-
Notifications
You must be signed in to change notification settings - Fork 0
/
printf.c
886 lines (777 loc) · 26 KB
/
printf.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
///////////////////////////////////////////////////////////////////////////////
// \author (c) Marco Paland ([email protected])
// 2014-2019, PALANDesign Hannover, Germany
//
// \license The MIT License (MIT)
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
// \brief Tiny printf, sprintf and (v)snprintf implementation, optimized for speed on
// embedded systems with a very limited resources. These routines are thread
// safe and reentrant!
// Use this instead of the bloated standard/newlib printf cause these use
// malloc for printf (and may not be thread safe).
//
///////////////////////////////////////////////////////////////////////////////
#include <stdbool.h>
#include <stdint.h>
#include "printf.h"
// define this globally (e.g. gcc -DPRINTF_INCLUDE_CONFIG_H ...) to include the
// printf_config.h header file
// default: undefined
#ifdef PRINTF_INCLUDE_CONFIG_H
#include "printf_config.h"
#endif
// 'ntoa' conversion buffer size, this must be big enough to hold one converted
// numeric number including padded zeros (dynamically created on stack)
// default: 32 byte
#ifndef PRINTF_NTOA_BUFFER_SIZE
#define PRINTF_NTOA_BUFFER_SIZE 32U
#endif
// 'ftoa' conversion buffer size, this must be big enough to hold one converted
// float number including padded zeros (dynamically created on stack)
// default: 32 byte
#ifndef PRINTF_FTOA_BUFFER_SIZE
#define PRINTF_FTOA_BUFFER_SIZE 32U
#endif
// support for the floating point type (%f)
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_FLOAT
#define PRINTF_SUPPORT_FLOAT
#endif
// support for exponential floating point notation (%e/%g)
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_EXPONENTIAL
#define PRINTF_SUPPORT_EXPONENTIAL
#endif
// define the default floating point precision
// default: 6 digits
#ifndef PRINTF_DEFAULT_FLOAT_PRECISION
#define PRINTF_DEFAULT_FLOAT_PRECISION 6U
#endif
// define the largest float suitable to print with %f
// default: 1e9
#ifndef PRINTF_MAX_FLOAT
#define PRINTF_MAX_FLOAT 1e9
#endif
// support for the long long types (%llu or %p)
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_LONG_LONG
#define PRINTF_SUPPORT_LONG_LONG
#endif
// support for the ptrdiff_t type (%t)
// ptrdiff_t is normally defined in <stddef.h> as long or long long type
// default: activated
#ifndef PRINTF_DISABLE_SUPPORT_PTRDIFF_T
#define PRINTF_SUPPORT_PTRDIFF_T
#endif
///////////////////////////////////////////////////////////////////////////////
// internal flag definitions
#define FLAGS_ZEROPAD (1U << 0U)
#define FLAGS_LEFT (1U << 1U)
#define FLAGS_PLUS (1U << 2U)
#define FLAGS_SPACE (1U << 3U)
#define FLAGS_HASH (1U << 4U)
#define FLAGS_UPPERCASE (1U << 5U)
#define FLAGS_CHAR (1U << 6U)
#define FLAGS_SHORT (1U << 7U)
#define FLAGS_LONG (1U << 8U)
#define FLAGS_LONG_LONG (1U << 9U)
#define FLAGS_PRECISION (1U << 10U)
#define FLAGS_ADAPT_EXP (1U << 11U)
// import float.h for DBL_MAX
#if defined(PRINTF_SUPPORT_FLOAT)
#include <float.h>
#endif
// output function type
typedef void (*out_fct_type)(char character, void* buffer, size_t idx, size_t maxlen);
// wrapper (used as buffer) for output function type
typedef struct {
void (*fct)(char character, void* arg);
void* arg;
} out_fct_wrap_type;
// internal buffer output
static inline void _out_buffer(char character, void* buffer, size_t idx, size_t maxlen)
{
if (idx < maxlen) {
((char*)buffer)[idx] = character;
}
}
