Skip to content

Latest commit

 

History

History
559 lines (412 loc) · 27.6 KB

how-to-use-gvfs.md

File metadata and controls

559 lines (412 loc) · 27.6 KB
title slug license
How to use Apache Gravitino Virtual File System with Filesets
/how-to-use-gvfs
This software is licensed under the Apache License version 2.

Introduction

Fileset is a concept brought in by Apache Gravitino, which is a logical collection of files and directories, with fileset you can manage non-tabular data through Gravitino. For details, you can read How to manage fileset metadata using Gravitino.

To use Fileset managed by Gravitino, Gravitino provides a virtual file system layer called the Gravitino Virtual File System (GVFS):

  • In Java, it's built on top of the Hadoop Compatible File System(HCFS) interface.
  • In Python, it's built on top of the fsspec interface.

GVFS is a virtual layer that manages the files and directories in the fileset through a virtual path, without needing to understand the specific storage details of the fileset. You can access the files or folders as shown below:

gvfs://fileset/${catalog_name}/${schema_name}/${fileset_name}/sub_dir/

In python GVFS, you can also access the files or folders as shown below:

fileset/${catalog_name}/${schema_name}/${fileset_name}/sub_dir/

Here gvfs is the scheme of the GVFS, fileset is the root directory of the GVFS which can't modified, and ${catalog_name}/${schema_name}/${fileset_name} is the virtual path of the fileset. You can access the files and folders under this virtual path by concatenating a file or folder name to the virtual path.

The usage pattern for GVFS is the same as HDFS or S3. GVFS internally manages the path mapping and convert automatically.

1. Managing files of Fileset with Java GVFS

Prerequisites

  • A Hadoop environment with HDFS running. GVFS has been tested against Hadoop 3.1.0. It is recommended to use Hadoop 3.1.0 or later, but it should work with Hadoop 2. x. Please create an issue if you find any compatibility issues.

Configuration

Configuration item Description Default value Required Since version
fs.AbstractFileSystem.gvfs.impl The Gravitino Virtual File System abstract class, set it to org.apache.gravitino.filesystem.hadoop.Gvfs. (none) Yes 0.5.0
fs.gvfs.impl The Gravitino Virtual File System implementation class, set it to org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem. (none) Yes 0.5.0
fs.gvfs.impl.disable.cache Disable the Gravitino Virtual File System cache in the Hadoop environment. If you need to proxy multi-user operations, please set this value to true and create a separate File System for each user. false No 0.5.0
fs.gravitino.server.uri The Gravitino server URI which GVFS needs to load the fileset metadata. (none) Yes 0.5.0
fs.gravitino.client.metalake The metalake to which the fileset belongs. (none) Yes 0.5.0
fs.gravitino.client.authType The auth type to initialize the Gravitino client to use with the Gravitino Virtual File System. Currently only supports simple, oauth2 and kerberos auth types. simple No 0.5.0
fs.gravitino.client.oauth2.serverUri The auth server URI for the Gravitino client when using oauth2 auth type with the Gravitino Virtual File System. (none) Yes if you use oauth2 auth type 0.5.0
fs.gravitino.client.oauth2.credential The auth credential for the Gravitino client when using oauth2 auth type in the Gravitino Virtual File System. (none) Yes if you use oauth2 auth type 0.5.0
fs.gravitino.client.oauth2.path The auth server path for the Gravitino client when using oauth2 auth type with the Gravitino Virtual File System. Please remove the first slash / from the path, for example oauth/token. (none) Yes if you use oauth2 auth type 0.5.0
fs.gravitino.client.oauth2.scope The auth scope for the Gravitino client when using oauth2 auth type with the Gravitino Virtual File System. (none) Yes if you use oauth2 auth type 0.5.0
fs.gravitino.client.kerberos.principal The auth principal for the Gravitino client when using kerberos auth type with the Gravitino Virtual File System. (none) Yes if you use kerberos auth type 0.5.1
fs.gravitino.client.kerberos.keytabFilePath The auth keytab file path for the Gravitino client when using kerberos auth type in the Gravitino Virtual File System. (none) No 0.5.1
fs.gravitino.fileset.cache.maxCapacity The cache capacity of the Gravitino Virtual File System. 20 No 0.5.0
fs.gravitino.fileset.cache.evictionMillsAfterAccess The value of time that the cache expires after accessing in the Gravitino Virtual File System. The value is in milliseconds. 3600000 No 0.5.0

