rpk2bWrqsZLFw4UJNnjxZwcHBqlevnoYPH66cOXNauqxkdenSJbVq1cps2aFDhxQaGqps2bLJy8vLbF2+fPkUEBCQkiUmuYMHDyoyMjJB+7Rs2TJ5iklhabEBEUgIsjcAwBqRvW0D2Zvs/Syyt3Uje1sP2/1XxQpcuHBBPXr0kLu7uyZOnKiGDRvGuNI8ODhYGzdu1A8//KCePXvK19dX+fPnt1DFAIC07MmTJ/Lz89OKFSu0b98+GY1GGQwG1a5d29KlvbK0GNDGjx+vBQsWKDIyUnXr1tWAAQPk7u6uf//994X75cqVK4UqTFpjx441/Xnr1q3aunXrS/cxGAw6depUcpaVrKKiomRvb2+2bO/evZKk6tWrx9j+4cOHcnFxSZHaksvvv/+u33//PV7bRn+HWXsIT4sNiEBCkb0BANaE7G1byN5k7+eRva0T2dv68MpY0I8//igXFxctX75c2bNnj3Ubd3d3tW3bVrVr11aLFi30888/a8yYMSlcKQAgLTt69KhWrFihDRs2KDg4WJKUKVMmtWnTRm+99ZZy585t4QpfXVoMaHPmzDH9edu2bdq2bVu89rPWOw6evxo7LciXL1+M12vz5s0yGAx6/fXXY2y/e/duqx9+r3379ipbtqyly0gxabEBEUgMsjcAwBqQvWNH9rYuZO+nyN62hextnegAt6ADBw6odevWcQbwZ2XLlk0tW7bU7t27U6AyAEBaFxAQoJUrV8rX11eXLl2S0WiUi4uLqlevrj179uiLL75Q/fr1LV1mkmnZsqUMBoOly0hRH330UYL3MRqNyVBJynn77bdVpkwZS5eRYpo1a6Zp06apdu3aqlGjhpYsWaKLFy8qS5Ysqlevntm2q1ev1p9//qn+/ftbqNqkUbFiRfn4+Fi6jBSTFhsQgcQgewMAUiuyt+0je9s+srftI3tbJzrALSgoKChBQ6q99tprWrp0aTJWBABI6zZs2KAVK1Zoz549ioyMVIYMGeTj46OGDRuqVq1aun37tho0aGDpMpPc119/LUkKDw/X+fPnFRERocKFC1v9kFQvkitXLrVu3Tre21+/fl3Dhg1LxoqSl6+vr6pXr56mQni3bt20a9cuffTRRzIYDDIajXJ0dNSXX35pGvp38+bNWrhwofbv36+CBQuqW7duli0aCZIW764AEoPsDQBIbcjeZO+4kL2tD9nb9pG9rRMd4BYUHh6eoH/c06VLp0ePHiVjRQCAtG7gwIFydXVVhw4dVL9+fVWqVMlsHiNbvlL7l19+0fTp003/1jo5OalDhw4aNGiQTc7nM3z4cIWEhKhjx44v3Xbp0qUaP348v0OsjJOTk+bOnav169fr6NGjcnd3l4+PjwoXLmza5sSJEzp8+LDefPNNDRkyRM7OzhasGImR1u6uABKD7A0ASG3I3mTv2JC9rRPZO20ge1sf2/sXBQAAJFqePHl07do1rVixQv7+/vr777/VoEEDFSxY0NKlJavly5drwoQJyp07t1q2bCk7Ozvt27dPc+fOVWRkpFVffR2XAgUKaOzYsQoJCVHPnj1j3eb27dsaPny4du7cKUdHR6sfoistsre3l4+PT5xDk33wwQfq37+/7OzsUriypNeqVSurn0ctodLi3RUAAAC2gOxN9n4W2dv6kb1tG9nbOtEBbmH37t3Tv//+G69tg4KCkrkaAEBat2XLFh07dkyrV6/Wxo0btXv3bn377bd67bXX1LBhQ5UoUcLSJSaLJUuWqGzZspo3b57SpUsn6emcWwMHDtSSJUs0ePBg07BVtuK3335Tz549NWnSJIWEhKhv375m69euXasxY8bo/v37KleunMaOHatChQpZqNqkcfDgQUVGRiZon5YtWyZPMamELQ01OG7cOEuXACAVI3sDAFITsjfZOxrZ+ymyt/Uge8NaGIxGo9HSRaRV3t7eiRrO5vTp08lQDQAA5iIjI7V7926tWbNGf/zxh0JCQkz/brVp00a9e/dW7ty5LVxl0qhQoYI+/vjjGEOSHT16VO+88458fX3l7e1toeqSz+PHj9WnTx/t27dP3bp102effaagoCCNHDlSmzdvlrOzswYOHKjOnTtb/RB8Cf3dZTQaZTAY+N2FVM3b21sTJkyI8y4DAE+RvQEAqRnZm+xN9iZ7I3Uje1sn7gC3oFatWlm6BAAA4mRvb686deqoTp06Cg0N1ebNm7V27Vr9+eefWrZsmVasWKEqVaqoTZs2at68uaXLfSUhISFKnz59jOV58uSR0WjUgwcPLFBV8nN1ddXMmTP18ccfa+7cubp27ZoOHz6swMBA1ahRQ1988YXNNLRIUvv27VW2bFlLlwEkKe6uAF6O7A0ASM3I3mRvsjeQ+pG9rQ93gAMAAJNevXqpatWqqly5skqUKBHrVbtBQUFav3691qxZo6NHj9rElbpxXckZFBSkatWqac6cOapWrZqFqkt+UVFRGj58uFasWCE7Ozt98cUXatu2raXLSlJcrQtbxN0VAAAA1onsTfYmewPWg+xtnbgDHAAAmOzdu1c7d+6UwWCQu7u7KlasqCpVqqhq1aqmYcg8PT3VsWNHdezYUVevXtW6dessXDVelZ2dnb766it5eHho9uzZ2rNnj1q2bCkHB34qAqkdd1cAAABYH7J32kT2BqwX2dv68M0KAABMDh8+rFOnTunw4cM6cuSIjh49qm3btslgMChDhgyqVKmSqlSpoipVqqho0aLKmzevPvjgA0uXnSTu3bunf//912zZ/fv3JUl3796NsU6ScuXKlSK1JYfYzqdTp056/PixlixZokePHmnEiBGys7Mz28aazxmwRRUrVuTuCgAAACtD9iZ7k70B60L2tj4MgQ4AAF7oxo0bZqH8zJkzioyMlIeHhypXrqwqVaqoQ4cOli7zlbxoKKPoYYueZzAYdOrUqeQuLdm87JwlxVhvzec8dOhQvf322ypTpoylSwGSDMMLAgAA2A6yN9k7mjWfM9kbtojsbZ24AxwAALxQzpw51axZMzVr1kyS9PDhQ61evVorVqzQpk2b5OfnZ/UhvFWrVpYuIcW1bNkyQfMXWbtx48ZZugQAAAAAiBPZ2zaRvQHAMugABwAALxQaGqoDBw5o//79OnTokE6cOKHw8HA5OTmZhmSzdmkxoH399deWLgHAK2rVqpXy5ctn6TIAAACQBMjetonsDVg/srd1Ygh0AABgJiIiQkePHtXevXu1d+9eHTt2TOHh4XJ0dFTp0qVNwbtcuXJycnKydLkAAAAAAFgdsjcAAMmHDnAAAGDy3nvv6eDBgwoNDZWdnZ1KlCihqlWrqkqVKqpQoYKcnZ0tXSIAAAAAAFaN7A0AQPKiAxwAAJh4e3vL0dFRzZs31/vvv68CBQpYuiQAAAAAAGwK2RsAgORFBzgAADAZMWKE9u3bpytXrshgMOi1115TtWrVVLVqVVWqVEkZM2a0dIkAAAAAAFg1sjcAAMmLDnAAABDDv//+qz179pjmIrtz547s7Ozk7e2tKlWqmEK5q6urpUsFAAAAAMAqkb0BAEgedIADAICXOnfunPbu3au//vpLBw8e1IMHD+Tg4KCSJUuqWrVq6t+/v6VLBAAAAADAqpG9AQBIGnSAAwCABAkLC9PGjRv122+/6ejRozIYDDp9+rSlywIAAAAAwGaQvQEASDwHSxcAAABStytXrujYsWM6duyYjh8/rjNnzig8PFxubm6qXbu2KlWqZOkSAQAAAACwamRvAACSDneAAwAAk/v37+v48eOmwH38+HHdv39fRqNRGTNmVPny5VW5cmVVqlRJxYsXl52dnaVLBgAAAADAqpC9AQBIXnSAAwAAE29vbxkMBhmNRnl6eqpSpUqm/7y8vGQwGCxdIgAAAAAAVo3sDQBA8mIIdAAAYNK4cWNVrlxZlStXVuHChS1dDgAAAAAANofsDQBA8uIOcAAAAAAAAAAAAACATWDyEAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2wcHSBQAAkBZMmTJFU6dOTdA+f/zxh/LkyZNMFSVevXr1dP36dUnS//73P3Xp0uWF2/fo0UO7d++WJM2ZM0fVq1dP1rr8/PyUP3/+ZDkGAAAAACD1InuTvQEAkOgABwAgRXh5ecnHx8dsWWBgoPbs2SNXV1fVr18/xj6urq4pVV6ibdy48YUh/O7du9q7d28KVgQAAAAASKvI3gAAQKIDHACAFNGwYUM1bNjQbNm+ffu0Z88eeXp6auLEiRaqLPEyZMigw4cP69atW8qePXus2/j5+SkiIkKOjo4KDw9P4QoBAAAAAGkJ2ZvsDQCAxBzgAAAgkRo0aCCj0Sg/P784t1m3bp08PDxUqlSpFKwMAAAAAADbQPYGACDh6AAHACAV2759u3r06KHKlSurVKlSatSokSZMmKB79+6ZbXft2jV5eXmpdu3asT5O586d5eXlpX379pmWDRkyRF5eXtq/f7/69u2r0qVLq2rVqlqwYEG8amvcuLGkp0OxxSYgIEAHDx5Uo0aN5OAQ96Azq1atUocOHVS+fHmVLl1aPj4+mj59ukJCQmLd/q+//lL37t1VqVIlVaxYUQMGDDDNixabyMhILVq0SO3atVO5cuVUrlw5vfXWW/L19ZXRaIzXuQIAAAAAbBfZOyayNwDAmjEEOgAAqdTEiRM1a9Ys2dvbq0KFCvL09NTRo0f1888/a8OGDZo3b57y5s37yscZMWKEAgMDVatWLZ07d07e3t7x2q9AgQIqVqyYDh8+rICAAGXLls1s/caNGxUVFaVmzZpp6tSpMfaPiorSJ598orVr18rJyUmVK1eWi4uLDhw4oO+//16bNm3SnDlz5Onpadpn6dKl+vzzzyVJFStWVIYMGbR7924dPHhQYWFhMY4RHh6uPn36aOfOnXJ3d1e5cuXk6Oio/fv3a8iQIdq3b5++/vrrhDxdAAAAAAAbQvYmewMAbA8d4AAApEJbt27VrFmz5OHhoZ9//tk0jFlYWJi++OILLV26VP3799fy5ctlMBhe6VgBAQFavXq18ubNq6ioKNnZxX+AmKZNm+r06dPy8/NTp06dzNatX79e2bJlU6VKlWLdd+HChVq7dq3y5s2r2bNnK1++fJKk4OBgDRo0SNu3b9fnn3+uKVOmSJJu3LihsWPHysHBQTNnzlS1atUkSXfv3lWPHj106tSpGMf48ccftXPnTlWuXFmTJ09WpkyZJEl37tzRe++9J19fX1WoUEHt2rWL9zkDAAAAAGwD2ZvsDQCwTQyBDgBAKjR37lxJ0qeffmo2h5eTk5NGjRql/Pnz6+TJk9q7d+8rH6t+/fqmq9kTEsAlqUmTJpJiDsX277//6ujRo2rSpEmcjzlv3jxJ0tixY00BXJLc3d01ceJEpU+fXn5+frp8+bIkydfXV6GhoXr77bdNAVySMmXKpK+++irG44eFhWnBggVydHTUxIkTTQFckrJkyaIvvvhCkvTLL78k6JwBAAAAALaB7E32BgDYJjrAAQBIZSIiInT48GEZDAY1atQoxnoHBwc1bNhQkszmFUusokWLJnrfvHnzqkSJEjp06JACAgJMy9evXy+j0ajmzZvHut+NGzd07do1eXp6qmrVqjHWp0+fXrVq1ZIk7d+/X5J04MABSVKdOnVibF+sWDHlyZPHbNnJkyf18OFDvfbaa8qePXuMfUqVKqXMmTPL399ft2/fjucZAwAAAABsAdmb7A0AsF0MgQ4AQCpz7949hYeHy9PTU+7u7rFuEx04kyI8ZsyY8ZX2b9q0qU6ePKnNmzerY8eOkp6G8Lx586p06dKx7hMd2HPnzh3n4z5/jtH75MiRI87tr127Zvr7jRs3JElnz56Vl5fXC8/hxo0bypo16wu3AQAAAADYDrL3U2RvAIAtogMcAIBUxmg0StIL5xeL3sbJySlejxkZGRnnuoQOvfa8Jk2aaMKECdqwYYM6duyoy5cv6+TJk3r//ffj3Ccx5/iy+dYcHMx/1kRFRUmScuXKpQoVKrxwXzc3txeuBwAAAADYFrK3+TZkbwCALaEDHACAVMbDw0OOjo66d++egoODY70S/erVq5KkzJkzS/ovSEcHz+fdv38/map9eiV56dKldejQId2+fVvr16+XJDVr1izOfbJlyyZJZleNPy/6HLNkySJJyp49u86dO6fr16+rcOHCMbZ/dhg4SaarynPkyKGJEycm4IwAAAAAALaO7P0U2RsAYIuYAxwAgFTG0dFR5cqVU1RUlDZv3hxjfUREhGl5lSpVJEmurq6Snobt8PBws+2DgoLk7++frDU3bdpUUVFR8vPz04YNG1S4cOEXDn2WK1cu5c6dW0FBQaZ5xp718OFD7d69W5JUqVIlSVL16tUlKdbn5OrVqzp//rzZslKlSsnZ2VlnzpyJEdAl6datW2rSpIm6d++uR48exf9kAQAAAABWj+xN9gYA2C46wAEASIW6du0qSfrmm2906tQp0/Lw8HCNHj1aV65cUbFixUzDi3l4eChHjhwKCwvT4sWLTds/efJEn3/++QuHYUsKjRs3lsFg0MKFC3X27NkXXoEeLfochw8fbrriXJIePXqkTz75RMHBwapbt65prrJWrVrJw8NDy5cv16ZNm0zbBwcHa9iwYTGuwHd1dVX79u31+PFjffLJJwoMDDQ7xtChQ3Xx4kW5uroyDBsAAAAApEFkb7I3AMA2MQQ6AACpUIMGDfTuu+9q9uzZatu2rSpUqCBPT08dO3ZMN2/eVO7cufXdd9+ZzSHWs2dPjR07VmPHjtW6deuUJUsWHT58WJGRkapbt662bduWbPXmzJlTZcuW1ZEjRyS9eAi2aJ07d9aRI0e0YcMGNWvWTJUqVZKLi4sOHjyooKAgeXt766uvvjJtnylTJn311VcaMGCA+vXrp3Llyilbtmw6cOCAIiMjVbBgwRhX2w8aNEinT5/W3r179cYbb6hUqVJycXHRkSNHdO/ePRUoUECjR49O2icDAAAAAGAVyN5kbwCAbeIOcAAAUqnPPvtMP/74o6pUqaIzZ85o+/btcnNzU+/eveXr66uCBQuabd+5c2eNHz9eJUuW1KlTp3TgwAFVqVJFy5Yti7FtcmjSpIkkqUSJEsqfP/9Lt7ezs9N3332ncePGqUSJEjp8+LD+/PNP5ciRQ5988ol+//13ZcqUyWyf+vXr67ffflP9+vXl7++vXbt2qXjx4vr111+VI0eOGMdwdnbW7Nmz9b///U+vvfaajh8/rn379ilbtmzq27evli5daprnDAAAAACQ9pC9yd4AANtjMBqNRksXAQAAAAAAAAAAAADAq+IOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxywIStWrJCXl1eC/+vcubOlS4+3KVOmxHkexYoVU5kyZVSvXj317dtXW7ZssXS5+H9HjhwxvU49e/Z86fZDhgyRl5eXBg8ebLY8+jH27NmT5DX26NHD9PjHjh1L8sd/VkREhPz9/ZP1GM87c+aMxo4dq2bNmqlixYoqVaqU6tSpo549e2rhwoUKDQ1N8mPevn1bgwcPVvXq1VWyZEnVqlVLO3fulCStXLlSLVq0UJkyZVSxYkX16NFD+/btM70GERERiT7utWvXTI9z+fLlpDodvCKj0agLFy5YuoxEuXjxonr37q0qVaqoVKlSev3113X27FkZjUbNmTNHjRs3VqlSpVSlShX973//M/17XLt27Vc6blJ9JpLKuXPnYiyrV6+evLy8tHTp0gQ9VmL3AwAA1oM2CtooUivaKMzRRkEbRWpiDZ9PANbBwdIFAEg6mTNnVvny5WMsv3Hjhm7cuCEnJyeVLFkyxvqiRYumRHlJKrZzMRqNCg0N1bVr1+Tn5yc/Pz/5+PhowoQJMhgMFqoUkrR8+XLTn3fv3q2rV68qb968FqzI3I0bN8x+EC9atEhlypRJlmPt3r1bY8eOVaNGjTRw4MBkOcbzfvjhB02fPl1RUVFyd3dXvnz55OjoqNu3b2vXrl3atWuXfv75Z02bNk0lSpRIkmNGRUWpZ8+eOnPmjBwcHFSkSBGFh4crd+7c2rRpkz777DNJUtasWZU9e/ZU9X5A0jt+/LjGjBmj/Pnza+LEiZYuJ0EePXqkrl27KiAgQM7OzipSpIhCQkKUJ08ezZkzR+PHj5ck5c6dWx4eHsqTJ4+FK056AQEBGj9+vA4ePKgdO3ZYuhwAAGAlaKOgjSK1oo3iP7RR0EaR2qT2zycA60EHOGBD6tSpozp16sRYPmXKFE2dOlVZs2bVokWLLFBZ0nvRuYSFhen777/XL7/8ojVr1qhy5cpq3759CleIaCEhIdqwYYMMBoNq1qypXbt2acmSJTGuzLSkFStWKCoqSnXq1NGOHTu0YcMGDR06VBkzZkzyY/30008pemX18uXLNW3aNLm6umrcuHF64403ZG9vb1p/4cIFDRs2TEePHlWPHj20fv16ZcqU6ZWP6+/vrzNnzkiSZsyYoVq1apnWTZkyRZJUoUIFzZ8/Xw4OT3+OhISEaP369ZJkWpYY2bNnNz1Orly5Ev04SDq//fabjh8/rvz581u6lAQ7ePCgAgICZDAYtGLFChUqVMi0bsOGDZKkZs2a6dtvvzUtf/jwocqUKSNHR8dXOnbp0qWT5DPxqnbv3q21a9cqe/bsFqsBAABYH9oonqKNInWhjcIcbRS0UaQm1vD5BGA9GAIdgM1xcnLSp59+qtKlS0uSFixYYOGK0raNGzcqODhYRYoUUcuWLSU9DXNhYWGWLez/GY1G+fr6SpLatGmjAgUKKDQ01LTM2s2YMUOS9Omnn6px48ZmwVKSChUqpOnTpytz5swKCgrS/Pnzk+S4QUFBpj9XqVIl1nUVKlQwC5EuLi4qVKiQWQdjYjg6Opoe51U7IIHo92uWLFlivDej11WuXNlsefr06VWoUCHly5fvlY6dVJ8JAAAAWA5tFKkLbRSWRRsFbRQvkto/nwCsCx3gAGxWgwYNJEn//POPHj9+bOFq0q4VK1ZIkmrXrq26devK2dlZgYGB2rx5s4Ure2r//v26evWqHB0dVb16dTVp0kSStGTJEgtX9uoePHigK1euSNILh0vLlCmT6fNy/PjxJDl2ZGSk6c9OTk5m66KiomJdDqRGL3q/8l4GAABAfNFGkTrQRmE5tFHgZVL75xOAdaEDHIDJpk2b1LNnT1WtWlUlS5ZUzZo11bdvX/3111+xbu/l5SUvLy+zeYme1blzZ3l5eZmGEpKka9euycvLSzVq1NCtW7fUq1cvlS5dWpUrV9agQYOS9Hzc3d1Nf3706JHZ8b28vHT58uVY96tXr568vLxMP7okad++ffLy8lL79u114cIFvfPOOypVqpSqVatmmv81er/Tp09r+/btevvtt1WuXDlVqVJFXbp00ZYtW+KsNTIyUkuXLlXnzp1VqVIllSxZUq+//ro++eQTnTx5MtZ9QkNDNXPmTL399tuqVq2aSpUqpbp162rQoEE6dOhQnMc6c+aMPvvsM73++usqWbKkqlSpoh49emjTpk2xbv/sc/bscxIfV65c0YEDByRJDRs2lJubm+rWrStJqWaou+i5hapWrar06dPLx8dHknTx4kXt3bs31n0S8z5asWKFvLy8tH//fklPr3r28vLSkCFDzPa7f/++pk6dqpYtW6pcuXIqU6aMmjRpovHjxysgICBB5/bslcvbtm174bZ9+/bVunXrNGnSJLPlQ4YMkZeXV5zDTUWfV7169ST999x06dLFtE30cxX9WNHPwdSpU03rpP8+Z15eXoqIiIhxrDNnzmjEiBFq0KCBSpUqpUqVKqlr167auHGj2XYve32uXr2qUaNG6Y033lCpUqVUsWJFdejQQUuXLjULxc8/B4sWLdK1a9c0dOhQ1a5dWyVLllTt2rX1v//9T9euXYvzuT148KAGDRqkunXrqmTJkqpatao++OADs+/WXbt2ycvLSyVKlFBgYGCsjxMaGqoKFSrIy8tLx44di3GuCf18PnjwQDNnzlTHjh1VpUoVlShRQhUrVlTr1q01ZcoU3b9/P8Y+Cf3ej35No+9WWLNmjby8vNS5c+cY5zZ37ly1b99e5cuXV6lSpdSgQQN9/vnnunTpUqzHun//vr777ju1bt1alStXVpkyZfTGG2/of//7n86ePRtnbd99912sjzdlyhSz2qJrHzp0qCTp+vXrpvOP/nxfv35dkjR06FCzz0H056J27dqxHis+74lna3jRZyIh3+fRz8HOnTt15swZ9e/fX9WrV1fJkiVVv359ffXVV7p7967ZPs8+B7du3TL7zD7v0KFD+uCDD1SlShWVLl1ajRo10qRJkxQcHBzr9q+6HwAAsG20UTxFG4U52ihioo3iP7RRWG8bhTV8PgFYFzrAASg8PFwfffSR+vXrp127dsnBwUHe3t6KiIiQn5+funXrpq+++ipJjxkWFqYePXpoz549KlSokAwGg3Lnzp2kx4j+Uens7CxPT88kecy7d++qa9euOn36tAoXLqwnT56oQIECZtssX75c77//vk6ePKmCBQsqXbp02rdvnz788EONHTs2xmMGBwerY8eOGj58uPbv36/06dPLy8tLDx8+1OrVq9W2bVvNmTPHbJ+wsDB169ZNkyZN0vHjx+Xh4aEiRYooODhYa9euVceOHbV06dIYx/r111/VunVrrVy5Uvfv31eRIkXk6uqq3bt3q1+/fho0aFCsP64Ta/ny5TIajcqXL5/p6t7mzZtLkg4cOKALFy4k2bESIzg4WH5+fpL+q6tQoUIqVqyYJGnx4sVJdqzMmTOrfPnypkaPnDlzqnz58mbvn7Nnz6p58+aaMmWKzp49q9y5c6tgwYK6cuWKZs+erebNm2vfvn3xPqarq6vKly8v6Wnn3meffaYDBw7E+hpnzZpVhQsXfuXPSrp06VS+fHkVLVrUtKx8+fKmc43tOYiu8UV+/fVXtW3bVr///rvu3r1reu/u3btX/fv3j7NT83mbN29W8+bNtWjRIgUEBOi1115TpkyZdOjQIQ0fPlw9evQwNUY979SpU2rRooVWrlwpFxcX5c+fX7du3dKyZcvUrl073bhxI8Y+3377rTp16qS1a9fq8ePH8vLykp2dnbZt26Zu3bqZruKvUaOGcubMqYiICK1duzbO2oODg1WoUKEXXi0fH5cuXdKbb76pSZMm6ejRo8qUKZO8vLxkb2+vkydPaurUqXrrrbfifC7iK3369CpfvrwyZ84s6emV/M+/P27evKlWrVpp3LhxOnbsmLJmzaoiRYro9u3bWrJkid58803TfGnR7t27p3bt2mnGjBk6d+6csmbNqoIFC+rOnTtatmyZ2rRpo507dyZJ7dGfUScnJ9P71cHBQeXLlzfdIRD93i5ZsuRLHze+74mXeZXv8507d6pt27basmWLPD09lTNnTl27dk3z5s3T22+/bdbx/Oxz4OjoGOdn1tfXVx07dtSePXuUM2dOZcqUSZcuXTI1goaGhsZaS2L3AwAAtos2ivijjSJhaKP4D20UtFGkpjYKKfV/PgFYHzrAAejrr7/W5s2b5erqqsmTJ2v37t1atmyZ/vzzT33++edycHDQvHnzNHfu3CQ75oMHD3T79m2tXLlSvr6+2rVrl3r16pVkj3/37l2tWrVK0tMfbc9eZfoqrl69KhcXF23atMlUd/ScNNEWLFig6tWra/v27VqxYoV27NihMWPGyMHBQQsWLIjxw3Hw4ME6cuSIsmbNqvnz52vr1q1avny5/vrrL/Xp00dRUVH6+uuvTSFIevqj8MiRIypQoIC2bNmiDRs2aMWKFdq9e7c6duwoo9Go8ePH68mTJ6Z9du7cqTFjxsjOzk7/+9//dPDgQfn6+mrbtm2aO3euMmfOrLVr15pdDS9J2bNn1/r167V+/Xq98cYb8X6uoqKiTK9B9BXLklSnTh15eHhIsvwVnOvWrVNISIhcXFzMzu3NN9+UJG3ZskV37txJkmPVqVNHixYtUvHixSVJLVq00KJFi/TBBx9Iehp0e/bsqYCAAJUrV05+fn5au3atVq5cqR07dqhu3bq6f/++PvzwQ129ejXexx0xYoRcXV1lNBq1cuVKderUSZUrV1avXr00c+ZMHTt2zDTcV1LImjWrFi1apOHDh5uWLVq0yHSuzz4Hbdq0Ma17kcOHD2vs2LEKDw9Xr1699Ndff5k+W+PGjZOdnZ1mzJih3bt3v/Bxzpw5o48//lhPnjxR7969tX//fq1atUp+fn7y9fVVgQIF9Ndff2nUqFGx7v/777+rcOHCWr9+vTZt2qR169Zp8eLFcnNz0927dzV79myz7detW6effvpJdnZ2GjZsmPbs2aPly5dr165dGjBggCRp9OjRunDhguzs7EzfJdGfm+etXLlSktS6dWvTssR+PkeMGKEbN26obNmy2rZtm+k7ZO/evRo/frzs7Ozk7+9vOmZiFS9eXIsWLTLdCV2jRg0tWrRII0aMkPT0zpIPPvhAFy9eVMGCBbVq1Spt2rRJK1as0J9//ql27drpyZMn+vTTT01XlEvSzz//rMuXL6t8+fLasWOH1q1bp5UrV2rnzp1q2LChwsPDX7lRNLr2999/X9J/7+1FixbJz89PixYtUtasWSVJ77//vhYtWqQffvjhhY+ZkPfEiyT2+zzaggULVKNGDW3btk3r1q3T5s2b9eOPP8re3l6XL1/WsmXLTNs++xxkypQpzs/soUOH1Lx5c+3cuVMrV67U9u3bNWHCBEnSuXPn4rz6P7H7AQAA20UbRfzRRkEbRWLRRkEbRWpqo7CGzycA60MHOJDG3bx503QF6ZgxY9S4cWPTOnt7e3Xs2FH9+/eX9HQooFe9G/BZHTp0UOHChSU9vbPu2eHAEsNoNCooKEhbt27Vu+++q3v37snR0VH9+vVLinJN3n//fWXPnl2S5ObmpnTp0pmtz5Url6ZNm2a649FgMKh9+/bq0aOHpKfPY7SjR4+ahn364YcfVKVKFdM6Jycn9e/fX2+99ZYkaeLEiaZ1Z86ckfR0TpxcuXKZlqdLl05DhgxRzZo19cYbb+jevXumdd9++62MRqMGDx6sLl26yN7e3rSuWrVqGjdunCRpzpw5CgoKMq1zdHRUoUKFVKhQIaVPnz7ez9Pu3btNV5tGh7Xox4t+n61atcqid/dFDy1Wv359ubm5mZY3b95cdnZ2Cg8PN22T3H777TcFBAQoS5Ys+umnn5Q3b17TuixZsuiHH35Q0aJF9fDhQ82YMSPej1u8eHEtXbpUFSpUMC0LDg7Wjh07NGnSJLVv3141a9bUd999p5CQkCQ9p6Ty448/KioqSk2aNNGgQYPMPnOtW7dW27ZtJemlHWVTpkxRWFiYOnXqpAEDBpg9TvHixfXDDz/I3t5ea9as0fnz52Ps7+joqKlTp6pgwYKmZeXKlTOFvcOHD5ttH/1Z7969u7p27Wr6zNnb26t3796qUaOGIiMjTaGxTZs2MhgMOnnyZIwO0Fu3bmnPnj2yt7dXixYtzGpK6OczMDBQ586dk/T0ez9btmymdQaDQS1btlTlypUlKdahxJPSxo0bdfr0aaVLl06zZs2St7e3aZ27u7vGjh2rWrVqKTw83OwK+ujvwEaNGilTpkym5enTp9fw4cNVvXp1VapUKdXdPZzQ90RcEvt9Hi1z5sz64YcfzF77+vXrmy5UeP69HB+FChXS+PHjTY0T0tPv/ho1akhSnMNeJnY/AABgm2ijSDjaKOKHNoqEoY0ibrRRJG0bhWQdn08A1ocOcCCN27lzpyIiIpQ1a1Y1bdo01m06deokR0dHPXz40DQvTlJ49sduQj07F2v0f97e3qpatap69+6t06dPK3369Pr+++/NOlSSwsvqbt++vVxdXWMsf/vttyVJ/v7+unjxoqT/5jwqXbp0nEMsvfvuu5KeDpf2zz//SJJpSKply5bpt99+M5uz1cnJSb/88ovGjRtnCsHXrl3T6dOnJZn/kHxWnTp15OnpqdDQ0DjnVEuI6B/6pUuXjjEEW3QNDx480Lp16175WIlx4cIF0x2lzz8n2bJlU9WqVSVJS5YsSdKrj+OydetWSVLLli2VMWPGGOudnJxMcxNv3bpVRqMx3o9duHBh/fbbb1q5cqU++ugjlStXTo6Ojqb1gYGBmjFjht58803dvHnzFc8kaYWEhJjmOYtuaHnegAEDtHHjRtNcd7EJCwszDYkd12cg+nvEaDTGOh9ZyZIlTXf8Puu1116TJD18+NC07PLly6bPefRn/3lffvmltmzZooEDB0qS8ubNq0qVKklSjA7QVatWKSoqSrVr1461hoTInDmz9u7dq2PHjpkNAxctMjLS1NiX3OEy+n1fr149swaVZ3Xv3l2StH//ftNzHP2d8vPPP2v16tVmz3327Nk1Z84cjRkzRs7OzslYfcIk5j0Rm6T4Pq9WrVqMhlHpaWe0ZP5ejq/69eubNVpGi54/7/m5xV91PwAAYJtoo0g42ijihzaKhKGNIna0UTyVlG0UUur/fAKwTkkz3g4AqxX946dYsWKys4v9mhhXV1cVLFhQ//zzj/z9/VW3bt0kOfar/EBycnKKMdeqnZ2d3NzclD17dpUpU0aNGzd+5Su2Y/OyukuXLh3r8ly5cil9+vR6+PChLl26pNdee830/JcoUSLOxytQoIDc3d0VHBwsf39/FS1aVO3atdOyZct0/vx5jR49Wl988YWKFSumatWqqVatWqpUqZLZkGrRd3tK0ocffhjnsaKHI4uuK7Hu3bunP/74Q1LsP+QrVKigvHnz6urVq1q0aJHatGnzSsdLjOghfjNnzmy60/BZLVq00J49e3T9+nXt2rVLderUSdZ6/P39Jb34vRC97u7du7p3716C58IqVqyYihUrpr59+yokJESHDx/W7t27tWrVKgUGBurKlSvq379/vOcgTgn//vuvwsPDJSnOhqLMmTOb7maIy6VLlxQWFibp6ZBe0XM3x3Y8KfbPQHRjzfOiO1kjIiJMy6Ln93N1dY2zYzdnzpwxlrVp00b79+/XmjVr9PHHH8tgMEj6b8ixZ4cWe1XOzs66ceOGjh07pitXrujq1au6cOGCTp8+rcePH0tSsjesJOR9HxkZqcuXL6tkyZLq0aOHNm7cqNu3b+uTTz6Rg4ODSpUqperVq6t27doqU6aM6blLLRL7nnheUnyfJ+S9HF9xPWZ0Y2tcF1Mkdj8AAGCbaKNIONooXo42ioSjjSJ2tFEkfRuFNXw+AVgnOsCBNC44OFiSXjosTXRIS8rhxV7lzrzoOXws4WV1x3ZlbDRXV1c9fPhQDx48kBT/59/NzU3BwcGm59/d3V1LlizR7NmztXbtWl2+fFmnTp3SqVOn9Msvvyhz5swaMGCA2rdvL8n8qs/4DG2bmLv/nrVmzRrTD/mxY8dq7NixcW77999/6+TJky8MVUktIiJCq1evlvT0yuKXHXvRokXJHi7j8154trHk0aNHCQ6Xz3JxcVGNGjVUo0YN9e/fX8OGDdO6det09OjRFH89XuTZIfKeHQIuoZ59T584cSJB20d79or0l4muO6E1N27cWGPGjNGNGze0b98+Va1aVX///bfOnz8vT0/PJGvcu3jxor755hvt2LHDrJPb3d1dFStWVEBAgGkYw+SUmPe99DSYr1q1Sj/99JM2btyoW7du6ciRIzpy5IimTZum3Llza9iwYWrQoEHynkACJPY98byk+D5PyHs5vmK7ozw59wMAALaJNoqEo43i5WijSDjaKGJHG0XSt1Gk9s8nAOtFBziQxkX/8HlZmIgOQ7H9UIprmKPoOwhTq+Sq+0VzFEUHiOgrQeP7/Eevf/b5d3d3V79+/dSvXz9dvnxZ+/bt0759+7Rjxw4FBgZqxIgR8vDwUMOGDU130nl4eGjfvn2JP7l4ip6TytXV9YVhKSAgQEajUYsXL9aYMWOSva5o27dv1507dyQ9HUosrjtFHz9+rIcPH2rnzp26ceNGrFfDJtX7yM3NTffv33/he+H+/ftm27/M559/rr1796pVq1bq3bt3nNs5Ozvriy++kJ+fn8LDw+Xv7x8jTMR1nsk9J9ezQ/UFBwebzfec2Mc5fPjwK3dCxvd4CW2Qc3Z2VrNmzbRkyRKtWbNGVatWNV1Z7ePjkyQdl4GBgerUqZMCAwOVK1cutW/fXsWLF9drr72mPHnyyGAwaNCgQS/sAE/K97304u/A6H9/nt1eevo9OmzYMA0bNkxnz57V/v37tXfvXu3evVvXr19Xv379tHjx4jjveHnV2hMqse+JuB4npb7PAQAAUhJtFDHRRvHqaKOgjSKp0EaR9G0Uqf3zCcB6MQc4kMZFzwtz+vTpOIe6DQ4O1qVLlyRJ+fPnNy2PnrMz+iq95wUEBCRhpUnj2SG3Yqs7NDT0la8sjp4D63lXrlwx/dAsXLiwpP+e/5MnT8b5eBcuXDAFlejnPzAwUAcPHjTNq5U/f361b99ekyZN0o4dO0xDr0X/KC1YsKCkp1d83r59O85jHTx4UBcuXHilIWfPnDljmstr3Lhx2rlzZ5z/RV+xvHbtWlPwTgnRcwsVKVJEu3btirO+OXPmSHo69PLvv/9u2j853kfxeS9EXxWcMWPGeF1Z/eTJE12+fFlbtmx56bbu7u6mwPVsgIv+nEcP8fW85P6c582b11TDs8PkPevvv//WO++8o6FDh8YZgp99nPPnz8d5vOPHj+vs2bOv3EkZPWfV48ePde3atVi3+eOPP9S5c2d98803Zsujh/P6448/FBkZaRoKLKmG+Vq+fLkCAwPl4eGh5cuXq3fv3qpTp47y5s1rami5detWrPsm9fd+fN73f//9tyTJYDAoX758pvr27t1r+q7y8vJS586dNW3aNP3xxx/KnTu3IiMjtXbt2mSrPaFe5T3xrJT8PgcAAEhptFGYo42CNgraKGijsOU2Cmv4fAKwXnSAA2lc7dq15eDgoNu3b2v9+vWxbrNw4UJFRETIxcVFlStXNi2P/nEb2zw0x48fT5Xh0sPDw9TBE1vdW7duTdTcp89asWJFrEE9eji0smXLmq7SjR4q6Pjx43EO+zV37lxJUo4cOeTl5SVJ6tGjhzp27ChfX98Y27u5uals2bKSnoYiSSpUqJApmC5cuDDW4xw6dEgdO3ZU06ZNdfTo0Xicaeyi563y9PRUvXr1XrjtO++8I+npD/DoIJzcAgMDtWPHDkkv/7FeqlQpU1BfunSp6b3xKu+juK7kjn4vrFy50uwq6mhhYWGm91CtWrVeWHe06LmTTpw4YQrUcdm9e7fu3bsnDw8PlSlTxrT8RZ/zyMhIbd26NV61JJa7u7sqVKgg6b+rgp+3du1aHT58WNeuXYvz+XV3dzd9f82fPz/Wba5evaoOHTrozTff1MaNG1+p7kKFCil37twvrNvX11f79+83NRJFK1OmjIoUKaKgoCAtWLBA//77r4oXLx7n/GIJFR12c+XKFevV6ufPnzd9B0R/h0RL7Pd+9OvyfPiPft9v3bpVV69ejXXf6NerbNmyypAhgyIiItSyZUt17dpV27dvj7F9lixZVLRoUUnmc5i/qPZHjx7pr7/+ivX4SeVV3hPPP05KfZ9Hi55/M67GGwAAgKRCG4U52ihoo3gWbRS0USRWam2jSO2fTwDWjQ5wII3LmTOnaQ6mESNGmP2gioqK0m+//aYpU6ZIkvr06WM2FE30D745c+bowoULpuV///23Pv7445QoP8GcnZ1VvHhxSdKUKVPM7nLcvXu3vvjii1c+xokTJzRixAjTsEtRUVFauHChKSQOHDjQtG25cuVMVzD269fPbOivsLAw/fDDD6arej/99FPTD+cWLVpIkqZOnaqdO3eaHf/gwYOmH4LPzgnVv39/SdLMmTM1a9Yss6uCDx48aFpftmxZVa1a1bQuPDxcFy5c0IULF156xXBYWJjWrFkj6elQSE5OTi/cvnbt2qYf4IsXL37hti/y77//6sKFC/r3339fuu3KlSsVEREhR0dH0/P4ItE/sG/fvm26yvVV3kfRw05dv349xnGyZ8+uO3fu6P333zfrDAwMDFT//v31zz//yM3NTX379n1p3ZJUo0YNNWrUSJI0fPhwffnllzGu9H3y5ImWL1+uAQMGSHr6Pnl26K3oz/m5c+c0f/58UwfY/fv3NWzYsDjvJkhKffr0kcFg0KpVqzRjxgyz4L5y5UotWLBAktSzZ88XPk7fvn1lb2+vtWvXaty4cWZXUP/zzz/q1auXwsPDlTt3bvn4+LxSzQaDQX369JEkzZo1S0uXLjU9d5GRkZo5c6Y2b94sBwcHdevWLcb+0Q0fkydPliS1bt061uMk5PMZLfpK/jNnzmjTpk2m5UajUTt37lTPnj1NV9M/P3xcYr/3o99Tz39GGzduLC8vLz158kTvvfee2bDrwcHBGjFihHbv3i0HBwcNHjxY0tO7G5o1ayZJ+vLLL3X8+HGzx/Tz89Pu3bslPf2Oeb72Xbt2yc/Pz7Q8ICBA/fr1U2BgYJz1J4VXfU88K7Hf54kV/b314MEDrrQHAADJijYK2iii96GNIna0UdBGkRipsY3CUp9PAGkHc4AD0NChQ3Xr1i398ccf6t+/v7Jly6YcOXLo6tWrCgoKkiR16tRJ7733ntl+vXv31q5du3T79m35+PiocOHCevLkiS5duqS8efOqTZs2cV5VaEkDBgxQ7969df78eTVo0ECFCxfW/fv3df36dZUqVUrly5c3hYjEKFq0qJYtW6YNGzbotdde082bN3X79m3Z2dlp6NChMTojvvnmG33wwQc6cuSIunTpoty5cytTpkzy9/dXcHCw7O3tNWDAAFOHjyR16dJFe/bs0c6dO/Xee+8pW7ZsypYtm4KCgkyhpV69emrXrp1pn2bNmunSpUuaMmWKJk6cqJ9++kkFChTQ3bt3TfsULFhQP/74o1l9t27dUtOmTSU9HY4orh+5krRlyxbdu3dPUvyGQrKzs9Nbb72lb7/9Vv/8848OHTpkCjMJ8dlnn2n//v2qXLmyKWjEJfoq49dffz1eczU1a9ZM48eP14MHD7R48WJTWEvs+6h48eLatm2b1qxZo7Nnz6pixYoaOXKkMmTIoBkzZqhXr146cuSIGjZsqMKFC8vBwUHnzp1TeHi4PDw8NHHiRNPQVfExceJEubq6auXKlZo/f77mz5+vXLlyKXPmzKbPa1hYmBwdHTVo0CB16NDBbP86deqoYsWKOnjwoL788kvNnj1bnp6eunjxosLDw9W3b19TA1RyqVatmoYOHaqvv/5a3333nWbPnq28efPq5s2bpnnSPvzwQ7PGlNhUqFBBY8aM0ciRIzV37lwtXrxYhQoV0qNHj3T58mUZjUZlyZJFv/zyy0uDV3y0bdtW58+f15w5czR8+HB9//33ypEjh65du6Z79+7J3t5eo0aNivWq6RYtWmjSpEl6/PixHB0d1bx581iPkZDP57N1/fbbb7p8+bL69eun3Llzy9PTUzdu3FBgYKAcHR1VuXJl7d+/P8ZQ6In93i9WrJikp3ObNW7cWIULF9bUqVPl4OCgH3/8Ue+9954uXryoFi1aqECBAnJzczMNdejs7KzRo0erYsWKpscbOHCgDh06pFOnTqldu3amcwgICDDd2fPOO++YdYC3atVKCxculL+/v/r27at8+fLJ1dVVFy5ckL29vT744APNmDHjpc/fq3iV98SzEvt9nlheXl6ys7NTaGioGjdurGzZsumXX36J1zCHAAAACUUbBW0UtFHEjTYK2igSK7W1UVjq8wkg7eAOcABycnLStGnT9N1336lmzZoKCwvT6dOn5eLiombNmmn+/PkaMWJEjGF7ihUrpmXLlsnHx0eZMmXSxYsXFRkZqXfffVe+vr7KmjWrhc7oxWrXrq3ffvtNDRo0kKurq86fP6906dKpX79++u2330xXvyZWly5d9O2336pgwYKmK08bNWqkxYsXx3oVpYeHhxYsWKAxY8aoUqVKevjwoc6ePStPT0+1bdtWy5YtU69evcz2sbe317Rp0zRs2DCVK1dOoaGhOnPmjEJCQlSzZk198803+vHHH83mgZKe/gBfsmSJfHx85O7urjNnzigoKEjFixdX//79tXz5cmXOnDnR5x4d3EqUKBHvoZDatm0rR0dHScl/BeexY8dMcyvFd64iFxcXtWzZUpL0119/meaaS+z76L333lO7du3k4eGhS5cu6ezZs6Z1xYsX19q1a9WnTx8VKVJEV69e1aVLl1SwYEF98MEHWr16dbyHFovm5OSkr7/+WkuXLtW7776rEiVKKCwsTGfOnNHNmzdVsGBB9ejRQ6tXr47xPpOeBoxffvlFAwYMUJEiRRQYGKh///1X1apV06JFi175KuT46tq1q5YsWaLmzZsrXbp0Onv2rCIiIlSnTh3NmTNH/fr1i9fjtGnTRqtWrdJbb72lrFmz6ty5c7px44YKFSqknj17avXq1ab56JLCkCFDNGfOHNWvX19Go1FnzpyRvb29GjdurCVLlpg1AD0rU6ZMps7bevXqJWlHo7u7u+l7pUiRIrp7967OnTsnd3d3U6PgV199JenpXeLP3rWQ2O/9li1bqmfPnsqaNauuXbtmNqdjnjx5tHz5cn366acqXbq0bt++rQsXLihnzpzq0qWLVq1aZfoMRnNzc9OCBQvUr18/lShRQvfu3dOZM2dkNBpVv359/fTTTxo1alSMfZYsWaIePXoof/78unHjhu7cuaNGjRrJ19dXVapUSbLn+EUS+554XnJ/nz8rf/78GjdunAoUKKB79+7pxo0bMe4QAQAASCq0UdBGQRtF3GijoI3iVaSmNorU/vkEYP0MRibzA4AkUa9ePV2/fl1jx46NdwcGks6YMWN05coVzZo1y9KlAEmidevWOnnypGbOnPnSK8cBAAAA4Fm0UVgWbRSwNbRRALA23AEOALB6UVFROnjwoAoXLmzpUoAkcfLkSZ08eVI5c+ZUzZo1LV0OAAAAACCeaKOAraGNAoA1Yg5wAIDV++KLLxQYGKjOnTtbuhQg0a5evSpJunPnjoYMGSLp6XCF9vb2liwLAAAAAJAAtFHAFtBGAcDa0QEOALB6b7/9tvr166dMmTJZuhQg0davX69vv/3W9PeiRYuqU6dOFqwIAAAAAJBQtFHAFtBGAcDaMQQ6AMDqeXt7Eyxh9by9vZUtWza5urqqQYMGmj17tpycnCxdFgAAAAAgAWijgC2gjQKAtTMYjUajpYsAAAAAAAAAAAAAAOBVcQc4AAAAAAAAAAAAAMAm0AEOAAAAAAAAAAAAALAJDpYuwFoYjUZFRTFaPAAAAADAnJ2dQQaDwdJl2ASyNwAAAAAgNgnJ3nSAx1NUlFF37z6ydBkAAAAAgFQmUyY32dvTAZ4UyN4AAAAAgNgkJHszBDoAAAAAAAAAAAAAwCbQAQ4AAAAAAAAAAAAAsAl0gAMAAAAAAAAAAAAAbAId4AAAAAAAAAAAAAAAm0AHOAAAAAAAAAAAAADAJjhYugAAAAAAQExRUVGKjIywdBlpnr29g+zsuHYcAAAAAGwR2Tt1SOrsTQc4AAAAAKQiRqNRDx7cVUhIsKVLwf9zcXFXhgyZZDAYLF0KAAAAACAJkL1Tn6TM3nSAAwAAAEAqEh3A3d095eSUjk5XCzIajQoLe6Lg4CBJUsaMmS1cEQAAAAAgKZC9U4/kyN50gAMAAABAKhEVFWkK4O7uGSxdDiQ5OaWTJAUHByl9ek+GQwcAAAAAK0f2Tn2SOnuT3AEAAAAglYiMjJT0X/BD6hD9ejAvHAAAAABYP7J36pSU2ZsOcAAAAABIZRh6LXXh9QAAAAAA20PWS12S8vWgAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATXCwdAEAAAAAAMs5e/aMfvxxss6cOaWoKKOKFy+pXr36qESJkpKkAwf2as6cn3XhwjnZ2zuocuWq6t27r7JnzyFJWr9+jb76arSWLl2tnDlzmR63bVsflStXQf/73yhJUs2aFfXuu720Z89uXb16We+801nduvXU9evXNH36FB06dEBGo1ElS5ZSnz799dprhSRJT5480S+/zNCWLX4KCrqrfPnyq0uXd1W/fsOUfaIAAAAAAEgksnfK4g5wAAAAAEijHj0K1qBBfZUxo4fGjh2v0aO/UmhoiAYN+kjBwcHatGm9Bg78SFmzZtWoUV+qb9+BOnnyb33wwbsKCrqb4OPNm/eLXn+9nkaN+lK1ar2uO3fu6L33uuryZX8NGvSZRo4cowcPHmjAgD66d++ejEajhg37RCtXrtBbb3XQ119/q5IlS2vkyGHasGFtMjwjAAAAAAAkLbJ3yuMOcAAAAABIo/z9/XXvXpDatn1LpUuXlSTlz19Aq1YtV3DwQ/3442RVrFhZo0ePM+1TunRZderUTosWLVSfPv0SdLzixUuqU6dupr9PmzZZT56E6vvvf1TmzFkkSUWKeOv997vpxInjSpfOSfv27dHo0V+ZrjqvUqWaQkNDNGPGVL3xRmM5OBBrAQAAAACpF9k75XEHOAAAAACkUa+9VkgeHp767LOPNXHiOO3evVOZM2dRnz79FRoaqsDAQDVs2MRsn9y586hEiVI6cuRggo9XqFBhs78fO3ZEJUuWNgVwScqSJYuWL1+rmjVr6+DBAzIYDKpWraYiIiJM/9WoUUeBgXfk738hcScOAAAAAEAKIXunPOvqrgcAAAAAJBlXV1f9+OMszZv3i7Zs8dPKlcvl7Oyshg2bqHHjZpKkTJkyx9gvc+bMOnv2bIKP5+mZyezvDx7cN5u77HkPHtyX0WhUw4a1Y11/585tFSnileA6AAAAAABIKWTvlEcHOAAAAACkYfnyFdCIEWMUGRmp06dPauPG9Vq5cpmyZMkqSbp7NzDGPoGBgfLw8JAkGQwGSVJUVJTZNiEhj196bHf39Lp3716M5YcOHVCOHDnl7p5eLi6umjJlRqz7586d96XHAAAAAADA0sjeKYsh0AEAAAAgjdq2bYuaN2+gwMA7sre3V8mSpTV48BC5u6fX3bt3lTlzZvn5bTDb5/r1azpx4rhKly4jSXJ1dZMk3bp107TNlSuXdP/+/Zcev0yZsjp58riCgu6alt27d0+DB/fTn3/uVNmy5RUS8lhGo1He3sVN/128eEGzZ89SZGRkUjwNAAAAAAAkG7J3yuMO8FdkZ2eQnZ0h2R4/KsqoqChjsj0+AAAAgLSrVKmyioyM0tChg9WpUze5ubnpjz/89OhRsOrVa6DixUvoq69Ga+TIoWrcuLnu37+n2bNnKkOGjHrrrY6SpAoVKsnZ2VlTp36n997ro8ePH2vOnKfbvEz79h20YcM6ffzxR+rS5V05OaXTggVzlDlzFjVu3Ezu7ulVtmx5DRkySN269VT+/AV0+vRJ/fLLTFWpUtV0JTwSLzw8XAsWLJCvr68uXbokV1dXlSpVSl27dlWtWrVibF+lSpVY7xyIdvz4caVLly7J6yR7AwAAALBWZO+UZzAajSS8eIiMjNLdu4/MltnZGeTh4Sp7++S7kT4yMkr37j0miAMAAABpQHh4mAIDbyhz5pxydHRKkWOePn1Ss2ZN15kzpxUaGqrXXiukzp27q06dupKk7dv/0IIFc3Xx4nm5ubmpSpVq6tXrQ2XPnsP0GHv37tGMGVN1+bK/cuTIqe7de2njxnXKnDmz/ve/UZKkmjUrqnv399Sjx/tmx798+ZJ+/HGyDh8+JEdHR5UrV159+vRX7tx5JEkhISH6+efp2rbtDwUF3VWWLNnUoEFDdevWM1k6WmPzstclUya3ZM2FycVoNKpv377avHmzMmTIoPLly+vJkyc6ePCgwsPDNWDAAPXu3du0/fXr11WvXj1lz55dlStXjvUxx40bJ0dHx0TXRPYGAAAAkNzI3rafvekAj6fYQriDg508Pd00bdGfuh7w8iEGEip3toz68J0aevAgRJGRUS/fIRG4yh0AAABIPSwRwvFyttoBvmjRIo0aNUrFihXTnDlz5OnpKUk6c+aMOnbsqEePHmndunUqVKiQJGnLli368MMP1bVrVw0bNixZarJk9g4KeqSIiOTJ3gAAAABSD7J36pSU2Zsh0JPA9YD7unQ9KMkfN2N6ZxmjopQhg0uSP3a0qKhIBQWF0AkOAAAAAGnMqlWrJElDhgwxdX5Lkre3t3x8fLRo0SLt3LnT1AF+8uRJSVKJEiVSvlglX/aOlpwXMXDxOQAAAACkHDrAUzE3ZycZ7Ozkv3aWQgJvJPnju2TOqYLN35OdnYEgDgAAAABpzLx58+Tv768iRYrEWPf48WNJkr29vWnZ6dOnJUklS5ZMmQJTCBefAwAAAIBtoQPcCoQE3lDIrSuWLgMAAAAAYEPSpUsnb2/vGMu3bNmijRs3ysXFRQ0bNjQtP3nypJydnXXixAkNHz5c586dk8FgUPny5dWnTx+VKVMmJctPMlx8DgAAAAC2hQ5wAAAAAADSuPv372v48OE6f/68Ll68qJw5c2rcuHHKkSOHJCkwMFABAQGSpE8//VRly5ZVlSpV9M8//2j79u3avXu3JkyYoKZNm1ryNF4JF58DAAAAgG2gAxwAAAAAgDTu6tWr8vPzM/3dYDDo/PnzqlatmqT/5v/29PTU9OnTVa5cOUmS0WjUvHnzNG7cOA0dOlTly5c3dZonloOD+VzcyTk3d0qylfMAAAAArF1UlMHSJeAF7O0NMXJhQtEBDgAAAABAGlewYEHt379fRqNRe/bs0ZdffqmxY8cqODhYvXv3Vq1atbRr1y4ZjUZlz57dtJ/BYFC3bt104MABbdmyRcuWLdNHH32U6Drs7Azy9HRLilNKdZJzjnEAAAAA8Rcaaq87d+ySpKMVSScqyiA7OztlzOgqZ2fnV3osOsABAAAAAEjj3Nz+63Ru2rSpcuTIoQ4dOmjmzJnq0qWL3NzclC1btjj3r1u3rrZs2aITJ068Uh1RUUY9ePDYbJm9vZ1NdB4/eBCiyMgoS5cBAAAApHlhYU8UFRWlyEijIiL4jZ5aREYaFRUVpfv3HyskJDLG+gwZXOI9shYd4AAAAAAAwEz58uWVL18+Xb58WZcuXVKJEiVeuH3WrFklSSEhIa98bFttgIqMjLLZcwMAAACsSWSk0dIl4AWS4sIE7usHAAAAACCNCQkJ0ddff63BgwfLaIy98cfJyUmSFBERoSVLlmjAgAHasmVLrNtevXpVkl55/m8AAAAAAF5Vqr0DPDw8XAsWLJCvr68uXbokV1dXlSpVSl27dlWtWrVibF+lShXdu3cvzsc7fvy40qVLl4wVAwAAAEDysbMzyM7OkOLHjYoyKiqKq+NtjbOzs3x9fXXv3j21b99elStXNlt/9epV+fv7y8nJSUWKFNGOHTu0YcMGhYSEqEGDBmbbGo1GrVq1SpJUs2bNFDsHAAAAAEhqZG/bkCo7wI1GowYOHKjNmzcrQ4YMql69up48eaK9e/dq165dGjBggHr37m3a/vr167p3756yZ88eI7RHs7PjZncAAAAA1snOziAPD9d4z3WVlCIjo3Tv3uNEBXE/v41avnyJLl48L0nKn7+gmjdvoZYt2yR1mUggg8Ggt956Sz/99JNGjRqluXPnmub4vnnzpj7++GNFRESoa9eucnV1VatWrTRr1ixt375dv//+u9q3by9JioqK0pQpU3T8+HEVLlxYjRs3tuRpAQAAAECikb1tR6rsAF+8eLE2b96sYsWKac6cOfL09JQknTlzRh07dtTkyZPVsGFDFSpUSJJ0+vRpSVLjxo01bNgwi9UNAAAAAMnBzs4ge3s7TVv0p64H3E+x4+bOllEfvlNDdnaGBIfwtWtX6fvvJ6hfv0EqW7a8JKMOHNivH36YpKCgu+re/b3kKRrx1qdPHx0+fFgHDhxQo0aNVKFCBYWHh+v48eN6/PixatasqcGDB0uS8ubNq1GjRmn48OEaMWKEFi5cqAIFCujMmTO6fPmysmTJoilTpsjR0dHCZwUAAAAAiUP2th2psgM8eui0IUOGmDq/Jcnb21s+Pj5atGiRdu7caeoAP3nypCSpRIkSKV8sAAAAAKSQ6wH3del6kKXLiBdf32Vq3ryF3nyzlWlZvnwFdPt2gH7/fVGaDeGpibOzs+bMmaP58+dr1apV2rdvnxwcHFSkSBG1bt1a7dq1k729vWn7Nm3aqGDBgpo1a5YOHz6sixcvKlu2bOrcubN69+6tzJkzW/BsAAAAACBpkL2tX6ocF3zevHlatWqVKlWqFGPd48ePJckshEffAV6yZMmUKRAAAAAA8EJ2dgb9/fdxPXjwwGx5x45d9dNPcyRJbdv66JdffjJb/9FHvfTll6MkSYcPH1TNmhX166/z1LRpfb37bkf16dNTn38+1Gyf48ePqmbNirp27aok6c8/d+nddzupXr0aeuutlpo1a7rCwsIkSZMnT1L79i3M9g8ODla9ejW0e/eOJDt/a+Ho6KgePXpo9erV+vvvv3XkyBH9/vvvevvtt81yd7Ty5ctr+vTp2rdvn06cOKGtW7dq+PDhdH4DAAAAgAWQvWOXKjvA06VLJ29v7xhhe8uWLdq4caNcXFzUsGFD0/KTJ0/K2dlZJ06c0DvvvKOKFSuqUqVKev/993Xs2LGULh8AAAAA0ryOHbvq3LmzatWqiT75pL8WLJirU6dOyN3dXfny5U/QY+3Zs1s//TRHQ4d+rubNW+jPP3fq8eNHpvV+fhtUqlQZ5cmTV3v37tGIEUP05psttWDBEg0aNERbt27WmDGfS5KaN2+hf/+9rmPHjpr2/+MPP7m5ualq1RpJcu4AAAAAAKQEsnfsUmUH+LPu37+vvn37qkmTJvrwww+VKVMmTZ8+XTly5JAkBQYGKiAgQKGhofr0008VFRWlKlWqyMPDQ9u3b1eHDh20fv16C58FAAAAAKQtr79eXz/9NEevv15Pp0+f0k8/TVWvXt3UoUMbHT9+NEGP9c47nZQ3bz4VKeKlunUbyM7OXjt2bJMkhYeHa+vWLWra1EeSNH/+bDVv/qZatmyr3LnzqHLlqvrkk2Hatm2Lbtz4V4UKFZaXVzFt2rTO9PgbN65Vo0ZN5eCQKmcJAwAAAAAgVmTv2KX6dH/16lX5+fmZ/m4wGHT+/HlVq1ZN0n/zf3t6emr69OkqV66cJMloNGrevHkaN26chg4dqvLly5s6zRPLwcH8egF7+1R//UC82Mp5AAAAANYuKspg6RKSVLFiJTRixBgZjUZdvHhBf/21W0uXLtbgwf21ZIlvvB8nT558pj+7uLiobt368vPboCZNmuuvv/7UkyehqlevgSTpn3/O6PTpk9qwYa1pH6PRKEm6dMlfOXPmUrNmb2rmzB81YMAnCgi4pb//Pq5PPhn20jrs7Q0xciEAAAAAAJZka9k7KaT6DvCCBQtq//79MhqN2rNnj7788kuNHTtWwcHB6t27t2rVqqVdu3bJaDQqe/bspv0MBoO6deumAwcOaMuWLVq2bJk++uijRNdhZ2eQp6dbUpxSqpMhg4ulSwAAAAAgKTTUXnfu2MXoaLX0RasJPX5AwC3Nnz9XXbp0V7Zs2SRJXl5F5eVVVHXqvK533mmrv/8+KkmyszO/2DgyMlIGw9Pzjz6uq6uL2TY+Pm/qo48+0P37d7V58wbVqVNPGTNmkPQ0cHfq1FVNmzaPUVeWLFnl4GCnJk2aatq077V375+6cOGcihcvoaJFi8Z5PlFRBtnZ2SljRlc5Ozsn6LkAAAAAACA5BATc0q+/zlOnTt2UNWs2GQwGFSpUWIUKFVbNmnXUqVM7HT16ONZ9IyMjYixLly6d2d+bNvVR//69FRh4R35+61W7dl25ublLkqKijOrQoYuaNImZvTNnziJJeuONxpo69Xvt2bNLFy6cV7FixfXaa4Vf9bTjJdV3gLu5/dfp3LRpU+XIkUMdOnTQzJkz1aVLF7m5uZkaVGJTt25dbdmyRSdOnHilOqKijHrw4LHZMnt7O5voPH7wIESRkVGWLgMAAABI88LCnigqKkqRkUZFRKSe3+iRkVEJqsfOzlErVy5X1qzZ1LFjV7N1zs6ukqSMGT3l4OCoBw+CTY8dFRWlf/+9pjx58ioiIsqUU54/fqlS5ZQjR06tXbtGf/65W19/Pcm0vmDBQvL391fOnHlM2x85cki//75IgwcPkaNjOrm4uKlWrde1desW+ftfUMuWbV94fpGRRkVFRen+/ccKCYmMsT5DBheLX6QAAAAAAEhbnJzSadWqFcqWLXuM7B3dv5opU2Y5ODgqODjYtO5p9r5udsd3bMqWLa8cOXJq48Z12rPnT3399STTutdeK6TLly8pT568pmXPZm8XFxelT59etWu/ru3bt5qyd0pJ9R3gzytfvrzy5cuny5cv69KlSypRosQLt8+aNaskKSQk5JWPnZoaoJJSQhuzAAAAACSPyEijpUtIEh4eHurYsatmzvxRwcHBqlevgVxd3XTpkr/mzv1Z5ctXVJky5VS6dBn98Yef6tSpq0yZMmvx4oVmofxFmjRprnnzZitjxoyqWLGyaXnHjl30+edD9csvP+mNNxrr9u0Aff31WGXPnt10FbokNWv2poYM+VhGo9SgQaN4HTO1XZgAAAAAAEi7bDV7J4VU1wEeEhKiyZMn686dO5owYYIMhphz4Dk5OUmSIiIitGTJEv31119q3ry5GjRoEGPbq1evStIrz/8NAAAAAJaWO1tGqznee+/1Vp48ebVmzUr5+i5VaGiosmfPoXr13lCXLu9Kknr1+lAPHz7Q4MH95OzsIh+flqpfv6Fp3rAXady4uWbPnqnWrdvJzu6/u6/r1m2g0aOlBQtma+HCuUqfPoNq1Kil3r37me1fsWJlZczooVKlyih9+vSJPk8AAAAAgG0he//HWrN3qusAd3Z2lq+vr+7du6f27durcuXKZuuvXr0qf39/OTk5qUiRItqxY4c2bNigkJCQGB3gRqNRq1atkiTVrFkzxc4BAAAAAJJSVJRRkZFR+vCdGil+7MjIKEVFJe7O9CZNmsc6H1i0LFmyaNy4SXGuL1++onbvPhjruhw5cmjnzv2xrqtXr4Hq1Yt5gfSzQkNDFRwcrObNW7xwOwAAAABA2kD2jslas3eq6wA3GAx666239NNPP2nUqFGaO3euaY7vmzdv6uOPP1ZERIS6du0qV1dXtWrVSrNmzdL27dv1+++/q3379pKejl8/ZcoUHT9+XIULF1bjxo0teVoAAAAAkGhRUUbdu/dYdnYxR8hKiWMnNoSnRg8ePNDhwwe0desWZc+e3WwINwAAAABA2kX2TjqWzt6prgNckvr06aPDhw/rwIEDatSokSpUqKDw8HAdP35cjx8/Vs2aNTV48GBJUt68eTVq1CgNHz5cI0aM0MKFC1WgQAGdOXNGly9fVpYsWTRlyhQ5Ojpa+KwAAAAAIPFsLQxbSmRkhL7+eow8PDz1xRfjYp12CwAAAACQNpG9k4als3eq7AB3dnbWnDlzNH/+fK1atUr79u2Tg4ODihQpotatW6tdu3ayt7c3bd+mTRsVLFhQs2bN0uHDh3Xx4kVly5ZNnTt3Vu/evZU5c2YLng0AAAAAILXw9MykjRu3W7oMAAAAAABslqWzd6rsAJckR0dH9ejRQz169IjX9uXLl9f06dOTuSoAAAAAAAAAAAAAQGplZ+kCAAAAAAAAAAAAAABICnSAAwAAAAAAAAAAAABsAh3gAAAAAAAAAAAAAACbQAc4AAAAAAAAAAAAAMAm0AEOAAAAAAAAAAAAALAJdIADAAAAgBWwszPIwcEuxf+zszMkqt62bX1Us2ZFLV68MNb1EyZ8pZo1K+qXX35K9HPStq1PgvZP6PYAAAAAgLSF7B37MawteztY9OgAAAAAgJeyszPI09NFdnb2KX7sqKhIBQWFKCrKmOB9HRwctG3bH3r77U5myyMiIrRjx1YZDIkL+AAAAAAAJDWyt+2gAxwAAAAAUjk7O4Ps7Ozlv3aWQgJvpNhxXTLnVMHm78nOzpCoEF6xYmXt2/eXbt26qezZc5iWHz58UM7OLkqXzjkpywUAAAAAINHI3raDDnAAAAAAsBIhgTcUcuuKpcuIt2LFSujy5Uvatm2L2ZXof/zhp3r13tDWrZtNy06cOK6ZM3/U2bOn5eDgoJo16+jDDwcoQ4YMkqTg4GB9//0E7d69Qw4OjurSpXuM4/399zHNmDFVp0+fkoeHh2rUqK0PPvhQbm7uyX+yAAAAAACbQPa2/uzNHOAAAAAAgGRTt24Dbdv2h+nv4eHh2rlzuxo0aGhadurUCfXt+74KFCioGTPmaMyY8Tp16oQ+/vgjRUVFSZI+/3yITp8+qfHjv9N3303Vn3/u0s2b/12Rf/78OfXv30eVKlXRvHmLNHLklzp79rQGDvxIRmPCr6AHAAAAAMBakL3N0QEOAAAAAEg29eq9oVOnTujWrZuSpP3798rDw0NFi3qbtlm8+FcVKlREH3/8mQoWfE3ly1fUqFFf6cyZU9q37y9duXJJ+/fv1cCBn6pMmXIqUsRLI0eOlZOTk+kxFi2ar4oVK6lbt57KmzefypQpq1GjvtSpUyd05MihFD9vAAAAAABSCtnbHEOgAwAAAACSjbd3MeXKlds0FNvWrX5q0KCR2TYXL55XpUpVzZYVKlRY7u7pdeHCOYWGhkiSihUrblqfKVNm5cqV2/T3s2fP6tq1K3rjjVoxarh8+ZLKl6+YlKcFAAAAAECqQfY2Rwc4AAAAACBZ1av3hrZt+0OtWrXTrl07NWvWPLP1RqNRBkPM/YzGKDk4/Bdbo6LMh1Ozt3cw27Zhwybq0uXdGI/j4eH5imcAAAAAAEDqRvb+D0OgAwAAAACSVb16DXTq1AmtXbtKuXLlVv78BczWv/ZaYR07dtRs2blz/+jRo0cqUOA105Btf/99zLT+4cOHun79qunvBQsWkr//BeXJk9f0X1RUpH744VsFBNxMtnMDAAAAACA1IHv/hw5wAAAAAECyKlLES3ny5NXMmdNUv37DGOvfequDzp//R99+O16XLvnryJFD+uKL4Spa1EsVK1ZW7tx5VLduA3333Tc6cGCfLl48rzFjPld4eLjpMd5+u5P++eesJkz4Sv7+F3Xy5AmNGjVcV65cVp48+VLydAEAAAAASHFk7/8wBDoAAAAAWAmXzDmt9nj16r2hefN+UYMGMUN4yZKlNXHiZM2aNUPvvttRrq5uqlXrdfXu/ZFpGLbhw0dp2rTJGjlymKKiotSiRWvduxf0zGOU0rffTtXPP09Xjx6d5eLirPLlK+nDDwfIyckpyc4DAAAAAGDbyN7Wn70NRqPR+PLNEBkZpbt3H5ktc3Cwk6enm4ZNXq9L14Pi2DPxqpfNr4861NSpeV8o5NaVJH98l+z5VLzr5woKeqSIiKgkf3wAAAAACRMeHqbAwBvKnDmnHB3/C452dgZ5errIzs4+xWuKiopUUFBIjDnA0pK4XpdomTK5yd6eAdaSAtkbAAAAQHIje6dOSZm9uQMcAAAAAFK5qCijgoJCZGdnsMix03IABwAAAACkDWRv20EHOAAAAABYAcIwAAAAAADJi+xtGxijDQAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAEhljEbmG0tNeD0AAAAAwPaQ9VKXpHw96AAHAAAAgFTC3t5ekhQW9sTCleBZ0a+Hvb2DhSsBAAAAALwqsnfqlJTZm/QOAAAAAKmEnZ29XFzcFRwcJElyckong8Fg4arSLqPRqLCwJwoODpKLi7vs7LiGHAAAAACsHdk7dUmO7E0HOAAAAACkIhkyZJIkUxCH5bm4uJteFwAAAACA9SN7pz5Jmb3pAAcAAACAVMRgMChjxsxKn95TkZERli4nzbO3d+DObwAAAACwMWTv1CWpszcd4AAAAACQCtnZ2cnOzsnSZQAAAAAAYLPI3raJy9gBAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADbBwdIFAAAAAAAAywgPD9eCBQvk6+urS5cuydXVVaVKlVLXrl1Vq1atGNvfuXNHP/74o3bt2qVbt24pa9asaty4sfr06SM3NzcLnAEAAAAAAOa4AxwAAAAAgDTIaDRq4MCBGj9+vG7evKnq1aurWLFi2rt3r3r27Knp06ebbR8QEKD27dvr119/lbOzs15//XVFRUXp559/1jvvvKPg4GALnQkAAAAAAP+hAxwAAAAAgDRo8eLF2rx5s4oVKyY/Pz/99NNPmjt3rpYtWyZ3d3dNnjxZFy5cMG0/duxYXb9+Xb169dKaNWv0ww8/aNOmTWrSpInOnj2rqVOnWvBsAAAAAAB4ig5wAAAAAADSoFWrVkmShgwZIk9PT9Nyb29v+fj4yGg0aufOnZKkK1euaPPmzcqZM6f69etn2tbJyUljxoyRm5ublixZotDQ0JQ9CQAAAAAAnkMHOAAAAAAAadC8efO0atUqVapUKca6x48fS5Ls7e0lSTt37lRUVJTq1KkjR0dHs23Tp0+vqlWr6vHjx9q3b1/yFw4AAAAAwAvQAQ4AAAAAQBqULl06eXt7mzq5o23ZskUbN26Ui4uLGjZsKEn6559/JElFixaN9bEKFy5sth0AAAAAAJbiYOkCAAAAAACAZd2/f1/Dhw/X+fPndfHiReXMmVPjxo1Tjhw5JEm3b9+WJGXNmjXW/aOX37lzJ2UKBgAAAAAgDnSAAwAAAACQxl29elV+fn6mvxsMBp0/f17VqlWT9N+Q6M7OzrHuH708ertX4eBgPlidvb1tDF5nK+cBAAAAAKkdHeAAAAAAAKRxBQsW1P79+2U0GrVnzx59+eWXGjt2rIKDg9W7d2/TMOkGgyHW/Y1Go9n/E8vOziBPT7dXeozUKkMGF0uXAAAAAABpAh3gAAAAAACkcW5u/3U6N23aVDly5FCHDh00c+ZMdenSRa6urpKkJ0+exLp/9HIXl1fr5I2KMurBA/O7yO3t7Wyi8/jBgxBFRkZZugwAAAAAsEoZMrjEe2QtOsABAAAAAICZ8uXLK1++fLp8+bIuXbqkbNmySfpvLvDnvWyO8ISIiLDNTuLIyCibPTcAAAAASE1SbQd4eHi4FixYIF9fX126dEmurq4qVaqUunbtqlq1asXY/s6dO/rxxx+1a9cu3bp1S1mzZlXjxo3Vp08fsyvZAQAAAABI60JCQjR58mTduXNHEyZMiHVocycnJ0lSRESEihYtKkm6cOFCrI937tw5SZKXl1cyVQwAAAAAQPzE7z7xFGY0GjVw4ECNHz9eN2/eVPXq1VWsWDHt3btXPXv21PTp0822DwgIUPv27fXrr7/K2dlZr7/+uqKiovTzzz/rnXfeUXBwsIXOBAAAAACA1MfZ2Vm+vr5as2aNDhw4EGP91atX5e/vLycnJxUpUsR0Ifq2bdsUGRlptu3Dhw+1b98+ubq6qkKFCilSPwAAAAAAcUmVHeCLFy/W5s2bVaxYMfn5+emnn37S3LlztWzZMrm7u2vy5MlmV52PHTtW169fV69evbRmzRr98MMP2rRpk5o0aaKzZ89q6tSpFjwbAAAAAABSF4PBoLfeekuSNGrUKAUEBJjW3bx5Ux9//LEiIiL0zjvvyNXVVblz51bdunV17do1TZgwQUajUZIUFhamzz//XI8ePdLbb78td3d3i5wPAAAAAADRUuUQ6KtWrZIkDRkyRJ6enqbl3t7e8vHx0aJFi7Rz504VKlRIV65c0ebNm5UzZ07169fPtK2Tk5PGjBmjnTt3asmSJRowYICcnZ1T/FwAAAAAAEiN+vTpo8OHD+vAgQNq1KiRKlSooPDwcB0/flyPHz9WzZo1NXjwYNP2I0aM0MmTJzVnzhzt2LFDRYoU0d9//61///1XJUqU0EcffWTBswEAAAAA4KlUeQf4vHnztGrVKlWqVCnGusePH0uS7O3tJUk7d+5UVFSU6tSpI0dHR7Nt06dPr6pVq+rx48fat29f8hcOAAAAAICVcHZ21pw5c/Tpp58qb9682rdvn44fP64iRYpo9OjRmjlzpmkecEnKnTu3li1bpnbt2unhw4fatm2bnJyc9MEHH2j+/Plyc3Oz4NkAAAAAAPBUqrwDPF26dPL29o6xfMuWLdq4caNcXFzUsGFDSdI///wjSSpatGisj1W4cGH98ccf+ueff1SnTp3kKxoAAAAAACvj6OioHj16qEePHvHaPnv27Bo7dmwyVwUAAAAAQOKlyg7wZ92/f1/Dhw/X+fPndfHiReXMmVPjxo1Tjhw5JEm3b9+WJGXNmjXW/aOX37lzJ2UKBgAAAAAAAAAAAABYRKrvAL969ar8/PxMfzcYDDp//ryqVasm6b8h0eOa3zt6efR2r8LBwXzEeHv7VDmCfILZynkAAAAAAAAAAAAASNtSfQd4wYIFtX//fhmNRu3Zs0dffvmlxo4dq+DgYPXu3ds0F7jBYIh1f6PRaPb/xLKzM8jT0zbnM8uQwcXSJQAAAAAAAAAAAADAK0v1HeBubv91Ojdt2lQ5cuRQhw4dNHPmTHXp0kWurq6SpCdPnsS6f/RyF5dX6+SNijLqwQPzu8jt7e1sovP4wYMQRUZGWboMAAAAALBKGTK4MLIWAAAAAACpRKrvAH9e+fLllS9fPl2+fFmXLl1StmzZJP03F/jzXjZHeEJERNhmJ3FkZJTNnhsAAAAAAAAAAACAtCPVXaIeEhKir7/+WoMHD45z2HInJydJUkREhIoWLSpJunDhQqzbnjt3TpLk5eWVDNUCAAAAAAAAAAD8H3t3HmfXfP8P/HVnsodIZEFsqb21xxItitJSW6mdUrXEUhRfW9RaEbWUVimtoBL7ksRSKgkJilpDbEGjJUITSxKRRZaZ3x9+STtNwiSz3Jl7n8/Hw6Oc87nnvj+9d2bu677P+RwAmoom1wBv06ZNBg8enPvvvz/PPffcAvvHjRuXf/7zn2nVqlXWXHPNbL311kmSESNGZO7cuTXGTp06Nc8880zatWuXTTbZpFHqBwAAAAAAAKA4mlwDvFAoZL/99kuSnHfeeZk4ceL8ff/+979z8sknZ86cOTnggAPSrl27rLjiitluu+3y/vvv59JLL51/1fisWbNyzjnnZNq0adl///2z1FJLFWU+AAAAAAAAADSOJnkP8GOPPTYvvvhinnvuuey4447ZZJNNMnv27IwePTrTp0/PVlttlVNOOWX++LPPPjuvvfZabrzxxjz22GNZc80188orr+SDDz7Iuuuum+OOO66IswEAAAAAAACgMTS5K8CTL5dBv/HGG3Paaadl5ZVXzjPPPJPRo0dnzTXXzPnnn58//elP8+8DniQrrrhi7r777uyzzz6ZOnVqRowYkVatWuXoo4/OgAED0r59+yLOBgAAAAAAAIDG0CSvAE+Sli1b5vDDD8/hhx9eq/HLLbdc+vbt28BVAQAAAAAAANBUNckrwAEAAAAAAABgcWmAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASWhS7AAAAAAD+o6KikIqKQoMdv6qqOlVV1Q12fAAAgGLSAAcAAABoIioqCunYsV0qKxtu0b65c6syefJ0TXAAAKAkaYADAAAANBEVFYVUVlbk6tuezPiJU+r9+Ct2WyY/P2DLVFQUNMABAICSpAEOAAAA0MSMnzgl/xo/qdhlAAAANDsNt54WAAAAAAAAADQiDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAktCh2ATQvFRWFVFQUGuz4VVXVqaqqbrDjAwAAAAAAAKVLA5xaq6gopGPHdqmsbLiFA+bOrcrkydM1wQEAAAAAAIDFpgFOrVVUFFJZWZGrb3sy4ydOqffjr9htmfz8gC1TUVHQAAcAAAAAAAAWmwY4i238xCn51/hJxS4DAAAAAAAAoIaGW8saAAAAAAAAABqRBjgAAAAAAAAAJcES6AAAAFCmqqqqctddd2XQoEF5++23M3v27HTv3j077LBDjjrqqHTo0KHG+F69emXy5MmLPN7o0aPTunXrBq4aAAAAFk0DHAAAAMpQVVVVTjjhhAwbNixt2rTJBhtskHbt2mX06NHp379/hg0blltvvTVdunRJkowfPz6TJ0/Ocsstl80333yhx6yosNAcAAAAxaUBDgAAAGXonnvuybBhw9KjR4/0798/K6+8cpLk888/zymnnJIRI0akb9+++e1vf5skeeONN5IkO+20U84888xilQ0AAABfyanZAAAAUIbuueeeJMkZZ5wxv/mdJEsttVT69euXQqGQ4cOHZ+bMmUmS1157LUmy7rrrNn6xAAAAUEsa4AAAAFCGOnbsmNVWWy0bbbTRAvuWXXbZLLPMMpk9e3YmTZqU5D9XgK+33nqNWSYAAAAsFkugAwAAQBm69tprF7lv3LhxmTx5clq2bJlll102yZdXgLdp0yavvvpqzjrrrLz99tspFArp2bNnjj322Gy44YaNVToAAAAskivAAQAAgBrm3fd72223TevWrfPJJ59k4sSJmTlzZk477bRUVVWlV69e6dixY0aOHJkDDzwwDz74YHGLBgAAgLgCHAAAAPgvAwcOzAMPPJC2bdvmpJNOSvKf+3936tQp11xzTTbeeOMkSXV1dW666aZcdNFF6dOnT3r27Jnll1++Ts/fokXNc/UrK0vj3P3azqOx5lsq/78CAAD8Lw1wAAAAIEkyYMCA9OvXL4VCIRdeeGFWX331JMnWW2+dJ554ItXV1VluueXmjy8UCjn00EPz3HPPZfjw4bn77rtz3HHHLfHzV1QU0qlT+zrPoynq0KFtsUuooanVAwAAUF80wAEAAKDMVVdX57LLLkv//v1TWVmZCy+8MLvsssv8/YVCId26dVvk47fbbrsMHz48r776ap3qqKqqzmefTa+xrbKyoiSatZ99NiNz51Z97bjGmm9t6wEAAGgKOnRoW+uVrJpsA7yqqip33XVXBg0alLfffjuzZ89O9+7ds8MOO+Soo45Khw4daozv1atXJk+evMjjjR49Oq1bt27gqgEAAKB5mTlzZk499dQMHTo0bdq0yW9+85vssMMOi3WMrl27JklmzJhR53rmzCnNpuzcuVVNam5NrR4AAID60iQb4FVVVTnhhBMybNiwtGnTJhtssEHatWuX0aNHp3///hk2bFhuvfXWdOnSJUkyfvz4TJ48Ocstt1w233zzhR6zosK9rQAAAOC/ff755zniiCMyatSodO7cOddcc0023HDDBcbdcccdefrpp7PrrrsutDk+bty4JKnz/b8BAACgrppkA/yee+7JsGHD0qNHj/Tv3z8rr7xyki+D+SmnnJIRI0akb9+++e1vf5skeeONN5IkO+20U84888xilQ0AAADNxuzZs9O7d++MGjUqq666aq6//vr5+ft/TZgwIQ899FBmzJixQAO8uro69957b5Jkq622avC6AQAA4Ks0ycui77nnniTJGWecUSN8L7XUUunXr18KhUKGDx+emTNnJklee+21JMm6667b+MUCAABAM3TVVVflhRdeSNeuXTNw4MBFNr+TZM8990yrVq0ycuTI3HnnnfO3V1VV5corr8zo0aOzxhprZKeddmqM0gEAAGCRmuQV4B07dsxqq62WjTbaaIF9yy67bJZZZplMnjw5kyZNygorrDD/CvD11luvkSsFAACA5mfKlCm56aabkiSdO3fOpZdeusix805OP++883LWWWfl7LPPzs0335wePXpkzJgxeffdd9OlS5f8/ve/T8uWLRtrCgAAALBQTbIBfu211y5y37hx4zJ58uS0bNkyyy67bJIvrwBv06ZNXn311Zx11ll5++23UygU0rNnzxx77LELvX8ZAAAAlKuXX345M2bMSJKMGTMmY8aMWeTY448/Pl26dMlee+2Vb3zjG7nuuuvy4osv5p133km3bt1y8MEH55hjjknnzp0bq3wAAABYpCbZAP8q8+77ve2226Z169b55JNPMnHixCTJaaedlo022ii9evXKW2+9lZEjR+Zvf/tbLr300uy8885FrBoAAACaju9+97t58803F/txPXv2zDXXXNMAFQEAAED9aFYN8IEDB+aBBx5I27Ztc9JJJyX5z/2/O3XqlGuuuSYbb7xxkqS6ujo33XRTLrroovTp0yc9e/bM8ssvX6fnb9Gi5i3TKyub5C3UF1tt59FY8y2V/18BAAAAAACAxtVsGuADBgxIv379UigUcuGFF2b11VdPkmy99dZ54oknUl1dneWWW27++EKhkEMPPTTPPfdchg8fnrvvvjvHHXfcEj9/RUUhnTq1r/M8mqIOHdoWu4Qamlo9AAAAAAAAQPPQ5Bvg1dXVueyyy9K/f/9UVlbmwgsvzC677DJ/f6FQSLdu3Rb5+O222y7Dhw/Pq6++Wqc6qqqq89ln02tsq6ysKIlm7WefzcjcuVVfO66h57vM0m1SXVWVQkXDXgFeVTU3n332Raqrqxv0eQAAgPLQoUNbK1nR7DT0e7aqqjpVVXI3AADQ+Jp0A3zmzJk59dRTM3To0LRp0ya/+c1vssMOOyzWMbp27ZokmTFjRp3rmTPn65vEzdHcuVVNYm7t27RKoaIi/3zgusz45MMGeY62nVfIN3Y9MtXV1U1izgAAANCY5p183tAn9FdVzc2kSTM0wQEAgEbXZBvgn3/+eY444oiMGjUqnTt3zjXXXJMNN9xwgXF33HFHnn766ey6664LbY6PGzcuSep8/28az4xPPsyMCe8VuwwAAAAoOY158nlFRUEDHAAAaHRNsgE+e/bs9O7dO6NGjcqqq66a66+/PiuvvPJCx06YMCEPPfRQZsyYsUADvLq6Ovfee2+SZKuttmrwugEAAACaAyefAwAApapJ3qTsqquuygsvvJCuXbtm4MCBi2x+J8mee+6ZVq1aZeTIkbnzzjvnb6+qqsqVV16Z0aNHZ4011shOO+3UGKUDAAAAAAAAUCRN7grwKVOm5KabbkqSdO7cOZdeeukix55xxhlZeeWVc9555+Wss87K2WefnZtvvjk9evTImDFj8u6776ZLly75/e9/n5YtWzbWFAAAAAAAAAAogibXAH/55ZczY8aMJMmYMWMyZsyYRY49/vjj06VLl+y11175xje+keuuuy4vvvhi3nnnnXTr1i0HH3xwjjnmmHTu3LmxygcAAAAAAACgSJpcA/y73/1u3nzzzcV+XM+ePXPNNdc0QEUAAAAAAAAANAdN8h7gAAAAAAAAALC4NMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJaFFsQsAAAAAgIZUUVFIRUWhwY5fVVWdqqrqBjs+AABQexrgAAAAAJSsiopCOnVqm4qKygZ7jqqquZk0aYYmOAAANAEa4AAAAACUrC+v/q7MPx+4LjM++bDej9+28wr5xq5HpqKioAEOAABNgAY4AAAAACVvxicfZsaE94pdBgAA0MAqil0AAAAAAAAAANQHDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJSEFsUuAMpdRUUhFRWFBjt+VVV1qqqqG+z4AAAAAAAA0FRogEMRVVQU0qlT21RUVDbYc1RVzc2kSTM0wQEAAAAAACh5GuBQRF9e/V2Zfz5wXWZ88mG9H79t5xXyjV2PTEVFQQMcAAAAAACAkqcBDk3AjE8+zIwJ7xW7DAAAAAAAAGjWKopdAAAAAAAAAADUBw1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJNSpAT5kyJC88MILXzvukUceyZVXXlmXpwIAAICyJHsDAABA7dWpAX7GGWfkzjvv/Npx9957b2688ca6PBUAAACUJdkbAAAAaq/F4gweMmRI5syZU2Pbu+++m7vvvnuRj/n888/z9NNPp2XLlktWIQAAAJQR2ZtyVFFRSEVFoUGOXVnpDoAAAFBOFqsB/tprr2XgwIEpFL4MJIVCIS+//HJefvnlr3xcdXV19txzzyWvEopICAcAABqT7E25qagopGPHdjIyAABQLxarAX7CCSfk888/n//fgwcPziqrrJJNNtlkkY9p3bp1evTokQMOOGDJq4QiEcIBAIDGJntTbioqCqmsrMjVtz2Z8ROn1PvxN1y7e/bbaaN6Py4AANA0LVYDfOmll85FF100/78HDx6cjTbaqMY2KCVCOAAA0Nhkb8rV+IlT8q/xk+r9uN27dqj3YwIAAE3XYjXA/9eYMWPqqw5o0oRwAACgWGRvAAAAqL06NcD/2yeffJIZM2akurp6kWNWXnnl+no6AAAAKDuyNwAAAHy1OjfA//znP+e6667Lp59++pXjCoVCXn/99bo+HQAAAJSdhsreVVVVueuuuzJo0KC8/fbbmT17drp3754ddtghRx11VDp0qLlq1ccff5w//OEPeeKJJzJhwoR07do1O+20U4499ti0b99+ieYGAAAA9alODfBBgwbl17/+dZKkVatW6dSpUyorK+ulMAAAAKDhsndVVVVOOOGEDBs2LG3atMkGG2yQdu3aZfTo0enfv3+GDRuWW2+9NV26dEmSTJw4Mfvvv3/Gjx+ftdZaK9tuu21eeeWV9O/fP0888URuvfXWLLXUUnWuCwAAAOqiTg3wm2++OYVCIWeddVb23XfftGzZsr7qAgAAANJw2fuee+7JsGHD0qNHj/Tv33/+0umff/55TjnllIwYMSJ9+/bNb3/72yRJ3759M378+PTu3Tv/93//lySZNWtWTjvttDz00EO56qqrcsYZZ9RLbQAAALCkKury4LFjx2ajjTbKQQcdpPkNAAAADaChsvc999yTJDnjjDNq3Dd8qaWWSr9+/VIoFDJ8+PDMnDkz7733XoYNG5YVVlghJ5xwwvyxrVq1ygUXXJD27dvnjjvuyMyZM+utPgAAAFgSdWqAt23bNp06daqvWgAAAID/0VDZu2PHjllttdWy0UYbLbBv2WWXzTLLLJPZs2dn0qRJefzxx1NVVZVtttlmgSb80ksvnS222CLTp0/PM888U+91AgAAwOKoUwN88803z+jRozNjxoz6qgcAAAD4Lw2Vva+99to89NBDC22ujxs3LpMnT07Lli2z7LLL5q233kqSrLXWWgs91hprrJEk88cBAABAsdSpAX7SSSdlxowZOfPMMzNlypT6qgkAAAD4/4qRvefd93vbbbdN69at89FHHyVJunbtutDx87Z//PHHjVIfAAAALEqLujz49ttvzwYbbJC//vWvGTZsWHr06JEOHTqkUCgsMLZQKOTmm2+u9bGrqqpy1113ZdCgQXn77bcze/bsdO/ePTvssEOOOuqodOjQocb4jz/+OH/4wx/yxBNPZMKECenatWt22mmnHHvssWnfvn1dpgkAAABF05DZe2EGDhyYBx54IG3bts1JJ52UJJk+fXqSpE2bNgt9zLzt88bVRYsWNc/Vr6ys07n7TUZt51Eq803Kb86lMg8AAGju6tQAv+mmm+b/+5w5c/KPf/xjkWMXFswXpaqqKieccEKGDRuWNm3aZIMNNki7du0yevTo9O/fP8OGDcutt96aLl26JEkmTpyY/fffP+PHj89aa62VbbfdNq+88kr69++fJ554IrfeemuWWmqpJZ8oAAAAFElDZe+FGTBgQPr165dCoZALL7wwq6++epKksrLyK49fXV1d43+XVEVFIZ06leZJ7B06tC12CY2u3OZcbvMFAICmqk4N8AEDBtRXHTXcc889889q79+/f1ZeeeUkyeeff55TTjklI0aMSN++fecvyda3b9+MHz8+vXv3zv/93/8lSWbNmpXTTjstDz30UK666qqcccYZDVIrAAAANKSGyt7/rbq6Opdddln69++fysrKXHjhhdlll13m72/Xrl2S5Isvvljo4+dtb9u2bg3AqqrqfPZZzavIKysrSqKx+NlnMzJ3btXXjiuV+SblN+fazhcAAFh8HTq0rfWqS3VqgG+++eZ1efgi3XPPPUmSM844Y37zO0mWWmqp9OvXL9/5zncyfPjwzJw5MxMnTsywYcOywgor5IQTTpg/tlWrVrngggvy+OOP54477siJJ564yKXaAAAAoKlqqOw9z8yZM3Pqqadm6NChadOmTX7zm99khx12qDGmW7duSTL/XuD/6+vuEb445swpzQbi3LlVJTu3RSm3OZfbfAEAoKmqt5sTzZ49O6NHj87DDz+cF154IUnywQcfLNGxOnbsmNVWWy0bbbTRAvuWXXbZLLPMMpk9e3YmTZqUxx9/PFVVVdlmm23SsmXLGmOXXnrpbLHFFpk+fXqeeeaZJaoFAAAAmor6zN7JlyutHXrooRk6dGg6d+6cAQMGLND8TpK11lorSTJ27NiFHuftt99Okqy99tpLXAsAAADUhzo3wOfMmZPf/e532XLLLbPffvvlxBNPzB133JEkOf300/PjH/8477777mId89prr81DDz2UTp06LbBv3LhxmTx5clq2bJlll102b731VpL/hPH/tcYaayTJ/HEAAADQ3DRE9p49e3Z69+6dUaNGZdVVV80dd9yRDTfccKFjt9566yTJiBEjMnfu3Br7pk6dmmeeeSbt2rXLJptssgSzAwAAgPpTpwb4nDlzctRRR+Xaa6/NjBkzst5666W6unr+/mnTpuX111/PQQcdlI8//rjOxSaZf9/vbbfdNq1bt/7aZdbmba+v5wcAAIDG1FDZ+6qrrsoLL7yQrl27ZuDAgTVuQfa/VlxxxWy33XZ5//33c+mll85//lmzZuWcc87JtGnTsv/++2eppZZa8okCAABAPajTPcBvueWWPPnkk9lqq63Sr1+/dOvWLeuss878/bfeemvOO++8DBkyJNdff31OP/30OhU7cODAPPDAA2nbtm1OOumkJMn06dOTZJH39563fd64umjRoub5ArW90XpTV9t5lMp8k/Kbc6nMAwAAylFDZO8pU6bkpptuSpJ07tw5l1566SLHnnHGGenSpUvOPvvsvPbaa7nxxhvz2GOPZc0118wrr7ySDz74IOuuu26OO+64uk8WAAAA6qhODfDBgwenY8eO+d3vfpf27dsvsL9Nmza54IIL8tRTT+Xxxx+vUwN8wIAB6devXwqFQi688MKsvvrqSZLKysokSaFQWOjj5p2V/t9nxy+JiopCOnVacI6loEOHtsUuodGV25zLbb4AAFBKGiJ7v/zyy5kxY0aSZMyYMRkzZswixx5//PHp0qVLVlxxxdx99935/e9/n5EjR2bEiBHp3r17jj766Bx55JELrQ0AAAAaW50a4P/617+y1VZbfWXIbdmyZTbYYIM8+eSTS/Qc1dXVueyyy9K/f/9UVlbmwgsvzC677DJ/f7t27ZIkX3zxxUIfP29727Z1awBWVVXns89qXkVeWVlREo3Fzz6bkblzq752XKnMNym/Odd2vgAAwOLr0KFtg6661BDZ+7vf/W7efPPNxa5lueWWS9++fRf7cQAAANBY6tQAb9GiRT777LOvHTd58uS0aLH4TzVz5syceuqpGTp0aNq0aZPf/OY32WGHHWqM6datW5LMvxf4//q6e4QvjjlzSrOBOHduVcnObVHKbc7lNl8AACglDZ29AQAAoJTU6RT1b37zm3nllVcyfvz4RY4ZN25cXnnllRr3J6uNzz//PIceemiGDh2azp07Z8CAAQs0v5NkrbXWSpKMHTt2ocd5++23kyRrr732Yj0/AAAANAUNmb0BAACg1NSpAX7AAQdkxowZOfbYY/P6668vsP/NN9/M8ccfn1mzZmXvvfeu9XFnz56d3r17Z9SoUVl11VVzxx13ZMMNN1zo2K233jpJMmLEiMydO7fGvqlTp+aZZ55Ju3btsskmmyzGzAAAAKBpaKjsDQAAAKWoTmuj7bzzznnqqady9913Z6+99srSSy+dQqGQJ554Ittuu20mTJiQ6urq7LLLLvnRj35U6+NeddVVeeGFF9K1a9cMHDgwyy233CLHrrjiitluu+0yYsSIXHrppTn99NNTKBQya9asnHPOOZk2bVoOO+ywLLXUUnWZKgAAABRFQ2VvAAAAKEV1vjlY3759s9FGG+X666/PP//5zyTJpEmTkiTdu3fPT3/60xxyyCG1Pt6UKVNy0003JUk6d+6cSy+9dJFjzzjjjHTp0iVnn312Xnvttdx444157LHHsuaaa+aVV17JBx98kHXXXTfHHXdcHWYIAAAAxVXf2RsAAABKVZ0b4Emy9957Z++9985HH32UDz/8MFVVVenatWtWXHHFxT7Wyy+/nBkzZiRJxowZkzFjxixy7PHHH58uXbpkxRVXzN13353f//73GTlyZEaMGJHu3bvn6KOPzpFHHpn27dsv8dwAAACgKajP7A0AAAClql4a4JMmTcrbb7+dzTffPF27dk2S/OMf/8gtt9ySH/zgB/O31cZ3v/vdvPnmm4tdw3LLLZe+ffsu9uMAAACgOajP7A0AAAClqqKuB7jzzjvz3e9+N7/+9a9rbH/55ZdzwQUXZMcdd8yDDz5Y16cBAACAsiV7AwAAQO3UqQH+5JNP5pxzzkmLFi2yxRZb1Ni3ySab5PDDD091dXVOOeWU/P3vf69ToQAAAFCOZG8AAACovTo1wPv3758WLVpkwIABOe2002rs69GjR0499dQMGDAghUIh1113XZ0KBQAAgHIkewMAAEDt1akB/tZbb6VXr15Zf/31Fzlm/fXXzyabbJKXXnqpLk8FAAAAZUn2BgAAgNqrUwN8xowZadu27deO69ixY+bMmVOXpwIAAICyJHsDAABA7dWpAd6jR48899xz+fzzzxc55osvvsgLL7yQVVZZpS5PBQAAAGVJ9gYAAIDaq1MDfPfdd8+UKVNywgkn5OOPP15g/6RJk3LyySfn008/zW677VaXpwIAAICyJHsDAABA7bWoy4MPOuigPPjgg3nqqaey7bbbZr311ssKK6yQJPn3v/+d1157LbNmzcoGG2yQQw89tD7qBQAAgLIiewMAAEDt1akB3rJly9x444254oorMmjQoLz00kt56aWX5u9v3bp1DjjggJx66qlp1apVXWsFAACAsiN7AwAAQO3VqQGeJO3bt89ZZ52V0047La+++mo++uijzJ07N127ds26666bdu3a1UedAAAAULZkbwAAAKidOjXADznkkPTo0SO/+tWv0qpVq/Ts2bO+6gIAAAAiewMAAMDiqFMDfPTo0amoqKivWgAAAID/IXsDAABA7dUpQbdv3z7V1dX1VQsAAADwP2RvAAAAqL06NcCPOeaYPPvss7nhhhsya9as+qoJAAAA+P9kbwAAAKi9Oi2BPm7cuKy66qq59NJLc/nll2fVVVdNhw4dFro0W6FQyM0331yXpwMAAICyI3sDAABA7dWpAX7TTTfN//c5c+Zk7NixixxbKBTq8lQAAABQlmRvAAAAqL06NcAHDBhQX3UAAAAACyF7AwAAQO3VqQG++eab11cdAAAAwELI3gAAAFB7dWqA/7fZs2fnjTfeyIcffpguXbpkk002yQcffJDu3bvX11MAAABAWZO9AQAA4KvVuQE+Z86cXH311bnlllsyderUJMluu+2WTTbZJKeffnqmTZuWK664IquuumqdiwUAAIByJHsDAABA7VTU5cFz5szJUUcdlWuvvTYzZszIeuutl+rq6vn7p02bltdffz0HHXRQPv744zoXCwAAAOVG9gYAAIDaq1MD/JZbbsmTTz6ZLbfcMo888kjuuuuuGvtvvfXW7LHHHvn4449z/fXX16lQAAAAKEeyNwAAANRenRrggwcPTseOHfO73/0u3bp1W2B/mzZtcsEFF6Rbt255/PHH6/JUAAAAUJZkbwAAAKi9OjXA//Wvf2XTTTdN+/btFzmmZcuW2WCDDfLBBx/U5akAAACgLMneAAAAUHt1aoC3aNEin3322deOmzx5clq0aFGXpwIAAICyJHsDAABA7dWpAf7Nb34zr7zySsaPH7/IMePGjcsrr7ySddZZpy5PBQAAAGVJ9gYAAIDaq1MD/IADDsiMGTNy7LHH5vXXX19g/5tvvpnjjz8+s2bNyt57712XpwIAAICyJHsDAABA7dVpbbSdd945Tz31VO6+++7stddeWXrppVMoFPLEE09k2223zYQJE1JdXZ1ddtklP/rRj+qrZgAAACgbsjcAAADUXp1vDta3b99stNFGuf766/PPf/4zSTJp0qQkSffu3fPTn/40hxxySF2fBgAAAMqW7A0AAAC1U+cGeJLsvffe2XvvvfPRRx/lww8/TFVVVbp27ZoVV1yxPg4PAAAAZU/2BgAAgK+32A3wuXPn5tZbb83QoUPz8ccfp3v37tltt92yxx57pGvXrunatWtD1AkAAABlQ/YGAACAJbNYDfBZs2bl8MMPz/PPP5/q6uokyT//+c889dRTGTFiRH73u981SJEAAABQLmRvAAAAWHKL1QC//fbb89xzz2W55ZbLkUcemZVXXjlvvfVW+vfvn6FDh+bee+/Nj370o4aqFQAAAEqe7A0AAABLbrEa4H/961/Tpk2b3HbbbenevXuSZJtttsnWW2+dPffcM3/5y1+EcAAAAKgD2RsAAACWXMXiDB47dmw23XTT+QF8nnXWWSfrrrtuxowZU6/FAQAAQLmRvQEAAGDJLVYDfNq0aVlmmWUWum+llVbK5MmT66MmAAAAKFuyNwAAACy5xWqAz5kzJ5WVlQvd17Jly8yePbteigIAAIByJXsDAADAklusBjgAAAAAAAAANFUa4AAAAAAAAACUBA1wAAAAAAAAAEpCi8V9wPDhw7P99tsvsH3SpElJstB9SVIoFDJ8+PDFfToAAAAoO7I3AAAALJnFboBPnz4906dPX+T+8ePHL3R7oVBY3KcCAACAsiR7AwAAwJJZrAb4gAEDGqoOAAAAILI3AAAA1MViNcA333zzhqoDAAAAiOwNAAAAdVFR7AIAAAAAAAAAoD5ogAMAAAAAAABQEhZrCXQAAACgdA0ZMiSnn356brzxxnznO99ZYH+vXr0yefLkRT5+9OjRad26dQNWCAAAAF9NAxwAAADI6NGjc8EFFyxy//jx4zN58uQst9xyi7xPeUWFheYAAAAoLg1wAAAAKHOPPvpoTj/99Hz++eeLHPPGG28kSXbaaaeceeaZjVUaAAAALBYNcAAAAChTEyZMyG9/+9sMHjw4bdq0SZcuXfLxxx8vdOxrr72WJFl33XUbs0QAAABYLNYmAwAAgDJ1xRVXZNCgQVl33XVzxx13ZLXVVlvk2HlXgK+33nqNVR4AAAAsNleAAwAAQJlabbXVcvHFF2f33Xf/2vt3v/baa2nTpk1effXVnHXWWXn77bdTKBTSs2fPHHvssdlwww0bqWoAAABYtGZzBfiQIUOy9tpr56mnnlro/l69emXttdde5D9ffPFFI1cMAAAATVvv3r2zxx57fG3z+5NPPsnEiRMzc+bMnHbaaamqqkqvXr3SsWPHjBw5MgceeGAefPDBRqoaAAAAFq1ZXAE+evToXHDBBYvcP378+EyePDnLLbdcNt9884WO+bowDwAAACzcvPt/d+rUKddcc0023njjJEl1dXVuuummXHTRRenTp0969uyZ5Zdfvk7P1aJFzfxeWVkaeb628yiV+SblN+dSmQcAADR3Tb4B/uijj+b000/P559/vsgx8+5DttNOO+XMM89srNIAAACgLGy99dZ54oknUl1dneWWW27+9kKhkEMPPTTPPfdchg8fnrvvvjvHHXfcEj9PRUUhnTq1r4+Sm5wOHdoWu4RGV25zLrf5AgBAU9VkG+ATJkzIb3/72wwePDht2rRJly5d8vHHHy907Lwz0dddd93GLBEAAADKQqFQSLdu3Ra5f7vttsvw4cPz6quv1ul5qqqq89ln02tsq6ysKInG4mefzcjcuVVfO65U5puU35xrO18AAGDxdejQttarLjXZBvgVV1yRwYMHZ7311ku/fv3St2/fRTbA510Bvt566zVmiQAAAECSrl27JklmzJhR52PNmVOaDcS5c6tKdm6LUm5zLrf5AgBAU9VkG+CrrbZaLr744uy+++5fe//u1157LW3atMmrr76as846K2+//XYKhUJ69uyZY489NhtuuGEjVQ0AAACl54477sjTTz+dXXfdNTvssMMC+8eNG5ckdb7/NwAAANRV7a4TL4LevXtnjz32+Nrm9yeffJKJEydm5syZOe2001JVVZVevXqlY8eOGTlyZA488MA8+OCDjVQ1AAAAlJ4JEybkoYceyl133bXAvurq6tx7771Jkq222qqxSwMAAIAamuwV4LU17/7fnTp1yjXXXJONN944yZcB/KabbspFF12UPn36pGfPnnU+E71Fi5rN+NquM9/U1XYepTLfpPzmXCrzAAAAimPPPffMddddl5EjR+bOO+/MvvvumySpqqrK73//+4wePTprrLFGdtpppyJXCgAAQLlr9g3wrbfeOk888USqq6uz3HLLzd9eKBRy6KGH5rnnnsvw4cNz991357jjjlvi56moKKRTp/b1UXKT06FD22KX0OjKbc7lNl8AAKB+rbzyyjnvvPNy1lln5eyzz87NN9+cHj16ZMyYMXn33XfTpUuX/P73v0/Lli2LXSoAAABlrtk3wAuFQrp167bI/dttt12GDx+eV199tU7PU1VVnc8+m15jW2VlRUk0Fj/7bEbmzq362nGlMt+k/OZc2/kCAACLr0OHtmWx6tJee+2Vb3zjG7nuuuvy4osv5p133km3bt1y8MEH55hjjknnzp2LXSIAAAA0/wb41+natWuSZMaMGXU+1pw5pdlAnDu3qmTntijlNudymy8AALBkBg4c+JX7e/bsmWuuuaaRqgEAAIDF1+xPUb/jjjty4oknZvjw4QvdP27cuCSp8/2/AQAAAAAAAGjamv0V4BMmTMhDDz2UGTNmZIcddqixr7q6Ovfee2+SZKuttipGeQAAAAAAAAA0kmZ/Bfiee+6ZVq1aZeTIkbnzzjvnb6+qqsqVV16Z0aNHZ4011shOO+1UxCoBAAAAAAAAaGjN/grwlVdeOeedd17OOuusnH322bn55pvTo0ePjBkzJu+++266dOmS3//+92nZsmWxSwUAAAAAAACgATX7K8CTZK+99sott9yS733ve5kwYUIeffTRzJkzJwcffHDuu+++rLbaasUuEQAAAAAAAIAG1myuAB84cOBX7u/Zs2euueaaRqoGAAAAAAAAgKamJK4ABwAAAAAAAAANcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAoDyU1FRSEVFocGOX1VVnaqq6gY7PgAAAAAAAE2TBjjQqCoqCunUqW0qKiob7DmqquZm0qQZmuAAAAAAAABlRgMcaFRfXv1dmX8+cF1mfPJhvR+/becV8o1dj0xFRUEDHAAAgLJl9TUAAMqVBjhQFDM++TAzJrxX7DIAAACg5Fh9DQCAcqYBDgAAAAAlxOprAACUMw1wAAAAAChBVl8DAKAcVRS7AAAAAAAAAACoDxrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAloUWxCwCaloqKQioqCg12/MpK590AAAAAAADQMDTAgfkqKgrp2LGdJjUAAAAAAADNkgY4MF9FRSGVlRW5+rYnM37ilAZ5jg3X7p79dtqoQY4NAAAAAABAedMABxYwfuKU/Gv8pAY5dveuHRrkuAAAANBcuP0YAAA0HA1wAAAAAGgkbj8GAAANSwMcAAAAABqJ248BAEDD0gAHAAAAgEbm9mMAANAwrLUEAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAEmSIUOGZO21185TTz210P0ff/xxfvWrX+X73/9+Nthgg2y//fa59NJLM23atEauFAAAABZOAxwAAADI6NGjc8EFFyxy/8SJE7PvvvvmlltuSZs2bbLtttumqqoq/fv3zwEHHJDPP/+8EasFAACAhdMABwAAgDL36KOP5vDDD//KJnbfvn0zfvz49O7dO/fff3+uvPLKPPzww/nhD3+YN998M1dddVUjVgwAAAAL12wa4JZhAwAAgPo1YcKE9OnTJ8cee2xmz56dLl26LHTce++9l2HDhmWFFVbICSecMH97q1atcsEFF6R9+/a54447MnPmzMYqHQAAABaqWTTALcMGAAAA9e+KK67IoEGDsu666+aOO+7IaqutttBxjz/+eKqqqrLNNtukZcuWNfYtvfTS2WKLLTJ9+vQ888wzjVE2AAAALFKTb4Bbhg0AAAAaxmqrrZaLL744d911V9Zee+1FjnvrrbeSJGuttdZC96+xxho1xgEAAECxNNkGuGXYAAAAoGH17t07e+yxRyoqvvrrgY8++ihJ0rVr14Xun7f9448/rt8CAQAAYDG1KHYBi3LFFVdk8ODBWW+99dKvX7/07dt3oUG6NsuwPfLII3nmmWeyzTbbNFb5AAAAUDKmT5+eJGnTps1C98/bPm9cXbRoUbMZX1nZZM/dXyy1nUepzDcpvzmX23yT0poLAAClo8k2wOctw7b77rt/5ZnotVmG7ZFHHslbb72lAQ4AAABLoLKyMklSKBQWur+6urrG/y6piopCOnVqX6djNFUdOrQtdgmNrtzmXG7zTcpzzgAANH1NtgHeu3fvWo2zDBsAAAA0rHbt2iVJvvjii4Xun7e9bdu6NcOqqqrz2Wc1ryKvrKwoiSbbZ5/NyNy5VV87rlTmm5TfnMttvknt5wwAAHXVoUPbWq9A1GQb4LVlGba6s0RX3cc1deU236S05gIAAMXWrVu3JP85Cf1/fd3J6YtjzpzSbKbNnVtVsnNblHKbc7nNNynPOQMA0PQ1+wa4ZdjqrlTOOl4c5TbncptvUp5zBgCAhjLvtmNjx45d6P633347SbL22ms3Wk0AAACwMM2+AW4ZtrqzRNeilcqcy22+iWXYAABoPIuzDFtztfXWWydJRowYkT59+sw/GT1Jpk6dmmeeeSbt2rXLJptsUqwSAQAAIEkJNMAtw1Z35bhcVbnNudzmm5TnnAEAoKGsuOKK2W677TJixIhceumlOf3001MoFDJr1qycc845mTZtWg477LAstdRSxS4VAACAMtfsG+CWYQMAAICGd/bZZ+e1117LjTfemMceeyxrrrlmXnnllXzwwQdZd911c9xxxxW7RAAAAEizX6Ptv5dhmzt3bo19lmEDAACA+rHiiivm7rvvzj777JOpU6dmxIgRadWqVY4++ugMGDAg7du3L3aJAAAA0PyvALcMGwAAANSPgQMHfuX+5ZZbLn379m2kagAAAGDxNfsGeGIZNgAAAAAAAABKYAn0xDJsAAAAAAAAADSjK8AtwwYAAAAAAADAVymJK8ABAAAAAAAAQAMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJLQotgFAAAAAM3Ho48+mmOOOWaR+3feeedcccUVjVgRAAAA/IcGOAAAAFBrr7/+epJks802y/LLL7/A/o033rixSwIAAID5SqoB7ix0AAAAaFjzGuBnnXVW1llnnSJXAwAAADWVVAPcWegAAADQsF5//fW0bt06a6yxRrFLAQAAgAWUZAPcWegAAABQ/yZNmpQPP/wwG2ywQVq0KKmvFAAAACgRJZVWnYUOAAAADWfeiecrrLBCLr300jzyyCP54IMP0qVLl+y44445+uijs8wyyxS5SgAAAMpZRbELqC/zzkJfe+21nYUOAAAADeC1115Lkjz88MO57bbb0qNHj/Ts2TNTpkzJDTfckH333TcfffRRkasEAACgnJVMp9hZ6AAAANCw3njjjSTJtttum8suuyxLL710kuTTTz/NSSedlL///e85++yzc+211y7xc7RoUfNc/crK0jh3v7bzKJX5JuU353Kbb1JacwEAoHSUTAP8v89Cb9++fTbffPMsv/zyeeWVV3LDDTfk0Ucfzc0335yuXbsWuVIAAABoni6++OL84he/yPLLL582bdrM377sssvmkksuyU477ZQRI0bk/fffz0orrbTYx6+oKKRTp/b1WXKT0aFD22KX0OjKbc7lNt+kPOcMAEDTVzINcGehLzlnKNd9XFNXbvNNSmsuAADQVLRq1So9evRY6L7lllsu3/rWt/L888/ntddeW6IGeFVVdT77bHqNbZWVFSXRZPvssxmZO7fqa8eVynyT8ptzuc03qf2cAQCgrjp0aFvr3k/JNMCdhb7kSiV0LY5ym3O5zTcpzzkDAECxdenSJUkyY8aMJT7GnDml2UybO7eqZOe2KOU253Kbb1KecwYAoOkrmQa4s9CXnDOUF61U5lxu802chQ4AQONZnLPQm7NZs2bl/PPPz6RJk3LZZZelXbt2C4wZN25ckmT55Zdv7PIAAAAgSQk1wL+Os9AXrRzP1i23OZfbfJPynDMAADSkVq1a5amnnsoHH3yQxx9/PDvttFON/WPGjMmYMWOy9NJLZ6ONNipOkQAAAJS9kjhFfdasWfnlL3+ZY489NtOnT1/oGGehAwAAQN3st99+SZJf//rXee+99+Zv//jjj3PmmWdm7ty5Ofzww2vcmgwAAAAaU0lcAe4sdAAAAGh4hx12WJ577rn87W9/y6677ppNN900rVq1yjPPPJPp06dnxx13TO/evYtdJgAAAGWsJK4AT5yFDgAAAA2tVatW+dOf/pRf/vKXWX311fPCCy/kmWeeyZprrpm+ffvmd7/7XSorK4tdJgAAAGWsJK4AT5yFDgAAAI2hsrIyhxxySA455JBilwIAAAALKJkG+Lyz0G+55ZYMHjw4L7zwQioqKrLmmmtmn332yd57751CoVDsMgEAAAAAAABoICXTAE+chQ4AAAAAAABQzkrmHuAAAAAAAAAAlDcNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAgBKXUVFIRUVhQZ9jqqq6lRVVTfocwAAAAAAADR1GuBA2WvIBnWhUEiHDq1TUVHZIMefp6pqbiZNmqEJDgAAAAAAlDUNcKCsVVQU0rFju1RWNuwdIf75wHWZ8cmHDXLstp1XyDd2PTIVFQUNcAAAAAAAoKxpgANlraKikMrKilx925MZP3FKvR9/w7W7Z7+dNsqMTz7MjAnv1fvxAQAAAAAA+A8NcIAk4ydOyb/GT6r343bv2qHejwkAAAAAAMDCaYADAAAAAA2qoqKQiopCscuok6qqarceo4aGfl97zwHAktEABwAAAAAaTEVFIR07tktlZUWDPUd1VVUKFQ13/CSpqpqbSZNmaEiSpHHe13PnVmXq1Jmprm6495wmOwClSAMcAAAAAGgwFRWFVFZW5Orbnsz4iVPq/fgbrt09++20Uf75wHWZ8cmH9X78JGnbeYV8Y9cjU1FR0CwkScO/r9fu0TWH7LZJOnZsV+/H/m9O7ACgFGmAAwAAAAANbvzEKfnX+En1ftzuXTskSWZ88mFmTHiv3o8PX6Uh39eFigondgDAEtAABwAAAACAJsiJHQCw+Br2xjgAAAAAAAAA0Eg0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJSEFsUuAAAAAAAAAGj+KioKqagoNOhzVFVVp6qqukGfg+at5Brgzz77bK699tq88cYbmTlzZtZee+389Kc/zQ9/+MNilwYAAAAlQfYGAIDmqSEb1IVCIR06tE5FRWWDHH+eqqq5mTRphiY4i1RSDfD7778/p556alq0aJFevXqlsrIyTz/9dE488cSMHTs2xx13XLFLBAAAgGZN9gYAgOapoqKQjh3bpbKyYe+Q/M8HrsuMTz5skGO37bxCvrHrkamoKGiAs0gl0wD/5JNPctZZZ6Vt27YZMGBA1l9//STJ2LFjc8ghh+Sqq67KDjvskHXWWafIlQJQihp6aR/L+gAATYHsDQAAzVdFRSGVlRW5+rYnM37ilHo//oZrd89+O22UGZ98mBkT3qv340NtlUwD/JZbbsnMmTNz5JFHzg/gSbL66qvn5JNPzplnnpmbbropF110URGrBKAYGro53RhL+1jWBwBoCmRvAIrJyecA9WP8xCn51/hJ9X7c7l071PsxYUmUTAN85MiRSZLvf//7C+zbfvvtUygU8thjjzVyVQAUW2Mt65M03NI+lvUBAJoK2RuARXHyOaWood/XjcGJHUBDaOonpZVMA/wf//hHkmSNNdZYYF/Hjh3TpUuXfPTRR/nkk0/SuXPnxi4PgCJp6GV9kqa5tI+ABgA0BNkbgIVx8jmlqLHe19VVVSlUNNxzOLEDyo+T0kqkAT5lypR88cUXad++fdq3b7/QMd26dctHH32Ujz76SAgHKEMNtaxP0vSW9mmMgNbQ4SxpegGtqZ3VWI4nOTT3OTup4+s199c48TpT2mRvABalXE8+L0fN/TP74nxeb8z3tRM7iquc3teUPielfalQXV3d7H8qPvzww2y77bbp0qVLnnzyyYWOOeCAA/Liiy/mtttuS8+ePRf7OaqrF/wFUigkFRUVmfL5zMydW7VEtX+VVi0rs1S71pk97bNUV82t9+MXKirTsn2HVFVVpTbvguY+36T85tzU5puU35yb4vt6/uOa72e6xZ5nub6vp02flblV9T/nli0q07ZNy8yZOS3VDXD8JClUVKRFm/ZN6n1dKBRSaMAnWNhnja9SUdGw9SRf1lROc25q852nXH5fJ83/NZ73HIv7OpfTa5w07/kmC59zY/xObgpk7yUjo9RifDOfc1Obb1J+c26K7+v5j2vGfx5k768ZX6bv6+b+mX1xPq+X4/t6/uPK5HfXPN7X9aep/u5Kyud93dDfDSf/+X64sX93Lc7PaklcAV7x/69A+6pJz+vzL2m/v1AopLJy4cdfZqk2S3TM2mrZvmGvLKxYzCv4mvt8k/Kbc1Obb1J+c26K7+tyU47v6/btWjVQJV9q0WbhV37Vp3J6X3/VZ41iaehmTlObc7nNtxw1RoPS60wpk73rRkb5es19zk1tvkn5zbkpvq/Ljfd1/Su393VTzGXl+L6mfpXj+7rcfnc1RQ393XDStH93lcS7Y97SazNnzlzkmFmzZiVJ2rVr1yg1AQAAQCmRvQEAAGgOSqYB3q5du0ydOnWRQXzixIlJkq5duzZmaQAAAFASZG8AAACag5JogBcKhay11lpJkrFjxy6wf/Lkyfn444+z7LLLpkuXLo1dHgAAADR7sjcAAADNQUk0wJNk6623TpIMHz58gX3Dhw9PdXV1ttlmm8YuCwAAAEqG7A0AAEBTVzIN8L322itt27bNn//857z44ovzt7/zzjv57W9/m0KhkJ/97GdFrBAAAACaN9kbAACApq5QXV1dXewi6sudd96Zs88+O5WVlenVq1datWqVp59+Ol988UX+7//+L7179y52iQAAANCsyd4AAAA0ZSXVAE+Sxx9/PNddd11effXVVFZWZo011shhhx2WH/zgB8UuDQAAAEqC7A0AAEBTVXINcAAAAAAAAADKU8ncAxwAAAAAAACA8qYBDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcKDeTJ06dbEf88wzzzRAJcCSuuqqq/LWW28VuwwAAGARZG9o/mRvAGhYGuA0ulmzZuXVV1/NmDFjMmfOnEWO+/TTT/Pcc881YmWN75lnnsmNN96YW2+9NePGjSt2OXV2yCGHZPLkybUa+8UXX6Rv37752c9+1rBFAYvlqquuyptvvlnsMqDebb/99nnkkUeKXUZRVFVV5b333quxrbq6Og8++GD69u2b3/zmN3n55ZeLVF39+eCDDzJz5sxajx83blyGDBnScAUVwaeffpqnn346Dz74YB566KE888wztf5sBpQe2fs/ZG/ZG5oa2ZtSJXvL3v9L9qZYWhS7AGpv5syZ+fTTT9O9e/dil7LEBgwYkN/97neZPn16kmTppZfOEUcckSOOOCIVFTXPx/jb3/6W008/PW+88UYxSq03b775Zv74xz/mzTffTPfu3XPUUUelZ8+eOeGEE/LII4+kuro6SdKiRYscf/zxOeqoo4pc8ZJ744038pOf/CR//vOf06VLl0WOe/nll3P66afnX//611eOK1Wffvppxo4dm80226zYpTSKqVOn5uKLL07fvn2LXUqjKbfXuBRsv/32OfPMM7P99tsXu5RG881vfjOXXHJJdtttt2KX0ijGjx8///NHORk5cmTOP//8fPTRR3n11VeTfBnKjz322Dz22GPzP4f0798/hxxySPr06VPMcutk++23X+A9PX369FxwwQU54ogjsvrqq9cYP2rUqPTp0yd77LFHI1da/x5++OH88Y9/XOjn5kKhkJ49e+aII47Itttu2/jF1aN11lknhUJhsR5TKBTy+uuvN1BFlCrZu3mSvRcke5dXLpO9aQ5k79Ine8vesrfs3VS4AryIFnY21KxZszJkyJB8/PHHC4wfOnRos/5wMGTIkPTr1y9rr712+vTpk6OOOipt2rTJFVdckcMOOyyff/55sUusd6+++mr23XffjBw5Mm3bts3LL7+cQw89NP369csjjzySww8/PIMHD87NN9+cbbbZJr/97W/z0EMPFbvsJXb22WfnnXfeyUEHHZQPP/xwgf2zZ8/Ob37zmxx44IH517/+lR/96Ef5y1/+UoRK69c3v/nN3H///TW2zZw5M1dddVXef//9Bcb/7W9/yyGHHNJY5TWI999/PxdccEF+/OMf58c//nHOOuusvPvuuwuMGzp0aHbeeefcc889Raiy/pTja1xuyjGgzQtflK4xY8bk5z//eaqrq3P44YenqqoqSXLbbbdl5MiR6dq1a+68886MGjUqp512WgYMGNCsP4cs7D39xRdfZMiQIZk4cWIRKmocffv2zYknnpjx48dnjz32yCmnnJJf/epXOeecc3LCCSdk++23z2uvvZZjjjkmv/71r4tdbp1sttlm2XTTTRfrn0022aTYZdMEyN6yt+wtezdXsnfpv8blRvamFMnesrfs3TSztyvAi2hhf/CnTZuWPn365IYbbii5s3NvvPHGbLbZZhk4cOD8bccee2zOO++8DBo0KIceemj+/Oc/Z6mllipilfXriiuuyEorrZSBAwdm2WWXzfTp03PUUUfllltuyX777ZdTTjll/thNN900P/nJT3L99dfnhz/8YRGrXnIHHXRQlllmmZxxxhk56KCD8uc//zmrrLJKki/PUD/99NPz1ltvpXv37jn//POz9dZbF7ni+rGwP/ozZszI1VdfnU022SQrrbRSEapqOG+88UYOPvjgfP7552nTpk3atGmT119/PQ8++GBuv/32rLXWWpk6dWrOOuusDB06NJWVlendu3exy66TcnuN33nnncVeBtMZ99D0XHfddenWrVvuvffedOjQYf72W265JYVCISeffHI22GCDJMnPfvazPPvss7ntttua7eeQRSnlL5zuu+++3Hzzzdljjz1yzjnnpF27dgsdN23atFx44YW56aabsvHGG2fHHXds5Errx3/nCFgcsrfsLXvL3s2R7P2lUn6NZW8oDbL3l2Rv2bup0QBvgkr1F8U///nPnHHGGTW2tWrVKv369UvHjh1zww035IgjjsgNN9ywyF8gzc2oUaNy8sknZ9lll02StGvXLr/4xS/yk5/8JFtttdUC43/4wx/mkksuaewy69Wuu+6apZdeOieeeGIOOuigXHfddXnkkUdy7bXXZs6cOTnwwAPzf//3f2nfvn2xS21wpfqzfOWVV2bmzJn5zW9+k1122SVJMnr06Jx88snp27dvLrvsshxyyCH517/+lfXXXz99+/bN2muvXeSqG0apvsbXXnttrr322sV6THNfMrNcLe5yRs3dnXfemaeeeqrW4wuFQvr169eAFTWs5557Lvvuu2+NAD5u3Li88847adGiRb7//e/XGL/lllvmyiuvbOwyqYPbbrstG2200deeXd6+ffv069cvY8eOzV133dVsQ/js2bPTsmXLxXrMyy+/nA033LCBKqK5K9XPcrK37C17lwbZ+z9K9TWWvcuH7P3VZG+aOtn76zXF7K0BTqNp27ZtJk+evNB9p512WqZPn57bb789Rx99dK677rrGLa6BLLXUUvnss89qbFt77bWzzTbbpEWLBX/8Jk2alNatWzdWeQ1mm222Sf/+/XPMMcfkxz/+caqrq7Pqqqumb9++2XTTTYtdHnU0evTo7L///vMDeJJssMEGOe2003LSSSflpJNOyvjx43PKKafksMMOW+AegzR9O+ywQ8l+cfJVyi2gJck111yTO++8s9bjC4VCbrrppgasqGE999xzi3WFRXN/jSdNmpTll1++xra///3vSZINN9xwgS/E27Rpky+++KLR6qPu/vGPfyzWPWy333773HHHHQ1YUcP68Y9/nMsuu6xWf6NmzZqVK664IgMGDMhrr73WCNVB0yF7f0n2lr2bO9m79MnetdPcc1kie3+d5v4ay96lT/ZetKacvTXAaTS9evXKgAED8v3vfz9rrrnmAvvPPffcfP7553nggQdy2GGHZZtttilClfVryy23zJ///OdsvPHG+fa3v50kWXrppfPHP/5xgbEvv/xyBg4cOH9cc7fJJptkwIABOeKII/Lpp5/mV7/6lQBeIqZMmZJ11llnge3rr79+5s6dmzfffDMDBw7MRhtt1PjFUS9+8IMfZLfddit2GY2u3AJakowdOzZjx46t9fjmftb6mWee2azv6bq4lllmmXz66ac1tv3tb39LoVDIlltuucD4sWPHzr9yjuZh+vTp6dy5c63Hd+3atVnfk+3jjz/O3nvvneOPPz5HHnnkIn8nvfDCCznzzDPz7rvvZtVVV23kKqH4ZG/ZW/YuDbJ36ZO9a0f2bn5kb9m71MjezTN7a4DTaE4++eQceOCB2XPPPfOtb30rl156aY0fikKhkEsuuSStWrXKoEGD8uKLLxax2vpxyimnZPTo0TnssMOy6aabLvLeCQcffHBeeOGFLLvssjXuTdbcrbPOOrntttvys5/9LMccc0yuvvrqbLHFFsUuizqaM2fOQq+WaNOmTZKkd+/eAjjNUrkFtCS59NJLy+oLl06dOmXFFVcsdhmNpmfPnnnwwQdz+OGHp7KyMh9//HFGjhyZJNlpp51qjJ06dWruv//+9OrVqwiVsqTmzp270CsbF6WysjJz5sxpwIoa1gMPPJA+ffrk8ssvz8iRI3PxxRdn5ZVXnr9/3jKx8+61d/jhh+eEE04oYsVQHLK37C17lwbZm1Ile5c+2Vv2LjWyd/PM3hrgNJoePXrkL3/5S66++uo8//zz8z+w/7eKior069cvG2+8cX73u9/lk08+KUKl9adz58655557cvvtt2fWrFmLHNemTZvsvffe+cUvfrFYZxI1NX369Fno9lVXXTXvv/9+jjrqqPzwhz+sccZQKZzFSU3rrbdesUuAJVJuAY3Sd+SRR2b//ffPfvvtl8033zyPPPJIvvjii+yyyy5ZbbXVknz5xepLL72Uiy++OJ9++mkOOuigIlddN8OGDcu77747/79nzpyZQqGQe++9Ny+88EKNsW+99VZjl0cdde7cOX/6059yyy235NJLL82PfvSjnHHGGdl3333z7LPP5pe//GXGjRuXtddeOxdeeKHPJJQt2Vv2lr3Lg79zNFeyN6VG9pa9S02pZG8N8CJ75513aiz5MnXq1CTJm2++ucAZJYuzTEpT1alTp5x11llfO26fffbJnnvuWeOXaHPVpk2bHHrooV85plTuuzZ48OCv3P/FF19kyJAhNbaVSgh//vnnM3fu3Pn/PW3atCTJk08+mQkTJtQYWwpXWHyV5r5M06KUy2u82WabpUuXLsUuA6gH66+/fq655ppceOGFueGGG1JZWZnddtst559//vwxl1xySQYMGJCKior06dMnPXv2LGLFdTd06NAMHTp0ge3/+/ljnlL4m/W/Xzx8lVL54uGggw7KFltskbPPPjvnnntuBg4cmLFjx6ZFixY54YQT0rt378U6O5/yIHsvnOzdPMnepZ/LaqMUPscsTLm8xrI3lA7Z+z9k7y/J3k1Dobq6urrYRZSrddZZZ6E/+NXV1V+5/Y033miM8hpcdXV1xo0bl8mTJydJll122ay00krFLaqBlfqcx48fv0SPa+5nfS7sZ/m/f7UubF9z/lleZ511cswxx+Q73/lOje1Tp07NsccemzPOOCPrrrvuAo/bbLPNGqvEeldur3E5WmeddcpuSbJym/PgwYOz6aab1liyqZxMmjQpbdu2XeAqwMceeyyvvfZadtlllyZ5v6bF8eyzzy7R4zbffPN6rqTxLOy+oF+nlP4+Pffcczn22GMzderUFAqFHHvssTn++OOLXRZNkOxd2jl0YUp9zrL3f5RyLpO9v1TKr3E5KrccmpTfnGVv2XtRZO/mq7lmbw3wIrrqqquW6HHHHXdcPVfSuEaPHp3+/fvnySefzPTp02vsW2qppfK9730vP/vZz5bol0pTVY5zLidfd/b9ouy55571XEnjWNQXiMmiv0RM0qz/4JfTa/zfV0Ytjub8JUtSngHt2Wefzeqrr96sl/+EcleOXzwkyeeff55LLrkkd999d1q3bp0jjzwyDz/8cN566618+9vfTt++fdO9e/dil0kTInuXTw4txzmXk3LKZYnsvTia42sse8veQPMhezfP7K0BTqO64YYbctlll6WioiIbb7xx1lxzzXTo0CFz5szJ5MmT8/rrr+eNN95IRUVFTj/99BxyyCHFLrnOynHOtXXttddm6NChGTRoULFLaXSzZs1Kq1atil3GEinXLxAXV3N9jb/qS5av0py/ZKE8LOpemV+lVJYKZeFuv/32/O1vf1viv2sUx8iRI3PuuedmwoQJ2WKLLXLBBRdk5ZVXzuzZs3PllVfmhhtuSJs2bXLqqadm//33L3a5UDTlmEPLcc61JXs3v1yWyN611VxfY9mbUiV7879k7+apFLK3BjiN5rHHHstRRx2Vb3/72+nXr19WWGGFhY577733cv755+epp57KDTfckG9/+9uNXGn9Kcc5L45zzz03d955Z7P/8H7VVVctVsAcPXp0+vTpk7/85S8NWBX1qZxe49///vdLFMKb+5cs5RjQluRL30KhkJtuuqkBqml45bhc1dd9qda6dessvfTSWWuttfKDH/wg++yzTyoqKhqxwuIqhc8hH3zwQZZddtkFltdblHHjxuWFF17IHnvs0bCFNZBTTjklf/nLX9KuXbucdtpp2W+//RYYM2rUqJx++ukZN25cNt9881x44YUltewx1EY55tBynPPiKIW/eUl55bJyVU6vsexde7J38yJ7L0j2bv6fQ2Tv5pm9NcCLqNz+4P/sZz/Lxx9/nEGDBqVly5ZfOXbOnDnZY489suqqq+bqq69upArrXznOeXGUwh+/5MsPOYcffnhOPfXUrxw3Z86cXHXVVenfv3/mzp3b7OddWzNnzsynn37apJdD+Tpe49JXrgFtcTXnOZfjvTIPPvjgr9w/d+7cfPbZZ3nvvfcye/bsbLnllrn22mvTokWLRqqwuErhc8g3v/nNXHLJJTXuJzh9+vRccMEFOeKII7L66qvXGH/ffffl9NNPb7ZzXmeddbL11lvnggsuyPLLL7/IcTNnzsyvf/3r3H777WnXrl1efPHFRqySpkj2XrRSyaHlOOfFUQp/8xK57OvI3jQH5ZZDk/Kbs+y9INm7+X8Okb0Xrqln7/L4CWuiFue+Nv99BlFzDeGvv/56Dj300K8No0nSokWL/PCHP8x9993XCJU1nHKccznadNNNc8MNN2TGjBk555xzFjrmzTffzOmnn54333wzyyyzTH75y182cpX1Z/vtt8+ZZ56Z7bfffv62WbNm5cEHH8xWW22VLl261Bg/dOjQZv0HPym/17gcPfLII8UuodGNGTOm2CU0quYcppfUwIEDazVu5syZue2223LJJZfktttu+9rwTtOxsHOZv/jiiwwZMiS77777AiG8ubvoootqdY/PNm3a5Lzzzsv3v/99f49JInt/lVLJoeU453JUbrlM9i7917gcyd6lT/ZeNNm7+ZK9F66pZ28N8CKqzR+/8ePH54ILLsjIkSOz9NJL58QTT2z4whrItGnT0q1bt1qPX2GFFfLvf/+7AStqeOU453J0ww035IQTTshtt92WGTNmpF+/fvO/OKuurs6f/vSnXH311Zk1a1Z23nnnnHXWWVl22WWLXPWSGz9+fKZPn15j27Rp09KnT5/ccMMNC4TwUlBur3GSvPPOOxk1alT22muv+ds+/vjjXHXVVXnxxRfTtm3bbL/99jn00EOb5f3W/lc5BjRqmjVrVv7xj3+kTZs2WW211YpdTqNq06ZNfvazn+Xll1/O4MGDhfASUKqLfNUmgP+3b3zjG9lnn30aqBqaE9n7q5VCDi3HOZejcstlsnfpv8aJ7E35kb1l71Iie3+pqWZvDfAmau7cubnhhhvyhz/8ITNnzswuu+ySPn36NOsPt3PmzFmsD2otWrTIrFmzGrCihleOcy5HrVq1ytVXX50+ffpk8ODBmTlzZi677LK89957OeOMMzJ69Oh07do15513Xr73ve8Vu9wGU6p/8JPye40vu+yy3HDDDamurs6ee+6ZioqKTJ06Nfvtt18++OCDdOzYMSuuuGJ+97vf5dFHH83AgQNrdbVNc1aOAW3ChAkZPXp02rRpk80226zW9zlqyqZOnZrrrrsuo0aNqnGG9v3335++ffvms88+S/LlB/d+/fplo402KlKlxdGrV688+eSTxS4D6uSLL77Iww8/nEGDBuXZZ59NdXV1fv7znxe7LJow2bs0cmg5zrkclVsuWxTZu3ReY9l7QbK37F0OZG9KQXPI3hrgTdDzzz+f888/P2+//XZ69OiRc889N9/+9reLXRZ8rauuumqxxr/66qsNVEnjq6yszCWXXJIOHTrk5ptvzvvvv5+33347M2fOzD777JPTTz89Sy21VLHLpA7K5TUeNmxY+vfvn2233TaHHHJIKioqkiR/+MMfMn78+Gy44Yb585//nLZt22b06NE5+OCD8+c//zlHHnlkkSuvu3IMaOPHj8/ll1+eUaNG5dFHH52//U9/+lOuvPLKzJ07N9XV1VlmmWVywQUX5Ac/+EERq62badOmZb/99ss777yT5ZdfPnPmzEmLFi0yevTonH766amurs5+++2XNddcM0OGDMnPfvazDBkyJKuuumqxS280lZWVqaqqKnYZS2zIkCGLNf6f//xnwxRCUYwaNSqDBg3KQw89lGnTpqW6ujqrrLJK9ttvv2KXRhMme9Ncyd6ln8vKWbm8xrK37J3I3rJ38yR7l7fmlL01wJuQSZMm5ZJLLsmQIUPSqlWrHH/88TnyyCNLYnmbeZ5//vnMnTu3VmNffPHFBq6mcZTTnBc3hCc177FXCs4666x07NgxV111VSoqKvLHP/4x22yzTbHLoh6V+mt8++23Z8MNN8y11147f1t1dXXuu+++FAqF/OIXv0jbtm2TJBtssEF+9KMf5S9/+UuzD+HlGNA++eST7Lfffpk0aVI22GCD+XN+4okncvnll6dFixY5+eSTs9Zaa+XOO+/MySefnDvuuCPrrrtusUtfIjfccEPee++9/Pa3v81OO+00f/vVV1+d6urq/PSnP80ZZ5yRJNl7772z++6759prr81FF11UrJIb3csvv5wVVlih2GUssTPOOGOxPldUV1eX3OeQcjNhwoTce++9GTRoUN599935V8T16tUrRx55ZLbaaqsiV0hTJXvX1Nxz6DzlNGfZu/RzGaX/GsvesrfsLXs3V7J3+Wmu2VsDvIm46667ctlll2XKlCnZcsstc+6552aVVVYpdln17s4778ydd95Zq7Gl8ouxnOY8YMCAYpfQJBx33HHp1KlT+vbtm/79+2eTTTYpibOT+Y9Sfo1fe+21BQL166+/nk8++SRLLbVUevXqVWPf+uuvn/vvv78xS2wQ5RjQ/vSnP2XatGm55ZZbapxR/6c//SmFQiE///nP578Xvvvd72avvfbKddddl9/+9rfFKbiOhg4dmh/96Ec1Xt9p06bNX3bswAMPnL+9devW2X333XPXXXc1ep3F8te//jX33ntvjjjiiGKXssSa888jtTdr1qwMHz48gwYNytNPP525c+emsrIym2++eTbZZJNcc801OeSQQ5psAKf4ZO8FNfccOk85zVn2/lIp5zK+VMqvsewte8vesndz1Zx/Hqm9UsjeGuBF9uabb+a8887LSy+9lC5duuTyyy/PzjvvXOyyGkQ5/mIstzlvvvnmi/2Y559/vgEqaVzPPffcAtvWWmut7LPPPrnzzjvz05/+NKeddtr85azm2WyzzRqrROqonF7j6dOnZ5lllqmx7e9//3uSL+dTWVlZY9+cOXOa9ZeH85RjQBs5cmT22muvGgF88uTJeeGFF5IkP/7xj+dvLxQK+eEPf5ibbrqpscusN++//36N1zH58md7zpw5WXnllRdofqywwgr55JNPGrPEetenT5+v3D937txMmzYt//jHP/Lee++lR48ezTqE77nnnsUuoSiGDRuWd999d/5/z5w5M4VCIffee+/8n+d53nrrrcYur16df/75efDBBzNlypS0bt06W2+9dXbYYYdsv/326dSpU8aPH58//OEPxS6TJkr2Lm3lNmfZ+z9KNZeVq3J6jWVv2Vv2/pLs3fzI3l+SvZt+9tYAL6KLL744AwcOzNy5c7PddtvlxBNPzFJLLZUPPvjgKx/XvXv3RqqwfpXjL8ZynHNtfPjhhxk8eHCGDBmScePG5Y033ih2SXVy8MEHf2UIee2113LooYcusL05z/udd96pEUynTp2a5MsvFlu0qPmnZezYsY1aW0Mop9e4W7duGTduXI1tI0eOTKFQyHe/+90Fxo8ePTrLLbdcY5XXYMoxoP373//OWmutVWPbM888k6qqqqyxxhoLvK6dO3fOlClTGrPEelVRUbHAPbaefvrpJMl3vvOdBcZ/+umnzf7qksGDB9dq3Morr5yf/vSnOfbYY5v9nBdlYZ+vV1hhhZL5EnHo0KELbF/Ufdma85xvu+22tGvXLkcffXSOOOKIkn2/Uv9k79JXjnOuDdn7S8153rJ3TaX0Gsve/yF7y97N/XO97P0fsvd/NOc5l0r21gAvohtvvHH+v48YMSIjRoyo1eOa44e6JfHpp59m7NixzfIsziVVynP+4osvMnTo0AwaNCjPPPPM/CXnFvahvrn5+c9/3qz/oC2Ja6+9tsZ9qua5+OKLF9jW3JcXTMrrNf7ud7+be+65JwceeGCWW265jBo1Ks8//3xatmyZHXfcscbYt99+O3/5y1+y7777Fqna+lOOAa1169aZMWNGjW1PPfVUCoVCttxyywXG//vf/06HDh0aq7x6t8Yaa2TUqFE56KCDknz5u2nYsGEpFAr53ve+t8D4Rx55JKuvvnpjl1mvHnnkka/c37p163To0KGk7nmbJPfcc0/uuuuu/OEPf8iyyy6bSZMm5Xvf+94Cv8dPOOGEHHPMMUWqsn6U2xK4e+65Z4YPH54//vGPuemmm7LpppvOPwu9S5cuxS6PJkz2/mqlnEMXpZTnLHuXFtm7dMne/yF71yR7Nz+yt+xdakole2uAF9Fxxx1X7BIa1Te/+c1ccskl2W233eZvmzlzZvr375899tgjK620Uo3xf/vb33L66ac36y8dynHO/+ull17KoEGD8tBDD+Xzzz9Pkiy77LLZa6+9st9++2XFFVcscoV1d/zxxxe7hEZVToF0nnJ6jY899tgMHTo0P/zhD7PaaqvlrbfeSnV1dX7+859n2WWXTfJl+B46dGgGDBiQli1b5vDDDy9y1XVXjgFtnXXWydNPP52f/vSnSf5zb58k2WGHHWqMra6uzl//+tess846jV5nfdljjz1y4YUXZv3118+WW26ZO++8Mx988EFWWWWVbL311jXGXnvttXnppZdy1llnFana+lEKf2MX1y9+8Ys8/PDD6d69ez744IP5v7eSZPfdd8/KK6+cJLn33ntzzTXXZO+9907Xrl2LVW6dLckSuHPmzGmAShrHRRddlPPPPz8jRozI/fffn8cffzxPPPFEzj///Gy88cbp2bNn2X1GoXZk79LPoeU45/8le5ce2bu0yd6ydyJ7y97Nl+z99WTv4tMAL6JyC+HV1dULbJsxY0auvvrqbLLJJgsE0lJQjnNOkokTJ2bIkCEZPHhw/vWvf6W6ujpt27bNd77znTz11FP51a9+le23377YZbKEyimQlqMuXbrk7rvvztVXX52XXnop3/rWt7LXXntln332mT9m8ODBueGGG7LiiivmN7/5TVZYYYUiVlw/yjGg7b///jn55JPTr1+/bLnllrnnnnvyySef5Fvf+laNq6FmzpyZX//613n77beb9Rcu+++/f1544YVcdNFFKRQKqa6uzjLLLJPLLrts/j0E77777vzpT3/KuHHjsskmm+SAAw4octUNa/To0Rk1alQqKiqy+eabZ+211y52SXVy33335eGHH85RRx2VE044YYH7Ju6xxx759re/nSTZZpttsu++++aOO+4omc/k06ZNS3V19VdeITNq1KicffbZeeCBBxqxsvrVqlWr7Ljjjtlxxx0zderU/PWvf819992XF154IS+88EIKhUL++Mc/5vPPP8+OO+6YNm3aFLtkmoBS+TmvrXLMoeU450T2LnWyd2mTvWVv2Vv2bq5kb9m7uWRvDfAmZNasWRkzZkwmTpyY6urqdOvWLeuss05at25d7NIa1MKCaqkr1Tk/9NBDGTRoUJ566qnMnTs3HTp0yG677ZYf/OAH2XrrrfPRRx8tcGZjKbjqqqsW+zGFQiE///nPG6CahnfIIYfkmGOOmf9BphyU22u8/PLL54ILLljk/r322ivf+9730rNnz/nhpbkrx4C28847580330z//v0zcODAVFdXZ6WVVsoVV1wxf8z111+fP/zhD5k2bVp22mmn/OhHPypixXVTKBRy2WWX5aCDDsqoUaOy1FJLZYcddqhxlvK///3vVFdX55hjjslRRx1VEu/v119/PX/84x8zduzYrLLKKjn66KOzwQYb5Je//GUGDRo0/zNJoVDIrrvumosuumiB+0k2F4MHD87GG2+ck0466WvHzvvC7bHHHmv2Ifzhhx/OVVddlX/84x9Jvryv3AknnJBdd911/pjp06fn8ssvz2233bbAkpPNSZ8+fbL//vtnww03TJIsvfTS2WeffbLPPvtkwoQJeeCBB/LAAw9k9OjReeWVV3LBBRdk5513zq9+9asiV05TI3uXj1Kds+xde805l8netdOcX2PZW/aeR/Zu/u9v2XvhZO/mqVSyd/P8CSsxH3/8cS6//PIMHTo006ZNq7Gvbdu22XHHHXPSSSelW7duRaoQauekk05Ku3btcuCBB2b77bfPZpttVuMMsOawLMaSKLeA9uyzz9Y4I7kclNtr/HWa+/JjC1OuAe2kk07KAQcckJdffjlLLbVUNt9887Rs2XL+/tatW2f99dfPbrvtlh//+MdFrLT+bLzxxtl4440Xuu+4445r9oHsv40aNSqHHHJIWrRokbXWWiuvvfZaDjrooBx88MG55557svvuu2ennXbK9OnT8+ijj+aBBx7IN7/5zRx22GHFLn2JvP766zn66KNrPX6rrbbK1Vdf3YAVNbwHH3wwJ598clq3bp2tttoqbdu2zfPPP59TTz11/v0jX3nllZx00kl5//33s9JKK+X8888vdtlLbPDgwfnOd74zP4T/t+WWWy6HH354Dj/88IwdOzb33Xdf7r///tx1111NLoRTPLI3pUL2rr3mnMtk79ppzq/x15G9Ze/mTPaWveeRvZufUsneGuBF9tJLL+Woo47KlClTsuGGG2aLLbZIt27d0qJFi0ycODHPPfdchgwZkkcffTTXXHNNevbsWeySYZFWWmmlvP/++xk0aFD++c9/5pVXXskOO+yQb3zjG8UurUENGDCg2CXQwMrpNX7uueeW6HH/vWxXc1ZOAW2e5ZdfPssvv/xC9/3kJz/JT37yk0auiPpy9dVXp0ePHhkwYEA6deqU6urqnHnmmbnxxhuz++6755JLLpk/dtddd81nn32WBx54oNmG8JkzZ6ZDhw4LbF966aVz7bXX5pvf/GaN7e3bt2/W9+RKkptvvjmdO3fO7bffPv8eazNmzMgxxxyT3//+9+nWrVsOO+ywfPHFF/nZz36WX/ziF01yWbL6tvrqq+ekk07KSSedlBdffLHY5dBEyN6UEtmbUlVOr7HsLXv/N9m7eZO9vyR7y95NjQZ4EX3yySf5+c9/nvbt2+cPf/hDNtlkk4WOe/3113PiiSfmhBNOyL333pvOnTs3cqVQO8OHD8/LL7+c++67L3/961/zt7/9LZdffnlWW221/OAHP8i6665b7BIbxOabb/61Y6ZOnZpCofCV9wah6arNa1wqDj744MW+YqRQKOT1119voIqgfvTp02exH1MoFNKvX78GqKZxvPLKKzniiCPSqVOnJF/O5/DDD8/gwYOz7bbbLjD+Bz/4QX796183cpX1Z7nllssHH3ywwPYWLVosdL7/+te/mv19FMeOHZuDDz54fgBPvryK9bjjjstPfvKTnHTSSencuXMuu+yybLTRRsUrtIg0MUlkb0qP7L1osnfzJnt/Ndmb5kD2lr3/l+xdHppi9tYAL6Kbb74506ZNq3HWyMJ861vfyo033pjddtstt956a44//vhGrBIWz4YbbpgNN9wwZ555Zv72t7/l/vvvzyOPPJJrrrkmhUIhhUIhI0aMyDrrrJMVV1yx2OXWm+rq6jz++OP5xz/+kVVXXTXbbrttWrRokaeffjp9+/bNO++8kyT55je/mZNPPjlbbbVVkSuum2HDhuXdd9+t9fhSXpJsnlL5ouWiiy6q1biHH344I0eOTJJssMEGDVhR4yjHgHbIIYcs9mMKhUJuuummBqim4Q0ePLjWY//7i6jm/Bp/9tln6dKlS41t85YW7Nix4wLj27RpkxkzZjRGaQ1igw02yIMPPpif//znX7tM4qxZs/Lggw9mm222aaTqGsbUqVOz0korLbB9lVVWSfLlUoq33377/C9iSsHzzz+fuXPnLtZj9thjj4YphmZD9qYUyd6y98LI3s2H7F17snfzInt/Sfb+kuzdfJVC9tYAL6Lhw4dn9913/8oAPs+KK66YPffcM0OHDm3WIfx/f2jm3XftySefzIQJE2qMbYpLJiyJcpxzklRWVmabbbbJNttsk5kzZ2bYsGF54IEH8uSTT+buu+/OoEGD0qtXr+y1117Zddddi11unXz22Wfp3bt3Xn755VRXVydJ1l9//Zx99tnp3bt32rZtmx122CHTp0/Pyy+/nKOOOio33nhjsz6zediwYRk6dGitx5dCCP/vL1pWWWWVbLfddiX5Rcuee+75lfvHjx+fCy64ICNHjkyHDh1y8sknZ7/99muk6hpOOQa0999/v1bjqqqqMmHChFRXVzfr+0mOGTPma8f89/t76aWXzoknntjwhTWg6urqtGhR8+P+vNewOb+Wi7L//vvnJz/5SX71q1/lrLPOWmDu81RVVeWcc87JxIkTs//++zdylfWrqqqqxj1f55l3P8HevXuXVABPkjvvvDN33nlnrcbO+73V1EI4jU/2Lo8cWo5zTmRv2bsm2bv5kL2/nuzdPMneX5K9Ze/mrhSytwZ4Eb3//vuLdW+PddZZZ7E+JDRF//tDMy+w9O/ff4E/Bs39j/085TTn3r17Z4sttsjmm2+eddddd/5c2rRpk9122y277bZbJk2alAcffDD3339/nn766fz9739v9iH8yiuvzJgxY3LOOeekV69eGT9+fC688ML89Kc/TY8ePTJw4MD5Z/t9+umn2XvvvXPDDTc06xB+1FFH5Tvf+U6xy2g05fhFy/+aM2dOrr/++lx77bWZMWNGdt9995xxxhnzz2ht7soxoD366KNfO+bll1/Oeeedl3//+99ZaaWVcvbZZzdCZY1v7ty5ueGGG/KHP/whM2fOzC677JI+ffoscAY3Tdumm26aww8/PNdff33+/ve/57DDDkuvXr2y/PLLp7q6Oh999FGeeeaZ3HLLLRkzZkxOOumkrLPOOsUuu0F179692CXUu3333bdsl5RjycnepZ1D5ymnOcvesnepkr1l70T2lr1p6mTvBcneTZMGeBG1bNkyX3zxRa3Hz5w5M+3atWvAihpWbZf2KSXlNue///3vefzxx+cvRbXpppumV69e2WKLLeb/kevUqVMOOuigHHTQQRk3blz+8pe/FLnqunv00Uez//7754ADDkiSrLbaajnnnHNy2GGH5aCDDqqx1M2yyy6bfffdNwMHDixStfVj9dVXL6mA+XXK8YuW//bss8/m/PPPz9ixY7Paaqvl3HPPTa9evYpdVqMpx4A2derU/OY3v8mdd96ZioqKHHXUUTn22GPTunXrYpdW755//vmcf/75efvtt9OjR4+ce+65+fa3v13ssurN/y6bOXPmzBQKhdx777154YUXaox96623Gru8enfqqadmxRVXzOWXX55zzjlnoQ2Pdu3a5bzzziuJK2jK0aabbprddtut2GXQzMjepa/c5ix7y96lSvaWvWVv2bu5kr1l71JTCtlbA7yI1lprrTz22GO1vg/IyJEjs8YaazRwVQ3n65b2KUXlNucXX3wxr7/+el588cWMGjUqL730UkaMGJFCoZAOHTpks802S69evdKrV6+stdZaWXnllXP00UcXu+w6++ijj7L66qvX2DbvZ3VhZ3+tsMIKmTJlSqPURv0oxy9aki+/ULj44otz3333pXXr1vnFL36RI444Yv7yPuWg1APawtx777255JJL8sknn2TzzTfPueeeu8DvuFIwadKkXHLJJRkyZEhatWqV448/PkceeWRatWpV7NLq1dChQxe6bOaQIUMWOr45Xw03z4EHHpg999wzI0aMyHPPPZd///vfqa6uTrdu3dKzZ8/ssMMOzf6ekf9tYfcG/aovW0phaVRYXLJ36Su3Ocve/yF7lxbZW/aWvWXv5kr2lr1l76ZHA7yIfvSjH+Wcc87Jgw8+mJ133vkrxw4ZMiRPPfVULr/88kaqrvjef//9nHPOObnhhhuKXUqjae5zbtGiRTbYYINssMEGOfTQQ5MkH374YY1QfvHFF2fu3Lnp2LFjNt988/Tq1SsHHnhgcQuvo9mzZ6dNmzY1ts0LKQsLK4VCoca96Wj6yvGLljvuuCOXX355pkyZku9+97s5++yza3XfzFJRLgHtv73zzjs5//zz8+yzz6ZTp0759a9/3eTu3VNf7rrrrlx22WWZMmVKttxyy5x77rlZZZVVil1WvRswYECxSyiatm3bZuedd/7az9ilYFFftCQL/7JFCKccyd5frbnn0CXR3Ocse/+H7F1aZG/ZW/YuLbJ36ZO9vyR7N00a4EW01157ZciQITnttNPy5ptv5qCDDkq3bt1qjJk4cWJuvPHGDBgwINtss01++MMfFqna+vHyyy/nmmuuyahRo5Ik3/rWt/Lzn/88m2666fwx1dXV+fOf/5wrr7wyM2fOLFap9aYc5/zfVlhhheyyyy7ZZZddkny5tM999933/9q787CoysUP4N9hExAVN1LccotxSxFZpKuWIG6h4JJbkuZ+09TU1KJwQdHcsjRNveJW1yUBQRFBcUmRRQG5hnr1au6KG4gkDgzn94cP82sEFZCZwznn+3menifPvJPfNxTme95z3oOQkBAcOHAA0dHRki/hSjNx4kQ4ODiIHcOolHSi5fz58wgICEBaWhreeustzJ8/H15eXmLHMiqlFLRCGo0Gq1evxsaNG5Gfn4+BAwdi+vTpqFq1qtjRyt2FCxcwZ84cpKamolatWli+fLmsS5pctoKkl1PaiRZfX19Zfz8mw2H3VkYPVeKc/47dW37YvZ9j95Yvdm92b7lg95Y/dm9p4gK4iExMTLB27VpMnz4dP//8M9atW4e6deuidu3aMDU1xYMHD3Dt2jUIgoCePXtiwYIFYkd+IydPnsSYMWOg1WrRuHFjWFlZISkpCSNGjEBwcDCcnZ1x48YNTJs2DWlpabCxscHcuXPFjv1GlDjnF+Xm5iIpKQmJiYk4ffo0zp49i7y8PFhYWOi2ZJODzMxM3Lp1S/frwiuQHz58qHcceH51q5RNnDhR79cajQbnz59HRkaGbpsbtVoty+cVKUH//v1RUFAAAKhZsya2bduGbdu2vfI9KpUKmzdvNkY8g1JaQQOAo0ePYv78+bh58yYcHBwwd+5ctG3bVuxYBrF48WJs3boVWq0WH3zwAaZMmQIbG5si36NfVNydJnK1fft2HD9+HKtWrRI7SpmUdGvjv5P696+ynGg5deqUAZIYh9Ke8Uvlh91b/j1UiXN+Ebs3uzdJC7s3uze7tz52b+lg9y4Zdm/xqQRBEMQOQcDvv/+OPXv2IC0tDffu3dN9kHVyckLfvn3h5uYmdsQ3NnLkSKSlpWHDhg1wdHQEANy9exfjx4+Hubk5goKC4OfnhwcPHsDLywvffPMNateuLXLqN6PEOefn5yM1NRXx8fGIj4/HmTNnkJeXB3Nzc7z77ru64u3o6Cib7YzUanWxz20RBOGVz3M5d+6cIWMZ3P3797F8+XJER0cjJydH7zUrKyt0794dU6dOLXJ3jRSp1Wp8/fXX8PDw0B3LysqCr68vli1bpvv7XSgmJgaLFi2S5Ne4a9euZXpfbGxsOScxrpcVtNeRckH7/PPPERMTAwD44IMP4OfnB1NT09e+z9nZ2dDRDEKtVuv+vTTP2pLi3+OyCggIwM6dOyU755J+/yooKMDdu3d1P6elOt/SuH37NkJDQxEWFobr168rYs5EL8PuLc8eqsQ5s3v/P3Zvdm8pfo3Zvdm9X4fdW77YveWL3bti4QI4GY2bmxsGDBiA6dOn6x0/fvw4xowZg6ZNm+LevXuYM2eO5LebK6S0OY8ZMwanTp1Cbm4uTExM0KpVK7i5ucHV1RVOTk5FtrGSi9mzZ5fpfVK+kio1NRXjxo1DVlYW2rZtCzc3N9jZ2cHMzAwZGRlISkpCUlISqlatijVr1qB9+/ZiR34jSj3RoiRKLGh/nzPw+nlLvbCU9crqF++8kTOpl/CSOHPmDObMmYNz586hfv36+Oabb9ClSxexYxnEs2fPEB0djZCQECQkJOj+Dnfq1Ak///yz2PGIyICU1kMB5c2Z3bt02L2lg91b/ti92b1fht1bXti92b0rAm6BLiEJCQm4cOFCmbaYqAiys7PRtGnTIsebN28OQRCQmZmJXbt2yeLZAoWUNufff/8d5ubm8PHxwbhx4/D222+LHckopFymy+LBgwf47LPPULlyZfz0009wcnIqdlx6ejqmTJmCzz//HHv27EHNmjWNnLT8+Pj4lKqYKcmpU6cQGhoq+a1ClVS0Cinte1dZvsZyezaokmVnZ2PZsmXYuXMnTExMMG7cOPzzn/+U5ZahqampCAkJwf79+/HkyRMAQI0aNdC/f38MGjQI9erVEzkhUcXH7i09Spszu7cysHvT37F7S5fSvnexeysbuze7d0XCBXAJiYyMxM6dOyVbwrVaLczMiv6RK9yKa/z48bIpo4WUNueBAwciISFBt81HkyZN0LFjR7i5ucHZ2RnVqlUTOyKVg23btiEnJwfbt29HgwYNXjquZcuWCA4Ohre3N3799VdMmjTJiCnL16JFi8SOUKHcuXMHoaGhCA0NxfXr1wFAkSVc6gXN19e31O+5efOmAZJUPIUnlw4cOCDpZzbRc3v27MF3332HBw8ewMXFBQEBAcUukkhZRkYGwsLCEBoaij///BOCIMDKygru7u6Ii4vDvHnz9LYSJaJXY/eWHqXNmd1bGdi9id37OXZv+WL3lhd2b3bvioYL4FRhyO2bYUnIbc7z588HANy6dQtxcXGIj49HVFQUtm3bBhMTE6jVari6uupKubW1tciJqSwOHjyIPn36vLKAF6pXrx58fX0RHR0t6RLu5+eHCRMmoGPHjrpj+fn5SElJgVqtRpUqVfTGh4eHY9asWUhPTzd2VIPRaDS67Xzi4+MhCAIEQYCrqyuGDBkidjyjUlpBe/bsGaKiohAaGoqkpCT88ccfYkcyiMKTS2FhYbh27RoEQYCtra3YsegNXL58GXPnzkViYiKqV6+ORYsWwcfHR+xY5Wr//v0ICQlBXFwctFotqlatCm9vb3h5eaFTp064d+8ePD09xY5JRBWM3HpoSchtzuzeysDu/Ry7N7s3u7e8sHvLD7s3u3dFxQVwIip39vb2GDBgAAYMGAAAuHjxIuLj43Hy5Ens3r0bwcHBMDMzQ+vWrdGxY0dMnjxZ5MRUGjdu3MDHH39c4vFqtRqhoaEGTGR4iYmJGDhwoN6x7Oxs+Pn5YePGjXrlvJAgCMaKZ1AvbudTOK/evXvjs88+Q5MmTUROaBxKLGjJyckICQlBVFQUcnJyIAgCmjdvLnasclV4cik0NBTx8fEoKCiAIAho164dBg8ejF69eokd8Y2EhYWVavyVK1cME8TINBoNVq9ejY0bNyI/Px8DBw7E9OnTUbVqVbGjlbupU6fC2toaQ4cOhYeHB5ydnWFqaqp7nVuIEhHJG7u3vLF7P8fuze7N7i197N762L2lh91bmrgATkZ16tQpaLVavWM5OTkAgBMnTuDu3btF3iP1q4WUOOcXNW/eHM2bN8fw4cOh0WgQFRWFX3/9FampqThz5gxLuMSYm5vj2bNnJR6fm5sr2zsO5FK0X1Tcdj62trbw9fVFu3btEBAQgF69esm+gMu9oBXn7t27uq/91atXAQBmZmbo1asXhgwZgg4dOoicsHycOXMGu3fv1ju5VLVqVWRnZ2P+/PlFTrpJ1axZs0pVwgRBkHxpO3r0KObPn4+bN2/CwcEBc+fORdu2bcWOZTD169fHjRs3EBISgitXruA///kPPD090bhxY7GjEZHIlNhDlTjnF7F7ywu79/9j92b3lht2b3Zvdm9pYfeWJi6Ak1Ht3LkTO3fu1DtW+CF2w4YNet/4C38QSL2QKnHOf3ft2jWcOXMGZ86cQVpaGs6fP4+8vDxUrlwZnTt3hrOzs9gRqZTeeecdHD16tMTPRDxy5AiaNWtm4FRUXsaOHYsTJ05Aq9Wibt26GDp0KDw9PeHq6goTExPcvHlTticfCimloBXSaDQ4ePAgdu/ejfj4eN2J46ZNm+Ly5ctYsmQJevToIXLKN5eRkYE9e/YgNDQUV65cgSAIsLe3h6+vL7y8vPDWW2+hW7duqFGjhthRy01QUJDYEYzq888/R0xMDADggw8+gJ+fHzQaDZKSkl75Pil/Fjl48CDOnDmD8PBwREVF4fjx41i+fDmaNGkCLy8vtGrVSuyIRCQSJfZQJc7579i95YfdW97Yvdm92b3ZvaWK3ZvdWyq4AC6iW7dulWp84ZXLUqW0HwSA8uaclZWFtLQ0XeFOS0tDVlYWBEFAtWrV0L59e0ydOhXOzs5o2bIlTExMxI5MZdC3b198++23iIyMfO1VuGFhYYiLi8Py5cuNlI7e1LFjx2BtbQ0/Pz8MGzYMtWvXFjuSUSixoKWlpSEkJASRkZF4/PgxTExM4OjoCC8vL3h5eUGr1cLT0xPm5uZiRy0XXbt2RUFBAdRqNcaPHw8PDw+0bt1a9/rNmzdFTGcYvr6+YkcwqujoaN2/x8bG4vDhw68cX7j4ce7cOUNHM6i2bduibdu2+Oqrr3D8+HFERETg0KFDWLNmDVQqFVQqFQ4fPgy1Wo169eqJHZdIFOze8qe0ObN7KwO7t7yxe7N7s3vLB7s3uze7d8XEBXARde3aVVFbY5TlB4HUfyAqbc6urq5QqVQQBAHVq1eHi4sLnJ2d4ezsDAcHB0n/+aX/179/f4SFheHLL7/EhQsXMGzYMNjZ2emNycjIQHBwMLZs2YIuXbqgZ8+eIqWl0po4cSL27duHtWvX4ueff0bjxo3h6ekJT09PvPvuu2LHMxglFrSPPvoIVlZW6NSpEzp37oyuXbvqnWSQ25zz8/NhZWWFWrVqwcrKqsgWqUpw9+5dnD59GhkZGQAAOzs7ODo6om7duiInKx9KW/x4kampKbp06YIuXbogNzcXMTEx2Lt3L06cOIHffvsNISEhcHV1Rf/+/fHhhx+KHZfIqNi9X0/qP/eVNmd2b2Vg95Y3dm9270JymzO7N7u33LF7SwcXwEXk4+PDUlKMZ8+eISoqCqGhoUhKSsIff/whdiSDk8uce/ToARcXF7i4uHDbLRkzMTHB2rVrMX36dPz8889Yt24d6tati9q1a8PU1BQPHjzAtWvXIAgCevbsiQULFogdmUph4sSJmDhxIs6ePYuIiAhERkZi3bp1WL9+PerWrQsnJydZ/uxSYkGzsrLC06dP8b///Q/Vq1eHtbU1OnfuDBsbG7GjGcThw4cRERGBiIgILF++HCqVCrVq1UK3bt3QrVs3WV+de/HiRQQGBiIpKQmCIOhtpWhiYgInJyf4+/vDwcFBxJRvTmlX3b+KpaUlvL294e3tjUePHiEyMhIRERE4efIk4uPjWcJJcdi9iyeXHloacpkzu7cysHvLG7s3uze7t/yweysPu3fFphLk/jARkozk5GSEhIQgKioKOTk5EAQBzZs3R0REhNjRDEaJcyZ5+f3337Fnzx6kpaXh3r17EAQBdnZ2cHJyQt++feHm5iZ2xHKhVqvx9ddfw8PDQ3csKysLvr6+WLZsGRwdHfXGx8TEYNGiRZLf2gd4fgfUyZMnERERgZiYGDx58gQAUK9ePfTv3x8+Pj6wt7cXOeWbu337tq6gXbx4sdiC5uXlhdWrV+v9OZCy3NxcxMbGIjw8HMePH4dWq4W5uTk6duyIbt26Qa1WY8CAAbKac6Hz58/rTjLdvn0bKpVKd1Ji1qxZ+OSTT8SOWG4OHTqEKVOmQKVSwdPTE25ubrCzs4OZmRkyMjKQlJSEqKgo5OfnY8WKFfD09BQ7MhnQ9evXsW/fPowfP17sKEQkIiX2UCXOmeSF3Zvdm91buti92b3ZvZWH3bti4AK4RNy+fRuhoaEICwvTe8aC1N29exdhYWEIDQ3F1atXAQBmZmbw8vLCkCFD0KFDB5ETlj8lzplI6tRqdbFXXr9ue0w5lPC/02g0iI2Nxd69e3H06FHk5eXBxMQEHTt2xL/+9S+x45UbJRW0QpmZmbqrVFNTU/VeGzt2LMaPHw8rKytxwhlYYmIiIiIiEB0djaysLKhUKtSvXx/9+vWDr68v6tSpI3bEMrtx4wa8vb3RuHFjrFy5Eg0aNCh23J07d/D555/j0qVL2LNnz0vHVXSzZ88u9XtUKhUWLlxogDREJFXs3vKhxDkTSR2793Ps3uzecsTuze7N7k3GxgXwCuzZs2c4cOAAQkNDkZCQgIKCApiZmeHs2bNiR3sjGo0GBw8exO7duxEfH6/b6qZp06a4fPkyVqxYgR49eoicsnwpcc6kHBqNBufPn0dGRobuKnS1Wo1KlSqJHa3clOWDHSDvZ+I8fvwYUVFRiIiIwOnTp5Geni52JIOQc0F7mZs3byIiIgJ79+7FpUuXoFKpYG1tjZ49e6J///5F7rqQi7y8PBw7dgzh4eE4cuQInj17JvnPXQsWLMCePXsQFRWl94y54mRmZqJXr17o06cPZs2aZaSE5UutVpf6PSqVStInTMtyh4hKpcLBgwcNkIZIuti95UOJcyblYPd+OXZv6WP3ZveW8ucudu/XY/cmMXABvAJKSUlBaGgoIiMjdVtz1alTBwMHDsRHH32E2rVrix2xTNLS0hASEoLIyEg8fvwYJiYmcHR0hJeXF7y8vKDVauHp6Smr7V6UOGdSjvv372P58uWIjo5GTk6O3mtWVlbo3r07pk6dCjs7O5ESkrGcOnVK9nfQyLGglcT58+cRHh6OyMhI3LlzR/KFpaSePHmC6Oho7N27Fxs3bhQ7Tpn17NkTnTt3LvGJxO+++w6HDx/G/v37DZzMMG7evFmm90n5GXRdu3YtckwQBNy+fRu1atWChYVFse+LjY01dDQiSWD3lk8PVeKcSTnYvakQu7d8sXuze0sJu/dz7N4Vn5nYAei5u3fvYs+ePQgJCcHVq1chCJGbkhQAAEXjSURBVAJMTEwAAFOmTMHYsWN1v5aqjz76CFZWVujUqRM6d+6Mrl276l0RVdZvnBWZEudMypCamopx48YhKysLbdu2Lfa5NmFhYYiNjcWaNWvQvn17sSNTKZ09exapqakQBAEtWrQotmQ/efIES5cuxa5du/DHH3+IkNJ4zM3N4eHhAQ8PD72CJndqtRpqtRpffvklEhISFDFnALCxsYGnpyeSk5PFjvJGbt++jWbNmpV4fJMmTfDvf//bgIkMS8pluqyKK9MPHz6Eu7s7lixZgo4dO4qQiqhiY/eWZw9V4pxJGdi95Y/dWx+7N7u3FLF7yx+7tzRxAVxEhVtzhYSE4OTJk9BqtahUqRK6du2Kbt26wcHBAb6+vmjevLnkCzgA3TNc/ve//6F69eqwtrZG586dYWNjI3Y0g1HinEn+Hjx4gM8++wyVK1fGTz/9BCcnp2LHpaenY8qUKfj888+xZ88e1KxZ08hJqSz++usvfPHFFzh69CgKN4lRqVRwd3fHmjVrdFc0HjlyBAEBAbh79y4aNmwoZmSjk0tBKy17e3vJnzy+ceMGgoODkZKSAgBo2bIlxowZg0aNGumNi46Oxvz583H//n0EBgaKEbVcWFpa4vHjxyUe//jxY1StWtWAicSl0Whw6dIlWFpaokmTJmLHMZhXPR+TSKnYveXfQ5U4Z5I/dm95Y/d+PXZv6WL3fjV2b3lg9674uAAuok6dOuHx48eoVq0aevfuDQ8PD3Tu3BlWVlYA5HeF8smTJxEbG4vw8HDs3r0bO3fuhLm5OTp27Ihu3bqV6dkRFZ0S50zyt23bNuTk5GD79u1o0KDBS8e1bNkSwcHB8Pb2xq+//opJkyYZMSWV1Y8//ogjR46gU6dO8PX1hbW1NY4ePYodO3bgu+++g7+/PxYvXoxNmzbB1NQUo0aNwueffy527HKhtIIGAGfOnMGaNWv05vzZZ5/p3XUgCAI2bdqEH374Abm5uWJFfWPnzp3D8OHD8eTJE1haWsLS0hLp6emIjIzE9u3b8c477yA7Oxv+/v6Ijo6Gqakpxo4dK3bsN9K6dWtER0dj1KhRJRp/4MABtGjRwsCpDCs7Oxvr169HSkoKtm7dqjseERGBwMBA3UmJxo0bY+HChWjXrp1ISYnImNi95d9DlThnkj92b3lj92b3Zvdm95Yydm+SAi6AiygrKwvW1tbo3r07XF1d0b59e10BlyNLS0v06tULvXr1QmZmJiIjIxEREYFjx47h2LFjAJ5fNZOWlgZ3d3dZ/L9Q4pxJ/g4ePIg+ffq8soAXqlevHnx9fREdHc0SLhGxsbFwcXHB+vXrdcfef/991KxZE1u3boWtrS2Cg4OhVqsRFBQk+Q/shZRY0E6ePIkxY8ZAq9WicePGsLKyQlJSEkaMGIHg4GA4Ozvjxo0bmDZtGtLS0mBjY4O5c+eKHbvMCk8iLFu2DL179wbw/HmhX3zxBQIDA7F06VL4+fnhzz//RJs2bRAYGAgHBweRU7+ZAQMGYMqUKQgODsbIkSNfOXbt2rVIS0vT+7svNTk5ORg0aBAuX76MOnXqID8/H2ZmZkhLS8PMmTMhCAIGDRqE5s2bIywsDCNHjkRYWFiRE21EJD/s3vLvoUqcM8kfu7e8sXuze7N7s3tLFbs3SYZAoklKShK+/fZbwcXFRVCr1UKLFi2Ejz76SNiwYYNw9epV4caNG4KDg4Nw8OBBsaMa1I0bN4Q1a9YIvXv3FhwcHAS1Wi20b99e+Prrr4Xk5GSx4xmEEudM8tGuXTth+/btJR6/c+dOwdHR0YCJqDy1a9dO2LRpU5Hjly5dEhwcHIQWLVoI8+fPFzQajQjpDGf8+PFCq1athL179+qOnTlzRvDw8BCGDx8u3L17V+jevbvg4OAgDBgwQDh//ryIacvHiBEjhPbt2+v93Llz547g4+MjDBw4ULh06ZLg7u4uODg4CJMmTRIyMjJETPvm3N3dhfnz5xc5fuDAAaFly5bC0KFDhdatWwvr168XtFqtCAkNY9KkSYJarRamTZsmpKSk6P3d1Wq1QkpKim7MN998I2LSN/fDDz8IrVq1Evbv3693fOzYsYJarRaCgoJ0x3JzcwUvLy9h1qxZxo5pcA8fPhQcHByEuLg4saMQVRjs3s8psYcqcc4kH+ze8sbuze7N7s3uLVXs3s+xe1d8vANcRB06dECHDh3wzTff4OjRo4iIiMCRI0dw5swZLF26FA0aNIBKpcJff/0ldlSDqlevHsaPH4/x48fj/PnzCA8PR2RkJH777Tfs3r0b586dEztiuVPinEk+zM3N8ezZsxKPz83NhbW1tQETUXl6+vQpatSoUeR49erVAQDdunWDv7+/sWMZXFpaGgYPHqy7OhkA3n33XXz55ZeYOnUqpk6dips3b2L69On49NNPZfF80HPnzmHIkCFwdHTUHXvrrbcwbdo0jBkzBpMnT0Z+fj5WrFiBnj17ipi0fGRlZRW7/WmbNm2g1Wpx4cIFbN26VXbbci1duhRBQUHYvn079u3bB1NTU9ja2sLU1BSZmZnQaDQwMTHBqFGjMHXqVLHjvpHo6Gj07dsXPXr00B3LycnBiRMnAABDhw7VHa9UqRL69OmDXbt2GT0nERkfu/dzSuyhSpwzyQe7t7yxe7N7s3u3M344A2L3ZvemiocL4BWAmZkZPDw84OHhgZycHERHRyMiIgIJCQkQBAEzZ87E7t270a9fP3Tv3h2VKlUSO7LBqNVqqNVqfPnll0hISMDevXvFjmRwSpwzSds777yDo0ePws/Pr0Tjjxw5gmbNmhk4FRmaSqUCAPj4+IgbxECUWNCys7PRtGnTIsebN28OQRCQmZmJXbt2oWHDhiKkK3/5+fnFfoaytLQEAIwdO1ZWX99CFhYWCAgIgJ+fH8LCwpCWloZ79+5BEAQ0adIETk5O8Pb2lsVWZDdu3NAr2gCQlJSE/Px8NGjQoMif5bp16+LBgwfGjFjuVq1aVeRYbm4uVCoV9uzZg9OnTxd5XaVS4bPPPjNGPKIKh937/ymxhypxziRt7N7KxO7N7i117N7s3uzez7F7i48L4BVM5cqV4evrC19fXzx48AB79+5FREQE4uPjER8fj/nz5yMpKUnsmEbh6uoKV1dXsWMYlRLnTNLTt29ffPvtt4iMjESvXr1eOTYsLAxxcXFYvny5kdKRoRUWFrlRYkHTarUwMyv6UdDCwgIAMH78eNkU8JJo3bq12BEMqnHjxpK/yvx1TExMUFBQoHfs5MmTAAB3d/ci4x8+fAgbGxujZDOU4kp4obCwsGKPs4QTPcfu/f+U2EOVOGeSHnZvZWP3lg92b33s3tLH7q2P3bvi4gJ4BVazZk188skn+OSTT3D16lWEh4dL+grlkl6x+ncqlQqbN282QBrjUOKcSf769++PsLAwfPnll7hw4QKGDRsGOzs7vTEZGRkIDg7Gli1b0KVLF1ls4aQkhVecl/Y1OZN7QStOcVeoy5kS/mzfvXsXp0+fRkZGBgDAzs4Ojo6OqFu3rsjJykezZs2QkpKCYcOGAQAEQUBMTAxUKhW6du1aZPyhQ4ck/+d8y5YtYkcgkgV2b+n3UCXOmeSP3Vv+2L2LYveWPyX82Wb31sfuTWLhArhENGrUCJMmTcKkSZPEjlJmiYmJxR5XqVQQBOGlr0mZEudM8mdiYoK1a9di+vTp+Pnnn7Fu3TrUrVsXtWvXhqmpKR48eIBr165BEAT07NkTCxYsEDsyldLChQuxYsUKvWOCIEClUmH69OlFrtZWqVQ4ePCgMSMaHb83y8Ply5eL3M2XnZ0NALhw4UKxV+U7OzsbJZshXbx4EYGBgUhKSoIgCHqfQUxMTODk5AR/f384ODiImPLN+fj4YMGCBWjTpg3ee+897Ny5E7du3ULDhg3RqVMnvbFr165Famqq5J+r6OLiInYEItlh95YmJc6Z5I/dW/7YvYvi92Z5YPdm9y7E7k1i4gK4iPz8/DBhwgR07NhRdyw/Px8pKSlQq9WoUqWK3vjw8HDMmjUL6enpxo5aLs6fP1/k2MOHD+Hu7o7g4GC9/w9yocQ5kzJUqVIFP//8M37//Xfs2bMHaWlp+O9//wtBEGBnZwcfHx/07dsXbm5uYkelUrK3tweAYk8UFl6p+uJrLzupKDVKLGinTp2CVqvVO5aTkwMAOHHiBO7evVvkPVJ+Ft3atWuxdu3aYl9bvHhxscfPnTtnyEgGd+jQIUyZMgUqlQo9evSAm5sb7OzsYGZmhoyMDCQlJSEqKgoDBgzAihUr4OnpKXbkMhs8eDBOnz6NoKAg3YJHtWrVsHTpUpiYmAAAfvvtN6xbtw7Xr1+Hk5MThgwZInJqw9JoNLh06RIsLS3RpEkTseMQiYbdW/49VIlzJmVg95Yvdm92b3Zvfeze0sHuXRS7d8WkEuTyk1OC1Go1lixZAm9vb92xR48ewd3dHRs3bixS0MLDwzFz5kzJ/zD4u0ePHqFjx46KKqRKnDMRUUWnVqtfeqV54RX4xZHyz+SXzfnvHw3//nrh/wepzvnHH38s090EEydONEAa47hx4wa8vb3RuHFjrFy5Eg0aNCh23J07d/D555/j0qVL2LNnz0vHSUVKSgpSUlJgY2MDT09P1KhRQ/faqlWrsGfPHnh7e2PcuHHFPn9QarKzs7F+/XqkpKRg69atuuMREREIDAzE48ePATx/Ft3ChQtl90xFopJg91ZmD1XinImIKjp27//H7q2P3Vt62L2fY/euuHgHeAXEaxKISCpyc3NhaWlZ5PilS5dQtWrVIs8no4ovLCwMHTp0QP369cWOYlSfffaZ4rZaCwoKEjuCUUl5K9uy2rx5M8zNzbFhwwa9IvqiOnXqYN26dejVqxd++eUXzJo1y4gpy5+joyMcHR2LfW3ixIkvPbGSl5eH1NTUYu8GrahycnIwaNAgXL58GXXq1EF+fj7MzMyQlpaGmTNnQhAEDBo0CM2bN0dYWBhGjhyJsLAwNGrUSOzoRBUCuzcRSQW7t/yweysHu7f8sXsXxe7N7l0RcAGciIhKTaPRYPHixYiIiMCxY8eKFPHly5fj2LFj6N+/P2bOnAlra2uRklJpzZ49G999953iSrgSC5qvr6/YEYyquO1v5e748ePw9fV9ZQEvZGtrCx8fHxw+fFjyJbyssrKy4OfnV+zdoBXVxo0bce3aNXz//ffo0aOH7vjq1ashCAI++eQT3ddzwIAB6NOnD9auXau4k3BERERSxe4tX+zeysHuLX/s3qXD7k3GYiJ2ACIikhaNRoNRo0bhl19+gb29PR49elRkzAcffAAHBwfs2LEDo0ePRn5+vghJqSyUeieUn58fTp48KXYMo/Lw8MChQ4fEjmE0iYmJuH//vtgxjOr27dto1qxZicc3adIEd+7cMWCiik9q3wOjo6PRt29fvQKek5ODEydOAACGDh2qO16pUiX06dNHcd/riIiIpIrdW96k9rmzvLB7yx+79+uxe0vveyC7tzRxAZyIiEpl06ZNSEpKgr+/P8LCwlC3bt0iYwYOHIjdu3dj4sSJSE5OxrZt20RISlRySixoN2/exF9//SV2DDIgS0tL3TOoSuLx48eoWrWqARNRebtx4wZat26tdywpKQn5+fmoX78+GjZsqPda3bp18eDBA2NGJCIiojJi9yY5YvcmOWL3lj92b2niFuhkNGFhYUWO5eTkAABOnDiBu3fvFvs+Hx8fA6YyLCXOmeQvIiICHh4e+Pjjj187duLEiUhMTMSePXswYsQIw4ejcpGZmYlbt26V6j329vYGSkNEZdW6dWtER0dj1KhRJRp/4MABtGjRwsCpqDyZmJigoKBA71jhVebu7u5Fxj98+BA2NjZGyUZE4lFiD1XinEn+2L3lj92bSB7YveWP3VuauAAushc/6GRlZQF4/hfkxQ9AxW11JCWzZs2CSqXSO1a41cWGDRugUql0vy78d5VKJelCqsQ5k/xdvXoVgwcPLvH4999/HytXrjRgIipvCxcuxMKFC0s8XqVSIT093YCJiMpHTEwMrl69WuLxKpUKn332mQETGdaAAQMwZcoUBAcHY+TIka8cu3btWqSlpWH9+vVGSkfloVmzZkhJScGwYcMAPP+cGRMTA5VKha5duxYZf+jQITRt2tTYMYkqBHZvefdQJc6Z5I/dW/7YvUmu2L1fjt1bmti9pYkL4CJ72Qed6dOni5DGsIKCgsSOYHRKnDPJn7W1NbRabYnHV6pUCZaWlgZMROXNyckJDRo0EDuG0SmtoAHAzp07ERcXV+LxKpWqVCdoKpqYmBhER0eXeLzUv8Y9evSAl5cXvvvuO/zxxx/4+OOP0apVK5ibmwMACgoKkJaWho0bNyImJgYDBw7EP/7xD5FTU2n4+PhgwYIFaNOmDd577z3s3LkTt27dQsOGDdGpUye9sWvXrkVqair8/f1FSkskLnZveVPinEn+2L3lj927ZKTeywB279eR+teY3Vv+2L2liQvgIvLx8SlyhbKc+fr6vnZMVlYWLC0tUalSJSMkMjwlzpnkr0mTJkhOToafn1+Jxp8+fRr16tUzcCoqT4MGDYK3t7fYMYxOaQUNeP68oqSkpBKPl3oJHzduXLFbU8nZ0qVLERQUhO3bt2Pfvn0wNTWFra0tTE1NkZmZCY1GAxMTE4waNQpTp04VOy6V0uDBg3H69GkEBQXp7misVq0ali5dChMTEwDAb7/9hnXr1uH69etwcnLCkCFDRE5NZHzs3kXJrYcqcc4kf+ze8sfuXTLs3tLD7s3uLTfs3tLEBXARLVq0SOwIRpeXl4eQkBCkpqbqXaGdmJiIOXPm4MqVK1CpVHB3d0dAQIAsroJU4pxJ3nx9fREQEID4+Hi4ubm9cmxCQgKio6MxadIkI6UjKjslFrSvvvoKHh4eYscwmqZNm8LFxUXsGEZlYWGBgIAA+Pn5ISwsDGlpabh37x4EQUCTJk3g5OQEb29vNGrUSOyoVAYqlQpLly7FsGHDkJKSAhsbG3h6eqJGjRq6MXfu3IEgCJgwYQLGjRunK+dESsLurYweqsQ5k7yxe5NcsXvLH7s3u7fcsHtLExfARTR69Gj4+PjA09NTEVsU5eXl4dNPP0VSUhLMzc0xf/58mJmZ4cqVKxg9ejTy8vLQqVMnNGvWDAcOHMCgQYMQHh6OWrVqiR29zJQ4Z5I/Hx8f7N69G+PHj8e4ceMwcODAIn9mMzIysGvXLmzYsAH169fH0KFDRUpLVHJKLGjVq1fnXSIK0bhxY15lLmOOjo5wdHQs9rWJEydi4sSJxb6Wl5eH1NRUqNVqVKlSxZARiUTF7i3/HqrEOZP8sXuTXLF7k5yxe8sbu7e08BIEESUmJmLGjBlwd3fHrFmzEBcXB0EQxI5lMNu2bcOpU6cwY8YMJCUlwczs+fUXP/74IzQaDby9vbFu3Tp8+eWX2L17N0xNTbF27VqRU78ZJc6Z5M/c3ByrV69G27ZtsXLlSnTq1AkeHh4YPHgwBg4ciK5du6JLly748ccf4eDggODgYP5glxB7e3tYW1uLHYOIiIwgKysLfn5+OHv2rNhRiAyK3Vv+PVSJcyb5Y/eWN3ZvIiLlYPcWB+8AF9HJkydx8OBB7N+/H/v27cOePXtQq1YteHt7o0+fPlCr1WJHLFd79+5F9+7dMWrUKN0xjUaD2NhYqFQqveO2trbo168f9u3bB39/fzHilgslzpmUoWbNmti8eTOio6Oxb98+pKen48KFCzAxMUGtWrXg4+ODbt26oWvXrmJHpVKKjY195esFBQW4c+cOatWqBQsLCyOlInpzEydOhIODg9gxjKqkz4v8O5VKhc2bNxsgTcVw79492NrawtzcvMhr1apVw5YtW9CiRQsRkolHzouARIXYveXfQ5U4Z1IGdm/5YvcmuWL3Lhl2b3ZvMjwugIuocuXK6Nu3L/r27Yvs7GwcOHAAkZGR2Lx5M4KDg9GsWTP07dsX3t7eeOutt8SO+8b+/PNP+Pr66h07ffo0cnNzYWdnV+QHY8OGDZGRkWHMiOVOiXMmZfHy8oKXl5fYMciIHj58CA8PD2zcuBEdO3YUO065UWJBCwoKeum2TXL0sm2oCv3111/YuHEjfHx8UL9+fSOlMqzExMRij6tUqpcWL5VKZchIRhEcHIydO3ciPDy8SNleuHAh4uLiMGrUKIwePVrvmVzm5uaK24qRSCnYveXfQ5U4Z1IWdm/lYfeWD3Zvfeze//+a1LF7U0XHBfAKokqVKhgwYAAGDBiAhw8fIioqCvv378fy5cuxfPlyODs7w8fHB15eXqhcubLYccukoKAApqamesfi4+MBAO7u7kXGZ2dnw8rKyijZDEWJcyYCnm/rYmlpiUqVKokdhQxAjlcsKrGgvXiS+EVPnjzBggULMHr0aDRt2tRIqcTz119/YfXq1XBycpLN1/j8+fNFjj18+BDu7u4IDg6W1Yk04Pn3punTp2Pfvn2oWbMm7ty5gwYNGuiNadq0KZKTk7FixQqcPXsWP/zwg0hpiUgs7N7y7KFKnDMRwO4td+ze8uhl7N762L2lj92bpILPAK+AatSogaFDh2Lr1q04cuQIvv76a5iYmODbb7/FP/7xD7HjlVnDhg1x7tw5vWMxMTFQqVR4//33i4w/fvw4GjZsaKR0hqHEOZMy5OXlYceOHZg9e7be8cTERPTq1Qtubm5wdHTE6NGjce3aNZFSEpWfwoJ2/fp1saMYTW5uLsLCwhR1d5QcTzC9SA5Xmb/Mjh07sG/fPowYMQJHjhwpUsCB5yfcYmJi0K9fP8TExCAkJESEpERUUbB7PyeHHqrEOZMysHuT0rB7KwO7t7Sxe5NUcAG8gjM3N4elpSVsbGxgZmYGjUYjdqQy6927N/bs2YODBw/i6dOn2LRpEy5fvoyaNWsWeVZReHg4Tpw4AQ8PD5HSlg8lzpnkLy8vD59++ikCAgKwd+9e5OfnAwCuXLmC0aNH48qVK+jUqRNGjBiBK1euYPDgwbh//77IqYnenBIK2ouUOGeSrt9++w0uLi6YNWtWsc8ZK2RhYYHAwEC0aNECO3fuNGJCIqrI2L2l3UOVOGeSP3ZvUiol9lAlzpmki92bpIJboFdADx8+RExMDKKiopCUlIT8/Hy0bNkSkydPRu/evcWOV2YjRozA77//jokTJ+qef2Fubo4FCxbAwsICwPMrtLdt24bExEQ0btwYI0aMEDf0G1LinEn+tm3bhlOnTmHGjBkYNmwYzMye/yj58ccfodFo0KdPH3z33XcAgLFjx8Lb2xtr166Fv7+/mLGpnJibm8PZ2RnVqlUTOwoRkZ7//e9/mDx5conGqlQq9OjRA2vWrDFwKiKqyNi95dNDlThnkj92b2Vj9yaiiordm6SCC+AVxP379xEdHY2oqCicPn0aWq0W9erVw6hRo9CnTx9ZPP/DwsICmzZtQmRkJFJTU2FjYwNvb280a9ZMN+bs2bNITk5Gnz59MGvWLFhaWoqY+M0pcc4kf3v37kX37t0xatQo3TGNRoPY2FioVCq947a2tujXrx/27dvHEi4R2dnZqFKlyktfr1atGrZu3ap3LCEhAa6uroaORmRQVapUQVBQEJo3by52FCojMzMz3SJHSVStWrXI82KJSP7YvZ+TWw9V4pxJ/ti95Y3dm5SK3Vv62L1JKrgALqKMjAxER0fjwIEDSE5OhlarRbVq1TBgwAB4e3ujQ4cOYkcsd6ampvD29oa3t3exr48fPx6TJ0+GiYl8dudX4pxJ3v7880/4+vrqHTt9+jRyc3NhZ2cHBwcHvdcaNmyoqOcYSZ2fnx+Cg4Nha2v72rHPnj3DkiVL8OuvvyI9Pd3w4USkxIJWrVo1bNmyBS1atBA7ilFUqlQJ//jHP3iHhYQ1atQIZ8+eLfH4s2fPom7dugZMREQVBbt3UXLsoUqcM8kbu7e8sXsXj91b/ti9pY/dm6SCC+Ai6tKlC4DnVyp7enrC29sbXbp0eeVzE+TOyspK7AhGp8Q5k7QVFBQUuWovPj4eAODu7l5kfHZ2Nv+cS8i5c+fw8ccfY9OmTahVq9ZLx505cwYzZ87En3/++cpxclGpUiW9k09arRbr1q3DhAkTRExlWObm5nBxcdH9Ojs7G4sXL0ZgYKCIqd5ccHAwdu7cifDw8CKfuRYuXIi4uDiMGjUKo0ePlvwJ8rCwsCLHcnJyAAAnTpzA3bt3i32fj4+PAVMZzocffohly5Zh5MiRrz1hdvHiRURERMDPz89I6YhITOzeRSnx87kS50zSxu4tb+zexWP3ZveWInbvl2P3JjGpBEEQxA6hVMOHD0ffvn3Ro0cP2NjYiB2HiKhE+vbti7Zt22LevHm6Y7169cKVK1ewYsUK9OjRQ2/86NGjkZWVhV27dhk7KpXBL7/8ggULFqBBgwbYtGlTkSs08/Ly8MMPP2Djxo3QarXo27cvvvrqK1lcuZudnY1du3YhNTUVgiCgZcuWGDZsGKpWrao37j//+Q/8/f3x3//+F+fOnRMpbfm4ceMGgoODkZKSAgBo2bIlxowZg0aNGumNi46Oxvz583H//n3JzlkQBEyfPh379u1DzZo1sX37djRo0EBvzKpVq7Br1y5kZGSgW7du+OGHH0RKWz7UajVUKpXesb9/9C/uNZVKJdmv8V9//YV+/fohMzMTX331FXr37l3kpHF+fj727t2LpUuXAgBCQ0NRu3ZtMeIazb1792Bra1vsQl9eXh5SUlLQokWLV27BSSR17N5EJEXs3vLG7s3uze7N7i3VrzG7d/HYvSseLoATEVGprFu3DqtXr8ayZcvw3nvvYceOHVi0aBFq1aqF2NhYvWfAhIeHY+bMmZg8eTLGjx8vYmoqjb1792LWrFmws7PDpk2b0LBhQwDPr1CfOXMm/vvf/8Le3h5z585Fp06dRE5bPq5fvw4/Pz/cuXNHr6TUqlULu3btQt26dZGfn49ly5Zhy5Yt0Gq16N27N5YtWyZi6jdz7tw5DB8+HE+ePIGlpSUsLS2RmZkJa2trbN++He+88w6ys7Ph7++P6OhomJqaYtSoUZg6darY0ctk+/btmDNnDkaMGIFp06a99K4/jUaDuXPnIiQkBAsWLEC/fv2MnLT8hIaGlul9L261KSVXrlzBZ599hitXrsDa2hqtWrVC7dq1odVq8eDBA5w9exa5ubmwt7fH6tWroVarxY5cLl51d8XUqVNldXcFERGRUrB7yx+7N7s3uze7t1Sxe7N7SwEXwEVU3NYYJSHVrTGISB40Gg1GjRqFpKQkqFQqCIIAc3NzrFq1Sre9ZExMDLZt24bExEQ0btwYISEhsLS0FDk5lcbRo0cxZcoU2NjYYP369Th06BDWrl2L/Px8DBkyBNOmTUPlypXFjllupk2bhsjISEydOhX9+/eHlZUVjh49innz5qFdu3ZYsmQJxo4di+TkZNjb2yMgIED3512qJkyYgN9//x2LFy9G7969AQBpaWn44osvYG9vj6VLl8LPzw9//vkn2rRpg8DAwCLPGZSSAQMGwNraGlu2bHntWEEQ0L9/f1hYWGD79u1GSEflSaPR4JdffsG+fftw/vx55OfnA3i+tWC7du3g5eWFQYMG6Z00liol3l1BVBbs3kQkRezeysDuze7N7s3uLVXs3uzeFR0XwEVUuDVG4ZYXryP1rTGISD60Wi0iIyORmpoKGxsbeHt7o1mzZrrXV6xYgY0bN6JXr16YNWsWqlevLmJaKqvTp09jwoQJePLkCQRBQKNGjRAYGIgOHTqIHa3cde7cGe+99x6CgoL0joeGhiIgIACdO3fGwYMHMWTIEMyYMQPW1tYiJS0/7733Hnr27Al/f3+949HR0Zg6dSratWuHtLQ0TJ48GZ9++qnkr1x1dHTE5MmTMWLEiBKNX7duHdasWaPbok7qcnNziz0ZeunSJVStWhV2dnYipDKOhw8fwtTUVBbbRb5IiXdXEJUFuzcRSRW7tzKwe7N7s3uze8sBuze7d0VjJnYAJXvxBz0RkVSYmprC29sb3t7exb4+fvx4TJ48WfIf2pXOyckJW7ZswejRo/Hw4UPMmzdPlgUcAB49egRHR8cix52dnaHRaHD06FGsXLkS3bt3FyGdYWRlZRW7BVWbNm2g1Wpx4cIFbN26Fe3atTN+OAMwMzMr1VXHVatWLfIMKynSaDRYvHgxIiIicOzYsSJFfPny5Th27Bj69++PmTNnyuIE04tq1KghdgSD+e233+Di4oJZs2a9cpyFhQUCAwNx7tw57Ny5kyWcFIfdm4ikit1bGdi92b3Zvdm95YDdm927ouECuIik/IwHIlIuPz8/TJgwAR07dtQdy8/PR0pKCtRqNapUqQIrKyvda4XPIuMdNNKkVqvx73//GyNHjsSECROwevVquLm5iR2r3OXl5en9uS1UuNXcyJEjZVXAged/bytVqlTkeGFJGzt2rGwKOAA0atQIZ8+eLfH4s2fPom7dugZMZHh/3zZTrVbj0aNHReb0wQcf4O7du9ixYwcuXryILVu2wMxMmhVh1apVZXrfxIkTyzmJ8fzvf//D5MmTSzRWpVKhR48eWLNmjYFTEVU87N5EJEXs3srC7s3uLRfs3uzeL8PuTcYmzb9hCqXVarFu3TpMmDBB7ChEpGCJiYkYOHCg3rHs7Gz4+flh48aNeuWcpGf27NnFHm/UqBFu3LiBcePGoWfPnnrbh6pUKixcuNBYEUXh4uIidgSja926tdgRytWHH36IZcuWYeTIkWjevPkrx168eBERERHw8/MzUjrD2LRpE5KSkuDv74+PP/642DEDBw7EwIEDsWrVKqxatQrbtm0r8VZ1FU1JS/iL2x9LuYQr9e4KIkNj9yaiioDdW97YvYvH7i197N7s3oXYvdm9xcYFcJFlZ2dj165dSE1NhSAIaNmyJYYNG4aqVavqjfvPf/4Df39//Pe//2UJJ6IKSRAEsSNQOQgNDX3l68+ePUNYWJjeMSWUcCV+aC3JM1Kl5KOPPsL27dsxfPhwfPXVV+jdu3eRr2t+fj727t2LpUuXokqVKpIv4REREfDw8HhpAf+7iRMnIjExEXv27JFsCT906NBrx2RnZ+P777/HkSNHYGZmJvmvsRLvriAqK3ZvIpILdm95YPcuHru39LF7vxq7tzSxe0sTF8BFdP36dfj5+eHOnTu6D68xMTH45ZdfsGvXLtStWxf5+flYtmwZtmzZAq1Wi969e4ucmoiI5KwkH2LlKjMzE7du3dI7lpWVBQB4+PBhkdcAwN7e3ijZDOXy5ctISkrSO5adnQ0AuHDhQrHbcTk7OxslW3mztrbGmjVr8Nlnn2HmzJmYO3cuWrVqhdq1a0Or1eLBgwc4e/YscnNzYW9vj9WrV6N27dpix34jV69exeDBg0s8/v3338fKlSsNmMiw6tWr98rXIyMjsWjRImRkZKB9+/aYM2cO3nnnHSOlMwwl3l1BVBbs3kREVNGwe7N7s3uze0sVuze7t1RwAVxE33//Pe7cuYOpU6eif//+sLKywtGjRzFv3jzMmzcPS5YswdixY5GcnAx7e3sEBASgS5cuYscmIiIZe92HWDlbuHDhS6+mnz59epFjKpUK6enpho5lUGvXrsXatWuLfW3x4sXFHpfyMwUbN26MsLAw/PLLL9i3bx+Sk5ORn58PADA3N0e7du3g5eWFQYMGlWprq4rK2toaWq22xOMrVaqkew6dnFy7dg1z585FXFwcqlWrhsDAQAwYMEDsWOVCiXdXEJUFuzcREVU07N7s3oXYvdm95YLdm927ouECuIiSkpLg4+ODsWPH6o717NkTubm5CAgIwKxZs5CcnIwhQ4ZgxowZsLa2FjEtERFRUWvXrkV0dDRCQkLEjvJGfH19xY5gdFJ+9tKbsLCwwMiRIzFy5EgAz+8wMDU1RbVq1UROVv6aNGmC5OTkEpeu06dPy+pEnEajwbp167B+/XpoNBr4+vpixowZqF69utjRyo0S764gKgt2byIikjp2b+li92b3fhG7t/Swe0sTF8BF9OjRIzg6OhY57uzsDI1Gg6NHj2LlypXo3r27COmIiIhe7/bt25K+KrlQUFCQ2BGMTqkl/EU1atQQO4LB+Pr6IiAgAPHx8XBzc3vl2ISEBERHR2PSpElGSmdYcXFxmDt3Lq5evYrmzZsjICAAHTp0EDuWQSjt7gqismD3JiIiqWP3li527+fYvZ9j95Yudm/p4QK4iPLy8mBlZVXkeOXKlQEAI0eOZAEnogrpxec1vepZTY8ePTJqNiKi4qxatapM75PyyQofHx/s3r0b48ePx7hx4zBw4EDUqlVLb0xGRgZ27dqFDRs2oH79+hg6dKhIacvH/fv3ERQUhMjISFhaWmLatGkYOXJksc/UkxMl3V1BVBbs3kQkVezeRCQ17N7s3nLG7i0tKkEQBLFDKJVarcaSJUvg7e2td/zRo0fo2LEjNmzYgH/84x8ipSMiKp5arYZKpSpyXBCEYo8XksOVylRUQEAAdu7cKfmvrxIL2uzZs0v9HpVK9dJntVV0arW6RONe/D4m9T/bDx48wBdffIGEhASoVCrY29vrbdF1+/ZtCIKAdu3aYcWKFahbt67Ykcts27ZtWLlyJZ48eYKuXbvC399f0vMhovLD7k1EUsTuTX/H7s3uLRXs3uzeRBWFvC/HkDhTU1OxIxARFaHE5zWR/JW0hL9Y0KRcwkNDQ0s89u/zlmoJP3To0GvHZGdn4/vvv8eRI0dgZmZW4ud3VWQ1a9bE5s2bER0djX379iE9PR0XLlyAiYkJatWqBR8fH3Tr1g1du3YVO+obCwwM1P17bGwsYmNjX/selUqF9PR0Q8YyKCWeQCQyBHZvIqqI2L1Jjti9X43dW7rYvV+N3ZvEwAVwkb24lRHw6u2MAMDe3t4o2YiIiqPE5zWR/CmxoJ0/f/61Y27evIn58+fjyJEjqFKlCqZMmWL4YAZSr169V74eGRmJRYsWISMjA+3bt8ecOXPwzjvvGCmd4Xl5ecHLy6vI8aysLFhaWoqQqPwp8SSxEk8gEpUVuzcRSQ27N8kRu3fx2L3ZvaWE3fvl2L0rFm6BLqKXbWUEvHw7I6lfKUNERBVbaa9oPHz4MNLT0yW/VdXryL2gvUir1WLjxo346aefkJubi169emH27NlFnmElB9euXcPcuXMRFxeHatWqYfr06RgwYIDYscpNXl4eQkJCkJqaqncSNTExEXPmzMGVK1egUqng7u6Ob7/9Fg0bNhQx7ZuZPXs2Bg8ejLZt24odxWhu3rz52jHFnUD88ssvjZCOqOJg9yYiooqG3bt47N7s3lLF7i1v7N7SxAVwEZXl+R8ArwAlIiLDKemzmv5OpVLJtoTLvaAV59SpU5g7dy4uXryIt99+GwEBAejYsaPYscqdRqPBunXrsH79emg0Gvj6+mLGjBmoXr262NHKTV5eHj799FMkJSXB3NwcKSkpMDMzw5UrV9C3b19oNBp07twZzZo1w4EDB/D06VOEh4dL9mTLy57xq2RKO4FI9DLs3kREVNGwe+tj92b3ljJ2b2L3rpi4BbqIWKaJiKii2bJli9gRKgQlFLQXPXr0CN999x3CwsJgYWGBSZMmYcyYMbCwsBA7WrmLi4vD3LlzcfXqVTRv3hwBAQHo0KGD2LHK3bZt23Dq1CnMmDEDw4YNg5nZ84/+P/74IzQaDfr06YPvvvsOADB27Fh4e3tj7dq18Pf3FzM2lYMXTyAGBgbK/gQi0auwexMRUUXD7v0cuze7txyweysXu3fFxgXwCuDp06fYvXs3fv/9d5w/fx6ZmZlQqVSoUaMG1Go1PDw84O3tLcsfgkREVLG4uLiU+j2nTp0yQBLxKKWg/d2uXbuwdOlSZGVl4b333kNAQICkt+N6mfv37yMoKAiRkZGwtLTEtGnTMHLkSF05lZu9e/eie/fuGDVqlO6YRqNBbGwsVCqV3nFbW1v069cP+/btYwmXMCWeQCQqDXZvIiKqKNi92b3ZveWD3Vt52L2lQZ7fcSTk9OnTmDx5Mu7fvw8LCws0bNgQ9erVQ35+PjIzM3H48GHExsZi1apVWLZsGdq3by92ZCIiIty+fRuhoaEICwvD9evXZbENm9IKGgBcuHABc+bMQWpqKmrVqoXly5ejV69eYscyiG3btmHlypV48uQJunbtCn9/f9StW1fsWAb1559/wtfXV+/Y6dOnkZubCzs7Ozg4OOi91rBhQ2RkZBgzYrk7deoUtFptqd7j4+NjmDBGpsQTiESlwe5NRERSxO4tD+ze7N5/x+4tbeze0iHfnyoS8L///Q+jRo2CjY0Nli5dCi8vryJXmj958gRRUVH44YcfMHr0aISGhqJRo0YiJSYiIiV79uwZoqOjERISgoSEBAiCAJVKhc6dO4sd7Y0psaAtXrwYW7duhVarxQcffIApU6bAxsYGt27deuX77O3tjZSwfAUGBur+PTY2FrGxsa99j0qlQnp6uiFjGVRBQQFMTU31jsXHxwMA3N3di4zPzs6GlZWVUbIZys6dO7Fz584SjS38Hib1Eq7EE4hEpcXuTUREUsLuLS/s3uzeL2L3liZ2b+nhV0ZEP/30E6ysrLB792689dZbxY6xsbHBgAED0LlzZ/Tt2xcbNmzA/PnzjZyUiIiULDU1FSEhIdi/fz+ePHkCAKhRowb69++PQYMGoV69eiInfHNKLGjBwcG6fz98+DAOHz5covdJ9Y6DF6/GVoKGDRsW+XrFxMRApVLh/fffLzL++PHjkt9+76OPPkK7du3EjmE0SjyBSFQW7N5ERCQF7N7FY/eWFnbv59i95YXdW5q4AC6ipKQk9OvX76UF/O/s7Ozg4+OD48ePGyEZEREpXUZGBsLCwhAaGoo///wTgiDAysoK7u7uiIuLw7x58+Dh4SF2zHLj4+MDlUoldgyjmjhxYqnfIwiCAZIYz+DBg9G2bVuxYxhN7969sXr1anTu3BnvvfceduzYgcuXL6NWrVro2rWr3tjw8HCcOHECkydPFilt+ejQoQO8vb3FjmE0SjyBSFQW7N5ERFRRsXvLH7u3/LF7yx+7tzRxAVxEjx49KtWWak2aNMGuXbsMmIiIiJRu//79CAkJQVxcHLRaLapWrQpvb294eXmhU6dOuHfvHjw9PcWOWe4WLVoEAMjLy8OlS5eQn5+PZs2aSX5Lqlext7dHv379Sjz+5s2b+OqrrwyYyLBCQ0Ph7u6uqBI+YsQI/P7775g4cSJUKhUEQYC5uTkWLFig2/o3JiYG27ZtQ2JiIho3bowRI0aIG5pKRYl3VxCVBbs3ERFVNOze7N4vw+4tPeze8sfuLU1cABdRXl5eqX64V6pUCTk5OQZMRERESjd16lRYW1tj6NCh8PDwgLOzs95zjOR8pfa//vUvrFmzRvez1sLCAkOHDsW0adNk+Twff39/PH36FMOGDXvt2F27dmHx4sX8HCIxFhYW2LRpEyIjI5GamgobGxt4e3ujWbNmujFnz55FcnIy+vTpg1mzZsHS0lLExFQWSru7gqgs2L2JiKiiYfdm9y4Ou7c0sXsrA7u39MjvJwoRERGVWf369XHjxg2EhITgypUr+M9//gNPT080btxY7GgGtXv3bixZsgT16tWDj48PTExMkJCQgE2bNkGr1Ur66uuXefvttxEYGIinT59i9OjRxY65d+8e/P39cezYMZibm0t+iy4lMjU1hbe390u3Jhs/fjwmT54MExMTIycrf76+vpJ/jlppKfHuCiIiIiI5YPdm9/47dm/pY/eWN3ZvaeICuMgyMzNx69atEo199OiRgdMQEZHSHTx4EGfOnEF4eDiioqJw/PhxLF++HE2aNIGXlxdatWoldkSD2LFjB9q1a4fNmzejUqVKAJ4/c2vq1KnYsWMHpk+frtu2Si5+/fVXjB49GsuWLcPTp08xadIkvdf37t2L+fPnIysrC46OjggMDETTpk1FSls+Tp06Ba1WW6r3+Pj4GCZMBSGnrQaDgoLEjkBEFRi7NxERVSTs3uzehdi9n2P3lg52b5IKlSAIgtghlEqtVpdpO5tz584ZIA0REZE+rVaL48ePIyIiAocOHcLTp091P7f69++PCRMmoF69eiKnLB9OTk744osvimxJlpqaiiFDhiA0NBRqtVqkdIbz119/4Z///CcSEhIwYsQIzJw5E48ePUJAQABiYmJgaWmJqVOnYvjw4ZLfgq+0n7sEQYBKpeLnLqrQ1Go1lixZ8tK7DIjoOXZvIiKqyNi92b3Zvdm9qWJj95Ym3gEuIl9fX7EjEBERvZSpqSm6dOmCLl26IDc3FzExMdi7dy9OnDiB3377DSEhIXB1dUX//v3x4Ycfih33jTx9+hRVqlQpcrx+/foQBAGPHz8WIZXhWVtbY926dfjiiy+wadMm3LhxA8nJyXjw4AHee+89zJs3TzYnWgDgo48+Qrt27cSOQVSueHcF0euxexMRUUXG7s3uze5NVPGxe0sP7wAnIiIinbFjx8LNzQ0uLi5o1apVsVftPnr0CJGRkYiIiEBqaqosrtR92ZWcjx49QseOHREcHIyOHTuKlM7wCgoK4O/vj5CQEJiYmGDevHkYMGCA2LHKFa/WJTni3RVERERE0sTuze7N7k0kHeze0sQ7wImIiEgnPj4ex44dg0qlgo2NDTp06ABXV1e4ubnptiGrXr06hg0bhmHDhuH69evYt2+fyKnpTZmYmGDhwoWwtbXFxo0bERcXBx8fH5iZ8aMiUUXHuyuIiIiIpIfdW5nYvYmki91bevidlYiIiHSSk5ORnp6O5ORkpKSkIDU1FYcPH4ZKpULVqlXh7OwMV1dXuLq64p133kGDBg0wfvx4sWOXi8zMTNy6dUvvWFZWFgDg4cOHRV4DAHt7e6NkM4Ti5vPxxx/jr7/+wo4dO5CTk4NvvvkGJiYmemOkPGciOerQoQPvriAiIiKSGHZvdm92byJpYfeWHm6BTkRERK90+/ZtvVJ+/vx5aLVa2NrawsXFBa6urhg6dKjYMd/Iq7YyKty26EUqlQrp6emGjmYwr5szgCKvS3nOs2fPxuDBg9G2bVuxoxCVG24vSERERCQf7N7s3oWkPGd2b5Ijdm9p4h3gRERE9Ep169ZF79690bt3bwBAdnY2wsPDERISggMHDiA6OlryJdzX11fsCEbn4+NTqucXSV1QUJDYEYiIiIiIiF6K3Vue2L2JiMTBBXAiIiJ6pdzcXCQlJSExMRGnT5/G2bNnkZeXBwsLC92WbFKnxIK2aNEisSMQ0Rvy9fVFw4YNxY5BREREROWA3Vue2L2JpI/dW5q4BToRERHpyc/PR2pqKuLj4xEfH48zZ84gLy8P5ubmePfdd3XF29HRERYWFmLHJSIiIiIiIpIcdm8iIiLD4QI4ERER6YwZMwanTp1Cbm4uTExM0KpVK7i5ucHV1RVOTk6wtLQUOyIRERERERGRpLF7ExERGRYXwImIiEhHrVbD3NwcH374IcaNG4e3335b7EhEREREREREssLuTUREZFhcACciIiKdb775BgkJCbh27RpUKhWaNGmCjh07ws3NDc7OzqhWrZrYEYmIiIiIiIgkjd2biIjIsLgATkREREXcunULcXFxumeR3b9/HyYmJlCr1XB1ddWVcmtra7GjEhEREREREUkSuzcREZFhcAGciIiIXuvixYuIj4/HyZMncerUKTx+/BhmZmZo3bo1OnbsiMmTJ4sdkYiIiIiIiEjS2L2JiIjKBxfAiYiIqFQ0Gg2ioqLw66+/IjU1FSqVCufOnRM7FhEREREREZFssHsTERGVnZnYAYiIiKhiu3btGs6cOYMzZ84gLS0N58+fR15eHipXrozOnTvD2dlZ7IhEREREREREksbuTUREVH54BzgRERHpZGVlIS0tTVe409LSkJWVBUEQUK1aNbRv3x4uLi5wdnZGy5YtYWJiInZkIiIiIiIiIklh9yYiIjIsLoATERGRjlqthkqlgiAIqF69OpydnXX/ODg4QKVSiR2RiIiIiIiISNLYvYmIiAyLW6ATERGRTo8ePeDi4gIXFxc0a9ZM7DhEREREREREssPuTUREZFi8A5yIiIiIiIiIiIiIiIiIiGSBDw8hIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREsmAmdgAiIiIl+PHHH7Fq1apSvefQoUOoX7++gRKVXdeuXXHz5k0AwNdffw0/P79Xjh81ahSOHz8OAAgODoa7u7tBc0VHR6NRo0YG+T2IiIiIiIio4mL3ZvcmIiICuABORERkFA4ODvD29tY79uDBA8TFxcHa2hoeHh5F3mNtbW2seGUWFRX1yhL+8OFDxMfHGzERERERERERKRW7NxEREQFcACciIjIKLy8veHl56R1LSEhAXFwcqlevjqVLl4qUrOyqVq2K5ORk3L17F2+99VaxY6Kjo5Gfnw9zc3Pk5eUZOSEREREREREpCbs3uzcRERHAZ4ATERFRGXl6ekIQBERHR790zL59+2Bra4s2bdoYMRkRERERERGRPLB7ExERlR4XwImIiCqwI0eOYNSoUXBxcUGbNm3QvXt3LFmyBJmZmXrjbty4AQcHB3Tu3LnY/87w4cPh4OCAhIQE3bFZs2bBwcEBiYmJmDRpEt599124ublh69atJcrWo0cPAM+3YitORkYGTp06he7du8PM7OWbzuzZswdDhw5F+/bt8e6778Lb2xtr1qzB06dPix1/8uRJjBw5Es7OzujQoQOmTJmiey5acbRaLf79739j4MCBcHR0hKOjIwYNGoTQ0FAIglCiuRIREREREZF8sXsXxe5NRERSxi3QiYiIKqilS5di/fr1MDU1hZOTE6pXr47U1FRs2LAB+/fvx+bNm9GgQYM3/n2++eYbPHjwAJ06dcLFixehVqtL9L63334bLVq0QHJyMjIyMmBnZ6f3elRUFAoKCtC7d2+sWrWqyPsLCgowY8YM7N27FxYWFnBxcYGVlRWSkpLw/fff48CBAwgODkb16tV179m1axe+/fZbAECHDh1QtWpVHD9+HKdOnYJGoynye+Tl5eGf//wnjh07BhsbGzg6OsLc3ByJiYmYNWsWEhISsGjRotL87yIiIiIiIiIZYfdm9yYiIvnhAjgREVEFFBsbi/Xr18PW1hYbNmzQbWOm0Wgwb9487Nq1C5MnT8bu3buhUqne6PfKyMhAeHg4GjRogIKCApiYlHyDmF69euHcuXOIjo7Gxx9/rPdaZGQk7Ozs4OzsXOx7t23bhr1796JBgwbYuHEjGjZsCAB48uQJpk2bhiNHjuDbb7/Fjz/+CAC4ffs2AgMDYWZmhnXr1qFjx44AgIcPH2LUqFFIT08v8nv89NNPOHbsGFxcXLBy5UrUqFEDAHD//n2MGTMGoaGhcHJywsCBA0s8ZyIiIiIiIpIHdm92byIikidugU5ERFQBbdq0CQDw5Zdf6j3Dy8LCAnPmzEGjRo3wxx9/ID4+/o1/Lw8PD93V7KUp4ADQs2dPAEW3Yrt16xZSU1PRs2fPl/43N2/eDAAIDAzUFXAAsLGxwdKlS1GlShVER0fj6tWrAIDQ0FDk5uZi8ODBugIOADVq1MDChQuL/Pc1Gg22bt0Kc3NzLF26VFfAAaBWrVqYN28eAOBf//pXqeZMRERERERE8sDuze5NRETyxAVwIiKiCiY/Px/JyclQqVTo3r17kdfNzMzg5eUFAHrPFSurd955p8zvbdCgAVq1aoXTp08jIyNDdzwyMhKCIODDDz8s9n23b9/GjRs3UL16dbi5uRV5vUqVKujUqRMAIDExEQCQlJQEAOjSpUuR8S1atED9+vX1jv3xxx/Izs5GkyZN8NZbbxV5T5s2bVCzZk1cuXIF9+7dK+GMiYiIiIiISA7Yvdm9iYhIvrgFOhERUQWTmZmJvLw8VK9eHTY2NsWOKSyc5VEeq1Wr9kbv79WrF/744w/ExMRg2LBhAJ6X8AYNGuDdd98t9j2Fhb1evXov/e++OMfC99SpU+el42/cuKH79e3btwEAFy5cgIODwyvncPv2bdSuXfuVY4iIiIiIiEg+2L2fY/cmIiI54gI4ERFRBSMIAgC88vlihWMsLCxK9N/UarUvfa20W6+9qGfPnliyZAn279+PYcOG4erVq/jjjz8wbty4l76nLHN83fPWzMz0P9YUFBQAAOzt7eHk5PTK91auXPmVrxMREREREZG8sHvrj2H3JiIiOeECOBERUQVja2sLc3NzZGZm4smTJ8VeiX79+nUAQM2aNQH8f5EuLJ4vysrKMlDa51eSv/vuuzh9+jTu3buHyMhIAEDv3r1f+h47OzsA0Ltq/EWFc6xVqxYA4K233sLFixdx8+ZNNGvWrMj4v28DB0B3VXmdOnWwdOnSUsyIiIiIiIiI5I7d+zl2byIikiM+A5yIiKiCMTc3h6OjIwoKChATE1Pk9fz8fN1xV1dXAIC1tTWA52U7Ly9Pb/yjR49w5coVg2bu1asXCgoKEB0djf3796NZs2av3PrM3t4e9erVw6NHj3TPGfu77OxsHD9+HADg7OwMAHB3dweAYv+fXL9+HZcuXdI71qZNG1haWuL8+fNFCjoA3L17Fz179sTIkSORk5NT8skSERERERGR5LF7s3sTEZF8cQGciIioAvrkk08AAN999x3S09N1x/Py8jB37lxcu3YNLVq00G0vZmtrizp16kCj0WD79u268c+ePcO33377ym3YykOPHj2gUqmwbds2XLhw4ZVXoBcqnKO/v7/uinMAyMnJwYwZM/DkyRN88MEHumeV+fr6wtbWFrt378aBAwd04588eYKvvvqqyBX41tbW+Oijj/DXX39hxowZePDggd7vMXv2bFy+fBnW1tbcho2IiIiIiEiB2L3ZvYmISJ64BToREVEF5OnpiU8//RQbN27EgAED4OTkhOrVq+PMmTO4c+cO6tWrhxUrVug9Q2z06NEIDAxEYGAg9u3bh1q1aiE5ORlarRYffPABDh8+bLC8devWRbt27ZCSkgLg1VuwFRo+fDhSUlKwf/9+9O7dG87OzrCyssKpU6fw6NEjqNVqLFy4UDe+Ro0aWLhwIaZMmYLPP/8cjo6OsLOzQ1JSErRaLRo3blzkavtp06bh3LlziI+PR7du3dCmTRtYWVkhJSUFmZmZePvttzF37tzy/Z9BREREREREksDuze5NRETyxDvAiYiIKqiZM2fip59+gqurK86fP48jR46gcuXKmDBhAkJDQ9G4cWO98cOHD8fixYvRunVrpKenIykpCa6urvjtt9+KjDWEnj17AgBatWqFRo0avXa8iYkJVqxYgaCgILRq1QrJyck4ceIE6tSpgxkzZmDnzp2oUaOG3ns8PDzw66+/wsPDA1euXMHvv/+Oli1b4pdffkGdOnWK/B6WlpbYuHEjvv76azRp0gRpaWlISEiAnZ0dJk2ahF27dumec0ZERERERETKw+7N7k1ERPKjEgRBEDsEERERERERERERERERERHRm+Id4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESywAVwIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtcACciIiIiIiIiIiIiIiIiIlngAjgREREREREREREREREREckCF8CJiIiIiIiIiIiIiIiIiEgWuABORERERERERERERERERESy8H8nKYdyL6X4fwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 69 coefficients adjusted\n", - "\t 688 coefficients converged\n", - "\t 69 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABloAAAJ4CAYAAAAN5j5VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWwklEQVR4nOzdd5xU9b0//tfMEpqygl7AgkbFrMTeMGhUIoomUaNojFExdsUarlFj+6bZy9VojL1hQTTBXq6xt6tGvNcSG9EoCEY0KiIWkN35/eFvN66A7h4WdoDn8/HYh+wpM++Zzwc873nNOadUqVQqAQAAAAAAoNXK7V0AAAAAAADA/ErQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIwByqVSgYNGpSVV1455557bqv2veGGG7LyyivnhhtuaFq28sorZ7fddmvrMmfy9ttv5+OPP57rz9MW6uvr88Ybb3ztdn/4wx+y8sorf+XPoEGD5nq9r7/++lx/DgAAqtf999+fQw45JIMGDcpqq62W73znO9lnn31y3333zbMapk+fnl//+tdZf/31s8Yaa+SEE06Y5bKjjjoqK6+8ciZMmNCqx2889n7iiSfm0ito7uuOsX/9619n5ZVXzujRo79yuwkTJqRfv37ZfffdW/zcTzzxRFZeeeX84Q9/aPE+7enxxx/PyiuvnG9/+9tf2Ud9+OGHGT58eNZZZ52svfbaufTSS5Mk06ZNy1tvvTWvyk0yZ311orduqZb21kAxHdq7AID52eOPP56JEyema9euuf7663PAAQekpqam8OOddtpp+Y//+I82rHBmN910U37729/m1ltvTdeuXefqc82pN998M/vvv3+22GKLHHLIIS3aZ6eddsq66647y3WLLLJIW5Y3kwMOOCBTp07NVVddNVefBwCA6jN16tQcc8wxueuuu7Lqqqtm++23T69evfLWW2/lpptuygEHHJC99torv/zlL+d6Lddff31GjRqV7373u/nBD36Qb33rW7NcVqlUssEGG2TxxRdv1eMPHjw4yy23XPr27TuXXsG/teQY+8c//nFGjRqVW2+9NTvssMNst7vppptSqVTy4x//eG6UWhVGjx6drl275uOPP851112Xww8/fJbbnXfeebnzzjuz1VZbZYMNNshaa62VF154IQcffHAOPvjgbL/99vOs5rbuqxO99ZcV6a2B1hG0AMyBP//5z/nGN76RPfbYI+edd17uv//+bL755oUfb9ttt23D6mbt8ccfn2++cfPGG29k7Nix2WKLLVq8z1prrTVP3sdZue+++7L++uu3y3MDANC+jjvuuNx111058sgjs/feezdbN2zYsOy999657LLLsuKKK2bHHXecq7W8/PLLSZIjjzwy/fr1S5Kmsz2+uCxJ1l577VY/fr9+/Zo9xtzUkmPs1VdfvekMm0mTJqV3796z3O7mm2/OYost1qr+Yn4yderU3H333dlss83y4osv5oYbbsihhx6ajh07zrRt4xz57W9/m27duiX5/MyQiRMnztOak7bvqxO99ZcV6a2B1nHpMICCPvzww9xzzz1ZY4018qMf/ShJcu2117ZzVQAAwLz2yCOP5M4778yWW245U8iSJB07dsxJJ52UmpqaXHnllXO9ns8++yxJsuiii37lsgXJDjvskIaGhtxxxx2zXP/UU09l/Pjx2WabbdKpU6d5XN28cfvtt+eTTz7JgAEDsvnmm+fdd9/N3XffPcttG+dDY8jSXvTVwIJC0AJQ0G233ZZPP/003/3ud7PCCitk5ZVXzqOPPjrLa54+8cQT+dnPfpZ11lknAwYMyAknnDDLb758+Tqys7tm8oQJE7LyyivnqKOOalr2ySef5OSTT873v//9rLHGGvnOd76T/fffP0899VTTNoMGDcqNN96YJNlss82anuuoo47K2muvnfHjx+fggw/Ouuuum3XWWScHHHBA3nrrrUycODGHHnpo1l133QwYMCDDhw/P22+/3aymhoaGXHXVVdl2222zxhprZL311ss+++zT7PmTf1/P+dVXX81xxx2X7373u1l99dWz7bbb5tZbb2223c9+9rMkybnnnlvo2tFfpVKp5E9/+lN22WWXrLfeell11VWz0UYb5bDDDsu4ceNm2v6OO+7IrrvumnXXXTff+c53svvuu+exxx5L8u/rNifJX//615muD/zggw9m9913zzrrrJM11lgj2267ba688so0NDQ0bdM4pn/84x/zn//5n1l99dWz4YYb5rnnnkt9fX3OPffcbLPNNllrrbWy3nrrZbfddpun1/kGAGD2brrppiT5yntCLLvssrn11lubjscbvfrqqznssMOy4YYbZrXVVstmm22WU045JR988MFMj/GPf/wjhx12WDbYYIOsttpq2WKLLfL73/8+n376aZJ/H1N+8Zi/8X6FX16WzLrfqFQqufbaa7P99ttnrbXWyoYbbphhw4bl+eefb9pmdvdoefjhh5v6njXXXDPbb799s+Pi5N/HzrfffnsuuOCCDB48OKuttloGDRqUs88+OzNmzGi2XTLrY+wv+9GPfpRvfOMbzXqKL2oco8bLhn322We59NJLs8MOO2TttdfOaqutlu9973s57rjj8u677872eZLP+6pZ3f9xVvcKSZJnn302w4YNy/rrr5/VV189W2+9dS677LLU19c32+6FF17IsGHDsvHGGzfNhRNOOCGTJ0/+ynoaNZ619N3vfjff//73k8wcWjS+r3/961+TpOlelkcddVSOPvroJMnRRx/d9N4nre/1HnzwwfzgBz/IaqutlqFDh35lza3pqxvr11s3f7/bu7cGPufSYQAFNR7E/uAHP0iSbLXVVnn55ZczatSoHHHEEU3bPfDAAznooIPSq1ev7L///imXy/nzn//8lU1CEYcddlgeffTR7LrrrllxxRXzr3/9K9dcc0123333/PnPf06/fv1yzDHH5PLLL8+YMWNy9NFH51vf+lbT/p999ll22WWXrL/++jnyyCPz9NNP54YbbsikSZPyr3/9K/3798+RRx6ZZ555JqNHj87UqVNzySWXNO1/+OGH5/bbb8+WW26Zn/zkJ/nggw9yww03ZLfddsuZZ57ZdKDfaL/99mt6T6ZPn54RI0bk8MMPT8+ePTNgwIAMHjw4M2bMaGq+Bg8e3KJrR3/88cd57733ZlpeU1OTxRZbrOn3k08+OSNGjMjmm2+e//zP/0ySjBkzJnfccUdeeOGF3HHHHSmXP/8+wjnnnJM//vGP6devX4YNG5aOHTtm5MiR2XvvvXP++edn1VVXzWmnnZYjjzwyK664YoYNG5Z11lknSXLZZZfl1FNPzTe/+c3su+++6dq1a+65556ceOKJeeKJJ/KHP/yh6XmS5JJLLkldXV2OO+64vP7661lllVVy8skn55prrslPfvKT/OxnP8uHH36YUaNG5cADD8yFF16YgQMHtmSKAAAwlzz77LPp0KFD1lxzza/c7sv3NBkzZkz23nvv1NTUZOedd84yyyyTp59+OldccUXuu+++jBo1qukY+Nlnn80ee+yRRRddNLvuumsWX3zxPP3007ngggvy2GOP5corr8ziiy+e0047Lddff33TMf9iiy2WcrncbFmPHj1mW+Mvf/nL3HzzzVlvvfUyfPjwTJ8+PVdddVWGDh2aa665Jqusssos97vmmmty/PHHZ/XVV8/BBx+ccrmce++9N0cffXRefPHFHHvssc22P/PMM1OpVLLTTjultrY2N9xwQ84777yUSqUceuih6du372yPsWelR48e2WyzzfLf//3fefXVV5u919OmTcudd96ZVVddNd/+9reTJMOHD8+9996bIUOG5Cc/+UmmTZuWhx56KH/605/y5ptv5rLLLvvKsWype++9Nz//+c/Tp0+f7LPPPunatWseffTRnHrqqfnf//3f/OEPf0ipVMobb7yR3XffPT179swee+yR2traPPPMM7n66qvz7LPP5rrrrkupVJrt87z66qt55plnsvbaa2fppZfO0ksvneWXXz5PPvlks/ej8X294IIL8o9//COnnXZaFllkkSyxxBLp2LFjrrvuupnue9naXm/48OH58Y9/nOWXX36Wly37opb21Yneel731kArVQBotbFjx1bq6uoq2223XdOy8ePHV+rq6ioDBgyoTJs2rVKpVCoNDQ2VQYMGVdZbb73Kv/71r6Ztp0yZUtliiy0qdXV1ldGjRzctr6urqwwdOrTp91/+8peVurq6yhtvvNHs+d94441KXV1d5Ze//GWlUqlU3n333UpdXV3l17/+dbPtnn766coWW2xRuf7667/yMRuXfXn/bbfdtlJXV1c5/vjjmy3fcccdK/369Wt6nXfccUelrq6ucvHFFzfbburUqZXvf//7le985zuVjz/+uFKpVCrnnHNOpa6urrLvvvtWGhoamrZ98sknK3V1dZXDDjusadnjjz9eqaurq5xzzjmVr9P4uLP72XTTTZu2fe+99yqrrLJKZf/995/pcQ499NBKXV1d5W9/+1ulUqlUXn/99cq3v/3tytChQ5teb6VSqfzrX/+qrLvuupXtt9++admXx2/8+PGVVVZZpfLDH/6w8tFHHzUtb2hoqBx++OGVurq6yg033FCpVP49pmuttVblnXfeaVbTWmutVdlnn32aLfvnP/9Z2XzzzSt/+MMfvva9AQBg7lpzzTUrG264Yav2qa+vrwwePLiy2mqrVV555ZVm666//vpKXV1d5aijjqpUKp8fP2611VaVgQMHVt5///1ZbnvRRRc1LfuqY/6vWvbYY481HZN/8Vj9lVdeqfTr169yyCGHVCqVfx97P/7445VK5fNj01VXXbWy//77N9uvoaGhcsQRR1Tq6uoqzzzzTKVS+fcx/ne/+93KBx980LTtRx99VFl33XUrG220UbPX9+Vj7K/y4IMPVurq6ipnnXVWs+W33357pa6urnLNNddUKpVK5cUXX5xln1OpVCo77LBDpa6urul9nlVPsummmzbrLxqNHj26WY/38ccfV77zne9UhgwZ0qyXqFQqlbPOOqtSV1dXuf322yuVSqVyySWXNHufGp188smVIUOGVN56662vfO2nnHJKpa6urjJixIimZY3jNKvXOXTo0EpdXd1X1l+pFOv1Dj300K+stVFL++pKRW89L3troBiXDgMooPFbN1tttVXTsmWXXTZrrbVW3nvvvfzlL39Jkrz44ouZMGFCtt122yyxxBJN23br1i0777xzm9Wz6KKLplu3brnzzjtz/fXX55133kmSrLnmmrnrrrtafLPNrbfeutnvjd96+uEPf9hs+XLLLZeGhob861//SvL5tYCTZMstt8x7773X9DNt2rRsscUWef/99/Pkk082e4xtttmm2Tey1lhjjSRpesyi9t5771x++eUz/Zx++ulN2/To0SNjxozJGWec0WzfKVOmpEuXLknSdPr5fffdl/r6+uy+++7Nvo21xBJLZOTIkfnDH/4w21ruvvvuzJgxI/vtt1+6du3atLxUKuUXv/hFksx0Dek111wz//Ef/9Fs2ZJLLpm//vWvufTSS5tO8V5yySVz99135+CDD27xewMAwNxRU1PTdMmrlnrhhRcybty4/OhHP5rpTJcf//jH+eY3v5m77ror9fX1efnll/P3v/89AwcOTENDQ7Nj7k033TSdOnWa7b04WuOee+5Jkuyzzz7NjtX79u2bP//5z/l//+//zXK/v/zlL/nss8/ygx/8IO+//35Tbe+//35Tz9TYIzXadNNNU1tb2/R7165d07dv36+9bNdX2WijjbLUUkvltttua7b8xhtvTOfOnbPNNtskSfr165ennnoqhx12WLPt3n333aaa2uIm5//zP/+T999/P1tuuWWmTp3abNwae6zGcVtqqaWSJKeffnoee+yxTJ8+Pcnnl6K64YYb0rt379k+z4wZM3LLLbekXC43nRmS/Ltfvfnmm/PJJ58Ueg1Fer1ZXVZtVlraVyd66/borYHWcekwgFb67LPPcssttyT5/GDri9c2HTBgQJ5++ulce+212XrrrTN+/Pgknx88fdlKK63UZjV17Ngxp5xySo4++uim5qeuri4bbbRRttlmm9me3v9lX/6A/xvf+EaSpGfPns2Wd+jw+f8+Gu8x8tprryVJNt9889k+9sSJE7/yuRpDjC/et6SIlVZaKRtuuOHXbtepU6fce++9uf/++zN+/PhMmDAh//znP5sOUBvraBzfFVdccabHqKur+8rnaBz/L55G3mjJJZdMt27dZro27pfflyQ58cQTM3z48Jx22mk57bTTstxyy+W73/1uttpqq/Tv3/9rXysAAHNX796989prr2X69Olfe6mkRl91rFgqlbLSSitl3Lhxef/995uOt0eNGpVRo0bN8vG+fLxdROOx6ZeDnyRZddVVZ7tfY31HHnnkbLf5un4g+bwn+PJ9S1qjXC5nyJAhOe+88/J///d/WXvttfPOO+/k0UcfzdZbb93sxu8dO3bMHXfc0XQ/kAkTJuSdd96ZqR+YE43vy5lnnpkzzzxzlts0vi9bbrlldthhh9xwww3ZY4890rlz56y77roZOHBgtttuu2aXQf6yBx54IP/617+y+uqrZ9q0aU3j2LFjxyy//PJ5/fXXc/vttzfdn6bIa2hNr/fl/nFWWtNXJ9Fbf8G86q2B1hG0ALTSAw880PQtq9nd2G/MmDF55ZVXmn6vVCozbTMnBz2zaj4233zzfPe7383DDz+cRx55JE888UQuu+yyXH755TnmmGOabn73VRoP8r7sq64F3FjPIossknPPPXe226ywwgrNfv/ifUnmtc8++ywHH3xwHnjggay22mpZbbXVsuWWW2aVVVbJgw8+mAsvvLDZtsnXvwez0jjus9u3oaFhpkZ8VmOwzjrr5J577snjjz+ehx9+OE888URGjRqVa6+9NnvuuWezGzcCADDv9e/fP6+++mr+93//NwMGDJjtdkcffXQ+++yzrwwkGjX2Cx07dmz686677jrbD2BndyzfGo3Hvq3V2J8cf/zx6dOnzyy3+fI9IeZWP7D99tvn/PPPz6233pq11147t956a+rr65uFDFOnTs3uu++e559/Puuuu25WW221bLvttll99dUzYsSIpgCgtb7cpzWO26GHHpq11157lvssssgiST4/K+qkk07KgQcemPvvvz//8z//kzFjxuTRRx/NhRdemFGjRs0yZEj+fWbIc889l80222yW24waNapQ0FKk16upqfnax21NX/3FIEVvXV29NfBvghaAVmo8iN1///2bTsn9oj/96U954IEHmh3IvvrqqzNtN27cuK99rsYD1GnTpjVb3nj6cqOpU6fm5ZdfTp8+fbLFFltkiy22SJK89NJL2X333fPHP/6xRQeDRfXp0yevvfZa+vXrN1MD9eKLL+btt99uuiRXNbjjjjvywAMPZL/99mu6hFejG2+8sdnvjY3ia6+9NtMB7RVXXJFXXnklxx13XDp37jzT8zQ2QmPHjm266WajN998Mx999FHTJQJmZ9q0aXn55Zez2GKLZZNNNskmm2ySJHnjjTey1157ZcSIETn44IOz6KKLtuCVAwAwN2y99dYZNWpURo4cOdug5Z///GduueWW1NbWpnv37ll22WWTJH//+99n2rZSqeTVV1/Noosumtra2mbhxZfP3m5oaMhdd93V9Hhz4ovHviuvvHKzdWeeeWY+/fTTHHPMMbPdr7a2dqb63n777Tz77LNtUl9LLLvssvnOd76TO++8M8cdd1xuvfXWfPOb38z666/ftM2VV16Zv/3tb/ntb3+bn/70p832b8nllmpqavLRRx/NtPzLfVrj+9K5c+eZ3pepU6fmkUceaTrDYeLEiRk/fnw22GCD7Lbbbtltt90yY8aMXHrppTnzzDNz7bXX5pe//OVMz/nuu+/moYceyiKLLJJTTz11pg/yGxoa8stf/jLPPfdcnn/++a88M2lW5lav15q++rjjjsvyyy+fRG9dbb018G8iT4BWeOedd/Lwww+ne/fuOeigg7L55pvP9HPooYcmSW666aZ885vfzAorrJBbbrml2anQn376aa6++uqvfb5evXol+fybSV900003Nft97Nix2WWXXXLeeec1W77SSiulW7duzb5N0/htl1l9E6ioLbfcMkny+9//vtnyqVOnZvjw4TnooINmOqBticaD4bY+5fn9999Pkpmax3HjxuWuu+5K8u9vNm222WYplUq55pprml13e/Lkybn44ovz7LPPNoUs5XK5Wa2DBw9OTU1NLrzwwmbXeK5UKjn77LOTJN///ve/ttaddtopxx9/fLPlyy67bHr37p1SqeQbTAAA7ax///4ZPHhw7rrrrlx++eUzrf/www/z85//PDNmzMjBBx+cjh07ZpVVVsmyyy6bW265ZaYPj0ePHp3x48c3fci72mqrZZlllsmNN97YdAmlRtddd12GDx/e9MH1nGg8W2bEiBHNlo8fPz5XXHFF3njjjVnut8UWW6RcLueCCy7Ip59+2mzdKaeckoMOOih/+9vfCtX05WPslthhhx3y3nvv5aabbsoLL7ww05kcs+sH/u///q/p/hdfdQmzXr165b333mt2Cafp06fnzjvvbLbdRhttlEUWWSRXXHFF03M2uuCCC/Lzn/88Dz74YNPve+yxR5555pmmbTp06JA111wzyezPErnpppsyY8aMbLvtthk8ePBM/ekWW2yRHXbYIUly7bXXzvY1Jf/uFb/4fs+NXq+1ffUnn3ySfv366a2rsLcG/s0ZLQCt0HgQu/3226dTp06z3GbVVVdN//798+STT+a2227LCSeckL322is77rhjdt111yy66KIZPXp0Pvzww699viFDhuTCCy/MCSeckAkTJqRnz565//77M3bs2GbPv84662SjjTbKqFGjMmXKlKy//vqpr6/PXXfdlTfeeKPZN58ar996ySWXZOONN/7Ka7+21Pbbb5///u//znXXXZfx48dn0KBBmTFjRv70pz/l9ddfzxFHHPGVN2+cncabHN53331ZeumlM3jw4HTv3n2O6914443zX//1XznxxBMzfvz49OzZM3//+98zevTopjBlypQpST6/PvV+++2XCy+8MDvvvHO22mqrNDQ05Prrr88HH3zQFJg01vvSSy9l5MiRWW+99VJXV5fhw4fnv/7rv7Lddttl++23T9euXXPvvffm8ccfz6abbpof/ehHX1nrkksumR133DHXXXdd9t577wwaNCilUimPPPJInnzyyQwdOjRdu3ad4/cEAIA5c9JJJ+WDDz7IKaeckltvvTVbbLFFFl988bz++uu58cYb895772XXXXfNrrvumuTzDz5POOGE7Lffftlxxx2z8847p0+fPnn22Wdz4403Zplllsnhhx/ebNv9998/22+/fX76059mueWWy3PPPZfRo0dnueWWy4EHHjjHr2HjjTfO1ltvndGjR+ett97KoEGDMnXq1FxzzTXp1KlTjjjiiFnut/zyy+eQQw7J2WefnW233TZDhgxJbW1t7r333jzyyCPZdNNNm0Kj1prVMfbX2XLLLXP88cfn1FNPTYcOHbLddts1Wz9o0KBcddVVOfzww7PLLrukW7du+dvf/pYbb7wxNTU1+eyzz5r6gVnZYYcdMmbMmOy9997ZZZdd0tDQkNGjR88UztTW1uZXv/pVjj766GyzzTbZaaed0qtXrzz++OO54447ssYaa2SXXXZJkuyxxx658847s99+++WnP/1p+vTpk0mTJuXaa69Nt27d8pOf/GSWtdxwww1J0vQ4s/Kzn/0s11xzTW6//fYcddRRsz0bvrFXvOWWW1KpVJp6mLbu9Yr01TvuuKPeugp7a+DfBC0ArXDjjTemVCp95UFs8vlB8pNPPplRo0Zl9OjRGTlyZM4555xcccUVST7/ptj3vve9/PznP//Kx1luueVy8cUX59xzz81FF12ULl26ZOONN861116brbbaqtm255xzTi677LKmy2IlSb9+/XLGGWdkm222adpu5513zl//+teMHj06jz/+eJscDNbU1OSCCy7IiBEjcvPNN+eMM85Ily5d0rdv3/zhD38o3FStsMIK2XPPPfPnP/85J554Yvr06ZMNNthgjuvt27dvLrroopxzzjm59NJLkyRLLbVUhg4dmu9///vZbrvt8vDDDzedbXLYYYdlxRVXzNVXX52zzjorXbp0yeqrr57TTz89q6++etPjHnnkkTnjjDNy0kknZdiwYamrq8t+++2XFVdcMVdccUXTvV9WWGGF/OpXv8rOO+/corNRfvWrX2XFFVfMjTfemDPPPDP19fVZccUV8//+3//72rkIAMC8UVtbm0svvTR33HFHbrjhhowcOTLvvfdeFl100ay55prZddddmy4D22jAgAG5/vrrc95552X06NGZOnVqll566ey1114ZNmxYamtrm7bdcMMNc/311+f8889v+nB5ySWXzC677JL999+/RTcgb4nTTz89a6yxRv785z/n1FNPzWKLLZb11lsvP//5z2e6lO4XHXjggVlppZVy5ZVX5qKLLkpDQ0OWXXbZHHnkkdltt91adN+OWZnVMfbX6dSpU7beeuuMHDkygwYNajqbodEGG2yQM888s6nX6tixY5ZeeukMHz48K620Uvbbb788/PDDzY71v2j77bfPRx99lJEjR+a0007Lf/zHf2TbbbfNpptump122qnZttttt12WWmqpXHLJJbnyyiszbdq0LL300jnggAOy9957N31pqm/fvrn66qtz/vnn56abbsq7776b7t27Z8CAATnooINmeX+WZ555Jq+88kr69++fb33rW7N9P5Zbbrlsuummuffee3PzzTc3hX1fNmDAgGyzzTa555578txzz2W99dbLCius0Oa9XpG+escdd8x6662nt66y3hr4t1KlLc9vA6CwSqWSfv365Tvf+U6uvPLK9i4HAAAA5jt6a6A9uKg7QJVoPDV9kUUWaedKAAAAYP6ktwbag0uHAVSBCy+8MM8//3ySz69FCwAAALSO3hpoL4IWgHY2ZcqUjBgxIp999lm23nrr7Lnnnu1dEgAAAMxX9NZAe3KPFgAAAAAAgILcowUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCOrR3Ae2tUqmkocFtaqpJuVwyJrSaeUNR5g5FmTsU1Z5zp1wupVQqtctzM//SM7Ud/++oXsamehmb6mRcqpexqU7GpXrNamyK9E0LfdDS0FDJe+991N5l8P/r0KGcHj0WyZQpH2fGjIb2Lof5hHlDUeYORZk7FNXec2fxxRdJTY2ghdbRM7WN9v77z+wZm+plbKqTcalexqY6GZfqNbuxKdI3uXQYAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAVInJkyfnV7/6VTbZZJOss8462XnnnTNmzJim9UcffXRWXnnlZj+bbLJJ0/qGhoacc8452XjjjbPmmmtmr732yrhx49rjpQAAwEKjQ3sXAAAAwOcOO+ywvPvuuznzzDOz+OKLZ+TIkdl7771zww03pG/fvnn55ZczbNiwDB06tGmfmpqapj+fd955GTVqVE4++eT07t07p59+evbdd9/cdttt6dixY3u8JAAAWOA5owUAAKAKjBs3Lo8++mh+/etfZ7311suKK66YY489Nr17985tt92W+vr6vPLKK1l99dXTs2fPpp/FF188STJ9+vRcdtllOeSQQzJw4MD069cvZ511ViZNmpS77767nV8dAAAsuAQtAAAAVaBHjx656KKLstpqqzUtK5VKqVQq+eCDD/L6669n2rRp6du37yz3f+mll/LRRx9lwIABTctqa2uzyiqr5Mknn5zr9QMAwMLKpcMAAACqQG1tbQYOHNhs2Z133pnx48dno402ytixY1MqlTJixIg89NBDKZfLGThwYIYPH55u3brlrbfeSpIstdRSzR6jV69e+ec//zlHtXXo4Dt6c6qmptzsv1QPY1O9jE11Mi7Vy9hUJ+NSvdpybAQtAAAAVeipp57KMccck8022yyDBg3KOeeck3K5nGWWWSYXXHBBxo0bl1NPPTVjx47NiBEj8sknnyTJTPdi6dSpUz744IPCdZTLpfToscgcvRb+rba2S3uXwGwYm+plbKqTcalexqY6GZfq1RZjI2gBAACoMvfcc08OP/zwrLnmmjnzzDOTJIccckj22GOP1NbWJknq6urSs2fP7LTTTnnuuefSuXPnJJ/fq6Xxz0kybdq0dOlSvHlsaKhkypSP5+DVkHz+Tcna2i6ZMuWT1Nc3tHc5fIGxqV7GpjoZl+plbKqTcalesxub2tourT7LRdACAABQRa6++uqceOKJGTx4cM4444ymM1RKpVJTyNKorq4uSfLWW281XTLs7bffznLLLde0zdtvv51+/frNUU0zZvhQoK3U1zd4P6uUsalexqY6GZfqZWyqk3GpXm0xNi4MBwAAUCVGjhyZ448/Prvuumt+//vfN7sM2C9+8YvsvffezbZ/7rnnkiQrrbRS+vXrl0UXXTRPPPFE0/opU6bkhRdeyHrrrTdvXgAAACyEnNECAABQBV577bWcdNJJGTx4cPbff/+8++67Tes6d+6crbfeOgcccEDOP//8bLXVVnnttdfyu9/9LltvvXX69u2bJBk6dGjOOOOMLL744llmmWVy+umnZ8kll8zgwYPb62UBAMACT9ACAABQBe6666589tlnufvuu3P33Xc3WzdkyJCccsopOfvss3PBBRfkggsuSLdu3bLNNttk+PDhTdsdeuihmTFjRo477rh8+umn6d+/fy699NJmZ8YAAABtq1SpVCrtXUR7qq9vyHvvfdTeZfD/69ChnB49Fsn773/kmoW0mHlDUeYORZk7FNXec2fxxRdp9U0dQc/UNtr77z+zZ2yql7GpTsalehmb6mRcqtfsxqZI36TLAgAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAArq0N4FsHArl0spl0tNv9fUlJv9d1YaGippaKjM9doAAAAAYH5RKn3+GdtXfa72ZT5ng7YhaKHdlMuldO/edZb/+NfWdpntfvX1DZk8+WP/EwAAAACAfP45W7dunZN89edqX+ZzNmgbghbaTblcSk1NOWdc81QmTPqwRfv06d0th++6bsrlkv8BAAAAAEB8zgbtTdBCu5sw6cO8OvGD9i4DAAAAAOZrPmeD9tHyC/YBAAAAAADQjKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAACurQ3gV80eTJk3PmmWfmgQceyNSpU7PyyivnF7/4RdZbb70kydFHH50bbrih2T69e/fOQw891B7lAgAAAAAAC7mqCloOO+ywvPvuuznzzDOz+OKLZ+TIkdl7771zww03pG/fvnn55ZczbNiwDB06tGmfmpqadqwYAAAAAABYmFXNpcPGjRuXRx99NL/+9a+z3nrrZcUVV8yxxx6b3r1757bbbkt9fX1eeeWVrL766unZs2fTz+KLL97epQMAAAAAAAupqglaevTokYsuuiirrbZa07JSqZRKpZIPPvggr7/+eqZNm5a+ffu2Y5UAAAAAAAD/VjWXDqutrc3AgQObLbvzzjszfvz4bLTRRhk7dmxKpVJGjBiRhx56KOVyOQMHDszw4cPTrVu3OXruDh2qJm9aqNTUFH/f52RfFjyN88G8oLXMHYoydyjK3AEAAFjwVE3Q8mVPPfVUjjnmmGy22WYZNGhQzjnnnJTL5SyzzDK54IILMm7cuJx66qkZO3ZsRowYkXK5WLNaLpfSo8cibVw9c1ttbZf2LoEqZF5QlLlDUeYORZk7AAAAC46qDFruueeeHH744VlzzTVz5plnJkkOOeSQ7LHHHqmtrU2S1NXVpWfPntlpp53y3HPPZc011yz0XA0NlUyZ8nGb1U7L1dSUC3/IMGXKJ6mvb2jjiphfNc4l84LWMncoytyhqPaeO7W1XZxNAwAA0MaqLmi5+uqrc+KJJ2bw4ME544wz0rFjxySf36+lMWRpVFdXlyR56623CgctSTJjhg9I5jf19Q3GjZmYFxRl7lCUuUNR5g4AAMCCo6q+zjZy5Mgcf/zx2XXXXfP73/++KWRJkl/84hfZe++9m23/3HPPJUlWWmmleVonAAAAAABAUkVBy2uvvZaTTjopgwcPzv777593330377zzTt555518+OGH2XrrrfPoo4/m/PPPz/jx4/Pggw/mmGOOydZbb52+ffu2d/kAAAAAAMBCqGouHXbXXXfls88+y913352777672bohQ4bklFNOydlnn50LLrggF1xwQbp165Ztttkmw4cPb5+CAQAAAACAhV7VBC3Dhg3LsGHDvnKbLbfcMltuueU8qggAAAAAAOCrVc2lwwAAAAAAAOY3ghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAQJWYPHlyfvWrX2WTTTbJOuusk5133jljxoxpWv/iiy9m6NChWWuttfK9730vl156abP9Gxoacs4552TjjTfOmmuumb322ivjxo2b1y8DAAAWKoIWAACAKnHYYYflmWeeyZlnnpk///nPWXXVVbP33nvn1Vdfzfvvv58999wzyy+/fEaPHp1DDjkkZ599dkaPHt20/3nnnZdRo0blhBNOyHXXXZdSqZR9990306dPb8dXBQAAC7YO7V0AAAAAybhx4/Loo4/m2muvzTrrrJMkOfbYY/PQQw/ltttuS+fOndOxY8f85je/SYcOHdK3b9+MGzcuF198cXbYYYdMnz49l112WY444ogMHDgwSXLWWWdl4403zt13352tttqqPV8eAAAssJzRAgAAUAV69OiRiy66KKuttlrTslKplEqlkg8++CBjxoxJ//7906HDv78vN2DAgLz22mt5991389JLL+Wjjz7KgAEDmtbX1tZmlVVWyZNPPjlPXwsAACxMBC0AAABVoLa2NgMHDkzHjh2blt15550ZP358Ntpoo7z11ltZcsklm+3Tq1evJMmbb76Zt956K0my1FJLzbTNP//5z7lcPQAALLxcOgwAAKAKPfXUUznmmGOy2WabZdCgQTn55JObhTBJ0qlTpyTJtGnT8sknnyTJLLf54IMP5qiWDh18R29O1dSUm/2X6mFsqpexqU7GpTrNyXgYy7nL35nq1ZZjI2gBAACoMvfcc08OP/zwrLnmmjnzzDOTJJ07d57ppvbTpk1LknTt2jWdO3dOkkyfPr3pz43bdOnSpXAt5XIpPXosUnh/mqutLT4WzF3GpnoZm+pkXBYcxnLe8D5Xr7YYG0ELAABAFbn66qtz4oknZvDgwTnjjDOazlBZcskl8/bbbzfbtvH33r17Z8aMGU3LlltuuWbb9OvXr3A9DQ2VTJnyceH9+VxNTTm1tV0yZconqa9vaO9y+AJjU72MTXUyLtWpcVyKMJZzl78z1Wt2Y1Nb26XVZ7kIWgAAAKrEyJEjc/zxx2e33XbLMccck3L53w1e//79M2rUqNTX16empiZJ8thjj2WFFVbIEksskW7dumXRRRfNE0880RS0TJkyJS+88EKGDh06R3XNmOFDgbZSX9/g/axSxqZ6GZvqZFwWHMZy3vA+V6+2GBsXhgMAAKgCr732Wk466aQMHjw4+++/f95999288847eeedd/Lhhx9mhx12yNSpU3PsscfmlVdeyQ033JARI0Zk//33T/L5vVmGDh2aM844I/fee29eeuml/Od//meWXHLJDB48uJ1fHQAALLic0QIAAFAF7rrrrnz22We5++67c/fddzdbN2TIkJxyyim55JJLcuKJJ2bIkCHp2bNnjjzyyAwZMqRpu0MPPTQzZszIcccdl08//TT9+/fPpZde2nT5MQAAoO0JWgAAAKrAsGHDMmzYsK/cZo011sh111032/U1NTU54ogjcsQRR7R1eQAAwGy4dBgAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQUFUFLZMnT86vfvWrbLLJJllnnXWy8847Z8yYMU3rX3zxxQwdOjRrrbVWvve97+XSSy9tx2oBAAAAAICFXVUFLYcddlieeeaZnHnmmfnzn/+cVVddNXvvvXdeffXVvP/++9lzzz2z/PLLZ/To0TnkkENy9tlnZ/To0e1dNgAAAAAAsJDq0N4FNBo3blweffTRXHvttVlnnXWSJMcee2weeuih3HbbbencuXM6duyY3/zmN+nQoUP69u2bcePG5eKLL84OO+zQztUDAAAAAAALo6o5o6VHjx656KKLstpqqzUtK5VKqVQq+eCDDzJmzJj0798/HTr8OxsaMGBAXnvttbz77rvtUTIAAAAAALCQq5ozWmprazNw4MBmy+68886MHz8+G220Uc4666zU1dU1W9+rV68kyZtvvpklllii8HN36FA1edNCpaam+Ps+J/uy4GmcD+YFrWXuUJS5Q1HmDgAAwIKnaoKWL3vqqadyzDHHZLPNNsugQYNy8sknp2PHjs226dSpU5Jk2rRphZ+nXC6lR49F5qhW5r3a2i7tXQJVyLygKHOHoswdijJ3AAAAFhxVGbTcc889Ofzww7PmmmvmzDPPTJJ07tw506dPb7ZdY8DStWvXws/V0FDJlCkfFy+WwmpqyoU/ZJgy5ZPU1ze0cUXMrxrnknlBa5k7FGXuUFR7z53a2i7OpgEAAGhjVRe0XH311TnxxBMzePDgnHHGGU1nsSy55JJ5++23m23b+Hvv3r3n6DlnzPAByfymvr7BuDET84KizB2KMncoytwBAABYcFTV19lGjhyZ448/Prvuumt+//vfN7tUWP/+/fPUU0+lvr6+adljjz2WFVZYYY7uzwIAAAAAAFBU1QQtr732Wk466aQMHjw4+++/f95999288847eeedd/Lhhx9mhx12yNSpU3PsscfmlVdeyQ033JARI0Zk//33b+/SAQAAAACAhVTVXDrsrrvuymeffZa77747d999d7N1Q4YMySmnnJJLLrkkJ554YoYMGZKePXvmyCOPzJAhQ9qpYgAAAAAAYGFXNUHLsGHDMmzYsK/cZo011sh11103jyoCAAAAAAD4alVz6TAAAAAAAID5jaAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAACmrToOWjjz7Kp59+2pYPCQAAMN/QEwEAwMKncNDy0EMP5bzzzmv6/dRTT83666+f9dZbLyeeeGKbFAcAAFCt9EQAAEBSMGi5//77s//+++fmm29OkowZMyaXX355lllmmay99tq5+uqrM3LkyDYtFAAAoFroiQAAgEaFgpbLL788yy23XK688sokye23355yuZzLL788V111VTbddNOMHj26TQsFAACoFnoiAACgUaGg5cUXX8zOO++c3r17J0keffTR1NXVZZlllkmSbLzxxvnHP/7RdlUCAABUET0RAADQqFDQMmPGjCy66KJJkokTJ2b8+PH5zne+07S+oaEhHTp0aJsKAQAAqoyeCAAAaFQoaOnTp09eeOGFJMldd92VUqmUjTfeuGn9/fffnz59+rRNhQAAAFVGTwQAADQq9BWrLbfcMueff34mTpyYv/71r+ndu3cGDBiQ8ePH54QTTsijjz6ao446qq1rBQAAqAp6IgAAoFGhoOXAAw/M5MmTM3r06Cy11FI58cQT06FDh0yePDmPPPJIfvKTn2To0KFtXSsAAEBV0BMBAACNCgUt5XI5xx13XI477rhmy/v165f777+/6YaQAAAACyI9EQAA0KjQPVp+9rOf5bHHHptpeceOHdO7d+/cc889+f73vz/HxQEAAFQjPREAANCoRWe0fPLJJ3n//febfv/rX/+awYMH55vf/OZM2zY0NOSRRx7Jm2++2XZVAgAAtCM9EQAAMDstClqmTp2arbfeOp988knTspNOOiknnXTSbPdZa6215rg4AACAaqAnAgAAZqdFQUvPnj3zq1/9Kk888UQqlUpuuummrLvuull22WVn2rZcLuc//uM/svPOO7d5sQAAAO1BTwQAAMxOi4KWJNluu+2y3XbbJfn8NPk999wzm2222dyqCwAAoKroiQAAgFlpcdDyRffdd19b1wEAADDf0BMBAACNCgUtSVKpVPL444/nnXfeSUNDwyy3afy2FwAAwIJGTwQAACQFg5Zx48Zl3333zRtvvDHL9ZVKJaVSSVMBAAAskPREAABAo0JByxlnnJE33ngjO+ywQ1ZfffV07NixresCAACoWnoiAACgUaGg5fHHH8/OO++cX/3qV21dDwAAQNXTEwEAAI3KRXaaMWNGvv3tb7d1LQAAAPMFPREAANCoUNCy6qqr5vnnn2/rWgAAAOYLeiIAAKBRoaDl0EMPzc0335y77rorlUqlrWsCAACoanoiAACgUaF7tFx22WVZbLHFMnz48HTu3Dk9evRIqVRqtk2pVMo999zTJkUCAABUEz0RAADQqFDQMnbs2JTL5Sy11FJNy778LS7f6gIAABZUeiIAAKBRoaDlvvvua+s6AAAA5ht6IgAAoFGhe7R82fTp09PQ0NAWDwUAADDf0RMBAMDCq3DQMnny5Pzud7/LRhttlLXWWitPPPFExowZk2HDhuW1115ryxoBAACqjp4IAABICl46bPLkydlpp50ybty4LLvssk3XHv7ggw/ywAMP5Nlnn811112XZZddtk2LBQAAqAZ6IgBgbiuXSymXSy3atqamTS5cBBRU6G/gueeem4kTJ+byyy/Pdddd19RUbLbZZrnooovy8ccf57zzzmvTQgEAAKqFnggAmJvK5VK6d++aHj0WadFPbW2X9i4ZFmqFzmi577778pOf/CQbbLBB3n///WbrNtlkk+y00065++6726RAAACAaqMnAgDmpnK5lJqacs645qlMmPTh126/Tr9e+dkPV5kHlQGzUihoefvtt9OvX7/Zru/bt29GjhxZuCgAAIBqpicCAOaFCZM+zKsTP/ja7fr0WnQeVAPMTqFLhy2xxBKZOHHibNePHTs2PXr0KFwUAABANdMTAQAAjQoFLZtssklGjRqVCRMmzLTuf//3f3P99ddno402muPiAAAAqpGeCAAAaFTo0mEHH3xw7r///gwZMiTrrrtuSqVSRo0alREjRuThhx/OoosumgMPPLCtawUAAKgKeiIAAKBRoTNaevfunVGjRmXttdfOQw89lEqlkrvuuisPPPBA1lprrVx11VXp06dPW9cKAABQFfREAABAo0JntCRJnz59ctFFF+XDDz/M66+/noaGhvTp0ydLLLFEW9YHAABQlfREAABAMgdBS6Nu3bpl9dVXb4taAAAA5jt6IgAAWLi1KGg5+uij89Of/jRrrrlm0+9fp1Qq5aSTTpqz6gAAAKqAnggAAJidFgUtN954YzbccMOmpuLGG2/82n00FQAAwIJCTwQAAMxOi4KWe++9N4svvniz3wEAABYWeiIAAGB2WhS0LLPMMrP8fcqUKVl00UVTLpeTJH//+9/Ts2fPdO/evW2rBAAAaEd6IgAAYHbKRXc866yzsvHGG2f8+PFNyy6++OJstNFGueyyy9qkOAAAgGqlJwIAAJIWntHyZddff30uvPDCrLvuuunUqVPT8u222y7/+te/cvrpp2eppZbKD37wgzYrFAAAoFroiQAAgEaFzmgZOXJkvvvd7+aaa67JUkst1bR8ww03zGWXXZYNNtggl19+eZsVCQAAUE30RAAAQKNCQcu4ceOyxRZbzHb94MGD8+qrrxYuCgAAoJrNi57ovPPOy2677dZs2dFHH52VV1652c8mm2zStL6hoSHnnHNONt5446y55prZa6+9Mm7cuDmqAwAA+GqFgpYuXbrknXfeme36999/PzU1NYWLAgAAqGZzuye64oorcs4558y0/OWXX86wYcPyyCOPNP3cdNNNTevPO++8jBo1KieccEKuu+66lEql7Lvvvpk+fXrhWgAAgK9WKGhZd911M3LkyFk2Fu+9915GjRqVddZZZ46LAwAAqEZzqyeaNGlS9tlnn5x99tlZYYUVmq2rr6/PK6+8ktVXXz09e/Zs+ll88cWTJNOnT89ll12WQw45JAMHDky/fv1y1llnZdKkSbn77ruLvVAAAOBrdSiy03777ZdddtklP/rRj7LttttmxRVXTKlUyj/+8Y/ceuutmTx5cg488MC2rhUAAKAqzK2e6Pnnn89iiy2WW265JX/84x8zceLEpnWvv/56pk2blr59+85y35deeikfffRRBgwY0LSstrY2q6yySp588slstdVWrX+hAADA1yoUtKy++uo577zz8utf/zpXXHFFs3VLLrlk/vjHP2aNNdZoi/oAAACqztzqiQYNGpRBgwbNct3YsWNTKpUyYsSIPPTQQymXyxk4cGCGDx+ebt265a233kqSLLXUUs3269WrV/75z3+2upYv6tCh0MUQ+IKamnKz/1I9jE31MjbVybjMG/Py/TWWc5e/M9WrLcemUNCSJBtvvHHuu+++vPDCC5kwYUJmzJiRPn36ZNVVV3V/FgAAYIE3r3uiv//97ymXy1lmmWVywQUXZNy4cTn11FMzduzYjBgxIp988kmSpGPHjs3269SpUz744IPCz1sul9KjxyJzVDv/Vlvbpb1LYDaMTfUyNtXJuCw4jOW84X2uXm0xNoWDlkarrLJKVllllTkuBAAAYH40r3qiQw45JHvssUdqa2uTJHV1denZs2d22mmnPPfcc+ncuXOSz+/V0vjnJJk2bVq6dCnePDY0VDJlysdzVjypqSmntrZLpkz5JPX1De1dDl9gbKqXsalOxmXeaHyf5wVjOXf5O1O9Zjc2tbVdWn2WS4uClnPPPTdbbLFF6urqmn7/OqVSKQcddFCrigEAAKhG1dATlUqlppClUWM9b731VtMlw95+++0st9xyTdu8/fbb6dev3xw994wZPhRoK/X1Dd7PKmVsqpexqU7GZcFhLOcN73P1aouxaXHQ8s1vflPQAgAALJSqoSf6xS9+kcmTJ+fSSy9tWvbcc88lSVZaaaUsu+yyWXTRRfPEE080BS1TpkzJCy+8kKFDh7ZZHQAAQHMtClouvfTSfPvb3276/corr5xrBQEAAFSbauiJtt566xxwwAE5//zzs9VWW+W1117L7373u2y99dbp27dvkmTo0KE544wzsvjii2eZZZbJ6aefniWXXDKDBw+e5/UCAMDCokVByzHHHJPDDjss2267bZLkzTffzHrrrZc+ffrM1eIAAACqQTX0RJtuumnOPvvsXHDBBbngggvSrVu3bLPNNhk+fHjTNoceemhmzJiR4447Lp9++mn69++fSy+9NB07dpxndQIAwMKmRUHLe++9l6lTpzb9fvTRR+f0008XtAAAAAuF9uiJTjnllJmWbbnlltlyyy1nu09NTU2OOOKIHHHEEXOtLgAAoLkWBS1LL710zjvvvEyYMCGLLLJIKpVK/vKXv+T111+f7T7u0QIAACwo9EQAAMDstChoGT58eH75y1/m8ssvT/J5w/CXv/wlf/nLX2a7j6YCAABYUOiJAACA2WlR0DJ48OAMGDAgr7/+eqZPn57dd989w4YNy4Ybbji36wMAAGh3eiIAAGB2WhS0bLbZZs1u/Lj00ktn6aWXzvrrrz9XiwMAAKgGeiIAAGB2yi3Z6Ms3fnzzzTfTpUuXuVYUAABANdETAQAAs9OiM1q+fOPHJLn77rszbty42e7jesQAAMCCQk8EAADMTouCFjd+BAAAFmZ6IgAAYHZaFLT84Ac/cONHAABgoaUnAgAAZqdFQUuS9OjRIz169EiS9O/fP9/5znfc+BEAAFho6IkAAIBZaXHQ8kVXXXVV059fe+21TJw4Mauuumq6dOmScrmcjh07tlmBAAAA1UZPBAAANCoX3fHpp5/ONttskx/+8IfZd99989JLL+V///d/873vfS933nlnW9YIAABQdfREAABAUjBo+fvf/54999wz//rXv/KjH/2oaXmXLl1SX1+fww8/PE8++WSbFQkAAFBN9EQAAECjQkHLH/7wh3Tt2jW33XZbfvnLX6ZSqSRJ1l577dxyyy3p2bNnLr744jYtFAAAoFroiQAAgEaFgpa//vWv+elPf5olllgipVKp2brevXtnp512ygsvvNAmBQIAAFQbPREAANCoUNDy0UcfpXfv3rNdv9hii2XKlCmFiwIAAKhmeiIAAKBRoaClT58+ee6552a7/vHHH88yyyxTuCgAAIBqpicCAAAaFQpatt5669x44435y1/+0rSsVCqloaEhF110Ue6+++5sueWWbVYkAABANdETAQAAjToU2WnffffN//zP/+TnP/95amtrUyqV8utf/zqTJ0/OBx98kH79+mX//fdv61oBAACqgp4IAABoVOiMlo4dO+aKK67IL37xiyy99NLp3Llz/vnPf2aJJZbIAQcckJEjR6ZLly5tXSsAAEBV0BMBAACNCp3RkiTf+MY3ss8++2SfffZpy3oAAADmC3oiAAAgmYOgJUmmTp2aRx55JBMmTEjHjh2z9NJLZ6ONNkrnzp3nuLDzzjsvjz32WK666qqmZUcffXRuuOGGZtv17t07Dz300Bw/HwAAQGvNzZ4IAACYPxQOWu6666786le/ypQpU1KpVJJ8fvPHRRZZJL/73e/ywx/+sHBRV1xxRc4555z079+/2fKXX345w4YNy9ChQ5uW1dTUFH4eAACAouZmTwQAAMw/CgUtzzzzTH7xi1+kW7duOfTQQ/Otb30rDQ0NGTt2bK6++uoceeSR6dOnT9ZYY41WPe6kSZNy7LHH5qmnnsoKK6zQbF19fX1eeeWVHHjggenZs2eRsgEAANrE3OqJAACA+U+hoOX8889P9+7dc/PNN2eJJZZoWr7FFltk5513zrbbbptLLrkk55xzTqse9/nnn89iiy2WW265JX/84x8zceLEpnWvv/56pk2blr59+xYpGQAAoM3MrZ4IAACY/xQKWv7v//4vQ4cObdZQNFpiiSWy0047ZdSoUa1+3EGDBmXQoEGzXDd27NiUSqWMGDEiDz30UMrlcgYOHJjhw4enW7durX6uL+rQoTxH+1NMTU3x931O9mXB0zgfzAtay9yhKHOHosydBcfc6okAAID5T6Gg5eOPP55lQ9Fo8cUXz4cffli4qFn5+9//nnK5nGWWWSYXXHBBxo0bl1NPPTVjx47NiBEjUi4Xa1bL5VJ69FikTWtl7qut7dLeJVCFzAuKMncoytyhKHNn/tcePREAAFCdCgUtffr0yeOPP55ddtlllusff/zxLL300nNU2Jcdcsgh2WOPPVJbW5skqaurS8+ePbPTTjvlueeey5prrlnocRsaKpky5eO2LJUWqqkpF/6QYcqUT1Jf39DGFTG/apxL5gWtZe5QlLlDUe09d2pruzibpo20R08EAABUp0JBy9Zbb51zzz035557bvbbb7907NgxSTJ9+vRcdNFFueeee3LAAQe0aaGlUqkpZGlUV1eXJHnrrbcKBy1JMmOGD0jmN/X1DcaNmZgXFGXuUJS5Q1HmzvyvPXoiAACgOhUKWvbdd988+OCDOffcc3PZZZdlueWWS6lUyrhx4/Lxxx9nlVVWyX777demhf7iF7/I5MmTc+mllzYte+6555IkK620Ups+FwAAwFdpj54IAACoToWuG9CxY8dceeWVOeSQQ7LMMsvk9ddfzz/+8Y8ss8wyOfjgg3PNNdekc+fObVro1ltvnUcffTTnn39+xo8fnwcffDDHHHNMtt566/Tt27dNnwsAAOCrtEdPBAAAVKdCZ7QkSefOnXPQQQfloIMOast6ZmvTTTfN2WefnQsuuCAXXHBBunXrlm222SbDhw+fJ88PAADwRfO6JwIAAKpTq4OW559/PquuuupMy++9996USqUMGjSoTQo75ZRTZlq25ZZbZsstt2yTxwcAAChiXvVEAADA/KHFlw577733MnTo0Oy4446ZMmXKTOuvvvrqHHTQQfnpT3+aSZMmtWmRAAAA7U1PBAAAzEqLgpaPP/44u+++e8aMGZP+/fvnk08+mWmbXXfdNRtuuGGefvrp7LXXXpk2bVqbFwsAANAe9EQAAMDstChoGTFiRP7+97/nd7/7XUaMGJHevXvPtM3mm2+eSy+9NIcddlheffXVXHXVVW1eLAAAQHvQEwEAALPToqDlrrvuysCBA/OTn/zka7fdb7/9ss466+SOO+6Y4+IAAACqgZ4IAACYnRYFLePGjcsGG2zQ4gf93ve+l9dee61wUQAAANVETwQAAMxOi4KWcrmczp07t/hBu3fvnlKpVLgoAACAaqInAgAAZqdFQcvSSy+df/zjHy1+0FdeeWWW1ywGAACYH+mJAACA2WlR0LLxxhvn5ptvzkcfffS1206ZMiW33HJL1l577TkuDgAAoBroiQAAgNlpUdDy05/+NNOmTcv++++f999/f7bbvfvuuznooIMyZcqU7Lrrrm1WJAAAQHvSEwEAALPToSUbLbfccjn22GPz//7f/8tmm22WH/7wh1lnnXXSq1ev1NfX55133slTTz2Vv/zlL/noo49y1FFHZdVVV53btQMAAMwTeiIAAGB2WhS0JMmOO+6YXr165Ve/+lX+/Oc/Z/To0c3WVyqVLLvssjn99NMzaNCgNi8UAACgPemJAACAWWlx0JIkAwcOzAMPPJDHH388zzzzTN5+++3U1NSkd+/eWX/99bPGGmvMrToBAADanZ4IAAD4slYFLUlSKpWywQYbZIMNNpgb9QAAAFQ1PREAAPBF5fYuAAAAAAAAYH4laAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKCgFgUtl19+eV599dW5XQsAAEBV0hMBAACz06Kg5ZxzzsnTTz/d9Ptmm22We++9d27VBAAAUFX0RAAAwOy0KGgpl8t57LHH8tFHHyVJJk6cmE8++WSuFgYAAFAt9EQAAMDsdGjJRhtvvHFuu+223H777UmSUqmUI444IkccccRs9ymVSnnhhRfapkoAAIB2pCcCAABmp0VBywknnJCllloqY8eOzfTp0zNmzJissMIKWWKJJeZ2fQAAAO1OTwQAAMxOi4KWRRddNL/85S+bfu/Xr18OOOCAbLPNNnOtMAAAgGqhJwIAAGanRUHLl1155ZXp27dvW9cCAAAwX9ATAQAAjQoFLeuvv36S5Kabbsqdd96ZCRMmpGPHjllqqaXy/e9/Pz/60Y/atEgAAIBqoicCAAAaFQpaKpVKDj300Nxzzz2pVCrp1q1bGhoa8uKLL+b+++/Pf//3f+e8885r61oBAACqgp4IAABoVC6y09VXX527774722yzTR588ME8+eSTeeqpp3L//ffnRz/6Ue6///5ce+21bV0rAABAVdATAQAAjQoFLaNHj87666+f0047Lb17925avtRSS+XUU0/N+uuvn9GjR7dZkQAAANVETwQAADQqFLS89tprGTx48GzXb7755vnHP/5RuCgAAIBqpicCAAAaFQpaOnTokI8//ni26z/++OOUSqXCRQEAAFQzPREAANCoUNCy2mqr5YYbbsi0adNmWvfJJ5/khhtuyCqrrDLHxQEAAFQjPREAANCoUNCy1157Zdy4cfnxj3+c2267LS+99FJeeuml3Hrrrdlxxx0zfvz47Lnnnm1dKwAAQFXQEwEAAI06FNlp4MCBOfLII3PmmWfmiCOOaLauXC7nP//zPzNo0KA2KRAAAKDa6IkAAIBGhYKW5PNvcA0ePDj33HNPxo8fn0qlkuWWWy6DBw/Osssu25Y1AgAAVB09EQAAkMxB0JIkyy67rNPhAQCAhZaeCAAAKHSPFgAAAAAAAAQtAAAAAAAAhQlaAAAAAAAAChK0AAAAAAAAFFQoaLn22mvz+uuvt3EpAAAA8wc9EQAA0KhQ0HLGGWfk1ltvbetaAAAA5gt6IgAAoFGhoKVcLqdHjx5tXQsAAMB8QU8EAAA0KhS07L333rnooovy8MMPp6Ghoa1rAgAAqGp6IgAAoFGHIjs9/fTTmTp1avbbb7907NgxPXr0SE1NTbNtSqVS7rnnnjYpEgAAoJroiQAAgEaFgpaxY8eme/fu6d69e9OySqXSbJsv/w4AALCg0BMBAACNCgUt9913X1vXAQAAMN/QEwEAAI0K3aPly6ZPn+66xAAAwEJLTwQAAAuvwkHL5MmT87vf/S4bbbRR1lprrTzxxBMZM2ZMhg0bltdee60tawQAAKg6eiIAACApGLRMnjw5O+20U0aOHJkuXbo0XXv4gw8+yAMPPJBdd901b7zxRpsWCgAAUC30RAAAQKNCQcu5556biRMn5vLLL891113X1FRsttlmueiii/Lxxx/nvPPOa9NCAQAAqoWeCAAAaFQoaLnvvvvyk5/8JBtssEFKpVKzdZtsskl22mmnPPHEE21SIAAAQLXREwEAAI0KBS1vv/12+vXrN9v1ffv2zTvvvFO4KAAAgGqmJwIAABoVClqWWGKJTJw4cbbrx44dmx49ehQuCgAAoJrpiQAAgEaFgpZNNtkko0aNyoQJE2Za97//+7+5/vrrs9FGG81xcQAAANVITwQAADTqUGSngw8+OPfff3+GDBmSddddN6VSKaNGjcqIESPy8MMPZ9FFF82BBx7Y1rUCAABUBT0RAADQqNAZLb17986oUaOy9tpr56GHHkqlUsldd92VBx54IGuttVauuuqq9OnTp61rBQAAqAp6IgAAoFGhM1qSpE+fPrnooovy4Ycf5vXXX09DQ0P69OmTJZZYoi3rAwAAqEp6IgAAICl4RssXzZgxI5VKJR06dEinTp3aoiYAAID5hp4IAAAWboXPaHnuuedy2mmn5amnnkqlUkmSlMvlfPe7382xxx6bb37zm21WJAAAQLXREwEAAEnBoOX555/PbrvtlunTp2fjjTfO8ssvn4aGhvzjH//Iww8/nJ/+9Ke5/vrrs+yyy7Z1vQAAAO1OTwQAADQqFLScc8456dixY0aNGpV+/fo1W/f0009nzz33zJlnnpmzzjqrTYoEAACoJnoiAACgUaF7tIwZMya77bbbTA1Fkqy11loZOnRoHn300TkuDgAAoBrpiQAAgEaFgpZSqZTa2trZru/Tp09mzJhRuCgAAIBqNi96ovPOOy+77bZbs2Uvvvhihg4dmrXWWivf+973cumllzZb39DQkHPOOScbb7xx1lxzzey1114ZN27cHNUBAAB8tUJBy8CBA3PzzTdn+vTps1x/5513ZqONNpqjwgAAAKrV3O6JrrjiipxzzjnNlr3//vvZc889s/zyy2f06NE55JBDcvbZZ2f06NFN25x33nkZNWpUTjjhhFx33XUplUrZd999Z1snAAAw51p0j5Ynn3yy2e+bbbZZjjvuuOy6667Zb7/9suKKK6ZcLmf8+PG5+uqr8/e//z2///3v50a9AAAA89y86okmTZqUY489Nk899VRWWGGFZuuuv/76dOzYMb/5zW/SoUOH9O3bN+PGjcvFF1+cHXbYIdOnT89ll12WI444IgMHDkySnHXWWdl4441z9913Z6uttir8+gEAgNlrUdCy2267pVQqNVtWqVTy3HPP5dBDD51peZL87Gc/y4svvthGZQIAALSfedUTPf/881lsscVyyy235I9//GMmTpzYtG7MmDHp379/OnT4dxs3YMCAXHjhhXn33XczceLEfPTRRxkwYEDT+tra2qyyyip58sknBS0AADCXtChoOeigg2ZqKgAAABYW86onGjRoUAYNGjTLdW+99Vbq6uqaLevVq1eS5M0338xbb72VJFlqqaVm2uaf//znHNXVoUOhq07zBTU15Wb/pXoYm+plbKqTcZk35uX7ayznLn9nqldbjk2LgpZDDjlkjp8IAABgflUNPdGnn36ajh07NlvWqVOnJMm0adPyySefJMkst/nggw8KP2+5XEqPHosU3p/mamu7tHcJzIaxqV7GpjoZlwWHsZw3vM/Vqy3GpkVBCwAAAO2rc+fOM93Uftq0aUmSrl27pnPnzkmS6dOnN/25cZsuXYo3jw0NlUyZ8nHh/flcTU05tbVdMmXKJ6mvb2jvcvgCY1O9jE11Mi7zRuP7PC8Yy7nL35nqNbuxqa3t0uqzXAoFLVOnTs1//dd/5YEHHsikSZOarkH8RaVSKS+88EKRhwcAAKhq7dETLbnkknn77bebLWv8vXfv3pkxY0bTsuWWW67ZNv369Zuj554xw4cCbaW+vsH7WaWMTfUyNtXJuCw4jOW84X2uXm0xNoWCltNOOy3XX399evXqlbXWWis1NTVzVAQAAMD8pD16ov79+2fUqFGpr69ver7HHnssK6ywQpZYYol069Ytiy66aJ544ommoGXKlCl54YUXMnTo0LleHwAALKwKBS33339/Nt9885xzzjkpl93EBwAAWLi0R0+0ww475JJLLsmxxx6bffbZJ88++2xGjBiR3/72t0k+vzfL0KFDc8YZZ2TxxRfPMsssk9NPPz1LLrlkBg8ePE9qBACAhVHhS4cNHDhQyAIAACyU2qMnWmKJJXLJJZfkxBNPzJAhQ9KzZ88ceeSRGTJkSNM2hx56aGbMmJHjjjsun376afr3759LL700HTt2nGd1AgDAwqZQ0LLOOuvk+eefz4477tjW9QAAAFS9edETnXLKKTMtW2ONNXLdddfNdp+ampocccQROeKII+ZaXQAAQHOFvn51xBFH5M4778yIESPyzjvvtHVNAAAAVU1PBAAANCp0RssyyyyTlVdeOaeccsosv2WVJKVSKS+88MIcFQcAAFCN9EQAAECjQkHLiSeemL/+9a9ZfPHF881vfjMdOhR6GAAAgPmSnggAAGhUqBu4//77s9lmm+Xss8/WUAAAAAsdPREAANCo0D1apk+fnu9973saCgAAYKGkJwIAABoVClrWXnvtPP/8821dCwAAwHxBTwQAADQqFLT84he/yO23357LLrsskyZNSn19fVvXBQAAULX0RAAAQKNC57kfddRRKZfLOf3003P66afPcptSqZQXXnhhjooDAACoRnoiAACgUaGgpXv37unevXsblwIAADB/0BMBAACNCgUtV111VVvXMZPzzjsvjz32WLPnevHFF3PiiSfmb3/7W7p3757ddtste++991yvBQAA4IvmRU8EAADMHwrdo2Vuu+KKK3LOOec0W/b+++9nzz33zPLLL5/Ro0fnkEMOydlnn53Ro0e3U5UAAAAAAMDCrtAZLUcfffTXblMqlXLSSSe16nEnTZqUY489Nk899VRWWGGFZuuuv/76dOzYMb/5zW/SoUOH9O3bN+PGjcvFF1+cHXbYoVXPAwAAMCfmVk8EAADMfwoFLTfeeONs15VKpXTs2DGdOnVqdVPx/PPPZ7HFFsstt9ySP/7xj5k4cWLTujFjxqR///7p0OHfJQ8YMCAXXnhh3n333SyxxBKtfyEAAAAFzK2eCAAAmP8UClruvffemZbV19fnnXfeyY033pjHH388I0eObPXjDho0KIMGDZrlurfeeit1dXXNlvXq1StJ8uabb85R0NKhQ1VeQW2BV1NT/H2fk31Z8DTOB/OC1jJ3KMrcoShzZ8Ext3oiAABg/lMoaFlmmWVmuXy55ZbLuuuum2HDhuW//uu/cuqpp85RcV/06aefpmPHjs2WderUKUkybdq0wo9bLpfSo8cic1Qb815tbZf2LoEqZF5QlLlDUeYORZk787/26IkAAIDqVCho+TqDBg3KmWee2aaP2blz50yfPr3ZssaApWvXroUft6GhkilTPp6j2iimpqZc+EOGKVM+SX19QxtXxPyqcS6ZF7SWuUNR5g5Ftffcqa3t4myaeWRu9EQAAEB1mitByzvvvJNPP/20TR9zySWXzNtvv91sWePvvXv3nqPHnjHDByTzm/r6BuPGTMwLijJ3KMrcoShzZ8E3N3oiAACgOhUKWt58881ZLv/000/zt7/9LSNGjMiqq646R4V9Wf/+/TNq1KjU19enpqYmSfLYY49lhRVWmKP7swAAALRWe/REAABAdSoUtAwaNCilUmm268vlcg4++ODCRc3KDjvskEsuuSTHHnts9tlnnzz77LMZMWJEfvvb37bp8wAAAHyd9uiJAACA6lQoaNluu+1m2VTU1NSkV69eGTJkSJZddtk5Lu6LllhiiVxyySU58cQTM2TIkPTs2TNHHnlkhgwZ0qbPAwAA8HXaoycCAACqU6Gg5ZRTTmnrOlr0HGussUauu+66uf7cAAAAX2Ve9EQAAMD8odzeBQAAAAAAAMyvWnRGy7nnnlvowV2TGAAAWBDoiQAAgNlp86Dli9cp1lQAAAALAj0RAAAwOy0KWq688sqv3aZSqeSaa67JX/7ylyTJwIED56wyAACAKqEnAgAAZqdFQcv666//levffPPNHHPMMXniiSfSrVu3HHXUUdlhhx3apEAAAID2picCAABmp0VBy1cZNWpUTj/99Hz00UfZaKONcuKJJ6Z3795tURsAAEDV0xMBAMDCrXDQ8tZbb+XYY4/N//zP/2SRRRbJ8ccfnx133LEtawMAAKhaeiIAACApGLT86U9/yqmnnpqpU6dmww03zIknnpilllqqrWsDAACoSnoiAACgUauClkmTJuW4447LI488ki5duuQ3v/lNfvrTn86t2gAAAKqKnggAAPiyFgctN954Y04++eRMmTIlAwYMyIknnphllllmbtYGAABQNfREAADArLQoaBk2bFgefPDBJMn3v//97LLLLnnzzTfz5ptvfuV+/fv3n/MKAQAA2pmeCAAAmJ0WBS0PPPBA05/vuuuu3HXXXS168BdffLFQUQAAANVETwQAAMxOi4KWgw8+eG7XAQAAULX0RAAAwOwIWgAAAL6GnggAAJidcnsXAAAAAAAAML8StAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFCVoAAAAAAAAKErQAAAAAAAAUJGgBAAAAAAAoqEN7FwBAdSmXSymXS63ap6GhkoaGylyqCAAAAACql6AFgCblcindu3dNTU3rTnisr2/I5MkfC1sAAAAAWOgIWgBoUi6XUlNTzhnXPJUJkz5s0T59enfL4buum3K5JGgBAAAAYKEjaAFgJhMmfZhXJ37Q3mUAAAAAQNVr3bVhAAAAAAAAaCJoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoCBBCwAAAAAAQEGCFgAAAAAAgIIELQAAAAAAAAUJWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFdWjvAgCgmpTLpZTLpVbt09BQSUNDZS5VBAAAAEA1E7QAwP+vXC6le/euqalp3Qmf9fUNmTz5Y2ELAAAAwEJI0AIA/79yuZSamnLOuOapTJj0YYv26dO7Ww7fdd2UyyVBCwAAAMBCSNACAF8yYdKHeXXiB+1dBgAAAADzgdZdGwUAAIB2NXHixKy88soz/fzpT39Kkrz44osZOnRo1lprrXzve9/LpZde2s4VAwDlcikdOpRb/NPaS1oD7csZLQAAAPORl19+OZ06dco999yTUqnUtLxbt255//33s+eee2bzzTfPb3/72zz99NP57W9/m+7du2eHHXZox6oBYOFV9H6gwPxD0AIAADAfGTt2bFZYYYX06tVrpnUjRoxIx44d85vf/CYdOnRI3759M27cuFx88cWCFgBoJ0XuB7pOv1752Q9XmcuVAW1F0AIAADAfefnll7PSSivNct2YMWPSv3//dOjw71ZvwIABufDCC/Puu+9miSWWmFdlAgBf0pr7gfbptehcrgZoS85XAwAAmI+MHTs27777bnbZZZdsuOGG2XnnnfPwww8nSd56660sueSSzbZvPPPlzTffnOe1AgDAwsAZLQAAAPOJ6dOn5/XXX0+XLl1y5JFHpmvXrrnllluy77775vLLL8+nn36ajh07NtunU6dOSZJp06YVft4OHXxHb041Xpff9fmrj7GpXsamOhmX1qv296ra65vf+TtTvdpybAQtAAAA84mOHTvmySefTIcOHZoCldVWWy2vvvpqLr300nTu3DnTp09vtk9jwNK1a9dCz1kul9KjxyJzVjhNamu7tHcJzIaxqV7GpjoZlwWHsZw3vM/Vqy3GRtACAAAwH5lVYFJXV5dHHnkkSy65ZN5+++1m6xp/7927d6Hna2ioZMqUjwvty7/V1JRTW9slU6Z8kvr6hvYuhy8wNtXL2FQn49J6je9ZtTKWc5e/M9VrdmNTW9ul1We5CFoAAADmEy+99FJ23nnnXHzxxVlvvfWalv/tb3/LSiutlG9/+9sZNWpU6uvrU1NTkyR57LHHssIKK2SJJZYo/LwzZvhQoK3U1zd4P6uUsalexqY6GZcFh7GcN7zP1astxsaF4QAAAOYTdXV1+da3vpXf/va3GTNmTF599dWcfPLJefrppzNs2LDssMMOmTp1ao499ti88sorueGGGzJixIjsv//+7V06AFClamrK6dCh5T/lcqm9S4aq44wWAACA+US5XM4FF1yQM844I8OHD8+UKVOyyiqr5PLLL8/KK6+cJLnkkkty4oknZsiQIenZs2eOPPLIDBkypJ0rBwCqTfdundLQUGn1Zc3q6xsyefLHaWiozKXKYP4z3wUtEydOzKBBg2ZafsIJJ2THHXdsh4oAAADmncUXXzwnnXTSbNevscYaue666+ZhRQDA/GjRLt9IuVzKGdc8lQmTPmzRPn16d8vhu66bcrkkaIEvmO+ClpdffjmdOnXKPffck1Lp36epdevWrR2rAgAAAACY/0yY9GFenfhBe5cB87X5LmgZO3ZsVlhhhfTq1au9SwEAAAAAABZy5fYuoLVefvnlrLTSSu1dBgAAAAAAwPx5RkvPnj2zyy675PXXX883v/nNHHjggdl4440LP2aHDvNd3rRAqKkp/r7Pyb4seBrng3kx5xa2v5dfnjsL2+unOP/uUJS5AwAAsOCZr4KW6dOn5/XXX0+XLl1y5JFHpmvXrrnllluy77775vLLL88GG2zQ6scsl0vp0WORuVAtc1NtbZf2LoEqZF60r/n5/W+L2ufn109xxp2izB0AAIAFx3wVtHTs2DFPPvlkOnTokI4dOyZJVltttbz66qu59NJLCwUtDQ2VTJnycVuXSgvU1JQLf8gwZconqa9vaOOKmF81ziXzYs4tbH8vvzx3FrbXT3H+3aGo9p47tbVdnE0DAADQxuaroCVJunbtOtOyurq6PPLII4Ufc8YMH5DMb+rrG4wbMzEv2tf8/P63Re3z8+unOONOUeYOAADAgmO++jrbSy+9lLXXXjtjxoxptvxvf/tbVlpppXaqCgAAAAAAWFjNV0FLXV1dvvWtb+W3v/1txowZk1dffTUnn3xynn766QwbNqy9ywMAAAAAABYy89Wlw8rlci644IKcccYZGT58eKZMmZJVVlkll19+eVZeeeX2Lg8AAAAAAFjIzFdBS5IsvvjiOemkk9q7DAAAAAAAgPnr0mEAAAAAAADVRNACAAAAAABQkKAFAAAAAACgIEELAAAAAABAQYIWAAAAAACAggQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoKAO7V0AAC1XLpdSLpdatU9DQyUNDZW5VBEAAAAALNwELQDziXK5lO7du6ampnUnI9bXN2Ty5I+FLQAAAAAwFwhaAOYT5XIpNTXlnHHNU5kw6cMW7dOnd7ccvuu6KZdLghYAAAAAmAsELQDzmQmTPsyrEz9o7zIAAAAAgCStu/4MAAAAAAAATQQtAAAAAAAABQlaAAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKEjQAgAAAAAAUJCgBQAAAAAAoKAO7V0AAAAAAEB7KJdLKZdLrdqnoaGShobKXKoImB8JWgAAAACAhU65XEr37l1TU9O6i/7U1zdk8uSPhS1AE0ELAAAAALDQKZdLqakp54xrnsqESR+2aJ8+vbvl8F3XTblcErQATQQtAAAAAMBCa8KkD/PqxA/auwxgPta68+IAAAAAAABoImgBAAAAAAAoSNACAAAAAABQkKAFAAAAAACgoA7tXQAALAhqalr33YWGhkoaGipzqRoAAAAA5hVBCwDMge7dOqWhoZLa2i6t2q++viGTJ38sbAEAAACYzwlaAGAOLNrlGymXSznjmqcyYdKHLdqnT+9uOXzXdVMulwQtAAAAAPM5QQsAtIEJkz7MqxM/aO8yAAAAAJjHWndBeQAAAAAAAJoIWgAAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCBC0AAAAAAAAFdWjvAgAAAAAA5ic1NS3//nprtgXmT4IWAAAAAIAW6N6tUxoaKqmt7dLepQBVRNACAAAAANACi3b5RsrlUs645qlMmPRhi/ZZp1+v/OyHq8zlyoD2JGgBAAAAAGiFCZM+zKsTP2jRtn16LTqXqwHam6AFAAAAAJjvlcullMulFm/v3ilAWxG0AAAAAADztXK5lO7duwpPgHYhaIFZaO03IJKkoaGShobKXKpo3qrm1z+r2hoPomZ3MLUgjU1RLT3QrPYD0mqem0W09v2u5tcCCyvfmgQAqA7lcik1NWX3TgHahaAFvqToNyDq6xsyefLH8/2HoNX8+r+uttraLu1WW7Xq3q1TGhoqs31v5ifVPDdbq+i4VONrgYVZ0X+XGhoqKZVaFxoDANAy7p0CtAdBC3xJkW9A9OndLYfvum7K5dJ8/wFoNb/+aq6tWi3a5Rspl0stfs+q+ds8C9L4t3Zckup9LbAwm9N/lwAAAFgwCFpgNlrzDYgFUTW//mqurVq19D2bH77NsyCN/4L0WmBh5u8yAADAws1FogEAAAAAAAoStAAAAAAAABQkaAEAAAAAAChI0AIAAAAAAFCQoAUAAAAAAKAgQQsAAAAAAEBBghYAAAAAAICCOrR3AQAAAADA/KWmZu5/f7uhoZKGhspcfx6AOSVoAQAAAABapFQqpaGhktraLq3ar76hkppyqXX71Ddk8uSPhS1A1RO0AAAAAAAtUi6XUi6XcsY1T2XCpA9btM86/XrlZz9cpVX79OndLYfvum6+8Y2a1Nc3fO328+IMG4DZEbQAAAAAAK0yYdKHeXXiBy3atk+vRVu9T/dunQqdOQPQHgQtAAAAAEBVWbTLN1p15kzjWTMA7UHQAgAAAABUpZaeBdN41gxAe3DxQgAAAAAAgIIELQAAAAAAAAW5dFg7K5dLKZdLrdqnoaGShobKXKqIOVFTM/ezywVp/Fs7/+fF+0txc3t8jP/nWvs+LEj/ZjBvtPbfZnMMAKqLzxkAYN4TtLSjcrmU7t27tvpDs/r6hkye/LGDoCrSvVunNDRUUlvbpVX71TdUUtPKA+AFZfyLzn+qz7yc/wuzwu/zAvJvBvNGkX+bzTEAqB4+ZwCA9iFoaUflcik1NeWccc1TmTDpwxbt06d3txy+67opl0sOgKrIol2+kXK51KqxXKdfr/zsh6sstONfZP43vmdUl3k1/xf28S/yPi9I/2Ywb7T232ZzDACqi88ZAKB9CFqqwIRJH+bViR+0dxm0gdaMZZ9ei7Z6nwVRkfeM6jS357/x/9zC/m8G84Z5BgDzN/8vB4B5yzV7AAAAAAAAChK0AAAAAAAAFCRoAQAAAAAAKMg9WgAAAADmgXK5lHK51OLtGxoqblDPXNfaedmabQEWFoIWAAAAgLmsXC6le/euqalp+cVF6usbMnnyx8IW5poi8xKAmQlaAAAAAOaycrmUmppyzrjmqUyY9OHXbt+nd7ccvuu6KZdLgpYFRDWe0dTaeZkk6/TrlZ/9cJW5WhfA/EbQAgAAADCPTJj0YV6d+EF7l8E8Vu1nNLVmXvbptehcrgZg/iNoAQAAABZ6c/vSSUUfvzX7LWiXfyqVPj/7ozWva17d16a1Z6fU1JSd0QSwABO0AAAAAAutUunzD7Jra7u0ar/6hkpq5uJNwbt361SorgVFuVxKt26dk6RV78G8OAtkTu5r4owmgAWToAUAAICq1dpvjSfz7hvtVKfWzpkOHcopl0uF7lExN+9r8f+1d+dxVVT//8BfLAIaYLjgAmpuFxREVFDcMjH0o5gEWC5A8o0UKFGjQFE/ZQ+XVPhASh/ckBQIEWVRXFLUPplmFGaaoWVIIiZiigoo+/z+8HdvXlnvFe7ci6/n4+HjITNnZt5nzlyY9z1z5hi2baN0XKrQ0p9NZeYOUXYUSEuPTgFU1zbK1IVIFZT5naGueJ9BdWFHCxEREREREaklZZ8aV+W8BqReVDXSQDpHhSrmtVDHuTNU+dls6REgqr5mWtKz1IWoJSn9O0PBkYPKjDRUahveZ1AdNK6jpaamBp9//jn27NmDBw8eYNiwYfj444/Rq1cvsUMjIiIiIiISXWvKmVT5RDu1DspcM6ocBdJaqPtnU9F5bdT5mmlNdaHWRVXXZlO3eZaRhur6u0xdcbRx3TSuoyUqKgqJiYn49NNP0aVLF4SGhmLu3Lk4cOAA9PT0xA6PiIiIiIhIVK0xZ+KcBqQodRtp0Fqp22fzWea1UbdrpjXVhVoXVV+bTd3mWUYaqtvvMnXG0cb106iOloqKCsTExCAoKAjjxo0DAERERGDs2LHIyMiAs7OzyBESERERERGJhzmT8lrT05mqqosqjsP5JkgR6j6vjSJaU12odeG1qbyW/hulivuSZxnR2KaNDqqra5p8LHW9z6qPRnW0XL58GaWlpXBwcJAtMzY2xsCBA/Hjjz8yaSAiIiIioucacybltKanM1VVF1Uch/NNkLJa04iO1lQXal14bTadlpaWUqOAFJ6jRoX3JYq0v7KjoNTxPqshWoIgaEakAI4ePYqAgACcP38eBgYGsuULFy5EWVkZtmzZovA+BUG8njEtLUBbWxv3istR1cTePF0d7f9/cTa990+dqWv9FY1LX08HRu30Wnwbda2/snGp4jw/758ZRc+Zqq5ldfrMaGtry61X188/r3/18/S101oo8hngNfZsfzPFuAvX1taClpZiT5+TZmHO9Gz3piUPK1DdxLrqaGvBsJ2eQsdR1d8OVdRFVcdR9BhtdLXRzqCNWt6bqeu9uaryOWWO05ruzdW1/VvTNuoal6q2Ude4VLWNev/OfDw6U5m/Z03dRtm/5cpQ9nezsvcMLZk3Se81nz6OMnmTRo1oefToEQDUeq+wvr4+7t9X7j16Wlpa0NERN9l80Uhf4W20tVvPEz3qWn9l4lLVNupaf2Xiak3nTFVUcc7U+fpvifZ/er061+V5v/7VTWs9t4peZ631PDQVP5ekTpgz/UOZz5lhO8XnsFH0OKr6/KuiLqo6jjLHUOd7M3W9N1dVPqfocdS1XVS1jbrGpc7bqGtcqtpGXeNS1Tbq/DtTmb9nim6jqvsMZc6Zqu5NlNEcx9GoDE/6RFZFRYXc8vLycrRtq/gETERERERERK0JcyYiIiIiItXTqI6Wbt26AQAKCwvllhcWFqJr165ihERERERERKQ2mDMREREREameRnW0WFpawtDQEJmZmbJlDx48QHZ2Nuzs7ESMjIiIiIiISHzMmYiIiIiIVE+j5mjR09ODp6cnwsLC0KFDB5iZmSE0NBRdu3aFk5OT2OERERERERGJijkTEREREZHqaVRHCwAsWLAAVVVVWL58OcrKymBvb4/t27fXmuyRiIiIiIjoecSciYiIiIhItbQEQRDEDoKIiIiIiIiIiIiIiEgTadQcLUREREREREREREREROqEHS1ERERERERERERERERKYkcLERERERERERERERGRktjRQkREREREREREREREpCR2tBARERERERERERERESmJHS1ERERERERERERERERKYkcLERERERERERERERGRktjRQmrp5s2bCAwMxOjRo2Fvbw8fHx9cuXJF7LBIwyxbtgxLliwROwxSUzU1Ndi4cSPGjh2LwYMH4+2338a1a9fEDos0TFRUFLy8vMQOgzTAvXv38NFHH+Hll1/G0KFDMWvWLGRlZYkdFhGpWFZWFgYMGIDMzEy55WfOnIGbmxtsbGwwceJEpKWliRPgcyYvLw/+/v6ws7ODnZ0d3n//fRQUFMiVYduoXlO+D2C7iK++fJttIw7mt+qnrlzx0qVL8PT0hK2tLV555RVs375dpOieP43lY83RNuxoIbVTUVGBefPm4c6dO9iyZQsSEhJgZGSEOXPm4O7du2KHRxqguroa69atw969e8UOhdRYVFQUEhMTsWrVKuzevRtaWlqYO3cuKioqxA6NNMSOHTuwceNGscMgDREYGIjz588jPDwce/fuhZWVFXx8fJCTkyN2aESkIsXFxQgODkZNTY3c8pycHPj6+mLcuHFIS0vDjBkzsHTpUpw5c0akSJ8P5eXl8Pb2BgDs2rULcXFxuH37Nnx9fSEIAgC2jRia8n0A20VcDeXbbBvxML9VL3XlikVFRfi///s/vPTSS0hOTkZAQAA2bNiA5ORkkaJ8vjSUjzVX2+i2UOxESsvKysLvv/+OkydPokuXLgCA9evXY/jw4Thx4gSmT58ucoSkznJychASEoLr16+je/fuYodDaqqiogIxMTEICgrCuHHjAAAREREYO3YsMjIy4OzsLHKEpM5u3bqFZcuW4ezZs+jdu7fY4ZAGuHbtGk6fPo1du3Zh6NChAB4/BXry5EkcOHAACxcuFDlCIlKFFStWoEePHrhx44bc8p07d8LS0lL2u6BPnz7Izs5GdHQ0Ro4cKUaoz4W//voLgwYNwscff4wOHToAALy9vfHee++hqKgIHTp0YNuIoCnfB7BdxNNYvs22EQfzW/XRUK6YlJQEPT09rFixArq6uujbty+uXbuGbdu2wd3dXaSInw+N5WMGBgbN0jYc0UJqp3///ti6davspkpKEATcv39fpKhIU/zwww8YMGAADhw4AHNzc7HDITV1+fJllJaWwsHBQbbM2NgYAwcOxI8//ihiZKQJfv31V7Rv3x779+/H4MGDxQ6HNICJiQm2bt0Ka2tr2TItLS3e2xA9R/bt24dz585h6dKltdZlZWXJ3ZMAgIODA86ePSsbWUHNr3fv3tiwYYOskyU/Px8JCQmwsrKCiYkJALaNGJryfQDbRTyN5dtsG3Ewv1UfDeWKWVlZsLe3h67uP+MeHBwckJubizt37qg61OdKY/lYc7UNR7SQ2uncubOsB14qNjYW5eXlGD16tEhRkaaYNWuW2CGQBpC+e7tbt25yy01NTXHz5k0xQiIN4ujoCEdHR7HDIA1ibGxc697m8OHDyMvLw5gxY0SKiohUJT8/H6tXr0ZUVBReeOGFWusLCgrQtWtXuWWmpqZ49OiRbGQFtay3334bp0+fRvv27bFz505oaWkBYNuIoSnfB7BdxNNYvs22EQfzW/XRUK5YUFAAiUQit8zU1BTA41GWHTt2bPH4nleN5WMRERHN0jbsaCGVy8/Px4QJE+pdf+rUKXTu3Fn289GjRxEREQEvLy9YWlqqIkRSU4peO0T1efToEQBAT09Pbrm+vj6fLieiFnf27FksXboUEyZMYKcdkYZr7P705MmTCA4OxowZM2BnZ4f8/PxaZcrKymrdk0h/5rv1ladI7hAUFISFCxdi06ZN8Pb2RlpaGrp168a2aQHN8X0A26VlNEe+zbYRB/NbzVDX50NfXx/A43nDSHWezsc+/fTTZmkbdrSQynXp0gWHDh2qd/2TTzjs2rULK1euxJQpUxASEqKK8EiNKXLtEDXEwMAAwOObfen/gcd/QNu2bStWWET0HDh27Bg+/PBDDB48GOHh4WKHQ0TPqLH70z179uDhw4cICAiot4y+vn6tLyClP/O+RHmK5A4DBgwA8HhOg1deeQXJycmYP38+26YFNMf3AWyXltEc+TbbRhzMbzWDgYFBrc+H9Ev8du3aiRHSc6mufKy52oYdLaRybdq0Qd++fRstFxYWhm3btsHLywvLli2TDd+m51dTrx2ixkiHVBcWFqJnz56y5YWFhRw5R0QtJj4+HqtXr4aTkxPCwsJqPTVFRJqnsfvTlJQUFBYWYsSIEQAgm6Ng7ty5GD58OKKjo9GtWzcUFhbKbVdYWIh27drByMio5YJv5Rprmxs3buDixYuYNGmSbFnbtm1hbm4uaw+2TfNrju8D2C4toznybbaNOJjfaoauXbvW+fkAUGteKmoZ9eVjzdU22s0XKlHzCQ0NxbZt2xAcHIzly5ezk4WImpWlpSUMDQ2RmZkpW/bgwQNkZ2fDzs5OxMiIqLVKSEjAypUr4eHhgc8++4ydLETPibi4OBw8eBBpaWlIS0vD1q1bAQCrVq3C6tWrAQB2dnb44Ycf5LY7c+YMhg4dCm1tpuwt5dKlS1iwYAHy8vJkyx48eIDc3FzZl81sG3E09n0A20V9sW3EwfxWM9jb2+Ps2bOorq6WLTtz5gx69+7N+VlUoKF8rLnahr/lSO1kZmYiOjoaXl5emDZtGm7fvi37V1paKnZ4RNQK6OnpwdPTE2FhYTh+/DguX76M999/H127doWTk5PY4RFRK5Obm4s1a9bAyckJvr6+uHPnjuzepri4WOzwiKgFmZmZoVevXrJ/3bt3B/D46UjpE5JeXl64cOECwsLCkJOTg5iYGBw5cgTvvPOOmKG3ei+//DIsLCwQHByMX3/9FRcvXkRAQABMTEzg7u4OgG0jhqZ8H8B2UV9sG3Ewv9UM7u7uKCkpwbJly/DHH38gJSUFO3fuhK+vr9ihtXqN5WPN1TZ8dRipnQMHDgB4/PRXXFyc3Lr58+c3+H5jIqKmWrBgAaqqqrB8+XKUlZXB3t4e27dv51PmRNTsjhw5gsrKSmRkZCAjI0NunaurK9auXStSZESkDvr374+oqCiEhoZi586dMDc3R2hoKEaOHCl2aK2anp4eoqOjsW7dOvj4+KCiogJjxozB2rVrYWhoCIBtI4amfB/AdlFfbBvxML9Vfx07dkR0dDRWr14NV1dXdO7cGcHBwXB1dRU7tFavKflYc7SNliB9SSwREREREREREREREREphK8OIyIiIiIiIiIiIiIiUhI7WoiIiIiIiIiIiIiIiJTEjhYiIiIiIiIiIiIiIiIlsaOFiIiIiIiIiIiIiIhISexoISIiIiIiIiIiIiIiUhI7WoiIiIiIiIiIiIiIiJTEjhYiIiIiIiIiIiIiIiIlsaOFiDTa119/jYCAADg6OsLa2hojRozAO++8gxMnTqgshoqKCnz88ccYPnw4bGxssGrVqjqXLVmyBBYWFsjPz1do/5GRkbCwsEBmZmYL1UDen3/+qVD5rKwsBAcHw8nJCTY2NrCzs4OXlxfS0tIgCIJcWWXPgaZydHSEhYUFLCwsYGdnBwDIzMyEhYUFlixZUu92+fn5sLCwgJeXV611T7fP0+Va+hyvXr1aVidVXpdERERE1LKYWzW/xnKrjz/+GBYWFkhOTm6wXH5+PiwtLTFnzpwmH1uad0RGRjZ5m+YkbSPpv0uXLgF4nL84Ojo2uK00j3ratWvX5H728vKSK5eSkgILCwukpKQ0Qw1qO3bsmFydxDq3RKSedMUOgIhIGSUlJVi6dCmOHDkCKysruLm5wdTUFAUFBUhLS4O/vz/efvttLF68uMVjSUpKQmJiIkaPHo3Jkyejf//+dS4TBAEjR45Ehw4dFNq/k5MTevbsib59+7ZQDf7h7++PkpISxMXFNVq2srISa9asQUJCAl566SU4Ozuje/fuuHv3Lg4ePIjFixfj5MmTCA0NhY6OTovHrq5MTEwQEhKCNm3aPPO+6mqf9evXo1OnTs+876ZycXGBtbU1MjIykJGRobLjEhEREVHLYG7VMpqSW02fPh2JiYlIT0+Hu7t7veWkD7FNnz69JUJtUSEhITAxMUH37t2faT/btm3Dhg0bcPHiRdkyPz8/lZ4Ta2trrF+/HlevXsXmzZtVdlwi0gzsaCEijbR8+XIcOXIEwcHB8PHxkVvn5+cHHx8fxMTEoE+fPnjjjTdaNJbffvsNABAcHAxLS0sAkD2R9OQyABgyZIjC+7e0tJTbR0s6ceIEhg8f3qSyERERSEhIgJeXF5YuXQpt7X8GSc6bNw9BQUE4cOAAevbsiUWLFrVQxOqvXbt2cHFxaZZ91dU+zbXvprK2toa1tTXy8vLY0UJERETUCjC3ahlNya0GDRokG2Fz69YtdOnSpc5y+/btQ/v27TFx4sSWCLVFvfrqqzA3N3/m/Zw8eRKVlZVyy0aPHv3M+1VE165d4eLigszMTHa0EFEtfHUYEWmcU6dO4fDhw5g0aVKtRAAA9PT0sGbNGujo6CA2NrbF45He7BkaGja4rDW5evUqYmJiMGjQICxfvlyukwUAtLW18cknn8DIyAi7d+9GeXm5SJESEREREVF9mFuJz93dHTU1NTh06FCd68+ePYu8vDy89tpr0NfXV3F0RETUVOxoISKNk5aWBgB1zl8h1aNHD6SnpyM1NVVueU5ODgIDAzFq1ChYW1tjwoQJWLt2Le7fv19rH1evXkVgYCBGjhwJa2trTJw4EZ999hnKysoA/DOPhvQYEyZMkL2r9ellQN1zZwiCgF27dsHNzQ22trYYNWoU/Pz88Ouvv8rK1Pce4W+//RZvvfUWhg4disGDB8PNza3Wu2il7+U9ePAgNm/eDCcnJ1hbW8PR0REbNmxAVVWVXDkA+OGHHxp9r+2+ffsgCAI8PT3rLWNoaIg9e/bgf//7X62E4MaNGwgMDMTw4cNha2uLmTNn4vTp07X2kZmZCX9/f4waNQpWVlawt7fHnDlz8N1338mVc3R0hK+vLzIzM+Hh4YEhQ4bAzs4O8+fPr/O9yAcOHJCd87FjxyIsLAx79uyp8zynp6fjzTffhK2tLYYMGQIPDw+VvqcaaLh96pvL5WlNrcehQ4cwc+ZMWdu4uLggJiYGNTU1zVspIiIiIhIdc6vHxMytpk2bhjZt2iA9Pb3O9dI2kr4iq7KyEtu3b4e7uzuGDBkCa2trvPLKK1i+fDnu3LlT73GAx3lTXfOj1De3yYULF+Dn54fhw4dj0KBBmDp1KmJiYlBdXd3gcZqbhYUFfvjhB9n/pfNdPj1HS32aWo/s7Gz4+flh7Nixsmt61apVuHfvXrPXiYhaH746jIg0zoULF6Crq4vBgwc3WO7p9+5mZWXBx8cHOjo6mDVrFszMzPDzzz9jx44dOHHiBBITE2Xv+L1w4QK8vb1haGgIDw8PdOjQAT///DM2b96MM2fOIDY2Fh06dMD69euRlJSErKwshISEoH379tDW1pZbZmJiUm+Mixcvxr59+2BnZ4dFixahoqICcXFx8PT0xJdffomBAwfWud2XX36JlStXYtCgQZg/fz60tbVx/PhxhISE4NKlS1i2bJlc+fDwcAiCgBkzZsDY2BgpKSmIioqClpYWFixYgL59+2L9+vUIDg5Gnz594Ofnh6FDhzbYBgAwbNiwBtugd+/edS738/ODnZ0dAgMDUVhYiJ07d8LX1xepqano378/ACAjIwMLFiyApaUl5s6dC0NDQ/z+++/Yu3cv5s6di6NHj8LMzEy2z8uXL8PX1xfTpk2Di4sLsrOzkZiYiMuXL+PIkSOyeWKio6MRGhoKKysrLFq0CMXFxYiPj68zztDQUERHR2P06NEIDAxEeXk5Dh48CH9/f4SEhMDb27vB+jcXRdvnaU2tx9GjRxEYGIjRo0dj4cKF0NbWxldffYV169bhzp07CAoKaqEaEhEREZEYmFuJn1uZmJhgwoQJ+Oqrr5CTkyN3rsvLy3H48GFYWVlhwIABAIBFixbh+PHjcHV1xZtvvony8nKcPHkSe/bswV9//YWYmJgG27Kpjh8/joULF8Lc3BzvvPMO2rVrh9OnT2PdunX46aefEBkZCS0trWY5VmPWr1+PzZs34+rVq1i/fj169uzZ5G2bWo/r169jzpw56Ny5M7y9vWFsbIzz588jPj4eFy5cwO7du1VWXyLSUAIRkYYZPHiwMGrUKIW2qa6uFpycnARra2vhjz/+kFuXlJQkSCQSYcmSJYIgCEJNTY3g7OwsjBs3TigqKqqz7NatW2XLFi9eLEgkEuH69esKLTtz5owgkUiEwMBAoaamRlbujz/+ECwtLYWAgABBEARh48aNgkQiEb7//ntBEATh5s2bgpWVleDr6yu3XU1NjRAUFCRIJBLh/PnzgiAIwvfffy9IJBJh9OjRwv3792VlS0tLhWHDhgljxoyRq59EIhE8PT0bPZ9TpkwRJBKJUFZW1mjZJ0nPwdKlS+WW7927V5BIJEJkZKRs2euvvy6MHj1aKC0tlSsbHx8vSCQSISYmRrZs/PjxgkQiEQ4ePChXdunSpYJEIhFOnTolCIIgFBQUCNbW1oKbm5tQXl4uK3ft2jXBxsZG7jyfP39ekEgkwooVK+T2WVFRIXh5eQlWVlbCzZs3G6zv+PHjhfHjx8stk7bJ4sWL693u+vXrdbZFU5Y9fZ0pUo958+YJtra2QnV1taxcVVWV4OnpKfj6+spt//R1SURERESah7mV+LmVIAjCN998I0gkEiEiIkJu+cGDBwWJRCJ8+eWXgiAIwqVLlwSJRCKsXLmy1j7c3d0FiUQiO8/SeDdu3CgrU1d+IgiCkJycLEgkEiE5OVkQBEF4+PChMGLECMHV1VUubxIEQYiIiKgz93paXe0mCI/PS10xPEma3z3J09Oz0WXPUo/o6Gi59pb69NNPBVdXV6GgoEC2rK5zS0TEV4cRkcbR0dGRDctuquzsbFy7dg3Tpk2r9TTW9OnT0atXLxw5cgTV1dX47bffcOXKFYwbNw41NTW4e/eu7N/48eOhr6/fLJOAHzt2DADwzjvvyD0Z07dvX+zduxf//ve/69zu6NGjqKysxOTJk1FUVCSLraioCM7OzrIyTxo/fjyMjY1lP7dr1w59+/ZtdGh5faSjQxRtByk3Nze5n21tbQEAhYWFsmV79uzB/v370a5dO9myiooK2bkqLS2V24eBgQEmTZokt2zQoEEAgNu3bwN4fM4rKirg4+MDPT09WbmePXti2rRpctsePHgQADBlyhS5a6C4uBhTpkxBZWUlvv76a4XrrmqK1KNr1654+PAhPvnkE2RnZ0MQBOjo6CAuLo6TPRIRERG1QsytxM+tAGDMmDHo1q0bDhw4ILc8NTUVBgYGeO211wAAlpaWOHv2LAIDA+XK3blzRxbTw4cPlY5D6rvvvkNRUREmTZqEkpISuXabMmUKADRLu7U0RerRrVs3AI/fBnDmzBlUVFQAePyaupSUFHTp0kWcShCRxuCrw4hI43Tp0gW5ubmoqKiQ+7K8IXl5eQAgey3Vk7S0tNCvXz9cu3YNRUVFyM3NBQAkJiYiMTGxzv3duHFDyej/IX2f8NPJCQBYWVnVu500vuDg4HrLPB1fp06dapXR09NT+t26Xbp0wW+//Ya///4bL7zwgsLbd+7cWe5n6Rwu0ptZANDV1UV+fj6ioqKQm5uL/Px85Ofny2IWBEFuHyYmJrIOICnp9SGdX0R67vr06VMrpqfbQVq2oXlolLkODAwMADTcSSWto7Tss1CkHgEBAbh06ZLs2u/QoQMcHBzw6quvYtKkSdDV5W0DERERUWvC3Er83AoAtLW14erqiqioKJw7dw5DhgzB7du3cfr0aUydOhVGRkZyxzp06BBOnz6N69evIz8/H7dv35Z1MDXH3IrS8xIeHo7w8PA6yyjbbvr6+o127lVVVTVrLtSUekyaNAnu7u5ISUmBt7c3DAwMMGzYMIwbNw6vv/462rdv/8zxEFHrxm9MiEjj2NvbIycnBz/99BMcHBzqLRcSEoLKysoGb5qlpDejenp6sv97eHjg1VdfrbN8c3zhXFlZqdR20hv4lStXwtzcvM4y0vchS2lrN+8ARnt7e5w8eRJZWVno1atXveUiIiKQm5uLgIAAuUSsKfFs2bIF4eHhMDMzg52dHUaMGAELCwtUVVXh3XffrVW+KfuUduTUlURKO3ukpOc5KioKbdu2rXN/0qeeFCG9QS8pKam3jHQC0SeflFOWIvXo1KkTkpKS8Msvv+Cbb77B999/j4yMDBw6dAi2traIj49HmzZtnjkmIiIiIlIPzK3Ez62k3NzcsGnTJqSnp2PIkCFIT09HdXU1pk+fLitTUlKCOXPm4Ndff8WwYcNgbW0NFxcXDBo0CDt37sT+/fuVOvbTnUTSdluwYAGGDBlS5zbKPHAHPM6HiouL610vCAIePHjQLLmQIvXQ0dHBmjVr8O677+Lrr7/Gd999h6ysLJw+fRpbtmxBYmKiQnPDENHzhx0tRKRxpk6disTERCQkJNSbDNy8eRP79++HsbExXnzxRfTo0QMAcOXKlVplBUFATk4ODA0NYWxsLHeDPWrUKLmyNTU1OHLkiGx/z0J6nNzcXFhYWMitCw8PR1lZGZYuXVrvdsbGxrXiKywsxIULF5olvoZMnjwZGzZswK5du+Dm5lbnpIClpaVITExEaWkpPvroI4X2f/PmTURERMDe3h4xMTFyHSPKJg8A0Lt3bwDA1atXa41qkT7tJCU9z6amprJXkEldu3YNV69elXutWVOZm5vD0NAQly9frrdMdnY2ANQ7YaeixwMar4cgCLhy5QrKyspgY2Mjmwy0pKQEixcvxrFjx3Dq1CmMHz/+mWMiIiIiIvXA3Er83EqqR48eGDFiBA4fPozly5cjPT0dvXr1wvDhw2VlYmNjcfHiRXzyySeYOXOm3PZ///13o8fQ0dGp9Qpm4J9XLUtJz4uBgUGt81JSUoJTp07VektBU1laWuLkyZO4fv16nec2NzcXjx49wogRI5Ta/5MUqceNGzeQl5eHkSNHwsvLC15eXqiqqsL27dsRHh6OXbt2YfHixc8cExG1XpyjhYg0jr29PZycnHDkyBF88cUXtdYXFxdj4cKFqKqqwvz586Gnp4eBAweiR48e2L9/P3JycuTKJycnIy8vDxMnTgQAWFtbw8zMDKmpqbJh8VK7d+/GokWLkJyc/Mz1kD7RtXPnTrnleXl52LFjB65fv17ndhMnToS2tjY2b96MsrIyuXVr167Fe++9h4sXLyoVk7a2dpOGmvfo0QOenp745ZdfsGbNmlrblJeXIygoCPfu3cNbb71V5/D6hty7dw+CIKBPnz5ynSyPHj1CXFwcAOXmh5k4cSJ0dXURHx8vt31hYSHS09Plyv7rX/8CAERGRso94VVZWYmQkBD4+fnh1q1bCsegq6sLJycn3Lx5s87XJ5SWliI+Ph56enqya1Kqqe2jTD20tLQQEBAAf39/uSfMDA0NZcnq069mIyIiIiLNxtxK/NzqSe7u7rh79y7S0tKQnZ0tN5oFAIqKigCgVmfSuXPn8OOPPwKoPTrlSaamprh7967ca78qKipw+PBhuXJjxozBCy+8gB07dsiOKbV582YsXLgQ33zzjUJ1k5o8eTIAYMOGDbXOjyAI2Lp1K4DHnYBPko4kUuScKlKPzZs3w9vbG+fPn5eV0dXVxeDBgwEwFyKixnFECxFppDVr1uD+/ftYu3Yt0tPTMXHiRHTo0AF//vknUlNTcffuXXh4eMDDwwPA45uiVatWYd68eXjjjTcwa9YsmJub48KFC0hNTYWZmRk+/PBDubK+vr5wc3PDzJkz0bNnT/zyyy9ITk5Gz54963x1laLGjh2LqVOnIjk5GQUFBXB0dERJSQm+/PJL6OvrIygoqM7tXnrpJQQEBGDDhg1wcXGBq6srjI2Ncfz4cdmIg6e/oG+qjh074vLly0hISICdnR0kEkm9ZT/44APcunULsbGx+Pbbb+Hs7IwuXbrgr7/+wv79+3Hjxg04OTlh0aJFCsfRr18/9OrVC8nJydDX14dEIkFhYSFSU1NlT1s1NNy8PmZmZvD390dkZCRmzZoFZ2dnPHz4EAkJCbJJI6Wjc0aOHInp06dj7969ePPNNzFlyhTo6elh//79uHDhAmbPng0bGxuFYwCAoKAgnDt3DitWrMCpU6fg4OCAtm3bIi8vD+np6SgoKMBHH31U6wkvRdpHSpF6BAQE4IMPPsCMGTPg5uaG9u3b4/Lly9i9ezcGDBhQ6ykwIiIiItJ8zK3Ez62kJk2ahJUrV2LdunXQ1dXF66+/Lrfe0dERcXFx+PDDDzF79mwYGRnh4sWLSE1NhY6ODiorK/HgwYN69+/u7o6srCz4+Phg9uzZqKmpQXJycq3OGWNjY3z00UcICQnBa6+9hhkzZsDU1BTff/89Dh06BBsbG8yePVup8+Lq6ooTJ04gPT0df/75JyZNmoSOHTvi77//xokTJ3Du3Dm4uLjgtddek9tO+vDexo0bMXz48CblJorUw9vbG4cPH8a8efMwc+ZMmJub49atW9i1axeMjIzw5ptvKlVfInp+sKOFiDSSsbExtm/fjkOHDiElJQUJCQm4e/cuDA0NMXjwYHh4eODll1+W28bBwQFJSUmIiopCcnIySkpK0L17d7z99tvw8/OTewfsqFGjkJSUhE2bNiE5ORnFxcXo2rUrZs+eDV9fX6WHST8tNDQUNjY22Lt3L9atW4f27dvDzs4OCxculL3mqi7vvvsu+vXrh9jYWGzduhU1NTXo0aMHgoOD4eXlpfTTNsHBwQgLC8OaNWvg5+fXYDKgp6eHiIgIODs7Y8+ePUhNTUVhYSHatm2LgQMHIjAwsNZTSE3Vpk0bREdHIywsDAcPHkRSUhJMTU1hZ2eH9957Dx4eHjh16pRS+54/fz46deqE+Ph4hIWFwcTEBO7u7igvL8cXX3whN4Jm1apVsLW1xe7duxEZGQkdHR289NJLWLVqVa2nyxTRsWNHJCcnIy4uDhkZGdi4cSMePXqEzp07w9bWFm+99RZsbW1rbadI+zypqfWYOnUq2rZtix07dmD79u0oLi5Gt27d4OXlBX9//2Z5fzYRERERqRfmVuLnVlL6+vqYOnUqEhIS4OjoCFNTU7n1I0eORHh4OLZt24bPP/8cenp66N69OxYtWoR+/fph3rx5+Pbbb2u9MljKzc0NpaWlSEhIwPr169GpUye4uLhg/PjxmDFjhlzZ119/Hd26dUN0dDRiY2NRXl6O7t27w9/fHz4+Pkq9Rhl4/GBbZGQkUlNTsW/fPuzYsQP379/Hiy++iH79+iE8PBzOzs61tps7dy5+//13REdH4/z5801+CKyp9ejbty/i4+OxadMmpKWl4c6dO3jxxRfh4OCA9957j/OzEFGjtARBEMQOgoiISBUePnyI6upqGBkZ1Vr373//G0lJSTh+/Hi9E2EqytHREQBw4sSJZtmfOomMjMTnn3+O2NjYZnl/MhERERERtR5LlixBampqs+ZX6iIzMxNvvfUW5s+fj4CAALHDISI1wTlaiIjouXHlyhXY2dnhv//9r9zy4uJifP311+jcuTPMzMxEio6IiIiIiIiIiDQR3wFCRETPDWtra1hYWGDz5s24e/cuLC0tce/ePaSkpODOnTv4z3/+I5ujpbk8fPgQ+/btQ5s2bTBlypRm3bcYLl68iJycHPz2229ih0JERERERGru2LFjMDExwSuvvIL27duLHc4zKSgoQGZmJq5evSp2KESkhtjRQkREzw0dHR3s2LED0dHROHbsGPbs2YO2bdvCxsYGK1asaJFXYBUVFSE4OBhGRkatoqNl3759iI2NFTsMIiIiIiLSAJ9++ikAIC0tTeM7Wi5evIjg4GCxwyAiNcU5WoiIiIiIiIiIiIiIiJTEOVqIiIiIiIiIiIiIiIiUxI4WIiIiIiIiIiIiIiIiJbGjhYiIiIiIiIiIiIiISEnsaCEiIiIiIiIiIiIiIlISO1qIiIiIiIiIiIiIiIiUxI4WIiIiIiIiIiIiIiIiJbGjhYiIiIiIiIiIiIiISEnsaCEiIiIiIiIiIiIiIlISO1qIiIiIiIiIiIiIiIiU9P8AynqE6II5WscAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000056.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000036.00.0<NA>-45.000000True
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000040.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-42.15449380.029.0<NA>-42.154493True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-34.875688104.00.0-2-36.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-32.246255131.00.0-2-34.246255False
519coef_calib_autodeficienthhind_WALK_TRANSIT_school-29.235323263.022.0-2.481112-31.716434False
503coef_calib_zeroautohhindivtou_SHARED2_school-29.000000247.00.0-2-31.000000False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-28.970666159.00.0-2-30.970666False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-30.97066632.00.0<NA>-30.970666True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -42.154493 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -34.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -32.246255 \n", - "519 coef_calib_autodeficienthhind_WALK_TRANSIT_school -29.235323 \n", - "503 coef_calib_zeroautohhindivtou_SHARED2_school -29.000000 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -28.970666 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -30.