// internal null output
static inline void _out_null(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)character; (void)buffer; (void)idx; (void)maxlen;
}
// internal output function wrapper
static inline void _out_fct(char character, void* buffer, size_t idx, size_t maxlen)
{
(void)idx; (void)maxlen;
if (character) {
// buffer is the output fct pointer
((out_fct_wrap_type*)buffer)->fct(character, ((out_fct_wrap_type*)buffer)->arg);
}
}
// internal secure strlen
// \return The length of the string (excluding the terminating 0) limited by 'maxsize'
static inline unsigned int _strnlen_s(const char* str, size_t maxsize)
{
const char* s;
for (s = str; *s && maxsize--; ++s);
return (unsigned int)(s - str);
}
// internal test if char is a digit (0-9)
// \return true if char is a digit
static inline bool _is_digit(char ch)
{
return (ch >= '0') && (ch <= '9');
}
// internal ASCII string to unsigned int conversion
static unsigned int _atoi(const char** str)
{
unsigned int i = 0U;
while (_is_digit(**str)) {
i = i * 10U + (unsigned int)(*((*str)++) - '0');
}
return i;
}
// output the specified string in reverse, taking care of any zero-padding
static size_t _out_rev(out_fct_type out, char* buffer, size_t idx, size_t maxlen, const char* buf, size_t len, unsigned int width, unsigned int flags)
{
const size_t start_idx = idx;
size_t i;
// pad spaces up to given width
if (!(flags & FLAGS_LEFT) && !(flags & FLAGS_ZEROPAD)) {
for (i = len; i < width; i++) {
out(' ', buffer, idx++, maxlen);
}
}
// reverse string
while (len) {
out(buf[--len], buffer, idx++, maxlen);
}
// append pad spaces up to given width
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) {
out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
// internal itoa format
static size_t _ntoa_format(out_fct_type out, char* buffer, size_t idx, size_t maxlen, char* buf, size_t len, bool negative, unsigned int base, unsigned int prec, unsigned int width, unsigned int flags)
{
// pad leading zeros
if (!(flags & FLAGS_LEFT)) {
if (width && (flags & FLAGS_ZEROPAD) && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < prec) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
while ((flags & FLAGS_ZEROPAD) && (len < width) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
// handle hash
if (flags & FLAGS_HASH) {
if (!(flags & FLAGS_PRECISION) && len && ((len == prec) || (len == width))) {
len--;
if (len && (base == 16U)) {
len--;
}
}
if ((base == 16U) && !(flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'x';
}
else if ((base == 16U) && (flags & FLAGS_UPPERCASE) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'X';
}
else if ((base == 2U) && (len < PRINTF_NTOA_BUFFER_SIZE)) {
buf[len++] = 'b';
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
buf[len++] = '0';
}
}
if (len < PRINTF_NTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
}
else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
}
else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
// internal itoa for 'long' type
static size_t _ntoa_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long value, bool negative, unsigned long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
// internal itoa for 'long long' type
#if defined(PRINTF_SUPPORT_LONG_LONG)
static size_t _ntoa_long_long(out_fct_type out, char* buffer, size_t idx, size_t maxlen, unsigned long long value, bool negative, unsigned long long base, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_NTOA_BUFFER_SIZE];
size_t len = 0U;
// no hash for 0 values
if (!value) {
flags &= ~FLAGS_HASH;
}
