-
Notifications
You must be signed in to change notification settings - Fork 0
/
helios.py
175 lines (130 loc) · 6.23 KB
/
helios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import sys
import threading
import time
import cv2
import numpy as np
def build_model(is_cuda):
net = cv2.dnn.readNet("yolov5s.onnx") # TODO sparseml
if is_cuda:
print("Attempty to use CUDA")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA_FP16)
else:
print("Running on CPU")
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
return net
INPUT_WIDTH = 640
INPUT_HEIGHT = 640
SCORE_THRESHOLD = 0.2
NMS_THRESHOLD = 0.4
CONFIDENCE_THRESHOLD = 0.4
def detect(image, net):
blob = cv2.dnn.blobFromImage(image, 1/255.0, (INPUT_WIDTH, INPUT_HEIGHT), swapRB=True, crop=False)
net.setInput(blob)
preds = net.forward()
return preds
def load_classes():
class_list = []
with open("classes.txt", "r") as f:
class_list = [cname.strip() for cname in f.readlines()]
return class_list
class_list = load_classes()
def wrap_detection(input_image, output_data):
class_ids = []
confidences = []
boxes = []
rows = output_data.shape[0]
image_width, image_height, _ = input_image.shape
x_factor = image_width / INPUT_WIDTH
y_factor = image_height / INPUT_HEIGHT
for r in range(rows):
row = output_data[r]
confidence = row[4]
if confidence >= 0.4:
classes_scores = row[5:]
_, _, _, max_indx = cv2.minMaxLoc(classes_scores)
class_id = max_indx[1]
if (classes_scores[class_id] > .25):
confidences.append(confidence)
class_ids.append(class_id)
x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
left = int((x - 0.5 * w) * x_factor)
top = int((y - 0.5 * h) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
box = np.array([left, top, width, height])
boxes.append(box)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
result_class_ids = []
result_confidences = []
result_boxes = []
for i in indexes:
result_confidences.append(confidences[i])
result_class_ids.append(class_ids[i])
result_boxes.append(boxes[i])
return result_class_ids, result_confidences, result_boxes
def format_yolov5(frame):
row, col, _ = frame.shape
_max = max(col, row)
result = np.zeros((_max, _max, 3), np.uint8)
result[0:row, 0:col] = frame
return result
colors = [(255, 255, 0), (0, 255, 0), (0, 255, 255), (255, 0, 0)]
is_cuda = len(sys.argv) > 1 and sys.argv[1] == "cuda"
class Helios:
def __init__(self):
print("Starting helios...")
self.net = build_model(is_cuda)
self.capture = cv2.VideoCapture(0)
print('opened',self.capture.isOpened())
self.start_time = time.time_ns()
self.frame_count = 0
self.total_frames = 0
self.fps = -1
def start(self):
# This function runs in a thread to retrieve frames using opencv.
# We then run inference on this frame and trigger the buzzes.
#insert code to capture frame using opencv -> cvmat or numpy array √
# Make YOLO inference -> bounding boxes √
# Optionally display frame with bouding box overlay √
# Pass bounding boxes to buzzer function ?
while True:
_, frame = self.capture.read()
if frame is None:
print("End of stream")
break
inputImage = format_yolov5(frame)
outs = detect(inputImage, self.net)
class_ids, confidences, boxes = wrap_detection(inputImage, outs[0])
self.frame_count += 1
self.total_frames += 1
for (classid, confidence, box) in zip(class_ids, confidences, boxes):
if class_list[classid] == "cup":
color = colors[int(classid) % len(colors)]
cv2.rectangle(frame, box, color, 2)
cv2.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), color, -1)
cv2.putText(frame, class_list[classid], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,0,0))
print((box[0]+box[2])/2)
# divide into 3 regions by x(0-640) and then buzz
break
if self.frame_count >= 30:
end = time.time_ns()
self.fps = 1000000000 * self.frame_count / (end - self.start_time)
self.frame_count = 0
self.start_time = time.time_ns()
if self.fps > 0:
fps_label = "FPS: %.2f" % self.fps
cv2.putText(frame, fps_label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv2.imshow("output", frame)
if cv2.waitKey(1) > -1:
print("finished by user")
break
def main(argv=sys.argv):
app = Helios()
# todo: Considerrunning start() in a thread.
# self.thread = threading.Thread(target=start, argv=(1,))
# self.thread.start()
app.start()
if __name__ == '__main__':
main(sys.argv)