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 56.0 0.0 -45.000000 True \n", - "541 36.0 0.0 -45.000000 True \n", - "543 40.0 0.0 -45.000000 True \n", - "544 80.0 29.0 -42.154493 True \n", - "698 104.0 0.0 -2 -36.875688 False \n", - "695 131.0 0.0 -2 -34.246255 False \n", - "519 263.0 22.0 -2.481112 -31.716434 False \n", - "503 247.0 0.0 -2 -31.000000 False \n", - "676 159.0 0.0 -2 -30.970666 False \n", - "677 32.0 0.0 -30.970666 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_13\n", - "ActivitySim run started at: 2023-09-14 15:23:50.644523\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-14 16:11:25.866134\n", - "Run Time: 2855.22 secs = 47.586999999999996 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmmEhBCqoRhI6CUgoNJFQIoVUUCBR4qCCKKo4AOI0lRsFBEpIkWKdOERpYgUUUCQKqEnhEgNCRBISNl5/+DdlSUJpCdsvp/r4lJmzsy5Z3d22HvvmXNMhmEYAgAAAAAAAAAAAADgHmfO6wAAAAAAAAAAAAAAAMgOFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABpNuyZcsUHByc4T8vvvhiXoeebpMmTUrzOKpUqaJatWqpRYsWeu2117R+/fq8Dhf/76+//rK9T7169bpr+yFDhig4OFiDBw+2W27dx7Zt27I9xp49e9r2v3fv3mzf/62SkpJ08uTJHO3jdqGhoRo9erTatWunevXqqUaNGmratKl69eqlefPmKT4+Ptv7vHDhggYPHqyHHnpI1atXV+PGjbV582ZJ0ooVK/TEE0+oVq1aqlevnnr27Knt27fb3oOkpKRM93v69GnbfsLDw7PrcADFxMTowoUL2bKvtK5zObUdAAAFETkyOXJ+RY5sjxyZHLkgMgxDx48fz7X+svt6YRiGZs2apTZt2qhGjRpq0KCB/vvf/9r+7W3SpEmW9p9d5392OXr0aIplLVq0UHBwsBYvXpyhfWV2O8DROOd1AADuHX5+fgoJCUmx/MyZMzpz5oxcXV1VvXr1FOuDgoJyI7xsldqxGIah+Ph4nT59WmvXrtXatWvVoUMHjR8/XiaTKY8ihSQtXbrU9v9bt25VRESEAgIC8jAie2fOnLFLABYsWKBatWrlSF9bt27V6NGj1bp1aw0aNChH+rjdxIkT9dVXX8liscjLy0tly5aVi4uLLly4oC1btmjLli2aMWOGvvzyS1WrVi1b+rRYLOrVq5dCQ0Pl7OysSpUqKTExUWXKlNHPP/+sd955R5Lk7++vEiVK5KvzAUjNt99+qylTpuiLL76Qv79/XocDAADSgRyZHDm/Ikf+FzkyOXJBtG/fPo0aNUrlypXTJ598ktfhZMqsWbP00UcfSZLKlCkjHx8f3XfffXkcVfY7f/68PvroI/3555/atGlTXocDOBQK4ADSrWnTpmratGmK5ZMmTdLkyZPl7++vBQsW5EFk2e9Ox5KQkKAvvvhCM2fO1KpVq1S/fn116tQplyOEVVxcnNasWSOTyaRGjRppy5YtWrRoUb56enHZsmWyWCxq2rSpNm3apDVr1mjo0KEqUqRItvf19ddf5+qd7UuXLtWXX34pDw8PjRs3To8++qicnJxs648fP653331Xe/bsUc+ePfXjjz+qaNGiWe735MmTCg0NlSRNnTpVjRs3tq2bNGmSJKlu3bqaM2eOnJ1vft2Ji4vTjz/+KEm2ZZlRokQJ235Kly6d6f0Atxo3blxehwAAADKIHPkmcuT8hRzZHjkyOXJBNH/+fO3bt0/lypXL61Aybc2aNZKkdu3a6bPPPrMtv3r1qmrVqiUXF5cs7b9mzZrZcv5n1datW7V69WqVKFEiz2IAHBVDoANABrm6uurtt99WzZo1JUlz587N44gKtp9++kmxsbGqVKmSnnzySUk3k+mEhIS8Dez/GYah5cuXS5KeeeYZlS9fXvHx8bZl97qpU6dKkt5++221adPGLrGXpMDAQH311Vfy8/NTdHS05syZky39RkdH2/6/QYMGqa6rW7euXRLj7u6uwMBABQYGZqlvFxcX236ymnABAAAA9zpy5PyFHDlvkSOTIyN7WM/b+vXr2y0vXLiwAgMDVbZs2SztP7vOfwD5FwVwAMikli1bSpKOHDmi69ev53E0BdeyZcskSU2aNFHz5s3l5uamqKgorVu3Lo8ju2nHjh2KiIiQi4uLHnroIT322GOSpEWLFuVxZFl35coVnTp1SpLuOFxd0aJFbZ+Xffv2ZUvfycnJtv93dXW1W2exWFJdDgAAACDnkCPnD+TIeYccGcg+nLcAsooCOIBc8/PPP6tXr15q2LChqlevrkaNGum1117T77//nmr74OBgBQcH280LdasXX3xRwcHBtqGcJOn06dMKDg7Www8/rHPnzqlPnz6qWbOm6tevrzfffDNbj8fLy8v2/9euXbPrPzg4WOHh4alu16JFCwUHB9uSUknavn27goOD1alTJx0/flydO3dWjRo19OCDD9rmu7Fud+jQIf366696/vnnVadOHTVo0EDdunXT+vXr04w1OTlZixcv1osvvqgHHnhA1atXV7NmzfTWW2/p4MGDqW4THx+vadOm6fnnn9eDDz6oGjVqqHnz5nrzzTe1a9euNPsKDQ3VO++8o2bNmql69epq0KCBevbsqZ9//jnV9re+Zre+Julx6tQp7dy5U5LUqlUreXp6qnnz5pKUb4YatM691rBhQxUuXFgdOnSQJJ04cUJ//PFHqttk5jxatmyZgoODtWPHDkk37zoPDg7WkCFD7La7fPmyJk+erCeffFJ16tRRrVq19Nhjj+mjjz7S+fPnM3Rst945vnHjxju2fe211/S///1Pn376qd3yIUOGKDg4OM3h+KzH1aJFC0n/vjbdunWztbG+VtZ9WV+DyZMn29ZJ/37OgoODlZSUlKKv0NBQDR8+XC1btlSNGjX0wAMPqHv37vrpp5/s2t3t/YmIiNDIkSP16KOPqkaNGqpXr566dOmixYsX2/0ocftrsGDBAp0+fVpDhw5VkyZNVL16dTVp0kT//e9/dfr06TRf2z///FNvvvmmmjdvrurVq6thw4Z65ZVX7K6tW7ZsUXBwsKpVq6aoqKhU9xMfH6+6desqODhYe/fuTXGs6f18Tpo0ybbN3f7cflwXL17Uxx9/rLZt26pWrVqqU6eOnnnmGX3zzTe6ceNGmn198sknWr9+vVq3bq3q1aurRYsW+t///md3bN9++606deqkkJAQ1ahRQy1bttSIESMUFhaW5rEcOnRIw4cP12OPPaaQkBBVr15dDz30kHr37p3ivJD+PV+bNGmS6v5ufT2tx259/63+85//pPp6nzx5Uu+9954effRRVa9eXXXr1lWnTp307bffKj4+Ps1jkKTIyEgNHz5cTZs2VfXq1dW4cWMNGTLkjseele0AAED6kCPfRI5sjxw5JXLkf5Ej33s5stWVK1c0bdo0de3aVQ0aNFC1atVUr149Pf3005o0aZIuX76cYpuMXvet76l1RIVVq1YpODhYL774Yopjy0yOHB4eruHDh6tFixaqUaOGWrVqpSlTptx1hInY2Fh9+eWXts9Z7dq11aFDB02cOFFXrlxJ9ZgiIyMlSUOHDrU75++Wd6fn/b/1tbrT+Z+Ra7c17s2bNys0NFQDBw7UQw89pOrVq+uRRx7R2LFjdenSJbttgoODNXToUEnSuXPn7D6ft9u1a5deeeUVNWjQQDVr1lTr1q316aefKjY2NtX2Wd0OcAQUwAHkuMTERPXv318DBgzQli1b5OzsrMqVKyspKUlr165Vjx49NHbs2GztMyEhQT179tS2bdsUGBgok8mkMmXKZGsf1i/1bm5u8vX1zZZ9Xrp0Sd27d9ehQ4dUsWJF3bhxQ+XLl7drs3TpUr388ss6ePCgKlSooEKFCmn79u169dVXNXr06BT7jI2NVdeuXTVs2DDt2LFDhQsXVnBwsK5evaoffvhBHTt21KxZs+y2SUhIUI8ePfTpp59q37598vHxUaVKlRQbG6vVq1era9euWrx4cYq+vvvuOz399NNasWKFLl++rEqVKsnDw0Nbt27VgAED9Oabb6aa3GTW0qVLZRiGypYta7u7un379pKknTt36vjx49nWV2bExsZq7dq1kv6NKzAwUFWqVJEkLVy4MNv68vPzU0hIiO1Hp1KlSikkJMTu/Dl8+LDat2+vSZMm6fDhwypTpowqVKigU6dO6ZtvvlH79u21ffv2dPfp4eGhkJAQSTcLke+884527tyZ6nvs7++vihUrZvmzUqhQIYWEhCgoKMi2LCQkxHasqb0G1hjv5LvvvlPHjh31/fff69KlS7Zz948//tDAgQP1+eefpyu+devWqX379lqwYIHOnz+v+++/X0WLFtWuXbs0bNgw9ezZ0/Zj4O3+/vtvPfHEE1qxYoXc3d1Vrlw5nTt3TkuWLNGzzz6rM2fOpNjms88+0wsvvKDVq1fr+vXrCg4Oltls1saNG9WjRw/bUxQPP/ywSpUqpaSkJK1evTrN2GNjYxUYGHjHpxXu5tbXPbU/7u7ukm4OW1a4cGHbdrt27VK7du00c+ZMnTp1SgEBASpdurQOHjyojz76SJ06ddKFCxdS7XPnzp0aMGCArly5osDAQJ0/f972OTt79qyeeuopjRs3Tnv37pW/v78qVaqkCxcuaNGiRXr88cdt837dav78+Xr66af1/fffKyoqSuXKlVNAQICuXr2qzZs3Z+i8uBPreWsVFBSkkJAQ+fn52Zb98MMPevzxx7Vw4UKdP39eQUFBKlasmPbu3atx48bp2Wef1dmzZ1Pd/+HDh/Xkk09q8eLF8vT0VEBAgKKiorR8+XI99dRTOnbsWLZuBwAA7o4cOf3IkTOGHPlf5MjkyPklR5aksLAwPf744/r000+1Z88eFS1aVMHBwXJyctLBgwc1efJkPffcc2m+FulVuHBhu3yyaNGiKc6PzObIv//+u5566il9//33io6OVlBQkOLi4jRhwgT16tUrzZiOHz+uxx9/XBMnTtSRI0dUvHhxlStXTidOnLAVxW+9NllzYuuT39bzuHr16nc9/vS+/3eTlWv35s2b1bFjR61fv16+vr4qVaqUTp8+rdmzZ+v555+3Kzzfek1ycXFJ8/O5fPlyde3aVdu2bVOpUqVUtGhRhYWF2W7KSuum+MxuBzgMAwCyaOLEiUZQUJDRvHnzVNd/8MEHRlBQkFG7dm1jzZo1tuVJSUnGvHnzjKpVqxpBQUHGrFmz7LYLCgoygoKCjN9++y3V/b7wwgtGUFCQMXHiRNuyiIgI23b169c3jh49ahiGYdy4ccO4evVqlo/FKioqyqhfv74RFBRk9O3bN9X+w8LCUt22efPmRlBQkLF06VLbsj/++MO2XcuWLY2zZ88ahmEYsbGxRnx8vN12QUFBRo8ePYyLFy8ahmEYFovFWLRoke11XLVqlV1/L7/8shEUFGQ8/PDDxh9//GFbfuPGDeOLL76w7fPnn3+2rZs/f74RFBRktGrVyoiMjLQtj4+PN95//30jKCjIqFu3ri02wzCMTZs2GcHBwUa1atWM2bNnG0lJSbZ127ZtMx588EEjKCjI+Pzzz+3iS0hIMI4dO2YcO3bMuHLlyh1f91slJycbTZs2NYKCgowJEybY7c/63owaNSrVbd955x0jKCjIePPNN+2W3+2cy6iFCxcaQUFBRq1atYzY2Fjb8pkzZxpBQUFGtWrVjAsXLqTYLrPnkWH8+7n47LPP7JZfvXrVaNSokREUFGQ899xzxqlTp2zrLly4YDtP6tata7fubg4ePGjUrl3bFm9QUJAREhJi9O7d2/j666+NPXv2GMnJyWlun9Z7YbV06dJUP5O3fmZul9q14fZtEhMTbct37dplVK5c2QgKCjI++eQTu/N66dKltnVbtmwxDCPt9+fQoUNG9erVjeDgYOPzzz+328/BgweNVq1aGUFBQcbgwYNTfQ2CgoKMTp06GSdOnLCt2717t1GnTh0jKCjIGD16tN12q1evNoKCgowqVaoY3377re0zl5SUZEyZMsW27tixY4ZhGMbnn39uBAUFGU899VSqr/VLL71kBAUFGdOnT7cty+znMy0rV640goKCjKpVqxpbt261LT979qztczts2DDj8uXLtnXh4eHGs88+awQFBRldunSx25/1mh0UFGS8+uqrxo0bNwzDuHmNtr4WTzzxhBEUFGS0bt3aOHTokG3bq1evGv/9739tn8U9e/bY1p08edKoVq2aERQUZEyZMsVISEiwrYuOjjYGDhxo2y4mJsa2znq+Nm7cONXjv/XciYiIsFuX1vVnz549tuv7sGHD7P4t+/vvv23n1VNPPWV3Xt96Xj355JPG8ePHbesOHTpkNGjQwAgKCjIGDhxo119mtwMAAP8iRyZHNgxy5NSQI5Mj3/o6FaQc2foedOrUyTh37pxtucViMZYvX257TefNm2e3XWau+4aR9nmU2Rz58uXLRsOGDY2goCBj0KBBdv9+LFu2zJY/3x7rtWvXjEcffdT2b4P1Wm4YhnH+/HmjT58+tmtrXFycXaxpfabTyrsz+v6ndf5n9tptfS+CgoKMPn362L3P69evN6pUqZLqv+13+h3h1n/n3nzzTSM6Otq2zvr7SlBQkPHdd99ly3aAo+EJcAA56uzZs7Y7eEeNGqU2bdrY1jk5Oalr164aOHCgpJtDMWX1TsdbdenSRRUrVpR0c76YW4djywzDMBQdHa1ffvlFL730kmJiYuTi4qIBAwZkR7g2L7/8skqUKCFJ8vT0VKFChezWly5dWl9++aXtbk6TyaROnTqpZ8+ekm6+jlZ79uyxDbs1ceJENWjQwLbO1dVVAwcO1HPPPSdJ+uSTT2zrQkNDJd2cM6x06dK25YUKFdKQIUPUqFEjPfroo4qJibGt++yzz2QYhgYPHqxu3brJycnJtu7BBx/UuHHjJEmzZs1SdHS0bZ2Li4sCAwMVGBho9zTo3WzdutV2t+/jjz9utz/rebZy5co8vZvROrTbI488Ik9PT9vy9u3by2w2KzEx0dYmp82fP1/nz59XsWLF9PXXXysgIMC2rlixYpo4caKCgoJ09epVTZ06Nd37rVq1qhYvXqy6devalsXGxmrTpk369NNP1alTJzVq1Eiff/654uLisvWYssuUKVNksVj02GOP6c0337T7zD399NPq2LGjJN11eLNJkyYpISFBL7zwgl5//XW7/VStWlUTJ06Uk5OTVq1alerTsy4uLpo8ebIqVKhgW1anTh09/fTTkqTdu3fbtbd+1v/zn/+oe/futs+ck5OT+vbtq4cffljJyclasWKFJOmZZ56RyWTSwYMHUzz5ce7cOW3btk1OTk564okn7GLKzOczNTt37tS7774rSXr33Xf18MMP29bNnDlTMTExatGihUaNGiVvb2/burJly2rKlCny8vLSn3/+qU2bNqW6/3feecd2h3jRokUlST/99JMOHTqkQoUKafr06apcubKtvZeXl0aPHq3GjRsrMTHR7gmG3377TU5OTqpWrZr69u0rFxcX2zofHx+98847km4+vXXy5MksvS53M3HiRCUlJalRo0YaNWqU3b9lVapU0YwZM+Tm5qaDBw/aDftu5ezsrC+//FL333+/bVnlypXVo0cPSTeHh0tNZrcDAAB3Ro6cceTI6UOOnDHkyGkjR87eHDkqKkpHjx6VdPO6X7x4cds6k8mkJ598UvXr15d0c1SCnJTZHHnhwoW6dOmSypcvr48++sju34+nnnpKr7zySqr9LV68WOHh4apWrZomTZpku5ZLN0dBmDBhgsqUKaOwsLAMDyl/u4y+/2nJ7LXbys/PTxMnTrR7nx955BHbkO23n7fpERgYqI8++kg+Pj62ZY8//rjtd5W0puHI7HaAo6AADiBHbd68WUlJSfL391fbtm1TbfPCCy/IxcVFV69etc1LlB1uTTYyKjIyMsVctZUrV1bDhg3Vt29fHTp0SIULF9YXX3xh92UxO9wt7k6dOsnDwyPF8ueff17SzXliT5w4IenfOadq1qyZ5hBXL730kqSbw9UdOXJEkmzD7yxZskTz58+3m6PG1dVVM2fO1Lhx42xfXE+fPq1Dhw5Jsk+0b9W0aVP5+voqPj4+zTntMsL6xbhmzZophsCzxnDlypVUC0K54fjx47Y5om5/TYoXL66GDRtKkhYtWiSLxZLj8fzyyy+SpCeffFJFihRJsd7V1dU2J9Qvv/wiwzDSve+KFStq/vz5WrFihfr37686derYFQyjoqI0depUPf7442kO05xX4uLibPPMWX/out3rr7+un376yTbXYGoSEhK0efNmSWl/BqzXEcMwUp0Prnr16vL390+x3FqAvHr1qm1ZeHi47XNu/ezfbsyYMVq/fr0GDRokSQoICNADDzwgSSkSvpUrV8pisahJkyapxpBVJ06cUP/+/ZWYmKgXX3xRXbt2tVtvnZ8xrdeuWLFitgQttdfO39/f7gcrK+t536JFi1TXSzeTY0nasWOH7TXu2rWr9u7dq/nz56e6jZubm+3/c/JHq+vXr9uGXLx1Tr9bBQQEqGXLlpKkDRs2pFhfvXp1ux9prazzit36I212bAcAAO6MHDnjyJHThxw5Y8iRU0eOfFN25sh+fn76448/tHfvXruhyK2Sk5NtBeWcvkElszmy9Ub0Dh062J3LVp07d051X9Zcv23btnaFZCs3Nze1bt1aUuq5fnpl5v1PTXZcux988MEUN2pJN4vRkv15m16PPPJIqq+fNT+/fW7xrG4HOArnvA4AgGOzfvmoUqWKzObU77nx8PBQhQoVdOTIEZ08eVLNmzfPlr6z8gXV1dU1xdwyZrNZnp6eKlGihGrVqqU2bdpk+Y751Nwt7po1a6a6vHTp0ipcuLCuXr2qsLAw3X///bbXv1q1amnur3z58vLy8lJsbKxOnjypoKAgPfvss1qyZImOHTum999/Xx988IGqVKmiBx98UI0bN9YDDzwgZ+d//wmx3skqSa+++mqafd24cUPSv+dFZsXExNgKPal9Ia1bt64CAgIUERGhBQsW6JlnnslSf5mxZMkSSTcTnVufdLV64okntG3bNkVGRmrLli1q2rRpjsZjfUr1TueCdd2lS5cUExOT4bnIqlSpoipVqui1115TXFycdu/era1bt2rlypWKiorSqVOnNHDgwHTPuZQb/vnnHyUmJkpSmj/U+fn52c3HnJqwsDAlJCRIkt5//33bk8ip9Sel/hm49U7oW1mLrUlJSbZl1vkVPTw80kxaS5UqlWLZM888ox07dmjVqlV64403ZDKZJN1M7iXZ7qTPTpcuXVKfPn0UExOjRo0aaejQoXbrr127psjISEk3nzSYM2dOqvuxtknttbv1zupbZeS8T05OVnh4uN21v1ChQtq3b5+OHDmiiIgInTp1SkeOHLGLISM/hGVURESE7fy803xn1atX1+rVq1N9Gj2t88r6I3FiYqKSkpLsrulZ2Q4AANwZOXLGkSPfHTlyxpEjp44cOedyZDc3N505c0Z79+7VqVOnFBERoePHj+vQoUO6fv26JOX4zR+ZzZGt21WqVCnVbfz8/FS8eHGdP3/ebrn1JqLFixenesO2JF28eFFS1q6DmX3/b5cd1+6MnLfpdbf8PK0bJzK7HeAo+MUKQI6KjY2VpLsOC2RNkrNzeLdbn9DLKH9/fy1YsCDbYsmIu8Wd2p3JVh4eHrp69aquXLkiKf2vv6enp2JjY22vv5eXlxYtWqRvvvlGq1evVnh4uP7++2/9/fffmjlzpvz8/PT666+rU6dOkuzvXkzPUD6ZudvxVqtWrbIlUqNHj9bo0aPTbLt//34dPHjwjl/us1tSUpJ++OEHSTfv7L5b3wsWLMjx5D4958KtP1Zdu3Ytw8n9rdzd3fXwww/r4Ycf1sCBA/Xuu+/qf//7n/bs2ZPr78ed3PoU661D8GXUref0gQMHMtTeKrW7qNNijTujMbdp00ajRo3SmTNntH37djVs2FD79+/XsWPH5Ovrm20/rlrduHFDffv2VUREhCpWrKgvvvgixd3H1nNT+jc5vpPUXrvU7q6+dd8ZOe+tVq5cqSlTpigsLMyu/X333aeOHTvq+++/v2usWXXra5OeY0jt39C0fmi6m8xuBwAA7owcOePIke+OHDnjyJFTR46cMznyiRMn9PHHH2vTpk12RW4vLy/Vq1dP58+ft021kJMymyNbr6GpjbZhVaRIkRQFcGt/YWFhKXLr22XlOpjZ9/9OMWT22p2R8za90vrNI6e2AxwFBXAAOcr6xeNuX2KsX6RS+6KS1tN11rsj86ucivtOw+1av1ha78RN7+tvXX/r6+/l5aUBAwZowIABCg8P1/bt27V9+3Zt2rRJUVFRGj58uHx8fNSqVSvbF2AfHx/bcL05yTonmIeHxx2/tJ8/f16GYWjhwoUaNWpUjsdl9euvv9ruYC1evLjtDuLbXb9+XVevXtXmzZt15syZVO9Gza7zyNPTU5cvX77juXD58mW79nczYsQI/fHHH3rqqafUt2/fNNu5ubnpgw8+0Nq1a21zJt+e3Kd1nDk9J9qtyVtsbKxt7uis7Gf37t1ZTrrS219GfxB1c3NTu3bttGjRIq1atUoNGza03dme1lBmmWUYht566y3t2bNHvr6+mjp1aqqfV3d3d9v/r1q1KtUh4TIrPddA678/t7Zfvny5hgwZIklq3LixHn30UVWqVEmBgYEqUqSIEhMT71gAz67z+dbz6OrVq2k+ZWH97Ob0eQcAALKOHDklcuSsI0cmR84u5MjZnyNHRUXphRdeUFRUlEqXLq1OnTqpatWquv/++3XffffJZDLpzTffvGMBPDvPeynjObKPj48uXLhgd5P27VJ7mtjd3V1Xr17V1KlTs/2G+1tl9v1Paz+5de0GkLOYAxxAjrLOy3Po0KE0h/GJjY213QVYrlw523LrU4LWu5hvd/tdhfnBrUOepRZ3fHx8lu/sTusJyVOnTtm+6FWsWFHSv6//wYMH09zf8ePHbV+Yra9/VFSU/vzzT9tcMOXKlVOnTp306aefatOmTbah76xJQYUKFSTdvOPywoULafb1559/6vjx41kaYic0NNQ2H8+4ceO0efPmNP9Y7xhfvXr1Hb+kZzfr3GuVKlXSli1b0oxv1qxZkm4OK3VrMS0nzqP0nAvWu7KLFCmSrjvbb9y4ofDwcNucTnfi5eVlS5xuTaCtn3PrEGu3y+nPeUBAgC2GW4e6utX+/fvVuXNnDR06NM2k89b9HDt2LM3+9u3bp8OHD2c5KbPO6Xf9+nWdPn061TYbNmzQiy++qI8//thuuXW4ww0bNig5Odk2DFl2D4P48ccf6+eff5aLi4smT56c5jBk3t7eKlasmKQ7v3aHDx/WoUOH7H6Eupv0nPf79++XJJlMJpUtW1aS9PXXX0u6OR/gjBkz9NxzzykkJMT2dFFa8/Rl979bZcuWtf3gcqenJqzrbv03FAAA5E/kyPbIkcmRyZHJkR09R166dKmioqLk4+OjpUuXqm/fvmratKkCAgJsN4OcO3cu1W2z+7qf2RzZek2zXmtud+3aNdtw9reybpfWuSTdfDp8//79WZqPOivvf2rx5sa1G0DOowAOIEc1adJEzs7OunDhgn788cdU28ybN09JSUlyd3dX/fr1bcutyUVq86ns27cvXyb3Pj4+ti+vqcX9yy+/ZGqul1stW7Ys1R9KrMPR1a5d23aXtPXuyn379qU5dM+3334rSSpZsqSCg4MlST179lTXrl21fPnyFO09PT1Vu3ZtSTeTUkkKDAy0/TAwb968VPvZtWuXunbtqrZt22rPnj3pONLUWecN8/X1VYsWLe7YtnPnzpJufgG2/hCR06KiorRp0yZJd0+WatSoYfuhZPHixbZzIyvnUVp30lvPhRUrVqRaQExISLCdQ40bN75j3FbWueUOHDhg+0EjLVu3blVMTIx8fHxUq1Yt2/I7fc6Tk5P1yy+/pCuWzPLy8lLdunUl/fvUxO1Wr16t3bt36/Tp02m+vl5eXrbrV1pzWEdERKhLly56/PHH9dNPP2Up7sDAQJUpU+aOcS9fvlw7duxIkUTWqlVLlSpVUnR0tObOnat//vlHVatWTXN+t8xYsGCBvvnmG0k3h2CsV6/eHds3a9ZM0s3rR2rXt6tXr6p79+568sknNXv27HTHYT3vf/nlF0VERKTaxvp+1a5dW97e3pJkS5jTGobQeh2S7Ofvsp7Ply9fVlRUVIrt1q1bl2as1nPr1h+QPDw81KBBA7s4bxcREWH7nDRp0iTN/QMAgPyBHNkeOTI58q3IkcmRMys/58jW/LJ06dKpPlF/7Ngx2zXAeg2xyux1P7X8Usp8jtyqVStJN2/ySe1mhWXLlqWI/db+lixZkmqxOCkpSf369VPHjh310UcfpRpPemTl/b99P7l17bYym2+W6NK6mQRA5lEAB5CjSpUqZZsDa/jw4XZfaC0Wi+bPn69JkyZJkvr162c3VJf1C/esWbN0/Phx2/L9+/frjTfeyI3wM8zNzU1Vq1aVJE2aNMnuDs6tW7fqgw8+yHIfBw4c0PDhw23DXlksFs2bN8+WpA8aNMjWtk6dOrY7vAcMGGA3fE9CQoImTpxou6v67bfftn1BfuKJJyRJkydP1ubNm+36//PPP22J8q1zcg0cOFCSNG3aNE2fPt3u7tQ///zTtr527dpq2LChbV1iYqKOHz+u48eP3/WO7YSEBK1atUrSzaGo7jZHbZMmTWxfgBcuXHjHtnfyzz//6Pjx46nezXq7FStWKCkpSS4uLrbX8U6sP0BcuHDBdpdxVs4j63BNkZGRKfopUaKELl68qJdfftku0YmKitLAgQN15MgReXp66rXXXrtr3JL08MMPq3Xr1pKkYcOGacyYMSnutL1x44aWLl2q119/XdLN8+TWoc+sn/OjR49qzpw5ti/8ly9f1rvvvpuuOaGzql+/fjKZTFq5cqWmTp1q98PJihUrNHfuXElSr1697rif1157TU5OTlq9erXGjRtnlxQeOXJEffr0UWJiosqUKaMOHTpkKWaTyaR+/fpJkqZPn67FixfbXrvk5GRNmzZN69atk7Ozs3r06JFie+sPTxMmTJAkPf3006n2k5HPp9WmTZtswykOGDBATz755F236dOnjzw8PLRr1y699dZbdglpZGSk+vTpo+joaBUuXFhdu3ZNVxzSzfncgoODdePGDfXu3dtuSLnY2FgNHz5cW7dulbOzswYPHmxbZ70rftGiRXafv9jYWE2aNEnTpk2zLbs1ia9Vq5ZcXFxkGIbGjh1rW5eYmKjZs2ffcdh062f39utM//795ezsrK1bt2r48OF2T+qEhoaqd+/eunHjhipXrpyu1xoAAOQtcmRyZOs25MipI0cmR86M/JwjW/PL0NBQ/fzzz7blhmFo8+bN6tWrl+2J/9uHuM/sdd96Tt3+Gc1sjvzss8+qXLlyOnv2rAYMGGB3w/fatWv16aefphpH165d5e/vr/DwcPXt29cunkuXLun111/X8ePH5eLiopdeeinN47mbrL7/t8rstTuzrNeoK1eu5OrIHEBBwBzgAHLc0KFDde7cOW3YsEEDBw5U8eLFVbJkSUVERCg6OlqS9MILL6h379522/Xt21dbtmzRhQsX1KFDB1WsWFE3btxQWFiYAgIC9Mwzz6R5V19eev3119W3b18dO3ZMLVu2VMWKFXX58mVFRkaqRo0aCgkJsSVxmREUFKQlS5ZozZo1uv/++3X27FlduHBBZrNZQ4cOTfHl6+OPP9Yrr7yiv/76S926dVOZMmVUtGhRnTx5UrGxsXJyctLrr7+udu3a2bbp1q2btm3bps2bN6t3794qXry4ihcvrujoaFvS2KJFCz377LO2bdq1a6ewsDBNmjRJn3zyib7++muVL19ely5dsm1ToUIFTZkyxS6+c+fOqW3btpJuDteWVpIhSevXr1dMTIyk9A1FZTab9dxzz+mzzz7TkSNHtGvXLlvykBHvvPOOduzYofr169sSvbRY7/Ju1qxZuubKateunT766CNduXJFCxcutCXLmT2Pqlatqo0bN2rVqlU6fPiw6tWrp/fee0/e3t6aOnWq+vTpo7/++kutWrVSxYoV5ezsrKNHjyoxMVE+Pj765JNPbENHpccnn3wiDw8PrVixQnPmzNGcOXNUunRp+fn52T6vCQkJcnFx0ZtvvqkuXbrYbd+0aVPVq1dPf/75p8aMGaNvvvlGvr6+OnHihBITE/Xaa6/ZfgDMKQ8++KCGDh2qDz/8UJ9//rm++eYbBQQE6OzZs7Z56l599VW7H7NSU7duXY0aNUrvvfeevv32Wy1cuFCBgYG6du2awsPDZRiGihUrppkzZ971h6n06Nixo44dO6ZZs2Zp2LBh+uKLL1SyZEmdPn1aMTExcnJy0siRI1O9a/2JJ57Qp59+quvXr8vFxUXt27dPtY+MfD6tBg0apOTkZLm5uenvv/9Wz549FR8fn+pTOc8884w6duyocuXK6YsvvtCgQYO0evVq/fzzz6pYsaISExMVFhampKQkeXh4aNq0aWnOg50aZ2dnTZkyRb1799aJEyf0xBNPqHz58vL09LQNV+bm5qb333/f7in1QYMGqV+/fjp27JgeeeQR2zBo4eHhunHjhm2oulOnTtkNh16kSBH17NlTU6dO1erVq7Vlyxbdd999ioyMVExMjDp37qxffvkl1eHtqlatqp07d+qDDz7QggUL1KVLF3Xs2FF16tTRmDFjNGzYMH3//ff64YcfFBgYqOvXr+vkyZOSbv67MHny5Gw5rwAAQM4jRyZHJkdOGzkyOXJm5dccuWPHjpo/f77Cw8M1YMAAlSlTRr6+vjpz5oyioqLk4uKi+vXra8eOHSlyxcxe96tUqSLp5vzrbdq0UcWKFTV58uRM58hubm6aOHGievXqpa1bt6pZs2aqVKmSYmJibJ/BCxcupJgurEiRIvrqq6/Ut29fbdu2TY888ogqVqwok8mkkydPKiEhQc7Ozvrss89sI25kVlbe/1tl9tqdWcHBwTKbzYqPj1ebNm1UvHhxzZw5M13TLgC4M54AB5DjXF1d9eWXX+rzzz9Xo0aNlJCQoEOHDsnd3V3t2rXTnDlzNHz48BTDJlWpUkVLlixRhw4dVLRoUZ04cULJycl66aWXtHz5cvn7++fREd1ZkyZNNH/+fLVs2VIeHh46duyYChUqpAEDBmj+/Pm2O/syq1u3bvrss89UoUIF252/rVu31sKFC1O9i9HHx0dz587VqFGj9MADD+jq1as6fPiwfH191bFjRy1ZskR9+vSx28bJyUlffvml3n33XdWpU0fx8fEKDQ1VXFycGjVqpI8//lhTpkyxm4dLupkALVq0SB06dJCXl5dCQ0MVHR2tqlWrauDAgVq6dGmGile3sybO1apVS/dQVB07drTNoZuVO9zTY+/evba5rdI7V5S7u7vtqc3ff//dNtdfZs+j3r1769lnn5WPj4/CwsJ0+PBh27qqVatq9erV6tevnypVqqSIiAiFhYWpQoUKeuWVV/TDDz+ke2g3K1dXV3344YdavHixXnrpJVWrVk0JCQkKDQ3V2bNnVaFCBfXs2VM//PBDivNMuvkDzMyZM/X666+rUqVKioqK0j///KMHH3xQCxYsyPJd4OnVvXt3LVq0SO3bt1ehQoV0+PBhJSUlqWnTppo1a5YGDBiQrv0888wzWrlypZ577jn5+/vr6NGjOnPmjAIDA9WrVy/98MMPtmJqdhgyZIhmzZqlRx55RIZhKDQ0VE5OTmrTpo0WLVpk9wPcrYoWLWobLrtFixbZmlhZ7+qPj4/X+vXrtXXrVv3555/avXt3ij9nzpyxbde0aVP973//U48ePVS2bFmdPHlS4eHhKlOmjLp06aIffvhBISEhGY7nvvvu09KlS/X222+rZs2aunDhgo4fP65SpUqpW7duWrlyZYonp5s3b64lS5aoZcuW8vf314kTJ3TmzBkFBQXpzTff1MqVK23n5saNG+22HTRokD755BPVrVtXiYmJOnnypCpUqKDx48dr5MiRacY5duxYPfzww3J2dtbJkydt1wLp5lzkK1euVKdOnVSsWDEdPXpU0dHRCgkJ0YgRI7RkyZI051gHAAD5DzkyOTI5ctrIkcmRsyI/5sheXl6260qlSpV06dIlHT16VF5eXrYC9tixYyXdfEr81qekM3vdf/LJJ9WrVy/5+/vr9OnTOnTokO2m9MzkyJJUuXJlLV++XC+99JJKlSqlo0ePymKxqEePHvr222/TvImhRo0aWrVqlV599VUFBwfr9OnTOnHihIoVK6Ynn3xSS5cutQ2xnlWZff9vl9PX7luVK1dO48aNU/ny5RUTE6MzZ86kGLECQOaYDCYXAIB7QosWLRQZGanRo0en+wsbss+oUaN06tQpTZ8+Pa9DAbLF008/rYMHD2ratGl3vXMfAAAAyG/IkfMWOTIcDTkyADgWngAHAOAuLBaL/vzzT1WsWDGvQwGyxcGDB3Xw4EGVKlVKjRo1yutwAAAAANxDyJHhaMiRAcDxMAc4AAB38cEHHygqKkovvvhiXocCZFpERIQk6eLFixoyZIikm8NFOjk55WVYAAAAAO4x5MhwBOTIAODYKIADAHAXzz//vAYMGKCiRYvmdShApv3444/67LPPbH8PCgrSCy+8kIcRAQAAALgXkSPDEZAjA4BjYwh0AADuonLlyiT2uOdVrlxZxYsXl4eHh1q2bKlvvvlGrq6ueR0WAAAAgHsMOTIcATkyADg2k2EYRl4HAQAAAAAAAAAAAABAVvEEOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BOe8DuBeYRiGLBZGiwcAAAAA2DObTTKZTHkdhkMg9wYAAAAApCYjuTcF8HSyWAxdunQtr8MAAAAAAOQzRYt6ysmJAnh2IPcGAAAAAKQmI7k3Q6ADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAITjndQAAAAAAgJQsFouSk5PyOowCz8nJWWYz944DAAAAgCMi984fsjv3pgAOAAAAAPmIYRi6cuWS4uJi8zoU/D93dy95exeVyWTK61AAAAAAANmA3Dv/yc7cmwI4AAAAAOQj1gTcy8tXrq6FKLrmIcMwlJBwQ7Gx0ZKkIkX88jgiAAAAAEB2IPfOP3Ii96YADgAAAAD5hMWSbEvAvby88zocSHJ1LSRJio2NVuHCvgyHDgAAAAD3OHLv/Ce7c28ydwAAAADIJ5KTkyX9m/ghf7C+H8wLBwAAAAD3PnLv/Ck7c28K4AAAAACQzzD0Wv7C+wEAAAAAjodcL3/JzveDAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgEJzzOgAAAAAAQN45fDhUU6ZMUGjo37JYDFWtWl19+vRTtWrVJUk7d/6hWbNm6Pjxo3Jyclb9+g3Vt+9rKlGipCTpxx9XaezY97V48Q8qVaq0bb8dO3ZQnTp19d//jpQkNWpUTy+91Efbtm1VRES4Ond+UT169FJk5Gl99dUk7dq1U4ZhqHr1GurXb6Duvz9QknTjxg3NnDlV69evVXT0JZUtW07dur2kRx5plbsvFAAAAAAAmUTunbt4AhwAAAAACqhr12L15puvqUgRH40e/ZHef3+s4uPj9Oab/RUbG6uff/5Rgwb1l7+/v0aOHKPXXhukgwf365VXXlJ09KUM9zd79kw1a9ZCI0eOUePGzXTx4kX17t1d4eEn9eab7+i990bpypUrev31foqJiZFhGHr33be0YsUyPfdcF3344WeqXr2m3nvvXa1ZszoHXhEAAAAAALIXuXfu4wlwAAAAACigTp48qZiYaHXs+Jxq1qwtSSpXrrxWrlyq2NirmjJlgurVq6/33x9n26Zmzdp64YVntWDBPPXrNyBD/VWtWl0vvNDD9vcvv5ygGzfi9cUXU+TnV0ySVKlSZb38cg8dOLBPhQq5avv2bXr//bG2u84bNHhQ8fFxmjp1sh59tI2cnUlrAQAAAAD5F7l37uMJcAAAAAAooO6/P1A+Pr5655039Mkn47R162b5+RVTv34DFR8fr6ioKLVq9ZjdNmXK3Kdq1Wror7/+zHB/gYEV7f6+d+9fql69pi0Bl6RixYpp6dLVatSoif78c6dMJpMefLCRkpKSbH8efripoqIu6uTJ45k7cAAAAAAAcgm5d+67t8r1AAAAAIBs4+HhoSlTpmv27Jlav36tVqxYKjc3N7Vq9ZjatGknSSpa1C/Fdn5+fjp8+HCG+/P1LWr39ytXLtvNXXa7K1cuyzAMtWrVJNX1Fy9eUKVKwRmOAwAAAACA3ELunfsogAMAAABAAVa2bHkNHz5KycnJOnTooH766UetWLFExYr5S5IuXYpKsU1UVJR8fHwkSSaTSZJksVjs2sTFXb9r315ehRUTE5Ni+a5dO1WyZCl5eRWWu7uHJk2amur2ZcoE3LUPAAAAAADyGrl37mIIdAAAAAAooDZuXK/27VsqKuqinJycVL16TQ0ePEReXoV16dIl+fn5ae3aNXbbREae1oED+1SzZi1JkoeHpyTp3LmztjanToXp8uXLd+2/Vq3aOnhwn6KjL9mWxcTEaPDgAfrtt82qXTtEcXHXZRiGKleuavtz4sRxffPNdCUnJ2fHywAAAAAAQI4h9859PAEOwI7ZbJLZbMrRPiwWQxaLkaN9AAAA4O5q1Kit5GSLhg4drBde6CFPT09t2LBW167FqkWLlqpatZrGjn1f7703VG3atNflyzH65ptp8vYuouee6ypJqlv3Abm5uWny5M/Vu3c/Xb9+XbNm3WxzN506ddGaNf/TG2/0V7duL8nVtZDmzp0lP79iatOmnby8Cqt27RANGfKmevTopXLlyuvQoYOaOXOaGjRoaLsTHo4vp/MUchQAAAAAOYXcO/eZDMMgw0uH5GSLLl26ltdhADnKbDbJx8dDTk45OzhEcrJFMTHX+YEJAADgNomJCYqKOiM/v1JycXHNlT4PHTqo6dO/UmjoIcXHx+v++wP14ov/UdOmzSVJv/66QXPnfqsTJ47J09NTDRo8qD59XlWJEiVt+/jjj22aOnWywsNPqmTJUvrPf/rop5/+Jz8/P/33vyMlSY0a1dN//tNbPXu+bNd/eHiYpkyZoN27d8nFxUV16oSoX7+BKlPmPklSXFycZsz4Shs3blB09CUVK1ZcLVu2Uo8evVSoUKFceY3u9r4ULeqZ49+hC4rUcu/cyFPIUQAAAICCg9zb8XNvCuDpRAEcBYGzs1m+vp76csFvijx/92EzMqNM8SJ6tfPDio6+pqQky903AAAAKEDyIgnH3VEAzz2p5d45naeQowAAAAAFC7l3/pSduTdDoANIIfL8ZYVFRud1GAAAAABgQ54CAAAAAEgPCuAA8kROPiHD/H0AAAAAAAAAAAAFEwVwALmqSGE3GRaLvL3dc6wPiyVZ0dFxFMEBAAAAAAAAAAAKGArgAHKVp5urTGazTq6errioM9m+f3e/UqrQvrfMZhMFcAAAAAAAAAAAgAKGAjiAPBEXdUZx507ldRgAAAAAAAAAAABwIBTAAQAAAAAooBITEzV37lwtX75cYWFh8vDwUI0aNdS9e3c1btw4RfsGDRooJiYmzf3t27dPhQoVysGIc46TkznH9m2xGIxQBQAAAAC5hAI4AAAAAAAFkGEYGjRokNatWydvb2899NBDunHjhv744w9t2bJFr7/+uvr27WtrHxkZqZiYGJUoUUL169dPdZ9mc84VkXNKkcJuMiwWeXu751gfFkuyoqPjKIIDAAAAQC6gAA4AAAAAQAG0cOFCrVu3TlWqVNGsWbPk6+srSQoNDVXXrl01YcIEtWrVSoGBgZKkQ4cOSZLatGmjd999N8/izm6ebq4ymc06uXq64qLOZPv+3f1KqUL73jKbTRTAAQAAACAXUAAHAAAAAKAAWrlypSRpyJAhtuK3JFWuXFkdOnTQggULtHnzZlsB/ODBg5KkatWq5X6wuSAu6ozizp3K6zAAAAAAAFlEARwAAAAA7gFms0lmsynX+2XuYsc1e/ZsnTx5UpUqVUqx7vr165IkJycn2zLrE+DVq1fPnQABAAAAIJeRezsGCuAAAAAAkM+ZzSb5+HjIySn351dOTrYoJuZ6phLxtWt/0tKli3TixDFJUrlyFdS+/RN68slnsjtMZEKhQoVUuXLlFMvXr1+vn376Se7u7mrVqpVt+cGDB+Xm5qYDBw5o2LBhOnr0qEwmk0JCQtSvXz/VqlUrN8MHAAAAgGxF7u04KIADAAAAQD5nNpvk5GTWlwt+U+T5y7nWb5niRfRq54czNXfx6tUr9cUX4zVgwJuqXTtEkqGdO3do4sRPFR19Sf/5T++cCRqZcvnyZQ0bNkzHjh3TiRMnVKpUKY0bN04lS5aUJEVFRen8+fOSpLffflu1a9dWgwYNdOTIEf3666/aunWrxo8fr7Zt2+blYQAAAABAppF7Ow4K4AAAAABwj4g8f1lhkdF5HUa6LF++RO3bP6HHH3/Ktqxs2fK6cOG8vv9+QYFNwvOriIgIrV271vZ3k8mkY8eO6cEHH5T07/zfvr6++uqrr1SnTh1JkmEYmj17tsaNG6ehQ4cqJCTEVjTPLGdn+6ct8uLpi5zgKMcBAAAA3OssljsPcU7unbecnEwp8sKMogAOAAAAAMh2ZrNJ+/fv05UrV+Tt7W1b3rVrd7Vt20GS1LFjBz32WHv17PmybX3//n1UqlRp/fe/I7V7958aMOAV9e37mr77bo5KliwpNzd3FSvmrw8+GGfbZt++PerXr5cWLlyu++4L0G+/bdHMmV8rLOyk/P391bJla3Xv3lOurq6aMOFT/fbbZn3//Urb9rGxsXr88db64IOxatSoaS68OvlPhQoVtGPHDhmGoW3btmnMmDEaPXq0YmNj1bdvXzVu3FhbtmyRYRgqUaKEbTuTyaQePXpo586dWr9+vZYsWaL+/ftnOg6z2SRfX8/sOKR8x9vbPa9DAAAAACApPt5JFy+aUxRa8/qm1cz07+Rk1oED+3T9eqxd7t29+3/0+ONPyNnZrCefbKd27Tqod+9XbOv79u2tUqVKa8SI97Vr15969dU+evXVAZo7d7ZKliwld3c3FSvmrzFjPrJts3fvHr388ktavHiFAgLKauvWzZo+faot93700Tb6z396ydXVVZ9/Pl5bt27R0qU/2LaPjb2qdu1aadSoD9WkScrc22IxyWw2q0gRD7m5uWX4tbgVBXAAAAAAQLbr2rW7RowYqqeeekwhIfVUs2Yd1a1bT1WqVFPhwoUztK9t27bq669nKT4+TkePHtGnn36o69evycPjZqF07do1qlGjlu67L0B//LFNw4cP0YABg/TAAw0VGXlan3/+sU6dCteoUR+qffsntHjxAu3du0e1atWWJG3YsFaenp5q2PDh7H4Z7hmenv8Wndu2bauSJUuqS5cumjZtmrp16yZPT08VL148ze2bN2+u9evX68CBA1mKw2IxdOXKdbtlTk5mhygeX7kSp+RkS16HAQAAABR4CQk3ZLFYlJxsKCkp/3xHT062ZDieLl26acSIoerQoXWK3Lt0aU/b/iwW+2M1DEOGcXOZNU/ZunVLitz7ypWrttx7zZr/qUaNWipV6j5t3bpV7777TorcOywsTKNGfai2bZ/QokULtGvXblvu/fPPP8vDw1P16z+Y6nEmJxuyWCy6fPm64uKSU6z39nZP900CFMABAAAAANmuWbNH9PXXs7RkyUJt3/6Hfv/9N0lSQEBZDR06QjVr1k73vjp3fkEBAWUlSffdV1affz5emzZt1GOPtVdiYqJ++WW9+vZ9TZI0Z843at/+cT35ZEdJUpky9+mtt97VgAGv6MyZfxQYWFHBwVX088//syXhP/20Wq1bt5WzMymyVUhIiMqWLavw8HCFhYWpWrVqd2zv7+8vSYqLi8ty3/npB6jslJkfswAAAABkv+TkjM2znZ85Yu6dHTcmkN0DAAAAAHJElSrVNHz4KBmGoRMnjuv337dq8eKFGjx4oBYtWp7u/dx3X1nb/7u7u6t580e0du0aPfZYe/3++2+6cSNeLVq0lCQdORKqQ4cOas2a1bZtDOPmjxthYSdVqlRptWv3uKZNm6LXX39L58+f0/79+/TWW+9m01HfG+Li4jRhwgRdvHhR48ePl8mUcg48V1dXSVJSUpIWLVqk33//Xe3bt1fLli1TtI2IiJCkLM//DQAAAADIGHLvlCiAAwAAAACy1fnz5/Tdd7P1wgs95O9fXCaTSYGBFRUYWFGNGjXVCy88qz17dqe6bXJyUoplhQoVsvt727YdNHBgX0VFXdTatT+qSZPm8vT0knRzWLcuXbrpscfap9iPn18xSdKjj7bR5MlfaNu2LTp+/JiqVKmq+++vmNXDvqe4ublp+fLliomJUadOnVS/fn279RERETp58qRcXV1VqVIlbdq0SWvWrFFcXFyKArhhGFq58uac6o0aNcq1YwAAAACAgozcO215O5s7AAAAAMDhuLoW0sqVy7R27ZoU66xzTRct6idnZxfFxsba1lksFv3zT+Rd91+7dohKliyln376n7Zt+80u4b7//kCFh4fpvvsCbH8uXDivL7+coOvXr0mSChcurCZNmunXX3/R5s0b1bbt41k95HuOyWTSc889J0kaOXKkzp8/b1t39uxZvfHGG0pKSlLnzp3l4eGhp556Sq6urvr111/1/fff29paLBZNnDhR+/btU8WKFdWmTZtcPxYAAAAAKIjIvdPGE+AAAAAAgGzl4+Ojrl27a9q0KYqNjVWLFi3l4eGpsLCT+vbbGQoJqadateqoZs1a2rBhrZo2ba6iRf20cOE8u6T8Th57rL1mz/5GRYoUUb16/z693LVrN40YMVQzZ36tRx9towsXzuvDD0erRIkStrvQJaldu8c1ZMgbMgypZcvW2f4a3Av69eun3bt3a+fOnWrdurXq1q2rxMRE7du3T9evX1ejRo00ePBgSVJAQIBGjhypYcOGafjw4Zo3b57Kly+v0NBQhYeHq1ixYpo0aZJcXFzy+KgAAAAAoGAg904bBXAAAAAAuEeUKV7knumvd+++uu++AK1atULLly9WfHy8SpQoqRYtHlW3bi9Jkvr0eVVXr17R4MED5Obmrg4dntQjj7SyzRt2J23atNc330zT008/K7P538HNmjdvqfffl+bO/Ubz5n2rwoW99fDDjdW37wC77evVq68iRXxUo0YtFS5cONPHeS9zc3PTrFmzNGfOHK1cuVLbt2+Xs7OzKlWqpKefflrPPvusnJycbO2feeYZVahQQdOnT9fu3bt14sQJFS9eXC+++KL69u0rPz+/PDwaAAAAAMge5N7/uldzb5ORnqPLA4mJiZo7d66WL1+usLAweXh4qEaNGurevbsaN26cov3Fixc1ZcoUbdmyRefOnZO/v7/atGmjfv362R7zz4rkZIsuXbqW5f0A+Zmzs1m+vp56d8KPCouMzpE+HqpdTv27NNLfsz9Q3LlT2b5/9xJlVbX7CEVHX1NSkiXb9w8AAJCTEhMTFBV1Rn5+peTi4mpbbjab5OPjISen3J/FKjnZopiY67JY8mXqmGlxcXF64ok2GjPmYz3wQIM7tk3rfbEqWtQzT94bR5Ra7p3TeQo5CgAAAFCwkHvnnrzKvfPlE+CGYWjQoEFat26dvL299dBDD+nGjRv6448/tGXLFr3++uvq27evrf358+f1/PPPKzIyUkFBQWrWrJn279+vGTNmaMuWLZo/f768vLzy8IgAAAAAIPMsFkMxMddlNpvypG9HSsCvXLmi3bt36pdf1qtEiRJ2Q7gBAAAAAAoucu/sk9e5d74sgC9cuFDr1q1TlSpVNGvWLPn6+kqSQkND1bVrV02YMEGtWrVSYGCgJGn06NGKjIxUnz599Oabb0qSEhIS9Pbbb2vNmjWaPHmyhgwZkmfHAwAAAABZ5WjJcF5JTk7Shx+Oko+Prz74YJxMptz/YQMAAAAAkD+Re2ePvM698+UYbStXrpQkDRkyxFb8lqTKlSurQ4cOMgxDmzdvliSdOnVK69atU6lSpTRgwL/jyru6umrUqFHy9PTUokWLFB8fn7sHAQAAAADId3x9i+qnn37VwoXLFRRUOa/DAQAAAADA4eR17p0vC+CzZ8/WypUr9cADD6RYd/36dUmSk5OTJGnz5s2yWCxq2rSpXFxc7NoWLlxYDRs21PXr17V9+/acDxwAAAAAAAAAAAAAkGfyZQG8UKFCqly5sq3IbbV+/Xr99NNPcnd3V6tWrSRJR44ckSQFBQWluq+KFSvatQMAAAAAAAAAAAAAOKZ8OQf4rS5fvqxhw4bp2LFjOnHihEqVKqVx48apZMmSkqQLFy5Ikvz9/VPd3rr84sWLuRMwAAAAAAAAAAAAACBP5PsCeEREhNauXWv7u8lk0rFjx/Tggw9K+ndIdDc3t1S3ty63tssKZ+d8+cA8kG2cnBznHHekYwEAAAWHxWLK6xBwB05OJvJCAAAAAADyuXxfAK9QoYJ27NghwzC0bds2jRkzRqNHj1ZsbKz69u1rGybdZEr9hyLDMOz+m1lms0m+vp5Z2geA3OPt7Z7XIQAAAGRYfLyTLl40U2jNZywWk8xms4oU8Ujz5msAAAAAAJA/5PsCuKfnv0Xntm3bqmTJkurSpYumTZumbt26ycPDQ5J048aNVLe3Lnd3z1oxzGIxdOVK1p8iB/IzJyezwxSOr1yJU3KyJa/DAAAAyJCEhBuyWCxKTjaUlMR3mfwiOdmQxWLR5cvXFReXnGK9t7c7IxABAAAAAJBP5PsC+O1CQkJUtmxZhYeHKywsTMWLF5f071zgt7vbHOEZwQ9QwL0jOdnCZxYAANxzkpPTHrnKbDbJbM79IdItFkMWS8ZH1OrYsYPOnj2j/v1f1/PPv5Bi/fjxY7Vy5TL95z+91bPny5mKrWPHDnrssfbp3j6j7W/HjQkAAAAA4NjIvVPvIzdz7+yQ7wrgcXFxmjBhgi5evKjx48enOrS5q6urJCkpKUlBQUGSpOPHj6e6v6NHj0qSgoODcyhiAAAAAMhZN6dkcpfZ7JTrfVssyYqOjstUIu7s7KyNGzekSMKTkpK0adMvaU5lBQAAAABAbiP3dhz5rgDu5uam5cuXKyYmRp06dVL9+vXt1kdEROjkyZNydXVVpUqVVKxYMUnSxo0bNXToUNuc4JJ09epVbd++XR4eHqpbt26uHgcAAAAAZJebd6A76eTq6YqLOpNr/br7lVKF9r1lNpsylYTXq1df27f/rnPnzqpEiZK25bt3/yk3N3cVKsR82gAAAACA/IHc23HkuwK4yWTSc889p6+//lojR47Ut99+axvm/OzZs3rjjTeUlJSk7t27y8PDQx4eHmrevLk2btyo8ePH65133pHJZFJCQoJGjBiha9eu6aWXXpKXl1ceHxkAAAAAZE1c1BnFnTuV12GkW5Uq1RQeHqaNG9fb3Ym+YcNatWjxqH75ZZ1t2YED+zRt2hQdPnxIzs7OatSoqV599XV5e3tLkmJjY/XFF+O1desmOTu7qFu3/6Tob//+vZo6dbIOHfpbPj4+evjhJnrllVfl6Uk+CAAAAABIH3Lvez/3Nud1AKnp16+fHnjgAR0/flytW7dWr1691L17dz322GPat2+fGjVqpMGDB9vaDx8+XMWLF9esWbPUtm1bDRgwQK1bt9aPP/6oatWqqX///nl4NAAAAABQcDVv3lIbN26w/T0xMVGbN/+qli1b2Zb9/fcBvfbayypfvoKmTp2lUaM+0t9/H9Abb/SXxXJzzu0RI4bo0KGD+uijz/X555P1229bdPbsv3fkHzt2VAMH9tMDDzTQ7NkL9N57Y3T48CENGtRfhpHxO+gBAAAAALhXkHvby5cFcDc3N82aNUtvv/22AgICtH37du3bt0+VKlXS+++/r2nTptnmAZekMmXKaMmSJXr22Wd19epVbdy4Ua6urnrllVc0Z84ceXp65uHRAAAAAEDB1aLFo/r77wM6d+6sJGnHjj/k4+OjoKDKtjYLF36nwMBKeuONd1Shwv0KCamnkSPHKjT0b23f/rtOnQrTjh1/aNCgt1WrVh1VqhSs994bbZcXLlgwR/XqPaAePXopIKCsatWqrZEjx+jvvw/or7925fpxAwAAAACQW8i97eW7IdCtXFxc1LNnT/Xs2TNd7UuUKKHRo0fncFQAANwbbs5XY8qx/VssRqbmowEAFDyVK1dR6dJlbEOx/fLLWrVs2dquzYkTx/TAAw3tlgUGVpSXV2EdP35U8fFxkqQqVara1hct6qfSpcvY/n748GGdPn1Kjz7aOEUM4eFhCgmpl52HBQAAAABAvkHubS/fFsABAEDmmM0m+fh4yMkp5wZ6SU62KCbmOkVwAEC6tGjxqDZu3KCnnnpWW7Zs1vTps+3WG4YhUyr3bRmGRc7O/6att/+74+TkbNe2VavH1K3bSyn24+Pjm8UjAAAAAAAgfyP3/hcFcAAAHIzZbJKTk1lfLvhNkecvZ/v+yxQvolc7Pyyz2UQBHACQLi1atNS8ed9q9eqVKl26jMqVK2+3/v77K2rv3j12y44ePaJr166pfPn7FRBQVpK0f/9ePfRQI0nS1atXFRkZYWtfoUKgTp48rvvuC7AtO3UqTJMnT9Arr7wqL6+KOXNwAAAAAADkA+Te/6IADgCAg4o8f1lhkdF5HQYAAKpUKVj33RegadO+1Asv/CfF+uee66JXX+2tzz77SE8/3UnR0Zf02WcfKSgoWPXq1Zezs7OaN2+pzz//WC4uLvLz89PUqV8qMTHRto/nn39Br77aS+PHj1XHjs/r+vXr+vTTD3X9+nXdd1/Z3DxcAAAAAAByHbn3vyiAAwAAAMA9wt2v1D3bX4sWj2r27Jlq2bJVinXVq9fUJ59M0PTpU/XSS13l4eGpxo2bqW/f/rZh2IYNG6kvv5yg9957VxaLRU888bRiYqJv2UcNffbZZM2Y8ZV69nxR7u5uCgl5QK+++rpcXV2z7TgAAAAAAI6N3Pvez71NhmEwdmk6JCdbdOnStbwOA8hRzs5m+fp66t0JP+bYU6MP1S6n/l0a6e/ZHyju3Kls3797ibKq2n2EoqOvKSnJku37B+4FOf1ZLl/GV2MHtuVzBgA5IDExQVFRZ+TnV0ouLv8mjmazSb6+7jKbnXI9JoslWdHRcQV62ou03herokU95eRkzoPIHE9quXdOf7chRwEAAAAKFnLv/Ck7c2+eAAcAAACAfM5iMRQdHSez2ZQnfRfkBBwAAAAAUDCQezsOCuAAAAAAcA8gGQYAAAAAIGeRezsGxmgDAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAABAPmMYzDeWn/B+AAAAAIDjIdfLX7Lz/aAADgAAAAD5hJOTkyQpIeFGHkeCW1nfDycn5zyOBAAAAACQVeTe+VN25t5k7wAAAACQT5jNTnJ391JsbLQkydW1kEwmUx5HVXAZhqGEhBuKjY2Wu7uXzGbuIQcAAACAex25d/6SE7k3BXAAAAAAyEe8vYtKki0RR95zd/eyvS8AAAAAgHsfuXf+k525NwVwAAAAAMhHTCaTihTxU+HCvkpOTsrrcAo8JydnnvwGAAAAAAdD7p2/ZHfuTQEcAAAAAPIhs9kss9k1r8MAAAAAAMBhkXs7Jm5jBwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAAByCc14HAAAAAAAA8kZiYqLmzp2r5cuXKywsTB4eHqpRo4a6d++uxo0bp2h/8eJFTZkyRVu2bNG5c+fk7++vNm3aqF+/fvL09MyDIwAAAAAAwB5PgAMAAAAAUAAZhqFBgwbpo48+0tmzZ/XQQw+pSpUq+uOPP9SrVy999dVXdu3Pnz+vTp066bvvvpObm5uaNWsmi8WiGTNmqHPnzoqNjc2jIwEAAAAA4F8UwAEAAAAAKIAWLlyodevWqUqVKlq7dq2+/vprffvtt1qyZIm8vLw0YcIEHT9+3NZ+9OjRioyMVJ8+fbRq1SpNnDhRP//8sx577DEdPnxYkydPzsOjAQAAAADgJgrgAAAgU5yczHJ2zrk/ZrMprw8RAACHtnLlSknSkCFD5Ovra1teuXJldejQQYZhaPPmzZKkU6dOad26dSpVqpQGDBhga+vq6qpRo0bJ09NTixYtUnx8fO4eBAAAAAAAt2EOcAAAkCFFCrvJsFjk7e2eo/1YLMmKjo6TxWLkaD8AABRUs2fP1smTJ1WpUqUU665fvy5JcnJykiRt3rxZFotFTZs2lYuLi13bwoULq2HDhtqwYYO2b9+upk2b5nzwAAAAAACkgQI4AADIEE83V5nMZp1cPV1xUWdypA93v1Kq0L63zGYTBXAAAHJIoUKFVLly5RTL169fr59++knu7u5q1aqVJOnIkSOSpKCgoFT3VbFiRW3YsEFHjhyhAA4AAAAAyFMUwAEAQKbERZ1R3LlTeR0GAADIBpcvX9awYcN07NgxnThxQqVKldK4ceNUsmRJSdKFCxckSf7+/qlub11+8eLF3AkYAAAAAIA0UAAHAAAAAKCAi4iI0Nq1a21/N5lMOnbsmB588EFJ/w6J7ubmlur21uXWdlnh7Gy2+7uTkzmNlvcWRzkOAAAAAMjvKIADAAAAAFDAVahQQTt27JBhGNq2bZvGjBmj0aNHKzY2Vn379rXNBW4ymVLd3jAMu/9mltlskq+vZ5b2kV95e7vndQgAAAAAUCBQAAcAAAAAoIDz9Py36Ny2bVuVLFlSXbp00bRp09StWzd5eHhIkm7cuJHq9tbl7u5ZK/JaLIauXLF/itzJyewQxeMrV+KUnGzJ6zAAAAAA4J7k7e2e7pG1KIADAAAAAAA7ISEhKlu2rMLDwxUWFqbixYtL+ncu8NvdbY7wjEhKcswicXKyxWGPDQAAAADyEyagAgAAAACggImLi9OHH36owYMHpzlsuaurqyQpKSlJQUFBkqTjx4+n2vbo0aOSpODg4ByIFgAAAACA9KMADgAAAABAAePm5qbly5dr1apV2rlzZ4r1EREROnnypFxdXVWpUiU1btxYkrRx40YlJyfbtb169aq2b98uDw8P1a1bN1fiBwAAAAAgLRTAAQAAAAAoYEwmk5577jlJ0siRI3X+/HnburNnz+qNN95QUlKSOnfuLA8PD5UpU0bNmzfX6dOnNX78eNtT4wkJCRoxYoSuXbum559/Xl5eXnlyPAAAAAAAWDEHOAAAAAAABVC/fv20e/du7dy5U61bt1bdunWVmJioffv26fr162rUqJEGDx5saz98+HAdPHhQs2bN0qZNm1SpUiXt379f//zzj6pVq6b+/fvn4dEAAAAAAHATT4ADAAAAAFAAubm5adasWXr77bcVEBCg7du3a9++fapUqZLef/99TZs2zTYPuCSVKVNGS5Ys0bPPPqurV69q48aNcnV11SuvvKI5c+bI09MzD48GAAAAAICbeAIcAAAAAIACysXFRT179lTPnj3T1b5EiRIaPXp0DkcFAAAAAEDm8QQ4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCM55HQAAAAAAAAD+ZTabZDabcmz/Foshi8XIsf0DAAAAQF7KtwVwi8WixYsXa9myZTp69KgSExNVunRptWzZUi+//LK8vb3t2jdo0EAxMTFp7m/fvn0qVKhQDkcNAAAAAACQeWazST4+HnJyyrlB+5KTLYqJuU4RHAAAAIBDypcFcIvFogEDBmjdunVyc3NTzZo15eHhoX379mnGjBlat26d5s+fr2LFikmSIiMjFRMToxIlSqh+/fqp7tNsZrR3AAAAAACQv5nNJjk5mfXlgt8Uef5ytu+/TPEierXzwzKbTRTAAQAAADikfFkAX7p0qdatW6fy5ctrxowZCggIkCTFxsZq8ODB2rhxo0aPHq0vvvhCknTo0CFJUps2bfTuu+/mVdgAAAAAAADZIvL8ZYVFRud1GAAAAABwz8mXj0UvXbpUkjRkyBBb8VuSvLy8NHbsWJlMJq1fv17x8fGSpIMHD0qSqlWrlvvBAgAAAAAAAAAAAADyhXxZAPfx8dH999+v2rVrp1hXtGhRFSlSRImJiYqOvnkntPUJ8OrVq+dmmAAAAAAAAAAAAACAfCRfDoE+derUNNdFREQoJiZGLi4uKlq0qKSbT4C7ubnpwIEDGjZsmI4ePSqTyaSQkBD169dPtWrVyq3QAQAAAAAAAAAAAAB5JF8+AX4n1nm/mzVrpkKFCikqKkrnz59XfHy83n77bVksFjVo0EA+Pj769ddf1aVLF/344495GzQAAAAAAAAAAAAAIMflyyfA0zJ37lytXr1a7u7uGjRokKR/5//29fXVV199pTp16kiSDMPQ7NmzNW7cOA0dOlQhISEqWbJklvp3dr7n7hcAMsTJyXHOcUc6FiCjHOn8d6RjAQAAAAAAAADkvHumAD5nzhyNHTtWJpNJY8aMUWBgoCSpcePG2rJliwzDUIkSJWztTSaTevTooZ07d2r9+vVasmSJ+vfvn+n+zWaTfH09s3wcAHKHt7d7XocAIBvwWQYAAAAAAAAAZES+L4AbhqFPPvlEM2bMkJOTk8aMGaN27drZ1ptMJhUvXjzN7Zs3b67169frwIEDWYrDYjF05cr1LO0DyO+cnMwOU2y6ciVOycmWvA4DyBN8lgEAyF3e3u6MWgIAAAAAQD6Rrwvg8fHxeuutt7R27Vq5ubnp008/VcuWLTO0D39/f0lSXFxcluNJSuIHeOBekZxs4TMLOAA+ywAAAAAAAACAjMi3BfDY2Fj16tVLf/31l/z8/PTVV1+pVq1aKdotWrRIv//+u9q3b59qcTwiIkKSsjz/NwAAAAAAAAAAAAAgf8uXBfDExET16dNHf/31l8qVK6eZM2cqICAg1bbnzp3TmjVrFBcXl6IAbhiGVq5cKUlq1KhRjscNAAAAAAAAAAAAAMg7+XKSssmTJ2vXrl3y9/fX3Llz0yx+S9JTTz0lV1dX/frrr/r+++9tyy0WiyZOnKh9+/apYsWKatOmTW6EDgAAAAAAAAAAAADII/nuCfDLly9r9uzZkiQ/Pz+NHz8+zbZDhgxRQECARo4cqWHDhmn48OGaN2+eypcvr9DQUIWHh6tYsWKaNGmSXFxccusQAAAAAAAAAAAAAAB5IN8VwPfu3au4uDhJUmhoqEJDQ9Ns+9prr6lYsWJ65plnVKFCBU2fPl27d+/WiRMnVLx4cb344ovq27ev/Pz8cit8AAAAAAAAAAAAAEAeyXcF8CZNmujw4cMZ3i4kJERfffVVDkQEAAAAAAAAAAAAALgX5Ms5wAEAAAAAAAAAAAAAyCgK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgEJzzOgAAAAAAAJA3LBaLFi9erGXLluno0aNKTExU6dKl1bJlS7388svy9va2a9+gQQPFxMSkub99+/apUKFCORw1AAAAAABpowAOAAAAAEABZLFYNGDAAK1bt05ubm6qWbOmPDw8tG/fPs2YMUPr1q3T/PnzVaxYMUlSZGSkYmJiVKJECdWvXz/VfZrNDDQHAAAAAMhbFMABAAAAACiAli5dqnXr1ql8+fKaMWOGAgICJEmxsbEaPHiwNm7cqNGjR+uLL76QJB06dEiS1KZNG7377rt5FTYAAAAAAHfErdkAAAAAABRAS5culSQNGTLEVvyWJC8vL40dO1Ymk0nr169XfHy8JOngwYOSpGrVquV+sAAAAAAApBNPgAMAAAAAUAD5+Pjo/vvvV+3atVOsK1q0qIoUKaKYmBhFR0erVKlStifAq1evnsuRIic4OeXsMxEWiyGLxcjRPgAAAAAgNRTAAQAAAAAogKZOnZrmuoiICMXExMjFxUVFixaVdPMJcDc3Nx04cEDDhg3T0aNHZTKZFBISon79+qlWrVq5FTqyoEhhNxkWi7y93XO0H4slWdHRcRTBAQAAAOQ6CuAAAAAAAMCOdd7vZs2aqVChQoqKitL58+clSW+//bZq166tBg0a6MiRI/r111+1detWjR8/Xm3bts3DqJEenm6uMpnNOrl6uuKizuRIH+5+pVShfW+ZzSYK4AAAAAByHQVwAAAAAABgM3fuXK1evVru7u4aNGiQpH/n//b19dVXX32lOnXqSJIMw9Ds2bM1btw4DR06VCEhISpZsmSW+nd2th+aO6eH6s4t6T2O3DreuKgzijt3Kkf7cJT3DgAAAMC9hQI4AAAAAACQJM2ZM0djx46VyWTSmDFjFBgYKElq3LixtmzZIsMwVKJECVt7k8mkHj16aOfOnVq/fr2WLFmi/v37Z7p/s9kkX1/PLB9HfpTTQ47nRwXxmAEAAADkPQrgAAAAAAAUcIZh6JNPPtGMGTPk5OSkMWPGqF27drb1JpNJxYsXT3P75s2ba/369Tpw4ECW4rBYDF25ct1umZOT2SEKqVeuxCk52XLXdo5yvFL6jzk3mEwmmc2mHNu/xWLIMBjuHQAAAMgp3t7u6R5ligI4AAAAAAAFWHx8vN566y2tXbtWbm5u+vTTT9WyZcsM7cPf31+SFBcXl+V4kpLyR8E0uyUnWxz22NKSX4755sgCbjKbnXKsD4slWdHRccx5DgAAAOQDFMABAAAAACigYmNj1atXL/3111/y8/PTV199pVq1aqVot2jRIv3+++9q3759qsXxiIgIScry/N9ATjCbTTKbnXRy9XTFRZ3J9v27+5VShfa9ZTabKIADAAAA+QAFcAAAAAAACqDExET16dNHf/31l8qVK6eZM2cqICAg1bbnzp3TmjVrFBcXl6IAbhiGVq5cKUlq1KhRjscNZFZc1BnFnTuV12EAAAAAyGHpGygdAAAAAAA4lMmTJ2vXrl3y9/fX3Llz0yx+S9JTTz0lV1dX/frrr/r+++9tyy0WiyZOnKh9+/apYsWKatOmTW6EDgAAAABAmngCHAAAAACAAuby5cuaPXu2JMnPz0/jx49Ps+2QIUMUEBCgkSNHatiwYRo+fLjmzZun8uXLKzQ0VOHh4SpWrJgmTZokFxeX3DoEAAAAAABSRQEcAAAAAIACZu/evYqLi5MkhYaGKjQ0NM22r732mooVK6ZnnnlGFSpU0PTp07V7926dOHFCxYsX14svvqi+ffvKz88vt8IHAAAAACBNFMABAAAAAChgmjRposOHD2d4u5CQEH311Vc5EBEAAAAAANmDOcABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA6BAjgAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAAAAAAAAAAA7BOa8DSIvFYtHixYu1bNkyHT16VImJiSpdurRatmypl19+Wd7e3nbtL168qClTpmjLli06d+6c/P391aZNG/Xr10+enp55dBQAAAAAAAAAAAAAgNySL58At1gsGjBggEaMGKHQ0FBVq1ZNDz30kK5cuaIZM2aoY8eOunjxoq39+fPn1alTJ3333Xdyc3NTs2bNZLFYNGPGDHXu3FmxsbF5eDQAAAAAAAAAAAAAgNyQLwvgS5cu1bp161S+fHmtXr1ac+fO1ddff61169apefPmCg8P1+jRo23tR48ercjISPXp00erVq3SxIkT9fPPP+uxxx7T4cOHNXny5Dw8GgAAAAAAAAAAAABAbsi3BXBJGjJkiAICAmzLvby8NHbsWJlMJq1fv17x8fE6deqU1q1bp1KlSmnAgAG2tq6urho1apQ8PT21aNEixcfH5/pxAAAAAAAAAAAAAAByT74sgPv4+Oj+++9X7dq1U6wrWrSoihQposTEREVHR2vz5s2yWCxq2rSpXFxc7NoWLlxYDRs21PXr17V9+/Zcih4AAAAAAAAAAAAAkBfyZQF86tSpWrNmjXx9fVOsi4iIUExMjFxcXFS0aFEdOXJEkhQUFJTqvipWrChJtnYAAAAAAAAAAAAAAMeULwvgd/LFF19Ikpo1a6ZChQrpwoULkiR/f/9U21uXX7x4MVfiAwAAAAAAAAAAAADkDee8DiAj5s6dq9WrV8vd3V2DBg2SJF2/fl2S5Obmluo21uXWdlnh7HzP3S8AZIiTk+Oc4450LEBGOdL570jHAgAAAAAAAADIefdMAXzOnDkaO3asTCaTxowZo8DAQEmSk5OTJMlkMqW6nWEYdv/NLLPZJF9fzyztA0Du8fZ2z+sQAGQDPssAAAAAAAAAgIzI9wVwwzD0ySefaMaMGXJyctKYMWPUrl0723oPDw9J0o0bN1Ld3rrc3T1rP6BbLIauXMn6U+RAfubkZHaYYtOVK3FKTrbkdRhAnuCzDABA7vL2dmfUEgAAAAAA8ol8XQCPj4/XW2+9pbVr18rNzU2ffvqpWrZsademePHikmSbC/x2d5sjPCOSkvgBHrhXJCdb+MwCDoDPMgAAAAAAAAAgI/JtATw2Nla9evXSX3/9JT8/P3311VeqVatWinZBQUGSpOPHj6e6n6NHj0qSgoODcy5YAAAAAAAAAAAAAECey5djtCUmJqpPnz7666+/VK5cOS1atCjV4rckNW7cWJK0ceNGJScn2627evWqtm/fLg8PD9WtWzfH4wYAAAAAAAAAAAAA5J18WQCfPHmydu3aJX9/f82dO1cBAQFpti1TpoyaN2+u06dPa/z48TIMQ5KUkJCgESNG6Nq1a3r++efl5eWVW+EDAAAAAAAAAAAAAPJAvhsC/fLly5o9e7Ykyc/PT+PHj0+z7ZAhQ1SsWDENHz5cBw8e1KxZs7Rp0yZVqlRJ+/fv1z///KNq1aqpf//+uRU+AAAAAAAAAAAAACCP5LsC+N69exUXFydJCg0NVWhoaJptX3vtNRUrVkxlypTRkiVLNGnSJP3666/auHGjSpcurVdeeUW9e/eWp6dnboUPAAAAAAAAAAAAAMgj+a4A3qRJEx0+fDjD25UoUUKjR4/OgYgAAAAAAAAAAAAAAPeCfDkHOAAAAAAAAAAAAAAAGZXvngAHAAAAAABAwWI2m2Q2m3Jk305OPP8BAAAAFCQUwAEAAAAAAJBnzGaTfHw8KFQDAAAAyBYUwAEAAAAAAJBnzGaTnJzM+nLBb4o8fznb918ruLSea1M72/cLAAAAIH+iAA4AAAAAAIA8F3n+ssIio7N9v6X9vbN9nwAAAADyL8aWAgAAAAAAAAAAAAA4hCwVwFesWKFdu3bdtd2GDRs0ceLErHQFAAAAAECBRO4NAAAAAED6ZakAPmTIEH3//fd3bbdy5UrNmjUrK10BAAAAAFAgkXsDAAAAAJB+GZoDfMWKFUpKSrJbFh4eriVLlqS5TWxsrH7//Xe5uLhkLkIAAAAAAAoQcm8AAAAAADIvQwXwgwcPau7cuTKZTJIkk8mkvXv3au/evXfczjAMPfXUU5mPEgAAAACAAoLcGwAAAACAzMtQAXzAgAGKjY21/X358uUqW7as6tatm+Y2hQoVUvny5dW5c+fMRwkAAAAAQAFB7g0AAAAAQOZlqABeuHBhjRs3zvb35cuXq3bt2nbLAAAAAABA5pF7AwAAAACQeRkqgN8uNDQ0u+IAAAAAAACpIPcGAAAAACD9slQAv1VUVJTi4uJkGEaabQICArKrOwAAAAAAChxybwAAAAAA7izLBfBvv/1W06dP16VLl+7YzmQy6e+//85qdwAAAAAAFDjk3gAAAAAApE+WCuDLli3Thx9+KElydXWVr6+vnJycsiUwAAAAAABA7g0AAAAAQEZkqQA+b948mUwmDRs2TJ06dZKLi0t2xQUAAAAAAETuDQAAAABARmSpAH78+HHVrl1bXbt2za54AAAAAADALci9AQAAAABIvywVwN3d3eXr65tdsQAAAAAAgNvkZO5tsVi0ePFiLVu2TEePHlViYqJKly6tli1b6uWXX5a3t7dd+4sXL2rKlCnasmWLzp07J39/f7Vp00b9+vWTp6dnjsQIAAAAAEBGmLOycf369bVv3z7FxcVlVzwAAAAAAOAWOZV7WywWDRgwQCNGjFBoaKiqVaumhx56SFeuXNGMGTPUsWNHXbx40db+/Pnz6tSpk7777ju5ubmpWbNmslgsmjFjhjp37qzY2NhsjQ8AAAAAgMzIUgF80KBBiouL07vvvqvLly9nV0wAAAAAAOD/5VTuvXTpUq1bt07ly5fX6tWrNXfuXH399ddat26dmjdvrvDwcI0ePdrWfvTo0YqMjFSfPn20atUqTZw4UT///LMee+wxHT58WJMnT8622AAAAAAAyKwsDYG+cOFC1axZUz/99JMtafb29pbJZErR1mQyad68eVnpDgAAAACAAiencu+lS5dKkoYMGaKAgADbci8vL40dO1YPPfSQ1q9fr/j4eJ0/f17r1q1TqVKlNGDAAFtbV1dXjRo1Sps3b9aiRYv0+uuvy83NLYtHDAAAAABA5mWpAD579mzb/yclJenYsWNptk0tMQcAAAAAAHeWU7m3j4+P7r//ftWuXTvFuqJFi6pIkSKKiYlRdHS0Nm/eLIvFoqZNm8rFxcWubeHChdWwYUNt2LBB27dvV9OmTdMdAwAAAAAA2S1LBfA5c+ZkVxwAAAAAACAVOZV7T506Nc11ERERiomJkYuLi4oWLaojR45IkoKCglJtX7FiRW3YsEFHjhyhAA4AAAAAyFNZKoDXr18/u+IAAAAAAACpyIvc+4svvpAkNWvWTIUKFdKFCxckSf7+/qm2ty6/ePFirsQHAAAAAEBaslQAv1ViYqIOHTqkM2fOqFixYqpbt67++ecflS5dOru6AAAAAACgQMuN3Hvu3LlavXq13N3dNWjQIEnS9evXJSnN+b2ty63tssLZ2Wz3dycncxot7y3pPQ5HOV6p4B2zoxwHAAAAcK/LcgE8KSlJX375pb777jtdvXpVktShQwfVrVtX77zzjq5du6bPP/9c5cqVy3KwAAAAAAAURLmVe8+ZM0djx46VyWTSmDFjFBgYKElycnKSlPYc44Zh2P03s8xmk3x9PbO0j/zK29s9r0PIdQXtmAva8QIAAAD5VZYK4ElJSXr55Ze1bds2OTs7q3r16tq/f79t/bVr1/T333+ra9euWrFihYoVK5blgAEAAAAAKEhyI/c2DEOffPKJZsyYIScnJ40ZM0bt2rWzrffw8JAk3bhxI9Xtrcvd3bNWALRYDF25Yv8UuZOT2SEKi1euxCk52XLXdo5yvFLBO+b0Hi8AAACAjPP2dk/3qEtZKoB/9913+u2339SoUSONHTtWxYsXV+XKlW3r58+fr5EjR2rFihWaOXOm3nnnnax0BwAAAABAgZPTuXd8fLzeeustrV27Vm5ubvr000/VsmVLuzbFixeXJNtc4Le72xzhGZGU5JgFxORki8MeW1oK2jEXtOMFAAAA8qssTU60fPly+fj4aMKECbZk+FZubm4aNWqUihcvrs2bN2elKwAAAAAACqSczL1jY2PVo0cPrV27Vn5+fpozZ06K4rckBQUFSZKOHz+e6n6OHj0qSQoODs5Q/wAAAAAAZLcsFcDDwsJUr149eXqmPT+Xi4uLatasqX/++ScrXQEAAAAAUCDlVO6dmJioPn366K+//lK5cuW0aNEi1apVK9W2jRs3liRt3LhRycnJduuuXr2q7du3y8PDQ3Xr1k13/wAAAAAA5IQsFcCdnZ115cqVu7aLiYmRs3OWRlsHAAAAAKBAyqnce/Lkydq1a5f8/f01d+5cBQQEpNm2TJkyat68uU6fPq3x48fLMAxJUkJCgkaMGKFr167p+eefl5eXV7r7BwAAAAAgJ2SpKl2lShXt379fkZGRKlOmTKptIiIitH//ftWsWTMrXQEAAAAAUCDlRO59+fJlzZ49W5Lk5+en8ePHp9l2yJAhKlasmIYPH66DBw9q1qxZ2rRpkypVqqT9+/frn3/+UbVq1dS/f/+MHxwAAAAAANksS0+Ad+7cWXFxcerXr5/+/vvvFOsPHz6s1157TQkJCerYsWNWugIAAAAAoEDKidx77969iouLkySFhoZq1apVaf65du2apJtPgS9ZskTPPvusrl69qo0bN8rV1VWvvPKK5syZc8ch2gEAAAAAyC1ZegK8bdu22rZtm5YsWaJnnnlGhQsXlslk0pYtW9SsWTOdO3dOhmGoXbt2euKJJ7IrZgAAAAAACoycyL2bNGmiw4cPZziWEiVKaPTo0RneDgAAAACA3JLliblHjx6t2rVra+bMmTp58qQkKTo6WpJUunRpde/eXd26dctqNwAAAAAAFFjk3gAAAAAApE+WC+CS1LFjR3Xs2FEXLlzQmTNnZLFY5O/vn+bcZAAAAAAAIGPIvQEAAAAAuLsszQFuFR0drR07dsjf3181a9ZU7dq1FRcXp++++04XLlzIji4AAAAAACjQyL0BAAAAALi7LBfAv//+ezVp0kQffvih3fK9e/dq1KhRat26tX788cesdgMAAAAAQIFF7g0AAAAAQPpkqQD+22+/acSIEXJ2dlbDhg3t1tWtW1c9e/aUYRgaPHiw/vjjjywFCgAAAABAQUTuDQAAAABA+mWpAD5jxgw5Oztrzpw5evvtt+3WlS9fXm+99ZbmzJkjk8mk6dOnZylQAAAAAAAKInJvAAAAAADSL0sF8CNHjqhBgwaqUaNGmm1q1KihunXras+ePVnpCgAAAACAAoncGwAAAACA9MtSATwuLk7u7u53befj46OkpKSsdAUAAAAAQIFE7g0AAAAAQPplqQBevnx57dy5U7GxsWm2uXHjhnbt2qWyZctmpSsAAAAAAAokcm8AAAAAANIvSwXwxx9/XJcvX9aAAQN08eLFFOujo6P1xhtv6NKlS+rQoUNWugIAAAAAoEAi9wYAAAAAIP2cs7Jx165d9eOPP2rbtm1q1qyZqlevrlKlSkmSzp49q4MHDyohIUE1a9ZUjx49siNeAAAAAAAKFHJvAAAAAADSL0sFcBcXF82aNUuff/65li1bpj179mjPnj229YUKFVLnzp311ltvydXVNauxAgAAAABQ4JB7AwAAAACQflkqgEuSp6enhg0bprffflsHDhzQhQsXlJycLH9/f1WrVk0eHh7ZEScAAAAAAAUWuTcAAAAAAOmTpQJ4t27dVL58eX3wwQdydXVVSEhIdsUFAAAAAABE7g0AAAAAQEZkqQC+b98+mc3m7IoFAAAAAADchtwbAAAAAID0y1IG7enpKcMwsisWAAAAAABwG3JvAAAAAADSL0sF8L59+2rHjh365ptvlJCQkF0xAQAAAACA/0fuDQAAAABA+mVpCPSIiAiVK1dO48eP12effaZy5crJ29s71aHZTCaT5s2bl5XuAAAAAAAocMi9AQAAAABIvywVwGfPnm37/6SkJB0/fjzNtiaTKStdAQAAAABQIJF7AwAAAACQflkqgM+ZMye74gAAAAAAAKkg9wYAAAAAIP2yVACvX79+dsUBAAAAAABSQe4NAAAAAED6ZakAfqvExEQdOnRIZ86cUbFixVS3bl39888/Kl26dHZ1AQAAAABAgUbuDQAAAADAnWW5AJ6UlKQvv/xS3333na5evSpJ6tChg+rWrat33nlH165d0+eff65y5cplOVgAAAAAAAoicm8AAAAAANLHnJWNk5KS9PLLL2vq1KmKi4tT9erVZRiGbf21a9f0999/q2vXrrp48WKWgwUAAAAAoKAh9wYAAAAAIP2yVAD/7rvv9Ntvv+nhhx/Whg0btHjxYrv18+fP15NPPqmLFy9q5syZWQoUAAAAAICCiNwbAAAAAID0y1IBfPny5fLx8dGECRNUvHjxFOvd3Nw0atQoFS9eXJs3b85KVwAAAAAAFEjk3gAAAP/H3n2HR1Hu7x+/dxNCEiD0DhZaoii9K6IEaUqJgKBoLEiRJng8Ah4QEQRBhKOCIPIFKR4QhYQqhK70UKM0FZQSMKGXQAhJ9vcHv0RjAqTtzu7M+3Vd5zo682TzedzN7t7zmXkGAIDMy1ED/I8//lCdOnWUL1++247JkyePqlWrplOnTuXkVyk8PFyBgYHasmVLhvvr16+vwMDA2/7vxo0bOfr9AAAAAAAYwZXZGwAAAAAAT+edox/29tbly5fvOu7ixYvy9s7+r4qKitLIkSNvuz86OloXL15UyZIlVa9evQzH2O056vUDAAAAAGAIV2VvAAAAAADMIEfJ+IEHHtBPP/2k6OholS1bNsMxJ06c0E8//aRq1apl63esW7dOgwYN0tWrV2875uDBg5Kkli1b6p133snW7wEAAAAAwB25InsDAAAAAGAWObos+rnnntP169fVu3dvHThwIN3+w4cPq1+/fkpISFDHjh2z9NgxMTEaMmSIevfurZs3b6pYsWK3Hbt//35JUtWqVbM2AQAAAAAA3JwzszcAAAAAAGaToyvAW7durS1btui7775Thw4dVKBAAdlsNv344496/PHHFRMTI4fDoaeeekrt2rXL0mNPnDhRYWFheuihhzR69GiNGjVKZ8+ezXBsyhXgDz30UE6mAwAAAACA23Fm9gYAAAAAwGxyfHOwUaNGqUaNGvq///s//f7775KkCxcuSJLKlCmjl156SaGhoVl+3AoVKmjs2LFq27btXe/fvX//fvn6+urnn3/W0KFD9euvv8pms6lWrVrq3bu3qlevnvWJAQAAAADgJpyVvQEAAAAAMJscN8AlqWPHjurYsaPOnDmj06dPKzk5WcWLF7/tvckyo0ePHpkad+7cOcXGxkqS3n77bdWoUUP169fXL7/8og0bNmjTpk366KOP1Lp162zXAgAAAACA0ZyRvQEAAAAAMJssN8CTkpL0v//9TxERETp79qzKlCmjNm3aqH379ipevLiKFy/ujDpvK+X+34ULF9aUKVNUs2ZNSZLD4dCsWbM0ZswYDRkyRLVq1VKpUqVy9Lu8vXN0y3TA7Xl5mec1bqa5AFllpte/meYCAEBWuFv2BgAAAADAU2SpAZ6QkKBu3bpp586dcjgckqTff/9dW7Zs0fr16/XJJ584pcg7ady4sX788Uc5HA6VLFkydbvNZtPLL7+syMhIrVmzRt9995369u2b7d9jt9tUuHC+3CgZgAsEBPgZXQKAXMDfMgDAitwxewMAAAAA4Cmy1ACfP3++IiMjVbJkSXXv3l3ly5fXL7/8ounTpysiIkKLFy9Wu3btnFVrhmw2m0qUKHHb/U888YTWrFmjn3/+OUe/JznZocuXr+XoMQB35+VlN02z6fLl60pKSja6DMAQ/C0DAOBaAQF+ubpqiTtmbwAAAAAAPEWWGuArV66Ur6+v5s2bpzJlykiSmjRposaNGyskJETLly93uxCesizc9evXc/xYiYkcgAc8RVJSMn+zgAnwtwwAsCJPzN4AAAAAALiLLJ2ifuTIEdWpUyc1gKcICgpS1apVdejQoVwtLjO++eYbDRgwQGvWrMlw/4kTJyQpx/f/BgAAAADAFdwxewMAAAAA4Cmy1ACPi4tTwYIFM9xXrlw5Xbx4MTdqypKYmBh9//33+vbbb9PtczgcWrx4sSTp0UcfdXVpAAAAAABkmTtmbwAAAAAAPEWWGuCJiYny8vLKcF+ePHl08+bNXCkqK0JCQuTj46MNGzZowYIFqduTk5P16aefKioqSpUqVVLLli1dXhsAAAAAAFnljtkbAAAAAABPkaV7gLuj8uXL67333tPQoUM1bNgwzZ07V/fdd58OHTqkY8eOqVixYvrss8+UJ08eo0sFAAAAAAAAAAAAADhRlq4Ad1cdOnTQ119/raZNmyomJkbr1q1TYmKiXnzxRS1ZskQVKlQwukQAAAAAAAAAAAAAgJN5zBXgc+bMueP+WrVqacqUKS6qBgAAAAAAAAAAAADgbrLcAF+zZo2Cg4PTbb9w4YIkZbhPkmw2m9asWZPVXwcAAAAAgOWQvQEAAAAAyJ4sN8CvXbuma9eu3XZ/dHR0htttNltWfxUAAAAAAJZE9gYAAAAAIHuy1ACfPXu2s+oAAAAAAAAiewMAAAAAkBNZaoDXq1fPWXUAAAAAAACRvQEAAAAAyAm70QUAAAAAAAAAAAAAAJAbaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMwdvoAgAAAAAAgHsIDw/XoEGDNHPmTDVq1Cjd/vr16+vixYu3/fmoqCjlzZvXiRUCAAAAAHBnNMABAAAAAICioqI0cuTI2+6Pjo7WxYsXVbJkSdWrVy/DMXY7C80BAAAAAIxFAxwAAAAAAItbt26dBg0apKtXr952zMGDByVJLVu21DvvvOOq0gAAAAAAyBIa4AAAAAAAWFRMTIz++9//KiwsTL6+vipWrJjOnj2b4dj9+/dLkqpWrerKEgEAAAAAyBLWJgMAAAAAwKImTpyoRYsWqWrVqvrmm29UoUKF245NuQL8oYceclV5AAAAAABkGVeAuzm73Sa73ea0x09Odig52eG0xwcAAAAAuK8KFSpo7Nixatu27V3v371//375+vrq559/1tChQ/Xrr7/KZrOpVq1a6t27t6pXr+6iqgEAAAAAuD0a4G7MbrepcGE/2e1eTvsdyclJunDhOk1wAAAAALCgHj16ZGrcuXPnFBsbK0l6++23VaNGDdWvX1+//PKLNmzYoE2bNumjjz5S69atnVkuAAAAAAB3RQPcjd26+ttLvy/7UtfPnc71x/crWlr3P91ddruNBjgAAAAA4LZS7v9duHBhTZkyRTVr1pQkORwOzZo1S2PGjNGQIUNUq1YtlSpVKke/y9s77ZXoXl7muHtbZudhlvlK1puzWeYBAAAAeDoa4B7g+rnTuh5z3OgyAAAAAAAW1bhxY/34449yOBwqWbJk6nabzaaXX35ZkZGRWrNmjb777jv17ds327/n1kpo+XKjZLcTEOBndAkuZ7U5W22+AAAAgLuiAQ4AAAAAAO7IZrOpRIkSt93/xBNPaM2aNfr5559z9HuSkx26fPlamm1eXnZTNBYvX76upKTku44zy3wl6805s/MFAAAAkHUBAX6ZXnWJBjgAAAAAAMiR4sWLS5KuX7+e48dKTDRnAzEpKdm0c7sdq83ZavMFAAAA3BU3JwIAAAAAAHf0zTffaMCAAVqzZk2G+0+cOCFJOb7/NwAAAAAAOcUV4AAAAAAA4I5iYmL0/fff6/r162rWrFmafQ6HQ4sXL5YkPfroo0aUBwAAAABAKq4ABwAAAAAAdxQSEiIfHx9t2LBBCxYsSN2enJysTz/9VFFRUapUqZJatmxpYJUAAAAAAHAFOAAAAAAAuIvy5cvrvffe09ChQzVs2DDNnTtX9913nw4dOqRjx46pWLFi+uyzz5QnTx6jSwUAAAAAWBxXgAMAAAAAgLvq0KGDvv76azVt2lQxMTFat26dEhMT9eKLL2rJkiWqUKGC0SUCAAAAAMAV4AAAAAAA4JY5c+bccX+tWrU0ZcoUF1UDAAAAAEDWcQU4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEzB2+gCAAAAAMAV7Hab7HabU39HcrJDyckOp/4OAAAAAAAA3B4N8Bxy5kE0Ly8u0AcAAAByg91uU+HCfrLbvZz6e5KTk3ThwnWa4AAAAAAAAAbxmAZ4eHi4Bg0apJkzZ6pRo0bp9p89e1aff/65fvzxR8XExKh48eJq2bKlevfurXz58jmlJrvdpkKF/GlUAwAAAG7u1omrXvp92Ze6fu60U36HX9HSuv/p7rLbbTTAAQAAAAAADOIRDfCoqCiNHDnytvtjY2PVpUsXRUdHq0qVKnr88cf1008/afr06frxxx/1v//9T/nz58/1uux2m7y87Jo8b7OiYy/l+uNXDyyjzi1r5PrjAgAAAFZ1/dxpXY85bnQZAAAAAAAAcBK3b4CvW7dOgwYN0tWrV287ZtSoUYqOjlaPHj30r3/9S5KUkJCgt99+W99//70mTZqkwYMHO63G6NhL+iP6Qq4/bpniAbn+mAAAAAAAAAAAAABgVm67dndMTIyGDBmi3r176+bNmypWrFiG444fP67Vq1erdOnS6t+/f+p2Hx8fjRw5Uvny5dM333yj+Ph4V5UOAAAAAAAAAAAAADCA2zbAJ06cqEWLFqlq1ar65ptvVKFChQzH/fDDD0pOTlaTJk2UJ0+eNPsKFCigBg0a6Nq1a9q+fbsrygYAAAAAAAAAAAAAGMRtG+AVKlTQ2LFj9e233yowMPC243755RdJUpUqVTLcX6lSpTTjAAAAALgnu90mb2+7U/7n5eW20QcAAAAAAAC5yG3vAd6jR49MjTtz5owkqXjx4hnuT9l+9uzZ3CkMAAAAQK6z220qVMifRjUAAAAAAAByxG0b4Jl17do1SZKvr2+G+1O2p4zLCW/vtAfjzHJwzizzQM6Z6bVgprkAWWWm17+Z5gLgzry8bl2lPXneZkXHXsr1x68eWEadW9bI9cfNCO9dAAAAAAAAxvH4BriXl5ckyWazZbjf4XCk+f/sstttKlw4X44ew10FBPgZXQKQ63hdA+bA3zJgPdGxl/RH9IVcf9wyxQNy/TFvh/cuAAAAAAAA43h8A9zf31+SdOPGjQz3p2z388vZQajkZIcuX057FbmXl90UB7cuX76upKRko8uAGzDLa1ridQ1r428ZgCfivQueLCDAjyv/AQAAAABwEx7fAC9RooSkv+4F/k93u0d4ViQmmvMgVlJSsmnnBuvidQ2YA3/LADwR710AAAAAAADG8fhT1KtUqSJJOnLkSIb7f/31V0lSYGCgy2oCAAAAAAAAAAAAALiexzfAGzduLElav369kpKS0uy7cuWKtm/fLn9/f9WuXduI8gAAAAAAAAAAAAAALuLxDfCyZcvqiSee0MmTJ/XRRx/J4XBIkhISEvTuu+8qLi5OXbp0Uf78+Q2uFAAAAAAAAAAAAADgTB5/D3BJGjZsmPbv36+ZM2dq48aNqly5sn766SedOnVKVatWVd++fY0uEQAAAAAAAAAAAADgZB5/Bbh06yrw7777Tp06ddKVK1e0fv16+fj4qFevXpo9e7by5ctndIkAAAAAAAAAAAAAACfzmCvA58yZc8f9JUuW1KhRo1xUDQAAAAAAAAAAAADA3ZjiCnAAAAAAAAAAAAAAAGiAAwAAAAAASVJ4eLgCAwO1ZcuWDPefPXtW77//vp588klVq1ZNwcHB+uijjxQXF+fiSgEAAAAAyBgNcAAAAAAAoKioKI0cOfK2+2NjY/Xss8/q66+/lq+vrx5//HElJydr+vTpeu6553T16lUXVgsAAAAAQMZogAMAAAAAYHHr1q1Tt27d7tjEHjVqlKKjo9WjRw8tXbpUn376qVatWqVWrVrp8OHDmjRpkgsrBgAAAAAgYzTAAQAAAACwqJiYGA0ZMkS9e/fWzZs3VaxYsQzHHT9+XKtXr1bp0qXVv3//1O0+Pj4aOXKk8uXLp2+++Ubx8fGuKh0AAAAAgAzRAAcAAAAAwKImTpyoRYsWqWrVqvrmm29UoUKFDMf98MMPSk5OVpMmTZQnT540+woUKKAGDRro2rVr2r59uyvKBgAAAADgtmiAAwAAAABgURUqVNDYsWP17bffKjAw8LbjfvnlF0lSlSpVMtxfqVKlNOMAAAAAADCKt9EFAAAAAAAAY/To0SNT486cOSNJKl68eIb7U7afPXs2dwoDAAAAACCbaIADAAAAAIA7unbtmiTJ19c3w/0p21PG5YS3d9rF6ry8zLF4XWbnYZb5Stabs1nmAQAAAHg6GuAAAAAAAOCOvLy8JEk2my3D/Q6HI83/Z5fdblPhwvly9BjuKiDAz+gSXM5qc7bafAEAAAB3RQMcAAAAAADckb+/vyTpxo0bGe5P2e7nl7MGYHKyQ5cvp72K3MvLborG4uXL15WUlHzXcWaZr2S9OWd2vgAAAACyLiDAL9OrLtEABwAAAAAAd1SiRAlJf90L/J/udo/wrEhMNGcDMSkp2bRzux2rzdlq8wUAAADcFTcnAgAAAAAAd1SlShVJ0pEjRzLc/+uvv0qSAgMDXVYTAAAAAAAZoQEOAAAAAADuqHHjxpKk9evXKykpKc2+K1euaPv27fL391ft2rWNKA8AAAAAgFQ0wAEAAAAAwB2VLVtWTzzxhE6ePKmPPvpIDodDkpSQkKB3331XcXFx6tKli/Lnz29wpQAAAAAAq+Me4AAAAAAA4K6GDRum/fv3a+bMmdq4caMqV66sn376SadOnVLVqlXVt29fo0sEAAAAAIArwAEAAAAAwN2VLVtW3333nTp16qQrV65o/fr18vHxUa9evTR79mzly5fP6BIBAAAAAOAKcAAAAAAAcMucOXPuuL9kyZIaNWqUi6oBkBN2u012u81pj5+c7FByssNpjw8AAABkFw1wAAAAAAAAwETsdpsKF/aT3e7ltN+RnJykCxeu0wQHAACA26EBDgAAAAAAAJjIrau/vfT7si91/dzpXH98v6Kldf/T3WW322iAAwAAwO3QAEeWOHv5LFdgiS4AAAAAAGAF18+d1vWY40aXAQAAALgUDXBkmt1uU6FC/vLysjvtdziSk2WzO+/xJZboAgAAAAAAAAAAAMyKBjgyzW63ycvLrsnzNis69lKuP371wDLq3LKG05bnkliiCwAAAAAAAAAAADAzGuDIsujYS/oj+kKuP26Z4gGSWJ4LAAAAAAAAAAAAQPY4d61pAAAAAAAAAAAAAABchAY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATMHb6AIAAAAAAAAAK7HbbbLbbU57fC8vrnkBAACAddEABwAAAAAAAFzEbrepUCF/mtQAAACAk9AABwAAAAAAAFzEbrfJy8uuyfM2Kzr2klN+R/XAMurcsoZTHhsAAABwdzTAAQAAAAAAABeLjr2kP6IvOOWxyxQPcMrjAgAAAJ6AtZYAAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCt5GF5Cb1q1bp9dff/22+1u3bq2JEye6sCIAAAAAAAAAAAAAgKuYqgF+4MABSVLdunVVqlSpdPtr1qzp6pIAAAAAAAAAAAAAAC5iygb40KFDFRQUZHA1AAAAAAAAAAAAAABXMtU9wA8cOKC8efOqUqVKRpcCAAAAAAAAAAAAAHAx0zTAL1y4oNOnTyswMFDe3qa6sB0AAAAAAAAAAAAAkAmm6RSnLH9eunRpffTRR1q7dq1OnTqlYsWKqUWLFurVq5cKFixocJUAAAAAAAAAAAAAAGcxzRXg+/fvlyStWrVK8+bN03333adatWrp0qVLmjFjhp599lmdOXPG4CoBAAAAAAAAAAAAAM5imivADx48KEl6/PHHNX78eBUoUECSdP78eQ0cOFDbtm3TsGHDNHXq1Gz/Dm/vtOcLeHmZ4/yBzM7DLPOVzDWX3GSm/y5mmguQVWZ6/ZtpLgDuzEx/72aaCwAAAAAAgKcxTQN87NixeuONN1SqVCn5+vqmbi9SpIjGjRunli1bav369Tp58qTKlSuX5ce3220qXDhfbpbsNgIC/IwuweWsOGer4TkGzIG/ZQCeiPcuAAAAAAAA45imAe7j46P77rsvw30lS5bUgw8+qJ07d2r//v3ZaoAnJzt0+fK1NNu8vOymOLh1+fJ1JSUl33WcWeYrZX7OVsNzDJgDf8sAPBHvXfBkAQF+lrryf926dXr99ddvu79169aaOHGiCysCAAAAAOAvpmmA302xYsUkSdevX8/2YyQmmvMgVlJSsmnndjtWnLPV8BwD5sDfMgBPxHsXzO7AgQOSpLp166pUqVLp9tesWdPVJQEAAAAAkMoUDfCEhASNGDFCFy5c0Pjx4+Xv759uzIkTJyQpw3AOAAAAAAAyJ6UBPnToUAUFBRlcDQAAAAAAaZlijTYfHx9t2bJFa9eu1Q8//JBu/6FDh3To0CEVKFBANWrUcH2BAAAAAACYxIEDB5Q3b15VqlTJ6FIAAAAAAEjHFA1wSercubMk6cMPP9Tx48dTt589e1bvvPOOkpKS1K1bN/n6+hpVIgAAAAAAHu3ChQs6ffq0AgMD5e1tikXlAAAAAAAmY5q0+uqrryoyMlKbNm3S008/rTp16sjHx0fbt2/XtWvX1KJFC/Xo0cPoMgEAAAAA8Fgpy5+XLl1aH330kdauXatTp06pWLFiatGihXr16qWCBQsaXCUAAAAAwMpM0wD38fHRtGnT9PXXXyssLEy7du2S3W5X5cqV1alTJ3Xs2FE2m83oMgEAAAAA8Fj79++XJK1atUr58uVTvXr1VKpUKf3000+aMWOG1q1bp7lz56p48eIGVwoAAAAAsCrTNMAlycvLS6GhoQoNDTW6FAAAAAAATOfgwYOSpMcff1zjx49XgQIFJEnnz5/XwIEDtW3bNg0bNkxTp07N9u/w9k57tzYvL3PcvS2z8zDLfCXrzdlq85XMNRcAAACYh6ka4AAAAAAAwHnGjh2rN954Q6VKlZKvr2/q9iJFimjcuHFq2bKl1q9fr5MnT6pcuXJZfny73abChfPlZsluIyDAz+gSXM5qc7bafCVrzhkAAADujwY4AAAAAADIFB8fH913330Z7itZsqQefPBB7dy5U/v3789WAzw52aHLl6+l2eblZTdFk+3y5etKSkq+6zizzFey3pytNl8p83MGAAAAciogwC/TKxDRAAcAAAAAALmiWLFikqTr169n+zESE83ZTEtKSjbt3G7HanO22nwla84ZAAAA7o8b9QAAAAAAgLtKSEjQf/7zH/Xu3VvXrl3LcMyJEyckSaVKlXJlaQAAAAAApKIBDgAAAAAA7srHx0dbtmzR2rVr9cMPP6Tbf+jQIR06dEgFChRQjRo1XF8gAAAAAACiAQ4AAAAAADKpc+fOkqQPP/xQx48fT91+9uxZvfPOO0pKSlK3bt3k6+trVIkAAAAAAIvjHuAAAAAAACBTXn31VUVGRmrTpk16+umnVadOHfn4+Gj79u26du2aWrRooR49ehhdJgAAAADAwmiAAwAAAACATPHx8dG0adP09ddfKywsTLt27ZLdblflypXVqVMndezYUTabzegyAQAAAAAWRgMcAAAAAABkmpeXl0JDQxUaGmp0KQAAAAAApMM9wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAK3kYXALg7u90mu93mtMdPTnYoOdnhtMcHAAAAAAAAAAAArIIGOHAHdrtNhQr5y8vLeYslJCUl6+LFazTBAQAAAAAAAAAAgByiAQ7cgd1uk5eXXZPnbVZ07KVcf/yyJQqqz3OPyG630QAHAAAAAAAAAAAAcogGOJAJ0bGX9Ef0BaPLAAAAAAAAAAAAAHAHzlvXGQAAAAAAAAAAAAAAF6IBDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFPwNroAAAAAuCe73Sa73ea0x09Odig52eG0xwcAAAAAAABgPTTAATfg5eW8xRhoLgCAOTm7OW2z2RQQkFd2u5fTfkdycpIuXLjO5xQAAAAAAACAXEMDHDBQwQK+ciQnKyDAz2m/g+YCAJiP3W5ToUL+Tj2BKsXvy77U9XOnc/1x/YqW1v1Pd5fdbuMzCgAAAAAAAECuoQEOGCifr49sdjvNBQBAltjtNnl52TV53mZFx15yyu+oHlhGnVvW0PVzp3U95rhTfgcAAAAAAAAA5DYa4IAboLkAAMiO6NhL+iP6glMeu0zxAKc8LgAAAAAgc5x96yuJ2ycCAMyJBjgAAAAAAAAAAFnkzAa1zWZTQEBe2e1eTnn8FNw+EQBgRjTAAQAAAAAAAADIArvdpkKF/OXlZXfq73HWrRMlbp8IADAvGuAAAAAAANNw9lKhLBMKAACkW985vLzsmjxvs6JjL+X641cPLKPOLWtw60QAALKBBjgAAAAAwBTsdpsKF/Zz6lKhLBMKAAD+Ljr2kv6IvpDrj1umeECuPyYAAFZBAxwAAAAA4BLOvjrby8suu93LaUuFskwoAAAAAADujwY4AAAAAMDpXHWfTEksFQoAAAAAgIXRAAcAAAAAOJ2z75Mp/XWvTAAAAAAAYF00wAEAAAAALuOs+2RK3CsTAAAAAABIzl97DgAAAAAAAAAAAAAAF6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFb6MLAACzs9ttstttTv0dyckOJSc7nPo7AACu5+zPED4/AAAAAAAAYDY0wAFYnjObCzabTQEBeWW3eznl8VMkJyfpwoXrNDEAwETsdpsKFfKXl5fzFm1KSkrWxYvX+PwAAAAAAACAadAAB2BprmguSNLvy77U9XOnnfLYfkVL6/6nu8tut9HAAAATsdtt8vKya/K8zYqOvZTrj1+2REH1ee4RPj8AAAAAAABgKjTAAVias5sL1QPLqHPLGrp+7rSuxxzP9ccHAJhfdOwl/RF9wWmP78yTwFhiHQAAAAAAAK5GAxwA5LzmQpniAbn+mAAA5IaCBXzlSE5WQICf034Ht+gAAAApnHn7MYkT7wAAAPAXGuAAAACABeXz9ZHNbnfabTq4RQcAAEjhituPJSUl68qVeDkczvveQZMdAADAM9AABwAgF3A1AwBPxW06AACAszn79mOB9xVXaJvaKlTIP9cf++9Y3QYAAMAz0AAHACCH7HabChf2k93u5bTfwYEWAAAAAJ7Ombcfc+bKNhKr2wAAAHgSGuAAgFxntauhb83Xi2WEAQAAAMBArGwDAAAAiQY4ACCXuePV0M5uyKfcx46DLQAAAAAAAAAAGMt0DfAdO3Zo6tSpOnjwoOLj4xUYGKiXXnpJrVq1Mro0ALAEd7sa2m63qVAh/9QmNQAAAHKO7A0AAAAA1uXuq8CaqgG+dOlS/fvf/5a3t7fq168vLy8vbd26VQMGDNCRI0fUt29fo0sEALfgzA8nd7sa2m63ycvLrsnzNis69pJTfkf1wDLq3LKGUx4bAADA3ZC9AQAAco+7N5FgPs5+zbkCr+s7c/ZzbLPZFBCQ161Wgf0n0zTAz507p6FDh8rPz0+zZ8/Www8/LEk6cuSIQkNDNWnSJDVr1kxBQUEGVwoAxrLqFdHRsZf0R/QFpzx2meIBTnlcAAAAd0P2BgAAVkITCWbjimPDjuRk2ezOPfbM6/r2XHn8311Wgc2IaRrgX3/9teLj49W9e/fUAC5JFStW1Jtvvql33nlHs2bN0pgxYwysEgCM5+wrorkaGgAAwLzI3gAAwCpoIsGMXHVs2FmvaYnX9d24ckVUd1kFNiOmaYBv2LBBkvTkk0+m2xccHCybzaaNGze6uCoAcF/OuiKaq6EBAADMi+wNAACsgiaSdXj6kuDZWQ7c2ceGeU0bz+oropqmAf7bb79JkipVqpRuX6FChVSsWDGdOXNG586dU9GiRV1dHgAAAAAAHo/sDQAArMbqTSSzM8OS4CwHDqRnigb4pUuXdOPGDeXLl0/58uXLcEyJEiV05swZnTlzhhAOAIAJOfts3eycTQsAgJmQvQHAvbhbBvL0Kyglcl9mePrzzHOMf/L0JcFZDhzImM3hcHj8X8Tp06f1+OOPq1ixYtq8eXOGY5577jnt3r1b8+bNU61atbL8OxyO9B+MNptkt9t16Wq8kpKSs1X7nfjk8VJ+/7y6GXdZjuSkXH98m91LefIFKDk5WZl5FXj6fCXrzdnd5itZb868rs3/HEvWm7M7vq6lW4HFZnNeCHc4HHLm16asPLQVX9epP+e5x1myNE/J8/+Wee/Kws9Z5HVt5vcuZ38GuQuyd/bwfpiJ8R4+Z3ebr2S9Obvj6zr155z48WCzOT8DZbUB7uzPQ4fD4TZzturr2hXZ2yrPseR+79epP+fBX23J3ncZ7+HzlXhd342Z37uy8hlkiivA7f9/6Yg7TTrlgHV2D1zbbDZ5eWX8+AXz+2brMTMrTz7nLoNiz+LSG54+X8l6c3a3+UrWmzOv69znbvOVrDdnd3xdO5OzDy5lhxVf11bk6X/LvHfhn3jv8lxk75zh/fDuPH3O7jZfyXpzdsfXtSe703uyUZydybIzZ17XucuKz7Hkfu/XVuTpf8t8JuOfrP7eZYpXR8rSa/Hx8bcdk5CQIEny9/d3SU0AAAAAAJgJ2RsAAAAA4AlM0wD39/fXlStXbhvEY2NjJUnFixd3ZWkAAAAAAJgC2RsAAAAA4AlM0QC32WyqUqWKJOnIkSPp9l+8eFFnz55VkSJFVKxYMVeXBwAAAACAxyN7AwAAAAA8gSka4JLUuHFjSdKaNWvS7VuzZo0cDoeaNGni6rIAAAAAADANsjcAAAAAwN2ZpgHeoUMH+fn56auvvtLu3btTtx89elT//e9/ZbPZ9MorrxhYIQAAAAAAno3sDQAAAABwdzaHw+EwuojcsmDBAg0bNkxeXl6qX7++fHx8tHXrVt24cUP/+te/1KNHD6NLBAAAAADAo5G9AQAAAADuzFQNcEn64Ycf9OWXX+rnn3+Wl5eXKlWqpFdffVXNmzc3ujQAAAAAAEyB7A0AAAAAcFema4ADAAAAAAAAAAAAAKzJNPcABwAAAAAAAAAAAABYGw1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAAB5Brrly5kuWf2b59uxMqAZBdkyZN0i+//GJ0GQAAAABug+wNeD6yNwAAzkUDHC6XkJCgn3/+WYcOHVJiYuJtx50/f16RkZEurMz1tm/frpkzZ+p///ufTpw4YXQ5ORYaGqqLFy9mauyNGzc0atQovfLKK84tCkCWTJo0SYcPHza6DCDXBQcHa+3atUaXYYjk5GQdP348zTaHw6EVK1Zo1KhR+vjjj7Vv3z6Dqss9p06dUnx8fKbHnzhxQuHh4c4ryADnz5/X1q1btWLFCn3//ffavn17pr+bATAfsvdfyN5kb8DdkL1hVmRvsvc/kb1hFG+jC0DmxcfH6/z58ypTpozRpWTb7Nmz9cknn+jatWuSpAIFCui1117Ta6+9Jrs97fkYmzZt0qBBg3Tw4EEjSs01hw8f1hdffKHDhw+rTJky6tmzp2rVqqX+/ftr7dq1cjgckiRvb2/169dPPXv2NLji7Dt48KBeeOEFffXVVypWrNhtx+3bt0+DBg3SH3/8ccdxZnX+/HkdOXJEdevWNboUl7hy5YrGjh2rUaNGGV2Ky1jtOTaD4OBgvfPOOwoODja6FJd54IEHNG7cOLVp08boUlwiOjo69fuHlWzYsEEjRozQmTNn9PPPP0u6Fcp79+6tjRs3pn4PmT59ukJDQzVkyBAjy82R4ODgdK/pa9euaeTIkXrttddUsWLFNOP37NmjIUOGqH379i6uNPetWrVKX3zxRYbfm202m2rVqqXXXntNjz/+uOuLy0VBQUGy2WxZ+hmbzaYDBw44qSKYFdnbM5G90yN7WyuXkb3hCcje5kf2JnuTvcne7oIrwA2U0dlQCQkJCg8P19mzZ9ONj4iI8OgvB+Hh4Ro9erQCAwM1ZMgQ9ezZU76+vpo4caJeffVVXb161egSc93PP/+sZ599Vhs2bJCfn5/27dunl19+WaNHj9batWvVrVs3hYWFae7cuWrSpIn++9//6vvvvze67GwbNmyYjh49qq5du+r06dPp9t+8eVMff/yxnn/+ef3xxx9q166dli9fbkClueuBBx7Q0qVL02yLj4/XpEmTdPLkyXTjN23apNDQUFeV5xQnT57UyJEj9cwzz+iZZ57R0KFDdezYsXTjIiIi1Lp1ay1cuNCAKnOPFZ9jq7FiQEsJXzCvQ4cOqU+fPnI4HOrWrZuSk5MlSfPmzdOGDRtUvHhxLViwQHv27NHbb7+t2bNne/T3kIxe0zdu3FB4eLhiY2MNqMg1Ro0apQEDBig6Olrt27fXW2+9pffff1/vvvuu+vfvr+DgYO3fv1+vv/66PvzwQ6PLzZG6deuqTp06Wfpf7dq1jS4bboDsTfYme5O9PRXZ2/zPsdWQvWFGZG+yN9nbPbM3V4AbKKMP/Li4OA0ZMkQzZsww3dm5M2fOVN26dTVnzpzUbb1799Z7772nRYsW6eWXX9ZXX32l/PnzG1hl7po4caLKlSunOXPmqEiRIrp27Zp69uypr7/+Wp07d9Zbb72VOrZOnTp64YUX9H//939q1aqVgVVnX9euXVWwYEENHjxYXbt21VdffaV77rlH0q0z1AcNGqRffvlFZcqU0YgRI9S4cWODK84dGX3oX79+XZMnT1bt2rVVrlw5A6pynoMHD+rFF1/U1atX5evrK19fXx04cEArVqzQ/PnzVaVKFV25ckVDhw5VRESEvLy81KNHD6PLzhGrPcdHjx7N8jKYnHEPuJ8vv/xSJUqU0OLFixUQEJC6/euvv5bNZtObb76patWqSZJeeeUV7dixQ/PmzfPY7yG3Y+YDTkuWLNHcuXPVvn17vfvuu/L3989wXFxcnD744APNmjVLNWvWVIsWLVxcae74e44AsoLsTfYme5O9PRHZ+xYzP8dkb8AcyN63kL3J3u6GBrgbMusbxe+//67Bgwen2ebj46PRo0erUKFCmjFjhl577TXNmDHjtm8gnmbPnj168803VaRIEUmSv7+/3njjDb3wwgt69NFH041v1aqVxo0b5+oyc9XTTz+tAgUKaMCAAeratau+/PJLrV27VlOnTlViYqKef/55/etf/1K+fPmMLtXpzPq3/Omnnyo+Pl4ff/yxnnrqKUlSVFSU3nzzTY0aNUrjx49XaGio/vjjDz388MMaNWqUAgMDDa7aOcz6HE+dOlVTp07N0s94+pKZVpXV5Yw83YIFC7Rly5ZMj7fZbBo9erQTK3KuyMhIPfvss2kC+IkTJ3T06FF5e3vrySefTDP+kUce0aeffurqMpED8+bNU40aNe56dnm+fPk0evRoHTlyRN9++63HhvCbN28qT548WfqZffv2qXr16k6qCJ7OrN/lyN5kb7K3OZC9/2LW55jsbR1k7zsje8Pdkb3vzh2zNw1wuIyfn58uXryY4b63335b165d0/z589WrVy99+eWXri3OSfLnz6/Lly+n2RYYGKgmTZrI2zv9n9+FCxeUN29eV5XnNE2aNNH06dP1+uuv65lnnpHD4dC9996rUaNGqU6dOkaXhxyKiopSly5dUgO4JFWrVk1vv/22Bg4cqIEDByo6OlpvvfWWXn311XT3GIT7a9asmWkPnNyJ1QKaJE2ZMkULFizI9HibzaZZs2Y5sSLnioyMzNIVFp7+HF+4cEGlSpVKs23btm2SpOrVq6c7IO7r66sbN264rD7k3G+//Zale9gGBwfrm2++cWJFzvXMM89o/PjxmfqMSkhI0MSJEzV79mzt37/fBdUB7oPsfQvZm+zt6cje5kf2zhxPz2US2ftuPP05JnubH9n79tw5e9MAh8vUr19fs2fP1pNPPqnKlSun2z98+HBdvXpVy5Yt06uvvqomTZoYUGXueuSRR/TVV1+pZs2aatiwoSSpQIEC+uKLL9KN3bdvn+bMmZM6ztPVrl1bs2fP1muvvabz58/r/fffJ4CbxKVLlxQUFJRu+8MPP6ykpCQdPnxYc+bMUY0aNVxfHHJF8+bN1aZNG6PLcDmrBTRJOnLkiI4cOZLp8Z5+1vo777zj0fd0zaqCBQvq/PnzabZt2rRJNptNjzzySLrxR44cSb1yDp7h2rVrKlq0aKbHFy9e3KPvyXb27Fl17NhR/fr1U/fu3W/7nrRr1y698847OnbsmO69914XVwkYj+xN9iZ7mwPZ2/zI3plD9vY8ZG+yt9mQvT0ze9MAh8u8+eabev755xUSEqIHH3xQH330UZo/CpvNpnHjxsnHx0eLFi3S7t27Daw2d7z11luKiorSq6++qjp16tz23gkvvviidu3apSJFiqS5N5mnCwoK0rx58/TKK6/o9ddf1+TJk9WgQQOjy0IOJSYmZni1hK+vrySpR48eBHB4JKsFNEn66KOPLHXApXDhwipbtqzRZbhMrVq1tGLFCnXr1k1eXl46e/asNmzYIElq2bJlmrFXrlzR0qVLVb9+fQMqRXYlJSVleGXj7Xh5eSkxMdGJFTnXsmXLNGTIEE2YMEEbNmzQ2LFjVb58+dT9KcvEptxrr1u3burfv7+BFQPGIHuTvcne5kD2hlmRvc2P7E32Nhuyt2dmbxrgcJn77rtPy5cv1+TJk7Vz587UL+x/Z7fbNXr0aNWsWVOffPKJzp07Z0Cluado0aJauHCh5s+fr4SEhNuO8/X1VceOHfXGG29k6UwidzNkyJAMt9977706efKkevbsqVatWqU5Y8gMZ3EirYceesjoEoBssVpAg/l1795dXbp0UefOnVWvXj2tXbtWN27c0FNPPaUKFSpIunVgde/evRo7dqzOnz+vrl27Glx1zqxevVrHjh1L/ff4+HjZbDYtXrxYu3btSjP2l19+cXV5yKGiRYtq2rRp+vrrr/XRRx+pXbt2Gjx4sJ599lnt2LFD//nPf3TixAkFBgbqgw8+4DsJLIvsTfYme1sDn3PwVGRvmA3Zm+xtNmbJ3jTADXb06NE0S75cuXJFknT48OF0Z5RkZZkUd1W4cGENHTr0ruM6deqkkJCQNG+insrX11cvv/zyHceY5b5rYWFhd9x/48YNhYeHp9lmlhC+c+dOJSUlpf57XFycJGnz5s2KiYlJM9YMV1jciacv03Q7VnmO69atq2LFihldBoBc8PDDD2vKlCn64IMPNGPGDHl5ealNmzYaMWJE6phx48Zp9uzZstvtGjJkiGrVqmVgxTkXERGhiIiIdNv/+f0jhRk+s/554OFOzHLgoWvXrmrQoIGGDRum4cOHa86cOTpy5Ii8vb3Vv39/9ejRI0tn58MayN4ZI3t7JrK3+XNZZpjhe0xGrPIck70B8yB7/4XsfQvZ2z3YHA6Hw+girCooKCjDP3yHw3HH7QcPHnRFeU7ncDh04sQJXbx4UZJUpEgRlStXztiinMzsc46Ojs7Wz3n6WZ8Z/S3//a01o32e/LccFBSk119/XY0aNUqz/cqVK+rdu7cGDx6sqlWrpvu5unXruqrEXGe159iKgoKCLLckmdXmHBYWpjp16qRZsslKLly4ID8/v3RXAW7cuFH79+/XU0895Zb3a8qKHTt2ZOvn6tWrl8uVuE5G9wW9GzN9PkVGRqp37966cuWKbDabevfurX79+hldFtwQ2dvcOTQjZp8z2fsvZs5lZO9bzPwcW5HVcqhkvTmTvcnet0P29lyemr1pgBto0qRJ2fq5vn375nIlrhUVFaXp06dr8+bNunbtWpp9+fPnV9OmTfXKK69k603FXVlxzlZyt7PvbyckJCSXK3GN2x1AlG5/EFGSR3/gW+k5/vuVUVnhyQdZJGsGtB07dqhixYoevfwnYHVWPPAgSVevXtW4ceP03XffKW/evOrevbtWrVqlX375RQ0bNtSoUaNUpkwZo8uEGyF7WyeHWnHOVmKlXCaRvbPCE59jsjfZG4DnIHt7ZvamAQ6XmjFjhsaPHy+73a6aNWuqcuXKCggIUGJioi5evKgDBw7o4MGDstvtGjRokEJDQ40uOcesOOfMmjp1qiIiIrRo0SKjS3G5hIQE+fj4GF1Gtlj1AGJWeepzfKeDLHfiyQdZYA23u1fmnZhlqVBkbP78+dq0aVO2P9dgjA0bNmj48OGKiYlRgwYNNHLkSJUvX143b97Up59+qhkzZsjX11f//ve/1aVLF6PLBQxjxRxqxTlnFtnb83KZRPbOLE99jsneMCuyN/6J7O2ZzJC9aYDDZTZu3KiePXuqYcOGGj16tEqXLp3huOPHj2vEiBHasmWLZsyYoYYNG7q40txjxTlnxfDhw7VgwQKP//I+adKkLAXMqKgoDRkyRMuXL3diVchNVnqOP/vss2yFcE8/yGLFgJadg742m02zZs1yQjXOZ8Xlqu52UC1v3rwqUKCAqlSpoubNm6tTp06y2+0urNBYZvgecurUKRUpUiTd8nq3c+LECe3atUvt27d3bmFO8tZbb2n58uXy9/fX22+/rc6dO6cbs2fPHg0aNEgnTpxQvXr19MEHH5hq2WMgM6yYQ60456www2eeZK1cZlVWeo7J3plH9vYsZO/0yN6e/z2E7O2Z2ZsGuIGs9oH/yiuv6OzZs1q0aJHy5Mlzx7GJiYlq37697r33Xk2ePNlFFeY+K845K8zw4Sfd+pLTrVs3/fvf/77juMTERE2aNEnTp09XUlKSx887s+Lj43X+/Hm3Xg7lbniOzc+qAS2rPHnOVrxX5osvvnjH/UlJSbp8+bKOHz+umzdv6pFHHtHUqVPl7e3togqNZYbvIQ888IDGjRuX5n6C165d08iRI/Xaa6+pYsWKacYvWbJEgwYN8tg5BwUFqXHjxho5cqRKlSp123Hx8fH68MMPNX/+fPn7+2v37t0urBLuiOx9e2bJoVacc1aY4TNPIpfdDdkbnsBqOVSy3pzJ3umRvT3/ewjZO2Punr2t8RfmprJyX5u/n0HkqSH8wIEDevnll+8aRiXJ29tbrVq10pIlS1xQmfNYcc5WVKdOHc2YMUPXr1/Xu+++m+GYw4cPa9CgQTp8+LAKFiyo//znPy6uMvcEBwfrnXfeUXBwcOq2hIQErVixQo8++qiKFSuWZnxERIRHf+BL1nuOrWjt2rVGl+Byhw4dMroEl/LkMJ1dc+bMydS4+Ph4zZs3T+PGjdO8efPuGt7hPjI6l/nGjRsKDw9X27Zt04VwTzdmzJhM3ePT19dX7733np588kk+jyGJ7H0nZsmhVpyzFVktl5G9zf8cWxHZ2/zI3rdH9vZcZO+MuXv2pgFuoMx8+EVHR2vkyJHasGGDChQooAEDBji/MCeJi4tTiRIlMj2+dOnS+vPPP51YkfNZcc5WNGPGDPXv31/z5s3T9evXNXr06NQDZw6HQ9OmTdPkyZOVkJCg1q1ba+jQoSpSpIjBVWdfdHS0rl27lmZbXFychgwZohkzZqQL4WZgtedYko4ePao9e/aoQ4cOqdvOnj2rSZMmaffu3fLz81NwcLBefvllj7zf2j9ZMaAhrYSEBP3222/y9fVVhQoVjC7HpXx9ffXKK69o3759CgsLI4SbgFkX+cpMAP+7+++/X506dXJSNfAkZO87M0MOteKcrchquYzsbf7nWCJ7w3rI3mRvMyF73+Ku2ZsGuJtKSkrSjBkz9Pnnnys+Pl5PPfWUhgwZ4tFfbhMTE7P0Rc3b21sJCQlOrMj5rDhnK/Lx8dHkyZM1ZMgQhYWFKT4+XuPHj9fx48c1ePBgRUVFqXjx4nrvvffUtGlTo8t1GrN+4EvWe47Hjx+vGTNmyOFwKCQkRHa7XVeuXFHnzp116tQpFSpUSGXLltUnn3yidevWac6cOZm62saTWTGgxcTEKCoqSr6+vqpbt26m73Pkzq5cuaIvv/xSe/bsSXOG9tKlSzVq1ChdvnxZ0q0v7qNHj1aNGjUMqtQY9evX1+bNm40uA8iRGzduaNWqVVq0aJF27Nghh8OhPn36GF0W3BjZ2xw51IpztiKr5bLbIXub5zkme6dH9iZ7WwHZG2bgCdmbBrgb2rlzp0aMGKFff/1V9913n4YPH66GDRsaXRZwV5MmTcrS+J9//tlJlbiel5eXxo0bp4CAAM2dO1cnT57Ur7/+qvj4eHXq1EmDBg1S/vz5jS4TOWCV53j16tWaPn26Hn/8cYWGhsput0uSPv/8c0VHR6t69er66quv5Ofnp6ioKL344ov66quv1L17d4MrzzkrBrTo6GhNmDBBe/bs0bp161K3T5s2TZ9++qmSkpLkcDhUsGBBjRw5Us2bNzew2pyJi4tT586ddfToUZUqVUqJiYny9vZWVFSUBg0aJIfDoc6dO6ty5coKDw/XK6+8ovDwcN17771Gl+4yXl5eSk5ONrqMbAsPD8/S+N9//905hcAQe/bs0aJFi/T9998rLi5ODodD99xzjzp37mx0aXBjZG94KrK3+XOZlVnlOSZ7k70lsjfZ2zORva3Nk7I3DXA3cuHCBY0bN07h4eHy8fFRv3791L17d1Msb5Ni586dSkpKytTY3bt3O7ka17DSnLMawqW099gzg6FDh6pQoUKaNGmS7Ha7vvjiCzVp0sTospCLzP4cz58/X9WrV9fUqVNTtzkcDi1ZskQ2m01vvPGG/Pz8JEnVqlVTu3bttHz5co8P4VYMaOfOnVPnzp114cIFVatWLXXOP/74oyZMmCBvb2+9+eabqlKlihYsWKA333xT33zzjapWrWp06dkyY8YMHT9+XP/973/VsmXL1O2TJ0+Ww+HQSy+9pMGDB0uSOnbsqLZt22rq1KkaM2aMUSW73L59+1S6dGmjy8i2wYMHZ+l7hcPhMN33EKuJiYnR4sWLtWjRIh07diz1irj69eure/fuevTRRw2uEO6K7J2Wp+fQFFaaM9nb/LkM5n+Oyd5kb7I32dtTkb2tx1OzNw1wN/Htt99q/PjxunTpkh555BENHz5c99xzj9Fl5boFCxZowYIFmRprljdGK8159uzZRpfgFvr27avChQtr1KhRmj59umrXrm2Ks5PxFzM/x/v3708XqA8cOKBz584pf/78ql+/fpp9Dz/8sJYuXerKEp3CigFt2rRpiouL09dff53mjPpp06bJZrOpT58+qa+Fxx57TB06dNCXX36p//73v8YUnEMRERFq165dmuc3Li4uddmx559/PnV73rx51bZtW3377bcur9MoK1eu1OLFi/Xaa68ZXUq2efLfIzIvISFBa9as0aJFi7R161YlJSXJy8tL9erVU+3atTVlyhSFhoa6bQCH8cje6Xl6Dk1hpTmTvW8xcy7DLWZ+jsneZG+yN9nbU3ny3yMyzwzZmwa4wQ4fPqz33ntPe/fuVbFixTRhwgS1bt3a6LKcwopvjFabc7169bL8Mzt37nRCJa4VGRmZbluVKlXUqVMnLViwQC+99JLefvvt1OWsUtStW9dVJSKHrPQcX7t2TQULFkyzbdu2bZJuzcfLyyvNvsTERI8+eJjCigFtw4YN6tChQ5oAfvHiRe3atUuS9Mwzz6Rut9lsatWqlWbNmuXqMnPNyZMn0zyP0q2/7cTERJUvXz5d86N06dI6d+6cK0vMdUOGDLnj/qSkJMXFxem3337T8ePHdd9993l0CA8JCTG6BEOsXr1ax44dS/33+Ph42Ww2LV68OPXvOcUvv/zi6vJy1YgRI7RixQpdunRJefPmVePGjdWsWTMFBwercOHCio6O1ueff250mXBTZG9zs9qcyd5/MWsusyorPcdkb7I32fsWsrfnIXvfQvZ2/+xNA9xAY8eO1Zw5c5SUlKQnnnhCAwYMUP78+XXq1Kk7/lyZMmVcVGHusuIboxXnnBmnT59WWFiYwsPDdeLECR08eNDoknLkxRdfvGMI2b9/v15++eV02z153kePHk0TTK9cuSLp1oFFb++0Hy1HjhxxaW3OYKXnuESJEjpx4kSabRs2bJDNZtNjjz2WbnxUVJRKlizpqvKcxooB7c8//1SVKlXSbNu+fbuSk5NVqVKldM9r0aJFdenSJVeWmKvsdnu6e2xt3bpVktSoUaN048+fP+/xV5eEhYVlalz58uX10ksvqXfv3h4/59vJ6Pt16dKlTXMQMSIiIt32292XzZPnPG/ePPn7+6tXr1567bXXTPt6Re4je5ufFeecGWTvWzx53mTvtMz0HJO9/0L2Jnt7+vd6svdfyN5/8eQ5myV70wA30MyZM1P/ef369Vq/fn2mfs4Tv9Rlx/nz53XkyBGPPIszu8w85xs3bigiIkKLFi3S9u3bU5ecy+hLvafp06ePR3+gZcfUqVPT3KcqxdixY9Nt8/TlBSVrPcePPfaYFi5cqOeff14lS5bUnj17tHPnTuXJk0ctWrRIM/bXX3/V8uXL9eyzzxpUbe6xYkDLmzevrl+/nmbbli1bZLPZ9Mgjj6Qb/+effyogIMBV5eW6SpUqac+ePerataukW+9Nq1evls1mU9OmTdONX7t2rSpWrOjqMnPV2rVr77g/b968CggIMNU9byVp4cKF+vbbb/X555+rSJEiunDhgpo2bZrufbx///56/fXXDaoyd1htCdyQkBCtWbNGX3zxhWbNmqU6deqknoVerFgxo8uDGyN735mZc+jtmHnOZG9zIXubF9n7L2TvtMjenofsTfY2G7NkbxrgBurbt6/RJbjUAw88oHHjxqlNmzap2+Lj4zV9+nS1b99e5cqVSzN+06ZNGjRokEcfdLDinP9p7969WrRokb7//ntdvXpVklSkSBF16NBBnTt3VtmyZQ2uMOf69etndAkuZaVAmsJKz3Hv3r0VERGhVq1aqUKFCvrll1/kcDjUp08fFSlSRNKt8B0REaHZs2crT5486tatm8FV55wVA1pQUJC2bt2ql156SdJf9/aRpGbNmqUZ63A4tHLlSgUFBbm8ztzSvn17ffDBB3r44Yf1yCOPaMGCBTp16pTuueceNW7cOM3YqVOnau/evRo6dKhB1eYOM3zGZtUbb7yhVatWqUyZMjp16lTq+5YktW3bVuXLl5ckLV68WFOmTFHHjh1VvHhxo8rNsewsgZuYmOiESlxjzJgxGjFihNavX6+lS5fqhx9+0I8//qgRI0aoZs2aqlWrluW+oyBzyN7mz6FWnPM/kb3Nh+xtbmRvsrdE9iZ7ey6y992RvY1HA9xAVgvhDocj3bbr169r8uTJql27drpAagZWnLMkxcbGKjw8XGFhYfrjjz/kcDjk5+enRo0aacuWLXr//fcVHBxsdJnIJisFUisqVqyYvvvuO02ePFl79+7Vgw8+qA4dOqhTp06pY8LCwjRjxgyVLVtWH3/8sUqXLm1gxbnDigGtS5cuevPNNzV69Gg98sgjWrhwoc6dO6cHH3wwzdVQ8fHx+vDDD/Xrr7969AGXLl26aNeuXRozZoxsNpscDocKFiyo8ePHp95D8LvvvtO0adN04sQJ1a5dW88995zBVTtXVFSU9uzZI7vdrnr16ikwMNDoknJkyZIlWrVqlXr27Kn+/funu29i+/bt1bBhQ0lSkyZN9Oyzz+qbb74xzXfyuLg4ORyOO14hs2fPHg0bNkzLli1zYWW5y8fHRy1atFCLFi105coVrVy5UkuWLNGuXbu0a9cu2Ww2ffHFF7p69apatGghX19fo0uGGzDL33lmWTGHWnHOEtnb7Mje5kb2JnuTvcnenorsTfb2lOxNA9yNJCQk6NChQ4qNjZXD4VCJEiUUFBSkvHnzGl2aU2UUVM3OrHP+/vvvtWjRIm3ZskVJSUkKCAhQmzZt1Lx5czVu3FhnzpxJd2ajGUyaNCnLP2Oz2dSnTx8nVON8oaGhev3111O/yFiB1Z7jUqVKaeTIkbfd36FDBzVt2lS1atVKDS+ezooBrXXr1jp8+LCmT5+uOXPmyOFwqFy5cpo4cWLqmP/7v//T559/rri4OLVs2VLt2rUzsOKcsdlsGj9+vLp27ao9e/Yof/78atasWZqzlP/88085HA69/vrr6tmzpyle3wcOHNAXX3yhI0eO6J577lGvXr1UrVo1/ec//9GiRYtSv5PYbDY9/fTTGjNmTLr7SXqKsLAw1axZUwMHDrzr2JQDbhs3bvT4EL5q1SpNmjRJv/32m6Rb95Xr37+/nn766dQx165d04QJEzRv3rx0S056kiFDhqhLly6qXr26JKlAgQLq1KmTOnXqpJiYGC1btkzLli1TVFSUfvrpJ40cOVKtW7fW+++/b3DlcDdkb+sw65zJ3pnnybmM7J05nvwck73J3inI3p7/+iZ7Z4zs7ZnMkr098y/MZM6ePasJEyYoIiJCcXFxafb5+fmpRYsWGjhwoEqUKGFQhUDmDBw4UP7+/nr++ecVHBysunXrpjkDzBOWxcgOqwW0HTt2pDkj2Qqs9hzfjacvP5YRqwa0gQMH6rnnntO+ffuUP39+1atXT3ny5EndnzdvXj388MNq06aNnnnmGQMrzT01a9ZUzZo1M9zXt29fjw9kf7dnzx6FhobK29tbVapU0f79+9W1a1e9+OKLWrhwodq2bauWLVvq2rVrWrdunZYtW6YHHnhAr776qtGlZ8uBAwfUq1evTI9/9NFHNXnyZCdW5HwrVqzQm2++qbx58+rRRx+Vn5+fdu7cqX//+9+p94/86aefNHDgQJ08eVLlypXTiBEjjC4728LCwtSoUaPUEP53JUuWVLdu3dStWzcdOXJES5Ys0dKlS/Xtt9+6XQiHccjeMAuyd+Z5ci4je2eOJz/Hd0P2Jnt7MrI32TsF2dvzmCV70wA32N69e9WzZ09dunRJ1atXV4MGDVSiRAl5e3srNjZWkZGRCg8P17p16zRlyhTVqlXL6JKB2ypXrpxOnjypRYsW6ffff9dPP/2kZs2a6f777ze6NKeaPXu20SXAyaz0HEdGRmbr5/6+bJcns1JAS1GqVCmVKlUqw30vvPCCXnjhBRdXhNwyefJk3XfffZo9e7YKFy4sh8Ohd955RzNnzlTbtm01bty41LFPP/20Ll++rGXLlnlsCI+Pj1dAQEC67QUKFNDUqVP1wAMPpNmeL18+j74nlyTNnTtXRYsW1fz581PvsXb9+nW9/vrr+uyzz1SiRAm9+uqrunHjhl555RW98cYbbrksWW6rWLGiBg4cqIEDB2r37t1GlwM3QfaGmZC9YVZWeo7J3mTvvyN7ezay9y1kb7K3u6EBbqBz586pT58+ypcvnz7//HPVrl07w3EHDhzQgAED1L9/fy1evFhFixZ1caVA5qxZs0b79u3TkiVLtHLlSm3atEkTJkxQhQoV1Lx5c1WtWtXoEp2iXr16dx1z5coV2Wy2O94bBO4rM8+xWbz44otZvmLEZrPpwIEDTqoIyB1DhgzJ8s/YbDaNHj3aCdW4xk8//aTXXntNhQsXlnRrPt26dVNYWJgef/zxdOObN2+uDz/80MVV5p6SJUvq1KlT6bZ7e3tnON8//vjD4++jeOTIEb344oupAVy6dRVr37599cILL2jgwIEqWrSoxo8frxo1ahhXqIFoYkIie8N8yN63R/b2bGTvOyN7wxOQvcne/0T2tgZ3zN40wA00d+5cxcXFpTlrJCMPPvigZs6cqTZt2uh///uf+vXr58IqgaypXr26qlevrnfeeUebNm3S0qVLtXbtWk2ZMkU2m002m03r169XUFCQypYta3S5ucbhcOiHH37Qb7/9pnvvvVePP/64vL29tXXrVo0aNUpHjx6VJD3wwAN688039eijjxpccc6sXr1ax44dy/R4My9JlsIsB1rGjBmTqXGrVq3Shg0bJEnVqlVzYkWuYcWAFhoamuWfsdlsmjVrlhOqcb6wsLBMj/37gShPfo4vX76sYsWKpdmWsrRgoUKF0o339fXV9evXXVGaU1SrVk0rVqxQnz597rpMYkJCglasWKEmTZq4qDrnuHLlisqVK5du+z333CPp1lKK8+fPTz0QYwY7d+5UUlJSln6mffv2zikGHoPsDTMie5O9M0L29hxk78wje3sWsvctZO9byN6eywzZmwa4gdasWaO2bdveMYCnKFu2rEJCQhQREeHRIfyffzQp913bvHmzYmJi0ox1xyUTssOKc5YkLy8vNWnSRE2aNFF8fLxWr16tZcuWafPmzfruu++0aNEi1a9fXx06dNDTTz9tdLk5cvnyZfXo0UP79u2Tw+GQJD388MMaNmyYevToIT8/PzVr1kzXrl3Tvn371LNnT82cOdOjz2xevXq1IiIiMj3eDCH87wda7rnnHj3xxBOmPNASEhJyx/3R0dEaOXKkNmzYoICAAL355pvq3Lmzi6pzHisGtJMnT2ZqXHJysmJiYuRwODz6fpKHDh2665i/v74LFCigAQMGOL8wJ3I4HPL2Tvt1P+U59OTn8na6dOmiF154Qe+//76GDh2abu4pkpOT9e677yo2NlZdunRxcZW5Kzk5Oc09X1Ok3E+wR48epgrgkrRgwQItWLAgU2NT3rfcLYTD9cje1sihVpyzRPYme6dF9vYcZO+7I3t7JrL3LWRvsrenM0P2pgFuoJMnT2bp3h5BQUFZ+pLgjv75R5MSWKZPn57uw8DTP+xTWGnOPXr0UIMGDVSvXj1VrVo1dS6+vr5q06aN2rRpowsXLmjFihVaunSptm7dqm3btnl8CP/000916NAhvfvuu6pfv76io6P1wQcf6KWXXtJ9992nOXPmpJ7td/78eXXs2FEzZszw6BDes2dPNWrUyOgyXMaKB1r+KTExUf/3f/+nqVOn6vr162rbtq0GDx6cekarp7NiQFu3bt1dx+zbt0/vvfee/vzzT5UrV07Dhg1zQWWul5SUpBkzZujzzz9XfHy8nnrqKQ0ZMiTdGdxwb3Xq1FG3bt30f//3f9q2bZteffVV1a9fX6VKlZLD4dCZM2e0fft2ff311zp06JAGDhyooKAgo8t2qjJlyhhdQq579tlnLbukHLKP7G3uHJrCSnMme5O9zYrsTfaWyN5kb7g7snd6ZG/3RAPcQHny5NGNGzcyPT4+Pl7+/v5OrMi5Mru0j5lYbc7btm3TDz/8kLoUVZ06dVS/fn01aNAg9UOucOHC6tq1q7p27aoTJ05o+fLlBledc+vWrVOXLl303HPPSZIqVKigd999V6+++qq6du2aZqmbIkWK6Nlnn9WcOXMMqjZ3VKxY0VQB826seKDl73bs2KERI0boyJEjqlChgoYPH6769esbXZbLWDGgXblyRR9//LEWLFggu92unj17qnfv3sqbN6/RpeW6nTt3asSIEfr111913333afjw4WrYsKHRZeWafy6bGR8fL5vNpsWLF2vXrl1pxv7yyy+uLi/X/fvf/1bZsmU1YcIEvfvuuxk2PPz9/fXee++Z4goaK6pTp47atGljdBnwMGRv87PanMneZG+zInuTvcneZG9PRfYme5uNGbI3DXADValSRRs3bsz0fUA2bNigSpUqObkq57nb0j5mZLU57969WwcOHNDu3bu1Z88e7d27V+vXr5fNZlNAQIDq1q2r+vXrq379+qpSpYrKly+vXr16GV12jp05c0YVK1ZMsy3lbzWjs79Kly6tS5cuuaQ25A4rHmiRbh1QGDt2rJYsWaK8efPqjTfe0GuvvZa6vI8VmD2gZWTx4sUaN26czp07p3r16mn48OHp3uPM4MKFCxo3bpzCw8Pl4+Ojfv36qXv37vLx8TG6tFwVERGR4bKZ4eHhGY735KvhUjz//PMKCQnR+vXrFRkZqT///FMOh0MlSpRQrVq11KxZM4+/Z+TfZXRv0DsdbDHD0qhAVpG9zc9qcyZ7/4XsbS5kb7I32Zvs7anI3mRvsrf7oQFuoHbt2undd9/VihUr1Lp16zuODQ8P15YtWzRhwgQXVWe8kydP6t1339WMGTOMLsVlPH3O3t7eqlatmqpVq6aXX35ZknT69Ok0oXzs2LFKSkpSoUKFVK9ePdWvX1/PP/+8sYXn0M2bN+Xr65tmW0pIySis2Gy2NPemg/uz4oGWb775RhMmTNClS5f02GOPadiwYZm6b6ZZWCWg/d3Ro0c1YsQI7dixQ4ULF9aHH37odvfuyS3ffvutxo8fr0uXLumRRx7R8OHDdc899xhdVq6bPXu20SUYxs/PT61bt77rd2wzuN2BFinjgy2EcFgR2fvOPD2HZoenz5ns/Reyt7mQvcneZG9zIXubH9n7FrK3e6IBbqAOHTooPDxcb7/9tg4fPqyuXbuqRIkSacbExsZq5syZmj17tpo0aaJWrVoZVG3u2Ldvn6ZMmaI9e/ZIkh588EH16dNHderUSR3jcDj01Vdf6dNPP1V8fLxRpeYaK87570qXLq2nnnpKTz31lKRbS/ssWbJEixYt0qpVqxQREeHxIdxq+vbtq8DAQKPLcCkrHWg5dOiQhg8frqioKJUsWVIjR45U8+bNjS7LpawS0FIkJCRo8uTJmjFjhhITE9WpUye99dZbCggIMLq0XHf48GG999572rt3r4oVK6YJEyaYOqSZZSlI3J7VDrSEhISY+v0YzkP2tkYOteKc/47sbT5k71vI3uZF9iZ7mwXZ2/zI3p6JBriB7Ha7pk6dqrfeektffPGFpk2bptKlS6t48eLy8vLSuXPndPz4cTkcDrVq1UoffPCB0SXnyNatW9W9e3clJSXp/vvvl5+fnyIjI/Xyyy9r5syZqlu3rk6ePKl//etfioqKUv78+TVixAijy84RK875n+Lj4xUZGakdO3Zo165d+vnnn3Xz5k35+PikLslmBhcvXtSpU6dS/z3lDOTz58+n2S7dOrvVk/Xt2zfNvyckJOjQoUOKjY1NXeYmKCjIlPcrsoIOHTooOTlZklS0aFHNnTtXc+fOvePP2Gw2zZo1yxXlOZXVApokbdy4USNHjlR0dLQCAwM1YsQIVa9e3eiynGLs2LGaM2eOkpKS9MQTT2jAgAHKnz9/uvfof8roShOzmj9/vjZt2qRJkyYZXUq2ZHZp47/z9Pev7Bxo2blzpxMqcQ2r3eMXuYfsbf4casU5/xPZm+wNz0L2JnuTvdMie3sOsnfmkL2NZ3M4HA6ji4D0448/avHixYqKitKZM2dSv8jWrl1b7dq1U4MGDYwuMcdeeeUVRUVFafr06apZs6YkKSYmRr169VKePHk0ZswYhYaG6ty5c2revLmGDRum4sWLG1x1zlhxzomJidq7d6+2bdumbdu2ad++fbp586by5MmjatWqpQbvmjVrmmY5o6CgoAzv2+JwOO54P5eDBw86syynO3v2rCZMmKCIiAjFxcWl2efn56cWLVpo4MCB6a6u8URBQUH6z3/+o+Dg4NRtly5dUkhIiD7++OPUv+8Uq1ev1ocffuiRz3HTpk2z9XPr1q3L5Upc63YB7W48OaD1799fq1evliQ98cQTCg0NlZeX111/rm7dus4uzSmCgoJS/zkr99ryxL/j7Bo+fLgWLFjgsXPO7PtXcnKyYmJiUj+nPXW+WXH69GmFhYUpPDxcJ06csMScgdshe5szh1pxzmTvv5C9yd6e+ByTvcned0P2Ni+yt3mRvd0LDXC4TIMGDdSxY0e99dZbabZv2rRJ3bt3V8WKFXXmzBm99957Hr/cXAqrzbl79+7auXOn4uPjZbfbVbVqVTVo0ED169dX7dq10y1jZRZDhgzJ1s958plUe/fuVc+ePXXp0iVVr15dDRo0UIkSJeTt7a3Y2FhFRkYqMjJSAQEBmjJlimrVqmV0yTli1QMtVmLFgPb3OUt3n7enB5bsnln9zytvzMzTQ3hm7Nu3T++9954OHjyocuXKadiwYWrSpInRZTnFjRs3FBERoUWLFmn79u2pf8ONGzfWF198YXR5AJzIajlUst6cyd5ZQ/b2HGRv8yN7k71vh+xtLmRvsrc7YAl0D7J9+3YdPnw4W0tMuIMrV66oYsWK6bZXrlxZDodDFy9e1LfffmuKewuksNqcf/zxR+XJk0ft27dXz549dd999xldkkt4cpjOjnPnzqlPnz7Kly+fPv/8c9WuXTvDcQcOHNCAAQPUv39/LV68WEWLFnVxpbmnffv2WQpmVrJz506FhYV5/FKhVgpaKaz23pWd59hs9wa1sitXrujjjz/WggULZLfb1bNnT/Xu3duUS4bu3btXixYt0vfff6+rV69KkooUKaIOHTqoc+fOKlu2rMEVAu6P7O15rDZnsrc1kL3xd2Rvz2W19y6yt7WRvcne7oQGuAdZsWKFFixY4LEhPCkpSd7e6V9yKUtx9erVyzRhNIXV5typUydt3749dZmPChUqqGHDhmrQoIHq1q2rggULGl0icsHcuXMVFxen+fPnq3z58rcd9+CDD2rmzJlq06aN/ve//6lfv34urDJ3ffjhh0aX4Fb+/PNPhYWFKSwsTCdOnJAkS4ZwTw9oISEhWf6Z6OhoJ1TiflIOLq1atcqj79mEWxYvXqxx48bp3LlzqlevnoYPH55hk8STxcbGKjw8XGFhYfrjjz/kcDjk5+enRo0aacuWLXr//ffTLCUK4M7I3p7HanMme1sD2Rtk71vI3uZF9jYXsjfZ293QAIfbMNubYWaYbc4jR46UJJ06dUpbtmzRtm3btHLlSs2dO1d2u11BQUGqX79+aij39/c3uGJkx5o1a9S2bds7BvAUZcuWVUhIiCIiIjw6hIeGhur1119Xw4YNU7clJiZqz549CgoKUoECBdKMX7JkiQYPHqwDBw64ulSnSUhISF3OZ9u2bXI4HHI4HKpfv76ee+45o8tzKasFtBs3bmjlypUKCwtTZGSk9u/fb3RJTpFycCk8PFzHjx+Xw+FQoUKFjC4LOXD06FGNGDFCO3bsUOHChfXhhx+qffv2RpeVq77//nstWrRIW7ZsUVJSkgICAtSmTRs1b95cjRs31pkzZ9SsWTOjywTgZsyWQzPDbHMme1sD2fsWsjfZm+xtLmRv8yF7k73dFQ1wALmuTJky6tixozp27ChJ+vXXX7Vt2zZt3bpVCxcu1MyZM+Xt7a2HHnpIDRs21BtvvGFwxciKkydP6oUXXsj0+KCgIIWFhTmxIufbsWOHOnXqlGbblStXFBoaqhkzZqQJ5ykcDoerynOqfy7nkzKvp556Sn369FGFChUMrtA1rBjQdu/erUWLFmnlypWKi4uTw+FQ5cqVjS4rV6UcXAoLC9O2bduUnJwsh8OhGjVqqEuXLmrdurXRJeZIeHh4lsb//vvvzinExRISEjR58mTNmDFDiYmJ6tSpk9566y0FBAQYXVquGzhwoPz9/fX8888rODhYdevWlZeXV+p+lhAFAHMje5sb2fsWsjfZm+zt+cjeaZG9PQ/Z2zPRAIdL7dy5U0lJSWm2xcXFSZI2b96smJiYdD/j6WcLWXHO/1S5cmVVrlxZL774ohISErRy5Ur973//0969e7Vv3z5CuIfJkyePbty4kenx8fHxpr3iwCxB+58yWs6nUKFCCgkJUY0aNTR8+HC1bt3a9AHc7AEtIzExManP/bFjxyRJ3t7eat26tZ577jnVqVPH4Apzx759+7Rw4cI0B5cCAgJ05coVjRw5Mt1BN081ePDgLIUwh8Ph8aFt48aNGjlypKKjoxUYGKgRI0aoevXqRpflNOXKldPJkye1aNEi/f777/rpp5/UrFkz3X///UaXBsBgVsyhVpzzP5G9zYXs/ReyN9nbbMjeZG+yt2che3smGuBwqQULFmjBggVptqV8iZ0+fXqaN/6UDwJPD6RWnPPfHT9+XPv27dO+ffsUFRWlQ4cO6ebNm8qXL58ee+wx1a1b1+gSkUVVqlTRxo0bM31PxA0bNqhSpUpOrgq5pUePHtq8ebOSkpJUunRpPf/882rWrJnq168vu92u6Oho0x58SGGVgJYiISFBa9as0cKFC7Vt27bUA8cVK1bU0aNH9dFHH6lly5YGV5lzsbGxWrx4scLCwvT777/L4XCoTJkyCgkJUfPmzVWyZEk9+eSTKlKkiNGl5poxY8YYXYJL9e/fX6tXr5YkPfHEEwoNDVVCQoIiIyPv+HOe/F1kzZo12rdvn5YsWaKVK1dq06ZNmjBhgipUqKDmzZuratWqRpcIwCBWzKFWnPPfkb3Nh+xtbmRvsjfZm+ztqcjeZG9PQQPcQKdOncrS+JQzlz2V1T4IJOvN+dKlS4qKikoN3FFRUbp06ZIcDocKFiyoWrVqaeDAgapbt64efPBB2e12o0tGNrRr107vvvuuVqxYcdezcMPDw7VlyxZNmDDBRdUhp3744Qf5+/srNDRUXbt2VfHixY0uySWsGNCioqK0aNEirVixQpcvX5bdblfNmjXVvHlzNW/eXElJSWrWrJny5MljdKm5omnTpkpOTlZQUJB69eql4OBgPfTQQ6n7o6OjDazOOUJCQowuwaUiIiJS/3ndunVav379HcenND8OHjzo7NKcqnr16qpevbreeecdbdq0SUuXLtXatWs1ZcoU2Ww22Ww2rV+/XkFBQSpbtqzR5QKGIHubn9XmTPa2BrK3uZG9yd5kb/Mge5O9yd7uiQa4gZo2bWqppTGy80Hg6R+IVptz/fr1ZbPZ5HA4VLhwYdWrV09169ZV3bp1FRgY6NGvX/ylQ4cOCg8P19tvv63Dhw+ra9euKlGiRJoxsbGxmjlzpmbPnq0mTZqoVatWBlWLrOrbt6+WL1+uqVOn6osvvtD999+vZs2aqVmzZqpWrZrR5TmNFQPas88+Kz8/PzVu3FiPPfaYmjZtmuYgg9nmnJiYKD8/PxUrVkx+fn7plki1gpiYGO3atUuxsbGSpBIlSqhmzZoqXbq0wZXlDqs1P/7Jy8tLTZo0UZMmTRQfH6/Vq1dr2bJl2rx5s7777jstWrRI9evXV4cOHfT0008bXS7gUmTvu/P0z32rzZnsbQ1kb3Mje5O9U5htzmRvsrfZkb09Bw1wA7Vv355QkoEbN25o5cqVCgsLU2RkpPbv3290SU5nljm3bNlS9erVU7169Vh2y8TsdrumTp2qt956S1988YWmTZum0qVLq3jx4vLy8tK5c+d0/PhxORwOtWrVSh988IHRJSML+vbtq759++rnn3/W0qVLtWLFCk2bNk1ffvmlSpcurdq1a5vys8uKAc3Pz0/Xr1/XkSNHVLhwYfn7++uxxx5T/vz5jS7NKdavX6+lS5dq6dKlmjBhgmw2m4oVK6Ynn3xSTz75pKnPzv311181atQoRUZGyuFwpFlK0W63q3bt2ho6dKgCAwMNrDLnrHbW/Z34+vqqTZs2atOmjS5cuKAVK1Zo6dKl2rp1q7Zt20YIh+WQvTNmlhyaFWaZM9nbGsje5kb2JnuTvc2H7G09ZG/3ZnOY/WYi8Bi7d+/WokWLtHLlSsXFxcnhcKhy5cpaunSp0aU5jRXnDHP58ccftXjxYkVFRenMmTNyOBwqUaKEateurXbt2qlBgwZGl5grgoKC9J///EfBwcGp2y5duqSQkBB9/PHHqlmzZprxq1ev1ocffujxS/tIt66A2rp1q5YuXarVq1fr6tWrkqSyZcuqQ4cOat++vcqUKWNwlTl3+vTp1ID266+/ZhjQmjdvrsmTJ6d5HXiy+Ph4rVu3TkuWLNGmTZuUlJSkPHnyqGHDhnryyScVFBSkjh07mmrOKQ4dOpR6kOn06dOy2WypByUGDx6sl156yegSc83atWs1YMAA2Ww2NWvWTA0aNFCJEiXk7e2t2NhYRUZGauXKlUpMTNTEiRPVrFkzo0uGE504cULLly9Xr169jC4FgIGsmEOtOGeYC9mb7E329lxkb7I32dt6yN7ugQa4hzh9+rTCwsIUHh6e5h4Lni4mJkbh4eEKCwvTsWPHJEne3t5q3ry5nnvuOdWpU8fgCnOfFecMeLqgoKAMz7y+2/KYZgjhf5eQkKB169Zp2bJl2rhxo27evCm73a6GDRvq//7v/4wuL9dYKaCluHjxYupZqnv37k2zr0ePHurVq5f8/PyMKc7JduzYoaVLlyoiIkKXLl2SzWZTuXLl9MwzzygkJESlSpUyusRsO3nypNq0aaP7779fn3zyicqXL5/huD///FP9+/fXb7/9psWLF992nLsbMmRIln/GZrNp9OjRTqgGgKcie5uHFecMeDqy9y1kb7K3GZG9yd5kb7gaDXA3duPGDa1atUphYWHavn27kpOT5e3trZ9//tno0nIkISFBa9as0cKFC7Vt27bUpW4qVqyoo0ePauLEiWrZsqXBVeYuK84Z1pGQkKBDhw4pNjY29Sz0oKAg5c2b1+jSck12vthJ5r4nzuXLl7Vy5UotXbpUu3bt0oEDB4wuySnMHNBuJzo6WkuXLtWyZcv022+/yWazyd/fX61atVKHDh3SXXVhFjdv3tQPP/ygJUuWaMOGDbpx44bHf+/64IMPtHjxYq1cuTLNPeYycvHiRbVu3Vpt27bV4MGDXVRh7goKCsryz9hsNo8+YJqdK0RsNpvWrFnjhGoAz0X2Ng8rzhnWQfa+PbK35yN7k709+XsX2fvuyN4wAg1wN7Rnzx6FhYVpxYoVqUtzlSpVSp06ddKzzz6r4sWLG11itkRFRWnRokVasWKFLl++LLvdrpo1a6p58+Zq3ry5kpKS1KxZM1Mt92LFOcM6zp49qwkTJigiIkJxcXFp9vn5+alFixYaOHCgSpQoYVCFcJWdO3ea/goaMwa0zDh06JCWLFmiFStW6M8///T4wJJZV69eVUREhJYtW6YZM2YYXU62tWrVSo899limDySOGzdO69ev1/fff+/kypwjOjo6Wz/nyfega9q0abptDodDp0+fVrFixeTj45Phz61bt87ZpQEegextnhxqxTnDOsjeSEH2Ni+yN9nbk5C9byF7uz9vowvALTExMVq8eLEWLVqkY8eOyeFwyG63S5IGDBigHj16pP67p3r22Wfl5+enxo0b67HHHlPTpk3TnBGV3TdOd2bFOcMa9u7dq549e+rSpUuqXr16hve1CQ8P17p16zRlyhTVqlXL6JKRRT///LP27t0rh8OhBx54IMOQffXqVY0fP17ffvut9u/fb0CVrpMnTx4FBwcrODg4TUAzu6CgIAUFBentt9/W9u3bLTFnScqfP7+aNWum3bt3G11Kjpw+fVqVKlXK9PgKFSpo3rx5TqzIuTw5TGdXRmH6/PnzatSokT766CM1bNjQgKoA90b2NmcOteKcYQ1kb/Mje6dF9iZ7eyKyt/mRvT0TDXADpSzNtWjRIm3dulVJSUnKmzevmjZtqieffFKBgYEKCQlR5cqVPT6AS0q9h8uRI0dUuHBh+fv767HHHlP+/PmNLs1prDhnmN+5c+fUp08f5cuXT59//rlq166d4bgDBw5owIAB6t+/vxYvXqyiRYu6uFJkx7Vr1/Tmm29q48aNSlkkxmazqVGjRpoyZUrqGY0bNmzQ8OHDFRMTo3vuucfIkl3OLAEtq8qUKePxB49PnjypmTNnas+ePZKkBx98UN27d9e9996bZlxERIRGjhyps2fPatSoUUaUmit8fX11+fLlTI+/fPmyAgICnFiRsRISEvTbb7/J19dXFSpUMLocp7nT/TEBqyJ7mz+HWnHOMD+yt7mRve+O7O25yN53RvY2B7K3+6MBbqDGjRvr8uXLKliwoJ566ikFBwfrsccek5+fnyTznaG8detWrVu3TkuWLNHChQu1YMEC5cmTRw0bNtSTTz6ZrXtHuDsrzhnmN3fuXMXFxWn+/PkqX778bcc9+OCDmjlzptq0aaP//e9/6tevnwurRHZ99tln2rBhgxo3bqyQkBD5+/tr48aN+uabbzRu3DgNHTpUY8eO1VdffSUvLy9169ZN/fv3N7rsXGG1gCZJ+/bt05QpU9LMuU+fPmmuOnA4HPrqq6/06aefKj4+3qhSc+zgwYN68cUXdfXqVfn6+srX11cHDhzQihUrNH/+fFWpUkVXrlzR0KFDFRERIS8vL/Xo0cPosnPkoYceUkREhLp165ap8atWrdIDDzzg5Kqc68qVK/ryyy+1Z88ezZkzJ3X70qVLNWrUqNSDEvfff79Gjx6tGjVqGFQpAFcie5s/h1pxzjA/sre5kb3J3mRvsrcnI3vDE9AAN9ClS5fk7++vFi1aqH79+qpVq1ZqADcjX19ftW7dWq1bt9bFixe1YsUKLV26VD/88IN++OEHSbfOmomKilKjRo1M8d/CinOG+a1Zs0Zt27a9YwBPUbZsWYWEhCgiIoIQ7iHWrVunevXq6csvv0zd9vjjj6to0aKaM2eOChUqpJkzZyooKEhjxozx+C/sKawY0LZu3aru3bsrKSlJ999/v/z8/BQZGamXX35ZM2fOVN26dXXy5En961//UlRUlPLnz68RI0YYXXa2pRxE+Pjjj/XUU09JunW/0DfffFOjRo3S+PHjFRoaqj/++EMPP/ywRo0apcDAQIOrzpmOHTtqwIABmjlzpl555ZU7jp06daqioqLS/O17mri4OHXu3FlHjx5VqVKllJiYKG9vb0VFRWnQoEFyOBzq3LmzKleurPDwcL3yyisKDw9Pd6ANgPmQvc2fQ604Z5gf2dvcyN5kb7I32dtTkb3hMRwwTGRkpOPdd9911KtXzxEUFOR44IEHHM8++6xj+vTpjmPHjjlOnjzpCAwMdKxZs8boUp3q5MmTjilTpjieeuopR2BgoCMoKMhRq1Ytx3/+8x/H7t27jS7PKaw4Z5hHjRo1HPPnz8/0+AULFjhq1qzpxIqQm2rUqOH46quv0m3/7bffHIGBgY4HHnjAMXLkSEdCQoIB1TlPr169HFWrVnUsW7Ysddu+ffscwcHBjhdffNERExPjaNGihSMwMNDRsWNHx6FDhwysNne8/PLLjlq1aqX53Pnzzz8d7du3d3Tq1Mnx22+/ORo1auQIDAx09OvXzxEbG2tgtTnXqFEjx8iRI9NtX7VqlePBBx90PP/8846HHnrI8eWXXzqSkpIMqNA5+vXr5wgKCnL861//cuzZsyfN325SUpJjz549qWOGDRtmYKU59+mnnzqqVq3q+P7779Ns79GjhyMoKMgxZsyY1G3x8fGO5s2bOwYPHuzqMp3u/PnzjsDAQMeWLVuMLgVwG2TvW6yYQ604Z5gH2dvcyN5kb7I32dtTkb1vIXu7P64AN1CdOnVUp04dDRs2TBs3btTSpUu1YcMG7du3T+PHj1f58uVls9l07do1o0t1qrJly6pXr17q1auXDh06pCVLlmjFihX67rvvtHDhQh08eNDoEnOdFecM88iTJ49u3LiR6fHx8fHy9/d3YkXITdevX1eRIkXSbS9cuLAk6cknn9TQoUNdXZbTRUVFqUuXLqlnJ0tStWrV9Pbbb2vgwIEaOHCgoqOj9dZbb+nVV181xf1BDx48qOeee041a9ZM3VayZEn961//Uvfu3fXGG28oMTFREydOVKtWrQysNHdcunQpw+VPH374YSUlJenw4cOaM2eO6ZblGj9+vMaMGaP58+dr+fLl8vLyUqFCheTl5aWLFy8qISFBdrtd3bp108CBA40uN0ciIiLUrl07tWzZMnVbXFycNm/eLEl6/vnnU7fnzZtXbdu21bfffuvyOgG4Htn7FivmUCvOGeZB9jY3sjfZm+xdw/XFORHZm+wN90MD3A14e3srODhYwcHBiouLU0REhJYuXart27fL4XBo0KBBWrhwoZ555hm1aNFCefPmNbpkpwkKClJQUJDefvttbd++XcuWLTO6JKez4pzh2apUqaKNGzcqNDQ0U+M3bNigSpUqObkqOJvNZpMktW/f3thCnMSKAe3KlSuqWLFiuu2VK1eWw+HQxYsX9e233+qee+4xoLrcl5iYmOF3KF9fX0lSjx49TPX8pvDx8dHw4cMVGhqq8PBwRUVF6cyZM3I4HKpQoYJq166tNm3amGIpspMnT6YJ2pIUGRmpxMRElS9fPt1ruXTp0jp37pwrS8x1kyZNSrctPj5eNptNixcv1q5du9Ltt9ls6tOnjyvKA9wO2fsvVsyhVpwzPBvZ25rI3mRvT0f2JnuTvW8hexuPBribyZcvn0JCQhQSEqJz585p2bJlWrp0qbZt26Zt27Zp5MiRioyMNLpMl6hfv77q169vdBkuZcU5w/O0a9dO7777rlasWKHWrVvfcWx4eLi2bNmiCRMmuKg6OFtKYDEbKwa0pKQkeXun/yro4+MjSerVq5dpAnhmPPTQQ0aX4FT333+/x59lfjd2u13Jyclptm3dulWS1KhRo3Tjz58/r/z587ukNmfJKISnCA8Pz3A7IRy4hez9FyvmUCvOGZ6H7G1tZG/zIHunRfb2fGTvtMje7osGuBsrWrSoXnrpJb300ks6duyYlixZ4tFnKGf2jNW/s9lsmjVrlhOqcQ0rzhnm16FDB4WHh+vtt9/W4cOH1bVrV5UoUSLNmNjYWM2cOVOzZ89WkyZNTLGEk5WknHGe1X1mZvaAlpGMzlA3Myu8tmNiYrRr1y7FxsZKkkqUKKGaNWuqdOnSBleWOypVqqQ9e/aoa9eukiSHw6HVq1fLZrOpadOm6cavXbvW41/ns2fPNroEwBTI3p6fQ604Z5gf2dv8yN7pkb3NzwqvbbJ3WmRvGIUGuIe499571a9fP/Xr18/oUrJtx44dGW632WxyOBy33efJrDhnmJ/dbtfUqVP11ltv6YsvvtC0adNUunRpFS9eXF5eXjp37pyOHz8uh8OhVq1a6YMPPjC6ZGTR6NGjNXHixDTbHA6HbDab3nrrrXRna9tsNq1Zs8aVJboc783mcPTo0XRX8125ckWSdPjw4QzPyq9bt65LanOmX3/9VaNGjVJkZKQcDkea7yB2u121a9fW0KFDFRgYaGCVOde+fXt98MEHevjhh/XII49owYIFOnXqlO655x41btw4zdipU6dq7969Hn9fxXr16hldAmA6ZG/PZMU5w/zI3uZH9k6P92ZzIHuTvVOQvWEkGuAGCg0N1euvv66GDRumbktMTNSePXsUFBSkAgUKpBm/ZMkSDR48WAcOHHB1qbni0KFD6badP39ejRo10syZM9P8dzALK84Z1lCgQAF98cUX+vHHH7V48WJFRUXpl19+kcPhUIkSJdS+fXu1a9dODRo0MLpUZFGZMmUkKcMDhSlnqv5z3+0OKnoaKwa0nTt3KikpKc22uLg4SdLmzZsVExOT7mc8+V50U6dO1dSpUzPcN3bs2Ay3Hzx40JklOd3atWs1YMAA2Ww2tWzZUg0aNFCJEiXk7e2t2NhYRUZGauXKlerYsaMmTpyoZs2aGV1ytnXp0kW7du3SmDFjUhseBQsW1Pjx42W32yVJ3333naZNm6YTJ06odu3aeu655wyu2rkSEhL022+/ydfXVxUqVDC6HMAwZG/z51ArzhnWQPY2L7I32ZvsnRbZ23OQvdMje7snm8Msn5weKCgoSB999JHatGmTuu3ChQtq1KiRZsyYkS6gLVmyRIMGDfL4D4O/u3Dhgho2bGipQGrFOQOAuwsKCrrtmeYpZ+BnxJM/k283579/Nfz7/pT/Dp46588++yxbVxP07dvXCdW4xsmTJ9WmTRvdf//9+uSTT1S+fPkMx/3555/q37+/fvvtNy1evPi24zzFnj17tGfPHuXPn1/NmjVTkSJFUvdNmjRJixcvVps2bdSzZ88M7z/oaa5cuaIvv/xSe/bs0Zw5c1K3L126VKNGjdLly5cl3boX3ejRo013T0UgM8je1syhVpwzALg7svdfyN5pkb09D9n7FrK3++IKcDfEOQkAPEV8fLx8fX3Tbf/tt98UEBCQ7v5kcH/h4eGqU6eOypUrZ3QpLtWnTx/LLbU2ZswYo0twKU9eyja7Zs2apTx58mj69Olpgug/lSpVStOmTVPr1q319ddfa/DgwS6sMvfVrFlTNWvWzHBf3759b3tg5ebNm9q7d2+GV4O6q7i4OHXu3FlHjx5VqVKllJiYKG9vb0VFRWnQoEFyOBzq3LmzKleurPDwcL3yyisKDw/Xvffea3TpgFsgewPwFGRv8yF7WwfZ2/zI3umRvcne7oAGOAAgyxISEjR27FgtXbpUP/zwQ7ogPmHCBP3www/q0KGDBg0aJH9/f4MqRVYNGTJE48aNs1wIt2JACwkJMboEl8po+Vuz27Rpk0JCQu4YwFMUKlRI7du31/r16z0+hGfXpUuXFBoamuHVoO5qxowZOn78uP773/+qZcuWqdsnT54sh8Ohl156KfX57Nixo9q2baupU6da7iAcAACeiuxtXmRv6yB7mx/ZO2vI3nAVu9EFAAA8S0JCgrp166avv/5aZcqU0YULF9KNeeKJJxQYGKhvvvlGr732mhITEw2oFNlh1SuhQkNDtXXrVqPLcKng4GCtXbvW6DJcZseOHTp79qzRZbjU6dOnValSpUyPr1Chgv78808nVuT+PO09MCIiQu3atUsTwOPi4rR582ZJ0vPPP5+6PW/evGrbtq3l3usAAPBUZG9z87TvnbmF7G1+ZO+7I3t73nsg2dsz0QAHAGTJV199pcjISA0dOlTh4eEqXbp0ujGdOnXSwoUL1bdvX+3evVtz5841oFIg86wY0KKjo3Xt2jWjy4AT+fr6pt6DKjMuX76sgIAAJ1aE3Hby5Ek99NBDabZFRkYqMTFR5cqV0z333JNmX+nSpXXu3DlXlggAALKJ7A0zInvDjMje5kf29kwsgQ6XCQ8PT7ctLi5OkrR582bFxMRk+HPt27d3YlXOZcU5w/yWLl2q4OBgvfDCC3cd27dvX+3YsUOLFy/Wyy+/7PzikCsuXryoU6dOZelnypQp46RqAGTXQw89pIiICHXr1i1T41etWqUHHnjAyVUhN9ntdiUnJ6fZlnKWeaNGjdKNP3/+vPLnz++S2gAYx4o51IpzhvmRvc2P7A2YA9nb/MjenokGuMH++UXn0qVLkm79gfzzC1BGSx15ksGDB8tms6XZlrLUxfTp02Wz2VL/PeWfbTabRwdSK84Z5nfs2DF16dIl0+Mff/xxffLJJ06sCLlt9OjRGj16dKbH22w2HThwwIkVAblj9erVOnbsWKbH22w29enTx4kVOVfHjh01YMAAzZw5U6+88sodx06dOlVRUVH68ssvXVQdckOlSpW0Z88ede3aVdKt75mrV6+WzWZT06ZN041fu3atKlas6OoyAbdA9jZ3DrXinGF+ZG/zI3vDrMjet0f29kxkb89EA9xgt/ui89ZbbxlQjXONGTPG6BJczopzhvn5+/srKSkp0+Pz5s0rX19fJ1aE3Fa7dm2VL1/e6DJczmoBTZIWLFigLVu2ZHq8zWbL0gEad7N69WpFRERkerynP8ctW7ZU8+bNNW7cOO3fv18vvPCCqlatqjx58kiSkpOTFRUVpRkzZmj16tXq1KmTHn30UYOrRla0b99eH3zwgR5++GE98sgjWrBggU6dOqV77rlHjRs3TjN26tSp2rt3r4YOHWpQtYCxyN7mZsU5w/zI3uZH9s4cT89lEtn7bjz9OSZ7mx/Z2zPRADdQ+/bt052hbGYhISF3HXPp0iX5+voqb968LqjI+aw4Z5hfhQoVtHv3boWGhmZq/K5du1S2bFknV4Xc1LlzZ7Vp08boMlzOagFNunW/osjIyEyP9/QQ3rNnzwyXpjKz8ePHa8yYMZo/f76WL18uLy8vFSpUSF5eXrp48aISEhJkt9vVrVs3DRw40OhykUVdunTRrl27NGbMmNQrGgsWLKjx48fLbrdLkr777jtNmzZNJ06cUO3atfXcc88ZXDXgemTv9MyWQ604Z5gf2dv8yN6ZQ/b2PGRvsrfZkL09Ew1wA3344YdGl+ByN2/e1KJFi7R37940Z2jv2LFD7733nn7//XfZbDY1atRIw4cPN8VZkFacM8wtJCREw4cP17Zt29SgQYM7jt2+fbsiIiLUr18/F1UHZJ8VA9o777yj4OBgo8twmYoVK6pevXpGl+FSPj4+Gj58uEJDQxUeHq6oqCidOXNGDodDFSpUUO3atdWmTRvde++9RpeKbLDZbBo/fry6du2qPXv2KH/+/GrWrJmKFCmSOubPP/+Uw+HQ66+/rp49e6aGc8BKyN7WyKFWnDPMjewNsyJ7mx/Zm+xtNmRvz0QD3ECvvfaa2rdvr2bNmlliiaKbN2/q1VdfVWRkpPLkyaORI0fK29tbv//+u1577TXdvHlTjRs3VqVKlbRq1Sp17txZS5YsUbFixYwuPdusOGeYX/v27bVw4UL16tVLPXv2VKdOndK9ZmNjY/Xtt99q+vTpKleunJ5//nmDqgUyz4oBrXDhwlwlYhH3338/Z5mbWM2aNVWzZs0M9/Xt21d9+/bNcN/Nmze1d+9eBQUFqUCBAs4sETAU2dv8OdSKc4b5kb1hVmRvmBnZ29zI3p6FUxAMtGPHDv373/9Wo0aNNHjwYG3ZskUOh8Pospxm7ty52rlzp/79738rMjJS3t63zr/47LPPlJCQoDZt2mjatGl6++23tXDhQnl5eWnq1KkGV50zVpwzzC9PnjyaPHmyqlevrk8++USNGzdWcHCwunTpok6dOqlp06Zq0qSJPvvsMwUGBmrmzJl8sHuQMmXKyN/f3+gyAAAucOnSJYWGhurnn382uhTAqcje5s+hVpwzzI/sbW5kbwCwDrK3MbgC3EBbt27VmjVr9P3332v58uVavHixihUrpjZt2qht27YKCgoyusRctWzZMrVo0ULdunVL3ZaQkKB169bJZrOl2V6oUCE988wzWr58uYYOHWpEubnCinOGNRQtWlSzZs1SRESEli9frgMHDujw4cOy2+0qVqyY2rdvryeffFJNmzY1ulRk0bp16+64Pzk5WX/++aeKFSsmHx8fF1UF5Fzfvn0VGBhodBkuldn7Rf6dzWbTrFmznFCNezhz5owKFSqkPHnypNtXsGBBzZ49Ww888IABlRnHzE1AIAXZ2/w51IpzhjWQvc2L7A2zIntnDtmb7A3nowFuoHz58qldu3Zq166drly5olWrVmnFihWaNWuWZs6cqUqVKqldu3Zq06aNSpYsaXS5OfbHH38oJCQkzbZdu3YpPj5eJUqUSPfBeM899yg2NtaVJeY6K84Z1tK8eXM1b97c6DLgQufPn1dwcLBmzJihhg0bGl1OrrFiQBszZsxtl20yo9stQ5Xi2rVrmjFjxv9j777jazz/P46/T5YsJPYeNRJ771Wjdlq7tSnV0lqlLb7UbFXRVlFKa7eoEZuG2lV71awRswghCIms8/vDL6eOJCSR5OScvJ6PRx/lvq/73J/7LOd9Xfd93WrRooXy5MmTQlUlr/3798e63GAwxBm8DAZDcpaUIubOnavffvtNa9asiRG2v/zyS+3Zs0c9evRQz549ze7J5ejomOamYgTSCrK37efQtHjMSFvI3mkP2dt2kL3Nkb3/W2ftyN5I7RgATyXSp0+vNm3aqE2bNrp79642bdqkjRs36ptvvtE333yjSpUqqUWLFmrYsKHc3NwsXW6iREVFyd7e3mzZ3r17JUnVq1eP0f7hw4dycXFJkdqSS1o8ZkB6Oq2Ls7Oz0qVLZ+lSkAxs8YzFtBjQnu8kfl5wcLC++OIL9ezZU4UKFUqhqizn8ePHmj59uipUqGAzr/GZM2diLLt7966qV6+uuXPn2lRHmvT0u2nw4MFav369MmfOrJs3bypv3rxmbQoVKqTDhw/r22+/1YkTJ/T9999bqFoAlkL2ts0cmhaPGZDI3raO7G0buYzsbY7sbf3I3rAW3AM8FcqUKZM6dOighQsXavv27frf//4nOzs7ff7556pZs6aly0u0fPny6fTp02bLNm/eLIPBoNdffz1G+927dytfvnwpVF3ySIvHjLQhPDxcS5cu1dChQ82W79+/X02bNlXVqlVVrlw59ezZU1euXLFQlUDSiQ5oV69etXQpKSY0NFSrVq1KU1dH2WIH0/Ns4SzzuCxdulTr169Xt27dtH379hgBXHra4bZ582a1atVKmzdv1sqVKy1QKYDUguz9lC3k0LR4zEgbyN5Ia8jeaQPZ27qRvWEtGABP5RwdHeXs7Cx3d3c5ODgoLCzM0iUlWrNmzbR69Wpt2bJFISEhmjdvni5evKjMmTPHuFfRmjVr9Oeff6p+/foWqjZppMVjhu0LDw/Xu+++q5EjR2rdunWKiIiQJPn7+6tnz57y9/dXrVq11K1bN/n7++udd97RnTt3LFw18OrSQkB7Xlo8Zliv5cuXq3LlyhoyZEis9xmL5uTkpHHjxqlYsWL67bffUrBCAKkZ2du6c2haPGbYPrI30qq0mEPT4jHDepG9YS2YAj0Vunv3rjZv3qxNmzbpwIEDioiIUPHixdW/f381a9bM0uUlWrdu3bRr1y599NFHpvtfODo66osvvpCTk5Okp2doL1q0SPv371fBggXVrVs3yxb9itLiMcP2LVq0SAcPHtQnn3yijh07ysHh6T8lU6dOVVhYmN588019/fXXkqRevXrJx8dHM2fO1PDhwy1ZNpKIo6OjKlWqpIwZM1q6FAAwc+HCBfXv3z9ebQ0Ggxo3bqwZM2Ykc1UAUjOyt+3k0LR4zLB9ZO+0jewNILUie8NaMACeSty5c0d+fn7atGmTDh06pMjISOXOnVs9evTQm2++aRP3/3ByctK8efO0YcMGHT16VO7u7vLx8VHhwoVNbU6cOKHDhw/rzTff1JAhQ+Ts7GzBil9dWjxm2L5169apUaNG6tGjh2lZWFiYtm7dKoPBYLbcw8NDrVq10vr16wnhVuLhw4dKnz59nOszZsyohQsXmi3bt2+fqlSpktylAckqffr0Gj9+vIoUKWLpUpBIDg4OpkGO+MiQIUOM+8UCsH1k76dsLYemxWOG7SN72zayN9Iqsrf1I3vDWjAAbkEBAQHy8/PT77//rsOHDysyMlIZM2ZUmzZt5OPjo4oVK1q6xCRnb28vHx8f+fj4xLr+gw8+UP/+/WVnZzuz86fFY4Ztu3Tpklq2bGm27NChQwoNDVW2bNnk5eVlti5fvnxp6j5G1q5Lly6aO3euPDw8Xtr2yZMnmjhxon799VedOnUq+YuzoLQY0DJmzKgFCxaoWLFili4lRaRLl041a9bkCgsrlj9/fp04cSLe7U+cOKGcOXMmY0UAUguyd0y2mEPT4jHDtpG9bRvZO3Zkb9tH9rZ+ZG9YCwbALahOnTqSnp6p3KBBA/n4+KhOnTovvG+CrXNxcbF0CSkuLR4zrFtUVFSMs/b27t0rSapevXqM9g8fPuR9bkVOnz6tTp06ad68ecqSJUuc7Y4dO6bPPvtMly5demE7W5EuXTqzzqfIyEjNmjVLvXv3tmBVycvR0VGVK1c2/f3hw4eaVruJYQABAABJREFUMGGCxo0bZ8GqXt3cuXP122+/ac2aNTF+c3355Zfas2ePevTooZ49e1p9B/mqVatiLHv06JEk6c8//9StW7di3a5FixbJWFXyad68uSZPnqzu3bu/tMPs3LlzWrt2rbp06ZJC1QGwJLJ3TGnx93laPGZYN7K3bSN7x47sTfa2RmTvuJG9YUkGo9FotHQRaVXnzp311ltvqXHjxnJ3d7d0OQAQL2+99ZbKlCmjMWPGmJY1bdpU/v7++vbbb9W4cWOz9j179tT9+/e1bNmylC4VifDLL7/oiy++UN68eTVv3rwYZ2iGh4fr+++/15w5cxQZGam33npLw4YNs4kzdx8+fKhly5bp6NGjMhqNKl68uDp27KgMGTKYtfv77781fPhw/fPPPzp9+rSFqk0a165d09y5c3XkyBFJUvHixfXee+8pf/78Zu38/Pw0duxY3blzx2qP2Wg0avDgwVq/fr0yZ86sJUuWKG/evGZtpk2bpmXLlikgIEBvvPGGvv/+ewtVmzS8vb1lMBjMlj370z+2dQaDwWpf48ePH6tVq1YKCgrSsGHD1KxZsxidxhEREVq3bp0mTZokSfL19VXWrFktUW6KuX37tjw8PGId6AsPD9eRI0dUrFixF07BCVg7sjcAa0T2tm1kb7I32Zvsba2vMdk7dmTv1IcBcABAgsyaNUvTp0/X5MmTVaNGDS1dulRfffWVsmTJoq1bt5rdA2bNmjX67LPP1L9/f33wwQcWrBoJsW7dOg0ZMkTZsmXTvHnzlC9fPklPz1D/7LPP9M8//yhXrlwaPXq0atWqZeFqk8bVq1fVpUsX3bx50yykZMmSRcuWLVPOnDkVERGhyZMna8GCBYqMjFSzZs00efJkC1b9ak6fPq3OnTsrODhYzs7OcnZ2VlBQkFxdXbVkyRIVLVpUDx8+1PDhw+Xn5yd7e3v16NFDAwcOtHTpibJkyRKNGjVK3bp106BBg+K86i8sLEyjR4/WypUr9cUXX6hVq1YpXGnS8fX1TdR2z0+1aU38/f314Ycfyt/fX66uripRooSyZs2qyMhIBQYG6sSJEwoNDVWuXLk0ffp0eXt7W7rkJPGiqysGDhxoU1dXAACQVpC9bR/Zm+xN9iZ7WyuyN9nbGjAAbkGxTY0RH9Y6NQYA2xAWFqYePXrowIEDMhgMMhqNcnR01LRp00zTS27evFmLFi3S/v37VbBgQa1cuVLOzs4WrhwJsWPHDg0YMEDu7u6aPXu2/vjjD82cOVMRERFq3769Bg0aJDc3N0uXmWQGDRqkDRs2aODAgWrdurVcXFy0Y8cOjRkzRmXLltXEiRPVq1cvHT58WLly5dLIkSNN73dr1bt3b+3atUsTJkxQs2bNJEnHjx/Xxx9/rFy5cmnSpEnq0qWLLl26pFKlSmncuHEx7jNoTdq0aSNXV1ctWLDgpW2NRqNat24tJycnLVmyJAWqQ1IKCwvTL7/8ovXr1+vMmTOKiIiQ9HRqwbJly6phw4Z6++23zTqNrVVavLoCSAyyNwBrRPZOG8jeZG+yN9nbWpG9yd6pHQPgFhQ9NUb0lBcvY+1TYwCwHZGRkdqwYYOOHj0qd3d3+fj4qHDhwqb13377rebMmaOmTZtqyJAh8vT0tGC1SKxDhw6pd+/eCg4OltFoVP78+TVu3DhVrFjR0qUludq1a6tGjRoaP3682XJfX1+NHDlStWvX1pYtW9S+fXt98skncnV1tVClSadGjRpq0qSJhg8fbrbcz89PAwcOVNmyZXX8+HH1799f7777rtWfuVquXDn1799f3bp1i1f7WbNmacaMGaYp6qxdaGhorJ2h58+fV4YMGZQtWzYLVJUy7t69K3t7e5uYLvJ5afHqCiAxyN4ArBXZO20ge5O9yd5kb1tA9iZ7pzYOli4gLXv+H3oAsBb29vby8fGRj49PrOs/+OAD9e/f3+p/tKd1FSpU0IIFC9SzZ0/dvXtXY8aMsckALkn37t1TuXLlYiyvVKmSwsLCtGPHDk2ZMkWNGjWyQHXJ4/79+7FOQVWqVClFRkbq7NmzWrhwocqWLZvyxSUDBweHBJ11nCFDhhj3sLJGYWFhmjBhgtauXaudO3fGCOLffPONdu7cqdatW+uzzz6ziQ6m52XKlMnSJSSb5cuXq3LlyhoyZMgL2zk5OWncuHE6ffq0fvvtN0I40hyyNwBrRfZOG8jeZG+yN9nbFpC9yd6pDQPgFmTN93gAkHZ16dJFvXv3VrVq1UzLIiIidOTIEXl7eyt9+vRycXExrYu+FxlX0Fgnb29vLV68WN27d1fv3r01ffp0Va1a1dJlJbnw8HCz92206KnmunfvblMBXHr6uU2XLl2M5dEhrVevXjYTwCUpf/78OnHiRLzbnzhxQjlz5kzGipLfs9Nment76969ezGOqW7durp165aWLl2qc+fOacGCBXJwsM6IMG3atERt99FHHyVxJSnnwoUL6t+/f7zaGgwGNW7cWDNmzEjmqoDUh+wNwBqRvdMWsjfZ21aQvcnecSF7I6VZ5ycsjYqMjNSsWbPUu3dvS5cCIA3bv3+/2rZta7bs4cOH6tKli+bMmWMWzmF9hg4dGuvy/Pnz69q1a3r//ffVpEkTs+lDDQaDvvzyy5Qq0SIqV65s6RJSXMmSJS1dQpJq3ry5Jk+erO7du6tIkSIvbHvu3DmtXbtWXbp0SaHqkse8efN04MABDR8+XJ06dYq1Tdu2bdW2bVtNmzZN06ZN06JFi+I9VV1qE98Q/vz0x9YcwtPq1RVAciN7A0gNyN62jewdO7K39SN7k72jkb3J3pbGALiFPXz4UMuWLdPRo0dlNBpVvHhxdezYURkyZDBr9/fff2v48OH6559/COEAUiWj0WjpEpAEfH19X7j+yZMnWrVqldmytBDC0+KP1vjcI9WatGvXTkuWLFHnzp01bNgwNWvWLMbrGhERoXXr1mnSpElKnz691YfwtWvXqn79+nEG8Gd99NFH2r9/v1avXm21IfyPP/54aZuHDx/qu+++0/bt2+Xg4GD1r3FavLoCSCyyNwBbQfa2DWTv2JG9rR/Z+8XI3taJ7G2dGAC3oKtXr6pLly66efOm6cfr5s2b9csvv2jZsmXKmTOnIiIiNHnyZC1YsECRkZFq1qyZhasGANiy+PyItVVBQUH6999/zZbdv39fknT37t0Y6yQpV65cKVJbcrl48aIOHDhgtuzhw4eSpLNnz8Y6HVelSpVSpLak5urqqhkzZujDDz/UZ599ptGjR6tEiRLKmjWrIiMjFRgYqBMnTig0NFS5cuXS9OnTlTVrVkuX/UouX76sd955J97tX3/9dU2ZMiUZK0peuXPnfuH6DRs26KuvvlJAQIDKly+vUaNGqWjRoilUXfJIi1dXAIlB9gYApDZkb7I32Zvsba3I3mRva8EAuAV99913unnzpgYOHKjWrVvLxcVFO3bs0JgxYzRmzBhNnDhRvXr10uHDh5UrVy6NHDlSderUsXTZAAAb9rIfsbbsyy+/jPNs+sGDB8dYZjAYdOrUqeQuK1nNnDlTM2fOjHXdhAkTYl1uzfcULFiwoFatWqVffvlF69ev1+HDhxURESFJcnR0VNmyZdWwYUO9/fbbCZraKrVydXVVZGRkvNunS5fOdB86W3LlyhWNHj1ae/bsUcaMGTVu3Di1adPG0mUlibR4dQWQGGRvAEBqQ/Yme0cje5O9bQXZm+yd2jAAbkEHDhxQixYt1KtXL9OyJk2aKDQ0VCNHjtSQIUN0+PBhtW/fXp988olcXV0tWC0AADHNnDlTfn5+WrlypaVLeSUtW7a0dAkpzprvvfQqnJyc1L17d3Xv3l3S0ysM7O3tlTFjRgtXlvRee+01HT58ON6h69ChQzbVERcWFqZZs2Zp9uzZCgsLU8uWLfXJJ5/I09PT0qUlmbR4dQWQGGRvAIC1I3tbL7I32ft5ZG/rQ/a2TgyAW9C9e/dUrly5GMsrVaqksLAw7dixQ1OmTFGjRo0sUB0AAC9348YNqz4rOdr48eMtXUKKS6sh/HmZMmWydAnJpmXLlho5cqT27t2rqlWrvrDtvn375Ofnp759+6ZQdclrz549Gj16tC5fvqwiRYpo5MiRqlixoqXLShZp7eoKIDHI3gAAa0f2tl5k76fI3k+Rva0X2dv6MABuQeHh4XJxcYmx3M3NTZLUvXt3AjiAVOn5+zW96F5N9+7dS9HaACA206ZNS9R21txZ0aJFC61YsUIffPCB3n//fbVt21ZZsmQxaxMQEKBly5bpp59+Up48edShQwcLVZs07ty5o/Hjx2vDhg1ydnbWoEGD1L1791jvqWdL0tLVFUBikL0BWCuyNwBrQ/Yme9sysrd1MRiNRqOli0irvL29NXHiRPn4+Jgtv3fvnqpVq6affvpJNWvWtFB1ABA7b29vGQyGGMuNRmOsy6PZwpnKiGnkyJH67bffrP71TYsBbejQoQnexmAwxHmvttTO29s7Xu2e/x6z9vd2YGCgPv74Y+3bt08Gg0G5cuUym6Lrxo0bMhqNKlu2rL799lvlzJnT0iUn2qJFizRlyhQFBwerXr16Gj58uFUfD4CkQ/YGYI3I3ngW2ZvsbS3I3mRvILWw7dMxrJy9vb2lSwCAGNLi/Zpg++Ibwp8PaNYcwn19fePd9tnjttYQ/scff7y0zcOHD/Xdd99p+/btcnBwiPf9u1KzzJkza/78+fLz89P69et16tQpnT17VnZ2dsqSJYtatGihN954Q/Xq1bN0qa9s3Lhxpj9v3bpVW7dufek2BoNBp06dSs6yklVa7EAEkgPZG0BqRPaGLSJ7vxjZ23qRvV+M7A1LYADcwp6fykh68XRGkpQrV64UqQ0AYpMW79cE25cWA9qZM2de2ub69esaO3astm/frvTp02vAgAHJX1gyyZ079wvXb9iwQV999ZUCAgJUvnx5jRo1SkWLFk2h6pJfw4YN1bBhwxjL79+/L2dnZwtUlPTSYidxWuxABBKL7A3A2pC9YYvI3rEje5O9rQnZO25k79SFKdAtKK6pjKS4pzOy9jNlAACpW0LPaNy2bZtOnTpl9VNVvYytB7TnRUZGas6cOfrhhx8UGhqqpk2baujQoTHuYWULrly5otGjR2vPnj3KmDGjBg8erDZt2li6rCQTHh6ulStX6ujRo2adqPv379eoUaPk7+8vg8Gg6tWr6/PPP1e+fPksWO2rGTp0qN555x2VKVPG0qWkmOvXr7+0TWwdiJ9++mkKVAekHmRvAEBqQ/aOHdmb7G2tyN62jextnRgAt6DE3P9D4gxQAEDyie+9mp5lMBhsNoTbekCLzcGDBzV69GidO3dOBQoU0MiRI1WtWjVLl5XkwsLCNGvWLM2ePVthYWFq2bKlPvnkE3l6elq6tCQTHh6ud999VwcOHJCjo6OOHDkiBwcH+fv766233lJYWJhq166twoUL6/fff1dISIjWrFljtZ0tcd3jNy1Lax2IQFzI3gCA1IbsbY7sTfa2ZmRvkL1TJ6ZAtyDCNAAgtVmwYIGlS0gV0kJAe969e/f09ddfa9WqVXJyclLfvn313nvvycnJydKlJbk9e/Zo9OjRunz5sooUKaKRI0eqYsWKli4ryS1atEgHDx7UJ598oo4dO8rB4elP/6lTpyosLExvvvmmvv76a0lSr1695OPjo5kzZ2r48OGWLBtJ4PkOxHHjxtl8ByLwImRvAEBqQ/Z+iuxN9rYFZO+0i+ydujEAngqEhIRoxYoV2rVrl86cOaOgoCAZDAZlypRJ3t7eql+/vnx8fGzyH0EAQOpSuXLlBG9z8ODBZKjEctJKQHvWsmXLNGnSJN2/f181atTQyJEjrXo6rrjcuXNH48eP14YNG+Ts7KxBgwape/fupnBqa9atW6dGjRqpR48epmVhYWHaunWrDAaD2XIPDw+1atVK69evJ4RbsbTYgQgkBNkbAJBakL3J3mRv20H2TnvI3tbBNr9xrMihQ4fUv39/3blzR05OTsqXL59y586tiIgIBQUFadu2bdq6daumTZumyZMnq3z58pYuGQAA3bhxQ76+vlq1apWuXr1qE9OwpbWAJklnz57VqFGjdPToUWXJkkXffPONmjZtaumyksWiRYs0ZcoUBQcHq169eho+fLhy5sxp6bKS1aVLl9SyZUuzZYcOHVJoaKiyZcsmLy8vs3X58uVTQEBASpaY5A4ePKjIyMgEbdOiRYvkKSaFpcUORCAhyN4AAGtE9rYNZG+y97PI3taN7G09bPdfFStw4cIF9ejRQ+7u7po0aZIaNmwY40zz4OBgbdq0Sd9//7169uwpX19f5c+f30IVAwDSsidPnsjPz08rV67Uvn37ZDQaZTAYVLt2bUuX9srSYkCbMGGCFi5cqMjISNWtW1cDBgyQu7u7/v333xdulytXrhSqMGmNGzfO9OetW7dq69atL93GYDDo1KlTyVlWsoqKipK9vb3Zsr1790qSqlevHqP9w4cP5eLikiK1JZfffvtNv/32W7zaRn+HWXsIT4sdiEBCkb0BANaE7G1byN5k7+eRva0T2dv68MpY0A8//CAXFxetWLFC2bNnj7WNu7u72rRpo9q1a+utt97STz/9pLFjx6ZwpQCAtOzo0aNauXKlNm7cqODgYElSpkyZ1Lp1a7399tvKnTu3hSt8dWkxoM2dO9f0523btmnbtm3x2s5arzh4/mzstCBfvnwxXq/NmzfLYDDo9ddfj9F+9+7dVj/9Xrt27VS2bFlLl5Fi0mIHIpAYZG8AgDUge8eO7G1dyN5Pkb1tC9nbOjEAbkEHDhxQq1at4gzgz8qWLZtatGih3bt3p0BlAIC0LiAgQKtWrZKvr68uXboko9EoFxcXVa9eXXv27NGYMWNUv359S5eZZFq0aCGDwWDpMlLURx99lOBtjEZjMlSSct555x2VKVPG0mWkmGbNmmn69OmqXbu2atSooaVLl+rixYvKkiWL6tWrZ9Z2zZo1+vPPP9W/f38LVZs0KlasKB8fH0uXkWLSYgcikBhkbwBAakX2tn1kb9tH9rZ9ZG/rxAC4Bd27dy9BU6q99tprWrZsWTJWBABI6zZu3KiVK1dqz549ioyMVIYMGeTj46OGDRuqVq1aun37tho0aGDpMpPcV199JUkKDw/X+fPnFRERocKFC1v9lFQvkitXLrVq1Sre7a9fv65hw4YlY0XJy9fXV9WrV09TIbxbt27atWuXPvroIxkMBhmNRjk6OuqLL74wTf27efNmLVq0SPv371fBggXVrVs3yxaNBEmLV1cAiUH2BgCkNmRvsndcyN7Wh+xt+8je1okBcAsKDw9P0D/u6dKl06NHj5KxIgBAWjdw4EC5urqqQ4cOql+/vipVqmR2HyNbPlP7559/1owZM0z/1jo5OalDhw4aNGiQTd7PZ/jw4QoJCVHHjh1f2nbZsmWaMGECv0OsjJOTk+bNm6cNGzbo6NGjcnd3l4+PjwoXLmxqc+LECR0+fFhvvvmmhgwZImdnZwtWjMRIa1dXAIlB9gYApDZkb7J3bMje1onsnTaQva2P7f2LAgAAEi1Pnjy6du2aVq5cKX9/f/39999q0KCBChYsaOnSktWKFSs0ceJE5c6dWy1atJCdnZ327dunefPmKTIy0qrPvo5LgQIFNG7cOIWEhKhnz56xtrl9+7aGDx+unTt3ytHR0eqn6EqL7O3t5ePjE+fUZB988IH69+8vOzu7FK4s6bVs2dLq76OWUGnx6goAAABbQPYmez+L7G39yN62jextnRgAt7CgoCD9+++/8Wp77969ZK4GAJDWbdmyRceOHdOaNWu0adMm7d69W998841ee+01NWzYUCVKlLB0icli6dKlKlu2rObPn6906dJJenrPrYEDB2rp0qUaPHiwadoqW/Hrr7+qZ8+emjx5skJCQtS3b1+z9evWrdPYsWN1//59lStXTuPGjVOhQoUsVG3SOHjwoCIjIxO0TYsWLZKnmFTClqYaHD9+vKVLAJCKkb0BAKkJ2ZvsHY3s/RTZ23qQvWEtDEaj0WjpItIqb2/vRE1nc/r06WSoBgAAc5GRkdq9e7fWrl2rP/74QyEhIaZ/t1q3bq3evXsrd+7cFq4yaVSoUEEff/xxjCnJjh49qvbt28vX11fe3t4Wqi75PH78WH369NG+ffvUrVs3ffbZZ7p3755GjhypzZs3y9nZWQMHDlTnzp2tfgq+hP7uMhqNMhgM/O5Cqubt7a2JEyfGeZUBgKfI3gCA1IzsTfYme5O9kbqRva0TV4BbUMuWLS1dAgAAcbK3t1edOnVUp04dhYaGavPmzVq3bp3+/PNPLV++XCtXrlSVKlXUunVrNW/e3NLlvpKQkBClT58+xvI8efLIaDTqwYMHFqgq+bm6umrWrFn6+OOPNW/ePF27dk2HDx9WYGCgatSooTFjxthMR4sktWvXTmXLlrV0GUCS4uoK4OXI3gCA1IzsTfYmewOpH9nb+nAFOAAAMOnVq5eqVq2qypUrq0SJErGetXvv3j1t2LBBa9eu1dGjR23iTN24zuS8d++eqlWrprlz56patWoWqi75RUVFafjw4Vq5cqXs7Ow0ZswYtWnTxtJlJSnO1oUt4uoKAAAA60T2JnuTvQHrQfa2TlwBDgAATPbu3audO3fKYDDI3d1dFStWVJUqVVS1alXTNGSenp7q2LGjOnbsqKtXr2r9+vUWrhqvys7OTl9++aU8PDw0Z84c7dmzRy1atJCDAz8VgdSOqysAAACsD9k7bSJ7A9aL7G19+GYFAAAmhw8f1qlTp3T48GEdOXJER48e1bZt22QwGJQhQwZVqlRJVapUUZUqVVS0aFHlzZtXH3zwgaXLThJBQUH6999/zZbdv39fknT37t0Y6yQpV65cKVJbcojteDp16qTHjx9r6dKlevTokUaMGCE7OzuzNtZ8zIAtqlixIldXAAAAWBmyN9mb7A1YF7K39WEKdAAA8EI3btwwC+VnzpxRZGSkPDw8VLlyZVWpUkUdOnSwdJmv5EVTGUVPW/Q8g8GgU6dOJXdpyeZlxywpxnprPuahQ4fqnXfeUZkyZSxdCpBkmF4QAADAdpC9yd7RrPmYyd6wRWRv68QV4AAA4IVy5sypZs2aqVmzZpKkhw8fas2aNVq5cqV+//13+fn5WX0Ib9mypaVLSHEtWrRI0P2LrN348eMtXQIAAAAAxInsbZvI3gBgGQyAAwCAFwoNDdWBAwe0f/9+HTp0SCdOnFB4eLicnJxMU7JZu7QY0L766itLlwDgFbVs2VL58uWzdBkAAABIAmRv20T2Bqwf2ds6MQU6AAAwExERoaNHj2rv3r3au3evjh07pvDwcDk6Oqp06dKm4F2uXDk5OTlZulwAAAAAAKwO2RsAgOTDADgAADB57733dPDgQYWGhsrOzk4lSpRQ1apVVaVKFVWoUEHOzs6WLhEAAAAAAKtG9gYAIHkxAA4AAEy8vb3l6Oio5s2b6/3331eBAgUsXRIAAAAAADaF7A0AQPJiABwAAJiMGDFC+/bt05UrV2QwGPTaa6+pWrVqqlq1qipVqqSMGTNaukQAAAAAAKwa2RsAgOTFADgAAIjh33//1Z49e0z3Irtz547s7Ozk7e2tKlWqmEK5q6urpUsFAAAAAMAqkb0BAEgeDIADAICXOnfunPbu3au//vpLBw8e1IMHD+Tg4KCSJUuqWrVq6t+/v6VLBAAAAADAqpG9AQBIGgyAAwCABAkLC9OmTZv066+/6ujRozIYDDp9+rSlywIAAAAAwGaQvQEASDwHSxcAAABStytXrujYsWM6duyYjh8/rjNnzig8PFxubm6qXbu2KlWqZOkSAQAAAACwamRvAACSDleAAwAAk/v37+v48eOmwH38+HHdv39fRqNRGTNmVPny5VW5cmVVqlRJxYsXl52dnaVLBgAAAADAqpC9AQBIXgyAAwAAE29vbxkMBhmNRnl6eqpSpUqm/7y8vGQwGCxdIgAAAAAAVo3sDQBA8mIKdAAAYNK4cWNVrlxZlStXVuHChS1dDgAAAAAANofsDQBA8uIKcAAAAAAAAAAAAACATeDmIQAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsgoOlCwAAIC2YOnWqpk2blqBt/vjjD+XJkyeZKkq8evXq6fr165Kk//3vf+rSpcsL2/fo0UO7d++WJM2dO1fVq1dP1rr8/PyUP3/+ZNkHAAAAACD1InuTvQEAkBgABwAgRXh5ecnHx8dsWWBgoPbs2SNXV1fVr18/xjaurq4pVV6ibdq06YUh/O7du9q7d28KVgQAAAAASKvI3gAAQGIAHACAFNGwYUM1bNjQbNm+ffu0Z88eeXp6atKkSRaqLPEyZMigw4cP69atW8qePXusbfz8/BQRESFHR0eFh4encIUAAAAAgLSE7E32BgBA4h7gAAAgkRo0aCCj0Sg/P78426xfv14eHh4qVapUClYGAAAAAIBtIHsDAJBwDIADAJCKbd++XT169FDlypVVqlQpNWrUSBMnTlRQUJBZu2vXrsnLy0u1a9eO9XE6d+4sLy8v7du3z7RsyJAh8vLy0v79+9W3b1+VLl1aVatW1cKFC+NVW+PGjSU9nYotNgEBATp48KAaNWokB4e4J51ZvXq1OnTooPLly6t06dLy8fHRjBkzFBISEmv7v/76S927d1elSpVUsWJFDRgwwHRftNhERkZq8eLFatu2rcqVK6dy5crp7bfflq+vr4xGY7yOFQAAAABgu8jeMZG9AQDWjCnQAQBIpSZNmqTZs2fL3t5eFSpUkKenp44ePaqffvpJGzdu1Pz585U3b95X3s+IESMUGBioWrVq6dy5c/L29o7XdgUKFFCxYsV0+PBhBQQEKFu2bGbrN23apKioKDVr1kzTpk2LsX1UVJQ++eQTrVu3Tk5OTqpcubJcXFx04MABfffdd/r99981d+5ceXp6mrZZtmyZPv/8c0lSxYoVlSFDBu3evVsHDx5UWFhYjH2Eh4erT58+2rlzp9zd3VWuXDk5Ojpq//79GjJkiPbt26evvvoqIU8XAAAAAMCGkL3J3gAA28MAOAAAqdDWrVs1e/ZseXh46KeffjJNYxYWFqYxY8Zo2bJl6t+/v1asWCGDwfBK+woICNCaNWuUN29eRUVFyc4u/hPENG3aVKdPn5afn586depktm7Dhg3Kli2bKlWqFOu2ixYt0rp165Q3b17NmTNH+fLlkyQFBwdr0KBB2r59uz7//HNNnTpVknTjxg2NGzdODg4OmjVrlqpVqyZJunv3rnr06KFTp07F2McPP/ygnTt3qnLlypoyZYoyZcokSbpz547ee+89+fr6qkKFCmrbtm28jxkAAAAAYBvI3mRvAIBtYgp0AABSoXnz5kmSPv30U7N7eDk5OWnUqFHKnz+/Tp48qb17977yvurXr286mz0hAVySmjRpIinmVGz//vuvjh49qiZNmsT5mPPnz5ckjRs3zhTAJcnd3V2TJk1S+vTp5efnp8uXL0uSfH19FRoaqnfeeccUwCUpU6ZM+vLLL2M8flhYmBYuXChHR0dNmjTJFMAlKUuWLBozZowk6eeff07QMQMAAAAAbAPZm+wNALBNDIADAJDKRERE6PDhwzIYDGrUqFGM9Q4ODmrYsKEkmd1XLLGKFi2a6G3z5s2rEiVK6NChQwoICDAt37Bhg4xGo5o3bx7rdjdu3NC1a9fk6empqlWrxlifPn161apVS5K0f/9+SdKBAwckSXXq1InRvlixYsqTJ4/ZspMnT+rhw4d67bXXlD179hjblCpVSpkzZ5a/v79u374dzyMGAAAAANgCsjfZGwBgu5gCHQCAVCYoKEjh4eHy9PSUu7t7rG2iA2dShMeMGTO+0vZNmzbVyZMntXnzZnXs2FHS0xCeN29elS5dOtZtogN77ty543zc548xepscOXLE2f7atWumv9+4cUOSdPbsWXl5eb3wGG7cuKGsWbO+sA0AAAAAwHaQvZ8iewMAbBED4AAApDJGo1GSXnh/seg2Tk5O8XrMyMjIONcldOq15zVp0kQTJ07Uxo0b1bFjR12+fFknT57U+++/H+c2iTnGl91vzcHB/GdNVFSUJClXrlyqUKHCC7d1c3N74XoAAAAAgG0he5u3IXsDAGwJA+AAAKQyHh4ecnR0VFBQkIKDg2M9E/3q1auSpMyZM0v6L0hHB8/n3b9/P5mqfXomeenSpXXo0CHdvn1bGzZskCQ1a9Yszm2yZcsmSWZnjT8v+hizZMkiScqePbvOnTun69evq3DhwjHaPzsNnCTTWeU5cuTQpEmTEnBEAAAAAABbR/Z+iuwNALBF3AMcAIBUxtHRUeXKlVNUVJQ2b94cY31ERIRpeZUqVSRJrq6ukp6G7fDwcLP29+7dk7+/f7LW3LRpU0VFRcnPz08bN25U4cKFXzj1Wa5cuZQ7d27du3fPdJ+xZz18+FC7d++WJFWqVEmSVL16dUmK9Tm5evWqzp8/b7asVKlScnZ21pkzZ2IEdEm6deuWmjRpou7du+vRo0fxP1gAAAAAgNUje5O9AQC2iwFwAABSoa5du0qSvv76a506dcq0PDw8XKNHj9aVK1dUrFgx0/RiHh4eypEjh8LCwrRkyRJT+ydPnujzzz9/4TRsSaFx48YyGAxatGiRzp49+8Iz0KNFH+Pw4cNNZ5xL0qNHj/TJJ58oODhYdevWNd2rrGXLlvLw8NCKFSv0+++/m9oHBwdr2LBhMc7Ad3V1Vbt27fT48WN98sknCgwMNNvH0KFDdfHiRbm6ujINGwAAAACkQWRvsjcAwDYxBToAAKlQgwYN9O6772rOnDlq06aNKlSoIE9PTx07dkw3b95U7ty59e2335rdQ6xnz54aN26cxo0bp/Xr1ytLliw6fPiwIiMjVbduXW3bti3Z6s2ZM6fKli2rI0eOSHrxFGzROnfurCNHjmjjxo1q1qyZKlWqJBcXFx08eFD37t2Tt7e3vvzyS1P7TJky6csvv9SAAQPUr18/lStXTtmyZdOBAwcUGRmpggULxjjbftCgQTp9+rT27t2rN954Q6VKlZKLi4uOHDmioKAgFShQQKNHj07aJwMAAAAAYBXI3mRvAIBt4gpwAABSqc8++0w//PCDqlSpojNnzmj79u1yc3NT79695evrq4IFC5q179y5syZMmKCSJUvq1KlTOnDggKpUqaLly5fHaJscmjRpIkkqUaKE8ufP/9L2dnZ2+vbbbzV+/HiVKFFChw8f1p9//qkcOXLok08+0W+//aZMmTKZbVO/fn39+uuvql+/vvz9/bVr1y4VL15cv/zyi3LkyBFjH87OzpozZ47+97//6bXXXtPx48e1b98+ZcuWTX379tWyZctM9zkDAAAAAKQ9ZG+yNwDA9hiMRqPR0kUAAAAAAAAAAAAAAPCquAIcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgAB2zIypUr5eXlleD/OnfubOnS423q1KlxHkexYsVUpkwZ1atXT3379tWWLVssXS7+35EjR0yvU8+ePV/afsiQIfLy8tLgwYPNlkc/xp49e5K8xh49epge/9ixY0n++M+KiIiQv79/su7jeWfOnNG4cePUrFkzVaxYUaVKlVKdOnXUs2dPLVq0SKGhoUm+z9u3b2vw4MGqXr26SpYsqVq1amnnzp2SpFWrVumtt95SmTJlVLFiRfXo0UP79u0zvQYRERGJ3u+1a9dMj3P58uWkOhy8IqPRqAsXLli6jES5ePGievfurSpVqqhUqVJ6/fXXdfbsWRmNRs2dO1eNGzdWqVKlVKVKFf3vf/8z/Xtcu3btV9pvUn0mksq5c+diLKtXr568vLy0bNmyBD1WYrcDAADWgz4K+ihSK/oozNFHQR9FamINn08A1sHB0gUASDqZM2dW+fLlYyy/ceOGbty4IScnJ5UsWTLG+qJFi6ZEeUkqtmMxGo0KDQ3VtWvX5OfnJz8/P/n4+GjixIkyGAwWqhSStGLFCtOfd+/eratXrypv3rwWrMjcjRs3zH4QL168WGXKlEmWfe3evVvjxo1To0aNNHDgwGTZx/O+//57zZgxQ1FRUXJ3d1e+fPnk6Oio27dva9euXdq1a5d++uknTZ8+XSVKlEiSfUZFRalnz546c+aMHBwcVKRIEYWHhyt37tz6/fff9dlnn0mSsmbNquzZs6eq9wOS3vHjxzV27Fjlz59fkyZNsnQ5CfLo0SN17dpVAQEBcnZ2VpEiRRQSEqI8efJo7ty5mjBhgiQpd+7c8vDwUJ48eSxccdILCAjQhAkTdPDgQe3YscPS5QAAACtBHwV9FKkVfRT/oY+CPorUJrV/PgFYDwbAARtSp04d1alTJ8byqVOnatq0acqaNasWL15sgcqS3ouOJSwsTN99951+/vlnrV27VpUrV1a7du1SuEJECwkJ0caNG2UwGFSzZk3t2rVLS5cujXFmpiWtXLlSUVFRqlOnjnbs2KGNGzdq6NChypgxY5Lv68cff0zRM6tXrFih6dOny9XVVePHj9cbb7whe3t70/oLFy5o2LBhOnr0qHr06KENGzYoU6ZMr7xff39/nTlzRpI0c+ZM1apVy7Ru6tSpkqQKFSpowYIFcnB4+nMkJCREGzZskCTTssTInj276XFy5cqV6MdB0vn11191/Phx5c+f39KlJNjBgwcVEBAgg8GglStXqlChQqZ1GzdulCQ1a9ZM33zzjWn5w4cPVaZMGTk6Or7SvkuXLp0kn4lXtXv3bq1bt07Zs2e3WA0AAMD60EfxFH0UqQt9FOboo6CPIjWxhs8nAOvBFOgAbI6Tk5M+/fRTlS5dWpK0cOFCC1eUtm3atEnBwcEqUqSIWrRoIelpmAsLC7NsYf/PaDTK19dXktS6dWsVKFBAoaGhpmXWbubMmZKkTz/9VI0bNzYLlpJUqFAhzZgxQ5kzZ9a9e/e0YMGCJNnvvXv3TH+uUqVKrOsqVKhgFiJdXFxUqFAhswHGxHB0dDQ9zqsOQALR79csWbLEeG9Gr6tcubLZ8vTp06tQoULKly/fK+07qT4TAAAAsBz6KFIX+igsiz4K+iheJLV/PgFYFwbAAdisBg0aSJL++ecfPX782MLVpF0rV66UJNWuXVt169aVs7OzAgMDtXnzZgtX9tT+/ft19epVOTo6qnr16mrSpIkkaenSpRau7NU9ePBAV65ckaQXTpeWKVMm0+fl+PHjSbLvyMhI05+dnJzM1kVFRcW6HEiNXvR+5b0MAACA+KKPInWgj8Jy6KPAy6T2zycA68IAOACT33//XT179lTVqlVVsmRJ1axZU3379tVff/0Va3svLy95eXmZ3ZfoWZ07d5aXl5dpKiFJunbtmry8vFSjRg3dunVLvXr1UunSpVW5cmUNGjQoSY/H3d3d9OdHjx6Z7d/Ly0uXL1+Odbt69erJy8vL9KNLkvbt2ycvLy+1a9dOFy5cUPv27VWqVClVq1bNdP/X6O1Onz6t7du365133lG5cuVUpUoVdenSRVu2bImz1sjISC1btkydO3dWpUqVVLJkSb3++uv65JNPdPLkyVi3CQ0N1axZs/TOO++oWrVqKlWqlOrWratBgwbp0KFDce7rzJkz+uyzz/T666+rZMmSqlKlinr06KHff/891vbPPmfPPifxceXKFR04cECS1LBhQ7m5ualu3bqSlGqmuou+t1DVqlWVPn16+fj4SJIuXryovXv3xrpNYt5HK1eulJeXl/bv3y/p6VnPXl5eGjJkiNl29+/f17Rp09SiRQuVK1dOZcqUUZMmTTRhwgQFBAQk6NiePXN527ZtL2zbt29frV+/XpMnTzZbPmTIEHl5ecU53VT0cdWrV0/Sf89Nly5dTG2in6vox4p+DqZNm2ZaJ/33OfPy8lJERESMfZ05c0YjRoxQgwYNVKpUKVWqVEldu3bVpk2bzNq97PW5evWqRo0apTfeeEOlSpVSxYoV1aFDBy1btswsFD//HCxevFjXrl3T0KFDVbt2bZUsWVK1a9fW//73P127di3O5/bgwYMaNGiQ6tatq5IlS6pq1ar64IMPzL5bd+3aJS8vL5UoUUKBgYGxPk5oaKgqVKggLy8vHTt2LMaxJvTz+eDBA82aNUsdO3ZUlSpVVKJECVWsWFGtWrXS1KlTdf/+/RjbJPR7P/o1jb5aYe3atfLy8lLnzp1jHNu8efPUrl07lS9fXqVKlVKDBg30+eef69KlS7Hu6/79+/r222/VqlUrVa5cWWXKlNEbb7yh//3vfzp79myctX377bexPt7UqVPNaouufejQoZKk69evm44/+vN9/fp1SdLQoUPNPgfRn4vatWvHuq/4vCeereFFn4mEfJ9HPwc7d+7UmTNn1L9/f1WvXl0lS5ZU/fr19eWXX+ru3btm2zz7HNy6dcvsM/u8Q4cO6YMPPlCVKlVUunRpNWrUSJMnT1ZwcHCs7V91OwAAYNvoo3iKPgpz9FHERB/Ff+ijsN4+Cmv4fAKwLgyAA1B4eLg++ugj9evXT7t27ZKDg4O8vb0VEREhPz8/devWTV9++WWS7jMsLEw9evTQnj17VKhQIRkMBuXOnTtJ9xH9o9LZ2Vmenp5J8ph3795V165ddfr0aRUuXFhPnjxRgQIFzNqsWLFC77//vk6ePKmCBQsqXbp02rdvnz788EONGzcuxmMGBwerY8eOGj58uPbv36/06dPLy8tLDx8+1Jo1a9SmTRvNnTvXbJuwsDB169ZNkydP1vHjx+Xh4aEiRYooODhY69atU8eOHbVs2bIY+/rll1/UqlUrrVq1Svfv31eRIkXk6uqq3bt3q1+/fho0aFCsP64Ta8WKFTIajcqXL5/p7N7mzZtLkg4cOKALFy4k2b4SIzg4WH5+fpL+q6tQoUIqVqyYJGnJkiVJtq/MmTOrfPnypk6PnDlzqnz58mbvn7Nnz6p58+aaOnWqzp49q9y5c6tgwYK6cuWK5syZo+bNm2vfvn3x3qerq6vKly8v6eng3meffaYDBw7E+hpnzZpVhQsXfuXPSrp06VS+fHkVLVrUtKx8+fKmY43tOYiu8UV++eUXtWnTRr/99pvu3r1reu/u3btX/fv3j3NQ83mbN29W8+bNtXjxYgUEBOi1115TpkyZdOjQIQ0fPlw9evQwdUY979SpU3rrrbe0atUqubi4KH/+/Lp165aWL1+utm3b6saNGzG2+eabb9SpUyetW7dOjx8/lpeXl+zs7LRt2zZ169bNdBZ/jRo1lDNnTkVERGjdunVx1h4cHKxChQq98Gz5+Lh06ZLefPNNTZ48WUePHlWmTJnk5eUle3t7nTx5UtOmTdPbb78d53MRX+nTp1f58uWVOXNmSU/P5H/+/XHz5k21bNlS48eP17Fjx5Q1a1YVKVJEt2/f1tKlS/Xmm2+a7pcWLSgoSG3bttXMmTN17tw5Zc2aVQULFtSdO3e0fPlytW7dWjt37kyS2qM/o05OTqb3q4ODg8qXL2+6QiD6vV2yZMmXPm583xMv8yrf5zt37lSbNm20ZcsWeXp6KmfOnLp27Zrmz5+vd955x2zg+dnnwNHRMc7PrK+vrzp27Kg9e/YoZ86cypQpky5dumTqBA0NDY21lsRuBwAAbBd9FPFHH0XC0EfxH/oo6KNITX0UUur/fAKwPgyAA9BXX32lzZs3y9XVVVOmTNHu3bu1fPly/fnnn/r888/l4OCg+fPna968eUm2zwcPHuj27dtatWqVfH19tWvXLvXq1SvJHv/u3btavXq1pKc/2p49y/RVXL16VS4uLvr9999NdUffkybawoULVb16dW3fvl0rV67Ujh07NHbsWDk4OGjhwoUxfjgOHjxYR44cUdasWbVgwQJt3bpVK1as0F9//aU+ffooKipKX331lSkESU9/FB45ckQFChTQli1btHHjRq1cuVK7d+9Wx44dZTQaNWHCBD158sS0zc6dOzV27FjZ2dnpf//7nw4ePChfX19t27ZN8+bNU+bMmbVu3Tqzs+ElKXv27NqwYYM2bNigN954I97PVVRUlOk1iD5jWZLq1KkjDw8PSZY/g3P9+vUKCQmRi4uL2bG9+eabkqQtW7bozp07SbKvOnXqaPHixSpevLgk6a233tLixYv1wQcfSHoadHv27KmAgACVK1dOfn5+WrdunVatWqUdO3aobt26un//vj788ENdvXo13vsdMWKEXF1dZTQatWrVKnXq1EmVK1dWr169NGvWLB07dsw03VdSyJo1qxYvXqzhw4ebli1evNh0rM8+B61btzate5HDhw9r3LhxCg8PV69evfTXX3+ZPlvjx4+XnZ2dZs6cqd27d7/wcc6cOaOPP/5YT548Ue/evbV//36tXr1afn5+8vX1VYECBfTXX39p1KhRsW7/22+/qXDhwtqwYYN+//13rV+/XkuWLJGbm5vu3r2rOXPmmLVfv369fvzxR9nZ2WnYsGHas2ePVqxYoV27dmnAgAGSpNGjR+vChQuys7MzfZdEf26et2rVKklSq1atTMsS+/kcMWKEbty4obJly2rbtm2m75C9e/dqwoQJsrOzk7+/v2mfiVW8eHEtXrzYdCV0jRo1tHjxYo0YMULS0ytLPvjgA128eFEFCxbU6tWr9fvvv2vlypX6888/1bZtWz158kSffvqp6YxySfrpp590+fJllS9fXjt27ND69eu1atUq7dy5Uw0bNlR4ePgrd4pG1/7+++9L+u+9vXjxYvn5+Wnx4sXKmjWrJOn999/X4sWL9f3337/wMRPynniRxH6fR1u4cKFq1Kihbdu2af369dq8ebN++OEH2dvb6/Lly1q+fLmp7bPPQaZMmeL8zB46dEjNmzfXzp07tWrVKm3fvl0TJ06UJJ07dy7Os/8Tux0AALBd9FHEH30U9FEkFn0U9FGkpj4Ka/h8ArA+DIADadzNmzdNZ5COHTtWjRs3Nq2zt7dXx44d1b9/f0lPpwJ61asBn9WhQwcVLlxY0tMr656dDiwxjEaj7t27p61bt+rdd99VUFCQHB0d1a9fv6Qo1+T9999X9uzZJUlubm5Kly6d2fpcuXJp+vTppiseDQaD2rVrpx49ekh6+jxGO3r0qGnap++//15VqlQxrXNyclL//v319ttvS5ImTZpkWnfmzBlJT++JkytXLtPydOnSaciQIapZs6beeOMNBQUFmdZ98803MhqNGjx4sLp06SJ7e3vTumrVqmn8+PGSpLlz5+revXumdY6OjipUqJAKFSqk9OnTx/t52r17t+ls0+iwFv140e+z1atXW/TqvuipxerXry83NzfT8ubNm8vOzk7h4eGmNsnt119/VUBAgLJkyaIff/xRefPmNa3LkiWLvv/+exUtWlQPHz7UzJkz4/24xYsX17Jly1ShQgXTsuDgYO3YsUOTJ09Wu3btVLNmTX377bcKCQlJ0mNKKj/88IOioqLUpEkTDRo0yOwz16pVK7Vp00aSXjpQNnXqVIWFhalTp04aMGCA2eMUL15c33//vezt7bV27VqdP38+xvaOjo6aNm2aChYsaFpWrlw5U9g7fPiwWfvoz3r37t3VtWtX02fO3t5evXv3Vo0aNRQZGWkKja1bt5bBYNDJkydjDIDeunVLe/bskb29vd566y2zmhL6+QwMDNS5c+ckPf3ez5Ytm2mdwWBQixYtVLlyZUmKdSrxpLRp0yadPn1a6dKl0+zZs+Xt7W1a5+7urnHjxqlWrVoKDw83O4M++juwUaNGypQpk2l5+vTpNXz4cFWvXl2VKlVKdVcPJ/Q9EZfEfp9Hy5w5s77//nuz175+/fqmExWefy/HR6FChTRhwgRT54T09Lu/Ro0akhTntJeJ3Q4AANgm+igSjj6K+KGPImHoo4gbfRRJ20chWcfnE4D1YQAcSON27typiIgIZc2aVU2bNo21TadOneTo6KiHDx+a7ouTFJ79sZtQz96LNfo/b29vVa1aVb1799bp06eVPn16fffdd2YDKknhZXW3a9dOrq6uMZa/8847kiR/f39dvHhR0n/3PCpdunScUyy9++67kp5Ol/bPP/9IkmlKquXLl+vXX381u2erk5OTfv75Z40fP94Ugq9du6bTp09LMv8h+aw6derI09NToaGhcd5TLSGif+iXLl06xhRs0TU8ePBA69evf+V9JcaFCxdMV5Q+/5xky5ZNVatWlSQtXbo0Sc8+jsvWrVslSS1atFDGjBljrHdycjLdm3jr1q0yGo3xfuzChQvr119/1apVq/TRRx+pXLlycnR0NK0PDAzUzJkz9eabb+rmzZuveCRJKyQkxHSfs+iOlucNGDBAmzZtMt3rLjZhYWGmKbHj+gxEf48YjcZY70dWsmRJ0xW/z3rttdckSQ8fPjQtu3z5sulzHv3Zf94XX3yhLVu2aODAgZKkvHnzqlKlSpIUYwB09erVioqKUu3atWOtISEyZ86svXv36tixY2bTwEWLjIw0dfYld7iMft/Xq1fPrEPlWd27d5ck7d+/3/QcR3+n/PTTT1qzZo3Zc589e3bNnTtXY8eOlbOzczJWnzCJeU/EJim+z6tVqxajY1R6Ohgtmb+X46t+/fpmnZbRou+f9/y9xV91OwAAYJvoo0g4+ijihz6KhKGPInb0UTyVlH0UUur/fAKwTkkz3w4AqxX946dYsWKys4v9nBhXV1cVLFhQ//zzj/z9/VW3bt0k2fer/EBycnKKca9VOzs7ubm5KXv27CpTpowaN278ymdsx+ZldZcuXTrW5bly5VL69On18OFDXbp0Sa+99prp+S9RokScj1egQAG5u7srODhY/v7+Klq0qNq2bavly5fr/PnzGj16tMaMGaNixYqpWrVqqlWrlipVqmQ2pVr01Z6S9OGHH8a5r+jpyKLrSqygoCD98ccfkmL/IV+hQgXlzZtXV69e1eLFi9W6detX2l9iRE/xmzlzZtOVhs966623tGfPHl2/fl27du1SnTp1krUef39/SS9+L0Svu3v3roKCghJ8L6xixYqpWLFi6tu3r0JCQnT48GHt3r1bq1evVmBgoK5cuaL+/fvH+x7EKeHff/9VeHi4JMXZUZQ5c2bT1QxxuXTpksLCwiQ9ndIr+t7Nse1Piv0zEN1Z87zoQdaIiAjTsuj7+7m6usY5sJszZ84Yy1q3bq39+/dr7dq1+vjjj2UwGCT9N+XYs1OLvSpnZ2fduHFDx44d05UrV3T16lVduHBBp0+f1uPHjyUp2TtWEvK+j4yM1OXLl1WyZEn16NFDmzZt0u3bt/XJJ5/IwcFBpUqVUvXq1VW7dm2VKVPG9NylFol9TzwvKb7PE/Jejq+4HjO6szWukykSux0AALBN9FEkHH0UL0cfRcLRRxE7+iiSvo/CGj6fAKwTA+BAGhccHCxJL52WJjqkJeX0Yq9yZV70PXws4WV1x3ZmbDRXV1c9fPhQDx48kBT/59/NzU3BwcGm59/d3V1Lly7VnDlztG7dOl2+fFmnTp3SqVOn9PPPPytz5swaMGCA2rVrJ8n8rM/4TG2bmKv/nrV27VrTD/lx48Zp3Lhxcbb9+++/dfLkyReGqqQWERGhNWvWSHp6ZvHL9r148eJkD5fxeS8821ny6NGjBIfLZ7m4uKhGjRqqUaOG+vfvr2HDhmn9+vU6evRoir8eL/LsFHnPTgGXUM++p0+cOJGg9tGePSP9ZaLrTmjNjRs31tixY3Xjxg3t27dPVatW1d9//63z58/L09MzyTr3Ll68qK+//lo7duwwG+R2d3dXxYoVFRAQYJrGMDkl5n0vPQ3mq1ev1o8//qhNmzbp1q1bOnLkiI4cOaLp06crd+7cGjZsmBo0aJC8B5AAiX1PPC8pvs8T8l6Or9iuKE/O7QAAgG2ijyLh6KN4OfooEo4+itjRR5H0fRSp/fMJwHoxAA6kcdE/fF4WJqLDUGw/lOKa5ij6CsLUKrnqftE9iqIDRPSZoPF9/qPXP/v8u7u7q1+/furXr58uX76sffv2ad++fdqxY4cCAwM1YsQIeXh4qGHDhqYr6Tw8PLRv377EH1w8Rd+TytXV9YVhKSAgQEajUUuWLNHYsWOTva5o27dv1507dyQ9nUosritFHz9+rIcPH2rnzp26ceNGrGfDJtX7yM3NTffv33/he+H+/ftm7V/m888/1969e9WyZUv17t07znbOzs4aM2aM/Pz8FB4eLn9//xhhIq7jTO57cj07VV9wcLDZ/Z4T+ziHDx9+5UHI+O4voR1yzs7OatasmZYuXaq1a9eqatWqpjOrfXx8kmTgMjAwUJ06dVJgYKBy5cqldu3aqXjx4nrttdeUJ08eGQwGDRo06IUD4En5vpde/B0Y/e/Ps+2lp9+jw4YN07Bhw3T27Fnt379fe/fu1e7du3X9+nX169dPS5YsifOKl1etPaES+56I63FS6vscAAAgJdFHERN9FK+OPgr6KJIKfRRJ30eR2j+fAKwX9wAH0rjo+8KcPn06zqlug4ODdenSJUlS/vz5Tcuj79kZfZbe8wICApKw0qTx7JRbsdUdGhr6ymcWR98D63lXrlwx/dAsXLiwpP+e/5MnT8b5eBcuXDAFlejnPzAwUAcPHjTdVyt//vxq166dJk+erB07dpimXov+UVqwYEFJT8/4vH37dpz7OnjwoC5cuPBKU86eOXPGdC+v8ePHa+fOnXH+F33G8rp160zBOyVE31uoSJEi2rVrV5z1zZ07V9LTqZd/++030/bJ8T6Kz3sh+qzgjBkzxuvM6idPnujy5cvasmXLS9u6u7ubAtezAS76cx49xdfzkvtznjdvXlMNz06T96y///5b7du319ChQ+MMwc8+zvnz5+Pc3/Hjx3X27NlXHqSMvmfV48ePde3atVjb/PHHH+rcubO+/vprs+XR03n98ccfioyMNE0FllTTfK1YsUKBgYHy8PDQihUr1Lt3b9WpU0d58+Y1dbTcunUr1m2T+ns/Pu/7v//+W5JkMBiUL18+U3179+41fVd5eXmpc+fOmj59uv744w/lzp1bkZGRWrduXbLVnlCv8p54Vkp+nwMAAKQ0+ijM0UdBHwV9FPRR2HIfhTV8PgFYLwbAgTSudu3acnBw0O3bt7Vhw4ZY2yxatEgRERFycXFR5cqVTcujf9zGdh+a48ePp8pw6eHhYRrgia3urVu3Jurep89auXJlrEE9ejq0smXLms7SjZ4q6Pjx43FO+zVv3jxJUo4cOeTl5SVJ6tGjhzp27ChfX98Y7d3c3FS2bFlJT0ORJBUqVMgUTBctWhTrfg4dOqSOHTuqadOmOnr0aDyONHbR963y9PRUvXr1Xti2ffv2kp7+AI8OwsktMDBQO3bskPTyH+ulSpUyBfVly5aZ3huv8j6K60zu6PfCqlWrzM6ijhYWFmZ6D9WqVeuFdUeLvnfSiRMnTIE6Lrt371ZQUJA8PDxUpkwZ0/IXfc4jIyO1devWeNWSWO7u7qpQoYKk/84Kft66det0+PBhXbt2Lc7n193d3fT9tWDBgljbXL16VR06dNCbb76pTZs2vVLdhQoVUu7cuV9Yt6+vr/bv32/qJIpWpkwZFSlSRPfu3dPChQv177//qnjx4nHeXyyhosNurly5Yj1b/fz586bvgOjvkGiJ/d6Pfl2eD//R7/utW7fq6tWrsW4b/XqVLVtWGTJkUEREhFq0aKGuXbtq+/btMdpnyZJFRYsWlWR+D/MX1f7o0SP99ddfse4/qbzKe+L5x0mp7/No0fffjKvzBgAAIKnQR2GOPgr6KJ5FHwV9FImVWvsoUvvnE4B1YwAcSONy5sxpugfTiBEjzH5QRUVF6ddff9XUqVMlSX369DGbiib6B9/cuXN14cIF0/K///5bH3/8cUqUn2DOzs4qXry4JGnq1KlmVznu3r1bY8aMeeV9nDhxQiNGjDBNuxQVFaVFixaZQuLAgQNNbcuVK2c6g7Ffv35mU3+FhYXp+++/N53V++mnn5p+OL/11luSpGnTpmnnzp1m+z948KDph+Cz94Tq37+/JGnWrFmaPXu22VnBBw8eNK0vW7asqlataloXHh6uCxcu6MKFCy89YzgsLExr166V9HQqJCcnpxe2r127tukH+JIlS17Y9kX+/fdfXbhwQf/+++9L265atUoRERFydHQ0PY8vEv0D+/bt26azXF/lfRQ97dT169dj7Cd79uy6c+eO3n//fbPBwMDAQPXv31///POP3Nzc1Ldv35fWLUk1atRQo0aNJEnDhw/XF198EeNM3ydPnmjFihUaMGCApKfvk2en3or+nJ87d04LFiwwDYDdv39fw4YNi/NqgqTUp08fGQwGrV69WjNnzjQL7qtWrdLChQslST179nzh4/Tt21f29vZat26dxo8fb3YG9T///KNevXopPDxcuXPnlo+PzyvVbDAY1KdPH0nS7NmztWzZMtNzFxkZqVmzZmnz5s1ycHBQt27dYmwf3fExZcoUSVKrVq1i3U9CPp/Ros/kP3PmjH7//XfTcqPRqJ07d6pnz56ms+mfnz4usd/70e+p5z+jjRs3lpeXl548eaL33nvPbNr14OBgjRgxQrt375aDg4MGDx4s6enVDc2aNZMkffHFFzp+/LjZY/r5+Wn37t2Snn7HPF/7rl275OfnZ1oeEBCgfv36KTAwMM76k8Krvieeldjv88SK/t568OABZ9oDAIBkRR8FfRTR29BHETv6KOijSIzU2Edhqc8ngLSDe4AD0NChQ3Xr1i398ccf6t+/v7Jly6YcOXLo6tWrunfvniSpU6dOeu+998y26927t3bt2qXbt2/Lx8dHhQsX1pMnT3Tp0iXlzZtXrVu3jvOsQksaMGCAevfurfPnz6tBgwYqXLiw7t+/r+vXr6tUqVIqX768KUQkRtGiRbV8+XJt3LhRr732mm7evKnbt2/Lzs5OQ4cOjTEY8fXXX+uDDz7QkSNH1KVLF+XOnVuZMmWSv7+/goODZW9vrwEDBpgGfCSpS5cu2rNnj3bu3Kn33ntP2bJlU7Zs2XTv3j1TaKlXr57atm1r2qZZs2a6dOmSpk6dqkmTJunHH39UgQIFdPfuXdM2BQsW1A8//GBW361bt9S0aVNJT6cjiutHriRt2bJFQUFBkuI3FZKdnZ3efvttffPNN/rnn3906NAhU5hJiM8++0z79+9X5cqVTUEjLtFnGb/++uvxuldTs2bNNGHCBD148EBLliwxhbXEvo+KFy+ubdu2ae3atTp79qwqVqyokSNHKkOGDJo5c6Z69eqlI0eOqGHDhipcuLAcHBx07tw5hYeHy8PDQ5MmTTJNXRUfkyZNkqurq1atWqUFCxZowYIFypUrlzJnzmz6vIaFhcnR0VGDBg1Shw4dzLavU6eOKlasqIMHD+qLL77QnDlz5OnpqYsXLyo8PFx9+/Y1dUAll2rVqmno0KH66quv9O2332rOnDnKmzevbt68abpP2ocffmjWmRKbChUqaOzYsRo5cqTmzZunJUuWqFChQnr06JEuX74so9GoLFmy6Oeff35p8IqPNm3a6Pz585o7d66GDx+u7777Tjly5NC1a9cUFBQke3t7jRo1Ktazpt966y1NnjxZjx8/lqOjo5o3bx7rPhLy+Xy2rl9//VWXL19Wv379lDt3bnl6eurGjRsKDAyUo6OjKleurP3798eYCj2x3/vFihWT9PTeZo0bN1bhwoU1bdo0OTg46IcfftB7772nixcv6q233lKBAgXk5uZmmurQ2dlZo0ePVsWKFU2PN3DgQB06dEinTp1S27ZtTccQEBBgurKnffv2ZgPgLVu21KJFi+Tv76++ffsqX758cnV11YULF2Rvb68PPvhAM2fOfOnz9ype5T3xrMR+nyeWl5eX7OzsFBoaqsaNGytbtmz6+eef4zXNIQAAQELRR0EfBX0UcaOPgj6KxEptfRSW+nwCSDu4AhyAnJycNH36dH377beqWbOmwsLCdPr0abm4uKhZs2ZasGCBRowYEWPanmLFimn58uXy8fFRpkyZdPHiRUVGRurdd9+Vr6+vsmbNaqEjerHatWvr119/VYMGDeTq6qrz588rXbp06tevn3799VfT2a+J1aVLF33zzTcqWLCg6czTRo0aacmSJbGeRenh4aGFCxdq7NixqlSpkh4+fKizZ8/K09NTbdq00fLly9WrVy+zbezt7TV9+nQNGzZM5cqVU2hoqM6cOaOQkBDVrFlTX3/9tX744Qez+0BJT3+AL126VD4+PnJ3d9eZM2d07949FS9eXP3799eKFSuUOXPmRB97dHArUaJEvKdCatOmjRwdHSUl/xmcx44dM91bKb73KnJxcVGLFi0kSX/99ZfpXnOJfR+99957atu2rTw8PHTp0iWdPXvWtK548eJat26d+vTpoyJFiujq1au6dOmSChYsqA8++EBr1qyJ99Ri0ZycnPTVV19p2bJlevfdd1WiRAmFhYXpzJkzunnzpgoWLKgePXpozZo1Md5n0tOA8fPPP2vAgAEqUqSIAgMD9e+//6patWpavHjxK5+FHF9du3bV0qVL1bx5c6VLl05nz55VRESE6tSpo7lz56pfv37xepzWrVtr9erVevvtt5U1a1adO3dON27cUKFChdSzZ0+tWbPGdD+6pDBkyBDNnTtX9evXl9Fo1JkzZ2Rvb6/GjRtr6dKlZh1Az8qUKZNp8LZevXpJOtDo7u5u+l4pUqSI7t69q3Pnzsnd3d3UKfjll19KenqV+LNXLST2e79Fixbq2bOnsmbNqmvXrpnd0zFPnjxasWKFPv30U5UuXVq3b9/WhQsXlDNnTnXp0kWrV682fQajubm5aeHCherXr59KlCihoKAgnTlzRkajUfXr19ePP/6oUaNGxdhm6dKl6tGjh/Lnz68bN27ozp07atSokXx9fVWlSpUke45fJLHviecl9/f5s/Lnz6/x48erQIECCgoK0o0bN2JcIQIAAJBU6KOgj4I+irjRR0EfxatITX0Uqf3zCcD6GYzczA8AkkS9evV0/fp1jRs3Lt4DGEg6Y8eO1ZUrVzR79mxLlwIkiVatWunkyZOaNWvWS88cBwAAAIBn0UdhWfRRwNbQRwHA2nAFOADA6kVFRengwYMqXLiwpUsBksTJkyd18uRJ5cyZUzVr1rR0OQAAAACAeKKPAraGPgoA1oh7gAMArN6YMWMUGBiozp07W7oUINGuXr0qSbpz546GDBki6el0hfb29pYsCwAAAACQAPRRwBbQRwHA2jEADgCweu+884769eunTJkyWboUINE2bNigb775xvT3okWLqlOnThasCAAAAACQUPRRwBbQRwHA2jEFOgDA6nl7exMsYfW8vb2VLVs2ubq6qkGDBpozZ46cnJwsXRYAAAAAIAHoo4AtoI8CgLUzGI1Go6WLAAAAAAAAAAAAAADgVXEFOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQ6WLsBaGI1GRUUxWzwAAAAAwJydnUEGg8HSZdgEsjcAAAAAIDYJyd4MgMdTVJRRd+8+snQZAAAAAIBUJlMmN9nbMwCeFMjeAAAAAIDYJCR7MwU6AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCY4WLoAAAAAAEBMUVFRioyMsHQZaZ69vYPs7Dh3HAAAAABsEdk7dUjq7M0AOAAAAACkIkajUQ8e3FVISLClS8H/c3FxV4YMmWQwGCxdCgAAAAAgCZC9U5+kzN4MgAMAAABAKhIdwN3dPeXklI5BVwsyGo0KC3ui4OB7kqSMGTNbuCIAAAAAQFIge6ceyZG9GQAHAAAAgFQiKirSFMDd3TNYuhxIcnJKJ0kKDr6n9Ok9mQ4dAAAAAKwc2Tv1SersTXIHAAAAgFQiMjJS0n/BD6lD9OvBfeEAAAAAwPqRvVOnpMzeDIADAAAAQCrD1GupC68HAAAAANgesl7qkpSvBwPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGyCg6ULAAAAAABYztmzZ/TDD1N05swpRUUZVbx4SfXq1UclSpSUJB04sFdz5/6kCxfOyd7eQZUrV1Xv3n2VPXsOSdKGDWv15ZejtWzZGuXMmcv0uG3a+KhcuQr63/9GSZJq1qyod9/tpT17duvq1ctq376zunXrqevXr2nGjKk6dOiAjEajSpYspT59+uu11wpJkp48eaKff56pLVv8dO/eXeXLl19duryr+vUbpuwTBQAAAABAIpG9UxZXgAMAAABAGvXoUbAGDeqrjBk9NG7cBI0e/aVCQ0M0aNBHCg4O1u+/b9DAgR8pa9asGjXqC/XtO1AnT/6tDz54V/fu3U3w/ubP/1mvv15Po0Z9oVq1XtedO3f03ntddfmyvwYN+kwjR47VgwcPNGBAHwUFBcloNGrYsE+0atVKvf12B3311TcqWbK0Ro4cpo0b1yXDMwIAAAAAQNIie6c8rgAHAAAAgDTK399fQUH31KbN2ypduqwkKX/+Alq9eoWCgx/qhx+mqGLFyho9erxpm9Kly6pTp7ZavHiR+vTpl6D9FS9eUp06dTP9ffr0KXryJFTfffeDMmfOIkkqUsRb77/fTSdOHFe6dE7at2+PRo/+0nTWeZUq1RQaGqKZM6fpjTcay8GBWAsAAAAASL3I3imPK8ABAAAAII167bVC8vDw1GeffaxJk8Zr9+6dypw5i/r06a/Q0FAFBgaqYcMmZtvkzp1HJUqU0pEjBxO8v0KFCpv9/dixIypZsrQpgEtSlixZtGLFOtWsWVsHDx6QwWBQtWo1FRERYfqvRo06Cgy8I3//C4k7cAAAAAAAUgjZO+VZ13A9AAAAACDJuLq66ocfZmv+/J+1ZYufVq1aIWdnZzVs2ESNGzeTJGXKlDnGdpkzZ9bZs2cTvD9Pz0xmf3/w4L7Zvcue9+DBfRmNRjVsWDvW9Xfu3FaRIl4JrgMAAAAAgJRC9k55DIADAAAAQBqWL18BjRgxVpGRkTp9+qQ2bdqgVauWK0uWrJKku3cDY2wTGBgoDw8PSZLBYJAkRUVFmbUJCXn80n27u6dXUFBQjOWHDh1Qjhw55e6eXi4urpo6dWas2+fOnfel+wAAAAAAwNLI3imLKdABAAAAII3atm2LmjdvoMDAO7K3t1fJkqU1ePAQubun1927d5U5c2b5+W002+b69Ws6ceK4SpcuI0lydXWTJN26ddPU5sqVS7p///5L91+mTFmdPHlc9+7dNS0LCgrS4MH99OefO1W2bHmFhDyW0WiUt3dx038XL17QnDmzFRkZmRRPAwAAAAAAyYbsnfK4AvwV2dkZZGdnSLbHj4oyKirKmGyPDwAAACDtKlWqrCIjozR06GB16tRNbm5u+uMPPz16FKx69RqoePES+vLL0Ro5cqgaN26u+/eDNGfOLGXIkFFvv91RklShQiU5Oztr2rRv9d57ffT48WPNnfu0zcu0a9dBGzeu18cff6QuXd6Vk1M6LVw4V5kzZ1Hjxs3k7p5eZcuW15Ahg9StW0/lz19Ap0+f1M8/z1KVKlVNZ8Ij8cLDw7Vw4UL5+vrq0qVLcnV1ValSpdS1a1fVqlUrRvsqVarEeuVAtOPHjytdunRJXifZGwAAAIC1InunPIPRaCThxUNkZJTu3n1ktszOziAPD1fZ2yffhfSRkVEKCnpMEAcAAADSgPDwMAUG3lDmzDnl6OiUIvs8ffqkZs+eoTNnTis0NFSvvVZInTt3V506dSVJ27f/oYUL5+nixfNyc3NTlSrV1KvXh8qePYfpMfbu3aOZM6fp8mV/5ciRU92799KmTeuVOXNm/e9/oyRJNWtWVPfu76lHj/fN9n/58iX98MMUHT58SI6OjipXrrz69Omv3LnzSJJCQkL0008ztG3bH7p3766yZMmmBg0aqlu3nsky0Bqbl70umTK5JWsuTC5Go1F9+/bV5s2blSFDBpUvX15PnjzRwYMHFR4ergEDBqh3796m9tevX1e9evWUPXt2Va5cOdbHHD9+vBwdHRNdE9kbAAAAQHIje9t+9mYAPJ5iC+EODnby9HTT9MV/6nrAy6cYSKjc2TLqw/Y19OBBiCIjo16+QSJwljsAAACQelgihOPlbHUAfPHixRo1apSKFSumuXPnytPTU5J05swZdezYUY8ePdL69etVqFAhSdKWLVv04YcfqmvXrho2bFiy1ET2BgAAAJDcyN6pU1Jmb6ZATwLXA+7r0vV7Sf64GdM7yxgVpQwZXJL8saNFRUXq3r0QgjgAAAAApDGrV6+WJA0ZMsQ0+C1J3t7e8vHx0eLFi7Vz507TAPjJkyclSSVKlEj5YkX2BgAAAADEDwPgqZibs5MMdnbyXzdbIYE3kvzxXTLnVMHm78nOzkAIBwAAAIA0Zv78+fL391eRIkVirHv8+LEkyd7e3rTs9OnTkqSSJUumTIEphOwNAAAAALaFAXArEBJ4QyG3rli6DAAAAACADUmXLp28vb1jLN+yZYs2bdokFxcXNWzY0LT85MmTcnZ21okTJzR8+HCdO3dOBoNB5cuXV58+fVSmTJmULD/Jkb0BAAAAwDZY303KAAAAAABAkrp//7769u2rJk2a6MMPP1SmTJk0Y8YM5ciRQ5IUGBiogIAAhYaG6tNPP1VUVJSqVKkiDw8Pbd++XR06dNCGDRssfBQAAAAAAHAFOAAAAAAAad7Vq1fl5+dn+rvBYND58+dVrVo1Sf/d/9vT01MzZsxQuXLlJElGo1Hz58/X+PHjNXToUJUvX940aJ5YDg7m5+rb29vGufu2chwAAACAtYuKMli6BLyAvb0hRi5MKAbAAQAAAABI4woWLKj9+/fLaDRqz549+uKLLzRu3DgFBwerd+/eqlWrlnbt2iWj0ajs2bObtjMYDOrWrZsOHDigLVu2aPny5froo48SXYednUGenm5JcUipToYMLpYuAQAAAICk0FB73bljlyQDrUg6UVEG2dnZKWNGVzk7O7/SYzEADgAAAABAGufm9t+gc9OmTZUjRw516NBBs2bNUpcuXeTm5qZs2bLFuX3dunW1ZcsWnThx4pXqiIoy6sGDx2bL7O3tbGLw+MGDEEVGRlm6DAAAACDNCwt7oqioKEVGGhURwW/01CIy0qioqCjdv/9YISGRMdZnyOAS75m1GAAHAAAAAABmypcvr3z58uny5cu6dOmSSpQo8cL2WbNmlSSFhIS88r5ttQMqMjLKZo8NAAAAsCaRkUZLl4AXSIoTE7iuHwAAAACANCYkJERfffWVBg8eLKMx9s4fJycnSVJERISWLl2qAQMGaMuWLbG2vXr1qiS98v2/AQAAAAB4Van2CvDw8HAtXLhQvr6+unTpklxdXVWqVCl17dpVtWrVitG+SpUqCgoKivPxjh8/rnTp0iVjxQAAAACQfOzsDLKzM6T4fqOijIqK4ux4W+Ps7CxfX18FBQWpXbt2qly5stn6q1evyt/fX05OTipSpIh27NihjRs3KiQkRA0aNDBrazQatXr1aklSzZo1U+wYAAAAACCpkb1tQ6ocADcajRo4cKA2b96sDBkyqHr16nry5In27t2rXbt2acCAAerdu7ep/fXr1xUUFKTs2bPHCO3R7Oy42B0AAACAdbKzM8jDwzXe97pKSpGRUQoKepyoIO7nt0krVizVxYvnJUn58xdU8+ZvqUWL1kldJhLIYDDo7bff1o8//qhRo0Zp3rx5pnt837x5Ux9//LEiIiLUtWtXubq6qmXLlpo9e7a2b9+u3377Te3atZMkRUVFaerUqTp+/LgKFy6sxo0bW/KwAAAAACDRyN62I1UOgC9ZskSbN29WsWLFNHfuXHl6ekqSzpw5o44dO2rKlClq2LChChUqJEk6ffq0JKlx48YaNmyYxeoGAAAAgORgZ2eQvb2dpi/+U9cD7qfYfnNny6gP29eQnZ0hwSF83brV+u67ierXb5DKli0vyagDB/br++8n6969u+re/b3kKRrx1qdPHx0+fFgHDhxQo0aNVKFCBYWHh+v48eN6/PixatasqcGDB0uS8ubNq1GjRmn48OEaMWKEFi1apAIFCujMmTO6fPmysmTJoqlTp8rR0dHCRwUAAAAAiUP2th2pcgA8euq0IUOGmAa/Jcnb21s+Pj5avHixdu7caRoAP3nypCSpRIkSKV8sAAAAAKSQ6wH3den6PUuXES++vsvVvPlbevPNlqZl+fIV0O3bAfrtt8VpNoSnJs7Ozpo7d64WLFig1atXa9++fXJwcFCRIkXUqlUrtW3bVvb29qb2rVu3VsGCBTV79mwdPnxYFy9eVLZs2dS5c2f17t1bmTNntuDRAAAAAEDSIHtbv1Q5L/j8+fO1evVqVapUKca6x48fS5JZCI++ArxkyZIpUyAAAAAA4IXs7Az6++/jevDggdnyjh276scf50qS2rTx0c8//2i2/qOPeumLL0ZJkg4fPqiaNSvql1/mq2nT+nr33Y7q06enPv98qNk2x48fVc2aFXXt2lVJ0p9/7tK773ZSvXo19PbbLTR79gyFhYVJkqZMmax27d4y2z44OFj16tXQ7t07kuz4rYWjo6N69OihNWvW6O+//9aRI0f022+/6Z133jHL3dHKly+vGTNmaN++fTpx4oS2bt2q4cOHM/gNAAAAABZA9o5dqhwAT5cunby9vWOE7S1btmjTpk1ycXFRw4YNTctPnjwpZ2dnnThxQu3bt1fFihVVqVIlvf/++zp27FhKlw8AAAAAaV7Hjl117txZtWzZRJ980l8LF87TqVMn5O7urnz58ifosfbs2a0ff5yroUM/V/Pmb+nPP3fq8eNHpvV+fhtVqlQZ5cmTV3v37tGIEUP05psttHDhUg0aNERbt27W2LGfS5KaN39L//57XceOHTVt/8cffnJzc1PVqjWS5NgBAAAAAEgJZO/YpcoB8Gfdv39fffv2VZMmTfThhx8qU6ZMmjFjhnLkyCFJCgwMVEBAgEJDQ/Xpp58qKipKVapUkYeHh7Zv364OHTpow4YNFj4KAAAAAEhbXn+9vn78ca5ef72eTp8+pR9/nKZevbqpQ4fWOn78aIIeq337TsqbN5+KFPFS3boNZGdnrx07tkmSwsPDtXXrFjVt6iNJWrBgjpo3f1MtWrRR7tx5VLlyVX3yyTBt27ZFN278q0KFCsvLq5h+/3296fE3bVqnRo2aysEhVd4lDAAAAACAWJG9Y5fq0/3Vq1fl5+dn+rvBYND58+dVrVo1Sf/d/9vT01MzZsxQuXLlJElGo1Hz58/X+PHjNXToUJUvX940aJ5YDg7m5wvY26f68wfixVaOAwAAALB2UVEGS5eQpIoVK6ERI8bKaDTq4sUL+uuv3Vq2bIkGD+6vpUt94/04efLkM/3ZxcVFdevWl5/fRjVp0lx//fWnnjwJVb16DSRJ//xzRqdPn9TGjetM2xiNRknSpUv+ypkzl5o1e1OzZv2gAQM+UUDALf3993F98smwl9Zhb2+IkQsBAAAAALAkW8veSSHVD4AXLFhQ+/fvl9Fo1J49e/TFF19o3LhxCg4OVu/evVWrVi3t2rVLRqNR2bNnN21nMBjUrVs3HThwQFu2bNHy5cv10UcfJboOOzuDPD3dkuKQUp0MGVwsXQIAAAAASaGh9rpzxy7GQKulT1pN6P4DAm5pwYJ56tKlu7JlyyZJ8vIqKi+voqpT53W1b99Gf/99VJJkZ2d+snFkZKQMhqfHH71fV1cXszY+Pm/qo48+0P37d7V580bVqVNPGTNmkPQ0cHfq1FVNmzaPUVeWLFnl4GCnJk2aavr077R375+6cOGcihcvoaJFi8Z5PFFRBtnZ2SljRlc5Ozsn6LkAAAAAACA5BATc0i+/zFenTt2UNWs2GQwGFSpUWIUKFVbNmnXUqVNbHT16ONZtIyMjYixLly6d2d+bNvVR//69FRh4R35+G1S7dl25ublLkqKijOrQoYuaNImZvTNnziJJeuONxpo27Tvt2bNLFy6cV7FixfXaa4Vf9bDjJdUPgLu5/Tfo3LRpU+XIkUMdOnTQrFmz1KVLF7m5uZk6VGJTt25dbdmyRSdOnHilOqKijHrw4LHZMnt7O5sYPH7wIESRkVGWLgMAAABI88LCnigqKkqRkUZFRKSe3+iRkVEJqsfOzlGrVq1Q1qzZ1LFjV7N1zs6ukqSMGT3l4OCoBw+CTY8dFRWlf/+9pjx58ioiIsqUU57ff6lS5ZQjR06tW7dWf/65W199Ndm0vmDBQvL391fOnHlM7Y8cOaTffluswYOHyNExnVxc3FSr1uvaunWL/P0vqEWLNi88vshIo6KionT//mOFhETGWJ8hg4vFT1IAAAAAAKQtTk7ptHr1SmXLlj1G9o4eX82UKbMcHBwVHBxsWvc0e183u+I7NmXLlleOHDm1adN67dnzp776arJp3WuvFdLly5eUJ09e07Jns7eLi4vSp0+v2rVf1/btW03ZO6Wk+gHw55UvX1758uXT5cuXdenSJZUoUeKF7bNmzSpJCgkJeeV9p6YOqKSU0M4sAAAAAMkjMtJo6RKShIeHhzp27KpZs35QcHCw6tVrIFdXN1265K95835S+fIVVaZMOZUuXUZ//OGnOnXqKlOmzFqyZJFZKH+RJk2aa/78OcqYMaMqVqxsWt6xYxd9/vlQ/fzzj3rjjca6fTtAX301TtmzZzedhS5JzZq9qSFDPpbRKDVo0Che+0xtJyYAAAAAANIuW83eSSHVDYCHhIRoypQpunPnjiZOnCiDIeY98JycnCRJERERWrp0qf766y81b95cDRo0iNH26tWrkvTK9/8GAAAAAEvLnS2j1ezvvfd6K0+evFq7dpV8fZcpNDRU2bPnUL16b6hLl3clSb16faiHDx9o8OB+cnZ2kY9PC9Wv39B037AXady4uebMmaVWrdrKzu6/q6/r1m2g0aOlhQvnaNGieUqfPoNq1Kil3r37mW1fsWJlZczooVKlyih9+vSJPk4AAAAAgG0he//HWrN3qhsAd3Z2lq+vr4KCgtSuXTtVrlzZbP3Vq1fl7+8vJycnFSlSRDt27NDGjRsVEhISYwDcaDRq9erVkqSaNWum2DEAAAAAQFKKijIqMjJKH7avkeL7joyMUlRU4q5Mb9Kkeaz3A4uWJUsWjR8/Oc715ctX1O7dB2NdlyNHDu3cuT/WdfXqNVC9ejFPkH5WaGiogoOD1bz5Wy9sBwAAAABIG8jeMVlr9k51A+AGg0Fvv/22fvzxR40aNUrz5s0z3eP75s2b+vjjjxUREaGuXbvK1dVVLVu21OzZs7V9+3b99ttvateunaSn89dPnTpVx48fV+HChdW4cWNLHhYAAAAAJFpUlFFBQY9lZxdzhqyU2HdiQ3hq9ODBAx0+fEBbt25R9uzZzaZwAwAAAACkXWTvpGPp7J3qBsAlqU+fPjp8+LAOHDigRo0aqUKFCgoPD9fx48f1+PFj1axZU4MHD5Yk5c2bV6NGjdLw4cM1YsQILVq0SAUKFNCZM2d0+fJlZcmSRVOnTpWjo6OFjwoAAAAAEs/WwrClREZG6KuvxsrDw1NjxoyP9bZbAAAAAIC0ieydNCydvVPlALizs7Pmzp2rBQsWaPXq1dq3b58cHBxUpEgRtWrVSm3btpW9vb2pfevWrVWwYEHNnj1bhw8f1sWLF5UtWzZ17txZvXv3VubMmS14NAAAAACA1MLTM5M2bdpu6TIAAAAAALBZls7eqXIAXJIcHR3Vo0cP9ejRI17ty5cvrxkzZiRzVQAAAAAAAAAAAACA1MrO0gUAAAAAAAAAAAAAAJAUGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAK2BnZ5CDg12K/2dnZ0hUvW3a+KhmzYpasmRRrOsnTvxSNWtW1M8//5jo56RNG58EbZ/Q9gAAAACAtIXsHfs+rC17O1h07wAAAACAl7KzM8jT00V2dvYpvu+oqEjduxeiqChjgrd1cHDQtm1/6J13Opktj4iI0I4dW2UwJC7gAwAAAACQ1MjetoMBcAAAAABI5ezsDLKzs5f/utkKCbyRYvt1yZxTBZu/Jzs7Q6JCeMWKlbVv31+6deumsmfPYVp++PBBOTu7KF0656QsFwAAAACARCN72w4GwAEAAADASoQE3lDIrSuWLiPeihUrocuXL2nbti1mZ6L/8Yef6tV7Q1u3bjYtO3HiuGbN+kFnz56Wg4ODatasow8/HKAMGTJIkoKDg/XddxO1e/cOOTg4qkuX7jH29/ffxzRz5jSdPn1KHh4eqlGjtj744EO5ubkn/8ECAAAAAGwC2dv6szf3AAcAAAAAJJu6dRto27Y/TH8PDw/Xzp3b1aBBQ9OyU6dOqG/f91WgQEHNnDlXY8dO0KlTJ/Txxx8pKipKkvT550N0+vRJTZjwrb79dpr+/HOXbt7874z88+fPqX//PqpUqYrmz1+skSO/0NmzpzVw4EcyGhN+Bj0AAAAAANaC7G2OAXAAAAAAQLKpV+8NnTp1Qrdu3ZQk7d+/Vx4eHipa1NvUZsmSX1SoUBF9/PFnKljwNZUvX1GjRn2pM2dOad++v3TlyiXt379XAwd+qjJlyqlIES+NHDlOTk5OpsdYvHiBKlaspG7deipv3nwqU6asRo36QqdOndCRI4dS/LgBAAAAAEgpZG9zTIEOAAAAAEg23t7FlCtXbtNUbFu3+qlBg0ZmbS5ePK9KlaqaLStUqLDc3dPrwoVzCg0NkSQVK1bctD5TpszKlSu36e9nz57VtWtX9MYbtWLUcPnyJZUvXzEpDwsAAAAAgFSD7G2OAXAAAAAAQLKqV+8Nbdv2h1q2bKtdu3Zq9uz5ZuuNRqMMhpjbGY1RcnD4L7ZGRZlPp2Zv72DWtmHDJurS5d0Yj+Ph4fmKRwAAAAAAQOpG9v4PU6ADAAAAAJJVvXoNdOrUCa1bt1q5cuVW/vwFzNa/9lphHTt21GzZuXP/6NGjRypQ4DXTlG1//33MtP7hw4e6fv2q6e8FCxaSv/8F5cmT1/RfVFSkvv/+GwUE3Ey2YwMAAAAAIDUge/+HAXAAAAAAQLIqUsRLefLk1axZ01W/fsMY699+u4POn/9H33wzQZcu+evIkUMaM2a4ihb1UsWKlZU7dx7VrdtA3377tQ4c2KeLF89r7NjPFR4ebnqMd97ppH/+OauJE7+Uv/9FnTx5QqNGDdeVK5eVJ0++lDxcAAAAAABSHNn7P0yBDgAAAABWwiVzTqvdX716b2j+/J/VoEHMEF6yZGlNmjRFs2fP1LvvdpSrq5tq1XpdvXt/ZJqGbfjwUZo+fYpGjhymqKgovfVWKwUF3XvmMUrpm2+m6aefZqhHj85ycXFW+fKV9OGHA+Tk5JRkxwEAAAAAsG1kb+vP3gaj0Wh8eTNERkbp7t1HZsscHOzk6emmYVM26NL1e3FsmXjVy+bXRx1q6tT8MQq5dSXJH98lez4V7/q57t17pIiIqCR/fAAAAAAJEx4epsDAG8qcOaccHf8LjnZ2Bnl6usjOzj7Fa4qKitS9eyEx7gGWlsT1ukTLlMlN9vZMsJYUyN4AAAAAkhvZO3VKyuzNFeAAAAAAkMpFRRl1716I7OwMFtl3Wg7gAAAAAIC0gextOxgABwAAAAArQBgGAAAAACB5kb1tA3O0AQAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAKmM0cj9xlITXg8AAAAAsD1kvdQlKV8PBsABAAAAIJWwt7eXJIWFPbFwJXhW9Othb+9g4UoAAAAAAK+K7J06JWX2Jr0DAAAAQCphZ2cvFxd3BQffkyQ5OaWTwWCwcFVpl9FoVFjYEwUH35OLi7vs7DiHHAAAAACsHdk7dUmO7M0AOAAAAACkIhkyZJIkUxCH5bm4uJteFwAAAACA9SN7pz5Jmb0ZAAcAAACAVMRgMChjxsxKn95TkZERli4nzbO3d+DKbwAAAACwMWTv1CWpszcD4AAAAACQCtnZ2cnOzsnSZQAAAAAAYLPI3raJ09gBAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADbBwdIFAAAAAAAAywgPD9fChQvl6+urS5cuydXVVaVKlVLXrl1Vq1atGO3v3LmjH374Qbt27dKtW7eUNWtWNW7cWH369JGbm5sFjgAAAAAAAHNcAQ4AAAAAQBpkNBo1cOBATZgwQTdv3lT16tVVrFgx7d27Vz179tSMGTPM2gcEBKhdu3b65Zdf5OzsrNdff11RUVH66aef1L59ewUHB1voSAAAAAAA+A8D4AAAAAAApEFLlizR5s2bVaxYMfn5+enHH3/UvHnztHz5crm7u2vKlCm6cOGCqf24ceN0/fp19erVS2vXrtX333+v33//XU2aNNHZs2c1bdo0Cx4NAAAAAABPMQAOAAAAAEAatHr1aknSkCFD5OnpaVru7e0tHx8fGY1G7dy5U5J05coVbd68WTlz5lS/fv1MbZ2cnDR27Fi5ublp6dKlCg0NTdmDAAAAAADgOQyAAwAAAACQBs2fP1+rV69WpUqVYqx7/PixJMne3l6StHPnTkVFRalOnTpydHQ0a5s+fXpVrVpVjx8/1r59+5K/cAAAAAAAXoABcAAAAAAA0qB06dLJ29vbNMgdbcuWLdq0aZNcXFzUsGFDSdI///wjSSpatGisj1W4cGGzdgAAAAAAWIqDpQsAAAAAAACWdf/+fQ0fPlznz5/XxYsXlTNnTo0fP145cuSQJN2+fVuSlDVr1li3j15+586dlCkYAAAAAIA4MAAOAAAAAEAad/XqVfn5+Zn+bjAYdP78eVWrVk3Sf1OiOzs7x7p99PLodq/CwcF8sjp7e9uYvM5WjgMAAAAAUjsGwAEAAAAASOMKFiyo/fv3y2g0as+ePfriiy80btw4BQcHq3fv3qZp0g0GQ6zbG41Gs/8nlp2dQZ6ebq/0GKlVhgwuli4BAAAAANIEBsABAAAAAEjj3Nz+G3Ru2rSpcuTIoQ4dOmjWrFnq0qWLXF1dJUlPnjyJdfvo5S4urzbIGxVl1IMH5leR29vb2cTg8YMHIYqMjLJ0GQAAAABglTJkcIn3zFoMgAMAAAAAADPly5dXvnz5dPnyZV26dEnZsmWT9N+9wJ/3snuEJ0REhG0OEkdGRtnssQEAAABAapJqB8DDw8O1cOFC+fr66tKlS3J1dVWpUqXUtWtX1apVK0b7O3fu6IcfftCuXbt069YtZc2aVY0bN1afPn3MzmQHAAAAACCtCwkJ0ZQpU3Tnzh1NnDgx1qnNnZycJEkREREqWrSoJOnChQuxPt65c+ckSV5eXslUMQAAAAAA8RO/68RTmNFo1MCBAzVhwgTdvHlT1atXV7FixbR371717NlTM2bMMGsfEBCgdu3a6ZdffpGzs7Nef/11RUVF6aefflL79u0VHBxsoSMBAAAAACD1cXZ2lq+vr9auXasDBw7EWH/16lX5+/vLyclJRYoUMZ2Ivm3bNkVGRpq1ffjwofbt2ydXV1dVqFAhReoHAAAAACAuqXIAfMmSJdq8ebOKFSsmPz8//fjjj5o3b56WL18ud3d3TZkyxeys83Hjxun69evq1auX1q5dq++//16///67mjRporNnz2ratGkWPBoAAAAAAFIXg8Ggt99+W5I0atQoBQQEmNbdvHlTH3/8sSIiItS+fXu5uroqd+7cqlu3rq5du6aJEyfKaDRKksLCwvT555/r0aNHeuedd+Tu7m6R4wEAAAAAIFqqnAJ99erVkqQhQ4bI09PTtNzb21s+Pj5avHixdu7cqUKFCunKlSvavHmzcubMqX79+pnaOjk5aezYsdq5c6eWLl2qAQMGyNnZOcWPBQAAAACA1KhPnz46fPiwDhw4oEaNGqlChQoKDw/X8ePH9fjxY9WsWVODBw82tR8xYoROnjypuXPnaseOHSpSpIj+/vtv/fvvvypRooQ++ugjCx4NAAAAAABPpcorwOfPn6/Vq1erUqVKMdY9fvxYkmRvby9J2rlzp6KiolSnTh05OjqatU2fPr2qVq2qx48fa9++fclfOAAAAAAAVsLZ2Vlz587Vp59+qrx582rfvn06fvy4ihQpotGjR2vWrFmm+4BLUu7cubV8+XK1bdtWDx8+1LZt2+Tk5KQPPvhACxYskJubmwWPBgAAAACAp1LlFeDp0qWTt7d3jOVbtmzRpk2b5OLiooYNG0qS/vnnH0lS0aJFY32swoUL648//tA///yjOnXqJF/RAAAAAABYGUdHR/Xo0UM9evSIV/vs2bNr3LhxyVwVAAAAAACJlyoHwJ91//59DR8+XOfPn9fFixeVM2dOjR8/Xjly5JAk3b59W5KUNWvWWLePXn7nzp2UKRgAAAAAAAAAAAAAYBGpfgD86tWr8vPzM/3dYDDo/PnzqlatmqT/pkSP6/7e0cuj270KBwfzGePt7VPlDPIJZivHAQAAAAAAAAAAACBtS/UD4AULFtT+/ftlNBq1Z88effHFFxo3bpyCg4PVu3dv073ADQZDrNsbjUaz/yeWnZ1Bnp62eT+zDBlcLF0CAAAAAAAAAAAAALyyVD8A7ub236Bz06ZNlSNHDnXo0EGzZs1Sly5d5OrqKkl68uRJrNtHL3dxebVB3qgoox48ML+K3N7eziYGjx88CFFkZJSlywAAAAAAq5QhgwszawEAAAAAkEqk+gHw55UvX1758uXT5cuXdenSJWXLlk3Sf/cCf97L7hGeEBERtjlIHBkZZbPHBgAAAAAAAAAAACDtSHWnqIeEhOirr77S4MGD45y23MnJSZIUERGhokWLSpIuXLgQa9tz585Jkry8vJKhWgAAAAAAAAAAAABAapHqBsCdnZ3l6+urtWvX6sCBAzHWX716Vf7+/nJyclKRIkVUq1YtSdK2bdsUGRlp1vbhw4fat2+fXF1dVaFChRSpHwAAAAAAAAAAAABgGaluANxgMOjtt9+WJI0aNUoBAQGmdTdv3tTHH3+siIgItW/fXq6ursqdO7fq1q2ra9euaeLEiaarxsPCwvT555/r0aNHeuedd+Tu7m6R4wEAAAAAAMD/sXfncXbN9//AX3cme4jsCCq1t/Yg0aK0tHal1lKqdoria4taK6KW0iqlFVGJfUliKZWEBEWtkdiCRkuEhpBEZJFl5veHX9KmSZhkljtz7/P5eHiUcz733Pen587Mfd33uZ8DAADQMBrlPcCPO+64vPjii3nuueey4447ZrPNNsucOXMyZsyYzJgxI1tvvXVOPfXUBePPOeecvPrqq7nxxhvz2GOPZe21187LL7+c999/P+uvv36OP/74Is4GAAAAAAAAgIbQ6L4BnnyxDPqNN96Y008/PauttlqeeeaZjBkzJmuvvXYuuOCC/OlPf1pwH/AkWWWVVXL33Xdn3333zbRp0zJixIi0aNEixxxzTAYMGJC2bdsWcTYAAAAAAAAANIRG+Q3wJGnevHkOP/zwHH744TUav+KKK6ZPnz71XBUAAAAAAAAAjVWj/AY4AAAAAAAAACwtDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASkKzYhcAAAAAwH9UVBRSUVGot+NXVVWnqqq63o4PAABQTBrgAAAAAI1ERUUh7du3SWVl/S3aN29eVaZMmaEJDgAAlCQNcAAAAIBGoqKikMrKilxz25OZ8OHUOj/+Kl1XyM9/vFUqKgoa4AAAQEnSAAcAAABoZCZ8ODX/mjC52GUAAAA0OfW3nhYAAAAAAAAANCANcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0K3YBNC0VFYVUVBTq7fhVVdWpqqqut+MDAAAAAAAApUsDnBqrqCikffs2qaysv4UD5s2rypQpMzTBAQAAAAAAgKWmAU6NVVQUUllZkWtuezITPpxa58dfpesK+fmPt0pFRUEDHAAAAAAAAFhqGuAstQkfTs2/JkwudhkAAAAAAAAAC6m/tawBAAAAAAAAoAFpgAMAAAAAAABQEiyBDgAAAGWqqqoqd911VwYNGpS33norc+bMSbdu3bLDDjvk6KOPTrt27RYa36tXr0yZMmWJxxszZkxatmxZz1UDAADAkmmAAwAAQBmqqqrKiSeemGHDhqVVq1bZaKON0qZNm4wZMyb9+vXLsGHDcuutt6Zz585JkgkTJmTKlClZccUV07Nnz8Ues6LCQnMAAAAUlwY4AAAAlKF77rknw4YNS/fu3dOvX7+sttpqSZLPPvssp556akaMGJE+ffrkt7/9bZLk9ddfT5LstNNOOeuss4pVNgAAAHwpl2YDAABAGbrnnnuSJGeeeeaC5neSLLfccunbt28KhUKGDx+eWbNmJUleffXVJMn666/f8MUCAABADWmAAwAAQBlq37591lhjjWyyySaL7OvYsWNWWGGFzJkzJ5MnT07yn2+Ab7DBBg1ZJgAAACwVS6ADAABAGbruuuuWuG/8+PGZMmVKmjdvno4dOyb54hvgrVq1yiuvvJKzzz47b731VgqFQnr06JHjjjsuG2+8cUOVDgAAAEvkG+AAAADAQubf93u77bZLy5Yt8/HHH+fDDz/MrFmzcvrpp6eqqiq9evVK+/btM3LkyBx44IF58MEHi1s0AAAAxDfAAQAAgP8ycODAPPDAA2ndunVOPvnkJP+5/3eHDh1y7bXXZtNNN02SVFdX56abbsrFF1+c3r17p0ePHllppZVq9fzNmi18rX5lZWlcu1/TeTTUfEvl/1cAAID/pQEOAAAAJEkGDBiQvn37plAo5KKLLsqaa66ZJNlmm23yxBNPpLq6OiuuuOKC8YVCIYceemiee+65DB8+PHfffXeOP/74ZX7+iopCOnRoW+t5NEbt2rUudgkLaWz1AAAA1BUNcAAAAChz1dXVufzyy9OvX79UVlbmoosuyq677rpgf6FQSNeuXZf4+O9+97sZPnx4XnnllVrVUVVVnU8/nbHQtsrKipJo1n766czMm1f1leMaar41rQcAAKAxaNeudY1Xsmq0DfCqqqrcddddGTRoUN56663MmTMn3bp1yw477JCjjz467dq1W2h8r169MmXKlCUeb8yYMWnZsmU9Vw0AAABNy6xZs3Laaadl6NChadWqVX7zm99khx12WKpjdOnSJUkyc+bMWtczd25pNmXnzatqVHNrbPUAAADUlUbZAK+qqsqJJ56YYcOGpVWrVtloo43Spk2bjBkzJv369cuwYcNy6623pnPnzkmSCRMmZMqUKVlxxRXTs2fPxR6zosK9rQAAAOC/ffbZZzniiCMyatSodOrUKddee2023njjRcbdcccdefrpp7Pbbrsttjk+fvz4JKn1/b8BAACgthplA/yee+7JsGHD0r179/Tr1y+rrbZaki+C+amnnpoRI0akT58++e1vf5skef3115MkO+20U84666xilQ0AAABNxpw5c3LUUUdl1KhRWX311XPDDTcsyN//a+LEiXnooYcyc+bMRRrg1dXVuffee5MkW2+9db3XDQAAAF+mUX4t+p577kmSnHnmmQuF7+WWWy59+/ZNoVDI8OHDM2vWrCTJq6++miRZf/31G75YAAAAaIKuvvrqvPDCC+nSpUsGDhy4xOZ3kuy1115p0aJFRo4cmTvvvHPB9qqqqlx11VUZM2ZM1lprrey0004NUToAAAAsUaP8Bnj79u2zxhprZJNNNllkX8eOHbPCCitkypQpmTx5clZeeeUF3wDfYIMNGrhSAAAAaHqmTp2am266KUnSqVOnXHbZZUscO//i9PPPPz9nn312zjnnnNx8883p3r17xo4dm3feeSedO3fO73//+zRv3ryhpgAAAACL1Sgb4Nddd90S940fPz5TpkxJ8+bN07FjxyRffAO8VatWeeWVV3L22WfnrbfeSqFQSI8ePXLcccct9v5lAAAAUK5Gjx6dmTNnJknGjh2bsWPHLnHsCSeckM6dO2fvvffO17/+9Vx//fV58cUX8/bbb6dr1645+OCDc+yxx6ZTp04NVT4AAAAsUaNsgH+Z+ff93m677dKyZct8/PHH+fDDD5Mkp59+ejbZZJP06tUrb775ZkaOHJm//e1vueyyy7LLLrsUsWoAAABoPL7zne/kjTfeWOrH9ejRI9dee209VERDq6ys37viVVVVp6qqul6fAwAAYHGaVAN84MCBeeCBB9K6deucfPLJSf5z/+8OHTrk2muvzaabbpokqa6uzk033ZSLL744vXv3To8ePbLSSivV6vmbNVs4HNZ3WGwoNZ1HQ823VP5/BQAAgMZmheVbpbqqKu3ata7X56mqmpfJk2dqggMAAA2uyTTABwwYkL59+6ZQKOSiiy7KmmuumSTZZptt8sQTT6S6ujorrrjigvGFQiGHHnponnvuuQwfPjx33313jj/++GV+/oqKQjp0aFvreTRG9R16l1ZjqwcAAABKRdtWLVKoqMg/H7g+Mz/+oF6eo3WnlfP13Y5MRUVBAxwAAGhwjb4BXl1dncsvvzz9+vVLZWVlLrroouy6664L9hcKhXTt2nWJj//ud7+b4cOH55VXXqlVHVVV1fn00xkLbausrCiJZu2nn87MvHlVXzmuoeb72Wez6jUgV1VVp7paAAcAAOpGu3atrWRFkzPz4w8yc+K7xS4DAACgzjXqBvisWbNy2mmnZejQoWnVqlV+85vfZIcddliqY3Tp0iVJMnPmzFrXM3fuVzeJm6J586oaxdzmL8O23HKt6vV5LMMGAAAAAAAApanRNsA/++yzHHHEERk1alQ6deqUa6+9NhtvvPEi4+644448/fTT2W233RbbHB8/fnyS1Pr+39Q/y7ABAAAAAAAAtdEoG+Bz5szJUUcdlVGjRmX11VfPDTfckNVWW22xYydOnJiHHnooM2fOXKQBXl1dnXvvvTdJsvXWW9d73dQNy7ABAAAAAAAAy6JR3qTs6quvzgsvvJAuXbpk4MCBS2x+J8lee+2VFi1aZOTIkbnzzjsXbK+qqspVV12VMWPGZK211spOO+3UEKUDAAAAAAAAUCSN7hvgU6dOzU033ZQk6dSpUy677LIljj3zzDOz2mqr5fzzz8/ZZ5+dc845JzfffHO6d++esWPH5p133knnzp3z+9//Ps2bN2+oKQAAAAAAAABQBI2uAT569OjMnDkzSTJ27NiMHTt2iWNPOOGEdO7cOXvvvXe+/vWv5/rrr8+LL76Yt99+O127ds3BBx+cY489Np06dWqo8gEAAAAAAAAokkbXAP/Od76TN954Y6kf16NHj1x77bX1UBEAAAAAAAAATUGjvAc4AAAAAAAAACwtDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCc2KXQAAAAAA1KeKikIqKgr1dvyqqupUVVXX2/EBAICa0wAHAAAAoGRVVBTSoUPrVFRU1ttzVFXNy+TJMzXBAQCgEdAABwAAAKBkffHt78r884HrM/PjD+r8+K07rZyv73ZkKioKGuAAANAIaIADAAAAUPJmfvxBZk58t9hlAAAA9ayi2AUAAAAAAAAAQF3QAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUhGbFLgDKXUVFIRUVhXo7flVVdaqqquvt+AAAAAAAANBYaIBDEVVUFNKhQ+tUVFTW23NUVc3L5MkzNcEBAAAAAAAoeRrgUERffPu7Mv984PrM/PiDOj9+604r5+u7HZmKioIGOAAAAAAAACVPAxwagZkff5CZE98tdhkAAAAAAADQpFUUuwAAAAAAAAAAqAsa4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJNSqAT5kyJC88MILXznukUceyVVXXVWbpwIAAICyJHsDAABAzdWqAX7mmWfmzjvv/Mpx9957b2688cbaPBUAAACUJdkbAAAAaq7Z0gweMmRI5s6du9C2d955J3ffffcSH/PZZ5/l6aefTvPmzZetQgAAACgjsjflqKKikIqKQr0cu7LSHQABAKCcLFUD/NVXX83AgQNTKHwRSAqFQkaPHp3Ro0d/6eOqq6uz1157LXuVUERCOAAA0JBkb8pNRUUh7du3kZEBAIA6sVQN8BNPPDGfffbZgv8ePHhwvva1r2WzzTZb4mNatmyZ7t2758c//vGyVwlFIoQDAAANTfam3FRUFFJZWZFrbnsyEz6cWufH33jdbtl/p03q/LgAAEDjtFQN8OWXXz4XX3zxgv8ePHhwNtlkk4W2QSkRwgEAgIYme1OuJnw4Nf+aMLnOj9utS7s6PyYAANB4LVUD/H+NHTu2ruqARk0IBwAAikX2BgAAgJqrVQP8v3388ceZOXNmqqurlzhmtdVWq6unAwAAgLIjewMAAMCXq3UD/M9//nOuv/76fPLJJ186rlAo5LXXXqvt0wEAAEDZqa/sXVVVlbvuuiuDBg3KW2+9lTlz5qRbt27ZYYcdcvTRR6ddu4VXrZo0aVL+8Ic/5IknnsjEiRPTpUuX7LTTTjnuuOPStm3bZZobAAAA1KVaNcAHDRqUX//610mSFi1apEOHDqmsrKyTwgAAAID6y95VVVU58cQTM2zYsLRq1SobbbRR2rRpkzFjxqRfv34ZNmxYbr311nTu3DlJ8uGHH+aAAw7IhAkTss4662S77bbLyy+/nH79+uWJJ57IrbfemuWWW67WdQEAAEBt1KoBfvPNN6dQKOTss8/Ofvvtl+bNm9dVXQAAAEDqL3vfc889GTZsWLp3755+/fotWDr9s88+y6mnnpoRI0akT58++e1vf5sk6dOnTyZMmJCjjjoq//d//5ckmT17dk4//fQ89NBDufrqq3PmmWfWSW0AAACwrCpq8+Bx48Zlk002yUEHHaT5DQAAAPWgvrL3PffckyQ588wzF7pv+HLLLZe+ffumUChk+PDhmTVrVt59990MGzYsK6+8ck488cQFY1u0aJELL7wwbdu2zR133JFZs2bVWX0AAACwLGrVAG/dunU6dOhQV7UAAAAA/6O+snf79u2zxhprZJNNNllkX8eOHbPCCitkzpw5mTx5ch5//PFUVVVl2223XaQJv/zyy2fLLbfMjBkz8swzz9R5nQAAALA0atUA79mzZ8aMGZOZM2fWVT0AAADAf6mv7H3dddfloYceWmxzffz48ZkyZUqaN2+ejh075s0330ySrLPOOos91lprrZUkC8YBAABAsdSqAX7yySdn5syZOeusszJ16tS6qgkAAAD4/4qRveff93u77bZLy5Yt89FHHyVJunTpstjx87dPmjSpQeoDAACAJWlWmwfffvvt2WijjfLXv/41w4YNS/fu3dOuXbsUCoVFxhYKhdx88801PnZVVVXuuuuuDBo0KG+99VbmzJmTbt26ZYcddsjRRx+ddu3aLTR+0qRJ+cMf/pAnnngiEydOTJcuXbLTTjvluOOOS9u2bWszTQAAACia+szeizNw4MA88MADad26dU4++eQkyYwZM5IkrVq1Wuxj5m+fP642mjVb+Fr9yspaXbvfaNR0HqUy36T85lwq8wAAgKauVg3wm266acG/z507N//4xz+WOHZxwXxJqqqqcuKJJ2bYsGFp1apVNtpoo7Rp0yZjxoxJv379MmzYsNx6663p3LlzkuTDDz/MAQcckAkTJmSdddbJdtttl5dffjn9+vXLE088kVtvvTXLLbfcsk8UAAAAiqS+svfiDBgwIH379k2hUMhFF12UNddcM0lSWVn5pcevrq5e6H+XVUVFIR06lOZF7O3atS52CQ2u3OZcbvMFAIDGqlYN8AEDBtRVHQu55557FlzV3q9fv6y22mpJks8++yynnnpqRowYkT59+ixYkq1Pnz6ZMGFCjjrqqPzf//1fkmT27Nk5/fTT89BDD+Xqq6/OmWeeWS+1AgAAQH2qr+z936qrq3P55ZenX79+qayszEUXXZRdd911wf42bdokST7//PPFPn7+9tata9cArKqqzqefLvwt8srKipJoLH766czMm1f1leNKZb5J+c25pvMFAACWXrt2rWu86lKtGuA9e/aszcOX6J577kmSnHnmmQua30my3HLLpW/fvvn2t7+d4cOHZ9asWfnwww8zbNiwrLzyyjnxxBMXjG3RokUuvPDCPP7447njjjty0kknLXGpNgAAAGis6it7zzdr1qycdtppGTp0aFq1apXf/OY32WGHHRYa07Vr1yRZcC/w//VV9whfGnPnlmYDcd68qpKd25KU25zLbb4AANBY1dnNiebMmZMxY8bk4YcfzgsvvJAkef/995fpWO3bt88aa6yRTTbZZJF9HTt2zAorrJA5c+Zk8uTJefzxx1NVVZVtt902zZs3X2js8ssvny233DIzZszIM888s0y1AAAAQGNRl9k7+WKltUMPPTRDhw5Np06dMmDAgEWa30myzjrrJEnGjRu32OO89dZbSZJ11113mWsBAACAulDrBvjcuXPzu9/9LltttVX233//nHTSSbnjjjuSJGeccUZ+9KMf5Z133lmqY1533XV56KGH0qFDh0X2jR8/PlOmTEnz5s3TsWPHvPnmm0n+E8b/11prrZUkC8YBAABAU1Mf2XvOnDk56qijMmrUqKy++uq54447svHGGy927DbbbJMkGTFiRObNm7fQvmnTpuWZZ55JmzZtstlmmy3D7AAAAKDu1KoBPnfu3Bx99NG57rrrMnPmzGywwQaprq5esH/69Ol57bXXctBBB2XSpEm1LjbJgvt+b7fddmnZsuVXLrM2f3tdPT8AAAA0pPrK3ldffXVeeOGFdOnSJQMHDlzoFmT/a5VVVsl3v/vdvPfee7nssssWPP/s2bNz7rnnZvr06TnggAOy3HLLLftEAQAAoA7U6h7gt9xyS5588slsvfXW6du3b7p27Zr11ltvwf5bb701559/foYMGZIbbrghZ5xxRq2KHThwYB544IG0bt06J598cpJkxowZSbLE+3vP3z5/XG00a7bw9QI1vdF6Y1fTeZTKfJPym3OpzAMAAMpRfWTvqVOn5qabbkqSdOrUKZdddtkSx5555pnp3LlzzjnnnLz66qu58cYb89hjj2XttdfOyy+/nPfffz/rr79+jj/++NpPFgAAAGqpVg3wwYMHp3379vnd736Xtm3bLrK/VatWufDCC/PUU0/l8ccfr1UDfMCAAenbt28KhUIuuuiirLnmmkmSysrKJEmhUFjs4+Zflf7fV8cvi4qKQjp0WHSOpaBdu9bFLqHBlducy22+AABQSuoje48ePTozZ85MkowdOzZjx45d4tgTTjghnTt3ziqrrJK77747v//97zNy5MiMGDEi3bp1yzHHHJMjjzxysbUBAABAQ6tVA/xf//pXtt566y8Nuc2bN89GG22UJ598cpmeo7q6Opdffnn69euXysrKXHTRRdl1110X7G/Tpk2S5PPPP1/s4+dvb926dg3AqqrqfPrpwt8ir6ysKInG4qefzsy8eVVfOa5U5puU35xrOl8AAGDptWvXul5XXaqP7P2d73wnb7zxxlLXsuKKK6ZPnz5L/TgAAABoKLVqgDdr1iyffvrpV46bMmVKmjVb+qeaNWtWTjvttAwdOjStWrXKb37zm+ywww4LjenatWuSLLgX+P/6qnuEL425c0uzgThvXlXJzm1Jym3O5TZfAAAoJfWdvQEAAKCU1OoS9W984xt5+eWXM2HChCWOGT9+fF5++eWF7k9WE5999lkOPfTQDB06NJ06dcqAAQMWaX4nyTrrrJMkGTdu3GKP89ZbbyVJ1l133aV6fgAAAGgM6jN7AwAAQKmpVQP8xz/+cWbOnJnjjjsur7322iL733jjjZxwwgmZPXt29tlnnxofd86cOTnqqKMyatSorL766rnjjjuy8cYbL3bsNttskyQZMWJE5s2bt9C+adOm5ZlnnkmbNm2y2WabLcXMAAAAoHGor+wNAAAApahWa6Ptsssueeqpp3L33Xdn7733zvLLL59CoZAnnngi2223XSZOnJjq6ursuuuu+eEPf1jj41599dV54YUX0qVLlwwcODArrrjiEseussoq+e53v5sRI0bksssuyxlnnJFCoZDZs2fn3HPPzfTp03PYYYdlueWWq81UAQAAoCjqK3sDAABAKar1zcH69OmTTTbZJDfccEP++c9/JkkmT56cJOnWrVt++tOf5pBDDqnx8aZOnZqbbropSdKpU6dcdtllSxx75plnpnPnzjnnnHPy6quv5sYbb8xjjz2WtddeOy+//HLef//9rL/++jn++ONrMUMAAAAorrrO3gAAAFCqat0AT5J99tkn++yzTz766KN88MEHqaqqSpcuXbLKKqss9bFGjx6dmTNnJknGjh2bsWPHLnHsCSeckM6dO2eVVVbJ3Xffnd///vcZOXJkRowYkW7duuWYY47JkUcembZt2y7z3AAAAKAxqMvsDQAAAKWqThrgkydPzltvvZWePXumS5cuSZJ//OMfueWWW/KDH/xgwbaa+M53vpM33nhjqWtYccUV06dPn6V+HAAAADQFdZm9AQAAoFRV1PYAd955Z77zne/k17/+9ULbR48enQsvvDA77rhjHnzwwdo+DQAAAJQt2RsAAABqplYN8CeffDLnnntumjVrli233HKhfZtttlkOP/zwVFdX59RTT83f//73WhUKAAAA5Uj2BgAAgJqrVQO8X79+adasWQYMGJDTTz99oX3du3fPaaedlgEDBqRQKOT666+vVaEAAABQjmRvAAAAqLlaNcDffPPN9OrVKxtuuOESx2y44YbZbLPN8tJLL9XmqQAAAKAsyd4AAABQc7VqgM+cOTOtW7f+ynHt27fP3Llza/NUAAAAUJZkbwAAAKi5WjXAu3fvnueeey6fffbZEsd8/vnneeGFF/K1r32tNk8FAAAAZUn2BgAAgJqrVQN8jz32yNSpU3PiiSdm0qRJi+yfPHlyTjnllHzyySfZfffda/NUAAAAUJZkbwAAAKi5ZrV58EEHHZQHH3wwTz31VLbbbrtssMEGWXnllZMk//73v/Pqq69m9uzZ2WijjXLooYfWRb0AAABQVmRvAAAAqLlaNcCbN2+eG2+8MVdeeWUGDRqUl156KS+99NKC/S1btsyPf/zjnHbaaWnRokVtawUAAICyI3sDAABAzdWqAZ4kbdu2zdlnn53TTz89r7zySj766KPMmzcvXbp0yfrrr582bdrURZ0AAABQtmRvAAAAqJlaNcAPOeSQdO/ePb/61a/SokWL9OjRo67qAgAAACJ7AwAAwNKoVQN8zJgxqaioqKtaAAAAgP8hewMAAEDN1SpBt23bNtXV1XVVCwAAAPA/ZG8AAACouVo1wI899tg8++yz6d+/f2bPnl1XNQEAAAD/n+wNAAAANVerJdDHjx+f1VdfPZdddlmuuOKKrL766mnXrt1il2YrFAq5+eaba/N0AAAAUHZkbwAAAKi5WjXAb7rppgX/Pnfu3IwbN26JYwuFQm2eCgAAAMqS7A0AAAA1V6sG+IABA+qqDgAAAGAxZG8AAACouVo1wHv27FlXdQAAAACLIXsDAABAzdWqAf7f5syZk9dffz0ffPBBOnfunM022yzvv/9+unXrVldPAQAAAGVN9gYAAIAvV+sG+Ny5c3PNNdfklltuybRp05Iku+++ezbbbLOcccYZmT59eq688sqsvvrqtS4WAAAAypHsDQAAADVTUZsHz507N0cffXSuu+66zJw5MxtssEGqq6sX7J8+fXpee+21HHTQQZk0aVKtiwUAAIByI3sDAABAzdWqAX7LLbfkySefzFZbbZVHHnkkd91110L7b7311uy5556ZNGlSbrjhhloVCgAAAOVI9gYAAICaq1UDfPDgwWnfvn1+97vfpWvXrovsb9WqVS688MJ07do1jz/+eG2eCgAAAMqS7A0AAAA1V6sG+L/+9a9svvnmadu27RLHNG/ePBtttFHef//92jwVAAAAlCXZGwAAAGquVg3wZs2a5dNPP/3KcVOmTEmzZs1q81QAAABQlmRvAAAAqLlaNcC/8Y1v5OWXX86ECROWOGb8+PF5+eWXs95669XmqQAAAKAsyd4AAABQc7VqgP/4xz/OzJkzc9xxx+W1115bZP8bb7yRE044IbNnz84+++xTm6cCAACAsiR7AwAAQM3Vam20XXbZJU899VTuvvvu7L333ll++eVTKBTyxBNPZLvttsvEiRNTXV2dXXfdNT/84Q/rqmYAAAAoG7I3AAAA1Fytbw7Wp0+fbLLJJrnhhhvyz3/+M0kyefLkJEm3bt3y05/+NIccckhtnwYAAADKluwNAAAANVPrBniS7LPPPtlnn33y0Ucf5YMPPkhVVVW6dOmSVVZZpS4ODwAAAGVP9gYAAICvttQN8Hnz5uXWW2/N0KFDM2nSpHTr1i2777579txzz3Tp0iVdunSpjzoBAACgbMjeAAAAsGyWqgE+e/bsHH744Xn++edTXV2dJPnnP/+Zp556KiNGjMjvfve7eikSAAAAyoXsDQAAAMtuqRrgt99+e5577rmsuOKKOfLII7PaaqvlzTffTL9+/TJ06NDce++9+eEPf1hftQIAAEDJk70BAABg2S1VA/yvf/1rWrVqldtuuy3dunVLkmy77bbZZpttstdee+Uvf/mLEA4AAAC1IHsDAADAsqtYmsHjxo3L5ptvviCAz7feeutl/fXXz9ixY+u0OAAAACg3sjcAAAAsu6VqgE+fPj0rrLDCYvetuuqqmTJlSl3UBAAAAGVL9gYAAIBlt1QN8Llz56aysnKx+5o3b545c+bUSVEAAABQrmRvAAAAWHZL1QAHAAAAAAAAgMZKAxwAAAAAAACAkqABDgAAAAAAAEBJaLa0Dxg+fHi23377RbZPnjw5SRa7L0kKhUKGDx++tE8HAAAAZUf2BgAAgGWz1A3wGTNmZMaMGUvcP2HChMVuLxQKS/tUAAAAUJZkbwAAAFg2S9UAHzBgQH3VAQAAAET2BgAAgNpYqgZ4z54966sOAAAAILI3AAAA1EZFsQsAAAAAAAAAgLqgAQ4AAAAAAABASViqJdABAACA0jVkyJCcccYZufHGG/Ptb397kf29evXKlClTlvj4MWPGpGXLlvVYIQAAAHw5DXAAAAAgY8aMyYUXXrjE/RMmTMiUKVOy4oorLvE+5RUVFpoDAACguDTAAQAAoMw9+uijOeOMM/LZZ58tcczrr7+eJNlpp51y1llnNVRpAAAAsFQ0wAEAAKBMTZw4Mb/97W8zePDgtGrVKp07d86kSZMWO/bVV19Nkqy//voNWSIAAAAsFWuTAQAAQJm68sorM2jQoKy//vq54447ssYaayxx7PxvgG+wwQYNVR4AAAAsNd8ABwAAgDK1xhpr5JJLLskee+zxlffvfvXVV9OqVau88sorOfvss/PWW2+lUCikR48eOe6447Lxxhs3UNUAAACwZE3mG+BDhgzJuuuum6eeemqx+3v16pV11113if98/vnnDVwxAAAANG5HHXVU9txzz69sfn/88cf58MMPM2vWrJx++umpqqpKr1690r59+4wcOTIHHnhgHnzwwQaqGgAAAJasSXwDfMyYMbnwwguXuH/ChAmZMmVKVlxxxfTs2XOxY74qzAMAAACLN//+3x06dMi1116bTTfdNElSXV2dm266KRdffHF69+6dHj16ZKWVVqrVczVrtnB+r6wsjTxf03mUynyT8ptzqcwDAACaukbfAH/00Udzxhln5LPPPlvimPn3Idtpp51y1llnNVRpAAAAUBa22WabPPHEE6murs6KK664YHuhUMihhx6a5557LsOHD8/dd9+d448/fpmfp6KikA4d2tZFyY1Ou3ati11Cgyu3OZfbfAEAoLFqtA3wiRMn5re//W0GDx6cVq1apXPnzpk0adJix86/En399ddvyBIBAACgLBQKhXTt2nWJ+7/73e9m+PDheeWVV2r1PFVV1fn00xkLbausrCiJxuKnn87MvHlVXzmuVOablN+cazpfAABg6bVr17rGqy412gb4lVdemcGDB2eDDTZI375906dPnyU2wOd/A3yDDTZoyBIBAACAJF26dEmSzJw5s9bHmju3NBuI8+ZVlezclqTc5lxu8wUAgMaq0TbA11hjjVxyySXZY489vvL+3a+++mpatWqVV155JWeffXbeeuutFAqF9OjRI8cdd1w23njjBqoaAAAASs8dd9yRp59+Orvttlt22GGHRfaPHz8+SWp9/28AAACorZp9T7wIjjrqqOy5555f2fz++OOP8+GHH2bWrFk5/fTTU1VVlV69eqV9+/YZOXJkDjzwwDz44IMNVDUAAACUnokTJ+ahhx7KXXfdtci+6urq3HvvvUmSrbfeuqFLAwAAgIU02m+A19T8+3936NAh1157bTbddNMkXwTwm266KRdffHF69+6dHj161PpK9GbNFm7G13Sd+caupvMolfkm5TfnUpkHAABQHHvttVeuv/76jBw5MnfeeWf222+/JElVVVV+//vfZ8yYMVlrrbWy0047FblSAAAAyl2Tb4Bvs802eeKJJ1JdXZ0VV1xxwfZCoZBDDz00zz33XIYPH5677747xx9//DI/T0VFIR06tK2Lkhuddu1aF7uEBlducy63+QIAAHVrtdVWy/nnn5+zzz4755xzTm6++eZ07949Y8eOzTvvvJPOnTvn97//fZo3b17sUgEAAChzTb4BXigU0rVr1yXu/+53v5vhw4fnlVdeqdXzVFVV59NPZyy0rbKyoiQai59+OjPz5lV95bhSmW9SfnOu6XwBAICl165d67JYdWnvvffO17/+9Vx//fV58cUX8/bbb6dr1645+OCDc+yxx6ZTp07FLhEAAACafgP8q3Tp0iVJMnPmzFofa+7c0mwgzptXVbJzW5Jym3O5zRcAAFg2AwcO/NL9PXr0yLXXXttA1QAAAMDSa/KXqN9xxx056aSTMnz48MXuHz9+fJLU+v7fAAAAAAAAADRuTf4b4BMnTsxDDz2UmTNnZocddlhoX3V1de69994kydZbb12M8gAAAAAAAABoIE3+G+B77bVXWrRokZEjR+bOO+9csL2qqipXXXVVxowZk7XWWis77bRTEasEAAAAAAAAoL41+W+Ar7baajn//PNz9tln55xzzsnNN9+c7t27Z+zYsXnnnXfSuXPn/P73v0/z5s2LXSoAAAAAAAAA9ajJfwM8Sfbee+/ccsst+d73vpeJEyfm0Ucfzdy5c3PwwQfnvvvuyxprrFHsEgEAAAAAAACoZ03mG+ADBw780v09evTItdde20DVAAAAAAAAANDYlMQ3wAEAAAAAAABAAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCQ0K3YBQPmpqCikoqJQb8evqqpOVVV1vR0fAAAAAACAxkkDHGhQFRWFdOjQOhUVlfX2HFVV8zJ58kxNcAAAAAAAgDKjAQ40qC++/V2Zfz5wfWZ+/EGdH791p5Xz9d2OTEVFQQMcAAAAAACgzGiAA0Ux8+MPMnPiu8UuAwAAAEqS248BAFCuNMABAAAAoIS4/RgAAOVMAxwAAAAASojbjwEAUM40wAEAAACgBLn9GAAA5aii2AUAAAAAAAAAQF3QAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAnNil0A0LhUVBRSUVGot+NXVrruBgAAAAAAgPqhAQ4sUFFRSPv2bTSpAQAAAAAAaJI0wIEFKioKqaysyDW3PZkJH06tl+fYeN1u2X+nTerl2AAAAAAAAJQ3DXBgERM+nJp/TZhcL8fu1qVdvRwXAAAAmgq3HwMAgPqjAQ4AAAAADcTtxwAAoH5pgAMAAABAA3H7MQAAqF8a4AAAAADQwNx+DAAA6oe1lgAAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAgSTJkyJCsu+66eeqppxa7f9KkSfnVr36V73//+9loo42y/fbb57LLLsv06dMbuFIAAABYPA1wAAAAIGPGjMmFF164xP0ffvhh9ttvv9xyyy1p1apVtttuu1RVVaVfv3758Y9/nM8++6wBqwUAAIDF0wAHAACAMvfoo4/m8MMP/9Imdp8+fTJhwoQcddRRuf/++3PVVVfl4Ycfzs4775w33ngjV199dQNWDAAAAIvXZBrglmEDAACAujVx4sT07t07xx13XObMmZPOnTsvdty7776bYcOGZeWVV86JJ564YHuLFi1y4YUXpm3btrnjjjsya9ashiodAAAAFqtJNMAtwwYAAAB178orr8ygQYOy/vrr54477sgaa6yx2HGPP/54qqqqsu2226Z58+YL7Vt++eWz5ZZbZsaMGXnmmWcaomwAAABYokbfALcMGwAAANSPNdZYI5dccknuuuuurLvuuksc9+abbyZJ1llnncXuX2uttRYaBwAAAMXSaBvglmEDAACA+nXUUUdlzz33TEXFl3888NFHHyVJunTpstj987dPmjSpbgsEAACApdSs2AUsyZVXXpnBgwdngw02SN++fdOnT5/FBumaLMP2yCOP5Jlnnsm2227bUOUDAABAyZgxY0aSpFWrVovdP3/7/HG10azZws34yspGe+3+UqnpPEplvkn5zbnc5puU1lwAACgdjbYBPn8Ztj322ONLr0SvyTJsjzzySN58800NcAAAAFgGlZWVSZJCobDY/dXV1Qv977KqqCikQ4e2tTpGY9WuXetil9Dgym3O5TbfpDznDABA49doG+BHHXVUjcZZhg0AAADqV5s2bZIkn3/++WL3z9/eunXtmmFVVdX59NOFv0VeWVlREk22Tz+dmXnzqr5yXKnMNym/OZfbfJOazxkAAGqrXbvWNV6BqNE2wGvKMmy1Z4mu2o9r7MptvklpzQUAAIqta9euSf5zEfr/+qqL05fG3Lml2UybN6+qZOe2JOU253Kbb1KecwYAoPFr8g1wy7DVXqlcdbw0ym3O5TbfpDznDAAA9WX+bcfGjRu32P1vvfVWkmTddddtsJoAAABgcZp8A9wybLVnia4lK5U5l9t8E8uwAQDQcJZmGbamaptttkmSjBgxIr17915wMXqSTJs2Lc8880zatGmTzTbbrFglAgAAQJISaIBbhq32ynG5qnKbc7nNNynPOQMAQH1ZZZVV8t3vfjcjRozIZZddljPOOCOFQiGzZ8/Oueeem+nTp+ewww7LcsstV+xSAQAAKHNNvgFuGTYAAACof+ecc05effXV3HjjjXnsscey9tpr5+WXX87777+f9ddfP8cff3yxSwQAAIA0+TXa/nsZtnnz5i20zzJsAAAAUDdWWWWV3H333dl3330zbdq0jBgxIi1atMgxxxyTAQMGpG3btsUuEQAAAJr+N8AtwwYAAAB1Y+DAgV+6f8UVV0yfPn0aqBoAAABYek2+AZ5Yhg0AAAAAAACAElgCPbEMGwAAAAAAAABN6BvglmEDAAAAAAAA4MuUxDfAAQAAAAAAAEADHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICS0KzYBQAAAABNx6OPPppjjz12ift32WWXXHnllQ1YEQAAAPyHBjgAAABQY6+99lqSZIsttshKK620yP5NN920oUsCAACABUqqAe4qdAAAAKhf8xvgZ599dtZbb70iVwMAAAALK6kGuKvQAQAAoH699tpradmyZdZaa61ilwIAAACLKMkGuKvQAQAAoO5Nnjw5H3zwQTbaaKM0a1ZSHykAAABQIkoqrboKHQAAAOrP/AvPV1555Vx22WV55JFH8v7776dz587Zcccdc8wxx2SFFVYocpUAAACUs4piF1BX5l+Fvu6667oKHQAAAOrBq6++miR5+OGHc9ttt6V79+7p0aNHpk6dmv79+2e//fbLRx99VOQqAQAAKGcl0yl2FToAAADUr9dffz1Jst122+Xyyy/P8ssvnyT55JNPcvLJJ+fvf/97zjnnnFx33XXL/BzNmi18rX5lZWlcu1/TeZTKfJPym3O5zTcprbkAAFA6SqYB/t9Xobdt2zY9e/bMSiutlJdffjn9+/fPo48+mptvvjldunQpcqUAAADQNF1yySX5xS9+kZVWWimtWrVasL1jx4659NJLs9NOO2XEiBF57733suqqqy718SsqCunQoW1dltxotGvXutglNLhym3O5zTcpzzkDAND4lUwD3FXoy84VyrUf19iV23yT0poLAAA0Fi1atEj37t0Xu2/FFVfMN7/5zTz//PN59dVXl6kBXlVVnU8/nbHQtsrKipJosn366czMm1f1leNKZb5J+c253Oab1HzOAABQW+3ata5x76dkGuCuQl92pRK6lka5zbnc5puU55wBAKDYOnfunCSZOXPmMh9j7tzSbKbNm1dVsnNbknKbc7nNNynPOQMA0PiVTAPcVejLzhXKS1Yqcy63+SauQgcAoOEszVXoTdns2bNzwQUXZPLkybn88svTpk2bRcaMHz8+SbLSSis1dHkAAACQpIQa4F/FVehLVo5X65bbnMttvkl5zhkAAOpTixYt8tRTT+X999/P448/np122mmh/WPHjs3YsWOz/PLLZ5NNNilOkQAAAJS9krhEffbs2fnlL3+Z4447LjNmzFjsGFehAwAAQO3sv//+SZJf//rXeffddxdsnzRpUs4666zMmzcvhx9++EK3JgMAAICGVBLfAHcVOgAAANS/ww47LM8991z+9re/Zbfddsvmm2+eFi1a5JlnnsmMGTOy44475qijjip2mQAAAJSxkvgGeOIqdAAAAKhvLVq0yJ/+9Kf88pe/zJprrpkXXnghzzzzTNZee+306dMnv/vd71JZWVnsMgEAAChjJfEN8MRV6AAAANAQKisrc8ghh+SQQw4pdikAAACwiJJpgM+/Cv2WW27J4MGD88ILL6SioiJrr7129t133+yzzz4pFArFLhMAAAAAAACAelIyDfDEVegAAAAAAAAA5axk7gEOAAAAAAAAQHnTAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUhGbFLgCg1FVUFFJRUajX56iqqk5VVXW9PgcAAAAAAEBjpwEOlL36bFAXCoW0a9cyFRWV9XL8+aqq5mXy5Jma4AAAAAAAQFnTAAfKWkVFIe3bt0llZf3eEeKfD1yfmR9/UC/Hbt1p5Xx9tyNTUVHQAAcAAAAAAMqaBjhQ1ioqCqmsrMg1tz2ZCR9OrfPjb7xut+y/0yaZ+fEHmTnx3To/PgAAAAAAAP+hAQ6QZMKHU/OvCZPr/LjdurSr82MCAAAAAACweBrgAAAAAEC9qqgopKKiUOwyaqWqqtqtx1hIfb+uveYAYNlogAMAAAAA9aaiopD27duksrKi3p6juqoqhYr6O36SVFXNy+TJMzUkSdIwr+t586oybdqsVFfX32tOkx2AUqQBDgAAAADUm4qKQiorK3LNbU9mwodT6/z4G6/bLfvvtEn++cD1mfnxB3V+/CRp3WnlfH23I1NRUdAsJEn9v67X7d4lh+y+Wdq3b1Pnx/5vLuwAoBRpgAMAAAAA9W7Ch1PzrwmT6/y43bq0S5LM/PiDzJz4bp0fH75Mfb6uCxUVLuwAgGWgAQ4AAAAAAI2QCzsAYOnV741xAAAAAAAAAKCBaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJSEZsUuoK49++yzue666/L6669n1qxZWXfddfPTn/40O++8c7FLAwAAgJIgewMAQNNUUVFIRUWh2GXUSlVVdaqqqotdBo1YSTXA77///px22mlp1qxZevXqlcrKyjz99NM56aSTMm7cuBx//PHFLhEAAACaNNkbAACapoqKQtq3b5PKyvpbILq6qiqFivpdgLqqal4mT56pCc4SlUwD/OOPP87ZZ5+d1q1bZ8CAAdlwww2TJOPGjcshhxySq6++OjvssEPWW2+9IlcKQCmq7ysnXdUIADQGsjcAADRdFRWFVFZW5JrbnsyED6fW+fE3Xrdb9t9pk/zzgesz8+MP6vz4SdK608r5+m5HpqKi4PNSlqhkGuC33HJLZs2alSOPPHJBAE+SNddcM6ecckrOOuus3HTTTbn44ouLWCUAxVDfzelCoZB27VqmoqKy3p7DVY0AQGMgewNQTC4+B6gbEz6cmn9NmFznx+3WpV2SZObHH2TmxHfr/PhQUyXTAB85cmSS5Pvf//4i+7bffvsUCoU89thjDVwVAMXWEMv6zFdfVzY2xqsaG+JeQT54AIDGR/YGYElcfE4pcq9kgMVr7BellUwD/B//+EeSZK211lpkX/v27dO5c+d89NFH+fjjj9OpU6eGLg+AIqnvZX2S/yzt05iubKzPNyAN8aFD4oMHAGiMZG8AFsfF55Sihnpd1/f9kn2+AuXHRWkl0gCfOnVqPv/887Rt2zZt27Zd7JiuXbvmo48+ykcffSSEA5Sh+lrWJ/nP0j6NRUMFtHK7l09ju6qxHK9Cb+pzdtX9V2vq5zhxniltsjcAS1KuF5+Xo6b+nn1p3q835OvahR3FVU6va0qfi9K+UKiurm7yPxUffPBBtttuu3Tu3DlPPvnkYsf8+Mc/zosvvpjbbrstPXr0WOrnqK5e9BdIoZBUVFRk6mezMm9e1TLV/mVaNK/Mcm1aZs70T1NdNa/Oj1+oqEzztu1SVVWVmrwKmvp8k/Kbc2Obb1J+c26Mr+sFj2u67+mWep7l+rqePmN25lXV/ZybN6tM61bNy+51XSgUUqjHJ1jce40vU1FRv/UkX9RUTnNubPOdr1x+XydN/xzPf46lPc/ldI6Tpj3fZPFzbojfyY2B7L1sZJQajG/ic25s803Kb86N8XW94HFN+M+D7P0V48v0dd3U37Mvzfv1cnxdL3hcmfzums/ruu401t9dSfm8ruv7s+Gk/j8fXtI5Xpqf1ZL4BnjF/18e5MsmPb/Pv6z9/kKhkMrKxR9/heVaLdMxa6p52/r9ZmHFUi6v0tTnm5TfnBvbfJPym3NjfF2Xm3J8Xbdt06KeKvmC13Xd+rL3GsVS382cxjbncptvOWqIBqXzTCmTvWtHRvlqTX3OjW2+SfnNuTG+rsuN13XdK7fXdWPMZeX4uqZulePrutx+dzVG9f3ZcNK4f3eVxKtj/tJrs2bNWuKY2bNnJ0natGnTIDUBAABAKZG9AQAAaApKpgHepk2bTJs2bYlB/MMPP0ySdOnSpSFLAwAAgJIgewMAANAUlEQDvFAoZJ111kmSjBs3bpH9U6ZMyaRJk9KxY8d07ty5ocsDAACAJk/2BgAAoCkoiQZ4kmyzzTZJkuHDhy+yb/jw4amurs62227b0GUBAABAyZC9AQAAaOxKpgG+9957p3Xr1vnzn/+cF198ccH2t99+O7/97W9TKBTys5/9rIgVAgAAQNMmewMAANDYFaqrq6uLXURdufPOO3POOeeksrIyvXr1SosWLfL000/n888/z//93//lqKOOKnaJAAAA0KTJ3gAAADRmJdUAT5LHH388119/fV555ZVUVlZmrbXWymGHHZYf/OAHxS4NAAAASoLsDQAAQGNVcg1wAAAAAAAAAMpTydwDHAAAAAAAAIDypgEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1woM5MmzZtqR/zzDPP1EMlwLK6+uqr8+abbxa7DAAAYAlkb2j6ZG8AqF8a4DS42bNn55VXXsnYsWMzd+7cJY775JNP8txzzzVgZQ3vmWeeyY033phbb70148ePL3Y5tXbIIYdkypQpNRr7+eefp0+fPvnZz35Wv0UBS+Xqq6/OG2+8UewyoM5tv/32eeSRR4pdRlFUVVXl3XffXWhbdXV1HnzwwfTp0ye/+c1vMnr06CJVV3fef//9zJo1q8bjx48fnyFDhtRfQUXwySef5Omnn86DDz6Yhx56KM8880yN35sBpUf2/g/ZW/aGxkb2plTJ3rL3/5K9KZZmxS6Amps1a1Y++eSTdOvWrdilLLMBAwbkd7/7XWbMmJEkWX755XPEEUfkiCOOSEXFwtdj/O1vf8sZZ5yR119/vRil1pk33ngjf/zjH/PGG2+kW7duOfroo9OjR4+ceOKJeeSRR1JdXZ0kadasWU444YQcffTRRa542b3++uv5yU9+kj//+c/p3LnzEseNHj06Z5xxRv71r3996bhS9cknn2TcuHHZYostil1Kg5g2bVouueSS9OnTp9ilNJhyO8elYPvtt89ZZ52V7bffvtilNJhvfOMbufTSS7P77rsXu5QGMWHChAXvP8rJyJEjc8EFF+Sjjz7KK6+8kuSLUH7cccflscceW/A+pF+/fjnkkEPSu3fvYpZbK9tvv/0ir+kZM2bkwgsvzBFHHJE111xzofGjRo1K7969s+eeezZwpXXv4Ycfzh//+MfFvm8uFArp0aNHjjjiiGy33XYNX1wdWm+99VIoFJbqMYVCIa+99lo9VUSpkr2bJtl7UbJ3eeUy2ZumQPYufbK37C17y96NhW+AF9HiroaaPXt2hgwZkkmTJi0yfujQoU36zcGQIUPSt2/frLvuuundu3eOPvrotGrVKldeeWUOO+ywfPbZZ8Uusc698sor2W+//TJy5Mi0bt06o0ePzqGHHpq+ffvmkUceyeGHH57Bgwfn5ptvzrbbbpvf/va3eeihh4pd9jI755xz8vbbb+eggw7KBx98sMj+OXPm5De/+U0OPPDA/Otf/8oPf/jD/OUvfylCpXXrG9/4Ru6///6Fts2aNStXX3113nvvvUXG/+1vf8shhxzSUOXVi/feey8XXnhhfvSjH+VHP/pRzj777LzzzjuLjBs6dGh22WWX3HPPPUWosu6U4zkuN+UY0OaHL0rX2LFj8/Of/zzV1dU5/PDDU1VVlSS57bbbMnLkyHTp0iV33nlnRo0aldNPPz0DBgxo0u9DFvea/vzzzzNkyJB8+OGHRaioYfTp0ycnnXRSJkyYkD333DOnnnpqfvWrX+Xcc8/NiSeemO233z6vvvpqjj322Pz6178udrm1ssUWW2TzzTdfqn8222yzYpdNIyB7y96yt+zdVMnepX+Oy43sTSmSvWVv2btxZm/fAC+ixf3Bnz59enr37p3+/fuX3NW5N954Y7bYYosMHDhwwbbjjjsu559/fgYNGpRDDz00f/7zn7PccssVscq6deWVV2bVVVfNwIED07Fjx8yYMSNHH310brnlluy///459dRTF4zdfPPN85Of/CQ33HBDdt555yJWvewOOuigrLDCCjnzzDNz0EEH5c9//nO+9rWvJfniCvUzzjgjb775Zrp165YLLrgg22yzTZErrhuL+6M/c+bMXHPNNdlss82y6qqrFqGq+vP666/n4IMPzmeffZZWrVqlVatWee211/Lggw/m9ttvzzrrrJNp06bl7LPPztChQ1NZWZmjjjqq2GXXSrmd47fffnupl8F0xT00Ptdff326du2ae++9N+3atVuw/ZZbbkmhUMgpp5ySjTbaKEnys5/9LM8++2xuu+22Jvs+ZElK+QOn++67LzfffHP23HPPnHvuuWnTps1ix02fPj0XXXRRbrrppmy66abZcccdG7jSuvHfOQKWhuwte8vesndTJHt/oZTPsewNpUH2/oLsLXs3NhrgjVCp/qL45z//mTPPPHOhbS1atEjfvn3Tvn379O/fP0cccUT69++/xF8gTc2oUaNyyimnpGPHjkmSNm3a5Be/+EV+8pOfZOutt15k/M4775xLL720ocusU7vttluWX375nHTSSTnooINy/fXX55FHHsl1112XuXPn5sADD8z//d//pW3btsUutd6V6s/yVVddlVmzZuU3v/lNdt111yTJmDFjcsopp6RPnz65/PLLc8ghh+Rf//pXNtxww/Tp0yfrrrtukauuH6V6jq+77rpcd911S/WYpr5kZrla2uWMmro777wzTz31VI3HFwqF9O3btx4rql/PPfdc9ttvv4UC+Pjx4/P222+nWbNm+f73v7/Q+K222ipXXXVVQ5dJLdx2223ZZJNNvvLq8rZt26Zv374ZN25c7rrrriYbwufMmZPmzZsv1WNGjx6djTfeuJ4qoqkr1fdysrfsLXuXBtn7P0r1HMve5UP2/nKyN42d7P3VGmP21gCnwbRu3TpTpkxZ7L7TTz89M2bMyO23355jjjkm119/fcMWV0+WW265fPrppwttW3fddbPtttumWbNFf/wmT56cli1bNlR59WbbbbdNv379cuyxx+ZHP/pRqqurs/rqq6dPnz7ZfPPNi10etTRmzJgccMABCwJ4kmy00UY5/fTTc/LJJ+fkk0/OhAkTcuqpp+awww5b5B6DNH477LBDyX5w8mXKLaAlybXXXps777yzxuMLhUJuuummeqyofj333HNL9Q2Lpn6OJ0+enJVWWmmhbX//+9+TJBtvvPEiH4i3atUqn3/+eYPVR+394x//WKp72G6//fa544476rGi+vWjH/0ol19+eY3+Rs2ePTtXXnllBgwYkFdffbUBqoPGQ/b+guwtezd1snfpk71rpqnnskT2/ipN/RzL3qVP9l6yxpy9NcBpML169cqAAQPy/e9/P2uvvfYi+88777x89tlneeCBB3LYYYdl2223LUKVdWurrbbKn//852y66ab51re+lSRZfvnl88c//nGRsaNHj87AgQMXjGvqNttsswwYMCBHHHFEPvnkk/zqV78SwEvE1KlTs9566y2yfcMNN8y8efPyxhtvZODAgdlkk00avjjqxA9+8IPsvvvuxS6jwZVbQEuScePGZdy4cTUe39SvWj/rrLOa9D1dl9YKK6yQTz75ZKFtf/vb31IoFLLVVlstMn7cuHELvjlH0zBjxox06tSpxuO7dOnSpO/JNmnSpOyzzz454YQTcuSRRy7xd9ILL7yQs846K++8805WX331Bq4Sik/2lr1l79Ige5c+2btmZO+mR/aWvUuN7N00s7cGOA3mlFNOyYEHHpi99tor3/zmN3PZZZct9ENRKBRy6aWXpkWLFhk0aFBefPHFIlZbN0499dSMGTMmhx12WDbffPMl3jvh4IMPzgsvvJCOHTsudG+ypm699dbLbbfdlp/97Gc59thjc80112TLLbcsdlnU0ty5cxf7bYlWrVolSY466igBnCap3AJaklx22WVl9YFLhw4dssoqqxS7jAbTo0ePPPjggzn88MNTWVmZSZMmZeTIkUmSnXbaaaGx06ZNy/33359evXoVoVKW1bx58xb7zcYlqayszNy5c+uxovr1wAMPpHfv3rniiisycuTIXHLJJVlttdUW7J+/TOz8e+0dfvjhOfHEE4tYMRSH7C17y96lQfamVMnepU/2lr1LjezdNLO3BjgNpnv37vnLX/6Sa665Js8///yCN+z/raKiIn379s2mm26a3/3ud/n444+LUGnd6dSpU+65557cfvvtmT179hLHtWrVKvvss09+8YtfLNWVRI1N7969F7t99dVXz3vvvZejjz46O++880JXDJXCVZwsbIMNNih2CbBMyi2gUfqOPPLIHHDAAdl///3Ts2fPPPLII/n888+z6667Zo011kjyxQerL730Ui655JJ88sknOeigg4pcde0MGzYs77zzzoL/njVrVgqFQu6999688MILC4198803G7o8aqlTp07505/+lFtuuSWXXXZZfvjDH+bMM8/Mfvvtl2effTa//OUvM378+Ky77rq56KKLvCehbMnesrfsXR78naOpkr0pNbK37F1qSiV7a4AX2dtvv73Qki/Tpk1LkrzxxhuLXFGyNMukNFYdOnTI2Wef/ZXj9t133+y1114L/RJtqlq1apVDDz30S8eUyn3XBg8e/KX7P//88wwZMmShbaUSwp9//vnMmzdvwX9Pnz49SfLkk09m4sSJC40thW9YfJmmvkzTkpTLOd5iiy3SuXPnYpcB1IENN9ww1157bS666KL0798/lZWV2X333XPBBRcsGHPppZdmwIABqaioSO/evdOjR48iVlx7Q4cOzdChQxfZ/r/vP+Yrhb9Z//vBw5cplQ8eDjrooGy55ZY555xzct5552XgwIEZN25cmjVrlhNPPDFHHXXUUl2dT3mQvRdP9m6aZO/Sz2U1UQrvYxanXM6x7A2lQ/b+D9n7C7J341Corq6uLnYR5Wq99dZb7A9+dXX1l25//fXXG6K8elddXZ3x48dnypQpSZKOHTtm1VVXLW5R9azU5zxhwoRlelxTv+pzcT/L//2rdXH7mvLP8nrrrZdjjz023/72txfaPm3atBx33HE588wzs/766y/yuC222KKhSqxz5XaOy9F6661XdkuSlducBw8enM0333yhJZvKyeTJk9O6detFvgX42GOP5dVXX82uu+7aKO/XtDSeffbZZXpcz54967iShrO4+4J+lVL6+/Tcc8/luOOOy7Rp01IoFHLcccflhBNOKHZZNEKyd2nn0MUp9TnL3v9RyrlM9v5CKZ/jclRuOTQpvznL3rL3ksjeTVdTzd4a4EV09dVXL9Pjjj/++DqupGGNGTMm/fr1y5NPPpkZM2YstG+55ZbL9773vfzsZz9bpl8qjVU5zrmcfNXV90uy11571XElDWNJHyAmS/4QMUmT/oNfTuf4v78ZtTSa8ocsSXkGtGeffTZrrrlmk17+E8pdOX7wkCSfffZZLr300tx9991p2bJljjzyyDz88MN58803861vfSt9+vRJt27dil0mjYjsXT45tBznXE7KKZclsvfSaIrnWPaWvYGmQ/ZumtlbA5wG1b9//1x++eWpqKjIpptumrXXXjvt2rXL3LlzM2XKlLz22mt5/fXXU1FRkTPOOCOHHHJIsUuutXKcc01dd911GTp0aAYNGlTsUhrc7Nmz06JFi2KXsUzK9QPEpdVUz/GXfcjyZZryhyyUhyXdK/PLlMpSoSze7bffnr/97W/L/HeN4hg5cmTOO++8TJw4MVtuuWUuvPDCrLbaapkzZ06uuuqq9O/fP61atcppp52WAw44oNjlQtGUYw4txznXlOzd9HJZInvXVFM9x7I3pUr25n/J3k1TKWRvDXAazGOPPZajjz463/rWt9K3b9+svPLKix337rvv5oILLshTTz2V/v3751vf+lYDV1p3ynHOS+O8887LnXfe2eTfvF999dVLFTDHjBmT3r175y9/+Us9VkVdKqdz/Pvf/36ZQnhT/5ClHAPasnzoWygUctNNN9VDNfWvHJer+qoP1Vq2bJnll18+66yzTn7wgx9k3333TUVFRQNWWFyl8D7k/fffT8eOHRdZXm9Jxo8fnxdeeCF77rln/RZWT0499dT85S9/SZs2bXL66adn//33X2TMqFGjcsYZZ2T8+PHp2bNnLrroopJa9hhqohxzaDnOeWmUwt+8pLxyWbkqp3Mse9ec7N20yN6Lkr2b/vsQ2btpZm8N8CIqtz/4P/vZzzJp0qQMGjQozZs3/9Kxc+fOzZ577pnVV18911xzTQNVWPfKcc5LoxT++CVfvMk5/PDDc9ppp33puLlz5+bqq69Ov379Mm/evCY/75qaNWtWPvnkk0a9HMpXcY5LX7kGtKXVlOdcjvfKPPjgg790/7x58/Lpp5/m3XffzZw5c7LVVlvluuuuS7NmzRqowuIqhfch3/jGN3LppZcudD/BGTNm5MILL8wRRxyRNddcc6Hx9913X84444wmO+f11lsv22yzTS688MKstNJKSxw3a9as/PrXv87tt9+eNm3a5MUXX2zAKmmMZO8lK5UcWo5zXhql8Dcvkcu+iuxNU1BuOTQpvznL3ouSvZv++xDZe/Eae/Yuj5+wRmpp7mvz31cQNdUQ/tprr+XQQw/9yjCaJM2aNcvOO++c++67rwEqqz/lOOdytPnmm6d///6ZOXNmzj333MWOeeONN3LGGWfkjTfeyAorrJBf/vKXDVxl3dl+++1z1llnZfvtt1+wbfbs2XnwwQez9dZbp3PnzguNHzp0aJP+g5+U3zkuR4888kixS2hwY8eOLXYJDaoph+llNXDgwBqNmzVrVm677bZceumlue22274yvNN4LO5a5s8//zxDhgzJHnvssUgIb+ouvvjiGt3js1WrVjn//PPz/e9/399jksjeX6ZUcmg5zrkclVsuk71L/xyXI9m79MneSyZ7N12y9+I19uytAV5ENfnjN2HChFx44YUZOXJkll9++Zx00kn1X1g9mT59erp27Vrj8SuvvHL+/e9/12NF9a8c51yO+vfvnxNPPDG33XZbZs6cmb59+y744Ky6ujp/+tOfcs0112T27NnZZZddcvbZZ6djx45FrnrZTZgwITNmzFho2/Tp09O7d+/0799/kRBeCsrtHCfJ22+/nVGjRmXvvfdesG3SpEm5+uqr8+KLL6Z169bZfvvtc+ihhzbJ+639r3IMaCxs9uzZ+cc//pFWrVpljTXWKHY5DapVq1b52c9+ltGjR2fw4MFCeAko1UW+ahLA/9vXv/717LvvvvVUDU2J7P3lSiGHluOcy1G55TLZu/TPcSJ7U35kb9m7lMjeX2is2VsDvJGaN29e+vfvnz/84Q+ZNWtWdt111/Tu3btJv7mdO3fuUr1Ra9asWWbPnl2PFdW/cpxzOWrRokWuueaa9O7dO4MHD86sWbNy+eWX5913382ZZ56ZMWPGpEuXLjn//PPzve99r9jl1ptS/YOflN85vvzyy9O/f/9UV1dnr732SkVFRaZNm5b9998/77//ftq3b59VVlklv/vd7/Loo49m4MCBNfq2TVNWjgFt4sSJGTNmTFq1apUtttiixvc5asymTZuW66+/PqNGjVroCu37778/ffr0yaeffprkizfuffv2zSabbFKkSoujV69eefLJJ4tdBtTK559/nocffjiDBg3Ks88+m+rq6vz85z8vdlk0YrJ3aeTQcpxzOSq3XLYksnfpnGPZe1Gyt+xdDmRvSkFTyN4a4I3Q888/nwsuuCBvvfVWunfvnvPOOy/f+ta3il0WfKWrr756qca/8sor9VRJw6usrMyll16adu3a5eabb857772Xt956K7Nmzcq+++6bM844I8stt1yxy6QWyuUcDxs2LP369ct2222XQw45JBUVFUmSP/zhD5kwYUI23njj/PnPf07r1q0zZsyYHHzwwfnzn/+cI488ssiV1145BrQJEybkiiuuyKhRo/Loo48u2P6nP/0pV111VebNm5fq6uqssMIKufDCC/ODH/ygiNXWzvTp07P//vvn7bffzkorrZS5c+emWbNmGTNmTM4444xUV1dn//33z9prr50hQ4bkZz/7WYYMGZLVV1+92KU3mMrKylRVVRW7jGU2ZMiQpRr/z3/+s34KoShGjRqVQYMG5aGHHsr06dNTXV2dr33ta9l///2LXRqNmOxNUyV7l34uK2flco5lb9k7kb1l76ZJ9i5vTSl7a4A3IpMnT86ll16aIUOGpEWLFjnhhBNy5JFHlsTyNvM9//zzmTdvXo3Gvvjii/VcTcMopzkvbQhPFr7HXik4++yz0759+1x99dWpqKjIH//4x2y77bbFLos6VOrn+Pbbb8/GG2+c6667bsG26urq3HfffSkUCvnFL36R1q1bJ0k22mij/PCHP8xf/vKXJh/CyzGgffzxx9l///0zefLkbLTRRgvm/MQTT+SKK65Is2bNcsopp2SdddbJnXfemVNOOSV33HFH1l9//WKXvkz69++fd999N7/97W+z0047Ldh+zTXXpLq6Oj/96U9z5plnJkn22Wef7LHHHrnuuuty8cUXF6vkBjd69OisvPLKxS5jmZ155plL9b6iurq65N6HlJuJEyfm3nvvzaBBg/LOO+8s+EZcr169cuSRR2brrbcucoU0VrL3wpp6Dp2vnOYse5d+LqP0z7HsLXvL3rJ3UyV7l5+mmr01wBuJu+66K5dffnmmTp2arbbaKuedd16+9rWvFbusOnfnnXfmzjvvrNHYUvnFWE5zHjBgQLFLaBSOP/74dOjQIX369Em/fv2y2WablcTVyfxHKZ/jV199dZFA/dprr+Xjjz/Ocsstl169ei20b8MNN8z999/fkCXWi3IMaH/6058yffr03HLLLQtdUf+nP/0phUIhP//5zxe8Fr7zne9k7733zvXXX5/f/va3xSm4loYOHZof/vCHC53f6dOnL1h27MADD1ywvWXLltljjz1y1113NXidxfLXv/419957b4444ohil7LMmvLPIzU3e/bsDB8+PIMGDcrTTz+defPmpbKyMj179sxmm22Wa6+9NoccckijDeAUn+y9qKaeQ+crpznL3l8o5VzGF0r5HMvesrfsLXs3VU3555GaK4XsrQFeZG+88UbOP//8vPTSS+ncuXOuuOKK7LLLLsUuq16U4y/Gcptzz549l/oxzz//fD1U0rCee+65Rbats8462XfffXPnnXfmpz/9aU4//fQFy1nNt8UWWzRUidRSOZ3jGTNmZIUVVlho29///vckX8ynsrJyoX1z585t0h8ezleOAW3kyJHZe++9FwrgU6ZMyQsvvJAk+dGPfrRge6FQyM4775ybbrqpocusM++9995C5zH54md77ty5WW211RZpfqy88sr5+OOPG7LEOte7d+8v3T9v3rxMnz49//jHP/Luu++me/fuTTqE77XXXsUuoSiGDRuWd955Z8F/z5o1K4VCIffee++Cn+f53nzzzYYur05dcMEFefDBBzN16tS0bNky22yzTXbYYYdsv/326dChQyZMmJA//OEPxS6TRkr2Lm3lNmfZ+z9KNZeVq3I6x7K37C17f0H2bnpk7y/I3o0/e2uAF9Ell1ySgQMHZt68efnud7+bk046Kcstt1zef//9L31ct27dGqjCulWOvxjLcc418cEHH2Tw4MEZMmRIxo8fn9dff73YJdXKwQcf/KUh5NVXX82hhx66yPamPO+33357oWA6bdq0JF98sNis2cJ/WsaNG9egtdWHcjrHXbt2zfjx4xfaNnLkyBQKhXznO99ZZPyYMWOy4oorNlR59aYcA9q///3vrLPOOgtte+aZZ1JVVZW11lprkfPaqVOnTJ06tSFLrFMVFRWL3GPr6aefTpJ8+9vfXmT8J5980uS/XTJ48OAajVtttdXy05/+NMcdd1yTn/OSLO799corr1wyHyIOHTp0ke1Lui9bU57zbbfdljZt2uSYY47JEUccUbKvV+qe7F36ynHONSF7f6Epz1v2XlgpnWPZ+z9kb9m7qb+vl73/Q/b+j6Y851LJ3hrgRXTjjTcu+PcRI0ZkxIgRNXpcU3xTtyw++eSTjBs3rklexbmsSnnOn3/+eYYOHZpBgwblmWeeWbDk3OLe1Dc1P//5z5v0H7Rlcd111y10n6r5LrnkkkW2NfXlBZPyOsff+c53cs899+TAAw/MiiuumFGjRuX5559P8+bNs+OOOy409q233spf/vKX7LfffkWqtu6UY0Br2bJlZs6cudC2p556KoVCIVtttdUi4//973+nXbt2DVVenVtrrbUyatSoHHTQQUm++N00bNiwFAqFfO9731tk/COPPJI111yzocusU4888siX7m/ZsmXatWtXUve8TZJ77rknd911V/7whz+kY8eOmTx5cr73ve8t8nv8xBNPzLHHHlukKutGuS2Bu9dee2X48OH54x//mJtuuimbb775gqvQO3fuXOzyaMRk7y9Xyjl0SUp5zrJ3aZG9S5fs/R+y98Jk76ZH9pa9S02pZG8N8CI6/vjji11Cg/rGN76RSy+9NLvvvvuCbbNmzUq/fv2y5557ZtVVV11o/N/+9recccYZTfpDh3Kc8/966aWXMmjQoDz00EP57LPPkiQdO3bM3nvvnf333z+rrLJKkSusvRNOOKHYJTSocgqk85XTOT7uuOMydOjQ7LzzzlljjTXy5ptvprq6Oj//+c/TsWPHJF+E76FDh2bAgAFp3rx5Dj/88CJXXXvlGNDWW2+9PP300/npT3+a5D/39kmSHXbYYaGx1dXV+etf/5r11luvweusK3vuuWcuuuiibLjhhtlqq61y55135v3338/Xvva1bLPNNguNve666/LSSy/l7LPPLlK1daMU/sYurV/84hd5+OGH061bt7z//vsLfm8lyR577JHVVlstSXLvvffm2muvzT777JMuXboUq9xaW5YlcOfOnVsPlTSMiy++OBdccEFGjBiR+++/P48//nieeOKJXHDBBdl0003To0ePsnuPQs3I3qWfQ8txzv9L9i49sndpk71l70T2lr2bLtn7q8nexacBXkTlFsKrq6sX2TZz5sxcc8012WyzzRYJpKWgHOecJB9++GGGDBmSwYMH51//+leqq6vTunXrfPvb385TTz2VX/3qV9l+++2LXSbLqJwCaTnq3Llz7r777lxzzTV56aWX8s1vfjN777139t133wVjBg8enP79+2eVVVbJb37zm6y88spFrLhulGNAO+CAA3LKKaekb9++2WqrrXLPPffk448/zje/+c2Fvg01a9as/PrXv85bb73VpD9wOeCAA/LCCy/k4osvTqFQSHV1dVZYYYVcfvnlC+4hePfdd+dPf/pTxo8fn8022yw//vGPi1x1/RozZkxGjRqVioqK9OzZM+uuu26xS6qV++67Lw8//HCOPvronHjiiYvcN3HPPffMt771rSTJtttum/322y933HFHybwnnz59eqqrq7/0GzKjRo3KOeeckwceeKABK6tbLVq0yI477pgdd9wx06ZNy1//+tfcd999eeGFF/LCCy+kUCjkj3/8Yz777LPsuOOOadWqVbFLphEolZ/zmirHHFqOc05k71Ine5c22Vv2lr1l76ZK9pa9m0r21gBvRGbPnp2xY8fmww8/THV1dbp27Zr11lsvLVu2LHZp9WpxQbXUleqcH3rooQwaNChPPfVU5s2bl3bt2mX33XfPD37wg2yzzTb56KOPFrmysRRcffXVS/2YQqGQn//85/VQTf075JBDcuyxxy54I1MOyu0cr7TSSrnwwguXuH/vvffO9773vfTo0WNBeGnqyjGg7bLLLnnjjTfSr1+/DBw4MNXV1Vl11VVz5ZVXLhhzww035A9/+EOmT5+enXbaKT/84Q+LWHHtFAqFXH755TnooIMyatSoLLfcctlhhx0Wukr53//+d6qrq3Psscfm6KOPLonX92uvvZY//vGPGTduXL72ta/lmGOOyUYbbZRf/vKXGTRo0IL3JIVCIbvttlsuvvjiRe4n2VQMHjw4m266aU4++eSvHDv/A7fHHnusyYfwhx9+OFdffXX+8Y9/JPnivnInnnhidttttwVjZsyYkSuuuCK33XbbIktONiW9e/fOAQcckI033jhJsvzyy2fffffNvvvum4kTJ+aBBx7IAw88kDFjxuTll1/OhRdemF122SW/+tWvilw5jY3sXT5Kdc6yd8015Vwme9dMUz7HsrfsPZ/s3fRf37L34sneTVOpZO+m+RNWYiZNmpQrrrgiQ4cOzfTp0xfa17p16+y44445+eST07Vr1yJVCDVz8sknp02bNjnwwAOz/fbbZ4sttljoCrCmsCzGsii3gPbss88udEVyOSi3c/xVmvryY4tTrgHt5JNPzo9//OOMHj06yy23XHr27JnmzZsv2N+yZctsuOGG2X333fOjH/2oiJXWnU033TSbbrrpYvcdf/zxTT6Q/bdRo0blkEMOSbNmzbLOOuvk1VdfzUEHHZSDDz4499xzT/bYY4/stNNOmTFjRh599NE88MAD+cY3vpHDDjus2KUvk9deey3HHHNMjcdvvfXWueaaa+qxovr34IMP5pRTTknLli2z9dZbp3Xr1nn++edz2mmnLbh/5Msvv5yTTz457733XlZdddVccMEFxS57mQ0ePDjf/va3F4Tw/7biiivm8MMPz+GHH55x48blvvvuy/3335+77rqr0YVwikf2plTI3jXXlHOZ7F0zTfkcfxXZW/ZuymRv2Xs+2bvpKZXsrQFeZC+99FKOPvroTJ06NRtvvHG23HLLdO3aNc2aNcuHH36Y5557LkOGDMmjjz6aa6+9Nj169Ch2ybBEq666at57770MGjQo//znP/Pyyy9nhx12yNe//vVil1avBgwYUOwSqGfldI6fe+65ZXrcfy/b1ZSVU0Cbb6WVVspKK6202H0/+clP8pOf/KSBK6KuXHPNNenevXsGDBiQDh06pLq6OmeddVZuvPHG7LHHHrn00ksXjN1tt93y6aef5oEHHmiyIXzWrFlp167dItuXX375XHfddfnGN76x0Pa2bds26XtyJcnNN9+cTp065fbbb19wj7WZM2fm2GOPze9///t07do1hx12WD7//PP87Gc/yy9+8YtGuSxZXVtzzTVz8skn5+STT86LL75Y7HJoJGRvSonsTakqp3Mse8ve/032btpk7y/I3rJ3Y6MBXkQff/xxfv7zn6dt27b5wx/+kM0222yx41577bWcdNJJOfHEE3PvvfemU6dODVwp1Mzw4cMzevTo3HffffnrX/+av/3tb7niiiuyxhpr5Ac/+EHWX3/9YpdYL3r27PmVY6ZNm5ZCofCl9wah8arJOS4VBx988FJ/Y6RQKOS1116rp4qgbvTu3XupH1MoFNK3b996qKZhvPzyyzniiCPSoUOHJF/M5/DDD8/gwYOz3XbbLTL+Bz/4QX796183cJV1Z8UVV8z777+/yPZmzZotdr7/+te/mvx9FMeNG5eDDz54QQBPvvgW6/HHH5+f/OQnOfnkk9OpU6dcfvnl2WSTTYpXaBFpYpLI3pQe2XvJZO+mTfb+crI3TYHsLXv/L9m7PDTG7K0BXkQ333xzpk+fvtBVI4vzzW9+MzfeeGN233333HrrrTnhhBMasEpYOhtvvHE23njjnHXWWfnb3/6W+++/P4888kiuvfbaFAqFFAqFjBgxIuutt15WWWWVYpdbZ6qrq/P444/nH//4R1ZfffVst912adasWZ5++un06dMnb7/9dpLkG9/4Rk455ZRsvfXWRa64doYNG5Z33nmnxuNLeUmy+Urlg5aLL764RuMefvjhjBw5Mkmy0UYb1WNFDaMcA9ohhxyy1I8pFAq56aab6qGa+jd48OAaj/3vD6Ka8jn+9NNP07lz54W2zV9asH379ouMb9WqVWbOnNkQpdWLjTbaKA8++GB+/vOff+UyibNnz86DDz6YbbfdtoGqqx/Tpk3Lqquuusj2r33ta0m+WErx9ttvX/BBTCl4/vnnM2/evKV6zJ577lk/xdBkyN6UItlb9l4c2bvpkL1rTvZuWmTvL8jeX5C9m65SyN4a4EU0fPjw7LHHHl8awOdbZZVVstdee2Xo0KFNOoT/7w/N/PuuPfnkk5k4ceJCYxvjkgnLohznnCSVlZXZdttts+2222bWrFkZNmxYHnjggTz55JO5++67M2jQoPTq1St77713dtttt2KXWyuffvppjjrqqIwePTrV1dVJkg033DDnnHNOjjrqqLRu3To77LBDZsyYkdGjR+foo4/OjTfe2KSvbB42bFiGDh1a4/GlEML/+4OWr33ta/nud79bkh+07LXXXl+6f8KECbnwwgszcuTItGvXLqecckr233//Bqqu/pRjQHvvvfdqNK6qqioTJ05MdXV1k76f5NixY79yzH+/vpdffvmcdNJJ9V9YPaqurk6zZgu/3Z9/DpvyuVySAw44ID/5yU/yq1/9KmefffYic5+vqqoq5557bj788MMccMABDVxl3aqqqlronq/zzb+f4FFHHVVSATxJ7rzzztx55501Gjv/91ZjC+E0PNm7PHJoOc45kb1l74XJ3k2H7P3VZO+mSfb+guwtezd1pZC9NcCL6L333luqe3ust956S/UmoTH63x+a+YGlX79+i/wxaOp/7OcrpzkfddRR2XLLLdOzZ8+sv/76C+bSqlWr7L777tl9990zefLkPPjgg7n//vvz9NNP5+9//3uTD+FXXXVVxo4dm3PPPTe9evXKhAkTctFFF+WnP/1punfvnoEDBy642u+TTz7JPvvsk/79+zfpEH700Ufn29/+drHLaDDl+EHL/5o7d25uuOGGXHfddZk5c2b22GOPnHnmmQuuaG3qyjGgPfroo185ZvTo0Tn//PPz73//O6uuumrOOeecBqis4c2bNy/9+/fPH/7wh8yaNSu77rprevfuvcgV3DRum2++eQ4//PDccMMN+fvf/57DDjssvXr1ykorrZTq6up89NFHeeaZZ3LLLbdk7NixOfnkk7PeeusVu+x61a1bt2KXUOf222+/sl1SjmUne5d2Dp2vnOYse8vepUr2lr0T2Vv2prGTvRclezdOGuBF1Lx583z++ec1Hj9r1qy0adOmHiuqXzVd2qeUlNuc//73v+fxxx9fsBTV5ptvnl69emXLLbdc8EeuQ4cOOeigg3LQQQdl/Pjx+ctf/lLkqmvv0UcfzQEHHJAf//jHSZI11lgj5557bg477LAcdNBBCy1107Fjx+y3334ZOHBgkaqtG2uuuWZJBcyvUo4ftPy3Z599NhdccEHGjRuXNdZYI+edd1569epV7LIaTDkGtGnTpuU3v/lN7rzzzlRUVOToo4/Occcdl5YtWxa7tDr3/PPP54ILLshbb72V7t2757zzzsu3vvWtYpdVZ/532cxZs2alUCjk3nvvzQsvvLDQ2DfffLOhy6tzp512WlZZZZVcccUVOffccxfb8GjTpk3OP//8kvgGTTnafPPNs/vuuxe7DJoY2bv0lducZW/Zu1TJ3rK37C17N1Wyt+xdakohe2uAF9E666yTxx57rMb3ARk5cmTWWmuteq6q/nzV0j6lqNzm/OKLL+a1117Liy++mFGjRuWll17KiBEjUigU0q5du2yxxRbp1atXevXqlXXWWSerrbZajjnmmGKXXWsfffRR1lxzzYW2zf9ZXdzVXyuvvHKmTp3aILVRN8rxg5bkiw8ULrnkktx3331p2bJlfvGLX+SII45YsLxPOSj1gLY49957by699NJ8/PHH6dmzZ84777xFfseVgsmTJ+fSSy/NkCFD0qJFi5xwwgk58sgj06JFi2KXVqeGDh262GUzhwwZstjxTfnbcPMdeOCB2WuvvTJixIg899xz+fe//53q6up07do1PXr0yA477NDk7xn53xZ3b9Av+7ClFJZGhaUle5e+cpuz7P0fsndpkb1lb9lb9m6qZG/ZW/ZufDTAi+iHP/xhzj333Dz44IPZZZddvnTskCFD8tRTT+WKK65ooOqK77333su5556b/v37F7uUBtPU59ysWbNstNFG2WijjXLooYcmST744IOFQvkll1ySefPmpX379unZs2d69eqVAw88sLiF19KcOXPSqlWrhbbNDymLCyuFQmGhe9PR+JXjBy133HFHrrjiikydOjXf+c53cs4559TovpmlolwC2n97++23c8EFF+TZZ59Nhw4d8utf/7rR3bunrtx11125/PLLM3Xq1Gy11VY577zz8rWvfa3YZdW5AQMGFLuEomndunV22WWXr3yPXQqW9EFLsvgPW4RwypHs/eWaeg5dFk19zrL3f8jepUX2lr1l79Iie5c+2fsLsnfjpAFeRHvvvXeGDBmS008/PW+88UYOOuigdO3adaExH374YW688cYMGDAg2267bXbeeeciVVs3Ro8enWuvvTajRo1Kknzzm9/Mz3/+82y++eYLxlRXV+fPf/5zrrrqqsyaNatYpdaZcpzzf1t55ZWz6667Ztddd03yxdI+9913XwYNGpSHH344Q4cObfIhvNwcf/zxWXfddYtdRoMqpw9axo4dm/POOy9jxozJiiuumAsvvDA/+MEPil1WgyqXgDbf7Nmzc80116R///6ZO3du9t1335x66qlp165dsUurc2+88UbOP//8vPTSS+ncuXOuuOKKkg5ppbIUJEtWbh+07LXXXiX9+5j6I3uXRw4txzn/N9m79MjeX5C9S5fsLXuXCtm79MneTZMGeBFVVFTkuuuuy6mnnpo//vGP+dOf/pSVV145Xbp0SWVlZT7++OO8++67qa6uzs4775yLLrqo2CXXytNPP50jjzwy8+bNy9e//vW0bt06zz33XA499ND/1969x9V8P34Af51uKiG3Rm5zW8dtJF20LzYlt0W5zG0aYy7fMQzD1pZLxNxmYwxfuW1fl6kUSZHLSBcqzcKXMXdyK2ly6vT5/eHR+e0oVDrn0+fzeT0fjz0efM77M6+30jmvz+X9QXBwMJydnXH9+nVMnToVaWlpsLGxwZw5c8SO/VqUOOfn5ebmIikpCYmJiTh16hTOnDmDvLw8WFhY6JZkk4PMzEzcvHlT9/vCK5AfPHigtx14dnWrlE2YMEHv9xqNBufOnUNGRoZumRu1Wi3L5xUpQf/+/VFQUAAAqFmzJrZu3YqtW7e+dB+VSoVNmzYZI55BKa2gAcCRI0cwb9483LhxAw4ODpgzZw7atm0rdiyDWLRoEbZs2QKtVov33nsPkydPho2NTZGf0c8r7k4Tudq2bRuOHTuGlStXih2lTEq6tPE/Sf3nV1kOtJw8edIASYxDac/4pfLD7i3/HqrEOT+P3Zvdm6SF3Zvdm91bH7u3dLB7lwy7t/hUgiAIYocg4LfffsPu3buRlpaGu3fv6j7IOjk5oW/fvnBzcxM74msbOXIk0tLSsH79ejg6OgIA7ty5g3HjxsHc3BxBQUHw8/PD/fv34eXlha+//hq1a9cWOfXrUeKc8/PzkZqaivj4eMTHx+P06dPIy8uDubk53n77bV3xdnR0lM1yRmq1utjntgiC8NLnuZw9e9aQsQzu3r17WLZsGaKjo5GTk6P3mpWVFbp3744pU6YUubtGitRqNb766it4eHjotmVlZcHX1xdLly7V/fsuFBMTg4ULF0rya9y1a9cy7RcbG1vOSYzrRQXtVaRc0D777DPExMQAAN577z34+fnB1NT0lfs5OzsbOppBqNVq3a9L86wtKf47LquAgADs2LFDsnMu6c+vgoIC3LlzR/c+LdX5lsatW7cQGhqKsLAwXLt2TRFzJnoRdm959lAlzpnd+/+xe7N7S/FrzO7N7v0q7N7yxe4tX+zeFQtPgJPRuLm5YcCAAZg2bZre9mPHjuGTTz5B06ZNcffuXcyePVvyy80VUtqcP/nkE5w8eRK5ubkwMTFBq1at4ObmBldXVzg5ORVZxkouZs2aVab9pHwlVWpqKsaOHYusrCy0bdsWbm5usLOzg5mZGTIyMpCUlISkpCRUrVoVq1evRvv27cWO/FqUeqBFSZRY0P45Z+DV85Z6YSnrldXP33kjZ1Iv4SVx+vRpzJ49G2fPnkX9+vXx9ddfo0uXLmLHMoinT58iOjoaISEhSEhI0P0b7tSpE3766Sex4xGRASmthwLKmzO7d+mwe0sHu7f8sXuze78Iu7e8sHuze1cEXAJdQhISEnD+/PkyLTFREWRnZ6Np06ZFtjdv3hyCICAzMxM7d+6UxbMFCiltzr/99hvMzc3h4+ODsWPH4s033xQ7klFIuUyXxf379/Hpp5+icuXK+PHHH+Hk5FTsuPT0dEyePBmfffYZdu/ejZo1axo5afnx8fEpVTFTkpMnTyI0NFTyS4UqqWgVUtrPrrJ8jeX2bFAly87OxtKlS7Fjxw6YmJhg7Nix+Pe//y3LJUNTU1MREhKCffv24fHjxwCAGjVqoH///hg0aBDq1asnckKiio/dW3qUNmd2b2Vg96Z/YveWLqX97GL3VjZ2b3bvioQnwCUkMjISO3bskGwJ12q1MDMr+i1XuBTXuHHjZFNGCyltzgMHDkRCQoJumY8mTZqgY8eOcHNzg7OzM6pVqyZ2RCoHW7duRU5ODrZt24YGDRq8cFzLli0RHBwMb29v/PLLL5g4caIRU5avhQsXih2hQrl9+zZCQ0MRGhqKa9euAYAiS7jUC5qvr2+p97lx44YBklQ8hQeX9u/fL+lnNtEzu3fvxrfffov79+/DxcUFAQEBxZ4kkbKMjAyEhYUhNDQUf/31FwRBgJWVFdzd3REXF4e5c+fqLSVKRC/H7i09Spszu7cysHsTu/cz7N7yxe4tL+ze7N4VDU+AU4Uhtx+GJSG3Oc+bNw8AcPPmTcTFxSE+Ph5RUVHYunUrTExMoFar4erqqivl1tbWIiemsjhw4AD69Onz0gJeqF69evD19UV0dLSkS7ifnx/Gjx+Pjh076rbl5+cjJSUFarUaVapU0RsfHh6OmTNnIj093dhRDUaj0eiW84mPj4cgCBAEAa6urhgyZIjY8YxKaQXt6dOniIqKQmhoKJKSkvDHH3+IHckgCg8uhYWF4erVqxAEAba2tmLHotdw6dIlzJkzB4mJiahevToWLlwIHx8fsWOVq3379iEkJARxcXHQarWoWrUqvL294eXlhU6dOuHu3bvw9PQUOyYRVTBy66ElIbc5s3srA7v3M+ze7N7s3vLC7i0/7N7s3hUVT4ATUbmzt7fHgAEDMGDAAADAhQsXEB8fjxMnTmDXrl0IDg6GmZkZWrdujY4dO2LSpEkiJ6bSuH79Oj788MMSj1er1QgNDTVgIsNLTEzEwIED9bZlZ2fDz88PGzZs0CvnhQRBMFY8g3p+OZ/CefXu3RuffvopmjRpInJC41BiQUtOTkZISAiioqKQk5MDQRDQvHlzsWOVq8KDS6GhoYiPj0dBQQEEQUC7du0wePBg9OrVS+yIryUsLKxU4y9fvmyYIEam0WiwatUqbNiwAfn5+Rg4cCCmTZuGqlWrih2t3E2ZMgXW1tYYOnQoPDw84OzsDFNTU93rXEKUiEje2L3ljd37GXZvdm92b+lj99bH7i097N7SxBPgZFQnT56EVqvV25aTkwMAOH78OO7cuVNkH6lfLaTEOT+vefPmaN68OYYPHw6NRoOoqCj88ssvSE1NxenTp1nCJcbc3BxPnz4t8fjc3FzZ3nEgl6L9vOKW87G1tYWvry/atWuHgIAA9OrVS/YFXO4FrTh37tzRfe2vXLkCADAzM0OvXr0wZMgQdOjQQeSE5eP06dPYtWuX3sGlqlWrIjs7G/PmzSty0E2qZs6cWaoSJgiC5EvbkSNHMG/ePNy4cQMODg6YM2cO2rZtK3Ysg6lfvz6uX7+OkJAQXL58Gb///js8PT3RuHFjsaMRkciU2EOVOOfnsXvLC7v3/2P3ZveWG3Zvdm92b2lh95YmngAno9qxYwd27Niht63wQ+z69ev1fvAXvhFIvZAqcc7/dPXqVZw+fRqnT59GWloazp07h7y8PFSuXBmdO3eGs7Oz2BGplN566y0cOXKkxM9EPHz4MJo1a2bgVFRexowZg+PHj0Or1aJu3boYOnQoPD094erqChMTE9y4cUO2Bx8KKaWgFdJoNDhw4AB27dqF+Ph43YHjpk2b4tKlS1i8eDF69OghcsrXl5GRgd27dyM0NBSXL1+GIAiwt7eHr68vvLy88MYbb6Bbt26oUaOG2FHLTVBQkNgRjOqzzz5DTEwMAOC9996Dn58fNBoNkpKSXrqflD+LHDhwAKdPn0Z4eDiioqJw7NgxLFu2DE2aNIGXlxdatWoldkQiEokSe6gS5/xP7N7yw+4tb+ze7N7s3uzeUsXuze4tFTwBLqKbN2+WanzhlctSpbQ3AkB5c87KykJaWpqucKelpSErKwuCIKBatWpo3749pkyZAmdnZ7Rs2RImJiZiR6Yy6Nu3L7755htERka+8ircsLAwxMXFYdmyZUZKR6/r6NGjsLa2hp+fH4YNG4batWuLHckolFjQ0tLSEBISgsjISDx69AgmJiZwdHSEl5cXvLy8oNVq4enpCXNzc7GjlouuXbuioKAAarUa48aNg4eHB1q3bq17/caNGyKmMwxfX1+xIxhVdHS07texsbE4dOjQS8cXnvw4e/asoaMZVNu2bdG2bVt8+eWXOHbsGCIiInDw4EGsXr0aKpUKKpUKhw4dglqtRr169cSOSyQKdm/5U9qc2b2Vgd1b3ti92b3ZveWD3Zvdm927YuIJcBF17dpVUUtjlOWNQOpviEqbs6urK1QqFQRBQPXq1eHi4gJnZ2c4OzvDwcFB0t+/9P/69++PsLAwfPHFFzh//jyGDRsGOzs7vTEZGRkIDg7G5s2b0aVLF/Ts2VOktFRaEyZMwN69e7FmzRr89NNPaNy4MTw9PeHp6Ym3335b7HgGo8SC9sEHH8DKygqdOnVC586d0bVrV72DDHKbc35+PqysrFCrVi1YWVkVWSJVCe7cuYNTp04hIyMDAGBnZwdHR0fUrVtX5GTlQ2knP55namqKLl26oEuXLsjNzUVMTAz27NmD48eP49dff0VISAhcXV3Rv39/vP/++2LHJTIqdu9Xk/r7vtLmzO6tDOze8sbuze5dSG5zZvdm95Y7dm/p4AlwEfn4+LCUFOPp06eIiopCaGgokpKS8Mcff4gdyeDkMucePXrAxcUFLi4uXHZLxkxMTLBmzRpMmzYNP/30E9auXYu6deuidu3aMDU1xf3793H16lUIgoCePXti/vz5YkemUpgwYQImTJiAM2fOICIiApGRkVi7di3WrVuHunXrwsnJSZbvXUosaFZWVnjy5An+/PNPVK9eHdbW1ujcuTNsbGzEjmYQhw4dQkREBCIiIrBs2TKoVCrUqlUL3bp1Q7du3WR9de6FCxcQGBiIpKQkCIKgt5SiiYkJnJyc4O/vDwcHBxFTvj6lXXX/MpaWlvD29oa3tzcePnyIyMhIRERE4MSJE4iPj2cJJ8Vh9y6eXHpoachlzuzeysDuLW/s3uze7N7yw+6tPOzeFZtKkPvDREgykpOTERISgqioKOTk5EAQBDRv3hwRERFiRzMYJc6Z5OW3337D7t27kZaWhrt370IQBNjZ2cHJyQl9+/aFm5ub2BHLhVqtxldffQUPDw/dtqysLPj6+mLp0qVwdHTUGx8TE4OFCxdKfmkf4NkdUCdOnEBERARiYmLw+PFjAEC9evXQv39/+Pj4wN7eXuSUr+/WrVu6gnbhwoViC5qXlxdWrVql930gZbm5uYiNjUV4eDiOHTsGrVYLc3NzdOzYEd26dYNarcaAAQNkNedC586d0x1kunXrFlQqle6gxMyZM/HRRx+JHbHcHDx4EJMnT4ZKpYKnpyfc3NxgZ2cHMzMzZGRkICkpCVFRUcjPz8fy5cvh6ekpdmQyoGvXrmHv3r0YN26c2FGISERK7KFKnDPJC7s3uze7t3Sxe7N7s3srD7t3xcAT4BJx69YthIaGIiwsTO8ZC1J3584dhIWFITQ0FFeuXAEAmJmZwcvLC0OGDEGHDh1ETlj+lDhnIqlTq9XFXnn9quUx5VDC/0mj0SA2NhZ79uzBkSNHkJeXBxMTE3Ts2BH/+c9/xI5XbpRU0AplZmbqrlJNTU3Ve23MmDEYN24crKysxAlnYImJiYiIiEB0dDSysrKgUqlQv3599OvXD76+vqhTp47YEcvs+vXr8Pb2RuPGjbFixQo0aNCg2HG3b9/GZ599hosXL2L37t0vHFfRzZo1q9T7qFQqLFiwwABpiEiq2L3lQ4lzJpI6du9n2L3ZveWI3Zvdm92bjI0nwCuwp0+fYv/+/QgNDUVCQgIKCgpgZmaGM2fOiB3ttWg0Ghw4cAC7du1CfHy8bqmbpk2b4tKlS1i+fDl69OghcsrypcQ5k3JoNBqcO3cOGRkZuqvQ1Wo1KlWqJHa0clOWD3aAvJ+J8+jRI0RFRSEiIgKnTp1Cenq62JEMQs4F7UVu3LiBiIgI7NmzBxcvXoRKpYK1tTV69uyJ/v37F7nrQi7y8vJw9OhRhIeH4/Dhw3j69KnkP3fNnz8fu3fvRlRUlN4z5oqTmZmJXr16oU+fPpg5c6aREpYvtVpd6n1UKpWkD5iW5Q4RlUqFAwcOGCANkXSxe8uHEudMysHu/WLs3tLH7s3uLeXPXezer8buTWLgCfAKKCUlBaGhoYiMjNQtzVWnTh0MHDgQH3zwAWrXri12xDJJS0tDSEgIIiMj8ejRI5iYmMDR0RFeXl7w8vKCVquFp6enrJZ7UeKcSTnu3buHZcuWITo6Gjk5OXqvWVlZoXv37pgyZQrs7OxESkjGcvLkSdnfQSPHglYS586dQ3h4OCIjI3H79m3JF5aSevz4MaKjo7Fnzx5s2LBB7Dhl1rNnT3Tu3LnEBxK//fZbHDp0CPv27TNwMsO4ceNGmfaT8jPounbtWmSbIAi4desWatWqBQsLi2L3i42NNXQ0Iklg95ZPD1XinEk52L2pELu3fLF7s3tLCbv3M+zeFZ+Z2AHomTt37mD37t0ICQnBlStXIAgCTExMAACTJ0/GmDFjdL+Xqg8++ABWVlbo1KkTOnfujK5du+pdEVXWH5wVmRLnTMqQmpqKsWPHIisrC23bti32uTZhYWGIjY3F6tWr0b59e7EjUymdOXMGqampEAQBLVq0KLZkP378GEuWLMHOnTvxxx9/iJDSeMzNzeHh4QEPDw+9giZ3arUaarUaX3zxBRISEhQxZwCwsbGBp6cnkpOTxY7yWm7duoVmzZqVeHyTJk3w3//+14CJDEvKZbqsiivTDx48gLu7OxYvXoyOHTuKkIqoYmP3lmcPVeKcSRnYveWP3Vsfuze7txSxe8sfu7c08QS4iAqX5kKE6f0AAETsSURBVAoJCcGJEyeg1WpRqVIldO3aFd26dYODgwN8fX3RvHlzyRdwALpnuPz555+oXr06rK2t0blzZ9jY2IgdzWCUOGeSv/v37+PTTz9F5cqV8eOPP8LJyanYcenp6Zg8eTI+++wz7N69GzVr1jRyUiqLv//+G59//jmOHDmCwkViVCoV3N3dsXr1at0VjYcPH0ZAQADu3LmDhg0bihnZ6ORS0ErL3t5e8gePr1+/juDgYKSkpAAAWrZsiU8++QSNGjXSGxcdHY158+bh3r17CAwMFCNqubC0tMSjR49KPP7Ro0eoWrWqAROJS6PR4OLFi7C0tESTJk3EjmMwL3s+JpFSsXvLv4cqcc4kf+ze8sbu/Wrs3tLF7v1y7N7ywO5d8fEEuIg6deqER48eoVq1aujduzc8PDzQuXNnWFlZAZDfFconTpxAbGwswsPDsWvXLuzYsQPm5ubo2LEjunXrVqZnR1R0Spwzyd/WrVuRk5ODbdu2oUGDBi8c17JlSwQHB8Pb2xu//PILJk6caMSUVFY//PADDh8+jE6dOsHX1xfW1tY4cuQItm/fjm+//Rb+/v5YtGgRNm7cCFNTU4waNQqfffaZ2LHLhdIKGgCcPn0aq1ev1pvzp59+qnfXgSAI2LhxI77//nvk5uaKFfW1nT17FsOHD8fjx49haWkJS0tLpKenIzIyEtu2bcNbb72F7Oxs+Pv7Izo6GqamphgzZozYsV9L69atER0djVGjRpVo/P79+9GiRQsDpzKs7OxsrFu3DikpKdiyZYtue0REBAIDA3UHJRo3bowFCxagXbt2IiUlImNi95Z/D1XinEn+2L3ljd2b3Zvdm91byti9SQp4AlxEWVlZsLa2Rvfu3eHq6or27dvrCrgcWVpaolevXujVqxcyMzMRGRmJiIgIHD16FEePHgXw7KqZtLQ0uLu7y+LvQolzJvk7cOAA+vTp89ICXqhevXrw9fVFdHQ0S7hExMbGwsXFBevWrdNte/fdd1GzZk1s2bIFtra2CA4OhlqtRlBQkOQ/sBdSYkE7ceIEPvnkE2i1WjRu3BhWVlZISkrCiBEjEBwcDGdnZ1y/fh1Tp05FWloabGxsMGfOHLFjl1nhQYSlS5eid+/eAJ49L/Tzzz9HYGAglixZAj8/P/z1119o06YNAgMD4eDgIHLq1zNgwABMnjwZwcHBGDly5EvHrlmzBmlpaXr/9qUmJycHgwYNwqVLl1CnTh3k5+fDzMwMaWlpmDFjBgRBwKBBg9C8eXOEhYVh5MiRCAsLK3KgjYjkh91b/j1UiXMm+WP3ljd2b3Zvdm92b6li9ybJEEg0SUlJwjfffCO4uLgIarVaaNGihfDBBx8I69evF65cuSJcv35dcHBwEA4cOCB2VIO6fv26sHr1aqF3796Cg4ODoFarhfbt2wtfffWVkJycLHY8g1DinEk+2rVrJ2zbtq3E43fs2CE4OjoaMBGVp3bt2gkbN24ssv3ixYuCg4OD0KJFC2HevHmCRqMRIZ3hjBs3TmjVqpWwZ88e3bbTp08LHh4ewvDhw4U7d+4I3bt3FxwcHIQBAwYI586dEzFt+RgxYoTQvn17vfed27dvCz4+PsLAgQOFixcvCu7u7oKDg4MwceJEISMjQ8S0r8/d3V2YN29eke379+8XWrZsKQwdOlRo3bq1sG7dOkGr1YqQ0DAmTpwoqNVqYerUqUJKSorev12tViukpKToxnz99dciJn1933//vdCqVSth3759etvHjBkjqNVqISgoSLctNzdX8PLyEmbOnGnsmAb34MEDwcHBQYiLixM7ClGFwe79jBJ7qBLnTPLB7i1v7N7s3uze7N5Sxe79DLt3xcc7wEXUoUMHdOjQAV9//TWOHDmCiIgIHD58GKdPn8aSJUvQoEEDqFQq/P3332JHNah69eph3LhxGDduHM6dO4fw8HBERkbi119/xa5du3D27FmxI5Y7Jc6Z5MPc3BxPnz4t8fjc3FxYW1sbMBGVpydPnqBGjRpFtlevXh0A0K1bN/j7+xs7lsGlpaVh8ODBuquTAeDtt9/GF198gSlTpmDKlCm4ceMGpk2bho8//lgWzwc9e/YshgwZAkdHR922N954A1OnTsUnn3yCSZMmIT8/H8uXL0fPnj1FTFo+srKyil3+tE2bNtBqtTh//jy2bNkiu2W5lixZgqCgIGzbtg179+6FqakpbG1tYWpqiszMTGg0GpiYmGDUqFGYMmWK2HFfS3R0NPr27YsePXrotuXk5OD48eMAgKFDh+q2V6pUCX369MHOnTuNnpOIjI/d+xkl9lAlzpnkg91b3ti92b3ZvdsZP5wBsXuze1PFwxPgFYCZmRk8PDzg4eGBnJwcREdHIyIiAgkJCRAEATNmzMCuXbvQr18/dO/eHZUqVRI7ssGo1Wqo1Wp88cUXSEhIwJ49e8SOZHBKnDNJ21tvvYUjR47Az8+vROMPHz6MZs2aGTgVGZpKpQIA+Pj4iBvEQJRY0LKzs9G0adMi25s3bw5BEJCZmYmdO3eiYcOGIqQrf/n5+cV+hrK0tAQAjBkzRlZf30IWFhYICAiAn58fwsLCkJaWhrt370IQBDRp0gROTk7w9vaWxVJk169f1yvaAJCUlIT8/Hw0aNCgyPdy3bp1cf/+fWNGLHcrV64ssi03NxcqlQq7d+/GqVOniryuUqnw6aefGiMeUYXD7v3/lNhDlThnkjZ2b2Vi92b3ljp2b3Zvdu9n2L3FxxPgFUzlypXh6+sLX19f3L9/H3v27EFERATi4+MRHx+PefPmISkpSeyYRuHq6gpXV1exYxiVEudM0tO3b1988803iIyMRK9evV46NiwsDHFxcVi2bJmR0pGhFRYWuVFiQdNqtTAzK/pR0MLCAgAwbtw42RTwkmjdurXYEQyqcePGkr/K/FVMTExQUFCgt+3EiRMAAHd39yLjHzx4ABsbG6NkM5TiSnihsLCwYrezhBM9w+79/5TYQ5U4Z5Iedm9lY/eWD3Zvfeze0sfurY/du+LiCfAKrGbNmvjoo4/w0Ucf4cqVKwgPD5f0FcolvWL1n1QqFTZt2mSANMahxDmT/PXv3x9hYWH44osvcP78eQwbNgx2dnZ6YzIyMhAcHIzNmzejS5cusljCSUkKrzgv7WtyJveCVpzirlCXMyV8b9+5cwenTp1CRkYGAMDOzg6Ojo6oW7euyMnKR7NmzZCSkoJhw4YBAARBQExMDFQqFbp27Vpk/MGDByX/fb5582axIxDJAru39HuoEudM8sfuLX/s3kWxe8ufEr632b31sXuTWHgCXCIaNWqEiRMnYuLEiWJHKbPExMRit6tUKgiC8MLXpEyJcyb5MzExwZo1azBt2jT89NNPWLt2LerWrYvatWvD1NQU9+/fx9WrVyEIAnr27In58+eLHZlKacGCBVi+fLneNkEQoFKpMG3atCJXa6tUKhw4cMCYEY2OP5vl4dKlS0Xu5svOzgYAnD9/vtir8p2dnY2SzZAuXLiAwMBAJCUlQRAEvc8gJiYmcHJygr+/PxwcHERM+fp8fHwwf/58tGnTBu+88w527NiBmzdvomHDhujUqZPe2DVr1iA1NVXyz1V0cXEROwKR7LB7S5MS50zyx+4tf+zeRfFnszywe7N7F2L3JjHxBLiI/Pz8MH78eHTs2FG3LT8/HykpKVCr1ahSpYre+PDwcMycORPp6enGjlouzp07V2TbgwcP4O7ujuDgYL2/B7lQ4pxJGapUqYKffvoJv/32G3bv3o20tDT873//gyAIsLOzg4+PD/r27Qs3Nzexo1Ip2dvbA0CxBwoLr1R9/rUXHVSUGiUWtJMnT0Kr1epty8nJAQAcP34cd+7cKbKPlJ9Ft2bNGqxZs6bY1xYtWlTs9rNnzxoyksEdPHgQkydPhkqlQo8ePeDm5gY7OzuYmZkhIyMDSUlJiIqKwoABA7B8+XJ4enqKHbnMBg8ejFOnTiEoKEh3wqNatWpYsmQJTExMAAC//vor1q5di2vXrsHJyQlDhgwRObVhaTQaXLx4EZaWlmjSpInYcYhEw+4t/x6qxDmTMrB7yxe7N7s3u7c+dm/pYPcuit27YlIJcnnnlCC1Wo3FixfD29tbt+3hw4dwd3fHhg0bihS08PBwzJgxQ/JvBv/08OFDdOzYUVGFVIlzJiKq6NRq9QuvNC+8Ar84Un5PftGc//nR8J+vF/49SHXOP/zwQ5nuJpgwYYIB0hjH9evX4e3tjcaNG2PFihVo0KBBseNu376Nzz77DBcvXsTu3btfOE4qUlJSkJKSAhsbG3h6eqJGjRq611auXIndu3fD29sbY8eOLfb5g1KTnZ2NdevWISUlBVu2bNFtj4iIQGBgIB49egTg2bPoFixYILtnKhKVBLu3MnuoEudMRFTRsXv/P3Zvfeze0sPu/Qy7d8XFO8ArIF6TQERSkZubC0tLyyLbL168iKpVqxZ5PhlVfGFhYejQoQPq168vdhSj+vTTTxW31FpQUJDYEYxKykvZltWmTZtgbm6O9evX6xXR59WpUwdr165Fr1698PPPP2PmzJlGTFn+HB0d4ejoWOxrEyZMeOGBlby8PKSmphZ7N2hFlZOTg0GDBuHSpUuoU6cO8vPzYWZmhrS0NMyYMQOCIGDQoEFo3rw5wsLCMHLkSISFhaFRo0ZiRyeqENi9iUgq2L3lh91bOdi95Y/duyh2b3bvioAnwImIqNQ0Gg0WLVqEiIgIHD16tEgRX7ZsGY4ePYr+/ftjxowZsLa2FikpldasWbPw7bffKq6EK7Gg+fr6ih3BqIpb/lbujh07Bl9f35cW8EK2trbw8fHBoUOHJF/CyyorKwt+fn7F3g1aUW3YsAFXr17Fd999hx49eui2r1q1CoIg4KOPPtJ9PQcMGIA+ffpgzZo1ijsIR0REJFXs3vLF7q0c7N7yx+5dOuzeZCwmYgcgIiJp0Wg0GDVqFH7++WfY29vj4cOHRca89957cHBwwPbt2zF69Gjk5+eLkJTKQql3Qvn5+eHEiRNixzAqDw8PHDx4UOwYRpOYmIh79+6JHcOobt26hWbNmpV4fJMmTXD79m0DJqr4pPYzMDo6Gn379tUr4Dk5OTh+/DgAYOjQobrtlSpVQp8+fRT3s46IiEiq2L3lTWqfO8sLu7f8sXu/Gru39H4GsntLE0+AExFRqWzcuBFJSUnw9/dHWFgY6tatW2TMwIEDsWvXLkyYMAHJycnYunWrCEmJSk6JBe3GjRv4+++/xY5BBmRpaal7BlVJPHr0CFWrVjVgIipv169fR+vWrfW2JSUlIT8/H/Xr10fDhg31Xqtbty7u379vzIhERERURuzeJEfs3iRH7N7yx+4tTVwCnYwmLCysyLacnBwAwPHjx3Hnzp1i9/Px8TFgKsNS4pxJ/iIiIuDh4YEPP/zwlWMnTJiAxMRE7N69GyNGjDB8OCoXmZmZuHnzZqn2sbe3N1AaIiqr1q1bIzo6GqNGjSrR+P3796NFixYGTkXlycTEBAUFBXrbCq8yd3d3LzL+wYMHsLGxMUo2IhKPEnuoEudM8sfuLX/s3kTywO4tf+ze0sQT4CJ7/oNOVlYWgGf/QJ7/AFTcUkdSMnPmTKhUKr1thUtdrF+/HiqVSvf7wl+rVCpJF1Ilzpnk78qVKxg8eHCJx7/77rtYsWKFARNReVuwYAEWLFhQ4vEqlQrp6ekGTERUPmJiYnDlypUSj1epVPj0008NmMiwBgwYgMmTJyM4OBgjR4586dg1a9YgLS0N69atM1I6Kg/NmjVDSkoKhg0bBuDZ58yYmBioVCp07dq1yPiDBw+iadOmxo5JVCGwe8u7hypxziR/7N7yx+5NcsXu/WLs3tLE7i1NPAEushd90Jk2bZoIaQwrKChI7AhGp8Q5k/xZW1tDq9WWeHylSpVgaWlpwERU3pycnNCgQQOxYxid0goaAOzYsQNxcXElHq9SqUp1gKaiiYmJQXR0dInHS/1r3KNHD3h5eeHbb7/FH3/8gQ8//BCtWrWCubk5AKCgoABpaWnYsGEDYmJiMHDgQPzrX/8SOTWVho+PD+bPn482bdrgnXfewY4dO3Dz5k00bNgQnTp10hu7Zs0apKamwt/fX6S0ROJi95Y3Jc6Z5I/dW/7YvUtG6r0MYPd+Fal/jdm95Y/dW5p4AlxEPj4+Ra5QljNfX99XjsnKyoKlpSUqVapkhESGp8Q5k/w1adIEycnJ8PPzK9H4U6dOoV69egZOReVp0KBB8Pb2FjuG0SmtoAHPnleUlJRU4vFSL+Fjx44tdmkqOVuyZAmCgoKwbds27N27F6amprC1tYWpqSkyMzOh0WhgYmKCUaNGYcqUKWLHpVIaPHgwTp06haCgIN0djdWqVcOSJUtgYmICAPj111+xdu1aXLt2DU5OThgyZIjIqYmMj927KLn1UCXOmeSP3Vv+2L1Lht1beti92b3lht1bmngCXEQLFy4UO4LR5eXlISQkBKmpqXpXaCcmJmL27Nm4fPkyVCoV3N3dERAQIIurIJU4Z5I3X19fBAQEID4+Hm5ubi8dm5CQgOjoaEycONFI6YjKTokF7csvv4SHh4fYMYymadOmcHFxETuGUVlYWCAgIAB+fn4ICwtDWloa7t69C0EQ0KRJEzg5OcHb2xuNGjUSOyqVgUqlwpIlSzBs2DCkpKTAxsYGnp6eqFGjhm7M7du3IQgCxo8fj7Fjx+rKOZGSsHsro4cqcc4kb+zeJFfs3vLH7s3uLTfs3tLEE+AiGj16NHx8fODp6amIJYry8vLw8ccfIykpCebm5pg3bx7MzMxw+fJljB49Gnl5eejUqROaNWuG/fv3Y9CgQQgPD0etWrXEjl5mSpwzyZ+Pjw927dqFcePGYezYsRg4cGCR79mMjAzs3LkT69evR/369TF06FCR0hKVnBILWvXq1XmXiEI0btyYV5nLmKOjIxwdHYt9bcKECZgwYUKxr+Xl5SE1NRVqtRpVqlQxZEQiUbF7y7+HKnHOJH/s3iRX7N4kZ+ze8sbuLS28BEFEiYmJmD59Otzd3TFz5kzExcVBEASxYxnM1q1bcfLkSUyfPh1JSUkwM3t2/cUPP/wAjUYDb29vrF27Fl988QV27doFU1NTrFmzRuTUr0eJcyb5Mzc3x6pVq9C2bVusWLECnTp1goeHBwYPHoyBAweia9eu6NKlC3744Qc4ODggODiYb+wSYm9vD2tra7FjEBGREWRlZcHPzw9nzpwROwqRQbF7y7+HKnHOJH/s3vLG7k1EpBzs3uLgHeAiOnHiBA4cOIB9+/Zh79692L17N2rVqgVvb2/06dMHarVa7Ijlas+ePejevTtGjRql26bRaBAbGwuVSqW33dbWFv369cPevXvh7+8vRtxyocQ5kzLUrFkTmzZtQnR0NPbu3Yv09HScP38eJiYmqFWrFnx8fNCtWzd07dpV7KhUSrGxsS99vaCgALdv30atWrVgYWFhpFREr2/ChAlwcHAQO4ZRlfR5kf+kUqmwadMmA6SpGO7evQtbW1uYm5sXea1atWrYvHkzWrRoIUIy8cj5JCBRIXZv+fdQJc6ZlIHdW77YvUmu2L1Lht2b3ZsMjyfARVS5cmX07dsXffv2RXZ2Nvbv34/IyEhs2rQJwcHBaNasGfr27Qtvb2+88cYbYsd9bX/99Rd8fX31tp06dQq5ubmws7Mr8sbYsGFDZGRkGDNiuVPinElZvLy84OXlJXYMMqIHDx7Aw8MDGzZsQMeOHcWOU26UWNCCgoJeuGyTHL1oGapCf//9NzZs2AAfHx/Ur1/fSKkMKzExsdjtKpXqhcVLpVIZMpJRBAcHY8eOHQgPDy9SthcsWIC4uDiMGjUKo0eP1nsml7m5ueKWYiRSCnZv+fdQJc6ZlIXdW3nYveWD3Vsfu/f/vyZ17N5U0fEEeAVRpUoVDBgwAAMGDMCDBw8QFRWFffv2YdmyZVi2bBmcnZ3h4+MDLy8vVK5cWey4ZVJQUABTU1O9bfHx8QAAd3f3IuOzs7NhZWVllGyGosQ5EwHPlnWxtLREpUqVxI5CBiDHKxaVWNCeP0j8vMePH2P+/PkYPXo0mjZtaqRU4vn777+xatUqODk5yeZrfO7cuSLbHjx4AHd3dwQHB8vqQBrw7GfTtGnTsHfvXtSsWRO3b99GgwYN9MY0bdoUycnJWL58Oc6cOYPvv/9epLREJBZ2b3n2UCXOmQhg95Y7dm959DJ2b33s3tLH7k1SwWeAV0A1atTA0KFDsWXLFhw+fBhfffUVTExM8M033+Bf//qX2PHKrGHDhjh79qzetpiYGKhUKrz77rtFxh87dgwNGzY0UjrDUOKcSRny8vKwfft2zJo1S297YmIievXqBTc3Nzg6OmL06NG4evWqSCmJyk9hQbt27ZrYUYwmNzcXYWFhiro7So4HmJ4nh6vMX2T79u3Yu3cvRowYgcOHDxcp4MCzA24xMTHo168fYmJiEBISIkJSIqoo2L2fkUMPVeKcSRnYvUlp2L2Vgd1b2ti9SSp4AryCMzc3h6WlJWxsbGBmZgaNRiN2pDLr3bs3du/ejQMHDuDJkyfYuHEjLl26hJo1axZ5VlF4eDiOHz8ODw8PkdKWDyXOmeQvLy8PH3/8MQICArBnzx7k5+cDAC5fvozRo0fj8uXL6NSpE0aMGIHLly9j8ODBuHfvnsipiV6fEgra85Q4Z5KuX3/9FS4uLpg5c2axzxkrZGFhgcDAQLRo0QI7duwwYkIiqsjYvaXdQ5U4Z5I/dm9SKiX2UCXOmaSL3ZukgkugV0APHjxATEwMoqKikJSUhPz8fLRs2RKTJk1C7969xY5XZiNGjMBvv/2GCRMm6J5/YW5ujvnz58PCwgLAsyu0t27disTERDRu3BgjRowQN/RrUuKcSf62bt2KkydPYvr06Rg2bBjMzJ69lfzwww/QaDTo06cPvv32WwDAmDFj4O3tjTVr1sDf31/M2FROzM3N4ezsjGrVqokdhYhIz59//olJkyaVaKxKpUKPHj2wevVqA6ciooqM3Vs+PVSJcyb5Y/dWNnZvIqqo2L1JKngCvIK4d+8eoqOjERUVhVOnTkGr1aJevXoYNWoU+vTpI4vnf1hYWGDjxo2IjIxEamoqbGxs4O3tjWbNmunGnDlzBsnJyejTpw9mzpwJS0tLERO/PiXOmeRvz5496N69O0aNGqXbptFoEBsbC5VKpbfd1tYW/fr1w969e1nCJSI7OxtVqlR54evVqlXDli1b9LYlJCTA1dXV0NGIDKpKlSoICgpC8+bNxY5CZWRmZqY7yVESVatWLfK8WCKSP3bvZ+TWQ5U4Z5I/dm95Y/cmpWL3lj52b5IKngAXUUZGBqKjo7F//34kJydDq9WiWrVqGDBgALy9vdGhQwexI5Y7U1NTeHt7w9vbu9jXx40bh0mTJsHERD6r8ytxziRvf/31F3x9ffW2nTp1Crm5ubCzs4ODg4Peaw0bNlTUc4ykzs/PD8HBwbC1tX3l2KdPn2Lx4sX45ZdfkJ6ebvhwIlJiQatWrRo2b96MFi1aiB3FKCpVqoR//etfvMNCwho1aoQzZ86UePyZM2dQt25dAyYiooqC3bsoOfZQJc6Z5I3dW97YvYvH7i1/7N7Sx+5NUsET4CLq0qULgGdXKnt6esLb2xtdunR56XMT5M7KykrsCEanxDmTtBUUFBS5ai8+Ph4A4O7uXmR8dnY2v88l5OzZs/jwww+xceNG1KpV64XjTp8+jRkzZuCvv/566Ti5qFSpkt7BJ61Wi7Vr12L8+PEipjIsc3NzuLi46H6fnZ2NRYsWITAwUMRUry84OBg7duxAeHh4kc9cCxYsQFxcHEaNGoXRo0dL/gB5WFhYkW05OTkAgOPHj+POnTvF7ufj42PAVIbz/vvvY+nSpRg5cuQrD5hduHABERER8PPzM1I6IhITu3dRSvx8rsQ5k7Sxe8sbu3fx2L3ZvaWI3fvF2L1JTCpBEASxQyjV8OHD0bdvX/To0QM2NjZixyEiKpG+ffuibdu2mDt3rm5br169cPnyZSxfvhw9evTQGz969GhkZWVh586dxo5KZfDzzz9j/vz5aNCgATZu3FjkCs28vDx8//332LBhA7RaLfr27Ysvv/xSFlfuZmdnY+fOnUhNTYUgCGjZsiWGDRuGqlWr6o37/fff4e/vj//97384e/asSGnLx/Xr1xEcHIyUlBQAQMuWLfHJJ5+gUaNGeuOio6Mxb9483Lt3T7JzFgQB06ZNw969e1GzZk1s27YNDRo00BuzcuVK7Ny5ExkZGejWrRu+//57kdKWD7VaDZVKpbftnx/9i3tNpVJJ9mv8999/o1+/fsjMzMSXX36J3r17FzlonJ+fjz179mDJkiUAgNDQUNSuXVuMuEZz9+5d2NraFnuiLy8vDykpKWjRosVLl+Akkjp2byKSInZveWP3Zvdm92b3lurXmN27eOzeFQ9PgBMRUamsXbsWq1atwtKlS/HOO+9g+/btWLhwIWrVqoXY2Fi9Z8CEh4djxowZmDRpEsaNGydiaiqNPXv2YObMmbCzs8PGjRvRsGFDAM+uUJ8xYwb+97//wd7eHnPmzEGnTp1ETls+rl27Bj8/P9y+fVuvpNSqVQs7d+5E3bp1kZ+fj6VLl2Lz5s3QarXo3bs3li5dKmLq13P27FkMHz4cjx8/hqWlJSwtLZGZmQlra2ts27YNb731FrKzs+Hv74/o6GiYmppi1KhRmDJlitjRy2Tbtm2YPXs2RowYgalTp77wrj+NRoM5c+YgJCQE8+fPR79+/YyctPyEhoaWab/nl9qUksuXL+PTTz/F5cuXYW1tjVatWqF27drQarW4f/8+zpw5g9zcXNjb22PVqlVQq9ViRy4XL7u7YsqUKbK6u4KIiEgp2L3lj92b3Zvdm91bqti92b2lgCfARVTc0hglIdWlMYhIHjQaDUaNGoWkpCSoVCoIggBzc3OsXLlSt7xkTEwMtm7disTERDRu3BghISGwtLQUOTmVxpEjRzB58mTY2Nhg3bp1OHjwINasWYP8/HwMGTIEU6dOReXKlcWOWW6mTp2KyMhITJkyBf3794eVlRWOHDmCuXPnol27dli8eDHGjBmD5ORk2NvbIyAgQPf9LlXjx4/Hb7/9hkWLFqF3794AgLS0NHz++eewt7fHkiVL4Ofnh7/++gtt2rRBYGBgkecMSsmAAQNgbW2NzZs3v3KsIAjo378/LCwssG3bNiOko/Kk0Wjw888/Y+/evTh37hzy8/MBPFtasF27dvDy8sKgQYP0DhpLlRLvriAqC3ZvIpIidm9lYPdm92b3ZveWKnZvdu+KjifARVS4NEbhkhevIvWlMYhIPrRaLSIjI5GamgobGxt4e3ujWbNmuteXL1+ODRs2oFevXpg5cyaqV68uYloqq1OnTmH8+PF4/PgxBEFAo0aNEBgYiA4dOogdrdx17twZ77zzDoKCgvS2h4aGIiAgAJ07d8aBAwcwZMgQTJ8+HdbW1iIlLT/vvPMOevbsCX9/f73t0dHRmDJlCtq1a4e0tDRMmjQJH3/8seSvXHV0dMSkSZMwYsSIEo1fu3YtVq9erVuiTupyc3OLPRh68eJFVK1aFXZ2diKkMo4HDx7A1NRUFstFPk+Jd1cQlQW7NxFJFbu3MrB7s3uze7N7ywG7N7t3RWMmdgAle/6NnohIKkxNTeHt7Q1vb+9iXx83bhwmTZok+Q/tSufk5ITNmzdj9OjRePDgAebOnSvLAg4ADx8+hKOjY5Htzs7O0Gg0OHLkCFasWIHu3buLkM4wsrKyil2Cqk2bNtBqtTh//jy2bNmCdu3aGT+cAZiZmZXqquOqVasWeYaVFGk0GixatAgRERE4evRokSK+bNkyHD16FP3798eMGTNkcYDpeTVq1BA7gsH8+uuvcHFxwcyZM186zsLCAoGBgTh79ix27NjBEk6Kw+5NRFLF7q0M7N7s3uze7N5ywO7N7l3R8AS4iKT8jAciUi4/Pz+MHz8eHTt21G3Lz89HSkoK1Go1qlSpAisrK91rhc8i4x000qRWq/Hf//4XI0eOxPjx47Fq1Sq4ubmJHavc5eXl6X3fFipcam7kyJGyKuDAs3+3lSpVKrK9sKSNGTNGNgUcABo1aoQzZ86UePyZM2dQt25dAyYyvH8um6lWq/Hw4cMic3rvvfdw584dbN++HRcuXMDmzZthZibNirBy5coy7TdhwoRyTmI8f/75JyZNmlSisSqVCj169MDq1asNnIqo4mH3JiIpYvdWFnZvdm+5YPdm934Rdm8yNmn+C1MorVaLtWvXYvz48WJHISIFS0xMxMCBA/W2ZWdnw8/PDxs2bNAr5yQ9s2bNKnZ7o0aNcP36dYwdOxY9e/bUWz5UpVJhwYIFxoooChcXF7EjGF3r1q3FjlCu3n//fSxduhQjR45E8+bNXzr2woULiIiIgJ+fn5HSGcbGjRuRlJQEf39/fPjhh8WOGThwIAYOHIiVK1di5cqV2Lp1a4mXqqtoSlrCn1/+WMolXKl3VxAZGrs3EVUE7N7yxu5dPHZv6WP3ZvcuxO7N7i02ngAXWXZ2Nnbu3InU1FQIgoCWLVti2LBhqFq1qt6433//Hf7+/vjf//7HEk5EFZIgCGJHoHIQGhr60tefPn2KsLAwvW1KKOFK/NBakmekSskHH3yAbdu2Yfjw4fjyyy/Ru3fvIl/X/Px87NmzB0uWLEGVKlUkX8IjIiLg4eHxwgL+TxMmTEBiYiJ2794t2RJ+8ODBV47Jzs7Gd999h8OHD8PMzEzyX2Ml3l1BVFbs3kQkF+ze8sDuXTx2b+lj9345dm9pYveWJp4AF9G1a9fg5+eH27dv6z68xsTE4Oeff8bOnTtRt25d5OfnY+nSpdi8eTO0Wi169+4tcmoiIpKzknyIlavMzEzcvHlTb1tWVhYA4MGDB0VeAwB7e3ujZDOUS5cuISkpSW9bdnY2AOD8+fPFLsfl7OxslGzlzdraGqtXr8ann36KGTNmYM6cOWjVqhVq164NrVaL+/fv48yZM8jNzYW9vT1WrVqF2rVrix37tVy5cgWDBw8u8fh3330XK1asMGAiw6pXr95LX4+MjMTChQuRkZGB9u3bY/bs2XjrrbeMlM4wlHh3BVFZsHsTEVFFw+7N7s3uze4tVeze7N5SwRPgIvruu+9w+/ZtTJkyBf3794eVlRWOHDmCuXPnYu7cuVi8eDHGjBmD5ORk2NvbIyAgAF26dBE7NhERydirPsTK2YIFC154Nf20adOKbFOpVEhPTzd0LINas2YN1qxZU+xrixYtKna7lJ8p2LhxY4SFheHnn3/G3r17kZycjPz8fACAubk52rVrBy8vLwwaNKhUS1tVVNbW1tBqtSUeX6lSJd1z6OTk6tWrmDNnDuLi4lCtWjUEBgZiwIABYscqF0q8u4KoLNi9iYioomH3ZvcuxO7N7i0X7N7s3hUNT4CLKCkpCT4+PhgzZoxuW8+ePZGbm4uAgADMnDkTycnJGDJkCKZPnw5ra2sR0xIRERW1Zs0aREdHIyQkROwor8XX11fsCEYn5WcvvQ4LCwuMHDkSI0eOBPDsDgNTU1NUq1ZN5GTlr0mTJkhOTi5x6Tp16pSsDsRpNBqsXbsW69atg0ajga+vL6ZPn47q1auLHa3cKPHuCqKyYPcmIiKpY/eWLnZvdu/nsXtLD7u3NPEEuIgePnwIR0fHItudnZ2h0Whw5MgRrFixAt27dxchHRER0avdunVL0lclFwoKChI7gtEptYQ/r0aNGmJHMBhfX18EBAQgPj4ebm5uLx2bkJCA6OhoTJw40UjpDCsuLg5z5szBlStX0Lx5cwQEBKBDhw5ixzIIpd1dQVQW7N5ERCR17N7Sxe79DLv3M+ze0sXuLT08AS6ivLw8WFlZFdleuXJlAMDIkSNZwImoQnr+eU0ve1bTw4cPjZqNiKg4K1euLNN+Uj5Y4ePjg127dmHcuHEYO3YsBg4ciFq1aumNycjIwM6dO7F+/XrUr18fQ4cOFSlt+bh37x6CgoIQGRkJS0tLTJ06FSNHjiz2mXpyoqS7K4jKgt2biKSK3ZuIpIbdm91bzti9pUUlCIIgdgilUqvVWLx4Mby9vfW2P3z4EB07dsT69evxr3/9S6R0RETFU6vVUKlURbYLglDs9kJyuFKZigoICMCOHTsk//VVYkGbNWtWqfdRqVQvfFZbRadWq0s07vmfY1L/3r5//z4+//xzJCQkQKVSwd7eXm+Jrlu3bkEQBLRr1w7Lly9H3bp1xY5cZlu3bsWKFSvw+PFjdO3aFf7+/pKeDxGVH3ZvIpIidm/6J3Zvdm+pYPdm9yaqKOR9OYbEmZqaih2BiKgIJT6vieSvpCX8+YIm5RIeGhpa4rH/nLdUS/jBgwdfOSY7OxvfffcdDh8+DDMzsxI/v6siq1mzJjZt2oTo6Gjs3bsX6enpOH/+PExMTFCrVi34+PigW7du6Nq1q9hRX1tgYKDu17GxsYiNjX3lPiqVCunp6YaMZVBKPIBIZAjs3kRUEbF7kxyxe78cu7d0sXu/HLs3iYEnwEX2/FJGwMuXMwIAe3t7o2QjIiqOEp/XRPKnxIJ27ty5V465ceMG5s2bh8OHD6NKlSqYPHmy4YMZSL169V76emRkJBYuXIiMjAy0b98es2fPxltvvWWkdIbn5eUFLy+vItuzsrJgaWkpQqLyp8SDxEo8gEhUVuzeRCQ17N4kR+zexWP3ZveWEnbvF2P3rli4BLqIXrSUEfDi5YykfqUMERFVbKW9ovHQoUNIT0+X/FJVryL3gvY8rVaLDRs24Mcff0Rubi569eqFWbNmFXmGlRxcvXoVc+bMQVxcHKpVq4Zp06ZhwIABYscqN3l5eQgJCUFqaqreQdTExETMnj0bly9fhkqlgru7O7755hs0bNhQxLSvZ9asWRg8eDDatm0rdhSjuXHjxivHFHcA8YsvvjBCOqKKg92biIgqGnbv4rF7s3tLFbu3vLF7SxNPgIuoLM//AHgFKBERGU5Jn9X0TyqVSrYlXO4FrTgnT57EnDlzcOHCBbz55psICAhAx44dxY5V7jQaDdauXYt169ZBo9HA19cX06dPR/Xq1cWOVm7y8vLw8ccfIykpCebm5khJSYGZmRkuX76Mvn37QqPRoHPnzmjWrBn279+PJ0+eIDw8XLIHW170jF8lU9oBRKIXYfcmIqKKht1bH7s3u7eUsXsTu3fFxCXQRcQyTUREFc3mzZvFjlAhKKGgPe/hw4f49ttvERYWBgsLC0ycOBGffPIJLCwsxI5W7uLi4jBnzhxcuXIFzZs3R0BAADp06CB2rHK3detWnDx5EtOnT8ewYcNgZvbso/8PP/wAjUaDPn364NtvvwUAjBkzBt7e3lizZg38/f3FjE3l4PkDiIGBgbI/gEj0MuzeRERU0bB7P8Puze4tB+zeysXuXbHxBHgF8OTJE+zatQu//fYbzp07h8zMTKhUKtSoUQNqtRoeHh7w9vaW5ZsgERFVLC4uLqXe5+TJkwZIIh6lFLR/2rlzJ5YsWYKsrCy88847CAgIkPRyXC9y7949BAUFITIyEpaWlpg6dSpGjhypK6dys2fPHnTv3h2jRo3SbdNoNIiNjYVKpdLbbmtri379+mHv3r0s4RKmxAOIRKXB7k1ERBUFuze7N7u3fLB7Kw+7tzTI8yeOhJw6dQqTJk3CvXv3YGFhgYYNG6JevXrIz89HZmYmDh06hNjYWKxcuRJLly5F+/btxY5MRESEW7duITQ0FGFhYbh27ZoslmFTWkEDgPPnz2P27NlITU1FrVq1sGzZMvTq1UvsWAaxdetWrFixAo8fP0bXrl3h7++PunXrih3LoP766y/4+vrqbTt16hRyc3NhZ2cHBwcHvdcaNmyIjIwMY0YsdydPnoRWqy3VPj4+PoYJY2RKPIBIVBrs3kREJEXs3vLA7s3u/U/s3tLG7i0d8n1XkYA///wTo0aNgo2NDZYsWQIvL68iV5o/fvwYUVFR+P777zF69GiEhoaiUaNGIiUmIiIle/r0KaKjoxESEoKEhAQIggCVSoXOnTuLHe21KbGgLVq0CFu2bIFWq8V7772HyZMnw8bGBjdv3nzpfvb29kZKWL4CAwN1v46NjUVsbOwr91GpVEhPTzdkLIMqKCiAqamp3rb4+HgAgLu7e5Hx2dnZsLKyMko2Q9mxYwd27NhRorGFP8OkXsKVeACRqLTYvYmISErYveWF3Zvd+3ns3tLE7i09/MqI6Mcff4SVlRV27dqFN954o9gxNjY2GDBgADp37oy+ffti/fr1mDdvnpGTEhGRkqWmpiIkJAT79u3D48ePAQA1atRA//79MWjQINSrV0/khK9PiQUtODhY9+tDhw7h0KFDJdpPqnccPH81thI0bNiwyNcrJiYGKpUK7777bpHxx44dk/zyex988AHatWsndgyjUeIBRKKyYPcmIiIpYPcuHru3tLB7P8PuLS/s3tLEE+AiSkpKQr9+/V5YwP/Jzs4OPj4+OHbsmBGSERGR0mVkZCAsLAyhoaH466+/IAgCrKys4O7ujri4OMydOxceHh5ixyw3Pj4+UKlUYscwqgkTJpR6H0EQDJDEeAYPHoy2bduKHcNoevfujVWrVqFz58545513sH37dly6dAm1atVC165d9caGh4fj+PHjmDRpkkhpy0eHDh3g7e0tdgyjUeIBRKKyYPcmIqKKit1b/ti95Y/dW/7YvaWJJ8BF9PDhw1ItqdakSRPs3LnTgImIiEjp9u3bh5CQEMTFxUGr1aJq1arw9vaGl5cXOnXqhLt378LT01PsmOVu4cKFAIC8vDxcvHgR+fn5aNasmeSXpHoZe3t79OvXr8Tjb9y4gS+//NKAiQwrNDQU7u7uiirhI0aMwG+//YYJEyZApVJBEASYm5tj/vz5uqV/Y2JisHXrViQmJqJx48YYMWKEuKGpVJR4dwVRWbB7ExFRRcPuze79Iuze0sPuLX/s3tLEE+AiysvLK9Wbe6VKlZCTk2PAREREpHRTpkyBtbU1hg4dCg8PDzg7O+s9x0jOV2r/5z//werVq3XvtRYWFhg6dCimTp0qy+f5+Pv748mTJxg2bNgrx+7cuROLFi3i5xCJsbCwwMaNGxEZGYnU1FTY2NjA29sbzZo10405c+YMkpOT0adPH8ycOROWlpYiJqayUNrdFURlwe5NREQVDbs3u3dx2L2lid1bGdi9pUd+7yhERERUZvXr18f169cREhKCy5cv4/fff4enpycaN24sdjSD2rVrFxYvXox69erBx8cHJiYmSEhIwMaNG6HVaiV99fWLvPnmmwgMDMSTJ08wevToYsfcvXsX/v7+OHr0KMzNzSW/RJcSmZqawtvb+4VLk40bNw6TJk2CiYmJkZOVP19fX8k/R620lHh3BREREZEcsHuze/8Tu7f0sXvLG7u3NPEEuMgyMzNx8+bNEo19+PChgdMQEZHSHThwAKdPn0Z4eDiioqJw7NgxLFu2DE2aNIGXlxdatWoldkSD2L59O9q1a4dNmzahUqVKAJ49c2vKlCnYvn07pk2bplu2Si5++eUXjB49GkuXLsWTJ08wceJEvdf37NmDefPmISsrC46OjggMDETTpk1FSls+Tp48Ca1WW6p9fHx8DBOmgpDTUoNBQUFiRyCiCozdm4iIKhJ2b3bvQuzez7B7Swe7N0mFShAEQewQSqVWq8u0nM3Zs2cNkIaIiEifVqvFsWPHEBERgYMHD+LJkye6963+/ftj/PjxqFevnsgpy4eTkxM+//zzIkuSpaamYsiQIQgNDYVarRYpneH8/fff+Pe//42EhASMGDECM2bMwMOHDxEQEICYmBhYWlpiypQpGD58uOSX4Cvt5y5BEKBSqfi5iyo0tVqNxYsXv/AuAyJ6ht2biIgqMnZvdm92b3ZvqtjYvaWJd4CLyNfXV+wIREREL2RqaoouXbqgS5cuyM3NRUxMDPbs2YPjx4/j119/RUhICFxdXdG/f3+8//77Ysd9LU+ePEGVKlWKbK9fvz4EQcCjR49ESGV41tbWWLt2LT7//HNs3LgR169fR3JyMu7fv4933nkHc+fOlc2BFgD44IMP0K5dO7FjEJUr3l1B9Grs3kREVJGxe7N7s3sTVXzs3tLDO8CJiIhIZ8yYMXBzc4OLiwtatWpV7FW7Dx8+RGRkJCIiIpCamiqLK3VfdCXnw4cP0bFjRwQHB6Njx44ipTO8goIC+Pv7IyQkBCYmJpg7dy4GDBggdqxyxat1SY54dwURERGRNLF7s3uzexNJB7u3NPEOcCIiItKJj4/H0aNHoVKpYGNjgw4dOsDV1RVubm66ZciqV6+OYcOGYdiwYbh27Rr27t0rcmp6XSYmJliwYAFsbW2xYcMGxMXFwcfHB2Zm/KhIVNHx7goiIiIi6WH3ViZ2byLpYveWHv5kJSIiIp3k5GSkp6cjOTkZKSkpSE1NxaFDh6BSqVC1alU4OzvD1dUVrq6ueOutt9CgQQOMGzdO7NjlIjMzEzdv3tTblpWVBQB48OBBkdcAwN7e3ijZDKG4+Xz44Yf4+++/sX37duTk5ODrr7+GiYmJ3hgpz5lIjjp06MC7K4iIiIgkht2b3Zvdm0ha2L2lh0ugExER0UvdunVLr5SfO3cOWq0Wtra2cHFxgaurK4YOHSp2zNfysqWMCpctep5KpUJ6erqhoxnMq+YMoMjrUp7zrFmzMHjwYLRt21bsKETlhssLEhEREckHuze7dyEpz5ndm+SI3VuaeAc4ERERvVTdunXRu3dv9O7dGwCQnZ2N8PBwhISEYP/+/YiOjpZ8Cff19RU7gtH5+PiU6vlFUhcUFCR2BCIiIiIiohdi95Yndm8iInHwBDgRERG9VG5uLpKSkpCYmIhTp07hzJkzyMvLg4WFhW5JNqlTYkFbuHCh2BGI6DX5+vqiYcOGYscgIiIionLA7i1P7N5E0sfuLU1cAp2IiIj05OfnIzU1FfHx8YiPj8fp06eRl5cHc3NzvP3227ri7ejoCAsLC7HjEhEREREREUkOuzcREZHh8AQ4ERER6XzyySc4efIkcnNzYWJiglatWsHNzQ2urq5wcnKCpaWl2BGJiIiIiIiIJI3dm4iIyLB4ApyIiIh01Go1zM3N8f7772Ps2LF48803xY5EREREREREJCvs3kRERIbFE+BERESk8/XXXyMhIQFXr16FSqVCkyZN0LFjR7i5ucHZ2RnVqlUTOyIRERERERGRpLF7ExERGRZPgBMREVERN2/eRFxcnO5ZZPfu3YOJiQnUajVcXV11pdza2lrsqERERERERESSxO5NRERkGDwBTkRERK904cIFxMfH48SJEzh58iQePXoEMzMztG7dGh07dsSkSZPEjkhEREREREQkaezeRERE5YMnwImIiKhUNBoNoqKi8MsvvyA1NRUqlQpnz54VOxYRERERERGRbLB7ExERlZ2Z2AGIiIioYrt69SpOnz6N06dPIy0tDefOnUNeXh4qV66Mzp07w9nZWeyIRERERERERJLG7k1ERFR+eAc4ERER6WRlZSEtLU1XuNPS0pCVlQVBEFCtWjW0b98eLi4ucHZ2RsuWLWFiYiJ2ZCIiIiIiIiJJYfcmIiIyLJ4AJyIiIh21Wg2VSgVBEFC9enU4Ozvr/nNwcIBKpRI7IhEREREREZGksXsTEREZFpdAJyIiIp0ePXrAxcUFLi4uaNasmdhxiIiIiIiIiGSH3ZuIiMiweAc4ERERERERERERERERERHJAh8eQkREREREREREREREREREssAT4EREREREREREREREREREJAs8AU5ERERERERERERERERERLLAE+BERERERERERERERERERCQLZmIHICIiUoIffvgBK1euLNU+Bw8eRP369Q2UqOy6du2KGzduAAC++uor+Pn5vXT8qFGjcOzYMQBAcHAw3N3dDZorOjoajRo1MsifQURERERERBUXuze7NxEREcAT4EREREbh4OAAb29vvW33799HXFwcrK2t4eHhUWQfa2trY8Urs6ioqJeW8AcPHiA+Pt6IiYiIiIiIiEip2L2JiIgI4AlwIiIio/Dy8oKXl5fetoSEBMTFxaF69epYsmSJSMnKrmrVqkhOTsadO3fwxhtvFDsmOjoa+fn5MDc3R15enpETEhERERERkZKwe7N7ExERAXwGOBEREZWRp6cnBEFAdHT0C8fs3bsXtra2aNOmjRGTEREREREREckDuzcREVHp8QQ4ERFRBXb48GGMGjUKLi4uaNOmDbp3747FixcjMzNTb9z169fh4OCAzp07F/v/GT58OBwcHJCQkKDbNnPmTDg4OCAxMRETJ07E22+/DTc3N2zZsqVE2Xr06AHg2VJsxcnIyMDJkyfRvXt3mJm9eNGZ3bt3Y+jQoWjfvj3efvtteHt7Y/Xq1Xjy5Emx40+cOIGRI0fC2dkZHTp0wOTJk3XPRSuOVqvFf//7XwwcOBCOjo5wdHTEoEGDEBoaCkEQSjRXIiIiIiIiki9276LYvYmISMq4BDoREVEFtWTJEqxbtw6mpqZwcnJC9erVkZqaivXr12Pfvn3YtGkTGjRo8Np/ztdff4379++jU6dOuHDhAtRqdYn2e/PNN9GiRQskJycjIyMDdnZ2eq9HRUWhoKAAvXv3xsqVK4vsX1BQgOnTp2PPnj2wsLCAi4sLrKyskJSUhO+++w779+9HcHAwqlevrttn586d+OabbwAAHTp0QNWqVXHs2DGcPHkSGo2myJ+Rl5eHf//73zh69ChsbGzg6OgIc3NzJCYmYubMmUhISMDChQtL89dFREREREREMsLuze5NRETywxPgREREFVBsbCzWrVsHW1tbrF+/XreMmUajwdy5c7Fz505MmjQJu3btgkqleq0/KyMjA+Hh4WjQoAEKCgpgYlLyBWJ69eqFs2fPIjo6Gh9++KHea5GRkbCzs4Ozs3Ox+27duhV79uxBgwYNsGHDBjRs2BAA8PjxY0ydOhWHDx/GN998gx9++AEAcOvWLQQGBsLMzAxr165Fx44dAQAPHjzAqFGjkJ6eXuTP+PHHH3H06FG4uLhgxYoVqFGjBgDg3r17+OSTTxAaGgonJycMHDiwxHMmIiIiIiIieWD3ZvcmIiJ54hLoREREFdDGjRsBAF988YXeM7wsLCwwe/ZsNGrUCH/88Qfi4+Nf+8/y8PDQXc1emgIOAD179gRQdCm2mzdvIjU1FT179nzh/3PTpk0AgMDAQF0BBwAbGxssWbIEVapUQXR0NK5cuQIACA0NRW5uLgYPHqwr4ABQo0YNLFiwoMj/X6PRYMuWLTA3N8eSJUt0BRwAatWqhblz5wIA/vOf/5RqzkRERERERCQP7N7s3kREJE88AU5ERFTB5OfnIzk5GSqVCt27dy/yupmZGby8vABA77liZfXWW2+Ved8GDRqgVatWOHXqFDIyMnTbIyMjIQgC3n///WL3u3XrFq5fv47q1avDzc2tyOtVqlRBp06dAACJiYkAgKSkJABAly5dioxv0aIF6tevr7ftjz/+QHZ2Npo0aYI33nijyD5t2rRBzZo1cfnyZdy9e7eEMyYiIiIiIiI5YPdm9yYiIvniEuhEREQVTGZmJvLy8lC9enXY2NgUO6awcJZHeaxWrdpr7d+rVy/88ccfiImJwbBhwwA8K+ENGjTA22+/Xew+hYW9Xr16L/z/Pj/Hwn3q1KnzwvHXr1/X/f7WrVsAgPPnz8PBweGlc7h16xZq16790jFEREREREQkH+zez7B7ExGRHPEEOBERUQUjCAIAvPT5YoVjLCwsSvT/1Gq1L3yttEuvPa9nz55YvHgx9u3bh2HDhuHKlSv4448/MHbs2BfuU5Y5vup5a2Zm+h9rCgoKAAD29vZwcnJ66b6VK1d+6etEREREREQkL+ze+mPYvYmISE54ApyIiKiCsbW1hbm5OTIzM/H48eNir0S/du0aAKBmzZoA/r9IFxbP52VlZRko7bMryd9++22cOnUKd+/eRWRkJACgd+/eL9zHzs4OAPSuGn9e4Rxr1aoFAHjjjTdw4cIF3LhxA82aNSsy/p/LwAHQXVVep04dLFmypBQzIiIiIiIiIrlj936G3ZuIiOSIzwAnIiKqYMzNzeHo6IiCggLExMQUeT0/P1+33dXVFQBgbW0N4FnZzsvL0xv/8OFDXL582aCZe/XqhYKCAkRHR2Pfvn1o1qzZS5c+s7e3R7169fDw4UPdc8b+KTs7G8eOHQMAODs7AwDc3d0BoNi/k2vXruHixYt629q0aQNLS0ucO3euSEEHgDt37qBnz54YOXIkcnJySj5ZIiIiIiIikjx2b3ZvIiKSL54AJyIiqoA++ugjAMC3336L9PR03fa8vDzMmTMHV69eRYsWLXTLi9na2qJOnTrQaDTYtm2bbvzTp0/xzTffvHQZtvLQo0cPqFQqbN26FefPn3/pFeiFCufo7++vu+IcAHJycjB9+nQ8fvwY7733nu5ZZb6+vrC1tcWuXbuwf/9+3fjHjx/jyy+/LHIFvrW1NT744AP8/fffmD59Ou7fv6/3Z8yaNQuXLl2CtbU1l2EjIiIiIiJSIHZvdm8iIpInLoFORERUAXl6euLjjz/Ghg0bMGDAADg5OaF69eo4ffo0bt++jXr16mH58uV6zxAbPXo0AgMDERgYiL1796JWrVpITk6GVqvFe++9h0OHDhksb926ddGuXTukpKQAePkSbIWGDx+OlJQU7Nu3D71794azszOsrKxw8uRJPHz4EGq1GgsWLNCNr1GjBhYsWIDJkyfjs88+g6OjI+zs7JCUlAStVovGjRsXudp+6tSpOHv2LOLj49GtWze0adMGVlZWSElJQWZmJt58803MmTOnfP8yiIiIiIiISBLYvdm9iYhInngHOBERUQU1Y8YM/Pjjj3B1dcW5c+dw+PBhVK5cGePHj0doaCgaN26sN3748OFYtGgRWrdujfT0dCQlJcHV1RW//vprkbGG0LNnTwBAq1at0KhRo1eONzExwfLlyxEUFIRWrVohOTkZx48fR506dTB9+nTs2LEDNWrU0NvHw8MDv/zyCzw8PHD58mX89ttvaNmyJX7++WfUqVOnyJ9haWmJDRs24KuvvkKTJk2QlpaGhIQE2NnZYeLEidi5c6fuOWdERERERESkPOze7N5ERCQ/KkEQBLFDEBERERERERERERERERERvS7eAU5ERERERERERERERERERLLAE+BERERERERERERERERERCQLPAFORERERERERERERERERESywBPgREREREREREREREREREQkCzwBTkREREREREREREREREREssAT4EREREREREREREREREREJAs8AU5ERERERERERERERERERLLAE+BERERERERERERERERERCQLPAFORERERERERERERERERESywBPgREREREREREREREREREQkCzwBTkREREREREREREREREREssAT4EREREREREREREREREREJAs8AU5ERERERERERERERERERLLwf+xPdt8Y3VIgAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 58 coefficients adjusted\n", - "\t 699 coefficients converged\n", - "\t 58 