You can configure these properties in two ways:

  1. Before obtaining the FileSystem in the code, construct a Configuration object and set its properties:

    Configuration conf = new Configuration();
    conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
    conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
    conf.set("fs.gravitino.server.uri","http://localhost:8090");
    conf.set("fs.gravitino.client.metalake","test_metalake");
    Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
    FileSystem fs = filesetPath.getFileSystem(conf);
  2. Configure the properties in the core-site.xml file of the Hadoop environment:

      <property>
        <name>fs.AbstractFileSystem.gvfs.impl</name>
        <value>org.apache.gravitino.filesystem.hadoop.Gvfs</value>
      </property>
    
      <property>
        <name>fs.gvfs.impl</name>
        <value>org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem</value>
      </property>
    
      <property>
        <name>fs.gravitino.server.uri</name>
        <value>http://localhost:8090</value>
      </property>
    
      <property>
        <name>fs.gravitino.client.metalake</name>
        <value>test_metalake</value>
      </property>

Usage examples

First make sure to obtain the Gravitino Virtual File System runtime jar, which you can get in two ways:

  1. Download from the maven central repository. You can download the runtime jar named gravitino-filesystem-hadoop3-runtime-{version}.jar from Maven repository.

  2. Compile from the source code:

    Download or clone the Gravitino source code, and compile it locally using the following command in the Gravitino source code directory:

       ./gradlew :clients:filesystem-hadoop3-runtime:build -x test

Via Hadoop shell command

You can use the Hadoop shell command to perform operations on the fileset storage. For example:

# 1. Configure the hadoop `core-site.xml` configuration
# You should put the required properties into this file
vi ${HADOOP_HOME}/etc/hadoop/core-site.xml

# 2. Place the GVFS runtime jar into your Hadoop environment
cp gravitino-filesystem-hadoop3-runtime-{version}.jar ${HADOOP_HOME}/share/hadoop/common/lib/

# 3. Complete the Kerberos authentication setup of the Hadoop environment (if necessary).
# You need to ensure that the Kerberos has permission on the HDFS directory.
kinit -kt your_kerberos.keytab [email protected]

# 4. Try to list the fileset
./${HADOOP_HOME}/bin/hadoop dfs -ls gvfs://fileset/test_catalog/test_schema/test_fileset_1

Via Java code

You can also perform operations on the files or directories managed by fileset through Java code. Make sure that your code is using the correct Hadoop environment, and that your environment has the gravitino-filesystem-hadoop3-runtime-{version}.jar dependency.

For example:

Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
fs.getFileStatus(filesetPath);

Via Apache Spark

  1. Add the GVFS runtime jar to the Spark environment.

    You can use --packages or --jars in the Spark submit shell to include the Gravitino Virtual File System runtime jar, like so:

    ./${SPARK_HOME}/bin/spark-submit --packages org.apache.gravitino:filesystem-hadoop3-runtime:${version}

    If you want to include the Gravitino Virtual File System runtime jar in your Spark installation, add it to the ${SPARK_HOME}/jars/ folder.

  2. Configure the Hadoop configuration when submitting the job.

    You can configure in the shell command in this way:

    --conf spark.hadoop.fs.AbstractFileSystem.gvfs.impl=org.apache.gravitino.filesystem.hadoop.Gvfs
    --conf spark.hadoop.fs.gvfs.impl=org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem
    --conf spark.hadoop.fs.gravitino.server.uri=${your_gravitino_server_uri}
    --conf spark.hadoop.fs.gravitino.client.metalake=${your_gravitino_metalake}
  3. Perform operations on the fileset storage in your code.