// write if precision != 0 and value is != 0
if (!(flags & FLAGS_PRECISION) || value) {
do {
const char digit = (char)(value % base);
buf[len++] = digit < 10 ? '0' + digit : (flags & FLAGS_UPPERCASE ? 'A' : 'a') + digit - 10;
value /= base;
} while (value && (len < PRINTF_NTOA_BUFFER_SIZE));
}
return _ntoa_format(out, buffer, idx, maxlen, buf, len, negative, (unsigned int)base, prec, width, flags);
}
#endif // PRINTF_SUPPORT_LONG_LONG
#if defined(PRINTF_SUPPORT_FLOAT)
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
// forward declaration so that _ftoa can switch to exp notation for values > PRINTF_MAX_FLOAT
static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags);
#endif
// internal ftoa for fixed decimal floating point
static size_t _ftoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
char buf[PRINTF_FTOA_BUFFER_SIZE];
size_t len = 0U;
double diff = 0.0;
// powers of 10
static const double pow10[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
// test for special values
if (value != value)
return _out_rev(out, buffer, idx, maxlen, "nan", 3, width, flags);
if (value < -DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, "fni-", 4, width, flags);
if (value > DBL_MAX)
return _out_rev(out, buffer, idx, maxlen, (flags & FLAGS_PLUS) ? "fni+" : "fni", (flags & FLAGS_PLUS) ? 4U : 3U, width, flags);
// test for very large values
// standard printf behavior is to print EVERY whole number digit -- which could be 100s of characters overflowing your buffers == bad
if ((value > PRINTF_MAX_FLOAT) || (value < -PRINTF_MAX_FLOAT)) {
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
return _etoa(out, buffer, idx, maxlen, value, prec, width, flags);
#else
return 0U;
#endif
}
// test for negative
bool negative = false;
if (value < 0) {
negative = true;
value = 0 - value;
}
// set default precision, if not set explicitly
if (!(flags & FLAGS_PRECISION)) {
prec = PRINTF_DEFAULT_FLOAT_PRECISION;
}
// limit precision to 9, cause a prec >= 10 can lead to overflow errors
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (prec > 9U)) {
buf[len++] = '0';
prec--;
}
int whole = (int)value;
double tmp = (value - whole) * pow10[prec];
unsigned long frac = (unsigned long)tmp;
diff = tmp - frac;
if (diff > 0.5) {
++frac;
// handle rollover, e.g. case 0.99 with prec 1 is 1.0
if (frac >= pow10[prec]) {
frac = 0;
++whole;
}
}
else if (diff < 0.5) {
}
else if ((frac == 0U) || (frac & 1U)) {
// if halfway, round up if odd OR if last digit is 0
++frac;
}
if (prec == 0U) {
diff = value - (double)whole;
if ((!(diff < 0.5) || (diff > 0.5)) && (whole & 1)) {
// exactly 0.5 and ODD, then round up
// 1.5 -> 2, but 2.5 -> 2
++whole;
}
}
else {
unsigned int count = prec;
// now do fractional part, as an unsigned number
while (len < PRINTF_FTOA_BUFFER_SIZE) {
--count;
buf[len++] = (char)(48U + (frac % 10U));
if (!(frac /= 10U)) {
break;
}
}
// add extra 0s
while ((len < PRINTF_FTOA_BUFFER_SIZE) && (count-- > 0U)) {
buf[len++] = '0';
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
// add decimal
buf[len++] = '.';
}
}
// do whole part, number is reversed
while (len < PRINTF_FTOA_BUFFER_SIZE) {
buf[len++] = (char)(48 + (whole % 10));
if (!(whole /= 10)) {
break;
}
}
// pad leading zeros
if (!(flags & FLAGS_LEFT) && (flags & FLAGS_ZEROPAD)) {
if (width && (negative || (flags & (FLAGS_PLUS | FLAGS_SPACE)))) {
width--;
}
while ((len < width) && (len < PRINTF_FTOA_BUFFER_SIZE)) {
buf[len++] = '0';
}
}
if (len < PRINTF_FTOA_BUFFER_SIZE) {
if (negative) {
buf[len++] = '-';
}
else if (flags & FLAGS_PLUS) {
buf[len++] = '+'; // ignore the space if the '+' exists