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABmQAAAJ4CAYAAAB73IzeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACpDUlEQVR4nOzdeXxMZ/vH8e9M0kiC2EosoTQaqX2LRku1IbRFCVVFFFX7UlVLW57u1iqlitqjltAGpXjUWuWxRatVW0qJfaktYkkkM78//DI1EsRkJplkPu/XK6/H3Oe+z1wzV9LnXHPNOcdgNpvNAgAAAAAAAAAAgMMYszoAAAAAAAAAAACAnI6GDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAGQys9mskJAQlStXThMnTnyotYsXL1a5cuW0ePFiy1i5cuXUvn17e4eZyrlz53T9+nWHP489JCcn6/jx4w+c99VXX6lcuXL3/QkJCXF4vEePHnX4cwAAAMB5bdiwQX369FFISIgqVqyop556Sm+++abWr1+faTEkJibqww8/VK1atVS5cmV99tlnaY69++67KleunE6cOPFQ+0859t6+fbuDXoG1Bx1jf/jhhypXrpyioqLuO+/EiRMKDAxUhw4d0v3c27dvV7ly5fTVV1+le01W2rZtm8qVK6cnn3zyvnXU1atX1a9fP1WvXl3VqlXTjBkzJEkJCQk6c+ZMZoUrKWN1tURtnV7pra0BpJ97VgcAAK5m27ZtOnnypLy9vbVo0SL16NFDbm5uNu9v9OjRevTRR+0YYWpLly7Vxx9/rOXLl8vb29uhz5VRp06dUrdu3dSwYUP16dMnXWtat26tGjVqpLktd+7c9gwvlR49eig+Pl7ffvutQ58HAAAAzic+Pl7vv/++Vq9erQoVKqhFixYqUqSIzpw5o6VLl6pHjx564403NHjwYIfHsmjRIkVGRuqZZ57Riy++qCeeeCLNMbPZrNq1a6tgwYIPtf/Q0FCVKlVK/v7+DnoF/0rPMfYrr7yiyMhILV++XC1btrznvKVLl8psNuuVV15xRKhOISoqSt7e3rp+/boWLlyoAQMGpDlv0qRJWrVqlRo3bqzatWuratWq2rdvn3r37q3evXurRYsWmRazvetqidr6brbU1gAejIYMAGSy77//Xo888og6duyoSZMmacOGDWrQoIHN+2vWrJkdo0vbtm3bss03eI4fP66YmBg1bNgw3WuqVq2aKe9jWtavX69atWplyXMDAAAgaw0dOlSrV6/WoEGD1LlzZ6tt3bt3V+fOnTVz5kw9/vjjatWqlUNjOXjwoCRp0KBBCgwMlCTL2SN3jklStWrVHnr/gYGBVvtwpPQcY1eqVMlyxs7Zs2fl6+ub5rwffvhB+fLle6j6IjuJj4/XmjVrVL9+fe3fv1+LFy9W37595eHhkWpuyu/Ixx9/rLx580q6fabJyZMnMzVmyf51tURtfTdbamsAD8YlywAgE129elVr165V5cqV9fLLL0uSFixYkMVRAQAAAMhsmzdv1qpVq9SoUaNUzRhJ8vDw0PDhw+Xm5qY5c+Y4PJ5bt25JkvLkyXPfsZykZcuWMplMWrlyZZrbd+3apWPHjqlp06bKlStXJkeXOVasWKEbN24oODhYDRo00IULF7RmzZo056b8PqQ0Y7IKdTWA7IyGDABkoh9//FE3b97UM888ozJlyqhcuXLasmVLmtdk3b59u15//XVVr15dwcHB+uyzz9L8Js3d17m91zWdT5w4oXLlyundd9+1jN24cUMjRozQCy+8oMqVK+upp55St27dtGvXLsuckJAQLVmyRJJUv359y3O9++67qlatmo4dO6bevXurRo0aql69unr06KEzZ87o5MmT6tu3r2rUqKHg4GD169dP586ds4rJZDLp22+/VbNmzVS5cmXVrFlTb775ptXzS/9eb/rw4cMaOnSonnnmGVWqVEnNmjXT8uXLrea9/vrrkqSJEyfadG3r+zGbzfruu+/Utm1b1axZUxUqVFCdOnXUv39/xcbGppq/cuVKtWvXTjVq1NBTTz2lDh06aOvWrZL+va60JO3YsSPV9Yt//vlndejQQdWrV1flypXVrFkzzZkzRyaTyTInJadff/213n77bVWqVElPP/209uzZo+TkZE2cOFFNmzZV1apVVbNmTbVv3z5Tr0MOAACAe1u6dKkk3feeFSVLltTy5cstx+MpDh8+rP79++vpp59WxYoVVb9+fY0cOVJXrlxJtY+///5b/fv3V+3atVWxYkU1bNhQX375pW7evCnp32PKO4/5U+6nePeYlHa9YTabtWDBArVo0UJVq1bV008/re7du2vv3r2WOfe6h8wvv/xiqXuqVKmiFi1aWB0XS/8eO69YsUJTpkxRaGioKlasqJCQEI0fP15JSUlW86S0j7Hv9vLLL+uRRx6xqinulJKjlMuV3bp1SzNmzFDLli1VrVo1VaxYUc8995yGDh2qCxcu3PN5pNt1VVr3p0zrXiaS9Mcff6h79+6qVauWKlWqpCZNmmjmzJlKTk62mrdv3z51795ddevWtfwufPbZZ7p8+fJ940mRchbUM888oxdeeEFS6uZGyvu6Y8cOSbLca/Pdd9/Ve++9J0l67733LO+99PC13s8//6wXX3xRFStWVHh4+H1jfpi6OiV+amvr9zura2vAlXHJMgDIRCkHuy+++KIkqXHjxjp48KAiIyM1cOBAy7yNGzeqV69eKlKkiLp16yaj0ajvv//+vsWELfr3768tW7aoXbt2evzxx/XPP/9o3rx56tChg77//nsFBgbq/fff16xZsxQdHa333ntPTzzxhGX9rVu31LZtW9WqVUuDBg3S7t27tXjxYp09e1b//POPgoKCNGjQIP3++++KiopSfHy8pk+fblk/YMAArVixQo0aNdKrr76qK1euaPHixWrfvr3Gjh1rKQhSdO3a1fKeJCYmKiIiQgMGDFDhwoUVHBys0NBQJSUlWYq00NDQdF3b+vr167p48WKqcTc3N+XLl8/yeMSIEYqIiFCDBg309ttvS5Kio6O1cuVK7du3TytXrpTRePu7DhMmTNDXX3+twMBAde/eXR4eHpo/f746d+6syZMnq0KFCho9erQGDRqkxx9/XN27d1f16tUlSTNnztSoUaP02GOPqUuXLvL29tbatWs1bNgwbd++XV999ZXleSRp+vTpCggI0NChQ3X06FGVL19eI0aM0Lx58/Tqq6/q9ddf19WrVxUZGamePXvqm2++Ub169dLzKwIAAAAH+eOPP+Tu7q4qVarcd97d91yJjo5W586d5ebmpjZt2qhEiRLavXu3Zs+erfXr1ysyMtJyDPzHH3+oY8eOypMnj9q1a6eCBQtq9+7dmjJlirZu3ao5c+aoYMGCGj16tBYtWmQ55s+XL5+MRqPVWIECBe4Z4+DBg/XDDz+oZs2a6tevnxITE/Xtt98qPDxc8+bNU/ny5dNcN2/ePH366aeqVKmSevfuLaPRqHXr1um9997T/v37NWTIEKv5Y8eOldlsVuvWreXj46PFixdr0qRJMhgM6tu3r/z9/e95jJ2WAgUKqH79+vrvf/+rw4cPW73XCQkJWrVqlSpUqKAnn3xSktSvXz+tW7dOYWFhevXVV5WQkKBNmzbpu+++06lTpzRz5sz75jK91q1bp7feekt+fn5688035e3trS1btmjUqFH69ddf9dVXX8lgMOj48ePq0KGDChcurI4dO8rHx0e///675s6dqz/++EMLFy6UwWC45/McPnxYv//+u6pVq6bixYurePHiKl26tHbu3Gn1fqS8r1OmTNHff/+t0aNHK3fu3CpUqJA8PDy0cOHCVPflfNhar1+/fnrllVdUunTpNC+Xdqf01tUStXVm19YA0sEMAMgUMTEx5oCAAHPz5s0tY8eOHTMHBASYg4ODzQkJCWaz2Ww2mUzmkJAQc82aNc3//POPZW5cXJy5YcOG5oCAAHNUVJRlPCAgwBweHm55PHjwYHNAQID5+PHjVs9//Phxc0BAgHnw4MFms9lsvnDhgjkgIMD84YcfWs3bvXu3uWHDhuZFixbdd58pY3evb9asmTkgIMD86aefWo23atXKHBgYaHmdK1euNAcEBJinTZtmNS8+Pt78wgsvmJ966inz9evXzWaz2TxhwgRzQECAuUuXLmaTyWSZu3PnTnNAQIC5f//+lrFt27aZAwICzBMmTDA/SMp+7/Xz/PPPW+ZevHjRXL58eXO3bt1S7adv377mgIAA859//mk2m83mo0ePmp988klzeHi45fWazWbzP//8Y65Ro4a5RYsWlrG783fs2DFz+fLlzS+99JL52rVrlnGTyWQeMGCAOSAgwLx48WKz2fxvTqtWrWo+f/68VUxVq1Y1v/nmm1Zjp0+fNjdo0MD81VdfPfC9AQAAgGNVqVLF/PTTTz/UmuTkZHNoaKi5YsWK5kOHDlltW7RokTkgIMD87rvvms3m28ePjRs3NterV8986dKlNOdOnTrVMna/Y/77jW3dutVyTH7nsfqhQ4fMgYGB5j59+pjN5n+Pvbdt22Y2m28fm1aoUMHcrVs3q3Umk8k8cOBAc0BAgPn33383m83/HuM/88wz5itXrljmXrt2zVyjRg1znTp1rF7f3cfY9/Pzzz+bAwICzOPGjbMaX7FihTkgIMA8b948s9lsNu/fvz/NOsdsNptbtmxpDggIsLzPadUkzz//vFV9kSIqKsqqxrt+/br5qaeeMoeFhVnVEmaz2Txu3DhzQECAecWKFWaz2WyePn261fuUYsSIEeawsDDzmTNn7vvaR44caQ4ICDBHRERYxlLylNbrDA8PNwcEBNw3frPZtlqvb9++9401RXrrarOZ2joza2sA6cclywAgk6R8i6dx48aWsZIlS6pq1aq6ePGifvrpJ0nS/v37deLECTVr1kyFChWyzM2bN6/atGljt3jy5MmjvHnzatWqVVq0aJHOnz8vSapSpYpWr16d7puGNmnSxOpxyreoXnrpJavxUqVKyWQy6Z9//pF0+1rFktSoUSNdvHjR8pOQkKCGDRvq0qVL2rlzp9U+mjZtavUNr8qVK0uSZZ+26ty5s2bNmpXq5/PPP7fMKVCggKKjozVmzBirtXFxcfLy8pIky2nv69evV3Jysjp06GD17a5ChQpp/vz5+uqrr+4Zy5o1a5SUlKSuXbvK29vbMm4wGPTOO+9IUqprXFepUkWPPvqo1VjRokW1Y8cOzZgxw3JqedGiRbVmzRr17t073e8NAAAAHMPNzc1yqa302rdvn2JjY/Xyyy+nOnPmlVde0WOPPabVq1crOTlZBw8e1F9//aV69erJZDJZHXM///zzypUr1z3vFfIw1q5dK0l68803rY7V/f399f333+s///lPmut++ukn3bp1Sy+++KIuXbpkie3SpUuWmimlRkrx/PPPy8fHx/LY29tb/v7+D7xc2P3UqVNHxYoV048//mg1vmTJEnl6eqpp06aSpMDAQO3atUv9+/e3mnfhwgVLTPa4Wfv//vc/Xbp0SY0aNVJ8fLxV3lJqrJS8FStWTJL0+eefa+vWrUpMTJR0+xJYixcvlq+v7z2fJykpScuWLZPRaLScaSL9W6/+8MMPunHjhk2vwZZaL63LuaUlvXW1RG2dFbU1gAfjkmUAkAlu3bqlZcuWSbp9UHbntVeDg4O1e/duLViwQE2aNNGxY8ck3T7IulvZsmXtFpOHh4dGjhyp9957z1IkBQQEqE6dOmratOk9Lytwt7sbAY888ogkqXDhwlbj7u63/y8n5R4oR44ckSQ1aNDgnvs+efLkfZ8rpdlx531VbFG2bFk9/fTTD5yXK1curVu3Ths2bNCxY8d04sQJnT592nIgmxJHSn4ff/zxVPsICAi473Ok5P/O09dTFC1aVHnz5k117d673xdJGjZsmPr166fRo0dr9OjRKlWqlJ555hk1btxYQUFBD3ytAAAAcCxfX18dOXJEiYmJD7xEU4r7HSsaDAaVLVtWsbGxunTpkuV4OzIyUpGRkWnu7+7jbVukHJve3SCSpAoVKtxzXUp8gwYNuuecB9UD0u2a4O77qjwMo9GosLAwTZo0Sb/99puqVaum8+fPa8uWLWrSpInVDew9PDy0cuVKy/1KTpw4ofPnz6eqBzIi5X0ZO3asxo4dm+aclPelUaNGatmypRYvXqyOHTvK09NTNWrUUL169dS8eXOryy/fbePGjfrnn39UqVIlJSQkWPLo4eGh0qVL6+jRo1qxYoXl/jm2vIaHqfXurh/T8jB1tSRq6ztkVm0N4MFoyABAJti4caPlW1v3ukFhdHS0Dh06ZHlsNptTzcnIwVFaRUqDBg30zDPP6JdfftHmzZu1fft2zZw5U7NmzdL7779vuYnf/aQcDN7tftcqToknd+7cmjhx4j3nlClTxurxnfdNyWy3bt1S7969tXHjRlWsWFEVK1ZUo0aNVL58ef3888/65ptvrOZKD34P0pKS93utNZlMqQr2tHJQvXp1rV27Vtu2bdMvv/yi7du3KzIyUgsWLFCnTp2sbkAJAACAzBcUFKTDhw/r119/VXBw8D3nvffee7p169Z9GxcpUuoFDw8Py7/btWt3zw9q73Us/zBSjn0fVkp98umnn8rPzy/NOXffs8JR9UCLFi00efJkLV++XNWqVdPy5cuVnJxs1YyIj49Xhw4dtHfvXtWoUUMVK1ZUs2bNVKlSJUVERFgaBQ/r7jotJW99+/ZVtWrV0lyTO3duSbfPsho+fLh69uypDRs26H//+5+io6O1ZcsWffPNN4qMjEyzGSH9e6bJnj17VL9+/TTnREZG2tSQsaXWc3Nze+B+H6auvrPhQm3tXLU14OpoyABAJkg52O3WrZvlVOA7fffdd9q4caPVAe/hw4dTzYuNjX3gc6UcyCYkJFiNp5w2nSI+Pl4HDx6Un5+fGjZsqIYNG0qSDhw4oA4dOujrr79O10Gjrfz8/HTkyBEFBgamKrT279+vc+fOWS4F5gxWrlypjRs3qmvXrpZLh6VYsmSJ1eOUgvLIkSOpDnxnz56tQ4cOaejQofL09Ez1PCkFU0xMjOXmoSlOnTqla9euWS5NcC8JCQk6ePCg8uXLp2effVbPPvusJOn48eN64403FBERod69eytPnjzpeOUAAABwhCZNmigyMlLz58+/Z0Pm9OnTWrZsmXx8fJQ/f36VLFlSkvTXX3+lmms2m3X48GHlyZNHPj4+Vk2Ou88GN5lMWr16tWV/GXHnsW+5cuWsto0dO1Y3b97U+++/f891Pj4+qeI7d+6c/vjjD7vElx4lS5bUU089pVWrVmno0KFavny5HnvsMdWqVcsyZ86cOfrzzz/18ccf67XXXrNan57LPLm5uenatWupxu+u01LeF09Pz1TvS3x8vDZv3mw5Y+LkyZM6duyYateurfbt26t9+/ZKSkrSjBkzNHbsWC1YsECDBw9O9ZwXLlzQpk2blDt3bo0aNSrVB/4mk0mDBw/Wnj17tHfv3vue6ZQWR9V6D1NXDx06VKVLl5ZEbe1stTXg6miHAoCDnT9/Xr/88ovy58+vXr16qUGDBql++vbtK0launSpHnvsMZUpU0bLli2zOgX75s2bmjt37gOfr0iRIpJuf9PpTkuXLrV6HBMTo7Zt22rSpElW42XLllXevHmtvp2T8u2ZtL5ZZKtGjRpJkr788kur8fj4ePXr10+9evVKdeCbHikHzfY+1frSpUuSlKrIjI2N1erVqyX9+02p+vXry2AwaN68eVbXBb98+bKmTZumP/74w9KMMRqNVrGGhobKzc1N33zzjdU1qM1ms8aPHy9JeuGFFx4Ya+vWrfXpp59ajZcsWVK+vr4yGAx8IwoAACCLBQUFKTQ0VKtXr9asWbNSbb969areeustJSUlqXfv3vLw8FD58uVVsmRJLVu2LNWHzFFRUTp27Jjlw+CKFSuqRIkSWrJkieXSTSkWLlyofv36WT7gzoiUs28iIiKsxo8dO6bZs2fr+PHjaa5r2LChjEajpkyZops3b1ptGzlypHr16qU///zTppjuPsZOj5YtW+rixYtaunSp9u3bl+rMkHvVA7/99pvl/hz3u3RakSJFdPHiRatLRyUmJmrVqlVW8+rUqaPcuXNr9uzZludMMWXKFL311lv6+eefLY87duyo33//3TLH3d1dVapUkXTvs06WLl2qpKQkNWvWTKGhoanq04YNG6ply5aSpAULFtzzNUn/1op3vt+OqPUetq6+ceOGAgMDqa2dsLYGXB1nyACAg6Uc7LZo0UK5cuVKc06FChUUFBSknTt36scff9Rnn32mN954Q61atVK7du2UJ08eRUVF6erVqw98vrCwMH3zzTf67LPPdOLECRUuXFgbNmxQTEyM1fNXr15dderUUWRkpOLi4lSrVi0lJydr9erVOn78uNU3qVKuLzt9+nTVrVv3vtemTa8WLVrov//9rxYuXKhjx44pJCRESUlJ+u6773T06FENHDjwvjehvJeUmzWuX79exYsXV2hoqPLnz5/heOvWrasvvvhCw4YN07Fjx1S4cGH99ddfioqKsjRd4uLiJN2+fnbXrl31zTffqE2bNmrcuLFMJpMWLVqkK1euWBorKfEeOHBA8+fPV82aNRUQEKB+/frpiy++UPPmzdWiRQt5e3tr3bp12rZtm55//nm9/PLL9421aNGiatWqlRYuXKjOnTsrJCREBoNBmzdv1s6dOxUeHi5vb+8MvycAAADImOHDh+vKlSsaOXKkli9froYNG6pgwYI6evSolixZoosXL6pdu3Zq166dpNsfkH722Wfq2rWrWrVqpTZt2sjPz09//PGHlixZohIlSmjAgAFWc7t166YWLVrotddeU6lSpbRnzx5FRUWpVKlS6tmzZ4ZfQ926ddWkSRNFRUXpzJkzCgkJUXx8vObNm6dcuXJp4MCBaa4rXbq0+vTpo/Hjx6tZs2YKCwuTj4+P1q1bp82bN+v555+3NJceVlrH2A/SqFEjffrppxo1apTc3d3VvHlzq+0hISH69ttvNWDAALVt21Z58+bVn3/+qSVLlsjNzU23bt2y1ANpadmypaKjo9W5c2e1bdtWJpNJUVFRqZo4Pj4++uCDD/Tee++padOmat26tYoUKaJt27Zp5cqVqly5stq2bStJ6tixo1atWqWuXbvqtddek5+fn86ePasFCxYob968evXVV9OMZfHixZJk2U9aXn/9dc2bN08rVqzQu+++e8+z61NqxWXLlslsNltqGHvXerbU1a1ataK2dsLaGnB1NGQAwMGWLFkig8Fw34Nd6fbB9M6dOxUZGamoqCjNnz9fEyZM0OzZsyXd/ubZc889p7feeuu++ylVqpSmTZumiRMnaurUqfLy8lLdunW1YMECNW7c2GruhAkTNHPmTMvluCQpMDBQY8aMUdOmTS3z2rRpox07digqKkrbtm2zy0Gjm5ubpkyZooiICP3www8aM2aMvLy85O/vr6+++srm4qtMmTLq1KmTvv/+ew0bNkx+fn6qXbt2huP19/fX1KlTNWHCBM2YMUOSVKxYMYWHh+uFF15Q8+bN9csvv1jOXunfv78ef/xxzZ07V+PGjZOXl5cqVaqkzz//XJUqVbLsd9CgQRozZoyGDx+u7t27KyAgQF27dtXjjz+u2bNnW+5NU6ZMGX3wwQdq06ZNus5u+eCDD/T4449ryZIlGjt2rJKTk/X444/rP//5zwN/FwEAAJA5fHx8NGPGDK1cuVKLFy/W/PnzdfHiReXJk0dVqlRRu3btLJefTREcHKxFixZp0qRJioqKUnx8vIoXL6433nhD3bt3l4+Pj2Xu008/rUWLFmny5MmWD6GLFi2qtm3bqlu3bum6kXp6fP7556pcubK+//57jRo1Svny5VPNmjX11ltvpbqE75169uypsmXLas6cOZo6dapMJpNKliypQYMGqX379um6r0ha0jrGfpBcuXKpSZMmmj9/vkJCQixnR6SoXbu2xo4da6m1PDw8VLx4cfXr109ly5ZV165d9csvv1gd69+pRYsWunbtmubPn6/Ro0fr0UcfVbNmzfT888+rdevWVnObN2+uYsWKafr06ZozZ44SEhJUvHhx9ejRQ507d7Z8ucrf319z587V5MmTtXTpUl24cEH58+dXcHCwevXqleb9Y37//XcdOnRIQUFBeuKJJ+75fpQqVUrPP/+81q1bpx9++MHSFLxbcHCwmjZtqrVr12rPnj2qWbOmypQpY/daz5a6ulWrVqpZsya1tZPV1oCrM5jteY4cACBTmc1mBQYG6qmnntKcOXOyOhwAAAAAALIdamsAmYULyANANpZySnzu3LmzOBIAAAAAALInamsAmYVLlgFANvXNN99o7969km5fKxcAAAAAADwcamsAmYmGDABkQ3FxcYqIiNCtW7fUpEkTderUKatDAgAAAAAgW6G2BpDZuIcMAAAAAAAAAACAg3EPGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAczD2rA8iOzGazTCZuvZNZjEYD77eLIveui9y7JvLuusi9czMaDTIYDFkdBrIZaib74b+Rzom8OCfy4rzIjXMiL86JvDin++XlYWomGjI2MJnMunjxWlaH4RLc3Y0qUCC34uKuKynJlNXhIBORe9dF7l0TeXdd5N75FSyYW25uNGTwcKiZ7IP/Rjon8uKcyIvzIjfOibw4J/LinB6Ul4epmbhkGQAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADkZDBgAAAACysQsXLmjgwIEKDg5WtWrV1LVrVx06dMiyff/+/QoPD1fVqlX13HPPacaMGVbrTSaTJkyYoLp166pKlSp64403FBsbm9kvAwAAAMjxaMgAAAAAQDbWo0cPHT9+XNOmTdP3338vT09PdezYUTdu3NClS5fUqVMnlS5dWlFRUerTp4/Gjx+vqKgoy/pJkyYpMjJSn332mRYuXCiDwaAuXbooMTExC18VAAAAkPO4Z3UAAAAAAADbXLp0SX5+furRo4eeeOIJSVLPnj3VrFkz/fXXX9q6das8PDz00Ucfyd3dXf7+/oqNjdW0adPUsmVLJSYmaubMmRo4cKDq1asnSRo3bpzq1q2rNWvWqHHjxln58gAAAIAchTNkAAAAACCbKlCggMaOHWtpxvzzzz+aMWOGihYtqrJlyyo6OlpBQUFyd//3u3jBwcE6cuSILly4oAMHDujatWsKDg62bPfx8VH58uW1c+fOTH89AAAAQE7GGTLIUkajQUaj4Z7b3dyMVv8rSSaTWSaT2eGxAQAAANnJf/7zHy1atEgeHh6aPHmyvL29debMGQUEBFjNK1KkiCTp1KlTOnPmjCSpWLFiqeacPn06Q/G4u/P9v4xKqx5C1iMvzom8OC9yk3kMhvt/znanlHnu7m6ODAkPib8X52TPvNCQQZYxGg3Kn987Xb/IPj5eln8nJ5t0+fJ1mjIAAADAHTp06KDWrVtrwYIF6tWrl+bPn6+bN2/Kw8PDal6uXLkkSQkJCbpx44YkpTnnypUrNsdiNBpUoEBum9fD2p31EJwHeXFO5MV5kRvHM5nM6W7IpMidO9dDr4Hj8ffinOyRFxoyyDJGo0FubkaNmbdLJ85eTdcaP9+8GtCuhoxGAw0ZAAAA4A5ly5aVJH366afavXu35s6dK09PTyUmJlrNS0hIkCR5e3vL09NTkpSYmGj5d8ocLy/bC06Tyay4uOs2r8dtbm5G+fh4KS7uhpKTTVkdDv4feXFO5MV5kZvMkfI+2/I5G7lxHvy9OKcH5cXHxyvdZ8/QkEGWO3H2qg6ftP3bdwAAAICrunDhgrZu3aoXX3xRbm63LzliNBrl7++vc+fOqWjRojp37pzVmpTHvr6+SkpKsoyVKlXKak5gYGCGYktK4kMEe0lONvF+OiHy4pzIi/MiN5nDls/ZyI3zISfOyR554WJ0AAAAAJBNnTt3Tu+884527NhhGbt165b27dsnf39/BQUFadeuXUpOTrZs37p1q8qUKaNChQopMDBQefLk0fbt2y3b4+LitG/fPtWsWTNTXwsAAACQ09GQAQAAAIBsKjAwUHXq1NHHH3+s6OhoxcTEaPDgwYqLi1PHjh3VsmVLxcfHa8iQITp06JAWL16siIgIdevWTdLte8eEh4drzJgxWrdunQ4cOKC3335bRYsWVWhoaBa/OgAAACBn4ZJlAAAAAJBNGQwGffnll/riiy/Ur18/Xb16VTVr1tS8efNUvHhxSdL06dM1bNgwhYWFqXDhwho0aJDCwsIs++jbt6+SkpI0dOhQ3bx5U0FBQZoxY4Y8PDyy6mUBAAAAORINGQAAAADIxvLmzauPPvpIH330UZrbK1eurIULF95zvZubmwYOHKiBAwc6KEIAAAAAEpcsAwAAAAAAAAAAcDgaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADkZDBgAAAAAAAAAAwMFoyAAAAAAAAAAAADiYUzVkLl++rA8++EDPPvusqlevrjZt2ig6Otqyff/+/QoPD1fVqlX13HPPacaMGQ/c56pVq/TSSy+pUqVKatq0qTZt2uTIlwAAAAAAAAAAAJCKUzVk+vfvr99//11jx47V999/rwoVKqhz5846fPiwLl26pE6dOql06dKKiopSnz59NH78eEVFRd1zf9u2bdPAgQPVtm1bLV26VHXq1FGvXr10+PDhTHxVAAAAAAAAAADA1blndQApYmNjtWXLFi1YsEDVq1eXJA0ZMkSbNm3Sjz/+KE9PT3l4eOijjz6Su7u7/P39FRsbq2nTpqlly5Zp7nPatGkKDQ1VeHi4JGnw4MH67bffFBERoU8++STTXhsAAAAAAAAAAHBtTnOGTIECBTR16lRVrFjRMmYwGGQ2m3XlyhVFR0crKChI7u7/9pCCg4N15MgRXbhwIdX+TCaTfv31VwUHB1uNP/XUU1aXQQMAAAAAAAAAAHA0pzlDxsfHR/Xq1bMaW7VqlY4dO6Y6depo3LhxCggIsNpepEgRSdKpU6dUqFAhq21xcXG6fv26ihYtmmrN6dOnMxyvu7vT9LKyLTc329/DjKxF9pCSY3Ltesi9ayLvrovcAwAAAABchdM0ZO62a9cuvf/++6pfv75CQkI0YsQIeXh4WM3JlSuXJCkhISHV+ps3b0pSmmvSmv8wjEaDChTInaF9IGN8fLyyOgRkEnLtusi9ayLvrovcAwAAAAByOqdsyKxdu1YDBgxQlSpVNHbsWEmSp6enEhMTrealNFa8vb1T7SOlWZPWGi+vjBX8JpNZcXHXM7QP3P4mrK0fvsTF3VByssnOEcGZpPx+kGvXQ+5dE3l3XeTe+fn4eHEGEwAAAADYgdM1ZObOnathw4YpNDRUY8aMsZzhUrRoUZ07d85qbspjX1/fVPvJnz+/vL2901xz92XMbJGUxAcGWSk52UQOXAS5dl3k3jWRd9dF7gEAAAAAOZ1TfdVt/vz5+vTTT9WuXTt9+eWXVpcbCwoK0q5du5ScnGwZ27p1q8qUKZPq/jGSZDAYVL16de3YscNqfPv27apRo4bjXgQAAAAAAAAAAMBdnKYhc+TIEQ0fPlyhoaHq1q2bLly4oPPnz+v8+fO6evWqWrZsqfj4eA0ZMkSHDh3S4sWLFRERoW7duln2cfXqVV28eNHyuFOnTlqxYoVmzZqlw4cPa/To0dq/f786dOiQFS8RAAAAAAAAAAC4KKe5ZNnq1at169YtrVmzRmvWrLHaFhYWppEjR2r69OkaNmyYwsLCVLhwYQ0aNEhhYWGWecOGDdOOHTu0fv16SVKdOnU0fPhwTZo0SePGjVPZsmU1ZcoU+fv7Z+prAwAAAAAAAAAArs1pGjLdu3dX9+7d7zuncuXKWrhw4T23jxw5MtVY8+bN1bx584yGBwAAAAAAAAAAYDOnuWQZAAAAAAAAAABATkVDBgAAAAAAAAAAwMFoyAAAAAAAAAAAADgYDRkAAAAAAAAAAAAHoyEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADkZDBgAAAAAAAAAAwMFoyAAAAAAAAAAAADgYDRkAAAAAAAAAAAAHoyEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADuae1QHcy6RJk7R161Z9++23kqT27dtrx44dac4dNWqUmjdvnua2kJAQnTx50mqsadOmGjNmjF3jBQAAAICscPnyZY0dO1YbN25UfHy8ypUrp3feeUc1a9aUJL333ntavHix1RpfX19t2rRJkmQymTRx4kR99913iouLU40aNfThhx/qsccey/TXAgAAAORkTtmQmT17tiZMmKCgoCDL2FdffaVbt25ZzRs6dKiOHTumBg0apLmf+Ph4nTp1St98840qVKhgGff09HRM4AAAAACQyfr3768LFy5o7NixKliwoObPn6/OnTtr8eLF8vf318GDB9W9e3eFh4db1ri5uVn+PWnSJEVGRmrEiBHy9fXV559/ri5duujHH3+Uh4dHVrwkAAAAIEdyqobM2bNnNWTIEO3atUtlypSx2pY/f36rxz/++KM2b96sxYsXK0+ePGnuLyYmRmazWdWrV5ePj4+jwgYAAACALBEbG6stW7ZowYIFql69uiRpyJAh2rRpk3788Uf17t1bhw4dUs+ePVW4cOFU6xMTEzVz5kwNHDhQ9erVkySNGzdOdevW1Zo1a9S4ceNMfT0AAABATuZU95DZu3ev8uXLp2XLlqlKlSr3nHf9+nWNHj1aHTp0ULly5e457+DBgypcuDDNGAAAAAA5UoECBTR16lRVrFjRMmYwGGQ2m3XlyhUdPXpUCQkJ8vf3T3P9gQMHdO3aNQUHB1vGfHx8VL58ee3cudPh8QMAAACuxKnOkAkJCVFISMgD50VGRuratWvq0aPHfefFxMTI29tbffr00W+//aaCBQuqRYsWev3112U0ZqwX5e7uVL2sbMnNzfb3MCNrkT2k5Jhcux5y75rIu+si90DG+Pj4WM5sSbFq1SodO3ZMderUUUxMjAwGgyIiIrRp0yYZjUbVq1dP/fr1U968eXXmzBlJUrFixaz2UaRIEZ0+fTpDsVEzZRz/jXRO5MU5kRfnRW4yB5+z5Qz8vTgne+bFqRoy6ZGcnKxvv/1Wbdu2Vd68ee8796+//tLVq1f10ksvqXfv3oqOjtaYMWN05coVvfXWWzbHYDQaVKBAbpvXI+N8fLyyOgRkEnLtusi9ayLvrovcA/axa9cuvf/++6pfv75CQkI0YcIEGY1GlShRQlOmTFFsbKxGjRqlmJgYRURE6MaNG5KU6l4xuXLl0pUrV2yOg5rJvvhvpHMiL86JvDgvcuO8yI3zISfOyR55yXYNmR07dujUqVN69dVXHzh31qxZSkhIsNxjply5crp27ZomT56sPn362HyWjMlkVlzcdZvW4l9ubkabf4nj4m4oOdlk54jgTFJ+P8i16yH3rom8uy5y7/x8fLz4hl42sXbtWg0YMEBVqlTR2LFjJUl9+vRRx44dLZdxDggIUOHChdW6dWvt2bNHnp6ekm7fSybl35KUkJAgLy/bC05qJvvgv5HOibw4J/LivMhN5uBztpyBvxfn9KC8PEzNlO0aMmvXrlXlypVVsmTJB8595JFH9Mgjj1iNBQQE6Pr167py5YoKFChgcxxJSfxBZKXkZBM5cBHk2nWRe9dE3l0XuQcyZu7cuRo2bJhCQ0M1ZswYyxkvBoMh1T01AwICJElnzpyxXKrs3LlzKlWqlGXOuXPnFBgYmKGY+Ju2H/4b6ZzIi3MiL86L3DgvcuN8yIlzskdest1X3Xbt2mV1w8l7MZlMCgkJ0eTJk63G9+zZo0cffTRDzRgAAAAAcBbz58/Xp59+qnbt2unLL7+0uvzYO++8o86dO1vN37NnjySpbNmyCgwMVJ48ebR9+3bL9ri4OO3bt081a9bMnBcAAAAAuIhsdYZMcnKyDh06lKqgSHH16lXdunVLBQsWlNFoVKNGjTR9+nSVLl1aFSpU0NatWzV9+nQNGTIkkyMHAAAAAPs7cuSIhg8frtDQUHXr1k0XLlywbPP09FSTJk3Uo0cPTZ48WY0bN9aRI0f0ySefqEmTJvL395ckhYeHa8yYMSpYsKBKlCihzz//XEWLFlVoaGhWvSwAAAAgR8pWDZnLly/r1q1byp8/f5rbhw0bph07dmj9+vWSbn8bzMfHR1988YXOnDkjPz8/DRkyJF33nwEAAAAAZ7d69WrdunVLa9as0Zo1a6y2hYWFaeTIkRo/frymTJmiKVOmKG/evGratKn69etnmde3b18lJSVp6NChunnzpoKCgjRjxgyrM20AAAAAZJzBbDabszqI7CY52aSLF69ldRjZnru7UQUK5Fa/sRt1+OSVdK3xL5FPX/Z/TpcuXeM6ijlcyu8HuXY95N41kXfXRe6dX8GCudN9g0ogBTWTffDfSOdEXpwTeXFe5CZz8DlbzsDfi3N6UF4epmaisgIAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADkZDBgAAAAAAAAAAwMFoyAAAAAAAAAAAADgYDRkAAAAAAAAAAAAHoyEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADkZDBgAAAAAAAAAAwMFoyAAAAAAAAAAAADgYDRkAAAAAAAAAAAAHoyEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwp23ITJo0Se3bt7cae++991SuXDmrn2efffa++1m1apVeeuklVapUSU2bNtWmTZscGTYAAAAAAAAAAEAq7lkdQFpmz56tCRMmKCgoyGr84MGD6t69u8LDwy1jbm5u99zPtm3bNHDgQL377ruqXbu2vv/+e/Xq1UtLly6Vv7+/w+IHAAAAAAAAAAC4k1OdIXP27Fm9+eabGj9+vMqUKWO1LTk5WYcOHVKlSpVUuHBhy0/BggXvub9p06YpNDRU4eHh8vf31+DBg1WhQgVFREQ4+qUAAAAAAAAAAABYOFVDZu/evcqXL5+WLVumKlWqWG07evSoEhIS0n1mi8lk0q+//qrg4GCr8aeeekrR0dF2ixkAAAAAAAAAAOBBnOqSZSEhIQoJCUlzW0xMjAwGgyIiIrRp0yYZjUbVq1dP/fr1U968eVPNj4uL0/Xr11W0aFGr8SJFiuj06dMOiR8AAAAAAAAAACAtdm3IXLt2TW5ubvL09LTnbiVJf/31l4xGo0qUKKEpU6YoNjZWo0aNUkxMjCIiImQ0Wp/sc/PmTUmSh4eH1XiuXLmUkJCQ4Xjc3Z3q5KJsyc3N9vcwI2uRPaTkmFy7HnLvmsi76yL3gGPrKAAAAADOw+aGzKZNm/Tnn3+qZ8+ekqRRo0Zpzpw5MhgMatOmjYYMGWK3ICWpT58+6tixo3x8fCRJAQEBKly4sFq3bq09e/akusRZrly5JEmJiYlW4wkJCfLy8spQLEajQQUK5M7QPpAxPj4ZyyGyD3Ltusi9ayLvrovcw1Vkdh0FAAAAwHnY1JDZsGGDevbsqVKlSqlnz56Kjo7WrFmzVKpUKfn6+mru3LkqU6aM2rZta7dADQaDpRmTIiAgQJJ05syZVA2Z/Pnzy9vbW+fOnbMaP3fuXKrLmD0sk8msuLjrGdoHbn8T1tYPX+Libig52WTniOBMUn4/yLXrIfeuiby7LnLv/Hx8vDiDyU6yoo4CAAAA4DxsasikFA1z5syRJK1YsUJGo1GzZs1SiRIl1LNnT0VFRdm1kHjnnXd0+fJlzZgxwzK2Z88eSVLZsmVTzTcYDKpevbp27NihVq1aWca3b9+uGjVqZDiepCQ+MMhKyckmcuAiyLXrIveuiby7LnIPV5AVdRQAAAAA52HTV93279+vNm3ayNfXV5K0ZcsWBQQEqESJEpKkunXr6u+//7ZflJKaNGmiLVu2aPLkyTp27Jh+/vlnvf/++2rSpIn8/f0lSVevXtXFixctazp16qQVK1Zo1qxZOnz4sEaPHq39+/erQ4cOdo0NAAAAAB4kK+ooAAAAAM7DpoZMUlKS8uTJI0k6efKkjh07pqeeesqy3WQyyd3d5tvTpOn555/X+PHj9dNPP6lp06YaMmSIGjZsqOHDh1vmDBs2TK+88orlcZ06dTR8+HAtWLBAYWFh2rZtm6ZMmWJp4AAAAABAZsmKOgoAAACA87DpaN/Pz0/79u2TJK1evVoGg0F169a1bN+wYYP8/PwyFNjIkSNTjTVq1EiNGjV6qDXNmzdX8+bNMxQLAAAAAGRUZtRRAAAAAJyXTQ2ZRo0aafLkyTp58qR27NghX19fBQcH69ixY/rss8+0ZcsWvfvuu/aOFQAAAACyLeooAAAAwLXZ1JDp2bOnLl++rKioKBUrVkzDhg2Tu7u7Ll++rM2bN+vVV19VeHi4vWMFAAAAgGyLOgoAAABwbTY1ZIxGo4YOHaqhQ4dajQcGBmrDhg2Wm1QCAAAAAG6jjgIAAABcm9GWRa+//rq2bt2aatzDw0O+vr5au3atXnjhhQwHBwAAAAA5BXUUAAAA4NrSdYbMjRs3dOnSJcvjHTt2KDQ0VI899liquSaTSZs3b9apU6fsFyUAAAAAZDPUUQAAAADulK6GTHx8vJo0aaIbN25YxoYPH67hw4ffc03VqlUzHBwAAAAAZFfUUQAAAADulK6GTOHChfXBBx9o+/btMpvNWrp0qWrUqKGSJUummms0GvXoo4+qTZs2dg8WAAAAALIL6igAAAAAd0pXQ0aSmjdvrubNm0u6fap9p06dVL9+fUfFBQAAAADZHnUUAAAAgBTpbsjcaf369faOAwAAAAByNOooAAAAwLXZ1JCRJLPZrG3btun8+fMymUxpzkn5JhgAAAAAgDoKAAAAcGU2NWRiY2PVpUsXHT9+PM3tZrNZBoOBQgIAAAAA/h91FAAAAODabGrIjBkzRsePH1fLli1VqVIleXh42DsuAAAAAMhRqKMAAAAA12ZTQ2bbtm1q06aNPvjgA3vHAwAAAAA5EnUUAAAA4NqMtixKSkrSk08+ae9YAAAAACDHclQddfnyZX3wwQd69tlnVb16dbVp00bR0dGW7fv371d4eLiqVq2q5557TjNmzLBabzKZNGHCBNWtW1dVqlTRG2+8odjYWLvHCQAAALg6mxoyFSpU0N69e+0dCwAAAADkWI6qo/r376/ff/9dY8eO1ffff68KFSqoc+fOOnz4sC5duqROnTqpdOnSioqKUp8+fTR+/HhFRUVZ1k+aNEmRkZH67LPPtHDhQhkMBnXp0kWJiYl2jxUAAABwZTY1ZPr27asffvhBq1evltlstndMAAAAAJDjOKKOio2N1ZYtW/Thhx+qZs2aevzxxzVkyBD5+vrqxx9/1KJFi+Th4aGPPvpI/v7+atmypTp27Khp06ZJkhITEzVz5kz16dNH9erVU2BgoMaNG6ezZ89qzZo1dokRAAAAwG023UNm5syZypcvn/r16ydPT08VKFBABoPBao7BYNDatWvtEiQAAAAAZHeOqKMKFCigqVOnqmLFilb7MJvNunLliv78808FBQXJ3f3f0i84OFjffPONLly4oJMnT+ratWsKDg62bPfx8VH58uW1c+dONW7cOAOvGAAAAMCdbGrIxMTEyGg0qlixYpaxu7/hxZkzAAAAAPAvR9RRPj4+qlevntXYqlWrdOzYMdWpU0fjxo1TQECA1fYiRYpIkk6dOqUzZ85IklVMKXNOnz79ULHczd3dpgsy4A5ubkar/4VzIC/Oibw4L3KTOTLy/pIb58Hfi3OyZ15sasisX78+w08MAAAAAK4kM+qoXbt26f3331f9+vUVEhKiESNGyMPDw2pOrly5JEkJCQm6ceOGJKU558qVKzbHYTQaVKBAbpvXw5qPj1dWh4A0kBfnRF6cF7lxXuTG+ZAT52SPvNjUkLlbYmKi3N3dZTTSuQMAAACA9LB3HbV27VoNGDBAVapU0dixYyVJnp6eSkxMtJqXkJAgSfL29panp6cllpR/p8zx8rK94DSZzIqLu27zetzm5maUj4+X4uJuKDnZlNXh4P+RF+dEXpwXuckcKe+zLciN8+DvxTk9KC8+Pl7pPnvG5obM5cuXNWHCBP3000+6ePGiZsyYoUceeUTTp0/X4MGDVaZMGVt3DQAAAAA5kqPqqLlz52rYsGEKDQ3VmDFjLGe8FC1aVOfOnbOam/LY19dXSUlJlrFSpUpZzQkMDLQplhRJSXyIYC/JySbeTydEXpwTeXFe5MZ5kRvnQ06ckz3yYtNXsS5fvqzWrVtr/vz58vLyslzn+MqVK9q4caPatWun48ePZygwAAAAAMhJHFVHzZ8/X59++qnatWunL7/80uryY0FBQdq1a5eSk5MtY1u3blWZMmVUqFAhBQYGKk+ePNq+fbtle1xcnPbt26eaNWtm4NUCAAAAuJtNDZmJEyfq5MmTmjVrlhYuXGgpJOrXr6+pU6fq+vXrmjRpkl0DBQAAAIDszBF11JEjRzR8+HCFhoaqW7duunDhgs6fP6/z58/r6tWratmypeLj4zVkyBAdOnRIixcvVkREhLp16ybp9r1jwsPDNWbMGK1bt04HDhzQ22+/raJFiyo0NNTu7wEAAADgymy6ZNn69ev16quvqnbt2rp06ZLVtmeffVatW7fWmjVr7BIgAAAAAOQEjqijVq9erVu3bmnNmjWp1oaFhWnkyJGaPn26hg0bprCwMBUuXFiDBg1SWFiYZV7fvn2VlJSkoUOH6ubNmwoKCtKMGTOszrQBAAAAkHE2NWQedD1hf39/zZ8/3+agAAAAACCncUQd1b17d3Xv3v2+cypXrqyFCxfec7ubm5sGDhyogQMHPtRzAwAAAHg4Nl2yrFChQjp58uQ9t8fExKhAgQI2BwUAAAAAOQ11FAAAAODabGrIPPvss4qMjNSJEydSbfv111+1aNEi1alTJ8PBAQAAAEBOQR0FAAAAuDabLlnWu3dvbdiwQWFhYapRo4YMBoMiIyMVERGhX375RXny5FHPnj3tHSsAAAAAZFvUUQAAAIBrs+kMGV9fX0VGRqpatWratGmTzGazVq9erY0bN6pq1ar69ttv5efnZ+9YAQAAACDboo4CAAAAXJtNZ8hIkp+fn6ZOnaqrV6/q6NGjMplM8vPzU6FChewZHwAAAADkGNRRAAAAgOuyuSGTIm/evKpUqZI9YgEAAAAAl0AdBQAAALiedDVk3nvvPb322muqUqWK5fGDGAwGDR8+PGPRAQAAAEA2RR0FAAAA4E7pasgsWbJETz/9tKWQWLJkyQPXUEgAAAAAcGXUUQAAAADulK6GzLp161SwYEGrxwAAAACAe6OOAgAAAHCndDVkSpQokebjuLg45cmTR0ajUZL0119/qXDhwsqfP799owQAAACAbIY6CgAAAMCdjLYuHDdunOrWratjx45ZxqZNm6Y6depo5syZdgkOAAAAAHIS6igAAADAdaXrDJm7LVq0SN98841q1KihXLlyWcabN2+uf/75R59//rmKFSumF1980W6BAgAAAEB2Rh0FAAAAuDabzpCZP3++nnnmGc2bN0/FihWzjD/99NOaOXOmateurVmzZtktSAAAAADI7qijAAAAANdmU0MmNjZWDRs2vOf20NBQHT582OagAAAAACCnoY4CAAAAXJtNDRkvLy+dP3/+ntsvXbokNzc3m4MCAAAAgJyGOgoAAABwbTY1ZGrUqKH58+enWUxcvHhRkZGRql69eoaDAwAAAICcgjoKAAAAcG3utizq2rWr2rZtq5dfflnNmjXT448/LoPBoL///lvLly/X5cuX1bNnT3vHCgAAAADZFnUUAAAA4NpsashUqlRJkyZN0ocffqjZs2dbbStatKi+/vprVa5c2R7xAQAAAECOQB0FAAAAuDabGjKSVLduXa1fv1779u3TiRMnlJSUJD8/P1WoUIHrHgMAAABAGqijAAAAANdlc0MmRfny5VW+fHl7xAIAAAAALoE6CgAAAHA96WrITJw4UQ0bNlRAQIDl8YMYDAb16tUrY9EBAAAAQDZFHQUAAADgTuluyDz22GMUEgAAAACQTtRRAAAAAO6UrobMjBkz9OSTT1oez5kzx2EBAQAAAEBOQB0FAAAA4E7pasi8//776t+/v5o1ayZJOnXqlGrWrCk/Pz+HBgcAAAAA2RV1FAAAAIA7GdMz6eLFi4qPj7c8fu+997R7925HxSRJmjRpktq3b281tn79erVs2VLVqlVTSEiIRo0apZs3b953PyEhISpXrpzVz4ABAxwZOgAAAABkSR0FAAAAwHml6wyZ4sWLa9KkSTpx4oRy584ts9msn376SUePHr3nmoxc+3j27NmaMGGCgoKCLGPR0dHq3bu3+vXrp0aNGik2NlYffPCBLl++rBEjRqS5n/j4eJ06dUrffPONKlSoYBn39PS0KS4AAAAASK/MrqMAAAAAOLd0NWT69eunwYMHa9asWZJuFwk//fSTfvrpp3uusaWQOHv2rIYMGaJdu3apTJkyVtsiIyMVHBysrl27SpIee+wxvf3223r//ff18ccfy8PDI9X+YmJiZDabVb16dfn4+DxULAAAAACQEZlVRwEAAADIHtLVkAkNDVVwcLCOHj2qxMREdejQQd27d9fTTz9t12D27t2rfPnyadmyZfr666918uRJy7Y33nhDRmPqK6wlJSUpPj5eBQsWTLXt4MGDKly4MM0YAAAAAJkus+ooAAAAANlDuhoy9evXt7oZZfHixVW8eHHVqlXLrsGEhIQoJCQkzW3ly5e3epyYmKhZs2apQoUKaTZjpNtnyHh7e6tPnz767bffVLBgQbVo0UKvv/56ms0dAAAAALCXzKqjAAAAAGQP6WrI3H0zylOnTsnLy8thQT1IUlKSBg0apEOHDmnevHn3nPfXX3/p6tWreumll9S7d29FR0drzJgxunLlit56660MxeDuTkMno9zcbH8PM7IW2UNKjsm16yH3rom8uy5yj5zM2eooAAAAAFkrXQ2Zu29GKUlr1qxRbGzsPdc46trH8fHx6tevn7Zv364JEyaoSpUq95w7a9YsJSQkKE+ePJKkcuXK6dq1a5o8ebL69Olj81kyRqNBBQrktmkt7MPHh0LWVZBr10XuXRN5d13kHjmRM9VRAAAAALJeuhoyznIzynPnzqlLly46ceKEpk2bpuDg4PvOf+SRR/TII49YjQUEBOj69eu6cuWKChQoYFMcJpNZcXHXbVqLf7m5GW3+8CUu7oaSk012jgjOJOX3g1y7HnLvmsi76yL3zs/Hx4szmGzkLHUUAAAAAOeQrobMiy++mOU3o7xy5Yo6dOig+Ph4zZ8/X+XKlbvvfJPJpAYNGqhVq1bq0aOHZXzPnj169NFHbW7GpEhK4gODrJScbCIHLoJcuy5y75rIu+si98iJnKGOAgAAAOA80tWQkaQCBQpYmhhBQUF66qmnMvVmlCNGjNDx48c1ffp0FSxYUOfPn7dsK1iwoNzc3HT16lXdunVLBQsWlNFoVKNGjTR9+nSVLl1aFSpU0NatWzV9+nQNGTIk0+IGAAAA4Lqyuo4CAAAA4DzS3ZC507fffmv595EjR3Ty5ElVqFBBXl5eMhqN8vDwsFuA0u2zXVauXKlbt26pQ4cOqbavW7dOfn5+GjZsmHbs2KH169dLkt555x35+Pjoiy++0JkzZ+Tn56chQ4bo1VdftWt8AAAAAPAgmV1HAQAAAHAuNjVkJGn37t36z3/+o0OHDkmSZs6cKbPZrAEDBug///mPXnzxxQwFNnLkSMu/jUaj/vjjj4daI0nu7u7q0aOH1SXLAAAAACCrOLqOAgAAAOC8bLo7519//aVOnTrpn3/+0csvv2wZ9/LyUnJysgYMGKCdO3faLUgAAAAAyO6oowAAAADXZlND5quvvpK3t7d+/PFHDR48WGazWZJUrVo1LVu2TIULF9a0adPsGigAAAAAZGfUUQAAAIBrs6khs2PHDr322msqVKiQDAaD1TZfX1+1bt1a+/bts0uAAAAAAJATUEcBAAAArs2mhsy1a9fk6+t7z+358uVTXFyczUEBAAAAQE5DHQUAAAC4NpsaMn5+ftqzZ889t2/btk0lSpSwOSgAAAAAyGmoowAAAADXZlNDpkmTJlqyZIl++ukny5jBYJDJZNLUqVO1Zs0aNWrUyG5BAgAAAEB2Rx0FAAAAuDZ3WxZ16dJF//vf//TWW2/Jx8dHBoNBH374oS5fvqwrV64oMDBQ3bp1s3esAAAAAJBtUUcBAAAArs2mM2Q8PDw0e/ZsvfPOOypevLg8PT11+vRpFSpUSD169ND8+fPl5eVl71gBAAAAINuijgIAAABcm01nyEjSI488ojfffFNvvvmmPeMBAAAAgByLOgoAAABwXTY3ZCQpPj5emzdv1okTJ+Th4aHixYurTp068vT0tFd8AAAAAJCjUEcBAAAArsnmhszq1av1wQcfKC4uTmazWdLtG1Lmzp1bn3zyiV566SW7BQkAAAAAOQF1FAAAAOC6bGrI/P7773rnnXeUN29e9e3bV0888YRMJpNiYmI0d+5cDRo0SH5+fqpcubK94wUAAACAbIk6CgAAAHBtNjVkJk+erPz58+uHH35QoUKFLOMNGzZUmzZt1KxZM02fPl0TJkywW6AAAAAAkJ1RRwEAAACuzWjLot9++02tW7e2KiJSFCpUSK1bt9auXbsyHBwAAAAA5BTUUQAAAIBrs6khc/369TSLiBQFCxbU1atXbQ4KAAAAAHIa6igAAADAtdnUkPHz89O2bdvuuX3btm0qXry4zUEBAAAAQE5DHQUAAAC4NpsaMk2aNNGaNWs0ceJEJSYmWsYTExM1ceJErV27Vi+99JLdggQAAACA7I46CgAAAHBt7rYs6tKli37++WdNnDhRM2fOVKlSpWQwGBQbG6vr16+rfPny6tq1q71jBQAAAIBsizoKAAAAcG02NWQ8PDw0Z84czZgxQ//973919OhRmc1mlSpVSo0aNVLnzp3l6elp71gBAAAAINuijgIAAABcm00NGUny9PRUr1691KtXL3vGAwAAAAA5FnUUAAAA4Loe+h4ye/fuTXN83bp1Wr9+fYYDAgAAAICchjoKAAAAQLobMhcvXlR4eLhatWqluLi4VNvnzp2rXr166bXXXtPZs2ftGiQAAAAAZEfUUQAAAABSpKshc/36dXXo0EHR0dEKCgrSjRs3Us1p166dnn76ae3evVtvvPGGEhIS7B4sAAAAAGQX1FEAAAAA7pSuhkxERIT++usvffLJJ4qIiJCvr2+qOQ0aNNCMGTPUv39/HT58WN9++63dgwUAAACA7II6CgAAAMCd0tWQWb16terVq6dXX331gXO7du2q6tWra+XKlRkODgAAAACyK+ooAAAAAHdKV0MmNjZWtWvXTvdOn3vuOR05csTmoAAAAAAgu6OOAgAAAHCndDVkjEajPD09073T/Pnzy2Aw2BwUAAAAAGR31FEAAAAA7pSuhkzx4sX1999/p3unhw4dSvP6yAAAAADgKqijAAAAANwpXQ2ZunXr6ocfftC1a9ceODcuLk7Lli1TtWrVMhwcAAAAAGRX1FEAAAAA7pSuhsxrr72mhIQEdevWTZcuXbrnvAsXLqhXr16Ki4tTu3bt7BYkAAAAAGQ31FEAAAAA7uSenkmlSpXSkCFD9J///Ef169fXSy+9pOrVq6tIkSJKTk7W+fPntWvXLv3000+6du2a3n33XVWoUMHRsQMAAACA06KOAgAAAHCndDVkJKlVq1YqUqSIPvjgA33//feKioqy2m42m1WyZEl9/vnnCgkJsXugAAAAAJDdUEcBAAAASJHuhowk1atXTxs3btS2bdv0+++/69y5c3Jzc5Ovr69q1aqlypUrOypOAAAAAMiWqKMAAAAASA/ZkJEkg8Gg2rVrq3bt2o6IBwAAAAByHOooAAAAAMasDgAAAAAAAAAAACCnoyEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAADkEJMmTVL79u2txt577z2VK1fO6ufZZ5+1bDeZTJowYYLq1q2rKlWq6I033lBsbGxmhw4AAADkeOlqyMyaNUuHDx92dCwAAAAAkGNkdh01e/ZsTZgwIdX4wYMH1b17d23evNnys3TpUsv2SZMmKTIyUp999pkWLlwog8GgLl26KDExMdNiBwAAAFxBuhoyEyZM0O7duy2P69evr3Xr1jkqJgAAAADI9jKrjjp79qzefPNNjR8/XmXKlLHalpycrEOHDqlSpUoqXLiw5adgwYKSpMTERM2cOVN9+vRRvXr1FBgYqHHjxuns2bNas2aN3WMFAAAAXFm6GjJGo1Fbt27VtWvXJEknT57UjRs3HBoYAAAAAGRnmVVH7d27V/ny5dOyZctUpUoVq21Hjx5VQkKC/P3901x74MABXbt2TcHBwZYxHx8flS9fXjt37rR7rAAAAIArc0/PpLp16+rHH3/UihUrJEkGg0EDBw7UwIED77nGYDBo37599okSAAAAALKZzKqjQkJCFBISkua2mJgYGQwGRUREaNOmTTIajapXr5769eunvHnz6syZM5KkYsWKWa0rUqSITp8+/VBxAAAAALi/dDVkPvvsMxUrVkwxMTFKTExUdHS0ypQpo0KFCjk6PgAAAADIlpyhjvrrr79kNBpVokQJTZkyRbGxsRo1apRiYmIUERFhOWPHw8PDal2uXLl05cqVDD23u3u6LsiA+3BzM1r9L5wDeXFO5MV5kZvMkZH3l9w4D/5enJM985KuhkyePHk0ePBgy+PAwED16NFDTZs2zXAAAAAAAJATOUMd1adPH3Xs2FE+Pj6SpICAABUuXFitW7fWnj175OnpKen2vWRS/i1JCQkJ8vLysvl5jUaDChTInbHgYeHjY3su4DjkxTmRF+dFbpwXuXE+5MQ52SMv6WrI3G3OnDn3vAYxAAAAACC1rKijDAaDpRmTIiAgQJJ05swZy6XKzp07p1KlSlnmnDt3ToGBgTY/r8lkVlzcdZvX4zY3N6N8fLwUF3dDycmmrA4H/4+8OCfy4rzITeZIeZ9tQW6cB38vzulBefHx8Ur32TM2NWRq1aolSVq6dKlWrVqlEydOyMPDQ8WKFdMLL7ygl19+2ZbdAgAAAECOlRV11DvvvKPLly9rxowZlrE9e/ZIksqWLauSJUsqT5482r59u6UhExcXp3379ik8PDxDz52UxIcI9pKcbOL9dELkxTmRF+dFbpwXuXE+5MQ52SMvNjVkzGaz+vbtq7Vr18psNitv3rwymUzav3+/NmzYoP/+97+aNGlShgIDAAAAgJwkK+qoJk2aqEePHpo8ebIaN26sI0eO6JNPPlGTJk0sZ+uEh4drzJgxKliwoEqUKKHPP/9cRYsWVWhoqF1jAQAAAFydTQ2ZuXPnas2aNXr55Zf1zjvvyNfXV5J0+vRpffnll1q2bJkWLFigNm3a2DVYAAAAAMiusqKOev755zV+/HhNmTJFU6ZMUd68edW0aVP169fPMqdv375KSkrS0KFDdfPmTQUFBWnGjBny8PCwWxwAAAAAbGzIREVFqVatWho9erTVeLFixTRq1CidOXNGUVFRNGQAAAAA4P9lRh01cuTIVGONGjVSo0aN7rnGzc1NAwcO1MCBA21+XgAAAAAPlr47zdzlyJEj9z19vUGDBvr7779tDkqSJk2apPbt21uN7d+/X+Hh4apataqee+45q+sg38uqVav00ksvqVKlSmratKk2bdqUobgAAAAAwBaZUUcBAAAAcF42NWTc3d11/fr1e26/fv26DAaDzUHNnj1bEyZMsBq7dOmSOnXqpNKlSysqKkp9+vTR+PHjFRUVdc/9bNu2TQMHDlTbtm21dOlS1alTR7169dLhw4dtjg0AAAAAbOHoOgoAAACAc7OpIVOxYkUtXrxYCQkJqbbduHFDixcvVvny5R96v2fPntWbb76p8ePHq0yZMlbbFi1aJA8PD3300Ufy9/dXy5Yt1bFjR02bNu2e+5s2bZpCQ0MVHh4uf39/DR48WBUqVFBERMRDxwYAAAAAGeGoOgoAAABA9mBTQ+aNN95QbGysXnnlFf344486cOCADhw4oOXLl6tVq1Y6duyYOnXq9ND73bt3r/Lly6dly5apSpUqVtuio6MVFBQkd/d/b3sTHBysI0eO6MKFC6n2ZTKZ9Ouvvyo4ONhq/KmnnlJ0dPRDxwYAAAAAGeGoOgoAAABA9uD+4Cmp1atXT4MGDdLYsWNT3fjRaDTq7bffVkhIyEPvNyQk5J7rzpw5o4CAAKuxIkWKSJJOnTqlQoUKWW2Li4vT9evXVbRo0VRrTp8+/dCxAQAAAEBGOKqOAgAAAJA92NSQkW5/uys0NFRr167VsWPHZDabVapUKYWGhqpkyZL2jFGSdPPmTXl4eFiN5cqVS5LSPOX/5s2bkpTmmrTmPyx3d5tOLsId3Nxsfw8zshbZQ0qOybXrIfeuiby7LnIPV5PZdRQAAAAA52FzQ0aSSpYsmWmn1Ht6eioxMdFqLKWx4u3tnWp+SrMmrTVeXl4ZisVoNKhAgdwZ2gcyxscnYzlE9kGuXRe5d03k3XWRe7iSzKyjAAAAADiPDDVkMlPRokV17tw5q7GUx76+vqnm58+fX97e3mmuufsyZg/LZDIrLu56hvaB29+EtfXDl7i4G0pONtk5IjiTlN8Pcu16yL1rIu+ui9w7Px8fL85gAgAAAAA7yDYNmaCgIEVGRio5OVlubm6SpK1bt6pMmTKp7h8jSQaDQdWrV9eOHTvUqlUry/j27dtVo0aNDMeTlMQHBlkpOdlEDlwEuXZd5N41kXfXRe4BAAAAADldtvmqW8uWLRUfH68hQ4bo0KFDWrx4sSIiItStWzfLnKtXr+rixYuWx506ddKKFSs0a9YsHT58WKNHj9b+/fvVoUOHrHgJAAAAAAAAAADARWWbhkyhQoU0ffp0HTlyRGFhYZo4caIGDRqksLAwy5xhw4bplVdesTyuU6eOhg8frgULFigsLEzbtm3TlClT5O/vnxUvAQAAAAAAAAAAuCibLlm2YMEC1a5dW6VLl7ZzOP8aOXJkqrHKlStr4cKFD7WmefPmat68uT1DAwAAAICHlhl1FAAAAADnZdMZMmPGjNHy5cvtHQsAAAAA5FjUUQAAAIBrs6khYzQaVaBAAXvHAgAAAAA5FnUUAAAA4Npsash07txZU6dO1S+//CKTyWTvmAAAAAAgx6GOAgAAAFybTfeQ2b17t+Lj49W1a1d5eHioQIECcnNzs5pjMBi0du1auwQJAAAAANkddRQAAADg2mxqyMTExCh//vzKnz+/ZcxsNlvNufsxAAAAALgy6igAAADAtdnUkFm/fr294wAAAACAHI06CgAAAHBtNt1D5m6JiYlcAxkAAAAAHgJ1FAAAAOBabG7IXL58WZ988onq1KmjqlWravv27YqOjlb37t115MgRe8YIAAAAADkCdRQAAADgumxqyFy+fFmtW7fW/Pnz5eXlZbnO8ZUrV7Rx40a1a9dOx48ft2ugAAAAAJCdUUcBAAAArs2mhszEiRN18uRJzZo1SwsXLrQUEvXr19fUqVN1/fp1TZo0ya6BAgAAAEB2Rh0FAAAAuDabGjLr16/Xq6++qtq1a8tgMFhte/bZZ9W6dWtt377dLgECAAAAQE5AHQUAAAC4NpsaMufOnVNgYOA9t/v7++v8+fM2BwUAAAAAOQ11FAAAAODabGrIFCpUSCdPnrzn9piYGBUoUMDmoAAAAAAgp6GOAgAAAFybTQ2ZZ599VpGRkTpx4kSqbb/++qsWLVqkOnXqZDg4AAAAAMgpqKMAAAAA1+Zuy6LevXtrw4YNCgsLU40aNWQwGBQZGamIiAj98ssvypMnj3r27GnvWAEAAAAg26KOAgAAAFybTWfI+Pr6KjIyUtWqVdOmTZtkNpu1evVqbdy4UVWrVtW3334rPz8/e8cKAAAAANkWdRQAAADg2mw6Q0aS/Pz8NHXqVF29elVHjx6VyWSSn5+fChUqZM/4AAAAACDHoI4CAAAAXJdNZ8jcKSkpSWazWe7u7sqVK5c9YgIAAACAHI06CgAAAHA9Np8hs2fPHo0ePVq7du2S2WyWJBmNRj3zzDMaMmSIHnvsMbsFCQAAAAA5AXUUAAAA4Lpsasjs3btX7du3V2JiourWravSpUvLZDLp77//1i+//KLXXntNixYtUsmSJe0dLwAAAABkS9RRAAAAgGuzqSEzYcIEeXh4KDIyUoGBgVbbdu/erU6dOmns2LEaN26cXYIEAAAAgOyOOgoAAABwbTbdQyY6Olrt27dPVURIUtWqVRUeHq4tW7ZkODgAAAAAyCmoowAAAADXZlNDxmAwyMfH557b/fz8lJSUZHNQAAAAAJDTUEcBAAAArs2mhky9evX0ww8/KDExMc3tq1atUp06dTIUGAAAAADkJNRRAAAAgGtL1z1kdu7cafW4fv36Gjp0qNq1a6euXbvq8ccfl9Fo1LFjxzR37lz99ddf+vLLLx0RLwAAAABkC9RRAAAAAO6UroZM+/btZTAYrMbMZrP27Nmjvn37phqXpNdff1379++3U5gAAAAAkL1QRwEAAAC4U7oaMr169UpVSAAAAAAA7o06CgAAAMCd0tWQ6dOnj6PjAAAAAIAchToKAAAAwJ2MWR0AAAAAAAAAAABATpeuM2TuFh8fry+++EIbN27U2bNnLdc7vpPBYNC+ffsyHCAAAAAA5ATUUQAAAIBrs6khM3r0aC1atEhFihRR1apV5ebmZu+4AAAAACBHoY4CAAAAXJtNDZkNGzaoQYMGmjBhgoxGrnoGAAAAAA9CHQUAAAC4NpuqgPj4eNWrV48iAgAAAADSiToKAAAAcG02VQLVq1fX3r177R0LAAAAAORY1FEAAACAa7OpITNw4ECtWrVKEREROn/+vL1jAgAAAIAchzoKAAAAcG023UOmRIkSKleunEaOHKmRI0emOcdgMGjfvn0ZCg4AAAAAcgrqKAAAAMC12dSQGTZsmHbs2KGCBQvqsccek7u7TbsBAAAAAJdBHQUAAAC4NpsqgA0bNqh+/foaP348RQQAAAAApAN1FAAAAODabLqHTGJiop577jmKCAAAAABIJ+ooAAAAwLXZ1JCpVq2a9u7da+9YAAAAACDHoo4CAAAAXJtNDZl33nlHK1as0MyZM3X27FklJyfbOy4AAAAAyFGoowAAAADXZtO58u+++66MRqM+//xzff7552nOMRgM2rdvX4aCAwAAAICcgjoKAAAAcG02NWTy58+v/Pnz2zkUAMCDGI0GGY2Gh1pjMpllMpkdFBEAAEgv6igAAADAtdnUkPn222/tHQcA4AGMRoPy5/eWm9vDXW0yOdmky5ev05QBACCLUUcBAAAArs2mhgwAIPMZjQa5uRk1Zt4unTh7NV1r/HzzakC7GjIaDTRkAAAAAAAAgCxkU0Pmvffee+Acg8Gg4cOH27J7AMB9nDh7VYdPXsnqMAAAwEOijgIAAABcm00NmSVLltxzm8FgkIeHh3LlykUhAQAAAAD/jzoKAAAAcG02NWTWrVuXaiw5OVnnz5/XkiVLtG3bNs2fPz/DwQEAAABATkEdBQAAALg2mxoyJUqUSHO8VKlSqlGjhrp3764vvvhCo0aNylBwAAAAAJBTUEcBAAAArs2mhsyDhISEaOzYsXbf7/bt2/X666+nuc3Pzy/Nb5wtWbJE7777bqrxn376SY899pjdYwQAAAAAWziqjgIAAADgHBzSkDl//rxu3rxp9/1Wq1ZNmzdvthqLiYlR165d1b179zTXHDx4ULVq1UpV2BQsWNDu8QEAAACArRxVRwEAAABwDjY1ZE6dOpXm+M2bN/Xnn38qIiJCFSpUyFBgafHw8FDhwoUtj2/duqURI0aoYcOGatWqVZprYmJiFBgYaLUOAAAAADJbVtVRAAAAAJyDTQ2ZkJAQGQyGe243Go3q3bu3zUGl17x583T69GnNnDnznnMOHjyoRo0aOTwWAAAAALgfZ6mjAAAAAGQNmxoyzZs3T7OQcHNzU5EiRRQWFqaSJUtmOLj7SUhI0JQpU9ShQwcVKVIkzTkXL17UP//8o507d+rbb7/V5cuXVaVKFQ0YMEBlypRxaHwAAAAAcCdnqKMAAAAAZB2bGjIjR460dxwP7YcfflBCQoLat29/zzkxMTGSbhc4o0aN0vXr1zVp0iS1bdtWy5cv16OPPmrz87u7G21ei9vc3Gx/DzOyFtlDSo7J9b9c5W+G3Lsm8u66yD1ciTPUUQAAAACyjk0NGWewdOlSNWzYUAUKFLjnnODgYO3YsUP58uWzjH399dd6/vnntXjxYnXt2tWm5zYaDSpQILdNa2EfPj5eWR0CMgm5to/s+D5mx5iRceTddZF7AAAAAEBOl66GzMSJE23auaOuf3zx4kX99ttv6tat2wPn3tmMkSRvb2/5+fnp7NmzNj+/yWRWXNx1m9fjNjc3o80fvsTF3VByssnOEcGZpPx+kOt/ucrfDLl3TeTddZF75+fj48UZTDZytjoKAAAAQNaye0PmzmsiO6qQ+PXXX2UwGFSrVq37zps/f77Gjx+vn3/+WZ6enpKk+Ph4HT16VK+88kqGYkhK4gODrJScbCIHLoJc20d2fB+zY8zIOPLuusg9ciJnq6MAAAAAZK10NWTmzJnzwDlms1nz5s3TTz/9JEmqV69exiK7jwMHDqhkyZLy8rL+pnhycrIuXryovHnzytPTU88//7y+/PJLDRo0SH369NHNmzc1duxYFSxYUGFhYQ6LDwAAAACcrY4CAAAAkLXS1ZB50Jkop06d0vvvv6/t27crb968evfdd9WyZUu7BJiWf/75R/nz5081fvr0adWvX18jRoxQixYtVKxYMUVERGjMmDFq06aNzGaznnnmGc2ZM8dyxgwAAAAAOIKz1VEAAAAAsla6GjL3ExkZqc8//1zXrl1TnTp1NGzYMPn6+tojtnv66KOP0hz38/PTwYMHrcaefPJJzZgxw6HxAAAAAMDDyIo6CgAAAEDWsrkhc+bMGQ0ZMkT/+9//lDt3bn366adq1aqVPWMDAAAAgByFOgoAAABwXUZbFn333Xdq0qSJtmzZotq1a2v58uUUEQAAAABwH5lRR02aNEnt27e3Gtu/f7/Cw8NVtWpVPffcc6muIGAymTRhwgTVrVtXVapU0RtvvKHY2Fi7xgUAAADgIRsyZ8+eVZcuXfTBBx/IZDLpo48+0syZM1WsWDFHxQcAAAAA2Vpm1VGzZ8/WhAkTrMYuXbqkTp06qXTp0oqKilKfPn00fvx4RUVFWeZMmjRJkZGR+uyzz7Rw4UIZDAZ16dJFiYmJdo0PAAAAcHXpvmTZkiVLNGLECMXFxSk4OFjDhg1TiRIlHBkbAAAAAGRrmVFHnT17VkOGDNGuXbtUpkwZq22LFi2Sh4eHPvroI7m7u8vf31+xsbGaNm2aWrZsqcTERM2cOVMDBw5UvXr1JEnjxo1T3bp1tWbNGjVu3NiusQIAAACuLF0Nme7du+vnn3+WJL3wwgtq27atTp06pVOnTt13XVBQUMYjBAAAAIBsKLPqqL179ypfvnxatmyZvv76a508edKyLTo6WkFBQXJ3/7f0Cw4O1jfffKMLFy7o5MmTunbtmoKDgy3bfXx8VL58ee3cuZOGDAAAAGBH6WrIbNy40fLv1atXa/Xq1ena+f79+20KCgAAAACyu8yqo0JCQhQSEpLmtjNnziggIMBqrEiRIpKkU6dO6cyZM5KU6vJpRYoU0enTpx8qjru5u9t0y1Lcwc3NaPW/cA7kxTmRF+dFbjJHRt5fcuM8+HtxTvbMS7oaMr17987wEwEAAACAK3GGOurmzZvy8PCwGsuVK5ckKSEhQTdu3JCkNOdcuXLF5uc1Gg0qUCC3zethzcfHK6tDQBrIi3MiL86L3DgvcuN8yIlzskdeaMgAAAAAgAM4Qx3l6empxMREq7GEhARJkre3tzw9PSVJiYmJln+nzPHysr3gNJnMiou7bvN63ObmZpSPj5fi4m4oOdmU1eHg/5EX50RenBe5yRwp77MtyI3z4O/FOT0oLz4+Xuk+eyZdDRkAAAAAQPZTtGhRnTt3zmos5bGvr6+SkpIsY6VKlbKaExgYmKHnTkriQwR7SU428X46IfLinMiL8yI3zovcOB9y4pzskRcuRgcAAAAAOVRQUJB27dql5ORky9jWrVtVpkwZFSpUSIGBgcqTJ4+2b99u2R4XF6d9+/apZs2aWREyAAAAkGPRkAEAAACAHKply5aKj4/XkCFDdOjQIS1evFgRERHq1q2bpNv3jgkPD9eYMWO0bt06HThwQG+//baKFi2q0NDQLI4eAABkBjc3o9zd0/9jNBqyOmQg2+KSZQAAAACQQxUqVEjTp0/XsGHDFBYWpsKFC2vQoEEKCwuzzOnbt6+SkpI0dOhQ3bx5U0FBQZoxY4Y8PDyyMHIAAOBo+fPmkslkfuh7zyQnm3T58nWZTGYHRQbkXDRkAAAAACCHGDlyZKqxypUra+HChfdc4+bmpoEDB2rgwIGODA0AADiZPF6PyGg0aMy8XTpx9mq61vj55tWAdjVkNBpoyAA2oCEDAAAAAAAAAC7qxNmrOnzySlaHAbgE7iEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICD0ZABAAAAAAAAAABwMBoyAAAAAAAAAAAADkZDBgAAAAAAAAAAwMFoyAAAAAAAAAAAADgYDRkAAAAAAAAAAAAHoyEDAAAAAAAAAADgYDRkAAAAAAAAAAAAHIyGDAAAAAAAAAAAgIPRkAEAAAAAAAAAAHAwGjIAAAAAAAAAAAAORkMGAAAAAAAAAADAwWjIAAAAAAAAAAAAOBgNGQAAAAAAAAAAAAejIQMAAAAAAAAAAOBgNGQAAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcLBs15A5efKkypUrl+rnu+++S3P+pUuX9M477ygoKEhBQUH6z3/+o+vXr2dy1AAAAAAAAAAAwJW5Z3UAD+vgwYPKlSuX1q5dK4PBYBnPmzdvmvP79u2rhIQEzZ49W3FxcRoyZIg+/vhjjRo1KrNCBgAAAAAAAAAALi7bNWRiYmJUpkwZFSlS5IFzf/vtN+3YsUMrV66Uv7+/JOmTTz7Rm2++qf79+8vX19fR4QIAAAAAAAAAAGS/S5YdPHhQZcuWTdfc6OhoFS5c2NKMkaRatWrJYDBo165djgoRAAAAAAAAAADASrY8Q6Zw4cJq27atjh49qscee0w9e/ZU3bp1U809e/asihUrZjXm4eGh/Pnz6/Tp0xmKw9092/WynI6bm+3vYUbWIntIyTG5/per/M2Qe9dE3l0XuQcAAAAAuIps1ZBJTEzU0aNH5eXlpUGDBsnb21vLli1Tly5dNGvWLNWuXdtq/o0bN+Th4ZFqP7ly5VJCQoLNcRiNBhUokNvm9cg4Hx+vrA4BmYRc20d2fB+zY8zIOPLuusg9AAAAACCny1YNGQ8PD+3cuVPu7u6WRkvFihV1+PBhzZgxI1VDxtPTU4mJian2k5CQIG9vb5vjMJnMiou7bvN63ObmZrT5w5e4uBtKTjbZOSI4k5TfD3L9L1f5myH3rom8uy5y7/x8fLw4gwkAAAAA7CBbNWQkpdlICQgI0ObNm1ONFy1aVGvXrrUaS0xM1OXLl+Xr65uhOJKS+MAgKyUnm8iBiyDX9pEd38fsGDMyjry7LnIPAAAAAMjpstVX3Q4cOKBq1aopOjraavzPP/9U2bJlU80PCgrSmTNnFBsbaxnbvn27JKl69eqODRYAAAAAAAAAAOD/ZauGTEBAgJ544gl9/PHHio6O1uHDhzVixAjt3r1b3bt3V3Jyss6fP6+bN29KkqpUqaLq1avr7bff1h9//KFt27bpww8/VPPmzTN8hgwAAAAAAAAAAEB6ZauGjNFo1JQpU1SpUiX169dPYWFh+v333zVr1iyVK1dOp0+fVp06dbRy5UpJksFg0MSJE+Xn56cOHTqoX79+evbZZ/XRRx9l7QsBAAAAAAAAAAAuJdvdQ6ZgwYIaPnx4mtv8/Px08OBBq7FChQppwoQJmREaAAAAAAAAAABAmrLVGTIAAAAAAAAAAADZEQ0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAAAAAAAICDuWd1AAAAAAAAAAAAa0ajQUajIV1z3dz43j2QHdCQAQAAAAAAAAAnYjQalD+/N40WIIehIQMAAAAAAAAATsRoNMjNzagx83bpxNmrD5xfPbCIXn+pfCZEBiAjaMgAAAAAAAAAgBM6cfaqDp+88sB5fkXyZEI0ADKKc94AAAAAAAAAAAAcjIYMAAAAAAAAAACAg9GQAQAAAAAAAAAAcDAaMgAAAAAAAAAAAA5GQwYAAAAAAAAAAMDBaMgAAAAAAAAAAAA4GA0ZAAAAAAAAAAAAB3PP6gAAAEgvo9Ego9Hg0OcwmcwymcwOfQ4AAAAAAAC4HhoyAIBswWg0KH9+b7m5PdzJnckms9weoomTnGzS5cvXacoAAAAAAADArmjIAACyBaPRIDc3o8bM26UTZ6+ma031wCJ6/aXy6V7j55tXA9rVkNFooCEDAAAAAAAAu6IhAwDIVk6cvarDJ6+ka65fkTwPvQYAAAAAAABwhIe77gsAAAAAAAAAAAAeGg0ZAAAAAAAAAAAAB6MhAwAAAAAAAAAA4GA0ZAAAAAAAAAAAAByMhgwAAAAA5GAnT55UuXLlUv189913kqT9+/crPDxcVatW1XPPPacZM2ZkccQAAABAzuSe1QEAAAAAABzn4MGDypUrl9auXSuDwWAZz5s3ry5duqROnTqpQYMG+vjjj7V79259/PHHyp8/v1q2bJmFUQMAAAA5Dw0ZAAAAAMjBYmJiVKZMGRUpUiTVtoiICHl4eOijjz6Su7u7/P39FRsbq2nTptGQAQAAAOyMS5YBAAAAQA528OBBlS1bNs1t0dHRCgoKkrv7v9/VCw4O1pEjR3ThwoXMChEAAABwCTRkAAAAACAHi4mJ0YULF9S2bVs9/fTTatOmjX755RdJ0pkzZ1S0aFGr+Sln0pw6dSrTYwUAAAByMi5ZBgAAAAA5VGJioo4ePSovLy8NGjRI3t7eWrZsmbp06aJZs2bp5s2b8vDwsFqTK1cuSVJCQkKGntvdne//ZZSbm9Hqf+EcyItzIi/Oi9zYxtnfL2ePL7vi78U52TMvNGQAAAAAIIfy8PDQzp075e7ubmm8VKxYUYcPH9aMGTPk6empxMREqzUpjRhvb2+bn9doNKhAgdy2Bw4rPj5eWR0C0kBenBN5cV7kJmchn47F++uc7JEXGjIAAAAAkIOl1VgJCAjQ5s2bVbRoUZ07d85qW8pjX19fm5/TZDIrLu66zetxm5ubUT4+XoqLu6HkZFNWh4P/R16cE3lxXuTGNinvm7Min47B34tzelBefHy80n32DA0ZAAAAAMihDhw4oDZt2mjatGmqWbOmZfzPP/9U2bJl9eSTTyoyMlLJyclyc3OTJG3dulVlypRRoUKFMvTcSUl8iGAvyckm3k8nRF6cE3lxXuQmZyGfjsX765zskRcuRgcAAAAAOVRAQICeeOIJffzxx4r+v/buPS7KMv//+HsGBHQBD6V4QK00IMUzntLW1EU3rUxtOynlL0twk3RZxdS2w9dDqXxxzV0zQ9dTeATPuqbZrumahdtqZlqhqbgq5hE8gDL37w+/MzUCyozMAXg9Hw8fxT3Xfc/nuq97Zu7r/tzXdWdkKDMzU++8847+85//KC4uTv3791dubq7GjRunH374Qenp6Zo/f75iY2M9HToAAABQ7jBCBgAAAADKKbPZrFmzZikpKUkjRozQxYsX1aRJE/3tb39TeHi4JCklJUUTJ05U3759VbNmTSUmJqpv374ejhwAAAAof0jIAAAAAEA5VqNGDU2aNKnY15s3b66lS5e6MSIAAACgYmLKMgAAAAAAAAAAABcjIQMAAAAAAAAAAOBiJGQAAAAAAAAAAABcjIQMAAAAAAAAAACAi5GQAQAAAAAAAAAAcDFfTwcAACj7zGaTzGaTQ+tYLIYsFsNFEblXRa8/AAAAAAAAbo+EDADgjpjNJlWrVkU+Po4NuiwosOj8+ctlPilR0esPAAAAAACAkiEhAwC4I2azST4+ZiV9tFtZp3JKtE5oSJBGDmgjs9lU5hMSFb3+AAAAAAAAKBkSMgCAUpF1KkeZxy94OgyPqej1BwAAAAAAwK05Nr8KAAAAAAAAAAAAHMYIGQAAAAAAAABAiTn6HFWLxWDKbkAkZAAAAAAAAAAAJVAtyF8Wi6Hg4MoOrVdQYNH585dJyqDCIyEDAAAAAAAAALitwMqVZDablPTRbmWdyinROqEhQRo5oI3MZhMJGVR4ZSohc/78eSUnJ+sf//iHcnNzFR4erj/+8Y+KiooqsvzKlSv12muvFVr+8ccfq2HDhq4OFwAAAAAAAADKnaxTOco8fsHTYQBlTplKyCQkJOjMmTNKTk5WjRo1lJqaqsGDBys9PV2NGjUqVP7gwYNq166dkpOT7ZbXqFHDXSEDAAAAAAAAAADIsacvedCRI0e0Y8cOvfnmm4qKitJ9992ncePGKSQkROvWrStyne+++04RERGqWbOm3T8fHx83Rw8AAAAAAAAAACqyMpOQqV69umbPnq3IyEjbMpPJJMMwdOFC0cPjDh48qMaNG7srRAAAAAAAAAAAgCKVmSnLgoOD1aVLF7tlGzdu1NGjR9W5c+dC5c+ePauffvpJX375pRYuXKjz58+rRYsWGjlypO699947jsfXt8zksryWj4/z+/BO1kXZYG1j2vpn3vqZKe24imt7dx4LjryXt7ZLWcNnvuKi7QEAAAAAFUWZScjcbPfu3Ro7dqy6d++ubt26FXr9u+++kyT5+Pho8uTJunz5smbOnKnnnntOa9eu1d133+30e5vNJlWv/iun18edCw6u7OkQ4Ca0denw1v14q7g8GbO73ttb28WT2CcVF20PAAAAACjvymRCZsuWLRo5cqRatGih5OTkIst06NBBX3zxhapWrWpb9te//lVdu3ZVenq6hgwZ4vT7WyyGLl687PT6uMHHx+z0xZeLF6+ooMBSyhHBm1iPD9r6Z976mSntuIpr+zt5n9KIqzje2i5lDZ/5iou2937BwZUZwQQAAAAApaDMJWQWLVqkiRMnKjo6WklJSfLz8yu27C+TMZJUpUoVhYaG6tSpU3ccx/XrXDDwpIICC21QQdDWpcNb9+Ot4vJkzO56b29tF09in1RctD0AAAAAoLwrU7e6paamavz48RowYID+/Oc/3zIZk5qaqvbt2+vq1au2Zbm5ufrxxx/VuHFjd4QLAAAAAAAAAAAgqQwlZA4fPqxJkyYpOjpasbGxOnPmjE6fPq3Tp08rJydHBQUFOn36tC0B07VrVxmGocTERH3//ff6+uuvFR8frxo1aqhv374erg0AAAAAAAAAAKhIykxCZtOmTbp27Zo2b96szp072/2bOHGiTpw4oc6dO2vDhg2SpDp16mj+/Pm6dOmSnn32WQ0aNEhBQUFasGCBAgICPFwbAAAAAAAAAABQkZSZZ8jExcUpLi7ulmUOHjxo9/cDDzygOXPmuDIsAAAAAAAAAACA2yozI2QAAAAAAAAAAADKKhIyAAAAAAAAAAAALkZCBgAAAAAAAAAAwMVIyAAAAAAAAAAAALiYr6cDAFBxmc0mmc2mIl/z8THb/dfKYjFksRguj81Rt6pLabl5X7iKo3VxV1wAyo9ffs8U931/M2/9/gcAAEDF48w1AM5nAUgkZAB4iNlsUrVqVW57AS44uLLd3wUFFp0/f9mrTmJKWpebFVgM+bg4ieMoZ+sCACVV3PfMzd/3N/PG738AAABUPE5fA+B8FoBIyADwELPZJB8fs5I+2q2sUzklWic0JEgjB7SR2WzyqhMYZ+rSOqKWnu/VxKl1XOlO6gIAJVGevv8BAABQ8XA+C+BOkJAB4FFZp3KUefyCp8MoFY7UJbRWoNPruIO3xgWg/ChP3/8AAACoeDifBeAM5qQBAAAAAAAAAABwMRIyAAAAAAAAAAAALkZCBgAAAAAAAAAAwMVIyAAAAAAAAAAAALiYr6cDAAAAAAAAAIDyzsen5PfGO1IWQNlBQgYAAAAAAAAAXKRakL8sFkPBwZU9HQoADyMhAwAAAAAAAAAuEli5ksxmk5I+2q2sUzklWqd1RC0936uJiyMD4G4kZAAAAAAAAADAxbJO5Sjz+IUSlQ2tFejiaAB4ApMRAgAAAAAAAAAAuBgJGQAAAAAAAAAAABcjIQMAAAAAAAAAAOBiPEMGAAAAAAAAQIVkNptkNptKXN7Hh/vbATiPhAwAAAAAAACACsdsNqlatSokWQC4DQkZAAAAAAAAABWO2WySj49ZSR/tVtapnBKt0zqilp7v1cTFkQEor0jIAAAAAAAAAKiwsk7lKPP4hRKVDa0V6OJoAJRnjMcDAAAAAAAAAABwMRIyAAAAAAAAAAAALkZCBgAAAAAAAAAAwMVIyAAAAAAAAAAAALgYCRkAAAAAAAAAAAAXIyEDAAAAAAAAAADgYr6eDgCOM5tNMptNJS5vsRiyWAwXRgSUL45+xnx8yG2XN460Ke3v3fjNhDdy9LiUODYBAAAAoDwgIVPGmM0mVatWxaELgAUFFp0/f5lOPFACznzGUH5UC/KXxWIoOLiyp0NBKeA3E97I2d8Zjk0AAAAAKPtIyJQxZrNJPj5mJX20W1mncm5bPjQkSCMHtJHZbKIDD5SAo58xSWodUUvP92ri4sjgDoGVK8lsNtH+5QS/mfBGzvzOcGwCAICKiFHFAMojEjJlVNapHGUev+DpMIByy5HPWGitQBdHA3ej/csXfjPhjTguAQAAiseoYgDlFQkZAAAAAAAAAC5lMpnk61uyBIuPj5lRxQDKJRIyAAAAAAAAAFwqKCjA4REvjCoGUN6QkAEAAAAAAADgUo6MeOFZnQDKKxIyAAAAAAAA5QQPQoc3K+mIlzt5Vqcjo3AcHbEDAHeKhAwAAAAAAEA5wIPQUZFVC/KXxWIoOLiyp0MBgGKRkAEAAAAAACgHzGYTD0KHWzgyEstdo1ACK1eS2Wxy6PhnajQA7kZCBgAAAAAAoBzhQehwJWdHYrmLI8f/nUyNBgDOICEDAAAAAAAAoEScGYnFSBQAuIGEDAAAAAAAAACHMBIFABznnWMLAQAAAAAAAAAAyhFGyAAAAAAAADjIZDLJ19ex+1wtFkMWi+GiiODtzGaTzGZTictzvABA+UNCBgAAAAAAwEFBQQEOP9S8oMCi8+cvc5G9AjKbTapWrYpDxwzHCwCUPyRkAAAAAAAAHOToQ81DQ4I0ckAbmc2mEl9gd3REhaMJovLIW0cumc0mh44ZZ44XAID3IyEDAAAAAAAqNEcSH79MejjyUHNnYnJ0RAW8f+SSK48ZoLxhmj+URyRkAAAAAABAheWtiQ9HR1RIUuuIWnq+VxMXR+bd3DFyCYDrMc0fyisSMgAAAACAcsXRO2ol7qqtyLw98eHIiIrQWoEujqZscMcoFHdNJ+foes58lzE1HryRu6b5c+acwRmcZ8CqzCVkLBaL/vKXv2j58uW6ePGi2rRpozfffFMNGzYssvy5c+c0YcIEbdu2TZL029/+VmPGjFGVKlXcGTYAAAAAeC1H+1nezNnRDtxVCxIfKCl3jKqqFuQvi8VQcHBlh9Zz9LvMW0eIAVbeODVkgcWQj4NJHM4zYFXmEjIzZ87UkiVL9M477ygkJERTp07Vyy+/rHXr1snPz69Q+VdffVV5eXmaN2+eLl68qHHjxuntt9/W5MmTPRA9AAAAAHgfR/tZ3syZ0Q5MWQR3KumFP3dfIPfGkRjuvKPckfr7+JhdPqoqsHIlmc0ml3+XefsIMZQvjn7O3PEezh7/nGc4htHLPytTCZn8/HzNnTtXo0aNUpcuXSRJ06ZN00MPPaTNmzerd+/eduW/+uorffHFF9qwYYMaNWokSfqf//kfvfTSS0pISFBISIjb6wAAAAAA3sTRflZZwYOz4W2cHfHgat48EsMdd5TfSbu4Y1SVu77LGCEGV3LH95+7P8ucZ5Qco5ftlamEzIEDB3Tp0iV16NDBtiw4OFhNmjTRl19+WaijkJGRoZo1a9qSMZLUrl07mUwm7d69W7169XJb7AAAAADgjRztZ+Fn7rrb3xtHLjjzPhV9nn5HRzy4axTCnYzEqFTJRwUFlhKt4+id6O66o9yZ+nv7CBF3jEIAHOGOz1l5/Cy743fTHb+ZdzJ62ZHfGW/9/b+ZyTAM74/y/3z88ceKj4/Xnj17FBAQYFs+fPhwXb16VR988IFd+QkTJmjPnj1avny53fKOHTvqpZde0uDBg52KwzA817gmk2Q2m3U+J0/XS3Aw+vqY/y9DXLID190cqYvk/fWBY7y1/R2Ny9/PR0FV/LxyHWf2mTvqf7u4zGZzka+5OjZvbpeKoLh2v9NtlpffzPLEW7//3eVO6u+JM3ez2SSTyfUXUOE5jvazSqIs9Zkk579nTCbHPh+GYcjRLrij7+HN7+Pse7ij/t7YB/DmfoZfJbOCqvg59fvgynMzs9ns0HtI3rufvbVdnI2tPB3/3rqOt8blrnW8NS7J8e8za9/YmfMMd/xmOsPR31lnvs9cef5pPb8srk/mSJ+pTI2QuXLliiQVmsPY399fFy4UHiJ25cqVIuc79vf3V15entNxmEwm+fh4tlNaLcjfofLWkxJv5GhdJO+uDxzjre3vTFzevI6j+8wb4iruNXfE5g31r6hcsU/K029meVLRPzMVvf7wLo72s0qiLPaZJNd/zpxJSFT093Fm+87G5a3n894al7PccW7mzfvMHe3vjPJU/4q+jrfG5a51vDUuybHvM2e++9z5m+kMV3+fueP8szTOFctUr856t1Z+fr7d8ry8PFWuXHh+wICAgEJlreWrVKnimiABAAAAoAxxtJ8FAAAAwDllKiFTp04dSVJ2drbd8uzsbNWuXbtQ+dq1axcqm5+fr/PnzyskJMR1gQIAAABAGeFoPwsAAACAc8pUQiYiIkKBgYHatWuXbdnFixe1f/9+RUVFFSrftm1bnTx5UkeOHLEts67bunVr1wcMAAAAAF7O0X4WAAAAAOeUqWfI+Pn5aeDAgUpKSlKNGjVUr149TZ06VbVr11Z0dLQKCgp09uxZBQUFKSAgQC1atFDr1q31hz/8QW+99ZYuX76sN998U0888QQjZAAAAABAt+9nAQAAACgdJsMwDE8H4YiCggIlJycrPT1dV69eVdu2bfXGG28oNDRUWVlZ6t69u9555x3169dPknTmzBm9/fbb+uyzz+Tv76/f/va3GjNmjPz93fNQNAAAAADwdrfqZwEAAAAoHWUuIQMAAAAAAAAAAFDWlKlnyAAAAAAAAAAAAJRFJGQAAAAAAAAAAABcjIQMAAAAAAAAAACAi5GQAQAAAAAAAAAAcDESMgAAAAAAAAAAAC5GQgYAAAAAAAAAAMDFSMgAAAAAAAAAAAC4GAkZlBknTpxQQkKCOnXqpLZt22rw4MH6/vvvPR0W3GjcuHF67bXXPB0GXMRisei9997TQw89pBYtWujFF1/UkSNHPB0W3GzmzJmKiYnxdBhwg/Pnz+uNN97Qr3/9a7Vu3VrPPvusMjIyPB0WAHidjIwMPfDAA9q1a5fd8p07d6pfv35q3ry5evTooVWrVnkmwArk6NGjGjp0qKKiohQVFaU//OEPOnnypF0Z2sX9SnKtgHbxvOL687SN+9H39j5F9YO//fZbDRw4UC1bttTDDz+sOXPmeCi6iuV2/dTSaBcSMigT8vPzNWTIEJ05c0YffPCBUlNTFRQUpBdeeEFnz571dHhwsYKCAk2ePFkrVqzwdChwoZkzZ2rJkiWaMGGCli5dKpPJpJdffln5+fmeDg1uMm/ePL333nueDgNukpCQoD179ig5OVkrVqxQ06ZNNXjwYGVmZno6NADwGjk5OUpMTJTFYrFbnpmZqdjYWHXp0kWrVq3S008/rbFjx2rnzp0eirT8y8vL06BBgyRJixcv1sKFC3X69GnFxsbKMAxJtIsnlORaAe3iWbfqz9M2nkHf27sU1Q8+d+6c/t//+3+65557lJaWpvj4eE2fPl1paWkeirLiuFU/tbTaxddFsQOlKiMjQ9999522bdumkJAQSdKUKVPUrl07bd26VU8++aSHI4SrZGZmasyYMTp27Jjq1q3r6XDgIvn5+Zo7d65GjRqlLl26SJKmTZumhx56SJs3b1bv3r09HCFc6dSpUxo3bpx2796te++919PhwA2OHDmiHTt2aPHixWrdurWkG3dNbtu2TevWrdPw4cM9HCEAeIe33npL9evX1/Hjx+2Wz58/XxEREbbvy/vuu0/79+9XSkqKOnbs6IlQy73//ve/atasmd58803VqFFDkjRo0CC98sorOnfunGrUqEG7eEBJrhXQLp5zu/48beN+9L29x636wcuWLZOfn5/eeust+fr6qlGjRjpy5Ig+/PBD9e/f30MRl3+366cGBASUSrswQgZlwv3336/Zs2fbTrCsDMPQhQsXPBQV3OGLL77QAw88oHXr1ik0NNTT4cBFDhw4oEuXLqlDhw62ZcHBwWrSpIm+/PJLD0YGd/jmm29UtWpVrVmzRi1atPB0OHCD6tWra/bs2YqMjLQtM5lM/K4DwC+sXr1aX331lcaOHVvotYyMDLvzJknq0KGDdu/ebRutgdJ17733avr06bZkTFZWllJTU9W0aVNVr15dEu3iCSW5VkC7eM7t+vO0jfvR9/Yet+oHZ2RkqG3btvL1/XksRYcOHXT48GGdOXPG3aFWGLfrp5ZWuzBCBmVCzZo1bZl7qwULFigvL0+dOnXyUFRwh2effdbTIcANrHNv16lTx255rVq1dOLECU+EBDfq1q2bunXr5ukw4EbBwcGFftc3btyoo0ePqnPnzh6KCgC8R1ZWliZOnKiZM2fqV7/6VaHXT548qdq1a9stq1Wrlq5cuWIbrQHXefHFF7Vjxw5VrVpV8+fPl8lkkkS7eEJJrhXQLp5zu/48beN+9L29x636wSdPnlRYWJjdslq1akm6MWLzrrvucnl8FdHt+qnTpk0rlXYhIQOvkJWVpe7duxf7+vbt21WzZk3b3x9//LGmTZummJgYRUREuCNEuICj7Y7y68qVK5IkPz8/u+X+/v7cLQ9UALt379bYsWPVvXt3knMAyr3bnQNv27ZNiYmJevrppxUVFaWsrKxCZa5evVrovMn6N88AcI4jfZNRo0Zp+PDhev/99zVo0CCtWrVKderUoV1coDSuFdAurlEa/Xnaxv3oe5cNRX02/P39Jd14phnc4+Z+6jvvvFMq7UJCBl4hJCREGzZsKPb1X94VsXjxYo0fP169evXSmDFj3BEeXMSRdkf5FhAQIOnGSbf1/6UbP2iVK1f2VFgA3GDLli0aOXKkWrRooeTkZE+HAwAud7tz4OXLl+vy5cuKj48vtoy/v3+hi5XWvzl3co4jfZMHHnhA0o3nLjz88MNKS0vTsGHDaBcXKI1rBbSLa5RGf562cT/63mVDQEBAoc+G9YJ/lSpVPBFShVNUP7W02oWEDLxCpUqV1KhRo9uWS0pK0ocffqiYmBiNGzfONjQcZVNJ2x3ln3W4dHZ2tho0aGBbnp2dzSg4oBxbtGiRJk6cqOjoaCUlJRW62wgAyqPbnQOnp6crOztb7du3lyTbcxRefvlltWvXTikpKapTp46ys7Pt1svOzlaVKlUUFBTkuuDLsdu1y/Hjx7Vv3z717NnTtqxy5coKDQ21tQXtUvpK41oB7eIapdGfp23cj7532VC7du0iPxuSCj0zC6WvuH5qabWLufRCBVxr6tSp+vDDD5WYmKjXX3+dZAxQjkRERCgwMFC7du2yLbt48aL279+vqKgoD0YGwFVSU1M1fvx4DRgwQH/+859JxgDA/1m4cKHWr1+vVatWadWqVZo9e7YkacKECZo4caIkKSoqSl988YXdejt37lTr1q1lNtPNd4Vvv/1Wr776qo4ePWpbdvHiRR0+fNh2UZp28YzbXSugXbwXbeN+9L3LhrZt22r37t0qKCiwLdu5c6fuvfdenh/jYrfqp5ZWu/DthjJh165dSklJUUxMjB5//HGdPn3a9u/SpUueDg/AHfLz89PAgQOVlJSkTz75RAcOHNAf/vAH1a5dW9HR0Z4OD0ApO3z4sCZNmqTo6GjFxsbqzJkztt/1nJwcT4cHAB5Vr149NWzY0Pavbt26km7ceWm9+zImJkZ79+5VUlKSMjMzNXfuXG3atEkvvfSSJ0Mv1379618rPDxciYmJ+uabb7Rv3z7Fx8erevXq6t+/vyTaxRNKcq2AdvFetI370fcuG/r376/c3FyNGzdOP/zwg9LT0zV//nzFxsZ6OrRy7Xb91NJqF6YsQ5mwbt06STfuFlu4cKHda8OGDbvl/MoAyoZXX31V169f1+uvv66rV6+qbdu2mjNnDnfNA+XQpk2bdO3aNW3evFmbN2+2e61v37569913PRQZAJQN999/v2bOnKmpU6dq/vz5Cg0N1dSpU9WxY0dPh1Zu+fn5KSUlRZMnT9bgwYOVn5+vzp07691331VgYKAk2sUTSnKtgHbxXrSNZ9D39n533XWXUlJSNHHiRPXt21c1a9ZUYmKi+vbt6+nQyrWS9FNLo11MhnVCWgAAAAAAAAAAALgEU5YBAAAAAAAAAAC4GAkZAAAAAAAAAAAAFyMhAwAAAAAAAAAA4GIkZAAAAAAAAAAAAFyMhAwAAAAAAAAAAICLkZABAAAAAAAAAABwMRIyAAAAAAAAAAAALkZCBkCF8+mnnyo+Pl7dunVTZGSk2rdvr5deeklbt251Wwz5+fl688031a5dOzVv3lwTJkwoctlrr72m8PBwZWVlObT9GTNmKDw8XLt27XJRDez9+OOPDpXPyMhQYmKioqOj1bx5c0VFRSkmJkarVq2SYRh2ZZ3dB2VVt27dFB4ervDwcEVFRUmSdu3apfDwcL322mvFrpeVlaXw8HDFxMQUeu3m9rm5nKv38cSJE211cudxCQAAANeib1X6bte3evPNNxUeHq60tLRblsvKylJERIReeOGFEr+3td8xY8aMEq9TmqxtZP337bffSrrRf+nWrdst17X2o2525MgRu79jYmLsyqWnpys8PFzp6emlUIPCtmzZYlcnT+1bAN7D19MBAIC75ObmauzYsdq0aZOaNm2qfv36qVatWjp58qRWrVqloUOH6sUXX9To0aNdHsuyZcu0ZMkSderUSY888ojuv//+IpcZhqGOHTuqRo0aDm0/OjpaDRo0UKNGjVxUg58NHTpUubm5Wrhw4W3LXrt2TZMmTVJqaqruuece9e7dW3Xr1tXZs2e1fv16jR49Wtu2bdPUqVPl4+Pj8ti9VfXq1TVmzBhVqlTpjrdVVPtMmTJFd9999x1vu6T69OmjyMhIbd68WZs3b3bb+wIAAMA16Fu5Rkn6Vk8++aSWLFmitWvXqn///sWWs97s9uSTT7oiVJcaM2aMqlevrrp1697Rdj788ENNnz5d+/btsy2Li4tz6z6JjIzUlClTdOjQIc2aNctt7wvAe5GQAVBhvP7669q0aZMSExM1ePBgu9fi4uI0ePBgzZ07V/fdd59+97vfuTSWgwcPSpISExMVEREhSbY7nH65TJJatWrl8PYjIiLstuFKW7duVbt27UpUdtq0aUpNTVVMTIzGjh0rs/nngZpDhgzRqFGjtG7dOjVo0EAjRoxwUcTer0qVKurTp0+pbKuo9imtbZdUZGSkIiMjdfToURIyAAAA5QB9K9coSd+qWbNmthE7p06dUkhISJHlVq9erapVq6pHjx6uCNWlfvOb3yg0NPSOt7Nt2zZdu3bNblmnTp3ueLuOqF27tvr06aNdu3aRkAEgiSnLAFQQ27dv18aNG9WzZ89CHQZJ8vPz06RJk+Tj46MFCxa4PB7rSWFgYOAtl5Unhw4d0ty5c9WsWTO9/vrrdskYSTKbzXr77bcVFBSkpUuXKi8vz0ORAgAAACgOfSvP69+/vywWizZs2FDk67t379bRo0f12GOPyd/f383RAQBuhYQMgAph1apVklTk8zWs6tevr7Vr12rlypV2yzMzM5WQkKAHH3xQkZGR6t69u959911duHCh0DYOHTqkhIQEdezYUZGRkerRo4f+/Oc/6+rVq5J+fs6H9T26d+9um0v25mVS0c/2MAxDixcvVr9+/dSyZUs9+OCDiouL0zfffGMrU9w8x5999pmef/55tW7dWi1atFC/fv0KzZVrnTd4/fr1mjVrlqKjoxUZGalu3bpp+vTpun79ul05Sfriiy9uO+/u6tWrZRiGBg4cWGyZwMBALV++XP/4xz8KdRyOHz+uhIQEtWvXTi1bttQzzzyjHTt2FNrGrl27NHToUD344INq2rSp2rZtqxdeeEH/+te/7Mp169ZNsbGx2rVrlwYMGKBWrVopKipKw4YNK3Le5nXr1tn2+UMPPaSkpCQtX768yP28du1aPfXUU2rZsqVatWqlAQMGuHUebenW7VPcs2ZuVtJ6bNiwQc8884ytbfr06aO5c+fKYrGUbqUAAADgcfStbvBk3+rxxx9XpUqVtHbt2iJft7aRdWqua9euac6cOerfv79atWqlyMhIPfzww3r99dd15syZYt9HutFvKur5LcU9e2Xv3r2Ki4tTu3bt1KxZMz366KOaO3euCgoKbvk+pS08PFxffPGF7f+tz+O8+RkyxSlpPfbv36+4uDg99NBDtmN6woQJOn/+fKnXCUD5wJRlACqEvXv3ytfXVy1atLhluZvnBc7IyNDgwYPl4+OjZ599VvXq1dN//vMfzZs3T1u3btWSJUtscxDv3btXgwYNUmBgoAYMGKAaNWroP//5j2bNmqWdO3dqwYIFqlGjhqZMmaJly5YpIyNDY8aMUdWqVWU2m+2WVa9evdgYR48erdWrVysqKkojRoxQfn6+Fi5cqIEDB+qjjz5SkyZNilzvo48+0vjx49WsWTMNGzZMZrNZn3zyicaMGaNvv/1W48aNsyufnJwswzD09NNPKzg4WOnp6Zo5c6ZMJpNeffVVNWrUSFOmTFFiYqLuu+8+xcXFqXXr1rdsA0lq06bNLdvg3nvvLXJ5XFycoqKilJCQoOzsbM2fP1+xsbFauXKl7r//fknS5s2b9eqrryoiIkIvv/yyAgMD9d1332nFihV6+eWX9fHHH6tevXq2bR44cECxsbF6/PHH1adPH+3fv19LlizRgQMHtGnTJttzbFJSUjR16lQ1bdpUI0aMUE5OjhYtWlRknFOnTlVKSoo6deqkhIQE5eXlaf369Ro6dKjGjBmjQYMG3bL+pcXR9rlZSevx8ccfKyEhQZ06ddLw4cNlNpv197//XZMnT9aZM2c0atQoF9UQAAAAnkDfyvN9q+rVq6t79+76+9//rszMTLt9nZeXp40bN6pp06Z64IEHJEkjRozQJ598or59++qpp55SXl6etm3bpuXLl+u///2v5s6de8u2LKlPPvlEw4cPV2hoqF566SVVqVJFO3bs0OTJk/Xvf/9bM2bMkMlkKpX3up0pU6Zo1qxZOnTokKZMmaIGDRqUeN2S1uPYsWN64YUXVLNmTQ0aNEjBwcHas2ePFi1apL1792rp0qVuqy+AMsQAgAqgRYsWxoMPPujQOgUFBUZ0dLQRGRlp/PDDD3avLVu2zAgLCzNee+01wzAMw2KxGL179za6dOlinDt3rsiys2fPti0bPXq0ERYWZhw7dsyhZTt37jTCwsKMhIQEw2Kx2Mr98MMPRkREhBEfH28YhmG89957RlhYmPH5558bhmEYJ06cMJo2bWrExsbarWexWIxRo0YZYWFhxp49ewzDMIzPP//cCAsLMzp16mRcuHDBVvbSpUtGmzZtjM6dO9vVLywszBg4cOBt92evXr2MsLAw4+rVq7ct+0vWfTB27Fi75StWrDDCwsKMGTNm2JY98cQTRqdOnYxLly7ZlV20aJERFhZmzJ0717asa9euRlhYmLF+/Xq7smPHjjXCwsKM7du3G4ZhGCdPnjQiIyONfv36GXl5ebZyR44cMZo3b263n/fs2WOEhYUZb731lt028/PzjZiYGKNp06bGiRMnblnfrl27Gl27drVbZm2T0aNHF7vesWPHimyLkiy7+ThzpB5DhgwxWrZsaRQUFNjKXb9+3Rg4cKARGxtrt/7NxyUAAADKHvpWnu9bGYZh/POf/zTCwsKMadOm2S1fv369ERYWZnz00UeGYRjGt99+a4SFhRnjx48vtI3+/fsbYWFhtv1sjfe9996zlSmqf2IYhpGWlmaEhYUZaWlphmEYxuXLl4327dsbffv2tes3GYZhTJs2rci+182KajfDuLFfiorhl6z9u18aOHDgbZfdST1SUlLs2tvqnXfeMfr27WucPHnStqyofQugYmLKMgAVgo+Pj204eEnt379fR44c0eOPP17o7q4nn3xSDRs21KZNm1RQUKCDBw/q+++/V5cuXWSxWHT27Fnbv65du8rf379UHma+ZcsWSdJLL71kd6dNo0aNtGLFCv3pT38qcr2PP/5Y165d0yOPPKJz587ZYjt37px69+5tK/NLXbt2VXBwsO3vKlWqqFGjRrcd0l4c62gTR9vBql+/fnZ/t2zZUpKUnZ1tW7Z8+XKtWbNGVapUsS3Lz8+37atLly7ZbSMgIEA9e/a0W9asWTNJ0unTpyXd2Of5+fkaPHiw/Pz8bOUaNGigxx9/3G7d9evXS5J69epldwzk5OSoV69eunbtmj799FOH6+5ujtSjdu3aunz5st5++23t379fhmHIx8dHCxcu5KGVAAAA5RB9K8/3rSSpc+fOqlOnjtatW2e3fOXKlQoICNBjjz0mSYqIiNDu3buVkJBgV+7MmTO2mC5fvux0HFb/+te/dO7cOfXs2VO5ubl27darVy9JKpV2czVH6lGnTh1JN2YX2Llzp/Lz8yXdmB4vPT1dISEhnqkEAK/GlGUAKoSQkBAdPnxY+fn5dhfVb+Xo0aOSZJsO65dMJpMaN26sI0eO6Ny5czp8+LAkacmSJVqyZEmR2zt+/LiT0f/MOt/xzZ0YSWratGmx61njS0xMLLbMzfHdfffdhcr4+fk5PfdvSEiIDh48qJ9++km/+tWvHF6/Zs2adn9bnzFjPemVJF9fX2VlZWnmzJk6fPiwsrKylJWVZYvZMAy7bVSvXt2WKLKyHh/W559Y9919991XKKab28Fa9lbPyXHmOAgICJB062SWtY7WsnfCkXrEx8fr22+/tR37NWrUUIcOHfSb3/xGPXv2lK8vpxoAAADlCX0rz/etJMlsNqtv376aOXOmvvrqK7Vq1UqnT5/Wjh079OijjyooKMjuvTZs2KAdO3bo2LFjysrK0unTp22JqNJ49qN1vyQnJys5ObnIMs62m7+//22TgNevXy/VvlBJ6tGzZ0/1799f6enpGjRokAICAtSmTRt16dJFTzzxhKpWrXrH8QAof7hKAqBCaNu2rTIzM/Xvf/9bHTp0KLbcmDFjdO3atVueXFtZT1r9/Pxs/z9gwAD95je/KbJ8aVyYvnbtmlPrWU/0x48fr9DQ0CLLWOdrtjKbS3cQZdu2bbVt2zZlZGSoYcOGxZabNm2aDh8+rPj4eLsOW0ni+eCDD5ScnKx69eopKipK7du3V3h4uK5fv67f//73hcqXZJvWhE9RnU1rUsjKup9nzpypypUrF7k9611UjrCeyOfm5hZbxvog1F/eeecsR+px9913a9myZfr666/1z3/+U59//rk2b96sDRs2qGXLllq0aJEqVap0xzEBAADAO9C38nzfyqpfv356//33tXbtWrVq1Upr165VQUGBnnzySVuZ3NxcvfDCC/rmm2/Upk0bRUZGqk+fPmrWrJnmz5+vNWvWOPXeNyeTrO326quvqlWrVkWu48yNedKN/lBOTk6xrxuGoYsXL5ZKX8iRevj4+GjSpEn6/e9/r08//VT/+te/lJGRoR07duiDDz7QkiVLHHp2DYCKgYQMgArh0Ucf1ZIlS5Samlpsp+HEiRNas2aNgoODVa1aNdWvX1+S9P333xcqaxiGMjMzFRgYqODgYLsT8QcffNCurMVi0aZNm2zbuxPW9zl8+LDCw8PtXktOTtbVq1c1duzYYtcLDg4uFF92drb27t1bKvHdyiOPPKLp06dr8eLF6tevX5EPN7x06ZKWLFmiS5cu6Y033nBo+ydOnNC0adPUtm1bzZ071y6B4mwnQ5LuvfdeSdKhQ4cKjZKx3j1lZd3PtWrVsk19ZnXkyBEdOnTIbjq1kgoNDVVgYKAOHDhQbJn9+/dLUrEPHnX0/aTb18MwDH3//fe6evWqmjdvbnuoaW5urkaPHq0tW7Zo+/bt6tq16x3HBAAAAO9A38rzfSur+vXrq3379tq4caNef/11rV27Vg0bNlS7du1sZRYsWKB9+/bp7bff1jPPPGO3/k8//XTb9/Dx8Sk09bP08xTPVtb9EhAQUGi/5Obmavv27YVmPSipiIgIbdu2TceOHSty3x4+fFhXrlxR+/btndr+LzlSj+PHj+vo0aPq2LGjYmJiFBMTo+vXr2vOnDlKTk7W4sWLNXr06DuOCUD5wjNkAFQIbdu2VXR0tDZt2qS//e1vhV7PycnR8OHDdf36dQ0bNkx+fn5q0qSJ6tevrzVr1igzM9OufFpamo4ePaoePXpIkiIjI1WvXj2tXLnSNhzfaunSpRoxYoTS0tLuuB7WO8Tmz59vt/zo0aOaN2+ejh07VuR6PXr0kNls1qxZs3T16lW7195991298sor2rdvn1Mxmc3mEg1xr1+/vgYOHKivv/5akyZNKrROXl6eRo0apfPnz+v5558vclj/rZw/f16GYei+++6zS8ZcuXJFCxculOTc82t69OghX19fLVq0yG797OxsrV271q7sb3/7W0nSjBkz7O4Yu3btmsaMGaO4uDidOnXK4Rh8fX0VHR2tEydOFDltw6VLl7Ro0SL5+fnZjkmrkraPM/UwmUyKj4/X0KFD7e5YCwwMtHVqb54SDgAAAGUbfSvP961+qX///jp79qxWrVql/fv3242OkaRz585JUqGk01dffaUvv/xSUuHRLr9Uq1YtnT171m66sfz8fG3cuNGuXOfOnfWrX/1K8+bNs72n1axZszR8+HD985//dKhuVo888ogkafr06YX2j2EYmj17tqQbycJfso5McmSfOlKPWbNmadCgQdqzZ4+tjK+vr1q0aCGJvhCAojFCBkCFMWnSJF24cEHvvvuu1q5dqx49eqhGjRr68ccftXLlSp09e1YDBgzQgAEDJN04eZowYYKGDBmi3/3ud3r22WcVGhqqvXv3auXKlapXr55GjhxpVzY2Nlb9+vXTM888owYNGujrr79WWlqaGjRoUOSUWY566KGH9OijjyotLU0nT55Ut27dlJubq48++kj+/v4aNWpUkevdc889io+P1/Tp09WnTx/17dtXwcHB+uSTT2wjGG6+kF9Sd911lw4cOKDU1FRFRUUpLCys2LJ//OMfderUKS1YsECfffaZevfurZCQEP33v//VmjVrdPz4cUVHR2vEiBEOx9G4cWM1bNhQaWlp8vf3V1hYmLKzs7Vy5Urb3Vu3GuZenHr16mno0KGaMWOGnn32WfXu3VuXL19Wamqq7eGX1tE+HTt21JNPPqkVK1boqaeeUq9eveTn56c1a9Zo7969eu6559S8eXOHY5CkUaNG6auvvtJbb72l7du3q0OHDqpcubKOHj2qtWvX6uTJk3rjjTcK3THmSPtYOVKP+Ph4/fGPf9TTTz+tfv36qWrVqjpw4ICWLl2qBx54oNBdZQAAACj76Ft5vm9l1bNnT40fP16TJ0+Wr6+vnnjiCbvXu3XrpoULF2rkyJF67rnnFBQUpH379mnlypXy8fHRtWvXdPHixWK3379/f2VkZGjw4MF67rnnZLFYlJaWViiJExwcrDfeeENjxozRY489pqefflq1atXS559/rg0bNqh58+Z67rnnnNovffv21datW7V27Vr9+OOP6tmzp+666y799NNP2rp1q7766iv16dNHjz32mN161pv83nvvPbVr165EfRNH6jFo0CBt3LhRQ4YM0TPPPKPQ0FCdOnVKixcvVlBQkJ566imn6gugfCMhA6DCCA4O1pw5c7Rhwwalp6crNTVVZ8+eVWBgoFq0aKEBAwbo17/+td06HTp00LJlyzRz5kylpaUpNzdXdevW1Ysvvqi4uDi7OWoffPBBLVu2TO+//77S0tKUk5Oj2rVr67nnnlNsbKzTw7NvNnXqVDVv3lwrVqzQ5MmTVbVqVUVFRWn48OG26bWK8vvf/16NGzfWggULNHv2bFksFtWvX1+JiYmKiYlx+u6dxMREJSUladKkSYqLi7tlp8HPz0/Tpk1T7969tXz5cq1cuVLZ2dmqXLmymjRpooSEhEJ3NZVUpUqVlJKSoqSkJK1fv17Lli1TrVq1FBUVpVdeeUUDBgzQ9u3bndr2sGHDdPfdd2vRokVKSkpS9erV1b9/f+Xl5elvf/ub3YicCRMmqGXLllq6dKlmzJghHx8f3XPPPZowYUKhu9UccddddyktLU0LFy7U5s2b9d577+nKlSuqWbOmWrZsqeeff14tW7YstJ4j7fNLJa3Ho48+qsqVK2vevHmaM2eOcnJyVKdOHcXExGjo0KGlMr83AAAAvAt9K8/3raz8/f316KOPKjU1Vd26dVOtWrXsXu/YsaOSk5P14Ycf6i9/+Yv8/PxUt25djRgxQo0bN9aQIUP02WefFZqq2Kpfv366dOmSUlNTNWXKFN19993q06ePunbtqqefftqu7BNPPKE6deooJSVFCxYsUF5enurWrauhQ4dq8ODBTk3fLN24AW7GjBlauXKlVq9erXnz5unChQuqVq2aGjdurOTkZPXu3bvQei+//LK+++47paSkaM+ePSW+Wayk9WjUqJEWLVqk999/X6tWrdKZM2dUrVo1dejQQa+88grPjwFQJJNhGIangwAAwFtdvnxZBQUFCgoKKvTan/70Jy1btkyffPJJsQ/0dFS3bt0kSVu3bi2V7XmTGTNm6C9/+YsWLFhQKvM7AwAAACg/XnvtNa1cubJU+1feYteuXXr++ec1bNgwxcfHezocAB7EM2QAALiF77//XlFRUfrrX/9qtzwnJ0effvqpatasqXr16nkoOgAAAAAAAJQVzCMCAMAtREZGKjw8XLNmzdLZs2cVERGh8+fPKz09XWfOnNH//u//2p4hU1ouX76s1atXq1KlSurVq1epbtsT9u3bp8zMTB08eNDToQAAAADwclu2bFH16tX18MMPq2rVqp4O546cPHlSu3bt0qFDhzwdCgAvQUIGAIBb8PHx0bx585SSkqItW7Zo+fLlqly5spo3b6633nrLJVNvnTt3TomJiQoKCioXCZnVq1drwYIFng4DAAAAQBnwzjvvSJJWrVpV5hMy+/btU2JioqfDAOBFeIYMAAAAAAAAAACAi/EMGQAAAAAAAAAAABcjIQMAAAAAAAAAAOBiJGQAAAAAAAAAAABcjIQMAAAAAAAAAACAi5GQAQAAAAAAAAAAcDESMgAAAAAAAAAAAC5GQgYAAAAAAAAAAMDFSMgAAAAAAAAAAAC4GAkZAAAAAAAAAAAAF/v/xm8DG5lkWdgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000064.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000040.00.0<NA>-45.000000True
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000040.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-42.15449372.029.0<NA>-42.154493True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-36.875688104.00.0-2-38.875688False
695coef_calib_zeroautohhjointtou_SHARED3_disc-34.246255124.00.0-2-36.246255False
519coef_calib_autodeficienthhind_WALK_TRANSIT_school-31.716434263.022.0-2.481112-34.197546False
503coef_calib_zeroautohhindivtou_SHARED2_school-31.000000311.00.0-2-33.000000False
655coef_calib_zeroautohhjointtou_SHARED3_maint-29.000000124.00.0-2-31.000000False
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-30.97066612.00.0<NA>-30.970666True
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -42.154493 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -36.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -34.246255 \n", - "519 coef_calib_autodeficienthhind_WALK_TRANSIT_school -31.716434 \n", - "503 coef_calib_zeroautohhindivtou_SHARED2_school -31.000000 \n", - "655 coef_calib_zeroautohhjointtou_SHARED3_maint -29.000000 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -30.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 64.0 0.0 -45.000000 True \n", - "541 40.0 0.0 -45.000000 True \n", - "543 40.0 0.0 -45.000000 True \n", - "544 72.0 29.0 -42.154493 True \n", - "698 104.0 0.0 -2 -38.875688 False \n", - "695 124.0 0.0 -2 -36.246255 False \n", - "519 263.0 22.0 -2.481112 -34.197546 False \n", - "503 311.0 0.0 -2 -33.000000 False \n", - "655 124.0 0.0 -2 -31.000000 False \n", - "676 12.0 0.0 -30.970666 True " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_14\n", - "ActivitySim run started at: 2023-09-14 16:11:56.297978\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-14 16:59:30.777037\n", - "Run Time: 2854.48 secs = 47.574666666666666 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdvH8d9uCmmEhBCqoRhI6CUgoNJFQIoVUUCBR4qCSBFU8AFEaSo2iogUkSJFuvCIUkSKKCAoIBJ6QojUkACBhJSd9w/eXVmSQHrC5vu5Li9h5syce2Znl733njnHZBiGIQAAAAAAAAAAAAAA7nHmvA4AAAAAAAAAAAAAAIDsQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcQLqtWLFCwcHBGf7vxRdfzOvQ023KlClpHkeVKlVUq1YttWjRQq+99po2btyY1+Hi//3xxx+216lXr153bT9s2DAFBwdr6NChdsut+9ixY0e2x9izZ0/b/vft25ft+79VUlKSTp48maN93C40NFRjx45Vu3btVK9ePdWoUUNNmzZVr169tGDBAsXHx2d7nxcuXNDQoUP10EMPqXr16mrcuLG2bt0qSVq1apWeeOIJ1apVS/Xq1VPPnj21c+dO22uQlJSU6X5Pnz5t2094eHh2HQ6gmJgYXbhwIVv2ldbnXE5tBwBAQUSOTI6cX5Ej2yNHJkcuiAzD0PHjx3Otv+z+vDAMQ3PmzFGbNm1Uo0YNNWjQQP/9739t//Y2adIkS/vPrus/uxw9ejTFshYtWig4OFhLly7N0L4yux3gaJzzOgAA9w4/Pz+FhISkWH7mzBmdOXNGrq6uql69eor1QUFBuRFetkrtWAzDUHx8vE6fPq3169dr/fr16tChgyZOnCiTyZRHkUKSli9fbvvz9u3bFRERoYCAgDyMyN6ZM2fsEoBFixapVq1aOdLX9u3bNXbsWLVu3VqDBw/OkT5uN3nyZH3xxReyWCzy8vJS2bJl5eLiogsXLmjbtm3atm2bZs2apc8//1zVqlXLlj4tFot69eql0NBQOTs7q1KlSkpMTFSZMmX0448/6q233pIk+fv7q0SJEvnqegBS8/XXX2vatGn67LPP5O/vn9fhAACAdCBHJkfOr8iR/0WOTI5cEO3fv19jxoxRuXLl9NFHH+V1OJkyZ84cffDBB5KkMmXKyMfHR/fdd18eR5X9zp8/rw8++EC///67tmzZktfhAA6FAjiAdGvatKmaNm2aYvmUKVM0depU+fv7a9GiRXkQWfa707EkJCTos88+0+zZs7VmzRrVr19fnTp1yuUIYRUXF6d169bJZDKpUaNG2rZtm5YsWZKvnl5csWKFLBaLmjZtqi1btmjdunUaPny4ihQpku19ffnll7l6Z/vy5cv1+eefy8PDQxMmTNCjjz4qJycn2/rjx4/r7bff1p9//qmePXvq+++/V9GiRbPc78mTJxUaGipJmj59uho3bmxbN2XKFElS3bp1NW/ePDk73/y6ExcXp++//16SbMsyo0SJErb9lC5dOtP7AW41YcKEvA4BAABkEDnyTeTI+Qs5sj1yZHLkgmjhwoXav3+/ypUrl9ehZNq6deskSe3atdMnn3xiW3716lXVqlVLLi4uWdp/zZo1s+X6z6rt27dr7dq1KlGiRJ7FADgqhkAHgAxydXXVm2++qZo1a0qS5s+fn8cRFWw//PCDYmNjValSJT355JOSbibTCQkJeRvY/zMMQytXrpQkPfPMMypfvrzi4+Nty+5106dPlyS9+eabatOmjV1iL0mBgYH64osv5Ofnp+joaM2bNy9b+o2Ojrb9uUGDBqmuq1u3rl0S4+7ursDAQAUGBmapbxcXF9t+sppwAQAAAPc6cuT8hRw5b5EjkyMje1iv2/r169stL1y4sAIDA1W2bNks7T+7rn8A+RcFcADIpJYtW0qSjhw5ouvXr+dxNAXXihUrJElNmjRR8+bN5ebmpqioKG3YsCGPI7tp165dioiIkIuLix566CE99thjkqQlS5bkcWRZd+XKFZ06dUqS7jhcXdGiRW3vl/3792dL38nJybY/u7q62q2zWCypLgcAAACQc8iR8wdy5LxDjgxkH65bAFlFARxArvnxxx/Vq1cvNWzYUNWrV1ejRo302muv6ddff021fXBwsIKDg+3mhbrViy++qODgYNtQTpJ0+vRpBQcH6+GHH9a5c+fUp08f1axZU/Xr19eQIUOy9Xi8vLxsf7527Zpd/8HBwQoPD091uxYtWig4ONiWlErSzp07FRwcrE6dOun48ePq3LmzatSooQcffNA23411u0OHDunnn3/W888/rzp16qhBgwbq1q2bNm7cmGasycnJWrp0qV588UU98MADql69upo1a6Y33nhDBw8eTHWb+Ph4zZgxQ88//7wefPBB1ahRQ82bN9eQIUO0Z8+eNPsKDQ3VW2+9pWbNmql69epq0KCBevbsqR9//DHV9rees1vPSXqcOnVKu3fvliS1atVKnp6eat68uSTlm6EGrXOvNWzYUIULF1aHDh0kSSdOnNBvv/2W6jaZuY5WrFih4OBg7dq1S9LNu86Dg4M1bNgwu+0uX76sqVOn6sknn1SdOnVUq1YtPfbYY/rggw90/vz5DB3brXeOb968+Y5tX3vtNf3vf//Txx9/bLd82LBhCg4OTnM4PutxtWjRQtK/56Zbt262NtZzZd2X9RxMnTrVtk76930WHByspKSkFH2FhoZq5MiRatmypWrUqKEHHnhA3bt31w8//GDX7m6vT0REhEaPHq1HH31UNWrUUL169dSlSxctXbrU7keJ28/BokWLdPr0aQ0fPlxNmjRR9erV1aRJE/33v//V6dOn0zy3v//+u4YMGaLmzZurevXqatiwoV555RW7z9Zt27YpODhY1apVU1RUVKr7iY+PV926dRUcHKx9+/alONb0vj+nTJli2+Zu/91+XBcvXtSHH36otm3bqlatWqpTp46eeeYZffXVV7px40aafX300UfauHGjWrdurerVq6tFixb63//+Z3dsX3/9tTp16qSQkBDVqFFDLVu21KhRoxQWFpbmsRw6dEgjR47UY489ppCQEFWvXl0PPfSQevfuneK6kP69Xps0aZLq/m49n9Zjt77+Vv/5z39SPd8nT57UO++8o0cffVTVq1dX3bp11alTJ3399deKj49P8xgkKTIyUiNHjlTTpk1VvXp1NW7cWMOGDbvjsWdlOwAAkD7kyDeRI9sjR06JHPlf5Mj3Xo5sdeXKFc2YMUNdu3ZVgwYNVK1aNdWrV09PP/20pkyZosuXL6fYJqOf+9bX1Dqiwpo1axQcHKwXX3wxxbFlJkcODw/XyJEj1aJFC9WoUUOtWrXStGnT7jrCRGxsrD7//HPb+6x27drq0KGDJk+erCtXrqR6TJGRkZKk4cOH213zd8u70/P633qu7nT9Z+Sz2xr31q1bFRoaqoEDB+qhhx5S9erV9cgjj2j8+PG6dOmS3TbBwcEaPny4JOncuXN278/b7dmzR6+88ooaNGigmjVrqnXr1vr4448VGxubavusbgc4AgrgAHJcYmKi+vfvrwEDBmjbtm1ydnZW5cqVlZSUpPXr16tHjx4aP358tvaZkJCgnj17aseOHQoMDJTJZFKZMmWytQ/rl3o3Nzf5+vpmyz4vXbqk7t2769ChQ6pYsaJu3Lih8uXL27VZvny5Xn75ZR08eFAVKlRQoUKFtHPnTr366qsaO3Zsin3Gxsaqa9euGjFihHbt2qXChQsrODhYV69e1XfffaeOHTtqzpw5dtskJCSoR48e+vjjj7V//375+PioUqVKio2N1dq1a9W1a1ctXbo0RV/ffPONnn76aa1atUqXL19WpUqV5OHhoe3bt2vAgAEaMmRIqslNZi1fvlyGYahs2bK2u6vbt28vSdq9e7eOHz+ebX1lRmxsrNavXy/p37gCAwNVpUoVSdLixYuzrS8/Pz+FhITYfnQqVaqUQkJC7K6fw4cPq3379poyZYoOHz6sMmXKqEKFCjp16pS++uortW/fXjt37kx3nx4eHgoJCZF0sxD51ltvaffu3am+xv7+/qpYsWKW3yuFChVSSEiIgoKCbMtCQkJsx5raObDGeCfffPONOnbsqG+//VaXLl2yXbu//fabBg4cqE8//TRd8W3YsEHt27fXokWLdP78ed1///0qWrSo9uzZoxEjRqhnz562HwNv9/fff+uJJ57QqlWr5O7urnLlyuncuXNatmyZnn32WZ05cybFNp988oleeOEFrV27VtevX1dwcLDMZrM2b96sHj162J6iePjhh1WqVCklJSVp7dq1acYeGxurwMDAOz6tcDe3nvfU/nN3d5d0c9iywoUL27bbs2eP2rVrp9mzZ+vUqVMKCAhQ6dKldfDgQX3wwQfq1KmTLly4kGqfu3fv1oABA3TlyhUFBgbq/PnztvfZ2bNn9dRTT2nChAnat2+f/P39ValSJV24cEFLlizR448/bpv361YLFy7U008/rW+//VZRUVEqV66cAgICdPXqVW3dujVD18WdWK9bq6CgIIWEhMjPz8+27LvvvtPjjz+uxYsX6/z58woKClKxYsW0b98+TZgwQc8++6zOnj2b6v4PHz6sJ598UkuXLpWnp6cCAgIUFRWllStX6qmnntKxY8eydTsAAHB35MjpR46cMeTI/yJHJkfOLzmyJIWFhenxxx/Xxx9/rD///FNFixZVcHCwnJycdPDgQU2dOlXPPfdcmucivQoXLmyXTxYtWjTF9ZHZHPnXX3/VU089pW+//VbR0dEKCgpSXFycJk2apF69eqUZ0/Hjx/X4449r8uTJOnLkiIoXL65y5crpxIkTtqL4rZ9N1pzY+uS39TquXr36XY8/va//3WTls3vr1q3q2LGjNm7cKF9fX5UqVUqnT5/W3Llz9fzzz9sVnm/9THJxcUnz/bly5Up17dpVO3bsUKlSpVS0aFGFhYXZbspK66b4zG4HOAwDALJo8uTJRlBQkNG8efNU17/33ntGUFCQUbt2bWPdunW25UlJScaCBQuMqlWrGkFBQcacOXPstgsKCjKCgoKMX375JdX9vvDCC0ZQUJAxefJk27KIiAjbdvXr1zeOHj1qGIZh3Lhxw7h69WqWj8UqKirKqF+/vhEUFGT07ds31f7DwsJS3bZ58+ZGUFCQsXz5ctuy3377zbZdy5YtjbNnzxqGYRixsbFGfHy83XZBQUFGjx49jIsXLxqGYRgWi8VYsmSJ7TyuWbPGrr+XX37ZCAoKMh5++GHjt99+sy2/ceOG8dlnn9n2+eOPP9rWLVy40AgKCjJatWplREZG2pbHx8cb7777rhEUFGTUrVvXFpthGMaWLVuM4OBgo1q1asbcuXONpKQk27odO3YYDz74oBEUFGR8+umndvElJCQYx44dM44dO2ZcuXLljuf9VsnJyUbTpk2NoKAgY9KkSXb7s742Y8aMSXXbt956ywgKCjKGDBlit/xu11xGLV682AgKCjJq1aplxMbG2pbPnj3bCAoKMqpVq2ZcuHAhxXaZvY4M49/3xSeffGK3/OrVq0ajRo2MoKAg47nnnjNOnTplW3fhwgXbdVK3bl27dXdz8OBBo3bt2rZ4g4KCjJCQEKN3797Gl19+afz5559GcnJymtun9VpYLV++PNX35K3vmdul9tlw+zaJiYm25Xv27DEqV65sBAUFGR999JHddb18+XLbum3bthmGkfbrc+jQIaN69epGcHCw8emnn9rt5+DBg0arVq2MoKAgY+jQoameg6CgIKNTp07GiRMnbOv27t1r1KlTxwgKCjLGjh1rt93atWuNoKAgo0qVKsbXX39te88lJSUZ06ZNs607duyYYRiG8emnnxpBQUHGU089leq5fumll4ygoCBj5syZtmWZfX+mZfXq1UZQUJBRtWpVY/v27bblZ8+etb1vR4wYYVy+fNm2Ljw83Hj22WeNoKAgo0uXLnb7s35mBwUFGa+++qpx48YNwzBufkZbz8UTTzxhBAUFGa1btzYOHTpk2/bq1avGf//7X9t78c8//7StO3nypFGtWjUjKCjImDZtmpGQkGBbFx0dbQwcONC2XUxMjG2d9Xpt3Lhxqsd/67UTERFhty6tz58///zT9vk+YsQIu3/L/v77b9t19dRTT9ld17deV08++aRx/Phx27pDhw4ZDRo0MIKCgoyBAwfa9ZfZ7QAAwL/IkcmRDYMcOTXkyOTIt56ngpQjW1+DTp06GefOnbMtt1gsxsqVK23ndMGCBXbbZeZz3zDSvo4ymyNfvnzZaNiwoREUFGQMHjzY7t+PFStW2PLn22O9du2a8eijj9r+bbB+lhuGYZw/f97o06eP7bM1Li7OLta03tNp5d0Zff3Tuv4z+9ltfS2CgoKMPn362L3OGzduNKpUqZLqv+13+h3h1n/nhgwZYkRHR9vWWX9fCQoKMr755pts2Q5wNDwBDiBHnT171nYH75gxY9SmTRvbOicnJ3Xt2lUDBw6UdHMopqze6XirLl26qGLFipJuzhdz63BsmWEYhqKjo/XTTz/ppZdeUkxMjFxcXDRgwIDsCNfm5ZdfVokSJSRJnp6eKlSokN360qVL6/PPP7fdzWkymdSpUyf17NlT0s3zaPXnn3/aht2aPHmyGjRoYFvn6uqqgQMH6rnnnpMkffTRR7Z1oaGhkm7OGVa6dGnb8kKFCmnYsGFq1KiRHn30UcXExNjWffLJJzIMQ0OHDlW3bt3k5ORkW/fggw9qwoQJkqQ5c+YoOjrats7FxUWBgYEKDAy0exr0brZv32672/fxxx+325/1Olu9enWe3s1oHdrtkUcekaenp215+/btZTablZiYaGuT0xYuXKjz58+rWLFi+vLLLxUQEGBbV6xYMU2ePFlBQUG6evWqpk+fnu79Vq1aVUuXLlXdunVty2JjY7VlyxZ9/PHH6tSpkxo1aqRPP/1UcXFx2XpM2WXatGmyWCx67LHHNGTIELv33NNPP62OHTtK0l2HN5syZYoSEhL0wgsvaNCgQXb7qVq1qiZPniwnJyetWbMm1adnXVxcNHXqVFWoUMG2rE6dOnr66aclSXv37rVrb32v/+c//1H37t1t7zknJyf17dtXDz/8sJKTk7Vq1SpJ0jPPPCOTyaSDBw+mePLj3Llz2rFjh5ycnPTEE0/YxZSZ92dqdu/erbfffluS9Pbbb+vhhx+2rZs9e7ZiYmLUokULjRkzRt7e3rZ1ZcuW1bRp0+Tl5aXff/9dW7ZsSXX/b731lu0O8aJFi0qSfvjhBx06dEiFChXSzJkzVblyZVt7Ly8vjR07Vo0bN1ZiYqLdEwy//PKLnJycVK1aNfXt21cuLi62dT4+Pnrrrbck3Xx66+TJk1k6L3czefJkJSUlqVGjRhozZozdv2VVqlTRrFmz5ObmpoMHD9oN+27l7Oyszz//XPfff79tWeXKldWjRw9JN4eHS01mtwMAAHdGjpxx5MjpQ46cMeTIaSNHzt4cOSoqSkePHpV083O/ePHitnUmk0lPPvmk6tevL+nmqAQ5KbM58uLFi3Xp0iWVL19eH3zwgd2/H0899ZReeeWVVPtbunSpwsPDVa1aNU2ZMsX2WS7dHAVh0qRJKlOmjMLCwjI8pPztMvr6pyWzn91Wfn5+mjx5st3r/Mgjj9iGbL/9uk2PwMBAffDBB/Lx8bEte/zxx22/q6Q1DUdmtwMcBQVwADlq69atSkpKkr+/v9q2bZtqmxdeeEEuLi66evWqbV6i7HBrspFRkZGRKeaqrVy5sho2bKi+ffvq0KFDKly4sD777DO7L4vZ4W5xd+rUSR4eHimWP//885JuzhN74sQJSf/OOVWzZs00h7h66aWXJN0cru7IkSOSZBt+Z9myZVq4cKHdHDWurq6aPXu2JkyYYPvievr0aR06dEiSfaJ9q6ZNm8rX11fx8fFpzmmXEdYvxjVr1kwxBJ41hitXrqRaEMoNx48ft80Rdfs5KV68uBo2bChJWrJkiSwWS47H89NPP0mSnnzySRUpUiTFeldXV9ucUD/99JMMw0j3vitWrKiFCxdq1apV6t+/v+rUqWNXMIyKitL06dP1+OOPpzlMc16Ji4uzzTNn/aHrdoMGDdIPP/xgm2swNQkJCdq6dauktN8D1s8RwzBSnQ+uevXq8vf3T7HcWoC8evWqbVl4eLjtfW59799u3Lhx2rhxowYPHixJCggI0AMPPCBJKRK+1atXy2KxqEmTJqnGkFUnTpxQ//79lZiYqBdffFFdu3a1W2+dnzGtc1esWDFbgpbaufP397f7wcrKet23aNEi1fXSzeRYknbt2mU7x127dtW+ffu0cOHCVLdxc3Oz/Tknf7S6fv26bcjFW+f0u1VAQIBatmwpSdq0aVOK9dWrV7f7kdbKOq/YrT/SZsd2AADgzsiRM44cOX3IkTOGHDl15Mg3ZWeO7Ofnp99++0379u2zG4rcKjk52VZQzukbVDKbI1tvRO/QoYPdtWzVuXPnVPdlzfXbtm1rV0i2cnNzU+vWrSWlnuunV2Ze/9Rkx2f3gw8+mOJGLelmMVqyv27T65FHHkn1/Fnz89vnFs/qdoCjcM7rAAA4NuuXjypVqshsTv2eGw8PD1WoUEFHjhzRyZMn1bx582zpOytfUF1dXVPMLWM2m+Xp6akSJUqoVq1aatOmTZbvmE/N3eKuWbNmqstLly6twoUL6+rVqwoLC9P9999vO//VqlVLc3/ly5eXl5eXYmNjdfLkSQUFBenZZ5/VsmXLdOzYMb377rt67733VKVKFT344INq3LixHnjgATk7//tPiPVOVkl69dVX0+zrxo0bkv69LjIrJibGVuhJ7Qtp3bp1FRAQoIiICC1atEjPPPNMlvrLjGXLlkm6mejc+qSr1RNPPKEdO3YoMjJS27ZtU9OmTXM0HutTqne6FqzrLl26pJiYmAzPRValShVVqVJFr732muLi4rR3715t375dq1evVlRUlE6dOqWBAweme86l3PDPP/8oMTFRktL8oc7Pz89uPubUhIWFKSEhQZL07rvv2p5ETq0/KfX3wK13Qt/KWmxNSkqyLbPOr+jh4ZFm0lqqVKkUy5555hnt2rVLa9as0euvvy6TySTpZnIvyXYnfXa6dOmS+vTpo5iYGDVq1EjDhw+3W3/t2jVFRkZKuvmkwbx581Ldj7VNaufu1jurb5WR6z45OVnh4eF2n/2FChXS/v37deTIEUVEROjUqVM6cuSIXQwZ+SEsoyIiImzX553mO6tevbrWrl2b6tPoaV1X1h+JExMTlZSUZPeZnpXtAADAnZEjZxw58t2RI2ccOXLqyJFzLkd2c3PTmTNntG/fPp06dUoRERE6fvy4Dh06pOvXr0tSjt/8kdkc2bpdpUqVUt3Gz89PxYsX1/nz5+2WW28iWrp0aao3bEvSxYsXJWXtczCzr//tsuOzOyPXbXrdLT9P68aJzG4HOAp+sQKQo2JjYyXprsMCWZPk7Bze7dYn9DLK399fixYtyrZYMuJucad2Z7KVh4eHrl69qitXrkhK//n39PRUbGys7fx7eXlpyZIl+uqrr7R27VqFh4fr77//1t9//63Zs2fLz89PgwYNUqdOnSTZ372YnqF8MnO3463WrFljS6TGjh2rsWPHptn2wIEDOnjw4B2/3Ge3pKQkfffdd5Ju3tl9t74XLVqU48l9eq6FW3+sunbtWoaT+1u5u7vr4Ycf1sMPP6yBAwfq7bff1v/+9z/9+eefuf563MmtT7HeOgRfRt16Tf/1118Zam+V2l3UabHGndGY27RpozFjxujMmTPauXOnGjZsqAMHDujYsWPy9fXNth9XrW7cuKG+ffsqIiJCFStW1GeffZbi7mPrtSn9mxzfSWrnLrW7q2/dd0aue6vVq1dr2rRpCgsLs2t/3333qWPHjvr222/vGmtW3Xpu0nMMqf0bmtYPTXeT2e0AAMCdkSNnHDny3ZEjZxw5curIkXMmRz5x4oQ+/PBDbdmyxa7I7eXlpXr16un8+fO2qRZyUmZzZOtnaGqjbVgVKVIkRQHc2l9YWFiK3Pp2WfkczOzrf6cYMvvZnZHrNr3S+s0jp7YDHAUFcAA5yvrF425fYqxfpFL7opLW03XWuyPzq5yK+07D7Vq/WFrvxE3v+beuv/X8e3l5acCAARowYIDCw8O1c+dO7dy5U1u2bFFUVJRGjhwpHx8ftWrVyvYF2MfHxzZcb06yzgnm4eFxxy/t58+fl2EYWrx4scaMGZPjcVn9/PPPtjtYixcvbruD+HbXr1/X1atXtXXrVp05cybVu1Gz6zry9PTU5cuX73gtXL582a793YwaNUq//fabnnrqKfXt2zfNdm5ubnrvvfe0fv1625zJtyf3aR1nTs+JdmvyFhsba5s7Oiv72bt3b5aTrvT2l9EfRN3c3NSuXTstWbJEa9asUcOGDW13tqc1lFlmGYahN954Q3/++ad8fX01ffr0VN+v7u7utj+vWbMm1SHhMis9n4HWf39ubb9y5UoNGzZMktS4cWM9+uijqlSpkgIDA1WkSBElJibesQCeXdfzrdfR1atX03zKwvrezenrDgAAZB05ckrkyFlHjkyOnF3IkbM/R46KitILL7ygqKgolS5dWp06dVLVqlV1//3367777pPJZNKQIUPuWADPzuteyniO7OPjowsXLtjdpH271J4mdnd319WrVzV9+vRsv+H+Vpl9/dPaT259dgPIWcwBDiBHWeflOXToUJrD+MTGxtruAixXrpxtufUpQetdzLe7/a7C/ODWIc9Sizs+Pj7Ld3an9YTkqVOnbF/0KlasKOnf83/w4ME093f8+HHbF2br+Y+KitLvv/9umwumXLly6tSpkz7++GNt2bLFNvSdNSmoUKGCpJt3XF64cCHNvn7//XcdP348S0PshIaG2ubjmTBhgrZu3Zrmf9Y7xteuXXvHL+nZzTr3WqVKlbRt27Y045szZ46km8NK3VpMy4nrKD3XgvWu7CJFiqTrzvYbN24oPDzcNqfTnXh5edkSp1sTaOv73DrE2u1y+n0eEBBgi+HWoa5udeDAAXXu3FnDhw9PM+m8dT/Hjh1Ls7/9+/fr8OHDWU7KrHP6Xb9+XadPn061zaZNm/Tiiy/qww8/tFtuHe5w06ZNSk5Otg1Dlt3DIH744Yf68ccf5eLioqlTp6Y5DJm3t7eKFSsm6c7n7vDhwzp06JDdj1B3k57r/sCBA5Ikk8mksmXLSpK+/PJLSTfnA5w1a5aee+45hYSE2J4uSmuevuz+d6ts2bK2H1zu9NSEdd2t/4YCAID8iRzZHjkyOTI5Mjmyo+fIy5cvV1RUlHx8fLR8+XL17dtXTZs2VUBAgO1mkHPnzqW6bXZ/7mc2R7Z+plk/a2537do123D2t7Jul9a1JN18OvzAgQNZmo86K69/avHmxmc3gJxHARxAjmrSpImcnZ114cIFff/996m2WbBggZKSkuTu7q769evblluTi9TmU9m/f3++TO59fHxsX15Ti/unn37K1Fwvt1qxYkWqP5RYh6OrXbu27S5p692V+/fvT3Ponq+//lqSVLJkSQUHB0uSevbsqa5du2rlypUp2nt6eqp27dqSbialkhQYGGj7YWDBggWp9rNnzx517dpVbdu21Z9//pmOI02ddd4wX19ftWjR4o5tO3fuLOnmF2DrDxE5LSoqSlu2bJF092SpRo0ath9Kli5dars2snIdpXUnvfVaWLVqVaoFxISEBNs11Lhx4zvGbWWdW+6vv/6y/aCRlu3btysmJkY+Pj6qVauWbfmd3ufJycn66aef0hVLZnl5ealu3bqS/n1q4nZr167V3r17dfr06TTPr5eXl+3zK605rCMiItSlSxc9/vjj+uGHH7IUd2BgoMqUKXPHuFeuXKldu3alSCJr1aqlSpUqKTo6WvPnz9c///yjqlWrpjm/W2YsWrRIX331laSbQzDWq1fvju2bNWsm6ebnR2qfb1evXlX37t315JNPau7cuemOw3rd//TTT4qIiEi1jfX1ql27try9vSXJljCnNQyh9XNIsp+/y3o9X758WVFRUSm227BhQ5qxWq+tW39A8vDwUIMGDezivF1ERITtfdKkSZM09w8AAPIHcmR75MjkyLciRyZHzqz8nCNb88vSpUun+kT9sWPHbJ8B1s8Qq8x+7qeWX0qZz5FbtWol6eZNPqndrLBixYoUsd/a37Jly1ItFiclJalfv37q2LGjPvjgg1TjSY+svP637ye3PrutzOabJbq0biYBkHkUwAHkqFKlStnmwBo5cqTdF1qLxaKFCxdqypQpkqR+/frZDdVl/cI9Z84cHT9+3Lb8wIEDev3113Mj/Axzc3NT1apVJUlTpkyxu4Nz+/bteu+997Lcx19//aWRI0fahr2yWCxasGCBLUkfPHiwrW2dOnVsd3gPGDDAbviehIQETZ482XZX9Ztvvmn7gvzEE09IkqZOnaqtW7fa9f/777/bEuVb5+QaOHCgJGnGjBmaOXOm3d2pv//+u2197dq11bBhQ9u6xMREHT9+XMePH7/rHdsJCQlas2aNpJtDUd1tjtomTZrYvgAvXrz4jm3v5J9//tHx48dTvZv1dqtWrVJSUpJcXFxs5/FOrD9AXLhwwXaXcVauI+twTZGRkSn6KVGihC5evKiXX37ZLtGJiorSwIEDdeTIEXl6euq11167a9yS9PDDD6t169aSpBEjRmjcuHEp7rS9ceOGli9frkGDBkm6eZ3cOvSZ9X1+9OhRzZs3z/aF//Lly3r77bfTNSd0VvXr108mk0mrV6/W9OnT7X44WbVqlebPny9J6tWr1x3389prr8nJyUlr167VhAkT7JLCI0eOqE+fPkpMTFSZMmXUoUOHLMVsMpnUr18/SdLMmTO1dOlS27lLTk7WjBkztGHDBjk7O6tHjx4ptrf+8DRp0iRJ0tNPP51qPxl5f1pt2bLFNpzigAED9OSTT951mz59+sjDw0N79uzRG2+8YZeQRkZGqk+fPoqOjlbhwoXVtWvXdMUh3ZzPLTg4WDdu3FDv3r3thpSLjY3VyJEjtX37djk7O2vo0KG2dda74pcsWWL3/ouNjdWUKVM0Y8YM27Jbk/hatWrJxcVFhmFo/PjxtnWJiYmaO3fuHYdNt753b/+c6d+/v5ydnbV9+3aNHDnS7kmd0NBQ9e7dWzdu3FDlypXTda4BAEDeIkcmR7ZuQ46cOnJkcuTMyM85sjW/DA0N1Y8//mhbbhiGtm7dql69etme+L99iPvMfu5br6nb36OZzZGfffZZlStXTmfPntWAAQPsbvhev369Pv7441Tj6Nq1q/z9/RUeHq6+ffvaxXPp0iUNGjRIx48fl4uLi1566aU0j+dusvr63yqzn92ZZf2MunLlSq6OzAEUBMwBDiDHDR8+XOfOndOmTZs0cOBAFS9eXCVLllRERISio6MlSS+88IJ69+5tt13fvn21bds2XbhwQR06dFDFihV148YNhYWFKSAgQM8880yad/XlpUGDBqlv3746duyYWrZsqYoVK+ry5cuKjIxUjRo1FBISYkviMiMoKEjLli3TunXrdP/99+vs2bO6cOGCzGazhg8fnuLL14cffqhXXnlFf/zxh7p166YyZcqoaNGiOnnypGJjY+Xk5KRBgwapXbt2tm26deumHTt2aOvWrerdu7eKFy+u4sWLKzo62pY0tmjRQs8++6xtm3bt2iksLExTpkzRRx99pC+//FLly5fXpUuXbNtUqFBB06ZNs4vv3Llzatu2raSbw7WllWRI0saNGxUTEyMpfUNRmc1mPffcc/rkk0905MgR7dmzx5Y8ZMRbb72lXbt2qX79+rZELy3Wu7ybNWuWrrmy2rVrpw8++EBXrlzR4sWLbclyZq+jqlWravPmzVqzZo0OHz6sevXq6Z133pG3t7emT5+uPn366I8//lCrVq1UsWJFOTs76+jRo0pMTJSPj48++ugj29BR6fHRRx/Jw8NDq1at0rx58zRv3jyVLl1afn5+tvdrQkKCXFxcNGTIEHXp0sVu+6ZNm6pevXr6/fffNW7cOH311Vfy9fXViRMnlJiYqNdee832A2BOefDBBzV8+HC9//77+vTTT/XVV18pICBAZ8+etc1T9+qrr9r9mJWaunXrasyYMXrnnXf09ddfa/HixQoMDNS1a9cUHh4uwzBUrFgxzZ49+64/TKVHx44ddezYMc2ZM0cjRozQZ599ppIlS+r06dOKiYmRk5OTRo8enepd60888YQ+/vhjXb9+XS4uLmrfvn2qfWTk/Wk1ePBgJScny83NTX///bd69uyp+Pj4VJ/KeeaZZ9SxY0eVK1dOn332mQYPHqy1a9fqxx9/VMWKFZWYmKiwsDAlJSXJw8NDM2bMSHMe7NQ4Oztr2rRp6t27t06cOKEnnnhC5cuXl6enp224Mjc3N7377rt2T6kPHjxY/fr107Fjx/TII4/YhkELDw/XjRs3bEPVnTp1ym449CJFiqhnz56aPn261q5dq23btum+++5TZGSkYmJi1LlzZ/3000+pDm9XtWpV7d69W++9954WLVqkLl26qGPHjqpTp47GjRunESNG6Ntvv9V3332nwMBAXb9+XSdPnpR089+FqVOnZst1BQAAch45MjkyOXLayJHJkTMrv+bIHTt21MKFCxUeHq4BAwaoTJky8vX11ZkzZxQVFSUXFxfVr19fu3btSpErZvZzv0qVKpJuzr/epk0bVaxYUVOnTs10juzm5qbJkyerV69e2r59u5o1a6ZKlSopJibG9h68cOFCiunCihQpoi+++EJ9+/bVjh079Mgjj6hixYoymUw6efKkEhIS5OzsrE8++cQ24kZmZeX1v1VmP7szKzg4WGazWfHx8WrTpo2KFy+u2bNnp2vaBQB3xhPgAHKcq6urPv/8c3366adq1KiREhISdOjQIbm7u6tdu3aaN2+eRo4cmWLYpCpVqmjZsmXq0KGDihYtqhMnTig5OVkvvfSSVq5cKX9//zw6ojtr0qSJFi5cqJYtW8rDw0PHjh1ToUKFNGDAAC1cuNB2Z19mdevWTZ988okqVKhgu/O3devWWrx4cap3Mfr4+Gj+/PkaM2aMHnjgAV29elWHDx+Wr6+vOnbsqGXLlqlPnz522zg5Oenzzz/X22+/rTp16ig+Pl6hoaGKi4tTo0aN9OGHH2ratGl283BJNxOgJUuWqEOHDvLy8lJoaKiio6NVtWpVDRw4UMuXL89Q8ep21sS5WrVq6R6KqmPHjrY5dLNyh3t67Nu3zza3VXrninJ3d7c9tfnrr7/a5vrL7HXUu3dvPfvss/Lx8VFYWJgOHz5sW1e1alWtXbtW/fr1U6VKlRQREaGwsDBVqFBBr7zyir777rt0D+1m5erqqvfff19Lly7VSy+9pGrVqikhIUGhoaE6e/asKlSooJ49e+q7775LcZ1JN3+AmT17tgYNGqRKlSopKipK//zzjx588EEtWrQoy3eBp1f37t21ZMkStW/fXoUKFdLhw4eVlJSkpk2bas6cORowYEC69vPMM89o9erVeu655+Tv76+jR4/qzJkzCgwMVK9evfTdd9/ZiqnZYdiwYZozZ44eeeQRGYah0NBQOTk5qU2bNlqyZIndD3C3Klq0qG247BYtWmRrYmW9qz8+Pl4bN27U9u3b9fvvv2vv3r0p/jtz5oxtu6ZNm+p///ufevToobJly+rkyZMKDw9XmTJl1KVLF3333XcKCQnJcDz33Xefli9frjfffFM1a9bUhQsXdPz4cZUqVUrdunXT6tWrUzw53bx5cy1btkwtW7aUv7+/Tpw4oTNnzigoKEhDhgzR6tWrbdfm5s2b7bYdPHiwPvroI9WtW1eJiYk6efKkKlSooIkTJ2r06NFpxjl+/Hg9/PDDcnZ21smTJ22fBdLNuchXr16tTp06qVixYjp69Kiio6MVEhKiUaNGadmyZWnOsQ4AAPIfcmRyZHLktJEjkyNnRX7Mkb28vGyfK5UqVdKlS5d09OhReXl52QrY48ePl3TzKfFbn5LO7Of+k08+qV69esnf31+nT5/WoUOHbDelZyZHlqTKlStr5cqVeumll1SqVCkdPXpUFotFPXr00Ndff53mTQw1atTQmjVr9Oqrryo4OFinT5/WiRMnVKxYMT355JNavny5bYj1rMrs63+7nP7svlW5cuU0YcIElS9fXjExMTpz5kyKESsAZI7JYHIBALgntGjRQpGRkRo7dmy6v7Ah+4wZM0anTp3SzJkz8zoUIFs8/fTTOnjwoGbMmHHXO/cBAACA/IYcOW+RI8PRkCMDgGPhCXAAAO7CYrHo999/V8WKFfM6FCBbHDx4UAcPHlSpUqXUqFGjvA4HAAAAwD2EHBmOhhwZABwPc4ADAHAX7733nqKiovTiiy/mdShApkVEREiSLl68qGHDhkm6OVykk5NTXoYFAAAA4B5DjgxHQI4MAI6NAjgAAHfx/PPPa8CAASpatGhehwJk2vfff69PPvnE9vegoCC98MILeRgRAAAAgHsROTIcATkyADg2hkAHAOAuKleuTGKPe17lypVVvHhxeXh4qGXLlvrqq6/k6uqa12EBAAAAuMeQI8MRkCMDgGMzGYZh5HUQAAAAAAAAAAAAAABkFU+AAwAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDcM7rAO4VhmHIYmG0eAAAAACAPbPZJJPJlNdhOARybwAAAABAajKSe1MATyeLxdClS9fyOgwAAAAAQD5TtKinnJwogGcHcm8AAAAAQGoyknszBDoAAAAAAAAAAAAAwCFQAAcAAAAAAAAAAAAAOAQK4AAAAAAAAAAAAAAAh0ABHAAAAAAAAAAAAADgECiAAwAAAAAAAAAAAAAcgnNeBwAAAAAASMlisSg5OSmvwyjwnJycZTZz7zgAAAAAOCJy7/whu3NvCuAAAAAAkI8YhqErVy4pLi42r0PB/3N395K3d1GZTKa8DgUAAAAAkA3IvfOf7My9KYADAAAAQD5iTcC9vHzl6lqIomseMgxDCQk3FBsbLUkqUsQvjyMCAAAAAGQHcu/8IydybwrgAAAAAJBPWCzJtgTcy8s7r8OBJFfXQpKk2NhoFS7sy3DoAAAAAHCPI/fOf7I79yZzBwAAAIB8Ijk5WdK/iR/yB+vrwbxwAAAAAHDvI/fOn7Iz96YADgAAAAD5DEOv5S+8HgAAAADgeMj18pfsfD0ogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOwTmvAwAAAAAA5J3Dh0M1bdokhYb+LYvFUNWq1dWnTz9Vq1ZdkrR792+aM2eWjh8/KicnZ9Wv31B9+76mEiVKSpK+/36Nxo9/V0uXfqdSpUrb9tuxYwfVqVNX//3vaElSo0b19NJLfbRjx3ZFRISrc+cX1aNHL0VGntYXX0zRnj27ZRiGqlevoX79Bur++wMlSTdu3NDs2dO1ceN6RUdfUtmy5dSt20t65JFWuXuiAAAAAADIJHLv3MUT4AAAAABQQF27FqshQ15TkSI+Gjv2A7377njFx8dpyJD+io2N1Y8/fq/Bg/vL399fo0eP02uvDdbBgwf0yisvKTr6Uob7mzt3tpo1a6HRo8epceNmunjxonr37q7w8JMaMuQtvfPOGF25ckWDBvVTTEyMDMPQ22+/oVWrVui557ro/fc/UfXqNfXOO29r3bq1OXBGAAAAAADIXuTeuY8nwAEAAACggDp58qRiYqLVseNzqlmztiSpXLnyWr16uWJjr2ratEmqV6++3n13gm2bmjVr64UXntWiRQvUr9+ADPVXtWp1vfBCD9vfP/98km7ciNdnn02Tn18xSVKlSpX18ss99Ndf+1WokKt27tyhd98db7vrvEGDBxUfH6fp06fq0UfbyNmZtBYAAAAAkH+Re+c+ngAHAAAAgALq/vsD5ePjq7feel0ffTRB27dvlZ9fMfXrN1Dx8fGKiopSq1aP2W1Tpsx9qlathv744/cM9xcYWNHu7/v2/aHq1WvaEnBJKlasmJYvX6tGjZro9993y2Qy6cEHGykpKcn238MPN1VU1EWdPHk8cwcOAAAAAEAuIffOffdWuR4AAAAAkG08PDw0bdpMzZ07Wxs3rteqVcvl5uamVq0eU5s27SRJRYv6pdjOz89Phw8fznB/vr5F7f5+5cplu7nLbnflymUZhqFWrZqkuv7ixQuqVCk4w3EAAAAAAJBbyL1zHwVwAAAAACjAypYtr5Ejxyg5OVmHDh3UDz98r1WrlqlYMX9J0qVLUSm2iYqKko+PjyTJZDJJkiwWi12buLjrd+3by6uwYmJiUizfs2e3SpYsJS+vwnJ399CUKdNT3b5MmYC79gEAAAAAQF4j985dDIEOAAAAAAXU5s0b1b59S0VFXZSTk5OqV6+poUOHycursC5duiQ/Pz+tX7/ObpvIyNP666/9qlmzliTJw8NTknTu3Flbm1OnwnT58uW79l+rVm0dPLhf0dGXbMtiYmI0dOgA/fLLVtWuHaK4uOsyDEOVK1e1/XfixHF99dVMJScnZ8dpAAAAAAAgx5B75z6eAAdgx2w2yWw25WgfFoshi8XI0T4AAABwdzVq1FZyskXDhw/VCy/0kKenpzZtWq9r12LVokVLVa1aTePHv6t33hmuNm3a6/LlGH311Qx5exfRc891lSTVrfuA3NzcNHXqp+rdu5+uX7+uOXNutrmbTp26aN26/+n11/urW7eX5OpaSPPnz5GfXzG1adNOXl6FVbt2iIYNG6IePXqpXLnyOnTooGbPnqEGDRra7oSH48vpPIUcBQAAAEBOIffOfSbDMMjw0iE52aJLl67ldRhAjjKbTfLx8ZCTU84ODpGcbFFMzHV+YAIAALhNYmKCoqLOyM+vlFxcXHOlz0OHDmrmzC8UGnpI8fHxuv/+QL344n/UtGlzSdLPP2/S/Plf68SJY/L09FSDBg+qT59XVaJESds+fvtth6ZPn6rw8JMqWbKU/vOfPvrhh//Jz89P//3vaElSo0b19J//9FbPni/b9R8eHqZp0yZp7949cnFxUZ06IerXb6DKlLlPkhQXF6dZs77Q5s2bFB19ScWKFVfLlq3Uo0cvFSpUKFfO0d1el6JFPXP8O3RBkVrunRt5CjkKAAAAUHCQezt+7k0BPJ0ogKMgcHY2y9fXU58v+kWR5+8+bEZmlCleRK92fljR0deUlGS5+wYAAAAFSF4k4bg7CuC5J7XcO6fzFHIUAAAAoGAh986fsjP3Zgh0AClEnr+ssMjovA4DAAAAAGzIUwAAAAAA6UEBHECeyMknZJi/DwAAAAAAAAAAoGCiAA4gVxUp7CbDYpG3t3uO9WGxJCs6Oo4iOAAAAAAAAAAAQAFDARxArvJ0c5XJbNbJtTMVF3Um2/fv7ldKFdr3ltlsogAOAAAAAAAAAABQwFAAB5An4qLOKO7cqbwOAwAAAAAAAAAAAA6EAjgAAAAAAAVUYmKi5s+fr5UrVyosLEweHh6qUaOGunfvrsaNG6do36BBA8XExKS5v/3796tQoUI5GDEAAAAAAHdGARwAAAAAgALIMAwNHjxYGzZskLe3tx566CHduHFDv/32m7Zt26ZBgwapb9++tvaRkZGKiYlRiRIlVL9+/VT3aTabcyt8AAAAAABSRQEcAAAAAIACaPHixdqwYYOqVKmiOXPmyNfXV5IUGhqqrl27atKkSWrVqpUCAwMlSYcOHZIktWnTRm+//XaexZ1TnJxyrnhvsRiyWIwc2z8AAAAA4F8UwAEAAAAAKIBWr14tSRo2bJit+C1JlStXVocOHbRo0SJt3brVVgA/ePCgJKlatWq5H2wOKlLYTYbFIm9v9xzrw2JJVnR0HEVwAAAAAMgFFMABAAAA4B5gNptkNptyvV+eXHVcc+fO1cmTJ1WpUqUU665fvy5JcnJysi2zPgFevXr13Akwl3i6ucpkNuvk2pmKizqT7ft39yulCu17y2w28V4CAAAA8jlyb8dAARwAAAAA8jmz2SQfH48cHaI5LcnJFsXEXM9UIr5+/Q9avnyJTpw4JkkqV66C2rd/Qk8++Ux2h4lMKFSokCpXrpxi+caNG/XDDz/I3d1drVq1si0/ePCg3Nzc9Ndff2nEiBE6evSoTCaTQkJC1K9fP9WqVSs3w892cVFnFHfuVF6HAQAAACCPkHs7DgrgAAAAAJDPmc0mOTmZ9fmiXxR5/nKu9VumeBG92vnhTD25unbtan322UQNGDBEtWuHSDK0e/cuTZ78saKjL+k//+mdM0EjUy5fvqwRI0bo2LFjOnHihEqVKqUJEyaoZMmSkqSoqCidP39ekvTmm2+qdu3aatCggY4cOaKff/5Z27dv18SJE9W2bdu8PAwAAAAAyDRyb8dBARwAAAAA7hGR5y8rLDI6r8NIl5Url6l9+yf0+ONP2ZaVLVteFy6c17ffLiqwSXh+FRERofXr19v+bjKZdOzYMT344IOS/p3/29fXV1988YXq1KkjSTIMQ3PnztWECRM0fPhwhYSE2IrmmeXsbP+0RV48fZETHOU4AAAAgHudxXLnIc7JvfOWk5MpRV6YURTAAQAAAADZzmw26cCB/bpy5Yq8vb1ty7t27a62bTtIkjp27KDHHmuvnj1ftq3v37+PSpUqrf/+d7T27v1dAwa8or59X9M338xTyZIl5ebmrmLF/PXeexNs2+zf/6f69eulxYtX6r77AvTLL9s0e/aXCgs7KX9/f7Vs2Vrdu/eUq6urJk36WL/8slXffrvatn1sbKwef7y13ntvvBo1apoLZyf/qVChgnbt2iXDMLRjxw6NGzdOY8eOVWxsrPr27avGjRtr27ZtMgxDJUqUsG1nMpnUo0cP7d69Wxs3btSyZcvUv3//TMdhNpvk6+uZHYeU73h7u+d1CAAAAAAkxcc76eJFc4pCa17ftJqZ/p2czPrrr/26fj3WLvfu3v0/evzxJ+TsbNaTT7ZTu3Yd1Lv3K7b1ffv2VqlSpTVq1Lvas+d3vfpqH7366gDNnz9XJUuWkru7m4oV89e4cR/Yttm370+9/PJLWrp0lQICymr79q2aOXO6Lfd+9NE2+s9/esnV1VWffjpR27dv0/Ll39m2j429qnbtWmnMmPfVpEnK3NtiMclsNqtIEQ+5ubll+FzcigI4AAAAACDbde3aXaNGDddTTz2mkJB6qlmzjurWracqVaqpcOHCGdrXjh3b9eWXcxQfH6ejR4/o44/f1/Xr1+ThcbNQun79OtWoUUv33Reg337boZEjh2nAgMF64IGGiow8rU8//VCnToVrzJj31b79E1q6dJH27ftTtWrVliRt2rRenp6eatjw4ew+DfcMT89/i85t27ZVyZIl1aVLF82YMUPdunWTp6enihcvnub2zZs318aNG/XXX39lKQ6LxdCVK9ftljk5mR2ieHzlSpySky15HQYAAABQ4CUk3JDFYlFysqGkpPzzHT052ZLheLp06aZRo4arQ4fWKXLv0qU9bfuzWOyP1TAMGcbNZdY8Zfv2bSly7ytXrtpy73Xr/qcaNWqpVKn7tH37dr399lspcu+wsDCNGfO+2rZ9QkuWLNKePXttufePP/4oDw9P1a//YKrHmZxsyGKx6PLl64qLS06x3tvbPd03CVAABwAAAABku2bNHtGXX87RsmWLtXPnb/r1118kSQEBZTV8+CjVrFk73fvq3PkFBQSUlSTdd19ZffrpRG3ZslmPPdZeiYmJ+umnjerb9zVJ0rx5X6l9+8f15JMdJUllytynN954WwMGvKIzZ/5RYGBFBQdX0Y8//s+WhP/ww1q1bt1Wzs6kyFYhISEqW7aswsPDFRYWpmrVqt2xvb+/vyQpLi4uy33npx+gslNmfswCAAAAkP2SkzM2z3Z+5oi5d3bcmEB2DwAAAADIEVWqVNPIkWNkGIZOnDiuX3/drqVLF2vo0IFasmRluvdz331lbX92d3dX8+aPaP36dXrssfb69ddfdONGvFq0aClJOnIkVIcOHdS6dWtt2xjGzR83wsJOqlSp0mrX7nHNmDFNgwa9ofPnz+nAgf164423s+mo7w1xcXGaNGmSLl68qIkTJ8pkSjkHnqurqyQpKSlJS5Ys0a+//qr27durZcuWKdpGRERIUpbn/wYAAAAAZAy5d0oUwAEAAAAA2er8+XP65pu5euGFHvL3Ly6TyaTAwIoKDKyoRo2a6oUXntWff+5Nddvk5KQUywoVKmT397ZtO2jgwL6Kirqo9eu/V5MmzeXp6SXp5rBuXbp002OPtU+xHz+/YpKkRx9to6lTP9OOHdt0/PgxValSVfffXzGrh31PcXNz08qVKxUTE6NOnTqpfv36dusjIiJ08uRJubq6qlKlStqyZYvWrVunuLi4FAVwwzC0evXNOdUbNWqUa8cAAAAAAAUZuXfa8nY2dwAAAACAw3F1LaTVq1do/fp1KdZZ55ouWtRPzs4uio2Nta2zWCz655/Iu+6/du0QlSxZSj/88D/t2PGLXcJ9//2BCg8P0333Bdj+u3DhvD7/fJKuX78mSSpcuLCaNGmmn3/+SVu3blbbto9n9ZDvOSaTSc8995wkafTo0Tp//rxt3dmzZ/X6668rKSlJnTt3loeHh5566im5urrq559/1rfffmtra7FYNHnyZO3fv18VK1ZUmzZtcv1YAAAAAKAgIvdOG0+AAwAAAACylY+Pj7p27a4ZM6YpNjZWLVq0lIeHp8LCTurrr2cpJKSeatWqo5o1a2nTpvVq2rS5ihb10+LFC+yS8jt57LH2mjv3KxUpUkT16v379HLXrt00atRwzZ79pR59tI0uXDiv998fqxIlStjuQpekdu0e17Bhr8swpJYtW2f7ObgX9OvXT3v37tXu3bvVunVr1a1bV4mJidq/f7+uX7+uRo0aaejQoZKkgIAAjR49WiNGjNDIkSO1YMEClS9fXqGhoQoPD1exYsU0ZcoUubi45PFRAQAAAEDBQO6dNgrgAAAAAHCPKFO8yD3TX+/efXXffQFas2aVVq5cqvj4eJUoUVItWjyqbt1ekiT16fOqrl69oqFDB8jNzV0dOjypRx5pZZs37E7atGmvr76aoaefflZm87+DmzVv3lLvvivNn/+VFiz4WoULe+vhhxurb98BdtvXq1dfRYr4qEaNWipcuHCmj/Ne5ubmpjlz5mjevHlavXq1du7cKWdnZ1WqVElPP/20nn32WTk5OdnaP/PMM6pQoYJmzpypvXv36sSJEypevLhefPFF9e3bV35+fnl4NAAAAACQPci9/3Wv5t4mIz1HlwcSExM1f/58rVy5UmFhYfLw8FCNGjXUvXt3NW7cOEX7ixcvatq0adq2bZvOnTsnf39/tWnTRv369bM95p8VyckWXbp0Lcv7AfIzZ2ezfH099fak7xUWGZ0jfTxUu5z6d2mkv+e+p7hzp7J9/+4lyqpq91GKjr6mpCRLtu8fAAAgJyUmJigq6oz8/ErJxcXVttxsNsnHx0NOTrk/i1VyskUxMddlseTL1DHT4uLi9MQTbTRu3Id64IEGd2yb1utiVbSoZ568No4otdw7p/MUchQAAACgYCH3zj15lXvnyyfADcPQ4MGDtWHDBnl7e+uhhx7SjRs39Ntvv2nbtm0aNGiQ+vbta2t//vx5Pf/884qMjFRQUJCaNWumAwcOaNasWdq2bZsWLlwoLy+vPDwiAAAAAMg8i8VQTMx1mc2mPOnbkRLwK1euaO/e3frpp40qUaKE3RBuAAAAAICCi9w7++R17p0vC+CLFy/Whg0bVKVKFc2ZM0e+vr6SpNDQUHXt2lWTJk1Sq1atFBgYKEkaO3asIiMj1adPHw0ZMkSSlJCQoDfffFPr1q3T1KlTNWzYsDw7HgAAAADIKkdLhvNKcnKS3n9/jHx8fPXeexNkMuX+DxsAAAAAgPyJ3Dt75HXunS/HaFu9erUkadiwYbbityRVrlxZHTp0kGEY2rp1qyTp1KlT2rBhg0qVKqUBA/4dV97V1VVjxoyRp6enlixZovj4+Nw9CAAAAABAvuPrW1Q//PCzFi9eqaCgynkdDgAAAAAADievc+98WQCfO3euVq9erQceeCDFuuvXr0uSnJycJElbt26VxWJR06ZN5eLiYte2cOHCatiwoa5fv66dO3fmfOAAAAAAAAAAAAAAgDyTLwvghQoVUuXKlW1FbquNGzfqhx9+kLu7u1q1aiVJOnLkiCQpKCgo1X1VrFjRrh0AAAAAAAAAAAAAwDHlyznAb3X58mWNGDFCx44d04kTJ1SqVClNmDBBJUuWlCRduHBBkuTv75/q9tblFy9ezJ2AAQAAAAAAAAAAAAB5It8XwCMiIrR+/Xrb300mk44dO6YHH3xQ0r9Doru5uaW6vXW5tV1WODvnywfmgWzj5OQ417gjHQsAACg4LBZTXoeAO3ByMpEXAgAAAACQz+X7AniFChW0a9cuGYahHTt2aNy4cRo7dqxiY2PVt29f2zDpJlPqPxQZhmH3/8wym03y9fXM0j4A5B5vb/e8DgEAACDD4uOddPGimUJrPmOxmGQ2m1WkiEeaN18DAAAAAID8Id8XwD09/y06t23bViVLllSXLl00Y8YMdevWTR4eHpKkGzdupLq9dbm7e9aKYRaLoStXsv4UOZCfOTmZHaZwfOVKnJKTLXkdBgAAQIYkJNyQxWJRcrKhpCS+y+QXycmGLBaLLl++rri45BTrvb3dGYEIAAAAAIB8It8XwG8XEhKismXLKjw8XGFhYSpevLikf+cCv93d5gjPCH6AAu4dyckW3rMAAOCek5yc9shVZrNJZnPuD5FusRiyWDI+olbHjh109uwZ9e8/SM8//0KK9RMnjtfq1Sv0n//0Vs+eL2cqto4dO+ixx9qne/uMtr8dNyYAAAAAgGMj9069j9zMvbNDviuAx8XFadKkSbp48aImTpyY6tDmrq6ukqSkpCQFBQVJko4fP57q/o4ePSpJCg4OzqGIAQAAACBn3ZySyV1ms1Ou922xJCs6Oi5Tibizs7M2b96UIglPSkrSli0/pTmVFQAAAAAAuY3c23HkuwK4m5ubVq5cqZiYGHXq1En169e3Wx8REaGTJ0/K1dVVlSpVUrFixSRJmzdv1vDhw21zgkvS1atXtXPnTnl4eKhu3bq5ehwAAAAAkF1u3oHupJNrZyou6kyu9evuV0oV2veW2WzKVBJer1597dz5q86dO6sSJUralu/d+7vc3NxVqBDzaQMAAAAA8gdyb8eR7wrgJpNJzz33nL788kuNHj1aX3/9tW2Y87Nnz+r1119XUlKSunfvLg8PD3l4eKh58+bavHmzJk6cqLfeeksmk0kJCQkaNWqUrl27ppdeekleXl55fGQAAAAAkDVxUWcUd+5UXoeRblWqVFN4eJg2b95odyf6pk3r1aLFo/rppw22ZX/9tV8zZkzT4cOH5OzsrEaNmurVVwfJ29tbkhQbG6vPPpuo7du3yNnZRd26/SdFfwcO7NP06VN16NDf8vHx0cMPN9Err7wqT0/yQQAAAABA+pB73/u5tzmvA0hNv3799MADD+j48eNq3bq1evXqpe7du+uxxx7T/v371ahRIw0dOtTWfuTIkSpevLjmzJmjtm3basCAAWrdurW+//57VatWTf3798/DowEAAACAgqt585bavHmT7e+JiYnauvVntWzZyrbs77//0muvvazy5Sto+vQ5GjPmA/399196/fX+slhuzrk9atQwHTp0UB988Kk+/XSqfvllm86e/feO/GPHjmrgwH564IEGmjt3kd55Z5wOHz6kwYP7yzAyfgc9AAAAAAD3CnJve/myAO7m5qY5c+bozTffVEBAgHbu3Kn9+/erUqVKevfddzVjxgzbPOCSVKZMGS1btkzPPvusrl69qs2bN8vV1VWvvPKK5s2bJ09Pzzw8GgAAAAAouFq0eFR///2Xzp07K0nates3+fj4KCiosq3N4sXfKDCwkl5//S1VqHC/QkLqafTo8QoN/Vs7d/6qU6fCtGvXbxo8+E3VqlVHlSoF6513xtrlhYsWzVO9eg+oR49eCggoq1q1amv06HH6+++/9Mcfe3L9uAEAAAAAyC3k3vby3RDoVi4uLurZs6d69uyZrvYlSpTQ2LFjczgqAADuDTfnqzHl2P4tFiNT89EAAAqeypWrqHTpMrah2H76ab1atmxt1+bEiWN64IGGdssCAyvKy6uwjh8/qvj4OElSlSpVbeuLFvVT6dJlbH8/fPiwTp8+pUcfbZwihvDwMIWE1MvOwwIAAAAAIN8g97aXbwvgAAAgc8xmk3x8POTklHMDvSQnWxQTc50iOAAgXVq0eFSbN2/SU089q23btmrmzLl26w3DkCmV+7YMwyJn53/T1tv/3XFycrZr26rVY+rW7aUU+/Hx8c3iEQAAAAAAkL+Re/+LAjgAAA7GbDbJycmszxf9osjzl7N9/2WKF9GrnR+W2WyiAA4ASJcWLVpqwYKvtXbtapUuXUblypW3W3///RW1b9+fdsuOHj2ia9euqXz5+xUQUFaSdODAPj30UCNJ0tWrVxUZGWFrX6FCoE6ePK777guwLTt1KkxTp07SK6+8Ki+vijlzcAAAAAAA5APk3v+iAA4AgIOKPH9ZYZHReR0GAACqVClY990XoBkzPtcLL/wnxfrnnuuiV1/trU8++UBPP91J0dGX9MknHygoKFj16tWXs7OzmjdvqU8//VAuLi7y8/PT9OmfKzEx0baP559/Qa++2ksTJ45Xx47P6/r16/r44/d1/fp13Xdf2dw8XAAAAAAAch25978ogAMAAADAPcLdr9Q921+LFo9q7tzZatmyVYp11avX1EcfTdLMmdP10ktd5eHhqcaNm6lv3/62YdhGjBitzz+fpHfeeVsWi0VPPPG0YmKib9lHDX3yyVTNmvWFevZ8Ue7ubgoJeUCvvjpIrq6u2XYcAAAAAADHRu597+feJsMwGLs0HZKTLbp06VpehwHkKGdns3x9PfX2pO9z7KnRh2qXU/8ujfT33PcUd+5Utu/fvURZVe0+StHR15SUZMn2/QP3gpx+L5cv46vxA9vyPgOAHJCYmKCoqDPy8yslF5d/E0ez2SRfX3eZzU65HpPFkqzo6LgCPe1FWq+LVdGinnJyMudBZI4ntdw7p7/bkKMAAAAABQu5d/6Unbk3T4ADAAAAQD5nsRiKjo6T2WzKk74LcgIOAAAAACgYyL0dBwVwAAAAALgHkAwDAAAAAJCzyL0dA2O0AQAAAAAAAAAAAAAcAgVwAAAAAAAAAAAAAIBDoAAOAAAAAAAAAAAAAHAIFMABAAAAIJ8xDOYby094PQAAAADA8ZDr5S/Z+XpQAAcAAACAfMLJyUmSlJBwI48jwa2sr4eTk3MeRwIAAAAAyCpy7/wpO3NvsncAAAAAyCfMZie5u3spNjZakuTqWkgmkymPoyq4DMNQQsINxcZGy93dS2Yz95ADAAAAwL2O3Dt/yYncmwI4AAAAAOQj3t5FJcmWiCPvubt72V4XAAAAAMC9j9w7/8nO3JsCOAAAAADkIyaTSUWK+KlwYV8lJyfldTgFnpOTM09+AwAAAICDIffOX7I796YADgAAAAD5kNlsltnsmtdhAAAAAADgsMi9HRO3sQMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOwTmvAwAAAAAAAHkjMTFR8+fP18qVKxUWFiYPDw/VqFFD3bt3V+PGjVO0v3jxoqZNm6Zt27bp3Llz8vf3V5s2bdSvXz95enrmwREAAAAAAGCPJ8ABAAAAACiADMPQ4MGD9cEHH+js2bN66KGHVKVKFf3222/q1auXvvjiC7v258+fV6dOnfTNN9/Izc1NzZo1k8Vi0axZs9S5c2fFxsbm0ZEAAAAAAPAvngAHAACZ4uSUs/fRWSyGLBYjR/sAAKAgW7x4sTZs2KAqVapozpw58vX1lSSFhoaqa9eumjRpklq1aqXAwEBJ0tixYxUZGak+ffpoyJAhkqSEhAS9+eabWrdunaZOnaphw4bl2fEAAAAAACBRAAcAABlUpLCbDItF3t7uOdqPxZKs6Og4iuAAAOSQ1atXS5KGDRtmK35LUuXKldWhQwctWrRIW7duVWBgoE6dOqUNGzaoVKlSGjBggK2tq6urxowZo61bt2rJkiUaNGiQ3Nzccv1YAAAAAACwogAOAAAyxNPNVSazWSfXzlRc1Jkc6cPdr5QqtO8ts9lEARwAgBwyd+5cnTx5UpUqVUqx7vr165IkJycnSdLWrVtlsVjUtGlTubi42LUtXLiwGjZsqE2bNmnnzp1q2rRpzgcPAAAAAEAaKIADAIBMiYs6o7hzp/I6DAAAkEmFChVS5cqVUyzfuHGjfvjhB7m7u6tVq1aSpCNHjkiSgoKCUt1XxYoVtWnTJh05coQCOAAAAAAgT1EABwAAAACggLt8+bJGjBihY8eO6cSJEypVqpQmTJigkiVLSpIuXLggSfL39091e+vyixcv5k7AAAAAAACkgQI4AAAAAAAFXEREhNavX2/7u8lk0rFjx/Tggw9K+ndI9LTm97Yut7bLCmdns93fnZzMabS8tzjKcQAAAABAfkcBHAAAAACAAq5ChQratWuXDMPQjh07NG7cOI0dO1axsbHq27evbS5wk8mU6vaGYdj9P7PMZpN8fT2ztI/8ytvbPa9DAAAAAIACgQI4AAAAAAAFnKfnv0Xntm3bqmTJkurSpYtmzJihbt26ycPDQ5J048aNVLe3Lnd3z1qR12IxdOWK/VPkTk5mhygeX7kSp+RkS16HAQAAAAD3JG9v93SPrEUBHAAAAAAA2AkJCVHZsmUVHh6usLAwFS9eXNK/c4Hf7m5zhGdEUpJjFomTky0Oe2wAAAAAkJ8wARUAAAAAAAVMXFyc3n//fQ0dOjTNYctdXV0lSUlJSQoKCpIkHT9+PNW2R48elSQFBwfnQLQAAAAAAKQfBXAAAAAAAAoYNzc3rVy5UmvWrNHu3btTrI+IiNDJkyfl6uqqSpUqqXHjxpKkzZs3Kzk52a7t1atXtXPnTnl4eKhu3bq5Ej8AAAAAAGmhAA4AAAAAQAFjMpn03HPPSZJGjx6t8+fP29adPXtWr7/+upKSktS5c2d5eHioTJkyat68uU6fPq2JEyfanhpPSEjQqFGjdO3aNT3//PPy8vLKk+MBAAAAAMCKOcABAAAAACiA+vXrp71792r37t1q3bq16tatq8TERO3fv1/Xr19Xo0aNNHToUFv7kSNH6uDBg5ozZ462bNmiSpUq6cCBA/rnn39UrVo19e/fPw+PBgAAAACAm3gCHAAAAACAAsjNzU1z5szRm2++qYCAAO3cuVP79+9XpUqV9O6772rGjBm2ecAlqUyZMlq2bJmeffZZXb16VZs3b5arq6teeeUVzZs3T56ennl4NAAAAAAA3MQT4AAAAAAAFFAuLi7q2bOnevbsma72JUqU0NixY3M4KgAAAAAAMo8nwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgENwzusAAAAAAAAA8C+z2SSz2ZRj+7dYDFksRo7tHwAAAADyUr4tgFssFi1dulQrVqzQ0aNHlZiYqNKlS6tly5Z6+eWX5e3tbde+QYMGiomJSXN/+/fvV6FChXI4agAAAAAAgMwzm03y8fGQk1PODdqXnGxRTMx1iuAAAAAAHFK+LIBbLBYNGDBAGzZskJubm2rWrCkPDw/t379fs2bN0oYNG7Rw4UIVK1ZMkhQZGamYmBiVKFFC9evXT3WfZjOjvQMAAAAAgPzNbDbJycmszxf9osjzl7N9/2WKF9GrnR+W2WyiAA4AAADAIeXLAvjy5cu1YcMGlS9fXrNmzVJAQIAkKTY2VkOHDtXmzZs1duxYffbZZ5KkQ4cOSZLatGmjt99+O6/CBgAAAAAAyBaR5y8rLDI6r8MAAAAAgHtOvnwsevny5ZKkYcOG2YrfkuTl5aXx48fLZDJp48aNio+PlyQdPHhQklStWrXcDxYAAAAAAAAAAAAAkC/kywK4j4+P7r//ftWuXTvFuqJFi6pIkSJKTExUdPTNO6GtT4BXr149N8MEAAAAAAAAAAAAAOQj+XII9OnTp6e5LiIiQjExMXJxcVHRokUl3XwC3M3NTX/99ZdGjBiho0ePymQyKSQkRP369VOtWrVyK3QAAAAAAAAAAAAAQB7Jl0+A34l13u9mzZqpUKFCioqK0vnz5xUfH68333xTFotFDRo0kI+Pj37++Wd16dJF33//fd4GDQAAAAAAAAAAAADIcfnyCfC0zJ8/X2vXrpW7u7sGDx4s6d/5v319ffXFF1+oTp06kiTDMDR37lxNmDBBw4cPV0hIiEqWLJml/p2d77n7BYAMcXJynGvckY4FyChHuv4d6VgAAAAAAAAAADnvnimAz5s3T+PHj5fJZNK4ceMUGBgoSWrcuLG2bdsmwzBUokQJW3uTyaQePXpo9+7d2rhxo5YtW6b+/ftnun+z2SRfX88sHweA3OHt7Z7XIQDIBryXAQAAAAAAAAAZke8L4IZh6KOPPtKsWbPk5OSkcePGqV27drb1JpNJxYsXT3P75s2ba+PGjfrrr7+yFIfFYujKletZ2geQ3zk5mR2m2HTlSpySky15HQaQJ3gvAwCQu7y93Rm1BAAAAACAfCJfF8Dj4+P1xhtvaP369XJzc9PHH3+sli1bZmgf/v7+kqS4uLgsx5OUxA/wwL0iOdnCexZwALyXAQAAAAAAAAAZkW8L4LGxserVq5f++OMP+fn56YsvvlCtWrVStFuyZIl+/fVXtW/fPtXieEREhCRlef5vAAAAAAAAAAAAAED+li8L4ImJierTp4/++OMPlStXTrNnz1ZAQECqbc+dO6d169YpLi4uRQHcMAytXr1aktSoUaMcjxsAAAAAAAAAAAAAkHfy5SRlU6dO1Z49e+Tv76/58+enWfyWpKeeekqurq76+eef9e2339qWWywWTZ48Wfv371fFihXVpk2b3AgdAAAAAAAAAAAAAJBH8t0T4JcvX9bcuXMlSX5+fpo4cWKabYcNG6aAgACNHj1aI0aM0MiRI7VgwQKVL19eoaGhCg8PV7FixTRlyhS5uLjk1iEAAAAAAAAAAAAAAPJAviuA79u3T3FxcZKk0NBQhYaGptn2tddeU7FixfTMM8+oQoUKmjlzpvbu3asTJ06oePHievHFF9W3b1/5+fnlVvgAAAAAAAAAAAAAgDyS7wrgTZo00eHDhzO8XUhIiL744osciAgAAAAAAAAAAAAAcC/Il3OAAwAAAAAAAAAAAACQURTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHAIFcAAAAAAAAAAAAACAQ6AADgAAAAAAAAAAAABwCBTAAQAAAAAAAAAAAAAOgQI4AAAAAAAAAAAAAMAhUAAHAAAAAAAAAAAAADgECuAAAAAAAAAAAAAAAIdAARwAAAAAAAAAAAAA4BAogAMAAAAAAAAAAAAAHIJzXgcAAAAAAAAA5CSz2SSz2ZRj+7dYDFksRo7tHwAAAED6UQAHAAAAAACAwzKbTfL1dZfZ7JRjfVgsyYqOjqMIDgAAAOQDFMABAAAAAADgsG4+/e2kk2tnKi7qTLbv392vlCq07y2z2UQBHAAAAMgHKIADAAAAAADA4cVFnVHcuVN5HQYAAACAHEYBHAAAAACAAspisWjp0qVasWKFjh49qsTERJUuXVotW7bUyy+/LG9vb7v2DRo0UExMTJr7279/vwoVKpTDUQMAAAAAkDYK4AAAAAAAFEAWi0UDBgzQhg0b5Obmppo1a8rDw0P79+/XrFmztGHDBi1cuFDFihWTJEVGRiomJkYlSpRQ/fr1U92n2WzOzUMAAAAAACAFCuAAAAAAABRAy5cv14YNG1S+fHnNmjVLAQEBkqTY2FgNHTpUmzdv1tixY/XZZ59Jkg4dOiRJatOmjd5+++28ChsAAAAAgDvi1mwAAAAAAAqg5cuXS5KGDRtmK35LkpeXl8aPHy+TyaSNGzcqPj5eknTw4EFJUrVq1XI/WAAAAAAA0okCOAAAAAAABZCPj4/uv/9+1a5dO8W6okWLqkiRIkpMTFR0dLSkf58Ar169em6GCQAAAABAhjAEOgAAAAAABdD06dPTXBcREaGYmBi5uLioaNGikm4+Ae7m5qa//vpLI0aM0NGjR2UymRQSEqJ+/fqpVq1auRU6AAAAAABp4glwAAAAAABgxzrvd7NmzVSoUCFFRUXp/Pnzio+P15tvvimLxaIGDRrIx8dHP//8s7p06aLvv/8+b4MGAAAAAEA8AQ4AAAAAAG4xf/58rV27Vu7u7ho8eLCkf+f/9vX11RdffKE6depIkgzD0Ny5czVhwgQNHz5cISEhKlmyZJb6d3a2v1ffyckx7t1P73Hk1vE6ynlND84pAAAAULBQAAcAAAAAAJKkefPmafz48TKZTBo3bpwCAwMlSY0bN9a2bdtkGIZKlChha28ymdSjRw/t3r1bGzdu1LJly9S/f/9M9282m+Tr65nl48iPvL3d8zoEO/ktHkfAOQUAAADyBwrgAAAAAAAUcIZh6KOPPtKsWbPk5OSkcePGqV27drb1JpNJxYsXT3P75s2ba+PGjfrrr7+yFIfFYujKlet2y5yczA5RWLxyJU7JyZa7tsut401vPI6AcwoAAADc+7y93dM96hIFcAAAAAAACrD4+Hi98cYbWr9+vdzc3PTxxx+rZcuWGdqHv7+/JCkuLi7L8SQlOWYBMTnZkq+OLb/F4wg4pwAAAED+QAEcAAAAAIACKjY2Vr169dIff/whPz8/ffHFF6pVq1aKdkuWLNGvv/6q9u3bp1ocj4iIkKQsz/8NAAAAAEBWUQAHAAAAAKAASkxMVJ8+ffTHH3+oXLlymj17tgICAlJte+7cOa1bt05xcXEpCuCGYWj16tWSpEaNGuV43AAAAAAA3En6BkoHAAAAAAAOZerUqdqzZ4/8/f01f/78NIvfkvTUU0/J1dVVP//8s7799lvbcovFosmTJ2v//v2qWLGi2rRpkxuhAwAAAACQJp4ABwAAAACggLl8+bLmzp0rSfLz89PEiRPTbDts2DAFBARo9OjRGjFihEaOHKkFCxaofPnyCg0NVXh4uIoVK6YpU6bIxcUltw4BAAAAAIBUUQAHAAAAAKCA2bdvn+Li4iRJoaGhCg0NTbPta6+9pmLFiumZZ55RhQoVNHPmTO3du1cnTpxQ8eLF9eKLL6pv377y8/PLrfCRDZyccnZQQIvFkMVi5GgfAAAAAJAaCuAAAAAAABQwTZo00eHDhzO8XUhIiL744osciAi5pUhhNxkWi7y93XO0H4slWdHRcRTBAQAAAOQ6CuAAAAAAAAAFhKebq0xms06unam4qDM50oe7XylVaN9bZrOJAjgAAACAXEcBHAAAAAAAoICJizqjuHOn8joMAAAAAMh2OTvhEwAAAAAAAAAAAAAAuYQCOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgEOgAA4AAAAAAAAAAAAAcAgUwAEAAAAAAAAAAAAADoECOAAAAAAAAAAAAADAIVAABwAAAAAAAAAAAAA4BArgAAAAAAAAAAAAAACHQAEcAAAAAAAAAAAAAOAQKIADAAAAAAAAAAAAABwCBXAAAAAAAAAAAAAAgENwzusA0mKxWLR06VKtWLFCR48eVWJiokqXLq2WLVvq5Zdflre3t137ixcvatq0adq2bZvOnTsnf39/tWnTRv369ZOnp2ceHQUAAAAAAAAAAAAAILfkyyfALRaLBgwYoFGjRik0NFTVqlXTQw89pCtXrmjWrFnq2LGjLl68aGt//vx5derUSd98843c3NzUrFkzWSwWzZo1S507d1ZsbGweHg0AAAAAAAAAAAAAIDfkywL48uXLtWHDBpUvX15r167V/Pnz9eWXX2rDhg1q3ry5wsPDNXbsWFv7sWPHKjIyUn369NGaNWs0efJk/fjjj3rsscd0+PBhTZ06NQ+PBgAAAAAAAAAAAACQG/JtAVyShg0bpoCAANtyLy8vjR8/XiaTSRs3blR8fLxOnTqlDRs2qFSpUhowYICtraurq8aMGSNPT08tWbJE8fHxuX4cAAAAAAAAAAAAAIDcky8L4D4+Prr//vtVu3btFOuKFi2qIkWKKDExUdHR0dq6dassFouaNm0qFxcXu7aFCxdWw4YNdf36de3cuTOXogcAAAAAAAAAAAAA5IV8WQCfPn261q1bJ19f3xTrIiIiFBMTIxcXFxUtWlRHjhyRJAUFBaW6r4oVK0qSrR0AAAAAAAAAAAAAwDHlywL4nXz22WeSpGbNmqlQoUK6cOGCJMnf3z/V9tblFy9ezJX4AAAAAAAAAAAAAAB5wzmvA8iI+fPna+3atXJ3d9fgwYMlSdevX5ckubm5pbqNdbm1XVY4O99z9wsAGeLk5DjXuCMdC5BRjnT9O9KxAAAAAAAAAABy3j1TAJ83b57Gjx8vk8mkcePGKTAwUJLk5OQkSTKZTKluZxiG3f8zy2w2ydfXM0v7AJB7vL3d8zoEANmA9zIAAAAAAAAAICPyfQHcMAx99NFHmjVrlpycnDRu3Di1a9fOtt7Dw0OSdOPGjVS3ty53d8/aD+gWi6ErV7L+FDmQnzk5mR2m2HTlSpySky15HQaQJ3gvAwCQu7y93Rm1BAAAAACAfCJfF8Dj4+P1xhtvaP369XJzc9PHH3+sli1b2rUpXry4JNnmAr/d3eYIz4ikJH6AB+4VyckW3rOAA+C9DAAAAAAAAADIiHxbAI+NjVWvXr30xx9/yM/PT1988YVq1aqVol1QUJAk6fjx46nu5+jRo5Kk4ODgnAsWAAAAAAAAAAAAAJDn8uUYbYmJierTp4/++OMPlStXTkuWLEm1+C1JjRs3liRt3rxZycnJduuuXr2qnTt3ysPDQ3Xr1s3xuAEAAAAAAAAAAAAAeSdfFsCnTp2qPXv2yN/fX/Pnz1dAQECabcuUKaPmzZvr9OnTmjhxogzDkCQlJCRo1KhRunbtmp5//nl5eXnlVvgAAAAAAAAAAAAAgDyQ74ZAv3z5subOnStJ8vPz08SJE9NsO2zYMBUrVkwjR47UwYMHNWfOHG3ZskWVKlXSgQMH9M8//6hatWrq379/boUPAAAAAAAAAAAAAMgj+a4Avm/fPsXFxUmSQkNDFRoammbb1157TcWKFVOZMmW0bNkyTZkyRT///LM2b96s0qVL65VXXlHv3r3l6emZW+EDAAAAAAAAAAAAAPJIviuAN2nSRIcPH87wdiVKlNDYsWNzICIAAAAAAAAAAAAAwL0gX84BDgAAAAAAAAAAAABARuW7J8ABAAAAAABQsJjNJpnNphzZt5MTz38AAAAABQkFcAAAAAAAAOQZs9kkHx8PCtUAAAAAsgUFcAAAAAAAAOQZs9kkJyezPl/0iyLPX872/dcKLq3n2tTO9v0CAAAAyJ8ogAMAAAAAACDPRZ6/rLDI6Gzfb2l/72zfJwAAAID8i7GlAAAAAAAAAAAAAAAOIUsF8FWrVmnPnj13bbdp0yZNnjw5K10BAAAAAFAgkXsDAAAAAJB+WSqADxs2TN9+++1d261evVpz5szJSlcAAAAAABRI5N4AAAAAAKRfhuYAX7VqlZKSkuyWhYeHa9myZWluExsbq19//VUuLi6ZixAAAAAAgAKE3BsAAAAAgMzLUAH84MGDmj9/vkwmkyTJZDJp37592rdv3x23MwxDTz31VOajBAAAAACggCD3BgAAAAAg8zJUAB8wYIBiY2Ntf1+5cqXKli2runXrprlNoUKFVL58eXXu3DnzUQIAAAAAUECQewMAAAAAkHkZKoAXLlxYEyZMsP195cqVql27tt0yAAAAAACQeeTeAAAAAABkXoYK4LcLDQ3NrjgAAAAAAEAqyL0BAAAAAEi/LBXAbxUVFaW4uDgZhpFmm4CAgOzqDgAAAACAAofcGwAAAACAO8tyAfzrr7/WzJkzdenSpTu2M5lM+vvvv7PaHQAAAAAABQ65NwAAAAAA6ZOlAviKFSv0/vvvS5JcXV3l6+srJyenbAkMAAAAAACQewMAAAAAkBFZKoAvWLBAJpNJI0aMUKdOneTi4pJdcQEAAAAAAJF7AwAAAACQEVkqgB8/fly1a9dW165dsyseAAAAAABwC3JvAAAAAADSL0sFcHd3d/n6+mZXLAAAAAAA4DY5mXtbLBYtXbpUK1as0NGjR5WYmKjSpUurZcuWevnll+Xt7W3X/uLFi5o2bZq2bdumc+fOyd/fX23atFG/fv3k6emZIzECAAAAAJAR5qxsXL9+fe3fv19xcXHZFQ8AAAAAALhFTuXeFotFAwYM0KhRoxQaGqpq1arpoYce0pUrVzRr1ix17NhRFy9etLU/f/68OnXqpG+++UZubm5q1qyZLBaLZs2apc6dOys2NjZb4wMAAAAAIDOyVAAfPHiw4uLi9Pbbb+vy5cvZFRMAAAAAAPh/OZV7L1++XBs2bFD58uW1du1azZ8/X19++aU2bNig5s2bKzw8XGPHjrW1Hzt2rCIjI9WnTx+tWbNGkydP1o8//qjHHntMhw8f1tSpU7MtNgAAAAAAMitLQ6AvXrxYNWvW1A8//GBLmr29vWUymVK0NZlMWrBgQVa6AwAAAACgwMmp3Hv58uWSpGHDhikgIMC23MvLS+PHj9dDDz2kjRs3Kj4+XufPn9eGDRtUqlQpDRgwwNbW1dVVY8aM0datW7VkyRINGjRIbm5uWTxiAAAAAAAyL0sF8Llz59r+nJSUpGPHjqXZNrXEHAAAAAAA3FlO5d4+Pj66//77Vbt27RTrihYtqiJFiigmJkbR0dHaunWrLBaLmjZtKhcXF7u2hQsXVsOGDbVp0ybt3LlTTZs2TXcMAAAAAABktywVwOfNm5ddcQAAAAAAgFTkVO49ffr0NNdFREQoJiZGLi4uKlq0qI4cOSJJCgoKSrV9xYoVtWnTJh05coQCOAAAAAAgT2WpAF6/fv3sigMAAAAAAKQiL3Lvzz77TJLUrFkzFSpUSBcuXJAk+fv7p9reuvzixYu5Eh8AAAAAAGnJUgH8VomJiTp06JDOnDmjYsWKqW7duvrnn39UunTp7OoCAAAAAIACLTdy7/nz52vt2rVyd3fX4MGDJUnXr1+XpDTn97Yut7bLCmdns93fnZzMabS8t6T3OBzleKWCd8yOchwAAADAvS7LBfCkpCR9/vnn+uabb3T16lVJUocOHVS3bl299dZbunbtmj799FOVK1cuy8ECAAAAAFAQ5VbuPW/ePI0fP14mk0njxo1TYGCgJMnJyUlS2nOMG4Zh9//MMptN8vX1zNI+8itvb/e8DiHXFbRjLmjHCwAAAORXWSqAJyUl6eWXX9aOHTvk7Oys6tWr68CBA7b1165d099//62uXbtq1apVKlasWJYDBgAAAACgIMmN3NswDH300UeaNWuWnJycNG7cOLVr18623sPDQ5J048aNVLe3Lnd3z1oB0GIxdOWK/VPkTk5mhygsXrkSp+Rky13bOcrxSgXvmNN7vAAAAAAyztvbPd2jLmWpAP7NN9/ol19+UaNGjTR+/HgVL15clStXtq1fuHChRo8erVWrVmn27Nl66623stIdAAAAAAAFTk7n3vHx8XrjjTe0fv16ubm56eOPP1bLli3t2hQvXlySbHOB3+5uc4RnRFKSYxYQk5MtDntsaSlox1zQjhcAAADIr7I0OdHKlSvl4+OjSZMm2ZLhW7m5uWnMmDEqXry4tm7dmpWuAAAAAAAokHIy946NjVWPHj20fv16+fn5ad68eSmK35IUFBQkSTp+/Hiq+zl69KgkKTg4OEP9AwAAAACQ3bJUAA8LC1O9evXk6Zn2/FwuLi6qWbOm/vnnn6x0BQAAAABAgZRTuXdiYqL69OmjP/74Q+XKldOSJUtUq1atVNs2btxYkrR582YlJyfbrbt69ap27twpDw8P1a1bN939AwAAAACQE7JUAHd2dtaVK1fu2i4mJkbOzlkabR0AAAAAgAIpp3LvqVOnas+ePfL399f8+fMVEBCQZtsyZcqoefPmOn36tCZOnCjDMCRJCQkJGjVqlK5du6bnn39eXl5e6e4fAAAAAICckKWqdJUqVXTgwAFFRkaqTJkyqbaJiIjQgQMHVLNmzax0BQAAAABAgZQTuffly5c1d+5cSZKfn58mTpyYZtthw4apWLFiGjlypA4ePKg5c+Zoy5YtqlSpkg4cOKB//vlH1apVU//+/TN+cAAAAAAAZLMsPQHeuXNnxcXFqV+/fvr7779TrD98+LBee+01JSQkqGPHjlnpCgAAAACAAikncu99+/YpLi5OkhQaGqo1a9ak+d+1a9ck3XwKfNmyZXr22Wd19epVbd68Wa6urnrllVc0b968Ow7RDgAAAABAbsnSE+Bt27bVjh07tGzZMj3zzDMqXLiwTCaTtm3bpmbNmuncuXMyDEPt2rXTE088kV0xAwAAAABQYORE7t2kSRMdPnw4w7GUKFFCY8eOzfB2AAAAAADklixPzD127FjVrl1bs2fP1smTJyVJ0dHRkqTSpUure/fu6tatW1a7AQAAAACgwCL3BgAAAAAgfbJcAJekjh07qmPHjrpw4YLOnDkji8Uif3//NOcmAwAAAAAAGUPuDQAAAADA3WVpDnCr6Oho7dq1S/7+/qpZs6Zq166tuLg4ffPNN7pw4UJ2dAEAAAAAQIFG7g0AAAAAwN1luQD+7bffqkmTJnr//fftlu/bt09jxoxR69at9f3332e1GwAAAAAACixybwAAAAAA0idLBfBffvlFo0aNkrOzsxo2bGi3rm7duurZs6cMw9DQoUP122+/ZSlQAAAAAAAKInJvAAAAAADSL0sF8FmzZsnZ2Vnz5s3Tm2++abeufPnyeuONNzRv3jyZTCbNnDkzS4ECAAAAAFAQkXsDAAAAAJB+WSqAHzlyRA0aNFCNGjXSbFOjRg3VrVtXf/75Z1a6AgAAAACgQCL3BgAAAAAg/bJUAI+Li5O7u/td2/n4+CgpKSkrXQEAAAAAUCCRewMAAAAAkH5ZKoCXL19eu3fvVmxsbJptbty4oT179qhs2bJZ6QoAAAAAgAKJ3BsAAAAAgPTLUgH88ccf1+XLlzVgwABdvHgxxfro6Gi9/vrrunTpkjp06JCVrgAAAAAAKJDIvQEAAAAASD/nrGzctWtXff/999qxY4eaNWum6tWrq1SpUpKks2fP6uDBg0pISFDNmjXVo0eP7IgXAAAAAIAChdwbAAAAAID0y1IB3MXFRXPmzNGnn36qFStW6M8//9Sff/5pW1+oUCF17txZb7zxhlxdXbMaKwAAAAAABQ65NwAAAAAA6ZelArgkeXp6asSIEXrzzTf1119/6cKFC0pOTpa/v7+qVasmDw+P7IgTAAAAAIACi9wbAAAAAID0yVIBvFu3bipfvrzee+89ubq6KiQkJLviAgAAAAAAIvcGAAAAACAjslQA379/v8xmc3bFAgAAAAAAbkPuDQAAAABA+mUpg/b09JRhGNkVCwAAAAAAuA25NwAAAAAA6ZelAnjfvn21a9cuffXVV0pISMiumAAAAAAAwP8j9wYAAAAAIP2yNAR6RESEypUrp4kTJ+qTTz5RuXLl5O3tnerQbCaTSQsWLMhKdwAAAAAAFDjk3gAAAAAApF+WCuBz5861/TkpKUnHjx9Ps63JZMpKVwAAAAAAFEjk3gAAAAAApF+WCuDz5s3LrjgAAAAAAEAqyL0BAAAAAEi/LBXA69evn11xAAAAAACAVJB7AwAAAACQflkqgN8qMTFRhw4d0pkzZ1SsWDHVrVtX//zzj0qXLp1dXQAAAAAAUKCRewMAAAAAcGdZLoAnJSXp888/1zfffKOrV69Kkjp06KC6devqrbfe0rVr1/Tpp5+qXLlyWQ4WAAAAAICCiNwbAAAAAID0MWdl46SkJL388suaPn264uLiVL16dRmGYVt/7do1/f333+ratasuXryY5WABAAAAAChoyL0BAAAAAEi/LBXAv/nmG/3yyy96+OGHtWnTJi1dutRu/cKFC/Xkk0/q4sWLmj17dpYCBQAAAACgICL3BgAAAAAg/bJUAF+5cqV8fHw0adIkFS9ePMV6Nzc3jRkzRsWLF9fWrVuz0hUAAMD/sXff4VGU+9/HP7sJIQkQegcLLVGU3hVRQJpSIiAoGgtSpAkeD8UDIoIgiHBUEER+oIAHRElCFUJXeqhRmgpKCZjQSyCEJPv8wZNoTIC03dmdeb+u61xHZ+7dfG9n22e+UwAAsCSyNwAAAAAAmZejBvgff/yhOnXqKF++fLcdkydPHlWrVk2nTp3KyZ9SeHi4AgMDtWXLlgzX169fX4GBgbf9340bN3L09wEAAAAAMIIrszcAAAAAAJ7OO0cP9vbW5cuX7zru4sWL8vbO/p+KiorS6NGjb7s+OjpaFy9eVMmSJVWvXr0Mx9jtOer1AwAAAABgCFdlbwAAAAAAzCBHyfiBBx7QTz/9pOjoaJUtWzbDMSdOnNBPP/2katWqZetvrFu3TkOGDNHVq1dvO+bgwYOSpFatWuntt9/O1t8BAAAAAMAduSJ7AwAAAABgFjk6Lfq5557T9evX1adPHx04cCDd+sOHD6t///5KSEhQp06dsvTcMTExGjZsmPr06aObN2+qWLFitx27f/9+SVLVqlWzNgEAAAAAANycM7M3AAAAAABmk6MzwNu0aaMtW7bou+++U8eOHVWgQAHZbDb9+OOPevzxxxUTEyOHw6GnnnpK7du3z9JzT548WWFhYXrooYc0duxYjRkzRmfPns1wbMoZ4A899FBOpgMAAAAAgNtxZvYGAAAAAMBscnxzsDFjxqhGjRr6v//7P/3++++SpAsXLkiSypQpo5deekkhISFZft4KFSpo/Pjxateu3V3v371//375+vrq559/1vDhw/Xrr7/KZrOpVq1a6tOnj6pXr571iQEAAAAA4Caclb0BAAAAADCbHDfAJalTp07q1KmTzpw5o9OnTys5OVnFixe/7b3JMqNnz56ZGnfu3DnFxsZKkgYPHqwaNWqofv36+uWXX7RhwwZt2rRJH374odq0aZPtWgAAAAAAMJozsjcAAAAAAGaT5QZ4UlKS/ve//ykiIkJnz55VmTJl1LZtW3Xo0EHFixdX8eLFnVHnbaXc/7tw4cKaNm2aatasKUlyOBz66quvNG7cOA0bNky1atVSqVKlcvS3vL1zdMt0wO15eZnnNW6muQBZZabXv5nmAgBAVrhb9gYAAAAAwFNkqQGekJCg7t27a+fOnXI4HJKk33//XVu2bNH69ev18ccfO6XIO2ncuLF+/PFHORwOlSxZMnW5zWbTyy+/rMjISK1Zs0bfffed+vXrl+2/Y7fbVLhwvtwoGYALBAT4GV0CgFzAexkAYEXumL0BAAAAAPAUWWqAL1iwQJGRkSpZsqR69Oih8uXL65dfftHMmTMVERGhxYsXq3379s6qNUM2m00lSpS47fonnnhCa9as0c8//5yjv5Oc7NDly9dy9ByAu/Pyspum2XT58nUlJSUbXQZgCN7LAAC4VkCAX65etcQdszcAAAAAAJ4iSw3wlStXytfXV/Pnz1eZMmUkSU2aNFHjxo0VHBys5cuXu10IT7ks3PXr13P8XImJ7IAHPEVSUjLvWcAEeC8DAKzIE7M3AAAAAADuIkuHqB85ckR16tRJDeApgoKCVLVqVR06dChXi8uMb775RgMHDtSaNWsyXH/ixAlJyvH9vwEAAAAAcAV3zN4AAAAAAHiKLDXA4+LiVLBgwQzXlStXThcvXsyNmrIkJiZG33//vb799tt06xwOhxYvXixJevTRR11dGgAAAAAAWeaO2RsAAAAAAE+RpQZ4YmKivLy8MlyXJ08e3bx5M1eKyorg4GD5+Phow4YNWrhwYery5ORkffLJJ4qKilKlSpXUqlUrl9cGAAAAAEBWuWP2BgAAAADAU2TpHuDuqHz58nr33Xc1fPhwjRgxQvPmzdN9992nQ4cO6dixYypWrJg+/fRT5cmTx+hSAQAAAAAAAAAAAABOlKUzwN1Vx44d9fXXX6tp06aKiYnRunXrlJiYqBdffFFLlixRhQoVjC4RAAAAAAAAAAAAAOBkHnMG+Ny5c++4vlatWpo2bZqLqgEAAAAAAAAAAAAAuJssN8DXrFmjZs2apVt+4cIFScpwnSTZbDatWbMmq38OAAAAAADLIXsDAAAAAJA9WW6AX7t2TdeuXbvt+ujo6AyX22y2rP4pAAAAAAAsiewNAAAAAED2ZKkBPmfOHGfVAQAAAAAARPYGAAAAACAnstQAr1evnrPqAAAAAAAAInsDAAAAAJATdqMLAAAAAAAAAAAAAAAgN9AABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmIK30QUAAAAAAAD3EB4eriFDhmj27Nlq1KhRuvX169fXxYsXb/v4qKgo5c2b14kVAgAAAABwZzTAAQAAAACAoqKiNHr06Nuuj46O1sWLF1WyZEnVq1cvwzF2OxeaAwAAAAAYiwY4AAAAAAAWt27dOg0ZMkRXr1697ZiDBw9Kklq1aqW3337bVaUBAAAAAJAlNMABAAAAALComJgY/fe//1VYWJh8fX1VrFgxnT17NsOx+/fvlyRVrVrVlSUCAAAAAJAlXJvMzdntNnl72532P7vdZvQUAQAAAAAGmTx5skJDQ1W1alV98803qlChwm3HppwB/tBDD7mqPAAAAAAAsowzwN2Y3W5T4cJ+stu9nPY3kpOTdOHCdSUnO5z2NwAAAAAA7qlChQoaP3682rVrd9f7d+/fv1++vr76+eefNXz4cP3666+y2WyqVauW+vTpo+rVq7uoagAAAAAAbo8GuBuz222y2730+7IvdP3c6Vx/fr+ipXX/0z1kt9togAMAAACABfXs2TNT486dO6fY2FhJ0uDBg1WjRg3Vr19fv/zyizZs2KBNmzbpww8/VJs2bZxZLgAAAAAAd0UD3ANcP3da12OOG10GAAAAAMCiUu7/XbhwYU2bNk01a9aUJDkcDn311VcaN26chg0bplq1aqlUqVI5+lve3mnPRPfyMsfd2zI7D7PMV7LenM0yDwAAAMDT0QAHAAAAAAB31LhxY/34449yOBwqWbJk6nKbzaaXX35ZkZGRWrNmjb777jv169cv23/n1q3A8uVGyW4nIMDP6BJczmpzttp8AQAAAHdFAxwAAAAAANyRzWZTiRIlbrv+iSee0Jo1a/Tzzz/n6O8kJzt0+fK1NMu8vOymaCxevnxdSUnJdx1nlvlK1ptzZucLAAAAIOsCAvwyfdUlGuAAAAAAACBHihcvLkm6fv16jp8rMdGcDcSkpGTTzu12rDZnq80XAAAAcFfcnAgAAAAAANzRN998o4EDB2rNmjUZrj9x4oQk5fj+3wAAAAAA5BRngAMAAAAAgDuKiYnR999/r+vXr6t58+Zp1jkcDi1evFiS9OijjxpRHgAAAAAAqTgDHAAAAAAA3FFwcLB8fHy0YcMGLVy4MHV5cnKyPvnkE0VFRalSpUpq1aqVgVUCAAAAAMAZ4AAAAAAA4C7Kly+vd999V8OHD9eIESM0b9483XfffTp06JCOHTumYsWK6dNPP1WePHmMLhUAAAAAYHGcAQ4AAAAAAO6qY8eO+vrrr9W0aVPFxMRo3bp1SkxM1IsvvqglS5aoQoUKRpcIAAAAAABngAMAAAAAgFvmzp17x/W1atXStGnTXFQNAAAAAABZxxngAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFPwNroAT2e322S325zy3F5eHJ8AAAAA5BZn/nZPkZzsUHKyw6l/AwAAAAAAALfnMQ3w8PBwDRkyRLNnz1ajRo3SrT979qw+++wz/fjjj4qJiVHx4sXVqlUr9enTR/ny5XNKTXa7TYUK+dOoBgAAANyc3W5T4cJ+stu9nPp3kpOTdOHCdZrgAAAAAAAABvGIBnhUVJRGjx592/WxsbHq2rWroqOjVaVKFT3++OP66aefNHPmTP3444/63//+p/z58+d6XXa7TV5edk2dv1nRsZdy/fmrB5ZRl1Y1cv15AQAAAKu5dfa3l35f9oWunzvtlL/hV7S07n+6h+x2Gw1wAAAAAAAAg7h9A3zdunUaMmSIrl69etsxY8aMUXR0tHr27Kl//etfkqSEhAQNHjxY33//vaZMmaKhQ4c6rcbo2Ev6I/pCrj9vmeIBuf6cAAAAgJVdP3da12OOG10GAAAAAAAAnMRtr90dExOjYcOGqU+fPrp586aKFSuW4bjjx49r9erVKl26tAYMGJC63MfHR6NHj1a+fPn0zTffKD4+3lWlAwAAAAAAAAAAAAAM4LYN8MmTJys0NFRVq1bVN998owoVKmQ47ocfflBycrKaNGmiPHnypFlXoEABNWjQQNeuXdP27dtdUTYAAAAAAAAAAAAAwCBu2wCvUKGCxo8fr2+//VaBgYG3HffLL79IkqpUqZLh+kqVKqUZBwAAAMA92e02eXvbnfI/Ly+3jT4AAAAAAADIRW57D/CePXtmatyZM2ckScWLF89wfcrys2fP5k5hAAAAAHKd3W5ToUL+NKoBAAAAAACQI27bAM+sa9euSZJ8fX0zXJ+yPGVcTnh7p90ZZ5adc2aZB3LOTK8FM80FyCozvf7NNBcAd+bldess7anzNys69lKuP3/1wDLq0qpGrj9vRvjsAgAAAAAAMI7HN8C9vLwkSTabLcP1Docjzf9nl91uU+HC+XL0HO4qIMDP6BKAXMfrGjAH3suA9UTHXtIf0Rdy/XnLFA/I9ee8HT67AAAAAAAAjOPxDXB/f39J0o0bNzJcn7Lczy9nO6GSkx26fDntWeReXnZT7Ny6fPm6kpKSjS4DbsAsr2mJ1zWsjfcyAE/EZxc8WUCAH2f+AwAAAADgJjy+AV6iRAlJf90L/J/udo/wrEhMNOdOrKSkZNPODdbF6xowB97LADwRn10AAAAAAADG8fhD1KtUqSJJOnLkSIbrf/31V0lSYGCgy2oCAAAAAAAAAAAAALiexzfAGzduLElav369kpKS0qy7cuWKtm/fLn9/f9WuXduI8gAAAAAAAAAAAAAALuLxDfCyZcvqiSee0MmTJ/Xhhx/K4XBIkhISEvTOO+8oLi5OXbt2Vf78+Q2uFAAAAAAAAAAAAADgTB5/D3BJGjFihPbv36/Zs2dr48aNqly5sn766SedOnVKVatWVb9+/YwuEQAAAAAAAAAAAADgZB5/Brh06yzw7777Tp07d9aVK1e0fv16+fj4qHfv3pozZ47y5ctndIkAAAAAAAAAAAAAACfzmDPA586de8f1JUuW1JgxY1xUDQAAAAAAAAAAAADA3ZjiDHAAAAAAAAAAAAAAAGiAAwAAAAAASVJ4eLgCAwO1ZcuWDNefPXtW7733np588klVq1ZNzZo104cffqi4uDgXVwoAAAAAQMZogAMAAAAAAEVFRWn06NG3XR8bG6tnn31WX3/9tXx9ffX4448rOTlZM2fO1HPPPaerV6+6sFoAAAAAADJGAxwAAAAAAItbt26dunfvfscm9pgxYxQdHa2ePXtq6dKl+uSTT7Rq1Sq1bt1ahw8f1pQpU1xYMQAAAAAAGaMBDgAAAACARcXExGjYsGHq06ePbt68qWLFimU47vjx41q9erVKly6tAQMGpC738fHR6NGjlS9fPn3zzTeKj493VekAAAAAAGSIBjgAAAAAABY1efJkhYaGqmrVqvrmm29UoUKFDMf98MMPSk5OVpMmTZQnT5406woUKKAGDRro2rVr2r59uyvKBgAAAADgtmiAAwAAAABgURUqVND48eP17bffKjAw8LbjfvnlF0lSlSpVMlxfqVKlNOMAAAAAADCKt9EFAAAAAAAAY/Ts2TNT486cOSNJKl68eIbrU5afPXs2dwoDAAAAACCbaIADAAAAAIA7unbtmiTJ19c3w/Upy1PG5YS3d9qL1Xl5mePidZmdh1nmK1lvzmaZBwAAAODpaIADAAAAAIA78vLykiTZbLYM1zscjjT/n112u02FC+fL0XO4q4AAP6NLcDmrzdlq8wUAAADcFQ1wAAAAAABwR/7+/pKkGzduZLg+ZbmfX84agMnJDl2+nPYsci8vuykai5cvX1dSUvJdx5llvpL15pzZ+QIAAADIuoAAv0xfdYkGOAAAAAAAuKMSJUpI+ute4P90t3uEZ0ViojkbiElJyaad2+1Ybc5Wmy8AAADgrrg5EQAAAAAAuKMqVapIko4cOZLh+l9//VWSFBgY6LKaAAAAAADICA1wAAAAAABwR40bN5YkrV+/XklJSWnWXblyRdu3b5e/v79q165tRHkAAAAAAKSiAQ4AAAAAAO6obNmyeuKJJ3Ty5El9+OGHcjgckqSEhAS98847iouLU9euXZU/f36DKwUAAAAAWB33AAcAAAAAAHc1YsQI7d+/X7Nnz9bGjRtVuXJl/fTTTzp16pSqVq2qfv36GV0iAAAAAACcAQ4AAAAAAO6ubNmy+u6779S5c2dduXJF69evl4+Pj3r37q05c+YoX758RpcIAAAAAABngAMAAAAAgFvmzp17x/UlS5bUmDFjXFQNAAAAAABZRwMcAAAAAAAAMBm73Sa73ea0509Odig52eG05wcAAACyiwY4AAAAAAAAYCJ2u02FC/vJbvdy2t9ITk7ShQvXaYIDAADA7dAAR5Zw9DAAAAAAAIB7u7X/xku/L/tC18+dzvXn9ytaWvc/3UN2u439OAAAAHA7NMCRaXa7TYUK+cvLy+60v5GUlKyLF68RngAAAAAAAHLo+rnTuh5z3OgyAAAAAJeiAY5Ms9tt8vKya+r8zYqOvZTrz1+2REH1fe4Rjh4GAAAAAAAAAAAAkC00wJFl0bGX9Ef0BaPLAAAAAAAAAAAAAIA0nHctawAAAAAAAAAAAAAAXIgGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEzB2+gCAAAAAAAAACux222y221Oe34vL855AQAAgHXRAAcAAAAAAABcxG63qVAhf5rUAAAAgJPQAAcAAAAAAABcxG63ycvLrqnzNys69pJT/kb1wDLq0qqGU54bAAAAcHc0wAEAAAAAAAAXi469pD+iLzjlucsUD3DK8wIAAACegGstAQAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBS8jS4A+CcvL+cel5Gc7FByssOpfwMAAAAAAAAAAACA69EAh9soWMBXjuRkBQT4OfXvJCcn6cKF6zTBAQAAAAAAAAAAAJOhAQ63kc/XRza7Xb8v+0LXz512yt/wK1pa9z/dQ3a7jQY4AAAAAAAAAAAAYDI0wOF2rp87resxx40uAwAAAAAAAAAAAICHce7NlgEAAAAAAAAAAAAAcBEa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU/A2uoDctG7dOr3++uu3Xd+mTRtNnjzZhRUBAAAAAAAAAAAAAFzFVA3wAwcOSJLq1q2rUqVKpVtfs2ZNV5cEAAAAAAAAAAAAAHARUzbAhw8frqCgIIOrAQAAAAAAAAAAAAC4kqnuAX7gwAHlzZtXlSpVMroUAAAAAAAAAAAAAICLmaYBfuHCBZ0+fVqBgYHy9jbVie0AAAAAAAAAAAAAgEwwTac45fLnpUuX1ocffqi1a9fq1KlTKlasmFq2bKnevXurYMGCBlcJAAAAAAAAAAAAAHAW05wBvn//fknSqlWrNH/+fN13332qVauWLl26pFmzZunZZ5/VmTNnDK4SAAAAAAAAAAAAAOAspjkD/ODBg5Kkxx9/XBMnTlSBAgUkSefPn9egQYO0bds2jRgxQtOnT8/23/D2Tnu8gJeXOY4fyOw8zDJfyVxzyU1m+u9iprkAWWWm17+Z5gLgzsz0fjfTXAAAAAAAADyNaRrg48eP1xtvvKFSpUrJ19c3dXmRIkU0YcIEtWrVSuvXr9fJkydVrly5LD+/3W5T4cL5crNktxEQ4Gd0CS5nxTlbDdsYMAfeywA8EZ9dAAAAAAAAxjFNA9zHx0f33XdfhutKliypBx98UDt37tT+/fuz1QBPTnbo8uVraZZ5edlNsXPr8uXrSkpKvus4s8xXyvycrYZtDJgD72UAnojPLniygAA/S535v27dOr3++uu3Xd+mTRtNnjzZhRUBAAAAAPAX0zTA76ZYsWKSpOvXr2f7ORITzbkTKykp2bRzux0rztlq2MaAOfBeBuCJ+OyC2R04cECSVLduXZUqVSrd+po1a7q6JAAAAAAAUpmiAZ6QkKBRo0bpwoULmjhxovz9/dONOXHihCRlGM4BAAAAAEDmpDTAhw8frqCgIIOrAQAAAAAgLVNco83Hx0dbtmzR2rVr9cMPP6Rbf+jQIR06dEgFChRQjRo1XF8gAAAAAAAmceDAAeXNm1eVKlUyuhQAAAAAANIxRQNckrp06SJJ+uCDD3T8+PHU5WfPntXbb7+tpKQkde/eXb6+vkaVCAAAAACAR7tw4YJOnz6twMBAeXub4qJyAAAAAACTMU1affXVVxUZGalNmzbp6aefVp06deTj46Pt27fr2rVratmypXr27Gl0mQAAAAAAeKyUy5+XLl1aH374odauXatTp06pWLFiatmypXr37q2CBQsaXCUAAAAAwMpM0wD38fHRjBkz9PXXXyssLEy7du2S3W5X5cqV1blzZ3Xq1Ek2m83oMgEAAAAA8Fj79++XJK1atUr58uVTvXr1VKpUKf3000+aNWuW1q1bp3nz5ql48eIGVwoAAAAAsCrTNMAlycvLSyEhIQoJCTG6FAAAAAAATOfgwYOSpMcff1wTJ05UgQIFJEnnz5/XoEGDtG3bNo0YMULTp0/P9t/w9k57tzYvL3PcvS2z8zDLfCXrzdlq85XMNRcAAACYh6ka4AAAAAAAwHnGjx+vN954Q6VKlZKvr2/q8iJFimjChAlq1aqV1q9fr5MnT6pcuXJZfn673abChfPlZsluIyDAz+gSXM5qc7bafCVrzhkAAADujwY4AAAAAADIFB8fH913330ZritZsqQefPBB7dy5U/v3789WAzw52aHLl6+lWeblZTdFk+3y5etKSkq+6zizzFey3pytNl8p83MGAAAAciogwC/TVyCiAQ4AAAAAAHJFsWLFJEnXr1/P9nMkJpqzmZaUlGzaud2O1eZstflK1pwzAAAA3B836gEAAAAAAHeVkJCg//znP+rTp4+uXbuW4ZgTJ05IkkqVKuXK0gAAAAAASEUDHAAAAAAA3JWPj4+2bNmitWvX6ocffki3/tChQzp06JAKFCigGjVquL5AAAAAAABEAxwAAAAAAGRSly5dJEkffPCBjh8/nrr87Nmzevvtt5WUlKTu3bvL19fXqBIBAAAAABbHPcABAAAAAECmvPrqq4qMjNSmTZv09NNPq06dOvLx8dH27dt17do1tWzZUj179jS6TAAAAACAhdEABwAAAAAAmeLj46MZM2bo66+/VlhYmHbt2iW73a7KlSurc+fO6tSpk2w2m9FlAgAAAAAsjAY4AAAAAADINC8vL4WEhCgkJMToUgAAAAAASId7gAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATMHb6AIAq7PbbbLbbU57/uRkh5KTHU57fgAAAAAAAAAAAMBd0AAHDGS321S4sJ/sdi+n/Y3k5CRduHCdJjgAAAAAAAAAAABMjwY4YKBbZ3976fdlX+j6udO5/vx+RUvr/qd7yG630QAHAAAAAAAAAACA6dEAB9zA9XOndT3muNFlAAAAAAAAAAAAAB7NbnQBAAAAAAAAAAAAAADkBhrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAVvowsA3J3dbpPdbnPKc3t5cQwKAAAAAAAAAAAAkFtogAN3YLfbVKiQP41qAAAAAAAAAAAAwAPQAAfuwG63ycvLrqnzNys69lKuP3/1wDLq0qpGrj8vAAAAAAAAAAAAYEU0wIFMiI69pD+iL+T685YpHpDrzwkAAAAAAAAAAABYFdd1BgAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmIK30QUAAADAPdntNtntNqc9f3KyQ8nJDqc9PwAAAAAAAADroQEOAADggZzdnLbZbAoIyCu73ctpfyM5OUkXLlynCQ4AAAAAAAAg19AABwAA8DB2u02FCvnLy8v5d7P5fdkXun7udK4/r1/R0rr/6R6y2200wAEAAAAAAADkGhrgAAAAHsZut8nLy66p8zcrOvaSU/5G9cAy6tKqhq6fO63rMced8jcAAAAAAAAAILfRAAcAAPBQ0bGX9Ef0Bac8d5niAU55XgAAAABA5jj71leSlJzs4KpcAADToQEOAAAAAAAAAEAWObNBbbPZFBCQV3a7l1OeP0VycpIuXLhOExwAYCo0wAEAAAAAAAAAyAK73aZChfzl5WV36t/5fdkXun7utFOe269oad3/dA/Z7TYa4AAAU6EBDgAAAAAwDWdfKpTLhAIAAOnWbw4vL7umzt+s6NhLuf781QPLqEurGrp+7rSuxxzP9ecHAMDMaIADAAAAAEzBbrepcGE/p14qlMuEAgCAv4uOvaQ/oi/k+vOWKR6Q688JAIBV0AAHAAAAALiEs8/O9vKyy273ctqlQrlMKAAAAAAA7o8GOAAAAADA6Vx1n0xJXCoUAAAAAAALowEOAAAAAHA6Z98nU/rrXpkAAAAAAMC6aIADAAAAAFzGWffJlLhXJgAAAAAAkJx/7TkAAAAAAAAAAAAAAFyABjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFLyNLgAAzM5ut8lutzn1byQnO5Sc7HDq3wAAuJ6zv0P4/gAAAAAAAIDZ0AAHYHnObC7YbDYFBOSV3e7llOdPkZycpAsXrtPEAAATsdttKlTIX15ezrtoU1JSsi5evMb3BwAAAAAAAEyDBjgAS3NFc0GSfl/2ha6fO+2U5/YrWlr3P91DdruNBgYAmIjdbpOXl11T529WdOylXH/+siUKqu9zj/D9AQAAAAAAAFOhAQ7A0pzdXKgeWEZdWtXQ9XOndT3meK4/PwDA/KJjL+mP6AtOe35nHgTGJdYBAAAAAADgajTAAUDOay6UKR6Q688JAEBuKFjAV47kZAUE+Dntb3CLDgAAkMKZtx+TOPAOAAAAf6EBDgAAAFhQPl8f2ex2p92mg1t0AACAFK64/VhSUrKuXImXw+G83x002QEAADwDDXAAAHIBZzMA8FTcpgMAADibs28/FnhfcYW0ra1Chfxz/bn/jqvbAAAAeAYa4AAA5JDdblPhwn6y272c9jfY0QIAAADA0znz9mPOvLKNxNVtAAAAPAkNcABArrPa2dC35uvFZYQBAAAAwEBc2QYAAAASDXAAQC5zx7Ohnd2QT7mPHTtbAAAAAAAAAAAwluka4Dt27ND06dN18OBBxcfHKzAwUC+99JJat25tdGkAYAnudja03W5ToUL+qU1qAAAA5BzZGwAAAACsy92vAmuqBvjSpUv173//W97e3qpfv768vLy0detWDRw4UEeOHFG/fv2MLhEA3IIzv5zc7Wxou90mLy+7ps7frOjYS075G9UDy6hLqxpOeW4AAAB3Q/YGAAAAPJezG5eu4G63yHQ3zt7GNptNAQF53eoqsP9kmgb4uXPnNHz4cPn5+WnOnDl6+OGHJUlHjhxRSEiIpkyZoubNmysoKMjgSgHAWFY9Izo69pL+iL7glOcuUzzAKc8LAADgbsjeAADASmgUwmxcsW/YkZwsm925+55z2hw1M1fu/3eXq8BmxDQN8K+//lrx8fHq0aNHagCXpIoVK+rNN9/U22+/ra+++krjxo0zsEoAMJ6zz4jmbGgAAADzInsDAACrcFUTydnNQhqF+DtX7Rt2VmNUyp3mqJm58oqo7nIV2IyYpgG+YcMGSdKTTz6Zbl2zZs1ks9m0ceNGF1cFAO7LWWdEczY0AACAeZG9AQCAVbiyieTOZ1Fagaef6Z+ds/ydvW/YnRujVmH1K6KapgH+22+/SZIqVaqUbl2hQoVUrFgxnTlzRufOnVPRokVdXR4AAAAAAB6P7A0AAJzJ2Y1Id2oUSjQL3YEZLgnOWf5AeqZogF+6dEk3btxQvnz5lC9fvgzHlChRQmfOnNGZM2cI4QAAmJA7hmQAAMyE7A0AuBNPP4NSIvdlhjO3s81mU0BAXtntXk55folGIdLz9EuCc5Y/kDGbw+Hw+HfE6dOn9fjjj6tYsWLavHlzhmOee+457d69W/Pnz1etWrWy/DccjvQ/fmw2yW6369LVeCUlJWer9jvxyeOl/P55dTPushzJSbn+/Da7l/LkC1BycrIy8yrw9PlK1puzu81Xst6ceV2bfxtL1puzO76upVuBxWZz3s4Wh8MhZ/5syspTW/F1nfo4D96fltWXj6e/l/nsysLjLPK6NvNnl7O/g9wF2Tt7+DzMxHgPn7O7zVey3pzd8XWd+jgP/nrI6u9XV3wfOhwOp+e+zDaQrPq6dsV2ToyPkyM59/+b2ux2efvmc5vPLsn9Pq9TH2ehzy5Pfy/znZyFx1nkdW3mz66sfAeZ4gxw+/+/dMSdJp2ywzq7O65tNpu8vDJ+/oL5fbP1nJmVJ59zr6Vvz+KlNzx9vpL15uxu85WsN2de17nP3eYrWW/O7vi6diabzf2aG1Z8XVuRp7+X+ezCP/HZ5bnI3jnD5+Hdefqc3W2+kvXm7I6va+QuZ2eyO30P3Q6v69zn7ZvxlWZyi7t9dknu93ltRZ7+Xna317UVP7vcjdU/u0zx6ki59Fp8fPxtxyQkJEiS/P39XVITAAAAAABmQvYGAAAAAHgC0zTA/f39deXKldsG8djYWElS8eLFXVkaAAAAAACmQPYGAAAAAHgCUzTAbTabqlSpIkk6cuRIuvUXL17U2bNnVaRIERUrVszV5QEAAAAA4PHI3gAAAAAAT2CKBrgkNW7cWJK0Zs2adOvWrFkjh8OhJk2auLosAAAAAABMg+wNAAAAAHB3pmmAd+zYUX5+fvryyy+1e/fu1OVHjx7Vf//7X9lsNr3yyisGVggAAAAAgGcjewMAAAAA3J3N4XA4jC4ityxcuFAjRoyQl5eX6tevLx8fH23dulU3btzQv/71L/Xs2dPoEgEAAAAA8GhkbwAAAACAOzNVA1ySfvjhB33xxRf6+eef5eXlpUqVKunVV19VixYtjC4NAAAAAABTIHsDAAAAANyV6RrgAAAAAAAAAAAAAABrMs09wAEAAAAAAAAAAAAA1kYDHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAHkmitXrmT5Mdu3b3dCJQCya8qUKfrll1+MLgMAAADAbZC9Ac9H9gYAwLlogMPlEhIS9PPPP+vQoUNKTEy87bjz588rMjLShZW53vbt2zV79mz973//04kTJ4wuJ8dCQkJ08eLFTI29ceOGxowZo1deecW5RQHIkilTpujw4cNGlwHkumbNmmnt2rVGl2GI5ORkHT9+PM0yh8OhFStWaMyYMfroo4+0b98+g6rLPadOnVJ8fHymx584cULh4eHOK8gA58+f19atW7VixQp9//332r59e6Z/mwEwH7L3X8jeZG/A3ZC9YVZkb7L3P5G9YRRvowtA5sXHx+v8+fMqU6aM0aVk25w5c/Txxx/r2rVrkqQCBQrotdde02uvvSa7Pe3xGJs2bdKQIUN08OBBI0rNNYcPH9bnn3+uw4cPq0yZMurVq5dq1aqlAQMGaO3atXI4HJIkb29v9e/fX7169TK44uw7ePCgXnjhBX355ZcqVqzYbcft27dPQ4YM0R9//HHHcWZ1/vx5HTlyRHXr1jW6FJe4cuWKxo8frzFjxhhdistYbRubQbNmzfT222+rWbNmRpfiMg888IAmTJigtm3bGl2KS0RHR6f+/rCSDRs2aNSoUTpz5ox+/vlnSbdCeZ8+fbRx48bU3yEzZ85USEiIhg0bZmS5OdKsWbN0r+lr165p9OjReu2111SxYsU04/fs2aNhw4apQ4cOLq40961atUqff/55hr+bbTabatWqpddee02PP/6464vLRUFBQbLZbFl6jM1m04EDB5xUEcyK7O2ZyN7pkb2tlcvI3vAEZG/zI3uTvcneZG93wRngBsroaKiEhASFh4fr7Nmz6cZHRER49I+D8PBwjR07VoGBgRo2bJh69eolX19fTZ48Wa+++qquXr1qdIm57ueff9azzz6rDRs2yM/PT/v27dPLL7+ssWPHau3aterevbvCwsI0b948NWnSRP/973/1/fffG112to0YMUJHjx5Vt27ddPr06XTrb968qY8++kjPP/+8/vjjD7Vv317Lly83oNLc9cADD2jp0qVplsXHx2vKlCk6efJkuvGbNm1SSEiIq8pzipMnT2r06NF65pln9Mwzz2j48OE6duxYunERERFq06aNFi1aZECVuceK29hqrBjQUsIXzOvQoUPq27evHA6HunfvruTkZEnS/PnztWHDBhUvXlwLFy7Unj17NHjwYM2ZM8ejf4dk9Jq+ceOGwsPDFRsba0BFrjFmzBgNHDhQ0dHR6tChg9566y299957eueddzRgwAA1a9ZM+/fv1+uvv64PPvjA6HJzpG7duqpTp06W/le7dm2jy4YbIHuTvcneZG9PRfY2/za2GrI3zIjsTfYme7tn9uYMcANl9IUfFxenYcOGadasWaY7Onf27NmqW7eu5s6dm7qsT58+evfddxUaGqqXX35ZX375pfLnz29glblr8uTJKleunObOnasiRYro2rVr6tWrl77++mt16dJFb731VurYOnXq6IUXXtD//d//qXXr1gZWnX3dunVTwYIFNXToUHXr1k1ffvml7rnnHkm3jlAfMmSIfvnlF5UpU0ajRo1S48aNDa44d2T0pX/9+nVNnTpVtWvXVrly5QyoynkOHjyoF198UVevXpWvr698fX114MABrVixQgsWLFCVKlV05coVDR8+XBEREfLy8lLPnj2NLjtHrLaNjx49muXLYHLEPeB+vvjiC5UoUUKLFy9WQEBA6vKvv/5aNptNb775pqpVqyZJeuWVV7Rjxw7Nnz/fY3+H3I6ZdzgtWbJE8+bNU4cOHfTOO+/I398/w3FxcXF6//339dVXX6lmzZpq2bKliyvNHX/PEUBWkL3J3mRvsrcnInvfYuZtTPYGzIHsfQvZm+ztbmiAuyGzflD8/vvvGjp0aJplPj4+Gjt2rAoVKqRZs2bptdde06xZs277AeJp9uzZozfffFNFihSRJPn7++uNN97QCy+8oEcffTTd+NatW2vChAmuLjNXPf300ypQoIAGDhyobt266YsvvtDatWs1ffp0JSYm6vnnn9e//vUv5cuXz+hSnc6s7+VPPvlE8fHx+uijj/TUU09JkqKiovTmm29qzJgxmjhxokJCQvTHH3/o4Ycf1pgxYxQYGGhw1c5h1m08ffp0TZ8+PUuP8fRLZlpVVi9n5OkWLlyoLVu2ZHq8zWbT2LFjnViRc0VGRurZZ59NE8BPnDiho0ePytvbW08++WSa8Y888og++eQTV5eJHJg/f75q1Khx16PL8+XLp7Fjx+rIkSP69ttvPTaE37x5U3ny5MnSY/bt26fq1as7qSJ4OrP+liN7k73J3uZA9v6LWbcx2ds6yN53RvaGuyN73507Zm8a4HAZPz8/Xbx4McN1gwcP1rVr17RgwQL17t1bX3zxhWuLc5L8+fPr8uXLaZYFBgaqSZMm8vZO//a7cOGC8ubN66rynKZJkyaaOXOmXn/9dT3zzDNyOBy69957NWbMGNWpU8fo8pBDUVFR6tq1a2oAl6Rq1app8ODBGjRokAYNGqTo6Gi99dZbevXVV9PdYxDur3nz5qbdcXInVgtokjRt2jQtXLgw0+NtNpu++uorJ1bkXJGRkVk6w8LTt/GFCxdUqlSpNMu2bdsmSapevXq6HeK+vr66ceOGy+pDzv32229Zuodts2bN9M033zixIud65plnNHHixEx9RyUkJGjy5MmaM2eO9u/f74LqAPdB9r6F7E329nRkb/Mje2eOp+cyiex9N56+jcne5kf2vj13zt40wOEy9evX15w5c/Tkk0+qcuXK6daPHDlSV69e1bJly/Tqq6+qSZMmBlSZux555BF9+eWXqlmzpho2bChJKlCggD7//PN0Y/ft26e5c+emjvN0tWvX1pw5c/Taa6/p/Pnzeu+99wjgJnHp0iUFBQWlW/7www8rKSlJhw8f1ty5c1WjRg3XF4dc0aJFC7Vt29boMlzOagFNko4cOaIjR45kerynH7X+9ttve/Q9XbOqYMGCOn/+fJplmzZtks1m0yOPPJJu/JEjR1LPnINnuHbtmooWLZrp8cWLF/foe7KdPXtWnTp1Uv/+/dWjR4/bfibt2rVLb7/9to4dO6Z7773XxVUCxiN7k73J3uZA9jY/snfmkL09D9mb7G02ZG/PzN40wOEyb775pp5//nkFBwfrwQcf1IcffpjmTWGz2TRhwgT5+PgoNDRUu3fvNrDa3PHWW28pKipKr776qurUqXPbeye8+OKL2rVrl4oUKZLm3mSeLigoSPPnz9crr7yi119/XVOnTlWDBg2MLgs5lJiYmOHZEr6+vpKknj17EsDhkawW0CTpww8/tNQOl8KFC6ts2bJGl+EytWrV0ooVK9S9e3d5eXnp7Nmz2rBhgySpVatWacZeuXJFS5cuVf369Q2oFNmVlJSU4ZmNt+Pl5aXExEQnVuRcy5Yt07BhwzRp0iRt2LBB48ePV/ny5VPXp1wmNuVee927d9eAAQMMrBgwBtmb7E32NgeyN8yK7G1+ZG+yt9mQvT0ze9MAh8vcd999Wr58uaZOnaqdO3em/mD/O7vdrrFjx6pmzZr6+OOPde7cOQMqzT1FixbVokWLtGDBAiUkJNx2nK+vrzp16qQ33ngjS0cSuZthw4ZluPzee+/VyZMn1atXL7Vu3TrNEUNmOIoTaT300ENGlwBki9UCGsyvR48e6tq1q7p06aJ69epp7dq1unHjhp566ilVqFBB0q0dq3v37tX48eN1/vx5devWzeCqc2b16tU6duxY6r/Hx8fLZrNp8eLF2rVrV5qxv/zyi6vLQw4VLVpUM2bM0Ndff60PP/xQ7du319ChQ/Xss89qx44d+s9//qMTJ04oMDBQ77//Pr9JYFlkb7I32dsa+J6DpyJ7w2zI3mRvszFL9qYBbrCjR4+mueTLlStXJEmHDx9Od0RJVi6T4q4KFy6s4cOH33Vc586dFRwcnOZD1FP5+vrq5ZdfvuMYs9x3LSws7I7rb9y4ofDw8DTLzBLCd+7cqaSkpNR/j4uLkyRt3rxZMTExacaa4QyLO/H0yzTdjlW2cd26dVWsWDGjywCQCx5++GFNmzZN77//vmbNmiUvLy+1bdtWo0aNSh0zYcIEzZkzR3a7XcOGDVOtWrUMrDjnIiIiFBERkW75P39/pDDDd9Y/dzzciVl2PHTr1k0NGjTQiBEjNHLkSM2dO1dHjhyRt7e3BgwYoJ49e2bp6HxYA9k7Y2Rvz0T2Nn8uywwz/I7JiFW2MdkbMA+y91/I3reQvd2DzeFwOIwuwqqCgoIyfOM7HI47Lj948KArynM6h8OhEydO6OLFi5KkIkWKqFy5csYW5WRmn3N0dHS2HufpR31m9F7++0drRus8+b0cFBSk119/XY0aNUqz/MqVK+rTp4+GDh2qqlWrpntc3bp1XVVirrPaNraioKAgy12SzGpzDgsLU506ddJcsslKLly4ID8/v3RnAW7cuFH79+/XU0895Zb3a8qKHTt2ZOtx9erVy+VKXCej+4LejZm+nyIjI9WnTx9duXJFNptNffr0Uf/+/Y0uC26I7G3uHJoRs8+Z7P0XM+cysvctZt7GVmS1HCpZb85kb7L37ZC9PZenZm8a4AaaMmVKth7Xr1+/XK7EtaKiojRz5kxt3rxZ165dS7Muf/78atq0qV555ZVsfai4KyvO2UrudvT97QQHB+dyJa5xux2I0u13Ikry6C98K23jv58ZlRWevJNFsmZA27FjhypWrOjRl/8ErM6KOx4k6erVq5owYYK+++475c2bVz169NCqVav0yy+/qGHDhhozZozKlCljdJlwI2Rv6+RQK87ZSqyUyySyd1Z44jYme5O9AXgOsrdnZm8a4HCpWbNmaeLEibLb7apZs6YqV66sgIAAJSYm6uLFizpw4IAOHjwou92uIUOGKCQkxOiSc8yKc86s6dOnKyIiQqGhoUaX4nIJCQny8fExuoxsseoOxKzy1G18p50sd+LJO1lgDbe7V+admOVSocjYggULtGnTpmx/r8EYGzZs0MiRIxUTE6MGDRpo9OjRKl++vG7evKlPPvlEs2bNkq+vr/7973+ra9euRpcLGMaKOdSKc84ssrfn5TKJ7J1ZnrqNyd4wK7I3/ons7ZnMkL1pgMNlNm7cqF69eqlhw4YaO3asSpcuneG448ePa9SoUdqyZYtmzZqlhg0burjS3GPFOWfFyJEjtXDhQo//8T5lypQsBcyoqCgNGzZMy5cvd2JVyE1W2saffvpptkK4p+9ksWJAy85OX5vNpq+++soJ1TifFS9Xdbedannz5lWBAgVUpUoVtWjRQp07d5bdbndhhcYyw++QU6dOqUiRIukur3c7J06c0K5du9ShQwfnFuYkb731lpYvXy5/f38NHjxYXbp0STdmz549GjJkiE6cOKF69erp/fffN9Vlj4HMsGIOteKcs8IM33mStXKZVVlpG5O9M4/s7VnI3umRvT3/dwjZ2zOzNw1wA1ntC/+VV17R2bNnFRoaqjx58txxbGJiojp06KB7771XU6dOdVGFuc+Kc84KM3z5Sbd+5HTv3l3//ve/7zguMTFRU6ZM0cyZM5WUlOTx886s+Ph4nT9/3q0vh3I3bGPzs2pAyypPnrMV75X54osv3nF9UlKSLl++rOPHj+vmzZt65JFHNH36dHl7e7uoQmOZ4XfIAw88oAkTJqS5n+C1a9c0evRovfbaa6pYsWKa8UuWLNGQIUM8ds5BQUFq3LixRo8erVKlSt12XHx8vD744AMtWLBA/v7+2r17twurhDsie9+eWXKoFeecFWb4zpPIZXdD9oYnsFoOlaw3Z7J3emRvz/8dQvbOmLtnb2u8w9xUVu5r8/cjiDw1hB84cEAvv/zyXcOoJHl7e6t169ZasmSJCypzHivO2Yrq1KmjWbNm6fr163rnnXcyHHP48GENGTJEhw8fVsGCBfWf//zHxVXmnmbNmuntt99Ws2bNUpclJCRoxYoVevTRR1WsWLE04yMiIjz6C1+y3ja2orVr1xpdgssdOnTI6BJcypPDdHbNnTs3U+Pi4+M1f/58TZgwQfPnz79reIf7yOhY5hs3big8PFzt2rVLF8I93bhx4zJ1j09fX1+9++67evLJJ/k+hiSy952YJYdacc5WZLVcRvY2/za2IrK3+ZG9b4/s7bnI3hlz9+xNA9xAmfnyi46O1ujRo7VhwwYVKFBAAwcOdH5hThIXF6cSJUpkenzp0qX1559/OrEi57PinK1o1qxZGjBggObPn6/r169r7NixqTvOHA6HZsyYoalTpyohIUFt2rTR8OHDVaRIEYOrzr7o6Ghdu3YtzbK4uDgNGzZMs2bNShfCzcBq21iSjh49qj179qhjx46py86ePaspU6Zo9+7d8vPzU7NmzfTyyy975P3W/smKAQ1pJSQk6LfffpOvr68qVKhgdDku5evrq1deeUX79u1TWFgYIdwEzHqRr8wE8L+7//771blzZydVA09C9r4zM+RQK87ZiqyWy8je5t/GEtkb1kP2JnubCdn7FnfN3jTA3VRSUpJmzZqlzz77TPHx8Xrqqac0bNgwj/5xm5iYmKUfat7e3kpISHBiRc5nxTlbkY+Pj6ZOnaphw4YpLCxM8fHxmjhxoo4fP66hQ4cqKipKxYsX17vvvqumTZsaXa7TmPULX7LeNp44caJmzZolh8Oh4OBg2e12XblyRV26dNGpU6dUqFAhlS1bVh9//LHWrVunuXPnZupsG09mxYAWExOjqKgo+fr6qm7dupm+z5E7u3Llir744gvt2bMnzRHaS5cu1ZgxY3T58mVJt364jx07VjVq1DCoUmPUr19fmzdvNroMIEdu3LihVatWKTQ0VDt27JDD4VDfvn2NLgtujOxtjhxqxTlbkdVy2e2Qvc2zjcne6ZG9yd5WQPaGGXhC9qYB7oZ27typUaNG6ddff9V9992nkSNHqmHDhkaXBdzVlClTsjT+559/dlIlrufl5aUJEyYoICBA8+bN08mTJ/Xrr78qPj5enTt31pAhQ5Q/f36jy0QOWGUbr169WjNnztTjjz+ukJAQ2e12SdJnn32m6OhoVa9eXV9++aX8/PwUFRWlF198UV9++aV69OhhcOU5Z8WAFh0drUmTJmnPnj1at25d6vIZM2bok08+UVJSkhwOhwoWLKjRo0erRYsWBlabM3FxcerSpYuOHj2qUqVKKTExUd7e3oqKitKQIUPkcDjUpUsXVa5cWeHh4XrllVcUHh6ue++91+jSXcbLy0vJyclGl5Ft4eHhWRr/+++/O6cQGGLPnj0KDQ3V999/r7i4ODkcDt1zzz3q0qWL0aXBjZG94anI3ubPZVZmlW1M9iZ7S2RvsrdnIntbmydlbxrgbuTChQuaMGGCwsPD5ePjo/79+6tHjx6muLxNip07dyopKSlTY3fv3u3kalzDSnPOagiX0t5jzwyGDx+uQoUKacqUKbLb7fr888/VpEkTo8tCLjL7Nl6wYIGqV6+u6dOnpy5zOBxasmSJbDab3njjDfn5+UmSqlWrpvbt22v58uUeH8KtGNDOnTunLl266MKFC6pWrVrqnH/88UdNmjRJ3t7eevPNN1WlShUtXLhQb775pr755htVrVrV6NKzZdasWTp+/Lj++9//qlWrVqnLp06dKofDoZdeeklDhw6VJHXq1Ent2rXT9OnTNW7cOKNKdrl9+/apdOnSRpeRbUOHDs3S7wqHw2G63yFWExMTo8WLFys0NFTHjh1LPSOufv366tGjhx599FGDK4S7Inun5ek5NIWV5kz2Nn8ug/m3Mdmb7E32Jnt7KrK39Xhq9qYB7ia+/fZbTZw4UZcuXdIjjzyikSNH6p577jG6rFy3cOFCLVy4MFNjzfLBaKU5z5kzx+gS3EK/fv1UuHBhjRkzRjNnzlTt2rVNcXQy/mLmbbx///50gfrAgQM6d+6c8ufPr/r166dZ9/DDD2vp0qWuLNEprBjQZsyYobi4OH399ddpjqifMWOGbDab+vbtm/paeOyxx9SxY0d98cUX+u9//2tMwTkUERGh9u3bp9m+cXFxqZcde/7551OX582bV+3atdO3337r8jqNsnLlSi1evFivvfaa0aVkmye/H5F5CQkJWrNmjUJDQ7V161YlJSXJy8tL9erVU+3atTVt2jSFhIS4bQCH8cje6Xl6Dk1hpTmTvW8xcy7DLWbexmRvsjfZm+ztqTz5/YjMM0P2pgFusMOHD+vdd9/V3r17VaxYMU2aNElt2rQxuiynsOIHo9XmXK9evSw/ZufOnU6oxLUiIyPTLatSpYo6d+6shQsX6qWXXtLgwYNTL2eVom7duq4qETlkpW187do1FSxYMM2ybdu2Sbo1Hy8vrzTrEhMTPXrnYQorBrQNGzaoY8eOaQL4xYsXtWvXLknSM888k7rcZrOpdevW+uqrr1xdZq45efJkmu0o3XpvJyYmqnz58umaH6VLl9a5c+dcWWKuGzZs2B3XJyUlKS4uTr/99puOHz+u++67z6NDeHBwsNElGGL16tU6duxY6r/Hx8fLZrNp8eLFqe/nFL/88oury8tVo0aN0ooVK3Tp0iXlzZtXjRs3VvPmzdWsWTMVLlxY0dHR+uyzz4wuE26K7G1uVpsz2fsvZs1lVmWlbUz2JnuTvW8he3sesvctZG/3z940wA00fvx4zZ07V0lJSXriiSc0cOBA5c+fX6dOnbrj48qUKeOiCnOXFT8YrTjnzDh9+rTCwsIUHh6uEydO6ODBg0aXlCMvvvjiHUPI/v379fLLL6db7snzPnr0aJpgeuXKFUm3dix6e6f9ajly5IhLa3MGK23jEiVK6MSJE2mWbdiwQTabTY899li68VFRUSpZsqSrynMaKwa0P//8U1WqVEmzbPv27UpOTlalSpXSbdeiRYvq0qVLriwxV9nt9nT32Nq6daskqVGjRunGnz9/3uPPLgkLC8vUuPLly+ull15Snz59PH7Ot5PR7+vSpUubZidiREREuuW3uy+bJ895/vz58vf3V+/evfXaa6+Z9vWK3Ef2Nj8rzjkzyN63ePK8yd5pmWkbk73/QvYme3v673qy91/I3n/x5DmbJXvTADfQ7NmzU/95/fr1Wr9+faYe54k/6rLj/PnzOnLkiEcexZldZp7zjRs3FBERodDQUG3fvj31knMZ/aj3NH379vXoL7TsmD59epr7VKUYP358umWefnlByVrb+LHHHtOiRYv0/PPPq2TJktqzZ4927typPHnyqGXLlmnG/vrrr1q+fLmeffZZg6rNPVYMaHnz5tX169fTLNuyZYtsNpseeeSRdOP//PNPBQQEuKq8XFepUiXt2bNH3bp1k3Trs2n16tWy2Wxq2rRpuvFr165VxYoVXV1mrlq7du0d1+fNm1cBAQGmuuetJC1atEjffvutPvvsMxUpUkQXLlxQ06ZN032ODxgwQK+//rpBVeYOq10CNzg4WGvWrNHnn3+ur776SnXq1Ek9Cr1YsWJGlwc3Rva+MzPn0Nsx85zJ3uZC9jYvsvdfyN5pkb09D9mb7G02ZsneNMAN1K9fP6NLcKkHHnhAEyZMUNu2bVOXxcfHa+bMmerQoYPKlSuXZvymTZs0ZMgQj97pYMU5/9PevXsVGhqq77//XlevXpUkFSlSRB07dlSXLl1UtmxZgyvMuf79+xtdgktZKZCmsNI27tOnjyIiItS6dWtVqFBBv/zyixwOh/r27asiRYpIuhW+IyIiNGfOHOXJk0fdu3c3uOqcs2JACwoK0tatW/XSSy9J+uvePpLUvHnzNGMdDodWrlypoKAgl9eZWzp06KD3339fDz/8sB555BEtXLhQp06d0j333KPGjRunGTt9+nTt3btXw4cPN6ja3GGG79iseuONN7Rq1SqVKVNGp06dSv3ckqR27dqpfPnykqTFixdr2rRp6tSpk4oXL25UuTmWnUvgJiYmOqES1xg3bpxGjRql9evXa+nSpfrhhx/0448/atSoUapZs6Zq1aplud8oyByyt/lzqBXn/E9kb/Mhe5sb2ZvsLZG9yd6ei+x9d2Rv49EAN5DVQrjD4Ui37Pr165o6dapq166dLpCagRXnLEmxsbEKDw9XWFiY/vjjDzkcDvn5+alRo0basmWL3nvvPTVr1szoMpFNVgqkVlSsWDF99913mjp1qvbu3asHH3xQHTt2VOfOnVPHhIWFadasWSpbtqw++ugjlS5d2sCKc4cVA1rXrl315ptvauzYsXrkkUe0aNEinTt3Tg8++GCas6Hi4+P1wQcf6Ndff/XoHS5du3bVrl27NG7cONlsNjkcDhUsWFATJ05MvYfgd999pxkzZujEiROqXbu2nnvuOYOrdq6oqCjt2bNHdrtd9erVU2BgoNEl5ciSJUu0atUq9erVSwMGDEh338QOHTqoYcOGkqQmTZro2Wef1TfffGOa3+RxcXFyOBx3PENmz549GjFihJYtW+bCynKXj4+PWrZsqZYtW+rKlStauXKllixZol27dmnXrl2y2Wz6/PPPdfXqVbVs2VK+vr5Glww3YJb3eWZZMYdacc4S2dvsyN7mRvYme5O9yd6eiuxN9vaU7E0D3I0kJCTo0KFDio2NlcPhUIkSJRQUFKS8efMaXZpTZRRUzc6sc/7+++8VGhqqLVu2KCkpSQEBAWrbtq1atGihxo0b68yZM+mObDSDKVOmZPkxNptNffv2dUI1zhcSEqLXX3899YeMFVhtG5cqVUqjR4++7fqOHTuqadOmqlWrVmp48XRWDGht2rTR4cOHNXPmTM2dO1cOh0PlypXT5MmTU8f83//9nz777DPFxcWpVatWat++vYEV54zNZtPEiRPVrVs37dmzR/nz51fz5s3THKX8559/yuFw6PXXX1evXr1M8fo+cOCAPv/8cx05ckT33HOPevfurWrVquk///mPQkNDU3+T2Gw2Pf300xo3bly6+0l6irCwMNWsWVODBg2669iUHW4bN270+BC+atUqTZkyRb/99pukW/eVGzBggJ5++unUMdeuXdOkSZM0f/78dJec9CTDhg1T165dVb16dUlSgQIF1LlzZ3Xu3FkxMTFatmyZli1bpqioKP30008aPXq02rRpo/fee8/gyuFuyN7WYdY5k70zz5NzGdk7czx5G5O9yd4pyN6e//ome2eM7O2ZzJK9PfMdZjJnz57VpEmTFBERobi4uDTr/Pz81LJlSw0aNEglSpQwqEIgcwYNGiR/f389//zzatasmerWrZvmCDBPuCxGdlgtoO3YsSPNEclWYLVtfDeefvmxjFg1oA0aNEjPPfec9u3bp/z586tevXrKkydP6vq8efPq4YcfVtu2bfXMM88YWGnuqVmzpmrWrJnhun79+nl8IPu7PXv2KCQkRN7e3qpSpYr279+vbt266cUXX9SiRYvUrl07tWrVSteuXdO6deu0bNkyPfDAA3r11VeNLj1bDhw4oN69e2d6/KOPPqqpU6c6sSLnW7Fihd58803lzZtXjz76qPz8/LRz5079+9//Tr1/5E8//aRBgwbp5MmTKleunEaNGmV02dkWFhamRo0apYbwvytZsqS6d++u7t2768iRI1qyZImWLl2qb7/91u1COIxD9oZZkL0zz5NzGdk7czx5G98N2Zvs7cnI3mTvFGRvz2OW7E0D3GB79+5Vr169dOnSJVWvXl0NGjRQiRIl5O3trdjYWEVGRio8PFzr1q3TtGnTVKtWLaNLBm6rXLlyOnnypEJDQ/X777/rp59+UvPmzXX//fcbXZpTzZkzx+gS4GRW2saRkZHZetzfL9vlyawU0FKUKlVKpUqVynDdCy+8oBdeeMHFFSG3TJ06Vffdd5/mzJmjwoULy+Fw6O2339bs2bPVrl07TZgwIXXs008/rcuXL2vZsmUeG8Lj4+MVEBCQbnmBAgU0ffp0PfDAA2mW58uXz6PvySVJ8+bNU9GiRbVgwYLUe6xdv35dr7/+uj799FOVKFFCr776qm7cuKFXXnlFb7zxhlteliy3VaxYUYMGDdKgQYO0e/duo8uBmyB7w0zI3jArK21jsjfZ++/I3p6N7H0L2Zvs7W5ogBvo3Llz6tu3r/Lly6fPPvtMtWvXznDcgQMHNHDgQA0YMECLFy9W0aJFXVwpkDlr1qzRvn37tGTJEq1cuVKbNm3SpEmTVKFCBbVo0UJVq1Y1ukSnqFev3l3HXLlyRTab7Y73BoH7ysw2NosXX3wxy2eM2Gw2HThwwEkVAblj2LBhWX6MzWbT2LFjnVCNa/z000967bXXVLhwYUm35tO9e3eFhYXp8ccfTze+RYsW+uCDD1xcZe4pWbKkTp06lW65t7d3hvP9448/PP4+ikeOHNGLL76YGsClW2ex9uvXTy+88IIGDRqkokWLauLEiapRo4ZxhRqIJiYksjfMh+x9e2Rvz0b2vjOyNzwB2Zvs/U9kb2twx+xNA9xA8+bNU1xcXJqjRjLy4IMPavbs2Wrbtq3+97//qX///i6sEsia6tWrq3r16nr77be1adMmLV26VGvXrtW0adNks9lks9m0fv16BQUFqWzZskaXm2scDod++OEH/fbbb7r33nv1+OOPy9vbW1u3btWYMWN09OhRSdIDDzygN998U48++qjBFefM6tWrdezYsUyPN/MlyVKYZUfLuHHjMjVu1apV2rBhgySpWrVqTqzINawY0EJCQrL8GJvNpq+++soJ1ThfWFhYpsf+fUeUJ2/jy5cvq1ixYmmWpVxasFChQunG+/r66vr1664ozSmqVaumFStWqG/fvne9TGJCQoJWrFihJk2auKg657hy5YrKlSuXbvk999wj6dalFBcsWJC6I8YMdu7cqaSkpCw9pkOHDs4pBh6D7A0zInuTvTNC9vYcZO/MI3t7FrL3LWTvW8jenssM2ZsGuIHWrFmjdu3a3TGApyhbtqyCg4MVERHh0SH8n2+alPuubd68WTExMWnGuuMlE7LDinOWJC8vLzVp0kRNmjRRfHy8Vq9erWXLlmnz5s367rvvFBoaqvr166tjx456+umnjS43Ry5fvqyePXtq3759cjgckqSHH35YI0aMUM+ePeXn56fmzZvr2rVr2rdvn3r16qXZs2d79JHNq1evVkRERKbHmyGE/31Hyz333KMnnnjClDtagoOD77g+Ojpao0eP1oYNGxQQEKA333xTXbp0cVF1zmPFgHby5MlMjUtOTlZMTIwcDodH30/y0KFDdx3z99d3gQIFNHDgQOcX5kQOh0Pe3ml/7qdsQ0/elrfTtWtXvfDCC3rvvfc0fPjwdHNPkZycrHfeeUexsbHq2rWri6vMXcnJyWnu+Zoi5X6CPXv2NFUAl6SFCxdq4cKFmRqb8rnlbiEcrkf2tkYOteKcJbI32TstsrfnIHvfHdnbM5G9byF7k709nRmyNw1wA508eTJL9/YICgrK0o8Ed/TPN01KYJk5c2a6LwNP/7JPYaU59+zZUw0aNFC9evVUtWrV1Ln4+vqqbdu2atu2rS5cuKAVK1Zo6dKl2rp1q7Zt2+bxIfyTTz7RoUOH9M4776h+/fqKjo7W+++/r5deekn33Xef5s6dm3q03/nz59WpUyfNmjXLo0N4r1691KhRI6PLcBkr7mj5p8TERP3f//2fpk+fruvXr6tdu3YaOnRo6hGtns6KAW3dunV3HbNv3z69++67+vPPP1WuXDmNGDHCBZW5XlJSkmbNmqXPPvtM8fHxeuqppzRs2LB0R3DDvdWpU0fdu3fX//3f/2nbtm169dVXVb9+fZUqVUoOh0NnzpzR9u3b9fXXX+vQoUMaNGiQgoKCjC7bqcqUKWN0Cbnu2Weftewl5ZB9ZG9z59AUVpoz2ZvsbVZkb7K3RPYme8Pdkb3TI3u7JxrgBsqTJ49u3LiR6fHx8fHy9/d3YkXOldlL+5iJ1ea8bds2/fDDD6mXoqpTp47q16+vBg0apH7JFS5cWN26dVO3bt104sQJLV++3OCqc27dunXq2rWrnnvuOUlShQoV9M477+jVV19Vt27d0lzqpkiRInr22Wc1d+5cg6rNHRUrVjRVwLwbK+5o+bsdO3Zo1KhROnLkiCpUqKCRI0eqfv36RpflMlYMaFeuXNFHH32khQsXym63q1evXurTp4/y5s1rdGm5bufOnRo1apR+/fVX3XfffRo5cqQaNmxodFm55p+XzYyPj5fNZtPixYu1a9euNGN/+eUXV5eX6/7973+rbNmymjRpkt55550MGx7+/v569913TXEGjRXVqVNHbdu2NboMeBiyt/lZbc5kb7K3WZG9yd5kb7K3pyJ7k73NxgzZmwa4gapUqaKNGzdm+j4gGzZsUKVKlZxclfPc7dI+ZmS1Oe/evVsHDhzQ7t27tWfPHu3du1fr16+XzWZTQECA6tatq/r166t+/fqqUqWKypcvr969extddo6dOXNGFStWTLMs5b2a0dFfpUuX1qVLl1xSG3KHFXe0SLd2KIwfP15LlixR3rx59cYbb+i1115LvbyPFZg9oGVk8eLFmjBhgs6dO6d69epp5MiR6T7jzODChQuaMGGCwsPD5ePjo/79+6tHjx7y8fExurRcFRERkeFlM8PDwzMc78lnw6V4/vnnFRwcrPXr1ysyMlJ//vmnHA6HSpQooVq1aql58+Yef8/Iv8vo3qB32tlihkujAllF9jY/q82Z7P0Xsre5kL3J3mRvsrenInuTvcne7ocGuIHat2+vd955RytWrFCbNm3uODY8PFxbtmzRpEmTXFSd8U6ePKl33nlHs2bNMroUl/H0OXt7e6tatWqqVq2aXn75ZUnS6dOn04Ty8ePHKykpSYUKFVK9evVUv359Pf/888YWnkM3b96Ur69vmmUpISWjsGKz2dLcmw7uz4o7Wr755htNmjRJly5d0mOPPaYRI0Zk6r6ZZmGVgPZ3R48e1ahRo7Rjxw4VLlxYH3zwgdvduye3fPvtt5o4caIuXbqkRx55RCNHjtQ999xjdFm5bs6cOUaXYBg/Pz+1adPmrr+xzeB2O1qkjHe2EMJhRWTvO/P0HJodnj5nsvdfyN7mQvYme5O9zYXsbX5k71vI3u6JBriBOnbsqPDwcA0ePFiHDx9Wt27dVKJEiTRjYmNjNXv2bM2ZM0dNmjRR69atDao2d+zbt0/Tpk3Tnj17JEkPPvig+vbtqzp16qSOcTgc+vLLL/XJJ58oPj7eqFJzjRXn/HelS5fWU089paeeekrSrUv7LFmyRKGhoVq1apUiIiI8PoRbTb9+/RQYGGh0GS5lpR0thw4d0siRIxUVFaWSJUtq9OjRatGihdFluZRVAlqKhIQETZ06VbNmzVJiYqI6d+6st956SwEBAUaXlusOHz6sd999V3v37lWxYsU0adIkU4c0s1wKErdntR0twcHBpv48hvOQva2RQ604578je5sP2fsWsrd5kb3J3mZB9jY/srdnogFuILvdrunTp+utt97S559/rhkzZqh06dIqXry4vLy8dO7cOR0/flwOh0OtW7fW+++/b3TJObJ161b16NFDSUlJuv/+++Xn56fIyEi9/PLLmj17turWrauTJ0/qX//6l6KiopQ/f36NGjXK6LJzxIpz/qf4+HhFRkZqx44d2rVrl37++WfdvHlTPj4+qZdkM4OLFy/q1KlTqf+ecgTy+fPn0yyXbh3d6sn69euX5t8TEhJ06NAhxcbGpl7mJigoyJT3K7KCjh07Kjk5WZJUtGhRzZs3T/PmzbvjY2w2m7766itXlOdUVgtokrRx40aNHj1a0dHRCgwM1KhRo1S9enWjy3KK8ePHa+7cuUpKStITTzyhgQMHKn/+/Ok+o/8pozNNzGrBggXatGmTpkyZYnQp2ZLZSxv/nad/fmVnR8vOnTudUIlrWO0ev8g9ZG/z51ArzvmfyN5kb3gWsjfZm+ydFtnbc5C9M4fsbTybw+FwGF0EpB9//FGLFy9WVFSUzpw5k/pDtnbt2mrfvr0aNGhgdIk59sorrygqKkozZ85UzZo1JUkxMTHq3bu38uTJo3HjxikkJETnzp1TixYtNGLECBUvXtzgqnPGinNOTEzU3r17tW3bNm3btk379u3TzZs3lSdPHlWrVi01eNesWdM0lzMKCgrK8L4tDofjjvdzOXjwoDPLcrqzZ89q0qRJioiIUFxcXJp1fn5+atmypQYNGpTu7BpPFBQUpP/85z9q1qxZ6rJLly4pODhYH330Uer7O8Xq1av1wQcfeOQ2btq0abYet27dulyuxLVuF9DuxpMD2oABA7R69WpJ0hNPPKGQkBB5eXnd9XF169Z1dmlOERQUlPrPWbnXlie+j7Nr5MiRWrhwocfOObOfX8nJyYqJiUn9nvbU+WbF6dOnFRYWpvDwcJ04ccIScwZuh+xtzhxqxTmTvf9C9iZ7e+I2JnuTve+G7G1eZG/zInu7FxrgcJkGDRqoU6dOeuutt9Is37Rpk3r06KGKFSvqzJkzevfddz3+cnMprDbnHj16aOfOnYqPj5fdblfVqlXVoEED1a9fX7Vr1053GSuzGDZsWLYe58lHUu3du1e9evXSpUuXVL16dTVo0EAlSpSQt7e3YmNjFRkZqcjISAUEBGjatGmqVauW0SXniFV3tFiJFQPa3+cs3X3enh5Ysntk9T/PvDEzTw/hmbFv3z69++67OnjwoMqVK6cRI0aoSZMmRpflFDdu3FBERIRCQ0O1ffv21Pdw48aN9fnnnxtdHgAnsloOlaw3Z7J31pC9PQfZ2/zI3mTv2yF7mwvZm+ztDrgEugfZvn27Dh8+nK1LTLiDK1euqGLFiumWV65cWQ6HQxcvXtS3335rinsLpLDanH/88UflyZNHHTp0UK9evXTfffcZXZJLeHKYzo5z586pb9++ypcvnz777DPVrl07w3EHDhzQwIEDNWDAAC1evFhFixZ1caW5p0OHDlkKZlayc+dOhYWFefylQq0UtFJY7bMrO9vYbPcGtbIrV67oo48+0sKFC2W329WrVy/16dPHlJcM3bt3r0JDQ/X999/r6tWrkqQiRYqoY8eO6tKli8qWLWtwhYD7I3t7HqvNmextDWRv/B3Z23NZ7bOL7G1tZG+ytzuhAe5BVqxYoYULF3psCE9KSpK3d/qXXMqluHr37m2aMJrCanPu3Lmztm/fnnqZjwoVKqhhw4Zq0KCB6tatq4IFCxpdInLBvHnzFBcXpwULFqh8+fK3Hffggw9q9uzZatu2rf73v/+pf//+Lqwyd33wwQdGl+BW/vzzT4WFhSksLEwnTpyQJEuGcE8PaMHBwVl+THR0tBMqcT8pO5dWrVrl0fdswi2LFy/WhAkTdO7cOdWrV08jR47MsEniyWJjYxUeHq6wsDD98ccfcjgc8vPzU6NGjbRlyxa99957aS4lCuDOyN6ex2pzJntbA9kbZO9byN7mRfY2F7I32dvd0ACH2zDbh2FmmG3Oo0ePliSdOnVKW7Zs0bZt27Ry5UrNmzdPdrtdQUFBql+/fmoo9/f3N7hiZMeaNWvUrl27OwbwFGXLllVwcLAiIiI8OoSHhITo9ddfV8OGDVOXJSYmas+ePQoKClKBAgXSjF+yZImGDh2qAwcOuLpUp0lISEi9nM+2bdvkcDjkcDhUv359Pffcc0aX51JWC2g3btzQypUrFRYWpsjISO3fv9/okpwiZedSeHi4jh8/LofDoUKFChldFnLg6NGjGjVqlHbs2KHChQvrgw8+UIcOHYwuK1d9//33Cg0N1ZYtW5SUlKSAgAC1bdtWLVq0UOPGjXXmzBk1b97c6DIBuBmz5dDMMNucyd7WQPa+hexN9iZ7mwvZ23zI3mRvd0UDHECuK1OmjDp16qROnTpJkn799Vdt27ZNW7du1aJFizR79mx5e3vroYceUsOGDfXGG28YXDGy4uTJk3rhhRcyPT4oKEhhYWFOrMj5duzYoc6dO6dZduXKFYWEhGjWrFlpwnkKh8PhqvKc6p+X80mZ11NPPaW+ffuqQoUKBlfoGlYMaLt371ZoaKhWrlypuLg4ORwOVa5c2eiyclXKzqWwsDBt27ZNycnJcjgcqlGjhrp27ao2bdoYXWKOhIeHZ2n877//7pxCXCwhIUFTp07VrFmzlJiYqM6dO+utt95SQECA0aXlukGDBsnf31/PP/+8mjVrprp168rLyyt1PZcQBQBzI3ubG9n7FrI32Zvs7fnI3mmRvT0P2dsz0QCHS+3cuVNJSUlplsXFxUmSNm/erJiYmHSP8fSjhaw453+qXLmyKleurBdffFEJCQlauXKl/ve//2nv3r3at28fIdzD5MmTRzdu3Mj0+Pj4eNOecWCWoP1PGV3Op1ChQgoODlaNGjU0cuRItWnTxvQB3OwBLSMxMTGp2/7YsWOSJG9vb7Vp00bPPfec6tSpY3CFuWPfvn1atGhRmp1LAQEBunLlikaPHp1up5unGjp0aJZCmMPh8PjQtnHjRo0ePVrR0dEKDAzUqFGjVL16daPLcppy5crp5MmTCg0N1e+//66ffvpJzZs31/333290aQAMZsUcasU5/xPZ21zI3n8he5O9zYbsTfYme3sWsrdnogEOl1q4cKEWLlyYZlnKj9iZM2em+eBP+SLw9EBqxTn/3fHjx7Vv3z7t27dPUVFROnTokG7evKl8+fLpscceU926dY0uEVlUpUoVbdy4MdP3RNywYYMqVark5KqQW3r27KnNmzcrKSlJpUuX1vPPP6/mzZurfv36stvtio6ONu3OhxRWCWgpEhIStGbNGi1atEjbtm1L3XFcsWJFHT16VB9++KFatWplcJU5Fxsbq8WLFyssLEy///67HA6HypQpo+DgYLVo0UIlS5bUk08+qSJFihhdaq4ZN26c0SW41IABA7R69WpJ0hNPPKGQkBAlJCQoMjLyjo/z5N8ia9as0b59+7RkyRKtXLlSmzZt0qRJk1ShQgW1aNFCVatWNbpEAAaxYg614pz/juxtPmRvcyN7k73J3mRvT0X2Jnt7ChrgBjp16lSWxqccueyprPZFIFlvzpcuXVJUVFRq4I6KitKlS5fkcDhUsGBB1apVS4MGDVLdunX14IMPym63G10ysqF9+/Z65513tGLFirsehRseHq4tW7Zo0qRJLqoOOfXDDz/I399fISEh6tatm4oXL250SS5hxYAWFRWl0NBQrVixQpcvX5bdblfNmjXVokULtWjRQklJSWrevLny5MljdKm5omnTpkpOTlZQUJB69+6tZs2a6aGHHkpdHx0dbWB1zhEcHGx0CS4VERGR+s/r1q3T+vXr7zg+pflx8OBBZ5fmVNWrV1f16tX19ttva9OmTVq6dKnWrl2radOmyWazyWazaf369QoKClLZsmWNLhcwBNnb/Kw2Z7K3NZC9zY3sTfYme5sH2ZvsTfZ2TzTADdS0aVNLXRojO18Env6FaLU5169fXzabTQ6HQ4ULF1a9evVUt25d1a1bV4GBgR79+sVfOnbsqPDwcA0ePFiHDx9Wt27dVKJEiTRjYmNjNXv2bM2ZM0dNmjRR69atDaoWWdWvXz8tX75c06dP1+eff677779fzZs3V/PmzVWtWjWjy3MaKwa0Z599Vn5+fmrcuLEee+wxNW3aNM1OBrPNOTExUX5+fipWrJj8/PzSXSLVCmJiYrRr1y7FxsZKkkqUKKGaNWuqdOnSBleWO6zW/PgnLy8vNWnSRE2aNFF8fLxWr16tZcuWafPmzfruu+8UGhqq+vXrq2PHjnr66aeNLhdwKbL33Xn6977V5kz2tgayt7mRvcneKcw2Z7I32dvsyN6egwa4gTp06EAoycCNGze0cuVKhYWFKTIyUvv37ze6JKczy5xbtWqlevXqqV69elx2y8TsdrumT5+ut956S59//rlmzJih0qVLq3jx4vLy8tK5c+d0/PhxORwOtW7dWu+//77RJSML+vXrp379+unnn3/W0qVLtWLFCs2YMUNffPGFSpcurdq1a5vyu8uKAc3Pz0/Xr1/XkSNHVLhwYfn7++uxxx5T/vz5jS7NKdavX6+lS5dq6dKlmjRpkmw2m4oVK6Ynn3xSTz75pKmPzv311181ZswYRUZGyuFwpLmUot1uV+3atTV8+HAFBgYaWGXOWe2o+zvx9fVV27Zt1bZtW124cEErVqzQ0qVLtXXrVm3bto0QDsshe2fMLDk0K8wyZ7K3NZC9zY3sTfYme5sP2dt6yN7uzeYw+81E4DF2796t0NBQrVy5UnFxcXI4HKpcubKWLl1qdGlOY8U5w1x+/PFHLV68WFFRUTpz5owcDodKlCih2rVrq3379mrQoIHRJeaKoKAg/ec//1GzZs1Sl126dEnBwcH66KOPVLNmzTTjV69erQ8++MDjL+0j3ToDauvWrVq6dKlWr16tq1evSpLKli2rjh07qkOHDipTpozBVebc6dOnUwPar7/+mmFAa9GihaZOnZrmdeDJ4uPjtW7dOi1ZskSbNm1SUlKS8uTJo4YNG+rJJ59UUFCQOnXqZKo5pzh06FDqTqbTp0/LZrOl7pQYOnSoXnrpJaNLzDVr167VwIEDZbPZ1Lx5czVo0EAlSpSQt7e3YmNjFRkZqZUrVyoxMVGTJ09W8+bNjS4ZTnTixAktX75cvXv3NroUAAayYg614pxhLmRvsjfZ23ORvcneZG/rIXu7BxrgHuL06dMKCwtTeHh4mnsseLqYmBiFh4crLCxMx44dkyR5e3urRYsWeu6551SnTh2DK8x9Vpwz4OmCgoIyPPL6bpfHNEMI/7uEhAStW7dOy5Yt08aNG3Xz5k3Z7XY1bNhQ//d//2d0ebnGSgEtxcWLF1OPUt27d2+adT179lTv3r3l5+dnTHFOtmPHDi1dulQRERG6dOmSbDabypUrp2eeeUbBwcEqVaqU0SVm28mTJ9W2bVvdf//9+vjjj1W+fPkMx/35558aMGCAfvvtNy1evPi249zdsGHDsvwYm82msWPHOqEaAJ6K7G0eVpwz4OnI3reQvcneZkT2JnuTveFqNMDd2I0bN7Rq1SqFhYVp+/btSk5Olre3t37++WejS8uRhIQErVmzRosWLdK2bdtSL3VTsWJFHT16VJMnT1arVq0MrjJ3WXHOsI6EhAQdOnRIsbGxqUehBwUFKW/evEaXlmuy88NOMvc9cS5fvqyVK1dq6dKl2rVrlw4cOGB0SU5h5oB2O9HR0Vq6dKmWLVum3377TTabTf7+/mrdurU6duyY7qwLs7h586Z++OEHLVmyRBs2bNCNGzc8/nfX+++/r8WLF2vlypVp7jGXkYsXL6pNmzZq166dhg4d6qIKc1dQUFCWH2Oz2Tx6h2l2zhCx2Wxas2aNE6oBPBfZ2zysOGdYB9n79sjeno/sTfb25N9dZO+7I3vDCDTA3dCePXsUFhamFStWpF6aq1SpUurcubOeffZZFS9e3OgSsyUqKkqhoaFasWKFLl++LLvdrpo1a6pFixZq0aKFkpKS1Lx5c1Nd7sWKc4Z1nD17VpMmTVJERITi4uLSrPPz81PLli01aNAglShRwqAK4So7d+40/Rk0ZgxomXHo0CEtWbJEK1as0J9//unxgSWzrl69qoiICC1btkyzZs0yupxsa926tR577LFM70icMGGC1q9fr++//97JlTlHdHR0th7nyfega9q0abplDodDp0+fVrFixeTj45Ph49atW+fs0gCPQPY2Tw614pxhHWRvpCB7mxfZm+ztScjet5C93Z+30QXglpiYGC1evFihoaE6duyYHA6H7Ha7JGngwIHq2bNn6r97qmeffVZ+fn5q3LixHnvsMTVt2jTNEVHZ/eB0Z1acM6xh79696tWrly5duqTq1atneF+b8PBwrVu3TtOmTVOtWrWMLhlZ9PPPP2vv3r1yOBx64IEHMgzZV69e1cSJE/Xtt99q//79BlTpOnny5FGzZs3UrFmzNAHN7IKCghQUFKTBgwdr+/btlpizJOXPn1/NmzfX7t27jS4lR06fPq1KlSplenyFChU0f/58J1bkXJ4cprMrozB9/vx5NWrUSB9++KEaNmxoQFWAeyN7mzOHWnHOsAayt/mRvdMie5O9PRHZ2/zI3p6JBriBUi7NFRoaqq1btyopKUl58+ZV06ZN9eSTTyowMFDBwcGqXLmyxwdwSan3cDly5IgKFy4sf39/PfbYY8qfP7/RpTmNFecM8zt37pz69u2rfPny6bPPPlPt2rUzHHfgwAENHDhQAwYM0OLFi1W0aFEXV4rsuHbtmt58801t3LhRKReJsdlsatSokaZNm5Z6ROOGDRs0cuRIxcTE6J577jGyZJczS0DLqjJlynj8zuOTJ09q9uzZ2rNnjyTpwQcfVI8ePXTvvfemGRcREaHRo0fr7NmzGjNmjBGl5gpfX19dvnw50+MvX76sgIAAJ1ZkrISEBP3222/y9fVVhQoVjC7Hae50f0zAqsje5s+hVpwzzI/sbW5k77sje3susvedkb3Ngezt/miAG6hx48a6fPmyChYsqKeeekrNmjXTY489Jj8/P0nmO0J569atWrdunZYsWaJFixZp4cKFypMnjxo2bKgnn3wyW/eOcHdWnDPMb968eYqLi9OCBQtUvnz524578MEHNXv2bLVt21b/+9//1L9/fxdWiez69NNPtWHDBjVu3FjBwcHy9/fXxo0b9c0332jChAkaPny4xo8fry+//FJeXl7q3r27BgwYYHTZucJqAU2S9u3bp2nTpqWZc9++fdOcdeBwOPTll1/qk08+UXx8vFGl5tjBgwf14osv6urVq/L19ZWvr68OHDigFStWaMGCBapSpYquXLmi4cOHKyIiQl5eXurZs6fRZefIQw89pIiICHXv3j1T41etWqUHHnjAyVU515UrV/TFF19oz549mjt3burypUuXasyYMak7Je6//36NHTtWNWrUMKhSAK5E9jZ/DrXinGF+ZG9zI3uTvcneZG9PRvaGJ6ABbqBLly7J399fLVu2VP369VWrVq3UAG5Gvr6+atOmjdq0aaOLFy9qxYoVWrp0qX744Qf98MMPkm4dNRMVFaVGjRqZ4r+FFecM81uzZo3atWt3xwCeomzZsgoODlZERAQh3EOsW7dO9erV0xdffJG67PHHH1fRokU1d+5cFSpUSLNnz1ZQUJDGjRvn8T/YU1gxoG3dulU9evRQUlKS7r//fvn5+SkyMlIvv/yyZs+erbp16+rkyZP617/+paioKOXPn1+jRo0yuuxsS9mJ8NFHH+mpp56SdOt+oW+++abGjBmjiRMnKiQkRH/88YcefvhhjRkzRoGBgQZXnTOdOnXSwIEDNXv2bL3yyit3HDt9+nRFRUWlee97mri4OHXp0kVHjx5VqVKllJiYKG9vb0VFRWnIkCFyOBzq0qWLKleurPDwcL3yyisKDw9Pt6MNgPmQvc2fQ604Z5gf2dvcyN5kb7I32dtTkb3hMRwwTGRkpOOdd95x1KtXzxEUFOR44IEHHM8++6xj5syZjmPHjjlOnjzpCAwMdKxZs8boUp3q5MmTjmnTpjmeeuopR2BgoCMoKMhRq1Ytx3/+8x/H7t27jS7PKaw4Z5hHjRo1HAsWLMj0+IULFzpq1qzpxIqQm2rUqOH48ssv0y3/7bffHIGBgY4HHnjAMXr0aEdCQoIB1TlP7969HVWrVnUsW7Ysddm+ffsczZo1c7z44ouOmJgYR8uWLR2BgYGOTp06OQ4dOmRgtbnj5ZdfdtSqVSvN986ff/7p6NChg6Nz586O3377zdGoUSNHYGCgo3///o7Y2FgDq825Ro0aOUaPHp1u+apVqxwPPvig4/nnn3c89NBDji+++MKRlJRkQIXO0b9/f0dQUJDjX//6l2PPnj1p3rtJSUmOPXv2pI4ZMWKEgZXm3CeffOKoWrWq4/vvv0+zvGfPno6goCDHuHHjUpfFx8c7WrRo4Rg6dKiry3S68+fPOwIDAx1btmwxuhTAbZC9b7FiDrXinGEeZG9zI3uTvcneZG9PRfa+hezt/jgD3EB16tRRnTp1NGLECG3cuFFLly7Vhg0btG/fPk2cOFHly5eXzWbTtWvXjC7VqcqWLavevXurd+/eOnTokJYsWaIVK1bou+++06JFi3Tw4EGjS8x1VpwzzCNPnjy6ceNGpsfHx8fL39/fiRUhN12/fl1FihRJt7xw4cKSpCeffFLDhw93dVlOFxUVpa5du6YenSxJ1apV0+DBgzVo0CANGjRI0dHReuutt/Tqq6+a4v6gBw8e1HPPPaeaNWumLitZsqT+9a9/qUePHnrjjTeUmJioyZMnq3Xr1gZWmjsuXbqU4eVPH374YSUlJenw4cOaO3eu6S7LNXHiRI0bN04LFizQ8uXL5eXlpUKFCsnLy0sXL15UQkKC7Ha7unfvrkGDBhldbo5ERESoffv2atWqVeqyuLg4bd68WZL0/PPPpy7Pmzev2rVrp2+//dbldQJwPbL3LVbMoVacM8yD7G1uZG+yN9m7huuLcyKyN9kb7ocGuBvw9vZWs2bN1KxZM8XFxSkiIkJLly7V9u3b5XA4NGTIEC1atEjPPPOMWrZsqbx58xpdstMEBQUpKChIgwcP1vbt27Vs2TKjS3I6K84Znq1KlSrauHGjQkJCMjV+w4YNqlSpkpOrgrPZbDZJUocOHYwtxEmsGNCuXLmiihUrplteuXJlORwOXbx4Ud9++63uueceA6rLfYmJiRn+hvL19ZUk9ezZ01TbN4WPj49GjhypkJAQhYeHKyoqSmfOnJHD4VCFChVUu3ZttW3b1hSXIjt58mSaoC1JkZGRSkxMVPny5dO9lkuXLq1z5865ssRcN2XKlHTL4uPjZbPZtHjxYu3atSvdepvNpr59+7qiPMDtkL3/YsUcasU5w7ORva2J7E329nRkb7I32fsWsrfxaIC7mXz58ik4OFjBwcE6d+6cli1bpqVLl2rbtm3atm2bRo8ercjISKPLdIn69eurfv36RpfhUlacMzxP+/bt9c4772jFihVq06bNHceGh4dry5YtmjRpkouqg7OlBBazsWJAS0pKkrd3+p+CPj4+kqTevXubJoBnxkMPPWR0CU51//33e/xR5ndjt9uVnJycZtnWrVslSY0aNUo3/vz588qfP79LanOWjEJ4ivDw8AyXE8KBW8jef7FiDrXinOF5yN7WRvY2D7J3WmRvz0f2Tovs7b5ogLuxokWL6qWXXtJLL72kY8eOacmSJR59hHJmj1j9O5vNpq+++soJ1biGFecM8+vYsaPCw8M1ePBgHT58WN26dVOJEiXSjImNjdXs2bM1Z84cNWnSxBSXcLKSlCPOs7rOzMwe0DKS0RHqZmaF13ZMTIx27dql2NhYSVKJEiVUs2ZNlS5d2uDKckelSpW0Z88edevWTZLkcDi0evVq2Ww2NW3aNN34tWvXevzrfM6cOUaXAJgC2dvzc6gV5wzzI3ubH9k7PbK3+VnhtU32TovsDaPQAPcQ9957r/r376/+/fsbXUq27dixI8PlNptNDofjtus8mRXnDPOz2+2aPn263nrrLX3++eeaMWOGSpcureLFi8vLy0vnzp3T8ePH5XA41Lp1a73//vtGl4wsGjt2rCZPnpxmmcPhkM1m01tvvZXuaG2bzaY1a9a4skSX47PZHI4ePZrubL4rV65Ikg4fPpzhUfl169Z1SW3O9Ouvv2rMmDGKjIyUw+FI8xvEbrerdu3aGj58uAIDAw2sMuc6dOig999/Xw8//LAeeeQRLVy4UKdOndI999yjxo0bpxk7ffp07d271+Pvq1ivXj2jSwBMh+ztmaw4Z5gf2dv8yN7p8dlsDmRvsncKsjeMRAPcQCEhIXr99dfVsGHD1GWJiYnas2ePgoKCVKBAgTTjlyxZoqFDh+rAgQOuLjVXHDp0KN2y8+fPq1GjRpo9e3aa/w5mYcU5wxoKFCigzz//XD/++KMWL16sqKgo/fLLL3I4HCpRooQ6dOig9u3bq0GDBkaXiiwqU6aMJGW4ozDlSNV/rrvdTkVPY8WAtnPnTiUlJaVZFhcXJ0navHmzYmJi0j3Gk+9FN336dE2fPj3DdePHj89w+cGDB51ZktOtXbtWAwcOlM1mU6tWrdSgQQOVKFFC3t7eio2NVWRkpFauXKlOnTpp8uTJat68udElZ1vXrl21a9cujRs3LrXhUbBgQU2cOFF2u12S9N1332nGjBk6ceKEateureeee87gqp0rISFBv/32m3x9fVWhQgWjywEMQ/Y2fw614pxhDWRv8yJ7k73J3mmRvT0H2Ts9srd7sjnM8s3pgYKCgvThhx+qbdu2qcsuXLigRo0aadasWekC2pIlSzRkyBCP/zL4uwsXLqhhw4aWCqRWnDMAuLugoKDbHmmecgR+Rjz5O/l2c/77T8O/r0/57+Cpc/7000+zdTZBv379nFCNa5w8eVJt27bV/fffr48//ljly5fPcNyff/6pAQMG6LffftPixYtvO85T7NmzR3v27FH+/PnVvHlzFSlSJHXdlClTtHjxYrVt21a9evXK8P6DnubKlSv64osvtGfPHs2dOzd1+dKlSzVmzBhdvnxZ0q170Y0dO9Z091QEMoPsbc0casU5A4C7I3v/heydFtnb85C9byF7uy/OAHdDHJMAwFPEx8fL19c33fLffvtNAQEB6e5PBvcXHh6uOnXqqFy5ckaX4lJ9+/a13KXWxo0bZ3QJLuXJl7LNrq+++kp58uTRzJkz0wTRfypVqpRmzJihNm3a6Ouvv9bQoUNdWGXuq1mzpmrWrJnhun79+t12x8rNmze1d+/eDM8GdVdxcXHq0qWLjh49qlKlSikxMVHe3t6KiorSkCFD5HA41KVLF1WuXFnh4eF65ZVXFB4ernvvvdfo0gG3QPYG4CnI3uZD9rYOsrf5kb3TI3uTvd0BDXAAQJYlJCRo/PjxWrp0qX744Yd0QXzSpEn64Ycf1LFjRw0ZMkT+/v4GVYqsGjZsmCZMmGC5EG7FgBYcHGx0CS6V0eVvzW7Tpk0KDg6+YwBPUahQIXXo0EHr16/3+BCeXZcuXVJISEiGZ4O6q1mzZun48eP673//q1atWqUunzp1qhwOh1566aXU7dmpUye1a9dO06dPt9xOOAAAPBXZ27zI3tZB9jY/snfWkL3hKnajCwAAeJaEhAR1795dX3/9tcqUKaMLFy6kG/PEE08oMDBQ33zzjV577TUlJiYaUCmyw6pnQoWEhGjr1q1Gl+FSzZo109q1a40uw2V27Nihs2fPGl2GS50+fVqVKlXK9PgKFSrozz//dGJF7s/TPgMjIiLUvn37NAE8Li5OmzdvliQ9//zzqcvz5s2rdu3aWe6zDgAAT0X2NjdP+92ZW8je5kf2vjuyt+d9BpK9PRMNcABAlnz55ZeKjIzU8OHDFR4ertKlS6cb07lzZy1atEj9+vXT7t27NW/ePAMqBTLPigEtOjpa165dM7oMOJGvr2/qPagy4/LlywoICHBiRchtJ0+e1EMPPZRmWWRkpBITE1WuXDndc889adaVLl1a586dc2WJAAAgm8jeMCOyN8yI7G1+ZG/PxCXQ4TLh4eHplsXFxUmSNm/erJiYmAwf16FDBydW5VxWnDPMb+nSpWrWrJleeOGFu47t16+fduzYocWLF+vll192fnHIFRcvXtSpU6ey9JgyZco4qRoA2fXQQw8pIiJC3bt3z9T4VatW6YEHHnByVchNdrtdycnJaZalHGXeqFGjdOPPnz+v/Pnzu6Q2AMaxYg614pxhfmRv8yN7A+ZA9jY/srdnogFusH/+0Ll06ZKkW2+Qf/4AyuhSR55k6NChstlsaZalXOpi5syZstlsqf+e8s82m82jA6kV5wzzO3bsmLp27Zrp8Y8//rg+/vhjJ1aE3DZ27FiNHTs20+NtNpsOHDjgxIqA3LF69WodO3Ys0+NtNpv69u3rxIqcq1OnTho4cKBmz56tV1555Y5jp0+frqioKH3xxRcuqg65oVKlStqzZ4+6desm6dbvzNWrV8tms6lp06bpxq9du1YVK1Z0dZmAWyB7mzuHWnHOMD+yt/mRvWFWZO/bI3t7JrK3Z6IBbrDb/dB56623DKjGucaNG2d0CS5nxTnD/Pz9/ZWUlJTp8Xnz5pWvr68TK0Juq127tsqXL290GS5ntYAmSQsXLtSWLVsyPd5ms2VpB427Wb16tSIiIjI93tO3catWrdSiRQtNmDBB+/fv1wsvvKCqVasqT548kqTk5GRFRUVp1qxZWr16tTp37qxHH33U4KqRFR06dND777+vhx9+WI888ogWLlyoU6dO6Z577lHjxo3TjJ0+fbr27t2r4cOHG1QtYCyyt7lZcc4wP7K3+ZG9M8fTc5lE9r4bT9/GZG/zI3t7JhrgBurQoUO6I5TNLDg4+K5jLl26JF9fX+XNm9cFFTmfFecM86tQoYJ2796tkJCQTI3ftWuXypYt6+SqkJu6dOmitm3bGl2Gy1ktoEm37lcUGRmZ6fGeHsJ79eqV4aWpzGzixIkaN26cFixYoOXLl8vLy0uFChWSl5eXLl68qISEBNntdnXv3l2DBg0yulxkUdeuXbVr1y6NGzcu9YzGggULauLEibLb7ZKk7777TjNmzNCJEydUu3ZtPffccwZXDbge2Ts9s+VQK84Z5kf2Nj+yd+aQvT0P2ZvsbTZkb89EA9xAH3zwgdEluNzNmzcVGhqqvXv3pjlCe8eOHXr33Xf1+++/y2azqVGjRho5cqQpjoK04pxhbsHBwRo5cqS2bdumBg0a3HHs9u3bFRERof79+7uoOiD7rBjQ3n77bTVr1szoMlymYsWKqlevntFluJSPj49GjhypkJAQhYeHKyoqSmfOnJHD4VCFChVUu3ZttW3bVvfee6/RpSIbbDabJk6cqG7dumnPnj3Knz+/mjdvriJFiqSO+fPPP+VwOPT666+rV69eqeEcsBKytzVyqBXnDHMje8OsyN7mR/Yme5sN2dsz0QA30GuvvaYOHTqoefPmlrhE0c2bN/Xqq68qMjJSefLk0ejRo+Xt7a3ff/9dr732mm7evKnGjRurUqVKWrVqlbp06aIlS5aoWLFiRpeebVacM8yvQ4cOWrRokXr37q1evXqpc+fO6V6zsbGx+vbbbzVz5kyVK1dOzz//vEHVAplnxYBWuHBhzhKxiPvvv5+jzE2sZs2aqlmzZobr+vXrp379+mW47ubNm9q7d6+CgoJUoEABZ5YIGIrsbf4casU5w/zI3jArsjfMjOxtbmRvz8IhCAbasWOH/v3vf6tRo0YaOnSotmzZIofDYXRZTjNv3jzt3LlT//73vxUZGSlv71vHX3z66adKSEhQ27ZtNWPGDA0ePFiLFi2Sl5eXpk+fbnDVOWPFOcP88uTJo6lTp6p69er6+OOP1bhxYzVr1kxdu3ZV586d1bRpUzVp0kSffvqpAgMDNXv2bL7YPUiZMmXk7+9vdBkAABe4dOmSQkJC9PPPPxtdCuBUZG/z51ArzhnmR/Y2N7I3AFgH2dsYnAFuoK1bt2rNmjX6/vvvtXz5ci1evFjFihVT27Zt1a5dOwUFBRldYq5atmyZWrZsqe7du6cuS0hI0Lp162Sz2dIsL1SokJ555hktX75cw4cPN6LcXGHFOcMaihYtqq+++koRERFavny5Dhw4oMOHD8tut6tYsWLq0KGDnnzySTVt2tToUpFF69atu+P65ORk/fnnnypWrJh8fHxcVBWQc/369VNgYKDRZbhUZu8X+Xc2m03/j737jq/x/P84/j5ZspDYe9RI7L1Xjdqpra2tVEtrlbb4UpRWFW0VpbR2ixqxR6hdtVfNGjGLEDFCIuv8/vDLqSMJSSQ5OSev5+PRR7nHuT/3Wc77uu77uubNm5cM1aQOt2/floeHhxwdHWOsy5gxo+bPn69ixYpZoDLLseVOQCAa2dv2c2haPGekDWRv20X2hq0ie8cP2ZvsjeRHB7gFubm5qUWLFmrRooUePnyoTZs2af369Zo3b57mzJmjwoULq0WLFvLx8VH27NktXe4ru3Tpklq1amW27NChQwoNDVW2bNli/MOYL18+BQQEpGSJSS4tnjPSloYNG6phw4aWLgMp6O7du6pfv75mz56tatWqWbqcJJMWA9q4cePiHLbJFsU1DFW0x48fa/bs2WrZsqXy5MmTQlUlr/3798e63GAwxBm8DAZDcpaUIubMmaPff/9dq1evjhG2v/rqK+3Zs0c9evRQz549zebkcnR0THNDMQJpBdnb9nNoWjxnpC1k77SH7G07yN7myN7/rbN2ZG+kdnSApxLp06dX27Zt1bZtW929e1cbN27Uhg0b9O233+rbb79VpUqV1LJlSzVs2FBubm6WLjdRoqKiZG9vb7Zs7969kqTq1avH2P7hw4dycXFJkdqSS1o8Z0B6OqyLs7Oz0qVLZ+lSkAxs8YrFtBjQnm8kfl5wcLC+/PJL9ezZU4UKFUqhqizn8ePHmjZtmipUqGAzr/GZM2diLLt7966qV6+uOXPm2FRDmvT0u2nw4MFat26dMmfOrJs3bypv3rxm2xQqVEiHDx/Wd999pxMnTuiHH36wULUALIXsbZs5NC2eMyCRvW0d2ds2chnZ2xzZ2/qRvWEtmAM8FcqUKZM6dOigBQsWaPv27frf//4nOzs7ff7556pZs6aly0u0fPny6fTp02bLNm/eLIPBoNdffz3G9rt371a+fPlSqLrkkRbPGWlDeHi4lixZoqFDh5ot379/v5o2baqqVauqXLly6tmzp65cuWKhKoGkEx3Qrl69aulSUkxoaKhWrlyZpu6OssUGpufZwlXmcVmyZInWrVunbt26afv27TECuPS0wW3z5s1q3bq1Nm/erBUrVligUgCpBdn7KVvIoWnxnJE2kL2R1pC90wayt3Uje8Na0AGeyjk6OsrZ2Vnu7u5ycHBQWFiYpUtKtGbNmmnVqlXasmWLQkJCNHfuXF28eFGZM2eOMVfR6tWr9eeff6p+/foWqjZppMVzhu0LDw/Xu+++q5EjR2rt2rWKiIiQJPn7+6tnz57y9/dXrVq11K1bN/n7++vtt9/WnTt3LFw18OrSQkB7Xlo8Z1ivZcuWqXLlyhoyZEis84xFc3Jy0tixY1WsWDH9/vvvKVghgNSM7G3dOTQtnjNsH9kbaVVazKFp8ZxhvcjesBYMgZ4K3b17V5s3b9bGjRt14MABRUREqHjx4urfv7+aNWtm6fISrVu3btq1a5c++ugj0/wXjo6O+vLLL+Xk5CTp6RXaCxcu1P79+1WwYEF169bNskW/orR4zrB9Cxcu1MGDB/XJJ5+oY8eOcnB4+k/JlClTFBYWpjfffFPffPONJKlXr17y8fHRjBkzNHz4cEuWjSTi6OioSpUqKWPGjJYuBQDMXLhwQf3794/XtgaDQY0bN9b06dOTuSoAqRnZ23ZyaFo8Z9g+snfaRvYGkFqRvWEt6ABPJe7cuSM/Pz9t3LhRhw4dUmRkpHLnzq0ePXrozTfftIn5P5ycnDR37lytX79eR48elbu7u3x8fFS4cGHTNidOnNDhw4f15ptvasiQIXJ2drZgxa8uLZ4zbN/atWvVqFEj9ejRw7QsLCxMW7dulcFgMFvu4eGh1q1ba926dYRwK/Hw4UOlT58+zvUZM2bUggULzJbt27dPVapUSe7SgGSVPn16jRs3TkWKFLF0KUgkBwcHUydHfGTIkCHGfLEAbB/Z+ylby6Fp8Zxh+8jeto3sjbSK7G39yN6wFnSAW1BAQID8/Py0adMmHT58WJGRkcqYMaPatm0rHx8fVaxY0dIlJjl7e3v5+PjIx8cn1vUffPCB+vfvLzs72xmdPy2eM2zbpUuX1KpVK7Nlhw4dUmhoqLJlyyYvLy+zdfny5UtT8xhZuy5dumjOnDny8PB46bZPnjzRhAkT9Ntvv+nUqVPJX5wFpcWAljFjRs2fP1/FihWzdCkpwcokNAABAABJREFUIl26dKpZsyZ3WFix/Pnz68SJE/He/sSJE8qZM2cyVgQgtSB7x2SLOTQtnjNsG9nbtpG9Y0f2tn1kb+tH9oa1oAPcgurUqSPp6ZXKDRo0kI+Pj+rUqfPCeRNsnYuLi6VLSHFp8Zxh3aKiomJctbd3715JUvXq1WNs//DhQ97nVuT06dPq1KmT5s6dqyxZssS53bFjx/TZZ5/p0qVLL9zOVqRLl86s8SkyMlIzZ85U7969LVhV8nJ0dFTlypVNf3/48KHGjx+vsWPHWrCqVzdnzhz9/vvvWr16dYzfXF999ZX27NmjHj16qGfPnlbfQL5y5coYyx49eiRJ+vPPP3Xr1q1Y92vZsmUyVpV8mjdvrkmTJql79+4vbTA7d+6c1qxZoy5duqRQdQAsiewdU1r8fZ4WzxnWjext28jesSN7k72tEdk7bmRvWJLBaDQaLV1EWtW5c2e1aNFCjRs3lru7u6XLAYB4adGihcqUKaMvvvjCtKxp06by9/fXd999p8aNG5tt37NnT92/f19Lly5N6VKRCL/++qu+/PJL5c2bV3Pnzo1xhWZ4eLh++OEHzZ49W5GRkWrRooWGDRtmE1fuPnz4UEuXLtXRo0dlNBpVvHhxdezYURkyZDDb7u+//9bw4cP1zz//6PTp0xaqNmlcu3ZNc+bM0ZEjRyRJxYsX13vvvaf8+fObbefn56cxY8bozp07VnvORqNRgwcP1rp165Q5c2YtXrxYefPmNdtm6tSpWrp0qQICAvTGG2/ohx9+sFC1ScPb21sGg8Fs2bM//WNbZzAYrPY1fvz4sVq3bq179+5p2LBhatasWYxG44iICK1du1YTJ06UJPn6+ipr1qyWKDfF3L59Wx4eHrF29IWHh+vIkSMqVqzYC4fgBKwd2RuANSJ72zayN9mb7E32ttbXmOwdO7J36kMHOAAgQWbOnKlp06Zp0qRJqlGjhpYsWaKvv/5aWbJk0datW83mgFm9erU+++wz9e/fXx988IEFq0ZCrF27VkOGDFG2bNk0d+5c5cuXT9LTK9Q/++wz/fPPP8qVK5dGjx6tWrVqWbjapHH16lV16dJFN2/eNAspWbJk0dKlS5UzZ05FRERo0qRJmj9/viIjI9WsWTNNmjTJglW/mtOnT6tz584KDg6Ws7OznJ2dde/ePbm6umrx4sUqWrSoHj58qOHDh8vPz0/29vbq0aOHBg4caOnSE2Xx4sUaNWqUunXrpkGDBsV5119YWJhGjx6tFStW6Msvv1Tr1q1TuNKk4+vrm6j9nh9q05r4+/vrww8/lL+/v1xdXVWiRAllzZpVkZGRCgwM1IkTJxQaGqpcuXJp2rRp8vb2tnTJSeJFd1cMHDjQpu6uAAAgrSB72z6yN9mb7E32tlZkb7K3NaAD3IJiGxojPqx1aAwAtiEsLEw9evTQgQMHZDAYZDQa5ejoqKlTp5qGl9y8ebMWLlyo/fv3q2DBglqxYoWcnZ0tXDkSYseOHRowYIDc3d01a9Ys/fHHH5oxY4YiIiL0zjvvaNCgQXJzc7N0mUlm0KBBWr9+vQYOHKg2bdrIxcVFO3bs0BdffKGyZctqwoQJ6tWrlw4fPqxcuXJp5MiRpve7terdu7d27dql8ePHq1mzZpKk48eP6+OPP1auXLk0ceJEdenSRZcuXVKpUqU0duzYGPMMWpO2bdvK1dVV8+fPf+m2RqNRbdq0kZOTkxYvXpwC1SEphYWF6ddff9W6det05swZRURESHo6tGDZsmXVsGFDvfXWW2aNxtYqLd5dASQG2RuANSJ7pw1kb7I32Zvsba3I3mTv1I4OcAuKHhojesiLl7H2oTEA2I7IyEitX79eR48elbu7u3x8fFS4cGHT+u+++06zZ89W06ZNNWTIEHl6elqwWiTWoUOH1Lt3bwUHB8toNCp//vwaO3asKlasaOnSklzt2rVVo0YNjRs3zmy5r6+vRo4cqdq1a2vLli1655139Mknn8jV1dVClSadGjVqqEmTJho+fLjZcj8/Pw0cOFBly5bV8ePH1b9/f7377rtWf+VquXLl1L9/f3Xr1i1e28+cOVPTp083DVFn7UJDQ2NtDD1//rwyZMigbNmyWaCqlHH37l3Z29vbxHCRz0uLd1cAiUH2BmCtyN5pA9mb7E32JnvbArI32Tu1cbB0AWnZ8//QA4C1sLe3l4+Pj3x8fGJd/8EHH6h///5W/6M9ratQoYLmz5+vnj176u7du/riiy9sMoBLUlBQkMqVKxdjeaVKlRQWFqYdO3Zo8uTJatSokQWqSx7379+PdQiqUqVKKTIyUmfPntWCBQtUtmzZlC8uGTg4OCToquMMGTLEmMPKGoWFhWn8+PFas2aNdu7cGSOIf/vtt9q5c6fatGmjzz77zCYamJ6XKVMmS5eQbJYtW6bKlStryJAhL9zOyclJY8eO1enTp/X7778TwpHmkL0BWCuyd9pA9iZ7k73J3raA7E32Tm3oALcga57jAUDa1aVLF/Xu3VvVqlUzLYuIiNCRI0fk7e2t9OnTy8XFxbQuei4y7qCxTt7e3lq0aJG6d++u3r17a9q0aapataqly0py4eHhZu/baNFDzXXv3t2mArj09HObLl26GMujQ1qvXr1sJoBLUv78+XXixIl4b3/ixAnlzJkzGStKfs8Om+nt7a2goKAY51S3bl3dunVLS5Ys0blz5zR//nw5OFhnRJg6dWqi9vvoo4+SuJKUc+HCBfXv3z9e2xoMBjVu3FjTp09P5qqA1IfsDcAakb3TFrI32dtWkL3J3nEheyOlWecnLI2KjIzUzJkz1bt3b0uXAiAN279/v9q1a2e27OHDh+rSpYtmz55tFs5hfYYOHRrr8vz58+vatWt6//331aRJE7PhQw0Gg7766quUKtEiKleubOkSUlzJkiUtXUKSat68uSZNmqTu3burSJEiL9z23LlzWrNmjbp06ZJC1SWPuXPn6sCBAxo+fLg6deoU6zbt2rVTu3btNHXqVE2dOlULFy6M91B1qU18Q/jzwx9bcwhPq3dXAMmN7A0gNSB72zayd+zI3taP7E32jkb2JntbGh3gFvbw4UMtXbpUR48eldFoVPHixdWxY0dlyJDBbLu///5bw4cP1z///EMIB5AqGY1GS5eAJODr6/vC9U+ePNHKlSvNlqWFEJ4Wf7TGZ45Ua9K+fXstXrxYnTt31rBhw9SsWbMYr2tERITWrl2riRMnKn369FYfwtesWaP69evHGcCf9dFHH2n//v1atWqV1YbwP/7446XbPHz4UN9//722b98uBwcHq3+N0+LdFUBikb0B2Aqyt20ge8eO7G39yN4vRva2TmRv60QHuAVdvXpVXbp00c2bN00/Xjdv3qxff/1VS5cuVc6cORUREaFJkyZp/vz5ioyMVLNmzSxcNQDAlsXnR6ytunfvnv7991+zZffv35ck3b17N8Y6ScqVK1eK1JZcLl68qAMHDpgte/jwoSTp7NmzsQ7HValSpRSpLam5urpq+vTp+vDDD/XZZ59p9OjRKlGihLJmzarIyEgFBgbqxIkTCg0NVa5cuTRt2jRlzZrV0mW/ksuXL+vtt9+O9/avv/66Jk+enIwVJa/cuXO/cP369ev19ddfKyAgQOXLl9eoUaNUtGjRFKoueaTFuyuAxCB7AwBSG7I32ZvsTfa2VmRvsre1oAPcgr7//nvdvHlTAwcOVJs2beTi4qIdO3boiy++0BdffKEJEyaoV69eOnz4sHLlyqWRI0eqTp06li4bAGDDXvYj1pZ99dVXcV5NP3jw4BjLDAaDTp06ldxlJasZM2ZoxowZsa4bP358rMuteU7BggULauXKlfr111+1bt06HT58WBEREZIkR0dHlS1bVg0bNtRbb72VoKGtUitXV1dFRkbGe/t06dKZ5qGzJVeuXNHo0aO1Z88eZcyYUWPHjlXbtm0tXVaSSIt3VwCJQfYGAKQ2ZG+ydzSyN9nbVpC9yd6pDR3gFnTgwAG1bNlSvXr1Mi1r0qSJQkNDNXLkSA0ZMkSHDx/WO++8o08++USurq4WrBYAgJhmzJghPz8/rVixwtKlvJJWrVpZuoQUZ81zL70KJycnde/eXd27d5f09A4De3t7ZcyY0cKVJb3XXntNhw8fjnfoOnTokE01xIWFhWnmzJmaNWuWwsLC1KpVK33yySfy9PS0dGlJJi3eXQEkBtkbAGDtyN7Wi+xN9n4e2dv6kL2tEx3gFhQUFKRy5crFWF6pUiWFhYVpx44dmjx5sho1amSB6gAAeLkbN25Y9VXJ0caNG2fpElJcWg3hz8uUKZOlS0g2rVq10siRI7V3715VrVr1hdvu27dPfn5+6tu3bwpVl7z27Nmj0aNH6/LlyypSpIhGjhypihUrWrqsZJHW7q4AEoPsDQCwdmRv60X2fors/RTZ23qRva0PHeAWFB4eLhcXlxjL3dzcJEndu3cngANIlZ6fr+lFczUFBQWlaG0AEJupU6cmaj9rbqxo2bKlli9frg8++EDvv/++2rVrpyxZsphtExAQoKVLl+rnn39Wnjx51KFDBwtVmzTu3LmjcePGaf369XJ2dtagQYPUvXv3WOfUsyVp6e4KIDHI3gCsFdkbgLUhe5O9bRnZ27oYjEaj0dJFpFXe3t6aMGGCfHx8zJYHBQWpWrVq+vnnn1WzZk0LVQcAsfP29pbBYIix3Gg0xro8mi1cqYyYRo4cqd9//93qX9+0GNCGDh2a4H0MBkOcc7Wldt7e3vHa7vnvMWt/bwcGBurjjz/Wvn37ZDAYlCtXLrMhum7cuCGj0aiyZcvqu+++U86cOS1dcqItXLhQkydPVnBwsOrVq6fhw4db9fkASDpkbwDWiOyNZ5G9yd7WguxN9gZSC9u+HMPK2dvbW7oEAIghLc7XBNsX3xD+fECz5hDu6+sb722fPW9rDeF//PHHS7d5+PChvv/+e23fvl0ODg7xnr8rNcucObPmzZsnPz8/rVu3TqdOndLZs2dlZ2enLFmyqGXLlnrjjTdUr149S5f6ysaOHWv689atW7V169aX7mMwGHTq1KnkLCtZpcUGRCA5kL0BpEZkb9gisveLkb2tF9n7xcjesAQ6wC3s+aGMpBcPZyRJuXLlSpHaACA2aXG+Jti+tBjQzpw589Jtrl+/rjFjxmj79u1Knz69BgwYkPyFJZPcuXO/cP369ev19ddfKyAgQOXLl9eoUaNUtGjRFKou+TVs2FANGzaMsfz+/ftydna2QEVJLy02EqfFBkQgscjeAKwN2Ru2iOwdO7I32duakL3jRvZOXRgC3YLiGspIins4I2u/UgYAkLol9IrGbdu26dSpU1Y/VNXL2HpAe15kZKRmz56tH3/8UaGhoWratKmGDh0aYw4rW3DlyhWNHj1ae/bsUcaMGTV48GC1bdvW0mUlmfDwcK1YsUJHjx41a0Tdv3+/Ro0aJX9/fxkMBlWvXl2ff/658uXLZ8FqX83QoUP19ttvq0yZMpYuJcVcv379pdvE1oD46aefpkB1QOpB9gYApDZk79iRvcne1orsbdvI3taJDnALSsz8HxJXgAIAkk9852p6lsFgsNkQbusBLTYHDx7U6NGjde7cORUoUEAjR45UtWrVLF1WkgsLC9PMmTM1a9YshYWFqVWrVvrkk0/k6elp6dKSTHh4uN59910dOHBAjo6OOnLkiBwcHOTv768WLVooLCxMtWvXVuHChbVp0yaFhIRo9erVVtvYEtccv2lZWmtABOJC9gYApDZkb3Nkb7K3NSN7g+ydOjEEugURpgEAqc38+fMtXUKqkBYC2vOCgoL0zTffaOXKlXJyclLfvn313nvvycnJydKlJbk9e/Zo9OjRunz5sooUKaKRI0eqYsWKli4ryS1cuFAHDx7UJ598oo4dO8rB4elP/ylTpigsLExvvvmmvvnmG0lSr1695OPjoxkzZmj48OGWLBtJ4PkGxLFjx9p8AyLwImRvAEBqQ/Z+iuxN9rYFZO+0i+ydutEBngqEhIRo+fLl2rVrl86cOaN79+7JYDAoU6ZM8vb2Vv369eXj42OT/wgCAFKXypUrJ3ifgwcPJkMllpNWAtqzli5dqokTJ+r+/fuqUaOGRo4cadXDccXlzp07GjdunNavXy9nZ2cNGjRI3bt3N4VTW7N27Vo1atRIPXr0MC0LCwvT1q1bZTAYzJZ7eHiodevWWrduHSHciqXFBkQgIcjeAIDUguxN9iZ72w6yd9pD9rYOtvmNY0UOHTqk/v37686dO3JyclK+fPmUO3duRURE6N69e9q2bZu2bt2qqVOnatKkSSpfvrylSwYAQDdu3JCvr69Wrlypq1ev2sQwbGktoEnS2bNnNWrUKB09elRZsmTRt99+q6ZNm1q6rGSxcOFCTZ48WcHBwapXr56GDx+unDlzWrqsZHXp0iW1atXKbNmhQ4cUGhqqbNmyycvLy2xdvnz5FBAQkJIlJrmDBw8qMjIyQfu0bNkyeYpJYWmxARFICLI3AMAakb1tA9mb7P0ssrd1I3tbD9v9V8UKXLhwQT169JC7u7smTpyohg0bxrjSPDg4WBs3btQPP/ygnj17ytfXV/nz57dQxQCAtOzJkyfy8/PTihUrtG/fPhmNRhkMBtWuXdvSpb2ytBjQxo8frwULFigyMlJ169bVgAED5O7urn///feF++XKlSuFKkxaY8eONf1569at2rp160v3MRgMOnXqVHKWlayioqJkb29vtmzv3r2SpOrVq8fY/uHDh3JxcUmR2pLL77//rt9//z1e20Z/h1l7CE+LDYhAQpG9AQDWhOxtW8jeZO/nkb2tE9nb+vDKWNCPP/4oFxcXLV++XNmzZ491G3d3d7Vt21a1a9dWixYt9PPPP2vMmDEpXCkAIC07evSoVqxYoQ0bNig4OFiSlClTJrVp00ZvvfWWcufObeEKX11aDGhz5swx/Xnbtm3atm1bvPaz1jsOnr8aOy3Ily9fjNdr8+bNMhgMev3112Nsv3v3bqsffq99+/YqW7aspctIMWmxARFIDLI3AMAakL1jR/a2LmTvp8jetoXsbZ3oALegAwcOqHXr1nEG8Gdly5ZNLVu21O7du1OgMgBAWhcQEKCVK1fK19dXly5dktFolIuLi6pXr649e/boiy++UP369S1dZpJp2bKlDAaDpctIUR999FGC9zEajclQScp5++23VaZMGUuXkWKaNWumadOmqXbt2qpRo4aWLFmiixcvKkuWLKpXr57ZtqtXr9aff/6p/v37W6japFGxYkX5+PhYuowUkxYbEIHEIHsDAFIrsrftI3vbPrK37SN7Wyc6wC0oKCgoQUOqvfbaa1q6dGkyVgQASOs2bNigFStWaM+ePYqMjFSGDBnk4+Ojhg0bqlatWrp9+7YaNGhg6TKT3Ndffy1JCg8P1/nz5xUREaHChQtb/ZBUL5IrVy61bt063ttfv35dw4YNS8aKkpevr6+qV6+epkJ4t27dtGvXLn300UcyGAwyGo1ydHTUl19+aRr6d/PmzVq4cKH279+vggULqlu3bpYtGgmSFu+uABKD7A0ASG3I3mTvuJC9rQ/Z2/aRva0THeAWFB4enqB/3NOlS6dHjx4lY0UAgLRu4MCBcnV1VYcOHVS/fn1VqlTJbB4jW75S+5dfftH06dNN/9Y6OTmpQ4cOGjRokE3O5zN8+HCFhISoY8eOL9126dKlGj9+PL9DrIyTk5Pmzp2r9evX6+jRo3J3d5ePj48KFy5s2ubEiRM6fPiw3nzzTQ0ZMkTOzs4WrBiJkdburgASg+wNAEhtyN5k79iQva0T2TttIHtbH9v7FwUAACRanjx5dO3aNa1YsUL+/v76+++/1aBBAxUsWNDSpSWr5cuXa8KECcqdO7datmwpOzs77du3T3PnzlVkZKRVX30dlwIFCmjs2LEKCQlRz549Y93m9u3bGj58uHbu3ClHR0erH6IrLbK3t5ePj0+cQ5N98MEH6t+/v+zs7FK4sqTXqlUrq59HLaHS4t0VAAAAtoDsTfZ+Ftnb+pG9bRvZ2zrRAW5h9+7d07///huvbYOCgpK5GgBAWrdlyxYdO3ZMq1ev1saNG7V79259++23eu2119SwYUOVKFHC0iUmiyVLlqhs2bKaN2+e0qVLJ+npnFsDBw7UkiVLNHjwYNOwVbbit99+U8+ePTVp0iSFhISob9++ZuvXrl2rMWPG6P79+ypXrpzGjh2rQoUKWajapHHw4EFFRkYmaJ+WLVsmTzGphC0NNThu3DhLlwAgFSN7AwBSE7I32Tsa2fspsrf1IHvDWhiMRqPR0kWkVd7e3okazub06dPJUA0AAOYiIyO1e/durVmzRn/88YdCQkJM/261adNGvXv3Vu7cuS1cZdKoUKGCPv744xhDkh09elTvvPOOfH195e3tbaHqks/jx4/Vp08f7du3T926ddNnn32moKAgjRw5Ups3b5azs7MGDhyozp07W/0QfAn93WU0GmUwGPjdhVTN29tbEyZMiPMuAwBPkb0BAKkZ2ZvsTfYmeyN1I3tbJ+4At6BWrVpZugQAAOJkb2+vOnXqqE6dOgoNDdXmzZu1du1a/fnnn1q2bJlWrFihKlWqqE2bNmrevLmly30lISEhSp8+fYzlefLkkdFo1IMHDyxQVfJzdXXVzJkz9fHHH2vu3Lm6du2aDh8+rMDAQNWoUUNffPGFzTS0SFL79u1VtmxZS5cBJCnurgBejuwNAEjNyN5kb7I3kPqRva0Pd4ADAACTXr16qWrVqqpcubJKlCgR61W7QUFBWr9+vdasWaOjR4/axJW6cV3JGRQUpGrVqmnOnDmqVq2ahapLflFRURo+fLhWrFghOzs7ffHFF2rbtq2ly0pSXK0LW8TdFQAAANaJ7E32JnsD1oPsbZ24AxwAAJjs3btXO3fulMFgkLu7uypWrKgqVaqoatWqpmHIPD091bFjR3Xs2FFXr17VunXrLFw1XpWdnZ2++uoreXh4aPbs2dqzZ49atmwpBwd+KgKpHXdXAAAAWB+yd9pE9gasF9nb+vDNCgAATA4fPqxTp07p8OHDOnLkiI4ePapt27bJYDAoQ4YMqlSpkqpUqaIqVaqoaNGiyps3rz744ANLl50k7t27p3///dds2f379yVJd+/ejbFOknLlypUitSWH2M6nU6dOevz4sZYsWaJHjx5pxIgRsrOzM9vGms8ZsEUVK1bk7goAAAArQ/Yme5O9AetC9rY+DIEOAABe6MaNG2ah/MyZM4qMjJSHh4cqV66sKlWqqEOHDpYu85W8aCij6GGLnmcwGHTq1KnkLi3ZvOycJcVYb83nPHToUL399tsqU6aMpUsBkgzDCwIAANgOsjfZO5o1nzPZG7aI7G2duAMcAAC8UM6cOdWsWTM1a9ZMkvTw4UOtXr1aK1as0KZNm+Tn52f1IbxVq1aWLiHFtWzZMkHzF1m7cePGWboEAAAAAIgT2ds2kb0BwDLoAAcAAC8UGhqqAwcOaP/+/Tp06JBOnDih8PBwOTk5mYZks3ZpMaB9/fXXli4BwCtq1aqV8uXLZ+kyAAAAkATI3raJ7A1YP7K3dWIIdAAAYCYiIkJHjx7V3r17tXfvXh07dkzh4eFydHRU6dKlTcG7XLlycnJysnS5AAAAAABYHbI3AADJhw5wAABg8t577+ngwYMKDQ2VnZ2dSpQooapVq6pKlSqqUKGCnJ2dLV0iAAAAAABWjewNAEDyogMcAACYeHt7y9HRUc2bN9f777+vAgUKWLokAAAAAABsCtkbAIDkRQc4AAAwGTFihPbt26crV67IYDDotddeU7Vq1VS1alVVqlRJGTNmtHSJAAAAAABYNbI3AADJiw5wAAAQw7///qs9e/aY5iK7c+eO7Ozs5O3trSpVqphCuaurq6VLBQAAAADAKpG9AQBIHnSAAwCAlzp37pz27t2rv/76SwcPHtSDBw/k4OCgkiVLqlq1aurfv7+lSwQAAAAAwKqRvQEASBp0gAMAgAQJCwvTxo0b9dtvv+no0aMyGAw6ffq0pcsCAAAAAMBmkL0BAEg8B0sXAAAAUrcrV67o2LFjOnbsmI4fP64zZ84oPDxcbm5uql27tipVqmTpEgEAAAAAsGpkbwAAkg53gAMAAJP79+/r+PHjpsB9/Phx3b9/X0ajURkzZlT58uVVuXJlVapUScWLF5ednZ2lSwYAAAAAwKqQvQEASF50gAMAABNvb28ZDAYZjUZ5enqqUqVKpv+8vLxkMBgsXSIAAAAAAFaN7A0AQPJiCHQAAGDSuHFjVa5cWZUrV1bhwoUtXQ4AAAAAADaH7A0AQPLiDnAAAAAAAAAAAAAAgE1g8hAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANsHB0gUAAJAWTJkyRVOnTk3QPn/88Yfy5MmTTBUlXr169XT9+nVJ0v/+9z916dLlhdv36NFDu3fvliTNmTNH1atXT9a6/Pz8lD9//mQ5BgAAAAAg9SJ7k70BAJDoAAcAIEV4eXnJx8fHbFlgYKD27NkjV1dX1a9fP8Y+rq6uKVVeom3cuPGFIfzu3bvau3dvClYEAAAAAEiryN4AAECiAxwAgBTRsGFDNWzY0GzZvn37tGfPHnl6emrixIkWqizxMmTIoMOHD+vWrVvKnj17rNv4+fkpIiJCjo6OCg8PT+EKAQAAAABpCdmb7A0AgMQc4AAAIJEaNGggo9EoPz+/OLdZt26dPDw8VKpUqRSsDAAAAAAA20D2BgAg4egABwAgFdu+fbt69OihypUrq1SpUmrUqJEmTJige/fumW137do1eXl5qXbt2rE+TufOneXl5aV9+/aZlg0ZMkReXl7av3+/+vbtq9KlS6tq1apasGBBvGpr3LixpKdDscUmICBABw8eVKNGjeTgEPegM6tWrVKHDh1Uvnx5lS5dWj4+Ppo+fbpCQkJi3f6vv/5S9+7dValSJVWsWFEDBgwwzYsWm8jISC1atEjt2rVTuXLlVK5cOb311lvy9fWV0WiM17kCAAAAAGwX2TsmsjcAwJoxBDoAAKnUxIkTNWvWLNnb26tChQry9PTU0aNH9fPPP2vDhg2aN2+e8ubN+8rHGTFihAIDA1WrVi2dO3dO3t7e8dqvQIECKlasmA4fPqyAgABly5bNbP3GjRsVFRWlZs2aaerUqTH2j4qK0ieffKK1a9fKyclJlStXlouLiw4cOKDvv/9emzZt0pw5c+Tp6WnaZ+nSpfr8888lSRUrVlSGDBm0e/duHTx4UGFhYTGOER4erj59+mjnzp1yd3dXuXLl5OjoqP3792vIkCHat2+fvv7664Q8XQAAAAAAG0L2JnsDAGwPHeAAAKRCW7du1axZs+Th4aGff/7ZNIxZWFiYvvjiCy1dulT9+/fX8uXLZTAYXulYAQEBWr16tfLmzauoqCjZ2cV/gJimTZvq9OnT8vPzU6dOnczWrV+/XtmyZVOlSpVi3XfhwoVau3at8ubNq9mzZytfvnySpODgYA0aNEjbt2/X559/rilTpkiSbty4obFjx8rBwUEzZ85UtWrVJEl3795Vjx49dOrUqRjH+PHHH7Vz505VrlxZkydPVqZMmSRJd+7c0XvvvSdfX19VqFBB7dq1i/c5AwAAAABsA9mb7A0AsE0MgQ4AQCo0d+5cSdKnn35qNoeXk5OTRo0apfz58+vkyZPau3fvKx+rfv36pqvZExLAJalJkyaSYg7F9u+//+ro0aNq0qRJnI85b948SdLYsWNNAVyS3N3dNXHiRKVPn15+fn66fPmyJMnX11ehoaF6++23TQFckjJlyqSvvvoqxuOHhYVpwYIFcnR01MSJE00BXJKyZMmiL774QpL0yy+/JOicAQAAAAC2gexN9gYA2CY6wAEASGUiIiJ0+PBhGQwGNWrUKMZ6BwcHNWzYUJLM5hVLrKJFiyZ637x586pEiRI6dOiQAgICTMvXr18vo9Go5s2bx7rfjRs3dO3aNXl6eqpq1aox1qdPn161atWSJO3fv1+SdODAAUlSnTp1YmxfrFgx5cmTx2zZyZMn9fDhQ7322mvKnj17jH1KlSqlzJkzy9/fX7dv347nGQMAAAAAbAHZm+wNALBdDIEOAEAqc+/ePYWHh8vT01Pu7u6xbhMdOJMiPGbMmPGV9m/atKlOnjypzZs3q2PHjpKehvC8efOqdOnSse4THdhz584d5+M+f47R++TIkSPO7a9du2b6+40bNyRJZ8+elZeX1wvP4caNG8qaNesLtwEAAAAA2A6y91NkbwCALaIDHACAVMZoNErSC+cXi97GyckpXo8ZGRkZ57qEDr32vCZNmmjChAnasGGDOnbsqMuXL+vkyZN6//3349wnMef4svnWHBzMf9ZERUVJknLlyqUKFSq8cF83N7cXrgcAAAAA2Bayt/k2ZG8AgC2hAxwAgFTGw8NDjo6OunfvnoKDg2O9Ev3q1auSpMyZM0v6L0hHB8/n3b9/P5mqfXoleenSpXXo0CHdvn1b69evlyQ1a9Yszn2yZcsmSWZXjT8v+hyzZMkiScqePbvOnTun69evq3DhwjG2f3YYOEmmq8pz5MihiRMnJuCMAAAAAAC2juz9FNkbAGCLmAMcAIBUxtHRUeXKlVNUVJQ2b94cY31ERIRpeZUqVSRJrq6ukp6G7fDwcLPtg4KC5O/vn6w1N23aVFFRUfLz89OGDRtUuHDhFw59litXLuXOnVtBQUGmecae9fDhQ+3evVuSVKlSJUlS9erVJSnW5+Tq1as6f/682bJSpUrJ2dlZZ86ciRHQJenWrVtq0qSJunfvrkePHsX/ZAEAAAAAVo/sTfYGANguOsABAEiFunbtKkn65ptvdOrUKdPy8PBwjR49WleuXFGxYsVMw4t5eHgoR44cCgsL0+LFi03bP3nyRJ9//vkLh2FLCo0bN5bBYNDChQt19uzZF16BHi36HIcPH2664lySHj16pE8++UTBwcGqW7euaa6yVq1aycPDQ8uXL9emTZtM2wcHB2vYsGExrsB3dXVV+/bt9fjxY33yyScKDAw0O8bQoUN18eJFubq6MgwbAAAAAKRBZG+yNwDANjEEOgAAqVCDBg307rvvavbs2Wrbtq0qVKggT09PHTt2TDdv3lTu3Ln13Xffmc0h1rNnT40dO1Zjx47VunXrlCVLFh0+fFiRkZGqW7eutm3blmz15syZU2XLltWRI0ckvXgItmidO3fWkSNHtGHDBjVr1kyVKlWSi4uLDh48qKCgIHl7e+urr74ybZ8pUyZ99dVXGjBggPr166dy5copW7ZsOnDggCIjI1WwYMEYV9sPGjRIp0+f1t69e/XGG2+oVKlScnFx0ZEjR3Tv3j0VKFBAo0ePTtonAwAAAABgFcjeZG8AgG3iDnAAAFKpzz77TD/++KOqVKmiM2fOaPv27XJzc1Pv3r3l6+urggULmm3fuXNnjR8/XiVLltSpU6d04MABValSRcuWLYuxbXJo0qSJJKlEiRLKnz//S7e3s7PTd999p3HjxqlEiRI6fPiw/vzzT+XIkUOffPKJfv/9d2XKlMlsn/r16+u3335T/fr15e/vr127dql48eL69ddflSNHjhjHcHZ21uzZs/W///1Pr732mo4fP659+/YpW7Zs6tu3r5YuXWqa5wwAAAAAkPaQvcneAADbYzAajUZLFwEAAAAAAAAAAAAAwKviDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcsCErVqyQl5dXgv/r3LmzpUuPtylTpsR5HsWKFVOZMmVUr1499e3bV1u2bLF0ufh/R44cMb1OPXv2fOn2Q4YMkZeXlwYPHmy2PPox9uzZk+Q19ujRw/T4x44dS/LHf1ZERIT8/f2T9RjPO3PmjMaOHatmzZqpYsWKKlWqlOrUqaOePXtq4cKFCg0NTfJj3r59W4MHD1b16tVVsmRJ1apVSzt37pQkrVy5Ui1atFCZMmVUsWJF9ejRQ/v27TO9BhEREYk+7rVr10yPc/ny5aQ6Hbwio9GoCxcuWLqMRLl48aJ69+6tKlWqqFSpUnr99dd19uxZGY1GzZkzR40bN1apUqVUpUoV/e9//zP9e1y7du1XOm5SfSaSyrlz52Isq1evnry8vLR06dIEPVZi9wMAANaDNgraKFIr2ijM0UZBG0VqYg2fTwDWwcHSBQBIOpkzZ1b58uVjLL9x44Zu3LghJycnlSxZMsb6okWLpkR5SSq2czEajQoNDdW1a9fk5+cnPz8/+fj4aMKECTIYDBaqFJK0fPly0593796tq1evKm/evBasyNyNGzfMfhAvWrRIZcqUSZZj7d69W2PHjlWjRo00cODAZDnG83744QdNnz5dUVFRcnd3V758+eTo6Kjbt29r165d2rVrl37++WdNmzZNJUqUSJJjRkVFqWfPnjpz5owcHBxUpEgRhYeHK3fu3Nq0aZM+++wzSVLWrFmVPXv2VPV+QNI7fvy4xowZo/z582vixImWLidBHj16pK5duyogIEDOzs4qUqSIQkJClCdPHs2ZM0fjx4+XJOXOnVseHh7KkyePhStOegEBARo/frwOHjyoHTt2WLocAABgJWijoI0itaKN4j+0UdBGkdqk9s8nAOtBBzhgQ+rUqaM6derEWD5lyhRNnTpVWbNm1aJFiyxQWdJ70bmEhYXp+++/1y+//KI1a9aocuXKat++fQpXiGghISHasGGDDAaDatasqV27dmnJkiUxrsy0pBUrVigqKkp16tTRjh07tGHDBg0dOlQZM2ZM8mP99NNPKXpl9fLlyzVt2jS5urpq3LhxeuONN2Rvb29af+HCBQ0bNkxHjx5Vjx49tH79emXKlOmVj+vv768zZ85IkmbMmKFatWqZ1k2ZMkWSVKFCBc2fP18ODk9/joSEhGj9+vWSZFqWGNmzZzc9Tq5cuRL9OEg6v/32m44fP678+fNbupQEO3jwoAICAmQwGLRixQoVKlTItG7Dhg2SpGbNmunbb781LX/48KHKlCkjR0fHVzp26dKlk+Qz8ap2796ttWvXKnv27BarAQAAWB/aKJ6ijSJ1oY3CHG0UtFGkJtbw+QRgPRgCHYDNcXJy0qeffqrSpUtLkhYsWGDhitK2jRs3Kjg4WEWKFFHLli0lPQ1zYWFhli3s/xmNRvn6+kqS2rRpowIFCig0NNS0zNrNmDFDkvTpp5+qcePGZsFSkgoVKqTp06crc+bMCgoK0vz585PkuEFBQaY/V6lSJdZ1FSpUMAuRLi4uKlSokFkHY2I4OjqaHudVOyCB6PdrlixZYrw3o9dVrlzZbHn69OlVqFAh5cuX75WOnVSfCQAAAFgObRSpC20UlkUbBW0UL5LaP58ArAsd4ABsVoMGDSRJ//zzjx4/fmzhatKuFStWSJJq166tunXrytnZWYGBgdq8ebOFK3tq//79unr1qhwdHVW9enU1adJEkrRkyRILV/bqHjx4oCtXrkjSC4dLy5Qpk+nzcvz48SQ5dmRkpOnPTk5OZuuioqJiXQ6kRi96v/JeBgAAQHzRRpE60EZhObRR4GVS++cTgHWhAxyAyaZNm9SzZ09VrVpVJUuWVM2aNdW3b1/99ddfsW7v5eUlLy8vs3mJntW5c2d5eXmZhhKSpGvXrsnLy0s1atTQrVu31KtXL5UuXVqVK1fWoEGDkvR83N3dTX9+9OiR2fG9vLx0+fLlWPerV6+evLy8TD+6JGnfvn3y8vJS+/btdeHCBb3zzjsqVaqUqlWrZpr/NXq/06dPa/v27Xr77bdVrlw5ValSRV26dNGWLVvirDUyMlJLly5V586dValSJZUsWVKvv/66PvnkE508eTLWfUJDQzVz5ky9/fbbqlatmkqVKqW6detq0KBBOnToUJzHOnPmjD777DO9/vrrKlmypKpUqaIePXpo06ZNsW7/7HP27HMSH1euXNGBAwckSQ0bNpSbm5vq1q0rSalmqLvouYWqVq2q9OnTy8fHR5J08eJF7d27N9Z9EvM+WrFihby8vLR//35JT6969vLy0pAhQ8z2u3//vqZOnaqWLVuqXLlyKlOmjJo0aaLx48crICAgQef27JXL27Zte+G2ffv21bp16zRp0iSz5UOGDJGXl1ecw01Fn1e9evUk/ffcdOnSxbRN9HMV/VjRz8HUqVNN66T/PmdeXl6KiIiIcawzZ85oxIgRatCggUqVKqVKlSqpa9eu2rhxo9l2L3t9rl69qlGjRumNN95QqVKlVLFiRXXo0EFLly41C8XPPweLFi3StWvXNHToUNWuXVslS5ZU7dq19b///U/Xrl2L87k9ePCgBg0apLp166pkyZKqWrWqPvjgA7Pv1l27dsnLy0slSpRQYGBgrI8TGhqqChUqyMvLS8eOHYtxrgn9fD548EAzZ85Ux44dVaVKFZUoUUIVK1ZU69atNWXKFN2/fz/GPgn93o9+TaPvVlizZo28vLzUuXPnGOc2d+5ctW/fXuXLl1epUqXUoEEDff7557p06VKsx7p//76+++47tW7dWpUrV1aZMmX0xhtv6H//+5/Onj0bZ23fffddrI83ZcoUs9qiax86dKgk6fr166bzj/58X79+XZI0dOhQs89B9Oeidu3asR4rPu+JZ2t40WciId/n0c/Bzp07debMGfXv31/Vq1dXyZIlVb9+fX311Ve6e/eu2T7PPge3bt0y+8w+79ChQ/rggw9UpUoVlS5dWo0aNdKkSZMUHBwc6/avuh8AALBttFE8RRuFOdooYqKN4j+0UVhvG4U1fD4BWBc6wAEoPDxcH330kfr166ddu3bJwcFB3t7eioiIkJ+fn7p166avvvoqSY8ZFhamHj16aM+ePSpUqJAMBoNy586dpMeI/lHp7OwsT0/PJHnMu3fvqmvXrjp9+rQKFy6sJ0+eqECBAmbbLF++XO+//75OnjypggULKl26dNq3b58+/PBDjR07NsZjBgcHq2PHjho+fLj279+v9OnTy8vLSw8fPtTq1avVtm1bzZkzx2yfsLAwdevWTZMmTdLx48fl4eGhIkWKKDg4WGvXrlXHjh21dOnSGMf69ddf1bp1a61cuVL3799XkSJF5Orqqt27d6tfv34aNGhQrD+uE2v58uUyGo3Kly+f6ere5s2bS5IOHDigCxcuJNmxEiM4OFh+fn6S/qurUKFCKlasmCRp8eLFSXaszJkzq3z58qZGj5w5c6p8+fJm75+zZ8+qefPmmjJlis6ePavcuXOrYMGCunLlimbPnq3mzZtr37598T6mq6urypcvL+lp595nn32mAwcOxPoaZ82aVYULF37lz0q6dOlUvnx5FS1a1LSsfPnypnON7TmIrvFFfv31V7Vt21a///677t69a3rv7t27V/3794+zU/N5mzdvVvPmzbVo0SIFBATotddeU6ZMmXTo0CENHz5cPXr0MDVGPe/UqVNq0aKFVq5cKRcXF+XPn1+3bt3SsmXL1K5dO924cSPGPt9++606deqktWvX6vHjx/Ly8pKdnZ22bdumbt26ma7ir1GjhnLmzKmIiAitXbs2ztqDg4NVqFChF14tHx+XLl3Sm2++qUmTJuno0aPKlCmTvLy8ZG9vr5MnT2rq1Kl666234nwu4it9+vQqX768MmfOLOnplfzPvz9u3rypVq1aady4cTp27JiyZs2qIkWK6Pbt21qyZInefPNN03xp0e7du6d27dppxowZOnfunLJmzaqCBQvqzp07WrZsmdq0aaOdO3cmSe3Rn1EnJyfT+9XBwUHly5c33SEQ/d4uWbLkSx83vu+Jl3mV7/OdO3eqbdu22rJlizw9PZUzZ05du3ZN8+bN09tvv23W8fzsc+Do6BjnZ9bX11cdO3bUnj17lDNnTmXKlEmXLl0yNYKGhobGWkti9wMAALaLNor4o40iYWij+A9tFLRRpKY2Cin1fz4BWB86wAHo66+/1ubNm+Xq6qrJkydr9+7dWrZsmf788099/vnncnBw0Lx58zR37twkO+aDBw90+/ZtrVy5Ur6+vtq1a5d69eqVZI9/9+5drVq1StLTH23PXmX6Kq5evSoXFxdt2rTJVHf0nDTRFixYoOrVq2v79u1asWKFduzYoTFjxsjBwUELFiyI8cNx8ODBOnLkiLJmzar58+dr69atWr58uf766y/16dNHUVFR+vrrr00hSHr6o/DIkSMqUKCAtmzZog0bNmjFihXavXu3OnbsKKPRqPHjx+vJkyemfXbu3KkxY8bIzs5O//vf/3Tw4EH5+vpq27Ztmjt3rjJnzqy1a9eaXQ0vSdmzZ9f69eu1fv16vfHGG/F+rqKiokyvQfQVy5JUp04deXh4SLL8FZzr1q1TSEiIXFxczM7tzTfflCRt2bJFd+7cSZJj1alTR4sWLVLx4sUlSS1atNCiRYv0wQcfSHoadHv27KmAgACVK1dOfn5+Wrt2rVauXKkdO3aobt26un//vj788ENdvXo13scdMWKEXF1dZTQatXLlSnXq1EmVK1dWr169NHPmTB07dsw03FdSyJo1qxYtWqThw4ebli1atMh0rs8+B23atDGte5HDhw9r7NixCg8PV69evfTXX3+ZPlvjxo2TnZ2dZsyYod27d7/wcc6cOaOPP/5YT548Ue/evbV//36tWrVKfn5+8vX1VYECBfTXX39p1KhRse7/+++/q3Dhwlq/fr02bdqkdevWafHixXJzc9Pdu3c1e/Zss+3XrVunn376SXZ2dho2bJj27Nmj5cuXa9euXRowYIAkafTo0bpw4YLs7OxM3yXRn5vnrVy5UpLUunVr07LEfj5HjBihGzduqGzZstq2bZvpO2Tv3r0aP3687Ozs5O/vbzpmYhUvXlyLFi0y3Qldo0YNLVq0SCNGjJD09M6SDz74QBcvXlTBggW1atUqbdq0SStWrNCff/6pdu3a6cmTJ/r0009NV5RL0s8//6zLly+rfPny2rFjh9atW6eVK1dq586datiwocLDw1+5UTS69vfff1/Sf+/tRYsWyc/PT4sWLVLWrFklSe+//74WLVqkH3744YWPmZD3xIsk9vs82oIFC1SjRg1t27ZN69at0+bNm/Xjjz/K3t5ely9f1rJly0zbPvscZMqUKc7P7KFDh9S8eXPt3LlTK1eu1Pbt2zVhwgRJ0rlz5+K8+j+x+wEAANtFG0X80UZBG0Vi0UZBG0VqaqOwhs8nAOtDBziQxt28edN0BemYMWPUuHFj0zp7e3t17NhR/fv3l/R0KKBXvRvwWR06dFDhwoUlPb2z7tnhwBLDaDQqKChIW7du1bvvvqt79+7J0dFR/fr1S4pyTd5//31lz55dkuTm5qZ06dKZrc+VK5emTZtmuuPRYDCoffv26tGjh6Snz2O0o0ePmoZ9+uGHH1SlShXTOicnJ/Xv319vvfWWJGnixImmdWfOnJH0dE6cXLlymZanS5dOQ4YMUc2aNfXGG2/o3r17pnXffvutjEajBg8erC5dusje3t60rlq1aho3bpwkac6cOQoKCjKtc3R0VKFChVSoUCGlT58+3s/T7t27TVebRoe16MeLfp+tWrXKonf3RQ8tVr9+fbm5uZmWN2/eXHZ2dgoPDzdtk9x+++03BQQEKEuWLPrpp5+UN29e07osWbLohx9+UNGiRfXw4UPNmDEj3o9bvHhxLV26VBUqVDAtCw4O1o4dOzRp0iS1b99eNWvW1HfffaeQkJAkPaek8uOPPyoqKkpNmjTRoEGDzD5zrVu3Vtu2bSXppR1lU6ZMUVhYmDp16qQBAwaYPU7x4sX1ww8/yN7eXmvWrNH58+dj7O/o6KipU6eqYMGCpmXlypUzhb3Dhw+bbR/9We/evbu6du1q+szZ29urd+/eqlGjhiIjI02hsU2bNjIYDDp58mSMDtBbt25pz549sre3V4sWLcxqSujnMzAwUOfOnZP09Hs/W7ZspnUGg0EtW7ZU5cqVJSnWocST0saNG3X69GmlS5dOs2bNkre3t2mdu7u7xo4dq1q1aik8PNzsCvro78BGjRopU6ZMpuXp06fX8OHDVb16dVWqVCnV3T2c0PdEXBL7fR4tc+bM+uGHH8xe+/r165suVHj+vRwfhQoV0vjx402NE9LT7/4aNWpIUpzDXiZ2PwAAYJtoo0g42ijihzaKhKGNIm60USRtG4VkHZ9PANaHDnAgjdu5c6ciIiKUNWtWNW3aNNZtOnXqJEdHRz18+NA0L05SePbHbkI9Oxdr9H/e3t6qWrWqevfurdOnTyt9+vT6/vvvzTpUksLL6m7fvr1cXV1jLH/77bclSf7+/rp48aKk/+Y8Kl26dJxDLL377ruSng6X9s8//0iSaUiqZcuW6bfffjObs9XJyUm//PKLxo0bZwrB165d0+nTpyWZ/5B8Vp06deTp6anQ0NA451RLiOgf+qVLl44xBFt0DQ8ePNC6dete+ViJceHCBdMdpc8/J9myZVPVqlUlSUuWLEnSq4/jsnXrVklSy5YtlTFjxhjrnZycTHMTb926VUajMd6PXbhwYf32229auXKlPvroI5UrV06Ojo6m9YGBgZoxY4befPNN3bx58xXPJGmFhISY5jmLbmh53oABA7Rx40bTXHexCQsLMw2JHddnIPp7xGg0xjofWcmSJU13/D7rtddekyQ9fPjQtOzy5cumz3n0Z/95X375pbZs2aKBAwdKkvLmzatKlSpJUowO0FWrVikqKkq1a9eOtYaEyJw5s/bu3atjx46ZDQMXLTIy0tTYl9zhMvp9X69ePbMGlWd1795dkrR//37Tcxz9nfLzzz9r9erVZs999uzZNWfOHI0ZM0bOzs7JWH3CJOY9EZuk+D6vVq1ajIZR6WlntGT+Xo6v+vXrmzVaRoueP+/5ucVfdT8AAGCbaKNIONoo4oc2ioShjSJ2tFE8lZRtFFLq/3wCsE5JM94OAKsV/eOnWLFisrOL/ZoYV1dXFSxYUP/884/8/f1Vt27dJDn2q/xAcnJyijHXqp2dndzc3JQ9e3aVKVNGjRs3fuUrtmPzsrpLly4d6/JcuXIpffr0evjwoS5duqTXXnvN9PyXKFEizscrUKCA3N3dFRwcLH9/fxUtWlTt2rXTsmXLdP78eY0ePVpffPGFihUrpmrVqqlWrVqqVKmS2ZBq0Xd7StKHH34Y57GihyOLriux7t27pz/++ENS7D/kK1SooLx58+rq1atatGiR2rRp80rHS4zoIX4zZ85sutPwWS1atNCePXt0/fp17dq1S3Xq1EnWevz9/SW9+L0Qve7u3bu6d+9egufCKlasmIoVK6a+ffsqJCREhw8f1u7du7Vq1SoFBgbqypUr6t+/f7znIE4J//77r8LDwyUpzoaizJkzm+5miMulS5cUFhYm6emQXtFzN8d2PCn2z0B0Y83zojtZIyIiTMui5/dzdXWNs2M3Z86cMZa1adNG+/fv15o1a/Txxx/LYDBI+m/IsWeHFntVzs7OunHjho4dO6YrV67o6tWrunDhgk6fPq3Hjx9LUrI3rCTkfR8ZGanLly+rZMmS6tGjhzZu3Kjbt2/rk08+kYODg0qVKqXq1aurdu3aKlOmjOm5Sy0S+554XlJ8nyfkvRxfcT1mdGNrXBdTJHY/AABgm2ijSDjaKF6ONoqEo40idrRRJH0bhTV8PgFYJzrAgTQuODhYkl46LE10SEvK4cVe5c686Dl8LOFldcd2ZWw0V1dXPXz4UA8ePJAU/+ffzc1NwcHBpuff3d1dS5Ys0ezZs7V27VpdvnxZp06d0qlTp/TLL78oc+bMGjBggNq3by/J/KrP+Axtm5i7/561Zs0a0w/5sWPHauzYsXFu+/fff+vkyZMvDFVJLSIiQqtXr5b09Mrilx170aJFyR4u4/NeeLax5NGjRwkOl89ycXFRjRo1VKNGDfXv31/Dhg3TunXrdPTo0RR/PV7k2SHynh0CLqGefU+fOHEiQdtHe/aK9JeJrjuhNTdu3FhjxozRjRs3tG/fPlWtWlV///23zp8/L09PzyRr3Lt48aK++eYb7dixw6yT293dXRUrVlRAQIBpGMPklJj3vfQ0mK9atUo//fSTNm7cqFu3bunIkSM6cuSIpk2bpty5c2vYsGFq0KBB8p5AAiT2PfG8pPg+T8h7Ob5iu6M8OfcDAAC2iTaKhKON4uVoo0g42ihiRxtF0rdRpPbPJwDrRQc4kMZF//B5WZiIDkOx/VCKa5ij6DsIU6vkqvtFcxRFB4joK0Hj+/xHr3/2+Xd3d1e/fv3Ur18/Xb58Wfv27dO+ffu0Y8cOBQYGasSIEfLw8FDDhg1Nd9J5eHho3759iT+5eIqek8rV1fWFYSkgIEBGo1GLFy/WmDFjkr2uaNu3b9edO3ckPR1KLK47RR8/fqyHDx9q586dunHjRqxXwybV+8jNzU33799/4Xvh/v37Ztu/zOeff669e/eqVatW6t27d5zbOTs764svvpCfn5/Cw8Pl7+8fI0zEdZ7JPSfXs0P1BQcHm833nNjHOXz48Ct3Qsb3eAltkHN2dlazZs20ZMkSrVmzRlWrVjVdWe3j45MkHZeBgYHq1KmTAgMDlStXLrVv317FixfXa6+9pjx58shgMGjQoEEv7ABPyve99OLvwOh/f57dXnr6PTps2DANGzZMZ8+e1f79+7V3717t3r1b169fV79+/bR48eI473h51doTKrHvibgeJ6W+zwEAAFISbRQx0Ubx6mijoI0iqdBGkfRtFKn98wnAejEHOJDGRc8Lc/r06TiHug0ODtalS5ckSfnz5zctj56zM/oqvecFBAQkYaVJ49kht2KrOzQ09JWvLI6eA+t5V65cMf3QLFy4sKT/nv+TJ0/G+XgXLlwwBZXo5z8wMFAHDx40zauVP39+tW/fXpMmTdKOHTtMQ69F/ygtWLCgpKdXfN6+fTvOYx08eFAXLlx4pSFnz5w5Y5rLa9y4cdq5c2ec/0Vfsbx27VpT8E4J0XMLFSlSRLt27Yqzvjlz5kh6OvTy77//bto/Od5H8XkvRF8VnDFjxnhdWf3kyRNdvnxZW7Zseem27u7upsD1bICL/pxHD/H1vOT+nOfNm9dUw7PD5D3r77//1jvvvKOhQ4fGGYKffZzz58/Hebzjx4/r7Nmzr9xJGT1n1ePHj3Xt2rVYt/njjz/UuXNnffPNN2bLo4fz+uOPPxQZGWkaCiyphvlavny5AgMD5eHhoeXLl6t3796qU6eO8ubNa2pouXXrVqz7JvX3fnze93///bckyWAwKF++fKb69u7da/qu8vLyUufOnTVt2jT98ccfyp07tyIjI7V27dpkqz2hXuU98ayU/D4HAABIabRRmKONgjYK2ihoo7DlNgpr+HwCsF50gANpXO3ateXg4KDbt29r/fr1sW6zcOFCRUREyMXFRZUrVzYtj/5xG9s8NMePH0+V4dLDw8PUwRNb3Vu3bk3U3KfPWrFiRaxBPXo4tLJly5qu0o0eKuj48eNxDvs1d+5cSVKOHDnk5eUlSerRo4c6duwoX1/fGNu7ubmpbNmykp6GIkkqVKiQKZguXLgw1uMcOnRIHTt2VNOmTXX06NF4nGnsouet8vT0VL169V647TvvvCPp6Q/w6CCc3AIDA7Vjxw5JL/+xXqpUKVNQX7p0qem98Srvo7iu5I5+L6xcudLsKupoYWFhpvdQrVq1Xlh3tOi5k06cOGEK1HHZvXu37t27Jw8PD5UpU8a0/EWf88jISG3dujVetSSWu7u7KlSoIOm/q4Kft3btWh0+fFjXrl2L8/l1d3c3fX/Nnz8/1m2uXr2qDh066M0339TGjRtfqe5ChQopd+7cL6zb19dX+/fvNzUSRStTpoyKFCmioKAgLViwQP/++6+KFy8e5/xiCRUddnPlyhXr1ernz583fQdEf4dES+z3fvTr8nz4j37fb926VVevXo113+jXq2zZssqQIYMiIiLUsmVLde3aVdu3b4+xfZYsWVS0aFFJ5nOYv6j2R48e6a+//or1+EnlVd4Tzz9OSn2fR4uefzOuxhsAAICkQhuFOdooaKN4Fm0UtFEkVmpto0jtn08A1o0OcCCNy5kzp2kOphEjRpj9oIqKitJvv/2mKVOmSJL69OljNhRN9A++OXPm6MKFC6blf//9tz7++OOUKD/BnJ2dVbx4cUnSlClTzO5y3L17t7744otXPsaJEyc0YsQI07BLUVFRWrhwoSkkDhw40LRtuXLlTFcw9uvXz2zor7CwMP3www+mq3o//fRT0w/nFi1aSJKmTp2qnTt3mh3/4MGDph+Cz84J1b9/f0nSzJkzNWvWLLOrgg8ePGhaX7ZsWVWtWtW0Ljw8XBcuXNCFCxdeesVwWFiY1qxZI+npUEhOTk4v3L527dqmH+CLFy9+4bYv8u+//+rChQv6999/X7rtypUrFRERIUdHR9Pz+CLRP7Bv375tusr1Vd5H0cNOXb9+PcZxsmfPrjt37uj999836wwMDAxU//799c8//8jNzU19+/Z9ad2SVKNGDTVq1EiSNHz4cH355ZcxrvR98uSJli9frgEDBkh6+j55duit6M/5uXPnNH/+fFMH2P379zVs2LA47yZISn369JHBYNCqVas0Y8YMs+C+cuVKLViwQJLUs2fPFz5O3759ZW9vr7Vr12rcuHFmV1D/888/6tWrl8LDw5U7d275+Pi8Us0Gg0F9+vSRJM2aNUtLly41PXeRkZGaOXOmNm/eLAcHB3Xr1i3G/tENH5MnT5YktW7dOtbjJOTzGS36Sv4zZ85o06ZNpuVGo1E7d+5Uz549TVfTPz98XGK/96PfU89/Rhs3biwvLy89efJE7733ntmw68HBwRoxYoR2794tBwcHDR48WNLTuxuaNWsmSfryyy91/Phxs8f08/PT7t27JT39jnm+9l27dsnPz8+0PCAgQP369VNgYGCc9SeFV31PPCux3+eJFf299eDBA660BwAAyYo2CtooovehjSJ2tFHQRpEYqbGNwlKfTwBpB3OAA9DQoUN169Yt/fHHH+rfv7+yZcumHDly6OrVqwoKCpIkderUSe+9957Zfr1799auXbt0+/Zt+fj4qHDhwnry5IkuXbqkvHnzqk2bNnFeVWhJAwYMUO/evXX+/Hk1aNBAhQsX1v3793X9+nWVKlVK5cuXN4WIxChatKiWLVumDRs26LXXXtPNmzd1+/Zt2dnZaejQoTE6I7755ht98MEHOnLkiLp06aLcuXMrU6ZM8vf3V3BwsOzt7TVgwABTh48kdenSRXv27NHOnTv13nvvKVu2bMqWLZuCgoJMoaVevXpq166daZ9mzZrp0qVLmjJliiZOnKiffvpJBQoU0N27d037FCxYUD/++KNZfbdu3VLTpk0lPR2OKK4fuZK0ZcsW3bt3T1L8hkKys7PTW2+9pW+//Vb//POPDh06ZAozCfHZZ59p//79qly5siloxCX6KuPXX389XnM1NWvWTOPHj9eDBw+0ePFiU1hL7PuoePHi2rZtm9asWaOzZ8+qYsWKGjlypDJkyKAZM2aoV69eOnLkiBo2bKjChQvLwcFB586dU3h4uDw8PDRx4kTT0FXxMXHiRLm6umrlypWaP3++5s+fr1y5cilz5symz2tYWJgcHR01aNAgdejQwWz/OnXqqGLFijp48KC+/PJLzZ49W56enrp48aLCw8PVt29fUwNUcqlWrZqGDh2qr7/+Wt99951mz56tvHnz6ubNm6Z50j788EOzxpTYVKhQQWPGjNHIkSM1d+5cLV68WIUKFdKjR490+fJlGY1GZcmSRb/88stLg1d8tG3bVufPn9ecOXM0fPhwff/998qRI4euXbume/fuyd7eXqNGjYr1qukWLVpo0qRJevz4sRwdHdW8efNYj5GQz+ezdf3222+6fPmy+vXrp9y5c8vT01M3btxQYGCgHB0dVblyZe3fvz/GUOiJ/d4vVqyYpKdzmzVu3FiFCxfW1KlT5eDgoB9//FHvvfeeLl68qBYtWqhAgQJyc3MzDXXo7Oys0aNHq2LFiqbHGzhwoA4dOqRTp06pXbt2pnMICAgw3dnzzjvvmHWAt2rVSgsXLpS/v7/69u2rfPnyydXVVRcuXJC9vb0++OADzZgx46XP36t4lffEsxL7fZ5YXl5esrOzU2hoqBo3bqxs2bLpl19+idcwhwAAAAlFGwVtFLRRxI02CtooEiu1tVFY6vMJIO3gDnAAcnJy0rRp0/Tdd9+pZs2aCgsL0+nTp+Xi4qJmzZpp/vz5GjFiRIxhe4oVK6Zly5bJx8dHmTJl0sWLFxUZGal3331Xvr6+ypo1q4XO6MVq166t3377TQ0aNJCrq6vOnz+vdOnSqV+/fvrtt99MV78mVpcuXfTtt9+qYMGCpitPGzVqpMWLF8d6FaWHh4cWLFigMWPGqFKlSnr48KHOnj0rT09PtW3bVsuWLVOvXr3M9rG3t9e0adM0bNgwlStXTqGhoTpz5oxCQkJUs2ZNffPNN/rxxx/N5oGSnv4AX7JkiXx8fOTu7q4zZ84oKChIxYsXV//+/bV8+XJlzpw50eceHdxKlCgR76GQ2rZtK0dHR0nJfwXnsWPHTHMrxXeuIhcXF7Vs2VKS9Ndff5nmmkvs++i9995Tu3bt5OHhoUuXLuns2bOmdcWLF9fatWvVp08fFSlSRFevXtWlS5dUsGBBffDBB1q9enW8hxaL5uTkpK+//lpLly7Vu+++qxIlSigsLExnzpzRzZs3VbBgQfXo0UOrV6+O8T6TngaMX375RQMGDFCRIkUUGBiof//9V9WqVdOiRYte+Srk+OratauWLFmi5s2bK126dDp79qwiIiJUp04dzZkzR/369YvX47Rp00arVq3SW2+9paxZs+rcuXO6ceOGChUqpJ49e2r16tWm+eiSwpAhQzRnzhzVr19fRqNRZ86ckb29vRo3bqwlS5aYNQA9K1OmTKbO23r16iVpR6O7u7vpe6VIkSK6e/euzp07J3d3d1Oj4FdffSXp6V3iz961kNjv/ZYtW6pnz57KmjWrrl27ZjanY548ebR8+XJ9+umnKl26tG7fvq0LFy4oZ86c6tKli1atWmX6DEZzc3PTggUL1K9fP5UoUUL37t3TmTNnZDQaVb9+ff30008aNWpUjH2WLFmiHj16KH/+/Lpx44bu3LmjRo0aydfXV1WqVEmy5/hFEvueeF5yf58/K3/+/Bo3bpwKFCige/fu6caNGzHuEAEAAEgqtFHQRkEbRdxoo6CN4lWkpjaK1P75BGD9DEYm8wOAJFGvXj1dv35dY8eOjXcHBpLOmDFjdOXKFc2aNcvSpQBJonXr1jp58qRmzpz50ivHAQAAAOBZtFFYFm0UsDW0UQCwNtwBDgCwelFRUTp48KAKFy5s6VKAJHHy5EmdPHlSOXPmVM2aNS1dDgAAAAAgnmijgK2hjQKANWIOcACA1fviiy8UGBiozp07W7oUINGuXr0qSbpz546GDBki6elwhfb29pYsCwAAAACQALRRwBbQRgHA2tEBDgCwem+//bb69eunTJkyWboUINHWr1+vb7/91vT3okWLqlOnThasCAAAAACQULRRwBbQRgHA2jEEOgDA6nl7exMsYfW8vb2VLVs2ubq6qkGDBpo9e7acnJwsXRYAAAAAIAFoo4AtoI0CgLUzGI1Go6WLAAAAAAAAAAAAAADgVXEHOAAAAAAAAAAAAADAJtABDgAAAAAAAAAAAACwCQ6WLsBaGI1GRUUxWjwAAAAAwJydnUEGg8HSZdgEsjcAAAAAIDYJyd50gMdTVJRRd+8+snQZAAAAAIBUJlMmN9nb0wGeFMjeAAAAAIDYJCR7MwQ6AAAAAAAAAAAAAMAm0AEOAAAAAAAAAAAAALAJdIADAAAAAAAAAAAAAGwCHeAAAAAAAAAAAAAAAJtABzgAAAAAAAAAAAAAwCY4WLoAAAAAAEBMUVFRioyMsHQZaZ69vYPs7Lh2HAAAAABsEdk7dUjq7E0HOAAAAACkIkajUQ8e3FVISLClS8H/c3FxV4YMmWQwGCxdCgAAAAAgCZC9U5+kzN50gAMAAABAKhIdwN3dPeXklI5OVwsyGo0KC3ui4OAgSVLGjJktXBEAAAAAICmQvVOP5MjedIADAAAAQCoRFRVpCuDu7hksXQ4kOTmlkyQFBwcpfXpPhkMHAAAAACtH9k59kjp7k9wBAAAAIJWIjIyU9F/wQ+oQ/XowLxwAAAAAWD+yd+qUlNmbDnAAAAAASGUYei114fUAAAAAANtD1ktdkvL1oAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE1wsHQBAAAAAADLOXv2jH78cbLOnDmlqCijihcvqV69+qhEiZKSpAMH9mrOnJ914cI52ds7qHLlqurdu6+yZ88hSVq/fo2++mq0li5drZw5c5ket21bH5UrV0H/+98oSVLNmhX17ru9tGfPbl29elnvvNNZ3br11PXr1zR9+hQdOnRARqNRJUuWUp8+/fXaa4UkSU+ePNEvv8zQli1+Cgq6q3z58qtLl3dVv37DlH2iAAAAAABIJLJ3yuIOcAAAAABIox49CtagQX2VMaOHxo4dr9Gjv1JoaIgGDfpIwcHB2rRpvQYO/EhZs2bVqFFfqm/fgTp58m998MG7Cgq6m+DjzZv3i15/vZ5GjfpStWq9rjt37ui997rq8mV/DRr0mUaOHKMHDx5owIA+unfvnoxGo4YN+0QrV67QW2910Ndff6uSJUtr5Mhh2rBhbTI8IwAAAAAAJC2yd8rjDnAAAAAASKP8/f11716Q2rZ9S6VLl5Uk5c9fQKtWLVdw8EP9+ONkVaxYWaNHjzPtU7p0WXXq1E6LFi1Unz79EnS84sVLqlOnbqa/T5s2WU+ehOr7739U5sxZJElFinjr/fe76cSJ40qXzkn79u3R6NFfma46r1KlmkJDQzRjxlS98UZjOTgQawEAAAAAqRfZO+VxBzgAAAAApFGvvVZIHh6e+uyzjzVx4jjt3r1TmTNnUZ8+/RUaGqrAwEA1bNjEbJ/cufOoRIlSOnLkYIKPV6hQYbO/Hzt2RCVLljYFcEnKkiWLli9fq5o1a+vgwQMyGAyqVq2mIiIiTP/VqFFHgYF35O9/IXEnDgAAAABACiF7pzzr6q4HAAAAACQZV1dX/fjjLM2b94u2bPHTypXL5ezsrIYNm6hx42aSpEyZMsfYL3PmzDp79myCj+fpmcns7w8e3Debu+x5Dx7cl9FoVMOGtWNdf+fObRUp4pXgOgAAAAAASClk75RHBzgAAAAApGH58hXQiBFjFBkZqdOnT2rjxvVauXKZsmTJKkm6ezcwxj6BgYHy8PCQJBkMBklSVFSU2TYhIY9femx39/S6d+9ejOWHDh1Qjhw55e6eXi4urpoyZUas++fOnfelxwAAAAAAwNLI3imLIdABAAAAII3atm2LmjdvoMDAO7K3t1fJkqU1ePAQubun1927d5U5c2b5+W0w2+f69Ws6ceK4SpcuI0lydXWTJN26ddO0zZUrl3T//v2XHr9MmbI6efK4goLumpbdu3dPgwf3059/7lTZsuUVEvJYRqNR3t7FTf9dvHhBs2fPUmRkZFI8DQAAAAAAJBuyd8rjDvBXZGdnkJ2dIdkePyrKqKgoY7I9PgAAAIC0q1SpsoqMjNLQoYPVqVM3ubm56Y8//PToUbDq1Wug4sVL6KuvRmvkyKFq3Li57t+/p9mzZypDhox6662OkqQKFSrJ2dlZU6d+p/fe66PHjx9rzpyn27xM+/YdtGHDOn388Ufq0uVdOTml04IFc5Q5cxY1btxM7u7pVbZseQ0ZMkjduvVU/vwFdPr0Sf3yy0xVqVLVdCU8Ei88PFwLFiyQr6+vLl26JFdXV5UqVUpdu3ZVrVq1YmxfpUqVWO8ciHb8+HGlS5cuyeskewMAAACwVmTvlGcwGo0kvHiIjIzS3buPzJbZ2Rnk4eEqe/vku5E+MjJK9+49JogDAAAAaUB4eJgCA28oc+accnR0SpFjnj59UrNmTdeZM6cVGhqq114rpM6du6tOnbqSpO3b/9CCBXN18eJ5ubm5qUqVaurV60Nlz57D9Bh79+7RjBlTdfmyv3LkyKnu3Xtp48Z1ypw5s/73v1GSpJo1K6p79/fUo8f7Zse/fPmSfvxxsg4fPiRHR0eVK1deffr0V+7ceSRJISEh+vnn6dq27Q8FBd1VlizZ1KBBQ3Xr1jNZOlpj87LXJVMmt2TNhcnFaDSqb9++2rx5szJkyKDy5cvryZMnOnjwoMLDwzVgwAD17t3btP3169dVr149Zc+eXZUrV471MceNGydHR8dE10T2BgAAAJDcyN62n73pAI+n2EK4g4OdPD3dNG3Rn7oe8PIhBhIqd7aM+vCdGnrwIESRkVEv3yERuModAAAASD0sEcLxcrbaAb5o0SKNGjVKxYoV05w5c+Tp6SlJOnPmjDp27KhHjx5p3bp1KlSokCRpy5Yt+vDDD9W1a1cNGzYsWWqyZPYOCnqkiIjkyd4AAAAAUg+yd+qUlNmbIdCTwPWA+7p0PSjJHzdjemcZo6KUIYNLkj92tKioSAUFhdAJDgAAAABpzKpVqyRJQ4YMMXV+S5K3t7d8fHy0aNEi7dy509QBfvLkSUlSiRIlUr5YJV/2jpacFzFw8TkAAAAApBw6wFMxN2cnGezs5L92lkICbyT547tkzqmCzd+TnZ2BIA4AAAAAacy8efPk7++vIkWKxFj3+PFjSZK9vb1p2enTpyVJJUuWTJkCUwgXnwMAAACAbaED3AqEBN5QyK0rli4DAAAAAGBD0qVLJ29v7xjLt2zZoo0bN8rFxUUNGzY0LT958qScnZ114sQJDR8+XOfOnZPBYFD58uXVp08flSlTJiXLTzJcfA4AAAAAtoUOcAAAAAAA0rj79+9r+PDhOn/+vC5evKicOXNq3LhxypEjhyQpMDBQAQEBkqRPP/1UZcuWVZUqVfTPP/9o+/bt2r17tyZMmKCmTZta8jReCRefAwAAAIBtoAMcAAAAAIA07urVq/Lz8zP93WAw6Pz586pWrZqk/+b/9vT01PTp01WuXDlJktFo1Lx58zRu3DgNHTpU5cuXN3WaJ5aDg/lc3Mk5N3dKspXzAAAAAKxdVJTB0iXgBeztDTFyYULRAQ4AAAAAQBpXsGBB7d+/X0ajUXv27NGXX36psWPHKjg4WL1791atWrW0a9cuGY1GZc+e3bSfwWBQt27ddODAAW3ZskXLli3TRx99lOg67OwM8vR0S4pTSnWSc45xAAAAAPEXGmqvO3fskqSjFUknKsogOzs7ZczoKmdn51d6LDrAAQAAAABI49zc/ut0btq0qXLkyKEOHTpo5syZ6tKli9zc3JQtW7Y4969bt662bNmiEydOvFIdUVFGPXjw2GyZvb2dTXQeP3gQosjIKEuXAQAAAKR5YWFPFBUVpchIoyIi+I2eWkRGGhUVFaX79x8rJCQyxvoMGVziPbIWHeAAAAAAAMBM+fLllS9fPl2+fFmXLl1SiRIlXrh91qxZJUkhISGvfGxbbYCKjIyy2XMDAAAArElkpNHSJeAFkuLCBO7rBwAAAAAgjQkJCdHXX3+twYMHy2iMvfHHyclJkhQREaElS5ZowIAB2rJlS6zbXr16VZJeef5vAAAAAABeVaq9Azw8PFwLFiyQr6+vLl26JFdXV5UqVUpdu3ZVrVq1YmxfpUoV3bt3L87HO378uNKlS5eMFQMAAABA8rGzM8jOzpDix42KMioqiqvjbY2zs7N8fX117949tW/fXpUrVzZbf/XqVfn7+8vJyUlFihTRjh07tGHDBoWEhKhBgwZm2xqNRq1atUqSVLNmzRQ7BwAAAABIamRv25AqO8CNRqMGDhyozZs3K0OGDKpevbqePHmivXv3ateuXRowYIB69+5t2v769eu6d++esmfPHiO0R7Oz42Z3AAAAANbJzs4gDw/XeM91lZQiI6N0797jRAVxP7+NWr58iS5ePC9Jyp+/oJo3b6GWLdskdZlIIIPBoLfeeks//fSTRo0apblz55rm+L5586Y+/vhjRUREqGvXrnJ1dVWrVq00a9Ysbd++Xb///rvat28vSYqKitKUKVN0/PhxFS5cWI0bN7bkaQEAAABAopG9bUeq7ABfvHixNm/erGLFimnOnDny9PSUJJ05c0YdO3bU5MmT1bBhQxUqVEiSdPr0aUlS48aNNWzYMIvVDQAAAADJwc7OIHt7O01b9KeuB9xPsePmzpZRH75TQ3Z2hgSH8LVrV+n77yeoX79BKlu2vCSjDhzYrx9+mKSgoLvq3v295Cka8danTx8dPnxYBw4cUKNGjVShQgWFh4fr+PHjevz4sWrWrKnBgwdLkvLmzatRo0Zp+PDhGjFihBYuXKgCBQrozJkzunz5srJkyaIpU6bI0dHRwmcFAAAAAIlD9rYdqbIDPHrotCFDhpg6vyXJ29tbPj4+WrRokXbu3GnqAD958qQkqUSJEilfLAAAAACkkOsB93XpepCly4gXX99lat68hd58s5VpWb58BXT7doB+/31Rmg3hqYmzs7PmzJmj+fPna9WqVdq3b58cHBxUpEgRtW7dWu3atZO9vb1p+zZt2qhgwYKaNWuWDh8+rIsXLypbtmzq3LmzevfurcyZM1vwbAAAAAAgaZC9rV+qHBd83rx5WrVqlSpVqhRj3ePHjyXJLIRH3wFesmTJlCkQAAAAAPBCdnYG/f33cT148MBseceOXfXTT3MkSW3b+uiXX34yW//RR7305ZejJEmHDx9UzZoV9euv89S0aX29+25H9enTU59/PtRsn+PHj6pmzYq6du2qJOnPP3fp3Xc7qV69GnrrrZaaNWu6wsLCJEmTJ09S+/YtzPYPDg5WvXo1tHv3jiQ7f2vh6OioHj16aPXq1fr777915MgR/f7773r77bfNcne08uXLa/r06dq3b59OnDihrVu3avjw4XR+AwAAAIAFkL1jlyo7wNOlSydvb+8YYXvLli3auHGjXFxc1LBhQ9PykydPytnZWSdOnNA777yjihUrqlKlSnr//fd17NixlC4fAAAAANK8jh276ty5s2rVqok++aS/FiyYq1OnTsjd3V358uVP0GPt2bNbP/00R0OHfq7mzVvozz936vHjR6b1fn4bVKpUGeXJk1d79+7RiBFD9OabLbVgwRINGjREW7du1pgxn0uSmjdvoX//va5jx46a9v/jDz+5ubmpatUaSXLuAAAAAACkBLJ37FJlB/iz7t+/r759+6pJkyb68MMPlSlTJk2fPl05cuSQJAUGBiogIEChoaH69NNPFRUVpSpVqsjDw0Pbt29Xhw4dtH79egufBQAAAACkLa+/Xl8//TRHr79eT6dPn9JPP01Vr17d1KFDGx0/fjRBj/XOO52UN28+FSnipbp1G8jOzl47dmyTJIWHh2vr1i1q2tRHkjR//mw1b/6mWrZsq9y586hy5ar65JNh2rZti27c+FeFChWWl1cxbdq0zvT4GzeuVaNGTeXgkCpnCQMAAAAAIFZk79il+nR/9epV+fn5mf5uMBh0/vx5VatWTdJ/8397enpq+vTpKleunCTJaDRq3rx5GjdunIYOHary5cubOs0Ty8HB/HoBe/tUf/1AvNjKeQAAAADWLirKYOkSklSxYiU0YsQYGY1GXbx4QX/9tVtLly7W4MH9tWSJb7wfJ0+efKY/u7i4qG7d+vLz26AmTZrrr7/+1JMnoapXr4Ek6Z9/zuj06ZPasGGtaR+j0ShJunTJXzlz5lKzZm9q5swfNWDAJwoIuKW//z6uTz4Z9tI67O0NMXIhAAAAAACWZGvZOymk+g7wggULav/+/TIajdqzZ4++/PJLjR07VsHBwerdu7dq1aqlXbt2yWg0Knv27Kb9DAaDunXrpgMHDmjLli1atmyZPvroo0TXYWdnkKenW1KcUqqTIYOLpUsAAAAAICk01F537tjF6Gi19EWrCT1+QMAtzZ8/V126dFe2bNkkSV5eReXlVVR16ryud95pq7//PipJsrMzv9g4MjJSBsPT848+rquri9k2Pj5v6qOPPtD9+3e1efMG1alTTxkzZpD0NHB36tRVTZs2j1FXlixZ5eBgpyZNmmratO+1d++funDhnIoXL6GiRYvGeT5RUQbZ2dkpY0ZXOTs7J+i5AAAAAAAgOQQE3NKvv85Tp07dlDVrNhkMBhUqVFiFChVWzZp11KlTOx09ejjWfSMjI2IsS5cundnfmzb1Uf/+vRUYeEd+futVu3Zdubm5S5Kioozq0KGLmjSJmb0zZ84iSXrjjcaaOvV77dmzSxcunFexYsX12muFX/W04yXVd4C7uf3X6dy0aVPlyJFDHTp00MyZM9WlSxe5ubmZGlRiU7duXW3ZskUnTpx4pTqioox68OCx2TJ7ezub6Dx+8CBEkZFRli4DAAAASPPCwp4oKipKkZFGRUSknt/okZFRCarHzs5RK1cuV9as2dSxY1ezdc7OrpKkjBk95eDgqAcPgk2PHRUVpX//vaY8efIqIiLKlFOeP36pUuWUI0dOrV27Rn/+uVtffz3JtL5gwULy9/dXzpx5TNsfOXJIv/++SIMHD5GjYzq5uLipVq3XtXXrFvn7X1DLlm1feH6RkUZFRUXp/v3HCgmJjLE+QwYXi1+kAAAAAABIW5yc0mnVqhXKli17jOwd3b+aKVNmOTg4Kjg42LTuafa+bnbHd2zKli2vHDlyauPGddqz5099/fUk07rXXiuky5cvKU+evKZlz2ZvFxcXpU+fXrVrv67t27easndKSfUd4M8rX7688uXLp8uXL+vSpUsqUaLEC7fPmjWrJCkkJOSVj52aGqCSUkIbswAAAAAkj8hIo6VLSBIeHh7q2LGrZs78UcHBwapXr4FcXd106ZK/5s79WeXLV1SZMuVUunQZ/fGHn+rUqatMmTJr8eKFZqH8RZo0aa5582YrY8aMqlixsml5x45d9PnnQ/XLLz/pjTca6/btAH399Vhlz57ddBW6JDVr9qaGDPlYRqPUoEGjeB0ztV2YAAAAAABIu2w1eyeFVNcBHhISosmTJ+vOnTuaMGGCDIaYc+A5OTlJkiIiIrRkyRL99ddfat68uRo0aBBj26tXr0rSK8//DQAAAACWljtbRqs53nvv9VaePHm1Zs1K+fouVWhoqLJnz6F69d5Qly7vSpJ69fpQDx8+0ODB/eTs7CIfn5aqX7+had6wF2ncuLlmz56p1q3byc7uv7uv69ZtoNGjpQULZmvhwrlKnz6DatSopd69+5ntX7FiZWXM6KFSpcooffr0iT5PAAAAAIBtIXv/x1qzd6rrAHd2dpavr6/u3bun9u3bq3Llymbrr169Kn9/fzk5OalIkSLasWOHNmzYoJCQkBgd4EajUatWrZIk1axZM8XOAQAAAACSUlSUUZGRUfrwnRopfuzIyChFRSXuzvQmTZrHOh9YtCxZsmjcuElxri9fvqJ27z4Y67ocOXJo5879sa6rV6+B6tWLeYH0s0JDQxUcHKzmzVu8cDsAAAAAQNpA9o7JWrN3qusANxgMeuutt/TTTz9p1KhRmjt3rmmO75s3b+rjjz9WRESEunbtKldXV7Vq1UqzZs3S9u3b9fvvv6t9+/aSno5fP2XKFB0/flyFCxdW48aNLXlaAAAAAJBoUVFG3bv3WHZ2MUfISoljJzaEp0YPHjzQ4cMHtHXrFmXPnt1sCDcAAAAAQNpF9k46ls7eqa4DXJL69Omjw4cP68CBA2rUqJEqVKig8PBwHT9+XI8fP1bNmjU1ePBgSVLevHk1atQoDR8+XCNGjNDChQtVoEABnTlzRpcvX1aWLFk0ZcoUOTo6WvisAAAAACDxbC0MW0pkZIS+/nqMPDw89cUX42KddgsAAAAAkDaRvZOGpbN3quwAd3Z21pw5czR//nytWrVK+/btk4ODg4oUKaLWrVurXbt2sre3N23fpk0bFSxYULNmzdLhw4d18eJFZcuWTZ07d1bv3r2VOXNmC54NAAAAACC18PTMpI0bt1u6DAAAAAAAbJals3eq7ACXJEdHR/Xo0UM9evSI1/bly5fX9OnTk7kqAAAAAAAAAAAAAEBqZWfpAgAAAAAAAAAAAAAASAp0gAMAAAAAAAAAAAAAbAId4AAAAAAAAAAAAAAAm0AHOAAAAAAAAAAAAADAJtABDgAAAAAAAAAAAACwCXSAAwAAAIAVsLMzyMHBLsX/s7MzJKretm19VLNmRS1evDDW9RMmfKWaNSvql19+SvRz0ratT4L2T+j2AAAAAIC0hewd+zGsLXs7WPToAAAAAICXsrMzyNPTRXZ29il+7KioSAUFhSgqypjgfR0cHLRt2x96++1OZssjIiK0Y8dWGQyJC/gAAAAAACQ1srftoAMcAAAAAFI5OzuD7Ozs5b92lkICb6TYcV0y51TB5u/Jzs6QqBBesWJl7dv3l27duqns2XOYlh8+fFDOzi5Kl845KcsFAAAAACDRyN62gw5wAAAAALASIYE3FHLriqXLiLdixUro8uVL2rZti9mV6H/84ad69d7Q1q2bTctOnDiumTN/1Nmzp+Xg4KCaNevoww8HKEOGDJKk4OBgff/9BO3evUMODo7q0qV7jOP9/fcxzZgxVadPn5KHh4dq1KitDz74UG5u7sl/sgAAAAAAm0D2tv7szRzgAAAAAIBkU7duA23b9ofp7+Hh4dq5c7saNGhoWnbq1An17fu+ChQoqBkz5mjMmPE6deqEPv74I0VFRUmSPv98iE6fPqnx47/Td99N1Z9/7tLNm/9dkX/+/Dn1799HlSpV0bx5izRy5Jc6e/a0Bg78SEZjwq+gBwAAAADAWpC9zdEBDgAAAABINvXqvaFTp07o1q2bkqT9+/fKw8NDRYt6m7ZZvPhXFSpURB9//JkKFnxN5ctX1KhRX+nMmVPat+8vXblySfv379XAgZ+qTJlyKlLESyNHjpWTk5PpMRYtmq+KFSupW7eeyps3n8qUKatRo77UqVMndOTIoRQ/bwAAAAAAUgrZ2xxDoAMAAAAAko23dzHlypXbNBTb1q1+atCgkdk2Fy+eV6VKVc2WFSpUWO7u6XXhwjmFhoZIkooVK25anylTZuXKldv097Nnz+ratSt6441aMWq4fPmSypevmJSnBQAAAABAqkH2NkcHOAAAAAAgWdWr94a2bftDrVq1065dOzVr1jyz9UajUQZDzP2Mxig5OPwXW6OizIdTs7d3MNu2YcMm6tLl3RiP4+Hh+YpnAAAAAABA6kb2/g9DoAMAAAAAklW9eg106tQJrV27Srly5Vb+/AXM1r/2WmEdO3bUbNm5c//o0aNHKlDgNdOQbX//fcy0/uHDh7p+/arp7wULFpK//wXlyZPX9F9UVKR++OFbBQTcTLZzAwAAAAAgNSB7/4cOcAAAAABAsipSxEt58uTVzJnTVL9+wxjr33qrg86f/0fffjtely7568iRQ/rii+EqWtRLFStWVu7ceVS3bgN99903OnBgny5ePK8xYz5XeHi46THefruT/vnnrCZM+Er+/hd18uQJjRo1XFeuXFaePPlS8nQBAAAAAEhxZO//MAQ6AAAAAFgJl8w5rfZ49eq9oXnzflGDBjFDeMmSpTVx4mTNmjVD777bUa6ubqpV63X17v2RaRi24cNHadq0yRo5cpiioqLUokVr3bsX9MxjlNK3307Vzz9PV48eneXi4qzy5Svpww8HyMnJKcnOAwAAAABg28je1p+9DUaj0fjyzRAZGaW7dx+ZLXNwsJOnp5uGTV6vS9eD4tgz8aqXza+POtTUqXlfKOTWlSR/fJfs+VS86+cKCnqkiIioJH98AAAAAAkTHh6mwMAbypw5pxwd/wuOdnYGeXq6yM7OPsVrioqKVFBQSIw5wNKSuF6XaJkyucnengHWkgLZGwAAAEByI3unTkmZvbkDHAAAAABSuagoo4KCQmRnZ7DIsdNyAAcAAAAApA1kb9tBBzgAAAAAWAHCMAAAAAAAyYvsbRsYow0AAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAABIZYxG5htLTXg9AAAAAMD2kPVSl6R8PegABwAAAIBUwt7eXpIUFvbEwpXgWdGvh729g4UrAQAAAAC8KrJ36pSU2Zv0DgAAAACphJ2dvVxc3BUcHCRJcnJKJ4PBYOGq0i6j0aiwsCcKDg6Si4u77Oy4hhwAAAAArB3ZO3VJjuxNBzgAAAAApCIZMmSSJFMQh+W5uLibXhcAAAAAgPUje6c+SZm96QAHAAAAgFTEYDAoY8bMSp/eU5GREZYuJ82zt3fgzm8AAAAAsDFk79QlqbM3HeAAAAAAkArZ2dnJzs7J0mUAAAAAAGCzyN62icvYAQAAAAAAAAAAAAA2gQ5wAAAAAAAAAAAAAIBNoAMcAAAAAAAAAAAAAGAT6AAHAAAAAAAAAAAAANgEOsABAAAAAAAAAAAAADaBDnAAAAAAAAAAAAAAgE2gAxwAAAAAAAAAAAAAYBPoAAcAAAAAAAAAAAAA2AQ6wAEAAAAAAAAAAAAANoEOcAAAAAAAAAAAAACATaADHAAAAAAAAAAAAABgE+gABwAAAAAAAAAAAADYBDrAAQAAAAAAAAAAAAA2wcHSBQAAAAAAAMsIDw/XggUL5Ovrq0uXLsnV1VWlSpVS165dVatWrRjb37lzRz/++KN27dqlW7duKWvWrGrcuLH69OkjNzc3C5wBAAAAAADmuAMcAAAAAIA0yGg0auDAgRo/frxu3ryp6tWrq1ixYtq7d6969uyp6dOnm20fEBCg9u3b69dff5Wzs7Nef/11RUVF6eeff9Y777yj4OBgC50JAAAAAAD/oQMcAAAAAIA0aPHixdq8ebOKFSsmPz8//fTTT5o7d66WLVsmd3d3TZ48WRcuXDBtP3bsWF2/fl29evXSmjVr9MMPP2jTpk1q0qSJzp49q6lTp1rwbAAAAAAAeIoOcAAAAAAA0qBVq1ZJkoYMGSJPT0/Tcm9vb/n4+MhoNGrnzp2SpCtXrmjz5s3KmTOn+vXrZ9rWyclJY8aMkZubm5YsWaLQ0NCUPQkAAAAAAJ5DBzgAAAAAAGnQvHnztGrVKlWqVCnGusePH0uS7O3tJUk7d+5UVFSU6tSpI0dHR7Nt06dPr6pVq+rx48fat29f8hcOAAAAAMAL0AEOAAAAAEAalC5dOnl7e5s6uaNt2bJFGzdulIuLixo2bChJ+ueffyRJRYsWjfWxChcubLYdAAAAAACW4mDpAgAAAAAAgGXdv39fw4cP1/nz53Xx4kXlzJlT48aNU44cOSRJt2/fliRlzZo11v2jl9+5cydlCgYAAAAAIA50gAMAAAAAkMZdvXpVfn5+pr8bDAadP39e1apVk/TfkOjOzs6x7h+9PHq7V+HgYD5Ynb29bQxeZyvnAQAAAACpHR3gAAAAAACkcQULFtT+/ftlNBq1Z88effnllxo7dqyCg4PVu3dv0zDpBoMh1v2NRqPZ/xPLzs4gT0+3V3qM1CpDBhdLlwAAAAAAaQId4AAAAAAApHFubv91Ojdt2lQ5cuRQhw4dNHPmTHXp0kWurq6SpCdPnsS6f/RyF5dX6+SNijLqwQPzu8jt7e1sovP4wYMQRUZGWboMAAAAALBKGTK4xHtkLTrAAQAAAACAmfLlyytfvny6fPmyLl26pGzZskn6by7w571sjvCEiIiwzU7iyMgomz03AAAAAEhNUm0HeHh4uBYsWCBfX19dunRJrq6uKlWqlLp27apatWrF2P7OnTv68ccftWvXLt26dUtZs2ZV48aN1adPH7Mr2QEAAAAASOtCQkI0efJk3blzRxMmTIh1aHMnJydJUkREhIoWLSpJunDhQqyPd+7cOUmSl5dXMlUMAAAAAED8xO8+8RRmNBo1cOBAjR8/Xjdv3lT16tVVrFgx7d27Vz179tT06dPNtg8ICFD79u3166+/ytnZWa+//rqioqL0888/65133lFwcLCFzgQAAAAAgNTH2dlZvr6+WrNmjQ4cOBBj/dWrV+Xv7y8nJycVKVLEdCH6tm3bFBkZabbtw4cPtW/fPrm6uqpChQopUj8AAAAAAHFJlR3gixcv1ubNm1WsWDH5+fnpp59+0ty5c7Vs2TK5u7tr8uTJZledjx07VtevX1evXr20Zs0a/fDDD9q0aZOaNGmis2fPaurUqRY8GwAAAAAAUheDwaC33npLkjRq1CgFBASY1t28eVMff/yxIiIi9M4778jV1VW5c+dW3bp1de3aNU2YMEFGo1GSFBYWps8//1yPHj3S22+/LXd3d4ucDwAAAAAA0VLlEOirVq2SJA0ZMkSenp6m5d7e3vLx8dGiRYu0c+dOFSpUSFeuXNHmzZuVM2dO9evXz7Stk5OTxowZo507d2rJkiUaMGCAnJ2dU/xcAAAAAABIjfr06aPDhw/rwIEDatSokSpUqKDw8HAdP35cjx8/Vs2aNTV48GDT9iNGjNDJkyc1Z84c7dixQ0WKFNHff/+tf//9VyVKlNBHH31kwbMBAAAAAOCpVHkH+Lx587Rq1SpVqlQpxrrHjx9Lkuzt7SVJO3fuVFRUlOrUqSNHR0ezbdOnT6+qVavq8ePH2rdvX/IXDgAAAACAlXB2dtacOXP06aefKm/evNq3b5+OHz+uIkWKaPTo0Zo5c6ZpHnBJyp07t5YtW6Z27drp4cOH2rZtm5ycnPTBBx9o/vz5cnNzs+DZAAAAAADwVKq8AzxdunTy9vaOsXzLli3auHGjXFxc1LBhQ0nSP//8I0kqWrRorI9VuHBh/fHHH/rnn39Up06d5CsaAAAAAAAr4+joqB49eqhHjx7x2j579uwaO3ZsMlcFAAAAAEDipcoO8Gfdv39fw4cP1/nz53Xx4kXlzJlT48aNU44cOSRJt2/fliRlzZo11v2jl9+5cydlCgYAAAAAAAAAAAAAWESq7wC/evWq/Pz8TH83GAw6f/68qlWrJum/IdHjmt87enn0dq/CwcF8xHh7+1Q5gnyC2cp5AAAAAAAAAAAAAEjbUn0HeMGCBbV//34ZjUbt2bNHX375pcaOHavg4GD17t3bNBe4wWCIdX+j0Wj2/8SyszPI09M25zPLkMHF0iUAAAAAAAAAAAAAwCtL9R3gbm7/dTo3bdpUOXLkUIcOHTRz5kx16dJFrq6ukqQnT57Eun/0cheXV+vkjYoy6sED87vI7e3tbKLz+MGDEEVGRlm6DAAAAACwShkyuDCyFgAAAAAAqUSq7wB/Xvny5ZUvXz5dvnxZly5dUrZs2ST9Nxf48142R3hCRETYZidxZGSUzZ4bAAAAAAAAAAAAgLQj1V2iHhISoq+//lqDBw+Oc9hyJycnSVJERISKFi0qSbpw4UKs2547d06S5OXllQzVAgAAAAAAAAAAAABSi1TXAe7s7Cxf3/9j787j7Jrv/4G/7kz2ENkRW2pv7bFEi6K01FZqp1TtFMXXFrVWRC2lVUorqMS+JLGUSkKCotYQW9BoidDEkkRkkWXm94df0k6TMMksd+be5/Px8CjnfO6570/vnZn7uu9zPmdw7r///jz33HML7B83blz++c9/plWrVlljjTWy1VZbJUlGjBiRuXPn1hg7derUPPPMM2nXrl023njjRqkfAAAAAAAAgOJocg3wQqGQfffdN0ly3nnnZeLEifP3/fvf/87JJ5+cOXPmZP/990+7du2ywgorZNttt83777+fSy+9dP5V47Nmzco555yTadOmZb/99stSSy1VlPkAAAAAAAAA0Dia5D3Ajz322Lz44ot57rnnssMOO2TjjTfO7NmzM3r06EyfPj1bbrllTjnllPnjzz777Lz22mu58cYb89hjj2WNNdbIK6+8kg8++CDrrLNOjjvuuCLOBgAAAAAAAIDG0OSuAE++XAb9xhtvzGmnnZaVVlopzzzzTEaPHp011lgj559/fv70pz/Nvw94kqywwgq5++67s/fee2fq1KkZMWJEWrVqlaOPPjoDBgxI+/btizgbAAAAAAAAABpDk7wCPElatmyZww47LIcddlitxi+77LLp27dvA1cFAAAAAAAAQFPVJK8ABwAAAAAAAIDFpQEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloUewCAAAAAPiPiopCKioKDXb8qqrqVFVVN9jxAQAAikkDHAAAAKCJqKgopGPHdqmsbLhF++bOrcrkydM1wQEAgJKkAQ4AAADQRFRUFFJZWZGrb3sy4ydOqffjr9B9mfx8/y1SUVHQAAcAAEqSBjgAAABAEzN+4pT8a/ykYpcBAADQ7DTceloAAAAAAAAA0Ig0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJLQotgF0LxUVBRSUVFosONXVVWnqqq6wY4PAAAAAAAAlC4NcGqtoqKQjh3bpbKy4RYOmDu3KpMnT9cEBwAAAAAAABabBji1VlFRSGVlRa6+7cmMnzil3o+/Qvdl8vP9t0hFRUEDHAAAAAAAAFhsGuAstvETp+Rf4ycVuwwAAAAAAACAGhpuLWsAAAAAAAAAaEQa4AAAAAAAAACUBEugAwAAQJmqqqrKXXfdlUGDBuXtt9/O7Nmz06NHj2y//fY56qij0qFDhxrje/funcmTJy/yeKNHj07r1q0buGoAAABYNA1wAAAAKENVVVU54YQTMmzYsLRp0ybrr79+2rVrl9GjR6d///4ZNmxYbr311nTt2jVJMn78+EyePDnLLrtsNttss4Ues6LCQnMAAAAUlwY4AAAAlKF77rknw4YNS8+ePdO/f/+stNJKSZLPP/88p5xySkaMGJG+ffvmt7/9bZLkjTfeSJLsuOOOOfPMM4tVNgAAAHwlp2YDAABAGbrnnnuSJGecccb85neSLLXUUunXr18KhUKGDx+emTNnJklee+21JMk666zT+MUCAABALWmAAwAAQBnq2LFjVl111Wy44YYL7OvcuXOWWWaZzJ49O5MmTUrynyvA11133cYsEwAAABaLJdABAACgDF177bWL3Ddu3LhMnjw5LVu2TOfOnZN8eQV4mzZt8uqrr+ass87K22+/nUKhkF69euXYY4/NBhts0FilAwAAwCK5AhwAAACoYd59v7fZZpu0bt06n3zySSZOnJiZM2fmtNNOS1VVVXr37p2OHTtm5MiROeCAA/Lggw8Wt2gAAACIK8ABAACA/zJw4MA88MADadu2bU466aQk/7n/d6dOnXLNNddko402SpJUV1fnpptuykUXXZQ+ffqkV69eWW655er0/C1a1DxXv7KyNM7dr+08Gmu+pfL/KwAAwP/SAAcAAACSJAMGDEi/fv1SKBRy4YUXZrXVVkuSbLXVVnniiSdSXV2dZZdddv74QqGQQw45JM8991yGDx+eu+++O8cdd9wSP39FRSGdOrWv8zyaog4d2ha7hBqaWj0AAAD1RQMcAAAAylx1dXUuu+yy9O/fP5WVlbnwwguz8847z99fKBTSvXv3RT5+2223zfDhw/Pqq6/WqY6qqup89tn0GtsqKytKoln72WczMndu1deOa6z51rYeAACApqBDh7a1XsmqyTbAq6qqctddd2XQoEF5++23M3v27PTo0SPbb799jjrqqHTo0KHG+N69e2fy5MmLPN7o0aPTunXrBq4aAAAAmpeZM2fm1FNPzdChQ9OmTZv85je/yfbbb79Yx+jWrVuSZMaMGXWuZ86c0mzKzp1b1aTm1tTqAQAAqC9NsgFeVVWVE044IcOGDUubNm2y/vrrp127dhk9enT69++fYcOG5dZbb03Xrl2TJOPHj8/kyZOz7LLLZrPNNlvoMSsq3NsKAAAA/tvnn3+eww8/PKNGjUqXLl1yzTXXZIMNNlhg3B133JGnn346u+yyy0Kb4+PGjUuSOt//GwAAAOqqSTbA77nnngwbNiw9e/ZM//79s9JKKyX5MpifcsopGTFiRPr27Zvf/va3SZI33ngjSbLjjjvmzDPPLFbZAAAA0GzMnj07Rx55ZEaNGpVVVlkl119//fz8/b8mTJiQhx56KDNmzFigAV5dXZ177703SbLllls2eN0AAADwVZrkZdH33HNPkuSMM86oEb6XWmqp9OvXL4VCIcOHD8/MmTOTJK+99lqSZJ111mn8YgEAAKAZuuqqq/LCCy+kW7duGThw4CKb30myxx57pFWrVhk5cmTuvPPO+durqqpy5ZVXZvTo0Vl99dWz4447NkbpAAAAsEhN8grwjh07ZtVVV82GG264wL7OnTtnmWWWyeTJkzNp0qQsv/zy868AX3fddRu5UgAAAGh+pkyZkptuuilJ0qVLl1x66aWLHDvv5PTzzjsvZ511Vs4+++zcfPPN6dmzZ8aMGZN33303Xbt2ze9///u0bNmysaYAAAAAC9UkG+DXXnvtIveNGzcukydPTsuWLdO5c+ckX14B3qZNm7z66qs566yz8vbbb6dQKKRXr1459thjF3r/MgAAAChXL7/8cmbMmJEkGTNmTMaMGbPIsccff3y6du2aPffcM9/4xjdy3XXX5cUXX8w777yT7t2756CDDsoxxxyTLl26NFb5AAAAsEhNsgH+Vebd93ubbbZJ69at88knn2TixIlJktNOOy0bbrhhevfunbfeeisjR47M3/72t1x66aXZaaedilg1AAAANB3f/e538+abby7243r16pVrrrmmASoCAACA+tGsGuADBw7MAw88kLZt2+akk05K8p/7f3fq1CnXXHNNNtpooyRJdXV1brrpplx00UXp06dPevXqleWWW65Oz9+iRc1bpldWNslbqC+22s6jseZbKv+/AgAAAAAAAI2r2TTABwwYkH79+qVQKOTCCy/MaqutliTZaqut8sQTT6S6ujrLLrvs/PGFQiGHHHJInnvuuQwfPjx33313jjvuuCV+/oqKQjp1al/neTRFHTq0LXYJNTS1egAAAAAAAIDmock3wKurq3PZZZelf//+qayszIUXXpidd955/v5CoZDu3bsv8vHbbrtthg8fnldffbVOdVRVVeezz6bX2FZZWVESzdrPPpuRuXOrvnZcQ893maXbpLqqKoWKhr0CvKpqbj777ItUV1c36PMAAADloUOHtlayotlp6PdsVVV1qqrkbgAAoPE16Qb4zJkzc+qpp2bo0KFp06ZNfvOb32T77bdfrGN069YtSTJjxow61zNnztc3iZujuXOrmsTc2rdplUJFRf75wHWZ8cmHDfIcbbssn2/sckSqq6ubxJwBAACgMc07+byhT+ivqpqbSZNmaIIDAACNrsk2wD///PMcfvjhGTVqVLp06ZJrrrkmG2ywwQLj7rjjjjz99NPZZZddFtocHzduXJLU+f7fNJ4Zn3yYGRPeK3YZAAAAUHIa8+TzioqCBjgAANDommQDfPbs2TnyyCMzatSorLLKKrn++uuz0korLXTshAkT8tBDD2XGjBkLNMCrq6tz7733Jkm23HLLBq8bAAAAoDlw8jkAAFCqmuRNyq666qq88MIL6datWwYOHLjI5neS7LHHHmnVqlVGjhyZO++8c/72qqqqXHnllRk9enRWX3317Ljjjo1ROgAAAAAAAABF0uSuAJ8yZUpuuummJEmXLl1y6aWXLnLsGWeckZVWWinnnXdezjrrrJx99tm5+eab07Nnz4wZMybvvvtuunbtmt///vdp2bJlY00BAAAAAAAAgCJocg3wl19+OTNmzEiSjBkzJmPGjFnk2OOPPz5du3bNnnvumW984xu57rrr8uKLL+add95J9+7dc9BBB+WYY45Jly5dGqt8AAAAAAAAAIqkyTXAv/vd7+bNN99c7Mf16tUr11xzTQNUBAAAAAAAAEBz0CTvAQ4AAAAAAAAAi0sDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASWhS7AAAAAABoSBUVhVRUFBrs+FVV1amqqm6w4wMAALWnAQ4AAABAyaqoKKRTp7apqKhssOeoqpqbSZNmaIIDAEAToAEOAAAAQMn68urvyvzzgesy45MP6/34bbssn2/sckQqKgoa4AAA0ARogAMAAABQ8mZ88mFmTHiv2GUAAAANrKLYBQAAAAAAAABAfdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAktCh2AVDuKioKqagoNNjxq6qqU1VV3WDHBwAAAAAAgKZCAxyKqKKikE6d2qaiorLBnqOqam4mTZqhCQ4AAAAAAEDJ0wCHIvry6u/K/POB6zLjkw/r/fhtuyyfb+xyRCoqChrgAAAAAAAAlDwNcGgCZnzyYWZMeK/YZQAAAAAAAECzVlHsAgAAAAAAAACgPmiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEpCnRrgQ4YMyQsvvPC14x555JFceeWVdXkqAAAAKEuyNwAAANRenRrgZ5xxRu68886vHXfvvffmxhtvrMtTAQAAQFmSvQEAAKD2WizO4CFDhmTOnDk1tr377ru5++67F/mYzz//PE8//XRatmy5ZBUCAABAGZG9KUcVFYVUVBQa5NiVle4ACAAA5WSxGuCvvfZaBg4cmELhy0BSKBTy8ssv5+WXX/7Kx1VXV2ePPfZY8iqhiIRwAACgMcnelJuKikI6dmwnIwMAAPVisRrgJ5xwQj7//PP5/z148OCsvPLK2XjjjRf5mNatW6dnz57Zf//9l7xKKBIhHAAAaGyyN+WmoqKQysqKXH3bkxk/cUq9H3+DtXpk3x03rPfjAgAATdNiNcCXXnrpXHTRRfP/e/Dgwdlwww1rbINSIoQDAACNTfamXI2fOCX/Gj+p3o/bo1uHej8mAADQdC1WA/x/jRkzpr7qgCZNCAcAAIpF9gYAAIDaq1MD/L998sknmTFjRqqrqxc5ZqWVVqqvpwMAAICyI3sDAADAV6tzA/zPf/5zrrvuunz66adfOa5QKOT111+v69MBAABA2Wmo7F1VVZW77rorgwYNyttvv53Zs2enR48e2X777XPUUUelQ4eaq1Z9/PHH+cMf/pAnnngiEyZMSLdu3bLjjjvm2GOPTfv27ZdobgAAAFCf6tQAHzRoUH79618nSVq1apVOnTqlsrKyXgoDAAAAGi57V1VV5YQTTsiwYcPSpk2brL/++mnXrl1Gjx6d/v37Z9iwYbn11lvTtWvXJMnEiROz3377Zfz48VlzzTWzzTbb5JVXXkn//v3zxBNP5NZbb81SSy1V57oAAACgLurUAL/55ptTKBRy1llnZZ999knLli3rqy4AAAAgDZe977nnngwbNiw9e/ZM//795y+d/vnnn+eUU07JiBEj0rdv3/z2t79NkvTt2zfjx4/PkUcemf/7v/9LksyaNSunnXZaHnrooVx11VU544wz6qU2AAAAWFIVdXnw2LFjs+GGG+bAAw/U/AYAAIAG0FDZ+5577kmSnHHGGTXuG77UUkulX79+KRQKGT58eGbOnJn33nsvw4YNy/LLL58TTjhh/thWrVrlggsuSPv27XPHHXdk5syZ9VYfAAAALIk6NcDbtm2bTp061VctAAAAwP9oqOzdsWPHrLrqqtlwww0X2Ne5c+css8wymT17diZNmpTHH388VVVV2XrrrRdowi+99NLZfPPNM3369DzzzDP1XicAAAAsjjo1wDfbbLOMHj06M2bMqK96AAAAgP/SUNn72muvzUMPPbTQ5vq4ceMyefLktGzZMp07d85bb72VJFlzzTUXeqzVV189SeaPAwAAgGKpUwP8pJNOyowZM3LmmWdmypQp9VUTAAAA8P8VI3vPu+/3Nttsk9atW+ejjz5KknTr1m2h4+dt//jjjxulPgAAAFiUFnV58O233571118/f/3rXzNs2LD07NkzHTp0SKFQWGBsoVDIzTffXOtjV1VV5a677sqgQYPy9ttvZ/bs2enRo0e23377HHXUUenQoUON8R9//HH+8Ic/5IknnsiECRPSrVu37Ljjjjn22GPTvn37ukwTAAAAiqYhs/fCDBw4MA888EDatm2bk046KUkyffr0JEmbNm0W+ph52+eNq4sWLWqeq19ZWadz95uM2s6jVOablN+cS2UeAADQ3NWpAX7TTTfN//c5c+bkH//4xyLHLiyYL0pVVVVOOOGEDBs2LG3atMn666+fdu3aZfTo0enfv3+GDRuWW2+9NV27dk2STJw4Mfvtt1/Gjx+fNddcM9tss01eeeWV9O/fP0888URuvfXWLLXUUks+UQAAACiShsreCzNgwID069cvhUIhF154YVZbbbUkSWVl5Vcev7q6usb/LqmKikI6dSrNk9g7dGhb7BIaXbnNudzmCwAATVWdGuADBgyorzpquOeee+af1d6/f/+stNJKSZLPP/88p5xySkaMGJG+ffvOX5Ktb9++GT9+fI488sj83//9X5Jk1qxZOe200/LQQw/lqquuyhlnnNEgtQIAAEBDaqjs/d+qq6tz2WWXpX///qmsrMyFF16YnXfeef7+du3aJUm++OKLhT5+3va2bevWAKyqqs5nn9W8iryysqIkGouffTYjc+dWfe24UplvUn5zru18AQCAxdehQ9tar7pUpwb4ZpttVpeHL9I999yTJDnjjDPmN7+TZKmllkq/fv3yne98J8OHD8/MmTMzceLEDBs2LMsvv3xOOOGE+WNbtWqVCy64II8//njuuOOOnHjiiYtcqg0AAACaqobK3vPMnDkzp556aoYOHZo2bdrkN7/5TbbffvsaY7p3754k8+8F/r++7h7hi2POnNJsIM6dW1Wyc1uUcptzuc0XAACaqnq7OdHs2bMzevToPPzww3nhhReSJB988MESHatjx45ZddVVs+GGGy6wr3PnzllmmWUye/bsTJo0KY8//niqqqqy9dZbp2XLljXGLr300tl8880zffr0PPPMM0tUCwAAADQV9Zm9ky9XWjvkkEMydOjQdOnSJQMGDFig+Z0ka665ZpJk7NixCz3O22+/nSRZa621lrgWAAAAqA91boDPmTMnv/vd77LFFltk3333zYknnpg77rgjSXL66afnxz/+cd59993FOua1116bhx56KJ06dVpg37hx4zJ58uS0bNkynTt3zltvvZXkP2H8f62++upJMn8cAAAANDcNkb1nz56dI488MqNGjcoqq6ySO+64IxtssMFCx2611VZJkhEjRmTu3Lk19k2dOjXPPPNM2rVrl4033ngJZgcAAAD1p04N8Dlz5uSoo47KtddemxkzZmTddddNdXX1/P3Tpk3L66+/ngMPPDAff/xxnYtNMv++39tss01at279tcuszdteX88PAAAAjamhsvdVV12VF154Id26dcvAgQNr3ILsf62wwgrZdttt8/777+fSSy+d//yzZs3KOeeck2nTpmW//fbLUkstteQTBQAAgHpQp3uA33LLLXnyySez5ZZbpl+/funevXvWXnvt+ftvvfXWnHfeeRkyZEiuv/76nH766XUqduDAgXnggQfStm3bnHTSSUmS6dOnJ8ki7+89b/u8cXXRokXN8wVqe6P1pq628yiV+SblN+dSmQcAAJSjhsjeU6ZMyU033ZQk6dKlSy699NJFjj3jjDPStWvXnH322Xnttddy44035rHHHssaa6yRV155JR988EHWWWedHHfccXWfLAAAANRRnRrggwcPTseOHfO73/0u7du3X2B/mzZtcsEFF+Spp57K448/XqcG+IABA9KvX78UCoVceOGFWW211ZIklZWVSZJCobDQx807K/2/z45fEhUVhXTqtOAcS0GHDm2LXUKjK7c5l9t8AQCglDRE9n755ZczY8aMJMmYMWMyZsyYRY49/vjj07Vr16ywwgq5++678/vf/z4jR47MiBEj0qNHjxx99NE54ogjFlobAAAANLY6NcD/9a9/Zcstt/zKkNuyZcusv/76efLJJ5foOaqrq3PZZZelf//+qayszIUXXpidd955/v527dolSb744ouFPn7e9rZt69YArKqqzmef1byKvLKyoiQai599NiNz51Z97bhSmW9SfnOu7XwBAIDF16FD2wZddakhsvd3v/vdvPnmm4tdy7LLLpu+ffsu9uMAAACgsdSpAd6iRYt89tlnXztu8uTJadFi8Z9q5syZOfXUUzN06NC0adMmv/nNb7L99tvXGNO9e/ckmX8v8P/1dfcIXxxz5pRmA3Hu3KqSnduilNucy22+AABQSho6ewMAAEApqdMp6t/85jfzyiuvZPz48YscM27cuLzyyis17k9WG59//nkOOeSQDB06NF26dMmAAQMWaH4nyZprrpkkGTt27EKP8/bbbydJ1lprrcV6fgAAAGgKGjJ7AwAAQKmpUwN8//33z4wZM3Lsscfm9ddfX2D/m2++meOPPz6zZs3KXnvtVevjzp49O0ceeWRGjRqVVVZZJXfccUc22GCDhY7daqutkiQjRozI3Llza+ybOnVqnnnmmbRr1y4bb7zxYswMAAAAmoaGyt4AAABQiuq0NtpOO+2Up556KnfffXf23HPPLL300ikUCnniiSeyzTbbZMKECamurs7OO++cH/3oR7U+7lVXXZUXXngh3bp1y8CBA7PssssucuwKK6yQbbfdNiNGjMill16a008/PYVCIbNmzco555yTadOm5dBDD81SSy1Vl6kCAABAUTRU9gYAAIBSVOebg/Xt2zcbbrhhrr/++vzzn/9MkkyaNClJ0qNHj/z0pz/NwQcfXOvjTZkyJTfddFOSpEuXLrn00ksXOfaMM85I165dc/bZZ+e1117LjTfemMceeyxrrLFGXnnllXzwwQdZZ511ctxxx9VhhgAAAFBc9Z29AQAAoFTVuQGeJHvttVf22muvfPTRR/nwww9TVVWVbt26ZYUVVljsY7388suZMWNGkmTMmDEZM2bMIscef/zx6dq1a1ZYYYXcfffd+f3vf5+RI0dmxIgR6dGjR44++ugcccQRad++/RLPDQAAAJqC+szeAAAAUKrqpQE+adKkvP3229lss83SrVu3JMk//vGP3HLLLfnBD34wf1ttfPe7382bb7652DUsu+yy6du372I/DgAAAJqD+szeAAAAUKoq6nqAO++8M9/97nfz61//usb2l19+ORdccEF22GGHPPjgg3V9GgAAAChbsjcAAADUTp0a4E8++WTOOeectGjRIptvvnmNfRtvvHEOO+ywVFdX55RTTsnf//73OhUKAAAA5Uj2BgAAgNqrUwO8f//+adGiRQYMGJDTTjutxr6ePXvm1FNPzYABA1IoFHLdddfVqVAAAAAoR7I3AAAA1F6dGuBvvfVWevfunfXWW2+RY9Zbb71svPHGeemll+ryVAAAAFCWZG8AAACovTo1wGfMmJG2bdt+7biOHTtmzpw5dXkqAAAAKEuyNwAAANRenRrgPXv2zHPPPZfPP/98kWO++OKLvPDCC1l55ZXr8lQAAABQlmRvAAAAqL06NcB32223TJkyJSeccEI+/vjjBfZPmjQpJ598cj799NPsuuuudXkqAAAAKEuyNwAAANRei7o8+MADD8yDDz6Yp556Kttss03WXXfdLL/88kmSf//733nttdcya9asrL/++jnkkEPqo14AAAAoK7I3AAAA1F6dGuAtW7bMjTfemCuuuCKDBg3KSy+9lJdeemn+/tatW2f//ffPqaeemlatWtW1VgAAACg7sjcAAADUXp0a4EnSvn37nHXWWTnttNPy6quv5qOPPsrcuXPTrVu3rLPOOmnXrl191AkAAABlS/YGAACA2qlTA/zggw9Oz54986tf/SqtWrVKr1696qsuAAAAILI3AAAALI46NcBHjx6dioqK+qoFAAAA+B+yNwAAANRenRJ0+/btU11dXV+1AAAAAP9D9gYAAIDaq1MD/Jhjjsmzzz6bG264IbNmzaqvmgAAAID/T/YGAACA2qvTEujjxo3LKquskksvvTSXX355VllllXTo0GGhS7MVCoXcfPPNdXk6AAAAKDuyNwAAANRenRrgN9100/x/nzNnTsaOHbvIsYVCoS5PBQAAAGVJ9gYAAIDaq1MDfMCAAfVVBwAAALAQsjcAAADUXp0a4Jtttll91QEAAAAshOwNAAAAtVenBvh/mz17dt544418+OGH6dq1azbeeON88MEH6dGjR309BQAAAJQ12RsAAAC+Wp0b4HPmzMnVV1+dW265JVOnTk2S7Lrrrtl4441z+umnZ9q0abniiiuyyiqr1LlYAAAAKEeyNwAAANRORV0ePGfOnBx11FG59tprM2PGjKy77rqprq6ev3/atGl5/fXXc+CBB+bjjz+uc7EAAABQbmRvAAAAqL06NcBvueWWPPnkk9liiy3yyCOP5K677qqx/9Zbb83uu++ejz/+ONdff32dCgUAAIByJHsDAABA7dWpAT548OB07Ngxv/vd79K9e/cF9rdp0yYXXHBBunfvnscff7wuTwUAAABlSfYGAACA2qtTA/xf//pXNtlkk7Rv336RY1q2bJn1118/H3zwQV2eCgAAAMqS7A0AAAC1V6cGeIsWLfLZZ5997bjJkyenRYsWdXkqAAAAKEuyNwAAANRenRrg3/zmN/PKK69k/Pjxixwzbty4vPLKK1l77bXr8lQAAABQlmRvAAAAqL06NcD333//zJgxI8cee2xef/31Bfa/+eabOf744zNr1qzstddedXkqAAAAKEuyNwAAANRendZG22mnnfLUU0/l7rvvzp577pmll146hUIhTzzxRLbZZptMmDAh1dXV2XnnnfOjH/2ovmoGAACAsiF7AwAAQO3V+eZgffv2zYYbbpjrr78+//znP5MkkyZNSpL06NEjP/3pT3PwwQfX9WkAAACgbMneAAAAUDt1boAnyV577ZW99torH330UT788MNUVVWlW7duWWGFFerj8AAAAFD2ZG8AAAD4eovdAJ87d25uvfXWDB06NB9//HF69OiRXXfdNbvvvnu6deuWbt26NUSdAAAAUDZkbwAAAFgyi9UAnzVrVg477LA8//zzqa6uTpL885//zFNPPZURI0bkd7/7XYMUCQAAAOVC9gYAAIAlt1gN8Ntvvz3PPfdcll122RxxxBFZaaWV8tZbb6V///4ZOnRo7r333vzoRz9qqFoBAACg5MneAAAAsOQWqwH+17/+NW3atMltt92WHj16JEm23nrrbLXVVtljjz3yl7/8RQgHAACAOpC9AQAAYMlVLM7gsWPHZpNNNpkfwOdZe+21s84662TMmDH1WhwAAACUG9kbAAAAltxiNcCnTZuWZZZZZqH7VlxxxUyePLk+agIAAICyJXsDAADAklusBvicOXNSWVm50H0tW7bM7Nmz66UoAAAAKFeyNwAAACy5xWqAAwAAAAAAAEBTpQEOAAAAAAAAQEnQAAcAAAAAAACgJLRY3AcMHz4822233QLbJ02alCQL3ZckhUIhw4cPX9ynAwAAgLIjewMAAMCSWewG+PTp0zN9+vRF7h8/fvxCtxcKhcV9KgAAAChLsjcAAAAsmcVqgA8YMKCh6gAAAAAiewMAAEBdLFYDfLPNNmuoOgAAAIDI3gAAAFAXFcUuAAAAAAAAAADqgwY4AAAAAAAAACVhsZZABwAAAErXkCFDcvrpp+fGG2/Md77znQX29+7dO5MnT17k40ePHp3WrVs3YIUAAADw1TTAAQAAgIwePToXXHDBIvePHz8+kydPzrLLLrvI+5RXVFhoDgAAgOLSAAcAAIAy9+ijj+b000/P559/vsgxb7zxRpJkxx13zJlnntlYpQEAAMBi0QAHAACAMjVhwoT89re/zeDBg9OmTZt07do1H3/88ULHvvbaa0mSddZZpzFLBAAAgMVibTIAAAAoU1dccUUGDRqUddZZJ3fccUdWXXXVRY6ddwX4uuuu21jlAQAAwGJzBTgAAACUqVVXXTUXX3xxdtttt6+9f/drr72WNm3a5NVXX81ZZ52Vt99+O4VCIb169cqxxx6bDTbYoJGqBgAAgEVrNleADxkyJGuttVaeeuqphe7v3bt31lprrUX+88UXXzRyxQAAANC0HXnkkdl9992/tvn9ySefZOLEiZk5c2ZOO+20VFVVpXfv3unYsWNGjhyZAw44IA8++GAjVQ0AAACL1iyuAB89enQuuOCCRe4fP358Jk+enGWXXTabbbbZQsd8XZgHAAAAFm7e/b87deqUa665JhtttFGSpLq6OjfddFMuuuii9OnTJ7169cpyyy1Xp+dq0aJmfq+sLI08X9t5lMp8k/Kbc6nMAwAAmrsm3wB/9NFHc/rpp+fzzz9f5Jh59yHbcccdc+aZZzZWaQAAAFAWttpqqzzxxBOprq7OsssuO397oVDIIYcckueeey7Dhw/P3XffneOOO26Jn6eiopBOndrXR8lNTocObYtdQqMrtzmX23wBAKCparIN8AkTJuS3v/1tBg8enDZt2qRr1675+OOPFzp23pno66yzTmOWCAAAAGWhUCike/fui9y/7bbbZvjw4Xn11Vfr9DxVVdX57LPpNbZVVlaURGPxs89mZO7cqq8dVyrzTcpvzrWdLwAAsPg6dGhb61WXmmwD/IorrsjgwYOz7rrrpl+/funbt+8iG+DzrgBfd911G7NEAAAAIEm3bt2SJDNmzKjzsebMKc0G4ty5VSU7t0UptzmX23wBAKCparIN8FVXXTUXX3xxdtttt6+9f/drr72WNm3a5NVXX81ZZ52Vt99+O4VCIb169cqxxx6bDTbYoJGqBgAAgNJzxx135Omnn84uu+yS7bfffoH948aNS5I63/8bAAAA6qp214kXwZFHHpndd9/9a5vfn3zySSZOnJiZM2fmtNNOS1VVVXr37p2OHTtm5MiROeCAA/Lggw82UtUAAABQeiZMmJCHHnood9111wL7qqurc++99yZJttxyy8YuDQAAAGposleA19a8+3936tQp11xzTTbaaKMkXwbwm266KRdddFH69OmTXr161flM9BYtajbja7vOfFNX23mUynyT8ptzqcwDAAAojj322CPXXXddRo4cmTvvvDP77LNPkqSqqiq///3vM3r06Ky++urZcccdi1wpAAAA5a7ZN8C32mqrPPHEE6murs6yyy47f3uhUMghhxyS5557LsOHD8/dd9+d4447bomfp6KikE6d2tdHyU1Ohw5ti11Coyu3OZfbfAEAgPq10kor5bzzzstZZ52Vs88+OzfffHN69uyZMWPG5N13303Xrl3z+9//Pi1btix2qQAAAJS5Zt8ALxQK6d69+yL3b7vtthk+fHheffXVOj1PVVV1Pvtseo1tlZUVJdFY/OyzGZk7t+prx5XKfJPym3Nt5wsAACy+Dh3alsWqS3vuuWe+8Y1v5LrrrsuLL76Yd955J927d89BBx2UY445Jl26dCl2iQAAAND8G+Bfp1u3bkmSGTNm1PlYc+aUZgNx7tyqkp3bopTbnMttvgAAwJIZOHDgV+7v1atXrrnmmkaqBgAAABZfsz9F/Y477siJJ56Y4cOHL3T/uHHjkqTO9/8GAAAAAAAAoGlr9leAT5gwIQ899FBmzJiR7bffvsa+6urq3HvvvUmSLbfcshjlAQAAAAAAANBImv0V4HvssUdatWqVkSNH5s4775y/vaqqKldeeWVGjx6d1VdfPTvuuGMRqwQAAAAAAACgoTX7K8BXWmmlnHfeeTnrrLNy9tln5+abb07Pnj0zZsyYvPvuu+natWt+//vfp2XLlsUuFQAAAAAAAIAG1OyvAE+SPffcM7fccku+973vZcKECXn00UczZ86cHHTQQbnvvvuy6qqrFrtEAAAAAAAAABpYs7kCfODAgV+5v1evXrnmmmsaqRoAAAAAAAAAmpqSuAIcAAAAAAAAADTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKQotiFwCUn4qKQioqCg12/Kqq6lRVVTfY8QEAAAAAAGiaNMCBRlVRUUinTm1TUVHZYM9RVTU3kybN0AQHAAAAAAAoMxrgQKP68urvyvzzgesy45MP6/34bbssn2/sckQqKgoa4AAAAAAAAGVGAxwoihmffJgZE94rdhkAAABQktx+DACAcqUBDgAAAAAlxO3HAAAoZxrgAAAAAFBC3H4MAIBypgEOAAAAACXI7ccAAChHFcUuAAAAAAAAAADqgwY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAoCmpaKikIqKQoMdv7LSeTcAAAAAAAA0DA1wYL6KikI6dmynSQ0AAAAAAECzpAEOzFdRUUhlZUWuvu3JjJ84pUGeY4O1emTfHTdskGMDAAAAAABQ3jTAgQWMnzgl/xo/qUGO3aNbhwY5LgAAADQXbj8GAAANRwMcAAAAABqJ248BAEDD0gAHAAAAgEbi9mMAANCwNMABAAAAoJG5/RgAADQMay0BAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAQJJkyJAhWWuttfLUU08tdP/HH3+cX/3qV/n+97+f9ddfP9ttt10uvfTSTJs2rZErBQAAgIXTAAcAAAAyevToXHDBBYvcP3HixOyzzz655ZZb0qZNm2yzzTapqqpK//79s//+++fzzz9vxGoBAABg4TTAAQAAoMw9+uijOeyww76yid23b9+MHz8+Rx55ZO6///5ceeWVefjhh/PDH/4wb775Zq666qpGrBgAAAAWrtk0wC3DBgAAAPVrwoQJ6dOnT4499tjMnj07Xbt2Xei49957L8OGDcvyyy+fE044Yf72Vq1a5YILLkj79u1zxx13ZObMmY1VOgAAACxUs2iAW4YNAAAA6t8VV1yRQYMGZZ111skdd9yRVVdddaHjHn/88VRVVWXrrbdOy5Yta+xbeumls/nmm2f69Ol55plnGqNsAAAAWKQm3wC3DBsAAAA0jFVXXTUXX3xx7rrrrqy11lqLHPfWW28lSdZcc82F7l999dVrjAMAAIBiabINcMuwAQAAQMM68sgjs/vuu6ei4qu/Hvjoo4+SJN26dVvo/nnbP/744/otEAAAABZTi2IXsChXXHFFBg8enHXXXTf9+vVL3759Fxqka7MM2yOPPJJnnnkmW2+9dWOVDwAAACVj+vTpSZI2bdosdP+87fPG1UWLFjWb8ZWVTfbc/cVS23mUynyT8ptzuc03Ka25AABQOppsA3zeMmy77bbbV56JXptl2B555JG89dZbGuAAAACwBCorK5MkhUJhofurq6tr/O+SqqgopFOn9nU6RlPVoUPbYpfQ6MptzuU236Q85wwAQNPXZBvgRx55ZK3GWYYNAAAAGla7du2SJF988cVC98/b3rZt3ZphVVXV+eyzmleRV1ZWlEST7bPPZmTu3KqvHVcq803Kb87lNt+k9nMGAIC66tChba1XIGqyDfDasgxb3Vmiq+7jmrpym29SWnMBAIBi6969e5L/nIT+v77u5PTFMWdOaTbT5s6tKtm5LUq5zbnc5puU55wBAGj6mn0D3DJsdVcqZx0vjnKbc7nNNynPOQMAQEOZd9uxsWPHLnT/22+/nSRZa621Gq0mAAAAWJhm3wC3DFvdWaJr0UplzuU238QybAAANJ7FWYatudpqq62SJCNGjEifPn3mn4yeJFOnTs0zzzyTdu3aZeONNy5WiQAAAJCkBBrglmGru3Jcrqrc5lxu803Kc84AANBQVlhhhWy77bYZMWJELr300px++ukpFAqZNWtWzjnnnEybNi2HHnpollpqqWKXCgAAQJlr9g1wy7ABAABAwzv77LPz2muv5cYbb8xjjz2WNdZYI6+88ko++OCDrLPOOjnuuOOKXSIAAACk2a/R9t/LsM2dO7fGPsuwAQAAQP1YYYUVcvfdd2fvvffO1KlTM2LEiLRq1SpHH310BgwYkPbt2xe7RAAAAGj+V4Bbhg0AAADqx8CBA79y/7LLLpu+ffs2UjUAAACw+Jp9AzyxDBsAAAAAAAAAJbAEemIZNgAAAAAAAACa0RXglmEDAAAAAAAA4KuUxBXgAAAAAAAAAKABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFHsAgAAAIDm49FHH80xxxyzyP077bRTrrjiikasCAAAAP5DAxwAAACotddffz1Jsummm2a55ZZbYP9GG23U2CUBAADAfCXVAHcWOgAAADSseQ3ws846K2uvvXaRqwEAAICaSqoB7ix0AAAAaFivv/56WrdundVXX73YpQAAAMACSrIB7ix0AAAAqH+TJk3Khx9+mPXXXz8tWpTUVwoAAACUiJJKq85CBwAAgIYz78Tz5ZdfPpdeemkeeeSRfPDBB+natWt22GGHHH300VlmmWWKXCUAAADlrKLYBdSXeWehr7XWWs5CBwAAgAbw2muvJUkefvjh3HbbbenZs2d69eqVKVOm5IYbbsg+++yTjz76qMhVAgAAUM5KplPsLHQAAABoWG+88UaSZJtttslll12WpZdeOkny6aef5qSTTsrf//73nH322bn22muX+DlatKh5rn5lZWmcu1/beZTKfJPym3O5zTcprbkAAFA6SqYB/t9nobdv3z6bbbZZlltuubzyyiu54YYb8uijj+bmm29Ot27dilwpAAAANE8XX3xxfvGLX2S55ZZLmzZt5m/v3LlzLrnkkuy4444ZMWJE3n///ay44oqLffyKikI6dWpfnyU3GR06tC12CY2u3OZcbvNNynPOAAA0fSXTAHcW+pJzhnLdxzV15TbfpLTmAgAATUWrVq3Ss2fPhe5bdtll861vfSvPP/98XnvttSVqgFdVVeezz6bX2FZZWVESTbbPPpuRuXOrvnZcqcw3Kb85l9t8k9rPGQAA6qpDh7a17v2UTAPcWehLrlRC1+IotzmX23yT8pwzAAAUW9euXZMkM2bMWOJjzJlTms20uXOrSnZui1Jucy63+SblOWcAAJq+kmmAOwt9yTlDedFKZc7lNt/EWegAADSexTkLvTmbNWtWzj///EyaNCmXXXZZ2rVrt8CYcePGJUmWW265xi4PAAAAkpRQA/zrOAt90crxbN1ym3O5zTcpzzkDAEBDatWqVZ566ql88MEHefzxx7PjjjvW2D9mzJiMGTMmSy+9dDbccMPiFAkAAEDZK4lT1GfNmpVf/vKXOfbYYzN9+vSFjnEWOgAAANTNvvvumyT59a9/nffee2/+9o8//jhnnnlm5s6dm8MOO6zGrckAAACgMZXEFeDOQgcAAICGd+ihh+a5557L3/72t+yyyy7ZZJNN0qpVqzzzzDOZPn16dthhhxx55JHFLhMAAIAyVhJXgCfOQgcAAICG1qpVq/zpT3/KL3/5y6y22mp54YUX8swzz2SNNdZI375987vf/S6VlZXFLhMAAIAyVhJXgCfOQgcAAIDGUFlZmYMPPjgHH3xwsUsBAACABZRMA3zeWei33HJLBg8enBdeeCEVFRVZY401svfee2evvfZKoVAodpkAAAAAAAAANJCSaYAnzkIHAAAAAAAAKGclcw9wAAAAAAAAAMqbBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJLQodgEApa6iopCKikKDPkdVVXWqqqob9DkAAAAAAACaOg1woOw1ZIO6UCikQ4fWqaiobJDjz1NVNTeTJs3QBAcAAAAAAMqaBjhQ1ioqCunYsV0qKxv2jhD/fOC6zPjkwwY5dtsuy+cbuxyRioqCBjgAAAAAAFDWNMCBslZRUUhlZUWuvu3JjJ84pd6Pv8FaPbLvjhtmxicfZsaE9+r9+AAAAAAAAPyHBjhAkvETp+Rf4yfV+3F7dOtQ78cEAAAAAABg4TTAAQAAAIAGVVFRSEVFodhl1ElVVbVbj1FDQ7+vvecAYMlogAMAAAAADaaiopCOHdulsrKiwZ6juqoqhYqGO36SVFXNzaRJMzQkSdI47+u5c6syderMVFc33HtOkx2AUqQBDgAAAAA0mIqKQiorK3L1bU9m/MQp9X78DdbqkX133DD/fOC6zPjkw3o/fpK07bJ8vrHLEamoKGgWkqTh39dr9eyWg3fdOB07tqv3Y/83J3YAUIo0wAEAAACABjd+4pT8a/ykej9uj24dkiQzPvkwMya8V+/Hh6/SkO/rQkWFEzsAYAlogAMAAAAAQBPkxA4AWHwNe2McAAAAAAAAAGgkGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACWhRbELqG/PPvtsrr322rzxxhuZOXNm1lprrfz0pz/ND3/4w2KXBgAAACVB9gYAgOapoqKQiopCscuok6qq6lRVVRe7DJqwkmqA33///Tn11FPTokWL9O7dO5WVlXn66adz4oknZuzYsTnuuOOKXSIAAAA0a7I3AAA0TxUVhXTs2C6VlQ23QHR1VVUKFQ27AHVV1dxMmjRDE5xFKpkG+CeffJKzzjorbdu2zYABA7LeeuslScaOHZuDDz44V111VbbffvusvfbaRa4UgFLU0GdOOqsRAGgKZG8AAGi+KioKqaysyNW3PZnxE6fU+/E3WKtH9t1xw/zzgesy45MP6/34SdK2y/L5xi5HpKKi4PtSFqlkGuC33HJLZs6cmSOOOGJ+AE+S1VZbLSeffHLOPPPM3HTTTbnooouKWCUAxdDQzelCoZAOHVqnoqKywZ7DWY0AQFMgewNQTE4+B6gf4ydOyb/GT6r34/bo1iFJMuOTDzNjwnv1fnyorZJpgI8cOTJJ8v3vf3+Bfdttt10KhUIee+yxRq4KgGJrjGV95mmoMxud1QgANBWyNwCL4uRzSpF7JQMsXFM/Ka1kGuD/+Mc/kiSrr776Avs6duyYrl275qOPPsonn3ySLl26NHZ5ABRJQy/rk/xnaZ+mdGajgAYANATZG4CFcfI5paix3tcNfb9kJ3ZA+XFSWok0wKdMmZIvvvgi7du3T/v27Rc6pnv37vnoo4/y0UcfCeEAZaihlvVJ/rO0T1PRGAGtocNZ0vQCWlM7q7EcT3Jo7nN2UsfXa+6vceJ1prTJ3gAsSrmefF6Omvtn9sX5vN6Y72sndhRXOb2vKX1OSvtSobq6utn/VHz44YfZZptt0rVr1zz55JMLHbP//vvnxRdfzG233ZZevXot9nNUVy/4C6RQSCoqKjLl85mZO7dqiWr/Kq1aVmapdq0ze9pnqa6aW+/HL1RUpmX7Dqmqqkpt3gXNfb5J+c25qc03Kb85N8X39fzHNd/PdIs9z3J9X0+bPitzq+p/zi1bVKZtm5aZM3Naqhvg+ElSqKhIizbtm9T7ulAopNCAT7CwzxpfpaKiYetJvqypnObc1OY7T7n8vk6a/2s87zkW93Uup9c4ad7zTRY+58b4ndwUyN5LRkapxfhmPuemNt+k/ObcFN/X8x/XjP88yN5fM75M39fN/TP74nxeL8f39fzHlcnvrnm8r+tPU/3dlZTP+7qhvxtO/vP9cGP/7lqcn9WSuAK84v9fgfZVk57X51/Sfn+hUEhl5cKPv8xSbZbomLXVsn3DXllYsZhX8DX3+SblN+emNt+k/ObcFN/X5aYc39ft27VqoEq+1KLNwq/8qk/l9L7+qs8axdLQzZymNudym285aowGpdeZUiZ7142M8vWa+5yb2nyT8ptzU3xflxvv6/pXbu/rppjLyvF9Tf0qx/d1uf3uaooa+rvhpGn/7iqJd8e8pddmzpy5yDGzZs1KkrRr165RagIAAIBSInsDAADQHJRMA7xdu3aZOnXqIoP4xIkTkyTdunVrzNIAAACgJMjeAAAANAcl0QAvFApZc801kyRjx45dYP/kyZPz8ccfp3PnzunatWtjlwcAAADNnuwNAABAc1ASDfAk2WqrrZIkw4cPX2Df8OHDU11dna233rqxywIAAICSIXsDAADQ1JVMA3zPPfdM27Zt8+c//zkvvvji/O3vvPNOfvvb36ZQKORnP/tZESsEAACA5k32BgAAoKkrVFdXVxe7iPpy55135uyzz05lZWV69+6dVq1a5emnn84XX3yR//u//8uRRx5Z7BIBAACgWZO9AQAAaMpKqgGeJI8//niuu+66vPrqq6msrMzqq6+eQw89ND/4wQ+KXRoAAACUBNkbAACApqrkGuAAAAAAAAAAlKeSuQc4AAAAAAAAAOVNAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuBAvZk6depiP+aZZ55pgEqAJXXVVVflrbfeKnYZAADAIsje0PzJ3gDQsDTAaXSzZs3Kq6++mjFjxmTOnDmLHPfpp5/mueeea8TKGt8zzzyTG2+8MbfeemvGjRtX7HLq7OCDD87kyZNrNfaLL75I375987Of/axhiwIWy1VXXZU333yz2GVAvdtuu+3yyCOPFLuMoqiqqsp7771XY1t1dXUefPDB9O3bN7/5zW/y8ssvF6m6+vPBBx9k5syZtR4/bty4DBkypOEKKoJPP/00Tz/9dB588ME89NBDeeaZZ2r92QwoPbL3f8jesjc0NbI3pUr2lr3/l+xNsbQodgHU3syZM/Ppp5+mR48exS5liQ0YMCC/+93vMn369CTJ0ksvncMPPzyHH354Kipqno/xt7/9LaeffnreeOONYpRab95888388Y9/zJtvvpkePXrkqKOOSq9evXLCCSfkkUceSXV1dZKkRYsWOf7443PUUUcVueIl98Ybb+QnP/lJ/vznP6dr166LHPfyyy/n9NNPz7/+9a+vHFeqPv3004wdOzabbrppsUtpFFOnTs3FF1+cvn37FruURlNur3Ep2G677XLmmWdmu+22K3Ypjeab3/xmLrnkkuy6667FLqVRjB8/fv7nj3IycuTInH/++fnoo4/y6quvJvkylB977LF57LHH5n8O6d+/fw4++OD06dOnmOXWyXbbbbfAe3r69Om54IILcvjhh2e11VarMX7UqFHp06dPdt9990autP49/PDD+eMf/7jQz82FQiG9evXK4Ycfnm222abxi6tHa6+9dgqFwmI9plAo5PXXX2+giihVsnfzJHsvSPYur1wme9McyN6lT/aWvWVv2bupcAV4ES3sbKhZs2ZlyJAh+fjjjxcYP3To0Gb94WDIkCHp169f1lprrfTp0ydHHXVU2rRpkyuuuCKHHnpoPv/882KXWO9effXV7LPPPhk5cmTatm2bl19+OYccckj69euXRx55JIcddlgGDx6cm2++OVtvvXV++9vf5qGHHip22Uvs7LPPzjvvvJMDDzwwH3744QL7Z8+end/85jc54IAD8q9//Ss/+tGP8pe//KUIldavb37zm7n//vtrbJs5c2auuuqqvP/++wuM/9vf/paDDz64scprEO+//34uuOCC/PjHP86Pf/zjnHXWWXn33XcXGDd06NDstNNOueeee4pQZf0px9e43JRjQJsXvihdY8aMyc9//vNUV1fnsMMOS1VVVZLktttuy8iRI9OtW7fceeedGTVqVE477bQMGDCgWX8OWdh7+osvvsiQIUMyceLEIlTUOPr27ZsTTzwx48ePz+67755TTjklv/rVr3LOOefkhBNOyHbbbZfXXnstxxxzTH79618Xu9w62XTTTbPJJpss1j8bb7xxscumCZC9ZW/ZW/ZurmTv0n+Ny43sTSmSvWVv2btpZm9XgBfRwv7gT5s2LX369MkNN9xQcmfn3njjjdl0000zcODA+duOPfbYnHfeeRk0aFAOOeSQ/PnPf85SSy1VxCrr1xVXXJEVV1wxAwcOTOfOnTN9+vQcddRRueWWW7LvvvvmlFNOmT92k002yU9+8pNcf/31+eEPf1jEqpfcgQcemGWWWSZnnHFGDjzwwPz5z3/OyiuvnOTLM9RPP/30vPXWW+nRo0fOP//8bLXVVkWuuH4s7I/+jBkzcvXVV2fjjTfOiiuuWISqGs4bb7yRgw46KJ9//nnatGmTNm3a5PXXX8+DDz6Y22+/PWuuuWamTp2as846K0OHDk1lZWWOPPLIYpddJ+X2Gr/zzjuLvQymM+6h6bnuuuvSvXv33HvvvenQocP87bfccksKhUJOPvnkrL/++kmSn/3sZ3n22Wdz2223NdvPIYtSyl843Xfffbn55puz++6755xzzkm7du0WOm7atGm58MILc9NNN2WjjTbKDjvs0MiV1o//zhGwOGRv2Vv2lr2bI9n7S6X8GsveUBpk7y/J3rJ3U6MB3gSV6i+Kf/7znznjjDNqbGvVqlX69euXjh075oYbbsjhhx+eG264YZG/QJqbUaNG5eSTT07nzp2TJO3atcsvfvGL/OQnP8mWW265wPgf/vCHueSSSxq7zHq1yy67ZOmll86JJ56YAw88MNddd10eeeSRXHvttZkzZ04OOOCA/N///V/at29f7FIbXKn+LF955ZWZOXNmfvOb32TnnXdOkowePTonn3xy+vbtm8suuywHH3xw/vWvf2W99dZL3759s9ZaaxW56oZRqq/xtddem2uvvXaxHtPcl8wsV4u7nFFzd+edd+app56q9fhCoZB+/fo1YEUN67nnnss+++xTI4CPGzcu77zzTlq0aJHvf//7NcZvscUWufLKKxu7TOrgtttuy4Ybbvi1Z5e3b98+/fr1y9ixY3PXXXc12xA+e/bstGzZcrEe8/LLL2eDDTZooIpo7kr1s5zsLXvL3qVB9v6PUn2NZe/yIXt/Ndmbpk72/npNMXtrgNNo2rZtm8mTJy9032mnnZbp06fn9ttvz9FHH53rrruucYtrIEsttVQ+++yzGtvWWmutbL311mnRYsEfv0mTJqV169aNVV6D2XrrrdO/f/8cc8wx+fGPf5zq6uqsssoq6du3bzbZZJNil0cdjR49Ovvtt9/8AJ4k66+/fk477bScdNJJOemkkzJ+/PiccsopOfTQQxe4xyBN3/bbb1+yX5x8lXILaElyzTXX5M4776z1+EKhkJtuuqkBK2pYzz333GJdYdHcX+NJkyZlueWWq7Ht73//e5Jkgw02WOAL8TZt2uSLL75otPqou3/84x+LdQ/b7bbbLnfccUcDVtSwfvzjH+eyyy6r1d+oWbNm5YorrsiAAQPy2muvNUJ10HTI3l+SvWXv5k72Ln2yd+0091yWyN5fp7m/xrJ36ZO9F60pZ28NcBpN7969M2DAgHz/+9/PGmusscD+c889N59//nkeeOCBHHroodl6662LUGX92mKLLfLnP/85G220Ub797W8nSZZeeun88Y9/XGDsyy+/nIEDB84f19xtvPHGGTBgQA4//PB8+umn+dWvfiWAl4gpU6Zk7bXXXmD7euutl7lz5+bNN9/MwIEDs+GGGzZ+cdSLH/zgB9l1112LXUajK7eAliRjx47N2LFjaz2+uZ+1fuaZZzbre7ourmWWWSaffvppjW1/+9vfUigUssUWWywwfuzYsfOvnKN5mD59erp06VLr8d26dWvW92T7+OOPs9dee+X444/PEUccscjfSS+88ELOPPPMvPvuu1lllVUauUooPtlb9pa9S4PsXfpk79qRvZsf2Vv2LjWyd/PM3hrgNJqTTz45BxxwQPbYY49861vfyqWXXlrjh6JQKOSSSy5Jq1atMmjQoLz44otFrLZ+nHLKKRk9enQOPfTQbLLJJou8d8JBBx2UF154IZ07d65xb7Lmbu21185tt92Wn/3sZznmmGNy9dVXZ/PNNy92WdTRnDlzFnq1RJs2bZIkRx55pABOs1RuAS1JLr300rL6wqVTp05ZYYUVil1Go+nVq1cefPDBHHbYYamsrMzHH3+ckSNHJkl23HHHGmOnTp2a+++/P7179y5CpSypuXPnLvTKxkWprKzMnDlzGrCihvXAAw+kT58+ufzyyzNy5MhcfPHFWWmllebvn7dM7Lx77R122GE54YQTilgxFIfsLXvL3qVB9qZUyd6lT/aWvUuN7N08s7cGOI2mZ8+e+ctf/pKrr746zz///PwP7P+toqIi/fr1y0YbbZTf/e53+eSTT4pQaf3p0qVL7rnnntx+++2ZNWvWIse1adMme+21V37xi18s1plETU2fPn0Wun2VVVbJ+++/n6OOOio//OEPa5wxVApncVLTuuuuW+wSYImUW0Cj9B1xxBHZb7/9su+++2azzTbLI488ki+++CI777xzVl111SRffrH60ksv5eKLL86nn36aAw88sMhV182wYcPy7rvvzv/vmTNnplAo5N57780LL7xQY+xbb73V2OVRR126dMmf/vSn3HLLLbn00kvzox/9KGeccUb22WefPPvss/nlL3+ZcePGZa211sqFF17oMwllS/aWvWXv8uDvHM2V7E2pkb1l71JTKtlbA7zI3nnnnRpLvkydOjVJ8uabby5wRsniLJPSVHXq1ClnnXXW147be++9s8cee9T4JdpctWnTJocccshXjimV+64NHjz4K/d/8cUXGTJkSI1tpRLCn3/++cydO3f+f0+bNi1J8uSTT2bChAk1xpbCFRZfpbkv07Qo5fIab7rppunatWuxywDqwXrrrZdrrrkmF154YW644YZUVlZm1113zfnnnz9/zCWXXJIBAwakoqIiffr0Sa9evYpYcd0NHTo0Q4cOXWD7/37+mKcU/mb97xcPX6VUvng48MADs/nmm+fss8/Oueeem4EDB2bs2LFp0aJFTjjhhBx55JGLdXY+5UH2XjjZu3mSvUs/l9VGKXyOWZhyeY1lbygdsvd/yN5fkr2bhkJ1dXV1sYsoV2uvvfZCf/Crq6u/cvsbb7zRGOU1uOrq6owbNy6TJ09OknTu3DkrrrhicYtqYKU+5/Hjxy/R45r7WZ8L+1n+71+tC9vXnH+W11577RxzzDH5zne+U2P71KlTc+yxx+aMM87IOuuss8DjNt1008Yqsd6V22tcjtZee+2yW5Ks3OY8ePDgbLLJJjWWbConkyZNStu2bRe4CvCxxx7La6+9lp133rlJ3q9pcTz77LNL9LjNNtusnitpPAu7L+jXKaW/T88991yOPfbYTJ06NYVCIccee2yOP/74YpdFEyR7l3YOXZhSn7Ps/R+lnMtk7y+V8mtcjsothyblN2fZW/ZeFNm7+Wqu2VsDvIiuuuqqJXrccccdV8+VNK7Ro0enf//+efLJJzN9+vQa+5Zaaql873vfy89+9rMl+qXSVJXjnMvJ1519vyh77LFHPVfSOBb1BWKy6C8RkzTrP/jl9Br/95VRi6M5f8mSlGdAe/bZZ7Paaqs16+U/odyV4xcPSfL555/nkksuyd13353WrVvniCOOyMMPP5y33nor3/72t9O3b9/06NGj2GXShMje5ZNDy3HO5aScclkiey+O5vgay96yN9B8yN7NM3trgNOobrjhhlx22WWpqKjIRhttlDXWWCMdOnTInDlzMnny5Lz++ut54403UlFRkdNPPz0HH3xwsUuus3Kcc21de+21GTp0aAYNGlTsUhrdrFmz0qpVq2KXsUTK9QvExdVcX+Ov+pLlqzTnL1koD4u6V+ZXKZWlQlm422+/PX/729+W+O8axTFy5Mice+65mTBhQjbffPNccMEFWWmllTJ79uxceeWVueGGG9KmTZuceuqp2W+//YpdLhRNOebQcpxzbcnezS+XJbJ3bTXX11j2plTJ3vwv2bt5KoXsrQFOo3nsscdy1FFH5dvf/nb69euX5ZdffqHj3nvvvZx//vl56qmncsMNN+Tb3/52I1daf8pxzovj3HPPzZ133tnsP7xfddVVixUwR48enT59+uQvf/lLA1ZFfSqn1/j3v//9EoXw5v4lSzkGtCX50rdQKOSmm25qgGoaXjkuV/V1X6q1bt06Sy+9dNZcc8384Ac/yN57752KiopGrLC4SuFzyAcffJDOnTsvsLzeoowbNy4vvPBCdt9994YtrIGccsop+ctf/pJ27drltNNOy7777rvAmFGjRuX000/PuHHjstlmm+XCCy8sqWWPoTbKMYeW45wXRyn8zUvKK5eVq3J6jWXv2pO9mxfZe0Gyd/P/HCJ7N8/srQFeROX2B/9nP/tZPv744wwaNCgtW7b8yrFz5szJ7rvvnlVWWSVXX311I1VY/8pxzoujFP74JV9+yDnssMNy6qmnfuW4OXPm5Kqrrkr//v0zd+7cZj/v2po5c2Y+/fTTJr0cytfxGpe+cg1oi6s5z7kc75V50EEHfeX+uXPn5rPPPst7772X2bNnZ4sttsi1116bFi1aNFKFxVUKn0O++c1v5pJLLqlxP8Hp06fnggsuyOGHH57VVlutxvj77rsvp59+erOd89prr52tttoqF1xwQZZbbrlFjps5c2Z+/etf5/bbb0+7du3y4osvNmKVNEWy96KVSg4txzkvjlL4m5fIZV9H9qY5KLccmpTfnGXvBcnezf9ziOy9cE09e5fHT1gTtTj3tfnvM4iaawh//fXXc8ghh3xtGE2SFi1a5Ic//GHuu+++Rqis4ZTjnMvRJptskhtuuCEzZszIOeecs9Axb775Zk4//fS8+eabWWaZZfLLX/6ykausP9ttt13OPPPMbLfddvO3zZo1Kw8++GC23HLLdO3atcb4oUOHNus/+En5vcbl6JFHHil2CY1uzJgxxS6hUTXnML2kBg4cWKtxM2fOzG233ZZLLrkkt91229eGd5qOhZ3L/MUXX2TIkCHZbbfdFgjhzd1FF11Uq3t8tmnTJuedd16+//3v+3tMEtn7q5RKDi3HOZejcstlsnfpv8blSPYufbL3osnezZfsvXBNPXtrgBdRbf74jR8/PhdccEFGjhyZpZdeOieeeGLDF9ZApk2blu7du9d6/PLLL59///vfDVhRwyvHOZejG264ISeccEJuu+22zJgxI/369Zv/xVl1dXX+9Kc/5eqrr86sWbOy00475ayzzkrnzp2LXPWSGz9+fKZPn15j27Rp09KnT5/ccMMNC4TwUlBur3GSvPPOOxk1alT23HPP+ds+/vjjXHXVVXnxxRfTtm3bbLfddjnkkEOa5f3W/lc5BjRqmjVrVv7xj3+kTZs2WXXVVYtdTqNq06ZNfvazn+Xll1/O4MGDhfASUKqLfNUmgP+3b3zjG9l7770bqBqaE9n7q5VCDi3HOZejcstlsnfpv8aJ7E35kb1l71Iie3+pqWZvDfAmau7cubnhhhvyhz/8ITNnzszOO++cPn36NOsPt3PmzFmsD2otWrTIrFmzGrCihleOcy5HrVq1ytVXX50+ffpk8ODBmTlzZi677LK89957OeOMMzJ69Oh069Yt5513Xr73ve8Vu9wGU6p/8JPye40vu+yy3HDDDamurs4ee+yRioqKTJ06Nfvuu28++OCDdOzYMSussEJ+97vf5dFHH83AgQNrdbVNc1aOAW3ChAkZPXp02rRpk0033bTW9zlqyqZOnZrrrrsuo0aNqnGG9v3335++ffvms88+S/LlB/d+/fplww03LFKlxdG7d+88+eSTxS4D6uSLL77Iww8/nEGDBuXZZ59NdXV1fv7znxe7LJow2bs0cmg5zrkclVsuWxTZu3ReY9l7QbK37F0OZG9KQXPI3hrgTdDzzz+f888/P2+//XZ69uyZc889N9/+9reLXRZ8rauuumqxxr/66qsNVEnjq6yszCWXXJIOHTrk5ptvzvvvv5+33347M2fOzN57753TTz89Sy21VLHLpA7K5TUeNmxY+vfvn2222SYHH3xwKioqkiR/+MMfMn78+GywwQb585//nLZt22b06NE56KCD8uc//zlHHHFEkSuvu3IMaOPHj8/ll1+eUaNG5dFHH52//U9/+lOuvPLKzJ07N9XV1VlmmWVywQUX5Ac/+EERq62badOmZd99980777yT5ZZbLnPmzEmLFi0yevTonH766amurs6+++6bNdZYI0OGDMnPfvazDBkyJKusskqxS280lZWVqaqqKnYZS2zIkCGLNf6f//xnwxRCUYwaNSqDBg3KQw89lGnTpqW6ujorr7xy9t1332KXRhMme9Ncyd6ln8vKWbm8xrK37J3I3rJ38yR7l7fmlL01wJuQSZMm5ZJLLsmQIUPSqlWrHH/88TniiCNKYnmbeZ5//vnMnTu3VmNffPHFBq6mcZTTnBc3hCc177FXCs4666x07NgxV111VSoqKvLHP/4xW2+9dbHLoh6V+mt8++23Z4MNNsi11147f1t1dXXuu+++FAqF/OIXv0jbtm2TJOuvv35+9KMf5S9/+UuzD+HlGNA++eST7Lvvvpk0aVLWX3/9+XN+4okncvnll6dFixY5+eSTs+aaa+bOO+/MySefnDvuuCPrrLNOsUtfIjfccEPee++9/Pa3v82OO+44f/vVV1+d6urq/PSnP80ZZ5yRJNlrr72y22675dprr81FF11UrJIb3csvv5zll1++2GUssTPOOGOxPldUV1eX3OeQcjNhwoTce++9GTRoUN599935V8T17t07RxxxRLbccssiV0hTJXvX1Nxz6DzlNGfZu/RzGaX/GsvesrfsLXs3V7J3+Wmu2VsDvIm46667ctlll2XKlCnZYostcu6552bllVcudln17s4778ydd95Zq7Gl8ouxnOY8YMCAYpfQJBx33HHp1KlT+vbtm/79+2fjjTcuibOT+Y9Sfo1fe+21BQL166+/nk8++SRLLbVUevfuXWPfeuutl/vvv78xS2wQ5RjQ/vSnP2XatGm55ZZbapxR/6c//SmFQiE///nP578Xvvvd72bPPffMddddl9/+9rfFKbiOhg4dmh/96Ec1Xt9p06bNX3bsgAMOmL+9devW2W233XLXXXc1ep3F8te//jX33ntvDj/88GKXssSa888jtTdr1qwMHz48gwYNytNPP525c+emsrIym222WTbeeONcc801Ofjgg5tsAKf4ZO8FNfccOk85zVn2/lIp5zK+VMqvsewte8vesndz1Zx/Hqm9UsjeGuBF9uabb+a8887LSy+9lK5du+byyy/PTjvtVOyyGkQ5/mIstzlvttlmi/2Y559/vgEqaVzPPffcAtvWXHPN7L333rnzzjvz05/+NKeddtr85azm2XTTTRurROqonF7j6dOnZ5lllqmx7e9//3uSL+dTWVlZY9+cOXOa9ZeH85RjQBs5cmT23HPPGgF88uTJeeGFF5IkP/7xj+dvLxQK+eEPf5ibbrqpscusN++//36N1zH58md7zpw5WWmllRZofiy//PL55JNPGrPEetenT5+v3D937txMmzYt//jHP/Lee++lZ8+ezTqE77HHHsUuoSiGDRuWd999d/5/z5w5M4VCIffee+/8n+d53nrrrcYur16df/75efDBBzNlypS0bt06W221Vbbffvtst9126dSpU8aPH58//OEPxS6TJkr2Lm3lNmfZ+z9KNZeVq3J6jWVv2Vv2/pLs3fzI3l+SvZt+9tYAL6KLL744AwcOzNy5c7PtttvmxBNPzFJLLZUPPvjgKx/Xo0ePRqqwfpXjL8ZynHNtfPjhhxk8eHCGDBmScePG5Y033ih2SXVy0EEHfWUIee2113LIIYcssL05z/udd96pEUynTp2a5MsvFlu0qPmnZezYsY1aW0Mop9e4e/fuGTduXI1tI0eOTKFQyHe/+90Fxo8ePTrLLrtsY5XXYMoxoP373//OmmuuWWPbM888k6qqqqy++uoLvK5dunTJlClTGrPEelVRUbHAPbaefvrpJMl3vvOdBcZ/+umnzf7qksGDB9dq3EorrZSf/vSnOfbYY5v9nBdlYZ+vl19++ZL5EnHo0KELbF/Ufdma85xvu+22tGvXLkcffXQOP/zwkn2/Uv9k79JXjnOuDdn7S8153rJ3TaX0Gsve/yF7y97N/XO97P0fsvd/NOc5l0r21gAvohtvvHH+v48YMSIjRoyo1eOa44e6JfHpp59m7NixzfIsziVVynP+4osvMnTo0AwaNCjPPPPM/CXnFvahvrn5+c9/3qz/oC2Ja6+9tsZ9qua5+OKLF9jW3JcXTMrrNf7ud7+be+65JwcccECWXXbZjBo1Ks8//3xatmyZHXbYocbYt99+O3/5y1+yzz77FKna+lOOAa1169aZMWNGjW1PPfVUCoVCtthiiwXG//vf/06HDh0aq7x6t/rqq2fUqFE58MADk3z5u2nYsGEpFAr53ve+t8D4Rx55JKuttlpjl1mvHnnkka/c37p163To0KGk7nmbJPfcc0/uuuuu/OEPf0jnzp0zadKkfO9731vg9/gJJ5yQY445pkhV1o9yWwJ3jz32yPDhw/PHP/4xN910UzbZZJP5Z6F37dq12OXRhMneX62Uc+iilPKcZe/SInuXLtn7P2TvmmTv5kf2lr1LTalkbw3wIjruuOOKXUKj+uY3v5lLLrkku+666/xtM2fOTP/+/bP77rtnxRVXrDH+b3/7W04//fRm/aVDOc75f7300ksZNGhQHnrooXz++edJks6dO2fPPffMvvvumxVWWKHIFdbd8ccfX+wSGlU5BdJ5yuk1PvbYYzN06ND88Ic/zKqrrpq33nor1dXV+fnPf57OnTsn+TJ8Dx06NAMGDEjLli1z2GGHFbnquivHgLb22mvn6aefzk9/+tMk/7m3T5Jsv/32NcZWV1fnr3/9a9Zee+1Gr7O+7L777rnwwguz3nrrZYsttsidd96ZDz74ICuvvHK22mqrGmOvvfbavPTSSznrrLOKVG39KIW/sYvrF7/4RR5++OH06NEjH3zwwfzfW0my2267ZaWVVkqS3Hvvvbnmmmuy1157pVu3bsUqt86WZAncOXPmNEAljeOiiy7K+eefnxEjRuT+++/P448/nieeeCLnn39+Ntpoo/Tq1avsPqNQO7J36efQcpzz/5K9S4/sXdpkb9k7kb1l7+ZL9v56snfxaYAXUbmF8Orq6gW2zZgxI1dffXU23njjBQJpKSjHOSfJxIkTM2TIkAwePDj/+te/Ul1dnbZt2+Y73/lOnnrqqfzqV7/KdtttV+wyWULlFEjLUdeuXXP33Xfn6quvzksvvZRvfetb2XPPPbP33nvPHzN48ODccMMNWWGFFfKb3/wmyy+/fBErrh/lGND222+/nHzyyenXr1+22GKL3HPPPfnkk0/yrW99q8bVUDNnzsyvf/3rvP322836C5f99tsvL7zwQi666KIUCoVUV1dnmWWWyWWXXTb/HoJ33313/vSnP2XcuHHZeOONs//++xe56oY1evTojBo1KhUVFdlss82y1lprFbukOrnvvvvy8MMP56ijjsoJJ5ywwH0Td99993z7299Okmy99dbZZ599cscdd5TMZ/Jp06alurr6K6+QGTVqVM4+++w88MADjVhZ/WrVqlV22GGH7LDDDpk6dWr++te/5r777ssLL7yQF154IYVCIX/84x/z+eefZ4cddkibNm2KXTJNQKn8nNdWOebQcpxzInuXOtm7tMnesrfsLXs3V7K37N1csrcGeBMya9asjBkzJhMnTkx1dXW6d++etddeO61bty52aQ1qYUG11JXqnB966KEMGjQoTz31VObOnZsOHTpk1113zQ9+8INstdVW+eijjxY4s7EUXHXVVYv9mEKhkJ///OcNUE3DO/jgg3PMMcfM/yBTDsrtNV5uueVywQUXLHL/nnvume9973vp1avX/PDS3JVjQNtpp53y5ptvpn///hk4cGCqq6uz4oor5oorrpg/5vrrr88f/vCHTJs2LTvuuGN+9KMfFbHiuikUCrnsssty4IEHZtSoUVlqqaWy/fbb1zhL+d///neqq6tzzDHH5KijjiqJ9/frr7+eP/7xjxk7dmxWXnnlHH300Vl//fXzy1/+MoMGDZr/maRQKGSXXXbJRRddtMD9JJuLwYMHZ6ONNspJJ530tWPnfeH22GOPNfsQ/vDDD+eqq67KP/7xjyRf3lfuhBNOyC677DJ/zPTp03P55ZfntttuW2DJyeakT58+2W+//bLBBhskSZZeeunsvffe2XvvvTNhwoQ88MADeeCBBzJ69Oi88sorueCCC7LTTjvlV7/6VZErp6mRvctHqc5Z9q695pzLZO/aac6vsewte88jezf/97fsvXCyd/NUKtm7ef6ElZiPP/44l19+eYYOHZpp06bV2Ne2bdvssMMOOemkk9K9e/ciVQi1c9JJJ6Vdu3Y54IADst1222XTTTetcQZYc1gWY0mUW0B79tlna5yRXA7K7TX+Os19+bGFKdeAdtJJJ2X//ffPyy+/nKWWWiqbbbZZWrZsOX9/69ats95662XXXXfNj3/84yJWWn822mijbLTRRgvdd9xxxzX7QPbfRo0alYMPPjgtWrTImmuumddeey0HHnhgDjrooNxzzz3ZbbfdsuOOO2b69Ol59NFH88ADD+Sb3/xmDj300GKXvkRef/31HH300bUev+WWW+bqq69uwIoa3oMPPpiTTz45rVu3zpZbbpm2bdvm+eefz6mnnjr//pGvvPJKTjrppLz//vtZccUVc/755xe77CU2ePDgfOc735kfwv/bsssum8MOOyyHHXZYxo4dm/vuuy/3339/7rrrriYXwike2ZtSIXvXXnPOZbJ37TTn1/jryN6yd3Mme8ve88jezU+pZG8N8CJ76aWXctRRR2XKlCnZYIMNsvnmm6d79+5p0aJFJk6cmOeeey5DhgzJo48+mmuuuSa9evUqdsmwSCuuuGLef//9DBo0KP/85z/zyiuvZPvtt883vvGNYpfWoAYMGFDsEmhg5fQaP/fcc0v0uP9etqs5K6eANs9yyy2X5ZZbbqH7fvKTn+QnP/lJI1dEfbn66qvTs2fPDBgwIJ06dUp1dXXOPPPM3Hjjjdltt91yySWXzB+7yy675LPPPssDDzzQbEP4zJkz06FDhwW2L7300rn22mvzzW9+s8b29u3bN+t7ciXJzTffnC5duuT222+ff4+1GTNm5Jhjjsnvf//7dO/ePYceemi++OKL/OxnP8svfvGLJrksWX1bbbXVctJJJ+Wkk07Kiy++WOxyaCJkb0qJ7E2pKqfXWPaWvf+b7N28yd5fkr1l76ZGA7yIPvnkk/z85z9P+/bt84c//CEbb7zxQse9/vrrOfHEE3PCCSfk3nvvTZcuXRq5Uqid4cOH5+WXX859992Xv/71r/nb3/6Wyy+/PKuuump+8IMfZJ111il2iQ1is802+9oxU6dOTaFQ+Mp7g9B01eY1LhUHHXTQYl8xUigU8vrrrzdQRVA/+vTps9iPKRQK6devXwNU0zheeeWVHH744enUqVOSL+dz2GGHZfDgwdlmm20WGP+DH/wgv/71rxu5yvqz7LLL5oMPPlhge4sWLRY633/961/N/j6KY8eOzUEHHTQ/gCdfXsV63HHH5Sc/+UlOOumkdOnSJZdddlk23HDD4hVaRJqYJLI3pUf2XjTZu3mTvb+a7E1zIHvL3v9L9i4PTTF7a4AX0c0335xp06bVOGtkYb71rW/lxhtvzK677ppbb701xx9/fCNWCYtngw02yAYbbJAzzzwzf/vb33L//ffnkUceyTXXXJNCoZBCoZARI0Zk7bXXzgorrFDscutNdXV1Hn/88fzjH//IKquskm222SYtWrTI008/nb59++add95Jknzzm9/MySefnC233LLIFdfNsGHD8u6779Z6fCkvSTZPqXzRctFFF9Vq3MMPP5yRI0cmSdZff/0GrKhxlGNAO/jggxf7MYVCITfddFMDVNPwBg8eXOux//1FVHN+jT/77LN07dq1xrZ5Swt27NhxgfFt2rTJjBkzGqO0BrH++uvnwQcfzM9//vOvXSZx1qxZefDBB7P11ls3UnUNY+rUqVlxxRUX2L7yyisn+XIpxdtvv33+FzGl4Pnnn8/cuXMX6zG77757wxRDsyF7U4pkb9l7YWTv5kP2rj3Zu3mRvb8ke39J9m6+SiF7a4AX0fDhw7Pbbrt9ZQCfZ4UVVsgee+yRoUOHNusQ/r8/NPPuu/bkk09mwoQJNcY2xSUTlkQ5zjlJKisrs/XWW2frrbfOzJkzM2zYsDzwwAN58sknc/fdd2fQoEHp3bt39txzz+yyyy7FLrdOPvvssxx55JF5+eWXU11dnSRZb731cvbZZ+fII49M27Zts/3222f69Ol5+eWXc9RRR+XGG29s1mc2Dxs2LEOHDq31+FII4f/9RcvKK6+cbbfdtiS/aNljjz2+cv/48eNzwQUXZOTIkenQoUNOPvnk7Lvvvo1UXcMpx4D2/vvv12pcVVVVJkyYkOrq6mZ9P8kxY8Z87Zj/fn8vvfTSOfHEExu+sAZUXV2dFi1qftyf9xo259dyUfbbb7/85Cc/ya9+9aucddZZC8x9nqqqqpxzzjmZOHFi9ttvv0ausn5VVVXVuOfrPPPuJ3jkkUeWVABPkjvvvDN33nlnrcbO+73V1EI4jU/2Lo8cWo5zTmRv2bsm2bv5kL2/nuzdPMneX5K9Ze/mrhSytwZ4Eb3//vuLdW+Ptddee7E+JDRF//tDMy+w9O/ff4E/Bs39j/085TTnI488Mptvvnk222yzrLPOOvPn0qZNm+y6667ZddddM2nSpDz44IO5//778/TTT+fvf/97sw/hV155ZcaMGZNzzjknvXv3zvjx43PhhRfmpz/9aXr27JmBAwfOP9vv008/zV577ZUbbrihWYfwo446Kt/5zneKXUajKccvWv7XnDlzcv311+faa6/NjBkzsttuu+WMM86Yf0Zrc1eOAe3RRx/92jEvv/xyzjvvvPz73//OiiuumLPPPrsRKmt8c+fOzQ033JA//OEPmTlzZnbeeef06dNngTO4ado22WSTHHbYYbn++uvz97//PYceemh69+6d5ZZbLtXV1fnoo4/yzDPP5JZbbsmYMWNy0kknZe211y522Q2qR48exS6h3u2zzz5lu6QcS072Lu0cOk85zVn2lr1Llewteyeyt+xNUyd7L0j2bpo0wIuoZcuW+eKLL2o9fubMmWnXrl0DVtSwaru0Tykptzn//e9/z+OPPz5/KapNNtkkvXv3zuabbz7/j1ynTp1y4IEH5sADD8y4cePyl7/8pchV192jjz6a/fbbL/vvv3+SZNVVV80555yTQw89NAceeGCNpW46d+6cffbZJwMHDixStfVjtdVWK6mA+XXK8YuW//bss8/m/PPPz9ixY7Pqqqvm3HPPTe/evYtdVqMpx4A2derU/OY3v8mdd96ZioqKHHXUUTn22GPTunXrYpdW755//vmcf/75efvtt9OzZ8+ce+65+fa3v13ssurN/y6bOXPmzBQKhdx777154YUXaox96623Gru8enfqqadmhRVWyOWXX55zzjlnoQ2Pdu3a5bzzziuJK2jK0SabbJJdd9212GXQzMjepa/c5ix7y96lSvaWvWVv2bu5kr1l71JTCtlbA7yI1lxzzTz22GO1vg/IyJEjs/rqqzdwVQ3n65b2KUXlNucXX3wxr7/+el588cWMGjUqL730UkaMGJFCoZAOHTpk0003Te/evdO7d++sueaaWWmllXL00UcXu+w6++ijj7LaaqvV2DbvZ3VhZ38tv/zymTJlSqPURv0oxy9aki+/ULj44otz3333pXXr1vnFL36Rww8/fP7yPuWg1APawtx777255JJL8sknn2SzzTbLueeeu8DvuFIwadKkXHLJJRkyZEhatWqV448/PkcccURatWpV7NLq1dChQxe6bOaQIUMWOr45Xw03zwEHHJA99tgjI0aMyHPPPZd///vfqa6uTvfu3dOrV69sv/32zf6ekf9tYfcG/aovW0phaVRYXLJ36Su3Ocve/yF7lxbZW/aWvWXv5kr2lr1l76ZHA7yIfvSjH+Wcc87Jgw8+mJ122ukrxw4ZMiRPPfVULr/88kaqrvjef//9nHPOObnhhhuKXUqjae5zbtGiRdZff/2sv/76OeSQQ5IkH374YY1QfvHFF2fu3Lnp2LFjNttss/Tu3TsHHHBAcQuvo9mzZ6dNmzY1ts0LKQsLK4VCoca96Wj6yvGLljvuuCOXX355pkyZku9+97s5++yza3XfzFJRLgHtv73zzjs5//zz8+yzz6ZTp0759a9/3eTu3VNf7rrrrlx22WWZMmVKtthii5x77rlZeeWVi11WvRswYECxSyiatm3bZqeddvraz9ilYFFftCQL/7JFCKccyd5frbnn0CXR3Ocse/+H7F1aZG/ZW/YuLbJ36ZO9vyR7N00a4EW05557ZsiQITnttNPy5ptv5sADD0z37t1rjJk4cWJuvPHGDBgwIFtvvXV++MMfFqna+vHyyy/nmmuuyahRo5Ik3/rWt/Lzn/88m2yyyfwx1dXV+fOf/5wrr7wyM2fOLFap9aYc5/zfll9++ey8887Zeeedk3y5tM99992XQYMG5eH/196dh0VVLn4A/w6bgKi4keKWW4xbisgiXbUEcQsFl9ySNPebpqamFoULiuaWpWnqFbe6LgkIigiKS4osCsg11KtXc1fcQCRxYDi/P3yYXyOogMwczjnfz/P0PHnmnfy+oTDf857zngMHEB0dLfkSrjQTJ06Eg4OD2DGMSkknWs6fP4+AgACkpaXhrbfewvz58+Hl5SV2LKNSSkErpNFosHr1amzcuBH5+fkYOHAgpk+fjqpVq4odrdxduHABc+bMQWpqKmrVqoXly5fLuqTJZStIejmlnWjx9fWV9fdjMhx2b2X0UCXO+e/YveWH3fs5dm/5Yvdm95YLdm/5Y/eWJi6Ai8jExARr167F9OnT8fPPP2PdunWoW7cuateuDVNTUzx48ADXrl2DIAjo2bMnFixYIHbkN3Ly5EmMGTMGWq0WjRs3hpWVFZKSkjBixAgEBwfD2dkZN27cwLRp05CWlgYbGxvMnTtX7NhvRIlzflFubi6SkpKQmJiI06dP4+zZs8jLy4OFhYVuSzY5yMzMxK1bt3S/LrwC+eHDh3rHgedXt0rZxIkT9X6t0Whw/vx5ZGRk6La5UavVsnxekRL0798fBQUFAICaNWti27Zt2LZt2yvfo1KpsHnzZmPEMyilFTQAOHr0KObPn4+bN2/CwcEBc+fORdu2bcWOZRCLFy/G1q1bodVq8cEHH2DKlCmwsbEp8j36RcXdaSJX27dvx/Hjx7Fq1Sqxo5RJSbc2/jupf/8qy4mWU6dOGSCJcSjtGb9Ufti95d9DlTjnF7F7s3uTtLB7s3uze+tj95YOdu+SYfcWn0oQBEHsEAT8/vvv2LNnD9LS0nDv3j3dB1knJyf07dsXbm5uYkd8YyNHjkRaWho2bNgAR0dHAMDdu3cxfvx4mJubIygoCH5+fnjw4AG8vLzwzTffoHbt2iKnfjNKnHN+fj5SU1MRHx+P+Ph4nDlzBnl5eTA3N8e7776rK96Ojo6y2c5IrVYX+9wWQRBe+TyXc+fOGTKWwd2/fx/Lly9HdHQ0cnJy9F6zsrJC9+7dMXXq1CJ310iRWq3G119/DQ8PD92xrKws+Pr6YtmyZbq/34ViYmKwaNEiSX6Nu3btWqb3xcbGlnMS43pZQXsdKRe0zz//HDExMQCADz74AH5+fjA1NX3t+5ydnQ0dzSDUarXu30vzrC0p/j0uq4CAAOzcuVOycy7p96+CggLcvXtX93NaqvMtjdu3byM0NBRhYWG4fv26IuZM9DLs3vLsoUqcM7v3/2P3ZveW4teY3Zvd+3XYveWL3Vu+2L0rFi6Ak9G4ublhwIABmD59ut7x48ePY8yYMWjatCnu3buHOXPmSH67uUJKm/OYMWNw6tQp5ObmwsTEBK1atYKbmxtcXV3h5ORUZBsruZg9e3aZ3iflK6lSU1Mxbtw4ZGVloW3btnBzc4OdnR3MzMyQkZGBpKQkJCUloWrVqlizZg3at28vduQ3otQTLUqixIL29zkDr5+31AtLWa+sfvHOGzmTegkviTNnzmDOnDk4d+4c6tevj2+++QZdunQRO5ZBPHv2DNHR0QgJCUFCQoLu73CnTp3w888/ix2PiAxIaT0UUN6c2b1Lh91bOti95Y/dm937Zdi95YXdm927IuAW6BKSkJCACxculGmLiYogOzsbTZs2LXK8efPmEAQBmZmZ2LVrlyyeLVBIaXP+/fffYW5uDh8fH4wbNw5vv/222JGMQspluiwePHiAzz77DJUrV8ZPP/0EJyenYselp6djypQp+Pzzz7Fnzx7UrFnTyEnLj4+PT6mKmZKcOnUKoaGhkt8qVElFq5DSvneV5Wsst2eDKll2djaWLVuGnTt3wsTEBOPGjcM///lPWW4ZmpqaipCQEOzfvx9PnjwBANSoUQP9+/fHoEGDUK9ePZETElV87N7So7Q5s3srA7s3/R27t3Qp7XsXu7eysXuze1ckXACXkMjISOzcuVOyJVyr1cLMrOgfucKtuMaPHy+bMlpIaXMeOHAgEhISdNt8NGnSBB07doSbmxucnZ1RrVo1sSNSOdi2bRtycnKwfft2NGjQ4KXjWrZsieDgYHh7e+PXX3/FpEmTjJiyfC1atEjsCBXKnTt3EBoaitDQUFy/fh0AFFnCpV7QfH19S/2emzdvGiBJxVN4cunAgQOSfmYTPbdnzx589913ePDgAVxcXBAQEFDsIomUZWRkICwsDKGhofjzzz8hCAKsrKzg7u6OuLg4zJs3T28rUSJ6NXZv6VHanNm9lYHdm9i9n2P3li92b3lh92b3rmi4AE4Vhty+GZaE3OY8f/58AMCtW7cQFxeH+Ph4REVFYdu2bTAxMYFarYarq6uulFtbW4ucmMri4MGD6NOnzysLeKF69erB19cX0dHRki7hfn5+mDBhAjp27Kg7lp+fj5SUFKjValSpUkVvfHh4OGbNmoX09HRjRzUYjUaj284nPj4egiBAEAS4urpiyJAhYsczKqUVtGfPniEqKgqhoaFISkrCH3/8IXYkgyg8uRQWFoZr165BEATY2tqKHYvewOXLlzF37lwkJiaievXqWLRoEXx8fMSOVa7279+PkJAQxMXFQavVomrVqvD29oaXlxc6deqEe/fuwdPTU+yYRFTByK2HloTc5szurQzs3s+xe7N7s3vLC7u3/LB7s3tXVFwAJ6JyZ29vjwEDBmDAgAEAgIsXLyI+Ph4nT57E7t27ERwcDDMzM7Ru3RodO3bE5MmTRU5MpXHjxg18/PHHJR6vVqsRGhpqwESGl5iYiIEDB+ody87Ohp+fHzZu3KhXzgsJgmCseAb14nY+hfPq3bs3PvvsMzRp0kTkhMahxIKWnJyMkJAQREVFIScnB4IgoHnz5mLHKleFJ5dCQ0MRHx+PgoICCIKAdu3aYfDgwejVq5fYEd9IWFhYqcZfuXLFMEGMTKPRYPXq1di4cSPy8/MxcOBATJ8+HVWrVhU7WrmbOnUqrK2tMXToUHh4eMDZ2Rmmpqa617mFKBGRvLF7yxu793Ps3uze7N7Sx+6tj91beti9pYkL4GRUp06dglar1TuWk5MDADhx4gTu3r1b5D1Sv1pIiXN+UfPmzdG8eXMMHz4cGo0GUVFR+PXXX5GamoozZ86whEuMubk5nj17VuLxubm5sr3jQC5F+0XFbedja2sLX19ftGvXDgEBAejVq5fsC7jcC1px7t69q/vaX716FQBgZmaGXr16YciQIejQoYPICcvHmTNnsHv3br2TS1WrVkV2djbmz59f5KSbVM2aNatUJUwQBMmXtqNHj2L+/Pm4efMmHBwcMHfuXLRt21bsWAZTv3593LhxAyEhIbhy5Qr+85//wNPTE40bNxY7GhGJTIk9VIlzfhG7t7ywe/8/dm92b7lh92b3ZveWFnZvaeICOBnVzp07sXPnTr1jhR9iN2zYoPeNv/AHgdQLqRLn/HfXrl3DmTNncObMGaSlpeH8+fPIy8tD5cqV0blzZzg7O4sdkUrpnXfewdGjR0v8TMQjR46gWbNmBk5F5WXs2LE4ceIEtFot6tati6FDh8LT0xOurq4wMTHBzZs3ZXvyoZBSClohjUaDgwcPYvfu3YiPj9edOG7atCkuX76MJUuWoEePHiKnfHMZGRnYs2cPQkNDceXKFQiCAHt7e/j6+sLLywtvvfUWunXrhho1aogdtdwEBQWJHcGoPv/8c8TExAAAPvjgA/j5+UGj0SApKemV75PyZ5GDBw/izJkzCA8PR1RUFI4fP47ly5ejSZMm8PLyQqtWrcSOSEQiUWIPVeKc/47dW37YveWN3Zvdm92b3Vuq2L3ZvaWCC+AiunXrVqnGF165LFVK+0EAKG/OWVlZSEtL0xXutLQ0ZGVlQRAEVKtWDe3bt8fUqVPh7OyMli1bwsTEROzIVAZ9+/bFt99+i8jIyNdehRsWFoa4uDgsX77cSOnoTR07dgzW1tbw8/PDsGHDULt2bbEjGYUSC1paWhpCQkIQGRmJx48fw8TEBI6OjvDy8oKXlxe0Wi08PT1hbm4udtRy0bVrVxQUFECtVmP8+PHw8PBA69atda/fvHlTxHSG4evrK3YEo4qOjtb9e2xsLA4fPvzK8YWLH+fOnTN0NINq27Yt2rZti6+++grHjx9HREQEDh06hDVr1kClUkGlUuHw4cNQq9WoV6+e2HGJRMHuLX9KmzO7tzKwe8sbuze7N7u3fLB7s3uze1dMXAAXUdeuXRW1NUZZfhBI/Qei0ubs6uoKlUoFQRBQvXp1uLi4wNnZGc7OznBwcJD0n1/6f/3790dYWBi+/PJLXLhwAcOGDYOdnZ3emIyMDAQHB2PLli3o0qULevbsKVJaKq2JEydi3759WLt2LX7++Wc0btwYnp6e8PT0xLvvvit2PINRYkH76KOPYGVlhU6dOqFz587o2rWr3kkGuc05Pz8fVlZWqFWrFqysrIpskaoEd+/exenTp5GRkQEAsLOzg6OjI+rWrStysvKhtMWPF5mamqJLly7o0qULcnNzERMTg7179+LEiRP47bffEBISAldXV/Tv3x8ffvih2HGJjIrd+/Wk/nNfaXNm91YGdm95Y/dm9y4ktzmze7N7yx27t3RwAVxEPj4+LCXFePbsGaKiohAaGoqkpCT88ccfYkcyOLnMuUePHnBxcYGLiwu33ZIxExMTrF27FtOnT8fPP/+MdevWoW7duqhduzZMTU3x4MEDXLt2DYIgoGfPnliwYIHYkakUJk6ciIkTJ+Ls2bOIiIhAZGQk1q1bh/Xr16Nu3bpwcnKS5c8uJRY0KysrPH36FP/73/9QvXp1WFtbo3PnzrCxsRE7mkEcPnwYERERiIiIwPLly6FSqVCrVi1069YN3bp1k/XVuRcvXkRgYCCSkpIgCILeVoomJiZwcnKCv78/HBwcREz55pR21f2rWFpawtvbG97e3nj06BEiIyMRERGBkydPIj4+niWcFIfdu3hy6aGlIZc5s3srA7u3vLF7s3uze8sPu7fysHtXbCpB7g8TIclITk5GSEgIoqKikJOTA0EQ0Lx5c0RERIgdzWCUOGeSl99//x179uxBWloa7t27B0EQYGdnBycnJ/Tt2xdubm5iRywXarUaX3/9NTw8PHTHsrKy4Ovri2XLlsHR0VFvfExMDBYtWiT5rX2A53dAnTx5EhEREYiJicGTJ08AAPXq1UP//v3h4+MDe3t7kVO+udu3b+sK2sWLF4staF5eXli9erXenwMpy83NRWxsLMLDw3H8+HFotVqYm5ujY8eO6NatG9RqNQYMGCCrORc6f/687iTT7du3oVKpdCclZs2ahU8++UTsiOXm0KFDmDJlClQqFTw9PeHm5gY7OzuYmZkhIyMDSUlJiIqKQn5+PlasWAFPT0+xI5MBXb9+Hfv27cP48ePFjkJEIlJiD1XinEle2L3Zvdm9pYvdm92b3Vt52L0rBi6AS8Tt27cRGhqKsLAwvWcsSN3du3cRFhaG0NBQXL16FQBgZmYGLy8vDBkyBB06dBA5YflT4pyJpE6tVhd75fXrtseUQwn/O41Gg9jYWOzduxdHjx5FXl4eTExM0LFjR/zrX/8SO165UVJBK5SZmam7SjU1NVXvtbFjx2L8+PGwsrISJ5yBJSYmIiIiAtHR0cjKyoJKpUL9+vXRr18/+Pr6ok6dOmJHLLMbN27A29sbjRs3xsqVK9GgQYNix925cweff/45Ll26hD179rx0XEU3e/bsUr9HpVJh4cKFBkhDRFLF7i0fSpwzkdSxez/H7s3uLUfs3uze7N5kbFwAr8CePXuGAwcOIDQ0FAkJCSgoKICZmRnOnj0rdrQ3otFocPDgQezevRvx8fG6rW6aNm2Ky5cvY8WKFejRo4fIKcuXEudMyqHRaHD+/HlkZGTorkJXq9WoVKmS2NHKTVk+2AHyfibO48ePERUVhYiICJw+fRrp6eliRzIIORe0l7l58yYiIiKwd+9eXLp0CSqVCtbW1ujZsyf69+9f5K4LucjLy8OxY8cQHh6OI0eO4NmzZ5L/3LVgwQLs2bMHUVFRes+YK05mZiZ69eqFPn36YNasWUZKWL7UanWp36NSqSR9wrQsd4ioVCocPHjQAGmIpIvdWz6UOGdSDnbvl2P3lj52b3ZvKX/uYvd+PXZvEgMXwCuglJQUhIaGIjIyUrc1V506dTBw4EB89NFHqF27ttgRyyQtLQ0hISGIjIzE48ePYWJiAkdHR3h5ecHLywtarRaenp6y2u5FiXMm5bh//z6WL1+O6Oho5OTk6L1mZWWF7t27Y+rUqbCzsxMpIRnLqVOnZH8HjRwLWkmcP38e4eHhiIyMxJ07dyRfWErqyZMniI6Oxt69e7Fx40ax45RZz5490blz5xKfSPzuu+9w+PBh7N+/38DJDOPmzZtlep+Un0HXtWvXIscEQcDt27dRq1YtWFhYFPu+2NhYQ0cjkgR2b/n0UCXOmZSD3ZsKsXvLF7s3u7eUsHs/x+5d8ZmJHYCeu3v3Lvbs2YOQkBBcvXoVgiDAxMQEADBlyhSMHTtW92up+uijj2BlZYVOnTqhcxjlLQ4AAEXGSURBVOfO6Nq1q94VUWX9xlmRKXHOpAypqakYN24csrKy0LZt22KfaxMWFobY2FisWbMG7du3FzsyldLZs2eRmpoKQRDQokWLYkv2kydPsHTpUuzatQt//PGHCCmNx9zcHB4eHvDw8NAraHKnVquhVqvx5ZdfIiEhQRFzBgAbGxt4enoiOTlZ7Chv5Pbt22jWrFmJxzdp0gT//ve/DZjIsKRcpsuquDL98OFDuLu7Y8mSJejYsaMIqYgqNnZvefZQJc6ZlIHdW/7YvfWxe7N7SxG7t/yxe0sTF8BFVLg1V0hICE6ePAmtVotKlSqha9eu6NatGxwcHODr64vmzZtLvoAD0D3D5X//+x+qV68Oa2trdO7cGTY2NmJHMxglzpnk78GDB/jss89QuXJl/PTTT3Bycip2XHp6OqZMmYLPP/8ce/bsQc2aNY2clMrir7/+whdffIGjR4+icJMYlUoFd3d3rFmzRndF45EjRxAQEIC7d++iYcOGYkY2OrkUtNKyt7eX/MnjGzduIDg4GCkpKQCAli1bYsyYMWjUqJHeuOjoaMyfPx/3799HYGCgGFHLhaWlJR4/flzi8Y8fP0bVqlUNmEhcGo0Gly5dgqWlJZo0aSJ2HIN51fMxiZSK3Vv+PVSJcyb5Y/eWN3bv12P3li5271dj95YHdu+KjwvgIurUqRMeP36MatWqoXfv3vDw8EDnzp1hZWUFQH5XKJ88eRKxsbEIDw/H7t27sXPnTpibm6Njx47o1q1bmZ4dUdEpcc4kf9u2bUNOTg62b9+OBg0avHRcy5YtERwcDG9vb/z666+YNGmSEVNSWf344484cuQIOnXqBF9fX1hbW+Po0aPYsWMHvvvuO/j7+2Px4sXYtGkTTE1NMWrUKHz++edixy4XSitoAHDmzBmsWbNGb86fffaZ3l0HgiBg06ZN+OGHH5CbmytW1Dd27tw5DB8+HE+ePIGlpSUsLS2Rnp6OyMhIbN++He+88w6ys7Ph7++P6OhomJqaYuzYsWLHfiOtW7dGdHQ0Ro0aVaLxBw4cQIsWLQycyrCys7Oxfv16pKSkYOvWrbrjERERCAwM1J2UaNy4MRYuXIh27dqJlJSIjIndW/49VIlzJvlj95Y3dm92b3Zvdm8pY/cmKeACuIiysrJgbW2N7t27w9XVFe3bt9cVcDmytLREr1690KtXL2RmZiIyMhIRERE4duwYjh07BuD5VTNpaWlwd3eXxf8LJc6Z5O/gwYPo06fPKwt4oXr16sHX1xfR0dEs4RIRGxsLFxcXrF+/Xnfs/fffR82aNbF161bY2toiODgYarUaQUFBkv/AXkiJBe3kyZMYM2YMtFotGjduDCsrKyQlJWHEiBEIDg6Gs7Mzbty4gWnTpiEtLQ02NjaYO3eu2LHLrPAkwrJly9C7d28Az58X+sUXXyAwMBBLly6Fn58f/vzzT7Rp0waBgYFwcHAQOfWbGTBgAKZMmYLg4GCMHDnylWPXrl2LtLQ0vb/7UpOTk4NBgwbh8uXLqFOnDvLz82FmZoa0tDTMnDkTgiBg0KBBaN68OcLCwjBy5EiEhYUVOdFGRPLD7i3/HqrEOZP8sXvLG7s3uze7N7u3VLF7k2QIJJqkpCTh22+/FVxcXAS1Wi20aNFC+Oijj4QNGzYIV69eFW7cuCE4ODgIBw8eFDuqQd24cUNYs2aN0Lt3b8HBwUFQq9VC+/btha+//lpITk4WO55BKHHOJB/t2rUTtm/fXuLxO3fuFBwdHQ2YiMpTu3bthE2bNhU5funSJcHBwUFo0aKFMH/+fEGj0YiQznDGjx8vtGrVSti7d6/u2JkzZwQPDw9h+PDhwt27d4Xu3bsLDg4OwoABA4Tz58+LmLZ8jBgxQmjfvr3ez507d+4IPj4+wsCBA4VLly4J7u7ugoODgzBp0iQhIyNDxLRvzt3dXZg/f36R4wcOHBBatmwpDB06VGjdurWwfv16QavVipDQMCZNmiSo1Wph2rRpQkpKit7fXa1WK6SkpOjGfPPNNyImfXM//PCD0KpVK2H//v16x8eOHSuo1WohKChIdyw3N1fw8vISZs2aZeyYBvfw4UPBwcFBiIuLEzsKUYXB7v2cEnuoEudM8sHuLW/s3uze7N7s3lLF7v0cu3fFxzvARdShQwd06NAB33zzDY4ePYqIiAgcOXIEZ86cwdKlS9GgQQOoVCr89ddfYkc1qHr16mH8+PEYP348zp8/j/DwcERGRuK3337D7t27ce7cObEjljslzpnkw9zcHM+ePSvx+NzcXFhbWxswEZWnp0+fokaNGkWOV69eHQDQrVs3+Pv7GzuWwaWlpWHw4MG6q5MB4N1338WXX36JqVOnYurUqbh58yamT5+OTz/9VBbPBz137hyGDBkCR0dH3bG33noL06ZNw5gxYzB58mTk5+djxYoV6Nmzp4hJy0dWVlax25+2adMGWq0WFy5cwNatW2W3LdfSpUsRFBSE7du3Y9++fTA1NYWtrS1MTU2RmZkJjUYDExMTjBo1ClOnThU77huJjo5G37590aNHD92xnJwcnDhxAgAwdOhQ3fFKlSqhT58+2LVrl9FzEpHxsXs/p8QeqsQ5k3ywe8sbuze7N7t3O+OHMyB2b3Zvqni4AF4BmJmZwcPDAx4eHsjJyUF0dDQiIiKQkJAAQRAwc+ZM7N69G/369UP37t1RqVIlsSMbjFqthlqtxpdffomEhATs3btX7EgGp8Q5k7S98847OHr0KPz8/Eo0/siRI2jWrJmBU5GhqVQqAICPj4+4QQxEiQUtOzsbTZs2LXK8efPmEAQBmZmZ2LVrFxo2bChCuvKXn59f7GcoS0tLAMDYsWNl9fUtZGFhgYCAAPj5+SEsLAxpaWm4d+8eBEFAkyZN4OTkBG9vb1lsRXbjxg29og0ASUlJyM/PR4MGDYr8Wa5bty4ePHhgzIjlbtWqVUWO5ebmQqVSYc+ePTh9+nSR11UqFT777DNjxCOqcNi9/58Se6gS50zSxu6tTOze7N5Sx+7N7s3u/Ry7t/i4AF7BVK5cGb6+vvD19cWDBw+wd+9eREREID4+HvHx8Zg/fz6SkpLEjmkUrq6ucHV1FTuGUSlxziQ9ffv2xbfffovIyEj06tXrlWPDwsIQFxeH5cuXGykdGVphYZEbJRY0rVYLM7OiHwUtLCwAAOPHj5dNAS+J1q1bix3BoBo3biz5q8xfx8TEBAUFBXrHTp48CQBwd3cvMv7hw4ewsbExSjZDKa6EFwoLCyv2OEs40XPs3v9PiT1UiXMm6WH3VjZ2b/lg99bH7i197N762L0rLi6AV2A1a9bEJ598gk8++QRXr15FeHi4pK9QLukVq3+nUqmwefNmA6QxDiXOmeSvf//+CAsLw5dffokLFy5g2LBhsLOz0xuTkZGB4OBgbNmyBV26dJHFFk5KUnjFeWlfkzO5F7TiFHeFupwp4c/23bt3cfr0aWRkZAAA7Ozs4OjoiLp164qcrHw0a9YMKSkpGDZsGABAEATExMRApVKha9euRcYfOnRI8n/Ot2zZInYEIllg95Z+D1XinEn+2L3lj927KHZv+VPCn212b33s3iQWLoBLRKNGjTBp0iRMmjRJ7ChllpiYWOxxlUoFQRBe+pqUKXHOJH8mJiZYu3Ytpk+fjp9//hnr1q1D3bp1Ubt2bZiamuLBgwe4du0aBEFAz549sWDBArEjUyktXLgQK1as0DsmCAJUKhWmT59e5GptlUqFgwcPGjOi0fF7szxcvny5yN182dnZAIALFy4Ue1W+s7OzUbIZ0sWLFxEYGIikpCQIgqD3GcTExAROTk7w9/eHg4ODiCnfnI+PDxYsWIA2bdrgvffew86dO3Hr1i00bNgQnTp10hu7du1apKamSv65ii4uLmJHIJIddm9pUuKcSf7YveWP3bsofm+WB3Zvdu9C7N4kJi6Ai8jPzw8TJkxAx44ddcfy8/ORkpICtVqNKlWq6I0PDw/HrFmzkJ6ebuyo5eL8+fNFjj18+BDu7u4IDg7W+/8gF0qcMylDlSpV8PPPP+P333/Hnj17kJaWhv/+978QBAF2dnbw8fFB37594ebmJnZUKiV7e3sAKPZEYeGVqi++9rKTilKjxIJ26tQpaLVavWM5OTkAgBMnTuDu3btF3iPlZ9GtXbsWa9euLfa1xYsXF3v83LlzhoxkcIcOHcKUKVOgUqnQo0cPuLm5wc7ODmZmZsjIyEBSUhKioqIwYMAArFixAp6enmJHLrPBgwfj9OnTCAoK0i14VKtWDUuXLoWJiQkA4LfffsO6detw/fp1ODk5YciQISKnNiyNRoNLly7B0tISTZo0ETsOkWjYveXfQ5U4Z1IGdm/5Yvdm92b31sfuLR3s3kWxe1dMKkEuPzklSK1WY8mSJfD29tYde/ToEdzd3bFx48YiBS08PBwzZ86U/A+Dv3v06BE6duyoqEKqxDkTEVV0arX6pVeaF16BXxwp/0x+2Zz//tHw768X/n+Q6px//PHHMt1NMHHiRAOkMY4bN27A29sbjRs3xsqVK9GgQYNix925cweff/45Ll26hD179rx0nFSkpKQgJSUFNjY28PT0RI0aNXSvrVq1Cnv27IG3tzfGjRtX7PMHpSY7Oxvr169HSkoKtm7dqjseERGBwMBAPH78GMDzZ9EtXLhQds9UJCoJdm9l9lAlzpmIqKJj9/5/7N762L2lh937OXbviot3gFdAvCaBiKQiNzcXlpaWRY5funQJVatWLfJ8Mqr4wsLC0KFDB9SvX1/sKEb12WefKW6rtaCgILEjGJWUt7Itq82bN8Pc3BwbNmzQK6IvqlOnDtatW4devXrhl19+waxZs4yYsvw5OjrC0dGx2NcmTpz40hMreXl5SE1NLfZu0IoqJycHgwYNwuXLl1GnTh3k5+fDzMwMaWlpmDlzJgRBwKBBg9C8eXOEhYVh5MiRCAsLQ6NGjcSOTlQhsHsTkVSwe8sPu7dysHvLH7t3Ueze7N4VARfAiYio1DQaDRYvXoyIiAgcO3asSBFfvnw5jh07hv79+2PmzJmwtrYWKSmV1uzZs/Hdd98proQrsaD5+vqKHcGoitv+Vu6OHz8OX1/fVxbwQra2tvDx8cHhw4clX8LLKisrC35+fsXeDVpRbdy4EdeuXcP333+PHj166I6vXr0agiDgk08+0X09BwwYgD59+mDt2rWKOwlHREQkVeze8sXurRzs3vLH7l067N5kLCZiByAiImnRaDQYNWoUfvnlF9jb2+PRo0dFxnzwwQdwcHDAjh07MHr0aOTn54uQlMpCqXdC+fn54eTJk2LHMCoPDw8cOnRI7BhGk5iYiPv374sdw6hu376NZs2alXh8kyZNcOfOHQMmqvik9j0wOjoaffv21SvgOTk5OHHiBABg6NChuuOVKlVCnz59FPe9joiISKrYveVNap87ywu7t/yxe78eu7f0vgeye0sTF8CJiKhUNm3ahKSkJPj7+yMsLAx169YtMmbgwIHYvXs3Jk6ciOTkZGzbtk2EpEQlp8SCdvPmTfz1119ixyADsrS01D2DqiQeP36MqlWrGjARlbcbN26gdevWeseSkpKQn5+P+vXro2HDhnqv1a1bFw8ePDBmRCIiIiojdm+SI3ZvkiN2b/lj95YmboFORhMWFlbkWE5ODgDgxIkTuHv3brHv8/HxMWAqw1LinEn+IiIi4OHhgY8//vi1YydOnIjExETs2bMHI0aMMHw4KheZmZm4detWqd5jb29voDREVFatW7dGdHQ0Ro0aVaLxBw4cQIsWLQycisqTiYkJCgoK9I4VXmXu7u5eZPzDhw9hY2NjlGxEJB4l9lAlzpnkj91b/ti9ieSB3Vv+2L2liQvgInvxg05WVhaA539BXvwAVNxWR1Iya9YsqFQqvWOFW11s2LABKpVK9+vCf1epVJIupEqcM8nf1atXMXjw4BKPf//997Fy5UoDJqLytnDhQixcuLDE41UqFdLT0w2YiKh8xMTE4OrVqyUer1Kp8NlnnxkwkWENGDAAU6ZMQXBwMEaOHPnKsWvXrkVaWhrWr19vpHRUHpo1a4aUlBQMGzYMwPPPmTExMVCpVOjatWuR8YcOHULTpk2NHZOoQmD3lncPVeKcSf7YveWP3Zvkit375di9pYndW5q4AC6yl33QmT59ughpDCsoKEjsCEanxDmT/FlbW0Or1ZZ4fKVKlWBpaWnARFTenJyc0KBBA7FjGJ3SChoA7Ny5E3FxcSUer1KpSnWCpqKJiYlBdHR0icdL/Wvco0cPeHl54bvvvsMff/yBjz/+GK1atYK5uTkAoKCgAGlpadi4cSNiYmIwcOBA/OMf/xA5NZWGj48PFixYgDZt2uC9997Dzp07cevWLTRs2BCdOnXSG7t27VqkpqbC399fpLRE4mL3ljclzpnkj91b/ti9S0bqvQxg934dqX+N2b3lj91bmrgALiIfH58iVyjLma+v72vHZGVlwdLSEpUqVTJCIsNT4pxJ/po0aYLk5GT4+fmVaPzp06dRr149A6ei8jRo0CB4e3uLHcPolFbQgOfPK0pKSirxeKmX8HHjxhW7NZWcLV26FEFBQdi+fTv27dsHU1NT2NrawtTUFJmZmdBoNDAxMcGoUaMwdepUseNSKQ0ePBinT59GUFCQ7o7GatWqYenSpTAxMQEA/Pbbb1i3bh2uX78OJycnDBkyROTURMbH7l2U3HqoEudM8sfuLX/s3iXD7i097N7s3nLD7i1NXAAX0aJFi8SOYHR5eXkICQlBamqq3hXaiYmJmDNnDq5cuQKVSgV3d3cEBATI4ipIJc6Z5M3X1xcBAQGIj4+Hm5vbK8cmJCQgOjoakyZNMlI6orJTYkH76quv4OHhIXYMo2natClcXFzEjmFUFhYWCAgIgJ+fH8LCwpCWloZ79+5BEAQ0adIETk5O8Pb2RqNGjcSOSmWgUqmwdOlSDBs2DCkpKbCxsYGnpydq1KihG3Pnzh0IgoAJEyZg3LhxunJOpCTs3srooUqcM8kbuzfJFbu3/LF7s3vLDbu3NHEBXESjR4+Gj48PPD09FbFFUV5eHj799FMkJSXB3Nwc8+fPh5mZGa5cuYLRo0cjLy8PnTp1QrNmzXDgwAEMGjQI4eHhqFWrltjRy0yJcyb58/Hxwe7duzF+/HiMGzcOAwcOLPJnNiMjA7t27cKGDRtQv359DB06VKS0RCWnxIJWvXp13iWiEI0bN+ZV5jLm6OgIR0fHYl+bOHEiJk6cWOxreXl5SE1NhVqtRpUqVQwZkUhU7N7y76FKnDPJH7s3yRW7N8kZu7e8sXtLCy9BEFFiYiJmzJgBd3d3zJo1C3FxcRAEQexYBrNt2zacOnUKM2bMQFJSEszMnl9/8eOPP0Kj0cDb2xvr1q3Dl19+id27d8PU1BRr164VOfWbUeKcSf7Mzc2xevVqtG3bFitXrkSnTp3g4eGBwYMHY+DAgejatSu6dOmCH3/8EQ4ODggODuYPdgmxt7eHtbW12DGIiMgIsrKy4Ofnh7Nnz4odhcig2L3l30OVOGeSP3ZveWP3JiJSDnZvcfAOcBGdPHkSBw8exP79+7Fv3z7s2bMHtWrVgre3N/r06QO1Wi12xHK1d+9edO/eHaNGjdId02g0iI2NhUql0jtua2uLfv36Yd++ffD39xcjbrlQ4pxJGWrWrInNmzcjOjoa+/btQ3p6Oi5cuAATExPUqlULPj4+6NatG7p27Sp2VCql2NjYV75eUFCAO3fuoFatWrCwsDBSKqI3N3HiRDg4OIgdw6hK+rzIv1OpVNi8ebMB0lQM9+7dg62tLczNzYu8Vq1aNWzZsgUtWrQQIZl45LwISFSI3Vv+PVSJcyZlYPeWL3Zvkit275Jh92b3JsPjAriIKleujL59+6Jv377Izs7GgQMHEBkZic2bNyM4OBjNmjVD37594e3tjbfeekvsuG/szz//hK+vr96x06dPIzc3F3Z2dkV+MDZs2BAZGRnGjFjulDhnUhYvLy94eXmJHYOM6OHDh/Dw8MDGjRvRsWNHseOUGyUWtKCgoJdu2yRHL9uGqtBff/2FjRs3wsfHB/Xr1zdSKsNKTEws9rhKpXpp8VKpVIaMZBTBwcHYuXMnwsPDi5TthQsXIi4uDqNGjcLo0aP1nsllbm6uuK0YiZSC3Vv+PVSJcyZlYfdWHnZv+WD31sfu/f+vSR27N1V0XACvIKpUqYIBAwZgwIABePjwIaKiorB//34sX74cy5cvh7OzM3x8fODl5YXKlSuLHbdMCgoKYGpqqncsPj4eAODu7l5kfHZ2NqysrIySzVCUOGci4Pm2LpaWlqhUqZLYUcgA5HjFohIL2osniV/05MkTLFiwAKNHj0bTpk2NlEo8f/31F1avXg0nJyfZfI3Pnz9f5NjDhw/h7u6O4OBgWZ1IA55/b5o+fTr27duHmjVr4s6dO2jQoIHemKZNmyI5ORkrVqzA2bNn8cMPP4iUlojEwu4tzx6qxDkTAezecsfuLY9exu6tj91b+ti9SSr4DPAKqEaNGhg6dCi2bt2KI0eO4Ouvv4aJiQm+/fZb/OMf/xA7Xpk1bNgQ586d0zsWExMDlUqF999/v8j448ePo2HDhkZKZxhKnDMpQ15eHnbs2IHZs2frHU9MTESvXr3g5uYGR0dHjB49GteuXRMpJVH5KSxo169fFzuK0eTm5iIsLExRd0fJ8QTTi+RwlfnL7NixA/v27cOIESNw5MiRIgUceH7CLSYmBv369UNMTAxCQkJESEpEFQW793Ny6KFKnDMpA7s3KQ27tzKwe0sbuzdJBRfAKzhzc3NYWlrCxsYGZmZm0Gg0Ykcqs969e2PPnj04ePAgnj59ik2bNuHy5cuoWbNmkWcVhYeH48SJE/Dw8BApbflQ4pxJ/vLy8vDpp58iICAAe/fuRX5+PgDgypUrGD16NK5cuYJOnTphxIgRuHLlCgYPHoz79++LnJrozSmhoL1IiXMm6frtt9/g4uKCWbNmFfucsUIWFhYIDAxEixYtsHPnTiMmJKKKjN1b2j1UiXMm+WP3JqVSYg9V4pxJuti9SSq4BXoF9PDhQ8TExCAqKgpJSUnIz89Hy5YtMXnyZPTu3VvseGU2YsQI/P7775g4caLu+Rfm5uZYsGABLCwsADy/Qnvbtm1ITExE48aNMWLECHFDvyElzpnkb9u2bTh16hRmzJiBYcOGwczs+Y+SH3/8ERqNBn369MF3330HABg7diy8vb2xdu1a+Pv7ixmbyom5uTmcnZ1RrVo1saMQEen53//+h8mTJ5dorEqlQo8ePbBmzRoDpyKiiozdWz49VIlzJvlj91Y2dm8iqqjYvUkquABeQdy/fx/R0dGIiorC6dOnodVqUa9ePYwaNQp9+vSRxfM/LCwssGnTJkRGRiI1NRU2Njbw9vZGs2bNdGPOnj2L5ORk9OnTB7NmzYKlpaWIid+cEudM8rd37150794do0aN0h3TaDSIjY2FSqXSO25ra4t+/fph3759LOESkZ2djSpVqrz09WrVqmHr1q16xxISEuDq6mroaEQGVaVKFQQFBaF58+ZiR6EyMjMz0y1ylETVqlWLPC+WiOSP3fs5ufVQJc6Z5I/dW97YvUmp2L2lj92bpIIL4CLKyMhAdHQ0Dhw4gOTkZGi1WlSrVg0DBgyAt7c3OnToIHbEcmdqagpvb294e3sX+/r48eMxefJkmJjIZ3d+Jc6Z5O3PP/+Er6+v3rHTp08jNzcXdnZ2cHBw0HutYcOGinqOkdT5+fkhODgYtra2rx377NkzLFmyBL/++ivS09MNH05ESixo1apVw5YtW9CiRQuxoxhFpUqV8I9//IN3WEhYo0aNcPbs2RKPP3v2LOrWrWvARERUUbB7FyXHHqrEOZO8sXvLG7t38di95Y/dW/rYvUkquAAuoi5dugB4fqWyp6cnvL290aVLl1c+N0HurKysxI5gdEqcM0lbQUFBkav24uPjAQDu7u5FxmdnZ/PPuYScO3cOH3/8MTZt2oRatWq9dNyZM2cwc+ZM/Pnnn68cJxeVKlXSO/mk1Wqxbt06TJgwQcRUhmVubg4XFxfdr7Ozs7F48WIEBgaKmOrNBQcHY+fOnQgPDy/ymWvhwoWIi4vDqFGjMHr0aMmfIA8LCytyLCcnBwBw4sQJ3L17t9j3+fj4GDCV4Xz44YdYtmwZRo4c+doTZhcvXkRERAT8/PyMlI6IxMTuXZQSP58rcc4kbeze8sbuXTx2b3ZvKWL3fjl2bxKTShAEQewQSjV8+HD07dsXPXr0gI2NjdhxiIhKpG/fvmjbti3mzZunO9arVy9cuXIFK1asQI8ePfTGjx49GllZWdi1a5exo1IZ/PLLL1iwYAEaNGiATZs2FblCMy8vDz/88AM2btwIrVaLvn374quvvpLFlbvZ2dnYtWsXUlNTIQgCWrZsiWHDhqFq1ap64/7zn//A398f//3vf3Hu3DmR0paPGzduIDg4GCkpKQCAli1bYsyYMWjUqJHeuOjoaMyfPx/379+X7JwFQcD06dOxb98+1KxZE9u3b0eDBg30xqxatQq7du1CRkYGunXrhh9++EGktOVDrVZDpVLpHfv7R//iXlOpVJL9Gv/111/o168fMjMz8dVXX6F3795FThrn5+dj7969WLp0KQAgNDQUtWvXFiOu0dy7dw+2trbFLvTl5eUhJSUFLVq0eOUWnERSx+5NRFLE7i1v7N7s3uze7N5S/RqzexeP3bvi4QI4ERGVyrp167B69WosW7YM7733Hnbs2IFFixahVq1aiI2N1XsGTHh4OGbOnInJkydj/PjxIqam0ti7dy9mzZoFOzs7bNq0CQ0bNgTw/Ar1mTNn4r///S/s7e0xd+5cdOrUSeS05eP69evw8/PDnTt39EpKrVq1sGvXLtStWxf5+flYtmwZtmzZAq1Wi969e2PZsmUipn4z586dw/Dhw/HkyRNYWlrC0tISmZmZsLa2xvbt2/HOO+8gOzsb/v7+iI6OhqmpKUaNGoWpU6eKHb1Mtm/fjjlz5mDEiBGYNm3aS+/602g0mDt3LkJCQrBgwQL069fPyEnLT2hoaJne9+JWm1Jy5coVfPbZZ7hy5Qqsra3RqlUr1K5dG1qtFg8ePMDZs2eRm5sLe3t7rF69Gmq1WuzI5eJVd1dMnTpVVndXEBERKQW7t/yxe7N7s3uze0sVuze7txRwAVxExW2NURJS3RqDiORBo9Fg1KhRSEpKgkqlgiAIMDc3x6pVq3TbS8bExGDbtm1ITExE48aNERISAktLS5GTU2kcPXoUU6ZMgY2NDdavX49Dhw5h7dq1yM/Px5AhQzBt2jRUrlxZ7JjlZtq0aYiMjMTUqVPRv39/WFlZ4ejRo5g3bx7atWuHJUuWYOzYsUhOToa9vT0CAgJ0f96lasKECfj999+xePFi9O7dGwCQlpaGL774Avb29li6dCn8/Pzw559/ok2bNggMDCzynEEpGTBgAKytrbFly5bXjhUEAf3794eFhQW2b99uhHRUnjQaDX755Rfs27cP58+fR35+PoDnWwu2a9cOXl5eGDRokN5JY6lS4t0VRGXB7k1EUsTurQzs3uze7N7s3lLF7s3uXdFxAVxEhVtjFG558TpS3xqDiORDq9UiMjISqampsLGxgbe3N5o1a6Z7fcWKFdi4cSN69eqFWbNmoXr16iKmpbI6ffo0JkyYgCdPnkAQBDRq1AiBgYHo0KGD2NHKXefOnfHee+8hKChI73hoaCgCAgLQuXNnHDx4EEOGDMGMGTNgbW0tUtLy895776Fnz57w9/fXOx4dHY2pU6eiXbt2SEtLw+TJk/Hpp59K/spVR0dHTJ48GSNGjCjR+HXr1mHNmjW6LeqkLjc3t9iToZcuXULVqlVhZ2cnQirjePjwIUxNTWWxXeSLlHh3BVFZsHsTkVSxeysDuze7N7s3u7ccsHuze1c0ZmIHULIXf9ATEUmFqakpvL294e3tXezr48ePx+TJkyX/oV3pnJycsGXLFowePRoPHz7EvHnzZFnAAeDRo0dwdHQsctzZ2RkajQZHjx7FypUr0b17dxHSGUZWVlaxW1C1adMGWq0WFy5cwNatW9GuXTvjhzMAMzOzUl11XLVq1SLPsJIijUaDxYsXIyIiAseOHStSxJcvX45jx46hf//+mDlzpixOML2oRo0aYkcwmN9++w0uLi6YNWvWK8dZWFggMDAQ586dw86dO1nCSXHYvYlIqti9lYHdm92b3ZvdWw7Yvdm9KxougItIys94ICLl8vPzw4QJE9CxY0fdsfz8fKSkpECtVqNKlSqwsrLSvVb4LDLeQSNNarUa//73vzFy5EhMmDABq1evhpubm9ixyl1eXp7en9tChVvNjRw5UlYFHHj+97ZSpUpFjheWtLFjx8qmgANAo0aNcPbs2RKPP3v2LOrWrWvARIb3920z1Wo1Hj16VGROH3zwAe7evYsdO3bg4sWL2LJlC8zMpFkRVq1aVab3TZw4sZyTGM///vc/TJ48uURjVSoVevTogTVr1hg4FVHFw+5NRFLE7q0s7N7s3nLB7s3u/TLs3mRs0vwbplBarRbr1q3DhAkTxI5CRAqWmJiIgQMH6h3Lzs6Gn58fNm7cqFfOSXpmz55d7PFGjRrhxo0bGDduHHr27Km3fahKpcLChQuNFVEULi4uYkcwutatW4sdoVx9+OGHWLZsGUaOHInmzZu/cuzFixcREREBPz8/I6UzjE2bNiEpKQn+/v74+OOPix0zcOBADBw4EKtWrcKqVauwbdu2Em9VV9GUtIS/uP2xlEu4Uu+uIDI0dm8iqgjYveWN3bt47N7Sx+7N7l2I3ZvdW2xcABdZdnY2du3ahdTUVAiCgJYtW2LYsGGoWrWq3rj//Oc/8Pf3x3//+1+WcCKqkARBEDsClYPQ0NBXvv7s2TOEhYXpHVNCCVfih9aSPCNVSj766CNs374dw4cPx1dffYXevXsX+brm5+dj7969WLp0KapUqSL5Eh4REQEPD4+XFvC/mzhxIhITE7Fnzx7JlvBDhw69dkx2dja+//57HDlyBGZmZpL/Givx7gqismL3JiK5YPeWB3bv4rF7Sx+796uxe0sTu7c0cQFcRNevX4efnx/u3Lmj+/AaExODX375Bbt27ULdunWRn5+PZcuWYcuWLdBqtejdu7fIqYmISM5K8iFWrjIzM3Hr1i29Y1lZWQCAhw8fFnkNAOzt7Y2SzVAuX76MpKQkvWPZ2dkAgAsXLhS7HZezs7NRspU3a2trrFmzBp999hlmzpyJuXPnolWrVqhduza0Wi0ePHiAs2fPIjc3F/b29li9ejVq164tduw3cvXqVQwePLjE499//32sXLnSgIkMq169eq98PTIyEosWLUJGRgbat2+POXPm4J133jFSOsNQ4t0VRGXB7k1ERBUNuze7N7s3u7dUsXuze0sFF8BF9P333+POnTuYOnUq+vfvDysrKxw9ehTz5s3DvHnzsGTJEowdOxbJycmwt7dHQEAAunTpInZsIiKSsdd9iJWzhQsXvvRq+unTpxc5plKpkJ6ebuhYBrV27VqsXbu22NcWL15c7HEpP1OwcePGCAsLwy+//IJ9+/YhOTkZ+fn5AABzc3O0a9cOXl5eGDRoUKm2tqqorK2todVqSzy+UqVKuufQycm1a9cwd+5cxMXFoVq1aggMDMSAAQPEjlUulHh3BVFZsHsTEVFFw+7N7l2I3ZvdWy7Yvdm9KxougIsoKSkJPj4+GDt2rO5Yz549kZubi4CAAMyaNQvJyckYMmQIZsyYAWtraxHTEhERFbV27VpER0cjJCRE7ChvxNfXV+wIRiflZy+9CQsLC4wcORIjR44E8PwOA1NTU1SrVk3kZOWvSZMmSE5OLnHpOn36tKxOxGk0Gqxbtw7r16+HRqOBr68vZsyYgerVq4sdrdwo8e4KorJg9yYiIqlj95Yudm927xexe0sPu7c0cQFcRI8ePYKjo2OR487OztBoNDh69ChWrlyJ7t27i5COiIjo9W7fvi3pq5ILBQUFiR3B6JRawl9Uo0YNsSMYjK+vLwICAhAfHw83N7dXjk1ISEB0dDQmTZpkpHSGFRcXh7lz5+Lq1ato3rw5AgIC0KFDB7FjGYTS7q4gKgt2byIikjp2b+li936O3fs5dm/pYveWHi6AiygvLw9WVlZFjleuXBkAMHLkSBZwIqqQXnxe06ue1fTo0SOjZiMiKs6qVavK9D4pn6zw8fHB7t27MX78eIwbNw4DBw5ErVq19MZkZGRg165d2LBhA+rXr4+hQ4eKlLZ83L9/H0FBQYiMjISlpSWmTZuGkSNHFvtMPTlR0t0VRGXB7k1EUsXuTURSw+7N7i1n7N7SohIEQRA7hFKp1WosWbIE3t7eescfPXqEjh07YsOGDfjHP/4hUjoiouKp1WqoVKoixwVBKPZ4ITlcqUxFBQQEYOfOnZL/+iqxoM2ePbvU71GpVC99VltFp1arSzTuxe9jUv+z/eDBA3zxxRdISEiASqWCvb293hZdt2/fhiAIaNeuHVasWIG6deuKHbnMtm3bhpUrV+LJkyfo2rUr/P39JT0fIio/7N5EJEXs3vR37N7s3lLB7s3uTVRRyPtyDIkzNTUVOwIRURFKfF4TyV9JS/iLBU3KJTw0NLTEY/8+b6mW8EOHDr12THZ2Nr7//nscOXIEZmZmJX5+V0VWs2ZNbN68GdHR0di3bx/S09Nx4cIFmJiYoFatWvDx8UG3bt3QtWtXsaO+scDAQN2/x8bGIjY29rXvUalUSE9PN2Qsg1LiCUQiQ2D3JqKKiN2b5Ijd+9XYvaWL3fvV2L1JDFwAF9mLWxkBr97OCADs7e2Nko2IqDhKfF4TyZ8SC9r58+dfO+bmzZuYP38+jhw5gipVqmDKlCmGD2Yg9erVe+XrkZGRWLRoETIyMtC+fXvMmTMH77zzjpHSGZ6Xlxe8vLyKHM/KyoKlpaUIicqfEk8SK/EEIlFZsXsTkdSwe5McsXsXj92b3VtK2L1fjt27YuEW6CJ62VZGwMu3M5L6lTJERFSxlfaKxsOHDyM9PV3yW1W9jtwL2ou0Wi02btyIn376Cbm5uejVqxdmz55d5BlWcnDt2jXMnTsXcXFxqFatGqZPn44BAwaIHavc5OXlISQkBKmpqXonURMTEzFnzhxcuXIFKpUK7u7u+Pbbb9GwYUMR076Z2bNnY/DgwWjbtq3YUYzm5s2brx1T3AnEL7/80gjpiCoOdm8iIqpo2L2Lx+7N7i1V7N7yxu4tTVwAF1FZnv8B8ApQIiIynJI+q+nvVCqVbEu43AtacU6dOoW5c+fi4sWLePvttxEQEICOHTuKHavcaTQarFu3DuvXr4dGo4Gvry9mzJiB6tWrix2t3OTl5eHTTz9FUlISzM3NkZKSAjMzM1y5cgV9+/aFRqNB586d0axZMxw4cABPnz5FeHi4ZE+2vOwZv0qmtBOIRC/D7k1ERBUNu7c+dm92bylj9yZ274qJW6CLiGWaiIgqmi1btogdoUJQQkF70aNHj/Ddd98hLCwMFhYWmDRpEsaMGQMLCwuxo5W7uLg4zJ07F1evXkXz5s0REBCADh06iB2r3G3btg2nTp3CjBkzMGzYMJiZPf/o/+OPP0Kj0aBPnz747rvvAABjx46Ft7c31q5dC39/fzFjUzl48QRiYGCg7E8gEr0KuzcREVU07N7PsXuze8sBu7dysXtXbFwArwCePn2K3bt34/fff8f58+eRmZkJlUqFGjVqQK1Ww8PDA97e3rL8IUhERBWLi4tLqd9z6tQpAyQRj1IK2t/t2rULS5cuRVZWFt577z0EBARIejuul7l//z6CgoIQGRkJS0tLTJs2DSNHjtSVU7nZu3cvunfvjlGjRumOaTQaxMbGQqVS6R23tbVFv379sG/fPpZwCVPiCUSi0mD3JiKiioLdm92b3Vs+2L2Vh91bGuT5HUdCTp8+jcmTJ+P+/fuwsLBAw4YNUa9ePeTn5yMzMxOHDx9GbGwsVq1ahWXLlqF9+/ZiRyYiIsLt27cRGhqKsLAwXL9+XRbbsCmtoAHAhQsXMGfOHKSmpqJWrVpYvnw5evXqJXYsg9i2bRtWrlyJJ0+eoGvXrvD390fdunXFjmVQf/75J3x9ffWOnT59Grm5ubCzs4ODg4Peaw0bNkRGRoYxI5a7U6dOQavVluo9Pj4+hgljZEo8gUhUGuzeREQkReze8sDuze79d+ze0sbuLR3y/akiAf/73/8watQo2NjYYOnSpfDy8ipypfmTJ08QFRWFH374AaNHj0ZoaCgaNWokUmIiIlKyZ8+eITo6GiEhIUhISIAgCFCpVOjcubPY0d6YEgva4sWLsXXrVmi1WnzwwQeYMmUKbGxscOvWrVe+z97e3kgJy1dgYKDu32NjYxEbG/va96hUKqSnpxsylkEVFBTA1NRU71h8fDwAwN3dvcj47OxsWFlZGSWboezcuRM7d+4s0djC72FSL+FKPIFIVFrs3kREJCXs3vLC7s3u/SJ2b2li95YefmVE9NNPP8HKygq7d+/GW2+9VewYGxsbDBgwAJ07d0bfvn2xYcMGzJ8/38hJiYhIyVJTUxESEoL9+/fjyZMnAIAaNWqgf//+GDRoEOrVqydywjenxIIWHBys+/fDhw/j8OHDJXqfVO84ePFqbCVo2LBhka9XTEwMVCoV3n///SLjjx8/Lvnt9z766CO0a9dO7BhGo8QTiERlwe5NRERSwO5dPHZvaWH3fo7dW17YvaWJC+AiSkpKQr9+/V5awP/Ozs4OPj4+OH78uBGSERGR0mVkZCAsLAyhoaH4888/IQgCrKys4O7ujri4OMybNw8eHh5ixyw3Pj4+UKlUYscwqokTJ5b6PYIgGCCJ8QwePBht27YVO4bR9O7dG6tXr0bnzp3x3nvvYceOHbh8+TJq1aqFrl276o0NDw/HiRMnMHnyZJHSlo8OHTrA29tb7BhGo8QTiERlwe5NREQVFbu3/LF7yx+7t/yxe0sTF8BF9OjRo1JtqdakSRPs2rXLgImIiEjp9u/fj5CQEMTFxUGr1aJq1arw9vaGl5cXOnXqhHv37sHT01PsmOVu0aJFAIC8vDxcunQJ+fn5aNasmeS3pHoVe3t79OvXr8Tjb968ia+++sqAiQwrNDQU7u7uiirhI0aMwO+//46JEydCpVJBEASYm5tjwYIFuq1/Y2JisG3bNiQmJqJx48YYMWKEuKGpVJR4dwVRWbB7ExFRRcPuze79Muze0sPuLX/s3tLEBXAR5eXlleqHe6VKlZCTk2PAREREpHRTp06FtbU1hg4dCg8PDzg7O+s9x0jOV2r/61//wpo1a3Q/ay0sLDB06FBMmzZNls/z8ff3x9OnTzFs2LDXjt21axcWL17MzyESY2FhgU2bNiEyMhKpqamwsbGBt7c3mjVrphtz9uxZJCcno0+fPpg1axYsLS1FTExlobS7K4jKgt2biIgqGnZvdu/isHtLE7u3MrB7S4/8fqIQERFRmdWvXx83btxASEgIrly5gv/85z/w9PRE48aNxY5mULt378aSJUtQr149+Pj4wMTEBAkJCdi0aRO0Wq2kr75+mbfffhuBgYF4+vQpRo8eXeyYe/fuwd/fH8eOHYO5ubnkt+hSIlNTU3h7e790a7Lx48dj8uTJMDExMXKy8ufr6yv556iVlhLvriAiIiKSA3Zvdu+/Y/eWPnZveWP3liYugIssMzMTt27dKtHYR48eGTgNEREp3cGDB3HmzBmEh4cjKioKx48fx/Lly9GkSRN4eXmhVatWYkc0iB07dqBdu3bYvHkzKlWqBOD5M7emTp2KHTt2YPr06bptq+Ti119/xejRo7Fs2TI8ffoUkyZN0nt97969mD9/PrKysuDo6IjAwEA0bdpUpLTl49SpU9BqtaV6j4+Pj2HCVBBy2mowKChI7AhEVIGxexMRUUXC7s3uXYjd+zl2b+lg9yapUAmCIIgdQqnUanWZtrM5d+6cAdIQERHp02q1OH78OCIiInDo0CE8ffpU93Orf//+mDBhAurVqydyyvLh5OSEL774osiWZKmpqRgyZAhCQ0OhVqtFSmc4f/31F/75z38iISEBI0aMwMyZM/Ho0SMEBAQgJiYGlpaWmDp1KoYPHy75LfhK+7lLEASoVCp+7qIKTa1WY8mSJS+9y4CInmP3JiKiiozdm92b3Zvdmyo2dm9p4h3gIvL19RU7AhER0UuZmpqiS5cu6NKlC3JzcxETE4O9e/fixIkT+O233xASEgJXV1f0798fH374odhx38jTp09RpUqVIsfr168PQRDw+PFjEVIZnrW1NdatW4cvvvgCmzZtwo0bN5CcnIwHDx7gvffew7x582RzogUAPvroI7Rr107sGETlindXEL0euzcREVVk7N7s3uzeRBUfu7f08A5wIiIi0hk7dizc3Nzg4uKCVq1aFXvV7qNHjxAZGYmIiAikpqbK4krdl13J+ejRI3Ts2BHBwcHo2LGjSOkMr6CgAP7+/ggJCYGJiQnmzZuHAQMGiB2rXPFqXZIj3l1BREREJE3s3uze7N5E0sHuLU28A5yIiIh04uPjcezYMahUKtjY2KBDhw5wdXWFm5ubbhuy6tWrY9iwYRg2bBiuX7+Offv2iZya3pSJiQkWLlwIW1tbbNy4EXFxcfDx8YGZGT8qElV0vLuCiIiISHrYvZWJ3ZtIuti9pYffWYmIiEgnOTkZ6enpSE5ORkpKClJTU3H48GGoVCpUrVoVzs7OcHV1haurK9555x00aNAA48ePFzt2ucjMzMStW7f0jmVlZQEAHj58WOQ1ALC3tzdKNkMobj4ff/wx/vrrL+zYsQM5OTn45ptvYGJiojdGynMmkqMOHTrw7goiIiIiiWH3Zvdm9yaSFnZv6eEW6ERERPRKt2/f1ivl58+fh1arha2tLVxcXODq6oqhQ4eKHfONvGoro8Jti16kUqmQnp5u6GgG87o5AyjyupTnPHv2bAwePBht27YVOwpRueH2gkRERETywe7N7l1IynNm9yY5YveWJt4BTkRERK9Ut25d9O7dG7179wYAZGdnIzw8HCEhIThw4ACio6MlX8J9fX3FjmB0Pj4+pXp+kdQFBQWJHYGIiIiIiOil2L3lid2biEgcXAAnIiKiV8rNzUVSUhISExNx+vRpnD17Fnl5ebCwsNBtySZ1SixoixYtEjsCEb0hX19fNGzYUOwYRERERFQO2L3lid2bSPrYvaWJW6ATERGRnvz8fKSmpiI+Ph7x8fE4c+YM8vLyYG5ujnfffVdXvB0dHWFhYSF2XCIiIiIiIiLJYfcmIiIyHC6AExERkc6YMWNw6tQp5ObmwsTEBK1atYKbmxtcXV3h5OQES0tLsSMSERERERERSRq7NxERkWFxAZyIiIh01Go1zM3N8eGHH2LcuHF4++23xY5EREREREREJCvs3kRERIbFBXAiIiLS+eabb5CQkIBr165BpVKhSZMm6NixI9zc3ODs7Ixq1aqJHZGIiIiIiIhI0ti9iYiIDIsL4ERERFTErVu3EBcXp3sW2f3792FiYgK1Wg1XV1ddKbe2thY7KhEREREREZEksXsTEREZBhfAiYiI6LUuXryI+Ph4nDx5EqdOncLjx49hZmaG1q1bo2PHjpg8ebLYEYmIiIiIiIgkjd2biIiofHABnIiIiEpFo9EgKioKv/76K1JTU6FSqXDu3DmxYxERERERERHJBrs3ERFR2ZmJHYCIiIgqtmvXruHMmTM4c+YM0tLScP78eeTl5aFy5cro3LkznJ2dxY5IREREREREJGns3kREROWHd4ATERGRTlZWFtLS0nSFOy0tDVlZWRAEAdWqVUP79u3h4uICZ2dntGzZEiYmJmJHJiIiIiIiIpIUdm8iIiLD4gI4ERER6ajVaqhUKgiCgOrVq8PZ2Vn3j4ODA1QqldgRiYiIiIiIiCSN3ZuIiMiwuAU6ERER6fTo0QMuLi5wcXFBs2bNxI5DREREREREJDvs3kRERIbFO8CJiIiIiIiIiIiIiIiIiEgW+PAQIiIiIiIiIiIiIiIiIiKSBS6AExERERERERERERERERGRLHABnIiIiIiIiIiIiIiIiIiIZIEL4EREREREREREREREREREJAtmYgcgIiJSgh9//BGrVq0q1XsOHTqE+vXrGyhR2XXt2hU3b94EAHz99dfw8/N75fhRo0bh+PHjAIDg4GC4u7sbNFd0dDQaNWpkkN+DiIiIiIiIKi52b3ZvIiIigAvgRERERuHg4ABvb2+9Yw8ePEBcXBysra3h4eFR5D3W1tbGildmUVFRryzhDx8+RHx8vBETERERERERkVKxexMRERHABXAiIiKj8PLygpeXl96xhIQExMXFoXr16li6dKlIycquatWqSE5Oxt27d/HWW28VOyY6Ohr5+fkwNzdHXl6ekRMSERERERGRkrB7s3sTEREBfAY4ERERlZGnpycEQUB0dPRLx+zbtw+2trZo06aNEZMRERERERERyQO7NxERUelxAZyIiKgCO3LkCEaNGgUXFxe0adMG3bt3x5IlS5CZmak37saNG3BwcEDnzp2L/e8MHz4cDg4OSEhI0B2bNWsWHBwckJiYiEmTJuHdd9+Fm5sbtm7dWqJsPXr0APB8K7biZGRk4NSpU+jevTvMzF6+6cyePXswdOhQtG/fHu+++y68vb2xZs0aPH36tNjxJ0+exMiRI+Hs7IwOHTpgypQpuueiFUer1eLf//43Bg4cCEdHRzg6OmLQoEEIDQ2FIAglmisRERERERHJF7t3UezeREQkZdwCnYiIqIJaunQp1q9fD1NTUzg5OaF69epITU3Fhg0bsH//fmzevBkNGjR449/nm2++wYMHD9CpUydcvHgRarW6RO97++230aJFCyQnJyMjIwN2dnZ6r0dFRaGgoAC9e/fGqlWriry/oKAAM2bMwN69e2FhYQEXFxdYWVkhKSkJ33//PQ4cOIDg4GBUr15d955du3bh22+/BQB06NABVatWxfHjx3Hq1CloNJoiv0deXh7++c9/4tixY7CxsYGjoyPMzc2RmJiIWbNmISEhAYsWLSrN/y4iIiIiIiKSEXZvdm8iIpIfLoATERFVQLGxsVi/fj1sbW2xYcMG3TZmGo0G8+bNw65duzB58mTs3r0bKpXqjX6vjIwMhIeHo0GDBigoKICJSck3iOnVqxfOnTuH6OhofPzxx3qvRUZGws7ODs7OzsW+d9u2bdi7dy8aNGiAjRs3omHDhgCAJ0+eYNq0aThy5Ai+/fZb/PjjjwCA27dvIzAwEGZmZli3bh06duwIAHj48CFGjRqF9PT0Ir/HTz/9hGPHjsHFxQUrV65EjRo1AAD379/HmDFjEBoaCicnJwwcOLDEcyYiIiIiIiJ5YPdm9yYiInniFuhEREQV0KZNmwAAX375pd4zvCwsLDBnzhw0atQIf/zxB+Lj49/49/Lw8NBdzV6aAg4APXv2BFB0K7Zbt24hNTUVPXv2fOl/c/PmzQCAwMBAXQEHABsbGyxduhRVqlRBdHQ0rl69CgAIDQ1Fbm4uBg8erCvgAFCjRg0sXLiwyH9fo9Fg69atMDc3x9KlS3UFHABq1aqFefPmAQD+9a9/lWrOREREREREJA/s3uzeREQkT1wAJyIiqmDy8/ORnJwMlUqF7t27F3ndzMwMXl5eAKD3XLGyeuedd8r83gYNGqBVq1Y4ffo0MjIydMcjIyMhCAI+/PDDYt93+/Zt3LhxA9WrV4ebm1uR16tUqYJOnToBABITEwEASUlJAIAuXboUGd+iRQvUr19f79gff/yB7OxsNGnSBG+99VaR97Rp0wY1a9bElStXcO/evRLOmIiIiIiIiOSA3Zvdm4iI5ItboBMREVUwmZmZyMvLQ/Xq1WFjY1PsmMLCWR7lsVq1am/0/l69euGPP/5ATEwMhg0bBuB5CW/QoAHefffdYt9TWNjr1av30v/ui3MsfE+dOnVeOv7GjRu6X9++fRsAcOHCBTg4OLxyDrdv30bt2rVfOYaIiIiIiIjkg937OXZvIiKSIy6AExERVTCCIADAK58vVjjGwsKiRP9NrVb70tdKu/Xai3r27IklS5Zg//79GDZsGK5evYo//vgD48aNe+l7yjLH1z1vzcxM/2NNQUEBAMDe3h5OTk6vfG/lypVf+ToRERERERHJC7u3/hh2byIikhMugBMREVUwtra2MDc3R2ZmJp48eVLslejXr18HANSsWRPA/xfpwuL5oqysLAOlfX4l+bvvvovTp0/j3r17iIyMBAD07t37pe+xs7MDAL2rxl9UOMdatWoBAN566y1cvHgRN2/eRLNmzYqM//s2cAB0V5XXqVMHS5cuLcWMiIiIiIiISO7YvZ9j9yYiIjniM8CJiIgqGHNzczg6OqKgoAAxMTFFXs/Pz9cdd3V1BQBYW1sDeF628/Ly9MY/evQIV65cMWjmXr16oaCgANHR0di/fz+aNWv2yq3P7O3tUa9ePTx69Ej3nLG/y87OxvHjxwEAzs7OAAB3d3cAKPb/yfXr13Hp0iW9Y23atIGlpSXOnz9fpKADwN27d9GzZ0+MHDkSOTk5JZ8sERERERERSR67N7s3ERHJFxfAiYiIKqBPPvkEAPDdd98hPT1ddzwvLw9z587FtWvX0KJFC932Yra2tqhTpw40Gg22b9+uG//s2TN8++23r9yGrTz06NEDKpUK27Ztw4ULF155BXqhwjn6+/vrrjgHgJycHMyYMQNPnjzBBx98oHtWma+vL2xtbbF7924cOHBAN/7Jkyf46quvilyBb21tjY8++gh//fUXZsyYgQcPHuj9HrNnz8bly5dhbW3NbdiIiIiIiIgUiN2b3ZuIiOSJW6ATERFVQJ6envj000+xceNGDBgwAE5OTqhevTrOnDmDO3fuoF69elixYoXeM8RGjx6NwMBABAYGYt++fahVqxaSk5Oh1WrxwQcf4PDhwwbLW7duXbRr1w4pKSkAXr0FW6Hhw4cjJSUF+/fvR+/eveHs7AwrKyucOnUKjx49glqtxsKFC3Xja9SogYULF2LKlCn4/PPP4ejoCDs7OyQlJUGr1aJx48ZFrrafNm0azp07h/j4eHTr1g1t2rSBlZUVUlJSkJmZibfffhtz584t3/8ZREREREREJAns3uzeREQkT7wDnIiIqIKaOXMmfvrpJ7i6uuL8+fM4cuQIKleujAkTJiA0NBSNGzfWGz98+HAsXrwYrVu3Rnp6OpKSkuDq6orffvutyFhD6NmzJwCgVatWaNSo0WvHm5iYYMWKFQgKCkKrVq2QnJyMEydOoE6dOpgxYwZ27tyJGjVq6L3Hw8MDv/76Kzw8PHDlyhX8/vvvaNmyJX755RfUqVOnyO9haWmJjRs34uuvv0aTJk2QlpaGhIQE2NnZYdKkSdi1a5fuOWdERERERESkPOze7N5ERCQ/KkEQBLFDEBERERERERERERERERERvSneAU5ERERERERERERERERERLLABXAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkgQvgREREREREREREREREREQkC1wAJyIiIiIiIiIiIiIiIiIiWeACOBERERERERERERERERERyQIXwImIiIiIiIiIiIiIiIiISBa4AE5ERERERERERERERERERLLABXAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkgQvgREREREREREREREREREQkC/8HusB0LxHS/zgAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 54 coefficients adjusted\n", - "\t 703 coefficients converged\n", - "\t 54 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACedUlEQVR4nOzdeZiVdd0/8PfMEILCCJKCippiSO4KKJpLoWilpkhmKqbmhmtm4l5qiXuaG+4LLoga7stjrmU+amKPSy6RpiCYYC6MiIDMnN8f/mZiBHTOYWDOOK/XdXHJ3Nv5nPP9Dp7PeZ/7visKhUIhAAAAAAAANEllSxcAAAAAAADQmghXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAiCFcAFkKhUMjAgQOzxhpr5KKLLipq39tuuy1rrLFGbrvttoZla6yxRvbcc8/mLnMeU6dOzYwZMxb54zSH2travPXWW1+63YUXXpg11ljjC/8MHDhwkdf75ptvLvLHAACgfD366KM57LDDMnDgwKy99trZeOONs99+++WRRx5ZbDXMnj07J510UjbaaKOsu+66OfXUU+e77Nhjj80aa6yRSZMmFXX8+vfeTz/99CJ6Bo192Xvsk046KWussUbGjh37hdtNmjQpffr0yV577dXkx3766aezxhpr5MILL2zyPi3pqaeeyhprrJFvfetbX9hHffTRRzniiCOy4YYbZoMNNshVV12VJJk1a1beeeedxVVukoXrqxO9dVM1tbcGmq5dSxcA0Jo99dRTmTx5cpZccsnccsstOeigg1JVVVXy8c4666x8/etfb8YK53XHHXfklFNOyd13350ll1xykT7Wwnr77bdz4IEHZptttslhhx3WpH123XXX9O3bd77rllpqqeYsbx4HHXRQpk+fnuuvv36RPg4AAOVn+vTpOf744/PAAw9krbXWys4775zlllsu77zzTu64444cdNBB+dnPfpZjjjlmkddyyy23ZMyYMfn2t7+d73//+/nmN78532WFQiGbbLJJlllmmaKOP2jQoKy88srp1avXInoG/9WU99g/+tGPMmbMmNx9990ZMmTIAre74447UigU8qMf/WhRlFoWxo4dmyWXXDIzZszIzTffnKOOOmq+240cOTL3339/tttuu2yyySZZf/318/LLL+fQQw/NoYcemp133nmx1dzcfXWit/68Unpr4MsJVwAWwh/+8Id87Wtfy957752RI0fm0UcfzdZbb13y8XbcccdmrG7+nnrqqVbzzZq33nor48ePzzbbbNPkfdZff/3F8jrOzyOPPJKNNtqoRR4bAICWdeKJJ+aBBx7I0UcfnX333bfRumHDhmXffffN1VdfndVWWy277LLLIq3lH//4R5Lk6KOPTp8+fZKk4ayOuZclyQYbbFD08fv06dPoGItSU95jr7POOg1n0kyZMiXdu3ef73Z33nlnll566aL6i9Zk+vTpefDBB7PVVlvllVdeyW233ZbDDz887du3n2fb+jlyyimnpHPnzkk+OwNk8uTJi7XmpPn76kRv/Xml9NbAl3NZMIASffTRR3nooYey7rrr5oc//GGS5KabbmrhqgAAgMXtL3/5S+6///5su+228wQrSdK+ffucdtppqaqqynXXXbfI6/n000+TJJ06dfrCZV8lQ4YMSV1dXe677775rn/22WczceLE7LDDDlliiSUWc3WLx7333ptPPvkkAwYMyNZbb5333nsvDz744Hy3rZ8P9cFKS9FXA62ZcAWgRPfcc09mzpyZb3/721l11VWzxhpr5IknnpjvNUyffvrp/PSnP82GG26YAQMG5NRTT53vN1w+f13YBV0DedKkSVljjTVy7LHHNiz75JNPcvrpp+d73/te1l133Wy88cY58MAD8+yzzzZsM3DgwNx+++1Jkq222qrhsY499thssMEGmThxYg499ND07ds3G264YQ466KC88847mTx5cg4//PD07ds3AwYMyBFHHJGpU6c2qqmuri7XX399dtxxx6y77rrp169f9ttvv0aPn/z3+syvv/56TjzxxHz729/OOuuskx133DF33313o+1++tOfJkkuuuiikq4F/UUKhUJuvfXW7L777unXr1/WWmutbLbZZjnyyCMzYcKEeba/7777sscee6Rv377ZeOONs9dee+XJJ59M8t/rMCfJX//613mu9/unP/0pe+21VzbccMOsu+662XHHHXPdddelrq6uYZv6Mb344ovzi1/8Iuuss0423XTTvPjii6mtrc1FF12UHXbYIeuvv3769euXPffcc7FetxsAgAW74447kuQL7/Gw0kor5e677254P17v9ddfz5FHHplNN900a6+9drbaaqucccYZmTZt2jzH+Ne//pUjjzwym2yySdZee+1ss802+f3vf5+ZM2cm+e97yrnf89fff/Dzy5L59xuFQiE33XRTdt5556y//vrZdNNNM2zYsLz00ksN2yzoniuPP/54Q9+z3nrrZeedd270vjj573vne++9N5deemkGDRqUtddeOwMHDsz555+fOXPmNNoumf977M/74Q9/mK997WuNeoq51Y9R/SXBPv3001x11VUZMmRINthgg6y99tr5zne+kxNPPDHvvffeAh8n+ayvmt/9HOd3748keeGFFzJs2LBstNFGWWeddbL99tvn6quvTm1tbaPtXn755QwbNiybb755w1w49dRT8+GHH35hPfXqz0769re/ne9973tJ5g0q6l/Xv/71r0nScG/KY489Nscdd1yS5Ljjjmt47ZPie70//elP+f73v5+11147Q4cO/cKai+mr6+vXWzd+vVu6t4a2zGXBAEpU/8b1+9//fpJku+22yz/+8Y+MGTMmw4cPb9juscceyyGHHJLlllsuBx54YCorK/OHP/zhCxuDUhx55JF54oknsscee2S11VbLf/7zn9x4443Za6+98oc//CF9+vTJ8ccfn2uuuSbjxo3Lcccdl29+85sN+3/66afZfffds9FGG+Xoo4/Oc889l9tuuy1TpkzJf/7zn/Tv3z9HH310nn/++YwdOzbTp0/PlVde2bD/UUcdlXvvvTfbbrttfvzjH2fatGm57bbbsueee+bcc89teHNf74ADDmh4TWbPnp1Ro0blqKOOyrLLLpsBAwZk0KBBmTNnTkPDNWjQoCZdC3rGjBl5//3351leVVWVpZdeuuHn008/PaNGjcrWW2+dX/ziF0mScePG5b777svLL7+c++67L5WVn30H4YILLsjFF1+cPn36ZNiwYWnfvn1Gjx6dfffdN5dccknWWmutnHXWWTn66KOz2mqrZdiwYdlwww2TJFdffXXOPPPMrLLKKtl///2z5JJL5qGHHsqIESPy9NNP58ILL2x4nCS58sor07t375x44ol58803s+aaa+b000/PjTfemB//+Mf56U9/mo8++ihjxozJwQcfnMsuuyxbbrllU6YIAACLyAsvvJB27dplvfXW+8LtPn+PknHjxmXfffdNVVVVdtttt6y44op57rnncu211+aRRx7JmDFjGt4Dv/DCC9l7773TqVOn7LHHHllmmWXy3HPP5dJLL82TTz6Z6667Lssss0zOOuus3HLLLQ3v+ZdeeulUVlY2Wta1a9cF1njMMcfkzjvvTL9+/XLEEUdk9uzZuf766zN06NDceOONWXPNNee734033pjf/va3WWeddXLooYemsrIyDz/8cI477ri88sorOeGEExptf+6556ZQKGTXXXdNdXV1brvttowcOTIVFRU5/PDD06tXrwW+x56frl27Zquttsr//M//5PXXX2/0Ws+aNSv3339/1lprrXzrW99KkhxxxBF5+OGHM3jw4Pz4xz/OrFmz8uc//zm33npr3n777Vx99dVfOJZN9fDDD+fnP/95evbsmf322y9LLrlknnjiiZx55pn529/+lgsvvDAVFRV56623stdee2XZZZfN3nvvnerq6jz//PO54YYb8sILL+Tmm29ORUXFAh/n9ddfz/PPP58NNtggK6ywQlZYYYV84xvfyDPPPNPo9ah/XS+99NL861//yllnnZWllloq3bp1S/v27XPzzTfPcx/LYnu9I444Ij/60Y/yjW98Y76XJJtbU/vqRG+9uHtroAkKABRt/Pjxhd69exd22mmnhmUTJ04s9O7duzBgwIDCrFmzCoVCoVBXV1cYOHBgoV+/foX//Oc/DdvW1NQUttlmm0Lv3r0LY8eObVjeu3fvwtChQxt+PuaYYwq9e/cuvPXWW40e/6233ir07t27cMwxxxQKhULhvffeK/Tu3btw0kknNdruueeeK2yzzTaFW2655QuPWb/s8/vvuOOOhd69exd++9vfNlq+yy67FPr06dPwPO+7775C7969C1dccUWj7aZPn1743ve+V9h4440LM2bMKBQKhcIFF1xQ6N27d2H//fcv1NXVNWz7zDPPFHr37l048sgjG5Y99dRThd69excuuOCCwpepP+6C/nz3u99t2Pb9998vrLnmmoUDDzxwnuMcfvjhhd69exf+/ve/FwqFQuHNN98sfOtb3yoMHTq04fkWCoXCf/7zn0Lfvn0LO++8c8Oyz4/fxIkTC2uuuWbhBz/4QeHjjz9uWF5XV1c46qijCr179y7cdttthULhv2O6/vrrF959991GNa2//vqF/fbbr9Gyf//734Wtt966cOGFF37pawMAwKK13nrrFTbddNOi9qmtrS0MGjSosPbaaxdee+21RutuueWWQu/evQvHHntsoVD47P3jdtttV9hyyy0LH3zwwXy3vfzyyxuWfdF7/i9a9uSTTza8J5/7vfprr71W6NOnT+Gwww4rFAr/fe/91FNPFQqFz96brrXWWoUDDzyw0X51dXWF4cOHF3r37l14/vnnC4XCf9/jf/vb3y5MmzatYduPP/640Ldv38Jmm23W6Pl9/j32F/nTn/5U6N27d+G8885rtPzee+8t9O7du3DjjTcWCoVC4ZVXXplvn1MoFApDhgwp9O7du+F1nl9P8t3vfrdRf1Fv7NixjXq8GTNmFDbeeOPC4MGDG/UShUKhcN555xV69+5duPfeewuFQqFw5ZVXNnqd6p1++umFwYMHF955550vfO5nnHFGoXfv3oVRo0Y1LKsfp/k9z6FDhxZ69+79hfUXCqX1eocffvgX1lqvqX11oaC3Xpy9NdB0LgsGUIL6b9dst912DctWWmmlrL/++nn//ffzxz/+MUnyyiuvZNKkSdlxxx3TrVu3hm07d+6c3Xbbrdnq6dSpUzp37pz7778/t9xyS959990kyXrrrZcHHnigyTfM3H777Rv9XP/tph/84AeNlq+88sqpq6vLf/7znySfXds3Sbbddtu8//77DX9mzZqVbbbZJh988EGeeeaZRsfYYYcdGn3zat11102ShmOWat99980111wzz5+zzz67YZuuXbtm3LhxOeeccxrtW1NTk44dOyZJw6nljzzySGpra7PXXns1+tZVt27dMnr06Fx44YULrOXBBx/MnDlzcsABB2TJJZdsWF5RUZFf/vKXSTLPNaHXW2+9fP3rX2+0rEePHvnrX/+aq666quH07R49euTBBx/MoYce2uTXBgCARaOqqqrhclZN9fLLL2fChAn54Q9/OM8ZLT/60Y+yyiqr5IEHHkhtbW3+8Y9/5J///Ge23HLL1NXVNXrP/d3vfjdLLLHEAu+tUYyHHnooSbLffvs1eq/eq1ev/OEPf8ivfvWr+e73xz/+MZ9++mm+//3v54MPPmio7YMPPmjomep7pHrf/e53U11d3fDzkksumV69en3pJbm+yGabbZbll18+99xzT6Plt99+ezp06JAddtghSdKnT588++yzOfLIIxtt99577zXU1Bw3Kv/f//3ffPDBB9l2220zffr0RuNW32PVj9vyyy+fJDn77LPz5JNPZvbs2Uk+u8zUbbfdlu7duy/wcebMmZO77rorlZWVDWeAJP/tV++888588sknJT2HUnq9+V0ybX6a2lcneuuW6K2BL+eyYABF+vTTT3PXXXcl+ewN1tzXKh0wYECee+653HTTTdl+++0zceLEJJ+9Yfq81Vdfvdlqat++fc4444wcd9xxDQ1P7969s9lmm2WHHXZY4Kn7n/f5D/W/9rWvJUmWXXbZRsvbtfvsfx/19wx54403kiRbb731Ao89efLkL3ys+uBi7vuQlGL11VfPpptu+qXbLbHEEnn44Yfz6KOPZuLEiZk0aVL+/e9/N7wpra+jfnxXW221eY7Ru3fvL3yM+vGf+xTxej169Ejnzp3nudbt51+XJBkxYkSOOOKInHXWWTnrrLOy8sor59vf/na222679O/f/0ufKwAAi1b37t3zxhtvZPbs2V96GaR6X/ResaKiIquvvnomTJiQDz74oOH99pgxYzJmzJj5Hu/z77dLUf/e9PNhT5KstdZaC9yvvr6jjz56gdt8WT+QfNYTfP4+JMWorKzM4MGDM3LkyPzf//1fNthgg7z77rt54oknsv322ze6eXv79u1z3333NdzfY9KkSXn33Xfn6QcWRv3rcu655+bcc8+d7zb1r8u2226bIUOG5Lbbbsvee++dDh06pG/fvtlyyy2z0047NbrE8ec99thj+c9//pN11lkns2bNahjH9u3b5xvf+EbefPPN3HvvvQ33mynlORTT632+f5yfYvrqJHrruSyu3hr4csIVgCI99thjDd+mWtDN+caNG5fXXnut4edCoTDPNgvzRmd+DcfWW2+db3/723n88cfzl7/8JU8//XSuvvrqXHPNNTn++OMbbmD3Rerf2H3eF13bt76epZZaKhdddNECt1l11VUb/Tz3fUYWt08//TSHHnpoHnvssay99tpZe+21s+2222bNNdfMn/70p1x22WWNtk2+/DWYn/pxX9C+dXV18zTf8xuDDTfcMA899FCeeuqpPP7443n66aczZsyY3HTTTdlnn30a3XwRAIDFr3///nn99dfzt7/9LQMGDFjgdscdd1w+/fTTLwwh6tX3C+3bt2/4+x577LHAD10X9F6+GPXvfYtV35/89re/Tc+ePee7zefv8bCo+oGdd945l1xySe6+++5ssMEGufvuu1NbW9soWJg+fXr22muvvPTSS+nbt2/WXnvt7LjjjllnnXUyatSohg/9i/X5Pq1+3A4//PBssMEG891nqaWWSvLZ2U+nnXZaDj744Dz66KP53//934wbNy5PPPFELrvssowZM2a+wULy3zNAXnzxxWy11Vbz3WbMmDElhSul9HpVVVVfetxi+uq5wxO9dXn11tDWCVcAilT/xvXAAw9sON12brfeemsee+yxRm9eX3/99Xm2mzBhwpc+Vv2b0lmzZjVaXn9qcr3p06fnH//4R3r27Jltttkm22yzTZLk1VdfzV577ZWLL764SW8AS9WzZ8+88cYb6dOnzzxN0yuvvJKpU6c2XG6rHNx333157LHHcsABBzRcnqve7bff3ujn+ubwjTfemOdN7LXXXpvXXnstJ554Yjp06DDP49Q3P+PHj2+4cWa9t99+Ox9//HHD6f8LMmvWrPzjH//I0ksvnS222CJbbLFFkuStt97Kz372s4waNSqHHnpoOnXq1IRnDgDAorD99ttnzJgxGT169ALDlX//+9+56667Ul1dnS5dumSllVZKkvzzn/+cZ9tCoZDXX389nTp1SnV1daPA4vNnadfV1eWBBx5oON7CmPu97xprrNFo3bnnnpuZM2fm+OOPX+B+1dXV89Q3derUvPDCC81SX1OstNJK2XjjjXP//ffnxBNPzN13351VVlklG220UcM21113Xf7+97/nlFNOyU9+8pNG+zflUkpVVVX5+OOP51n++T6t/nXp0KHDPK/L9OnT85e//KXhTIbJkydn4sSJ2WSTTbLnnntmzz33zJw5c3LVVVfl3HPPzU033ZRjjjlmnsd877338uc//zlLLbVUzjzzzHk+vK+rq8sxxxyTF198MS+99NIXnoE0P4uq1yumrz7xxBPzjW98I4neutx6a2jrRJsARXj33Xfz+OOPp0uXLjnkkEOy9dZbz/Pn8MMPT5LccccdWWWVVbLqqqvmrrvuanSa88yZM3PDDTd86eMtt9xyST77BtLc7rjjjkY/jx8/PrvvvntGjhzZaPnqq6+ezp07N/rWTP23Wub3jZ9SbbvttkmS3//+942WT58+PUcccUQOOeSQed7ENkX9G+DmPp35gw8+SJJ5GsYJEybkgQceSPLfbzBttdVWqaioyI033tjoOtoffvhhrrjiirzwwgsNwUplZWWjWgcNGpSqqqpcdtllja7ZXCgUcv755ydJvve9731prbvuumt++9vfNlq+0korpXv37qmoqPBNJQCAFta/f/8MGjQoDzzwQK655pp51n/00Uf5+c9/njlz5uTQQw9N+/bts+aaa2allVbKXXfdNc8HxmPHjs3EiRMbPthde+21s+KKK+b2229vuDxSvZtvvjlHHHFEw4fVC6P+rJhRo0Y1Wj5x4sRce+21eeutt+a73zbbbJPKyspceumlmTlzZqN1Z5xxRg455JD8/e9/L6mmz7/HboohQ4bk/fffzx133JGXX355njM2FtQP/N///V/D/Sy+6PJkyy23XN5///1Gl2eaPXt27r///kbbbbbZZllqqaVy7bXXNjxmvUsvvTQ///nP86c//anh57333jvPP/98wzbt2rXLeuutl2TBZ4PccccdmTNnTnbccccMGjRonv50m222yZAhQ5IkN9100wKfU/LfXnHu13tR9HrF9tWffPJJ+vTpo7cuw94a2jpnrgAUof6N684775wlllhivtustdZa6d+/f5555pncc889OfXUU/Ozn/0su+yyS/bYY4906tQpY8eOzUcfffSljzd48OBcdtllOfXUUzNp0qQsu+yyefTRRzN+/PhGj7/hhhtms802y5gxY1JTU5ONNtootbW1eeCBB/LWW281+oZT/fVYr7zyymy++eZfeC3Xptp5553zP//zP7n55pszceLEDBw4MHPmzMmtt96aN998M8OHD//CGzAuSP2NCh955JGssMIKGTRoULp06bLQ9W6++eb53e9+lxEjRmTixIlZdtll889//jNjx45tCFBqamqSfHa96QMOOCCXXXZZdtttt2y33Xapq6vLLbfckmnTpjWEJPX1vvrqqxk9enT69euX3r1754gjjsjvfve77LTTTtl5552z5JJL5uGHH85TTz2V7373u/nhD3/4hbX26NEju+yyS26++ebsu+++GThwYCoqKvKXv/wlzzzzTIYOHZoll1xyoV8TAAAWzmmnnZZp06bljDPOyN13351tttkmyyyzTN58883cfvvtef/997PHHntkjz32SPLZh52nnnpqDjjggOyyyy7Zbbfd0rNnz7zwwgu5/fbbs+KKK+aoo45qtO2BBx6YnXfeOT/5yU+y8sor58UXX8zYsWOz8sor5+CDD17o57D55ptn++23z9ixY/POO+9k4MCBmT59em688cYsscQSGT58+Hz3+8Y3vpHDDjss559/fnbccccMHjw41dXVefjhh/OXv/wl3/3udxuComLN7z32l9l2223z29/+NmeeeWbatWuXnXbaqdH6gQMH5vrrr89RRx2V3XffPZ07d87f//733H777amqqsqnn37a0A/Mz5AhQzJu3Ljsu+++2X333VNXV5exY8fOE8hUV1fn17/+dY477rjssMMO2XXXXbPccsvlqaeeyn333Zd11103u+++e5Jk7733zv33358DDjggP/nJT9KzZ89MmTIlN910Uzp37pwf//jH863ltttuS5KG48zPT3/609x444259957c+yxxy7wrPf6XvGuu+5KoVBo6GGau9crpa/eZZdd9NZl2FtDWydcASjC7bffnoqKii9845p89sb4mWeeyZgxYzJ27NiMHj06F1xwQa699tokn30j7Dvf+U5+/vOff+FxVl555VxxxRW56KKLcvnll6djx47ZfPPNc9NNN2W77bZrtO0FF1yQq6++uuGSV0nSp0+fnHPOOdlhhx0attttt93y17/+NWPHjs1TTz3VLG8Aq6qqcumll2bUqFG58847c84556Rjx47p1atXLrzwwpIbqVVXXTX77LNP/vCHP2TEiBHp2bNnNtlkk4Wut1evXrn88stzwQUX5KqrrkqSLL/88hk6dGi+973vZaeddsrjjz/ecFbJkUcemdVWWy033HBDzjvvvHTs2DHrrLNOzj777KyzzjoNxz366KNzzjnn5LTTTsuwYcPSu3fvHHDAAVlttdVy7bXXNtzLZdVVV82vf/3r7Lbbbk066+TXv/51Vltttdx+++0599xzU1tbm9VWWy2/+tWvvnQuAgCweFRXV+eqq67Kfffdl9tuuy2jR4/O+++/n06dOmW99dbLHnvs0XCJ13oDBgzILbfckpEjR2bs2LGZPn16VlhhhfzsZz/LsGHDUl1d3bDtpptumltuuSWXXHJJwwfKPXr0yO67754DDzywSTcRb4qzzz476667bv7whz/kzDPPzNJLL51+/frl5z//+TyXyZ3bwQcfnNVXXz3XXXddLr/88tTV1WWllVbK0UcfnT333LNJ9+GYn/m9x/4ySyyxRLbffvuMHj06AwcObDhrod4mm2ySc889t6HXat++fVZYYYUcccQRWX311XPAAQfk8ccfb/Ref24777xzPv7444wePTpnnXVWvv71r2fHHXfMd7/73ey6666Ntt1pp52y/PLL58orr8x1112XWbNmZYUVVshBBx2Ufffdt+GLUr169coNN9yQSy65JHfccUfee++9dOnSJQMGDMghhxwy3/utPP/883nttdfSv3//fPOb31zg67Hyyivnu9/9bh5++OHceeedDQHf5w0YMCA77LBDHnroobz44ovp169fVl111Wbv9Urpq3fZZZf069dPb11mvTW0dRWF5jx3DYCSFQqF9OnTJxtvvHGuu+66li4HAAAAWh29NbC4uEg7QJmoP+18qaWWauFKAAAAoHXSWwOLi8uCAZSByy67LC+99FKSz64tCwAAABRHbw0sTsIVgBZWU1OTUaNG5dNPP83222+fffbZp6VLAgAAgFZFbw0sbu65AgAAAAAAUAT3XAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAitPkb2hcKhdTVue1MOaisrDAWlMTcoVTmDgvD/KFULTl3KisrUlFR0SKPTeulZ2o+/t9RnoxLeTIu5cm4lB9jUp6MS3lq6rg0tW9q8+FKXV0h77//cUuX0ea1a1eZrl2XSk3NjMyZU9fS5dCKmDuUytxhYZg/lKql584yyyyVqirhCsXRMzWPlv79Z/6MS3kyLuXJuJQfY1KejEt5KmZcmto3uSwYAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBGEKwAAAAAAAEUQrgAAAAAAABRBuAIAAAAAAFAE4QoAAAAAAEARhCsAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBGEKwAAAAAAAEUQrgAAAAAAABShbMOVkSNHZs8992y0bOrUqTnyyCPTr1+/bLzxxvnlL3+Z999/v4UqBAAAAAAA2qKyDFeuvfbaXHDBBY2WzZ49Oz/72c/y1ltv5Zprrslll12Wl19+Occcc0wLVQkAAAAAALRF7Vq6gLlNmTIlJ5xwQp599tmsuuqqjdbdc889mTx5ch588MF8/etfT5Icf/zxOeWUUzJ9+vR06tSpJUoGAAAAAADamLI6c+Wll17K0ksvnbvuuivrrbdeo3WPP/54BgwY0BCsJMnmm2+ehx56SLACAAAAAAAsNmV15srAgQMzcODA+a578803069fv1x88cW54447MmfOnGy22WYZPnx4qqurF+px27Urq4ypTamoqEhl5Wd/kuRrX6tKVdUXj0ddXSGFQmFxlEcrUD9fvmzewOeZOywM84dSmTsAADTV3J+Zzc/n31vW1RVSV+czM1hcyipc+SLTp0/PHXfckU022SS/+93vMm3atJx++uk5+OCDc/3116eiYsH/0HyRysqKdO26VDNXS1PV1RUa/U+iU6cORe8DSVJd3bGlS6CVMndYGOYPpTJ3AAD4IpWVFenSZckmfSmn/r1lbW1dPvxwhoAFFpNWE6587Wtfy5JLLpnf/e53+drXvpYkWXrppbPLLrvkxRdfzLrrrlvScevqCqmpmdGcpdJEVVWVqa7umHNufDaTpnzUpH16du+co/bom5qaT1JbW7eIK6Q1qJ9H5gTFMndYGOYPpWrpuVNd3dFZMwAArUBlZUWqqiqb/LlZ/WdmlZUVwhVYTFpNuNKjR4/U1dU1BCtJ8s1vfjNJMmnSpJLDlSSZM8eHIi1p0pSP8vrkaUXtU1tbZ9xoxJygVOYOC8P8oVTmDgAATVHK52bA4tFqvrbWr1+/vPrqq5k5c2bDsvHjxydJVllllZYqCwAAAAAAaGNaTbjyk5/8JFVVVfnlL3+Z8ePH59lnn82JJ56YjTfeOGuttVZLlwcAAAAAALQRrSZcWWaZZXLjjTdmzpw5+fGPf5yDDjoo66yzTi6++OKWLg0AAAAAAGhDyvaeK2ecccY8y77xjW/ksssua4FqAAAAFr333nsvZ5xxRh5//PHMmjUr/fv3z9FHH53VV189SfLKK69kxIgR+fvf/54uXbpkzz33zL777tuwf11dXS666KLceuutqampSd++fXPSSSe5lDIAADSzVnPmCgAAwFfdQQcdlLfeeitXXHFF/vCHP6RDhw7Ze++988knn+SDDz7IPvvsk2984xsZO3ZsDjvssJx//vkZO3Zsw/4jR47MmDFjcuqpp+bmm29ORUVF9t9//8yePbsFnxUAAHz1lO2ZKwAAAG3JBx98kJ49e+aggw7KN7/5zSTJwQcfnB133DH//Oc/8+STT6Z9+/Y5+eST065du/Tq1SsTJkzIFVdckSFDhmT27Nm5+uqrM3z48Gy55ZZJkvPOOy+bb755HnzwwWy33XYt+fQAAOArxZkrAAAAZaBr164599xzG4KV//znP7nqqqvSo0ePrL766hk3blz69++fdu3++x25AQMG5I033sh7772XV199NR9//HEGDBjQsL66ujprrrlmnnnmmcX+fAAA4KvMmSsAAABl5le/+lVuueWWtG/fPpdcckmWXHLJvPPOO+ndu3ej7ZZbbrkkydtvv5133nknSbL88svPs82///3vxVM4AAC0EcIVAACAMrPXXntl1113zU033ZRDDjkko0ePzsyZM9O+fftG2y2xxBJJklmzZuWTTz5JkvluM23atIWqp107Fz1YWFVVlY3+S3kwLuXJuJQn47J4lfo6G5+W53elPC2KcRGuAAAAlJnVV189SfLb3/42zz33XG644YZ06NBhnhvTz5o1K0my5JJLpkOHDkmS2bNnN/y9fpuOHTuWXEtlZUW6dl2q5P1prLq69LFg0TEu5cm4lCfjUt6MT/kwFuWpOcdFuAIAAFAG3nvvvTz55JP5/ve/n6qqqiRJZWVlevXqlalTp6ZHjx6ZOnVqo33qf+7evXvmzJnTsGzllVdutE2fPn1KrquurpCamhkl789nqqoqU13dMTU1n6S2tq6ly+H/My7lybiUJ+OyeNW/3sUyPi3P70p5KmZcqqs7NukMF+EKAABAGZg6dWp++ctfplu3btlkk02SJJ9++mlefvnlDBw4MF//+tczZsyY1NbWNoQvTz75ZFZdddV069YtnTt3TqdOnfL00083hCs1NTV5+eWXM3To0IWqbc4cHww0l9raOq9nGTIu5cm4lCfjUt6MT/kwFuWpOcfFhd8AAADKQJ8+fbLZZpvllFNOybhx4zJ+/Pgcc8wxqampyd57750hQ4Zk+vTpOeGEE/Laa6/ltttuy6hRo3LggQcm+exeK0OHDs0555yThx9+OK+++mp+8YtfpEePHhk0aFALPzsAAPhqceYKAABAGaioqMjvf//7/O53v8sRRxyRjz76KP369cuNN96YFVZYIUly5ZVXZsSIERk8eHCWXXbZHH300Rk8eHDDMQ4//PDMmTMnJ554YmbOnJn+/fvnqquumucm9wAAwMIRrgAAAJSJzp075+STT87JJ5883/Xrrrtubr755gXuX1VVleHDh2f48OGLqEIAACBxWTAAAAAAAICiCFcAAAAAAACKIFwBAAAAAAAognAFAAAAAACgCMIVAAAAAACAIghXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAiCFcAAAAAAACKIFwBAAAAAAAognAFAAAAAACgCMIVAAAAAACAIghXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAiCFcAAAAAAACKIFwBAAAAAAAognAFAAAAAACgCMIVAAAAAACAIghXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAiCFcAAAAAAACKIFwBAAAAAAAognAFAAAAAACgCMIVAAAAAACAIpRtuDJy5MjsueeeC1x/4oknZuDAgYuxIgAAAAAAgDINV6699tpccMEFC1z/0EMP5dZbb12MFQEAAAAAAHymXUsXMLcpU6bkhBNOyLPPPptVV111vttMnTo1v/rVr7LRRhtl8uTJi7lCAAAAAACgrSurM1deeumlLL300rnrrruy3nrrzbO+UCjk2GOPzY477piNNtqoBSoEAAAAAADaurI6c2XgwIFfeB+Va6+9Nu+++24uvfTSXHbZZc32uO3alVXG1GZUVZX+ui/Mvny11M8Fc4JimTssDPOHUpk7AAAAXw1lFa58kVdffTUXXXRRbrzxxrRv377ZjltZWZGuXZdqtuOxeFRXd2zpEigz5gSlMndYGOYPpTJ3AAAAWrdWEa7MmjUrRx11VA466KD06dOnWY9dV1dITc2MZj0mTVNVVVnyBws1NZ+ktraumSuiNaqfR+YExTJ3WBjmD6Vq6blTXd3RWTMAAADNoFWEK88//3z++c9/5qKLLsrFF1+cJPn0008zZ86cbLDBBjnllFPywx/+sOTjz5njQ5HWpra2zrjRiDlBqcwdFob5Q6nMHQAAgNatVYQr6667bv74xz82Wnb99dfnj3/8Y66//vp069athSoDAAAAAADamlYRrnTo0CGrrLJKo2VLL7102rVrN89yAAAAAACARckFlwEAAAAAAIpQtmeunHHGGV+4/rDDDsthhx22mKoBAAAAAAD4jDNXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAiCFcAAAAAAACKIFwBAAAAAAAognAFAAAAAACgCMIVAAAAAACAIghXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAIAy8eGHH+bXv/51tthii2y44YbZbbfdMm7cuIb1xx13XNZYY41Gf7bYYouG9XV1dbnggguy+eabZ7311svPfvazTJgwoSWeCgAAfKW1a+kCAAAA+MyRRx6Z9957L+eee26WWWaZjB49Ovvuu29uu+229OrVK//4xz8ybNiwDB06tGGfqqqqhr+PHDkyY8aMyemnn57u3bvn7LPPzv7775977rkn7du3b4mnBAAAX0nOXAEAACgDEyZMyBNPPJGTTjop/fr1y2qrrZYTTjgh3bt3zz333JPa2tq89tprWWeddbLssss2/FlmmWWSJLNnz87VV1+dww47LFtuuWX69OmT8847L1OmTMmDDz7Yws8OAAC+WoQrAAAAZaBr1665/PLLs/baazcsq6ioSKFQyLRp0/Lmm29m1qxZ6dWr13z3f/XVV/Pxxx9nwIABDcuqq6uz5ppr5plnnlnk9QMAQFvismAAAABloLq6OltuuWWjZffff38mTpyYzTbbLOPHj09FRUVGjRqVP//5z6msrMyWW26ZI444Ip07d84777yTJFl++eUbHWO55ZbLv//974WqrV0738tbWFVVlY3+S3kwLuXJuJQn47J4lfo6G5+W53elPC2KcRGuAAAAlKFnn302xx9/fLbaaqsMHDgwF1xwQSorK7Piiivm0ksvzYQJE3LmmWdm/PjxGTVqVD755JMkmefeKksssUSmTZtWch2VlRXp2nWphXou/Fd1dceWLoH5MC7lybiUJ+NS3oxP+TAW5ak5x0W4AgAAUGYeeuihHHXUUVlvvfVy7rnnJkkOO+yw7L333qmurk6S9O7dO8suu2x23XXXvPjii+nQoUOSz+69Uv/3JJk1a1Y6diy9iayrK6SmZsZCPBuSz74lWV3dMTU1n6S2tq6ly+H/My7lybiUJ+OyeNW/3sUyPi3P70p5KmZcqqs7NukMF+EKAABAGbnhhhsyYsSIDBo0KOecc07DmSgVFRUNwUq93r17J0neeeedhsuBTZ06NSuvvHLDNlOnTk2fPn0WqqY5c3ww0Fxqa+u8nmXIuJQn41KejEt5Mz7lw1iUp+YcFxd+AwAAKBOjR4/Ob3/72+yxxx75/e9/3+gSX7/85S+z7777Ntr+xRdfTJKsvvrq6dOnTzp16pSnn366YX1NTU1efvnl9OvXb/E8AQAAaCOcuQIAAFAG3njjjZx22mkZNGhQDjzwwLz33nsN6zp06JDtt98+Bx10UC655JJst912eeONN/Kb3/wm22+/fXr16pUkGTp0aM4555wss8wyWXHFFXP22WenR48eGTRoUEs9LQAA+EoSrgAAAJSBBx54IJ9++mkefPDBPPjgg43WDR48OGeccUbOP//8XHrppbn00kvTuXPn7LDDDjniiCMatjv88MMzZ86cnHjiiZk5c2b69++fq666ap6b3AMAAAtHuAIAAFAGhg0blmHDhn3hNttuu2223XbbBa6vqqrK8OHDM3z48OYuDwAAmIt7rgAAAAAAABRBuAIAAAAAAFAE4QoAAAAAAEARhCsAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBGEKwAAAAAAAEUQrgAAAAAAABRBuAIAAAAAAFAE4QoAAAAAAEARhCsAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFKFsw5WRI0dmzz33bLTskUceyZAhQ7LBBhtk4MCBOfPMMzNz5swWqhAAAAAAAGiLyjJcufbaa3PBBRc0WjZu3Lgceuih2XbbbXPHHXfk5JNPzv33359TTjmlhaoEAAAAAADaorIKV6ZMmZL99tsv559/flZdddVG68aMGZMBAwbkgAMOyCqrrJItttgiv/jFL3LXXXdl9uzZLVQxAAAAAADQ1rRr6QLm9tJLL2XppZfOXXfdlYsvvjiTJ09uWPezn/0slZXzZkFz5szJ9OnTs8wyyyzOUgEAAAAAgDaqrMKVgQMHZuDAgfNdt+aaazb6efbs2bnmmmuy1lprLXSw0q5dWZ3A02ZUVZX+ui/Mvny11M8Fc4JimTssDPOHUpk7AAAAXw1lFa401Zw5c3L00Ufntddey4033rhQx6qsrEjXrks1U2UsLtXVHVu6BMqMOUGpzB0WhvlDqcwdAACA1q3VhSvTp0/PEUcckaeffjoXXHBB1ltvvYU6Xl1dITU1M5qpOopRVVVZ8gcLNTWfpLa2rpkrojWqn0fmBMUyd1gY5g+laum5U13d0VkzAAAAzaBVhStTp07N/vvvn0mTJuWKK67IgAEDmuW4c+b4UKS1qa2tM240Yk5QKnOHhWH+UCpzBwAAoHVrNeHKtGnTstdee2X69OkZPXp01lhjjZYuCQAAAAAAaINaTbhy+umn56233sqVV16ZZZZZJu+++27DumWWWSZVVVUtWB0AAAAAANBWtIpwpa6uLvfdd18+/fTT7LXXXvOsf/jhh9OzZ88WqAwAAAAAAGhryjZcOeOMMxr+XllZmRdeeKEFqwEAAAAAAPhMZUsXAAAAAAAA0JoIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAiCFcAAAAAAACKIFwBAAAAAAAognAFAAAAAACgCMIVAAAAAACAIghXAAAAAAAAiiBcAQAAAAAAKEKzhisff/xxZs6c2ZyHBAAAaDX0RAAA0DaUHK78+c9/zsiRIxt+PvPMM7PRRhulX79+GTFiRLMUBwAAUK70RAAA0HaVFK48+uijOfDAA3PnnXcmScaNG5drrrkmK664YjbYYIPccMMNGT16dLMWCgAAUC70RAAA0LaVFK5cc801WXnllXPdddclSe69995UVlbmmmuuyfXXX5/vfve7GTt2bLMWCgAAUC70RAAA0LaVFK688sor2W233dK9e/ckyRNPPJHevXtnxRVXTJJsvvnm+de//tV8VQIAAJQRPREAALRtJYUrc+bMSadOnZIkkydPzsSJE7Pxxhs3rK+rq0u7du2ap0IAAIAyoycCAIC2raRwpWfPnnn55ZeTJA888EAqKiqy+eabN6x/9NFH07Nnz+apEAAAoMzoiQAAoG0r6atU2267bS655JJMnjw5f/3rX9O9e/cMGDAgEydOzKmnnponnngixx57bHPXCgAAUBb0RAAA0LaVFK4cfPDB+fDDDzN27Ngsv/zyGTFiRNq1a5cPP/wwf/nLX/LjH/84Q4cObe5aAQAAyoKeCAAA2raSwpXKysqceOKJOfHEExst79OnTx599NGGmzoCAAB8FemJAACgbSvpnis//elP8+STT86zvH379unevXseeuihfO9731vo4gAAAMqRnggAANq2Jp258sknn+SDDz5o+Pmvf/1rBg0alFVWWWWebevq6vKXv/wlb7/9dvNVCQAA0IL0RAAAwNyaFK5Mnz4922+/fT755JOGZaeddlpOO+20Be6z/vrrL3RxAAAA5UBPBAAAzK1J4cqyyy6bX//613n66adTKBRyxx13pG/fvllppZXm2baysjJf//rXs9tuuzV7sQAAAC1BTwQAAMytyTe032mnnbLTTjsl+ewU+H322SdbbbXVoqoLAACgrOiJAACAek0OV+b2yCOPNHcdAAAArYaeCAAA2raSwpUkKRQKeeqpp/Luu++mrq5uvtvUf6sLAADgq0ZPBAAAbVdJ4cqECROy//7756233prv+kKhkIqKCo0EAADwlaQnAgCAtq2kcOWcc87JW2+9lSFDhmSdddZJ+/btm7suAACAsqUnAgCAtq2kcOWpp57Kbrvtll//+tfNXQ8AAEDZ0xMBAEDbVlnKTnPmzMm3vvWt5q4FAACgVdATAQBA21ZSuLLWWmvlpZdeau5aAAAAWgU9EQAAtG0lhSuHH3547rzzzjzwwAMpFArNXRMAAEBZ0xMBAEDbVtI9V66++uosvfTSOeKII9KhQ4d07do1FRUVjbapqKjIQw891CxFAgAAlBM9EQAAtG0lhSvjx49PZWVlll9++YZln/+2lm9vAQAAX1V6IgAAaNtKClceeeSR5q4DAACg1dATAQBA21bSPVc+b/bs2amrq2uOQwEAALQ6eiIAAGhbSg5XPvzww/zmN7/JZpttlvXXXz9PP/10xo0bl2HDhuWNN95ozhoBAADKzqLoiT788MP8+te/zhZbbJENN9wwu+22W8aNG9ew/pVXXsnQoUOz/vrr5zvf+U6uuuqqRvvX1dXlggsuyOabb5711lsvP/vZzzJhwoSFep4AAMC8SgpXPvzww+y6664ZPXp0Onbs2HAt4WnTpuWxxx7LHnvskbfeeqtZCwUAACgXi6onOvLII/P888/n3HPPzR/+8IestdZa2XffffP666/ngw8+yD777JNvfOMbGTt2bA477LCcf/75GTt2bMP+I0eOzJgxY3Lqqafm5ptvTkVFRfbff//Mnj272Z47AABQYrhy0UUXZfLkybnmmmty8803NzQSW221VS6//PLMmDEjI0eObNZCAQAAysWi6IkmTJiQJ554IieddFL69euX1VZbLSeccEK6d++ee+65J7fcckvat2+fk08+Ob169cqQIUOy995754orrkjy2aXJrr766hx22GHZcsst06dPn5x33nmZMmVKHnzwwWZ/DQAAoC0rKVx55JFH8uMf/zibbLJJKioqGq3bYostsuuuu+bpp59ulgIBAADKzaLoibp27ZrLL788a6+9dsOyioqKFAqFTJs2LePGjUv//v3Trl27hvUDBgzIG2+8kffeey+vvvpqPv744wwYMKBhfXV1ddZcc80888wzJT5TAABgfkoKV6ZOnZo+ffoscH2vXr3y7rvvllwUAABAOVsUPVF1dXW23HLLtG/fvmHZ/fffn4kTJ2azzTbLO++8kx49ejTaZ7nllkuSvP3223nnnXeSJMsvv/w82/z73/8uqhYAAOCLtfvyTebVrVu3TJ48eYHrx48fn65du5ZcFAAAQDlbHD3Rs88+m+OPPz5bbbVVBg4cmNNPP71R8JIkSyyxRJJk1qxZ+eSTT5JkvttMmzZtoWpp166k7+Uxl6qqykb/pTwYl/JkXMqTcVm8Sn2djU/L87tSnhbFuJQUrmyxxRYZM2ZMdtlllyy11FKN1v3tb3/LLbfcku23375ZCgQAACg3i7oneuihh3LUUUdlvfXWy7nnnpsk6dChwzw3pp81a1aSZMkll0yHDh2SfHbvlfq/12/TsWPHkmuprKxI165LffmGNEl1deljwaJjXMqTcSlPxqW8GZ/yYSzKU3OOS0nhyqGHHppHH300gwcPTt++fVNRUZExY8Zk1KhRefzxx9OpU6ccfPDBzVYkAABAOVmUPdENN9yQESNGZNCgQTnnnHMazkTp0aNHpk6d2mjb+p+7d++eOXPmNCxbeeWVG23zRZcw+zJ1dYXU1MwoeX8+U1VVmerqjqmp+SS1tXUtXQ7/n3EpT8alPBmXxav+9S6W8Wl5flfKUzHjUl3dsUlnuJQUrnTv3j1jxozJb37zm/z5z39OoVDIAw88kCTp27dvTjrppPTs2bOUQwMAAJS9RdUTjR49Or/97W+z55575vjjj09l5X+buv79+2fMmDGpra1NVVVVkuTJJ5/Mqquumm7duqVz587p1KlTnn766YZwpaamJi+//HKGDh26UM93zhwfDDSX2to6r2cZMi7lybiUJ+NS3oxP+TAW5ak5x6WkcCVJevbsmcsvvzwfffRR3nzzzdTV1aVnz57p1q1bsxQGAABQzpq7J3rjjTdy2mmnZdCgQTnwwAPz3nvvNazr0KFDhgwZkiuvvDInnHBC9ttvv7zwwgsZNWpUTjnllCSf3Wtl6NChOeecc7LMMstkxRVXzNlnn50ePXpk0KBBzfKcAQCAz5QcrtTr3Llz1llnneaoBQAAoNVprp7ogQceyKeffpoHH3wwDz74YKN1gwcPzhlnnJErr7wyI0aMyODBg7Psssvm6KOPzuDBgxu2O/zwwzNnzpyceOKJmTlzZvr375+rrrpqnpvcAwAAC6dJ4cpxxx2Xn/zkJ1lvvfUafv4yFRUVOe200xauOgAAgDKwOHqiYcOGZdiwYV+4zbrrrpubb755geurqqoyfPjwDB8+vMmPCwAAFK9J4crtt9+eTTfdtKGRuP322790H+EKAADwVaEnAgAA5takcOXhhx/OMsss0+hnAACAtkJPBAAAzK1J4cqKK644359ramrSqVOnVFZWJkn++c9/Ztlll02XLl0WurCRI0fmySefzPXXX9+w7JVXXsmIESPy97//PV26dMmee+6Zfffdd6EfCwAA4Iu0RE8EAACUr8pSdzzvvPOy+eabZ+LEiQ3Lrrjiimy22Wa5+uqrF6qoa6+9NhdccEGjZR988EH22WeffOMb38jYsWNz2GGH5fzzz8/YsWMX6rEAAABKsSh7IgAAoLw16cyVz7vlllty2WWXpW/fvlliiSUalu+00075z3/+k7PPPjvLL798vv/97xd13ClTpuSEE07Is88+m1VXXXWex2zfvn1OPvnktGvXLr169cqECRNyxRVXZMiQIaU8DQAAgJIsqp4IAABoHUo6c2X06NH59re/nRtvvDHLL798w/JNN900V199dTbZZJNcc801RR/3pZdeytJLL5277rqr4UaR9caNG5f+/funXbv/5kEDBgzIG2+8kffee6+UpwEAAFCSRdUTAQAArUNJZ65MmDAhu+222wLXDxo0KOecc07Rxx04cGAGDhw433XvvPNOevfu3WjZcsstlyR5++23061bt6Ifr167diVfHY2FUFVV+uu+MPvy1VI/F8wJimXusDDMH0pl7nx1LKqeCAAAaB1KClc6duyYd999d4HrP/jgg1RVVZVc1PzMnDkz7du3b7Ss/vT7WbNmlXzcysqKdO261ELVxuJXXd2xpUugzJgTlMrcYWGYP5TK3Gn9WqInAgAAykdJ4Urfvn0zevTo7Lrrrll22WUbrXv//fczZsyYbLjhhs1SYL0OHTpk9uzZjZbVhypLLrlkycetqyukpmbGQtVGaaqqKkv+YKGm5pPU1tY1c0W0RvXzyJygWOYOC8P8oVQtPXeqqzs6a6aZtERPBAAAlI+SwpUDDjggu+++e374wx9mxx13zGqrrZaKior861//yt13350PP/wwBx98cLMW2qNHj0ydOrXRsvqfu3fvvlDHnjPHhyKtTW1tnXGjEXOCUpk7LAzzh1KZO61fS/REAABA+SgpXFlnnXUycuTInHTSSbn22msbrevRo0cuvvjirLvuus1RX4P+/ftnzJgxqa2tbTi9/sknn8yqq666UPdbAQAAKFZL9EQAAED5KClcSZLNN988jzzySF5++eVMmjQpc+bMSc+ePbPWWmstkmsLDxkyJFdeeWVOOOGE7LfffnnhhRcyatSonHLKKc3+WAAAAF9mcfdEAABA+Sg5XKm35pprZs0112yOWr5Qt27dcuWVV2bEiBEZPHhwll122Rx99NEZPHjwIn9sAACABVlcPREAAFA+mhSuXHTRRdlmm23Su3fvhp+/TEVFRQ455JCSCzvjjDPmWbbuuuvm5ptvLvmYAAAApWiJnggAAChfTQ5XVlllFY0EAADQJumJAACAuTUpXLnqqqvyrW99q+Hn6667bpEVBAAAUG70RAAAwNyaFK4cf/zxOfLII7PjjjsmSd5+++3069cvPXv2XKTFAQAAlAM9EQAAMLfKpmz0/vvvZ/r06Q0/H3fccXnuuecWVU0AAABlRU8EAADMrUlnrqywwgoZOXJkJk2alKWWWiqFQiF//OMf8+abby5wH9cXBgAAvir0RAAAwNyaFK4cccQROeaYY3LNNdck+axJ+OMf/5g//vGPC9xHIwEAAHxV6IkAAIC5NSlcGTRoUAYMGJA333wzs2fPzl577ZVhw4Zl0003XdT1AQAAtDg9EQAAMLcmhStbbbVVo5s3rrDCCllhhRWy0UYbLdLiAAAAyoGeCAAAmFtJN7R/++2307Fjx0VWFAAAQDnREwEAAHMr6Yb2SfLggw9mwoQJC9zH9YUBAICvCj0RAAAwNze0BwAA+BJ6IgAAYG5NCle+//3vu3kjAADQZumJAACAuTUpXEmSrl27pmvXrkmS/v37Z+ONN3bzRgAAoM3QEwEAAPWaHK7M7frrr2/4+xtvvJHJkydnrbXWSseOHVNZWZn27ds3W4EAAADlRk8EAABtW2WpOz733HPZYYcd8oMf/CD7779/Xn311fztb3/Ld77zndx///3NWSMAAEDZ0RMBAEDbVVK48s9//jP77LNP/vOf/+SHP/xhw/KOHTumtrY2Rx11VJ555plmKxIAAKCc6IkAAKBtKylcufDCC7PkkkvmnnvuyTHHHJNCoZAk2WCDDXLXXXdl2WWXzRVXXNGshQIAAJQLPREAALRtJYUrf/3rX/OTn/wk3bp1S0VFRaN13bt3z6677pqXX365WQoEAAAoN3oiAABo20oKVz7++ON07959geuXXnrp1NTUlFwUAABAOdMTAQBA21ZSuNKzZ8+8+OKLC1z/1FNPZcUVVyy5KAAAgHKmJwIAgLatpHBl++23z+23354//vGPDcsqKipSV1eXyy+/PA8++GC23XbbZisSAACgnOiJAACgbWtXyk77779//vd//zc///nPU11dnYqKipx00kn58MMPM23atPTp0ycHHnhgc9cKAABQFvREAADQtpV05kr79u1z7bXX5pe//GVWWGGFdOjQIf/+97/TrVu3HHTQQRk9enQ6duzY3LUCAACUBT0RAAC0bSWduZIkX/va17Lffvtlv/32a856AAAAWgU9EQAAtF0lhytJMn369PzlL3/JpEmT0r59+6ywwgrZbLPN0qFDh+aqDwAAoGzpiQAAoG0qOVx54IEH8utf/zo1NTUpFApJPruB41JLLZXf/OY3+cEPftBsRQKw+FRWVqSysqKoferqCqmrKyyiigCgPOmJAACg7SopXHn++efzy1/+Mp07d87hhx+eb37zm6mrq8v48eNzww035Oijj07Pnj2z7rrrNne9ACxClZUV6dJlyVRVFXdLrtraunz44QwBCwBthp4IAADatpLClUsuuSRdunTJnXfemW7dujUs32abbbLbbrtlxx13zJVXXpkLLrig2QoFYNGrrKxIVVVlzrnx2Uya8lGT9unZvXOO2qNvKisrhCsAtBl6IgAAaNtKClf+7//+L0OHDm3URNTr1q1bdt1114wZM2ahiwOgZUya8lFenzytpcsAgLKlJwIAgLatuOu+/H8zZsyYbxNRb5lllslHHzXtG88AAACtjZ4IAADatpLClZ49e+app55a4PqnnnoqK6ywQslFAQAAlDM9EQAAtG0lhSvbb799HnzwwVx00UWZPXt2w/LZs2fnoosuykMPPZQf/OAHzVYkAABAOdETAQBA21bSPVf233///OlPf8pFF12Uq6++OiuvvHIqKioyYcKEzJgxI2uuuWYOOOCA5q4VAACgLOiJAACgbSspXGnfvn2uu+66XHXVVfmf//mfvPnmmykUCll55ZWz7bbbZt99902HDh2au1YAAICyoCcCAIC2raRwJUk6dOiQQw45JIccckhz1gMAANAq6IkAAKDtKvqeKy+99NJ8lz/88MN55JFHFrogAACAcqYnAgAAmhyuvP/++xk6dGh22WWX1NTUzLP+hhtuyCGHHJKf/OQnmTJlSrMWCQAA0NL0RAAAQL0mhSszZszIXnvtlXHjxqV///755JNP5tlmjz32yKabbprnnnsuP/vZzzJr1qxmLxYAAKAl6IkAAIC5NSlcGTVqVP75z3/mN7/5TUaNGpXu3bvPs83WW2+dq666KkceeWRef/31XH/99c1eLAAAQEvQEwEAAHNrUrjywAMPZMstt8yPf/zjL932gAMOyIYbbpj77rtvoYsDAAAoB3oiAABgbk0KVyZMmJBNNtmkyQf9zne+kzfeeKPkogAAAMqJnggAAJhbk8KVysrKdOjQockH7dKlSyoqKkouCgAAoJzoiQAAgLk1KVxZYYUV8q9//avJB33ttdfmew1iAACA1khPBAAAzK1J4crmm2+eO++8Mx9//PGXbltTU5O77rorG2ywwUIXBwAAUA70RAAAwNyaFK785Cc/yaxZs3LggQfmgw8+WOB27733Xg455JDU1NRkjz32aLYiAQAAWpKeCAAAmFu7pmy08sor54QTTsivfvWrbLXVVvnBD36QDTfcMMstt1xqa2vz7rvv5tlnn80f//jHfPzxxzn22GOz1lprLeraAQAAFgs9EQAAMLcmhStJsssuu2S55ZbLr3/96/zhD3/I2LFjG60vFApZaaWVcvbZZ2fgwIHNXigAAEBL0hMBAAD1mhyuJMmWW26Zxx57LE899VSef/75TJ06NVVVVenevXs22mijrLvuuouqTgAAgBanJwIAAJIiw5UkqaioyCabbJJNNtlkUdQDAABQ1vREAABAk25oDwAAAAAAwGeEKwAAAAAAAEUQrgAAAAAAABSh1YUrn376ac4777x85zvfyQYbbJDdd989f/vb31q6LAAAAAAAoI1oUrhyzTXX5PXXX1/UtTTJJZdckrFjx+bUU0/NHXfckdVWWy37779/pkyZ0tKlAQAAX1Hl1BMBAAAtr0nhygUXXJDnnnuu4eetttoqDz/88KKq6Qs9/PDD2X777bPZZptllVVWybHHHpvp06c3qg8AAKA5lVNPBAAAtLwmhSuVlZV58skn8/HHHydJJk+enE8++WSRFrYgXbp0yaOPPppJkyaltrY2N998c9q3b59vfetbLVIPAADw1VdOPREAANDy2jVlo8033zz33HNP7r333iRJRUVFhg8fnuHDhy9wn4qKirz88svNU+VcTjjhhPziF7/IVlttlaqqqlRWVub888/Pyiuv3OyPBQAAkJRXTwQAALS8JoUrp556apZffvmMHz8+s2fPzrhx47LqqqumW7dui7q+ebz++uuprq7OxRdfnO7du+fWW2/NMccckxtuuCF9+vQp6Zjt2jXpBB6aWVVV6a/7wuzLV0v9XDAnmkdb+r00d1gY5g+lMndar3LqiQAAgJbXpHClU6dOOeaYYxp+7tOnTw466KDssMMOi6yw+Zk8eXKGDx+ea6+9Nv369UuSrLPOOnnttddy4YUX5uKLLy76mJWVFenadanmLpVFrLq6Y0uXQJkxJ1peax2D1lo35cH8oVTmTuvTEj3RyJEj8+STT+b6669vWHbcccfltttua7Rd9+7d8+c//zlJUldXl4suuii33nprampq0rdv35x00klZZZVVFlmdAADQFjUpXPm86667Lr169WruWr7UCy+8kE8//TTrrLNOo+XrrbdeQzNRrLq6QmpqZjRHeRSpqqqy5A8Wamo+SW1tXTNXRGtUP4/MiebRln4vzR0WhvlDqVp67lRXd3TWTDNZ1D3RtddemwsuuCD9+/dvtPwf//hHhg0blqFDhzYsq6qqavj7yJEjM2bMmJx++unp3r17zj777Oy///6555570r59+0VWLwAAtDUlhSsbbbRRkuSOO+7I/fffn0mTJqV9+/ZZfvnl873vfS8//OEPm7XIessvv3ySzxqKddddt2H5+PHjF+qbWHPm+FCktamtrTNuNGJOtLzWOgattW7Kg/lDqcyd1m9R9URTpkzJCSeckGeffTarrrpqo3W1tbV57bXXcvDBB2fZZZedZ9/Zs2fn6quvzvDhw7PlllsmSc4777xsvvnmefDBB7PddtuVVBMAADCvksKVQqGQww8/PA899FAKhUI6d+6curq6vPLKK3n00UfzP//zPxk5cmRz15p11103/fr1yzHHHJOTTjopPXr0yB133JEnn3wyo0ePbvbHAwAAmJ9F1RO99NJLWXrppXPXXXfl4osvzuTJkxvWvfnmm5k1a9YCz5h59dVX8/HHH2fAgAENy6qrq7PmmmvmmWeeEa4AAEAzKilcueGGG/Lggw/mhz/8YX75y1+me/fuSZJ///vf+f3vf5+77rorN910U3bbbbdmLbaysjIjR47M73//+xx33HGZNm1aevfunWuvvTbrr79+sz4WAADAgiyqnmjgwIEZOHDgfNeNHz8+FRUVGTVqVP785z+nsrIyW265ZY444oh07tw577zzTpL/nvFfb7nllsu///3vEp7lf7Vr53JyC6v+knwuzVdejEt5Mi7lybgsXqW+zsan5fldKU+LYlxKClfGjh2bjTbaKGeddVaj5csvv3zOPPPMvPPOOxk7dmyzhytJsvTSS+ekk07KSSed1OzHBgAAaIqW6In++c9/prKyMiuuuGIuvfTSTJgwIWeeeWbGjx+fUaNG5ZNPPkmSee6tssQSS2TatGklP25lZUW6dl1qoWrnv0q9vx2LlnEpT8alPBmX8mZ8yoexKE/NOS4lhStvvPFGjjrqqAWu33rrrXPeeeeVXBQAAEA5a4me6LDDDsvee++d6urqJEnv3r2z7LLLZtddd82LL76YDh06JPns3iv1f0+SWbNmpWPH0pvIurpCampmLFzxpKqqMtXVHVNT80lqa91zqVwYl/JkXMqTcVm86l/vYhmflud3pTwVMy7V1R2bdIZLSeFKu3btMmPGgt9cz5gxIxUVFaUcGgAAoOy1RE9UUVHREKzU6927d5LknXfeabgc2NSpU7Pyyis3bDN16tT06dNnoR57zhwfDDSX2to6r2cZMi7lybiUJ+NS3oxP+TAW5ak5x6WkC4ytvfbaue222zJr1qx51n3yySe57bbbsuaaay50cQAAAOWoJXqiX/7yl9l3330bLXvxxReTJKuvvnr69OmTTp065emnn25YX1NTk5dffjn9+vVr1loAAKCtKylc+dnPfpYJEybkRz/6Ue655568+uqrefXVV3P33Xdnl112ycSJE7PPPvs0d60AAABloSV6ou233z5PPPFELrnkkkycODF/+tOfcvzxx2f77bdPr1690r59+wwdOjTnnHNOHn744bz66qv5xS9+kR49emTQoEHNWgsAALR1JV0WbMstt8zRRx+dc889N8OHD2+0rrKyMr/4xS8ycODAZikQAACg3LRET/Td7343559/fi699NJceuml6dy5c3bYYYccccQRDdscfvjhmTNnTk488cTMnDkz/fv3z1VXXTXPTe4BAICFU1K4knz2Ta1BgwbloYceysSJE1MoFLLyyitn0KBBWWmllZqzRgAAgLKzqHuiM844Y55l2267bbbddtsF7lNVVZXhw4fPE/gAAADNq+RwJUlWWmkll/8CAADaLD0RAAC0TSXdcwUAAAAAAKCtEq4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEUoKV2666aa8+eabzVwKAABA66AnAgCAtq2kcOWcc87J3Xff3dy1AAAAtAp6IgAAaNtKClcqKyvTtWvX5q4FAACgVdATAQBA21ZSuLLvvvvm8ssvz+OPP566urrmrgkAAKCs6YkAAKBta1fKTs8991ymT5+eAw44IO3bt0/Xrl1TVVXVaJuKioo89NBDzVIkAABAOdETAQBA21ZSuDJ+/Ph06dIlXbp0aVhWKBQabfP5nwEAAL4q9EQAANC2lRSuPPLII81dBwAAQKuhJwIAgLatpHuufN7s2bNdZxgAAGiz9EQAANC2lByufPjhh/nNb36TzTbbLOuvv36efvrpjBs3LsOGDcsbb7zRnDUCAACUHT0RAAC0XSWFKx9++GF23XXXjB49Oh07dmy4lvC0adPy2GOPZY899shbb73VrIUCAACUCz0RAAC0bSWFKxdddFEmT56ca665JjfffHNDI7HVVlvl8ssvz4wZMzJy5MhmLRQAAKBc6IkAAKBtKylceeSRR/LjH/84m2yySSoqKhqt22KLLbLrrrvm6aefbpYCAQAAyo2eCAAA2raSwpWpU6emT58+C1zfq1evvPvuuyUXBQAAUM70RAAA0LaVFK5069YtkydPXuD68ePHp2vXriUXBQAAUM70RAAA0LaVFK5sscUWGTNmTCZNmjTPur/97W+55ZZbstlmmy10cQAAAOVITwQAAG1bu1J2OvTQQ/Poo49m8ODB6du3byoqKjJmzJiMGjUqjz/+eDp16pSDDz64uWsFAAAoC3oiAABo20o6c6V79+4ZM2ZMNthgg/z5z39OoVDIAw88kMceeyzrr79+rr/++vTs2bO5awUAACgLeiIAAGjbSjpzJUl69uyZyy+/PB999FHefPPN1NXVpWfPnunWrVtz1gcAAFCW9EQAANB2lXTmytzmzJmTQqGQdu3aZYkllmiOmgAAAFoNPREAALQ9JZ+58uKLL+ass87Ks88+m0KhkCSprKzMt7/97ZxwwglZZZVVmq1IAACAcqMnAgCAtqukcOWll17KnnvumdmzZ2fzzTfPN77xjdTV1eVf//pXHn/88fzkJz/JLbfckpVWWqm56wUAAGhxeiIAAGjbSgpXLrjggrRv3z5jxoxJnz59Gq177rnnss8+++Tcc8/Neeed1yxFAgAAlBM9EQAAtG0l3XNl3Lhx2XPPPedpIpJk/fXXz9ChQ/PEE08sdHEAAADlSE8EAABtW0nhSkVFRaqrqxe4vmfPnpkzZ07JRQEAAJQzPREAALRtJYUrW265Ze68887Mnj17vuvvv//+bLbZZgtVGAAAQLnSEwEAQNvWpHuuPPPMM41+3mqrrXLiiSdmjz32yAEHHJDVVlstlZWVmThxYm644Yb885//zO9///tFUS8AAMBipycCAADm1qRwZc8990xFRUWjZYVCIS+++GIOP/zweZYnyU9/+tO88sorzVQmAABAy9ETAQAAc2tSuHLIIYfM00gAAAC0FXoiAABgbk0KVw477LBFXQcAAEDZ0hMBAABzK+mG9gAAAAAAAG1Vk85c+bzp06fnd7/7XR577LFMmTKl4ZrCc6uoqMjLL7+80AUCAACUGz0RAAC0bSWFK2eddVZuueWWLLfccll//fVTVVXV3HUBAACULT0RAAC0bSWFK48++mi23nrrXHDBBamsdGUxAACgbdETAQBA21ZSFzB9+vRsueWWmggAAKBN0hMBAEDbVlInsOGGG+all15q7loAAABaBT0RAAC0bSWFK8OHD8/999+fUaNG5d13323umgAAAMqanggAANq2ku65suKKK2aNNdbIGWeckTPOOGO+21RUVOTll19eqOIAAADKkZ4IAADatpLClREjRuSvf/1rlllmmayyyipp166kwwAAALRKeiIAAGjbSuoAHn300Wy11VY5//zzNREAAECboycCAIC2raR7rsyePTvf+c53NBEAAECbpCcCAIC2raRwZYMNNshLL73U3LUAAAC0CnoiAABo20oKV375y1/m3nvvzdVXX50pU6aktra2uev6QnfccUd+8IMfZJ111sl2222X+++/f7E+PgAA0La1dE8EAAC0rJLOYT/22GNTWVmZs88+O2efffZ8t6moqMjLL7+8UMXNz5133pnjjz8+xxxzTL7zne/knnvuyZFHHpkePXpkgw02aPbHAwAA+LyW7IkAAICWV1K40qVLl3Tp0qWZS/lyhUIh559/fvbaa6/stddeSZJDDjkkf/vb3/LXv/5VuAIAACwWLdUTAQAA5aGkcOX6669v7jqa5F//+lcmT56cHXbYodHyq666qkXqAQAA2qaW6okAAIDyUNI9V1rKm2++mSSZMWNG9t1332yyySbZZZdd8sgjj7RsYQAAAAAAQJtR0pkrxx133JduU1FRkdNOO62Uwy/Q9OnTkyTHHHNMDj300Bx11FF54IEHcvDBB+eaa67JJptsUtJx27VrVRnTV0ZVVemv+8Lsy1dL/VwwJ5pHW/q9NHdYGOYPpTJ3vjpaqicCAADKQ0nhyu23377AdRUVFWnfvn2WWGKJZm8kvva1ryVJ9t133wwePDhJ8q1vfSsvv/xyyeFKZWVFunZdqlnrZNGrru7Y0iVQZsyJltdax6C11k15MH8olbnT+rVUTwQAAJSHksKVhx9+eJ5ltbW1effdd3P77bfnqaeeyujRoxe6uM/r0aNHkqR3796Nlq+++up57LHHSjpmXV0hNTUzFrY0SlBVVVnyBws1NZ+ktraumSuiNaqfR+ZE82hLv5fmDgvD/KFULT13qqs7OmummbRUTwQAAJSHksKVFVdccb7LV1555fTt2zfDhg3L7373u5x55pkLVdznrbnmmllqqaXy/PPPp1+/fg3Lx48fn5VXXrnk486Z40OR1qa2ts640Yg50fJa6xi01ropD+YPpTJ3Wr+W6okAAIDysEi+tjZw4MD86U9/avbjdujQIfvtt18uvvji3HPPPZk4cWIuueSSPPHEE9lnn32a/fEAAABKsah6IgAAoDyUdObKl3n33Xczc+bMRXHoHHzwwenYsWPOO++8TJkyJb169cqFF16YjTfeeJE8HgAAQLEWZU8EAAC0vJLClbfffnu+y2fOnJm///3vGTVqVNZaa62FKuyL7LPPPs5UAQAAWkxL90QAAEDLKilcGThwYCoqKha4vrKyMoceemjJRQEAAJQzPREAALRtJYUrO+2003wbiaqqqiy33HIZPHhwVlpppYUuDgAAoBzpiQAAoG0rKVw544wzmrsOAACAVkNPBAAAbVtlSxcAAAAAAADQmjTpzJWLLrqopIO7xjAAAPBVoCcCAADm1uzhytzXHdZIAAAAXwV6IgAAYG5NCleuu+66L92mUCjkxhtvzB//+MckyZZbbrlwlQEAAJQJPREAADC3JoUrG2200Reuf/vtt3P88cfn6aefTufOnXPsscdmyJAhzVIgAABAS9MTAQAAc2tSuPJFxowZk7PPPjsff/xxNttss4wYMSLdu3dvjtoAAADKnp4IAADanpLDlXfeeScnnHBC/vd//zdLLbVUfvvb32aXXXZpztoAAADKlp4IAADarpLClVtvvTVnnnlmpk+fnk033TQjRozI8ssv39y1AQAAlCU9EQAAtG1FhStTpkzJiSeemL/85S/p2LFjTj755PzkJz9ZVLUBAACUFT0RAACQFBGu3H777Tn99NNTU1OTAQMGZMSIEVlxxRUXZW0AAABlQ08EAADUa1K4MmzYsPzpT39Kknzve9/L7rvvnrfffjtvv/32F+7Xv3//ha8QAACghemJAACAuTUpXHnsscca/v7AAw/kgQceaNLBX3nllZKKAgAAKCct0RONHDkyTz75ZK6//vpGxxsxYkT+/ve/p0uXLtlzzz2z7777Nqyvq6vLRRddlFtvvTU1NTXp27dvTjrppKyyyiol1wEAAMyrSeHKoYceuqjrAAAAKFuLuye69tprc8EFFzQ68+WDDz7IPvvsk6233jqnnHJKnnvuuZxyyinp0qVLhgwZkuSzQGbMmDE5/fTT071795x99tnZf//9c88996R9+/aL9TkAAMBXmXAFAADgSyyunmjKlCk54YQT8uyzz2bVVVdttO6WW25J+/btc/LJJ6ddu3bp1atXJkyYkCuuuCJDhgzJ7Nmzc/XVV2f48OHZcsstkyTnnXdeNt988zz44IPZbrvtFstzAACAtqCypQsAAADgMy+99FKWXnrp3HXXXVlvvfUarRs3blz69++fdu3++x25AQMG5I033sh7772XV199NR9//HEGDBjQsL66ujprrrlmnnnmmcX2HAAAoC1o0pkrAAAALHoDBw7MwIED57vunXfeSe/evRstW2655ZIkb7/9dt55550kyfLLLz/PNv/+978Xqq527Xwvb2FVVVU2+i/lwbiUJ+NSnozL4lXq62x8Wp7flfK0KMZFuAIAANAKzJw5c577piyxxBJJklmzZuWTTz5JkvluM23atJIft7KyIl27LlXy/jRWXd2xpUtgPoxLeTIu5cm4lDfjUz6MRXlqznERrgAAALQCHTp0yOzZsxstmzVrVpJkySWXTIcOHZIks2fPbvh7/TYdO5beRNbVFVJTM6Pk/flMVVVlqqs7pqbmk9TW1rV0Ofx/xqU8GZfyZFwWr/rXu1jGp+X5XSlPxYxLdXXHJp3hIlwBAABoBXr06JGpU6c2Wlb/c/fu3TNnzpyGZSuvvHKjbfr06bNQjz1njg8GmkttbZ3XswwZl/JkXMqTcSlvxqd8GIvy1Jzj4sJvAAAArUD//v3z7LPPpra2tmHZk08+mVVXXTXdunVLnz590qlTpzz99NMN62tqavLyyy+nX79+LVEyAAB8ZQlXAAAAWoEhQ4Zk+vTpOeGEE/Laa6/ltttuy6hRo3LggQcm+exeK0OHDs0555yThx9+OK+++mp+8YtfpEePHhk0aFALVw8AAF8tLgsGAADQCnTr1i1XXnllRowYkcGDB2fZZZfN0UcfncGDBzdsc/jhh2fOnDk58cQTM3PmzPTv3z9XXXXVPDe5BwAAFo5wBQAAoAydccYZ8yxbd911c/PNNy9wn6qqqgwfPjzDhw9flKUBAECb57JgAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBGEKwAAAAAAAEUQrgAAAAAAABRBuAIAAAAAAFAE4QoAAAAAAEARhCsAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBGEKwAAAAAAAEVo19IFAAAAAACw8KqqivsufV1dIXV1hUVUDXy1CVcAAAAAAFqxLp2XSF1dIdXVHYvar7a2Lh9+OEPAAiUQrgAAAAAAtGKdOn4tlZUVOefGZzNpykdN2qdn9845ao++qaysEK5ACYQrAAAAAABfAZOmfJTXJ09r6TKgTXBDewAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIwhUAAAAAAIAitNpw5Y033sgGG2yQ2267raVLAQAAAAAA2pBWGa58+umnOeqoozJjxoyWLgUAAAAAAGhjWmW4cuGFF2appZZq6TIAAAAAAIA2qNWFK88880xuvvnmnHnmmS1dCgAAAAAA0Aa1qnClpqYmRx99dE488cQsv/zyLV0OAAAAAADQBrVr6QKKcfLJJ2f99dfPDjvs0KzHbdeuVWVMXxlVVaW/7guzL18t9XOhrcyJioqKVFZWFLVPXV0hhUKhSdu2pd/LBc2dRf0a89XQ1v7tofmYOwAAAF8NrSZcueOOOzJu3LjcfffdzXrcysqKdO3q/i2tTXV1x5YugTLTVuZEXV2hpA/+i92nFK11DD5fdzm/xpSf1jrvaXnmDgAAQOvWasKVsWPH5r333st3vvOdRstPOumkXHXVVbn33ntLOm5dXSE1NTOaoUKKVVVVWfIHCzU1n6S2tq6ZK6I1qp9HbWFO1D/Xc258NpOmfNSkfXp275yj9ujb5NenLf1ezm/uLI7XmK+GtvRvD82rpedOdXVHZ80AAAA0g1YTrpxzzjmZOXNmo2XbbLNNDj/88PzgBz9YqGPPmeNDkdamtrbOuNFIW5oTk6Z8lNcnTytqn8Xx+rTWMZhf3eX6GlN+jDulMncAAABat1YTrnTv3n2+y7t165YVV1xxMVcDAAAAAAC0Va4JAAAAAAAAUIRWc+bK/PzjH/9o6RIAAAAAAIA2xpkrAAAAAAAARWjVZ64AAAAAAJS7ysqKVFZWNHn7qirfiYdyJ1wBAAAAAFhEKisr0qXLkgIT+IoRrgAAAAAALCKVlRWpqqrMOTc+m0lTPmrSPhv2WS4//cGai7gyYGEIVwAAAAAAFrFJUz7K65OnNWnbnst1WsTVAAvLuWgAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBGEKwAAAAAAAEUQrgAAAAAAABRBuAIAAAAAAFAE4QoAAAAAAEARhCsAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAAAAAAUAThCgAAAAAAQBHatXQBAMWorKxIZWVFw89VVZWN/js/dXWF1NUVFnlttG1fNAfnx7wEAAAAaL2EK0CrUVlZkS5dlpzvh9jV1R0XuF9tbV0+/HCGD7JZJLp0XiJ1dYUvnIPzY14CAAAAtF7CFaDVqKysSFVVZc658dlMmvJRk/bp2b1zjtqjbyorK3yIzSLRqePXUllZYV4CAAAAtCHCFaDVmTTlo7w+eVpLlwGNmJcAAAAAbYcb2gMAAAAAABRBuAIAAAAAAFAE4QoAAAAAAEARhCsAAAAAAABFEK4AAAC0IpMnT84aa6wxz59bb701SfLKK69k6NChWX/99fOd73wnV111VQtXDAAAXz3tWroAAAAAmu4f//hHllhiiTz00EOpqKhoWN65c+d88MEH2WeffbL11lvnlFNOyXPPPZdTTjklXbp0yZAhQ1qwagAA+GoRrgAAALQi48ePz6qrrprllltunnWjRo1K+/btc/LJJ6ddu3bp1atXJkyYkCuuuEK4AgAAzchlwQAAAFqRf/zjH1l99dXnu27cuHHp379/2rX77/foBgwYkDfeeCPvvffe4ioRAAC+8oQrAAAArcj48ePz3nvvZffdd8+mm26a3XbbLY8//niS5J133kmPHj0abV9/hsvbb7+92GsFAICvKpcFAwAAaCVmz56dN998Mx07dszRRx+dJZdcMnfddVf233//XHPNNZk5c2bat2/faJ8lllgiSTJr1qySH7ddO9/LW1hVVZWN/kt5MC7lybiUJ+NSunJ/zcq9vtbG70p5WhTjIlwBAABoJdq3b59nnnkm7dq1awhR1l577bz++uu56qqr0qFDh8yePbvRPvWhypJLLlnSY1ZWVqRr16UWrnAaVFd3bOkSmA/jUp6MS3kyLl89xnTR8LqWp+YcF+EKAABAKzK/kKR37975y1/+kh49emTq1KmN1tX/3L1795Ier66ukJqaGSXty39VVVWmurpjamo+SW1tXUuXw/9nXMqTcSlPxqV09a9duTKmzcvvSnkqZlyqqzs26QwX4QoAAEAr8eqrr2a33XbLFVdckX79+jUs//vf/57VV1893/rWtzJmzJjU1tamqqoqSfLkk09m1VVXTbdu3Up+3DlzfDDQXGpr67yeZci4lCfjUp6My1ePMV00vK7lqTnHxYXfAAAAWonevXvnm9/8Zk455ZSMGzcur7/+ek4//fQ899xzGTZsWIYMGZLp06fnhBNOyGuvvZbbbrsto0aNyoEHHtjSpQMAwFeKM1cAAABaicrKylx66aU555xzcsQRR6SmpiZrrrlmrrnmmqyxxhpJkiuvvDIjRozI4MGDs+yyy+boo4/O4MGDW7hyAAD4ahGuAAAAtCLLLLNMTjvttAWuX3fddXPzzTcvxooAAKDtcVkwAAAAAACAIghXAAAAAAAAiiBcAQAAAAAAKIJwBQAAAAAAoAjCFQAAAAAAgCIIVwAAAAAAAIogXAEAAAAAACiCcAUAAAAAAKAIrSpc+fDDD/PrX/86W2yxRTbccMPstttuGTduXEuXBQAAAAAAtCGtKlw58sgj8/zzz+fcc8/NH/7wh6y11lrZd9998/rrr7d0aQAAAAAAQBvRasKVCRMm5IknnshJJ52Ufv36ZbXVVssJJ5yQ7t2755577mnp8gAAAAAAgDai1YQrXbt2zeWXX5611167YVlFRUUKhUKmTZvWgpUBAAAAAABtSbuWLqCpqqurs+WWWzZadv/992fixInZbLPNFurY7dq1mozpK6WqqvTXfWH2bWsqKipSWVlR1D6FQlJR3C6pqyukUCgUt1OR2vqcWRzPf3G+xqXMzeacZ/X1zl334p4nX4V52VbNb/7QNhX7b1n9tuYOAABA69ZqwpXPe/bZZ3P88cdnq622ysCBA0s+TmVlRbp2XaoZK2NxqK7u2NIltBp1dYWiP8CurSukqoQPvYt9nMWprc+ZxfH8i32MUubMophnLTk32vq8/CowhpT6b5m5AwAA0Lq1ynDloYceylFHHZX11lsv55577kIdq66ukJqaGc1UGcWoqqos+YOFmppPUltb18wVffXUv8bn3PhsJk35qEn7bNhnufz0B2sWtU/P7p1z1B59F/m4tPU5szie/+J6jUuZm809z+prmPt4C/P8S/FVmJdt1fzmD23PwvxbNn36zHz6ae0irnBe1dUdnTUDAADQDFpduHLDDTdkxIgRGTRoUM4555y0b99+oY85Z44PRVqb2to641aESVM+yuuTm3Zvop7LdSp6n3rlPC7lXNvisDiefymPUQ7zrCXnRlufl18FxpCktH/L6uoK5g4AAEAr1qq+tjZ69Oj89re/zR577JHf//73zRKsAAAAAAAAFKPVnLnyxhtv5LTTTsugQYNy4IEH5r333mtY16FDh3Tu3LkFqwMAAAAAANqKVhOuPPDAA/n000/z4IMP5sEHH2y0bvDgwTnjjDNaqDIAAAAAAKAtaTXhyrBhwzJs2LCWLgMAAAAAAGjjWtU9VwAAAAAAAFpaqzlzBQAAAACA5lVVVdz37+vqCqmrKyyiaqD1EK4AAAAAALQxXTovkbq6QqqrOxa1X21tXT78cIaAhTZPuAIAAAAA0MZ06vi1VFZW5Jwbn82kKR81aZ+e3TvnqD36prKyQrhCmydcAQAAAABooyZN+SivT57W0mVAq+OG9gAAAAAAAEVw5goAAAAA0CZVVlaksrKiqH3c0B1IhCsAAAAAQBtUWVmRLl2WTFVVcRf3cUN3IBGuAAAAAABtUGVlRaqqKt3QHSiJcAUAAAAAaLPc0B0ohRvaAwAAAAAAFMGZKwAAAAAARSjmPi3F3tMFaB2EKwAAAAAATdCl8xKpqyukurpjS5cCtDDhCgAAAABAE3Tq+LVUVlbknBufzaQpHzVpnw37LJef/mDNRVwZsLgJVwAAAAAAijBpykd5ffK0Jm3bc7lOi7gaoCW44B8AAAAAAEARhCsAAAAAAABFEK4AAAAAAAAUQbgCAAAAAABQBOEKAAAAAABAEYQrAAAAAAAARRCuAAAAAAAAFEG4AgAA8P/au/e4qKr9/+NvBgQ1wEuJN9TMAlS84z0zKfSbWiZ0slLKb6ZoiXo4iWmesodmefnqUfuaGXq8hXhBULwc89I304zC09FM7YKmYirlFW+gsH9/+JupEdSZEWYGfD0fDx/FnrX2/uy99sD+7LXXXgAAAABgBy9XBwAAAAAAAAAAd8pk8pDJ5GFzeU9PnjsH4Dg6V1zM3l/6klRQYKigwCihiMoejjFQtth78evO32d3vZB352OGuxd/zwEAAHArJpOHKleu6LZ5FoCyh84VF3L0l35+foHOnr3EzQIbcIyBsqOyn48KCgz5+1ewq547fp8d3pcCQ5523lx2qI4bHjPc3fh7DgAAgNsxmTzk6WnS1E92Ketkjk11WoYE6MXujUo4MgBlFZ0rLuTIL/3A6n56vW8rmUwe3CiwAccYKDt8K5STyeRRJr7PjuyL+aK/pOu46zHD3Y2/5wAAALBV1skcZR47Z1PZwADfEo4GQFlG54obsOeXPhzDMQbKjrL0fXbkor+k6wDujHMZAAAAAOAueAkhAAAAAAAAAACAHehcAQAAAAAAAAAAsAOdKwAAAAAAAAAAAHagcwUAAAAAAAAAAMAOdK4AAAAAAAAAAADYwcvVAQAAAAAAAAAo20wmD5lMHnbVKSgwVFBglFBEAHBn6FwBAAAAAAAAUGJMJg9VrlxRnp72vUQnP79AZ89eooMFgFuicwUAAAAAAABAiTGZPOTpadLUT3Yp62SOTXUCq/vp9b6tZDJ50LkCwC3RuQIAAAAAAACgxGWdzFHmsXOuDgMAigUT2gMAAAAAAAAAANiBzhUAAAAAAAAAAAA70LkCAAAAAAAAAABgB+ZcAQAAAAAAcEMmk4dMJg+76hQUGEz+DbvYep55epos/+U8AwA6VwAAAAAAANyOyeShypUrWm5o2yo/v0Bnz17ixjds4sh55u9fQfn5BcrJuSLDsO08s/c8dqTunWwDABxB5woAAAAAAICbMZk85Olp0tRPdinrZI5NdQKr++n1vq1kMnnQuQKbOHKeNaxfVQN7NVHlyhVLNLbKfj4qKDDk71+hRLcDAI6icwUAAAAAAMBNZZ3MUeaxc64OA2WcPedZYICvTCYPuzpkWoYE6MXujeyKybdCObu248g2AOBO0LkCAAAAAAAAwC72dsiU9HbuZBsA4AheRggAAAAAAAAAAGAHRq4AAAAAAIAyw2TykMnkYVNZ8wTYHh62lQcAADCjcwUAAAAAAJQJJpOHKleuaOk0sZWfX3mdPXuJSeABAIDN6FwBAAAAAABlgsnkIU9Pk10TbQdW99PrfVupXDlP5ecX2LytggKDzpi7mD0jpMyccc7YG5e9HZEAgD/QuQIAAAAAAMoUeybaruzno4ICQ/7+FezaRn5+AaNd7lKOjpAq6XPG0bgAAI6hcwUAAAAAANy1fCuUk8nkwWgXN+Th4SEvL/s6Chw5xo6M9nB0hJTJ5FGinSv2xtUyJEAvdm9UIvEAf+auo72AO0HnCgAAAADAbXEzBs5yN492cdfvmZ9f+RIfHXInoz3sOWfM7NmOo8fYnrgCA3ztXj9gL2eN9nLkd5kjuM6AWanrXCkoKNAHH3ygFStW6Pz582rVqpXefvtt1atXz9WhAQAAAIDLlaWcyV1fvQPcyWiXkhy54Ah3/p45Y3SIs0Z7ONIhx+8ylBV3Mh+Wrd9nh3+XFRjytLNDhu8mzEpd58rs2bOVlJSk9957T9WrV9eUKVM0cOBArV27Vt7e3q4ODwAAAABcqizlTM64GQPnsvepYnd/OtiRkQvuxt2/ZyU9OsRctqRHe9jbIcfvMri7kv6e2bsdR17XZ+4oddfff+7KXUc7ukKp6lzJy8vT/PnzNXLkSHXu3FmSNH36dHXq1EmbNm1Sjx49XBwhAAAAALhOWc2ZysINbDj2VDFPBztPWfieOfq6NmcqC8cZdzdnfc8c3Y4jHaV8L23nzqMdXaFUda4cOHBAFy9eVLt27SzL/P391ahRI33zzTelNlEAAAAAgOJAzuQ4Zz2F6ci8Du7K3v23d4REWX062J6nsEt6G3e6HXvZ+j1zNCZHXtfm7hO6u2tb4u7lrO+Zvdtx9++yM+aDccbokDsZ7ViunKfy8wts3lZpGO3iYRiGe0f4J59++qliY2O1e/dulS9f3rJ8+PDhunLlij766CO712kYrmskDw/JZDLpbE6urtl4Ynl5mv5/z63tJ6I7c8b+c4zt238fb0/5VfR222NGe5ad74w7nJsmk6nQZ86Iy53rlLXvTEkq6vxByXHX3/93EpcrrsJNJg95eJT8JJ9wHXImx7//Hh72fz8Mw5A9KbWj23DnOvbeUrCnPd35OtOROt7lTPKr6G33cXbGNuzdjjO/Z+7Yls6o46y2dNf9d6SOu8blrDruGpez6rhbznxjvuiMawBH/i47wt6/s47+Pivua1DzdaUtuZiteVOpGrly+fJlSSr0nmAfHx+dO+fY0C0PDw95ero2wazs52N3HZOp7DyN4Iz95xjbv//ufMzcOTZnKEvfGXc4N4v6zFlxuXOdsvSdKUkcJ+dy13PZXePC3Ymc6Q/O+J45cqPEkW24cx1H6tnbnu58nelIHXfchqPbcde/s2WtjjO2UZbquGtczqrjrnE5q4475cx3+jvS3r+xzrguMXPG77KSugYtzr9dpSqrMz95lZeXZ7U8NzdXFSq47/s0AQAAAMAZyJkAAAAA5yhVnSs1a9aUJGVnZ1stz87OVo0aNVwREgAAAAC4DXImAAAAwDlKVedKSEiIfH19lZ6ebll2/vx57du3T2FhYS6MDAAAAABcj5wJAAAAcI5SNeeKt7e3+vXrp6lTp6pq1aqqXbu2pkyZoho1aigiIsLV4QEAAACAS5EzAQAAAM5RqjpXJGnYsGG6du2axo4dqytXrqh169aaN29eoQkbAQAAAOBuRM4EAAAAlDwPwzAMVwcBAAAAAAAAAABQWpSqOVcAAAAAAAAAAABcjc4VAAAAAAAAAAAAO9C5AgAAAAAAAAAAYAc6VwAAAAAAAAAAAOxA5woAAAAAAAAAAIAd6FwBAAAAAAAAAACwA50rAAAAAAAAAAAAdqBzBW7l+PHjiouLU8eOHdW6dWsNGDBAP/30k6vDQinz5ptv6o033nB1GHBjBQUFmjlzpjp16qRmzZrp5Zdf1uHDh10dFkqZ2bNnKzo62tVhoJQ4e/as3nrrLT3yyCNq2bKlnn/+eWVkZLg6LABOlpGRoYYNGyo9Pd1q+c6dOxUZGammTZuqa9euSk1NdU2Ad5EjR45oyJAhCgsLU1hYmP7617/qxIkTVmVoF+ez5Z4A7eJaN8u3aRfnI691L0Xlh/v371e/fv3UvHlzPfroo5o3b56Loru73C73Ks52oXMFbiMvL0+DBg3SqVOn9NFHHykxMVF+fn566aWXdPr0aVeHh1IgPz9fkyZN0sqVK10dCtzc7NmzlZSUpAkTJmjZsmXy8PDQwIEDlZeX5+rQUEosWLBAM2fOdHUYKEXi4uK0e/duTZs2TStXrlTjxo01YMAAZWZmujo0AE6Sk5Oj+Ph4FRQUWC3PzMxUTEyMOnfurNTUVPXp00djxozRzp07XRRp2Zebm6v+/ftLkpYuXarFixfrt99+U0xMjAzDkES7uIIt9wRoF9e5Vb5Nu7gGea37KCo/PHPmjP77v/9b999/v5KTkxUbG6sZM2YoOTnZRVHePW6VexV3u3gVc+yAwzIyMvTjjz9q27Ztql69uiRp8uTJatOmjbZu3apnnnnGxRHCnWVmZmr06NE6evSoatWq5epw4Mby8vI0f/58jRw5Up07d5YkTZ8+XZ06ddKmTZvUo0cPF0cId3by5Em9+eab2rVrl+rXr+/qcFBKHD58WDt27NDSpUvVsmVLSdef+ty2bZvWrl2r4cOHuzhCAM4wbtw41alTR8eOHbNavnDhQoWEhFh+FzzwwAPat2+fEhIS1L59e1eEWub9+uuvatKkid5++21VrVpVktS/f3+99tprOnPmjKpWrUq7uIAt9wRoF9e4Xb5Nuzgfea17uFV+uHz5cnl7e2vcuHHy8vJSgwYNdPjwYX388ceKiopyUcRl3+1yr/LlyxdruzByBW7joYce0ty5cy0XUWaGYejcuXMuigqlxddff62GDRtq7dq1CgwMdHU4cGMHDhzQxYsX1a5dO8syf39/NWrUSN98840LI0Np8P3336tSpUpas2aNmjVr5upwUEpUqVJFc+fOVWhoqGWZh4cH1zjAXWT16tX69ttvNWbMmEKfZWRkWF2XSFK7du20a9cuyygKFK/69etrxowZlo6VrKwsJSYmqnHjxqpSpYok2sUVbLknQLu4xu3ybdrF+chr3cOt8sOMjAy1bt1aXl5/jG1o166dDh06pFOnTjk71LvG7XKv4m4XRq7AbVSrVs3S2262aNEi5ebmqmPHji6KCqXF888/7+oQUEqY36Vds2ZNq+UBAQE6fvy4K0JCKRIeHq7w8HBXh4FSxt/fv9A1zoYNG3TkyBE9/PDDLooKgLNkZWXp3Xff1ezZs3XPPfcU+vzEiROqUaOG1bKAgABdvnzZMooCJefll1/Wjh07VKlSJS1cuFAeHh6SaBdXsOWeAO3iGrfLt2kX5yOvdQ+3yg9PnDihoKAgq2UBAQGSro+gvPfee0s8vrvR7XKv6dOnF2u70LkCp8nKytJjjz1208+3b9+uatWqWX7+9NNPNX36dEVHRyskJMQZIcJN2XvuALdy+fJlSZK3t7fVch8fH54gB+AUu3bt0pgxY/TYY4/RWQeUcre7Tt22bZvi4+PVp08fhYWFKSsrq1CZK1euFLouMf/Me/MdY0/+MHLkSA0fPlwffvih+vfvr9TUVNWsWZN2KQHFcU+Adil+xZFv0y7OR17r/or6Xvj4+Ei6PvcXnOPG3Ou9994r1nahcwVOU716da1fv/6mn//5SYalS5dq/Pjx6t69u0aPHu2M8ODG7Dl3gNspX768pOsX+eb/l67/Ea1QoYKrwgJwl9i8ebNef/11NWvWTNOmTXN1OADu0O2uU1esWKFLly4pNjb2pmV8fHwK3Xw0/8y1iWPsyR8aNmwo6fpcBY8++qiSk5M1dOhQ2qUEFMc9Adql+BVHvk27OB95rfsrX758oe+F+eZ9xYoVXRHSXaeo3Ku424XOFThNuXLl1KBBg9uWmzp1qj7++GNFR0frzTfftAzLxt3L1nMHsIV52HR2drbq1q1rWZ6dnc0oOQAlasmSJXr33XcVERGhqVOnFnpiCkDpc7vr1FWrVik7O1tt27aVJMvcAwMHDlSbNm2UkJCgmjVrKjs726pedna2KlasKD8/v5ILvgy7XbscO3ZMe/fuVbdu3SzLKlSooMDAQEtb0C7FrzjuCdAuxa848m3axfnIa91fjRo1ivxeSCo0txSK381yr+JuFya0h1uZMmWKPv74Y8XHx2vs2LF0rAAodiEhIfL19VV6erpl2fnz57Vv3z6FhYW5MDIAZVliYqLGjx+vvn376h//+AcdK8BdYvHixVq3bp1SU1OVmpqquXPnSpImTJigd999V5IUFhamr7/+2qrezp071bJlS5lMpOwlYf/+/Ro2bJiOHDliWXb+/HkdOnTIcpOZdnGN290ToF3cE+3ifOS17q9169batWuX8vPzLct27typ+vXrM99KCbtV7lXc7cJvOLiN9PR0JSQkKDo6Wk899ZR+++03y7+LFy+6OjwAZYS3t7f69eunqVOnasuWLTpw4ID++te/qkaNGoqIiHB1eADKoEOHDmnixImKiIhQTEyMTp06ZbnGycnJcXV4AEpQ7dq1Va9ePcu/WrVqSbr+ZKT56cjo6Gjt2bNHU6dOVWZmpubPn6+NGzfqlVdecWXoZdojjzyi4OBgxcfH6/vvv9fevXsVGxurKlWqKCoqShLt4gq23BOgXdwT7eJ85LXuLyoqShcuXNCbb76pn3/+WatWrdLChQsVExPj6tDKtNvlXsXdLrwWDG5j7dq1kq4/3bV48WKrz4YOHXrL9xQDgD2GDRuma9euaezYsbpy5Ypat26tefPm8SQ5gBKxceNGXb16VZs2bdKmTZusPuvdu7fef/99F0UGwB089NBDmj17tqZMmaKFCxcqMDBQU6ZMUfv27V0dWpnl7e2thIQETZo0SQMGDFBeXp4efvhhvf/++/L19ZVEu7iCLfcEaBf3RLu4Bnmte7v33nuVkJCgd999V71791a1atUUHx+v3r17uzq0Ms2W3Ks428XDML/0FQAAAAAAAAAAALfFa8EAAAAAAAAAAADsQOcKAAAAAAAAAACAHehcAQAAAAAAAAAAsAOdKwAAAAAAAAAAAHagcwUAAAAAAAAAAMAOdK4AAAAAAAAAAADYgc4VAAAAAAAAAAAAO9C5AqBU++yzzxQbG6vw8HCFhoaqbdu2euWVV7R161anxZCXl6e3335bbdq0UdOmTTVhwoQil73xxhsKDg5WVlaWXeufNWuWgoODlZ6eXkJ7YO2XX36xq3xGRobi4+MVERGhpk2bKiwsTNHR0UpNTZVhGFZlHT0GpVV4eLiCg4MVHByssLAwSVJ6erqCg4P1xhtv3LReVlaWgoODFR0dXeizG9vnxnIlfYzfffddyz4587wEAABAySK3Kn63y63efvttBQcHKzk5+ZblsrKyFBISopdeesnmbZvzjlmzZtlcpziZ28j8b//+/ZKu5y/h4eG3rGvOo250+PBhq5+jo6Otyq1atUrBwcFatWpVMexBYZs3b7baJ1cdWwDuw8vVAQCAIy5cuKAxY8Zo48aNaty4sSIjIxUQEKATJ04oNTVVQ4YM0csvv6xRo0aVeCzLly9XUlKSOnbsqCeeeEIPPfRQkcsMw1D79u1VtWpVu9YfERGhunXrqkGDBiW0B38YMmSILly4oMWLF9+27NWrVzVx4kQlJibq/vvvV48ePVSrVi2dPn1a69at06hRo7Rt2zZNmTJFnp6eJR67u6pSpYpGjx6tcuXK3fG6imqfyZMn67777rvjdduqV69eCg0N1aZNm7Rp0yanbRcAAAAlg9yqZNiSWz3zzDNKSkpSWlqaoqKiblrO/ODaM888UxKhlqjRo0erSpUqqlWr1h2t5+OPP9aMGTO0d+9ey7LBgwc79ZiEhoZq8uTJOnjwoObMmeO07QJwX3SuACiVxo4dq40bNyo+Pl4DBgyw+mzw4MEaMGCA5s+frwceeEB/+ctfSjSWH374QZIUHx+vkJAQSbI8efTnZZLUokULu9cfEhJitY6StHXrVrVp08amstOnT1diYqKio6M1ZswYmUx/DIYcNGiQRo4cqbVr16pu3boaMWJECUXs/ipWrKhevXoVy7qKap/iWretQkNDFRoaqiNHjtC5AgAAUAaQW5UMW3KrJk2aWEbSnDx5UtWrVy+y3OrVq1WpUiV17dq1JEItUY8//rgCAwPveD3btm3T1atXrZZ17Njxjtdrjxo1aqhXr15KT0+ncwWAJF4LBqAU2r59uzZs2KBu3boVuviXJG9vb02cOFGenp5atGhRicdjvsDz9fW95bKy5ODBg5o/f76aNGmisWPHWnWsSJLJZNI777wjPz8/LVu2TLm5uS6KFAAAAMDNkFu5XlRUlAoKCrR+/foiP9+1a5eOHDmiJ598Uj4+Pk6ODgBwK3SuACh1UlNTJanI+SjM6tSpo7S0NKWkpFgtz8zMVFxcnDp06KDQ0FA99thjev/993Xu3LlC6zh48KDi4uLUvn17hYaGqmvXrvrHP/6hK1euSPpjXgzzNh577DHLu1dvXCYVPReGYRhaunSpIiMj1bx5c3Xo0EGDBw/W999/bylzs/cCf/HFF3rxxRfVsmVLNWvWTJGRkYXeLWt+z+66des0Z84cRUREKDQ0VOHh4ZoxY4auXbtmVU6Svv7669u+p3b16tUyDEP9+vW7aRlfX1+tWLFC//d//1coCTh27Jji4uLUpk0bNW/eXM8995x27NhRaB3p6ekaMmSIOnTooMaNG6t169Z66aWX9OWXX1qVCw8PV0xMjNLT09W3b1+1aNFCYWFhGjp0aJHvOV67dq3lmHfq1ElTp07VihUrijzOaWlpevbZZ9W8eXO1aNFCffv2dep7p6Vbt8/N5ma5ka37sX79ej333HOWtunVq5fmz5+vgoKC4t0pAAAAuBy51XWuzK2eeuoplStXTmlpaUV+bm4j8+uvrl69qnnz5ikqKkotWrRQaGioHn30UY0dO1anTp266Xak63lTUfOd3Gyukj179mjw4MFq06aNmjRpop49e2r+/PnKz8+/5XaKW3BwsL7++mvL/5vnr7xxzpWbsXU/9u3bp8GDB6tTp06Wc3rChAk6e/Zsse8TgLKB14IBKHX27NkjLy8vNWvW7JblbnyPbkZGhgYMGCBPT089//zzql27tv7zn/9owYIF2rp1q5KSkizv7N2zZ4/69+8vX19f9e3bV1WrVtV//vMfzZkzRzt37tSiRYtUtWpVTZ48WcuXL1dGRoZGjx6tSpUqyWQyWS2rUqXKTWMcNWqUVq9erbCwMI0YMUJ5eXlavHix+vXrp08++USNGjUqst4nn3yi8ePHq0mTJho6dKhMJpO2bNmi0aNHa//+/XrzzTetyk+bNk2GYahPnz7y9/fXqlWrNHv2bHl4eGjYsGFq0KCBJk+erPj4eD3wwAMaPHiwWrZsecs2kKRWrVrdsg3q169f5PLBgwcrLCxMcXFxys7O1sKFCxUTE6OUlBQ99NBDkqRNmzZp2LBhCgkJ0cCBA+Xr66sff/xRK1eu1MCBA/Xpp5+qdu3alnUeOHBAMTExeuqpp9SrVy/t27dPSUlJOnDggDZu3GiZ9yUhIUFTpkxR48aNNWLECOXk5GjJkiVFxjllyhQlJCSoY8eOiouLU25urtatW6chQ4Zo9OjR6t+//y33v7jY2z43snU/Pv30U8XFxaljx44aPny4TCaT/vWvf2nSpEk6deqURo4cWUJ7CAAAAFcgt3J9blWlShU99thj+te//qXMzEyrY52bm6sNGzaocePGatiwoSRpxIgR2rJli3r37q1nn31Wubm52rZtm1asWKFff/1V8+fPv2Vb2mrLli0aPny4AgMD9corr6hixYrasWOHJk2apH//+9+aNWuWPDw8imVbtzN58mTNmTNHBw8e1OTJk1W3bl2b69q6H0ePHtVLL72katWqqX///vL399fu3bu1ZMkS7dmzR8uWLXPa/gIoRQwAKGWaNWtmdOjQwa46+fn5RkREhBEaGmr8/PPPVp8tX77cCAoKMt544w3DMAyjoKDA6NGjh9G5c2fjzJkzRZadO3euZdmoUaOMoKAg4+jRo3Yt27lzpxEUFGTExcUZBQUFlnI///yzERISYsTGxhqGYRgzZ840goKCjK+++sowDMM4fvy40bhxYyMmJsaqXkFBgTFy5EgjKCjI2L17t2EYhvHVV18ZQUFBRseOHY1z585Zyl68eNFo1aqV8fDDD1vtX1BQkNGvX7/bHs/u3bsbQUFBxpUrV25b9s/Mx2DMmDFWy1euXGkEBQUZs2bNsix7+umnjY4dOxoXL160KrtkyRIjKCjImD9/vmVZly5djKCgIGPdunVWZceMGWMEBQUZ27dvNwzDME6cOGGEhoYakZGRRm5urqXc4cOHjaZNm1od5927dxtBQUHGuHHjrNaZl5dnREdHG40bNzaOHz9+y/3t0qWL0aVLF6tl5jYZNWrUTesdPXq0yLawZdmN55k9+zFo0CCjefPmRn5+vqXctWvXjH79+hkxMTFW9W88LwEAAFD6kFu5PrcyDMP4/PPPjaCgIGP69OlWy9etW2cEBQUZn3zyiWEYhrF//34jKCjIGD9+fKF1REVFGUFBQZbjbI535syZljJF5SeGYRjJyclGUFCQkZycbBiGYVy6dMlo27at0bt3b6u8yTAMY/r06UXmXjcqqt0M4/pxKSqGPzPnd3/Wr1+/2y67k/1ISEiwam+z9957z+jdu7dx4sQJy7Kiji2AuxOvBQNQ6nh6elqGXNtq3759Onz4sJ566qlCT10988wzqlevnjZu3Kj8/Hz98MMP+umnn9S5c2cVFBTo9OnTln9dunSRj49PsUzkvXnzZknSK6+8YvUETIMGDbRy5Ur9/e9/L7Lep59+qqtXr+qJJ57QmTNnLLGdOXNGPXr0sJT5sy5dusjf39/yc8WKFdWgQYPbDhu/GfMoEHvbwSwyMtLq5+bNm0uSsrOzLctWrFihNWvWqGLFipZleXl5lmN18eJFq3WUL19e3bp1s1rWpEkTSdJvv/0m6foxz8vL04ABA+Tt7W0pV7duXT311FNWddetWydJ6t69u9U5kJOTo+7du+vq1av67LPP7N53Z7NnP2rUqKFLly7pnXfe0b59+2QYhjw9PbV48WImbAQAACiDyK1cn1tJ0sMPP6yaNWtq7dq1VstTUlJUvnx5Pfnkk5KkkJAQ7dq1S3FxcVblTp06ZYnp0qVLDsdh9uWXX+rMmTPq1q2bLly4YNVu3bt3l6RiabeSZs9+1KxZU9L1Uf87d+5UXl6epOuvoFu1apWqV6/ump0A4NZ4LRiAUqd69eo6dOiQ8vLyrG6Q38qRI0ckyfLKqT/z8PDQgw8+qMOHD+vMmTM6dOiQJCkpKUlJSUlFru/YsWMORv8H8/uBb0xIJKlx48Y3rWeOLz4+/qZlbozvvvvuK1TG29vb4XflVq9eXT/88IN+//133XPPPXbXr1atmtXP5jlZzBewkuTl5aWsrCzNnj1bhw4dUlZWlrKysiwxG4ZhtY4qVapYOn3MzOeHeb4Q87F74IEHCsV0YzuYy95qXhlHzoPy5ctLunXHlHkfzWXvhD37ERsbq/3791vO/apVq6pdu3Z6/PHH1a1bN3l5cdkAAABQlpBbuT63kiSTyaTevXtr9uzZ+vbbb9WiRQv99ttv2rFjh3r27Ck/Pz+rba1fv147duzQ0aNHlZWVpd9++83SqVQccyWaj8u0adM0bdq0Iss42m4+Pj637dC7du1aseZCtuxHt27dFBUVpVWrVql///4qX768WrVqpc6dO+vpp59WpUqV7jgeAGUPd0kAlDqtW7dWZmam/v3vf6tdu3Y3LTd69GhdvXr1lhfKZuYLUG9vb8v/9+3bV48//niR5YvjJvPVq1cdqme+aB8/frwCAwOLLGN+v7GZyVS8AxVbt26tbdu2KSMjQ/Xq1btpuenTp+vQoUOKjY21Sr5sieejjz7StGnTVLt2bYWFhalt27YKDg7WtWvX9OqrrxYqb8s6zZ03RSWO5g4eM/Nxnj17tipUqFDk+sxPN9nDfFF+4cKFm5YxTwL65yfiHGXPftx3331avny5vvvuO33++ef66quvtGnTJq1fv17NmzfXkiVLVK5cuTuOCQAAAO6B3Mr1uZVZZGSkPvzwQ6WlpalFixZKS0tTfn6+ZSJ76XoO8dJLL+n7779Xq1atFBoaql69eqlJkyZauHCh1qxZ49C2b+wYMrfbsGHD1KJFiyLrOPKQnXQ9H8rJybnp54Zh6Pz588WSC9mzH56enpo4caJeffVVffbZZ/ryyy+VkZGhHTt26KOPPlJSUpJdc70AuDvQuQKg1OnZs6eSkpKUmJh40wTg+PHjWrNmjfz9/VW5cmXVqVNHkvTTTz8VKmsYhjIzM+Xr6yt/f3+ri+oOHTpYlS0oKNDGjRst67sT5u0cOnRIwcHBVp9NmzZNV65c0ZgxY25az9/fv1B82dnZ2rNnT7HEdytPPPGEZsyYoaVLlyoyMrLIif0uXryopKQkXbx4UW+99ZZd6z9+/LimT5+u1q1ba/78+VadIY4mDJJUv359SdLBgwcLjV4xP9VkZj7OAQEBlteLmR0+fFgHDx60emWZrQIDA+Xr66sDBw7ctMy+ffsk6aaTbtq7Pen2+2EYhn766SdduXJFTZs2tUzoeeHCBY0aNUqbN2/W9u3b1aVLlzuOCQAAAO6B3Mr1uZVZnTp11LZtW23YsEFjx45VWlqa6tWrpzZt2ljKLFq0SHv37tU777yj5557zqr+77//fttteHp6Fnq9svTHa5TNzMelfPnyhY7LhQsXtH379kJvI7BVSEiItm3bpqNHjxZ5bA8dOqTLly+rbdu2Dq3/z+zZj2PHjunIkSNq3769oqOjFR0drWvXrmnevHmaNm2ali5dqlGjRt1xTADKFuZcAVDqtG7dWhEREdq4caP++c9/Fvo8JydHw4cP17Vr1zR06FB5e3urUaNGqlOnjtasWaPMzEyr8snJyTpy5Ii6du0qSQoNDVXt2rWVkpJiGfJutmzZMo0YMULJycl3vB/mJ7cWLlxotfzIkSNasGCBjh49WmS9rl27ymQyac6cObpy5YrVZ++//75ee+017d2716GYTCaTTcPI69Spo379+um7777TxIkTC9XJzc3VyJEjdfbsWb344otFDp2/lbNnz8owDD3wwANWHSuXL1/W4sWLJTk230vXrl3l5eWlJUuWWNXPzs5WWlqaVdn/+q//kiTNmjXL6kmuq1evavTo0Ro8eLBOnjxpdwxeXl6KiIjQ8ePHi3w1wsWLF7VkyRJ5e3tbzkkzW9vHkf3w8PBQbGyshgwZYvUkma+vryVBvfG1awAAACjdyK1cn1v9WVRUlE6fPq3U1FTt27fPatSKJJ05c0aSCnUgffvtt/rmm28kFR6F8mcBAQE6ffq01Su98vLytGHDBqtyDz/8sO655x4tWLDAsk2zOXPmaPjw4fr888/t2jezJ554QpI0Y8aMQsfHMAzNnTtX0vWOvz8zjxiy55jasx9z5sxR//79tXv3bksZLy8vNWvWTBK5EICiMXIFQKk0ceJEnTt3Tu+//77S0tLUtWtXVa1aVb/88otSUlJ0+vRp9e3bV3379pV0/UJowoQJGjRokP7yl7/o+eefV2BgoPbs2aOUlBTVrl1br7/+ulXZmJgYRUZG6rnnnlPdunX13XffKTk5WXXr1i3ytVT26tSpk3r27Knk5GSdOHFC4eHhunDhgj755BP5+Pho5MiRRda7//77FRsbqxkzZqhXr17q3bu3/P39tWXLFsvIghtvytvq3nvv1YEDB5SYmKiwsDAFBQXdtOzf/vY3nTx5UosWLdIXX3yhHj16qHr16vr111+1Zs0aHTt2TBERERoxYoTdcTz44IOqV6+ekpOT5ePjo6CgIGVnZyslJcXyVNWthpLfTO3atTVkyBDNmjVLzz//vHr06KFLly4pMTHRMvGjeRRO+/bt9cwzz2jlypV69tln1b17d3l7e2vNmjXas2ePXnjhBTVt2tTuGCRp5MiR+vbbbzVu3Dht375d7dq1U4UKFXTkyBGlpaXpxIkTeuuttwo9yWVP+5jZsx+xsbH629/+pj59+igyMlKVKlXSgQMHtGzZMjVs2LDQ014AAAAo/citXJ9bmXXr1k3jx4/XpEmT5OXlpaefftrq8/DwcC1evFivv/66XnjhBfn5+Wnv3r1KSUmRp6enrl69qvPnz990/VFRUcrIyNCAAQP0wgsvqKCgQMnJyYU6ZPz9/fXWW29p9OjRevLJJ9WnTx8FBAToq6++0vr169W0aVO98MILDh2X3r17a+vWrUpLS9Mvv/yibt266d5779Xvv/+urVu36ttvv1WvXr305JNPWtUzP7A3c+ZMtWnTxqbcxJ796N+/vzZs2KBBgwbpueeeU2BgoE6ePKmlS5fKz89Pzz77rEP7C6Bso3MFQKnk7++vefPmaf369Vq1apUSExN1+vRp+fr6qlmzZurbt68eeeQRqzrt2rXT8uXLNXv2bCUnJ+vChQuqVauWXn75ZQ0ePNjqna4dOnTQ8uXL9eGHHyo5OVk5OTmqUaOGXnjhBcXExDg8BPpGU6ZMUdOmTbVy5UpNmjRJlSpVUlhYmIYPH255hVVRXn31VT344INatGiR5s6dq4KCAtWpU0fx8fGKjo52+Kma+Ph4TZ06VRMnTtTgwYNvmQB4e3tr+vTp6tGjh1asWKGUlBRlZ2erQoUKatSokeLi4go9bWSrcuXKKSEhQVOnTtW6deu0fPlyBQQEKCwsTK+99pr69u2r7du3O7TuoUOH6r777tOSJUs0depUValSRVFRUcrNzdU///lPq5EyEyZMUPPmzbVs2TLNmjVLnp6euv/++zVhwoRCT5HZ495771VycrIWL16sTZs2aebMmbp8+bKqVaum5s2b68UXX1Tz5s0L1bOnff7M1v3o2bOnKlSooAULFmjevHnKyclRzZo1FR0drSFDhjChPQAAQBlEbuX63MrMx8dHPXv2VGJiosLDwxUQEGD1efv27TVt2jR9/PHH+uCDD+Tt7a1atWppxIgRevDBBzVo0CB98cUXhV4HbBYZGamLFy8qMTFRkydP1n333adevXqpS5cu6tOnj1XZp59+WjVr1lRCQoIWLVqk3Nxc1apVS0OGDNGAAQMcekWydP1htlmzZiklJUWrV6/WggULdO7cOVWuXFkPPvigpk2bph49ehSqN3DgQP34449KSEjQ7t27bX7wy9b9aNCggZYsWaIPP/xQqampOnXqlCpXrqx27drptddeY74VAEXyMAzDcHUQAAA4w6VLl5Sfny8/P79Cn/3973/X8uXLtWXLlptOZmmv8PBwSdLWrVuLZX3uZNasWfrggw+0aNGiYnkfMgAAAICy44033lBKSkqx5lfuIj09XS+++KKGDh2q2NhYV4cDwIWYcwUAcNf46aefFBYWpv/93/+1Wp6Tk6PPPvtM1apVU+3atV0UHQAAAAAAAEoL3u8BALhrhIaGKjg4WHPmzNHp06cVEhKis2fPatWqVTp16pT+53/+xzLnSnG5dOmSVq9erXLlyql79+7Fum5X2Lt3rzIzM/XDDz+4OhQAAAAAbm7z5s2qUqWKHn30UVWqVMnV4dyREydOKD09XQcPHnR1KADcBJ0rAIC7hqenpxYsWKCEhARt3rxZK1asUIUKFdS0aVONGzeuRF5vdebMGcXHx8vPz69MdK6sXr1aixYtcnUYAAAAAEqB9957T5KUmppa6jtX9u7dq/j4eFeHAcCNMOcKAAAAAAAAAACAHZhzBQAAAAAAAAAAwA50rgAAAAAAAAAAANiBzhUAAAAAAAAAAAA70LkCAAAAAAAAAABgBzpXAAAAAAAAAAAA7EDnCgAAAAAAAAAAgB3oXAEAAAAAAAAAALADnSsAAAAAAAAAAAB2oHMFAAAAAAAAAADADv8PelHLlMGKc+wAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000068.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000040.00.0<NA>-45.000000True
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000036.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-42.15449376.029.0<NA>-42.154493True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-38.87568876.00.0<NA>-38.875688True
695coef_calib_zeroautohhjointtou_SHARED3_disc-36.246255112.00.0-2-38.246255False
519coef_calib_autodeficienthhind_WALK_TRANSIT_school-34.197546259.022.0-2.465786-36.663331False
503coef_calib_zeroautohhindivtou_SHARED2_school-33.000000243.00.0-2-35.000000False
655coef_calib_zeroautohhjointtou_SHARED3_maint-31.000000112.00.0-2-33.000000False
677coef_calib_autodeficienthhjoi_TNC_SHARED_maint-30.970666112.00.0-2-32.970666False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -42.154493 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -38.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -36.246255 \n", - "519 coef_calib_autodeficienthhind_WALK_TRANSIT_school -34.197546 \n", - "503 coef_calib_zeroautohhindivtou_SHARED2_school -33.000000 \n", - "655 coef_calib_zeroautohhjointtou_SHARED3_maint -31.000000 \n", - "677 coef_calib_autodeficienthhjoi_TNC_SHARED_maint -30.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 68.0 0.0 -45.000000 True \n", - "541 40.0 0.0 -45.000000 True \n", - "543 36.0 0.0 -45.000000 True \n", - "544 76.0 29.0 -42.154493 True \n", - "698 76.0 0.0 -38.875688 True \n", - "695 112.0 0.0 -2 -38.246255 False \n", - "519 259.0 22.0 -2.465786 -36.663331 False \n", - "503 243.0 0.0 -2 -35.000000 False \n", - "655 112.0 0.0 -2 -33.000000 False \n", - "677 112.0 0.0 -2 -32.970666 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_15\n", - "ActivitySim run started at: 2023-09-14 17:00:05.523747\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-14 17:49:21.887244\n", - "Run Time: 2956.36 secs = 49.272666666666666 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN5f/H8fc5s5jNmDHG2lgaztiXIVT2hCytUih8sxTJEhV90WKrtFmSLAllCSG+KZQsKUQhGfuMMVnHDIYZs5z794ffOTlmhtlnnHk9H48ecd/XfV+f+5z73M7nfO77ukyGYRgCAAAAAAAAAAAAAOAOZ87vAAAAAAAAAAAAAAAAyAkUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAFk2DfffKOQkJBM//fss8/md+gZNnXq1HSPo1q1aqpTp45atWqll156SRs2bMjvcPH//vjjD/v71KdPn9u2HzFihEJCQjR8+HCH5bZ9bNu2Lcdj7N27t33/e/bsyfH93yg5OVnHjx/P1T5uFhYWpnHjxqlDhw5q0KCBatWqpebNm6tPnz768ssvlZCQkON9njt3TsOHD9d9992nmjVrqmnTptq8ebMkaeXKlXrkkUdUp04dNWjQQL1799b27dvt70FycnKW+z158qR9PxERETl1OIBiY2N17ty5HNlXete53NoOAIDCiByZHLmgIkd2RI5MjlwYGYaho0eP5ll/OX29MAxDc+fOVbt27VSrVi01atRI//3vf+3/9jZr1ixb+8+p8z+nHD58ONWyVq1aKSQkREuXLs3UvrK6HeBsXPM7AAB3joCAAIWGhqZafurUKZ06dUru7u6qWbNmqvUWiyUvwstRaR2LYRhKSEjQyZMntW7dOq1bt06dOnXSpEmTZDKZ8ilSSNLy5cvtf966dasiIyMVFBSUjxE5OnXqlEMCsGjRItWpUydX+tq6davGjRuntm3baujQobnSx82mTJmiTz/9VFarVT4+Pipfvrzc3Nx07tw5bdmyRVu2bNHs2bP1ySefqEaNGjnSp9VqVZ8+fRQWFiZXV1dVqVJFSUlJKleunH744Qe99tprkqTAwECVKlWqQJ0PQFq++OILTZ8+XR9//LECAwPzOxwAAJAB5MjkyAUVOfK/yJHJkQujvXv3auzYsapQoYLef//9/A4nS+bOnat3331XklSuXDn5+fnprrvuyueoct7Zs2f17rvv6vfff9emTZvyOxzAqVAAB5BhzZs3V/PmzVMtnzp1qqZNm6bAwEAtWrQoHyLLebc6lsTERH388ceaM2eOVq9erYYNG6pLly55HCFs4uPjtXbtWplMJjVp0kRbtmzRkiVLCtTTi998842sVquaN2+uTZs2ae3atRo5cqSKFSuW43199tlneXpn+/Lly/XJJ5/Iy8tLEydO1IMPPigXFxf7+qNHj+r111/Xn3/+qd69e+u7775T8eLFs93v8ePHFRYWJkmaMWOGmjZtal83depUSVL9+vU1f/58ubpe/7oTHx+v7777TpLsy7KiVKlS9v2ULVs2y/sBbjRx4sT8DgEAAGQSOfJ15MgFCzmyI3JkcuTCaOHChdq7d68qVKiQ36Fk2dq1ayVJHTp00IcffmhffvnyZdWpU0dubm7Z2n/t2rVz5PzPrq1bt2rNmjUqVapUvsUAOCuGQAeATHJ3d9err76q2rVrS5IWLFiQzxEVbt9//73i4uJUpUoVPfroo5KuJ9OJiYn5G9j/MwxDK1askCQ98cQTqlixohISEuzL7nQzZsyQJL366qtq166dQ2IvScHBwfr0008VEBCgmJgYzZ8/P0f6jYmJsf+5UaNGaa6rX7++QxLj6emp4OBgBQcHZ6tvNzc3+36ym3ABAAAAdzpy5IKFHDl/kSOTIyNn2M7bhg0bOiwvWrSogoODVb58+WztP6fOfwAFFwVwAMii1q1bS5IOHTqkq1ev5nM0hdc333wjSWrWrJlatmwpDw8PRUdHa/369fkc2XU7duxQZGSk3NzcdN999+mhhx6SJC1ZsiSfI8u+S5cu6cSJE5J0y+Hqihcvbv+87N27N0f6TklJsf/Z3d3dYZ3Vak1zOQAAAIDcQ45cMJAj5x9yZCDncN4CyC4K4ADyzA8//KA+ffqocePGqlmzppo0aaKXXnpJv/76a5rtQ0JCFBIS4jAv1I2effZZhYSE2IdykqSTJ08qJCRE999/v86cOaN+/fqpdu3aatiwoYYNG5ajx+Pj42P/85UrVxz6DwkJUURERJrbtWrVSiEhIfakVJK2b9+ukJAQdenSRUePHlXXrl1Vq1Yt3Xvvvfb5bmzbHThwQD///LOefvpp1atXT40aNVKPHj20YcOGdGNNSUnR0qVL9eyzz+qee+5RzZo11aJFC73yyivav39/mtskJCRo5syZevrpp3XvvfeqVq1aatmypYYNG6Zdu3al21dYWJhee+01tWjRQjVr1lSjRo3Uu3dv/fDDD2m2v/E1u/E1yYgTJ05o586dkqQ2bdrI29tbLVu2lKQCM9Sgbe61xo0bq2jRourUqZMk6dixY/rtt9/S3CYr59E333yjkJAQ7dixQ9L1u85DQkI0YsQIh+0uXryoadOm6dFHH1W9evVUp04dPfTQQ3r33Xd19uzZTB3bjXeOb9y48ZZtX3rpJf3vf//TBx984LB8xIgRCgkJSXc4PttxtWrVStK/r02PHj3sbWyvlW1fttdg2rRp9nXSv5+zkJAQJScnp+orLCxMo0ePVuvWrVWrVi3dc8896tmzp77//nuHdrd7fyIjI/Xmm2/qwQcfVK1atdSgQQN169ZNS5cudfhR4ubXYNGiRTp58qRGjhypZs2aqWbNmmrWrJn++9//6uTJk+m+tr///ruGDRumli1bqmbNmmrcuLFeeOEFh2vrli1bFBISoho1aig6OjrN/SQkJKh+/foKCQnRnj17Uh1rRj+fU6dOtW9zu/9uPq7z58/rvffeU/v27VWnTh3Vq1dPTzzxhD7//HNdu3Yt3b7ef/99bdiwQW3btlXNmjXVqlUr/e9//3M4ti+++EJdunRRaGioatWqpdatW2vMmDEKDw9P91gOHDig0aNH66GHHlJoaKhq1qyp++67T3379k11Xkj/nq/NmjVLc383vp62Y7e9/zb/+c9/0ny9jx8/rjfeeEMPPvigatasqfr166tLly764osvlJCQkO4xSFJUVJRGjx6t5s2bq2bNmmratKlGjBhxy2PPznYAACBjyJGvI0d2RI6cGjnyv8iR77wc2ebSpUuaOXOmunfvrkaNGqlGjRpq0KCBHn/8cU2dOlUXL15MtU1mr/u299Q2osLq1asVEhKiZ599NtWxZSVHjoiI0OjRo9WqVSvVqlVLbdq00fTp0287wkRcXJw++eQT++esbt266tSpk6ZMmaJLly6leUxRUVGSpJEjRzqc87fLuzPy/t/4Wt3q/M/MtdsW9+bNmxUWFqbBgwfrvvvuU82aNfXAAw9owoQJunDhgsM2ISEhGjlypCTpzJkzDp/Pm+3atUsvvPCCGjVqpNq1a6tt27b64IMPFBcXl2b77G4HOAMK4AByXVJSkgYOHKhBgwZpy5YtcnV1VdWqVZWcnKx169apV69emjBhQo72mZiYqN69e2vbtm0KDg6WyWRSuXLlcrQP25d6Dw8P+fv758g+L1y4oJ49e+rAgQOqXLmyrl27pooVKzq0Wb58uZ5//nnt379flSpVUpEiRbR9+3a9+OKLGjduXKp9xsXFqXv37ho1apR27NihokWLKiQkRJcvX9a3336rzp07a+7cuQ7bJCYmqlevXvrggw+0d+9e+fn5qUqVKoqLi9OaNWvUvXt3LV26NFVfX331lR5//HGtXLlSFy9eVJUqVeTl5aWtW7dq0KBBGjZsWJrJTVYtX75chmGofPny9rurO3bsKEnauXOnjh49mmN9ZUVcXJzWrVsn6d+4goODVa1aNUnS4sWLc6yvgIAAhYaG2n90KlOmjEJDQx3On4MHD6pjx46aOnWqDh48qHLlyqlSpUo6ceKEPv/8c3Xs2FHbt2/PcJ9eXl4KDQ2VdL0Q+dprr2nnzp1pvseBgYGqXLlytj8rRYoUUWhoqCwWi31ZaGio/VjTeg1sMd7KV199pc6dO+vrr7/WhQsX7Ofub7/9psGDB+ujjz7KUHzr169Xx44dtWjRIp09e1Z33323ihcvrl27dmnUqFHq3bu3/cfAm/3999965JFHtHLlSnl6eqpChQo6c+aMli1bpieffFKnTp1Ktc2HH36oZ555RmvWrNHVq1cVEhIis9msjRs3qlevXvanKO6//36VKVNGycnJWrNmTbqxx8XFKTg4+JZPK9zOja97Wv95enpKuj5sWdGiRe3b7dq1Sx06dNCcOXN04sQJBQUFqWzZstq/f7/effdddenSRefOnUuzz507d2rQoEG6dOmSgoODdfbsWfvn7PTp03rsscc0ceJE7dmzR4GBgapSpYrOnTunJUuW6OGHH7bP+3WjhQsX6vHHH9fXX3+t6OhoVahQQUFBQbp8+bI2b96cqfPiVmznrY3FYlFoaKgCAgLsy7799ls9/PDDWrx4sc6ePSuLxaISJUpoz549mjhxop588kmdPn06zf0fPHhQjz76qJYuXSpvb28FBQUpOjpaK1as0GOPPaYjR47k6HYAAOD2yJEzjhw5c8iR/0WOTI5cUHJkSQoPD9fDDz+sDz74QH/++aeKFy+ukJAQubi4aP/+/Zo2bZqeeuqpdF+LjCpatKhDPlm8ePFU50dWc+Rff/1Vjz32mL7++mvFxMTIYrEoPj5ekydPVp8+fdKN6ejRo3r44Yc1ZcoUHTp0SCVLllSFChV07Ngxe1H8xmuTLSe2PfltO49r1qx52+PP6Pt/O9m5dm/evFmdO3fWhg0b5O/vrzJlyujkyZOaN2+enn76aYfC843XJDc3t3Q/nytWrFD37t21bds2lSlTRsWLF1d4eLj9pqz0borP6naA0zAAIJumTJliWCwWo2XLlmmuf/vttw2LxWLUrVvXWLt2rX15cnKy8eWXXxrVq1c3LBaLMXfuXIftLBaLYbFYjF9++SXN/T7zzDOGxWIxpkyZYl8WGRlp365hw4bG4cOHDcMwjGvXrhmXL1/O9rHYREdHGw0bNjQsFovRv3//NPsPDw9Pc9uWLVsaFovFWL58uX3Zb7/9Zt+udevWxunTpw3DMIy4uDgjISHBYTuLxWL06tXLOH/+vGEYhmG1Wo0lS5bYX8fVq1c79Pf8888bFovFuP/++43ffvvNvvzatWvGxx9/bN/nDz/8YF+3cOFCw2KxGG3atDGioqLsyxMSEoy33nrLsFgsRv369e2xGYZhbNq0yQgJCTFq1KhhzJs3z0hOTrav27Ztm3HvvfcaFovF+OijjxziS0xMNI4cOWIcOXLEuHTp0i1f9xulpKQYzZs3NywWizF58mSH/dnem7Fjx6a57WuvvWZYLBZj2LBhDstvd85l1uLFiw2LxWLUqVPHiIuLsy+fM2eOYbFYjBo1ahjnzp1LtV1WzyPD+Pdz8eGHHzosv3z5stGkSRPDYrEYTz31lHHixAn7unPnztnPk/r16zusu539+/cbdevWtcdrsViM0NBQo2/fvsZnn31m/Pnnn0ZKSkq626f3XtgsX748zc/kjZ+Zm6V1bbh5m6SkJPvyXbt2GVWrVjUsFovx/vvvO5zXy5cvt6/bsmWLYRjpvz8HDhwwatasaYSEhBgfffSRw372799vtGnTxrBYLMbw4cPTfA0sFovRpUsX49ixY/Z1u3fvNurVq2dYLBZj3LhxDtutWbPGsFgsRrVq1YwvvvjC/plLTk42pk+fbl935MgRwzAM46OPPjIsFovx2GOPpflaP/fcc4bFYjFmzZplX5bVz2d6Vq1aZVgsFqN69erG1q1b7ctPnz5t/9yOGjXKuHjxon1dRESE8eSTTxoWi8Xo1q2bw/5s12yLxWK8+OKLxrVr1wzDuH6Ntr0WjzzyiGGxWIy2bdsaBw4csG97+fJl47///a/9s/jnn3/a1x0/ftyoUaOGYbFYjOnTpxuJiYn2dTExMcbgwYPt28XGxtrX2c7Xpk2bpnn8N547kZGRDuvSu/78+eef9uv7qFGjHP4t+/vvv+3n1WOPPeZwXt94Xj366KPG0aNH7esOHDhgNGrUyLBYLMbgwYMd+svqdgAA4F/kyOTIhkGOnBZyZHLkG1+nwpQj296DLl26GGfOnLEvt1qtxooVK+yv6ZdffumwXVau+4aR/nmU1Rz54sWLRuPGjQ2LxWIMHTrU4d+Pb775xp4/3xzrlStXjAcffND+b4PtWm4YhnH27FmjX79+9mtrfHy8Q6zpfabTy7sz+/6nd/5n9dptey8sFovRr18/h/d5w4YNRrVq1dL8t/1WvyPc+O/csGHDjJiYGPs62+8rFovF+Oqrr3JkO8DZ8AQ4gFx1+vRp+x28Y8eOVbt27ezrXFxc1L17dw0ePFjS9aGYsnun4426deumypUrS7o+X8yNw7FlhWEYiomJ0U8//aTnnntOsbGxcnNz06BBg3IiXLvnn39epUqVkiR5e3urSJEiDuvLli2rTz75xH43p8lkUpcuXdS7d29J119Hmz///NM+7NaUKVPUqFEj+zp3d3cNHjxYTz31lCTp/ffft68LCwuTdH3OsLJly9qXFylSRCNGjFCTJk304IMPKjY21r7uww8/lGEYGj58uHr06CEXFxf7unvvvVcTJ06UJM2dO1cxMTH2dW5ubgoODlZwcLDD06C3s3XrVvvdvg8//LDD/mzn2apVq/L1bkbb0G4PPPCAvL297cs7duwos9mspKQke5vctnDhQp09e1YlSpTQZ599pqCgIPu6EiVKaMqUKbJYLLp8+bJmzJiR4f1Wr15dS5cuVf369e3L4uLitGnTJn3wwQfq0qWLmjRpoo8++kjx8fE5ekw5Zfr06bJarXrooYc0bNgwh8/c448/rs6dO0vSbYc3mzp1qhITE/XMM89oyJAhDvupXr26pkyZIhcXF61evTrNp2fd3Nw0bdo0VapUyb6sXr16evzxxyVJu3fvdmhv+6z/5z//Uc+ePe2fORcXF/Xv31/333+/UlJStHLlSknSE088IZPJpP3796d68uPMmTPatm2bXFxc9MgjjzjElJXPZ1p27typ119/XZL0+uuv6/7777evmzNnjmJjY9WqVSuNHTtWvr6+9nXly5fX9OnT5ePjo99//12bNm1Kc/+vvfaa/Q7x4sWLS5K+//57HThwQEWKFNGsWbNUtWpVe3sfHx+NGzdOTZs2VVJSksMTDL/88otcXFxUo0YN9e/fX25ubvZ1fn5+eu211yRdf3rr+PHj2XpdbmfKlClKTk5WkyZNNHbsWId/y6pVq6bZs2fLw8ND+/fvdxj23cbV1VWffPKJ7r77bvuyqlWrqlevXpKuDw+XlqxuBwAAbo0cOfPIkTOGHDlzyJHTR46cszlydHS0Dh8+LOn6db9kyZL2dSaTSY8++qgaNmwo6fqoBLkpqzny4sWLdeHCBVWsWFHvvvuuw78fjz32mF544YU0+1u6dKkiIiJUo0YNTZ061X4tl66PgjB58mSVK1dO4eHhmR5S/maZff/Tk9Vrt01AQICmTJni8D4/8MAD9iHbbz5vMyI4OFjvvvuu/Pz87Msefvhh++8q6U3DkdXtAGdBARxArtq8ebOSk5MVGBio9u3bp9nmmWeekZubmy5fvmyflygn3JhsZFZUVFSquWqrVq2qxo0bq3///jpw4ICKFi2qjz/+2OHLYk64XdxdunSRl5dXquVPP/20pOvzxB47dkzSv3NO1a5dO90hrp577jlJ14erO3TokCTZh99ZtmyZFi5c6DBHjbu7u+bMmaOJEyfav7iePHlSBw4ckOSYaN+oefPm8vf3V0JCQrpz2mWG7Ytx7dq1Uw2BZ4vh0qVLaRaE8sLRo0ftc0Td/JqULFlSjRs3liQtWbJEVqs11+P56aefJEmPPvqoihUrlmq9u7u7fU6on376SYZhZHjflStX1sKFC7Vy5UoNHDhQ9erVcygYRkdHa8aMGXr44YfTHaY5v8THx9vnmbP90HWzIUOG6Pvvv7fPNZiWxMREbd68WVL6nwHbdcQwjDTng6tZs6YCAwNTLbcVIC9fvmxfFhERYf+c2z77Nxs/frw2bNigoUOHSpKCgoJ0zz33SFKqhG/VqlWyWq1q1qxZmjFk17FjxzRw4EAlJSXp2WefVffu3R3W2+ZnTO+1K1GihD1BS+u1CwwMdPjBysZ23rdq1SrN9dL15FiSduzYYX+Nu3fvrj179mjhwoVpbuPh4WH/c27+aHX16lX7kIs3zul3o6CgILVu3VqS9OOPP6ZaX7NmTYcfaW1s84rd+CNtTmwHAABujRw588iRM4YcOXPIkdNGjnxdTubIAQEB+u2337Rnzx6HochtUlJS7AXl3L5BJas5su1G9E6dOjmcyzZdu3ZNc1+2XL99+/YOhWQbDw8PtW3bVlLauX5GZeX9T0tOXLvvvffeVDdqSdeL0ZLjeZtRDzzwQJqvny0/v3lu8exuBzgL1/wOAIBzs335qFatmszmtO+58fLyUqVKlXTo0CEdP35cLVu2zJG+s/MF1d3dPdXcMmazWd7e3ipVqpTq1Kmjdu3aZfuO+bTcLu7atWunubxs2bIqWrSoLl++rPDwcN199932179GjRrp7q9ixYry8fFRXFycjh8/LovFoieffFLLli3TkSNH9NZbb+ntt99WtWrVdO+996pp06a655575Or67z8htjtZJenFF19Mt69r165J+ve8yKrY2Fh7oSetL6T169dXUFCQIiMjtWjRIj3xxBPZ6i8rli1bJul6onPjk642jzzyiLZt26aoqCht2bJFzZs3z9V4bE+p3upcsK27cOGCYmNjMz0XWbVq1VStWjW99NJLio+P1+7du7V161atWrVK0dHROnHihAYPHpzhOZfywj///KOkpCRJSveHuoCAAIf5mNMSHh6uxMRESdJbb71lfxI5rf6ktD8DN94JfSNbsTU5Odm+zDa/opeXV7pJa5kyZVIte+KJJ7Rjxw6tXr1aL7/8skwmk6Tryb0k+530OenChQvq16+fYmNj1aRJE40cOdJh/ZUrVxQVFSXp+pMG8+fPT3M/tjZpvXY33ll9o8yc9ykpKYqIiHC49hcpUkR79+7VoUOHFBkZqRMnTujQoUMOMWTmh7DMioyMtJ+ft5rvrGbNmlqzZk2aT6Ond17ZfiROSkpScnKywzU9O9sBAIBbI0fOPHLk2yNHzjxy5LSRI+dejuzh4aFTp05pz549OnHihCIjI3X06FEdOHBAV69elaRcv/kjqzmybbsqVaqkuU1AQIBKliyps2fPOiy33US0dOnSNG/YlqTz589Lyt51MKvv/81y4tqdmfM2o26Xn6d340RWtwOcBb9YAchVcXFxknTbYYFsSXJODu924xN6mRUYGKhFixblWCyZcbu407oz2cbLy0uXL1/WpUuXJGX89ff29lZcXJz99ffx8dGSJUv0+eefa82aNYqIiNDff/+tv//+W3PmzFFAQICGDBmiLl26SHK8ezEjQ/lk5W7HG61evdqeSI0bN07jxo1Lt+2+ffu0f//+W365z2nJycn69ttvJV2/s/t2fS9atCjXk/uMnAs3/lh15cqVTCf3N/L09NT999+v+++/X4MHD9brr7+u//3vf/rzzz/z/P24lRufYr1xCL7MuvGc/uuvvzLV3iatu6jTY4s7szG3a9dOY8eO1alTp7R9+3Y1btxY+/bt05EjR+Tv759jP67aXLt2Tf3791dkZKQqV66sjz/+ONXdx7ZzU/o3Ob6VtF67tO6uvnHfmTnvbVatWqXp06crPDzcof1dd92lzp076+uvv75trNl142uTkWNI69/Q9H5oup2sbgcAAG6NHDnzyJFvjxw588iR00aOnDs58rFjx/Tee+9p06ZNDkVuHx8fNWjQQGfPnrVPtZCbspoj266haY22YVOsWLFUBXBbf+Hh4aly65tl5zqY1ff/VjFk9dqdmfM2o9L7zSO3tgOcBQVwALnK9sXjdl9ibF+k0vqikt7Tdba7Iwuq3Ir7VsPt2r5Y2u7Ezejrb1t/4+vv4+OjQYMGadCgQYqIiND27du1fft2bdq0SdHR0Ro9erT8/PzUpk0b+xdgPz8/+3C9uck2J5iXl9ctv7SfPXtWhmFo8eLFGjt2bK7HZfPzzz/b72AtWbKk/Q7im129elWXL1/W5s2bderUqTTvRs2p88jb21sXL1685blw8eJFh/a3M2bMGP3222967LHH1L9//3TbeXh46O2339a6devscybfnNynd5y5PSfajclbXFycfe7o7Oxn9+7d2U66MtpfZn8Q9fDwUIcOHbRkyRKtXr1ajRs3tt/Znt5QZlllGIZeeeUV/fnnn/L399eMGTPS/Lx6enra/7x69eo0h4TLqoxcA23//tzYfsWKFRoxYoQkqWnTpnrwwQdVpUoVBQcHq1ixYkpKSrplATynzucbz6PLly+n+5SF7bOb2+cdAADIPnLk1MiRs48cmRw5p5Aj53yOHB0drWeeeUbR0dEqW7asunTpourVq+vuu+/WXXfdJZPJpGHDht2yAJ6T572U+RzZz89P586dc7hJ+2ZpPU3s6empy5cva8aMGTl+w/2Nsvr+p7efvLp2A8hdzAEOIFfZ5uU5cOBAusP4xMXF2e8CrFChgn257SlB213MN7v5rsKC4MYhz9KKOyEhIdt3dqf3hOSJEyfsX/QqV64s6d/Xf//+/enu7+jRo/YvzLbXPzo6Wr///rt9LpgKFSqoS5cu+uCDD7Rp0yb70He2pKBSpUqSrt9xee7cuXT7+v3333X06NFsDbETFhZmn49n4sSJ2rx5c7r/2e4YX7NmzS2/pOc029xrVapU0ZYtW9KNb+7cuZKuDyt1YzEtN86jjJwLtruyixUrlqE7269du6aIiAj7nE634uPjY0+cbkygbZ9z2xBrN8vtz3lQUJA9hhuHurrRvn371LVrV40cOTLdpPPG/Rw5ciTd/vbu3auDBw9mOymzzel39epVnTx5Ms02P/74o5599lm99957Dsttwx3++OOPSklJsQ9DltPDIL733nv64Ycf5ObmpmnTpqU7DJmvr69KlCgh6dav3cGDB3XgwAGHH6FuJyPn/b59+yRJJpNJ5cuXlyR99tlnkq7PBzh79mw99dRTCg0NtT9dlN48fTn971b58uXtP7jc6qkJ27ob/w0FAAAFEzmyI3JkcmRyZHJkZ8+Rly9frujoaPn5+Wn58uXq37+/mjdvrqCgIPvNIGfOnElz25y+7mc1R7Zd02zXmptduXLFPpz9jWzbpXcuSdefDt+3b1+25qPOzvufVrx5ce0GkPsogAPIVc2aNZOrq6vOnTun7777Ls02X375pZKTk+Xp6amGDRval9uSi7TmU9m7d2+BTO79/PzsX17Tivunn37K0lwvN/rmm2/S/KHENhxd3bp17XdJ2+6u3Lt3b7pD93zxxReSpNKlSyskJESS1Lt3b3Xv3l0rVqxI1d7b21t169aVdD0plaTg4GD7DwNffvllmv3s2rVL3bt3V/v27fXnn39m4EjTZps3zN/fX61atbpl265du0q6/gXY9kNEbouOjtamTZsk3T5ZqlWrlv2HkqVLl9rPjeycR+ndSW87F1auXJlmATExMdF+DjVt2vSWcdvY5pb766+/7D9opGfr1q2KjY2Vn5+f6tSpY19+q895SkqKfvrppwzFklU+Pj6qX7++pH+fmrjZmjVrtHv3bp08eTLd19fHx8d+/UpvDuvIyEh169ZNDz/8sL7//vtsxR0cHKxy5crdMu4VK1Zox44dqZLIOnXqqEqVKoqJidGCBQv0zz//qHr16unO75YVixYt0ueffy7p+hCMDRo0uGX7Fi1aSLp+/Ujr+nb58mX17NlTjz76qObNm5fhOGzn/U8//aTIyMg029jer7p168rX11eS7AlzesMQ2q5DkuP8Xbbz+eLFi4qOjk613fr169ON1XZu3fgDkpeXlxo1auQQ580iIyPtn5NmzZqlu38AAFAwkCM7IkcmR74ROTI5clYV5BzZll+WLVs2zSfqjxw5Yr8G2K4hNlm97qeVX0pZz5HbtGkj6fpNPmndrPDNN9+kiv3G/pYtW5ZmsTg5OVkDBgxQ586d9e6776YZT0Zk5/2/eT95de22MZuvl+jSu5kEQNZRAAeQq8qUKWOfA2v06NEOX2itVqsWLlyoqVOnSpIGDBjgMFSX7Qv33LlzdfToUfvyffv26eWXX86L8DPNw8ND1atXlyRNnTrV4Q7OrVu36u233852H3/99ZdGjx5tH/bKarXqyy+/tCfpQ4cOtbetV6+e/Q7vQYMGOQzfk5iYqClTptjvqn711VftX5AfeeQRSdK0adO0efNmh/5///13e6J845xcgwcPliTNnDlTs2bNcrg79ffff7evr1u3rho3bmxfl5SUpKNHj+ro0aO3vWM7MTFRq1evlnR9KKrbzVHbrFkz+xfgxYsX37Ltrfzzzz86evRomnez3mzlypVKTk6Wm5ub/XW8FdsPEOfOnbPfZZyd88g2XFNUVFSqfkqVKqXz58/r+eefd0h0oqOjNXjwYB06dEje3t566aWXbhu3JN1///1q27atJGnUqFEaP358qjttr127puXLl2vIkCGSrp8nNw59ZvucHz58WPPnz7d/4b948aJef/31DM0JnV0DBgyQyWTSqlWrNGPGDIcfTlauXKkFCxZIkvr06XPL/bz00ktycXHRmjVrNHHiRIek8NChQ+rXr5+SkpJUrlw5derUKVsxm0wmDRgwQJI0a9YsLV261P7apaSkaObMmVq/fr1cXV3Vq1evVNvbfniaPHmyJOnxxx9Ps5/MfD5tNm3aZB9OcdCgQXr00Udvu02/fv3k5eWlXbt26ZVXXnFISKOiotSvXz/FxMSoaNGi6t69e4bikK7P5xYSEqJr166pb9++DkPKxcXFafTo0dq6datcXV01fPhw+zrbXfFLlixx+PzFxcVp6tSpmjlzpn3ZjUl8nTp15ObmJsMwNGHCBPu6pKQkzZs375bDpts+uzdfZwYOHChXV1dt3bpVo0ePdnhSJywsTH379tW1a9dUtWrVDL3WAAAgf5EjkyPbtiFHThs5MjlyVhTkHNmWX4aFhemHH36wLzcMQ5s3b1afPn3sT/zfPMR9Vq/7tnPq5s9oVnPkJ598UhUqVNDp06c1aNAghxu+161bpw8++CDNOLp3767AwEBFRESof//+DvFcuHBBQ4YM0dGjR+Xm5qbnnnsu3eO5ney+/zfK6rU7q2zXqEuXLuXpyBxAYcAc4ABy3ciRI3XmzBn9+OOPGjx4sEqWLKnSpUsrMjJSMTExkqRnnnlGffv2ddiuf//+2rJli86dO6dOnTqpcuXKunbtmsLDwxUUFKQnnngi3bv68tOQIUPUv39/HTlyRK1bt1blypV18eJFRUVFqVatWgoNDbUncVlhsVi0bNkyrV27VnfffbdOnz6tc+fOyWw2a+TIkam+fL333nt64YUX9Mcff6hHjx4qV66cihcvruPHjysuLk4uLi4aMmSIOnToYN+mR48e2rZtmzZv3qy+ffuqZMmSKlmypGJiYuxJY6tWrfTkk0/at+nQoYPCw8M1depUvf/++/rss89UsWJFXbhwwb5NpUqVNH36dIf4zpw5o/bt20u6PlxbekmGJG3YsEGxsbGSMjYUldls1lNPPaUPP/xQhw4d0q5du+zJQ2a89tpr2rFjhxo2bGhP9NJju8u7RYsWGZorq0OHDnr33Xd16dIlLV682J4sZ/U8ql69ujZu3KjVq1fr4MGDatCggd544w35+vpqxowZ6tevn/744w+1adNGlStXlqurqw4fPqykpCT5+fnp/ffftw8dlRHvv/++vLy8tHLlSs2fP1/z589X2bJlFRAQYP+8JiYmys3NTcOGDVO3bt0ctm/evLkaNGig33//XePHj9fnn38uf39/HTt2TElJSXrppZfsPwDmlnvvvVcjR47UO++8o48++kiff/65goKCdPr0afs8dS+++KLDj1lpqV+/vsaOHas33nhDX3zxhRYvXqzg4GBduXJFERERMgxDJUqU0Jw5c277w1RGdO7cWUeOHNHcuXM1atQoffzxxypdurROnjyp2NhYubi46M0330zzrvVHHnlEH3zwga5evSo3Nzd17NgxzT4y8/m0GTp0qFJSUuTh4aG///5bvXv3VkJCQppP5TzxxBPq3LmzKlSooI8//lhDhw7VmjVr9MMPP6hy5cpKSkpSeHi4kpOT5eXlpZkzZ6Y7D3ZaXF1dNX36dPXt21fHjh3TI488oooVK8rb29s+XJmHh4feeusth6fUhw4dqgEDBujIkSN64IEH7MOgRURE6Nq1a/ah6k6cOOEwHHqxYsXUu3dvzZgxQ2vWrNGWLVt01113KSoqSrGxseratat++umnNIe3q169unbu3Km3335bixYtUrdu3dS5c2fVq1dP48eP16hRo/T111/r22+/VXBwsK5evarjx49Luv7vwrRp03LkvAIAALmPHJkcmRw5feTI5MhZVVBz5M6dO2vhwoWKiIjQoEGDVK5cOfn7++vUqVOKjo6Wm5ubGjZsqB07dqTKFbN63a9WrZqk6/Ovt2vXTpUrV9a0adOynCN7eHhoypQp6tOnj7Zu3aoWLVqoSpUqio2NtX8Gz507l2q6sGLFiunTTz9V//79tW3bNj3wwAOqXLmyTCaTjh8/rsTERLm6uurDDz+0j7iRVdl5/2+U1Wt3VoWEhMhsNishIUHt2rVTyZIlNWfOnAxNuwDg1ngCHECuc3d31yeffKKPPvpITZo0UWJiog4cOCBPT0916NBB8+fP1+jRo1MNm1StWjUtW7ZMnTp1UvHixXXs2DGlpKToueee04oVKxQYGJhPR3RrzZo108KFC9W6dWt5eXnpyJEjKlKkiAYNGqSFCxfa7+zLqh49eujDDz9UpUqV7Hf+tm3bVosXL07zLkY/Pz8tWLBAY8eO1T333KPLly/r4MGD8vf3V+fOnbVs2TL169fPYRsXFxd98sknev3111WvXj0lJCQoLCxM8fHxatKkid577z1Nnz7dYR4u6XoCtGTJEnXq1Ek+Pj4KCwtTTEyMqlevrsGDB2v58uWZKl7dzJY416hRI8NDUXXu3Nk+h2527nDPiD179tjntsroXFGenp72pzZ//fVX+1x/WT2P+vbtqyeffFJ+fn4KDw/XwYMH7euqV6+uNWvWaMCAAapSpYoiIyMVHh6uSpUq6YUXXtC3336b4aHdbNzd3fXOO+9o6dKleu6551SjRg0lJiYqLCxMp0+fVqVKldS7d299++23qc4z6foPMHPmzNGQIUNUpUoVRUdH659//tG9996rRYsWZfsu8Izq2bOnlixZoo4dO6pIkSI6ePCgkpOT1bx5c82dO1eDBg3K0H6eeOIJrVq1Sk899ZQCAwN1+PBhnTp1SsHBwerTp4++/fZbezE1J4wYMUJz587VAw88IMMwFBYWJhcXF7Vr105Llixx+AHuRsWLF7cPl92qVascTaxsd/UnJCRow4YN2rp1q37//Xft3r071X+nTp2yb9e8eXP973//U69evVS+fHkdP35cERERKleunLp166Zvv/1WoaGhmY7nrrvu0vLly/Xqq6+qdu3aOnfunI4ePaoyZcqoR48eWrVqVaonp1u2bKlly5apdevWCgwM1LFjx3Tq1ClZLBYNGzZMq1atsp+bGzdudNh26NChev/991W/fn0lJSXp+PHjqlSpkiZNmqQ333wz3TgnTJig+++/X66urjp+/Lj9WiBdn4t81apV6tKli0qUKKHDhw8rJiZGoaGhGjNmjJYtW5buHOsAAKDgIUcmRyZHTh85MjlydhTEHNnHx8d+XalSpYouXLigw4cPy8fHx17AnjBhgqTrT4nf+JR0Vq/7jz76qPr06aPAwECdPHlSBw4csN+UnpUcWZKqVq2qFStW6LnnnlOZMmV0+PBhWa1W9erVS1988UW6NzHUqlVLq1ev1osvvqiQkBCdPHlSx44dU4kSJfToo49q+fLl9iHWsyur7//NcvvafaMKFSpo4sSJqlixomJjY3Xq1KlUI1YAyBqTweQCAHBHaNWqlaKiojRu3LgMf2FDzhk7dqxOnDihWbNm5XcoQI54/PHHtX//fs2cOfO2d+4DAAAABQ05cv4iR4azIUcGAOfCE+AAANyG1WrV77//rsqVK+d3KECO2L9/v/bv368yZcqoSZMm+R0OAAAAgDsIOTKcDTkyADgf5gAHAOA23n77bUVHR+vZZ5/N71CALIuMjJQknT9/XiNGjJB0fbhIFxeX/AwLAAAAwB2GHBnOgBwZAJwbBXAAAG7j6aef1qBBg1S8ePH8DgXIsu+++04ffvih/e8Wi0XPPPNMPkYEAAAA4E5EjgxnQI4MAM6NIdABALiNqlWrktjjjle1alWVLFlSXl5eat26tT7//HO5u7vnd1gAAAAA7jDkyHAG5MgA4NxMhmEY+R0EAAAAAAAAAAAAAADZxRPgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUXPM7gDuFYRiyWhktHgAAAADgyGw2yWQy5XcYToHcGwAAAACQlszk3hTAM8hqNXThwpX8DgMAAAAAUMAUL+4tFxcK4DmB3BsAAAAAkJbM5N4MgQ4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACn4JrfAQAAAAAAUrNarUpJSc7vMAo9FxdXmc3cOw4AAAAAzojcu2DI6dybAjgAAAAAFCCGYejSpQuKj4/L71Dw/zw9feTrW1wmkym/QwEAAAAA5ABy74InJ3NvCuAAAAAAUIDYEnAfH3+5uxeh6JqPDMNQYuI1xcXFSJKKFQvI54gAAAAAADmB3LvgyI3cmwI4AAAAABQQVmuKPQH38fHN73Agyd29iCQpLi5GRYv6Mxw6AAAAANzhyL0LnpzOvcncAQAAAKCASElJkfRv4oeCwfZ+MC8cAAAAANz5yL0LppzMvSmAAwAAAEABw9BrBQvvBwAAAAA4H3K9giUn3w8K4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBTcM3vAAAAAAAA+efgwTBNnz5ZYWF/y2o1VL16TfXrN0A1atSUJO3c+Zvmzp2to0cPy8XFVQ0bNlb//i+pVKnSkqTvvlutCRPe0tKl36pMmbL2/Xbu3En16tXXf//7piSpSZMGeu65ftq2basiIyPUteuz6tWrj6KiTurTT6dq166dMgxDNWvW0oABg3X33cGSpGvXrmnOnBnasGGdYmIuqHz5CurR4zk98ECbvH2hAAAAAADIInLvvMUT4AAAAABQSF25Eqdhw15SsWJ+GjfuXb311gQlJMRr2LCBiouL0w8/fKehQwcqMDBQb745Xi+9NFT79+/TCy88p5iYC5nub968OWrRopXefHO8mjZtofPnz6tv356KiDiuYcNe0xtvjNWlS5c0ZMgAxcbGyjAMvf76K1q58hs99VQ3vfPOh6pZs7beeON1rV27JhdeEQAAAAAAcha5d97jCXAAAAAAKKSOHz+u2NgYde78lGrXritJqlCholatWq64uMuaPn2yGjRoqLfemmjfpnbtunrmmSe1aNGXGjBgUKb6q169pp55ppf97598MlnXriXo44+nKyCghCSpSpWqev75Xvrrr70qUsRd27dv01tvTbDfdd6o0b1KSIjXjBnT9OCD7eTqSloLAAAAACi4yL3zHk+AAwAAAEAhdffdwfLz89drr72s99+fqK1bNysgoIQGDBishIQERUdHq02bhxy2KVfuLtWoUUt//PF7pvsLDq7s8Pc9e/5QzZq17Qm4JJUoUULLl69RkybN9PvvO2UymXTvvU2UnJxs/+/++5srOvq8jh8/mrUDBwAAAAAgj5B75707q1wPAAAAAMgxXl5emj59lubNm6MNG9Zp5crl8vDwUJs2D6lduw6SpOLFA1JtFxAQoIMHD2a6P3//4g5/v3TposPcZTe7dOmiDMNQmzbN0lx//vw5VakSkuk4AAAAAADIK+TeeY8COAAAAAAUYuXLV9To0WOVkpKiAwf26/vvv9PKlctUokSgJOnChehU20RHR8vPz0+SZDKZJElWq9WhTXz81dv27eNTVLGxsamW79q1U6VLl5GPT1F5enpp6tQZaW5frlzQbfsAAAAAACC/kXvnLYZABwAAAIBCauPGDerYsbWio8/LxcVFNWvW1vDhI+TjU1QXLlxQQECA1q1b67BNVNRJ/fXXXtWuXUeS5OXlLUk6c+a0vc2JE+G6ePHibfuvU6eu9u/fq5iYC/ZlsbGxGj58kH75ZbPq1g1VfPxVGYahqlWr2/87duyoPv98llJSUnLiZQAAAAAAINeQe+c9ngAH4MBsNslsNuVqH1arIavVyNU+AAAAcHu1atVVSopVI0cO1zPP9JK3t7d+/HGdrlyJU6tWrVW9eg1NmPCW3nhjpNq166iLF2P1+ecz5etbTE891V2SVL/+PfLw8NC0aR+pb98Bunr1qubOvd7mdrp06aa1a/+nl18eqB49npO7exEtWDBXAQEl1K5dB/n4FFXduqEaMWKYevXqowoVKurAgf2aM2emGjVqbL8THs4vt/MUchQAAAAAuYXcO++ZDMMgw8uAlBSrLly4kt9hALnKbDbJz89LLi65OzhESopVsbFX+YEJAADgJklJiYqOPqWAgDJyc3PPkz4PHNivWbM+VVjYASUkJOjuu4P17LP/UfPmLSVJP//8oxYs+ELHjh2Rt7e3GjW6V/36vahSpUrb9/Hbb9s0Y8Y0RUQcV+nSZfSf//TT99//TwEBAfrvf9+UJDVp0kD/+U9f9e79vEP/ERHhmj59snbv3iU3NzfVqxeqAQMGq1y5uyRJ8fHxmj37U23c+KNiYi6oRImSat26jXr16qMiRYrkyWt0u/eleHHvXP8OXViklXvnRZ5CjgIAAAAUHuTezp97UwDPIArgKAxcXc3y9/fWJ4t+UdTZ2w+bkRXlShbTi13vV0zMFSUnW2+/AQAAQCGSH0k4bo8CeN5JK/fO7TyFHAUAAAAoXMi9C6aczL0ZAh1AKlFnLyo8Kia/wwAAAAAAO/IUAAAAAEBGUAAHkC9y8wkZ5u8DAAAAAAAAAAAonCiAA8hTxYp6yLBa5evrmWt9WK0piomJpwgOAAAAAAAAAABQyFAAB5CnvD3cZTKbdXzNLMVHn8rx/XsGlFGljn1lNpsogAMAAAAAAAAAABQyFMAB5Iv46FOKP3Miv8MAAAAAAAAAAACAE6EADgAAAABAIZWUlKQFCxZoxYoVCg8Pl5eXl2rVqqWePXuqadOmqdo3atRIsbGx6e5v7969KlKkSC5GDAAAAADArVEABwAAAACgEDIMQ0OHDtX69evl6+ur++67T9euXdNvv/2mLVu2aMiQIerfv7+9fVRUlGJjY1WqVCk1bNgwzX2azea8Ch8AAAAAgDRRAAcAAAAAoBBavHix1q9fr2rVqmnu3Lny9/eXJIWFhal79+6aPHmy2rRpo+DgYEnSgQMHJEnt2rXT66+/nm9x5xYXl9wr3luthqxWI9f2DwAAAAD4FwVwAAAAAAAKoVWrVkmSRowYYS9+S1LVqlXVqVMnLVq0SJs3b7YXwPfv3y9JqlGjRt4Hm4uKFfWQYbXK19cz1/qwWlMUExNPERwAAAAA8gAFcAAAAAC4A5jNJpnNpjzvlydXnde8efN0/PhxValSJdW6q1evSpJcXFzsy2xPgNesWTNvAswj3h7uMpnNOr5mluKjT+X4/j0DyqhSx74ym018lgAAAIACjtzbOVAABwAAAIACzmw2yc/PK1eHaE5PSopVsbFXs5SIr1v3vZYvX6Jjx45IkipUqKSOHR/Ro48+kdNhIguKFCmiqlWrplq+YcMGff/99/L09FSbNm3sy/fv3y8PDw/99ddfGjVqlA4fPiyTyaTQ0FANGDBAderUycvwc1x89CnFnzmR32EAAAAAyCfk3s6DAjgAAAAAFHBms0kuLmZ9sugXRZ29mGf9litZTC92vT9LT66uWbNKH388SYMGDVPduqGSDO3cuUNTpnygmJgL+s9/+uZO0MiSixcvatSoUTpy5IiOHTumMmXKaOLEiSpdurQkKTo6WmfPnpUkvfrqq6pbt64aNWqkQ4cO6eeff9bWrVs1adIktW/fPj8PAwAAAACyjNzbeVAABwAAAIA7RNTZiwqPisnvMDJkxYpl6tjxET388GP2ZeXLV9S5c2f19deLCm0SXlBFRkZq3bp19r+bTCYdOXJE9957r6R/5//29/fXp59+qnr16kmSDMPQvHnzNHHiRI0cOVKhoaH2onlWubo6Pm2RH09f5AZnOQ4AAADgTme13nqIc3Lv/OXiYkqVF2YWBXAAAAAAQI4zm03at2+vLl26JF9fX/vy7t17qn37TpKkzp076aGHOqp37+ft6wcO7KcyZcrqv/99U7t3/65Bg15Q//4v6auv5qt06dLy8PBUiRKBevvtifZt9u79UwMG9NHixSt0111B+uWXLZoz5zOFhx9XYGCgWrduq549e8vd3V2TJ3+gX37ZrK+/XmXfPi4uTg8/3FZvvz1BTZo0z4NXp+CpVKmSduzYIcMwtG3bNo0fP17jxo1TXFyc+vfvr6ZNm2rLli0yDEOlSpWyb2cymdSrVy/t3LlTGzZs0LJlyzRw4MAsx2E2m+Tv750Th1Tg+Pp65ncIAAAAACQlJLjo/HlzqkJrft+0mpX+XVzM+uuvvbp6Nc4h9+7Z8z96+OFH5Opq1qOPdlCHDp3Ut+8L9vX9+/dVmTJlNWbMW9q163e9+GI/vfjiIC1YME+lS5eRp6eHSpQI1Pjx79q32bPnTz3//HNaunSlgoLKa+vWzZo1a4Y9937wwXb6z3/6yN3dXR99NElbt27R8uXf2rePi7usDh3aaOzYd9SsWerc22o1yWw2q1gxL3l4eGT6tbgRBXAAAAAAQI7r3r2nxowZqccee0ihoQ1Uu3Y91a/fQNWq1VDRokUzta9t27bqs8/mKiEhXocPH9IHH7yjq1evyMvreqF03bq1qlWrju66K0i//bZNo0eP0KBBQ3XPPY0VFXVSH330nk6ciNDYse+oY8dHtHTpIu3Z86fq1KkrSfrxx3Xy9vZW48b35/TLcMfw9v636Ny+fXuVLl1a3bp108yZM9WjRw95e3urZMmS6W7fsmVLbdiwQX/99Ve24rBaDV26dNVhmYuL2SmKx5cuxSslxZrfYQAAAACFXmLiNVmtVqWkGEpOLjjf0VNSrJmOp1u3HhozZqQ6dWqbKvcuW9bbvj+r1fFYDcOQYVxfZstTtm7dkir3vnTpsj33Xrv2f6pVq47KlLlLW7du1euvv5Yq9w4PD9fYse+offtHtGTJIu3atduee//www/y8vJWw4b3pnmcKSmGrFarLl68qvj4lFTrfX09M3yTAAVwAAAAAECOa9HiAX322VwtW7ZY27f/pl9//UWSFBRUXiNHjlHt2nUzvK+uXZ9RUFB5SdJdd5XXRx9N0qZNG/XQQx2VlJSkn37aoP79X5IkzZ//uTp2fFiPPtpZklSu3F165ZXXNWjQCzp16h8FB1dWSEg1/fDD/+xJ+Pffr1Hbtu3l6kqKbBMaGqry5csrIiJC4eHhqlGjxi3bBwYGSpLi4+Oz3XdB+gEqJ2XlxywAAAAAOS8lJXPzbBdkzph758SNCWT3AAAAAIBcUa1aDY0ePVaGYejYsaP69detWrp0sYYPH6wlS1ZkeD933VXe/mdPT0+1bPmA1q1bq4ce6qhff/1F164lqFWr1pKkQ4fCdODAfq1du8a+jWFc/3EjPPy4ypQpqw4dHtbMmdM1ZMgrOnv2jPbt26tXXnk9h476zhAfH6/Jkyfr/PnzmjRpkkym1HPgubu7S5KSk5O1ZMkS/frrr+rYsaNat26dqm1kZKQkZXv+bwAAAABA5pB7p0YBHAAAAACQo86ePaOvvpqnZ57ppcDAkjKZTAoOrqzg4Mpq0qS5nnnmSf355+40t01JSU61rEiRIg5/b9++kwYP7q/o6PNat+47NWvWUt7ePpKuD+vWrVsPPfRQx1T7CQgoIUl68MF2mjbtY23btkVHjx5RtWrVdffdlbN72HcUDw8PrVixQrGxserSpYsaNmzosD4yMlLHjx+Xu7u7qlSpok2bNmnt2rWKj49PVQA3DEOrVl2fU71JkyZ5dgwAAAAAUJiRe6cvf2dzBwAAAAA4HXf3Ilq16hutW7c21TrbXNPFiwfI1dVNcXFx9nVWq1X//BN12/3XrRuq0qXL6Pvv/6dt235xSLjvvjtYERHhuuuuIPt/586d1SefTNbVq1ckSUWLFlWzZi30888/afPmjWrf/uHsHvIdx2Qy6amnnpIkvfnmmzp79qx93enTp/Xyyy8rOTlZXbt2lZeXlx577DG5u7vr559/1tdff21va7VaNWXKFO3du1eVK1dWu3bt8vxYAAAAAKAwIvdOH0+AAwAAAABylJ+fn7p376mZM6crLi5OrVq1lpeXt8LDj+uLL2YrNLSB6tSpp9q16+jHH9epefOWKl48QIsXf+mQlN/KQw911Lx5n6tYsWJq0ODfp5e7d++hMWNGas6cz/Tgg+107txZvfPOOJUqVcp+F7okdejwsEaMeFmGIbVu3TbHX4M7wYABA7R7927t3LlTbdu2Vf369ZWUlKS9e/fq6tWratKkiYYPHy5JCgoK0ptvvqlRo0Zp9OjR+vLLL1WxYkWFhYUpIiJCJUqU0NSpU+Xm5pbPRwUAAAAAhQO5d/oogAMAAADAHaJcyWJ3TH99+/bXXXcFafXqlVqxYqkSEhJUqlRptWr1oHr0eE6S1K/fi7p8+ZKGDx8kDw9Pder0qB54oI193rBbadeuoz7/fKYef/xJmc3/Dm7WsmVrvfWWtGDB5/ryyy9UtKiv7r+/qfr3H+SwfYMGDVWsmJ9q1aqjokWLZvk472QeHh6aO3eu5s+fr1WrVmn79u1ydXVVlSpV9Pjjj+vJJ5+Ui4uLvf0TTzyhSpUqadasWdq9e7eOHTumkiVL6tlnn1X//v0VEBCQj0cDAAAAADmD3Ptfd2rubTIycnT5ICkpSQsWLNCKFSsUHh4uLy8v1apVSz179lTTpk1TtT9//rymT5+uLVu26MyZMwoMDFS7du00YMAA+2P+2ZGSYtWFC1eyvR+gIHN1Ncvf31uvT/5O4VExudLHfXUraGC3Jvp73tuKP3Mix/fvWaq8qvcco5iYK0pOtub4/gEAAHJTUlKioqNPKSCgjNzc3O3LzWaT/Py85OKS97NYpaRYFRt7VVZrgUwdsyw+Pl6PPNJO48e/p3vuaXTLtum9LzbFi3vny3vjjNLKvXM7TyFHAQAAAAoXcu+8k1+5d4F8AtwwDA0dOlTr16+Xr6+v7rvvPl27dk2//fabtmzZoiFDhqh///729mfPntXTTz+tqKgoWSwWtWjRQvv27dPs2bO1ZcsWLVy4UD4+Pvl4RAAAAACQdVarodjYqzKbTfnStzMl4JcuXdLu3Tv1008bVKpUKYch3AAAAAAAhRe5d87J79y7QBbAFy9erPXr16tatWqaO3eu/P39JUlhYWHq3r27Jk+erDZt2ig4OFiSNG7cOEVFRalfv34aNmyYJCkxMVGvvvqq1q5dq2nTpmnEiBH5djwAAAAAkF3Olgznl5SUZL3zzlj5+fnr7bcnymTK+x82AAAAAAAFE7l3zsjv3LtAjtG2atUqSdKIESPsxW9Jqlq1qjp16iTDMLR582ZJ0okTJ7R+/XqVKVNGgwb9O668u7u7xo4dK29vby1ZskQJCQl5exAAAAAAgALH37+4vv/+Zy1evEIWS9X8DgcAAAAAAKeT37l3gSyAz5s3T6tWrdI999yTat3Vq1clSS4uLpKkzZs3y2q1qnnz5nJzc3NoW7RoUTVu3FhXr17V9u3bcz9wAAAAAAAAAAAAAEC+KZAF8CJFiqhq1ar2IrfNhg0b9P3338vT01Nt2rSRJB06dEiSZLFY0txX5cqVHdoBAAAAAAAAAAAAAJxTgZwD/EYXL17UqFGjdOTIER07dkxlypTRxIkTVbp0aUnSuXPnJEmBgYFpbm9bfv78+bwJGAAAAAAAAAAAAACQLwp8ATwyMlLr1q2z/91kMunIkSO69957Jf07JLqHh0ea29uW29plh6trgXxgHsgxLi7Oc44707EAAIDCw2o15XcIuAUXFxN5IQAAAAAABVyBL4BXqlRJO3bskGEY2rZtm8aPH69x48YpLi5O/fv3tw+TbjKl/UORYRgO/88qs9kkf3/vbO0DQN7x9fXM7xAAAAAyLSHBRefPmym0FjBWq0lms1nFinmle/M1AAAAAAAoGAp8Adzb+9+ic/v27VW6dGl169ZNM2fOVI8ePeTl5SVJunbtWprb25Z7emavGGa1Grp0KftPkQMFmYuL2WkKx5cuxSslxZrfYQAAAGRKYuI1Wa1WpaQYSk7mu0xBkZJiyGq16uLFq4qPT0m13tfXkxGIAAAAAAAoIAp8AfxmoaGhKl++vCIiIhQeHq6SJUtK+ncu8Jvdbo7wzOAHKODOkZJi5TMLAADuOCkp6Y9cZTabZDbn/RDpVqshqzXzI2p17txJp0+f0sCBQ/T008+kWj9p0gStWvWN/vOfvurd+/ksxda5cyc99FDHDG+f2fY348YEAAAAAHBu5N5p95GXuXdOKHAF8Pj4eE2ePFnnz5/XpEmT0hza3N3dXZKUnJwsi8UiSTp69Gia+zt8+LAkKSQkJJciBgAAAIDcdX1KJk+ZzS553rfVmqKYmPgsJeKurq7auPHHVEl4cnKyNm36Kd2prAAAAAAAyGvk3s6jwBXAPTw8tGLFCsXGxqpLly5q2LChw/rIyEgdP35c7u7uqlKlikqUKCFJ2rhxo0aOHGmfE1ySLl++rO3bt8vLy0v169fP0+MAAAAAgJxy/Q50Fx1fM0vx0afyrF/PgDKq1LGvzGZTlpLwBg0aavv2X3XmzGmVKlXavnz37t/l4eGpIkWYTxsAAAAAUDCQezuPAlcAN5lMeuqpp/TZZ5/pzTff1BdffGEf5vz06dN6+eWXlZycrJ49e8rLy0teXl5q2bKlNm7cqEmTJum1116TyWRSYmKixowZoytXrui5556Tj49PPh8ZAAAAAGRPfPQpxZ85kd9hZFi1ajUUERGujRs3ONyJ/uOP69Sq1YP66af19mV//bVXM2dO18GDB+Tq6qomTZrrxReHyNfXV5IUFxenjz+epK1bN8nV1U09evwnVX/79u3RjBnTdODA3/Lz89P99zfTCy+8KG9v8kEAAAAAQMaQe9/5ubc5vwNIy4ABA3TPPffo6NGjatu2rfr06aOePXvqoYce0t69e9WkSRMNHz7c3n706NEqWbKk5s6dq/bt22vQoEFq27atvvvuO9WoUUMDBw7Mx6MBAAAAgMKrZcvW2rjxR/vfk5KStHnzz2rduo192d9//6WXXnpeFStW0owZczV27Lv6+++/9PLLA2W1Xp9ze8yYETpwYL/effcjffTRNP3yyxadPv3vHflHjhzW4MEDdM89jTRv3iK98cZ4HTx4QEOHDpRhZP4OegAAAAAA7hTk3o4KZAHcw8NDc+fO1auvvqqgoCBt375de/fuVZUqVfTWW29p5syZ9nnAJalcuXJatmyZnnzySV2+fFkbN26Uu7u7XnjhBc2fP1/e3t75eDQAAAAAUHi1avWg/v77L505c1qStGPHb/Lz85PFUtXeZvHirxQcXEUvv/yaKlW6W6GhDfTmmxMUFva3tm//VSdOhGvHjt80dOirqlOnnqpUCdEbb4xzyAsXLZqvBg3uUa9efRQUVF516tTVm2+O199//6U//tiV58cNAAAAAEBeIfd2VOCGQLdxc3NT79691bt37wy1L1WqlMaNG5fLUQEAcGe4Pl+NKdf2b7UaWZqPBgBQ+FStWk1ly5azD8X200/r1Lp1W4c2x44d0T33NHZYFhxcWT4+RXX06GElJMRLkqpVq25fX7x4gMqWLWf/+8GDB3Xy5Ak9+GDTVDFERIQrNLRBTh4WAAAAAAAFBrm3owJbAAcAAFljNpvk5+clF5fcG+glJcWq2NirFMEBABnSqtWD2rjxRz322JPasmWzZs2a57DeMAyZ0rhvyzCscnX9N229+d8dFxdXh7Zt2jykHj2eS7UfPz//bB4BAAAAAAAFG7n3vyiAAwDgZMxmk1xczPpk0S+KOnsxx/dfrmQxvdj1fpnNJgrgAIAMadWqtb788gutWbNKZcuWU4UKFR3W3313Ze3Z86fDssOHD+nKlSuqWPFuBQWVlyTt27dH993XRJJ0+fJlRUVF2ttXqhSs48eP6q67guzLTpwI17Rpk/XCCy/Kx6dy7hwcAAAAAAAFALn3vyiAAwDgpKLOXlR4VEx+hwEAgKpUCdFddwVp5sxP9Mwz/0m1/qmnuunFF/vqww/f1eOPd1FMzAV9+OG7slhC1KBBQ7m6uqply9b66KP35ObmpoCAAM2Y8YmSkpLs+3j66Wf04ot9NGnSBHXu/LSuXr2qDz54R1evXtVdd5XPy8MFAAAAACDPkXv/iwI4AAAAANwhPAPK3LH9tWr1oObNm6PWrdukWlezZm29//5kzZo1Q889111eXt5q2rSF+vcfaB+GbdSoN/XJJ5P1xhuvy2q16pFHHldsbMwN+6ilDz+cptmzP1Xv3s/K09NDoaH36MUXh8jd3T3HjgMAAAAA4NzIve/83NtkGAZjl2ZASopVFy5cye8wgFzl6mqWv7+3Xp/8Xa49NXpf3Qoa2K2J/p73tuLPnMjx/XuWKq/qPccoJuaKkpOtOb5/4E6Q25/liuX8NWFwez5nAJALkpISFR19SgEBZeTm9m/iaDab5O/vKbPZJc9jslpTFBMTX6invUjvfbEpXtxbLi7mfIjM+aSVe+f2dxtyFAAAAKBwIfcumHIy9+YJcAAAAAAo4KxWQzEx8TKbTfnSd2FOwAEAAAAAhQO5t/OgAA4AAAAAdwCSYQAAAAAAche5t3NgjDYAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAUMIbBfGMFCe8HAAAAADgfcr2CJSffDwrgAAAAAFBAuLi4SJISE6/lcyS4ke39cHFxzedIAAAAAADZRe5dMOVk7k32DgAAAAAFhNnsIk9PH8XFxUiS3N2LyGQy5XNUhZdhGEpMvKa4uBh5evrIbOYecgAAAAC405F7Fyy5kXtTAAcAAACAAsTXt7gk2RNx5D9PTx/7+wIAAAAAuPORexc8OZl7UwAHAAAAgALEZDKpWLEAFS3qr5SU5PwOp9BzcXHlyW8AAAAAcDLk3gVLTufeFMABAAAAoAAym80ym93zOwwAAAAAAJwWubdz4jZ2AAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwCm45ncAAADgzuTikrv30VmthqxWI1f7AACgsEtKStKCBQu0YsUKhYeHy8vLS7Vq1VLPnj3VtGnTVO3Pnz+v6dOna8uWLTpz5owCAwPVrl07DRgwQN7e3vlwBAAAAAAAOKIADgAAMqVYUQ8ZVqt8fT1ztR+rNUUxMfEUwQEAyCWGYWjo0KFav369fH19dd999+natWv67bfftGXLFg0ZMkT9+/e3tz979qyefvppRUVFyWKxqEWLFtq3b59mz56tLVu2aOHChfLx8cnHIwIAAAAAgAI4AADIJG8Pd5nMZh1fM0vx0adypQ/PgDKq1LGvzGYTBXAAAHLJ4sWLtX79elWrVk1z586Vv7+/JCksLEzdu3fX5MmT1aZNGwUHB0uSxo0bp6ioKPXr10/Dhg2TJCUmJurVV1/V2rVrNW3aNI0YMSLfjgcAAAAAAIkCOAAAyKL46FOKP3Miv8MAAABZtGrVKknSiBEj7MVvSapatao6deqkRYsWafPmzQoODtaJEye0fv16lSlTRoMGDbK3dXd319ixY7V582YtWbJEQ4YMkYeHR54fCwAAAAAANrk7eScAAAAAACiQ5s2bp1WrVumee+5Jte7q1auSJBcXF0nS5s2bZbVa1bx5c7m5uTm0LVq0qBo3bqyrV69q+/btuR84AAAAAAC3QAEcAAAAAIBCqEiRIqpataq9yG2zYcMGff/99/L09FSbNm0kSYcOHZIkWSyWNPdVuXJlh3YAAAAAAOQXhkAHAAAAAKCQu3jxokaNGqUjR47o2LFjKlOmjCZOnKjSpUtLks6dOydJCgwMTHN72/Lz58/nTcAAAAAAAKSDAjgAAAAAAIVcZGSk1q1bZ/+7yWTSkSNHdO+990r6d0j09Ob3ti23tcsOV1fHwepcXJxj8DpnOQ4AAAAAKOgogAMAAAAAUMhVqlRJO3bskGEY2rZtm8aPH69x48YpLi5O/fv3tw+TbjKZ0tzeMAyH/2eV2WySv793tvZRUPn6euZ3CAAAAABQKFAABwAAAACgkPP2/rfo3L59e5UuXVrdunXTzJkz1aNHD3l5eUmSrl27lub2tuWentkr8lqthi5dcnyK3MXF7BTF40uX4pWSYs3vMAAAAADgjuTr65nhkbUogAMAAAAAAAehoaEqX768IiIiFB4erpIlS0r6dy7wm91ujvDMSE52ziJxSorVaY8NAAAAAAoSJqACAAAAAKCQiY+P1zvvvKPhw4enO2y5u7u7JCk5OVkWi0WSdPTo0TTbHj58WJIUEhKSC9ECAAAAAJBxFMABAAAAAChkPDw8tGLFCq1evVo7d+5MtT4yMlLHjx+Xu7u7qlSpoqZNm0qSNm7cqJSUFIe2ly9f1vbt2+Xl5aX69evnSfwAAAAAAKSHAjgAAAAAAIWMyWTSU089JUl68803dfbsWfu606dP6+WXX1ZycrK6du0qLy8vlStXTi1bttTJkyc1adIk+1PjiYmJGjNmjK5cuaKnn35aPj4++XI8AAAAAADYMAc4AAAAAACF0IABA7R7927t3LlTbdu2Vf369ZWUlKS9e/fq6tWratKkiYYPH25vP3r0aO3fv19z587Vpk2bVKVKFe3bt0///POPatSooYEDB+bj0QAAAAAAcB1PgAMAAAAAUAh5eHho7ty5evXVVxUUFKTt27dr7969qlKlit566y3NnDnTPg+4JJUrV07Lli3Tk08+qcuXL2vjxo1yd3fXCy+8oPnz58vb2zsfjwYAAAAAgOt4AhwAAAAAgELKzc1NvXv3Vu/evTPUvlSpUho3blwuRwUAAAAAQNbxBDgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKrvkdAAAAAAAAAP5lNptkNptybf9WqyGr1ci1/QMAAABAfiqwBXCr1aqlS5fqm2++0eHDh5WUlKSyZcuqdevWev755+Xr6+vQvlGjRoqNjU13f3v37lWRIkVyOWoAAAAAAICsM5tN8vPzkotL7g3al5JiVWzsVYrgAAAAAJxSgSyAW61WDRo0SOvXr5eHh4dq164tLy8v7d27V7Nnz9b69eu1cOFClShRQpIUFRWl2NhYlSpVSg0bNkxzn2Yzo70DAAAAAICCzWw2ycXFrE8W/aKosxdzfP/lShbTi13vl9lsogAOAAAAwCkVyAL48uXLtX79elWsWFGzZ89WUFCQJCkuLk7Dhw/Xxo0bNW7cOH388ceSpAMHDkiS2rVrp9dffz2/wgYAAAAAAMgRUWcvKjwqJr/DAAAAAIA7ToF8LHr58uWSpBEjRtiL35Lk4+OjCRMmyGQyacOGDUpISJAk7d+/X5JUo0aNvA8WAAAAAAAAAAAAAFAgFMgCuJ+fn+6++27VrVs31brixYurWLFiSkpKUkzM9TuhbU+A16xZMy/DBAAAAAAAAAAAAAAUIAVyCPQZM2akuy4yMlKxsbFyc3NT8eLFJV1/AtzDw0N//fWXRo0apcOHD8tkMik0NFQDBgxQnTp18ip0AAAAAAAAAAAAAEA+KZBPgN+Kbd7vFi1aqEiRIoqOjtbZs2eVkJCgV199VVarVY0aNZKfn59+/vlndevWTd99913+Bg0AAAAAAAAAAAAAyHUF8gnw9CxYsEBr1qyRp6enhg4dKunf+b/9/f316aefql69epIkwzA0b948TZw4USNHjlRoaKhKly6drf5dXe+4+wWATHFxcZ5z3JmOBcgsZzr/nelYAAAAAAAAAAC5744pgM+fP18TJkyQyWTS+PHjFRwcLElq2rSptmzZIsMwVKpUKXt7k8mkXr16aefOndqwYYOWLVumgQMHZrl/s9kkf3/vbB8HgLzh6+uZ3yEAyAF8lgEAAAAAAAAAmVHgC+CGYej999/X7Nmz5eLiovHjx6tDhw729SaTSSVLlkx3+5YtW2rDhg3666+/shWH1Wro0qWr2doHUNC5uJidpth06VK8UlKs+R0GkC/4LAMAkLd8fT0ZtQQAAAAAgAKiQBfAExIS9Morr2jdunXy8PDQBx98oNatW2dqH4GBgZKk+Pj4bMeTnMwP8MCdIiXFymcWcAJ8lgEAAAAAAAAAmVFgC+BxcXHq06eP/vjjDwUEBOjTTz9VnTp1UrVbsmSJfv31V3Xs2DHN4nhkZKQkZXv+bwAAAAAAAAAAAABAwVYgC+BJSUnq16+f/vjjD1WoUEFz5sxRUFBQmm3PnDmjtWvXKj4+PlUB3DAMrVq1SpLUpEmTXI8bAAAAAAAAAAAAAJB/CuQkZdOmTdOuXbsUGBioBQsWpFv8lqTHHntM7u7u+vnnn/X111/bl1utVk2ZMkV79+5V5cqV1a5du7wIHQAAAAAAAAAAAACQTwrcE+AXL17UvHnzJEkBAQGaNGlSum1HjBihoKAgvfnmmxo1apRGjx6tL7/8UhUrVlRYWJgiIiJUokQJTZ06VW5ubnl1CAAAAAAAAAAAAACAfFDgCuB79uxRfHy8JCksLExhYWHptn3ppZdUokQJPfHEE6pUqZJmzZql3bt369ixYypZsqSeffZZ9e/fXwEBAXkVPgAAAAAAAAAAAAAgnxS4AnizZs108ODBTG8XGhqqTz/9NBciAgAAAAAAAAAAAADcCQrkHOAAAAAAAAAAAAAAAGQWBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAqu+R0AAAAAAADIH1arVUuXLtU333yjw4cPKykpSWXLllXr1q31/PPPy9fX16F9o0aNFBsbm+7+9u7dqyJFiuRy1AAAAAAApI8COAAAAAAAhZDVatWgQYO0fv16eXh4qHbt2vLy8tLevXs1e/ZsrV+/XgsXLlSJEiUkSVFRUYqNjVWpUqXUsGHDNPdpNjPQ3J3CxSV33yur1ZDVauRqHwAAAACQFgrgAAAAAAAUQsuXL9f69etVsWJFzZ49W0FBQZKkuLg4DR8+XBs3btS4ceP08ccfS5IOHDggSWrXrp1ef/31/Aob2VSsqIcMq1W+vp652o/VmqKYmHiK4AAAAADyHAVwAAAAAAAKoeXLl0uSRowYYS9+S5KPj48mTJig++67Txs2bFBCQoI8PDy0f/9+SVKNGjXyJV7kDG8Pd5nMZh1fM0vx0adypQ/PgDKq1LGvzGYTBXAAAAAAeY4COAAAAAAAhZCfn5/uvvtu1a1bN9W64sWLq1ixYoqNjVVMTIzKlCljfwK8Zs2aeRwpckN89CnFnzmR32EAAAAAQI6jAA4AAAAAQCE0Y8aMdNdFRkYqNjZWbm5uKl68uCRp//798vDw0F9//aVRo0bp8OHDMplMCg0N1YABA1SnTp28Ch0AAAAAgHSZ8zsAAAAAAABQsNjm/W7RooWKFCmi6OhonT17VgkJCXr11VdltVrVqFEj+fn56eeff1a3bt303Xff5W/QAAAAAACIJ8ABAAAAAMANFixYoDVr1sjT01NDhw6VJPv83/7+/vr0009Vr149SZJhGJo3b54mTpyokSNHKjQ0VKVLl85W/66ujvfqu7g4x737GT0OZzleybmOBQAAAMCdgwI4AAAAAACQJM2fP18TJkyQyWTS+PHjFRwcLElq2rSptmzZIsMwVKpUKXt7k8mkXr16aefOndqwYYOWLVumgQMHZrl/s9kkf3/vbB9HQeTr65nfIeS5wnjMAAAAAPIfBXAAAAAAAAo5wzD0/vvva/bs2XJxcdH48ePVoUMH+3qTyaSSJUumu33Lli21YcMG/fXXX9mKw2o1dOnSVYdlLi5mpyikXroUr5QU623bOcvxShk/5rxgMplkNptybf9WqyHDMHJt/wAAAEBh5+vrmeFRpiiAAwAAAABQiCUkJOiVV17RunXr5OHhoQ8++ECtW7fO1D4CAwMlSfHx8dmOJzm5YBRMc1pKitVpjy09BeWYr48s4CGz2SXX+rBaUxQTEy+rlSI4AAAAkN8ogAMAAAAAUEjFxcWpT58++uOPPxQQEKBPP/1UderUSdVuyZIl+vXXX9WxY8c0i+ORkZGSlO35v4HcYDabZDa76PiaWYqPPpXj+/cMKKNKHfvKbDZRAAcAAAAKAArgAAAAAAAUQklJSerXr5/++OMPVahQQXPmzFFQUFCabc+cOaO1a9cqPj4+VQHcMAytWrVKktSkSZNcjxvIqvjoU4o/cyK/wwAAAACQyzI2UDoAAAAAAHAq06ZN065duxQYGKgFCxakW/yWpMcee0zu7u76+eef9fXXX9uXW61WTZkyRXv37lXlypXVrl27vAgdAAAAAIB08QQ4AAAAAACFzMWLFzVv3jxJUkBAgCZNmpRu2xEjRigoKEhvvvmmRo0apdGjR+vLL79UxYoVFRYWpoiICJUoUUJTp06Vm5tbXh0CAAAAAABpogAOAAAAAEAhs2fPHsXHx0uSwsLCFBYWlm7bl156SSVKlNATTzyhSpUqadasWdq9e7eOHTumkiVL6tlnn1X//v0VEBCQV+EDAAAAAJAuCuAAAAAAABQyzZo108GDBzO9XWhoqD799NNciAgAAAAAgJzBHOAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKfgmt8BpMdqtWrp0qX65ptvdPjwYSUlJals2bJq3bq1nn/+efn6+jq0P3/+vKZPn64tW7bozJkzCgwMVLt27TRgwAB5e3vn01EAAAAAAAAAAAAAAPJKgXwC3Gq1atCgQRozZozCwsJUo0YN3Xfffbp06ZJmz56tzp076/z58/b2Z8+eVZcuXfTVV1/Jw8NDLVq0kNVq1ezZs9W1a1fFxcXl49EAAAAAAAAAAAAAAPJCgSyAL1++XOvXr1fFihW1Zs0aLViwQJ999pnWr1+vli1bKiIiQuPGjbO3HzdunKKiotSvXz+tXr1aU6ZM0Q8//KCHHnpIBw8e1LRp0/LxaAAAAAAAAAAAAAAAeaHAFsAlacSIEQoKCrIv9/Hx0YQJE2QymbRhwwYlJCToxIkTWr9+vcqUKaNBgwbZ27q7u2vs2LHy9vbWkiVLlJCQkOfHAQAAAAAAAAAAAADIOwWyAO7n56e7775bdevWTbWuePHiKlasmJKSkhQTE6PNmzfLarWqefPmcnNzc2hbtGhRNW7cWFevXtX27dvzKHoAAAAAAAAAAAAAQH4okAXwGTNmaO3atfL390+1LjIyUrGxsXJzc1Px4sV16NAhSZLFYklzX5UrV5YkezsAAAAAAAAAAAAAgHMqkAXwW/n4448lSS1atFCRIkV07tw5SVJgYGCa7W3Lz58/nyfxAQAAAAAAAAAAAADyh2t+B5AZCxYs0Jo1a+Tp6amhQ4dKkq5evSpJ8vDwSHMb23Jbu+xwdb3j7hcAMsXFxXnOcWc6FiCznOn8d6ZjAQAAAAAAAADkvjumAD5//nxNmDBBJpNJ48ePV3BwsCTJxcVFkmQymdLczjAMh/9nldlskr+/d7b2ASDv+Pp65ncIAHIAn2UAAAAAAAAAQGYU+AK4YRh6//33NXv2bLm4uGj8+PHq0KGDfb2Xl5ck6dq1a2lub1vu6Zm9H9CtVkOXLmX/KXKgIHNxMTtNsenSpXilpFjzOwwgX/BZBgAgb/n6ejJqCQAAAAAABUSBLoAnJCTolVde0bp16+Th4aEPPvhArVu3dmhTsmRJSbLPBX6z280RnhnJyfwAD9wpUlKsfGYBJ8BnGQAAAAAAAACQGQW2AB4XF6c+ffrojz/+UEBAgD799FPVqVMnVTuLxSJJOnr0aJr7OXz4sCQpJCQk94IFAAAAAAAAAAAAAOS7AjlGW1JSkvr166c//vhDFSpU0JIlS9IsfktS06ZNJUkbN25USkqKw7rLly9r+/bt8vLyUv369XM9bgAAAAAAAAAAAABA/imQBfBp06Zp165dCgwM1IIFCxQUFJRu23Llyqlly5Y6efKkJk2aJMMwJEmJiYkaM2aMrly5oqefflo+Pj55FT4AAAAAAAAAAAAAIB8UuCHQL168qHnz5kmSAgICNGnSpHTbjhgxQiVKlNDo0aO1f/9+zZ07V5s2bVKVKlW0b98+/fPPP6pRo4YGDhyYV+EDAAAAAAAAAAAAAPJJgSuA79mzR/Hx8ZKksLAwhYWFpdv2pZdeUokSJVSuXDktW7ZMU6dO1c8//6yNGzeqbNmyeuGFF9S3b195e3vnVfgAAAAAAAAAAAAAgHxS4ArgzZo108GDBzO9XalSpTRu3LhciAgAAAAAAAAAAAAAcCcokHOAAwAAAAAAAAAAAACQWQXuCXAAAAAAAAAULmazSWazKVf27eLC8x8AAABAYUIBHAAAAAAAAPnGbDbJz8+LQjUAAACAHEEBHAAAAAAAAPnGbDbJxcWsTxb9oqizF3N8/3VCyuqpdnVzfL8AAAAACiYK4AAAAAAAAMh3UWcvKjwqJsf3WzbQN8f3CQAAAKDgYmwpAAAAAAAAAAAAAIBTyFYBfOXKldq1a9dt2/3444+aMmVKdroCAAAAAKBQIvcGAAAAACDjslUAHzFihL7++uvbtlu1apXmzp2bna4AAAAAACiUyL0BAAAAAMi4TM0BvnLlSiUnJzssi4iI0LJly9LdJi4uTr/++qvc3NyyFiEAAAAAAIUIuTcAAAAAAFmXqQL4/v37tWDBAplMJkmSyWTSnj17tGfPnltuZxiGHnvssaxHCQAAAABAIUHuDQAAAABA1mWqAD5o0CDFxcXZ/75ixQqVL19e9evXT3ebIkWKqGLFiuratWvWowQAAAAAoJAg9wYAAAAAIOsyVQAvWrSoJk6caP/7ihUrVLduXYdlAAAAAAAg68i9AQAAAADIukwVwG8WFhaWU3EAAAAAAIA0kHsDAAAAAJBx2SqA3yg6Olrx8fEyDCPdNkFBQTnVHQAAAAAAhQ65NwAAAAAAt5btAvgXX3yhWbNm6cKFC7dsZzKZ9Pfff2e3OwAAAAAACh1ybwAAAAAAMiZbBfBvvvlG77zzjiTJ3d1d/v7+cnFxyZHAAAAAAAAAuTcAAAAAAJmRrQL4l19+KZPJpFGjRqlLly5yc3PLqbgAAAAAAIDIvQEAAAAAyIxsFcCPHj2qunXrqnv37jkVDwAAAAAAuAG5NwAAAAAAGZetArinp6f8/f1zKhYAAAAAAHCT3My9rVarli5dqm+++UaHDx9WUlKSypYtq9atW+v555+Xr6+vQ/vz589r+vTp2rJli86cOaPAwEC1a9dOAwYMkLe3d67ECAAAAABAZpizs3HDhg21d+9excfH51Q8AAAAAADgBrmVe1utVg0aNEhjxoxRWFiYatSoofvuu0+XLl3S7Nmz1blzZ50/f97e/uzZs+rSpYu++uoreXh4qEWLFrJarZo9e7a6du2quLi4HI0PAAAAAICsyFYBfOjQoYqPj9frr7+uixcv5lRMAAAAAADg/+VW7r18+XKtX79eFStW1Jo1a7RgwQJ99tlnWr9+vVq2bKmIiAiNGzfO3n7cuHGKiopSv379tHr1ak2ZMkU//PCDHnroIR08eFDTpk3LsdgAAAAAAMiqbA2BvnjxYtWuXVvff/+9PWn29fWVyWRK1dZkMunLL7/MTncAAAAAABQ6uZV7L1++XJI0YsQIBQUF2Zf7+PhowoQJuu+++7RhwwYlJCTo7NmzWr9+vcqUKaNBgwbZ27q7u2vs2LHavHmzlixZoiFDhsjDwyObRwwAAAAAQNZlqwA+b948+5+Tk5N15MiRdNumlZgDAAAAAIBby63c28/PT3fffbfq1q2bal3x4sVVrFgxxcbGKiYmRps3b5bValXz5s3l5ubm0LZo0aJq3LixfvzxR23fvl3NmzfPcAwAAAAAAOS0bBXA58+fn1NxAAAAAACANORW7j1jxox010VGRio2NlZubm4qXry4Dh06JEmyWCxptq9cubJ+/PFHHTp0iAI4AAAAACBfZasA3rBhw5yKAwAAAAAApCE/cu+PP/5YktSiRQsVKVJE586dkyQFBgam2d62/Pz583kSHwAAAAAA6clWAfxGSUlJOnDggE6dOqUSJUqofv36+ueff1S2bNmc6gIAAAAAgEItL3LvBQsWaM2aNfL09NTQoUMlSVevXpWkdOf3ti23tcsOV1ezw99dXMzptLyzZPQ4nOV4pcJ3zM5yHAAAAMCdLtsF8OTkZH3yySf66quvdPnyZUlSp06dVL9+fb322mu6cuWKPvroI1WoUCHbwQIAAAAAUBjlVe49f/58TZgwQSaTSePHj1dwcLAkycXFRVL6c4wbhuHw/6wym03y9/fO1j4KKl9fz/wOIc8VtmMubMcLAAAAFFTZKoAnJyfr+eef17Zt2+Tq6qqaNWtq37599vVXrlzR33//re7du2vlypUqUaJEtgMGAAAAAKAwyYvc2zAMvf/++5o9e7ZcXFw0fvx4dejQwb7ey8tLknTt2rU0t7ct9/TMXgHQajV06ZLjU+QuLmanKCxeuhSvlBTrbds5y/FKhe+YM3q8AAAAADLP19czw6MuZasA/tVXX+mXX35RkyZNNGHCBJUsWVJVq1a1r1+4cKHefPNNrVy5UnPmzNFrr72Wne4AAAAAACh0cjv3TkhI0CuvvKJ169bJw8NDH3zwgVq3bu3QpmTJkpJknwv8ZrebIzwzkpOds4CYkmJ12mNLT2E75sJ2vAAAAEBBla3JiVasWCE/Pz9NnjzZngzfyMPDQ2PHjlXJkiW1efPm7HQFAAAAAEChlJu5d1xcnHr16qV169YpICBA8+fPT1X8liSLxSJJOnr0aJr7OXz4sCQpJCQkU/0DAAAAAJDTslUADw8PV4MGDeTtnf78XG5ubqpdu7b++eef7HQFAAAAAEChlFu5d1JSkvr166c//vhDFSpU0JIlS1SnTp002zZt2lSStHHjRqWkpDisu3z5srZv3y4vLy/Vr18/w/0DAAAAAJAbslUAd3V11aVLl27bLjY2Vq6u2RptHQAAAACAQim3cu9p06Zp165dCgwM1IIFCxQUFJRu23Llyqlly5Y6efKkJk2aJMMwJEmJiYkaM2aMrly5oqefflo+Pj4Z7h8AAAAAgNyQrap0tWrVtG/fPkVFRalcuXJptomMjNS+fftUu3bt7HQFAAAAAEChlBu598WLFzVv3jxJUkBAgCZNmpRu2xEjRqhEiRIaPXq09u/fr7lz52rTpk2qUqWK9u3bp3/++Uc1atTQwIEDM39wAAAAAADksGw9Ad61a1fFx8drwIAB+vvvv1OtP3jwoF566SUlJiaqc+fO2ekKAAAAAIBCKTdy7z179ig+Pl6SFBYWptWrV6f735UrVyRdfwp82bJlevLJJ3X58mVt3LhR7u7ueuGFFzR//vxbDtEOAAAAAEBeydYT4O3bt9e2bdu0bNkyPfHEEypatKhMJpO2bNmiFi1a6MyZMzIMQx06dNAjjzySUzEDAAAAAFBo5Ebu3axZMx08eDDTsZQqVUrjxo3L9HYAAAAAAOSVbE/MPW7cONWtW1dz5szR8ePHJUkxMTGSpLJly6pnz57q0aNHdrsBAAAAAKDQIvcGAAAAACBjsl0Al6TOnTurc+fOOnfunE6dOiWr1arAwMB05yYDAAAAAACZQ+4NAAAAAMDtZWsOcJuYmBjt2LFDgYGBql27turWrav4+Hh99dVXOnfuXE50AQAAAABAoUbuDQAAAADA7WW7AP7111+rWbNmeueddxyW79mzR2PHjlXbtm313XffZbcbAAAAAAAKLXJvAAAAAAAyJlsF8F9++UVjxoyRq6urGjdu7LCufv366t27twzD0PDhw/Xbb79lK1AAAAAAAAojcm8AAAAAADIuWwXw2bNny9XVVfPnz9err77qsK5ixYp65ZVXNH/+fJlMJs2aNStbgQIAAAAAUBiRewMAAAAAkHHZKoAfOnRIjRo1Uq1atdJtU6tWLdWvX19//vlndroCAAAAAKBQIvcGAAAAACDjslUAj4+Pl6en523b+fn5KTk5OTtdAQAAAABQKJF7AwAAAACQcdkqgFesWFE7d+5UXFxcum2uXbumXbt2qXz58tnpCgAAAACAQoncGwAAAACAjMtWAfzhhx/WxYsXNWjQIJ0/fz7V+piYGL388su6cOGCOnXqlJ2uAAAAAAAolMi9AQAAAADIONfsbNy9e3d999132rZtm1q0aKGaNWuqTJkykqTTp09r//79SkxMVO3atdWrV6+ciBcAAAAAgEKF3BsAAAAAgIzLVgHczc1Nc+fO1UcffaRvvvlGf/75p/7880/7+iJFiqhr16565ZVX5O7unt1YAQAAAAAodMi9AQAAAADIuGwVwCXJ29tbo0aN0quvvqq//vpL586dU0pKigIDA1WjRg15eXnlRJwAAAAAABRa5N4AAAAAAGRMtgrgPXr0UMWKFfX222/L3d1doaGhORUXAAAAAAAQuTcAAAAAAJmRrQL43r17ZTabcyoWAAAAAABwE3JvAAAAAAAyLlsZtLe3twzDyKlYAAAAAADATci9AQAAAADIuGwVwPv3768dO3bo888/V2JiYk7FBAAAAAAA/h+5NwAAAAAAGZetIdAjIyNVoUIFTZo0SR9++KEqVKggX1/fNIdmM5lM+vLLL7PTHQAAAAAAhQ65NwAAAAAAGZetAvi8efPsf05OTtbRo0fTbWsymbLTFQAAAAAAhRK5NwAAAAAAGZetAvj8+fNzKg4AAAAAAJAGcm8AAAAAADIuWwXwhg0b5lQcAAAAAAAgDeTeAAAAAABkXLYK4DdKSkrSgQMHdOrUKZUoUUL169fXP//8o7Jly+ZUFwAAAAAAFGrk3gAAAAAA3Fq2C+DJycn65JNP9NVXX+ny5cuSpE6dOql+/fp67bXXdOXKFX300UeqUKFCtoMFAAAAAKAwIvcGAAAAACBjzNnZODk5Wc8//7xmzJih+Ph41axZU4Zh2NdfuXJFf//9t7p3767z589nO1gAAAAAAAobcm8AAAAAADIuWwXwr776Sr/88ovuv/9+/fjjj1q6dKnD+oULF+rRRx/V+fPnNWfOnGwFCgAAAABAYUTuDQAAAABAxmWrAL5ixQr5+flp8uTJKlmyZKr1Hh4eGjt2rEqWLKnNmzdnpysA+D/27js8inL/+/hnNyEkAULvYKElitK7IgpIU0oEBEVjQYo0weMR8ICIIAgiHBUEkR9I8YAoSahC6EoPNUpTQSkBE3oJhJBknz94Eo0JkLY7uzPv13Wd6+jMvZvv7Wz7zHcKAAAAYElkbwAAAAAAMi9HDfA//vhDderUUb58+W47Jk+ePKpWrZpOnTqVkz+l8PBwBQYGasuWLRmur1+/vgIDA2/7vxs3buTo7wMAAAAAYARXZm8AAAAAADydd44e7O2ty5cv33XcxYsX5e2d/T8VFRWlUaNG3XZ9dHS0Ll68qJIlS6pevXoZjrHbc9TrBwAAAADAEK7K3gAAAAAAmEGOkvEDDzygn376SdHR0SpbtmyGY06cOKGffvpJ1apVy9bfWLdunQYPHqyrV6/edszBgwclSa1atdI777yTrb8DAAAAAIA7ckX2BgAAAADALHJ0WvRzzz2n69evq0+fPjpw4EC69YcPH1b//v2VkJCgTp06Zem5Y2JiNHToUPXp00c3b95UsWLFbjt2//79kqSqVatmbQIAAAAAALg5Z2ZvAAAAAADMJkdngLdp00ZbtmzRd999p44dO6pAgQKy2Wz68ccf9fjjjysmJkYOh0NPPfWU2rdvn6XnnjRpksLCwvTQQw9pzJgxGj16tM6ePZvh2JQzwB966KGcTAcAAAAAALfjzOwNAAAAAIDZ5PjmYKNHj1aNGjX0f//3f/r9998lSRcuXJAklSlTRi+99JJCQkKy/LwVKlTQuHHj1K5du7vev3v//v3y9fXVzz//rGHDhunXX3+VzWZTrVq11KdPH1WvXj3rEwMAAAAAwE04K3sDAAAAAGA2OW6AS1KnTp3UqVMnnTlzRqdPn1ZycrKKFy9+23uTZUbPnj0zNe7cuXOKjY2VJL399tuqUaOG6tevr19++UUbNmzQpk2b9NFHH6lNmzbZrgUAAAAAAKM5I3sDAAAAAGA2WW6AJyUl6X//+58iIiJ09uxZlSlTRm3btlWHDh1UvHhxFS9e3Bl13lbK/b8LFy6sqVOnqmbNmpIkh8Oh2bNna+zYsRo6dKhq1aqlUqVK5ehveXvn6JbpgNvz8jLPa9xMcwGyykyvfzPNBQCArHC37A0AAAAAgKfIUgM8ISFB3bt3186dO+VwOCRJv//+u7Zs2aL169frk08+cUqRd9K4cWP9+OOPcjgcKlmyZOpym82ml19+WZGRkVqzZo2+++479evXL9t/x263qXDhfLlRMgAXCAjwM7oEALmA9zIAwIrcMXsDAAAAAOApstQAX7BggSIjI1WyZEn16NFD5cuX1y+//KIZM2YoIiJCixcvVvv27Z1Va4ZsNptKlChx2/VPPPGE1qxZo59//jlHfyc52aHLl6/l6DkAd+flZTdNs+ny5etKSko2ugzAELyXAQBwrYAAv1y9aok7Zm8AAAAAADxFlhrgK1eulK+vr+bPn68yZcpIkpo0aaLGjRsrODhYy5cvd7sQnnJZuOvXr+f4uRIT2QEPeIqkpGTes4AJ8F4GAFiRJ2ZvAAAAAADcRZYOUT9y5Ijq1KmTGsBTBAUFqWrVqjp06FCuFpcZ33zzjQYOHKg1a9ZkuP7EiROSlOP7fwMAAAAA4ArumL0BAAAAAPAUWWqAx8XFqWDBghmuK1eunC5evJgbNWVJTEyMvv/+e3377bfp1jkcDi1evFiS9Oijj7q6NAAAAAAAsswdszcAAAAAAJ4iSw3wxMREeXl5ZbguT548unnzZq4UlRXBwcHy8fHRhg0btHDhwtTlycnJ+vTTTxUVFaVKlSqpVatWLq8NAAAAAICscsfsDQAAAACAp8jSPcDdUfny5fXee+9p2LBhGj58uObNm6f77rtPhw4d0rFjx1SsWDF99tlnypMnj9GlAgAAAAAAAAAAAACcKEtngLurjh076uuvv1bTpk0VExOjdevWKTExUS+++KKWLFmiChUqGF0iAAAAAAAAAAAAAMDJPOYM8Llz595xfa1atTR16lQXVQMAAAAAAAAAAAAAcDdZboCvWbNGzZo1S7f8woULkpThOkmy2Wxas2ZNVv8cAAAAAACWQ/YGAAAAACB7stwAv3btmq5du3bb9dHR0Rkut9lsWf1TAAAAAABYEtkbAAAAAIDsyVIDfM6cOc6qAwAAAAAAiOwNAAAAAEBOZKkBXq9ePWfVAQAAAAAARPYGAAAAACAn7EYXAAAAAAAAAAAAAABAbqABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAVvowsAAAAAAADuITw8XIMHD9asWbPUqFGjdOvr16+vixcv3vbxUVFRyps3rxMrBAAAAADgzmiAAwAAAAAARUVFadSoUbddHx0drYsXL6pkyZKqV69ehmPsdi40BwAAAAAwFg1wAAAAAAAsbt26dRo8eLCuXr162zEHDx6UJLVq1UrvvPOOq0oDAAAAACBLaIADAAAAAGBRMTEx+u9//6uwsDD5+vqqWLFiOnv2bIZj9+/fL0mqWrWqK0sEAAAAACBLuDYZAAAAAAAWNWnSJIWGhqpq1ar65ptvVKFChduOTTkD/KGHHnJVeQAAAAAAZBlngLs5u90mu93mtOdPTnYoOdnhtOcHAAAAALivChUqaNy4cWrXrt1d79+9f/9++fr66ueff9awYcP066+/ymazqVatWurTp4+qV6/uoqoBAAAAALg9GuBuzG63qXBhP9ntXk77G8nJSbpw4TpNcAAAAACwoJ49e2Zq3Llz5xQbGytJevvtt1WjRg3Vr19fv/zyizZs2KBNmzbpo48+Ups2bZxZLgAAAAAAd0UD3I3dOvvbS78v+1LXz53O9ef3K1pa9z/dQ3a7jQY4AAAAAOC2Uu7/XbhwYU2dOlU1a9aUJDkcDs2ePVtjx47V0KFDVatWLZUqVSpHf8vbO+2Z6F5e5rh7W2bnYZb5Stabs1nmAQAAAHg6GuAe4Pq507oec9zoMgAAAAAAFtW4cWP9+OOPcjgcKlmyZOpym82ml19+WZGRkVqzZo2+++479evXL9t/59aV0PLlRsluJyDAz+gSXM5qc7bafAEAAAB3RQMcAAAAAADckc1mU4kSJW67/oknntCaNWv0888/5+jvJCc7dPnytTTLvLzspmgsXr58XUlJyXcdZ5b5Stabc2bnCwAAACDrAgL8Mn3VJRrgAAAAAAAgR4oXLy5Jun79eo6fKzHRnA3EpKRk087tdqw2Z6vNFwAAAHBX3JwIAAAAAADc0TfffKOBAwdqzZo1Ga4/ceKEJOX4/t8AAAAAAOQUZ4ADAAAAAIA7iomJ0ffff6/r16+refPmadY5HA4tXrxYkvToo48aUR4AAAAAAKk4AxwAAAAAANxRcHCwfHx8tGHDBi1cuDB1eXJysj799FNFRUWpUqVKatWqlYFVAgAAAADAGeAAAAAAAOAuypcvr/fee0/Dhg3T8OHDNW/ePN133306dOiQjh07pmLFiumzzz5Tnjx5jC4VAAAAAGBxnAEOAAAAAADuqmPHjvr666/VtGlTxcTEaN26dUpMTNSLL76oJUuWqEKFCkaXCAAAAAAAZ4ADAAAAAIBb5s6de8f1tWrV0tSpU11UDQAAAAAAWccZ4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBW+jCwAAAAAAV7DbbbLbbU79G8nJDiUnO5z6NwAAAAAAAHB7NMBzyJk70by8OEEfAAAAyA12u02FC/vJbvdy6t9JTk7ShQvXaYIDAAAAAAAYxGMa4OHh4Ro8eLBmzZqlRo0apVt/9uxZff755/rxxx8VExOj4sWLq1WrVurTp4/y5cvnlJrsdpsKFfKnUQ0AAAC4uVsHrnrp92Vf6vq50075G35FS+v+p3vIbrfRAAcAAAAAADCIRzTAo6KiNGrUqNuuj42NVdeuXRUdHa0qVaro8ccf108//aQZM2boxx9/1P/+9z/lz58/1+uy223y8rJryvzNio69lOvPXz2wjLq0qpHrzwsAAABY1fVzp3U95rjRZQAAAAAAAMBJ3L4Bvm7dOg0ePFhXr1697ZjRo0crOjpaPXv21L/+9S9JUkJCgt5++219//33mjx5soYMGeK0GqNjL+mP6Au5/rxligfk+nMCAAAAAAAAAAAAgFm57bW7Y2JiNHToUPXp00c3b95UsWLFMhx3/PhxrV69WqVLl9aAAQNSl/v4+GjUqFHKly+fvvnmG8XHx7uqdAAAAAAAAAAAAACAAdy2AT5p0iSFhoaqatWq+uabb1ShQoUMx/3www9KTk5WkyZNlCdPnjTrChQooAYNGujatWvavn27K8oGAAAAAAAAAAAAABjEbRvgFSpU0Lhx4/Ttt98qMDDwtuN++eUXSVKVKlUyXF+pUqU04wAAAAC4J7vdJm9vu1P+5+XlttEHAAAAAAAAucht7wHes2fPTI07c+aMJKl48eIZrk9Zfvbs2dwpDAAAAECus9ttKlTIn0Y1AAAAAAAAcsRtG+CZde3aNUmSr69vhutTlqeMywlv77Q748yyc84s80DOmem1YKa5AFllpte/meYC4M68vG6dpT1l/mZFx17K9eevHlhGXVrVyPXnzQifXQAAAAAAAMbx+Aa4l5eXJMlms2W43uFwpPn/7LLbbSpcOF+OnsNdBQT4GV0CkOt4XQPmwHsZsJ7o2Ev6I/pCrj9vmeIBuf6ct8NnFwAAAAAAgHE8vgHu7+8vSbpx40aG61OW+/nlbCdUcrJDly+nPYvcy8tuip1bly9fV1JSstFlwA2Y5TUt8bqGtfFeBuCJ+OyCJwsI8OPMfwAAAAAA3ITHN8BLlCgh6a97gf/T3e4RnhWJiebciZWUlGzaucG6eF0D5sB7GYAn4rMLAAAAAADAOB5/iHqVKlUkSUeOHMlw/a+//ipJCgwMdFlNAAAAAAAAAAAAAADX8/gGeOPGjSVJ69evV1JSUpp1V65c0fbt2+Xv76/atWsbUR4AAAAAAAAAAAAAwEU8vgFetmxZPfHEEzp58qQ++ugjORwOSVJCQoLeffddxcXFqWvXrsqfP7/BlQIAAAAAAAAAAAAAnMnj7wEuScOHD9f+/fs1a9Ysbdy4UZUrV9ZPP/2kU6dOqWrVqurXr5/RJQIAAAAAAAAAAAAAnMzjzwCXbp0F/t1336lz5866cuWK1q9fLx8fH/Xu3Vtz5sxRvnz5jC4RAAAAAAAAAAAAAOBkHnMG+Ny5c++4vmTJkho9erSLqgEAAAAAAAAAAAAAuBtTnAEOAAAAAAAAAAAAAAANcAAAAAAAIEkKDw9XYGCgtmzZkuH6s2fP6v3339eTTz6patWqqVmzZvroo48UFxfn4koBAAAAAMgYDXAAAAAAAKCoqCiNGjXqtutjY2P17LPP6uuvv5avr68ef/xxJScna8aMGXruued09epVF1YLAAAAAEDGaIADAAAAAGBx69atU/fu3e/YxB49erSio6PVs2dPLV26VJ9++qlWrVql1q1b6/Dhw5o8ebILKwYAAAAAIGM0wAEAAAAAsKiYmBgNHTpUffr00c2bN1WsWLEMxx0/flyrV69W6dKlNWDAgNTlPj4+GjVqlPLly6dvvvlG8fHxriodAAAAAIAM0QAHAAAAAMCiJk2apNDQUFWtWlXffPONKlSokOG4H374QcnJyWrSpIny5MmTZl2BAgXUoEEDXbt2Tdu3b3dF2QAAAAAA3BYNcAAAAAAALKpChQoaN26cvv32WwUGBt523C+//CJJqlKlSobrK1WqlGYcAAAAAABG8Ta6AAAAAAAAYIyePXtmatyZM2ckScWLF89wfcrys2fP5k5hAAAAAABkEw1wAAAAAABwR9euXZMk+fr6Zrg+ZXnKuJzw9k57sTovL3NcvC6z8zDLfCXrzdks8wAAAAA8HQ1wAAAAAABwR15eXpIkm82W4XqHw5Hm/7PLbrepcOF8OXoOdxUQ4Gd0CS5ntTlbbb4AAACAu6IBDgAAAAAA7sjf31+SdOPGjQzXpyz388tZAzA52aHLl9OeRe7lZTdFY/Hy5etKSkq+6zizzFey3pwzO18AAAAAWRcQ4Jfpqy7RAAcAAAAAAHdUokQJSX/dC/yf7naP8KxITDRnAzEpKdm0c7sdq83ZavMFAAAA3BU3JwIAAAAAAHdUpUoVSdKRI0cyXP/rr79KkgIDA11WEwAAAAAAGaEBDgAAAAAA7qhx48aSpPXr1yspKSnNuitXrmj79u3y9/dX7dq1jSgPAAAAAIBUNMABAAAAAMAdlS1bVk888YROnjypjz76SA6HQ5KUkJCgd999V3Fxceratavy589vcKUAAAAAAKvjHuAAAAAAAOCuhg8frv3792vWrFnauHGjKleurJ9++kmnTp1S1apV1a9fP6NLBAAAAACAM8ABAAAAAMDdlS1bVt999506d+6sK1euaP369fLx8VHv3r01Z84c5cuXz+gSAQAAAADgDHAAAAAAAHDL3Llz77i+ZMmSGj16tIuqAQAAAAAg62iAAwAAAAAAACZjt9tkt9uc9vzJyQ4lJzuc9vwAAABAdtEABwAAAAAAAEzEbrepcGE/2e1eTvsbyclJunDhOk1wAAAAuB0a4MgSjh4GAAAAAABwb7f233jp92Vf6vq507n+/H5FS+v+p3vIbrexHwcAAABuhwY4Ms1ut6lQIX95edmd9jeSkpJ18eI1whMAAAAAAEAOXT93WtdjjhtdBgAAAOBSNMCRaXa7TV5edk2Zv1nRsZdy/fnLliiovs89wtHDAAAAAAAAAAAAALKFBjiyLDr2kv6IvmB0GQAAAAAAAAAAAACQBg1wuB1nXmJd4j7jAAAAAAAAAAAAgFnRAIfbKFjAV47kZAUE+Dn17yQnJ+nChes0wQEAAAAAAAAAAACToQEOt5HP10c2u12/L/tS18+ddsrf8CtaWvc/3YP7jAMAAAAAAAAAAAAmRAMcbuf6udO6HnPc6DIAAAAAAAAAAAAAeBjn3mwZAAAAAAAAAAAAAAAX4QxwAAAAAAAAwIXsdpvsdpvTnt/Li3NeAAAAYF00wAEAAAAAAAAXsdttKlTInyY1AAAA4CQ0wAEAAAAAAAAXsdtt8vKya8r8zYqOveSUv1E9sIy6tKrhlOcGAAAA3B0NcAAAAAAAAMDFomMv6Y/oC0557jLFA5zyvAAAAIAn4FpLAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAVvowvITevWrdPrr79+2/Vt2rTRpEmTXFgRAAAAAAAAAAAAAMBVTNUAP3DggCSpbt26KlWqVLr1NWvWdHVJAAAAAAAAAAAAAAAXMWUDfNiwYQoKCjK4GgAAAAAAAAAAAACAK5nqHuAHDhxQ3rx5ValSJaNLAQAAAAAAAAAAAAC4mGka4BcuXNDp06cVGBgob29TndgOAAAAAAAAAAAAAMgE03SKUy5/Xrp0aX300Udau3atTp06pWLFiqlly5bq3bu3ChYsaHCVAAAAAAAAAAAAAABnMc0Z4Pv375ckrVq1SvPnz9d9992nWrVq6dKlS5o5c6aeffZZnTlzxuAqAQAAAAAAAAAAAADOYpozwA8ePChJevzxxzVhwgQVKFBAknT+/HkNGjRI27Zt0/DhwzVt2rRs/w1v77THC3h5meP4gczOwyzzlcw1l9xkpv8uZpoLkFVmev2baS4A7sxM73czzQUAAAAAAMDTmKYBPm7cOL3xxhsqVaqUfH19U5cXKVJE48ePV6tWrbR+/XqdPHlS5cqVy/Lz2+02FS6cLzdLdhsBAX5Gl+ByVpyz1bCNAXPgvQzAE/HZBQAAAAAAYBzTNMB9fHx03333ZbiuZMmSevDBB7Vz507t378/Ww3w5GSHLl++lmaZl5fdFDu3Ll++rqSk5LuOM8t8pczP2WrYxoA58F4G4In47IInCwjws9SZ/+vWrdPrr79+2/Vt2rTRpEmTXFgRAAAAAAB/MU0D/G6KFSsmSbp+/Xq2nyMx0Zw7sZKSkk07t9ux4pythm0MmAPvZQCeiM8umN2BAwckSXXr1lWpUqXSra9Zs6arSwIAAAAAIJUpGuAJCQkaOXKkLly4oAkTJsjf3z/dmBMnTkhShuEcAAAAAABkTkoDfNiwYQoKCjK4GgAAAAAA0jLFNdp8fHy0ZcsWrV27Vj/88EO69YcOHdKhQ4dUoEAB1ahRw/UFAgAAAABgEgcOHFDevHlVqVIlo0sBAAAAACAdUzTAJalLly6SpA8//FDHjx9PXX727Fm98847SkpKUvfu3eXr62tUiQAAAAAAeLQLFy7o9OnTCgwMlLe3KS4qBwAAAAAwGdOk1VdffVWRkZHatGmTnn76adWpU0c+Pj7avn27rl27ppYtW6pnz55GlwkAAAAAgMdKufx56dKl9dFHH2nt2rU6deqUihUrppYtW6p3794qWLCgwVUCAAAAAKzMNA1wHx8fTZ8+XV9//bXCwsK0a9cu2e12Va5cWZ07d1anTp1ks9mMLhMAAAAAAI+1f/9+SdKqVauUL18+1atXT6VKldJPP/2kmTNnat26dZo3b56KFy9ucKUAAAAAAKsyTQNckry8vBQSEqKQkBCjSwEAAAAAwHQOHjwoSXr88cc1YcIEFShQQJJ0/vx5DRo0SNu2bdPw4cM1bdq0bP8Nb++0d2vz8jLH3dsyOw+zzFey3pytNl/JXHMBAACAeZiqAQ4AAAAAAJxn3LhxeuONN1SqVCn5+vqmLi9SpIjGjx+vVq1aaf369Tp58qTKlSuX5ee3220qXDhfbpbsNgIC/IwuweWsNmerzVey5pwBAADg/miAAwAAAACATPHx8dF9992X4bqSJUvqwQcf1M6dO7V///5sNcCTkx26fPlammVeXnZTNNkuX76upKTku44zy3wl683ZavOVMj9nAAAAIKcCAvwyfQUiGuAAAAAAACBXFCtWTJJ0/fr1bD9HYqI5m2lJScmmndvtWG3OVpuvZM05AwAAwP1xox4AAAAAAHBXCQkJ+s9//qM+ffro2rVrGY45ceKEJKlUqVKuLA0AAAAAgFQ0wAEAAAAAwF35+Phoy5YtWrt2rX744Yd06w8dOqRDhw6pQIECqlGjhusLBAAAAABANMABAAAAAEAmdenSRZL04Ycf6vjx46nLz549q3feeUdJSUnq3r27fH19jSoRAAAAAGBx3AMcAAAAAABkyquvvqrIyEht2rRJTz/9tOrUqSMfHx9t375d165dU8uWLdWzZ0+jywQAAAAAWBgNcAAAAAAAkCk+Pj6aPn26vv76a4WFhWnXrl2y2+2qXLmyOnfurE6dOslmsxldJgAAAADAwmiAAwAAAACATPPy8lJISIhCQkKMLgUAAAAAgHS4BzgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMwdvoAgB3Z7fbZLfbnPb8yckOJSc7nPb8AAAAAAAAAAAAgFXQAAfuwG63qVAhf3l5Oe9iCUlJybp48RpNcAAAAAAAAAAAACCHaIADd2C32+TlZdeU+ZsVHXsp15+/bImC6vvcI7LbbTTAAQAAAAAAAAAAgByiAQ5kQnTsJf0RfcHoMgAAAAAAAAAAAADcgfOu6wwAAAAAAAAAAAAAgAvRAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIApeBtdAAAAANyT3W6T3W5z2vMnJzuUnOxw2vMDAAAAAAAAsB4a4IAb8PJy3sUYaC4AgDk5uzlts9kUEJBXdruX0/5GcnKSLly4zvcUAAAAAAAAgFxDAxwwUMECvnIkJysgwM9pf4PmAgCYj91uU6FC/k49gCrF78u+1PVzp3P9ef2Kltb9T/eQ3W7jOwoAAAAAAABArqEBDhgon6+PbHY7zQUAQJbY7TZ5edk1Zf5mRcdecsrfqB5YRl1a1dD1c6d1Pea4U/4GAAAAAAAAAOQ2GuCAG6C5AADIjujYS/oj+oJTnrtM8QCnPC8AAAAAIHOcfesridsnAgDMiQY4AAAAAAAAAABZ5MwGtc1mU0BAXtntXk55/hTcPhEAYEY0wAEAAAAAAAAAyAK73aZChfzl5WV36t9x1q0TJW6fCAAwLxrgAAAAAADTcPalQrlMKAAAkG795vDysmvK/M2Kjr2U689fPbCMurSqwa0TAQDIBhrgAAAAAABTsNttKlzYz6mXCuUyoQAA4O+iYy/pj+gLuf68ZYoH5PpzAgBgFTTAAQAAAAAu4eyzs7287LLbvZx2qVAuEwoAAAAAgPujAQ4AAAAAcDpX3SdTEpcKBQAAAADAwmiAAwAAAACcztn3yZT+ulcmAAAAAACwLhrgAAAAAACXcdZ9MiXulQkAAAAAACTnX3sOAAAAAAAAAAAAAAAXoAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAVvowsAALOz222y221O/RvJyQ4lJzuc+jcAAK7n7O8Qvj8AAAAAAABgNjTAAVieM5sLNptNAQF5Zbd7OeX5UyQnJ+nChes0MQDAROx2mwoV8peXl/Mu2pSUlKyLF6/x/QEAAAAAAADToAEOwNJc0VyQpN+Xfanr50475bn9ipbW/U/3kN1uo4EBACZit9vk5WXXlPmbFR17Kdefv2yJgur73CN8fwAAAAAAAMBUaIADsDRnNxeqB5ZRl1Y1dP3caV2POZ7rzw8AML/o2Ev6I/qC057fmQeBcYl1AAAAAAAAuBoNcACQ85oLZYoH5PpzAgCQGwoW8JUjOVkBAX5O+xvcogMAAKRw5u3HJA68AwAAwF9ogAMAAAAWlM/XRza73Wm36eAWHQAAIIUrbj+WlJSsK1fi5XA473cHTXYAAADPQAMcAAAAsDBu0wEAAJzN2bcfC7yvuELa1lahQv65/tx/x9VtAAAAPAMNcABArrPipe2sOGcAAAAAyApn3n7MmVe2kbi6DQAAgCehAQ4AyFV2u02FC/vJbvdy2t9wt6PurThnAAAAAHA3XNkGAAAAEg1wAEAuu3UmtJdb3VPW2Wdne3nZ3W7OAAAAAAAAAABYkeka4Dt27NC0adN08OBBxcfHKzAwUC+99JJat25tdGkAYCnucuS93W5ToUL+8vKyO/1vucucAQAAnI3sDQAAAADW5e63BDVVA3zp0qX697//LW9vb9WvX19eXl7aunWrBg4cqCNHjqhfv35GlwgAbsGZX06uaDRnhd1uk5eXXVPmb1Z07CWn/I3qgWXUpVUNpzw3AACAuyF7AwAA5B53byLBfJz9mnMFXtd35uxtbLPZFBCQ161vCWqaBvi5c+c0bNgw+fn5ac6cOXr44YclSUeOHFFISIgmT56s5s2bKygoyOBKAcBYrjwj2p1Ex17SH9EXnPLcZYoHOOV5AQAA3A3ZGwAAWAlNJJiNK/YNO5KTZbM7d98zr+vbc+X+f3e+JahpGuBff/214uPj1aNHj9QALkkVK1bUm2++qXfeeUezZ8/W2LFjDawSAIzn7DOiORsaAADAvMjeAADAKmgiwYxctW/YWa9pidf13bjyiqjufEtQ0zTAN2zYIEl68skn061r1qyZbDabNm7c6OKqAMB9OeuMaM6GBgAAMC+yNwAAsAqaSNbh6ZcEz87lwJ29b5jXtPGsfkVU0zTAf/vtN0lSpUqV0q0rVKiQihUrpjNnzujcuXMqWrSoq8sDAAAAAMDjkb0BAIDVWL2JZHZmuCQ4lwMH0jNFA/zSpUu6ceOG8uXLp3z58mU4pkSJEjpz5ozOnDlDCAcAwIScfbRudo6mBQDATMjeAIA78fQzKCVyX2Z4+nZmG+OfPP2S4FwOHMiYzeFwePw74vTp03r88cdVrFgxbd68OcMxzz33nHbv3q358+erVq1aWf4bDkf6L0abTbLb7bp0NV5JScnZqv1OfPJ4Kb9/Xt2MuyxHclKuP7/N7qU8+QKUnJyszLwKPH2+kvXm7G7zlaw3Z17X5t/GkvXm7I6va+lWYLHZnBfCHQ6HnPmzKStPbcXXderjPHc/S5bmKXn+e5nPriw8ziKvazN/djn7O8hdkL2zh8/DTIz38Dm723wl683ZHV/XqY/z4K+HrP5+dcX3ocPhcHruy2wDyaqva1dkb6tsY8n9Pq9TH2ehzy5Pfy/znZyFx1nkdW3mz66sfAeZ4gxw+/+/dMSdJp2ywzq7O65tNpu8vDJ+/oL5fbP1nJmVJ59zL4Niz+KlNzx9vpL15uxu85WsN2de17nP3eYrWW/O7vi6diabzf2aG1Z8XVuRp7+X+ezCP/HZ5bnI3jnD5+Hdefqc3W2+kvXm7I6va+QuZ2eyO30P3Q6v69xlxW0sud/ntRV5+nuZ72T8k9U/u0zx6ki59Fp8fPxtxyQkJEiS/P39XVITAAAAAABmQvYGAAAAAHgC0zTA/f39deXKldsG8djYWElS8eLFXVkaAAAAAACmQPYGAAAAAHgCUzTAbTabqlSpIkk6cuRIuvUXL17U2bNnVaRIERUrVszV5QEAAAAA4PHI3gAAAAAAT2CKBrgkNW7cWJK0Zs2adOvWrFkjh8OhJk2auLosAAAAAABMg+wNAAAAAHB3pmmAd+zYUX5+fvrqq6+0e/fu1OVHjx7Vf//7X9lsNr3yyisGVggAAAAAgGcjewMAAAAA3J3N4XA4jC4ityxcuFDDhw+Xl5eX6tevLx8fH23dulU3btzQv/71L/Xs2dPoEgEAAAAA8GhkbwAAAACAOzNVA1ySfvjhB3355Zf6+eef5eXlpUqVKunVV19VixYtjC4NAAAAAABTIHsDAAAAANyV6RrgAAAAAAAAAAAAAABrMs09wAEAAAAAAAAAAAAA1kYDHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAHkmitXrmT5Mdu3b3dCJQCya/Lkyfrll1+MLgMAAADAbZC9Ac9H9gYAwLlogMPlEhIS9PPPP+vQoUNKTEy87bjz588rMjLShZW53vbt2zVr1iz973//04kTJ4wuJ8dCQkJ08eLFTI29ceOGRo8erVdeecW5RQHIksmTJ+vw4cNGlwHkumbNmmnt2rVGl2GI5ORkHT9+PM0yh8OhFStWaPTo0fr444+1b98+g6rLPadOnVJ8fHymx584cULh4eHOK8gA58+f19atW7VixQp9//332r59e6Z/mwEwH7L3X8jeZG/A3ZC9YVZkb7L3P5G9YRRvowtA5sXHx+v8+fMqU6aM0aVk25w5c/TJJ5/o2rVrkqQCBQrotdde02uvvSa7Pe3xGJs2bdLgwYN18OBBI0rNNYcPH9YXX3yhw4cPq0yZMurVq5dq1aqlAQMGaO3atXI4HJIkb29v9e/fX7169TK44uw7ePCgXnjhBX311VcqVqzYbcft27dPgwcP1h9//HHHcWZ1/vx5HTlyRHXr1jW6FJe4cuWKxo0bp9GjRxtdistYbRubQbNmzfTOO++oWbNmRpfiMg888IDGjx+vtm3bGl2KS0RHR6f+/rCSDRs2aOTIkTpz5ox+/vlnSbdCeZ8+fbRx48bU3yEzZsxQSEiIhg4damS5OdKsWbN0r+lr165p1KhReu2111SxYsU04/fs2aOhQ4eqQ4cOLq40961atUpffPFFhr+bbTabatWqpddee02PP/6464vLRUFBQbLZbFl6jM1m04EDB5xUEcyK7O2ZyN7pkb2tlcvI3vAEZG/zI3uTvcneZG93wRngBsroaKiEhASFh4fr7Nmz6cZHRER49I+D8PBwjRkzRoGBgRo6dKh69eolX19fTZo0Sa+++qquXr1qdIm57ueff9azzz6rDRs2yM/PT/v27dPLL7+sMWPGaO3aterevbvCwsI0b948NWnSRP/973/1/fffG112tg0fPlxHjx5Vt27ddPr06XTrb968qY8//ljPP/+8/vjjD7Vv317Lly83oNLc9cADD2jp0qVplsXHx2vy5Mk6efJkuvGbNm1SSEiIq8pzipMnT2rUqFF65pln9Mwzz2jYsGE6duxYunERERFq06aNFi1aZECVuceK29hqrBjQUsIXzOvQoUPq27evHA6HunfvruTkZEnS/PnztWHDBhUvXlwLFy7Unj179Pbbb2vOnDke/Tsko9f0jRs3FB4ertjYWAMqco3Ro0dr4MCBio6OVocOHfTWW2/p/fff17vvvqsBAwaoWbNm2r9/v15//XV9+OGHRpebI3Xr1lWdOnWy9L/atWsbXTbcANmb7E32Jnt7KrK3+bex1ZC9YUZkb7I32ds9szdngBsooy/8uLg4DR06VDNnzjTd0bmzZs1S3bp1NXfu3NRlffr00XvvvafQ0FC9/PLL+uqrr5Q/f34Dq8xdkyZNUrly5TR37lwVKVJE165dU69evfT111+rS5cueuutt1LH1qlTRy+88IL+7//+T61btzaw6uzr1q2bChYsqCFDhqhbt2766quvdM8990i6dYT64MGD9csvv6hMmTIaOXKkGjdubHDFuSOjL/3r169rypQpql27tsqVK2dAVc5z8OBBvfjii7p69ap8fX3l6+urAwcOaMWKFVqwYIGqVKmiK1euaNiwYYqIiJCXl5d69uxpdNk5YrVtfPTo0SxfBpMj7gH38+WXX6pEiRJavHixAgICUpd//fXXstlsevPNN1WtWjVJ0iuvvKIdO3Zo/vz5Hvs75HbMvMNpyZIlmjdvnjp06KB3331X/v7+GY6Li4vTBx98oNmzZ6tmzZpq2bKliyvNHX/PEUBWkL3J3mRvsrcnInvfYuZtTPYGzIHsfQvZm+ztbmiAuyGzflD8/vvvGjJkSJplPj4+GjNmjAoVKqSZM2fqtdde08yZM2/7AeJp9uzZozfffFNFihSRJPn7++uNN97QCy+8oEcffTTd+NatW2v8+PGuLjNXPf300ypQoIAGDhyobt266csvv9TatWs1bdo0JSYm6vnnn9e//vUv5cuXz+hSnc6s7+VPP/1U8fHx+vjjj/XUU09JkqKiovTmm29q9OjRmjBhgkJCQvTHH3/o4Ycf1ujRoxUYGGhw1c5h1m08bdo0TZs2LUuP8fRLZlpVVi9n5OkWLlyoLVu2ZHq8zWbTmDFjnFiRc0VGRurZZ59NE8BPnDiho0ePytvbW08++WSa8Y888og+/fRTV5eJHJg/f75q1Khx16PL8+XLpzFjxujIkSP69ttvPTaE37x5U3ny5MnSY/bt26fq1as7qSJ4OrP+liN7k73J3uZA9v6LWbcx2ds6yN53RvaGuyN73507Zm8a4HAZPz8/Xbx4McN1b7/9tq5du6YFCxaod+/e+vLLL11bnJPkz59fly9fTrMsMDBQTZo0kbd3+rffhQsXlDdvXleV5zRNmjTRjBkz9Prrr+uZZ56Rw+HQvffeq9GjR6tOnTpGl4ccioqKUteuXVMDuCRVq1ZNb7/9tgYNGqRBgwYpOjpab731ll599dV09xiE+2vevLlpd5zcidUCmiRNnTpVCxcuzPR4m82m2bNnO7Ei54qMjMzSGRaevo0vXLigUqVKpVm2bds2SVL16tXT7RD39fXVjRs3XFYfcu63337L0j1smzVrpm+++caJFTnXM888owkTJmTqOyohIUGTJk3SnDlztH//fhdUB7gPsvctZG+yt6cje5sf2TtzPD2XSWTvu/H0bUz2Nj+y9+25c/amAQ6XqV+/vubMmaMnn3xSlStXTrd+xIgRunr1qpYtW6ZXX31VTZo0MaDK3PXII4/oq6++Us2aNdWwYUNJUoECBfTFF1+kG7tv3z7NnTs3dZynq127tubMmaPXXntN58+f1/vvv08AN4lLly4pKCgo3fKHH35YSUlJOnz4sObOnasaNWq4vjjkihYtWqht27ZGl+FyVgtoknTkyBEdOXIk0+M9/aj1d955x6Pv6ZpVBQsW1Pnz59Ms27Rpk2w2mx555JF0448cOZJ65hw8w7Vr11S0aNFMjy9evLhH35Pt7Nmz6tSpk/r3768ePXrc9jNp165deuedd3Ts2DHde++9Lq4SMB7Zm+xN9jYHsrf5kb0zh+ztecjeZG+zIXt7ZvamAQ6XefPNN/X8888rODhYDz74oD766KM0bwqbzabx48fLx8dHoaGh2r17t4HV5o633npLUVFRevXVV1WnTp3b3jvhxRdf1K5du1SkSJE09ybzdEFBQZo/f75eeeUVvf7665oyZYoaNGhgdFnIocTExAzPlvD19ZUk9ezZkwAOj2S1gCZJH330kaV2uBQuXFhly5Y1ugyXqVWrllasWKHu3bvLy8tLZ8+e1YYNGyRJrVq1SjP2ypUrWrp0qerXr29ApciupKSkDM9svB0vLy8lJiY6sSLnWrZsmYYOHaqJEydqw4YNGjdunMqXL5+6PuUysSn32uvevbsGDBhgYMWAMcjeZG+ytzmQvWFWZG/zI3uTvc2G7O2Z2ZsGOFzmvvvu0/LlyzVlyhTt3Lkz9Qf739ntdo0ZM0Y1a9bUJ598onPnzhlQae4pWrSoFi1apAULFighIeG243x9fdWpUye98cYbWTqSyN0MHTo0w+X33nuvTp48qV69eql169Zpjhgyw1GcSOuhhx4yugQgW6wW0GB+PXr0UNeuXdWlSxfVq1dPa9eu1Y0bN/TUU0+pQoUKkm7tWN27d6/GjRun8+fPq1u3bgZXnTOrV6/WsWPHUv89Pj5eNptNixcv1q5du9KM/eWXX1xdHnKoaNGimj59ur7++mt99NFHat++vYYMGaJnn31WO3bs0H/+8x+dOHFCgYGB+uCDD/hNAssie5O9yd7WwPccPBXZG2ZD9iZ7m41ZsjcNcIMdPXo0zSVfrly5Ikk6fPhwuiNKsnKZFHdVuHBhDRs27K7jOnfurODg4DQfop7K19dXL7/88h3HmOW+a2FhYXdcf+PGDYWHh6dZZpYQvnPnTiUlJaX+e1xcnCRp8+bNiomJSTPWDGdY3ImnX6bpdqyyjevWratixYoZXQaAXPDwww9r6tSp+uCDDzRz5kx5eXmpbdu2GjlyZOqY8ePHa86cObLb7Ro6dKhq1aplYMU5FxERoYiIiHTL//n7I4UZvrP+uePhTsyy46Fbt25q0KCBhg8frhEjRmju3Lk6cuSIvL29NWDAAPXs2TNLR+fDGsjeGSN7eyayt/lzWWaY4XdMRqyyjcnegHmQvf9C9r6F7O0ebA6Hw2F0EVYVFBSU4Rvf4XDccfnBgwddUZ7TORwOnThxQhcvXpQkFSlSROXKlTO2KCcz+5yjo6Oz9ThPP+ozo/fy3z9aM1rnye/loKAgvf7662rUqFGa5VeuXFGfPn00ZMgQVa1aNd3j6tat66oSc53VtrEVBQUFWe6SZFabc1hYmOrUqZPmkk1WcuHCBfn5+aU7C3Djxo3av3+/nnrqKbe8X1NW7NixI1uPq1evXi5X4joZ3Rf0bsz0/RQZGak+ffroypUrstls6tOnj/r37290WXBDZG9z59CMmH3OZO+/mDmXkb1vMfM2tiKr5VDJenMme5O9b4fs7bk8NXvTADfQ5MmTs/W4fv365XIlrhUVFaUZM2Zo8+bNunbtWpp1+fPnV9OmTfXKK69k60PFXVlxzlZyt6Pvbyc4ODiXK3GN2+1AlG6/E1GSR3/hW2kb//3MqKzw5J0skjUD2o4dO1SxYkWPvvwnYHVW3PEgSVevXtX48eP13XffKW/evOrRo4dWrVqlX375RQ0bNtTo0aNVpkwZo8uEGyF7WyeHWnHOVmKlXCaRvbPCE7cx2ZvsDcBzkL09M3vTAIdLzZw5UxMmTJDdblfNmjVVuXJlBQQEKDExURcvXtSBAwd08OBB2e12DR48WCEhIUaXnGNWnHNmTZs2TREREQoNDTW6FJdLSEiQj4+P0WVki1V3IGaVp27jO+1kuRNP3skCa7jdvTLvxCyXCkXGFixYoE2bNmX7ew3G2LBhg0aMGKGYmBg1aNBAo0aNUvny5XXz5k19+umnmjlzpnx9ffXvf/9bXbt2NbpcwDBWzKFWnHNmkb09L5dJZO/M8tRtTPaGWZG98U9kb89khuxNAxwus3HjRvXq1UsNGzbUmDFjVLp06QzHHT9+XCNHjtSWLVs0c+ZMNWzY0MWV5h4rzjkrRowYoYULF3r8j/fJkydnKWBGRUVp6NChWr58uROrQm6y0jb+7LPPshXCPX0nixUDWnZ2+tpsNs2ePdsJ1TifFS9Xdbedannz5lWBAgVUpUoVtWjRQp07d5bdbndhhcYyw++QU6dOqUiRIukur3c7J06c0K5du9ShQwfnFuYkb731lpYvXy5/f3+9/fbb6tKlS7oxe/bs0eDBg3XixAnVq1dPH3zwgakuewxkhhVzqBXnnBVm+M6TrJXLrMpK25jsnXlkb89C9k6P7O35v0PI3p6ZvWmAG8hqX/ivvPKKzp49q9DQUOXJk+eOYxMTE9WhQwfde++9mjJliosqzH1WnHNWmOHLT7r1I6d79+7697//fcdxiYmJmjx5smbMmKGkpCSPn3dmxcfH6/z58259OZS7YRubn1UDWlZ58pyteK/MF1988Y7rk5KSdPnyZR0/flw3b97UI488omnTpsnb29tFFRrLDL9DHnjgAY0fPz7N/QSvXbumUaNG6bXXXlPFihXTjF+yZIkGDx7ssXMOCgpS48aNNWrUKJUqVeq24+Lj4/Xhhx9qwYIF8vf31+7du11YJdwR2fv2zJJDrTjnrDDDd55ELrsbsjc8gdVyqGS9OZO90yN7e/7vELJ3xtw9e1vjHeamsnJfm78fQeSpIfzAgQN6+eWX7xpGJcnb21utW7fWkiVLXFCZ81hxzlZUp04dzZw5U9evX9e7776b4ZjDhw9r8ODBOnz4sAoWLKj//Oc/Lq4y9zRr1kzvvPOOmjVrlrosISFBK1as0KOPPqpixYqlGR8REeHRX/iS9baxFa1du9boElzu0KFDRpfgUp4cprNr7ty5mRoXHx+v+fPna/z48Zo/f/5dwzvcR0bHMt+4cUPh4eFq165duhDu6caOHZupe3z6+vrqvffe05NPPsn3MSSRve/ELDnUinO2IqvlMrK3+bexFZG9zY/sfXtkb89F9s6Yu2dvGuAGysyXX3R0tEaNGqUNGzaoQIECGjhwoPMLc5K4uDiVKFEi0+NLly6tP//804kVOZ8V52xFM2fO1IABAzR//nxdv35dY8aMSd1x5nA4NH36dE2ZMkUJCQlq06aNhg0bpiJFihhcdfZFR0fr2rVraZbFxcVp6NChmjlzZroQbgZW28aSdPToUe3Zs0cdO3ZMXXb27FlNnjxZu3fvlp+fn5o1a6aXX37ZI++39k9WDGhIKyEhQb/99pt8fX1VoUIFo8txKV9fX73yyivat2+fwsLCCOEmYNaLfGUmgP/d/fffr86dOzupGngSsvedmSGHWnHOVmS1XEb2Nv82lsjesB6yN9nbTMjet7hr9qYB7qaSkpI0c+ZMff7554qPj9dTTz2loUOHevSP28TExCz9UPP29lZCQoITK3I+K87Zinx8fDRlyhQNHTpUYWFhio+P14QJE3T8+HENGTJEUVFRKl68uN577z01bdrU6HKdxqxf+JL1tvGECRM0c+ZMORwOBQcHy26368qVK+rSpYtOnTqlQoUKqWzZsvrkk0+0bt06zZ07N1Nn23gyKwa0mJgYRUVFydfXV3Xr1s30fY7c2ZUrV/Tll19qz549aY7QXrp0qUaPHq3Lly9LuvXDfcyYMapRo4ZBlRqjfv362rx5s9FlADly48YNrVq1SqGhodqxY4ccDof69u1rdFlwY2Rvc+RQK87ZiqyWy26H7G2ebUz2To/sTfa2ArI3zMATsjcNcDe0c+dOjRw5Ur/++qvuu+8+jRgxQg0bNjS6LOCuJk+enKXxP//8s5MqcT0vLy+NHz9eAQEBmjdvnk6ePKlff/1V8fHx6ty5swYPHqz8+fMbXSZywCrbePXq1ZoxY4Yef/xxhYSEyG63S5I+//xzRUdHq3r16vrqq6/k5+enqKgovfjii/rqq6/Uo0cPgyvPOSsGtOjoaE2cOFF79uzRunXrUpdPnz5dn376qZKSkuRwOFSwYEGNGjVKLVq0MLDanImLi1OXLl109OhRlSpVSomJifL29lZUVJQGDx4sh8OhLl26qHLlygoPD9crr7yi8PBw3XvvvUaX7jJeXl5KTk42uoxsCw8Pz9L433//3TmFwBB79uxRaGiovv/+e8XFxcnhcOiee+5Rly5djC4NbozsDU9F9jZ/LrMyq2xjsjfZWyJ7k709E9nb2jwpe9MAdyMXLlzQ+PHjFR4eLh8fH/Xv3189evQwxeVtUuzcuVNJSUmZGrt7924nV+MaVppzVkO4lPYee2YwbNgwFSpUSJMnT5bdbtcXX3yhJk2aGF0WcpHZt/GCBQtUvXp1TZs2LXWZw+HQkiVLZLPZ9MYbb8jPz0+SVK1aNbVv317Lly/3+BBuxYB27tw5denSRRcuXFC1atVS5/zjjz9q4sSJ8vb21ptvvqkqVapo4cKFevPNN/XNN9+oatWqRpeeLTNnztTx48f13//+V61atUpdPmXKFDkcDr300ksaMmSIJKlTp05q166dpk2bprFjxxpVssvt27dPpUuXNrqMbBsyZEiWflc4HA7T/Q6xmpiYGC1evFihoaE6duxY6hlx9evXV48ePfToo48aXCHcFdk7LU/PoSmsNGeyt/lzGcy/jcneZG+yN9nbU5G9rcdTszcNcDfx7bffasKECbp06ZIeeeQRjRgxQvfcc4/RZeW6hQsXauHChZkaa5YPRivNec6cOUaX4Bb69eunwoULa/To0ZoxY4Zq165tiqOT8Rczb+P9+/enC9QHDhzQuXPnlD9/ftWvXz/NuocfflhLly51ZYlOYcWANn36dMXFxenrr79Oc0T99OnTZbPZ1Ldv39TXwmOPPaaOHTvqyy+/1H//+19jCs6hiIgItW/fPs32jYuLS73s2PPPP5+6PG/evGrXrp2+/fZbl9dplJUrV2rx4sV67bXXjC4l2zz5/YjMS0hI0Jo1axQaGqqtW7cqKSlJXl5eqlevnmrXrq2pU6cqJCTEbQM4jEf2Ts/Tc2gKK82Z7H2LmXMZbjHzNiZ7k73J3mRvT+XJ70dknhmyNw1wgx0+fFjvvfee9u7dq2LFimnixIlq06aN0WU5hRU/GK0253r16mX5MTt37nRCJa4VGRmZblmVKlXUuXNnLVy4UC+99JLefvvt1MtZpahbt66rSkQOWWkbX7t2TQULFkyzbNu2bZJuzcfLyyvNusTERI/eeZjCigFtw4YN6tixY5oAfvHiRe3atUuS9Mwzz6Qut9lsat26tWbPnu3qMnPNyZMn02xH6dZ7OzExUeXLl0/X/ChdurTOnTvnyhJz3dChQ++4PikpSXFxcfrtt990/Phx3XfffR4dwoODg40uwRCrV6/WsWPHUv89Pj5eNptNixcvTn0/p/jll19cXV6uGjlypFasWKFLly4pb968aty4sZo3b65mzZqpcOHCio6O1ueff250mXBTZG9zs9qcyd5/MWsusyorbWOyN9mb7H0L2dvzkL1vIXu7f/amAW6gcePGae7cuUpKStITTzyhgQMHKn/+/Dp16tQdH1emTBkXVZi7rPjBaMU5Z8bp06cVFham8PBwnThxQgcPHjS6pBx58cUX7xhC9u/fr5dffjndck+e99GjR9ME0ytXrki6tWPR2zvtV8uRI0dcWpszWGkblyhRQidOnEizbMOGDbLZbHrsscfSjY+KilLJkiVdVZ7TWDGg/fnnn6pSpUqaZdu3b1dycrIqVaqUbrsWLVpUly5dcmWJucput6e7x9bWrVslSY0aNUo3/vz58x5/dklYWFimxpUvX14vvfSS+vTp4/Fzvp2Mfl+XLl3aNDsRIyIi0i2/3X3ZPHnO8+fPl7+/v3r37q3XXnvNtK9X5D6yt/lZcc6ZQfa+xZPnTfZOy0zbmOz9F7I32dvTf9eTvf9C9v6LJ8/ZLNmbBriBZs2alfrP69ev1/r16zP1OE/8UZcd58+f15EjRzzyKM7sMvOcb9y4oYiICIWGhmr79u2pl5zL6Ee9p+nbt69Hf6Flx7Rp09LcpyrFuHHj0i3z9MsLStbaxo899pgWLVqk559/XiVLltSePXu0c+dO5cmTRy1btkwz9tdff9Xy5cv17LPPGlRt7rFiQMubN6+uX7+eZtmWLVtks9n0yCOPpBv/559/KiAgwFXl5bpKlSppz5496tatm6Rbn02rV6+WzWZT06ZN041fu3atKlas6Ooyc9XatWvvuD5v3rwKCAgw1T1vJWnRokX69ttv9fnnn6tIkSK6cOGCmjZtmu5zfMCAAXr99dcNqjJ3WO0SuMHBwVqzZo2++OILzZ49W3Xq1Ek9Cr1YsWJGlwc3Rva+MzPn0Nsx85zJ3uZC9jYvsvdfyN5pkb09D9mb7G02ZsneNMAN1K9fP6NLcKkHHnhA48ePV9u2bVOXxcfHa8aMGerQoYPKlSuXZvymTZs0ePBgj97pYMU5/9PevXsVGhqq77//XlevXpUkFSlSRB07dlSXLl1UtmxZgyvMuf79+xtdgktZKZCmsNI27tOnjyIiItS6dWtVqFBBv/zyixwOh/r27asiRYpIuhW+IyIiNGfOHOXJk0fdu3c3uOqcs2JACwoK0tatW/XSSy9J+uvePpLUvHnzNGMdDodWrlypoKAgl9eZWzp06KAPPvhADz/8sB555BEtXLhQp06d0j333KPGjRunGTtt2jTt3btXw4YNM6ja3GGG79iseuONN7Rq1SqVKVNGp06dSv3ckqR27dqpfPnykqTFixdr6tSp6tSpk4oXL25UuTmWnUvgJiYmOqES1xg7dqxGjhyp9evXa+nSpfrhhx/0448/auTIkapZs6Zq1aplud8oyByyt/lzqBXn/E9kb/Mhe5sb2ZvsLZG9yd6ei+x9d2Rv49EAN5DVQrjD4Ui37Pr165oyZYpq166dLpCagRXnLEmxsbEKDw9XWFiY/vjjDzkcDvn5+alRo0basmWL3n//fTVr1szoMpFNVgqkVlSsWDF99913mjJlivbu3asHH3xQHTt2VOfOnVPHhIWFaebMmSpbtqw+/vhjlS5d2sCKc4cVA1rXrl315ptvasyYMXrkkUe0aNEinTt3Tg8++GCas6Hi4+P14Ycf6tdff/XoHS5du3bVrl27NHbsWNlsNjkcDhUsWFATJkxIvYfgd999p+nTp+vEiROqXbu2nnvuOYOrdq6oqCjt2bNHdrtd9erVU2BgoNEl5ciSJUu0atUq9erVSwMGDEh338QOHTqoYcOGkqQmTZro2Wef1TfffGOa3+RxcXFyOBx3PENmz549Gj58uJYtW+bCynKXj4+PWrZsqZYtW+rKlStauXKllixZol27dmnXrl2y2Wz64osvdPXqVbVs2VK+vr5Glww3YJb3eWZZMYdacc4S2dvsyN7mRvYme5O9yd6eiuxN9vaU7E0D3I0kJCTo0KFDio2NlcPhUIkSJRQUFKS8efMaXZpTZRRUzc6sc/7+++8VGhqqLVu2KCkpSQEBAWrbtq1atGihxo0b68yZM+mObDSDyZMnZ/kxNptNffv2dUI1zhcSEqLXX3899YeMFVhtG5cqVUqjRo267fqOHTuqadOmqlWrVmp48XRWDGht2rTR4cOHNWPGDM2dO1cOh0PlypXTpEmTUsf83//9nz7//HPFxcWpVatWat++vYEV54zNZtOECRPUrVs37dmzR/nz51fz5s3THKX8559/yuFw6PXXX1evXr1M8fo+cOCAvvjiCx05ckT33HOPevfurWrVquk///mPQkNDU3+T2Gw2Pf300xo7dmy6+0l6irCwMNWsWVODBg2669iUHW4bN270+BC+atUqTZ48Wb/99pukW/eVGzBggJ5++unUMdeuXdPEiRM1f/78dJec9CRDhw5V165dVb16dUlSgQIF1LlzZ3Xu3FkxMTFatmyZli1bpqioKP30008aNWqU2rRpo/fff9/gyuFuyN7WYdY5k70zz5NzGdk7czx5G5O9yd4pyN6e//ome2eM7O2ZzJK9PfMdZjJnz57VxIkTFRERobi4uDTr/Pz81LJlSw0aNEglSpQwqEIgcwYNGiR/f389//zzatasmerWrZvmCDBPuCxGdlgtoO3YsSPNEclWYLVtfDeefvmxjFg1oA0aNEjPPfec9u3bp/z586tevXrKkydP6vq8efPq4YcfVtu2bfXMM88YWGnuqVmzpmrWrJnhun79+nl8IPu7PXv2KCQkRN7e3qpSpYr279+vbt266cUXX9SiRYvUrl07tWrVSteuXdO6deu0bNkyPfDAA3r11VeNLj1bDhw4oN69e2d6/KOPPqopU6Y4sSLnW7Fihd58803lzZtXjz76qPz8/LRz5079+9//Tr1/5E8//aRBgwbp5MmTKleunEaOHGl02dkWFhamRo0apYbwvytZsqS6d++u7t2768iRI1qyZImWLl2qb7/91u1COIxD9oZZkL0zz5NzGdk7czx5G98N2Zvs7cnI3mTvFGRvz2OW7E0D3GB79+5Vr169dOnSJVWvXl0NGjRQiRIl5O3trdjYWEVGRio8PFzr1q3T1KlTVatWLaNLBm6rXLlyOnnypEJDQ/X777/rp59+UvPmzXX//fcbXZpTzZkzx+gS4GRW2saRkZHZetzfL9vlyawU0FKUKlVKpUqVynDdCy+8oBdeeMHFFSG3TJkyRffdd5/mzJmjwoULy+Fw6J133tGsWbPUrl07jR8/PnXs008/rcuXL2vZsmUeG8Lj4+MVEBCQbnmBAgU0bdo0PfDAA2mW58uXz6PvySVJ8+bNU9GiRbVgwYLUe6xdv35dr7/+uj777DOVKFFCr776qm7cuKFXXnlFb7zxhlteliy3VaxYUYMGDdKgQYO0e/duo8uBmyB7w0zI3jArK21jsjfZ++/I3p6N7H0L2Zvs7W5ogBvo3Llz6tu3r/Lly6fPP/9ctWvXznDcgQMHNHDgQA0YMECLFy9W0aJFXVwpkDlr1qzRvn37tGTJEq1cuVKbNm3SxIkTVaFCBbVo0UJVq1Y1ukSnqFev3l3HXLlyRTab7Y73BoH7ysw2NosXX3wxy2eM2Gw2HThwwEkVAblj6NChWX6MzWbTmDFjnFCNa/z000967bXXVLhwYUm35tO9e3eFhYXp8ccfTze+RYsW+vDDD11cZe4pWbKkTp06lW65t7d3hvP9448/PP4+ikeOHNGLL76YGsClW2ex9uvXTy+88IIGDRqkokWLasKECapRo4ZxhRqIJiYksjfMh+x9e2Rvz0b2vjOyNzwB2Zvs/U9kb2twx+xNA9xA8+bNU1xcXJqjRjLy4IMPatasWWrbtq3+97//qX///i6sEsia6tWrq3r16nrnnXe0adMmLV26VGvXrtXUqVNls9lks9m0fv16BQUFqWzZskaXm2scDod++OEH/fbbb7r33nv1+OOPy9vbW1u3btXo0aN19OhRSdIDDzygN998U48++qjBFefM6tWrdezYsUyPN/MlyVKYZUfL2LFjMzVu1apV2rBhgySpWrVqTqzINawY0EJCQrL8GJvNptmzZzuhGucLCwvL9Ni/74jy5G18+fJlFStWLM2ylEsLFipUKN14X19fXb9+3RWlOUW1atW0YsUK9e3b966XSUxISNCKFSvUpEkTF1XnHFeuXFG5cuXSLb/nnnsk3bqU4oIFC1J3xJjBzp07lZSUlKXHdOjQwTnFwGOQvWFGZG+yd0bI3p6D7J15ZG/PQva+hex9C9nbc5khe9MAN9CaNWvUrl27OwbwFGXLllVwcLAiIiI8OoT/802Tct+1zZs3KyYmJs1Yd7xkQnZYcc6S5OXlpSZNmqhJkyaKj4/X6tWrtWzZMm3evFnfffedQkNDVb9+fXXs2FFPP/200eXmyOXLl9WzZ0/t27dPDodDkvTwww9r+PDh6tmzp/z8/NS8eXNdu3ZN+/btU69evTRr1iyPPrJ59erVioiIyPR4M4Twv+9oueeee/TEE0+YckdLcHDwHddHR0dr1KhR2rBhgwICAvTmm2+qS5cuLqrOeawY0E6ePJmpccnJyYqJiZHD4fDo+0keOnTormP+/vouUKCABg4c6PzCnMjhcMjbO+3P/ZRt6Mnb8na6du2qF154Qe+//76GDRuWbu4pkpOT9e677yo2NlZdu3Z1cZW5Kzk5Oc09X1Ok3E+wZ8+epgrgkrRw4UItXLgwU2NTPrfcLYTD9cje1sihVpyzRPYme6dF9vYcZO+7I3t7JrL3LWRvsrenM0P2pgFuoJMnT2bp3h5BQUFZ+pHgjv75pkkJLDNmzEj3ZeDpX/YprDTnnj17qkGDBqpXr56qVq2aOhdfX1+1bdtWbdu21YULF7RixQotXbpUW7du1bZt2zw+hH/66ac6dOiQ3n33XdWvX1/R0dH64IMP9NJLL+m+++7T3LlzU4/2O3/+vDp16qSZM2d6dAjv1auXGjVqZHQZLmPFHS3/lJiYqP/7v//TtGnTdP36dbVr105DhgxJPaLV01kxoK1bt+6uY/bt26f33ntPf/75p8qVK6fhw4e7oDLXS0pK0syZM/X5558rPj5eTz31lIYOHZruCG64tzp16qh79+76v//7P23btk2vvvqq6tevr1KlSsnhcOjMmTPavn27vv76ax06dEiDBg1SUFCQ0WU7VZkyZYwuIdc9++yzlr2kHLKP7G3uHJrCSnMme5O9zYrsTfaWyN5kb7g7snd6ZG/3RAPcQHny5NGNGzcyPT4+Pl7+/v5OrMi5MntpHzOx2py3bdumH374IfVSVHXq1FH9+vXVoEGD1C+5woULq1u3burWrZtOnDih5cuXG1x1zq1bt05du3bVc889J0mqUKGC3n33Xb366qvq1q1bmkvdFClSRM8++6zmzp1rULW5o2LFiqYKmHdjxR0tf7djxw6NHDlSR44cUYUKFTRixAjVr1/f6LJcxooB7cqVK/r444+1cOFC2e129erVS3369FHevHmNLi3X7dy5UyNHjtSvv/6q++67TyNGjFDDhg2NLivX/POymfHx8bLZbFq8eLF27dqVZuwvv/zi6vJy3b///W+VLVtWEydO1Lvvvpthw8Pf31/vvfeeKc6gsaI6deqobdu2RpcBD0P2Nj+rzZnsTfY2K7I32ZvsTfb2VGRvsrfZmCF70wA3UJUqVbRx48ZM3wdkw4YNqlSpkpOrcp67XdrHjKw25927d+vAgQPavXu39uzZo71792r9+vWy2WwKCAhQ3bp1Vb9+fdWvX19VqlRR+fLl1bt3b6PLzrEzZ86oYsWKaZalvFczOvqrdOnSunTpkktqQ+6w4o4W6dYOhXHjxmnJkiXKmzev3njjDb322mupl/exArMHtIwsXrxY48eP17lz51SvXj2NGDEi3WecGVy4cEHjx49XeHi4fHx81L9/f/Xo0UM+Pj5Gl5arIiIiMrxsZnh4eIbjPflsuBTPP/+8goODtX79ekVGRurPP/+Uw+FQiRIlVKtWLTVv3tzj7xn5dxndG/ROO1vMcGlUIKvI3uZntTmTvf9C9jYXsjfZm+xN9vZUZG+yN9nb/dAAN1D79u317rvvasWKFWrTps0dx4aHh2vLli2aOHGii6oz3smTJ/Xuu+9q5syZRpfiMp4+Z29vb1WrVk3VqlXTyy+/LEk6ffp0mlA+btw4JSUlqVChQqpXr57q16+v559/3tjCc+jmzZvy9fVNsywlpGQUVmw2W5p708H9WXFHyzfffKOJEyfq0qVLeuyxxzR8+PBM3TfTLKwS0P7u6NGjGjlypHbs2KHChQvrww8/dLt79+SWb7/9VhMmTNClS5f0yCOPaMSIEbrnnnuMLivXzZkzx+gSDOPn56c2bdrc9Te2GdxuR4uU8c4WQjisiOx9Z56eQ7PD0+dM9v4L2dtcyN5kb7K3uZC9zY/sfQvZ2z3RADdQx44dFR4errfffluHDx9Wt27dVKJEiTRjYmNjNWvWLM2ZM0dNmjRR69atDao2d+zbt09Tp07Vnj17JEkPPvig+vbtqzp16qSOcTgc+uqrr/Tpp58qPj7eqFJzjRXn/HelS5fWU089paeeekrSrUv7LFmyRKGhoVq1apUiIiI8PoRbTb9+/RQYGGh0GS5lpR0thw4d0ogRIxQVFaWSJUtq1KhRatGihdFluZRVAlqKhIQETZkyRTNnzlRiYqI6d+6st956SwEBAUaXlusOHz6s9957T3v37lWxYsU0ceJEU4c0s1wKErdntR0twcHBpv48hvOQva2RQ604578je5sP2fsWsrd5kb3J3mZB9jY/srdnogFuILvdrmnTpumtt97SF198oenTp6t06dIqXry4vLy8dO7cOR0/flwOh0OtW7fWBx98YHTJObJ161b16NFDSUlJuv/+++Xn56fIyEi9/PLLmjVrlurWrauTJ0/qX//6l6KiopQ/f36NHDnS6LJzxIpz/qf4+HhFRkZqx44d2rVrl37++WfdvHlTPj4+qZdkM4OLFy/q1KlTqf+ecgTy+fPn0yyXbh3d6sn69euX5t8TEhJ06NAhxcbGpl7mJigoyJT3K7KCjh07Kjk5WZJUtGhRzZs3T/PmzbvjY2w2m2bPnu2K8pzKagFNkjZu3KhRo0YpOjpagYGBGjlypKpXr250WU4xbtw4zZ07V0lJSXriiSc0cOBA5c+fP91n9D9ldKaJWS1YsECbNm3S5MmTjS4lWzJ7aeO/8/TPr+zsaNm5c6cTKnENq93jF7mH7G3+HGrFOf8T2ZvsDc9C9iZ7k73TInt7DrJ35pC9jWdzOBwOo4uA9OOPP2rx4sWKiorSmTNnUn/I1q5dW+3bt1eDBg2MLjHHXnnlFUVFRWnGjBmqWbOmJCkmJka9e/dWnjx5NHbsWIWEhOjcuXNq0aKFhg8fruLFixtcdc5Ycc6JiYnau3evtm3bpm3btmnfvn26efOm8uTJo2rVqqUG75o1a5rmckZBQUEZ3rfF4XDc8X4uBw8edGZZTnf27FlNnDhRERERiouLS7POz89PLVu21KBBg9KdXeOJgoKC9J///EfNmjVLXXbp0iUFBwfr448/Tn1/p1i9erU+/PBDj9zGTZs2zdbj1q1bl8uVuNbtAtrdeHJAGzBggFavXi1JeuKJJxQSEiIvL6+7Pq5u3brOLs0pgoKCUv85K/fa8sT3cXaNGDFCCxcu9Ng5Z/bzKzk5WTExManf054636w4ffq0wsLCFB4erhMnTlhizsDtkL3NmUOtOGey91/I3mRvT9zGZG+y992Qvc2L7G1eZG/3QgMcLtOgQQN16tRJb731VprlmzZtUo8ePVSxYkWdOXNG7733nsdfbi6F1ebco0cP7dy5U/Hx8bLb7apataoaNGig+vXrq3bt2ukuY2UWQ4cOzdbjPPlIqr1796pXr166dOmSqlevrgYNGqhEiRLy9vZWbGysIiMjFRkZqYCAAE2dOlW1atUyuuQcseqOFiuxYkD7+5ylu8/b0wNLdo+s/ueZN2bm6SE8M/bt26f33ntPBw8eVLly5TR8+HA1adLE6LKc4saNG4qIiFBoaKi2b9+e+h5u3LixvvjiC6PLA+BEVsuhkvXmTPbOGrK35yB7mx/Zm+x9O2RvcyF7k73dAZdA9yDbt2/X4cOHs3WJCXdw5coVVaxYMd3yypUry+Fw6OLFi/r2229NcW+BFFab848//qg8efKoQ4cO6tWrl+677z6jS3IJTw7T2XHu3Dn17dtX+fLl0+eff67atWtnOO7AgQMaOHCgBgwYoMWLF6to0aIurjT3dOjQIUvBzEp27typsLAwj79UqJWCVgqrfXZlZxub7d6gVnblyhV9/PHHWrhwoex2u3r16qU+ffqY8pKhe/fuVWhoqL7//ntdvXpVklSkSBF17NhRXbp0UdmyZQ2uEHB/ZG/PY7U5k72tgeyNvyN7ey6rfXaRva2N7E32dic0wD3IihUrtHDhQo8N4UlJSfL2Tv+SS7kUV+/evU0TRlNYbc6dO3fW9u3bUy/zUaFCBTVs2FANGjRQ3bp1VbBgQaNLRC6YN2+e4uLitGDBApUvX/624x588EHNmjVLbdu21f/+9z/179/fhVXmrg8//NDoEtzKn3/+qbCwMIWFhenEiROSZMkQ7ukBLTg4OMuPiY6OdkIl7idl59KqVas8+p5NuGXx4sUaP368zp07p3r16mnEiBEZNkk8WWxsrMLDwxUWFqY//vhDDodDfn5+atSokbZs2aL3338/zaVEAdwZ2dvzWG3OZG9rIHuD7H0L2du8yN7mQvYme7sbGuBwG2b7MMwMs8151KhRkqRTp05py5Yt2rZtm1auXKl58+bJbrcrKChI9evXTw3l/v7+BleM7FizZo3atWt3xwCeomzZsgoODlZERIRHh/CQkBC9/vrratiwYeqyxMRE7dmzR0FBQSpQoECa8UuWLNGQIUN04MABV5fqNAkJCamX89m2bZscDoccDofq16+v5557zujyXMpqAe3GjRtauXKlwsLCFBkZqf379xtdklOk7FwKDw/X8ePH5XA4VKhQIaPLQg4cPXpUI0eO1I4dO1S4cGF9+OGH6tChg9Fl5arvv/9eoaGh2rJli5KSkhQQEKC2bduqRYsWaty4sc6cOaPmzZsbXSYAN2O2HJoZZpsz2dsayN63kL3J3mRvcyF7mw/Zm+ztrmiAA8h1ZcqUUadOndSpUydJ0q+//qpt27Zp69atWrRokWbNmiVvb2899NBDatiwod544w2DK0ZWnDx5Ui+88EKmxwcFBSksLMyJFTnfjh071Llz5zTLrly5opCQEM2cOTNNOE/hcDhcVZ5T/fNyPinzeuqpp9S3b19VqFDB4Apdw4oBbffu3QoNDdXKlSsVFxcnh8OhypUrG11WrkrZuRQWFqZt27YpOTlZDodDNWrUUNeuXdWmTRujS8yR8PDwLI3//fffnVOIiyUkJGjKlCmaOXOmEhMT1blzZ7311lsKCAgwurRcN2jQIPn7++v5559Xs2bNVLduXXl5eaWu5xKiAGBuZG9zI3vfQvYme5O9PR/ZOy2yt+che3smGuBwqZ07dyopKSnNsri4OEnS5s2bFRMTk+4xnn60kBXn/E+VK1dW5cqV9eKLLyohIUErV67U//73P+3du1f79u0jhHuYPHny6MaNG5keHx8fb9ozDswStP8po8v5FCpUSMHBwapRo4ZGjBihNm3amD6Amz2gZSQmJiZ12x87dkyS5O3trTZt2ui5555TnTp1DK4wd+zbt0+LFi1Ks3MpICBAV65c0ahRo9LtdPNUQ4YMyVIIczgcHh/aNm7cqFGjRik6OlqBgYEaOXKkqlevbnRZTlOuXDmdPHlSoaGh+v333/XTTz+pefPmuv/++40uDYDBrJhDrTjnfyJ7mwvZ+y9kb7K32ZC9yd5kb89C9vZMNMDhUgsXLtTChQvTLEv5ETtjxow0H/wpXwSeHkitOOe/O378uPbt26d9+/YpKipKhw4d0s2bN5UvXz499thjqlu3rtElIouqVKmijRs3ZvqeiBs2bFClSpWcXBVyS8+ePbV582YlJSWpdOnSev7559W8eXPVr19fdrtd0dHRpt35kMIqAS1FQkKC1qxZo0WLFmnbtm2pO44rVqyoo0eP6qOPPlKrVq0MrjLnYmNjtXjxYoWFhen333+Xw+FQmTJlFBwcrBYtWqhkyZJ68sknVaRIEaNLzTVjx441ugSXGjBggFavXi1JeuKJJxQSEqKEhARFRkbe8XGe/FtkzZo12rdvn5YsWaKVK1dq06ZNmjhxoipUqKAWLVqoatWqRpcIwCBWzKFWnPPfkb3Nh+xtbmRvsjfZm+ztqcjeZG9PQQPcQKdOncrS+JQjlz2V1b4IJOvN+dKlS4qKikoN3FFRUbp06ZIcDocKFiyoWrVqadCgQapbt64efPBB2e12o0tGNrRv317vvvuuVqxYcdejcMPDw7VlyxZNnDjRRdUhp3744Qf5+/srJCRE3bp1U/HixY0uySWsGNCioqIUGhqqFStW6PLly7Lb7apZs6ZatGihFi1aKCkpSc2bN1eePHmMLjVXNG3aVMnJyQoKClLv3r3VrFkzPfTQQ6nro6OjDazOOYKDg40uwaUiIiJS/3ndunVav379HcenND8OHjzo7NKcqnr16qpevbreeecdbdq0SUuXLtXatWs1depU2Ww22Ww2rV+/XkFBQSpbtqzR5QKGIHubn9XmTPa2BrK3uZG9yd5kb/Mge5O9yd7uiQa4gZo2bWqpS2Nk54vA078QrTbn+vXry2azyeFwqHDhwqpXr57q1q2runXrKjAw0KNfv/hLx44dFR4errfffluHDx9Wt27dVKJEiTRjYmNjNWvWLM2ZM0dNmjRR69atDaoWWdWvXz8tX75c06ZN0xdffKH7779fzZs3V/PmzVWtWjWjy3MaKwa0Z599Vn5+fmrcuLEee+wxNW3aNM1OBrPNOTExUX5+fipWrJj8/PzSXSLVCmJiYrRr1y7FxsZKkkqUKKGaNWuqdOnSBleWO6zW/PgnLy8vNWnSRE2aNFF8fLxWr16tZcuWafPmzfruu+8UGhqq+vXrq2PHjnr66aeNLhdwKbL33Xn6977V5kz2tgayt7mRvcneKcw2Z7I32dvsyN6egwa4gTp06EAoycCNGze0cuVKhYWFKTIyUvv37ze6JKczy5xbtWqlevXqqV69elx2y8TsdrumTZumt956S1988YWmT5+u0qVLq3jx4vLy8tK5c+d0/PhxORwOtW7dWh988IHRJSML+vXrp379+unnn3/W0qVLtWLFCk2fPl1ffvmlSpcurdq1a5vyu8uKAc3Pz0/Xr1/XkSNHVLhwYfn7++uxxx5T/vz5jS7NKdavX6+lS5dq6dKlmjhxomw2m4oVK6Ynn3xSTz75pKmPzv311181evRoRUZGyuFwpLmUot1uV+3atTVs2DAFBgYaWGXOWe2o+zvx9fVV27Zt1bZtW124cEErVqzQ0qVLtXXrVm3bto0QDsshe2fMLDk0K8wyZ7K3NZC9zY3sTfYme5sP2dt6yN7uzeYw+81E4DF2796t0NBQrVy5UnFxcXI4HKpcubKWLl1qdGlOY8U5w1x+/PFHLV68WFFRUTpz5owcDodKlCih2rVrq3379mrQoIHRJeaKoKAg/ec//1GzZs1Sl126dEnBwcH6+OOPVbNmzTTjV69erQ8//NDjL+0j3ToDauvWrVq6dKlWr16tq1evSpLKli2rjh07qkOHDipTpozBVebc6dOnUwPar7/+mmFAa9GihaZMmZLmdeDJ4uPjtW7dOi1ZskSbNm1SUlKS8uTJo4YNG+rJJ59UUFCQOnXqZKo5pzh06FDqTqbTp0/LZrOl7pQYMmSIXnrpJaNLzDVr167VwIEDZbPZ1Lx5czVo0EAlSpSQt7e3YmNjFRkZqZUrVyoxMVGTJk1S8+bNjS4ZTnTixAktX75cvXv3NroUAAayYg614pxhLmRvsjfZ23ORvcneZG/rIXu7BxrgHuL06dMKCwtTeHh4mnsseLqYmBiFh4crLCxMx44dkyR5e3urRYsWeu6551SnTh2DK8x9Vpwz4OmCgoIyPPL6bpfHNEMI/7uEhAStW7dOy5Yt08aNG3Xz5k3Z7XY1bNhQ//d//2d0ebnGSgEtxcWLF1OPUt27d2+adT179lTv3r3l5+dnTHFOtmPHDi1dulQRERG6dOmSbDabypUrp2eeeUbBwcEqVaqU0SVm28mTJ9W2bVvdf//9+uSTT1S+fPkMx/35558aMGCAfvvtNy1evPi249zd0KFDs/wYm82mMWPGOKEaAJ6K7G0eVpwz4OnI3reQvcneZkT2JnuTveFqNMDd2I0bN7Rq1SqFhYVp+/btSk5Olre3t37++WejS8uRhIQErVmzRosWLdK2bdtSL3VTsWJFHT16VJMmTVKrVq0MrjJ3WXHOsI6EhAQdOnRIsbGxqUehBwUFKW/evEaXlmuy88NOMvc9cS5fvqyVK1dq6dKl2rVrlw4cOGB0SU5h5oB2O9HR0Vq6dKmWLVum3377TTabTf7+/mrdurU6duyY7qwLs7h586Z++OEHLVmyRBs2bNCNGzc8/nfXBx98oMWLF2vlypVp7jGXkYsXL6pNmzZq166dhgwZ4qIKc1dQUFCWH2Oz2Tx6h2l2zhCx2Wxas2aNE6oBPBfZ2zysOGdYB9n79sjeno/sTfb25N9dZO+7I3vDCDTA3dCePXsUFhamFStWpF6aq1SpUurcubOeffZZFS9e3OgSsyUqKkqhoaFasWKFLl++LLvdrpo1a6pFixZq0aKFkpKS1Lx5c1Nd7sWKc4Z1nD17VhMnTlRERITi4uLSrPPz81PLli01aNAglShRwqAK4So7d+40/Rk0ZgxomXHo0CEtWbJEK1as0J9//unxgSWzrl69qoiICC1btkwzZ840upxsa926tR577LFM70gcP3681q9fr++//97JlTlHdHR0th7nyfega9q0abplDodDp0+fVrFixeTj45Ph49atW+fs0gCPQPY2Tw614pxhHWRvpCB7mxfZm+ztScjet5C93Z+30QXglpiYGC1evFihoaE6duyYHA6H7Ha7JGngwIHq2bNn6r97qmeffVZ+fn5q3LixHnvsMTVt2jTNEVHZ/eB0Z1acM6xh79696tWrly5duqTq1atneF+b8PBwrVu3TlOnTlWtWrWMLhlZ9PPPP2vv3r1yOBx64IEHMgzZV69e1YQJE/Ttt99q//79BlTpOnny5FGzZs3UrFmzNAHN7IKCghQUFKS3335b27dvt8ScJSl//vxq3ry5du/ebXQpOXL69GlVqlQp0+MrVKig+fPnO7Ei5/LkMJ1dGYXp8+fPq1GjRvroo4/UsGFDA6oC3BvZ25w51IpzhjWQvc2P7J0W2Zvs7YnI3uZH9vZMNMANlHJprtDQUG3dulVJSUnKmzevmjZtqieffFKBgYEKDg5W5cqVPT6AS0q9h8uRI0dUuHBh+fv767HHHlP+/PmNLs1prDhnmN+5c+fUt29f5cuXT59//rlq166d4bgDBw5o4MCBGjBggBYvXqyiRYu6uFJkx7Vr1/Tmm29q48aNSrlIjM1mU6NGjTR16tTUIxo3bNigESNGKCYmRvfcc4+RJbucWQJaVpUpU8bjdx6fPHlSs2bN0p49eyRJDz74oHr06KF77703zbiIiAiNGjVKZ8+e1ejRo40oNVf4+vrq8uXLmR5/+fJlBQQEOLEiYyUkJOi3336Tr6+vKlSoYHQ5TnOn+2MCVkX2Nn8OteKcYX5kb3Mje98d2dtzkb3vjOxtDmRv90cD3ECNGzfW5cuXVbBgQT311FNq1qyZHnvsMfn5+Uky3xHKW7du1bp167RkyRItWrRICxcuVJ48edSwYUM9+eST2bp3hLuz4pxhfvPmzVNcXJwWLFig8uXL33bcgw8+qFmzZqlt27b63//+p/79+7uwSmTXZ599pg0bNqhx48YKDg6Wv7+/Nm7cqG+++Ubjx4/XsGHDNG7cOH311Vfy8vJS9+7dNWDAAKPLzhVWC2iStG/fPk2dOjXNnPv27ZvmrAOHw6GvvvpKn376qeLj440qNccOHjyoF198UVevXpWvr698fX114MABrVixQgsWLFCVKlV05coVDRs2TBEREfLy8lLPnj2NLjtHHnroIUVERKh79+6ZGr9q1So98MADTq7Kua5cuaIvv/xSe/bs0dy5c1OXL126VKNHj07dKXH//fdrzJgxqlGjhkGVAnAlsrf5c6gV5wzzI3ubG9mb7E32Jnt7MrI3PAENcANdunRJ/v7+atmyperXr69atWqlBnAz8vX1VZs2bdSmTRtdvHhRK1as0NKlS/XDDz/ohx9+kHTrqJmoqCg1atTIFP8trDhnmN+aNWvUrl27OwbwFGXLllVwcLAiIiII4R5i3bp1qlevnr788svUZY8//riKFi2quXPnqlChQpo1a5aCgoI0duxYj//BnsKKAW3r1q3q0aOHkpKSdP/998vPz0+RkZF6+eWXNWvWLNWtW1cnT57Uv/71L0VFRSl//vwaOXKk0WVnW8pOhI8//lhPPfWUpFv3C33zzTc1evRoTZgwQSEhIfrjjz/08MMPa/To0QoMDDS46pzp1KmTBg4cqFmzZumVV16549hp06YpKioqzXvf08TFxalLly46evSoSpUqpcTERHl7eysqKkqDBw+Ww+FQly5dVLlyZYWHh+uVV15ReHh4uh1tAMyH7G3+HGrFOcP8yN7mRvYme5O9yd6eiuwNj+GAYSIjIx3vvvuuo169eo6goCDHAw884Hj22WcdM2bMcBw7dsxx8uRJR2BgoGPNmjVGl+pUJ0+edEydOtXx1FNPOQIDAx1BQUGOWrVqOf7zn/84du/ebXR5TmHFOcM8atSo4ViwYEGmxy9cuNBRs2ZNJ1aE3FSjRg3HV199lW75b7/95ggMDHQ88MADjlGjRjkSEhIMqM55evfu7ahatapj2bJlqcv27dvnaNasmePFF190xMTEOFq2bOkIDAx0dOrUyXHo0CEDq80dL7/8sqNWrVppvnf+/PNPR4cOHRydO3d2/Pbbb45GjRo5AgMDHf3793fExsYaWG3ONWrUyDFq1Kh0y1etWuV48MEHHc8//7zjoYcecnz55ZeOpKQkAyp0jv79+zuCgoIc//rXvxx79uxJ895NSkpy7NmzJ3XM8OHDDaw05z799FNH1apVHd9//32a5T179nQEBQU5xo4dm7osPj7e0aJFC8eQIUNcXabTnT9/3hEYGOjYsmWL0aUAboPsfYsVc6gV5wzzIHubG9mb7E32Jnt7KrL3LWRv98cZ4AaqU6eO6tSpo+HDh2vjxo1aunSpNmzYoH379mnChAkqX768bDabrl27ZnSpTlW2bFn17t1bvXv31qFDh7RkyRKtWLFC3333nRYtWqSDBw8aXWKus+KcYR558uTRjRs3Mj0+Pj5e/v7+TqwIuen69esqUqRIuuWFCxeWJD355JMaNmyYq8tyuqioKHXt2jX16GRJqlatmt5++20NGjRIgwYNUnR0tN566y29+uqrprg/6MGDB/Xcc8+pZs2aqctKliypf/3rX+rRo4feeOMNJSYmatKkSWrdurWBleaOS5cuZXj504cfflhJSUk6fPiw5s6da7rLck2YMEFjx47VggULtHz5cnl5ealQoULy8vLSxYsXlZCQILvdru7du2vQoEFGl5sjERERat++vVq1apW6LC4uTps3b5YkPf/886nL8+bNq3bt2unbb791eZ0AXI/sfYsVc6gV5wzzIHubG9mb7E32ruH64pyI7E32hvuhAe4GvL291axZMzVr1kxxcXGKiIjQ0qVLtX37djkcDg0ePFiLFi3SM888o5YtWypv3rxGl+w0QUFBCgoK0ttvv63t27dr2bJlRpfkdFacMzxblSpVtHHjRoWEhGRq/IYNG1SpUiUnVwVns9lskqQOHToYW4iTWDGgXblyRRUrVky3vHLlynI4HLp48aK+/fZb3XPPPQZUl/sSExMz/A3l6+srSerZs6eptm8KHx8fjRgxQiEhIQoPD1dUVJTOnDkjh8OhChUqqHbt2mrbtq0pLkV28uTJNEFbkiIjI5WYmKjy5cuney2XLl1a586dc2WJuW7y5MnplsXHx8tms2nx4sXatWtXuvU2m019+/Z1RXmA2yF7/8WKOdSKc4ZnI3tbE9mb7O3pyN5kb7L3LWRv49EAdzP58uVTcHCwgoODde7cOS1btkxLly7Vtm3btG3bNo0aNUqRkZFGl+kS9evXV/369Y0uw6WsOGd4nvbt2+vdd9/VihUr1KZNmzuODQ8P15YtWzRx4kQXVQdnSwksZmPFgJaUlCRv7/Q/BX18fCRJvXv3Nk0Az4yHHnrI6BKc6v777/f4o8zvxm63Kzk5Oc2yrVu3SpIaNWqUbvz58+eVP39+l9TmLBmF8BTh4eEZLieEA7eQvf9ixRxqxTnD85C9rY3sbR5k77TI3p6P7J0W2dt90QB3Y0WLFtVLL72kl156SceOHdOSJUs8+gjlzB6x+nc2m02zZ892QjWuYcU5w/w6duyo8PBwvf322zp8+LC6deumEiVKpBkTGxurWbNmac6cOWrSpIkpLuFkJSlHnGd1nZmZPaBlJKMj1M3MCq/tmJgY7dq1S7GxsZKkEiVKqGbNmipdurTBleWOSpUqac+ePerWrZskyeFwaPXq1bLZbGratGm68WvXrvX41/mcOXOMLgEwBbK35+dQK84Z5kf2Nj+yd3pkb/Ozwmub7J0W2RtGoQHuIe699171799f/fv3N7qUbNuxY0eGy202mxwOx23XeTIrzhnmZ7fbNW3aNL311lv64osvNH36dJUuXVrFixeXl5eXzp07p+PHj8vhcKh169b64IMPjC4ZWTRmzBhNmjQpzTKHwyGbzaa33nor3dHaNptNa9ascWWJLsdnszkcPXo03dl8V65ckSQdPnw4w6Py69at65LanOnXX3/V6NGjFRkZKYfDkeY3iN1uV+3atTVs2DAFBgYaWGXOdejQQR988IEefvhhPfLII1q4cKFOnTqle+65R40bN04zdtq0adq7d6/H31exXr16RpcAmA7Z2zNZcc4wP7K3+ZG90+Oz2RzI3mTvFGRvGIkGuIFCQkL0+uuvq2HDhqnLEhMTtWfPHgUFBalAgQJpxi9ZskRDhgzRgQMHXF1qrjh06FC6ZefPn1ejRo00a9asNP8dzMKKc4Y1FChQQF988YV+/PFHLV68WFFRUfrll1/kcDhUokQJdejQQe3bt1eDBg2MLhVZVKZMGUnKcEdhypGq/1x3u52KnsaKAW3nzp1KSkpKsywuLk6StHnzZsXExKR7jCffi27atGmaNm1ahuvGjRuX4fKDBw86sySnW7t2rQYOHCibzaZWrVqpQYMGKlGihLy9vRUbG6vIyEitXLlSnTp10qRJk9S8eXOjS862rl27ateuXRo7dmxqw6NgwYKaMGGC7Ha7JOm7777T9OnTdeLECdWuXVvPPfecwVU7V0JCgn777Tf5+vqqQoUKRpcDGIbsbf4casU5wxrI3uZF9iZ7k73TInt7DrJ3emRv92RzmOWb0wMFBQXpo48+Utu2bVOXXbhwQY0aNdLMmTPTBbQlS5Zo8ODBHv9l8HcXLlxQw4YNLRVIrThnAHB3QUFBtz3SPOUI/Ix48nfy7eb895+Gf1+f8t/BU+f82WefZetsgn79+jmhGtc4efKk2rZtq/vvv1+ffPKJypcvn+G4P//8UwMGDNBvv/2mxYsX33acp9izZ4/27Nmj/Pnzq3nz5ipSpEjqusmTJ2vx4sVq27atevXqleH9Bz3NlStX9OWXX2rPnj2aO3du6vKlS5dq9OjRunz5sqRb96IbM2aM6e6pCGQG2duaOdSKcwYAd0f2/gvZOy2yt+che99C9nZfnAHuhjgmAYCniI+Pl6+vb7rlv/32mwICAtLdnwzuLzw8XHXq1FG5cuWMLsWl+vbta7lLrY0dO9boElzKky9lm12zZ89Wnjx5NGPGjDRB9J9KlSql6dOnq02bNvr66681ZMgQF1aZ+2rWrKmaNWtmuK5fv3633bFy8+ZN7d27N8OzQd1VXFycunTpoqNHj6pUqVJKTEyUt7e3oqKiNHjwYDkcDnXp0kWVK1dWeHi4XnnlFYWHh+vee+81unTALZC9AXgKsrf5kL2tg+xtfmTv9MjeZG93QAMcAJBlCQkJGjdunJYuXaoffvghXRCfOHGifvjhB3Xs2FGDBw+Wv7+/QZUiq4YOHarx48dbLoRbMaAFBwcbXYJLZXT5W7PbtGmTgoOD7xjAUxQqVEgdOnTQ+vXrPT6EZ9elS5cUEhKS4dmg7mrmzJk6fvy4/vvf/6pVq1apy6dMmSKHw6GXXnopdXt26tRJ7dq107Rp0yy3Ew4AAE9F9jYvsrd1kL3Nj+ydNWRvuIrd6AIAAJ4lISFB3bt319dff60yZcrowoUL6cY88cQTCgwM1DfffKPXXntNiYmJBlSK7LDqmVAhISHaunWr0WW4VLNmzbR27Vqjy3CZHTt26OzZs0aX4VKnT59WpUqVMj2+QoUK+vPPP51YkfvztM/AiIgItW/fPk0Aj4uL0+bNmyVJzz//fOryvHnzql27dpb7rAMAwFORvc3N03535hayt/mRve+O7O15n4Fkb89EAxwAkCVfffWVIiMjNWzYMIWHh6t06dLpxnTu3FmLFi1Sv379tHv3bs2bN8+ASoHMs2JAi46O1rVr14wuA07k6+ubeg+qzLh8+bICAgKcWBFy28mTJ/XQQw+lWRYZGanExESVK1dO99xzT5p1pUuX1rlz51xZIgAAyCayN8yI7A0zInubH9nbM3EJdLhMeHh4umVxcXGSpM2bNysmJibDx3Xo0MGJVTmXFecM81u6dKmaNWumF1544a5j+/Xrpx07dmjx4sV6+eWXnV8ccsXFixd16tSpLD2mTJkyTqoGQHY99NBDioiIUPfu3TM1ftWqVXrggQecXBVyk91uV3JycpplKUeZN2rUKN348+fPK3/+/C6pDYBxrJhDrThnmB/Z2/zI3oA5kL3Nj+ztmWiAG+yfP3QuXbok6dYb5J8/gDK61JEnGTJkiGw2W5plKZe6mDFjhmw2W+q/p/yzzWbz6EBqxTnD/I4dO6auXbtmevzjjz+uTz75xIkVIbeNGTNGY8aMyfR4m82mAwcOOLEiIHesXr1ax44dy/R4m82mvn37OrEi5+rUqZMGDhyoWbNm6ZVXXrnj2GnTpikqKkpffvmli6pDbqhUqZL27Nmjbt26Sbr1O3P16tWy2Wxq2rRpuvFr165VxYoVXV0m4BbI3ubOoVacM8yP7G1+ZG+YFdn79sjenons7ZlogBvsdj903nrrLQOqca6xY8caXYLLWXHOMD9/f38lJSVlenzevHnl6+vrxIqQ22rXrq3y5csbXYbLWS2gSdLChQu1ZcuWTI+32WxZ2kHjblavXq2IiIhMj/f0bdyqVSu1aNFC48eP1/79+/XCCy+oatWqypMnjyQpOTlZUVFRmjlzplavXq3OnTvr0UcfNbhqZEWHDh30wQcf6OGHH9YjjzyihQsX6tSpU7rnnnvUuHHjNGOnTZumvXv3atiwYQZVCxiL7G1uVpwzzI/sbX5k78zx9Fwmkb3vxtO3Mdnb/MjenokGuIE6dOiQ7ghlMwsODr7rmEuXLsnX11d58+Z1QUXOZ8U5w/wqVKig3bt3KyQkJFPjd+3apbJlyzq5KuSmLl26qG3btkaX4XJWC2jSrfsVRUZGZnq8p4fwXr16ZXhpKjObMGGCxo4dqwULFmj58uXy8vJSoUKF5OXlpYsXLyohIUF2u13du3fXoEGDjC4XWdS1a1ft2rVLY8eOTT2jsWDBgpowYYLsdrsk6bvvvtP06dN14sQJ1a5dW88995zBVQOuR/ZOz2w51IpzhvmRvc2P7J05ZG/PQ/Yme5sN2dsz0QA30Icffmh0CS538+ZNhYaGau/evWmO0N6xY4fee+89/f7777LZbGrUqJFGjBhhiqMgrThnmFtwcLBGjBihbdu2qUGDBnccu337dkVERKh///4uqg7IPisGtHfeeUfNmjUzugyXqVixourVq2d0GS7l4+OjESNGKCQkROHh4YqKitKZM2fkcDhUoUIF1a5dW23bttW9995rdKnIBpvNpgkTJqhbt27as2eP8ufPr+bNm6tIkSKpY/788085HA69/vrr6tWrV2o4B6yE7G2NHGrFOcPcyN4wK7K3+ZG9yd5mQ/b2TDTADfTaa6+pQ4cOat68uSUuUXTz5k29+uqrioyMVJ48eTRq1Ch5e3vr999/12uvvaabN2+qcePGqlSpklatWqUuXbpoyZIlKlasmNGlZ5sV5wzz69ChgxYtWqTevXurV69e6ty5c7rXbGxsrL799lvNmDFD5cqV0/PPP29QtUDmWTGgFS5cmLNELOL+++/nKHMTq1mzpmrWrJnhun79+qlfv34Zrrt586b27t2roKAgFShQwJklAoYie5s/h1pxzjA/sjfMiuwNMyN7mxvZ27NwCIKBduzYoX//+99q1KiRhgwZoi1btsjhcBhdltPMmzdPO3fu1L///W9FRkbK2/vW8RefffaZEhIS1LZtW02fPl1vv/22Fi1aJC8vL02bNs3gqnPGinOG+eXJk0dTpkxR9erV9cknn6hx48Zq1qyZunbtqs6dO6tp06Zq0qSJPvvsMwUGBmrWrFl8sXuQMmXKyN/f3+gyAAAucOnSJYWEhOjnn382uhTAqcje5s+hVpwzzI/sbW5kbwCwDrK3MTgD3EBbt27VmjVr9P3332v58uVavHixihUrprZt26pdu3YKCgoyusRctWzZMrVs2VLdu3dPXZaQkKB169bJZrOlWV6oUCE988wzWr58uYYNG2ZEubnCinOGNRQtWlSzZ89WRESEli9frgMHDujw4cOy2+0qVqyYOnTooCeffFJNmzY1ulRk0bp16+64Pjk5WX/++aeKFSsmHx8fF1UF5Fy/fv0UGBhodBkuldn7Rf6dzWbT7NmznVCNezhz5owKFSqkPHnypFtXsGBBzZkzRw888IABlRnHzE1AIAXZ2/w51IpzhjWQvc2L7A2zIntnDtmb7A3nowFuoHz58ql9+/Zq3769rly5olWrVmnFihWaPXu2Zs2apUqVKql9+/Zq27atSpYsaXS5OfbHH38oODg4zbJdu3b9P/buO77G8//j+PtkyTJi71EjsfdeNWqntra2UkVrlbb4UpRWFW0VpbR2ixqxaahdtVfNGjGLEAlCIuv8/vDLqSMJSSQ5OSev5+PRR7nv6z735z7LeV/XfV+3QkNDlT179hj/MObPn1/+/v4pWWKSS4vHjLSlUaNGatSokaXLQAq6d++eGjRooLlz56p69eqWLifJpMWANmHChDinbbJFcU1DFe3x48eaO3euWrVqpbx586ZQVcnrwIEDsS43GAxxBi+DwZCcJaWIefPm6bffftPatWtjhO0vv/xSe/fuVc+ePdWrVy+ze3I5OjqmuakYgbSC7G37OTQtHjPSFrJ32kP2th1kb3Nk7//WWTuyN1I7BsBTifTp06tdu3Zq166d7t27p82bN2vTpk365ptv9M0336hy5cpq1aqVGjVqJDc3N0uXmyhRUVGyt7c3W7Zv3z5JUo0aNWK0f/jwoVxcXFKktuSSFo8ZkJ5O6+Ls7Kx06dJZuhQkA1s8YzEtBrTnO4mfFxwcrC+++EK9evVS4cKFU6gqy3n8+LFmzJihihUr2sxrfPbs2RjL7t27pxo1amjevHk21ZEmPf1uGjp0qDZs2KAsWbLo1q1bypcvn1mbwoUL68iRI/r222918uRJff/99xaqFoClkL1tM4emxWMGJLK3rSN720YuI3ubI3tbP7I3rAX3AE+FMmfOrI4dO2rRokXasWOH/ve//8nOzk6fffaZatWqZenyEi1//vw6c+aM2bItW7bIYDDo9ddfj9F+z549yp8/fwpVlzzS4jEjbQgPD9eyZcs0fPhws+UHDhxQs2bNVK1aNZUvX169evXS1atXLVQlkHSiA9q1a9csXUqKCQ0N1erVq9PU1VG22MH0PFs4yzwuy5Yt04YNG9S9e3ft2LEjRgCXnna4bdmyRW3atNGWLVu0atUqC1QKILUgez9lCzk0LR4z0gayN9IasnfaQPa2bmRvWAsGwFM5R0dHOTs7y93dXQ4ODgoLC7N0SYnWvHlzrVmzRlu3blVISIjmz5+vS5cuKUuWLDHuVbR27Vr9+eefatCggYWqTRpp8Zhh+8LDw/Xuu+9q9OjRWr9+vSIiIiRJfn5+6tWrl/z8/FS7dm11795dfn5+evvtt3X37l0LVw28urQQ0J6XFo8Z1mvFihWqUqWKhg0bFut9xqI5OTlp/PjxKl68uH777bcUrBBAakb2tu4cmhaPGbaP7I20Ki3m0LR4zLBeZG9YC6ZAT4Xu3bunLVu2aPPmzTp48KAiIiJUokQJDRw4UM2bN7d0eYnWvXt37d69Wx9++KHp/heOjo764osv5OTkJOnpGdqLFy/WgQMHVKhQIXXv3t2yRb+itHjMsH2LFy/WoUOH9PHHH6tTp05ycHj6T8m0adMUFhamN998U19//bUkqXfv3vL29tasWbM0cuRIS5aNJOLo6KjKlSsrY8aMli4FAMxcvHhRAwcOjFdbg8GgJk2aaObMmclcFYDUjOxtOzk0LR4zbB/ZO20jewNIrcjesBYMgKcSd+/ela+vrzZv3qzDhw8rMjJSefLkUc+ePfXmm2/axP0/nJycNH/+fG3cuFHHjh2Tu7u7vL29VaRIEVObkydP6siRI3rzzTc1bNgwOTs7W7DiV5cWjxm2b/369WrcuLF69uxpWhYWFqZt27bJYDCYLc+UKZPatGmjDRs2EMKtxMOHD5U+ffo412fMmFGLFi0yW7Z//35VrVo1uUsDklX69Ok1YcIEFS1a1NKlIJEcHBxMgxzxkSFDhhj3iwVg+8jeT9laDk2LxwzbR/a2bWRvpFVkb+tH9oa1YADcgvz9/eXr66vff/9dR44cUWRkpDJmzKh27drJ29tblSpVsnSJSc7e3l7e3t7y9vaOdX2fPn00cOBA2dnZzuz8afGYYdsuX76s1q1bmy07fPiwQkNDlT17dnl6epqty58/f5q6j5G169q1q+bNm6dMmTK9tO2TJ080adIk/frrrzp9+nTyF2dBaTGgZcyYUQsXLlTx4sUtXUqKSJcunWrVqsUVFlasQIECOnnyZLzbnzx5Urly5UrGigCkFmTvmGwxh6bFY4ZtI3vbNrJ37Mjeto/sbf3I3rAWDIBbUN26dSU9PVO5YcOG8vb2Vt26dV943wRb5+LiYukSUlxaPGZYt6ioqBhn7e3bt0+SVKNGjRjtHz58yPvcipw5c0adO3fWnBjLWAABAABJREFU/PnzlTVr1jjbHT9+XJ9++qkuX778wna2Il26dGadT5GRkZo9e7b69u1rwaqSl6Ojo6pUqWL6+8OHDzVx4kSNHz/eglW9unnz5um3337T2rVrY/zm+vLLL7V371717NlTvXr1svoO8tWrV8dY9ujRI0nSn3/+qdu3b8e6XatWrZKxquTTokULTZkyRT169Hhph9n58+e1bt06de3aNYWqA2BJZO+Y0uLv87R4zLBuZG/bRvaOHdmb7G2NyN5xI3vDkgxGo9Fo6SLSqi5duqhly5Zq0qSJ3N3dLV0OAMRLy5YtVbZsWX3++eemZc2aNZOfn5++/fZbNWnSxKx9r169dP/+fS1fvjylS0Ui/PLLL/riiy+UL18+zZ8/P8YZmuHh4fr+++81d+5cRUZGqmXLlhoxYoRNnLn78OFDLV++XMeOHZPRaFSJEiXUqVMnZciQwazd33//rZEjR+qff/7RmTNnLFRt0rh+/brmzZuno0ePSpJKlCih9957TwUKFDBr5+vrq3Hjxunu3btWe8xGo1FDhw7Vhg0blCVLFi1dulT58uUzazN9+nQtX75c/v7+euONN/T9999bqNqk4eXlJYPBYLbs2Z/+sa0zGAxW+xo/fvxYbdq0UVBQkEaMGKHmzZvH6DSOiIjQ+vXrNXnyZEmSj4+PsmXLZolyU8ydO3eUKVOmWAf6wsPDdfToURUvXvyFU3AC1o7sDcAakb1tG9mb7E32Jntb62tM9o4d2Tv1YQAcAJAgs2fP1owZMzRlyhTVrFlTy5Yt01dffaWsWbNq27ZtZveAWbt2rT799FMNHDhQffr0sWDVSIj169dr2LBhyp49u+bPn6/8+fNLenqG+qeffqp//vlHuXPn1tixY1W7dm0LV5s0rl27pq5du+rWrVtmISVr1qxavny5cuXKpYiICE2ZMkULFy5UZGSkmjdvrilTpliw6ldz5swZdenSRcHBwXJ2dpazs7OCgoLk6uqqpUuXqlixYnr48KFGjhwpX19f2dvbq2fPnho8eLClS0+UpUuXasyYMerevbuGDBkS51V/YWFhGjt2rFatWqUvvvhCbdq0SeFKk46Pj0+itnt+qk1r4ufnpw8++EB+fn5ydXVVyZIllS1bNkVGRiogIEAnT55UaGiocufOrRkzZsjLy8vSJSeJF11dMXjwYJu6ugIAgLSC7G37yN5kb7I32dtakb3J3taAAXALim1qjPiw1qkxANiGsLAw9ezZUwcPHpTBYJDRaJSjo6OmT59uml5yy5YtWrx4sQ4cOKBChQpp1apVcnZ2tnDlSIidO3dq0KBBcnd315w5c/THH39o1qxZioiI0DvvvKMhQ4bIzc3N0mUmmSFDhmjjxo0aPHiw2rZtKxcXF+3cuVOff/65ypUrp0mTJql37946cuSIcufOrdGjR5ve79aqb9++2r17tyZOnKjmzZtLkk6cOKGPPvpIuXPn1uTJk9W1a1ddvnxZpUuX1vjx42PcZ9CatGvXTq6urlq4cOFL2xqNRrVt21ZOTk5aunRpClSHpBQWFqZffvlFGzZs0NmzZxURESHp6dSC5cqVU6NGjfTWW2+ZdRpbq7R4dQWQGGRvANaI7J02kL3J3mRvsre1InuTvVM7BsAtKHpqjOgpL17G2qfGAGA7IiMjtXHjRh07dkzu7u7y9vZWkSJFTOu//fZbzZ07V82aNdOwYcPk4eFhwWqRWIcPH1bfvn0VHBwso9GoAgUKaPz48apUqZKlS0tyderUUc2aNTVhwgSz5T4+Pho9erTq1KmjrVu36p133tHHH38sV1dXC1WadGrWrKmmTZtq5MiRZst9fX01ePBglStXTidOnNDAgQP17rvvWv2Zq+XLl9fAgQPVvXv3eLWfPXu2Zs6caZqiztqFhobG2hl64cIFZciQQdmzZ7dAVSnj3r17sre3t4npIp+XFq+uABKD7A3AWpG90wayN9mb7E32tgVkb7J3auNg6QLSsuf/oQcAa2Fvby9vb295e3vHur5Pnz4aOHCg1f9oT+sqVqyohQsXqlevXrp3754+//xzmwzgkhQYGKjy5cvHWF65cmWFhYVp586dmjp1qho3bmyB6pLH/fv3Y52CqnTp0oqMjNS5c+e0aNEilStXLuWLSwYODg4JOus4Q4YMMe5hZY3CwsI0ceJErVu3Trt27YoRxL/55hvt2rVLbdu21aeffmoTHUzPy5w5s6VLSDYrVqxQlSpVNGzYsBe2c3Jy0vjx43XmzBn99ttvhHCkOWRvANaK7J02kL3J3mRvsrctIHuTvVMbBsAtyJrv8QAg7eratav69u2r6tWrm5ZFRETo6NGj8vLyUvr06eXi4mJaF30vMq6gsU5eXl5asmSJevToob59+2rGjBmqVq2apctKcuHh4Wbv22jRU8316NHDpgK49PRzmy5duhjLo0Na7969bSaAS1KBAgV08uTJeLc/efKkcuXKlYwVJb9np8308vJSYGBgjGOqV6+ebt++rWXLlun8+fNauHChHBysMyJMnz49Udt9+OGHSVxJyrl48aIGDhwYr7YGg0FNmjTRzJkzk7kqIPUhewOwRmTvtIXsTfa2FWRvsndcyN5Iadb5CUujIiMjNXv2bPXt29fSpQBIww4cOKD27dubLXv48KG6du2quXPnmoVzWJ/hw4fHurxAgQK6fv263n//fTVt2tRs+lCDwaAvv/wypUq0iCpVqli6hBRXqlQpS5eQpFq0aKEpU6aoR48eKlq06Avbnj9/XuvWrVPXrl1TqLrkMX/+fB08eFAjR45U586dY23Tvn17tW/fXtOnT9f06dO1ePHieE9Vl9rEN4Q/P/2xNYfwtHp1BZDcyN4AUgOyt20je8eO7G39yN5k72hkb7K3pTEAbmEPHz7U8uXLdezYMRmNRpUoUUKdOnVShgwZzNr9/fffGjlypP755x9COIBUyWg0WroEJAEfH58Xrn/y5IlWr15ttiwthPC0+KM1PvdItSYdOnTQ0qVL1aVLF40YMULNmzeP8bpGRERo/fr1mjx5stKnT2/1IXzdunVq0KBBnAH8WR9++KEOHDigNWvWWG0I/+OPP17a5uHDh/ruu++0Y8cOOTg4WP1rnBavrgASi+wNwFaQvW0D2Tt2ZG/rR/Z+MbK3dSJ7WycGwC3o2rVr6tq1q27dumX68bplyxb98ssvWr58uXLlyqWIiAhNmTJFCxcuVGRkpJo3b27hqgEAtiw+P2JtVVBQkP7991+zZffv35ck3bt3L8Y6ScqdO3eK1JZcLl26pIMHD5ote/jwoSTp3LlzsU7HVbly5RSpLam5urpq5syZ+uCDD/Tpp59q7NixKlmypLJly6bIyEgFBATo5MmTCg0NVe7cuTVjxgxly5bN0mW/kitXrujtt9+Od/vXX39dU6dOTcaKkleePHleuH7jxo366quv5O/vrwoVKmjMmDEqVqxYClWXPNLi1RVAYpC9AQCpDdmb7E32JntbK7I32dtaMABuQd99951u3bqlwYMHq23btnJxcdHOnTv1+eef6/PPP9ekSZPUu3dvHTlyRLlz59bo0aNVt25dS5cNALBhL/sRa8u+/PLLOM+mHzp0aIxlBoNBp0+fTu6yktWsWbM0a9asWNdNnDgx1uXWfE/BQoUKafXq1frll1+0YcMGHTlyRBEREZIkR0dHlStXTo0aNdJbb72VoKmtUitXV1dFRkbGu326dOlM96GzJVevXtXYsWO1d+9eZcyYUePHj1e7du0sXVaSSItXVwCJQfYGAKQ2ZG+ydzSyN9nbVpC9yd6pDQPgFnTw4EG1atVKvXv3Ni1r2rSpQkNDNXr0aA0bNkxHjhzRO++8o48//liurq4WrBYAgJhmzZolX19frVq1ytKlvJLWrVtbuoQUZ833XnoVTk5O6tGjh3r06CHp6RUG9vb2ypgxo4UrS3qvvfaajhw5Eu/QdfjwYZvqiAsLC9Ps2bM1Z84chYWFqXXr1vr444/l4eFh6dKSTFq8ugJIDLI3AMDakb2tF9mb7P08srf1IXtbJwbALSgwMFDly5ePsbxy5coKCwvTzp07NXXqVDVu3NgC1QEA8HI3b9606rOSo02YMMHSJaS4tBrCn5c5c2ZLl5BsWrdurdGjR2vfvn2qVq3aC9vu379fvr6+6t+/fwpVl7z27t2rsWPH6sqVKypatKhGjx6tSpUqWbqsZJHWrq4AEoPsDQCwdmRv60X2fors/RTZ23qRva0PA+AWFB4eLhcXlxjL3dzcJEk9evQggANIlZ6/X9OL7tUUGBiYorUBQGymT5+eqO2subOiVatWWrlypfr06aP3339f7du3V9asWc3a+Pv7a/ny5frpp5+UN29edezY0ULVJo27d+9qwoQJ2rhxo5ydnTVkyBD16NEj1nvq2ZK0dHUFkBhkbwDWiuwNwNqQvcnetozsbV0MRqPRaOki0iovLy9NmjRJ3t7eZssDAwNVvXp1/fTTT6pVq5aFqgOA2Hl5eclgMMRYbjQaY10ezRbOVEZMo0eP1m+//Wb1r29aDGjDhw9P8DYGgyHOe7Wldl5eXvFq9/z3mLW/twMCAvTRRx9p//79MhgMyp07t9kUXTdv3pTRaFS5cuX07bffKleuXJYuOdEWL16sqVOnKjg4WPXr19fIkSOt+ngAJB2yNwBrRPbGs8jeZG9rQfYmewOphW2fjmHl7O3tLV0CAMSQFu/XBNsX3xD+fECz5hDu4+MT77bPHre1hvA//vjjpW0ePnyo7777Tjt27JCDg0O879+VmmXJkkULFiyQr6+vNmzYoNOnT+vcuXOys7NT1qxZ1apVK73xxhuqX7++pUt9ZePHjzf9edu2bdq2bdtLtzEYDDp9+nRylpWs0mIHIpAcyN4AUiOyN2wR2fvFyN7Wi+z9YmRvWAID4Bb2/FRG0ounM5Kk3Llzp0htABCbtHi/Jti+tBjQzp49+9I2N27c0Lhx47Rjxw6lT59egwYNSv7CkkmePHleuH7jxo366quv5O/vrwoVKmjMmDEqVqxYClWX/Bo1aqRGjRrFWH7//n05OztboKKklxY7idNiByKQWGRvANaG7A1bRPaOHdmb7G1NyN5xI3unLkyBbkFxTWUkxT2dkbWfKQMASN0Sekbj9u3bdfr0aaufquplbD2gPS8yMlJz587VDz/8oNDQUDVr1kzDhw+PcQ8rW3D16lWNHTtWe/fuVcaMGTV06FC1a9fO0mUlmfDwcK1atUrHjh0z60Q9cOCAxowZIz8/PxkMBtWoUUOfffaZ8ufPb8FqX83w4cP19ttvq2zZspYuJcXcuHHjpW1i60D85JNPUqA6IPUgewMAUhuyd+zI3mRva0X2tm1kb+vEALgFJeb+HxJngAIAkk9879X0LIPBYLMh3NYDWmwOHTqksWPH6vz58ypYsKBGjx6t6tWrW7qsJBcWFqbZs2drzpw5CgsLU+vWrfXxxx/Lw8PD0qUlmfDwcL377rs6ePCgHB0ddfToUTk4OMjPz08tW7ZUWFiY6tSpoyJFiuj3339XSEiI1q5da7WdLXHd4zctS2sdiEBcyN4AgNSG7G2O7E32tmZkb5C9UyemQLcgwjQAILVZuHChpUtIFdJCQHteYGCgvv76a61evVpOTk7q37+/3nvvPTk5OVm6tCS3d+9ejR07VleuXFHRokU1evRoVapUydJlJbnFixfr0KFD+vjjj9WpUyc5ODz96T9t2jSFhYXpzTff1Ndffy1J6t27t7y9vTVr1iyNHDnSkmUjCTzfgTh+/Hib70AEXoTsDQBIbcjeT5G9yd62gOyddpG9UzcGwFOBkJAQrVy5Urt379bZs2cVFBQkg8GgzJkzy8vLSw0aNJC3t7dN/iMIAEhdqlSpkuBtDh06lAyVWE5aCWjPWr58uSZPnqz79++rZs2aGj16tFVPxxWXu3fvasKECdq4caOcnZ01ZMgQ9ejRwxRObc369evVuHFj9ezZ07QsLCxM27Ztk8FgMFueKVMmtWnTRhs2bCCEW7G02IEIJATZGwCQWpC9yd5kb9tB9k57yN7WwTa/cazI4cOHNXDgQN29e1dOTk7Knz+/8uTJo4iICAUFBWn79u3atm2bpk+frilTpqhChQqWLhkAAN28eVM+Pj5avXq1rl27ZhPTsKW1gCZJ586d05gxY3Ts2DFlzZpV33zzjZo1a2bpspLF4sWLNXXqVAUHB6t+/foaOXKkcuXKZemyktXly5fVunVrs2WHDx9WaGiosmfPLk9PT7N1+fPnl7+/f0qWmOQOHTqkyMjIBG3TqlWr5CkmhaXFDkQgIcjeAABrRPa2DWRvsvezyN7WjextPWz3XxUrcPHiRfXs2VPu7u6aPHmyGjVqFONM8+DgYG3evFnff/+9evXqJR8fHxUoUMBCFQMA0rInT57I19dXq1at0v79+2U0GmUwGFSnTh1Ll/bK0mJAmzhxohYtWqTIyEjVq1dPgwYNkru7u/79998Xbpc7d+4UqjBpjR8/3vTnbdu2adu2bS/dxmAw6PTp08lZVrKKioqSvb292bJ9+/ZJkmrUqBGj/cOHD+Xi4pIitSWX3377Tb/99lu82kZ/h1l7CE+LHYhAQpG9AQDWhOxtW8jeZO/nkb2tE9nb+vDKWNAPP/wgFxcXrVy5Ujly5Ii1jbu7u9q1a6c6deqoZcuW+umnnzRu3LgUrhQAkJYdO3ZMq1at0qZNmxQcHCxJypw5s9q2bau33npLefLksXCFry4tBrR58+aZ/rx9+3Zt3749XttZ6xUHz5+NnRbkz58/xuu1ZcsWGQwGvf766zHa79mzx+qn3+vQoYPKlStn6TJSTFrsQAQSg+wNALAGZO/Ykb2tC9n7KbK3bSF7WycGwC3o4MGDatOmTZwB/FnZs2dXq1attGfPnhSoDACQ1vn7+2v16tXy8fHR5cuXZTQa5eLioho1amjv3r36/PPP1aBBA0uXmWRatWolg8Fg6TJS1IcffpjgbYxGYzJUknLefvttlS1b1tJlpJjmzZtrxowZqlOnjmrWrKlly5bp0qVLypo1q+rXr2/Wdu3atfrzzz81cOBAC1WbNCpVqiRvb29Ll5Fi0mIHIpAYZG8AQGpF9rZ9ZG/bR/a2fWRv68QAuAUFBgYmaEq11157TcuXL0/GigAAad2mTZu0atUq7d27V5GRkcqQIYO8vb3VqFEj1a5dW3fu3FHDhg0tXWaS++qrryRJ4eHhunDhgiIiIlSkSBGrn5LqRXLnzq02bdrEu/2NGzc0YsSIZKwoefn4+KhGjRppKoR3795du3fv1ocffiiDwSCj0ShHR0d98cUXpql/t2zZosWLF+vAgQMqVKiQunfvbtmikSBp8eoKIDHI3gCA1IbsTfaOC9nb+pC9bR/Z2zoxAG5B4eHhCfrHPV26dHr06FEyVgQASOsGDx4sV1dXdezYUQ0aNFDlypXN7mNky2dq//zzz5o5c6bp31onJyd17NhRQ4YMscn7+YwcOVIhISHq1KnTS9suX75cEydO5HeIlXFyctL8+fO1ceNGHTt2TO7u7vL29laRIkVMbU6ePKkjR47ozTff1LBhw+Ts7GzBipEYae3qCiAxyN4AgNSG7E32jg3Z2zqRvdMGsrf1sb1/UQAAQKLlzZtX169f16pVq+Tn56e///5bDRs2VKFChSxdWrJauXKlJk2apDx58qhVq1ays7PT/v37NX/+fEVGRlr12ddxKViwoMaPH6+QkBD16tUr1jZ37tzRyJEjtWvXLjk6Olr9FF1pkb29vby9veOcmqxPnz4aOHCg7OzsUriypNe6dWurv49aQqXFqysAAABsAdmb7P0ssrf1I3vbNrK3dWIA3MKCgoL077//xqttYGBgMlcDAEjrtm7dquPHj2vt2rXavHmz9uzZo2+++UavvfaaGjVqpJIlS1q6xGSxbNkylStXTgsWLFC6dOkkPb3n1uDBg7Vs2TINHTrUNG2Vrfj111/Vq1cvTZkyRSEhIerfv7/Z+vXr12vcuHG6f/++ypcvr/Hjx6tw4cIWqjZpHDp0SJGRkQnaplWrVslTTCphS1MNTpgwwdIlAEjFyN4AgNSE7E32jkb2forsbT3I3rAWBqPRaLR0EWmVl5dXoqazOXPmTDJUAwCAucjISO3Zs0fr1q3TH3/8oZCQENO/W23btlXfvn2VJ08eC1eZNCpWrKiPPvooxpRkx44d0zvvvCMfHx95eXlZqLrk8/jxY/Xr10/79+9X9+7d9emnnyowMFCjR4/Wli1b5OzsrMGDB6tLly5WPwVfQn93GY1GGQwGfnchVfPy8tKkSZPivMoAwFNkbwBAakb2JnuTvcneSN3I3taJK8AtqHXr1pYuAQCAONnb26tu3bqqW7euQkNDtWXLFq1fv15//vmnVqxYoVWrVqlq1apq27atWrRoYelyX0lISIjSp08fY3nevHllNBr14MEDC1SV/FxdXTV79mx99NFHmj9/vq5fv64jR44oICBANWvW1Oeff24zHS2S1KFDB5UrV87SZQBJiqsrgJcjewMAUjOyN9mb7A2kfmRv68MV4AAAwKR3796qVq2aqlSpopIlS8Z61m5gYKA2btyodevW6dixYzZxpm5cZ3IGBgaqevXqmjdvnqpXr26h6pJfVFSURo4cqVWrVsnOzk6ff/652rVrZ+mykhRn68IWcXUFAACAdSJ7k73J3oD1IHtbJ64ABwAAJvv27dOuXbtkMBjk7u6uSpUqqWrVqqpWrZppGjIPDw916tRJnTp10rVr17RhwwYLV41XZWdnpy+//FKZMmXS3LlztXfvXrVq1UoODvxUBFI7rq4AAACwPmTvtInsDVgvsrf14ZsVAACYHDlyRKdPn9aRI0d09OhRHTt2TNu3b5fBYFCGDBlUuXJlVa1aVVWrVlWxYsWUL18+9enTx9JlJ4mgoCD9+++/Zsvu378vSbp3716MdZKUO3fuFKktOcR2PJ07d9bjx4+1bNkyPXr0SKNGjZKdnZ1ZG2s+ZsAWVapUiasrAAAArAzZm+xN9gasC9nb+jAFOgAAeKGbN2+ahfKzZ88qMjJSmTJlUpUqVVS1alV17NjR0mW+khdNZRQ9bdHzDAaDTp8+ndylJZuXHbOkGOut+ZiHDx+ut99+W2XLlrV0KUCSYXpBAAAA20H2JntHs+ZjJnvDFpG9rRNXgAMAgBfKlSuXmjdvrubNm0uSHj58qLVr12rVqlX6/fff5evra/UhvHXr1pYuIcW1atUqQfcvsnYTJkywdAkAAAAAECeyt20iewOAZTAADgAAXig0NFQHDx7UgQMHdPjwYZ08eVLh4eFycnIyTclm7dJiQPvqq68sXQKAV9S6dWvlz5/f0mUAAAAgCZC9bRPZG7B+ZG/rxBToAADATEREhI4dO6Z9+/Zp3759On78uMLDw+Xo6KgyZcqYgnf58uXl5ORk6XIBAAAAALA6ZG8AAJIPA+AAAMDkvffe06FDhxQaGio7OzuVLFlS1apVU9WqVVWxYkU5OztbukQAAAAAAKwa2RsAgOTFADgAADDx8vKSo6OjWrRooffff18FCxa0dEkAAAAAANgUsjcAAMmLAXAAAGAyatQo7d+/X1evXpXBYNBrr72m6tWrq1q1aqpcubIyZsxo6RIBAAAAALBqZG8AAJIXA+AAACCGf//9V3v37jXdi+zu3buys7OTl5eXqlatagrlrq6uli4VAAAAAACrRPYGACB5MAAOAABe6vz589q3b5/++usvHTp0SA8ePJCDg4NKlSql6tWra+DAgZYuEQAAAAAAq0b2BgAgaTAADgAAEiQsLEybN2/Wr7/+qmPHjslgMOjMmTOWLgsAAAAAAJtB9gYAIPEcLF0AAABI3a5evarjx4/r+PHjOnHihM6ePavw8HC5ubmpTp06qly5sqVLBAAAAADAqpG9AQBIOlwBDgAATO7fv68TJ06YAveJEyd0//59GY1GZcyYURUqVFCVKlVUuXJllShRQnZ2dpYuGQAAAAAAq0L2BgAgeTEADgAATLy8vGQwGGQ0GuXh4aHKlSub/vP09JTBYLB0iQAAAAAAWDWyNwAAyYsp0AEAgEmTJk1UpUoVValSRUWKFLF0OQAAAAAA2ByyNwAAyYsrwAEAAAAAAAAAAAAANoGbhwAAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQ6WLgAAgLRg2rRpmj59eoK2+eOPP5Q3b95kqijx6tevrxs3bkiS/ve//6lr164vbN+zZ0/t2bNHkjRv3jzVqFEjWevy9fVVgQIFkmUfAAAAAIDUi+xN9gYAQGIAHACAFOHp6Slvb2+zZQEBAdq7d69cXV3VoEGDGNu4urqmVHmJtnnz5heG8Hv37mnfvn0pWBEAAAAAIK0iewMAAIkBcAAAUkSjRo3UqFEjs2X79+/X3r175eHhocmTJ1uossTLkCGDjhw5otu3bytHjhyxtvH19VVERIQcHR0VHh6ewhUCAAAAANISsjfZGwAAiXuAAwCARGrYsKGMRqN8fX3jbLNhwwZlypRJpUuXTsHKAAAAAACwDWRvAAASjgFwAABSsR07dqhnz56qUqWKSpcurcaNG2vSpEkKCgoya3f9+nV5enqqTp06sT5Oly5d5Onpqf3795uWDRs2TJ6enjpw4ID69++vMmXKqFq1alq0aFG8amvSpImkp1Oxxcbf31+HDh1S48aN5eAQ96Qza9asUceOHVWhQgWVKVNG3t7emjlzpkJCQmJt/9dff6lHjx6qXLmyKlWqpEGDBpnuixabyMhILVmyRO3bt1f58uVVvnx5vfXWW/Lx8ZHRaIzXsQIAAAAAbBfZOyayNwDAmjEFOgAAqdTkyZM1Z84c2dvbq2LFivLw8NCxY8f0008/adOmTVqwYIHy5cv3yvsZNWqUAgICVLt2bZ0/f15eXl7x2q5gwYIqXry4jhw5In9/f2XPnt1s/ebNmxUVFaXmzZtr+vTpMbaPiorSxx9/rPXr18vJyUlVqlSRi4uLDh48qO+++06///675s2bJw8PD9M2y5cv12effSZJqlSpkjJkyKA9e/bo0KFDCgsLi7GP8PBw9evXT7t27ZK7u7vKly8vR0dHHThwQMOGDdP+/fv11VdfJeTpAgAAAADYELI32RsAYHsYAAcAIBXatm2b5syZo0yZMumnn34yTWMWFhamzz//XMuXL9fAgQO1cuVKGQyGV9qXv7+/1q5dq3z58ikqKkp2dvGfIKZZs2Y6c+aMfH191blzZ7N1GzduVPbs2VW5cuVYt128eLHWr1+vfPnyae7cucqfP78kKTg4WEOGDNGOHTv02Wefadq0aZKkmzdvavz48XJwcNDs2bNVvXp1SdK9e/fUs2dPnT59OsY+fvjhB+3atUtVqlTR1KlTlTlzZknS3bt39d5778nHx0cVK1ZU+/bt433MAAAAAADbQPYmewMAbBNToAMAkArNnz9fkvTJJ5+Y3cPLyclJY8aMUYECBXTq1Cnt27fvlffVoEED09nsCQngktS0aVNJMadi+/fff3Xs2DE1bdo0zsdcsGCBJGn8+PGmAC5J7u7umjx5stKnTy9fX19duXJFkuTj46PQ0FC9/fbbpgAuSZkzZ9aXX34Z4/HDwsK0aNEiOTo6avLkyaYALklZs2bV559/Lkn6+eefE3TMAAAAAADbQPYmewMAbBMD4AAApDIRERE6cuSIDAaDGjduHGO9g4ODGjVqJElm9xVLrGLFiiV623z58qlkyZI6fPiw/P39Tcs3btwoo9GoFi1axLrdzZs3df36dXl4eKhatWox1qdPn161a9eWJB04cECSdPDgQUlS3bp1Y7QvXry48ubNa7bs1KlTevjwoV577TXlyJEjxjalS5dWlixZ5Ofnpzt37sTziAEAAAAAtoDsTfYGANgupkAHACCVCQoKUnh4uDw8POTu7h5rm+jAmRThMWPGjK+0fbNmzXTq1Clt2bJFnTp1kvQ0hOfLl09lypSJdZvowJ4nT544H/f5Y4zeJmfOnHG2v379uunvN2/elCSdO3dOnp6eLzyGmzdvKlu2bC9sAwAAAACwHWTvp8jeAABbxAA4AACpjNFolKQX3l8suo2Tk1O8HjMyMjLOdQmdeu15TZs21aRJk7Rp0yZ16tRJV65c0alTp/T+++/HuU1ijvFl91tzcDD/WRMVFSVJyp07typWrPjCbd3c3F64HgAAAABgW8je5m3I3gAAW8IAOAAAqUymTJnk6OiooKAgBQcHx3om+rVr1yRJWbJkkfRfkI4Ons+7f/9+MlX79EzyMmXK6PDhw7pz5442btwoSWrevHmc22TPnl2SzM4af170MWbNmlWSlCNHDp0/f143btxQkSJFYrR/dho4SaazynPmzKnJkycn4IgAAAAAALaO7P0U2RsAYIu4BzgAAKmMo6Ojypcvr6ioKG3ZsiXG+oiICNPyqlWrSpJcXV0lPQ3b4eHhZu0DAwPl5+eXrDU3a9ZMUVFR8vX11aZNm1SkSJEXTn2WO3du5cmTR4GBgab7jD3r4cOH2rNnjySpcuXKkqQaNWpIUqzPybVr13ThwgWzZaVLl5azs7POnj0bI6BL0u3bt9W0aVP16NFDjx49iv/BAgAAAACsHtmb7A0AsF0MgAMAkAp169ZNkvT111/r9OnTpuXh4eEaO3asrl69quLFi5umF8uUKZNy5sypsLAwLV261NT+yZMn+uyzz144DVtSaNKkiQwGgxYvXqxz58698Az0aNHHOHLkSNMZ55L06NEjffzxxwoODla9evVM9ypr3bq1MmXKpJUrV+r33383tQ8ODtaIESNinIHv6uqqDh066PHjx/r4448VEBBgto/hw4fr0qVLcnV1ZRo2AAAAAEiDyN5kbwCAbWIKdAAAUqGGDRvq3Xff1dy5c9WuXTtVrFhRHh4eOn78uG7duqU8efLo22+/NbuHWK9evTR+/HiNHz9eGzZsUNasWXXkyBFFRkaqXr162r59e7LVmytXLpUrV05Hjx6V9OIp2KJ16dJFR48e1aZNm9S8eXNVrlxZLi4uOnTokAIDA+Xl5aUvv/zS1D5z5sz68ssvNWjQIA0YMEDly5dX9uzZdfDgQUVGRqpQoUIxzrYfMmSIzpw5o3379umNN95Q6dKl5eLioqNHjyooKEgFCxbU2LFjk/bJAAAAAABYBbI32RsAYJu4AhwAgFTq008/1Q8//KCqVavq7Nmz2rFjh9zc3NS3b1/5+PioUKFCZu27dOmiiRMnqlSpUjp9+rQOHjyoqlWrasWKFTHaJoemTZtKkkqWLKkCBQq8tL2dnZ2+/fZbTZgwQSVLltSRI0f0559/KmfOnPr444/122+/KXPmzGbbNGjQQL/++qsaNGggPz8/7d69WyVKlNAvv/yinDlzxtiHs7Oz5s6dq//973967bXXdOLECe3fv1/Zs2dX//79tXz5ctN9zgAAAAAAaQ/Zm+wNALA9BqPRaLR0EQAAAAAAAAAAAAAAvCquAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABG7Jq1Sp5enom+L8uXbpYuvR4mzZtWpzHUbx4cZUtW1b169dX//79tXXrVkuXi/939OhR0+vUq1evl7YfNmyYPD09NXToULPl0Y+xd+/eJK+xZ8+epsc/fvx4kj/+syIiIuTn55es+3je2bNnNX78eDVv3lyVKlVS6dKlVbduXfXq1UuLFy9WaGhoku/zzp07Gjp0qGrUqKFSpUqpdu3a2rVrlyRp9erVatmypcqWLatKlSqpZ8+e2r9/v+k1iIiISPR+r1+/bnqcK1euJNXh4BUZjUZdvHjR0mUkyqVLl9S3b19VrVpVpUuX1uuvv65z587JaDRq3rx5atKkiUqXLq2qVavqf//7n+nf4zp16rzSfpPqM5FUzp8/H2NZ/fr15enpqeXLlyfosRK7HQAAsB70UdBHkVrRR2GOPgr6KFITa/h8ArAODpYuAEDSyZIliypUqBBj+c2bN3Xz5k05OTmpVKlSMdYXK1YsJcpLUrEdi9FoVGhoqK5fvy5fX1/5+vrK29tbkyZNksFgsFClkKSVK1ea/rxnzx5du3ZN+fLls2BF5m7evGn2g3jJkiUqW7Zssuxrz549Gj9+vBo3bqzBgwcnyz6e9/3332vmzJmKioqSu7u78ufPL0dHR925c0e7d+/W7t279dNPP2nGjBkqWbJkkuwzKipKvXr10tmzZ+Xg4KCiRYsqPDxcefLk0e+//65PP/1UkpQtWzblyJEjVb0fkPROnDihcePGqUCBApo8ebKly0mQR48eqVu3bvL395ezs7OKFi2qkJAQ5c2bV/PmzdPEiRMlSXny5FGmTJmUN29eC1ec9Pz9/TVx4kQdOnRIO3futHQ5AADAStBHQR9FakUfxX/oo6CPIrVJ7Z9PANaDAXDAhtStW1d169aNsXzatGmaPn26smXLpiVLlligsqT3omMJCwvTd999p59//lnr1q1TlSpV1KFDhxSuENFCQkK0adMmGQwG1apVS7t379ayZctinJlpSatWrVJUVJTq1q2rnTt3atOmTRo+fLgyZsyY5Pv68ccfU/TM6pUrV2rGjBlydXXVhAkT9MYbb8je3t60/uLFixoxYoSOHTumnj17auPGjcqcOfMr79fPz09nz56VJM2aNUu1a9c2rZs2bZokqWLFilq4cKEcHJ7+HAkJCdHGjRslybQsMXLkyGF6nNy5cyf6cZB0fv31V504cUIFChSwdCkJdujQIfn7+8tgMGjVqlUqXLiwad2mTZskSc2bN9c333xjWv7w4UOVLVtWjo6Or7TvMmXKJMln4lXt2bNH69evV44cOSxWAwAAsD70UTxFH0XqQh+FOfoo6KNITazh8wnAejAFOgCb4+TkpE8++URlypSRJC1atMjCFaVtmzdvVnBwsIoWLapWrVpJehrmwsLCLFvY/zMajfLx8ZEktW3bVgULFlRoaKhpmbWbNWuWJOmTTz5RkyZNzIKlJBUuXFgzZ85UlixZFBgYqIULFybJfgMDA01/rlq1aqzrKlasaBYiXVxcVLhwYbMBxsRwdHQ0Pc6rDkAC0e/XrFmzxnhvRq+rUqWK2fL06dOrcOHCyp8//yvtO6k+EwAAALAc+ihSF/ooLIs+CvooXiS1fz4BWBcGwAHYrIYNG0qS/vnnHz1+/NjC1aRdq1atkiTVqVNH9erVk7OzswICArRlyxYLV/bUgQMHdO3aNTk6OqpGjRpq2rSpJGnZsmUWruzVPXjwQFevXpWkF06XljlzZtPn5cSJE0my78jISNOfnZyczNZFRUXFuhxIjV70fuW9DAAAgPiijyJ1oI/CcuijwMuk9s8nAOvCADgAk99//129evVStWrVVKpUKdWqVUv9+/fXX3/9FWt7T09PeXp6mt2X6FldunSRp6enaSohSbp+/bo8PT1Vs2ZN3b59W71791aZMmVUpUoVDRkyJEmPx93d3fTnR48eme3f09NTV65ciXW7+vXry9PT0/SjS5L2798vT09PdejQQRcvXtQ777yj0qVLq3r16qb7v0Zvd+bMGe3YsUNvv/22ypcvr6pVq6pr167aunVrnLVGRkZq+fLl6tKliypXrqxSpUrp9ddf18cff6xTp07Fuk1oaKhmz56tt99+W9WrV1fp0qVVr149DRkyRIcPH45zX2fPntWnn36q119/XaVKlVLVqlXVs2dP/f7777G2f/Y5e/Y5iY+rV6/q4MGDkqRGjRrJzc1N9erVk6RUM9Vd9L2FqlWrpvTp08vb21uSdOnSJe3bty/WbRLzPlq1apU8PT114MABSU/Pevb09NSwYcPMtrt//76mT5+uVq1aqXz58ipbtqyaNm2qiRMnyt/fP0HH9uyZy9u3b39h2/79+2vDhg2aMmWK2fJhw4bJ09Mzzummoo+rfv36kv57brp27WpqE/1cRT9W9HMwffp00zrpv8+Zp6enIiIiYuzr7NmzGjVqlBo2bKjSpUurcuXK6tatmzZv3mzW7mWvz7Vr1zRmzBi98cYbKl26tCpVqqSOHTtq+fLlZqH4+edgyZIlun79uoYPH646deqoVKlSqlOnjv73v//p+vXrcT63hw4d0pAhQ1SvXj2VKlVK1apVU58+fcy+W3fv3i1PT0+VLFlSAQEBsT5OaGioKlasKE9PTx0/fjzGsSb08/ngwQPNnj1bnTp1UtWqVVWyZElVqlRJbdq00bRp03T//v0Y2yT0ez/6NY2+WmHdunXy9PRUly5dYhzb/Pnz1aFDB1WoUEGlS5dWw4YN9dlnn+ny5cux7uv+/fv69ttv1aZNG1WpUkVly5bVG2+8of/97386d+5cnLV9++23sT7etGnTzGqLrn348OGSpBs3bpiOP/rzfePGDUnS8OHDzT4H0Z+LOnXqxLqv+Lwnnq3hRZ+JhHyfRz8Hu3bt0tmzZzVw4EDVqFFDpUqVUoMGDfTll1/q3r17Zts8+xzcvn3b7DP7vMOHD6tPnz6qWrWqypQpo8aNG2vKlCkKDg6Otf2rbgcAAGwbfRRP0Udhjj6KmOij+A99FNbbR2ENn08A1oUBcAAKDw/Xhx9+qAEDBmj37t1ycHCQl5eXIiIi5Ovrq+7du+vLL79M0n2GhYWpZ8+e2rt3rwoXLiyDwaA8efIk6T6if1Q6OzvLw8MjSR7z3r176tatm86cOaMiRYroyZMnKliwoFmblStX6v3339epU6dUqFAhpUuXTvv379cHH3yg8ePHx3jM4OBgderUSSNHjtSBAweUPn16eXp66uHDh1q7dq3atWunefPmmW0TFham7t27a8qUKTpx4oQyZcqkokWLKjg4WOvXr1enTp20fPnyGPv65Zdf1KZNG61evVr3799X0aJF5erqqj179mjAgAEaMmRIrD+uE2vlypUyGo3Knz+/6ezeFi1aSJIOHjyoixcvJtm+EiM4OFi+vr6S/qurcOHCKl68uCRp6dKlSbavLFmyqEKFCqZOj1y5cqlChQpm759z586pRYsWmjZtms6dO6c8efKoUKFCunr1qubOnasWLVpo//798d6nq6urKlSoIOnp4N6nn36qgwcPxvoaZ8uWTUWKFHnlz0q6dOlUoUIFFStWzLSsQoUKpmON7TmIrvFFfvnlF7Vr106//fab7t27Z3rv7tu3TwMHDoxzUPN5W7ZsUYsWLbRkyRL5+/vrtddeU+bMmXX48GGNHDlSPXv2NHVGPe/06dNq2bKlVq9eLRcXFxUoUEC3b9/WihUr1L59e928eTPGNt988406d+6s9evX6/Hjx/L09JSdnZ22b9+u7t27m87ir1mzpnLlyqWIiAitX78+ztqDg4NVuHDhF54tHx+XL1/Wm2++qSlTpujYsWPKnDmzPD09ZW9vr1OnTmn69Ol666234nwu4it9+vSqUKGCsmTJIunpmfzPvz9u3bql1q1ba8KECTp+/LiyZcumokWL6s6dO1q2bJnefPNN0/3SogUFBal9+/aaNWuWzp8/r2zZsqlQoUK6e/euVqxYobZt22rXrl1JUnv0Z9TJycn0fnVwcFCFChVMVwhEv7dLlSr10seN73viZV7l+3zXrl1q166dtm7dKg8PD+XKlUvXr1/XggUL9Pbbb5sNPD/7HDg6Osb5mfXx8VGnTp20d+9e5cqVS5kzZ9bly5dNnaChoaGx1pLY7QAAgO2ijyL+6KNIGPoo/kMfBX0UqamPQkr9n08A1ocBcAD66quvtGXLFrm6umrq1Knas2ePVqxYoT///FOfffaZHBwctGDBAs2fPz/J9vngwQPduXNHq1evlo+Pj3bv3q3evXsn2ePfu3dPa9askfT0R9uzZ5m+imvXrsnFxUW///67qe7oe9JEW7RokWrUqKEdO3Zo1apV2rlzp8aNGycHBwctWrQoxg/HoUOH6ujRo8qWLZsWLlyobdu2aeXKlfrrr7/Ur18/RUVF6auvvjKFIOnpj8KjR4+qYMGC2rp1qzZt2qRVq1Zpz5496tSpk4xGoyZOnKgnT56Yttm1a5fGjRsnOzs7/e9//9OhQ4fk4+Oj7du3a/78+cqSJYvWr19vdja8JOXIkUMbN27Uxo0b9cYbb8T7uYqKijK9BtFnLEtS3bp1lSlTJkmWP4Nzw4YNCgkJkYuLi9mxvfnmm5KkrVu36u7du0myr7p162rJkiUqUaKEJKlly5ZasmSJ+vTpI+lp0O3Vq5f8/f1Vvnx5+fr6av369Vq9erV27typevXq6f79+/rggw907dq1eO931KhRcnV1ldFo1OrVq9W5c2dVqVJFvXv31uzZs3X8+HHTdF9JIVu2bFqyZIlGjhxpWrZkyRLTsT77HLRt29a07kWOHDmi8ePHKzw8XL1799Zff/1l+mxNmDBBdnZ2mjVrlvbs2fPCxzl79qw++ugjPXnyRH379tWBAwe0Zs0a+fr6ysfHRwULFtRff/2lMWPGxLr9b7/9piJFimjjxo36/ffftWHDBi1dulRubm66d++e5s6da9Z+w4YN+vHHH2VnZ6cRI0Zo7969WrlypXbv3q1BgwZJksaOHauLFy/Kzs7O9F0S/bl53urVqyVJbdq0MS1L7Odz1KhRunnzpsqVK6ft27ebvkP27duniRMnys7OTn5+fqZ9JlaJEiW0ZMkS05XQNWvW1JIlSzRq1ChJT68s6dOnjy5duqRChQppzZo1+v3337Vq1Sr9+eefat++vZ48eaJPPvnEdEa5JP3000+6cuWKKlSooJ07d2rDhg1avXq1du3apUaNGik8PPyVO0Wja3///fcl/ffeXrJkiXx9fbVkyRJly5ZNkvT+++9ryZIl+v7771/4mAl5T7xIYr/Poy1atEg1a9bU9u3btWHDBm3ZskU//PCD7O3tdeXKFa1YscLU9tnnIHPmzHF+Zg8fPqwWLVpo165dWr16tXbs2KFJkyZJks6fPx/n2f+J3Q4AANgu+ijijz4K+igSiz4K+ihSUx+FNXw+AVgfBsCBNO7WrVumM0jHjRunJk2amNbZ29urU6dOGjhwoKSnUwG96tWAz+rYsaOKFCki6emVdc9OB5YYRqNRgYGB2rZtm959910FBQXJ0dFRAwYMSIpyTd5//33lyJFDkuTm5qZ06dKZrc+dO7dmzJhhuuLRYDCoQ4cO6tmzp6Snz2O0Y8eOmaZ9+v7771W1alXTOicnJw0cOFBvvfWWJGny5MmmdWfPnpX09J44uXPnNi1Ply6dhg0bplq1aumNN95QUFCQad0333wjo9GooUOHqmvXrrK3tzetq169uiZMmCBJmjdvngIDA03rHB0dVbhwYRUuXFjp06eP9/O0Z88e09mm0WEt+vGi32dr1qyx6NV90VOLNWjQQG5ubqblLVq0kJ2dncLDw01tktuvv/4qf39/Zc2aVT/++KPy5ctnWpc1a1Z9//33KlasmB4+fKhZs2bF+3FLlCih5cuXq2LFiqZlwcHB2rlzp6ZMmaIOHTqoVq1a+vbbbxUSEpKkx5RUfvjhB0VFRalp06YaMmSI2WeuTZs2ateunSS9dKBs2rRpCgsLU+fOnTVo0CCzxylRooS+//572dvba926dbpw4UKM7R0dHTV9+nQVKlTItKx8+fKmsHfkyBGz9tGf9R49eqhbt26mz5y9vb369u2rmjVrKjIy0hQa27ZtK4PBoFOnTsUYAL19+7b27t0re3t7tWzZ0qymhH4+AwICdP78eUlPv/ezZ89uWmcwGNSqVStVqVJFkmKdSjwpbd68WWfOnFG6dOk0Z84ceXl5mda5u7tr/Pjxql27tsLDw83OoI/+DmzcuLEyZ85sWp4+fXqNHDlSNWrUUOXKlVPd1cMJfU/EJbHf59GyZMmi77//3uy1b9CggelEheffy/FRuHBhTZw40dQ5IT397q9Zs6YkxTntZWK3AwAAtok+ioSjjyJ+6KNIGPoo4kYfRdL2UUjW8fkEYH0YAAfSuF27dikiIkLZsmVTs2bNYm3TuXNnOTo66uHDh6b74iSFZ3/sJtSz92KN/s/Ly0vVqlVT3759debMGaVPn17fffed2YBKUnhZ3R06dJCrq2uM5W+//bYkyc/PT5cuXZL03z2PypQpE+cUS++++66kp9Ol/fPPP5JkmpJqxYoV+vXXX83u2erk5KSff/5ZEyZMMIXg69ev68yZM5LMf0g+q27duvLw8FBoaGic91RLiOgf+mXKlIkxBVt0DQ8ePNCGDRteeV+JcfHiRdMVpc8/J9mzZ1e1atUkScuWLUvSs4/jsm3bNklSq1atlDFjxhjrnZycTPcm3rZtm4xGY7wfu0iRIvr111+1evVqffjhhypfvrwcHR1N6wMCAjRr1iy9+eabunXr1iseSdIKCQkx3ecsuqPleYMGDdLmzZtN97qLTVhYmGlK7Lg+A9HfI0ajMdb7kZUqVcp0xe+zXnvtNUnSw4cPTcuuXLli+pxHf/af98UXX2jr1q0aPHiwJClfvnyqXLmyJMUYAF2zZo2ioqJUp06dWGtIiCxZsmjfvn06fvy42TRw0SIjI02dfckdLqPf9/Xr1zfrUHlWjx49JEkHDhwwPcfR3yk//fST1q5da/bc58iRQ/PmzdO4cePk7OycjNUnTGLeE7FJiu/z6tWrx+gYlZ4ORkvm7+X4atCggVmnZbTo++c9f2/xV90OAADYJvooEo4+ivihjyJh6KOIHX0UTyVlH4WU+j+fAKxT0sy3A8BqRf/4KV68uOzsYj8nxtXVVYUKFdI///wjPz8/1atXL0n2/So/kJycnGLca9XOzk5ubm7KkSOHypYtqyZNmrzyGduxeVndZcqUiXV57ty5lT59ej18+FCXL1/Wa6+9Znr+S5YsGefjFSxYUO7u7goODpafn5+KFSum9u3ba8WKFbpw4YLGjh2rzz//XMWLF1f16tVVu3ZtVa5c2WxKteirPSXpgw8+iHNf0dORRdeVWEFBQfrjjz8kxf5DvmLFisqXL5+uXbumJUuWqG3btq+0v8SInuI3S5YspisNn9WyZUvt3btXN27c0O7du1W3bt1krcfPz0/Si98L0evu3bunoKCgBN8Lq3jx4ipevLj69++vkJAQHTlyRHv27NGaNWsUEBCgq1evauDAgfG+B3FK+PfffxUeHi5JcXYUZcmSxXQ1Q1wuX76ssLAwSU+n9Iq+d3Ns+5Ni/wxEd9Y8L3qQNSIiwrQs+v5+rq6ucQ7s5sqVK8aytm3b6sCBA1q3bp0++ugjGQwGSf9NOfbs1GKvytnZWTdv3tTx48d19epVXbt2TRcvXtSZM2f0+PFjSUr2jpWEvO8jIyN15coVlSpVSj179tTmzZt1584dffzxx3JwcFDp0qVVo0YN1alTR2XLljU9d6lFYt8Tz0uK7/OEvJfjK67HjO5sjetkisRuBwAAbBN9FAlHH8XL0UeRcPRRxI4+iqTvo7CGzycA68QAOJDGBQcHS9JLp6WJDmlJOb3Yq1yZF30PH0t4Wd2xnRkbzdXVVQ8fPtSDBw8kxf/5d3NzU3BwsOn5d3d317JlyzR37lytX79eV65c0enTp3X69Gn9/PPPypIliwYNGqQOHTpIMj/rMz5T2ybm6r9nrVu3zvRDfvz48Ro/fnycbf/++2+dOnXqhaEqqUVERGjt2rWSnp5Z/LJ9L1myJNnDZXzeC892ljx69CjB4fJZLi4uqlmzpmrWrKmBAwdqxIgR2rBhg44dO5bir8eLPDtF3rNTwCXUs+/pkydPJqh9tGfPSH+Z6LoTWnOTJk00btw43bx5U/v371e1atX0999/68KFC/Lw8Eiyzr1Lly7p66+/1s6dO80Gud3d3VWpUiX5+/ubpjFMTol530tPg/maNWv0448/avPmzbp9+7aOHj2qo0ePasaMGcqTJ49GjBihhg0bJu8BJEBi3xPPS4rv84S8l+MrtivKk3M7AABgm+ijSDj6KF6OPoqEo48idvRRJH0fRWr/fAKwXgyAA2lc9A+fl4WJ6DAU2w+luKY5ir6CMLVKrrpfdI+i6AARfSZofJ//6PXPPv/u7u4aMGCABgwYoCtXrmj//v3av3+/du7cqYCAAI0aNUqZMmVSo0aNTFfSZcqUSfv370/8wcVT9D2pXF1dXxiW/P39ZTQatXTpUo0bNy7Z64q2Y8cO3b17V9LTqcTiulL08ePHevjwoXbt2qWbN2/GejZsUr2P3NzcdP/+/Re+F+7fv2/W/mU+++wz7du3T61bt1bfvn3jbOfs7KzPP/9cvr6+Cg8Pl5+fX4wwEddxJvc9uZ6dqi84ONjsfs+JfZwjR4688iBkfPeX0A45Z2dnNW/eXMuWLdO6detUrVo105nV3t7eSTJwGRAQoM6dOysgIEC5c+dWhw4dVKJECb322mvKmzevDAaDhgwZ8sIB8KR830sv/g6M/vfn2fbS0+/RESNGaMSIETp37pwOHDigffv2ac+ePbpx44YGDBigpUuXxnnFy6vWnlCJfU/E9Tgp9X0OAACQkuijiIk+ildHHwV9FEmFPoqk76NI7Z9PANaLe4ADaVz0fWHOnDkT51S3wcHBunz5siSpQIECpuXR9+yMPkvvef7+/klYadJ4dsqt2OoODQ195TOLo++B9byrV6+afmgWKVJE0n/P/6lTp+J8vIsXL5qCSvTzHxAQoEOHDpnuq1WgQAF16NBBU6ZM0c6dO01Tr0X/KC1UqJCkp2d83rlzJ859HTp0SBcvXnylKWfPnj1rupfXhAkTtGvXrjj/iz5jef369abgnRKi7y1UtGhR7d69O8765s2bJ+np1Mu//fabafvkeB/F570QfVZwxowZ43Vm9ZMnT3TlyhVt3br1pW3d3d1NgevZABf9OY+e4ut5yf05z5cvn6mGZ6fJe9bff/+td955R8OHD48zBD/7OBcuXIhzfydOnNC5c+deeZAy+p5Vjx8/1vXr12Nt88cff6hLly76+uuvzZZHT+f1xx9/KDIy0jQVWFJN87Vy5UoFBAQoU6ZMWrlypfr27au6desqX758po6W27dvx7ptUn/vx+d9//fff0uSDAaD8ufPb6pv3759pu8qT09PdenSRTNmzNAff/yhPHnyKDIyUuvXr0+22hPqVd4Tz0rJ73MAAICURh+FOfoo6KOgj4I+Clvuo7CGzycA68UAOJDG1alTRw4ODrpz5442btwYa5vFixcrIiJCLi4uqlKliml59I/b2O5Dc+LEiVQZLjNlymQa4Imt7m3btiXq3qfPWrVqVaxBPXo6tHLlypnO0o2eKujEiRNxTvs1f/58SVLOnDnl6ekpSerZs6c6deokHx+fGO3d3NxUrlw5SU9DkSQVLlzYFEwXL14c634OHz6sTp06qVmzZjp27Fg8jjR20fet8vDwUP369V/Y9p133pH09Ad4dBBObgEBAdq5c6ekl/9YL126tCmoL1++3PTeeJX3UVxncke/F1avXm12FnW0sLAw03uodu3aL6w7WvS9k06ePGkK1HHZs2ePgoKClClTJpUtW9a0/EWf88jISG3bti1etSSWu7u7KlasKOm/s4Kft379eh05ckTXr1+P8/l1d3c3fX8tXLgw1jbXrl1Tx44d9eabb2rz5s2vVHfhwoWVJ0+eF9bt4+OjAwcOmDqJopUtW1ZFixZVYGCgFi1apH///VclSpSI8/5iCRUddnPnzh3r2eoXLlwwfQdEf4dES+z3fvTr8nz4j37fb9u2TdeuXYt12+jXq1y5csqQIYMiIiLUqlUrdevWTTt27IjRPmvWrCpWrJgk83uYv6j2R48e6a+//op1/0nlVd4Tzz9OSn2fR4u+/2ZcnTcAAABJhT4Kc/RR0EfxLPoo6KNIrNTaR5HaP58ArBsD4EAalytXLtM9mEaNGmX2gyoqKkq//vqrpk2bJknq16+f2VQ00T/45s2bp4sXL5qW//333/roo49SovwEc3Z2VokSJSRJ06ZNM7vKcc+ePfr8889feR8nT57UqFGjTNMuRUVFafHixaaQOHjwYFPb8uXLm85gHDBggNnUX2FhYfr+++9NZ/V+8sknph/OLVu2lCRNnz5du3btMtv/oUOHTD8En70n1MCBAyVJs2fP1pw5c8zOCj506JBpfbly5VStWjXTuvDwcF28eFEXL1586RnDYWFhWrdunaSnUyE5OTm9sH2dOnVMP8CXLl36wrYv8u+//+rixYv6999/X9p29erVioiIkKOjo+l5fJHoH9h37twxneX6Ku+j6Gmnbty4EWM/OXLk0N27d/X++++bDQYGBARo4MCB+ueff+Tm5qb+/fu/tG5Jqlmzpho3bixJGjlypL744osYZ/o+efJEK1eu1KBBgyQ9fZ88O/VW9Of8/PnzWrhwoWkA7P79+xoxYkScVxMkpX79+slgMGjNmjWaNWuWWXBfvXq1Fi1aJEnq1avXCx+nf//+sre31/r16zVhwgSzM6j/+ecf9e7dW+Hh4cqTJ4+8vb1fqWaDwaB+/fpJkubMmaPly5ebnrvIyEjNnj1bW7ZskYODg7p37x5j++iOj6lTp0qS2rRpE+t+EvL5jBZ9Jv/Zs2f1+++/m5YbjUbt2rVLvXr1Mp1N//z0cYn93o9+Tz3/GW3SpIk8PT315MkTvffee2bTrgcHB2vUqFHas2ePHBwcNHToUElPr25o3ry5JOmLL77QiRMnzB7T19dXe/bskfT0O+b52nfv3i1fX1/Tcn9/fw0YMEABAQFx1p8UXvU98azEfp8nVvT31oMHDzjTHgAAJCv6KOijiN6GPorY0UdBH0VipMY+Ckt9PgGkHdwDHICGDx+u27dv648//tDAgQOVPXt25cyZU9euXVNgYKAkqXPnznrvvffMtuvbt692796tO3fuyNvbW0WKFNGTJ090+fJl5cuXT23bto3zrEJLGjRokPr27asLFy6oYcOGKlKkiO7fv68bN26odOnSqlChgilEJEaxYsW0YsUKbdq0Sa+99ppu3bqlO3fuyM7OTsOHD48xGPH111+rT58+Onr0qLp27ao8efIoc+bM8vPzU3BwsOzt7TVo0CDTgI8kde3aVXv37tWuXbv03nvvKXv27MqePbsCAwNNoaV+/fpq3769aZvmzZvr8uXLmjZtmiZPnqwff/xRBQsW1L1790zbFCpUSD/88INZfbdv31azZs0kPZ2OKK4fuZK0detWBQUFSYrfVEh2dnZ666239M033+iff/7R4cOHTWEmIT799FMdOHBAVapUMQWNuESfZfz666/H615NzZs318SJE/XgwQMtXbrUFNYS+z4qUaKEtm/frnXr1uncuXOqVKmSRo8erQwZMmjWrFnq3bu3jh49qkaNGqlIkSJycHDQ+fPnFR4erkyZMmny5MmmqaviY/LkyXJ1ddXq1au1cOFCLVy4ULlz51aWLFlMn9ewsDA5OjpqyJAh6tixo9n2devWVaVKlXTo0CF98cUXmjt3rjw8PHTp0iWFh4erf//+pg6o5FK9enUNHz5cX331lb799lvNnTtX+fLl061bt0z3Sfvggw/MOlNiU7FiRY0bN06jR4/W/PnztXTpUhUuXFiPHj3SlStXZDQalTVrVv38888vDV7x0a5dO124cEHz5s3TyJEj9d133ylnzpy6fv26goKCZG9vrzFjxsR61nTLli01ZcoUPX78WI6OjmrRokWs+0jI5/PZun799VdduXJFAwYMUJ48eeTh4aGbN28qICBAjo6OqlKlig4cOBBjKvTEfu8XL15c0tN7mzVp0kRFihTR9OnT5eDgoB9++EHvvfeeLl26pJYtW6pgwYJyc3MzTXXo7OyssWPHqlKlSqbHGzx4sA4fPqzTp0+rffv2pmPw9/c3XdnzzjvvmA2At27dWosXL5afn5/69++v/Pnzy9XVVRcvXpS9vb369OmjWbNmvfT5exWv8p54VmK/zxPL09NTdnZ2Cg0NVZMmTZQ9e3b9/PPP8ZrmEAAAIKHoo6CPgj6KuNFHQR9FYqW2PgpLfT4BpB1cAQ5ATk5OmjFjhr799lvVqlVLYWFhOnPmjFxcXNS8eXMtXLhQo0aNijFtT/HixbVixQp5e3src+bMunTpkiIjI/Xuu+/Kx8dH2bJls9ARvVidOnX066+/qmHDhnJ1ddWFCxeULl06DRgwQL/++qvp7NfE6tq1q7755hsVKlTIdOZp48aNtXTp0ljPosyUKZMWLVqkcePGqXLlynr48KHOnTsnDw8PtWvXTitWrFDv3r3NtrG3t9eMGTM0YsQIlS9fXqGhoTp79qxCQkJUq1Ytff311/rhhx/M7gMlPf0BvmzZMnl7e8vd3V1nz55VYGCgSpQooYEDB2rlypXKkiVLoo89OriVLFky3lMhtWvXTo6OjpKS/wzO48ePm+6tFN97Fbm4uKhVq1aSpL/++st0r7nEvo/ee+89tW/fXpkyZdLly5d17tw507oSJUpo/fr16tevn4oWLapr167p8uXLKlSokPr06aO1a9fGe2qxaE5OTvrqq6+0fPlyvfvuuypZsqTCwsJ09uxZ3bp1S4UKFVLPnj21du3aGO8z6WnA+PnnnzVo0CAVLVpUAQEB+vfff1W9enUtWbLklc9Cjq9u3bpp2bJlatGihdKlS6dz584pIiJCdevW1bx58zRgwIB4PU7btm21Zs0avfXWW8qWLZvOnz+vmzdvqnDhwurVq5fWrl1ruh9dUhg2bJjmzZunBg0ayGg06uzZs7K3t1eTJk20bNkysw6gZ2XOnNk0eFu/fv0kHWh0d3c3fa8ULVpU9+7d0/nz5+Xu7m7qFPzyyy8lPb1K/NmrFhL7vd+qVSv16tVL2bJl0/Xr183u6Zg3b16tXLlSn3zyicqUKaM7d+7o4sWLypUrl7p27ao1a9aYPoPR3NzctGjRIg0YMEAlS5ZUUFCQzp49K6PRqAYNGujHH3/UmDFjYmyzbNky9ezZUwUKFNDNmzd19+5dNW7cWD4+PqpatWqSPccvktj3xPOS+/v8WQUKFNCECRNUsGBBBQUF6ebNmzGuEAEAAEgq9FHQR0EfRdzoo6CP4lWkpj6K1P75BGD9DEZu5gcASaJ+/fq6ceOGxo8fH+8BDCSdcePG6erVq5ozZ46lSwGSRJs2bXTq1CnNnj37pWeOAwAAAMCz6KOwLPooYGvoowBgbbgCHABg9aKionTo0CEVKVLE0qUASeLUqVM6deqUcuXKpVq1alm6HAAAAABAPNFHAVtDHwUAa8Q9wAEAVu/zzz9XQECAunTpYulSgES7du2aJOnu3bsaNmyYpKfTFdrb21uyLAAAAABAAtBHAVtAHwUAa8cAOADA6r399tsaMGCAMmfObOlSgETbuHGjvvnmG9PfixUrps6dO1uwIgAAAABAQtFHAVtAHwUAa8cU6AAAq+fl5UWwhNXz8vJS9uzZ5erqqoYNG2ru3LlycnKydFkAAAAAgASgjwK2gD4KANbOYDQajZYuAgAAAAAAAAAAAACAV8UV4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjhYugBrYTQaFRXFbPEAAAAAAHN2dgYZDAZLl2ETyN4AAAAAgNgkJHszAB5PUVFG3bv3yNJlAAAAAABSmcyZ3WRvzwB4UiB7AwAAAABik5DszRToAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvgYOkCAAAAAAAxRUVFKTIywtJlpHn29g6ys+PccQAAAACwRWTv1CGpszcD4AAAAACQihiNRj14cE8hIcGWLgX/z8XFXRkyZJbBYLB0KQAAAACAJED2Tn2SMnszAA4AAAAAqUh0AHd395CTUzoGXS3IaDQqLOyJgoMDJUkZM2axcEUAAAAAgKRA9k49kiN7MwAOAAAAAKlEVFSkKYC7u2ewdDmQ5OSUTpIUHByo9Ok9mA4dAAAAAKwc2Tv1SersTXIHAAAAgFQiMjJS0n/BD6lD9OvBfeEAAAAAwPqRvVOnpMzeDIADAAAAQCrD1GupC68HAAAAANgesl7qkpSvBwPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGyCg6ULAAAAAABYzrlzZ/XDD1N19uxpRUUZVaJEKfXu3U8lS5aSJB08uE/z5v2kixfPy97eQVWqVFPfvv2VI0dOSdLGjev05ZdjtXz5WuXKldv0uO3aeat8+Yr63//GSJJq1aqkd9/trb179+jatSt6550u6t69l27cuK6ZM6fp8OGDMhqNKlWqtPr1G6jXXissSXry5Il+/nmWtm71VWDgPeXPX0Bdu76rBg0apewTBQAAAABAIpG9UxZXgAMAAABAGvXoUbCGDOmvjBkzafz4iRo79kuFhoZoyJAPFRwcrN9/36jBgz9UtmzZNGbMF+rff7BOnfpbffq8q8DAewne34IFP+v11+trzJgvVLv267p7967ee6+brlzx05Ahn2r06HF68OCBBg3qp6CgIBmNRo0Y8bFWr16lt97qqK+++kalSpXR6NEjtGnT+mR4RgAAAAAASFpk75THFeAAAAAAkEb5+fkpKChQ7dq9pTJlykmSChQoqDVrVio4+KF++GGqKlWqorFjJ5i2KVOmnDp3bq8lSxarX78BCdpfiRKl1Llzd9PfZ8yYqidPQvXddz8oS5askqSiRb30/vvddfLkCaVL56T9+/dq7NgvTWedV61aXaGhIZo1a7reeKOJHByItQAAAACA1IvsnfK4AhwAAAAA0qjXXiusTJk89OmnH2ny5Anas2eXsmTJqn79Bio0NFQBAQFq1Kip2TZ58uRVyZKldfTooQTvr3DhImZ/P378qEqVKmMK4JKUNWtWrVy5XrVq1dGhQwdlMBhUvXotRUREmP6rWbOuAgLuys/vYuIOHAAAAACAFEL2TnnWNVwPAAAAAEgyrq6u+uGHOVqw4Gdt3eqr1atXytnZWY0aNVWTJs0lSZkzZ4mxXZYsWXTu3LkE78/DI7PZ3x88uG9277LnPXhwX0ajUY0a1Yl1/d27d1S0qGeC6wAAAAAAIKWQvVMeA+AAAAAAkIblz19Qo0aNU2RkpM6cOaXNmzdq9eoVypo1myTp3r2AGNsEBAQoU6ZMkiSDwSBJioqKMmsTEvL4pft2d0+voKCgGMsPHz6onDlzyd09vVxcXDVt2qxYt8+TJ99L9wEAAAAAgKWRvVMWU6ADAAAAQBq1fftWtWjRUAEBd2Vvb69Spcpo6NBhcndPr3v37ilLlizy9d1kts2NG9d18uQJlSlTVpLk6uomSbp9+5apzdWrl3X//v2X7r9s2XI6deqEAgPvmZYFBQVp6NAB+vPPXSpXroJCQh7LaDTKy6uE6b9Lly5q7tw5ioyMTIqnAQAAAACAZEP2TnlcAf6K7OwMsrMzJNvjR0UZFRVlTLbHBwAAAJB2lS5dTpGRURo+fKg6d+4uNzc3/fGHrx49Clb9+g1VokRJffnlWI0ePVxNmrTQ/ftBmjt3tjJkyKi33uokSapYsbKcnZ01ffq3eu+9fnr8+LHmzXva5mU6dOioTZs26KOPPlTXru/KySmdFi2apyxZsqpJk+Zyd0+vcuUqaNiwIerevZcKFCioM2dO6eefZ6tq1WqmM+GReOHh4Vq0aJF8fHx0+fJlubq6qnTp0urWrZtq164do33VqlVjvXIg2okTJ5QuXbokr5PsDQAAAMBakb1TnsFoNJLw4iEyMkr37j0yW2ZnZ1CmTK6yt0++C+kjI6MUFPSYIA4AAACkAeHhYQoIuKksWXLJ0dEpRfZ55swpzZkzU2fPnlFoaKhee62wunTpobp160mSduz4Q4sWzdelSxfk5uamqlWrq3fvD5QjR07TY+zbt1ezZk3XlSt+ypkzl3r06K3NmzcoS5Ys+t//xkiSatWqpB493lPPnu+b7f/Klcv64YepOnLksBwdHVW+fAX16zdQefLklSSFhITop59mavv2PxQYeE9Zs2ZXw4aN1L17r2QZaI3Ny16XzJndkjUXJhej0aj+/ftry5YtypAhgypUqKAnT57o0KFDCg8P16BBg9S3b19T+xs3bqh+/frKkSOHqlSpEutjTpgwQY6OjomuiewNAAAAILmRvW0/ezMAHk+xhXAHBzt5eLhpxpI/dcP/5VMMJFSe7Bn1wTs19eBBiCIjo16+QSJwljsAAACQelgihOPlbHUAfMmSJRozZoyKFy+uefPmycPDQ5J09uxZderUSY8ePdKGDRtUuHBhSdLWrVv1wQcfqFu3bhoxYkSy1GTJ7B0Y+EgREcmTvQEAAACkHmTv1CkpszdToCeBG/73dflGYJI/bsb0zjJGRSlDBpckf+xoUVGRCgwMYRAcAAAAANKYNWvWSJKGDRtmGvyWJC8vL3l7e2vJkiXatWuXaQD81KlTkqSSJUumfLFKvuwdLTlPYuDkcwAAAABIOQyAp2Juzk4y2NnJb/0chQTcTPLHd8mSS4VavCc7OwNBHAAAAADSmAULFsjPz09FixaNse7x48eSJHt7e9OyM2fOSJJKlSqVMgWmEE4+BwAAAADbwgC4FQgJuKmQ21ctXQYAAAAAwIakS5dOXl5eMZZv3bpVmzdvlouLixo1amRafurUKTk7O+vkyZMaOXKkzp8/L4PBoAoVKqhfv34qW7ZsSpafZDj5HAAAAABsCwPgAAAAAACkcffv39fIkSN14cIFXbp0Sbly5dKECROUM2dOSVJAQID8/f0lSZ988onKlSunqlWr6p9//tGOHTu0Z88eTZo0Sc2aNbPkYbwSTj4HAAAAANvAADgAAAAAAGnctWvX5Ovra/q7wWDQhQsXVL16dUn/3f/bw8NDM2fOVPny5SVJRqNRCxYs0IQJEzR8+HBVqFDBNGieWA4O5vfiTs57c6ckWzkOAAAAwNpFRRksXQJewN7eECMXJhQD4AAAAAAApHGFChXSgQMHZDQatXfvXn3xxRcaP368goOD1bdvX9WuXVu7d++W0WhUjhw5TNsZDAZ1795dBw8e1NatW7VixQp9+OGHia7Dzs4gDw+3pDikVCc57zEOAAAAIP5CQ+11965dkgy0IulERRlkZ2enjBld5ezs/EqPxQA4AAAAAABpnJvbf4POzZo1U86cOdWxY0fNnj1bXbt2lZubm7Jnzx7n9vXq1dPWrVt18uTJV6ojKsqoBw8emy2zt7ezicHjBw9CFBkZZekyAAAAgDQvLOyJoqKiFBlpVEQEv9FTi8hIo6KionT//mOFhETGWJ8hg0u8Z9ZiABwAAAAAAJipUKGC8ufPrytXrujy5csqWbLkC9tny5ZNkhQSEvLK+7bVDqjIyCibPTYAAADAmkRGGi1dAl4gKU5M4Lp+AAAAAADSmJCQEH311VcaOnSojMbYO3+cnJwkSREREVq2bJkGDRqkrVu3xtr22rVrkvTK9/8GAAAAAOBVpdorwMPDw7Vo0SL5+Pjo8uXLcnV1VenSpdWtWzfVrl07RvuqVasqKCgozsc7ceKE0qVLl4wVAwAAAEDysbMzyM7OkOL7jYoyKiqKs+NtjbOzs3x8fBQUFKQOHTqoSpUqZuuvXbsmPz8/OTk5qWjRotq5c6c2bdqkkJAQNWzY0Kyt0WjUmjVrJEm1atVKsWMAAAAAgKRG9rYNqXIA3Gg0avDgwdqyZYsyZMigGjVq6MmTJ9q3b592796tQYMGqW/fvqb2N27cUFBQkHLkyBEjtEezs+NidwAAAADWyc7OoEyZXON9r6ukFBkZpaCgx4kK4r6+m7Vy5TJdunRBklSgQCG1aNFSrVq1TeoykUAGg0FvvfWWfvzxR40ZM0bz58833eP71q1b+uijjxQREaFu3brJ1dVVrVu31pw5c7Rjxw799ttv6tChgyQpKipK06ZN04kTJ1SkSBE1adLEkocFAAAAAIlG9rYdqXIAfOnSpdqyZYuKFy+uefPmycPDQ5J09uxZderUSVOnTlWjRo1UuHBhSdKZM2ckSU2aNNGIESMsVjcAAAAAJAc7O4Ps7e00Y8mfuuF/P8X2myd7Rn3wTk3Z2RkSHMLXr1+j776bpAEDhqhcuQqSjDp48IC+/36KAgPvqUeP95KnaMRbv379dOTIER08eFCNGzdWxYoVFR4erhMnTujx48eqVauWhg4dKknKly+fxowZo5EjR2rUqFFavHixChYsqLNnz+rKlSvKmjWrpk2bJkdHRwsfFQAAAAAkDtnbdqTKAfDoqdOGDRtmGvyWJC8vL3l7e2vJkiXatWuXaQD81KlTkqSSJUumfLEAAAAAkEJu+N/X5RuBli4jXnx8VqhFi5Z6883WpmX58xfUnTv++u23JWk2hKcmzs7OmjdvnhYuXKg1a9Zo//79cnBwUNGiRdWmTRu1b99e9vb2pvZt27ZVoUKFNGfOHB05ckSXLl1S9uzZ1aVLF/Xt21dZsmSx4NEAAAAAQNIge1u/VDkv+IIFC7RmzRpVrlw5xrrHjx9LklkIj74CvFSpUilTIAAAAADghezsDPr77xN68OCB2fJOnbrpxx/nSZLatfPWzz//aLb+ww9764svxkiSjhw5pFq1KumXXxaoWbMGevfdTurXr5c++2y42TYnThxTrVqVdP36NUnSn3/u1rvvdlb9+jX11lutNGfOTIWFhUmSpk6dog4dWpptHxwcrPr1a2rPnp1JdvzWwtHRUT179tTatWv1999/6+jRo/rtt9/09ttvm+XuaBUqVNDMmTO1f/9+nTx5Utu2bdPIkSMZ/AYAAAAACyB7xy5VDoCnS5dOXl5eMcL21q1btXnzZrm4uKhRo0am5adOnZKzs7NOnjypd955R5UqVVLlypX1/vvv6/jx4yldPgAAAACkeZ06ddP58+fUunVTffzxQC1aNF+nT5+Uu7u78ucvkKDH2rt3j378cZ6GD/9MLVq01J9/7tLjx49M6319N6l06bLKmzef9u3bq1GjhunNN1tp0aJlGjJkmLZt26Jx4z6TJLVo0VL//ntDx48fM23/xx++cnNzU7VqNZPk2AEAAAAASAlk79ilygHwZ92/f1/9+/dX06ZN9cEHHyhz5syaOXOmcubMKUkKCAiQv7+/QkND9cknnygqKkpVq1ZVpkyZtGPHDnXs2FEbN2608FEAAAAAQNry+usN9OOP8/T66/V15sxp/fjjdPXu3V0dO7bViRPHEvRY77zTWfny5VfRop6qV6+h7OzstXPndklSeHi4tm3bqmbNvCVJCxfOVYsWb6pVq3bKkyevqlSppo8/HqHt27fq5s1/VbhwEXl6Ftfvv28wPf7mzevVuHEzOTikyruEAQAAAAAQK7J37FJ9ur927Zp8fX1NfzcYDLpw4YKqV68u6b/7f3t4eGjmzJkqX768JMloNGrBggWaMGGChg8frgoVKpgGzRPLwcH8fAF7+1R//kC82MpxAAAAANYuKspg6RKSVPHiJTVq1DgZjUZdunRRf/21R8uXL9XQoQO1bJlPvB8nb978pj+7uLioXr0G8vXdpKZNW+ivv/7Ukyehql+/oSTpn3/O6syZU9q0ab1pG6PRKEm6fNlPuXLlVvPmb2r27B80aNDH8ve/rb//PqGPPx7x0jrs7Q0xciEAAAAAAJZka9k7KaT6AfBChQrpwIEDMhqN2rt3r7744guNHz9ewcHB6tu3r2rXrq3du3fLaDQqR44cpu0MBoO6d++ugwcPauvWrVqxYoU+/PDDRNdhZ2eQh4dbUhxSqpMhg4ulSwAAAAAgKTTUXnfv2sUYaLX0SasJ3b+//20tXDhfXbv2UPbs2SVJnp7F5OlZTHXrvq533mmnv/8+JkmyszM/2TgyMlIGw9Pjj96vq6uLWRtv7zf14Yd9dP/+PW3Zskl169ZXxowZJD0N3J07d1OzZi1i1JU1azY5ONipadNmmjHjO+3b96cuXjyvEiVKqlixYnEeT1SUQXZ2dsqY0VXOzs4Jei4AAAAAAEgO/v639csvC9S5c3dly5ZdBoNBhQsXUeHCRVSrVl117txex44diXXbyMiIGMvSpUtn9vdmzbw1cGBfBQTcla/vRtWpU09ubu6SpKgoozp27KqmTWNm7yxZskqS3nijiaZP/0579+7WxYsXVLx4Cb32WpFXPex4SfUD4G5u/w06N2vWTDlz5lTHjh01e/Zsde3aVW5ubqYOldjUq1dPW7du1cmTJ1+pjqgoox48eGy2zN7eziYGjx88CFFkZJSlywAAAADSvLCwJ4qKilJkpFEREannN3pkZFSC6rGzc9Tq1SuVLVt2derUzWyds7OrJCljRg85ODjqwYNg02NHRUXp33+vK2/efIqIiDLllOf3X7p0eeXMmUvr16/Tn3/u0VdfTTGtL1SosPz8/JQrV15T+6NHD+u335Zo6NBhcnRMJxcXN9Wu/bq2bdsqP7+LatWq3QuPLzLSqKioKN2//1ghIZEx1mfI4GLxkxQAAAAAAGmLk1M6rVmzStmz54iRvaPHVzNnziIHB0cFBweb1j3N3jfMrviOTblyFZQzZy5t3rxBe/f+qa++mmJa99prhXXlymXlzZvPtOzZ7O3i4qL06dOrTp3XtWPHNlP2TimpfgD8eRUqVFD+/Pl15coVXb58WSVLlnxh+2zZskmSQkJCXnnfqakDKikltDMLAAAAQPKIjDRauoQkkSlTJnXq1E2zZ/+g4OBg1a/fUK6ubrp82U/z5/+kChUqqWzZ8ipTpqz++MNXdevWU+bMWbR06WKzUP4iTZu20IIFc5UxY0ZVqlTFtLxTp6767LPh+vnnH/XGG010546/vvpqvHLkyGE6C12Smjd/U8OGfSSjUWrYsHG89pnaTkwAAAAAAKRdtpq9k0KqGwAPCQnR1KlTdffuXU2aNEkGQ8x74Dk5OUmSIiIitGzZMv31119q0aKFGjZsGKPttWvXJOmV7/8NAAAAAJaWJ3tGq9nfe+/1Vd68+bRu3Wr5+CxXaGiocuTIqfr131DXru9Kknr3/kAPHz7Q0KED5OzsIm/vVmrQoJHpvmEv0qRJC82dO1tt2rSXnd1/V1/Xq9dQY8dKixbN1eLF85U+fQbVrFlbffsOMNu+UqUqypgxk0qXLqv06dMn+jgBAAAAALaF7P0fa83eqW4A3NnZWT4+PgoKClKHDh1UpUoVs/XXrl2Tn5+fnJycVLRoUe3cuVObNm1SSEhIjAFwo9GoNWvWSJJq1aqVYscAAAAAAEkpKsqoyMgoffBOzRTfd2RklKKiEndletOmLWK9H1i0rFmzasKEKXGur1ChkvbsORTrupw5c2rXrgOxrqtfv6Hq1495gvSzQkNDFRwcrBYtWr6wHQAAAAAgbSB7x2St2TvVDYAbDAa99dZb+vHHHzVmzBjNnz/fdI/vW7du6aOPPlJERIS6desmV1dXtW7dWnPmzNGOHTv022+/qUOHDpKezl8/bdo0nThxQkWKFFGTJk0seVgAAAAAkGhRUUYFBT2WnV3MGbJSYt+JDeGp0YMHD3TkyEFt27ZVOXLkMJvCDQAAAACQdpG9k46ls3eqGwCXpH79+unIkSM6ePCgGjdurIoVKyo8PFwnTpzQ48ePVatWLQ0dOlSSlC9fPo0ZM0YjR47UqFGjtHjxYhUsWFBnz57VlStXlDVrVk2bNk2Ojo4WPioAAAAASDxbC8OWEhkZoa++GqdMmTz0+ecTYr3tFgAAAAAgbSJ7Jw1LZ+9UOQDu7OysefPmaeHChVqzZo32798vBwcHFS1aVG3atFH79u1lb29vat+2bVsVKlRIc+bM0ZEjR3Tp0iVlz55dXbp0Ud++fZUlSxYLHg0AAAAAILXw8MiszZt3WLoMAAAAAABslqWzd6ocAJckR0dH9ezZUz179oxX+woVKmjmzJnJXBUAAAAAAAAAAAAAILWys3QBAAAAAAAAAAAAAAAkBQbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAwArY2Rnk4GCX4v/Z2RkSVW+7dt6qVauSli5dHOv6SZO+VK1alfTzzz8m+jlp1847QdsntD0AAAAAIG0he8e+D2vL3g4W3TsAAAAA4KXs7Azy8HCRnZ19iu87KipSgYEhiooyJnhbBwcHbd/+h95+u7PZ8oiICO3cuU0GQ+ICPgAAAAAASY3sbTsYAAcAAACAVM7OziA7O3v5rZ+jkICbKbZflyy5VKjFe7KzMyQqhFeqVEX79/+l27dvKUeOnKblR44ckrOzi9Klc07KcgEAAAAASDSyt+1gABwAAAAArERIwE2F3L5q6TLirXjxkrpy5bK2b99qdib6H3/4qn79N7Rt2xbTspMnT2j27B907twZOTg4qFatuvrgg0HKkCGDJCk4OFjffTdJe/bslIODo7p27RFjf3//fVyzZk3XmTOnlSlTJtWsWUd9+nwgNzf35D9YAAAAAIBNIHtbf/bmHuAAAAAAgGRTr15Dbd/+h+nv4eHh2rVrhxo2bGRadvr0SfXv/74KFiykWbPmady4iTp9+qQ++uhDRUVFSZI++2yYzpw5pYkTv9W3307Xn3/u1q1b/52Rf+HCeQ0c2E+VK1fVggVLNHr0Fzp37owGD/5QRmPCz6AHAAAAAMBakL3NMQAOAAAAAEg29eu/odOnT+r27VuSpAMH9ilTpkwqVszL1Gbp0l9UuHBRffTRpypU6DVVqFBJY8Z8qbNnT2v//r909eplHTiwT4MHf6KyZcuraFFPjR49Xk5OTqbHWLJkoSpVqqzu3XspX778Klu2nMaM+UKnT5/U0aOHU/y4AQAAAABIKWRvc0yBDgAAAABINl5exZU7dx7TVGzbtvmqYcPGZm0uXbqgypWrmS0rXLiI3N3T6+LF8woNDZEkFS9ewrQ+c+Ysyp07j+nv586d0/XrV/XGG7Vj1HDlymVVqFApKQ8LAAAAAIBUg+xtjgFwAAAAAECyql//DW3f/odat26v3bt3ac6cBWbrjUajDIaY2xmNUXJw+C+2RkWZT6dmb+9g1rZRo6bq2vXdGI+TKZPHKx4BAAAAAACpG9n7P0yBDgAAAABIVvXrN9Tp0ye1fv0a5c6dRwUKFDRb/9prRXT8+DGzZefP/6NHjx6pYMHXTFO2/f33cdP6hw8f6saNa6a/FypUWH5+F5U3bz7Tf1FRkfr++2/k738r2Y4NAAAAAIDUgOz9HwbAAQAAAADJqmhRT+XNm0+zZ89QgwaNYqx/662OunDhH33zzURdvuyno0cP6/PPR6pYMU9VqlRFefLkVb16DfXtt1/r4MH9unTpgsaN+0zh4eGmx3j77c76559zmjTpS/n5XdKpUyc1ZsxIXb16RXnz5k/JwwUAAAAAIMWRvf/DFOgAAAAAYCVcsuSy2v3Vr/+GFiz4WQ0bxgzhpUqV0eTJUzVnziy9+24nubq6qXbt19W374emadhGjhyjGTOmavToEYqKilLLlm0UFBT4zGOU1jffTNdPP81Uz55d5OLirAoVKuuDDwbJyckpyY4DAAAAAGDbyN7Wn70NRqPR+PJmiIyM0r17j8yWOTjYycPDTSOmbtTlG4FxbJl4NcoV0Icda+n0gs8Vcvtqkj++S478KtHtMwUGPlJERFSSPz4AAACAhAkPD1NAwE1lyZJLjo7/BUc7O4M8PFxkZ2ef4jVFRUUqMDAkxj3A0pK4XpdomTO7yd6eCdaSAtkbAAAAQHIje6dOSZm9uQIcAAAAAFK5qCijAgNDZGdnsMi+03IABwAAAACkDWRv28EAOAAAAABYAcIwAAAAAADJi+xtG5ijDQAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAEhljEbuN5aa8HoAAAAAgO0h66UuSfl6MAAOAAAAAKmEvb29JCks7ImFK8Gzol8Pe3sHC1cCAAAAAHhVZO/UKSmzN+kdAAAAAFIJOzt7ubi4Kzg4UJLk5JROBoPBwlWlXUajUWFhTxQcHCgXF3fZ2XEOOQAAAABYO7J36pIc2ZsBcAAAAABIRTJkyCxJpiAOy3NxcTe9LgAAAAAA60f2Tn2SMnszAA4AAAAAqYjBYFDGjFmUPr2HIiMjLF1Ommdv78CV3wAAAABgY8jeqUtSZ28GwAEAAAAgFbKzs5OdnZOlywAAAAAAwGaRvW0Tp7EDAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGyCg6ULAAAAAAAAlhEeHq5FixbJx8dHly9flqurq0qXLq1u3bqpdu3aMdrfvXtXP/zwg3bv3q3bt28rW7ZsatKkifr16yc3NzcLHAEAAAAAAOa4AhwAAAAAgDTIaDRq8ODBmjhxom7duqUaNWqoePHi2rdvn3r16qWZM2eatff391eHDh30yy+/yNnZWa+//rqioqL0008/6Z133lFwcLCFjgQAAAAAgP8wAA4AAAAAQBq0dOlSbdmyRcWLF5evr69+/PFHzZ8/XytWrJC7u7umTp2qixcvmtqPHz9eN27cUO/evbVu3Tp9//33+v3339W0aVOdO3dO06dPt+DRAAAAAADwFAPgAAAAAACkQWvWrJEkDRs2TB4eHqblXl5e8vb2ltFo1K5duyRJV69e1ZYtW5QrVy4NGDDA1NbJyUnjxo2Tm5ubli1bptDQ0JQ9CAAAAAAAnsMAOAAAAAAAadCCBQu0Zs0aVa5cOca6x48fS5Ls7e0lSbt27VJUVJTq1q0rR0dHs7bp06dXtWrV9PjxY+3fvz/5CwcAAAAA4AUYAAcAAAAAIA1Kly6dvLy8TIPc0bZu3arNmzfLxcVFjRo1kiT9888/kqRixYrF+lhFihQxawcAAAAAgKU4WLoAAAAAAABgWffv39fIkSN14cIFXbp0Sbly5dKECROUM2dOSdKdO3ckSdmyZYt1++jld+/eTZmCAQAAAACIAwPgAAAAAACkcdeuXZOvr6/p7waDQRcuXFD16tUl/TclurOzc6zbRy+PbvcqHBzMJ6uzt7eNyets5TgAAAAAILVjABwAAAAAgDSuUKFCOnDggIxGo/bu3asvvvhC48ePV3BwsPr27WuaJt1gMMS6vdFoNPt/YtnZGeTh4fZKj5FaZcjgYukSAAAAACBNYAAcAAAAAIA0zs3tv0HnZs2aKWfOnOrYsaNmz56trl27ytXVVZL05MmTWLePXu7i8mqDvFFRRj14YH4Vub29nU0MHj94EKLIyChLlwEAAAAAVilDBpd4z6zFADgAAAAAADBToUIF5c+fX1euXNHly5eVPXt2Sf/dC/x5L7tHeEJERNjmIHFkZJTNHhsAAAAApCapdgA8PDxcixYtko+Pjy5fvixXV1eVLl1a3bp1U+3atWO0v3v3rn744Qft3r1bt2/fVrZs2dSkSRP169fP7Ex2AAAAAADSupCQEE2dOlV3797VpEmTYp3a3MnJSZIUERGhYsWKSZIuXrwY6+OdP39ekuTp6ZlMFQMAAAAAED/xu048hRmNRg0ePFgTJ07UrVu3VKNGDRUvXlz79u1Tr169NHPmTLP2/v7+6tChg3755Rc5Ozvr9ddfV1RUlH766Se98847Cg4OttCRAAAAAACQ+jg7O8vHx0fr1q3TwYMHY6y/du2a/Pz85OTkpKJFi5pORN++fbsiIyPN2j58+FD79++Xq6urKlasmCL1AwAAAAAQl1Q5AL506VJt2bJFxYsXl6+vr3788UfNnz9fK1askLu7u6ZOnWp21vn48eN148YN9e7dW+vWrdP333+v33//XU2bNtW5c+c0ffp0Cx4NAAAAAACpi8Fg0FtvvSVJGjNmjPz9/U3rbt26pY8++kgRERF655135Orqqjx58qhevXq6fv26Jk2aJKPRKEkKCwvTZ599pkePHuntt9+Wu7u7RY4HAAAAAIBoqXIK9DVr1kiShg0bJg8PD9NyLy8veXt7a8mSJdq1a5cKFy6sq1evasuWLcqVK5cGDBhgauvk5KRx48Zp165dWrZsmQYNGiRnZ+cUPxYAAAAAAFKjfv366ciRIzp48KAaN26sihUrKjw8XCdOnNDjx49Vq1YtDR061NR+1KhROnXqlObNm6edO3eqaNGi+vvvv/Xvv/+qZMmS+vDDDy14NAAAAAAAPJUqrwBfsGCB1qxZo8qVK8dY9/jxY0mSvb29JGnXrl2KiopS3bp15ejoaNY2ffr0qlatmh4/fqz9+/cnf+EAAAAAAFgJZ2dnzZs3T5988ony5cun/fv368SJEypatKjGjh2r2bNnm+4DLkl58uTRihUr1L59ez18+FDbt2+Xk5OT+vTpo4ULF8rNzc2CRwMAAAAAwFOp8grwdOnSycvLK8byrVu3avPmzXJxcVGjRo0kSf/8848kqVixYrE+VpEiRfTHH3/on3/+Ud26dZOvaAAAAAAArIyjo6N69uypnj17xqt9jhw5NH78+GSuCgAAAACAxEuVA+DPun//vkaOHKkLFy7o0qVLypUrlyZMmKCcOXNKku7cuSNJypYtW6zbRy+/e/duyhQMAAAAAAAAAAAAALCIVD8Afu3aNfn6+pr+bjAYdOHCBVWvXl3Sf1Oix3V/7+jl0e1ehYOD+Yzx9vapcgb5BLOV4wAAAAAAAAAAAACQtqX6AfBChQrpwIEDMhqN2rt3r7744guNHz9ewcHB6tu3r+le4AaDIdbtjUaj2f8Ty87OIA8P27yfWYYMLpYuAQAAAAAAAAAAAABeWaofAHdz+2/QuVmzZsqZM6c6duyo2bNnq2vXrnJ1dZUkPXnyJNbto5e7uLzaIG9UlFEPHphfRW5vb2cTg8cPHoQoMjLK0mUAAAAAgFXKkMGFmbUAAAAAAEglUv0A+PMqVKig/Pnz68qVK7p8+bKyZ88u6b97gT/vZfcIT4iICNscJI6MjLLZYwMAAAAAAAAAAACQdqS6U9RDQkL01VdfaejQoXFOW+7k5CRJioiIULFixSRJFy9ejLXt+fPnJUmenp7JUC0AAAAAAAAAAAAAILVIdQPgzs7O8vHx0bp163Tw4MEY669duyY/Pz85OTmpaNGiql27tiRp+/btioyMNGv78OFD7d+/X66urqpYsWKK1A8AAAAAAAAAAAAAsIxUNwBuMBj01ltvSZLGjBkjf39/07pbt279H3t3HmfXfP8P/HVnsofIjthSe2uPJVoUpaW2UjulaqcovraotYmopbRKaUVUYl+SWEolIUFRa4gtaLREaAhJRBZZZn5/+CVtmoRJZrkz9z6fj4dHOedzz31/eu/M3Nd9n/M5OfXUUzNnzpwceOCBadOmTVZaaaVsv/32ef/993PZZZfNv2p81qxZOe+88zJt2rQccMABWWaZZYoyHwAAAAAAAAAaRqO8B/jxxx+fF198Mc8991x22mmnbLrpppk9e3ZGjx6d6dOnZ+utt85pp502f/y5556b1157LTfeeGMee+yxrLXWWnnllVfywQcfZL311ssJJ5xQxNkAAAAAAAAA0BAa3RXgyZfLoN94440544wzssoqq+SZZ57J6NGjs9Zaa+XCCy/Mn/70p/n3AU+SlVZaKXfffXf23XffTJ06NSNGjEiLFi1y7LHHZsCAAWnbtm0RZwMAAAAAAABAQ2iUV4AnSfPmzXPEEUfkiCOOqNH45ZdfPn369KnnqgAAAAAAAABorBrlFeAAAAAAAAAAsKQ0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCc2KXQAAAAAA/1FRUUhFRaHejl9VVZ2qqup6Oz4AAEAxaYADAAAANBIVFYW0b98mlZX1t2jf3LlVmTx5uiY4AABQkjTAAQAAABqJiopCKisrcs1tT2b8R1Pq/PgrdV0uPz9wq1RUFDTAAQCAkqQBDgAAANDIjP9oSv41flKxywAAAGhy6m89LQAAAAAAAABoQBrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASWhW7AJoWioqCqmoKNTb8auqqlNVVV1vxwcAAAAAAABKlwY4NVZRUUj79m1SWVl/CwfMnVuVyZOna4IDAAAAAAAAS0wDnBqrqCiksrIi19z2ZMZ/NKXOj79S1+Xy8wO3SkVFQQMcAAAAAAAAWGIa4Cyx8R9Nyb/GTyp2GQAAAAAAAAALqL+1rAEAAAAAAACgAWmAAwAAAAAAAFASLIEOAAAAZaqqqip33XVXBg0alLfffjuzZ89Ot27dsuOOO+aYY45Ju3btFhjfs2fPTJ48ebHHGz16dFq2bFnPVQMAAMDiaYADAABAGaqqqspJJ52UYcOGpVWrVtlwww3Tpk2bjB49Ov369cuwYcNy6623pnPnzkmS8ePHZ/LkyVl++eWzxRZbLPKYFRUWmgMAAKC4NMABAACgDN1zzz0ZNmxYunfvnn79+mWVVVZJknz++ec57bTTMmLEiPTp0ye//e1vkyRvvPFGkmTnnXfO2WefXayyAQAA4Cs5NRsAAADK0D333JMkOeuss+Y3v5NkmWWWSd++fVMoFDJ8+PDMnDkzSfLaa68lSdZbb72GLxYAAABqSAMcAAAAylD79u2z+uqrZ+ONN15oX8eOHbPccstl9uzZmTRpUpL/XAG+/vrrN2SZAAAAsEQsgQ4AAABl6LrrrlvsvnHjxmXy5Mlp3rx5OnbsmOTLK8BbtWqVV199Neecc07efvvtFAqF9OjRI8cff3w22mijhiodAAAAFssV4AAAAMAC5t33e7vttkvLli3zySef5KOPPsrMmTNzxhlnpKqqKj179kz79u0zcuTIHHTQQXnwwQeLWzQAAADEFeAAAADAfxk4cGAeeOCBtG7dOqecckqS/9z/u0OHDrn22muzySabJEmqq6tz00035eKLL06vXr3So0ePrLDCCrV6/mbNFjxXv7KyNM7dr+k8Gmq+pfL/KwAAwP/SAAcAAACSJAMGDEjfvn1TKBRy0UUXZY011kiSbLPNNnniiSdSXV2d5Zdffv74QqGQww47LM8991yGDx+eu+++OyeccMJSP39FRSEdOrSt9Twao3btWhe7hAU0tnoAAADqigY4AAAAlLnq6upcfvnl6devXyorK3PRRRdl1113nb+/UCika9eui3389ttvn+HDh+fVV1+tVR1VVdX57LPpC2yrrKwoiWbtZ5/NyNy5VV87rqHmW9N6AAAAGoN27VrXeCWrRtsAr6qqyl133ZVBgwbl7bffzuzZs9OtW7fsuOOOOeaYY9KuXbsFxvfs2TOTJ09e7PFGjx6dli1b1nPVAAAA0LTMnDkzp59+eoYOHZpWrVrlN7/5TXbcccclOkaXLl2SJDNmzKh1PXPmlGZTdu7cqkY1t8ZWDwAAQF1plA3wqqqqnHTSSRk2bFhatWqVDTfcMG3atMno0aPTr1+/DBs2LLfeems6d+6cJBk/fnwmT56c5ZdfPltsscUij1lR4d5WAAAA8N8+//zzHHnkkRk1alQ6deqUa6+9NhtttNFC4+644448/fTT2W233RbZHB83blyS1Pr+3wAAAFBbjbIBfs8992TYsGHp3r17+vXrl1VWWSXJl8H8tNNOy4gRI9KnT5/89re/TZK88cYbSZKdd945Z599drHKBgAAgCZj9uzZOfroozNq1KisttpqueGGG+bn7/81YcKEPPTQQ5kxY8ZCDfDq6urce++9SZKtt9663usGAACAr9IoL4u+5557kiRnnXXWAuF7mWWWSd++fVMoFDJ8+PDMnDkzSfLaa68lSdZbb72GLxYAAACaoKuvvjovvPBCunTpkoEDBy62+Z0ke+21V1q0aJGRI0fmzjvvnL+9qqoqV111VUaPHp0111wzO++8c0OUDgAAAIvVKK8Ab9++fVZfffVsvPHGC+3r2LFjlltuuUyePDmTJk3KiiuuOP8K8PXXX7+BKwUAAICmZ8qUKbnpppuSJJ06dcpll1222LHzTk6/4IILcs455+Tcc8/NzTffnO7du2fMmDF5991307lz5/z+979P8+bNG2oKAAAAsEiNsgF+3XXXLXbfuHHjMnny5DRv3jwdO3ZM8uUV4K1atcqrr76ac845J2+//XYKhUJ69OiR448/fpH3LwMAAIBy9fLLL2fGjBlJkjFjxmTMmDGLHXviiSemc+fO2XvvvfONb3wj119/fV588cW888476dq1aw455JAcd9xx6dSpU0OVTx2orKzfRQGrqqpTVVVdr88BAACwKI2yAf5V5t33e7vttkvLli3zySef5KOPPkqSnHHGGdl4443Ts2fPvPXWWxk5cmT+9re/5bLLLssuu+xSxKoBAACg8fjud7+bN998c4kf16NHj1x77bX1UBENZbllW6W6qirt2rWu1+epqpqbSZNmaIIDAAANrkk1wAcOHJgHHnggrVu3zimnnJLkP/f/7tChQ6699tpssskmSZLq6urcdNNNufjii9OrV6/06NEjK6ywQq2ev1mzBc+Oru+zpRtKTefRUPMtlf9fAQAAoLFp26pFChUV+ecD12fGJx/Wy3O07rRivrHbUamoKGiAAwAADa7JNMAHDBiQvn37plAo5KKLLsoaa6yRJNlmm23yxBNPpLq6Ossvv/z88YVCIYcddliee+65DB8+PHfffXdOOOGEpX7+iopCOnRoW+t5NEb1fdb3kmps9QAAAECpmfHJh5kx4b1ilwEAAFDnGn0DvLq6Opdffnn69euXysrKXHTRRdl1113n7y8UCunatetiH7/99ttn+PDhefXVV2tVR1VVdT77bPoC2yorK0qiWfvZZzMyd27V145rqPl+/vnMej1DvKqqOtXVzkAHAADqRrt2ra1kBQAAAI1Eo26Az5w5M6effnqGDh2aVq1a5Te/+U123HHHJTpGly5dkiQzZsyodT1z5nx9k7gpmju3qlHMbd59yJZZplW9Po/7kAEAAAAAAEBparQN8M8//zxHHnlkRo0alU6dOuXaa6/NRhtttNC4O+64I08//XR22223RTbHx40blyS1vv839c99yAAAAAAAAIDaaJQN8NmzZ+foo4/OqFGjstpqq+WGG27IKqusssixEyZMyEMPPZQZM2Ys1ACvrq7OvffemyTZeuut671u6ob7kAEAAAAAAABLo1HepOzqq6/OCy+8kC5dumTgwIGLbX4nyV577ZUWLVpk5MiRufPOO+dvr6qqylVXXZXRo0dnzTXXzM4779wQpQMAAAAAAABQJI3uCvApU6bkpptuSpJ06tQpl1122WLHnnXWWVlllVVywQUX5Jxzzsm5556bm2++Od27d8+YMWPy7rvvpnPnzvn973+f5s2bN9QUAAAAAAAAACiCRtcAf/nllzNjxowkyZgxYzJmzJjFjj3xxBPTuXPn7L333vnGN76R66+/Pi+++GLeeeeddO3aNYccckiOO+64dOrUqaHKBwAAAAAAAKBIGl0D/Lvf/W7efPPNJX5cjx49cu2119ZDRQAAAAAAAAA0BY3yHuAAAAAAAAAAsKQ0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkNCt2AQAAAABQnyoqCqmoKNTb8auqqlNVVV1vxwcAAGpOAxwAAACAklVRUUiHDq1TUVFZb89RVTU3kybN0AQHAIBGQAMcAAAAgJL15dXflfnnA9dnxicf1vnxW3daMd/Y7ahUVBQ0wAEAoBHQAAcAAACg5M345MPMmPBescsAAADqWUWxCwAAAAAAAACAuqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlIRmxS4Ayl1FRSEVFYV6O35VVXWqqqrr7fgAAAAAAADQWGiAQxFVVBTSoUPrVFRU1ttzVFXNzaRJMzTBAQAAAAAAKHka4FBEX179XZl/PnB9ZnzyYZ0fv3WnFfON3Y5KRUVBAxwAAAAAAICSpwEOjcCMTz7MjAnvFbsMAAAAAAAAaNIqil0AAAAAAAAAANQFDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAk1KoBPmTIkLzwwgtfO+6RRx7JVVddVZunAgAAgLIkewMAAEDN1aoBftZZZ+XOO+/82nH33ntvbrzxxto8FQAAAJQl2RsAAABqrtmSDB4yZEjmzJmzwLZ33303d99992If8/nnn+fpp59O8+bNl65CAAAAKCOyN+WooqKQiopCvRy7stIdAAEAoJwsUQP8tddey8CBA1MofBlICoVCXn755bz88stf+bjq6urstddeS18lFJEQDgAANCTZm3JTUVFI+/ZtZGQAAKBOLFED/KSTTsrnn38+/78HDx6cVVddNZtuuuliH9OyZct07949Bx544NJXCUUihAMAAA1N9qbcVFQUUllZkWtuezLjP5pS58ffaJ1u2X/njev8uAAAQOO0RA3wZZddNhdffPH8/x48eHA23njjBbZBKRHCAQCAhiZ7U67GfzQl/xo/qc6P261Luzo/JgAA0HgtUQP8f40ZM6au6oBGTQgHAACKRfYGAACAmqtVA/y/ffLJJ5kxY0aqq6sXO2aVVVapq6cDAACAsiN7AwAAwFerdQP8z3/+c66//vp8+umnXzmuUCjk9ddfr+3TAQAAQNmpr+xdVVWVu+66K4MGDcrbb7+d2bNnp1u3btlxxx1zzDHHpF27BVetmjhxYv7whz/kiSeeyIQJE9KlS5fsvPPOOf7449O2bdulmhsAAADUpVo1wAcNGpRf//rXSZIWLVqkQ4cOqaysrJPCAAAAgPrL3lVVVTnppJMybNiwtGrVKhtuuGHatGmT0aNHp1+/fhk2bFhuvfXWdO7cOUny0Ucf5YADDsj48eOz9tprZ7vttssrr7ySfv365Yknnsitt96aZZZZptZ1AQAAQG3UqgF+8803p1Ao5Jxzzsl+++2X5s2b11VdAAAAQOove99zzz0ZNmxYunfvnn79+s1fOv3zzz/PaaedlhEjRqRPnz757W9/myTp06dPxo8fn6OPPjr/93//lySZNWtWzjjjjDz00EO5+uqrc9ZZZ9VJbQAAALC0Kmrz4LFjx2bjjTfOwQcfrPkNAAAA9aC+svc999yTJDnrrLMWuG/4Msssk759+6ZQKGT48OGZOXNm3nvvvQwbNiwrrrhiTjrppPljW7Rokd69e6dt27a54447MnPmzDqrDwAAAJZGrRrgrVu3TocOHeqqFgAAAOB/1Ff2bt++fVZfffVsvPHGC+3r2LFjlltuucyePTuTJk3K448/nqqqqmy77bYLNeGXXXbZbLnllpk+fXqeeeaZOq8TAAAAlkStGuBbbLFFRo8enRkzZtRVPQAAAMB/qa/sfd111+Whhx5aZHN93LhxmTx5cpo3b56OHTvmrbfeSpKsvfbaizzWmmuumSTzxwEAAECx1KoBfsopp2TGjBk5++yzM2XKlLqqCQAAAPj/ipG95933e7vttkvLli3z8ccfJ0m6dOmyyPHztk+cOLFB6gMAAIDFaVabB99+++3ZcMMN89e//jXDhg1L9+7d065duxQKhYXGFgqF3HzzzTU+dlVVVe66664MGjQob7/9dmbPnp1u3bplxx13zDHHHJN27dotMH7ixIn5wx/+kCeeeCITJkxIly5dsvPOO+f4449P27ZtazNNAAAAKJr6zN6LMnDgwDzwwANp3bp1TjnllCTJ9OnTkyStWrVa5GPmbZ83rjaaNVvwXP3Kylqdu99o1HQepTLfpPzmXCrzAACApq5WDfCbbrpp/r/PmTMn//jHPxY7dlHBfHGqqqpy0kknZdiwYWnVqlU23HDDtGnTJqNHj06/fv0ybNiw3HrrrencuXOS5KOPPsoBBxyQ8ePHZ+211852222XV155Jf369csTTzyRW2+9Ncsss8zSTxQAAACKpL6y96IMGDAgffv2TaFQyEUXXZQ11lgjSVJZWfmVx6+url7gf5dWRUUhHTqU5kns7dq1LnYJDa7c5lxu8wUAgMaqVg3wAQMG1FUdC7jnnnvmn9Xer1+/rLLKKkmSzz//PKeddlpGjBiRPn36zF+SrU+fPhk/fnyOPvro/N///V+SZNasWTnjjDPy0EMP5eqrr85ZZ51VL7UCAABAfaqv7P3fqqurc/nll6dfv36prKzMRRddlF133XX+/jZt2iRJvvjii0U+ft721q1r1wCsqqrOZ58teBV5ZWVFSTQWP/tsRubOrfracaUy36T85lzT+QIAAEuuXbvWNV51qVYN8C222KI2D1+se+65J0ly1llnzW9+J8kyyyyTvn375jvf+U6GDx+emTNn5qOPPsqwYcOy4oor5qSTTpo/tkWLFundu3cef/zx3HHHHTn55JMXu1QbAAAANFb1lb3nmTlzZk4//fQMHTo0rVq1ym9+85vsuOOOC4zp2rVrksy/F/j/+rp7hC+JOXNKs4E4d25Vyc5tccptzuU2XwAAaKzq7OZEs2fPzujRo/Pwww/nhRdeSJJ88MEHS3Ws9u3bZ/XVV8/GG2+80L6OHTtmueWWy+zZszNp0qQ8/vjjqaqqyrbbbpvmzZsvMHbZZZfNlltumenTp+eZZ55ZqloAAACgsajL7J18udLaYYcdlqFDh6ZTp04ZMGDAQs3vJFl77bWTJGPHjl3kcd5+++0kyTrrrLPUtQAAAEBdqHUDfM6cOfnd736XrbbaKvvvv39OPvnk3HHHHUmSM888Mz/+8Y/z7rvvLtExr7vuujz00EPp0KHDQvvGjRuXyZMnp3nz5unYsWPeeuutJP8J4/9rzTXXTJL54wAAAKCpqY/sPXv27Bx99NEZNWpUVltttdxxxx3ZaKONFjl2m222SZKMGDEic+fOXWDf1KlT88wzz6RNmzbZdNNNl2J2AAAAUHdq1QCfM2dOjjnmmFx33XWZMWNG1l9//VRXV8/fP23atLz++us5+OCDM3HixFoXm2T+fb+32267tGzZ8muXWZu3va6eHwAAABpSfWXvq6++Oi+88EK6dOmSgQMHLnALsv+10korZfvtt8/777+fyy67bP7zz5o1K+edd16mTZuWAw44IMsss8zSTxQAAADqQK3uAX7LLbfkySefzNZbb52+ffuma9euWXfddefvv/XWW3PBBRdkyJAhueGGG3LmmWfWqtiBAwfmgQceSOvWrXPKKackSaZPn54ki72/97zt88bVRrNmC54vUNMbrTd2NZ1Hqcw3Kb85l8o8AACgHNVH9p4yZUpuuummJEmnTp1y2WWXLXbsWWedlc6dO+fcc8/Na6+9lhtvvDGPPfZY1lprrbzyyiv54IMPst566+WEE06o/WQBAACglmrVAB88eHDat2+f3/3ud2nbtu1C+1u1apXevXvnqaeeyuOPP16rBviAAQPSt2/fFAqFXHTRRVljjTWSJJWVlUmSQqGwyMfNOyv9v8+OXxoVFYV06LDwHEtBu3ati11Cgyu3OZfbfAEAoJTUR/Z++eWXM2PGjCTJmDFjMmbMmMWOPfHEE9O5c+estNJKufvuu/P73/8+I0eOzIgRI9KtW7cce+yxOeqooxZZGwAAADS0WjXA//Wvf2Xrrbf+ypDbvHnzbLjhhnnyySeX6jmqq6tz+eWXp1+/fqmsrMxFF12UXXfddf7+Nm3aJEm++OKLRT5+3vbWrWvXAKyqqs5nny14FXllZUVJNBY/+2xG5s6t+tpxpTLfpPzmXNP5AgAAS65du9b1uupSfWTv7373u3nzzTeXuJbll18+ffr0WeLHAQAAQEOpVQO8WbNm+eyzz7523OTJk9Os2ZI/1cyZM3P66adn6NChadWqVX7zm99kxx13XGBM165dk2T+vcD/19fdI3xJzJlTmg3EuXOrSnZui1Nucy63+QIAQCmp7+wNAAAApaRWp6h/85vfzCuvvJLx48cvdsy4cePyyiuvLHB/spr4/PPPc9hhh2Xo0KHp1KlTBgwYsFDzO0nWXnvtJMnYsWMXeZy33347SbLOOuss0fMDAABAY1Cf2RsAAABKTa0a4AceeGBmzJiR448/Pq+//vpC+998882ceOKJmTVrVvbZZ58aH3f27Nk5+uijM2rUqKy22mq54447stFGGy1y7DbbbJMkGTFiRObOnbvAvqlTp+aZZ55JmzZtsummmy7BzAAAAKBxqK/sDQAAAKWoVmuj7bLLLnnqqady9913Z++9986yyy6bQqGQJ554Itttt10mTJiQ6urq7LrrrvnRj35U4+NeffXVeeGFF9KlS5cMHDgwyy+//GLHrrTSStl+++0zYsSIXHbZZTnzzDNTKBQya9asnHfeeZk2bVoOP/zwLLPMMrWZKgAAABRFfWVvAAAAKEW1vjlYnz59svHGG+eGG27IP//5zyTJpEmTkiTdunXLT3/60xx66KE1Pt6UKVNy0003JUk6deqUyy67bLFjzzrrrHTu3DnnnntuXnvttdx444157LHHstZaa+WVV17JBx98kPXWWy8nnHBCLWYIAAAAxVXX2RsAAABKVa0b4Emyzz77ZJ999snHH3+cDz/8MFVVVenSpUtWWmmlJT7Wyy+/nBkzZiRJxowZkzFjxix27IknnpjOnTtnpZVWyt13353f//73GTlyZEaMGJFu3brl2GOPzVFHHZW2bdsu9dwAAACgMajL7A0AAAClqk4a4JMmTcrbb7+dLbbYIl26dEmS/OMf/8gtt9ySH/zgB/O31cR3v/vdvPnmm0tcw/LLL58+ffos8eMAAACgKajL7A0AAAClqqK2B7jzzjvz3e9+N7/+9a8X2P7yyy+nd+/e2WmnnfLggw/W9mkAAACgbMneAAAAUDO1aoA/+eSTOe+889KsWbNsueWWC+zbdNNNc8QRR6S6ujqnnXZa/v73v9eqUAAAAChHsjcAAADUXK0a4P369UuzZs0yYMCAnHHGGQvs6969e04//fQMGDAghUIh119/fa0KBQAAgHIkewMAAEDN1aoB/tZbb6Vnz57ZYIMNFjtmgw02yKabbpqXXnqpNk8FAAAAZUn2BgAAgJqrVQN8xowZad269deOa9++febMmVObpwIAAICyJHsDAABAzdWqAd69e/c899xz+fzzzxc75osvvsgLL7yQVVddtTZPBQAAAGVJ9gYAAICaq1UDfI899siUKVNy0kknZeLEiQvtnzRpUk499dR8+umn2X333WvzVAAAAFCWZG8AAACouWa1efDBBx+cBx98ME899VS22267rL/++llxxRWTJP/+97/z2muvZdasWdlwww1z2GGH1UW9AAAAUFZkbwAAAKi5WjXAmzdvnhtvvDFXXnllBg0alJdeeikvvfTS/P0tW7bMgQcemNNPPz0tWrSoba0AAABQdmRvAAAAqLlaNcCTpG3btjnnnHNyxhln5NVXX83HH3+cuXPnpkuXLllvvfXSpk2buqgTAAAAypbsDQAAADVTqwb4oYcemu7du+dXv/pVWrRokR49etRVXQAAAEBkbwAAAFgStWqAjx49OhUVFXVVCwAAAPA/ZG8AAACouVol6LZt26a6urquagEAAAD+h+wNAAAANVerBvhxxx2XZ599Nv3798+sWbPqqiYAAADg/5O9AQAAoOZqtQT6uHHjstpqq+Wyyy7LFVdckdVWWy3t2rVb5NJshUIhN998c22eDgAAAMqO7A0AAAA1V6sG+E033TT/3+fMmZOxY8cudmyhUKjNUwEAAEBZkr0BAACg5mrVAB8wYEBd1QEAAAAsguwNAAAANVerBvgWW2xRV3UAAAAAiyB7AwAAQM3VqgH+32bPnp033ngjH374YTp37pxNN900H3zwQbp161ZXTwEAAABlTfYGAACAr1brBvicOXNyzTXX5JZbbsnUqVOTJLvvvns23XTTnHnmmZk2bVquvPLKrLbaarUuFgAAAMqR7A0AAAA1U1GbB8+ZMyfHHHNMrrvuusyYMSPrr79+qqur5++fNm1aXn/99Rx88MGZOHFirYsFAACAciN7AwAAQM3VqgF+yy235Mknn8xWW22VRx55JHfdddcC+2+99dbsueeemThxYm644YZaFQoAAADlSPYGAACAmqtVA3zw4MFp3759fve736Vr164L7W/VqlV69+6drl275vHHH6/NUwEAAEBZkr0BAACg5mrVAP/Xv/6VzTbbLG3btl3smObNm2fDDTfMBx98UJunAgAAgLIkewMAAEDN1aoB3qxZs3z22WdfO27y5Mlp1qxZbZ4KAAAAypLsDQAAADVXqwb4N7/5zbzyyisZP378YseMGzcur7zyStZdd93aPBUAAACUJdkbAAAAaq5WDfADDzwwM2bMyPHHH5/XX399of1vvvlmTjzxxMyaNSv77LNPbZ4KAAAAypLsDQAAADVXq7XRdtlllzz11FO5++67s/fee2fZZZdNoVDIE088ke222y4TJkxIdXV1dt111/zoRz+qq5oBAACgbMjeAAAAUHO1vjlYnz59svHGG+eGG27IP//5zyTJpEmTkiTdunXLT3/60xx66KG1fRoAAAAoW7I3AAAA1EytG+BJss8++2SfffbJxx9/nA8//DBVVVXp0qVLVlpppbo4PAAAAJQ92RsAAAC+3hI3wOfOnZtbb701Q4cOzcSJE9OtW7fsvvvu2XPPPdOlS5d06dKlPuoEAACAsiF7AwAAwNJZogb4rFmzcsQRR+T5559PdXV1kuSf//xnnnrqqYwYMSK/+93v6qVIAAAAKBeyNwAAACy9JWqA33777Xnuueey/PLL56ijjsoqq6ySt956K/369cvQoUNz77335kc/+lF91QoAAAAlT/YGAACApbdEDfC//vWvadWqVW677bZ069YtSbLttttmm222yV577ZW//OUvQjgAAADUguwNAAAAS69iSQaPHTs2m2222fwAPs+6666b9dZbL2PGjKnT4gAAAKDcyN4AAACw9JaoAT5t2rQst9xyi9y38sorZ/LkyXVREwAAAJQt2RsAAACW3hI1wOfMmZPKyspF7mvevHlmz55dJ0UBAABAuZK9AQAAYOktUQMcAAAAAAAAABorDXAAAAAAAAAASoIGOAAAAAAAAAAlodmSPmD48OHZYYcdFto+adKkJFnkviQpFAoZPnz4kj4dAAAAlB3ZGwAAAJbOEjfAp0+fnunTpy92//jx4xe5vVAoLOlTAQAAQFmSvQEAAGDpLFEDfMCAAfVVBwAAABDZGwAAAGpjiRrgW2yxRX3VAQAAAET2BgAAgNqoKHYBAAAAAAAAAFAXNMABAAAAAAAAKAlLtAQ6AAAAULqGDBmSM888MzfeeGO+853vLLS/Z8+emTx58mIfP3r06LRs2bIeKwQAAICvpgEOAAAAZPTo0endu/di948fPz6TJ0/O8ssvv9j7lFdUWGgOAACA4tIABwAAgDL36KOP5swzz8znn3++2DFvvPFGkmTnnXfO2Wef3VClAQAAwBLRAAcAAIAyNWHChPz2t7/N4MGD06pVq3Tu3DkTJ05c5NjXXnstSbLeeus1ZIkAAACwRKxNBgAAAGXqyiuvzKBBg7LeeuvljjvuyOqrr77YsfOuAF9//fUbqjwAAABYYq4ABwAAgDK1+uqr55JLLskee+zxtffvfu2119KqVau8+uqrOeecc/L222+nUCikR48eOf7447PRRhs1UNUAAACweE3mCvAhQ4ZknXXWyVNPPbXI/T179sw666yz2H+++OKLBq4YAAAAGrejjz46e+6559c2vz/55JN89NFHmTlzZs4444xUVVWlZ8+ead++fUaOHJmDDjooDz74YANVDQAAAIvXJK4AHz16dHr37r3Y/ePHj8/kyZOz/PLLZ4sttljkmK8L8wAAAMCizbv/d4cOHXLttddmk002SZJUV1fnpptuysUXX5xevXqlR48eWWGFFWr1XM2aLZjfKytLI8/XdB6lMt+k/OZcKvMAAICmrtE3wB999NGceeaZ+fzzzxc7Zt59yHbeeeecffbZDVUaAAAAlIVtttkmTzzxRKqrq7P88svP314oFHLYYYflueeey/Dhw3P33XfnhBNOWOrnqagopEOHtnVRcqPTrl3rYpfQ4MptzuU2XwAAaKwabQN8woQJ+e1vf5vBgwenVatW6dy5cyZOnLjIsfPORF9vvfUaskQAAAAoC4VCIV27dl3s/u233z7Dhw/Pq6++WqvnqaqqzmefTV9gW2VlRUk0Fj/7bEbmzq362nGlMt+k/OZc0/kCAABLrl271jVedanRNsCvvPLKDB48OOuvv3769u2bPn36LLYBPu8K8PXXX78hSwQAAACSdOnSJUkyY8aMWh9rzpzSbCDOnVtVsnNbnHKbc7nNFwAAGqtG2wBfffXVc8kll2SPPfb42vt3v/baa2nVqlVeffXVnHPOOXn77bdTKBTSo0ePHH/88dloo40aqGoAAAAoPXfccUeefvrp7Lbbbtlxxx0X2j9u3LgkqfX9vwEAAKC2anadeBEcffTR2XPPPb+2+f3JJ5/ko48+ysyZM3PGGWekqqoqPXv2TPv27TNy5MgcdNBBefDBBxuoagAAACg9EyZMyEMPPZS77rproX3V1dW59957kyRbb711Q5cGAAAAC2i0V4DX1Lz7f3fo0CHXXnttNtlkkyRfBvCbbropF198cXr16pUePXrU+kz0Zs0WbMbXdJ35xq6m8yiV+SblN+dSmQcAAFAce+21V66//vqMHDkyd955Z/bbb78kSVVVVX7/+99n9OjRWXPNNbPzzjsXuVIAAADKXZNvgG+zzTZ54oknUl1dneWXX37+9kKhkMMOOyzPPfdchg8fnrvvvjsnnHDCUj9PRUUhHTq0rYuSG5127VoXu4QGV25zLrf5AgAAdWuVVVbJBRdckHPOOSfnnntubr755nTv3j1jxozJu+++m86dO+f3v/99mjdvXuxSAQAAKHNNvgFeKBTStWvXxe7ffvvtM3z48Lz66qu1ep6qqup89tn0BbZVVlaURGPxs89mZO7cqq8dVyrzTcpvzjWdLwAAsOTatWtdFqsu7b333vnGN76R66+/Pi+++GLeeeeddO3aNYccckiOO+64dOrUqdglAgAAQNNvgH+dLl26JElmzJhR62PNmVOaDcS5c6tKdm6LU25zLrf5AgAAS2fgwIFfub9Hjx659tprG6gaAAAAWHJN/hT1O+64IyeffHKGDx++yP3jxo1Lklrf/xsAAAAAAACAxq3JXwE+YcKEPPTQQ5kxY0Z23HHHBfZVV1fn3nvvTZJsvfXWxSgPAAAAAAAAgAbS5K8A32uvvdKiRYuMHDkyd9555/ztVVVVueqqqzJ69Oisueaa2XnnnYtYJQAAAAAAAAD1rclfAb7KKqvkggsuyDnnnJNzzz03N998c7p3754xY8bk3XffTefOnfP73/8+zZs3L3apAAAAAAAAANSjJn8FeJLsvffeueWWW/K9730vEyZMyKOPPpo5c+bkkEMOyX333ZfVV1+92CUCAAAAAAAAUM+azBXgAwcO/Mr9PXr0yLXXXttA1QAAAAAAAADQ2JTEFeAAAAAAAAAAoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASmhW7AKD8VFQUUlFRqLfjV1VVp6qqut6ODwAAAAAAQOOkAQ40qIqKQjp0aJ2Kisp6e46qqrmZNGmGJjgAAAAAAECZ0QAHGtSXV39X5p8PXJ8Zn3xY58dv3WnFfGO3o1JRUdAABwAAAAAAKDMa4EBRzPjkw8yY8F6xywAAAICS5PZjAACUKw1wAAAAACghbj8GAEA50wAHAAAAgBLi9mMAAJQzDXAAAAAAKEFuPwYAQDmqKHYBAAAAAAAAAFAXNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEpCs2IXADQuFRWFVFQU6u34lZXOuwEAAAAAAKB+aIAD81VUFNK+fRtNagAAAAAAAJokDXBgvoqKQiorK3LNbU9m/EdT6uU5NlqnW/bfeeN6OTYAAAAAAADlTQMcWMj4j6bkX+Mn1cuxu3VpVy/HBQAAgKbC7ccAAKD+aIADAAAAQANx+zEAAKhfGuAAAAAA0EDcfgwAAOqXBjgAAAAANDC3HwMAgPphrSUAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAASJIMGTIk66yzTp566qlF7p84cWJ+9atf5fvf/3423HDD7LDDDrnssssybdq0Bq4UAAAAFk0DHAAAAMjo0aPTu3fvxe7/6KOPst9+++WWW25Jq1atst1226Wqqir9+vXLgQcemM8//7wBqwUAAIBF0wAHAACAMvfoo4/miCOO+Momdp8+fTJ+/PgcffTRuf/++3PVVVfl4Ycfzg9/+MO8+eabufrqqxuwYgAAAFi0JtMAtwwbAAAA1K0JEyakV69eOf744zN79ux07tx5kePee++9DBs2LCuuuGJOOumk+dtbtGiR3r17p23btrnjjjsyc+bMhiodAAAAFqlJNMAtwwYAAAB178orr8ygQYOy3nrr5Y477sjqq6++yHGPP/54qqqqsu2226Z58+YL7Ft22WWz5ZZbZvr06XnmmWcaomwAAABYrEbfALcMGwAAANSP1VdfPZdccknuuuuurLPOOosd99ZbbyVJ1l577UXuX3PNNRcYBwAAAMXSaBvglmEDAACA+nX00Udnzz33TEXFV3898PHHHydJunTpssj987ZPnDixbgsEAACAJdSs2AUszpVXXpnBgwdn/fXXT9++fdOnT59FBumaLMP2yCOP5Jlnnsm2227bUOUDAABAyZg+fXqSpFWrVovcP2/7vHG10azZgs34yspGe+7+EqnpPEplvkn5zbnc5puU1lwAACgdjbYBPm8Ztj322OMrz0SvyTJsjzzySN566y0NcAAAAFgKlZWVSZJCobDI/dXV1Qv879KqqCikQ4e2tTpGY9WuXetil9Dgym3O5TbfpDznDABA49doG+BHH310jcZZhg0AAADqV5s2bZIkX3zxxSL3z9veunXtmmFVVdX57LMFryKvrKwoiSbbZ5/NyNy5VV87rlTmm5TfnMttvknN5wwAALXVrl3rGq9A1Ggb4DVlGbbas0RX7cc1duU236S05gIAAMXWtWvXJP85Cf1/fd3J6UtizpzSbKbNnVtVsnNbnHKbc7nNNynPOQMA0Pg1+Qa4Zdhqr1TOOl4S5TbncptvUp5zBgCA+jLvtmNjx45d5P633347SbLOOus0WE0AAACwKE2+AW4ZttqzRNfilcqcy22+iWXYAABoOEuyDFtTtc022yRJRowYkV69es0/GT1Jpk6dmmeeeSZt2rTJpptuWqwSAQAAIEkJNMAtw1Z75bhcVbnNudzmm5TnnAEAoL6stNJK2X777TNixIhcdtllOfPMM1MoFDJr1qycd955mTZtWg4//PAss8wyxS4VAACAMtfkG+CWYQMAAID6d+655+a1117LjTfemMceeyxrrbVWXnnllXzwwQdZb731csIJJxS7RAAAAEiTX6Ptv5dhmzt37gL7LMMGAAAAdWOllVbK3XffnX333TdTp07NiBEj0qJFixx77LEZMGBA2rZtW+wSAQAAoOlfAW4ZNgAAAKgbAwcO/Mr9yy+/fPr06dNA1QAAAMCSa/IN8MQybAAAAAAAAACUwBLoiWXYAAAAAAAAAGhCV4Bbhg0AAAAAAACAr1ISV4ADAAAAAAAAgAY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACWhWbELAAAAAJqORx99NMcdd9xi9++yyy658sorG7AiAAAA+A8NcAAAAKDGXn/99STJ5ptvnhVWWGGh/ZtssklDlwQAAADzlVQD3FnoAAAAUL/mNcDPOeecrLvuukWuBgAAABZUUg1wZ6EDAABA/Xr99dfTsmXLrLnmmsUuBQAAABZSkg1wZ6EDAABA3Zs0aVI+/PDDbLjhhmnWrKS+UgAAAKBElFRadRY6AAAA1J95J56vuOKKueyyy/LII4/kgw8+SOfOnbPTTjvl2GOPzXLLLVfkKgEAAChnFcUuoK7MOwt9nXXWcRY6AAAA1IPXXnstSfLwww/ntttuS/fu3dOjR49MmTIl/fv3z3777ZePP/64yFUCAABQzkqmU+wsdAAAAKhfb7zxRpJku+22y+WXX55ll102SfLpp5/mlFNOyd///vece+65ue6665b6OZo1W/Bc/crK0jh3v6bzKJX5JuU353Kbb1JacwEAoHSUTAP8v89Cb9u2bbbYYoussMIKeeWVV9K/f/88+uijufnmm9OlS5ciVwoAAABN0yWXXJJf/OIXWWGFFdKqVav52zt27JhLL700O++8c0aMGJH3338/K6+88hIfv6KikA4d2tZlyY1Gu3ati11Cgyu3OZfbfJPynDMAAI1fyTTAnYW+9JyhXPtxjV25zTcprbkAAEBj0aJFi3Tv3n2R+5Zffvl861vfyvPPP5/XXnttqRrgVVXV+eyz6Qtsq6ysKIkm22efzcjcuVVfO65U5puU35zLbb5JzecMAAC11a5d6xr3fkqmAe4s9KVXKqFrSZTbnMttvkl5zhkAAIqtc+fOSZIZM2Ys9THmzCnNZtrcuVUlO7fFKbc5l9t8k/KcMwAAjV/JNMCdhb70nKG8eKUy53Kbb+IsdAAAGs6SnIXelM2aNSsXXnhhJk2alMsvvzxt2rRZaMy4ceOSJCussEJDlwcAAABJSqgB/nWchb545Xi2brnNudzmm5TnnAEAoD61aNEiTz31VD744IM8/vjj2XnnnRfYP2bMmIwZMybLLrtsNt544+IUCQAAQNkriVPUZ82alV/+8pc5/vjjM3369EWOcRY6AAAA1M7++++fJPn1r3+d9957b/72iRMn5uyzz87cuXNzxBFHLHBrMgAAAGhIJXEFuLPQAQAAoP4dfvjhee655/K3v/0tu+22WzbbbLO0aNEizzzzTKZPn56ddtopRx99dLHLBAAAoIyVxBXgibPQAQAAoL61aNEif/rTn/LLX/4ya6yxRl544YU888wzWWuttdKnT5/87ne/S2VlZbHLBAAAoIyVxBXgibPQAQAAoCFUVlbm0EMPzaGHHlrsUgAAAGAhJdMAn3cW+i233JLBgwfnhRdeSEVFRdZaa63su+++2WeffVIoFIpdJgAAAAAAAAD1pGQa4Imz0AEAAAAAAADKWcncAxwAAAAAAACA8qYBDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJzYpdAECpq6gopKKiUK/PUVVVnaqq6np9DgAAAAAAgMZOAxwoe/XZoC4UCmnXrmUqKirr5fjzVFXNzaRJMzTBAQAAAACAsqYBDpS1iopC2rdvk8rK+r0jxD8fuD4zPvmwXo7dutOK+cZuR6WioqABDgAAAAAAlDUNcKCsVVQUUllZkWtuezLjP5pS58ffaJ1u2X/njTPjkw8zY8J7dX58AAAAAAAA/kMDHCDJ+I+m5F/jJ9X5cbt1aVfnxwQAAAAAAGDRNMABAAAAgHpVUVFIRUWh2GXUSlVVtVuPsYD6fl97zwHA0tEABwAAAADqTUVFIe3bt0llZUW9PUd1VVUKFfV3/CSpqpqbSZNmaEiSpGHe13PnVmXq1Jmprq6/95wmOwClSAMcAAAAAKg3FRWFVFZW5Jrbnsz4j6bU+fE3Wqdb9t954/zzgesz45MP6/z4SdK604r5xm5HpaKioFlIkvp/X6/TvUsO3X3TtG/fps6P/d+c2AFAKdIABwAAAADq3fiPpuRf4yfV+XG7dWmXJJnxyYeZMeG9Oj8+fJX6fF8XKiqc2AEAS0EDHAAAAAAAGiEndgDAkqvfG+MAAAAAAAAAQAPRAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAnNil1AXXv22Wdz3XXX5Y033sjMmTOzzjrr5Kc//Wl++MMfFrs0AAAAKAmyNwAANE0VFYVUVBSKXUatVFVVp6qquthl0IiVVAP8/vvvz+mnn55mzZqlZ8+eqayszNNPP52TTz45Y8eOzQknnFDsEgEAAKBJk70BAKBpqqgopH37NqmsrL8FoqurqlKoqN8FqKuq5mbSpBma4CxWyTTAP/nkk5xzzjlp3bp1BgwYkA022CBJMnbs2Bx66KG5+uqrs+OOO2bdddctcqUAlKL6PnPSWY0AQGMgewMAQNNVUVFIZWVFrrntyYz/aEqdH3+jdbpl/503zj8fuD4zPvmwzo+fJK07rZhv7HZUKioKvi9lsUqmAX7LLbdk5syZOeqoo+YH8CRZY401cuqpp+bss8/OTTfdlIsvvriIVQJQDPXdnC4UCmnXrmUqKirr7Tmc1QgANAayNwDF5ORzgLox/qMp+df4SXV+3G5d2iVJZnzyYWZMeK/Ojw81VTIN8JEjRyZJvv/97y+0b4cddkihUMhjjz3WwFUBUGwNsazPPPV1ZqOzGgGAxkL2BmBxnHxOKXKvZIBFa+wnpZVMA/wf//hHkmTNNddcaF/79u3TuXPnfPzxx/nkk0/SqVOnhi4PgCKp72V9kv8s7dOYzmwU0ACA+iB7A7AoTj6nFDXU+7q+75fsxA4oP05KK5EG+JQpU/LFF1+kbdu2adu27SLHdO3aNR9//HE+/vhjIRygDNXXsj7Jf5b2aSwaIqDVdzhLGl9Aa2xnNZbjSQ5Nfc5O6vh6Tf01TrzOlDbZG4DFKdeTz8tRU//MviSf1xvyfe3EjuIqp/c1pc9JaV8qVFdXN/mfig8//DDbbbddOnfunCeffHKRYw488MC8+OKLue2229KjR48lfo7q6oV/gRQKSUVFRaZ8PjNz51YtVe1fpUXzyizTpmVmT/ss1VVz6/z4hYrKNG/bLlVVVanJu6Cpzzcpvzk3tvkm5Tfnxvi+nv+4pvuZbonnWa7v62nTZ2VuVd3PuXmzyrRu1TxzZk5LdT0cP0kKFRVp1qpto3pfFwqFFOrxCRb1WeOrVFTUbz3JlzWV05wb23znKZff10nTf43nPceSvs7l9BonTXu+yaLn3BC/kxsD2XvpyCg1GN/E59zY5puU35wb4/t6/uOa8J8H2ftrxpfp+7qpf2Zfks/r5fi+nv+4MvndNY/3dd1prL+7kvJ5X9f3d8PJf74fbujfXUvys1oSV4BX/P8r0L5q0vP6/Evb7y8UCqmsXPTxl1um1VIds6aat63fKwsrlvAKvqY+36T85tzY5puU35wb4/u63JTj+7ptmxb1VMmXmrVa9JVfdamc3tdf9VmjWOq7mdPY5lxu8y1HDdGg9DpTymTv2pFRvl5Tn3Njm29SfnNujO/rcuN9XffK7X3dGHNZOb6vqVvl+L4ut99djVF9fzecNO7fXSXx7pi39NrMmTMXO2bWrFlJkjZt2jRITQAAAFBKZG8AAACagpJpgLdp0yZTp05dbBD/6KOPkiRdunRpyNIAAACgJMjeAAAANAUl0QAvFApZe+21kyRjx45daP/kyZMzceLEdOzYMZ07d27o8gAAAKDJk70BAABoCkqiAZ4k22yzTZJk+PDhC+0bPnx4qqurs+222zZ0WQAAAFAyZG8AAAAau5JpgO+9995p3bp1/vznP+fFF1+cv/2dd97Jb3/72xQKhfzsZz8rYoUAAADQtMneAAAANHaF6urq6mIXUVfuvPPOnHvuuamsrEzPnj3TokWLPP300/niiy/yf//3fzn66KOLXSIAAAA0abI3AAAAjVlJNcCT5PHHH8/111+fV199NZWVlVlzzTVz+OGH5wc/+EGxSwMAAICSIHsDAADQWJVcAxwAAAAAAACA8lQy9wAHAAAAAAAAoLxpgAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxyoM1OnTl3ixzzzzDP1UAmwtK6++uq89dZbxS4DAABYDNkbmj7ZGwDqlwY4DW7WrFl59dVXM2bMmMyZM2ex4z799NM899xzDVhZw3vmmWdy44035tZbb824ceOKXU6tHXrooZk8eXKNxn7xxRfp06dPfvazn9VvUcASufrqq/Pmm28WuwyoczvssEMeeeSRYpdRFFVVVXnvvfcW2FZdXZ0HH3wwffr0yW9+85u8/PLLRaqu7nzwwQeZOXNmjcePGzcuQ4YMqb+CiuDTTz/N008/nQcffDAPPfRQnnnmmRp/NgNKj+z9H7K37A2NjexNqZK9Ze//JXtTLM2KXQA1N3PmzHz66afp1q1bsUtZagMGDMjvfve7TJ8+PUmy7LLL5sgjj8yRRx6ZiooFz8f429/+ljPPPDNvvPFGMUqtM2+++Wb++Mc/5s0330y3bt1yzDHHpEePHjnppJPyyCOPpLq6OknSrFmznHjiiTnmmGOKXPHSe+ONN/KTn/wkf/7zn9O5c+fFjnv55Zdz5pln5l//+tdXjitVn376acaOHZvNN9+82KU0iKlTp+aSSy5Jnz59il1Kgym317gU7LDDDjn77LOzww47FLuUBvPNb34zl156aXbfffdil9Igxo8fP//zRzkZOXJkLrzwwnz88cd59dVXk3wZyo8//vg89thj8z+H9OvXL4ceemh69epVzHJrZYcddljoPT19+vT07t07Rx55ZNZYY40Fxo8aNSq9evXKnnvu2cCV1r2HH344f/zjHxf5ublQKKRHjx458sgjs9122zV8cXVo3XXXTaFQWKLHFAqFvP766/VUEaVK9m6aZO+Fyd7llctkb5oC2bv0yd6yt+wtezcWrgAvokWdDTVr1qwMGTIkEydOXGj80KFDm/SHgyFDhqRv375ZZ5110qtXrxxzzDFp1apVrrzyyhx++OH5/PPPi11inXv11Vez3377ZeTIkWndunVefvnlHHbYYenbt28eeeSRHHHEERk8eHBuvvnmbLvttvntb3+bhx56qNhlL7Vzzz0377zzTg4++OB8+OGHC+2fPXt2fvOb3+Sggw7Kv/71r/zoRz/KX/7ylyJUWre++c1v5v77719g28yZM3P11Vfn/fffX2j83/72txx66KENVV69eP/999O7d+/8+Mc/zo9//OOcc845effddxcaN3To0Oyyyy655557ilBl3SnH17jclGNAmxe+KF1jxozJz3/+81RXV+eII45IVVVVkuS2227LyJEj06VLl9x5550ZNWpUzjjjjAwYMKBJfw5Z1Hv6iy++yJAhQ/LRRx8VoaKG0adPn5x88skZP3589txzz5x22mn51a9+lfPOOy8nnXRSdthhh7z22ms57rjj8utf/7rY5dbK5ptvns0222yJ/tl0002LXTaNgOwte8vesndTJXuX/mtcbmRvSpHsLXvL3o0ze7sCvIgW9Qd/2rRp6dWrV/r3719yZ+feeOON2XzzzTNw4MD5244//vhccMEFGTRoUA477LD8+c9/zjLLLFPEKuvWlVdemZVXXjkDBw5Mx44dM3369BxzzDG55ZZbsv/+++e0006bP3azzTbLT37yk9xwww354Q9/WMSql97BBx+c5ZZbLmeddVYOPvjg/PnPf86qq66a5Msz1M8888y89dZb6datWy688MJss802Ra64bizqj/6MGTNyzTXXZNNNN83KK69chKrqzxtvvJFDDjkkn3/+eVq1apVWrVrl9ddfz4MPPpjbb789a6+9dqZOnZpzzjknQ4cOTWVlZY4++uhil10r5fYav/POO0u8DKYz7qHxuf7669O1a9fce++9adeu3fztt9xySwqFQk499dRsuOGGSZKf/exnefbZZ3Pbbbc12c8hi1PKXzjdd999ufnmm7PnnnvmvPPOS5s2bRY5btq0abnoooty0003ZZNNNslOO+3UwJXWjf/OEbAkZG/ZW/aWvZsi2ftLpfway95QGmTvL8nesndjowHeCJXqL4p//vOfOeussxbY1qJFi/Tt2zft27dP//79c+SRR6Z///6L/QXS1IwaNSqnnnpqOnbsmCRp06ZNfvGLX+QnP/lJtt5664XG//CHP8yll17a0GXWqd122y3LLrtsTj755Bx88MG5/vrr88gjj+S6667LnDlzctBBB+X//u//0rZt22KXWu9K9Wf5qquuysyZM/Ob3/wmu+66a5Jk9OjROfXUU9OnT59cfvnlOfTQQ/Ovf/0rG2ywQfr06ZN11lmnyFXXj1J9ja+77rpcd911S/SYpr5kZrla0uWMmro777wzTz31VI3HFwqF9O3btx4rql/PPfdc9ttvvwUC+Lhx4/LOO++kWbNm+f73v7/A+K222ipXXXVVQ5dJLdx2223ZeOONv/bs8rZt26Zv374ZO3Zs7rrrriYbwmfPnp3mzZsv0WNefvnlbLTRRvVUEU1dqX6Wk71lb9m7NMje/1Gqr7HsXT5k768me9PYyd5frzFmbw1wGkzr1q0zefLkRe4744wzMn369Nx+++059thjc/311zdscfVkmWWWyWeffbbAtnXWWSfbbrttmjVb+Mdv0qRJadmyZUOVV2+23Xbb9OvXL8cdd1x+/OMfp7q6Oquttlr69OmTzTbbrNjlUUujR4/OAQccMD+AJ8mGG26YM844I6ecckpOOeWUjB8/PqeddloOP/zwhe4xSOO34447luwXJ1+l3AJaklx77bW58847azy+UCjkpptuqseK6tdzzz23RFdYNPXXeNKkSVlhhRUW2Pb3v/89SbLRRhst9IV4q1at8sUXXzRYfdTeP/7xjyW6h+0OO+yQO+64ox4rql8//vGPc/nll9fob9SsWbNy5ZVXZsCAAXnttdcaoDpoPGTvL8nesndTJ3uXPtm7Zpp6Lktk76/T1F9j2bv0yd6L15iztwY4DaZnz54ZMGBAvv/972ettdZaaP/555+fzz//PA888EAOP/zwbLvttkWosm5ttdVW+fOf/5xNNtkk3/72t5Mkyy67bP74xz8uNPbll1/OwIED549r6jbddNMMGDAgRx55ZD799NP86le/EsBLxJQpU7LuuusutH2DDTbI3Llz8+abb2bgwIHZeOONG7446sQPfvCD7L777sUuo8GVW0BLkrFjx2bs2LE1Ht/Uz1o/++yzm/Q9XZfUcsstl08//XSBbX/7299SKBSy1VZbLTR+7Nix86+co2mYPn16OnXqVOPxXbp0adL3ZJs4cWL22WefnHjiiTnqqKMW+zvphRdeyNlnn5133303q622WgNXCcUne8vesndpkL1Ln+xdM7J30yN7y96lRvZumtlbA5wGc+qpp+aggw7KXnvtlW9961u57LLLFvihKBQKufTSS9OiRYsMGjQoL774YhGrrRunnXZaRo8encMPPzybbbbZYu+dcMghh+SFF15Ix44dF7g3WVO37rrr5rbbbsvPfvazHHfccbnmmmuy5ZZbFrssamnOnDmLvFqiVatWSZKjjz5aAKdJKreAliSXXXZZWX3h0qFDh6y00krFLqPB9OjRIw8++GCOOOKIVFZWZuLEiRk5cmSSZOedd15g7NSpU3P//fenZ8+eRaiUpTV37txFXtm4OJWVlZkzZ049VlS/HnjggfTq1StXXHFFRo4cmUsuuSSrrLLK/P3zlomdd6+9I444IieddFIRK4bikL1lb9m7NMjelCrZu/TJ3rJ3qZG9m2b21gCnwXTv3j1/+ctfcs011+T555+f/4H9v1VUVKRv377ZZJNN8rvf/S6ffPJJESqtO506dco999yT22+/PbNmzVrsuFatWmWfffbJL37xiyU6k6ix6dWr1yK3r7baann//fdzzDHH5Ic//OECZwyVwlmcLGj99dcvdgmwVMotoFH6jjrqqBxwwAHZf//9s8UWW+SRRx7JF198kV133TWrr756ki+/WH3ppZdyySWX5NNPP83BBx9c5KprZ9iwYXn33Xfn//fMmTNTKBRy77335oUXXlhg7FtvvdXQ5VFLnTp1yp/+9Kfccsstueyyy/KjH/0oZ511Vvbbb788++yz+eUvf5lx48ZlnXXWyUUXXeQzCWVL9pa9Ze/y4O8cTZXsTamRvWXvUlMq2VsDvMjeeeedBZZ8mTp1apLkzTffXOiMkiVZJqWx6tChQ84555yvHbfvvvtmr732WuCXaFPVqlWrHHbYYV85plTuuzZ48OCv3P/FF19kyJAhC2wrlRD+/PPPZ+7cufP/e9q0aUmSJ598MhMmTFhgbClcYfFVmvoyTYtTLq/x5ptvns6dOxe7DKAObLDBBrn22mtz0UUXpX///qmsrMzuu++eCy+8cP6YSy+9NAMGDEhFRUV69eqVHj16FLHi2hs6dGiGDh260Pb//fwxTyn8zfrfLx6+Sql88XDwwQdnyy23zLnnnpvzzz8/AwcOzNixY9OsWbOcdNJJOfroo5fo7HzKg+y9aLJ30yR7l34uq4lS+ByzKOXyGsveUDpk7/+Qvb8kezcOherq6upiF1Gu1l133UX+4FdXV3/l9jfeeKMhyqt31dXVGTduXCZPnpwk6dixY1ZeeeXiFlXPSn3O48ePX6rHNfWzPhf1s/zfv1oXta8p/yyvu+66Oe644/Kd73xnge1Tp07N8ccfn7POOivrrbfeQo/bfPPNG6rEOldur3E5WnfddctuSbJym/PgwYOz2WabLbBkUzmZNGlSWrduvdBVgI899lhee+217Lrrro3yfk1L4tlnn12qx22xxRZ1XEnDWdR9Qb9OKf19eu6553L88cdn6tSpKRQKOf7443PiiScWuywaIdm7tHPoopT6nGXv/yjlXCZ7f6mUX+NyVG45NCm/OcvesvfiyN5NV1PN3hrgRXT11Vcv1eNOOOGEOq6kYY0ePTr9+vXLk08+menTpy+wb5lllsn3vve9/OxnP1uqXyqNVTnOuZx83dn3i7PXXnvVcSUNY3FfICaL/xIxSZP+g19Or/F/Xxm1JJrylyxJeQa0Z599NmussUaTXv4Tyl05fvGQJJ9//nkuvfTS3H333WnZsmWOOuqoPPzww3nrrbfy7W9/O3369Em3bt2KXSaNiOxdPjm0HOdcTsoplyWy95Joiq+x7C17A02H7N00s7cGOA2qf//+ufzyy1NRUZFNNtkka621Vtq1a5c5c+Zk8uTJef311/PGG2+koqIiZ555Zg499NBil1xr5TjnmrruuusydOjQDBo0qNilNLhZs2alRYsWxS5jqZTrF4hLqqm+xl/1JctXacpfslAeFnevzK9SKkuFsmi33357/va3vy313zWKY+TIkTn//PMzYcKEbLnllundu3dWWWWVzJ49O1dddVX69++fVq1a5fTTT88BBxxQ7HKhaMoxh5bjnGtK9m56uSyRvWuqqb7GsjelSvbmf8neTVMpZG8NcBrMY489lmOOOSbf/va307dv36y44oqLHPfee+/lwgsvzFNPPZX+/fvn29/+dgNXWnfKcc5L4vzzz8+dd97Z5D+8X3311UsUMEePHp1evXrlL3/5Sz1WRV0qp9f497///VKF8Kb+JUs5BrSl+dK3UCjkpptuqodq6l85Llf1dV+qtWzZMssuu2zWXnvt/OAHP8i+++6bioqKBqywuErhc8gHH3yQjh07LrS83uKMGzcuL7zwQvbcc8/6LayenHbaafnLX/6SNm3a5Iwzzsj++++/0JhRo0blzDPPzLhx47LFFlvkoosuKqllj6EmyjGHluOcl0Qp/M1LyiuXlatyeo1l75qTvZsW2XthsnfT/xwiezfN7K0BXkTl9gf/Zz/7WSZOnJhBgwalefPmXzl2zpw52XPPPbPaaqvlmmuuaaAK6145znlJlMIfv+TLDzlHHHFETj/99K8cN2fOnFx99dXp169f5s6d2+TnXVMzZ87Mp59+2qiXQ/k6XuPSV64BbUk15TmX470yDznkkK/cP3fu3Hz22Wd57733Mnv27Gy11Va57rrr0qxZswaqsLhK4XPIN7/5zVx66aUL3E9w+vTp6d27d4488sisscYaC4y/7777cuaZZzbZOa+77rrZZptt0rt376ywwgqLHTdz5sz8+te/zu233542bdrkxRdfbMAqaYxk78UrlRxajnNeEqXwNy+Ry76O7E1TUG45NCm/OcveC5O9m/7nENl70Rp79i6Pn7BGaknua/PfZxA11RD++uuv57DDDvvaMJokzZo1yw9/+MPcd999DVBZ/SnHOZejzTbbLP3798+MGTNy3nnnLXLMm2++mTPPPDNvvvlmlltuufzyl79s4Crrzg477JCzzz47O+yww/xts2bNyoMPPpitt946nTt3XmD80KFDm/Qf/KT8XuNy9MgjjxS7hAY3ZsyYYpfQoJpymF5aAwcOrNG4mTNn5rbbbsull16a22677WvDO43Hos5l/uKLLzJkyJDsscceC4Xwpu7iiy+u0T0+W7VqlQsuuCDf//73/T0miez9VUolh5bjnMtRueUy2bv0X+NyJHuXPtl78WTvpkv2XrTGnr01wIuoJn/8xo8fn969e2fkyJFZdtllc/LJJ9d/YfVk2rRp6dq1a43Hr7jiivn3v/9djxXVv3Kccznq379/TjrppNx2222ZMWNG+vbtO/+Ls+rq6vzpT3/KNddck1mzZmWXXXbJOeeck44dOxa56qU3fvz4TJ8+fYFt06ZNS69evdK/f/+FQngpKLfXOEneeeedjBo1Knvvvff8bRMnTszVV1+dF198Ma1bt84OO+yQww47rEneb+1/lWNAY0GzZs3KP/7xj7Rq1Sqrr756sctpUK1atcrPfvazvPzyyxk8eLAQXgJKdZGvmgTw//aNb3wj++67bz1VQ1Mie3+1Usih5TjnclRuuUz2Lv3XOJG9KT+yt+xdSmTvLzXW7K0B3kjNnTs3/fv3zx/+8IfMnDkzu+66a3r16tWkP9zOmTNniT6oNWvWLLNmzarHiupfOc65HLVo0SLXXHNNevXqlcGDB2fmzJm5/PLL89577+Wss87K6NGj06VLl1xwwQX53ve+V+xy602p/sFPyu81vvzyy9O/f/9UV1dnr732SkVFRaZOnZr9998/H3zwQdq3b5+VVlopv/vd7/Loo49m4MCBNbrapikrx4A2YcKEjB49Oq1atcrmm29e4/scNWZTp07N9ddfn1GjRi1whvb999+fPn365LPPPkvy5Qf3vn37ZuONNy5SpcXRs2fPPPnkk8UuA2rliy++yMMPP5xBgwbl2WefTXV1dX7+858XuywaMdm7NHJoOc65HJVbLlsc2bt0XmPZe2Gyt+xdDmRvSkFTyN4a4I3Q888/nwsvvDBvv/12unfvnvPPPz/f/va3i10WfK2rr756ica/+uqr9VRJw6usrMyll16adu3a5eabb87777+ft99+OzNnzsy+++6bM888M8sss0yxy6QWyuU1HjZsWPr165ftttsuhx56aCoqKpIkf/jDHzJ+/PhstNFG+fOf/5zWrVtn9OjROeSQQ/LnP/85Rx11VJErr71yDGjjx4/PFVdckVGjRuXRRx+dv/1Pf/pTrrrqqsydOzfV1dVZbrnl0rt37/zgBz8oYrW1M23atOy///555513ssIKK2TOnDlp1qxZRo8enTPPPDPV1dXZf//9s9Zaa2XIkCH52c9+liFDhmS11VYrdukNprKyMlVVVcUuY6kNGTJkicb/85//rJ9CKIpRo0Zl0KBBeeihhzJt2rRUV1dn1VVXzf7771/s0mjEZG+aKtm79HNZOSuX11j2lr0T2Vv2bppk7/LWlLK3BngjMmnSpFx66aUZMmRIWrRokRNPPDFHHXVUSSxvM8/zzz+fuXPn1mjsiy++WM/VNIxymvOShvBkwXvslYJzzjkn7du3z9VXX52Kior88Y9/zLbbblvssqhDpf4a33777dloo41y3XXXzd9WXV2d++67L4VCIb/4xS/SunXrJMmGG26YH/3oR/nLX/7S5EN4OQa0Tz75JPvvv38mTZqUDTfccP6cn3jiiVxxxRVp1qxZTj311Ky99tq58847c+qpp+aOO+7IeuutV+zSl0r//v3z3nvv5be//W123nnn+duvueaaVFdX56c//WnOOuusJMk+++yTPfbYI9ddd10uvvjiYpXc4F5++eWsuOKKxS5jqZ111llL9Lmiurq65D6HlJsJEybk3nvvzaBBg/Luu+/OvyKuZ8+eOeqoo7L11lsXuUIaK9l7QU09h85TTnOWvUs/l1H6r7HsLXvL3rJ3UyV7l5+mmr01wBuJu+66K5dffnmmTJmSrbbaKueff35WXXXVYpdV5+68887ceeedNRpbKr8Yy2nOAwYMKHYJjcIJJ5yQDh06pE+fPunXr1823XTTkjg7mf8o5df4tddeWyhQv/766/nkk0+yzDLLpGfPngvs22CDDXL//fc3ZIn1ohwD2p/+9KdMmzYtt9xyywJn1P/pT39KoVDIz3/+8/nvhe9+97vZe++9c/311+e3v/1tcQqupaFDh+ZHP/rRAq/vtGnT5i87dtBBB83f3rJly+yxxx656667GrzOYvnrX/+ae++9N0ceeWSxS1lqTfnnkZqbNWtWhg8fnkGDBuXpp5/O3LlzU1lZmS222CKbbrpprr322hx66KGNNoBTfLL3wpp6Dp2nnOYse3+plHMZXyrl11j2lr1lb9m7qWrKP4/UXClkbw3wInvzzTdzwQUX5KWXXkrnzp1zxRVXZJdddil2WfWiHH8xltuct9hiiyV+zPPPP18PlTSs5557bqFta6+9dvbdd9/ceeed+elPf5ozzjhj/nJW82y++eYNVSK1VE6v8fTp07PccsstsO3vf/97ki/nU1lZucC+OXPmNOkvD+cpx4A2cuTI7L333gsE8MmTJ+eFF15Ikvz4xz+ev71QKOSHP/xhbrrppoYus868//77C7yOyZc/23PmzMkqq6yyUPNjxRVXzCeffNKQJda5Xr16feX+uXPnZtq0afnHP/6R9957L927d2/SIXyvvfYqdglFMWzYsLz77rvz/3vmzJkpFAq599575/88z/PWW281dHl16sILL8yDDz6YKVOmpGXLltlmm22y4447ZocddkiHDh0yfvz4/OEPfyh2mTRSsndpK7c5y97/Uaq5rFyV02sse8vesveXZO+mR/b+kuzd+LO3BngRXXLJJRk4cGDmzp2b7bffPieffHKWWWaZfPDBB1/5uG7dujVQhXWrHH8xluOca+LDDz/M4MGDM2TIkIwbNy5vvPFGsUuqlUMOOeQrQ8hrr72Www47bKHtTXne77zzzgLBdOrUqUm+/GKxWbMF/7SMHTu2QWurD+X0Gnft2jXjxo1bYNvIkSNTKBTy3e9+d6Hxo0ePzvLLL99Q5dWbcgxo//73v7P22msvsO2ZZ55JVVVV1lxzzYVe106dOmXKlCkNWWKdqqioWOgeW08//XSS5Dvf+c5C4z/99NMmf3XJ4MGDazRulVVWyU9/+tMcf/zxTX7Oi7Ooz9crrrhiyXyJOHTo0IW2L+6+bE15zrfddlvatGmTY489NkceeWTJvl+pe7J36SvHOdeE7P2lpjxv2XtBpfQay97/IXvL3k39c73s/R+y93805TmXSvbWAC+iG2+8cf6/jxgxIiNGjKjR45rih7ql8emnn2bs2LFN8izOpVXKc/7iiy8ydOjQDBo0KM8888z8JecW9aG+qfn5z3/epP+gLY3rrrtugftUzXPJJZcstK2pLy+YlNdr/N3vfjf33HNPDjrooCy//PIZNWpUnn/++TRv3jw77bTTAmPffvvt/OUvf8l+++1XpGrrTjkGtJYtW2bGjBkLbHvqqadSKBSy1VZbLTT+3//+d9q1a9dQ5dW5NddcM6NGjcrBBx+c5MvfTcOGDUuhUMj3vve9hcY/8sgjWWONNRq6zDr1yCOPfOX+li1bpl27diV1z9skueeee3LXXXflD3/4Qzp27JhJkyble9/73kK/x0866aQcd9xxRaqybpTbErh77bVXhg8fnj/+8Y+56aabstlmm80/C71z587FLo9GTPb+aqWcQxenlOcse5cW2bt0yd7/IXsvSPZuemRv2bvUlEr21gAvohNOOKHYJTSob37zm7n00kuz++67z982c+bM9OvXL3vuuWdWXnnlBcb/7W9/y5lnntmkv3Qoxzn/r5deeimDBg3KQw89lM8//zxJ0rFjx+y9997Zf//9s9JKKxW5wto78cQTi11CgyqnQDpPOb3Gxx9/fIYOHZof/vCHWX311fPWW2+luro6P//5z9OxY8ckX4bvoUOHZsCAAWnevHmOOOKIIldde+UY0NZdd908/fTT+elPf5rkP/f2SZIdd9xxgbHV1dX561//mnXXXbfB66wre+65Zy666KJssMEG2WqrrXLnnXfmgw8+yKqrrpptttlmgbHXXXddXnrppZxzzjlFqrZulMLf2CX1i1/8Ig8//HC6deuWDz74YP7vrSTZY489ssoqqyRJ7r333lx77bXZZ5990qVLl2KVW2tLswTunDlz6qGShnHxxRfnwgsvzIgRI3L//ffn8ccfzxNPPJELL7wwm2yySXr06FF2n1GoGdm79HNoOc75f8nepUf2Lm2yt+ydyN6yd9Mle3892bv4NMCLqNxCeHV19ULbZsyYkWuuuSabbrrpQoG0FJTjnJPko48+ypAhQzJ48OD861//SnV1dVq3bp3vfOc7eeqpp/KrX/0qO+ywQ7HLZCmVUyAtR507d87dd9+da665Ji+99FK+9a1vZe+9986+++47f8zgwYPTv3//rLTSSvnNb36TFVdcsYgV141yDGgHHHBATj311PTt2zdbbbVV7rnnnnzyySf51re+tcDVUDNnzsyvf/3rvP322036C5cDDjggL7zwQi6++OIUCoVUV1dnueWWy+WXXz7/HoJ33313/vSnP2XcuHHZdNNNc+CBBxa56vo1evTojBo1KhUVFdliiy2yzjrrFLukWrnvvvvy8MMP55hjjslJJ5200H0T99xzz3z7299Okmy77bbZb7/9cscdd5TMZ/Jp06alurr6K6+QGTVqVM4999w88MADDVhZ3WrRokV22mmn7LTTTpk6dWr++te/5r777ssLL7yQF154IYVCIX/84x/z+eefZ6eddkqrVq2KXTKNQKn8nNdUOebQcpxzInuXOtm7tMnesrfsLXs3VbK37N1UsrcGeCMya9asjBkzJh999FGqq6vTtWvXrLvuumnZsmWxS6tXiwqqpa5U5/zQQw9l0KBBeeqppzJ37ty0a9cuu+++e37wgx9km222yccff7zQmY2l4Oqrr17ixxQKhfz85z+vh2rq36GHHprjjjtu/geZclBur/EKK6yQ3r17L3b/3nvvne9973vp0aPH/PDS1JVjQNtll13y5ptvpl+/fhk4cGCqq6uz8sor58orr5w/5oYbbsgf/vCHTJs2LTvvvHN+9KMfFbHi2ikUCrn88stz8MEHZ9SoUVlmmWWy4447LnCW8r///e9UV1fnuOOOyzHHHFMS7+/XX389f/zjHzN27NisuuqqOfbYY7Phhhvml7/8ZQYNGjT/M0mhUMhuu+2Wiy++eKH7STYVgwcPziabbJJTTjnla8fO+8Ltsccea/Ih/OGHH87VV1+df/zjH0m+vK/cSSedlN12223+mOnTp+eKK67IbbfdttCSk01Jr169csABB2SjjTZKkiy77LLZd999s++++2bChAl54IEH8sADD2T06NF55ZVX0rt37+yyyy751a9+VeTKaWxk7/JRqnOWvWuuKecy2btmmvJrLHvL3vPI3k3//S17L5rs3TSVSvZumj9hJWbixIm54oorMnTo0EybNm2Bfa1bt85OO+2UU045JV27di1ShVAzp5xyStq0aZODDjooO+ywQzbffPMFzgBrCstiLI1yC2jPPvvsAmckl4Nye42/TlNffmxRyjWgnXLKKTnwwAPz8ssvZ5lllskWW2yR5s2bz9/fsmXLbLDBBtl9993z4x//uIiV1p1NNtkkm2yyySL3nXDCCU0+kP23UaNG5dBDD02zZs2y9tpr57XXXsvBBx+cQw45JPfcc0/22GOP7Lzzzpk+fXoeffTRPPDAA/nmN7+Zww8/vNilL5XXX389xx57bI3Hb7311rnmmmvqsaL69+CDD+bUU09Ny5Yts/XWW6d169Z5/vnnc/rpp8+/f+Qrr7ySU045Je+//35WXnnlXHjhhcUue6kNHjw43/nOd+aH8P+2/PLL54gjjsgRRxyRsWPH5r777sv999+fu+66q9GFcIpH9qZUyN4115RzmexdM035Nf46srfs3ZTJ3rL3PLJ301Mq2VsDvMheeumlHHPMMZkyZUo22mijbLnllunatWuaNWuWjz76KM8991yGDBmSRx99NNdee2169OhR7JJhsVZeeeW8//77GTRoUP75z3/mlVdeyY477phvfOMbxS6tXg0YMKDYJVDPyuk1fu6555bqcf+9bFdTVk4BbZ4VVlghK6ywwiL3/eQnP8lPfvKTBq6IunLNNdeke/fuGTBgQDp06JDq6uqcffbZufHGG7PHHnvk0ksvnT92t912y2effZYHHnigyYbwmTNnpl27dgttX3bZZXPdddflm9/85gLb27Zt26TvyZUkN998czp16pTbb799/j3WZsyYkeOOOy6///3v07Vr1xx++OH54osv8rOf/Sy/+MUvGuWyZHVtjTXWyCmnnJJTTjklL774YrHLoZGQvSklsjelqpxeY9lb9v5vsnfTJnt/SfaWvRsbDfAi+uSTT/Lzn/88bdu2zR/+8Idsuummixz3+uuv5+STT85JJ52Ue++9N506dWrgSqFmhg8fnpdffjn33Xdf/vrXv+Zvf/tbrrjiiqy++ur5wQ9+kPXWW6/YJdaLLbbY4mvHTJ06NYVC4SvvDULjVZPXuFQccsghS3zFSKFQyOuvv15PFUHd6NWr1xI/plAopG/fvvVQTcN45ZVXcuSRR6ZDhw5JvpzPEUcckcGDB2e77bZbaPwPfvCD/PrXv27gKuvO8ssvnw8++GCh7c2aNVvkfP/1r381+fsojh07Nocccsj8AJ58eRXrCSeckJ/85Cc55ZRT0qlTp1x++eXZeOONi1doEWliksjelB7Ze/Fk76ZN9v5qsjdNgewte/8v2bs8NMbsrQFeRDfffHOmTZu2wFkji/Ktb30rN954Y3bffffceuutOfHEExuwSlgyG220UTbaaKOcffbZ+dvf/pb7778/jzzySK699toUCoUUCoWMGDEi6667blZaaaVil1tnqqur8/jjj+cf//hHVltttWy33XZp1qxZnn766fTp0yfvvPNOkuSb3/xmTj311Gy99dZFrrh2hg0blnfffbfG40t5SbJ5SuWLlosvvrhG4x5++OGMHDkySbLhhhvWY0UNoxwD2qGHHrrEjykUCrnpppvqoZr6N3jw4BqP/e8voprya/zZZ5+lc+fOC2ybt7Rg+/btFxrfqlWrzJgxoyFKqxcbbrhhHnzwwfz85z//2mUSZ82alQcffDDbbrttA1VXP6ZOnZqVV155oe2rrrpqki+XUrz99tvnfxFTCp5//vnMnTt3iR6z55571k8xNBmyN6VI9pa9F0X2bjpk75qTvZsW2ftLsveXZO+mqxSytwZ4EQ0fPjx77LHHVwbweVZaaaXstddeGTp0aJMO4f/7QzPvvmtPPvlkJkyYsMDYxrhkwtIoxzknSWVlZbbddttsu+22mTlzZoYNG5YHHnggTz75ZO6+++4MGjQoPXv2zN57753ddtut2OXWymeffZajjz46L7/8cqqrq5MkG2ywQc4999wcffTRad26dXbcccdMnz49L7/8co455pjceOONTfrM5mHDhmXo0KE1Hl8KIfy/v2hZddVVs/3225fkFy177bXXV+4fP358evfunZEjR6Zdu3Y59dRTs//++zdQdfWnHAPa+++/X6NxVVVVmTBhQqqrq5v0/STHjBnztWP++/297LLL5uSTT67/wupRdXV1mjVb8OP+vNewKb+Wi3PAAQfkJz/5SX71q1/lnHPOWWju81RVVeW8887LRx99lAMOOKCBq6xbVVVVC9zzdZ559xM8+uijSyqAJ8mdd96ZO++8s0Zj5/3eamwhnIYne5dHDi3HOSeyt+y9INm76ZC9v57s3TTJ3l+SvWXvpq4UsrcGeBG9//77S3Rvj3XXXXeJPiQ0Rv/7QzMvsPTr12+hPwZN/Y/9POU056OPPjpbbrlltthii6y33nrz59KqVavsvvvu2X333TNp0qQ8+OCDuf/++/P000/n73//e5MP4VdddVXGjBmT8847Lz179sz48eNz0UUX5ac//Wm6d++egQMHzj/b79NPP80+++yT/v37N+kQfswxx+Q73/lOsctoMOX4Rcv/mjNnTm644YZcd911mTFjRvbYY4+cddZZ889oberKMaA9+uijXzvm5ZdfzgUXXJB///vfWXnllXPuuec2QGUNb+7cuenfv3/+8Ic/ZObMmdl1113Tq1evhc7gpnHbbLPNcsQRR+SGG27I3//+9xx++OHp2bNnVlhhhVRXV+fjjz/OM888k1tuuSVjxozJKaecknXXXbfYZderbt26FbuEOrfffvuV7ZJyLD3Zu7Rz6DzlNGfZW/YuVbK37J3I3rI3jZ3svTDZu3HSAC+i5s2b54svvqjx+JkzZ6ZNmzb1WFH9qunSPqWk3Ob897//PY8//vj8pag222yz9OzZM1tuueX8P3IdOnTIwQcfnIMPPjjjxo3LX/7ylyJXXXuPPvpoDjjggBx44IFJktVXXz3nnXdeDj/88Bx88MELLHXTsWPH7Lfffhk4cGCRqq0ba6yxRkkFzK9Tjl+0/Ldnn302F154YcaOHZvVV189559/fnr27FnsshpMOQa0qVOn5je/+U3uvPPOVFRU5Jhjjsnxxx+fli1bFru0Ovf888/nwgsvzNtvv53u3bvn/PPPz7e//e1il1Vn/nfZzJkzZ6ZQKOTee+/NCy+8sMDYt956q6HLq3Onn356VlpppVxxxRU577zzFtnwaNOmTS644IKSuIKmHG222WbZfffdi10GTYzsXfrKbc6yt+xdqmRv2Vv2lr2bKtlb9i41pZC9NcCLaO21185jjz1W4/uAjBw5MmuuuWY9V1V/vm5pn1JUbnN+8cUX8/rrr+fFF1/MqFGj8tJLL2XEiBEpFApp165dNt988/Ts2TM9e/bM2muvnVVWWSXHHntsscuutY8//jhrrLHGAtvm/awu6uyvFVdcMVOmTGmQ2qgb5fhFS/LlFwqXXHJJ7rvvvrRs2TK/+MUvcuSRR85f3qcclHpAW5R77703l156aT755JNsscUWOf/88xf6HVcKJk2alEsvvTRDhgxJixYtcuKJJ+aoo45KixYtil1anRo6dOgil80cMmTIIsc35avh5jnooIOy1157ZcSIEXnuuefy73//O9XV1enatWt69OiRHXfcscnfM/K/LereoF/1ZUspLI0KS0r2Ln3lNmfZ+z9k79Iie8vesrfs3VTJ3rK37N34aIAX0Y9+9KOcd955efDBB7PLLrt85dghQ4bkqaeeyhVXXNFA1RXf+++/n/POOy/9+/cvdikNpqnPuVmzZtlwww2z4YYb5rDDDkuSfPjhhwuE8ksuuSRz585N+/bts8UWW6Rnz5456KCDilt4Lc2ePTutWrVaYNu8kLKosFIoFBa4Nx2NXzl+0XLHHXfkiiuuyJQpU/Ld73435557bo3um1kqyiWg/bd33nknF154YZ599tl06NAhv/71rxvdvXvqyl133ZXLL788U6ZMyVZbbZXzzz8/q666arHLqnMDBgwodglF07p16+yyyy5f+xm7FCzui5Zk0V+2COGUI9n7qzX1HLo0mvqcZe//kL1Li+wte8vepUX2Ln2y95dk78ZJA7yI9t577wwZMiRnnHFG3nzzzRx88MHp2rXrAmM++uij3HjjjRkwYEC23Xbb/PCHPyxStXXj5ZdfzrXXXptRo0YlSb71rW/l5z//eTbbbLP5Y6qrq/PnP/85V111VWbOnFmsUutMOc75v6244orZdddds+uuuyb5cmmf++67L4MGDcrDDz+coUOHNvkQXm5OOOGErLPOOsUuo0GV0xctY8aMyfnnn5/Ro0dn+eWXT+/evfODH/yg2GU1qHIJaPPMmjUr11xzTfr37585c+Zk3333zWmnnZZ27doVu7Q69+abb+aCCy7ISy+9lM6dO+eKK64o6ZBWKktBsnjl9kXLXnvtVdK/j6k/snd55NBynPN/k71Lj+z9Jdn7/7V352FRlYsfwL/DJiAqbqS45RbjliKySFctQdxCwSW3JM39pqmpqUWRiqK5ZWmaesWtrksCgiKC4pIiiwKSoV5Nc1fcQCRxYDi/P3yYXyOogMwczjnfz/P0PHnmnfy+oTDf857zHvli92b3lgt2b/lj95YmLoCLyMTEBGvWrMH06dPx008/Ye3atahbty5q164NU1NT3L9/H1evXoUgCOjZsyfmz58vduTXcuLECYwZMwZarRaNGzeGlZUVkpKSMGLECAQHB8PZ2RnXr1/HtGnTkJaWBhsbG8yZM0fs2K9FiXN+Xm5uLpKSkpCYmIhTp07hzJkzyMvLg4WFhW5LNjnIzMzEzZs3db8uvAL5wYMHeseBZ1e3StnEiRP1fq3RaHDu3DlkZGTotrlRq9WyfF6REvTv3x8FBQUAgJo1a2Lr1q3YunXrS9+jUqmwadMmY8QzKKUVNAA4cuQI5s2bhxs3bsDBwQFz5sxB27ZtxY5lEIsWLcKWLVug1Wrx3nvvYcqUKbCxsSnyPfp5xd1pIlfbtm3DsWPHsHLlSrGjlElJtzb+J6l//yrLiZaTJ08aIIlxKO0Zv1R+2L3l30OVOOfnsXuze5O0sHuze7N762P3lg5275Jh9xafShAEQewQBPz222/YvXs30tLScPfuXd0HWScnJ/Tt2xdubm5iR3xtI0eORFpaGtavXw9HR0cAwJ07dzB+/HiYm5sjKCgIfn5+uH//Pry8vPDVV1+hdu3aIqd+PUqcc35+PlJTUxEfH4/4+HicPn0aeXl5MDc3x9tvv60r3o6OjrLZzkitVhf73BZBEF76PJezZ88aMpbB3bt3D8uWLUN0dDRycnL0XrOyskL37t0xderUInfXSJFarcaXX34JDw8P3bGsrCz4+vpi6dKlur/fhWJiYrBw4UJJfo27du1apvfFxsaWcxLjelFBexUpF7RPP/0UMTExAID33nsPfn5+MDU1feX7nJ2dDR3NINRqte7fS/OsLSn+PS6rgIAA7NixQ7JzLun3r4KCAty5c0f3c1qq8y2NW7duITQ0FGFhYbh27Zoi5kz0Iuze8uyhSpwzu/f/Y/dm95bi15jdm937Vdi95YvdW77YvSsWLoCT0bi5uWHAgAGYPn263vFjx45hzJgxaNq0Ke7evYtvvvlG8tvNFVLanMeMGYOTJ08iNzcXJiYmaNWqFdzc3ODq6gonJ6ci21jJxezZs8v0PilfSZWamopx48YhKysLbdu2hZubG+zs7GBmZoaMjAwkJSUhKSkJVatWxerVq9G+fXuxI78WpZ5oURIlFrR/zhl49bylXljKemX183feyJnUS3hJnD59Gt988w3Onj2L+vXr46uvvkKXLl3EjmUQT58+RXR0NEJCQpCQkKD7O9ypUyf89NNPYscjIgNSWg8FlDdndu/SYfeWDnZv+WP3Zvd+EXZveWH3ZveuCLgFuoQkJCTg/PnzZdpioiLIzs5G06ZNixxv3rw5BEFAZmYmdu7cKYtnCxRS2px/++03mJubw8fHB+PGjcObb74pdiSjkHKZLov79+/jk08+QeXKlfHjjz/Cycmp2HHp6emYMmUKPv30U+zevRs1a9Y0ctLy4+PjU6pipiQnT55EaGio5LcKVVLRKqS0711l+RrL7dmgSpadnY2lS5dix44dMDExwbhx4/Dvf/9blluGpqamIiQkBPv27cPjx48BADVq1ED//v0xaNAg1KtXT+SERBUfu7f0KG3O7N7KwO5N/8TuLV1K+97F7q1s7N7s3hUJF8AlJDIyEjt27JBsCddqtTAzK/pHrnArrvHjx8umjBZS2pwHDhyIhIQE3TYfTZo0QceOHeHm5gZnZ2dUq1ZN7IhUDrZu3YqcnBxs27YNDRo0eOG4li1bIjg4GN7e3vjll18wadIkI6YsXwsXLhQ7QoVy+/ZthIaGIjQ0FNeuXQMARZZwqRc0X1/fUr/nxo0bBkhS8RSeXNq/f7+kn9lEz+zevRvffvst7t+/DxcXFwQEBBS7SCJlGRkZCAsLQ2hoKP766y8IggArKyu4u7sjLi4Oc+fO1dtKlIhejt1bepQ2Z3ZvZWD3JnbvZ9i95YvdW17Yvdm9KxougFOFIbdvhiUhtznPmzcPAHDz5k3ExcUhPj4eUVFR2Lp1K0xMTKBWq+Hq6qor5dbW1iInprI4cOAA+vTp89ICXqhevXrw9fVFdHS0pEu4n58fJkyYgI4dO+qO5efnIyUlBWq1GlWqVNEbHx4ejlmzZiE9Pd3YUQ1Go9HotvOJj4+HIAgQBAGurq4YMmSI2PGMSmkF7enTp4iKikJoaCiSkpLwxx9/iB3JIApPLoWFheHq1asQBAG2trZix6LXcOnSJcyZMweJiYmoXr06Fi5cCB8fH7Fjlat9+/YhJCQEcXFx0Gq1qFq1Kry9veHl5YVOnTrh7t278PT0FDsmEVUwcuuhJSG3ObN7KwO79zPs3uze7N7ywu4tP+ze7N4VFRfAiajc2dvbY8CAARgwYAAA4MKFC4iPj8eJEyewa9cuBAcHw8zMDK1bt0bHjh0xefJkkRNTaVy/fh0ffvhhicer1WqEhoYaMJHhJSYmYuDAgXrHsrOz4efnhw0bNuiV80KCIBgrnkE9v51P4bx69+6NTz75BE2aNBE5oXEosaAlJycjJCQEUVFRyMnJgSAIaN68udixylXhyaXQ0FDEx8ejoKAAgiCgXbt2GDx4MHr16iV2xNcSFhZWqvGXL182TBAj02g0WLVqFTZs2ID8/HwMHDgQ06dPR9WqVcWOVu6mTp0Ka2trDB06FB4eHnB2doapqanudW4hSkQkb+ze8sbu/Qy7N7s3u7f0sXvrY/eWHnZvaeICOBnVyZMnodVq9Y7l5OQAAI4fP447d+4UeY/UrxZS4pyf17x5czRv3hzDhw+HRqNBVFQUfvnlF6SmpuL06dMs4RJjbm6Op0+flnh8bm6ubO84kEvRfl5x2/nY2trC19cX7dq1Q0BAAHr16iX7Ai73glacO3fu6L72V65cAQCYmZmhV69eGDJkCDp06CBywvJx+vRp7Nq1S+/kUtWqVZGdnY158+YVOekmVbNmzSpVCRMEQfKl7ciRI5g3bx5u3LgBBwcHzJkzB23bthU7lsHUr18f169fR0hICC5fvozff/8dnp6eaNy4sdjRiEhkSuyhSpzz89i95YXd+/+xe7N7yw27N7s3u7e0sHtLExfAyah27NiBHTt26B0r/BC7fv16vW/8hT8IpF5IlTjnf7p69SpOnz6N06dPIy0tDefOnUNeXh4qV66Mzp07w9nZWeyIVEpvvfUWjhw5UuJnIh4+fBjNmjUzcCoqL2PHjsXx48eh1WpRt25dDB06FJ6ennB1dYWJiQlu3Lgh25MPhZRS0AppNBocOHAAu3btQnx8vO7EcdOmTXHp0iUsXrwYPXr0EDnl68vIyMDu3bsRGhqKy5cvQxAE2Nvbw9fXF15eXnjjjTfQrVs31KhRQ+yo5SYoKEjsCEb16aefIiYmBgDw3nvvwc/PDxqNBklJSS99n5Q/ixw4cACnT59GeHg4oqKicOzYMSxbtgxNmjSBl5cXWrVqJXZEIhKJEnuoEuf8T+ze8sPuLW/s3uze7N7s3lLF7s3uLRVcABfRzZs3SzW+8MplqVLaDwJAeXPOyspCWlqarnCnpaUhKysLgiCgWrVqaN++PaZOnQpnZ2e0bNkSJiYmYkemMujbty++/vprREZGvvIq3LCwMMTFxWHZsmVGSkev6+jRo7C2toafnx+GDRuG2rVrix3JKJRY0NLS0hASEoLIyEg8evQIJiYmcHR0hJeXF7y8vKDVauHp6Qlzc3Oxo5aLrl27oqCgAGq1GuPHj4eHhwdat26te/3GjRsipjMMX19fsSMYVXR0tO7fY2NjcejQoZeOL1z8OHv2rKGjGVTbtm3Rtm1bfPHFFzh27BgiIiJw8OBBrF69GiqVCiqVCocOHYJarUa9evXEjkskCnZv+VPanNm9lYHdW97Yvdm92b3lg92b3Zvdu2LiAriIunbtqqitMcryg0DqPxCVNmdXV1eoVCoIgoDq1avDxcUFzs7OcHZ2hoODg6T//NL/69+/P8LCwvD555/j/PnzGDZsGOzs7PTGZGRkIDg4GJs3b0aXLl3Qs2dPkdJSaU2cOBF79+7FmjVr8NNPP6Fx48bw9PSEp6cn3n77bbHjGYwSC9oHH3wAKysrdOrUCZ07d0bXrl31TjLIbc75+fmwsrJCrVq1YGVlVWSLVCW4c+cOTp06hYyMDACAnZ0dHB0dUbduXZGTlQ+lLX48z9TUFF26dEGXLl2Qm5uLmJgY7NmzB8ePH8evv/6KkJAQuLq6on///nj//ffFjktkVOzeryb1n/tKmzO7tzKwe8sbuze7dyG5zZndm91b7ti9pYML4CLy8fFhKSnG06dPERUVhdDQUCQlJeGPP/4QO5LByWXOPXr0gIuLC1xcXLjtloyZmJhgzZo1mD59On766SesXbsWdevWRe3atWFqaor79+/j6tWrEAQBPXv2xPz588WOTKUwceJETJw4EWfOnEFERAQiIyOxdu1arFu3DnXr1oWTk5Msf3YpsaBZWVnhyZMn+PPPP1G9enVYW1ujc+fOsLGxETuaQRw6dAgRERGIiIjAsmXLoFKpUKtWLXTr1g3dunWT9dW5Fy5cQGBgIJKSkiAIgt5WiiYmJnBycoK/vz8cHBxETPn6lHbV/ctYWlrC29sb3t7eePjwISIjIxEREYETJ04gPj6eJZwUh927eHLpoaUhlzmzeysDu7e8sXuze7N7yw+7t/Kwe1dsKkHuDxMhyUhOTkZISAiioqKQk5MDQRDQvHlzREREiB3NYJQ4Z5KX3377Dbt370ZaWhru3r0LQRBgZ2cHJycn9O3bF25ubmJHLBdqtRpffvklPDw8dMeysrLg6+uLpUuXwtHRUW98TEwMFi5cKPmtfYBnd0CdOHECERERiImJwePHjwEA9erVQ//+/eHj4wN7e3uRU76+W7du6QrahQsXii1oXl5eWLVqld6fAynLzc1FbGwswsPDcezYMWi1Wpibm6Njx47o1q0b1Go1BgwYIKs5Fzp37pzuJNOtW7egUql0JyVmzZqFjz76SOyI5ebgwYOYMmUKVCoVPD094ebmBjs7O5iZmSEjIwNJSUmIiopCfn4+li9fDk9PT7EjkwFdu3YNe/fuxfjx48WOQkQiUmIPVeKcSV7Yvdm92b2li92b3ZvdW3nYvSsGLoBLxK1btxAaGoqwsDC9ZyxI3Z07dxAWFobQ0FBcuXIFAGBmZgYvLy8MGTIEHTp0EDlh+VPinImkTq1WF3vl9au2x5RDCf8njUaD2NhY7NmzB0eOHEFeXh5MTEzQsWNH/Oc//xE7XrlRUkErlJmZqbtKNTU1Ve+1sWPHYvz48bCyshInnIElJiYiIiIC0dHRyMrKgkqlQv369dGvXz/4+vqiTp06Ykcss+vXr8Pb2xuNGzfGihUr0KBBg2LH3b59G59++ikuXryI3bt3v3BcRTd79uxSv0elUmHBggUGSENEUsXuLR9KnDOR1LF7P8Puze4tR+ze7N7s3mRsXACvwJ4+fYr9+/cjNDQUCQkJKCgogJmZGc6cOSN2tNei0Whw4MAB7Nq1C/Hx8bqtbpo2bYpLly5h+fLl6NGjh8gpy5cS50zKodFocO7cOWRkZOiuQler1ahUqZLY0cpNWT7YAfJ+Js6jR48QFRWFiIgInDp1Cunp6WJHMgg5F7QXuXHjBiIiIrBnzx5cvHgRKpUK1tbW6NmzJ/r371/krgu5yMvLw9GjRxEeHo7Dhw/j6dOnkv/cNX/+fOzevRtRUVF6z5grTmZmJnr16oU+ffpg1qxZRkpYvtRqdanfo1KpJH3CtCx3iKhUKhw4cMAAaYiki91bPpQ4Z1IOdu8XY/eWPnZvdm8pf+5i9341dm8SAxfAK6CUlBSEhoYiMjJStzVXnTp1MHDgQHzwwQeoXbu22BHLJC0tDSEhIYiMjMSjR49gYmICR0dHeHl5wcvLC1qtFp6enrLa7kWJcybluHfvHpYtW4bo6Gjk5OTovWZlZYXu3btj6tSpsLOzEykhGcvJkydlfweNHAtaSZw7dw7h4eGIjIzE7du3JV9YSurx48eIjo7Gnj17sGHDBrHjlFnPnj3RuXPnEp9I/Pbbb3Ho0CHs27fPwMkM48aNG2V6n5SfQde1a9cixwRBwK1bt1CrVi1YWFgU+77Y2FhDRyOSBHZv+fRQJc6ZlIPdmwqxe8sXuze7t5Swez/D7l3xmYkdgJ65c+cOdu/ejZCQEFy5cgWCIMDExAQAMGXKFIwdO1b3a6n64IMPYGVlhU6dOqFz587o2rWr3hVRZf3GWZEpcc6kDKmpqRg3bhyysrLQtm3bYp9rExYWhtjYWKxevRrt27cXOzKV0pkzZ5CamgpBENCiRYtiS/bjx4+xZMkS7Ny5E3/88YcIKY3H3NwcHh4e8PDw0CtocqdWq6FWq/H5558jISFBEXMGABsbG3h6elX/Cp4AAEVHSURBVCI5OVnsKK/l1q1baNasWYnHN2nSBP/9738NmMiwpFymy6q4Mv3gwQO4u7tj8eLF6NixowipiCo2dm959lAlzpmUgd1b/ti99bF7s3tLEbu3/LF7SxMXwEVUuDVXSEgITpw4Aa1Wi0qVKqFr167o1q0bHBwc4Ovri+bNm0u+gAPQPcPlzz//RPXq1WFtbY3OnTvDxsZG7GgGo8Q5k/zdv38fn3zyCSpXrowff/wRTk5OxY5LT0/HlClT8Omnn2L37t2oWbOmkZNSWfz999/47LPPcOTIERRuEqNSqeDu7o7Vq1frrmg8fPgwAgICcOfOHTRs2FDMyEYnl4JWWvb29pI/eXz9+nUEBwcjJSUFANCyZUuMGTMGjRo10hsXHR2NefPm4d69ewgMDBQjarmwtLTEo0ePSjz+0aNHqFq1qgETiUuj0eDixYuwtLREkyZNxI5jMC97PiaRUrF7y7+HKnHOJH/s3vLG7v1q7N7Sxe79cuze8sDuXfFxAVxEnTp1wqNHj1CtWjX07t0bHh4e6Ny5M6ysrADI7wrlEydOIDY2FuHh4di1axd27NgBc3NzdOzYEd26dSvTsyMqOiXOmeRv69atyMnJwbZt29CgQYMXjmvZsiWCg4Ph7e2NX375BZMmTTJiSiqrH374AYcPH0anTp3g6+sLa2trHDlyBNu3b8e3334Lf39/LFq0CBs3boSpqSlGjRqFTz/9VOzY5UJpBQ0ATp8+jdWrV+vN+ZNPPtG760AQBGzcuBHff/89cnNzxYr62s6ePYvhw4fj8ePHsLS0hKWlJdLT0xEZGYlt27bhrbfeQnZ2Nvz9/REdHQ1TU1OMHTtW7NivpXXr1oiOjsaoUaNKNH7//v1o0aKFgVMZVnZ2NtatW4eUlBRs2bJFdzwiIgKBgYG6kxKNGzfGggUL0K5dO5GSEpExsXvLv4cqcc4kf+ze8sbuze7N7s3uLWXs3iQFXAAXUVZWFqytrdG9e3e4urqiffv2ugIuR5aWlujVqxd69eqFzMxMREZGIiIiAkePHsXRo0cBPLtqJi0tDe7u7rL4f6HEOZP8HThwAH369HlpAS9Ur149+Pr6Ijo6miVcImJjY+Hi4oJ169bpjr377ruoWbMmtmzZAltbWwQHB0OtViMoKEjyH9gLKbGgnThxAmPGjIFWq0Xjxo1hZWWFpKQkjBgxAsHBwXB2dsb169cxbdo0pKWlwcbGBnPmzBE7dpkVnkRYunQpevfuDeDZ80I/++wzBAYGYsmSJfDz88Nff/2FNm3aIDAwEA4ODiKnfj0DBgzAlClTEBwcjJEjR7507Jo1a5CWlqb3d19qcnJyMGjQIFy6dAl16tRBfn4+zMzMkJaWhpkzZ0IQBAwaNAjNmzdHWFgYRo4cibCwsCIn2ohIfti95d9DlThnkj92b3lj92b3Zvdm95Yqdm+SDIFEk5SUJHz99deCi4uLoFarhRYtWggffPCBsH79euHKlSvC9evXBQcHB+HAgQNiRzWo69evC6tXrxZ69+4tODg4CGq1Wmjfvr3w5ZdfCsnJyWLHMwglzpnko127dsK2bdtKPH7Hjh2Co6OjARNReWrXrp2wcePGIscvXrwoODg4CC1atBDmzZsnaDQaEdIZzvjx44VWrVoJe/bs0R07ffq04OHhIQwfPly4c+eO0L17d8HBwUEYMGCAcO7cORHTlo8RI0YI7du31/u5c/v2bcHHx0cYOHCgcPHiRcHd3V1wcHAQJk2aJGRkZIiY9vW5u7sL8+bNK3J8//79QsuWLYWhQ4cKrVu3FtatWydotVoREhrGpEmTBLVaLUybNk1ISUnR+7ur1WqFlJQU3ZivvvpKxKSv7/vvvxdatWol7Nu3T+/42LFjBbVaLQQFBemO5ebmCl5eXsKsWbOMHdPgHjx4IDg4OAhxcXFiRyGqMNi9n1FiD1XinEk+2L3ljd2b3Zvdm91bqti9n2H3rvh4B7iIOnTogA4dOuCrr77CkSNHEBERgcOHD+P06dNYsmQJGjRoAJVKhb///lvsqAZVr149jB8/HuPHj8e5c+cQHh6OyMhI/Prrr9i1axfOnj0rdsRyp8Q5k3yYm5vj6dOnJR6fm5sLa2trAyai8vTkyRPUqFGjyPHq1asDALp16wZ/f39jxzK4tLQ0DB48WHd1MgC8/fbb+PzzzzF16lRMnToVN27cwPTp0/Hxxx/L4vmgZ8+exZAhQ+Do6Kg79sYbb2DatGkYM2YMJk+ejPz8fCxfvhw9e/YUMWn5yMrKKnb70zZt2kCr1eL8+fPYsmWL7LblWrJkCYKCgrBt2zbs3bsXpqamsLW1hampKTIzM6HRaGBiYoJRo0Zh6tSpYsd9LdHR0ejbty969OihO5aTk4Pjx48DAIYOHao7XqlSJfTp0wc7d+40ek4iMj5272eU2EOVOGeSD3ZveWP3Zvdm925n/HAGxO7N7k0VDxfAKwAzMzN4eHjAw8MDOTk5iI6ORkREBBISEiAIAmbOnIldu3ahX79+6N69OypVqiR2ZINRq9VQq9X4/PPPkZCQgD179ogdyeCUOGeStrfeegtHjhyBn59ficYfPnwYzZo1M3AqMjSVSgUA8PHxETeIgSixoGVnZ6Np06ZFjjdv3hyCICAzMxM7d+5Ew4YNRUhX/vLz84v9DGVpaQkAGDt2rKy+voUsLCwQEBAAPz8/hIWFIS0tDXfv3oUgCGjSpAmcnJzg7e0ti63Irl+/rle0ASApKQn5+flo0KBBkT/LdevWxf37940ZsdytXLmyyLHc3FyoVCrs3r0bp06dKvK6SqXCJ598Yox4RBUOu/f/U2IPVeKcSdrYvZWJ3ZvdW+rYvdm92b2fYfcWHxfAK5jKlSvD19cXvr6+uH//Pvbs2YOIiAjEx8cjPj4e8+bNQ1JSktgxjcLV1RWurq5ixzAqJc6ZpKdv3774+uuvERkZiV69er10bFhYGOLi4rBs2TIjpSNDKywscqPEgqbVamFmVvSjoIWFBQBg/PjxsingJdG6dWuxIxhU48aNJX+V+auYmJigoKBA79iJEycAAO7u7kXGP3jwADY2NkbJZijFlfBCYWFhxR5nCSd6ht37/ymxhypxziQ97N7Kxu4tH+ze+ti9pY/dWx+7d8XFBfAKrGbNmvjoo4/w0Ucf4cqVKwgPD5f0FcolvWL1n1QqFTZt2mSANMahxDmT/PXv3x9hYWH4/PPPcf78eQwbNgx2dnZ6YzIyMhAcHIzNmzejS5custjCSUkKrzgv7WtyJveCVpzirlCXMyX82b5z5w5OnTqFjIwMAICdnR0cHR1Rt25dkZOVj2bNmiElJQXDhg0DAAiCgJiYGKhUKnTt2rXI+IMHD0r+z/nmzZvFjkAkC+ze0u+hSpwzyR+7t/yxexfF7i1/Svizze6tj92bxMIFcIlo1KgRJk2ahEmTJokdpcwSExOLPa5SqSAIwgtfkzIlzpnkz8TEBGvWrMH06dPx008/Ye3atahbty5q164NU1NT3L9/H1evXoUgCOjZsyfmz58vdmQqpQULFmD58uV6xwRBgEqlwvTp04tcra1SqXDgwAFjRjQ6fm+Wh0uXLhW5my87OxsAcP78+WKvynd2djZKNkO6cOECAgMDkZSUBEEQ9D6DmJiYwMnJCf7+/nBwcBAx5evz8fHB/Pnz0aZNG7zzzjvYsWMHbt68iYYNG6JTp056Y9esWYPU1FTJP1fRxcVF7AhEssPuLU1KnDPJH7u3/LF7F8XvzfLA7s3uXYjdm8TEBXAR+fn5YcKECejYsaPuWH5+PlJSUqBWq1GlShW98eHh4Zg1axbS09ONHbVcnDt3rsixBw8ewN3dHcHBwXr/H+RCiXMmZahSpQp++ukn/Pbbb9i9ezfS0tLwv//9D4IgwM7ODj4+Pujbty/c3NzEjkqlZG9vDwDFnigsvFL1+ddedFJRapRY0E6ePAmtVqt3LCcnBwBw/Phx3Llzp8h7pPwsujVr1mDNmjXFvrZo0aJij589e9aQkQzu4MGDmDJlClQqFXr06AE3NzfY2dnBzMwMGRkZSEpKQlRUFAYMGIDly5fD09NT7MhlNnjwYJw6dQpBQUG6BY9q1aphyZIlMDExAQD8+uuvWLt2La5duwYnJycMGTJE5NSGpdFocPHiRVhaWqJJkyZixyESDbu3/HuoEudMysDuLV/s3uze7N762L2lg927KHbvikklyOUnpwSp1WosXrwY3t7eumMPHz6Eu7s7NmzYUKSghYeHY+bMmZL/YfBPDx8+RMeOHRVVSJU4ZyKiik6tVr/wSvPCK/CLI+WfyS+a8z8/Gv7z9cL/D1Kd8w8//FCmuwkmTpxogDTGcf36dXh7e6Nx48ZYsWIFGjRoUOy427dv49NPP8XFixexe/fuF46TipSUFKSkpMDGxgaenp6oUaOG7rWVK1di9+7d8Pb2xrhx44p9/qDUZGdnY926dUhJScGWLVt0xyMiIhAYGIhHjx4BePYsugULFsjumYpEJcHurcweqsQ5ExFVdOze/4/dWx+7t/Swez/D7l1x8Q7wCojXJBCRVOTm5sLS0rLI8YsXL6Jq1apFnk9GFV9YWBg6dOiA+vXrix3FqD755BPFbbUWFBQkdgSjkvJWtmW1adMmmJubY/369XpF9Hl16tTB2rVr0atXL/z888+YNWuWEVOWP0dHRzg6Ohb72sSJE194YiUvLw+pqanF3g1aUeXk5GDQoEG4dOkS6tSpg/z8fJiZmSEtLQ0zZ86EIAgYNGgQmjdvjrCwMIwcORJhYWFo1KiR2NGJKgR2byKSCnZv+WH3Vg52b/lj9y6K3ZvduyLgAjgREZWaRqPBokWLEBERgaNHjxYp4suWLcPRo0fRv39/zJw5E9bW1iIlpdKaPXs2vv32W8WVcCUWNF9fX7EjGFVx29/K3bFjx+Dr6/vSAl7I1tYWPj4+OHTokORLeFllZWXBz8+v2LtBK6oNGzbg6tWr+O6779CjRw/d8VWrVkEQBHz00Ue6r+eAAQPQp08frFmzRnEn4YiIiKSK3Vu+2L2Vg91b/ti9S4fdm4zFROwAREQkLRqNBqNGjcLPP/8Me3t7PHz4sMiY9957Dw4ODti+fTtGjx6N/Px8EZJSWSj1Tig/Pz+cOHFC7BhG5eHhgYMHD4odw2gSExNx7949sWMY1a1bt9CsWbMSj2/SpAlu375twEQVn9S+B0ZHR6Nv3756BTwnJwfHjx8HAAwdOlR3vFKlSujTp4/ivtcRERFJFbu3vEntc2d5YfeWP3bvV2P3lt73QHZvaeICOBERlcrGjRuRlJQEf39/hIWFoW7dukXGDBw4ELt27cLEiRORnJyMrVu3ipCUqOSUWNBu3LiBv//+W+wYZECWlpa6Z1CVxKNHj1C1alUDJqLydv36dbRu3VrvWFJSEvLz81G/fn00bNhQ77W6devi/v37xoxIREREZcTuTXLE7k1yxO4tf+ze0sQt0MlowsLCihzLyckBABw/fhx37twp9n0+Pj4GTGVYSpwzyV9ERAQ8PDzw4YcfvnLsxIkTkZiYiN27d2PEiBGGD0flIjMzEzdv3izVe+zt7Q2UhojKqnXr1oiOjsaoUaNKNH7//v1o0aKFgVNReTIxMUFBQYHescKrzN3d3YuMf/DgAWxsbIySjYjEo8QeqsQ5k/yxe8sfuzeRPLB7yx+7tzRxAVxkz3/QycrKAvDsL8jzH4CK2+pISmbNmgWVSqV3rHCri/Xr10OlUul+XfjvKpVK0oVUiXMm+bty5QoGDx5c4vHvvvsuVqxYYcBEVN4WLFiABQsWlHi8SqVCenq6ARMRlY+YmBhcuXKlxONVKhU++eQTAyYyrAEDBmDKlCkIDg7GyJEjXzp2zZo1SEtLw7p164yUjspDs2bNkJKSgmHDhgF49jkzJiYGKpUKXbt2LTL+4MGDaNq0qbFjElUI7N7y7qFKnDPJH7u3/LF7k1yxe78Yu7c0sXtLExfARfaiDzrTp08XIY1hBQUFiR3B6JQ4Z5I/a2traLXaEo+vVKkSLC0tDZiIypuTkxMaNGggdgyjU1pBA4AdO3YgLi6uxONVKlWpTtBUNDExMYiOji7xeKl/jXv06AEvLy98++23+OOPP/Dhhx+iVatWMDc3BwAUFBQgLS0NGzZsQExMDAYOHIh//etfIqem0vDx8cH8+fPRpk0bvPPOO9ixYwdu3ryJhg0bolOnTnpj16xZg9TUVPj7+4uUlkhc7N7ypsQ5k/yxe8sfu3fJSL2XAezeryL1rzG7t/yxe0sTF8BF5OPjU+QKZTnz9fV95ZisrCxYWlqiUqVKRkhkeEqcM8lfkyZNkJycDD8/vxKNP3XqFOrVq2fgVFSeBg0aBG9vb7FjGJ3SChrw7HlFSUlJJR4v9RI+bty4YremkrMlS5YgKCgI27Ztw969e2FqagpbW1uYmpoiMzMTGo0GJiYmGDVqFKZOnSp2XCqlwYMH49SpUwgKCtLd0VitWjUsWbIEJiYmAIBff/0Va9euxbVr1+Dk5IQhQ4aInJrI+Ni9i5JbD1XinEn+2L3lj927ZNi9pYfdm91bbti9pYkL4CJauHCh2BGMLi8vDyEhIUhNTdW7QjsxMRHffPMNLl++DJVKBXd3dwQEBMjiKkglzpnkzdfXFwEBAYiPj4ebm9tLxyYkJCA6OhqTJk0yUjqislNiQfviiy/g4eEhdgyjadq0KVxcXMSOYVQWFhYICAiAn58fwsLCkJaWhrt370IQBDRp0gROTk7w9vZGo0aNxI5KZaBSqbBkyRIMGzYMKSkpsLGxgaenJ2rUqKEbc/v2bQiCgAkTJmDcuHG6ck6kJOzeyuihSpwzyRu7N8kVu7f8sXuze8sNu7c0cQFcRKNHj4aPjw88PT0VsUVRXl4ePv74YyQlJcHc3Bzz5s2DmZkZLl++jNGjRyMvLw+dOnVCs2bNsH//fgwaNAjh4eGoVauW2NHLTIlzJvnz8fHBrl27MH78eIwbNw4DBw4s8mc2IyMDO3fuxPr161G/fn0MHTpUpLREJafEgla9enXeJaIQjRs35lXmMubo6AhHR8diX5s4cSImTpxY7Gt5eXlITU2FWq1GlSpVDBmRSFTs3vLvoUqcM8kfuzfJFbs3yRm7t7yxe0sLL0EQUWJiImbMmAF3d3fMmjULcXFxEARB7FgGs3XrVpw8eRIzZsxAUlISzMyeXX/xww8/QKPRwNvbG2vXrsXnn3+OXbt2wdTUFGvWrBE59etR4pxJ/szNzbFq1Sq0bdsWK1asQKdOneDh4YHBgwdj4MCB6Nq1K7p06YIffvgBDg4OCA4O5g92CbG3t4e1tbXYMYiIyAiysrLg5+eHM2fOiB2FyKDYveXfQ5U4Z5I/dm95Y/cmIlIOdm9x8A5wEZ04cQIHDhzAvn37sHfvXuzevRu1atWCt7c3+vTpA7VaLXbEcrVnzx50794do0aN0h3TaDSIjY2FSqXSO25ra4t+/fph79698Pf3FyNuuVDinEkZatasiU2bNiE6Ohp79+5Feno6zp8/DxMTE9SqVQs+Pj7o1q0bunbtKnZUKqXY2NiXvl5QUIDbt2+jVq1asLCwMFIqotc3ceJEODg4iB3DqEr6vMh/UqlU2LRpkwHSVAx3796Fra0tzM3Ni7xWrVo1bN68GS1atBAhmXjkvAhIVIjdW/49VIlzJmVg95Yvdm+SK3bvkmH3Zvcmw+MCuIgqV66Mvn37om/fvsjOzsb+/fsRGRmJTZs2ITg4GM2aNUPfvn3h7e2NN954Q+y4r+2vv/6Cr6+v3rFTp04hNzcXdnZ2RX4wNmzYEBkZGcaMWO6UOGdSFi8vL3h5eYkdg4zowYMH8PDwwIYNG9CxY0ex45QbJRa0oKCgF27bJEcv2oaq0N9//40NGzbAx8cH9evXN1Iqw0pMTCz2uEqlemHxUqlUhoxkFMHBwdixYwfCw8OLlO0FCxYgLi4Oo0aNwujRo/WeyWVubq64rRiJlILdW/49VIlzJmVh91Yedm/5YPfWx+79/69JHbs3VXRcAK8gqlSpggEDBmDAgAF48OABoqKisG/fPixbtgzLli2Ds7MzfHx84OXlhcqVK4sdt0wKCgpgamqqdyw+Ph4A4O7uXmR8dnY2rKysjJLNUJQ4ZyLg2bYulpaWqFSpkthRyADkeMWiEgva8yeJn/f48WPMnz8fo0ePRtOmTY2USjx///03Vq1aBScnJ9l8jc+dO1fk2IMHD+Du7o7g4GBZnUgDnn1vmj59Ovbu3YuaNWvi9u3baNCggd6Ypk2bIjk5GcuXL8eZM2fw/fffi5SWiMTC7i3PHqrEORMB7N5yx+4tj17G7q2P3Vv62L1JKvgM8AqoRo0aGDp0KLZs2YLDhw/jyy+/hImJCb7++mv861//EjtemTVs2BBnz57VOxYTEwOVSoV33323yPhjx46hYcOGRkpnGEqcMylDXl4etm/fjtmzZ+sdT0xMRK9eveDm5gZHR0eMHj0aV69eFSklUfkpLGjXrl0TO4rR5ObmIiwsTFF3R8nxBNPz5HCV+Yts374de/fuxYgRI3D48OEiBRx4dsItJiYG/fr1Q0xMDEJCQkRISkQVBbv3M3LooUqcMykDuzcpDbu3MrB7Sxu7N0kFF8ArOHNzc1haWsLGxgZmZmbQaDRiRyqz3r17Y/fu3Thw4ACePHmCjRs34tKlS6hZs2aRZxWFh4fj+PHj8PDwEClt+VDinEn+8vLy8PHHHyMgIAB79uxBfn4+AODy5csYPXo0Ll++jE6dOmHEiBG4fPkyBg8ejHv37omcmuj1KaGgPU+Jcybp+vXXX+Hi4oJZs2YV+5yxQhYWFggMDESLFi2wY8cOIyYkooqM3VvaPVSJcyb5Y/cmpVJiD1XinEm62L1JKrgFegX04MEDxMTEICoqCklJScjPz0fLli0xefJk9O7dW+x4ZTZixAj89ttvmDhxou75F+bm5pg/fz4sLCwAPLtCe+vWrUhMTETjxo0xYsQIcUO/JiXOmeRv69atOHnyJGbMmIFhw4bBzOzZj5IffvgBGo0Gffr0wbfffgsAGDt2LLy9vbFmzRr4+/uLGZvKibm5OZydnVGtWjWxoxAR6fnzzz8xefLkEo1VqVTo0aMHVq9ebeBURFSRsXvLp4cqcc4kf+zeysbuTUQVFbs3SQUXwCuIe/fuITo6GlFRUTh16hS0Wi3q1auHUaNGoU+fPrJ4/oeFhQU2btyIyMhIpKamwsbGBt7e3mjWrJluzJkzZ5CcnIw+ffpg1qxZsLS0FDHx61PinEn+9uzZg+7du2PUqFG6YxqNBrGxsVCpVHrHbW1t0a9fP+zdu5clXCKys7NRpUqVF75erVo1bNmyRe9YQkICXF1dDR2NyKCqVKmCoKAgNG/eXOwoVEZmZma6RY6SqFq1apHnxRKR/LF7PyO3HqrEOZP8sXvLG7s3KRW7t/Sxe5NUcAFcRBkZGYiOjsb+/fuRnJwMrVaLatWqYcCAAfD29kaHDh3EjljuTE1N4e3tDW9v72JfHz9+PCZPngwTE/nszq/EOZO8/fXXX/D19dU7durUKeTm5sLOzg4ODg56rzVs2FBRzzGSOj8/PwQHB8PW1vaVY58+fYrFixfjl19+QXp6uuHDiUiJBa1atWrYvHkzWrRoIXYUo6hUqRL+9a9/8Q4LCWvUqBHOnDlT4vFnzpxB3bp1DZiIiCoKdu+i5NhDlThnkjd2b3lj9y4eu7f8sXtLH7s3SQUXwEXUpUsXAM+uVPb09IS3tze6dOny0ucmyJ2VlZXYEYxOiXMmaSsoKChy1V58fDwAwN3dvcj47Oxs/jmXkLNnz+LDDz/Exo0bUatWrReOO336NGbOnIm//vrrpePkolKlSnonn7RaLdauXYsJEyaImMqwzM3N4eLiovt1dnY2Fi1ahMDAQBFTvb7g4GDs2LED4eHhRT5zLViwAHFxcRg1ahRGjx4t+RPkYWFhRY7l5OQAAI4fP447d+4U+z4fHx8DpjKc999/H0uXLsXIkSNfecLswoULiIiIgJ+fn5HSEZGY2L2LUuLncyXOmaSN3Vve2L2Lx+7N7i1F7N4vxu5NYlIJgiCIHUKphg8fjr59+6JHjx6wsbEROw4RUYn07dsXbdu2xdy5c3XHevXqhcuXL2P58uXo0aOH3vjRo0cjKysLO3fuNHZUKoOff/4Z8+fPR4MGDbBx48YiV2jm5eXh+++/x4YNG6DVatG3b1988cUXsrhyNzs7Gzt37kRqaioEQUDLli0xbNgwVK1aVW/c77//Dn9/f/zvf//D2bNnRUpbPq5fv47g4GCkpKQAAFq2bIkxY8agUaNGeuOio6Mxb9483Lt3T7JzFgQB06dPx969e1GzZk1s27YNDRo00BuzcuVK7Ny5ExkZGejWrRu+//57kdKWD7VaDZVKpXfsnx/9i3tNpVJJ9mv8999/o1+/fsjMzMQXX3yB3r17FzlpnJ+fjz179mDJkiUAgNDQUNSuXVuMuEZz9+5d2NraFrvQl5eXh5SUFLRo0eKlW3ASSR27NxFJEbu3vLF7s3uze7N7S/VrzO5dPHbviocL4EREVCpr167FqlWrsHTpUrzzzjvYvn07Fi5ciFq1aiE2NlbvGTDh4eGYOXMmJk+ejPHjx4uYmkpjz549mDVrFuzs7LBx40Y0bNgQwLMr1GfOnIn//e9/sLe3x5w5c9CpUyeR05aPa9euwc/PD7dv39YrKbVq1cLOnTtRt25d5OfnY+nSpdi8eTO0Wi169+6NpUuXipj69Zw9exbDhw/H48ePYWlpCUtLS2RmZsLa2hrbtm3DW2+9hezsbPj7+yM6OhqmpqYYNWoUpk6dKnb0Mtm2bRu++eYbjBgxAtOmTXvhXX8ajQZz5sxBSEgI5s+fj379+hk5afkJDQ0t0/ue32pTSi5fvoxPPvkEly9fhrW1NVq1aoXatWtDq9Xi/v37OHPmDHJzc2Fvb49Vq1ZBrVaLHblcvOzuiqlTp8rq7goiIiKlYPeWP3Zvdm92b3ZvqWL3ZveWAi6Ai6i4rTFKQqpbYxCRPGg0GowaNQpJSUlQqVQQBAHm5uZYuXKlbnvJmJgYbN26FYmJiWjcuDFCQkJgaWkpcnIqjSNHjmDKlCmwsbHBunXrcPDgQaxZswb5+fkYMmQIpk2bhsqVK4sds9xMmzYNkZGRmDp1Kvr37w8rKyscOXIEc+fORbt27bB48WKMHTsWycnJsLe3R0BAgO7Pu1RNmDABv/32GxYtWoTevXsDANLS0vDZZ5/B3t4eS5YsgZ+fH/766y+0adMGgYGBRZ4zKCUDBgyAtbU1Nm/e/MqxgiCgf//+sLCwwLZt24yQjsqTRqPBzz//jL179+LcuXPIz88H8GxrwXbt2sHLywuDBg3SO2ksVUq8u4KoLNi9iUiK2L2Vgd2b3Zvdm91bqti92b0rOi6Ai6hwa4zCLS9eRepbYxCRfGi1WkRGRiI1NRU2Njbw9vZGs2bNdK8vX74cGzZsQK9evTBr1ixUr15dxLRUVqdOncKECRPw+PFjCIKARo0aITAwEB06dBA7Wrnr3Lkz3nnnHQQFBekdDw0NRUBAADp37owDBw5gyJAhmDFjBqytrUVKWn7eeecd9OzZE/7+/nrHo6OjMXXqVLRr1w5paWmYPHkyPv74Y8lfuero6IjJkydjxIgRJRq/du1arF69WrdFndTl5uYWezL04sWLqFq1Kuzs7ERIZRwPHjyAqampLLaLfJ4S764gKgt2byKSKnZvZWD3Zvdm92b3lgN2b3bvisZM7ABK9vwPeiIiqTA1NYW3tze8vb2LfX38+PGYPHmy5D+0K52TkxM2b96M0aNH48GDB5g7d64sCzgAPHz4EI6OjkWOOzs7Q6PR4MiRI1ixYgW6d+8uQjrDyMrKKnYLqjZt2kCr1eL8+fPYsmUL2rVrZ/xwBmBmZlaqq46rVq1a5BlWUqTRaLBo0SJERETg6NGjRYr4smXLcPToUfTv3x8zZ86UxQmm59WoUUPsCAbz66+/wsXFBbNmzXrpOAsLCwQGBuLs2bPYsWMHSzgpDrs3EUkVu7cysHuze7N7s3vLAbs3u3dFwwVwEUn5GQ9EpFx+fn6YMGECOnbsqDuWn5+PlJQUqNVqVKlSBVZWVrrXCp9FxjtopEmtVuO///0vRo4ciQkTJmDVqlVwc3MTO1a5y8vL0/tzW6hwq7mRI0fKqoADz/7eVqpUqcjxwpI2duxY2RRwAGjUqBHOnDlT4vFnzpxB3bp1DZjI8P65baZarcbDhw+LzOm9997DnTt3sH37dly4cAGbN2+GmZk0K8LKlSvL9L6JEyeWcxLj+fPPPzF58uQSjVWpVOjRowdWr15t4FREFQ+7NxFJEbu3srB7s3vLBbs3u/eLsHuTsUnzb5hCabVarF27FhMmTBA7ChEpWGJiIgYOHKh3LDs7G35+ftiwYYNeOSfpmT17drHHGzVqhOvXr2PcuHHo2bOn3vahKpUKCxYsMFZEUbi4uIgdwehat24tdoRy9f7772Pp0qUYOXIkmjdv/tKxFy5cQEREBPz8/IyUzjA2btyIpKQk+Pv748MPPyx2zMCBAzFw4ECsXLkSK1euxNatW0u8VV1FU9IS/vz2x1Iu4Uq9u4LI0Ni9iagiYPeWN3bv4rF7Sx+7N7t3IXZvdm+xcQFcZNnZ2di5cydSU1MhCAJatmyJYcOGoWrVqnrjfv/9d/j7++N///sfSzgRVUiCIIgdgcpBaGjoS19/+vQpwsLC9I4poYQr8UNrSZ6RKiUffPABtm3bhuHDh+OLL75A7969i3xd8/PzsWfPHixZsgRVqlSRfAmPiIiAh4fHCwv4P02cOBGJiYnYvXu3ZEv4wYMHXzkmOzsb3333HQ4fPgwzMzPJf42VeHcFUVmxexORXLB7ywO7d/HYvaWP3fvl2L2lid1bmrgALqJr167Bz88Pt2/f1n14jYmJwc8//4ydO3eibt26yM/Px9KlS7F582ZotVr07t1b5NRERCRnJfkQK1eZmZm4efOm3rGsrCwAwIMHD4q8BgD29vZGyWYoly5dQlJSkt6x7OxsAMD58+eL3Y7L2dnZKNnKm7W1NVavXo1PPvkEM2fOxJw5c9CqVSvUrl0bWq0W9+/fx5kzZ5Cbmwt7e3usWrUKtWvXFjv2a7ly5QoGDx5c4vHvvvsuVqxYYcBEhlWvXr2Xvh4ZGYmFCxciIyMD7du3xzfffIO33nrLSOkMQ4l3VxCVBbs3ERFVNOze7N7s3uzeUsXuze4tFVwAF9F3332H27dvY+rUqejfvz+srKxw5MgRzJ07F3PnzsXixYsxduxYJCcnw97eHgEBAejSpYvYsYmISMZe9SFWzhYsWPDCq+mnT59e5JhKpUJ6erqhYxnUmjVrsGbNmmJfW7RoUbHHpfxMwcaNGyMsLAw///wz9u7di+TkZOTn5wMAzM3N0a5dO3h5eWHQoEGl2tqqorK2toZWqy3x+EqVKumeQycnV69exZw5cxAXF4dq1aohMDAQAwYMEDtWuVDi3RVEZcHuTUREFQ27N7t3IXZvdm+5YPdm965ouAAuoqSkJPj4+GDs2LG6Yz179kRubi4CAgIwa9YsJCcnY8iQIZgxYwasra1FTEtERFTUmjVrEB0djZCQELGjvBZfX1+xIxidlJ+99DosLCwwcuRIjBw5EsCzOwxMTU1RrVo1kZOVvyZNmiA5ObnEpevUqVOyOhGn0Wiwdu1arFu3DhqNBr6+vpgxYwaqV68udrRyo8S7K4jKgt2biIikjt1buti92b2fx+4tPeze0sQFcBE9fPgQjo6ORY47OztDo9HgyJEjWLFiBbp37y5COiIiole7deuWpK9KLhQUFCR2BKNTagl/Xo0aNcSOYDC+vr4ICAhAfHw83NzcXjo2ISEB0dHRmDRpkpHSGVZcXBzmzJmDK1euoHnz5ggICECHDh3EjmUQSru7gqgs2L2JiEjq2L2li937GXbvZ9i9pYvdW3q4AC6ivLw8WFlZFTleuXJlAMDIkSNZwImoQnr+eU0ve1bTw4cPjZqNiKg4K1euLNP7pHyywsfHB7t27cL48eMxbtw4DBw4ELVq1dIbk5GRgZ07d2L9+vWoX78+hg4dKlLa8nHv3j0EBQUhMjISlpaWmDZtGkaOHFnsM/XkREl3VxCVBbs3EUkVuzcRSQ27N7u3nLF7S4tKEARB7BBKpVarsXjxYnh7e+sdf/jwITp27Ij169fjX//6l0jpiIiKp1aroVKpihwXBKHY44XkcKUyFRUQEIAdO3ZI/uurxII2e/bsUr9HpVK98FltFZ1arS7RuOe/j0n9z/b9+/fx2WefISEhASqVCvb29npbdN26dQuCIKBdu3ZYvnw56tatK3bkMtu6dStWrFiBx48fo2vXrvD395f0fIio/LB7E5EUsXvTP7F7s3tLBbs3uzdRRSHvyzEkztTUVOwIRERFKPF5TSR/JS3hzxc0KZfw0NDQEo/957ylWsIPHjz4yjHZ2dn47rvvcPjwYZiZmZX4+V0VWc2aNbFp0yZER0dj7969SE9Px/nz52FiYoJatWrBx8cH3bp1Q9euXcWO+toCAwN1/x4bG4vY2NhXvkelUiE9Pd2QsQxKiScQiQyB3ZuIKiJ2b5Ijdu+XY/eWLnbvl2P3JjFwAVxkz29lBLx8OyMAsLe3N0o2IqLiKPF5TSR/Sixo586de+WYGzduYN68eTh8+DCqVKmCKVOmGD6YgdSrV++lr0dGRmLhwoXIyMhA+/bt8c033+Ctt94yUjrD8/LygpeXV5HjWVlZsLS0FCFR+VPiSWIlnkAkKit2byKSGnZvkiN27+Kxe7N7Swm794uxe1cs3AJdRC/aygh48XZGUr9ShoiIKrbSXtF46NAhpKenS36rqleRe0F7nlarxYYNG/Djjz8iNzcXvXr1wuzZs4s8w0oOrl69ijlz5iAuLg7VqlXD9OnTMWDAALFjlZu8vDyEhIQgNTVV7yRqYmIivvnmG1y+fBkqlQru7u74+uuv0bBhQxHTvp7Zs2dj8ODBaNu2rdhRjObGjRuvHFPcCcTPP//cCOmIKg52byIiqmjYvYvH7s3uLVXs3vLG7i1NXAAXUVme/wHwClAiIjKckj6r6Z9UKpVsS7jcC1pxTp48iTlz5uDChQt48803ERAQgI4dO4odq9xpNBqsXbsW69atg0ajga+vL2bMmIHq1auLHa3c5OXl4eOPP0ZSUhLMzc2RkpICMzMzXL58GX379oVGo0Hnzp3RrFkz7N+/H0+ePEF4eLhkT7a86Bm/Sqa0E4hEL8LuTUREFQ27tz52b3ZvKWP3JnbviolboIuIZZqIiCqazZs3ix2hQlBCQXvew4cP8e233yIsLAwWFhaYNGkSxowZAwsLC7Gjlbu4uDjMmTMHV65cQfPmzREQEIAOHTqIHavcbd26FSdPnsSMGTMwbNgwmJk9++j/ww8/QKPRoE+fPvj2228BAGPHjoW3tzfWrFkDf39/MWNTOXj+BGJgYKDsTyASvQy7NxERVTTs3s+we7N7ywG7t3Kxe1dsXACvAJ48eYJdu3bht99+w7lz55CZmQmVSoUaNWpArVbDw8MD3t7esvwhSEREFYuLi0up33Py5EkDJBGPUgraP+3cuRNLlixBVlYW3nnnHQQEBEh6O64XuXfvHoKCghAZGQlLS0tMmzYNI0eO1JVTudmzZw+6d++OUaNG6Y5pNBrExsZCpVLpHbe1tUW/fv2wd+9elnAJU+IJRKLSYPcmIqKKgt2b3ZvdWz7YvZWH3Vsa5PkdR0JOnTqFyZMn4969e7CwsEDDhg1Rr1495OfnIzMzE4cOHUJsbCxWrlyJpUuXon379mJHJiIiwq1btxAaGoqwsDBcu3ZNFtuwKa2gAcD58+fxzTffIDU1FbVq1cKyZcvQq1cvsWMZxNatW7FixQo8fvwYXbt2hb+/P+rWrSt2LIP666+/4Ovrq3fs1KlTyM3NhZ2dHRwcHPRea9iwITIyMowZsdydPHkSWq22VO/x8fExTBgjU+IJRKLSYPcmIiIpYveWB3Zvdu9/YveWNnZv6ZDvTxUJ+PPPPzFq1CjY2NhgyZIl8PLyKnKl+ePHjxEVFYXvv/8eo0ePRmhoKBo1aiRSYiIiUrKnT58iOjoaISEhSEhIgCAIUKlU6Ny5s9jRXpsSC9qiRYuwZcsWaLVavPfee5gyZQpsbGxw8+bNl77P3t7eSAnLV2BgoO7fY2NjERsb+8r3qFQqpKenGzKWQRUUFMDU1FTvWHx8PADA3d29yPjs7GxYWVkZJZuh7NixAzt27CjR2MLvYVIv4Uo8gUhUWuzeREQkJeze8sLuze79PHZvaWL3lh5+ZUT0448/wsrKCrt27cIbb7xR7BgbGxsMGDAAnTt3Rt++fbF+/XrMmzfPyEmJiEjJUlNTERISgn379uHx48cAgBo1aqB///4YNGgQ6tWrJ3LC16fEghYcHKz790OHDuHQoUMlep9U7zh4/mpsJWjYsGGRr1dMTAxUKhXefffdIuOPHTsm+e33PvjgA7Rr107sGEajxBOIRGXB7k1ERFLA7l08dm9pYfd+ht1bXti9pYkL4CJKSkpCv379XljA/8nOzg4+Pj44duyYEZIREZHSZWRkICwsDKGhofjrr78gCAKsrKzg7u6OuLg4zJ07Fx4eHmLHLDc+Pj5QqVRixzCqiRMnlvo9giAYIInxDB48GG3bthU7htH07t0bq1atQufOnfHOO+9g+/btuHTpEmrVqoWuXbvqjQ0PD8fx48cxefJkkdKWjw4dOsDb21vsGEajxBOIRGXB7k1ERBUVu7f8sXvLH7u3/LF7SxMXwEX08OHDUm2p1qRJE+zcudOAiYiISOn27duHkJAQxMXFQavVomrVqvD29oaXlxc6deqEu3fvwtPTU+yY5W7hwoUAgLy8PFy8eBH5+flo1qyZ5Lekehl7e3v069evxONv3LiBL774woCJDCs0NBTu7u6KKuEjRozAb7/9hokTJ0KlUkEQBJibm2P+/Pm6rX9jYmKwdetWJCYmonHjxhgxYoS4oalUlHh3BVFZsHsTEVFFw+7N7v0i7N7Sw+4tf+ze0sQFcBHl5eWV6od7pUqVkJOTY8BERESkdFOnToW1tTWGDh0KDw8PODs76z3HSM5Xav/nP//B6tWrdT9rLSwsMHToUEybNk2Wz/Px9/fHkydPMGzYsFeO3blzJxYtWsTPIRJjYWGBjRs3IjIyEqmpqbCxsYG3tzeaNWumG3PmzBkkJyejT58+mDVrFiwtLUVMTGWhtLsriMqC3ZuIiCoadm927+Kwe0sTu7cysHtLj/x+ohAREVGZ1a9fH9evX0dISAguX76M33//HZ6enmjcuLHY0Qxq165dWLx4MerVqwcfHx+YmJggISEBGzduhFarlfTV1y/y5ptvIjAwEE+ePMHo0aOLHXP37l34+/vj6NGjMDc3l/wWXUpkamoKb2/vF25NNn78eEyePBkmJiZGTlb+fH19Jf8ctdJS4t0VRERERHLA7s3u/U/s3tLH7i1v7N7SxAVwkWVmZuLmzZslGvvw4UMDpyEiIqU7cOAATp8+jfDwcERFReHYsWNYtmwZmjRpAi8vL7Rq1UrsiAaxfft2tGvXDps2bUKlSpUAPHvm1tSpU7F9+3ZMnz5dt22VXPzyyy8YPXo0li5diidPnmDSpEl6r+/Zswfz5s1DVlYWHB0dERgYiKZNm4qUtnycPHkSWq22VO/x8fExTJgKQk5bDQYFBYkdgYgqMHZvIiKqSNi92b0LsXs/w+4tHezeJBUqQRAEsUMolVqtLtN2NmfPnjVAGiIiIn1arRbHjh1DREQEDh48iCdPnuh+bvXv3x8TJkxAvXr1RE5ZPpycnPDZZ58V2ZIsNTUVQ4YMQWhoKNRqtUjpDOfvv//Gv//9byQkJGDEiBGYOXMmHj58iICAAMTExMDS0hJTp07F8OHDJb8FX2k/dwmCAJVKxc9dVKGp1WosXrz4hXcZENEz7N5ERFSRsXuze7N7s3tTxcbuLU28A1xEvr6+YkcgIiJ6IVNTU3Tp0gVdunRBbm4uYmJisGfPHhw/fhy//vorQkJC4Orqiv79++P9998XO+5refLkCapUqVLkeP369SEIAh49eiRCKsOztrbG2rVr8dlnn2Hjxo24fv06kpOTcf/+fbzzzjuYO3eubE60AMAHH3yAdu3aiR2DqFzx7gqiV2P3JiKiiozdm92b3Zuo4mP3lh7eAU5EREQ6Y8eOhZubG1xcXNCqVatir9p9+PAhIiMjERERgdTUVFlcqfuiKzkfPnyIjh07Ijg4GB07dhQpneEVFBTA398fISEhMDExwdy5czFgwACxY5UrXq1LcsS7K4iIiIikid2b3Zvdm0g62L2liXeAExERkU58fDyOHj0KlUoFGxsbdOjQAa6urnBzc9NtQ1a9enUMGzYMw4YNw7Vr17B3716RU9PrMjExwYIFC2Bra4sNGzYgLi4OPj4+MDPjR0Wiio53VxARERFJD7u3MrF7E0kXu7f08DsrERER6SQnJyM9PR3JyclISUlBamoqDh06BJVKhapVq8LZ2Rmurq5wdXXFW2+9hQYNGmD8+PFixy4XmZmZuHnzpt6xrKwsAMCDBw+KvAYA9vb2RslmCMXN58MPP8Tff/+N7du3IycnB1999RVMTEz0xkh5zkRy1KFDB95dQURERCQx7N7s3uzeRNLC7i093AKdiIiIXurWrVt6pfzcuXPQarWwtbWFi4sLXF1dMXToULFjvpaXbWVUuG3R81QqFdLT0w0dzWBeNWcARV6X8pxnz56NwYMHo23btmJHISo33F6QiIiISD7Yvdm9C0l5zuzeJEfs3tLEO8CJiIjoperWrYvevXujd+/eAIDs7GyEh4cjJCQE+/fvR3R0tORLuK+vr9gRjM7Hx6dUzy+SuqCgILEjEBERERERvRC7tzyxexMRiYML4ERERPRSubm5SEpKQmJiIk6dOoUzZ84gLy8PFhYWui3ZpE6JBW3hwoViRyCi1+Tr64uGDRuKHYOIiIiIygG7tzyxexNJH7u3NHELdCIiItKTn5+P1NRUxMfHIz4+HqdPn0ZeXh7Mzc3x9ttv64q3o6MjLCwsxI5LREREREREJDns3kRERIbDBXAiIiLSGTNmDE6ePInc3FyYmJigVatWcHNzg6urK5ycnGBpaSl2RCIiIiIiIiJJY/cmIiIyLC6AExERkY5arYa5uTnef/99jBs3Dm+++abYkYiIiIiIiIhkhd2biIjIsLgATkRERDpfffUVEhIScPXqVahUKjRp0gQdO3aEm5sbnJ2dUa1aNbEjEhEREREREUkauzcREZFhcQGciIiIirh58ybi4uJ0zyK7d+8eTExMoFar4erqqivl1tbWYkclIiIiIiIikiR2byIiIsPgAjgRERG90oULFxAfH48TJ07g5MmTePToEczMzNC6dWt07NgRkydPFjsiERERERERkaSxexMREZUPLoATERFRqWg0GkRFReGXX35BamoqVCoVzp49K3YsIiIiIiIiItlg9yYiIio7M7EDEBERUcV29epVnD59GqdPn0ZaWhrOnTuHvLw8VK5cGZ07d4azs7PYEYmIiIiIiIgkjd2biIio/PAOcCIiItLJyspCWlqarnCnpaUhKysLgiCgWrVqaN++PVxcXODs7IyWLVvCxMRE7MhEREREREREksLuTUREZFhcACciIiIdtVoNlUoFQRBQvXp1ODs76/5xcHCASqUSOyIRERERERGRpLF7ExERGRa3QCciIiKdHj16wMXFBS4uLmjWrJnYcYiIiIiIiIhkh92biIjIsHgHOBERERERERERERERERERyQIfHkJERERERERERERERERERLLABXAiIiIiIiIiIiIiIiIiIpIFLoATEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkwUzsAERERErwww8/YOXKlaV6z8GDB1G/fn0DJSq7rl274saNGwCAL7/8En5+fi8dP2rUKBw7dgwAEBwcDHd3d4Pmio6ORqNGjQzyexAREREREVHFxe7N7k1ERARwAZyIiMgoHBwc4O3trXfs/v37iIuLg7W1NTw8PIq8x9ra2ljxyiwqKuqlJfzBgweIj483YiIiIiIiIiJSKnZvIiIiArgATkREZBReXl7w8vLSO5aQkIC4uDhUr14dS5YsESlZ2VWtWhXJycm4c+cO3njjjWLHREdHIz8/H+bm5sjLyzNyQiIiIiIiIlISdm92byIiIoDPACciIqIy8vT0hCAIiI6OfuGYvXv3wtbWFm3atDFiMiIiIiIiIiJ5YPcmIiIqPS6AExERVWCHDx/GqFGj4OLigjZt2qB79+5YvHgxMjMz9cZdv34dDg4O6Ny5c7H/neHDh8PBwQEJCQm6Y7NmzYKDgwMSExMxadIkvP3223Bzc8OWLVtKlK1Hjx4Anm3FVpyMjAycPHkS3bt3h5nZized2b17N4YOHYr27dvj7bffhre3N1avXo0nT54UO/7EiRMYOXIknJ2d0aFDB0yZMkX3XLTiaLVa/Pe//8XAgQPh6OgIR0dHDBo0CKGhoRAEoURzJSIiIiIiIvli9y6K3ZuIiKSMW6ATERFVUEuWLMG6detgamoKJycnVK9eHampqVi/fj327duHTZs2oUGDBq/9+3z11Ve4f/8+OnXqhAsXLkCtVpfofW+++SZatGiB5ORkZGRkwM7OTu/1qKgoFBQUoHfv3li5cmWR9xcUFGDGjBnYs2cPLCws4OLiAisrKyQlJeG7777D/v37ERwcjOrVq+ves3PnTnz99dcAgA4dOqBq1ao4duwYTp48CY1GU+T3yMvLw7///W8cPXoUNjY2cHR0hLm5ORITEzFr1iwkJCRg4cKFpfnfRURERERERDLC7s3uTURE8sMFcCIiogooNjYW69atg62tLdavX6/bxkyj0WDu3LnYuXMnJk+ejF27dkGlUr3W75WRkYHw8HA0aNAABQUFMDEp+QYxvXr1wtmzZxEdHY0PP/xQ77XIyEjY2dnB2dm52Pdu3boVe/bsQYMGDbBhwwY0bNgQAPD48WNMmzYNhw8fxtdff40ffvgBAHDr1i0EBgbCzMwMa9euRceOHQEADx48wKhRo5Cenl7k9/jxxx9x9OhRuLi4YMWKFahRowYA4N69exgzZgxCQ0Ph5OSEgQMHlnjOREREREREJA/s3uzeREQkT9wCnYiIqALauHEjAODzzz/Xe4aXhYUFvvnmGzRq1Ah//PEH4uPjX/v38vDw0F3NXpoCDgA9e/YEUHQrtps3byI1NRU9e/Z84X9z06ZNAIDAwEBdAQcAGxsbLFmyBFWqVEF0dDSuXLkCAAgNDUVubi4GDx6sK+AAUKNGDSxYsKDIf1+j0WDLli0wNzfHkiVLdAUcAGrVqoW5c+cCAP7zn/+Uas5EREREREQkD+ze7N5ERCRPXAAnIiKqYPLz85GcnAyVSoXu3bsXed3MzAxeXl4AoPdcsbJ66623yvzeBg0aoFWrVjh16hQyMjJ0xyMjIyEIAt5///1i33fr1i1cv34d1atXh5ubW5HXq1Spgk6dOgEAEhMTAQBJSUkAgC5duhQZ36JFC9SvX1/v2B9//IHs7Gw0adIEb7zxRpH3tGnTBjVr1sTly5dx9+7dEs6YiIiIiIiI5IDdm92biIjki1ugExERVTCZmZnIy8tD9erVYWNjU+yYwsJZHuWxWrVqr/X+Xr164Y8//kBMTAyGDRsG4FkJb9CgAd5+++1i31NY2OvVq/fC/+7zcyx8T506dV44/vr167pf37p1CwBw/vx5ODg4vHQOt27dQu3atV86hoiIiIiIiOSD3fsZdm8iIpIjLoATERFVMIIgAMBLny9WOMbCwqJE/02tVvvC10q79drzevbsicWLF2Pfvn0YNmwYrly5gj/++APjxo174XvKMsdXPW/NzEz/Y01BQQEAwN7eHk5OTi99b+XKlV/6OhEREREREckLu7f+GHZvIiKSEy6AExERVTC2trYwNzdHZmYmHj9+XOyV6NeuXQMA1KxZE8D/F+nC4vm8rKwsA6V9diX522+/jVOnTuHu3buIjIwEAPTu3fuF77GzswMAvavGn1c4x1q1agEA3njjDVy4cAE3btxAs2bNioz/5zZwAHRXldepUwdLliwpxYyIiIiIiIhI7ti9n2H3JiIiOeIzwImIiCoYc3NzODo6oqCgADExMUVez8/P1x13dXUFAFhbWwN4Vrbz8vL0xj98+BCXL182aOZevXqhoKAA0dHR2LdvH5o1a/bSrc/s7e1Rr149PHz4UPecsX/Kzs7GsWPHAADOzs4AAHd3dwAo9v/JtWvXcPHiRb1jbdq0gaWlJc6dO1ekoAPAnTt30LNnT4wcORI5OTklnywRERERERFJHrs3uzcREckXF8CJiIgqoI8++ggA8O233yI9PV13PC8vD3PmzMHVq1fRokUL3fZitra2qFOnDjQaDbZt26Yb//TpU3z99dcv3YatPPTo0QMqlQpbt27F+fPnX3oFeqHCOfr7++uuOAeAnJwczJgxA48fP8Z7772ne1aZr68vbG1tsWvXLuzfv183/vHjx/jiiy+KXIFvbW2NDz74AH///TdmzJiB+/fv6/0es2fPxqVLl2Btbc1t2IiIiIiIiBSI3Zvdm4iI5IlboBMREVVAnp6e+Pjjj7FhwwYMGDAATk5OqF69Ok6fPo3bt2+jXr16WL58ud4zxEaPHo3AwEAEBgZi7969qFWrFpKTk6HVavHee+/h0KFDBstbt25dtGvXDikpKQBevgVboeHDhyMlJQX79u1D79694ezsDCsrK5w8eRIPHz6EWq3GggULdONr1KiBBQsWYMqUKfj000/h6OgIOzs7JCUlQavVonHjxkWutp82bRrOnj2L+Ph4dOvWDW3atIGVlRVSUlKQmZmJN998E3PmzCnf/xlEREREREQkCeze7N5ERCRPvAOciIiogpo5cyZ+/PFHuLq64ty5czh8+DAqV66MCRMmIDQ0FI0bN9YbP3z4cCxatAitW7dGeno6kpKS4Orqil9//bXIWEPo2bMnAKBVq1Zo1KjRK8ebmJhg+fLlCAoKQqtWrZCcnIzjx4+jTp06mDFjBnbs2IEaNWrovcfDwwO//PILPDw8cPnyZfz2229o2bIlfv75Z9SpU6fI72FpaYkNGzbgyy+/RJMmTZCWloaEhATY2dlh0qRJ2Llzp+45Z0RERERERKQ87N7s3kREJD8qQRAEsUMQERERERERERERERERERG9Lt4BTkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQL/wdwmX292Um/NQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 56 coefficients adjusted\n", - "\t 701 coefficients converged\n", - "\t 56 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACXnUlEQVR4nOzdeZydg9k//s+cSbNJRsIjCWKNjtS+RUORCqEtSqSqiNqKWKsq9kertVMeqqEIYg0V+/JoqP1BRb9UbUFJLA0aS8SSyMz5/eGXaUYS5pzMZE5m3u/XKy8593LOdc41E+c6n3Pfd1WxWCwGAAAAAACAJim0dgEAAAAAAACLEuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QrAAigWixk8eHBWXXXVnH/++SXte+ONN2bVVVfNjTfe2LBs1VVXze67797cZc7lnXfeySeffNLij9Mc6urq8vrrr3/tdr///e+z6qqrfuWfwYMHt3i9r732Wos/BgAAleu+++7LIYccksGDB2eNNdbIt7/97fzsZz/LX/7yl4VWw8yZM/OrX/0qG264YdZaa62cdNJJ81x29NFHZ9VVV80bb7xR0v3Pfu/9+OOPt9AzaOzr3mP/6le/yqqrrppx48Z95XZvvPFG+vfvnz322KPJj/34449n1VVXze9///sm79OaHnvssay66qr51re+9ZVz1EcffZTDDjss6623XtZdd92MHj06STJjxoxMmTJlYZWbZMHm6sRs3VRNna2BpuvQ2gUALMoee+yxvPnmm+natWuuv/76HHDAAamuri77/s4444z813/9VzNWOLebb745J554Ym677bZ07dq1RR9rQb311lvZf//9s9VWW+WQQw5p0j4777xz1l9//XmuW2yxxZqzvLkccMABmT59eq688soWfRwAACrP9OnTc+yxx+buu+/O6quvnh133DG9evXKlClTcvPNN+eAAw7I3nvvnaOOOqrFa7n++uszduzYfOc738n3v//9fPOb35znsmKxmI022ihLLLFESfc/ZMiQLL/88unXr18LPYP/aMp77B/96EcZO3ZsbrvttgwbNmy+2918880pFov50Y9+1BKlVoRx48ala9eu+eSTT3LdddfliCOOmOd2o0aNyl133ZVtttkmG220UdZZZ50899xzOfjgg3PwwQdnxx13XGg1N/dcnZitv6yc2Rr4esIVgAVwww035Bvf+Eb23HPPjBo1Kvfdd1+23HLLsu9v++23b8bq5u2xxx5bZL5Z8/rrr2fixInZaqutmrzPOuuss1Bex3n5y1/+kg033LBVHhsAgNZ1/PHH5+67786RRx6ZffbZp9G6ESNGZJ999smll16alVdeOTvttFOL1vLiiy8mSY488sj0798/SRqO6phzWZKsu+66Jd9///79G91HS2rKe+w111yz4Uiat99+O717957ndrfccksWX3zxkuaLRcn06dMzfvz4bLHFFnn++edz44035tBDD03Hjh3n2nb2z8iJJ56Y7t27J/niCJA333xzodacNP9cnZitv6yc2Rr4ek4LBlCmjz76KPfcc0/WWmut/PCHP0ySXHvtta1cFQAAsLA9/PDDueuuu7L11lvPFawkSceOHXPKKaekuro6V1xxRYvX8/nnnydJunXr9pXL2pJhw4alvr4+d9555zzXP/nkk5k8eXK22267dOrUaSFXt3Dccccd+fTTTzNw4MBsueWWmTp1asaPHz/PbWf/PMwOVlqLuRpYlAlXAMp0++2357PPPst3vvOdrLTSSll11VXzyCOPzPMcpo8//nh++tOfZr311svAgQNz0kknzfMbLl8+L+z8zoH8xhtvZNVVV83RRx/dsOzTTz/Nqaeemu9973tZa6218u1vfzv7779/nnzyyYZtBg8enJtuuilJssUWWzQ81tFHH5111103kydPzsEHH5z1118/6623Xg444IBMmTIlb775Zg499NCsv/76GThwYA477LC88847jWqqr6/PlVdeme233z5rrbVWNthgg/zsZz9r9PjJf87P/Morr+T444/Pd77znay55prZfvvtc9tttzXa7qc//WmS5Pzzzy/rXNBfpVgs5k9/+lN23XXXbLDBBll99dWzySab5PDDD8+kSZPm2v7OO+/MbrvtlvXXXz/f/va3s8cee+TRRx9N8p/zMCfJX//617nO9/vAAw9kjz32yHrrrZe11lor22+/fa644orU19c3bDO7p3/4wx/yi1/8ImuuuWY23njjPPPMM6mrq8v555+f7bbbLuuss0422GCD7L777gv1vN0AAMzfzTffnCRfeY2H5ZZbLrfddlvD+/HZXnnllRx++OHZeOONs8Yaa2SLLbbIaaedlg8//HCu+/jnP/+Zww8/PBtttFHWWGONbLXVVvmf//mffPbZZ0n+855yzvf8s68/+OVlybznjWKxmGuvvTY77rhj1llnnWy88cYZMWJEnn322YZt5nfNlYceeqhh7ll77bWz4447NnpfnPznvfMdd9yRCy+8MEOGDMkaa6yRwYMH59xzz82sWbMabZfM+z32l/3whz/MN77xjUYzxZxm92j2KcE+//zzjB49OsOGDcu6666bNdZYI9/97ndz/PHHZ+rUqfN9nOSLuWpe13Oc17U/kuTvf/97RowYkQ033DBrrrlmtt1221x66aWpq6trtN1zzz2XESNGZNNNN234WTjppJPywQcffGU9s80+Ouk73/lOvve97yWZO6iY/br+9a9/TZKGa1MeffTROeaYY5IkxxxzTMNrn5Q+6z3wwAP5/ve/nzXWWCPDhw//yppLmatn12+2bvx6t/ZsDe2Z04IBlGn2G9fvf//7SZJtttkmL774YsaOHZuRI0c2bHf//ffnoIMOSq9evbL//vunUCjkhhtu+MrBoByHH354Hnnkkey2225ZeeWV8+9//ztXX3119thjj9xwww3p379/jj322Fx22WWZMGFCjjnmmHzzm99s2P/zzz/Prrvumg033DBHHnlknnrqqdx44415++238+9//zsDBgzIkUcemaeffjrjxo3L9OnTc8kllzTsf8QRR+SOO+7I1ltvnR//+Mf58MMPc+ONN2b33XfP2Wef3fDmfrb99tuv4TWZOXNmxowZkyOOOCJLLbVUBg4cmCFDhmTWrFkNA9eQIUOadC7oTz75JO+9995cy6urq7P44os33D711FMzZsyYbLnllvnFL36RJJkwYULuvPPOPPfcc7nzzjtTKHzxHYTzzjsvf/jDH9K/f/+MGDEiHTt2zDXXXJN99tknF1xwQVZfffWcccYZOfLII7PyyitnxIgRWW+99ZIkl156aU4//fSssMIK2XfffdO1a9fcc889Ofnkk/P444/n97//fcPjJMkll1yS2traHH/88Xnttdey2mqr5dRTT83VV1+dH//4x/npT3+ajz76KGPHjs2BBx6YP/7xjxk0aFBTfkQAAGghf//739OhQ4esvfbaX7ndl69RMmHChOyzzz6prq7OLrvskmWXXTZPPfVULr/88vzlL3/J2LFjG94D//3vf8+ee+6Zbt26ZbfddssSSyyRp556KhdeeGEeffTRXHHFFVliiSVyxhln5Prrr294z7/44ounUCg0WtazZ8/51njUUUfllltuyQYbbJDDDjssM2fOzJVXXpnhw4fn6quvzmqrrTbP/a6++ur89re/zZprrpmDDz44hUIh9957b4455pg8//zzOe644xptf/bZZ6dYLGbnnXdOTU1NbrzxxowaNSpVVVU59NBD069fv/m+x56Xnj17Zosttsj//u//5pVXXmn0Ws+YMSN33XVXVl999XzrW99Kkhx22GG59957M3To0Pz4xz/OjBkz8uCDD+ZPf/pT3nrrrVx66aVf2cumuvfee/Pzn/88ffv2zc9+9rN07do1jzzySE4//fT87W9/y+9///tUVVXl9ddfzx577JGllloqe+65Z2pqavL000/nqquuyt///vdcd911qaqqmu/jvPLKK3n66aez7rrrZplllskyyyyTFVdcMU888USj12P263rhhRfmn//8Z84444wstthiWXLJJdOxY8dcd911c13HstRZ77DDDsuPfvSjrLjiivM8JdmcmjpXJ2brhT1bA01QBKBkEydOLNbW1hZ32GGHhmWTJ08u1tbWFgcOHFicMWNGsVgsFuvr64uDBw8ubrDBBsV///vfDdtOmzatuNVWWxVra2uL48aNa1heW1tbHD58eMPto446qlhbW1t8/fXXGz3+66+/XqytrS0eddRRxWKxWJw6dWqxtra2+Ktf/arRdk899VRxq622Kl5//fVfeZ+zl315/+23375YW1tb/O1vf9to+U477VTs379/w/O88847i7W1tcWLL7640XbTp08vfu973yt++9vfLn7yySfFYrFYPO+884q1tbXFfffdt1hfX9+w7RNPPFGsra0tHn744Q3LHnvssWJtbW3xvPPOK36d2fc7vz+bb755w7bvvfdecbXVVivuv//+c93PoYceWqytrS3+4x//KBaLxeJrr71W/Na3vlUcPnx4w/MtFovFf//738X111+/uOOOOzYs+3L/Jk+eXFxttdWKP/jBD4off/xxw/L6+vriEUccUaytrS3eeOONxWLxPz1dZ511iu+++26jmtZZZ53iz372s0bL/vWvfxW33HLL4u9///uvfW0AAGhZa6+9dnHjjTcuaZ+6urrikCFDimussUbx5ZdfbrTu+uuvL9bW1haPPvroYrH4xfvHbbbZpjho0KDi+++/P89tL7roooZlX/We/6uWPfroow3vyed8r/7yyy8X+/fvXzzkkEOKxeJ/3ns/9thjxWLxi/emq6++enH//fdvtF99fX1x5MiRxdra2uLTTz9dLBb/8x7/O9/5TvHDDz9s2Pbjjz8urr/++sVNNtmk0fP78nvsr/LAAw8Ua2tri+ecc06j5XfccUextra2ePXVVxeLxWLx+eefn+ecUywWi8OGDSvW1tY2vM7zmkk233zzRvPFbOPGjWs0433yySfFb3/728WhQ4c2miWKxWLxnHPOKdbW1hbvuOOOYrFYLF5yySWNXqfZTj311OLQoUOLU6ZM+crnftpppxVra2uLY8aMaVg2u0/zep7Dhw8v1tbWfmX9xWJ5s96hhx76lbXO1tS5ulg0Wy/M2RpoOqcFAyjD7G/XbLPNNg3Llltuuayzzjp577338uc//zlJ8vzzz+eNN97I9ttvnyWXXLJh2+7du2eXXXZptnq6deuW7t2756677sr111+fd999N0my9tpr5+67727yBTO33XbbRrdnf7vpBz/4QaPlyy+/fOrr6/Pvf/87yRfn9k2SrbfeOu+9917DnxkzZmSrrbbK+++/nyeeeKLRfWy33XaNvnm11lprJUnDfZZrn332yWWXXTbXnzPPPLNhm549e2bChAk566yzGu07bdq0dOnSJUkaDi3/y1/+krq6uuyxxx6NvnW15JJL5pprrsnvf//7+dYyfvz4zJo1K/vtt1+6du3asLyqqiq//OUvk2Suc0Kvvfba+a//+q9Gy/r06ZO//vWvGT16dMPh23369Mn48eNz8MEHN/m1AQCgZVRXVzeczqqpnnvuuUyaNCk//OEP5zqi5Uc/+lFWWGGF3H333amrq8uLL76Yl156KYMGDUp9fX2j99ybb755OnXqNN9ra5TinnvuSZL87Gc/a/RevV+/frnhhhvy3//93/Pc789//nM+//zzfP/738/777/fUNv777/fMDPNnpFm23zzzVNTU9Nwu2vXrunXr9/XnpLrq2yyySZZeumlc/vttzdaftNNN6Vz587ZbrvtkiT9+/fPk08+mcMPP7zRdlOnTm2oqTkuVP5///d/ef/997P11ltn+vTpjfo2e8aa3bell146SXLmmWfm0UcfzcyZM5N8cZqpG2+8Mb17957v48yaNSu33nprCoVCwxEgyX/m1VtuuSWffvppWc+hnFlvXqdMm5emztWJ2bo1Zmvg6zktGECJPv/889x6661JvniDNee5SgcOHJinnnoq1157bbbddttMnjw5yRdvmL5slVVWabaaOnbsmNNOOy3HHHNMw8BTW1ubTTbZJNttt918D93/si9/qP+Nb3wjSbLUUks1Wt6hwxf/+5h9zZBXX301SbLlllvO977ffPPNr3ys2cHFnNchKccqq6ySjTfe+Gu369SpU+69997cd999mTx5ct54443861//anhTOruO2f1deeWV57qP2trar3yM2f2f8xDx2fr06ZPu3bvPda7bL78uSXLyySfnsMMOyxlnnJEzzjgjyy+/fL7zne9km222yYABA772uQIA0LJ69+6dV199NTNnzvza0yDN9lXvFauqqrLKKqtk0qRJef/99xveb48dOzZjx46d5/19+f12OWa/N/1y2JMkq6+++nz3m13fkUceOd9tvm4eSL6YCb58HZJSFAqFDB06NKNGjcr/+3//L+uuu27efffdPPLII9l2220bXby9Y8eOufPOOxuu7/HGG2/k3XffnWseWBCzX5ezzz47Z5999jy3mf26bL311hk2bFhuvPHG7LnnnuncuXPWX3/9DBo0KDvssEOjUxx/2f33359///vfWXPNNTNjxoyGPnbs2DErrrhiXnvttdxxxx0N15sp5zmUMut9eX6cl1Lm6iRm6zksrNka+HrCFYAS3X///Q3fpprfxfkmTJiQl19+ueF2sVica5sFeaMzr4Fjyy23zHe+85089NBDefjhh/P444/n0ksvzWWXXZZjjz224QJ2X2X2G7sv+6pz+86uZ7HFFsv5558/321WWmmlRrfnvM7Iwvb555/n4IMPzv3335811lgja6yxRrbeeuusttpqeeCBB/LHP/6x0bbJ178G8zK77/Pbt76+fq7he149WG+99XLPPffksccey0MPPZTHH388Y8eOzbXXXpu99tqr0cUXAQBY+AYMGJBXXnklf/vb3zJw4MD5bnfMMcfk888//8oQYrbZ80LHjh0b/r7bbrvN90PX+b2XL8Xs976lmj2f/Pa3v03fvn3nuc2Xr/HQUvPAjjvumAsuuCC33XZb1l133dx2222pq6trFCxMnz49e+yxR5599tmsv/76WWONNbL99ttnzTXXzJgxYxo+9C/Vl+e02X079NBDs+66685zn8UWWyzJF0c/nXLKKTnwwANz33335f/+7/8yYcKEPPLII/njH/+YsWPHzjNYSP5zBMgzzzyTLbbYYp7bjB07tqxwpZxZr7q6+mvvt5S5es7wxGxdWbM1tHfCFYASzX7juv/++zccbjunP/3pT7n//vsbvXl95ZVX5tpu0qRJX/tYs9+Uzpgxo9Hy2YcmzzZ9+vS8+OKL6du3b7baaqtstdVWSZIXXnghe+yxR/7whz806Q1gufr27ZtXX301/fv3n2toev755/POO+80nG6rEtx55525//77s99++zWcnmu2m266qdHt2cPhq6++Oteb2Msvvzwvv/xyjj/++HTu3Hmux5k9/EycOLHhwpmzvfXWW/n4448bDv+fnxkzZuTFF1/M4osvns022yybbbZZkuT111/P3nvvnTFjxuTggw9Ot27dmvDMAQBoCdtuu23Gjh2ba665Zr7hyr/+9a/ceuutqampSY8ePbLccsslSV566aW5ti0Wi3nllVfSrVu31NTUNAosvnyUdn19fe6+++6G+1sQc773XXXVVRutO/vss/PZZ5/l2GOPne9+NTU1c9X3zjvv5O9//3uz1NcUyy23XL797W/nrrvuyvHHH5/bbrstK6ywQjbccMOGba644or84x//yIknnpif/OQnjfZvyqmUqqur8/HHH8+1/Mtz2uzXpXPnznO9LtOnT8/DDz/ccCTDm2++mcmTJ2ejjTbK7rvvnt133z2zZs3K6NGjc/bZZ+faa6/NUUcdNddjTp06NQ8++GAWW2yxnH766XN9eF9fX5+jjjoqzzzzTJ599tmvPAJpXlpq1itlrj7++OOz4oorJjFbV9psDe2daBOgBO+++24eeuih9OjRIwcddFC23HLLuf4ceuihSZKbb745K6ywQlZaaaXceuutjQ5z/uyzz3LVVVd97eP16tUryRffQJrTzTff3Oj2xIkTs+uuu2bUqFGNlq+yyirp3r17o2/NzP5Wy7y+8VOurbfeOknyP//zP42WT58+PYcddlgOOuigud7ENsXsN8DNfTjz+++/nyRzDYyTJk3K3XffneQ/32DaYostUlVVlauvvrrRebQ/+OCDXHzxxfn73//eEKwUCoVGtQ4ZMiTV1dX54x//2OiczcViMeeee26S5Hvf+97X1rrzzjvnt7/9baPlyy23XHr37p2qqirfVAIAaGUDBgzIkCFDcvfdd+eyyy6ba/1HH32Un//855k1a1YOPvjgdOzYMauttlqWW2653HrrrXN9YDxu3LhMnjy54YPdNdZYI8suu2xuuummhtMjzXbdddflsMMOa/iwekHMPipmzJgxjZZPnjw5l19+eV5//fV57rfVVlulUCjkwgsvzGeffdZo3WmnnZaDDjoo//jHP8qq6cvvsZti2LBhee+993LzzTfnueeem+uIjfnNA//v//2/hutZfNXpyXr16pX33nuv0emZZs6cmbvuuqvRdptsskkWW2yxXH755Q2POduFF16Yn//853nggQcabu+55555+umnG7bp0KFD1l577STzPxrk5ptvzqxZs7L99ttnyJAhc82nW221VYYNG5Ykufbaa+f7nJL/zIpzvt4tMeuVOld/+umn6d+/v9m6AmdraO8cuQJQgtlvXHfcccd06tRpntusvvrqGTBgQJ544oncfvvtOemkk7L33ntnp512ym677ZZu3bpl3Lhx+eijj7728YYOHZo//vGPOemkk/LGG29kqaWWyn333ZeJEyc2evz11lsvm2yyScaOHZtp06Zlww03TF1dXe6+++68/vrrjb7hNPt8rJdcckk23XTTrzyXa1PtuOOO+d///d9cd911mTx5cgYPHpxZs2blT3/6U1577bWMHDnyKy/AOD+zL1T4l7/8Jcsss0yGDBmSHj16LHC9m266aX73u9/l5JNPzuTJk7PUUkvlpZdeyrhx4xoClGnTpiX54nzT++23X/74xz9ml112yTbbbJP6+vpcf/31+fDDDxtCktn1vvDCC7nmmmuywQYbpLa2Nocddlh+97vfZYcddsiOO+6Yrl275t57781jjz2WzTffPD/84Q+/stY+ffpkp512ynXXXZd99tkngwcPTlVVVR5++OE88cQTGT58eLp27brArwkAAAvmlFNOyYcffpjTTjstt912W7baaqssscQSee2113LTTTflvffey2677ZbddtstyRcfdp500knZb7/9stNOO2WXXXZJ37598/e//z033XRTll122RxxxBGNtt1///2z44475ic/+UmWX375PPPMMxk3blyWX375HHjggQv8HDbddNNsu+22GTduXKZMmZLBgwdn+vTpufrqq9OpU6eMHDlynvutuOKKOeSQQ3Luuedm++23z9ChQ1NTU5N77703Dz/8cDbffPOGoKhU83qP/XW23nrr/Pa3v83pp5+eDh06ZIcddmi0fvDgwbnyyitzxBFHZNddd0337t3zj3/8IzfddFOqq6vz+eefN8wD8zJs2LBMmDAh++yzT3bdddfU19dn3LhxcwUyNTU1OeGEE3LMMcdku+22y84775xevXrlsccey5133pm11loru+66a5Jkzz33zF133ZX99tsvP/nJT9K3b9+8/fbbufbaa9O9e/f8+Mc/nmctN954Y5I03M+8/PSnP83VV1+dO+64I0cfffR8j3qfPSveeuutKRaLDTNMc8965czVO+20k9m6AmdraO+EKwAluOmmm1JVVfWVb1yTL94YP/HEExk7dmzGjRuXa665Juedd14uv/zyJF98I+y73/1ufv7zn3/l/Sy//PK5+OKLc/755+eiiy5Kly5dsummm+baa6/NNtts02jb8847L5deemnDKa+SpH///jnrrLOy3XbbNWy3yy675K9//WvGjRuXxx57rFneAFZXV+fCCy/MmDFjcsstt+Sss85Kly5d0q9fv/z+978ve5BaaaWVstdee+WGG27IySefnL59+2ajjTZa4Hr79euXiy66KOedd15Gjx6dJFl66aUzfPjwfO9738sOO+yQhx56qOGoksMPPzwrr7xyrrrqqpxzzjnp0qVL1lxzzZx55plZc801G+73yCOPzFlnnZVTTjklI0aMSG1tbfbbb7+svPLKufzyyxuu5bLSSivlhBNOyC677NKko05OOOGErLzyyrnpppty9tlnp66uLiuvvHL++7//+2t/FgEAWDhqamoyevTo3HnnnbnxxhtzzTXX5L333ku3bt2y9tprZ7fddms4xetsAwcOzPXXX59Ro0Zl3LhxmT59epZZZpnsvffeGTFiRGpqahq23XjjjXP99dfnggsuaPhAuU+fPtl1112z//77N+ki4k1x5plnZq211soNN9yQ008/PYsvvng22GCD/PznP5/rNLlzOvDAA7PKKqvkiiuuyEUXXZT6+vost9xyOfLII7P77rs36Toc8zKv99hfp1OnTtl2221zzTXXZPDgwQ1HLcy20UYb5eyzz26YtTp27Jhlllkmhx12WFZZZZXst99+eeihhxq915/TjjvumI8//jjXXHNNzjjjjPzXf/1Xtt9++2y++ebZeeedG227ww47ZOmll84ll1ySK664IjNmzMgyyyyTAw44IPvss0/DF6X69euXq666KhdccEFuvvnmTJ06NT169MjAgQNz0EEHzfN6K08//XRefvnlDBgwIN/85jfn+3osv/zy2XzzzXPvvffmlltuaQj4vmzgwIHZbrvtcs899+SZZ57JBhtskJVWWqnZZ71y5uqddtopG2ywgdm6wmZraO+qis157BoAZSsWi+nfv3++/e1v54orrmjtcgAAAGCRY7YGFhYnaQeoELMPO19sscVauRIAAABYNJmtgYXFacEAKsAf//jHPPvss0m+OLcsAAAAUBqzNbAwCVcAWtm0adMyZsyYfP7559l2222z1157tXZJAAAAsEgxWwMLm2uuAAAAAAAAlMA1VwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAE7f6C9sViMfX1LjvTEgqFKq9tG6W3bZfetl1623bpbdvW3P0tFKpSVVXVbPdH+2Bmaj7+za48elKZ9KXy6Ell0pfKoyeVqdS+NHVuavfhSn19Me+993Frl9HmdOhQSM+ei2XatE8ya1Z9a5dDM9Lbtktv2y69bbv0tm1rif4uscRiqa4WrlAaM1Pz8G925dGTyqQvlUdPKpO+VB49qUzl9KWpc5PTggEAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAk6tHYBtB2FQlUKhaokSXV1odF/56e+vpj6+mKL1wYAAAAAi5I5P2v7snl99uZzNli4hCs0i0KhKj16dJ0rTKmp6fKV+9XV1eeDDz7xDz8AAAAA/P/m91nbl8352ZvP2WDhEq7QLAqFqlRXF3LW1U/mjbc/atI+fXt3zxG7rZ9Coco/+gAAAADw/yv1szafs8HCJ1yhWb3x9kd55c0PW7sMAAAAAFjk+awNKpcL2gMAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAABQIaZOnZqRI0dm4MCBWXfddbPffvvl5Zdfblj//PPPZ/jw4VlnnXXy3e9+N6NHj260f319fc4777xsuummWXvttbP33ntn0qRJC/tpAABAmydcAQAAqBAHHHBAXn/99Vx88cW54YYb0rlz5+y555759NNP8/7772evvfbKiiuumHHjxuWQQw7Jueeem3HjxjXsP2rUqIwdOzYnnXRSrrvuulRVVWXffffNzJkzW/FZAQBA29OhtQsAAAAgef/999O3b98ccMAB+eY3v5kkOfDAA7P99tvnpZdeyqOPPpqOHTvm17/+dTp06JB+/fpl0qRJufjiizNs2LDMnDkzl156aUaOHJlBgwYlSc4555xsuummGT9+fLbZZpvWfHoAANCmOHIFAACgAvTs2TNnn312Q7Dy73//O6NHj06fPn2yyiqrZMKECRkwYEA6dPjPd+QGDhyYV199NVOnTs0LL7yQjz/+OAMHDmxYX1NTk9VWWy1PPPHEQn8+AADQljlyBQAAoML893//d66//vp07NgxF1xwQbp27ZopU6aktra20Xa9evVKkrz11luZMmVKkmTppZeea5t//etfC1RPhw6+l7egqqsLjf5L69OTyqQvlUdPWke5r7c+tR6/K5WpJfsiXAEAAKgwe+yxR3beeedce+21Oeigg3LNNdfks88+S8eOHRtt16lTpyTJjBkz8umnnybJPLf58MMPy66lUKhKz56Llb0/jdXUdGntEvgSPalM+lJ59GTRoE+tTw8qU0v0RbgCAABQYVZZZZUkyW9/+9s89dRTueqqq9K5c+e5Lkw/Y8aMJEnXrl3TuXPnJMnMmTMb/j57my5dyh8m6+uLmTbtk7L35wvV1YXU1HTJtGmfpq6uvrXLIXpSqfSl8uhJ65j9updKn1qP35XKVE5famq6NOlIF+EKAABABZg6dWoeffTRfP/73091dXWSpFAopF+/fnnnnXfSp0+fvPPOO432mX27d+/emTVrVsOy5ZdfvtE2/fv3X6DaZs3yAUFzqaur93pWGD2pTPpSefRk0aBPrU8PKlNL9MUJ4AAAACrAO++8k1/+8pf561//2rDs888/z3PPPZd+/fplwIABefLJJ1NXV9ew/tFHH81KK62UJZdcMv3790+3bt3y+OOPN6yfNm1annvuuWywwQYL9bkAAEBbJ1wBAACoAP37988mm2ySE088MRMmTMjEiRNz1FFHZdq0adlzzz0zbNiwTJ8+Pccdd1xefvnl3HjjjRkzZkz233//JF9ca2X48OE566yzcu+99+aFF17IL37xi/Tp0ydDhgxp5WcHAABti9OCAQAAVICqqqr8z//8T373u9/lsMMOy0cffZQNNtggV199dZZZZpkkySWXXJKTTz45Q4cOzVJLLZUjjzwyQ4cObbiPQw89NLNmzcrxxx+fzz77LAMGDMjo0aPnusg9AACwYIQrAAAAFaJ79+759a9/nV//+tfzXL/WWmvluuuum+/+1dXVGTlyZEaOHNlCFQIAAInTggEAAAAAAJREuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlKCiwpUPPvggJ5xwQjbbbLOst9562WWXXTJhwoSG9c8//3yGDx+eddZZJ9/97nczevToVqwWAAAAAABojyoqXDn88MPz9NNP5+yzz84NN9yQ1VdfPfvss09eeeWVvP/++9lrr72y4oorZty4cTnkkENy7rnnZty4ca1dNgAAAAAA0I50aO0CZps0aVIeeeSRXHvttVlvvfWSJMcdd1wefPDB3H777encuXM6duyYX//61+nQoUP69euXSZMm5eKLL86wYcNauXoAAAAAAKC9qJgjV3r27JmLLrooa6yxRsOyqqqqFIvFfPjhh5kwYUIGDBiQDh3+kwcNHDgwr776aqZOndoaJQMAAAAAAO1QxYQrNTU1GTRoUDp27Niw7K677srkyZOzySabZMqUKenTp0+jfXr16pUkeeuttxZqrQAAAAAAQPtVMacF+7Inn3wyxx57bLbYYosMHjw4p556aqPgJUk6deqUJJkxY8YCPVaHDhWTMS2yqqvLfw0XZF8Wvtn90re2R2/bLr1tu/S2bdNfAACAylWR4co999yTI444ImuvvXbOPvvsJEnnzp0zc+bMRtvNDlW6du1a9mMVClXp2XOx8otlgdXUdGntEiiDvrVdett26W3bpbdtm/4CAABUnooLV6666qqcfPLJGTJkSM4666yGo1X69OmTd955p9G2s2/37t277Merry9m2rRPyi+YJF98o7LcwX/atE9TV1ffzBXRUmb3Wt/aHr1tu/S27dLbtq0l+ltT08WRMAAAAM2gosKVa665Jr/97W+z++6759hjj02h8J/Bb8CAARk7dmzq6upSXV2dJHn00Uez0korZckll1ygx501y4cRramurl4PFkH61nbpbdult22X3rZt+gsAAFB5KuZra6+++mpOOeWUDBkyJPvvv3+mTp2ad999N++++24++uijDBs2LNOnT89xxx2Xl19+OTfeeGPGjBmT/fffv7VLBwAAAAAA2pGKOXLl7rvvzueff57x48dn/PjxjdYNHTo0p512Wi655JKcfPLJGTp0aJZaaqkceeSRGTp0aCtVDAAAAAAAtEcVE66MGDEiI0aM+Mpt1lprrVx33XULqSIAAAAAAIC5VcxpwQAAAAAAABYFwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAqxAcffJATTjghm222WdZbb73ssssumTBhQsP6Y445JquuumqjP5tttlnD+vr6+px33nnZdNNNs/baa2fvvffOpEmTWuOpAABAm9ahtQsAAADgC4cffnimTp2as88+O0sssUSuueaa7LPPPrnxxhvTr1+/vPjiixkxYkSGDx/esE91dXXD30eNGpWxY8fm1FNPTe/evXPmmWdm3333ze23356OHTu2xlMCAIA2yZErAAAAFWDSpEl55JFH8qtf/SobbLBBVl555Rx33HHp3bt3br/99tTV1eXll1/OmmuumaWWWqrhzxJLLJEkmTlzZi699NIccsghGTRoUPr3759zzjknb7/9dsaPH9/Kzw4AANoW4QoAAEAF6NmzZy666KKsscYaDcuqqqpSLBbz4Ycf5rXXXsuMGTPSr1+/ee7/wgsv5OOPP87AgQMbltXU1GS11VbLE0880eL1AwBAe+K0YAAAABWgpqYmgwYNarTsrrvuyuTJk7PJJptk4sSJqaqqypgxY/Lggw+mUChk0KBBOeyww9K9e/dMmTIlSbL00ks3uo9evXrlX//610J7HgAA0B4IVwAAACrQk08+mWOPPTZbbLFFBg8enPPOOy+FQiHLLrtsLrzwwkyaNCmnn356Jk6cmDFjxuTTTz9NkrmurdKpU6d8+OGHC1RLhw5OerCgqqsLjf5L69OTyqQvlUdPWke5r7c+tR6/K5WpJfsiXAEAAKgw99xzT4444oisvfbaOfvss5MkhxxySPbcc8/U1NQkSWpra7PUUktl5513zjPPPJPOnTsn+eLaK7P/niQzZsxIly5dyq6lUKhKz56LLcCzYU41NeX3gpahJ5VJXyqPniwa9Kn16UFlaom+CFcAAAAqyFVXXZWTTz45Q4YMyVlnndVwJEpVVVVDsDJbbW1tkmTKlCkNpwN75513svzyyzds884776R///5l11NfX8y0aZ+UvT9fqK4upKamS6ZN+zR1dfWtXQ7Rk0qlL5VHT1rH7Ne9VPrUevyuVKZy+lJT06VJR7oIVwAAACrENddck9/+9rfZfffdc+yxx6ZQ+M9Q98tf/jIffPBBRo8e3bDsmWeeSZKsssoqWW655dKtW7c8/vjjDeHKtGnT8txzz2X48OELVNesWT4gaC51dfVezwqjJ5VJXyqPniwa9Kn16UFlaom+CFcAAAAqwKuvvppTTjklQ4YMyf7775+pU6c2rOvcuXO23XbbHHDAAbnggguyzTbb5NVXX81vfvObbLvttunXr1+SZPjw4TnrrLOyxBJLZNlll82ZZ56ZPn36ZMiQIa31tAAAoE0SrgAAAFSAu+++O59//nnGjx+f8ePHN1o3dOjQnHbaaTn33HNz4YUX5sILL0z37t2z3Xbb5bDDDmvY7tBDD82sWbNy/PHH57PPPsuAAQMyevTouS5yDwAALBjhCgAAQAUYMWJERowY8ZXbbL311tl6663nu766ujojR47MyJEjm7s8AABgDl9/VRYAAAAAAAAaCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKEGzhisff/xxPvvss+a8SwAAgEWGmQgAANqHssOVBx98MKNGjWq4ffrpp2fDDTfMBhtskJNPPrlZigMAAKhUZiIAAGi/ygpX7rvvvuy///655ZZbkiQTJkzIZZddlmWXXTbrrrturrrqqlxzzTXNWigAAEClMBMBAED7Vla4ctlll2X55ZfPFVdckSS54447UigUctlll+XKK6/M5ptvnnHjxjVroQAAAJXCTAQAAO1bWeHK888/n1122SW9e/dOkjzyyCOpra3NsssumyTZdNNN889//rP5qgQAAKggZiIAAGjfygpXZs2alW7duiVJ3nzzzUyePDnf/va3G9bX19enQ4cOzVMhAABAhTETAQBA+1ZWuNK3b98899xzSZK77747VVVV2XTTTRvW33fffenbt2/zVAgAAFBhzEQAANC+lfVVqq233joXXHBB3nzzzfz1r39N7969M3DgwEyePDknnXRSHnnkkRx99NHNXSsAAEBFMBMBAED7Vla4cuCBB+aDDz7IuHHjsvTSS+fkk09Ohw4d8sEHH+Thhx/Oj3/84wwfPry5awUAAKgIZiIAAGjfygpXCoVCjj/++Bx//PGNlvfv3z/33Xdfw0UdAQAA2iIzEQAAtG9lXXPlpz/9aR599NG5lnfs2DG9e/fOPffck+9973sLXBwAAEAlMhMBAED71qQjVz799NO8//77Dbf/+te/ZsiQIVlhhRXm2ra+vj4PP/xw3nrrrearEgAAoBWZiQAAgDk1KVyZPn16tt1223z66acNy0455ZSccsop891nnXXWWaDCRo0alUcffTRXXnllw7JjjjkmN954Y6PtevfunQcffHCBHgsAAOCrtMZMBAAAVK4mhStLLbVUTjjhhDz++OMpFou5+eabs/7662e55Zaba9tCoZD/+q//yi677FJ2UZdffnnOO++8DBgwoNHyF198MSNGjGh0Ycjq6uqyHwcAAKApFvZMBAAAVLYmX9B+hx12yA477JDki0Pg99prr2yxxRbNWszbb7+d4447Lk8++WRWWmmlRuvq6ury8ssv58ADD8xSSy3VrI8LAADwdRbGTAQAACwamhyuzOkvf/lLc9eRJHn22Wez+OKL59Zbb80f/vCHvPnmmw3rXnvttcyYMSP9+vVrkccGAABoqpaaiQAAgEVDWeFKkhSLxTz22GN59913U19fP89tZn+rq6kGDx6cwYMHz3PdxIkTU1VVlTFjxuTBBx9MoVDIoEGDcthhh6V79+6llt9Ihw6FBdqfpLq6/NdwQfZl4ZvdL31re/S27dLbtktv2zb9rXwtMRMBAACLhrLClUmTJmXffffN66+/Ps/1xWIxVVVVzTpIvPTSSykUCll22WVz4YUXZtKkSTn99NMzceLEjBkzJoVCeUNnoVCVnj0Xa7Y6KV1NTZfWLoEy6Fvbpbdtl962XXrbtulvZWqNmQgAAKgcZYUrZ511Vl5//fUMGzYsa665Zjp27Njcdc3lkEMOyZ577pmampokSW1tbZZaaqnsvPPOeeaZZ7L22muXdb/19cVMm/ZJc5baLlVXF8oe/KdN+zR1dfP+ph+VZ3av9a3t0du2S2/bLr1t21qivzU1XRwJ00xaYyYCAAAqR1nhymOPPZZddtklJ5xwQnPXM19VVVUNwcpstbW1SZIpU6aUHa4kyaxZPoxoTXV19XqwCNK3tktv2y69bbv0tm3T38rUGjMRAABQOcr62tqsWbPyrW99q7lr+Uq//OUvs88++zRa9swzzyRJVllllYVaCwAA0L61xkwEAABUjrLCldVXXz3PPvtsc9fylbbddts88sgjueCCCzJ58uQ88MADOfbYY7PtttumX79+C7UWAACgfWuNmQgAAKgcZYUrhx56aG655ZbcfffdKRaLzV3TPG2++eY599xz8+c//znbbbddjjvuuGy11VY55ZRTFsrjAwAAzNYaMxEAAFA5yrrmyqWXXprFF188hx12WDp37pyePXumqqqq0TZVVVW55557yi7stNNOm2vZ1ltvna233rrs+wQAAGgOC2MmAgAAKldZ4crEiRNTKBSy9NJLNyz78re1fHsLAABoq8xEAADQvpUVrvzlL39p7joAAAAWGWYiAABo38q65sqXzZw5M/X19c1xVwAAAIscMxEAALQvZYcrH3zwQX7zm99kk002yTrrrJPHH388EyZMyIgRI/Lqq682Z40AAAAVx0wEAADtV1nhygcffJCdd94511xzTbp06dJwLuEPP/ww999/f3bbbbe8/vrrzVooAABApWipmeiDDz7ICSeckM022yzrrbdedtlll0yYMKFh/fPPP5/hw4dnnXXWyXe/+92MHj260f719fU577zzsummm2bttdfO3nvvnUmTJi3YkwUAAOZSVrhy/vnn580338xll12W6667rmGQ2GKLLXLRRRflk08+yahRo5q1UAAAgErRUjPR4Ycfnqeffjpnn312brjhhqy++urZZ5998sorr+T999/PXnvtlRVXXDHjxo3LIYccknPPPTfjxo1r2H/UqFEZO3ZsTjrppFx33XWpqqrKvvvum5kzZzbbcwcAABbggvY//vGPs9FGG+X9999vtG6zzTbLzjvvnPHjxzdLgQAAAJWmJWaiSZMm5ZFHHsm1116b9dZbL0ly3HHH5cEHH8ztt9+ezp07p2PHjvn1r3+dDh06pF+/fpk0aVIuvvjiDBs2LDNnzsyll16akSNHZtCgQUmSc845J5tuumnGjx+fbbbZpnmePAAAUN6RK++880769+8/3/X9+vXLu+++W3ZRAAAAlawlZqKePXvmoosuyhprrNGwrKqqKsViMR9++GEmTJiQAQMGpEOH/3xHbuDAgXn11VczderUvPDCC/n4448zcODAhvU1NTVZbbXV8sQTT5RUCwAA8NXKCleWXHLJvPnmm/NdP3HixPTs2bPsogAAACpZS8xENTU1GTRoUDp27Niw7K677srkyZOzySabZMqUKenTp0+jfXr16pUkeeuttzJlypQkydJLLz3XNv/6179KqgUAAPhqZZ0WbLPNNsvYsWOz0047ZbHFFmu07m9/+1uuv/76bLvtts1SIAAAQKVZGDPRk08+mWOPPTZbbLFFBg8enFNPPbVR8JIknTp1SpLMmDEjn376aZLMc5sPP/xwgWrp0KGs7+Uxh+rqQqP/0vr0pDLpS+XRk9ZR7uutT63H70plasm+lBWuHHzwwbnvvvsydOjQrL/++qmqqsrYsWMzZsyYPPTQQ+nWrVsOPPDA5q4VAACgIrT0THTPPffkiCOOyNprr52zzz47SdK5c+e5Lkw/Y8aMJEnXrl3TuXPnJMnMmTMb/j57my5dupRdS6FQlZ49F/v6DWmSmprye0HL0JPKpC+VR08WDfrU+vSgMrVEX8oKV3r37p2xY8fmN7/5TR588MEUi8XcfffdSZL1118/v/rVr9K3b99mLRQAAKBStORMdNVVV+Xkk0/OkCFDctZZZzUcidKnT5+88847jbadfbt3796ZNWtWw7Lll1++0TZfdX2Yr1NfX8y0aZ+UvT9fqK4upKamS6ZN+zR1dfWtXQ7Rk0qlL5VHT1rH7Ne9VPrUevyuVKZy+lJT06VJR7qUFa4kSd++fXPRRRflo48+ymuvvZb6+vr07ds3Sy65ZLl3CQAAsMhoiZnommuuyW9/+9vsvvvuOfbYY1Mo/GeoGzBgQMaOHZu6urpUV1cnSR599NGstNJKWXLJJdO9e/d069Ytjz/+eEO4Mm3atDz33HMZPnz4Aj3XWbN8QNBc6urqvZ4VRk8qk75UHj1ZNOhT69ODytQSfSk7XJmte/fuWXPNNZujFgAAgEVOc81Er776ak455ZQMGTIk+++/f6ZOndqwrnPnzhk2bFguueSSHHfccfnZz36Wv//97xkzZkxOPPHEJF9ca2X48OE566yzssQSS2TZZZfNmWeemT59+mTIkCELXB8AAPAfTQpXjjnmmPzkJz/J2muv3XD761RVVeWUU05ZsOoAAAAqwMKYie6+++58/vnnGT9+fMaPH99o3dChQ3Paaaflkksuycknn5yhQ4dmqaWWypFHHpmhQ4c2bHfooYdm1qxZOf744/PZZ59lwIABGT169FwXuQcAABZMk8KVm266KRtvvHHDIHHTTTd97T7CFQAAoK1YGDPRiBEjMmLEiK/cZq211sp111033/XV1dUZOXJkRo4c2eTHBQAAStekcOXee+/NEkss0eg2AABAe2EmAgAA5tSkcGXZZZed5+1p06alW7duDRdZfOmll7LUUkulR48ezVslAABAKzITAQAAcyqUu+M555yTTTfdNJMnT25YdvHFF2eTTTbJpZde2izFAQAAVCozEQAAtF9NOnLly66//vr88Y9/zPrrr59OnTo1LN9hhx3y73//O2eeeWaWXnrpfP/732+2QgEAACqFmQgAANq3so5cueaaa/Kd73wnV199dZZeeumG5RtvvHEuvfTSbLTRRrnsssuarUgAAIBKYiYCAID2raxwZdKkSdlqq63mu37IkCF55ZVXyi4KAACgkpmJAACgfSsrXOnSpUvefffd+a5///33U11dXXZRAAAAlcxMBAAA7VtZ4cr666+fa665Zp7DxHvvvZexY8dmvfXWW+DiAAAAKpGZCAAA2reyLmi/3377Zdddd80Pf/jDbL/99ll55ZVTVVWVf/7zn7ntttvywQcf5MADD2zuWgEAACqCmQgAANq3ssKVNddcM6NGjcqvfvWrXH755Y3W9enTJ3/4wx+y1lprNUd9AAAAFcdMBAAA7VtZ4UqSbLrppvnLX/6S5557Lm+88UZmzZqVvn37ZvXVV3duYQAAoM0zEwEAQPtVdrgy22qrrZbVVlutOWoBAABY5JiJAACg/WlSuHL++ednq622Sm1tbcPtr1NVVZWDDjpowaoDAACoAGYiAABgTk0OV1ZYYQWDBAAA0C6ZiQAAgDk1KVwZPXp0vvWtbzXcvuKKK1qsIAAAgEpjJgIAAObUpHDl2GOPzeGHH57tt98+SfLWW29lgw02SN++fVu0OAAAgEpgJgIAAOZUaMpG7733XqZPn95w+5hjjslTTz3VUjUBAABUFDMRAAAwpyYdubLMMstk1KhReeONN7LYYoulWCzmz3/+c1577bX57uP8wgAAQFthJgIAAObUpHDlsMMOy1FHHZXLLrssyRdDwp///Of8+c9/nu8+BgkAAKCtMBMBAABzalK4MmTIkAwcODCvvfZaZs6cmT322CMjRozIxhtv3NL1AQAAtDozEQAAMKcmhStbbLFFo4s3LrPMMllmmWWy4YYbtmhxAAAAlcBMBAAAzKmsC9q/9dZb6dKlS4sVBQAAUEnMRAAAwJzKuqB9kowfPz6TJk2a7z7OLwwAALQVZiIAAGBOLmgPAADwNcxEAADAnJoUrnz/+9938UYAAKDdMhMBAABzalK4kiQ9e/ZMz549kyQDBgzIt7/9bRdvBAAA2g0zEQAAMFuTw5U5XXnllQ1/f/XVV/Pmm29m9dVXT5cuXVIoFNKxY8dmKxAAAKDSmIkAAKB9K5S741NPPZXtttsuP/jBD7LvvvvmhRdeyN/+9rd897vfzV133dWcNQIAAFQcMxEAALRfZYUrL730Uvbaa6/8+9//zg9/+MOG5V26dEldXV2OOOKIPPHEE81WJAAAQCUxEwEAQPtWVrjy+9//Pl27ds3tt9+eo446KsViMUmy7rrr5tZbb81SSy2Viy++uFkLBQAAqBRmIgAAaN/KClf++te/5ic/+UmWXHLJVFVVNVrXu3fv7LzzznnuueeapUAAAIBKYyYCAID2raxw5eOPP07v3r3nu37xxRfPtGnTyi4KAACgkpmJAACgfSsrXOnbt2+eeeaZ+a5/7LHHsuyyy5ZdFAAAQCUzEwEAQPtWVriy7bbb5qabbsqf//znhmVVVVWpr6/PRRddlPHjx2frrbdutiIBAAAqiZkIAADatw7l7LTvvvvm//7v//Lzn/88NTU1qaqqyq9+9at88MEH+fDDD9O/f//sv//+zV0rAABARTATAQBA+1bWkSsdO3bM5Zdfnl/+8pdZZpll0rlz5/zrX//KkksumQMOOCDXXHNNunTp0ty1AgAAVAQzEQAAtG9lHbmSJN/4xjfys5/9LD/72c+asx4AAIBFgpkIAADar7LDlSSZPn16Hn744bzxxhvp2LFjlllmmWyyySbp3Llzc9UHAABQscxEAADQPpUdrtx999054YQTMm3atBSLxSRfXMBxscUWy29+85v84Ac/aLYiAQAAKo2ZCAAA2q+ywpWnn346v/zlL9O9e/cceuih+eY3v5n6+vpMnDgxV111VY488sj07ds3a621VnPXCwAA0OrMRAAA0L6VFa5ccMEF6dGjR2655ZYsueSSDcu32mqr7LLLLtl+++1zySWX5Lzzzmu2QgEAACqFmQgAANq3Qjk7/b//9/+y8847NxoiZltyySWz884758knn1zg4gAAACqRmQgAANq3ssKVTz75ZJ5DxGxLLLFEPvroo7KLAgAAqGRmIgAAaN/KClf69u2bxx57bL7rH3vssSyzzDJlFwUAAFDJzEQAANC+lRWubLvtthk/fnzOP//8zJw5s2H5zJkzc/755+eee+7JD37wg2YrEgAAoJKYiQAAoH0r64L2++67bx544IGcf/75ufTSS7P88sunqqoqkyZNyieffJLVVlst++23X3PXCgAAUBHMRAAA0L6VFa507NgxV1xxRUaPHp3//d//zWuvvZZisZjll18+W2+9dfbZZ5907ty5uWsFAACoCGYiAABo38oKV5Kkc+fOOeigg3LQQQc1Zz0AAACLBDMRAAC0XyVfc+XZZ5+d5/J77703f/nLXxa4IAAAgEpmJgIAAJocrrz33nsZPnx4dtppp0ybNm2u9VdddVUOOuig/OQnP8nbb7/drEUCAAC0NjMRAAAwW5PClU8++SR77LFHJkyYkAEDBuTTTz+da5vddtstG2+8cZ566qnsvffemTFjRrMXCwAA0BrMRAAAwJyaFK6MGTMmL730Un7zm99kzJgx6d2791zbbLnllhk9enQOP/zwvPLKK7nyyiubvVgAAIDWYCYCAADm1KRw5e67786gQYPy4x//+Gu33W+//bLeeuvlzjvvXODiAAAAKoGZCAAAmFOTwpVJkyZlo402avKdfve7382rr75adlEAAACVxEwEAADMqUnhSqFQSOfOnZt8pz169EhVVVXZRQEAAFQSMxEAADCnJoUryyyzTP75z382+U5ffvnleZ6DGAAAYFFkJgIAAObUpHBl0003zS233JKPP/74a7edNm1abr311qy77roLXBwAAEAlMBMBAABzalK48pOf/CQzZszI/vvvn/fff3++202dOjUHHXRQpk2blt12263ZigQAAGhNZiIAAGBOHZqy0fLLL5/jjjsu//3f/50tttgiP/jBD7LeeuulV69eqaury7vvvpsnn3wyf/7zn/Pxxx/n6KOPzuqrr97StQMAACwUZiIAAGBOTQpXkmSnnXZKr169csIJJ+SGG27IuHHjGq0vFotZbrnlcuaZZ2bw4MHNXigAAEBrMhMBAACzNTlcSZJBgwbl/vvvz2OPPZann34677zzTqqrq9O7d+9suOGGWWuttVqqTgAAgFZnJgIAAJISw5UkqaqqykYbbZSNNtqoJeoBAACoaGYiAACgSRe0BwAAAAAA4AvCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAAChBk8KVyy67LK+88kpL1wIAAFCRzEQAAMCcmhSunHfeeXnqqacabm+xxRa59957W6omAACAimImAgAA5tSkcKVQKOTRRx/Nxx9/nCR588038+mnn7ZoYQAAAJXCTAQAAMypQ1M22nTTTXP77bfnjjvuSJJUVVVl5MiRGTly5Hz3qaqqynPPPdc8VQIAALQiMxEAADCnJoUrJ510UpZeeulMnDgxM2fOzIQJE7LSSitlySWXbOn6AAAAWp2ZCAAAmFOTwpVu3brlqKOOarjdv3//HHDAAdluu+1arDAAAIBKYSYCAADm1KRrrnzZFVdckY033ri5awEAAFgkLIyZaNSoUdl9990bLTvmmGOy6qqrNvqz2WabNayvr6/Peeedl0033TRrr7129t5770yaNKlF6wQAgPaoSUeufNmGG26YJLn55ptz11135Y033kjHjh2z9NJL53vf+15++MMfNmuRAAAAlaSlZ6LLL7885513XgYMGNBo+YsvvpgRI0Zk+PDhDcuqq6sb/j5q1KiMHTs2p556anr37p0zzzwz++67b26//fZ07NhxgWoCAAD+o6xwpVgs5tBDD80999yTYrGY7t27p76+Ps8//3zuu+++/O///m9GjRrV3LUCAABUhJaaid5+++0cd9xxefLJJ7PSSis1WldXV5eXX345Bx54YJZaaqm59p05c2YuvfTSjBw5MoMGDUqSnHPOOdl0000zfvz4bLPNNuU9WQAAYC5lnRbsqquuyvjx47PddtvlgQceyBNPPJEnn3wy9913X374wx/mvvvuy7XXXtvctQIAAFSElpqJnn322Sy++OK59dZbs/baazda99prr2XGjBnp16/fPPd94YUX8vHHH2fgwIENy2pqarLaaqvliSeeKLkWAABg/so6cmXcuHHZcMMNc8YZZzRavvTSS+f000/PlClTMm7cuOyyyy7NUiQAAEAlaamZaPDgwRk8ePA8102cODFVVVUZM2ZMHnzwwRQKhQwaNCiHHXZYunfvnilTpjTUMKdevXrlX//6V0l1fFmHDmV9L485VFcXGv2X1qcnlUlfKo+etI5yX299aj1+VypTS/alrHDl1VdfzRFHHDHf9VtuuWXOOeecsosCAACoZK0xE7300kspFApZdtllc+GFF2bSpEk5/fTTM3HixIwZMyaffvppksx1bZVOnTrlww8/LPtxC4Wq9Oy52ALVzn/U1HRp7RL4Ej2pTPpSefRk0aBPrU8PKlNL9KWscKVDhw755JNP5rv+k08+SVVVVdlFAQAAVLLWmIkOOeSQ7LnnnqmpqUmS1NbWZqmllsrOO++cZ555Jp07d07yxbVXZv89SWbMmJEuXcofJuvri5k2bf7Plaapri6kpqZLpk37NHV19a1dDtGTSqUvlUdPWsfs171U+tR6/K5UpnL6UlPTpUlHupQVrqyxxhq58cYbs+eee6ZTp06N1n366ae58cYbs9pqq5Vz1wAAABWvNWaiqqqqhmBlttra2iTJlClTGk4H9s4772T55Zdv2Oadd95J//79F+ixZ83yAUFzqaur93pWGD2pTPpSefRk0aBPrU8PKlNL9KWsE43tvffemTRpUn70ox/l9ttvzwsvvJAXXnght912W3baaadMnjw5e+21V7MWCgAAUClaYyb65S9/mX322afRsmeeeSZJssoqq6R///7p1q1bHn/88Yb106ZNy3PPPZcNNtigWWsBAID2rqwjVwYNGpQjjzwyZ599dkaOHNloXaFQyC9+8Yv5XoQRAABgUdcaM9G2226bAw44IBdccEG22WabvPrqq/nNb36TbbfdNv369UuSDB8+PGeddVaWWGKJLLvssjnzzDPTp0+fDBkypFlrAQCA9q6scCX54ptaQ4YMyT333JPJkyenWCxm+eWXz5AhQ7Lccss1Z40AAAAVZ2HPRJtvvnnOPffcXHjhhbnwwgvTvXv3bLfddjnssMMatjn00EMza9asHH/88fnss88yYMCAjB49eq6L3AMAAAum7HAlSZZbbjmn/wIAANqtlpyJTjvttLmWbb311tl6663nu091dXVGjhw519E0AABA8yrrmisAAAAAAADtlXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASlBWuHLttdfmtddea+ZSGhs1alR23333Rsuef/75DB8+POuss06++93vZvTo0S1aAwAAwLwsjJkIAACoXGWFK2eddVZuu+225q6lweWXX57zzjuv0bL3338/e+21V1ZcccWMGzcuhxxySM4999yMGzeuxeoAAACYl5aeiQAAgMrWoZydCoVCevbs2dy15O23385xxx2XJ598MiuttFKjdddff306duyYX//61+nQoUP69euXSZMm5eKLL86wYcOavRYAAID5aamZCAAAWDSUdeTKPvvsk4suuigPPfRQ6uvrm62YZ599NosvvnhuvfXWrL322o3WTZgwIQMGDEiHDv/JgwYOHJhXX301U6dObbYaAAAAvk5LzUQAAMCioawjV5566qlMnz49++23Xzp27JiePXumurq60TZVVVW55557SrrfwYMHZ/DgwfNcN2XKlNTW1jZa1qtXryTJW2+9lSWXXLKkxwIAAChXS81EAADAoqGscGXixInp0aNHevTo0bCsWCw22ubLtxfUZ599lo4dOzZa1qlTpyTJjBkzFui+O3Qo6wAe5lBdXf5ruCD7svDN7pe+tT1623bpbdult22b/la21piJAACAylFWuPKXv/yluev4Wp07d87MmTMbLZsdqnTt2rXs+y0UqtKz52ILVBsLpqamS2uXQBn0re3S27ZLb9suvW3b9LcytcZMBAAAVI6ywpUvmzlzZjp06JBCoeW+VdenT5+88847jZbNvt27d++y77e+vphp0z5ZoNr44huV5Q7+06Z9mro656leVMzutb61PXrbdult26W3bVtL9LemposjYVrIwpiJAACAylF2uPLBBx/kvPPOy5///Oe89957GT16dL7xjW/kkksuyVFHHZWVVlqpOevMgAEDMnbs2NTV1TWcy/jRRx/NSiuttMDXW5k1y4cRramurl4PFkH61nbpbdult22X3rZt+lu5FvZMBAAAVI6yvlb1wQcfZOedd84111yTLl26NJxL+MMPP8z999+f3XbbLa+//nqzFjps2LBMnz49xx13XF5++eXceOONGTNmTPbff/9mfRwAAICv0xozEQAAUDnKClfOP//8vPnmm7nsssty3XXXNQwSW2yxRS666KJ88sknGTVqVLMWuuSSS+aSSy7Jq6++mqFDh+b888/PkUcemaFDhzbr4wAAAHyd1piJAACAylH2Be1//OMfZ6ONNsr777/faN1mm22WnXfeOePHj1+gwk477bS5lq211lq57rrrFuh+AQAAFtTCmIkAAIDKVdaRK++880769+8/3/X9+vXLu+++W3ZRAAAAlcxMBAAA7VtZ4cqSSy6ZN998c77rJ06cmJ49e5ZdFAAAQCUzEwEAQPtWVriy2WabZezYsXnjjTfmWve3v/0t119/fTbZZJMFLg4AAKASmYkAAKB9K+uaKwcffHDuu+++DB06NOuvv36qqqoyduzYjBkzJg899FC6deuWAw88sLlrBQAAqAhmIgAAaN/KOnKld+/eGTt2bNZdd908+OCDKRaLufvuu3P//fdnnXXWyZVXXpm+ffs2d60AAAAVwUwEAADtW1lHriRJ3759c9FFF+Wjjz7Ka6+9lvr6+vTt2zdLLrlkc9YHAABQkcxEAADQfpV15MqcZs2alWKxmA4dOqRTp07NURMAAMAiw0wEAADtT9lHrjzzzDM544wz8uSTT6ZYLCZJCoVCvvOd7+S4447LCius0GxFAgAAVBozEQAAtF9lhSvPPvtsdt9998ycOTObbrppVlxxxdTX1+ef//xnHnroofzkJz/J9ddfn+WWW6656wUAAGh1ZiIAAGjfygpXzjvvvHTs2DFjx45N//79G6176qmnstdee+Xss8/OOeec0yxFAgAAVBIzEQAAtG9lXXNlwoQJ2X333ecaIpJknXXWyfDhw/PII48scHEAAACVyEwEAADtW1nhSlVVVWpqaua7vm/fvpk1a1bZRQEAAFQyMxEAALRvZYUrgwYNyi233JKZM2fOc/1dd92VTTbZZIEKAwAAqFRmIgAAaN+adM2VJ554otHtLbbYIscff3x222237Lfffll55ZVTKBQyefLkXHXVVXnppZfyP//zPy1RLwAAwEJnJgIAAObUpHBl9913T1VVVaNlxWIxzzzzTA499NC5lifJT3/60zz//PPNVCYAAEDrMRMBAABzalK4ctBBB801SAAAALQXZiIAAGBOTQpXDjnkkJauAwAAoGKZiQAAgDmVdUF7AAAAAACA9qpJR6582fTp0/O73/0u999/f95+++2GcwrPqaqqKs8999wCFwgAAFBpzEQAANC+lRWunHHGGbn++uvTq1evrLPOOqmurm7uugAAACqWmQgAANq3ssKV++67L1tuuWXOO++8FArOLAYAALQvZiIAAGjfypoCpk+fnkGDBhkiAACAdslMBAAA7VtZk8B6662XZ599trlrAQAAWCSYiQAAoH0rK1wZOXJk7rrrrowZMybvvvtuc9cEAABQ0cxEAADQvpV1zZVll102q666ak477bScdtpp89ymqqoqzz333AIVBwAAUInMRAAA0L6VFa6cfPLJ+etf/5olllgiK6ywQjp0KOtuAAAAFklmIgAAaN/KmgDuu+++bLHFFjn33HMNEQAAQLtjJgIAgPatrGuuzJw5M9/97ncNEQAAQLtkJgIAgPatrHBl3XXXzbPPPtvctQAAACwSzEQAANC+lRWu/PKXv8wdd9yRSy+9NG+//Xbq6uqauy4AAICKZSYCAID2raxj2I8++ugUCoWceeaZOfPMM+e5TVVVVZ577rkFKg4AAKASmYkAAKB9Kytc6dGjR3r06NHMpQAAACwazEQAANC+lRWuXHnllc1dBwAAwCLDTAQAAO1bWddcAQAAAAAAaK/KOnLlmGOO+dptqqqqcsopp5Rz9wAAABXNTAQAAO1bWeHKTTfdNN91VVVV6dixYzp16mSQAAAA2iQzEQAAtG9lhSv33nvvXMvq6ury7rvv5qabbspjjz2Wa665ZoGLAwAAqERmIgAAaN/KCleWXXbZeS5ffvnls/7662fEiBH53e9+l9NPP32BigMAAKhEZiIAAGjfWuSC9oMHD84DDzzQEncNAABQ8cxEAADQtrVIuPLuu+/ms88+a4m7BgAAqHhmIgAAaNvKOi3YW2+9Nc/ln332Wf7xj39kzJgxWX311ReoMIBFSaFQlUKhqqR96uuLqa8vtlBFAEBLMhMBAED7Vla4Mnjw4FRVzf9DxEKhkIMPPrjsogAWJYVCVXr06Jrq6tIOBqyrq88HH3wiYAGARZCZCAAA2reywpUddthhnoNEdXV1evXqlaFDh2a55ZZb4OIAFgWFQlWqqws56+on88bbHzVpn769u+eI3dZPoVAlXAGARZCZCAAA2reywpXTTjutuesAWOS98fZHeeXND1u7DABgITATAQBA+9YiF7QHAAAAAABoq5p05Mr5559f1p07xzAAANAWmIkAAIA5NXu4Mud5hw0SAABAW2AmAgAA5tSkcOWKK6742m2KxWKuvvrq/PnPf06SDBo0aMEqAwAAqBBmIgAAYE5NClc23HDDr1z/1ltv5dhjj83jjz+e7t275+ijj86wYcOapUAAAIDWZiYCAADm1KRw5auMHTs2Z555Zj7++ONssskmOfnkk9O7d+/mqA0AAKDimYkAAKD9KTtcmTJlSo477rj83//9XxZbbLH89re/zU477dSctQEAAFQsMxEAALRfZYUrf/rTn3L66adn+vTp2XjjjXPyySdn6aWXbu7aAAAAKpKZCAAA2reSwpW33347xx9/fB5++OF06dIlv/71r/OTn/ykpWoDAACoKGYiAAAgKSFcuemmm3Lqqadm2rRpGThwYE4++eQsu+yyLVkbAABAxTATAQAAszUpXBkxYkQeeOCBJMn3vve97Lrrrnnrrbfy1ltvfeV+AwYMWPAKAQAAWpmZCAAAmFOTwpX777+/4e9333137r777ibd+fPPP19WUQAAAJWkNWaiUaNG5dFHH82VV17Z6P5OPvnk/OMf/0iPHj2y++67Z5999mlYX19fn/PPPz9/+tOfMm3atKy//vr51a9+lRVWWKHsOgAAgLk1KVw5+OCDW7oOAACAirWwZ6LLL7885513XqMjX95///3stdde2XLLLXPiiSfmqaeeyoknnpgePXpk2LBhSb4IZMaOHZtTTz01vXv3zplnnpl99903t99+ezp27LhQnwMAALRlwhUAAICvsbBmorfffjvHHXdcnnzyyay00kqN1l1//fXp2LFjfv3rX6dDhw7p169fJk2alIsvvjjDhg3LzJkzc+mll2bkyJEZNGhQkuScc87JpptumvHjx2ebbbZZKM8BAADag0JrFwAAAMAXnn322Sy++OK59dZbs/baazdaN2HChAwYMCAdOvznO3IDBw7Mq6++mqlTp+aFF17Ixx9/nIEDBzasr6mpyWqrrZYnnnhioT0HAABoD5p05AoAAAAtb/DgwRk8ePA8102ZMiW1tbWNlvXq1StJ8tZbb2XKlClJkqWXXnqubf71r3+1QLUAANB+CVcAAAAWAZ999tlc103p1KlTkmTGjBn59NNPk2Se23z44YcL9NgdOjjpwYKqri40+i+tT08qk75UHj1pHeW+3vrUevyuVKaW7ItwBQAAYBHQuXPnzJw5s9GyGTNmJEm6du2azp07J0lmzpzZ8PfZ23Tp0qXsxy0UqtKz52Jl709jNTXl94KWoSeVSV8qj54sGvSp9elBZWqJvghXAAAAFgF9+vTJO++802jZ7Nu9e/fOrFmzGpYtv/zyjbbp379/2Y9bX1/MtGmflL0/X6iuLqSmpkumTfs0dXX1rV0O0ZNKpS+VR09ax+zXvVT61Hr8rlSmcvpSU9OlSUe6CFcAAAAWAQMGDMjYsWNTV1eX6urqJMmjjz6alVZaKUsuuWS6d++ebt265fHHH28IV6ZNm5bnnnsuw4cPX6DHnjXLBwTNpa6u3utZYfSkMulL5dGTRYM+tT49qEwt0RcngAMAAFgEDBs2LNOnT89xxx2Xl19+OTfeeGPGjBmT/fffP8kX11oZPnx4zjrrrNx777154YUX8otf/CJ9+vTJkCFDWrl6AABoWxy5AgAAsAhYcsklc8kll+Tkk0/O0KFDs9RSS+XII4/M0KFDG7Y59NBDM2vWrBx//PH57LPPMmDAgIwePXqui9wDAAALRrgCAABQgU477bS5lq211lq57rrr5rtPdXV1Ro4cmZEjR7ZkaQAA0O45LRgAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJSgQ2sXAAAAAADQlhUKVSkUqpq8fXW178RDpROuAAAAAAC0kEKhKj16dBWYQBsjXAEAAAAAaCGFQlWqqws56+on88bbHzVpn/X698pPf7BaC1cGLAjhCgAAAABAC3vj7Y/yypsfNmnbvr26lfUYpR4dU19fTH19sazHgvZOuAIAAAAAsAjr0b1T6uuLqanpUtJ+dXX1+eCDTwQsUAbhCgAAAADAIqxbl2+kUKgq6dRjfXt3zxG7rZ9CoUq4AmUQrgAAAAAAtAGlnHoMWDClnYQPAAAAAACgnROuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJOrR2AaV68803M3jw4LmWn3TSSdlpp51aoSIAAAAAAKA9WeTClRdffDGdOnXKPffck6qqqobl3bt3b8WqAAAAAACA9mKRC1cmTpyYlVZaKb169WrtUgAAAAAAgHZokbvmyosvvphVVlmltcsAAAAAAADaqUUuXJk4cWKmTp2aXXfdNRtvvHF22WWXPPTQQ61dFgAAAAAA0E4sUqcFmzlzZl577bV06dIlRx55ZLp27Zpbb701++67by677LJstNFGZd1vhw6LXMZUcaqry38NF2RfFr7Z/dK3/2grP/9623bpbdult22b/gIAAFSuRSpc6dixY5544ol06NAhHTt2TJKsscYaeeWVVzJ69OiywpVCoSo9ey7W3KVSgpqaLq1dAmXQt+ZRia9jJdZE89Dbtktv2zb9BQAAqDyLVLiSJF27dp1rWW1tbR5++OGy7q++vphp0z5Z0LLaverqQtmD/7Rpn6aurr6ZK6KlzO61vv1HW/n519u2S2/bLr1t21qivzU1XRwJAwAA0AwWqXDlhRdeyC677JKLL744G2ywQcPyf/zjHwt0kftZs3wY0Zrq6ur1YBGkb82jEl/HSqyJ5qG3bZfetm36CwAAUHkWqa+t1dbW5pvf/GZOPPHETJgwIa+88kpOPfXUPPXUUxkxYkRrlwcAAAAAALQDi9SRK4VCIRdeeGHOOuusHHbYYZk2bVpWW221XHbZZVl11VVbuzwAAAAAAKAdWKTClSRZYoklcsopp7R2GQAAAAAAQDu1SJ0WDAAAAAAAoLUJVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBMIVAAAAAACAEghXAAAAAAAASiBcAQAAAAAAKIFwBQAAAAAAoATCFQAAAAAAgBIIVwAAAAAAAEogXAEAAAAAACiBcAUAAAAAAKAEHVq7AICWVihUpVCoavL29fXF1NcXW7Ci8pX6XJKF83wqtS4AAAAAaAnCFaBNKxSq0qNH11RXN/1Avbq6+nzwwScV98F/Oc8lafnnU6l1AQAAAEBLEa4AbVqhUJXq6kLOuvrJvPH2R1+7fd/e3XPEbuunUKiquA/9S30uycJ5PpVaFwAAAAC0FOEK0C688fZHeeXND1u7jGZRqc+lUusCAAAAgObmgvYAAAAAAAAlEK4AAAAsQt58882suuqqc/3505/+lCR5/vnnM3z48Kyzzjr57ne/m9GjR7dyxQAA0PY4LRgAAMAi5MUXX0ynTp1yzz33pKqqqmF59+7d8/7772evvfbKlltumRNPPDFPPfVUTjzxxPTo0SPDhg1rxaoBAKBtEa4AAAAsQiZOnJiVVlopvXr1mmvdmDFj0rFjx/z6179Ohw4d0q9fv0yaNCkXX3yxcAUAAJqR04IBAAAsQl588cWsssoq81w3YcKEDBgwIB06/Od7dAMHDsyrr76aqVOnLqwSAQCgzROuAAAALEImTpyYqVOnZtddd83GG2+cXXbZJQ899FCSZMqUKenTp0+j7Wcf4fLWW28t9FoBAKCtclowAACARcTMmTPz2muvpUuXLjnyyCPTtWvX3Hrrrdl3331z2WWX5bPPPkvHjh0b7dOpU6ckyYwZM8p+3A4dfC9vQVVXFxr9l9anJ5VJXyqPniy4Sn/tKr2+RYXflcrUkn0RrgAAACwiOnbsmCeeeCIdOnRoCFHWWGONvPLKKxk9enQ6d+6cmTNnNtpndqjStWvXsh6zUKhKz56LLVjhNKip6dLaJfAlelKZ9KXy6EnbpbfNy+tZmVqiL8IVAACARci8QpLa2to8/PDD6dOnT955551G62bf7t27d1mPV19fzLRpn5S1L/9RXV1ITU2XTJv2aerq6lu7HKInlUpfKo+eLLjZr2Gl0tvm4XelMpXTl5qaLk060kW4AgAAsIh44YUXsssuu+Tiiy/OBhts0LD8H//4R1ZZZZV861vfytixY1NXV5fq6uokyaOPPpqVVlopSy65ZNmPO2uWDwiaS11dvdezwuhJZdKXyqMnbZfeNi+vZ2Vqib44ARwAAMAiora2Nt/85jdz4oknZsKECXnllVdy6qmn5qmnnsqIESMybNiwTJ8+Pccdd1xefvnl3HjjjRkzZkz233//1i4dAADaFEeuAAAALCIKhUIuvPDCnHXWWTnssMMybdq0rLbaarnsssuy6qqrJkkuueSSnHzyyRk6dGiWWmqpHHnkkRk6dGgrVw4AAG2LcAUAAGARssQSS+SUU06Z7/q11lor11133UKsCAAA2h+nBQMAAAAAACiBcAUAAAAAAKAEwhUAAAAAAIASCFcAAAAAAABKIFwBAAAAAAAogXAFAAAAAACgBB1auwAAaKpCoSqFQlVJ+9TXF1NfX2yhigAAAABoj4QrACwSCoWq9OjRNdXVpR10WVdXnw8++ETAAgAAAECzEa4AsEgoFKpSXV3IWVc/mTfe/qhJ+/Tt3T1H7LZ+CoUq4QoAAAAAzUa4AsAi5Y23P8orb37Y2mUAAAAA0I65oD0AAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUALhCgAAAAAAQAmEKwAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAlEK4AAAAAAACUQLgCAAAAAABQAuEKAAAAAABACYQrAAAAAAAAJRCuAAAAAAAAlEC4AgAAAAAAUIIOrV0AUHkKhaoUClXzXFddXWj039nq64upry+2eG20LV/+OWqubaEtmte/zfP7N3k2/zYDAEDz+6rPTebFPAttk3AFaKRQqEqPHl2/9n/8NTVdGt2uq6vPBx984kM8mqRH906pry/O9XMEzNvX/ds8v98l/zYDAMBXKzUoqaqqSvfunQUmgHAFaKxQqEp1dSFnXf1k3nj7oybt07d39xyx2/opFKp8gEeTdOvyjRQKVSX9nK3Xv1d++oPVWrgyqEz+bQYAgObX1C+Yzot5FhCuAPP0xtsf5ZU3P2ztMmjjSvk569urWwtXA5XPv80AANB8yvkS0+ygxDwLCFcAAAAAgHZLUAKUQ7gCAAAAANBOlXpatPr6olMPQ4QrAAAAAADtTo/unVJfX0xNTZeS9qurq88HH3wiYKHdE64AAAAAALQz3bp8I4VCVUnXnOnbu3uO2G39FApVwhXaPeEKAAAAAEA7Vco1Z4D/KO2EegAAAAAAAO2ccAUAAAAAAKAETgsGAAAAACzyCoWqFApVTd6+utr3zoHyCVcAAAAAgEVaoVCVHj26CkyAhUa4AgAAAAAs0gqFqlRXF3LW1U/mjbc/atI+6/XvlZ/+YLUWrgxoq4QrAAAAAECb8MbbH+WVNz9s0rZ9e3Vr4WqAtsxxcgAAAAAAACUQrgAAAAAAAJRAuAIAAAAAAFAC4QoAAAAAAEAJhCsAAAAAAAAl6NDaBQAAAAAAbVuhUJVCoaqkferri6mvL7ZQRQALRrgCAAAAALSYQqEqPXp0TXV1aSfRqaurzwcffCJgASqScAUAAAAAaDGFQlWqqws56+on88bbHzVpn769u+eI3dZPoVAlXAEqknCllTkkkvbMz//C05RvB83epqqqtJ6A32XaMz//AABN98bbH+WVNz9s7TIAmoVwpRU5JJL2zM//wtGje6fU1xdTU9Olyft0797Za0yT+V2mPfPzDwAA0H4JV1qRQyJpz/z8LxzdunwjhUJVk19nrzGl8rtMe+bnHwAAoP0SrlQAh0TSnvn5Xzi8zrQ0P2O0Z37+AYBF2ded5nT2UbpzHq3rNKcAwhUAAAAAaJdKOc3pnKebdppTAOEKAAAAALRLTnMKUD7hCgAAAAC0Y05zClA64QoAAAAAUJGacsqyUrYDaC7CFQAAAACgovTo3in19cVG13oBqCTCFQAAAACgonTr8o0UClVNvh7Mev175ac/WG0hVAbwBeEKAAAAAFCSUk7DtSCn7Grq9WD69upW9mMAlEO4AgAAAAA0idN1AXxBuAIAAAAANEmpp+tKnLILaJuEKwAAAAC0W4VCVQqFqpL2qa8vpr6+2EIVLRqaerquxCm7gLZJuAIAAABAu1QoVKVHj64lXxOkrq4+H3zwSbsPWADaM+EKAAAA0GY09SiE2R+mV1cXyjoKYWEc7dDej6hYWK9xdXWhpFNc9e3dPUfstn4KhaqKe61Lfc0W5ELzAO2dcAUAAABoE8o5CqGmpkvJRyEsjKMd2vsRFVVVVenRo8tCe/6lnOKqUpX7MwNAeYQrAAAAQJuwIEchfOMb1amrq2/SPtXVhRZ/nAV5jEo8oqJUi8IRJaWGGC19VFE5r5kLzVPJSj0Sqy0duceiQbgCAABAxWrvp0VqaxbWB2WlHIXQo3un1NcXU1PTpSIfZ2EcUVHJv2eVeERJub1cWEcVudA8lajUf2eqqqrSvXvnkkLMcn7HKvnfPyrfIheu1NfX5/zzz8+f/vSnTJs2Leuvv35+9atfZYUVVmjt0gAAAFpdW5qZ2vtpkdqacvq5MHrZrcs3UihUtfi3/Ut9nIV1RIHfs9KV8zPTlo4qglItyCnrmvp7Vs7vmH//WFCLXLgyatSojB07Nqeeemp69+6dM888M/vuu29uv/32dOzYsbXLg/+vvTuPiuJK2wD+sAhoAIMLoqDGrUFBRNMobjFi0FGMBHDiAkQmRIEo6pCAoiYxxyUuDESZQaPIKCAiyqK4jKJmYjSGBMdoDJoYJCJGxCAqoGxS3x9+3bFl7aY38Pmd4zly+1bVe+tSTb11q24REREREWlUW8qZWsO0QNR88vanotN1KUpdd/s3dzst2YY8+6EtTj8mb/sVpY1P1RCpi6q/ZyQDzKo8znieQS3VqgZXqqqqEBsbi5CQEIwbNw4AEBkZibFjxyIzMxOurq4ajpCIiIiIiEhz2mrOxAuYbUtz+7Ml03W9qNQ1xZm24u8Mkeqp63tGnVPWtYXvP9KMVjW4cvXqVZSXl8PJyUlaZmpqikGDBuH7779vtYkCERERERGRMjBnUpwic67LQ3KHb0vuklclbZw/Xl3TdbUl2r7PmnOcSY4RRY5HbW8/IN93gDYel0Tafpyp68m1+pZt7G+9IsezOt5Tpurzn5ZoDd+BOoIgaHeEzzh+/DiCgoJw8eJFGBkZScsXLVqEiooKfPHFF3KvUxA010k6OoCuri7ul1aippmPOOvr6f7/CHHz6qtTW2rLi05dfamN22lLbQEAQwM9mHQw0Lr2yxuXosvwe+ZPurq6KtsP/P5XD+5n7dSSfmnqLFxyrticus2lq6sDHR3tTJ5IOZgzKf79p6Mj//EhCIJcy8hbX93LqOPygDz9qa5zRm1dRlvjAtR7nGlj+xVZxqCdLkw6GMj9nSHvcamtudmLfsyw/apfRpFjTELVxzKg2PEs73emOrYh2Y66llHGOagieVVz86ZW9eTK48ePAaDOPMGGhoZ48ECxR7d0dHSgp6fZBPNlE0O5l9HV1c67ndpSW1506upLbd1OW2qLIstoa1yKLsPvmadUuR/YL+rB/aydVN0v7EOSB3OmP6nj2JH3IoEiF3zUuYy6Bl/l7U9tPs9UxzLaGhegnuNMm9uvyDLyUPS41Ob2v+jHDNuvfceZurahjr+z6vpbrs5zE2Weg6rib1arytQkd15VVVXJlFdWVqJ9e86nSURERERELzbmTERERERE6tGqBle6d+8OACgqKpIpLyoqgoWFhSZCIiIiIiIi0hrMmYiIiIiI1KNVDa7Y2NjA2NgYWVlZ0rKHDx8iJycHYrFYg5ERERERERFpHnMmIiIiIiL1aFXvXDEwMIC3tzfCw8PRqVMnWFpaYuPGjbCwsICLi4umwyMiIiIiItIo5kxEREREROrRqgZXAGDhwoWoqanBihUrUFFRAUdHR+zYsaPOCxuJiIiIiIheRMyZiIiIiIhUT0cQBEHTQRAREREREREREREREbUWreqdK0RERERERERERERERJrGwRUiIiIiIiIiIiIiIiI5cHCFiIiIiIiIiIiIiIhIDhxcISIiIiIiIiIiIiIikgMHV4iIiIiIiIiIiIiIiOTAwRUiIiIiIiIiIiIiIiI5cHCFiIiIiIiIiIiIiIhIDhxcIZW6ffs2goODMXr0aDg6OsLPzw/Xrl3TdFikZMuXL8fSpUs1HQa1QG1tLTZv3oyxY8diyJAhePfdd3Hjxg1Nh0VKFh0dDR8fH02HQUpy//59fPzxx3jttdcwbNgwzJo1C9nZ2ZoOi5SguLgYISEhcHJywtChQzFv3jz8+uuvmg6LiJQgOzsbAwcORFZWlkz5uXPn4OHhAXt7e0ycOBHp6emaCfAFkZ+fj8DAQIjFYojFYvz9739HYWGhTB32ifo15/oB+0VzGsr72Sfqx/xd+9SXa1+5cgXe3t5wcHDA66+/jh07dmgouhdHUzmyKvqEgyukMlVVVZg3bx6Ki4vxxRdfIDExESYmJpgzZw7u3bun6fBICZ48eYL169dj//79mg6FWig6OhpJSUlYvXo19u7dCx0dHcydOxdVVVWaDo2UZOfOndi8ebOmwyAlCg4OxsWLFxEREYH9+/fD1tYWfn5+yM3N1XRo1EKBgYG4efMmtm/fjv3798PIyAi+vr54/PixpkMjohYoLS1FaGgoamtrZcpzc3Ph7++PcePGIT09HTNmzMCyZctw7tw5DUXatlVWVsLX1xcAsGfPHsTHx+Pu3bvw9/eHIAgA2Cea0JzrB+wXzWgs72efaAbzd+1SX65dUlKCv/3tb3jllVeQkpKCoKAgbNq0CSkpKRqK8sXQWI6sqj7RV1LsRHVkZ2fjl19+wenTp9GtWzcAwIYNGzB8+HCcOnUK06dP13CE1BK5ubkICwvDzZs30aNHD02HQy1QVVWF2NhYhISEYNy4cQCAyMhIjB07FpmZmXB1ddVwhNQSd+7cwfLly3H+/Hn06dNH0+GQkty4cQNnz57Fnj17MGzYMABP7yY8ffo0Dh06hEWLFmk4QlJUSUkJrKysEBgYiAEDBgAA3n//fbi5ueHatWuwt7fXcIREpKiVK1eiZ8+euHXrlkz5rl27YGNjI/3u7tu3L3JychATE4ORI0dqItQ27ffff8fgwYPxySefoFOnTgAAX19fzJ8/HyUlJejUqRP7RAOac/2A/aJ+TeX97BP1Y/6uPRrLtZOTk2FgYICVK1dCX18f/fr1w40bN7B9+3Z4enpqKOK2rakc2cjISCV9widXSGUGDBiAbdu2SU+MJARBwIMHDzQUFSnLd999h4EDB+LQoUOwsrLSdDjUAlevXkV5eTmcnJykZaamphg0aBC+//57DUZGyvDTTz+hY8eOOHjwIIYMGaLpcEhJzMzMsG3bNtjZ2UnLdHR0+De2DTAzM0NERIR0YOWPP/7Ajh07YGFhgf79+2s4OiJS1IEDB3DhwgUsW7aszmfZ2dky52EA4OTkhPPnz0ufpCDl6dOnDzZt2iQdWCkoKEBiYiJsbW1hZmYGgH2iCc25fsB+Ub+m8n72ifoxf9cejeXa2dnZcHR0hL7+n881ODk5IS8vD8XFxeoO9YXQVI6sqj7hkyukMl27dpWOokvExcWhsrISo0eP1lBUpCyzZs3SdAikJJL5pbt37y5Tbm5ujtu3b2siJFIiZ2dnODs7azoMUjJTU9M6f2OPHj2K/Px8jBkzRkNRkbJ99NFH0rvetmzZgg4dOmg6JCJSQEFBAdasWYPo6Gi89NJLdT4vLCyEhYWFTJm5uTkeP34sfZKCVOPdd9/F2bNn0bFjR+zatQs6OjoA2Cea0JzrB+wX9Wsq72efqB/zd+3RWK5dWFgIkUgkU2Zubg7g6ROUnTt3Vnl8L5qmcuTIyEiV9AkHV0hhBQUFmDBhQoOfnzlzBl27dpX+fPz4cURGRsLHxwc2NjbqCJEUJG/fUusmmcPfwMBAptzQ0JB3wBO1EufPn8eyZcswYcIEDqa1IXPmzMGMGTOwZ88ezJ8/X3pnNRFpj6bOm0+fPo3Q0FDMmDEDYrEYBQUFdepUVFTUOQ+T/Mz58+UnTy4TEhKCRYsWYcuWLfD19UV6ejq6d+/OPlEBZVw/YL8olzLyfvaJ+jF/bx3qOzYMDQ0BPH33F6ne8znyZ599ppI+4eAKKaxbt244cuRIg58/e4fCnj17sGrVKkyZMgVhYWHqCI9aQJ6+pdbPyMgIwNOTX8n/gad/XNq3b6+psIiomU6cOIEPP/wQQ4YMQUREhKbDISWSTAO2atUq/PDDD0hISMBnn32m4aiI6FlNnTfv27cPjx49QlBQUIN1DA0N61yElPzMczH5yZPLDBw4EMDT9xW8/vrrSElJwYIFC9gnKqCM6wfsF+VSRt7PPlE/5u+tg5GRUZ1jQ3IBn0+jq159ObKq+oSDK6Swdu3aoV+/fk3WCw8Px/bt2+Hj44Ply5dLH7Um7dXcvqW2QfI4cVFREXr16iUtLyoq4lNmRFouISEBa9asgYuLC8LDw+vciUOtT3FxMc6dO4fJkydDT08PAKCrq4t+/fqhqKhIw9ER0fOaOm9OTU1FUVERRowYAQDSdxDMnTsXw4cPR0xMDLp3717n+C4qKkKHDh1gYmKiuuDbqKb65NatW7h8+TImTZokLWvfvj2srKyk/cA+UT5lXD9gvyiXMvJ+9on6MX9vHSwsLOo9NgDUebcUKVdDObKq+oQvtCeV2rhxI7Zv347Q0FCsWLGCAytEWsjGxgbGxsbIysqSlj18+BA5OTkQi8UajIyIGpOYmIhVq1bBy8sLn3/+OQdW2oiioiJ88MEH+O6776Rl1dXVyMnJ4Y0PRK1QfHw8Dh8+jPT0dKSnp2Pbtm0AgNWrV2PNmjUAALFYLHPMA8C5c+cwbNgw6OoyZVe2K1euYOHChcjPz5eWPXz4EHl5edLvWfaJZjR1/YD9on3YJ+rH/L11cHR0xPnz5/HkyRNp2blz59CnTx++b0WFGsuRVdUn/KYjlcnKykJMTAx8fHwwbdo03L17V/qvvLxc0+ER0f8zMDCAt7c3wsPDcfLkSVy9ehV///vfYWFhARcXF02HR0T1yMvLw9q1a+Hi4gJ/f38UFxdL/8aWlpZqOjxqARsbG4wZMwaffvopsrOz8csvv2DJkiV4+PAhfH19NR0eEcnJ0tISvXv3lv7r0aMHgKd3SErukvTx8cGlS5cQHh6O3NxcxMbG4tixY3jvvfc0GXqb9dprr8Ha2hqhoaH46aefcPnyZQQFBcHMzAyenp4A2Cea0JzrB+wX7cM+UT/m762Dp6cnysrKsHz5cvz6669ITU3Frl274O/vr+nQ2qymcmRV9QmnBSOVOXToEICnd2vFx8fLfLZgwYJG5x0mIvVauHAhampqsGLFClRUVMDR0RE7duzgnfBEWurYsWOorq5GZmYmMjMzZT5zd3fHunXrNBQZtZSOjg4+//xz/OMf/8DixYtRWloKsViM3bt3Sy/KElHbMmDAAERHR2Pjxo3YtWsXrKyssHHjRowcOVLTobVJBgYGiImJwfr16+Hn54eqqiqMGTMG69atg7GxMQD2iSY05/oB+0X7sE80g/m79uvcuTNiYmKwZs0auLu7o2vXrggNDYW7u7umQ2uzmpMjq6JPdATJpK9ERERERERERERERETUJE4LRkREREREREREREREJAcOrhAREREREREREREREcmBgytERERERERERERERERy4OAKERERERERERERERGRHDi4QkREREREREREREREJAcOrhAREREREREREREREcmBgytERERERERERERERERy4OAKEbVqX375JYKCguDs7Aw7OzuMGDEC7733Hk6dOqW2GKqqqvDJJ59g+PDhsLe3x+rVq+stW7p0KaytrVFQUCDX+qOiomBtbY2srCwVtUDWb7/9Jlf97OxshIaGwsXFBfb29hCLxfDx8UF6ejoEQZCpq+g+aK2cnZ1hbW0Na2triMViAEBWVhasra2xdOnSBpcrKCiAtbU1fHx86nz2fP88X0/V+3jNmjXSNqnz95KIiIiIVIu5lfI1lVt98sknsLa2RkpKSqP1CgoKYGNjgzlz5jR725K8IyoqqtnLKJOkjyT/rly5AuBp/uLs7NzospI86nk3btyQ+dnHx0emXmpqKqytrZGamqqEFtR14sQJmTZpat8SkfbQ13QARESKKCsrw7Jly3Ds2DHY2trCw8MD5ubmKCwsRHp6OgIDA/Huu+9iyZIlKo8lOTkZSUlJGD16NCZPnowBAwbUWyYIAkaOHIlOnTrJtX4XFxf06tUL/fr1U1EL/hQYGIiysjLEx8c3Wbe6uhpr165FYmIiXnnlFbi6uqJHjx64d+8eDh8+jCVLluD06dPYuHEj9PT0VB67tjIzM0NYWBjatWvX4nXV1z8bNmxAly5dWrzu5nJzc4OdnR0yMzORmZmptu0SERERkWowt1KN5uRW06dPR1JSEjIyMuDp6dlgPcmNa9OnT1dFqCoVFhYGMzMz9OjRo0Xr2b59OzZt2oTLly9LywICAtS6T+zs7LBhwwZcv34dW7duVdt2iUh7cXCFiFqlFStW4NixYwgNDYWfn5/MZwEBAfDz80NsbCz69u2Lv/71ryqN5eeffwYAhIaGwsbGBgCkdx49WwYAQ4cOlXv9NjY2MutQpVOnTmH48OHNqhsZGYnExET4+Phg2bJl0NX982HIefPmISQkBIcOHUKvXr2wePFiFUWs/Tp06AA3NzelrKu+/lHWupvLzs4OdnZ2yM/P5+AKERERURvA3Eo1mpNbDR48WPokzZ07d9CtW7d66x04cAAdO3bExIkTVRGqSr3xxhuwsrJq8XpOnz6N6upqmbLRo0e3eL3ysLCwgJubG7Kysji4QkQAOC0YEbVCZ86cwdGjRzFp0qQ6J/8AYGBggLVr10JPTw9xcXEqj0dygmdsbNxoWVty/fp1xMbGYvDgwVixYoXMwAoA6Orq4tNPP4WJiQn27t2LyspKDUVKREREREQNYW6leZ6enqitrcWRI0fq/fz8+fPIz8/Hm2++CUNDQzVHR0REjeHgChG1Ounp6QBQ7/soJHr27ImMjAykpaXJlOfm5iI4OBijRo2CnZ0dJkyYgHXr1uHBgwd11nH9+nUEBwdj5MiRsLOzw8SJE/H555+joqICwJ/vxZBsY8KECdK5V58vA+p/F4YgCNizZw88PDzg4OCAUaNGISAgAD/99JO0TkPzAn/99dd45513MGzYMAwZMgQeHh515paVzLN7+PBhbN26FS4uLrCzs4OzszM2bdqEmpoamXoA8N133zU5T+2BAwcgCAK8vb0brGNsbIx9+/bhv//9b50k4NatWwgODsbw4cPh4OCAmTNn4uzZs3XWkZWVhcDAQIwaNQq2trZwdHTEnDlz8M0338jUc3Z2hr+/P7KysuDl5YWhQ4dCLBZjwYIF9c5zfOjQIek+Hzt2LMLDw7Fv375693NGRgbefvttODg4YOjQofDy8lLrvNNA4/3T0LtZntfcdhw5cgQzZ86U9o2bmxtiY2NRW1ur3EYRERERkcYxt3pKk7nVtGnT0K5dO2RkZNT7uaSPJNNfVVdXY8eOHfD09MTQoUNhZ2eH119/HStWrEBxcXGD2wGe5k31ve+koXeVXLp0CQEBARg+fDgGDx6MqVOnIjY2Fk+ePGl0O8pmbW2N7777Tvp/yfsrn3/nSkOa246cnBwEBARg7Nix0t/p1atX4/79+0pvExG1DZwWjIhanUuXLkFfXx9DhgxptN7z8+hmZ2fDz88Penp6mDVrFiwtLfHDDz9g586dOHXqFJKSkqRz9l66dAm+vr4wNjaGl5cXOnXqhB9++AFbt27FuXPnEBcXh06dOmHDhg1ITk5GdnY2wsLC0LFjR+jq6sqUmZmZNRjjkiVLcODAAYjFYixevBhVVVWIj4+Ht7c3du/ejUGDBtW73O7du7Fq1SoMHjwYCxYsgK6uLk6ePImwsDBcuXIFy5cvl6kfEREBQRAwY8YMmJqaIjU1FdHR0dDR0cHChQvRr18/bNiwAaGhoejbty8CAgIwbNiwRvsAAF599dVG+6BPnz71lgcEBEAsFiM4OBhFRUXYtWsX/P39kZaWhgEDBgAAMjMzsXDhQtjY2GDu3LkwNjbGL7/8gv3792Pu3Lk4fvw4LC0tpeu8evUq/P39MW3aNLi5uSEnJwdJSUm4evUqjh07Jn3vS0xMDDZu3AhbW1ssXrwYpaWlSEhIqDfOjRs3IiYmBqNHj0ZwcDAqKytx+PBhBAYGIiwsDL6+vo22X1nk7Z/nNbcdx48fR3BwMEaPHo1FixZBV1cX//nPf7B+/XoUFxcjJCRERS0kIiIiIk1gbqX53MrMzAwTJkzAf/7zH+Tm5srs68rKShw9ehS2trYYOHAgAGDx4sU4efIk3N3d8fbbb6OyshKnT5/Gvn378PvvvyM2NrbRvmyukydPYtGiRbCyssJ7772HDh064OzZs1i/fj3+97//ISoqCjo6OkrZVlM2bNiArVu34vr169iwYQN69erV7GWb246bN29izpw56Nq1K3x9fWFqaoqLFy8iISEBly5dwt69e9XWXiJqRQQiolZmyJAhwqhRo+Ra5smTJ4KLi4tgZ2cn/PrrrzKfJScnCyKRSFi6dKkgCIJQW1sruLq6CuPGjRNKSkrqrbtt2zZp2ZIlSwSRSCTcvHlTrrJz584JIpFICA4OFmpra6X1fv31V8HGxkYICgoSBEEQNm/eLIhEIuHbb78VBEEQbt++Ldja2gr+/v4yy9XW1gohISGCSCQSLl68KAiCIHz77beCSCQSRo8eLTx48EBat7y8XHj11VeFMWPGyLRPJBIJ3t7eTe7PKVOmCCKRSKioqGiy7rMk+2DZsmUy5fv37xdEIpEQFRUlLXvrrbeE0aNHC+Xl5TJ1ExISBJFIJMTGxkrLxo8fL4hEIuHw4cMydZctWyaIRCLhzJkzgiAIQmFhoWBnZyd4eHgIlZWV0no3btwQ7O3tZfbzxYsXBZFIJKxcuVJmnVVVVYKPj49ga2sr3L59u9H2jh8/Xhg/frxMmaRPlixZ0uByN2/erLcvmlP2/O+ZPO2YN2+e4ODgIDx58kRar6amRvD29hb8/f1lln/+95KIiIiIWh/mVprPrQRBEL766itBJBIJkZGRMuWHDx8WRCKRsHv3bkEQBOHKlSuCSCQSVq1aVWcdnp6egkgkku5nSbybN2+W1qkvPxEEQUhJSRFEIpGQkpIiCIIgPHr0SBgxYoTg7u4ukzcJgiBERkbWm3s9r75+E4Sn+6W+GJ4lye+e5e3t3WRZS9oRExMj098Sn332meDu7i4UFhZKy+rbt0T0YuK0YETU6ujp6UkfuW6unJwc3LhxA9OmTatz19X06dPRu3dvHDt2DE+ePMHPP/+Ma9euYdy4caitrcW9e/ek/8aPHw9DQ0OlvMj7xIkTAID33ntP5g6Yfv36Yf/+/fjoo4/qXe748eOorq7G5MmTUVJSIo2tpKQErq6u0jrPGj9+PExNTaU/d+jQAf369WvysfGGSJ4CkbcfJDw8PGR+dnBwAAAUFRVJy/bt24eDBw+iQ4cO0rKqqirpviovL5dZh5GRESZNmiRTNnjwYADA3bt3ATzd51VVVfDz84OBgYG0Xq9evTBt2jSZZQ8fPgwAmDJliszvQGlpKaZMmYLq6mp8+eWXcrdd3eRph4WFBR49eoRPP/0UOTk5EAQBenp6iI+P5wsbiYiIiNog5laaz60AYMyYMejevTsOHTokU56WlgYjIyO8+eabAAAbGxucP38ewcHBMvWKi4ulMT169EjhOCS++eYblJSUYNKkSSgrK5PptylTpgCAUvpN1eRpR/fu3QE8fer/3LlzqKqqAvB0CrrU1FR069ZNM40gIq3GacGIqNXp1q0b8vLyUFVVJXOBvDH5+fkAIJ1y6lk6Ojro378/bty4gZKSEuTl5QEAkpKSkJSUVO/6bt26pWD0f5LMD/x8QgIAtra2DS4niS80NLTBOs/H16VLlzp1DAwMFJ4rt1u3bvj555/xxx9/4KWXXpJ7+a5du8r8LHkni+QEFgD09fVRUFCA6Oho5OXloaCgAAUFBdKYBUGQWYeZmZl00EdC8vsheV+IZN/17du3TkzP94OkbmPvlVHk98DIyAhA4wNTkjZK6raEPO0ICgrClStXpL/7nTp1gpOTE9544w1MmjQJ+vo8bSAiIiJqS5hbaT63AgBdXV24u7sjOjoaFy5cwNChQ3H37l2cPXsWU6dOhYmJicy2jhw5grNnz+LmzZsoKCjA3bt3pYNKynhXomS/REREICIiot46ivaboaFhkwN6NTU1Ss2FmtOOSZMmwdPTE6mpqfD19YWRkRFeffVVjBs3Dm+99RY6duzY4niIqO3hVRIianUcHR2Rm5uL//3vf3BycmqwXlhYGKqrqxs9UZaQnIAaGBhI/+/l5YU33nij3vrKuMhcXV2t0HKSk/ZVq1bBysqq3jqS+Y0ldHWV+6Cio6MjTp8+jezsbPTu3bvBepGRkcjLy0NQUJBM8tWceL744gtERETA0tISYrEYI0aMgLW1NWpqavD+++/Xqd+cdUoGb+pLHCUDPBKS/RwdHY327dvXuz7J3U3ykJyUl5WVNVhH8hLQZ++IU5Q87ejSpQuSk5Px448/4quvvsK3336LzMxMHDlyBA4ODkhISEC7du1aHBMRERERaQfmVprPrSQ8PDywZcsWZGRkYOjQocjIyMCTJ0+kL7IHnuYQc+bMwU8//YRXX30VdnZ2cHNzw+DBg7Fr1y4cPHhQoW0/PzAk6beFCxdi6NCh9S6jyE12wNN8qLS0tMHPBUHAw4cPlZILydMOPT09rF27Fu+//z6+/PJLfPPNN8jOzsbZs2fxxRdfICkpSa53vRDRi4GDK0TU6kydOhVJSUlITExsMAG4ffs2Dh48CFNTU7z88svo2bMnAODatWt16gqCgNzcXBgbG8PU1FTmpHrUqFEydWtra3Hs2DHp+lpCsp28vDxYW1vLfBYREYGKigosW7asweVMTU3rxFdUVIRLly4pJb7GTJ48GZs2bcKePXvg4eFR74v9ysvLkZSUhPLycnz88cdyrf/27duIjIyEo6MjYmNjZQZDFE0YAKBPnz4AgOvXr9d5ekVyV5OEZD+bm5tLpxeTuHHjBq5fvy4zZVlzWVlZwdjYGFevXm2wTk5ODgA0+NJNebcHNN0OQRBw7do1VFRUwN7eXvpCz7KyMixZsgQnTpzAmTNnMH78+BbHRERERETagbmV5nMriZ49e2LEiBE4evQoVqxYgYyMDPTu3RvDhw+X1omLi8Ply5fx6aefYubMmTLL//HHH01uQ09Pr870ysCf0yhLSPaLkZFRnf1SVlaGM2fO1JmNoLlsbGxw+vRp3Lx5s959m5eXh8ePH2PEiBEKrf9Z8rTj1q1byM/Px8iRI+Hj4wMfHx/U1NRgx44diIiIwJ49e7BkyZIWx0REbQvfuUJErY6joyNcXFxw7Ngx/Pvf/67zeWlpKRYtWoSamhosWLAABgYGGDRoEHr27ImDBw8iNzdXpn5KSgry8/MxceJEAICdnR0sLS2RlpYmfeRdYu/evVi8eDFSUlJa3A7JnVu7du2SKc/Pz8fOnTtx8+bNepebOHEidHV1sXXrVlRUVMh8tm7dOsyfPx+XL19WKCZdXd1mPUbes2dPeHt748cff8TatWvrLFNZWYmQkBDcv38f77zzTr2Pzjfm/v37EAQBffv2lRlYefz4MeLj4wEo9r6XiRMnQl9fHwkJCTLLFxUVISMjQ6buX/7yFwBAVFSUzJ1c1dXVCAsLQ0BAAO7cuSN3DPr6+nBxccHt27frnRqhvLwcCQkJMDAwkP5OSjS3fxRph46ODoKCghAYGChzJ5mxsbE0QX1+2jUiIiIiat2YW2k+t3qWp6cn7t27h/T0dOTk5Mg8tQIAJSUlAFBnAOnChQv4/vvvAdR9CuVZ5ubmuHfvnsyUXlVVVTh69KhMvTFjxuCll17Czp07pduU2Lp1KxYtWoSvvvpKrrZJTJ48GQCwadOmOvtHEARs27YNwNOBv2dJnhiSZ5/K046tW7fC19cXFy9elNbR19fHkCFDADAXIqL68ckVImqV1q5diwcPHmDdunXIyMjAxIkT0alTJ/z2229IS0vDvXv34OXlBS8vLwBPT4RWr16NefPm4a9//StmzZoFKysrXLp0CWlpabC0tMSHH34oU9ff3x8eHh6YOXMmevXqhR9//BEpKSno1atXvdNSyWvs2LGYOnUqUlJSUFhYCGdnZ5SVlWH37t0wNDRESEhIvcu98sorCAoKwqZNm+Dm5gZ3d3eYmpri5MmT0icLnr8o31ydO3fG1atXkZiYCLFYDJFI1GDdDz74AHfu3EFcXBy+/vpruLq6olu3bvj9999x8OBB3Lp1Cy4uLli8eLHccfTv3x+9e/dGSkoKDA0NIRKJUFRUhLS0NOldVY09St4QS0tLBAYGIioqCrNmzYKrqysePXqExMRE6YsfJU/hjBw5EtOnT8f+/fvx9ttvY8qUKTAwMMDBgwdx6dIlzJ49G/b29nLHAAAhISG4cOECVq5ciTNnzsDJyQnt27dHfn4+MjIyUFhYiI8//rjOnVzy9I+EPO0ICgrCBx98gBkzZsDDwwMdO3bE1atXsXfvXgwcOLDO3V5ERERE1Poxt9J8biUxadIkrFq1CuvXr4e+vj7eeustmc+dnZ0RHx+PDz/8ELNnz4aJiQkuX76MtLQ06Onpobq6Gg8fPmxw/Z6ensjOzoafnx9mz56N2tpapKSk1BmQMTU1xccff4ywsDC8+eabmDFjBszNzfHtt9/iyJEjsLe3x+zZsxXaL+7u7jh16hQyMjLw22+/YdKkSejcuTP++OMPnDp1ChcuXICbmxvefPNNmeUkN+xt3rwZw4cPb1ZuIk87fH19cfToUcybNw8zZ86ElZUV7ty5gz179sDExARvv/22Qu0loraNgytE1CqZmppix44dOHLkCFJTU5GYmIh79+7B2NgYQ4YMgZeXF1577TWZZZycnJCcnIzo6GikpKSgrKwMPXr0wLvvvouAgACZOV1HjRqF5ORkbNmyBSkpKSgtLYWFhQVmz54Nf39/hR+Bft7GjRthb2+P/fv3Y/369ejYsSPEYjEWLVokncKqPu+//z769++PuLg4bNu2DbW1tejZsydCQ0Ph4+Oj8F01oaGhCA8Px9q1axEQENBoAmBgYIDIyEi4urpi3759SEtLQ1FREdq3b49BgwYhODi4zt1GzdWuXTvExMQgPDwchw8fRnJyMszNzSEWizF//nx4eXnhzJkzCq17wYIF6NKlCxISEhAeHg4zMzN4enqisrIS//73v2WelFm9ejUcHBywd+9eREVFQU9PD6+88gpWr15d5y4yeXTu3BkpKSmIj49HZmYmNm/ejMePH6Nr165wcHDAO++8AwcHhzrLydM/z2puO6ZOnYr27dtj586d2LFjB0pLS9G9e3f4+PggMDCQL7QnIiIiaoOYW2k+t5IwNDTE1KlTkZiYCGdnZ5ibm8t8PnLkSERERGD79u345z//CQMDA/To0QOLFy9G//79MW/ePHz99dd1pgOW8PDwQHl5ORITE7FhwwZ06dIFbm5uGD9+PGbMmCFT96233kL37t0RExODuLg4VFZWokePHggMDISfn59CUyQDT29mi4qKQlpaGg4cOICdO3fiwYMHePnll9G/f39ERETA1dW1znJz587FL7/8gpiYGFy8eLHZN341tx39+vVDQkICtmzZgvT0dBQXF+Pll1+Gk5MT5s+fz/etEFG9dARBEDQdBBERkTo8evQIT548gYmJSZ3PPvroIyQnJ+PkyZMNvsxSXs7OzgCAU6dOKWV92iQqKgr//Oc/ERcXp5T5kImIiIiIqO1YunQp0tLSlJpfaYusrCy88847WLBgAYKCgjQdDhFpEN+5QkREL4xr165BLBbjX//6l0x5aWkpvvzyS3Tt2hWWlpYaio6IiIiIiIiIiFoLzu9BREQvDDs7O1hbW2Pr1q24d+8ebGxscP/+faSmpqK4uBj/+Mc/pO9cUZZHjx7hwIEDaNeuHaZMmaLUdWvC5cuXkZubi59//lnToRARERERkZY7ceIEzMzM8Prrr6Njx46aDqdFCgsLkZWVhevXr2s6FCLSEhxcISKiF4aenh527tyJmJgYnDhxAvv27UP79u1hb2+PlStXqmR6q5KSEoSGhsLExKRNDK4cOHAAcXFxmg6DiIiIiIhagc8++wwAkJ6e3uoHVy5fvozQ0FBNh0FEWoTvXCEiIiIiIiIiIiIiIpID37lCREREREREREREREQkBw6uEBERERERERERERERyYGDK0RERERERERERERERHLg4AoREREREREREREREZEcOLhCREREREREREREREQkBw6uEBERERERERERERERyYGDK0RERERERERERERERHLg4AoREREREREREREREZEcOLhCREREREREREREREQkh/8DKGVOdkrFak0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000064.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000040.00.0<NA>-45.000000True
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000036.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-42.15449376.029.0<NA>-42.154493True
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-38.875688127.00.0-2-40.875688False
519coef_calib_autodeficienthhind_WALK_TRANSIT_school-36.663331259.022.0-2.465786-39.129117False
695coef_calib_zeroautohhjointtou_SHARED3_disc-38.24625584.00.0<NA>-38.246255True
503coef_calib_zeroautohhindivtou_SHARED2_school-35.000000311.00.0-2-37.000000False
655coef_calib_zeroautohhjointtou_SHARED3_maint-33.00000084.00.0<NA>-33.000000True