    Finally, you can access the fileset storage in your Spark program:

    // Scala code
    val spark = SparkSession.builder()
          .appName("Gvfs Example")
          .getOrCreate()
    
    val rdd = spark.sparkContext.textFile("gvfs://fileset/test_catalog/test_schema/test_fileset_1")
    
    rdd.foreach(println)

Via Tensorflow

For Tensorflow to support GVFS, you need to recompile the tensorflow-io module.

  1. First, add a patch and recompile tensorflow-io.

    You need to add a patch to support GVFS on tensorflow-io. Then you can follow the tutorial to recompile your code and release the tensorflow-io module.

  2. Then you need to configure the Hadoop configuration.

    You need to configure the Hadoop configuration and add gravitino-filesystem-hadoop3-runtime-{version}.jar, and set up the Kerberos environment according to the Use GVFS via Hadoop shell command sections.

    Then you need to set your environment as follows:

    export HADOOP_HOME=${your_hadoop_home}
    export HADOOP_CONF_DIR=${your_hadoop_conf_home}
    export PATH=$PATH:$HADOOP_HOME/libexec/hadoop-config.sh
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/server
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
    export CLASSPATH="$(hadoop classpath --glob)"
  3. Import tensorflow-io and test.

    import tensorflow as tf
    import tensorflow_io as tfio
    
    ## read a file
    print(tf.io.read_file('gvfs://fileset/test_catalog/test_schema/test_fileset_1/test.txt'))
    
    ## list directory
    print(tf.io.gfile.listdir('gvfs://fileset/test_catalog/test_schema/test_fileset_1/'))

Authentication

Currently, Gravitino Virtual File System supports two kinds of authentication types to access Gravitino server: simple and oauth2.

The type of simple is the default authentication type in Gravitino Virtual File System.

How to use authentication

Using simple authentication

First, make sure that your Gravitino server is also configured to use the simple authentication mode.

Then, you can configure the Hadoop configuration like this:

// Simple type uses the environment variable `GRAVITINO_USER` as the client user.
// If the environment variable `GRAVITINO_USER` isn't set,
// the client uses the user of the machine that sends requests.
System.setProperty("GRAVITINO_USER", "test");

Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
// Configure the auth type to simple,
// or do not configure this configuration, gvfs will use simple type as default.
conf.set("fs.gravitino.client.authType", "simple");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
Using OAuth authentication

If you want to use oauth2 authentication for the Gravitino client in the Gravitino Virtual File System, please refer to this document to complete the configuration of the Gravitino server and the OAuth server: Security.

Then, you can configure the Hadoop configuration like this:

Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
// Configure the auth type to oauth2.
conf.set("fs.gravitino.client.authType", "oauth2");
// Configure the OAuth configuration.
conf.set("fs.gravitino.client.oauth2.serverUri", "${your_oauth_server_uri}");
conf.set("fs.gravitino.client.oauth2.credential", "${your_client_credential}");
conf.set("fs.gravitino.client.oauth2.path", "${your_oauth_server_path}");
conf.set("fs.gravitino.client.oauth2.scope", "${your_client_scope}");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);
Using Kerberos authentication

If you want to use kerberos authentication for the Gravitino client in the Gravitino Virtual File System, please refer to this document to complete the configuration of the Gravitino server: Security.