}
else if (flags & FLAGS_SPACE) {
buf[len++] = ' ';
}
}
return _out_rev(out, buffer, idx, maxlen, buf, len, width, flags);
}
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
// internal ftoa variant for exponential floating-point type, contributed by Martijn Jasperse <[email protected]>
static size_t _etoa(out_fct_type out, char* buffer, size_t idx, size_t maxlen, double value, unsigned int prec, unsigned int width, unsigned int flags)
{
// check for NaN and special values
if ((value != value) || (value > DBL_MAX) || (value < -DBL_MAX)) {
return _ftoa(out, buffer, idx, maxlen, value, prec, width, flags);
}
// determine the sign
const bool negative = value < 0;
if (negative) {
value = -value;
}
// default precision
if (!(flags & FLAGS_PRECISION)) {
prec = PRINTF_DEFAULT_FLOAT_PRECISION;
}
// determine the decimal exponent
// based on the algorithm by David Gay (https://www.ampl.com/netlib/fp/dtoa.c)
union {
uint64_t U;
double F;
} conv;
conv.F = value;
int exp2 = (int)((conv.U >> 52U) & 0x07FFU) - 1023; // effectively log2
conv.U = (conv.U & ((1ULL << 52U) - 1U)) | (1023ULL << 52U); // drop the exponent so conv.F is now in [1,2)
// now approximate log10 from the log2 integer part and an expansion of ln around 1.5
int expval = (int)(0.1760912590558 + exp2 * 0.301029995663981 + (conv.F - 1.5) * 0.289529654602168);
// now we want to compute 10^expval but we want to be sure it won't overflow
exp2 = (int)(expval * 3.321928094887362 + 0.5);
const double z = expval * 2.302585092994046 - exp2 * 0.6931471805599453;
const double z2 = z * z;
conv.U = (uint64_t)(exp2 + 1023) << 52U;
// compute exp(z) using continued fractions, see https://en.wikipedia.org/wiki/Exponential_function#Continued_fractions_for_ex
conv.F *= 1 + 2 * z / (2 - z + (z2 / (6 + (z2 / (10 + z2 / 14)))));
// correct for rounding errors
if (value < conv.F) {
expval--;
conv.F /= 10;
}
// the exponent format is "%+03d" and largest value is "307", so set aside 4-5 characters
unsigned int minwidth = ((expval < 100) && (expval > -100)) ? 4U : 5U;
// in "%g" mode, "prec" is the number of *significant figures* not decimals
if (flags & FLAGS_ADAPT_EXP) {
// do we want to fall-back to "%f" mode?
if ((value >= 1e-4) && (value < 1e6)) {
if ((int)prec > expval) {
prec = (unsigned)((int)prec - expval - 1);
}
else {
prec = 0;
}
flags |= FLAGS_PRECISION; // make sure _ftoa respects precision
// no characters in exponent
minwidth = 0U;
expval = 0;
}
else {
// we use one sigfig for the whole part
if ((prec > 0) && (flags & FLAGS_PRECISION)) {
--prec;
}
}
}
// will everything fit?
unsigned int fwidth = width;
if (width > minwidth) {
// we didn't fall-back so subtract the characters required for the exponent
fwidth -= minwidth;
} else {
// not enough characters, so go back to default sizing
fwidth = 0U;
}
if ((flags & FLAGS_LEFT) && minwidth) {
// if we're padding on the right, DON'T pad the floating part
fwidth = 0U;
}
// rescale the float value
if (expval) {
value /= conv.F;
}
// output the floating part
const size_t start_idx = idx;
idx = _ftoa(out, buffer, idx, maxlen, negative ? -value : value, prec, fwidth, flags & ~FLAGS_ADAPT_EXP);
// output the exponent part
if (minwidth) {
// output the exponential symbol
out((flags & FLAGS_UPPERCASE) ? 'E' : 'e', buffer, idx++, maxlen);
// output the exponent value
idx = _ntoa_long(out, buffer, idx, maxlen, (expval < 0) ? -expval : expval, expval < 0, 10, 0, minwidth-1, FLAGS_ZEROPAD | FLAGS_PLUS);
// might need to right-pad spaces
if (flags & FLAGS_LEFT) {
while (idx - start_idx < width) out(' ', buffer, idx++, maxlen);