676coef_calib_autodeficienthhjoi_TNC_SINGLE_maint-30.970666112.00.0-2-32.970666False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -42.154493 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -38.875688 \n", - "519 coef_calib_autodeficienthhind_WALK_TRANSIT_school -36.663331 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -38.246255 \n", - "503 coef_calib_zeroautohhindivtou_SHARED2_school -35.000000 \n", - "655 coef_calib_zeroautohhjointtou_SHARED3_maint -33.000000 \n", - "676 coef_calib_autodeficienthhjoi_TNC_SINGLE_maint -30.970666 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 64.0 0.0 -45.000000 True \n", - "541 40.0 0.0 -45.000000 True \n", - "543 36.0 0.0 -45.000000 True \n", - "544 76.0 29.0 -42.154493 True \n", - "698 127.0 0.0 -2 -40.875688 False \n", - "519 259.0 22.0 -2.465786 -39.129117 False \n", - "695 84.0 0.0 -38.246255 True \n", - "503 311.0 0.0 -2 -37.000000 False \n", - "655 84.0 0.0 -33.000000 True \n", - "676 112.0 0.0 -2 -32.970666 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - " Final coefficient table written to: C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_15\\tour_mode_choice_coefficients.csv\n" - ] - } - ], + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], "source": [ - "calibration_iterations_to_run = 5\n", - "start_iter_num = 11\n", - "\n", - "for i in range(start_iter_num, start_iter_num + calibration_iterations_to_run):\n", + "if want_to_do_initial_model_run:\n", " asim_calib_util.run_activitysim(\n", " data_dir=data_dir, # data inputs for ActivitySim\n", " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", " configs_common_dir=configs_common_dir, # just the location of the common config, these files will be used from the original location\n", " run_dir=activitysim_run_dir, # ActivitySim run directory\n", - " output_dir=iteration_output_dir, # location to store run model outputs\n", - " settings_file=warm_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", + " output_dir=output_dir, # location to store run model outputs\n", + " settings_file=cold_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", " tour_mc_coef_file=tour_mc_coef_file # optional: tour_mode_choice_coefficients.csv to replace the one in configs_dir\n", " )\n", " \n", " _ = asim_calib_util.perform_tour_mode_choice_model_calibration(\n", - " asim_output_dir=iteration_output_dir, # folder containing the activitysim model output\n", - " asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim tour mode choice config files\n", + " asim_output_dir=output_dir, # folder containing the activitysim model output\n", + " asim_configs_dir=configs_resident_dir, # folder containing activitysim tour mode choice config files\n", " tour_mode_choice_calib_targets_file=tour_mode_choice_calib_targets_file, # folder containing tour mode choice calibration tables\n", - " max_ASC_adjust=max_ASC_adjust, # maximum allowed adjustment per iteration\n", + " max_ASC_adjust=max_ASC_adjust, \n", " damping_factor=damping_factor, # constant multiplied to all adjustments\n", " adjust_when_zero_counts=adjust_when_zero_counts,\n", - " output_dir=iteration_output_dir, # location to write model calibration steps\n", + " output_dir=output_dir, # location to write model calibration steps\n", " )\n", - " tour_mc_coef_file = os.path.join(iteration_output_dir, 'tour_mode_choice_coefficients.csv')\n", - " iteration_output_dir = iteration_output_dir.strip('_'+str(i)) + '_' + str(i+1)\n", + " tour_mc_coef_file = os.path.join(output_dir, 'tour_mode_choice_coefficients.csv') \n", + "else:\n", + " print(\"No initial model run performed.\")\n", "\n", - "print(\"\\n\\n\", \"Final coefficient table written to: \", tour_mc_coef_file)" + " " ] }, { "cell_type": "code", - "execution_count": 76, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_15\\tour_mode_choice_coefficients_UPDATED.csv\n", - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_16\n" - ] - } - ], + "execution_count": null, + "metadata": { + "scrolled": false + }, + "outputs": [], "source": [ - "tour_mc_coef_file = r'C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_15\\tour_mode_choice_coefficients_UPDATED.csv'\n", - "iteration_output_dir = r'C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_16'\n", + "iteration_output_dir = output_dir.strip('_cold') + '_1'\n", "\n", - "print(tour_mc_coef_file)\n", - "print(iteration_output_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": 77, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "creating output_dir at C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_16\n", - "ActivitySim run started at: 2023-09-14 23:16:38.259320\n", - "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\activitysim_run_dir\n", - "ActivitySim ended at 2023-09-15 00:02:47.553829\n", - "Run Time: 2769.29 secs = 46.154833333333336 mins\n", - "Sample rate of 0.251 results in 857925 out of 3418027 tours\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:516: RuntimeWarning: divide by zero encountered in double_scalars\n", - " scaling_factor = ((model_tours - transit_calib_tours)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:481: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", - " excel_writer.save()\n", - "c:\\Users\\rsirupa\\.conda\\envs\\asim_baydag\\lib\\site-packages\\xlsxwriter\\workbook.py:339: UserWarning: Calling close() on already closed file.\n", - " warn(\"Calling close() on already closed file.\")\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:742: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n", - "c:\\abm_runs\\rohans\\calibration\\tour_mc\\scripts\\asim_calib_util.py:760: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.\n", - " plt.yticks(fontsize=16)\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8AAAAXMCAYAAABeHZZYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyN5f/H8fc5s5jNmDHG2lgaztiXIVT2hCytUih8sxTJEhV90WKrtFmSLAllCSG+KZQsKUQhGfuMMVnHDIYZs5z794ffOTlmhtlnnHk9Hw+Pct/XfV+f+5z73M7nfO77ukyGYRgCAAAAAAAAAAAAAOAOZ87vAAAAAAAAAAAAAAAAyAkUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACnQAEcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAFk2DfffKOQkJBM/3n22WfzO/QMmzp1arrHUa1aNdWpU0etWrXSSy+9pA0bNuR3uPh/f/zxh/196tOnz23bjxgxQiEhIRo+fLjDcts+tm3bluMx9u7d277/PXv25Pj+b5ScnKzjx4/nah83CwsL07hx49ShQwc1aNBAtWrVUvPmzdWnTx99+eWXSkhIyPE+z507p+HDh+u+++5TzZo11bRpU23evFmStHLlSj3yyCOqU6eOGjRooN69e2v79u329yA5OTnL/Z48edK+n4iIiJw6HECxsbE6d+5cjuwrvetcbm0HAEBhRI5MjlxQkSM7IkcmRy6MDMPQ0aNH86y/nL5eGIahuXPnql27dqpVq5YaNWqk//73v/Z/e5s1a5at/efU+Z9TDh8+nGpZq1atFBISoqVLl2ZqX1ndDnA2rvkdAIA7R0BAgEJDQ1MtP3XqlE6dOiV3d3fVrFkz1XqLxZIX4eWotI7FMAwlJCTo5MmTWrdundatW6dOnTpp0qRJMplM+RQpJGn58uX2/9+6dasiIyMVFBSUjxE5OnXqlEMCsGjRItWpUydX+tq6davGjRuntm3baujQobnSx82mTJmiTz/9VFarVT4+Pipfvrzc3Nx07tw5bdmyRVu2bNHs2bP1ySefqEaNGjnSp9VqVZ8+fRQWFiZXV1dVqVJFSUlJKleunH744Qe99tprkqTAwECVKlWqQJ0PQFq++OILTZ8+XR9//LECAwPzOxwAAJAB5MjkyAUVOfK/yJHJkQujvXv3auzYsapQoYLef//9/A4nS+bOnat3331XklSuXDn5+fnprrvuyueoct7Zs2f17rvv6vfff9emTZvyOxzAqVAAB5BhzZs3V/PmzVMtnzp1qqZNm6bAwEAtWrQoHyLLebc6lsTERH388ceaM2eOVq9erYYNG6pLly55HCFs4uPjtXbtWplMJjVp0kRbtmzRkiVLCtTTi998842sVquaN2+uTZs2ae3atRo5cqSKFSuW43199tlneXpn+/Lly/XJJ5/Iy8tLEydO1IMPPigXFxf7+qNHj+r111/Xn3/+qd69e+u7775T8eLFs93v8ePHFRYWJkmaMWOGmjZtal83depUSVL9+vU1f/58ubpe/7oTHx+v7777TpLsy7KiVKlS9v2ULVs2y/sBbjRx4sT8DgEAAGQSOfJ15MgFCzmyI3JkcuTCaOHChdq7d68qVKiQ36Fk2dq1ayVJHTp00IcffmhffvnyZdWpU0dubm7Z2n/t2rVz5PzPrq1bt2rNmjUqVapUvsUAOCuGQAeATHJ3d9err76q2rVrS5IWLFiQzxEVbt9//73i4uJUpUoVPfroo5KuJ9OJiYn5G9j/MwxDK1askCQ98cQTqlixohISEuzL7nQzZsyQJL366qtq166dQ2IvScHBwfr0008VEBCgmJgYzZ8/P0f6jYmJsf9/o0aN0lxXv359hyTG09NTwcHBCg4Ozlbfbm5u9v1kN+ECAAAA7nTkyAULOXL+IkcmR0bOsJ23DRs2dFhetGhRBQcHq3z58tnaf06d/wAKLgrgAJBFrVu3liQdOnRIV69ezedoCq9vvvlGktSsWTO1bNlSHh4eio6O1vr16/M5sut27NihyMhIubm56b777tNDDz0kSVqyZEk+R5Z9ly5d0okTJyTplsPVFS9e3P552bt3b470nZKSYv9/d3d3h3VWqzXN5QAAAAByDzlywUCOnH/IkYGcw3kLILsogAPIMz/88IP69Omjxo0bq2bNmmrSpIleeukl/frrr2m2DwkJUUhIiMO8UDd69tlnFRISYh/KSZJOnjypkJAQ3X///Tpz5oz69eun2rVrq2HDhho2bFiOHo+Pj4/9/69cueLQf0hIiCIiItLcrlWrVgoJCbEnpZK0fft2hYSEqEuXLjp69Ki6du2qWrVq6d5777XPd2Pb7sCBA/r555/19NNPq169emrUqJF69OihDRs2pBtrSkqKli5dqmeffVb33HOPatasqRYtWuiVV17R/v3709wmISFBM2fO1NNPP617771XtWrVUsuWLTVs2DDt2rUr3b7CwsL02muvqUWLFqpZs6YaNWqk3r1764cffkiz/Y2v2Y2vSUacOHFCO3fulCS1adNG3t7eatmypSQVmKEGbXOvNW7cWEWLFlWnTp0kSceOHdNvv/2W5jZZOY+++eYbhYSEaMeOHZKu33UeEhKiESNGOGx38eJFTZs2TY8++qjq1aunOnXq6KGHHtK7776rs2fPZurYbrxzfOPGjbds+9JLL+l///ufPvjgA4flI0aMUEhISLrD8dmOq1WrVpL+fW169Ohhb2N7rWz7sr0G06ZNs6+T/v2chYSEKDk5OVVfYWFhGj16tFq3bq1atWrpnnvuUc+ePfX99987tLvd+xMZGak333xTDz74oGrVqqUGDRqoW7duWrp0qcOPEje/BosWLdLJkyc1cuRINWvWTDVr1lSzZs303//+VydPnkz3tf399981bNgwtWzZUjVr1lTjxo31wgsvOFxbt2zZopCQENWoUUPR0dFp7ichIUH169dXSEiI9uzZk+pYM/r5nDp1qn2b2/25+bjOnz+v9957T+3bt1edOnVUr149PfHEE/r888917dq1dPt6//33tWHDBrVt21Y1a9ZUq1at9L///c/h2L744gt16dJFoaGhqlWrllq3bq0xY8YoPDw83WM5cOCARo8erYceekihoaGqWbOm7rvvPvXt2zfVeSH9e742a9Yszf3d+Hrajt32/tv85z//SfP1Pn78uN544w09+OCDqlmzpurXr68uXbroiy++UEJCQrrHIElRUVEaPXq0mjdvrpo1a6pp06YaMWLELY89O9sBAICMIUe+jhzZETlyauTI/yJHvvNyZJtLly5p5syZ6t69uxo1aqQaNWqoQYMGevzxxzV16lRdvHgx1TaZve7b3lPbiAqrV69WSEiInn322VTHlpUcOSIiQqNHj1arVq1Uq1YttWnTRtOnT7/tCBNxcXH65JNP7J+zunXrqlOnTpoyZYouXbqU5jFFRUVJkkaOHOlwzt8u787I+3/ja3Wr8z8z125b3Js3b1ZYWJgGDx6s++67TzVr1tQDDzygCRMm6MKFCw7bhISEaOTIkZKkM2fOOHw+b7Zr1y698MILatSokWrXrq22bdvqgw8+UFxcXJrts7sd4AwogAPIdUlJSRo4cKAGDRqkLVu2yNXVVVWrVlVycrLWrVunXr16acKECTnaZ2Jionr37q1t27YpODhYJpNJ5cqVy9E+bF/qPTw85O/vnyP7vHDhgnr27KkDBw6ocuXKunbtmipWrOjQZvny5Xr++ee1f/9+VapUSUWKFNH27dv14osvaty4can2GRcXp+7du2vUqFHasWOHihYtqpCQEF2+fFnffvutOnfurLlz5zpsk5iYqF69eumDDz7Q3r175efnpypVqiguLk5r1qxR9+7dtXTp0lR9ffXVV3r88ce1cuVKXbx4UVWqVJGXl5e2bt2qQYMGadiwYWkmN1m1fPlyGYah8uXL2++u7tixoyRp586dOnr0aI71lRVxcXFat26dpH/jCg4OVrVq1SRJixcvzrG+AgICFBoaav/RqUyZMgoNDXU4fw4ePKiOHTtq6tSpOnjwoMqVK6dKlSrpxIkT+vzzz9WxY0dt3749w316eXkpNDRU0vVC5GuvvaadO3em+R4HBgaqcuXK2f6sFClSRKGhobJYLPZloaGh9mNN6zWwxXgrX331lTp37qyvv/5aFy5csJ+7v/32mwYPHqyPPvooQ/GtX79eHTt21KJFi3T27FndfffdKl68uHbt2qVRo0apd+/e9h8Db/b333/rkUce0cqVK+Xp6akKFSrozJkzWrZsmZ588kmdOnUq1TYffvihnnnmGa1Zs0ZXr15VSEiIzGazNm7cqF69etmforj//vtVpkwZJScna82aNenGHhcXp+Dg4Fs+rXA7N77uaf3x9PSUdH3YsqJFi9q327Vrlzp06KA5c+boxIkTCgoKUtmyZbV//369++676tKli86dO5dmnzt37tSgQYN06dIlBQcH6+zZs/bP2enTp/XYY49p4sSJ2rNnjwIDA1WlShWdO3dOS5Ys0cMPP2yf9+tGCxcu1OOPP66vv/5a0dHRqlChgoKCgnT58mVt3rw5U+fFrdjOWxuLxaLQ0FAFBATYl3377bd6+OGHtXjxYp09e1YWi0UlSpTQnj17NHHiRD355JM6ffp0mvs/ePCgHn30US1dulTe3t4KCgpSdHS0VqxYoccee0xHjhzJ0e0AAMDtkSNnHDly5pAj/4scmRy5oOTIkhQeHq6HH35YH3zwgf78808VL15cISEhcnFx0f79+zVt2jQ99dRT6b4WGVW0aFGHfLJ48eKpzo+s5si//vqrHnvsMX399deKiYmRxWJRfHy8Jk+erD59+qQb09GjR/Xwww9rypQpOnTokEqWLKkKFSro2LFj9qL4jdcmW05se/Lbdh7XrFnztsef0ff/drJz7d68ebM6d+6sDRs2yN/fX2XKlNHJkyc1b948Pf300w6F5xuvSW5ubul+PlesWKHu3btr27ZtKlOmjIoXL67w8HD7TVnp3RSf1e0Ap2EAQDZNmTLFsFgsRsuWLdNc//bbbxsWi8WoW7eusXbtWvvy5ORk48svvzSqV69uWCwWY+7cuQ7bWSwWw2KxGL/88kua+33mmWcMi8ViTJkyxb4sMjLSvl3Dhg2Nw4cPG4ZhGNeuXTMuX76c7WOxiY6ONho2bGhYLBajf//+afYfHh6e5rYtW7Y0LBaLsXz5cvuy3377zb5d69atjdOnTxuGYRhxcXFGQkKCw3YWi8Xo1auXcf78ecMwDMNqtRpLliyxv46rV6926O/55583LBaLcf/99xu//fabffm1a9eMjz/+2L7PH374wb5u4cKFhsViMdq0aWNERUXZlyckJBhvvfWWYbFYjPr169tjMwzD2LRpkxESEmLUqFHDmDdvnpGcnGxft23bNuPee+81LBaL8dFHHznEl5iYaBw5csQ4cuSIcenSpVu+7jdKSUkxmjdvblgsFmPy5MkO+7O9N2PHjk1z29dee82wWCzGsGHDHJbf7pzLrMWLFxsWi8WoU6eOERcXZ18+Z84cw2KxGDVq1DDOnTuXarusnkeG8e/n4sMPP3RYfvnyZaNJkyaGxWIxnnrqKePEiRP2defOnbOfJ/Xr13dYdzv79+836tata4/XYrEYoaGhRt++fY3PPvvM+PPPP42UlJR0t0/vvbBZvnx5mp/JGz8zN0vr2nDzNklJSfblu3btMqpWrWpYLBbj/fffdzivly9fbl+3ZcsWwzDSf38OHDhg1KxZ0wgJCTE++ugjh/3s37/faNOmjWGxWIzhw4en+RpYLBajS5cuxrFjx+zrdu/ebdSrV8+wWCzGuHHjHLZbs2aNYbFYjGrVqhlffPGF/TOXnJxsTJ8+3b7uyJEjhmEYxkcffWRYLBbjscceS/O1fu655wyLxWLMmjXLviyrn8/0rFq1yrBYLEb16tWNrVu32pefPn3a/rkdNWqUcfHiRfu6iIgI48knnzQsFovRrVs3h/3ZrtkWi8V48cUXjWvXrhmGcf0abXstHnnkEcNisRht27Y1Dhw4YN/28uXLxn//+1/7Z/HPP/+0rzt+/LhRo0YNw2KxGNOnTzcSExPt62JiYozBgwfbt4uNjbWvs52vTZs2TfP4bzx3IiMjHdald/35888/7df3UaNGOfxb9vfff9vPq8cee8zhvL7xvHr00UeNo0eP2tcdOHDAaNSokWGxWIzBgwc79JfV7QAAwL/IkcmRDYMcOS3kyOTIN75OhSlHtr0HXbp0Mc6cOWNfbrVajRUrVthf0y+//NJhu6xc9w0j/fMoqznyxYsXjcaNGxsWi8UYOnSow78f33zzjT1/vjnWK1euGA8++KD93wbbtdwwDOPs2bNGv3797NfW+Ph4h1jT+0ynl3dn9v1P7/zP6rXb9l5YLBajX79+Du/zhg0bjGrVqqX5b/utfke48d+5YcOGGTExMfZ1tt9XLBaL8dVXX+XIdoCz4QlwALnq9OnT9jt4x44dq3bt2tnXubi4qHv37ho8eLCk60MxZfdOxxt169ZNlStXlnR9vpgbh2PLCsMwFBMTo59++knPPfecYmNj5ebmpkGDBuVEuHbPP/+8SpUqJUny9vZWkSJFHNaXLVtWn3zyif1uTpPJpC5duqh3796Srr+ONn/++ad92K0pU6aoUaNG9nXu7u4aPHiwnnrqKUnS+++/b18XFhYm6fqcYWXLlrUvL1KkiEaMGKEmTZrowQcfVGxsrH3dhx9+KMMwNHz4cPXo0UMuLi72dffee68mTpwoSZo7d65iYmLs69zc3BQcHKzg4GCHp0FvZ+vWrfa7fR9++GGH/dnOs1WrVuXr3Yy2od0eeOABeXt725d37NhRZrNZSUlJ9ja5beHChTp79qxKlCihzz77TEFBQfZ1JUqU0JQpU2SxWHT58mXNmDEjw/utXr26li5dqvr169uXxcXFadOmTfrggw/UpUsXNWnSRB999JHi4+Nz9JhyyvTp02W1WvXQQw9p2LBhDp+5xx9/XJ07d5ak2w5vNnXqVCUmJuqZZ57RkCFDHPZTvXp1TZkyRS4uLlq9enWaT8+6ublp2rRpqlSpkn1ZvXr19Pjjj0uSdu/e7dDe9ln/z3/+o549e9o/cy4uLurfv7/uv/9+paSkaOXKlZKkJ554QiaTSfv370/15MeZM2e0bds2ubi46JFHHnGIKSufz7Ts3LlTr7/+uiTp9ddf1/33329fN2fOHMXGxqpVq1YaO3asfH197evKly+v6dOny8fHR7///rs2bdqU5v5fe+01+x3ixYsXlyR9//33OnDggIoUKaJZs2apatWq9vY+Pj4aN26cmjZtqqSkJIcnGH755Re5uLioRo0a6t+/v9zc3Ozr/Pz89Nprr0m6/vTW8ePHs/W63M6UKVOUnJysJk2aaOzYsQ7/llWrVk2zZ8+Wh4eH9u/f7zDsu42rq6s++eQT3X333fZlVatWVa9evSRdHx4uLVndDgAA3Bo5cuaRI2cMOXLmkCOnjxw5Z3Pk6OhoHT58WNL1637JkiXt60wmkx599FE1bNhQ0vVRCXJTVnPkxYsX68KFC6pYsaLeffddh38/HnvsMb3wwgtp9rd06VJFRESoRo0amjp1qv1aLl0fBWHy5MkqV66cwsPDMz2k/M0y+/6nJ6vXbpuAgABNmTLF4X1+4IEH7EO233zeZkRwcLDeffdd+fn52Zc9/PDD9t9V0puGI6vbAc6CAjiAXLV582YlJycrMDBQ7du3T7PNM888Izc3N12+fNk+L1FOuDHZyKyoqKhUc9VWrVpVjRs3Vv/+/XXgwAEVLVpUH3/8scOXxZxwu7i7dOkiLy+vVMuffvppSdfniT127Jikf+ecql27drpDXD333HOSrg9Xd+jQIUmyD7+zbNkyLVy40GGOGnd3d82ZM0cTJ060f3E9efKkDhw4IMkx0b5R8+bN5e/vr4SEhHTntMsM2xfj2rVrpxoCzxbDpUuX0iwI5YWjR4/a54i6+TUpWbKkGjduLElasmSJrFZrrsfz008/SZIeffRRFStWLNV6d3d3+5xQP/30kwzDyPC+K1eurIULF2rlypUaOHCg6tWr51AwjI6O1owZM/Twww+nO0xzfomPj7fPM2f7oetmQ4YM0ffff2+fazAtiYmJ2rx5s6T0PwO264hhGGnOB1ezZk0FBgamWm4rQF6+fNm+LCIiwv45t332bzZ+/Hht2LBBQ4cOlSQFBQXpnnvukaRUCd+qVatktVrVrFmzNGPIrmPHjmngwIFKSkrSs88+q+7duzust83PmN5rV6JECXuCltZrFxgY6PCDlY3tvG/VqlWa66XrybEk7dixw/4ad+/eXXv27NHChQvT3MbDw8P+/7n5o9XVq1ftQy7eOKffjYKCgtS6dWtJ0o8//phqfc2aNR1+pLWxzSt244+0ObEdAAC4NXLkzCNHzhhy5MwhR04bOfJ1OZkjBwQE6LffftOePXschiK3SUlJsReUc/sGlazmyLYb0Tt16uRwLtt07do1zX3Zcv327ds7FJJtPDw81LZtW0lp5/oZlZX3Py05ce2+9957U92oJV0vRkuO521GPfDAA2m+frb8/Oa5xbO7HeAsXPM7AADOzfblo1q1ajKb077nxsvLS5UqVdKhQ4d0/PhxtWzZMkf6zs4XVHd391Rzy5jNZnl7e6tUqVKqU6eO2rVrl+075tNyu7hr166d5vKyZcuqaNGiunz5ssLDw3X33XfbX/8aNWqku7+KFSvKx8dHcXFxOn78uCwWi5588kktW7ZMR44c0VtvvaW3335b1apV07333qumTZvqnnvukavrv/+E2O5klaQXX3wx3b6uXbsm6d/zIqtiY2PthZ60vpDWr19fQUFBioyM1KJFi/TEE09kq7+sWLZsmaTric6NT7raPPLII9q2bZuioqK0ZcsWNW/ePFfjsT2leqtzwbbuwoULio2NzfRcZNWqVVO1atX00ksvKT4+Xrt379bWrVu1atUqRUdH68SJExo8eHCG51zKC//884+SkpIkKd0f6gICAhzmY05LeHi4EhMTJUlvvfWW/UnktPqT0v4M3Hgn9I1sxdbk5GT7Mtv8il5eXukmrWXKlEm17IknntCOHTu0evVqvfzyyzKZTJKuJ/eS7HfS56QLFy6oX79+io2NVZMmTTRy5EiH9VeuXFFUVJSk608azJ8/P8392Nqk9drdeGf1jTJz3qekpCgiIsLh2l+kSBHt3btXhw4dUmRkpE6cOKFDhw45xJCZH8IyKzIy0n5+3mq+s5o1a2rNmjVpPo2e3nll+5E4KSlJycnJDtf07GwHAABujRw588iRb48cOfPIkdNGjpx7ObKHh4dOnTqlPXv26MSJE4qMjNTRo0d14MABXb16VZJy/eaPrObItu2qVKmS5jYBAQEqWbKkzp4967DcdhPR0qVL07xhW5LOnz8vKXvXway+/zfLiWt3Zs7bjLpdfp7ejRNZ3Q5wFvxiBSBXxcXFSdJthwWyJck5ObzbjU/oZVZgYKAWLVqUY7Fkxu3iTuvOZBsvLy9dvnxZly5dkpTx19/b21txcXH219/Hx0dLlizR559/rjVr1igiIkJ///23/v77b82ZM0cBAQEaMmSIunTpIsnx7sWMDOWTlbsdb7R69Wp7IjVu3DiNGzcu3bb79u3T/v37b/nlPqclJyfr22+/lXT9zu7b9b1o0aJcT+4zci7c+GPVlStXMp3c38jT01P333+/7r//fg0ePFivv/66/ve//+nPP//M8/fjVm58ivXGIfgy68Zz+q+//spUe5u07qJOjy3uzMbcrl07jR07VqdOndL27dvVuHFj7du3T0eOHJG/v3+O/bhqc+3aNfXv31+RkZGqXLmyPv7441R3H9vOTenf5PhW0nrt0rq7+sZ9Z+a8t1m1apWmT5+u8PBwh/Z33XWXOnfurK+//vq2sWbXja9NRo4hrX9D0/uh6Xayuh0AALg1cuTMI0e+PXLkzCNHThs5cu7kyMeOHdN7772nTZs2ORS5fXx81KBBA509e9Y+1UJuymqObLuGpjXahk2xYsVSFcBt/YWHh6fKrW+WnetgVt//W8WQ1Wt3Zs7bjErvN4/c2g5wFhTAAeQq2xeP232JsX2RSuuLSnpP19nujiyocivuWw23a/tiabsTN6Ovv239ja+/j4+PBg0apEGDBikiIkLbt2/X9u3btWnTJkVHR2v06NHy8/NTmzZt7F+A/fz87MP15ibbnGBeXl63/NJ+9uxZGYahxYsXa+zYsbkel83PP/9sv4O1ZMmS9juIb3b16lVdvnxZmzdv1qlTp9K8GzWnziNvb29dvHjxlufCxYsXHdrfzpgxY/Tbb7/pscceU//+/dNt5+Hhobffflvr1q2zz5l8c3Kf3nHm9pxoNyZvcXFx9rmjs7Of3bt3Zzvpymh/mf1B1MPDQx06dNCSJUu0evVqNW7c2H5ne3pDmWWVYRh65ZVX9Oeff8rf318zZsxI8/Pq6elp///Vq1enOSRcVmXkGmj79+fG9itWrNCIESMkSU2bNtWDDz6oKlWqKDg4WMWKFVNSUtItC+A5dT7feB5dvnw53acsbJ/d3D7vAABA9pEjp0aOnH3kyOTIOYUcOedz5OjoaD3zzDOKjo5W2bJl1aVLF1WvXl1333237rrrLplMJg0bNuyWBfCcPO+lzOfIfn5+OnfunMNN2jdL62liT09PXb58WTNmzMjxG+5vlNX3P7395NW1G0DuYg5wALnKNi/PgQMH0h3GJy4uzn4XYIUKFezLbU8J2u5ivtnNdxUWBDcOeZZW3AkJCdm+szu9JyRPnDhh/6JXuXJlSf++/vv37093f0ePHrV/Yba9/tHR0fr999/tc8FUqFBBXbp00QcffKBNmzbZh76zJQWVKlWSdP2Oy3PnzqXb1++//66jR49ma4idsLAw+3w8EydO1ObNm9P9Y7tjfM2aNbf8kp7TbHOvValSRVu2bEk3vrlz50q6PqzUjcW03DiPMnIu2O7KLlasWIbubL927ZoiIiLsczrdio+Pjz1xujGBtn3ObUOs3Sy3P+dBQUH2GG4c6upG+/btU9euXTVy5Mh0k84b93PkyJF0+9u7d68OHjyY7aTMNqff1atXdfLkyTTb/Pjjj3r22Wf13nvvOSy3DXf4448/KiUlxT4MWU4Pg/jee+/phx9+kJubm6ZNm5buMGS+vr4qUaKEpFu/dgcPHtSBAwccfoS6nYyc9/v27ZMkmUwmlS9fXpL02WefSbo+H+Ds2bP11FNPKTQ01P50UXrz9OX0v1vly5e3/+Byq6cmbOtu/DcUAAAUTOTIjsiRyZHJkcmRnT1HXr58uaKjo+Xn56fly5erf//+at68uYKCguw3g5w5cybNbXP6up/VHNl2TbNda2525coV+3D2N7Jtl965JF1/Onzfvn3Zmo86O+9/WvHmxbUbQO6jAA4gVzVr1kyurq46d+6cvvvuuzTbfPnll0pOTpanp6caNmxoX25LLtKaT2Xv3r0FMrn38/Ozf3lNK+6ffvopS3O93Oibb75J84cS23B0devWtd8lbbu7cu/evekO3fPFF19IkkqXLq2QkBBJUu/evdW9e3etWLEiVXtvb2/VrVtX0vWkVJKCg4PtPwx8+eWXafaza9cude/eXe3bt9eff/6ZgSNNm23eMH9/f7Vq1eqWbbt27Srp+hdg2w8RuS06OlqbNm2SdPtkqVatWvYfSpYuXWo/N7JzHqV3J73tXFi5cmWaBcTExET7OdS0adNbxm1jm1vur7/+sv+gkZ6tW7cqNjZWfn5+qlOnjn35rT7nKSkp+umnnzIUS1b5+Piofv36kv59auJma9as0e7du3Xy5Ml0X18fHx/79Su9OawjIyPVrVs3Pfzww/r++++zFXdwcLDKlSt3y7hXrFihHTt2pEoi69SpoypVqigmJkYLFizQP//8o+rVq6c7v1tWLFq0SJ9//rmk60MwNmjQ4JbtW7RoIen69SOt69vly5fVs2dPPfroo5o3b16G47Cd9z/99JMiIyPTbGN7v+rWrStfX19JsifM6Q1DaLsOSY7zd9nO54sXLyo6OjrVduvXr083Vtu5deMPSF5eXmrUqJFDnDeLjIy0f06aNWuW7v4BAEDBQI7siByZHPlG5MjkyFlVkHNkW35ZtmzZNJ+oP3LkiP0aYLuG2GT1up9WfillPUdu06aNpOs3+aR1s8I333yTKvYb+1u2bFmaxeLk5GQNGDBAnTt31rvvvptmPBmRnff/5v3k1bXbxmy+XqJL72YSAFlHARxAripTpox9DqzRo0c7fKG1Wq1auHChpk6dKkkaMGCAw1Bdti/cc+fO1dGjR+3L9+3bp5dffjkvws80Dw8PVa9eXZI0depUhzs4t27dqrfffjvbffz1118aPXq0fdgrq9WqL7/80p6kDx061N62Xr169ju8Bw0a5DB8T2JioqZMmWK/q/rVV1+1f0F+5JFHJEnTpk3T5s2bHfr//fff7YnyjXNyDR48WJI0c+ZMzZo1y+Hu1N9//92+vm7dumrcuLF9XVJSko4ePaqjR4/e9o7txMRErV69WtL1oahuN0dts2bN7F+AFy9efMu2t/LPP//o6NGjad7NerOVK1cqOTlZbm5u9tfxVmw/QJw7d85+l3F2ziPbcE1RUVGp+ilVqpTOnz+v559/3iHRiY6O1uDBg3Xo0CF5e3vrpZdeum3cknT//ferbdu2kqRRo0Zp/Pjxqe60vXbtmpYvX64hQ4ZIun6e3Dj0me1zfvjwYc2fP9/+hf/ixYt6/fXXMzQndHYNGDBAJpNJq1at0owZMxx+OFm5cqUWLFggSerTp88t9/PSSy/JxcVFa9as0cSJEx2SwkOHDqlfv35KSkpSuXLl1KlTp2zFbDKZNGDAAEnSrFmztHTpUvtrl5KSopkzZ2r9+vVydXVVr169Um1v++Fp8uTJkqTHH388zX4y8/m02bRpk304xUGDBunRRx+97Tb9+vWTl5eXdu3apVdeecUhIY2KilK/fv0UExOjokWLqnv37hmKQ7o+n1tISIiuXbumvn37OgwpFxcXp9GjR2vr1q1ydXXV8OHD7etsd8UvWbLE4fMXFxenqVOnaubMmfZlNybxderUkZubmwzD0IQJE+zrkpKSNG/evFsOm2777N58nRk4cKBcXV21detWjR492uFJnbCwMPXt21fXrl1T1apVM/RaAwCA/EWOTI5s24YcOW3kyOTIWVGQc2RbfhkWFqYffvjBvtwwDG3evFl9+vSxP/F/8xD3Wb3u286pmz+jWc2Rn3zySVWoUEGnT5/WoEGDHG74XrdunT744IM04+jevbsCAwMVERGh/v37O8Rz4cIFDRkyREePHpWbm5uee+65dI/ndrL7/t8oq9furLJdoy5dupSnI3MAhQFzgAPIdSNHjtSZM2f0448/avDgwSpZsqRKly6tyMhIxcTESJKeeeYZ9e3b12G7/v37a8uWLTp37pw6deqkypUr69q1awoPD1dQUJCeeOKJdO/qy09DhgxR//79deTIEbVu3VqVK1fWxYsXFRUVpVq1aik0NNSexGWFxWLRsmXLtHbtWt199906ffq0zp07J7PZrJEjR6b68vXee+/phRde0B9//KEePXqoXLlyKl68uI4fP664uDi5uLhoyJAh6tChg32bHj16aNu2bdq8ebP69u2rkiVLqmTJkoqJibEnja1atdKTTz5p36ZDhw4KDw/X1KlT9f777+uzzz5TxYoVdeHCBfs2lSpV0vTp0x3iO3PmjNq3by/p+nBt6SUZkrRhwwbFxsZKythQVGazWU899ZQ+/PBDHTp0SLt27bInD5nx2muvaceOHWrYsKE90UuP7S7vFi1aZGiurA4dOujdd9/VpUuXtHjxYnuynNXzqHr16tq4caNWr16tgwcPqkGDBnrjjTfk6+urGTNmqF+/fvrjjz/Upk0bVa5cWa6urjp8+LCSkpLk5+en999/3z50VEa8//778vLy0sqVKzV//nzNnz9fZcuWVUBAgP3zmpiYKDc3Nw0bNkzdunVz2L558+Zq0KCBfv/9d40fP16ff/65/P39dezYMSUlJemll16y/wCYW+69916NHDlS77zzjj766CN9/vnnCgoK0unTp+3z1L344osOP2alpX79+ho7dqzeeOMNffHFF1q8eLGCg4N15coVRUREyDAMlShRQnPmzLntD1MZ0blzZx05ckRz587VqFGj9PHHH6t06dI6efKkYmNj5eLiojfffDPNu9YfeeQRffDBB7p69arc3NzUsWPHNPvIzOfTZujQoUpJSZGHh4f+/vtv9e7dWwkJCWk+lfPEE0+oc+fOqlChgj7++GMNHTpUa9as0Q8//KDKlSsrKSlJ4eHhSk5OlpeXl2bOnJnuPNhpcXV11fTp09W3b18dO3ZMjzzyiCpWrChvb2/7cGUeHh566623HJ5SHzp0qAYMGKAjR47ogQcesA+DFhERoWvXrtmHqjtx4oTDcOjFihVT7969NWPGDK1Zs0ZbtmzRXXfdpaioKMXGxqpr16766aef0hzernr16tq5c6fefvttLVq0SN26dVPnzp1Vr149jR8/XqNGjdLXX3+tb7/9VsHBwbp69aqOHz8u6fq/C9OmTcuR8woAAOQ+cmRyZHLk9JEjkyNnVUHNkTt37qyFCxcqIiJCgwYNUrly5eTv769Tp04pOjpabm5uatiwoXbs2JEqV8zqdb9atWqSrs+/3q5dO1WuXFnTpk3Lco7s4eGhKVOmqE+fPtq6datatGihKlWqKDY21v4ZPHfuXKrpwooVK6ZPP/1U/fv317Zt2/TAAw+ocuXKMplMOn78uBITE+Xq6qoPP/zQPuJGVmXn/b9RVq/dWRUSEiKz2ayEhAS1a9dOJUuW1Jw5czI07QKAW+MJcAC5zt3dXZ988ok++ugjNWnSRImJiTpw4IA8PT3VoUMHzZ8/X6NHj041bFK1atW0bNkyderUScWLF9exY8eUkpKi5557TitWrFBgYGA+HdGtNWvWTAsXLlTr1q3l5eWlI0eOqEiRIho0aJAWLlxov7Mvq3r06KEPP/xQlSpVst/527ZtWy1evDjNuxj9/Py0YMECjR07Vvfcc48uX76sgwcPyt/fX507d9ayZcvUr18/h21cXFz0ySef6PXXX1e9evWUkJCgsLAwxcfHq0mTJnrvvfc0ffp0h3m4pOsJ0JIlS9SpUyf5+PgoLCxMMTExql69ugYPHqzly5dnqnh1M1viXKNGjQwPRdW5c2f7HLrZucM9I/bs2WOf2yqjc0V5enran9r89ddf7XP9ZfU86tu3r5588kn5+fkpPDxcBw8etK+rXr261qxZowEDBqhKlSqKjIxUeHi4KlWqpBdeeEHffvtthod2s3F3d9c777yjpUuX6rnnnlONGjWUmJiosLAwnT59WpUqVVLv3r317bffpjrPpOs/wMyZM0dDhgxRlSpVFB0drX/++Uf33nuvFi1alO27wDOqZ8+eWrJkiTp27KgiRYro4MGDSk5OVvPmzTV37lwNGjQoQ/t54okntGrVKj311FMKDAzU4cOHderUKQUHB6tPnz769ttv7cXUnDBixAjNnTtXDzzwgAzDUFhYmFxcXNSuXTstWbLE4Qe4GxUvXtw+XHarVq1yNLGy3dWfkJCgDRs2aOvWrfr999+1e/fuVH9OnTpl36558+b63//+p169eql8+fI6fvy4IiIiVK5cOXXr1k3ffvutQkNDMx3PXXfdpeXLl+vVV19V7dq1de7cOR09elRlypRRjx49tGrVqlRPTrds2VLLli1T69atFRgYqGPHjunUqVOyWCwaNmyYVq1aZT83N27c6LDt0KFD9f7776t+/fpKSkrS8ePHValSJU2aNElvvvlmunFOmDBB999/v1xdXXX8+HH7tUC6Phf5qlWr1KVLF5UoUUKHDx9WTEyMQkNDNWbMGC1btizdOdYBAEDBQ45MjkyOnD5yZHLk7CiIObKPj4/9ulKlShVduHBBhw8flo+Pj72APWHCBEnXnxK/8SnprF73H330UfXp00eBgYE6efKkDhw4YL8pPSs5siRVrVpVK1as0HPPPacyZcro8OHDslqt6tWrl7744ot0b2KoVauWVq9erRdffFEhISE6efKkjh07phIlSujRRx/V8uXL7UOsZ1dW3/+b5fa1+0YVKlTQxIkTVbFiRcXGxurUqVOpRqwAkDUmg8kFAOCO0KpVK0VFRWncuHEZ/sKGnDN27FidOHFCs2bNyu9QgBzx+OOPa//+/Zo5c+Zt79wHAAAAChpy5PxFjgxnQ44MAM6FJ8ABALgNq9Wq33//XZUrV87vUIAcsX//fu3fv19lypRRkyZN8jscAAAAAHcQcmQ4G3JkAHA+zAEOAMBtvP3224qOjtazzz6b36EAWRYZGSlJOn/+vEaMGCHp+nCRLi4u+RkWAAAAgDsMOTKcATkyADg3CuAAANzG008/rUGDBql48eL5HQqQZd99950+/PBD+98tFoueeeaZfIwIAAAAwJ2IHBnOgBwZAJwbQ6ADAHAbVatWJbHHHa9q1aoqWbKkvLy81Lp1a33++edyd3fP77AAAAAA3GHIkeEMyJEBwLmZDMMw8jsIAAAAAAAAAAAAAACyiyfAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApuOZ3AHcKwzBktTJaPAAAAADAkdlskslkyu8wnAK5NwAAAAAgLZnJvSmAZ5DVaujChSv5HQYAAAAAoIApXtxbLi4UwHMCuTcAAAAAIC2Zyb0ZAh0AAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOwTW/AwAAAAAApGa1WpWSkpzfYRR6Li6uMpu5dxwAAAAAnBG5d8GQ07k3BXAAAAAAKEAMw9ClSxcUHx+X36Hg/3l6+sjXt7hMJlN+hwIAAAAAyAHk3gVPTubeFMABAAAAoACxJeA+Pv5ydy9C0TUfGYahxMRriouLkSQVKxaQzxEBAAAAAHICuXfBkRu5NwVwAAAAACggrNYUewLu4+Ob3+FAkrt7EUlSXFyMihb1Zzh0AAAAALjDkXsXPDmde5O5AwAAAEABkZKSIunfxA8Fg+39YF44AAAAALjzkXsXTDmZe1MABwAAAIAChqHXChbeDwAAAABwPuR6BUtOvh8UwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4BQrgAAAAAAAAAAAAAACn4JrfAQAAAAAA8s/Bg2GaPn2ywsL+ltVqqHr1murXb4Bq1KgpSdq58zfNnTtbR48elouLqxo2bKz+/V9SqVKlJUnffbdaEya8paVLv1WZMmXt++3cuZPq1auv//73TUlSkyYN9Nxz/bRt21ZFRkaoa9dn1atXH0VFndSnn07Vrl07ZRiGataspQEDBuvuu4MlSdeuXdOcOTO0YcM6xcRcUPnyFdSjx3N64IE2eftCAQAAAACQReTeeYsnwAEAAACgkLpyJU7Dhr2kYsX8NG7cu3rrrQlKSIjXsGEDFRcXpx9++E5Dhw5UYGCg3nxzvF56aaj279+nF154TjExFzLd37x5c9SiRSu9+eZ4NW3aQufPn1ffvj0VEXFcw4a9pjfeGKtLly5pyJABio2NlWEYev31V7Ry5Td66qlueuedD1WzZm298cbrWrt2TS68IgAAAAAA5Cxy77zHE+AAAAAAUEgdP35csbEx6tz5KdWuXVeSVKFCRa1atVxxcZc1ffpkNWjQUG+9NdG+Te3adfXMM09q0aIvNWDAoEz1V716TT3zTC/73z/5ZLKuXUvQxx9PV0BACUlSlSpV9fzzvfTXX3tVpIi7tm/fprfemmC/67xRo3uVkBCvGTOm6cEH28nVlbQWAAAAAFBwkXvnPZ4ABwAAAIBC6u67g+Xn56/XXntZ778/UVu3blZAQAkNGDBYCQkJio6OVps2DzlsU67cXapRo5b++OP3TPcXHFzZ4e979vyhmjVr2xNwSSpRooSWL1+jJk2a6fffd8pkMunee5soOTnZ/uf++5srOvq8jh8/mrUDBwAAAAAgj5B75707q1wPAAAAAMgxXl5emj59lubNm6MNG9Zp5crl8vDwUJs2D6lduw6SpOLFA1JtFxAQoIMHD2a6P3//4g5/v3TposPcZTe7dOmiDMNQmzbN0lx//vw5VakSkuk4AAAAAADIK+TeeY8COAAAAAAUYuXLV9To0WOVkpKiAwf26/vvv9PKlctUokSgJOnChehU20RHR8vPz0+SZDKZJElWq9WhTXz81dv27eNTVLGxsamW79q1U6VLl5GPT1F5enpp6tQZaW5frlzQbfsAAAAAACC/kXvnLYZABwAAAIBCauPGDerYsbWio8/LxcVFNWvW1vDhI+TjU1QXLlxQQECA1q1b67BNVNRJ/fXXXtWuXUeS5OXlLUk6c+a0vc2JE+G6ePHibfuvU6eu9u/fq5iYC/ZlsbGxGj58kH75ZbPq1g1VfPxVGYahqlWr2/8cO3ZUn38+SykpKTnxMgAAAAAAkGvIvfMeT4ADcGA2m2Q2m3K1D6vVkNVq5GofAAAAuL1ateoqJcWqkSOH65lnesnb21s//rhOV67EqVWr1qpevYYmTHhLb7wxUu3addTFi7H6/POZ8vUtpqee6i5Jql//Hnl4eGjatI/Ut+8AXb16VXPnXm9zO126dNPatf/Tyy8PVI8ez8ndvYgWLJirgIASateug3x8iqpu3VCNGDFMvXr1UYUKFXXgwH7NmTNTjRo1tt8JD+eX23kKOQoAAACA3ELunfdMhmGQ4WVASopVFy5cye8wgFxlNpvk5+clF5fcHRwiJcWq2Nir/MAEAABwk6SkREVHn1JAQBm5ubnnSZ8HDuzXrFmfKizsgBISEnT33cF69tn/qHnzlpKkn3/+UQsWfKFjx47I29tbjRrdq379XlSpUqXt+/jtt22aMWOaIiKOq3TpMvrPf/rp++//p4CAAP33v29Kkpo0aaD//Kevevd+3qH/iIhwTZ8+Wbt375Kbm5vq1QvVgAGDVa7cXZKk+Ph4zZ79qTZu/FExMRdUokRJtW7dRr169VGRIkXy5DW63ftSvLh3rn+HLizSyr3zIk8hRwEAAAAKD3Jv58+9KYBnEAVwFAaurmb5+3vrk0W/KOrs7YfNyIpyJYvpxa73KybmipKTrbffAAAAoBDJjyQct0cBPO+klXvndp5CjgIAAAAULuTeBVNO5t4MgQ4glaizFxUeFZPfYQAAAACAHXkKAAAAACAjuEUdAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAqu+R0AgMLJxSX37r+xWg1ZrUau7R8AAABwFklJSVqwYIFWrFih8PBweXl5qVatWurZs6eaNm2aqn2jRo0UGxub7v727t2rIkWK5GLEAAAAAADcGgVwAHmqWFEPGVarfH09c60PqzVFMTHxFMEBAACAWzAMQ0OHDtX69evl6+ur++67T9euXdNvv/2mLVu2aMiQIerfv7+9fVRUlGJjY1WqVCk1bNgwzX2azQw0BwAAAADIXxTAAeQpbw93mcxmHV8zS/HRp3J8/54BZVSpY1+ZzSYK4AAAAMAtLF68WOvXr1e1atU0d+5c+fv7S5LCwsLUvXt3TZ48WW3atFFwcLAk6cCBA5Kkdu3a6fXXX8+3uAEAAAAAuBUK4ADyRXz0KcWfOZHfYQAAAACF1qpVqyRJI0aMsBe/Jalq1arq1KmTFi1apM2bN9sL4Pv375ck1ahRI++DBQAAAAAggyiAAwAAAMAdwGw2yWw25Xm/VqvByDpOat68eTp+/LiqVKmSat3Vq1clSS4uLvZltifAa9asmTcBAgAAAEAeI/d2DhTAAQAAAKCAM5tN8vPzkotL3s+vnJJiVWzs1Swl4uvWfa/ly5fo2LEjkqQKFSqpY8dH9OijT+R0mMiCIkWKqGrVqqmWb9iwQd9//708PT3Vpk0b+/L9+/fLw8NDf/31l0aNGqXDhw/LZDIpNDRUAwYMUJ06dfIy/ByXm58vfswCAAAACj5yb+dBARwAAAAACjiz2SQXF7M+WfSLos5ezLN+y5Usphe73i+z2ZTpJHzNmlX6+ONJGjRomOrWDZVkaOfOHZoy5QPFxFzQf/7TN3eCRpZcvHhRo0aN0pEjR3Ts2DGVKVNGEydOVOnSpSVJ0dHROnv2rCTp1VdfVd26ddWoUSMdOnRIP//8s7Zu3apJkyapffv2+XkYWVKsqIcMq1W+vp651ofVmqKYmHiK4AAAAEABRu7tPCiAAwAAAMAdIursRYVHxeR3GBmyYsUydez4iB5++DH7svLlK+rcubP6+utFhTYJL6giIyO1bt06+99NJpOOHDmie++9V9K/83/7+/vr008/Vb169SRJhmFo3rx5mjhxokaOHKnQ0FB70TyrXF0dn7bI7acvvD3cZTKbdXzNLMVHn8rx/XsGlFGljn3l5uailBRrju8fAAAAQOZYrbce4pzcO3+5uJhS5YWZRQEcAAAAAJDjzGaT9u3bq0uXLsnX19e+vHv3nmrfvpMkqXPnTnrooY7q3ft5+/qBA/upTJmy+u9/39Tu3b9r0KAX1L//S/rqq/kqXbq0PDw8VaJEoN5+e6J9m717/9SAAX20ePEK3XVXkH75ZYvmzPlM4eHHFRgYqNat26pnz95yd3fX5Mkf6JdfNuvrr1fZt4+Li9PDD7fV229PUJMmzfPg1Sl4KlWqpB07dsgwDG3btk3jx4/XuHHjFBcXp/79+6tp06basmWLDMNQqVKl7NuZTCb16tVLO3fu1IYNG7Rs2TINHDgwy3GYzSb5+3vnxCFlWnz0KcWfOZFr+8/NJ8wBAAAAZFxCgovOnzenKrTmx9DnN8pK/y4uZv31115dvRrnkHv37PkfPfzwI3J1NevRRzuoQ4dO6tv3Bfv6/v37qkyZshoz5i3t2vW7Xnyxn158cZAWLJin0qXLyNPTQyVKBGr8+Hft2+zZ86eef/45LV26UkFB5bV162bNmjXDnns/+GA7/ec/feTu7q6PPpqkrVu3aPnyb+3bx8VdVocObTR27Dtq1ix17m21mmQ2m1WsmJc8PDwy/VrciAI4AAAAACDHde/eU2PGjNRjjz2k0NAGql27nurXb6Bq1WqoaNGimdrXtm1b9dlnc5WQEK/Dhw/pgw/e0dWrV+Tldb1Qum7dWtWqVUd33RWk337bptGjR2jQoKG6557Gioo6qY8+ek8nTkRo7Nh31LHjI1q6dJH27PlTderUlST9+OM6eXt7q3Hj+3P6ZbhjeHv/W3Ru3769SpcurW7dumnmzJnq0aOHvL29VbJkyXS3b9mypTZs2KC//vorW3FYrYYuXbrqsMzFxewUxeNLl+J5AhwAAAAoABITr8lqtSolxVBycsH5jp6SYs10PN269dCYMSPVqVPbVLl32bLe9v1ZrY7HahiGDOP6MluesnXrllS596VLl+2599q1/1OtWnVUpsxd2rp1q15//bVUuXd4eLjGjn1H7ds/oiVLFmnXrt323PuHH36Ql5e3Gja8N83jTEkxZLVadfHiVcXHp6Ra7+vrmeGbBCiAAwAAAAByXIsWD+izz+Zq2bLF2r79N/366y+SpKCg8ho5coxq166b4X117fqMgoLKS5Luuqu8PvpokjZt2qiHHuqopKQk/fTTBvXv/5Ikaf78z9Wx48N69NHOkqRy5e7SK6+8rkGDXtCpU/8oOLiyQkKq6Ycf/mdPwr//fo3atm0vV1dSZJvQ0FCVL19eERERCg8PV40aNW7ZPjAwUJIUHx+f7b4L0g9QOSkrP2YBAAAAyHkpKZmbZ7sgc8bcOyduTCC7BwAAAADkimrVamj06LEyDEPHjh3Vr79u1dKlizV8+GAtWbIiw/u5667y9v/39PRUy5YPaN26tXrooY769ddfdO1aglq1ai1JOnQoTAcO7NfatWvs2xjG9R83wsOPq0yZsurQ4WHNnDldQ4a8orNnz2jfvr165ZXXc+io7wzx8fGaPHmyzp8/r0mTJslkSj0Hnru7uyQpOTlZS5Ys0a+//qqOHTuqdevWqdpGRkZKUrbn/wYAAAAAZA65d2oUwAEAAAAAOers2TP66qt5euaZXgoMLCmTyaTg4MoKDq6sJk2a65lnntSff+5Oc9uUlORUy4oUKeLw9/btO2nw4P6Kjj6vdeu+U7NmLeXt7SPp+rBu3br10EMPdUy1n4CAEpKkBx9sp2nTPta2bVt09OgRVatWXXffXTm7h31H8fDw0IoVKxQbG6suXbqoYcOGDusjIyN1/Phxubu7q0qVKtq0aZPWrl2r+Pj4VAVwwzC0atX1OdWbNGmSZ8cAAAAAAIUZuXf68nc2dwAAAACA03F3L6JVq77RunVrU62zzTVdvHiAXF3dFBcXZ19ntVr1zz9Rt91/3bqhKl26jL7//n/atu0Xh4T77ruDFRERrrvuCrL/OXfurD75ZLKuXr0iSSpatKiaNWuhn3/+SZs3b1T79g9n95DvOCaTSU899ZQk6c0339TZs2ft606fPq2XX35ZycnJ6tq1q7y8vPTYY4/J3d1dP//8s77++mt7W6vVqilTpmjv3r2qXLmy2rVrl+fHAgAAAACFEbl3+ngCHAAAAACQo/z8/NS9e0/NnDldcXFxatWqtby8vBUeflxffDFboaENVKdOPdWuXUc//rhOzZu3VPHiAVq8+EuHpPxWHnqoo+bN+1zFihVTgwb/Pr3cvXsPjRkzUnPmfKYHH2ync+fO6p13xqlUqVL2u9AlqUOHhzVixMsyDKl167Y5/hrcCQYMGKDdu3dr586datu2rerXr6+kpCTt3btXV69eVZMmTTR8+HBJUlBQkN58802NGjVKo0eP1pdffqmKFSsqLCxMERERKlGihKZOnSo3N7d8PioAAAAAKBzIvdNHARwAAAAA7hDlSha7Y/rr27e/7rorSKtXr9SKFUuVkJCgUqVKq1WrB9Wjx3OSpH79XtTly5c0fPggeXh4qlOnR/XAA23s84bdSrt2HfX55zP1+ONPymz+d3Czli1b6623pAULPteXX36hokV9df/9TdW//yCH7Rs0aKhixfxUq1YdFS1aNMvHeSfz8PDQ3LlzNX/+fK1atUrbt2+Xq6urqlSposcff1xPPvmkXFxc7O2feOIJVapUSbNmzdLu3bt17NgxlSxZUs8++6z69++vgICAfDwaAAAAAMgZ5N7/ulNzb5ORkaPLB0lJSVqwYIFWrFih8PBweXl5qVatWurZs6eaNm2aqv358+c1ffp0bdmyRWfOnFFgYKDatWunAQMG2B/zz46UFKsuXLiS7f0ABZmrq1n+/t56ffJ3Co+KyZU+7qtbQQO7NdHf895W/JkTOb5/z1LlVb3nGMXEXFFysjXH9w8AAJCbkpISFR19SgEBZeTm5m5fbjab5OfnJReXvJ/FKiXFqtjYq7JaC2TqmGXx8fF65JF2Gj/+Pd1zT6Nbtk3vfbEpXtw7X94bZ5RW7p3beQo5CgAAAFC4kHvnnfzKvQvkE+CGYWjo0KFav369fH19dd999+natWv67bfftGXLFg0ZMkT9+/e3tz979qyefvppRUVFyWKxqEWLFtq3b59mz56tLVu2aOHChfLx8cnHIwIAAACArLNaDcXGXpXZbMqXvp0pAb906ZJ2796pn37aoFKlSjkM4QYAAAAAKLzIvXNOfufeBbIAvnjxYq1fv17VqlXT3Llz5e/vL0kKCwtT9+7dNXnyZLVp00bBwcGSpHHjxikqKkr9+vXTsGHDJEmJiYl69dVXtXbtWk2bNk0jRozIt+MBAAAAgOxytmQ4v6SkJOudd8bKz89fb789USZT3v+wAQAAAAAomMi9c0Z+594Fcoy2VatWSZJGjBhhL35LUtWqVdWpUycZhqHNmzdLkk6cOKH169erTJkyGjTo33Hl3d3dNXbsWHl7e2vJkiVKSEjI24MAAAAAABQ4/v7F9f33P2vx4hWyWKrmdzgAAAAAADid/M69C2QBfN68eVq1apXuueeeVOuuXr0qSXJxcZEkbd68WVarVc2bN5ebm5tD26JFi6px48a6evWqtm/fnvuBAwAAAAAAAAAAAADyTYEsgBcpUkRVq1a1F7ltNmzYoO+//16enp5q06aNJOnQoUOSJIvFkua+Kleu7NAOAAAAAAAAAAAAAOCcCuQc4De6ePGiRo0apSNHjujYsWMqU6aMJk6cqNKlS0uSzp07J0kKDAxMc3vb8vPnz+dNwAAAAAAAAAAAAACAfFHgC+CRkZFat26d/e8mk0lHjhzRvffeK+nfIdE9PDzS3N623NYuO1xdC+QD80COcXFxnnPcmY4FAAAUHlarKb9DwC24uJjICwEAAAAAKOAKfAG8UqVK2rFjhwzD0LZt2zR+/HiNGzdOcXFx6t+/v32YdJMp7R+KDMNw+G9Wmc0m+ft7Z2sfAPKOr69nfocAAACQaQkJLjp/3kyhtYCxWk0ym80qVswr3ZuvAQAAAABAwVDgC+De3v8Wndu3b6/SpUurW7dumjlzpnr06CEvLy9J0rVr19Lc3rbc0zN7xTCr1dClS9l/ihwoyFxczE5TOL50KV4pKdb8DgMAACBTEhOvyWq1KiXFUHIy32UKipQUQ1arVRcvXlV8fEqq9b6+noxABAAAAABAAVHgC+A3Cw0NVfny5RUREaHw8HCVLFlS0r9zgd/sdnOEZwY/QAF3jpQUK59ZAABwx0lJSX/kKrPZJLM574dIt1oNWa2ZH1Grc+dOOn36lAYOHKKnn34m1fpJkyZo1apv9J//9FXv3s9nKbbOnTvpoYc6Znj7zLa/GTcmAAAAAIBzI/dOu4+8zL1zQoErgMfHx2vy5Mk6f/68Jk2alObQ5u7u7pKk5ORkWSwWSdLRo0fT3N/hw4clSSEhIbkUMQAAAADkrutTMnnKbHbJ876t1hTFxMRnKRF3dXXVxo0/pkrCk5OTtWnTT+lOZQUAAAAAQF4j93YeBa4A7uHhoRUrVig2NlZdunRRw4YNHdZHRkbq+PHjcnd3V5UqVVSiRAlJ0saNGzVy5Ej7nOCSdPnyZW3fvl1eXl6qX79+nh4HAAAAAOSU63egu+j4mlmKjz6VZ/16BpRRpY59ZTabspSEN2jQUNu3/6ozZ06rVKnS9uW7d/8uDw9PFSnCfNoAAAAAgIKB3Nt5FLgCuMlk0lNPPaXPPvtMb775pr744gv7MOenT5/Wyy+/rOTkZPXs2VNeXl7y8vJSy5YttXHjRk2aNEmvvfaaTCaTEhMTNWbMGF25ckXPPfecfHx88vnIAAAAACB74qNPKf7MifwOI8OqVauhiIhwbdy4weFO9B9/XKdWrR7UTz+tty/766+9mjlzug4ePCBXV1c1adJcL744RL6+vpKkuLg4ffzxJG3dukmurm7q0eM/qfrbt2+PZsyYpgMH/pafn5/uv7+ZXnjhRXl7kw8CAAAAADKG3PvOz73N+R1AWgYMGKB77rlHR48eVdu2bdWnTx/17NlTDz30kPbu3asmTZpo+PDh9vajR49WyZIlNXfuXLVv316DBg1S27Zt9d1336lGjRoaOHBgPh4NAAAAABReLVu21saNP9r/npSUpM2bf1br1m3sy/7++y+99NLzqlixkmbMmKuxY9/V33//pZdfHiir9fqc22PGjNCBA/v17rsf6aOPpumXX7bo9Ol/78g/cuSwBg8eoHvuaaR58xbpjTfG6+DBAxo6dKAMI/N30AMAAAAAcKcg93ZUIAvgHh4emjt3rl599VUFBQVp+/bt2rt3r6pUqaK33npLM2fOtM8DLknlypXTsmXL9OSTT+ry5cvauHGj3N3d9cILL2j+/Pny9vbOx6MBAAAAgMKrVasH9ffff+nMmdOSpB07fpOfn58slqr2NosXf6Xg4Cp6+eXXVKnS3QoNbaA335ygsLC/tX37rzpxIlw7dvymoUNfVZ069VSlSojeeGOcQ164aNF8NWhwj3r16qOgoPKqU6eu3nxzvP7++y/98ceuPD9uAAAAAADyCrm3owI3BLqNm5ubevfurd69e2eofalSpTRu3LhcjgoAgDvD9flqTLm2f6vVyNJ8NACAwqdq1WoqW7acfSi2n35ap9at2zq0OXbsiO65p7HDsuDgyvLxKaqjRw8rISFeklStWnX7+uLFA1S2bDn73w8ePKiTJ0/owQebpoohIiJcoaENcvKwAAAAAAAoMMi9HRXYAjgAAMgas9kkPz8vubjk3kAvKSlWxcZepQgOAMiQVq0e1MaNP+qxx57Uli2bNWvWPIf1hmHIlMZ9W4Zhlavrv2nrzf/uuLi4OrRt0+Yh9ejxXKr9+Pn5Z/MIAAAAAAAo2Mi9/0UBHAAAJ2M2m+TiYtYni35R1NmLOb7/ciWL6cWu98tsNlEABwBkSKtWrfXll19ozZpVKlu2nCpUqOiw/u67K2vPnj8dlh0+fEhXrlxRxYp3KyiovCRp3749uu++JpKky5cvKyoq0t6+UqVgHT9+VHfdFWRfduJEuKZNm6wXXnhRPj6Vc+fgAAAAAAAoAMi9/0UBHAAAJxV19qLCo2LyOwwAAFSlSojuuitIM2d+omee+U+q9U891U0vvthXH374rh5/vItiYi7oww/flcUSogYNGsrV1VUtW7bWRx+9Jzc3NwUEBGjGjE+UlJRk38fTTz+jF1/so0mTJqhz56d19epVffDBO7p69aruuqt8Xh4uAAAAAAB5jtz7XxTAAQAAAOAO4RlQ5o7tr1WrBzVv3hy1bt0m1bqaNWvr/fcna9asGXruue7y8vJW06Yt1L//QPswbKNGvalPPpmsN954XVarVY888rhiY2Nu2EctffjhNM2e/al6935Wnp4eCg29Ry++OETu7u45dhwAAAAAAOdG7n3n594mwzAYuzQDUlKsunDhSn6HAeQqV1ez/P299frk73LtqdH76lbQwG5N9Pe8txV/5kSO79+zVHlV7zlGMTFXlJxszfH9A3eC3P4sVyznrwmD2/M5A4BckJSUqOjoUwoIKCM3t38TR7PZJH9/T5nNLnkek9WaopiY+EI97UV674tN8eLecnEx50Nkziet3Du3v9uQowAAAACFC7l3wZSTuTdPgAMAAABAAWe1GoqJiZfZbMqXvgtzAg4AAAAAKBzIvZ0HBXAAAAAAuAOQDAMAAAAAkLvIvZ0DY7QBAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAACggDEM5hsrSHg/AAAAAMD5kOsVLDn5flAABwAAAIACwsXFRZKUmHgtnyPBjWzvh4uLaz5HAgAAAADILnLvgiknc2+ydwAAAAAoIMxmF3l6+iguLkaS5O5eRCaTKZ+jKrwMw1Bi4jXFxcXI09NHZjP3kAMAAADAnY7cu2DJjdybAjgAAAAAFCC+vsUlyZ6II/95evrY3xcAAAAAwJ2P3LvgycncmwI4AAAAABQgJpNJxYoFqGhRf6WkJOd3OIWei4srT34DAAAAgJMh9y5Ycjr3pgAOAAAAAAWQ2WyW2eye32EAAAAAAOC0yL2dE7exAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE6BAjgAAAAAAAAAAAAAwClQAAcAAAAAAAAAAAAAOAUK4AAAAAAAAAAAAAAAp0ABHAAAAAAAAAAAAADgFCiAAwAAAAAAAAAAAACcAgVwAAAAAAAAAAAAAIBToAAOAAAAAAAAAAAAAHAKFMABAAAAAAAAAAAAAE7BNb8DAAAAAAAA+SMpKUkLFizQihUrFB4eLi8vL9WqVUs9e/ZU06ZNU7U/f/68pk+fri1btujMmTMKDAxUu3btNGDAAHl7e+fDEQAAAAAA4IgCOAAAyBIXl9wdSMZqNWS1GrnaBwAAhZlhGBo6dKjWr18vX19f3Xfffbp27Zp+++03bdmyRUOGDFH//v3t7c+ePaunn35aUVFRslgsatGihfbt26fZs2dry5YtWrhwoXx8fPLxiAAAAAAAoAAOAAAyqVhRDxlWq3x9PXO1H6s1RTEx8RTBAQDIJYsXL9b69etVrVo1zZ07V/7+/pKksLAwde/eXZMnT1abNm0UHBwsSRo3bpyioqLUr18/DRs2TJKUmJioV199VWvXrtW0adM0YsSIfDseAAAAAAAkCuAAACCTvD3cZTKbdXzNLMVHn8qVPjwDyqhSx74ym00UwAEAyCWrVq2SJI0YMcJe/JakqlWrqlOnTlq0aJE2b96s4OBgnThxQuvXr1eZMmU0aNAge1t3d3eNHTtWmzdv1pIlSzRkyBB5eHjk+bEAAAAAAGBDARwAAGRJfPQpxZ85kd9hAACALJo3b56OHz+uKlWqpFp39epVSZKLi4skafPmzbJarWrevLnc3Nwc2hYtWlSNGzfWjz/+qO3bt6t58+a5HzwAAAAAAOnI3ck7AQAAAABAgVSkSBFVrVrVXuS22bBhg77//nt5enqqTZs2kqRDhw5JkiwWS5r7qly5skM7AAAAAADyC0+AAwAAAABQyF28eFGjRo3SkSNHdOzYMZUpU0YTJ05U6dKlJUnnzp2TJAUGBqa5vW35+fPn8yZgAAAAAADSQQEcAAAAAIBCLjIyUuvWrbP/3WQy6ciRI7r33nsl/Tskenrze9uW29plh6ur42B1Li7OMXidsxwHAAAAABR0FMABAAAAACjkKlWqpB07dsgwDG3btk3jx4/XuHHjFBcXp/79+9uHSTeZTGlubxiGw3+zymw2yd/fO1v7KKh8fT3zOwQAAAAAKBQogAMAAAAAUMh5e/9bdG7fvr1Kly6tbt26aebMmerRo4e8vLwkSdeuXUtze9tyT8/sFXmtVkOXLjk+Re7iYnaK4vGlS/FKSbHmdxgAAAAAcEfy9fXM8MhaFMABAAAAAICD0NBQlS9fXhEREQoPD1fJkiUl/TsX+M1uN0d4ZiQnO2eROCXF6rTHBgAAAAAFCRNQAQAAAABQyMTHx+udd97R8OHD0x223N3dXZKUnJwsi8UiSTp69GiabQ8fPixJCgkJyYVoAQAAAADIOArgAAAAAAAUMh4eHlqxYoVWr16tnTt3plofGRmp48ePy93dXVWqVFHTpk0lSRs3blRKSopD28uXL2v79u3y8vJS/fr18yR+AAAAAADSQwEcAAAAAIBCxmQy6amnnpIkvfnmmzp79qx93enTp/Xyyy8rOTlZXbt2lZeXl8qVK6eWLVvq5MmTmjRpkv2p8cTERI0ZM0ZXrlzR008/LR8fn3w5HgAAAAAAbJgDHAAAAACAQmjAgAHavXu3du7cqbZt26p+/fpKSkrS3r17dfXqVTVp0kTDhw+3tx89erT279+vuXPnatOmTapSpYr27dunf/75RzVq1NDAgQPz8WgAAAAAALiOJ8ABAAAAACiEPDw8NHfuXL366qsKCgrS9u3btXfvXlWpUkVvvfWWZs6caZ8HXJLKlSunZcuW6cknn9Tly5e1ceNGubu764UXXtD8+fPl7e2dj0cDAAAAAMB1PAEOAAAAAEAh5ebmpt69e6t3794Zal+qVCmNGzcul6MCAAAAACDreAIcAAAAAAAAAAAAAOAUKIADAAAAAAAAAAAAAJwCBXAAAAAAAAAAAAAAgFOgAA4AAAAAAAAAAAAAcAoUwAEAAAAAAAAAAAAAToECOAAAAAAAAAAAAADAKVAABwAAAAAAAAAAAAA4Bdf8DgAAAAAAAAD/MptNMptNubZ/q9WQ1Wrk2v4BAAAAID8V2AK41WrV0qVL9c033+jw4cNKSkpS2bJl1bp1az3//PPy9fV1aN+oUSPFxsamu7+9e/eqSJEiuRw1AAAAAABA1pnNJvn5ecnFJfcG7UtJsSo29ipFcAAAAABOqUAWwK1WqwYNGqT169fLw8NDtWvXlpeXl/bu3avZs2dr/fr1WrhwoUqUKCFJioqKUmxsrEqVKqWGDRumuU+zmdHeAQAAAABAwWY2m+TiYtYni35R1NmLOb7/ciWL6cWu98tsNlEABwAAAOCUCmQBfPny5Vq/fr0qVqyo2bNnKygoSJIUFxen4cOHa+PGjRo3bpw+/vhjSdKBAwckSe3atdPrr7+eX2EDAAAAAADkiKizFxUeFZPfYQAAAADAHadAPha9fPlySdKIESPsxW9J8vHx0YQJE2QymbRhwwYlJCRIkvbv3y9JqlGjRt4HCwAAAAAAAAAAAAAoEApkAdzPz09333236tatm2pd8eLFVaxYMSUlJSkm5vqd0LYnwGvWrJmXYQIAAAAAAAAAAAAACpACOQT6jBkz0l0XGRmp2NhYubm5qXjx4pKuPwHu4eGhv/76S6NGjdLhw4dlMpkUGhqqAQMGqE6dOnkVOgAAAAAAAAAAAAAgnxTIJ8BvxTbvd4sWLVSkSBFFR0fr7NmzSkhI0Kuvviqr1apGjRrJz89PP//8s7p166bvvvsuf4MGAAAAAAAAAAAAAOS6AvkEeHoWLFigNWvWyNPTU0OHDpX07/zf/v7++vTTT1WvXj1JkmEYmjdvniZOnKiRI0cqNDRUpUuXzlb/rq533P0CQKa4uDjPOe5MxwJkljOd/850LAAAAAAAAACA3HfHFMDnz5+vCRMmyGQyafz48QoODpYkNW3aVFu2bJFhGCpVqpS9vclkUq9evbRz505t2LBBy5Yt08CBA7Pcv9lskr+/d7aPA0De8PX1zO8QAOQAPssAAAAAAAAAgMwo8AVwwzD0/vvva/bs2XJxcdH48ePVoUMH+3qTyaSSJUumu33Lli21YcMG/fXXX9mKw2o1dOnS1WztAyjoXFzMTlNsunQpXikp1vwOA8gXfJYBAMhbvr6ejFoCAAAAAEABUaAL4AkJCXrllVe0bt06eXh46IMPPlDr1q0ztY/AwEBJUnx8fLbjSU7mB3jgTpGSYuUzCzgBPssAAAAAAAAAgMwosAXwuLg49enTR3/88YcCAgL06aefqk6dOqnaLVmyRL/++qs6duyYZnE8MjJSkrI9/zcAAAAAAAAAAAAAoGArkAXwpKQk9evXT3/88YcqVKigOXPmKCgoKM22Z86c0dq1axUfH5+qAG4YhlatWiVJatKkSa7HDQAAAAAAAAAAAADIPwVykrJp06Zp165dCgwM1IIFC9ItfkvSY489Jnd3d/3888/6+uuv7cutVqumTJmivXv3qnLlymrXrl1ehA4AAAAAAAAAAAAAyCcF7gnwixcvat68eZKkgIAATZo0Kd22I0aMUFBQkN58802NGjVKo0eP1pdffqmKFSsqLCxMERERKlGihKZOnSo3N7e8OgQAAAAAAAAAAAAAQD4ocAXwPXv2KD4+XpIUFhamsLCwdNu+9NJLKlGihJ544glVqlRJs2bN0u7du3Xs2DGVLFlSzz77rPr376+AgIC8Ch8AAAAAAAAAAAAAkE8KXAG8WbNmOnjwYKa3Cw0N1aeffpoLEQEAAAAAAAAAAAAA7gQFcg5wAAAAAAAAAAAAAAAyiwI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgF1/wOAAAAAAAA5A+r1aqlS5fqm2++0eHDh5WUlKSyZcuqdevWev755+Xr6+vQvlGjRoqNjU13f3v37lWRIkVyOWoAAAAAANJHARwAAAAAgELIarVq0KBBWr9+vTw8PFS7dm15eXlp7969mj17ttavX6+FCxeqRIkSkqSoqCjFxsaqVKlSatiwYZr7NJsZaA4AAAAAkL8ogAMAAAAAUAgtX75c69evV8WKFTV79mwFBQVJkuLi4jR8+HBt3LhR48aN08cffyxJOnDggCSpXbt2ev311/MrbAAAAAAAbolbswEAAAAAKISWL18uSRoxYoS9+C1JPj4+mjBhgkwmkzZs2KCEhARJ0v79+yVJNWrUyPtgAQAAAADIIArgAAAAAAAUQn5+frr77rtVt27dVOuKFy+uYsWKKSkpSTExMZL+fQK8Zs2aeRkmAAAAAACZwhDoAAAAAAAUQjNmzEh3XWRkpGJjY+Xm5qbixYtLuv4EuIeHh/766y+NGjVKhw8flslkUmhoqAYMGKA6derkVegAAAAAAKSLJ8ABAAAAAIAD27zfLVq0UJEiRRQdHa2zZ88qISFBr776qqxWqxo1aiQ/Pz/9/PPP6tatm7777rv8DRoAAAAAAPEEOAAAAAAAuMGCBQu0Zs0aeXp6aujQoZL+nf/b399fn376qerVqydJMgxD8+bN08SJEzVy5EiFhoaqdOnS2erf1dXxXn0XF+e4dz+jx5FXx+ssrysAAAAA3IwCOAAAAAAAkCTNnz9fEyZMkMlk0vjx4xUcHCxJatq0qbZs2SLDMFSqVCl7e5PJpF69emnnzp3asGGDli1bpoEDB2a5f7PZJH9/72wfR0Hk6+uZ3yE4KGjxAAAAAEBOoQAOAAAAAEAhZxiG3n//fc2ePVsuLi4aP368OnToYF9vMplUsmTJdLdv2bKlNmzYoL/++itbcVithi5duuqwzMXF7BTF2kuX4pWSYr1tu7w63ozGAwAAAAAFga+vZ4ZHsqIADgAAAABAIZaQkKBXXnlF69atk4eHhz744AO1bt06U/sIDAyUJMXHx2c7nuRk5yzKpqRYC9SxFbR4AAAAACCnUAAHAAAAAKCQiouLU58+ffTHH38oICBAn376qerUqZOq3ZIlS/Trr7+qY8eOaRbHIyMjJSnb838DAAAAAJBdFMABAAAAACiEkpKS1K9fP/3xxx+qUKGC5syZo6CgoDTbnjlzRmvXrlV8fHyqArhhGFq1apUkqUmTJrkeNwAAAAAAt5KxgdIBAAAAAIBTmTZtmnbt2qXAwEAtWLAg3eK3JD322GNyd3fXzz//rK+//tq+3Gq1asqUKdq7d68qV66sdu3a5UXoAAAAAACkiyfAAQAAAAAoZC5evKh58+ZJkgICAjRp0qR0244YMUJBQUF68803NWrUKI0ePVpffvmlKlasqLCwMEVERKhEiRKaOnWq3Nzc8uoQAAAAAABIEwVwAAAAAAAKmT179ig+Pl6SFBYWprCwsHTbvvTSSypRooSeeOIJVapUSbNmzdLu3bt17NgxlSxZUs8++6z69++vgICAvAofOcDFJXcHBbRaDVmtRq72AQAAAABpoQAOAAAAAEAh06xZMx08eDDT24WGhurTTz/NhYiQV4oV9ZBhtcrX1zNX+7FaUxQTE08RHAAAAECeowAOAAAAAABQSHh7uMtkNuv4mlmKjz6VK314BpRRpY59ZTabKIADAAAAyHMUwAEAAAAAAAqZ+OhTij9zIr/DAAAAAIAcl7sTPgEAAAAAAAAAAAAAkEcogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgFCuAAAAAAAAAAAAAAAKdAARwAAAAAAAAAAAAA4BQogAMAAAAAAAAAAAAAnAIFcAAAAAAAAAAAAACAU6AADgAAAAAAAAAAAABwChTAAQAAAAAAAAAAAABOgQI4AAAAAAAAAAAAAMApUAAHAAAAAAAAAAAAADgF1/wOID1Wq1VLly7VN998o8OHDyspKUlly5ZV69at9fzzz8vX19eh/fnz5zV9+nRt2bJFZ86cUWBgoNq1a6cBAwbI29s7n44CAAAAAAAAAAAAAJBXCuQT4FarVYMGDdKYMWMUFhamGjVq6L777tOlS5c0e/Zsde7cWefPn7e3P3v2rLp06aKvvvpKHh4eatGihaxWq2bPnq2uXbsqLi4uH48GAAAAAAAAAAAAAJAXCmQBfPny5Vq/fr0qVqyoNWvWaMGCBfrss8+0fv16tWzZUhERERo3bpy9/bhx4xQVFaV+/fpp9erVmjJlin744Qc99NBDOnjwoKZNm5aPRwMAAAAAAAAAAAAAyAsFtgAuSSNGjFBQUJB9uY+PjyZMmCCTyaQNGzYoISFBJ06c0Pr161WmTBkNGjTI3tbd3V1jx46Vt7e3lixZooSEhDw/DgAAAAAAAAAAAABA3imQBXA/Pz/dfffdqlu3bqp1xYsXV7FixZSUlKSYmBht3rxZVqtVzZs3l5ubm0PbokWLqnHjxrp69aq2b9+eR9EDAAAAAAAAAAAAAPJDgSyAz5gxQ2vXrpW/v3+qdZGRkYqNjZWbm5uKFy+uQ4cOSZIsFkua+6pcubIk2dsBAAAAAAAAAAAAAJxTgSyA38rHH38sSWrRooWKFCmic+fOSZICAwPTbG9bfv78+TyJDwAAAAAAAAAAAACQP1zzO4DMWLBggdasWSNPT08NHTpUknT16lVJkoeHR5rb2Jbb2mWHq+sdd78AkCkuLs5zjjvTsQCZ5UznvzMdCwAAAAAAAAAg990xBfD58+drwoQJMplMGj9+vIKDgyVJLi4ukiSTyZTmdoZhOPw3q8xmk/z9vbO1DwB5x9fXM79DAJAD+CwDAAAAAAAAADKjwBfADcPQ+++/r9mzZ8vFxUXjx49Xhw4d7Ou9vLwkSdeuXUtze9tyT8/s/YButRq6dCn7T5EDBZmLi9lpik2XLsUrJcWa32EA+YLPMgAAecvX15NRSwAAAAAAKCAKdAE8ISFBr7zyitatWycPDw998MEHat26tUObkiVLSpJ9LvCb3W6O8MxITuYHeOBOkZJi5TMLOAE+ywAAAAAAAACAzCiwBfC4uDj16dNHf/zxhwICAvTpp5+qTp06qdpZLBZJ0tGjR9Pcz+HDhyVJISEhuRcsAAAAAAAAAAAAACDfFcgx2pKSktSvXz/98ccfqlChgpYsWZJm8VuSmjZtKknauHGjUlJSHNZdvnxZ27dvl5eXl+rXr5/rcQMAAAAAAAAAAAAA8k+BLIBPmzZNu3btUmBgoBYsWKCgoKB025YrV04tW7bUyZMnNWnSJBmGIUlKTEzUmDFjdOXKFT399NPy8fHJq/ABAAAAAAAAAAAAAPmgwA2BfvHiRc2bN0+SFBAQoEmTJqXbdsSIESpRooRGjx6t/fv3a+7cudq0aZOqVKmiffv26Z9//lGNGjU0cODAvAofAAAAAAAAAAAAAJBPClwBfM+ePYqPj5ckhYWFKSwsLN22L730kkqUKKFy5cpp2bJlmjp1qn7++Wdt3LhRZcuW1QsvvKC+ffvK29s7r8IHAAAAAAAAAAAAAOSTAlcAb9asmQ4ePJjp7UqVKqVx48blQkQAAAAAAAAAAAAAgDtBgZwDHAAAAAAAAAAAAACAzCpwT4ADAAAAAACgcDGbTTKbTbm2f6vVkNVq5Nr+AQAAABQcFMABAAAAAACQb8xmk/z8vOTiknsDFaakWBUbe5UiOAAAAFAIUAAHAAAAAABAvjGbTXJxMeuTRb8o6uzFHN9/uZLF9GLX+2U2myiAAwAAAIUABXAAAAAAAADku6izFxUeFZPfYQAAAAC4w+Xe2FIAAAAAAAAAAAAAAOShbBXAV65cqV27dt223Y8//qgpU6ZkpysAAAAAAAolcm8AAAAAADIuWwXwESNG6Ouvv75tu1WrVmnu3LnZ6QoAAAAAgEKJ3BvIGS4uZrm65s4fs9mU34cHAAAA4P9lag7wlStXKjk52WFZRESEli1blu42cXFx+vXXX+Xm5pa1CAEAAAAAKETIvYGcVayohwyrVb6+nrnWh9WaopiYeFmtRq71AQAAACBjMlUA379/vxYsWCCT6fpdrSaTSXv27NGePXtuuZ1hGHrssceyHiUAAAAAAIUEuTeQs7w93GUym3V8zSzFR5/K8f17BpRRpY59ZTabKIADAAAABUCmCuCDBg1SXFyc/e8rVqxQ+fLlVb9+/XS3KVKkiCpWrKiuXbtmPUoAAAAAAAoJcm8gd8RHn1L8mRP5HQYAAACAXJapAnjRokU1ceJE+99XrFihunXrOiwDAAAAAABZR+4NAAAAAEDWZaoAfrOwsLCcigMAAAAAAKSB3BsAAAAAgIzLVgH8RtHR0YqPj5dhpD/XUVBQUE51BwAAAABAoUPuDQAAAADArWW7AP7FF19o1qxZunDhwi3bmUwm/f3339ntDgAAAACAQofcGwAAAACAjMlWAfybb77RO++8I0lyd3eXv7+/XFxcciQwAAAAAABA7g0AAAAAQGZkqwD+5ZdfymQyadSoUerSpYvc3NxyKi4AAAAAACBybwAAAAAAMiNbBfCjR4+qbt266t69e07FAwAAAAAAbkDuDQAAAABAxmWrAO7p6Sl/f/+cigUAAAAAANwkN3Nvq9WqpUuX6ptvvtHhw4eVlJSksmXLqnXr1nr++efl6+vr0P78+fOaPn26tmzZojNnzigwMFDt2rXTgAED5O3tnSsxAgAAAACQGebsbNywYUPt3btX8fHxORUPAAAAAAC4QW7l3larVYMGDdKYMWMUFhamGjVq6L777tOlS5c0e/Zsde7cWefPn7e3P3v2rLp06aKvvvpKHh4eatGihaxWq2bPnq2uXbsqLi4uR+MDAAAAACArslUAHzp0qOLj4/X666/r4sWLORUTAAAAAAD4f7mVey9fvlzr169XxYoVtWbNGi1YsECfffaZ1q9fr5YtWyoiIkLjxo2ztx83bpyioqLUr18/rV69WlOmTNEPP/yghx56SAcPHtS0adNyLDYAAAAAALIqW0OgL168WLVr19b3339vT5p9fX1lMplStTWZTPryyy+z0x0AAAAAAIVObuXey5cvlySNGDFCQUFB9uU+Pj6aMGGC7rvvPm3YsEEJCQk6e/as1q9frzJlymjQoEH2tu7u7ho7dqw2b96sJUuWaMiQIfLw8MjmEQMAAAAAkHXZKoDPmzfP/v/Jyck6cuRIum3TSswBAAAAAMCt5Vbu7efnp7vvvlt169ZNta548eIqVqyYYmNjFRMTo82bN8tqtap58+Zyc3NzaFu0aFE1btxYP/74o7Zv367mzZtnOAYAAAAAAHJatgrg8+fPz6k4AAAAAABAGnIr954xY0a66yIjIxUbGys3NzcVL15chw4dkiRZLJY021euXFk//vijDh06RAEcAAAAAJCvslUAb9iwYU7FAQAAAAAA0pAfuffHH38sSWrRooWKFCmic+fOSZICAwPTbG9bfv78+TyJDwAAAACA9GSrAH6jpKQkHThwQKdOnVKJEiVUv359/fPPPypbtmxOdQEAAAAAQKGWF7n3ggULtGbNGnl6emro0KGSpKtXr0pSuvN725bb2mWHq6vZ4e8uLuZ0Wt5ZMnocznK8UuE7Zmc5DgAAAOBOl+0CeHJysj755BN99dVXunz5siSpU6dOql+/vl577TVduXJFH330kSpUqJDtYAEAAAAAKIzyKveeP3++JkyYIJPJpPHjxys4OFiS5OLiIin9OcYNw3D4b1aZzSb5+3tnax8Fla+vZ36HkOcK2zEXtuMFAAAACqpsFcCTk5P1/PPPa9u2bXJ1dVXNmjW1b98++/orV67o77//Vvfu3bVy5UqVKFEi2wEDAAAAAFCY5EXubRiG3n//fc2ePVsuLi4aP368OnToYF/v5eUlSbp27Vqa29uWe3pmrwBotRq6dMnxKXIXF7NTFBYvXYpXSor1tu2c5XilwnfMGT1eAAAAAJnn6+uZ4VGXslUA/+qrr/TLL7+oSZMmmjBhgkqWLKmqVava1y9cuFBvvvmmVq5cqTlz5ui1117LTncAAAAAABQ6uZ17JyQk6JVXXtG6devk4eGhDz74QK1bt3ZoU7JkSUmyzwV+s9vNEZ4ZycnOWUBMSbE67bGlp7Adc2E7XgAAAKCgytbkRCtWrJCfn58mT55sT4Zv5OHhobFjx6pkyZLavHlzdroCAAAAAKBQys3cOy4uTr169dK6desUEBCg+fPnpyp+S5LFYpEkHT16NM39HD58WJIUEhKSqf4BAAAAAMhp2SqAh4eHq0GDBvL2Tn9+Ljc3N9WuXVv//PNPdroCAAAAAKBQyq3cOykpSf369dMff/yhChUqaMmSJapTp06abZs2bSpJ2rhxo1JSUhzWXb58Wdu3b5eXl5fq16+f4f4BAAAAAMgN2SqAu7q66tKlS7dtFxsbK1fXbI22DgAAAABAoZRbufe0adO0a9cuBQYGasGCBQoKCkq3bbly5dSyZUudPHlSkyZNkmEYkqTExESNGTNGV65c0dNPPy0fH58M9w8AAAAAQG7IVlW6WrVq2rdvn6KiolSuXLk020RGRmrfvn2qXbt2droCAAAAAKBQyo3c++LFi5o3b54kKSAgQJMmTUq37YgRI1SiRAmNHj1a+/fv19y5c7Vp0yZVqVJF+/bt0z///KMaNWpo4MCBmT84AAAAAAByWLaeAO/atavi4+M1YMAA/f3336nWHzx4UC+99JISExPVuXPn7HQFAAAAAEChlBu59549exQfHy9JCgsL0+rVq9P9c+XKFUnXnwJftmyZnnzySV2+fFkbN26Uu7u7XnjhBc2fP/+WQ7QDAAAAAJBXsvUEePv27bVt2zYtW7ZMTzzxhIoWLSqTyaQtW7aoRYsWOnPmjAzDUIcOHfTII4/kVMwAAAAAABQauZF7N2vWTAcPHsx0LKVKldK4ceMyvR0AAAAAAHkl2xNzjxs3TnXr1tWcOXN0/PhxSVJMTIwkqWzZsurZs6d69OiR3W4AAAAAACi0yL0BAAAAAMiYbBfAJalz587q3Lmzzp07p1OnTslqtSowMDDduckAAAAAAEDmkHsDAAAAAHB72ZoD3CYmJkY7duxQYGCgateurbp16yo+Pl5fffWVzp07lxNdAAAAAABQqJF7AwAAAABwe9kugH/99ddq1qyZ3nnnHYfle/bs0dixY9W2bVt999132e0GAAAAAIBCi9wbAAAAAICMyVYB/JdfftGYMWPk6uqqxo0bO6yrX7++evfuLcMwNHz4cP3222/ZChQAAAAAgMKI3BsAAAAAgIzLVgF89uzZcnV11fz58/Xqq686rKtYsaJeeeUVzZ8/XyaTSbNmzcpWoAAAAAAAFEbk3gAAAAAAZFy2CuCHDh1So0aNVKtWrXTb1KpVS/Xr19eff/6Zna4AAAAAACiUyL0BAAAAAMi4bBXA4+Pj5enpedt2fn5+Sk5Ozk5XAAAAAAAUSuTeAAAAAABkXLYK4BUrVtTOnTsVFxeXbptr165p165dKl++fHa6AgAAAACgUCL3BgAAAAAg47JVAH/44Yd18eJFDRo0SOfPn0+1PiYmRi+//LIuXLigTp06ZacrAAAAAAAKJXJvAAAAAAAyzjU7G3fv3l3fffedtm3bphYtWqhmzZoqU6aMJOn06dPav3+/EhMTVbt2bfXq1Ssn4gUAAAAAoFAh9wYAAAAAIOOyVQB3c3PT3Llz9dFHH+mbb77Rn3/+qT///NO+vkiRIuratateeeUVubu7ZzdWAAAAAAAKHXJvAAAAAAAyLlsFcEny9vbWqFGj9Oqrr+qvv/7SuXPnlJKSosDAQNWoUUNeXl45EScAAAAAAIUWuTcAAAAAABmTrQJ4jx49VLFiRb399ttyd3dXaGhoTsUFAAAAAABE7g0AAAAAQGZkqwC+d+9emc3mnIoFAAAAAADchNwbAAAAAICMy1YG7e3tLcMwcioWAAAAAABwE3JvAAAAAAAyLlsF8P79+2vHjh36/PPPlZiYmFMxAQAAAACA/0fuDQAAAABAxmVrCPTIyEhVqFBBkyZN0ocffqgKFSrI19c3zaHZTCaTvvzyy+x0BwAAAABAoUPuDQAAAABAxmWrAD5v3jz7/ycnJ+vo0aPptjWZTNnpCgAAAACAQoncGwAAAACAjMtWAXz+/Pk5FQcAAAAAAEgDuTcAAAAAABmXrQJ4w4YNcyoOAAAAAACQBnJvAAAAAAAyLlsF8BslJSXpwIEDOnXqlEqUKKH69evrn3/+UdmyZXOqCwAAAAAACjVybwAAAAAAbi3bBfDk5GR98skn+uqrr3T58mVJUqdOnVS/fn299tprunLlij766CNVqFAh28ECAAAAAFAYkXsDAAAAAJAx5uxsnJycrOeff14zZsxQfHy8atasKcMw7OuvXLmiv//+W927d9f58+ezHSwAAAAAAIUNuTcAAAAAABmXrQL4V199pV9++UX333+/fvzxRy1dutRh/cKFC/Xoo4/q/PnzmjNnTrYCBQAAAACgMCL3BgAAAAAg47JVAF+xYoX8/Pw0efJklSxZMtV6Dw8PjR37f+zdd3hUZf738c9MAiQBQu9goSWK0rsiCkhTSgQERWNBijTBdSn+QGRBEERYFQSBBQVcECUJRYTQkR5qlKaCUgIm9BISQpJ5/uBJ1pgAaTNn5pz367r2Wj3nzsz39kz7nO8pY1SyZElt3rw5J08FAAAAAIAlkb0BAAAAAMi8HDXA//jjD9WtW1f58+e/45g8efKoevXqOnPmTE6eSmFhYQoICNC2bdsyXN+gQQMFBATc8X83b97M0fMDAAAAAGAEV2ZvAAAAAAA8nXeO/tjbW1evXr3nuMuXL8vbO/tPFRkZqTFjxtxxfVRUlC5fvqxSpUqpfv36GY6x23PU6wcAAAAAwBCuyt4AAAAAAJhBjpLxQw89pJ9++klRUVEqV65chmNOnTqln376SdWrV8/Wc6xfv15Dhw7V9evX7zjm8OHDkqTWrVvr3XffzdbzAAAAAADgjlyRvQEAAAAAMIscnRb9wgsvKC4uTn379tWhQ4fSrT969KgGDBighIQEde7cOUuPHR0dreHDh6tv3766deuWihcvfsexBw8elCRVq1YtaxMAAAAAAMDNOTN7AwAAAABgNjk6A7xt27batm2bvvvuO3Xq1EkFCxaUzWbTjz/+qCeffFLR0dFyOBx65pln1KFDhyw99pQpUxQaGqpHHnlE48aN09ixY3X+/PkMx6acAf7II4/kZDoAAAAAALgdZ2ZvAAAAAADMJsc3Bxs7dqxq1qyp//znP/r9998lSZcuXZIklS1bVq+88oqCg4Oz/LgVK1bUhAkT1L59+3vev/vgwYPy8fHRzz//rBEjRujXX3+VzWZT7dq11bdvX9WoUSPrEwMAAAAAwE04K3sDAAAAAGA2OW6AS1Lnzp3VuXNnnTt3TmfPnlVycrJKlChxx3uTZUavXr0yNe7ChQuKiYmRJA0ZMkQ1a9ZUgwYN9Msvv2jjxo3asmWLPvroI7Vt2zbbtQAAAAAAYDRnZG8AAAAAAMwmyw3wpKQk/fe//1V4eLjOnz+vsmXLql27durYsaNKlCihEiVKOKPOO0q5/3eRIkU0ffp01apVS5LkcDj01Vdfafz48Ro+fLhq166t0qVL5+i5vL1zdMt0wO15eZnnNW6muQBZZabXv5nmAgBAVrhb9gYAAAAAwFNkqQGekJCgHj16aPfu3XI4HJKk33//Xdu2bdOGDRv0ySefOKXIu2nSpIl+/PFHORwOlSpVKnW5zWbTq6++qoiICK1du1bfffed+vfvn+3nsdttKlIkf26UDMAF/P19jS4BQC7gvQwAsCJ3zN4AAAAAAHiKLDXAFy1apIiICJUqVUo9e/ZUhQoV9Msvv2j27NkKDw/X0qVL1aFDB2fVmiGbzaaSJUvecf1TTz2ltWvX6ueff87R8yQnO3T16o0cPQbg7ry87KZpNl29GqekpGSjywAMwXsZAADX8vf3zdWrlrhj9gYAAAAAwFNkqQG+atUq+fj4aOHChSpbtqwkqWnTpmrSpImCgoL0/fffu10IT7ksXFxcXI4fKzGRHfCAp0hKSuY9C5gA72UAgBV5YvYGAAAAAMBdZOkQ9WPHjqlu3bqpATxFYGCgqlWrpiNHjuRqcZnxzTffaNCgQVq7dm2G60+dOiVJOb7/NwAAAAAAruCO2RsAAAAAAE+RpQZ4bGysChUqlOG68uXL6/Lly7lRU5ZER0frhx9+0LfffptuncPh0NKlSyVJjz/+uKtLAwAAAAAgy9wxewMAAAAA4Cmy1ABPTEyUl5dXhuvy5MmjW7du5UpRWREUFKS8efNq48aNWrx4cery5ORkffrpp4qMjFTlypXVunVrl9cGAAAAAEBWuWP2BgAAAADAU2TpHuDuqEKFCnr//fc1YsQIjRw5UgsWLNADDzygI0eO6MSJEypevLg+++wz5cmTx+hSAQAAAAAAAAAAAABOlKUzwN1Vp06d9PXXX6tZs2aKjo7W+vXrlZiYqJdfflnLli1TxYoVjS4RAAAAAAAAAAAAAOBkHnMG+Pz58++6vnbt2po+fbqLqgEAAAAAAAAAAAAAuJssN8DXrl2r5s2bp1t+6dIlScpwnSTZbDatXbs2q08HAAAAAIDlkL0BAAAAAMieLDfAb9y4oRs3btxxfVRUVIbLbTZbVp8KAAAAAABLInsDAAAAAJA9WWqAz5s3z1l1AAAAAAAAkb0BAAAAAMiJLDXA69ev76w6AAAAAACAyN4AAAAAAOSE3egCAAAAAAAAAAAAAADIDTTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApuBtdAEAAAAAAMA9hIWFaejQoZo7d64aN26cbn2DBg10+fLlO/59ZGSk8uXL58QKAQAAAAC4OxrgAAAAAABAkZGRGjNmzB3XR0VF6fLlyypVqpTq16+f4Ri7nQvNAQAAAACMRQMcAAAAAACLW79+vYYOHarr16/fcczhw4clSa1bt9a7777rqtIAAAAAAMgSGuAAAAAAAFhUdHS0/v3vfys0NFQ+Pj4qXry4zp8/n+HYgwcPSpKqVavmyhIBAAAAAMgSrk0GAAAAAIBFTZkyRSEhIapWrZq++eYbVaxY8Y5jU84Af+SRR1xVHgAAAAAAWcYZ4AAAAAAAWFTFihU1YcIEtW/f/p737z548KB8fHz0888/a8SIEfr1119ls9lUu3Zt9e3bVzVq1HBR1QAAAAAA3BkNcDdnt9tkt9uc9vjJyQ4lJzuc9vgAAAAAAPfVq1evTI27cOGCYmJiJElDhgxRzZo11aBBA/3yyy/auHGjtmzZoo8++kht27Z1ZrkAAAAAANwTDXA3ZrfbVKSIr+x2L6c9R3Jyki5diqMJDgAAAAC4o5T7fxcpUkTTp09XrVq1JEkOh0NfffWVxo8fr+HDh6t27doqXbp0jp7L2zvtmeheXua4e1tm52GW+UrWm7NZ5gEAAAB4Ohrgbuz22d9e+n3FLMVdOJvrj+9brIwefLan7HYbDXAAAAAAwB01adJEP/74oxwOh0qVKpW63Gaz6dVXX1VERITWrl2r7777Tv3798/289w+EDx/bpTsdvz9fY0uweWsNmerzRcAAABwVzTAPUDchbOKiz5pdBkAAAAAAIuy2WwqWbLkHdc/9dRTWrt2rX7++eccPU9yskNXr95Is8zLy26KxuLVq3FKSkq+5zizzFey3pwzO18AAAAAWefv75vpqy7RAAcAAAAAADlSokQJSVJcXFyOHysx0ZwNxKSkZNPO7U6sNmerzRcAAABwV9ycCAAAAAAA3NU333yjQYMGae3atRmuP3XqlCTl+P7fAAAAAADkFGeAAwAAAACAu4qOjtYPP/yguLg4tWjRIs06h8OhpUuXSpIef/xxI8oDAAAAACAVZ4ADAAAAAIC7CgoKUt68ebVx40YtXrw4dXlycrI+/fRTRUZGqnLlymrdurWBVQIAAAAAwBngAAAAAADgHipUqKD3339fI0aM0MiRI7VgwQI98MADOnLkiE6cOKHixYvrs88+U548eYwuFQAAAABgcZwBDgAAAAAA7qlTp076+uuv1axZM0VHR2v9+vVKTEzUyy+/rGXLlqlixYpGlwgAAAAAAGeAAwAAAACA2+bPn3/X9bVr19b06dNdVA0AAAAAAFnHGeAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU6ABDgAAAAAAAAAAAAAwBRrgAAAAAAAAAAAAAABToAEOAAAAAAAAAAAAADAFGuAAAAAAAAAAAAAAAFOgAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU/A2ugBPZ7fbZLfbnPLYXl4cnwAAAADkFmf+dk+RnOxQcrLDqc8BAAAAAACAO/OYBnhYWJiGDh2quXPnqnHjxunWnz9/Xp9//rl+/PFHRUdHq0SJEmrdurX69u2r/PnzO6Umu92mwoX9aFQDAAAAbs5ut6lIEV/Z7V5OfZ7k5CRduhRHExwAAAAAAMAgHtEAj4yM1JgxY+64PiYmRt26dVNUVJSqVq2qJ598Uj/99JNmz56tH3/8Uf/9739VoECBXK/LbrfJy8uuaQu3KirmSq4/fo2AsuraumauPy4AAABgNbfP/vbS7ytmKe7CWac8h2+xMnrw2Z6y2200wAEAAAAAAAzi9g3w9evXa+jQobp+/fodx4wdO1ZRUVHq1auX/vGPf0iSEhISNGTIEP3www+aOnWqhg0b5rQao2Ku6I+oS7n+uGVL+Of6YwIAAABWFnfhrOKiTxpdBgAAAAAAAJzEba/dHR0dreHDh6tv3766deuWihcvnuG4kydPas2aNSpTpowGDhyYujxv3rwaM2aM8ufPr2+++Ubx8fGuKh0AAAAAAAAAAAAAYAC3bYBPmTJFISEhqlatmr755htVrFgxw3GbN29WcnKymjZtqjx58qRZV7BgQTVs2FA3btzQzp07XVE2AAAAAAAAAAAAAMAgbtsAr1ixoiZMmKBvv/1WAQEBdxz3yy+/SJKqVq2a4frKlSunGQcAAADAPdntNnl7253yPy8vt40+AAAAAAAAyEVuew/wXr16ZWrcuXPnJEklSpTIcH3K8vPnz+dOYQAAAABynd1uU+HCfjSqAQAAAAAAkCNu2wDPrBs3bkiSfHx8MlyfsjxlXE54e6fdGWeWnXNmmQdyzkyvBTPNBcgqM73+zTQXAHfn5XX7LO1pC7cqKuZKrj9+jYCy6tq6Zq4/bkb47AIAAAAAADCOxzfAvby8JEk2my3D9Q6HI83/Z5fdblORIvlz9Bjuyt/f1+gSgFzH6xowB97LgPVExVzRH1GXcv1xy5bwz/XHvBM+uwAAAAAAAIzj8Q1wPz8/SdLNmzczXJ+y3Nc3ZzuhkpMduno17VnkXl52U+zcuno1TklJyUaXATdglte0xOsa1sZ7GYAn4rMLnszf35cz/wEAAAAAcBMe3wAvWbKkpP/dC/zv7nWP8KxITDTnTqykpGTTzg3WxesaMAfeywA8EZ9dAAAAAAAAxvH4Q9SrVq0qSTp27FiG63/99VdJUkBAgMtqAgAAAAAAAAAAAAC4nsc3wJs0aSJJ2rBhg5KSktKsu3btmnbu3Ck/Pz/VqVPHiPIAAAAAAAAAAAAAAC7i8Q3wcuXK6amnntLp06f10UcfyeFwSJISEhL03nvvKTY2Vt26dVOBAgUMrhQAAAAAAAAAAAAA4Ewefw9wSRo5cqQOHjyouXPnatOmTapSpYp++uknnTlzRtWqVVP//v2NLhEAAAAAAAAAAAAA4GQefwa4dPss8O+++05dunTRtWvXtGHDBuXNm1d9+vTRvHnzlD9/fqNLBAAAAAAAAAAAAAA4mcecAT5//vy7ri9VqpTGjh3romoAAAAAAAAAAAAAAO7GFGeAAwAAAAAAAAAAAABAAxwAAAAAAEiSwsLCFBAQoG3btmW4/vz58/rXv/6lp59+WtWrV1fz5s310UcfKTY21sWVAgAAAACQMRrgAAAAAABAkZGRGjNmzB3Xx8TE6Pnnn9fXX38tHx8fPfnkk0pOTtbs2bP1wgsv6Pr16y6sFgAAAACAjNEABwAAAADA4tavX68ePXrctYk9duxYRUVFqVevXlq+fLk+/fRTrV69Wm3atNHRo0c1depUF1YMAAAAAEDGaIADAAAAAGBR0dHRGj58uPr27atbt26pePHiGY47efKk1qxZozJlymjgwIGpy/PmzasxY8Yof/78+uabbxQfH++q0gEAAAAAyBANcAAAAAAALGrKlCkKCQlRtWrV9M0336hixYoZjtu8ebOSk5PVtGlT5cmTJ826ggULqmHDhrpx44Z27tzpirIBAAAAALgjGuAAAAAAAFhUxYoVNWHCBH377bcKCAi447hffvlFklS1atUM11euXDnNOAAAAAAAjOJtdAEAAAAAAMAYvXr1ytS4c+fOSZJKlCiR4fqU5efPn8+dwgAAAAAAyCYa4AAAAAAA4K5u3LghSfLx8clwfcrylHE54e2d9mJ1Xl7muHhdZudhlvlK1puzWeYBAAAAeDoa4AAAAAAA4K68vLwkSTabLcP1Docjzf9nl91uU5Ei+XP0GO7K39/X6BJczmpzttp8AQAAAHdFAxwAAAAAANyVn5+fJOnmzZsZrk9Z7uubswZgcrJDV6+mPYvcy8tuisbi1atxSkpKvuc4s8xXst6cMztfV7HZbLLbMz5oJTckJztyfNALAAAAkFn+/r6ZvuoSDXAAAAAAAHBXJUuWlPS/e4H/3b3uEZ4ViYnu00DMTUlJyaad251Ybc7uNN/bV1Pwkd3u5bTnSE5O0qVLcUpOpgkOAAAA90IDHAAAAAAA3FXVqlUlSceOHctw/a+//ipJCggIcFlNAO7MbrfJbvfS7ytmKe7C2Vx/fN9iZfTgsz1lt9togAMAAMDt0AAHAAAAAAB31aRJE0nShg0bNHz48NR7gkvStWvXtHPnTvn5+alOnTpGlQggA3EXziou+qTRZQAAAAAulbkLpQMAAAAAAMsqV66cnnrqKZ0+fVofffRR6n1/ExIS9N577yk2NlbdunVTgQIFDK4UAAAAAGB1nAEOAAAAAADuaeTIkTp48KDmzp2rTZs2qUqVKvrpp5905swZVatWTf379ze6RAAAAAAAOAMcAAAAAADcW7ly5fTdd9+pS5cuunbtmjZs2KC8efOqT58+mjdvnvLnz290iQAAAAAAcAY4AAAAAAC4bf78+XddX6pUKY0dO9ZF1QAAAAAAkHWcAQ4AAAAAAAAAAAAAMAUa4AAAAAAAAAAAAAAAU+AS6MgSu90mu93mtMdPTnYoOdnhtMcHAAAAAAAAAAAAYF40wJFpdrtNhQv7ycvLeRcOSEpK1uXLN2iCAwAAAAAAAAAAAMgyGuDINLvdJi8vu6Yt3KqomCu5/vjlShZSvxcek91uowEOAAAAAAAAAAAAIMtogCPLomKu6I+oS0aXAQAAAAAAAAAAAABpOO9a1gAAAAAAAAAAAAAAuBANcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJiCt9EFAAAAAAAAAFZit9tkt9uc9vheXpzzAgAAAOuiAQ4AAAAAAAC4iN1uU+HCfjSpAQAAACehAQ4AAAAAAAC4iN1uk5eXXdMWblVUzBWnPEeNgLLq2rqmUx4bAAAAcHc0wAEAAAAAAAAXi4q5oj+iLjnlscuW8HfK4wIAAACegGstAQAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMgQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAAwAAAAAAAAAAAABMwdvoAoC/8/Jy7nEZyckOJSc7nPocAAAAAAAAAAAAAFyPBjjcRqGCPnIkJ8vf39epz5OcnKRLl+JoggMAAAAAAAAAAAAmQwMcbiO/T17Z7Hb9vmKW4i6cdcpz+BYrowef7Sm73UYDHAAAAAAAAAAAADAZGuBwO3EXziou+qTRZQAAAAAAAAAAAADwMM692TIAAAAAAAAAAAAAAC5CAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACmQAMcAAAAAAAAAAAAAGAKNMABAAAAAAAAAAAAAKZAAxwAAAAAAAAAAAAAYAo0wAEAAAAAAAAAAAAApkADHAAAAAAAAAAAAABgCjTAAQAAAAAAAAAAAACm4G10Ablp/fr1evPNN++4vm3btpoyZYoLKwIAAAAAAAAAAAAAuIqpGuCHDh2SJNWrV0+lS5dOt75WrVquLgkAAAAAAAAAAAAA4CKmbICPGDFCgYGBBlcDAAAAAAAAAAAAAHAlU90D/NChQ8qXL58qV65sdCkAAAAAAAAAAAAAABczTQP80qVLOnv2rAICAuTtbaoT2wEAAAAAAAAAAAAAmWCaTnHK5c/LlCmjjz76SOvWrdOZM2dUvHhxtWrVSn369FGhQoUMrhIAAAAAAAAAAAAA4CymOQP84MGDkqTVq1dr4cKFeuCBB1S7dm1duXJFc+bM0fPPP69z584ZXCUAAAAAAAAAAAAAwFlMcwb44cOHJUlPPvmkJk2apIIFC0qSLl68qMGDB2vHjh0aOXKkZsyYke3n8PZOe7yAl5c5jh/I7DzMMl/JXHPJTWb672KmuQBZZabXv5nmAuDuzPR+N9NcAAAAAAAAPI1pGuATJkzQW2+9pdKlS8vHxyd1edGiRTVx4kS1bt1aGzZs0OnTp1W+fPksP77dblORIvlzs2S34e/va3QJLmfFOVsN2xgwB97LADwRn10AAAAAAADGMU0DPG/evHrggQcyXFeqVCk9/PDD2r17tw4ePJitBnhyskNXr95Is8zLy26KnVtXr8YpKSn5nuPMMl8p83O2GrYxYA68lwF4Ij674Mn8/X0tdeb/+vXr9eabb95xfdu2bTVlyhQXVgQAAAAAwP+YpgF+L8WLF5ckxcXFZfsxEhPNuRMrKSnZtHO7EyvO2WrYxoA58F4G4In47ILZHTp0SJJUr149lS5dOt36WrVqubokAAAAAABSmaIBnpCQoNGjR+vSpUuaNGmS/Pz80o05deqUJGUYzgEAAAAAQOakNMBHjBihwMBAg6sBAAAAACAtU1yjLW/evNq2bZvWrVunzZs3p1t/5MgRHTlyRAULFlTNmjVdXyAAAAAAACZx6NAh5cuXT5UrVza6FAAAAAAA0jFFA1ySunbtKkn68MMPdfLkydTl58+f17vvvqukpCT16NFDPj4+RpUIAAAAAIBHu3Tpks6ePauAgAB5e5vionIAAAAAAJMxTVp9/fXXFRERoS1btujZZ59V3bp1lTdvXu3cuVM3btxQq1at1KtXL6PLBAAAAADAY6Vc/rxMmTL66KOPtG7dOp05c0bFixdXq1at1KdPHxUqVMjgKgEAAAAAVmaaBnjevHk1c+ZMff311woNDdWePXtkt9tVpUoVdenSRZ07d5bNZjO6TAAAAAAAPNbBgwclSatXr1b+/PlVv359lS5dWj/99JPmzJmj9evXa8GCBSpRooTBlQIAAAAArMo0DXBJ8vLyUnBwsIKDg40uBQAAAAAA0zl8+LAk6cknn9SkSZNUsGBBSdLFixc1ePBg7dixQyNHjtSMGTOy/Rze3mnv1ublZY67t2V2HmaZr2S9OVttvpK55gIAAADzMFUDHAAAAAAAOM+ECRP01ltvqXTp0vLx8UldXrRoUU2cOFGtW7fWhg0bdPr0aZUvXz7Lj2+321SkSP7cLNlt+Pv7Gl2Cy1ltzlabr2TNOQMAAMD90QAHDGa322S3O+/y/MnJDiUnO5z2+AAAAACsI2/evHrggQcyXFeqVCk9/PDD2r17tw4ePJitBnhyskNXr95Is8zLy26KJtvVq3FKSkq+5zizzFey3pytNl8p83MGAAAAcsrf3zfTVyCiAQ4Y6PbZDb6y272c9hzJyUm6dCmOJjgAAAAApytevLgkKS4uLtuPkZhozmZaUlKyaed2J1abs9XmK1lzzgAAAHB/NMABA90++9tLv6+YpbgLZ3P98X2LldGDz/aU3W6jAQ4AAAAgRxISEjR69GhdunRJkyZNkp+fX7oxp06dkiSVLl3a1eUBAAAAACCJBjjgFuIunFVc9EmjywAAAACAO8qbN6+2bdumM2fOaPPmzWrdunWa9UeOHNGRI0dUsGBB1axZ05giAQAAAACWl7kLpQMAAAAAAMvr2rWrJOnDDz/UyZP/O4j3/Pnzevfdd5WUlKQePXrIx8fHqBIBAAAAABbHGeAAAAAAACBTXn/9dUVERGjLli169tlnVbduXeXNm1c7d+7UjRs31KpVK/Xq1cvoMgEAAAAAFkYDHAAAAAAAZErevHk1c+ZMff311woNDdWePXtkt9tVpUoVdenSRZ07d5bNZjO6TAAAAACAhdEABwAAAAAAmebl5aXg4GAFBwcbXQoAAAAAAOlwD3AAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYAg1wAAAAAAAAAAAAAIAp0AAHAAAAAAAAAAAAAJgCDXAAAAAAAAAAAAAAgCnQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYgrfRBQDuzm63yW63OeWxvbw4BgUAAAAAAAAAAADILTTAgbuw220qXNiPRjUAAAAAAAAAAADgAWiAA3dht9vk5WXXtIVbFRVzJdcfv0ZAWXVtXTPXHxcAAAAAAAAAAACwIhrgQCZExVzRH1GXcv1xy5bwz/XHBAAAAAAAAAAAAKyK6zoDAAAAAAAAAAAAAEyBM8ABAAAAAAAAAHAzdrtNdrvNqc+RnOxQcrLDqc8BAICr0QAHAAAAAAAAAMCN2O02FSniK7vdy6nPk5ycpEuX4miCAwBMhQY4AAAAAAAAAABu5PbZ3176fcUsxV0465Tn8C1WRg8+21N2u40GOADAVGiAAwAAAAAAAADghuIunFVc9EmjywAAIA1n36Yjp7fooAEOAACADLn7D1kAAAAAAAAAruWK23Tk9BYdNMABAAA8kLOb0zabTf7++dz6hywAAAAAAAAA13L2bTpy4xYdNMABAAA8jN1uU+HCfvLysjv9udz5hywAAAAAAAAAY7jzbTpogAMAAHgYu90mLy+7pi3cqqiYK055jhoBZdW1dU23/iELAAAAAAAAAH9HAxwAAMBDRcVc0R9Rl5zy2GVL+DvlcQEAAAAAAADAmWiAAwAAAAAAAACQRbfvgWpzymO74pZXAACYFQ1wAAAAAAAAAACywG63qXBhPxrVAAC4IRrgAAAAAADTcOaZWJKUnOxQcrLDaY8PAAA8g91uk5eXXdMWblVUzJVcf/waAWXVtXXNXH9cAACsgAY4AAAAAMAU7HabihTxld3u5bTnSE5O0qVLcTTBAQCAJCkq5or+iLqU649btoR/rj8mAABWQQMcAAAAAOASzj4728vLLrvdS7+vmKW4C2dz/fF9i5XRg8/2lN1uowEOAAAAAICbogEOAAAAAHA6V94nM+7CWcVFn3T68wAAAAAAAPdDAxwAAAAA4HTOvk+mxL0yAQAAAAAADXAAAAAAgAs56z6ZEvfKBAAAAAAAkvOvPQcAAAAAAAAAAAAAgAvQAAcAAAAAAAAAAAAAmAINcAAAAAAAAAAAAACAKdAABwAAAAAAAAAAAACYgrfRBQCA2dntNtntNqc+R3KyQ8nJDqc+BwDA9Zz9HcL3BwAAAAAAAMyGBjgAy3Nmc8Fms8nfP5/sdi+nPH6K5OQkXboURxMDAEzEbrepcGE/eXk576JNSUnJunz5Bt8fAAAAAAAAMA0a4AAszRXNBUn6fcUsxV0465TH9i1WRg8+21N2u40GBgCYiN1uk5eXXdMWblVUzJVcf/xyJQup3wuP8f0BAAAAAAAAU6EBDsDSnN1cqBFQVl1b11TchbOKiz6Z648PADC/qJgr+iPqktFlAAAAAAAAAB6BBjgAyHnNhbIl/HP9MeGeuE8vAAAAANwZmQkAMsbnIwDkPhrgAADkkN1uU5Eivk691zv3eQcAAADgqVxx+7GkpGRduxYvh8N5mYkmEoDcxj4lAHAOGuAAgFxntSNXb8/Xy2n3euc+7wAAAAA8mbNvPxbwQAkFt6ujwoX9cv2x/4omEoDcxj4lAHAOGuAAgFxl5SNXudc7AAAAANyZM28/ZrPbndZAkmgiAXAu9ikBQO6iAQ4AyFUcuQoAAAAAMAINJAAAAEg0wAEATuJOOx6cfUl2Z97HDgAAAAAAAAAAZJ7pGuC7du3SjBkzdPjwYcXHxysgIECvvPKK2rRpY3RpAAAD2O02FS7sR5MaAAAgF5G9AQAAAGTE2ScjSVJysoOrg+KuTNUAX758uf75z3/K29tbDRo0kJeXl7Zv365Bgwbp2LFj6t+/v9ElAoBbcOaPEHdrNNvtNnl52TVt4VZFxVxxynPUCCirrq1rOuWxAQAA3A3ZGwAAAPBcztw3bLPZ5O+fT3a7l1MeP0VycpIuXYqjCX4HXBHVRA3wCxcuaMSIEfL19dW8efP06KOPSpKOHTum4OBgTZ06VS1atFBgYKDBlQKAsax6RnRUzBX9EXXJKY9dtoS/Ux4XAFzBmd8HHJENmA/ZGwDch7N3brvjbzkrzhnGookEs3HVvuHfV8xS3IWzTnls32Jl9OCzPWW32/jMzoBV9///nWka4F9//bXi4+PVs2fP1AAuSZUqVdLbb7+td999V1999ZXGjx9vYJUAYDxnnxHN2dAA4BkKFfSRIzlZ/v6+TnsOjsgGzIfsDQDuwW63qUgRX6eeYeduv+WsOGcYiyYSzMhV+4bjLpxVXPTJXH98d+VOB2hxRdTbTNMA37hxoyTp6aefTreuefPmstls2rRpk4urAgD35awzojkbGgA8Q36fvLLZ7U47KpsjsgFzInsDgHu4vaPdy1K/5aw4ZxiLJpJ1uOKe1c6UnatXsG8497jrAVpWvyKqaRrgv/32mySpcuXK6dYVLlxYxYsX17lz53ThwgUVK1bM1eUBAAAAbslqR2UDyBmyNwC4Fyv+lrPinK3Enc6iTGH1JpLZueJMf0dysmx2Z95+jKtXGIkDtNyTKRrgV65c0c2bN5U/f37lz58/wzElS5bUuXPndO7cOUI4AAAm5I4hGQAAMyF7AwDuhnslW4Mzt7PNZpO/fz63O4sS5uaqS4LTHDU/DtByLzaHw+Hx74izZ8/qySefVPHixbV169YMx7zwwgvau3evFi5cqNq1a2f5ORyO9Du9bTbJbrfryvV4JSUlZ6v2u8mbx0sF/PLpVuxVOZKTcv3xbXYv5cnvr+TkZGXmVeDp85WsN2d3m69kvTnzujb/NpasN2d3fF1LtwOLzea8nS0Oh0PO/NmUlYe24us69e8894pkWZqn5PnvZT67svB3Fnldm/mzy9nfQe6C7J09fB5mYryHz9nd5itZb87u+LpO/Tsnfj3Y7Xa32ca363HN96G7zNmqr2tXbOfE+Fg5knP/v6nNbpe3T3632caS+31ep/6dB/+0JXvfY7yHz1dyz9e1O30nm/mzKyvfQaY4A9z+/y8dcbdJp+ywzu6Oa5vNJi+vjB+/UAGfbD1mZuXJ79zLoNizeOkNT5+vZL05u9t8JevNmdd17nO3+UrWm7M7vq6dyWZzv+aGFV/XVuTp72U+u/B3fHZ5LrJ3zvB5eG+ePmd3m69kvTm74+va2dxtG7uCu82Z13Xu8/bJ+EozucXdtrHkfq9rK/L097K7va6t+NlltW0sud+c0/xtLtZhmJRLr8XHx99xTEJCgiTJz8/PJTUBAAAAAGAmZG8AAAAAgCcwTQPcz89P165du2MQj4mJkSSVKFHClaUBAAAAAGAKZG8AAAAAgCcwRQPcZrOpatWqkqRjx46lW3/58mWdP39eRYsWVfHixV1dHgAAAAAAHo/sDQAAAADwBKZogEtSkyZNJElr165Nt27t2rVyOBxq2rSpq8sCAAAAAMA0yN4AAAAAAHdnmgZ4p06d5Ovrqy+//FJ79+5NXX78+HH9+9//ls1m02uvvWZghQAAAAAAeDayNwAAAADA3dkcDofD6CJyy+LFizVy5Eh5eXmpQYMGyps3r7Zv366bN2/qH//4h3r16mV0iQAAAAAAeDSyNwAAAADAnZmqAS5Jmzdv1qxZs/Tzzz/Ly8tLlStX1uuvv66WLVsaXRoAAAAAAKZA9gYAAAAAuCvTNcABAAAAAAAAAAAAANZkmnuAAwAAAAAAAAAAAACsjQY4AAAAAAAAAAAAAMAUaIADAAAAAAAAAAAAAEyBBjgAAAAAAAAAAAAAwBRogAMAAAAAAAAAAAAATIEGOAAAAAAAAAAAAADAFGiAA8g1165dy/Lf7Ny50wmVAMiuqVOn6pdffjG6DAAAAAB3QPYGPB/ZGwAA56IBDpdLSEjQzz//rCNHjigxMfGO4y5evKiIiAgXVuZ6O3fu1Ny5c/Xf//5Xp06dMrqcHAsODtbly5czNfbmzZsaO3asXnvtNecWBSBLpk6dqqNHjxpdBpDrmjdvrnXr1hldhiGSk5N18uTJNMscDodWrlypsWPH6uOPP9aBAwcMqi73nDlzRvHx8Zkef+rUKYWFhTmvIANcvHhR27dv18qVK/XDDz9o586dmf5tBsB8yN7/Q/YmewPuhuwNsyJ7k73/juwNo3gbXQAyLz4+XhcvXlTZsmWNLiXb5s2bp08++UQ3btyQJBUsWFBvvPGG3njjDdntaY/H2LJli4YOHarDhw8bUWquOXr0qL744gsdPXpUZcuWVe/evVW7dm0NHDhQ69atk8PhkCR5e3trwIAB6t27t8EVZ9/hw4f10ksv6csvv1Tx4sXvOO7AgQMaOnSo/vjjj7uOM6uLFy/q2LFjqlevntGluMS1a9c0YcIEjR071uhSXMZq29gMmjdvrnfffVfNmzc3uhSXeeihhzRx4kS1a9fO6FJcIioqKvX3h5Vs3LhRo0eP1rlz5/Tzzz9Luh3K+/btq02bNqX+Dpk9e7aCg4M1fPhwI8vNkebNm6d7Td+4cUNjxozRG2+8oUqVKqUZv2/fPg0fPlwdO3Z0caW5b/Xq1friiy8y/N1ss9lUu3ZtvfHGG3ryySddX1wuCgwMlM1my9Lf2Gw2HTp0yEkVwazI3p6J7J0e2dtauYzsDU9A9jY/sjfZm+xN9nYXnAFuoIyOhkpISFBYWJjOnz+fbnx4eLhH/zgICwvTuHHjFBAQoOHDh6t3797y8fHRlClT9Prrr+v69etGl5jrfv75Zz3//PPauHGjfH19deDAAb366qsaN26c1q1bpx49eig0NFQLFixQ06ZN9e9//1s//PCD0WVn28iRI3X8+HF1795dZ8+eTbf+1q1b+vjjj/Xiiy/qjz/+UIcOHfT9998bUGnueuihh7R8+fI0y+Lj4zV16lSdPn063fgtW7YoODjYVeU5xenTpzVmzBg999xzeu655zRixAidOHEi3bjw8HC1bdtWS5YsMaDK3GPFbWw1VgxoKeEL5nXkyBH169dPDodDPXr0UHJysiRp4cKF2rhxo0qUKKHFixdr3759GjJkiObNm+fRv0Myek3fvHlTYWFhiomJMaAi1xg7dqwGDRqkqKgodezYUe+8847+9a9/6b333tPAgQPVvHlzHTx4UG+++aY+/PBDo8vNkXr16qlu3bpZ+l+dOnWMLhtugOxN9iZ7k709Fdnb/NvYasjeMCOyN9mb7O2e2ZszwA2U0Rd+bGyshg8frjlz5pju6Ny5c+eqXr16mj9/fuqyvn376v3331dISIheffVVffnllypQoICBVeauKVOmqHz58po/f76KFi2qGzduqHfv3vr666/VtWtXvfPOO6lj69atq5deekn/+c9/1KZNGwOrzr7u3burUKFCGjZsmLp3764vv/xS9913n6TbR6gPHTpUv/zyi8qWLavRo0erSZMmBlecOzL60o+Li9O0adNUp04dlS9f3oCqnOfw4cN6+eWXdf36dfn4+MjHx0eHDh3SypUrtWjRIlWtWlXXrl3TiBEjFB4eLi8vL/Xq1cvosnPEatv4+PHjWb4MJkfcA+5n1qxZKlmypJYuXSp/f//U5V9//bVsNpvefvttVa9eXZL02muvadeuXVq4cKHH/g65EzPvcFq2bJkWLFigjh076r333pOfn1+G42JjY/XBBx/oq6++Uq1atdSqVSsXV5o7/pojgKwge5O9yd5kb09E9r7NzNuY7A2YA9n7NrI32dvd0AB3Q2b9oPj99981bNiwNMvy5s2rcePGqXDhwpozZ47eeOMNzZkz544fIJ5m3759evvtt1W0aFFJkp+fn9566y299NJLevzxx9ONb9OmjSZOnOjqMnPVs88+q4IFC2rQoEHq3r27Zs2apXXr1mnGjBlKTEzUiy++qH/84x/Knz+/0aU6nVnfy59++qni4+P18ccf65lnnpEkRUZG6u2339bYsWM1adIkBQcH648//tCjjz6qsWPHKiAgwOCqncOs23jGjBmaMWNGlv7G0y+ZaVVZvZyRp1u8eLG2bduW6fE2m03jxo1zYkXOFRERoeeffz5NAD916pSOHz8ub29vPf3002nGP/bYY/r0009dXSZyYOHChapZs+Y9jy7Pnz+/xo0bp2PHjunbb7/12BB+69Yt5cmTJ0t/c+DAAdWoUcNJFcHTmfW3HNmb7E32Ngey9/+YdRuTva2D7H13ZG+4O7L3vblj9qYBDpfx9fXV5cuXM1w3ZMgQ3bhxQ4sWLVKfPn00a9Ys1xbnJAUKFNDVq1fTLAsICFDTpk3l7Z3+7Xfp0iXly5fPVeU5TdOmTTV79my9+eabeu655+RwOHT//fdr7Nixqlu3rtHlIYciIyPVrVu31AAuSdWrV9eQIUM0ePBgDR48WFFRUXrnnXf0+uuvp7vHINxfixYtTLvj5G6sFtAkafr06Vq8eHGmx9tsNn311VdOrMi5IiIisnSGhadv40uXLql06dJplu3YsUOSVKNGjXQ7xH18fHTz5k2X1Yec++2337J0D9vmzZvrm2++cWJFzvXcc89p0qRJmfqOSkhI0JQpUzRv3jwdPHjQBdUB7oPsfRvZm+zt6cje5kf2zhxPz2US2ftePH0bk73Nj+x9Z+6cvWmAw2UaNGigefPm6emnn1aVKlXSrR81apSuX7+uFStW6PXXX1fTpk0NqDJ3PfbYY/ryyy9Vq1YtNWrUSJJUsGBBffHFF+nGHjhwQPPnz08d5+nq1KmjefPm6Y033tDFixf1r3/9iwBuEleuXFFgYGC65Y8++qiSkpJ09OhRzZ8/XzVr1nR9ccgVLVu2VLt27Ywuw+WsFtAk6dixYzp27Fimx3v6UevvvvuuR9/TNasKFSqkixcvplm2ZcsW2Ww2PfbYY+nGHzt2LPXMOXiGGzduqFixYpkeX6JECY++J9v58+fVuXNnDRgwQD179rzjZ9KePXv07rvv6sSJE7r//vtdXCVgPLI32ZvsbQ5kb/Mje2cO2dvzkL3J3mZD9vbM7E0DHC7z9ttv68UXX1RQUJAefvhhffTRR2neFDabTRMnTlTevHkVEhKivXv3Glht7njnnXcUGRmp119/XXXr1r3jvRNefvll7dmzR0WLFk1zbzJPFxgYqIULF+q1117Tm2++qWnTpqlhw4ZGl4UcSkxMzPBsCR8fH0lSr169CODwSFYLaJL00UcfWWqHS5EiRVSuXDmjy3CZ2rVra+XKlerRo4e8vLx0/vx5bdy4UZLUunXrNGOvXbum5cuXq0GDBgZUiuxKSkrK8MzGO/Hy8lJiYqITK3KuFStWaPjw4Zo8ebI2btyoCRMmqEKFCqnrUy4Tm3KvvR49emjgwIEGVgwYg+xN9iZ7mwPZG2ZF9jY/sjfZ22zI3p6ZvWmAw2UeeOABff/995o2bZp2796d+oP9r+x2u8aNG6datWrpk08+0YULFwyoNPcUK1ZMS5Ys0aJFi5SQkHDHcT4+PurcubPeeuutLB1J5G6GDx+e4fL7779fp0+fVu/evdWmTZs0RwyZ4ShOpPXII48YXQKQLVYLaDC/nj17qlu3buratavq16+vdevW6ebNm3rmmWdUsWJFSbd3rO7fv18TJkzQxYsX1b17d4Orzpk1a9boxIkTqf8eHx8vm82mpUuXas+ePWnG/vLLL64uDzlUrFgxzZw5U19//bU++ugjdejQQcOGDdPzzz+vXbt26f/+7/906tQpBQQE6IMPPuA3CSyL7E32JntbA99z8FRkb5gN2ZvsbTZmyd40wA12/PjxNJd8uXbtmiTp6NGj6Y4oycplUtxVkSJFNGLEiHuO69Kli4KCgtJ8iHoqHx8fvfrqq3cdY5b7roWGht51/c2bNxUWFpZmmVlC+O7du5WUlJT677GxsZKkrVu3Kjo6Os1YM5xhcTeefpmmO7HKNq5Xr56KFy9udBkAcsGjjz6q6dOn64MPPtCcOXPk5eWldu3aafTo0aljJk6cqHnz5slut2v48OGqXbu2gRXnXHh4uMLDw9Mt//vvjxRm+M76+46HuzHLjofu3burYcOGGjlypEaNGqX58+fr2LFj8vb21sCBA9WrV68sHZ0PayB7Z4zs7ZnI3ubPZZlhht8xGbHKNiZ7A+ZB9v4fsvdtZG/3YHM4HA6ji7CqwMDADN/4DofjrssPHz7sivKczuFw6NSpU7p8+bIkqWjRoipfvryxRTmZ2eccFRWVrb/z9KM+M3ov//WjNaN1nvxeDgwM1JtvvqnGjRunWX7t2jX17dtXw4YNU7Vq1dL9Xb169VxVYq6z2ja2osDAQMtdksxqcw4NDVXdunXTXLLJSi5duiRfX990ZwFu2rRJBw8e1DPPPOOW92vKil27dmXr7+rXr5/LlbhORvcFvRczfT9FRESob9++unbtmmw2m/r27asBAwYYXRbcENnb3Dk0I2afM9n7f8ycy8jet5l5G1uR1XKoZL05k73J3ndC9vZcnpq9aYAbaOrUqdn6u/79++dyJa4VGRmp2bNna+vWrbpx40aadQUKFFCzZs302muvZetDxV1Zcc5Wcq+j7+8kKCgolytxjTvtQJTuvBNRkkd/4VtpG//1zKis8OSdLJI1A9quXbtUqVIlj778J2B1VtzxIEnXr1/XxIkT9d133ylfvnzq2bOnVq9erV9++UWNGjXS2LFjVbZsWaPLhBshe1snh1pxzlZipVwmkb2zwhO3Mdmb7A3Ac5C9PTN70wCHS82ZM0eTJk2S3W5XrVq1VKVKFfn7+ysxMVGXL1/WoUOHdPjwYdntdg0dOlTBwcFGl5xjVpxzZs2YMUPh4eEKCQkxuhSXS0hIUN68eY0uI1usugMxqzx1G99tJ8vdePJOFljDne6VeTdmuVQoMrZo0SJt2bIl299rMMbGjRs1atQoRUdHq2HDhhozZowqVKigW7du6dNPP9WcOXPk4+Ojf/7zn+rWrZvR5QKGsWIOteKcM4vs7Xm5TCJ7Z5anbmOyN8yK7I2/I3t7JjNkbxrgcJlNmzapd+/eatSokcaNG6cyZcpkOO7kyZMaPXq0tm3bpjlz5qhRo0YurjT3WHHOWTFq1CgtXrzY43+8T506NUsBMzIyUsOHD9f333/vxKqQm6y0jT/77LNshXBP38lixYCWnZ2+NptNX331lROqcT4rXq7qXjvV8uXLp4IFC6pq1apq2bKlunTpIrvd7sIKjWWG3yFnzpxR0aJF011e705OnTqlPXv2qGPHjs4tzEneeecdff/99/Lz89OQIUPUtWvXdGP27dunoUOH6tSpU6pfv74++OADU132GMgMK+ZQK845K8zwnSdZK5dZlZW2Mdk788jenoXsnR7Z2/N/h5C9PTN70wA3kNW+8F977TWdP39eISEhypMnz13HJiYmqmPHjrr//vs1bdo0F1WY+6w456www5efdPtHTo8ePfTPf/7zruMSExM1depUzZ49W0lJSR4/78yKj4/XxYsX3fpyKPfCNjY/qwa0rPLkOVvxXpkvv/zyXdcnJSXp6tWrOnnypG7duqXHHntMM2bMkLe3t4sqNJYZfoc89NBDmjhxYpr7Cd64cUNjxozRG2+8oUqVKqUZv2zZMg0dOtRj5xwYGKgmTZpozJgxKl269B3HxcfH68MPP9SiRYvk5+envXv3urBKuCOy952ZJYdacc5ZYYbvPIlcdi9kb3gCq+VQyXpzJnunR/b2/N8hZO+MuXv2tsY7zE1l5b42fz2CyFND+KFDh/Tqq6/eM4xKkre3t9q0aaNly5a5oDLnseKcrahu3bqaM2eO4uLi9N5772U45ujRoxo6dKiOHj2qQoUK6f/+7/9cXGXuad68ud599101b948dVlCQoJWrlypxx9/XMWLF08zPjw83KO/8CXrbWMrWrdundEluNyRI0eMLsGlPDlMZ9f8+fMzNS4+Pl4LFy7UxIkTtXDhwnuGd7iPjI5lvnnzpsLCwtS+fft0IdzTjR8/PlP3+PTx8dH777+vp59+mu9jSCJ7341ZcqgV52xFVstlZG/zb2MrInubH9n7zsjenovsnTF3z940wA2UmS+/qKgojRkzRhs3blTBggU1aNAg5xfmJLGxsSpZsmSmx5cpU0Z//vmnEytyPivO2YrmzJmjgQMHauHChYqLi9O4ceNSd5w5HA7NnDlT06ZNU0JCgtq2basRI0aoaNGiBledfVFRUbpx40aaZbGxsRo+fLjmzJmTLoSbgdW2sSQdP35c+/btU6dOnVKXnT9/XlOnTtXevXvl6+ur5s2b69VXX/XI+639nRUDGtJKSEjQb7/9Jh8fH1WsWNHoclzKx8dHr732mg4cOKDQ0FBCuAmY9SJfmQngf/Xggw+qS5cuTqoGnoTsfXdmyKFWnLMVWS2Xkb3Nv40lsjesh+xN9jYTsvdt7pq9aYC7qaSkJM2ZM0eff/654uPj9cwzz2j48OEe/eM2MTExSz/UvL29lZCQ4MSKnM+Kc7aivHnzatq0aRo+fLhCQ0MVHx+vSZMm6eTJkxo2bJgiIyNVokQJvf/++2rWrJnR5TqNWb/wJett40mTJmnOnDlyOBwKCgqS3W7XtWvX1LVrV505c0aFCxdWuXLl9Mknn2j9+vWaP39+ps628WRWDGjR0dGKjIyUj4+P6tWrl+n7HLmza9euadasWdq3b1+aI7SXL1+usWPH6urVq5Ju/3AfN26catasaVClxmjQoIG2bt1qdBlAjty8eVOrV69WSEiIdu3aJYfDoX79+hldFtwY2dscOdSKc7Yiq+WyOyF7m2cbk73TI3uTva2A7A0z8ITsTQPcDe3evVujR4/Wr7/+qgceeECjRo1So0aNjC4LuKepU6dmafzPP//spEpcz8vLSxMnTpS/v78WLFig06dP69dff1V8fLy6dOmioUOHqkCBAkaXiRywyjZes2aNZs+erSeffFLBwcGy2+2SpM8//1xRUVGqUaOGvvzyS/n6+ioyMlIvv/yyvvzyS/Xs2dPgynPOigEtKipKkydP1r59+7R+/frU5TNnztSnn36qpKQkORwOFSpUSGPGjFHLli0NrDZnYmNj1bVrVx0/flylS5dWYmKivL29FRkZqaFDh8rhcKhr166qUqWKwsLC9NprryksLEz333+/0aW7jJeXl5KTk40uI9vCwsKyNP733393TiEwxL59+xQSEqIffvhBsbGxcjgcuu+++9S1a1ejS4MbI3vDU5G9zZ/LrMwq25jsTfaWyN5kb89E9rY2T8reNMDdyKVLlzRx4kSFhYUpb968GjBggHr27GmKy9uk2L17t5KSkjI1du/evU6uxjWsNOeshnAp7T32zGDEiBEqXLiwpk6dKrvdri+++EJNmzY1uizkIrNv40WLFqlGjRqaMWNG6jKHw6Fly5bJZrPprbfekq+vrySpevXq6tChg77//nuPD+FWDGgXLlxQ165ddenSJVWvXj11zj/++KMmT54sb29vvf3226pataoWL16st99+W998842qVatmdOnZMmfOHJ08eVL//ve/1bp169Tl06ZNk8Ph0CuvvKJhw4ZJkjp37qz27dtrxowZGj9+vFElu9yBAwdUpkwZo8vItmHDhmXpd4XD4TDd7xCriY6O1tKlSxUSEqITJ06knhHXoEED9ezZU48//rjBFcJdkb3T8vQcmsJKcyZ7mz+XwfzbmOxN9iZ7k709Fdnbejw1e9MAdxPffvutJk2apCtXruixxx7TqFGjdN999xldVq5bvHixFi9enKmxZvlgtNKc582bZ3QJbqF///4qUqSIxo4dq9mzZ6tOnTqmODoZ/2PmbXzw4MF0gfrQoUO6cOGCChQooAYNGqRZ9+ijj2r58uWuLNEprBjQZs6cqdjYWH399ddpjqifOXOmbDab+vXrl/paeOKJJ9SpUyfNmjVL//73v40pOIfCw8PVoUOHNNs3NjY29bJjL774YuryfPnyqX379vr2229dXqdRVq1apaVLl+qNN94wupRs8+T3IzIvISFBa9euVUhIiLZv366kpCR5eXmpfv36qlOnjqZPn67g4GC3DeAwHtk7PU/PoSmsNGey921mzmW4zczbmOxN9iZ7k709lSe/H5F5ZsjeNMANdvToUb3//vvav3+/ihcvrsmTJ6tt27ZGl+UUVvxgtNqc69evn+W/2b17txMqca2IiIh0y6pWraouXbpo8eLFeuWVVzRkyJDUy1mlqFevnqtKRA5ZaRvfuHFDhQoVSrNsx44dkm7Px8vLK826xMREj955mMKKAW3jxo3q1KlTmgB++fJl7dmzR5L03HPPpS632Wxq06aNvvrqK1eXmWtOnz6dZjtKt9/biYmJqlChQrrmR5kyZXThwgVXlpjrhg8fftf1SUlJio2N1W+//aaTJ0/qgQce8OgQHhQUZHQJhlizZo1OnDiR+u/x8fGy2WxaunRp6vs5xS+//OLq8nLV6NGjtXLlSl25ckX58uVTkyZN1KJFCzVv3lxFihRRVFSUPv/8c6PLhJsie5ub1eZM9v4fs+Yyq7LSNiZ7k73J3reRvT0P2fs2srf7Z28a4AaaMGGC5s+fr6SkJD311FMaNGiQChQooDNnztz178qWLeuiCnOXFT8YrTjnzDh79qxCQ0MVFhamU6dO6fDhw0aXlCMvv/zyXUPIwYMH9eqrr6Zb7snzPn78eJpgeu3aNUm3dyx6e6f9ajl27JhLa3MGK23jkiVL6tSpU2mWbdy4UTabTU888US68ZGRkSpVqpSrynMaKwa0P//8U1WrVk2zbOfOnUpOTlblypXTbddixYrpypUrriwxV9nt9nT32Nq+fbskqXHjxunGX7x40ePPLgkNDc3UuAoVKuiVV15R3759PX7Od5LR7+syZcqYZidieHh4uuV3ui+bJ8954cKF8vPzU58+ffTGG2+Y9vWK3Ef2Nj8rzjkzyN63efK8yd5pmWkbk73/h+xN9vb03/Vk7/8he/+PJ8/ZLNmbBriB5s6dm/rPGzZs0IYNGzL1d574oy47Ll68qGPHjnnkUZzZZeY537x5U+Hh4QoJCdHOnTtTLzmX0Y96T9OvXz+P/kLLjhkzZqS5T1WKCRMmpFvm6ZcXlKy1jZ944gktWbJEL774okqVKqV9+/Zp9+7dypMnj1q1apVm7K+//qrvv/9ezz//vEHV5h4rBrR8+fIpLi4uzbJt27bJZrPpscceSzf+zz//lL+/v6vKy3WVK1fWvn371L17d0m3P5vWrFkjm82mZs2apRu/bt06VapUydVl5qp169bddX2+fPnk7+9vqnveStKSJUv07bff6vPPP1fRokV16dIlNWvWLN3n+MCBA/Xmm28aVGXusNolcIOCgrR27Vp98cUX+uqrr1S3bt3Uo9CLFy9udHlwY2TvuzNzDr0TM8+Z7G0uZG/zInv/D9k7LbK35yF7k73NxizZmwa4gfr37290CS710EMPaeLEiWrXrl3qsvj4eM2ePVsdO3ZU+fLl04zfsmWLhg4d6tE7Haw457/bv3+/QkJC9MMPP+j69euSpKJFi6pTp07q2rWrypUrZ3CFOTdgwACjS3ApKwXSFFbaxn379lV4eLjatGmjihUr6pdffpHD4VC/fv1UtGhRSbfDd3h4uObNm6c8efKoR48eBledc1YMaIGBgdq+fbteeeUVSf+7t48ktWjRIs1Yh8OhVatWKTAw0OV15paOHTvqgw8+0KOPPqrHHntMixcv1pkzZ3TfffepSZMmacbOmDFD+/fv14gRIwyqNneY4Ts2q9566y2tXr1aZcuW1ZkzZ1I/tySpffv2qlChgiRp6dKlmj59ujp37qwSJUoYVW6OZecSuImJiU6oxDXGjx+v0aNHa8OGDVq+fLk2b96sH3/8UaNHj1atWrVUu3Zty/1GQeaQvc2fQ604578je5sP2dvcyN5kb4nsTfb2XGTveyN7G48GuIGsFsIdDke6ZXFxcZo2bZrq1KmTLpCagRXnLEkxMTEKCwtTaGio/vjjDzkcDvn6+qpx48batm2b/vWvf6l58+ZGl4lsslIgtaLixYvru+++07Rp07R//349/PDD6tSpk7p06ZI6JjQ0VHPmzFG5cuX08ccfq0yZMgZWnDusGNC6deumt99+W+PGjdNjjz2mJUuW6MKFC3r44YfTnA0VHx+vDz/8UL/++qtH73Dp1q2b9uzZo/Hjx8tms8nhcKhQoUKaNGlS6j0Ev/vuO82cOVOnTp1SnTp19MILLxhctXNFRkZq3759stvtql+/vgICAowuKUeWLVum1atXq3fv3ho4cGC6+yZ27NhRjRo1kiQ1bdpUzz//vL755hvT/CaPjY2Vw+G46xky+/bt08iRI7VixQoXVpa78ubNq1atWqlVq1a6du2aVq1apWXLlmnPnj3as2ePbDabvvjiC12/fl2tWrWSj4+P0SXDDZjlfZ5ZVsyhVpyzRPY2O7K3uZG9yd5kb7K3pyJ7k709JXvTAHcjCQkJOnLkiGJiYuRwOFSyZEkFBgYqX758RpfmVBkFVbMz65x/+OEHhYSEaNu2bUpKSpK/v7/atWunli1bqkmTJjp37ly6IxvNYOrUqVn+G5vNpn79+jmhGucLDg7Wm2++mfpDxgqsto1Lly6tMWPG3HF9p06d1KxZM9WuXTs1vHg6Kwa0tm3b6ujRo5o9e7bmz58vh8Oh8uXLa8qUKalj/vOf/+jzzz9XbGysWrdurQ4dOhhYcc7YbDZNmjRJ3bt31759+1SgQAG1aNEizVHKf/75pxwOh95880317t3bFK/vQ4cO6YsvvtCxY8d03333qU+fPqpevbr+7//+TyEhIam/SWw2m5599lmNHz8+3f0kPUVoaKhq1aqlwYMH33Nsyg63TZs2eXwIX716taZOnarffvtN0u37yg0cOFDPPvts6pgbN25o8uTJWrhwYbpLTnqS4cOHq1u3bqpRo4YkqWDBgurSpYu6dOmi6OhorVixQitWrFBkZKR++uknjRkzRm3bttW//vUvgyuHuyF7W4dZ50z2zjxPzmVk78zx5G1M9iZ7pyB7e/7rm+ydMbK3ZzJL9vbMd5jJnD9/XpMnT1Z4eLhiY2PTrPP19VWrVq00ePBglSxZ0qAKgcwZPHiw/Pz89OKLL6p58+aqV69emiPAPOGyGNlhtYC2a9euNEckW4HVtvG9ePrlxzJi1YA2ePBgvfDCCzpw4IAKFCig+vXrK0+ePKnr8+XLp0cffVTt2rXTc889Z2CluadWrVqqVatWhuv69+/v8YHsr/bt26fg4GB5e3uratWqOnjwoLp3766XX35ZS5YsUfv27dW6dWvduHFD69ev14oVK/TQQw/p9ddfN7r0bDl06JD69OmT6fGPP/64pk2b5sSKnG/lypV6++23lS9fPj3++OPy9fXV7t279c9//jP1/pE//fSTBg8erNOnT6t8+fIaPXq00WVnW2hoqBo3bpwawv+qVKlS6tGjh3r06KFjx45p2bJlWr58ub799lu3C+EwDtkbZkH2zjxPzmVk78zx5G18L2RvsrcnI3uTvVOQvT2PWbI3DXCD7d+/X71799aVK1dUo0YNNWzYUCVLlpS3t7diYmIUERGhsLAwrV+/XtOnT1ft2rWNLhm4o/Lly+v06dMKCQnR77//rp9++kktWrTQgw8+aHRpTjVv3jyjS4CTWWkbR0REZOvv/nrZLk9mpYCWonTp0ipdunSG61566SW99NJLLq4IuWXatGl64IEHNG/ePBUpUkQOh0Pvvvuu5s6dq/bt22vixImpY5999lldvXpVK1as8NgQHh8fL39//3TLCxYsqBkzZuihhx5Kszx//vwefU8uSVqwYIGKFSumRYsWpd5jLS4uTm+++aY+++wzlSxZUq+//rpu3ryp1157TW+99ZZbXpYst1WqVEmDBw/W4MGDtXfvXqPLgZsge8NMyN4wKyttY7I32fuvyN6ejex9G9mb7O1uaIAb6MKFC+rXr5/y58+vzz//XHXq1Mlw3KFDhzRo0CANHDhQS5cuVbFixVxcKZA5a9eu1YEDB7Rs2TKtWrVKW7Zs0eTJk1WxYkW1bNlS1apVM7pEp6hfv/49x1y7dk02m+2u9waB+8rMNjaLl19+OctnjNhsNh06dMhJFQG5Y/jw4Vn+G5vNpnHjxjmhGtf46aef9MYbb6hIkSKSbs+nR48eCg0N1ZNPPplufMuWLfXhhx+6uMrcU6pUKZ05cybdcm9v7wzn+8cff3j8fRSPHTuml19+OTWAS7fPYu3fv79eeuklDR48WMWKFdOkSZNUs2ZN4wo1EE1MSGRvmA/Z+87I3p6N7H13ZG94ArI32fvvyN7W4I7Zmwa4gRYsWKDY2Ng0R41k5OGHH9bcuXPVrl07/fe//9WAAQNcWCWQNTVq1FCNGjX07rvvasuWLVq+fLnWrVun6dOny2azyWazacOGDQoMDFS5cuWMLjfXOBwObd68Wb/99pvuv/9+Pfnkk/L29tb27ds1duxYHT9+XJL00EMP6e2339bjjz9ucMU5s2bNGp04cSLT4818SbIUZtnRMn78+EyNW716tTZu3ChJql69uhMrcg0rBrTg4OAs/43NZtNXX33lhGqcLzQ0NNNj/7ojypO38dWrV1W8ePE0y1IuLVi4cOF04318fBQXF+eK0pyievXqWrlypfr163fPyyQmJCRo5cqVatq0qYuqc45r166pfPny6Zbfd999km5fSnHRokWpO2LMYPfu3UpKSsrS33Ts2NE5xcBjkL1hRmRvsndGyN6eg+ydeWRvz0L2vo3sfRvZ23OZIXvTADfQ2rVr1b59+7sG8BTlypVTUFCQwsPDPTqE//1Nk3Lfta1btyo6OjrNWHe8ZEJ2WHHOkuTl5aWmTZuqadOmio+P15o1a7RixQpt3bpV3333nUJCQtSgQQN16tRJzz77rNHl5sjVq1fVq1cvHThwQA6HQ5L06KOPauTIkerVq5d8fX3VokUL3bhxQwcOHFDv3r01d+5cjz6yec2aNQoPD8/0eDOE8L/uaLnvvvv01FNPmXJHS1BQ0F3XR0VFacyYMdq4caP8/f319ttvq2vXri6qznmsGNBOnz6dqXHJycmKjo6Ww+Hw6PtJHjly5J5j/vr6LliwoAYNGuT8wpzI4XDI2zvtz/2UbejJ2/JOunXrppdeekn/+te/NGLEiHRzT5GcnKz33ntPMTEx6tatm4urzF3Jyclp7vmaIuV+gr169TJVAJekxYsXa/HixZkam/K55W4hHK5H9rZGDrXinCWyN9k7LbK35yB73xvZ2zORvW8je5O9PZ0ZsjcNcAOdPn06S/f2CAwMzNKPBHf09zdNSmCZPXt2ui8DT/+yT2GlOffq1UsNGzZU/fr1Va1atdS5+Pj4qF27dmrXrp0uXbqklStXavny5dq+fbt27Njh8SH8008/1ZEjR/Tee++pQYMGioqK0gcffKBXXnlFDzzwgObPn596tN/FixfVuXNnzZkzx6NDeO/evdW4cWOjy3AZK+5o+bvExET95z//0YwZMxQXF6f27dtr2LBhqUe0ejorBrT169ffc8yBAwf0/vvv688//1T58uU1cuRIF1TmeklJSZozZ44+//xzxcfH65lnntHw4cPTHcEN91a3bl316NFD//nPf7Rjxw69/vrratCggUqXLi2Hw6Fz585p586d+vrrr3XkyBENHjxYgYGBRpftVGXLljW6hFz3/PPPW/aScsg+sre5c2gKK82Z7E32NiuyN9lbInuTveHuyN7pkb3dEw1wA+XJk0c3b97M9Pj4+Hj5+fk5sSLnyuylfczEanPesWOHNm/enHopqrp166pBgwZq2LBh6pdckSJF1L17d3Xv3l2nTp3S999/b3DVObd+/Xp169ZNL7zwgiSpYsWKeu+99/T666+re/fuaS51U7RoUT3//POaP3++QdXmjkqVKpkqYN6LFXe0/NWuXbs0evRoHTt2TBUrVtSoUaPUoEEDo8tyGSsGtGvXrunjjz/W4sWLZbfb1bt3b/Xt21f58uUzurRct3v3bo0ePVq//vqrHnjgAY0aNUqNGjUyuqxc8/fLZsbHx8tms2np0qXas2dPmrG//PKLq8vLdf/85z9Vrlw5TZ48We+9916GDQ8/Pz+9//77pjiDxorq1q2rdu3aGV0GPAzZ2/ysNmeyN9nbrMjeZG+yN9nbU5G9yd5mY4bsTQPcQFWrVtWmTZsyfR+QjRs3qnLlyk6uynnudWkfM7LanPfu3atDhw5p79692rdvn/bv368NGzbIZrPJ399f9erVU4MGDdSgQQNVrVpVFSpUUJ8+fYwuO8fOnTunSpUqpVmW8l7N6OivMmXK6MqVKy6pDbnDijtapNs7FCZMmKBly5YpX758euutt/TGG2+kXt7HCswe0DKydOlSTZw4URcuXFD9+vU1atSodJ9xZnDp0iVNnDhRYWFhyps3rwYMGKCePXsqb968RpeWq8LDwzO8bGZYWFiG4z35bLgUL774ooKCgrRhwwZFRETozz//lMPhUMmSJVW7dm21aNHC4+8Z+VcZ3Rv0bjtbzHBpVCCryN7mZ7U5k73/h+xtLmRvsjfZm+ztqcjeZG+yt/uhAW6gDh066L333tPKlSvVtm3bu44NCwvTtm3bNHnyZBdVZ7zTp0/rvffe05w5c4wuxWU8fc7e3t6qXr26qlevrldffVWSdPbs2TShfMKECUpKSlLhwoVVv359NWjQQC+++KKxhefQrVu35OPjk2ZZSkjJKKzYbLY096aD+7PijpZvvvlGkydP1pUrV/TEE09o5MiRmbpvpllYJaD91fHjxzV69Gjt2rVLRYoU0Ycffuh29+7JLd9++60mTZqkK1eu6LHHHtOoUaN03333GV1Wrps3b57RJRjG19dXbdu2vedvbDO4044WKeOdLYRwWBHZ++48PYdmh6fPmez9P2RvcyF7k73J3uZC9jY/svdtZG/3RAPcQJ06dVJYWJiGDBmio0ePqnv37ipZsmSaMTExMZo7d67mzZunpk2bqk2bNgZVmzsOHDig6dOna9++fZKkhx9+WP369VPdunVTxzgcDn355Zf69NNPFR8fb1SpucaKc/6rMmXK6JlnntEzzzwj6falfZYtW6aQkBCtXr1a4eHhHh/CraZ///4KCAgwugyXstKOliNHjmjUqFGKjIxUqVKlNGbMGLVs2dLoslzKKgEtRUJCgqZNm6Y5c+YoMTFRXbp00TvvvCN/f3+jS8t1R48e1fvvv6/9+/erePHimjx5sqlDmlkuBYk7s9qOlqCgIFN/HsN5yN7WyKFWnPNfkb3Nh+x9G9nbvMjeZG+zIHubH9nbM9EAN5DdbteMGTP0zjvv6IsvvtDMmTNVpkwZlShRQl5eXrpw4YJOnjwph8OhNm3a6IMPPjC65BzZvn27evbsqaSkJD344IPy9fVVRESEXn31Vc2dO1f16tXT6dOn9Y9//EORkZEqUKCARo8ebXTZOWLFOf9dfHy8IiIitGvXLu3Zs0c///yzbt26pbx586Zeks0MLl++rDNnzqT+e8oRyBcvXkyzXLp9dKsn69+/f5p/T0hI0JEjRxQTE5N6mZvAwEBT3q/ICjp16qTk5GRJUrFixbRgwQItWLDgrn9js9n01VdfuaI8p7JaQJOkTZs2acyYMYqKilJAQIBGjx6tGjVqGF2WU0yYMEHz589XUlKSnnrqKQ0aNEgFChRI9xn9dxmdaWJWixYt0pYtWzR16lSjS8mWzF7a+K88/fMrOztadu/e7YRKXMNq9/hF7iF7mz+HWnHOf0f2JnvDs5C9yd5k77TI3p6D7J05ZG/j2RwOh8PoIiD9+OOPWrp0qSIjI3Xu3LnUH7J16tRRhw4d1LBhQ6NLzLHXXntNkZGRmj17tmrVqiVJio6OVp8+fZQnTx6NHz9ewcHBunDhglq2bKmRI0eqRIkSBledM1acc2Jiovbv368dO3Zox44dOnDggG7duqU8efKoevXqqcG7Vq1aprmcUWBgYIb3bXE4HHe9n8vhw4edWZbTnT9/XpMnT1Z4eLhiY2PTrPP19VWrVq00ePDgdGfXeKLAwED93//9n5o3b5667MqVKwoKCtLHH3+c+v5OsWbNGn344YceuY2bNWuWrb9bv359LlfiWncKaPfiyQFt4MCBWrNmjSTpqaeeUnBwsLy8vO75d/Xq1XN2aU4RGBiY+s9ZudeWJ76Ps2vUqFFavHixx845s59fycnJio6OTv2e9tT5ZsXZs2cVGhqqsLAwnTp1yhJzBu6E7G3OHGrFOZO9/4fsTfb2xG1M9iZ73wvZ27zI3uZF9nYvNMDhMg0bNlTnzp31zjvvpFm+ZcsW9ezZU5UqVdK5c+f0/vvve/zl5lJYbc49e/bU7t27FR8fL7vdrmrVqqlhw4Zq0KCB6tSpk+4yVmYxfPjwbP2dJx9JtX//fvXu3VtXrlxRjRo11LBhQ5UsWVLe3t6KiYlRRESEIiIi5O/vr+nTp6t27dpGl5wjVt3RYiVWDGh/nbN073l7emDJ7pHVfz/zxsw8PYRnxoEDB/T+++/r8OHDKl++vEaOHKmmTZsaXZZT3Lx5U+Hh4QoJCdHOnTtT38NNmjTRF198YXR5AJzIajlUst6cyd5ZQ/b2HGRv8yN7k73vhOxtLmRvsrc74BLoHmTnzp06evRoti4x4Q6uXbumSpUqpVtepUoVORwOXb58Wd9++60p7i2Qwmpz/vHHH5UnTx517NhRvXv31gMPPGB0SS7hyWE6Oy5cuKB+/fopf/78+vzzz1WnTp0Mxx06dEiDBg3SwIEDtXTpUhUrVszFleaejh07ZimYWcnu3bsVGhrq8ZcKtVLQSmG1z67sbGOz3RvUyq5du6aPP/5Yixcvlt1uV+/evdW3b19TXjJ0//79CgkJ0Q8//KDr169LkooWLapOnTqpa9euKleunMEVAu6P7O15rDZnsrc1kL3xV2Rvz2W1zy6yt7WRvcne7oQGuAdZuXKlFi9e7LEhPCkpSd7e6V9yKZfi6tOnj2nCaAqrzblLly7auXNn6mU+KlasqEaNGqlhw4aqV6+eChUqZHSJyAULFixQbGysFi1apAoVKtxx3MMPP6y5c+eqXbt2+u9//6sBAwa4sMrc9eGHHxpdglv5888/FRoaqtDQUJ06dUqSLBnCPT2gBQUFZflvoqKinFCJ+0nZubR69WqPvmcTblu6dKkmTpyoCxcuqH79+ho1alSGTRJPFhMTo7CwMIWGhuqPP/6Qw+GQr6+vGjdurG3btulf//pXmkuJArg7srfnsdqcyd7WQPYG2fs2srd5kb3NhexN9nY3NMDhNsz2YZgZZpvzmDFjJElnzpzRtm3btGPHDq1atUoLFiyQ3W5XYGCgGjRokBrK/fz8DK4Y2bF27Vq1b9/+rgE8Rbly5RQUFKTw8HCPDuHBwcF688031ahRo9RliYmJ2rdvnwIDA1WwYME045ctW6Zhw4bp0KFDri7VaRISElIv57Njxw45HA45HA41aNBAL7zwgtHluZTVAtrNmze1atUqhYaGKiIiQgcPHjS6JKdI2bkUFhamkydPyuFwqHDhwkaXhRw4fvy4Ro8erV27dqlIkSL68MMP1bFjR6PLylU//PCDQkJCtG3bNiUlJcnf31/t2rVTy5Yt1aRJE507d04tWrQwukwAbsZsOTQzzDZnsrc1kL1vI3uTvcne5kL2Nh+yN9nbXdEAB5DrypYtq86dO6tz586SpF9//VU7duzQ9u3btWTJEs2dO1fe3t565JFH1KhRI7311lsGV4ysOH36tF566aVMjw8MDFRoaKgTK3K+Xbt2qUuXLmmWXbt2TcHBwZozZ06acJ7C4XC4qjyn+vvlfFLm9cwzz6hfv36qWLGiwRW6hhUD2t69exUSEqJVq1YpNjZWDodDVapUMbqsXJWycyk0NFQ7duxQcnKyHA6HatasqW7duqlt27ZGl5gjYWFhWRr/+++/O6cQF0tISNC0adM0Z84cJSYmqkuXLnrnnXfk7+9vdGm5bvDgwfLz89OLL76o5s2bq169evLy8kpdzyVEAcDcyN7mRva+jexN9iZ7ez6yd1pkb89D9vZMNMDhUrt371ZSUlKaZbGxsZKkrVu3Kjo6Ot3fePrRQlac899VqVJFVapU0csvv6yEhAStWrVK//3vf7V//34dOHCAEO5h8uTJo5s3b2Z6fHx8vGnPODBL0P67jC7nU7hwYQUFBalmzZoaNWqU2rZta/oAbvaAlpHo6OjUbX/ixAlJkre3t9q2basXXnhBdevWNbjC3HHgwAEtWbIkzc4lf39/Xbt2TWPGjEm3081TDRs2LEshzOFweHxo27Rpk8aMGaOoqCgFBARo9OjRqlGjhtFlOU358uV1+vRphYSE6Pfff9dPP/2kFi1a6MEHHzS6NAAGs2IOteKc/47sbS5k7/8he5O9zYbsTfYme3sWsrdnogEOl1q8eLEWL16cZlnKj9jZs2en+eBP+SLw9EBqxTn/1cmTJ3XgwAEdOHBAkZGROnLkiG7duqX8+fPriSeeUL169YwuEVlUtWpVbdq0KdP3RNy4caMqV67s5KqQW3r16qWtW7cqKSlJZcqU0YsvvqgWLVqoQYMGstvtioqKMu3OhxRWCWgpEhIStHbtWi1ZskQ7duxI3XFcqVIlHT9+XB999JFat25tcJU5FxMTo6VLlyo0NFS///67HA6HypYtq6CgILVs2VKlSpXS008/raJFixpdaq4ZP3680SW41MCBA7VmzRpJ0lNPPaXg4GAlJCQoIiLirn/nyb9F1q5dqwMHDmjZsmVatWqVtmzZosmTJ6tixYpq2bKlqlWrZnSJAAxixRxqxTn/FdnbfMje5kb2JnuTvcnenorsTfb2FDTADXTmzJksjU85ctlTWe2LQLLenK9cuaLIyMjUwB0ZGakrV67I4XCoUKFCql27tgYPHqx69erp4Ycflt1uN7pkZEOHDh303nvvaeXKlfc8CjcsLEzbtm3T5MmTXVQdcmrz5s3y8/NTcHCwunfvrhIlShhdkktYMaBFRkYqJCREK1eu1NWrV2W321WrVi21bNlSLVu2VFJSklq0aKE8efIYXWquaNasmZKTkxUYGKg+ffqoefPmeuSRR1LXR0VFGVidcwQFBRldgkuFh4en/vP69eu1YcOGu45PaX4cPnzY2aU5VY0aNVSjRg29++672rJli5YvX65169Zp+vTpstlsstls2rBhgwIDA1WuXDmjywUMQfY2P6vNmextDWRvcyN7k73J3uZB9iZ7k73dEw1wAzVr1sxSl8bIzheBp38hWm3ODRo0kM1mk8PhUJEiRVS/fn3Vq1dP9erVU0BAgEe/fvE/nTp1UlhYmIYMGaKjR4+qe/fuKlmyZJoxMTExmjt3rubNm6emTZuqTZs2BlWLrOrfv7++//57zZgxQ1988YUefPBBtWjRQi1atFD16tWNLs9prBjQnn/+efn6+qpJkyZ64okn1KxZszQ7Gcw258TERPn6+qp48eLy9fVNd4lUK4iOjtaePXsUExMjSSpZsqRq1aqlMmXKGFxZ7rBa8+PvvLy81LRpUzVt2lTx8fFas2aNVqxYoa1bt+q7775TSEiIGjRooE6dOunZZ581ulzApcje9+bp3/tWmzPZ2xrI3uZG9iZ7pzDbnMneZG+zI3t7DhrgBurYsSOhJAM3b97UqlWrFBoaqoiICB08eNDokpzOLHNu3bq16tevr/r163PZLROz2+2aMWOG3nnnHX3xxReaOXOmypQpoxIlSsjLy0sXLlzQyZMn5XA41KZNG33wwQdGl4ws6N+/v/r376+ff/5Zy5cv18qVKzVz5kzNmjVLZcqUUZ06dUz53WXFgObr66u4uDgdO3ZMRYoUkZ+fn5544gkVKFDA6NKcYsOGDVq+fLmWL1+uyZMny2azqXjx4nr66af19NNPm/ro3F9//VVjx45VRESEHA5Hmksp2u121alTRyNGjFBAQICBVeac1Y66vxsfHx+1a9dO7dq106VLl7Ry5UotX75c27dv144dOwjhsByyd8bMkkOzwixzJntbA9nb3MjeZG+yt/mQva2H7O3ebA6z30wEHmPv3r0KCQnRqlWrFBsbK4fDoSpVqmj58uVGl+Y0VpwzzOXHH3/U0qVLFRkZqXPnzsnhcKhkyZKqU6eOOnTooIYNGxpdYq4IDAzU//3f/6l58+apy65cuaKgoCB9/PHHqlWrVprxa9as0Ycffujxl/aRbp8BtX37di1fvlxr1qzR9evXJUnlypVTp06d1LFjR5UtW9bgKnPu7NmzqQHt119/zTCgtWzZUtOmTUvzOvBk8fHxWr9+vZYtW6YtW7YoKSlJefLkUaNGjfT0008rMDBQnTt3NtWcUxw5ciR1J9PZs2dls9lSd0oMGzZMr7zyitEl5pp169Zp0KBBstlsatGihRo2bKiSJUvK29tbMTExioiI0KpVq5SYmKgpU6aoRYsWRpcMJzp16pS+//579enTx+hSABjIijnUinOGuZC9yd5kb89F9iZ7k72th+ztHmiAe4izZ88qNDRUYWFhae6x4Omio6MVFham0NBQnThxQpLk7e2tli1b6oUXXlDdunUNrjD3WXHOgKcLDAzM8Mjre10e0wwh/K8SEhK0fv16rVixQps2bdKtW7dkt9vVqFEj/ec//zG6vFxjpYCW4vLly6lHqe7fvz/Nul69eqlPnz7y9fU1pjgn27Vrl5YvX67w8HBduXJFNptN5cuX13PPPaegoCCVLl3a6BKz7fTp02rXrp0efPBBffLJJ6pQoUKG4/78808NHDhQv/32m5YuXXrHce5u+PDhWf4bm82mcePGOaEaAJ6K7G0eVpwz4OnI3reRvcneZkT2JnuTveFqNMDd2M2bN7V69WqFhoZq586dSk5Olre3t37++WejS8uRhIQErV27VkuWLNGOHTtSL3VTqVIlHT9+XFOmTFHr1q0NrjJ3WXHOsI6EhAQdOXJEMTExqUehBwYGKl++fEaXlmuy88NOMvc9ca5evapVq1Zp+fLl2rNnjw4dOmR0SU5h5oB2J1FRUVq+fLlWrFih3377TTabTX5+fmrTpo06deqU7qwLs7h165Y2b96sZcuWaePGjbp586bH/+764IMPtHTpUq1atSrNPeYycvnyZbVt21bt27fXsGHDXFRh7goMDMzy39hsNo/eYZqdM0RsNpvWrl3rhGoAz0X2Ng8rzhnWQfa+M7K35yN7k709+XcX2fveyN4wAg1wN7Rv3z6FhoZq5cqVqZfmKl26tLp06aLnn39eJUqUMLrEbImMjFRISIhWrlypq1evym63q1atWmrZsqVatmyppKQktWjRwlSXe7HinGEd58+f1+TJkxUeHq7Y2Ng063x9fdWqVSsNHjxYJUuWNKhCuMru3btNfwaNGQNaZhw5ckTLli3TypUr9eeff3p8YMms69evKzw8XCtWrNCcOXOMLifb2rRpoyeeeCLTOxInTpyoDRs26IcffnByZc4RFRWVrb/z5HvQNWvWLN0yh8Ohs2fPqnjx4sqbN2+Gf7d+/XpnlwZ4BLK3eXKoFecM6yB7IwXZ27zI3mRvT0L2vo3s7f68jS4At0VHR2vp0qUKCQnRiRMn5HA4ZLfbJUmDBg1Sr169Uv/dUz3//PPy9fVVkyZN9MQTT6hZs2ZpjojK7genO7PinGEN+/fvV+/evXXlyhXVqFEjw/vahIWFaf369Zo+fbpq165tdMnIop9//ln79++Xw+HQQw89lGHIvn79uiZNmqRvv/1WBw8eNKBK18mTJ4+aN2+u5s2bpwloZhcYGKjAwEANGTJEO3futMScJalAgQJq0aKF9u7da3QpOXL27FlVrlw50+MrVqyohQsXOrEi5/LkMJ1dGYXpixcvqnHjxvroo4/UqFEjA6oC3BvZ25w51IpzhjWQvc2P7J0W2Zvs7YnI3uZH9vZMNMANlHJprpCQEG3fvl1JSUnKly+fmjVrpqeffloBAQEKCgpSlSpVPD6AS0q9h8uxY8dUpEgR+fn56YknnlCBAgWMLs1prDhnmN+FCxfUr18/5c+fX59//rnq1KmT4bhDhw5p0KBBGjhwoJYuXapixYq5uFJkx40bN/T2229r06ZNSrlIjM1mU+PGjTV9+vTUIxo3btyoUaNGKTo6Wvfdd5+RJbucWQJaVpUtW9bjdx6fPn1ac+fO1b59+yRJDz/8sHr27Kn7778/zbjw8HCNGTNG58+f19ixY40oNVf4+Pjo6tWrmR5/9epV+fv7O7EiYyUkJOi3336Tj4+PKlasaHQ5TnO3+2MCVkX2Nn8OteKcYX5kb3Mje98b2dtzkb3vjuxtDmRv90cD3EBNmjTR1atXVahQIT3zzDNq3ry5nnjiCfn6+koy3xHK27dv1/r167Vs2TItWbJEixcvVp48edSoUSM9/fTT2bp3hLuz4pxhfgsWLFBsbKwWLVqkChUq3HHcww8/rLlz56pdu3b673//qwEDBriwSmTXZ599po0bN6pJkyYKCgqSn5+fNm3apG+++UYTJ07UiBEjNGHCBH355Zfy8vJSjx49NHDgQKPLzhVWC2iSdODAAU2fPj3NnPv165fmrAOHw6Evv/xSn376qeLj440qNccOHz6sl19+WdevX5ePj498fHx06NAhrVy5UosWLVLVqlV17do1jRgxQuHh4fLy8lKvXr2MLjtHHnnkEYWHh6tHjx6ZGr969Wo99NBDTq7Kua5du6ZZs2Zp3759mj9/fury5cuXa+zYsak7JR588EGNGzdONWvWNKhSAK5E9jZ/DrXinGF+ZG9zI3uTvcneZG9PRvaGJ6ABbqArV67Iz89PrVq1UoMGDVS7du3UAG5GPj4+atu2rdq2bavLly9r5cqVWr58uTZv3qzNmzdLun3UTGRkpBo3bmyK/xZWnDPMb+3atWrfvv1dA3iKcuXKKSgoSOHh4YRwD7F+/XrVr19fs2bNSl325JNPqlixYpo/f74KFy6suXPnKjAwUOPHj/f4H+wprBjQtm/frp49eyopKUkPPvigfH19FRERoVdffVVz585VvXr1dPr0af3jH/9QZGSkChQooNGjRxtddral7ET4+OOP9cwzz0i6fb/Qt99+W2PHjtWkSZMUHBysP/74Q48++qjGjh2rgIAAg6vOmc6dO2vQoEGaO3euXnvttbuOnTFjhiIjI9O89z1NbGysunbtquPHj6t06dJKTEyUt7e3IiMjNXToUDkcDnXt2lVVqlRRWFiYXnvtNYWFhaXb0QbAfMje5s+hVpwzzI/sbW5kb7I32Zvs7anI3vAYDhgmIiLC8d577znq16/vCAwMdDz00EOO559/3jF79mzHiRMnHKdPn3YEBAQ41q5da3SpTnX69GnH9OnTHc8884wjICDAERgY6Khdu7bj//7v/xx79+41ujynsOKcYR41a9Z0LFq0KNPjFy9e7KhVq5YTK0JuqlmzpuPLL79Mt/y3335zBAQEOB566CHHmDFjHAkJCQZU5zx9+vRxVKtWzbFixYrUZQcOHHA0b97c8fLLLzuio6MdrVq1cgQEBDg6d+7sOHLkiIHV5o5XX33VUbt27TTfO3/++aejY8eOji5dujh+++03R+PGjR0BAQGOAQMGOGJiYgysNucaN27sGDNmTLrlq1evdjz88MOOF1980fHII484Zs2a5UhKSjKgQucYMGCAIzAw0PGPf/zDsW/fvjTv3aSkJMe+fftSx4wcOdLASnPu008/dVSrVs3xww8/pFneq1cvR2BgoGP8+PGpy+Lj4x0tW7Z0DBs2zNVlOt3FixcdAQEBjm3bthldCuA2yN63WTGHWnHOMA+yt7mRvcneZG+yt6cie99G9nZ/nAFuoLp166pu3boaOXKkNm3apOXLl2vjxo06cOCAJk2apAoVKshms+nGjRtGl+pU5cqVU58+fdSnTx8dOXJEy5Yt08qVK/Xdd99pyZIlOnz4sNEl5jorzhnmkSdPHt28eTPT4+Pj4+Xn5+fEipCb4uLiVLRo0XTLixQpIkl6+umnNWLECFeX5XSRkZHq1q1b6tHJklS9enUNGTJEgwcP1uDBgxUVFaV33nlHr7/+uinuD3r48GG98MILqlWrVuqyUqVK6R//+Id69uypt956S4mJiZoyZYratGljYKW548qVKxle/vTRRx9VUlKSjh49qvnz55vuslyTJk3S+PHjtWjRIn3//ffy8vJS4cKF5eXlpcuXLyshIUF2u109evTQ4MGDjS43R8LDw9WhQwe1bt06dVlsbKy2bt0qSXrxxRdTl+fLl0/t27fXt99+6/I6Abge2fs2K+ZQK84Z5kH2NjeyN9mb7F3T9cU5Edmb7A33QwPcDXh7e6t58+Zq3ry5YmNjFR4eruXLl2vnzp1yOBwaOnSolixZoueee06tWrVSvnz5jC7ZaQIDAxUYGKghQ4Zo586dWrFihdElOZ0V5wzPVrVqVW3atEnBwcGZGr9x40ZVrlzZyVXB2Ww2mySpY8eOxhbiJFYMaNeuXVOlSpXSLa9SpYocDocuX76sb7/9Vvfdd58B1eW+xMTEDH9D+fj4SJJ69eplqu2bIm/evBo1apSCg4MVFhamyMhInTt3Tg6HQxUrVlSdOnXUrl07U1yK7PTp02mCtiRFREQoMTFRFSpUSPdaLlOmjC5cuODKEnPd1KlT0y2Lj4+XzWbT0qVLtWfPnnTrbTab+vXr54ryALdD9v4fK+ZQK84Zno3sbU1kb7K3pyN7k73J3reRvY1HA9zN5M+fX0FBQQoKCtKFCxe0YsUKLV++XDt27NCOHTs0ZswYRUREGF2mSzRo0EANGjQwugyXsuKc4Xk6dOig9957TytXrlTbtm3vOjYsLEzbtm3T5MmTXVQdnC0lsJiNFQNaUlKSvL3T/xTMmzevJKlPnz6mCeCZ8cgjjxhdglM9+OCDHn+U+b3Y7XYlJyenWbZ9+3ZJUuPGjdONv3jxogoUKOCS2pwloxCeIiwsLMPlhHDgNrL3/1gxh1pxzvA8ZG9rI3ubB9k7LbK35yN7p0X2dl80wN1YsWLF9Morr+iVV17RiRMntGzZMo8+QjmzR6z+lc1m01dffeWEalzDinOG+XXq1ElhYWEaMmSIjh49qu7du6tkyZJpxsTExGju3LmaN2+emjZtaopLOFlJyhHnWV1nZmYPaBnJ6Ah1M7PCazs6Olp79uxRTEyMJKlkyZKqVauWypQpY3BluaNy5crat2+funfvLklyOBxas2aNbDabmjVrlm78unXrPP51Pm/ePKNLAEyB7O35OdSKc4b5kb3Nj+ydHtnb/Kzw2iZ7p0X2hlFogHuI+++/XwMGDNCAAQOMLiXbdu3aleFym80mh8Nxx3WezIpzhvnZ7XbNmDFD77zzjr744gvNnDlTZcqUUYkSJeTl5aULFy7o5MmTcjgcatOmjT744AOjS0YWjRs3TlOmTEmzzOFwyGaz6Z133kl3tLbNZtPatWtdWaLL8dlsDsePH093Nt+1a9ckSUePHs3wqPx69eq5pDZn+vXXXzV27FhFRETI4XCk+Q1it9tVp04djRgxQgEBAQZWmXMdO3bUBx98oEcffVSPPfaYFi9erDNnzui+++5TkyZN0oydMWOG9u/f7/H3Vaxfv77RJQCmQ/b2TFacM8yP7G1+ZO/0+Gw2B7I32TsF2RtGogFuoODgYL355ptq1KhR6rLExETt27dPgYGBKliwYJrxy5Yt07Bhw3To0CFXl5orjhw5km7ZxYsX1bhxY82dOzfNfwezsOKcYQ0FCxbUF198oR9//FFLly5VZGSkfvnlFzkcDpUsWVIdO3ZUhw4d1LBhQ6NLRRaVLVtWkjLcUZhypOrf191pp6KnsWJA2717t5KSktIsi42NlSRt3bpV0dHR6f7Gk+9FN2PGDM2YMSPDdRMmTMhw+eHDh51ZktOtW7dOgwYNks1mU+vWrdWwYUOVLFlS3t7eiomJUUREhFatWqXOnTtrypQpatGihdElZ1u3bt20Z88ejR8/PrXhUahQIU2aNEl2u12S9N1332nmzJk6deqU6tSpoxdeeMHgqp0rISFBv/32m3x8fFSxYkWjywEMQ/Y2fw614pxhDWRv8yJ7k73J3mmRvT0H2Ts9srd7sjnM8s3pgQIDA/XRRx+pXbt2qcsuXbqkxo0ba86cOekC2rJlyzR06FCP/zL4q0uXLqlRo0aWCqRWnDMAuLvAwMA7HmmecgR+Rjz5O/lOc/7rT8O/rk/57+Cpc/7ss8+ydTZB//79nVCNa5w+fVrt2rXTgw8+qE8++UQVKlTIcNyff/6pgQMH6rffftPSpUvvOM5T7Nu3T/v27VOBAgXUokULFS1aNHXd1KlTtXTpUrVr1069e/fO8P6DnubatWuaNWuW9u3bp/nz56cuX758ucaOHaurV69Kun0vunHjxpnunopAZpC9rZlDrThnAHB3ZO//IXunRfb2PGTv28je7oszwN0QxyQA8BTx8fHy8fFJt/y3336Tv79/uvuTwf2FhYWpbt26Kl++vNGluFS/fv0sd6m18ePHG12CS3nypWyz66uvvlKePHk0e/bsNEH070qXLq2ZM2eqbdu2+vrrrzVs2DAXVpn7atWqpVq1amW4rn///nfcsXLr1i3t378/w7NB3VVsbKy6du2q48ePq3Tp0kpMTJS3t7ciIyM1dOhQORwOde3aVVWqVFFYWJhee+01hYWF6f777ze6dMAtkL0BeAqyt/mQva2D7G1+ZO/0yN5kb3dAAxwAkGUJCQmaMGGCli9frs2bN6cL4pMnT9bmzZvVqVMnDR06VH5+fgZViqwaPny4Jk6caLkQbsWAFhQUZHQJLpXR5W/NbsuWLQoKCrprAE9RuHBhdezYURs2bPD4EJ5dV65cUXBwcIZng7qrOXPm6OTJk/r3v/+t1q1bpy6fNm2aHA6HXnnlldTt2blzZ7Vv314zZsyw3E44AAA8FdnbvMje1kH2Nj+yd9aQveEqdqMLAAB4loSEBPXo0UNff/21ypYtq0uXLqUb89RTTykgIEDffPON3njjDSUmJhpQKbLDqmdCBQcHa/v27UaX4VLNmzfXunXrjC7DZXbt2qXz588bXYZLnT17VpUrV870+IoVK+rPP/90YkXuz9M+A8PDw9WhQ4c0ATw2NlZbt26VJL344oupy/Ply6f27dtb7rMOAABPRfY2N0/73ZlbyN7mR/a+N7K3530Gkr09Ew1wAECWfPnll4qIiNCIESMUFhamMmXKpBvTpUsXLVmyRP3799fevXu1YMECAyoFMs+KAS0qKko3btwwugw4kY+PT+o9qDLj6tWr8vf3d2JFyG2nT5/WI488kmZZRESEEhMTVb58ed13331p1pUpU0YXLlxwZYkAACCbyN4wI7I3zIjsbX5kb8/EJdDhMmFhYemWxcbGSpK2bt2q6OjoDP+uY8eOTqzKuaw4Z5jf8uXL1bx5c7300kv3HNu/f3/t2rVLS5cu1auvvur84pArLl++rDNnzmTpb8qWLeukagBk1yOPPKLw8HD16NEjU+NXr16thx56yMlVITfZ7XYlJyenWZZylHnjxo3Tjb948aIKFCjgktoAGMeKOdSKc4b5kb3Nj+wNmAPZ2/zI3p6JBrjB/v5D58qVK5Juv0H+/gMoo0sdeZJhw4bJZrOlWZZyqYvZs2fLZrOl/nvKP9tsNo8OpFacM8zvxIkT6tatW6bHP/nkk/rkk0+cWBFy27hx4zRu3LhMj7fZbDp06JATKwJyx5o1a3TixIlMj7fZbOrXr58TK3Kuzp07a9CgQZo7d65ee+21u46dMWOGIiMjNWvWLBdVh9xQuXJl7du3T927d5d0+3fmmjVrZLPZ1KxZs3Tj161bp0qVKrm6TMAtkL3NnUOtOGeYH9nb/MjeMCuy952RvT0T2dsz0QA32J1+6LzzzjsGVONc48ePN7oEl7PinGF+fn5+SkpKyvT4fPnyycfHx4kVIbfVqVNHFSpUMLoMl7NaQJOkxYsXa9u2bZkeb7PZsrSDxt2sWbNG4eHhmR7v6du4devWatmypSZOnKiDBw/qpZdeUrVq1ZQnTx5JUnJysiIjIzVnzhytWbNGXbp00eOPP25w1ciKjh076oMPPtCjjz6qxx57TIsXL9aZM2d03333qUmTJmnGzpgxQ/v379eIESMMqhYwFtnb3Kw4Z5gf2dv8yN6Z4+m5TCJ734unb2Oyt/mRvT0TDXADdezYMd0RymYWFBR0zzFXrlyRj4+P8uXL54KKnM+Kc4b5VaxYUXv37lVwcHCmxu/Zs0flypVzclXITV27dlW7du2MLsPlrBbQpNv3K4qIiMj0eE8P4b17987w0lRmNmnSJI0fP16LFi3S999/Ly8vLxUuXFheXl66fPmyEhISZLfb1aNHDw0ePNjocpFF3bp10549ezR+/PjUMxoLFSqkSZMmyW63S5K+++47zZw5U6dOnVKdOnX0wgsvGFw14Hpk7/TMlkOtOGeYH9nb/MjemUP29jxkb7K32ZC9PRMNcAN9+OGHRpfgcrdu3VJISIj279+f5gjtXbt26f3339fvv/8um82mxo0ba9SoUaY4CtKKc4a5BQUFadSoUdqxY4caNmx417E7d+5UeHi4BgwY4KLqgOyzYkB799131bx5c6PLcJlKlSqpfv36RpfhUnnz5tWoUaMUHByssLAwRUZG6ty5c3I4HKpYsaLq1Kmjdu3a6f777ze6VGSDzWbTpEmT1L17d+3bt08FChRQixYtVLRo0dQxf/75pxwOh95880317t07NZwDVkL2tkYOteKcYW5kb5gV2dv8yN5kb7Mhe3smGuAGeuONN9SxY0e1aNHCEpcounXrll5//XVFREQoT548GjNmjLy9vfX777/rjTfe0K1bt9SkSRNVrlxZq1evVteuXbVs2TIVL17c6NKzzYpzhvl17NhRS5YsUZ8+fdS7d2916dIl3Ws2JiZG3377rWbPnq3y5cvrxRdfNKhaIPOsGNCKFCnCWSIW8eCDD3KUuYnVqlVLtWrVynBd//791b9//wzX3bp1S/v371dgYKAKFizozBIBQ5G9zZ9DrThnmB/ZG2ZF9oaZkb3NjeztWTgEwUC7du3SP//5TzVu3FjDhg3Ttm3b5HA4jC7LaRYsWKDdu3frn//8pyIiIuTtffv4i88++0wJCQlq166dZs6cqSFDhmjJkiXy8vLSjBkzDK46Z6w4Z5hfnjx5NG3aNNWoUUOffPKJmjRpoubNm6tbt27q0qWLmjVrpqZNm+qzzz5TQECA5s6dyxe7Bylbtqz8/PyMLgMA4AJXrlxRcHCwfv75Z6NLAZyK7G3+HGrFOcP8yN7mRvYGAOsgexuDM8ANtH37dq1du1Y//PCDvv/+ey1dulTFixdXu3bt1L59ewUGBhpdYq5asWKFWrVqpR49eqQuS0hI0Pr162Wz2dIsL1y4sJ577jl9//33GjFihBHl5or/x959h0dRvW0cvzeNNCCh9yIloffepEiPdFQ6gigoTVCBHwgIigioCAiC0hWQEnoJSBfpTaqUUAUCIZRAQtq+f/BmZUkCSUiy2c33c11ewsyZnWe2sfc5M2fS4jEjbcicObPmzZsnPz8/rVu3TqdOndLZs2dlZ2enLFmyqGXLlnrjjTdUr149S5eKBNq6desL10dFRenmzZvKkiWLnJycUqgq4NV99NFH8vLysnQZKSq+94t8lsFg0Lx585KhmtTh9u3b8vDwkKOjY4x1GTNm1Pz581WsWDELVGY5tjwICEQje9t+Dk2Lx4y0gextu8jesFVk7/ghe5O9kfwYALcgNzc3tWjRQi1atNDDhw+1adMmrV+/XvPmzdOcOXNUuHBhtWjRQj4+PsqePbuly31lly5dUqtWrcyWHTp0SKGhocqWLVuMfxjz5cungICAlCwxyaXFY0ba0rBhQzVs2NDSZSAF3b17V/Xr19fs2bNVrVo1S5eTZNJiQBs3blyc0zbZorimoYr2+PFjzZ49Wy1btlSePHlSqKrktX///liXGwyGOIOXwWBIzpJSxJw5c/T7779r9erVMcL2V199pT179qhHjx7q2bOn2T25HB0d09xUjEBaQfa2/RyaFo8ZaQvZO+0he9sOsrc5svd/66wd2RupHQPgqUT69OnVtm1btW3bVnfv3tXGjRu1YcMGffvtt/r2229VqVIltWzZUg0bNpSbm5uly02UqKgo2dvbmy3bu3evJKl69eox2j98+FAuLi4pUltySYvHDEhPp3VxdnZWunTpLF0KkoEtnrGYFgPa853EzwsODtaXX36pnj17qlChQilUleU8fvxY06ZNU4UKFWzmNT5z5kyMZXfv3lX16tU1Z84cm+pIk55+Nw0ePFjr1q1T5syZdfPmTeXNm9esTaFChXT48GF99913OnHihH744QcLVQvAUsjetplD0+IxAxLZ29aRvW0jl5G9zZG9rR/ZG9aCe4CnQpkyZVKHDh20YMECbd++Xf/73/9kZ2enzz//XDVr1rR0eYmWL18+nT592mzZ5s2bZTAY9Prrr8dov3v3buXLly+FqkseafGYkTaEh4dryZIlGjp0qNny/fv3q2nTpqpatarKlSunnj176sqVKxaqEkg60QHt6tWrli4lxYSGhmrlypVp6uooW+xgep4tnGUelyVLlmjdunXq1q2btm/fHiOAS0873DZv3qzWrVtr8+bNWrFihQUqBZBakL2fsoUcmhaPGWkD2RtpDdk7bSB7WzeyN6wFA+CpnKOjo5ydneXu7i4HBweFhYVZuqREa9asmVatWqUtW7YoJCREc+fO1cWLF5U5c+YY9ypavXq1/vzzT9WvX99C1SaNtHjMsH3h4eF69913NXLkSK1du1YRERGSJH9/f/Xs2VP+/v6qVauWunXrJn9/f7399tu6c+eOhasGXl1aCGjPS4vHDOu1bNkyVa5cWUOGDIn1PmPRnJycNHbsWBUrVky///57ClYIIDUje1t3Dk2LxwzbR/ZGWpUWc2haPGZYL7I3rAVToKdCd+/e1ebNm7Vx40YdOHBAERERKl68uPr3769mzZpZurxE69atm3bt2qWPPvrIdP8LR0dHffnll3JycpL09AzthQsXav/+/SpYsKC6detm2aJfUVo8Zti+hQsX6uDBg/rkk0/UsWNHOTg8/adkypQpCgsL05tvvqlvvvlGktSrVy/5+PhoxowZGj58uCXLRhJxdHRUpUqVlDFjRkuXAgBmLly4oP79+8errcFgUOPGjTV9+vRkrgpAakb2tp0cmhaPGbaP7J22kb0BpFZkb1gLBsBTiTt37sjPz08bN27UoUOHFBkZqdy5c6tHjx568803beL+H05OTpo7d67Wr1+vo0ePyt3dXT4+PipcuLCpzYkTJ3T48GG9+eabGjJkiJydnS1Y8atLi8cM27d27Vo1atRIPXr0MC0LCwvT1q1bZTAYzJZ7eHiodevWWrduHSHcSjx8+FDp06ePc33GjBm1YMECs2X79u1TlSpVkrs0IFmlT59e48aNU5EiRSxdChLJwcHBNMgRHxkyZIhxv1gAto/s/ZSt5dC0eMywfWRv20b2RlpF9rZ+ZG9YCwbALSggYXT9ygABAABJREFUIEB+fn7atGmTDh8+rMjISGXMmFFt27aVj4+PKlasaOkSk5y9vb18fHzk4+MT6/oPPvhA/fv3l52d7czOnxaPGbbt0qVLatWqldmyQ4cOKTQ0VNmyZZOXl5fZunz58qWp+xhZuy5dumjOnDny8PB4adsnT55owoQJ+u2333Tq1KnkL86C0mJAy5gxo+bPn69ixYpZupQUkS5dOtWsWZMrLKxY/vz5deLEiXi3P3HihHLmzJmMFQFILcjeMdliDk2LxwzbRva2bWTv2JG9bR/Z2/qRvWEtGAC3oDp16kh6eqZygwYN5OPjozp16rzwvgm2zsXFxdIlpLi0eMywblFRUTHO2tu7d68kqXr16jHaP3z4kPe5FTl9+rQ6deqkuXPnKkuWLHG2O3bsmD777DNdunTphe1sRbp06cw6nyIjIzVz5kz17t3bglUlL0dHR1WuXNn094cPH2r8+PEaO3asBat6dXPmzNHvv/+u1atXx/jN9dVXX2nPnj3q0aOHevbsafUd5CtXroyx7NGjR5KkP//8U7du3Yp1u5YtWyZjVcmnefPmmjRpkrp37/7SDrNz585pzZo16tKlSwpVB8CSyN4xpcXf52nxmGHdyN62jewdO7I32dsakb3jRvaGJRmMRqPR0kWkVZ07d1aLFi3UuHFjubu7W7ocAIiXFi1aqEyZMvriiy9My5o2bSp/f3999913aty4sVn7nj176v79+1q6dGlKl4pE+PXXX/Xll18qb968mjt3bowzNMPDw/XDDz9o9uzZioyMVIsWLTRs2DCbOHP34cOHWrp0qY4ePSqj0ajixYurY8eOypAhg1m7v//+W8OHD9c///yj06dPW6japHHt2jXNmTNHR44ckSQVL15c7733nvLnz2/Wzs/PT2PGjNGdO3es9piNRqMGDx6sdevWKXPmzFq8eLHy5s1r1mbq1KlaunSpAgIC9MYbb+iHH36wULVJw9vbWwaDwWzZsz/9Y1tnMBis9jV+/PixWrdurXv37mnYsGFq1qxZjE7jiIgIrV27VhMnTpQk+fr6KmvWrJYoN8Xcvn1bHh4esQ70hYeH68iRIypWrNgLp+AErB3ZG4A1InvbNrI32ZvsTfa21teY7B07snfqwwA4ACBBZs6cqWnTpmnSpEmqUaOGlixZoq+//lpZsmTR1q1bze4Bs3r1an322Wfq37+/PvjgAwtWjYRYu3athgwZomzZsmnu3LnKly+fpKdnqH/22Wf6559/lCtXLo0ePVq1atWycLVJ4+rVq+rSpYtu3rxpFlKyZMmipUuXKmfOnIqIiNCkSZM0f/58RUZGqlmzZpo0aZIFq341p0+fVufOnRUcHCxnZ2c5Ozvr3r17cnV11eLFi1W0aFE9fPhQw4cPl5+fn+zt7dWjRw8NHDjQ0qUnyuLFizVq1Ch169ZNgwYNivOqv7CwMI0ePVorVqzQl19+qdatW6dwpUnH19c3Uds9P9WmNfH399eHH34of39/ubq6qkSJEsqaNasiIyMVGBioEydOKDQ0VLly5dK0adPk7e1t6ZKTxIuurhg4cKBNXV0BAEBaQfa2fWRvsjfZm+xtrcjeZG9rwAC4BcU2NUZ8WOvUGABsQ1hYmHr06KEDBw7IYDDIaDTK0dFRU6dONU0vuXnzZi1cuFD79+9XwYIFtWLFCjk7O1u4ciTEjh07NGDAALm7u2vWrFn6448/NGPGDEVEROidd97RoEGD5ObmZukyk8ygQYO0fv16DRw4UG3atJGLi4t27NihL774QmXLltWECRPUq1cvHT58WLly5dLIkSNN73dr1bt3b+3atUvjx49Xs2bNJEnHjx/Xxx9/rFy5cmnixInq0qWLLl26pFKlSmns2LEx7jNoTdq2bStXV1fNnz//pW2NRqPatGkjJycnLV68OAWqQ1IKCwvTr7/+qnXr1unMmTOKiIiQ9HRqwbJly6phw4Z66623zDqNrVVavLoCSAyyNwBrRPZOG8jeZG+yN9nbWpG9yd6pHQPgFhQ9NUb0lBcvY+1TYwCwHZGRkVq/fr2OHj0qd3d3+fj4qHDhwqb13333nWbPnq2mTZtqyJAh8vT0tGC1SKxDhw6pd+/eCg4OltFoVP78+TV27FhVrFjR0qUludq1a6tGjRoaN26c2XJfX1+NHDlStWvX1pYtW/TOO+/ok08+kaurq4UqTTo1atRQkyZNNHz4cLPlfn5+GjhwoMqWLavjx4+rf//+evfdd63+zNVy5cqpf//+6tatW7zaz5w5U9OnTzdNUWftQkNDY+0MPX/+vDJkyKBs2bJZoKqUcffuXdnb29vEdJHPS4tXVwCJQfYGYK3I3mkD2ZvsTfYme9sCsjfZO7VxsHQBadnz/9ADgLWwt7eXj4+PfHx8Yl3/wQcfqH///lb/oz2tq1ChgubPn6+ePXvq7t27+uKLL2wygEtSUFCQypUrF2N5pUqVFBYWph07dmjy5Mlq1KiRBapLHvfv3491CqpSpUopMjJSZ8+e1YIFC1S2bNmULy4ZODg4JOis4wwZMsS4h5U1CgsL0/jx47VmzRrt3LkzRhD/9ttvtXPnTrVp00afffaZTXQwPS9TpkyWLiHZLFu2TJUrV9aQIUNe2M7JyUljx47V6dOn9fvvvxPCkeaQvQFYK7J32kD2JnuTvcnetoDsTfZObRgAtyBrvscDgLSrS5cu6t27t6pVq2ZaFhERoSNHjsjb21vp06eXi4uLaV30vci4gsY6eXt7a9GiRerevbt69+6tadOmqWrVqpYuK8mFh4ebvW+jRU811717d5sK4NLTz226dOliLI8Oab169bKZAC5J+fPn14kTJ+Ld/sSJE8qZM2cyVpT8np0209vbW0FBQTGOqW7durp165aWLFmic+fOaf78+XJwsM6IMHXq1ERt99FHHyVxJSnnwoUL6t+/f7zaGgwGNW7cWNOnT0/mqoDUh+wNwBqRvdMWsjfZ21aQvcnecSF7I6VZ5ycsjYqMjNTMmTPVu3dvS5cCIA3bv3+/2rVrZ7bs4cOH6tKli2bPnm0WzmF9hg4dGuvy/Pnz69q1a3r//ffVpEkTs+lDDQaDvvrqq5Qq0SIqV65s6RJSXMmSJS1dQpJq3ry5Jk2apO7du6tIkSIvbHvu3DmtWbNGXbp0SaHqksfcuXN14MABDR8+XJ06dYq1Tbt27dSuXTtNnTpVU6dO1cKFC+M9VV1qE98Q/vz0x9YcwtPq1RVAciN7A0gNyN62jewdO7K39SN7k72jkb3J3pbGALiFPXz4UEuXLtXRo0dlNBpVvHhxdezYURkyZDBr9/fff2v48OH6559/COEAUiWj0WjpEpAEfH19X7j+yZMnWrlypdmytBDC0+KP1vjcI9WatG/fXosXL1bnzp01bNgwNWvWLMbrGhERobVr12rixIlKnz691YfwNWvWqH79+nEG8Gd99NFH2r9/v1atWmW1IfyPP/54aZuHDx/q+++/1/bt2+Xg4GD1r3FavLoCSCyyNwBbQfa2DWTv2JG9rR/Z+8XI3taJ7G2dGAC3oKtXr6pLly66efOm6cfr5s2b9euvv2rp0qXKmTOnIiIiNGnSJM2fP1+RkZFq1qyZhasGANiy+PyItVX37t3Tv//+a7bs/v37kqS7d+/GWCdJuXLlSpHaksvFixd14MABs2UPHz6UJJ09ezbW6bgqVaqUIrUlNVdXV02fPl0ffvihPvvsM40ePVolSpRQ1qxZFRkZqcDAQJ04cUKhoaHKlSuXpk2bpqxZs1q67Fdy+fJlvf322/Fu//rrr2vy5MnJWFHyyp079wvXr1+/Xl9//bUCAgJUvnx5jRo1SkWLFk2h6pJHWry6AkgMsjcAILUhe5O9yd5kb2tF9iZ7WwsGwC3o+++/182bNzVw4EC1adNGLi4u2rFjh7744gt98cUXmjBhgnr16qXDhw8rV65cGjlypOrUqWPpsgEANuxlP2Jt2VdffRXn2fSDBw+OscxgMOjUqVPJXVaymjFjhmbMmBHruvHjx8e63JrvKViwYEGtXLlSv/76q9atW6fDhw8rIiJCkuTo6KiyZcuqYcOGeuuttxI0tVVq5erqqsjIyHi3T5cunek+dLbkypUrGj16tPbs2aOMGTNq7Nixatu2raXLShJp8eoKIDHI3gCA1IbsTfaORvYme9sKsjfZO7VhANyCDhw4oJYtW6pXr16mZU2aNFFoaKhGjhypIUOG6PDhw3rnnXf0ySefyNXV1YLVAgAQ04wZM+Tn56cVK1ZYupRX0qpVK0uXkOKs+d5Lr8LJyUndu3dX9+7dJT29wsDe3l4ZM2a0cGVJ77XXXtPhw4fjHboOHTpkUx1xYWFhmjlzpmbNmqWwsDC1atVKn3zyiTw9PS1dWpJJi1dXAIlB9gYAWDuyt/Uie5O9n0f2tj5kb+vEALgFBQUFqVy5cjGWV6pUSWFhYdqxY4cmT56sRo0aWaA6AABe7saNG1Z9VnK0cePGWbqEFJdWQ/jzMmXKZOkSkk2rVq00cuRI7d27V1WrVn1h23379snPz099+/ZNoeqS1549ezR69GhdvnxZRYoU0ciRI1WxYkVLl5Us0trVFUBikL0BANaO7G29yN5Pkb2fIntbL7K39WEA3ILCw8Pl4uISY7mbm5skqXv37gRwAKnS8/dretG9moKCglK0NgCIzdSpUxO1nTV3VrRs2VLLly/XBx98oPfff1/t2rVTlixZzNoEBARo6dKl+vnnn5UnTx516NDBQtUmjTt37mjcuHFav369nJ2dNWjQIHXv3j3We+rZkrR0dQWQGGRvANaK7A3A2pC9yd62jOxtXQxGo9Fo6SLSKm9vb02YMEE+Pj5my4OCglStWjX9/PPPqlmzpoWqA4DYeXt7y2AwxFhuNBpjXR7NFs5URkwjR47U77//bvWvb1oMaEOHDk3wNgaDIc57taV23t7e8Wr3/PeYtb+3AwMD9fHHH2vfvn0yGAzKlSuX2RRdN27ckNFoVNmyZfXdd98pZ86cli450RYuXKjJkycrODhY9erV0/Dhw636eAAkHbI3AGtE9sazyN5kb2tB9iZ7A6mFbZ+OYeXs7e0tXQIAxJAW79cE2xffEP58QLPmEO7r6xvvts8et7WG8D/++OOlbR4+fKjvv/9e27dvl4ODQ7zv35WaZc6cWfPmzZOfn5/WrVunU6dO6ezZs7Kzs1OWLFnUsmVLvfHGG6pXr56lS31lY8eONf1569at2rp160u3MRgMOnXqVHKWlazSYgcikBzI3gBSI7I3bBHZ+8XI3taL7P1iZG9YAgPgFvb8VEbSi6czkqRcuXKlSG0AEJu0eL8m2L60GNDOnDnz0jbXr1/XmDFjtH37dqVPn14DBgxI/sKSSe7cuV+4fv369fr6668VEBCg8uXLa9SoUSpatGgKVZf8GjZsqIYNG8ZYfv/+fTk7O1ugoqSXFjuJ02IHIpBYZG8A1obsDVtE9o4d2ZvsbU3I3nEje6cuTIFuQXFNZSTFPZ2RtZ8pAwBI3RJ6RuO2bdt06tQpq5+q6mVsPaA9LzIyUrNnz9aPP/6o0NBQNW3aVEOHDo1xDytbcOXKFY0ePVp79uxRxowZNXjwYLVt29bSZSWZ8PBwrVixQkePHjXrRN2/f79GjRolf39/GQwGVa9eXZ9//rny5ctnwWpfzdChQ/X222+rTJkyli4lxVy/fv2lbWLrQPz0009ToDog9SB7AwBSG7J37MjeZG9rRfa2bWRv68QAuAUl5v4fEmeAAgCST3zv1fQsg8FgsyHc1gNabA4ePKjRo0fr3LlzKlCggEaOHKlq1apZuqwkFxYWppkzZ2rWrFkKCwtTq1at9Mknn8jT09PSpSWZ8PBwvfvuuzpw4IAcHR115MgROTg4yN/fXy1atFBYWJhq166twoULa9OmTQoJCdHq1auttrMlrnv8pmVprQMRiAvZGwCQ2pC9zZG9yd7WjOwNsnfqxBToFkSYBgCkNvPnz7d0CalCWghozwsKCtI333yjlStXysnJSX379tV7770nJycnS5eW5Pbs2aPRo0fr8uXLKlKkiEaOHKmKFStauqwkt3DhQh08eFCffPKJOnbsKAeHpz/9p0yZorCwML355pv65ptvJEm9evWSj4+PZsyYoeHDh1uybCSB5zsQx44da/MdiMCLkL0BAKkN2fspsjfZ2xaQvdMusnfqxgB4KhASEqLly5dr165dOnPmjO7duyeDwaBMmTLJ29tb9evXl4+Pj03+IwgASF0qV66c4G0OHjyYDJVYTloJaM9aunSpJk6cqPv376tGjRoaOXKkVU/HFZc7d+5o3LhxWr9+vZydnTVo0CB1797dFE5tzdq1a9WoUSP16NHDtCwsLExbt26VwWAwW+7h4aHWrVtr3bp1hHArlhY7EIGEIHsDAFILsjfZm+xtO8jeaQ/Z2zrY5jeOFTl06JD69++vO3fuyMnJSfny5VPu3LkVERGhe/fuadu2bdq6daumTp2qSZMmqXz58pYuGQAA3bhxQ76+vlq5cqWuXr1qE9OwpbWAJklnz57VqFGjdPToUWXJkkXffvutmjZtaumyksXChQs1efJkBQcHq169eho+fLhy5sxp6bKS1aVLl9SqVSuzZYcOHVJoaKiyZcsmLy8vs3X58uVTQEBASpaY5A4ePKjIyMgEbdOyZcvkKSaFpcUORCAhyN4AAGtE9rYNZG+y97PI3taN7G09bPdfFStw4cIF9ejRQ+7u7po4caIaNmwY40zz4OBgbdy4UT/88IN69uwpX19f5c+f30IVAwDSsidPnsjPz08rVqzQvn37ZDQaZTAYVLt2bUuX9srSYkAbP368FixYoMjISNWtW1cDBgyQu7u7/v333xdulytXrhSqMGmNHTvW9OetW7dq69atL93GYDDo1KlTyVlWsoqKipK9vb3Zsr1790qSqlevHqP9w4cP5eLikiK1JZfff/9dv//+e7zaRn+HWXsIT4sdiEBCkb0BANaE7G1byN5k7+eRva0T2dv68MpY0I8//igXFxctX75c2bNnj7WNu7u72rZtq9q1a6tFixb6+eefNWbMmBSuFACQlh09elQrVqzQhg0bFBwcLEnKlCmT2rRpo7feeku5c+e2cIWvLi0GtDlz5pj+vG3bNm3bti1e21nrFQfPn42dFuTLly/G67V582YZDAa9/vrrMdrv3r3b6qffa9++vcqWLWvpMlJMWuxABBKD7A0AsAZk79iRva0L2fspsrdtIXtbJwbALejAgQNq3bp1nAH8WdmyZVPLli21e/fuFKgMAJDWBQQEaOXKlfL19dWlS5dkNBrl4uKi6tWra8+ePfriiy9Uv359S5eZZFq2bCmDwWDpMlLURx99lOBtjEZjMlSSct5++22VKVPG0mWkmGbNmmnatGmqXbu2atSooSVLlujixYvKkiWL6tWrZ9Z29erV+vPPP9W/f38LVZs0KlasKB8fH0uXkWLSYgcikBhkbwBAakX2tn1kb9tH9rZ9ZG/rxAC4BQUFBSVoSrXXXntNS5cuTcaKAABp3YYNG7RixQrt2bNHkZGRypAhg3x8fNSwYUPVqlVLt2/fVoMGDSxdZpL7+uuvJUnh4eE6f/68IiIiVLhwYaufkupFcuXKpdatW8e7/fXr1zVs2LBkrCh5+fr6qnr16mkqhHfr1k27du3SRx99JIPBIKPRKEdHR3355ZemqX83b96shQsXav/+/SpYsKC6detm2aKRIGnx6gogMcjeAIDUhuxN9o4L2dv6kL1tH9nbOjEAbkHh4eEJ+sc9Xbp0evToUTJWBABI6wYOHChXV1d16NBB9evXV6VKlczuY2TLZ2r/8ssvmj59uunfWicnJ3Xo0EGDBg2yyfv5DB8+XCEhIerYseNL2y5dulTjx4/nd4iVcXJy0ty5c7V+/XodPXpU7u7u8vHxUeHChU1tTpw4ocOHD+vNN9/UkCFD5OzsbMGKkRhp7eoKIDHI3gCA1IbsTfaODdnbOpG90wayt/WxvX9RAABAouXJk0fXrl3TihUr5O/vr7///lsNGjRQwYIFLV1aslq+fLkmTJig3Llzq2XLlrKzs9O+ffs0d+5cRUZGWvXZ13EpUKCAxo4dq5CQEPXs2TPWNrdv39bw4cO1c+dOOTo6Wv0UXWmRvb29fHx84pya7IMPPlD//v1lZ2eXwpUlvVatWln9fdQSKi1eXQEAAGALyN5k72eRva0f2du2kb2tEwPgFnbv3j39+++/8WobFBSUzNUAANK6LVu26NixY1q9erU2btyo3bt369tvv9Vrr72mhg0bqkSJEpYuMVksWbJEZcuW1bx585QuXTpJT++5NXDgQC1ZskSDBw82TVtlK3777Tf17NlTkyZNUkhIiPr27Wu2fu3atRozZozu37+vcuXKaezYsSpUqJCFqk0aBw8eVGRkZIK2admyZfIUk0rY0lSD48aNs3QJAFIxsjcAIDUhe5O9o5G9nyJ7Ww+yN6yFwWg0Gi1dRFrl7e2dqOlsTp8+nQzVAABgLjIyUrt379aaNWv0xx9/KCQkxPTvVps2bdS7d2/lzp3bwlUmjQoVKujjjz+OMSXZ0aNH9c4778jX11fe3t4Wqi75PH78WH369NG+ffvUrVs3ffbZZwoKCtLIkSO1efNmOTs7a+DAgercubPVT8GX0N9dRqNRBoOB311I1by9vTVhwoQ4rzIA8BTZGwCQmpG9yd5kb7I3Ujeyt3XiCnALatWqlaVLAAAgTvb29qpTp47q1Kmj0NBQbd68WWvXrtWff/6pZcuWacWKFapSpYratGmj5s2bW7rcVxISEqL06dPHWJ4nTx4ZjUY9ePDAAlUlP1dXV82cOVMff/yx5s6dq2vXrunw4cMKDAxUjRo19MUXX9hMR4sktW/fXmXLlrV0GUCS4uoK4OXI3gCA1IzsTfYmewOpH9nb+nAFOAAAMOnVq5eqVq2qypUrq0SJErGetRsUFKT169drzZo1Onr0qE2cqRvXmZxBQUGqVq2a5syZo2rVqlmouuQXFRWl4cOHa8WKFbKzs9MXX3yhtm3bWrqsJMXZurBFXF0BAABgncjeZG+yN2A9yN7WiSvAAQCAyd69e7Vz504ZDAa5u7urYsWKqlKliqpWrWqahszT01MdO3ZUx44ddfXqVa1bt87CVeNV2dnZ6auvvpKHh4dmz56tPXv2qGXLlnJw4KcikNpxdQUAAID1IXunTWRvwHqRva0P36wAAMDk8OHDOnXqlA4fPqwjR47o6NGj2rZtmwwGgzJkyKBKlSqpSpUqqlKliooWLaq8efPqgw8+sHTZSeLevXv6999/zZbdv39fknT37t0Y6yQpV65cKVJbcojteDp16qTHjx9ryZIlevTokUaMGCE7OzuzNtZ8zIAtqlixIldXAAAAWBmyN9mb7A1YF7K39WEKdAAA8EI3btwwC+VnzpxRZGSkPDw8VLlyZVWpUkUdOnSwdJmv5EVTGUVPW/Q8g8GgU6dOJXdpyeZlxywpxnprPuahQ4fq7bffVpkyZSxdCpBkmF4QAADAdpC9yd7RrPmYyd6wRWRv68QV4AAA4IVy5sypZs2aqVmzZpKkhw8favXq1VqxYoU2bdokPz8/qw/hrVq1snQJKa5ly5YJun+RtRs3bpylSwAAAACAOJG9bRPZGwAsgwFwAADwQqGhoTpw4ID279+vQ4cO6cSJEwoPD5eTk5NpSjZrlxYD2tdff23pEgC8olatWilfvnyWLgMAAABJgOxtm8jegPUje1snpkAHAABmIiIidPToUe3du1d79+7VsWPHFB4eLkdHR5UuXdoUvMuVKycnJydLlwsAAAAAgNUhewMAkHwYAAcAACbvvfeeDh48qNDQUNnZ2alEiRKqWrWqqlSpogoVKsjZ2dnSJQIAAAAAYNXI3gAAJC8GwAEAgIm3t7ccHR3VvHlzvf/++ypQoIClSwIAAAAAwKaQvQEASF4MgAMAAJMRI0Zo3759unLligwGg1577TVVq1ZNVatWVaVKlZQxY0ZLlwgAAAAAgFUjewMAkLwYAAcAADH8+++/2rNnj+leZHfu3JGdnZ28vb1VpUoVUyh3dXW1dKkAAAAAAFglsjcAAMmDAXAAAPBS586d0969e/XXX3/p4MGDevDggRwcHFSyZElVq1ZN/fv3t3SJAAAAAABYNbI3AABJgwFwAACQIGFhYdq4caN+++03HT16VAaDQadPn7Z0WQAAAAAA2AyyNwAAiedg6QIAAEDqduXKFR07dkzHjh3T8ePHdebMGYWHh8vNzU21a9dWpUqVLF0iAAAAAABWjewNAEDS4QpwAABgcv/+fR0/ftwUuI8fP6779+/LaDQqY8aMKl++vCpXrqxKlSqpePHisrOzs3TJAAAAAABYFbI3AADJiwFwAABg4u3tLYPBIKPRKE9PT1WqVMn0n5eXlwwGg6VLBAAAAADAqpG9AQBIXkyBDgAATBo3bqzKlSurcuXKKly4sKXLAQAAAADA5pC9AQBIXlwBDgAAAAAAAAAAAACwCdw8BAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNcLB0AQAApAVTpkzR1KlTE7TNH3/8oTx58iRTRYlXr149Xb9+XZL0v//9T126dHlh+x49emj37t2SpDlz5qh69erJWpefn5/y58+fLPsAAAAAAKReZG+yNwAAEgPgAACkCC8vL/n4+JgtCwwM1J49e+Tq6qr69evH2MbV1TWlyku0jRs3vjCE3717V3v37k3BigAAAAAAaRXZGwAASAyAAwCQIho2bKiGDRuaLdu3b5/27NkjT09PTZw40UKVJV6GDBl0+PBh3bp1S9mzZ4+1jZ+fnyIiIuTo6Kjw8PAUrhAAAAAAkJaQvcneAABI3AMcAAAkUoMGDWQ0GuXn5xdnm3Xr1snDw0OlSpVKwcoAAAAAALANZG8AABKOAXAAAFKx7du3q0ePHqpcubJKlSqlRo0aacKECbp3755Zu2vXrsnLy0u1a9eO9XE6d+4sLy8v7du3z7RsyJAh8vLy0v79+9W3b1+VLl1aVatW1YIFC+JVW+PGjSU9nYotNgEBATp48KAaNWokB4e4J51ZtWqVOnTooPLly6t06dLy8fHR9OnTFRISEmv7v/76S927d1elSpVUsWJFDRgwwHRftNhERkZq0aJFateuncqVK6dy5crprbfekq+vr4xGY7yOFQAAAABgu8jeMZG9AQDWjCnQAQBIpSZOnKhZs2bJ3t5eFSpUkKenp44ePaqff/5ZGzZs0Lx585Q3b95X3s+IESMUGBioWrVq6dy5c/L29o7XdgUKFFCxYsV0+PBhBQQEKFu2bGbrN27cqKioKDVr1kxTp06NsX1UVJQ++eQTrV27Vk5OTqpcubJcXFx04MABff/999q0aZPmzJkjT09P0zZLly7V559/LkmqWLGiMmTIoN27d+vgwYMKCwuLsY/w8HD16dNHO3fulLu7u8qVKydHR0ft379fQ4YM0b59+/T1118n5OkCAAAAANgQsjfZGwBgexgABwAgFdq6datmzZolDw8P/fzzz6ZpzMLCwvTFF19o6dKl6t+/v5YvXy6DwfBK+woICNDq1auVN29eRUVFyc4u/hPENG3aVKdPn5afn586depktm79+vXKli2bKlWqFOu2Cxcu1Nq1a5U3b17Nnj1b+fLlkyQFBwdr0KBB2r59uz7//HNNmTJFknTjxg2NHTtWDg4OmjlzpqpVqyZJunv3rnr06KFTp07F2MePP/6onTt3qnLlypo8ebIyZcokSbpz547ee+89+fr6qkKFCmrXrl28jxkAAAAAYBvI3mRvAIBtYgp0AABSoblz50qSPv30U7N7eDk5OWnUqFHKnz+/Tp48qb17977yvurXr286mz0hAVySmjRpIinmVGz//vuvjh49qiZNmsT5mPPmzZMkjR071hTAJcnd3V0TJ05U+vTp5efnp8uXL0uSfH19FRoaqrffftsUwCUpU6ZM+uqrr2I8flhYmBYsWCBHR0dNnDjRFMAlKUuWLPriiy8kSb/88kuCjhkAAAAAYBvI3mRvAIBtYgAcAIBUJiIiQocPH5bBYFCjRo1irHdwcFDDhg0lyey+YolVtGjRRG+bN29elShRQocOHVJAQIBp+fr162U0GtW8efNYt7tx44auXbsmT09PVa1aNcb69OnTq1atWpKk/fv3S5IOHDggSapTp06M9sWKFVOePHnMlp08eVIPHz7Ua6+9puzZs8fYplSpUsqcObP8/f11+/bteB4xAAAAAMAWkL3J3gAA28UU6AAApDL37t1TeHi4PD095e7uHmub6MCZFOExY8aMr7R906ZNdfLkSW3evFkdO3aU9DSE582bV6VLl451m+jAnjt37jgf9/ljjN4mR44ccba/du2a6e83btyQJJ09e1ZeXl4vPIYbN24oa9asL2wDAAAAALAdZO+nyN4AAFvEADgAAKmM0WiUpBfeXyy6jZOTU7weMzIyMs51CZ167XlNmjTRhAkTtGHDBnXs2FGXL1/WyZMn9f7778e5TWKO8WX3W3NwMP9ZExUVJUnKlSuXKlSo8MJt3dzcXrgeAAAAAGBbyN7mbcjeAABbwgA4AACpjIeHhxwdHXXv3j0FBwfHeib61atXJUmZM2eW9F+Qjg6ez7t//34yVfv0TPLSpUvr0KFDun37ttavXy9JatasWZzbZMuWTZLMzhp/XvQxZsmSRZKUPXt2nTt3TtevX1fhwoVjtH92GjhJprPKc+TIoYkTJybgiAAAAAAAto7s/RTZGwBgi7gHOAAAqYyjo6PKlSunqKgobd68Ocb6iIgI0/IqVapIklxdXSU9Ddvh4eFm7YOCguTv75+sNTdt2lRRUVHy8/PThg0bVLhw4RdOfZYrVy7lzp1bQUFBpvuMPevhw4favXu3JKlSpUqSpOrVq0tSrM/J1atXdf78ebNlpUqVkrOzs86cORMjoEvSrVu31KRJE3Xv3l2PHj2K/8ECAAAAAKwe2ZvsDQCwXQyAAwCQCnXt2lWS9M033+jUqVOm5eHh4Ro9erSuXLmiYsWKmaYX8/DwUI4cORQWFqbFixeb2j958kSff/75C6dhSwqNGzeWwWDQwoULdfbs2ReegR4t+hiHDx9uOuNckh49eqRPPvlEwcHBqlu3ruleZa1atZKHh4eWL1+uTZs2mdoHBwdr2LBhMc7Ad3V1Vfv27fX48WN98sknCgwMNNvH0KFDdfHiRbm6ujINGwAAAACkQWRvsjcAwDYxBToAAKlQgwYN9O6772r27Nlq27atKlSoIE9PTx07dkw3b95U7ty59d1335ndQ6xnz54aO3asxo4dq3Xr1ilLliw6fPiwIiMjVbduXW3bti3Z6s2ZM6fKli2rI0eOSHrxFGzROnfurCNHjmjDhg1q1qyZKlWqJBcXFx08eFBBQUHy9vbWV199ZWqfKVMmffXVVxowYID69euncuXKKVu2bDpw4IAiIyNVsGDBGGfbDxo0SKdPn9bevXv1xhtvqFSpUnJxcdGRI0d07949FShQQKNHj07aJwMAAAAAYBXI3mRvAIBt4gpwAABSqc8++0w//vijqlSpojNnzmj79u1yc3NT79695evrq4IFC5q179y5s8aPH6+SJUvq1KlTOnDggKpUqaJly5bFaJscmjRpIkkqUaKE8ufP/9L2dnZ2+u677zRu3DiVKFFChw8f1p9//qkcOXLok08+0e+//65MmTKZbVO/fn399ttvql+/vvz9/bVr1y4VL15cv/76q3LkyBFjH87Ozpo9e7b+97//6bXXXtPx48e1b98+ZcuWTX379tXSpUtN9zkDAAAAAKQ9ZG+yNwDA9hiMRqPR0kUAAAAAAAAAAAAAAPCquAIcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMYAAcAAAAAAAAAAAAA2AQGwAEAAAAAAAAAAAAANoEBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgAB2zIihUr5OXlleD/OnfubOnS423KlClxHkexYsVUpkwZ1atXT3379tWWLVssXS7+35EjR0yvU8+ePV/afsiQIfLy8tLgwYPNlkc/xp49e5K8xh49epge/9ixY0n++M+KiIiQv79/su7jeWfOnNHYsWPVrFkzVaxYUaVKlVKdOnXUs2dPLVy4UKGhoUm+z9u3b2vw4MGqXr26SpYsqVq1amnnzp2SpJUrV6pFixYqU6aMKlasqB49emjfvn2m1yAiIiLR+7127ZrpcS5fvpxUh4NXZDQadeHCBUuXkSgXL15U7969VaVKFZUqVUqvv/66zp49K6PRqDlz5qhx48YqVaqUqlSpov/973+mf49r1679SvtNqs9EUjl37lyMZfXq1ZOXl5eWLl2aoMdK7HYAAMB60EdBH0VqRR+FOfoo6KNITazh8wnAOjhYugAASSdz5swqX758jOU3btzQjRs35OTkpJIlS8ZYX7Ro0ZQoL0nFdixGo1GhoaG6du2a/Pz85OfnJx8fH02YMEEGg8FClUKSli9fbvrz7t27dfXqVeXNm9eCFZm7ceOG2Q/iRYsWqUyZMsmyr927d2vs2LFq1KiRBg4cmCz7eN4PP/yg6dOnKyoqSu7u7sqXL58cHR11+/Zt7dq1S7t27dLPP/+sadOmqUSJEkmyz6ioKPXs2VNnzpyRg4ODihQpovDwcOXOnVubNm3SZ599JknKmjWrsmfPnqreD0h6x48f15gxY5Q/f35NnDjR0uUkyKNHj9S1a1cFBATI2dlZRYoUUUhIiPLkyaM5c+Zo/PjxkqTcuXPLw8NDefLksXDFSS8gIEDjx4/XwYMHtWPHDkuXAwAArAR9FPRRpFb0UfyHPgr6KFKb1P75BGA9GAAHbEidOnVUp06dGMunTJmiqVOnKmvWrFq0aJEFKkt6LzqWsLAwff/99/rll1+0Zs0aVa5cWe3bt0/hChEtJCREGzZskMFgUM2aNbVr1y4tWbIkxpmZlrRixQpFRUWpTp062rFjhzZs2KChQ4cqY8aMSb6vn376KUXPrF6+fLmmTZsmV1dXjRs3Tm+88Ybs7e1N6y9cuKBhw4bp6NGj6tGjh9avX69MmTK98n79/f115swZSdKMGTNUq1Yt07opU6ZIkipUqKD58+fLweHpz5GQkBCtX79ekkzLEiN79uymx8mVK1eiHwdJ57ffftPx48eVP39+S5eSYAcPHlRAQIAMBoNWrFihQoUKmdZt2LBBktSsWTN9++23puUPHz5UmTJl5Ojo+Er7Ll26dJJ8Jl7V7t27tXbtWmXPnt1iNQAAAOtDH8VT9FGkLvRRmKOPgj6K1MQaPp8ArAdToAOwOU5OTvr0009VunRpSdKCBQssXFHatnHjRgUHB6tIkSJq2bKlpKdhLiwszLKF/T+j0ShfX19JUps2bVSgQAGFhoaallm7GTNmSJI+/fRTNW7c2CxYSlKhQoU0ffp0Zc6cWUFBQZo/f36S7DcoKMj05ypVqsS6rkKFCmYh0sXFRYUKFTIbYEwMR0dH0+O86gAkEP1+zZIlS4z3ZvS6ypUrmy1Pnz69ChUqpHz58r3SvpPqMwEAAADLoY8idaGPwrLoo6CP4kVS++cTgHVhAByAzWrQoIEk6Z9//tHjx48tXE3atWLFCklS7dq1VbduXTk7OyswMFCbN2+2cGVP7d+/X1evXpWjo6OqV6+uJk2aSJKWLFli4cpe3YMHD3TlyhVJeuF0aZkyZTJ9Xo4fP54k+46MjDT92cnJyWxdVFRUrMuB1OhF71feywAAAIgv+ihSB/ooLIc+CrxMav98ArAuDIADMNm0aZN69uypqlWrqmTJkqpZs6b69u2rv/76K9b2Xl5e8vLyMrsv0bM6d+4sLy8v01RCknTt2jV5eXmpRo0aunXrlnr16qXSpUurcuXKGjRoUJIej7u7u+nPjx49Mtu/l5eXLl++HOt29erVk5eXl+lHlyTt27dPXl5eat++vS5cuKB33nlHpUqVUrVq1Uz3f43e7vTp09q+fbvefvttlStXTlWqVFGXLl20ZcuWOGuNjIzU0qVL1blzZ1WqVEklS5bU66+/rk8++UQnT56MdZvQ0FDNnDlTb7/9tqpVq6ZSpUqpbt26GjRokA4dOhTnvs6cOaPPPvtMr7/+ukqWLKkqVaqoR48e2rRpU6ztn33Onn1O4uPKlSs6cOCAJKlhw4Zyc3NT3bp1JSnVTHUXfW+hqlWrKn369PLx8ZEkXbx4UXv37o11m8S8j1asWCEvLy/t379f0tOznr28vDRkyBCz7e7fv6+pU6eqZcuWKleunMqUKaMmTZpo/PjxCggISNCxPXvm8rZt217Ytm/fvlq3bp0mTZpktnzIkCHy8vKKc7qp6OOqV6+epP+emy5dupjaRD9X0Y8V/RxMnTrVtE7673Pm5eWliIiIGPs6c+aMRowYoQYNGqhUqVKqVKmSunbtqo0bN5q1e9nrc/XqVY0aNUpvvPGGSpUqpYoVK6pDhw5aunSpWSh+/jlYtGiRrl27pqFDh6p27doqWbKkateurf/973+6du1anM/twYMHNWjQINWtW1clS5ZU1apV9cEHH5h9t+7atUteXl4qUaKEAgMDY32c0NBQVahQQV5eXjp27FiMY03o5/PBgweaOXOmOnbsqCpVqqhEiRKqWLGiWrdurSlTpuj+/fsxtkno9370axp9tcKaNWvk5eWlzp07xzi2uXPnqn379ipfvrxKlSqlBg0a6PPPP9elS5di3df9+/f13XffqXXr1qpcubLKlCmjN954Q//73/909uzZOGv77rvvYn28KVOmmNUWXfvQoUMlSdevXzcdf/Tn+/r165KkoUOHmn0Ooj8XtWvXjnVf8XlPPFvDiz4TCfk+j34Odu7cqTNnzqh///6qXr26SpYsqfr16+urr77S3bt3zbZ59jm4deuW2Wf2eYcOHdIHH3ygKlWqqHTp0mrUqJEmTZqk4ODgWNu/6nYAAMC20UfxFH0U5uijiIk+iv/QR2G9fRTW8PkEYF0YAAeg8PBwffTRR+rXr5927dolBwcHeXt7KyIiQn5+furWrZu++uqrJN1nWFiYevTooT179qhQoUIyGAzKnTt3ku4j+kels7OzPD09k+Qx7969q65du+r06dMqXLiwnjx5ogIFCpi1Wb58ud5//32dPHlSBQsWVLp06bRv3z59+OGHGjt2bIzHDA4OVseOHTV8+HDt379f6dOnl5eXlx4+fKjVq1erbdu2mjNnjtk2YWFh6tatmyZNmqTjx4/Lw8NDRYoUUXBwsNauXauOHTtq6dKlMfb166+/qnXr1lq5cqXu37+vIkWKyNXVVbt371a/fv00aNCgWH9cJ9by5ctlNBqVL18+09m9zZs3lyQdOHBAFy5cSLJ9JUZwcLD8/Pwk/VdXoUKFVKxYMUnS4sWLk2xfmTNnVvny5U2dHjlz5lT58uXN3j9nz55V8+bNNWXKFJ09e1a5c+dWwYIFdeXKFc2ePVvNmzfXvn374r1PV1dXlS9fXtLTwb3PPvtMBw4ciPU1zpo1qwoXLvzKn5V06dKpfPnyKlq0qGlZ+fLlTcca23MQXeOL/Prrr2rbtq1+//133b171/Te3bt3r/r37x/noObzNm/erObNm2vRokUKCAjQa6+9pkyZMunQoUMaPny4evToYeqMet6pU6fUokULrVy5Ui4uLsqfP79u3bqlZcuWqV27drpx40aMbb799lt16tRJa9eu1ePHj+Xl5SU7Oztt27ZN3bp1M53FX6NGDeXMmVMRERFau3ZtnLUHBwerUKFCLzxbPj4uXbqkN998U5MmTdLRo0eVKVMmeXl5yd7eXidPntTUqVP11ltvxflcxFf69OlVvnx5Zc6cWdLTM/mff3/cvHlTrVq10rhx43Ts2DFlzZpVRYoU0e3bt7VkyRK9+eabpvulRbt3757atWunGTNm6Ny5c8qaNasKFiyoO3fuaNmyZWrTpo127tyZJLVHf0adnJxM71cHBweVL1/edIVA9Hu7ZMmSL33c+L4nXuZVvs937typtm3basuWLfL09FTOnDl17do1zZs3T2+//bbZwPOzz4Gjo2Ocn1lfX1917NhRe/bsUc6cOZUpUyZdunTJ1AkaGhoaay2J3Q4AANgu+ijijz6KhKGP4j/0UdBHkZr6KKTU//kEYH0YAAegr7/+Wps3b5arq6smT56s3bt3a9myZfrzzz/1+eefy8HBQfPmzdPcuXOTbJ8PHjzQ7du3tXLlSvn6+mrXrl3q1atXkj3+3bt3tWrVKklPf7Q9e5bpq7h69apcXFy0adMmU93R96SJtmDBAlWvXl3bt2/XihUrtGPHDo0ZM0YODg5asGBBjB+OgwcP1pEjR5Q1a1bNnz9fW7du1fLly/XXX3+pT58+ioqK0tdff20KQdLTH4VHjhxRgQIFtGXLFm3YsEErVqzQ7t271bFjRxmNRo0fP15PnjwxbbNz506NGTNGdnZ2+t///qeDBw/K19dX27Zt09y5c5U5c2atXbvW7Gx4ScqePbvWr1+v9evX64033oj3cxUVFWV6DaLPWJakOnXqyMPDQ5Llz+Bct26dQkJC5OLiYnZsb775piRpy5YtunPnTpLsq06dOlq0aJGKFy8uSWrRooUWLVqkDz74QNLToNuzZ08FBASoXLly8vPz09q1a7Vy5Urt2LFDdevW1f379/Xhhx/q6tWr8d7viBEj5OrqKqPRqJUrV6pTp06qXLmyevXqpZkzZ+rYsWOm6b6SQtasWbVo0SINHz7ctGzRokWmY332OWjTpo1p3YscPnxYY8eOVXh4uHr16qW//vrL9NkaN26c7OzsNGPGDO3evfuFj3PmzBl9/PHHevLkiXr37q39+/dr1apV8vPzk6+vrwoUKKC//vpLo0aNinX733//XYULF9b69eu1adMmrVu3TosXL5abm5vu3r2r2bNnm7Vft26dfvrpJ9nZ2WnYsGHas2ePli9frl27dmnAgAGSpNGjR+vChQuys7MzfZdEf26et3LlSklS69atTcsS+/kcMWKEbty4obJly2rbtm2m75C9e/dq/PjxsrOzk7+/v2mfiVW8eHEtWrTIdCV0jRo1tGjRIo0YMULS0ytLPvjgA128eFEFCxbUqlWrtGnTJq1YsUJ//vmn2rVrpydPnujTTz81nVEuST///LMuX76s8uXLa8eOHVq3bp1WrlypnTt3qmHDhgoPD3/lTtHo2t9//31J/723Fy1aJD8/Py1atEhZs2aVJL3//vtatGiRfvjhhxc+ZkLeEy+S2O/zaAsWLFCNGjW0bds2rVu3Tps3b9aPP/4oe3t7Xb58WcuWLTO1ffY5yJQpU5yf2UOHDql58+bauXOnVq5cqe3bt2vChAmSpHPnzsV59n9itwMAALaLPor4o4+CPorEoo+CPorU1EdhDZ9PANaHAXAgjbt586bpDNIxY8aocePGpnX29vbq2LGj+vfvL+npVECvejXgszp06KDChQtLenpl3bPTgSWG0WhUUFCQtm7dqnfffVf37t2To6Oj+vXrlxTlmrz//vvKnj27JMnNzU3p0qUzW58rVy5NmzbNdMWjwWBQ+/bt1aNHD0lPn8doR48eNU379MMPP6hKlSqmdU5OTurfv7/eeustSdLEiRNN686cOSPp6T1xcuXKZVqeLl06DRkyRDVr1tQbb7yhe/fumdZ9++23MhqNGjx4sLp06SJ7e3vTumrVqmncuHGSpDlz5igoKMi0ztHRUYUKFVKhQoWUPn36eD9Pu3fvNp1tGh3Woh8v+n22atUqi17dFz21WP369eXm5mZa3rx5c9nZ2Sk8PNzUJrn99ttvCggIUJYsWfTTTz8pb968pnVZsmTRDz/8oKJFi+rhw4eaMWNGvB+3ePHiWrp0qSpUqGBaFhwcrB07dmjSpElq3769atasqe+++04hISFJekxJ5ccff1RUVJSaNGmiQYMGmX3mWrdurbZt20rSSwfKpkyZorCwMHXq1EkDBgwwe5zixYvrhx9+kL29vdasWaPz58/H2N7R0VFTp05VwYIFTcvKlStnCnuHDx82ax/9We/evbu6du1q+szZ29urd+/eqlGjhiIjI02hsU2bNjIYDDp58mSMAdBbt25pz549sre3V4sWLcxqSujnMzAwUOfOnZP09Hs/W7ZspnUGg0EtW7ZU5cqVJSnWqcST0saNG3X69GmlS5dOs2bNkre3t2mdu7u7xo4dq1q1aik8PNzsDPro78BGjRopU6ZMpuXp06fX8OHDVb16dVWqVCnVXT2c0PdEXBL7fR4tc+bM+uGHH8xe+/r165tOVHj+vRwfhQoV0vjx402dE9LT7/4aNWpIUpzTXiZ2OwAAYJvoo0g4+ijihz6KhKGPIm70USRtH4VkHZ9PANaHAXAgjdu5c6ciIiKUNWtWNW3aNNY2nTp1kqOjox4+fGi6L05SePbHbkI9ey/W6P+8vb1VtWpV9e7dW6dPn1b69On1/fffmw2oJIWX1d2+fXu5urrGWP72229Lkvz9/XXx4kVJ/93zqHTp0nFOsfTuu+9Kejpd2j///CNJpimpli1bpt9++83snq1OTk765ZdfNG7cOFMIvnbtmk6fPi3J/Ifks+rUqSNPT0+FhobGeU+1hIj+oV+6dOkYU7BF1/DgwQOtW7fulfeVGBcuXDBdUfr8c5ItWzZVrVpVkrRkyZIkPfs4Llu3bpUktWzZUhkzZoyx3snJyXRv4q1bt8poNMb7sQsXLqzffvtNK1eu1EcffaRy5crJ0dHRtD4wMFAzZszQm2++qZs3b77ikSStkJAQ033OojtanjdgwABt3LjRdK+72ISFhZmmxI7rMxD9PWI0GmO9H1nJkiVNV/w+67XXXpMkPXz40LTs8uXLps959Gf/eV9++aW2bNmigQMHSpLy5s2rSpUqSVKMAdBVq1YpKipKtWvXjrWGhMicObP27t2rY8eOmU0DFy0yMtLU2Zfc4TL6fV+vXj2zDpVnde/eXZK0f/9+03Mc/Z3y888/a/Xq1WbPffbs2TVnzhyNGTNGzs7OyVh9wiTmPRGbpPg+r1atWoyOUenpYLRk/l6Or/r165t1WkaLvn/e8/cWf9XtAACAbaKPIuHoo4gf+igShj6K2NFH8VRS9lFIqf/zCcA6Jc18OwCsVvSPn2LFisnOLvZzYlxdXVWwYEH9888/8vf3V926dZNk36/yA8nJySnGvVbt7Ozk5uam7Nmzq0yZMmrcuPErn7Edm5fVXbp06ViX58qVS+nTp9fDhw916dIlvfbaa6bnv0SJEnE+XoECBeTu7q7g4GD5+/uraNGiateunZYtW6bz589r9OjR+uKLL1SsWDFVq1ZNtWrVUqVKlcymVIu+2lOSPvzwwzj3FT0dWXRdiXXv3j398ccfkmL/IV+hQgXlzZtXV69e1aJFi9SmTZtX2l9iRE/xmzlzZtOVhs9q0aKF9uzZo+vXr2vXrl2qU6dOstbj7+8v6cXvheh1d+/e1b179xJ8L6xixYqpWLFi6tu3r0JCQnT48GHt3r1bq1atUmBgoK5cuaL+/fvH+x7EKeHff/9VeHi4JMXZUZQ5c2bT1QxxuXTpksLCwiQ9ndIr+t7Nse1Piv0zEN1Z87zoQdaIiAjTsuj7+7m6usY5sJszZ84Yy9q0aaP9+/drzZo1+vjjj2UwGCT9N+XYs1OLvSpnZ2fduHFDx44d05UrV3T16lVduHBBp0+f1uPHjyUp2TtWEvK+j4yM1OXLl1WyZEn16NFDGzdu1O3bt/XJJ5/IwcFBpUqVUvXq1VW7dm2VKVPG9NylFol9TzwvKb7PE/Jejq+4HjO6szWukykSux0AALBN9FEkHH0UL0cfRcLRRxE7+iiSvo/CGj6fAKwTA+BAGhccHCxJL52WJjqkJeX0Yq9yZV70PXws4WV1x3ZmbDRXV1c9fPhQDx48kBT/59/NzU3BwcGm59/d3V1LlizR7NmztXbtWl2+fFmnTp3SqVOn9Msvvyhz5swaMGCA2rdvL8n8rM/4TG2bmKv/nrVmzRrTD/mxY8dq7Nixcbb9+++/dfLkyReGqqQWERGh1atXS3p6ZvHL9r1o0aJkD5fxeS8821ny6NGjBIfLZ7m4uKhGjRqqUaOG+vfvr2HDhmndunU6evRoir8eL/LsFHnPTgGXUM++p0+cOJGg9tGePSP9ZaLrTmjNjRs31pgxY3Tjxg3t27dPVatW1d9//63z58/L09MzyTr3Ll68qG+++UY7duwwG+R2d3dXxYoVFRAQYJrGMDkl5n0vPQ3mq1at0k8//aSNGzfq1q1bOnLkiI4cOaJp06Ypd+7cGjZsmBo0aJC8B5AAiX1PPC8pvs8T8l6Or9iuKE/O7QAAgG2ijyLh6KN4OfooEo4+itjRR5H0fRSp/fMJwHoxAA6kcdE/fF4WJqLDUGw/lOKa5ij6CsLUKrnqftE9iqIDRPSZoPF9/qPXP/v8u7u7q1+/furXr58uX76sffv2ad++fdqxY4cCAwM1YsQIeXh4qGHDhqYr6Tw8PLRv377EH1w8Rd+TytXV9YVhKSAgQEajUYsXL9aYMWOSva5o27dv1507dyQ9nUosritFHz9+rIcPH2rnzp26ceNGrGfDJtX7yM3NTffv33/he+H+/ftm7V/m888/1969e9WqVSv17t07znbOzs764osv5Ofnp/DwcPn7+8cIE3EdZ3Lfk+vZqfqCg4PN7vec2Mc5fPjwKw9Cxnd/Ce2Qc3Z2VrNmzbRkyRKtWbNGVatWNZ1Z7ePjkyQDl4GBgerUqZMCAwOVK1cutW/fXsWLF9drr72mPHnyyGAwaNCgQS8cAE/K97304u/A6H9/nm0vPf0eHTZsmIYNG6azZ89q//792rt3r3bv3q3r16+rX79+Wrx4cZxXvLxq7QmV2PdEXI+TUt/nAAAAKYk+ipjoo3h19FHQR5FU6KNI+j6K1P75BGC9uAc4kMZF3xfm9OnTcU51GxwcrEuXLkmS8ufPb1oefc/O6LP0nhcQEJCElSaNZ6fciq3u0NDQVz6zOPoeWM+7cuWK6Ydm4cKFJf33/J88eTLOx7tw4YIpqEQ//4GBgTp48KDpvlr58+dX+/btNWnSJO3YscM09Vr0j9KCBQtKenrG5+3bt+Pc18GDB3XhwoVXmnL2zJkzpnt5jRs3Tjt37ozzv+gzlteuXWsK3ikh+t5CRYoU0a5du+Ksb86cOZKeTr38+++/m7ZPjvdRfN4L0WcFZ8yYMV5nVj958kSXL1/Wli1bXtrW3d3dFLieDXDRn/PoKb6el9yf87x585pqeHaavGf9/fffeueddzR06NA4Q/Czj3P+/Pk493f8+HGdPXv2lQcpo+9Z9fjxY127di3WNn/88Yc6d+6sb775xmx59HRef/zxhyIjI01TgSXVNF/Lly9XYGCgPDw8tHz5cvXu3Vt16tRR3rx5TR0tt27dinXbpP7ej8/7/u+//5YkGQwG5cuXz1Tf3r17Td9VXl5e6ty5s6ZNm6Y//vhDuXPnVmRkpNauXZtstSfUq7wnnpWS3+cAAAApjT4Kc/RR0EdBHwV9FLbcR2ENn08A1osBcCCNq127thwcHHT79m2tX78+1jYLFy5URESEXFxcVLlyZdPy6B+3sd2H5vjx46kyXHp4eJgGeGKre+vWrYm69+mzVqxYEWtQj54OrWzZsqazdKOnCjp+/Hic037NnTtXkpQjRw55eXlJknr06KGOHTvK19c3Rns3NzeVLVtW0tNQJEmFChUyBdOFCxfGup9Dhw6pY8eOatq0qY4ePRqPI41d9H2rPD09Va9evRe2feeddyQ9/QEeHYSTW2BgoHbs2CHp5T/WS5UqZQrqS5cuNb03XuV9FNeZ3NHvhZUrV5qdRR0tLCzM9B6qVavWC+uOFn3vpBMnTpgCdVx2796te/fuycPDQ2XKlDEtf9HnPDIyUlu3bo1XLYnl7u6uChUqSPrvrODnrV27VocPH9a1a9fifH7d3d1N31/z58+Ptc3Vq1fVoUMHvfnmm9q4ceMr1V2oUCHlzp37hXX7+vpq//79pk6iaGXKlFGRIkUUFBSkBQsW6N9//1Xx4sXjvL9YQkWH3Vy5csV6tvr58+dN3wHR3yHREvu9H/26PB/+o9/3W7du1dWrV2PdNvr1Klu2rDJkyKCIiAi1bNlSXbt21fbt22O0z5Ili4oWLSrJ/B7mL6r90aNH+uuvv2Ldf1J5lffE84+TUt/n0aLvvxlX5w0AAEBSoY/CHH0U9FE8iz4K+igSK7X2UaT2zycA68YAOJDG5cyZ03QPphEjRpj9oIqKitJvv/2mKVOmSJL69OljNhVN9A++OXPm6MKFC6blf//9tz7++OOUKD/BnJ2dVbx4cUnSlClTzK5y3L17t7744otX3seJEyc0YsQI07RLUVFRWrhwoSkkDhw40NS2XLlypjMY+/XrZzb1V1hYmH744QfTWb2ffvqp6YdzixYtJElTp07Vzp07zfZ/8OBB0w/BZ+8J1b9/f0nSzJkzNWvWLLOzgg8ePGhaX7ZsWVWtWtW0Ljw8XBcuXNCFCxdeesZwWFiY1qxZI+npVEhOTk4vbF+7dm3TD/DFixe/sO2L/Pvvv7pw4YL+/fffl7ZduXKlIiIi5OjoaHoeXyT6B/bt27dNZ7m+yvsoetqp69evx9hP9uzZdefOHb3//vtmg4GBgYHq37+//vnnH7m5ualv374vrVuSatSooUaNGkmShg8fri+//DLGmb5PnjzR8uXLNWDAAElP3yfPTr0V/Tk/d+6c5s+fbxoAu3//voYNGxbn1QRJqU+fPjIYDFq1apVmzJhhFtxXrlypBQsWSJJ69uz5wsfp27ev7O3ttXbtWo0bN87sDOp//vlHvXr1Unh4uHLnzi0fH59XqtlgMKhPnz6SpFmzZmnp0qWm5y4yMlIzZ87U5s2b5eDgoG7dusXYPrrjY/LkyZKk1q1bx7qfhHw+o0WfyX/mzBlt2rTJtNxoNGrnzp3q2bOn6Wz656ePS+z3fvR76vnPaOPGjeXl5aUnT57ovffeM5t2PTg4WCNGjNDu3bvl4OCgwYMHS3p6dUOzZs0kSV9++aWOHz9u9ph+fn7avXu3pKffMc/XvmvXLvn5+ZmWBwQEqF+/fgoMDIyz/qTwqu+JZyX2+zyxor+3Hjx4wJn2AAAgWdFHQR9F9Db0UcSOPgr6KBIjNfZRWOrzCSDt4B7gADR06FDdunVLf/zxh/r3769s2bIpR44cunr1qoKCgiRJnTp10nvvvWe2Xe/evbVr1y7dvn1bPj4+Kly4sJ48eaJLly4pb968atOmTZxnFVrSgAED1Lt3b50/f14NGjRQ4cKFdf/+fV2/fl2lSpVS+fLlTSEiMYoWLaply5Zpw4YNeu2113Tz5k3dvn1bdnZ2Gjp0aIzBiG+++UYffPCBjhw5oi5duih37tzKlCmT/P39FRwcLHt7ew0YMMA04CNJXbp00Z49e7Rz50699957ypYtm7Jly6agoCBTaKlXr57atWtn2qZZs2a6dOmSpkyZookTJ+qnn35SgQIFdPfuXdM2BQsW1I8//mhW361bt9S0aVNJT6cjiutHriRt2bJF9+7dkxS/qZDs7Oz01ltv6dtvv9U///yjQ4cOmcJMQnz22Wfav3+/KleubAoacYk+y/j111+P172amjVrpvHjx+vBgwdavHixKawl9n1UvHhxbdu2TWvWrNHZs2dVsWJFjRw5UhkyZNCMGTPUq1cvHTlyRA0bNlThwoXl4OCgc+fOKTw8XB4eHpo4caJp6qr4mDhxolxdXbVy5UrNnz9f8+fPV65cuZQ5c2bT5zUsLEyOjo4aNGiQOnToYLZ9nTp1VLFiRR08eFBffvmlZs+eLU9PT128eFHh4eHq27evqQMquVSrVk1Dhw7V119/re+++06zZ89W3rx5dfPmTdN90j788EOzzpTYVKhQQWPGjNHIkSM1d+5cLV68WIUKFdKjR490+fJlGY1GZcmSRb/88stLg1d8tG3bVufPn9ecOXM0fPhwff/998qRI4euXbume/fuyd7eXqNGjYr1rOkWLVpo0qRJevz4sRwdHdW8efNY95GQz+ezdf3222+6fPmy+vXrp9y5c8vT01M3btxQYGCgHB0dVblyZe3fvz/GVOiJ/d4vVqyYpKf3NmvcuLEKFy6sqVOnysHBQT/++KPee+89Xbx4US1atFCBAgXk5uZmmurQ2dlZo0ePVsWKFU2PN3DgQB06dEinTp1Su3btTMcQEBBgurLnnXfeMRsAb9WqlRYuXCh/f3/17dtX+fLlk6urqy5cuCB7e3t98MEHmjFjxkufv1fxKu+JZyX2+zyxvLy8ZGdnp9DQUDVu3FjZsmXTL7/8Eq9pDgEAABKKPgr6KOijiBt9FPRRJFZq66Ow1OcTQNrBFeAA5OTkpGnTpum7775TzZo1FRYWptOnT8vFxUXNmjXT/PnzNWLEiBjT9hQrVkzLli2Tj4+PMmXKpIsXLyoyMlLvvvuufH19lTVrVgsd0YvVrl1bv/32mxo0aCBXV1edP39e6dKlU79+/fTbb7+Zzn5NrC5duujbb79VwYIFTWeeNmrUSIsXL471LEoPDw8tWLBAY8aMUaVKlfTw4UOdPXtWnp6eatu2rZYtW6ZevXqZbWNvb69p06Zp2LBhKleunEJDQ3XmzBmFhISoZs2a+uabb/Tjjz+a3QdKevoDfMmSJfLx8ZG7u7vOnDmjoKAgFS9eXP3799fy5cuVOXPmRB97dHArUaJEvKdCatu2rRwdHSUl/xmcx44dM91bKb73KnJxcVHLli0lSX/99ZfpXnOJfR+99957ateunTw8PHTp0iWdPXvWtK548eJau3at+vTpoyJFiujq1au6dOmSChYsqA8++ECrV6+O99Ri0ZycnPT1119r6dKlevfdd1WiRAmFhYXpzJkzunnzpgoWLKgePXpo9erVMd5n0tOA8csvv2jAgAEqUqSIAgMD9e+//6patWpatGjRK5+FHF9du3bVkiVL1Lx5c6VLl05nz55VRESE6tSpozlz5qhfv37xepw2bdpo1apVeuutt5Q1a1adO3dON27cUKFChdSzZ0+tXr3adD+6pDBkyBDNmTNH9evXl9Fo1JkzZ2Rvb6/GjRtryZIlZh1Az8qUKZNp8LZevXpJOtDo7u5u+l4pUqSI7t69q3Pnzsnd3d3UKfjVV19JenqV+LNXLST2e79ly5bq2bOnsmbNqmvXrpnd0zFPnjxavny5Pv30U5UuXVq3b9/WhQsXlDNnTnXp0kWrVq0yfQajubm5acGCBerXr59KlCihe/fu6cyZMzIajapfv75++uknjRo1KsY2S5YsUY8ePZQ/f37duHFDd+7cUaNGjeTr66sqVaok2XP8Iol9Tzwvub/Pn5U/f36NGzdOBQoU0L1793Tjxo0YV4gAAAAkFfoo6KOgjyJu9FHQR/EqUlMfRWr/fAKwfgYjN/MDgCRRr149Xb9+XWPHjo33AAaSzpgxY3TlyhXNmjXL0qUASaJ169Y6efKkZs6c+dIzxwEAAADgWfRRWBZ9FLA19FEAsDZcAQ4AsHpRUVE6ePCgChcubOlSgCRx8uRJnTx5Ujlz5lTNmjUtXQ4AAAAAIJ7oo4CtoY8CgDXiHuAAAKv3xRdfKDAwUJ07d7Z0KUCiXb16VZJ0584dDRkyRNLT6Qrt7e0tWRYAAAAAIAHoo4AtoI8CgLVjABwAYPXefvtt9evXT5kyZbJ0KUCirV+/Xt9++63p70WLFlWnTp0sWBEAAAAAIKHoo4AtoI8CgLVjCnQAgNXz9vYmWMLqeXt7K1u2bHJ1dVWDBg00e/ZsOTk5WbosAAAAAEAC0EcBW0AfBQBrZzAajUZLFwEAAAAAAAAAAAAAwKviCnAAAAAAAAAAAAAAgE1gABwAAAAAAAAAAAAAYBMcLF2AtTAajYqKYrZ4AAAAAIA5OzuDDAaDpcuwCWRvAAAAAEBsEpK9GQCPp6goo+7efWTpMgAAAAAAqUymTG6yt2cAPCmQvQEAAAAAsUlI9mYKdAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2gQFwAAAAAAAAAAAAAIBNcLB0AQAAAACAmKKiohQZGWHpMtI8e3sH2dlx7jgAAAAA2CKyd+qQ1NmbAXAAAAAASEWMRqMePLirkJBgS5eC/+fi4q4MGTLJYDBYuhQAAAAAQBIge6c+SZm9GQAHAAAAgFQkOoC7u3vKySkdg64WZDQaFRb2RMHBQZKkjBkzW7giAAAAAEBSIHunHsmRvRkABwAAAIBUIioq0hTA3d0zWLocSHJySidJCg4OUvr0nkyHDgAAAABWjuyd+iR19ia5AwAAAEAqERkZKem/4IfUIfr14L5wAAAAAGD9yN6pU1JmbwbAAQAAACCVYeq11IXXAwAAAABsD1kvdUnK14MBcAAAAAAAAAAAAACATWAAHAAAAAAAAAAAAABgExgABwAAAAAAAAAAAADYBAbAAQAAAAAAAAAAAAA2wcHSBQAAAAAALOfs2TP68cfJOnPmlKKijCpevKR69eqjEiVKSpIOHNirOXN+1oUL52Rv76DKlauqd+++yp49hyRp/fo1+uqr0Vq6dLVy5sxlety2bX1UrlwF/e9/oyRJNWtW1Lvv9tKePbt19eplvfNOZ3Xr1lPXr1/T9OlTdOjQARmNRpUsWUp9+vTXa68VkiQ9efJEv/wyQ1u2+Cko6K7y5cuvLl3eVf36DVP2iQIAAAAAIJHI3imLK8ABAAAAII169ChYgwb1VcaMHho7drxGj/5KoaEhGjToIwUHB2vTpvUaOPAjZc2aVaNGfam+fQfq5Mm/9cEH7yoo6G6C9zdv3i96/fV6GjXqS9Wq9bru3Lmj997rqsuX/TVo0GcaOXKMHjx4oAED+ujevXsyGo0aNuwTrVy5Qm+91UFff/2tSpYsrZEjh2nDhrXJ8IwAAAAAAJC0yN4pjyvAAQAAACCN8vf31717QWrb9i2VLl1WkpQ/fwGtWrVcwcEP9eOPk1WxYmWNHj3OtE3p0mXVqVM7LVq0UH369EvQ/ooXL6lOnbqZ/j5t2mQ9eRKq77//UZkzZ5EkFSnirfff76YTJ44rXTon7du3R6NHf2U667xKlWoKDQ3RjBlT9cYbjeXgQKwFAAAAAKReZO+UxxXgAAAAAJBGvfZaIXl4eOqzzz7WxInjtHv3TmXOnEV9+vRXaGioAgMD1bBhE7NtcufOoxIlSunIkYMJ3l+hQoXN/n7s2BGVLFnaFMAlKUuWLFq+fK1q1qytgwcPyGAwqFq1moqIiDD9V6NGHQUG3pG//4XEHTgAAAAAACmE7J3yrGu4HgAAAACQZFxdXfXjj7M0b94v2rLFTytXLpezs7MaNmyixo2bSZIyZcocY7vMmTPr7NmzCd6fp2cms78/eHDf7N5lz3vw4L6MRqMaNqwd6/o7d26rSBGvBNcBAAAAAEBKIXunPAbAAQAAACANy5evgEaMGKPIyEidPn1SGzeu18qVy5QlS1ZJ0t27gTG2CQwMlIeHhyTJYDBIkqKioszahIQ8fum+3d3T6969ezGWHzp0QDly5JS7e3q5uLhqypQZsW6fO3fel+4DAAAAAABLI3unLKZABwAAAIA0atu2LWrevIECA+/I3t5eJUuW1uDBQ+Tunl53795V5syZ5ee3wWyb69ev6cSJ4ypduowkydXVTZJ069ZNU5srVy7p/v37L91/mTJldfLkcQUF3TUtu3fvngYP7qc//9ypsmXLKyTksYxGo7y9i5v+u3jxgmbPnqXIyMikeBoAAAAAAEg2ZO+UxxXgr8jOziA7O0OyPX5UlFFRUcZke3wAAAAAaVepUmUVGRmloUMHq1OnbnJzc9Mff/jp0aNg1avXQMWLl9BXX43WyJFD1bhxc92/f0+zZ89UhgwZ9dZbHSVJFSpUkrOzs6ZO/U7vvddHjx8/1pw5T9u8TPv2HbRhwzp9/PFH6tLlXTk5pdOCBXOUOXMWNW7cTO7u6VW2bHkNGTJI3br1VP78BXT69En98stMValS1XQmPBIvPDxcCxYskK+vry5duiRXV1eVKlVKXbt2Va1atWK0r1KlSqxXDkQ7fvy40qVLl+R1kr0BAAAAWCuyd8ozGI1GEl48REZG6e7dR2bL7OwM8vBwlb198l1IHxkZpXv3HhPEAQAAgDQgPDxMgYE3lDlzTjk6OqXIPk+fPqlZs6brzJnTCg0N1WuvFVLnzt1Vp05dSdL27X9owYK5unjxvNzc3FSlSjX16vWhsmfPYXqMvXv3aMaMqbp82V85cuRU9+69tHHjOmXOnFn/+98oSVLNmhXVvft76tHjfbP9X758ST/+OFmHDx+So6OjypUrrz59+it37jySpJCQEP3883Rt2/aHgoLuKkuWbGrQoKG6deuZLAOtsXnZ65Ipk1uy5sLkYjQa1bdvX23evFkZMmRQ+fLl9eTJEx08eFDh4eEaMGCAevfubWp//fp11atXT9mzZ1flypVjfcxx48bJ0dEx0TWRvQEAAAAkN7K37WdvBsDjKbYQ7uBgJ09PN01b9KeuB7x8ioGEyp0toz58p4YePAhRZGTUyzdIBM5yBwAAAFIPS4RwvJytDoAvWrRIo0aNUrFixTRnzhx5enpKks6cOaOOHTvq0aNHWrdunQoVKiRJ2rJliz788EN17dpVw4YNS5aaLJm9g4IeKSIiebI3AAAAgNSD7J06JWX2Zgr0JHA94L4uXQ9K8sfNmN5ZxqgoZcjgkuSPHS0qKlJBQSEMggMAAABAGrNq1SpJ0pAhQ0yD35Lk7e0tHx8fLVq0SDt37jQNgJ88eVKSVKJEiZQvVsmXvQEAAAAAtoUB8FTMzdlJBjs7+a+dpZDAG0n++C6Zc6pg8/dkZ2dgABwAAAAA0ph58+bJ399fRYoUibHu8ePHkiR7e3vTstOnT0uSSpYsmTIFprDkvIqf2dcAAAAAIOUwAG4FQgJvKOTWFUuXAQAAAACwIenSpZO3t3eM5Vu2bNHGjRvl4uKihg0bmpafPHlSzs7OOnHihIYPH65z587JYDCofPny6tOnj8qUKZOS5ScZZl8DAAAAANvCADgAAAAAAGnc/fv3NXz4cJ0/f14XL15Uzpw5NW7cOOXIkUOSFBgYqICAAEnSp59+qrJly6pKlSr6559/tH37du3evVsTJkxQ06ZNLXkYicLsawAAAABgWxgABwAAAAAgjbt69ar8/PxMfzcYDDp//ryqVasm6b/7f3t6emr69OkqV66cJMloNGrevHkaN26chg4dqvLly5sGzRPLwcF8KvLknJr8Wck9+1pKHQcAAACAF4uKMli6BLyAvb0hRi5MKAbAAQAAAABI4woWLKj9+/fLaDRqz549+vLLLzV27FgFBwerd+/eqlWrlnbt2iWj0ajs2bObtjMYDOrWrZsOHDigLVu2aNmyZfroo48SXYednUGenm5JcUipTnJOsQ4AAAAg/kJD7XXnjl2SDLQi6URFGWRnZ6eMGV3l7Oz8So/FADgAAAAAAGmcm9t/g85NmzZVjhw51KFDB82cOVNdunSRm5ubsmXLFuf2devW1ZYtW3TixIlXqiMqyqgHDx6bLbO3t7OJweMHD0IUGRll6TIAAACANC8s7ImioqIUGWlURAS/0VOLyEijoqKidP/+Y4WERMZYnyGDS7xn1mIAHAAAAAAAmClfvrzy5cuny5cv69KlSypRosQL22fNmlWSFBIS8sr7ttUOqMjIKJs9NgAAAMCaREYaLV0CXiApTkzgun4AAAAAANKYkJAQff311xo8eLCMxtg7f5ycnCRJERERWrJkiQYMGKAtW7bE2vbq1auS9Mr3/wYAAAAA4FWl2ivAw8PDtWDBAvn6+urSpUtydXVVqVKl1LVrV9WqVStG+ypVqujevXtxPt7x48eVLl26ZKwYAAAAAJKPnZ1BdnaGFN9vVJRRUVGcHW9rnJ2d5evrq3v37ql9+/aqXLmy2fqrV6/K399fTk5OKlKkiHbs2KENGzYoJCREDRo0MGtrNBq1atUqSVLNmjVT7BgAAAAAIKmRvW1DqhwANxqNGjhwoDZv3qwMGTKoevXqevLkifbu3atdu3ZpwIAB6t27t6n99evXde/ePWXPnj1GaI9mZ8fF7gAAAACsk52dQR4ervG+11VSioyM0r17jxMVxP38Nmr58iW6ePG8JCl//oJq3ryFWrZsk9RlIoEMBoPeeust/fTTTxo1apTmzp1rusf3zZs39fHHHysiIkJdu3aVq6urWrVqpVmzZmn79u36/fff1b59e0lSVFSUpkyZouPHj6tw4cJq3LixJQ8LAAAAABKN7G07UuUA+OLFi7V582YVK1ZMc+bMkaenpyTpzJkz6tixoyZPnqyGDRuqUKFCkqTTp09Lkho3bqxhw4ZZrG4AAAAASA52dgbZ29tp2qI/dT3gfortN3e2jPrwnRqyszMkOISvXbtK338/Qf36DVLZsuUlGXXgwH798MMkBQXdVffu7yVP0Yi3Pn366PDhwzpw4IAaNWqkChUqKDw8XMePH9fjx49Vs2ZNDR48WJKUN29ejRo1SsOHD9eIESO0cOFCFShQQGfOnNHly5eVJUsWTZkyRY6OjhY+KgAAAABIHLK37UiVA+DRU6cNGTLENPgtSd7e3vLx8dGiRYu0c+dO0wD4yZMnJUklSpRI+WIBAAAAIIVcD7ivS9eDLF1GvPj6LlPz5i305putTMvy5Sug27cD9Pvvi9JsCE9NnJ2dNWfOHM2fP1+rVq3Svn375ODgoCJFiqh169Zq166d7O3tTe3btGmjggULatasWTp8+LAuXryobNmyqXPnzurdu7cyZ85swaMBAAAAgKRB9rZ+qXJe8Hnz5mnVqlWqVKlSjHWPHz+WJLMQHn0FeMmSJVOmQAAAAADAC9nZGfT338f14MEDs+UdO3bVTz/NkSS1beujX375yWz9Rx/10pdfjpIkHT58UDVrVtSvv85T06b19e67HdWnT099/vlQs22OHz+qmjUr6tq1q5KkP//cpXff7aR69Wrorbdaatas6QoLC5MkTZ48Se3btzDbPjg4WPXq1dDu3TuS7PithaOjo3r06KHVq1fr77//1pEjR/T777/r7bffNsvd0cqXL6/p06dr3759OnHihLZu3arhw4cz+A0AAAAAFkD2jl2qHABPly6dvL29Y4TtLVu2aOPGjXJxcVHDhg1Ny0+ePClnZ2edOHFC77zzjipWrKhKlSrp/fff17Fjx1K6fAAAAABI8zp27Kpz586qVasm+uST/lqwYK5OnTohd3d35cuXP0GPtWfPbv300xwNHfq5mjdvoT//3KnHjx+Z1vv5bVCpUmWUJ09e7d27RyNGDNGbb7bUggVLNGjQEG3dulljxnwuSWrevIX+/fe6jh07atr+jz/85ObmpqpVayTJsQMAAAAAkBLI3rFLlQPgz7p//7769u2rJk2a6MMPP1SmTJk0ffp05ciRQ5IUGBiogIAAhYaG6tNPP1VUVJSqVKkiDw8Pbd++XR06dND69estfBQAAAAAkLa8/np9/fTTHL3+ej2dPn1KP/00Vb16dVOHDm10/PjRBD3WO+90Ut68+VSkiJfq1m0gOzt77dixTZIUHh6urVu3qGlTH0nS/Pmz1bz5m2rZsq1y586jypWr6pNPhmnbti26ceNfFSpUWF5exbRp0zrT42/cuFaNGjWVg0OqvEsYAAAAAACxInvHLtWn+6tXr8rPz8/0d4PBoPPnz6tatWqS/rv/t6enp6ZPn65y5cpJkoxGo+bNm6dx48Zp6NChKl++vGnQPLEcHMzPF7C3T/XnD8SLrRwHAAAAYO2iogyWLiFJFStWQiNGjJHRaNTFixf011+7tXTpYg0e3F9LlvjG+3Hy5Mln+rOLi4vq1q0vP78NatKkuf766089eRKqevUaSJL++eeMTp8+qQ0b1pq2MRqNkqRLl/yVM2cuNWv2pmbO/FEDBnyigIBb+vvv4/rkk2EvrcPe3hAjFwIAAAAAYEm2lr2TQqofAC9YsKD2798vo9GoPXv26Msvv9TYsWMVHBys3r17q1atWtq1a5eMRqOyZ89u2s5gMKhbt246cOCAtmzZomXLlumjjz5KdB12dgZ5erolxSGlOhkyuFi6BAAAAACSQkPtdeeOXYyBVkuftJrQ/QcE3NL8+XPVpUt3ZcuWTZLk5VVUXl5FVafO63rnnbb6+++jkiQ7O/OTjSMjI2UwPD3+6P26urqYtfHxeVMfffSB7t+/q82bN6hOnXrKmDGDpKeBu1OnrmratHmMurJkySoHBzs1adJU06Z9r717/9SFC+dUvHgJFS1aNM7jiYoyyM7OThkzusrZ2TlBzwUAAAAAAMkhIOCWfv11njp16qasWbPJYDCoUKHCKlSosGrWrKNOndrp6NHDsW4bGRkRY1m6dOnM/t60qY/69++twMA78vNbr9q168rNzV2SFBVlVIcOXdSkSczsnTlzFknSG2801tSp32vPnl26cOG8ihUrrtdeK/yqhx0vqX4A3M3tv0Hnpk2bKkeOHOrQoYNmzpypLl26yM3NzdShEpu6detqy5YtOnHixCvVERVl1IMHj82W2dvb2cTg8YMHIYqMjLJ0GQAAAECaFxb2RFFRUYqMNCoiIvX8Ro+MjEpQPXZ2jlq5crmyZs2mjh27mq1zdnaVJGXM6CkHB0c9eBBseuyoqCj9++815cmTVxERUaac8vz+S5Uqpxw5cmrt2jX688/d+vrrSab1BQsWkr+/v3LmzGNqf+TIIf3++yINHjxEjo7p5OLiplq1XtfWrVvk739BLVu2feHxRUYaFRUVpfv3HyskJDLG+gwZXCx+kgIAAAAAIG1xckqnVatWKFu27DGyd/T4aqZMmeXg4Kjg4GDTuqfZ+7rZFd+xKVu2vHLkyKmNG9dpz54/9fXXk0zrXnutkC5fvqQ8efKalj2bvV1cXJQ+fXrVrv26tm/fasreKSXVD4A/r3z58sqXL58uX76sS5cuqUSJEi9snzVrVklSSEjIK+87NXVAJaWEdmYBAAAASB6RkUZLl5AkPDw81LFjV82c+aOCg4NVr14Dubq66dIlf82d+7PKl6+oMmXKqXTpMvrjDz/VqVNXmTJl1uLFC81C+Ys0adJc8+bNVsaMGVWxYmXT8o4du+jzz4fql19+0htvNNbt2wH6+uuxyp49u+ksdElq1uxNDRnysYxGqUGDRvHaZ2o7MQEAAAAAkHbZavZOCqluADwkJESTJ0/WnTt3NGHCBBkMMe+B5+TkJEmKiIjQkiVL9Ndff6l58+Zq0KBBjLZXr16VpFe+/zcAAAAAWFrubBmtZn/vvddbefLk1Zo1K+Xru1ShoaHKnj2H6tV7Q126vCtJ6tXrQz18+ECDB/eTs7OLfHxaqn79hqb7hr1I48bNNXv2TLVu3U52dv9dfV23bgONHi0tWDBbCxfOVfr0GVSjRi317t3PbPuKFSsrY0YPlSpVRunTp0/0cQIAAAAAbAvZ+z/Wmr1T3QC4s7OzfH19de/ePbVv316VK1c2W3/16lX5+/vLyclJRYoU0Y4dO7RhwwaFhITEGAA3Go1atWqVJKlmzZopdgwAAAAAkJSiooyKjIzSh+/USPF9R0ZGKSoqcVemN2nSPNb7gUXLkiWLxo2bFOf68uUravfug7Guy5Ejh3bu3B/runr1GqhevZgnSD8rNDRUwcHBat68xQvbAQAAAADSBrJ3TNaavVPdALjBYNBbb72ln376SaNGjdLcuXNN9/i+efOmPv74Y0VERKhr165ydXVVq1atNGvWLG3fvl2///672rdvL+np/PVTpkzR8ePHVbhwYTVu3NiShwUAAAAAiRYVZdS9e49lZxdzhqyU2HdiQ3hq9ODBAx0+fEBbt25R9uzZzaZwAwAAAACkXWTvpGPp7J3qBsAlqU+fPjp8+LAOHDigRo0aqUKFCgoPD9fx48f1+PFj1axZU4MHD5Yk5c2bV6NGjdLw4cM1YsQILVy4UAUKFNCZM2d0+fJlZcmSRVOmTJGjo6OFjwoAAAAAEs/WwrClREZG6Ouvx8jDw1NffDEu1ttuAQAAAADSJrJ30rB09k6VA+DOzs6aM2eO5s+fr1WrVmnfvn1ycHBQkSJF1Lp1a7Vr10729vam9m3atFHBggU1a9YsHT58WBcvXlS2bNnUuXNn9e7dW5kzZ7bg0QAAAAAAUgtPz0zauHG7pcsAAAAAAMBmWTp7p8oBcElydHRUjx491KNHj3i1L1++vKZPn57MVQEAAAAAAAAAAAAAUis7SxcAAAAAAAAAAAAAAEBSYAAcAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAAAAAAAAAAgE1gABwAAAAArICdnUEODnYp/p+dnSFR9bZt66OaNStq8eKFsa6fMOEr1axZUb/88lOin5O2bX0StH1C2wMAAAAA0hayd+z7sLbs7WDRvQMAAAAAXsrOziBPTxfZ2dmn+L6joiIVFBSiqChjgrd1cHDQtm1/6O23O5ktj4iI0I4dW2UwJC7gAwAAAACQ1MjetoMBcAAAAABI5ezsDLKzs5f/2lkKCbyRYvt1yZxTBZu/Jzs7Q6JCeMWKlbVv31+6deumsmfPYVp++PBBOTu7KF0656QsFwAAAACARCN72w4GwAEAAADASoQE3lDIrSuWLiPeihUrocuXL2nbti1mZ6L/8Yef6tV7Q1u3bjYtO3HiuGbO/FFnz56Wg4ODatasow8/HKAMGTJIkoKDg/X99xO0e/cOOTg4qkuX7jH29/ffxzRjxlSdPn1KHh4eqlGjtj744EO5ubkn/8ECAAAAAGwC2dv6szf3AAcAAAAAJJu6dRto27Y/TH8PDw/Xzp3b1aBBQ9OyU6dOqG/f91WgQEHNmDFHY8aM16lTJ/Txxx8pKipKkvT550N0+vRJjR//nb77bqr+/HOXbt7874z88+fPqX//PqpUqYrmzVukkSO/1NmzpzVw4EcyGhN+Bj0AAAAAANaC7G2OAXAAAAAAQLKpV+8NnTp1Qrdu3ZQk7d+/Vx4eHipa1NvUZvHiX1WoUBF9/PFnKljwNZUvX1GjRn2lM2dOad++v3TlyiXt379XAwd+qjJlyqlIES+NHDlWTk5OpsdYtGi+KlaspG7deipv3nwqU6asRo36UqdOndCRI4dS/LgBAAAAAEgpZG9zTIEOAAAAAEg23t7FlCtXbtNUbFu3+qlBg0ZmbS5ePK9KlaqaLStUqLDc3dPrwoVzCg0NkSQVK1bctD5TpszKlSu36e9nz57VtWtX9MYbtWLUcPnyJZUvXzEpDwsAAAAAgFSD7G2OAXAAAAAAQLKqV+8Nbdv2h1q1aqddu3Zq1qx5ZuuNRqMMhpjbGY1RcnD4L7ZGRZlPp2Zv72DWtmHDJurS5d0Yj+Ph4fmKRwAAAAAAQOpG9v4PU6ADAAAAAJJVvXoNdOrUCa1du0q5cuVW/vwFzNa/9lphHTt21GzZuXP/6NGjRypQ4DXTlG1//33MtP7hw4e6fv2q6e8FCxaSv/8F5cmT1/RfVFSkfvjhWwUE3Ey2YwMAAAAAIDUge/+HAXAAAAAAQLIqUsRLefLk1cyZ01S/fsMY6996q4POn/9H3347Xpcu+evIkUP64ovhKlrUSxUrVlbu3HlUt24DfffdNzpwYJ8uXjyvMWM+V3h4uOkx3n67k/7556wmTPhK/v4XdfLkCY0aNVxXrlxWnjz5UvJwAQAAAABIcWTv/zAFOgAAAABYCZfMOa12f/XqvaF5835RgwYxQ3jJkqU1ceJkzZo1Q+++21Gurm6qVet19e79kWkatuHDR2natMkaOXKYoqKi1KJFa927F/TMY5TSt99O1c8/T1ePHp3l4uKs8uUr6cMPB8jJySnJjgMAAAAAYNvI3tafvQ1Go9H48maIjIzS3buPzJY5ONjJ09NNwyav16XrQXFsmXjVy+bXRx1q6tS8LxRy60qSP75L9nwq3vVzBQU9UkREVJI/PgAAAICECQ8PU2DgDWXOnFOOjv8FRzs7gzw9XWRnZ5/iNUVFRSooKCTGPcDSkrhel2iZMrnJ3p4J1pIC2RsAAABAciN7p05Jmb25AhwAAAAAUrmoKKOCgkJkZ2ewyL7TcgAHAAAAAKQNZG/bwQA4AAAAAFgBwjAAAAAAAMmL7G0bmKMNAAAAAAAAAAAAAGATGAAHAAAAAAAAAAAAANgEBsABAAAAAAAAAAAAADaBAXAAAAAASGWMRu43lprwegAAAACA7SHrpS5J+XowAA4AAAAAqYS9vb0kKSzsiYUrwbOiXw97ewcLVwIAAAAAeFVk79QpKbM36R0AAAAAUgk7O3u5uLgrODhIkuTklE4Gg8HCVaVdRqNRYWFPFBwcJBcXd9nZcQ45AAAAAFg7snfqkhzZmwFwAAAAAEhFMmTIJEmmIA7Lc3FxN70uAAAAAADrR/ZOfZIyezMADgAAAACpiMFgUMaMmZU+vaciIyMsXU6aZ2/vwJXfAAAAAGBjyN6pS1JnbwbAAQAAACAVsrOzk52dk6XLAAAAAADAZpG9bROnsQMAAAAAAAAAAAAAbAID4AAAAAAAAAAAAAAAm8AAOAAAAAAAAAAAAADAJjAADgAAAAAAAAAAAACwCQyAAwAAAAAAAAAAAABsAgPgAAAAAAAAAAAAAACbwAA4AAAAAAAAAAAAAMAmMAAOAAAAAAAAAAAAALAJDIADAAAAAAAAAAAAAGwCA+AAAAAAAAAAAAAAAJvAADgAAAAAAAAAAAAAwCYwAA4AAAAAAAAAAAAAsAkMgAMAAAAAAAAAAAAAbIKDpQsAAAAAAACWER4ergULFsjX11eXLl2Sq6urSpUqpa5du6pWrVox2t+5c0c//vijdu3apVu3bilr1qxq3Lix+vTpIzc3NwscAQAAAAAA5rgCHAAAAACANMhoNGrgwIEaP368bt68qerVq6tYsWLau3evevbsqenTp5u1DwgIUPv27fXrr7/K2dlZr7/+uqKiovTzzz/rnXfeUXBwsIWOBAAAAACA/zAADgAAAABAGrR48WJt3rxZxYoVk5+fn3766SfNnTtXy5Ytk7u7uyZPnqwLFy6Y2o8dO1bXr19Xr169tGbNGv3www/atGmTmjRporNnz2rq1KkWPBoAAAAAAJ5iABwAAAAAgDRo1apVkqQhQ4bI09PTtNzb21s+Pj4yGo3auXOnJOnKlSvavHmzcubMqX79+pnaOjk5acyYMXJzc9OSJUsUGhqasgcBAAAAAMBzGAAHAAAAACANmjdvnlatWqVKlSrFWPf48WNJkr29vSRp586dioqKUp06deTo6GjWNn369KpataoeP36sffv2JX/hAAAAAAC8AAPgAAAAAACkQenSpZO3t7dpkDvali1btHHjRrm4uKhhw4aSpH/++UeSVLRo0Vgfq3DhwmbtAAAAAACwFAdLFwAAAAAAACzr/v37Gj58uM6fP6+LFy8qZ86cGjdunHLkyCFJun37tiQpa9assW4fvfzOnTspUzAAAAAAAHFgABwAAAAAgDTu6tWr8vPzM/3dYDDo/PnzqlatmqT/pkR3dnaOdfvo5dHtXoWDg/lkdfb2tjF5na0cBwAAAACkdgyAAwAAAACQxhUsWFD79++X0WjUnj179OWXX2rs2LEKDg5W7969TdOkGwyGWLc3Go1m/08sOzuDPD3dXukxUqsMGVwsXQIAAAAApAkMgAMAAAAAkMa5uf036Ny0aVPlyJFDHTp00MyZM9WlSxe5urpKkp48eRLr9tHLXVxebZA3KsqoBw/MryK3t7ezicHjBw9CFBkZZekyAAAAAMAqZcjgEu+ZtRgABwAAAAAAZsqXL698+fLp8uXLunTpkrJlyybpv3uBP+9l9whPiIgI2xwkjoyMstljAwAAAIDUJNUOgIeHh2vBggXy9fXVpUuX5OrqqlKlSqlr166qVatWjPZ37tzRjz/+qF27dunWrVvKmjWrGjdurD59+pidyQ4AAAAAQFoXEhKiyZMn686dO5owYUKsU5s7OTlJkiIiIlS0aFFJ0oULF2J9vHPnzkmSvLy8kqliAAAAAADiJ37Xiacwo9GogQMHavz48bp586aqV6+uYsWKae/everZs6emT59u1j4gIEDt27fXr7/+KmdnZ73++uuKiorSzz//rHfeeUfBwcEWOhIAAAAAAFIfZ2dn+fr6as2aNTpw4ECM9VevXpW/v7+cnJxUpEgR04no27ZtU2RkpFnbhw8fat++fXJ1dVWFChVSpH4AAAAAAOKSKgfAFy9erM2bN6tYsWLy8/PTTz/9pLlz52rZsmVyd3fX5MmTzc46Hzt2rK5fv65evXppzZo1+uGHH7Rp0yY1adJEZ8+e1dSpUy14NAAAAAAApC4Gg0FvvfWWJGnUqFEKCAgwrbt586Y+/vhjRURE6J133pGrq6ty586tunXr6tq1a5owYYKMRqMkKSwsTJ9//rkePXqkt99+W+7u7hY5HgAAAAAAoqXKKdBXrVolSRoyZIg8PT1Ny729veXj46NFixZp586dKlSokK5cuaLNmzcrZ86c6tevn6mtk5OTxowZo507d2rJkiUaMGCAnJ2dU/xYAAAAAABIjfr06aPDhw/rwIEDatSokSpUqKDw8HAdP35cjx8/Vs2aNTV48GBT+xEjRujkyZOaM2eOduzYoSJFiujvv//Wv//+qxIlSuijjz6y4NEAAAAAAPBUqrwCfN68eVq1apUqVaoUY93jx48lSfb29pKknTt3KioqSnXq1JGjo6NZ2/Tp06tq1ap6/Pix9u3bl/yFAwAAAABgJZydnTVnzhx9+umnyps3r/bt26fjx4+rSJEiGj16tGbOnGm6D7gk5c6dW8uWLVO7du308OFDbdu2TU5OTvrggw80f/58ubm5WfBoAAAAAAB4KlVeAZ4uXTp5e3vHWL5lyxZt3LhRLi4uatiwoSTpn3/+kSQVLVo01scqXLiw/vjjD/3zzz+qU6dO8hUNAAAAAICVcXR0VI8ePdSjR494tc+ePbvGjh2bzFUBAAAAAJB4qXIA/Fn379/X8OHDdf78eV28eFE5c+bUuHHjlCNHDknS7du3JUlZs2aNdfvo5Xfu3EmZggEAAAAAAAAAAAAAFpHqB8CvXr0qPz8/098NBoPOnz+vatWqSfpvSvS47u8dvTy63atwcDCfMd7ePlXOIJ9gtnIcAAAAAAAAAAAAANK2VD8AXrBgQe3fv19Go1F79uzRl19+qbFjxyo4OFi9e/c23QvcYDDEur3RaDT7f2LZ2Rnk6Wmb9zPLkMHF0iUAAAAAAAAAAAAAwCtL9QPgbm7/DTo3bdpUOXLkUIcOHTRz5kx16dJFrq6ukqQnT57Eun30cheXVxvkjYoy6sED86vI7e3tbGLw+MGDEEVGRlm6DAAAAACwShkyuDCzFgAAAAAAqUSqHwB/Xvny5ZUvXz5dvnxZly5dUrZs2ST9dy/w573sHuEJERFhm4PEkZFRNntsAAAAAAAAAAAAwP+xd+dxds33/8BfdyZ7iEQWxFp7a48lWhSlpXa1U6p2iuJri1oropbShdIKKrEvSSylkpCgqDXEFjRaIjSxJBHJRJaZ3x9+STtNwiSz3Jl7n8/Ho49yzuee+/44d2bu677P/RzKR7O7RL2qqiq/+tWvcuqppy502fI2bdokSWbPnp0111wzSTJ27NgFjn377beTJGuttVYjVAsAAAAAAABAc9HsGuDt2rXL4MGDc//99+e5556bb/+4cePyz3/+M23atMkaa6yRrbbaKkkyYsSIzJkzp9bYqVOn5plnnkmHDh2y8cYbN0n9AAAAAAAAABRHs2uAFwqF7LfffkmS888/PxMnTpy379///ndOOeWUzJ49OwcccEA6dOiQ5ZdfPttuu23ef//9XHbZZfO+NT5z5syce+65mTZtWvbff/8sscQSRZkPAAAAAAAAAE2jWd4D/LjjjsuLL76Y5557LjvssEM23njjzJo1K6NHj8706dOz5ZZb5tRTT503/pxzzslrr72WG2+8MY899ljWWGONvPLKK/nggw+yzjrr5Pjjjy/ibAAAAAAAAABoCs3uG+DJl8ug33jjjTn99NOz4oor5plnnsno0aOzxhpr5IILLsif/vSnefcBT5Lll18+d999d/bZZ59MnTo1I0aMSJs2bXLMMcdkwIAB6dixYxFnAwAAAAAAAEBTaJbfAE+S1q1b5/DDD8/hhx9ep/HLLLNM+vbt28hVAQAAAAAAANBcNctvgAMAAAAAAADAotIABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAktCp2AQAAAAD8R0VFIRUVhUY7fnV1Taqraxrt+AAAAMWkAQ4AAADQTFRUFNK5c4dUVjbeon1z5lRn8uTpmuAAAEBJ0gAHAAAAaCYqKgqprKzI1bc9mfETpzT48ZfvsVR+dsAWqagoaIADAAAlSQMcAAAAoJkZP3FK/jV+UrHLAAAAaHEabz0tAAAAAAAAAGhCGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFXsAmhZKioKqagoNNrxq6trUl1d02jHBwAAAAAAAEqXBjh1VlFRSOfOHVJZ2XgLB8yZU53Jk6drggMAAAAAAACLTAOcOquoKKSysiJX3/Zkxk+c0uDHX77HUvnZAVukoqKgAQ4AAAAAAAAsMg1wFtn4iVPyr/GTil0GAAAAAAAAQC2Nt5Y1AAAAAAAAADQhDXAAAAAAAAAASoIl0AEAAKBMVVdX56677sqgQYPy9ttvZ9asWenZs2e23377HH300enUqVOt8b17987kyZMXerzRo0enbdu2jVw1AAAALJwGOAAAAJSh6urqnHjiiRk2bFjatWuX9ddfPx06dMjo0aPTv3//DBs2LLfeemu6deuWJBk/fnwmT56cZZZZJpttttkCj1lRYaE5AAAAiksDHAAAAMrQPffck2HDhmWVVVZJ//79s+KKKyZJPv/885x66qkZMWJE+vbtm9/85jdJkjfeeCNJsuOOO+ass84qVtkAAADwlVyaDQAAAGXonnvuSZKceeaZ85rfSbLEEkukX79+KRQKGT58eGbMmJEkee2115Ik66yzTtMXCwAAAHWkAQ4AAABlqHPnzll11VWz4YYbzrdv6aWXzlJLLZVZs2Zl0qRJSf7zDfB11123KcsEAACARWIJdAAAAChD11577UL3jRs3LpMnT07r1q2z9NJLJ/nyG+Dt2rXLq6++mrPPPjtvv/12CoVCevXqleOOOy4bbLBBU5UOAAAAC+Ub4AAAAEAtc+/7vc0226Rt27b55JNPMnHixMyYMSOnn356qqur07t373Tu3DkjR47MgQcemAcffLC4RQMAAEB8AxwAAAD4LwMHDswDDzyQ9u3b5+STT07yn/t/d+nSJddcc0022mijJElNTU1uuummXHzxxenTp0969eqVZZddtl7P36pV7Wv1KytL49r9us6jqeZbKv9dAQAA/pcGOAAAAJAkGTBgQPr165dCoZCLLrooq622WpJkq622yhNPPJGamposs8wy88YXCoUceuihee655zJ8+PDcfffdOf744xf7+SsqCunSpWO959EcderUvtgl1NLc6gEAAGgoGuAAAABQ5mpqanL55Zenf//+qayszEUXXZSdd9553v5CoZAePXos9PHbbrtthg8fnldffbVedVRX1+Szz6bX2lZZWVESzdrPPqvKnDnVXzuuqeZb13oAAACag06d2td5Jatm2wCvrq7OXXfdlUGDBuXtt9/OrFmz0rNnz2y//fY5+uij06lTp1rje/funcmTJy/0eKNHj07btm0buWoAAABoWWbMmJHTTjstQ4cOTbt27fLrX/8622+//SIdo3v37kmSqqqqetcze3ZpNmXnzKluVnNrbvUAAAA0lGbZAK+urs6JJ56YYcOGpV27dll//fXToUOHjB49Ov3798+wYcNy6623plu3bkmS8ePHZ/LkyVlmmWWy2WabLfCYFRXubQUAAAD/7fPPP88RRxyRUaNGpWvXrrnmmmuywQYbzDfujjvuyNNPP51ddtllgc3xcePGJUm97/8NAAAA9dUsG+D33HNPhg0bllVWWSX9+/fPiiuumOTLYH7qqadmxIgR6du3b37zm98kSd54440kyY477pizzjqrWGUDAABAizFr1qwcddRRGTVqVFZeeeVcf/318/L3/5owYUIeeuihVFVVzdcAr6mpyb333psk2XLLLRu9bgAAAPgqzfJr0ffcc0+S5Mwzz6wVvpdYYon069cvhUIhw4cPz4wZM5Ikr732WpJknXXWafpiAQAAoAW66qqr8sILL6R79+4ZOHDgQpvfSbLnnnumTZs2GTlyZO68885526urq/O73/0uo0ePzuqrr54dd9yxKUoHAACAhWqW3wDv3LlzVl111Wy44Ybz7Vt66aWz1FJLZfLkyZk0aVKWW265ed8AX3fddZu4UgAAAGh5pkyZkptuuilJ0rVr11x22WULHTv34vTzzz8/Z599ds4555zcfPPNWWWVVTJmzJi8++676datW37/+9+ndevWTTUFAAAAWKBm2QC/9tprF7pv3LhxmTx5clq3bp2ll146yZffAG/Xrl1effXVnH322Xn77bdTKBTSq1evHHfccQu8fxkAAACUq5dffjlVVVVJkjFjxmTMmDELHXvCCSekW7du2WuvvfKNb3wj1113XV588cW888476dGjRw4++OAce+yx6dq1a1OVDwAAAAvVLBvgX2Xufb+32WabtG3bNp988kkmTpyYJDn99NOz4YYbpnfv3nnrrbcycuTI/O1vf8tll12WnXbaqYhVAwAAQPPx3e9+N2+++eYiP65Xr1655pprGqEiAAAAaBgtqgE+cODAPPDAA2nfvn1OPvnkJP+5/3eXLl1yzTXXZKONNkqS1NTU5KabbsrFF1+cPn36pFevXll22WXr9fytWtW+ZXplZbO8hfoiq+s8mmq+pfLfFQAAAAAAAGhaLaYBPmDAgPTr1y+FQiEXXXRRVltttSTJVlttlSeeeCI1NTVZZpll5o0vFAo59NBD89xzz2X48OG5++67c/zxxy/281dUFNKlS8d6z6M56tSpfbFLqKW51QMAAAAAAAC0DM2+AV5TU5PLL788/fv3T2VlZS666KLsvPPO8/YXCoX06NFjoY/fdtttM3z48Lz66qv1qqO6uiaffTa91rbKyoqSaNZ+9llV5syp/tpxjT3fpZZsl5rq6hQqGvcb4NXVc/LZZ1+kpqamUZ8HAAAoD506tbeSFS1OY79mq6trUl0tdwMAAE2vWTfAZ8yYkdNOOy1Dhw5Nu3bt8utf/zrbb7/9Ih2je/fuSZKqqqp61zN79tc3iVuiOXOqm8XcOrZrk0JFRf75wHWp+uTDRnmO9l2Xyzd2OTI1NTXNYs4AAADQlOZefN7YF/RXV8/JpElVmuAAAECTa7YN8M8//zxHHHFERo0ala5du+aaa67JBhtsMN+4O+64I08//XR22WWXBTbHx40blyT1vv83Tafqkw9TNeG9YpcBAAAAJacpLz6vqChogAMAAE2uWTbAZ82alaOOOiqjRo3KyiuvnOuvvz4rrrjiAsdOmDAhDz30UKqqquZrgNfU1OTee+9Nkmy55ZaNXjcAAABAS+DicwAAoFQ1y5uUXXXVVXnhhRfSvXv3DBw4cKHN7yTZc88906ZNm4wcOTJ33nnnvO3V1dX53e9+l9GjR2f11VfPjjvu2BSlAwAAAAAAAFAkze4b4FOmTMlNN92UJOnatWsuu+yyhY4988wzs+KKK+b888/P2WefnXPOOSc333xzVllllYwZMybvvvtuunXrlt///vdp3bp1U00BAAAAAAAAgCJodg3wl19+OVVVVUmSMWPGZMyYMQsde8IJJ6Rbt27Za6+98o1vfCPXXXddXnzxxbzzzjvp0aNHDj744Bx77LHp2rVrU5UPAAAAAAAAQJE0uwb4d7/73bz55puL/LhevXrlmmuuaYSKAAAAAAAAAGgJmuU9wAEAAAAAAABgUWmAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEloVewCoNxVVBRSUVFotONXV9ekurqm0Y4PAAAAAAAAzYUGOBRRRUUhXbq0T0VFZaM9R3X1nEyaVKUJDgAAAAAAQMnTAIci+vLb35X55wPXpeqTDxv8+O27Lpdv7HJkKioKGuAAAAAAAACUPA1waAaqPvkwVRPeK3YZAAAAUJLcfgwAAMpHvRrgQ4YMyYorrpiNN974K8c98sgjee2113LiiSfW5+kAAACg7MjeUD9uPwYAAOWlXg3wM888M7vvvvvXhvB77703TzzxhBAOAAAAi0j2hvpx+zEAACgvi9QAHzJkSGbPnl1r27vvvpu77757oY/5/PPP8/TTT6d169aLVyEAAACUEdmbctSYS5RXVlYkcfsxAAAoF4vUAH/ttdcycODAFApfBpJCoZCXX345L7/88lc+rqamJnvuuefiVwlF1BQhHAAAYC7Zm3JTUVFI584dZGQAAKBBLFID/MQTT8znn38+798HDx6clVZa6SuXYWvbtm1WWWWVHHDAAYtfJRSJEA4AADQ12ZtyU1FRSGVlRa6+7cmMnzilwY+/wVo9s9+OGzb4cQEAgOZpkRrgSy65ZC6++OJ5/z548OBsuOGGtbZBKRHCAQCApiZ7U67GT5ySf42f1ODH7dm9U4MfEwAAaL4WqQH+v8aMGdNQdUCzJoQDAADFInsDAABA3dWrAf7fPvnkk1RVVaWmpmahY1ZcccWGejoAAAAoO7I3AAAAfLV6N8D//Oc/57rrrsunn376leMKhUJef/31+j4dAAAAlJ3Gyt7V1dW56667MmjQoLz99tuZNWtWevbsme233z5HH310OnWqvWrVxx9/nD/84Q954oknMmHChHTv3j077rhjjjvuuHTs2HGx5gYAAAANqV4N8EGDBuVXv/pVkqRNmzbp0qVLKisrG6QwAAAAoPGyd3V1dU488cQMGzYs7dq1y/rrr58OHTpk9OjR6d+/f4YNG5Zbb7013bp1S5JMnDgx+++/f8aPH58111wz22yzTV555ZX0798/TzzxRG699dYsscQS9a4LAAAA6qNeDfCbb745hUIhZ599dvbdd9+0bt26oeoCAAAA0njZ+5577smwYcOyyiqrpH///vOWTv/8889z6qmnZsSIEenbt29+85vfJEn69u2b8ePH56ijjsr//d//JUlmzpyZ008/PQ899FCuuuqqnHnmmQ1SGwAAACyuivo8eOzYsdlwww1z0EEHaX4DAABAI2is7H3PPfckSc4888xa9w1fYokl0q9fvxQKhQwfPjwzZszIe++9l2HDhmW55ZbLiSeeOG9smzZtcuGFF6Zjx4654447MmPGjAarDwAAABZHvRrg7du3T5cuXRqqFgAAAOB/NFb27ty5c1ZdddVsuOGG8+1beumls9RSS2XWrFmZNGlSHn/88VRXV2frrbeerwm/5JJLZvPNN8/06dPzzDPPNHidAAAAsCjq1QDfbLPNMnr06FRVVTVUPQAAAMB/aazsfe211+ahhx5aYHN93LhxmTx5clq3bp2ll146b731VpJkzTXXXOCxVl999SSZNw4AAACKpV4N8JNPPjlVVVU566yzMmXKlIaqCQAAAPj/ipG95973e5tttknbtm3z0UcfJUm6d+++wPFzt3/88cdNUh8AAAAsTKv6PPj222/P+uuvn7/+9a8ZNmxYVllllXTq1CmFQmG+sYVCITfffHOdj11dXZ277rorgwYNyttvv51Zs2alZ8+e2X777XP00UenU6dOtcZ//PHH+cMf/pAnnngiEyZMSPfu3bPjjjvmuOOOS8eOHeszTQAAACiaxszeCzJw4MA88MADad++fU4++eQkyfTp05Mk7dq1W+Bj5m6fO64+WrWqfa1+ZWW9rt1vNuo6j1KZb1J+cy6VeQAAQEtXrwb4TTfdNO+fZ8+enX/84x8LHbugYL4w1dXVOfHEEzNs2LC0a9cu66+/fjp06JDRo0enf//+GTZsWG699dZ069YtSTJx4sTsv//+GT9+fNZcc81ss802eeWVV9K/f/888cQTufXWW7PEEkss/kQBAACgSBorey/IgAED0q9fvxQKhVx00UVZbbXVkiSVlZVfefyamppa/7+4KioK6dKlNC9i79SpfbFLaHLlNudymy8AADRX9WqADxgwoKHqqOWee+6Zd1V7//79s+KKKyZJPv/885x66qkZMWJE+vbtO29Jtr59+2b8+PE56qij8n//939JkpkzZ+b000/PQw89lKuuuipnnnlmo9QKAAAAjamxsvd/q6mpyeWXX57+/funsrIyF110UXbeeed5+zt06JAk+eKLLxb4+Lnb27evXwOwuromn31W+1vklZUVJdFY/OyzqsyZU/2140plvkn5zbmu8wUAABZdp07t67zqUr0a4Jtttll9Hr5Q99xzT5LkzDPPnNf8TpIlllgi/fr1y3e+850MHz48M2bMyMSJEzNs2LAst9xyOfHEE+eNbdOmTS688MI8/vjjueOOO3LSSSctdKk2AAAAaK4aK3vPNWPGjJx22mkZOnRo2rVrl1//+tfZfvvta43p0aNHksy7F/j/+rp7hC+K2bNLs4E4Z051yc5tYcptzuU2XwAAaK4a7OZEs2bNyujRo/Pwww/nhRdeSJJ88MEHi3Wszp07Z9VVV82GG244376ll146Sy21VGbNmpVJkybl8ccfT3V1dbbeeuu0bt261tgll1wym2++eaZPn55nnnlmsWoBAACA5qIhs3fy5Uprhx56aIYOHZquXbtmwIAB8zW/k2TNNddMkowdO3aBx3n77beTJGuttdZi1wIAAAANod4N8NmzZ+e3v/1ttthii+y333456aSTcscddyRJzjjjjPzoRz/Ku+++u0jHvPbaa/PQQw+lS5cu8+0bN25cJk+enNatW2fppZfOW2+9leQ/Yfx/rb766kkybxwAAAC0NI2RvWfNmpWjjjoqo0aNysorr5w77rgjG2ywwQLHbrXVVkmSESNGZM6cObX2TZ06Nc8880w6dOiQjTfeeDFmBwAAAA2nXg3w2bNn5+ijj861116bqqqqrLvuuqmpqZm3f9q0aXn99ddz0EEH5eOPP653sUnm3fd7m222Sdu2bb92mbW52xvq+QEAAKApNVb2vuqqq/LCCy+ke/fuGThwYK1bkP2v5ZdfPttuu23ef//9XHbZZfOef+bMmTn33HMzbdq07L///lliiSUWf6IAAADQAOp1D/BbbrklTz75ZLbccsv069cvPXr0yNprrz1v/6233przzz8/Q4YMyfXXX58zzjijXsUOHDgwDzzwQNq3b5+TTz45STJ9+vQkWej9vedunzuuPlq1qn29QF1vtN7c1XUepTLfpPzmXCrzAACActQY2XvKlCm56aabkiRdu3bNZZddttCxZ555Zrp165Zzzjknr732Wm688cY89thjWWONNfLKK6/kgw8+yDrrrJPjjz++/pMFAACAeqpXA3zw4MHp3Llzfvvb36Zjx47z7W/Xrl0uvPDCPPXUU3n88cfr1QAfMGBA+vXrl0KhkIsuuiirrbZakqSysjJJUigUFvi4uVel//fV8YujoqKQLl3mn2Mp6NSpfbFLaHLlNudymy8AAJSSxsjeL7/8cqqqqpIkY8aMyZgxYxY69oQTTki3bt2y/PLL5+67787vf//7jBw5MiNGjEjPnj1zzDHH5Mgjj1xgbQAAANDU6tUA/9e//pUtt9zyK0Nu69ats/766+fJJ59crOeoqanJ5Zdfnv79+6eysjIXXXRRdt5553n7O3TokCT54osvFvj4udvbt69fA7C6uiaffVb7W+SVlRUl0Vj87LOqzJlT/bXjSmW+SfnNua7zBQAAFl2nTu0bddWlxsje3/3ud/Pmm28uci3LLLNM+vbtu8iPAwAAgKZSrwZ4q1at8tlnn33tuMmTJ6dVq0V/qhkzZuS0007L0KFD065du/z617/O9ttvX2tMjx49kmTevcD/19fdI3xRzJ5dmg3EOXOqS3ZuC1Nucy63+QIAQClp7OwNAAAApaRel6h/85vfzCuvvJLx48cvdMy4cePyyiuv1Lo/WV18/vnnOfTQQzN06NB07do1AwYMmK/5nSRrrrlmkmTs2LELPM7bb7+dJFlrrbUW6fkBAACgOWjM7A0AAAClpl4N8AMOOCBVVVU57rjj8vrrr8+3/80338wJJ5yQmTNnZu+9967zcWfNmpWjjjoqo0aNysorr5w77rgjG2ywwQLHbrXVVkmSESNGZM6cObX2TZ06Nc8880w6dOiQjTfeeBFmBgAAAM1DY2VvAAAAKEX1Whttp512ylNPPZW77747e+21V5ZccskUCoU88cQT2WabbTJhwoTU1NRk5513zu67717n41511VV54YUX0r179wwcODDLLLPMQscuv/zy2XbbbTNixIhcdtllOeOMM1IoFDJz5syce+65mTZtWg477LAsscQS9ZkqAAAAFEVjZW8AAAAoRfW+OVjfvn2z4YYb5vrrr88///nPJMmkSZOSJD179sxPfvKTHHLIIXU+3pQpU3LTTTclSbp27ZrLLrtsoWPPPPPMdOvWLeecc05ee+213HjjjXnssceyxhpr5JVXXskHH3yQddZZJ8cff3w9ZggAAADF1dDZGwAAAEpVvRvgSbL33ntn7733zkcffZQPP/ww1dXV6d69e5ZffvlFPtbLL7+cqqqqJMmYMWMyZsyYhY494YQT0q1btyy//PK5++678/vf/z4jR47MiBEj0rNnzxxzzDE58sgj07Fjx8WeGwAAADQHDZm9AQAAoFQ1SAN80qRJefvtt7PZZpule/fuSZJ//OMfueWWW/KDH/xg3ra6+O53v5s333xzkWtYZpll0rdv30V+HAAAALQEDZm9AQAAoFRV1PcAd955Z7773e/mV7/6Va3tL7/8ci688MLssMMOefDBB+v7NAAAAFC2ZG8AAACom3o1wJ988smce+65adWqVTbffPNa+zbeeOMcfvjhqampyamnnpq///3v9SoUAAAAypHsDQAAAHVXrwZ4//7906pVqwwYMCCnn356rX2rrLJKTjvttAwYMCCFQiHXXXddvQoFAACAciR7AwAAQN3VqwH+1ltvpXfv3llvvfUWOma99dbLxhtvnJdeeqk+TwUAAABlSfYGAACAuqtXA7yqqirt27f/2nGdO3fO7Nmz6/NUAAAAUJZkbwAAAKi7ejXAV1lllTz33HP5/PPPFzrmiy++yAsvvJCVVlqpPk8FAAAAZUn2BgAAgLqrVwN8t912y5QpU3LiiSfm448/nm//pEmTcsopp+TTTz/NrrvuWp+nAgAAgLIkewMAAEDdtarPgw866KA8+OCDeeqpp7LNNttk3XXXzXLLLZck+fe//53XXnstM2fOzPrrr59DDz20IeoFAACAsiJ7AwAAQN3VqwHeunXr3HjjjbnyyiszaNCgvPTSS3nppZfm7W/btm0OOOCAnHbaaWnTpk19awUAAICyI3sDAABA3dWrAZ4kHTt2zNlnn53TTz89r776aj766KPMmTMn3bt3zzrrrJMOHTo0RJ0AAABQtmRvAAAAqJt6NcAPOeSQrLLKKvnlL3+ZNm3apFevXg1VFwAAABDZGwAAABZFvRrgo0ePTkVFRUPVAgAAAPwP2RsAAADqrl4JumPHjqmpqWmoWgAAAID/IXsDAABA3dWrAX7sscfm2WefzQ033JCZM2c2VE0AAADA/yd7AwAAQN3Vawn0cePGZeWVV85ll12WK664IiuvvHI6deq0wKXZCoVCbr755vo8HQAAAJQd2RsAAADqrl4N8JtuumneP8+ePTtjx45d6NhCoVCfpwIAAICyJHsDAABA3dWrAT5gwICGqgMAAABYANkbAAAA6q5eDfDNNtusoeoAAAAAFkD2BgAAgLqrVwP8v82aNStvvPFGPvzww3Tr1i0bb7xxPvjgg/Ts2bOhngIAAADKmuwNAAAAX63eDfDZs2fn6quvzi233JKpU6cmSXbddddsvPHGOeOMMzJt2rRceeWVWXnlletdLAAAAJQj2RsAAADqpqI+D549e3aOPvroXHvttamqqsq6666bmpqaefunTZuW119/PQcddFA+/vjjehcLAAAA5Ub2BgAAgLqrVwP8lltuyZNPPpktttgijzzySO66665a+2+99dbsscce+fjjj3P99dfXq1AAAAAoR7I3AAAA1F29GuCDBw9O586d89vf/jY9evSYb3+7du1y4YUXpkePHnn88cfr81QAAABQlmRvAAAAqLt6NcD/9a9/ZZNNNknHjh0XOqZ169ZZf/3188EHH9TnqQAAAKAsyd4AAABQd/VqgLdq1SqfffbZ146bPHlyWrVqVZ+nAgAAgLIkewMAAEDd1asB/s1vfjOvvPJKxo8fv9Ax48aNyyuvvJK11167Pk8FAAAAZUn2BgAAgLqrVwP8gAMOSFVVVY477ri8/vrr8+1/8803c8IJJ2TmzJnZe++96/NUAAAAUJZkbwAAAKi7eq2NttNOO+Wpp57K3Xffnb322itLLrlkCoVCnnjiiWyzzTaZMGFCampqsvPOO2f33XdvqJoBAACgbMjeAAAAUHf1vjlY3759s+GGG+b666/PP//5zyTJpEmTkiQ9e/bMT37ykxxyyCH1fRoAAAAoW7I3AAAA1E29G+BJsvfee2fvvffORx99lA8//DDV1dXp3r17ll9++YY4PAAAAJQ92RsAAAC+3iI3wOfMmZNbb701Q4cOzccff5yePXtm1113zR577JHu3bune/fujVEnAAAAlA3ZGwAAABbPIjXAZ86cmcMPPzzPP/98ampqkiT//Oc/89RTT2XEiBH57W9/2yhFAgAAQLmQvQEAAGDxLVID/Pbbb89zzz2XZZZZJkceeWRWXHHFvPXWW+nfv3+GDh2ae++9N7vvvntj1QoAAAAlT/YGAACAxbdIDfC//vWvadeuXW677bb07NkzSbL11ltnq622yp577pm//OUvQjgAAADUg+wNAAAAi69iUQaPHTs2m2yyybwAPtfaa6+dddZZJ2PGjGnQ4gAAAKDcyN4AAACw+BapAT5t2rQstdRSC9y3wgorZPLkyQ1REwAAAJQt2RsAAAAW3yI1wGfPnp3KysoF7mvdunVmzZrVIEUBAABAuZK9AQAAYPEtUgMcAAAAAAAAAJorDXAAAAAAAAAASoIGOAAAAAAAAAAlodWiPmD48OHZbrvt5ts+adKkJFngviQpFAoZPnz4oj4dAAAAlB3ZGwAAABbPIjfAp0+fnunTpy90//jx4xe4vVAoLOpTAQAAQFmSvQEAAGDxLFIDfMCAAY1VBwAAABDZGwAAAOpjkRrgm222WWPVAQAAAET2BgAAgPqoKHYBAAAAAAAAANAQNMABAAAAAAAAKAmLtAQ6AAAAULqGDBmSM844IzfeeGO+853vzLe/d+/emTx58kIfP3r06LRt27YRKwQAAICvpgEOAAAAZPTo0bnwwgsXun/8+PGZPHlylllmmYXep7yiwkJzAAAAFJcGOAAAAJS5Rx99NGeccUY+//zzhY554403kiQ77rhjzjrrrKYqDQAAABaJBjgAAACUqQkTJuQ3v/lNBg8enHbt2qVbt275+OOPFzj2tddeS5Kss846TVkiAAAALBJrkwEAAECZuvLKKzNo0KCss846ueOOO7LqqqsudOzcb4Cvu+66TVUeAAAALDLfAAcAAIAyteqqq+aSSy7Jbrvt9rX3737ttdfSrl27vPrqqzn77LPz9ttvp1AopFevXjnuuOOywQYbNFHVAAAAsHAt5hvgQ4YMyVprrZWnnnpqgft79+6dtdZaa6H/++KLL5q4YgAAAGjejjrqqOyxxx5f2/z+5JNPMnHixMyYMSOnn356qqur07t373Tu3DkjR47MgQcemAcffLCJqgYAAICFaxHfAB89enQuvPDChe4fP358Jk+enGWWWSabbbbZAsd8XZgHAAAAFmzu/b+7dOmSa665JhtttFGSpKamJjfddFMuvvji9OnTJ7169cqyyy5br+dq1ap2fq+sLI08X9d5lMp8k/Kbc6nMAwAAWrpm3wB/9NFHc8YZZ+Tzzz9f6Ji59yHbcccdc9ZZZzVVaQAAAFAWttpqqzzxxBOpqanJMsssM297oVDIoYcemueeey7Dhw/P3XffneOPP36xn6eiopAuXTo2RMnNTqdO7YtdQpMrtzmX23wBAKC5arYN8AkTJuQ3v/lNBg8enHbt2qVbt275+OOPFzh27pXo66yzTlOWCAAAAGWhUCikR48eC92/7bbbZvjw4Xn11Vfr9TzV1TX57LPptbZVVlaURGPxs8+qMmdO9deOK5X5JuU357rOFwAAWHSdOrWv86pLzbYBfuWVV2bw4MFZd911069fv/Tt23ehDfC53wBfd911m7JEAAAAIEn37t2TJFVVVfU+1uzZpdlAnDOnumTntjDlNudymy8AADRXzbYBvuqqq+aSSy7Jbrvt9rX3737ttdfSrl27vPrqqzn77LPz9ttvp1AopFevXjnuuOOywQYbNFHVAAAAUHruuOOOPP3009lll12y/fbbz7d/3LhxSVLv+38DAABAfdXte+JFcNRRR2WPPfb42ub3J598kokTJ2bGjBk5/fTTU11dnd69e6dz584ZOXJkDjzwwDz44INNVDUAAACUngkTJuShhx7KXXfdNd++mpqa3HvvvUmSLbfcsqlLAwAAgFqa7TfA62ru/b+7dOmSa665JhtttFGSLwP4TTfdlIsvvjh9+vRJr1696n0leqtWtZvxdV1nvrmr6zxKZb5J+c25VOYBAAAUx5577pnrrrsuI0eOzJ133pl99903SVJdXZ3f//73GT16dFZfffXsuOOORa4UAACActfiG+BbbbVVnnjiidTU1GSZZZaZt71QKOTQQw/Nc889l+HDh+fuu+/O8ccfv9jPU1FRSJcuHRui5GanU6f2xS6hyZXbnMttvgAAQMNaccUVc/755+fss8/OOeeck5tvvjmrrLJKxowZk3fffTfdunXL73//+7Ru3brYpQIAAFDmWnwDvFAopEePHgvdv+2222b48OF59dVX6/U81dU1+eyz6bW2VVZWlERj8bPPqjJnTvXXjiuV+SblN+e6zhcAAFh0nTq1L4tVl/baa6984xvfyHXXXZcXX3wx77zzTnr06JGDDz44xx57bLp27VrsEgEAAKDlN8C/Tvfu3ZMkVVVV9T7W7Nml2UCcM6e6ZOe2MOU253KbLwAAsHgGDhz4lft79eqVa665pomqAQAAgEXX4i9Rv+OOO3LSSSdl+PDhC9w/bty4JKn3/b8BAAAAAAAAaN5a/DfAJ0yYkIceeihVVVXZfvvta+2rqanJvffemyTZcssti1EeAAAAAAAAAE2kxX8DfM8990ybNm0ycuTI3HnnnfO2V1dX53e/+11Gjx6d1VdfPTvuuGMRqwQAAAAAAACgsbX4b4CvuOKKOf/883P22WfnnHPOyc0335xVVlklY8aMybvvvptu3brl97//fVq3bl3sUgEAAAAAAABoRC3+G+BJstdee+WWW27J9773vUyYMCGPPvpoZs+enYMPPjj33XdfVl111WKXCAAAAAAAAEAjazHfAB84cOBX7u/Vq1euueaaJqoGAAAAAAAAgOamJL4BDgAAAAAAAAAa4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUhFbFLgAAAAAAaFgVFYVUVBQa7fjV1TWprq5ptOMDAMDi0gAHmpwQDgAAAI2noqKQLl3ap6KistGeo7p6TiZNqpK/AQBodjTAgSYlhAMAAEDj+vLC88r884HrUvXJhw1+/PZdl8s3djkyFRUF2RsAgGZHAxxoUkI4AAAANI2qTz5M1YT3il0GAAA0KQ1woCiEcAAAAAAAABqaBjhQS2Pfn7uysqLRjg0AAAAAAEB50wAH5qmoKKRz5w6a1AAAAAAAALRIGuDAPBUVhVRWVuTq257M+IlTGuU5NlirZ/bbccNGOTYAAAAAAADlTQMcmM/4iVPyr/GTGuXYPbt3apTjAgAAQEvh9mMAANB4NMABAAAAoIm4/RgAADQuDXAAAAAAaCJuPwYAAI1LAxwAAAAAmpjbjwEAQOOw1hIAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJGiAAwAAAAAAAFASNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEOAAAAJEmGDBmStdZaK0899dQC93/88cf55S9/me9///tZf/31s9122+Wyyy7LtGnTmrhSAAAAWDANcAAAACCjR4/OhRdeuND9EydOzL777ptbbrkl7dq1yzbbbJPq6ur0798/BxxwQD7//PMmrBYAAAAWTAMcAAAAytyjjz6aww8//Cub2H379s348eNz1FFH5f7778/vfve7PPzww/nhD3+YN998M1dddVUTVgwAAAAL1mIa4JZhAwAAgIY1YcKE9OnTJ8cdd1xmzZqVbt26LXDce++9l2HDhmW55ZbLiSeeOG97mzZtcuGFF6Zjx4654447MmPGjKYqHQAAABaoRTTALcMGAAAADe/KK6/MoEGDss466+SOO+7IqquuusBxjz/+eKqrq7P11lundevWtfYtueSS2XzzzTN9+vQ888wzTVE2AAAALFSzb4Bbhg0AAAAax6qrrppLLrkkd911V9Zaa62FjnvrrbeSJGuuueYC96+++uq1xgEAAECxNNsGuGXYAAAAoHEdddRR2WOPPVJR8dUfD3z00UdJku7duy9w/9ztH3/8ccMWCAAAAIuoVbELWJgrr7wygwcPzrrrrpt+/fqlb9++CwzSdVmG7ZFHHskzzzyTrbfeuqnKBwAAgJIxffr0JEm7du0WuH/u9rnj6qNVq9rN+MrKZnvt/iKp6zxKZb5J+c253OablNZcAAAoHc22AT53GbbddtvtK69Er8sybI888kjeeustDXAAAABYDJWVlUmSQqGwwP01NTW1/n9xVVQU0qVLx3odo7nq1Kl9sUtocuU253Kbb1KecwYAoPlrtg3wo446qk7jLMMGAAAAjatDhw5Jki+++GKB++dub9++fs2w6uqafPZZ7W+RV1ZWlEST7bPPqjJnTvXXjiuV+SblN+dym29S9zkDAEB9derUvs4rEDXbBnhdWYat/izRVf9xzV25zTcprbkAAECx9ejRI8l/LkL/X193cfqimD27NJtpc+ZUl+zcFqbc5lxu803Kc84AADR/Lb4Bbhm2+iuVq44XRbnNudzmm5TnnAEAoLHMve3Y2LFjF7j/7bffTpKstdZaTVYTAAAALEiLb4Bbhq3+LNG1cKUy53Kbb2IZNgAAms6iLMPWUm211VZJkhEjRqRPnz7zLkZPkqlTp+aZZ55Jhw4dsvHGGxerRAAAAEhSAg1wy7DVXzkuV1Vucy63+SblOWcAAGgsyy+/fLbddtuMGDEil112Wc4444wUCoXMnDkz5557bqZNm5bDDjssSyyxRLFLBQAAoMy1+Aa4ZdgAAACg8Z1zzjl57bXXcuONN+axxx7LGmuskVdeeSUffPBB1llnnRx//PHFLhEAAADS4tdo++9l2ObMmVNrn2XYAAAAoGEsv/zyufvuu7PPPvtk6tSpGTFiRNq0aZNjjjkmAwYMSMeOHYtdIgAAALT8b4Bbhg0AAAAaxsCBA79y/zLLLJO+ffs2UTUAAACw6Fp8AzyxDBsAAAAAAAAAJbAEemIZNgAAAAAAAABa0DfALcMGAAAAAAAAwFcpiW+AAwAAAAAAAIAGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAloVWxCwAAAABajkcffTTHHnvsQvfvtNNOufLKK5uwIgAAAPgPDXAAAACgzl5//fUkyaabbppll112vv0bbbRRU5cEAAAA85RUA9xV6AAAANC45jbAzz777Ky99tpFrgYAAABqK6kGuKvQAQAAoHG9/vrradu2bVZfffVilwIAAADzKckGuKvQAQAAoOFNmjQpH374YdZff/20alVSHykAAABQIkoqrboKHQAAABrP3AvPl1tuuVx22WV55JFH8sEHH6Rbt27ZYYcdcswxx2SppZYqcpUAAACUs4piF9BQ5l6FvtZaa7kKHQAAABrBa6+9liR5+OGHc9ttt2WVVVZJr169MmXKlNxwww3Zd99989FHHxW5SgAAAMpZyXSKXYUOAAAAjeuNN95IkmyzzTa5/PLLs+SSSyZJPv3005x88sn5+9//nnPOOSfXXnvtYj9Hq1a1r9WvrCyNa/frOo9SmW9SfnMut/kmpTUXAABKR8k0wP/7KvSOHTtms802y7LLLptXXnklN9xwQx599NHcfPPN6d69e5ErBQAAgJbpkksuyc9//vMsu+yyadeu3bztSy+9dC699NLsuOOOGTFiRN5///2ssMIKi3z8iopCunTp2JAlNxudOrUvdglNrtzmXG7zTcpzzgAANH8l0wB3Ffric4Vy/cc1d+U236S05gIAAM1FmzZtssoqqyxw3zLLLJNvfetbef755/Paa68tVgO8uromn302vda2ysqKkmiyffZZVebMqf7acaUy36T85lxu803qPmcAAKivTp3a17n3UzINcFehL75SCV2LotzmXG7zTcpzzgAAUGzdunVLklRVVS32MWbPLs1m2pw51SU7t4UptzmX23yT8pwzAADNX8k0wF2FvvhcobxwpTLncptv4ip0AACazqJchd6SzZw5MxdccEEmTZqUyy+/PB06dJhvzLhx45Ikyy67bFOXBwAAAElKqAH+dVyFvnDleLVuuc253OablOecAQCgMbVp0yZPPfVUPvjggzz++OPZcccda+0fM2ZMxowZkyWXXDIbbrhhcYoEAACg7JXEJeozZ87ML37xixx33HGZPn36Ase4Ch0AAADqZ7/99kuS/OpXv8p77703b/vHH3+cs846K3PmzMnhhx9e69ZkAAAA0JRK4hvgrkIHAACAxnfYYYflueeey9/+9rfssssu2WSTTdKmTZs888wzmT59enbYYYccddRRxS4TAACAMlYS3wBPXIUOAAAAja1Nmzb505/+lF/84hdZbbXV8sILL+SZZ57JGmuskb59++a3v/1tKisri10mAAAAZawkvgGeuAodAAAAmkJlZWUOOeSQHHLIIcUuBQAAAOZTMg3wuVeh33LLLRk8eHBeeOGFVFRUZI011sg+++yTvffeO4VCodhlAgAAAAAAANBISqYBnrgKHQAAAAAAAKCclcw9wAEAAAAAAAAobxrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAlQQMcAAAAAAAAgJKgAQ4AAAAAAABASdAABwAAAAAAAKAkaIADAAAAAAAAUBI0wAEAAAAAAAAoCRrgAAAAAAAAAJQEDXAAAAAAAAAASoIGOAAAAAAAAAAloVWxCwAodRUVhVRUFBr1Oaqra1JdXdOozwEAAAAAANDcaYADNKKKikK6dGmfiorKRn2e6uo5mTSpShMcAAAAAAAoaxrgAI3oy29/V+afD1yXqk8+bJTnaN91uXxjlyNTUVHQAAcAAAAAAMqaBjhAE6j65MNUTXiv2GUAAAAAAACUtIpiFwAAAAAAAAAADUEDHAAAAAAAAICSoAEOAAAAAAAAQEnQAAcAAAAAAACgJLQqdgEAAAAAAPVRUVFIRUWhUZ+jurom1dU1jfocAADUnwY4AAAAANBiVVQU0qVL+1RUVDbq81RXz8mkSVWa4AAAzZwGOFD2GvMq8cpKd5oAAACAxvRlrq/MPx+4LlWffNgoz9G+63L5xi5HpqKioAEOANDMaYADZa2iopDOnTtoVAMAAEALV/XJh6ma8F6xywAAoMg0wIGyVlFRSGVlRa6+7cmMnzilwY+/wVo9s9+OGzb4cQEAAAAAAJifBjhAkvETp+Rf4yc1+HF7du/U4McEAAAAoPQ15m375qqurrGsPwAlRwMcAAAAAGhUjdnIc1sziqUxX9eFQiGdOrVNRUVloxx/rurqOZk0qUoTHICSogEOAAAAADSaiopCOnfuoFFNSWmq1/U/H7guVZ982CjHbt91uXxjlyNTUVHQAAegpGiAAwAAAACNpqKikMrKilx925MZP3FKgx9/g7V6Zr8dN2zw48JXaarXddUnH6ZqwnsNfnwAKGUa4AAAAABAoxs/cUr+NX5Sgx+3Z/dODX5MqCuvawBofqw7BAAAAAAAAEBJ0AAHAAAAAAAAoCRogAMAAAAAAABQEjTAAQAAAAAAACgJGuAAAAAAAAAAlAQNcAAAAAAAAABKggY4AAAAAAAAACVBAxwAAAAAAACAkqABDgAAAAAAAEBJaFXsAgAAAAAAAABoGSoqCqmoKDTa8aura1JdXbPYj9cABwAAAAAAAOBrVVQU0qVL+1RUVDbac1RXz8mkSVWL3QTXAAcAAAAAAADga3357e/K/POB61L1yYcNfvz2XZfLN3Y5MhUVBQ1wACim5r7kCwAAAABAY2vsz0kTn5U2F1WffJiqCe8Vu4wFKrkG+LPPPptrr702b7zxRmbMmJG11lorP/nJT/LDH/6w2KUBUKJawpIvAAANSfYGoBhcfA5Qf435u7RQKKRTp7aN+jlp4rNSvl5JNcDvv//+nHbaaWnVqlV69+6dysrKPP300znppJMyduzYHH/88cUuEYAS1BKWfAEAaCiyNwDF4OJzSpULO2hKFRWFdO7cIZWVFY36PI31OWnis1LqpmQa4J988knOPvvstG/fPgMGDMh6662XJBk7dmwOOeSQXHXVVdl+++2z9tprF7lSAEpVc17yBQCgIcjeABSLi88pRS7soKlVVBRSWVmRq297MuMnTmnw42+wVs/st+OGPiel6EqmAX7LLbdkxowZOfLII+cF8CRZbbXVcsopp+Sss87KTTfdlIsvvriIVQJQDI19JW1jXzEJANBcyN4AFJumCqXEhR0Uy/iJU/Kv8ZMa/Lg9u3dq8GPC4iiZBvjIkSOTJN///vfn27fddtulUCjksccea+KqACi2plrWp9w09kUFiSW6AKA5kr0BWBgXn1OKmup17cIOgIZVMg3wf/zjH0mS1Vdffb59nTt3Trdu3fLRRx/lk08+SdeuXZu6PACKpLGX9Un+s7RPc9KYAa1QKKRTp7aNujxXYokuAGiOZG+A5qM53TfYxeeUIq9roKVyUVqJNMCnTJmSL774Ih07dkzHjh0XOKZHjx756KOP8tFHHwnhAGWosZb1SZrf0j5NFdAaa3mupHku0dWcPlxqinqaQrnN2aoGX6+ln+PEeaa0yd4AzUdzu29wuV58Xo5a+nv2Rb2ww+u64TW3z1eS8npd0zia0+vaxTtfKtTU1LT4n4oPP/ww22yzTbp165Ynn3xygWMOOOCAvPjii7ntttvSq1evRX6Ompr5X1yFQlJRUZEpn8/InDnVi1X7V2nTujJLdGibWdM+S031nAY/fqGiMq07dkp1dXXq8ipo6fNNym/OzW2+SfnNuTm+ruc9ruW+p1vkeZbr63ra9JmZU93wc27dqjLt27Uuu9d1oVBIoRGfYEHvNb5KRUXj1pN8WVM5zbm5zXeucvl9nbT8czz3ORb1PJfTOU5a9nyTBc+5KX4nNwey9+KRUeowvoXPubnNNym/OTfH1/W8xzXin4eKiorMnjEtNY2Q+woVFWnVrmOzOceJ13VjWJzXdUt/z74o79fL8XU973Fl9PlK4nXdkJrr766kfF7Xjf3ZcNL4nw8v7Bwvys9qSXwDvKLiy6sYvmrSc/v8i9vvLxQKqaxc8PGXWqLdYh2zrlp3bNxvFs7971dXLX2+SfnNubnNNym/OTfH13W5KcfXdccObRqpki95XTesr3qvUSyN3cxpbnMut/mWo6ZoUDrPlDLZu35klK/X0ufc3OablN+cm+PrurG1arfgFTkaSnM7x4nXdWNoTq/r5pjLyvF13ZI1x0xWjq/rcvvd1dgW5xw39mfDSfP+3VUSr465S6/NmDFjoWNmzpyZJOnQoUOT1AQAAAClRPYGAACgJSiZBniHDh0yderUhQbxiRMnJkm6d+/elKUBAABASZC9AQAAaAlKogFeKBSy5pprJknGjh073/7Jkyfn448/ztJLL51u3bo1dXkAAADQ4sneAAAAtAQl0QBPkq222ipJMnz48Pn2DR8+PDU1Ndl6662buiwAAAAoGbI3AAAAzV3JNMD32muvtG/fPn/+85/z4osvztv+zjvv5De/+U0KhUJ++tOfFrFCAAAAaNlkbwAAAJq7Qk1NTU2xi2god955Z84555xUVlamd+/eadOmTZ5++ul88cUX+b//+78cddRRxS4RAAAAWjTZGwAAgOaspBrgSfL444/nuuuuy6uvvprKysqsvvrqOeyww/KDH/yg2KUBAABASZC9AQAAaK5KrgEOAAAAAAAAQHkqmXuAAwAAAAAAAFDeNMABAAAAAAAAKAka4AAAAAAAAACUBA1wAAAAAAAAAEqCBjgAAAAAAAAAJUEDHAAAAAAAAICSoAEONJipU6cu8mOeeeaZRqgEWFxXXXVV3nrrrWKXAQAALITsDS2f7A0AjUsDnCY3c+bMvPrqqxkzZkxmz5690HGffvppnnvuuSasrOk988wzufHGG3Prrbdm3LhxxS6n3g455JBMnjy5TmO/+OKL9O3bNz/96U8btyhgkVx11VV58803i10GNLjtttsujzzySLHLKIrq6uq89957tbbV1NTkwQcfTN++ffPrX/86L7/8cpGqazgffPBBZsyYUefx48aNy5AhQxqvoCL49NNP8/TTT+fBBx/MQw89lGeeeabO782A0iN7/4fsLXtDcyN7U6pkb9n7f8neFEurYhdA3c2YMSOffvppevbsWexSFtuAAQPy29/+NtOnT0+SLLnkkjniiCNyxBFHpKKi9vUYf/vb33LGGWfkjTfeKEapDebNN9/MH//4x7z55pvp2bNnjj766PTq1SsnnnhiHnnkkdTU1CRJWrVqlRNOOCFHH310kStefG+88UZ+/OMf589//nO6deu20HEvv/xyzjjjjPzrX//6ynGl6tNPP83YsWOz6aabFruUJjF16tRccskl6du3b7FLaTLldo5LwXbbbZezzjor2223XbFLaTLf/OY3c+mll2bXXXctdilNYvz48fPef5STkSNH5oILLshHH32UV199NcmXofy4447LY489Nu99SP/+/XPIIYekT58+xSy3Xrbbbrv5XtPTp0/PhRdemCOOOCKrrbZarfGjRo1Knz59ssceezRxpQ3v4Ycfzh//+McFvm8uFArp1atXjjjiiGyzzTZNX1wDWnvttVMoFBbpMYVCIa+//nojVUSpkr1bJtl7frJ3eeUy2ZuWQPYufbK37C17y97NhW+AF9GCroaaOXNmhgwZko8//ni+8UOHDm3Rbw6GDBmSfv36Za211kqfPn1y9NFHp127drnyyitz2GGH5fPPPy92iQ3u1Vdfzb777puRI0emffv2efnll3PooYemX79+eeSRR3L44Ydn8ODBufnmm7P11lvnN7/5TR566KFil73YzjnnnLzzzjs56KCD8uGHH863f9asWfn1r3+dAw88MP/617+y++675y9/+UsRKm1Y3/zmN3P//ffX2jZjxoxcddVVef/99+cb/7e//S2HHHJIU5XXKN5///1ceOGF+dGPfpQf/ehHOfvss/Puu+/ON27o0KHZaaedcs899xShyoZTjue43JRjQJsbvihdY8aMyc9+9rPU1NTk8MMPT3V1dZLktttuy8iRI9O9e/fceeedGTVqVE4//fQMGDCgRb8PWdBr+osvvsiQIUMyceLEIlTUNPr27ZuTTjop48ePzx577JFTTz01v/zlL3PuuefmxBNPzHbbbZfXXnstxx57bH71q18Vu9x62XTTTbPJJpss0v823njjYpdNMyB7y96yt+zdUsnepX+Oy43sTSmSvWVv2bt5Zm/fAC+iBf3BnzZtWvr06ZMbbrih5K7OvfHGG7Pppptm4MCB87Ydd9xxOf/88zNo0KAceuih+fOf/5wllliiiFU2rCuvvDIrrLBCBg4cmKWXXjrTp0/P0UcfnVtuuSX77bdfTj311HljN9lkk/z4xz/O9ddfnx/+8IdFrHrxHXTQQVlqqaVy5pln5qCDDsqf//znrLTSSkm+vEL9jDPOyFtvvZWePXvmggsuyFZbbVXkihvGgv7oV1VV5eqrr87GG2+cFVZYoQhVNZ433ngjBx98cD7//PO0a9cu7dq1y+uvv54HH3wwt99+e9Zcc81MnTo1Z599doYOHZrKysocddRRxS67XsrtHL/zzjuLvAymK+6h+bnuuuvSo0eP3HvvvenUqdO87bfccksKhUJOOeWUrL/++kmSn/70p3n22Wdz2223tdj3IQtTyh843Xfffbn55puzxx575Nxzz02HDh0WOG7atGm56KKLctNNN2WjjTbKDjvs0MSVNoz/zhGwKGRv2Vv2lr1bItn7S6V8jmVvKA2y95dkb9m7udEAb4ZK9RfFP//5z5x55pm1trVp0yb9+vVL586dc8MNN+SII47IDTfcsNBfIC3NqFGjcsopp2TppZdOknTo0CE///nP8+Mf/zhbbrnlfON/+MMf5tJLL23qMhvULrvskiWXXDInnXRSDjrooFx33XV55JFHcu2112b27Nk58MAD83//93/p2LFjsUttdKX6s/y73/0uM2bMyK9//evsvPPOSZLRo0fnlFNOSd++fXP55ZfnkEMOyb/+9a+st9566du3b9Zaa60iV904SvUcX3vttbn22msX6TEtfcnMcrWoyxm1dHfeeWeeeuqpOo8vFArp169fI1bUuJ577rnsu+++tQL4uHHj8s4776RVq1b5/ve/X2v8Fltskd/97ndNXSb1cNttt2XDDTf82qvLO3bsmH79+mXs2LG56667WmwInzVrVlq3br1Ij3n55ZezwQYbNFJFtHSl+l5O9pa9Ze/SIHv/R6meY9m7fMjeX032prmTvb9ec8zeGuA0mfbt22fy5MkL3Hf66adn+vTpuf3223PMMcfkuuuua9riGskSSyyRzz77rNa2tdZaK1tvvXVatZr/x2/SpElp27ZtU5XXaLbeeuv0798/xx57bH70ox+lpqYmK6+8cvr27ZtNNtmk2OVRT6NHj87+++8/L4Anyfrrr5/TTz89J598ck4++eSMHz8+p556ag477LD57jFI87f99tuX7AcnX6XcAlqSXHPNNbnzzjvrPL5QKOSmm25qxIoa13PPPbdI37Bo6ed40qRJWXbZZWtt+/vf/54k2WCDDeb7QLxdu3b54osvmqw+6u8f//jHIt3Ddrvttssdd9zRiBU1rh/96Ee5/PLL6/Q3aubMmbnyyiszYMCAvPbaa01QHTQfsveXZG/Zu6WTvUuf7F03LT2XJbL312np51j2Ln2y98I15+ytAU6T6d27dwYMGJDvf//7WWONNebbf9555+Xzzz/PAw88kMMOOyxbb711EapsWFtssUX+/Oc/Z6ONNsq3v/3tJMmSSy6ZP/7xj/ONffnllzNw4MB541q6jTfeOAMGDMgRRxyRTz/9NL/85S8F8BIxZcqUrL322vNtX2+99TJnzpy8+eabGThwYDbccMOmL44G8YMf/CC77rprsctocuUW0JJk7NixGTt2bJ3Ht/Sr1s8666wWfU/XRbXUUkvl008/rbXtb3/7WwqFQrbYYov5xo8dO3beN+doGaZPn56uXbvWeXz37t1b9D3ZPv744+y999454YQTcuSRRy70d9ILL7yQs846K++++25WXnnlJq4Sik/2lr1l79Ige5c+2btuZO+WR/aWvUuN7N0ys7cGOE3mlFNOyYEHHpg999wz3/rWt3LZZZfV+qEoFAq59NJL06ZNmwwaNCgvvvhiEattGKeeempGjx6dww47LJtssslC751w8MEH54UXXsjSSy9d695kLd3aa6+d2267LT/96U9z7LHH5uqrr87mm29e7LKop9mzZy/w2xLt2rVLkhx11FECOC1SuQW0JLnsssvK6gOXLl26ZPnlly92GU2mV69eefDBB3P44YensrIyH3/8cUaOHJkk2XHHHWuNnTp1au6///707t27CJWyuObMmbPAbzYuTGVlZWbPnt2IFTWuBx54IH369MkVV1yRkSNH5pJLLsmKK644b//cZWLn3mvv8MMPz4knnljEiqE4ZG/ZW/YuDbI3pUr2Ln2yt+xdamTvlpm9NcBpMqusskr+8pe/5Oqrr87zzz8/7w37f6uoqEi/fv2y0UYb5be//W0++eSTIlTacLp27Zp77rknt99+e2bOnLnQce3atcvee++dn//854t0JVFz06dPnwVuX3nllfP+++/n6KOPzg9/+MNaVwyVwlWc1LbuuusWuwRYLOUW0Ch9Rx55ZPbff//st99+2WyzzfLII4/kiy++yM4775xVV101yZcfrL700ku55JJL8umnn+aggw4qctX1M2zYsLz77rvz/n3GjBkpFAq5995788ILL9Qa+9ZbbzV1edRT165d86c//Sm33HJLLrvssuy+++4588wzs+++++bZZ5/NL37xi4wbNy5rrbVWLrroIu9JKFuyt+wte5cHf+doqWRvSo3sLXuXmlLJ3hrgRfbOO+/UWvJl6tSpSZI333xzvitKFmWZlOaqS5cuOfvss7923D777JM999yz1i/Rlqpdu3Y59NBDv3JMqdx3bfDgwV+5/4svvsiQIUNqbSuVEP78889nzpw58/592rRpSZInn3wyEyZMqDW2FL5h8VVa+jJNC1Mu53jTTTdNt27dil0G0ADWW2+9XHPNNbnoootyww03pLKyMrvuumsuuOCCeWMuvfTSDBgwIBUVFenTp0969epVxIrrb+jQoRk6dOh82//3/cdcpfA3638/ePgqpfLBw0EHHZTNN98855xzTs4777wMHDgwY8eOTatWrXLiiSfmqKOOWqSr8ykPsveCyd4tk+xd+rmsLkrhfcyClMs5lr2hdMje/yF7f0n2bh4KNTU1NcUuolytvfbaC/zBr6mp+crtb7zxRlOU1+hqamoybty4TJ48OUmy9NJLZ4UVVihuUY2s1Oc8fvz4xXpcS7/qc0E/y//9q3VB+1ryz/Laa6+dY489Nt/5zndqbZ86dWqOO+64nHnmmVlnnXXme9ymm27aVCU2uHI7x+Vo7bXXLrslycptzoMHD84mm2xSa8mmcjJp0qS0b99+vm8BPvbYY3nttdey8847N8v7NS2KZ599drEet9lmmzVwJU1nQfcF/Tql9Pfpueeey3HHHZepU6emUCjkuOOOywknnFDssmiGZO/SzqELUupzlr3/o5Rzmez9pVI+x+Wo3HJoUn5zlr1l74WRvVuulpq9NcCL6Kqrrlqsxx1//PENXEnTGj16dPr3758nn3wy06dPr7VviSWWyPe+97389Kc/XaxfKs1VOc65nHzd1fcLs+eeezZwJU1jYR8gJgv/EDFJi/6DX07n+L+/GbUoWvKHLEl5BrRnn302q622Wote/hPKXTl+8JAkn3/+eS699NLcfffdadu2bY488sg8/PDDeeutt/Ltb387ffv2Tc+ePYtdJs2I7F0+ObQc51xOyimXJbL3omiJ51j2lr2BlkP2bpnZWwOcJnXDDTfk8ssvT0VFRTbaaKOsscYa6dSpU2bPnp3Jkyfn9ddfzxtvvJGKioqcccYZOeSQQ4pdcr2V45zr6tprr83QoUMzaNCgYpfS5GbOnJk2bdoUu4zFUq4fIC6qlnqOv+pDlq/Skj9koTws7F6ZX6VUlgplwW6//fb87W9/W+y/axTHyJEjc95552XChAnZfPPNc+GFF2bFFVfMrFmz8rvf/S433HBD2rVrl9NOOy37779/scuFoinHHFqOc64r2bvl5bJE9q6rlnqOZW9KlezN/5K9W6ZSyN4a4DSZxx57LEcffXS+/e1vp1+/flluueUWOO69997LBRdckKeeeio33HBDvv3tbzdxpQ2nHOe8KM4777zceeedLf7N+1VXXbVIAXP06NHp06dP/vKXvzRiVTSkcjrHv//97xcrhLf0D1nKMaAtzoe+hUIhN910UyNU0/jKcbmqr/tQrW3btllyySWz5ppr5gc/+EH22WefVFRUNGGFxVUK70M++OCDLL300vMtr7cw48aNywsvvJA99tijcQtrJKeeemr+8pe/pEOHDjn99NOz3377zTdm1KhROeOMMzJu3Lhsttlmueiii0pq2WOoi3LMoeU450VRCn/zkvLKZeWqnM6x7F13snfLInvPT/Zu+e9DZO+Wmb01wIuo3P7g//SnP83HH3+cQYMGpXXr1l85dvbs2dljjz2y8sor5+qrr26iChteOc55UZTCH7/kyzc5hx9+eE477bSvHDd79uxcddVV6d+/f+bMmdPi511XM2bMyKefftqsl0P5Os5x6SvXgLaoWvKcy/FemQcffPBX7p8zZ04+++yzvPfee5k1a1a22GKLXHvttWnVqlUTVVhcpfA+5Jvf/GYuvfTSWvcTnD59ei688MIcccQRWW211WqNv++++3LGGWe02Dmvvfba2WqrrXLhhRdm2WWXXei4GTNm5Fe/+lVuv/32dOjQIS+++GITVklzJHsvXKnk0HKc86Iohb95iVz2dWRvWoJyy6FJ+c1Z9p6f7N3y34fI3gvW3LN3efyENVOLcl+b/76CqKWG8Ndffz2HHnro14bRJGnVqlV++MMf5r777muCyhpPOc65HG2yySa54YYbUlVVlXPPPXeBY958882cccYZefPNN7PUUkvlF7/4RRNX2XC22267nHXWWdluu+3mbZs5c2YefPDBbLnllunWrVut8UOHDm3Rf/CT8jvH5eiRRx4pdglNbsyYMcUuoUm15DC9uAYOHFincTNmzMhtt92WSy+9NLfddtvXhneajwVdy/zFF19kyJAh2W233eYL4S3dxRdfXKd7fLZr1y7nn39+vv/97/t7TBLZ+6uUSg4txzmXo3LLZbJ36Z/jciR7lz7Ze+Fk75ZL9l6w5p69NcCLqC5//MaPH58LL7wwI0eOzJJLLpmTTjqp8QtrJNOmTUuPHj3qPH655ZbLv//970asqPGV45zL0Q033JATTzwxt912W6qqqtKvX795H5zV1NTkT3/6U66++urMnDkzO+20U84+++wsvfTSRa568Y0fPz7Tp0+vtW3atGnp06dPbrjhhvlCeCkot3OcJO+8805GjRqVvfbaa962jz/+OFdddVVefPHFtG/fPtttt10OPfTQFnm/tf9VjgGN2mbOnJl//OMfadeuXVZdddVil9Ok2rVrl5/+9Kd5+eWXM3jwYCG8BJTqIl91CeD/7Rvf+Eb22WefRqqGlkT2/mqlkEPLcc7lqNxymexd+uc4kb0pP7K37F1KZO8vNdfsrQHeTM2ZMyc33HBD/vCHP2TGjBnZeeed06dPnxb95nb27NmL9EatVatWmTlzZiNW1PjKcc7lqE2bNrn66qvTp0+fDB48ODNmzMjll1+e9957L2eeeWZGjx6d7t275/zzz8/3vve9YpfbaEr1D35Sfuf48ssvzw033JCamprsueeeqaioyNSpU7Pffvvlgw8+SOfOnbP88svnt7/9bR599NEMHDiwTt+2acnKMaBNmDAho0ePTrt27bLpppvW+T5HzdnUqVNz3XXXZdSoUbWu0L7//vvTt2/ffPbZZ0m+fOPer1+/bLjhhkWqtDh69+6dJ598sthlQL188cUXefjhhzNo0KA8++yzqampyc9+9rNil0UzJnuXRg4txzmXo3LLZQsje5fOOZa95yd7y97lQPamFLSE7K0B3gw9//zzueCCC/L2229nlVVWyXnnnZdvf/vbxS4LvtZVV121SONfffXVRqqk6VVWVubSSy9Np06dcvPNN+f999/P22+/nRkzZmSfffbJGWeckSWWWKLYZVIP5XKOhw0blv79+2ebbbbJIYcckoqKiiTJH/7wh4wfPz4bbLBB/vznP6d9+/YZPXp0Dj744Pz5z3/OkUceWeTK668cA9r48eNzxRVXZNSoUXn00Ufnbf/Tn/6U3/3ud5kzZ05qamqy1FJL5cILL8wPfvCDIlZbP9OmTct+++2Xd955J8suu2xmz56dVq1aZfTo0TnjjDNSU1OT/fbbL2ussUaGDBmSn/70pxkyZEhWXnnlYpfeZCorK1NdXV3sMhbbkCFDFmn8P//5z8YphKIYNWpUBg0alIceeijTpk1LTU1NVlpppey3337FLo1mTPampZK9Sz+XlbNyOceyt+ydyN6yd8ske5e3lpS9NcCbkUmTJuXSSy/NkCFD0qZNm5xwwgk58sgjS2J5m7mef/75zJkzp05jX3zxxUaupmmU05wXNYQnte+xVwrOPvvsdO7cOVdddVUqKiryxz/+MVtvvXWxy6IBlfo5vv3227PBBhvk2muvnbetpqYm9913XwqFQn7+85+nffv2SZL1118/u+++e/7yl7+0+BBejgHtk08+yX777ZdJkyZl/fXXnzfnJ554IldccUVatWqVU045JWuuuWbuvPPOnHLKKbnjjjuyzjrrFLv0xXLDDTfkvffey29+85vsuOOO87ZfffXVqampyU9+8pOceeaZSZK99947u+22W6699tpcfPHFxSq5yb388stZbrnlil3GYjvzzDMX6X1FTU1Nyb0PKTcTJkzIvffem0GDBuXdd9+d94243r1758gjj8yWW25Z5ApprmTv2lp6Dp2rnOYse5d+LqP0z7HsLXvL3rJ3SyV7l5+Wmr01wJuJu+66K5dffnmmTJmSLbbYIuedd15WWmmlYpfV4O68887ceeeddRpbKr8Yy2nOAwYMKHYJzcLxxx+fLl26pG/fvunfv3823njjkrg6mf8o5XP82muvzReoX3/99XzyySdZYokl0rt371r71ltvvdx///1NWWKjKMeA9qc//SnTpk3LLbfcUuuK+j/96U8pFAr52c9+Nu+18N3vfjd77bVXrrvuuvzmN78pTsH1NHTo0Oy+++61zu+0adPmLTt24IEHztvetm3b7LbbbrnrrruavM5i+etf/5p77703RxxxRLFLWWwt+eeRups5c2aGDx+eQYMG5emnn86cOXNSWVmZzTbbLBtvvHGuueaaHHLIIc02gFN8svf8WnoOnauc5ix7f6mUcxlfKuVzLHvL3rK37N1SteSfR+quFLK3BniRvfnmmzn//PPz0ksvpVu3brniiiuy0047FbusRlGOvxjLbc6bbbbZIj/m+eefb4RKmtZzzz0337Y111wz++yzT+6888785Cc/yemnnz5vOau5Nt1006YqkXoqp3M8ffr0LLXUUrW2/f3vf0/y5XwqKytr7Zs9e3aL/vBwrnIMaCNHjsxee+1VK4BPnjw5L7zwQpLkRz/60bzthUIhP/zhD3PTTTc1dZkN5v333691HpMvf7Znz56dFVdccb7mx3LLLZdPPvmkKUtscH369PnK/XPmzMm0adPyj3/8I++9915WWWWVFh3C99xzz2KXUBTDhg3Lu+++O+/fZ8yYkUKhkHvvvXfez/Ncb731VlOX16AuuOCCPPjgg5kyZUratm2brbbaKttvv3222267dOnSJePHj88f/vCHYpdJMyV7l7Zym7Ps/R+lmsvKVTmdY9lb9pa9vyR7tzyy95dk7+afvTXAi+iSSy7JwIEDM2fOnGy77bY56aSTssQSS+SDDz74ysf17NmziSpsWOX4i7Ec51wXH374YQYPHpwhQ4Zk3LhxeeONN4pdUr0cfPDBXxlCXnvttRx66KHzbW/J837nnXdqBdOpU6cm+fKDxVatav9pGTt2bJPW1hjK6Rz36NEj48aNq7Vt5MiRKRQK+e53vzvf+NGjR2eZZZZpqvIaTTkGtH//+99Zc801a2175plnUl1dndVXX32+89q1a9dMmTKlKUtsUBUVFfPdY+vpp59OknznO9+Zb/ynn37a4r9dMnjw4DqNW3HFFfOTn/wkxx13XIuf88Is6P31csstVzIfIg4dOnS+7Qu7L1tLnvNtt92WDh065JhjjskRRxxRsq9XGp7sXfrKcc51IXt/qSXPW/aurZTOsez9H7K37N3S39fL3v8he/9HS55zqWRvDfAiuvHGG+f984gRIzJixIg6Pa4lvqlbHJ9++mnGjh3bIq/iXFylPOcvvvgiQ4cOzaBBg/LMM8/MW3JuQW/qW5qf/exnLfoP2uK49tpra92naq5LLrlkvm0tfXnBpLzO8Xe/+93cc889OfDAA7PMMstk1KhRef7559O6devssMMOtca+/fbb+ctf/pJ99923SNU2nHIMaG3btk1VVVWtbU899VQKhUK22GKL+cb/+9//TqdOnZqqvAa3+uqrZ9SoUTnooIOSfPm7adiwYSkUCvne97433/hHHnkkq622WlOX2aAeeeSRr9zftm3bdOrUqaTueZsk99xzT+6666784Q9/yNJLL51Jkyble9/73ny/x0888cQce+yxRaqyYZTbErh77rlnhg8fnj/+8Y+56aabsskmm8y7Cr1bt27FLo9mTPb+aqWcQxemlOcse5cW2bt0yd7/IXvXJnu3PLK37F1qSiV7a4AX0fHHH1/sEprUN7/5zVx66aXZdddd522bMWNG+vfvnz322CMrrLBCrfF/+9vfcsYZZ7ToDx3Kcc7/66WXXsqgQYPy0EMP5fPPP0+SLL300tlrr72y3377Zfnlly9yhfV3wgknFLuEJlVOgXSucjrHxx13XIYOHZof/vCHWXXVVfPWW2+lpqYmP/vZz7L00ksn+TJ8Dx06NAMGDEjr1q1z+OGHF7nq+ivHgLb22mvn6aefzk9+8pMk/7m3T5Jsv/32tcbW1NTkr3/9a9Zee+0mr7Oh7LHHHrnooouy3nrrZYsttsidd96ZDz74ICuttFK22mqrWmOvvfbavPTSSzn77LOLVG3DKIW/sYvq5z//eR5++OH07NkzH3zwwbzfW0my2267ZcUVV0yS3Hvvvbnmmmuy9957p3v37sUqt94WZwnc2bNnN0IlTePiiy/OBRdckBEjRuT+++/P448/nieeeCIXXHBBNtpoo/Tq1avs3qNQN7J36efQcpzz/5K9S4/sXdpkb9k7kb1l75ZL9v56snfxaYAXUbmF8Jqamvm2VVVV5eqrr87GG288XyAtBeU45ySZOHFihgwZksGDB+df//pXampq0r59+3znO9/JU089lV/+8pfZbrvtil0mi6mcAmk56tatW+6+++5cffXVeemll/Ktb30re+21V/bZZ595YwYPHpwbbrghyy+/fH79619nueWWK2LFDaMcA9r++++fU045Jf369csWW2yRe+65J5988km+9a1v1fo21IwZM/KrX/0qb7/9dov+wGX//ffPCy+8kIsvvjiFQiE1NTVZaqmlcvnll8+7h+Ddd9+dP/3pTxk3blw23njjHHDAAUWuunGNHj06o0aNSkVFRTbbbLOstdZaxS6pXu677748/PDDOfroo3PiiSfOd9/EPfbYI9/+9reTJFtvvXX23Xff3HHHHSXznnzatGmpqan5ym/IjBo1Kuecc04eeOCBJqysYbVp0yY77LBDdthhh0ydOjV//etfc9999+WFF17ICy+8kEKhkD/+8Y/5/PPPs8MOO6Rdu3bFLplmoFR+zuuqHHNoOc45kb1Lnexd2mRv2Vv2lr1bKtlb9m4p2VsDvBmZOXNmxowZk4kTJ6ampiY9evTI2muvnbZt2xa7tEa1oKBa6kp1zg899FAGDRqUp556KnPmzEmnTp2y66675gc/+EG22mqrfPTRR/Nd2VgKrrrqqkV+TKFQyM9+9rNGqKbxHXLIITn22GPnvZEpB+V2jpdddtlceOGFC92/11575Xvf+1569eo1L7y0dOUY0Hbaaae8+eab6d+/fwYOHJiampqssMIKufLKK+eNuf766/OHP/wh06ZNy4477pjdd9+9iBXXT6FQyOWXX56DDjooo0aNyhJLLJHtt9++1lXK//73v1NTU5Njjz02Rx99dEm8vl9//fX88Y9/zNixY7PSSivlmGOOyfrrr59f/OIXGTRo0Lz3JIVCIbvssksuvvji+e4n2VIMHjw4G220UU4++eSvHTv3A7fHHnusxYfwhx9+OFdddVX+8Y9/JPnyvnInnnhidtlll3ljpk+fniuuuCK33XbbfEtOtiR9+vTJ/vvvnw022CBJsuSSS2afffbJPvvskwkTJuSBBx7IAw88kNGjR+eVV17JhRdemJ122im//OUvi1w5zY3sXT5Kdc6yd9215Fwme9dNSz7HsrfsPZfs3fJf37L3gsneLVOpZO+W+RNWYj7++ONcccUVGTp0aKZNm1ZrX/v27bPDDjvk5JNPTo8ePYpUIdTNySefnA4dOuTAAw/Mdtttl0033bTWFWAtYVmMxVFuAe3ZZ5+tdUVyOSi3c/x1WvryYwtSrgHt5JNPzgEHHJCXX345SyyxRDbbbLO0bt163v62bdtmvfXWy6677pof/ehHRay04Wy00UbZaKONFrjv+OOPb/GB7L+NGjUqhxxySFq1apU111wzr732Wg466KAcfPDBueeee7Lbbrtlxx13zPTp0/Poo4/mgQceyDe/+c0cdthhxS59sbz++us55phj6jx+yy23zNVXX92IFTW+Bx98MKecckratm2bLbfcMu3bt8/zzz+f0047bd79I1955ZWcfPLJef/997PCCivkggsuKHbZi23w4MH5zne+My+E/7dlllkmhx9+eA4//PCMHTs29913X+6///7cddddzS6EUzyyN6VC9q67lpzLZO+6acnn+OvI3rJ3SyZ7y95zyd4tT6lkbw3wInvppZdy9NFHZ8qUKdlggw2y+eabp0ePHmnVqlUmTpyY5557LkOGDMmjjz6aa665Jr169Sp2ybBQK6ywQt5///0MGjQo//znP/PKK69k++23zze+8Y1il9aoBgwYUOwSaGTldI6fe+65xXrcfy/b1ZKVU0Cba9lll82yyy67wH0//vGP8+Mf/7iJK6KhXH311VlllVUyYMCAdOnSJTU1NTnrrLNy4403Zrfddsull146b+wuu+ySzz77LA888ECLDeEzZsxIp06d5tu+5JJL5tprr803v/nNWts7duzYou/JlSQ333xzunbtmttvv33ePdaqqqpy7LHH5ve//3169OiRww47LF988UV++tOf5uc//3mzXJasoa222mo5+eSTc/LJJ+fFF18sdjk0E7I3pUT2plSV0zmWvWXv/yZ7t2yy95dkb9m7udEAL6JPPvkkP/vZz9KxY8f84Q9/yMYbb7zAca+//npOOumknHjiibn33nvTtWvXJq4U6mb48OF5+eWXc9999+Wvf/1r/va3v+WKK67Iqquumh/84AdZZ511il1io9hss82+dszUqVNTKBS+8t4gNF91Ocel4uCDD17kb4wUCoW8/vrrjVQRNIw+ffos8mMKhUL69evXCNU0jVdeeSVHHHFEunTpkuTL+Rx++OEZPHhwttlmm/nG/+AHP8ivfvWrJq6y4SyzzDL54IMP5tveqlWrBc73X//6V4u/j+LYsWNz8MEHzwvgyZffYj3++OPz4x//OCeffHK6du2ayy+/PBtuuGHxCi0iTUwS2ZvSI3svnOzdssneX032piWQvWXv/yV7l4fmmL01wIvo5ptvzrRp02pdNbIg3/rWt3LjjTdm1113za233poTTjihCauERbPBBhtkgw02yFlnnZW//e1vuf/++/PII4/kmmuuSaFQSKFQyIgRI7L22mtn+eWXL3a5DaampiaPP/54/vGPf2TllVfONttsk1atWuXpp59O375988477yRJvvnNb+aUU07JlltuWeSK62fYsGF599136zy+lJckm6tUPmi5+OKL6zTu4YcfzsiRI5Mk66+/fiNW1DTKMaAdcsghi/yYQqGQm266qRGqaXyDBw+u89j//iCqJZ/jzz77LN26dau1be7Sgp07d55vfLt27VJVVdUUpTWK9ddfPw8++GB+9rOffe0yiTNnzsyDDz6YrbfeuomqaxxTp07NCiusMN/2lVZaKcmXSynefvvt8z6IKQXPP/985syZs0iP2WOPPRqnGFoM2ZtSJHvL3gsie7ccsnfdyd4ti+z9Jdn7S7J3y1UK2VsDvIiGDx+e3Xbb7SsD+FzLL7989txzzwwdOrRFh/D//aGZe9+1J598MhMmTKg1tjkumbA4ynHOSVJZWZmtt946W2+9dWbMmJFhw4blgQceyJNPPpm77747gwYNSu/evbPXXntll112KXa59fLZZ5/lqKOOyssvv5yampokyXrrrZdzzjknRx11VNq3b5/tt98+06dPz8svv5yjjz46N954Y4u+snnYsGEZOnRonceXQgj/7w9aVlpppWy77bYl+UHLnnvu+ZX7x48fnwsvvDAjR45Mp06dcsopp2S//fZrouoaTzkGtPfff79O46qrqzNhwoTU1NS06PtJjhkz5mvH/Pfre8kll8xJJ53U+IU1opqamrRqVfvt/txz2JLP5cLsv//++fGPf5xf/vKXOfvss+eb+1zV1dU599xzM3HixOy///5NXGXDqq6urnXP17nm3k/wqKOOKqkAniR33nln7rzzzjqNnft7q7mFcJqe7F0eObQc55zI3rJ3bbJ3yyF7fz3Zu2WSvb8ke8veLV0pZG8N8CJ6//33F+neHmuvvfYivUlojv73h2ZuYOnfv/98fwxa+h/7ucppzkcddVQ233zzbLbZZllnnXXmzaVdu3bZdddds+uuu2bSpEl58MEHc//99+fpp5/O3//+9xYfwn/3u99lzJgxOffcc9O7d++MHz8+F110UX7yk59klVVWycCBA+dd7ffpp59m7733zg033NCiQ/jRRx+d73znO8Uuo8mU4wct/2v27Nm5/vrrc+2116aqqiq77bZbzjzzzHlXtLZ05RjQHn300a8d8/LLL+f888/Pv//976ywwgo555xzmqCypjdnzpzccMMN+cMf/pAZM2Zk5513Tp8+fea7gpvmbZNNNsnhhx+e66+/Pn//+99z2GGHpXfv3ll22WVTU1OTjz76KM8880xuueWWjBkzJieffHLWXnvtYpfdqHr27FnsEhrcvvvuW7ZLyrH4ZO/SzqFzldOcZW/Zu1TJ3rJ3InvL3jR3svf8ZO/mSQO8iFq3bp0vvviizuNnzJiRDh06NGJFjauuS/uUknKb89///vc8/vjj85ai2mSTTdK7d+9svvnm8/7IdenSJQcddFAOOuigjBs3Ln/5y1+KXHX9Pfroo9l///1zwAEHJElWXXXVnHvuuTnssMNy0EEH1VrqZumll86+++6bgQMHFqnahrHaaquVVMD8OuX4Qct/e/bZZ3PBBRdk7NixWXXVVXPeeeeld+/exS6ryZRjQJs6dWp+/etf584770xFRUWOPvroHHfccWnbtm2xS2twzz//fC644IK8/fbbWWWVVXLeeefl29/+drHLajD/u2zmjBkzUigUcu+99+aFF16oNfatt95q6vIa3GmnnZbll18+V1xxRc4999wFNjw6dOiQ888/vyS+QVOONtlkk+y6667FLoMWRvYufeU2Z9lb9i5VsrfsLXvL3i2V7C17l5pSyN4a4EW05ppr5rHHHqvzfUBGjhyZ1VdfvZGrajxft7RPKSq3Ob/44ot5/fXX8+KLL2bUqFF56aWXMmLEiBQKhXTq1Cmbbrppevfund69e2fNNdfMiiuumGOOOabYZdfbRx99lNVWW63Wtrk/qwu6+mu55ZbLlClTmqQ2GkY5ftCSfPmBwiWXXJL77rsvbdu2zc9//vMcccQR85b3KQelHtAW5N57782ll16aTz75JJtttlnOO++8+X7HlYJJkybl0ksvzZAhQ9KmTZuccMIJOfLII9OmTZtil9aghg4dusBlM4cMGbLA8S3523BzHXjggdlzzz0zYsSIPPfcc/n3v/+dmpqa9OjRI7169cr222/f4u8Z+d8WdG/Qr/qwpRSWRoVFJXuXvnKbs+z9H7J3aZG9ZW/ZW/ZuqWRv2Vv2bn40wIto9913z7nnnpsHH3wwO+2001eOHTJkSJ566qlcccUVTVRd8b3//vs599xzc8MNNxS7lCbT0ufcqlWrrL/++ll//fVz6KGHJkk+/PDDWqH8kksuyZw5c9K5c+dsttlm6d27dw488MDiFl5Ps2bNSrt27WptmxtSFhRWCoVCrXvT0fyV4wctd9xxR6644opMmTIl3/3ud3POOefU6b6ZpaJcAtp/e+edd3LBBRfk2WefTZcuXfKrX/2q2d27p6HcddddufzyyzNlypRsscUWOe+887LSSisVu6wGN2DAgGKXUDTt27fPTjvt9LXvsUvBwj5oSRb8YYsQTjmSvb9aS8+hi6Olz1n2/g/Zu7TI3rK37F1aZO/SJ3t/SfZunjTAi2ivvfbKkCFDcvrpp+fNN9/MQQcdlB49etQaM3HixNx4440ZMGBAtt566/zwhz8sUrUN4+WXX87/a+/Ow6IqFz+Af4dNQNyVBLfcYtxSRBbpqiWKC6HgkluS5n7V1NTUonBB0dyyNE294lbXJQFBEUFxSZFFAclQr6a5K24gkjgwnt8fPsyvEVRAZg7nnO/neXqePPNOft9QmO95z3nP6tWrkZKSAgBo3rw5xo8fj3bt2unGCIKAjRs34vvvv0dubq5YUcuMEuf8T3Z2dvDy8oKXlxeA51v7hIeHIyQkBPv370d0dLTkS7jSTJgwAQ4ODmLHMColnWg5d+4cAgICkJaWhrfeegvz5s2Dp6en2LGMSikFrYBGo8GqVauwYcMG5Ofno3///pg2bRoqV64sdrQyd/78ecyePRupqamoWbMmli1bJuuSJpetIOnllHaixdfXV9bfj8lw2L2V0UOVOOd/YveWH3bv59i95Yvdm91bLti95Y/dW5q4AC4iExMTrFmzBtOmTcNPP/2EtWvXws7ODrVq1YKpqSnu37+Pq1evQhAE9OjRA/Pnzxc78hs5ceIERo0aBa1Wi4YNG8LKygpJSUkYNmwYgoOD4ezsjOvXr2Pq1KlIS0uDjY0N5syZI3bsN6LEOb8oNzcXSUlJSExMxKlTp3DmzBnk5eXBwsJCtyWbHGRmZuLmzZu6XxdcgfzgwQO948Dzq1ulbMKECXq/1mg0OHfuHDIyMnTb3KjValk+r0gJ+vbti2fPngEAatSoga1bt2Lr1q2vfI9KpcKmTZuMEc+glFbQAODIkSOYN28ebty4AQcHB8yZMwetW7cWO5ZBLFq0CFu2bIFWq8UHH3yAyZMnw8bGptD36BcVdaeJXG3btg3Hjh3DypUrxY5SKsXd2vifpP79qzQnWk6ePGmAJMahtGf8Utlh95Z/D1XinF/E7s3uTdLC7s3uze6tj91bOti9i4fdW3wqQRAEsUMQ8Ntvv2H37t1IS0vD3bt3dR9knZyc0Lt3b7i5uYkd8Y0NHz4caWlpWL9+PRwdHQEAd+7cwdixY2Fubo6goCD4+fnh/v378PT0xNdff41atWqJnPrNKHHO+fn5SE1NRXx8POLj43H69Gnk5eXB3Nwc7777rq54Ozo6ymY7I7VaXeRzWwRBeOXzXM6ePWvIWAZ37949LFu2DNHR0cjJydF7zcrKCt26dcOUKVMK3V0jRWq1Gl999RU8PDx0x7KysuDr64ulS5fq/n4XiImJwcKFCyX5Ne7cuXOp3hcbG1vGSYzrZQXtdaRc0D777DPExMQAAD744AP4+fnB1NT0te9zdnY2dDSDUKvVun8vybO2pPj3uLQCAgKwY8cOyc65uN+/nj17hjt37uh+Tkt1viVx69YthIaGIiwsDNeuXVPEnIleht1bnj1UiXNm9/5/7N7s3lL8GrN7s3u/Dru3fLF7yxe7d/nCBXAyGjc3N/Tr1w/Tpk3TO37s2DGMGjUKjRs3xt27dzF79mzJbzdXQGlzHjVqFE6ePInc3FyYmJigRYsWcHNzg6urK5ycnAptYyUXs2bNKtX7pHwlVWpqKsaMGYOsrCy0bt0abm5usLW1hZmZGTIyMpCUlISkpCRUrlwZq1evRtu2bcWO/EaUeqJFSZRY0P45Z+D185Z6YSntldUv3nkjZ1Iv4cVx+vRpzJ49G2fPnkXdunXx9ddfo1OnTmLHMoinT58iOjoaISEhSEhI0P0d7tChA3766Sex4xGRASmthwLKmzO7d8mwe0sHu7f8sXuze78Mu7e8sHuze5cH3AJdQhISEnD+/PlSbTFRHmRnZ6Nx48aFjjdt2hSCICAzMxM7d+6UxbMFCihtzr/99hvMzc3h4+ODMWPG4O233xY7klFIuUyXxv379zF+/HhUrFgRP/74I5ycnIocl56ejsmTJ+Ozzz7D7t27UaNGDSMnLTs+Pj4lKmZKcvLkSYSGhkp+q1AlFa0CSvveVZqvsdyeDapk2dnZWLp0KXbs2AETExOMGTMG//73v2W5ZWhqaipCQkKwb98+PH78GABQvXp19O3bFwMGDECdOnVETkhU/rF7S4/S5szurQzs3vRP7N7SpbTvXezeysbuze5dnnABXEIiIyOxY8cOyZZwrVYLM7PCf+QKtuIaO3asbMpoAaXNuX///khISNBt89GoUSO0b98ebm5ucHZ2RpUqVcSOSGVg69atyMnJwbZt21CvXr2XjmvevDmCg4Ph7e2NX375BRMnTjRiyrK1cOFCsSOUK7dv30ZoaChCQ0Nx7do1AFBkCZd6QfP19S3xe27cuGGAJOVPwcml/fv3S/qZTfTc7t278e233+L+/ftwcXFBQEBAkYskUpaRkYGwsDCEhobir7/+giAIsLKygru7O+Li4jB37ly9rUSJ6NXYvaVHaXNm91YGdm9i936O3Vu+2L3lhd2b3bu84QI4lRty+2ZYHHKb87x58wAAN2/eRFxcHOLj4xEVFYWtW7fCxMQEarUarq6uulJubW0tcmIqjQMHDqBXr16vLOAF6tSpA19fX0RHR0u6hPv5+WHcuHFo37697lh+fj5SUlKgVqtRqVIlvfHh4eGYOXMm0tPTjR3VYDQajW47n/j4eAiCAEEQ4OrqikGDBokdz6iUVtCePn2KqKgohIaGIikpCX/88YfYkQyi4ORSWFgYrl69CkEQULVqVbFj0Ru4dOkS5syZg8TERFSrVg0LFy6Ej4+P2LHK1L59+xASEoK4uDhotVpUrlwZ3t7e8PT0RIcOHXD37l106dJF7JhEVM7IrYcWh9zmzO6tDOzez7F7s3uze8sLu7f8sHuze5dXXAAnojJnb2+Pfv36oV+/fgCACxcuID4+HidOnMCuXbsQHBwMMzMztGzZEu3bt8ekSZNETkwlcf36dXz88cfFHq9WqxEaGmrARIaXmJiI/v376x3Lzs6Gn58fNmzYoFfOCwiCYKx4BvXidj4F8/Ly8sL48ePRqFEjkRMahxILWnJyMkJCQhAVFYWcnBwIgoCmTZuKHatMFZxcCg0NRXx8PJ49ewZBENCmTRsMHDgQPXv2FDviGwkLCyvR+MuXLxsmiJFpNBqsWrUKGzZsQH5+Pvr3749p06ahcuXKYkcrc1OmTIG1tTUGDx4MDw8PODs7w9TUVPc6txAlIpI3dm95Y/d+jt2b3ZvdW/rYvfWxe0sPu7c0cQGcjOrkyZPQarV6x3JycgAAx48fx507dwq9R+pXCylxzi9q2rQpmjZtiqFDh0Kj0SAqKgq//PILUlNTcfr0aZZwiTE3N8fTp0+LPT43N1e2dxzIpWi/qKjtfKpWrQpfX1+0adMGAQEB6Nmzp+wLuNwLWlHu3Lmj+9pfuXIFAGBmZoaePXti0KBBaNeuncgJy8bp06exa9cuvZNLlStXRnZ2NubNm1fopJtUzZw5s0QlTBAEyZe2I0eOYN68ebhx4wYcHBwwZ84ctG7dWuxYBlO3bl1cv34dISEhuHz5Mn7//Xd06dIFDRs2FDsaEYlMiT1UiXN+Ebu3vLB7/z92b3ZvuWH3Zvdm95YWdm9p4gI4GdWOHTuwY8cOvWMFH2LXr1+v942/4AeB1AupEuf8T1evXsXp06dx+vRppKWl4dy5c8jLy0PFihXRsWNHODs7ix2RSuidd97BkSNHiv1MxMOHD6NJkyYGTkVlZfTo0Th+/Di0Wi3s7OwwePBgdOnSBa6urjAxMcGNGzdke/KhgFIKWgGNRoMDBw5g165diI+P1504bty4MS5duoTFixeje/fuIqd8cxkZGdi9ezdCQ0Nx+fJlCIIAe3t7+Pr6wtPTE2+99Ra6du2K6tWrix21zAQFBYkdwag+++wzxMTEAAA++OAD+Pn5QaPRICkp6ZXvk/JnkQMHDuD06dMIDw9HVFQUjh07hmXLlqFRo0bw9PREixYtxI5IRCJRYg9V4pz/id1bfti95Y3dm92b3ZvdW6rYvdm9pYIL4CK6efNmicYXXLksVUr7QQAob85ZWVlIS0vTFe60tDRkZWVBEARUqVIFbdu2xZQpU+Ds7IzmzZvDxMRE7MhUCr1798Y333yDyMjI116FGxYWhri4OCxbtsxI6ehNHT16FNbW1vDz88OQIUNQq1YtsSMZhRILWlpaGkJCQhAZGYlHjx7BxMQEjo6O8PT0hKenJ7RaLbp06QJzc3Oxo5aJzp0749mzZ1Cr1Rg7diw8PDzQsmVL3es3btwQMZ1h+Pr6ih3BqKKjo3X/Hhsbi0OHDr1yfMHix9mzZw0dzaBat26N1q1b48svv8SxY8cQERGBgwcPYvXq1VCpVFCpVDh06BDUajXq1KkjdlwiUbB7y5/S5szurQzs3vLG7s3uze4tH+ze7N7s3uUTF8BF1LlzZ0VtjVGaHwRS/4GotDm7urpCpVJBEARUq1YNLi4ucHZ2hrOzMxwcHCT955f+X9++fREWFoYvvvgC58+fx5AhQ2Bra6s3JiMjA8HBwdi8eTM6deqEHj16iJSWSmrChAnYu3cv1qxZg59++gkNGzZEly5d0KVLF7z77rtixzMYJRa0jz76CFZWVujQoQM6duyIzp07651kkNuc8/PzYWVlhZo1a8LKyqrQFqlKcOfOHZw6dQoZGRkAAFtbWzg6OsLOzk7kZGVDaYsfLzI1NUWnTp3QqVMn5ObmIiYmBnv27MHx48fx66+/IiQkBK6urujbty8+/PBDseMSGRW79+tJ/ee+0ubM7q0M7N7yxu7N7l1AbnNm92b3ljt2b+ngAriIfHx8WEqK8PTpU0RFRSE0NBRJSUn4448/xI5kcHKZc/fu3eHi4gIXFxduuyVjJiYmWLNmDaZNm4affvoJa9euhZ2dHWrVqgVTU1Pcv38fV69ehSAI6NGjB+bPny92ZCqBCRMmYMKECThz5gwiIiIQGRmJtWvXYt26dbCzs4OTk5Msf3YpsaBZWVnhyZMn+PPPP1GtWjVYW1ujY8eOsLGxETuaQRw6dAgRERGIiIjAsmXLoFKpULNmTXTt2hVdu3aV9dW5Fy5cQGBgIJKSkiAIgt5WiiYmJnBycoK/vz8cHBxETPnmlHbV/atYWlrC29sb3t7eePjwISIjIxEREYETJ04gPj6eJZwUh927aHLpoSUhlzmzeysDu7e8sXuze7N7yw+7t/Kwe5dvKkHuDxMhyUhOTkZISAiioqKQk5MDQRDQtGlTREREiB3NYJQ4Z5KX3377Dbt370ZaWhru3r0LQRBga2sLJycn9O7dG25ubmJHLBNqtRpfffUVPDw8dMeysrLg6+uLpUuXwtHRUW98TEwMFi5cKPmtfYDnd0CdOHECERERiImJwePHjwEAderUQd++feHj4wN7e3uRU765W7du6QrahQsXiixonp6eWLVqld6fAynLzc1FbGwswsPDcezYMWi1Wpibm6N9+/bo2rUr1Go1+vXrJ6s5Fzh37pzuJNOtW7egUql0JyVmzpyJTz75ROyIZebgwYOYPHkyVCoVunTpAjc3N9ja2sLMzAwZGRlISkpCVFQU8vPzsXz5cnTp0kXsyGRA165dw969ezF27FixoxCRiJTYQ5U4Z5IXdm92b3Zv6WL3Zvdm91Yedu/ygQvgEnHr1i2EhoYiLCxM7xkLUnfnzh2EhYUhNDQUV65cAQCYmZnB09MTgwYNQrt27UROWPaUOGciqVOr1UVeef267THlUML/SaPRIDY2Fnv27MGRI0eQl5cHExMTtG/fHv/5z3/EjldmlFTQCmRmZuquUk1NTdV7bfTo0Rg7diysrKzECWdgiYmJiIiIQHR0NLKysqBSqVC3bl306dMHvr6+qF27ttgRS+369evw9vZGw4YNsWLFCtSrV6/Icbdv38Znn32GixcvYvfu3S8dV97NmjWrxO9RqVRYsGCBAdIQkVSxe8uHEudMJHXs3s+xe7N7yxG7N7s3uzcZGxfAy7GnT59i//79CA0NRUJCAp49ewYzMzOcOXNG7GhvRKPR4MCBA9i1axfi4+N1W900btwYly5dwvLly9G9e3eRU5YtJc6ZlEOj0eDcuXPIyMjQXYWuVqtRoUIFsaOVmdJ8sAPk/UycR48eISoqChERETh16hTS09PFjmQQci5oL3Pjxg1ERERgz549uHjxIlQqFaytrdGjRw/07du30F0XcpGXl4ejR48iPDwchw8fxtOnTyX/uWv+/PnYvXs3oqKi9J4xV5TMzEz07NkTvXr1wsyZM42UsGyp1eoSv0elUkn6hGlp7hBRqVQ4cOCAAdIQSRe7t3wocc6kHOzeL8fuLX3s3uzeUv7cxe79euzeJAYugJdDKSkpCA0NRWRkpG5rrtq1a6N///746KOPUKtWLbEjlkpaWhpCQkIQGRmJR48ewcTEBI6OjvD09ISnpye0Wi26dOkiq+1elDhnUo579+5h2bJliI6ORk5Ojt5rVn2iBE0AAEaYSURBVFZW6NatG6ZMmQJbW1uREpKxnDx5UvZ30MixoBXHuXPnEB4ejsjISNy+fVvyhaW4Hj9+jOjoaOzZswcbNmwQO06p9ejRAx07diz2icRvv/0Whw4dwr59+wyczDBu3LhRqvdJ+Rl0nTt3LnRMEATcunULNWvWhIWFRZHvi42NNXQ0Iklg95ZPD1XinEk52L2pALu3fLF7s3tLCbv3c+ze5Z+Z2AHouTt37mD37t0ICQnBlStXIAgCTExMAACTJ0/G6NGjdb+Wqo8++ghWVlbo0KEDOnbsiM6dO+tdEVXab5zlmRLnTMqQmpqKMWPGICsrC61bty7yuTZhYWGIjY3F6tWr0bZtW7EjUwmdOXMGqampEAQBzZo1K7JkP378GEuWLMHOnTvxxx9/iJDSeMzNzeHh4QEPDw+9giZ3arUaarUaX3zxBRISEhQxZwCwsbFBly5dkJycLHaUN3Lr1i00adKk2OMbNWqE//73vwZMZFhSLtOlVVSZfvDgAdzd3bF48WK0b99ehFRE5Ru7tzx7qBLnTMrA7i1/7N762L3ZvaWI3Vv+2L2liQvgIirYmiskJAQnTpyAVqtFhQoV0LlzZ3Tt2hUODg7w9fVF06ZNJV/AAeie4fLnn3+iWrVqsLa2RseOHWFjYyN2NINR4pxJ/u7fv4/x48ejYsWK+PHHH+Hk5FTkuPT0dEyePBmfffYZdu/ejRo1ahg5KZXG33//jc8//xxHjhxBwSYxKpUK7u7uWL16te6KxsOHDyMgIAB37txB/fr1xYxsdHIpaCVlb28v+ZPH169fR3BwMFJSUgAAzZs3x6hRo9CgQQO9cdHR0Zg3bx7u3buHwMBAMaKWCUtLSzx69KjY4x89eoTKlSsbMJG4NBoNLl68CEtLSzRq1EjsOAbzqudjEikVu7f8e6gS50zyx+4tb+zer8fuLV3s3q/G7i0P7N7lHxfARdShQwc8evQIVapUgZeXFzw8PNCxY0dYWVkBkN8VyidOnEBsbCzCw8Oxa9cu7NixA+bm5mjfvj26du1aqmdHlHdKnDPJ39atW5GTk4Nt27ahXr16Lx3XvHlzBAcHw9vbG7/88gsmTpxoxJRUWj/88AMOHz6MDh06wNfXF9bW1jhy5Ai2b9+Ob7/9Fv7+/li0aBE2btwIU1NTjBgxAp999pnYscuE0goaAJw+fRqrV6/Wm/P48eP17joQBAEbN27E999/j9zcXLGivrGzZ89i6NChePz4MSwtLWFpaYn09HRERkZi27ZteOedd5CdnQ1/f39ER0fD1NQUo0ePFjv2G2nZsiWio6MxYsSIYo3fv38/mjVrZuBUhpWdnY1169YhJSUFW7Zs0R2PiIhAYGCg7qREw4YNsWDBArRp00akpERkTOze8u+hSpwzyR+7t7yxe7N7s3uze0sZuzdJARfARZSVlQVra2t069YNrq6uaNu2ra6Ay5GlpSV69uyJnj17IjMzE5GRkYiIiMDRo0dx9OhRAM+vmklLS4O7u7ss/l8occ4kfwcOHECvXr1eWcAL1KlTB76+voiOjmYJl4jY2Fi4uLhg3bp1umPvv/8+atSogS1btqBq1aoIDg6GWq1GUFCQ5D+wF1BiQTtx4gRGjRoFrVaLhg0bwsrKCklJSRg2bBiCg4Ph7OyM69evY+rUqUhLS4ONjQ3mzJkjduxSKziJsHTpUnh5eQF4/rzQzz//HIGBgViyZAn8/Pzw119/oVWrVggMDISDg4PIqd9Mv379MHnyZAQHB2P48OGvHLtmzRqkpaXp/d2XmpycHAwYMACXLl1C7dq1kZ+fDzMzM6SlpWHGjBkQBAEDBgxA06ZNERYWhuHDhyMsLKzQiTYikh92b/n3UCXOmeSP3Vve2L3Zvdm92b2lit2bJEMg0SQlJQnffPON4OLiIqjVaqFZs2bCRx99JKxfv164cuWKcP36dcHBwUE4cOCA2FEN6vr168Lq1asFLy8vwcHBQVCr1ULbtm2Fr776SkhOThY7nkEocc4kH23atBG2bdtW7PE7duwQHB0dDZiIylKbNm2EjRs3Fjp+8eJFwcHBQWjWrJkwb948QaPRiJDOcMaOHSu0aNFC2LNnj+7Y6dOnBQ8PD2Ho0KHCnTt3hG7dugkODg5Cv379hHPnzomYtmwMGzZMaNu2rd7Pndu3bws+Pj5C//79hYsXLwru7u6Cg4ODMHHiRCEjI0PEtG/O3d1dmDdvXqHj+/fvF5o3by4MHjxYaNmypbBu3TpBq9WKkNAwJk6cKKjVamHq1KlCSkqK3t9drVYrpKSk6MZ8/fXXIiZ9c99//73QokULYd++fXrHR48eLajVaiEoKEh3LDc3V/D09BRmzpxp7JgG9+DBA8HBwUGIi4sTOwpRucHu/ZwSe6gS50zywe4tb+ze7N7s3uzeUsXu/Ry7d/nHO8BF1K5dO7Rr1w5ff/01jhw5goiICBw+fBinT5/GkiVLUK9ePahUKvz9999iRzWoOnXqYOzYsRg7dizOnTuH8PBwREZG4tdff8WuXbtw9uxZsSOWOSXOmeTD3NwcT58+Lfb43NxcWFtbGzARlaUnT56gevXqhY5Xq1YNANC1a1f4+/sbO5bBpaWlYeDAgbqrkwHg3XffxRdffIEpU6ZgypQpuHHjBqZNm4ZPP/1UFs8HPXv2LAYNGgRHR0fdsbfeegtTp07FqFGjMGnSJOTn52P58uXo0aOHiEnLRlZWVpHbn7Zq1QparRbnz5/Hli1bZLct15IlSxAUFIRt27Zh7969MDU1RdWqVWFqaorMzExoNBqYmJhgxIgRmDJlithx30h0dDR69+6N7t27647l5OTg+PHjAIDBgwfrjleoUAG9evXCzp07jZ6TiIyP3fs5JfZQJc6Z5IPdW97Yvdm92b3bGD+cAbF7s3tT+cMF8HLAzMwMHh4e8PDwQE5ODqKjoxEREYGEhAQIgoAZM2Zg165d6NOnD7p164YKFSqIHdlg1Go11Go1vvjiCyQkJGDPnj1iRzI4Jc6ZpO2dd97BkSNH4OfnV6zxhw8fRpMmTQycigxNpVIBAHx8fMQNYiBKLGjZ2dlo3LhxoeNNmzaFIAjIzMzEzp07Ub9+fRHSlb38/PwiP0NZWloCAEaPHi2rr28BCwsLBAQEwM/PD2FhYUhLS8Pdu3chCAIaNWoEJycneHt7y2IrsuvXr+sVbQBISkpCfn4+6tWrV+jPsp2dHe7fv2/MiGVu5cqVhY7l5uZCpVJh9+7dOHXqVKHXVSoVxo8fb4x4ROUOu/f/U2IPVeKcSdrYvZWJ3ZvdW+rYvdm92b2fY/cWHxfAy5mKFSvC19cXvr6+uH//Pvbs2YOIiAjEx8cjPj4e8+bNQ1JSktgxjcLV1RWurq5ixzAqJc6ZpKd379745ptvEBkZiZ49e75ybFhYGOLi4rBs2TIjpSNDKygscqPEgqbVamFmVvijoIWFBQBg7NixsingxdGyZUuxIxhUw4YNJX+V+euYmJjg2bNnesdOnDgBAHB3dy80/sGDB7CxsTFKNkMpqoQXCAsLK/I4SzjRc+ze/0+JPVSJcybpYfdWNnZv+WD31sfuLX3s3vrYvcsvLoCXYzVq1MAnn3yCTz75BFeuXEF4eLikr1Au7hWr/6RSqbBp0yYDpDEOJc6Z5K9v374ICwvDF198gfPnz2PIkCGwtbXVG5ORkYHg4GBs3rwZnTp1ksUWTkpScMV5SV+TM7kXtKIUdYW6nCnhz/adO3dw6tQpZGRkAABsbW3h6OgIOzs7kZOVjSZNmiAlJQVDhgwBAAiCgJiYGKhUKnTu3LnQ+IMHD0r+z/nmzZvFjkAkC+ze0u+hSpwzyR+7t/yxexfG7i1/Svizze6tj92bxMIFcIlo0KABJk6ciIkTJ4odpdQSExOLPK5SqSAIwktfkzIlzpnkz8TEBGvWrMG0adPw008/Ye3atbCzs0OtWrVgamqK+/fv4+rVqxAEAT169MD8+fPFjkwltGDBAixfvlzvmCAIUKlUmDZtWqGrtVUqFQ4cOGDMiEbH783ycOnSpUJ382VnZwMAzp8/X+RV+c7OzkbJZkgXLlxAYGAgkpKSIAiC3mcQExMTODk5wd/fHw4ODiKmfHM+Pj6YP38+WrVqhffeew87duzAzZs3Ub9+fXTo0EFv7Jo1a5Camir55yq6uLiIHYFIdti9pUmJcyb5Y/eWP3bvwvi9WR7Yvdm9C7B7k5i4AC4iPz8/jBs3Du3bt9cdy8/PR0pKCtRqNSpVqqQ3Pjw8HDNnzkR6erqxo5aJc+fOFTr24MEDuLu7Izg4WO//g1wocc6kDJUqVcJPP/2E3377Dbt370ZaWhr+97//QRAE2NrawsfHB71794abm5vYUamE7O3tAaDIE4UFV6q++NrLTipKjRIL2smTJ6HVavWO5eTkAACOHz+OO3fuFHqPlJ9Ft2bNGqxZs6bI1xYtWlTk8bNnzxoyksEdPHgQkydPhkqlQvfu3eHm5gZbW1uYmZkhIyMDSUlJiIqKQr9+/bB8+XJ06dJF7MilNnDgQJw6dQpBQUG6BY8qVapgyZIlMDExAQD8+uuvWLt2La5duwYnJycMGjRI5NSGpdFocPHiRVhaWqJRo0ZixyESDbu3/HuoEudMysDuLV/s3uze7N762L2lg927MHbv8kklyOUnpwSp1WosXrwY3t7eumMPHz6Eu7s7NmzYUKighYeHY8aMGZL/YfBPDx8+RPv27RVVSJU4ZyKi8k6tVr/0SvOCK/CLIuWfyS+b8z8/Gv7z9YL/D1Kd8w8//FCquwkmTJhggDTGcf36dXh7e6Nhw4ZYsWIF6tWrV+S427dv47PPPsPFixexe/ful46TipSUFKSkpMDGxgZdunRB9erVda+tXLkSu3fvhre3N8aMGVPk8welJjs7G+vWrUNKSgq2bNmiOx4REYHAwEA8evQIwPNn0S1YsEB2z1QkKg52b2X2UCXOmYiovGP3/n/s3vrYvaWH3fs5du/yi3eAl0O8JoGIpCI3NxeWlpaFjl+8eBGVK1cu9HwyKv/CwsLQrl071K1bV+woRjV+/HjFbbUWFBQkdgSjkvJWtqW1adMmmJubY/369XpF9EW1a9fG2rVr0bNnT/z888+YOXOmEVOWPUdHRzg6Ohb52oQJE156YiUvLw+pqalF3g1aXuXk5GDAgAG4dOkSateujfz8fJiZmSEtLQ0zZsyAIAgYMGAAmjZtirCwMAwfPhxhYWFo0KCB2NGJygV2byKSCnZv+WH3Vg52b/lj9y6M3ZvduzzgAjgREZWYRqPBokWLEBERgaNHjxYq4suWLcPRo0fRt29fzJgxA9bW1iIlpZKaNWsWvv32W8WVcCUWNF9fX7EjGFVR29/K3bFjx+Dr6/vKAl6gatWq8PHxwaFDhyRfwksrKysLfn5+Rd4NWl5t2LABV69exXfffYfu3bvrjq9atQqCIOCTTz7RfT379euHXr16Yc2aNYo7CUdERCRV7N7yxe6tHOze8sfuXTLs3mQsJmIHICIiadFoNBgxYgR+/vln2Nvb4+HDh4XGfPDBB3BwcMD27dsxcuRI5Ofni5CUSkOpd0L5+fnhxIkTYscwKg8PDxw8eFDsGEaTmJiIe/fuiR3DqG7duoUmTZoUe3yjRo1w+/ZtAyYq/6T2PTA6Ohq9e/fWK+A5OTk4fvw4AGDw4MG64xUqVECvXr0U972OiIhIqti95U1qnzvLCru3/LF7vx67t/S+B7J7SxMXwImIqEQ2btyIpKQk+Pv7IywsDHZ2doXG9O/fH7t27cKECROQnJyMrVu3ipCUqPiUWNBu3LiBv//+W+wYZECWlpa6Z1AVx6NHj1C5cmUDJqKydv36dbRs2VLvWFJSEvLz81G3bl3Ur19f7zU7Ozvcv3/fmBGJiIiolNi9SY7YvUmO2L3lj91bmrgFOhlNWFhYoWM5OTkAgOPHj+POnTtFvs/Hx8eAqQxLiXMm+YuIiICHhwc+/vjj146dMGECEhMTsXv3bgwbNszw4ahMZGZm4ubNmyV6j729vYHSEFFptWzZEtHR0RgxYkSxxu/fvx/NmjUzcCoqSyYmJnj27JnesYKrzN3d3QuNf/DgAWxsbIySjYjEo8QeqsQ5k/yxe8sfuzeRPLB7yx+7tzRxAVxkL37QycrKAvD8L8iLH4CK2upISmbOnAmVSqV3rGCri/Xr10OlUul+XfDvKpVK0oVUiXMm+bty5QoGDhxY7PHvv/8+VqxYYcBEVNYWLFiABQsWFHu8SqVCenq6ARMRlY2YmBhcuXKl2ONVKhXGjx9vwESG1a9fP0yePBnBwcEYPnz4K8euWbMGaWlpWLdunZHSUVlo0qQJUlJSMGTIEADPP2fGxMRApVKhc+fOhcYfPHgQjRs3NnZMonKB3VvePVSJcyb5Y/eWP3Zvkit275dj95Ymdm9p4gK4yF72QWfatGkipDGsoKAgsSMYnRLnTPJnbW0NrVZb7PEVKlSApaWlARNRWXNyckK9evXEjmF0SitoALBjxw7ExcUVe7xKpSrRCZryJiYmBtHR0cUeL/Wvcffu3eHp6Ylvv/0Wf/zxBz7++GO0aNEC5ubmAIBnz54hLS0NGzZsQExMDPr3749//etfIqemkvDx8cH8+fPRqlUrvPfee9ixYwdu3ryJ+vXro0OHDnpj16xZg9TUVPj7+4uUlkhc7N7ypsQ5k/yxe8sfu3fxSL2XAezeryP1rzG7t/yxe0sTF8BF5OPjU+gKZTnz9fV97ZisrCxYWlqiQoUKRkhkeEqcM8lfo0aNkJycDD8/v2KNP3XqFOrUqWPgVFSWBgwYAG9vb7FjGJ3SChrw/HlFSUlJxR4v9RI+ZsyYIremkrMlS5YgKCgI27Ztw969e2FqaoqqVavC1NQUmZmZ0Gg0MDExwYgRIzBlyhSx41IJDRw4EKdOnUJQUJDujsYqVapgyZIlMDExAQD8+uuvWLt2La5duwYnJycMGjRI5NRExsfuXZjceqgS50zyx+4tf+zexcPuLT3s3uzecsPuLU1cABfRwoULxY5gdHl5eQgJCUFqaqreFdqJiYmYPXs2Ll++DJVKBXd3dwQEBMjiKkglzpnkzdfXFwEBAYiPj4ebm9srxyYkJCA6OhoTJ040Ujqi0lNiQfvyyy/h4eEhdgyjady4MVxcXMSOYVQWFhYICAiAn58fwsLCkJaWhrt370IQBDRq1AhOTk7w9vZGgwYNxI5KpaBSqbBkyRIMGTIEKSkpsLGxQZcuXVC9enXdmNu3b0MQBIwbNw5jxozRlXMiJWH3VkYPVeKcSd7YvUmu2L3lj92b3Vtu2L2liQvgIho5ciR8fHzQpUsXRWxRlJeXh08//RRJSUkwNzfHvHnzYGZmhsuXL2PkyJHIy8tDhw4d0KRJE+zfvx8DBgxAeHg4atasKXb0UlPinEn+fHx8sGvXLowdOxZjxoxB//79C/2ZzcjIwM6dO7F+/XrUrVsXgwcPFiktUfEpsaBVq1aNd4koRMOGDXmVuYw5OjrC0dGxyNcmTJiACRMmFPlaXl4eUlNToVarUalSJUNGJBIVu7f8e6gS50zyx+5NcsXuTXLG7i1v7N7SwksQRJSYmIjp06fD3d0dM2fORFxcHARBEDuWwWzduhUnT57E9OnTkZSUBDOz59df/PDDD9BoNPD29sbatWvxxRdfYNeuXTA1NcWaNWtETv1mlDhnkj9zc3OsWrUKrVu3xooVK9ChQwd4eHhg4MCB6N+/Pzp37oxOnTrhhx9+gIODA4KDg/mDXULs7e1hbW0tdgwiIjKCrKws+Pn54cyZM2JHITIodm/591Alzpnkj91b3ti9iYiUg91bHLwDXEQnTpzAgQMHsG/fPuzduxe7d+9GzZo14e3tjV69ekGtVosdsUzt2bMH3bp1w4gRI3THNBoNYmNjoVKp9I5XrVoVffr0wd69e+Hv7y9G3DKhxDmTMtSoUQObNm1CdHQ09u7di/T0dJw/fx4mJiaoWbMmfHx80LVrV3Tu3FnsqFRCsbGxr3z92bNnuH37NmrWrAkLCwsjpSJ6cxMmTICDg4PYMYyquM+L/CeVSoVNmzYZIE35cPfuXVStWhXm5uaFXqtSpQo2b96MZs2aiZBMPHJeBCQqwO4t/x6qxDmTMrB7yxe7N8kVu3fxsHuze5PhcQFcRBUrVkTv3r3Ru3dvZGdnY//+/YiMjMSmTZsQHByMJk2aoHfv3vD29sZbb70ldtw39tdff8HX11fv2KlTp5CbmwtbW9tCPxjr16+PjIwMY0Ysc0qcMymLp6cnPD09xY5BRvTgwQN4eHhgw4YNaN++vdhxyowSC1pQUNBLt22So5dtQ1Xg77//xoYNG+Dj44O6desaKZVhJSYmFnlcpVK9tHipVCpDRjKK4OBg7NixA+Hh4YXK9oIFCxAXF4cRI0Zg5MiRes/kMjc3V9xWjERKwe4t/x6qxDmTsrB7Kw+7t3ywe+tj9/7/16SO3ZvKOy6AlxOVKlVCv3790K9fPzx48ABRUVHYt28fli1bhmXLlsHZ2Rk+Pj7w9PRExYoVxY5bKs+ePYOpqanesfj4eACAu7t7ofHZ2dmwsrIySjZDUeKciYDn27pYWlqiQoUKYkchA5DjFYtKLGgvniR+0ePHjzF//nyMHDkSjRs3NlIq8fz9999YtWoVnJycZPM1PnfuXKFjDx48gLu7O4KDg2V1Ig14/r1p2rRp2Lt3L2rUqIHbt2+jXr16emMaN26M5ORkLF++HGfOnMH3338vUloiEgu7tzx7qBLnTASwe8sdu7c8ehm7tz52b+lj9yap4DPAy6Hq1atj8ODB2LJlCw4fPoyvvvoKJiYm+Oabb/Cvf/1L7HilVr9+fZw9e1bvWExMDFQqFd5///1C448dO4b69esbKZ1hKHHOpAx5eXnYvn07Zs2apXc8MTERPXv2hJubGxwdHTFy5EhcvXpVpJREZaegoF27dk3sKEaTm5uLsLAwRd0dJccTTC+Sw1XmL7N9+3bs3bsXw4YNw+HDhwsVcOD5CbeYmBj06dMHMTExCAkJESEpEZUX7N7PyaGHKnHOpAzs3qQ07N7KwO4tbezeJBVcAC/nzM3NYWlpCRsbG5iZmUGj0YgdqdS8vLywe/duHDhwAE+ePMHGjRtx6dIl1KhRo9CzisLDw3H8+HF4eHiIlLZsKHHOJH95eXn49NNPERAQgD179iA/Px8AcPnyZYwcORKXL19Ghw4dMGzYMFy+fBkDBw7EvXv3RE5N9OaUUNBepMQ5k3T9+uuvcHFxwcyZM4t8zlgBCwsLBAYGolmzZtixY4cRExJRecbuLe0eqsQ5k/yxe5NSKbGHKnHOJF3s3iQV3AK9HHrw4AFiYmIQFRWFpKQk5Ofno3nz5pg0aRK8vLzEjldqw4YNw2+//YYJEybonn9hbm6O+fPnw8LCAsDzK7S3bt2KxMRENGzYEMOGDRM39BtS4pxJ/rZu3YqTJ09i+vTpGDJkCMzMnv8o+eGHH6DRaNCrVy98++23AIDRo0fD29sba9asgb+/v5ixqYyYm5vD2dkZVapUETsKEZGeP//8E5MmTSrWWJVKhe7du2P16tUGTkVE5Rm7t3x6qBLnTPLH7q1s7N5EVF6xe5NUcAG8nLh37x6io6MRFRWFU6dOQavVok6dOhgxYgR69eoli+d/WFhYYOPGjYiMjERqaipsbGzg7e2NJk2a6MacOXMGycnJ6NWrF2bOnAlLS0sRE785Jc6Z5G/Pnj3o1q0bRowYoTum0WgQGxsLlUqld7xq1aro06cP9u7dyxIuEdnZ2ahUqdJLX69SpQq2bNmidywhIQGurq6GjkZkUJUqVUJQUBCaNm0qdhQqJTMzM90iR3FUrly50PNiiUj+2L2fk1sPVeKcSf7YveWN3ZuUit1b+ti9SSq4AC6ijIwMREdHY//+/UhOToZWq0WVKlXQr18/eHt7o127dmJHLHOmpqbw9vaGt7d3ka+PHTsWkyZNgomJfHbnV+KcSd7++usv+Pr66h07deoUcnNzYWtrCwcHB73X6tevr6jnGEmdn58fgoODUbVq1deOffr0KRYvXoxffvkF6enphg8nIiUWtCpVqmDz5s1o1qyZ2FGMokKFCvjXv/7FOywkrEGDBjhz5kyxx585cwZ2dnYGTERE5QW7d2Fy7KFKnDPJG7u3vLF7F43dW/7YvaWP3ZukggvgIurUqROA51cqd+nSBd7e3ujUqdMrn5sgd1ZWVmJHMDolzpmk7dmzZ4Wu2ouPjwcAuLu7FxqfnZ3NP+cScvbsWXz88cfYuHEjatas+dJxp0+fxowZM/DXX3+9cpxcVKhQQe/kk1arxdq1azFu3DgRUxmWubk5XFxcdL/Ozs7GokWLEBgYKGKqNxccHIwdO3YgPDy80GeuBQsWIC4uDiNGjMDIkSMlf4I8LCys0LGcnBwAwPHjx3Hnzp0i3+fj42PAVIbz4YcfYunSpRg+fPhrT5hduHABERER8PPzM1I6IhITu3dhSvx8rsQ5k7Sxe8sbu3fR2L3ZvaWI3fvl2L1JTCpBEASxQyjV0KFD0bt3b3Tv3h02NjZixyEiKpbevXujdevWmDt3ru5Yz549cfnyZSxfvhzdu3fXGz9y5EhkZWVh586dxo5KpfDzzz9j/vz5qFevHjZu3FjoCs28vDx8//332LBhA7RaLXr37o0vv/xSFlfuZmdnY+fOnUhNTYUgCGjevDmGDBmCypUr6437/fff4e/vj//97384e/asSGnLxvXr1xEcHIyUlBQAQPPmzTFq1Cg0aNBAb1x0dDTmzZuHe/fuSXbOgiBg2rRp2Lt3L2rUqIFt27ahXr16emNWrlyJnTt3IiMjA127dsX3338vUtqyoVaroVKp9I7986N/Ua+pVCrJfo3//vtv9OnTB5mZmfjyyy/h5eVV6KRxfn4+9uzZgyVLlgAAQkNDUatWLTHiGs3du3dRtWrVIhf68vLykJKSgmbNmr1yC04iqWP3JiIpYveWN3Zvdm92b3ZvqX6N2b2Lxu5d/nABnIiISmTt2rVYtWoVli5divfeew/bt2/HwoULUbNmTcTGxuo9AyY8PBwzZszApEmTMHbsWBFTU0ns2bMHM2fOhK2tLTZu3Ij69esDeH6F+owZM/C///0P9vb2mDNnDjp06CBy2rJx7do1+Pn54fbt23olpWbNmti5cyfs7OyQn5+PpUuXYvPmzdBqtfDy8sLSpUtFTP1mzp49i6FDh+Lx48ewtLSEpaUlMjMzYW1tjW3btuGdd95BdnY2/P39ER0dDVNTU4wYMQJTpkwRO3qpbNu2DbNnz8awYcMwderUl971p9FoMGfOHISEhGD+/Pno06ePkZOWndDQ0FK978WtNqXk8uXLGD9+PC5fvgxra2u0aNECtWrVglarxf3793HmzBnk5ubC3t4eq1atglqtFjtymXjV3RVTpkyR1d0VRERESsHuLX/s3uze7N7s3lLF7s3uLQVcABdRUVtjFIdUt8YgInnQaDQYMWIEkpKSoFKpIAgCzM3NsXLlSt32kjExMdi6dSsSExPRsGFDhISEwNLSUuTkVBJHjhzB5MmTYWNjg3Xr1uHgwYNYs2YN8vPzMWjQIEydOhUVK1YUO2aZmTp1KiIjIzFlyhT07dsXVlZWOHLkCObOnYs2bdpg8eLFGD16NJKTk2Fvb4+AgADdn3epGjduHH777TcsWrQIXl5eAIC0tDR8/vnnsLe3x5IlS+Dn54e//voLrVq1QmBgYKHnDEpJv379YG1tjc2bN792rCAI6Nu3LywsLLBt2zYjpKOypNFo8PPPP2Pv3r04d+4c8vPzATzfWrBNmzbw9PTEgAED9E4aS5US764gKg12byKSInZvZWD3Zvdm92b3lip2b3bv8o4L4CIq2BqjYMuL15H61hhEJB9arRaRkZFITU2FjY0NvL290aRJE93ry5cvx4YNG9CzZ0/MnDkT1apVEzEtldapU6cwbtw4PH78GIIgoEGDBggMDES7du3EjlbmOnbsiPfeew9BQUF6x0NDQxEQEICOHTviwIEDGDRoEKZPnw5ra2uRkpad9957Dz169IC/v7/e8ejoaEyZMgVt2rRBWloaJk2ahE8//VTyV646Ojpi0qRJGDZsWLHGr127FqtXr9ZtUSd1ubm5RZ4MvXjxIipXrgxbW1sRUhnHgwcPYGpqKovtIl+kxLsriEqD3ZuIpIrdWxnYvdm92b3ZveWA3Zvdu7wxEzuAkr34g56ISCpMTU3h7e0Nb2/vIl8fO3YsJk2aJPkP7Urn5OSEzZs3Y+TIkXjw4AHmzp0rywIOAA8fPoSjo2Oh487OztBoNDhy5AhWrFiBbt26iZDOMLKysorcgqpVq1bQarU4f/48tmzZgjZt2hg/nAGYmZmV6KrjypUrF3qGlRRpNBosWrQIEREROHr0aKEivmzZMhw9ehR9+/bFjBkzZHGC6UXVq1cXO4LB/Prrr3BxccHMmTNfOc7CwgKBgYE4e/YsduzYwRJOisPuTURSxe6tDOze7N7s3uzecsDuze5d3nABXERSfsYDESmXn58fxo0bh/bt2+uO5efnIyUlBWq1GpUqVYKVlZXutYJnkfEOGmlSq9X473//i+HDh2PcuHFYtWoV3NzcxI5V5vLy8vT+3BYo2Gpu+PDhsirgwPO/txUqVCh0vKCkjR49WjYFHAAaNGiAM2fOFHv8mTNnYGdnZ8BEhvfPbTPVajUePnxYaE4ffPAB7ty5g+3bt+PChQvYvHkzzMykWRFWrlxZqvdNmDChjJMYz59//olJkyYVa6xKpUL37t2xevVqA6ciKn/YvYlIiti9lYXdm91bLti92b1fht2bjE2af8MUSqvVYu3atRg3bpzYUYhIwRITE9G/f3+9Y9nZ2fDz88OGDRv0yjlJz6xZs4o83qBBA1y/fh1jxoxBjx499LYPValUWLBggbEiisLFxUXsCEbXsmVLsSOUqQ8//BBLly7F8OHD0bRp01eOvXDhAiIiIuDn52ekdIaxceNGJCUlwd/fHx9//HGRY/r374/+/ftj5cqVWLlyJbZu3VrsrerKm+KW8Be3P5ZyCVfq3RVEhsbuTUTlAbu3vLF7F43dW/rYvdm9C7B7s3uLjQvgIsvOzsbOnTuRmpoKQRDQvHlzDBkyBJUrV9Yb9/vvv8Pf3x//+9//WMKJqFwSBEHsCFQGQkNDX/n606dPERYWpndMCSVciR9ai/OMVCn56KOPsG3bNgwdOhRffvklvLy8Cn1d8/PzsWfPHixZsgSVKlWSfAmPiIiAh4fHSwv4P02YMAGJiYnYvXu3ZEv4wYMHXzsmOzsb3333HQ4fPgwzMzPJf42VeHcFUWmxexORXLB7ywO7d9HYvaWP3fvV2L2lid1bmrgALqJr167Bz88Pt2/f1n14jYmJwc8//4ydO3fCzs4O+fn5WLp0KTZv3gytVgsvLy+RUxMRkZwV50OsXGVmZuLmzZt6x7KysgAADx48KPQaANjb2xslm6FcunQJSUlJeseys7MBAOfPny9yOy5nZ2ejZCtr1tbWWL16NcaPH48ZM2Zgzpw5aNGiBWrVqgWtVov79+/jzJkzyM3Nhb29PVatWoVatWqJHfuNXLlyBQMHDiz2+Pfffx8rVqwwYCLDqlOnzitfj4yMxMKFC5GRkYG2bdti9uzZeOedd4yUzjCUeHcFUWmwexMRUXnD7s3uze7N7i1V7N7s3lLBBXARfffdd7h9+zamTJmCvn37wsrKCkeOHMHcuXMxd+5cLF68GKNHj0ZycjLs7e0REBCATp06iR2biIhk7HUfYuVswYIFL72aftq0aYWOqVQqpKenGzqWQa1ZswZr1qwp8rVFixYVeVzKzxRs2LAhwsLC8PPPP2Pv3r1ITk5Gfn4+AMDc3Bxt2rSBp6cnBgwYUKKtrcora2traLXaYo+vUKGC7jl0cnL16lXMmTMHcXFxqFKlCgIDA9GvXz+xY5UJJd5dQVQa7N5ERFTesHuzexdg92b3lgt2b3bv8oYL4CJKSkqCj48PRo8erTvWo0cP5ObmIiAgADNnzkRycjIGDRqE6dOnw9raWsS0REREha1ZswbR0dEICQkRO8ob8fX1FTuC0Un52UtvwsLCAsOHD8fw4cMBPL/DwNTUFFWqVBE5Wdlr1KgRkpOTi126Tp06JasTcRqNBmvXrsW6deug0Wjg6+uL6dOno1q1amJHKzNKvLuCqDTYvYmISOrYvaWL3Zvd+0Xs3tLD7i1NXAAX0cOHD+Ho6FjouLOzMzQaDY4cOYIVK1agW7duIqQjIiJ6vVu3bkn6quQCQUFBYkcwOqWW8BdVr15d7AgG4+vri4CAAMTHx8PNze2VYxMSEhAdHY2JEycaKZ1hxcXFYc6cObhy5QqaNm2KgIAAtGvXTuxYBqG0uyuISoPdm4iIpI7dW7rYvZ9j936O3Vu62L2lhwvgIsrLy4OVlVWh4xUrVgQADB8+nAWciMqlF5/X9KpnNT18+NCo2YiIirJy5cpSvU/KJyt8fHywa9cujB07FmPGjEH//v1Rs2ZNvTEZGRnYuXMn1q9fj7p162Lw4MEipS0b9+7dQ1BQECIjI2FpaYmpU6di+PDhRT5TT06UdHcFUWmwexORVLF7E5HUsHuze8sZu7e0qARBEMQOoVRqtRqLFy+Gt7e33vGHDx+iffv2WL9+Pf71r3+JlI6IqGhqtRoqlarQcUEQijxeQA5XKlNhAQEB2LFjh+S/vkosaLNmzSrxe1Qq1Uuf1VbeqdXqYo178fuY1P9s379/H59//jkSEhKgUqlgb2+vt0XXrVu3IAgC2rRpg+XLl8POzk7syKW2detWrFixAo8fP0bnzp3h7+8v6fkQUdlh9yYiKWL3pn9i92b3lgp2b3ZvovJC3pdjSJypqanYEYiIClHi85pI/opbwl8saFIu4aGhocUe+895S7WEHzx48LVjsrOz8d133+Hw4cMwMzMr9vO7yrMaNWpg06ZNiI6Oxt69e5Geno7z58/DxMQENWvWhI+PD7p27YrOnTuLHfWNBQYG6v49NjYWsbGxr32PSqVCenq6IWMZlBJPIBIZArs3EZVH7N4kR+zer8buLV3s3q/G7k1i4AK4yF7cygh49XZGAGBvb2+UbERERVHi85pI/pRY0M6dO/faMTdu3MC8efNw+PBhVKpUCZMnTzZ8MAOpU6fOK1+PjIzEwoULkZGRgbZt22L27Nl45513jJTO8Dw9PeHp6VnoeFZWFiwtLUVIVPaUeJJYiScQiUqL3ZuIpIbdm+SI3bto7N7s3lLC7v1y7N7lC7dAF9HLtjICXr6dkdSvlCEiovKtpFc0Hjp0COnp6ZLfqup15F7QXqTVarFhwwb8+OOPyM3NRc+ePTFr1qxCz7CSg6tXr2LOnDmIi4tDlSpVMG3aNPTr10/sWGUmLy8PISEhSE1N1TuJmpiYiNmzZ+Py5ctQqVRwd3fHN998g/r164uY9s3MmjULAwcOROvWrcWOYjQ3btx47ZiiTiB+8cUXRkhHVH6wexMRUXnD7l00dm92b6li95Y3dm9p4gK4iErz/A+AV4ASEZHhFPdZTf+kUqlkW8LlXtCKcvLkScyZMwcXLlzA22+/jYCAALRv317sWGVOo9Fg7dq1WLduHTQaDXx9fTF9+nRUq1ZN7GhlJi8vD59++imSkpJgbm6OlJQUmJmZ4fLly+jduzc0Gg06duyIJk2aYP/+/Xjy5AnCw8Mle7LlZc/4VTKlnUAkehl2byIiKm/YvfWxe7N7Sxm7N7F7l0/cAl1ELNNERFTebN68WewI5YISCtqLHj58iG+//RZhYWGwsLDAxIkTMWrUKFhYWIgdrczFxcVhzpw5uHLlCpo2bYqAgAC0a9dO7FhlbuvWrTh58iSmT5+OIUOGwMzs+Uf/H374ARqNBr169cK3334LABg9ejS8vb2xZs0a+Pv7ixmbysCLJxADAwNlfwKR6FXYvYmIqLxh936O3ZvdWw7YvZWL3bt84wJ4OfDkyRPs2rULv/32G86dO4fMzEyoVCpUr14darUaHh4e8Pb2luUPQSIiKl9cXFxK/J6TJ08aIIl4lFLQ/mnnzp1YsmQJsrKy8N577yEgIEDS23G9zL179xAUFITIyEhYWlpi6tSpGD58uK6cys2ePXvQrVs3jBgxQndMo9EgNjYWKpVK73jVqlXRp08f7N27lyVcwpR4ApGoJNi9iYiovGD3Zvdm95YPdm/lYfeWBnl+x5GQU6dOYdKkSbh37x4sLCxQv3591KlTB/n5+cjMzMShQ4cQGxuLlStXYunSpWjbtq3YkYmIiHDr1i2EhoYiLCwM165dk8U2bEoraABw/vx5zJ49G6mpqahZsyaWLVuGnj17ih3LILZu3YoVK1bg8ePH6Ny5M/z9/WFnZyd2LIP666+/4Ovrq3fs1KlTyM3Nha2tLRwcHPReq1+/PjIyMowZscydPHkSWq22RO/x8fExTBgjU+IJRKKSYPcmIiIpYveWB3Zvdu9/YveWNnZv6ZDvTxUJ+PPPPzFixAjY2NhgyZIl8PT0LHSl+ePHjxEVFYXvv/8eI0eORGhoKBo0aCBSYiIiUrKnT58iOjoaISEhSEhIgCAIUKlU6Nixo9jR3pgSC9qiRYuwZcsWaLVafPDBB5g8eTJsbGxw8+bNV77P3t7eSAnLVmBgoO7fY2NjERsb+9r3qFQqpKenGzKWQT179gympqZ6x+Lj4wEA7u7uhcZnZ2fDysrKKNkMZceOHdixY0exxhZ8D5N6CVfiCUSikmL3JiIiKWH3lhd2b3bvF7F7SxO7t/TwKyOiH3/8EVZWVti1axfeeuutIsfY2NigX79+6NixI3r37o3169dj3rx5Rk5KRERKlpqaipCQEOzbtw+PHz8GAFSvXh19+/bFgAEDUKdOHZETvjklFrTg4GDdvx86dAiHDh0q1vukesfBi1djK0H9+vULfb1iYmKgUqnw/vvvFxp/7NgxyW+/99FHH6FNmzZixzAaJZ5AJCoNdm8iIpICdu+isXtLC7v3c+ze8sLuLU1cABdRUlIS+vTp89IC/k+2trbw8fHBsWPHjJCMiIiULiMjA2FhYQgNDcVff/0FQRBgZWUFd3d3xMXFYe7cufDw8BA7Zpnx8fGBSqUSO4ZRTZgwocTvEQTBAEmMZ+DAgWjdurXYMYzGy8sLq1atQseOHfHee+9h+/btuHTpEmrWrInOnTvrjQ0PD8fx48cxadIkkdKWjXbt2sHb21vsGEajxBOIRKXB7k1EROUVu7f8sXvLH7u3/LF7SxMXwEX08OHDEm2p1qhRI+zcudOAiYiISOn27duHkJAQxMXFQavVonLlyvD29oanpyc6dOiAu3fvokuXLmLHLHMLFy4EAOTl5eHixYvIz89HkyZNJL8l1avY29ujT58+xR5/48YNfPnllwZMZFihoaFwd3dXVAkfNmwYfvvtN0yYMAEqlQqCIMDc3Bzz58/Xbf0bExODrVu3IjExEQ0bNsSwYcPEDU0losS7K4hKg92biIjKG3Zvdu+XYfeWHnZv+WP3liYugIsoLy+vRD/cK1SogJycHAMmIiIipZsyZQqsra0xePBgeHh4wNnZWe85RnK+Uvs///kPVq9erftZa2FhgcGDB2Pq1KmyfJ6Pv78/njx5giFDhrx27M6dO7Fo0SJ+DpEYCwsLbNy4EZGRkUhNTYWNjQ28vb3RpEkT3ZgzZ84gOTkZvXr1wsyZM2FpaSliYioNpd1dQVQa7N5ERFTesHuzexeF3Vua2L2Vgd1beuT3E4WIiIhKrW7durh+/TpCQkJw+fJl/P777+jSpQsaNmwodjSD2rVrFxYvXow6derAx8cHJiYmSEhIwMaNG6HVaiV99fXLvP322wgMDMSTJ08wcuTIIsfcvXsX/v7+OHr0KMzNzSW/RZcSmZqawtvb+6Vbk40dOxaTJk2CiYmJkZOVPV9fX8k/R62klHh3BREREZEcsHuze/8Tu7f0sXvLG7u3NHEBXGSZmZm4efNmscY+fPjQwGmIiEjpDhw4gNOnTyM8PBxRUVE4duwYli1bhkaNGsHT0xMtWrQQO6JBbN++HW3atMGmTZtQoUIFAM+fuTVlyhRs374d06ZN021bJRe//PILRo4ciaVLl+LJkyeYOHGi3ut79uzBvHnzkJWVBUdHRwQGBqJx48YipS0bJ0+ehFarLdF7fHx8DBOmnJDTVoNBQUFiRyCicozdm4iIyhN2b3bvAuzez7F7Swe7N0mFShAEQewQSqVWq0u1nc3Zs2cNkIaIiEifVqvFsWPHEBERgYMHD+LJkye6n1t9+/bFuHHjUKdOHZFTlg0nJyd8/vnnhbYkS01NxaBBgxAaGgq1Wi1SOsP5+++/8e9//xsJCQkYNmwYZsyYgYcPHyIgIAAxMTGwtLTElClTMHToUMlvwVfSz12CIEClUvFzF5VrarUaixcvfuldBkT0HLs3ERGVZ+ze7N7s3uzeVL6xe0sT7wAXka+vr9gRiIiIXsrU1BSdOnVCp06dkJubi5iYGOzZswfHjx/Hr7/+ipCQELi6uqJv37748MMPxY77Rp48eYJKlSoVOl63bl0IgoBHjx6JkMrwrK2tsXbtWnz++efYuHEjrl+/juTkZNy/fx/vvfce5s6dK5sTLQDw0UcfoU2bNmLHICpTvLuC6PXYvYmIqDxj92b3ZvcmKv/YvaWHd4ATERGRzujRo+Hm5gYXFxe0aNGiyKt2Hz58iMjISERERCA1NVUWV+q+7ErOhw8fon379ggODkb79u1FSmd4z549g7+/P0JCQmBiYoK5c+eiX79+YscqU7xal+SId1cQERERSRO7N7s3uzeRdLB7SxPvACciIiKd+Ph4HD16FCqVCjY2NmjXrh1cXV3h5uam24asWrVqGDJkCIYMGYJr165h7969IqemN2ViYoIFCxagatWq2LBhA+Li4uDj4wMzM35UJCrveHcFERERkfSweysTuzeRdLF7Sw+/sxIREZFOcnIy0tPTkZycjJSUFKSmpuLQoUNQqVSoXLkynJ2d4erqCldXV7zzzjuoV68exo4dK3bsMpGZmYmbN2/qHcvKygIAPHjwoNBrAGBvb2+UbIZQ1Hw+/vhj/P3339i+fTtycnLw9ddfw8TERG+MlOdMJEft2rXj3RVEREREEsPuze7N7k0kLeze0sMt0ImIiOiVbt26pVfKz507B61Wi6pVq8LFxQWurq4YPHiw2DHfyKu2MirYtuhFKpUK6enpho5mMK+bM4BCr0t5zrNmzcLAgQPRunVrsaMQlRluL0hEREQkH+ze7N4FpDxndm+SI3ZvaeId4ERERPRKdnZ28PLygpeXFwAgOzsb4eHhCAkJwf79+xEdHS35Eu7r6yt2BKPz8fEp0fOLpC4oKEjsCERERERERC/F7i1P7N5EROLgAjgRERG9Um5uLpKSkpCYmIhTp07hzJkzyMvLg4WFhW5LNqlTYkFbuHCh2BGI6A35+vqifv36YscgIiIiojLA7i1P7N5E0sfuLU3cAp2IiIj05OfnIzU1FfHx8YiPj8fp06eRl5cHc3NzvPvuu7ri7ejoCAsLC7HjEhEREREREUkOuzcREZHhcAGciIiIdEaNGoWTJ08iNzcXJiYmaNGiBdzc3ODq6gonJydYWlqKHZGIiIiIiIhI0ti9iYiIDIsL4ERERKSjVqthbm6ODz/8EGPGjMHbb78tdiQiIiIiIiIiWWH3JiIiMiwugBMREZHO119/jYSEBFy9ehUqlQqNGjVC+/bt4ebmBmdnZ1SpUkXsiERERERERESSxu5NRERkWFwAJyIiokJu3ryJuLg43bPI7t27BxMTE6jVari6uupKubW1tdhRiYiIiIiIiCSJ3ZuIiMgwuABOREREr3XhwgXEx8fjxIkTOHnyJB49egQzMzO0bNkS7du3x6RJk8SOSERERERERCRp7N5ERERlgwvgREREVCIajQZRUVH45ZdfkJqaCpVKhbNnz4odi4iIiIiIiEg22L2JiIhKz0zsAERERFS+Xb16FadPn8bp06eRlpaGc+fOIS8vDxUrVkTHjh3h7OwsdkQiIiIiIiIiSWP3JiIiKju8A5yIiIh0srKykJaWpivcaWlpyMrKgiAIqFKlCtq2bQsXFxc4OzujefPmMDExETsyERERERERkaSwexMRERkWF8CJiIhIR61WQ6VSQRAEVKtWDc7Ozrp/HBwcoFKpxI5IREREREREJGns3kRERIbFLdCJiIhIp3v37nBxcYGLiwuaNGkidhwiIiIiIiIi2WH3JiIiMizeAU5ERERERERERERERERERLLAh4cQEREREREREREREREREZEscAGciIiIiIiIiIiIiIiIiIhkgQvgREREREREREREREREREQkC1wAJyIiIiIiIiIiIiIiIiIiWTATOwAREZES/PDDD1i5cmWJ3nPw4EHUrVvXQIlKr3Pnzrhx4wYA4KuvvoKfn98rx48YMQLHjh0DAAQHB8Pd3d2guaKjo9GgQQOD/B5ERERERERUfrF7s3sTEREBXAAnIiIyCgcHB3h7e+sdu3//PuLi4mBtbQ0PD49C77G2tjZWvFKLiop6ZQl/8OAB4uPjjZiIiIiIiIiIlIrdm4iIiAAugBMRERmFp6cnPD099Y4lJCQgLi4O1apVw5IlS0RKVnqVK1dGcnIy7ty5g7feeqvIMdHR0cjPz4e5uTny8vKMnJCIiIiIiIiUhN2b3ZuIiAjgM8CJiIiolLp06QJBEBAdHf3SMXv37kXVqlXRqlUrIyYjIiIiIiIikgd2byIiopLjAjgREVE5dvjwYYwYMQIuLi5o1aoVunXrhsWLFyMzM1Nv3PXr1+Hg4ICOHTsW+d8ZOnQoHBwckJCQoDs2c+ZMODg4IDExERMnTsS7774LNzc3bNmypVjZunfvDuD5VmxFycjIwMmTJ9GtWzeYmb1805ndu3dj8ODBaNu2Ld599114e3tj9erVePLkSZHjT5w4geHDh8PZ2Rnt2rXD5MmTdc9FK4pWq8V///tf9O/fH46OjnB0dMSAAQMQGhoKQRCKNVciIiIiIiKSL3bvwti9iYhIyrgFOhERUTm1ZMkSrFu3DqampnByckK1atWQmpqK9evXY9++fdi0aRPq1av3xr/P119/jfv376NDhw64cOEC1Gp1sd739ttvo1mzZkhOTkZGRgZsbW31Xo+KisKzZ8/g5eWFlStXFnr/s2fPMH36dOzZswcWFhZwcXGBlZUVkpKS8N1332H//v0IDg5GtWrVdO/ZuXMnvvnmGwBAu3btULlyZRw7dgwnT56ERqMp9Hvk5eXh3//+N44ePQobGxs4OjrC3NwciYmJmDlzJhISErBw4cKS/O8iIiIiIiIiGWH3ZvcmIiL54QI4ERFRORQbG4t169ahatWqWL9+vW4bM41Gg7lz52Lnzp2YNGkSdu3aBZVK9Ua/V0ZGBsLDw1GvXj08e/YMJibF3yCmZ8+eOHv2LKKjo/Hxxx/rvRYZGQlbW1s4OzsX+d6tW7diz549qFevHjZs2ID69esDAB4/foypU6fi8OHD+Oabb/DDDz8AAG7duoXAwECYmZlh7dq1aN++PQDgwYMHGDFiBNLT0wv9Hj/++COOHj0KFxcXrFixAtWrVwcA3Lt3D6NGjUJoaCicnJzQv3//Ys+ZiIiIiIiI5IHdm92biIjkiVugExERlUMbN24EAHzxxRd6z/CysLDA7Nmz0aBBA/zxxx+Ij49/49/Lw8NDdzV7SQo4APTo0QNA4a3Ybt68idTUVPTo0eOl/81NmzYBAAIDA3UFHABsbGywZMkSVKpUCdHR0bhy5QoAIDQ0FLm5uRg4cKCugANA9erVsWDBgkL/fY1Ggy1btsDc3BxLlizRFXAAqFmzJubOnQsA+M9//lOiORMREREREZE8sHuzexMRkTxxAZyIiKicyc/PR3JyMlQqFbp161bodTMzM3h6egKA3nPFSuudd94p9Xvr1auHFi1a4NSpU8jIyNAdj4yMhCAI+PDDD4t8361bt3D9+nVUq1YNbm5uhV6vVKkSOnToAABITEwEACQlJQEAOnXqVGh8s2bNULduXb1jf/zxB7Kzs9GoUSO89dZbhd7TqlUr1KhRA5cvX8bdu3eLOWMiIiIiIiKSA3Zvdm8iIpIvboFORERUzmRmZiIvLw/VqlWDjY1NkWMKCmdZlMcqVaq80ft79uyJP/74AzExMRgyZAiA5yW8Xr16ePfdd4t8T0Fhr1Onzkv/uy/OseA9tWvXfun469ev635969YtAMD58+fh4ODwyjncunULtWrVeuUYIiIiIiIikg927+fYvYmISI64AE5ERFTOCIIAAK98vljBGAsLi2L9N7Va7UtfK+nWay/q0aMHFi9ejH379mHIkCG4cuUK/vjjD4wZM+al7ynNHF/3vDUzM/2PNc+ePQMA2Nvbw8nJ6ZXvrVix4itfJyIiIiIiInlh99Yfw+5NRERywgVwIiKicqZq1aowNzdHZmYmHj9+XOSV6NeuXQMA1KhRA8D/F+mC4vmirKwsA6V9fiX5u+++i1OnTuHu3buIjIwEAHh5eb30Pba2tgCgd9X4iwrmWLNmTQDAW2+9hQsXLuDGjRto0qRJofH/3AYOgO6q8tq1a2PJkiUlmBERERERERHJHbv3c+zeREQkR3wGOBERUTljbm4OR0dHPHv2DDExMYVez8/P1x13dXUFAFhbWwN4Xrbz8vL0xj98+BCXL182aOaePXvi2bNniI6Oxr59+9CkSZNXbn1mb2+POnXq4OHDh7rnjP1TdnY2jh07BgBwdnYGALi7uwNAkf9Prl27hosXL+oda9WqFSwtLXHu3LlCBR0A7ty5gx49emD48OHIyckp/mSJiIiIiIhI8ti92b2JiEi+uABORERUDn3yyScAgG+//Rbp6em643l5eZgzZw6uXr2KZs2a6bYXq1q1KmrXrg2NRoNt27bpxj99+hTffPPNK7dhKwvdu3eHSqXC1q1bcf78+VdegV6gYI7+/v66K84BICcnB9OnT8fjx4/xwQcf6J5V5uvri6pVq2LXrl3Yv3+/bvzjx4/x5ZdfFroC39raGh999BH+/vtvTJ8+Hffv39f7PWbNmoVLly7B2tqa27AREREREREpELs3uzcREckTt0AnIiIqh7p06YJPP/0UGzZsQL9+/eDk5IRq1arh9OnTuH37NurUqYPly5frPUNs5MiRCAwMRGBgIPbu3YuaNWsiOTkZWq0WH3zwAQ4dOmSwvHZ2dmjTpg1SUlIAvHoLtgJDhw5FSkoK9u3bBy8vLzg7O8PKygonT57Ew4cPoVarsWDBAt346tWrY8GCBZg8eTI+++wzODo6wtbWFklJSdBqtWjYsGGhq+2nTp2Ks2fPIj4+Hl27dkWrVq1gZWWFlJQUZGZm4u2338acOXPK9n8GERERERERSQK7N7s3ERHJE+8AJyIiKqdmzJiBH3/8Ea6urjh37hwOHz6MihUrYty4cQgNDUXDhg31xg8dOhSLFi1Cy5YtkZ6ejqSkJLi6uuLXX38tNNYQevToAQBo0aIFGjRo8NrxJiYmWL58OYKCgtCiRQskJyfj+PHjqF27NqZPn44dO3agevXqeu/x8PDAL7/8Ag8PD1y+fBm//fYbmjdvjp9//hm1a9cu9HtYWlpiw4YN+Oqrr9CoUSOkpaUhISEBtra2mDhxInbu3Kl7zhkREREREREpD7s3uzcREcmPShAEQewQREREREREREREREREREREb4p3gBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJAhfAiYiIiIiIiIiIiIiIiIhIFrgATkREREREREREREREREREssAFcCIiIiIiIiIiIiIiIiIikgUugBMRERERERERERERERERkSxwAZyIiIiIiIiIiIiIiIiIiGSBC+BERERERERERERERERERCQLXAAnIiIiIiIiIiIiIiIiIiJZ4AI4ERERERERERERERERERHJwv8B42sKW/QreEsAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Coefficient