-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCF - 1182E.cc
204 lines (172 loc) · 3.84 KB
/
CF - 1182E.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define fr(i,j,k) for(i = j; i < (k); i++)
#define all(x) x.begin(), x.end()
#define el '\n'
#define remax(a,b) a = max(a, b)
#define remin(a,b) a = min(a, b)
typedef long double ld;
typedef pair<int,int> pii;
typedef vector<int> vi;
typedef vector<bool> vb;
typedef vector<vi> vvi;
typedef vector<pii> vpi;
// --------------------------- TEMPLATE ENDS -------------------------------------
const pii dxy[] = { {-1, 0}, {1, 0}, {0, 1}, {0, -1} };
const int mod = 1e9 + 6, mod1 = 1e9 + 7;
const int inf = 2e18;
const ld eps = 1e-9;
const int NN = 1e5 + 2;
vvi adj;
int pow(int a, int b, int m = mod) {
a %= m;
int res = 1;
while (b > 0) {
if (b & 1)
res = res * a % m;
a = a * a % m;
b >>= 1;
}
return res;
}
template <typename T>
struct matrix {
vector < vector <T> > A;
int r, c;
//matrix with given dimensions and random values
matrix(int rows, int cols) : r(rows), c(cols) {
A.assign(r , vector<T>(c));
}
//matrix with given value and dimensions
matrix(int rows, int cols, T val) : r(rows), c(cols) {
A.assign(r , vector <T> (c , val));
}
//Identity matrix
matrix(int n) : r(n), c(n) {
A.assign(n , vector <T> (n));
for(int i = 0; i < n; i++)
A[i][i] = (T)1;
}
matrix(vvi& v) {
r = v.size();
c = v[0].size();
*this = matrix(r, c);
for(int i = 0; i < r; i++) {
for(int j = 0; j < c; j++) {
A[i][j] = v[i][j];
}
}
}
// Overload to access/set elements without using dot operator
// matrix m(5,3): m[i][j] or m.A[i][j] both are valid to access
vector<T>& operator [](int i) {
assert(i < r);
assert(i >= 0);
return A[i];
}
matrix operator * (matrix &B) {
assert(c == B.r);
int i,j,k;
int x = r;
int y = c;
int z = B.c;
matrix <T> C(x,z,0);
for(i=0 ; i<x ; i++)
for(j=0 ; j<z ; j++)
for(k=0 ; k<y ; k++)
C[i][j] = (C[i][j] + (1LL*A[i][k] * 1LL*B[k][j] % mod) ) % mod;
return C;
}
matrix operator + (matrix &B) {
assert(r == B.r);
assert(c == B.c);
matrix <T> C(r,c,0);
int i,j;
for(i = 0; i < r; i++)
for(j = 0; j < c; j++)
C[i][j] = (A[i][j] + B[i][j]) % mod;
return C;
}
//unary(-): to get negative of matrix
matrix operator - () {
matrix <T> C(r,c);
int i,j;
for(i=0;i<r;i++)
for(j=0;j<c;j++)
C[i][j] = -A[i][j];
return C;
}
matrix operator - (matrix &B) {
assert(r == B.r);
assert(c == B.c);
matrix <T> C(r,c,0);
int i,j;
for(i=0;i<r;i++) {
for(j=0;j<c;j++) {
C[i][j] = (A[i][j] - B[i][j])%mod;
if(C[i][j] < 0)
C[i][j] += mod;
}
}
return C;
}
matrix pow(long long n) {
assert(r == c and n >= 0);
int i,j;
matrix C(r);
matrix X = *this;
while(n) {
if(n&1)
C = C * X;
X = X * X;
n >>= 1;
}
return C;
}
friend ostream& operator << (ostream &out, matrix &M) {
for (int i = 0; i < M.r; ++i)
for (int j = 0; j < M.c; ++j)
out << M[i][j] << " \n"[j == M.c-1];
out << endl;
return out;
}
};
vvi one = { {1,1, 1, 1, 1},
{1, 0, 0, 0, 0},
{0,1,0,0, 0},
{0,0,0,1, 1},
{0, 0, 0, 0, 1}
};
vvi two = { {1, 1, 1},
{1, 0, 0},
{0, 1, 0}
};
void solve(){
int i = 0, f1, f2, f3, c, j = 0, k = 0, n = 0, m = 0;
cin >> n >> f1 >> f2 >> f3 >> c;
k = pow(c, 2, mod1);
int p;
matrix<int> h(one);
matrix<int> g(two);
int ans = 1;
h = h.pow(n-3);
p = h[0][4];
ans = ans * pow(k, p, mod1) % mod1;
g = g.pow(n-3);
ans = ans * pow(f3, g[0][0], mod1) % mod1;
ans = ans * pow(f2, g[0][1], mod1) % mod1;
ans = ans * pow(f1, g[0][2], mod1) % mod1;
cout << ans << endl;
}
int32_t main(){
#ifndef TRACE
ios::sync_with_stdio(false); cin.tie(0);
#endif
solve();
return 0;
}