}
}
return idx;
}
#endif // PRINTF_SUPPORT_EXPONENTIAL
#endif // PRINTF_SUPPORT_FLOAT
// internal vsnprintf
static int _vsnprintf(out_fct_type out, char* buffer, const size_t maxlen, const char* format, va_list va)
{
unsigned int flags, width, precision, n;
size_t idx = 0U;
if (!buffer) {
// use null output function
out = _out_null;
}
while (*format)
{
// format specifier? %[flags][width][.precision][length]
if (*format != '%') {
// no
out(*format, buffer, idx++, maxlen);
format++;
continue;
}
else {
// yes, evaluate it
format++;
}
// evaluate flags
flags = 0U;
do {
switch (*format) {
case '0': flags |= FLAGS_ZEROPAD; format++; n = 1U; break;
case '-': flags |= FLAGS_LEFT; format++; n = 1U; break;
case '+': flags |= FLAGS_PLUS; format++; n = 1U; break;
case ' ': flags |= FLAGS_SPACE; format++; n = 1U; break;
case '#': flags |= FLAGS_HASH; format++; n = 1U; break;
default : n = 0U; break;
}
} while (n);
// evaluate width field
width = 0U;
if (_is_digit(*format)) {
width = _atoi(&format);
}
else if (*format == '*') {
const int w = va_arg(va, int);
if (w < 0) {
flags |= FLAGS_LEFT; // reverse padding
width = (unsigned int)-w;
}
else {
width = (unsigned int)w;
}
format++;
}
// evaluate precision field
precision = 0U;
if (*format == '.') {
flags |= FLAGS_PRECISION;
format++;
if (_is_digit(*format)) {
precision = _atoi(&format);
}
else if (*format == '*') {
const int prec = (int)va_arg(va, int);
precision = prec > 0 ? (unsigned int)prec : 0U;
format++;
}
}
// evaluate length field
switch (*format) {
case 'l' :
flags |= FLAGS_LONG;
format++;
if (*format == 'l') {
flags |= FLAGS_LONG_LONG;
format++;
}
break;
case 'h' :
flags |= FLAGS_SHORT;
format++;
if (*format == 'h') {
flags |= FLAGS_CHAR;
format++;
}
break;
#if defined(PRINTF_SUPPORT_PTRDIFF_T)
case 't' :
flags |= (sizeof(ptrdiff_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
#endif
case 'j' :
flags |= (sizeof(intmax_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
case 'z' :
flags |= (sizeof(size_t) == sizeof(long) ? FLAGS_LONG : FLAGS_LONG_LONG);
format++;
break;
default :
break;
}
// evaluate specifier
switch (*format) {
case 'd' :
case 'i' :
case 'u' :
case 'x' :
case 'X' :
case 'o' :
case 'b' : {
// set the base
unsigned int base;
if (*format == 'x' || *format == 'X') {
base = 16U;
}
else if (*format == 'o') {
base = 8U;
}
else if (*format == 'b') {
base = 2U;
}
else {
base = 10U;
flags &= ~FLAGS_HASH; // no hash for dec format
}
// uppercase
if (*format == 'X') {
flags |= FLAGS_UPPERCASE;
}
// no plus or space flag for u, x, X, o, b
if ((*format != 'i') && (*format != 'd')) {
flags &= ~(FLAGS_PLUS | FLAGS_SPACE);
}
// ignore '0' flag when precision is given
if (flags & FLAGS_PRECISION) {
flags &= ~FLAGS_ZEROPAD;
}
// convert the integer
if ((*format == 'i') || (*format == 'd')) {
// signed
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
const long long value = va_arg(va, long long);
idx = _ntoa_long_long(out, buffer, idx, maxlen, (unsigned long long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
#endif
}
else if (flags & FLAGS_LONG) {
const long value = va_arg(va, long);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
else {
const int value = (flags & FLAGS_CHAR) ? (char)va_arg(va, int) : (flags & FLAGS_SHORT) ? (short int)va_arg(va, int) : va_arg(va, int);
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned int)(value > 0 ? value : 0 - value), value < 0, base, precision, width, flags);
}
}
else {
// unsigned
if (flags & FLAGS_LONG_LONG) {
#if defined(PRINTF_SUPPORT_LONG_LONG)