Statistics: \n", - "\t 757 total coefficients\n", - "\t 13 constrained coefficients\n", - "\t 80 coefficients adjusted\n", - "\t 677 coefficients converged\n", - "\t 80 coefficients not converged\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABlcAAAJ4CAYAAAD4GLXlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjtElEQVR4nOzde3xMd/7H8fdMspEgqcsS91ajkXW/pY3WpQ2hXVTTrKqKRbXEdbOKVmlLlVJWSxVFEHUJ26B6sYpSrUXF/rSKChpxq0tTxDWRzPz+8MjUNEFmMpmcmNfz8chD51zmfOb7jd3z8Z5zjslqtVoFAAAAAAAAAACAfDEXdQEAAAAAAAAAAADFCeEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKABSA1WpVeHi4ateurRkzZji078qVK1W7dm2tXLnStqx27drq0aOHq8vM5cyZM7py5UqhH8cVsrOzdezYsTtu9/7776t27dq3/QkPDy/0eo8cOVLoxwAAAIBxbdq0SYMHD1Z4eLjq1aunhx56SC+88IK++uort9WQmZmpN954Qw8++KAaNGigt956K89lr7zyimrXrq3jx4879P455947duwopE9g707n2G+88YZq166txMTE2253/PhxhYSEqGfPnvk+9o4dO1S7dm29//77+d6nKG3fvl21a9fWX/7yl9v2URcvXlRsbKyaNGmixo0bKy4uTpKUkZGhU6dOuatcSQXrqyV66/zKb28NIP+8i7oAACjOtm/frhMnTqhkyZJasWKF+vfvLy8vL6ff75133tGf//xnF1aY2+rVqzV27Fh9+umnKlmyZKEeq6BOnjypfv36qV27dho8eHC+9unatauaNm2a57pSpUq5srxc+vfvr0uXLumjjz4q1OMAAADAeC5duqRXX31V69atU926dfX000+rYsWKOnXqlFavXq3+/fvr+eef18svv1zotaxYsUIJCQl65JFH9MQTT+iBBx7Ic5nValXz5s1Vrlw5h94/IiJCNWrUUFBQUCF9gt/l5xz7b3/7mxISEvTpp58qKirqltutXr1aVqtVf/vb3wqjVENITExUyZIldeXKFS1fvlzDhg3Lc7uZM2dq7dq16tChg5o3b65GjRpp3759GjRokAYNGqSnn37abTW7uq+W6K3/yJneGsCdEa4AQAF8/PHH+tOf/qRevXpp5syZ2rRpk9q2bev0+3Xu3NmF1eVt+/btxeabNceOHVNycrLatWuX730aNWrklnHMy1dffaUHH3ywSI4NAACAojV69GitW7dOI0aMUJ8+fezWxcTEqE+fPpo/f77uv/9+denSpVBrOXDggCRpxIgRCgkJkSTbVR03L5Okxo0bO/z+ISEhdu9RmPJzjl2/fn3blTSnT59WYGBgntt98sknuueeexzqL4qTS5cuaf369WrTpo3279+vlStXasiQIfLx8cm1bc7vyNixY+Xv7y/pxhUgJ06ccGvNkuv7aone+o+c6a0B3Bm3BQMAJ128eFEbNmxQgwYN9OSTT0qSli1bVsRVAQAAAHC3b7/9VmvXrlX79u1zBSuS5OPjowkTJsjLy0uLFi0q9HquX78uSSpduvRtl91NoqKiZLFY9MUXX+S5fteuXTp69Kg6deqkEiVKuLk69/j888919epVhYWFqW3btkpLS9P69evz3Dbn9yEnWCkq9NUAijPCFQBw0meffaZr167pkUceUc2aNVW7dm1t3bo1z3uY7tixQ3//+9/VpEkThYWF6a233srzGy5/vC/sre6BfPz4cdWuXVuvvPKKbdnVq1f19ttv6/HHH1eDBg300EMPqV+/ftq1a5dtm/DwcK1atUqS1KZNG9uxXnnlFTVu3FhHjx7VoEGD1LRpUzVp0kT9+/fXqVOndOLECQ0ZMkRNmzZVWFiYYmNjdebMGbuaLBaLPvroI3Xu3FkNGjRQs2bN9MILL9gdX/r9/syHDx/W6NGj9cgjj6h+/frq3LmzPv30U7vt/v73v0uSZsyY4dS9oG/HarXq3//+t5577jk1a9ZMdevWVYsWLTR06FClpqbm2v6LL75Q9+7d1bRpUz300EPq2bOntm3bJun3+zBL0nfffZfrfr9ff/21evbsqSZNmqhBgwbq3LmzFi1aJIvFYtsmZ04/+OAD/fOf/1T9+vX18MMPa8+ePcrOztaMGTPUqVMnNWrUSM2aNVOPHj3cet9uAAAA3Nrq1asl6bbPeKhevbo+/fRT2/l4jsOHD2vo0KF6+OGHVa9ePbVp00YTJ07UhQsXcr3Hzz//rKFDh6p58+aqV6+e2rVrp/fee0/Xrl2T9Ps55c3n/DnPH/zjMinvfsNqtWrZsmV6+umn1ahRIz388MOKiYnR3r17bdvc6pkr33zzja3vadiwoZ5++mm782Lp93Pnzz//XLNnz1ZERITq1aun8PBwTZs2TVlZWXbbSXmfY//Rk08+qT/96U92PcXNcuYo55Zg169fV1xcnKKiotS4cWPVq1dPjz76qEaPHq20tLRbHke60Vfl9TzHvJ79IUk//PCDYmJi9OCDD6p+/frq2LGj5s+fr+zsbLvt9u3bp5iYGLVs2dL2u/DWW2/p/Pnzt60nR87VSY888ogef/xxSbmDipxx/e677yTJ9mzKV155RSNHjpQkjRw50jb2kuO93tdff60nnnhC9erVU3R09G1rdqSvzqmf3tp+vIu6twY8GbcFAwAn5Zy4PvHEE5KkDh066MCBA0pISNDw4cNt223evFkDBw5UxYoV1a9fP5nNZn388ce3bQycMXToUG3dulXdu3fX/fffr19//VVLlixRz5499fHHHyskJESvvvqqFixYoKSkJI0cOVIPPPCAbf/r16/rueee04MPPqgRI0Zo9+7dWrlypU6fPq1ff/1VoaGhGjFihL7//nslJibq0qVLmjdvnm3/YcOG6fPPP1f79u31zDPP6MKFC1q5cqV69OihqVOn2k7uc/Tt29c2JpmZmYqPj9ewYcNUoUIFhYWFKSIiQllZWbaGKyIiIl/3gr5y5Yp+++23XMu9vLx0zz332F6//fbbio+PV9u2bfXPf/5TkpSUlKQvvvhC+/bt0xdffCGz+cZ3EKZPn64PPvhAISEhiomJkY+Pj5YuXao+ffpo1qxZqlu3rt555x2NGDFC999/v2JiYtSkSRNJ0vz58zVp0iTde++9evHFF1WyZElt2LBB48eP144dO/T+++/bjiNJ8+bNU3BwsEaPHq0jR46oTp06evvtt7VkyRI988wz+vvf/66LFy8qISFBAwYM0IcffqjWrVvn51cEAAAAheSHH36Qt7e3GjZseNvt/viMkqSkJPXp00deXl7q1q2bqlatqt27d2vhwoX66quvlJCQYDsH/uGHH9SrVy+VLl1a3bt3V7ly5bR7927Nnj1b27Zt06JFi1SuXDm98847WrFihe2c/5577pHZbLZbVrZs2VvW+PLLL+uTTz5Rs2bNFBsbq8zMTH300UeKjo7WkiVLVKdOnTz3W7JkicaNG6f69etr0KBBMpvN2rhxo0aOHKn9+/dr1KhRdttPnTpVVqtVXbt2VUBAgFauXKmZM2fKZDJpyJAhCgoKuuU5dl7Kli2rNm3a6D//+Y8OHz5sN9YZGRlau3at6tatq7/85S+SpNjYWG3cuFGRkZF65plnlJGRoS1btujf//63Tp48qfnz5992LvNr48aN+sc//qFq1arphRdeUMmSJbV161ZNmjRJ//vf//T+++/LZDLp2LFj6tmzpypUqKBevXopICBA33//vRYvXqwffvhBy5cvl8lkuuVxDh8+rO+//16NGzdWlSpVVKVKFd13333auXOn3XjkjOvs2bP1888/65133lGpUqVUvnx5+fj4aPny5bmeY+lorxcbG6u//e1vuu+++/K8JdnN8ttXS/TW7u6tAeSDFQDgsOTkZGtwcLD1qaeesi07evSoNTg42BoWFmbNyMiwWq1Wq8VisYaHh1ubNWtm/fXXX23bpqenW9u1a2cNDg62JiYm2pYHBwdbo6Ojba9ffvlla3BwsPXYsWN2xz927Jg1ODjY+vLLL1utVqs1LS3NGhwcbH3jjTfsttu9e7e1Xbt21hUrVtz2PXOW/XH/zp07W4ODg63jxo2zW96lSxdrSEiI7XN+8cUX1uDgYOvcuXPttrt06ZL18ccftz700EPWK1euWK1Wq3X69OnW4OBg64svvmi1WCy2bXfu3GkNDg62Dh061LZs+/bt1uDgYOv06dOtd5Lzvrf6eeyxx2zb/vbbb9Y6depY+/Xrl+t9hgwZYg0ODrb++OOPVqvVaj1y5Ij1L3/5izU6Otr2ea1Wq/XXX3+1Nm3a1Pr000/blv1x/o4ePWqtU6eO9a9//av18uXLtuUWi8U6bNgwa3BwsHXlypVWq/X3OW3UqJH17NmzdjU1atTI+sILL9gt++WXX6xt27a1vv/++3ccGwAAABSuhg0bWh9++GGH9snOzrZGRERY69WrZz106JDduhUrVliDg4Otr7zyitVqvXH+2KFDB2vr1q2t586dy3PbOXPm2Jbd7pz/dsu2bdtmOye/+Vz90KFD1pCQEOvgwYOtVuvv597bt2+3Wq03zk3r1q1r7devn91+FovFOnz4cGtwcLD1+++/t1qtv5/jP/LII9YLFy7Ytr18+bK1adOm1hYtWth9vj+eY9/O119/bQ0ODra+++67dss///xza3BwsHXJkiVWq9Vq3b9/f559jtVqtUZFRVmDg4Nt45xXT/LYY4/Z9Rc5EhMT7Xq8K1euWB966CFrZGSkXS9htVqt7777rjU4ONj6+eefW61Wq3XevHl245Tj7bfftkZGRlpPnTp1288+ceJEa3BwsDU+Pt62LGee8vqc0dHR1uDg4NvWb7U61+sNGTLktrXmyG9fbbXSW7uztwaQf9wWDACckPPtmg4dOtiWVa9eXY0aNdJvv/2mL7/8UpK0f/9+HT9+XJ07d1b58uVt2/r7+6tbt24uq6d06dLy9/fX2rVrtWLFCp09e1aS1LBhQ61bty7fD8zs2LGj3eucbzf99a9/tVteo0YNWSwW/frrr5Ju3NtXktq3b6/ffvvN9pORkaF27drp3Llz2rlzp917dOrUye6bVw0aNJAk23s6q0+fPlqwYEGun8mTJ9u2KVu2rJKSkjRlyhS7fdPT0+Xn5ydJtkvLv/rqK2VnZ6tnz55237oqX768li5dqvfff/+Wtaxfv15ZWVnq27evSpYsaVtuMpn00ksvSVKue0I3bNhQf/7zn+2WVapUSd99953i4uJsl29XqlRJ69ev16BBg/I9NgAAACgcXl5etttZ5de+ffuUmpqqJ598MtcVLX/729907733at26dcrOztaBAwd08OBBtW7dWhaLxe6c+7HHHlOJEiVu+WwNR2zYsEGS9MILL9idqwcFBenjjz/Wa6+9lud+X375pa5fv64nnnhC586ds9V27tw5W8+U0yPleOyxxxQQEGB7XbJkSQUFBd3xlly306JFC1WuXFmfffaZ3fJVq1bJ19dXnTp1kiSFhIRo165dGjp0qN12aWlptppc8aDy//73vzp37pzat2+vS5cu2c1bTo+VM2+VK1eWJE2ePFnbtm1TZmampBu3mVq5cqUCAwNveZysrCytWbNGZrPZdgWI9Hu/+sknn+jq1atOfQZner28bpmWl/z21RK9dVH01gDujNuCAYCDrl+/rjVr1ki6cYJ1871Kw8LCtHv3bi1btkwdO3bU0aNHJd04YfqjWrVquawmHx8fTZw4USNHjrQ1PMHBwWrRooU6dep0y0v3/+iP/6j/pz/9SZJUoUIFu+Xe3jf+7yPnmSEpKSmSpLZt297yvU+cOHHbY+UEFzc/h8QZtWrV0sMPP3zH7UqUKKGNGzdq06ZNOnr0qI4fP65ffvnFdlKaU0fO/N5///253iM4OPi2x8iZ/5svEc9RqVIl+fv757rX7R/HRZLGjx+v2NhYvfPOO3rnnXdUo0YNPfLII+rQoYNCQ0Pv+FkBAABQuAIDA5WSkqLMzMw73gYpx+3OFU0mk2rVqqXU1FSdO3fOdr6dkJCghISEPN/vj+fbzsg5N/1j2CNJdevWveV+OfWNGDHiltvcqR+QbvQEf3wOiSPMZrMiIyM1c+ZM/d///Z8aN26ss2fPauvWrerYsaPdw9t9fHz0xRdf2J7vcfz4cZ09ezZXP1AQOeMydepUTZ06Nc9tcsalffv2ioqK0sqVK9WrVy/5+vqqadOmat26tZ566im7Wxz/0ebNm/Xrr7+qfv36ysjIsM2jj4+P7rvvPh05ckSff/657XkzznwGR3q9P/aPeXGkr5ZEb30Td/XWAO6McAUAHLR582bbt6lu9XC+pKQkHTp0yPbaarXm2qYgJzp5NRxt27bVI488om+++UbffvutduzYofnz52vBggV69dVXbQ+wu52cE7s/ut29fXPqKVWqlGbMmHHLbWrWrGn3+ubnjLjb9evXNWjQIG3evFn16tVTvXr11L59e9WpU0dff/21PvzwQ7ttpTuPQV5y5v1W+1osllzNd15z0KRJE23YsEHbt2/XN998ox07dighIUHLli1T79697R6+CAAAAPcLDQ3V4cOH9b///U9hYWG33G7kyJG6fv36bUOIHDn9go+Pj+2/u3fvfst/dL3Vubwjcs59HZXTn4wbN07VqlXLc5s/PuOhsPqBp59+WrNmzdKnn36qxo0b69NPP1V2drZdsHDp0iX17NlTe/fuVdOmTVWvXj117txZ9evXV3x8vO0f/R31xz4tZ96GDBmixo0b57lPqVKlJN24+mnChAkaMGCANm3apP/+979KSkrS1q1b9eGHHyohISHPYEH6/QqQPXv2qE2bNnluk5CQ4FS44kyv5+Xldcf3daSvvjk8obc2Vm8NeDrCFQBwUM6Ja79+/WyX297s3//+tzZv3mx38nr48OFc26Wmpt7xWDknpRkZGXbLcy5NznHp0iUdOHBA1apVU7t27dSuXTtJ0k8//aSePXvqgw8+yNcJoLOqVaumlJQUhYSE5Gqa9u/frzNnzthut2UEX3zxhTZv3qy+ffvabs+VY9WqVXavc5rDlJSUXCexCxcu1KFDhzR69Gj5+vrmOk5O85OcnGx7cGaOkydP6vLly7bL/28lIyNDBw4c0D333KNWrVqpVatWkqRjx47p+eefV3x8vAYNGqTSpUvn45MDAACgMHTs2FEJCQlaunTpLcOVX375RWvWrFFAQIDKlCmj6tWrS5IOHjyYa1ur1arDhw+rdOnSCggIsAss/niVtsVi0bp162zvVxA3n/vWrl3bbt3UqVN17do1vfrqq7fcLyAgIFd9Z86c0Q8//OCS+vKjevXqeuihh7R27VqNHj1an376qe699149+OCDtm0WLVqkH3/8UWPHjtWzzz5rt39+bqXk5eWly5cv51r+xz4tZ1x8fX1zjculS5f07bff2q5kOHHihI4eParmzZurR48e6tGjh7KyshQXF6epU6dq2bJlevnll3MdMy0tTVu2bFGpUqU0adKkXP94b7FY9PLLL2vPnj3au3fvba9Aykth9XqO9NWjR4/WfffdJ4ne2mi9NeDpiDYBwAFnz57VN998ozJlymjgwIFq27Ztrp8hQ4ZIklavXq17771XNWvW1Jo1a+wuc7527ZoWL158x+NVrFhR0o1vIN1s9erVdq+Tk5P13HPPaebMmXbLa9WqJX9/f7tvzeR8qyWvb/w4q3379pKk9957z275pUuXFBsbq4EDB+Y6ic2PnBNgV1/OfO7cOUnK1TCmpqZq3bp1kn7/BlObNm1kMpm0ZMkSu/tonz9/XnPnztUPP/xgC1bMZrNdrREREfLy8tKHH35od89mq9WqadOmSZIef/zxO9batWtXjRs3zm559erVFRgYKJPJxDeVAAAAilhoaKgiIiK0bt06LViwINf6ixcv6h//+IeysrI0aNAg+fj4qE6dOqpevbrWrFmT6x+MExMTdfToUds/7NarV09Vq1bVqlWrbLdHyrF8+XLFxsba/rG6IHKuiomPj7dbfvToUS1cuFDHjh3Lc7927drJbDZr9uzZunbtmt26iRMnauDAgfrxxx+dqumP59j5ERUVpd9++02rV6/Wvn37cl2xcat+4P/+7/9sz7O43e3JKlasqN9++83u9kyZmZlau3at3XYtWrRQqVKltHDhQtsxc8yePVv/+Mc/9PXXX9te9+rVS99//71tG29vbzVs2FDSra8GWb16tbKystS5c2dFRETk6k/btWunqKgoSdKyZctu+Zmk33vFm8e7MHo9R/vqq1evKiQkhN7agL014Om4cgUAHJBz4vr000+rRIkSeW5Tt25dhYaGaufOnfrss8/01ltv6fnnn1eXLl3UvXt3lS5dWomJibp48eIdjxcZGakPP/xQb731lo4fP64KFSpo06ZNSk5Otjt+kyZN1KJFCyUkJCg9PV0PPvigsrOztW7dOh07dszuG04592OdN2+eWrZsedt7uebX008/rf/85z9avny5jh49qvDwcGVlZenf//63jhw5ouHDh9/2AYy3kvOgwq+++kpVqlRRRESEypQpU+B6W7ZsqX/9618aP368jh49qgoVKujgwYNKTEy0BSjp6emSbtxvum/fvvrwww/VrVs3dejQQRaLRStWrNCFCxdsIUlOvT/99JOWLl2qZs2aKTg4WLGxsfrXv/6lp556Sk8//bRKliypjRs3avv27Xrsscf05JNP3rbWSpUqqUuXLlq+fLn69Omj8PBwmUwmffvtt9q5c6eio6NVsmTJAo8JAAAACmbChAm6cOGCJk6cqE8//VTt2rVTuXLldOTIEa1atUq//fabunfvru7du0u68Y+db731lvr27asuXbqoW7duqlatmn744QetWrVKVatW1bBhw+y27devn55++mk9++yzqlGjhvbs2aPExETVqFFDAwYMKPBnaNmypTp27KjExESdOnVK4eHhunTpkpYsWaISJUpo+PDhee533333afDgwZo2bZo6d+6syMhIBQQEaOPGjfr222/12GOP2YIiR+V1jn0n7du317hx4zRp0iR5e3vrqaeeslsfHh6ujz76SMOGDdNzzz0nf39//fjjj1q1apW8vLx0/fp1Wz+Ql6ioKCUlJalPnz567rnnZLFYlJiYmCuQCQgI0Ouvv66RI0eqU6dO6tq1qypWrKjt27friy++UIMGDfTcc89Jknr16qW1a9eqb9++evbZZ1WtWjWdPn1ay5Ytk7+/v5555pk8a1m5cqUk2d4nL3//+9+1ZMkSff7553rllVduedV7Tq+4Zs0aWa1WWw/j6l7Pmb66S5cu9NYG7K0BT0e4AgAOWLVqlUwm021PXKUbJ8Y7d+5UQkKCEhMTtXTpUk2fPl0LFy6UdOMbYY8++qj+8Y9/3PZ9atSooblz52rGjBmaM2eO/Pz81LJlSy1btkwdOnSw23b69OmaP3++7ZZXkhQSEqIpU6aoU6dOtu26deum7777TomJidq+fbtLTgC9vLw0e/ZsxcfH65NPPtGUKVPk5+enoKAgvf/++043UjVr1lTv3r318ccfa/z48apWrZqaN29e4HqDgoI0Z84cTZ8+XXFxcZKkypUrKzo6Wo8//rieeuopffPNN7arSoYOHar7779fixcv1rvvvis/Pz/Vr19fkydPVv369W3vO2LECE2ZMkUTJkxQTEyMgoOD1bdvX91///1auHCh7VkuNWvW1Ouvv65u3brl66qT119/Xffff79WrVqlqVOnKjs7W/fff79ee+21O/4uAgAAwD0CAgIUFxenL774QitXrtTSpUv122+/qXTp0mrYsKG6d+9uu8VrjrCwMK1YsUIzZ85UYmKiLl26pCpVquj5559XTEyMAgICbNs+/PDDWrFihWbNmmX7B+VKlSrpueeeU79+/fL1EPH8mDx5sho0aKCPP/5YkyZN0j333KNmzZrpH//4R67b5N5swIABqlWrlhYtWqQ5c+bIYrGoevXqGjFihHr06JGv53DkJa9z7DspUaKEOnbsqKVLlyo8PNx21UKO5s2ba+rUqbZey8fHR1WqVFFsbKxq1aqlvn376ptvvrE717/Z008/rcuXL2vp0qV655139Oc//1mdO3fWY489pq5du9pt+9RTT6ly5cqaN2+eFi1apIyMDFWpUkX9+/dXnz59bF+UCgoK0uLFizVr1iytXr1aaWlpKlOmjMLCwjRw4MA8n7fy/fff69ChQwoNDdUDDzxwy/GoUaOGHnvsMW3cuFGffPKJLeD7o7CwMHXq1EkbNmzQnj171KxZM9WsWdPlvZ4zfXWXLl3UrFkzemuD9daApzNZXXntGgDAaVarVSEhIXrooYe0aNGioi4HAAAAAIBih94agLtwk3YAMIicy85LlSpVxJUAAAAAAFA80VsDcBduCwYABvDhhx9q7969km7cWxYAAAAAADiG3hqAOxGuAEARS09PV3x8vK5fv66OHTuqd+/eRV0SAAAAAADFCr01AHfjmSsAAAAAAAAAAAAO4JkrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAM8/oH2VqtVFot7HjtjNpvcdiww3u7GeLsfY+5ejLd7Md7uxXi7V1GOt9lskslkKpJjo/hyZ890N+N/a42BeTAO5sI4mAtjYB6Mg7kwjqKai/z2TR4frlgsVv322+VCP463t1lly5ZSevoVZWVZCv14no7xdi/G2/0Yc/divN2L8XYvxtu9inq8y5UrJS8vwhU4xl09092sqP/u4wbmwTiYC+NgLoyBeTAO5sI4inIu8ts3cVswAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAc4F3UBQAA8s9sNslsNsnL60Y2nvPn7VgsVlks1sIuDQAAAAAA3EJOP5+XW/X49POAsRGuAEAxYTabVKZMSbuTrYAAvzvul51t0fnzVzghAwAAAACgCOTVz+fljz0+/TxgbIQrAFBM5FyxMmXJLh0/fTFf+1QL9New7k1lNps4GQMAAAAAoAjQzwN3J8IVAChmjp++qMMnLhR1GQAAAAAAwAH088DdhQfaAwAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxg2XElJSVHjxo21cuVK27L9+/crOjpajRo10qOPPqq4uLgirBAAAAAAAAAAAHgiQ4Yr169f17Bhw3TlyhXbsnPnzql379667777lJiYqMGDB2vatGlKTEwswkoBAAAAwHXS0tI0fPhwhYWFqXHjxurbt68OHTpkW3+nL5xZLBZNnz5dLVu2VMOGDfX8888rNTXV3R8DAAAAuOsZMlx5//33VapUKbtlK1askI+Pj8aMGaOgoCBFRUWpV69emjt3bhFVCQAAAACu1b9/fx07dkxz587Vxx9/LF9fX/Xq1UtXr17N1xfOZs6cqYSEBL311ltavny5TCaTXnzxRWVmZhbhpwIAAADuPoYLV3bu3Knly5dr0qRJdsuTkpIUGhoqb29v27KwsDClpKQoLS3N3WUCAAAAgEudO3dO1apV07hx41S/fn0FBQVpwIABOnv2rA4ePHjHL5xlZmZq/vz5Gjx4sFq3bq2QkBC9++67On36tNavX1/Enw4AAAC4u3jfeRP3SU9P14gRIzR69GhVrlzZbt2pU6cUHBxst6xixYqSpJMnT6p8+fJOH9fbu/AzJi8vs92fKFyMt3sx3u5RkPFlbgqG33H3Yrzdi/F2L8Ybt1O2bFlNnTrV9vrXX39VXFycKlWqpFq1aun999/P8wtnH374odLS0nTixAldvnxZYWFhtvUBAQGqU6eOdu7cqQ4dOrj18wAAAAB3M0OFK2PGjFGjRo3UqVOnXOuuXbsmHx8fu2UlSpSQJGVkZDh9TLPZpLJlS915QxcJCPBz27HAeLsb421czI1rMI7uxXi7F+PtXow37uS1116zXakya9YslSxZ8o5fODt16pQk5fqiWsWKFfXLL7+4p3AAAADAQxgmXFm9erWSkpL06aef5rne19c3132Cc0KVkiVLOn1ci8Wq9PQrTu+fX15eZgUE+Ck9/aqysy2FfjxPx3i7F+PtHjnj7AzmpmD4HXcvxtu9GG/3KurxDgjw46qZYqJnz57q2rWrli1bpoEDB2rp0qV3/MLZ1atXJSnPbS5cuFCgetxxtf/djKvWjIF5MA7mwjiYC/fgThTFB38njKM4zIVhwpXExESlpaXp0UcftVv+xhtvKC4uTlWqVNGZM2fs1uW8DgwMLNCxs7Lc19hmZ1vcejxPx3i7F+NtXMyNazCO7sV4uxfj7V6MN+6kVq1akqRx48Zp9+7dWrx48R2/cObr6yvpxrNXcv47Zxs/P+evlnL31f53M65aMwbmwTiYC+NgLoyLuSkajLtxGHkuDBOuTJkyRdeuXbNb1q5dOw0ZMkR//etf9fnnnyshIUHZ2dny8vKSJG3btk01a9Ys0PNWAAAAAMAI0tLStG3bNj3xxBO2nsdsNisoKEhnzpxRpUqVbvuFs6ysLNuyGjVq2G0TEhLidF3uutr/blbUV63hBubBOJgL42Au3IM7URQf/J0wjqKci/xe8W+YcOVWV5+UL19eVatWVVRUlObNm6dRo0bphRde0A8//KD4+HiNHTvWzZUCAAAAgOudOXNGL730ksqXL6/mzZtLkq5fv659+/YpPDxcf/7zn2/7hTN/f3+VLl1aO3bssIUr6enp2rdvn6KjowtUG1dauQZXrRkD82AczIVxMBfGxdwUDcbdOIw8F8a9YdkflC9fXvPmzVNKSooiIyM1Y8YMjRgxQpGRkUVdGgAAAAAUWEhIiFq0aKGxY8cqKSlJycnJevnll5Wenq5evXopKipKly5d0qhRo3To0CGtXLlS8fHx6tevn6Qbz1qJjo7WlClTtHHjRv3000/65z//qUqVKikiIqKIPx0AAABwdzHMlSt5OXDggN3rBg0aaPny5UVUDQAAAAAUHpPJpPfee0//+te/FBsbq4sXL6pZs2ZasmSJqlSpIkmaN2+exo8fr8jISFWoUCHXF86GDBmirKwsjR49WteuXVNoaKji4uJyPeQeAAAAQMEYOlwBAAAAAE/i7++vMWPGaMyYMXmuv9MXzry8vDR8+HANHz68kCoEAAAAIBWj24IBAAAAAAAAAAAYAeEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAOIFwBAAAAAAAAAABwAOEKAAAAAAAAAACAAwhXAAAAAAAAAAAAHEC4AgAAAAAAAAAA4ADCFQAAAAAAAAAAAAcQrgAAAAAAAAAAADiAcAUAAAAAAAAAAMABhCsAAAAAAAAAAAAO8C7qAm6WlpamiRMn6ptvvlFGRoZCQ0M1YsQI1apVS5I0cuRIrVy50m6fwMBAbdmypSjKBQAAAAAAAAAAHshQ4Ur//v1lNps1d+5clSxZUtOmTVOvXr20fv16+fn56cCBA4qJiVF0dLRtHy8vryKsGAAAAAAAAAAAeBrD3Bbs3LlzqlatmsaNG6f69esrKChIAwYM0NmzZ3Xw4EFlZ2fr0KFDql+/vipUqGD7KVeuXFGXDgAAAAAAAAAAPIhhrlwpW7aspk6danv966+/Ki4uTpUqVVKtWrV05MgRZWRkKCgoqAirBAAAAAAAAAAAns4w4crNXnvtNa1YsUI+Pj6aNWuWSpYsqeTkZJlMJsXHx2vLli0ym81q3bq1YmNj5e/vX6DjeXsX/gU8Xl5muz9RuBhv92K83aMg48vcFAy/4+7FeLsX4+1ejDcAAAAA3B0MGa707NlTXbt21bJlyzRw4EAtXbpUBw8elNlsVtWqVTV79mylpqZq0qRJSk5OVnx8vMxm5xpUs9mksmVLufgT3FpAgJ/bjgXG290Yb+NiblyDcXQvxtu9GG/3YrwBAAAAoHgzZLhSq1YtSdK4ceO0e/duLV68WBMmTFCvXr0UEBAgSQoODlaFChXUtWtX7dmzRw0bNnTqWBaLVenpV1xW+614eZkVEOCn9PSrys62FPrxPB3j7V6Mt3vkjLMzmJuC4XfcvRhv92K83auoxzsgwI+rZgAAAADABQwTrqSlpWnbtm164okn5OXlJUkym80KCgrSmTNnZDKZbMFKjuDgYEnSqVOnnA5XJCkry32NbXa2xa3H83SMt3sx3sbF3LgG4+hejLd7Md7uxXgDAAAAQPFmmK+tnTlzRi+99JK+++4727Lr169r3759CgoK0ksvvaQ+ffrY7bNnzx5Jv1/pAgAAAAAAAAAAUNgME66EhISoRYsWGjt2rJKSkpScnKyXX35Z6enp6tWrlzp27KitW7dq1qxZOnr0qL7++mu9+uqr6tixo4KCgoq6fAAAAAAAAAAA4CEMc1swk8mk9957T//6178UGxurixcvqlmzZlqyZImqVKmiKlWqaNq0aZo9e7Zmz54tf39/derUSbGxsUVdOgAAAAAAAAAA8CCGCVckyd/fX2PGjNGYMWPyXN++fXu1b9/evUUBAAAAAAAAAADcxDC3BQMAAAAAAAAAACgOCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAZx/vx5vf7662rVqpWaNGmibt26KSkpybZ+5MiRql27tt1Pq1atbOstFoumT5+uli1bqmHDhnr++eeVmppaFB8FAAAAuKt5F3UBAAAAAIAbhg4dqrS0NE2dOlXlypXT0qVL1adPH61cuVJBQUE6cOCAYmJiFB0dbdvHy8vL9t8zZ85UQkKC3n77bQUGBmry5Ml68cUX9dlnn8nHx6coPhIAAABwV+LKFQAAAAAwgNTUVG3dulVvvPGGmjVrpvvvv1+jRo1SYGCgPvvsM2VnZ+vQoUOqX7++KlSoYPspV66cJCkzM1Pz58/X4MGD1bp1a4WEhOjdd9/V6dOntX79+iL+dAAAAMDdhXAFAAAAAAygbNmymjNnjurVq2dbZjKZZLVadeHCBR05ckQZGRkKCgrKc/+ffvpJly9fVlhYmG1ZQECA6tSpo507dxZ6/QAAAIAn4bZgAAAAAGAAAQEBat26td2ytWvX6ujRo2rRooWSk5NlMpkUHx+vLVu2yGw2q3Xr1oqNjZW/v79OnTolSapcubLde1SsWFG//PJLgWrz9uZ7eQXh5WW2+xNFg3kwDubCOJgL9yjI+DI37sXfCeMoDnNBuAIAAAAABrRr1y69+uqratOmjcLDwzV9+nSZzWZVrVpVs2fPVmpqqiZNmqTk5GTFx8fr6tWrkpTr2SolSpTQhQsXnK7DbDapbNlSBfosuCEgwK+oS4CYByNhLoyDuTAu5qZoMO7GYeS5IFwBAAAAAIPZsGGDhg0bpoYNG2rq1KmSpMGDB6tXr14KCAiQJAUHB6tChQrq2rWr9uzZI19fX0k3nr2S89+SlJGRIT8/55tSi8Wq9PQrBfg08PIyKyDAT+npV5WdbSnqcjwW82AczIVxMBfukTPOzmBu3Iu/E8ZRlHMREOCXrytmCFcAAAAAwEAWL16s8ePHKyIiQlOmTLFdiWIymWzBSo7g4GBJ0qlTp2y3Aztz5oxq1Khh2+bMmTMKCQkpUE1ZWfzjgitkZ1sYSwNgHoyDuTAO5sK4mJuiwbgbh5Hnwrg3LAMAAAAAD7N06VKNGzdO3bt313vvvWd3i6+XXnpJffr0sdt+z549kqRatWopJCREpUuX1o4dO2zr09PTtW/fPjVr1sw9HwAAAADwEFy5AgAAAAAGkJKSogkTJigiIkL9+vVTWlqabZ2vr686duyo/v37a9asWerQoYNSUlL05ptvqmPHjgoKCpIkRUdHa8qUKSpXrpyqVq2qyZMnq1KlSoqIiCiqjwUAAADclQhXAAAAAMAA1q1bp+vXr2v9+vVav3693brIyEhNnDhR06ZN0+zZszV79mz5+/urU6dOio2NtW03ZMgQZWVlafTo0bp27ZpCQ0MVFxeX6yH3AAAAAAqGcAUAAAAADCAmJkYxMTG33aZ9+/Zq3779Ldd7eXlp+PDhGj58uKvLAwAAAHATnrkCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOMBQ4UpaWpqGDx+usLAwNW7cWH379tWhQ4ds6/fv36/o6Gg1atRIjz76qOLi4oqwWgAAAAAAAAAA4IkMFa70799fx44d09y5c/Xxxx/L19dXvXr10tWrV3Xu3Dn17t1b9913nxITEzV48GBNmzZNiYmJRV02AAAAAAAAAADwIN5FXUCOc+fOqVq1aurfv78eeOABSdKAAQPUuXNnHTx4UNu2bZOPj4/GjBkjb29vBQUFKTU1VXPnzlVUVFQRVw8AAAAAAAAAADyFYa5cKVu2rKZOnWoLVn799VfFxcWpUqVKqlWrlpKSkhQaGipv79/zoLCwMKWkpCgtLa2oygYAAAAAAAAAAB7GMFeu3Oy1117TihUr5OPjo1mzZqlkyZI6deqUgoOD7barWLGiJOnkyZMqX758UZQKAAAAAAAAAAA8jEvDlcuXL8vLy0u+vr4Fep+ePXuqa9euWrZsmQYOHKilS5fq2rVr8vHxsduuRIkSkqSMjIwCHc/bu/Av4PHyMtv9icLFeLsX4+0eBRlf5qZg+B13L8bbvRhv92K8736u6okAAAAAGJvT4cqWLVv0448/asCAAZKkSZMmadGiRTKZTOrWrZtGjRrldFG1atWSJI0bN067d+/W4sWL5evrq8zMTLvtckKVkiVLOn0ss9mksmVLOb2/owIC/Nx2LDDe7sZ4Gxdz4xqMo3sx3u7FeLsX4313KMyeCAAAAICxORWubNq0SQMGDFCNGjU0YMAAJSUlacGCBapRo4YCAwO1ePFi1axZU88991y+3zMtLU3btm3TE088IS8vL0mS2WxWUFCQzpw5o0qVKunMmTN2++S8DgwMdOZjSJIsFqvS0684vX9+eXmZFRDgp/T0q8rOthT68Twd4+1ejLd75IyzM5ibguF33L0Yb/divN2rqMc7IMCPq2ZcpDB6IgAAAADFh1PhSk7TsGjRIknS559/LrPZrAULFqhq1aoaMGCAEhMTHWokzpw5o5deeknly5dX8+bNJUnXr1/Xvn37FB4erj//+c9KSEhQdna2LXzZtm2batasWeDnrWRlua+xzc62uPV4no7xdi/G27iYG9dgHN2L8XYvxtu9GO/irzB6IgAAAADFh1NfW9u/f7+6detmu2Jk69atCg4OVtWqVSVJLVu21M8//+zQe4aEhKhFixYaO3askpKSlJycrJdfflnp6enq1auXoqKidOnSJY0aNUqHDh3SypUrFR8fr379+jnzEQAAAADAaYXREwEAAAAoPpwKV7KyslS6dGlJ0okTJ3T06FE99NBDtvUWi0Xe3o5dFGMymfTee+8pLCxMsbGx6tKliy5cuKAlS5aoSpUqKl++vObNm6eUlBRFRkZqxowZGjFihCIjI535CAAAAADgtMLoiQAAAAAUH06d7VerVk379u2TJK1bt04mk0ktW7a0rd+0aZOqVavm8Pv6+/trzJgxGjNmTJ7rGzRooOXLlztTMgAAAAC4TGH1RAAAAACKB6fClfbt22vWrFk6ceKEvvvuOwUGBiosLExHjx7VW2+9pa1bt+qVV15xda0AAAAAYAj0RAAAAIBncypcGTBggM6fP6/ExERVrlxZ48ePl7e3t86fP69vv/1WzzzzjKKjo11dKwAAAAAYAj0RAAAA4NmcClfMZrNGjx6t0aNH2y0PCQnRpk2bbA91BAAAAIC7ET0RAAAA4NmceqD93//+d23bti3Xch8fHwUGBmrDhg16/PHHC1wcAAAAABgRPREAAADg2fJ15crVq1d17tw52+vvvvtOERERuvfee3Nta7FY9O233+rkyZOuqxIAAAAAihA9EQAAAICb5StcuXTpkjp27KirV6/alk2YMEETJky45T6NGjUqcHEAAAAAYAT0RAAAAABulq9wpUKFCnr99de1Y8cOWa1WrV69Wk2bNlX16tVzbWs2m/XnP/9Z3bp1c3mxAAAAAFAU6IkAAAAA3CzfD7R/6qmn9NRTT0m6cQl879691aZNm8KqCwAAAAAMhZ4IAAAAQI58hys3++qrr1xdBwAAAAAUG/REAAAAgGdzKlyRJKvVqu3bt+vs2bOyWCx5bpPzrS4AAAAAuNvQEwEAAACey6lwJTU1VS+++KKOHTuW53qr1SqTyUQjAQAAAOCuRE8EAAAAeDanwpUpU6bo2LFjioqKUv369eXj4+PqugAAAADAsOiJAAAAAM/mVLiyfft2devWTa+//rqr6wEAAAAAw6MnAgAAADyb2ZmdsrKy9Je//MXVtQAAAABAsUBPBAAAAHg2p8KVunXrau/eva6uBQAAAACKBXoiAAAAwLM5Fa4MGTJEn3zyidatWyer1erqmgAAAADA0OiJAAAAAM/m1DNX5s+fr3vuuUexsbHy9fVV2bJlZTKZ7LYxmUzasGGDS4oEAAAAACOhJwIAAAA8m1PhSnJyssxmsypXrmxb9sdva/HtLQAAAAB3K3oiAAAAwLM5Fa589dVXrq4DAAAAAIoNeiIAAADAszn1zJU/yszMlMViccVbAQAAAECxQ08EAAAAeBanw5Xz58/rzTffVIsWLdSoUSPt2LFDSUlJiomJUUpKiitrBAAAAADDoScCAAAAPJdT4cr58+fVtWtXLV26VH5+frZ7CV+4cEGbN29W9+7ddezYMZcWCgAAAABGQU8EAAAAeDanwpUZM2boxIkTWrBggZYvX25rJNq0aaM5c+boypUrmjlzpksLBQAAAACjoCcCAAAAPJtT4cpXX32lZ555Rs2bN5fJZLJb16pVK3Xt2lU7duxwSYEAAAAAYDT0RAAAAIBncypcOXPmjEJCQm65PigoSGfPnnW6KAAAAAAwMnoiAAAAwLM5Fa6UL19eJ06cuOX65ORklS1b1umiAAAAAMDI6IkAAAAAz+ZUuNKqVSslJCTo+PHjudb973//04oVK9SiRYsCFwcAAAAARkRPBAAAAHg2b2d2GjRokDZt2qTIyEg1bdpUJpNJCQkJio+P1zfffKPSpUtrwIABrq4VAAAAAAyBnggAAADwbE5duRIYGKiEhAQ1btxYW7ZskdVq1bp167R582Y1atRIH330kapVq+bqWgEAAADAEOiJAAAAAM/m1JUrklStWjXNmTNHFy9e1JEjR2SxWFStWjWVL1/elfUBAAAAgCHREwEAAACey6krV27m7++v+vXrq2HDhjQRAAAAADyOK3ui8+fP6/XXX1erVq3UpEkTdevWTUlJSbb1+/fvV3R0tBo1aqRHH31UcXFxdvtbLBZNnz5dLVu2VMOGDfX8888rNTW1QDUBAAAAyC1fV66MHDlSzz77rBo2bGh7fScmk0kTJkwoWHUAAAAAYADu6omGDh2qtLQ0TZ06VeXKldPSpUvVp08frVy5UuXKlVPv3r3Vtm1bjR07Vrt379bYsWNVpkwZRUVFSZJmzpyphIQEvf322woMDNTkyZP14osv6rPPPpOPj4/jHxwAAABAnvIVrqxatUoPP/ywrZFYtWrVHfchXAEAAABwt3BHT5SamqqtW7dq2bJlatKkiSRp1KhR2rJliz777DP5+vrKx8dHY8aMkbe3t4KCgpSamqq5c+cqKipKmZmZmj9/voYPH67WrVtLkt599121bNlS69evV4cOHZz45AAAAADykq9wZePGjSpXrpzdawAAAADwFO7oicqWLas5c+aoXr16tmUmk0lWq1UXLlzQjz/+qNDQUHl7/97GhYWF6cMPP1RaWppOnDihy5cvKywszLY+ICBAderU0c6dOwlXAAAAABfKV7hStWrVPF+np6erdOnSMptvPLrl4MGDqlChgsqUKePaKgEAAACgCLmjJwoICLBdcZJj7dq1Onr0qFq0aKF3331XwcHBdusrVqwoSTp58qROnTolSapcuXKubX755ReH67mZt3eBH9fp0by8zHZ/omgwD8bBXBgHc+EeBRlf5sa9+DthHMVhLvIVruTl3Xff1cKFC/XJJ5/ovvvukyTNnTtXX3zxhYYOHarnn3/eVTUCAAAAgOEUdk+0a9cuvfrqq2rTpo3Cw8P19ttv53puSokSJSRJGRkZunr1qiTluc2FCxecrsNsNqls2VJO74/fBQT4FXUJEPNgJMyFcTAXxsXcFA3G3TiMPBdOhSsrVqzQhx9+qKZNm9pO5iXpqaee0q+//qrJkyercuXKeuKJJ1xWKAAAAAAYRWH3RBs2bNCwYcPUsGFDTZ06VZLk6+urzMxMu+0yMjIkSSVLlpSvr68kKTMz0/bfOdv4+TnflFosVqWnX3F6f9z4xmVAgJ/S068qO9tS1OV4LObBOJgL42Au3CNnnJ3B3LgXfyeMoyjnIiDAL19XzDgVrixdulSPPPKI4uLi7JY//PDDevjhh/X8889rwYIFhCsAAAAA7kqF2RMtXrxY48ePV0REhKZMmWK7EqVSpUo6c+aM3bY5rwMDA5WVlWVbVqNGDbttQkJCHK7jZllZ/OOCK2RnWxhLA2AejIO5MA7mwriYm6LBuBuHkefCqRuWpaamql27drdcHxERocOHDztdFAAAAAAYWWH1REuXLtW4cePUvXt3vffee3a3+AoNDdWuXbuUnZ1tW7Zt2zbVrFlT5cuXV0hIiEqXLq0dO3bY1qenp2vfvn1q1qyZw7UAAAAAuDWnwhU/Pz+dPXv2luvPnTsnLy8vp4sCAAAAACMrjJ4oJSVFEyZMUEREhPr166e0tDSdPXtWZ8+e1cWLFxUVFaVLly5p1KhROnTokFauXKn4+Hj169dP0o1nrURHR2vKlCnauHGjfvrpJ/3zn/9UpUqVFBERUaDPCwAAAMCeU7cFa9q0qZYuXaquXbuqQoUKdut+++03JSQkqEmTJi4pEAAAAACMpjB6onXr1un69etav3691q9fb7cuMjJSEydO1Lx58zR+/HhFRkaqQoUKGjFihCIjI23bDRkyRFlZWRo9erSuXbum0NBQxcXF5XrIPQAAAICCcSpc6du3r5577jk9+eST6ty5s+6//36ZTCb9/PPP+vTTT3X+/HkNGDDA1bUCAAAAgCEURk8UExOjmJiY227ToEEDLV++/Jbrvby8NHz4cA0fPtyhYwMAAABwjFPhSv369TVz5ky98cYbWrhwod26SpUq6YMPPlCDBg1cUR8AAAAAGA49EQAAAODZnApXJKlly5b66quvtG/fPh0/flxZWVmqVq2a6taty/NWAAAAANz16IkAAAAAz+V0uJKjTp06qlOnjitqAQAAAIBih54IAAAA8Dz5CldmzJihdu3aKTg42Pb6TkwmkwYOHFiw6gAAAADAAOiJAAAAANws3+HKvffeSyMBAAAAwCPREwEAAAC4Wb7Clbi4OP3lL3+xvV60aFGhFQQAAAAARkNPBAAAAOBm+QpXXn31VQ0dOlSdO3eWJJ08eVLNmjVTtWrVCrU4AAAAADACeiIAAAAANzPnZ6PffvtNly5dsr0eOXKkdu/e7fJizp8/r9dff12tWrVSkyZN1K1bNyUlJdkdt3bt2nY/rVq1cnkdAAAAAHAzd/VEAAAAAIqHfF25UqVKFc2cOVPHjx9XqVKlZLVa9eWXX+rIkSO33MeZ+wsPHTpUaWlpmjp1qsqVK6elS5eqT58+WrlypYKCgnTgwAHFxMQoOjrato+Xl5dDxwAAAAAAR7mrJwIAAABQPOQrXImNjdXLL7+sBQsWSLrRJHz55Zf68ssvb7mPo41Eamqqtm7dqmXLlqlJkyaSpFGjRmnLli367LPPNGjQIB06dEgDBgxQhQoV8v2+AAAAAFBQ7uiJAAAAABQf+QpXIiIiFBYWpiNHjigzM1M9e/ZUTEyMHn74YZcVUrZsWc2ZM0f16tWzLTOZTLJarbpw4YKOHDmijIwMBQUFueyYAAAAAJAf7uiJAAAAABQf+QpX2rRpY/fwxipVqqhKlSp68MEHXVZIQECAWrdubbds7dq1Onr0qFq0aKHk5GSZTCbFx8dry5YtMpvNat26tWJjY+Xv7++yOgAAAADgj9zREwEAAAAoPvIVrvzx4Y0nT56Un59foRUlSbt27dKrr76qNm3aKDw8XNOnT5fZbFbVqlU1e/ZspaamatKkSUpOTlZ8fLzMZrPTx/L2dn7f/PLyMtv9icLFeLsX4+0eBRlf5qZg+B13L8bbvRhv92K8i6+i6IkAAAAAGJdTD7SXpPXr1ys1NfWW+xTk/sIbNmzQsGHD1LBhQ02dOlWSNHjwYPXq1UsBAQGSpODgYFWoUEFdu3bVnj171LBhQ6eOZTabVLZsKaf2dUZAAA2YOzHe7sV4Gxdz4xqMo3sx3u7FeLsX4138uLsnAgAAAGBshnmgfY7Fixdr/PjxioiI0JQpU+Tj42N7v5xgJUdwcLAk6dSpU06HKxaLVenpV5za1xFeXmYFBPgpPf2qsrMthX48T8d4uxfj7R454+wM5qZg+B13L8bbvRhv9yrq8Q4I8OOqGSfxQHsAAAAAN8tXuPLEE0+45eGNS5cu1bhx49SjRw+9+uqrdrf6eumll3T+/HnFxcXZlu3Zs0eSVKtWrQIdNyvLfY1tdrbFrcfzdIy3ezHexsXcuAbj6F6Mt3sx3u7FeBc/7uqJAAAAABQP+QpXJKls2bIqW7asJCk0NFQPPfSQSx/emJKSogkTJigiIkL9+vVTWlqabZ2vr686duyo/v37a9asWerQoYNSUlL05ptvqmPHjgoKCnJZHQAAAACQl8LuiQAAAAAUH/kOV2720Ucf2f47JSVFJ06cUN26deXn5yez2Wy7lZcj1q1bp+vXr2v9+vVav3693brIyEhNnDhR06ZN0+zZszV79mz5+/urU6dOio2NdeYjAAAAAIDTCqMnAgAAAFB8OBWuSNLu3bv12muv6dChQ5Kk+fPny2q1atiwYXrttdf0xBNPOPR+MTExiomJue027du3V/v27Z0tGQAAAABcxtU9EQAAAIDiw6mnWR48eFC9e/fWr7/+qieffNK23M/PT9nZ2Ro2bJh27tzpsiIBAAAAwEjoiQAAAADP5lS48v7776tkyZL67LPP9PLLL8tqtUqSGjdurDVr1qhChQqaO3euSwsFAAAAAKOgJwIAAAA8m1Phynfffadnn31W5cuXl8lkslsXGBiorl27at++fS4pEAAAAACMhp4IAAAA8GxOhSuXL19WYGDgLdffc889Sk9Pd7ooAAAAADAyeiIAAADAszkVrlSrVk179uy55frt27eratWqThcFAAAAAEZGTwQAAAB4NqfClY4dO2rVqlX68ssvbctMJpMsFovmzJmj9evXq3379i4rEgAAAACMhJ4IAAAA8Gzezuz04osv6r///a/+8Y9/KCAgQCaTSW+88YbOnz+vCxcuKCQkRP369XN1rQAAAABgCPREAAAAgGdz6soVHx8fLVy4UC+99JKqVKkiX19f/fLLLypfvrz69++vpUuXys/Pz9W1AgAAAIAh0BMBAAAAns2pK1ck6U9/+pNeeOEFvfDCC66sBwAAAACKBXoiAAAAwHM5Ha5I0qVLl/Ttt9/q+PHj8vHxUZUqVdSiRQv5+vq6qj4AAAAAMCx6IgAAAMAzOR2urFu3Tq+//rrS09NltVol3XiAY6lSpfTmm2/qr3/9q8uKBAAAAACjoScCAAAAPJdT4cr333+vl156Sf7+/hoyZIgeeOABWSwWJScna/HixRoxYoSqVaumBg0auLpeAAAAAChy9EQAAACAZ3MqXJk1a5bKlCmjTz75ROXLl7ctb9eunbp166bOnTtr3rx5mj59ussKBQAAAACjoCcCAAAAPJvZmZ3+7//+T127drVrInKUL19eXbt21a5duwpcHAAAAAAYET0RAAAA4NmcCleuXLmSZxORo1y5crp48aLTRQEAAACAkdETAQAAAJ7NqXClWrVq2r59+y3Xb9++XVWqVHG6KAAAAAAwMnoiAAAAwLM5Fa507NhR69ev14wZM5SZmWlbnpmZqRkzZmjDhg3661//6rIiAQAAAMBI6IkAAAAAz+bUA+1ffPFFff3115oxY4bmz5+vGjVqyGQyKTU1VVeuXFGdOnXUt29fV9cKAAAAAIZATwQAAAB4NqfCFR8fHy1atEhxcXH6z3/+oyNHjshqtapGjRpq3769+vTpI19fX1fXCgAAAACGQE8EAAAAeDanwhVJ8vX11cCBAzVw4EBX1gMAAAAAxQI9EQAAAOC5HH7myt69e/NcvnHjRn311VcFLggAAAAAjIyeCAAAAEC+w5XffvtN0dHR6tKli9LT03OtX7x4sQYOHKhnn31Wp0+fdmmRAAAAAFDU6IkAAAAA5MhXuHLlyhX17NlTSUlJCg0N1dWrV3Nt0717dz388MPavXu3nn/+eWVkZLi8WAAAAAAoCvREAAAAAG6Wr3AlPj5eBw8e1Jtvvqn4+HgFBgbm2qZt27aKi4vT0KFDdfjwYX300UcuLxYAAAAAigI9EQAAAICb5StcWbdunVq3bq1nnnnmjtv27dtXTZo00RdffFHg4gAAAADACOiJAAAAANwsX+FKamqqmjdvnu83ffTRR5WSkuJ0UQAAAABgJPREAAAAAG6Wr3DFbDbL19c3329apkwZmUwmp4sCAAAAACOhJwIAAABws3yFK1WqVNHPP/+c7zc9dOhQnvcgBgAAAIDiiJ4IAAAAwM3yFa60bNlSn3zyiS5fvnzHbdPT07VmzRo1bty4wMUBAAAAgBHQEwEAAAC4Wb7ClWeffVYZGRnq16+fzp07d8vt0tLSNHDgQKWnp6t79+4uKxIAAAAAihI9EQAAAICbeednoxo1amjUqFF67bXX1KZNG/31r39VkyZNVLFiRWVnZ+vs2bPatWuXvvzyS12+fFmvvPKK6tatW9i1AwAAAIBb0BMBAAAAuFm+whVJ6tKliypWrKjXX39dH3/8sRITE+3WW61WVa9eXZMnT1Z4eLjLCwUAAACAokRPBAAAACBHvsMVSWrdurU2b96s7du36/vvv9eZM2fk5eWlwMBAPfjgg2rQoEFh1QkAAAAARY6eCAAAAIDkYLgiSSaTSc2bN1fz5s0Lox4AAAAAMDR6IgAAAAD5eqA9AAAAAAAAAAAAbiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAAByQr3BlwYIFOnz4cGHXAgAAAACGRE8EAAAA4Gb5ClemT5+u3bt32163adNGGzduLKyaAAAAAMBQ6IkAAAAA3Cxf4YrZbNa2bdt0+fJlSdKJEyd09erVQi0MAAAAAIyCnggAAADAzbzzs1HLli312Wef6fPPP5ckmUwmDR8+XMOHD7/lPiaTSfv27XNNlQAAAABQhOiJAAAAANwsX+HKW2+9pcqVKys5OVmZmZlKSkpSzZo1Vb58+cKuDwAAAACKHD0RAAAAgJvlK1wpXbq0Xn75ZdvrkJAQ9e/fX506dSq0wgAAAADAKOiJAAAAANwsX+HKHy1atEhBQUGurgUAAAAAigV6IgAAAMCzORWuPPjgg5Kk1atXa+3atTp+/Lh8fHxUuXJlPf7443ryySddWiQAAAAAGAk9EQAAAODZnApXrFarhgwZog0bNshqtcrf318Wi0X79+/Xpk2b9J///EczZ850da0AAAAAYAj0RAAAAIBnMzuz0+LFi7V+/Xp16tRJX3/9tXbu3Kldu3Zp06ZNevLJJ7Vp0yYtW7bM1bUCAAAAgCHQEwEAAACezalwJTExUQ8++KDeeecdBQYG2pZXrlxZkyZN0oMPPqjExESXFQkAAAAARkJPBAAAAHg2p8KVlJQURURE3HJ927Zt9fPPPzv8vufPn9frr7+uVq1aqUmTJurWrZuSkpJs6/fv36/o6Gg1atRIjz76qOLi4pwpHwAAAAAKpLB6IgAAAADFg1Phire3t65cuXLL9VeuXJHJZHL4fYcOHarvv/9eU6dO1ccff6y6deuqT58+Onz4sM6dO6fevXvrvvvuU2JiogYPHqxp06bxbTAAAAAAbldYPdHNZs6cqR49etgtGzlypGrXrm3306pVK9t6i8Wi6dOnq2XLlmrYsKGef/55paamFqgOAAAAALk5Fa7Uq1dPK1euVEZGRq51V69e1cqVK1WnTh2H3jM1NVVbt27VG2+8oWbNmun+++/XqFGjFBgYqM8++0wrVqyQj4+PxowZo6CgIEVFRalXr16aO3euMx8BAAAAAJxWGD3RzRYuXKjp06fnWn7gwAHFxMTo22+/tf2sXr3atn7mzJlKSEjQW2+9peXLl8tkMunFF19UZmam07UAAAAAyM2pcCXn209/+9vf9Nlnn+mnn37STz/9pE8//VRdunTR0aNH1bt3b4fes2zZspozZ47q1atnW2YymWS1WnXhwgUlJSUpNDRU3t7etvVhYWFKSUlRWlqaMx8DAAAAAJxSGD2RJJ0+fVovvPCCpk2bppo1a9qty87O1qFDh1S/fn1VqFDB9lOuXDlJUmZmpubPn6/BgwerdevWCgkJ0bvvvqvTp09r/fr1LvncAAAAAG7wvvMmubVu3VojRozQ1KlTNXz4cLt1ZrNZ//znPxUeHu7QewYEBKh169Z2y9auXaujR4+qRYsWevfddxUcHGy3vmLFipKkkydPqnz58k58EgAAAABwXGH0RJK0d+9e3XPPPVqzZo0++OADnThxwrbuyJEjysjIUFBQUJ77/vTTT7p8+bLCwsJsywICAlSnTh3t3LlTHTp0cLgeAAAAAHlzKlyRbnxTKyIiQhs2bNDRo0dltVpVo0YNRUREqHr16gUubNeuXXr11VfVpk0bhYeH6+2335aPj4/dNiVKlJCkPC/Fd4S3t1MX8DjEy8ts9ycKF+PtXoy3exRkfJmbguF33L0Yb/divN2L8b67FEZPFB4efstQJjk5WSaTSfHx8dqyZYvMZrNat26t2NhY+fv769SpU5KkypUr2+1XsWJF/fLLL07VAwAAACBvTocrklS9enWnLnW/kw0bNmjYsGFq2LChpk6dKkny9fXNdZ/gnFClZMmSTh/LbDapbNlSzhfroIAAP7cdC4y3uzHexsXcuAbj6F6Mt3sx3u7FeN89CqsnysvBgwdlNptVtWpVzZ49W6mpqZo0aZKSk5MVHx+vq1evSlKeX0q7cOFCgY7tji+k3c0IVo2BeTAO5sI4mAv34MuSxQd/J4yjOMxFgcKVwrB48WKNHz9eERERmjJliq0xqFSpks6cOWO3bc7rwMBAp49nsViVnn7F+YLzycvLrIAAP6WnX1V2tqXQj+fpGG/3YrzdI2ecncHcFAy/4+7FeLsX4+1eRT3eAQF+hm5OcHuDBw9Wr169FBAQIEkKDg5WhQoV1LVrV+3Zs0e+vr6Sbjx7Jee/pRtfSvPzcz7Qc/cX0u5mBKvGwDwYB3NhHMyFcTE3RYNxNw4jz4WhwpWlS5dq3Lhx6tGjh1599VWZzb83fqGhoUpISFB2dra8vLwkSdu2bVPNmjUL/LyVrCz3NbbZ2Ra3Hs/TMd7uxXgbF3PjGoyjezHe7sV4uxfjDWeYTCZbsJIj57mUp06dst0O7MyZM6pRo4ZtmzNnzigkJMTp47rrC2l3s6IOVnED82AczIVxMBfuwZcliw/+ThhHUc5Ffr+UZphwJSUlRRMmTFBERIT69euntLQ02zpfX19FRUVp3rx5GjVqlF544QX98MMPio+P19ixY4uwagAAAABwj5deeknnz59XXFycbdmePXskSbVq1VL16tVVunRp7dixwxaupKena9++fYqOji7QsQkDXYNg1RiYB+NgLoyDuTAu5qZoMO7GYeS5MEy4sm7dOl2/fl3r16/X+vXr7dZFRkZq4sSJmjdvnsaPH6/IyEhVqFBBI0aMUGRkZBFVDAAAAADu07FjR/Xv31+zZs1Shw4dlJKSojfffFMdO3ZUUFCQJCk6OlpTpkxRuXLlVLVqVU2ePFmVKlVSREREEVcPAAAA3F2cCleWLVum5s2b67777nNZITExMYqJibntNg0aNNDy5ctddkwAAAAAcEZh9ER38thjj2natGmaPXu2Zs+eLX9/f3Xq1EmxsbG2bYYMGaKsrCyNHj1a165dU2hoqOLi4nI95B4AAABAwTgVrkyZMkW9evXS4MGDXV0PAAAAABieO3qiiRMn5lrWvn17tW/f/pb7eHl5afjw4Ro+fHih1QUAAABAuvNTWfLayWxW2bJlXV0LAAAAABQL9EQAAACAZ3MqXOnTp4/mzJmjb775RhaLMR8mAwAAAACFhZ4IAAAA8GxO3RZs9+7dunTpkvr27SsfHx+VLVtWXl5edtuYTCZt2LDBJUUCAAAAgJHQEwEAAACezalwJTk5WWXKlFGZMmVsy6xWq902f3wNAAAAAHcLeiIAAADAszkVrnz11VeurgMAAAAAig16IgAAAMCzOfXMlT/KzMzkPsMAAAAAPBY9EQAAAOBZnA5Xzp8/rzfffFMtWrRQo0aNtGPHDiUlJSkmJkYpKSmurBEAAAAADIeeCAAAAPBcToUr58+fV9euXbV06VL5+fnZ7iV84cIFbd68Wd27d9exY8dcWigAAAAAGAU9EQAAAODZnApXZsyYoRMnTmjBggVavny5rZFo06aN5syZoytXrmjmzJkuLRQAAAAAjIKeCAAAAPBsToUrX331lZ555hk1b95cJpPJbl2rVq3UtWtX7dixwyUFAgAAAIDR0BMBAAAAns2pcOXMmTMKCQm55fqgoCCdPXvW6aIAAAAAwMjoiQAAAADP5lS4Ur58eZ04ceKW65OTk1W2bFmniwIAAAAAI6MnAgAAADybU+FKq1atlJCQoOPHj+da97///U8rVqxQixYtClwcAAAAABgRPREAAADg2byd2WnQoEHatGmTIiMj1bRpU5lMJiUkJCg+Pl7ffPONSpcurQEDBri6VgAAAAAwBHoiAAAAwLM5deVKYGCgEhIS1LhxY23ZskVWq1Xr1q3T5s2b1ahRI3300UeqVq2aq2sFAAAAAEOgJwIAAAA8m1NXrkhStWrVNGfOHF28eFFHjhyRxWJRtWrVVL58eVfWBwAAAACGRE8EAAAAeC6nrly5WVZWlqxWq7y9vVWiRAlX1AQAAAAAxQY9EQAAAOB5nL5yZc+ePXrnnXe0a9cuWa1WSZLZbNYjjzyiUaNG6d5773VZkQAAAABgNPREAAAAgOdyKlzZu3evevTooczMTLVs2VL33XefLBaLfv75Z33zzTd69tlntWLFClWvXt3V9QIAAABAkaMnAgAAADybU+HK9OnT5ePjo4SEBIWEhNit2717t3r37q2pU6fq3XffdUmRAAAAAGAk9EQAAACAZ3PqmStJSUnq0aNHriZCkho1aqTo6Ght3bq1wMUBAAAAgBHREwEAAACezalwxWQyKSAg4Jbrq1WrpqysLKeLAgAAAAAjoycCAAAAPJtT4Urr1q31ySefKDMzM8/1a9euVYsWLQpUGAAAAAAYFT0RAAAA4Nny9cyVnTt32r1u06aNRo8ere7du6tv3766//77ZTabdfToUS1evFgHDx7Ue++9Vxj1AgAAAIDb0RMBAAAAuFm+wpUePXrIZDLZLbNardqzZ4+GDBmSa7kk/f3vf9f+/ftdVCYAAAAAFB16IgAAAAA3y1e4MnDgwFyNBAAAAAB4CnoiAAAAADfLV7gyePDgwq4DAAAAAAyLnggAAADAzZx6oD0AAAAAAAAAAICnyteVK3906dIl/etf/9LmzZt1+vRp2z2Fb2YymbRv374CFwgAAAAARkNPBAAAAHg2p8KVd955RytWrFDFihXVqFEjeXl5ubouAAAAADAseiIAAADAszkVrmzatElt27bV9OnTZTZzZzEAAAAAnoWeCAAAAPBsTnUBly5dUuvWrWkiAAAAAHgkeiIAAADAsznVCTRp0kR79+51dS0AAAAAUCzQEwEAAACezalwZfjw4Vq7dq3i4+N19uxZV9cEAAAAAIZGTwQAAAB4NqeeuVK1alXVrl1bEydO1MSJE/PcxmQyad++fQUqDgAAAACMiJ4IAAAA8GxOhSvjx4/Xd999p3Llyunee++Vt7dTbwMAAAAAxRI9EQAAAODZnOoANm3apDZt2mjatGk0EQAAAAA8Dj0RAAAA4NmceuZKZmamHn30UZoIAAAAAB6JnggAAADwbE6FK40bN9bevXtdXQsAAAAAFAv0RAAAAIBncypceemll/T5559r/vz5On36tLKzs11dFwAAAAAYFj0RAAAA4Nmcuob9lVdekdls1uTJkzV58uQ8tzGZTNq3b1+BigMAAAAAI6InAgAAADybU+FKmTJlVKZMGReXAgAAAADFAz0RAAAA4NmcClc++ugjV9cBAAAAAMUGPREAAADg2Zx65goAAAAAAAAAAICncurKlZEjR95xG5PJpAkTJjjz9gAAAABgaPREAAAAgGdzKlxZtWrVLdeZTCb5+PioRIkSNBIAAAAA7kr0RAAAAIBncypc2bhxY65l2dnZOnv2rFatWqXt27dr6dKlBS4OAAAAAIyInggAAADwbE6FK1WrVs1zeY0aNdS0aVPFxMToX//6lyZNmlSg4gAAAADAiOiJAAAAAM9WKA+0Dw8P19dff12g95g5c6Z69Ohht2zkyJGqXbu23U+rVq0KdBwAAAAAcDVX9EQAAAAAjMupK1fu5OzZs7p27ZrT+y9cuFDTp09XaGio3fIDBw4oJiZG0dHRtmVeXl5OHwcAAAAACkNBeyIAAAAAxuZUuHLy5Mk8l1+7dk0//vij4uPjVbduXYff9/Tp0xo1apR27dqlmjVr2q3Lzs7WoUOHNGDAAFWoUMGZsgEAAADAJQqrJwIAAABQPDgVroSHh8tkMt1yvdls1qBBgxx+37179+qee+7RmjVr9MEHH+jEiRO2dUeOHFFGRoaCgoKcKRkAAAAAXKaweiIAAAAAxYNT4cpTTz2VZyPh5eWlihUrKjIyUtWrV3f4fcPDwxUeHp7nuuTkZJlMJsXHx2vLli0ym81q3bq1YmNj5e/v7/CxAAAAAMBZhdUTAQAAACgenApXJk6c6Oo67ujgwYMym82qWrWqZs+erdTUVE2aNEnJycmKj4+X2Wx2+r29vZ3fN7+8vMx2f6JwMd7uxXi7R0HGl7kpGH7H3Yvxdi/G270Y77tHUfREAAAAAIyjUB5oXxgGDx6sXr16KSAgQJIUHBysChUqqGvXrtqzZ48aNmzo1PuazSaVLVvKlaXeVkCAn9uOBcbb3Rhv42JuXINxdC/G270Yb/divAEAAACgeMtXuDJjxgyn3tyV9xg2mUy2YCVHcHCwJOnUqVNOhysWi1Xp6VcKXN+deHmZFRDgp/T0q8rOthT68Twd4+1ejLd75IyzM5ibguF33L0Yb/divN2rqMc7IMCPq2acZISeCAAAAIBxuDxcufm+w65sJF566SWdP39ecXFxtmV79uyRJNWqVatA752V5b7GNjvb4tbjeTrG270Yb+NiblyDcXQvxtu9GG/3YryLHyP0RAAAAACMI1/hyqJFi+64jdVq1ZIlS/Tll19Kklq3bl2wyv6gY8eO6t+/v2bNmqUOHTooJSVFb775pjp27KigoCCXHgsAAAAAbmaEnggAAACAceQrXHnwwQdvu/7kyZN69dVXtWPHDvn7++uVV15RVFSUSwrM8dhjj2natGmaPXu2Zs+eLX9/f3Xq1EmxsbEuPQ4AAAAA/JEReiIAAAAAxlHgB9onJCRo8uTJunz5slq0aKHx48crMDCwwIVNnDgx17L27durffv2BX5vAAAAAHCVwuqJAAAAABiX0+HKqVOnNGrUKP33v/9VqVKlNG7cOHXp0sWVtQEAAACAYdETAQAAAJ7LqXDl3//+tyZNmqRLly7p4Ycf1vjx41W5cmVX1wYAAAAAhkRPBAAAAHg2h8KV06dPa/To0fr222/l5+enMWPG6Nlnny2s2gAAAADAUOiJAAAAAEgOhCurVq3S22+/rfT0dIWFhWn8+PGqWrVqYdYGAAAAAIZBTwQAAAAgR77ClZiYGH399deSpMcff1zPPfecTp48qZMnT952v9DQ0IJXCAAAAABFjJ4IAAAAwM3yFa5s3rzZ9t/r1q3TunXr8vXm+/fvd6ooAAAAADASeiIAAAAAN8tXuDJo0KDCrgMAAAAADIueCAAAAMDNCFcAAAAA4A7oiQAAAADczFzUBQAAAAAAAAAAABQnhCsAAAAAYEAzZ85Ujx497Jbt379f0dHRatSokR599FHFxcXZrbdYLJo+fbpatmyphg0b6vnnn1dqaqo7ywYAAAA8AuEKAAAAABjMwoULNX36dLtl586dU+/evXXfffcpMTFRgwcP1rRp05SYmGjbZubMmUpISNBbb72l5cuXy2Qy6cUXX1RmZqa7PwIAAABwV8vXM1cAAAAAAIXv9OnTGjVqlHbt2qWaNWvarVuxYoV8fHw0ZswYeXt7KygoSKmpqZo7d66ioqKUmZmp+fPna/jw4WrdurUk6d1331XLli21fv16dejQoSg+EgAAAHBX4soVAAAAADCIvXv36p577tGaNWvUsGFDu3VJSUkKDQ2Vt/fv35ELCwtTSkqK0tLS9NNPP+ny5csKCwuzrQ8ICFCdOnW0c+dOt30GAAAAwBNw5QoAAAAAGER4eLjCw8PzXHfq1CkFBwfbLatYsaIk6eTJkzp16pQkqXLlyrm2+eWXXwqhWgAAAMBzEa4AAAAAQDFw7do1+fj42C0rUaKEJCkjI0NXr16VpDy3uXDhQoGO7e3NTQ8KwsvLbPcnigbzYBzMhXEwF+5RkPFlbtyLvxPGURzmgnAFAAAAAIoBX1/fXA+mz8jIkCSVLFlSvr6+kqTMzEzbf+ds4+fn5/RxzWaTypYt5fT++F1AgPPzANdhHoyDuTAO5sK4mJuiwbgbh5HngnAFAAAAAIqBSpUq6cyZM3bLcl4HBgYqKyvLtqxGjRp224SEhDh9XIvFqvT0K07vjxvfuAwI8FN6+lVlZ1uKuhyPxTwYB3NhHMyFe+SMszOYG/fi74RxFOVcBAT45euKGcIVAAAAACgGQkNDlZCQoOzsbHl5eUmStm3bppo1a6p8+fLy9/dX6dKltWPHDlu4kp6ern379ik6OrpAx87K4h8XXCE728JYGgDzYBzMhXEwF8bF3BQNxt04jDwXxr1hGQAAAADAJioqSpcuXdKoUaN06NAhrVy5UvHx8erXr5+kG89aiY6O1pQpU7Rx40b99NNP+uc//6lKlSopIiKiiKsHAAAA7i5cuQIAAAAAxUD58uU1b948jR8/XpGRkapQoYJGjBihyMhI2zZDhgxRVlaWRo8erWvXrik0NFRxcXG5HnIPAAAAoGAIVwAAAADAgCZOnJhrWYMGDbR8+fJb7uPl5aXhw4dr+PDhhVkaAAAA4PG4LRgAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxCuAAAAAAAAAAAAOIBwBQAAAAAAAAAAwAGEKwAAAAAAAAAAAA4gXAEAAAAAAAAAAHAA4QoAAAAAAAAAAIADCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAO+iLgAAAAAAAAAAkJuXV/6/G2+xWGWxWAuxGgA3I1wBAAAAAAAAAAMp419CFotVAQF++d4nO9ui8+evELAAbmLYcGXmzJnatm2bPvroI9uy/fv3a/z48frxxx9VpkwZ9ejRQ3369CnCKgEAAAAAAADAtUr7/Ulms0lTluzS8dMX77h9tUB/DeveVGaziXAFcBNDhisLFy7U9OnTFRoaalt27tw59e7dW23bttXYsWO1e/dujR07VmXKlFFUVFQRVgsAAAAAAADAU5jNJpnNpnxv78itvf7o+OmLOnzigtP7Ayg8hgpXTp8+rVGjRmnXrl2qWbOm3boVK1bIx8dHY8aMkbe3t4KCgpSamqq5c+cSrgAAAAAAAAAodGazSWXKlCxQYALg7mCocGXv3r265557tGbNGn3wwQc6ceKEbV1SUpJCQ0Pl7f17yWFhYfrwww+Vlpam8uXLF0XJAAAAAAAAADyE2WySl5c537frkqQmIRX197/WKeTKALibocKV8PBwhYeH57nu1KlTCg4OtltWsWJFSdLJkycLFK54exd+0pyTZpNquwfj7V6Mt3sUZHyZm4Lhd9y9GG/3Yrzdi/EGAAC4Ozhyu65qFUsXcjUAioKhwpXbuXbtmnx8fOyWlShRQpKUkZHh9PuazSaVLVuqQLU5IiDAz23HAuPtboy3cTE3rsE4uhfj7V6Mt3sx3gAAAABQvBWbcMXX11eZmZl2y3JClZIlSzr9vhaLVenpVwpUW354eZkVEOCn9PSrys62FPrxPB3j7V6Mt3vkjLMzmJuC4XfcvRhv92K83auoxzsgwI+rZgAAAADABYpNuFKpUiWdOXPGblnO68DAwAK9d1aW+xrb7GyLW4/n6Rhv92K8jYu5cQ3G0b0Yb/divN2L8QYAAACA4q3YfG0tNDRUu3btUnZ2tm3Ztm3bVLNmTR5mDwAAAAAAAAAA3KbYhCtRUVG6dOmSRo0apUOHDmnlypWKj49Xv379iro0AAAAAAAAAADgQYpNuFK+fHnNmzdPKSkpioyM1IwZMzRixAhFRkYWdWkAAAAAAAAAAMCDGPaZKxMnTsy1rEGDBlq+fHkRVAMAAAAAAAAAAHBDsblyBQAAAAAAAAAAwAgIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAAAAAADAAYQrAAAAAAAAAAAADiBcAQAAAAAAAAAAcADhCgAAAAAAAAAAgAMIVwAAAAAAAAAAABxAuAIAAAAAAAAAAOAAwhUAAAAAAAAAAAAHEK4AAAAAAAAAAAA4gHAFAAAAAIqREydOqHbt2rl+/v3vf0uS9u/fr+joaDVq1EiPPvqo4uLiirhiAAAA4O7jXdQFAAAAAADy78CBAypRooQ2bNggk8lkW+7v769z586pd+/eatu2rcaOHavdu3dr7NixKlOmjKKiooqwagAAAODuQrgCAAAAAMVIcnKyatasqYoVK+ZaFx8fLx8fH40ZM0be3t4KCgpSamqq5s6dS7gCAAAAuBC3BQMAAACAYuTAgQOqVatWnuuSkpIUGhoqb+/fv0cXFhamlJQUpaWluatEAAAA4K7HlSsAAAAAUIwkJyerQoUKeu6553TkyBHde++9GjBggFq2bKlTp04pODjYbvucK1xOnjyp8uXLO3VMb2++l1cQXl5muz9RNJgH42AujIO5cJzRx8ro9RkdfyeMozjMBeEKAAAAABQTmZmZOnLkiPz8/DRixAiVLFlSa9as0YsvvqgFCxbo2rVr8vHxsdunRIkSkqSMjAynjmk2m1S2bKkC1w4pIMCvqEuAmAcjYS6Mg7m4ezCXrsE4GoeR54JwBQAAAACKCR8fH+3cuVPe3t62EKVevXo6fPiw4uLi5Ovrq8zMTLt9ckKVkiVLOnVMi8Wq9PQrBSvcw3l5mRUQ4Kf09KvKzrYUdTkei3kwDubCOJgLx+WMmVExlwXD3wnjKMq5CAjwy9cVM4QrAAAAAFCM5BWSBAcH69tvv1WlSpV05swZu3U5rwMDA50+ZlYW/7jgCtnZFsbSAJgH42AujIO5uHswl67BOBqHkefCuDcsAwAAAADY+emnn9S4cWMlJSXZLf/xxx9Vq1YthYaGateuXcrOzrat27Ztm2rWrOn081YAAAAA5Ea4AgAAAADFRHBwsB544AGNHTtWSUlJOnz4sN5++23t3r1bMTExioqK0qVLlzRq1CgdOnRIK1euVHx8vPr161fUpQMAAAB3FW4LBgAAAADFhNls1uzZszVlyhTFxsYqPT1dderU0YIFC1S7dm1J0rx58zR+/HhFRkaqQoUKGjFihCIjI4u4cgAAAODuQrgCAAAAAMVIuXLlNGHChFuub9CggZYvX+7GigAAAADPQ7gCAAAKxGw2yWw2ObSPxWKVxWItpIoAAAAAAAAKF+EKAABwmtlsUpkyJeXl5dhj3LKzLTp//goBCwAAAAAAKJYIVwAAgNPMZpO8vMyasmSXjp++mK99qgX6a1j3pjKbTYQrAAAAAACgWCJcAQAABXb89EUdPnGhqMsAAAAAAABwC8fu4QEAAAAAAAAAAODhCFcAAAAAAAAAAAAcQLgCAAAAAAAAAADgAMIVAAAAAAAAAAAABxS7B9qfOHFC4eHhuZa/9dZb6tKlSxFUBAAAAAAAAAAAPEmxC1cOHDigEiVKaMOGDTKZTLbl/v7+RVgVAAAAAAAAAADwFMUuXElOTlbNmjVVsWLFoi4FAAAAAAAAAAB4oGL3zJUDBw6oVq1aRV0GAAAAAAAAAADwUMXyypUKFSroueee05EjR3TvvfdqwIABatmypdPv6e1d+BmTl5fZ7k8ULsbbvRhv9yjI+DI3BcPv+K0Vxu8l4+1ejLd7Md4AAAAAcHcoVuFKZmamjhw5Ij8/P40YMUIlS5bUmjVr9OKLL2rBggVq3ry5w+9pNptUtmypQqg2bwEBfm47Fhhvd2O8jYu5cQ3G0bXuNJ6Mt3sx3u7FeAMAAABA8VaswhUfHx/t3LlT3t7e8vHxkSTVq1dPhw8fVlxcnFPhisViVXr6FVeXmouXl1kBAX5KT7+q7GxLoR/P0zHe7sV4u0fOODuDuSkYfsdvrTB+Lxlv92K83auoxzsgwI+rZgAAAADABYpVuCJJJUuWzLUsODhY3377rdPvmZXlvsY2O9vi1uN5OsbbvRhv42JuXINxdK07jSfj7V6Mt3sx3gAAAABQvBWrr6399NNPaty4sZKSkuyW//jjjzzkHgAAAAAAAAAAuEWxCleCg4P1wAMPaOzYsUpKStLhw4f19ttva/fu3YqJiSnq8gAAAAAAAAAAgAcoVrcFM5vNmj17tqZMmaLY2Filp6erTp06WrBggWrXrl3U5eH/27vz8CiqtP//n+5AWEzCHrYAKphECHvYRQQFHgFFgiMqRPmKbEoAGQmCjMsFoiwPDOCDiIFhE8IS9mWQxRFBRMM4ILKIgEAQiLKGLYF0/f7g1z02CdDVSbo7nffrurg01VXV96lT6dTdd9U5AAAAAAAAAAAUAPmquCJJpUuX1pgxY7wdBgAAAAAAAAAAKKDy1bBgAAAAAAAAAAAA3kZxBQAAAAAAAAAAwASKKwAAAAAAAAAAACZQXAEAAAAAAAAAADAh301oDwCAr7FaLbJaLaa2sdkM2WxGHkXknzx1nM2+D30JAAAAAEDBQ3EFAIAcsFotKlmyuAICzD0Mmplp04ULV/lS3kWeOs7uvA99CQAAAPgGbnwD4EkUVwAAyAGr1aKAAKsmfL5LKWfSXNomrHyw3uzeUFarhYt4F3nqOJt9H/oSAAAA8A05uSErLe26DMO163mz+wfgvyiuAACQC1LOpOnwyYveDsPveeo4058AAABA/uLODVkPP1BavTvXVsmSxfM4OgD+iOIKAAAAAAAAAL9g5kapsNAgWa0WUwWZBpGheqlDzZyECMBPUFwBAAAAAAAAUGCZLcgAgCQxSCAAAAAAAAAAAIAJFFcAAAAAAAAAAABMoLgCAAAAAAAAAABgAnOuAAAAAAAAAIAfCAgwdy+9zWbIZjPyKBrAv1FcAQAAAAAAAIB8rGRwEdlshkJCipnaLjPTpgsXrlJgAdxAcQUAAAAAAAAA8rGgYoVltVo04fNdSjmT5tI2YeWD9Wb3hrJaLRRXADdQXAEAAAAAAAAAP5ByJk2HT170dhhAgUBxBQAAAHCT1WqR1WpxeX2zY2ADAAAAAHwTxRUAAADADVarRSVLFndr0lCLxfWCDAAAAADA91BcAQAAANxgtVoUEGB1e1xrAAAAAED+RXEFAAAAyAHGtQYAAACAgodBnwEAAAAAAAAAAEzgyRUAAAAAAAAAPsdqtbg8nKrZefAAIKcorgAAAAAAAADwKVarRSVLFqdoAsBnUVwBAAAAAAAA4FOsVosCAqya8PkupZxJu+f6DSJD9VKHmh6IDABuobgCAAAAAAAAwCelnEnT4ZMX77leWGiQB6IBgP/iuToAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABOZc8TKr1SKr1WJqG5vNkM1m5FFEnlXQ2w//wbnsP7Lry4AAq9N/s3vNn5g5n/ND+83EmB/aAwAAAAAAvI/iihdZrRaVLFnc9Bc5mZk2XbhwNd9/KVvQ2w//wbnsP+7VlyEhxTwckee5ez77opLBRWSzGQWi3wAAAAAAgGdRXPEiq9WigACrJny+Syln0lzaJqx8sN7s3lBWqyXffyFb0NsP/8G57D/c6csGkaF6qUPNPI7Mc8weA19uf1CxwrJaLQW6PwEAAAAAQN6guOIDUs6k6fDJi94Ow2sKevvhPziX/YeZvgwLDcrjaLzD1WOQH9pPfwIAAAAAgNyW/8f8AAAAAAAAAAAA8CCeXAEAAAAAAADgMqvVIqvVYmobm81gWGwAfoXiCgAAAAAAAOAHzBY9AgLMD2pjtVpUsmRx09tmZtp04cJVCiwA/AbFFQAAAAAAACCfc7foYbMZslhcL8hYrRYFBFg14fNdSjmT5tI2YeWD9Wb3hrJaLRRXAPgNiisAAAAAAABAPpeTokehQlYZhmtFD3vxJuVMmg6fvOh2vACQ31FcAQAAAAAAAPyEmaJHyeAistkMBQUVzeOoAMD/UFwBAAAAAAAACqCgYoVltVpMPe3SIDJUL3WomceRAYDvo7gCAAAAAAAAFGBmnnYJCw3K42gAIH+guALA71mtFlmtrk/OZ7MZHptgz8xEg2YnJfR1ZvtF8mzf+Auzx9nfzjPkPX6XAQAAAAAFEcUVAH7NarWoZMnipr4wzsy06cKFq3n6xZ99XNuQkGJ59h6+zJ1+kTzTN/7E3eMMuIrfZQAAAJhRkG8wBOB/KK4A8GtWq0UBAVaXx48NKx+sN7s3lNVqydMv/Qr6uLZm+0XyXN/4E3eOsz+dZ8h7/C4DAADAFQX9BkMA/oniCoACwcz4sZ5U0Me19dV+8TcF/TxD3uN3GQDgKneGkzSL4ScLNoYs9U0F/QZDAP6J4goAAAAAAMhzbg3ZazMUYPKLcoafLLgYstT3ceMXAH9CcQUAAAAAAOQ5s8NJ2u9aZ/hJuIohSwEAnkRxBQAAAACAAs6TQym5eue6/a51d4afzO7JBfuy7F5zpy0MP5X3zB5je9/66pClZtvD+QJPMfu0F5+ZwC0UVwAAAAAAPosvY/KePw2l5Mqk2dm9lplpU1radRmGa22xWCwKDi6a58esIJ//7p6XvsqtYfFMnpf+cqzgOa58ZmbHnc8yf/k7A/xZviuu2Gw2ffzxx1qyZIkuXbqkhg0b6t1331W1atW8HRoAAAAAeJ0/5Ux8GeMZ/jSUkjuTZj/8QGn17lxbJUsWN/1+eXnMCvr578556csToJttT07OS8BV7nxmuvP5709/Z4A/y3fFlWnTpikxMVEffvihypcvr/Hjx6t3795as2aNAgMDvR0eAAAAAHiVP+VMnvwyxp0nBFxl/3LcYsmb/ecWXx1KyR1mJ802++Wi/Uv8vDxm/nL+Z+duQ7Tdvo6nJkD3xLBIkrlh8dw9LwGzPPX5n9fvkxufZa58PvnLE4Ke5E7f+Pp1k5TPiisZGRmaNWuWhg4dqlatWkmSJk2apJYtW2rjxo3q2LGjlyMEAAAAAO/x15zJE1/GuPWEgM1QgIkvCoKDi/rFEwX+ylNf4pvlL+d/dtuYHYooL3hqWCR3+ep5Cfia3P4su9tngr88IegpOXkS09flq+LKgQMHdOXKFTVt2tSxLCQkRDVr1tT333+fbxMFAAAAAMgN5EzuycnwQ65uY3+ioHDhAFNfFnhi0uCczNNgZlvmg/Acs/2S1+e/O9t46imMnAyLZOb3mfMf/sZTn/+ubuupzzJPPiFo9hrAV+fpysmTmL7OYrg6K5YP+OKLLxQXF6fdu3eraNGijuWDBg3S9evX9emnn5rep2F45jEui0WyWq2y2WyyH3H7sgtp6brp4h/jQgHW//+uCt+v3LkiL9tvP97wDF8+3mbOM3d/x8yey0UCAxRcPDDPt/Hlzwxf/fzzRF96sl/yuj151f7sPlN88ffMl3/HzMjJZ7iv/i57Sk7a742rcKvVki8er4f78nPOlB1P5kx5/XcmsLBVwcUDTf8OGobh8mTWdhaLe7/rZtrvbnvMvI+nrpl9+drc7HnpiX6RPHPMfLkvOf99cxtfjctT2/jT+Z+T9/HFz3LJvb/NZq8BPPEe7nL3ek6SV3InV/OmfPXkyrVr1yQpyzjBRYoU0cWL7j0ia7FYFBDguQTTas1abbWfKDndT36Vl+33p+OUH/jy8TZ7nrnTFnfOZU9t46t946tt8bd+8UR78qL9ufU30xPb+OrvmBk5aYMvn/+eUNDbD9/iDzlTdjz1e+apvzNmuFsocUdet8Xd9/HVv//ubmP23PTVfvHUNr4al7v8qf2+uo2vxuWpbfzp/PfUe/jq9bwnrgHyw3WGL+dOvhtZNux3XmVkZDgtT09PV7Fi3h+nEwAAAAC8iZwJAAAA8Ix8VVypWLGiJCk1NdVpeWpqqipUqOCNkAAAAADAZ5AzAQAAAJ6Rr4orkZGRCgoK0s6dOx3LLl26pH379ik6OtqLkQEAAACA95EzAQAAAJ6Rr+ZcCQwMVI8ePTRhwgSVLl1alStX1vjx41WhQgW1bdvW2+EBAAAAgFeRMwEAAACeka+KK5I0cOBA3bx5UyNHjtT169fVqFEjzZw5M8uEjQAAAABQEJEzAQAAAHnPYhiG4e0gAAAAAAAAAAAA8ot8NecKAAAAAAAAAACAt1FcAQAAAAAAAAAAMIHiCgAAAAAAAAAAgAkUVwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHHFw7777jtFRERk+ffNN994OzS/l5ycrIcfflg7d+70dih+7fjx4+rfv7+io6MVHR2tN954Q6dPn/Z2WH7r1KlTGjJkiFq0aKFGjRqpV69eOnTokLfDKhDefvttvfXWW94Ow6/YbDZNmTJFLVu2VN26dfXKK6/o2LFj3g6rwJg2bZpiY2O9HYbfunDhgt555x09+uijatCggV544QUlJyd7OywAHnSnfGTHjh2KiYlRnTp11K5dO61YscI7AfoxV3IU+sEzXMlf6AvPu1NuQ194BnmQ92WXC+3fv189evRQvXr19Nhjj2nmzJleis7/3StX8uW+oLjiYQcPHlTVqlW1bds2p3/R0dHeDs2vpaWlKT4+Xjabzduh+LX09HT17NlTkrRw4ULNmzdPv//+u/r27SvDMLwbnB/KyMhQnz59dPbsWX366adasGCBgoOD9fLLL+vcuXPeDs9vZWZmauzYsVq6dKm3Q/E706ZNU2JiokaPHq1FixbJYrGod+/eysjI8HZofm/27NmaMmWKt8Pwa0OGDNHu3bs1ceJELV26VLVq1VKvXr10+PBhb4cGwAPulI8cPnxYffv2VatWrbRixQp169ZNI0aM0I4dO7wUqf9xJUehHzzDlfyFvvCsu+U29IXnkAd5V3a50Pnz5/X//t//0/3336+kpCTFxcVp8uTJSkpK8lKU/u1uuZKv90UhbwdQ0Pz888966KGHVK5cOW+HUqC89957qlKlik6ePOntUPzab7/9ptq1a+vdd99V6dKlJUk9e/bU66+/rvPnzzuWIXckJyfr559/1tatW1W+fHlJ0rhx49S4cWNt2bJFzz77rJcj9D+HDx/W8OHDdeLECVWqVMnb4fiVjIwMzZo1S0OHDlWrVq0kSZMmTVLLli21ceNGdezY0csR+qczZ87o7bff1q5du/TAAw94Oxy/dezYMW3fvl0LFy5UgwYNJN26Q3Tr1q1as2aNBg0a5OUIAeS1O+Ujc+bMUWRkpONz4MEHH9S+ffuUkJCgZs2aeSNUv+NKjkI/eIYr+Qt94Tn3ym3oC88gD/Keu+VCixcvVmBgoN577z0VKlRI1atX17Fjx/TZZ5+pa9euXorYP90rVypatKhP9wVPrnjYwYMHVaNGDW+HUaCsXLlSP/zwg0aMGOHtUPzeAw88oMmTJzuSlpSUFC1YsEC1atVSqVKlvByd/3nooYc0Y8YMR2JiZxiGLl686KWo/Nt3332nhx9+WGvWrFFYWJi3w/ErBw4c0JUrV9S0aVPHspCQENWsWVPff/+9FyPzbz/99JNKlCihVatWqW7dut4Ox2+VKlVKM2bMUFRUlGOZxWLh8xooIO6WjyQnJzv97ZOkpk2bateuXTz5nUtcyVHoB89wJX+hLzznXrkNfeEZ5EHec7dcKDk5WY0aNVKhQv99LqFp06Y6evSozp496+lQ/dq9ciVf7wueXPEgwzB06NAhlStXTjExMTpz5ozCw8P1xhtvqE6dOt4Ozy+lpKTogw8+0LRp03Tfffd5O5wC5ZVXXtH27dtVokQJzZkzRxaLxdsh+Z1y5co57myxmzt3rtLT09WiRQsvReXfXnjhBW+H4Lfs455XrFjRaXloaKhOnTrljZAKhDZt2qhNmzbeDsPvhYSEZPm8Xr9+vY4fP65HHnnES1EB8IR75SOnT59WhQoVnJaFhobq2rVrPPmdB+6Uo9APnuFK/kJfeM69chv6wjPIg7znbrnQ6dOnFR4e7rQsNDRU0q0nIsuUKZPn8RUU98qVJk2a5NN9QXElF6WkpOjxxx+/4+uJiYm6evWqMjIy9M4778hisWju3Lnq0aOHli1bxhMtJt3reG/dulXx8fHq1q2boqOjlZKS4sHo/NO9jvm2bdscQ94NHTpUgwYN0ieffKKePXtqxYoVWS4WcHdmjrckffHFF5o0aZJiY2MVGRnpiRD9itnjjdx17do1SVJgYKDT8iJFinBnP/zOrl27NGLECD3++OMUt4B8LDfykevXr2f522f/mbH2XZMbOQr9kDtyI3+hL3JHbuQ29IVnkAf5puzO/yJFiki6NZcX8s7tudKHH37o031BcSUXlS9fXuvWrbvj6/fff7+Sk5NVvHhxBQQESJLGjx+vTp06ad68eXr//fc9FapfuNfxXrJkia5evaq4uDgPRuXf7nXM/3znysMPPyzp1lihjz32mJKSkjRgwIA8j9GfmDneCxcu1KhRo9ShQwcNHz7cE+H5HTPHG7mvaNGikm4lavb/l25dLBUrVsxbYQG5btOmTXrzzTdVt25dTZw40dvhAMiB3MhHihQpkuVLSvvP/P1zTW7kKPRD7siN/IW+yB25kdvQF55BHuSbihYtmuX8t3+RX7x4cW+EVCBklyv5el9QXMlFhQsXVvXq1e+6TnBwsNPPVqtVNWrU0JkzZ/IyNL90r+O9bNkypaamqkmTJpLkGBO0d+/eaty4sRISEjwSpz+51zE/efKk9u7dq/bt2zuWFStWTGFhYUpNTfVEiH7Flc8USZowYYI+++wzxcbG6u2332YINje5eryRN+xPtqWmpqpq1aqO5ampqTyJBb8xf/58ffDBB2rbtq0mTJiQ5Q4sAPlLbuQjFStWzHKdnJqaquLFi2fJHZG93MhR6IfckRv5C32RO3Ijt6EvPIM8yDdVqFAh2/NfUpZ5o5A77pQr+XpfMKG9B/3rX/9SvXr1nMZMvHnzpg4cOMCQYHlg3rx5Wrt2rVasWKEVK1ZoxowZkqTRo0frgw8+8HJ0/mn//v0aOHCgjh8/7lh26dIlHT16lC+t88j48eP12WefKT4+XiNHjqSwgnwrMjJSQUFB2rlzp2PZpUuXtG/fPkVHR3sxMiB3LFiwQKNGjVL37t3197//ncIKUAC4ko9ER0fru+++c9pux44datCggaxW0vXc4EqOQj94zr3yF/rCd9AXnkEe5JsaNWqkXbt2KTMz07Fsx44deuCBB7w+x4c/uluu5Ot9waehB0VHR6tMmTKKj4/XTz/9pIMHD2rYsGG6cOGCevbs6e3w/E7lypVVrVo1x79KlSpJulXV9IXKpj969NFHFRER4TjH9+7dq7i4OJUqVUpdu3b1dnh+Z+fOnUpISFBsbKyefvpp/f77745/V65c8XZ4gCmBgYHq0aOHJkyYoM2bN+vAgQN64403VKFCBbVt29bb4QE5cvToUY0ZM0Zt27ZV3759dfbsWcfndVpamrfDA5BHXMlHYmNjtWfPHk2YMEGHDx/WrFmztGHDBr366qveDN2vuJKj0A+e4Ur+Ql/4DvrCM8iDfFPXrl11+fJlvf322/rll1+0bNkyzZkzR3379vV2aH7nXrmSr/cFw4J5UFBQkGbPnq3x48frlVdeUXp6uho2bKj58+erbNmy3g4PyLHAwEAlJCRo7Nix6tWrlzIyMvTII4/oo48+UlBQkLfD8ztr1qyRdOuuyHnz5jm9NmDAAOYbQr4zcOBA3bx5UyNHjtT169fVqFEjzZw5kzv8ke9t2LBBN27c0MaNG7Vx40an17p06aKPPvrIS5EB8LaHHnpI06ZN0/jx4zVnzhyFhYVp/PjxatasmbdD8xuu5Cj0g2e4kr/QF76DvvAc8iDfU6ZMGSUkJOiDDz5Qly5dVK5cOcXHx6tLly7eDs3vuJIr+XJfWAz7wK8AAAAAAAAAAAC4J4YFAwAAAAAAAAAAMIHiCgAAAAAAAAAAgAkUVwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABIorAPK1L7/8UnFxcWrTpo2ioqLUpEkTvfrqq9qyZYvHYsjIyNC7776rxo0bq06dOho9enS2y9566y1FREQoJSXF1P6nTp2qiIgI7dy5M49a4OzXX381tX5ycrLi4+PVtm1b1alTR9HR0YqNjdWKFStkGIbTuu4eg/yqTZs2ioiIUEREhKKjoyVJO3fuVEREhN566607bpeSkqKIiAjFxsZmee32/rl9vbw+xh988IGjTZ48LwEAAJC3yK1y371yq3fffVcRERFKSkq663opKSmKjIzUyy+/7PJ72/OOqVOnurxNbrL3kf3f/v37Jd3KX9q0aXPXbe151O2OHTvm9HNsbKzTesuWLVNERISWLVuWCy3IatOmTU5t8taxBeA7Cnk7AABwx+XLlzVixAht2LBBtWrVUkxMjEJDQ3X69GmtWLFC/fv31yuvvKJhw4bleSyLFy9WYmKiWrRooSeffFIPPfRQtssMw1CzZs1UunRpU/tv27atqlatqurVq+dRC/6rf//+unz5subNm3fPdW/cuKExY8ZowYIFuv/++9WxY0dVqlRJ586d09q1azVs2DBt3bpV48ePV0BAQJ7H7qtKlSql4cOHq3DhwjneV3b9M27cOJUtWzbH+3ZV586dFRUVpY0bN2rjxo0ee18AAADkDXKrvOFKbvXss88qMTFRq1evVteuXe+4nv3GtWeffTYvQs1Tw4cPV6lSpVSpUqUc7eezzz7T5MmTtXfvXseyfv36efSYREVFady4cTpy5IimT5/usfcF4LsorgDIl0aOHKkNGzYoPj5evXr1cnqtX79+6tWrl2bNmqUHH3xQf/nLX/I0loMHD0qS4uPjFRkZKUmOO4/+vEyS6tevb3r/kZGRTvvIS1u2bFHjxo1dWnfSpElasGCBYmNjNWLECFmt/30Ysk+fPho6dKjWrFmjqlWravDgwXkUse8rXry4OnfunCv7yq5/cmvfroqKilJUVJSOHz9OcQUAAMAPkFvlDVdyq9q1azuepDlz5ozKly+f7XorV65UiRIl1K5du7wINU898cQTCgsLy/F+tm7dqhs3bjgta9GiRY73a0aFChXUuXNn7dy5k+IKAEkMCwYgH9q2bZvWr1+v9u3bZ7n4l6TAwECNGTNGAQEBmjt3bp7HY7/ACwoKuusyf3LkyBHNmjVLtWvX1siRI50KK5JktVr1/vvvKzg4WIsWLVJ6erqXIgUAAABwJ+RW3te1a1fZbDatW7cu29d37dql48eP66mnnlKRIkU8HB0A4G4orgDId1asWCFJ2c5HYVelShWtXr1ay5cvd1p++PBhDRkyRM2bN1dUVJQef/xxffTRR7p48WKWfRw5ckRDhgxRs2bNFBUVpXbt2unvf/+7rl+/Lum/82LY3+Pxxx93jL16+zIp+7kwDMPQwoULFRMTo3r16ql58+bq16+ffvrpJ8c6dxoX+Ouvv9ZLL72kBg0aqG7duoqJickytqx9nN21a9dq+vTpatu2raKiotSmTRtNnjxZN2/edFpPkr777rt7jlO7cuVKGYahHj163HGdoKAgLVmyRP/617+yJAEnT57UkCFD1LhxY9WrV0/PP/+8tm/fnmUfO3fuVP/+/dW8eXPVqlVLjRo10ssvv6xvvvnGab02bdqob9++2rlzp7p376769esrOjpaAwYMyHac4zVr1jiOecuWLTVhwgQtWbIk2+O8evVqPffcc6pXr57q16+v7t27e3Tcaenu/XOnuVlu52o71q1bp+eff97RN507d9asWbNks9lyt1EAAADwOnKrW7yZWz399NMqXLiwVq9ene3r9j6yD39148YNzZw5U127dlX9+vUVFRWlxx57TCNHjtTZs2fv+D7Srbwpu/lO7jRXyZ49e9SvXz81btxYtWvXVqdOnTRr1ixlZmbe9X1yW0REhL777jvH/9vnr7x9zpU7cbUd+/btU79+/dSyZUvHOT169GhduHAh19sEwD8wLBiAfGfPnj0qVKiQ6tate9f1bh9HNzk5Wb169VJAQIBeeOEFVa5cWf/5z380e/ZsbdmyRYmJiY4xe/fs2aOePXsqKChI3bt3V+nSpfWf//xH06dP144dOzR37lyVLl1a48aN0+LFi5WcnKzhw4erRIkSslqtTstKlSp1xxiHDRumlStXKjo6WoMHD1ZGRobmzZunHj166PPPP1fNmjWz3e7zzz/XqFGjVLt2bQ0YMEBWq1WbN2/W8OHDtX//fr399ttO60+cOFGGYahbt24KCQnRsmXLNG3aNFksFg0cOFDVq1fXuHHjFB8frwcffFD9+vVTgwYN7toHktSwYcO79sEDDzyQ7fJ+/fopOjpaQ4YMUWpqqubMmaO+fftq+fLleuihhyRJGzdu1MCBAxUZGanevXsrKChIP//8s5YuXarevXvriy++UOXKlR37PHDggPr27aunn35anTt31r59+5SYmKgDBw5ow4YNjnlfEhISNH78eNWqVUuDBw9WWlqa5s+fn22c48ePV0JCglq0aKEhQ4YoPT1da9euVf/+/TV8+HD17Nnzru3PLWb753autuOLL77QkCFD1KJFCw0aNEhWq1X//Oc/NXbsWJ09e1ZDhw7NoxYCAADAG8itvJ9blSpVSo8//rj++c9/6vDhw07HOj09XevXr1etWrX08MMPS5IGDx6szZs3q0uXLnruueeUnp6urVu3asmSJfrtt980a9asu/alqzZv3qxBgwYpLCxMr776qooXL67t27dr7Nix+ve//62pU6fKYrHkynvdy7hx4zR9+nQdOXJE48aNU9WqVV3e1tV2nDhxQi+//LLKlSunnj17KiQkRLt379b8+fO1Z88eLVq0yGPtBZCPGACQz9StW9do3ry5qW0yMzONtm3bGlFRUcYvv/zi9NrixYuN8PBw46233jIMwzBsNpvRsWNHo1WrVsb58+ezXXfGjBmOZcOGDTPCw8ONEydOmFq2Y8cOIzw83BgyZIhhs9kc6/3yyy9GZGSkERcXZxiGYUyZMsUIDw83vv32W8MwDOPUqVNGrVq1jL59+zptZ7PZjKFDhxrh4eHG7t27DcMwjG+//dYIDw83WrRoYVy8eNGx7pUrV4yGDRsajzzyiFP7wsPDjR49etzzeHbo0MEIDw83rl+/fs91/8x+DEaMGOG0fOnSpUZ4eLgxdepUx7JnnnnGaNGihXHlyhWndefPn2+Eh4cbs2bNcixr3bq1ER4ebqxdu9Zp3REjRhjh4eHGtm3bDMMwjNOnTxtRUVFGTEyMkZ6e7ljv2LFjRp06dZyO8+7du43w8HDjvffec9pnRkaGERsba9SqVcs4derUXdvbunVro3Xr1k7L7H0ybNiwO2534sSJbPvClWW3n2dm2tGnTx+jXr16RmZmpmO9mzdvGj169DD69u3rtP3t5yUAAADyH3Ir7+dWhmEYX331lREeHm5MmjTJafnatWuN8PBw4/PPPzcMwzD2799vhIeHG6NGjcqyj65duxrh4eGO42yPd8qUKY51sstPDMMwkpKSjPDwcCMpKckwDMO4evWq0aRJE6NLly5OeZNhGMakSZOyzb1ul12/Gcat45JdDH9mz+/+rEePHvdclpN2JCQkOPW33Ycffmh06dLFOH36tGNZdscWQMHEsGAA8p2AgADHI9eu2rdvn44dO6ann346y11Xzz77rKpVq6YNGzYoMzNTBw8e1KFDh9SqVSvZbDadO3fO8a9169YqUqRIrkzkvWnTJknSq6++6nQHTPXq1bV06VL97W9/y3a7L774Qjdu3NCTTz6p8+fPO2I7f/68Onbs6Fjnz1q3bq2QkBDHz8WLF1f16tXv+dj4ndifAjHbD3YxMTFOP9erV0+SlJqa6li2ZMkSrVq1SsWLF3csy8jIcByrK1euOO2jaNGiat++vdOy2rVrS5J+//13SbeOeUZGhnr16qXAwEDHelWrVtXTTz/ttO3atWslSR06dHA6B9LS0tShQwfduHFDX375pem2e5qZdlSoUEFXr17V+++/r3379skwDAUEBGjevHlM2AgAAOCHyK28n1tJ0iOPPKKKFStqzZo1TsuXL1+uokWL6qmnnpIkRUZGateuXRoyZIjTemfPnnXEdPXqVbfjsPvmm290/vx5tW/fXpcvX3bqtw4dOkhSrvRbXjPTjooVK0q69dT/jh07lJGRIenWEHTLli1T+fLlvdMIAD6NYcEA5Dvly5fX0aNHlZGR4fQF+d0cP35ckhxDTv2ZxWJRjRo1dOzYMZ0/f15Hjx6VJCUmJioxMTHb/Z08edLN6P/LPj7w7QmJJNWqVeuO29nji4+Pv+M6t8dXtmzZLOsEBga6PVZu+fLldfDgQf3xxx+67777TG9frlw5p5/tc7LYL2AlqVChQkpJSdG0adN09OhRpaSkKCUlxRGzYRhO+yhVqpSj6GNnPz/s84XYj92DDz6YJabb+8G+7t3mlXHnPChatKikuxem7G20r5sTZtoRFxen/fv3O8790qVLq2nTpnriiSfUvn17FSrEZQMAAIA/Ibfyfm4lSVarVV26dNG0adP0ww8/qH79+vr999+1fft2derUScHBwU7vtW7dOm3fvl0nTpxQSkqKfv/9d0dRKTfmSrQfl4kTJ2rixInZruNuvxUpUuSeBb2bN2/mai7kSjvat2+vrl27atmyZerZs6eKFi2qhg0bqlWrVnrmmWdUokSJHMcDwP/wLQmAfKdRo0Y6fPiw/v3vf6tp06Z3XG/48OG6cePGXS+U7ewXoIGBgY7/7969u5544ols18+NL5lv3Ljh1nb2i/ZRo0YpLCws23Xs4xvbWa25+6Bio0aNtHXrViUnJ6tatWp3XG/SpEk6evSo4uLinJIvV+L59NNPNXHiRFWuXFnR0dFq0qSJIiIidPPmTb322mtZ1ndln/biTXaJo73AY2c/ztOmTVOxYsWy3Z/97iYz7Bflly9fvuM69klA/3xHnLvMtKNs2bJavHixfvzxR3311Vf69ttvtXHjRq1bt0716tXT/PnzVbhw4RzHBAAAAN9AbuX93MouJiZGn3zyiVavXq369etr9erVyszMdExkL93KIV5++WX99NNPatiwoaKiotS5c2fVrl1bc+bM0apVq9x679sLQ/Z+GzhwoOrXr5/tNu7cZCfdyofS0tLu+LphGLp06VKu5EJm2hEQEKAxY8botdde05dffqlvvvlGycnJ2r59uz799FMlJiaamusFQMFAcQVAvtOpUyclJiZqwYIFd0wATp06pVWrVikkJEQlS5ZUlSpVJEmHDh3Ksq5hGDp8+LCCgoIUEhLidFHdvHlzp3VtNps2bNjg2F9O2N/n6NGjioiIcHpt4sSJun79ukaMGHHH7UJCQrLEl5qaqj179uRKfHfz5JNPavLkyVq4cKFiYmKyndjvypUrSkxM1JUrV/TOO++Y2v+pU6c0adIkNWrUSLNmzXIqhribMEjSAw88IEk6cuRIlqdX7Hc12dmPc2hoqGN4Mbtjx47pyJEjTkOWuSosLExBQUE6cODAHdfZt2+fJN1x0k2z7yfdux2GYejQoUO6fv266tSp45jQ8/Llyxo2bJg2bdqkbdu2qXXr1jmOCQAAAL6B3Mr7uZVdlSpV1KRJE61fv14jR47U6tWrVa1aNTVu3Nixzty5c7V37169//77ev755522/+OPP+75HgEBAVmGV5b+O4yynf24FC1aNMtxuXz5srZt25ZlNAJXRUZGauvWrTpx4kS2x/bo0aO6du2amjRp4tb+/8xMO06ePKnjx4+rWbNmio2NVWxsrG7evKmZM2dq4sSJWrhwoYYNG5bjmAD4F+ZcAZDvNGrUSG3bttWGDRv0j3/8I8vraWlpGjRokG7evKkBAwYoMDBQNWvWVJUqVbRq1SodPnzYaf2kpCQdP35c7dq1kyRFRUWpcuXKWr58ueORd7tFixZp8ODBSkpKynE77HduzZkzx2n58ePHNXv2bJ04cSLb7dq1ayer1arp06fr+vXrTq999NFHev3117V37163YrJarS49Rl6lShX16NFDP/74o8aMGZNlm/T0dA0dOlQXLlzQSy+9lO2j83dz4cIFGYahBx980Kmwcu3aNc2bN0+Se/O9tGvXToUKFdL8+fOdtk9NTdXq1aud1v2f//kfSdLUqVOd7uS6ceOGhg8frn79+unMmTOmYyhUqJDatm2rU6dOZTs0wpUrVzR//nwFBgY6zkk7V/vHnXZYLBbFxcWpf//+TneSBQUFORLU24ddAwAAQP5GbuX93OrPunbtqnPnzmnFihXat2+f01MrknT+/HlJylJA+uGHH/T9999LyvoUyp+Fhobq3LlzTkN6ZWRkaP369U7rPfLII7rvvvs0e/Zsx3vaTZ8+XYMGDdJXX31lqm12Tz75pCRp8uTJWY6PYRiaMWOGpFuFvz+zPzFk5piaacf06dPVs2dP7d6927FOoUKFVLduXUnkQgCyx5MrAPKlMWPG6OLFi/roo4+0evVqtWvXTqVLl9avv/6q5cuX69y5c+revbu6d+8u6daF0OjRo9WnTx/95S9/0QsvvKCwsDDt2bNHy5cvV+XKlfXmm286rdu3b1/FxMTo+eefV9WqVfXjjz8qKSlJVatWzXZYKrNatmypTp06KSkpSadPn1abNm10+fJlff755ypSpIiGDh2a7Xb333+/4uLiNHnyZHXu3FldunRRSEiINm/e7Hiy4PYv5V1VpkwZHThwQAsWLFB0dLTCw8PvuO5f//pXnTlzRnPnztXXX3+tjh07qnz58vrtt9+0atUqnTx5Um3bttXgwYNNx1GjRg1Vq1ZNSUlJKlKkiMLDw5Wamqrly5c77qq626Pkd1K5cmX1799fU6dO1QsvvKCOHTvq6tWrWrBggWPiR/tTOM2aNdOzzz6rpUuX6rnnnlOHDh0UGBioVatWac+ePXrxxRdVp04d0zFI0tChQ/XDDz/ovffe07Zt29S0aVMVK1ZMx48f1+rVq3X69Gm98847We7kMtM/dmbaERcXp7/+9a/q1q2bYmJiVKJECR04cECLFi3Sww8/nOVuLwAAAOR/5Fbez63s2rdvr1GjRmns2LEqVKiQnnnmGafX27Rpo3nz5unNN9/Uiy++qODgYO3du1fLly9XQECAbty4oUuXLt1x/127dlVycrJ69eqlF198UTabTUlJSVkKMiEhIXrnnXc0fPhwPfXUU+rWrZtCQ0P17bffat26dapTp45efPFFt45Lly5dtGXLFq1evVq//vqr2rdvrzJlyuiPP/7Qli1b9MMPP6hz58566qmnnLaz37A3ZcoUNW7c2KXcxEw7evbsqfXr16tPnz56/vnnFRYWpjNnzmjhwoUKDg7Wc88951Z7Afg3iisA8qWQkBDNnDlT69at07Jly7RgwQKdO3dOQUFBqlu3rrp3765HH33UaZumTZtq8eLFmjZtmpKSknT58mVVqlRJr7zyivr16+c0pmvz5s21ePFiffLJJ0pKSlJaWpoqVKigF198UX379nX7EejbjR8/XnXq1NHSpUs1duxYlShRQtHR0Ro0aJBjCKvsvPbaa6pRo4bmzp2rGTNmyGazqUqVKoqPj1dsbKzbd9XEx8drwoQJGjNmjPr163fXBCAwMFCTJk1Sx44dtWTJEi1fvlypqakqVqyYatasqSFDhmS528hVhQsXVkJCgiZMmKC1a9dq8eLFCg0NVXR0tF5//XV1795d27Ztc2vfAwYMUNmyZTV//nxNmDBBpUqVUteuXZWenq5//OMfTk/KjB49WvXq1dOiRYs0depUBQQE6P7779fo0aOz3EVmRpkyZZSUlKR58+Zp48aNmjJliq5du6Zy5cqpXr16eumll1SvXr0s25npnz9ztR2dOnVSsWLFNHv2bM2cOVNpaWmqWLGiYmNj1b9/fya0BwAA8EPkVt7PreyKFCmiTp06acGCBWrTpo1CQ0OdXm/WrJkmTpyozz77TB9//LECAwNVqVIlDR48WDVq1FCfPn309ddfZxkO2C4mJkZXrlzRggULNG7cOJUtW1adO3dW69at1a1bN6d1n3nmGVWsWFEJCQmaO3eu0tPTValSJfXv31+9evVya4hk6dbNbFOnTtXy5cu1cuVKzZ49WxcvXlTJkiVVo0YNTZw4UR07dsyyXe/evfXzzz8rISFBu3fvdvnGL1fbUb16dc2fP1+ffPKJVqxYobNnz6pkyZJq2rSpXn/9deZbAZAti2EYhreDAADAE65evarMzEwFBwdnee1vf/ubFi9erM2bN99xMkuz2rRpI0nasmVLruzPl0ydOlUff/yx5s6dmyvjIQMAAADwH2+99ZaWL1+eq/mVr9i5c6deeuklDRgwQHFxcd4OB4AXMecKAKDAOHTokKKjo/V///d/TsvT0tL05Zdfqly5cqpcubKXogMAAAAAAEB+wfgeAIACIyoqShEREZo+fbrOnTunyMhIXbhwQcuWLdPZs2f1v//7v445V3LL1atXtXLlShUuXFgdOnTI1X17w969e3X48GEdPHjQ26EAAAAA8HGbNm1SqVKl9Nhjj6lEiRLeDidHTp8+rZ07d+rIkSPeDgWAj6C4AgAoMAICAjR79mwlJCRo06ZNWrJkiYoVK6Y6derovffey5Phrc6fP6/4+HgFBwf7RXFl5cqVmjt3rrfDAAAAAJAPfPjhh5KkFStW5Pviyt69exUfH+/tMAD4EOZcAQAAAAAAAAAAMIE5VwAAAAAAAAAAAEyguAIAAAAAAAAAAGACxRUAAAAAAAAAAAATKK4AAAAAAAAAAACYQHEFAAAAAAAAAADABIorAAAAAAAAAAAAJlBcAQAAAAAAAAAAMIHiCgAAAAAAAAAAgAkUVwAAAAAAAAAAAEz4/wBv90Dj9SpI6gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Top 10 largest coefficients:\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
coefficient_namevaluemodel_countstarget_countscoef_changenew_valueconverged
540coef_calib_zeroautohhindivtou_SHARED2_atwork-45.00000060.00.0<NA>-45.000000True
541coef_calib_zeroautohhindivtou_SHARED3_atwork-45.00000040.00.0<NA>-45.000000True
543coef_calib_zeroautohhindivtou_BIKE_atwork-45.00000036.00.0<NA>-45.000000True
544coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork-42.15449376.029.0<NA>-42.154493True
519coef_calib_autodeficienthhind_WALK_TRANSIT_school-39.129117259.022.0-2.465786-41.594903False
698coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc-40.87568892.00.0<NA>-40.875688True
695coef_calib_zeroautohhjointtou_SHARED3_disc-38.246255135.00.0-2-40.246255False
503coef_calib_zeroautohhindivtou_SHARED2_school-37.000000243.00.0-2-39.000000False
671coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint-31.0487325916.042.0-4.947746-35.996478False
696coef_calib_zeroautohhjointtou_WALK_disc-35.0000001307.0576.0-0.819382-35.819382False
\n", - "
" - ], - "text/plain": [ - " coefficient_name value \\\n", - "540 coef_calib_zeroautohhindivtou_SHARED2_atwork -45.000000 \n", - "541 coef_calib_zeroautohhindivtou_SHARED3_atwork -45.000000 \n", - "543 coef_calib_zeroautohhindivtou_BIKE_atwork -45.000000 \n", - "544 coef_calib_zeroautohhindivtou_WALK_TRANSIT_atwork -42.154493 \n", - "519 coef_calib_autodeficienthhind_WALK_TRANSIT_school -39.129117 \n", - "698 coef_calib_zeroautohhjointtou_WALK_TRANSIT_disc -40.875688 \n", - "695 coef_calib_zeroautohhjointtou_SHARED3_disc -38.246255 \n", - "503 coef_calib_zeroautohhindivtou_SHARED2_school -37.000000 \n", - "671 coef_calib_autodeficienthhjoi_WALK_TRANSIT_maint -31.048732 \n", - "696 coef_calib_zeroautohhjointtou_WALK_disc -35.000000 \n", - "\n", - " model_counts target_counts coef_change new_value converged \n", - "540 60.0 0.0 -45.000000 True \n", - "541 40.0 0.0 -45.000000 True \n", - "543 36.0 0.0 -45.000000 True \n", - "544 76.0 29.0 -42.154493 True \n", - "519 259.0 22.0 -2.465786 -41.594903 False \n", - "698 92.0 0.0 -40.875688 True \n", - "695 135.0 0.0 -2 -40.246255 False \n", - "503 243.0 0.0 -2 -39.000000 False \n", - "671 5916.0 42.0 -4.947746 -35.996478 False \n", - "696 1307.0 576.0 -0.819382 -35.819382 False " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - " Final coefficient table written to: C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_16\\tour_mode_choice_coefficients.csv\n" - ] - } - ], - "source": [ - "calibration_iterations_to_run = 1\n", - "start_iter_num = 16\n", + "calibration_iterations_to_run = 2\n", + "start_iter_num = 1\n", "\n", - "for i in range(start_iter_num, start_iter_num + calibration_iterations_to_run):\n", + "for i in range(start_iter_num, calibration_iterations_to_run+start_iter_num):\n", " asim_calib_util.run_activitysim(\n", " data_dir=data_dir, # data inputs for ActivitySim\n", " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", @@ -5493,39 +183,6 @@ "print(\"\\n\\n\", \"Final coefficient table written to: \", tour_mc_coef_file)" ] }, - { - "cell_type": "code", - "execution_count": 78, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_16\\tour_mode_choice_coefficients.csv\n", - "C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_17\n" - ] - } - ], - "source": [ - "print(tour_mc_coef_file)\n", - "print(iteration_output_dir)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": null, @@ -5542,20 +199,11 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 7, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\rsirupa\\AppData\\Local\\Temp\\9\\ipykernel_193712\\4111903590.py:4: DtypeWarning: Columns (15,16,20) have mixed types. Specify dtype option on import or set low_memory=False.\n", - " tours = pd.read_csv(os.path.join(iteration_output_dir, 'final_tours.csv'))\n" - ] - } - ], + "outputs": [], "source": [ - "# iteration_output_dir = r\"C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_9\"\n", + "# iteration_output_dir = r\"C:\\abm_runs\\rohans\\calibration\\tour_mc\\output\\calibration_output_an_iter_5\"\n", "\n", "# ### read data\n", "# tours = pd.read_csv(os.path.join(iteration_output_dir, 'final_tours.csv'))\n", @@ -5581,7 +229,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -5662,7 +310,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.17" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/src/asim/calibration/resident/tour_mode_choice/scripts/settings_mp_warm_start.yaml b/src/asim/calibration/resident/tour_mode_choice/scripts/settings_mp_warm_start.yaml index 8f8843779..4c58d9db4 100644 --- a/src/asim/calibration/resident/tour_mode_choice/scripts/settings_mp_warm_start.yaml +++ b/src/asim/calibration/resident/tour_mode_choice/scripts/settings_mp_warm_start.yaml @@ -3,7 +3,7 @@ inherit_settings: settings.yaml multiprocess: True households_sample_size: 320000 num_processes: 40 -trace_hh_id: 9632 +trace_hh_id: chunk_training_mode: disabled # chunk_size: 240_000_000_000 From 48f0fc64e2a6b2bc86f859963900183ddd5a5e9a Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 15 Nov 2024 06:57:13 -0800 Subject: [PATCH 84/86] adding tour mode choice calibration target --- ...calibration_targets_2024-01-23_updated.csv | 577 ++++++++++++++++++ 1 file changed, 577 insertions(+) create mode 100644 src/asim/calibration/resident/tour_mode_choice/targets/tour_mode_choice_calibration_targets_2024-01-23_updated.csv diff --git a/src/asim/calibration/resident/tour_mode_choice/targets/tour_mode_choice_calibration_targets_2024-01-23_updated.csv b/src/asim/calibration/resident/tour_mode_choice/targets/tour_mode_choice_calibration_targets_2024-01-23_updated.csv new file mode 100644 index 000000000..3f333d45d --- /dev/null +++ b/src/asim/calibration/resident/tour_mode_choice/targets/tour_mode_choice_calibration_targets_2024-01-23_updated.csv @@ -0,0 +1,577 @@ +grouped_tour_mode,auto_suff,tours,purpose +All,All,4330498.314823359,Total +DRIVEALONE,All,1742024.788590247,Total +SHARED2,All,938842.7632010597,Total +SHARED3,All,927861.4588698392,Total +WALK,All,495947.5026527777,Total +BIKE,All,65282.789565030565,Total +WALK-TRANSIT,All,58620.44345858439,Total +PNR-TRANSIT,All,4557.200397090634,Total +KNR-TRANSIT,All,12555.36323152418,Total +TNC-TRANSIT,All,179.1126537142125,Total +TAXI,All,3064.34343410283,Total +TNC-REG,All,12186.249846154564,Total +TNC-SHARED,All,0.0,Total +SCHOOLBUS,All,4602.63342841512,Total +ESCOOTER,All,1788.1635876779364,Total +EBIKE,All,4511.826891836025,Total +All,0,112237.34200784458,Total +DRIVEALONE,0,13807.93887735332,Total +SHARED2,0,6404.5521627789785,Total +SHARED3,0,1247.686051538898,Total +WALK,0,32648.184816327062,Total +BIKE,0,1317.3320154626326,Total +WALK-TRANSIT,0,25681.200043903496,Total +PNR-TRANSIT,0,173.69094305011743,Total +KNR-TRANSIT,0,3746.300988386011,Total +TNC-TRANSIT,0,66.2159368921275,Total +TAXI,0,324.276190548646,Total +TNC-REG,0,3615.8763453015295,Total +TNC-SHARED,0,0.0,Total +SCHOOLBUS,0,169.895019270037,Total +ESCOOTER,0,381.6356152965594,Total +EBIKE,0,422.17189411235057,Total +All,1,1320260.9490520607,Total +DRIVEALONE,1,496340.9172173532,Total +SHARED2,1,325189.18490801816,Total +SHARED3,1,304377.16504615155,Total +WALK,1,107970.35871221956,Total +BIKE,1,8513.90859292899,Total +WALK-TRANSIT,1,24065.86919517013,Total +PNR-TRANSIT,1,2247.897357003518,Total +KNR-TRANSIT,1,7028.204889346652,Total +TNC-TRANSIT,1,112.896716822085,Total +TAXI,1,2740.067243554184,Total +TNC-REG,1,5861.832298605265,Total +TNC-SHARED,1,0.0,Total +SCHOOLBUS,1,3914.69624565127,Total +ESCOOTER,1,1268.42376401554,Total +EBIKE,1,803.0614210727493,Total +All,2,2898000.0237634545,Total +DRIVEALONE,2,1231875.9324955405,Total +SHARED2,2,607249.0261302624,Total +SHARED3,2,622236.6077721489,Total +WALK,2,355328.95912423107,Total +BIKE,2,55451.548956638944,Total +WALK-TRANSIT,2,8873.374219510782,Total +PNR-TRANSIT,2,2135.6120970369984,Total +KNR-TRANSIT,2,1780.8573537915172,Total +TNC-TRANSIT,2,0.0,Total +TAXI,2,0.0,Total +TNC-REG,2,2708.541202247769,Total +TNC-SHARED,2,0.0,Total +SCHOOLBUS,2,518.042163493812,Total +ESCOOTER,2,138.104208365837,Total +EBIKE,2,3286.5935766509256,Total +All,All,795338.6530190805,Work +DRIVEALONE,All,595016.7211338528,Work +SHARED2,All,84603.09436188595,Work +SHARED3,All,77417.0422954419,Work +WALK,All,10604.674393791389,Work +BIKE,All,9514.20063861994,Work +WALK-TRANSIT,All,7123.176176904248,Work +PNR-TRANSIT,All,1747.0007252606824,Work +KNR-TRANSIT,All,3095.3114680811277,Work +TNC-TRANSIT,All,9.8773380966108,Work +TAXI,All,0.0,Work +TNC-REG,All,781.5152766961806,Work +TNC-SHARED,All,0.0,Work +SCHOOLBUS,All,0.0,Work +ESCOOTER,All,0.0,Work +EBIKE,All,249.712356526178,Work +All,0,9985.523811054658,Work +DRIVEALONE,0,399.025870407897,Work +SHARED2,0,151.87421757494,Work +SHARED3,0,0.0,Work +WALK,0,790.221420803447,Work +BIKE,0,0.0,Work +WALK-TRANSIT,0,4323.969105522798,Work +PNR-TRANSIT,0,0.0,Work +KNR-TRANSIT,0,286.1612591479606,Work +TNC-TRANSIT,0,9.8773380966108,Work +TAXI,0,0.0,Work +TNC-REG,0,496.078623958397,Work +TNC-SHARED,0,0.0,Work +SCHOOLBUS,0,0.0,Work +ESCOOTER,0,0.0,Work +EBIKE,0,0.0,Work +All,1,258890.9152881544,Work +DRIVEALONE,1,194824.447561643,Work +SHARED2,1,26042.7995240626,Work +SHARED3,1,22306.8953970716,Work +WALK,1,8920.80633456379,Work +BIKE,1,529.2243619855,Work +WALK-TRANSIT,1,2403.6980836745797,Work +PNR-TRANSIT,1,734.0107064431742,Work +KNR-TRANSIT,1,1191.1691069594553,Work +TNC-TRANSIT,1,0.0,Work +TAXI,1,0.0,Work +TNC-REG,1,245.348853515889,Work +TNC-SHARED,1,0.0,Work +SCHOOLBUS,1,0.0,Work +ESCOOTER,1,0.0,Work +EBIKE,1,0.0,Work +All,2,526462.2139198715,Work +DRIVEALONE,2,399793.247701802,Work +SHARED2,2,58408.4206202484,Work +SHARED3,2,55110.1468983703,Work +WALK,2,893.646638424153,Work +BIKE,2,8984.97627663444,Work +WALK-TRANSIT,2,395.50898770687047,Work +PNR-TRANSIT,2,1012.9900188175084,Work +KNR-TRANSIT,2,1617.9811019737115,Work +TNC-TRANSIT,2,0.0,Work +TAXI,2,0.0,Work +TNC-REG,2,40.0877992218947,Work +TNC-SHARED,2,0.0,Work +SCHOOLBUS,2,0.0,Work +ESCOOTER,2,0.0,Work +EBIKE,2,249.712356526178,Work +All,All,72076.54660354409,University +DRIVEALONE,All,21481.26523689866,University +SHARED2,All,9648.62728130121,University +SHARED3,All,12719.50056023019,University +WALK,All,6848.518498043601,University +BIKE,All,1569.7864994990675,University +WALK-TRANSIT,All,10181.487674631964,University +PNR-TRANSIT,All,319.83610074895876,University +KNR-TRANSIT,All,140.31612912784897,University +TNC-TRANSIT,All,0.0,University +TAXI,All,4.0,University +TNC-REG,All,958.904704155316,University +TNC-SHARED,All,0.0,University +SCHOOLBUS,All,20.0,University +ESCOOTER,All,0.0,University +EBIKE,All,0.0,University +All,0,12791.0,University +DRIVEALONE,0,49.0,University +SHARED2,0,1538.0,University +SHARED3,0,214.0,University +WALK,0,99.0,University +BIKE,0,1233.0,University +WALK-TRANSIT,0,5270.949936000001,University +PNR-TRANSIT,0,89.7804,University +KNR-TRANSIT,0,0.0,University +TNC-TRANSIT,0,0.0,University +TAXI,0,4.0,University +TNC-REG,0,0.0,University +TNC-SHARED,0,0.0,University +SCHOOLBUS,0,20.0,University +ESCOOTER,0,0.0,University +EBIKE,0,0.0,University +All,1,34251.581673910594,University +DRIVEALONE,1,9252.43914484136,University +SHARED2,1,4261.36050935122,University +SHARED3,1,7029.78579044377,University +WALK,1,3470.94867299096,University +BIKE,1,260.15240256449,University +WALK-TRANSIT,1,4890.927463666941,University +PNR-TRANSIT,1,0.0,University +KNR-TRANSIT,1,140.31612912784897,University +TNC-TRANSIT,1,0.0,University +TAXI,1,0.0,University +TNC-REG,1,958.904704155316,University +TNC-SHARED,1,0.0,University +SCHOOLBUS,1,0.0,University +ESCOOTER,1,0.0,University +EBIKE,1,0.0,University +All,2,25033.964929633494,University +DRIVEALONE,2,12179.8260920573,University +SHARED2,2,3849.26677194999,University +SHARED3,2,5475.71476978642,University +WALK,2,3278.56982505264,University +BIKE,2,76.6340969345775,University +WALK-TRANSIT,2,19.6102749650194,University +PNR-TRANSIT,2,230.05570074895874,University +KNR-TRANSIT,2,0.0,University +TNC-TRANSIT,2,0.0,University +TAXI,2,0.0,University +TNC-REG,2,0.0,University +TNC-SHARED,2,0.0,University +SCHOOLBUS,2,0.0,University +ESCOOTER,2,0.0,University +EBIKE,2,0.0,University +All,All,370551.5369245041,School +DRIVEALONE,All,50096.37525185679,School +SHARED2,All,84971.08824780851,School +SHARED3,All,157970.27055362595,School +WALK,All,50215.19837603348,School +BIKE,All,18582.42717827229,School +WALK-TRANSIT,All,2125.28900825939,School +PNR-TRANSIT,All,0.0,School +KNR-TRANSIT,All,0.0,School +TNC-TRANSIT,All,0.0,School +TAXI,All,0.0,School +TNC-REG,All,0.0,School +TNC-SHARED,All,0.0,School +SCHOOLBUS,All,4582.63342841512,School +ESCOOTER,All,0.0,School +EBIKE,All,277.262891367173,School +All,0,535.7411600331474,School +DRIVEALONE,0,0.0,School +SHARED2,0,0.0,School +SHARED3,0,283.638030645744,School +WALK,0,40.0723114816791,School +BIKE,0,0.0,School +WALK-TRANSIT,0,34.24452988729453,School +PNR-TRANSIT,0,0.0,School +KNR-TRANSIT,0,0.0,School +TNC-TRANSIT,0,0.0,School +TAXI,0,0.0,School +TNC-REG,0,0.0,School +TNC-SHARED,0,0.0,School +SCHOOLBUS,0,149.895019270037,School +ESCOOTER,0,0.0,School +EBIKE,0,0.0,School +All,1,93492.8280014621,School +DRIVEALONE,1,7559.11702709989,School +SHARED2,1,23075.8097766524,School +SHARED3,1,47209.0185256672,School +WALK,1,11641.4345244784,School +BIKE,1,46.9319312323893,School +WALK-TRANSIT,1,25.25248552134667,School +PNR-TRANSIT,1,0.0,School +KNR-TRANSIT,1,0.0,School +TNC-TRANSIT,1,0.0,School +TAXI,1,0.0,School +TNC-REG,1,0.0,School +TNC-SHARED,1,0.0,School +SCHOOLBUS,1,3914.69624565127,School +ESCOOTER,1,0.0,School +EBIKE,1,0.0,School +All,2,276522.96776300884,School +DRIVEALONE,2,42537.2582247569,School +SHARED2,2,61895.2784711561,School +SHARED3,2,110477.613997313,School +WALK,2,38533.6915400734,School +BIKE,2,18535.4952470399,School +WALK-TRANSIT,2,2065.7919928507486,School +PNR-TRANSIT,2,0.0,School +KNR-TRANSIT,2,0.0,School +TNC-TRANSIT,2,0.0,School +TAXI,2,0.0,School +TNC-REG,2,0.0,School +TNC-SHARED,2,0.0,School +SCHOOLBUS,2,518.042163493812,School +ESCOOTER,2,0.0,School +EBIKE,2,277.262891367173,School +All,All,1619658.1682006032,Ind-Maintenance +DRIVEALONE,All,602926.3844597035,Ind-Maintenance +SHARED2,All,392555.5930384987,Ind-Maintenance +SHARED3,All,410840.3465459006,Ind-Maintenance +WALK,All,140166.4102470719,Ind-Maintenance +BIKE,All,18776.318625145806,Ind-Maintenance +WALK-TRANSIT,All,12707.897320229486,Ind-Maintenance +PNR-TRANSIT,All,1914.342883392162,Ind-Maintenance +KNR-TRANSIT,All,8936.193905360975,Ind-Maintenance +TNC-TRANSIT,All,169.2353156176017,Ind-Maintenance +TAXI,All,1947.2792086913,Ind-Maintenance +TNC-REG,All,8744.755247976791,Ind-Maintenance +TNC-SHARED,All,0.0,Ind-Maintenance +SCHOOLBUS,All,0.0,Ind-Maintenance +ESCOOTER,All,288.741959382586,Ind-Maintenance +EBIKE,All,2103.474931681188,Ind-Maintenance +All,0,37847.372398730695,Ind-Maintenance +DRIVEALONE,0,2730.47102330347,Ind-Maintenance +SHARED2,0,1787.56186559976,Ind-Maintenance +SHARED3,0,599.391278527622,Ind-Maintenance +WALK,0,10136.1543774924,Ind-Maintenance +BIKE,0,0.0,Ind-Maintenance +WALK-TRANSIT,0,7796.769471218247,Ind-Maintenance +PNR-TRANSIT,0,83.91054305011743,Ind-Maintenance +KNR-TRANSIT,0,3250.6009941330963,Ind-Maintenance +TNC-TRANSIT,0,56.3385987955167,Ind-Maintenance +TAXI,0,320.276190548646,Ind-Maintenance +TNC-REG,0,2764.94926723099,Ind-Maintenance +TNC-SHARED,0,0.0,Ind-Maintenance +SCHOOLBUS,0,0.0,Ind-Maintenance +ESCOOTER,0,288.741959382586,Ind-Maintenance +EBIKE,0,359.797652502899,Ind-Maintenance +All,1,470929.0903270772,Ind-Maintenance +DRIVEALONE,1,144894.419918633,Ind-Maintenance +SHARED2,1,115779.244494685,Ind-Maintenance +SHARED3,1,141222.355572469,Ind-Maintenance +WALK,1,42409.8929031677,Ind-Maintenance +BIKE,1,483.170513427805,Ind-Maintenance +WALK-TRANSIT,1,4181.6411678993245,Ind-Maintenance +PNR-TRANSIT,1,1513.8866505603437,Ind-Maintenance +KNR-TRANSIT,1,5660.150693979755,Ind-Maintenance +TNC-TRANSIT,1,112.896716822085,Ind-Maintenance +TAXI,1,1627.003018142654,Ind-Maintenance +TNC-REG,1,3561.47541340738,Ind-Maintenance +TNC-SHARED,1,0.0,Ind-Maintenance +SCHOOLBUS,1,0.0,Ind-Maintenance +ESCOOTER,1,0.0,Ind-Maintenance +EBIKE,1,42.7448851482284,Ind-Maintenance +All,2,1110881.7054747953,Ind-Maintenance +DRIVEALONE,2,455301.493517767,Ind-Maintenance +SHARED2,2,274988.786678214,Ind-Maintenance +SHARED3,2,269018.599694904,Ind-Maintenance +WALK,2,87620.3629664118,Ind-Maintenance +BIKE,2,18293.148111718,Ind-Maintenance +WALK-TRANSIT,2,729.4866811119136,Ind-Maintenance +PNR-TRANSIT,2,316.54568978170056,Ind-Maintenance +KNR-TRANSIT,2,25.44221724812555,Ind-Maintenance +TNC-TRANSIT,2,0.0,Ind-Maintenance +TAXI,2,0.0,Ind-Maintenance +TNC-REG,2,2418.33056733842,Ind-Maintenance +TNC-SHARED,2,0.0,Ind-Maintenance +SCHOOLBUS,2,0.0,Ind-Maintenance +ESCOOTER,2,0.0,Ind-Maintenance +EBIKE,2,1700.93239403006,Ind-Maintenance +All,All,1012237.3506941432,Ind-Discretionary +DRIVEALONE,All,408676.4993708737,Ind-Discretionary +SHARED2,All,148304.09424719686,Ind-Discretionary +SHARED3,All,172053.13483339292,Ind-Discretionary +WALK,All,209989.80779105332,Ind-Discretionary +BIKE,All,14354.853949815271,Ind-Discretionary +WALK-TRANSIT,All,26436.045315868825,Ind-Discretionary +PNR-TRANSIT,All,576.020687688831,Ind-Discretionary +KNR-TRANSIT,All,383.5417289542265,Ind-Discretionary +TNC-TRANSIT,All,0.0,Ind-Discretionary +TAXI,All,1113.06422541153,Ind-Discretionary +TNC-REG,All,1701.074617326277,Ind-Discretionary +TNC-SHARED,All,0.0,Ind-Discretionary +SCHOOLBUS,All,0.0,Ind-Discretionary +ESCOOTER,All,1499.4216282953505,Ind-Discretionary +EBIKE,All,1386.8466477160664,Ind-Discretionary +All,0,50060.78320702102,Ind-Discretionary +DRIVEALONE,0,10584.5536337407,Ind-Discretionary +SHARED2,0,2432.63826989888,Ind-Discretionary +SHARED3,0,150.656742365532,Ind-Discretionary +WALK,0,21176.9865947851,Ind-Discretionary +BIKE,0,84.3320154626326,Ind-Discretionary +WALK-TRANSIT,0,8215.693454477043,Ind-Discretionary +PNR-TRANSIT,0,0.0,Ind-Discretionary +KNR-TRANSIT,0,209.53873510495376,Ind-Discretionary +TNC-TRANSIT,0,0.0,Ind-Discretionary +TAXI,0,0.0,Ind-Discretionary +TNC-REG,0,354.848454112143,Ind-Discretionary +TNC-SHARED,0,0.0,Ind-Discretionary +SCHOOLBUS,0,0.0,Ind-Discretionary +ESCOOTER,0,92.8936559139734,Ind-Discretionary +EBIKE,0,62.3742416094516,Ind-Discretionary +All,1,312637.6802063424,Ind-Discretionary +DRIVEALONE,1,113420.316917965,Ind-Discretionary +SHARED2,1,72485.063962059,Ind-Discretionary +SHARED3,1,57075.9170093754,Ind-Discretionary +WALK,1,31915.3426628573,Ind-Discretionary +BIKE,1,6228.44037643549,Ind-Discretionary +WALK-TRANSIT,1,12557.375578515552,Ind-Discretionary +PNR-TRANSIT,1,0.0,Ind-Discretionary +KNR-TRANSIT,1,36.56895927959254,Ind-Discretionary +TNC-TRANSIT,1,0.0,Ind-Discretionary +TAXI,1,1113.06422541153,Ind-Discretionary +TNC-REG,1,1096.10332752668,Ind-Discretionary +TNC-SHARED,1,0.0,Ind-Discretionary +SCHOOLBUS,1,0.0,Ind-Discretionary +ESCOOTER,1,1268.42376401554,Ind-Discretionary +EBIKE,1,760.316535924521,Ind-Discretionary +All,2,649538.8872807798,Ind-Discretionary +DRIVEALONE,2,284671.628819168,Ind-Discretionary +SHARED2,2,73386.392015239,Ind-Discretionary +SHARED3,2,114826.561081652,Ind-Discretionary +WALK,2,156897.478533411,Ind-Discretionary +BIKE,2,8042.08155791715,Ind-Discretionary +WALK-TRANSIT,2,5662.976282876228,Ind-Discretionary +PNR-TRANSIT,2,576.020687688831,Ind-Discretionary +KNR-TRANSIT,2,137.43403456968022,Ind-Discretionary +TNC-TRANSIT,2,0.0,Ind-Discretionary +TAXI,2,0.0,Ind-Discretionary +TNC-REG,2,250.122835687454,Ind-Discretionary +TNC-SHARED,2,0.0,Ind-Discretionary +SCHOOLBUS,2,0.0,Ind-Discretionary +ESCOOTER,2,138.104208365837,Ind-Discretionary +EBIKE,2,564.155870182094,Ind-Discretionary +All,All,141862.9803750819,Joint-Maintenance +DRIVEALONE,All,0.0,Joint-Maintenance +SHARED2,All,92437.460474125,Joint-Maintenance +SHARED3,All,47304.1684960004,Joint-Maintenance +WALK,All,1201.476447211716,Joint-Maintenance +BIKE,All,857.286224187774,Joint-Maintenance +WALK-TRANSIT,All,6.974415892381714,Joint-Maintenance +PNR-TRANSIT,All,0.0,Joint-Maintenance +KNR-TRANSIT,All,0.0,Joint-Maintenance +TNC-TRANSIT,All,0.0,Joint-Maintenance +TAXI,All,0.0,Joint-Maintenance +TNC-REG,All,0.0,Joint-Maintenance +TNC-SHARED,All,0.0,Joint-Maintenance +SCHOOLBUS,All,0.0,Joint-Maintenance +ESCOOTER,All,0.0,Joint-Maintenance +EBIKE,All,49.9338393909406,Joint-Maintenance +All,0,0.0,Joint-Maintenance +DRIVEALONE,0,0.0,Joint-Maintenance +SHARED2,0,0.0,Joint-Maintenance +SHARED3,0,0.0,Joint-Maintenance +WALK,0,0.0,Joint-Maintenance +BIKE,0,0.0,Joint-Maintenance +WALK-TRANSIT,0,0.0,Joint-Maintenance +PNR-TRANSIT,0,0.0,Joint-Maintenance +KNR-TRANSIT,0,0.0,Joint-Maintenance +TNC-TRANSIT,0,0.0,Joint-Maintenance +TAXI,0,0.0,Joint-Maintenance +TNC-REG,0,0.0,Joint-Maintenance +TNC-SHARED,0,0.0,Joint-Maintenance +SCHOOLBUS,0,0.0,Joint-Maintenance +ESCOOTER,0,0.0,Joint-Maintenance +EBIKE,0,0.0,Joint-Maintenance +All,1,48413.0711207117,Joint-Maintenance +DRIVEALONE,1,0.0,Joint-Maintenance +SHARED2,1,31160.76046473,Joint-Maintenance +SHARED3,1,15778.2085318302,Joint-Maintenance +WALK,1,604.161005797653,Joint-Maintenance +BIKE,1,857.286224187774,Joint-Maintenance +WALK-TRANSIT,1,6.974415892381714,Joint-Maintenance +PNR-TRANSIT,1,0.0,Joint-Maintenance +KNR-TRANSIT,1,0.0,Joint-Maintenance +TNC-TRANSIT,1,0.0,Joint-Maintenance +TAXI,1,0.0,Joint-Maintenance +TNC-REG,1,0.0,Joint-Maintenance +TNC-SHARED,1,0.0,Joint-Maintenance +SCHOOLBUS,1,0.0,Joint-Maintenance +ESCOOTER,1,0.0,Joint-Maintenance +EBIKE,1,0.0,Joint-Maintenance +All,2,93449.9092543702,Joint-Maintenance +DRIVEALONE,2,0.0,Joint-Maintenance +SHARED2,2,61276.700009395,Joint-Maintenance +SHARED3,2,31525.9599641702,Joint-Maintenance +WALK,2,597.315441414063,Joint-Maintenance +BIKE,2,0.0,Joint-Maintenance +WALK-TRANSIT,2,0.0,Joint-Maintenance +PNR-TRANSIT,2,0.0,Joint-Maintenance +KNR-TRANSIT,2,0.0,Joint-Maintenance +TNC-TRANSIT,2,0.0,Joint-Maintenance +TAXI,2,0.0,Joint-Maintenance +TNC-REG,2,0.0,Joint-Maintenance +TNC-SHARED,2,0.0,Joint-Maintenance +SCHOOLBUS,2,0.0,Joint-Maintenance +ESCOOTER,2,0.0,Joint-Maintenance +EBIKE,2,49.9338393909406,Joint-Maintenance +All,All,203982.6431771227,Joint-Discretionary +DRIVEALONE,All,0.0,Joint-Discretionary +SHARED2,All,114473.0686075304,Joint-Discretionary +SHARED3,All,43811.2101885028,Joint-Discretionary +WALK,All,45235.84961475972,Joint-Discretionary +BIKE,All,239.3403289589178,Joint-Discretionary +WALK-TRANSIT,All,0.0,Joint-Discretionary +PNR-TRANSIT,All,0.0,Joint-Discretionary +KNR-TRANSIT,All,0.0,Joint-Discretionary +TNC-TRANSIT,All,0.0,Joint-Discretionary +TAXI,All,0.0,Joint-Discretionary +TNC-REG,All,0.0,Joint-Discretionary +TNC-SHARED,All,0.0,Joint-Discretionary +SCHOOLBUS,All,0.0,Joint-Discretionary +ESCOOTER,All,0.0,Joint-Discretionary +EBIKE,All,223.17443737088,Joint-Discretionary +All,0,556.5208837134279,Joint-Discretionary +DRIVEALONE,0,0.0,Joint-Discretionary +SHARED2,0,494.477809705399,Joint-Discretionary +SHARED3,0,0.0,Joint-Discretionary +WALK,0,62.0430740080289,Joint-Discretionary +BIKE,0,0.0,Joint-Discretionary +WALK-TRANSIT,0,0.0,Joint-Discretionary +PNR-TRANSIT,0,0.0,Joint-Discretionary +KNR-TRANSIT,0,0.0,Joint-Discretionary +TNC-TRANSIT,0,0.0,Joint-Discretionary +TAXI,0,0.0,Joint-Discretionary +TNC-REG,0,0.0,Joint-Discretionary +TNC-SHARED,0,0.0,Joint-Discretionary +SCHOOLBUS,0,0.0,Joint-Discretionary +ESCOOTER,0,0.0,Joint-Discretionary +EBIKE,0,0.0,Joint-Discretionary +All,1,66248.99621834104,Joint-Discretionary +DRIVEALONE,1,0.0,Joint-Discretionary +SHARED2,1,45400.6397549459,Joint-Discretionary +SHARED3,1,12214.0317464235,Joint-Discretionary +WALK,1,8535.26485878479,Joint-Discretionary +BIKE,1,99.0598581868538,Joint-Discretionary +WALK-TRANSIT,1,0.0,Joint-Discretionary +PNR-TRANSIT,1,0.0,Joint-Discretionary +KNR-TRANSIT,1,0.0,Joint-Discretionary +TNC-TRANSIT,1,0.0,Joint-Discretionary +TAXI,1,0.0,Joint-Discretionary +TNC-REG,1,0.0,Joint-Discretionary +TNC-SHARED,1,0.0,Joint-Discretionary +SCHOOLBUS,1,0.0,Joint-Discretionary +ESCOOTER,1,0.0,Joint-Discretionary +EBIKE,1,0.0,Joint-Discretionary +All,2,137177.12607506823,Joint-Discretionary +DRIVEALONE,2,0.0,Joint-Discretionary +SHARED2,2,68577.9510428791,Joint-Discretionary +SHARED3,2,31597.1784420793,Joint-Discretionary +WALK,2,36638.5416819669,Joint-Discretionary +BIKE,2,140.280470772064,Joint-Discretionary +WALK-TRANSIT,2,0.0,Joint-Discretionary +PNR-TRANSIT,2,0.0,Joint-Discretionary +KNR-TRANSIT,2,0.0,Joint-Discretionary +TNC-TRANSIT,2,0.0,Joint-Discretionary +TAXI,2,0.0,Joint-Discretionary +TNC-REG,2,0.0,Joint-Discretionary +TNC-SHARED,2,0.0,Joint-Discretionary +SCHOOLBUS,2,0.0,Joint-Discretionary +ESCOOTER,2,0.0,Joint-Discretionary +EBIKE,2,223.17443737088,Joint-Discretionary +All,All,114790.43582928032,Work sub-tour +DRIVEALONE,All,63827.54313706136,Work sub-tour +SHARED2,All,11849.736942712909,Work sub-tour +SHARED3,All,5745.7853967445,Work sub-tour +WALK,All,31685.56728481248,Work sub-tour +BIKE,All,1388.5761205314982,Work sub-tour +WALK-TRANSIT,All,39.573546798112915,Work sub-tour +PNR-TRANSIT,All,0.0,Work sub-tour +KNR-TRANSIT,All,0.0,Work sub-tour +TNC-TRANSIT,All,0.0,Work sub-tour +TAXI,All,0.0,Work sub-tour +TNC-REG,All,0.0,Work sub-tour +TNC-SHARED,All,0.0,Work sub-tour +SCHOOLBUS,All,0.0,Work sub-tour +ESCOOTER,All,0.0,Work sub-tour +EBIKE,All,221.4217877836,Work sub-tour +All,0,460.40054729163694,Work sub-tour +DRIVEALONE,0,44.8883499012554,Work sub-tour +SHARED2,0,0.0,Work sub-tour +SHARED3,0,0.0,Work sub-tour +WALK,0,343.70703775641,Work sub-tour +BIKE,0,0.0,Work sub-tour +WALK-TRANSIT,0,39.573546798112915,Work sub-tour +PNR-TRANSIT,0,0.0,Work sub-tour +KNR-TRANSIT,0,0.0,Work sub-tour +TNC-TRANSIT,0,0.0,Work sub-tour +TAXI,0,0.0,Work sub-tour +TNC-REG,0,0.0,Work sub-tour +TNC-SHARED,0,0.0,Work sub-tour +SCHOOLBUS,0,0.0,Work sub-tour +ESCOOTER,0,0.0,Work sub-tour +EBIKE,0,0.0,Work sub-tour +All,1,35396.78621606146,Work sub-tour +DRIVEALONE,1,26390.1766471709,Work sub-tour +SHARED2,1,6983.50642153205,Work sub-tour +SHARED3,1,1540.95247287085,Work sub-tour +WALK,1,472.507749578968,Work sub-tour +BIKE,1,9.64292490868824,Work sub-tour +WALK-TRANSIT,1,0.0,Work sub-tour +PNR-TRANSIT,1,0.0,Work sub-tour +KNR-TRANSIT,1,0.0,Work sub-tour +TNC-TRANSIT,1,0.0,Work sub-tour +TAXI,1,0.0,Work sub-tour +TNC-REG,1,0.0,Work sub-tour +TNC-SHARED,1,0.0,Work sub-tour +SCHOOLBUS,1,0.0,Work sub-tour +ESCOOTER,1,0.0,Work sub-tour +EBIKE,1,0.0,Work sub-tour +All,2,78933.24906592722,Work sub-tour +DRIVEALONE,2,37392.4781399892,Work sub-tour +SHARED2,2,4866.23052118086,Work sub-tour +SHARED3,2,4204.83292387365,Work sub-tour +WALK,2,30869.3524974771,Work sub-tour +BIKE,2,1378.93319562281,Work sub-tour +WALK-TRANSIT,2,0.0,Work sub-tour +PNR-TRANSIT,2,0.0,Work sub-tour +KNR-TRANSIT,2,0.0,Work sub-tour +TNC-TRANSIT,2,0.0,Work sub-tour +TAXI,2,0.0,Work sub-tour +TNC-REG,2,0.0,Work sub-tour +TNC-SHARED,2,0.0,Work sub-tour +SCHOOLBUS,2,0.0,Work sub-tour +ESCOOTER,2,0.0,Work sub-tour +EBIKE,2,221.4217877836,Work sub-tour From cef02527029f2211bc7c8a04ee083d41b2eb28e7 Mon Sep 17 00:00:00 2001 From: Ali Etezady <58451076+aletzdy@users.noreply.github.com> Date: Fri, 15 Nov 2024 07:13:11 -0800 Subject: [PATCH 85/86] trip mode choice calibration files --- .../scripts/asim_trip_calib_util.py | 1339 ++++++++++ .../scripts/calibrate_trip_mode_choice.ipynb | 370 +++ .../scripts/settings_mp_cold_start.yaml | 106 + .../scripts/settings_mp_warm_start.yaml | 109 + ...calibration_targets_2024-01-23_updated.csv | 2305 +++++++++++++++++ 5 files changed, 4229 insertions(+) create mode 100644 src/asim/calibration/resident/trip_mode_choice/scripts/asim_trip_calib_util.py create mode 100644 src/asim/calibration/resident/trip_mode_choice/scripts/calibrate_trip_mode_choice.ipynb create mode 100644 src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_cold_start.yaml create mode 100644 src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_warm_start.yaml create mode 100644 src/asim/calibration/resident/trip_mode_choice/targets/trip_mode_choice_calibration_targets_2024-01-23_updated.csv diff --git a/src/asim/calibration/resident/trip_mode_choice/scripts/asim_trip_calib_util.py b/src/asim/calibration/resident/trip_mode_choice/scripts/asim_trip_calib_util.py new file mode 100644 index 000000000..969c5d7db --- /dev/null +++ b/src/asim/calibration/resident/trip_mode_choice/scripts/asim_trip_calib_util.py @@ -0,0 +1,1339 @@ +import pandas as pd +import numpy as np +import os +import shutil +import time +import datetime +from IPython.display import display +import matplotlib +import matplotlib.pyplot as plt +import seaborn as sns +sns.set() + +# -------------------------------------------------------------------------------------------------- +# dictionary mappings +total_keyword = 'All' +output_calibration_trip_purposes = [ + 'work', + 'univ', + 'school', + 'atwork', + 'ind_maint', + 'ind_discr', + 'joint', + total_keyword # last entry should be for all purposes +] + +output_calibration_tour_modes = [ + 'DRIVEALONE', + 'SHARED2', + 'SHARED3', + 'WALK', + 'BIKE', + 'ESCOOTER', + 'EBIKE', + 'WALK-TRANSIT', + 'PNR-TRANSIT', + 'KNR-TRANSIT', + 'TNC-TRANSIT', + 'SCHOOLBUS', + 'RIDE-HAIL', + total_keyword] + +output_calibration_trip_modes = [ + 'DRIVEALONE', + 'SHARED2', + 'SHARED3', + 'WALK', + 'BIKE', + 'ESCOOTER', + 'EBIKE', + 'WALK-TRANSIT', + 'PNR-TRANSIT', + 'KNR-TRANSIT', + 'TNC-TRANSIT', + 'SCHOOLBUS', + 'TNC_SINGLE', + 'TNC_SHARED', + 'TAXI', + total_keyword] + +# transit calibraiton modes are not scaled when comparing to model +output_calibration_transit_modes = [ + 'WALK-TRANSIT', + 'PNR-TRANSIT', + 'KNR-TRANSIT', + 'TNC-TRANSIT' ### ASK DAVID ALI +] + +# # used to switch drivealone mode to walk transit for people parked at major university +# output_calibration_auto_modes = [ +# 'DRIVEALONE', +# 'SHARED2', +# 'SHARED3', +# ] +# parked_at_univ_calib_mode = 'WALK-TRANSIT' + +# should match the mode choice coefficient names +output_auto_suff = [ + '0', + '1', + '2' +] + +# Mapping calibration mode to trip mode choice coefficient names +output_calibration_tour_mode_to_coef_name_dict = { + 'DRIVEALONE': 'da', + 'SHARED2': 's2', + 'SHARED3': 's3', + 'WALK': 'walk', + 'BIKE': 'bike', + 'ESCOOTER': 'escooter', + 'EBIKE': 'ebike', + 'WALK-TRANSIT': 'wtran', + 'PNR-TRANSIT': 'pnr', + 'KNR-TRANSIT': 'knr', + 'TNC-TRANSIT': 'tnr', + 'SCHOOLBUS': 'schbus', + 'RIDE-HAIL': 'maas', + total_keyword: 'all', +} + +output_calibration_trip_mode_to_coef_name_dict = { + 'DRIVEALONE': 'DRIVEALONE', + 'SHARED2': 'SHARED2', + 'SHARED3': 'SHARED3', + 'WALK': 'WALK', + 'BIKE': 'BIKE', + 'ESCOOTER': 'ESCOOTER', + 'EBIKE': 'EBIKE', + 'WALK-TRANSIT': 'WALK_TRANSIT', + 'PNR-TRANSIT': 'PNR_TRANSIT', + 'KNR-TRANSIT': 'KNR_TRANSIT', + 'TNC-TRANSIT': 'TNC_TRANSIT', + 'SCHOOLBUS': 'SCH_BUS', + 'TNC_SINGLE': 'TNC_SINGLE', + 'TNC_SHARED': 'TNC_SHARED', + 'TAXI': 'TAXI', + total_keyword: 'all', +} + +output_calibration_purposes_to_coef_names_dict = { + 'work': ['work'], + 'univ': ['univ'], + 'school': ['school'], + 'atwork': ['atwork'], + # 'ind_maint': ['shopping', 'escort', 'othmaint'], ### DELETE + # 'ind_discr': ['social', 'eatout', 'othdiscr'], ### DELETE + 'ind_maint': ['maint'], + 'ind_discr': ['disc'], + 'joint': ['maint', 'disc'], + # 'joint': ['joint'], # placeholder ### DELETE + # 'joint': ['joint'], # placeholder ### DELETE + total_keyword: ['all'] +} + +coef_name_to_output_calibration_purpose_dict = { + 'work': 'work', + 'univ': 'univ', + 'school': 'school', + 'atwork': 'atwork', + 'shopping': 'ind_maint', # individual split to joint in code + 'escort': 'ind_maint', + 'othmaint': 'ind_maint', + 'social': 'ind_discr', + 'eatout': 'ind_discr', + 'othdiscr': 'ind_discr', + 'joint': 'joint', + 'all': total_keyword # last entry should be for all purposes +} + +# ------------------------------------------ +# Mapping activitysim to calibration definitions +asim_to_calib_purpose_dict = { + 'work': 'work', + 'univ': 'univ', + 'school': 'school', + 'shopping': 'ind_maint', # individual split to joint in code + 'escort': 'ind_maint', + 'othmaint': 'ind_maint', + 'social': 'ind_discr', + 'eatout': 'ind_discr', + 'othdiscr': 'ind_discr', + 'atwork': 'atwork', + 'eat': 'atwork', + 'maint': 'atwork', + 'business': 'atwork', + 'all': total_keyword +} + +asim_to_calib_trip_mode_dict = { + 'DRIVEALONE': 'DRIVEALONE', + 'SHARED2': 'SHARED2', + 'SHARED3': 'SHARED3', + 'WALK': 'WALK', + 'BIKE': 'BIKE', + 'ESCOOTER': 'ESCOOTER', + 'EBIKE': 'EBIKE', + 'WALK_LOC': 'WALK-TRANSIT', + 'WALK_PRM': 'WALK-TRANSIT', + 'WALK_MIX': 'WALK-TRANSIT', + 'PNR_LOC': 'PNR-TRANSIT', + 'PNR_PRM': 'PNR-TRANSIT', + 'PNR_MIX': 'PNR-TRANSIT', + 'KNR_LOC': 'KNR-TRANSIT', + 'KNR_PRM': 'KNR-TRANSIT', + 'KNR_MIX': 'KNR-TRANSIT', + 'TNC_LOC': 'TNC-TRANSIT', + 'TNC_PRM': 'TNC-TRANSIT', + 'TNC_MIX': 'TNC-TRANSIT', + 'TAXI': 'TAXI', + 'TNC_SINGLE': 'TNC_SINGLE', + 'TNC_SHARED': 'TNC_SHARED', + 'SCH_BUS': 'SCHOOLBUS' +} + +# added for trip tables +asim_to_calib_tour_mode_dict = { + 'DRIVEALONE': 'DRIVEALONE', + 'SHARED2': 'SHARED2', + 'SHARED3': 'SHARED3', + 'WALK': 'WALK', + 'BIKE': 'BIKE', + 'ESCOOTER': 'ESCOOTER', + 'EBIKE': 'EBIKE', + 'WALK_LOC': 'WALK-TRANSIT', + 'WALK_PRM': 'WALK-TRANSIT', + 'WALK_MIX': 'WALK-TRANSIT', + 'PNR_LOC': 'PNR-TRANSIT', + 'PNR_PRM': 'PNR-TRANSIT', + 'PNR_MIX': 'PNR-TRANSIT', + 'KNR_LOC': 'KNR-TRANSIT', + 'KNR_PRM': 'KNR-TRANSIT', + 'KNR_MIX': 'KNR-TRANSIT', + 'TNC_LOC': 'TNC-TRANSIT', + 'TNC_PRM': 'TNC-TRANSIT', + 'TNC_MIX': 'TNC-TRANSIT', + 'TAXI': 'RIDE-HAIL', + 'TNC_SINGLE': 'RIDE-HAIL', + 'TNC_SHARED': 'RIDE-HAIL', + 'SCH_BUS': 'SCHOOLBUS' +} + +asim_auto_suff_dict = { + 0: output_auto_suff[0], + 1: output_auto_suff[1], + 2: output_auto_suff[2], +} + +# ------------------------------------------ +# Mapping Survey targets to calibration definitions +survey_to_calib_purposes_dict = { + 'Work': 'work', + 'University': 'univ', + 'School': 'school', + 'Work sub-tour': 'atwork', + 'Ind-Maintenance': 'ind_maint', + 'Ind-Discretionary': 'ind_discr', + 'Joint-Maintenance': 'joint', + 'Joint-Discretionary': 'joint', + 'Total': total_keyword +} + +survey_to_calib_trip_mode_dict = { + 'DRIVEALONE': 'DRIVEALONE', + 'SHARED2': 'SHARED2', + 'SHARED3': 'SHARED3', + 'WALK': 'WALK', + 'BIKE': 'BIKE', + 'ESCOOTER': 'ESCOOTER', + 'EBIKE': 'EBIKE', + 'WALK-TRANSIT': 'WALK-TRANSIT', + 'PNR-TRANSIT': 'PNR-TRANSIT', + 'KNR-TRANSIT': 'KNR-TRANSIT', + 'TNC-TRANSIT': 'TNC-TRANSIT', + 'TAXI': 'TAXI', + 'TNC-REG': 'TNC_SINGLE', + 'TNC-SHARED': 'TNC_SHARED', + 'SCHOOLBUS': 'SCHOOLBUS', + 'All': total_keyword +} + +survey_to_calib_tour_mode_dict = { + 'DRIVEALONE': 'DRIVEALONE', + 'SHARED2': 'SHARED2', + 'SHARED3': 'SHARED3', + 'WALK': 'WALK', + 'BIKE': 'BIKE', + 'ESCOOTER': 'ESCOOTER', + 'EBIKE': 'EBIKE', + 'WALK-TRANSIT': 'WALK-TRANSIT', + 'PNR-TRANSIT': 'PNR-TRANSIT', + 'KNR-TRANSIT': 'KNR-TRANSIT', + 'TNC-TRANSIT': 'TNC-TRANSIT', + 'TAXI': 'RIDE-HAIL', + 'TNC-REG': 'RIDE-HAIL', + 'TNC-SHARED': 'RIDE-HAIL', + 'SCHOOLBUS': 'SCHOOLBUS', + 'All': total_keyword +} + +survey_calib_target_auto_suff_dict = { + '0': output_auto_suff[0], + '1': output_auto_suff[1], + '2': output_auto_suff[2], +} + +survey_table_purpose_col = 'purpose' +survey_table_trip_mode_col = 'grouped_linked_trip_mode' +# added for trip mc calibration +survey_table_tour_mode_col = 'grouped_tour_mode' +# not needed for trip mc calibration +#survey_table_auto_suff_col = 'auto_suff' +survey_table_trips_col = 'trips' + +# HTML visualizer dictionaries. needs to match HTS summary script. +# need to be checked only if the scaled calibration targets want to be included in the visualizer +calib_trip_mode_to_vis_dict = { #tripmode vis + # calibration_trip_mode: visualizer_trip_mode + 'DRIVEALONE': 1, + 'SHARED2': 2, + 'SHARED3': 3, + 'WALK': 4, + 'BIKE': 5, + 'WALK-TRANSIT': 6, + 'PNR-TRANSIT': 7, + 'KNR-TRANSIT': 8, + 'TNC-TRANSIT': 9, + 'TAXI': 10, + 'TNC_SINGLE': 11, + 'TNC_SHARED':12, + 'SCHOOLBUS': 13, + 'ESCOOTER': 14, ### FIX_IT: The number for ESCOOTER and EBIKE are temporary, need to decide and finalize them later + 'EBIKE': 15, + total_keyword: 'Total' +} +calib_tourmode_num_to_vis_dict = { #tourmode vis + # calibration_tour_mode: visualizer_tour_mode + 'DRIVEALONE': 1, + 'SHARED2': 2, + 'SHARED3': 3, + 'WALK': 4, + 'BIKE': 5, + 'WALK-TRANSIT': 6, + 'PNR-TRANSIT': 7, + 'KNR-TRANSIT': 8, + 'TNC-TRANSIT': 9, + # 'TAXI': 10, + # 'TNC_SINGLE': 11, + # 'TNC_SHARED':12, + 'RIDE-HAIL': 10, + 'SCHOOLBUS': 11, + 'ESCOOTER': 12, ### FIX_IT: The number for ESCOOTER and EBIKE are temporary, need to decide and finalize them later + 'EBIKE': 13, + total_keyword: 'Total' +} +calib_tour_mode_to_vis_dict = { #tourmode vis + 'DRIVEALONE': 'Drivealone', + 'SHARED2': 'Shared2', + 'SHARED3': 'Shared3', + 'WALK': 'Walk', + 'BIKE': 'Bike', + 'ESCOOTER': 'Escooter', + 'EBIKE': 'Ebike', + 'WALK-TRANSIT': 'Walk-Transit', + 'PNR-TRANSIT': 'PNR-Transit', + 'KNR-TRANSIT': 'KNR-Transit', + 'TNC-TRANSIT': 'TNC-Transit', + 'SCHOOLBUS': 'SchoolBus', + 'RIDE-HAIL': 'Ride Hail', + 'TAXI': 'Ridehail', + 'TNC-SINGLE': 'Ride Hail', + 'TNC-SHARED': 'Ride Hail', + total_keyword: 'Total' +} +purpose_vis_dict = { # same purposes used for both trip and tour + # calibration purpose: visualizer purpose + 'univ': 'univ', + 'school': 'sch', + 'work': 'work', + 'atwork': 'atwork', + 'ind_discr': 'idisc', + 'ind_maint': 'imain', + 'joint': 'jmain', + 'jdisc': 'jdisc', # joint is copied to produce jdisc purpose in the code + total_keyword: 'total' +} + + +# -------------------------------------------------------------------------------------------------- +# Helper functions +def check_input_dictionaries_for_consistency(): + # checking trip purposes + for purpose in list(asim_to_calib_purpose_dict.values()): + assert purpose in output_calibration_trip_purposes, "ActivitySim purpose not in calibration" + for purpose in list(survey_to_calib_purposes_dict.values()): + assert purpose in output_calibration_trip_purposes, "Survey purpose not in calibration" + + # checking trip mode + for mode in list(asim_to_calib_trip_mode_dict.values()): + assert mode in output_calibration_trip_modes, f"ActivitySim trip mode {mode} not in calibration" + for mode in list(asim_to_calib_tour_mode_dict.values()): + assert mode in output_calibration_tour_modes, f"ActivitySim trip mode {mode} not in calibration" + for mode in list(survey_to_calib_trip_mode_dict.values()): + assert mode in output_calibration_trip_modes, f"Survey trip mode {mode} not in calibration" + for mode in list(survey_to_calib_tour_mode_dict.values()): + assert mode in output_calibration_tour_modes, f"Survey tour mode {mode} not in calibration" + + print("No problems found in input dictionaries") + + +def write_tables_to_excel(dfs, + excel_writer, + excel_sheet_name, + start_row, + start_col, + title, + sep_for_col_title, + col_title): + + # have to write first table to initialize sheet before writing title + dfs[0].to_excel(excel_writer, excel_sheet_name, startrow=start_row+2, startcol=start_col) + worksheet = excel_writer.sheets[excel_sheet_name] + + # writing title at and first table name + worksheet.write(start_row, start_col, title) + worksheet.write(start_row+1, start_col, dfs[0].name) + worksheet.write(start_row+1, start_col + sep_for_col_title, col_title) + start_row += len(dfs[0]) + 6 + + for df in dfs[1:]: + df.to_excel(excel_writer, excel_sheet_name, startrow=start_row, startcol=start_col) + worksheet.write(start_row-1, start_col, df.name) + worksheet.write(start_row-1, start_col + sep_for_col_title, col_title) + start_row += len(df) + 4 + return + + +def map_asim_trip_table_to_calib(trips_df): + trips_df['calib_tour_purpose'] = trips_df['primary_purpose'].apply( + lambda x: asim_to_calib_purpose_dict[x]) + + # added modification for trips mc calibration + trips_df.loc[(trips_df['calib_tour_purpose'] == 'ind_maint') + & (trips_df['tour_category'] == 'joint'), 'calib_tour_purpose'] = 'joint' + trips_df.loc[(trips_df['calib_tour_purpose'] == 'ind_discr') + & (trips_df['tour_category'] == 'joint'), 'calib_tour_purpose'] = 'joint' + + trips_df['calib_trip_mode'] = trips_df['trip_mode'].apply( + lambda x: asim_to_calib_trip_mode_dict[x]) + + trips_df['calib_tour_mode'] = trips_df['tour_mode'].apply( + lambda x: asim_to_calib_tour_mode_dict[x]) + + ## if parked at university, act as if tour mode is walk-transit + #trips_df.loc[(trips_df['parked_at_university'] == True) + # & trips_df['tour_mode'].isin(output_calibration_auto_modes), + # 'calib_tour_mode'] = parked_at_univ_calib_mode + + return trips_df + + +def create_asim_trip_mode_choice_tables(trips_df): + asim_trip_mode_purpose_cts = [] + + columns = list(output_calibration_tour_modes) + + for trip_purpose in output_calibration_trip_purposes[:-1]: + asim_trip_mode_purpose_ct = pd.crosstab( + trips_df['calib_trip_mode'], + trips_df[trips_df['calib_tour_purpose'] == trip_purpose]['calib_tour_mode'], + margins=True, + margins_name=total_keyword, + dropna=False + ) + asim_trip_mode_purpose_ct = asim_trip_mode_purpose_ct.reindex( + index=output_calibration_trip_modes, columns=columns, fill_value=0) + asim_trip_mode_purpose_ct.index.name = 'trip_mode' + asim_trip_mode_purpose_ct.columns.name = 'tour_mode' + # not needed for trip mc calibration? will not rename columns? + #asim_trip_mode_purpose_ct.rename(columns=columns, inplace=True) + asim_trip_mode_purpose_ct.name = trip_purpose + asim_trip_mode_purpose_cts.append(asim_trip_mode_purpose_ct) + + asim_trip_mode_all_ct = pd.crosstab( + trips_df['calib_trip_mode'], + trips_df['calib_tour_mode'], + margins=True, + margins_name=total_keyword, + dropna=False + ) + asim_trip_mode_all_ct = asim_trip_mode_all_ct.reindex( + index=output_calibration_trip_modes, columns=columns, fill_value=0) + asim_trip_mode_all_ct.index.name = 'trip_mode' + asim_trip_mode_all_ct.columns.name = 'tour_mode' + # not needed for trip mc calibration? will not rename columns? + #asim_trip_mode_all_ct.rename(columns=asim_auto_suff_dict, inplace=True) + asim_trip_mode_all_ct.name = output_calibration_trip_purposes[-1] + asim_trip_mode_purpose_cts.append(asim_trip_mode_all_ct) + return asim_trip_mode_purpose_cts + + +def process_asim_tables_for_trip_mode_choice(asim_tables_dir): + households_df = pd.read_csv( + os.path.join(asim_tables_dir, 'final_households.csv'), low_memory=False) + sample_rate = households_df['sample_rate'].max() + trips_df = pd.read_csv(os.path.join(asim_tables_dir, 'final_trips.csv'), low_memory=False) + tours_df = pd.read_csv(os.path.join(asim_tables_dir, 'final_tours.csv'), low_memory=False) + + trips_df = pd.merge( + trips_df, + tours_df[['tour_id', 'tour_mode', 'tour_category', 'number_of_participants']], + how='left', + on='tour_id' + ) + + trips_df = map_asim_trip_table_to_calib(trips_df) + asim_trip_mode_tables = create_asim_trip_mode_choice_tables(trips_df) + + total_model_trips = len(trips_df) + num_trips_full_model = int(total_model_trips / sample_rate) + print("Sample rate of ", sample_rate, "results in ", total_model_trips, "out of", + num_trips_full_model, "tours") + + return asim_trip_mode_tables, num_trips_full_model, trips_df + + +def read_trip_mode_choice_calibration_file(trip_mode_choice_calib_targets_file): + trip_mc_calib_df = pd.read_csv(trip_mode_choice_calib_targets_file) + trip_mc_calib_df['calib_trip_mode'] = trip_mc_calib_df[survey_table_trip_mode_col].apply( + lambda x: survey_to_calib_trip_mode_dict[x]) + trip_mc_calib_df['calib_tour_mode'] = trip_mc_calib_df[survey_table_tour_mode_col].apply( + lambda x: survey_to_calib_tour_mode_dict[x]) + + columns = list(output_calibration_tour_modes) + + trip_mc_calib_target_tables = [] + + for purpose in list(survey_to_calib_purposes_dict.keys()): + df = trip_mc_calib_df[(trip_mc_calib_df[survey_table_purpose_col] == purpose) + & (trip_mc_calib_df[survey_table_trip_mode_col] != total_keyword) + & (trip_mc_calib_df[survey_table_tour_mode_col] != total_keyword)] + + df_ct = pd.crosstab( + df['calib_trip_mode'], + df['calib_tour_mode'], + values=df[survey_table_trips_col], + aggfunc='sum', + margins=True, + margins_name=total_keyword, + dropna=False, + ) + df_ct = df_ct.reindex(index=output_calibration_trip_modes, columns=columns, fill_value=0) + df_ct.index.name = 'trip_mode' + df_ct.columns.name = 'tour_mode' + df_ct.name = survey_to_calib_purposes_dict[purpose] + + # looking to see if calibration purposes need to be combined + # e.g. joint = joint_ind + joint_maint + for i in range(len(trip_mc_calib_target_tables)): + prev_df_ct = trip_mc_calib_target_tables[i] + if prev_df_ct.name == df_ct.name: + prev_df_ct = prev_df_ct + df_ct + prev_df_ct.name = df_ct.name # reassignment does not preserve name + trip_mc_calib_target_tables[i] = prev_df_ct + break + else: # only enters if above for loop breaks + trip_mc_calib_target_tables.append(df_ct) + + return trip_mc_calib_target_tables + + +def read_trip_mode_choice_constants(configs_dir, coef_file="trip_mode_choice_coefficients.csv"): + constants_config_path = os.path.join(configs_dir, coef_file) + trip_mc_constants_df = pd.read_csv(constants_config_path) + return trip_mc_constants_df + + +def write_scaled_targets_to_excel(unscaled_model_tables, + unscaled_calib_tables, + full_model_tables, + full_calib_tables, + scaled_model_tables, + scaled_calib_tables, + output_dir): + excel_writer = pd.ExcelWriter(os.path.join(output_dir, 'scaled_targets.xlsx')) + + start_col = 0 + # unscaled model + write_tables_to_excel( + dfs=unscaled_model_tables, + excel_writer=excel_writer, + excel_sheet_name='trip_mode_choice', + start_row=0, + start_col=start_col, + title='Unscaled Model Trips', + sep_for_col_title=3, + col_title='Tour Mode' + ) + start_col += 19 + # unscaled calibration targets + write_tables_to_excel( + dfs=unscaled_calib_tables, + excel_writer=excel_writer, + excel_sheet_name='trip_mode_choice', + start_row=0, + start_col=start_col, + title='Unscaled Calibration Trips', + sep_for_col_title=3, + col_title='Tour Mode' + ) + start_col += 19 + # full model + write_tables_to_excel( + dfs=full_model_tables, + excel_writer=excel_writer, + excel_sheet_name='trip_mode_choice', + start_row=0, + start_col=start_col, + title='Full Model Trips', + sep_for_col_title=3, + col_title='Tour Mode' + ) + start_col += 19 + # full calibration targets + write_tables_to_excel( + dfs=full_calib_tables, + excel_writer=excel_writer, + excel_sheet_name='trip_mode_choice', + start_row=0, + start_col=start_col, + title='Calibration Trips Matching Model', + sep_for_col_title=3, + col_title='Tour Mode' + ) + start_col += 19 + # scaled model + write_tables_to_excel( + dfs=scaled_model_tables, + excel_writer=excel_writer, + excel_sheet_name='trip_mode_choice', + start_row=0, + start_col=start_col, + title='Scaled Model Trips', + sep_for_col_title=3, + col_title='Tour Mode' + ) + start_col += 19 + # scaled calibration targets + write_tables_to_excel( + dfs=scaled_calib_tables, + excel_writer=excel_writer, + excel_sheet_name='trip_mode_choice', + start_row=0, + start_col=start_col, + title='Scaled Calibration Trips', + sep_for_col_title=3, + col_title='Tour Mode' + ) + start_col += 19 + + excel_writer.save() + # excel_writer.close() + + +def calculate_share_by_tour_mode(trip_mc_calib_target_tables, asim_trip_mc_tables): + ''' + Calibration target and model counts tables are scaled to represent + the distribution of trip modes for each tour mode. + This is done by dividing each column by the total number of trips in that column + and converting to a percentage. + ''' + assert asim_trip_mc_tables[-1].name == total_keyword, "Last table is not total!" + + scaled_trip_mc_calib_target_tables = [] + scaled_asim_trip_mc_tables = [] + total_model_df = None + total_calib_df = None + + # making total tables sum of all purposes + for i in range(len(trip_mc_calib_target_tables) - 1): + model_df = asim_trip_mc_tables[i] + calib_target_df = trip_mc_calib_target_tables[i] + # total purpose should be the sum of all prev purposes + if total_model_df is not None: + total_model_df = total_model_df + model_df + total_calib_df = total_calib_df + calib_target_df + else: + total_model_df = model_df + total_calib_df = calib_target_df + + # replacing total table as sum of all purposes + total_model_df.name = total_keyword + total_calib_df.name = total_keyword + asim_trip_mc_tables[len(asim_trip_mc_tables) - 1] = total_model_df + trip_mc_calib_target_tables[len(trip_mc_calib_target_tables) - 1] = total_calib_df + + # iterating over all purposes + for i in range(len(trip_mc_calib_target_tables)): + model_df = asim_trip_mc_tables[i] + calib_target_df = trip_mc_calib_target_tables[i] + assert model_df.name == calib_target_df.name, "Tables do not match!" + + scaled_calib_target_df = calib_target_df.copy() + scaled_model_df = model_df.copy() + + # for tour_mode in output_calibration_tour_modes: + # scaled_calib_target_df[tour_mode] = scaled_calib_target_df[tour_mode] / scaled_calib_target_df.loc[total_keyword, tour_mode] * 100 + # scaled_model_df[tour_mode] = scaled_model_df[tour_mode] / scaled_model_df.loc[total_keyword, tour_mode] * 100 + # scaled_calib_target_df = scaled_calib_target_df.fillna(0) + # scaled_model_df = scaled_model_df.fillna(0) + + scaled_calib_target_df.name = calib_target_df.name + scaled_model_df.name = model_df.name + + scaled_trip_mc_calib_target_tables.append(scaled_calib_target_df) + scaled_asim_trip_mc_tables.append(scaled_model_df) + + return scaled_trip_mc_calib_target_tables, scaled_asim_trip_mc_tables + + +def scale_targets_to_match_model_by_tour_mode(trip_mc_calib_target_tables, + asim_trip_mc_tables, + full_model_trips): + + assert asim_trip_mc_tables[-1].name == total_keyword, "Last table is not total!" + total_model_trips = asim_trip_mc_tables[-1].loc[total_keyword, total_keyword] + model_scale_factor = full_model_trips / total_model_trips + + scaled_trip_mc_calib_target_tables = [] + scaled_asim_trip_mc_tables = [] + total_model_df = None + total_calib_df = None + + # iterating over all non-total tables + for i in range(len(trip_mc_calib_target_tables) - 1): + model_df = asim_trip_mc_tables[i] + calib_target_df = trip_mc_calib_target_tables[i] + assert model_df.name == calib_target_df.name, "Tables do not match!" + + # counts from model run are scaled to match full model run counts + scaled_model_df = model_df * model_scale_factor + + # calibration counts need to match full model run counts, but leave transit trips unscaled + scaled_calib_target_df = calib_target_df.copy() + no_transit_idxs = ~(scaled_calib_target_df.index.isin(output_calibration_transit_modes)) + + # iterating over all non-total tour modes (columns) + for tour_mode in output_calibration_tour_modes[:-1]: + tot_calib_trips_for_tour_mode = calib_target_df.loc[total_keyword, tour_mode] + tot_model_trips_for_tour_mode = scaled_model_df.loc[total_keyword, tour_mode] + + # number of trips for each tour mode in calibration targets should match model counts + if tour_mode not in output_calibration_transit_modes: + if tot_calib_trips_for_tour_mode == 0: + # no scaling if no calib trip targets + tour_mode_scaling_factor = 1 + else: + tour_mode_scaling_factor = tot_model_trips_for_tour_mode / tot_calib_trips_for_tour_mode + scaled_calib_target_df[tour_mode] = scaled_calib_target_df[tour_mode] * tour_mode_scaling_factor + else: + # leave the transit trip counts the same + calib_transit_trips_in_tour_mode = calib_target_df.loc[~no_transit_idxs, tour_mode].sum() + numerator = tot_model_trips_for_tour_mode - calib_transit_trips_in_tour_mode + denom = tot_calib_trips_for_tour_mode - calib_transit_trips_in_tour_mode + if denom == 0 or numerator < 0: + # don't scale if no non-transit trips in calibration targets + # or number of calib transit trips is larger than total model trips + tour_mode_scaling_factor = 1 + else: + tour_mode_scaling_factor = numerator / denom + scaled_calib_target_df.loc[no_transit_idxs, tour_mode] = \ + scaled_calib_target_df.loc[no_transit_idxs, tour_mode] * tour_mode_scaling_factor + + # recomputing margins + scaled_calib_target_df = scaled_calib_target_df.applymap(lambda x: 0 if x < 0 else x) + scaled_calib_target_df.fillna(0, inplace=True) + scaled_calib_target_df.loc[total_keyword] = scaled_calib_target_df.drop( + labels=total_keyword, axis=0, inplace=False).sum() + scaled_calib_target_df.loc[:, total_keyword] = scaled_calib_target_df.drop( + labels=total_keyword, axis=1, inplace=False).sum(axis=1) + + scaled_calib_target_df = round(scaled_calib_target_df) + scaled_model_df = round(scaled_model_df) + scaled_calib_target_df.name = calib_target_df.name + scaled_model_df.name = model_df.name + + scaled_trip_mc_calib_target_tables.append(scaled_calib_target_df) + scaled_asim_trip_mc_tables.append(scaled_model_df) + + # total purpose should be the sum of all prev purposes + if total_model_df is not None: + total_model_df = total_model_df + scaled_model_df + total_calib_df = total_calib_df + scaled_calib_target_df + else: + total_model_df = scaled_model_df + total_calib_df = scaled_calib_target_df + + # adding total tables + total_model_df.name = total_keyword + total_calib_df.name = total_keyword + scaled_asim_trip_mc_tables.append(total_model_df) + scaled_trip_mc_calib_target_tables.append(total_calib_df) + + return scaled_trip_mc_calib_target_tables, scaled_asim_trip_mc_tables + + +def melt_df(df, melt_id_var, value_name): + melted_df = df.reset_index().melt(id_vars=[melt_id_var]) + melted_df.rename(columns={'value': value_name}, inplace=True) + melted_df['purpose'] = df.name + return melted_df + + +def write_visualizer_calibration_target_table(full_trip_mc_calib_target_tables, asim_trips_df, output_dir): + # multiplying output visualizer tables to transform from trips to person trips + avg_tour_participants_df = asim_trips_df.groupby( + ['calib_tour_purpose', 'calib_tour_mode', 'calib_trip_mode'])['number_of_participants'].agg('mean').to_frame() + total_df = None + for df in full_trip_mc_calib_target_tables: + trip_purpose = df.name + if trip_purpose == total_keyword: + df = total_df + continue + for tour_mode in output_calibration_tour_modes[:-1]: + for trip_mode in output_calibration_trip_modes[:-1]: + try: + avg_tour_participants = avg_tour_participants_df.loc[ + (trip_purpose, tour_mode, trip_mode), 'number_of_participants'] + except KeyError: + avg_tour_participants = 1 + # print("Average number of particapants for", + # trip_purpose, tour_mode, trip_mode, " = ", avg_tour_participants) + df.loc[trip_mode, tour_mode] = df.loc[trip_mode, tour_mode] * avg_tour_participants + + # recompute marginals + df.loc[total_keyword] = df.drop( + labels=total_keyword, axis=0, inplace=False).sum() + df.loc[:, total_keyword] = df.drop( + labels=total_keyword, axis=1, inplace=False).sum(axis=1) + + # total purpose should be the sum of all prev purposes + if total_df is not None: + total_df = total_df + df + else: + total_df = df + + total_df.name = total_keyword + full_trip_mc_calib_target_tables[-1] = total_df + + melted_dfs = [] + for df in full_trip_mc_calib_target_tables: + if df.name == 'joint': + # create an extra joint Discretionary table for visualizer + df_copy = df.copy() + df_copy.name = 'jdisc' + melted_df_copy = melt_df(df_copy, melt_id_var='trip_mode', value_name='trips') + melted_dfs.append(melted_df_copy) + melted_df = melt_df(df, melt_id_var='trip_mode', value_name='trips') + melted_dfs.append(melted_df) + trip_mode_choice_calibration_table = pd.concat(melted_dfs) + + trip_mc_vis = trip_mode_choice_calibration_table.copy() + trip_mc_vis = trip_mc_vis[trip_mc_vis['trip_mode'] != total_keyword] + trip_mc_vis['tripmode'] = trip_mc_vis['trip_mode'].apply(lambda x: calib_trip_mode_to_vis_dict[x]) + trip_mc_vis['tourmode'] = trip_mc_vis['tour_mode'].apply(lambda x: calib_tour_mode_to_vis_dict[x]) + trip_mc_vis['value'] = trip_mc_vis['trips'] + trip_mc_vis['tourmode_num'] = trip_mc_vis['tour_mode'].apply(lambda x: calib_tourmode_num_to_vis_dict[x]) + trip_mc_vis['purpose'] = trip_mc_vis['purpose'].apply(lambda x: purpose_vis_dict[x]) + trip_mc_vis['grp_var'] = trip_mc_vis.apply(lambda row: \ + row['purpose'] + 'tourmode' + str(row['tourmode_num']) + if row['tourmode'] != 'Total' \ + else row['purpose'] + str(row['tourmode_num']), axis=1) + trip_mc_vis_cols = ['tripmode', 'tourmode', 'purpose', 'value', 'grp_var'] + trip_mc_vis[trip_mc_vis_cols].to_csv( + os.path.join(output_dir, 'tripModeProfile_vis_calib.csv'), index=False) + + +def match_model_and_calib_targets_to_coefficients(original_trip_mc_constants_df, + scaled_asim_trip_mc_tables, + scaled_trip_mc_calib_target_tables): + + columns = ['coefficient_name', 'purpose', 'tour_mode', 'trip_mode', 'scaled_model_percent', 'scaled_target_percent'] + model_calib_target_match_df = pd.DataFrame(columns=columns) + + for i, purpose in enumerate(output_calibration_trip_purposes): + asim_trip_mc_table = scaled_asim_trip_mc_tables[i] + calib_target_mc_table = scaled_trip_mc_calib_target_tables[i] + assert asim_trip_mc_table.name == purpose, "Purpose doesn't match!" + assert calib_target_mc_table.name == purpose, "Purpose doesn't match!" + + for mode in output_calibration_trip_modes: + for tour_mode in output_calibration_tour_modes[:-1]: + + asim_mc_count = round(asim_trip_mc_table.loc[mode, tour_mode], 3) + calib_target_count = round(calib_target_mc_table.loc[mode, tour_mode], 3) + + # multiple coefficients match a single calibration purpose. + # e.g. ind_maint = shopping and escort, both are adjusted the same amount + for coef_purpose in output_calibration_purposes_to_coef_names_dict[purpose]: + coef_trip_mode = output_calibration_trip_mode_to_coef_name_dict[mode] + coef_tour_mode = output_calibration_tour_mode_to_coef_name_dict[tour_mode] + coef_name = 'coef_calib_tour' + coef_tour_mode + '_' + coef_trip_mode + '_' + coef_purpose + #target_name = mode + '_' + coef_tour_mode + + if coef_purpose in ['maint', 'disc']: + coef_name = 'coef_calib_tour' + coef_tour_mode + 'jointtour0_' + coef_trip_mode + '_' + coef_purpose + if purpose == 'joint': + coef_name = 'coef_calib_tour' + coef_tour_mode + 'jointtour1_' + coef_trip_mode + '_' + coef_purpose + + row = [coef_name, coef_purpose, coef_tour_mode, coef_trip_mode, + asim_mc_count, calib_target_count] + model_calib_target_match_df.loc[len(model_calib_target_match_df)] = row + + return model_calib_target_match_df + + +def calculate_new_coefficient(row, damping_factor, max_ASC_adjust, adjust_when_zero_counts): + row['difference'] = row.scaled_target_percent - row.scaled_model_percent + row['percent_diff'] = pd.NA + row['coef_change'] = pd.NA + row['new_value'] = row.value + row['converged'] = True + + # added for trip mc calibration. we kept those coefficients (from melted table) that + # had formulas as values. those are non ASC coefficients though + # omit rows that have no value or values as a string formula + if pd.isna(row.value) or isinstance(row.value, str): + return row + + # do not adjust parameters that should not be adjusted + # if row.value > 900 or (pd.isna(row.scaled_target_percent) and pd.isna(row.scaled_model_percent)): + if row.constrain == 'T' or abs(row.value) > 900 or (pd.isna(row.scaled_target_percent) and pd.isna(row.scaled_model_percent)): + return row + + # have neither target counts or model counts + if row.scaled_target_percent == 0 and row.scaled_model_percent == 0: + row.percent_diff = 0 + row.difference = 0 + return row + + # have model counts but not target counts + if row.scaled_target_percent == 0 and row.scaled_model_percent > 0: + row.converged = False + row.coef_change = -adjust_when_zero_counts + row.new_value = row.value + row.coef_change + # if row.value + row.coef_change > -10: + # row.new_value = row.value + row.coef_change + # else: + # row.new_value = -10 + return row + + # have target counts but not model counts + if row.scaled_target_percent > 0 and row.scaled_model_percent == 0: + row.converged = False + row.coef_change = adjust_when_zero_counts + row.new_value = row.value + row.coef_change + return row + + # normal calculations for counts in both model and target + row.percent_diff = (abs(row.scaled_target_percent - row.scaled_model_percent) + / row.scaled_target_percent) * 100 + row.coef_change = np.log(row.scaled_target_percent / row.scaled_model_percent) * damping_factor + if ('WALK' in row.coefficient_name) and ('school' not in row.coefficient_name) and ('univ' not in row.coefficient_name): + # walk unavailable > 3 mi, increase coef_change for faster convergence + row.coef_change = np.log(row.scaled_target_percent / row.scaled_model_percent) * damping_factor * 2 + + if abs(row.coef_change) > max_ASC_adjust: + row.coef_change = max_ASC_adjust if row.coef_change > 0 else -max_ASC_adjust + row.new_value = row.value + row.coef_change + + if (row.percent_diff > 5): + row.converged = False + return row + + +def calculate_coefficient_change(original_trip_mc_constants_df, + model_calib_target_match_df, + damping_factor, + max_ASC_adjust, + adjust_when_zero_counts, + output_dir): + # coef_update_df = pd.merge( + # original_trip_mc_constants_df, + # model_calib_target_match_df, + # how='left', + # on=['coefficient_name', 'purpose'] + # ) + original_trip_mc_constants_df.to_csv(os.path.join(output_dir, 'original_trip_mc_constants_df.csv'), index=False) + model_calib_target_match_df.to_csv(os.path.join(output_dir, 'model_calib_target_match_df.csv'), index=False) + coef_update_df = pd.merge( + original_trip_mc_constants_df, + model_calib_target_match_df, + how='left', + on='coefficient_name', + ) + assert str(max_ASC_adjust).isdigit(), "max_ASC_adjust is not numeric" + # assert str(damping_factor).isdigit(), "damping_factor is not numeric" + assert str(adjust_when_zero_counts).isdigit(), "adjust_when_zero_counts is not numeric" + + coef_update_df = coef_update_df.apply( + lambda row: calculate_new_coefficient( + row, damping_factor, max_ASC_adjust, adjust_when_zero_counts), axis=1) + + coef_update_df.to_csv(os.path.join(output_dir, 'coefficient_updates.csv'), index=False) + + new_config_df = coef_update_df[['coefficient_name', 'new_value', 'constrain']].copy() + new_config_df.rename(columns={'new_value': 'value'}, inplace=True) + new_config_df.to_csv(os.path.join(output_dir, 'trip_mode_choice_coefficients.csv'), index=False) + + assert (new_config_df['value'].notna()).all(), f"Missing coefficient values:\n {new_config_df[new_config_df['value'].isna()]}" + + return coef_update_df + + +def make_trip_mode_choice_comparison_plots(viz_df, purpose): + fig = plt.figure(figsize=(30, 28)) + + # not needed for trip mc plots given we need 3x3 plot grid size + #plot_idx = 221 + # added for trip mc plots to keep track of grid number + plot_no = 1 + for tour_mode in output_calibration_tour_modes[:-1]: + plt.subplot(4, 4, plot_no) + data = viz_df[(viz_df['tour_mode'] == tour_mode) + & (viz_df['trip_mode'] != total_keyword)].copy() + total_trip_per_source_df = data.groupby('source').sum() + for i in range(len(total_trip_per_source_df)): + source = total_trip_per_source_df.index[i] + total_trips = total_trip_per_source_df.trips[i] + data.loc[data['source'] == source, 'percent'] = \ + data.loc[data['source'] == source, 'trips'] / total_trips * 100 + + sns.barplot(data=data, x='trip_mode', y='percent', hue='source') + plt.title('Trip Purpose: ' + purpose + ', Tour Mode: ' + tour_mode, fontsize=18) + plt.xticks(rotation=90, fontsize=13) + plt.yticks(fontsize=16) + plt.ylabel('Percent', fontsize=16) + plt.xlabel('Trip Mode', fontsize=16) + plot_no += 1 + + plt.subplot(4, 4, plot_no) + data = viz_df[(viz_df['tour_mode'] == total_keyword) + & (viz_df['trip_mode'] != total_keyword)].copy() + total_trip_per_source_df = data.groupby('source').sum() + for i in range(len(total_trip_per_source_df)): + source = total_trip_per_source_df.index[i] + total_trips = total_trip_per_source_df.trips[i] + data.loc[data['source'] == source, 'percent'] = \ + data.loc[data['source'] == source, 'trips'] / total_trips * 100 + + sns.barplot(data=data, x='trip_mode', y='percent', hue='source') + plt.title('Tour Purpose: ' + purpose + ', Tour Mode: All', fontsize=18) + plt.xticks(rotation=90, fontsize=13) + plt.yticks(fontsize=16) + plt.ylabel('Percent', fontsize=16) + plt.xlabel('Trip Mode', fontsize=16) + + plt.tight_layout() + plt.close() + return fig + + +def visualize_trip_mode_choice(scaled_tables_1, scaled_tables_2, source_1, source_2, output_dir): + for i in range(len(scaled_tables_1)): + df_1 = scaled_tables_1[i] + df_2 = scaled_tables_2[i] + assert df_1.name == df_2.name, "Table purposes do not match!" + + viz_df_1 = df_1.reset_index().melt(id_vars=['trip_mode']).rename( + columns={'variable': 'tour_mode', 'value': 'trips'}) + viz_df_1['source'] = source_1 + + viz_df_2 = df_2.reset_index().melt(id_vars=['trip_mode']).rename( + columns={'variable': 'tour_mode', 'value': 'trips'}) + viz_df_2['source'] = 'Model' + + viz_df = pd.concat([viz_df_1, viz_df_2]) + + plot_name = df_1.name + '_' + source_1 + '_' + source_2 + '.png' + fig = make_trip_mode_choice_comparison_plots(viz_df, df_1.name) + + fig.savefig(os.path.join(output_dir, plot_name)) + # fig.show() + return fig + + +def evaluate_coefficient_updates(coef_update_df, output_dir): + print('Coefficient Statistics: ') + tot_coef = len(coef_update_df) + print('\t', tot_coef, 'total coefficients') + + # not needed for trip mc calibration given trip mc coefficients do not have a 'constrain' field + #num_constrained_coef = len(coef_update_df[ + # (coef_update_df['constrain'] == 'T') + # | (coef_update_df['value'] > 900)]) + #print('\t', num_constrained_coef, 'constrained coefficients') + + num_changed_coef = len(coef_update_df[pd.notna(coef_update_df['coef_change'])]) + print('\t', num_changed_coef, 'coefficients adjusted') + num_converged_coef = len(coef_update_df[coef_update_df['converged'] == True]) + num_unconverged_coef = len(coef_update_df[coef_update_df['converged'] == False]) + print('\t', num_converged_coef, 'coefficients converged') + print('\t', num_unconverged_coef, 'coefficients not converged') + + fig = plt.figure(figsize=(20, 7)) + plt.subplot(121) + coef_update_df[pd.notna(coef_update_df['coef_change'])]['coef_change'].plot( + kind='hist', bins=50) + plt.xlabel('Coefficient Change [Utiles]', fontsize=14) + plt.ylabel('Number of Coefficients', fontsize=14) + plt.title('Adjustment Factors', fontsize=14) + + plt.subplot(122) + coef_update_df[coef_update_df['new_value'] > -900]['new_value'].plot(kind='hist', bins=50) + plt.xlabel('Coefficient Value [Utiles]', fontsize=14) + plt.ylabel('Number of Coefficients', fontsize=14) + plt.title('Coefficient Values After Adjustment', fontsize=14) + plt.savefig(os.path.join(output_dir, 'coef_change.png')) + plt.close() + return fig + + +def display_largest_coefficients(coef_update_df, num_to_display=10): + coef_update_df['value_size'] = abs(coef_update_df['new_value']) + top_coef_df = coef_update_df[coef_update_df['value_size'] < 900].sort_values( + 'value_size', ascending=False).head(10) + # added 'purpose' (i.e. tour purpose) given trip mc coefficients includes it as separate column + cols_to_display = ['coefficient_name', 'purpose', 'value', 'scaled_model_percent', + 'scaled_target_percent', 'coef_change', 'new_value', 'converged'] + top_coef_df = top_coef_df[cols_to_display] + print("Top", num_to_display, "largest coefficients:") + display(top_coef_df) + + +def copy_directory(dir_to_copy, copy_location): + if os.path.exists(copy_location): + shutil.rmtree(copy_location) + # copy config files from configs_dir to run dir + shutil.copytree(dir_to_copy, copy_location) + + +def launch_activitysim(activitysim_run_command): + start_time = time.time() + print("ActivitySim run started at: ", datetime.datetime.now()) + print(activitysim_run_command) + ret_value = os.system(activitysim_run_command) + end_time = time.time() + print("ActivitySim ended at", datetime.datetime.now()) + run_time = round(time.time() - start_time, 2) + print("Run Time: ", run_time, "secs = ", run_time/60, " mins") + assert ret_value == 0, "ActivitySim run not completed! See ActivitySim log file for details." + + +def melt_trip_mc_coef_file(trip_mc_coef_file, output_dir): + # obtain original original column and row orders + trip_purpose = trip_mc_coef_file.columns[1:] + trip_mc_coef_col_order = list(trip_mc_coef_file.columns) + trip_mc_coef_col_order[0] = 'coefficient_name' + trip_purpose_check = all(col in trip_mc_coef_col_order for col in trip_purpose) + assert trip_purpose_check, 'Missing trip purpose!' + trip_mc_coef_row_order = trip_mc_coef_file['Expression'].copy().rename('coefficient_name') + + # melt trip mc coefficient file + trip_mc_coef_melted_full = pd.melt(trip_mc_coef_file, id_vars = ['Expression'], value_vars = trip_purpose, + var_name = 'purpose') + num_rows = len(trip_mc_coef_melted_full) + trip_mc_coef_melted_full.rename(columns = {'Expression':'coefficient_name'}, inplace = True) + + # include only ASC coefficients and drop commented out coefficients + trip_mc_coef_melted = trip_mc_coef_melted_full[(trip_mc_coef_melted_full.loc[:,'coefficient_name'].str.contains('_ASC_')) & + (~trip_mc_coef_melted_full.loc[:,'coefficient_name'].str.contains('#'))].copy() + trip_mc_coef_melted.loc[:,'value'] = pd.to_numeric(trip_mc_coef_melted.loc[:,'value']) + + # creates a dataframe (omit) filled with values that do not contain ASC coefficients + # will add it back when un-melting the dataframe + trip_mc_coef_melted_omit = trip_mc_coef_melted_full[~trip_mc_coef_melted_full.index.isin(trip_mc_coef_melted.index)] + + assert len(trip_mc_coef_melted) + len(trip_mc_coef_melted_omit) == num_rows, \ + 'Missing trip mode choice coefficients!' + + # added purpose_original to remember which coefficient corresponds to which mode + # added 'joint' as purpose for non-work, -univ, -school, and -atwork purpose records + trip_mc_coef_melted.loc[:,'purpose_original'] = trip_mc_coef_melted.loc[:,'purpose'] + joint_purposes = ['escort', 'shopping', 'eatout', 'othmaint', 'social', 'othdiscr'] + trip_mc_coef_melted.loc[trip_mc_coef_melted.loc[:,'coefficient_name'].str.contains('joint_') & + trip_mc_coef_melted.loc[:,'purpose'].isin(joint_purposes), 'purpose'] = 'joint' + + #trip_mc_coef_melted.to_csv(os.path.join(output_dir, 'trip_mode_choice_coefficients.csv'), index = False) + + # reset indices + trip_mc_coef_melted.reset_index(inplace = True, drop = True) + trip_mc_coef_melted_omit.reset_index(inplace = True, drop = True) + + return trip_mc_coef_melted, trip_mc_coef_melted_omit, trip_mc_coef_col_order, trip_mc_coef_row_order + + +def unmelt_trip_mc_coef(trip_mc_coef_update, trip_mc_coef_omit, + trip_mc_coef_col_order, trip_mc_coef_row_order, output_dir): + + num_rows = len(trip_mc_coef_row_order) + + # obtain new trip mc coefficient values + trip_mc_coef = trip_mc_coef_update[['coefficient_name', 'purpose_original', 'new_value']].copy() + trip_mc_coef.rename(columns={'new_value': 'value', 'purpose_original': 'purpose'}, inplace = True) + + # re-add previously removed trip mc coefficient records + trip_mc_coef_new = trip_mc_coef.append(trip_mc_coef_omit) + trip_mc_coef_new.reset_index(inplace = True, drop = True) + + # unmelt trip mc coefficient dataframe + trip_mc_coef_new_unmelted = trip_mc_coef_new.pivot_table(index = 'coefficient_name', + columns = 'purpose', + dropna = False, + aggfunc = lambda x: x) + trip_mc_coef_new_unmelted.columns = trip_mc_coef_new_unmelted.columns.droplevel() + trip_mc_coef_new_unmelted.reset_index(inplace = True) + + # rearrange columns and rows per original trip mc coefficient file + trip_mc_coef_new_unmelted = pd.merge(trip_mc_coef_row_order.to_frame(), trip_mc_coef_new_unmelted, + how = 'left', on = 'coefficient_name') + trip_mc_coef_new_unmelted = trip_mc_coef_new_unmelted[trip_mc_coef_col_order] + trip_mc_coef_new_unmelted.rename(columns={'coefficient_name':'Expression'}, inplace = True) + assert len(trip_mc_coef_new_unmelted) == num_rows, 'Missing trip mode choice coefficients!' + + # print + trip_mc_coef_new_unmelted.to_csv(os.path.join(output_dir, 'trip_mode_choice_coefficients.csv'), index=False) + + return trip_mc_coef_new_unmelted + +# ------------------------------------------------------------------------------------------------- +# Entry Points +def perform_trip_mode_choice_model_calibration(asim_output_dir, + asim_configs_dir, + trip_mode_choice_calib_targets_file, + max_ASC_adjust, + damping_factor, + adjust_when_zero_counts, + output_dir): + + # ActivitySim model output transformed into trip mode choice calibration format + asim_trip_mc_tables, num_trips_full_model, asim_trips_df = \ + process_asim_tables_for_trip_mode_choice(asim_output_dir) + + # trip mode choice constants read from config file + original_trip_mc_constants_df = read_trip_mode_choice_constants(asim_configs_dir) + + # melt trip mode choice coefficient file + # original_trip_mc_constants_df, original_trip_mc_constants_df_omit, \ + # trip_mc_coef_col_order, trip_mc_coef_row_order = \ + # melt_trip_mc_coef_file(original_trip_mc_constants_df, output_dir) + + # Calibration targets from survey data + trip_mc_calib_target_tables = read_trip_mode_choice_calibration_file( + trip_mode_choice_calib_targets_file) + + full_trip_mc_calib_target_tables, full_asim_trip_mc_tables = scale_targets_to_match_model_by_tour_mode( + trip_mc_calib_target_tables, + asim_trip_mc_tables, + full_model_trips=num_trips_full_model, + ) + + scaled_trip_mc_calib_target_tables, scaled_asim_trip_mc_tables = calculate_share_by_tour_mode( + full_trip_mc_calib_target_tables, + full_asim_trip_mc_tables, + ) + + write_scaled_targets_to_excel( + unscaled_model_tables=asim_trip_mc_tables, + unscaled_calib_tables=trip_mc_calib_target_tables, + full_model_tables=full_asim_trip_mc_tables, + full_calib_tables=full_trip_mc_calib_target_tables, + scaled_model_tables=scaled_asim_trip_mc_tables, + scaled_calib_tables=scaled_trip_mc_calib_target_tables, + output_dir=output_dir) + + # Compare calibration targets to model outputs + all_purposes_fig = visualize_trip_mode_choice( + scaled_tables_1=scaled_trip_mc_calib_target_tables, + scaled_tables_2=scaled_asim_trip_mc_tables, + source_1='Survey', + source_2='Model', + output_dir=output_dir) + display(all_purposes_fig) + + # Match model counts and calibration targets to model coefficients + model_calib_target_match_df = match_model_and_calib_targets_to_coefficients( + original_trip_mc_constants_df, + scaled_asim_trip_mc_tables, + scaled_trip_mc_calib_target_tables) + + # Update model coefficients + coef_update_df = calculate_coefficient_change( + original_trip_mc_constants_df, + model_calib_target_match_df, + damping_factor=damping_factor, + max_ASC_adjust=max_ASC_adjust, + adjust_when_zero_counts=adjust_when_zero_counts, + output_dir=output_dir + ) + + # unmelt new trip mode choice coefficient file + # unmelt_trip_mc_coef(coef_update_df, original_trip_mc_constants_df_omit, + # trip_mc_coef_col_order, trip_mc_coef_row_order, output_dir) + + coef_hists = evaluate_coefficient_updates(coef_update_df, output_dir) + display(coef_hists) + + display_largest_coefficients(coef_update_df) + + # write scaled calibration targets for HTML visualizer + write_visualizer_calibration_target_table(full_trip_mc_calib_target_tables, asim_trips_df, output_dir) + + return coef_update_df + + +def run_activitysim(data_dir, + configs_resident_dir, + configs_common_dir, + run_dir, + output_dir, + settings_file=None, + trip_mc_coef_file=None): + assert os.path.exists(configs_resident_dir), "configs_resident not found!" + assert os.path.exists(configs_common_dir), "configs_common not found!" + assert os.path.exists(data_dir), "data_dir not found!" + + if not os.path.exists(output_dir): + print("creating output_dir at", output_dir) + os.mkdir(output_dir) + + # creating new config folder(s) in run directory + run_config_resident_dir = os.path.join(run_dir, 'configs') + copy_directory(dir_to_copy=configs_resident_dir, copy_location=run_config_resident_dir) + + # optional copy of settings and coefficient file + if settings_file is not None: + shutil.copyfile(settings_file, os.path.join(run_config_resident_dir, 'settings_mp.yaml')) + if trip_mc_coef_file is not None: + shutil.copyfile(trip_mc_coef_file, os.path.join(run_config_resident_dir, 'trip_mode_choice_coefficients.csv')) + + activitysim_run_command = 'python simulation.py -s ' + settings_file + ' -c ' + run_config_resident_dir \ + + ' -c ' + configs_common_dir + ' -d ' + data_dir + ' -o ' + run_dir + + launch_activitysim(activitysim_run_command) + + activitysim_output_tables = [ + 'final_households.csv', + 'final_persons.csv', + 'final_tours.csv', + 'final_trips.csv', + 'final_joint_tour_participants.csv', + 'activitysim.log', + ] + + for asim_table in activitysim_output_tables: + if os.path.exists(os.path.join(run_dir, asim_table)): + shutil.copyfile(os.path.join(run_dir, asim_table), os.path.join(output_dir, asim_table)) + + return diff --git a/src/asim/calibration/resident/trip_mode_choice/scripts/calibrate_trip_mode_choice.ipynb b/src/asim/calibration/resident/trip_mode_choice/scripts/calibrate_trip_mode_choice.ipynb new file mode 100644 index 000000000..402c0810e --- /dev/null +++ b/src/asim/calibration/resident/trip_mode_choice/scripts/calibrate_trip_mode_choice.ipynb @@ -0,0 +1,370 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating Trip Mode Choice\n", + "This script will iteratively perform updates to the trip mode choice coefficients config file in order to match model outputs to calibration targets." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Load Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "No problems found in input dictionaries\n" + ] + } + ], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "import os\n", + "# import matplotlib\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "from IPython.display import display\n", + "import importlib\n", + "import asim_trip_calib_util\n", + "importlib.reload(asim_trip_calib_util)\n", + "# from asim_trip_calib_util import *\n", + "# check to make sure the dictionaries specifying names for calibration targets and activitysim outputs are consistent\n", + "asim_trip_calib_util.check_input_dictionaries_for_consistency()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Required Inputs\n", + "This script requires a working version of ActivitySim installed in the conda environment. Input data sources are:\n", + "* Initial model output directory that includes household, tour and trip files\n", + "* trip mode choice calibration target tables. Tables should be indexed by trip mode and columns should be tour mode. Tables should be broken down by tour purpose\n", + "* Model config directory containing the trip mode choice coefficients\n", + "\n", + "Changes in tour, trip modes and purposes can be implemented by changing the dictionaries at the top of asim_trip_calib_util_CMAP.py" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# csv file containing calibration targets by tour mode choice.\n", + "# Column names and acceptable values should be set in dict at top of script\n", + "trip_mode_choice_calib_targets_file = r\"C:\\abm_runs\\rohans\\calibration\\trip_mc\\targets\\trip_mode_choice_calibration_targets_2024-01-23_updated.csv\"\n", + "\n", + "# directory of the simulation.py file\n", + "simpy_dir = r\"C:\\abm_runs\\rohans\"\n", + "\n", + "# location of configuration files\n", + "settings_dir = r\"C:\\abm_runs\\rohans\\configs\\resident\\settings_mp.yaml\"\n", + "configs_resident_dir = r\"C:\\abm_runs\\rohans\\configs\\resident\"\n", + "configs_common_dir = r\"C:\\abm_runs\\rohans\\configs\\common\"\n", + "\n", + "warm_start_settings_mp_file = r\"C:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\settings_mp_warm_start.yaml\"\n", + "cold_start_settings_mp_file = r\"C:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\settings_mp_cold_start.yaml\"\n", + "trip_mc_coef_file = None \n", + "\n", + "# input data location\n", + "data_dir = r\"C:\\abm_runs\\rohans\\input_2022\"\n", + "\n", + "# output location\n", + "output_dir = r\"C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\calibration_output_an_iter_cold\"\n", + "activitysim_run_dir = r\"C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\activitysim_run_dir\"\n", + "\n", + "# calibration iterations\n", + "calibration_iterations_to_run = 5\n", + "\n", + "# want to do intial model run first?\n", + "want_to_do_initial_model_run = True # True or False\n", + "\n", + "# calibration settings\n", + "max_ASC_adjust = 5 # maximum allowed adjustment per iteration\n", + "damping_factor = 1 # constant multiplied to all adjustments\n", + "adjust_when_zero_counts = 2 # coefficient change when have target counts but no model counts (or vise-versa)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "--------------- User should not have to change anything below this line ----------------------" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initial Model Run" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "### Change directory to model setup\n", + "### i.e. the location of simulation.py script\n", + "os.chdir(simpy_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ActivitySim run started at: 2024-05-16 14:45:16.374744\n", + "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\settings_mp_cold_start.yaml -c C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\activitysim_run_dir\n", + "ActivitySim ended at 2024-05-16 19:11:18.495818\n", + "Run Time: 15962.12 secs = 266.03533333333337 mins\n" + ] + } + ], + "source": [ + "if want_to_do_initial_model_run:\n", + " asim_trip_calib_util.run_activitysim(\n", + " data_dir=data_dir, # data inputs for ActivitySim\n", + " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", + " configs_common_dir=configs_common_dir, # these files are copied to the config section of the run directory\n", + " run_dir=activitysim_run_dir, # ActivitySim run directory\n", + " output_dir=output_dir, # location to store run model outputs\n", + " settings_file=cold_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", + " trip_mc_coef_file=trip_mc_coef_file # optional: trip_mode_choice_coefficients.csv to replace the one in configs_dir\n", + " )\n", + " \n", + " # _ = asim_trip_calib_util.perform_trip_mode_choice_model_calibration(\n", + " # asim_output_dir=output_dir, # folder containing the activitysim model output\n", + " # asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim trip mode choice config files\n", + " # trip_mode_choice_calib_targets_file=trip_mode_choice_calib_targets_file, # folder containing trip mode choice calibration tables\n", + " # max_ASC_adjust=max_ASC_adjust, \n", + " # damping_factor=damping_factor, # constant multiplied to all adjustments\n", + " # adjust_when_zero_counts=adjust_when_zero_counts,\n", + " # output_dir=output_dir, # location to write model calibration steps\n", + " # )\n", + " # trip_mc_coef_file = os.path.join(output_dir, 'trip_mode_choice_coefficients.csv') \n", + "else:\n", + " print(\"No initial model run performed.\")\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sample rate of 1 results in 12523739 out of 12523739 tours\n" + ] + }, + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'C:\\\\abm_runs\\\\rohans\\\\calibration\\\\trip_mc\\\\output\\\\activitysim_run_dir\\\\configs\\\\trip_mode_choice_coefficients.csv'", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", + "Input \u001b[1;32mIn [10]\u001b[0m, in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[1;32m----> 1\u001b[0m _ \u001b[38;5;241m=\u001b[39m \u001b[43masim_trip_calib_util\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mperform_trip_mode_choice_model_calibration\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 2\u001b[0m \u001b[43m \u001b[49m\u001b[43masim_output_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# folder containing the activitysim model output\u001b[39;49;00m\n\u001b[0;32m 3\u001b[0m \u001b[43m \u001b[49m\u001b[43masim_configs_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mos\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpath\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mactivitysim_run_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mconfigs\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# folder containing activitysim trip mode choice config files\u001b[39;49;00m\n\u001b[0;32m 4\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrip_mode_choice_calib_targets_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrip_mode_choice_calib_targets_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# folder containing trip mode choice calibration tables\u001b[39;49;00m\n\u001b[0;32m 5\u001b[0m \u001b[43m \u001b[49m\u001b[43mmax_ASC_adjust\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmax_ASC_adjust\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\n\u001b[0;32m 6\u001b[0m \u001b[43m \u001b[49m\u001b[43mdamping_factor\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdamping_factor\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# constant multiplied to all adjustments\u001b[39;49;00m\n\u001b[0;32m 7\u001b[0m \u001b[43m \u001b[49m\u001b[43madjust_when_zero_counts\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43madjust_when_zero_counts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# location to write model calibration steps\u001b[39;49;00m\n\u001b[0;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\asim_trip_calib_util.py:1225\u001b[0m, in \u001b[0;36mperform_trip_mode_choice_model_calibration\u001b[1;34m(asim_output_dir, asim_configs_dir, trip_mode_choice_calib_targets_file, max_ASC_adjust, damping_factor, adjust_when_zero_counts, output_dir)\u001b[0m\n\u001b[0;32m 1221\u001b[0m asim_trip_mc_tables, num_trips_full_model, asim_trips_df \u001b[38;5;241m=\u001b[39m \\\n\u001b[0;32m 1222\u001b[0m process_asim_tables_for_trip_mode_choice(asim_output_dir)\n\u001b[0;32m 1224\u001b[0m \u001b[38;5;66;03m# trip mode choice constants read from config file\u001b[39;00m\n\u001b[1;32m-> 1225\u001b[0m original_trip_mc_constants_df \u001b[38;5;241m=\u001b[39m \u001b[43mread_trip_mode_choice_constants\u001b[49m\u001b[43m(\u001b[49m\u001b[43masim_configs_dir\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1227\u001b[0m \u001b[38;5;66;03m# melt trip mode choice coefficient file\u001b[39;00m\n\u001b[0;32m 1228\u001b[0m \u001b[38;5;66;03m# original_trip_mc_constants_df, original_trip_mc_constants_df_omit, \\\u001b[39;00m\n\u001b[0;32m 1229\u001b[0m \u001b[38;5;66;03m# trip_mc_coef_col_order, trip_mc_coef_row_order = \\\u001b[39;00m\n\u001b[0;32m 1230\u001b[0m \u001b[38;5;66;03m# melt_trip_mc_coef_file(original_trip_mc_constants_df, output_dir)\u001b[39;00m\n\u001b[0;32m 1231\u001b[0m \n\u001b[0;32m 1232\u001b[0m \u001b[38;5;66;03m# Calibration targets from survey data\u001b[39;00m\n\u001b[0;32m 1233\u001b[0m trip_mc_calib_target_tables \u001b[38;5;241m=\u001b[39m read_trip_mode_choice_calibration_file(\n\u001b[0;32m 1234\u001b[0m trip_mode_choice_calib_targets_file)\n", + "File \u001b[1;32mc:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\asim_trip_calib_util.py:554\u001b[0m, in \u001b[0;36mread_trip_mode_choice_constants\u001b[1;34m(configs_dir, coef_file)\u001b[0m\n\u001b[0;32m 552\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mread_trip_mode_choice_constants\u001b[39m(configs_dir, coef_file\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtrip_mode_choice_coefficients.csv\u001b[39m\u001b[38;5;124m\"\u001b[39m):\n\u001b[0;32m 553\u001b[0m constants_config_path \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(configs_dir, coef_file)\n\u001b[1;32m--> 554\u001b[0m trip_mc_constants_df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mread_csv\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconstants_config_path\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 555\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m trip_mc_constants_df\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\util\\_decorators.py:211\u001b[0m, in \u001b[0;36mdeprecate_kwarg.._deprecate_kwarg..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 209\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 210\u001b[0m kwargs[new_arg_name] \u001b[38;5;241m=\u001b[39m new_arg_value\n\u001b[1;32m--> 211\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\util\\_decorators.py:331\u001b[0m, in \u001b[0;36mdeprecate_nonkeyword_arguments..decorate..wrapper\u001b[1;34m(*args, **kwargs)\u001b[0m\n\u001b[0;32m 325\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(args) \u001b[38;5;241m>\u001b[39m num_allow_args:\n\u001b[0;32m 326\u001b[0m warnings\u001b[38;5;241m.\u001b[39mwarn(\n\u001b[0;32m 327\u001b[0m msg\u001b[38;5;241m.\u001b[39mformat(arguments\u001b[38;5;241m=\u001b[39m_format_argument_list(allow_args)),\n\u001b[0;32m 328\u001b[0m \u001b[38;5;167;01mFutureWarning\u001b[39;00m,\n\u001b[0;32m 329\u001b[0m stacklevel\u001b[38;5;241m=\u001b[39mfind_stack_level(),\n\u001b[0;32m 330\u001b[0m )\n\u001b[1;32m--> 331\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m func(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\io\\parsers\\readers.py:950\u001b[0m, in \u001b[0;36mread_csv\u001b[1;34m(filepath_or_buffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle_dupe_cols, dtype, engine, converters, true_values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, iterator, chunksize, compression, thousands, decimal, lineterminator, quotechar, quoting, doublequote, escapechar, comment, encoding, encoding_errors, dialect, error_bad_lines, warn_bad_lines, on_bad_lines, delim_whitespace, low_memory, memory_map, float_precision, storage_options)\u001b[0m\n\u001b[0;32m 935\u001b[0m kwds_defaults \u001b[38;5;241m=\u001b[39m _refine_defaults_read(\n\u001b[0;32m 936\u001b[0m dialect,\n\u001b[0;32m 937\u001b[0m delimiter,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 946\u001b[0m defaults\u001b[38;5;241m=\u001b[39m{\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdelimiter\u001b[39m\u001b[38;5;124m\"\u001b[39m: \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m,\u001b[39m\u001b[38;5;124m\"\u001b[39m},\n\u001b[0;32m 947\u001b[0m )\n\u001b[0;32m 948\u001b[0m kwds\u001b[38;5;241m.\u001b[39mupdate(kwds_defaults)\n\u001b[1;32m--> 950\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_read\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilepath_or_buffer\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkwds\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\io\\parsers\\readers.py:605\u001b[0m, in \u001b[0;36m_read\u001b[1;34m(filepath_or_buffer, kwds)\u001b[0m\n\u001b[0;32m 602\u001b[0m _validate_names(kwds\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnames\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m))\n\u001b[0;32m 604\u001b[0m \u001b[38;5;66;03m# Create the parser.\u001b[39;00m\n\u001b[1;32m--> 605\u001b[0m parser \u001b[38;5;241m=\u001b[39m TextFileReader(filepath_or_buffer, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwds)\n\u001b[0;32m 607\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m chunksize \u001b[38;5;129;01mor\u001b[39;00m iterator:\n\u001b[0;32m 608\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m parser\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\io\\parsers\\readers.py:1442\u001b[0m, in \u001b[0;36mTextFileReader.__init__\u001b[1;34m(self, f, engine, **kwds)\u001b[0m\n\u001b[0;32m 1439\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39moptions[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m kwds[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhas_index_names\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[0;32m 1441\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles: IOHandles \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m-> 1442\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_engine \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_make_engine\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mengine\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\io\\parsers\\readers.py:1735\u001b[0m, in \u001b[0;36mTextFileReader._make_engine\u001b[1;34m(self, f, engine)\u001b[0m\n\u001b[0;32m 1733\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m mode:\n\u001b[0;32m 1734\u001b[0m mode \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m-> 1735\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;241m=\u001b[39m \u001b[43mget_handle\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 1736\u001b[0m \u001b[43m \u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1737\u001b[0m \u001b[43m \u001b[49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1738\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1739\u001b[0m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mcompression\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1740\u001b[0m \u001b[43m \u001b[49m\u001b[43mmemory_map\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mmemory_map\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1741\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_text\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_text\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1742\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mencoding_errors\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstrict\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1743\u001b[0m \u001b[43m \u001b[49m\u001b[43mstorage_options\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moptions\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mstorage_options\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mNone\u001b[39;49;00m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 1744\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1745\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m 1746\u001b[0m f \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mhandles\u001b[38;5;241m.\u001b[39mhandle\n", + "File \u001b[1;32mc:\\Users\\alie\\.conda\\envs\\asim_baydag\\lib\\site-packages\\pandas\\io\\common.py:856\u001b[0m, in \u001b[0;36mget_handle\u001b[1;34m(path_or_buf, mode, encoding, compression, memory_map, is_text, errors, storage_options)\u001b[0m\n\u001b[0;32m 851\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(handle, \u001b[38;5;28mstr\u001b[39m):\n\u001b[0;32m 852\u001b[0m \u001b[38;5;66;03m# Check whether the filename is to be opened in binary mode.\u001b[39;00m\n\u001b[0;32m 853\u001b[0m \u001b[38;5;66;03m# Binary mode does not support 'encoding' and 'newline'.\u001b[39;00m\n\u001b[0;32m 854\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mencoding \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mb\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m ioargs\u001b[38;5;241m.\u001b[39mmode:\n\u001b[0;32m 855\u001b[0m \u001b[38;5;66;03m# Encoding\u001b[39;00m\n\u001b[1;32m--> 856\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mopen\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[0;32m 857\u001b[0m \u001b[43m \u001b[49m\u001b[43mhandle\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 858\u001b[0m \u001b[43m \u001b[49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmode\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 859\u001b[0m \u001b[43m \u001b[49m\u001b[43mencoding\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mioargs\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoding\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 860\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[0;32m 861\u001b[0m \u001b[43m \u001b[49m\u001b[43mnewline\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[0;32m 862\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 863\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m 864\u001b[0m \u001b[38;5;66;03m# Binary mode\u001b[39;00m\n\u001b[0;32m 865\u001b[0m handle \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mopen\u001b[39m(handle, ioargs\u001b[38;5;241m.\u001b[39mmode)\n", + "\u001b[1;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: 'C:\\\\abm_runs\\\\rohans\\\\calibration\\\\trip_mc\\\\output\\\\activitysim_run_dir\\\\configs\\\\trip_mode_choice_coefficients.csv'" + ] + } + ], + "source": [ + "_ = asim_trip_calib_util.perform_trip_mode_choice_model_calibration(\n", + " asim_output_dir=output_dir, # folder containing the activitysim model output\n", + " asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim trip mode choice config files\n", + " trip_mode_choice_calib_targets_file=trip_mode_choice_calib_targets_file, # folder containing trip mode choice calibration tables\n", + " max_ASC_adjust=max_ASC_adjust, \n", + " damping_factor=damping_factor, # constant multiplied to all adjustments\n", + " adjust_when_zero_counts=adjust_when_zero_counts,\n", + " output_dir=output_dir, # location to write model calibration steps\n", + " )" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Iterating" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "ActivitySim run started at: 2024-05-14 12:13:38.539136\n", + "python simulation.py -s C:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\settings_mp_warm_start.yaml -c C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\activitysim_run_dir\\configs -c C:\\abm_runs\\rohans\\configs\\common -d C:\\abm_runs\\rohans\\input_2022 -o C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\activitysim_run_dir\n", + "ActivitySim ended at 2024-05-14 16:14:59.984177\n", + "Run Time: 14481.45 secs = 241.35750000000002 mins\n" + ] + }, + { + "ename": "AssertionError", + "evalue": "ActivitySim run not completed! See ActivitySim log file for details.", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mAssertionError\u001b[0m Traceback (most recent call last)", + "Input \u001b[1;32mIn [9]\u001b[0m, in \u001b[0;36m\u001b[1;34m()\u001b[0m\n\u001b[0;32m 4\u001b[0m start_iter_num \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[0;32m 6\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(start_iter_num, calibration_iterations_to_run\u001b[38;5;241m+\u001b[39mstart_iter_num):\n\u001b[1;32m----> 7\u001b[0m \u001b[43masim_trip_calib_util\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_activitysim\u001b[49m\u001b[43m(\u001b[49m\n\u001b[0;32m 8\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# data inputs for ActivitySim\u001b[39;49;00m\n\u001b[0;32m 9\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfigs_resident_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfigs_resident_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# these files are copied to the config section of the run directory\u001b[39;49;00m\n\u001b[0;32m 10\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfigs_common_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconfigs_common_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# these files are copied to the config section of the run directory\u001b[39;49;00m\n\u001b[0;32m 11\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mactivitysim_run_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# ActivitySim run directory\u001b[39;49;00m\n\u001b[0;32m 12\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43miteration_output_dir\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# location to store run model outputs\u001b[39;49;00m\n\u001b[0;32m 13\u001b[0m \u001b[43m \u001b[49m\u001b[43msettings_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mwarm_start_settings_mp_file\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# optional: ActivitySim settings.yaml to replace the one in configs_dir\u001b[39;49;00m\n\u001b[0;32m 14\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrip_mc_coef_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrip_mc_coef_file\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# optional: trip_mode_choice_coefficients.csv to replace the one in configs_dir\u001b[39;49;00m\n\u001b[0;32m 15\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 17\u001b[0m _ \u001b[38;5;241m=\u001b[39m asim_trip_calib_util\u001b[38;5;241m.\u001b[39mperform_trip_mode_choice_model_calibration(\n\u001b[0;32m 18\u001b[0m asim_output_dir\u001b[38;5;241m=\u001b[39miteration_output_dir, \u001b[38;5;66;03m# folder containing the activitysim model output\u001b[39;00m\n\u001b[0;32m 19\u001b[0m asim_configs_dir\u001b[38;5;241m=\u001b[39mos\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(activitysim_run_dir, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mconfigs\u001b[39m\u001b[38;5;124m'\u001b[39m), \u001b[38;5;66;03m# folder containing activitysim trip mode choice config files\u001b[39;00m\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 24\u001b[0m output_dir\u001b[38;5;241m=\u001b[39miteration_output_dir, \u001b[38;5;66;03m# location to write model calibration steps\u001b[39;00m\n\u001b[0;32m 25\u001b[0m )\n\u001b[0;32m 26\u001b[0m trip_mc_coef_file \u001b[38;5;241m=\u001b[39m os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(iteration_output_dir, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrip_mode_choice_coefficients.csv\u001b[39m\u001b[38;5;124m'\u001b[39m) \n", + "File \u001b[1;32mc:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\asim_trip_calib_util.py:1324\u001b[0m, in \u001b[0;36mrun_activitysim\u001b[1;34m(data_dir, configs_resident_dir, configs_common_dir, run_dir, output_dir, settings_file, trip_mc_coef_file)\u001b[0m\n\u001b[0;32m 1319\u001b[0m shutil\u001b[38;5;241m.\u001b[39mcopyfile(trip_mc_coef_file, os\u001b[38;5;241m.\u001b[39mpath\u001b[38;5;241m.\u001b[39mjoin(run_config_resident_dir, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrip_mode_choice_coefficients.csv\u001b[39m\u001b[38;5;124m'\u001b[39m))\n\u001b[0;32m 1321\u001b[0m activitysim_run_command \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mpython simulation.py -s \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m settings_file \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m -c \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m run_config_resident_dir \\\n\u001b[0;32m 1322\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m -c \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m configs_common_dir \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m -d \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m data_dir \u001b[38;5;241m+\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m -o \u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;241m+\u001b[39m run_dir\n\u001b[1;32m-> 1324\u001b[0m \u001b[43mlaunch_activitysim\u001b[49m\u001b[43m(\u001b[49m\u001b[43mactivitysim_run_command\u001b[49m\u001b[43m)\u001b[49m\n\u001b[0;32m 1326\u001b[0m activitysim_output_tables \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m 1327\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfinal_households.csv\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 1328\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfinal_persons.csv\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m (...)\u001b[0m\n\u001b[0;32m 1332\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mactivitysim.log\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m 1333\u001b[0m ]\n\u001b[0;32m 1335\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m asim_table \u001b[38;5;129;01min\u001b[39;00m activitysim_output_tables:\n", + "File \u001b[1;32mc:\\abm_runs\\rohans\\calibration\\trip_mc\\scripts\\asim_trip_calib_util.py:1131\u001b[0m, in \u001b[0;36mlaunch_activitysim\u001b[1;34m(activitysim_run_command)\u001b[0m\n\u001b[0;32m 1129\u001b[0m run_time \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mround\u001b[39m(time\u001b[38;5;241m.\u001b[39mtime() \u001b[38;5;241m-\u001b[39m start_time, \u001b[38;5;241m2\u001b[39m)\n\u001b[0;32m 1130\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mRun Time: \u001b[39m\u001b[38;5;124m\"\u001b[39m, run_time, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msecs = \u001b[39m\u001b[38;5;124m\"\u001b[39m, run_time\u001b[38;5;241m/\u001b[39m\u001b[38;5;241m60\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m mins\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m-> 1131\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m ret_value \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m0\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mActivitySim run not completed! See ActivitySim log file for details.