Then, you can configure the Hadoop configuration like this:

Configuration conf = new Configuration();
conf.set("fs.AbstractFileSystem.gvfs.impl","org.apache.gravitino.filesystem.hadoop.Gvfs");
conf.set("fs.gvfs.impl","org.apache.gravitino.filesystem.hadoop.GravitinoVirtualFileSystem");
conf.set("fs.gravitino.server.uri","http://localhost:8090");
conf.set("fs.gravitino.client.metalake","test_metalake");
// Configure the auth type to kerberos.
conf.set("fs.gravitino.client.authType", "kerberos");
// Configure the Kerberos configuration.
conf.set("fs.gravitino.client.kerberos.principal", "${your_kerberos_principal}");
// Optional. You don't need to set the keytab if you use kerberos ticket cache.
conf.set("fs.gravitino.client.kerberos.keytabFilePath", "${your_kerberos_keytab}");
Path filesetPath = new Path("gvfs://fileset/test_catalog/test_schema/test_fileset_1");
FileSystem fs = filesetPath.getFileSystem(conf);

2. Managing files of Fileset with Python GVFS

Prerequisites

  • A Hadoop environment with HDFS running. Now we only supports Fileset on HDFS. GVFS in Python has been tested against Hadoop 2.7.3. It is recommended to use Hadoop 2.7.3 or later, it should work with Hadoop 3.x. Please create an issue if you find any compatibility issues.
  • Python version >= 3.8. It has been tested GVFS works well with Python 3.8 and Python 3.9. Your Python version should be at least higher than Python 3.8.

Attention: If you are using macOS or Windows operating system, you need to follow the steps in the Hadoop official building documentation(Need match your Hadoop version) to recompile the native libraries like libhdfs and others, and completely replace the files in ${HADOOP_HOME}/lib/native.

Configuration

Configuration item Description Default value Required Since version
server_uri The Gravitino server uri, e.g. http://localhost:8090. (none) Yes 0.6.0
metalake_name The metalake name which the fileset belongs to. (none) Yes 0.6.0
cache_size The cache capacity of the Gravitino Virtual File System. 20 No 0.6.0
cache_expired_time The value of time that the cache expires after accessing in the Gravitino Virtual File System. The value is in seconds. 3600 No 0.6.0
auth_type The auth type to initialize the Gravitino client to use with the Gravitino Virtual File System. Currently only supports simple auth types. simple No 0.6.0

You can configure these properties when obtaining the Gravitino Virtual FileSystem in Python like this:

from gravitino import gvfs
options = {
    "cache_size": 20,
    "cache_expired_time": 3600,
    "auth_type": "simple"
}
fs = gvfs.GravitinoVirtualFileSystem(server_uri="http://localhost:8090", metalake_name="test_metalake", options=options)

Usage examples

  1. Make sure to obtain the Gravitino library. You can get it by pip:

    pip install gravitino
  2. Configuring the Hadoop environment. You should ensure that the Python client has Kerberos authentication information and configure Hadoop environments in the system environment:

    # kinit kerberos
    kinit -kt /tmp/xxx.keytab [email protected]
    # Or you can configure kerberos information in the Hadoop `core-site.xml` file
    <property>
      <name>hadoop.security.authentication</name>
      <value>kerberos</value>
    </property>
    
    <property>
      <name>hadoop.client.kerberos.principal</name>
      <value>[email protected]</value>
    </property>
    
    <property>
      <name>hadoop.client.keytab.file</name>
      <value>/tmp/xxx.keytab</value>
    </property>
    # Configure Hadoop env in Linux
    export HADOOP_HOME=${YOUR_HADOOP_PATH}
    export HADOOP_CONF_DIR=${YOUR_HADOOP_PATH}/etc/hadoop
    export CLASSPATH=`$HADOOP_HOME/bin/hdfs classpath --glob`

Via fsspec-style interface

You can use the fsspec-style interface to perform operations on the fileset files.