idx = _ntoa_long_long(out, buffer, idx, maxlen, va_arg(va, unsigned long long), false, base, precision, width, flags);
#endif
}
else if (flags & FLAGS_LONG) {
idx = _ntoa_long(out, buffer, idx, maxlen, va_arg(va, unsigned long), false, base, precision, width, flags);
}
else {
const unsigned int value = (flags & FLAGS_CHAR) ? (unsigned char)va_arg(va, unsigned int) : (flags & FLAGS_SHORT) ? (unsigned short int)va_arg(va, unsigned int) : va_arg(va, unsigned int);
idx = _ntoa_long(out, buffer, idx, maxlen, value, false, base, precision, width, flags);
}
}
format++;
break;
}
#if defined(PRINTF_SUPPORT_FLOAT)
case 'f' :
case 'F' :
if (*format == 'F') flags |= FLAGS_UPPERCASE;
idx = _ftoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
format++;
break;
#if defined(PRINTF_SUPPORT_EXPONENTIAL)
case 'e':
case 'E':
case 'g':
case 'G':
if ((*format == 'g')||(*format == 'G')) flags |= FLAGS_ADAPT_EXP;
if ((*format == 'E')||(*format == 'G')) flags |= FLAGS_UPPERCASE;
idx = _etoa(out, buffer, idx, maxlen, va_arg(va, double), precision, width, flags);
format++;
break;
#endif // PRINTF_SUPPORT_EXPONENTIAL
#endif // PRINTF_SUPPORT_FLOAT
case 'c' : {
unsigned int l = 1U;
// pre padding
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// char output
out((char)va_arg(va, int), buffer, idx++, maxlen);
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 's' : {
const char* p = va_arg(va, char*);
unsigned int l = _strnlen_s(p, precision ? precision : (size_t)-1);
// pre padding
if (flags & FLAGS_PRECISION) {
l = (l < precision ? l : precision);
}
if (!(flags & FLAGS_LEFT)) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
// string output
while ((*p != 0) && (!(flags & FLAGS_PRECISION) || precision--)) {
out(*(p++), buffer, idx++, maxlen);
}
// post padding
if (flags & FLAGS_LEFT) {
while (l++ < width) {
out(' ', buffer, idx++, maxlen);
}
}
format++;
break;
}
case 'p' : {
width = sizeof(void*) * 2U;
flags |= FLAGS_ZEROPAD | FLAGS_UPPERCASE;
#if defined(PRINTF_SUPPORT_LONG_LONG)
const bool is_ll = sizeof(uintptr_t) == sizeof(long long);
if (is_ll) {
idx = _ntoa_long_long(out, buffer, idx, maxlen, (uintptr_t)va_arg(va, void*), false, 16U, precision, width, flags);
}
else {
#endif
idx = _ntoa_long(out, buffer, idx, maxlen, (unsigned long)((uintptr_t)va_arg(va, void*)), false, 16U, precision, width, flags);
#if defined(PRINTF_SUPPORT_LONG_LONG)
}
#endif
format++;
break;
}
case '%' :
out('%', buffer, idx++, maxlen);
format++;
break;
default :
out(*format, buffer, idx++, maxlen);
format++;
break;
}
}
// termination
out((char)0, buffer, idx < maxlen ? idx : maxlen - 1U, maxlen);
// return written chars without terminating \0
return (int)idx;
}
///////////////////////////////////////////////////////////////////////////////
int sprintf_(char* buffer, const char* format, ...)
{
va_list va;
va_start(va, format);
const int ret = _vsnprintf(_out_buffer, buffer, (size_t)-1, format, va);
va_end(va);
return ret;
}
int snprintf_(char* buffer, size_t count, const char* format, ...)
{
va_list va;
va_start(va, format);
const int ret = _vsnprintf(_out_buffer, buffer, count, format, va);
va_end(va);
return ret;
}
int vsnprintf_(char* buffer, size_t count, const char* format, va_list va)
{
return _vsnprintf(_out_buffer, buffer, count, format, va);
}
int fctprintf(void (*out)(char character, void* arg), void* arg, const char* format, ...)
{
va_list va;
va_start(va, format);
const out_fct_wrap_type out_fct_wrap = { out, arg };
const int ret = _vsnprintf(_out_fct, (char*)(uintptr_t)&out_fct_wrap, (size_t)-1, format, va);
va_end(va);
return ret;
}