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n", + "\u001b[1;31mAssertionError\u001b[0m: ActivitySim run not completed! See ActivitySim log file for details." + ] + } + ], + "source": [ + "iteration_output_dir = output_dir.strip('_cold') + '_10'\n", + "\n", + "calibration_iterations_to_run = 3\n", + "start_iter_num = 1\n", + "\n", + "for i in range(start_iter_num, calibration_iterations_to_run+start_iter_num):\n", + " asim_trip_calib_util.run_activitysim(\n", + " data_dir=data_dir, # data inputs for ActivitySim\n", + " configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", + " configs_common_dir=configs_common_dir, # these files are copied to the config section of the run directory\n", + " run_dir=activitysim_run_dir, # ActivitySim run directory\n", + " output_dir=iteration_output_dir, # location to store run model outputs\n", + " settings_file=warm_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", + " trip_mc_coef_file=trip_mc_coef_file # optional: trip_mode_choice_coefficients.csv to replace the one in configs_dir\n", + " )\n", + " \n", + " _ = asim_trip_calib_util.perform_trip_mode_choice_model_calibration(\n", + " asim_output_dir=iteration_output_dir, # folder containing the activitysim model output\n", + " asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim trip mode choice config files\n", + " trip_mode_choice_calib_targets_file=trip_mode_choice_calib_targets_file, # folder containing trip mode choice calibration tables\n", + " max_ASC_adjust=max_ASC_adjust, \n", + " damping_factor=damping_factor, # constant multiplied to all adjustments\n", + " adjust_when_zero_counts=adjust_when_zero_counts,\n", + " output_dir=iteration_output_dir, # location to write model calibration steps\n", + " )\n", + " trip_mc_coef_file = os.path.join(iteration_output_dir, 'trip_mode_choice_coefficients.csv') \n", + " iteration_output_dir = iteration_output_dir.strip('_'+str(i)) + '_' + str(i+1)\n", + "\n", + "print(\"\\n\\n\", \"Final coefficient table written to: \", trip_mc_coef_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# trip_mc_coef_file = r'C:\\abm_runs\\rohans\\calibration\\trip_mc\\output\\calibration_output_an_iter_3\\trip_mode_choice_coefficients.csv'\n", + "# iteration_output_dir = output_dir.strip('_cold') + '_4'\n", + "\n", + "# print(trip_mc_coef_file)\n", + "# print(iteration_output_dir)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# calibration_iterations_to_run = 3\n", + "# start_iter_num = 4\n", + "\n", + "# for i in range(start_iter_num, calibration_iterations_to_run+start_iter_num):\n", + "# asim_trip_calib_util.run_activitysim(\n", + "# data_dir=data_dir, # data inputs for ActivitySim\n", + "# configs_resident_dir=configs_resident_dir, # these files are copied to the config section of the run directory\n", + "# configs_common_dir=configs_common_dir, # these files are copied to the config section of the run directory\n", + "# run_dir=activitysim_run_dir, # ActivitySim run directory\n", + "# output_dir=iteration_output_dir, # location to store run model outputs\n", + "# settings_file=warm_start_settings_mp_file, # optional: ActivitySim settings.yaml to replace the one in configs_dir\n", + "# trip_mc_coef_file=trip_mc_coef_file # optional: trip_mode_choice_coefficients.csv to replace the one in configs_dir\n", + "# )\n", + " \n", + "# _ = asim_trip_calib_util.perform_trip_mode_choice_model_calibration(\n", + "# asim_output_dir=iteration_output_dir, # folder containing the activitysim model output\n", + "# asim_configs_dir=os.path.join(activitysim_run_dir, 'configs'), # folder containing activitysim trip mode choice config files\n", + "# trip_mode_choice_calib_targets_file=trip_mode_choice_calib_targets_file, # folder containing trip mode choice calibration tables\n", + "# max_ASC_adjust=max_ASC_adjust, \n", + "# damping_factor=damping_factor, # constant multiplied to all adjustments\n", + "# adjust_when_zero_counts=adjust_when_zero_counts,\n", + "# output_dir=iteration_output_dir, # location to write model calibration steps\n", + "# )\n", + "# trip_mc_coef_file = os.path.join(iteration_output_dir, 'trip_mode_choice_coefficients.csv') \n", + "# iteration_output_dir = iteration_output_dir.strip('_'+str(i)) + '_' + str(i+1)\n", + "\n", + "# print(\"\\n\\n\", \"Final coefficient table written to: \", trip_mc_coef_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.16" + }, + "vscode": { + "interpreter": { + "hash": "2eb7c6f9f406f6f9f49420dd65650c4cb08a10ab5f4a505e57e75dbf5eb536c1" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_cold_start.yaml b/src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_cold_start.yaml new file mode 100644 index 000000000..70fa6e1d7 --- /dev/null +++ b/src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_cold_start.yaml @@ -0,0 +1,106 @@ +inherit_settings: settings.yaml + +multiprocess: True +households_sample_size: 320000 +num_processes: 40 +trace_hh_id: #152855 +chunk_training_mode: disabled +# chunk_size: 240_000_000_000 + +use_shadow_pricing: True + +memory_profile: False + +# raise error if any sub-process fails without waiting for others to complete +# (Shadow pricing requires fail_fast setting in multiprocessing mode) +fail_fast: True + +resume_after: + +models: + ### mp_init_proto_pop (single process) + - initialize_proto_population # Separate step so proto tables can be split for multiprocess. + ### mp_disaggregate_accessibility + - compute_disaggregate_accessibility + ### mp_initialize_hhs (single process) + - initialize_landuse + - initialize_households + ### mp_accessibility + - compute_accessibility + ### mp_households + - av_ownership + - auto_ownership_simulate + - work_from_home + - external_worker_identification + - external_workplace_location + - school_location + - workplace_location + - transit_pass_subsidy + - transit_pass_ownership + - vehicle_type_choice + - transponder_ownership + - free_parking + - telecommute_frequency + - cdap_simulate + - mandatory_tour_frequency + - mandatory_tour_scheduling + - school_escorting + - joint_tour_frequency_composition + - external_joint_tour_identification + - joint_tour_participation + - joint_tour_destination + - external_joint_tour_destination + - joint_tour_scheduling + - non_mandatory_tour_frequency + - external_non_mandatory_identification + - non_mandatory_tour_destination + - external_non_mandatory_destination + - non_mandatory_tour_scheduling + - vehicle_allocation + - tour_mode_choice_simulate + - atwork_subtour_frequency + - atwork_subtour_destination + - atwork_subtour_scheduling + - atwork_subtour_mode_choice + - stop_frequency + - trip_purpose + - trip_destination + - trip_purpose_and_destination + - trip_scheduling + - trip_mode_choice + - parking_location + ### mp_summarize (single process) + - write_data_dictionary + # - track_skim_usage + - write_trip_matrices + - write_tables + + +multiprocess_steps: + - name: mp_init_proto_pop + begin: initialize_proto_population + - name: mp_disaggregate_accessibility + num_processes: 20 + begin: compute_disaggregate_accessibility + slice: + tables: + - proto_households + - proto_persons + - proto_tours + - name: mp_initialize_hhs + begin: initialize_landuse + - name: mp_accessibility + begin: compute_accessibility + num_processes: 10 + slice: + tables: + - accessibility + except: True # this is needed so landuse (i.e. destinations) doesn't get split + - name: mp_households + begin: av_ownership + slice: + tables: + - households + - persons + - name: mp_summarize + begin: write_data_dictionary diff --git a/src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_warm_start.yaml b/src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_warm_start.yaml new file mode 100644 index 000000000..18704d2a4 --- /dev/null +++ b/src/asim/calibration/resident/trip_mode_choice/scripts/settings_mp_warm_start.yaml @@ -0,0 +1,109 @@ +inherit_settings: settings.yaml + +multiprocess: True +households_sample_size: 320000 +num_processes: 40 +trace_hh_id: +chunk_training_mode: disabled +# chunk_size: 240_000_000_000 + +use_shadow_pricing: True + +memory_profile: False + +# raise error if any sub-process fails without waiting for others to complete +# (Shadow pricing requires fail_fast setting in multiprocessing mode) +fail_fast: True + +resume_after: trip_scheduling + +models: + ### mp_init_proto_pop (single process) + - initialize_proto_population # Separate step so proto tables can be split for multiprocess. + ### mp_disaggregate_accessibility + - compute_disaggregate_accessibility + ### mp_initialize_hhs (single process) + - initialize_landuse + - initialize_households + ### mp_accessibility + - compute_accessibility + ### mp_households + - av_ownership + - auto_ownership_simulate + - work_from_home + - external_worker_identification + - external_workplace_location + - school_location + - workplace_location + - transit_pass_subsidy + - transit_pass_ownership + - vehicle_type_choice + - adjust_auto_operating_cost + - transponder_ownership + - free_parking + - telecommute_frequency + - cdap_simulate + - mandatory_tour_frequency + - mandatory_tour_scheduling + - school_escorting + - joint_tour_frequency_composition + - external_joint_tour_identification + - joint_tour_participation + - joint_tour_destination + - external_joint_tour_destination + - joint_tour_scheduling + - non_mandatory_tour_frequency + - external_non_mandatory_identification + - non_mandatory_tour_destination + - external_non_mandatory_destination + - non_mandatory_tour_scheduling + - vehicle_allocation + - tour_mode_choice_simulate + - atwork_subtour_frequency + - atwork_subtour_destination + - atwork_subtour_scheduling + - atwork_subtour_mode_choice + - stop_frequency + - trip_purpose + - trip_destination + - trip_purpose_and_destination + - trip_scheduling + - trip_mode_choice + - parking_location + ### mp_summarize (single process) + - write_data_dictionary + - track_skim_usage + - write_trip_matrices + # - write_to_datalake + - update_tables + - write_tables + + +multiprocess_steps: + - name: mp_init_proto_pop + begin: initialize_proto_population + - name: mp_disaggregate_accessibility + num_processes: 20 + begin: compute_disaggregate_accessibility + slice: + tables: + - proto_households + - proto_persons + - proto_tours + - name: mp_initialize_hhs + begin: initialize_landuse + - name: mp_accessibility + begin: compute_accessibility + num_processes: 10 + slice: + tables: + - accessibility + except: True # this is needed so landuse (i.e. destinations) doesn't get split + - name: mp_households + begin: av_ownership + slice: + tables: + - households + - persons + - name: mp_summarize + begin: write_data_dictionary diff --git a/src/asim/calibration/resident/trip_mode_choice/targets/trip_mode_choice_calibration_targets_2024-01-23_updated.csv b/src/asim/calibration/resident/trip_mode_choice/targets/trip_mode_choice_calibration_targets_2024-01-23_updated.csv new file mode 100644 index 000000000..1a115a272 --- /dev/null +++ b/src/asim/calibration/resident/trip_mode_choice/targets/trip_mode_choice_calibration_targets_2024-01-23_updated.csv @@ -0,0 +1,2305 @@ +grouped_linked_trip_mode,grouped_tour_mode,trips,purpose +All,All,12929329.15984672,Total +DRIVEALONE,All,5676498.220279305,Total +SHARED2,All,2711619.7715306785,Total +SHARED3,All,2432532.766469347,Total +WALK,All,1691624.513737501,Total +BIKE,All,152621.03492076733,Total +WALK-TRANSIT,All,129816.91439121708,Total +PNR-TRANSIT,All,9159.27528574814,Total +KNR-TRANSIT,All,24497.89472915896,Total +TNC-TRANSIT,All,179.1126537142128,Total +TAXI,All,22366.19057269406,Total +TNC-REG,All,25107.272009600987,Total +TNC-SHARED,All,0.0,Total +SCHOOLBUS,All,13019.9328298986,Total +ESCOOTER,All,8955.813478970831,Total +EBIKE,All,11341.635976500722,Total +All,DRIVEALONE,4507627.8538897,Total +DRIVEALONE,DRIVEALONE,4340990.674491175,Total +SHARED2,DRIVEALONE,3861.39776338285,Total +SHARED3,DRIVEALONE,4771.267329958026,Total +WALK,DRIVEALONE,132033.00266367206,Total +BIKE,DRIVEALONE,24057.007178104057,Total +WALK-TRANSIT,DRIVEALONE,0.0,Total +PNR-TRANSIT,DRIVEALONE,0.0,Total +KNR-TRANSIT,DRIVEALONE,0.0,Total +TNC-TRANSIT,DRIVEALONE,0.0,Total +TAXI,DRIVEALONE,0.0,Total +TNC-REG,DRIVEALONE,525.6523208568176,Total +TNC-SHARED,DRIVEALONE,0.0,Total +SCHOOLBUS,DRIVEALONE,0.0,Total +ESCOOTER,DRIVEALONE,265.422987857664,Total +EBIKE,DRIVEALONE,1123.4291546930294,Total +All,SHARED2,3242403.5211425098,Total +DRIVEALONE,SHARED2,745820.3390149088,Total +SHARED2,SHARED2,2371453.5693519283,Total +SHARED3,SHARED2,3480.220539180109,Total +WALK,SHARED2,115507.50003869936,Total +BIKE,SHARED2,623.9050605332944,Total +WALK-TRANSIT,SHARED2,0.0,Total +PNR-TRANSIT,SHARED2,0.0,Total +KNR-TRANSIT,SHARED2,0.0,Total +TNC-TRANSIT,SHARED2,0.0,Total +TAXI,SHARED2,8.61696435336093,Total +TNC-REG,SHARED2,2096.851576928192,Total +TNC-SHARED,SHARED2,0.0,Total +SCHOOLBUS,SHARED2,0.0,Total +ESCOOTER,SHARED2,3412.51859597862,Total +EBIKE,SHARED2,0.0,Total +All,SHARED3,3521206.912394677,Total +DRIVEALONE,SHARED3,576501.1369627443,Total +SHARED2,SHARED3,331585.4395819447,Total +SHARED3,SHARED3,2382252.4749503382,Total +WALK,SHARED3,226405.65472743247,Total +BIKE,SHARED3,246.5391143474557,Total +WALK-TRANSIT,SHARED3,0.0,Total +PNR-TRANSIT,SHARED3,0.0,Total +KNR-TRANSIT,SHARED3,0.0,Total +TNC-TRANSIT,SHARED3,0.0,Total +TAXI,SHARED3,0.0,Total +TNC-REG,SHARED3,1443.4560886310142,Total +TNC-SHARED,SHARED3,0.0,Total +SCHOOLBUS,SHARED3,0.0,Total +ESCOOTER,SHARED3,1701.26734129026,Total +EBIKE,SHARED3,1070.94362794873,Total +All,WALK,1180943.6418395666,Total +DRIVEALONE,WALK,4495.346648197389,Total +SHARED2,WALK,303.243759899992,Total +SHARED3,WALK,29.7844898987277,Total +WALK,WALK,1176115.2669415704,Total +BIKE,WALK,0.0,Total +WALK-TRANSIT,WALK,0.0,Total +PNR-TRANSIT,WALK,0.0,Total +KNR-TRANSIT,WALK,0.0,Total +TNC-TRANSIT,WALK,0.0,Total +TAXI,WALK,0.0,Total +TNC-REG,WALK,0.0,Total +TNC-SHARED,WALK,0.0,Total +SCHOOLBUS,WALK,0.0,Total +ESCOOTER,WALK,0.0,Total +EBIKE,WALK,0.0,Total +All,BIKE,171792.55897695987,Total +DRIVEALONE,BIKE,0.0,Total +SHARED2,BIKE,41.7395962064835,Total +SHARED3,BIKE,32195.979303624143,Total +WALK,BIKE,11866.93518578854,Total +BIKE,BIKE,127687.9048913407,Total +WALK-TRANSIT,BIKE,0.0,Total +PNR-TRANSIT,BIKE,0.0,Total +KNR-TRANSIT,BIKE,0.0,Total +TNC-TRANSIT,BIKE,0.0,Total +TAXI,BIKE,0.0,Total +TNC-REG,BIKE,0.0,Total +TNC-SHARED,BIKE,0.0,Total +SCHOOLBUS,BIKE,0.0,Total +ESCOOTER,BIKE,0.0,Total +EBIKE,BIKE,0.0,Total +All,WALK-TRANSIT,219331.70408164884,Total +DRIVEALONE,WALK-TRANSIT,8690.723162279459,Total +SHARED2,WALK-TRANSIT,4374.381477316148,Total +SHARED3,WALK-TRANSIT,9803.03985634747,Total +WALK,WALK-TRANSIT,29696.154180338268,Total +BIKE,WALK-TRANSIT,5.67867644181647,Total +WALK-TRANSIT,WALK-TRANSIT,129816.91439121708,Total +PNR-TRANSIT,WALK-TRANSIT,0.0,Total +KNR-TRANSIT,WALK-TRANSIT,0.0,Total +TNC-TRANSIT,WALK-TRANSIT,0.0,Total +TAXI,WALK-TRANSIT,0.0,Total +TNC-REG,WALK-TRANSIT,4462.545614378751,Total +TNC-SHARED,WALK-TRANSIT,0.0,Total +SCHOOLBUS,WALK-TRANSIT,0.0,Total +ESCOOTER,WALK-TRANSIT,28.038125525595497,Total +EBIKE,WALK-TRANSIT,0.0,Total +All,PNR-TRANSIT,3693.256163608121,Total +DRIVEALONE,PNR-TRANSIT,0.0,Total +SHARED2,PNR-TRANSIT,0.0,Total +SHARED3,PNR-TRANSIT,0.0,Total +WALK,PNR-TRANSIT,0.0,Total +BIKE,PNR-TRANSIT,0.0,Total +WALK-TRANSIT,PNR-TRANSIT,0.0,Total +PNR-TRANSIT,PNR-TRANSIT,9159.27528574814,Total +KNR-TRANSIT,PNR-TRANSIT,0.0,Total +TNC-TRANSIT,PNR-TRANSIT,0.0,Total +TAXI,PNR-TRANSIT,0.0,Total +TNC-REG,PNR-TRANSIT,0.0,Total +TNC-SHARED,PNR-TRANSIT,0.0,Total +SCHOOLBUS,PNR-TRANSIT,0.0,Total +ESCOOTER,PNR-TRANSIT,0.0,Total +EBIKE,PNR-TRANSIT,0.0,Total +All,KNR-TRANSIT,17498.496235113544,Total +DRIVEALONE,KNR-TRANSIT,0.0,Total +SHARED2,KNR-TRANSIT,0.0,Total +SHARED3,KNR-TRANSIT,0.0,Total +WALK,KNR-TRANSIT,0.0,Total +BIKE,KNR-TRANSIT,0.0,Total +WALK-TRANSIT,KNR-TRANSIT,0.0,Total +PNR-TRANSIT,KNR-TRANSIT,0.0,Total +KNR-TRANSIT,KNR-TRANSIT,24497.89472915896,Total +TNC-TRANSIT,KNR-TRANSIT,0.0,Total +TAXI,KNR-TRANSIT,0.0,Total +TNC-REG,KNR-TRANSIT,0.0,Total +TNC-SHARED,KNR-TRANSIT,0.0,Total +SCHOOLBUS,KNR-TRANSIT,0.0,Total +ESCOOTER,KNR-TRANSIT,0.0,Total +EBIKE,KNR-TRANSIT,0.0,Total +All,TNC-TRANSIT,179.1126537142128,Total +DRIVEALONE,TNC-TRANSIT,0.0,Total +SHARED2,TNC-TRANSIT,0.0,Total +SHARED3,TNC-TRANSIT,0.0,Total +WALK,TNC-TRANSIT,0.0,Total +BIKE,TNC-TRANSIT,0.0,Total +WALK-TRANSIT,TNC-TRANSIT,0.0,Total +PNR-TRANSIT,TNC-TRANSIT,0.0,Total +KNR-TRANSIT,TNC-TRANSIT,0.0,Total +TNC-TRANSIT,TNC-TRANSIT,179.1126537142128,Total +TAXI,TNC-TRANSIT,0.0,Total +TNC-REG,TNC-TRANSIT,0.0,Total +TNC-SHARED,TNC-TRANSIT,0.0,Total +SCHOOLBUS,TNC-TRANSIT,0.0,Total +ESCOOTER,TNC-TRANSIT,0.0,Total +EBIKE,TNC-TRANSIT,0.0,Total +All,TAXI,22357.573608340703,Total +DRIVEALONE,TAXI,0.0,Total +SHARED2,TAXI,0.0,Total +SHARED3,TAXI,0.0,Total +WALK,TAXI,0.0,Total +BIKE,TAXI,0.0,Total +WALK-TRANSIT,TAXI,0.0,Total +PNR-TRANSIT,TAXI,0.0,Total +KNR-TRANSIT,TAXI,0.0,Total +TNC-TRANSIT,TAXI,0.0,Total +TAXI,TAXI,22357.573608340703,Total +TNC-REG,TAXI,0.0,Total +TNC-SHARED,TAXI,0.0,Total +SCHOOLBUS,TAXI,0.0,Total +ESCOOTER,TAXI,0.0,Total +EBIKE,TAXI,0.0,Total +All,TNC-REG,16578.766408806216,Total +DRIVEALONE,TNC-REG,0.0,Total +SHARED2,TNC-REG,0.0,Total +SHARED3,TNC-REG,0.0,Total +WALK,TNC-REG,0.0,Total +BIKE,TNC-REG,0.0,Total +WALK-TRANSIT,TNC-REG,0.0,Total +PNR-TRANSIT,TNC-REG,0.0,Total +KNR-TRANSIT,TNC-REG,0.0,Total +TNC-TRANSIT,TNC-REG,0.0,Total +TAXI,TNC-REG,0.0,Total +TNC-REG,TNC-REG,16578.766408806216,Total +TNC-SHARED,TNC-REG,0.0,Total +SCHOOLBUS,TNC-REG,0.0,Total +ESCOOTER,TNC-REG,0.0,Total +EBIKE,TNC-REG,0.0,Total +All,TNC-SHARED,0.0,Total +DRIVEALONE,TNC-SHARED,0.0,Total +SHARED2,TNC-SHARED,0.0,Total +SHARED3,TNC-SHARED,0.0,Total +WALK,TNC-SHARED,0.0,Total +BIKE,TNC-SHARED,0.0,Total +WALK-TRANSIT,TNC-SHARED,0.0,Total +PNR-TRANSIT,TNC-SHARED,0.0,Total +KNR-TRANSIT,TNC-SHARED,0.0,Total +TNC-TRANSIT,TNC-SHARED,0.0,Total +TAXI,TNC-SHARED,0.0,Total +TNC-REG,TNC-SHARED,0.0,Total +TNC-SHARED,TNC-SHARED,0.0,Total +SCHOOLBUS,TNC-SHARED,0.0,Total +ESCOOTER,TNC-SHARED,0.0,Total +EBIKE,TNC-SHARED,0.0,Total +All,SCHOOLBUS,13019.9328298986,Total +DRIVEALONE,SCHOOLBUS,0.0,Total +SHARED2,SCHOOLBUS,0.0,Total +SHARED3,SCHOOLBUS,0.0,Total +WALK,SCHOOLBUS,0.0,Total +BIKE,SCHOOLBUS,0.0,Total +WALK-TRANSIT,SCHOOLBUS,0.0,Total +PNR-TRANSIT,SCHOOLBUS,0.0,Total +KNR-TRANSIT,SCHOOLBUS,0.0,Total +TNC-TRANSIT,SCHOOLBUS,0.0,Total +TAXI,SCHOOLBUS,0.0,Total +TNC-REG,SCHOOLBUS,0.0,Total +TNC-SHARED,SCHOOLBUS,0.0,Total +SCHOOLBUS,SCHOOLBUS,13019.9328298986,Total +ESCOOTER,SCHOOLBUS,0.0,Total +EBIKE,SCHOOLBUS,0.0,Total +All,ESCOOTER,3548.566428318692,Total +DRIVEALONE,ESCOOTER,0.0,Total +SHARED2,ESCOOTER,0.0,Total +SHARED3,ESCOOTER,0.0,Total +WALK,ESCOOTER,0.0,Total +BIKE,ESCOOTER,0.0,Total +WALK-TRANSIT,ESCOOTER,0.0,Total +PNR-TRANSIT,ESCOOTER,0.0,Total +KNR-TRANSIT,ESCOOTER,0.0,Total +TNC-TRANSIT,ESCOOTER,0.0,Total +TAXI,ESCOOTER,0.0,Total +TNC-REG,ESCOOTER,0.0,Total +TNC-SHARED,ESCOOTER,0.0,Total +SCHOOLBUS,ESCOOTER,0.0,Total +ESCOOTER,ESCOOTER,3548.566428318692,Total +EBIKE,ESCOOTER,0.0,Total +All,EBIKE,9147.263193858962,Total +DRIVEALONE,EBIKE,0.0,Total +SHARED2,EBIKE,0.0,Total +SHARED3,EBIKE,0.0,Total +WALK,EBIKE,0.0,Total +BIKE,EBIKE,0.0,Total +WALK-TRANSIT,EBIKE,0.0,Total +PNR-TRANSIT,EBIKE,0.0,Total +KNR-TRANSIT,EBIKE,0.0,Total +TNC-TRANSIT,EBIKE,0.0,Total +TAXI,EBIKE,0.0,Total +TNC-REG,EBIKE,0.0,Total +TNC-SHARED,EBIKE,0.0,Total +SCHOOLBUS,EBIKE,0.0,Total +ESCOOTER,EBIKE,0.0,Total +EBIKE,EBIKE,9147.263193858962,Total +All,All,2138059.5636058664,Work +DRIVEALONE,All,1682389.6098594232,Work +SHARED2,All,184132.60760422188,Work +SHARED3,All,142041.64285589603,Work +WALK,All,75200.93562080494,Work +BIKE,All,22083.620085402425,Work +WALK-TRANSIT,All,17886.05787609128,Work +PNR-TRANSIT,All,3996.3279316363664,Work +KNR-TRANSIT,All,6125.567090945946,Work +TNC-TRANSIT,All,9.8773380966108,Work +TAXI,All,0.0,Work +TNC-REG,All,3301.686616606229,Work +TNC-SHARED,All,0.0,Work +SCHOOLBUS,All,0.0,Work +ESCOOTER,All,0.0,Work +EBIKE,All,555.1836622604703,Work +All,DRIVEALONE,1442772.3206452795,Work +DRIVEALONE,DRIVEALONE,1403406.00875088,Work +SHARED2,DRIVEALONE,0.0,Work +SHARED3,DRIVEALONE,32.4254645800559,Work +WALK,DRIVEALONE,38382.7775924829,Work +BIKE,DRIVEALONE,895.349888128709,Work +WALK-TRANSIT,DRIVEALONE,0.0,Work +PNR-TRANSIT,DRIVEALONE,0.0,Work +KNR-TRANSIT,DRIVEALONE,0.0,Work +TNC-TRANSIT,DRIVEALONE,0.0,Work +TAXI,DRIVEALONE,0.0,Work +TNC-REG,DRIVEALONE,0.0,Work +TNC-SHARED,DRIVEALONE,0.0,Work +SCHOOLBUS,DRIVEALONE,0.0,Work +ESCOOTER,DRIVEALONE,0.0,Work +EBIKE,DRIVEALONE,55.7589492081143,Work +All,SHARED2,300549.2357057859,Work +DRIVEALONE,SHARED2,146967.164173856,Work +SHARED2,SHARED2,138014.954625425,Work +SHARED3,SHARED2,0.0,Work +WALK,SHARED2,13690.1551698794,Work +BIKE,SHARED2,31.5292524838978,Work +WALK-TRANSIT,SHARED2,0.0,Work +PNR-TRANSIT,SHARED2,0.0,Work +KNR-TRANSIT,SHARED2,0.0,Work +TNC-TRANSIT,SHARED2,0.0,Work +TAXI,SHARED2,0.0,Work +TNC-REG,SHARED2,1845.43248414165,Work +TNC-SHARED,SHARED2,0.0,Work +SCHOOLBUS,SHARED2,0.0,Work +ESCOOTER,SHARED2,0.0,Work +EBIKE,SHARED2,0.0,Work +All,SHARED3,321313.0276493672,Work +DRIVEALONE,SHARED3,131893.985166703,Work +SHARED2,SHARED3,43928.4385673894,Work +SHARED3,SHARED3,141545.387413555,Work +WALK,SHARED3,3945.21650171977,Work +BIKE,SHARED3,0.0,Work +WALK-TRANSIT,SHARED3,0.0,Work +PNR-TRANSIT,SHARED3,0.0,Work +KNR-TRANSIT,SHARED3,0.0,Work +TNC-TRANSIT,SHARED3,0.0,Work +TAXI,SHARED3,0.0,Work +TNC-REG,SHARED3,0.0,Work +TNC-SHARED,SHARED3,0.0,Work +SCHOOLBUS,SHARED3,0.0,Work +ESCOOTER,SHARED3,0.0,Work +EBIKE,SHARED3,0.0,Work +All,WALK,18466.2865770529,Work +DRIVEALONE,WALK,0.0,Work +SHARED2,WALK,0.0,Work +SHARED3,WALK,0.0,Work +WALK,WALK,18466.2865770529,Work +BIKE,WALK,0.0,Work +WALK-TRANSIT,WALK,0.0,Work +PNR-TRANSIT,WALK,0.0,Work +KNR-TRANSIT,WALK,0.0,Work +TNC-TRANSIT,WALK,0.0,Work +TAXI,WALK,0.0,Work +TNC-REG,WALK,0.0,Work +TNC-SHARED,WALK,0.0,Work +SCHOOLBUS,WALK,0.0,Work +ESCOOTER,WALK,0.0,Work +EBIKE,WALK,0.0,Work +All,BIKE,21151.062268348,Work +DRIVEALONE,BIKE,0.0,Work +SHARED2,BIKE,0.0,Work +SHARED3,BIKE,0.0,Work +WALK,BIKE,0.0,Work +BIKE,BIKE,21151.062268348,Work +WALK-TRANSIT,BIKE,0.0,Work +PNR-TRANSIT,BIKE,0.0,Work +KNR-TRANSIT,BIKE,0.0,Work +TNC-TRANSIT,BIKE,0.0,Work +TAXI,BIKE,0.0,Work +TNC-REG,BIKE,0.0,Work +TNC-SHARED,BIKE,0.0,Work +SCHOOLBUS,BIKE,0.0,Work +ESCOOTER,BIKE,0.0,Work +EBIKE,BIKE,0.0,Work +All,WALK-TRANSIT,25998.828889295888,Work +DRIVEALONE,WALK-TRANSIT,122.451767984366,Work +SHARED2,WALK-TRANSIT,2189.2144114075,Work +SHARED3,WALK-TRANSIT,463.829977760961,Work +WALK,WALK-TRANSIT,716.499779669986,Work +BIKE,WALK-TRANSIT,5.67867644181647,Work +WALK-TRANSIT,WALK-TRANSIT,17886.05787609128,Work +PNR-TRANSIT,WALK-TRANSIT,0.0,Work +KNR-TRANSIT,WALK-TRANSIT,0.0,Work +TNC-TRANSIT,WALK-TRANSIT,0.0,Work +TAXI,WALK-TRANSIT,0.0,Work +TNC-REG,WALK-TRANSIT,143.581930917159,Work +TNC-SHARED,WALK-TRANSIT,0.0,Work +SCHOOLBUS,WALK-TRANSIT,0.0,Work +ESCOOTER,WALK-TRANSIT,0.0,Work +EBIKE,WALK-TRANSIT,0.0,Work +All,PNR-TRANSIT,1611.42255307918,Work +DRIVEALONE,PNR-TRANSIT,0.0,Work +SHARED2,PNR-TRANSIT,0.0,Work +SHARED3,PNR-TRANSIT,0.0,Work +WALK,PNR-TRANSIT,0.0,Work +BIKE,PNR-TRANSIT,0.0,Work +WALK-TRANSIT,PNR-TRANSIT,0.0,Work +PNR-TRANSIT,PNR-TRANSIT,3996.3279316363664,Work +KNR-TRANSIT,PNR-TRANSIT,0.0,Work +TNC-TRANSIT,PNR-TRANSIT,0.0,Work +TAXI,PNR-TRANSIT,0.0,Work +TNC-REG,PNR-TRANSIT,0.0,Work +TNC-SHARED,PNR-TRANSIT,0.0,Work +SCHOOLBUS,PNR-TRANSIT,0.0,Work +ESCOOTER,PNR-TRANSIT,0.0,Work +EBIKE,PNR-TRANSIT,0.0,Work +All,KNR-TRANSIT,4375.40506496139,Work +DRIVEALONE,KNR-TRANSIT,0.0,Work +SHARED2,KNR-TRANSIT,0.0,Work +SHARED3,KNR-TRANSIT,0.0,Work +WALK,KNR-TRANSIT,0.0,Work +BIKE,KNR-TRANSIT,0.0,Work +WALK-TRANSIT,KNR-TRANSIT,0.0,Work +PNR-TRANSIT,KNR-TRANSIT,0.0,Work +KNR-TRANSIT,KNR-TRANSIT,6125.567090945946,Work +TNC-TRANSIT,KNR-TRANSIT,0.0,Work +TAXI,KNR-TRANSIT,0.0,Work +TNC-REG,KNR-TRANSIT,0.0,Work +TNC-SHARED,KNR-TRANSIT,0.0,Work +SCHOOLBUS,KNR-TRANSIT,0.0,Work +ESCOOTER,KNR-TRANSIT,0.0,Work +EBIKE,KNR-TRANSIT,0.0,Work +All,TNC-TRANSIT,9.8773380966108,Work +DRIVEALONE,TNC-TRANSIT,0.0,Work +SHARED2,TNC-TRANSIT,0.0,Work +SHARED3,TNC-TRANSIT,0.0,Work +WALK,TNC-TRANSIT,0.0,Work +BIKE,TNC-TRANSIT,0.0,Work +WALK-TRANSIT,TNC-TRANSIT,0.0,Work +PNR-TRANSIT,TNC-TRANSIT,0.0,Work +KNR-TRANSIT,TNC-TRANSIT,0.0,Work +TNC-TRANSIT,TNC-TRANSIT,9.8773380966108,Work +TAXI,TNC-TRANSIT,0.0,Work +TNC-REG,TNC-TRANSIT,0.0,Work +TNC-SHARED,TNC-TRANSIT,0.0,Work +SCHOOLBUS,TNC-TRANSIT,0.0,Work +ESCOOTER,TNC-TRANSIT,0.0,Work +EBIKE,TNC-TRANSIT,0.0,Work +All,TAXI,0.0,Work +DRIVEALONE,TAXI,0.0,Work +SHARED2,TAXI,0.0,Work +SHARED3,TAXI,0.0,Work +WALK,TAXI,0.0,Work +BIKE,TAXI,0.0,Work +WALK-TRANSIT,TAXI,0.0,Work +PNR-TRANSIT,TAXI,0.0,Work +KNR-TRANSIT,TAXI,0.0,Work +TNC-TRANSIT,TAXI,0.0,Work +TAXI,TAXI,0.0,Work +TNC-REG,TAXI,0.0,Work +TNC-SHARED,TAXI,0.0,Work +SCHOOLBUS,TAXI,0.0,Work +ESCOOTER,TAXI,0.0,Work +EBIKE,TAXI,0.0,Work +All,TNC-REG,1312.67220154742,Work +DRIVEALONE,TNC-REG,0.0,Work +SHARED2,TNC-REG,0.0,Work +SHARED3,TNC-REG,0.0,Work +WALK,TNC-REG,0.0,Work +BIKE,TNC-REG,0.0,Work +WALK-TRANSIT,TNC-REG,0.0,Work +PNR-TRANSIT,TNC-REG,0.0,Work +KNR-TRANSIT,TNC-REG,0.0,Work +TNC-TRANSIT,TNC-REG,0.0,Work +TAXI,TNC-REG,0.0,Work +TNC-REG,TNC-REG,1312.67220154742,Work +TNC-SHARED,TNC-REG,0.0,Work +SCHOOLBUS,TNC-REG,0.0,Work +ESCOOTER,TNC-REG,0.0,Work +EBIKE,TNC-REG,0.0,Work +All,TNC-SHARED,0.0,Work +DRIVEALONE,TNC-SHARED,0.0,Work +SHARED2,TNC-SHARED,0.0,Work +SHARED3,TNC-SHARED,0.0,Work +WALK,TNC-SHARED,0.0,Work +BIKE,TNC-SHARED,0.0,Work +WALK-TRANSIT,TNC-SHARED,0.0,Work +PNR-TRANSIT,TNC-SHARED,0.0,Work +KNR-TRANSIT,TNC-SHARED,0.0,Work +TNC-TRANSIT,TNC-SHARED,0.0,Work +TAXI,TNC-SHARED,0.0,Work +TNC-REG,TNC-SHARED,0.0,Work +TNC-SHARED,TNC-SHARED,0.0,Work +SCHOOLBUS,TNC-SHARED,0.0,Work +ESCOOTER,TNC-SHARED,0.0,Work +EBIKE,TNC-SHARED,0.0,Work +All,SCHOOLBUS,0.0,Work +DRIVEALONE,SCHOOLBUS,0.0,Work +SHARED2,SCHOOLBUS,0.0,Work +SHARED3,SCHOOLBUS,0.0,Work +WALK,SCHOOLBUS,0.0,Work +BIKE,SCHOOLBUS,0.0,Work +WALK-TRANSIT,SCHOOLBUS,0.0,Work +PNR-TRANSIT,SCHOOLBUS,0.0,Work +KNR-TRANSIT,SCHOOLBUS,0.0,Work +TNC-TRANSIT,SCHOOLBUS,0.0,Work +TAXI,SCHOOLBUS,0.0,Work +TNC-REG,SCHOOLBUS,0.0,Work +TNC-SHARED,SCHOOLBUS,0.0,Work +SCHOOLBUS,SCHOOLBUS,0.0,Work +ESCOOTER,SCHOOLBUS,0.0,Work +EBIKE,SCHOOLBUS,0.0,Work +All,ESCOOTER,0.0,Work +DRIVEALONE,ESCOOTER,0.0,Work +SHARED2,ESCOOTER,0.0,Work +SHARED3,ESCOOTER,0.0,Work +WALK,ESCOOTER,0.0,Work +BIKE,ESCOOTER,0.0,Work +WALK-TRANSIT,ESCOOTER,0.0,Work +PNR-TRANSIT,ESCOOTER,0.0,Work +KNR-TRANSIT,ESCOOTER,0.0,Work +TNC-TRANSIT,ESCOOTER,0.0,Work +TAXI,ESCOOTER,0.0,Work +TNC-REG,ESCOOTER,0.0,Work +TNC-SHARED,ESCOOTER,0.0,Work +SCHOOLBUS,ESCOOTER,0.0,Work +ESCOOTER,ESCOOTER,0.0,Work +EBIKE,ESCOOTER,0.0,Work +All,EBIKE,499.424713052356,Work +DRIVEALONE,EBIKE,0.0,Work +SHARED2,EBIKE,0.0,Work +SHARED3,EBIKE,0.0,Work +WALK,EBIKE,0.0,Work +BIKE,EBIKE,0.0,Work +WALK-TRANSIT,EBIKE,0.0,Work +PNR-TRANSIT,EBIKE,0.0,Work +KNR-TRANSIT,EBIKE,0.0,Work +TNC-TRANSIT,EBIKE,0.0,Work +TAXI,EBIKE,0.0,Work +TNC-REG,EBIKE,0.0,Work +TNC-SHARED,EBIKE,0.0,Work +SCHOOLBUS,EBIKE,0.0,Work +ESCOOTER,EBIKE,0.0,Work +EBIKE,EBIKE,499.424713052356,Work +All,All,173381.0237063428,University +DRIVEALONE,All,82882.35636654474,University +SHARED2,All,24754.22825999782,University +SHARED3,All,13455.940796575898,University +WALK,All,17462.154693575023,University +BIKE,All,575.771204061044,University +WALK-TRANSIT,All,21611.27556388104,University +PNR-TRANSIT,All,686.3203871736048,University +KNR-TRANSIT,All,389.9248763363631,University +TNC-TRANSIT,All,0.0,University +TAXI,All,0.0,University +TNC-REG,All,1577.416046452241,University +TNC-SHARED,All,0.0,University +SCHOOLBUS,All,0.0,University +ESCOOTER,All,5103.80202387078,University +EBIKE,All,0.0,University +All,DRIVEALONE,53749.91006781745,University +DRIVEALONE,DRIVEALONE,51726.8440315938,University +SHARED2,DRIVEALONE,0.0,University +SHARED3,DRIVEALONE,0.0,University +WALK,DRIVEALONE,1859.53992171209,University +BIKE,DRIVEALONE,0.0,University +WALK-TRANSIT,DRIVEALONE,0.0,University +PNR-TRANSIT,DRIVEALONE,0.0,University +KNR-TRANSIT,DRIVEALONE,0.0,University +TNC-TRANSIT,DRIVEALONE,0.0,University +TAXI,DRIVEALONE,0.0,University +TNC-REG,DRIVEALONE,163.526114511565,University +TNC-SHARED,DRIVEALONE,0.0,University +SCHOOLBUS,DRIVEALONE,0.0,University +ESCOOTER,DRIVEALONE,0.0,University +EBIKE,DRIVEALONE,0.0,University +All,SHARED2,32494.59385009309,University +DRIVEALONE,SHARED2,11456.5212309754,University +SHARED2,SHARED2,17556.7559835359,University +SHARED3,SHARED2,0.0,University +WALK,SHARED2,78.7819530012712,University +BIKE,SHARED2,0.0,University +WALK-TRANSIT,SHARED2,0.0,University +PNR-TRANSIT,SHARED2,0.0,University +KNR-TRANSIT,SHARED2,0.0,University +TNC-TRANSIT,SHARED2,0.0,University +TAXI,SHARED2,0.0,University +TNC-REG,SHARED2,0.0,University +TNC-SHARED,SHARED2,0.0,University +SCHOOLBUS,SHARED2,0.0,University +ESCOOTER,SHARED2,3402.53468258052,University +EBIKE,SHARED2,0.0,University +All,SHARED3,41058.771688108,University +DRIVEALONE,SHARED3,18923.5329571998,University +SHARED2,SHARED3,7133.26807390174,University +SHARED3,SHARED3,13300.7033157162,University +WALK,SHARED3,0.0,University +BIKE,SHARED3,0.0,University +WALK-TRANSIT,SHARED3,0.0,University +PNR-TRANSIT,SHARED3,0.0,University +KNR-TRANSIT,SHARED3,0.0,University +TNC-TRANSIT,SHARED3,0.0,University +TAXI,SHARED3,0.0,University +TNC-REG,SHARED3,0.0,University +TNC-SHARED,SHARED3,0.0,University +SCHOOLBUS,SHARED3,0.0,University +ESCOOTER,SHARED3,1701.26734129026,University +EBIKE,SHARED3,0.0,University +All,WALK,12194.681404129136,University +DRIVEALONE,WALK,715.468324936936,University +SHARED2,WALK,0.0,University +SHARED3,WALK,0.0,University +WALK,WALK,11479.2130791922,University +BIKE,WALK,0.0,University +WALK-TRANSIT,WALK,0.0,University +PNR-TRANSIT,WALK,0.0,University +KNR-TRANSIT,WALK,0.0,University +TNC-TRANSIT,WALK,0.0,University +TAXI,WALK,0.0,University +TNC-REG,WALK,0.0,University +TNC-SHARED,WALK,0.0,University +SCHOOLBUS,WALK,0.0,University +ESCOOTER,WALK,0.0,University +EBIKE,WALK,0.0,University +All,BIKE,632.7280404680225,University +DRIVEALONE,BIKE,0.0,University +SHARED2,BIKE,0.0,University +SHARED3,BIKE,0.0,University +WALK,BIKE,56.9568364069785,University +BIKE,BIKE,575.771204061044,University +WALK-TRANSIT,BIKE,0.0,University +PNR-TRANSIT,BIKE,0.0,University +KNR-TRANSIT,BIKE,0.0,University +TNC-TRANSIT,BIKE,0.0,University +TAXI,BIKE,0.0,University +TNC-REG,BIKE,0.0,University +TNC-SHARED,BIKE,0.0,University +SCHOOLBUS,BIKE,0.0,University +ESCOOTER,BIKE,0.0,University +EBIKE,BIKE,0.0,University +All,WALK-TRANSIT,31736.174091157834,University +DRIVEALONE,WALK-TRANSIT,59.9898218388127,University +SHARED2,WALK-TRANSIT,64.2042025601834,University +SHARED3,WALK-TRANSIT,155.237480859698,University +WALK,WALK-TRANSIT,3987.66290326248,University +BIKE,WALK-TRANSIT,0.0,University +WALK-TRANSIT,WALK-TRANSIT,21611.27556388104,University +PNR-TRANSIT,WALK-TRANSIT,0.0,University +KNR-TRANSIT,WALK-TRANSIT,0.0,University +TNC-TRANSIT,WALK-TRANSIT,0.0,University +TAXI,WALK-TRANSIT,0.0,University +TNC-REG,WALK-TRANSIT,454.98522778536,University +TNC-SHARED,WALK-TRANSIT,0.0,University +SCHOOLBUS,WALK-TRANSIT,0.0,University +ESCOOTER,WALK-TRANSIT,0.0,University +EBIKE,WALK-TRANSIT,0.0,University +All,PNR-TRANSIT,276.74209160226,University +DRIVEALONE,PNR-TRANSIT,0.0,University +SHARED2,PNR-TRANSIT,0.0,University +SHARED3,PNR-TRANSIT,0.0,University +WALK,PNR-TRANSIT,0.0,University +BIKE,PNR-TRANSIT,0.0,University +WALK-TRANSIT,PNR-TRANSIT,0.0,University +PNR-TRANSIT,PNR-TRANSIT,686.3203871736048,University +KNR-TRANSIT,PNR-TRANSIT,0.0,University +TNC-TRANSIT,PNR-TRANSIT,0.0,University +TAXI,PNR-TRANSIT,0.0,University +TNC-REG,PNR-TRANSIT,0.0,University +TNC-SHARED,PNR-TRANSIT,0.0,University +SCHOOLBUS,PNR-TRANSIT,0.0,University +ESCOOTER,PNR-TRANSIT,0.0,University +EBIKE,PNR-TRANSIT,0.0,University +All,KNR-TRANSIT,278.517768811688,University +DRIVEALONE,KNR-TRANSIT,0.0,University +SHARED2,KNR-TRANSIT,0.0,University +SHARED3,KNR-TRANSIT,0.0,University +WALK,KNR-TRANSIT,0.0,University +BIKE,KNR-TRANSIT,0.0,University +WALK-TRANSIT,KNR-TRANSIT,0.0,University +PNR-TRANSIT,KNR-TRANSIT,0.0,University +KNR-TRANSIT,KNR-TRANSIT,389.9248763363631,University +TNC-TRANSIT,KNR-TRANSIT,0.0,University +TAXI,KNR-TRANSIT,0.0,University +TNC-REG,KNR-TRANSIT,0.0,University +TNC-SHARED,KNR-TRANSIT,0.0,University +SCHOOLBUS,KNR-TRANSIT,0.0,University +ESCOOTER,KNR-TRANSIT,0.0,University +EBIKE,KNR-TRANSIT,0.0,University +All,TNC-TRANSIT,0.0,University +DRIVEALONE,TNC-TRANSIT,0.0,University +SHARED2,TNC-TRANSIT,0.0,University +SHARED3,TNC-TRANSIT,0.0,University +WALK,TNC-TRANSIT,0.0,University +BIKE,TNC-TRANSIT,0.0,University +WALK-TRANSIT,TNC-TRANSIT,0.0,University +PNR-TRANSIT,TNC-TRANSIT,0.0,University +KNR-TRANSIT,TNC-TRANSIT,0.0,University +TNC-TRANSIT,TNC-TRANSIT,0.0,University +TAXI,TNC-TRANSIT,0.0,University +TNC-REG,TNC-TRANSIT,0.0,University +TNC-SHARED,TNC-TRANSIT,0.0,University +SCHOOLBUS,TNC-TRANSIT,0.0,University +ESCOOTER,TNC-TRANSIT,0.0,University +EBIKE,TNC-TRANSIT,0.0,University +All,TAXI,0.0,University +DRIVEALONE,TAXI,0.0,University +SHARED2,TAXI,0.0,University +SHARED3,TAXI,0.0,University +WALK,TAXI,0.0,University +BIKE,TAXI,0.0,University +WALK-TRANSIT,TAXI,0.0,University +PNR-TRANSIT,TAXI,0.0,University +KNR-TRANSIT,TAXI,0.0,University +TNC-TRANSIT,TAXI,0.0,University +TAXI,TAXI,0.0,University +TNC-REG,TAXI,0.0,University +TNC-SHARED,TAXI,0.0,University +SCHOOLBUS,TAXI,0.0,University +ESCOOTER,TAXI,0.0,University +EBIKE,TAXI,0.0,University +All,TNC-REG,958.904704155316,University +DRIVEALONE,TNC-REG,0.0,University +SHARED2,TNC-REG,0.0,University +SHARED3,TNC-REG,0.0,University +WALK,TNC-REG,0.0,University +BIKE,TNC-REG,0.0,University +WALK-TRANSIT,TNC-REG,0.0,University +PNR-TRANSIT,TNC-REG,0.0,University +KNR-TRANSIT,TNC-REG,0.0,University +TNC-TRANSIT,TNC-REG,0.0,University +TAXI,TNC-REG,0.0,University +TNC-REG,TNC-REG,958.904704155316,University +TNC-SHARED,TNC-REG,0.0,University +SCHOOLBUS,TNC-REG,0.0,University +ESCOOTER,TNC-REG,0.0,University +EBIKE,TNC-REG,0.0,University +All,TNC-SHARED,0.0,University +DRIVEALONE,TNC-SHARED,0.0,University +SHARED2,TNC-SHARED,0.0,University +SHARED3,TNC-SHARED,0.0,University +WALK,TNC-SHARED,0.0,University +BIKE,TNC-SHARED,0.0,University +WALK-TRANSIT,TNC-SHARED,0.0,University +PNR-TRANSIT,TNC-SHARED,0.0,University +KNR-TRANSIT,TNC-SHARED,0.0,University +TNC-TRANSIT,TNC-SHARED,0.0,University +TAXI,TNC-SHARED,0.0,University +TNC-REG,TNC-SHARED,0.0,University +TNC-SHARED,TNC-SHARED,0.0,University +SCHOOLBUS,TNC-SHARED,0.0,University +ESCOOTER,TNC-SHARED,0.0,University +EBIKE,TNC-SHARED,0.0,University +All,SCHOOLBUS,0.0,University +DRIVEALONE,SCHOOLBUS,0.0,University +SHARED2,SCHOOLBUS,0.0,University +SHARED3,SCHOOLBUS,0.0,University +WALK,SCHOOLBUS,0.0,University +BIKE,SCHOOLBUS,0.0,University +WALK-TRANSIT,SCHOOLBUS,0.0,University +PNR-TRANSIT,SCHOOLBUS,0.0,University +KNR-TRANSIT,SCHOOLBUS,0.0,University +TNC-TRANSIT,SCHOOLBUS,0.0,University +TAXI,SCHOOLBUS,0.0,University +TNC-REG,SCHOOLBUS,0.0,University +TNC-SHARED,SCHOOLBUS,0.0,University +SCHOOLBUS,SCHOOLBUS,0.0,University +ESCOOTER,SCHOOLBUS,0.0,University +EBIKE,SCHOOLBUS,0.0,University +All,ESCOOTER,0.0,University +DRIVEALONE,ESCOOTER,0.0,University +SHARED2,ESCOOTER,0.0,University +SHARED3,ESCOOTER,0.0,University +WALK,ESCOOTER,0.0,University +BIKE,ESCOOTER,0.0,University +WALK-TRANSIT,ESCOOTER,0.0,University +PNR-TRANSIT,ESCOOTER,0.0,University +KNR-TRANSIT,ESCOOTER,0.0,University +TNC-TRANSIT,ESCOOTER,0.0,University +TAXI,ESCOOTER,0.0,University +TNC-REG,ESCOOTER,0.0,University +TNC-SHARED,ESCOOTER,0.0,University +SCHOOLBUS,ESCOOTER,0.0,University +ESCOOTER,ESCOOTER,0.0,University +EBIKE,ESCOOTER,0.0,University +All,EBIKE,0.0,University +DRIVEALONE,EBIKE,0.0,University +SHARED2,EBIKE,0.0,University +SHARED3,EBIKE,0.0,University +WALK,EBIKE,0.0,University +BIKE,EBIKE,0.0,University +WALK-TRANSIT,EBIKE,0.0,University +PNR-TRANSIT,EBIKE,0.0,University +KNR-TRANSIT,EBIKE,0.0,University +TNC-TRANSIT,EBIKE,0.0,University +TAXI,EBIKE,0.0,University +TNC-REG,EBIKE,0.0,University +TNC-SHARED,EBIKE,0.0,University +SCHOOLBUS,EBIKE,0.0,University +ESCOOTER,EBIKE,0.0,University +EBIKE,EBIKE,0.0,University +All,All,1034046.2838035184,School +DRIVEALONE,All,343313.5119327388,School +SHARED2,All,177561.61787383037,School +SHARED3,All,306089.33525238704,School +WALK,All,164123.01847035976,School +BIKE,All,25805.32355581177,School +WALK-TRANSIT,All,3085.024797699816,School +PNR-TRANSIT,All,0.0,School +KNR-TRANSIT,All,0.0,School +TNC-TRANSIT,All,0.0,School +TAXI,All,0.0,School +TNC-REG,All,0.0,School +TNC-SHARED,All,0.0,School +SCHOOLBUS,All,13019.9328298986,School +ESCOOTER,All,0.0,School +EBIKE,All,277.262891367173,School +All,DRIVEALONE,93150.65378201654,School +DRIVEALONE,DRIVEALONE,84623.4196312306,School +SHARED2,DRIVEALONE,0.0,School +SHARED3,DRIVEALONE,1316.53673761765,School +WALK,DRIVEALONE,7138.70444368661,School +BIKE,DRIVEALONE,71.992969481682,School +WALK-TRANSIT,DRIVEALONE,0.0,School +PNR-TRANSIT,DRIVEALONE,0.0,School +KNR-TRANSIT,DRIVEALONE,0.0,School +TNC-TRANSIT,DRIVEALONE,0.0,School +TAXI,DRIVEALONE,0.0,School +TNC-REG,DRIVEALONE,0.0,School +TNC-SHARED,DRIVEALONE,0.0,School +SCHOOLBUS,DRIVEALONE,0.0,School +ESCOOTER,DRIVEALONE,0.0,School +EBIKE,DRIVEALONE,0.0,School +All,SHARED2,239987.6044864648,School +DRIVEALONE,SHARED2,97112.5379381922,School +SHARED2,SHARED2,139847.834827657,School +SHARED3,SHARED2,2389.94218807415,School +WALK,SHARED2,637.289532541417,School +BIKE,SHARED2,0.0,School +WALK-TRANSIT,SHARED2,0.0,School +PNR-TRANSIT,SHARED2,0.0,School +KNR-TRANSIT,SHARED2,0.0,School +TNC-TRANSIT,SHARED2,0.0,School +TAXI,SHARED2,0.0,School +TNC-REG,SHARED2,0.0,School +TNC-SHARED,SHARED2,0.0,School +SCHOOLBUS,SHARED2,0.0,School +ESCOOTER,SHARED2,0.0,School +EBIKE,SHARED2,0.0,School +All,SHARED3,495113.7558799056,School +DRIVEALONE,SHARED3,161577.554363316,School +SHARED2,SHARED3,37539.2511808831,School +SHARED3,SHARED3,269067.415117711,School +WALK,SHARED3,26882.6032867631,School +BIKE,SHARED3,46.9319312323893,School +WALK-TRANSIT,SHARED3,0.0,School +PNR-TRANSIT,SHARED3,0.0,School +KNR-TRANSIT,SHARED3,0.0,School +TNC-TRANSIT,SHARED3,0.0,School +TAXI,SHARED3,0.0,School +TNC-REG,SHARED3,0.0,School +TNC-SHARED,SHARED3,0.0,School +SCHOOLBUS,SHARED3,0.0,School +ESCOOTER,SHARED3,0.0,School +EBIKE,SHARED3,0.0,School +All,WALK,129192.06806935598,School +DRIVEALONE,WALK,0.0,School +SHARED2,WALK,151.621879949996,School +SHARED3,WALK,0.0,School +WALK,WALK,129040.446189406,School +BIKE,WALK,0.0,School +WALK-TRANSIT,WALK,0.0,School +PNR-TRANSIT,WALK,0.0,School +KNR-TRANSIT,WALK,0.0,School +TNC-TRANSIT,WALK,0.0,School +TAXI,WALK,0.0,School +TNC-REG,WALK,0.0,School +TNC-SHARED,WALK,0.0,School +SCHOOLBUS,WALK,0.0,School +ESCOOTER,WALK,0.0,School +EBIKE,WALK,0.0,School +All,BIKE,55427.844539407655,School +DRIVEALONE,BIKE,0.0,School +SHARED2,BIKE,0.0,School +SHARED3,BIKE,29317.4708663473,School +WALK,BIKE,423.975017962652,School +BIKE,BIKE,25686.3986550977,School +WALK-TRANSIT,BIKE,0.0,School +PNR-TRANSIT,BIKE,0.0,School +KNR-TRANSIT,BIKE,0.0,School +TNC-TRANSIT,BIKE,0.0,School +TAXI,BIKE,0.0,School +TNC-REG,BIKE,0.0,School +TNC-SHARED,BIKE,0.0,School +SCHOOLBUS,BIKE,0.0,School +ESCOOTER,BIKE,0.0,School +EBIKE,BIKE,0.0,School +All,WALK-TRANSIT,7877.161325101984,School +DRIVEALONE,WALK-TRANSIT,0.0,School +SHARED2,WALK-TRANSIT,22.9099853402743,School +SHARED3,WALK-TRANSIT,3997.97034263694,School +WALK,WALK-TRANSIT,0.0,School +BIKE,WALK-TRANSIT,0.0,School +WALK-TRANSIT,WALK-TRANSIT,3085.024797699816,School +PNR-TRANSIT,WALK-TRANSIT,0.0,School +KNR-TRANSIT,WALK-TRANSIT,0.0,School +TNC-TRANSIT,WALK-TRANSIT,0.0,School +TAXI,WALK-TRANSIT,0.0,School +TNC-REG,WALK-TRANSIT,0.0,School +TNC-SHARED,WALK-TRANSIT,0.0,School +SCHOOLBUS,WALK-TRANSIT,0.0,School +ESCOOTER,WALK-TRANSIT,0.0,School +EBIKE,WALK-TRANSIT,0.0,School +All,PNR-TRANSIT,0.0,School +DRIVEALONE,PNR-TRANSIT,0.0,School +SHARED2,PNR-TRANSIT,0.0,School +SHARED3,PNR-TRANSIT,0.0,School +WALK,PNR-TRANSIT,0.0,School +BIKE,PNR-TRANSIT,0.0,School +WALK-TRANSIT,PNR-TRANSIT,0.0,School +PNR-TRANSIT,PNR-TRANSIT,0.0,School +KNR-TRANSIT,PNR-TRANSIT,0.0,School +TNC-TRANSIT,PNR-TRANSIT,0.0,School +TAXI,PNR-TRANSIT,0.0,School +TNC-REG,PNR-TRANSIT,0.0,School +TNC-SHARED,PNR-TRANSIT,0.0,School +SCHOOLBUS,PNR-TRANSIT,0.0,School +ESCOOTER,PNR-TRANSIT,0.0,School +EBIKE,PNR-TRANSIT,0.0,School +All,KNR-TRANSIT,0.0,School +DRIVEALONE,KNR-TRANSIT,0.0,School +SHARED2,KNR-TRANSIT,0.0,School +SHARED3,KNR-TRANSIT,0.0,School +WALK,KNR-TRANSIT,0.0,School +BIKE,KNR-TRANSIT,0.0,School +WALK-TRANSIT,KNR-TRANSIT,0.0,School +PNR-TRANSIT,KNR-TRANSIT,0.0,School +KNR-TRANSIT,KNR-TRANSIT,0.0,School +TNC-TRANSIT,KNR-TRANSIT,0.0,School +TAXI,KNR-TRANSIT,0.0,School +TNC-REG,KNR-TRANSIT,0.0,School +TNC-SHARED,KNR-TRANSIT,0.0,School +SCHOOLBUS,KNR-TRANSIT,0.0,School +ESCOOTER,KNR-TRANSIT,0.0,School +EBIKE,KNR-TRANSIT,0.0,School +All,TNC-TRANSIT,0.0,School +DRIVEALONE,TNC-TRANSIT,0.0,School +SHARED2,TNC-TRANSIT,0.0,School +SHARED3,TNC-TRANSIT,0.0,School +WALK,TNC-TRANSIT,0.0,School +BIKE,TNC-TRANSIT,0.0,School +WALK-TRANSIT,TNC-TRANSIT,0.0,School +PNR-TRANSIT,TNC-TRANSIT,0.0,School +KNR-TRANSIT,TNC-TRANSIT,0.0,School +TNC-TRANSIT,TNC-TRANSIT,0.0,School +TAXI,TNC-TRANSIT,0.0,School +TNC-REG,TNC-TRANSIT,0.0,School +TNC-SHARED,TNC-TRANSIT,0.0,School +SCHOOLBUS,TNC-TRANSIT,0.0,School +ESCOOTER,TNC-TRANSIT,0.0,School +EBIKE,TNC-TRANSIT,0.0,School +All,TAXI,0.0,School +DRIVEALONE,TAXI,0.0,School +SHARED2,TAXI,0.0,School +SHARED3,TAXI,0.0,School +WALK,TAXI,0.0,School +BIKE,TAXI,0.0,School +WALK-TRANSIT,TAXI,0.0,School +PNR-TRANSIT,TAXI,0.0,School +KNR-TRANSIT,TAXI,0.0,School +TNC-TRANSIT,TAXI,0.0,School +TAXI,TAXI,0.0,School +TNC-REG,TAXI,0.0,School +TNC-SHARED,TAXI,0.0,School +SCHOOLBUS,TAXI,0.0,School +ESCOOTER,TAXI,0.0,School +EBIKE,TAXI,0.0,School +All,TNC-REG,0.0,School +DRIVEALONE,TNC-REG,0.0,School +SHARED2,TNC-REG,0.0,School +SHARED3,TNC-REG,0.0,School +WALK,TNC-REG,0.0,School +BIKE,TNC-REG,0.0,School +WALK-TRANSIT,TNC-REG,0.0,School +PNR-TRANSIT,TNC-REG,0.0,School +KNR-TRANSIT,TNC-REG,0.0,School +TNC-TRANSIT,TNC-REG,0.0,School +TAXI,TNC-REG,0.0,School +TNC-REG,TNC-REG,0.0,School +TNC-SHARED,TNC-REG,0.0,School +SCHOOLBUS,TNC-REG,0.0,School +ESCOOTER,TNC-REG,0.0,School +EBIKE,TNC-REG,0.0,School +All,TNC-SHARED,0.0,School +DRIVEALONE,TNC-SHARED,0.0,School +SHARED2,TNC-SHARED,0.0,School +SHARED3,TNC-SHARED,0.0,School +WALK,TNC-SHARED,0.0,School +BIKE,TNC-SHARED,0.0,School +WALK-TRANSIT,TNC-SHARED,0.0,School +PNR-TRANSIT,TNC-SHARED,0.0,School +KNR-TRANSIT,TNC-SHARED,0.0,School +TNC-TRANSIT,TNC-SHARED,0.0,School +TAXI,TNC-SHARED,0.0,School +TNC-REG,TNC-SHARED,0.0,School +TNC-SHARED,TNC-SHARED,0.0,School +SCHOOLBUS,TNC-SHARED,0.0,School +ESCOOTER,TNC-SHARED,0.0,School +EBIKE,TNC-SHARED,0.0,School +All,SCHOOLBUS,13019.9328298986,School +DRIVEALONE,SCHOOLBUS,0.0,School +SHARED2,SCHOOLBUS,0.0,School +SHARED3,SCHOOLBUS,0.0,School +WALK,SCHOOLBUS,0.0,School +BIKE,SCHOOLBUS,0.0,School +WALK-TRANSIT,SCHOOLBUS,0.0,School +PNR-TRANSIT,SCHOOLBUS,0.0,School +KNR-TRANSIT,SCHOOLBUS,0.0,School +TNC-TRANSIT,SCHOOLBUS,0.0,School +TAXI,SCHOOLBUS,0.0,School +TNC-REG,SCHOOLBUS,0.0,School +TNC-SHARED,SCHOOLBUS,0.0,School +SCHOOLBUS,SCHOOLBUS,13019.9328298986,School +ESCOOTER,SCHOOLBUS,0.0,School +EBIKE,SCHOOLBUS,0.0,School +All,ESCOOTER,0.0,School +DRIVEALONE,ESCOOTER,0.0,School +SHARED2,ESCOOTER,0.0,School +SHARED3,ESCOOTER,0.0,School +WALK,ESCOOTER,0.0,School +BIKE,ESCOOTER,0.0,School +WALK-TRANSIT,ESCOOTER,0.0,School +PNR-TRANSIT,ESCOOTER,0.0,School +KNR-TRANSIT,ESCOOTER,0.0,School +TNC-TRANSIT,ESCOOTER,0.0,School +TAXI,ESCOOTER,0.0,School +TNC-REG,ESCOOTER,0.0,School +TNC-SHARED,ESCOOTER,0.0,School +SCHOOLBUS,ESCOOTER,0.0,School +ESCOOTER,ESCOOTER,0.0,School +EBIKE,ESCOOTER,0.0,School +All,EBIKE,277.262891367173,School +DRIVEALONE,EBIKE,0.0,School +SHARED2,EBIKE,0.0,School +SHARED3,EBIKE,0.0,School +WALK,EBIKE,0.0,School +BIKE,EBIKE,0.0,School +WALK-TRANSIT,EBIKE,0.0,School +PNR-TRANSIT,EBIKE,0.0,School +KNR-TRANSIT,EBIKE,0.0,School +TNC-TRANSIT,EBIKE,0.0,School +TAXI,EBIKE,0.0,School +TNC-REG,EBIKE,0.0,School +TNC-SHARED,EBIKE,0.0,School +SCHOOLBUS,EBIKE,0.0,School +ESCOOTER,EBIKE,0.0,School +EBIKE,EBIKE,277.262891367173,School +All,All,4754989.717315071,Ind-Maintenance +DRIVEALONE,All,2352057.5276302933,Ind-Maintenance +SHARED2,All,887515.5701430825,Ind-Maintenance +SHARED3,All,900633.7164291848,Ind-Maintenance +WALK,All,476375.1518185905,Ind-Maintenance +BIKE,All,48740.56435463236,Ind-Maintenance +WALK-TRANSIT,All,35192.67383259672,Ind-Maintenance +PNR-TRANSIT,All,3278.7687328727807,Ind-Maintenance +KNR-TRANSIT,All,17072.05127310256,Ind-Maintenance +TNC-TRANSIT,All,169.235315617602,Ind-Maintenance +TAXI,All,11346.39396055306,Ind-Maintenance +TNC-REG,All,13165.288307561934,Ind-Maintenance +TNC-SHARED,All,0.0,Ind-Maintenance +SCHOOLBUS,All,0.0,Ind-Maintenance +ESCOOTER,All,858.9489464018803,Ind-Maintenance +EBIKE,All,6620.071613995751,Ind-Maintenance +All,DRIVEALONE,1802690.0985658355,Ind-Maintenance +DRIVEALONE,DRIVEALONE,1742890.95084924,Ind-Maintenance +SHARED2,DRIVEALONE,1408.3192447509,Ind-Maintenance +SHARED3,DRIVEALONE,1222.25674346386,Ind-Maintenance +WALK,DRIVEALONE,55162.3153666952,Ind-Maintenance +BIKE,DRIVEALONE,590.721896374467,Ind-Maintenance +WALK-TRANSIT,DRIVEALONE,0.0,Ind-Maintenance +PNR-TRANSIT,DRIVEALONE,0.0,Ind-Maintenance +KNR-TRANSIT,DRIVEALONE,0.0,Ind-Maintenance +TNC-TRANSIT,DRIVEALONE,0.0,Ind-Maintenance +TAXI,DRIVEALONE,0.0,Ind-Maintenance +TNC-REG,DRIVEALONE,170.60345604252,Ind-Maintenance +TNC-SHARED,DRIVEALONE,0.0,Ind-Maintenance +SCHOOLBUS,DRIVEALONE,0.0,Ind-Maintenance +ESCOOTER,DRIVEALONE,265.422987857664,Ind-Maintenance +EBIKE,DRIVEALONE,979.508021410991,Ind-Maintenance +All,SHARED2,1083045.1255660842,Ind-Maintenance +DRIVEALONE,SHARED2,366760.199268969,Ind-Maintenance +SHARED2,SHARED2,673180.796334036,Ind-Maintenance +SHARED3,SHARED2,490.009371171005,Ind-Maintenance +WALK,SHARED2,42453.2767695509,Ind-Maintenance +BIKE,SHARED2,20.6417275257636,Ind-Maintenance +WALK-TRANSIT,SHARED2,0.0,Ind-Maintenance +PNR-TRANSIT,SHARED2,0.0,Ind-Maintenance +KNR-TRANSIT,SHARED2,0.0,Ind-Maintenance +TNC-TRANSIT,SHARED2,0.0,Ind-Maintenance +TAXI,SHARED2,8.61696435336093,Ind-Maintenance +TNC-REG,SHARED2,131.585130478099,Ind-Maintenance +TNC-SHARED,SHARED2,0.0,Ind-Maintenance +SCHOOLBUS,SHARED2,0.0,Ind-Maintenance +ESCOOTER,SHARED2,0.0,Ind-Maintenance +EBIKE,SHARED2,0.0,Ind-Maintenance +All,SHARED3,1405586.76938596,Ind-Maintenance +DRIVEALONE,SHARED3,236798.35419249,Ind-Maintenance +SHARED2,SHARED3,210765.215524703,Ind-Maintenance +SHARED3,SHARED3,895030.458675229,Ind-Maintenance +WALK,SHARED3,61570.605349003,Ind-Maintenance +BIKE,SHARED3,100.530901407424,Ind-Maintenance +WALK-TRANSIT,SHARED3,0.0,Ind-Maintenance +PNR-TRANSIT,SHARED3,0.0,Ind-Maintenance +KNR-TRANSIT,SHARED3,0.0,Ind-Maintenance +TNC-TRANSIT,SHARED3,0.0,Ind-Maintenance +TAXI,SHARED3,0.0,Ind-Maintenance +TNC-REG,SHARED3,250.661115178934,Ind-Maintenance +TNC-SHARED,SHARED3,0.0,Ind-Maintenance +SCHOOLBUS,SHARED3,0.0,Ind-Maintenance +ESCOOTER,SHARED3,0.0,Ind-Maintenance +EBIKE,SHARED3,1070.94362794873,Ind-Maintenance +All,WALK,301048.3302746112,Ind-Maintenance +DRIVEALONE,WALK,3356.37008230049,Ind-Maintenance +SHARED2,WALK,151.621879949996,Ind-Maintenance +SHARED3,WALK,29.7844898987277,Ind-Maintenance +WALK,WALK,297510.553822462,Ind-Maintenance +BIKE,WALK,0.0,Ind-Maintenance +WALK-TRANSIT,WALK,0.0,Ind-Maintenance +PNR-TRANSIT,WALK,0.0,Ind-Maintenance +KNR-TRANSIT,WALK,0.0,Ind-Maintenance +TNC-TRANSIT,WALK,0.0,Ind-Maintenance +TAXI,WALK,0.0,Ind-Maintenance +TNC-REG,WALK,0.0,Ind-Maintenance +TNC-SHARED,WALK,0.0,Ind-Maintenance +SCHOOLBUS,WALK,0.0,Ind-Maintenance +ESCOOTER,WALK,0.0,Ind-Maintenance +EBIKE,WALK,0.0,Ind-Maintenance +All,BIKE,57401.85469013287,Ind-Maintenance +DRIVEALONE,BIKE,0.0,Ind-Maintenance +SHARED2,BIKE,0.0,Ind-Maintenance +SHARED3,BIKE,2838.21257113805,Ind-Maintenance +WALK,BIKE,6534.97228967011,Ind-Maintenance +BIKE,BIKE,48028.6698293247,Ind-Maintenance +WALK-TRANSIT,BIKE,0.0,Ind-Maintenance +PNR-TRANSIT,BIKE,0.0,Ind-Maintenance +KNR-TRANSIT,BIKE,0.0,Ind-Maintenance +TNC-TRANSIT,BIKE,0.0,Ind-Maintenance +TAXI,BIKE,0.0,Ind-Maintenance +TNC-REG,BIKE,0.0,Ind-Maintenance +TNC-SHARED,BIKE,0.0,Ind-Maintenance +SCHOOLBUS,BIKE,0.0,Ind-Maintenance +ESCOOTER,BIKE,0.0,Ind-Maintenance +EBIKE,BIKE,0.0,Ind-Maintenance +All,WALK-TRANSIT,62647.87609975051,Ind-Maintenance +DRIVEALONE,WALK-TRANSIT,2251.65323729373,Ind-Maintenance +SHARED2,WALK-TRANSIT,2009.61715964261,Ind-Maintenance +SHARED3,WALK-TRANSIT,1022.99457828414,Ind-Maintenance +WALK,WALK-TRANSIT,13143.4282212093,Ind-Maintenance +BIKE,WALK-TRANSIT,0.0,Ind-Maintenance +WALK-TRANSIT,WALK-TRANSIT,35192.67383259672,Ind-Maintenance +PNR-TRANSIT,WALK-TRANSIT,0.0,Ind-Maintenance +KNR-TRANSIT,WALK-TRANSIT,0.0,Ind-Maintenance +TNC-TRANSIT,WALK-TRANSIT,0.0,Ind-Maintenance +TAXI,WALK-TRANSIT,0.0,Ind-Maintenance +TNC-REG,WALK-TRANSIT,213.298572795781,Ind-Maintenance +TNC-SHARED,WALK-TRANSIT,0.0,Ind-Maintenance +SCHOOLBUS,WALK-TRANSIT,0.0,Ind-Maintenance +ESCOOTER,WALK-TRANSIT,16.0420397790443,Ind-Maintenance +EBIKE,WALK-TRANSIT,0.0,Ind-Maintenance +All,PNR-TRANSIT,1322.08416648096,Ind-Maintenance +DRIVEALONE,PNR-TRANSIT,0.0,Ind-Maintenance +SHARED2,PNR-TRANSIT,0.0,Ind-Maintenance +SHARED3,PNR-TRANSIT,0.0,Ind-Maintenance +WALK,PNR-TRANSIT,0.0,Ind-Maintenance +BIKE,PNR-TRANSIT,0.0,Ind-Maintenance +WALK-TRANSIT,PNR-TRANSIT,0.0,Ind-Maintenance +PNR-TRANSIT,PNR-TRANSIT,3278.7687328727807,Ind-Maintenance +KNR-TRANSIT,PNR-TRANSIT,0.0,Ind-Maintenance +TNC-TRANSIT,PNR-TRANSIT,0.0,Ind-Maintenance +TAXI,PNR-TRANSIT,0.0,Ind-Maintenance +TNC-REG,PNR-TRANSIT,0.0,Ind-Maintenance +TNC-SHARED,PNR-TRANSIT,0.0,Ind-Maintenance +SCHOOLBUS,PNR-TRANSIT,0.0,Ind-Maintenance +ESCOOTER,PNR-TRANSIT,0.0,Ind-Maintenance +EBIKE,PNR-TRANSIT,0.0,Ind-Maintenance +All,KNR-TRANSIT,12194.3223379304,Ind-Maintenance +DRIVEALONE,KNR-TRANSIT,0.0,Ind-Maintenance +SHARED2,KNR-TRANSIT,0.0,Ind-Maintenance +SHARED3,KNR-TRANSIT,0.0,Ind-Maintenance +WALK,KNR-TRANSIT,0.0,Ind-Maintenance +BIKE,KNR-TRANSIT,0.0,Ind-Maintenance +WALK-TRANSIT,KNR-TRANSIT,0.0,Ind-Maintenance +PNR-TRANSIT,KNR-TRANSIT,0.0,Ind-Maintenance +KNR-TRANSIT,KNR-TRANSIT,17072.05127310256,Ind-Maintenance +TNC-TRANSIT,KNR-TRANSIT,0.0,Ind-Maintenance +TAXI,KNR-TRANSIT,0.0,Ind-Maintenance +TNC-REG,KNR-TRANSIT,0.0,Ind-Maintenance +TNC-SHARED,KNR-TRANSIT,0.0,Ind-Maintenance +SCHOOLBUS,KNR-TRANSIT,0.0,Ind-Maintenance +ESCOOTER,KNR-TRANSIT,0.0,Ind-Maintenance +EBIKE,KNR-TRANSIT,0.0,Ind-Maintenance +All,TNC-TRANSIT,169.235315617602,Ind-Maintenance +DRIVEALONE,TNC-TRANSIT,0.0,Ind-Maintenance +SHARED2,TNC-TRANSIT,0.0,Ind-Maintenance +SHARED3,TNC-TRANSIT,0.0,Ind-Maintenance +WALK,TNC-TRANSIT,0.0,Ind-Maintenance +BIKE,TNC-TRANSIT,0.0,Ind-Maintenance +WALK-TRANSIT,TNC-TRANSIT,0.0,Ind-Maintenance +PNR-TRANSIT,TNC-TRANSIT,0.0,Ind-Maintenance +KNR-TRANSIT,TNC-TRANSIT,0.0,Ind-Maintenance +TNC-TRANSIT,TNC-TRANSIT,169.235315617602,Ind-Maintenance +TAXI,TNC-TRANSIT,0.0,Ind-Maintenance +TNC-REG,TNC-TRANSIT,0.0,Ind-Maintenance +TNC-SHARED,TNC-TRANSIT,0.0,Ind-Maintenance +SCHOOLBUS,TNC-TRANSIT,0.0,Ind-Maintenance +ESCOOTER,TNC-TRANSIT,0.0,Ind-Maintenance +EBIKE,TNC-TRANSIT,0.0,Ind-Maintenance +All,TAXI,11337.7769961997,Ind-Maintenance +DRIVEALONE,TAXI,0.0,Ind-Maintenance +SHARED2,TAXI,0.0,Ind-Maintenance +SHARED3,TAXI,0.0,Ind-Maintenance +WALK,TAXI,0.0,Ind-Maintenance +BIKE,TAXI,0.0,Ind-Maintenance +WALK-TRANSIT,TAXI,0.0,Ind-Maintenance +PNR-TRANSIT,TAXI,0.0,Ind-Maintenance +KNR-TRANSIT,TAXI,0.0,Ind-Maintenance +TNC-TRANSIT,TAXI,0.0,Ind-Maintenance +TAXI,TAXI,11337.7769961997,Ind-Maintenance +TNC-REG,TAXI,0.0,Ind-Maintenance +TNC-SHARED,TAXI,0.0,Ind-Maintenance +SCHOOLBUS,TAXI,0.0,Ind-Maintenance +ESCOOTER,TAXI,0.0,Ind-Maintenance +EBIKE,TAXI,0.0,Ind-Maintenance +All,TNC-REG,12399.1400330666,Ind-Maintenance +DRIVEALONE,TNC-REG,0.0,Ind-Maintenance +SHARED2,TNC-REG,0.0,Ind-Maintenance +SHARED3,TNC-REG,0.0,Ind-Maintenance +WALK,TNC-REG,0.0,Ind-Maintenance +BIKE,TNC-REG,0.0,Ind-Maintenance +WALK-TRANSIT,TNC-REG,0.0,Ind-Maintenance +PNR-TRANSIT,TNC-REG,0.0,Ind-Maintenance +KNR-TRANSIT,TNC-REG,0.0,Ind-Maintenance +TNC-TRANSIT,TNC-REG,0.0,Ind-Maintenance +TAXI,TNC-REG,0.0,Ind-Maintenance +TNC-REG,TNC-REG,12399.1400330666,Ind-Maintenance +TNC-SHARED,TNC-REG,0.0,Ind-Maintenance +SCHOOLBUS,TNC-REG,0.0,Ind-Maintenance +ESCOOTER,TNC-REG,0.0,Ind-Maintenance +EBIKE,TNC-REG,0.0,Ind-Maintenance +All,TNC-SHARED,0.0,Ind-Maintenance +DRIVEALONE,TNC-SHARED,0.0,Ind-Maintenance +SHARED2,TNC-SHARED,0.0,Ind-Maintenance +SHARED3,TNC-SHARED,0.0,Ind-Maintenance +WALK,TNC-SHARED,0.0,Ind-Maintenance +BIKE,TNC-SHARED,0.0,Ind-Maintenance +WALK-TRANSIT,TNC-SHARED,0.0,Ind-Maintenance +PNR-TRANSIT,TNC-SHARED,0.0,Ind-Maintenance +KNR-TRANSIT,TNC-SHARED,0.0,Ind-Maintenance +TNC-TRANSIT,TNC-SHARED,0.0,Ind-Maintenance +TAXI,TNC-SHARED,0.0,Ind-Maintenance +TNC-REG,TNC-SHARED,0.0,Ind-Maintenance +TNC-SHARED,TNC-SHARED,0.0,Ind-Maintenance +SCHOOLBUS,TNC-SHARED,0.0,Ind-Maintenance +ESCOOTER,TNC-SHARED,0.0,Ind-Maintenance +EBIKE,TNC-SHARED,0.0,Ind-Maintenance +All,SCHOOLBUS,0.0,Ind-Maintenance +DRIVEALONE,SCHOOLBUS,0.0,Ind-Maintenance +SHARED2,SCHOOLBUS,0.0,Ind-Maintenance +SHARED3,SCHOOLBUS,0.0,Ind-Maintenance +WALK,SCHOOLBUS,0.0,Ind-Maintenance +BIKE,SCHOOLBUS,0.0,Ind-Maintenance +WALK-TRANSIT,SCHOOLBUS,0.0,Ind-Maintenance +PNR-TRANSIT,SCHOOLBUS,0.0,Ind-Maintenance +KNR-TRANSIT,SCHOOLBUS,0.0,Ind-Maintenance +TNC-TRANSIT,SCHOOLBUS,0.0,Ind-Maintenance +TAXI,SCHOOLBUS,0.0,Ind-Maintenance +TNC-REG,SCHOOLBUS,0.0,Ind-Maintenance +TNC-SHARED,SCHOOLBUS,0.0,Ind-Maintenance +SCHOOLBUS,SCHOOLBUS,0.0,Ind-Maintenance +ESCOOTER,SCHOOLBUS,0.0,Ind-Maintenance +EBIKE,SCHOOLBUS,0.0,Ind-Maintenance +All,ESCOOTER,577.483918765172,Ind-Maintenance +DRIVEALONE,ESCOOTER,0.0,Ind-Maintenance +SHARED2,ESCOOTER,0.0,Ind-Maintenance +SHARED3,ESCOOTER,0.0,Ind-Maintenance +WALK,ESCOOTER,0.0,Ind-Maintenance +BIKE,ESCOOTER,0.0,Ind-Maintenance +WALK-TRANSIT,ESCOOTER,0.0,Ind-Maintenance +PNR-TRANSIT,ESCOOTER,0.0,Ind-Maintenance +KNR-TRANSIT,ESCOOTER,0.0,Ind-Maintenance +TNC-TRANSIT,ESCOOTER,0.0,Ind-Maintenance +TAXI,ESCOOTER,0.0,Ind-Maintenance +TNC-REG,ESCOOTER,0.0,Ind-Maintenance +TNC-SHARED,ESCOOTER,0.0,Ind-Maintenance +SCHOOLBUS,ESCOOTER,0.0,Ind-Maintenance +ESCOOTER,ESCOOTER,577.483918765172,Ind-Maintenance +EBIKE,ESCOOTER,0.0,Ind-Maintenance +All,EBIKE,4569.61996463603,Ind-Maintenance +DRIVEALONE,EBIKE,0.0,Ind-Maintenance +SHARED2,EBIKE,0.0,Ind-Maintenance +SHARED3,EBIKE,0.0,Ind-Maintenance +WALK,EBIKE,0.0,Ind-Maintenance +BIKE,EBIKE,0.0,Ind-Maintenance +WALK-TRANSIT,EBIKE,0.0,Ind-Maintenance +PNR-TRANSIT,EBIKE,0.0,Ind-Maintenance +KNR-TRANSIT,EBIKE,0.0,Ind-Maintenance +TNC-TRANSIT,EBIKE,0.0,Ind-Maintenance +TAXI,EBIKE,0.0,Ind-Maintenance +TNC-REG,EBIKE,0.0,Ind-Maintenance +TNC-SHARED,EBIKE,0.0,Ind-Maintenance +SCHOOLBUS,EBIKE,0.0,Ind-Maintenance +ESCOOTER,EBIKE,0.0,Ind-Maintenance +EBIKE,EBIKE,4569.61996463603,Ind-Maintenance +All,All,2560381.923953016,Ind-Discretionary +DRIVEALONE,All,1035965.69277895,Ind-Discretionary +SHARED2,All,330421.8773047967,Ind-Discretionary +SHARED3,All,444927.9746380439,Ind-Discretionary +WALK,All,613387.9351398075,Ind-Discretionary +BIKE,All,46252.19212573677,Ind-Discretionary +WALK-TRANSIT,All,51984.43819324105,Ind-Discretionary +PNR-TRANSIT,All,1197.858234065388,Ind-Discretionary +KNR-TRANSIT,All,910.3514887740923,Ind-Discretionary +TNC-TRANSIT,All,0.0,Ind-Discretionary +TAXI,All,11019.796612141,Ind-Discretionary +TNC-REG,All,7045.613239953293,Ind-Discretionary +TNC-SHARED,All,0.0,Ind-Discretionary +SCHOOLBUS,All,0.0,Ind-Discretionary +ESCOOTER,All,2993.0625086981718,Ind-Discretionary +EBIKE,All,2253.973447480964,Ind-Discretionary +All,DRIVEALONE,948929.8581734748,Ind-Discretionary +DRIVEALONE,DRIVEALONE,893294.198369052,Ind-Discretionary +SHARED2,DRIVEALONE,2453.07851863195,Ind-Discretionary +SHARED3,DRIVEALONE,2200.04838429646,Ind-Discretionary +WALK,DRIVEALONE,28221.1733420257,Ind-Discretionary +BIKE,DRIVEALONE,22498.9424241192,Ind-Discretionary +WALK-TRANSIT,DRIVEALONE,0.0,Ind-Discretionary +PNR-TRANSIT,DRIVEALONE,0.0,Ind-Discretionary +KNR-TRANSIT,DRIVEALONE,0.0,Ind-Discretionary +TNC-TRANSIT,DRIVEALONE,0.0,Ind-Discretionary +TAXI,DRIVEALONE,0.0,Ind-Discretionary +TNC-REG,DRIVEALONE,174.25495127544,Ind-Discretionary +TNC-SHARED,DRIVEALONE,0.0,Ind-Discretionary +SCHOOLBUS,DRIVEALONE,0.0,Ind-Discretionary +ESCOOTER,DRIVEALONE,0.0,Ind-Discretionary +EBIKE,DRIVEALONE,88.1621840739241,Ind-Discretionary +All,SHARED2,441292.501589092,Ind-Discretionary +DRIVEALONE,SHARED2,111468.926876273,Ind-Discretionary +SHARED2,SHARED2,308420.982070941,Ind-Discretionary +SHARED3,SHARED2,600.268979934954,Ind-Discretionary +WALK,SHARED2,20100.7717057129,Ind-Discretionary +BIKE,SHARED2,571.734080523633,Ind-Discretionary +WALK-TRANSIT,SHARED2,0.0,Ind-Discretionary +PNR-TRANSIT,SHARED2,0.0,Ind-Discretionary +KNR-TRANSIT,SHARED2,0.0,Ind-Discretionary +TNC-TRANSIT,SHARED2,0.0,Ind-Discretionary +TAXI,SHARED2,0.0,Ind-Discretionary +TNC-REG,SHARED2,119.833962308443,Ind-Discretionary +TNC-SHARED,SHARED2,0.0,Ind-Discretionary +SCHOOLBUS,SHARED2,0.0,Ind-Discretionary +ESCOOTER,SHARED2,9.9839133980999,Ind-Discretionary +EBIKE,SHARED2,0.0,Ind-Discretionary +All,SHARED3,599290.8712972738,Ind-Discretionary +DRIVEALONE,SHARED3,24522.4309575024,Ind-Discretionary +SHARED2,SHARED3,19417.6414006517,Ind-Discretionary +SHARED3,SHARED3,437924.353930868,Ind-Discretionary +WALK,SHARED3,116134.573753092,Ind-Discretionary +BIKE,SHARED3,99.0762817076424,Ind-Discretionary +WALK-TRANSIT,SHARED3,0.0,Ind-Discretionary +PNR-TRANSIT,SHARED3,0.0,Ind-Discretionary +KNR-TRANSIT,SHARED3,0.0,Ind-Discretionary +TNC-TRANSIT,SHARED3,0.0,Ind-Discretionary +TAXI,SHARED3,0.0,Ind-Discretionary +TNC-REG,SHARED3,1192.79497345208,Ind-Discretionary +TNC-SHARED,SHARED3,0.0,Ind-Discretionary +SCHOOLBUS,SHARED3,0.0,Ind-Discretionary +ESCOOTER,SHARED3,0.0,Ind-Discretionary +EBIKE,SHARED3,0.0,Ind-Discretionary +All,WALK,432672.61426228896,Ind-Discretionary +DRIVEALONE,WALK,423.508240959963,Ind-Discretionary +SHARED2,WALK,0.0,Ind-Discretionary +SHARED3,WALK,0.0,Ind-Discretionary +WALK,WALK,432249.106021329,Ind-Discretionary +BIKE,WALK,0.0,Ind-Discretionary +WALK-TRANSIT,WALK,0.0,Ind-Discretionary +PNR-TRANSIT,WALK,0.0,Ind-Discretionary +KNR-TRANSIT,WALK,0.0,Ind-Discretionary +TNC-TRANSIT,WALK,0.0,Ind-Discretionary +TAXI,WALK,0.0,Ind-Discretionary +TNC-REG,WALK,0.0,Ind-Discretionary +TNC-SHARED,WALK,0.0,Ind-Discretionary +SCHOOLBUS,WALK,0.0,Ind-Discretionary +ESCOOTER,WALK,0.0,Ind-Discretionary +EBIKE,WALK,0.0,Ind-Discretionary +All,BIKE,27998.22184318296,Ind-Discretionary +DRIVEALONE,BIKE,0.0,Ind-Discretionary +SHARED2,BIKE,41.7395962064835,Ind-Discretionary +SHARED3,BIKE,40.2958661387941,Ind-Discretionary +WALK,BIKE,4833.74704145138,Ind-Discretionary +BIKE,BIKE,23082.4393393863,Ind-Discretionary +WALK-TRANSIT,BIKE,0.0,Ind-Discretionary +PNR-TRANSIT,BIKE,0.0,Ind-Discretionary +KNR-TRANSIT,BIKE,0.0,Ind-Discretionary +TNC-TRANSIT,BIKE,0.0,Ind-Discretionary +TAXI,BIKE,0.0,Ind-Discretionary +TNC-REG,BIKE,0.0,Ind-Discretionary +TNC-SHARED,BIKE,0.0,Ind-Discretionary +SCHOOLBUS,BIKE,0.0,Ind-Discretionary +ESCOOTER,BIKE,0.0,Ind-Discretionary +EBIKE,BIKE,0.0,Ind-Discretionary +All,WALK-TRANSIT,90999.85851670866,Ind-Discretionary +DRIVEALONE,WALK-TRANSIT,6256.62833516255,Ind-Discretionary +SHARED2,WALK-TRANSIT,88.4357183655813,Ind-Discretionary +SHARED3,WALK-TRANSIT,4163.00747680573,Ind-Discretionary +WALK,WALK-TRANSIT,11848.5632761965,Ind-Discretionary +BIKE,WALK-TRANSIT,0.0,Ind-Discretionary +WALK-TRANSIT,WALK-TRANSIT,51984.43819324105,Ind-Discretionary +PNR-TRANSIT,WALK-TRANSIT,0.0,Ind-Discretionary +KNR-TRANSIT,WALK-TRANSIT,0.0,Ind-Discretionary +TNC-TRANSIT,WALK-TRANSIT,0.0,Ind-Discretionary +TAXI,WALK-TRANSIT,0.0,Ind-Discretionary +TNC-REG,WALK-TRANSIT,3650.67988288045,Ind-Discretionary +TNC-SHARED,WALK-TRANSIT,0.0,Ind-Discretionary +SCHOOLBUS,WALK-TRANSIT,0.0,Ind-Discretionary +ESCOOTER,WALK-TRANSIT,11.9960857465512,Ind-Discretionary +EBIKE,WALK-TRANSIT,0.0,Ind-Discretionary +All,PNR-TRANSIT,483.007352445721,Ind-Discretionary +DRIVEALONE,PNR-TRANSIT,0.0,Ind-Discretionary +SHARED2,PNR-TRANSIT,0.0,Ind-Discretionary +SHARED3,PNR-TRANSIT,0.0,Ind-Discretionary +WALK,PNR-TRANSIT,0.0,Ind-Discretionary +BIKE,PNR-TRANSIT,0.0,Ind-Discretionary +WALK-TRANSIT,PNR-TRANSIT,0.0,Ind-Discretionary +PNR-TRANSIT,PNR-TRANSIT,1197.858234065388,Ind-Discretionary +KNR-TRANSIT,PNR-TRANSIT,0.0,Ind-Discretionary +TNC-TRANSIT,PNR-TRANSIT,0.0,Ind-Discretionary +TAXI,PNR-TRANSIT,0.0,Ind-Discretionary +TNC-REG,PNR-TRANSIT,0.0,Ind-Discretionary +TNC-SHARED,PNR-TRANSIT,0.0,Ind-Discretionary +SCHOOLBUS,PNR-TRANSIT,0.0,Ind-Discretionary +ESCOOTER,PNR-TRANSIT,0.0,Ind-Discretionary +EBIKE,PNR-TRANSIT,0.0,Ind-Discretionary +All,KNR-TRANSIT,650.251063410066,Ind-Discretionary +DRIVEALONE,KNR-TRANSIT,0.0,Ind-Discretionary +SHARED2,KNR-TRANSIT,0.0,Ind-Discretionary +SHARED3,KNR-TRANSIT,0.0,Ind-Discretionary +WALK,KNR-TRANSIT,0.0,Ind-Discretionary +BIKE,KNR-TRANSIT,0.0,Ind-Discretionary +WALK-TRANSIT,KNR-TRANSIT,0.0,Ind-Discretionary +PNR-TRANSIT,KNR-TRANSIT,0.0,Ind-Discretionary +KNR-TRANSIT,KNR-TRANSIT,910.3514887740923,Ind-Discretionary +TNC-TRANSIT,KNR-TRANSIT,0.0,Ind-Discretionary +TAXI,KNR-TRANSIT,0.0,Ind-Discretionary +TNC-REG,KNR-TRANSIT,0.0,Ind-Discretionary +TNC-SHARED,KNR-TRANSIT,0.0,Ind-Discretionary +SCHOOLBUS,KNR-TRANSIT,0.0,Ind-Discretionary +ESCOOTER,KNR-TRANSIT,0.0,Ind-Discretionary +EBIKE,KNR-TRANSIT,0.0,Ind-Discretionary +All,TNC-TRANSIT,0.0,Ind-Discretionary +DRIVEALONE,TNC-TRANSIT,0.0,Ind-Discretionary +SHARED2,TNC-TRANSIT,0.0,Ind-Discretionary +SHARED3,TNC-TRANSIT,0.0,Ind-Discretionary +WALK,TNC-TRANSIT,0.0,Ind-Discretionary +BIKE,TNC-TRANSIT,0.0,Ind-Discretionary +WALK-TRANSIT,TNC-TRANSIT,0.0,Ind-Discretionary +PNR-TRANSIT,TNC-TRANSIT,0.0,Ind-Discretionary +KNR-TRANSIT,TNC-TRANSIT,0.0,Ind-Discretionary +TNC-TRANSIT,TNC-TRANSIT,0.0,Ind-Discretionary +TAXI,TNC-TRANSIT,0.0,Ind-Discretionary +TNC-REG,TNC-TRANSIT,0.0,Ind-Discretionary +TNC-SHARED,TNC-TRANSIT,0.0,Ind-Discretionary +SCHOOLBUS,TNC-TRANSIT,0.0,Ind-Discretionary +ESCOOTER,TNC-TRANSIT,0.0,Ind-Discretionary +EBIKE,TNC-TRANSIT,0.0,Ind-Discretionary +All,TAXI,11019.796612141,Ind-Discretionary +DRIVEALONE,TAXI,0.0,Ind-Discretionary +SHARED2,TAXI,0.0,Ind-Discretionary +SHARED3,TAXI,0.0,Ind-Discretionary +WALK,TAXI,0.0,Ind-Discretionary +BIKE,TAXI,0.0,Ind-Discretionary +WALK-TRANSIT,TAXI,0.0,Ind-Discretionary +PNR-TRANSIT,TAXI,0.0,Ind-Discretionary +KNR-TRANSIT,TAXI,0.0,Ind-Discretionary +TNC-TRANSIT,TAXI,0.0,Ind-Discretionary +TAXI,TAXI,11019.796612141,Ind-Discretionary +TNC-REG,TAXI,0.0,Ind-Discretionary +TNC-SHARED,TAXI,0.0,Ind-Discretionary +SCHOOLBUS,TAXI,0.0,Ind-Discretionary +ESCOOTER,TAXI,0.0,Ind-Discretionary +EBIKE,TAXI,0.0,Ind-Discretionary +All,TNC-REG,1908.04947003688,Ind-Discretionary +DRIVEALONE,TNC-REG,0.0,Ind-Discretionary +SHARED2,TNC-REG,0.0,Ind-Discretionary +SHARED3,TNC-REG,0.0,Ind-Discretionary +WALK,TNC-REG,0.0,Ind-Discretionary +BIKE,TNC-REG,0.0,Ind-Discretionary +WALK-TRANSIT,TNC-REG,0.0,Ind-Discretionary +PNR-TRANSIT,TNC-REG,0.0,Ind-Discretionary +KNR-TRANSIT,TNC-REG,0.0,Ind-Discretionary +TNC-TRANSIT,TNC-REG,0.0,Ind-Discretionary +TAXI,TNC-REG,0.0,Ind-Discretionary +TNC-REG,TNC-REG,1908.04947003688,Ind-Discretionary +TNC-SHARED,TNC-REG,0.0,Ind-Discretionary +SCHOOLBUS,TNC-REG,0.0,Ind-Discretionary +ESCOOTER,TNC-REG,0.0,Ind-Discretionary +EBIKE,TNC-REG,0.0,Ind-Discretionary +All,TNC-SHARED,0.0,Ind-Discretionary +DRIVEALONE,TNC-SHARED,0.0,Ind-Discretionary +SHARED2,TNC-SHARED,0.0,Ind-Discretionary +SHARED3,TNC-SHARED,0.0,Ind-Discretionary +WALK,TNC-SHARED,0.0,Ind-Discretionary +BIKE,TNC-SHARED,0.0,Ind-Discretionary +WALK-TRANSIT,TNC-SHARED,0.0,Ind-Discretionary +PNR-TRANSIT,TNC-SHARED,0.0,Ind-Discretionary +KNR-TRANSIT,TNC-SHARED,0.0,Ind-Discretionary +TNC-TRANSIT,TNC-SHARED,0.0,Ind-Discretionary +TAXI,TNC-SHARED,0.0,Ind-Discretionary +TNC-REG,TNC-SHARED,0.0,Ind-Discretionary +TNC-SHARED,TNC-SHARED,0.0,Ind-Discretionary +SCHOOLBUS,TNC-SHARED,0.0,Ind-Discretionary +ESCOOTER,TNC-SHARED,0.0,Ind-Discretionary +EBIKE,TNC-SHARED,0.0,Ind-Discretionary +All,SCHOOLBUS,0.0,Ind-Discretionary +DRIVEALONE,SCHOOLBUS,0.0,Ind-Discretionary +SHARED2,SCHOOLBUS,0.0,Ind-Discretionary +SHARED3,SCHOOLBUS,0.0,Ind-Discretionary +WALK,SCHOOLBUS,0.0,Ind-Discretionary +BIKE,SCHOOLBUS,0.0,Ind-Discretionary +WALK-TRANSIT,SCHOOLBUS,0.0,Ind-Discretionary +PNR-TRANSIT,SCHOOLBUS,0.0,Ind-Discretionary +KNR-TRANSIT,SCHOOLBUS,0.0,Ind-Discretionary +TNC-TRANSIT,SCHOOLBUS,0.0,Ind-Discretionary +TAXI,SCHOOLBUS,0.0,Ind-Discretionary +TNC-REG,SCHOOLBUS,0.0,Ind-Discretionary +TNC-SHARED,SCHOOLBUS,0.0,Ind-Discretionary +SCHOOLBUS,SCHOOLBUS,0.0,Ind-Discretionary +ESCOOTER,SCHOOLBUS,0.0,Ind-Discretionary +EBIKE,SCHOOLBUS,0.0,Ind-Discretionary +All,ESCOOTER,2971.08250955352,Ind-Discretionary +DRIVEALONE,ESCOOTER,0.0,Ind-Discretionary +SHARED2,ESCOOTER,0.0,Ind-Discretionary +SHARED3,ESCOOTER,0.0,Ind-Discretionary +WALK,ESCOOTER,0.0,Ind-Discretionary +BIKE,ESCOOTER,0.0,Ind-Discretionary +WALK-TRANSIT,ESCOOTER,0.0,Ind-Discretionary +PNR-TRANSIT,ESCOOTER,0.0,Ind-Discretionary +KNR-TRANSIT,ESCOOTER,0.0,Ind-Discretionary +TNC-TRANSIT,ESCOOTER,0.0,Ind-Discretionary +TAXI,ESCOOTER,0.0,Ind-Discretionary +TNC-REG,ESCOOTER,0.0,Ind-Discretionary +TNC-SHARED,ESCOOTER,0.0,Ind-Discretionary +SCHOOLBUS,ESCOOTER,0.0,Ind-Discretionary +ESCOOTER,ESCOOTER,2971.08250955352,Ind-Discretionary +EBIKE,ESCOOTER,0.0,Ind-Discretionary +All,EBIKE,2165.81126340704,Ind-Discretionary +DRIVEALONE,EBIKE,0.0,Ind-Discretionary +SHARED2,EBIKE,0.0,Ind-Discretionary +SHARED3,EBIKE,0.0,Ind-Discretionary +WALK,EBIKE,0.0,Ind-Discretionary +BIKE,EBIKE,0.0,Ind-Discretionary +WALK-TRANSIT,EBIKE,0.0,Ind-Discretionary +PNR-TRANSIT,EBIKE,0.0,Ind-Discretionary +KNR-TRANSIT,EBIKE,0.0,Ind-Discretionary +TNC-TRANSIT,EBIKE,0.0,Ind-Discretionary +TAXI,EBIKE,0.0,Ind-Discretionary +TNC-REG,EBIKE,0.0,Ind-Discretionary +TNC-SHARED,EBIKE,0.0,Ind-Discretionary +SCHOOLBUS,EBIKE,0.0,Ind-Discretionary +ESCOOTER,EBIKE,0.0,Ind-Discretionary +EBIKE,EBIKE,2165.81126340704,Ind-Discretionary +All,All,873323.1297407476,Joint-Maintenance +DRIVEALONE,All,0.0,Joint-Maintenance +SHARED2,All,535095.8548074107,Joint-Maintenance +SHARED3,All,306519.590934374,Joint-Maintenance +WALK,All,26264.3636174906,Joint-Maintenance +BIKE,All,5143.71734512664,Joint-Maintenance +WALK-TRANSIT,All,0.0,Joint-Maintenance +PNR-TRANSIT,All,0.0,Joint-Maintenance +KNR-TRANSIT,All,0.0,Joint-Maintenance +TNC-TRANSIT,All,0.0,Joint-Maintenance +TAXI,All,0.0,Joint-Maintenance +TNC-REG,All,0.0,Joint-Maintenance +TNC-SHARED,All,0.0,Joint-Maintenance +SCHOOLBUS,All,0.0,Joint-Maintenance +ESCOOTER,All,0.0,Joint-Maintenance +EBIKE,All,299.603036345644,Joint-Maintenance +All,DRIVEALONE,0.0,Joint-Maintenance +DRIVEALONE,DRIVEALONE,0.0,Joint-Maintenance +SHARED2,DRIVEALONE,0.0,Joint-Maintenance +SHARED3,DRIVEALONE,0.0,Joint-Maintenance +WALK,DRIVEALONE,0.0,Joint-Maintenance +BIKE,DRIVEALONE,0.0,Joint-Maintenance +WALK-TRANSIT,DRIVEALONE,0.0,Joint-Maintenance +PNR-TRANSIT,DRIVEALONE,0.0,Joint-Maintenance +KNR-TRANSIT,DRIVEALONE,0.0,Joint-Maintenance +TNC-TRANSIT,DRIVEALONE,0.0,Joint-Maintenance +TAXI,DRIVEALONE,0.0,Joint-Maintenance +TNC-REG,DRIVEALONE,0.0,Joint-Maintenance +TNC-SHARED,DRIVEALONE,0.0,Joint-Maintenance +SCHOOLBUS,DRIVEALONE,0.0,Joint-Maintenance +ESCOOTER,DRIVEALONE,0.0,Joint-Maintenance +EBIKE,DRIVEALONE,0.0,Joint-Maintenance +All,SHARED2,548599.0463902731,Joint-Maintenance +DRIVEALONE,SHARED2,0.0,Joint-Maintenance +SHARED2,SHARED2,530295.591315327,Joint-Maintenance +SHARED3,SHARED2,0.0,Joint-Maintenance +WALK,SHARED2,18303.4550749462,Joint-Maintenance +BIKE,SHARED2,0.0,Joint-Maintenance +WALK-TRANSIT,SHARED2,0.0,Joint-Maintenance +PNR-TRANSIT,SHARED2,0.0,Joint-Maintenance +KNR-TRANSIT,SHARED2,0.0,Joint-Maintenance +TNC-TRANSIT,SHARED2,0.0,Joint-Maintenance +TAXI,SHARED2,0.0,Joint-Maintenance +TNC-REG,SHARED2,0.0,Joint-Maintenance +TNC-SHARED,SHARED2,0.0,Joint-Maintenance +SCHOOLBUS,SHARED2,0.0,Joint-Maintenance +ESCOOTER,SHARED2,0.0,Joint-Maintenance +EBIKE,SHARED2,0.0,Joint-Maintenance +All,SHARED3,313182.9700433132,Joint-Maintenance +DRIVEALONE,SHARED3,0.0,Joint-Maintenance +SHARED2,SHARED3,4800.26349208372,Joint-Maintenance +SHARED3,SHARED3,306519.590934374,Joint-Maintenance +WALK,SHARED3,1863.11561685545,Joint-Maintenance +BIKE,SHARED3,0.0,Joint-Maintenance +WALK-TRANSIT,SHARED3,0.0,Joint-Maintenance +PNR-TRANSIT,SHARED3,0.0,Joint-Maintenance +KNR-TRANSIT,SHARED3,0.0,Joint-Maintenance +TNC-TRANSIT,SHARED3,0.0,Joint-Maintenance +TAXI,SHARED3,0.0,Joint-Maintenance +TNC-REG,SHARED3,0.0,Joint-Maintenance +TNC-SHARED,SHARED3,0.0,Joint-Maintenance +SCHOOLBUS,SHARED3,0.0,Joint-Maintenance +ESCOOTER,SHARED3,0.0,Joint-Maintenance +EBIKE,SHARED3,0.0,Joint-Maintenance +All,WALK,6097.79292568895,Joint-Maintenance +DRIVEALONE,WALK,0.0,Joint-Maintenance +SHARED2,WALK,0.0,Joint-Maintenance +SHARED3,WALK,0.0,Joint-Maintenance +WALK,WALK,6097.79292568895,Joint-Maintenance +BIKE,WALK,0.0,Joint-Maintenance +WALK-TRANSIT,WALK,0.0,Joint-Maintenance +PNR-TRANSIT,WALK,0.0,Joint-Maintenance +KNR-TRANSIT,WALK,0.0,Joint-Maintenance +TNC-TRANSIT,WALK,0.0,Joint-Maintenance +TAXI,WALK,0.0,Joint-Maintenance +TNC-REG,WALK,0.0,Joint-Maintenance +TNC-SHARED,WALK,0.0,Joint-Maintenance +SCHOOLBUS,WALK,0.0,Joint-Maintenance +ESCOOTER,WALK,0.0,Joint-Maintenance +EBIKE,WALK,0.0,Joint-Maintenance +All,BIKE,5143.71734512664,Joint-Maintenance +DRIVEALONE,BIKE,0.0,Joint-Maintenance +SHARED2,BIKE,0.0,Joint-Maintenance +SHARED3,BIKE,0.0,Joint-Maintenance +WALK,BIKE,0.0,Joint-Maintenance +BIKE,BIKE,5143.71734512664,Joint-Maintenance +WALK-TRANSIT,BIKE,0.0,Joint-Maintenance +PNR-TRANSIT,BIKE,0.0,Joint-Maintenance +KNR-TRANSIT,BIKE,0.0,Joint-Maintenance +TNC-TRANSIT,BIKE,0.0,Joint-Maintenance +TAXI,BIKE,0.0,Joint-Maintenance +TNC-REG,BIKE,0.0,Joint-Maintenance +TNC-SHARED,BIKE,0.0,Joint-Maintenance +SCHOOLBUS,BIKE,0.0,Joint-Maintenance +ESCOOTER,BIKE,0.0,Joint-Maintenance +EBIKE,BIKE,0.0,Joint-Maintenance +All,WALK-TRANSIT,0.0,Joint-Maintenance +DRIVEALONE,WALK-TRANSIT,0.0,Joint-Maintenance +SHARED2,WALK-TRANSIT,0.0,Joint-Maintenance +SHARED3,WALK-TRANSIT,0.0,Joint-Maintenance +WALK,WALK-TRANSIT,0.0,Joint-Maintenance +BIKE,WALK-TRANSIT,0.0,Joint-Maintenance +WALK-TRANSIT,WALK-TRANSIT,0.0,Joint-Maintenance +PNR-TRANSIT,WALK-TRANSIT,0.0,Joint-Maintenance +KNR-TRANSIT,WALK-TRANSIT,0.0,Joint-Maintenance +TNC-TRANSIT,WALK-TRANSIT,0.0,Joint-Maintenance +TAXI,WALK-TRANSIT,0.0,Joint-Maintenance +TNC-REG,WALK-TRANSIT,0.0,Joint-Maintenance +TNC-SHARED,WALK-TRANSIT,0.0,Joint-Maintenance +SCHOOLBUS,WALK-TRANSIT,0.0,Joint-Maintenance +ESCOOTER,WALK-TRANSIT,0.0,Joint-Maintenance +EBIKE,WALK-TRANSIT,0.0,Joint-Maintenance +All,PNR-TRANSIT,0.0,Joint-Maintenance +DRIVEALONE,PNR-TRANSIT,0.0,Joint-Maintenance +SHARED2,PNR-TRANSIT,0.0,Joint-Maintenance +SHARED3,PNR-TRANSIT,0.0,Joint-Maintenance +WALK,PNR-TRANSIT,0.0,Joint-Maintenance +BIKE,PNR-TRANSIT,0.0,Joint-Maintenance +WALK-TRANSIT,PNR-TRANSIT,0.0,Joint-Maintenance +PNR-TRANSIT,PNR-TRANSIT,0.0,Joint-Maintenance +KNR-TRANSIT,PNR-TRANSIT,0.0,Joint-Maintenance +TNC-TRANSIT,PNR-TRANSIT,0.0,Joint-Maintenance +TAXI,PNR-TRANSIT,0.0,Joint-Maintenance +TNC-REG,PNR-TRANSIT,0.0,Joint-Maintenance +TNC-SHARED,PNR-TRANSIT,0.0,Joint-Maintenance +SCHOOLBUS,PNR-TRANSIT,0.0,Joint-Maintenance +ESCOOTER,PNR-TRANSIT,0.0,Joint-Maintenance +EBIKE,PNR-TRANSIT,0.0,Joint-Maintenance +All,KNR-TRANSIT,0.0,Joint-Maintenance +DRIVEALONE,KNR-TRANSIT,0.0,Joint-Maintenance +SHARED2,KNR-TRANSIT,0.0,Joint-Maintenance +SHARED3,KNR-TRANSIT,0.0,Joint-Maintenance +WALK,KNR-TRANSIT,0.0,Joint-Maintenance +BIKE,KNR-TRANSIT,0.0,Joint-Maintenance +WALK-TRANSIT,KNR-TRANSIT,0.0,Joint-Maintenance +PNR-TRANSIT,KNR-TRANSIT,0.0,Joint-Maintenance +KNR-TRANSIT,KNR-TRANSIT,0.0,Joint-Maintenance +TNC-TRANSIT,KNR-TRANSIT,0.0,Joint-Maintenance +TAXI,KNR-TRANSIT,0.0,Joint-Maintenance +TNC-REG,KNR-TRANSIT,0.0,Joint-Maintenance +TNC-SHARED,KNR-TRANSIT,0.0,Joint-Maintenance +SCHOOLBUS,KNR-TRANSIT,0.0,Joint-Maintenance +ESCOOTER,KNR-TRANSIT,0.0,Joint-Maintenance +EBIKE,KNR-TRANSIT,0.0,Joint-Maintenance +All,TNC-TRANSIT,0.0,Joint-Maintenance +DRIVEALONE,TNC-TRANSIT,0.0,Joint-Maintenance +SHARED2,TNC-TRANSIT,0.0,Joint-Maintenance +SHARED3,TNC-TRANSIT,0.0,Joint-Maintenance +WALK,TNC-TRANSIT,0.0,Joint-Maintenance +BIKE,TNC-TRANSIT,0.0,Joint-Maintenance +WALK-TRANSIT,TNC-TRANSIT,0.0,Joint-Maintenance +PNR-TRANSIT,TNC-TRANSIT,0.0,Joint-Maintenance +KNR-TRANSIT,TNC-TRANSIT,0.0,Joint-Maintenance +TNC-TRANSIT,TNC-TRANSIT,0.0,Joint-Maintenance +TAXI,TNC-TRANSIT,0.0,Joint-Maintenance +TNC-REG,TNC-TRANSIT,0.0,Joint-Maintenance +TNC-SHARED,TNC-TRANSIT,0.0,Joint-Maintenance +SCHOOLBUS,TNC-TRANSIT,0.0,Joint-Maintenance +ESCOOTER,TNC-TRANSIT,0.0,Joint-Maintenance +EBIKE,TNC-TRANSIT,0.0,Joint-Maintenance +All,TAXI,0.0,Joint-Maintenance +DRIVEALONE,TAXI,0.0,Joint-Maintenance +SHARED2,TAXI,0.0,Joint-Maintenance +SHARED3,TAXI,0.0,Joint-Maintenance +WALK,TAXI,0.0,Joint-Maintenance +BIKE,TAXI,0.0,Joint-Maintenance +WALK-TRANSIT,TAXI,0.0,Joint-Maintenance +PNR-TRANSIT,TAXI,0.0,Joint-Maintenance +KNR-TRANSIT,TAXI,0.0,Joint-Maintenance +TNC-TRANSIT,TAXI,0.0,Joint-Maintenance +TAXI,TAXI,0.0,Joint-Maintenance +TNC-REG,TAXI,0.0,Joint-Maintenance +TNC-SHARED,TAXI,0.0,Joint-Maintenance +SCHOOLBUS,TAXI,0.0,Joint-Maintenance +ESCOOTER,TAXI,0.0,Joint-Maintenance +EBIKE,TAXI,0.0,Joint-Maintenance +All,TNC-REG,0.0,Joint-Maintenance +DRIVEALONE,TNC-REG,0.0,Joint-Maintenance +SHARED2,TNC-REG,0.0,Joint-Maintenance +SHARED3,TNC-REG,0.0,Joint-Maintenance +WALK,TNC-REG,0.0,Joint-Maintenance +BIKE,TNC-REG,0.0,Joint-Maintenance +WALK-TRANSIT,TNC-REG,0.0,Joint-Maintenance +PNR-TRANSIT,TNC-REG,0.0,Joint-Maintenance +KNR-TRANSIT,TNC-REG,0.0,Joint-Maintenance +TNC-TRANSIT,TNC-REG,0.0,Joint-Maintenance +TAXI,TNC-REG,0.0,Joint-Maintenance +TNC-REG,TNC-REG,0.0,Joint-Maintenance +TNC-SHARED,TNC-REG,0.0,Joint-Maintenance +SCHOOLBUS,TNC-REG,0.0,Joint-Maintenance +ESCOOTER,TNC-REG,0.0,Joint-Maintenance +EBIKE,TNC-REG,0.0,Joint-Maintenance +All,TNC-SHARED,0.0,Joint-Maintenance +DRIVEALONE,TNC-SHARED,0.0,Joint-Maintenance +SHARED2,TNC-SHARED,0.0,Joint-Maintenance +SHARED3,TNC-SHARED,0.0,Joint-Maintenance +WALK,TNC-SHARED,0.0,Joint-Maintenance +BIKE,TNC-SHARED,0.0,Joint-Maintenance +WALK-TRANSIT,TNC-SHARED,0.0,Joint-Maintenance +PNR-TRANSIT,TNC-SHARED,0.0,Joint-Maintenance +KNR-TRANSIT,TNC-SHARED,0.0,Joint-Maintenance +TNC-TRANSIT,TNC-SHARED,0.0,Joint-Maintenance +TAXI,TNC-SHARED,0.0,Joint-Maintenance +TNC-REG,TNC-SHARED,0.0,Joint-Maintenance +TNC-SHARED,TNC-SHARED,0.0,Joint-Maintenance +SCHOOLBUS,TNC-SHARED,0.0,Joint-Maintenance +ESCOOTER,TNC-SHARED,0.0,Joint-Maintenance +EBIKE,TNC-SHARED,0.0,Joint-Maintenance +All,SCHOOLBUS,0.0,Joint-Maintenance +DRIVEALONE,SCHOOLBUS,0.0,Joint-Maintenance +SHARED2,SCHOOLBUS,0.0,Joint-Maintenance +SHARED3,SCHOOLBUS,0.0,Joint-Maintenance +WALK,SCHOOLBUS,0.0,Joint-Maintenance +BIKE,SCHOOLBUS,0.0,Joint-Maintenance +WALK-TRANSIT,SCHOOLBUS,0.0,Joint-Maintenance +PNR-TRANSIT,SCHOOLBUS,0.0,Joint-Maintenance +KNR-TRANSIT,SCHOOLBUS,0.0,Joint-Maintenance +TNC-TRANSIT,SCHOOLBUS,0.0,Joint-Maintenance +TAXI,SCHOOLBUS,0.0,Joint-Maintenance +TNC-REG,SCHOOLBUS,0.0,Joint-Maintenance +TNC-SHARED,SCHOOLBUS,0.0,Joint-Maintenance +SCHOOLBUS,SCHOOLBUS,0.0,Joint-Maintenance +ESCOOTER,SCHOOLBUS,0.0,Joint-Maintenance +EBIKE,SCHOOLBUS,0.0,Joint-Maintenance +All,ESCOOTER,0.0,Joint-Maintenance +DRIVEALONE,ESCOOTER,0.0,Joint-Maintenance +SHARED2,ESCOOTER,0.0,Joint-Maintenance +SHARED3,ESCOOTER,0.0,Joint-Maintenance +WALK,ESCOOTER,0.0,Joint-Maintenance +BIKE,ESCOOTER,0.0,Joint-Maintenance +WALK-TRANSIT,ESCOOTER,0.0,Joint-Maintenance +PNR-TRANSIT,ESCOOTER,0.0,Joint-Maintenance +KNR-TRANSIT,ESCOOTER,0.0,Joint-Maintenance +TNC-TRANSIT,ESCOOTER,0.0,Joint-Maintenance +TAXI,ESCOOTER,0.0,Joint-Maintenance +TNC-REG,ESCOOTER,0.0,Joint-Maintenance +TNC-SHARED,ESCOOTER,0.0,Joint-Maintenance +SCHOOLBUS,ESCOOTER,0.0,Joint-Maintenance +ESCOOTER,ESCOOTER,0.0,Joint-Maintenance +EBIKE,ESCOOTER,0.0,Joint-Maintenance +All,EBIKE,299.603036345644,Joint-Maintenance +DRIVEALONE,EBIKE,0.0,Joint-Maintenance +SHARED2,EBIKE,0.0,Joint-Maintenance +SHARED3,EBIKE,0.0,Joint-Maintenance +WALK,EBIKE,0.0,Joint-Maintenance +BIKE,EBIKE,0.0,Joint-Maintenance +WALK-TRANSIT,EBIKE,0.0,Joint-Maintenance +PNR-TRANSIT,EBIKE,0.0,Joint-Maintenance +KNR-TRANSIT,EBIKE,0.0,Joint-Maintenance +TNC-TRANSIT,EBIKE,0.0,Joint-Maintenance +TAXI,EBIKE,0.0,Joint-Maintenance +TNC-REG,EBIKE,0.0,Joint-Maintenance +TNC-SHARED,EBIKE,0.0,Joint-Maintenance +SCHOOLBUS,EBIKE,0.0,Joint-Maintenance +ESCOOTER,EBIKE,0.0,Joint-Maintenance +EBIKE,EBIKE,299.603036345644,Joint-Maintenance +All,All,1113973.2569043974,Joint-Discretionary +DRIVEALONE,All,0.0,Joint-Discretionary +SHARED2,All,554571.6827167514,Joint-Discretionary +SHARED3,All,307487.732136806,Joint-Discretionary +WALK,All,249778.2876354955,Joint-Discretionary +BIKE,All,1242.85666586099,Joint-Discretionary +WALK-TRANSIT,All,0.0,Joint-Discretionary +PNR-TRANSIT,All,0.0,Joint-Discretionary +KNR-TRANSIT,All,0.0,Joint-Discretionary +TNC-TRANSIT,All,0.0,Joint-Discretionary +TAXI,All,0.0,Joint-Discretionary +TNC-REG,All,0.0,Joint-Discretionary +TNC-SHARED,All,0.0,Joint-Discretionary +SCHOOLBUS,All,0.0,Joint-Discretionary +ESCOOTER,All,0.0,Joint-Discretionary +EBIKE,All,892.69774948352,Joint-Discretionary +All,DRIVEALONE,0.0,Joint-Discretionary +DRIVEALONE,DRIVEALONE,0.0,Joint-Discretionary +SHARED2,DRIVEALONE,0.0,Joint-Discretionary +SHARED3,DRIVEALONE,0.0,Joint-Discretionary +WALK,DRIVEALONE,0.0,Joint-Discretionary +BIKE,DRIVEALONE,0.0,Joint-Discretionary +WALK-TRANSIT,DRIVEALONE,0.0,Joint-Discretionary +PNR-TRANSIT,DRIVEALONE,0.0,Joint-Discretionary +KNR-TRANSIT,DRIVEALONE,0.0,Joint-Discretionary +TNC-TRANSIT,DRIVEALONE,0.0,Joint-Discretionary +TAXI,DRIVEALONE,0.0,Joint-Discretionary +TNC-REG,DRIVEALONE,0.0,Joint-Discretionary +TNC-SHARED,DRIVEALONE,0.0,Joint-Discretionary +SCHOOLBUS,DRIVEALONE,0.0,Joint-Discretionary +ESCOOTER,DRIVEALONE,0.0,Joint-Discretionary +EBIKE,DRIVEALONE,0.0,Joint-Discretionary +All,SHARED2,566512.4177509932,Joint-Discretionary +DRIVEALONE,SHARED2,0.0,Joint-Discretionary +SHARED2,SHARED2,546580.82017769,Joint-Discretionary +SHARED3,SHARED2,0.0,Joint-Discretionary +WALK,SHARED2,19931.5975733031,Joint-Discretionary +BIKE,SHARED2,0.0,Joint-Discretionary +WALK-TRANSIT,SHARED2,0.0,Joint-Discretionary +PNR-TRANSIT,SHARED2,0.0,Joint-Discretionary +KNR-TRANSIT,SHARED2,0.0,Joint-Discretionary +TNC-TRANSIT,SHARED2,0.0,Joint-Discretionary +TAXI,SHARED2,0.0,Joint-Discretionary +TNC-REG,SHARED2,0.0,Joint-Discretionary +TNC-SHARED,SHARED2,0.0,Joint-Discretionary +SCHOOLBUS,SHARED2,0.0,Joint-Discretionary +ESCOOTER,SHARED2,0.0,Joint-Discretionary +EBIKE,SHARED2,0.0,Joint-Discretionary +All,SHARED3,331477.6360925957,Joint-Discretionary +DRIVEALONE,SHARED3,0.0,Joint-Discretionary +SHARED2,SHARED3,7990.86253906131,Joint-Discretionary +SHARED3,SHARED3,307487.732136806,Joint-Discretionary +WALK,SHARED3,15999.0414167284,Joint-Discretionary +BIKE,SHARED3,0.0,Joint-Discretionary +WALK-TRANSIT,SHARED3,0.0,Joint-Discretionary +PNR-TRANSIT,SHARED3,0.0,Joint-Discretionary +KNR-TRANSIT,SHARED3,0.0,Joint-Discretionary +TNC-TRANSIT,SHARED3,0.0,Joint-Discretionary +TAXI,SHARED3,0.0,Joint-Discretionary +TNC-REG,SHARED3,0.0,Joint-Discretionary +TNC-SHARED,SHARED3,0.0,Joint-Discretionary +SCHOOLBUS,SHARED3,0.0,Joint-Discretionary +ESCOOTER,SHARED3,0.0,Joint-Discretionary +EBIKE,SHARED3,0.0,Joint-Discretionary +All,WALK,213847.648645464,Joint-Discretionary +DRIVEALONE,WALK,0.0,Joint-Discretionary +SHARED2,WALK,0.0,Joint-Discretionary +SHARED3,WALK,0.0,Joint-Discretionary +WALK,WALK,213847.648645464,Joint-Discretionary +BIKE,WALK,0.0,Joint-Discretionary +WALK-TRANSIT,WALK,0.0,Joint-Discretionary +PNR-TRANSIT,WALK,0.0,Joint-Discretionary +KNR-TRANSIT,WALK,0.0,Joint-Discretionary +TNC-TRANSIT,WALK,0.0,Joint-Discretionary +TAXI,WALK,0.0,Joint-Discretionary +TNC-REG,WALK,0.0,Joint-Discretionary +TNC-SHARED,WALK,0.0,Joint-Discretionary +SCHOOLBUS,WALK,0.0,Joint-Discretionary +ESCOOTER,WALK,0.0,Joint-Discretionary +EBIKE,WALK,0.0,Joint-Discretionary +All,BIKE,1242.85666586099,Joint-Discretionary +DRIVEALONE,BIKE,0.0,Joint-Discretionary +SHARED2,BIKE,0.0,Joint-Discretionary +SHARED3,BIKE,0.0,Joint-Discretionary +WALK,BIKE,0.0,Joint-Discretionary +BIKE,BIKE,1242.85666586099,Joint-Discretionary +WALK-TRANSIT,BIKE,0.0,Joint-Discretionary +PNR-TRANSIT,BIKE,0.0,Joint-Discretionary +KNR-TRANSIT,BIKE,0.0,Joint-Discretionary +TNC-TRANSIT,BIKE,0.0,Joint-Discretionary +TAXI,BIKE,0.0,Joint-Discretionary +TNC-REG,BIKE,0.0,Joint-Discretionary +TNC-SHARED,BIKE,0.0,Joint-Discretionary +SCHOOLBUS,BIKE,0.0,Joint-Discretionary +ESCOOTER,BIKE,0.0,Joint-Discretionary +EBIKE,BIKE,0.0,Joint-Discretionary +All,WALK-TRANSIT,0.0,Joint-Discretionary +DRIVEALONE,WALK-TRANSIT,0.0,Joint-Discretionary +SHARED2,WALK-TRANSIT,0.0,Joint-Discretionary +SHARED3,WALK-TRANSIT,0.0,Joint-Discretionary +WALK,WALK-TRANSIT,0.0,Joint-Discretionary +BIKE,WALK-TRANSIT,0.0,Joint-Discretionary +WALK-TRANSIT,WALK-TRANSIT,0.0,Joint-Discretionary +PNR-TRANSIT,WALK-TRANSIT,0.0,Joint-Discretionary +KNR-TRANSIT,WALK-TRANSIT,0.0,Joint-Discretionary +TNC-TRANSIT,WALK-TRANSIT,0.0,Joint-Discretionary +TAXI,WALK-TRANSIT,0.0,Joint-Discretionary +TNC-REG,WALK-TRANSIT,0.0,Joint-Discretionary +TNC-SHARED,WALK-TRANSIT,0.0,Joint-Discretionary +SCHOOLBUS,WALK-TRANSIT,0.0,Joint-Discretionary +ESCOOTER,WALK-TRANSIT,0.0,Joint-Discretionary +EBIKE,WALK-TRANSIT,0.0,Joint-Discretionary +All,PNR-TRANSIT,0.0,Joint-Discretionary +DRIVEALONE,PNR-TRANSIT,0.0,Joint-Discretionary +SHARED2,PNR-TRANSIT,0.0,Joint-Discretionary +SHARED3,PNR-TRANSIT,0.0,Joint-Discretionary +WALK,PNR-TRANSIT,0.0,Joint-Discretionary +BIKE,PNR-TRANSIT,0.0,Joint-Discretionary +WALK-TRANSIT,PNR-TRANSIT,0.0,Joint-Discretionary +PNR-TRANSIT,PNR-TRANSIT,0.0,Joint-Discretionary +KNR-TRANSIT,PNR-TRANSIT,0.0,Joint-Discretionary +TNC-TRANSIT,PNR-TRANSIT,0.0,Joint-Discretionary +TAXI,PNR-TRANSIT,0.0,Joint-Discretionary +TNC-REG,PNR-TRANSIT,0.0,Joint-Discretionary +TNC-SHARED,PNR-TRANSIT,0.0,Joint-Discretionary +SCHOOLBUS,PNR-TRANSIT,0.0,Joint-Discretionary +ESCOOTER,PNR-TRANSIT,0.0,Joint-Discretionary +EBIKE,PNR-TRANSIT,0.0,Joint-Discretionary +All,KNR-TRANSIT,0.0,Joint-Discretionary +DRIVEALONE,KNR-TRANSIT,0.0,Joint-Discretionary +SHARED2,KNR-TRANSIT,0.0,Joint-Discretionary +SHARED3,KNR-TRANSIT,0.0,Joint-Discretionary +WALK,KNR-TRANSIT,0.0,Joint-Discretionary +BIKE,KNR-TRANSIT,0.0,Joint-Discretionary +WALK-TRANSIT,KNR-TRANSIT,0.0,Joint-Discretionary +PNR-TRANSIT,KNR-TRANSIT,0.0,Joint-Discretionary +KNR-TRANSIT,KNR-TRANSIT,0.0,Joint-Discretionary +TNC-TRANSIT,KNR-TRANSIT,0.0,Joint-Discretionary +TAXI,KNR-TRANSIT,0.0,Joint-Discretionary +TNC-REG,KNR-TRANSIT,0.0,Joint-Discretionary +TNC-SHARED,KNR-TRANSIT,0.0,Joint-Discretionary +SCHOOLBUS,KNR-TRANSIT,0.0,Joint-Discretionary +ESCOOTER,KNR-TRANSIT,0.0,Joint-Discretionary +EBIKE,KNR-TRANSIT,0.0,Joint-Discretionary +All,TNC-TRANSIT,0.0,Joint-Discretionary +DRIVEALONE,TNC-TRANSIT,0.0,Joint-Discretionary +SHARED2,TNC-TRANSIT,0.0,Joint-Discretionary +SHARED3,TNC-TRANSIT,0.0,Joint-Discretionary +WALK,TNC-TRANSIT,0.0,Joint-Discretionary +BIKE,TNC-TRANSIT,0.0,Joint-Discretionary +WALK-TRANSIT,TNC-TRANSIT,0.0,Joint-Discretionary +PNR-TRANSIT,TNC-TRANSIT,0.0,Joint-Discretionary +KNR-TRANSIT,TNC-TRANSIT,0.0,Joint-Discretionary +TNC-TRANSIT,TNC-TRANSIT,0.0,Joint-Discretionary +TAXI,TNC-TRANSIT,0.0,Joint-Discretionary +TNC-REG,TNC-TRANSIT,0.0,Joint-Discretionary +TNC-SHARED,TNC-TRANSIT,0.0,Joint-Discretionary +SCHOOLBUS,TNC-TRANSIT,0.0,Joint-Discretionary +ESCOOTER,TNC-TRANSIT,0.0,Joint-Discretionary +EBIKE,TNC-TRANSIT,0.0,Joint-Discretionary +All,TAXI,0.0,Joint-Discretionary +DRIVEALONE,TAXI,0.0,Joint-Discretionary +SHARED2,TAXI,0.0,Joint-Discretionary +SHARED3,TAXI,0.0,Joint-Discretionary +WALK,TAXI,0.0,Joint-Discretionary +BIKE,TAXI,0.0,Joint-Discretionary +WALK-TRANSIT,TAXI,0.0,Joint-Discretionary +PNR-TRANSIT,TAXI,0.0,Joint-Discretionary +KNR-TRANSIT,TAXI,0.0,Joint-Discretionary +TNC-TRANSIT,TAXI,0.0,Joint-Discretionary +TAXI,TAXI,0.0,Joint-Discretionary +TNC-REG,TAXI,0.0,Joint-Discretionary +TNC-SHARED,TAXI,0.0,Joint-Discretionary +SCHOOLBUS,TAXI,0.0,Joint-Discretionary +ESCOOTER,TAXI,0.0,Joint-Discretionary +EBIKE,TAXI,0.0,Joint-Discretionary +All,TNC-REG,0.0,Joint-Discretionary +DRIVEALONE,TNC-REG,0.0,Joint-Discretionary +SHARED2,TNC-REG,0.0,Joint-Discretionary +SHARED3,TNC-REG,0.0,Joint-Discretionary +WALK,TNC-REG,0.0,Joint-Discretionary +BIKE,TNC-REG,0.0,Joint-Discretionary +WALK-TRANSIT,TNC-REG,0.0,Joint-Discretionary +PNR-TRANSIT,TNC-REG,0.0,Joint-Discretionary +KNR-TRANSIT,TNC-REG,0.0,Joint-Discretionary +TNC-TRANSIT,TNC-REG,0.0,Joint-Discretionary +TAXI,TNC-REG,0.0,Joint-Discretionary +TNC-REG,TNC-REG,0.0,Joint-Discretionary +TNC-SHARED,TNC-REG,0.0,Joint-Discretionary +SCHOOLBUS,TNC-REG,0.0,Joint-Discretionary +ESCOOTER,TNC-REG,0.0,Joint-Discretionary +EBIKE,TNC-REG,0.0,Joint-Discretionary +All,TNC-SHARED,0.0,Joint-Discretionary +DRIVEALONE,TNC-SHARED,0.0,Joint-Discretionary +SHARED2,TNC-SHARED,0.0,Joint-Discretionary +SHARED3,TNC-SHARED,0.0,Joint-Discretionary +WALK,TNC-SHARED,0.0,Joint-Discretionary +BIKE,TNC-SHARED,0.0,Joint-Discretionary +WALK-TRANSIT,TNC-SHARED,0.0,Joint-Discretionary +PNR-TRANSIT,TNC-SHARED,0.0,Joint-Discretionary +KNR-TRANSIT,TNC-SHARED,0.0,Joint-Discretionary +TNC-TRANSIT,TNC-SHARED,0.0,Joint-Discretionary +TAXI,TNC-SHARED,0.0,Joint-Discretionary +TNC-REG,TNC-SHARED,0.0,Joint-Discretionary +TNC-SHARED,TNC-SHARED,0.0,Joint-Discretionary +SCHOOLBUS,TNC-SHARED,0.0,Joint-Discretionary +ESCOOTER,TNC-SHARED,0.0,Joint-Discretionary +EBIKE,TNC-SHARED,0.0,Joint-Discretionary +All,SCHOOLBUS,0.0,Joint-Discretionary +DRIVEALONE,SCHOOLBUS,0.0,Joint-Discretionary +SHARED2,SCHOOLBUS,0.0,Joint-Discretionary +SHARED3,SCHOOLBUS,0.0,Joint-Discretionary +WALK,SCHOOLBUS,0.0,Joint-Discretionary +BIKE,SCHOOLBUS,0.0,Joint-Discretionary +WALK-TRANSIT,SCHOOLBUS,0.0,Joint-Discretionary +PNR-TRANSIT,SCHOOLBUS,0.0,Joint-Discretionary +KNR-TRANSIT,SCHOOLBUS,0.0,Joint-Discretionary +TNC-TRANSIT,SCHOOLBUS,0.0,Joint-Discretionary +TAXI,SCHOOLBUS,0.0,Joint-Discretionary +TNC-REG,SCHOOLBUS,0.0,Joint-Discretionary +TNC-SHARED,SCHOOLBUS,0.0,Joint-Discretionary +SCHOOLBUS,SCHOOLBUS,0.0,Joint-Discretionary +ESCOOTER,SCHOOLBUS,0.0,Joint-Discretionary +EBIKE,SCHOOLBUS,0.0,Joint-Discretionary +All,ESCOOTER,0.0,Joint-Discretionary +DRIVEALONE,ESCOOTER,0.0,Joint-Discretionary +SHARED2,ESCOOTER,0.0,Joint-Discretionary +SHARED3,ESCOOTER,0.0,Joint-Discretionary +WALK,ESCOOTER,0.0,Joint-Discretionary +BIKE,ESCOOTER,0.0,Joint-Discretionary +WALK-TRANSIT,ESCOOTER,0.0,Joint-Discretionary +PNR-TRANSIT,ESCOOTER,0.0,Joint-Discretionary +KNR-TRANSIT,ESCOOTER,0.0,Joint-Discretionary +TNC-TRANSIT,ESCOOTER,0.0,Joint-Discretionary +TAXI,ESCOOTER,0.0,Joint-Discretionary +TNC-REG,ESCOOTER,0.0,Joint-Discretionary +TNC-SHARED,ESCOOTER,0.0,Joint-Discretionary +SCHOOLBUS,ESCOOTER,0.0,Joint-Discretionary +ESCOOTER,ESCOOTER,0.0,Joint-Discretionary +EBIKE,ESCOOTER,0.0,Joint-Discretionary +All,EBIKE,892.69774948352,Joint-Discretionary +DRIVEALONE,EBIKE,0.0,Joint-Discretionary +SHARED2,EBIKE,0.0,Joint-Discretionary +SHARED3,EBIKE,0.0,Joint-Discretionary +WALK,EBIKE,0.0,Joint-Discretionary +BIKE,EBIKE,0.0,Joint-Discretionary +WALK-TRANSIT,EBIKE,0.0,Joint-Discretionary +PNR-TRANSIT,EBIKE,0.0,Joint-Discretionary +KNR-TRANSIT,EBIKE,0.0,Joint-Discretionary +TNC-TRANSIT,EBIKE,0.0,Joint-Discretionary +TAXI,EBIKE,0.0,Joint-Discretionary +TNC-REG,EBIKE,0.0,Joint-Discretionary +TNC-SHARED,EBIKE,0.0,Joint-Discretionary +SCHOOLBUS,EBIKE,0.0,Joint-Discretionary +ESCOOTER,EBIKE,0.0,Joint-Discretionary +EBIKE,EBIKE,892.69774948352,Joint-Discretionary +All,All,281174.26081776246,Work sub-tour +DRIVEALONE,All,179889.52171135528,Work sub-tour +SHARED2,All,17566.332820587035,Work sub-tour +SHARED3,All,11376.833426079,Work sub-tour +WALK,All,69032.6667413774,Work sub-tour +BIKE,All,2776.98958413532,Work sub-tour +WALK-TRANSIT,All,57.4441277071772,Work sub-tour +PNR-TRANSIT,All,0.0,Work sub-tour +KNR-TRANSIT,All,0.0,Work sub-tour +TNC-TRANSIT,All,0.0,Work sub-tour +TAXI,All,0.0,Work sub-tour +TNC-REG,All,17.2677990272926,Work sub-tour +TNC-SHARED,All,0.0,Work sub-tour +SCHOOLBUS,All,0.0,Work sub-tour +ESCOOTER,All,0.0,Work sub-tour +EBIKE,All,442.843575567199,Work sub-tour +All,DRIVEALONE,166335.01265527584,Work sub-tour +DRIVEALONE,DRIVEALONE,165049.252859179,Work sub-tour +SHARED2,DRIVEALONE,0.0,Work sub-tour +SHARED3,DRIVEALONE,0.0,Work sub-tour +WALK,DRIVEALONE,1268.49199706957,Work sub-tour +BIKE,DRIVEALONE,0.0,Work sub-tour +WALK-TRANSIT,DRIVEALONE,0.0,Work sub-tour +PNR-TRANSIT,DRIVEALONE,0.0,Work sub-tour +KNR-TRANSIT,DRIVEALONE,0.0,Work sub-tour +TNC-TRANSIT,DRIVEALONE,0.0,Work sub-tour +TAXI,DRIVEALONE,0.0,Work sub-tour +TNC-REG,DRIVEALONE,17.2677990272926,Work sub-tour +TNC-SHARED,DRIVEALONE,0.0,Work sub-tour +SCHOOLBUS,DRIVEALONE,0.0,Work sub-tour +ESCOOTER,DRIVEALONE,0.0,Work sub-tour +EBIKE,DRIVEALONE,0.0,Work sub-tour +All,SHARED2,29922.99580372367,Work sub-tour +DRIVEALONE,SHARED2,12054.9895266432,Work sub-tour +SHARED2,SHARED2,17555.8340173163,Work sub-tour +SHARED3,SHARED2,0.0,Work sub-tour +WALK,SHARED2,312.172259764168,Work sub-tour +BIKE,SHARED2,0.0,Work sub-tour +WALK-TRANSIT,SHARED2,0.0,Work sub-tour +PNR-TRANSIT,SHARED2,0.0,Work sub-tour +KNR-TRANSIT,SHARED2,0.0,Work sub-tour +TNC-TRANSIT,SHARED2,0.0,Work sub-tour +TAXI,SHARED2,0.0,Work sub-tour +TNC-REG,SHARED2,0.0,Work sub-tour +TNC-SHARED,SHARED2,0.0,Work sub-tour +SCHOOLBUS,SHARED2,0.0,Work sub-tour +ESCOOTER,SHARED2,0.0,Work sub-tour +EBIKE,SHARED2,0.0,Work sub-tour +All,SHARED3,14183.110358153554,Work sub-tour +DRIVEALONE,SHARED3,2785.27932553309,Work sub-tour +SHARED2,SHARED3,10.4988032707324,Work sub-tour +SHARED3,SHARED3,11376.833426079,Work sub-tour +WALK,SHARED3,10.4988032707324,Work sub-tour +BIKE,SHARED3,0.0,Work sub-tour +WALK-TRANSIT,SHARED3,0.0,Work sub-tour +PNR-TRANSIT,SHARED3,0.0,Work sub-tour +KNR-TRANSIT,SHARED3,0.0,Work sub-tour +TNC-TRANSIT,SHARED3,0.0,Work sub-tour +TAXI,SHARED3,0.0,Work sub-tour +TNC-REG,SHARED3,0.0,Work sub-tour +TNC-SHARED,SHARED3,0.0,Work sub-tour +SCHOOLBUS,SHARED3,0.0,Work sub-tour +ESCOOTER,SHARED3,0.0,Work sub-tour +EBIKE,SHARED3,0.0,Work sub-tour +All,WALK,67424.2196809755,Work sub-tour +DRIVEALONE,WALK,0.0,Work sub-tour +SHARED2,WALK,0.0,Work sub-tour +SHARED3,WALK,0.0,Work sub-tour +WALK,WALK,67424.2196809755,Work sub-tour +BIKE,WALK,0.0,Work sub-tour +WALK-TRANSIT,WALK,0.0,Work sub-tour +PNR-TRANSIT,WALK,0.0,Work sub-tour +KNR-TRANSIT,WALK,0.0,Work sub-tour +TNC-TRANSIT,WALK,0.0,Work sub-tour +TAXI,WALK,0.0,Work sub-tour +TNC-REG,WALK,0.0,Work sub-tour +TNC-SHARED,WALK,0.0,Work sub-tour +SCHOOLBUS,WALK,0.0,Work sub-tour +ESCOOTER,WALK,0.0,Work sub-tour +EBIKE,WALK,0.0,Work sub-tour +All,BIKE,2794.273584432741,Work sub-tour +DRIVEALONE,BIKE,0.0,Work sub-tour +SHARED2,BIKE,0.0,Work sub-tour +SHARED3,BIKE,0.0,Work sub-tour +WALK,BIKE,17.2840002974213,Work sub-tour +BIKE,BIKE,2776.98958413532,Work sub-tour +WALK-TRANSIT,BIKE,0.0,Work sub-tour +PNR-TRANSIT,BIKE,0.0,Work sub-tour +KNR-TRANSIT,BIKE,0.0,Work sub-tour +TNC-TRANSIT,BIKE,0.0,Work sub-tour +TAXI,BIKE,0.0,Work sub-tour +TNC-REG,BIKE,0.0,Work sub-tour +TNC-SHARED,BIKE,0.0,Work sub-tour +SCHOOLBUS,BIKE,0.0,Work sub-tour +ESCOOTER,BIKE,0.0,Work sub-tour +EBIKE,BIKE,0.0,Work sub-tour +All,WALK-TRANSIT,71.8051596339715,Work sub-tour +DRIVEALONE,WALK-TRANSIT,0.0,Work sub-tour +SHARED2,WALK-TRANSIT,0.0,Work sub-tour +SHARED3,WALK-TRANSIT,0.0,Work sub-tour +WALK,WALK-TRANSIT,0.0,Work sub-tour +BIKE,WALK-TRANSIT,0.0,Work sub-tour +WALK-TRANSIT,WALK-TRANSIT,57.4441277071772,Work sub-tour +PNR-TRANSIT,WALK-TRANSIT,0.0,Work sub-tour +KNR-TRANSIT,WALK-TRANSIT,0.0,Work sub-tour +TNC-TRANSIT,WALK-TRANSIT,0.0,Work sub-tour +TAXI,WALK-TRANSIT,0.0,Work sub-tour +TNC-REG,WALK-TRANSIT,0.0,Work sub-tour +TNC-SHARED,WALK-TRANSIT,0.0,Work sub-tour +SCHOOLBUS,WALK-TRANSIT,0.0,Work sub-tour +ESCOOTER,WALK-TRANSIT,0.0,Work sub-tour +EBIKE,WALK-TRANSIT,0.0,Work sub-tour +All,PNR-TRANSIT,0.0,Work sub-tour +DRIVEALONE,PNR-TRANSIT,0.0,Work sub-tour +SHARED2,PNR-TRANSIT,0.0,Work sub-tour +SHARED3,PNR-TRANSIT,0.0,Work sub-tour +WALK,PNR-TRANSIT,0.0,Work sub-tour +BIKE,PNR-TRANSIT,0.0,Work sub-tour +WALK-TRANSIT,PNR-TRANSIT,0.0,Work sub-tour +PNR-TRANSIT,PNR-TRANSIT,0.0,Work sub-tour +KNR-TRANSIT,PNR-TRANSIT,0.0,Work sub-tour +TNC-TRANSIT,PNR-TRANSIT,0.0,Work sub-tour +TAXI,PNR-TRANSIT,0.0,Work sub-tour +TNC-REG,PNR-TRANSIT,0.0,Work sub-tour +TNC-SHARED,PNR-TRANSIT,0.0,Work sub-tour +SCHOOLBUS,PNR-TRANSIT,0.0,Work sub-tour +ESCOOTER,PNR-TRANSIT,0.0,Work sub-tour +EBIKE,PNR-TRANSIT,0.0,Work sub-tour +All,KNR-TRANSIT,0.0,Work sub-tour +DRIVEALONE,KNR-TRANSIT,0.0,Work sub-tour +SHARED2,KNR-TRANSIT,0.0,Work sub-tour +SHARED3,KNR-TRANSIT,0.0,Work sub-tour +WALK,KNR-TRANSIT,0.0,Work sub-tour +BIKE,KNR-TRANSIT,0.0,Work sub-tour +WALK-TRANSIT,KNR-TRANSIT,0.0,Work sub-tour +PNR-TRANSIT,KNR-TRANSIT,0.0,Work sub-tour +KNR-TRANSIT,KNR-TRANSIT,0.0,Work sub-tour +TNC-TRANSIT,KNR-TRANSIT,0.0,Work sub-tour +TAXI,KNR-TRANSIT,0.0,Work sub-tour +TNC-REG,KNR-TRANSIT,0.0,Work sub-tour +TNC-SHARED,KNR-TRANSIT,0.0,Work sub-tour +SCHOOLBUS,KNR-TRANSIT,0.0,Work sub-tour +ESCOOTER,KNR-TRANSIT,0.0,Work sub-tour +EBIKE,KNR-TRANSIT,0.0,Work sub-tour +All,TNC-TRANSIT,0.0,Work sub-tour +DRIVEALONE,TNC-TRANSIT,0.0,Work sub-tour +SHARED2,TNC-TRANSIT,0.0,Work sub-tour +SHARED3,TNC-TRANSIT,0.0,Work sub-tour +WALK,TNC-TRANSIT,0.0,Work sub-tour +BIKE,TNC-TRANSIT,0.0,Work sub-tour +WALK-TRANSIT,TNC-TRANSIT,0.0,Work sub-tour +PNR-TRANSIT,TNC-TRANSIT,0.0,Work sub-tour +KNR-TRANSIT,TNC-TRANSIT,0.0,Work sub-tour +TNC-TRANSIT,TNC-TRANSIT,0.0,Work sub-tour +TAXI,TNC-TRANSIT,0.0,Work sub-tour +TNC-REG,TNC-TRANSIT,0.0,Work sub-tour +TNC-SHARED,TNC-TRANSIT,0.0,Work sub-tour +SCHOOLBUS,TNC-TRANSIT,0.0,Work sub-tour +ESCOOTER,TNC-TRANSIT,0.0,Work sub-tour +EBIKE,TNC-TRANSIT,0.0,Work sub-tour +All,TAXI,0.0,Work sub-tour +DRIVEALONE,TAXI,0.0,Work sub-tour +SHARED2,TAXI,0.0,Work sub-tour +SHARED3,TAXI,0.0,Work sub-tour +WALK,TAXI,0.0,Work sub-tour +BIKE,TAXI,0.0,Work sub-tour +WALK-TRANSIT,TAXI,0.0,Work sub-tour +PNR-TRANSIT,TAXI,0.0,Work sub-tour +KNR-TRANSIT,TAXI,0.0,Work sub-tour +TNC-TRANSIT,TAXI,0.0,Work sub-tour +TAXI,TAXI,0.0,Work sub-tour +TNC-REG,TAXI,0.0,Work sub-tour +TNC-SHARED,TAXI,0.0,Work sub-tour +SCHOOLBUS,TAXI,0.0,Work sub-tour +ESCOOTER,TAXI,0.0,Work sub-tour +EBIKE,TAXI,0.0,Work sub-tour +All,TNC-REG,0.0,Work sub-tour +DRIVEALONE,TNC-REG,0.0,Work sub-tour +SHARED2,TNC-REG,0.0,Work sub-tour +SHARED3,TNC-REG,0.0,Work sub-tour +WALK,TNC-REG,0.0,Work sub-tour +BIKE,TNC-REG,0.0,Work sub-tour +WALK-TRANSIT,TNC-REG,0.0,Work sub-tour +PNR-TRANSIT,TNC-REG,0.0,Work sub-tour +KNR-TRANSIT,TNC-REG,0.0,Work sub-tour +TNC-TRANSIT,TNC-REG,0.0,Work sub-tour +TAXI,TNC-REG,0.0,Work sub-tour +TNC-REG,TNC-REG,0.0,Work sub-tour +TNC-SHARED,TNC-REG,0.0,Work sub-tour +SCHOOLBUS,TNC-REG,0.0,Work sub-tour +ESCOOTER,TNC-REG,0.0,Work sub-tour +EBIKE,TNC-REG,0.0,Work sub-tour +All,TNC-SHARED,0.0,Work sub-tour +DRIVEALONE,TNC-SHARED,0.0,Work sub-tour +SHARED2,TNC-SHARED,0.0,Work sub-tour +SHARED3,TNC-SHARED,0.0,Work sub-tour +WALK,TNC-SHARED,0.0,Work sub-tour +BIKE,TNC-SHARED,0.0,Work sub-tour +WALK-TRANSIT,TNC-SHARED,0.0,Work sub-tour +PNR-TRANSIT,TNC-SHARED,0.0,Work sub-tour +KNR-TRANSIT,TNC-SHARED,0.0,Work sub-tour +TNC-TRANSIT,TNC-SHARED,0.0,Work sub-tour +TAXI,TNC-SHARED,0.0,Work sub-tour +TNC-REG,TNC-SHARED,0.0,Work sub-tour +TNC-SHARED,TNC-SHARED,0.0,Work sub-tour +SCHOOLBUS,TNC-SHARED,0.0,Work sub-tour +ESCOOTER,TNC-SHARED,0.0,Work sub-tour +EBIKE,TNC-SHARED,0.0,Work sub-tour +All,SCHOOLBUS,0.0,Work sub-tour +DRIVEALONE,SCHOOLBUS,0.0,Work sub-tour +SHARED2,SCHOOLBUS,0.0,Work sub-tour +SHARED3,SCHOOLBUS,0.0,Work sub-tour +WALK,SCHOOLBUS,0.0,Work sub-tour +BIKE,SCHOOLBUS,0.0,Work sub-tour +WALK-TRANSIT,SCHOOLBUS,0.0,Work sub-tour +PNR-TRANSIT,SCHOOLBUS,0.0,Work sub-tour +KNR-TRANSIT,SCHOOLBUS,0.0,Work sub-tour +TNC-TRANSIT,SCHOOLBUS,0.0,Work sub-tour +TAXI,SCHOOLBUS,0.0,Work sub-tour +TNC-REG,SCHOOLBUS,0.0,Work sub-tour +TNC-SHARED,SCHOOLBUS,0.0,Work sub-tour +SCHOOLBUS,SCHOOLBUS,0.0,Work sub-tour +ESCOOTER,SCHOOLBUS,0.0,Work sub-tour +EBIKE,SCHOOLBUS,0.0,Work sub-tour +All,ESCOOTER,0.0,Work sub-tour +DRIVEALONE,ESCOOTER,0.0,Work sub-tour +SHARED2,ESCOOTER,0.0,Work sub-tour +SHARED3,ESCOOTER,0.0,Work sub-tour +WALK,ESCOOTER,0.0,Work sub-tour +BIKE,ESCOOTER,0.0,Work sub-tour +WALK-TRANSIT,ESCOOTER,0.0,Work sub-tour +PNR-TRANSIT,ESCOOTER,0.0,Work sub-tour +KNR-TRANSIT,ESCOOTER,0.0,Work sub-tour +TNC-TRANSIT,ESCOOTER,0.0,Work sub-tour +TAXI,ESCOOTER,0.0,Work sub-tour +TNC-REG,ESCOOTER,0.0,Work sub-tour +TNC-SHARED,ESCOOTER,0.0,Work sub-tour +SCHOOLBUS,ESCOOTER,0.0,Work sub-tour +ESCOOTER,ESCOOTER,0.0,Work sub-tour +EBIKE,ESCOOTER,0.0,Work sub-tour +All,EBIKE,442.843575567199,Work sub-tour +DRIVEALONE,EBIKE,0.0,Work sub-tour +SHARED2,EBIKE,0.0,Work sub-tour +SHARED3,EBIKE,0.0,Work sub-tour +WALK,EBIKE,0.0,Work sub-tour +BIKE,EBIKE,0.0,Work sub-tour +WALK-TRANSIT,EBIKE,0.0,Work sub-tour +PNR-TRANSIT,EBIKE,0.0,Work sub-tour +KNR-TRANSIT,EBIKE,0.0,Work sub-tour +TNC-TRANSIT,EBIKE,0.0,Work sub-tour +TAXI,EBIKE,0.0,Work sub-tour +TNC-REG,EBIKE,0.0,Work sub-tour +TNC-SHARED,EBIKE,0.0,Work sub-tour +SCHOOLBUS,EBIKE,0.0,Work sub-tour +ESCOOTER,EBIKE,0.0,Work sub-tour +EBIKE,EBIKE,442.843575567199,Work sub-tour From 0e4078647429b6063bd1d882c9fce5645fa51a0d Mon Sep 17 00:00:00 2001 From: Bhargava Sana Date: Mon, 18 Nov 2024 17:30:42 -0800 Subject: [PATCH 86/86] Revert "Merge branch 'asim_13_no_sharrow' into ABM3_develop" This reverts commit efcea32a7c517822966da50bcd039356f6d8e6a2, reversing changes made to 01fa2da78f6b1fbea9d194b19d013fdd83ba9624. --- src/asim/configs/airport.CBX/logging.yaml | 3 +- .../configs/airport.CBX/trip_mode_choice.yaml | 4 + src/asim/configs/airport.SAN/logging.yaml | 3 +- .../configs/airport.SAN/trip_mode_choice.yaml | 4 + src/asim/configs/common/network_los.yaml | 6 +- .../configs/common_airport/network_los.yaml | 4 +- .../common_airport/shadow_pricing.yaml | 0 .../common_airport/tour_mode_choice.yaml | 17 +- src/asim/configs/crossborder/logging.yaml | 3 +- src/asim/configs/crossborder/network_los.yaml | 4 +- .../configs/crossborder/tour_mode_choice.yaml | 1 + .../configs/crossborder/tour_od_choice.yaml | 4 - src/asim/configs/resident/logging.yaml | 3 +- src/asim/configs/resident/settings.yaml | 3 +- src/asim/configs/resident/settings_mp.yaml | 2 +- .../configs/resident/trip_scheduling.yaml | 2 - .../configs/resident/vehicle_type_choice.yaml | 4 +- ...p_matrices_annotate_trips_preprocessor.csv | 2 +- src/asim/configs/visitor/logging.yaml | 3 +- src/asim/configs/visitor/shadow_pricing.yaml | 0 .../configs/visitor/tour_mode_choice.yaml | 1 + .../extensions/adjust_auto_operating_cost.py | 31 +- src/asim/extensions/airport_returns.py | 84 ++--- src/asim/extensions/av_ownership.py | 113 ++----- src/asim/extensions/check_disk_usage.py | 8 +- .../extensions/external_identification.py | 308 ++++++------------ .../extensions/external_location_choice.py | 236 ++++++-------- src/asim/extensions/transponder_ownership.py | 76 ++--- src/asim/extensions/update_tables.py | 71 ++-- .../resident/resident_preprocessing.py | 26 +- .../scripts/scenarioManagement/utilities.py | 8 +- src/asim/scripts/xborder/createPMSAomx.py | 2 +- src/main/emme/toolbox/master_run.py | 6 - src/main/emme/toolbox/utilities/properties.py | 9 - src/main/resources/DataExporter.bat | 4 +- src/main/resources/RunViz.bat | 4 +- src/main/resources/convertSkimsToOMXZ.cmd | 14 - src/main/resources/export_hwy_shape.cmd | 6 +- src/main/resources/manage_skim_mem.cmd | 6 +- src/main/resources/runSandagAbm_2zoneSkim.cmd | 4 +- .../resources/runSandagAbm_ActivitySim.cmd | 4 +- .../runSandagAbm_ActivitySimAirport.cmd | 7 +- .../runSandagAbm_ActivitySimResident.cmd | 4 +- .../runSandagAbm_ActivitySimVisitor.cmd | 4 +- .../runSandagAbm_ActivitySimXborder.cmd | 4 +- ...nSandagAbm_ActivitySimXborderWaitModel.cmd | 4 +- .../resources/runSandagAbm_Preprocessing.cmd | 8 +- .../resources/runSandag_ScenManagement.cmd | 4 +- src/main/resources/runValidation.bat | 2 +- src/main/resources/sandag_abm.properties | 1 - src/main/resources/write_to_datalake.cmd | 6 +- 51 files changed, 418 insertions(+), 719 deletions(-) delete mode 100644 src/asim/configs/common_airport/shadow_pricing.yaml delete mode 100644 src/asim/configs/visitor/shadow_pricing.yaml delete mode 100644 src/main/resources/convertSkimsToOMXZ.cmd diff --git a/src/asim/configs/airport.CBX/logging.yaml b/src/asim/configs/airport.CBX/logging.yaml index b422d52ac..7742c3ece 100644 --- a/src/asim/configs/airport.CBX/logging.yaml +++ b/src/asim/configs/airport.CBX/logging.yaml @@ -28,8 +28,7 @@ logging: logfile: class: logging.FileHandler - filename: - get_log_file_path: 'activitysim.log' + filename: !!python/object/apply:activitysim.core.config.log_file_path ['activitysim.log'] mode: w formatter: fileFormatter level: NOTSET diff --git a/src/asim/configs/airport.CBX/trip_mode_choice.yaml b/src/asim/configs/airport.CBX/trip_mode_choice.yaml index da57c7725..9f0160d5b 100644 --- a/src/asim/configs/airport.CBX/trip_mode_choice.yaml +++ b/src/asim/configs/airport.CBX/trip_mode_choice.yaml @@ -285,6 +285,10 @@ annotate_trips: # to reduce memory needs filter chooser table to these fields TOURS_MERGED_CHOOSER_COLUMNS: + - hhsize + - age + - num_adults + - auto_ownership - number_of_participants - tour_category - parent_tour_id diff --git a/src/asim/configs/airport.SAN/logging.yaml b/src/asim/configs/airport.SAN/logging.yaml index b422d52ac..7742c3ece 100644 --- a/src/asim/configs/airport.SAN/logging.yaml +++ b/src/asim/configs/airport.SAN/logging.yaml @@ -28,8 +28,7 @@ logging: logfile: class: logging.FileHandler - filename: - get_log_file_path: 'activitysim.log' + filename: !!python/object/apply:activitysim.core.config.log_file_path ['activitysim.log'] mode: w formatter: fileFormatter level: NOTSET diff --git a/src/asim/configs/airport.SAN/trip_mode_choice.yaml b/src/asim/configs/airport.SAN/trip_mode_choice.yaml index 077068e2e..93e0f3dfb 100644 --- a/src/asim/configs/airport.SAN/trip_mode_choice.yaml +++ b/src/asim/configs/airport.SAN/trip_mode_choice.yaml @@ -286,6 +286,10 @@ annotate_trips: # to reduce memory needs filter chooser table to these fields TOURS_MERGED_CHOOSER_COLUMNS: + - hhsize + - age + - num_adults + - auto_ownership - number_of_participants - tour_category - parent_tour_id diff --git a/src/asim/configs/common/network_los.yaml b/src/asim/configs/common/network_los.yaml index 405280099..505447ec6 100644 --- a/src/asim/configs/common/network_los.yaml +++ b/src/asim/configs/common/network_los.yaml @@ -12,8 +12,8 @@ write_skim_cache: False # series15 taz_skims: - - traffic_skims*.omxz - - transit_skims*.omxz + - traffic_skims*.omx + - transit_skims*.omx - dest_pmsa.omx - dest_poi.omx @@ -24,7 +24,7 @@ maz_to_maz: - maz_maz_walk.csv - maz_maz_bike.csv # maz_to_maz blending distance (missing or 0 means no blending) - # max_blend_distance: 2 + max_blend_distance: 2 skim_time_periods: diff --git a/src/asim/configs/common_airport/network_los.yaml b/src/asim/configs/common_airport/network_los.yaml index eb4290b62..96ce377c7 100644 --- a/src/asim/configs/common_airport/network_los.yaml +++ b/src/asim/configs/common_airport/network_los.yaml @@ -18,8 +18,8 @@ write_skim_cache: False trace_tvpb_cache_as_csv: False taz_skims: - - traffic_skims*.omxz - - transit_skims*.omxz + - traffic_skims*.omx + - transit_skims*.omx - dest_pmsa.omx - dest_poi.omx diff --git a/src/asim/configs/common_airport/shadow_pricing.yaml b/src/asim/configs/common_airport/shadow_pricing.yaml deleted file mode 100644 index e69de29bb..000000000 diff --git a/src/asim/configs/common_airport/tour_mode_choice.yaml b/src/asim/configs/common_airport/tour_mode_choice.yaml index a8aff4121..d993f3497 100644 --- a/src/asim/configs/common_airport/tour_mode_choice.yaml +++ b/src/asim/configs/common_airport/tour_mode_choice.yaml @@ -1,19 +1,3 @@ -LOGIT_TYPE: NL - -NESTS: - name: root - coefficient: 1 - alternatives: - - DRIVEALONE - - SHARED2 - - SHARED3 - - WALK - - BIKE - - WALK_TRANSIT - - TAXI - - TNC_SINGLE - - TNC_SHARED - SPEC: tour_mode_choice.csv COEFFICIENTS: tour_mode_choice_coefficients.csv COEFFICIENT_TEMPLATE: tour_mode_choice_coefficients_template.csv @@ -21,6 +5,7 @@ COEFFICIENT_TEMPLATE: tour_mode_choice_coefficients_template.csv LOGSUM_CHOOSER_COLUMNS: - person_id +CHOICE_COL_NAME: tour_mode MODE_CHOICE_LOGSUM_COLUMN_NAME: mode_choice_logsum COMPUTE_TRIP_MODE_CHOICE_LOGSUMS: False diff --git a/src/asim/configs/crossborder/logging.yaml b/src/asim/configs/crossborder/logging.yaml index d607c6b90..df20cf0c7 100644 --- a/src/asim/configs/crossborder/logging.yaml +++ b/src/asim/configs/crossborder/logging.yaml @@ -28,8 +28,7 @@ logging: logfile: class: logging.FileHandler - filename: - get_log_file_path: 'activitysim.log' + filename: !!python/object/apply:activitysim.core.config.log_file_path ['activitysim.log'] mode: w formatter: fileFormatter level: NOTSET diff --git a/src/asim/configs/crossborder/network_los.yaml b/src/asim/configs/crossborder/network_los.yaml index 3314dab46..791dc94bd 100644 --- a/src/asim/configs/crossborder/network_los.yaml +++ b/src/asim/configs/crossborder/network_los.yaml @@ -11,8 +11,8 @@ read_skim_cache: False write_skim_cache: False taz_skims: - - traffic_skims*.omxz - - transit_skims*.omxz + - traffic_skims*.omx + - transit_skims*.omx - dest_pmsa.omx - dest_poi.omx diff --git a/src/asim/configs/crossborder/tour_mode_choice.yaml b/src/asim/configs/crossborder/tour_mode_choice.yaml index 222064ea7..7e067bbd4 100644 --- a/src/asim/configs/crossborder/tour_mode_choice.yaml +++ b/src/asim/configs/crossborder/tour_mode_choice.yaml @@ -65,6 +65,7 @@ LOGSUM_CHOOSER_COLUMNS: - work_time_factor - non_work_time_factor +CHOICE_COL_NAME: tour_mode MODE_CHOICE_LOGSUM_COLUMN_NAME: mode_choice_logsum COMPUTE_TRIP_MODE_CHOICE_LOGSUMS: True diff --git a/src/asim/configs/crossborder/tour_od_choice.yaml b/src/asim/configs/crossborder/tour_od_choice.yaml index 7bdeab43c..2d8a69a09 100644 --- a/src/asim/configs/crossborder/tour_od_choice.yaml +++ b/src/asim/configs/crossborder/tour_od_choice.yaml @@ -62,10 +62,6 @@ SEGMENTS: LOGSUM_SETTINGS: tour_mode_choice LOGSUM_PREPROCESSOR: preprocessor -compute_settings: - protect_columns: - - origin_destination - CONSTANTS: tecate_open_per: 5 tecate_close_per: 40 diff --git a/src/asim/configs/resident/logging.yaml b/src/asim/configs/resident/logging.yaml index b422d52ac..7742c3ece 100644 --- a/src/asim/configs/resident/logging.yaml +++ b/src/asim/configs/resident/logging.yaml @@ -28,8 +28,7 @@ logging: logfile: class: logging.FileHandler - filename: - get_log_file_path: 'activitysim.log' + filename: !!python/object/apply:activitysim.core.config.log_file_path ['activitysim.log'] mode: w formatter: fileFormatter level: NOTSET diff --git a/src/asim/configs/resident/settings.yaml b/src/asim/configs/resident/settings.yaml index 42c7beed0..57bf1bec5 100644 --- a/src/asim/configs/resident/settings.yaml +++ b/src/asim/configs/resident/settings.yaml @@ -128,7 +128,7 @@ distributed_time_factor_nonwork_stddev: 0.6 distributed_time_factor_min: 0.1 distributed_time_factor_max: 10 -resume_after: write_trip_matrices +resume_after: models: ### mp_init_proto_pop (single process) @@ -187,5 +187,4 @@ models: - write_data_dictionary - track_skim_usage - write_trip_matrices - - update_tables - write_tables diff --git a/src/asim/configs/resident/settings_mp.yaml b/src/asim/configs/resident/settings_mp.yaml index 9c840e2f4..4863b3024 100644 --- a/src/asim/configs/resident/settings_mp.yaml +++ b/src/asim/configs/resident/settings_mp.yaml @@ -99,7 +99,7 @@ multiprocess_steps: slice: tables: - accessibility - exclude: True # this is needed so landuse (i.e. destinations) doesn't get split + except: True # this is needed so landuse (i.e. destinations) doesn't get split - name: mp_households begin: av_ownership slice: diff --git a/src/asim/configs/resident/trip_scheduling.yaml b/src/asim/configs/resident/trip_scheduling.yaml index 124021c24..5bca29c19 100644 --- a/src/asim/configs/resident/trip_scheduling.yaml +++ b/src/asim/configs/resident/trip_scheduling.yaml @@ -3,8 +3,6 @@ # e.g. depart_alt_base = 5 means first column (column 0) represents period 5 DEPART_ALT_BASE: 0 -logic_version: 2 - MAX_ITERATIONS: 100 #FAILFIX: drop_and_cleanup diff --git a/src/asim/configs/resident/vehicle_type_choice.yaml b/src/asim/configs/resident/vehicle_type_choice.yaml index 010da1f00..8ed272bf3 100644 --- a/src/asim/configs/resident/vehicle_type_choice.yaml +++ b/src/asim/configs/resident/vehicle_type_choice.yaml @@ -2,6 +2,7 @@ SPEC: vehicle_type_choice_op4.csv COEFFICIENTS: vehicle_type_choice_op4_coefficients.csv +ALTS: vehicle_type_choice_op4_alternatives.csv # SPEC: vehicle_type_choice_op2.csv # COEFFICIENTS: vehicle_type_choice_op2_coefficients.csv @@ -94,7 +95,7 @@ alts_preprocessor: SPEC: vehicle_type_choice_annotate_alts_preprocessor DF: alts_wide -COLS_TO_INCLUDE_IN_ALTS_TABLE: +COLS_TO_INCLUDE_IN_ALTERNATIVES_TABLE: - age - fuel_type_num_coded - body_type_num_coded @@ -105,7 +106,6 @@ COLS_TO_INCLUDE_IN_ALTS_TABLE: - logged_makes - logged_chargers_per_capita - SAN - - NewPrice # annotate_persons: # SPEC: annotate_persons_vehicle_type diff --git a/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv b/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv index ba637ff7b..dd68f01dc 100644 --- a/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv +++ b/src/asim/configs/resident/write_trip_matrices_annotate_trips_preprocessor.csv @@ -475,7 +475,7 @@ Description,Target,Expression ,trip_veh_body,"reindex(tours.selected_vehicle.str.split('_').str[0], trips.tour_id)" ,_trip_veh_age,"reindex(tours.selected_vehicle.str.split('_').str[1], trips.tour_id)" ,_trip_veh_age,"_trip_veh_age.replace('hh', -9)" -,trip_veh_age,"_trip_veh_age.fillna(-9).astype(int)" +,trip_veh_age,"_trip_veh_age.fillna(-9)" ,trip_veh_fueltype,"reindex(tours.selected_vehicle.str.split('_').str[2], trips.tour_id)" #,, ,origin_purpose," ""null""" diff --git a/src/asim/configs/visitor/logging.yaml b/src/asim/configs/visitor/logging.yaml index b422d52ac..7742c3ece 100644 --- a/src/asim/configs/visitor/logging.yaml +++ b/src/asim/configs/visitor/logging.yaml @@ -28,8 +28,7 @@ logging: logfile: class: logging.FileHandler - filename: - get_log_file_path: 'activitysim.log' + filename: !!python/object/apply:activitysim.core.config.log_file_path ['activitysim.log'] mode: w formatter: fileFormatter level: NOTSET diff --git a/src/asim/configs/visitor/shadow_pricing.yaml b/src/asim/configs/visitor/shadow_pricing.yaml deleted file mode 100644 index e69de29bb..000000000 diff --git a/src/asim/configs/visitor/tour_mode_choice.yaml b/src/asim/configs/visitor/tour_mode_choice.yaml index 82bd97ebc..430d1be2a 100644 --- a/src/asim/configs/visitor/tour_mode_choice.yaml +++ b/src/asim/configs/visitor/tour_mode_choice.yaml @@ -53,6 +53,7 @@ LOGSUM_CHOOSER_COLUMNS: - person_id - demographic_segment +CHOICE_COL_NAME: tour_mode MODE_CHOICE_LOGSUM_COLUMN_NAME: mode_choice_logsum COMPUTE_TRIP_MODE_CHOICE_LOGSUMS: False diff --git a/src/asim/extensions/adjust_auto_operating_cost.py b/src/asim/extensions/adjust_auto_operating_cost.py index 0020258cd..cf9cd07e4 100644 --- a/src/asim/extensions/adjust_auto_operating_cost.py +++ b/src/asim/extensions/adjust_auto_operating_cost.py @@ -3,32 +3,29 @@ import numpy as np import pandas as pd -from activitysim.core import workflow +from activitysim.core import( + config, + inject, + pipeline, +) logger = logging.getLogger(__name__) - -@workflow.step -def adjust_auto_operating_cost(state: workflow.State, vehicles: pd.DataFrame): - """ - Adjusts the `auto_operating_cost` field in the vehicles table +@inject.step() +def adjust_auto_operating_cost(vehicles): + """Adjusts the `auto_operating_cost` field in the vehicles table so that the average is a desired value set as costPerMile in the settings Parameters ---------- - vehicles : pd.DataFrame + vehicles : orca.DataFrameWrapper """ - target_auto_operating_cost = state.get_global_constants()["costPerMile"] + target_auto_operating_cost = config.get_global_constants()["costPerMile"] + vehicles = vehicles.to_frame() - adjustment_factor = ( - target_auto_operating_cost / vehicles["auto_operating_cost"].mean() - ) - logger.info( - "Adjusting auto operating costs in vehicles table by a factor of {}".format( - adjustment_factor - ) - ) + adjustment_factor = target_auto_operating_cost / vehicles["auto_operating_cost"].mean() + logger.info("Adjusting auto operating costs in vehicles table by a factor of {}".format(adjustment_factor)) vehicles["auto_operating_cost"] *= adjustment_factor - state.add_table("vehicles", vehicles) + pipeline.replace_table("vehicles", vehicles) \ No newline at end of file diff --git a/src/asim/extensions/airport_returns.py b/src/asim/extensions/airport_returns.py index 18a6ee677..5b18554bd 100644 --- a/src/asim/extensions/airport_returns.py +++ b/src/asim/extensions/airport_returns.py @@ -3,67 +3,39 @@ import logging import numpy as np -import pandas as pd -from activitysim.core import ( - config, - tracing, - workflow, -) -from activitysim.core.configuration.base import PydanticReadable +from activitysim.core import tracing +from activitysim.core import config +from activitysim.core import pipeline +from activitysim.core import simulate +from activitysim.core import inject +from activitysim.core import expressions -logger = logging.getLogger(__name__) +from activitysim.abm.models.util import estimation -class AirportReturnSettings(PydanticReadable): - """ - Settings for the `airport_returns` component - """ - RETURN_MODE_SEGMENTS: list[str] = [] - """Segments to determine the return mode""" +logger = logging.getLogger(__name__) -@workflow.step -def airport_returns( - state: workflow.State, - trips: pd.DataFrame, - model_settings: AirportReturnSettings | None = None, - model_settings_file_name: str = "airport_returns.yaml", - trace_label: str = "airport_returns", - trace_hh_id: bool = False, -): +@inject.step() +def airport_returns(trips, chunk_size, trace_hh_id): """ This model updates the airport trip list to include return trips for drop off passengers. The output is a larger trip list duplicating the trips which are dropped off at the airport to return to their origin. The main interface to the airport returns model is the airport_returns() function. - - Parameters - ---------- - state : workflow.State - trips : DataFrame - This table will be updated with return trips - model_settings: AirportReturnSettings, optional - The settings used in this model component. If not provided, they are - loaded out of the configs directory YAML file referenced by - the `model_settings_file_name` argument. - model_settings_file_name: str, default "airport_returns.yaml" - This is where model setting are found if `model_settings` is not given - explicitly. - trace_label : str, default "airport_returns" - This label is used for various tracing purposes. - trace_hh_id: bool = False - Household ID for tracing """ - logger.info("Running %s with %d trips", trace_label, len(trips)) - if model_settings is None: - model_settings = AirportReturnSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) + trace_label = "airport_returns" + model_settings_file_name = "airport_returns.yaml" - returning_modes = model_settings.RETURN_MODE_SEGMENTS - trip_returns = trips.copy() + trip_list = trips.to_frame() + logger.info("Running %s with %d trips", trace_label, len(trip_list)) + + model_settings = config.read_model_settings(model_settings_file_name) + + returning_modes = model_settings["RETURN_MODE_SEGMENTS"] + print(trips.trip_mode.unique()) + trip_returns = trip_list.copy() trip_returns = trip_returns[trip_returns.trip_mode.isin(returning_modes)] trip_returns["return_origin"] = trip_returns["destination"] trip_returns["return_dest"] = trip_returns["origin"] @@ -76,15 +48,13 @@ def airport_returns( lambda n: "{}_return".format(n) ) trip_returns = trip_returns.drop(["return_origin", "return_dest"], axis=1) - trip_returns["trip_id"] = np.arange( - trips.index.max() + 1, trips.index.max() + 1 + len(trip_returns) - ) - trip_returns = trip_returns.set_index("trip_id") - trips = trips.append(trip_returns) + trip_returns['trip_id'] = np.arange(trip_list.index.max() +1, trip_list.index.max() +1 + len(trip_returns)) + trip_returns = trip_returns.set_index('trip_id') + trip_list = trip_list.append(trip_returns) - state.add_table("trips", trips) + pipeline.replace_table("trips", trip_list) - # tracing.print_summary("airport_returns", trips.returns, value_counts=True) + # tracing.print_summary('airport_returns', trips.returns, value_counts=True) - if state.settings.trace_hh_id: - state.tracing.trace_df(trips, label=trace_label, warn_if_empty=True) + if trace_hh_id: + tracing.trace_df(trip_list, label=trace_label, warn_if_empty=True) diff --git a/src/asim/extensions/av_ownership.py b/src/asim/extensions/av_ownership.py index 7b7d74c44..5947a4e79 100644 --- a/src/asim/extensions/av_ownership.py +++ b/src/asim/extensions/av_ownership.py @@ -3,79 +3,35 @@ import logging import numpy as np -import pandas as pd - -from activitysim.core import ( - config, - expressions, - estimation, - simulate, - tracing, - workflow, -) -from activitysim.core.configuration.base import PreprocessorSettings, PydanticReadable -from activitysim.core.configuration.logit import LogitComponentSettings - -logger = logging.getLogger("activitysim") +from activitysim.abm.models.util import estimation +from activitysim.core import config, expressions, inject, pipeline, simulate, tracing -class AVOwnershipSettings(LogitComponentSettings, extra="forbid"): - """ - Settings for the `transit_pass_subsidy` component. - """ - - preprocessor: PreprocessorSettings | None = None - """Setting for the preprocessor.""" +logger = logging.getLogger("activitysim") - AV_OWNERSHIP_ALT: int = 0 - """The column index number of the spec file for owning an autonomous vehicle.""" - # iterative what-if analysis example - # omit these settings to not iterate - AV_OWNERSHIP_ITERATIONS: int | None = 1 - """Maximum number of auto-calibration iterations to run.""" - AV_OWNERSHIP_TARGET_PERCENT: float | None = 0.0 - """Target percent of households owning an autonomous vehicle.""" - AV_OWNERSHIP_TARGET_PERCENT_TOLERANCE: float | None = 0.01 - """ - Tolerance for the target percent of households owning an autonomous vehicle. - Auto-calibration iterations will stop after achieving tolerance or hitting the max number. - """ - AV_OWNERSHIP_COEFFICIENT_CONSTANT: str | None = "coef_av_target_share" - """Name of the coefficient to adjust in each auto-calibration iteration.""" - - -@workflow.step -def av_ownership( - state: workflow.State, - households_merged: pd.DataFrame, - households: pd.DataFrame, - model_settings: AVOwnershipSettings | None = None, - model_settings_file_name: str = "av_ownership.yaml", - trace_label: str = "av_ownership", - trace_hh_id: bool = False, -) -> None: +@inject.step() +def av_ownership(households_merged, households, chunk_size, trace_hh_id): """ This model predicts whether a household owns an autonomous vehicle. The output from this model is TRUE or FALSE. """ - if model_settings is None: - model_settings = AVOwnershipSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) + trace_label = "av_ownership" + model_settings_file_name = "av_ownership.yaml" + + choosers = households_merged.to_frame() + model_settings = config.read_model_settings(model_settings_file_name) - choosers = households_merged logger.info("Running %s with %d households", trace_label, len(choosers)) - estimator = estimation.manager.begin_estimation(state, "av_ownership") + estimator = estimation.manager.begin_estimation("av_ownership") constants = config.get_model_constants(model_settings) - av_ownership_alt = model_settings.AV_OWNERSHIP_ALT + av_ownership_alt = model_settings.get("AV_OWNERSHIP_ALT", 0) # - preprocessor - preprocessor_settings = model_settings.preprocessor + preprocessor_settings = model_settings.get("preprocessor", None) if preprocessor_settings: locals_d = {} @@ -83,15 +39,14 @@ def av_ownership( locals_d.update(constants) expressions.assign_columns( - state, df=choosers, model_settings=preprocessor_settings, locals_dict=locals_d, trace_label=trace_label, ) - model_spec = state.filesystem.read_model_spec(file_name=model_settings.SPEC) - coefficients_df = state.filesystem.read_model_coefficients(model_settings) + model_spec = simulate.read_model_spec(file_name=model_settings["SPEC"]) + coefficients_df = simulate.read_model_coefficients(model_settings) nest_spec = config.get_logit_model_settings(model_settings) if estimator: @@ -101,23 +56,14 @@ def av_ownership( estimator.write_choosers(choosers) # - iterative single process what-if adjustment if specified - iterations = model_settings.AV_OWNERSHIP_ITERATIONS - iterations_coefficient_constant = model_settings.AV_OWNERSHIP_COEFFICIENT_CONSTANT - iterations_target_percent = model_settings.AV_OWNERSHIP_TARGET_PERCENT - iterations_target_percent_tolerance = ( - model_settings.AV_OWNERSHIP_TARGET_PERCENT_TOLERANCE + iterations = model_settings.get("AV_OWNERSHIP_ITERATIONS", 1) + iterations_coefficient_constant = model_settings.get( + "AV_OWNERSHIP_COEFFICIENT_CONSTANT", None + ) + iterations_target_percent = model_settings.get("AV_OWNERSHIP_TARGET_PERCENT", None) + iterations_target_percent_tolerance = model_settings.get( + "AV_OWNERSHIP_TARGET_PERCENT_TOLERANCE", 0.01 ) - - # check to make sure all required settings are specified - assert ( - iterations_coefficient_constant is not None if (iterations > 0) else True - ), "AV_OWNERSHIP_COEFFICIENT_CONSTANT required if AV_OWNERSHIP_ITERATIONS is specified" - assert ( - iterations_target_percent is not None if (iterations > 0) else True - ), "AV_OWNERSHIP_TARGET_PERCENT required if AV_OWNERSHIP_ITERATIONS is specified" - assert ( - iterations_target_percent_tolerance is not None if (iterations > 0) else True - ), "AV_OWNERSHIP_TARGET_PERCENT_TOLERANCE required if AV_OWNERSHIP_ITERATIONS is specified" for iteration in range(iterations): @@ -129,24 +75,22 @@ def av_ownership( ) # re-read spec to reset substitution - model_spec = state.filesystem.read_model_spec(file_name=model_settings.SPEC) - model_spec = simulate.eval_coefficients( - state, model_spec, coefficients_df, estimator - ) + model_spec = simulate.read_model_spec(file_name=model_settings["SPEC"]) + model_spec = simulate.eval_coefficients(model_spec, coefficients_df, estimator) choices = simulate.simple_simulate( - state, choosers=choosers, spec=model_spec, nest_spec=nest_spec, locals_d=constants, + chunk_size=chunk_size, trace_label=trace_label, trace_choice_name="av_ownership", estimator=estimator, - compute_settings=model_settings.compute_settings, ) if iterations_target_percent is not None: + # choices_for_filter = choices[choosers[iterations_chooser_filter]] current_percent = (choices == av_ownership_alt).sum() / len(choosers) logger.info( @@ -195,13 +139,14 @@ def av_ownership( estimator.write_override_choices(choices) estimator.end_estimation() + households = households.to_frame() households["av_ownership"] = ( choices.reindex(households.index).fillna(0).astype(bool) ) - state.add_table("households", households) + pipeline.replace_table("households", households) tracing.print_summary("av_ownership", households.av_ownership, value_counts=True) if trace_hh_id: - state.tracing.trace_df(households, label=trace_label, warn_if_empty=True) + tracing.trace_df(households, label=trace_label, warn_if_empty=True) diff --git a/src/asim/extensions/check_disk_usage.py b/src/asim/extensions/check_disk_usage.py index 43b1b3fbf..2e241d271 100644 --- a/src/asim/extensions/check_disk_usage.py +++ b/src/asim/extensions/check_disk_usage.py @@ -4,13 +4,13 @@ import logging import win32com.client as win32 -from activitysim.core import workflow +from activitysim.core import inject logger = logging.getLogger("activitysim") -@workflow.step() -def check_disk_usage(state: workflow.State): - output_dir = state.get_injectable("output_dir") +@inject.step() +def check_disk_usage(): + output_dir = inject.get_injectable("output_dir") path = os.path.abspath(os.path.join(output_dir, "..", "..")) disk_usage = win32.Dispatch('Scripting.FileSystemObject').GetFolder(path).Size logger.info("Disk space usage: %f GB" % (disk_usage / (1024 ** 3))) \ No newline at end of file diff --git a/src/asim/extensions/external_identification.py b/src/asim/extensions/external_identification.py index 384798aa0..51edb02ff 100644 --- a/src/asim/extensions/external_identification.py +++ b/src/asim/extensions/external_identification.py @@ -5,46 +5,22 @@ import numpy as np import pandas as pd -from pydantic import validator - -from activitysim.core import ( - config, - expressions, - los, - estimation, - simulate, - tracing, - workflow, -) -from activitysim.core.configuration.logit import LogitComponentSettings -from activitysim.core.configuration.base import PreprocessorSettings +from activitysim.core import tracing +from activitysim.core import config +from activitysim.core import pipeline +from activitysim.core import simulate +from activitysim.core import inject +from activitysim.core import expressions -logger = logging.getLogger(__name__) - - -class ExternalIdentificationSettings(LogitComponentSettings, extra="forbid"): - """ - Settings for the `external_identification` component. - """ +from activitysim.abm.models.util import estimation - CHOOSER_FILTER_COLUMN_NAME: str | None = None - """Column name which selects choosers.""" - - EXTERNAL_COL_NAME: str | None = None - """Adds this column and set to True if model selects external""" - - INTERNAL_COL_NAME: str | None = None - """Column name set to True if not external but CHOOSER_FILTER_COLUMN_NAME is True""" - - preprocessor: PreprocessorSettings | None = None +logger = logging.getLogger(__name__) -def determine_closest_external_station( - state, choosers, skim_dict, origin_col="home_zone_id" -): +def determine_closest_external_station(choosers, skim_dict, origin_col="home_zone_id"): unique_origin_zones = choosers[origin_col].unique() - landuse = state.get_table("land_use") + landuse = inject.get_table("land_use").to_frame() ext_zones = landuse[landuse.external_MAZ > 0].index.to_numpy() choosers["closest_external_zone"] = -1 @@ -70,13 +46,7 @@ def determine_closest_external_station( def external_identification( - state, - model_settings, - estimator, - choosers, - network_los, - model_settings_file_name, - trace_label, + model_settings, estimator, choosers, network_los, chunk_size, trace_label ): constants = config.get_model_constants(model_settings) @@ -84,62 +54,52 @@ def external_identification( locals_d = {} if constants is not None: locals_d.update(constants) - locals_d.update({"land_use": state.get_table("land_use")}) + locals_d.update({"land_use": inject.get_table("land_use").to_frame()}) skim_dict = network_los.get_default_skim_dict() - choosers = determine_closest_external_station(state, choosers, skim_dict) + # print('skim_dict', skim_dict) + choosers = determine_closest_external_station(choosers, skim_dict) # - preprocessor - preprocessor_settings = model_settings.preprocessor + preprocessor_settings = model_settings.get("preprocessor", None) if preprocessor_settings: expressions.assign_columns( - state, df=choosers, model_settings=preprocessor_settings, locals_dict=locals_d, trace_label=trace_label, ) - model_spec = state.filesystem.read_model_spec(file_name=model_settings.SPEC) - coefficients_df = state.filesystem.read_model_coefficients(model_settings) - model_spec = simulate.eval_coefficients( - state, model_spec, coefficients_df, estimator - ) + model_spec = simulate.read_model_spec(file_name=model_settings["SPEC"]) + coefficients_df = simulate.read_model_coefficients(model_settings) + model_spec = simulate.eval_coefficients(model_spec, coefficients_df, estimator) nest_spec = config.get_logit_model_settings(model_settings) if estimator: - estimator.write_model_settings(model_settings, model_settings_file_name) + estimator.write_model_settings(model_settings, model_settings['_yaml_file_name']) estimator.write_spec(model_settings) estimator.write_coefficients(coefficients_df, model_settings) estimator.write_choosers(choosers) choices = simulate.simple_simulate( - state, choosers=choosers, spec=model_spec, nest_spec=nest_spec, locals_d=locals_d, + chunk_size=chunk_size, trace_label=trace_label, trace_choice_name=trace_label, estimator=estimator, - compute_settings=model_settings.compute_settings, ) return choices -@workflow.step +@inject.step() def external_worker_identification( - state: workflow.State, - persons: pd.DataFrame, - persons_merged: pd.DataFrame, - network_los: los.Network_LOS, - model_settings: ExternalIdentificationSettings | None = None, - model_settings_file_name: str = "external_worker_identification.yaml", - trace_label: str = "external_worker_identification", - trace_hh_id: bool = False, -) -> None: + persons_merged, persons, network_los, chunk_size, trace_hh_id +): """ This model predicts the whether a worker has an external work location. The output from this model is TRUE (if external) or FALSE (if internal). @@ -147,33 +107,25 @@ def external_worker_identification( The main interface to the external worker model is the external_worker_identification() function. This function is registered as an orca step in the example Pipeline. """ - if model_settings is None: - model_settings = ExternalIdentificationSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - estimator = estimation.manager.begin_estimation(state, trace_label) + trace_label = "external_worker_identification" + model_settings_file_name = "external_worker_identification.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + model_settings['_yaml_file_name'] = model_settings_file_name - filter_col = model_settings.CHOOSER_FILTER_COLUMN_NAME - if filter_col is None: - choosers = persons_merged - else: - choosers = persons_merged[persons_merged[filter_col]] + estimator = estimation.manager.begin_estimation(trace_label) + + choosers = persons_merged.to_frame() + filter_col = model_settings.get("CHOOSER_FILTER_COLUMN_NAME") + choosers = choosers[choosers[filter_col]] logger.info("Running %s with %d persons", trace_label, len(choosers)) choices = external_identification( - state, - model_settings, - estimator, - choosers, - network_los, - model_settings_file_name, - trace_label, + model_settings, estimator, choosers, network_los, chunk_size, trace_label ) - external_col_name = model_settings.EXTERNAL_COL_NAME - internal_col_name = model_settings.INTERNAL_COL_NAME + external_col_name = model_settings["EXTERNAL_COL_NAME"] + internal_col_name = model_settings["INTERNAL_COL_NAME"] if estimator: estimator.write_choices(choices) @@ -181,34 +133,26 @@ def external_worker_identification( estimator.write_override_choices(choices) estimator.end_estimation() - if external_col_name is not None: - persons[external_col_name] = ( - (choices == 0).reindex(persons.index).fillna(False).astype(bool) - ) - if internal_col_name is not None: - persons[internal_col_name] = persons[filter_col] & ~persons[external_col_name] + persons = persons.to_frame() + persons[external_col_name] = ( + (choices == 0).reindex(persons.index).fillna(False).astype(bool) + ) + persons[internal_col_name] = persons[filter_col] & ~persons[external_col_name] - state.add_table("persons", persons) + pipeline.replace_table("persons", persons) tracing.print_summary( external_col_name, persons[external_col_name], value_counts=True ) if trace_hh_id: - state.tracing.trace_df(persons, label=trace_label, warn_if_empty=True) + tracing.trace_df(persons, label=trace_label, warn_if_empty=True) -@workflow.step +@inject.step() def external_student_identification( - state: workflow.State, - persons: pd.DataFrame, - persons_merged: pd.DataFrame, - network_los: los.Network_LOS, - model_settings: ExternalIdentificationSettings | None = None, - model_settings_file_name: str = "external_student_identification.yaml", - trace_label: str = "external_student_identification", - trace_hh_id: bool = False, -) -> None: + persons_merged, persons, network_los, chunk_size, trace_hh_id +): """ This model predicts the whether a student has an external work location. The output from this model is TRUE (if external) or FALSE (if internal). @@ -217,33 +161,23 @@ def external_student_identification( This function is registered as an orca step in the example Pipeline. """ - if model_settings is None: - model_settings = ExternalIdentificationSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) + trace_label = "external_student_identification" + model_settings_file_name = "external_student_identification.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + model_settings['_yaml_file_name'] = model_settings_file_name - estimator = estimation.manager.begin_estimation(state, trace_label) + estimator = estimation.manager.begin_estimation(trace_label) - filter_col = model_settings.CHOOSER_FILTER_COLUMN_NAME - if filter_col is None: - choosers = persons_merged - else: - choosers = persons_merged[persons_merged[filter_col]] - logger.info("Running %s with %d persons", trace_label, len(choosers)) + choosers = persons_merged.to_frame() + filter_col = model_settings.get("CHOOSER_FILTER_COLUMN_NAME") + choosers = choosers[choosers[filter_col]] choices = external_identification( - state, - model_settings, - estimator, - choosers, - network_los, - model_settings_file_name, - trace_label, + model_settings, estimator, choosers, network_los, chunk_size, trace_label ) - external_col_name = model_settings.EXTERNAL_COL_NAME - internal_col_name = model_settings.INTERNAL_COL_NAME + external_col_name = model_settings["EXTERNAL_COL_NAME"] + internal_col_name = model_settings["INTERNAL_COL_NAME"] if estimator: estimator.write_choices(choices) @@ -251,43 +185,41 @@ def external_student_identification( estimator.write_override_choices(choices) estimator.end_estimation() - if external_col_name is not None: - persons[external_col_name] = ( - (choices == 0).reindex(persons.index).fillna(False).astype(bool) - ) - if internal_col_name is not None: - persons[internal_col_name] = persons[filter_col] & ~persons[external_col_name] + persons = persons.to_frame() + persons[external_col_name] = ( + (choices == 0).reindex(persons.index).fillna(False).astype(bool) + ) + persons[internal_col_name] = persons[filter_col] & ~persons[external_col_name] - state.add_table("persons", persons) + pipeline.replace_table("persons", persons) tracing.print_summary( external_col_name, persons[external_col_name], value_counts=True ) if trace_hh_id: - state.tracing.trace_df(persons, label=trace_label, warn_if_empty=True) + tracing.trace_df(persons, label=trace_label, warn_if_empty=True) -def set_external_tour_variables(state, tours, choices, model_settings, trace_label): +def set_external_tour_variables(tours, choices, model_settings, trace_label): """ Set the internal and external tour indicator columns in the tours file """ - external_col_name = model_settings.EXTERNAL_COL_NAME - internal_col_name = model_settings.INTERNAL_COL_NAME + external_col_name = model_settings["EXTERNAL_COL_NAME"] + internal_col_name = model_settings["INTERNAL_COL_NAME"] - if external_col_name is not None: - tours[external_col_name] = ( - (choices == 0).reindex(tours.index).fillna(False).astype(bool) - ) - if internal_col_name is not None: - tours[internal_col_name] = ( - (choices == 1).reindex(tours.index).fillna(True).astype(bool) - ) + tours = tours.to_frame() + + tours.loc[choices.index, external_col_name] = ( + (choices == 0).reindex(tours.index).fillna(False).astype(bool) + ) + tours.loc[choices.index, internal_col_name] = np.where( + tours.loc[choices.index, external_col_name], False, True + ) # - annotate tours table if "annotate_tours" in model_settings: expressions.assign_columns( - state, df=tours, model_settings=model_settings.get("annotate_tours"), trace_label=tracing.extend_trace_label(trace_label, "annotate_tours"), @@ -296,17 +228,10 @@ def set_external_tour_variables(state, tours, choices, model_settings, trace_lab return tours -@workflow.step +@inject.step() def external_non_mandatory_identification( - state: workflow.State, - tours: pd.DataFrame, - tours_merged: pd.DataFrame, - network_los: los.Network_LOS, - model_settings: ExternalIdentificationSettings | None = None, - model_settings_file_name: str = "external_non_mandatory_identification.yaml", - trace_label: str = "external_non_mandatory_identification", - trace_hh_id: bool = False, -) -> None: + tours_merged, tours, network_los, chunk_size, trace_hh_id +): """ This model predicts the whether a non-mandatory tour is external. The output from this model is TRUE (if external) or FALSE (if internal). @@ -314,24 +239,19 @@ def external_non_mandatory_identification( The main interface to the external student model is the external_nonmandatory_identification() function. This function is registered as an orca step in the example Pipeline. """ - if model_settings is None: - model_settings = ExternalIdentificationSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - estimator = estimation.manager.begin_estimation(state, trace_label) + trace_label = "external_non_mandatory_identification" + model_settings_file_name = "external_non_mandatory_identification.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + model_settings['_yaml_file_name'] = model_settings_file_name - choosers = tours_merged[tours_merged["tour_category"] == "non_mandatory"] + estimator = estimation.manager.begin_estimation(trace_label) + + choosers = tours_merged.to_frame() + choosers = choosers[choosers["tour_category"] == "non_mandatory"] choices = external_identification( - state, - model_settings, - estimator, - choosers, - network_los, - model_settings_file_name, - trace_label, + model_settings, estimator, choosers, network_los, chunk_size, trace_label ) if estimator: @@ -340,32 +260,23 @@ def external_non_mandatory_identification( estimator.write_override_choices(choices) estimator.end_estimation() - tours = set_external_tour_variables( - state, tours, choices, model_settings, trace_label - ) + tours = set_external_tour_variables(tours, choices, model_settings, trace_label) - state.add_table("tours", tours) + pipeline.replace_table("tours", tours) - external_col_name = model_settings.EXTERNAL_COL_NAME + external_col_name = model_settings["EXTERNAL_COL_NAME"] tracing.print_summary( external_col_name, tours[external_col_name], value_counts=True ) if trace_hh_id: - state.tracing.trace_df(tours, label=trace_label, warn_if_empty=True) + tracing.trace_df(tours, label=trace_label, warn_if_empty=True) -@workflow.step +@inject.step() def external_joint_tour_identification( - state: workflow.State, - tours: pd.DataFrame, - tours_merged: pd.DataFrame, - network_los: los.Network_LOS, - model_settings: ExternalIdentificationSettings | None = None, - model_settings_file_name: str = "external_joint_tour_identification.yaml", - trace_label: str = "external_joint_tour_identification", - trace_hh_id: bool = False, -) -> None: + tours_merged, tours, network_los, chunk_size, trace_hh_id +): """ This model predicts the whether a joint tour is external. The output from this model is TRUE (if external) or FALSE (if internal). @@ -373,26 +284,21 @@ def external_joint_tour_identification( The main interface to the external student model is the external_nonmandatory_identification() function. This function is registered as an orca step in the example Pipeline. """ - if model_settings is None: - model_settings = ExternalIdentificationSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - estimator = estimation.manager.begin_estimation(state, trace_label) + trace_label = "external_joint_tour_identification" + model_settings_file_name = "external_joint_tour_identification.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + model_settings['_yaml_file_name'] = model_settings_file_name - choosers = tours_merged[tours_merged["tour_category"] == "joint"] + estimator = estimation.manager.begin_estimation(trace_label) + + choosers = tours_merged.to_frame() + choosers = choosers[choosers["tour_category"] == "joint"] # - if no choosers if choosers.shape[0] > 0: choices = external_identification( - state, - model_settings, - estimator, - choosers, - network_los, - model_settings_file_name, - trace_label, + model_settings, estimator, choosers, network_los, chunk_size, trace_label ) else: # everything is internal, still want to set internal or external columns in df @@ -405,16 +311,14 @@ def external_joint_tour_identification( estimator.write_override_choices(choices) estimator.end_estimation() - tours = set_external_tour_variables( - state, tours, choices, model_settings, trace_label - ) + tours = set_external_tour_variables(tours, choices, model_settings, trace_label) - state.add_table("tours", tours) + pipeline.replace_table("tours", tours) - external_col_name = model_settings.EXTERNAL_COL_NAME + external_col_name = model_settings["EXTERNAL_COL_NAME"] tracing.print_summary( external_col_name, tours[external_col_name], value_counts=True ) if trace_hh_id: - state.tracing.trace_df(tours, label=trace_label, warn_if_empty=True) + tracing.trace_df(tours, label=trace_label, warn_if_empty=True) diff --git a/src/asim/extensions/external_location_choice.py b/src/asim/extensions/external_location_choice.py index 0b3ee8e1d..c9464a17d 100644 --- a/src/asim/extensions/external_location_choice.py +++ b/src/asim/extensions/external_location_choice.py @@ -1,94 +1,67 @@ # ActivitySim # See full license in LICENSE.txt. -from __future__ import annotations - import logging import numpy as np -import pandas as pd -from activitysim.abm.models.util import logsums as logsum +from activitysim.core import tracing +from activitysim.core import config +from activitysim.core import pipeline +from activitysim.core import simulate +from activitysim.core import inject +from activitysim.core import expressions + +from activitysim.abm.models.util import estimation from activitysim.abm.models.util import tour_destination -from activitysim.abm.tables import shadow_pricing -from activitysim.core import ( - config, - expressions, - los, - estimation, - simulate, - tracing, - workflow, -) -from activitysim.core.configuration.logit import ( - TourLocationComponentSettings, - TourModeComponentSettings, -) -from activitysim.abm.models.location_choice import ( - write_estimation_specs, - iterate_location_choice, -) +from activitysim.abm.models.location_choice import iterate_location_choice, write_estimation_specs + from activitysim.core.util import assign_in_place + logger = logging.getLogger(__name__) -@workflow.step +@inject.step() def external_school_location( - state: workflow.State, - persons_merged: pd.DataFrame, - persons: pd.DataFrame, - households: pd.DataFrame, - network_los: los.Network_LOS, - locutor: bool, - model_settings: TourLocationComponentSettings | None = None, - model_settings_file_name: str = "external_school_location.yaml", - trace_label: str = "external_school_location", + persons_merged, persons, households, network_los, chunk_size, trace_hh_id, locutor ): """ External school location choice model iterate_location_choice adds location choice column and annotations to persons table """ - if model_settings is None: - model_settings = TourLocationComponentSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - estimator = estimation.manager.begin_estimation(state, "external_school_location") + trace_label = "external_school_location" + model_settings = config.read_model_settings("external_school_location.yaml") + + estimator = estimation.manager.begin_estimation("external_school_location") if estimator: - write_estimation_specs(estimator, model_settings, model_settings_file_name) + write_estimation_specs( + estimator, model_settings, "external_school_location.yaml" + ) persons_df = iterate_location_choice( - state=state, - model_settings=model_settings, - persons_merged=persons_merged, - persons=persons, - households=households, - network_los=network_los, - estimator=estimator, - chunk_size=state.settings.chunk_size, - locutor=locutor, - trace_label=trace_label, + model_settings, + persons_merged, + persons, + households, + network_los, + estimator, + chunk_size, + trace_hh_id, + locutor, + trace_label, ) - state.add_table("persons", persons_df) + pipeline.replace_table("persons", persons_df) if estimator: estimator.end_estimation() -@workflow.step +@inject.step() def external_workplace_location( - state: workflow.State, - persons_merged: pd.DataFrame, - persons: pd.DataFrame, - households: pd.DataFrame, - network_los: los.Network_LOS, - locutor: bool, - model_settings: TourLocationComponentSettings | None = None, - model_settings_file_name: str = "external_workplace_location.yaml", - trace_label: str = "external_workplace_location", + persons_merged, persons, households, network_los, chunk_size, trace_hh_id, locutor ): """ External workplace location choice model @@ -96,66 +69,62 @@ def external_workplace_location( iterate_location_choice adds location choice column and annotations to persons table """ - if model_settings is None: - model_settings = TourLocationComponentSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) + trace_label = "external_workplace_location" + model_settings = config.read_model_settings("external_workplace_location.yaml") - estimator = estimation.manager.begin_estimation( - state, "external_workplace_location" - ) + estimator = estimation.manager.begin_estimation("external_workplace_location") if estimator: - write_estimation_specs(estimator, model_settings, model_settings_file_name) + write_estimation_specs( + estimator, model_settings, "external_workplace_location.yaml" + ) persons_df = iterate_location_choice( - state=state, - model_settings=model_settings, - persons_merged=persons_merged, - persons=persons, - households=households, - network_los=network_los, - estimator=estimator, - chunk_size=state.settings.chunk_size, - locutor=locutor, - trace_label=trace_label, + model_settings, + persons_merged, + persons, + households, + network_los, + estimator, + chunk_size, + trace_hh_id, + locutor, + trace_label, ) - state.add_table("persons", persons_df) + pipeline.replace_table("persons", persons_df) if estimator: estimator.end_estimation() -@workflow.step +@inject.step() def external_non_mandatory_destination( - state: workflow.State, - tours: pd.DataFrame, - persons_merged: pd.DataFrame, - network_los: los.Network_LOS, - model_settings: TourLocationComponentSettings | None = None, - model_settings_file_name: str = "external_non_mandatory_destination.yaml", - trace_label: str = "external_non_mandatory_destination", + tours, persons_merged, network_los, chunk_size, trace_hh_id ): + """ Given the tour generation from the above, each tour needs to have a destination, so in this case tours are the choosers (with the associated person that's making the tour) """ - if model_settings is None: - model_settings = TourLocationComponentSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - logsum_column_name = model_settings.DEST_CHOICE_LOGSUM_COLUMN_NAME + trace_label = "external_non_mandatory_destination" + model_settings_file_name = "external_non_mandatory_destination.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + + logsum_column_name = model_settings.get("DEST_CHOICE_LOGSUM_COLUMN_NAME") want_logsums = logsum_column_name is not None - sample_table_name = model_settings.DEST_CHOICE_SAMPLE_TABLE_NAME + sample_table_name = model_settings.get("DEST_CHOICE_SAMPLE_TABLE_NAME") want_sample_table = ( - state.settings.want_dest_choice_sample_tables and sample_table_name is not None + config.setting("want_dest_choice_sample_tables") + and sample_table_name is not None ) + tours = tours.to_frame() + + persons_merged = persons_merged.to_frame() + # choosers are tours - in a sense tours are choosing their destination non_mandatory_ext_tours = tours[ (tours.tour_category == "non_mandatory") & (tours.is_external_tour) @@ -167,21 +136,22 @@ def external_non_mandatory_destination( return estimator = estimation.manager.begin_estimation( - state, "external_non_mandatory_destination" + "external_non_mandatory_destination" ) if estimator: estimator.write_coefficients(model_settings=model_settings) # estimator.write_spec(model_settings, tag='SAMPLE_SPEC') estimator.write_spec(model_settings, tag="SPEC") - estimator.set_alt_id(model_settings.ALT_DEST_COL_NAME) + estimator.set_alt_id(model_settings["ALT_DEST_COL_NAME"]) + estimator.write_table( + inject.get_injectable("size_terms"), "size_terms", append=False + ) estimator.write_table( - state.get_injectable("size_terms"), "size_terms", append=False + inject.get_table("land_use").to_frame(), "landuse", append=False ) - estimator.write_table(state.get_table("land_use"), "landuse", append=False) estimator.write_model_settings(model_settings, model_settings_file_name) choices_df, save_sample_df = tour_destination.run_tour_destination( - state, non_mandatory_ext_tours, persons_merged, want_logsums, @@ -189,6 +159,8 @@ def external_non_mandatory_destination( model_settings, network_los, estimator, + chunk_size, + trace_hh_id, trace_label, ) @@ -208,15 +180,15 @@ def external_non_mandatory_destination( non_mandatory_ext_tours[logsum_column_name] = choices_df["logsum"] assign_in_place(tours, non_mandatory_ext_tours[[logsum_column_name]]) - state.add_table("tours", tours) + pipeline.replace_table("tours", tours) if want_sample_table: assert len(save_sample_df.index.get_level_values(0).unique()) == len(choices_df) # save_sample_df.set_index(model_settings['ALT_DEST_COL_NAME'], append=True, inplace=True) - state.extend_table(sample_table_name, save_sample_df) + pipeline.extend_table(sample_table_name, save_sample_df) - if state.settings.trace_hh_id: - state.tracing.trace_df( + if trace_hh_id: + tracing.trace_df( tours[tours.tour_category == "non_mandatory"], label="external_non_mandatory_destination", slicer="person_id", @@ -226,35 +198,34 @@ def external_non_mandatory_destination( ) -@workflow.step +@inject.step() def external_joint_tour_destination( - state: workflow.State, - tours: pd.DataFrame, - persons_merged: pd.DataFrame, - network_los: los.Network_LOS, - model_settings: TourLocationComponentSettings | None = None, - model_settings_file_name: str = "external_joint_tour_destination.yaml", - trace_label: str = "external_joint_tour_destination", + tours, persons_merged, network_los, chunk_size, trace_hh_id ): + """ Given the tour generation from the above, each tour needs to have a destination, so in this case tours are the choosers (with the associated person that's making the tour) """ - if model_settings is None: - model_settings = TourLocationComponentSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - logsum_column_name = model_settings.DEST_CHOICE_LOGSUM_COLUMN_NAME + trace_label = "external_joint_tour_destination" + model_settings_file_name = "external_joint_tour_destination.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + + logsum_column_name = model_settings.get("DEST_CHOICE_LOGSUM_COLUMN_NAME") want_logsums = logsum_column_name is not None - sample_table_name = model_settings.DEST_CHOICE_SAMPLE_TABLE_NAME + sample_table_name = model_settings.get("DEST_CHOICE_SAMPLE_TABLE_NAME") want_sample_table = ( - state.settings.want_dest_choice_sample_tables and sample_table_name is not None + config.setting("want_dest_choice_sample_tables") + and sample_table_name is not None ) + tours = tours.to_frame() + + persons_merged = persons_merged.to_frame() + joint_ext_tours = tours[ (tours.tour_category == "joint") & (tours.get("is_external_tour", False) == True) @@ -265,22 +236,21 @@ def external_joint_tour_destination( tracing.no_results(trace_label) return - estimator = estimation.manager.begin_estimation( - state, "external_joint_tour_destination" - ) + estimator = estimation.manager.begin_estimation("external_joint_tour_destination") if estimator: estimator.write_coefficients(model_settings=model_settings) # estimator.write_spec(model_settings, tag='SAMPLE_SPEC') estimator.write_spec(model_settings, tag="SPEC") - estimator.set_alt_id(model_settings.ALT_DEST_COL_NAME) + estimator.set_alt_id(model_settings["ALT_DEST_COL_NAME"]) + estimator.write_table( + inject.get_injectable("size_terms"), "size_terms", append=False + ) estimator.write_table( - state.get_injectable("size_terms"), "size_terms", append=False + inject.get_table("land_use").to_frame(), "landuse", append=False ) - estimator.write_table(state.get_table("land_use"), "landuse", append=False) estimator.write_model_settings(model_settings, model_settings_file_name) choices_df, save_sample_df = tour_destination.run_tour_destination( - state, joint_ext_tours, persons_merged, want_logsums, @@ -288,6 +258,8 @@ def external_joint_tour_destination( model_settings, network_los, estimator, + chunk_size, + trace_hh_id, trace_label, ) @@ -307,15 +279,15 @@ def external_joint_tour_destination( joint_ext_tours[logsum_column_name] = choices_df["logsum"] assign_in_place(tours, joint_ext_tours[[logsum_column_name]]) - state.add_table("tours", tours) + pipeline.replace_table("tours", tours) if want_sample_table: assert len(save_sample_df.index.get_level_values(0).unique()) == len(choices_df) # save_sample_df.set_index(model_settings['ALT_DEST_COL_NAME'], append=True, inplace=True) - state.extend_table(sample_table_name, save_sample_df) + pipeline.extend_table(sample_table_name, save_sample_df) - if state.settings.trace_hh_id: - state.tracing.trace_df( + if trace_hh_id: + tracing.trace_df( tours[tours.tour_category == "non_mandatory"], label="external_joint_tour_destination", slicer="person_id", diff --git a/src/asim/extensions/transponder_ownership.py b/src/asim/extensions/transponder_ownership.py index fd94193e1..595d650a8 100644 --- a/src/asim/extensions/transponder_ownership.py +++ b/src/asim/extensions/transponder_ownership.py @@ -3,43 +3,23 @@ import logging import numpy as np -import pandas as pd - -from activitysim.core import ( - config, - expressions, - estimation, - simulate, - tracing, - workflow, -) -from activitysim.core.configuration.base import PreprocessorSettings -from activitysim.core.configuration.logit import LogitComponentSettings -logger = logging.getLogger(__name__) - - -class TransponderOwnershipSettings(LogitComponentSettings): - """ - Settings for the `external_identification` component. - """ +from activitysim.core import tracing +from activitysim.core import config +from activitysim.core import pipeline +from activitysim.core import simulate +from activitysim.core import inject +from activitysim.core import expressions - TRANSPONDER_OWNERSHIP_ALT: int = 1 - """Zero-based index of the column for owning a transponder in the model spec.""" +from activitysim.abm.models.util import estimation - preprocessor: PreprocessorSettings | None = None +logger = logging.getLogger(__name__) -@workflow.step +@inject.step() def transponder_ownership( - state: workflow.State, - households: pd.DataFrame, - households_merged: pd.DataFrame, - model_settings: TransponderOwnershipSettings | None = None, - model_settings_file_name: str = "transponder_ownership.yaml", - trace_label: str = "transponder_ownership", - trace_hh_id: bool = False, -) -> None: + households_merged, households, network_los, chunk_size, trace_hh_id +): """ This model predicts whether the household owns a transponder. The output from this model is TRUE (if yes) or FALSE (if no) and is stored @@ -48,39 +28,35 @@ def transponder_ownership( The main interface to the Transponder Ownership model is the transponder_ownership() function. This function is registered as an orca step in the example Pipeline. """ - if model_settings is None: - model_settings = TransponderOwnershipSettings.read_settings_file( - state.filesystem, - model_settings_file_name, - ) - transponder_own_alt = model_settings.TRANSPONDER_OWNERSHIP_ALT - estimator = estimation.manager.begin_estimation(state, "transponder_ownership") + trace_label = "transponder_ownership" + model_settings_file_name = "transponder_ownership.yaml" + model_settings = config.read_model_settings(model_settings_file_name) + transponder_own_alt = model_settings['TRANSPONDER_OWNERSHIP_ALT'] + + estimator = estimation.manager.begin_estimation("transponder_ownership") constants = config.get_model_constants(model_settings) - choosers = households_merged + choosers = households_merged.to_frame() logger.info("Running %s with %d households", trace_label, len(choosers)) # - preprocessor - preprocessor_settings = model_settings.preprocessor + preprocessor_settings = model_settings.get("preprocessor", None) if preprocessor_settings: locals_d = {} if constants is not None: locals_d.update(constants) expressions.assign_columns( - state, df=choosers, model_settings=preprocessor_settings, locals_dict=locals_d, trace_label=trace_label, ) - model_spec = state.filesystem.read_model_spec(file_name=model_settings.SPEC) - coefficients_df = state.filesystem.read_model_coefficients(model_settings) - model_spec = simulate.eval_coefficients( - state, model_spec, coefficients_df, estimator - ) + model_spec = simulate.read_model_spec(file_name=model_settings["SPEC"]) + coefficients_df = simulate.read_model_coefficients(model_settings) + model_spec = simulate.eval_coefficients(model_spec, coefficients_df, estimator) nest_spec = config.get_logit_model_settings(model_settings) @@ -91,15 +67,14 @@ def transponder_ownership( estimator.write_choosers(choosers) choices = simulate.simple_simulate( - state, choosers=choosers, spec=model_spec, nest_spec=nest_spec, locals_d=constants, + chunk_size=chunk_size, trace_label=trace_label, trace_choice_name="transponder_ownership", estimator=estimator, - compute_settings=model_settings.compute_settings, ) choices = choices == transponder_own_alt @@ -111,14 +86,15 @@ def transponder_ownership( estimator.write_override_choices(choices) estimator.end_estimation() + households = households.to_frame() households["transponder_ownership"] = ( choices.reindex(households.index).fillna(0).astype(bool) ) - state.add_table("households", households) + pipeline.replace_table("households", households) tracing.print_summary( "transponder_ownership", households["transponder_ownership"], value_counts=True ) if trace_hh_id: - state.tracing.trace_df(households, label=trace_label, warn_if_empty=True) + tracing.trace_df(households, label=trace_label, warn_if_empty=True) diff --git a/src/asim/extensions/update_tables.py b/src/asim/extensions/update_tables.py index fe8b522d7..3e92edabf 100644 --- a/src/asim/extensions/update_tables.py +++ b/src/asim/extensions/update_tables.py @@ -8,8 +8,8 @@ import numpy as np import pandas as pd -from activitysim.core import config, workflow -from activitysim.abm.models.trip_matrices import WriteTripMatricesSettings +from activitysim.core import config, inject, pipeline, tracing +from activitysim.core.config import setting # from io import StringIO @@ -75,12 +75,12 @@ def get_commit_info(repo_path): return {"short_commit_hash": commit_hash, "branch_name": branch_name} -def write_metadata(state, prefix): +def write_metadata(prefix): - output_dir = state.get_injectable("output_dir") + output_dir = inject.get_injectable("output_dir") # repo branch name and commit hash: activitysim - asim_git_folder = find_git_folder(workflow.__file__, "../../..") + asim_git_folder = find_git_folder(pipeline.__file__, "../../..") asim_commit_info = get_commit_info(asim_git_folder) # repo branch name and commit hash: abm3 @@ -95,8 +95,8 @@ def write_metadata(state, prefix): "commit": "" } - trip_settings = WriteTripMatricesSettings.read_settings_file(state.filesystem, "write_trip_matrices.yaml") - constants = trip_settings.CONSTANTS + trip_settings = config.read_model_settings("write_trip_matrices.yaml") + constants = trip_settings.get("CONSTANTS") model_metadata_dict = { "asim_branch_name": asim_commit_info["branch_name"], @@ -166,12 +166,7 @@ def replace_missing_values(df): """ # Define the replacements for each data type, currently only two types used by ActivitySim. Need to add more, like Categorical if necessary. - replacements = {np.number: -9, object: 'null', 'category': 'null'} - - # Add null to list of categories for categorical columns - for col in df.columns: - if df[col].dtype == "category": - df[col] = df[col].cat.add_categories(["null"]) + replacements = {np.number: -9, object: 'null'} # Loop over the data types for dtype, replacement in replacements.items(): @@ -185,11 +180,11 @@ def replace_missing_values(df): return df -def get_output_table_names(state, output_tables_settings, output_tables_settings_name): +def get_output_table_names(output_tables_settings, output_tables_settings_name): """ """ - action = output_tables_settings.action - tables = output_tables_settings.tables - registered_tables = state.registered_tables() + action = output_tables_settings.get("action") + tables = output_tables_settings.get("tables") + registered_tables = pipeline.registered_tables() if action == "include": # interpret empty or missing tables setting to mean include all registered tables output_tables_list = tables if tables is not None else registered_tables @@ -202,30 +197,23 @@ def get_output_table_names(state, output_tables_settings, output_tables_settings ) return output_tables_list -@workflow.step() -def update_tables(state: workflow.State): +@inject.step() +def update_tables(): # get list of model outputs to update - output_dir = state.get_injectable("output_dir") + output_dir = inject.get_injectable("output_dir") input_dir = os.path.abspath(os.path.join(output_dir, "..", "..", "input")) # input_dir = inject.get_injectable("data_dir") output_tables_settings_name = "output_tables" - output_tables_settings = state.settings.output_tables + output_tables_settings = setting(output_tables_settings_name) if output_tables_settings is None: logger.info("No output_tables specified in settings file. Nothing to update.") return output_tables_list = get_output_table_names( - state, output_tables_settings, output_tables_settings_name + output_tables_settings, output_tables_settings_name ) - configs_dirs = state.filesystem.get_configs_dir() - for configs_dir in configs_dirs: - if "common" in str(configs_dir): - common_configs_dir = configs_dir - break - common_settings_file_name = os.path.join(common_configs_dir, "outputs.yaml") - common_settings_stream = open(common_settings_file_name, "r") - common_settings = yaml.safe_load(common_settings_stream) - common_settings_stream.close() + common_settings_file_name = "..\common\outputs.yaml" + common_settings = config.read_model_settings(common_settings_file_name) for table_name in output_tables_list: if not isinstance(table_name, str): @@ -237,21 +225,21 @@ def update_tables(state: workflow.State): or table_name == "persons"): continue - output_table = state.get_table(table_name) + output_table = pipeline.get_table(table_name) # set sample rate to float - if table_name == "households" and state.settings.model_name == "resident": + if table_name == "households" and setting("model_name") == "resident": output_table["sample_rate"] = output_table["sample_rate"].astype(float) # split vehicle_type column - if table_name == "vehicles" and state.settings.model_name == "resident": + if table_name == "vehicles" and setting("model_name") == "resident": output_table[["vehicle_category", "num_occupants", "fuel_type"]] = output_table[ "vehicle_type" ].str.split(pat="_", expand=True) # output_table.drop(columns={'vehicle_type'}, inplace=True) ## TODO decide whether to drop column here or in bronze -> silver filter # add missing columns from input persons file - if table_name == "persons" and state.settings.model_name == "resident": + if table_name == "persons" and setting("model_name") == "resident": input_persons = pd.read_csv(os.path.join(input_dir,"persons.csv"), usecols=[ "perid", @@ -269,10 +257,10 @@ def update_tables(state: workflow.State): "hours": "int8", "rac1p": "int8", "hisp": "int8"}) - output_table = output_table.reset_index().merge(input_persons,how="inner",left_on="person_id",right_on="perid").set_index("person_id") + output_table = output_table.merge(input_persons,how="inner",left_on="person_id",right_on="perid") # add missing columns from input land use file - if table_name == "land_use" and state.settings.model_name == "resident": + if table_name == "land_use" and setting("model_name") == "resident": input_land_use = pd.read_csv(os.path.join(input_dir,"land_use.csv"), usecols=[ "mgra", @@ -302,10 +290,9 @@ def update_tables(state: workflow.State): output_table = remove_columns(table_settings, output_table) output_table = reorder_columns(table_settings, output_table) output_table = rename_columns(table_settings, output_table) - if table_name != "tours": - output_table = replace_missing_values(output_table) + output_table = replace_missing_values(output_table) - state.add_table(table_name, output_table) + pipeline.replace_table(table_name, output_table) - prefix = output_tables_settings.prefix - write_metadata(state, prefix) + prefix = output_tables_settings.get("prefix", "final_") + write_metadata(prefix) diff --git a/src/asim/scripts/resident/resident_preprocessing.py b/src/asim/scripts/resident/resident_preprocessing.py index d7e727d8b..bff25794f 100644 --- a/src/asim/scripts/resident/resident_preprocessing.py +++ b/src/asim/scripts/resident/resident_preprocessing.py @@ -52,21 +52,21 @@ def __init__(self): # skims are copied from input dir to output dir before operating on them self.traffic_skim_list = [ - 'traffic_skims_EA.omxz', - 'traffic_skims_AM.omxz', - 'traffic_skims_MD.omxz', - 'traffic_skims_PM.omxz', - 'traffic_skims_EV.omxz', + 'traffic_skims_EA.omx', + 'traffic_skims_AM.omx', + 'traffic_skims_MD.omx', + 'traffic_skims_PM.omx', + 'traffic_skims_EV.omx', ] self.transit_skim_list = [ - 'transit_skims_EA.omxz', - 'transit_skims_AM.omxz', - 'transit_skims_MD.omxz', - 'transit_skims_PM.omxz', - 'transit_skims_EV.omxz', + 'transit_skims_EA.omx', + 'transit_skims_AM.omx', + 'transit_skims_MD.omx', + 'transit_skims_PM.omx', + 'transit_skims_EV.omx', ] # below omx file and core are used to create 'DIST' skim - self.traffic_dist_omx_file = os.path.join(self.output_dir, 'skims', 'traffic_skims_AM.omxz') + self.traffic_dist_omx_file = os.path.join(self.output_dir, 'skims', 'traffic_skims_AM.omx') self.traffic_dist_omx_core = 'SOV_TR_H_DIST__AM' # bike logsums are the same for each time period, @@ -325,8 +325,8 @@ def add_TAZ_level_skims(self): if self.add_time_dependent_bike_logsums: for skim_file in self.traffic_skim_list: # assumes skim file has time period as the last two characters in the name - # e.g. traffic_skims_AM.omxz - time_period = skim_file.strip('.omxz')[-2:].upper() + # e.g. traffic_skims_AM.omx + time_period = skim_file.strip('.omx')[-2:].upper() assert time_period in self.time_periods, f'time period {time_period} not in {self.time_periods}' skim = omx.open_file(os.path.join(self.output_dir, 'skims', skim_file), 'a') if f'BIKE_LOGSUM__{time_period}' not in skim.list_matrices(): diff --git a/src/asim/scripts/scenarioManagement/utilities.py b/src/asim/scripts/scenarioManagement/utilities.py index 1cca0e9a9..3eb7ec5d9 100644 --- a/src/asim/scripts/scenarioManagement/utilities.py +++ b/src/asim/scripts/scenarioManagement/utilities.py @@ -1,9 +1,7 @@ import pandas as pd -from ruamel.yaml import YAML +import ruamel.yaml as yamlru from collections import OrderedDict -yamlru = YAML(typ = "rt") - def load_properties(file_dir): prop = OrderedDict() comments = {} @@ -50,10 +48,10 @@ def open_yaml(yaml_file): print(f"Contents of {yaml_file}: {contents}") stream.seek(0) # Reset the stream position to the start of the file try: - return yamlru.load(stream) + return yamlru.load(stream, Loader=yamlru.RoundTripLoader) except yamlru.YAMLError as exc: print(exc) def write_yaml(yaml_file, yaml_dict): with open(yaml_file, 'w') as outfile: - yamlru.dump(yaml_dict, outfile) \ No newline at end of file + yamlru.dump(yaml_dict, outfile, Dumper=yamlru.RoundTripDumper) \ No newline at end of file diff --git a/src/asim/scripts/xborder/createPMSAomx.py b/src/asim/scripts/xborder/createPMSAomx.py index cfc074051..3b933939b 100644 --- a/src/asim/scripts/xborder/createPMSAomx.py +++ b/src/asim/scripts/xborder/createPMSAomx.py @@ -15,7 +15,7 @@ # %% taz['geometry'] = taz['geometry'].representative_point() -xwalk = gpd.sjoin(taz,pmsa, predicate = 'within') +xwalk = gpd.sjoin(taz,pmsa, op = 'within') xwalk[['TAZ','pseudomsa']].to_csv(os.path.join(path,'output', 'skims','taz_pmsa_xwalk.csv'), index = False) # %% diff --git a/src/main/emme/toolbox/master_run.py b/src/main/emme/toolbox/master_run.py index e78ffc478..6e2a48039 100644 --- a/src/main/emme/toolbox/master_run.py +++ b/src/main/emme/toolbox/master_run.py @@ -297,7 +297,6 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, skipHighwayAssignment = props["RunModel.skipHighwayAssignment"] skipTransitSkimming = props["RunModel.skipTransitSkimming"] skipTransitConnector = props["RunModel.skipTransitConnector"] - skipSkimConversion = props["RunModel.skipSkimConversion"] skipTransponderExport = props["RunModel.skipTransponderExport"] skipScenManagement = props["RunModel.skipScenManagement"] skipABMPreprocessing = props["RunModel.skipABMPreprocessing"] @@ -594,11 +593,6 @@ def __call__(self, main_directory, scenario_id, scenario_title, emmebank_title, # omx_file = _join(output_dir, "skims", "transit_skims_" + period + ".omx") # export_transit_skims(omx_file, [period], transit_scenario, big_to_zero=False) - if not skipSkimConversion[iteration]: - self.run_proc("convertSkimsToOMXZ.cmd", - [drive, path_forward_slash], - "Converting skims to omxz format", capture_output=True) - if not skipTransponderExport[iteration]: am_scenario = main_emmebank.scenario(base_scenario.number + 2) export_for_transponder(output_dir, num_processors, am_scenario) diff --git a/src/main/emme/toolbox/utilities/properties.py b/src/main/emme/toolbox/utilities/properties.py index 5c1215946..cafd842b8 100644 --- a/src/main/emme/toolbox/utilities/properties.py +++ b/src/main/emme/toolbox/utilities/properties.py @@ -47,9 +47,6 @@ class PropertiesSetter(object): skipTransitSkimming_1 = _m.Attribute(bool) skipTransitSkimming_2 = _m.Attribute(bool) skipTransitSkimming_3 = _m.Attribute(bool) - skipSkimConversion_1 = _m.Attribute(bool) - skipSkimConversion_2 = _m.Attribute(bool) - skipSkimConversion_3 = _m.Attribute(bool) skipTransponderExport_1 = _m.Attribute(bool) skipTransponderExport_2 = _m.Attribute(bool) skipTransponderExport_3 = _m.Attribute(bool) @@ -116,9 +113,6 @@ def _set_list_prop(self, name, value): skipTransitSkimming = property( fget=lambda self: self._get_list_prop("skipTransitSkimming"), fset=lambda self, value: self._set_list_prop("skipTransitSkimming", value)) - skipSkimConversion = property( - fget=lambda self: self._get_list_prop("skipSkimConversion"), - fset=lambda self, value: self._set_list_prop("skipSkimConversion", value)) skipTransponderExport = property( fget=lambda self: self._get_list_prop("skipTransponderExport"), fset=lambda self, value: self._set_list_prop("skipTransponderExport", value)) @@ -229,7 +223,6 @@ def add_properties_interface(self, pb, disclosure=False): ("skipHighwayAssignment", "Skip highway assignments and skims"), ("skipTransitSkimming", "Skip transit skims"), ("skipTransitConnector", "    Skip creating new connectors"), - ("skipSkimConversion", "Skip conversion of skims to omxz format"), ("skipTransponderExport", "Skip transponder accessibilities"), ("skipScenManagement", "Skip scenario management"), ("skipABMPreprocessing", "Skip ActivitySim preprocessing"), @@ -375,7 +368,6 @@ def load_properties(self): self.skipHighwayAssignment = props.get("RunModel.skipHighwayAssignment", [False, False, False]) self.skipTransitSkimming = props.get("RunModel.skipTransitSkimming", [False, False, False]) self.skipTransitConnector = props.get("RunModel.skipTransitConnector", False) - self.skipSkimConversion = props.get("RunModel.skipSkimConversion", [False, False, False]) self.skipTransponderExport = props.get("RunModel.skipTransponderExport", [False, False, False]) self.skipScenManagement = props.get("RunModel.skipScenManagement", False) self.skipABMPreprocessing = props.get("RunModel.skipABMPreprocessing", [False, False, False]) @@ -422,7 +414,6 @@ def save_properties(self): props["RunModel.skipHighwayAssignment"] = self.skipHighwayAssignment props["RunModel.skipTransitSkimming"] = self.skipTransitSkimming props["RunModel.skipTransitConnector"] = self.skipTransitConnector - props["RunModel.skipSkimConversion"] = self.skipSkimConversion props["RunModel.skipTransponderExport"] = self.skipTransponderExport props["RunModel.skipScenManagement"] = self.skipScenManagement props["RunModel.skipABMPreprocessing"] = self.skipABMPreprocessing diff --git a/src/main/resources/DataExporter.bat b/src/main/resources/DataExporter.bat index daf5fc878..c69e0d393 100644 --- a/src/main/resources/DataExporter.bat +++ b/src/main/resources/DataExporter.bat @@ -16,11 +16,11 @@ SET CONDA3_DEA=%ANACONDA3_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe rem ### Call environment CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag %PROJECT_DRIVE% cd %PROJECT_DRIVE%%PROJECT_DIRECTORY% diff --git a/src/main/resources/RunViz.bat b/src/main/resources/RunViz.bat index 3e84c2540..e9def2b50 100644 --- a/src/main/resources/RunViz.bat +++ b/src/main/resources/RunViz.bat @@ -11,11 +11,11 @@ SET CONDA3_ACT=%ANACONDA3_DIR%\Scripts\activate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe ECHO Activate ActivitySim.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag cd /d %PROJECT_DIRECTORY% diff --git a/src/main/resources/convertSkimsToOMXZ.cmd b/src/main/resources/convertSkimsToOMXZ.cmd deleted file mode 100644 index 20338ee85..000000000 --- a/src/main/resources/convertSkimsToOMXZ.cmd +++ /dev/null @@ -1,14 +0,0 @@ -set PROJECT_DRIVE=%1 -set PROJECT_DIRECTORY=%2 - -SET PATH=%ANACONDA3_DIR%\Library\bin;%PATH% -SET PATH=%ANACONDA3_DIR%\Scripts;%ANACONDA3_DIR%\bin;%PATH% - -SET ANACONDA3_DIR=%CONDA_PREFIX% -SET CONDA3_ACT=%ANACONDA3_DIR%\Scripts\activate.bat -CALL %CONDA3_ACT% asim_132 - -%PROJECT_DRIVE% -cd /d %PROJECT_DIRECTORY% -cd output\skims -CALL wring omx \ No newline at end of file diff --git a/src/main/resources/export_hwy_shape.cmd b/src/main/resources/export_hwy_shape.cmd index 6cd16da1c..9fa0127c6 100644 --- a/src/main/resources/export_hwy_shape.cmd +++ b/src/main/resources/export_hwy_shape.cmd @@ -18,11 +18,11 @@ SET CONDA3_DEA=%ANACONDA3_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe -ECHO Activate asim_132.... +ECHO Activate asim_baydag.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/manage_skim_mem.cmd b/src/main/resources/manage_skim_mem.cmd index 5165499a9..a0960b86e 100644 --- a/src/main/resources/manage_skim_mem.cmd +++ b/src/main/resources/manage_skim_mem.cmd @@ -18,11 +18,11 @@ SET CONDA3_DEA=%ANACONDA3_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe -ECHO Activate asim_132.... +ECHO Activate asim_baydag.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/runSandagAbm_2zoneSkim.cmd b/src/main/resources/runSandagAbm_2zoneSkim.cmd index 4fcc9c1f4..bd7b61c9a 100644 --- a/src/main/resources/runSandagAbm_2zoneSkim.cmd +++ b/src/main/resources/runSandagAbm_2zoneSkim.cmd @@ -20,12 +20,12 @@ ECHO CONDA_ACT: %CONDA_ACT% SET CONDA_DEA=%ANACONDA_DIR%\Scripts\deactivate.bat ECHO CONDA_DEA: %CONDA_DEA% -SET PYTHON=C:\Users\%USERNAME%\.conda\envs\asim_132\python.exe +SET PYTHON=C:\Users\%USERNAME%\.conda\envs\asim_baydag\python.exe ECHO PYTHON: %PYTHON% ECHO Activate ActivitySim Environment.... CD /d %ANACONDA_DIR%\Scripts -CALL %CONDA_ACT% asim_132 +CALL %CONDA_ACT% asim_baydag cd /d %PROJECT_DIRECTORY% diff --git a/src/main/resources/runSandagAbm_ActivitySim.cmd b/src/main/resources/runSandagAbm_ActivitySim.cmd index cc8ddfd49..6d269099a 100644 --- a/src/main/resources/runSandagAbm_ActivitySim.cmd +++ b/src/main/resources/runSandagAbm_ActivitySim.cmd @@ -51,12 +51,12 @@ ECHO CONDA_ACT: %CONDA_ACT% SET CONDA_DEA=%ANACONDA_DIR%\Scripts\deactivate.bat ECHO CONDA_DEA: %CONDA_DEA% -SET PYTHON=C:\Users\%USERNAME%\.conda\envs\asim_132\python.exe +SET PYTHON=C:\Users\%USERNAME%\.conda\envs\asim_baydag\python.exe ECHO PYTHON: %PYTHON% ECHO Activate ActivitySim.... CD /d %ANACONDA_DIR%\Scripts -CALL %CONDA_ACT% asim_132 +CALL %CONDA_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/runSandagAbm_ActivitySimAirport.cmd b/src/main/resources/runSandagAbm_ActivitySimAirport.cmd index 142ef618d..c614acba8 100644 --- a/src/main/resources/runSandagAbm_ActivitySimAirport.cmd +++ b/src/main/resources/runSandagAbm_ActivitySimAirport.cmd @@ -28,13 +28,13 @@ SET CONDA2_DEA=%ANACONDA2_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe SET CONDA2=%ANACONDA2_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe :: FIX PATH AND ENV HERE LATER SET PYTHON2=%ANACONDA2_DIR%\python.exe ECHO Activate ActivitySim.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 @@ -48,9 +48,6 @@ MD airport.CBX MD airport.SAN CD .. -:: Copy outputs.yaml from configs/common to configs/common_airport -copy src\asim\configs\common\outputs.yaml src\asim\configs\common_airport - :: Run Models ECHO Run ActivitySim AirportCBX Model %PYTHON3% src/asim/scripts/airport/airport_model.py -a -c src/asim/configs/airport.CBX -d input -o output/airport.CBX || exit /b 2 diff --git a/src/main/resources/runSandagAbm_ActivitySimResident.cmd b/src/main/resources/runSandagAbm_ActivitySimResident.cmd index aa05efe66..66fc2d298 100644 --- a/src/main/resources/runSandagAbm_ActivitySimResident.cmd +++ b/src/main/resources/runSandagAbm_ActivitySimResident.cmd @@ -28,13 +28,13 @@ SET CONDA2_DEA=%ANACONDA2_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe SET CONDA2=%ANACONDA2_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe :: FIX PATH AND ENV HERE LATER SET PYTHON2=%ANACONDA2_DIR%\python.exe ECHO Activate ActivitySim.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/runSandagAbm_ActivitySimVisitor.cmd b/src/main/resources/runSandagAbm_ActivitySimVisitor.cmd index 6f6163ad1..7cee969b5 100644 --- a/src/main/resources/runSandagAbm_ActivitySimVisitor.cmd +++ b/src/main/resources/runSandagAbm_ActivitySimVisitor.cmd @@ -28,13 +28,13 @@ SET CONDA2_DEA=%ANACONDA2_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe SET CONDA2=%ANACONDA2_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe :: FIX PATH AND ENV HERE SET PYTHON2=%ANACONDA2_DIR%\python.exe ECHO Activate ActivitySim.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/runSandagAbm_ActivitySimXborder.cmd b/src/main/resources/runSandagAbm_ActivitySimXborder.cmd index 19d5444b5..4e50278dc 100644 --- a/src/main/resources/runSandagAbm_ActivitySimXborder.cmd +++ b/src/main/resources/runSandagAbm_ActivitySimXborder.cmd @@ -28,13 +28,13 @@ SET CONDA2_DEA=%ANACONDA2_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe SET CONDA2=%ANACONDA2_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe :: FIX PATH AND ENV HERE LATER SET PYTHON2=%ANACONDA2_DIR%\python.exe ECHO Activate ActivitySim.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/runSandagAbm_ActivitySimXborderWaitModel.cmd b/src/main/resources/runSandagAbm_ActivitySimXborderWaitModel.cmd index 8da9eec48..1fa0562b6 100644 --- a/src/main/resources/runSandagAbm_ActivitySimXborderWaitModel.cmd +++ b/src/main/resources/runSandagAbm_ActivitySimXborderWaitModel.cmd @@ -30,13 +30,13 @@ SET CONDA2_ACT=%ANACONDA2_DIR%\Scripts\activate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe SET CONDA2=%ANACONDA2_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe :: FIX PATH AND ENV HERE LATER SET PYTHON2=%ANACONDA2_DIR%\python.exe ECHO Activate ActivitySim.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1 diff --git a/src/main/resources/runSandagAbm_Preprocessing.cmd b/src/main/resources/runSandagAbm_Preprocessing.cmd index a6bc89272..50be4520b 100644 --- a/src/main/resources/runSandagAbm_Preprocessing.cmd +++ b/src/main/resources/runSandagAbm_Preprocessing.cmd @@ -29,7 +29,7 @@ SET CONDA2=%ANACONDA2_DIR%\Scripts\conda.exe ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: CALL ON THE ENVIRONMENT, AND IF IT DOES NOT EXIST, CREATE IT FROM THE YAML FILE ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag if %errorlevel% equ 0 ( ECHO Python environment %ENV_NAME% is already installed. @@ -37,13 +37,13 @@ if %errorlevel% equ 0 ( ) CD src\asim rem Install the environment from the YAML file -CALL %CONDA3% env create -f environment.yml -n asim_132 +CALL %CONDA3% env create -f environment.yml -n asim_baydag -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag :end -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: diff --git a/src/main/resources/runSandag_ScenManagement.cmd b/src/main/resources/runSandag_ScenManagement.cmd index f6e3b7181..0723d6980 100644 --- a/src/main/resources/runSandag_ScenManagement.cmd +++ b/src/main/resources/runSandag_ScenManagement.cmd @@ -22,9 +22,9 @@ SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: CALL ON THE ENVIRONMENT, AND IF IT DOES NOT EXIST, CREATE IT FROM THE YAML FILE ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: diff --git a/src/main/resources/runValidation.bat b/src/main/resources/runValidation.bat index 92a65fcd4..d887a966f 100644 --- a/src/main/resources/runValidation.bat +++ b/src/main/resources/runValidation.bat @@ -19,7 +19,7 @@ set ENV=%CONDA_PREFIX% call %ENV%\Scripts\activate.bat %ENV% rem ### Use ABM3 conda env (for both tcov and tned) -call activate asim_132 +call activate asim_baydag rem ### Running validation pipeline for input scenario python %SOURCE_DIRECTORY%\src\%SCENARIOYEAR%\validation.py %PROJECT_DRIVE%%PROJECT_DIRECTORY% %SCENARIOYEAR% \ No newline at end of file diff --git a/src/main/resources/sandag_abm.properties b/src/main/resources/sandag_abm.properties index a972b27c8..36e8c9dfc 100644 --- a/src/main/resources/sandag_abm.properties +++ b/src/main/resources/sandag_abm.properties @@ -41,7 +41,6 @@ RunModel.startFromIteration = 1 RunModel.skipHighwayAssignment = false,false,false RunModel.skipTransitSkimming = false,false,false RunMode.skipTransitConnector = false -RunModel.skipSkimConversion = false,false,false RunModel.skipTransponderExport = false,false,false RunModel.skipABMPreprocessing = false,false,false RunModel.skipABMResident = false,false,false diff --git a/src/main/resources/write_to_datalake.cmd b/src/main/resources/write_to_datalake.cmd index 36ffa8fd5..d9c265e44 100644 --- a/src/main/resources/write_to_datalake.cmd +++ b/src/main/resources/write_to_datalake.cmd @@ -19,11 +19,11 @@ SET CONDA3_DEA=%ANACONDA3_DIR%\Scripts\deactivate.bat SET CONDA3=%ANACONDA3_DIR%\Scripts\conda.exe -SET PYTHON3=%ANACONDA3_DIR%\envs\asim_132\python.exe +SET PYTHON3=%ANACONDA3_DIR%\envs\asim_baydag\python.exe -ECHO Activate asim_132.... +ECHO Activate asim_baydag.... CD /d %ANACONDA3_DIR%\Scripts -CALL %CONDA3_ACT% asim_132 +CALL %CONDA3_ACT% asim_baydag set MKL_NUM_THREADS=1 set MKL=1