For example:

from gravitino import gvfs

# init the gvfs
fs = gvfs.GravitinoVirtualFileSystem(server_uri="http://localhost:8090", metalake_name="test_metalake")

# list file infos under the fileset
fs.ls(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir")

# get file info under the fileset
fs.info(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.parquet")

# check a file or a diretory whether exists
fs.exists(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir")

# write something into a file
with fs.open(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt", mode="wb") as output_stream:
    output_stream.write(b"hello world")

# append something into a file
with fs.open(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt", mode="ab") as append_stream:
    append_stream.write(b"hello world")

# read something from a file
with fs.open(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt", mode="rb") as input_stream:
    input_stream.read()

# copy a file
fs.cp_file(path1="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test.txt",
           path2="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test-1.txt")

# delete a file
fs.rm_file(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/ttt/test-1.txt")

# two methods to create a directory
fs.makedirs(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_2")

fs.mkdir(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_3")

# delete a file or a directory recursively
fs.rm(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_2", recursive=True)

# delete a directory
fs.rmdir(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir_2")

# move a file or a directory
fs.mv(path1="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test-1.txt",
      path2="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/sub_dir/test-2.txt")

# get the content of a file
fs.cat_file(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test-1.txt")

# copy a remote file to local
fs.get_file(rpath="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test-1.txt",
            lpath="/tmp/local-file-1.txt")

Integrating with Third-party Python libraries

You can also perform operations on the files or directories managed by fileset integrating with some Third-party Python libraries which support fsspec compatible filesystems.

For example:

  1. Integrating with Pandas(2.0.3).
from gravitino import gvfs
import pandas as pd

data = pd.DataFrame({'Name': ['A', 'B', 'C', 'D'], 'ID': [20, 21, 19, 18]})
storage_options = {'server_uri': 'http://localhost:8090', 'metalake_name': 'test_metalake'}
# save data to a parquet file under the fileset
data.to_parquet('gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet', storage_options=storage_options)

# read data from a parquet file under the fileset
ds = pd.read_parquet(path="gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet",
                     storage_options=storage_options)
print(ds)

# save data to a csv file under the fileset
data.to_csv('gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.csv', storage_options=storage_options)

# save data from a csv file under the fileset
df = pd.read_csv('gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.csv', storage_options=storage_options)
print(df)
  1. Integrating with PyArrow(15.0.2).
from gravitino import gvfs
import pyarrow.dataset as dt
import pyarrow.parquet as pq

fs = gvfs.GravitinoVirtualFileSystem(
    server_uri="http://localhost:8090", metalake_name="test_metalake"
)

# read a parquet file as arrow dataset
arrow_dataset = dt.dataset("gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet", filesystem=fs)

# read a parquet file as arrow parquet table
arrow_table = pq.read_table("gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet", filesystem=fs)
  1. Integrating with Ray(2.10.0).
from gravitino import gvfs
import ray

fs = gvfs.GravitinoVirtualFileSystem(
    server_uri="http://localhost:8090", metalake_name="test_metalake"
)

# read a parquet file as ray dataset
ds = ray.data.read_parquet("gvfs://fileset/fileset_catalog/tmp/tmp_fileset/test.parquet",fs)
  1. Integrating with LlamaIndex(0.10.40).
from gravitino import gvfs
from llama_index.core import SimpleDirectoryReader

fs = gvfs.GravitinoVirtualFileSystem(server_uri=server_uri, metalake_name=metalake_name)

# read all document files like csv files under the fileset sub dir
reader = SimpleDirectoryReader(
    input_dir='fileset/fileset_catalog/tmp/tmp_fileset/sub_dir',
    fs=fs,
    recursive=True,  # recursively searches all subdirectories
)
documents = reader.load_data()
print(documents)

Authentication

Currently, Gravitino Virtual File System in Python only supports one kind of authentication types to access Gravitino server: simple.

The type of simple is the default authentication type in Gravitino Virtual File System in Python.

How to use authentication

Using simple authentication

First, make sure that your Gravitino server is also configured to use the simple authentication mode.

Then, you can configure the authentication like this:

from gravitino import gvfs

options = {"auth_type": "simple"}
fs = gvfs.GravitinoVirtualFileSystem(server_uri="http://localhost:8090", metalake_name="test_metalake", options=options)
print(fs.ls("gvfs://fileset/fileset_catlaog/tmp/test_fileset"))